
CONTEXT-AWARE ACCESS

CONTROL IN UBIQUITOUS

COMPUTING (CRAAC)

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

July 2010

By

Ali Ahmed

School of Computer Science

Contents

Abstract 10

Declaration 12

Copyright 13

Acknowledgements 15

Dedication 16

1 Introduction 17

1.1 Project Context . 17

1.1.1 Ubiquitous Computing (UbiComp) 17

1.1.2 Context-aware Access Control 19

1.2 Research Motivations and Challenges 20

1.3 Problem Statement . 22

1.4 Aim and Objectives . 23

1.5 Research Achievements and Publications 24

1.6 Thesis Structure . 26

2 Traditional Access Control Models 28

2.1 Chapter Introduction . 28

2

2.2 Basic concepts . 29

2.3 Discretionary Access Control (DAC) 30

2.3.1 Access Control Lists . 31

2.3.2 Capabilities . 32

2.3.3 Authorisation relations . 32

2.3.4 DAC Summary remarks 33

2.4 Mandatory Access Control (MAC) 33

2.5 Role-Based Access Control (RBAC) 35

2.5.1 Core RBAC . 36

2.5.2 Role Hierarchy . 37

2.5.3 Constrained RBAC . 38

2.5.3.1 Static Separation of Duty 39

2.5.3.2 Dynamic Separation of Duty 40

2.5.4 Advantages of RBAC over DAC/MAC 41

2.5.5 What is Missing in RBAC? 41

2.6 Chapter Summary . 42

3 UbiComp Access Control: A Survey 44

3.1 Chapter Introduction . 44

3.2 Context-Aware Access Control (CAAC) Models 45

3.2.1 Generalised Role-Based Access Control 46

3.2.2 Spatio-Temporal Models 47

3.2.3 Dynamic Role-Based Access Control 49

3.2.4 CAAC-based Models with Architectural Components . . . 50

3.2.4.1 UbiCOSM . 51

3.2.4.2 OpenAmbient . 51

3.2.4.3 The Gaia Architecture 52

3

3.2.4.4 Context-Constrained Access Control (CoCoA) . . 53

3.3 Recent Proposals . 55

3.3.1 Generalised Context-Based Access Control 55

3.3.2 Activity-Based Access Control 56

3.3.3 Using Trust to Control Access to Resources 57

3.4 What is Still Missing? . 58

3.5 The Best Way Forward . 60

3.6 Chapter Summary . 62

4 Context-Risk-Aware Access Control (CRAAC) 64

4.1 Chapter Introduction . 64

4.2 CRAAC Vision . 65

4.3 Contextual Attributes Identification and LoA Determination . . . 67

4.3.1 Electronic Authentication Token 68

4.3.2 Access Location . 69

4.3.3 Communication Channel Security 71

4.3.4 Access History . 72

4.4 LoA-to-Weight Conversion (L2WC) Method Selection 73

4.4.1 Rationale and Selection Criteria 73

4.4.2 L2WC Methods . 74

4.4.2.1 Analytical Hierarchy Process 74

4.4.2.2 Rank-Ordered Weights-Based Methods 77

4.4.3 Choosing L2WC Method 79

4.5 Requester’s LoA Aggregation at Run-Time 81

4.5.1 Elevating Relationship . 82

4.5.2 Weakest-Link Relationship 83

4.6 CRAAC Modes of Working . 84

4

4.6.1 RLoA-only Mode . 85

4.6.2 AttributeLoA-only Mode 85

4.6.3 Combined Mode . 86

4.6.4 Basic-RBAC Mode . 87

4.7 Chapter Summary . 87

5 CRAAC Design Preliminaries 88

5.1 Chapter Introduction . 88

5.2 CRAAC Architecture: Motivation and Design Requirements . . . 89

5.3 CRAAC Policy Types and Access Modes 91

5.4 CRAAC Evaluation . 93

5.4.1 Performance Evaluation 94

5.4.2 Security Evaluation . 96

5.4.3 CRAAC Evaluation TestBed 98

5.5 Chapter Summary . 98

6 The RLoA-only Mode 100

6.1 Chapter Introduction . 100

6.2 The Architecture Overview . 101

6.3 The Architecture in Detail . 102

6.3.1 Access Control Infrastructure (ACI) 102

6.3.2 LoA Derivation Infrastructure (LoADI) 106

6.3.3 Context Management Infrastructure (CMI) 106

6.4 RLoA-only Mode Data-Flow . 107

6.5 RLoA-only Mode Performance Evaluation 111

6.5.1 The Effect of the PA Policy Size 112

6.5.2 The Effect of Resources’ OLoA Policy Size: Push Vs Pull . 116

6.5.3 The Effect of the Number of Enabled Roles 117

5

6.5.4 The Effect of the Attribute LoA Derivator 118

6.5.5 The Effect of the LoA Aggregator 120

6.5.6 The Effect of the Queuing Delays 122

6.5.7 The DoS Attack Resilience 124

6.6 Chapter Summary . 128

7 The AttributeLoA-only Mode 130

7.1 Chapter Introduction . 130

7.2 CRAAC Architecture and the AttributeLoA-only Mode 131

7.3 AttributeLoA-only Mode Data-Flow 133

7.4 Potentials and Concerns . 134

7.5 AttributeLoA-only Mode Performance Evaluation 136

7.5.1 The Effect of the PA Policy Size 137

7.5.2 The Effect of the Number of Contextual Attributes 139

7.6 Chapter Summary . 140

8 Conclusion and Future Work 142

8.1 Conclusion . 142

8.2 Future Work . 145

Bibliography 148

6

List of Tables

2.1 Access Control Matrix Sample . 31

2.2 Authorisation Relations . 33

3.1 Location Permission Assignment List in SRBAC 48

4.1 eToken Types Versus LoAeToken [1] 69

4.2 A Sample Location Information Versus LoAALoc [2] 70

4.3 An Examplar Setting of LoACS Values 72

4.4 An Examplar Setting of LoAAH Values 73

4.5 The AHP Importance Rating Scale [3] 76

4.6 The AHP Relative Importance Matrix for Software Selection . . . 77

4.7 The AHP Relative Weights for Software Selection 77

4.8 L2WC Methods Comparison . 80

5.1 CRAAC Modes Vs Policy Files Usage 93

5.2 NIST Access Control Quality Metric [4] 95

7

List of Figures

2.1 The Access Control List for a photocopier Machine 32

2.2 Alice’s Capability . 32

2.3 The Core RBAC . 37

2.4 The Hierarchical RBAC . 38

2.5 Example of a Role Hierarchy . 38

2.6 RBAC with Constraints . 39

3.1 CAAC Conceptual View . 46

3.2 UbiCOSM Middleware Services [5] 51

3.3 OpenAmbient Architecture [6] . 52

3.4 The Gaia Architecture [7] . 53

3.5 The CoCoA Architecture [8] . 54

3.6 The Generalised Context-Based Access Control [9] 56

4.1 The AHP Hierarchy for the Software Selection Problem 75

5.1 Snippet of the Resources’ OLoA Policy 92

6.1 CRAAC Architectural Components 102

6.2 The CRAAC Architecture: the RLoA-only Mode 103

6.3 Data-flow in the RLoA-only Mode 108

6.4 The Number of Iterations Determination 112

8

6.5 The PA Policy Size Effect: RLoA-onlypull vs basic-RBAC 114

6.6 The PA Policy Size Effect: RLoA-onlypush Vs basic-RBAC 116

6.7 RLoA-onlypush: the Effect of the Number of Enabled Roles 118

6.8 RLoA-onlypush: the Effect of the Attribute LoA Derivator 120

6.9 The Effect of the LoA Aggregator on the RLoA-only mode AADs 121

6.10 RLoA-only Vs basic-RBAC: the Effect of Queuing Delay 124

6.11 The RLoA Value Effect on the RLoA-onlypush AAD 126

7.1 The CRAAC Architecture: the AttributeLoA-only Mode 132

7.2 Data-flow in the AttributeLoA-only Mode 134

7.3 AttributeLoA-only Vs RLoA-only: the Effect of the PA Policy Size 138

7.4 AttributeLoA-only: the Effect of the Contextual Attribute Set Size 141

9

Abstract

Ubiquitous computing (UbiComp) envisions a new computing environment, where

computing devices and related technology are widespread (i.e. everywhere) and

services are provided at anytime. The technology is embedded discreetly in the

environment to raise users’ awareness. UbiComp environments support the prolif-

eration of heterogeneous devices such as embedded computing devices, personal

digital assistants (PDAs), wearable computers, mobile phones, laptops, office

desktops (PCs), and hardware sensors. These devices may be interconnected by

common networks (e.g. wired, wireless), and may have different levels of capa-

bilities (i.e. computational power, storage, power consumption, etc). They are

seamlessly integrated and interoperated to provide smart services (i.e. adaptive

services). A UbiComp environment provides smart services to users based on the

users’ and/or system’s current contexts. It provides the services to users unob-

trusively and in turn the user’s interactions with the environment should be as

non-intrusive and as transparent as possible. Access to such smart services and

devices must be controlled by an effective access control system that adapts its

decisions based on the changes in the surrounding contextual information.

This thesis aims at designing an adaptive fine-grained access control solution

that seamlessly fits into UbiComp environments. The solution should be flexible

in supporting the use of different contextual information and efficient, in terms of

access delays, in controlling access to resources with divergent levels of sensitivity.

10

The main contribution of this thesis is the proposal of the Context-Risk-

Aware Access Control (CRAAC) model. CRAAC achieves fine-grained access

control based upon the risk level in the underlying access environment and/or

the sensitivity level of the requested resource object. CRAAC makes new con-

tributions to the access control field, those include 1) introducing the concept of

level of assurance based access control, 2) providing a method to convert the con-

textual attributes values into the corresponding level of assurance, 3) Proposing

two methods to aggregate the set of level of assurance into one requester level of

assurance, 4) supporting four modes of working each suits a different application

context and/or access control requirements, 5) a comprehensive access control ar-

chitecture that supports the CRAAC four modes of working, and 6) an evaluation

of the CRAAC performance at runtime.

11

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

12

Copyright

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns any copyright in it (the “Copyright”) and s/he has given The

University of Manchester the right to use such Copyright for any adminis-

trative, promotional, educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in

accordance with the regulations of the John Rylands University Library of

Manchester. Details of these regulations may be obtained from the Librar-

ian. This page must form part of any such copies made.

iii. The ownership of any patents, designs, trade marks and any and all other

intellectual property rights except for the Copyright (the “Intellectual Prop-

erty Rights”) and any reproductions of copyright works, for example graphs

and tables (“Reproductions”), which may be described in this thesis, may

not be owned by the author and may be owned by third parties. Such Intel-

lectual Property Rights and Reproductions cannot and must not be made

available for use without the prior written permission of the owner(s) of the

relevant Intellectual Property Rights and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and exploitation of this thesis, the Copyright and any Intellectual Property

Rights and/or Reproductions described in it may take place is available

13

from the Head of School of Computer Science (or the Vice-President).

14

Acknowledgements

First of all, I thank Allah (the lord) for all his blessings, I would not have com-

pleted my PhD without his guidance and success. I would like to thank Dr. Ning

Zhang for her dedication and support throughout my PhD. Her comments and

feedback were invaluable and I really appreciate that. I would like to thank the

Cairo University, Egypt, for its financial support. I also would like to thank my

friends Tarek, Al-Kateb, and Essam for their help and support. May be last but

definitely not least, I really want to thank my wife, Noha, for all the support

and kindness that I have been overwhelmed by. Taking care of our kids, Omar

and Jojo, has really made me concentrating on my studies and progressing faster.

In addition, her understanding of my work and the good technical advices were

invaluable.

15

Dedication

In the name of Allah

Thy Lord hath decreed, that ye worship none save Him, and (that ye show) kind-

ness to parents. If one of them or both of them attain old age with thee, say not

”Fie” unto them nor repulse them, but speak unto them a gracious word. (23)

And lower unto them the wing of submission through mercy, and say: My Lord!

Have mercy on them both as they did care for me when I was little.(24) [Al-Isra

Chapter, The Holly Quran]

To those who have been always beside me, supporting me, and encouraging me

for no personal benefits

To you mother and father

I love you, I really do . . .

Ali

16

Chapter 1

Introduction

1.1 Project Context

1.1.1 Ubiquitous Computing (UbiComp)

Ubiquitous computing is a new computing paradigm, where computing devices

and related technology are widespread (i.e. everywhere) and services are provided

at any-time. The technology is embedded discreetly in the environment to raise

users’ awareness. UbiComp environments support the proliferation of heteroge-

neous devices such as embedded computing devices, personal digital assistants

(PDAs), wearable computers, mobile phones, laptops, office desktops (PCs), and

hardware sensors. These devices may be interconnected by common networks

(e.g. wired, wireless, etc) [10] and may have different levels of capabilities (i.e.

computational power, storage, power consumption, etc). They are seamlessly in-

tegrated and interoperated to provide smart services (i.e. adaptive services). A

UbiComp environment provides smart services to users [11] based on the users’

and/or system’s current contexts. For example, in a smart home environment,

tasks such as controlling heating and lighting, going to a grocery store, scheduling

17

CHAPTER 1. INTRODUCTION 18

home appliances, and cooking are automatically adjusted according to the im-

mediate context. Thus, a resident does not have to physically intervene or think

about these tasks [12]. For instance, a smart fridge may alert a resident if it is

running out of milk. It may even place an order for milk at a distant grocery, be-

cause the fridge ’knows’ that it is cheaper than the one nearby. Or, to cite a more

serious example, a body sensor that records a low blood pressure reading for a

cardiac patient should immediately call an ambulance. A UbiComp environment

provides these kind of services to users unobtrusively [11] and in turn the user’s

interactions with the environment should be as non-intrusive and as transparent

as possible [13].

Access to such smart services and devices, such as the fridge and the body sen-

sor, must be controlled by an effective access control system. Access control mod-

els have their limitations which hinder their adoption in UbiComp environments.

Access control models such as access control matrices [14], rules-based model [15],

role-based access control models (RBAC) [16], and Generalised Role-Based Access

Control [17] are designed for traditional computing environments. For example,

RBAC is a powerful tool for specifying and enforcing an organisational policy

in a way that seamlessly maps to an enterprise structure [18]. Moreover, RBAC

is considered as a policy natural authorisation approach particularly suited to

large-scale distributed environments [19]. However, the traditional access con-

trol models are static; they make access control decisions based on the user’s

immutable attributes (e.g. identities). They are unable to capture the user’s

or environment’s contextual information from the surroundings. Therefore, they

can not react to any value changes in the contextual attributes that may have

security significance. Such access control models do not suit a dynamic com-

puting environment like UbiComp, where the surrounding context may change

CHAPTER 1. INTRODUCTION 19

frequently, thus affecting the set of permitted actions of an access requester. Ac-

cess control in such an environment should be made adaptive in response to those

dynamic changes of the users’ contextual information which may have security

implications. In other words, access control in UbiComp environments should be

context-aware.

1.1.2 Context-aware Access Control

A context is defined as “Any information that can be used to characterise the

situation of an entity” [20]. It could be related to a user (e.g. user’s access

location) or a system (e.g. network type) and could be static or dynamic. Static

contextual information does not change during the course of a session. Dynamic

contextual information changes its values from one session to another, and even

during the same session. A UbiComp application has to adapt its services upon

the surrounding context; this includes dynamic and static contextual attributes.

It should promptly react to the value changes of the contextual attributes. While

services in a UbiComp environment are context-aware, a security service that is

used to control access to those services should also be context-aware. It should

be able to make access control decisions in adaptation to the dynamic changes of

the relevant contextual information. For example, if a UbiComp application uses

a facial recognition system to authenticate users, it may also be necessary to have

an alternative authentication mechanism in place. The latter can be activated,

for example, should the lighting system in front of the sensor, that captures the

user’s facial data, fail. A context-aware access control model incorporates the

contextual information in controlling access to sensitive resources. It acquires

contextual information from the corresponding context providers then feeds it

to the authorisation decision engine that evaluates the contextual information

CHAPTER 1. INTRODUCTION 20

against the corresponding access control policies (i.e. those written based on the

contextual attributes) to produce an access control decision. In a location-aware

access control service, for instance, a user’s location information is used to control

access to a UbiComp service. Any change of the location information may lead

to reassessment of the permissions set assigned to the user. Context-aware access

control is a powerful tool to enforce context-aware access control policies, thus

providing dynamic and smart access control decision-making [21]. In fact, the

ability to revise access control decisions for the same access requester, as the

surrounding contextual information changes, allows a more fine-grained security

service provision in UbiComp environments.

1.2 Research Motivations and Challenges

Enabling access control in UbiComp environments is challenging. For example,

consider a new children’s hospital that controls access to its resources (e.g. patient

records, modality devices, operation rooms, etc) based upon context. Alice and

Bob are doctors who run two different clinics in this hospital while subscribing

to two different contextual attribute sets. To specify the access rights of Alice

over a Magnetic Resonance Imaging (MRI) scanner, the associated access control

policy should be aware of Alice’s set of contextual attributes, and same for Bob.

This means that this access control policy should be expressed in terms of the set

of contextual attributes recognised in this application domain. In this hospital

there are some children’s gift shops scattered throughout. Both hospital and

shops share the same Electronic Announcement Board (EAB). The shops use

the EAB to publish their offers, whereas the hospital uses it to broadcast any

service change and other patient’s announcements. The same resource object,

EAB, has two different sensitivity levels depending on which system is using it.

CHAPTER 1. INTRODUCTION 21

The EAB is of a higher sensitivity in the hospital than that in the shop. This is

because, from the hospital perspective, it is related to a patient’s record that may

contain sensitive data; in the shops, however, it is not. The smart system that

runs both hospital and shops uses the same contextual information to control

access to services in the hospital and shops. However, the way in which the

contextual information is represented differs between the hospital and the shops.

For example, the hospital may require the location information as a department

name, whilst a shop may require it as a distance from the shop location, as there

may be multiple shops in the same department. In this case, to specify an access

control policy for the EAB, it not only needs to know the required contextual

information, but also how this information is represented (i.e. the representation

model).

The main challenges in this access control configuration are:

1. How to capture Alice’s and Bob’s respective dynamic contextual informa-

tion and feed it, seamlessly, into the authorisation decision engine at run-

time.

2. How to accommodate new contextual attributes without imposing consid-

erable modifications to the underlying access control service.

3. How to handle varying sensitivity requirements for a protected resource

object.

4. How to deal with contextual information that is expressed using a different

representation model.

5. How to minimise the effect of compromising the server-side policy store.

6. How to incorporate the contextual information trustworthiness in such an

CHAPTER 1. INTRODUCTION 22

access control system. This, in deed, encompass the trustworthiness of the

context provider as well as the provided contextual information.

In the above scenario, one could imagine how complex the context-aware ac-

cess control policies of the resource objects (i.e. the MRI scanner and the EAB)

will be under this access control configuration, especially bearing in mind that

these policies may need to be uploaded into a device with limited-capabilities

as those commonly seen in UbiComp environments. Apart from the complexity,

access rights are tightly coupled to the contextual information and its represen-

tation model. In these policies, adding new contextual data or remove obsolete

one will result in considerable modifications to these access control policies.

1.3 Problem Statement

This project aims to design an adaptive fine-grained access control solution that

seamlessly fits into UbiComp environments. The solution should be flexible in

supporting the use of different contextual information and efficient, in terms of

access delays, in controlling access to resources with divergent levels of sensitivity.

We may be able to achieve this adaptive fine-grained access control by in-

troducing a generic attribute, user’s trust level or Level of Assurance (LoA). We

may use this generic attribute to capture and quantify the effect of the user’s

contextual information on the assurance level in identifying the user. We, then,

link this assurance level to the privileges granted to the user. LoA is dynamic,

since its value changes depending upon the current state of the user’s contextual

information, thus access control decisions based on LoA are dynamic as well.

The above mentioned solution assumes that the contextual information is

trusted and of a high quality. In particular, we assume that the contextual

information is complete, significant, correct, and up-to-date [22]. In addition, we

CHAPTER 1. INTRODUCTION 23

assume that the context provider is trustworthy and protected against known

attacks (e.g. tamper-proof).

1.4 Aim and Objectives

The aim of this research project is to research, design, implement, and evaluate

an access control solution to validate the research hypothesis. To this end, the

project objectives are to:

1. investigate the characteristics of UbiComp and specify the requirements for

designing an access control solution that will support those characteristics.

2. critically analyse the current access control models (i.e. both conventional

and those designed for UbiComp) and evaluate their suitability in line with

the identified UbiComp access control requirements. In addition, identify

an appropriate method of achieving access control in this dynamic environ-

ment;

3. design an access control solution that seamlessly accommodates any set of

contextual information and adaptively controls access to UbiComp services.

will satisfy the UbiComp access control requirements;

4. evaluate the designed solution and validate if the research hypothesis is

true. If it is not, to explore the reasons for this;

5. publish the research results; and

6. write the PhD thesis.

CHAPTER 1. INTRODUCTION 24

1.5 Research Achievements and Publications

The following lists the achievements of the research presented in this thesis: -

1. The Context-Risk-Aware Access Control model (CRAAC)

CRAAC is an adaptive LoA-linked access control model. It controls access

to resources with varying levels of sensitivity based upon the state of an

access requester’s contextual information. It supports adaptive access con-

trol decisions, since an access control decision for the same access requester

on the same resource object may vary each time. The variation depends

on the level of assurance of the access requester, which is based upon the

access requester’s current contextual information.

• CRAAC supports fined-grained access control, since it, virtually, ac-

commodates any set of contextual attributes. This level of abstraction

is achieved by the use of a trust-related parameter (i.e. Requester’s

Level of Assurance (RLoA)). In addition, in controlling access to a re-

source object, CRAAC accommodates the resource object’s sensitivity

level, that may be dynamic as well, to provide a more fine-grained ac-

cess control.

• CRAAC is flexible; adding new contextual attributes or removing ob-

solete ones will not significantly affect the underlying access control

system.

• CRAAC supports four modes of working to accommodate different

access control requirements.

2. Methods for context to LoA conversion

• LoA-to-Weight Conversion (L2WC). Converting the individual con-

textual attributes to the corresponding levels of assurance using Rank

CHAPTER 1. INTRODUCTION 25

Order Centroids (ROCs).

• RLoA Aggregation. Aggregating the user’s multiple attributes’ LoA

values into an aggregated level of assurance. Two types of relation-

ships amongst contextual attributes are identified and used for the

aggregation (i.e. Weakest-Link and Elevating).

3. An access control architecture along with its components to support the

novel CRAAC services and the CRAAC four modes of working.

4. Evaluation

• Performance evaluation of the CRAAC model.

• Denial of service attack investigation.

The publications produced in this research are:

1. Ali Ahmed & Ning Zhang, “An Access Control Architecture for Context-

Risk-Aware Access Control: Architectural Design and Performance Evalu-

ation”, accepted to be appeared in SECURWARE 2010.

2. Ali Ahmed & Ning Zhang, “Towards the realisation of context-risk-aware

access control in pervasive computing”. Telecommunication Systems, De-

cember, 2009.

3. Ali Ahmed & Ning Zhang, “CRAAC: Context-Risk-Aware Access Control“,

Informal Workshop on Formal Approaches to Ubiquitous Systems, Imperial

College, 14-15 September 2009.

4. Ali Ahmed & Ning Zhang, “A Context-Risk-Aware Access Control model

for Ubiquitous environments“, IMCSIT’ 2008: International Multiconfer-

ence on Computer Science and Information Technology., October, Pages

775-782, 2008.

CHAPTER 1. INTRODUCTION 26

1.6 Thesis Structure

This thesis investigates the contextual attributes that may influence the assurance

level of an access requester in UbiComp environments. It defines those attributes

and suggests the corresponding LoA values. It also proposes two methods that

may be used to aggregate the contextual attributes LoA values into one access

requester’s LoA value. The use of an aggregation method depends on the rela-

tionship among the contextual attributes used. It then proposes an access control

model, namely Context-Risk-Aware Access Control (CRAAC) for UbiComp envi-

ronments. CRAAC has four modes of working each of which supports a different

access control configuration/requirement. The thesis also proposes an architec-

ture that realises the CRAAC vision and supports the CRAAC four modes of

working. A prototype of the CRAAC system has been developed and the perfor-

mance of the model has been investigated using the prototype. The security of

the system has been also analysed in terms of safety and denial of service attack.

In detail, Chapter 2 surveys the traditional access control models. Chapter

3 discusses and evaluates the access control models proposed for UbiComp envi-

ronments. It also identifies the shortcomings of those models and suggests the

best way forward. Chapter 4 presents the CRAAC model. It discusses the basic

model building blocks such as the contextual attributes identification, level of

assurance derivation, methods to derive an aggregate access requester’s level of

assurance, and CRAAC four modes of working. Chapter 6 proposes the CRAAC

architecture, along with its components, that realises the CRAAC services. It de-

scribes the architectural components in detail. It also shows how the RLoA-only

working mode uses the architecture. Then, it evaluates the RLoA-only mode

performance and security. Chapter 7 shows how the AttributeLoA-only mode

works and which architectural components will be used. It discusses the mode

CHAPTER 1. INTRODUCTION 27

potentials and concerns compared against the RLoA-only mode. It then investi-

gates the performance of the AttributeLoA-only mode. Chapter 8 concludes the

thesis and suggests directions for future work.

Chapter 2

Traditional Access Control

Models

2.1 Chapter Introduction

This chapter surveys some access control models that are proposed for tradi-

tional computing environments. It discusses two groups of these legacy models,

Discretionary Access Control (DAC) and Mandatory Access Control (MAC). As

an example of the DAC model, the chapter presents the Access Control Matrix

(ACM). It also briefly highlights various implementations of the ACM model

such as the Access Control Lists (ACL), capabilities and authorisation relations.

This chapter mainly focuses on discussion about the Role-Based Access Control

(RBAC) model. RBAC is the basis of a new generation of access control solutions

proposed for UbiComp environments. These solutions will be covered in Chap-

ter 3, which critically analyses those solutions and evaluates their suitability. In

conducting the survey, the good design principles of the models are examined for

possible inclusion in our proposed model.

The organisation of the chapter is as follows:

28

CHAPTER 2. TRADITIONAL ACCESS CONTROL MODELS 29

• Section 2.3 discusses the DAC model using the ACM with its different

implementations (i.e. ACL, capabilities, and authorisation relations).

• Section 2.4 introduces the MAC model.

• Section 2.5 describes the RBAC core model, role hierarchy, constraints, and

model restrictions.

• Finally, Section 2.6 summarises the chapter.

2.2 Basic concepts

In this section, the basic concepts and terms used in access control in computer

systems are introduced. The term access control is used to restrict the actions

a legitimate entity can perform on a given resource object [23]. It enables an

authority to control access to a certain resource object by defining an associated

policy (i.e. access control policy). The policy contains all permissible actions

that an entity can initiate on the given resource object. A typical access control

system consists of a subject, an object, a permission, and credentials. A subject

is an entity that seeks access to a resource object and is sometimes referred

to as an access requester. This may be a human user, a software application

or a hardware device. An object is actually a target protected by the access

control system. A permission is an access right for a subject over an object. It

corresponds to a privilege that a subject owns over a certain object. A subject uses

some credentials to gain access over a particular object. A credential is defined

as “a piece of information that is used to prove the identity of a subject” [24];

passwords, crypto keys, and biometric data are examples of such credentials.

CHAPTER 2. TRADITIONAL ACCESS CONTROL MODELS 30

2.3 Discretionary Access Control (DAC)

Discretionary access control (DAC) is a class of access control models that con-

trols access to an object based on the identity of a subject [25]. The identity

could be the subject’s user name or the subject’s group membership. The word

“discretionary” means that a subject that owns a certain access right over an

object can pass the access right to other subjects on his/her discretion. In other

words, DAC allows an owner of a particular access right to a specific object to

pass on the access right to other subject(s) based on the owner’s personal prefer-

ences. This capability makes the DAC model flexible in supporting commercial

solutions where no strict information flow is required. For example, manipulating

a shared folder on a server can benefit from this capability in DAC. The owner

(e.g. Bob) of an access right (i.e. read) over the shared folder can easily pass on

this access right to another subject (e.g. Eve) by creating a user-name/password

pair associated with Eve. In fact, no real control on the flow of information is

provided in DAC. Since Bob can pass his read right on to any body at his dis-

cretion, the system manager, for instance, is unable to control this. Thus, the

manager can not ensure the flow of information in the underlying system. This

property in DAC (i.e. lack of information flow control), actually, increases the

possibility of unauthorised access [23]. Therefore, DAC is not suitable for military

applications that require a rigorous control of information flow.

ACM is, perhaps, one of the first discretionary access control models for com-

puter systems. It defines the access rights of each subject over a set of resource

objects managed by the system [23]. In this model, a matrix is constructed in

which there is a column for every resource object and a row for each subject.

Therefore, a cell in this matrix specifies the access rights of a certain subject over

a particular object. For example, Table 2.1 shows a typical ACM for a system

CHAPTER 2. TRADITIONAL ACCESS CONTROL MODELS 31

that manages a printer, a photocopier, and a seminar room. The subjects of this

system are Alice, Bob, and Eve. The table shows, for example, that the access

rights of Bob over the photocopier are ’copy’ and ’scan’, whereas Eve can only

use it as a ’fax’. There are various implementations of the ACM. The well-known

ones are ACL, capabilities, and authorisation relations.

Table 2.1: Access Control Matrix Sample

Subject Printer Photocopier Seminar Room

copy order equipment
scan access

Alice print
fax change PIN

copy
Bob order parts

scan
access

Eve print fax access

2.3.1 Access Control Lists

ACL [26] is, perhaps, the most popular implementation of the ACM. ACL can

be represented as storing the ACM in a columnar way. In other words, each

resource object will have an associated list that defines, for each subject, the set of

legitimate actions the subject can perform on it. A sample ACL is shown in Figure

2.1 that describes which subject can perform what action(s) on the photocopier.

The ACL implementation is object-centric, since it specifies an object’s legitimate

access modes. Thus, it is straightforward to update an object’s access modes by

modifying the associated ACL [23]. It is also easy to revoke an object’s access

modes by replacing the existing ACL with an empty one. However, determining

the access rights of a subject is not easy. It requires every ACL in the system to

be checked against the subject.

CHAPTER 2. TRADITIONAL ACCESS CONTROL MODELS 32

Photo

Copier
Alice

Copy

Scan

Fax

Bob Eve

Copy

Scan
Fax

Figure 2.1: The Access Control List for a photocopier Machine

2.3.2 Capabilities

Capabilities are another implementation of the ACM. Unlike the ACL approach,

capabilities store the ACM in rows. In other words, each subject in the system will

have an associated capability over a set of managed resource objects. Capabilities

are subject-centric as depicted in Figure 2.2. This actually solves the problem of

determining the set of allowed actions by a specific subject by just examining

the subject’s associated capabilities. However, revoking an object’s access modes

requires all the capabilities in the system to be examined.

Alice Printer

print

Copier Seminar

Room

copy

scan

fax

order

equipment

access

change PIN

Figure 2.2: Alice’s Capability

2.3.3 Authorisation relations

An authorisation relation is another implementation of the ACM that is inspired

from the relational databases. As shown in Table 2.2, a relational table is created

where each row represents an access operation a subject can perform over a

specific object. This implementation does not actually favour one preview over

another, as ACL and capabilities do. It is easy to get a specific subject’s access

rights by sorting the table by subject, which actually corresponds to the capability

method. Similarly, sorting this authorisation table by object produces the same

effect as the ACL method.

CHAPTER 2. TRADITIONAL ACCESS CONTROL MODELS 33

Table 2.2: Authorisation Relations
Subject Access Right Object

Alice print Printer
Alice copy Copier
Alice scan Copier
Alice fax Copier
Alice order equipment Seminar Room
Alice access Seminar Room
Alice change PIN Seminar Room
Bob order parts Printer
Bob copy Copier
Bob scan Copier
Bob access Seminar Room
Eve print Printer
Bob fax Copier
Bob access Seminar Room

2.3.4 DAC Summary remarks

It is worth noting that managing the ACM in a large-scale distributed environ-

ment is troublesome. ACM is a static access control solution. In this model,

subjects and objects need to be pre-defined. In addition, the access control deci-

sions are immutable. Additional constraints can not be imposed easily. Therefore,

DAC is not suitable for the UbiComp environments that require access control

to be adaptive to some dynamic constraints (i.e. contextual information). More-

over, DAC can not cope with information leakage caused by the weak control

of information flow. MAC was, in fact, proposed to overcome this weakness in

DAC.

2.4 Mandatory Access Control (MAC)

Unlike DAC where access rights are defined by the resource owner based on the

resource owner’s discretion, mandatory access control enables the access rights to

CHAPTER 2. TRADITIONAL ACCESS CONTROL MODELS 34

be determined by a manager or a central authority of the system. In MAC, each

resource object in the system is labelled with a sensitivity level and each subject is

assigned a clearance level. This process is performed by a central authority not by

the resource owner. Access to a resource object is restricted to those subjects who

possess a valid clearance level (i.e. authorisation) [25]. MAC defines a meticulous

flow of information dissemination; thus the likelihood of potential illegitimate

access is reduced compared to the DAC model. The idea of labelling an object

with a sensitivity level, which a subject has to satisfy in order to gain access

to this object, is interesting. This is one of the principles used in our research

that will be discussed in detail in Chapter 4. It is worth emphasising that MAC

suits access control requirements where an object’s access right is determined by

a central authority and not at the discretion of the owner of the resource object.

Thus, it is suitable for governmental and military applications. However, MAC

is too rigorous for, for instance, commercial domains. A more flexible model that

can suit such domains is needed. The model was proposed as role-based access

control.

Unlike DAC, MAC model is vulnerable to the convert channel attack. Lamp-

son [27] defined the convert channel as ”(channels) not intended for information

transfer at all, such as the service program’s effect on system load”. The idea of

the attack is centred on adding capabilities to transfer information between enti-

ties, which are not supposed to do so. In other words, it is a kind of a collusion

between the sender and the receiver in a clear violation of the MAC security pol-

icy [28]. Any MAC model should pay attention to such a vulnerability, although

it is hard to detect.

CHAPTER 2. TRADITIONAL ACCESS CONTROL MODELS 35

2.5 Role-Based Access Control (RBAC)

RBAC is an access control model that governs access to a resource object based

on a subject’s organisational role. A role represents certain activities a member of

staff (i.e. subject) can perform as a part of his/her organisational responsibilities.

Instead of assigning access rights to subjects directly, RBAC assigns access rights

to roles and then maps the roles to subjects. This facilitates scalable and efficient

management of an individual subject’s access rights, since no access rights are

accorded to subjects directly. This is, in fact, true if the number of roles managed

by an organisation is less than the number of subjects. Adding a new subject

or changing the responsibilities of an existing one would be a simple task, which

only requires the addition or modification of the subject-role mappings. In other

words, the access control administration becomes simple as a result of using

roles [16].

In RBAC, constraints can be imposed on the access requests to prevent unau-

thorised access or malicious activities. RBAC supports the “least privilege” se-

curity principle, in which a subject is given the least privilege which sufficiently

allows the subject to perform the task in hand (i.e. current role) [23]. In this way,

RBAC prevents the leakage of access rights to unauthorised entities and reduces

the risk of fraud. This also ensures integrity ; nobody is allowed to modify a data

item without a permission. The NIST standard [16] describes a family of services

or components an RBAC system should provide. These components include Core

RBAC, Hierarchical RBAC, and Constrained RBAC. Since the research carried

out in this thesis is based on the RBAC model, an overview of these compo-

nents will follow. The overview focuses on the aspects of RBAC that could be of

interest in our problem domain (i.e. context-aware access control for UbiComp

environments).

CHAPTER 2. TRADITIONAL ACCESS CONTROL MODELS 36

2.5.1 Core RBAC

The Core RBAC is the fundamental component in any RBAC-based system. It

includes the minimum set of functions that are needed to realise the RBAC model.

Two essential functions are introduced by the Core RBAC: User Assignment (UA)

and Permission Assignment (PA). UA defines a set of roles to which a user can

be mapped. For example, a user (e.g. Bob) could be assigned to the role set of

{Lecturer, Student Mentor, Admission Deputy}. In fact, UA determines the super

set of roles to which a user can be mapped as a part of the user’s organisational

duties. As seen in the example, the user-role relationship is many-to-many. A

user may be holding more than one role and a role may be held by more than one

user. PA, on the other hand, specifies the set of allowed actions for a given role.

It corresponds to assigning access rights to roles. For instance, the Lecturer role

could claim the following access right set {access seminar room, use projector,

use white board, etc}. The role-permissions relationship is many-to-many in the

same sense as in UA.

User sessions are an important element in the Core RBAC. A user’s session

specifies a time window that allows a role to be activated and deactivated for

this particular user. In other words, a user’s session contains the active roles of

the user. The set of allowed actions a user can perform is determined by the

active roles of the user, as the access rights are actually released at run-time to

those active roles. In other words, the combination of all the permissions assigned

to the active roles of a user constitutes the user’s access right set in a session.

The relationships between user, roles, permissions, and sessions are depicted in

Figure 2.3. The relationship between users and sessions is one-to-many. A user

may have many sessions, but a session is dedicated to exactly one user. More

advanced RBAC-based systems can be built on top of the Core RBAC. They

CHAPTER 2. TRADITIONAL ACCESS CONTROL MODELS 37

User Roles

Permission

Sessions

(UA)

User Assignment

(P
A

)

P
e
rm

is
s
io

n

 A
s
s
ig

n
m

e
n
t

U
ser_S

ession
s S

e
ss

io
n
_r

o
le

s

Figure 2.3: The Core RBAC

extend the Core RBAC to support, for example, role hierarchy or constrained

access control.

2.5.2 Role Hierarchy

Many organisations naturally structure their roles hierarchically to benefit from

inheritance among roles. In fact, the role hierarchy facilitates the administration

of organisational roles. This is a well-known generalisation-specialisation pattern.

For example, a specialised electrical engineer may also inherit the access rights

of a more general role (e.g. engineer). RBAC utilises a model component (i.e.

Hierarchical RBAC) to deal with the role hierarchy. Figure 2.4 shows an RBAC

system with role hierarchy. Generally, multiple inheritance is allowed in hierar-

chies unless restricted. That is, a role may be composed of several other roles. A

role that inherits from multiple roles claims all access rights of the inherited roles

plus its own access rights.

An example of multiple role inheritance is given in Figure 2.5. An “Engineer

Manager” role may inherit the access rights of both “Engineer” and “Manager”

CHAPTER 2. TRADITIONAL ACCESS CONTROL MODELS 38

User Roles

Permission

Sessions

(UA)

User Assignment

(P
A

)

P
e
rm

is
s
io

n

 A
s
s
ig

n
m

e
n
t

U
ser_S

ession
s S

e
ss

io
n
_r

o
le

s

(R
H

)

R
o
le

 H
ie

ra
rc

h
y

Figure 2.4: The Hierarchical RBAC

roles. The Hierarchical RBAC, which supports access rights inheritance, pro-

vides flexibility in roles and access control management. It is possible to apply

additional constraints to restrict such role inheritance. For example, some roles

are mutually disjoint. A clerk at a bank counter, who can release funds, can

not be the one who verifies a client’s signature. An organisational role hierarchy

must not allow such roles to inherit from one another. In fact, there is another

model component, called Constrained RBAC, that is especially proposed for this

purpose.

E
m
p
lo
y
e
e

Technician

Engineer

Manager

Engineer

Manager

Technician

Manager

Figure 2.5: Example of a Role Hierarchy

2.5.3 Constrained RBAC

Constraints are necessary to ensure that no subject is given sufficient privileges

to misuse the system [23]. In other words, constraints are imperative in order to

support the “least privilege” principle. The Separation of Duties constraint (SoD)

CHAPTER 2. TRADITIONAL ACCESS CONTROL MODELS 39

is the common constraint used in Constrained RBAC. The purpose of SoD, as

stated by Gligor et al. [29], is “to ensure that failures of omission or commission

within an organisation are caused only by collusion among individuals and, there-

fore, are riskier and less likely, and that the chances of collusion are minimised

by assigning individuals with different skills or divergent interests to separate

tasks”. Put simply, in any organisation, an entity which authorises an activity

can not be the same entity that carries out the activity. The Constrained RBAC

described in [16] recognises two types of SoD: Static SoD (SSD) and Dynamic SoD

(DSD). Gligor et al. [29] has defined four other types of SoD policies and linked

these types to the RBAC model. Figure 2.6 shows how constraints are used in

RBAC. As depicted in the figure, constraints can be used to restrict user-role and

role-permission assignments, role hierarchy, and user-sessions.

User Roles

Permission

Sessions

(UA)

User Assignment

(P
A

)

P
e
rm

is
s
io

n

 A
s
s
ig

n
m

e
n
t

U
ser_S

ession
s S

e
ss

io
n
_r

o
le

s

Constraints

(R
H

)

R
o
le

 H
ie

ra
rc

h
y

Figure 2.6: RBAC with Constraints

2.5.3.1 Static Separation of Duty

SSD solves the conflict of interest problem. A particular role holder (i.e. subject)

must not gain the access rights of a mutual disjoint role holder. SSD actually

enforces certain requirements on the UA function. In other words, SSD places

constraints on the role membership. Thus, a user has to satisfy certain require-

ments before being assigned to a specific role. That is, if a user is granted a

CHAPTER 2. TRADITIONAL ACCESS CONTROL MODELS 40

specific role, the user can not be assigned another role that is mutually disjoint

with the first role. As a consequence, the number of available permissions a user

can have is restricted or reduced. Thus, SSD controls, indirectly, the user’s per-

mission space [16]. It draws the boundaries around the permissible set of actions

a user can do as a part of the user’s organisational duties.

2.5.3.2 Dynamic Separation of Duty

Like SSD, DSD tries to restrict the permissions a user can have. Nevertheless,

DSD imposes certain constraints on the available permissions in the user’s per-

mission space. It is worth emphasising that the permissions associated with a

certain role are not released to a user unless the user has activated that role.

And this is when DSD is applied. In other words, DSD imposes constraints on

the role activation process. This supports the “least privilege” security principle,

discussed earlier, in a way that a user may have different security levels depending

on the task in hand and permissions are not granted unless a role is activated.

This kind of constraint is applied at access-time, i.e. when a user activates a role.

A good example to show the difference between SSD and DSD is given in [30]: “A

static policy could require that no individual who can serve as payment initiator

could also serve as payment authorizer. This could be implemented by ensuring

that no one who can perform the initiator role could also perform the authorizer

role. Such a policy may be too rigid for commercial use, making the cost of se-

curity greater than the loss that might be expected without the security. More

flexibility could be allowed by a dynamic policy that allows the same individual

to take on both initiator and authorizer roles, with the exception that no one

could authorize payments that he or she had initiated”.

CHAPTER 2. TRADITIONAL ACCESS CONTROL MODELS 41

2.5.4 Advantages of RBAC over DAC/MAC

Rather than associating access rights to individual objects as in, for instance,

ACM, RBAC assigns access rights to certain roles. This maps naturally to an or-

ganisational structure. RBAC is considered a more generalised form of both DAC

and MAC. DAC and MAC could be seen as special cases of RBAC [31] or, in other

words, examples of policy configurations inside RBAC. RBAC is a powerful model

to specify and enforce organisational policies in a way that seamlessly maps to an

enterprise structure [18]. RBAC is considered as a policy natural authorisation

approach particularly suited to large-scale distributed environments [32].

2.5.5 What is Missing in RBAC?

Despite of a number of advantages, RBAC still has some limitations. Three of

these limitations have been identified by Sejong Oh [33]:

1. Roles inheritance in RBAC does not fully reflect the same process in real

organisations. For example, if a role R1 (i.e. a higher role) inherits from

another role R2 (i.e. a lower role) this means that R1 inherits the full

permissions set of R2, whereas in real life organisations, a higher role only

inherits a partial permission set of a lower role.

2. No clear separation between the “task” and “role” concepts. In real organ-

isations, sometimes a task may require the involvement of multiple roles.

In addition, in emergent computing environments such as UbiComp and GRID,

access control decisions are dynamic, as the privileges and capabilities of users

may change. For example, access rights in a UbiComp environment may not

depend solely on the users’ identities [34]. They may also depend on the context

in which an access request is made. This includes the user’s context such as the

CHAPTER 2. TRADITIONAL ACCESS CONTROL MODELS 42

access location and access time, and the system’s context such as the system

load and network state. The RBAC model, in fact, is not able to consider the

contextual information in access control decision-making. It can not capture the

contextual information from an access requester’s surrounding environment nor

can it adapt its access control decision in response to any change of the contextual

information. The fact that access control policies in RBAC are presumably static

(i.e. they follow the same access control requirements regardless of any change

in the surrounding environment) hinders the application of RBAC to achieve a

more fine-grained access control required in UbiComp environments. There is a

need for a new access control model that can overcome the limitations mentioned

above. In other words, a model that is neither subject-centric nor assumes the use

of static policies like RBAC. Therefore, a new generation of access control models

has been proposed under the name of context-aware access control models. This

generation of access control models encompasses many access control solutions

that share the same concept of using contextual information in controlling access

to resource objects.

2.6 Chapter Summary

This chapter has provided an overview of the basic concepts of access control as

well as some of the well-known traditional access control models such as DAC,

MAC, and RBAC. DAC is not suitable for UbiComp environments, since it is

a static model that lacks a proper control of information flow. An owner of a

particular access right can pass the access right on to any other subject without

restrictions (i.e. at the owner’s discretion). However, DAC is suitable for com-

mercial applications, where such a limitation may be tolerated. MAC provides

CHAPTER 2. TRADITIONAL ACCESS CONTROL MODELS 43

a rigorous control of information flow that is required in military and govern-

mental applications. Access control policies in DAC and MAC are immutable.

Access control decision-making follows static access control requirements that do

not exist in UbiComp. UbiComp requires a dynamic and flexible access control

solution that adaptively adjusts access control decisions based on the surrounding

environment (i.e. context). The RBAC model was introduced to overcome the

current limitations of DAC and MAC. RBAC is a flexible model that is a more

generalised form of DAC and MAC. RBAC-based solutions range from simple

to more sophisticated access control systems. This, in fact, depends on which

RBAC model components are used (e.g. Core RBAC, Hierarchical RBAC, etc).

Although RBAC has advanced the research in the area of access control, it cannot

cope with the fundamental UbiComp requirement of accommodating contextual

information in access control decision-making. RBAC is the basis of a new gener-

ation of access control models. Those models extend RBAC to accommodate the

contextual information in access control decision-making. The following chapter

describes some of the most well-known context-aware access control models.

Chapter 3

UbiComp Access Control: A

Survey

3.1 Chapter Introduction

This chapter discusses some of the existing access models that have been pro-

posed for UbiComp environments. This family of access control models is largely

context-aware. Thus, they are collectively called the Context-Aware Access Con-

trol (CAAC) model. CAAC, typically, extends the traditional RBAC model, dis-

cussed in Chapter 2, to accommodate the contextual information in controlling

access to sensitive resource objects. This chapter highlights some recent streams

in access control in UbiComp environments. In surveying those solutions, the

discussion mainly focuses on the strengths and weaknesses of the architectural

components of the proposed access control models. The good design principles,

in those models, are emphasised to be used in our proposed model. Finally, this

chapter outlines the best way, from the author’s point of view, to advance the

research in access control for UbiComp environments, in order to overcome the

44

CHAPTER 3. UBICOMP ACCESS CONTROL: A SURVEY 45

identified weaknesses of the existing access control models for UbiComp environ-

ments.

The remaining part of this chapter is structured as follows: -

• Section 3.2 introduces the CAAC family and highlights some CAAC-based

proposals.

• Section 3.3 discusses some related efforts in advancing access control in

UbiComp environments.

• It also introduces the effort to consider a user’s trust in access control

decision-making.

• Section 3.4 critically analyses the CAAC-based models.

• It describes the approach that the CAAC model uses to accommodate the

contextual information in access control decision-making.

• Section 3.5 introduces our proposal to advance the research in access control

for UbiComp environments.

• Finally, Section 3.6 summarises the chapter.

3.2 Context-Aware Access Control (CAAC)Mod-

els

The CAAC model denotes a family of access control proposals that control access

to resources by using the user’s contextual information. A CAAC-based model

uses the contextual information as additional 1 constraints to govern access to

sensitive resources. It is worth emphasising that most CAAC-based solutions are

1Additional to the SoD constraints discussed earlier in chapter 2

CHAPTER 3. UBICOMP ACCESS CONTROL: A SURVEY 46

built on the RBAC model discussed earlier in Chapter 2. As shown in Figure

3.1, the CAAC model introduces a new type of constraints, called contextual

constraints, to govern the UA and PA functions. A user is granted a certain role

iff the user satisfies a particular contextual constraint (i.e. specified in the UA

policy). Similarly, a permission is released to a given role, provided that the role

holder satisfies a certain contextual constraint (i.e. specified in the PA policy).

Many access control proposals are CAAC-based. A detailed discussion of some

of those proposals will be given in the following subsections.

User Roles

Permission

(UA)

User Assignment

(P
A

)

P
e
rm

is
s
io

n

 A
s
s
ig

n
m

e
n
t

Contextual Information

C
o
n
te

x
tu

a
l

C
o
n
s
tr

a
in

ts

C
o
n
te

x
tu

a
l

C
o
n
s
tr

a
in

ts

Figure 3.1: CAAC Conceptual View

3.2.1 Generalised Role-Based Access Control

The Generalised Role-Based Access Control (GRBAC) is, perhaps, the earliest

CAAC-based proposal. It was proposed by Covington et al in [35]. The proposal

was motivated by and designed for smart home environments. GRBAC extends

the concept of role to encompass two new types of roles: environment role and

object role. An environment role captures an environment state, which represents

a system’s contextual information that should be incorporated into access control

decision-making. On the other hand, an object role is used to capture an object’s

CHAPTER 3. UBICOMP ACCESS CONTROL: A SURVEY 47

sensitivity level. For example, an object may have, depending on the situation,

a confidential role or top classified role. Thus, for a subject (Sub) to perform a

certain task (T) over an object (Obj) in an environment (Env), it requires the

following: -

1. Determining the object role RoleObj .

2. Determining the subject role(s) RoleSub (i.e. the traditional RBAC role).

3. Determining the environment role(s) RoleEnv.

4. Checking if T is allowed for RoleSub on RoleObj when RoleEnv is active.

Using the extended roles(i.e. object role and environment role) removes the

subject-centric limitation of the RBAC model. An access control policy could

now be written from an object’s perspective, environment perspective, or any

possible combination of both [35]. However, the access control decision-making

in GRBAC is more complex than that of RBAC. It requires the use of a more

complex system architecture than the traditional RBAC model. This is due to

the introduction of the new extended roles [35, 36].

3.2.2 Spatio-Temporal Models

Many access control solutions proposed in literature use the location and time

contextual information to control access in UbiComp environments. Examples

include the Temporal RBAC (TRBAC) model [37], the Generalized Temporal

RBAC (GTRBAC) [38], and the Spatial RBAC (SRBAC) [39]. In these solutions,

roles/permissions are granted to a user in specific time intervals and/or if the user

is within a particular location.

The TRBAC model extends the traditional RBAC model by introducing a

temporal constraint into the access control policy specification. The inclusion of

CHAPTER 3. UBICOMP ACCESS CONTROL: A SURVEY 48

the temporal constraint provides a mechanism to enforce time-dependent access

control policies [2]. Thus, a role is enabled or disabled iff a certain temporal con-

straint is satisfied. The GTRBAC model further extends the TRBAC model by

introducing the notion of an activated role. In other words, GTRBAC differen-

tiates between role enabling and role activation. An enabled role indicates the

possibility of a subject to claim it along with its permission set; however this is

not done yet. An active role, on the other hand, is an enabled role that has been

activated by at least one subject in a session. This means that a subject has

acquired the permission set of that role. The notion of the active role helps to

determine the currently running roles. This can be used to monitor the resource

usage and activities taken place. GTRBAC imposes several temporal constraints

on the role activation, enabling times, and UA/PA policy specification [38].

The SRBAC introduces a location-dependent constraint. It restricts the set

of permissible actions a subject can perform based on the subject’s location infor-

mation. The location space is divided into multiple zones. An access permission

is granted if the role condition is satisfied and the subject is within a specific

zone. Table 3.1 shows an example of how permissions are assigned to roles based

on the location information. It depicts a permissions list associated with a cus-

tomer role. For example, a customer role holder in zone1 has a permission set of

{p1, p2, p3}, whereas in zone2, the permission set is {p4}. The SRBAC model,

as observed by Zhang et al [40], suffers from a lack of a semantic meaning of the

position information. It also does not support the use of geometrically bounded

roles.

Table 3.1: Location Permission Assignment List in SRBAC
Roles Location Permissions

customer role Zone1 p1, p2, p3
customer role Zone2 p4
customer role Zone3 ∅

CHAPTER 3. UBICOMP ACCESS CONTROL: A SURVEY 49

There are a number of other proposals that fall into this spatio-temporal

access control approach including those described in [41, 42, 43, 44, 45, 46, 40, 47,

48, 49, 50]. Those proposals support either location-aware, time-aware, or both

of them.

3.2.3 Dynamic Role-Based Access Control

A common feature in the proposals discussed above is that they take the con-

textual information into account at the beginning of an access session. In other

words, contextual information is evaluated when an access control request is re-

ceived. Thus, when an access control decision is made, no further evaluation for

contextual information is performed. They make no effort in adjusting the access

control decision during the course of an access session. In addition, models such

as spatio-temporal are restricted to only time and location information. Contex-

tual information is not just location and time. A fine-grained access control in

UbiComp environments should incorporate every relevant contextual information

that has significance on access control.

To bridge this gap, the Dynamic Role-Based Access Control (DRBAC) model

was proposed [51]. DRBAC dynamically adjusts the permission assignment as

well as the role assignment based on a subject’s contextual information. The

contextual information could be any piece of information not just time or location.

It uses a Central Authority (CA) to manage the role hierarchy and to grant roles

to users. To perform this task, the CA dispatches an agent to a user’s device for

every role the user has been assigned to. The agent monitors the user’s context.

It changes the active role dynamically based on the changes in the contextual

information. It uses a state machine to express the user’s roles. Typically, the

user is assigned an initial role and any change in the contextual information will

CHAPTER 3. UBICOMP ACCESS CONTROL: A SURVEY 50

be detected by the agent, which will, in turn, trigger an event. The event will

result in a transition between the current state (i.e. current role) to the next state

(i.e. new role) in the state machine. In this way, the DRBAC model changes the

user’s role dynamically in response to the user’s contextual information changes,

thus achieving adaptive context-aware access control.

DRBAC suffers from a number of drawbacks, some of which have been high-

lighted by the authors themselves. For example, implementing the model can

increase the complexity of the applications concerned. Each role requires a role

state machine running on the user’s device. As the number of roles supported in

the system increases, the complexity of the system is also increased. This is par-

ticularly troublesome for the resource-restricted devices that are commonly used

in UbiComp environments. In addition, as mentioned in [42], the paper has not

illustrated how the DRBAC model may be applied practically in an application.

In spite of these drawbacks, DRBAC is considered one of the most pioneering

access control solutions for UbiComp environments.

3.2.4 CAAC-basedModels with Architectural Components

To support the CAAC approach, there is a need for an architecture that could

feed contextual information into access control decision-making. In other words,

a CAAC architecture should encompass two main functional blocks (i.e. infras-

tructures). One block would be for the contextual information management,

and the other block would be for access control. However, the traditional access

control architectures only accommodate access control, thus not appropriate for

supporting context-aware access control. To overcome this limitation, there have

been increased efforts to design architectures that support context-aware access

control. The following gives a brief survey of some of those efforts.

CHAPTER 3. UBICOMP ACCESS CONTROL: A SURVEY 51

3.2.4.1 UbiCOSM

UbiCOSM [5] is another CAAC-based model that evaluates the current context

state of a mobile user in real-time. It uses the context state to control access to

protected resources. As seen in Figure 3.2, UbiCOSM is a modular middle-ware.

It uses external architectural modules such as CARMEN [52] for low-level entity

identification and context management. However, the tight-coupling between

access permissions and contextual information in UbiCOSM makes it difficult

to accommodate different access control requirements, policies, and application

domains.

Heterogeneous Distributed System

Java Virtual Machine

Directory

Identification

Discovery

Communication

Interoperability

Migration

Event

Monitoring

Policy Installation Manager

Policy Manager
Authorisation Enforcement

Manager

Context-Aware Security

Manager

C
A

R
M

E
N

F
a
c
il
it

ie
s

U
b
iC

O
S
M

F
a
c
il
it

ie
s

Figure 3.2: UbiCOSM Middleware Services [5]

UbiCOSM separates the authorisation engine from the access control enforce-

ment by introducing the Authorisation Enforcement Manager. This provides

high level of modularity. Since the access control enforcement is application-

dependent, one can replace an existing enforcement point with another depending

on the application domain and requirements.

3.2.4.2 OpenAmbient

OpenAmbient [6] presents a web service-based architecture that preserves privacy

and protects resources in ambient environments. The architecture, as depicted in

Figure 3.3, uses the ContextToolkit [53] for contextual information gathering. The

CHAPTER 3. UBICOMP ACCESS CONTROL: A SURVEY 52

ContextToolkit acts as an ambient information provider that resides internally in

the OpenAmbient architecture. Similar to UbiCOSM, OpenAmbient has a high

degree of modularity, allowing the use of external modules (e.g. ContextToolkit).

The paper, however, only describes the basic OpenAmbient architecture and does

not explain how the architectural components interact and communicate with

each other to reach an access control decision. OpenAmbient also follows the

same UbiCOSM convention of separating the access control enforcement and the

authorisation engine. It supports the former by introducing the Enforcer, while

the Evaluator is meant for the latter function.

R
e
q
u
e
s
to

r Enforcer Evaluator

Ambient Information Collector

ContextToolkit

Environmental Sensors

Ambient

Information

Provider

Figure 3.3: OpenAmbient Architecture [6]

3.2.4.3 The Gaia Architecture

Gaia [7] is one of the earliest efforts to develop context-aware applications. Gaia

is regarded as a meta operating system, which provides an environment for the

development and execution of active spaces. The main contribution of Gaia is the

proposal of the first meta operating system that has context-awareness as a built-

in service. In other words, context-awareness was a fundamental requirement in

the design of the operating system, rather than as an add-on service to an existing

operating system. Moreover, Gaia shifts the task of context management from

the application layer to the operating system layer. Thus, when developing an

CHAPTER 3. UBICOMP ACCESS CONTROL: A SURVEY 53

active space application, one does not have to worry about the task of managing

contextual information. However, the Gaia architecture, as depicted in Figure 3.4,

does not address access control specifically. Therefore, Gaia does not propose

any building blocks for access control. The lack of a standard access control

infrastructure in Gaia makes it hard for different systems to cooperate seamlessly.

This is because a system may have its own terminologies and architectures.

Space

Repository

Service

Event

Manager
Context

File System
Presence

Service

Context

Service

Component Management Core

Application Framework

Active Space Applications

G
a
ia

 K
e
rn

e
l

Figure 3.4: The Gaia Architecture [7]

To bridge this gap, the work in [54] is proposed. It describes an access control

system for the Gaia Active Spaces system. Its architecture shows a set of applica-

tions that run on behalf of users to access certain devices, where software services

act as interfaces for the applications to access devices. The access control service

consists of an Interceptor module and Access Control Policies. The Interceptor

intercepts all access requests, evaluates these requests, and only allows authorised

requests.

3.2.4.4 Context-Constrained Access Control (CoCoA)

The CoCoA model described in [8] is a context-constrained authorisation frame-

work designed for GRID environments. It is built on the GT4 authorisation

framework [55] by adding additional modules to support context-awareness. These

modules, as seen in Figure 3.5, are Context Authority, Context PIP, Context PDP,

Context Session Service, and Notification API. The Context Authority provides

CHAPTER 3. UBICOMP ACCESS CONTROL: A SURVEY 54

Authorisation

Engine (PEP) Service

Notification

API

Master

PDP

Context Session Service

(CCS)Context Authority

(CTXA)

Context PIP

(CTX PIP)
Context PDP

(CTX PDP)
PIP N PDP 1

Grid Client

Permit

Deny

Permit/Deny

isPermitted()

collectAttributes()P
ro

v
id

e
 S

u
b
je

c
t

C
o
n
te

x
t

A
s
s
e
rt

io
n Keep Track of

Subject's

Context

Collect Context

Assertions

Make Context Related

Authorisation Decisions

New AuthZ.

Decision

S
ta

rt
 S

u
b
je

c
t

S
e
s
s
io

n

G
e
t

A
u
th

Z
.

R
e
-e

v
a
lu

a
ti

o
n

Context Change

Notification

Figure 3.5: The CoCoA Architecture [8]

real-time, up-to-date contextual information. In addition, it may carry out fur-

ther operations to interpret some specific contextual information. The Context

PIP provides an assertion of a subject’s contextual information, supplied by the

Context Authority to the Context PDP, before the latter makes a context-aware

access control decision. The Notification API allows a GRID service provider to

be notified whenever a renew authorisation decision is available for reinforcement.

Upon the receipt of a context change notification, the service provider may termi-

nate the user’s access session. The CoCoA design has adopted a number of good

practices such as reducing the level of coupling among architectural components

and compliance to international standards (i.e. the GT4 authorisation frame-

work standard). However, owing to different motivations, CoCoA is not readily

applicable to the context that we are examining. CoCoA is designed for GRID

applications, thus one of the assumptions used in its design is that an access

session is typically for a job execution, which may last for hours or even days.

Therefore, the CoCoA model monitors a user’s contextual information during the

course of an access session. Should there be any change in the user’s context, it

CHAPTER 3. UBICOMP ACCESS CONTROL: A SURVEY 55

terminates the user’s access session. This is in stark contrast to the problem we

are addressing in this thesis. This thesis concerns data accesses in a UbiComp

environment where an access session is typically short (i.e. for one data item

access only). Furthermore, we would like to quantify the impact of contextual

information on the level of assurance associated with the data access. We would

then feed this level of assurance into the access control decision-making at the

beginning of an access session and monitor its change during the access session.

3.3 Recent Proposals

3.3.1 Generalised Context-Based Access Control

Filho and Martin in [9] have proposed a generalised context-based access control

model. In this model, access to resource objects is controlled solely based on con-

textual information. The model is designed for an open UbiComp environment

where no predefined roles or relationships among participants exist. This is in

stark contrast to our problem domain. Our domain assumes the existence of a

predefined relationship between participants(i.e. in the form of roles). The paper

also proposes a language (i.e. Context Condition Language) to express contextual

constraints. As depicted in Figure 3.6, it introduces an associated architecture,

along with its components, to support this vision of access control. The architec-

ture supports two services (i.e. infrastructures): the Context Information Service

(CIS) and the access control service. The CIS infrastructure provides functional

blocks for context management tasks, such as context collection, context rea-

soning, etc. Whereas the access control service is responsible for access control

decision-making.

The main contribution in this architecture that has not been found in the

CHAPTER 3. UBICOMP ACCESS CONTROL: A SURVEY 56

Figure 3.6: The Generalised Context-Based Access Control [9]

previous ones is: the QoC Evaluator. This component is responsible for evaluating

the quality of context provided by different contextual providers. This point, as

stated in Section 1.2, is crucial in context-aware access control. However, the

main concern in this architecture is that it only supports one Policy Decision

Point (PDP). This means that there is only a single point of decision-making.

Thus, incorporating an external PDP for, for instance, a location-aware access

control is not possible. In addition, while evaluating an access request, this single

PDP needs to be aware of all types of contextual information used. Such a design

principle may limit extensibility and flexibility.

3.3.2 Activity-Based Access Control

Another stream of access control is centred on the concept of activity. Many

activity-based access control proposals exist in the literature (e.g. [33, 56, 57, 58,

59, 60]). In fact, the activity-based computing is a new computing paradigm that

CHAPTER 3. UBICOMP ACCESS CONTROL: A SURVEY 57

is more suitable for UbiComp environments [56]. For example, Task-Activity

Based Access Control (TABAC) focuses on access control in an environment

where an activity is performed by multiple organisations [58]. In TABAC, a pro-

cess is composed by activities that are associated with tasks. Permissions are

dynamically assigned to tasks. A process can dynamically claim permissions as

a result of its activities interactions. In other words, permissions are assigned to

a task that could be linked to one or more activities. Those activities are the

building block of a particular process.

Activity-Oriented Access Control (AOAC) [60] is another example of activity-

based access control solutions. In AOAC, a user is allowed to carry out a certain

activity if the user holds a set of required permissions. AOAC uses a PEP and

a PDP. The PEP enforces access control decisions, while the PDP is a decision

point at which access control decisions are made. In addition, AOAC proposes

an Activity Recognition Manager that recognises users’ activities. However, the

paper is not clear about how activities are recognised. In fact, activity recognition

is one of the major challenges in designing such a solution.

3.3.3 Using Trust to Control Access to Resources

The idea of using trust in controlling access to sensitive resource objects has been

around in the literature for a while. However, most of the proposals, such as the

ÆTHER model [61] and the trust-based access control model [62], are designed for

an open dynamic UbiComp environment where no predefined relationships exist.

For example, the ÆTHER model is designed to address trust establishment and

access control management in UbiComp. It addresses the problem of trust by

allowing members of the attribute authority sets, defined by service providers,

to issue credentials for the corresponding attributes that can be used to access

CHAPTER 3. UBICOMP ACCESS CONTROL: A SURVEY 58

protected resources. Attribute authority sets membership is dynamic, thus pro-

viding a distributed administration of trust amongst different authority domains.

However, ÆTHER does not address how contextual information is collected and

fed into the authorisation engine.

Another relevant piece of work is proposed in [63]. The work is motivated by

the need for a new access control model that not only considers the contextual

information but also accommodates the effect of the contextual information on

the overall risk level of the underlying system. It uses some risk assessment tools

to govern access control decision-making. The risk assessment process conducted

in this model is online and covers confidentiality, integrity, and authentication. In

other words, whenever an access request is received, the system performs an online

risk assessment process to evaluate the potential risks related to confidentiality,

integrity, and authentication before an access control decision is made. However,

the work does not evaluate the performance of the model. As, in this model,

the risk assessment process is performed online (i.e. when an access request is

received) its impact on the access delay may not be negligible. In addition, it is

not clear in this work how a resource object with different sensitivity levels are

considered in the risk assessment process and how to fed this into access control

decision-making.

3.4 What is Still Missing?

The way in which CAAC uses the contextual information in access control is

troublesome. CAAC uses the contextual information as direct constraints that

govern UA and PA functionalities. Many problems exist in such a way of using

the contextual information. In summary, These problems are:

1. Limited set of contextual attributes: Proposals such as [37, 38, 39, 41, 42,

CHAPTER 3. UBICOMP ACCESS CONTROL: A SURVEY 59

43, 44, 45, 47] can only cater for a small number of contextual attributes

(i.e. spatio-temporal contextual attributes).

2. Limited generality, extensibility, and flexibility: A CAAC-based solution

could be seen as an Access Control Infrastructure (ACI) that communicates

with a Context Management Infrastructure (CMI). The ACI is responsi-

ble for authenticating users, making access control decisions and, finally,

enforcing the access control decisions. Whereas the CMI provides contex-

tual services such as context acquisition, storage, interpretation, protection

and provisioning. Since CAAC directly uses the contextual information to

control access to a protected resource object, CAAC is considered context-

dependent. That is, an access control policy in CAAC is expressed in terms

of the contextual information used. The corresponding authorisation engine

uses the policies to grant/deny access to a protected resource object. Thus,

changing the set of contextual information used will result in emphatic

change in the underlying authorisation engine. This actually indicates a

tight coupling between the two infrastructures (i.e. ACI and CMI) that

may reduce the generality, extensibility, and flexibility of the overall access

control service. For example, adding a new contextual information may

require the underlying access control system to be re-engineered [64].

3. Overlooking the potential correlation among contextual attributes: CAAC

overlooks the potential correlation among multiple contextual attributes

and their composite effect on the authorisation decision. For example, a

partial permission set may be released to a user who is accessing a certain

protected resource object from a high risk location, whereas a full permis-

sion set may be released if the user is accessing the resource object from a

secure location. However, the high risk location with the use of a strong

CHAPTER 3. UBICOMP ACCESS CONTROL: A SURVEY 60

authentication token (i.e. PKI credential) may be equal to the secure loca-

tion with the use of a less secure authentication token (i.e. user-name and

password pair). This example indicates that the access location contextual

attribute and the authentication token are correlated. Such a correlation is

not explicitly considered in CAAC.

4. Overlooking the context provider’s trust level. In other words, the level

of trust in the provided contextual information is not used in controlling

access to sensitive resource objects. This is, in fact, an important drawback

in CAAC, as the context provider is assumed to be trusted (i.e. part of the

Trusted Computing Base (TCB)).

3.5 The Best Way Forward

The level of impact, or potential risk, of an unauthorised access is closely related

to the sensitivity level of the requested resource object. The higher the object’s

sensitivity level, the higher the level of impact should the object be accessed by an

unauthorised entity. To provide an effective level of protection, while at the same

time not introducing unnecessary overheads, the applied security protection level

should be linked to the sensitivity level of the objects under protection. One way

to achieve this just-enough-security protection is to link an authorisation decision

to the Level of Assurance (LoA) in identifying the entity requesting access to an

object. In other words, the higher the requested object’s sensitivity level, the

higher the Requester’s LoA (RLoA) a user has to satisfy before granting access

to the resource object.

A user’s RLoA may also be influenced by the user’s contextual information

(i.e. both static and dynamic). In other words, we could design an access con-

trol solution that takes into consideration, not only a user’s static contextual

CHAPTER 3. UBICOMP ACCESS CONTROL: A SURVEY 61

attributes, but also the dynamic contextual attributes. The access control solu-

tion derives RLoA values, based on the static and dynamic contextual attributes,

then feeds the RLoA values into the authorisation engines for a proper control of

resources in UbiComp environments. In this way, we could adapt an access con-

trol decision in response to the resource object’s sensitivity level and the changes

in the user’s LoA-affecting contextual information, thus achieving fine-grained

access control.

Our proposal is summarised as follows: -

1. The resource objects are classified into groups based on their sensitivity lev-

els. This is done as an off-line process that could be repeated if necessary.

Thus, every resource object will have an Object’s LoA value (OLoA) that

denotes the required level of assurance a user has to satisfy before releas-

ing the resource object. It is worth emphasising that the OLoA value is

computed with respect to the object sensitivity level2.

2. On every access request of a particular user, the contextual information of

the user (i.e. both static and dynamic) is used to compute a LoA value in

the identity of the user (i.e. RLoA).

3. The authorisation engine will then compare OLoA against RLoA. IfRLoA ≥

OLoA, then access is granted. Otherwise, access is denied.

4. The user’s contextual information is monitored, and any change in such

information will be captured and the access control decision will need to be

re-assessed based on the new contextual information.

The use of LoA introduces a level of abstraction between the contextual in-

formation used and the underlying access control model. Thus, we could loosen

2See Subsection 4.4.2 for potential methods to achieve this

CHAPTER 3. UBICOMP ACCESS CONTROL: A SURVEY 62

the tight-coupling between the two infrastructures (i.e. ACI and CMI). This

could make the solution easily applicable in any UbiComp application domain.

Moreover, the solution allows to accommodate, virtually, any set of contextual

information without the need to modify the underlying access control system. We

believe this is the best way to advance access control in UbiComp environments.

3.6 Chapter Summary

This chapter has surveyed some of the access control models that are proposed

for UbiComp environments. In particular, it has critically analysed the CAAC-

based proposals, such as GRBAC, SRBAC, TRBAC, DRBAC, and CoCoA. The

most notable weakness in these proposals is the tight-coupling between ACI (i.e.

responsible for access control decision-making) and CMI (i.e. responsible for

contextual information management). As a result, changing the content of the

contextual attribute set requires a significant modification in the ACI. In addition,

some CAAC-based solutions only consider a limited set of contextual information

(e.g. location and time). The potential correlation among multiple contextual

attributes have also been overlooked. Recent access control proposals (e.g. the

generalised context-based access control model, activity-based models, and trust-

based models) have also been investigated. The gap between the issues addressed

in these proposals and what is addressed in this thesis has also been identified. For

example, some of these models are designed for an open UbiComp environment,

which assumes no prior relationships amongst the entities involved exist. Thus,

the focus is on how to establish trust under such an assumption. However, our

problem scope is how to achieve just-enough security in UbiComp, in adaptation

to a resource sensitivity level, while maximising flexibility and extensibility of the

solution. We have outlined our vision to design an access control solution that

CHAPTER 3. UBICOMP ACCESS CONTROL: A SURVEY 63

overcomes the existing solutions limitations.

There are some concerns regarding the proposed access control approach such

as how to determine the LoA-affecting contextual information, and how to com-

pute the RLoA value. These concerns will be covered in the following chapter.

Chapter 4

Context-Risk-Aware Access

Control (CRAAC)

4.1 Chapter Introduction

As explained in Chapter 3, CRAAC achieves LoA-linked access control. In other

words, based upon the risk level in the underlying access environment and/or

the sensitivity level of the resource object requested, CRAAC requires an access

requester to satisfy a minimum level of assurance. The level of assurance is

related to the requester’s contextual information. This chapter describes the

CRAAC vision in detail. It identifies the contextual attributes that may affect

a requester’s level of assurance. It analyses the mutual relationships among the

attributes and proposes methods to accommodate the relationships. Thus, at run-

time, CRAAC can use the methods to dynamically derive an aggregate level of

assurance (i.e. RLoA) for a given requester based upon the requester’s contextual

information. Then, it uses the RLoA to govern access control decision-making

for the requester.

The remaining part of this chapter is structured as follows: -

64

CHAPTER 4. CONTEXT-RISK-AWARE ACCESS CONTROL (CRAAC) 65

• Section 4.2 introduces the CRAAC model and its vision in supporting LoA-

linked access control.

• Section 4.3 identifies four contextual attributes that may have direct impact

on a user’s RLoA and shows how the corresponding LoA may be computed.

• Section 4.4 explores the possible LoA-to-Weight conversion methods.

• Section 4.5 identifies two mutual relationships among multiple contextual

attributes and shows how to capture those relationships. In other words, it

introduces two situations where the RLoA aggregation may differ: Elevating

and Weakest-link.

• Section 4.6 outlines CRAAC four modes of working and the rationale behind

the design of those modes.

• Finally, Section 4.7 summarises the chapter.

4.2 CRAAC Vision

The level of impact/risk of an unauthorised access depends on the sensitivity

level of the requested resource object. The higher the object’s sensitivity level,

the higher the level of impact should the object be accessed by an unauthorised

entity. To provide an effective level of security, while at the same time not to

introduce unnecessary overheads, the applied security protection level should be

linked to the sensitivity level of the objects under protection. One way to achieve

this just-enough-security protection approach is to link an authorisation decision

to the LoA in identifying the entity requesting access to an object. In other

words, the higher the requested object’s sensitivity level, the higher LoA a user

has to satisfy when requesting the object. A user’s LoA (i.e. RLoA) is derived

CHAPTER 4. CONTEXT-RISK-AWARE ACCESS CONTROL (CRAAC) 66

based on the user’s contextual information. Thus, any change in the contextual

information may also trigger a change in the RLoA of the user. The CRAAC

model is designed to realise this vision of LoA-linked access control.

CRAAC could be seen as a MAC solution where an object is labelled with

a required level of sensitivity and a subject is assigned a clearance level (i.e.

RLoA). Nevertheless, CRAAC differs in the way that it does not statically assign

an RLoA value to a subject (i.e. as MAC does). Rather, it computes the RLoA

value dynamically for each access request.

In CRAAC, resources/services are classified into object groups each with a dis-

tinctive OLoA value. The determination of the OLoA value of an object group is

based on the sensitivity level of the object group. This can be performed through

an off-line risk assessment process. The proposal described in [63] is an interesting

work and the same method could be used in CRAAC as well. In other words,

identifying the impact of releasing a resource object on the loss of availability,

confidentiality, and integrity. In general, the assessment identifies risks, evaluates

their potential impacts, and maps the identified risks to an appropriate assurance

level (i.e. OLoA). The OLoA of a resource object is actually the minimum LoA

requirement, requested by the object, a subject has to satisfy to gain access to the

resource object. The more sensitive the object is, and/or the higher the potential

impact of an unauthorised access, the higher the OLoA. In detail, CRAAC access

control decision-making process follows the following steps:

1. A resource provider, or a central authority, specifies an OLoA value for each

resource object under his/her management. The OLoA value specification

is determined based upon the object’s sensitivity level and is used as a

threshold to control access to the resource object.

2. When CRAAC receives an access request, it uses the surrounding contextual

CHAPTER 4. CONTEXT-RISK-AWARE ACCESS CONTROL (CRAAC) 67

information to derive a subject’s RLoA value.

3. The RLoA value is then compared against the OLoA value of the required

object. The access request is granted 1 iff RLoA ≥ OLoA.

One of the challenging tasks for realising this vision of LoA-linked access

control is how to derive an RLoA value for a given access request based upon the

requester’s real-time contextual information. To achieve this, there is a need to:

1) identify a set of contextual attributes that may have an impact on the degree of

certainty (i.e. LoA) that the access request is from an entity that it claims to be

from, 2) investigate, analyse, and define the respective assurance levels for those

contextual attributes, and 3) devise a method that can derive the RLoA value

based upon the contextual attributes’ LoA values. The following gives details on

how to perform such tasks.

4.3 Contextual Attributes Identification and LoA

Determination

There is a number of factors that can increase the risk of unauthorised access,

e.g. weak authentication protocol/token, less trustworthy access location, poor

access history, unprotected communication channels, etc. As a proof of concept,

this thesis focuses on the following four contextual attributes:

• Electronic Authentication Token.

• Access Location.

• Channel Security.

1Provided that the access right is included in the subject’s role permission set (i.e. traditional
RBAC model)

CHAPTER 4. CONTEXT-RISK-AWARE ACCESS CONTROL (CRAAC) 68

• Access History.

4.3.1 Electronic Authentication Token

Many factors in an electronic authentication process may affect the assurance

level (i.e. LoA) in verifying a claimed identity. These include identity proofing,

credential management, record keeping, auditing, authentication protocols, and

token types. The assurance levels of some of these factors are achieved through

procedural and process governance, while others may be left to the requesters’

decision. For example, a requester may choose to use a particular authentication

credential when making an access request. As the focus here is on the derivation

of an authentication LoA and on linking it to the authorisation decision making,

the procedural factors (i.e. user registration, credential management, storage

procedures, etc) are excluded from the LoA derivation. In other words, we only

consider the effect of the types of electronic credentials/tokens, collectively called

eTokens, on RLoA. Different eTokens provide varying levels of assurance in entity

identification. To quantify that degree of confidence, we introduce the notion of

LoAeToken.

Definition 1 LoAeToken refers to the service provider’s degree of confidence (i.e.

assurance) that an eToken presented by a subject is linked to the subject’s identity.

The eToken types versus their assurance levels have been recommended by

NIST [1], as shown in Table 4.1. NIST recognises the token types of hard tokens,

soft tokens, one-time password (OTP) device tokens, and user-name/password

pairs. NIST defines four levels (i.e. from 1 to 4, with Level 4 the most secure

one) of LoAeToken that corresponds to these tokens.

The research conducted in this thesis adopts the NIST standard for LoAeToken.

In other words, at run-time, a subject may choose any of the four authentication

CHAPTER 4. CONTEXT-RISK-AWARE ACCESS CONTROL (CRAAC) 69

Table 4.1: eToken Types Versus LoAeToken [1]
Token Type Level 1 Level 2 Level 3 Level 4

Hard Token X X X X

One-time Password Token X X X

Soft Token X X X

Password Token X X

methods (i.e. eTokens). The LoA associated with the eToken can be determined

by Table 4.1. Changing an authentication method token type during the course

of an access session may also change the corresponding LoA.

4.3.2 Access Location

Authentication services are of two main types; one is e-authentication by which a

user is identified through the use of an eToken, and the other is physical au-

thentication (p-authentication) by which a user is identified through the use

of biometrics, sensors, or location based services. CRAAC recognises both of

these authentication service types. This is because, firstly, a combined use of

e-authentication and location-based p-authentication may not only provide op-

tional services to users but also a more reliable user identification. Secondly,

the proliferation of the location-aware services in UbiComp requires the access

control service to accommodate the location information as well. Therefore, in

addition to the eToken attribute, we introduce another authentication attribute

called Access Location (ALoc). The assurance level of ALoc, LoAALoc, is defined

below.

Definition 2 LoAALoc refers to the degree of confidence/assurance in a subject’s

claimed access location.

Depending on the application context, there are various approaches to repre-

sent the location alternatives [65, 66]. As our focus is on the degree of confidence

CHAPTER 4. CONTEXT-RISK-AWARE ACCESS CONTROL (CRAAC) 70

in a claimed location and as a proof of concept, we use the zone representation

method [65, 39] to describe different location alternatives. Table 4.2 shows some

possible location alternatives versus the corresponding assurance levels. The table

is meant to illustrate how the location LoA values may be determined. Unlike the

case of eToken, there is no international consensus on defining LoAALoc values.

Table 4.2: A Sample Location Information Versus LoAALoc [2]
Location Alternative Level of Assurance

Zone0
Level0: public area which does not have any provision
for p-authentication.

Zone1
Level1: semi-public area which uses p-authentication to
identify a group of users, e.g. through the use of a shared
building key.

Zone2
Level2: personal area – access to this zone is controlled
by the use of a locker key owned by a single user or a
sensor based user identification (e.g. RFID).

Zone3

Level3: secured personal area – this zone uses some
strong form of physical identification method that is less
vulnerable to theft or loss than locker keys, e.g. Biomet-
rics (physical) authentication facility.

Zone4
Level4: highly secured personal area – this zone may
use multiple physical authentication methods.

Both authentication attributes (i.e. eToken and ALoc) make a direct contri-

bution to the overall assurance level in identifying a user. They could be seen as

a two-factor authentication mechanism. For example, a service provider may use

two authentication services to identify a user; one is the user-name and password

method, and the other is a biometric-based location authentication. As a pass-

word token is more vulnerable to guessing attacks than a PKI credential, using it

inside a secure location with a biometric physical authentication facility may be

comparable, in terms of authentication assurance level, to a PKI credential used

in a public area.

CHAPTER 4. CONTEXT-RISK-AWARE ACCESS CONTROL (CRAAC) 71

To quantify the overall assurance level of the two additive attributes, we

introduce the notion of LoAauthN .

Definition 3 LoAauthN is the overall confidence/assurance level associated with

the composite authentication solution consisting of token-based e-authentication

(i.e. eToken) and location-based p-authentication (i.e. ALoc).

The introduction of the authN attribute, and its corresponding LoA definition,

is a major focus of this thesis. The authN attribute may be extended to abstract

all contextual attributes that may impact the level of assurance in identifying a

subject. In this way, the number and the types of the used authentication methods

are not significant on CRAAC access control decision-making. Rather, authN is

the considerable factor that affects access control decision-making. Currently, the

authN attribute only encompasses the eToken and ALoc contextual attributes. As

technology advances, further research may be needed to identify other potential

contextual attributes that may have an impact on the level of assurance in the

authentication method used by a subject.

4.3.3 Communication Channel Security

The level of security protection of the communication channel, linking a subject

and a service provider, may also influence the risk level of unauthorised access.

For instance, if a channel is vulnerable to eavesdropping attacks, some credentials

sent over the channel may experience a high risk of being compromised. In

addition, the requested data may experience a high risk of being disclosed to

unauthorised entities via channel interceptions. For these reasons, we introduce

the Channel Security (CS) attribute.

Definition 4 LoACS refers to the degree of confidence/assurance in the channel,

CHAPTER 4. CONTEXT-RISK-AWARE ACCESS CONTROL (CRAAC) 72

linking a subject and a service provider, in protecting the confidentiality of data

transmitted over it.

Similar to the ALoc attribute, the CS attribute does not have an international

consensus on its assurance level definition. Table 4.3 describes an exemplar setting

of a 5-level LoACS mimicking the NIST’s eToken LoA definition.

Table 4.3: An Examplar Setting of LoACS Values
LoACS Description

Level0 This attribute is disabled, or not used.
Level1 Little or no confidence in channel security.
Level2 Some confidence in channel security.
Level3 High confidence in channel security.
Level4 Very high confidence in channel security.

4.3.4 Access History

A subject’s access history (AH) is an important indicator of a subject’s trustwor-

thiness. A user with repeated authentication failures and/or repeated authorisa-

tion rejections should score a low access history assurance level. By accommodat-

ing AH in access control decision-making, CRAAC may help to deter malicious

attempts and encourage good behaviour among subjects. A user’s access history

attribute stores information about the user’s history related to his/her authen-

tication and authorisation outcomes for a past period. The corresponding LoA

value could be computed, mimicking the NIST work for eToken, as depicted in

Table 4.4. The LoA of a subject’s AH is defined as follows:

Definition 5 LoAAH refers to the degree of confidence/assurance in the access

history of a subject. This encompasses the degree of assurance in authentication

and authorisation history.

CHAPTER 4. CONTEXT-RISK-AWARE ACCESS CONTROL (CRAAC) 73

Table 4.4: An Examplar Setting of LoAAH Values
LoAAH Description

Level0 This attribute is disabled, or not used.
Level1 Little or no confidence in the subject’s access history.
Level2 Some confidence in the subject’s access history.
Level3 High confidence in the subject’s access history.

4.4 LoA-to-Weight Conversion (L2WC)Method

Selection

4.4.1 Rationale and Selection Criteria

The attributes’ LoA (i.e. LoAeToken,LoAALoc, LoACS and LoAAH) discussed ear-

lier are ranks (e.g. level1). A LoA rank needs to be converted into rating (i.e.

weight) that corresponds to its significance before it can be used to derive a

subject’s RLoA. In CRAAC, this process is called LoA-to-Weight Conversion

(L2WC).

There are multiple methods that could be used to perform L2WC. However,

the choice of an appropriate conversion method should be in-line with the general

requirements of UbiComp environments. This UbiComp conformance focuses on

non-intrusiveness and performance factors. Since the conversion is performed

on-line, based on the changes of the surrounding contextual information, the

conversion method should be efficient in terms of the time it takes to accom-

plish the conversion. In addition, the use of the capability-restrictive devices in

UbiComp prefers the use of a computationally lightweight conversion method.

In certain cases, the device that performs the conversion may be a PDA with a

low computational power and/or a short battery life. A conversion method that

consumes a lot of resources is not appropriate in this environment. Moreover,

the process should be systematic enough to eliminate human intervention in its

CHAPTER 4. CONTEXT-RISK-AWARE ACCESS CONTROL (CRAAC) 74

calculations. Non-intrusiveness is a fundamental requirement in UbiComp [13].

This may be achieved by utilising an “objective“ conversion method that does

not depend heavily on the personal views of, for instance, a central authority and

his/her understanding of the problem.

4.4.2 L2WC Methods

There are multiple methods to perform the L2WC. This includes the Analytical

Hierarchy Process (AHP), Rank-order, and fuzzy methods. As the fuzzy method

lacks an acceptable ranking method [67], our discussions below focus on AHP and

Rank-order methods.

4.4.2.1 Analytical Hierarchy Process

AHP, proposed by Thomas Saaty [3], is based on mathematics and psychology. It

compares a list of alternatives based on multiple selection criteria. In other words,

AHP can be used to make complex decisions that involve multiple criteria. It

provides assistance to a decision-maker in identifying and weighting the selection

criteria. Ranking and weighting alternatives in order from most to least significant

is an important application of AHP, which is our main aim in studying AHP. The

way in which AHP weighs alternatives can also be used to weigh the LoA ranks

in our problem context. As the main aim here is to show how AHP can be

used to perform L2WC, the following only illustrates the operations required for

performing such a task.

Consider a decision manager needing to make a decision about which soft-

ware product to buy for an organisation. In surveying the market, there are 5

competing companies with 5 different products: A, B, C, D, and E. To select the

best product, the manager selects the AHP technique. AHP requires the decision

CHAPTER 4. CONTEXT-RISK-AWARE ACCESS CONTROL (CRAAC) 75

manager to form a hierarchy that models the problem. The hierarchy should

contain the alternatives (i.e. A, B, C, D, and E products) at the base level, and

it should encompass all selection criteria required to evaluate these alternatives

against. Figure 4.1 shows an example hierarchy, where the decision manager lists

a set of four criteria that help to discriminate between those competing products.

AHP in general allows a decision manager to choose a selection criterion that

may be tangible, intangible, accurately measured, or approximately measured.

As shown in Figure 4.1, start-up time, search speed, cost, and ease of use are

the selection criteria the decision manager has identified for the software product

selection.

Choose a software

Start-up Time Search Speed Cost Ease of use

A B C D E

Goal

Selection Criteria

Alternatives

Figure 4.1: The AHP Hierarchy for the Software Selection Problem

After constructing the AHP hierarchy, the importance of the various selec-

tion criteria has to be evaluated. This is done apart from the software product

alternatives. For example, given the selection criteria level in Figure 4.1, is the

”start-up time“ more important than the ”search speed“ in selecting a software

product? This process actually establishes priorities among the selection criteria

(i.e. ranking) with respect to achieving the goal (i.e. selecting the best software

product). To perform the ranking, all the selection criteria of the hierarchy will

be compared to one another in a pair-wise comparison (i.e. two selection criteria

at a time). For a systematic calculation of the selection criteria relative weights,

Saaty has defined 9 levels of importance as described in Table 4.5. There are

CHAPTER 4. CONTEXT-RISK-AWARE ACCESS CONTROL (CRAAC) 76

Table 4.5: The AHP Importance Rating Scale [3]
Importance
intensity

Definition Explanation

1 Equal importance
Two factors contribute equally to
the objective

3 Somewhat more important
Experience and judgement slightly
favour one over the other

5 Much more important
Experience and judgement
strongly favour one over the
other

7 Very much more important
Experience and judgement very
strongly favour one over the other

9 Absolutely more important
The evidence favouring one over
the other is of the highest possible
validity

2,4,6,8 Intermediate values When compromise is needed

multiple expectations from the relative weight calculation process, such as 1) the

importance of all the selection criteria must add up to 1, which is the priority of

the main goal, and 2) the relative importance of the selection criteria (Ci, Cj)

must equal to 1, where i = j. The reason for this is that each selection criterion

is as important as itself. In conducting the pair-wise comparison, the decision

maker can use concrete measures (i.e. objective) or personal judgement (i.e. sub-

jective). For instance, the ”cost“ and the ”start-up time“ could be measured

with absolute certainty. The ”start-up time“, for instance, can be quantitatively

measured by computing the time it takes to start up the application. On the

other hand, the ”ease of use“ may be judged subjectively based on the decision

manager’s own perception of the software application. The results of the pair-

wise comparisons are placed in a matrix, as depicted in Table 4.6. The matrix

shows, for instance, that the ”search speed“ is slightly more important than the

”start-up time“. This is encoded as 3 and 1/3 in the highlighted cells. The

numbers in the matrix represent the relative importance of the selection criteria;

CHAPTER 4. CONTEXT-RISK-AWARE ACCESS CONTROL (CRAAC) 77

Table 4.6: The AHP Relative Importance Matrix for Software Selection
start-up time search speed cost ease of use

start-up time 1 1/3 5 1
search speed 3 1 5 1

cost 1/5 1/5 1 1/5
ease of use 1 1 5 1

In other words, they represent the ranks of the selection criteria. The next step

in AHP is to calculate the relative weights for each selection criterion given the

ranks determined in the matrix. This, as shown in Table 4.7, is performed by tak-

ing each entry in the original matrix, shown in Table 4.6, and dividing it by the

sum of the column it appears in. For example, the highlighted (”search speed“,

Table 4.7: The AHP Relative Weights for Software Selection
start-up time search speed cost ease of use Average

start-up time 0.1923 0.1316 0.3125 0.3125 0.2372
search speed 0.5769 0.3947 0.3125 0.3125 0.3992

cost 0.0385 0.0790 0.0625 0.0625 0.0606
ease of use 0.1923 0.3947 0.3125 0.3125 0.3030

”cost“) entry is computed as 5
5+5+1+5

= 0.3125. A new matrix is constructed, as

shown in Table 4.7, that represents the relative weights of the selection criteria.

The matrix, for example, shows that the ”search speed“ is the most important

selection criterion, contributing about 40% to the overall goal. As far as this

thesis is concerned, up to this point AHP can be used to perform the L2WC. The

rest of the AHP operations (i.e. selecting an alternative) are beyond the thesis

scope.

4.4.2.2 Rank-Ordered Weights-Based Methods

The rank-order method is used to generate weights for different alternatives.

Rank-order centroid (ROC) [68], Rank Reciprocal (RR), Rank Exponent (RE),

and Rank Sum (RS) [69] are examples of the rank-order method. This method

CHAPTER 4. CONTEXT-RISK-AWARE ACCESS CONTROL (CRAAC) 78

is often used to solve Multiple Criteria Decision Analysis (MCDA) problems.

It takes a set of attributes ordered by importance (i.e. ranks) and converts

them into a set of approximated weights (i.e. ratings). It is worth emphasising

that sometimes it may not be realistic to determine the precise weights of the

attributes [70].

The main difference amongst RS, RR, RE, and ROC is the formula they are

using to approximate the weights of the ranks. RS uses the following formula [69]:

wi =
N − Ri + 1

∑N

j=1(N −Rj + 1)
(4.1)

Where N is the number of attributes, Ri is the rank position of the attribute. RR

uses another formula: [69]:

wi =
1/Ri∑N

j=1(1/Rj)
(4.2)

RE uses [69]:

wi =
(N − Ri + 1)z

∑N

j=1(N − Rj + i)z
(4.3)

where z is the weight of the most important attribute on a 0-1 scale. This is

an additional piece of information required in RE to compute the weights of the

corresponding attributes. It is worth noting that if z is 1, the RE defaults back

to RS, and if z is 0 that corresponds to the equal weights case.

ROC, originally proposed by Barron in [68], has an appealing theoretical

foundation for its derived weights [71]. It derives weights through a system-

atic analysis of implicit information in the ranks, which would give an accurate

outcome [70]. Using the ROC method, the weights are derived from a simplex

CHAPTER 4. CONTEXT-RISK-AWARE ACCESS CONTROL (CRAAC) 79

w1 ≥ w2 ≥ . . . ≥ wn ≥ 0 restricted to:

n∑

i=1

wi = 1 (4.4)

where n is the number of attributes (system cardinality). The vertices of the

simplex are e1 = (1, 0, . . . , 0), e2 = (1
2
, 1
2
, 0, . . . , 0), e3 = (1

3
, 1
3
, 1
3
, 0, . . . , 0), . . . , en =

(1
n
, 1
n
, . . . , 1

n
). The coordinates of the centroids (i.e. weights) are calculated by

averaging the corresponding coordinates of the defined vertices [70]. In general,

the weight of the kth most important attribute out of n attributes is calculated

as:

wk =
(
∑n

i=k 1/i)

n
(4.5)

For example, consider a set of four attributes: A,B,C, and D ranked as first (i.e.

most important), second, third, and fourth (i.e. least important), respectively.

ROC would compute the weights as: A = (1 + 1/2 + 1/3 + 1/4)/4 = 0.5208,

B = (0 + 1/2 + 1/3 + 1/4)/4 = 0.2708, C = (0 + 0 + 1/3 + 1/4)/4 = 0.1458 and,

D = (0 + 0 + 1/4)/4 = 0.0625.

4.4.3 Choosing L2WC Method

Table 4.8 summarises the potential conversion methods surveyed in this research.

The RE method is not appropriate selection, since it requires extra information

(i.e. the weight of the most important attribute) to compute the weights. In

our L2WC problem, such information can not be provided. As seen in the table,

the rank-ordered weights-based methods (i.e. RR, RS, and ROC) show more

accurate results than the AHP method. AHP sometimes produces unreasonable

weights due to its subjective way of weights determination. For example, if A is

more important than B, which is more important than C then A is expected to be

CHAPTER 4. CONTEXT-RISK-AWARE ACCESS CONTROL (CRAAC) 80

more important than C (i.e. transitivity). In AHP, as the pair-wise comparison is

performed on two items at a time, a decision manager may explicitly state that C

is more important than A, which is not sensible. Pair-wise comparison in AHP is

a kind of a stateless process that can not link a current pair-wise comparison with

a previous one. In other words, AHP uses pair-wise comparison that may not

acknowledge the transitivity of relative importance among factors (i.e. selection

criteria). No tool in AHP could be used to prevent such a possibility.

Table 4.8: L2WC Methods Comparison

A
c
c
u
ra

c
y

C
o
m
p
le
x
it
y

E
a
se

o
f
Im

p
le
m
e
n
ta
ti
o
n

W
e
ig
h
ts

C
a
lc
u
la
ti
o
n

F
o
u
n
d
a
ti
o
n

E
x
tr
a
K
n
o
w
le
d
g
e

AHP Concern O(n2) X
(Objective,non-
intrusive), (Subjec-
tive,intrusive)

Math &
psychology

%
RR Accurate O(n) X Objective, non-intrusive Ad

Hoc [70]
%

RS Accurate O(n) X Objective, non-intrusive Ad
Hoc [70]

%
RE Accurate O(n) X Objective, non-intrusive Ad

Hoc [70]
X

ROC Most
accurate O(n) X Objective, non-intrusive

Systematic
Analysis of
ranks

%
In addition, AHP can create a rank reversal phenomenon, where adding ir-

relevant alternatives may cause a reversal in the ranking [72]. Moreover, the

static 9-levels rating system proposed by Saaty does not always cope with some

marginal differences of importance [73]. The time complexity of the rank-ordered

CHAPTER 4. CONTEXT-RISK-AWARE ACCESS CONTROL (CRAAC) 81

weights-based methods is linear (i.e. O(n)), where n is number of the contex-

tual attributes used. In contrast, in AHP, the number of pair-wise comparisons

is n×(n−1)
2

, where n is the number of attributes. This means the complexity of

AHP is of O(n2). In other words, the number of comparisons conducted in, for

instance, ROC is less than that of AHP [67]. Based on the above considerations,

AHP is excluded as a choice for L2WC.

Comparing ROC against other rank-ordered methods, ROC is more accurate,

and provides an efficient and appropriate implementation tool [70]. The RR and

RS weights calculation process is Ad Hoc [70], whilst in ROC it is based on a

systematic analysis of ranks. Based on the above considerations, ROC is chosen

as the L2WC method in this research. To further reduce the time spent on calcu-

lating weights, a static conversion table can be used. In other words, the weights

of the contextual attributes can be calculated off-line and a table is preloaded

with the weights. On receiving an access request, the access control service can

look up the static table for the weights of the corresponding contextual attributes

instead of calculating the weights in real-time.

4.5 Requester’s LoA Aggregation at Run-Time

As mentioned earlier, the assurance level in identifying a subject may be in-

fluenced by multiple attributes, either directly (e.g. eTokens, ALoc, and AH) or

indirectly (e.g. CS). To quantify the assurance level as influenced by the combina-

tion of a subject’s multiple contextual attributes, the RLoA notion is introduced.

We define RLoA as follows:

Definition 6 RLoA refers to an overall LoA in identifying a subject based upon

the subject’s contextual information that is associated with the subject’s multiple

contextual attributes (i.e. eToken, ALoc, CS, and AH).

CHAPTER 4. CONTEXT-RISK-AWARE ACCESS CONTROL (CRAAC) 82

The derivation of RLoA depends on the types of the contextual attributes and

the correlation, or the mutual relationships, amongst the contextual attributes.

Formally, given a set of contextual attributes (A1, A2, . . . , An) and their associ-

ated assurance levels (LoAA1
, LoAA2

, . . . , LoAAn
), RLoA can be expressed using

a generic function, f , as:

RLoA = f(LoAA1
, LoAA2

, . . . , LoAAn
) (4.6)

f is determined by the relationship among the multiple contextual attributes.

We have identified two types of relationships: Elevating and Weakest-link.

4.5.1 Elevating Relationship

In the elevating relationship, the combined use of two or more contextual at-

tributes may result in the overall confidence level being higher than that provided

by any of the individual contextual attributes. The concept of elevating security

is used by Microsoft in Windows Server 2003 to enable regular users to install ap-

plications even if they do not have the required permissions [74]. In our problem

context, the eToken and ALoc attributes (i.e. when used collectively to identify

a user) are in an elevating relationship. In fact, a combined use of e-Token and

ALoc is a two-factor authentication solution that is more reliable than using only

eToken or ALoc alone. Thus, it provides a higher RLoA value.

Given that a requester has n contextual attributes, (A1, A2, . . . , An), all the

attributes are in an elevating relationship, and each of the attribute has a LoA

associated with it, (LoAA1
, LoAA2

, . . . , LoAAn
), where 1 > LoAAi

> 0, i ∈ {1, n},

then the overall assurance value (i.e. RLoA) can be calculated (using probability

CHAPTER 4. CONTEXT-RISK-AWARE ACCESS CONTROL (CRAAC) 83

theory) as [75]:

RLoA = 1− (1− LoAA1
)(1− LoAA2

) . . . (1− LoAAn
) (4.7)

An advantage of Equation 4.7 is that an attribute with a higher assurance

value would have a higher impact on RLoA, and an attribute with a lower as-

surance value would have a lower impact on the overall assurance value. Based

on our knowledge and literature [76], we have observed that, among the set of

attributes {eToken, ALoc, CS, AH}, only eToken and ALoc attributes are in an

elevating relationship. Other attributes are in a weakest-link relationship. Thus,

by applying Equation 4.7 to the eToken and ALoc attributes, LoAauthN can be

calculated as:

LoAauthN = 1− (1− LoAeToken)(1− LoAALoc) (4.8)

Here, LoAauthN is the aggregated LoA produced by the eToken and ALoc

attributes. Replacing the eToken and ALoc attributes with LoAauthN , equation

4.6 can be revised as:

RLoA = f(LoAauthN , LoACS, LoAAH) (4.9)

4.5.2 Weakest-Link Relationship

In the weakest-link relationship the value of RLoA is equal to the lowest attribute

LoA value in the attribute value set. This is in line with the weakest-link principle

in system security. This is because, even if the underlying authentication proce-

dure is strong (thus difficult to impersonate), and the channel security has a high

assurance level (thus difficult to intercept confidential information), provided that

CHAPTER 4. CONTEXT-RISK-AWARE ACCESS CONTROL (CRAAC) 84

the service provider’s system is easy to break into, there will be still a high risk of

compromising the server end of the identification and authentication procedure,

e.g. by directly attacking the system credential stores, or by tampering with the

authentication algorithm, etc. This implies that, for a set of attributes that are

in a weakest link relationship, the overall assurance level should not be higher

than the lowest attribute LoA involved.

For example, the attributes authN (i.e. as computed from eToken and ALoc),

CS, and AH, resembles more the weakest-link relationship. The RLoA is calcu-

lated as:

RLoA = min(LoAauthN , LoACS, LoAAH) (4.10)

Where min is the minimum function that returns the smallest LoA value of

those enclosed in the brackets. Note that the calculation of LoAauthN remains

the same, as the eToken and ALoc attributes are in an elevating relationship due

to its two-factor authentication nature.

4.6 CRAAC Modes of Working

CRAAC supports four modes of working; each suits a different application context

and access control requirements. The four modes are:

• RLoA-only Mode: The RLoA value of multiple attributes is used to govern

access control decision-making.

• AttributeLoA-only Mode: The individual LoA values of one or more at-

tributes are used to govern access control decision-making.

• Combined Mode: Both RLoA-only and AttributeLoA-only modes are used

to govern access control decision-making.

CHAPTER 4. CONTEXT-RISK-AWARE ACCESS CONTROL (CRAAC) 85

• Basic-RBAC Mode: This corresponds to the traditional RBAC model.

The four modes differ by which the LoA values are used to control access to

sensitive resource objects. However, the basic RBAC mode is fundamental in all

other modes.

4.6.1 RLoA-only Mode

In this mode, resources are classified into groups based on their sensitivity levels.

The resource classification is performed transparently from the set of utilised

contextual attributes. In other words, a resource provider may not need to be

aware of how users will be identified and what contextual attributes are used.

The resource provider only needs to specify a single minimum level of assurance

to release a given resource object (i.e. OLoA). When an access request is received,

the set of contextual information associated with the access requester is assessed.

A corresponding RLoA value is derived based on the set of contextual information.

The access will be granted iff RLoA≥OLoA. In this way, we could adapt an access

control decision in response to the resource object’s sensitivity levels and the

changes in the user’s LoA-affecting contextual information thus, achieving fine-

grained access control. In addition to governing the role-permission assignment,

RLoA can be used to govern the user-role assignment. In other words, in the

RLoA-only mode, RLoA can be used to govern both UA and PA functionalities.

4.6.2 AttributeLoA-only Mode

In this mode of working, access to sensitive resource objects is governed by indi-

vidual contextual attributes’ LoA values. That is, each contextual attribute has

its own AttributeLoA value, which will be used, possibly along with other at-

tributeLoA values, to control access to sensitive resource objects. In other words,

CHAPTER 4. CONTEXT-RISK-AWARE ACCESS CONTROL (CRAAC) 86

a service provider can specify a set of LoA requirement on a particular set of con-

textual attributes. An access requester has to satisfy all the LoA requirements

to gain access to the service.

There is a similarity between this mode of working and the CAAC-based

models discussed in Chapter 3. Both use the contextual information as addi-

tional constraints to govern both UA and/or PA functions. But, instead of using

contextual attribute values in the access control policy specification as in CAAC,

the AttributeLoA-only mode uses the attributes’ LoA values. In this way, the

AttributeLoA-only mode hides the way in which contextual information is rep-

resented from the authorisation engine, which provides more flexibility. In other

words, CRAAC generalises the CAAC-based model in the way that it is not re-

quired for the authorisation engine to be aware of the representation method used

to express the contextual information. For example, an access control policy for

a location-aware access control service that uses the ”zones“ representation could

be the same as the one that uses an absolute positioning representation(i.e. lon-

gitude and latitude). In the AttributeLoA-only mode, CRAAC can still utilise a

CAAC-based authorisation engine, used by many existing context-aware systems,

as an external authorisation engine.

4.6.3 Combined Mode

This mode combines the use of the RLoA-only and AttributeLoA-only modes. For

example, in certain application scenarios, an access requester may be assigned a

role based on the RLoA value (i.e. UA function), whereas permissions are granted

based on the individual contextual attributes LoA values (i.e. PA function), or

any other combinations. CRAAC supports such an access control requirement

by proposing the Combined mode of working.

CHAPTER 4. CONTEXT-RISK-AWARE ACCESS CONTROL (CRAAC) 87

4.6.4 Basic-RBAC Mode

This mode controls access to sensitive resource objects based solely on the RBAC

model. Identifying an access requester is performed based on the requester’s static

attributes such as ID. This mode is fundamental for all other modes of working.

However, it may be used only when an access control system disables the use of

contextual information. For example, when a location sensor in a location-aware

access control service is switched off. The access control service should, hence,

use a traditional method for access control (i.e. RBAC).

4.7 Chapter Summary

This chapter has described several important design issues associated with the

design of CRAAC. These issues include the identification of authentication LoA

relevant contextual attributes, their LoA quantification, their mutual relationship

analysis, and the derivation of RLoA. CRAAC uses RLoA as a generic attribute to

capture the composite effect of a subject’s contextual information on the subject’s

assurance level, and uses it to govern the set of permissions assigned to the

subject. By linking RLoA to a resource object sensitivity level, CRAAC not only

achieves context-aware but also risk-aware access control. Most importantly,

through the use of RLoA, CRAAC has successfully decoupled its access control

function from its contextual information management function. Thus, any change

in either functional modules will only require minimum alteration in the other.

This provides the flexibility and generality that CRAAC is seeking. Furthermore,

CRAAC supports four modes of working to satisfy a divergent set of access control

and policy specification requirements, making it applicable in a wide range of

application contexts.

Chapter 5

CRAAC Design Preliminaries

5.1 Chapter Introduction

To realise the CRAAC vision discussed in Chapter 4, a CRAAC architecture is

needed. This architecture should, by proposing functional blocks, support con-

text management, access control decision-making, and LoA derivation services.

This chapter describes the design principles and methods for the CRAAC archi-

tecture. Flexibility, extensibility, generality, high level functional encapsulation,

and LoA-linked fine-grained access control are amongst the design principles of

the CRAAC architecture. To support a LoA-linked fine-grained access control,

CRAAC supports three policy types and two policy retrieval modes. Introduc-

ing the architecture will undoubtedly, increase the overall model complexity. This

may affect the applicability of the CRAAC model and may hinder the acceptabil-

ity of the model by an enterprise. For this reason, CRAAC should be evaluated

against a well-known access control quality metric. This chapter introduces a

quality metric by which CRAAC is assessed. The main elements of the quality

metric are: safety and performance. To measure the CRAAC performance, a

CRAAC prototype has been built. The prototype development environment will

88

CHAPTER 5. CRAAC DESIGN PRELIMINARIES 89

be described in this chapter.

The remaining part of this chapter is structured as follows: -

• Section 5.2 describes the motivations and the design requirements of the

CRAAC architecture.

• Section 5.3 discusses three policy types used by CRAAC.

• It also outlines two different modes of retrieving policy data from an access

control policy store (i.e. push and pull).

• Section 5.4 discuses the evaluation metric by which the CRAAC model is

evaluated. Moreover, it describes the CRAAC evaluation testbed.

• Finally, Section 5.5 summarises the chapter.

5.2 CRAAC Architecture: Motivation and De-

sign Requirements

To realise the CRAAC vision of LoA-linked access control, there is a need for

a supporting architecture. The architecture should acquire contextual informa-

tion from different context sources, quantify the corresponding LoA (i.e. ranks),

convert the LoA ranks into LoA weights (i.e. L2WC) and aggregate the LoA

values into one RLoA value1. Then, it should feed the LoA/RLoA values into the

authorisation decision engine and, finally, produce an access control decision.

The following requirements have been used in the design of the CRAAC ar-

chitecture:

1. LoA-aware

CRAAC should provide built-in services to support the use of individual

1Depending on the configured mode of working

CHAPTER 5. CRAAC DESIGN PRELIMINARIES 90

LoA values (i.e. AttributeLoA values) as well as aggregate LoA values (i.e.

RLoA values) in access control decision-making.

2. Extensibility and Flexibility

The CRAAC architecture should be extensible in order to allow easy ad-

dition of new and removal of obsolete contextual attributes. Any alter-

ations imposed on the architecture caused by such contextual attribute

changes should only be refrained within the context management part of

the CRAAC architecture. Generally, any change occurred in an architec-

tural component should not significantly affect other components in the ar-

chitecture. In addition, an addition/deletion of an architectural component

should impose a minimum change on the rest of the architecture. This prop-

erty can be achieved through functional encapsulation. This is essential for

the CRAAC model to cope with the dynamic nature of the UbiComp envi-

ronments. In addition, the functional encapsulation can make the CRAAC

architecture flexible enough to accommodate different numbers and types

of contextual attributes. The architecture should be applicable to different

application contexts. It should be able to employ both internal as well as

external authorisation decision engines.

3. Efficient performance

The CRAAC architecture should perform efficiently in terms of access de-

lays/latency that a subject has to endure before an access control decision

is made. This also includes streamlining the inter-component communica-

tion to reduce the number of interactions and communication overheads.

Another factor that may affect the performance of the system is scalability.

That is why the performance of CRAAC is investigated when the number of

CHAPTER 5. CRAAC DESIGN PRELIMINARIES 91

enabled roles for a particular user increases2, the number of the contextual

attributes increases3, the access request rates increases4, etc.

4. Standard architectural component design

The CRAAC architecture should comply with relevant standards (e.g. XACML)

in order to provide interoperability with the current solutions.

5.3 CRAAC Policy Types and Access Modes

There are two further design issues: 1) the types of access control policies sup-

ported by CRAAC, and 2) the access mode that is used to retrieve a policy from

its store.

CRAAC recognises three types of access control policies: UA, PA, and re-

sources’ OLoA policies. The UA and PA policies store user-role and role-permission

mappings, respectively. These are the fundamental functions of the basic RBAC

model. A UA policy is relatively smaller than that of PA and it could be stored

in a relational database table for efficient retrieval. A PA policy needs to be ex-

pressed in a standard access control policy language, due to its relatively big size.

In this research, XACML 2.0 [77] is used to express this policy type. However,

the architecture is flexible in order to allow any other policy languages to be used.

CRAAC expresses the UA policy in a 3-tuple format: < Subject, RLoA,Role >,

or in an n-tuple format: < Subject, LoA1...LoAn, Role >, where n is the number

of contextual attributes recognised by the system. The use of 3 or n-tuple policy

format depends on the CRAAC configuration (i.e. mode of working). For exam-

ple, the 3-tuple expression is used in the RLoA-only mode, whereas the n-tuple

is used in the AttributeLoA-only mode.

2See Subsection 6.5.3 for more detail
3See Subsection 7.5.2 for more detail
4See Subsection 6.5.6 for more detail

CHAPTER 5. CRAAC DESIGN PRELIMINARIES 92

The resources’ OLoA policy specifies the minimum LoA requirement upon

which a resource object can be released. This policy is stored in an XML file

and is maintained independently from the other two polices. Figure 5.1 depicts

a snippet of the resources’ OLoA policy for a “Printer” object. The figure shows

the XML file divided into two main elements: OLoA and Individual-OLoA-Set.

The OLoA element contains the OLoA specification that the printer requires to

be released, regardless of the type, number, or representation of the contextual

attributes used. For example, for a subject to cancel the current printing task,

the subject has to satisfy a LoA requirement of at least 0.48. In other words, a

subject has to satisfy this constraint (i.e. RLoA ≥ 0.48) to gain access to the

Printer no matter what contextual attributes the subject has subscribed to. This

element (i.e. OLoA) is used in both RLoA-only and Combined modes.

</ResourceObjects>

<Resource ID="CRAAC:10" Name="Printer">

<OLoA>

<LoA-Entry Context-Attribute ="NONE" Permission="SwitchOn"> <Value>0.04</Value></LoA-Entry>

<LoA-Entry Context-Attribute ="NONE" Permission="SwitchOff"><Value>0.04</Value></LoA-Entry>

<LoA-Entry Context-Attribute ="NONE" Permission="print"><Value>0.70</Value></LoA-Entry>

<LoA-Entry Context-Attribute ="NONE" Permission="CancelCurrentTask"><Value>0.48</Value></LoA-Entry>

</OLoA>

<Individual-OLoA-Set>

<LoA-Entry Context-Attribute ="CS" Permission="SwitchOn"><Value>0.02</Value></LoA-Entry>

<LoA-Entry Context-Attribute ="AH" Permission="SwitchOn"><Value>0.03</Value></LoA-Entry>

<LoA-Entry Context-Attribute ="ALoc" Permission="SwitchOn"><Value>0.01</Value></LoA-Entry>

<LoA-Entry Context-Attribute ="eToken" Permission="SwitchOn"><Value>0.03</Value></LoA-Entry>

<LoA-Entry Context-Attribute ="eToken" Permission="SwitchOff"><Value>0.03</Value></LoA-Entry>

<LoA-Entry Context-Attribute ="CS" Permission="SwitchOff"><Value>0.01</Value></LoA-Entry>

<LoA-Entry Context-Attribute ="CS" Permission="FaxIt"><Value>0.24</Value></LoA-Entry>

<LoA-Entry Context-Attribute ="AH" Permission="FaxIt"><Value>0.20</Value></LoA-Entry>

<LoA-Entry Context-Attribute ="eToken" Permission="FaxIt"><Value>0.40</Value></LoA-Entry>

<LoA-Entry Context-Attribute ="CS" Permission="CancelCurrentTask"><Value>0.24</Value></LoA-Entry>

<LoA-Entry Context-Attribute ="AH" Permission="CancelCurrentTask"><Value>0.40</Value></LoA-Entry>

<LoA-Entry Context-Attribute ="eToken" Permission="CancelCurrentTask"><Value>0.50</Value></LoA-Entry>

</Individual-OLoA-Set>

</Resource>

</ResourceObjects>

Figure 5.1: Snippet of the Resources’ OLoA Policy

On the other hand, the Individual-OLoA-Set element expresses the Printer’s

OLoA requirements in terms of the individual contextual attribute LoA values.

This element of the policy is context-aware, since it needs to know the type

and the number of the contextual attributes used. This element supports the

use of both AttributeLoA-only and Combined modes, since, for example, the

AttributeLoA-only mode utilises individual contextual attributes’ LoA values to

CHAPTER 5. CRAAC DESIGN PRELIMINARIES 93

govern access control decision-making. Table 5.1 summarises which mode of

working uses what type of access control policy.

Table 5.1: CRAAC Modes Vs Policy Files Usage

UA PA
Resources’
OLoA: OLoA
Element

Resources’ OLoA:
Individual-OLoA-Set

RLoA-only Mode X X X %
AttributeLoA-only Mode X X % X

Combined Mode X X X X

Basic-RBAC Mode X X % %
Two policy retrieval modes are recognised by CRAAC: pull and push modes [78].

In the pull mode, an access control policy is retrieved from the corresponding store

on demand. In other words, on receiving an access request, CRAAC opens the

corresponding access control policy file, parses it, and verifies the request against

the policy rules. In the push mode, on the other hand, the access control policy is

pushed into the system before receiving any access request. In other words, in this

access mode, CRAAC is pre-loaded with the policies when it is initialised. The

use of both modes in CRAAC and their implications on the CRAAC performance

will be reported in Chapters 6 and 7.

5.4 CRAAC Evaluation

Evaluating the CRAAC model is required; as an access control system grows in

size, the system complexity grows as well and more overheads may be imposed on

the system. In conducting the CRAAC evaluation, the results of the evaluation

will be compared to those from the traditional RBAC system (i.e. as a reference

model). In fact, evaluating an access control system is challenging. To our best

knowledge, the NIST quality metric [4] is, perhaps, the most well-known metric

CHAPTER 5. CRAAC DESIGN PRELIMINARIES 94

that is used for such a purpose.

The NIST quality metric, as depicted in Table 5.2, does not suggest any tan-

gible measurements, nor does it propose discrete benchmarks, for each metric el-

ement. The NIST quality metric contains elements that verify the administrative

capabilities, administrative cost, policy coverage, extensibility, and performance

quality. The selection of a metric element depends on a decision manager and the

access control system in hand. In this thesis, the NIST quality metric is adopted

as a common basis to assess the CRAAC model. The main focuses of the CRAAC

assessment is on performance and safety elements of the NIST quality metric.

For the CRAAC assessment, a CRAAC prototype has been built, experiments

have been conducted, and results are reported in the next two chapters.

5.4.1 Performance Evaluation

As outlined in Chapter 4, CRAAC is more complex than the traditional RBAC

model. It is anticipated that a CRAAC implementation would add more over-

heads due to its new LoA-linked access control decision-making, hence introduc-

ing additional performance costs. The level of the performance cost should be

investigated comprehensively as an indicator of the CRAAC efficacy. For this

purpose, we measure the performance of CRAAC in terms of the average access

delay (AAD).

Definition 7 AAD represents an average access latency a subject has to wait

before the access request is processed. It is the difference between the time when

an access request is sent and the time when an access control decision is made.

To measure AADs under different configurations, experiments are to be de-

signed. To obtain experimental results with high statistical significance, a large

number of iterations have to be used to eliminate arbitrariness. In other words,

CHAPTER 5. CRAAC DESIGN PRELIMINARIES 95

Table 5.2: NIST Access Control Quality Metric [4]
Element Description

User Management
This describes the steps required for assigning and dis-
assigning user capabilities into the access control system

Object Management
This describes the steps required for assigning and dis-
assigning object access control entries into the access con-
trol system

Least Privilege
To what degree an access control system supports the
least-privilege concept

Access Control Policy

This element is concerned about 1)the number of relation-
ships required to create an access control policy and 2) the
capabilities of policy encapsulation for policy combination,
composition and constraint.

SoD support
Is an access control service support SoD? This is significant
to prevent unintended accesses

Implementation
and Evolution

This describes the degree to which an access control system
is adaptable to the implementation and evolution of access
control policies.

Horizontal Scope

What is the scope of coverage across platforms and appli-
cations an access control system can support? This can
be restated as: is an access control system applicable for
a specific application domain or and is it able to cater for
a wide range of application domains?

Vertical Scope
This is concerned about the level of integration between
an access control system and other systems, such as a
database management system and operation system.

Safety
This describes the capability of an access control system to
enforce safety. This is measured by the number of safety
constraints an access control system can support.

Access Control
Management

This describes the degree of freedom for access control
management. It addresses the need to support different
points of views for managing an access control system.

Performance
This describes the cost of running an access control system
in terms of, for example, the number of operations required
to grant/deny a user access to a certain resource object.

Conflict Resolution
Can an access control system resolve conflicts in access
control policies?

Flexibility
This describes the level of flexibility in configuring an ac-
cess control system. This may measure how modular an
access control system is to support an external component.

CHAPTER 5. CRAAC DESIGN PRELIMINARIES 96

to ensure statistical significance, the number of iterations (denoted as n), over

which the AAD is measured, needs to be determined. The larger the value of n,

the less the effect of arbitrariness on the AADs. To determine n, an experiment

is conducted by setting n to different values while measuring the AADs in mil-

liseconds. A certain value of n, at which the arbitrariness tends to disappear, is

selected and used in all subsequent experiments. This will be shown in Section

6.5.

5.4.2 Security Evaluation

Safety is important in any access control system. An access control system is

said to be safe if no permissions are leaked to an unauthorised entity [4]. In fact,

this definition of safety does not address a case where a legitimate user is given

a permission inadvertently. For example, if an access control system grants a

legitimate teller, at a bank counter, a signature authorisation capability at the

same time, thus the access control system is not safe. Therefore, this definition

of safety is incomplete. In this thesis, safety of an access control configuration is

defined as follows:

Definition 8 The safety of an access control system refers to a system state

where no permission is leaked to an unauthorised entity nor to a legitimate entity

unintentionally.

Theoretically, safety is proven undecidable [79]. In fact, safety is achieved by

using a limited access control models or via constraints [80, 4]. An access control

system should support safety by other practical mechanisms such as constraints.

Although this means that there is no automatic proof of safety. It is still possible

to give a manual proof of safety of an access control model [81, 82, 37]. In general,

CHAPTER 5. CRAAC DESIGN PRELIMINARIES 97

SSD and DSD are the practical ways to enforce safety of an access control con-

figuration. Since CRAAC is built on the RBAC model, CRAAC supports safety

by utilising both SSD and DSD constraints. Thus CRAAC should be at least as

safe as the RBAC model in the same access control configuration. In fact, it is

assumed that the complexity of the CRAAC will not impose security loophole or

reduces the overall system security. Moreover, the contextual information along

with the provider are part of the TCB. In fact, CRAAC safety regarding DoS

attacks will be investigated in Section 6.5.7 later on.

CRAAC further enforces safety by introducing the LoA constraints. Thus, no

permission is granted to a subject unless the subject has satisfied certain LoA

requirements. In fact, the LoA constraints provide a higher level of safety than

that of the RBAC model. For example, in the RBAC system, Eve can break

into the system by only compromising Bob’s login credential (e.g. user-name

and password), whereas in CRAAC, she has to compromise more access con-

trol barriers, such as being in a certain known secure location and/or possessing

other stronger authentication credentials. By using the SSD, DSD, and LoA con-

straints, CRAAC should be able to eliminate the possibility of permission leakage

to an unauthorised entity and unintended permissions to a legitimate entity.

By expressing an access control policy in terms of LoA instead of the contex-

tual attributes, CRAAC reduces the effect of compromising policy stores on the

overall system security. In a CAAC-based access control policy, compromising

the policy store provides an attacker a comprehensive knowledge of the system

and what contextual constraints he/she needs to satisfy in order to gain access

to a particular resource object. However, in CRAAC, even if the policy store was

compromised, the attacker will not know which contextual attributes he/she has

to compromise to provide the required OLoA for the resource object. In addition,

CHAPTER 5. CRAAC DESIGN PRELIMINARIES 98

he/she will not even know the set of contextual attributes5 a legitimate subject

has subscribed to. This increases the overall security of the CRAAC model.

5.4.3 CRAAC Evaluation TestBed

As mentioned earlier, the CRAAC prototype has been built as a proof of concept

and as a platform to conduct performance assessments and security evaluation.

The prototype is hosted on Ubuntu 9.04 operating system on a DELL desktop

with 2x Intel(R) Pentium(R) 4 CPU 3.00GHz processors with 1017MB mem-

ory. The prototype is implemented as a Java desktop application with JavaTMSE

Runtime Environment build 1.6.0 13b03. It uses MySQL 5.0.75 to store UA (i.e.

both static and dynamic) and high-level contextual attribute values (i.e. emula-

tion). This part is assumed to be part of the TCB, since it deals with contextual

information and providers. The prototype uses JbossXACML 2.0.3 [83] for PA

policy evaluation. In fact, this corresponds to the traditional RBAC authorisa-

tion engine. Other CRAAC policies (i.e. the resources’ OLoA requirements, the

RLoA derivation methods, and system configuration parameters) are written in

XML 1.0 and are parsed using SAXParser [84].

5.5 Chapter Summary

This chapter has discussed the motivations and design preliminaries of the CRAAC

architecture. The chapter has also highlighted the policy types and policy re-

trieval modes supported by CRAAC. In addition, CRAAC evaluation has been

discussed. CRAAC is said to be at least as safe as RBAC, since it uses practi-

cal tools such as SSD, DSD, and LoA constraints to control access to protected

resource objects. The next two chapters will study the CRAAC model in two

5In case of the RLoA-only mode

CHAPTER 5. CRAAC DESIGN PRELIMINARIES 99

modes of working (i.e. RLoA-only and AttributeLoA-only mode) along with an

investigation of their performance.

Chapter 6

The RLoA-only Mode

6.1 Chapter Introduction

There is a need for an architecture to realise the LoA-aware access control vi-

sion discussed in the previous chapters. The architecture should support the four

modes of working1 proposed by CRAAC. This chapter describes the design of

the CRAAC architecture along with its components. It also shows in detail how

the RLoA-only mode uses the architecture to support its services (i.e. controlling

access to resources using RLoA). In addition, this chapter investigates and eval-

uates the performance of the RLoA-only mode against that of the basic-RBAC

mode.

The remaining part of this chapter is structured as follows: -

• Section 6.2 introduces the CRAAC architecture.

• Section 6.3 discusses the design of the architecture in detail covering its

fundamental services and components.

• Section 6.4 shows how the RLoA-only mode uses the CRAAC architecture

1See Section 4.6 for more detail

100

CHAPTER 6. THE RLOA-ONLY MODE 101

to control access to resource objects using RLoA.

• Section 6.5 investigates the performance of the RLoA-only mode and com-

pare it against the performance of the basic-RBAC mode.

• Section 6.6 summarises the chapter.

6.2 The Architecture Overview

CRAAC classifies its services into three major functional blocks: Access Con-

trol Infrastructure (ACI), Context Management Infrastructure (CMI), and LoA

Derivation Infrastructure (LoADI). The LoADI is responsible for calculating

users’ LoA/RLoA value(s) based upon the latest contextual information fed from

the CMI. It feeds those values to the ACI in order to make access control deci-

sions for the corresponding user. This design approach separates the functions of

access control from that of context management by introducing a layer of abstrac-

tion (i.e. LoADI) to loosely bridge both infrastructures. This approach provides

a high degree of separation of duties among the major functional blocks and a

high level of functional encapsulation, which leads to flexibility and extensibility

of the overall architecture. This may also add another level of complexity spe-

cially when the CRAAC is deployed as a distributed service. Efforts have been

made to stream-line the inter-component communication to reduce the number

of interactions and communication overheads.

The major functional blocks of the CRAAC architecture are outlined in Figure

6.1, and the RLoA-only mode inter-component communication is illustrated in

Figure 6.2. The following section gives a detailed description of the three CRAAC

infrastructures with an emphasis on those architectural components that are used

in the RLoA-only mode.

CHAPTER 6. THE RLOA-ONLY MODE 102

Figure 6.1: CRAAC Architectural Components

6.3 The Architecture in Detail

6.3.1 Access Control Infrastructure (ACI)

The ACI encompasses components for both authentication and authorisation.

CRAAC does not specify or require a specific authentication service. Rather,

any existing authentication service can be plugged into the architecture. The

CRAAC authorisation service is built upon the traditional RBAC model and

uses standard access control components like Policy Enforcement Point (PEP)

and Policy Decision Point (PDP). CRAAC, yet, adds additional components

such as Master PDP, LoA-aware PDPs and their Coordinator, and RLoA-based

PDPs to provide the novel CRAAC authorisation services.

Generally, the fundamental role of a PEP is to enforce an access control deci-

sion made by a PDP. In CRAAC, PEP receives an access request from a subject,

extracts the attribute values contained in the access request, packages these values

along with the attribute names in a standard XACML 2.0 request context [77],

and forwards them to the Master PDP for evaluation. Then, it enforces the

C
H
A
P
T
E
R

6.
T
H
E
R
L
O
A
-O

N
L
Y

M
O
D
E

103

A
c
c
e
s
s

H

i
s
t
o
r
y

L
o
g

i
c
a
l

S

e
n

s
o
r

A
L

o
c

L
o
g

i
c
a
l

S

e
n

s
o
r

C
S

L
o
g

i
c
a
l

S

e
n

s
o
r

e
A

u
t
h

N

L
o
g

i
c
a
l

S

e
n

s
o
r

S
C
RCS

Request

CS

Response

ALoc

Request

ALoc

Response

eAuthN

Request

eAuthN

Response

AH

Request

AH

Response

Attribute LoA

Request

Attribute LoA

Response

Contextual Attributes

Response

Contextual Attributes

Request
C
a
rd

in
a
lity

 R
e
q
u
e
st

C
a
rd

in
a
lity R

e
sp

o
n
se

RLoA Request

RLoA Response

Derivation

Policy

Request

Derivation Policy

Response

RLoA
Response

RLoA
Request

U
s
e
r/S

y
s
te

m
 C

o
n
fi
g
u
ra

tio
n

Q
u
e
ry

U
s
e
r/S

y
s
te

m
 C

o
n
fi
g
u
ra

tio
n

Push/Pull mode Configuration

Permissions Set

Request

Permissions Set

Response

Permissions
Set RequestPermissions

Set Response

OLoA

Response

Request
Dynamic Role

Request

Dynamic Role
Response

Static Role
Request

Static Role
Response

LoA-Aware Access Request

LoA-Aware Access Decision

Static UA
Request

Static UA
Response

Dynamic UA
Request

Dynamic UA
Response

RLoA-aware
Access

Request

RLoA-aware
Access

Response

RBAC-based
Access

Request

RBAC-based
Access

Response

A
c
c
e
s
s
 D

e
c
is

io
n

A
c
c
e
s
s
 R

e
q
u
e
s
t

A
c
c
e
s
s
 D

e
c
is

io
n

A
c
c
e
s
s
 R

e
q
u
e
s
t

F
igu

re
6.2:

T
h
e
C
R
A
A
C

A
rch

itectu
re:

th
e
R
L
oA

-on
ly

M
o
d
e

access
con

trol
d
ecision

m
ad

e
b
y
th
e
M
aster

P
D
P
.
M
oreover,

P
E
P

assists
th
e
a
c-

cess
h
isto

ry
logica

l
sen

so
r
an

d
th
e
eA

u
th
N

logica
l
sen

so
r
to

m
on

itor
a
req

u
ester’s

access
h
istory

b
y
n
otify

in
g
th
em

th
e
au

th
en
tication

an
d
au

th
orisation

ou
tcom

es

asso
ciated

to
th
e
req

u
ester.

T
h
e
M
aster

P
D
P

is
resp

on
sib

le
for

orch
estratin

g
C
R
A
A
C

d
iff
eren

t
ty
p
es

of

P
D
P
s
to

ren
d
er

a
fi
n
al

access
con

trol
d
ecision

.
It

also
sh
ou

ld
resolve

con
fl
icts,

CHAPTER 6. THE RLOA-ONLY MODE 104

if any. CRAAC supports three types of PDPs: RBAC-based, LoA-aware, and

RLoA-based PDPs.

The RBAC-based PDPs are used to perform the traditional RBAC func-

tions such as UA and PA. PDPRBAC−I is dedicated for the former function and

PDPRBAC−II is responsible for the latter function. These PDPs are fundamental

in any CRAAC mode of working.

The LoA-aware PDPs and their Coordinator are used to support an appli-

cation scenario where individual contextual attributes’ LoA values are used to

grant/deny access to resource objects (i.e. the AttributeLoA-only and Combined

modes). Thus, for each contextual attribute, a separate LoA-aware PDP is re-

quired. CRAAC currently uses three LoA-aware PDPs: PDPCS, PDPAuthN , and

PDPAH . PDPCS is a decision engine where decisions are made based upon re-

questers’ levels of assurance in their channel security attribute. PDPAH is a

decision point that supports history-aware access control. Finally, PDPAuthN is

a dedicated authorisation decision engine that supports access control policies

based on both eToken and ALoc attributes.

Since the LoA-aware PDPs operate on LoA values calculated at the LoADI,

there is a need for a service that acquires the LoA values from the LoADI. There

are two design alternatives for this service. One is to let each LoA-aware PDP

to directly communicate with the LoADI. This option may impose a high level

of communication overhead on the LoADI. This is because a requester may sub-

scribe to multiple contextual attributes, then multiple LoA-aware PDPs will be

involved each of which will have to establish an independent communication link

with the LoADI. Excessive communication burden on the LoADI may increase

access delays slowing down the performance and reducing the responsiveness of

the CRAAC model. In addition, this design option violates the high functional

encapsulation requirement that CRAAC aims at achieving. In fact, any change

CHAPTER 6. THE RLOA-ONLY MODE 105

in the number of the LoA-aware PDPs will be visible to the LoADI. Therefore,

CRAAC adopts another design option, where a LoA-aware PDP Coordinator is

introduced to coordinate the communications between the LoA-aware PDPs and

the LoADI and between the LoA-aware PDPs and the Master PDP.

The third class of PDPs is the RLoA-based PDPs that include PDPRLoA−I and

PDPRLoA−II . These PDPs perform the functions of role and permission adapta-

tion based upon RLoA. When making an access request, a user is, firstly, assigned

a static role by PDPRBAC−I using the user’s static attribute(s). The static role

may be dynamically adjusted to another role if the user’s RLoA satisfies a cer-

tain threshold. This RLoA-linked role adjustment is performed by PDPRLoA−I .

Similarly, PDPRLoA−II adaptively adjusts access permissions based on the user’s

RLoA value. It is worth emphasising that the RLoA-based PDPs are only used

in both RLoA-only and Combined modes. Another PDP that is relevant to this

context, the PDPattributeLoA. The PDPattributeLoA is a decision point that performs

the same function as PDPRLoA−I , but in the AttributeLoA-only mode. It gen-

erates a user’s dynamic role based on the user’s individual contextual attribute

LoA values instead of the an RLoA value as in the RLoA-only mode.

When an access request is received, the Master PDP needs to be aware of the

corresponding PDPs that should be used for the request. In fact, there is a need

for a component to store such information. The System Configuration Repository

(SCR) is, hence, used for this purpose. The SCR also contains protocol identifiers

to indicate the type of the communication protocol each PDP uses (i.e. currently

CRAAC supports XACML 2.0 request/response context).

CHAPTER 6. THE RLOA-ONLY MODE 106

6.3.2 LoA Derivation Infrastructure (LoADI)

The main functions performed by the LoADI are to derive LoA and RLoA values

based on the requester’s contextual information and to feed the values to the

ACI. It has three main components: the LoA Provider, Attribute LoA Derivator

and LoA Aggregator. The Attribute LoA Derivator derives a LoA value for a

given contextual attribute. The composite effect on a user’s LoA, when multiple

attributes are involved, are assessed by the LoA Aggregator. Once LoA/RLoA

values are calculated, the LoA Provider is responsible for sending them to the ACI

for access control decision-making. Basically, the LoADI plays an intermediary

role bridging both ACI and CMI.

The Attribute LoA Derivator receives the contextual attribute values (i.e. in

terms of LoA ranks) from the LoA Provider. It then calculates the corresponding

LoA values (i.e. L2WC) before sending the LoA values back to the LoA Provider.

The LoA Aggregator is responsible for aggregating all LoA values into one

RLoA value, which will be used to control access to resource objects2. This

component receives LoA values computed by the Attribute LoA Derivator. Then,

it queries the LoADR for the possible aggregation method (i.e. Weakest-link or

Elevating) to use before aggregating the LoA values into one RLoA value. Finally,

it sends the RLoA value back to the LoA Provider.

6.3.3 Context Management Infrastructure (CMI)

A context-aware application may interface a diverse range of devices such as sen-

sors, software applications, and other context-aware components. CRAAC uses

the notion of logical sensors [85] to refer to all devices, entities, or software compo-

nents that sense or provide contextual data. Examples of logical sensors currently

2In the RLoA-only mode

CHAPTER 6. THE RLOA-ONLY MODE 107

supported by CRAAC include those for monitoring channel security levels, sens-

ing eToken assurance levels, detecting access locations, and tracking users’ access

history. In fact, CRAAC extends the definition of logical sensors to include an

interpretation service that generalises high level contextual information from the

row contextual data acquired from the sensors. For example, an interpretation

service may receive location information in terms of zones and, then, maps the

zones into the corresponding LoA (i.e. ranks). It is worth emphasising that the

interpretation function may vary depending on the type of the contextual at-

tribute and the representation of its value. This is why an interpretation service

is encapsulated inside a logical sensor, instead of using a central interpretation

service for all sensors.

CRAAC introduces the Context Coordinator in order to provide an interface

for the LoADI to access the contextual information from the logical sensors trans-

parently. Indeed, the Context Coordinator hides the design, implementation, and

configuration details of logical sensors from the LoADI. As this thesis focuses on

the use of the contextual information for access control, the component design of

the CMI is beyond the scope.

6.4 RLoA-only Mode Data-Flow

In this section, a detailed illustration of the steps and messages exchanged in

the RLoA-only mode is given through a case study. The case study assumes a

legitimate user, Bob, is trying to get a “Write” access on the “srv.config” file

object. Figure 6.3 illustrates the data-flow of this access request using the RLoA-

only mode.

Given Figures 6.2, the following describes both steps and message exchange

required to grant/deny Bob’s access to the requested resource object:

CHAPTER 6. THE RLOA-ONLY MODE 108

Subject
Identity

verification
Credentials

input

Authentication

History

Access Request

Formatting

Specify Object and

permission type

Static Role

Determination
PIP

RBAC

authentication

outcome

Enquiry

Static Role

RLoA

Aggregation

LoADR

Logical Sensors Enquiry

Context

R
L
o
A

 V
a
lu

e

S
ta

ti
c
 R

o
le

Dynamic Role

Adaptation

PIP
LoA

E
n
q
u
ir

y

D
y
n
a
m

ic

R
o
le

OLoA Vs RLoA

Check

RLo
A,

Rol
e*

Permission

Check

Enquiry

OLoA

Role*

Dynam
ic

Role

PAP
RBAC-II

E
n
q
u
ir

y

P
A

P
o
li
c
y

Decision

Enforcement

Authorisation

History

Authorisation

outcom
e

Subject

D
e
c
is

io
n

*: either a static or dynamic role

LoA

Derivation

Static Role

LoA Values

EnquiryDerivation Policy

Enquiry

Card
inality

G
ra

n
t/

D
e
n
y

Figure 6.3: Data-flow in the RLoA-only Mode

1. Bob sends an access request to PEP for a “Write“ permission on the

“srv.config“ file object. Before that, an authentication phase should take

place in order to verify the identity of Bob. The outcome of the authen-

tication phase is recorded in the eAuthN logical sensor’s repository. If the

authentication fails, the access request is denied, otherwise proceed to next

step.

2. PEP forwards the access request to the Master PDP for an authorisation

decision.

3. The Master PDP sends the subject ID (i.e. Bob) to PDPRBAC−I that

CHAPTER 6. THE RLOA-ONLY MODE 109

determines Bob’s static role using the traditional RBAC model (i.e. UA

function).

4. PDPRBAC−I queries PIPRBAC for Bob’s static role.

5. PIPRBAC−I returns the static role of Bob (i.e. Staff).

6. PDPRBAC−I forwards Bob’s static role, Staff, to the Master PDP.

7. The Master PDP sends a context-aware access request to the LoA-aware

PDP Coordinator. In fact, the Coordinator will not consult any subordi-

nate LoA-aware PDPs as no access control decision is expected from the

LoA-aware PDPs in this mode of working. Instead, the LoA-aware PDP

Coordinator initialises the LoADI in order to start LoA/RLoA derivation

for Bob.

8. The LoA-aware PDP Coordinator queries the SCR for the current system

settings. The system settings include the context-awareness flag which in-

dicates the state of the context awareness (i.e. enabled/disabled) and the

mode the system is configured to use. In addition, it queries the SCR for

the types of contextual attributes that Bob has subscribed to.

9. The SCR sends the current settings to the LoA-Aware PDP Coordinator.

For instance, the context awareness flag is enabled, the system is configured

to use the RLoA-only mode and the list of contextual attributes that Bob

has subscribed to is {eToken, ALoc, AH, CS}.

10. The LoA-Aware PDP Coordinator sends an RLoA request to the LoA

Provider passing it, as an argument, the types of the contextual attributes

Bob has subscribed to. In fact, this step transfers the control to the LoADI.

The LoA Provider acts as an interface to the LoADI. It receives requests

CHAPTER 6. THE RLOA-ONLY MODE 110

for RLoA derivation and forwards the RLoA value back to the LoA-aware

PDP Coordinator.

11. The LoA Provider sends a request to the Context Coordinator to retrieve

Bob’s up-to-date contextual attributes values. The Context Coordinator

consults its logical sensors for such values. Once the values are ready, it

sends them back to the LoA Provider.

12. The LoA Provider forwards the attribute values to the Attribute LoA

Derivator in order to derive the corresponding LoA values (i.e. L2WC).

To perform L2WC, the Attribute LoA Derivator consults the Level of As-

surance Derivation Repository (LoADR) for the corresponding contextual

attribute cardinalities.

13. Once the attribute LoA values are calculated by the Attribute LoA Deriva-

tor, they are sent back to the LoA Provider, which forwards them to the

LoA Aggregator.

14. The LoA Aggregator consults the LoADR for the aggregation method (e.g.

Weakest-link or Elevating) that should be used for generating the RLoA

value from the set of the attribute LoA values received from the LoA

Provider. Once the RLoA value is calculated, the LoA Aggregator for-

wards it to the LoA Provider, which sends it back to the LoA-aware PDP

Coordinator that transfers it back to the Master PDP.

15. There is a need to check if Bob’s static role should be adjusted (i.e. dynamic

UA) based on the received RLoA value. Thus, the Master PDP consults

the PDPRLoA−I that checks the PIPLoA for a role adaptation. The new

role (i.e. dynamic role), if any, will be sent back to the Master PDP.

CHAPTER 6. THE RLOA-ONLY MODE 111

16. The Master PDP forwards Bob’s access request to the PDPRLoA−II . The

request contains Bob’s RLoA value, role (i.e. either the static or dynamic

one), the object to be accessed (i.e. srv.config), and the access mode (i.e.

Write). The access request is encapsulated in an XACML 2.0 request con-

text object.

17. The PDPRLoA−II then performs the following operations to reach an access

control decision based on the attribute values received:

(a) Checks if Bob’s RLoA value is greater than or equal to the OLoA

value required by srv.config. To do this, it queries the PIPLoA for the

”srv.config” OLoA requirement. If the check succeeds, it performs the

next step, otherwise a deny decision is generated.

(b) Checks whether Bob’s current role is permitted to have a “Write“

access on “srv.config“. If this check fails, a deny decision is generated,

otherwise, a grant decision is made.

(c) The generated decision (i.e. grant/deny) is sent to the Master PDP.

18. The Master PDP forwards the access control decision received from the

PDPRLoA−II to the PEP for actual enforcement.

19. It is worth emphasising that the authorisation result (i.e. grant/deny) is

recorded in the access history logical sensors’ local repository in order to

keep Bob’s access history up-to-date.

6.5 RLoA-only Mode Performance Evaluation

This section investigates and compares the performance of the RLoA-only mode

and the basic-RBAC mode. The performance is measured in terms of AADs

CHAPTER 6. THE RLOA-ONLY MODE 112

using experiments. The effect of the following factors is investigated: different

PA policy sizes, pull and push policy retrieval modes, the number of enabled roles

of an access requester, the RLoA value, and the queuing delays.

To ensure statistical significance in the experiments, the number of iterations

(denoted as n) over which an AAD is measured should be determined. An ex-

periment has been conducted by setting n to different values while measuring

the AADs in milliseconds. Figure 6.4 shows the results of this experiment that

indicates the bigger the value of n, the less effect the other initialisation factors

have on the AADs. The trend of the graph shows an n value higher than 2.8k

(i.e. 2800 iterations) is sufficient, thus all subsequent experiments use an n value

of 3000.

1 10 80 100 400 800 1k 1.2k 1.6k 2.8k 5k 10k 40k

0

200

400

600

800

1000

1200

1400

1600

1800

2000

The Number of Iterations

(k = 1000)

RLoA-only mode

A
v
e
ra

g
e
 A

c
c
e
s
s
 D

e
la

y
 (

m
il
li
s
e
c
o
n
d
s
)

Figure 6.4: The Number of Iterations Determination

6.5.1 The Effect of the PA Policy Size

This experiment investigates the effect of the PA policy size on the AAD in the

RLoA-only mode. It assumes a user, Bob, with one enabled role, Staff, makes

six access requests to six different resource objects. The six access requests are

CHAPTER 6. THE RLOA-ONLY MODE 113

denoted as R1 through R6 with PA policy sizes of 3.8, 35.6, 206.3, 306.0, 407.7,

and 511.8 KBytes, respectively. Moreover, the experiment assumes that the PA

policies only use permit rules and the algorithm used to combine the rules is

deny-override [77]. The experiment also assumes Bob’s RLoA value is always

greater than or equal to the required OLoA values of the requested resource

objects across the six cases. The latter assumption ensures the execution of the

RLoA-only mode always reaches the stage where the PA policy files are opened.

Because if the RLoA < OLoA, a deny decision will be generated immediately

without checking the PA policy (Step 17 in Section 6.4). The former assumption

enforces every rule contained in the PA policy to be evaluated before making an

access control decision. Thus, the experiment precisely captures the effect of the

PA policy size on the AAD.

Prior to the experiment, two main results are anticipated. Firstly, the larger

the PA policy, the longer it takes to evaluate an access request in both RLoA-only

and basic-RBAC modes. This is because the larger the XACML policy file, the

longer it takes for the system to parse the policy and evaluate the contained rules.

Secondly, the amount of overhead introduced by the RLoA-only mode additional

functions should be consistent and should be almost the same across the 6 policy

sizes. In other words, if the RLoA-only mode adds ∆ti to the AADbasic−RBAC in

request i, then it should add ∆tj to request j, where i 6= j and ∆ti ≈ ∆tj . This

is because, the total access delay for the RLoA-only mode is: AADRLoA−only =

AADRLoAcalculation+AADOLoAcheck+AADbasic−RBAC , where AADRLoAcalculation is

the time taken to calculate RLoA, AADOLoAcheck is the time taken to evaluate

the requester’s RLoA against the requested object’s OLoA, and AADbasic−RBAC

is the time taken for user-role mapping (i.e. UA function) and role-permission

determination (i.e. PA function). The difference of AADs in the RLoA-only and

basic-RBAC modes (i.e. ∆t) is (AADRLoAcalculation + AADOLoAcheck), which is

CHAPTER 6. THE RLOA-ONLY MODE 114

independent of the PA policy size.

Figure 6.5 shows the results of the experiment. The figure shows two sets of

AADs measured in milliseconds against the six different access requests. One set

is from the basic-RBAC mode and the other is from the RLoA-only mode. Three

observations can be made from the figure. Firstly, the AADs in both modes

increase steadily as the PA policy size increases. This observation is in line with

our expectation.

R1

(3.8 kb)

0

50

100

150

200

250

300

350
basic-RBAC

RLoA-only (pull)

Access Requests
(PA Policy size)

A
v
e
ra

g
e
 A

c
c
e
s
s
 D

e
la

y
 (

m
il
li
s
e
c
o
n
d
s
)

Diff = 6.8 ms Diff = 2.6 ms

Diff = 5.1 ms

Diff = 9.6 ms

Diff = 20.2 ms

Diff = 16 ms

R2

(35.6 kb)

R4

(306 kb)

R3

(206.3 kb)

R5

(407.7 kb)

R6

(511.8 kb)

R1 R2 R3 R4 R5 R6

basic-RBAC 27.45 37.46 136.70 194.81 255.51 310.64
RLoA-onlypull 34.27 40.07 141.76 204.37 275.72 326.68

Figure 6.5: The PA Policy Size Effect: RLoA-onlypull vs basic-RBAC

Secondly, the average AAD introduced by the additional RLoA-only mode

functions across the six access requests is about 6.26% of the AAD taken in

the basic-RBAC mode. This observation indicates that in RLoA-only mode, the

majority part of the AAD is caused by the basic RBAC functions. The execution

of the additional CRAAC functions in this mode only contributes a small part

towards the total average access delay.

Thirdly, the AAD difference between the RLoA-only mode and basic-RBAC

mode fluctuates across the 6 access requests. The experimental results show the

CHAPTER 6. THE RLOA-ONLY MODE 115

difference values for R1 through R6 fluctuate between 2.6 to 20.2 milliseconds

and the difference values for R1, R2, and R3 are smaller than that for the other

requests. After in-depth examinations and analysis of the RLoA-only mode op-

erations and the experimental results, the following can explain this unexpected

finding. The two additional functions performed by the RLoA-only mode are:

(1) the dynamic role adaptation, which includes tasks of RLoA derivation and

role adjustment, (2) the comparison of a user’s RLoA value against the required

resource’s OLoA value. The former function introduces a constant time overhead.

This is because dynamic roles are stored in a relational database and the time

taken to retrieve a new role from the database should be almost the same across

the six access requests. In addition, the LoA calculation and RLoA aggregation

are expected to be the same for the same user on the same set of contextual at-

tributes. However, the latter function (i.e. point (2)) introduces a variable time

overhead. This is because the latter function uses the resources’ OLoA policy file,

which is written in XML3. Hence, CRAAC needs to parse this file to get the re-

quired OLoA value. The time it takes to get the OLoA value varies depending on

the relative location of the requested resource object in the file. For instance, the

time it takes to get the OLoA value of the first resource object in the resources’

OLoA policy file is considerably less than the time taken to get the OLoA value

of the last resource object stored in the same file. To summarise, accessing the

resources’ OLoA policy file introduces a variable non-negligible level of access

delay, which depends on the relative position of the requested object in the file.

This observation has motivated us to investigate how to reduce the variability in

AAD. For this reason, the use of pull mode versus push mode for the resources’

OLoA policy file has been evaluated.

3See Section 5.3 for more detail

CHAPTER 6. THE RLOA-ONLY MODE 116

6.5.2 The Effect of Resources’ OLoA Policy Size: Push

Vs Pull

One way to reduce the access delays introduced by the RLoA-only mode addi-

tional functionality is, perhaps, to have the resources’ OLoA policy pushed into

the system when the system initialises. Thus, at run time when an access request

is received, CRAAC can do a memory access instead of a disk access (i.e. instead

of opening and parsing the resources’ OLoA XML policy file) in order to get the

required OLoA value. Since memory operations take significantly less time than

disk operations, using the push mode is expected to cut down the AADs, thus

providing a better performance. Based upon this belief, a further experiment is

conducted to investigate the level of performance enhancement when using the

push mode for accessing the resources’ OLoA policies. The results are plotted in

Figure 6.6.

0

50

100

150

200

250

300

350
basic-RBAC

Diff = 1.8 ms
Diff = 1.1 ms

Diff = 4.2 ms

Diff = 4.4 ms

Diff = 1.4 ms

Diff = 3.9 ms

R1

(3.8 kb)

Access Requests
(PA Policy size)

R2

(35.6 kb)

R4

(306 kb)

R3

(206.3 kb)

R5

(407.7 kb)

R6

(511.8 kb)

RLoA-only (push)

A
v
e
ra

g
e
 A

c
c
e
s
s
 D

e
la

y
 (

m
il
li
s
e
c
o
n
d
s
)

R1 R2 R3 R4 R5 R6

basic-RBAC 27.45 37.46 136.70 194.81 255.51 310.64
RLoA-onlypush 29.21 38.60 140.94 199.19 256.95 314.56

Figure 6.6: The PA Policy Size Effect: RLoA-onlypush Vs basic-RBAC

The following observations can be seen from Figure 6.6. Firstly, the overhead

CHAPTER 6. THE RLOA-ONLY MODE 117

incurred in accessing and parsing the resources’ OLoA policy is the major contrib-

utor to the AAD difference between the two modes. In other words, AADOLoAcheck

plays a predominant role in the total value of (AADRLoAcalculation+AADOLoAcheck).

When using the push mode, the AADOLoAcheck value is reduced exhibiting ap-

proximately the same value of (AADRLoAcalculation+AADOLoAcheck) across the six

access requests. Secondly, the push mode makes the RLoA-only mode marginally

more expensive than the basic-RBAC mode in terms of AADs. For example, the

AADRLoA−onlypull for R2 was about 6.97% higher than AADbasic−RBAC , but when

the push mode is used, this figure is reduced to about 3.04%. Averaged over the

six access requests, the figure is reduced from about 6.26% in the pull mode to

1.75% in the push mode.

As a conclusion, the performance of the RLoA-only mode is comparable to

that of the basic-RBAC mode and the difference between the two modes is almost

negligible when the push mode is used for accessing the resources’ OLoA policy.

6.5.3 The Effect of the Number of Enabled Roles

In real-life situations, a subject may hold multiple organisational roles. For ex-

ample, a lecturer may also be in charge of the admission task within the school.

An experiment is conducted to evaluate the performance of the RLoA-only mode

when a multiple number of enabled roles (i.e. 1, 2, 4, 10, and 30 enabled roles)

are assigned to a subject (e.g. Bob). The experiment assumes all Bob’s access

requests are on the same resource object. In addition, it uses the push mode

to access the resources’ OLoA policy file. Figure 6.7 shows the results of the

experiment.

The general trend of the graph in Figure 6.7 indicates that the AAD increases

linearly as the number of enabled roles increases. The more enabled roles Bob

CHAPTER 6. THE RLOA-ONLY MODE 118

1 2 4 10 30
50.0

50.5

51.0

51.5

52.0

52.5

53.0

53.5

54.0

54.5

55.0
RLoA-only (push)

Number of Enabled Roles

A
v
e
ra

g
e
 A

c
c
e
s
s
 D

e
la

y
 (

m
il
li
s
e
c
o
n
d
s
)

1 2 4 10 30

RLoA-onlypush 50.29 50.94 52.14 53.69 54.49

Figure 6.7: RLoA-onlypush: the Effect of the Number of Enabled Roles

holds, the longer it takes to process his access requests. For example, when Bob

holds only one role, the AAD is about 50.3 milliseconds and when he holds 30

roles, the AAD is about 54.5 milliseconds. This 8.4% increase in AAD (e.g. as the

number of roles increases from 1 to 30) is not as significant as in the case where

the size of the PA policy increases. For example, when the size of the PA policy

increases only by about 9 times4, the AAD increases by about 32%. In fact, the

marginal increase in AAD, as the result of increasing the number of enabled roles,

is due to the fact that the operations required here are memory operations not disk

operations. In other words, once the corresponding PA policy is processed (i.e.

either in push or pull mode), the rules contained in the policy will be compared

against the set of enabled roles of the access requester. The comparison does not

require any further policy manipulations (i.e. disk operations).

6.5.4 The Effect of the Attribute LoA Derivator

In this experiment, the effect of the Attribute LoA Derivator is evaluated. In fact,

this experiment assesses the cost of the L2WC method (i.e. ROC) on the AAD,

4From 3.8 to 35.6 KByte in Figure 6.6

CHAPTER 6. THE RLOA-ONLY MODE 119

since the fundamental function of the Attribute LoA Derivator is to compute the

LoA values for the contextual attributes given their corresponding ranks. The

experiment runs 5 access requests R1 through R5 made by an access requester

(i.e. Bob). To emphasis the effect of the Attribute LoA Derivator, Bob is assumed

to request the same resource object in all the 5 runs. This eliminates the effect

of the PA policy size on the AADs. In addition, Bob is subscribed to a set of

contextual attributes, namely ALoc, eToken, CS and AH. The experiment uses

the ALoc attribute to evaluate the effect of the L2WC. Thus, changing the ALoc

rank in every access request should capture the effect of the L2WC on the AAD.

For this purpose, the experiment assumes the access location space is divided

into 1000 zones, where zone1 is the most secured zone and zone1000 is the least

secured one. The 1000 zones are, in fact, the ALoc attribute cardinality. It is

also assumed that each access request is made from a different zone (i.e. different

ALoc rank). This means that after each access session, Bob roams to a new

zone before starting a new access session. That is, when receiving R1, R2, R3,

R4, and R5, the ALocBob will be zone1, zone100, zone500, zone800, and zone1000,

respectively. The results of this experiment is depicted in Figure 6.8.

The figure shows the AADs in milliseconds for 5 access requests made by Bob

on the same resource object. Each access request varies in ALoc value (i.e. 1,

100, 500, 800, and 1000), but operates on the same ALoc attribute cardinality

(i.e. 1000). As can be seen from the graph, the AADR1 > AADR2 > AADR3 >

AADR4 > AADR5. In other words, the more secure the zone is, the longer it

takes to reach an access control decision. This is understandable, since the ROCs

will require more iterations to compute the corresponding LoA value. However,

the overhead cost introduced by the LoA derivation process is insignificant. The

AADR1 is about 1% higher than that of AADR5, which is negligible. This confirms

our observation made in Subsection 4.4.3 that ROC is a lightweight algorithm

CHAPTER 6. THE RLOA-ONLY MODE 120

Access Reqeusts
R1 R2 R3 R4 R5

30

31

32

33

34

35

36
RLoA-only (push)

A
v
e
ra

g
e
 A

c
c
e
s
s
 D

e
la

y
 (

m
il
li
s
e
c
o
n
d
s
)

R1 R2 R3 R4 R5

RLoA-onlypush 34.18 34.13 33.88 33.87 33.85

Figure 6.8: RLoA-onlypush: the Effect of the Attribute LoA Derivator

suitable for UbiComp environments.

6.5.5 The Effect of the LoA Aggregator

As discussed in Chapter 4, two RLoA aggregation methods are used: Weakest-link

and Elevating. This experiment investigates the run-time costs of the two meth-

ods. The experiment runs 4 access requests made by Bob on the same resource

object in two run sets. The first set assumes all Bob’s contextual attributes are in

a Weakest-link relationship and the second set assumes they are in an Elevating

relationship. Each of the 4 access request is assumed to operate on a different set

of contextual attributes. That is, in the first access request, Bob is subscribed to

only one contextual attribute. In the second, third, and fourth access requests,

Bob is subscribed to 2, 3, and 4 contextual attributes, respectively.

Figure 6.9 depicts the results of the experiment. It shows two sets of AADs

measured in milliseconds against four different access requests. The first set (i.e

setA) represents a scenario where all the contextual attributes of Bob are in a

Weakest-link relationship, whereas in the second set (i.e. setB) the contextual

CHAPTER 6. THE RLOA-ONLY MODE 121

attributes are in an Elevating relationship. The following observations can be

made from the figure.

R1 R2 R3 R4
36

37

38

39

40

41

A
v
e
ra

g
e
 A

c
c
e
s
s
 D

e
la

y
 (

m
il
li
s
e
c
o
n
d
s
)

Access Requests

Weakest-Link (set)
A

Elevating (set)
B

R1 R2 R3 R4

Weakest-link 37.12 38.20 38.33 38.50
Elevating 37.31 38.49 38.54 38.75

Figure 6.9: The Effect of the LoA Aggregator on the RLoA-only mode AADs

Firstly, in both sets, the more contextual attributes Bob is subscribed to, the

longer it takes to reach an access control decision. This is because, as shown in

Section 4.5, the more contextual attributes involved in RLoA aggregation, the

longer time it takes the LoA Aggregator to perform the aggregation. If R1 is

excluded, the AAD in both sets increases linearly. This behaviour confirms the

linear (i.e. O(n)) the complexity of both aggregation methods.

Secondly, the AAD of setA is slightly shorter than that of setB. This is

because the Weakest-link security relationship (e.g. setA) requires only boolean

operations to find the minimum, which takes less time than the multiplications

and subtractions required in case of the Elevating relationship.

Finally, it can be seen from Figure 6.9 that the effect of LoA Aggregator (i.e.

in both sets) on the AAD in the RLoA-only mode is insignificant. This indicates

the RLoA-only mode performs lightweight operations when aggregating the LoA

CHAPTER 6. THE RLOA-ONLY MODE 122

values into one RLoA value in both Weakest-link and Elevating relationships.

6.5.6 The Effect of the Queuing Delays

In all previous experiments, access delays as caused by queuing has not been

studied. The previous experiments assume an access request is received after the

previous one is completely processed. The main reason for this was to evaluate the

effect of the individual architectural components on the overall AAD. However,

access requests in a real-life scenario may need to be queued, since they may arrive

at a rate higher than the rate the system takes to process an access request. As

a result, users will experience a higher level of AADs. Obviously, the higher the

access request arrival rate, the longer a subject would have to wait before his/her

access request is processed, thus the longer the AADs.

The average access delay experienced by an access requester typically consists

of two components: the queuing delay time (tq) and the processing time (tp). The

former is the time an access request spends in the queue waiting to be processed,

whereas the latter is the time the system takes to process the access request. In

other words, AAD = tp+tq. The effect of tp on AADs has been discussed in detail

in the previous experiments. This experiment, however, evaluates the effect of tq

on the overall AAD.

The experiment tries to answer the following questions:

1. What is the turning point (i.e. threshold) beyond which the queue starts

to build up?

The threshold is the point beyond which the RLoA-only mode is expected

to perform slowly (i.e. in terms of overall AADs). In case of excessive

delay, there may be a need to add more authorisation servers to process

access requests simultaneously. Thus, it is required to determine whether

CHAPTER 6. THE RLOA-ONLY MODE 123

the RLoA-only mode needs multiple servers. This is achieved by knowing

the turning point.

2. Is tq in RLoA-only mode comparable to the one of the basic-RBAC mode?

The following assumptions and system set-up are used in the experiment:

1. The experiment uses a first-come-first-served queue and process only one

access request at a time. That is, all access requests are processed sequen-

tially by one authorisation server.

2. All access requests are made on the same resource object. This assumption

eliminates the effect of the PA policy size on the overall AADs, therefore

emphasising the queuing delay effect on the AADs.

3. The push mode is used to access the resource’s OLoA policy.

The experimental results are plotted in Figure 6.10. The figure shows two sets

of AADs measured in milliseconds against seven different rates of access request

arrival rates (i.e. 5, 10, 20, 30, 50, 100, and 1000 access request per second). One

set is from the basic-RBAC mode and the other is from the RLoA-only mode.

As can be seen from Figure 6.10, the turning point beyond which the queue

starts to build up is around the access rate of 30 access requests per second in

both modes. The average access delay increases steadily when the arrival rate goes

beyond this point. This is because, from this point onwards, the average interval

between access request arrivals is shorter than the average request processing

time. For example, when the arrival rate is 50 access request/second, the average

interval between two requests is 20 ms, which is shorter than tp ≈ 32.12 ms in

the RLoA-only modes. To minimise tq, the system administrator may consider

the use of multiple authorisation servers when arrival rates goes beyond 30 access

CHAPTER 6. THE RLOA-ONLY MODE 124

Access Request Arrival Rate

(Requests/Second)

A
v
e
ra

g
e
 A

c
c
e
s
s
 D

e
la

y
 (

m
il
li
s
e
c
o
n
d
)

5 10 20 30 50 100 1000

0

5

10

15

20

25

30

35

40

45

50

Average RLoA-only tq

RLoA-only AAD

Basic-RBAC AAD

Average basic-RBAC tq

RLoA-only tp

Basic-RBAC tp

5 10 20 30 50 100 1000

RLoA-only Average tp 32.84 31.91 31.64 32.08 32.12 31.48 31.49
RLoA-only Average tq 0.00 0.00 0.00 0.01 6.01 10.72 15.23

RLoA-only AAD 32.84 31.91 31.64 32.09 38.13 42.20 46.72
basic-RBAC Average tp 30.85 30.76 30.39 30.58 31.14 30.26 30.15
basic-RBAC Average tq 0.00 0.00 0.00 0.00 5.51 10.09 14.58

basic-RBAC AAD 30.85 30.76 30.39 30.58 36.65 40.35 44.73

Figure 6.10: RLoA-only Vs basic-RBAC: the Effect of Queuing Delay

requests/second. This possibility of using multiple authorisation servers needs

further investigation and is considered in our future work.

6.5.7 The DoS Attack Resilience

The RLoA value plays an important role in the RLoA-only mode. If a user’s

RLoA is greater than or equal to the required resource object’s OLoA, CRAAC

will proceed to evaluate the corresponding PA policy. This policy evaluation

introduces additional delays. On the contrary, if RLoA < OLoA, CRAAC will

CHAPTER 6. THE RLOA-ONLY MODE 125

stop further processing. That is, it will not evaluate the request against the PA

policy, generating a deny decision no matter what permissions may be assigned

to the access requester. As a result, the AAD will be considerably less than the

one endured when RLoA ≥ OLoA. This experiment is conducted to investigate

the AADs under various RLoA value settings.

The experiment assumes the following:

1. All PA policy sizes are equal across all access requests (i.e. 10 access re-

quests, R1 through R10, made by Bob).

2. The PA policies operate only on permit rules and the algorithm used to

combine these rules is deny-override.

3. The push mode is used to access the resources’ OLoA policy for the 10

access requests.

Furthermore, the experiment assumes the access control decision for R4, R5 and

R8 is deny, because the access requester does not satisfy the LoA requirements of

the corresponding resource objects (i.e. RLoA < OLoA for the required objects

in R4, R5, and R8). On the other hand, the other access requests assume RLoA ≥

OLoA (i.e. grant decision5). Figure 6.11 presents the results of the experiment.

Two different sets of results can be seen from Figure 6.11. The first set

is named as A, which includes R1, R2, R3, R6, R7, R9, and R10. All access

requests in this set have their RLoABob values greater than or equal to the required

resource OLoA value. Set B, on the other hand, contains R4, R5 and R8, for

which RLoABob is less than the OLoA values of the required objects. As can be

seen from the figure, the average AADs of set A is about 212.73 milliseconds and

for set B is about 1.26 milliseconds. This means the average AAD for set B is

5Assuming that evaluating the PA policy produces a grant decision as well.

CHAPTER 6. THE RLOA-ONLY MODE 126

200

150

100

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

0

50

250

212.0 211.7 212.6

1.3 1.3

213.0 212.5

1.2

213.2 214.2

Access RequestsA
v
e
ra

g
e

A
c
c
e
s
s

D
e
la

y
(m

il
li
s
e
c
o
n
d
s
)

RLoA-only (push)

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

RLoA-onlypush 212.0 211.7 212.6 1.3 1.3 213.0 212.5 1.2 213.2 214.2

Figure 6.11: The RLoA Value Effect on the RLoA-onlypush AAD

about 0.59% of the value for set A. This reveals that the system takes less time

to deny than grant. This is because in this case, the system only needs to access

the resources’ OLoA policy and if the system recognises that RLoA < OLoA, it

rejects the request. Thus, it does not need to evaluate the PA policy saving a

considerable amount of processing time. This result has an interesting security

implication that needs further investigation.

The previous experimental results show that the use of the RLoA-only mode

makes the processing of access requests significantly efficient in case that RLoA <

OLoA. This may indicate that the RLoA-only mode is more resilient to DoS

attacks than the basic-RBAC mode. To investigate this observation further, two

more experiments have been conducted. The first runs the basic-RBAC mode,

while the second runs the RLoA-only mode.

The first experiment assumes Eve has successfully impersonated Bob and

managed to get into the RBAC system. For example, Eve may have worked out

Bob’s password and logged into the system using Bob’s e-ID credential. Eve then

assumes Bob’s role (i.e. Staff). At this point, Eve can launch a DoS attack on

the system. For example, she may request as many resource objects as possible,

CHAPTER 6. THE RLOA-ONLY MODE 127

or may execute a script that sends requests at a rate of, say, 100,000 per second,

to access the same resource object. For each of these requests, the system needs

to check the PA policy before a deny or grant decision is made.

The experimental results show the average AADbasic−RBAC per access request

is about 200.65 milliseconds. Thus, the basic-RBAC mode takes about 5.57 hours

to process the 100,000 access requests. It is worth emphasising that the 5.57

hours is the time it takes for the system to grant/deny an access request made

by Eve. During the 5.57 hour interval, the system is too busy to serve any other

requests, thus a legitimate user may not be able to access the system resources.

In addition, as Eve has successfully impersonated Bob’s identity, Eve will be

able to access the resource objects that are granted to the Staff role. These are

two severe vulnerabilities in the basic-RBAC mode (i.e. the DoS attack and the

impersonation attack).

In the second experiment, when Eve has successfully used Bob’s password

credential to log into the system, similar to the case in the first experiment, Eve

will assume Bob’s role (i.e. Staff). This is because, in the RLoA-only mode,

CRAAC uses users’ static credentials to assign initial roles. Eve can then launch

the 100,000 access requests. For each of these requests, the RLoA-only mode will

perform a LoA evaluation (i.e. RLoA ≥ OLoA) before checking the actual PA

policy. To succeed in this evaluation, Eve would have to compromise more access

control barriers, such as passing through a location-based authentication service

and/or possessing other stronger authentication credentials. Otherwise, Eve’s

requests will be denied. Denying an access request at this stage takes about 1.26

milliseconds. Thus, the system will take about 2.16 minutes in total to process the

100,000 access requests provided that Eve can not acquire a sufficiently higher6

RLoA value. Therefore, the CRAAC system running the RLoA-only mode can

6in comparison with the requested resource object OLoA

CHAPTER 6. THE RLOA-ONLY MODE 128

recover sooner from DoS attacks than the basic-RBAC mode.

6.6 Chapter Summary

This chapter has proposed an access control architecture, along with its compo-

nents to realise the vision of the LoA-linked access control (i.e. CRAAC). The

most notable service supported by the architecture is the LoA derivation service

that estimates a requester’s level of assurance based upon the requester’s real-

time contextual information. This level of assurance value is then fed into the

CRAAC authorisation decision engine, thus achieving context-risk-aware access

control. Extensibility, generality, modularity, high level functional encapsulation,

and transparency are among the important requirements for the design of the

CRAAC architecture. To the authors’ best knowledge, the CRAAC architecture

is the first context-aware access control architecture designed for UbiComp envi-

ronments, which has linked a subject’s LoA to the sensitivity level of a requested

resource object.

This chapter has also reported experiments that evaluate the RLoA-only mode

against the RBAC model in terms of AADs. The experimental results reveal that

a large proportion of the average access delay in the RLoA-only mode is actually

caused by accessing and parsing the PA policy as well as the resources’ OLoA

policy. The larger the PA policy, the higher the AADs. The results also show that

the additional functionality of the RLoA-only mode only contributes a relatively

small level of overhead to the average access delay caused by the basic RBAC

functions. Using the push mode to access the resources’ OLoA policy can further

reduce this overhead making it almost negligible. The most interesting security

finding from these experiments is that the RLoA-only mode is more resilient to

CHAPTER 6. THE RLOA-ONLY MODE 129

both DoS7 and impersonation attacks than the basic RBAC model.

7In case of denying an access request due to insufficient assurance in a subject trying to gain
access to a resource object

Chapter 7

The AttributeLoA-only Mode

7.1 Chapter Introduction

As the proposed CRAAC architecture, described in Chapter 6, supports the

RLoA-only mode, it should also support the other modes. This chapter de-

scribes the CRAAC architecture along with its components that support the

AttributeLoA-only mode services. In addition, the chapter investigates the per-

formance of the AttributeLoA-only mode. The investigation focuses on two fun-

damental factors: 1) the effect of the PA policy size, and 2)the effect of the

number of contextual attributes a subject has subscribed to.

The remaining part of this chapter is structured as follows: -

• Section 7.2 shows the main differences between the AttributeLoA-only and

RLoA-only modes in terms of the architectural components used.

• Section 7.3 shows how the AttributeLoA-only mode uses the CRAAC ar-

chitecture to govern access control using the individual contextual attribute

LoA values.

• Section 7.4 discusses the potentials and concerns of the AttributeLoA-only

130

CHAPTER 7. THE ATTRIBUTELOA-ONLY MODE 131

mode.

• Section 7.5 investigates the performance of the AttributeLoA-only mode.

• Section 7.6 summarises the chapter.

7.2 CRAACArchitecture and the AttributeLoA-

only Mode

In the AttributeLoA-only mode, access to sensitive resources is governed by the

individual contextual attribute LoA values. There are differences between the

AttributeLoA-only mode and the RLoA-only mode (described in Chapter 6) in

terms of the resources’ OLoA policy and the CRAAC architectural components

used.

When the AttributeLoA-only mode is used, the resources’ OLoA policy writ-

ten for the RLoA-only mode is no longer applicable. In the RLoA-only mode,

each resource object is tagged with a single OLoA value that a subject has to

satisfy to gain access to the resource object. However, in some application sce-

narios, a resource provider may specify a particular LoA requirement for each

contextual attribute. As shown in Figure 5.1, the access requirement for a re-

source object (i.e. Printer) can be specified in terms of the LoA values associated

to one or more individual contextual attributes (e.g. AH, CS, etc). This is the

AttributeLoA-only mode of working.

As seen in Figure 7.1, the main difference, in the architectural components

used, between the AttributeLoA-only and RLoA-only modes are: 1) the use of

the LoA-aware PDPs, 2) the use of PDPAttributeLoA, and 3) the removal of the

LoA Aggregator, PDPRLoA−I , and PDPRLoA−II .

C
H
A
P
T
E
R

7.
T
H
E
A
T
T
R
IB

U
T
E
L
O
A
-O

N
L
Y

M
O
D
E

132

A
c
c
e
s
s

H

i
s
t
o
r
y

L
o
g

i
c
a
l

S

e
n

s
o
r

A
L

o
c

L
o
g

i
c
a
l

S

e
n

s
o
r

C
S

L
o
g

i
c
a
l

S

e
n

s
o
r

e
A

u
t
h

N

L
o
g

i
c
a
l

S

e
n

s
o
r

CS

Response

CS

Request

ALoc

Response

ALoc

Request

eAuthN

Request

eAuthN

Response

AH

Request

AH

Response
L

o
A

D
R

CS-based Access

Request

CS-based Access

Decision

AuthN-based Access

 Request

AuthN-based Access

Decision

AH-based Access

 Request

AH-based Access

Decision

S
C

RUser/System Configuration

Query

User/System Configuration Push/Pull mode Configuration

LoA-Aware Access Request

LoA-Aware Access Decision

Static-Role

Assignment Request

Static-Role

Assignment Response

Static Role Query

Static Role

non Context-aware

Access Request

non Context-aware

Access Response

Permissions

Set Query

Permissions Set

Dynamic-Role

Request

Dynamic-Role

 Response

Dynamic Role Query

Dynamic Role

A
c
c
e
s
s

D

e
c
i
s
i
o
n

A
c
c
e
s
s

R

e
q

u
e
s
t

A
c
c
e
s
s

R
e
q

u
e
s
t

A
c
c
e
s
s

D
e
c
i
s
i
o
n

A
ttrib

u
te

s

L
o
A

 R
e
s
p
o
n
s
e

A
ttrib

u
te

s

L
o
A

 R
e
q
u
e
s
t

C
a
rd

in
a
lity

 Q
u
e
ry

AttributeLoA

Request

AttributeLoA

Response

Contextual

Attributes Response

Contextual

Attributes Request

F
igu

re
7.1:

T
h
e
C
R
A
A
C

A
rch

itectu
re:

th
e
A
ttrib

u
teL

oA
-on

ly
M
o
d
e

S
in
ce

resou
rce

access
in

th
e
A
ttrib

u
teL

oA
-on

ly
m
o
d
e
is
con

trolled
b
y
th
e
in
d
i-

v
id
u
al

attrib
u
teL

oA
valu

es,
th
e
P
D
P
A
ttr

ibu
te
L
o
A
is
p
rop

osed
to

rep
lace

P
D
P
R
L
o
A
−
I

in
ord

er
to

gen
erate

a
su
b
ject’s

d
y
n
am

ic
role

b
ased

on
th
e
su
b
ject’s

in
d
iv
id
u
al

con
tex

tu
al

attrib
u
te

L
oA

valu
es

in
stead

of
R
L
oA

as
in

P
D
P
R
L
o
A
−
I .

T
h
e
L
oA

A
ggregator

is
d
isab

led
in

th
e
A
ttrib

u
teL

oA
-on

ly
m
o
d
e
as

th
ere

is
n
o
n
eed

for

CHAPTER 7. THE ATTRIBUTELOA-ONLY MODE 133

aggregating the individual attribute LoA values into an RLoA value as in the

RLoA-only mode. Thus, the main function of the LoADI, in the AttributeLoA-

only mode, is to receive the contextual attribute values from the CMI, derives

relevant LoA values, and sends the LoA values back to the LoA-aware PDP Co-

ordinator. The LoA-aware PDP Coordinator will then submit the LoA values

to the corresponding LoA-aware PDP (i.e. PDPCS, PDPAuthN or PDPAH). A

LoA-aware PDP will compare the received LoA value of the subject against that

of the resource object in order to reach a partial access control decision that

will be sent to the LoA-aware PDP Coordinator. The LoA-aware PDP Coor-

dinator aggregates all the partial access control decisions made by the multiple

LoA-aware PDPs into one LoA-aware access control decision. Actually, the set of

LoA-aware PDPs, in this mode, replaces PDPRLoA−II in order to generate access

control decisions based upon the individual attributeLoA values instead of the

RLoA values.

7.3 AttributeLoA-only Mode Data-Flow

The main difference in the work-flow between the AttributeLoA-only mode and

the RLoA-only mode is that the former does not address RLoA aggregation.

Rather, it uses the subordinate LoA-aware PDPs in order to generate partial ac-

cess control decisions based on the LoA values of the contextual attributes used.

For example, to take an access control decision based on the authN contextual

attribute, the PDPauthN evaluates the OLoAauthN required by a resource object

against the LoAauthN of an access requester. The AttributeLoA-only mode pro-

vides a new process to aggregate all subordinate LoA-aware PDPs partial access

control decisions into one final LoA-aware access control decision. This process is

performed by the LoA-aware PDP Coordinator. In fact, this process has not been

CHAPTER 7. THE ATTRIBUTELOA-ONLY MODE 134

seen in the RLoA-only mode1, since the RLoA-only mode does not take decision

in terms of the individual attribute LoA values. This is depicted in Figure 7.2.

Subject
Identity

verification
Credentials

input

Authentication

History

Access Request

Formatting

Specify Object and

permission type

Static Role

Determination
PIP

RBAC

Authentication

outcome

Enquiry

Static Role

Attribute LoA

Derivation

Static Role

LoADR

Logical Sensors
Enquiry

Context

L
o
A

 V
a
lu

e
s

S
ta

ti
c
 R

o
le

Dynamic Role

Adaptation

PIP
LoA

E
n
q
u
ir

y

D
y
n
a
m

ic

R
o
le

Permission

Check

Dynamic

Role
PAP

RBAC-II

En
qu

iry

P
A

 P
o
li
c
y

Decision

Enforcement

Authorisation

History

Subject

G
rant/D

eny

D
e
c
is

io
n
*
*

AH
 OLoA Vs

AH
LoA

Check
LoA

AH

CS
 OLoA Vs

CS
LoA

Check

authN
 OLoA Vs

authN
LoA

Check

Lo
A au

th
N

Decision

Aggregation

Decision*

Decisio
n*

R
o
le

*
*
*

Decision* LoACS

*: Partial access control dececion

**: Final access control decision

***: Either a static or dynamic role

Authorisation

outcome

C
a
rd

in
a
li
ty

E
n
q
u
ir

y
Figure 7.2: Data-flow in the AttributeLoA-only Mode

7.4 Potentials and Concerns

The AttributeLoA-only mode provides new services in comparison with the RLoA-

only mode. Those include:

1. The ability to assign different contextual attribute sets to different services

or resource objects.

This allows a service provider to require a subject to subscribe to a par-

ticular subset of a contextual attribute set and use the corresponding LoA

values to control access to a resource object.

1See Figure 6.3 for more detail

CHAPTER 7. THE ATTRIBUTELOA-ONLY MODE 135

2. To allow a service provider to specify a certain LoA requirement on a par-

ticular contextual attribute set in order to access its resource objects. In

other words, the contextual attributes may have varying levels of impact

on the overall access control decision. For example, a service provider may

value the location contextual attribute over the channel security attribute

when releasing its resource object(s).

3. The AttributeLoA-only mode maps naturally to the existing context-aware

access control solutions largely discussed in Chapter 3. For example, if only

a location-aware PDP is used, the AttributeLoA-only mode will correspond

to the SRBAC model [39]. This is accomplished of course after the location

information is converted to the corresponding LoA.

Two issues need to be discussed in the AttributeLoA-only mode: context-

dependency and potential communication overhead. Since an access control pol-

icy is, conceptually, expressed in terms of the individual contextual attribute

types and their corresponding LoA values, adding a new or remove an obsolete

contextual attribute requires alteration in the architectural components. For ex-

ample, adding a temporal attribute requires the addition of a new LoA-aware

PDP (i.e. PDPtemporal) as well as modifying the LoA-aware PDP Coordinator to

acknowledge the new PDP. In fact, this drawback is inherited from the traditional

context-aware access control models2. However, the level of context-dependency

in the AttributeLoA-only mode differs from that of the traditional context-aware

access control models. The context-dependency in the former isn’t expected to

hinder extensibility. This is because CRAAC uses a standard interface between

the LoA-aware PDP Coordinator and the set of subordinate LoA-aware PDPs.

Currently, CRAAC uses XACML 2.0 as the standard interface. Thus, adding a

2See Section 3.4 for more detail

CHAPTER 7. THE ATTRIBUTELOA-ONLY MODE 136

new LoA-aware PDP should only exhibit a minimum modification in the other

architectural components. Also, the AttributeLoA-only mode hides the contex-

tual data representation from the authorisation engine, thus providing a higher

level of encapsulation than that of the CAAC-based solutions.

The communication overhead in the AttributeLoA-only mode is expected to

be generally higher than that of the RLoA-only mode. This is because, in the

former mode of working, for every contextual attribute used by the system, a

separate LoA-aware PDP is required. This is in contrast to the RLoA-only

mode, which requires only a single LoA-linked authorisation decision point (i.e.

PDPRLoA−II). Thus, the more attributes used, the more PDPs are required,

hence the higher the communication overhead. The level of overhead versus the

number of LoA-aware PDPs will be experimentally assessed.

One may argue that the overall policy complexity of the model may be signif-

icant on the model performance. If CRAAC policy is compared against that of

the CAAC-based model, CRAAC policy is simpler and readable. Only one (i.e.

in RLoA-only mode) constraint is expressed in the policy. In addition, CRAAC

can easily use any policy language without a significant modification as the LoA

constraint is a simple data type (i.e. double) that most policy languages support.

This is a major contrast to the existing CRAAC-based solutions.

7.5 AttributeLoA-onlyMode Performance Eval-

uation

This section reports the experimental investigations of the AttributeLoA-only

mode performance. The main objective of the experiments is to answer the

question: What is the additional cost (i.e. in terms of AADs) a subject has

CHAPTER 7. THE ATTRIBUTELOA-ONLY MODE 137

to endure in the AttributeLoA-only mode in comparison with the RLoA-only

mode? Two factors are expected to affect the performance of the AttributeLoA-

only mode: the PA policy size and the number of contextual attributes used (i.e.

the number of LoA-aware PDPs required).

7.5.1 The Effect of the PA Policy Size

This experiment investigates the effect of the PA policy size on the AADs in the

AttributeLoA-only mode and compares the results against those from the RLoA-

only mode. The following configurations have been used in this experiment:

1. The push mode is used to access the resources’ OLoA policy.

As the focus of this experiment is to investigate the effect of the PA policy

size on AADs, the use of the push mode eliminates the effect of the resources’

OLoA policy size.

2. In the experiment, a subject, Bob, with one enabled role, Staff, makes six

access requests to six different resource objects. The six access requests are

denoted as R1 through R6 with PA policy sizes of 3.8, 35.6, 206.3, 306.0,

407.7, and 511.8 KBytes, respectively.

3. Only permit rules are used in policies and the algorithm used to combine the

rules is deny-override. The implication of this assumption is that every rule

contained in the PA policy will be evaluated before making a decision. The

experiment also assumes Bob’s contextual attributes LoA values are always

greater than the required LoA values of the requested resource object across

the six access requests. This assumption ensures the execution of CRAAC

always reaches the stage where the PA policy files are opened and all policy

rules contained in the files are evaluated. In this way, the experiment can

investigate the precise effects of various PA policy sizes on the AADs.

CHAPTER 7. THE ATTRIBUTELOA-ONLY MODE 138

Figure 7.3 shows two sets of AADs measured in milliseconds against the six

different access requests. One set is from the RLoA-only mode and the other is

from the AttributeLoA-only mode. The following observation can be made from

the figure.

R1

(3.8 kb)

0

50

100

150

200

250

Diff = 0.8 ms
Diff = 0.7 ms

Diff = 0.7 ms

Diff = 0.6 ms

Diff = 0.8 ms

Diff = 0.8 ms
RLoA-only mode (push)

AttributeLoA-only mode (push)

A
v
e
ra

g
e
 A

c
c
e
s
s
 D

e
la

y
 (

m
il
li
s
e
c
o
n
d
s
)

Access Requests

(PA policy Size)

R2

(35.6 kb)

R3

(206.3 kb)

R4

(306 kb)

R5

(407.7 kb)

R6

(511.8 kb)

R1 R2 R3 R4 R5 R6

RLoA-onlypush 22.35 31.67 107.72 147.77 168.93 221.19
AttributeLoA-onlypush 22.67 31.92 108.37 148.36 169.73 221.95

Figure 7.3: AttributeLoA-only Vs RLoA-only: the Effect of the PA Policy Size

In both AttributeLoA-only and RLoA-only modes, the AADs increase steadily

as the PA policy size increases. The differences between the two sets of AADs

are negligible (i.e. about 0.48% averaged across the six access requests). This

result demonstrates that the major AAD contributions are from the compo-

nents or services that are common in both modes of working. The additional

services/components used in the AttributeLoA-only mode contribute fraction-

ally to the overall AADs. In fact, the amount of overheads contributed by the

AttributeLoA-only mode is consistent and almost the same across different PA

policy sizes. The overhead appears to be independent of the PA policy size. This

observation reveals that the AttributeLoA-only mode performance is almost the

same as that of the RLoA-only mode; this was not anticipated. After an investi-

gation we have found that the reason for this is the use of push mode in retrieving

CHAPTER 7. THE ATTRIBUTELOA-ONLY MODE 139

the PA policies. Pushing the resources’ OLoA policy in this mode makes all the

LoA-aware PDPs operate on memory not on disk. In other words, a LoA-aware

PDP needs just a memory search to get the required resource object’s LoA re-

quirement (i.e. OLoA) in order to generate a partial LoA-aware access control

decision. However, if the LoA-aware PDP uses the pull mode to access a re-

sources’ OLoA policy file, the additional overhead incurred by pulling the policy

may be significant. To verify this hypothesis, an experiment has been performed,

in which the LoA-aware PDPs pull the corresponding policy. In this experiment,

the average AAD across the 6 access requests increases by about 23% than that

of the RLoA-only mode. This increase is significant and complies with our ex-

pectation. As a conclusion, the pull mode is not recommended to be used when

the CRAAC model is configured in the AttributeLoA-only mode.

7.5.2 The Effect of the Number of Contextual Attributes

The main objective of this experiment is to investigate the effect of the num-

ber of contextual attributes, a subject has subscribed to, on the AADs in the

AttributeLoA-only mode. The experiment evaluates the effects of 6 contextual

attribute set sizes (i.e. 1, 2, 4, 8, 16, and 32) on the AADs in the AttributeLoA-

only mode. This, in fact, evaluates the effect of the number of LoA-aware PDPs

on the overall AADs in the AttributeLoA-only mode. The experiment uses the

following configuration:

1. The same resource object is accessed by the same access requester (i.e. Bob)

in the 6 cases of contextual attribute sizes. Thus, the effect of the PA policy

size on the AADs should be the same across the 6 cases. In addition, Bob’s

contextual attributes LoA values are always greater than the required LoA

values of the requested resource object across the six access requests.

CHAPTER 7. THE ATTRIBUTELOA-ONLY MODE 140

2. Only permit rules are used in the PA policies and the algorithm used to

combine the rules is deny-override. The implication of this assumption

is that every rule contained in the PA policy file will be evaluated before

making an access control decision.

3. The resources’ OLoA policy is accessed using the push mode.

4. All contextual attributes in Bob’s contextual attributes set are of the same

cardinality and rank value. This ensures the effect of the ROCs (i.e. used

for L2WC) is almost the same, thus eliminating the effect of the types of

the contextual attributes used and focuses only on their number.

Figure 7.4 shows the results of the experiment. It shows a set of AADs

measured in milliseconds against 6 different contextual attribute set sizes. It

can be seen from the figure that the more contextual attributes used, the longer

the delay an access requester would have to endure. For example, when the

contextual attribute set size is 1, the AAD is about 21.81 milliseconds and when

it is 2, the AAD is about 22.50 milliseconds. This is about 3.13% increase in

AAD, which may not be significant. However, when the size increases from 1 to

8, the increase in AAD is about 11.66%, and when the size increases from 1 to

32 the AAD increase is about 37%. This should not be considered negligible.

7.6 Chapter Summary

This chapter has shown the CRAAC architecture in the AttributeLoA-only mode.

The differences between the architectural components used in the RLoA-only

mode and those used in the AttributeLoA-only mode are: 1) the use of the

LoA-aware PDPs, 2) the use of PDPAttributeLoA, and 3) the removal of the LoA

Aggregator, PDPRLoA−I , and PDPRLoA−II . The most notable potential of the

CHAPTER 7. THE ATTRIBUTELOA-ONLY MODE 141

1 2 4 8 16 32

20

22

24

26

28

30

32

21.81

22.49
22.66

24.36

26.67

29.90

A
v
e
ra

g
e
 A

c
c
e
s
s
 D

e
la

y
 (

m
il
li
s
e
c
o
n
d
s
)

AttributeLoA-only mode (push)

The Number of Contextual Attributes

1 2 4 8 16 32

AttributeLoA-onlypush 21.81 22.50 22.66 24.36 26.67 29.90

Figure 7.4: AttributeLoA-only: the Effect of the Contextual Attribute Set Size

AttributeLoA-only mode is that it maps naturally to the existing context-aware

access control solutions discussed in Chapter 3. This chapter has also reported

experiments that evaluate the AttributeLoA-only mode in terms of AADs.

The experimental results reveals that the AttributeLoA-only mode perfor-

mance is comparable to the RLoA-only mode using the push policy retrieval

mode. When the pull mode is used, the additional overhead considerably shoots

high. Thus, the pull mode is not recommended when CRAAC is configured in

the AttributeLoA-only mode. The number of contextual attributes a subject

has subscribed to is another important factor that affect the AttributeLoA-only

mode AADs. The experimental investigation shows that the more contextual

attributes, the higher AAD a subject will endure.

Chapter 8

Conclusion and Future Work

This thesis addressed challenges in access control for UbiComp environments.

These challenges include:

• How to capture an access requester’s dynamic contextual information and

feed it into the authorisation decision engine seamlessly at run-time.

• How to accommodate new contextual attributes without imposing consid-

erable modifications on the underlying access control service.

• How to support fine-grained access control of resource objects with varying

sensitivity levels in a context-aware environment such as UbiComp.

• How to deal with contextual information that is expressed using different

representation models.

• How to minimise the effect of compromising the access control policy store.

8.1 Conclusion

The Context-Risk-Aware Access Control model (CRAAC) for UbiComp environ-

ments is the novel contribution of this thesis. CRAAC is a LoA-linked access

142

CHAPTER 8. CONCLUSION AND FUTURE WORK 143

control model that controls access to resources with varying levels of sensitivity

based, indirectly, upon an access requester’s contextual information. The con-

textual information is used to compute the access requester’s LoA value that is

used as the only constraint to control access to the protected resources. CRAAC

supports fined-grained access control, since it, virtually, accommodates any set

of contextual attributes. CRAAC provides flexibility in adding new contextual

attributes or removing obsolete ones. This flexibility will not considerably affect

the underlying access control system. In other words, the level of modification

in the underlying access control system is not significant. CRAAC supports four

modes of working to accommodate different access control requirements. The

derivation of an access requester’s aggregate LoA value (i.e. RLoA) is controlled

by the relationships amongst the access requester’s set of contextual attributes

(i.e. Elevating or Weakest-Link).

The CRAAC safety is expected to be higher than that of the RBAC model,

since CRAAC utilises additional constraints (i.e. LoA constraints). It is also

evident that CRAAC is more resilient to DoS attacks than the traditional RBAC

model in denying access to a resource object when the attacker can not acquire a

sufficiently high RLoA value. The thesis has reported experiments that evaluate

the RLoA-only, basic-RBAC, and AttributeLoA-only modes in terms of AADs.

The experimental results reveal that a large proportion of the average access

delay in the RLoA-only mode is actually caused by accessing and parsing the PA

policy as well as the resources’ OLoA policy. And so for the AttributeLoA-only

mode. The larger the PA policy file, the higher the AADs. The results also

shows that the additional functionality of the RLoA-only mode only contributes

a small level of overhead to the average access delay caused by the basic RBAC

functions. Using the push mode to access the resources’ OLoA policy can further

reduce the overhead making it almost negligible. Moreover, the experimental

CHAPTER 8. CONCLUSION AND FUTURE WORK 144

results show that the AttributeLoA-only mode performance is comparable to the

RLoA-only mode using the push policy retrieval mode. When the pull mode is

used, the additional overhead is considerably high. Thus, the pull mode is not

recommended when CRAAC is configured in the AttributeLoA-only mode.

The following lists the novel contributions of the research presented in this

thesis: -

1. The proposal of the CRAAC model.

CRAAC is an adaptive LoA-linked access control model. It controls access

to resources with varying levels of sensitivity based upon the state of an

access requester’s contextual information. It supports adaptive access con-

trol decisions, since an access control decision for the same access requester

on the same resource object may vary each time. The variation depends

on the level of assurance of the access requester, which is based upon the

access requester’s current contextual information.

• CRAAC supports fined-grained access control, since it, virtually, ac-

commodates any set of contextual attributes. This level of abstraction

is achieved by the use of a trust-related parameter (i.e. Requester’s

Level of Assurance (RLoA)). In addition, in controlling access to a re-

source object, CRAAC accommodates the resource object’s sensitivity

level in order to provide a more fine-grained access control.

• CRAAC is flexible; adding new contextual attributes or removing ob-

solete ones will not significantly affect the underlying access control

system.

• CRAAC supports four modes of working to accommodate different

access control requirements.

CHAPTER 8. CONCLUSION AND FUTURE WORK 145

2. LoA calculations

• The identification of the contextual attributes that may have an impact

on a subject’s LoA.

• The LoA quantification of the corresponding contextual attributes.

This is performed mimicking the NIST LoAeToekn work in order to

convert the contextual attribute values into LoA ranks.

• Surveying the possible LoA to weight conversion methods and adopting

ROC for the conversion (i.e. L2WC).

• Proposing two methods for the RLoA aggregation (i.e. Weakest-Link

and the Elevating).

3. An access control architecture along with its components to support the

novel CRAAC services. The architecture supports the four modes of work-

ing.

4. CRAAC Evaluation

• Prototype-based performance evaluation of the CRAAC model.

• Investigating the safety of the CRAAC model in terms of the con-

straints used.

• Investigating the denial of service and impersonation attacks.

8.2 Future Work

Through research, we have identified the following issues that require further

investigation:

CHAPTER 8. CONCLUSION AND FUTURE WORK 146

• How to quantify and derive the assurance level of an access requester’s

authorisation and authentication history. In other words, how could we

quantitatively assess the authorisation and authentication transactions of

an access requester for a past period? Currently, CRAAC assumes this is

done at the corresponding access history logical sensor.

• CRAAC management in a distributed setting.

The CRAAC architecture has been evaluated in a centralised setting by

which all the CRAAC architectural components are placed in one site (i.e.

one PC). The performance of the CRAAC model when its architecture is

distributed should be evaluated. This also may encompass the possibility

of using multiple authorisation servers. The proposed architecture of the

CRAAC model may not be readily adopted in a distributed setting, thus

may add more overhead/complexity. In addition, using a distributed setting

may impose more security vulnerabilities and loopholes an attacker could

utilise. For example, how to trust a piece of contextual information that

is provided by a remote context provider located in another domain? Such

a concern needs to be investigated before using CRAAC in a distributed

setting.

• Policy Languages.

For interoperability with the well-known existing authorisation solutions,

there is a need to implement more standard PDP interfaces (e.g. PERMIS).

• Generic Authorisation Architecture

Can CRAAC fit in any application domain even those non context-aware?

The possibility of the current CRAAC architecture to be adapted, to cope

with diversified access control requirements, needs to be assessed. For exam-

ple, can CRAAC be used to address the GRID access control requirements?

CHAPTER 8. CONCLUSION AND FUTURE WORK 147

What are the level of modifications in the current CRAAC architecture re-

quired for this? In other words, how to extend the CRAAC functionality

without compromising its features. For example, a basic requirement is to

have an obligation service. The obligation service is required to perform

temporal obligations (i.e. before, with, and after). A generic implementa-

tion of the obligation service is challenging as obligations are application-

dependant.

• XACML LoA-aware profile. This is a challenging task as creating an

XACML profile for LoA-aware access control policies not only requires a

modification in the current XACML standard but also providing a code

library that evaluates such policies.

• How to calculate the trust level of both the contextual providers and their

provided contextual information. In other words, the contextual data man-

agement will not be assumed as a part of the TCB.

• Investigating more vulnerability that may CRAAC may have. This may

include convert channel attacks, distributed DoS attack, etc.

Bibliography

[1] W. Burr, D. Dodson, and W. T. Polk, “Special publication 800-63: Elec-

tronic authentication guideline v1.0.2,” National Institute for Standards and

Technology, Tech. Rep., April 2006.

[2] A. Ahmed and N. Zhang, “A context-risk-aware access control model for

ubiquitous environments,” in IMCSIT’ 2008: International Multiconference

on Computer Science and Information Technology., October 2008, pp. 775–

782.

[3] T. Saaty, The Analytic Hierarchy Process: Planning, Priority Setting, Re-

source Allocation. McGraw-Hill, New York, 1980.

[4] V. C. Hu, F. David, and K. D. Richard, Assessment of access control systems

[electronic resource] / Vincent C. Hu, David F. Ferraiolo, D. Rick Kuhn.

U.S. Dept. of Commerce, National Institute of Standards and Technology,

[Gaithersburg, Md.] :, 2006.

[5] A. Corradi, R. Montanari, and D. Tibaldi, “Context-based access control

management in ubiquitous environments,” Network Computing and Appli-

cations, IEEE International Symposium on, vol. 0, pp. 253–260, 2004.

[6] M. Anisetti, C. Ardagna, V. Bellandi, E. Damiani, S. D. C. di Vimercati,

and P. Samarati, “Openambient: a pervasive access control architecture,” in

148

BIBLIOGRAPHY 149

Proc. of ETRICS Workshop on Security in Autonomous Systems (SecAS),

vol. Friburg, Germany, June 2006.

[7] M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, and

K. Nahrstedt, “Gaia: a middleware platform for active spaces,” SIGMOBILE

Mob. Comput. Commun. Rev., vol. 6, no. 4, pp. 65–67, October 2002.

[8] J. Chin, N. Zhang, A. Nenadic, and O. Bamasak, “A context-constrained

authorisation (cocoa) framework for pervasive grid computing,” The Wireless

Networks (WINET), September 2008.

[9] J. B. Filho and H. Martin, “A generalized context-based access control

model for pervasive environments,” in SPRINGL ’09: Proceedings of the

2nd SIGSPATIAL ACM GIS 2009 International Workshop on Security and

Privacy in GIS and LBS. New York, NY, USA: ACM, 2009, pp. 12–21.

[10] E. Chen, Y. Shi, D. Zhang, and G. Xu, “A programming framework for

service association in ubiquitous computing environments,” in Information,

Communications and Signal Processing, 2003 and the Fourth Pacific Rim

Conference on Multimedia. Proceedings of the 2003 Joint Conference of the

Fourth International Conference on, vol. 1, December 2003, pp. 202–207.

[11] R. J. Hulsebosch, A. Salden, M. Bargh, E. Peter, and J. Reitsma, “Context

sensitive access control,” in SACMAT ’05: Proceedings of the tenth ACM

Symposium on Access Control Models and Technologies. New York, NY,

USA: ACM Press, 2005, pp. 111–119.

[12] S. Intille, “The goal: Smart people, not smart homes,” in Proceedings of the

International Conference on Smart Homes and Health Telematics, 2006.

BIBLIOGRAPHY 150

[13] G. D. Abowd, “Software engineering issues for ubiquitous computing,” in

ICSE ’99: Proceedings of the 21st international conference on Software en-

gineering. Los Alamitos, CA, USA: IEEE Computer Society Press, 1999,

pp. 75–84.

[14] B. W. Lampson, “Protection,” SIGOPS Oper. Syst. Rev., vol. 8, no. 1, pp.

18–24, 1974.

[15] D. Tor, “Rule based database access control–a practical approach,” in RBAC

’97: Proceedings of the second ACM workshop on Role-based access control.

New York, NY, USA: ACM, 1997, pp. 143–151.

[16] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli,

“Proposed nist standard for role-based access control,” ACM Transactions

on Information and System Security, vol. 4, no. 3, p. 224–274, August 2001.

[17] M. J. Moyer and M. Ahamad, “Generalized role-based access control,” in

ICDCS ’01: Proceedings of the The 21st International Conference on Dis-

tributed Computing Systems. Washington, DC, USA: IEEE Computer So-

ciety, April 2001, pp. 391–398.

[18] S.-C. Chou, “An rbac-based access control model for object-oriented systems

offering dynamic aspect features,” IEICE - Trans. Inf. Syst., vol. 88, no. 9,

pp. 2143–2147, 2005.

[19] S.-H. Park, Y.-J. Han, and T.-M. Chung, “Context-role based access control

for context-aware application,” in High Performance Computing and Com-

munications, vol. 4208. Springer Berlin / Heidelberg, September 2006, pp.

572–580.

BIBLIOGRAPHY 151

[20] A. Dey, “Understanding and using context,” Personal Ubiquitous Comput.,

vol. 5, no. 1, pp. 4–7, 2001.

[21] S. Lachmund, T. Walter, L. Gomez, L. Bussard, and E. Olk, “Context-

aware access control; making access control decisions based on context infor-

mation,” in Mobile and Ubiquitous Systems: Networking & Services, 2006

Third Annual International Conference on, July 2006, pp. 1–8.

[22] A. Manzoor, H.-L. Truong, and S. Dustdar, “On the evaluation of

quality of context,” in Smart Sensing and Context, ser. Lecture Notes in

Computer Science, D. Roggen, C. Lombriser, G. Tröster, G. Kortuem,

and P. Havinga, Eds. Springer Berlin / Heidelberg, 2008, vol. 5279, pp.

140–153, 10.1007/978-3-540-88793-5 11. [Online]. Available: http://dx.doi.

org/10.1007/978-3-540-88793-5 11

[23] R. Sandhu and P. Samarati, “Access control: Principles and practice,”

IEEE Communications Magazine, vol. 32, no. 9, pp. 40–48, 1994. [Online].

Available: http://www.list.gmu.edu/journals/commun/i94ac%28org%29.

pdf

[24] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, “A security architecture

for computational grids,” in CCS ’98: Proceedings of the 5th ACM conference

on Computer and communications security. New York, NY, USA: ACM,

1998, pp. 83–92.

[25] D. of Defense, “Department of defense trusted computer system evaluation

criteria,” Department of Defense Standard, Tech. Rep., December 1985.

[Online]. Available: http://csrc.nist.gov/publications/history/dod85.pdf

[26] S.-p. Li, S.-z. Wu, and T. Guo, “The consistency of an access control list,” in

ICICS ’02: Proceedings of the 4th International Conference on Information

http://dx.doi.org/10.1007/978-3-540-88793-5_11
http://dx.doi.org/10.1007/978-3-540-88793-5_11
http://www.list.gmu.edu/journals/commun/i94ac%28org%29.pdf
http://www.list.gmu.edu/journals/commun/i94ac%28org%29.pdf
http://csrc.nist.gov/publications/history/dod85.pdf

BIBLIOGRAPHY 152

and Communications Security. London, UK: Springer-Verlag, 2002, pp.

367–373.

[27] B. W. Lampson, “A note on the confinement problem,” Commun. ACM,

vol. 16, no. 10, pp. 613–615, 1973.

[28] S. J. Murdoch, “Covert channel vulnerabilities in anonymity systems,”

University of Cambridge, Computer Laboratory, Technical Report

706, 2007. [Online]. Available: http://www.cl.cam.ac.uk/techreports/

UCAM-CL-TR-706.pdf

[29] V. Gligor, S. Gavrila, and D. Ferraiolo, “On the formal definition of

separation-of-duty policies and their composition,” in Proceedings of the

IEEE Symposium on Security and Privacy, Berkeley, CA, may 1998, pp.

172–183.

[30] D. Ferraiolo and R. Kuhn, “Role-based access controls,” National Institute

of Standards and Technology, Technology Administration, U.S. Department

of Commerce,Gaithersburg, Md. 20899 USA, Tech. Rep., January 1995.

[Online]. Available: http://hissa.nist.gov/rbac/paper/rbac1.html

[31] R. S. Sandhu, “Future directions in role-based access control models,” in

MMM-ACNS ’01: Proceedings of the International Workshop on Information

Assurance in Computer Networks. London, UK: Springer-Verlag, 2001, pp.

22–26.

[32] S. Osborn, R. Sandhu, and Q. Munawer, “Configuring role-based access

control to enforce mandatory and discretionary access control policies,” ACM

Transactions on Information and System Security (TISSEC), vol. 3, no. 2,

pp. 85–106, May 2000.

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-706.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-706.pdf
http://hissa.nist.gov/rbac/paper/rbac1.html

BIBLIOGRAPHY 153

[33] S. Oh and S. Park, “Task-role-based access control model,” Information

Systems, vol. 28, no. 6, pp. 533 – 562, 2003. [Online]. Avail-

able: http://www.sciencedirect.com/science/article/B6V0G-46WW2TN-1/

2/33bb5b5ba058905dddb35ae00e4cabea

[34] J. gang Chen, R. chuan Wang, and H. yan Wang, “The extended rbac

model based on grid computings,” The Journal of China Universities

of Posts and Telecommunications, vol. 13, no. 3, pp. 93 – 97,

2006. [Online]. Available: http://www.sciencedirect.com/science/article/

B8H14-4NHV7N7-N/2/ee8e0849c1906b737b767500c7f01ccc

[35] M. J. Covington, M. J. Moyer, and M. Ahamad, “Generalized role-based

access control for securing future applications,” in In Proceedings of the

23rd National Information Systems Security Conference (NISSC), Balti-

more, Maryland, USA, October 2000.

[36] M. J. Covington, P. Fogla, Z. Zhan, and M. Ahamad, “A context-aware secu-

rity architecture for emerging applications,” in ACSAC ’02: Proceedings of

the 18th Annual Computer Security Applications Conference. Washington,

DC, USA: IEEE Computer Society, 2002, p. 249.

[37] E. Bertino, P. A. Bonatti, and E. Ferrari, “Trbac: A temporal role-based

access control model,” ACM Trans. Inf. Syst. Secur., vol. 4, no. 3, pp. 191–

233, 2001.

[38] J. Joshi, E. Bertino, and A. Ghafoor, “Hybrid role hierarchy for generalized

temporal role based access control model,” in COMPSAC ’02: Proceedings

of the 26th International Computer Software and Applications Conference on

Prolonging Software Life: Development and Redevelopment. Washington,

DC, USA: IEEE Computer Society, 2002, pp. 951–956.

http://www.sciencedirect.com/science/article/B6V0G-46WW2TN-1/2/33bb5b5ba058905dddb35ae00e4cabea
http://www.sciencedirect.com/science/article/B6V0G-46WW2TN-1/2/33bb5b5ba058905dddb35ae00e4cabea
http://www.sciencedirect.com/science/article/B8H14-4NHV7N7-N/2/ee8e0849c1906b737b767500c7f01ccc
http://www.sciencedirect.com/science/article/B8H14-4NHV7N7-N/2/ee8e0849c1906b737b767500c7f01ccc

BIBLIOGRAPHY 154

[39] F. Hansen and V. Oleshchuk, “Srbac: a spatial role-based access-control

model for mobile systems,” in In Proceedings of the 7th Nordic Workshop on

Secure IT Systems (NORDSEC’03). Gj‘vik, Norway, 2003, pp. 129–141.

[40] H. Zhang, Y. He, and Z. Shi, “Spatial context in role-based access control,”

in Information Security and Cryptology – ICISC 2006, ser. Lecture Notes in

Computer Science, vol. 4296, ICISC. Springer Berlin / Heidelberg, Novem-

ber 2006, pp. 166–178.

[41] H. Yu and E.-P. Lim, “Ltam: A location-temporal authorization model,”

in Secure Data Management, S. 2004, Ed., vol. 3178, Center for Advanced

Information Systems, Nanyang Technological University, SINGAPOUR.

Springer-Verlag Berlin Heidelberg 2004, 2004, p. 172–186.

[42] Y.-G. Kim, C.-J. Mon, D. Jeong, J.-O. Lee, C.-Y. Song, and D.-K. Baik,

“Context-aware access control mechanism for ubiquitous applications,” in

Advances in Web Intelligence, vol. 3528. Springer Berlin / Heidelberg, May

2005, pp. 236–242.

[43] I. Ray and L. Yu, “Short paper: Towards a location-aware role-based access

control model,” in SECURECOMM ’05: Proceedings of the First Interna-

tional Conference on Security and Privacy for Emerging Areas in Commu-

nications Networks (SECURECOMM’05). Washington, DC, USA: IEEE

Computer Society, 2005, pp. 234–236.

[44] S. M. Chandran and J. B. D. Joshi, “Lot-rbac: A location and time-based

rbac model.” in WISE, ser. Lecture Notes in Computer Science, vol. 3806.

Springer, 2005, pp. 361–375.

[45] C. A. Ardagna, M. Cremonini, E. Damiani, S. D. C. di Vimercati, and

BIBLIOGRAPHY 155

P. Samarati, “Supporting location-based conditions in access control poli-

cies,” in ASIACCS ’06: Proceedings of the 2006 ACM Symposium on In-

formation, computer and communications security. New York, NY, USA:

ACM, 2006, pp. 212–222.

[46] S. hwa Chae, W. Kim, and D. kyoo Kim, “Role-based access control model

for ubiquitous computing environment,” in Information Security Applica-

tions, W. 2005, Ed., vol. 3786. Springer Berlin / Heidelberg, February

2006, pp. 354–363.

[47] M. L. Damiani, E. Bertino, B. Catania, and P. Perlasca, “Geo-rbac: A

spatially aware rbac,” ACM Trans. Inf. Syst. Secur., vol. 10, no. 1, p. 2,

2007.

[48] L. Chen and J. Crampton, “On spatio-temporal constraints and inheritance

in role-based access control,” in ASIACCS ’08: Proceedings of the 2008 ACM

symposium on Information, computer and communications security. New

York, NY, USA: ACM, 2008, pp. 205–216.

[49] M. Toahchoodee, I. Ray, K. Anastasakis, G. Georg, and B. Bordbar, “Ensur-

ing spatio-temporal access control for real-world applications,” in SACMAT

’09: Proceedings of the 14th ACM symposium on Access control models and

technologies. New York, NY, USA: ACM, 2009, pp. 13–22.

[50] M. Kirkpatrick and E. Bertino, “Context-dependent authentication and ac-

cess control,” in iNetSec 2009 – Open Research Problems in Network Secu-

rity, ser. IFIP Advances in Information and Communication Technology, vol.

309. Springer Boston, November 2009, pp. 63–75.

[51] G. Zhang and M. Parashar, “Dynamic context-aware access control for grid

applications,” in GRID ’03: Proceedings of the 4th International Workshop

BIBLIOGRAPHY 156

on Grid Computing. Washington, DC, USA: IEEE Computer Society, 2003,

p. 101.

[52] P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli, “Context-aware

middleware for resource management in the wireless internet,” IEEE Trans-

actions on Software Engineering, vol. 29, no. 12, pp. 1086–1099, 2003.

[53] S. Daniel, D. Anind, and A. Gregory, “The context toolkit: aiding the de-

velopment of context-enabled applications,” in CHI ’99: Proceedings of the

SIGCHI conference on Human factors in computing systems. New York,

NY, USA: ACM, 1999, pp. 434–441.

[54] G. Sampemane, P. Naldurg, and R. H. Campbell, “Access control for active

spaces,” in ACSAC ’02: Proceedings of the 18th Annual Computer Security

Applications Conference. Washington, DC, USA: IEEE Computer Society,

2002, p. 343.

[55] G. T. (GT), “http://www.globus.org/toolkit/,” Web, last accessed January

2010.

[56] J. E. Bardram, “From desktop task management to ubiquitous activity-

based computing,” in Integrated Digital Work Environments: Beyond the

Desktop Metaphor, V. Kaptelinin and M. Czerwinski, Eds. MIT Press,

2007, pp. 49–78. [Online]. Available: http://mitpress.mit.edu/catalog/item/

default.asp?ttype=2&tid=11154

[57] Z. Zhu and R. Xu, “A context-aware access control model for pervasive

computing in enterprise environments,” oct. 2008, pp. 1 –6.

[58] Y. Lu, L. Zhang, and J. Sun, “Task-activity based access control for process

collaboration environments,” Computers in Industry, vol. 60, no. 6, pp. 403

http://www.globus.org/toolkit/
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11154
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11154

BIBLIOGRAPHY 157

– 415, 2009, collaborative Engineering: from Concurrent Engineering to En-

terprise Collaboration. [Online]. Available: http://www.sciencedirect.com/

science/article/B6V2D-4VY166F-1/2/845865a20271116b3aa74a141e20d243

[59] S. Zheng, D. Jiang, and Q. Liu, “A role and activity based access control

model for university identity and access management system,” in Informa-

tion Assurance and Security, 2009. IAS ’09. Fifth International Conference,

vol. 2, aug. 2009, pp. 487 –490.

[60] L. X. Hung, S. R, J. H., R. S., Y. Weiwei, N. T. Canh, T. P., S. Lee,

H. Lee, Y. Son, and F. M., “Activity-oriented access control for ubiquitous

environments,” January 2009, pp. 1–5.

[61] P. Argyroudis and D. O’Mahony, “ÆTHER: an Authorization Management

Architecture for Ubiquitous Computing,” in Proceedings of 1st European PKI

Workshop: Research and Applications (EuroPKI’04), ser. Lecture Notes in

Computer Science, no. 3093. Samos island, Greece: Springer-Verlag, June

2004, pp. 246–259.

[62] N. E. Dimmock, “Using trust and risk for access control in global

computing,” University of Cambridge, Computer Laboratory, 15 JJ

Thomson Avenue, Cambridge CB3 0FD, United Kingdom, PhD Thesis 643,

August 2005. [Online]. Available: http://www.cl.cam.ac.uk/techreports/

UCAM-CL-TR-643.pdf

[63] N. N. Diep, L. X. Hung, Y. Zhung, S. Lee, Y.-K. Lee, and H. Lee, “Enforc-

ing access control using risk assessment,” in ECUMN ’07: Proceedings of the

Fourth European Conference on Universal Multiservice Networks. Wash-

ington, DC, USA: IEEE Computer Society, 2007, pp. 419–424.

http://www.sciencedirect.com/science/article/B6V2D-4VY166F-1/2/845865a20271116b3aa74a141e20d243
http://www.sciencedirect.com/science/article/B6V2D-4VY166F-1/2/845865a20271116b3aa74a141e20d243
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-643.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-643.pdf

BIBLIOGRAPHY 158

[64] M. Cheaito, R. Laborde, F. Barrere, and A. Benzekri, “An extensible xacml

authorization decision engine for context aware applications,” in Pervasive

Computing (JCPC), 2009 Joint Conferences on, December 2009, pp. 377

–382.

[65] K. K. Konrad, T. Konrad, D. David, S. Howard, and D. Trevor, Activity

Zones for Context-Aware Computing, ser. Lecture Notes in Computer Sci-

ence, U. . U. Computing, Ed. Springer Berlin / Heidelberg, October 2003,

vol. 2864.

[66] F. Meneses and A. Moreira, “A flexible location-context representation,” the

15th IEEE International Symposium on Personal, Indoor and Mobile Radio

Communications, 2004. PIMRC 2004., vol. 2, pp. 1065–1069, September

2004.

[67] J. Noh and K. M. Lee, “Application of multiattribute decision-making meth-

ods for the determination of relative significance factor of impact categories,”

Environmental Management, vol. 31, no. 5, pp. 0633–0641, May 2003.

[68] H. Barron, “Selecting a best multiattribute alternative with partial informa-

tion about attribute weights,” Acta Psychologica, vol. 80, pp. 91–103, 1992.

[69] W. G. Stillwell, D. A. Seaver, and W. Edwards, “A comparison of

weight approximation techniques in multiattribute utility decision making,”

Organizational Behavior and Human Performance, vol. 28, no. 1, pp.

62 – 77, 1981. [Online]. Available: http://www.sciencedirect.com/science/

article/B7J20-4D5WKJR-25/2/36804352e8836b004795c4f6ddbd5189

[70] H. Barron and B. Barrett, “Decision quality using ranked attribute weights,”

Management Science, vol. 42, no. 11, pp. 1515–1523, 1996.

http://www.sciencedirect.com/science/article/B7J20-4D5WKJR-25/2/36804352e8836b004795c4f6ddbd5189
http://www.sciencedirect.com/science/article/B7J20-4D5WKJR-25/2/36804352e8836b004795c4f6ddbd5189

BIBLIOGRAPHY 159

[71] B. S. A. andKyung Sam Park, “Comparing methods for multiattribute deci-

sion making with ordinal weights,” Computers & Operations Research, Part

Special Issue: Algorithms and Computational Methods in Feasibility and In-

feasibility, vol. 35, no. 5, pp. 1660–1670, May 2008.

[72] J. Pérez, J. Jimeno, and E. Mokotoff, “Another potential shortcoming of

ahp,” Sociedad de Estad stica e Investigaci6n Operutiva (Top), vol. 14, no. 1,

pp. 99–111, June 2006.

[73] F. Ghotb and lewis Warren, “A case study comparison of the analytic hierar-

chy process and a fuzzy decision methodology,” The Engineering Economist,

vol. 40, no. 3, pp. 233 – 246, 1995.

[74] S. Giles and D. Bersinic, MCSA Windows Server 2003 All-in-One Exam

Guide (Exams 70-270,70-290,70-291). McGraw-Hill Osborne Media, 2003.

[75] A. Ranganathan, J. Al-Muhtadi, and R. H. Campbell, “Reasoning about

uncertain contexts in pervasive computing environments,” IEEE Pervasive

Computing, vol. 3, no. 2, pp. 62–70, 2004.

[76] L. Yao and N. Zhang, “A generic authentication loa derivation models,” in

Emerging Challenges for Security, Privacy and Trust, ser. IFIP Advances in

Information and Communication Technology, D. Gritzalis and J. Lopez, Eds.

Springer Boston, 2009, vol. 297, pp. 98–108, 10.1007/978-3-642-01244-0 9.

[Online]. Available: http://dx.doi.org/10.1007/978-3-642-01244-0 9

[77] O. XACML, “extensible access control markup language (xacml) v2.0,”

http://www.oasis-open.org/committees/tc home.php?wg abbrev=xacml,

2005.

http://dx.doi.org/10.1007/978-3-642-01244-0_9
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

BIBLIOGRAPHY 160

[78] D. W. Chadwick, S. Otenko, and T. A. Nguyen, “Adding support to xacml

for multi-domain user to user dynamic delegation of authority,” nternational

Journal of Information Security, vol. 8, no. 2, pp. 137–152, February 2009.

[79] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman, “Protection in operating

systems,” Commun. ACM, vol. 19, no. 8, pp. 461–471, 1976.

[80] J. Trent and T. J. E., “Practical safety in flexible access control models,”

ACM Trans. Inf. Syst. Secur., vol. 4, no. 2, pp. 158–190, 2001.

[81] D. E. Denning, “A lattice model of secure information flow,” Commun. ACM,

vol. 19, no. 5, pp. 236–243, 1976.

[82] R. S. Sandhu, “Lattice-based access control models,” Computer, vol. 26,

no. 11, pp. 9–19, 1993.

[83] A. Saldhana, “Jboss xacml,” http://jboss.org/jbosssecurity/downloads/

JBoss%20XACML/, June 2009.

[84] Sun, “Sun microsystems’ saxparser,” http://java.sun.com/j2se/1.4.2/docs/

api/javax/xml/parsers/SAXParser.html.

[85] B. Matthias, D. Schahram, and R. Florian, “A survey on context-aware

systems,” Int. J. Ad Hoc Ubiquitous Comput., vol. 2, no. 4, pp. 263–277,

2007.

http://jboss.org/jbosssecurity/downloads/JBoss%20XACML/
http://jboss.org/jbosssecurity/downloads/JBoss%20XACML/
http://java.sun.com/j2se/1.4.2/docs/api/javax/xml/parsers/SAXParser.html
http://java.sun.com/j2se/1.4.2/docs/api/javax/xml/parsers/SAXParser.html

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Dedication
	Introduction
	Project Context
	Ubiquitous Computing (UbiComp)
	Context-aware Access Control

	Research Motivations and Challenges
	Problem Statement
	Aim and Objectives
	Research Achievements and Publications
	Thesis Structure

	Traditional Access Control Models
	Chapter Introduction
	Basic concepts
	Discretionary Access Control (DAC)
	Access Control Lists
	Capabilities
	Authorisation relations
	DAC Summary remarks

	Mandatory Access Control (MAC)
	Role-Based Access Control (RBAC)
	Core RBAC
	Role Hierarchy
	Constrained RBAC
	Static Separation of Duty
	Dynamic Separation of Duty

	Advantages of RBAC over DAC/MAC
	What is Missing in RBAC?

	Chapter Summary

	UbiComp Access Control: A Survey
	Chapter Introduction
	Context-Aware Access Control (CAAC) Models
	Generalised Role-Based Access Control
	Spatio-Temporal Models
	Dynamic Role-Based Access Control
	CAAC-based Models with Architectural Components
	UbiCOSM
	OpenAmbient
	The Gaia Architecture
	Context-Constrained Access Control (CoCoA)

	Recent Proposals
	Generalised Context-Based Access Control
	Activity-Based Access Control
	Using Trust to Control Access to Resources

	What is Still Missing?
	The Best Way Forward
	Chapter Summary

	Context-Risk-Aware Access Control (CRAAC)
	Chapter Introduction
	CRAAC Vision
	Contextual Attributes Identification and LoA Determination
	Electronic Authentication Token
	Access Location
	Communication Channel Security
	Access History

	LoA-to-Weight Conversion (L2WC) Method Selection
	Rationale and Selection Criteria
	L2WC Methods
	Analytical Hierarchy Process
	Rank-Ordered Weights-Based Methods

	Choosing L2WC Method

	Requester's LoA Aggregation at Run-Time
	Elevating Relationship
	Weakest-Link Relationship

	CRAAC Modes of Working
	RLoA-only Mode
	AttributeLoA-only Mode
	Combined Mode
	Basic-RBAC Mode

	Chapter Summary

	CRAAC Design Preliminaries
	Chapter Introduction
	CRAAC Architecture: Motivation and Design Requirements
	CRAAC Policy Types and Access Modes
	CRAAC Evaluation
	Performance Evaluation
	Security Evaluation
	CRAAC Evaluation TestBed

	Chapter Summary

	The RLoA-only Mode
	Chapter Introduction
	The Architecture Overview
	The Architecture in Detail
	Access Control Infrastructure (ACI)
	LoA Derivation Infrastructure (LoADI)
	Context Management Infrastructure (CMI)

	RLoA-only Mode Data-Flow
	RLoA-only Mode Performance Evaluation
	The Effect of the PA Policy Size
	The Effect of Resources' OLoA Policy Size: Push Vs Pull
	The Effect of the Number of Enabled Roles
	The Effect of the Attribute LoA Derivator
	The Effect of the LoA Aggregator
	The Effect of the Queuing Delays
	The DoS Attack Resilience

	Chapter Summary

	The AttributeLoA-only Mode
	Chapter Introduction
	CRAAC Architecture and the AttributeLoA-only Mode
	AttributeLoA-only Mode Data-Flow
	Potentials and Concerns
	AttributeLoA-only Mode Performance Evaluation
	The Effect of the PA Policy Size
	The Effect of the Number of Contextual Attributes

	Chapter Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

