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Abstract 
To manufacture safe, effective and affordable medicines with greater efficiency, process 

analytical technology (PAT) has been introduced by the Food and Drug Agency to 

encourage the pharmaceutical industry to develop and design well-understood processes. 

PAT requires chemical imaging techniques to be used to collect process variables for 

real-time process analysis. Multivariate statistical analysis tools and process control tools 

are important for implementing PAT in the development and manufacture of 

pharmaceuticals as they enable information to be extracted from the PAT measurements.  

 

Multivariate statistical analysis methods such as principal component analysis (PCA) and 

independent component analysis (ICA) are applied in this thesis to extract information 

regarding a pharmaceutical tablet. ICA was found to outperform PCA and was able to 

identify the presence of five different materials and their spatial distribution around the 

tablet. 

 

Another important area for PAT is in improving the control of processes. In the 

pharmaceutical industry, many of the processes operate in a batch strategy, which 

introduces difficult control challenges. Near-infrared (NIR) spectroscopy is a non-

destructive analytical technique that has been used extensively to extract chemical and 

physical information from a product sample based on the scattering effect of light. In this 

thesis, NIR measurements were incorporated as feedback information into several control 

strategies. Although these controllers performed reasonably well, they could only 

regulate the NIR spectrum at a number of wavenumbers, rather than over the full 

spectrum. 

 

In an attempt to regulate the entire NIR spectrum, a novel control algorithm was 

developed. This controller was found to be superior to the only comparable controller and 

able to regulate the NIR similarly. The benefits of the proposed controller were 

demonstrated using a benchmark simulation of a batch reactor. 
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1 Introduction 
This chapter states the purpose of the work, lists the main contributions and provides an 

outline of the thesis. 

 

This chapter is divided into the following sections: 

1) Statement of the main subject matter of the thesis. 

2) Contributions of this thesis. 

3) Structure of this thesis. 

 

1.1 Background Statement 

The production of safe and effective medicines is of vital importance in the 

pharmaceutical industry, and in ensuring a healthy population. Furthermore, in recent 

years, the industry has been affected significantly by the growth in ‘generic’ 

pharmaceutical manufacturers, which has introduced a need in the pharmaceutical 

industry to improve the efficiency of production facilities. Finding methods to improve 

the efficiency of pharmaceutical manufacturing has therefore become an important issue. 

More recently, investment in the pharmaceutical industry has been focused on improving 

the efficiency by which products are manufactured.  

 

Traditional pharmaceutical manufacturing uses batch processing with laboratory tests 

being conducted on collected finished samples to evaluate quality. It takes a considerable 

length of time for a tablet to be produced and tested, which can mean that substantial 

amounts of sub-standard material can be produced before problems are detected, which is 

clearly inefficient. Further inefficiencies are often claimed to be a result of the regulatory 

policies and practices in place in the industry. Current pharmaceutical manufacturing 

requires a plant to be operated under strict regulations described in the Standard 

Operating Procedures (SOPs). These regulations require extensive documentation of the 

manufacturing and supply chain processes.  Under these regulations, products must 



1. Introduction                                                                                                                                                                    21 

 

typically be manufactured under the same set of conditions each time, ignoring the 

impact of changes in raw material properties, for example. 

 

From the public health view and from the perspective of improving efficiency and 

innovation, the best principles of quality management should be employed by the 

pharmaceutical industry. Efficient manufacturing can reduce operating costs, and 

accelerate the time it takes to market the product and make it available to the customer.  

 

In order to encourage the pharmaceutical industry to introduce and develop innovative 

processing systems, the Food and Drug Administration (FDA) launched “Guidance for 

Industry PAT—A Framework for Innovative Pharmaceutical Manufacturing and Quality 

Assurance” [1], which describes a new regulatory framework (Process Analytical 

Technology, PAT). According to [1], PAT is: “a system for designing, analyzing, and 

controlling manufacturing through timely measurements (i.e., during processing) of 

critical quality and performance attributes of raw and in-process materials and 

processes with the goal of ensuring final product quality”. The goal of PAT is: “to 

understand and control the manufacturing process, which is consistent with our current 

drug quality system: quality cannot be tested into products; it should be built-in or should 

be by design”. In other words, PAT should be used to design well-understood processes 

that will ensure pre-defined quality in the manufacturing process. This will improve the 

efficiency of manufacturing.  

 

Process analytical technology (PAT) is a revolutionary process quality control technique 

now being applied in the pharmaceutical industry. It is also applied in other industries 

such as the petrochemical and food industries [2]. Kourti [3] provides an overview of the 

process analytical technology initiative and of multivariate process analysis, monitoring 

and control. By using PAT, there is potential to reduce cycle times, decrease batch release 

times, reduce start-up times and improve project scheduling [4]. 
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To gain the most from PAT, there are several areas in which it can be applied and many 

methods exist to aid in its application. These methods can be divided into four broad 

categories [1]:  

1) Multivariate data acquisition and analysis tools 

2) Process analytical chemistry tools 

3) Process monitoring and control tools 

4) Continuous improvement and knowledge management tools 

 

Pharmaceutical processes are complex systems as the manufacturing of pharmaceuticals 

requires many different development procedures, each of which requires process design 

knowledge. Knowledge of the process is important for process quality control because it 

helps in understanding the relationships that exist in the process and provides useful 

information for process control purpose. Knowledge of the process may include 

biological, chemical and physical attributes of the materials being processed.  

 

To effectively implement real-time monitoring and control of product quality during the 

manufacturing processes, knowledge and understanding of the process is critical. 

Unfortunately, knowledge of the process is often limited and a key area for PAT 

techniques is in the application of advanced sensors, such as chemical imaging, to gain a 

better understanding of the process. Chemical imaging techniques are non-destructive 

analytical techniques that are being used with increasing frequency in the pharmaceutical 

industry to collect important process data on-line. These methods are reviewed in Section 

2.1.1. The data collected using chemical imaging techniques is typically of a large 

volume, which can make it difficult to interpret, and multivariate statistical analysis tools 

are often needed to extract critical information from the images for use in real-time 

control and quality assurance. A review of multivariate statistical analysis of chemical 

imaging data is given in Section 2.1.1. Finally, to improve product quality and increase 

processing efficiency, the application of process control techniques are beginning to be 

explored in the pharmaceutical industry. Section 2.2 provides a brief review of batch 

control techniques. 

 



1. Introduction                                                                                                                                                                    23 

 

1.2 Contributions of this Thesis 

The work described in this thesis focuses on multivariate statistical analysis of Raman 

images of a pharmaceutical tablet and quality control in batch processes. Major research 

contributions have been made in the following areas: 

 

1) The extraction of chemical information from images of pharmaceutical tablets is an 

important issue. Various multivariate statistical analysis methods have been applied 

to it, but they all have disadvantages. Independent component analysis (ICA) is a 

powerful method for statistically separating mutually statistical independent 

components and in this work it is applied to identify the reference spectra of a 

pharmaceutical tablet’s constituent compounds. Its performance is compared with the 

performance achieved using Principal Component Analysis (PCA). It is shown that 

ICA outperforms PCA. ICA was able to identify all the constituent compounds in the 

tablet, while PCA was only able to identify four, missing the most concentrated 

constituent. 

2) Quality control is usually implemented by regulating several process variables. 

However, even if the process variables are well maintained, the quality of the final 

product cannot be guaranteed, due to the existence of disturbances such as changes in 

the raw material properties. To address this, two approaches for utilising NIR spectra 

in a feedback control system are proposed. Wavenumber-Based model predictive 

control (Wn-MPC) uses the measurement from a single peak as a controlled variable. 

In contrast, the second approach, PCA Score-Based MPC control (Sc-MPC) utilises 

PCA to extract the important information from the spectral measurement and control 

is applied to these measurements. The two methods were applied to the quality 

control and their performances compared with a traditional controller – cascade 

control. It is shown that Sc-MPC achieved satisfactory results with no user 

interaction. The performance of Wn-MPC, however, was heavily dependent on the 

selection of the wavenumber at which the NIR spectrum was controlled.  

3) Quality control using Sc-MPC and Wn-MPC only regulates the NIR spectrum at 

specific wavenumbers. In contrast, the end-point controller introduced in Chapter 5 

regulates the NIR measurements across all wavenumbers, and is able to achieve 
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improved control performances. Chapter 6 proposed a novel end-point controller 

which adjusts the trajectories of manipulated variables (MVTs) in the real process 

space, while taking into consideration process constraints. The technique is applied 

to track a set-point change in NIR spectrum on a simulated batch process. The results 

show that the proposed end-point control algorithm is better at tracking the set-point 

change than other applicable control systems.  

 

1.3 Structure of the Thesis 

This thesis is laid out in seven chapters and divided into three main parts. Chapter 2 

presents a literature review on the application of multivariate statistical analysis methods 

to chemical imaging data and batch process control in industrial processes. Chapter 3 

describes the application of multivariate statistical analysis methods to a Raman image of 

a pharmaceutical tablet. Chapters 4-6 focus on quality control of batch processes. Chapter 

7 provides the conclusion of this thesis. 

 

Following this introduction, Chapter 2 presents an overview of chemical imaging 

techniques, multivariate data analysis methods, and batch process control. NIR and 

Raman spectroscopy are the two chemical imaging techniques this chapter focuses on. An 

overview of the application of multivariate data analysis methods to chemical imaging 

data is presented, followed by a review of quality control in batch processes. 

 

Chapter 3 describes the application of multivariate data analysis methods including PCA 

and ICA to identify the reference spectra of a pharmaceutical tablet’s constituent 

compounds using Raman spectroscopic data. The spatial distribution of each of the 

constituent compounds from this tablet is estimated using the results from the 

multivariate analysis and this is presented in a clear graphical form. This provides a gross 

distribution of the constituent compounds in the tablet. 
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Chapter 4 proposes two quality control approaches by incorporating NIR spectra as 

feedback information. Both control approaches utilize MPC strategies. They are applied 

to regulate the NIR spectrum of the end product in a simulated batch reactor. 

 

In Chapter 5, an end-point control method is used to control the product quality by 

regulating the entire end-point NIR spectrum. The method is applied to regulate the NIR 

spectrum and its performance is compared with that achieved using the control 

techniques introduced in Chapter 4. 

 

Chapter 6 proposes a novel end-point controller which adjusts the trajectories of 

manipulated variables (MVTs) in the real process space, while taking into consideration 

process constraints. The performances of this controller are compared with the end-point 

controller proposed in previous studies by Flores-Cerrillo [5].  

 

Finally, Chapter 7 provides conclusions of the thesis and gives suggestions for further 

work. 
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2 Literature Review on the Application of 
Multivariate Statistical Analysis Methods 
and Batch Process Control in Industrial 
Processes 

This chapter provides an overview of the application of multivariate statistical analysis 

methods to extract important information from chemical imaging data. An overview of 

the application of batch process control techniques, using PAT, is also presented. 

 

The chapter is divided into the following sections: 

2.1) Overview of multivariate statistical analysis of chemical imaging data; 

2.2) Introduction to batch process control; 

2.3) Summary of this chapter. 

 

2.1 Overview of Multivariate Statistical Analysis of 
Chemical Imaging Data 

Knowledge of process is vital if it is to be effectively monitored and controlled in real-

time. Chemical imaging techniques has been shown to be an excellent tool to collect 

process data online and provide a non-destructive way of gaining an understanding of a 

process. With the acquisition of chemical imaging data, multivariate statistical analysis 

methods are used to extract the critical information of the process. In this section, an 

overview of chemical imaging techniques is first provided, and then a review of the 

application of multivariate statistical analysis methods to this data is presented. 

 

2.1.1 Chemical Imaging Techniques 

To better understand what happens in their processes, many pharmaceutical companies 

have been exploring the use of various chemical imaging techniques, with Near-infrared 

(NIR) [6] and Raman spectroscopy [7] being the two most commonly applied techniques. 
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Chemical imaging techniques are non-destructive analytical methods which provide 

chemical and physical information regarding a sample of material. They have been shown 

to be capable of providing online quality measurements that can be used to improve 

process understanding and monitoring of the progression of batch processes. As such they 

have huge potential for application in process monitoring and control techniques. 

Chemical imaging has become a commonly used analytical technique in research and 

development, and is now being investigated in its application to quality assurance and 

quality control. It has been widely applied in solid samples [8], biology [9, 10], chemistry 

[11], medicine [12], agriculture [13], biotechnology [6, 14], and pharmacy [6].  

 

Near infrared spectroscopy is a method which uses the near infrared region of the 

electromagnetic spectrum. The near infrared region is defined by the American Society 

for Testing and Materials (ASTM) as the spectral region with the wavelength range of 

780-2526 nm . The wavelength covers ranges from the mid-infrared to the visible region. 

The NIR spectrum is generated by the overtones and combinations of fundamental 

vibrations of hydrogen bonds such as C–H, N–H, O–H and S–H.  

 

The NIR region was identified in the 19th century, and NIR spectroscopy was first applied 

in industry in the 1950s, and applications of NIR have gradually grown since then. The 

real breakthrough for using NIR spectra in process control and quality control occurred in 

the 1980s, and since then NIR spectroscopy has been applied in many industries. In the 

agricultural food industry,  Slaughter et al. [15, 16] applied NIR to determine the soluble 

solids content of tomatoes. Balabin and Safieve [17] applied NIR spectroscopic data in 

the classification of gasoline by source and type in the petrochemical industry. In the 

environmental industry, Stallard et al. [18] applied NIR spectroscopy to the determination 

of motor oil contamination in sandy loam. In the pharmaceutical industry, NIR 

spectroscopy is widely recognized as a valuable tool for raw material testing, process 

monitoring and quality control [6, 19, 20], because it has the advantages that no sample 

preparation is required. Furthermore, the analysis is faster than other techniques, non-

destructive, and can yield real-time measurements. The application of NIR spectroscopy 

in the pharmaceutical industry covers the following areas [6]:  
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 Identification and qualification of raw materials and intermediates [21-23]. 

 Analysis of intact dosage forms, including chemical, physical and related 

biopharmaceutical aspects [24-26]. 

 Process monitoring and process control [27-30]. 

 

Raman spectroscopy [31] is an alternative chemical imaging technique to NIR. It is a 

light scattering method where photons of light interact with a sample to produce scattered 

radiation of different wavelengths. Raman spectroscopy is based on the theory that when 

monochromatic light is incident on a sample, the light will interact with the sample and 

be reflected, absorbed or scattered. The scattered light then reflects information regarding 

the chemistry of the sample. Raman spectroscopy uses a laser to excite Raman spectra 

with a coherent beam of monochromatic light. The probe is then used to collect the 

Raman scatter. Following this, a spectrograph is used to separate the Raman scattered 

photons by wavelength, and a detector will record the intensity of the Raman signal at 

each wavelength.  

 

Raman was discovered and named by Sir C. V. Raman in 1928 [32]. However it is only 

in the last two decades that Raman spectroscopy has developed into a mature technique 

for chemical analysis and has been applied in many areas. In cultural heritage, Sandalinas 

et al. [33, 34] applied Raman spectroscopy in the identification of pigments in Italian 

pottery from the sixteenth century. Welter et al. [33, 34] identified inorganic pigments in 

an ancient colored glass from Sir Lanka and Oman using Raman spectroscopy. In the 

biological industry, Raman spectroscopy has been applied to follow the distribution of the 

different compounds in plants in [35]. The application of Raman spectroscopy in food 

science was reviewed by Li-Chan [36]. Raman spectroscopy has also been widely applied 

in the pharmaceutical industry. In [37, 38], Šašić applied Raman spectroscopy to 

determine the spatial distribution of all components in a pharmaceutical tablet. Widjaja 

and Seah [39, 40] applied an analytical technique to detect and identify minor 

components of pharmaceutical drug tablets using Raman spectroscopy. The application of 

Raman spectroscopy in detecting minor component within pharmaceutical tablet can also 
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be found in [39, 40]. Hausman et al. [41] applied Raman spectroscopy as an on-line 

method to monitor the drug hydration state during drying. 

Both NIR and Raman spectroscopy are widely used analytical chemical imaging 

techniques. However, Raman measurements contain more sharper bands and fewer 

overlapped bands [42], and hence it provides more selective spectral features for future 

analysis.  

 

2.1.2 General Application of Multivariate Analysis of Chemical 

Imaging Data 

Chemical imaging data can be used to extract important information relating to the 

progress of a process. It is therefore a useful tool for monitoring and controlling poorly 

understood systems. A major limitation with the technique, however, is that it typically 

results in very large data sets being produced. Research in this field has identified various 

methods that can be used to extract relevant information from this data. Two particularly 

powerful methods used for extracting this information are univariate and multivariate 

analysis methods.  

 

Univariate analysis is used to analyze data by a single variable at a time and is the 

simplest method for revealing information from the data. However it requires the system 

to be clearly characterized. For example, in the analysis of the distribution of compounds 

in a pharmaceutical tablet [45], the application of univariate analysis requires that all the 

compounds that are present in the tablet, be known, and that the spectra of these 

compounds also be known in advance. These spectra are termed the reference spectra. It 

is also necessary to make sure that the chemical imaging spectra have unique and strong 

bands, which is not always possible. 

 

Unfortunately, many chemical processes are complex, and the interaction of product and 

process variables exists.  Furthermore, some constituents that are present in a sample may 

be unknown. In such cases, multivariate statistical analysis methods provide a more 

powerful method for extracting the relevant chemical information, such as concentration 
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and distribution of compounds, from the data. Multivariate statistical analysis is able to 

analyze several process variables simultaneously instead of singly, which often provides 

many benefits when analyzing large sets of data.  

 

The most commonly used multivariate statistical analysis methods for extracting 

information from imaging data include principal component analysis (PCA), cluster 

analysis, multivariate curve resolution, partial least squares (PLS), and independent 

component analysis (ICA). The application of these methods to the analysis of chemical 

imaging data is briefly introduced below. 

 

Principal Component Analysis (PCA) 

PCA [43-45] is the algorithm that has probably been applied most frequently to extract 

information from chemical imaging data. It is a mathematical method which transforms a 

high-dimension dataset into a low-dimension dataset defined by what are referred to as 

principal components (PCs). The PCs are orthogonal to one another and are a linear 

combination of the original variables. They are identified such that they capture the main 

variation in the original data, with the first principal component explaining the largest 

variation within the data, and the second principal component having the second largest 

variation and so on. PCA has been applied in the analysis of chemical imaging data in 

various areas. For example, PCA was applied in the analysis of chemical imaging data to 

extract pure ingredient spectra from a pharmaceutical tablet [46]. Roggo et al. [47] 

applied PCA to infrared hyperspectral imaging of pharmaceutical solid forms to analyze a 

contamination on the surface of the tablet. Bacci et al. [48] applied PCA to analyze near-

infrared spectra of alteration products in calcareous samples to discriminate the different 

reaction products. In [49], PCA was applied as a tool for the classification of materials 

using near-infrared spectroscopy. In this study, it was demonstrated that PCA was an 

effective and safe tool for classification purposes. 

 

Cluster Analysis 

Cluster analysis is used to assign a set of observations into several subsets (clusters) so 

that data in the same cluster contains observations with similar characteristics. These 
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clusters can be created using criteria such as distance and probability. Cluster analysis 

methods are typically classed as pattern recognition or data mining techniques. Cluster 

analysis techniques generally fall into two categories: unsupervised analysis and 

supervised analysis. A comprehensive review of cluster analysis techniques can be found 

in Jain et al. [50].  

 

Supervised cluster analysis techniques require a set of samples that have already been 

assigned to a cluster for training. There are many supervised cluster analysis techniques. 

One widely used technique is soft independent modeling of class analogy (SIMCA) [51]. 

This method uses PCA or PLS to build a model to identify the clusters for the entire 

dataset. New observations are then classified into the identified clusters based on the best 

fit to the model. Smidt et al. [52] applied SIMCA to classify waste materials using 

Fourier transform infrared (FTIR) spectroscopy. In a further application, Candolfi et al 

[53] demonstrated the effectiveness of SIMCA in the identification of the excipients used 

in pharmaceutical process.  

 

Unsupervised cluster analysis techniques do not require reference clusters to be known a-

priori. There have been many unsupervised cluster analysis techniques that have been 

proposed. One commonly used unsupervised cluster analysis technique is fuzzy-C mean 

(FCM) variant [54]. FCM is a method of clustering that allows one data vector to belong 

to one or more clusters. It has been used to analyze near-infrared spectroscopic imaging 

data. For example, Wang et al [55] applied FCM in the analysis of Raman spectral 

imaging data, where it was used to extract chemical information from biological 

specimens. In [54], the FCM method was applied in the analysis of near-infrared 

spectroscopy imaging data. In their study, FCM was able to probe the spatial and spectral 

characteristics of the samples and could detect small sections of the image that contained 

novel and unanticipated spectral features. 

 

Multivariate Curve Resolution  

Multivariate curve resolution is a technique which resolves the components of a mixture 

by determining the response profiles (spectra, time profiles, PH profiles) and the 
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estimated concentrations. No prior information regarding the composition of the mixtures 

is required when using this technique. The most popular resolution method used in 

imaging analysis is multivariate curve resolution-alternating least squares (MCR-ALS) 

analysis [56]. MCR-ALS first estimates the number of compounds in a mixture and the 

spectral profiles and concentrations of each component using singular value 

decomposition (SVD) [57]. Following this, alternating least squares (ALS) [58] is applied 

to optimize the spectral profiles and the corresponding concentrations. MCR-ALS has 

been applied in analyzing NIR chemical imaging data to estimate the concentration of 

analytes in each pixel of a chemical image [59]. Azzouz and Tauler [60] applied MCR-

ALS in the resolution and quantification of various analytes in different types of 

pharmaceutical and agricultural samples.  

 

Partial Least Squares (PLS) 

Partial least squares (PLS) [61, 62] is a method for finding a linear regression model by 

projecting the predicted variable matrix Y  and the observed variable matrix X  to a latent 

variable space. A PLS model is identified using a set of data containing measurements of 

X  and Y . Once identified, this model can take new X  measurements and use them to 

estimate the value of the output Y . PLS has been applied in the analysis of chemical 

imaging data. Burger and Geladi [63], for example, identified a PLS model based on 

reference materials of known composition and spectra from a hyperspectral image. The 

PLS model was then successfully used to predict unknown compositions from new 

images. Van den Broek et al. [64] applied PLS as a data decomposition technique for the 

classification of spectroscopic NIR images. In this study, PLS reduced the dimension of 

the data and increased the speed of online classification. 

 

Independent Component Analysis (ICA) 

Independent component analysis (ICA) [65, 66] is a method used to separate multivariate 

signals into sets of statistically independent non-Gaussian source signals. ICA has been 

widely used in blind signal separation [65-69]. It has also shown its capabilities in 

analyzing spectroscopic datasets. ICA has been applied in identifying the constituent 

compounds in commercial gasoline from infrared (IR) spectroscopy data [70, 71]. In a 
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further study, Kernel independent component analysis was applied to estimate the source  

spectra of the active components in samples of acetylspiramycin [72]. In this study, ICA 

was found to be capable of isolating the active components, excipients and other minor 

components. ICA was applied by Polder et al. [73] to estimate the important compounds 

in ripening tomatoes. Two primary independent components found in this study 

resembled the actual absorption spectra of the most important compounds.  

 

All the multivariate statistical analysis methods described above have shown their 

capabilities in extracting important information from chemical imaging data in various 

industries. The application of multivariate statistical analysis to chemical imaging data in 

the pharmaceutical industry is still in its infancy, but applications are gradually increasing. 

The following section provides a literature review on the application of multivariate 

statistical analysis to chemical imaging data collected from pharmaceutical tablets. 

 

2.1.3 Application of Multivariate Statistical Analysis to 

Chemical Imaging of Pharmaceutical Tablets 

In the pharmaceutical industry, chemical imaging techniques have been applied in many 

areas, as described in Section 2.1.1. One important application area for development is in 

the imaging of solid dosage formulations [74-76]. In this area, Raman and NIR 

spectroscopy have been applied in the analysis of pharmaceutical tablets, with the aim 

being to identify the components and concentrations present in the tablets. The resulting 

chemical imaging data is complex and difficult to interpret because the particles in the 

tablets are of multiple types and mixed together. Extracting the quantitative information 

regarding the content of the active pharmaceutical ingredients (APIs) and the spatial 

distribution of the APIs in the tablet has become a key research area.  

 

Applications of multivariate statistical analysis methods to extract chemical information 

from a pharmaceutical tablet have been presented by a number of authors. Šašić [77] has 

studied the application of Raman and NIR imaging techniques to determine the spatial 

distribution of five components in a pharmaceutical tablet. In this work, PCA was applied 
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to identify the reference spectra of the components and their corresponding 

concentrations in the tablet. Composite images (all components displayed in a single 

image) were produced to show the spatial distribution of all the individual compounds in 

a tablet. Similarly, Clark and Šašić [42] applied PCA to analyze the chemical imaging 

data of a pharmaceutical tablet. Zhang et al [78] applied four different multivariate data 

analysis methods to extract chemical information from the imaging data. PCA, cluster 

analysis, direct classical least squares (DCLS) and multivariate curve resolution (MCR) 

methods were applied to provide spatial distribution of the compounds of a 

pharmaceutical tablet. The relative merits and drawbacks of these methods were 

evaluated and compared. 

 
PCA is a very popular multivariate statistical analysis method and has been applied in the 

analysis of chemical imaging data collected from pharmaceutical tablets. In these 

applications it has been shown to be effective in terms of its ability to identify the 

reference spectra of the constituent compounds from the imaging data [38], and has been 

applied to identify minor compounds in Raman imaging [39, 79]. Furthermore, it has 

been shown that through analysis of the PCA model it is possible to identify the spatial 

distribution and concentration of constituent compounds in the tablet [38].  

 

Unfortunately, PCA is not always capable of identifying the constituent compounds in a 

tablet. This is particularly the case when the spectra of some of the compounds overlap. 

The phenomenon has been widely encountered in PCA applications and is referred to as 

“rotational ambiguity” [78]. 

 

Other multivariate data analysis methods also have their disadvantages when applied to 

chemical imaging data. PLS, for example, requires the reference spectra of the constituent 

compounds to be available [80], which is frequently unavailable. Cluster analysis has the 

problem of having to determine an appropriate number of clusters [81]. Selecting an 

unsuitable number of clusters can lead to poor results and the component spectra will not 

be identified. MCR-ALS has the drawback that there will be more than one solution, and 
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therefore cannot guarantee that the resolved component spectra will match the true 

component spectra [82]. 
 

Similarly to PCA, Independent Component Analysis (ICA) separates a multivariate 

signal, such as a spectroscopic measurement, into its constituent subcomponents, e.g. 

constituent compounds. However, ICA identifies mutually statistically independent 

components, rather than simply uncorrelated ones, as is the case with PCA [83]. In 

probabilistic theory, independence is a high-order statistic and it is a much stronger 

condition than orthogonality. Also, the condition of independence in the components 

allows ICA to overcome the rotational ambiguity problem encountered with PCA. It is 

important to note, however, that PCA and ICA are closely related. In fact, ICA can be 

considered as a “fine-tuning” form of PCA, since it rotates the principal components in 

order to remove high-order dependencies between the source signals [66, 83]. Also, PCA 

and ICA are related from a computational perspective, since they both rely on an 

eigenvalue decomposition for the identification of their corresponding models.  

 

In [84], Shashilov et al. demonstrated ICA as a powerful tool for analyzing Raman 

spectra. In this study, ICA was able to extract the spectrum of  -sheet from Raman 

spectra while PCA and multivariate curve resolution could not separate the  -sheet 

constituent as an individual component. The applications of PCA and ICA in analyzing 

Raman spectra on paraffin-embedded skin biopsies has been compared in [85]. This work 

showed that PCA did not give good estimations of spectra and the associated 

concentration profiles. However, ICA was found to provide an improved estimate of the 

spectra of the chemical constituents. The estimated concentration profiles are not 

orthogonal and only have positive values, contrary to PCA. Chapter 3 will apply both 

PCA and ICA to the chemical imaging data of a common pharmaceutical tablet. Their 

capabilities in identifying the reference spectra of the constituent compounds and their 

corresponding concentrations are compared in this study.  
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2.2 Batch Process Control 

An area which is likely to have a considerable impact on the PAT initiative is process 

control. Process control is used extensively in a variety of industries to ensure that the 

output of a process conforms to required specifications. Industrial processes are usually 

categorized into continuous or batch [86]. A continuous process is a process where feeds 

are continuously sent to the equipment, and product is continuously collected. The by-

products are removed continuously. A batch process is a process in which a finite 

quantity of product is made over a period of time. Batch processes usually involve 

placing raw materials into a vessel, and then performing a series of unit operations 

(mixing, heating, reaction, distillation, etc). This is followed by the removal of the 

product, and cleaning of equipment. The process variables, such as heat, mass, 

temperature and concentration, vary over the duration of the batch, according to a 

“recipe”. 

 

Batch processes are gaining ever increasing importance in the manufacturing industries. 

They are particularly prevalent in the polymer, pharmaceutical and specialty chemicals 

industries where the focus is on the production of low-volume, high-value added products. 

Although prevalent in continuous operations, advanced process control is only now being 

explored in batch manufacturing. Examples now exist in specialty chemical production 

[87, 88], food [89], pharmaceuticals [90, 91], biochemicals [92], polymers [93], coatings 

[94] and many other processes. 

 

The advantages of batch processing are [95, 96]: 

1) It is flexible and able to manage many different product grades. 

2) The process is repeated many times, and therefore the quality of production can be 

improved on a run-to-run basis. 

3) Processing is typically very slow, and therefore improvements to operational 

conditions can be computed in real time. 

4) It is economical for small volume manufacturing. 

5) It is ideal if equipment needs regular cleaning or sterilization, as with many bio 

applications. 
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6) It can be scaled-up from laboratory to industrial application. 

 

Unfortunately, batch processing introduces many difficulties not encountered in 

continuous production: the processing of raw materials into the end product takes place 

over a finite duration; there are rarely steady states conditions; process dynamics are 

typically time-varying and non-linear; quality measurement are often only available at the 

end of the batch [97].  

 

Quality control of batch processes is usually implemented by regulating several process 

variables, such as temperature and pH, with the hope that keeping these variables fixed 

will ensure consistent end-point product quality. Unfortunately, variation in raw material 

properties means that this style of operation may not produce consistent product.   

 

Advanced control methods have been shown to improve product consistency. Kravaris et 

al [98], for example, used globally linearizing control (GLC) for trajectory tracking. 

Clarke-Pringle and MacGregor [99] used a nonlinear adaptive controller, incorporating an 

extended Kalman filter to provide temperature control in a batch reactor. Wang et al [100] 

applied adaptive control, together with an extended Kalman filter, to a simulated batch 

styrene polymerization reactor to track a specific output in the presence of model 

uncertainty. Aziz et al [101] applied generic model control (GMC) coupled with a neural 

network, which estimated heat-release to track an optimal temperature profile.  

 

In addition to regulating process variable measurements, there have been several studies 

in to optimizing process variable trajectories in batch processes. In these applications, the 

trajectories of process variables, such as temperature, were optimized at various decision 

points during the batch in an attempt to maintain final product quality. Crowley and Choi 

[102], for example, controlled the polymer weight chain length distribution by computing 

an optimal discrete sequence of reactor temperature set points using an optimization 

program based on sequential quadratic programming. Ruppen et al [103] successfully 

applied an on-line optimization strategy to the acetoacetylation of pyrrole with diketene 

in a laboratory-scale reactor.  
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However, it is shown in Chapter 4 of this thesis and in Lin et al. [104] that even in a 

simple chemical batch reactor, maintaining important process variables, such as reactor 

temperature at their set-points does not guarantee that the final product will meet its 

specifications. Changes in reaction rates, for example, caused by differing raw material 

properties can alter the reaction pathways and affect final product quality. Chapter 4 of 

this thesis proposes a novel control algorithm which is able to ensure product quality, 

even when the process is subject to large disturbances. 

 

In addition to trajectory control, many research studies have investigated ‘end-point’ 

control of batch processes. End-point control attempts to optimize the operating 

conditions during the entire batch to ensure the quality of the product at the end point 

(end-point quality) meets target requirements. Yabuki et al. [105], for example, used 

simple empirical regression models to predict final product properties. If the prediction 

fell outside of a “no-control” region, a midcourse correction was made to bring the end 

product quality back to the target using online and offline measurements available up to 

the midpoint of the process. Flores-Cerrillo and MacGregor [5] proposed a method to 

regulate the complete quality variable trajectory by controlling the process in the reduced 

space of a latent variable model rather than in the real space of the manipulated variables. 

At various decision points during the batch, the quality of the end product was predicted 

using online and offline process variables measurements and corrective action was made, 

if necessary, to guarantee the quality of the end product. This end-point controller was 

successfully applied to regulate a simulated batch process. Pan and Lee [106] developed a 

data-based model to make online predictions of end-point product quality, and 

adjustments were then made to achieve desired product quality. The authors applied their 

technique to a methyl methacrylate (MMA) polymerization process. End product quality 

was predicted recursively based on reactor cooling rate, and a model predictive control 

approach was used to manipulate the reaction temperature. 
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2.3 Summary 

This chapter has provided a literature review describing the application of multivariate 

statistical analysis methods to analyze chemical imaging data collected from 

pharmaceutical processes. Chemical imaging techniques, commonly used in the 

pharmaceutical industry, such as NIR and Raman spectroscopy were fist discussed. Then, 

the application of multivariate statistical analysis to data collected from these devices was 

reviewed. Finally, an introduction and a brief review of batch process control were 

provided. 
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3 Application of Multivariate Statistical 
Analysis to Raman Images of a Common 
Pharmaceutical Tablet 

In this chapter, the application of multivariate statistical techniques to identify the 

composition of a pharmaceutical tablet is explored. To begin, two frequently applied 

multivariate techniques – independent component analysis (ICA) and principal 

component analysis (PCA) – are described. These two algorithms are then applied to two 

sets of simulated data to compare what information they can extract from spectral data 

samples. Following this, PCA and ICA are compared in terms of their capabilities to 

identify the composition of a pharmaceutical tablet from Raman spectroscopic data.  

 

The chapter is divided into the following sections: 

1) A description of PCA and ICA algorithms is provided. 

2) The application of PCA and ICA to two sets of simulated datasets is presented. 

3) PCA and ICA are applied to Raman image data collected from a common 

pharmaceutical tablet. 

4) A summary of the chapter is provided. 

 

3.1 Preliminary Methodology  

As discussed in Chapter 2, PCA and ICA have been shown to have great potential in the 

analysis of high-dimensional datasets in the pharmaceutical industry, where production 

lines are becoming increasingly instrumented. The following sections describe PCA and 

ICA in detail. This is followed by the application of PCA and ICA to two sets of 

simulated datasets and then Raman spectroscopic data collected from a pharmaceutical 

tablet.  
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3.1.1 Principal Component Analysis 

For a dataset with a large number of correlated variables, the power of principal 

component analysis (PCA) lies in its ability to condense the correlated information from 

hundreds or even thousands of dimensions into a small number of orthogonal principal 

components (PCs).  

 

Given a data matrix X  with m  rows and n  columns, with each sample being a row and 

each variable a column, PCA first identifies the direction in the data matrix that explains 

the greatest variance. Then the direction with the second largest variance is identified and 

so on. Each of the directions is chosen so that they are orthogonal to each other. And 

these new directions then become a new set of axes. The mathematical description of the 

PCA algorithm is shown as follows: 

EptX
nn

k

T
kk

c

 


1

                                                 (3.1) 

where kt  are referred to as score vectors and kp are the loading vectors. E  represents the 

information contained within the matrix X  that is not represented in the first cn  principal 

components (a single principal component being the combined kt and kp pair).  

 

kt  and kp  can be identified from Equation (3.1) using Singular Value Decomposition 

(SVD) [44], where the loading vectors kp  are defined as the eigenvectors of the 

covariance matrix: 
1

)cov(



m

XXX
T

. Therefore, for each kp  

kkk ppX )cov(                                               (3.2) 

Where k  is the eigenvalue of the covariance matrix )cov(X . The loading vectors kp  are 

orthonormal, while the score vectors kt  are orthogonal. For X  and any kp , kt  pair 

kk tXp                                                        (3.3) 

Thus, the score vectors kt  are the projection of X  onto the loading vectors kp .  
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The number of dimension is reduced in the data when cn  is less than n . cn  is an 

important parameter that must be determined when using PCA. It should be selected as 

small as possible without losing significant information in the dataset. There are several 

methods that have been proposed for selecting cn . The simplest method is to analyze the 

variance captured by the cn  PCs [24, 107, 108]. The percentage of variance captured by 

cn  PCs is defined as: 

%100
...
...

21

21 




n

nc




                                           (3.4) 

Some studies suggest that cn  can be selected when the percentage of variance explained 

by adding additional principal components is smallest [45]. However, this can lead to 

over-fitting [45].  

 

A more reliable method for selecting cn  is cross-validation [45]. A number of cross 

validation techniques have been proposed. A common approach involves dividing the 

dataset into P  groups of equal size. One group of data is used to validate the model with 

the remaining 1P  groups used as training data. This is repeated P  times, until every 

group is used once for validation. In the validation procedure, the prediction errors are 

calculated for each group of data and summed. This error is defined as )(kS  for k  PCs, 

and the number of PCs is selected such that )( cnS  is minimized. 

 

In the following section, the algorithm for independent component analysis is detailed 

described.  

 

3.1.2 Independent Component Analysis 

Introduction 
Independent component analysis (ICA) [66, 83, 109, 110] is a statistical method for 

finding latent signals that are statistically independent and nongaussian from a collection 

of data containing mutual signals. The ICA model can be expressed as 
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)(SfX                                                        (3.5) 

were T
mxxX ),...,( 1  is an observed vector, ),...,( 1 nssS   is a vector with 

statistical independent latent variables, and f  is a general unknown function. The 

model can be reduced to Equation (3.6) when the function is linear 

ASX                                                         (3.6) 

where A  is an unknown nm  mixing matrix.  

 

The task of the ICA algorithm is to identify the “mixing matrix” A , and the 

independent latent variables, S .  

 

When using ICA, the linear model Equation (3.6) is identifiable under the following 

restrictions [111]: 

 Independence: the source variables are assumed to be statistically independent.  

 Nongaussianity: the independent components must have no more than one Gaussian 

distribution.  

 The mixing matrix A  is square and invertable. 

 

Principles of ICA Estimation 

The aim of the ICA algorithm is to find the independent components is  and the mixing 

matrix A . There have been a number of ICA algorithms that have been proposed. The 

most common approach to solving the ICA problem is to firstly find a demixing matrix 

W , such that iy  in Equation (3.7) are estimates of is . Thus, W  is an estimate of the 

(pseudo) inverse of A .  


i

ii
T xwXWY                                                (3.7) 

 

There are several algorithms that have been proposed to estimate independent 

components and mixing matrices. Two important criteria [66, 83] for the algorithms are: 

maximization of non-Gaussianity of the components and minimizing mutual information. 

These two criteria are now described. 
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Maximization of Non-Gaussianity of the Components 

According to the central limit theory [112], the sum of independent non-Gaussian random 

variables is closer to being Gaussian than for the original random variables. Thus, a linear 

combination, 
i

iii szy , of independent components is  is maximally non-Gaussian if 

it is an independent variable. The task is then focused on finding iw  such that 


i

i
T

ii xwy  is as far from Gaussian as possible.  

 

Non-Gaussianity can be measured by Kurtosis. The kurtosis of Y  is defined as: 
224 ))((3)()( YEYEYkurt                                  (3.8) 

When the variables have positive Kurtosis, they are called subgaussian, and those with 

negative Kurtosis are called supergaussian. 

 

Minimizing Mutual Information 

Two variables are statistically independent when their mutual information is zero. Mutual 

information can be measured by entropy of the variables [109], where entropy of a 

discrete random variable Y  is defined as: 

 
i

ii )ap(Y)ap(YH(Y) log                                 (3.9) 

And the entropy of a random variable y  with density )(yf  is defined as: 

 f(y)dyf(y)H(y) log                                          (3.10) 

When the variance of the variables is equal, the Gaussian variable has the largest entropy. 

Therefore, entropy can be used as a measure of non-gaussianity.  

 

Negentropy [109] is another way to measure entropy. The negentropy of y  is defined as: 

H(y))H(yJ(y) gauss                                          (3.11) 

Where gaussy  is a Gaussian variable.  Negentropy is zero for Gaussian variables. Thus, to 

maximize the independence between variables, the negentropy of the variables must be 

maximized.  
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Data Preprocessing for ICA 
It is typically recommended that certain preprocessing methods be used to reduce the 

dimensionality of the data before applying ICA. It has been shown that poor results can 

be obtained when ICA is applied to a high dimensional data set without first reducing its 

dimensionality. This is particularly so when several of the original dimensions contain 

noise only [109]. It is therefore considered to be standard practice to apply PCA to reduce 

the dimensionality of the data, prior to using ICA.  

 

Further to reducing the dimensionality of the data, it is also common to scale the vectors 

to zero mean and decorrelate them. The second-order dependencies between the observed 

vectors are removed by the decorrelation process. This procedure is also called whitening 

[109]. A zero-mean random vector T
n )...z(zz 1  is said to be white if its elements iz  are 

uncorrelated and have unit variance ijji zzE }{ . Whitening transforms a random vector 

x  into a whitened vector, z , by multiplying it by a linear matrix V : 

Vxz                                                    (3.12) 

Assuming the covariance matrix of the vector, x , is }{ TxxEC  , and the eigenvectors of 

the covariance matrix is ),...( 11 neeE  , and the diagonal matrix of the eigenvalues of C  

is )...( 1 ndddiagD  , the linear matrix V  is given by: 

TEDV 1
2/1                                             (3.13) 

which indicates that z  can be obtained by  

xEDz T/
1

21                       (3.14) 

where )...e(eE n11   consists of a coordinate, and xE T
1  is the projection of x  in the 

coordinate. Multiplication by 21/D  and xE T
1  tries to make the variance of the 

projections in n...ee1  of unit dimension. Each column of the matrix )...e(eE n11   denotes 

an eigenvector of n  dimensions, and there are n  such eigenvectors. The vector z  is 

obtained by dividing each element of a column of 1E  by the square root of the 

corresponding eigenvalue ( 2/1
jijij ez   ). 
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FastICA Algorithm 
In the previous sections, the principles of ICA estimation and preprocessing techniques 

were introduced. In this section, the ICA algorithm itself is described. There are several 

different algorithms available for performing ICA. FastICA [109] is an efficient and 

popular algorithm for independent component analysis, and has become almost the 

standard algorithm for ICA applications. It is therefore the algorithm used throughout this 

work. 

 

The procedures followed by FastICA [109], to find one independent component is as 

follows: 

(1) Choose an initially random weight vector w . 

(2) Let wxwgExwxgEw TT )}({)}({ ' . 

(3) Let  www / . 

(4) Return to (2) until convergence is achieved. 

The process above is repeated for all components that are identified. This can be achieved 

in parallel. However, xwxw T
n

T ,...,1  should be decorrelated before the next iteration.  

 

3.2 Multivariate Data Analysis of Spectroscopic Data 

In this section, PCA and ICA methods are applied to two sets of simulated data. The 

purpose of this exercise is to compare how well each of these techniques is able to 

identify the reference spectrum from a data set containing mixed spectra.  
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3.2.1 Generation of Data and Pre-processing 

Generation of Data 
Each simulated data set contained 500 measurements. Each measurement represented a 

spectral sample containing 200 spectral channels or wavenumbers. In each set of data 

four reference spectra were identified, with each spectrum containing a random number 

of ‘peaks’, with random location and width. Each measurement in the data sets was a 

linear combination of these reference spectra. Fig. 3.1 shows a plot of the four reference 

spectra (RS1, RS2, RS3 and RS4) for the first dataset, and Fig. 3.2 shows the reference 

spectra for dataset 2. 
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Figure 3.1: Reference Spectra of the Constituent Compounds of the Dataset 1 
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Figure 3.2: Reference Spectra of the Constituent Compounds of the Dataset 2 

 

The concentrations of the 4 constituent compounds for each of the 500 samples were 

uniformly distributed random numbers ranging between 0.0 and 1.0. Individual 
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concentration values were made to conform to the “closure constraint”, which states that 

all concentrations of all the constituent compounds sum up to 1 for every sample. The 

closure constraint was applied in the simulated datasets and was used to verify the 

estimated concentration. 
 

Finally, the ‘measured’ spectra were created by multiplying reference spectra of the 

constituent compounds with the corresponding concentrations. 

 

Pre-processing 
Before PCA and ICA were applied to the ‘measured’ spectra, pre-processing of the data 

was undertaken. The main goal of the preprocessing was to remove the non-chemical 

information from the spectra. Autoscaling [113, 114] was used to convert the ‘measured’ 

spectra into normally distributed spectra with zero mean and unit variance. 

 

Autoscaling [113, 114] adjusts a vector to a standard level by subtracting the mean of the 

vector and dividing the residual by the standard deviation of the vector. The autoscaling 

method converts the data to have zero mean and unit variance. The purpose of 

normalization is to remove systematic variation, which can mean some variables have 

higher amplitudes and variation, which can affect identification results. Without 

autoscaling, the variable with large absolute range variance will dominate the modeling 

process, and caused the inaccuracy modeling.  

 

The auto-scaling formula is shown below: 

)var(/)(
^

DDDD


                                             (3.15) 

Where D is the original data, 


D  is the mean of the original data, 
^
D  is the normalized 

data. 
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3.2.2 Results 

In this example no measurement noise was applied to the data and hence both PCA and 

ICA models were developed with four principal/independent components according to 

Equation (3.1) and (3.6). Once the models were identified from the data, the loading 

vectors were analyzed, with the expectation that they would resemble the reference 

spectra. The concentrations of the constituent compounds in each sample were then 

estimated through analysis of the scores associated with each loading vector.  

 

Results for Dataset 1 
Plots of the loading vectors, corresponding to the PCA and ICA models, and the 

reference spectra most related to the constituent compounds present in dataset 1 are 

shown in Figure 3.3-Figure 3.6.  
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Figure 3.3: Plot of the 1st Reference Spectrum (RS1), 3rd PC and 1st IC 


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Figure 3.4: Plot of the 2nd Reference Spectrum (RS2), 4th PC and 2nd IC 
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Figure 3.5: Plot of the 3rd Reference Spectrum (RS3), 2nd PC and 3rd IC 

0 20 40 60 80 100 120 140 160 180 200
-2

-1

0

1

2

3

4

Wavenumber /cm-1

A
rb

. U
ni

ts

RS4
PC1
IC4

 
Figure 3.6: Plot of the 4th Reference Spectrum (RS4), 1st PC and 4th IC 

 

Figure 3.3, 3.5, and 3.6, show that both loading vectors from PCA and ICA are able to 

approximate the 1st, 3rd and 4th reference spectra. However, it is shown in Figure 3.4 that, 
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while the 4th IC did manage to approximate 2nd reference spectrum, the PCA model failed 

in identifying this spectrum. Figures 3.3 to 3.6 also show that while the ICA model is 

able to estimate each of the reference spectra, there are significant differences between 

the actual and estimated spectra. The reason for this is that the reference spectra were not 

completely independent and there is some overlap between the spectra.  
 

Subsequently, a comparison was made between PCA and ICA, in terms of their abilities 

to estimate the relative concentrations of the constituent compounds present in the 

analyzed samples. This comparison was conducted by applying correlation analysis 

between the estimated and the actual concentrations, the results of which are shown in 

Table 3.1. Correlation analysis was applied to provide a measure of similarity between 

the actual and estimated constituent compound. This table shows that ICA is more 

accurate when compared to PCA in terms of its ability to accurately estimate the relative 

concentration of each of the constituent compounds. In particular, the correlation between 

the true concentrations and those estimated using the ICA model is consistently greater 

than or equal to 0.81, with correlations below 0.2 for two of the spectra when using PCA.  

 
Table 3.1: Cross-Correlation Coefficients between the Actual Concentrations of the Constituent 

Compounds and their Estimates Obtained using PCA and ICA Models for Dataset 1 

 RS1 RS2 RS3 RS4 

ICA 0.93 0.94 0.99 0.81 

PCA 0.78 0.19 0.90 0.16 
 

It is perhaps surprising that the PCA model clearly failed to accurately estimate the 

concentrations of the 4th constituent compound, even though Figure 3.6 demonstrates that 

it managed to capture the main features of this reference spectrum (RS4). This finding 

demonstrates that even if a particular reference spectrum is successfully inferred using a 

particular IC or PC it does not necessarily follow that the corresponding score values will 

accurately reflect concentration values of the corresponding constituent compound. 

 

Results for Dataset 2 
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The ability of the PCA and ICA models to infer reference spectra of the constituent 

compounds present in dataset 2 is demonstrated in Figure 3.7 -Figure 3.10. 
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Figure 3.7: Plot of the 1st Reference Spectrum (RS1), 1st PC and 2nd IC 
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Figure 3.8: Plot of the 2nd Reference Spectrum (RS2), 2nd PC and 1st IC 
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Figure 3.9: Plot of the 3rd Reference Spectrum (RS3), 3rd PC and 3rd IC 
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Figure 3.10: Plot of the 4th Reference Spectrum (RS4), 4th PC and 4th IC 

 

Figure 3.7 – 3.10 demonstrate that both PCA and ICA managed to identify the reference 

spectra of all the constituent compounds present in dataset 2, to varying degrees of 

accuracy.  

 

As with the previous data set it is evident that PCA is less able to accurately identify the 

independent spectra from the data than ICA. The results suggest that PCA is not as 

capable as ICA in separating out the independent spectra. For example, PC1, shown in 

Figure 3.7, identifies features related to three different reference spectra (RS1, RS2 and 

RS3). Also, PC3, shown in Figure 3.9, captures reference spectrum RS3 as well as the 

two peaks contained in the reference spectrum RS4.  
 

As with the previous example, the ICA and PCA models were analyzed further and the 

concentrations of each compound in the samples estimated. The correlation coefficients 

between the estimated and actual concentrations are provided in Table 3.2.  

 
Table 3.2: Cross-Correlation Coefficients between the Actual Concentrations of the Constituent 

Compounds and their Estimates Obtained using PCA and ICA Models for Dataset 2. 

 RS1 RS2 RS3 RS4 

ICA 0.97 0.98 0.96 0.94 

PCA 0.67 0.96 0.54 0.78 
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Table 3.2 shows that the ICA model is capable of estimating the concentrations of all the 

constituent compounds with a high level of accuracy. In fact, the cross-correlation 

between the actual concentrations and those estimated using ICA is greater than or equal 

to 0.94. In contrast, the correlation coefficient for three out of four constituents is less 

than 0.9 when using PCA. Furthermore, PCA provided particularly poor estimates for the 

first and third constituent compounds, with the cross-correlations coefficients being equal 

to 0.67 and 0.54, respectively. This poor performance is believed to be because of the 

lack of selectiveness observed with the loadings vectors for PC1 and PC3, which 

contained features from several different reference spectra. The limited capabilities with 

PCA are expected to be generic, which suggests that for spectral applications, ICA is 

likely to be the better algorithm to apply. 

 

3.3 Application of Multivariate Statistical Analysis to 
Raman Images of a Pharmaceutical Tablet 

Using data collected from a Raman spectroscopic analysis of a real pharmaceutical tablet, 

this section compares the relative abilities of PCA and ICA to detect the constituent 

compounds within the tablet and to estimate their concentrations and spatial distribution. 

 

3.3.1 Data Acquisition and Pre-processing  

Data Acquisition 
In this chapter, Raman data collected from a Renishaw Ramascope System 1000 using 

Wire V.1.3 software are analyzed. The spectra were obtained by exciting one tablet with 

a laser line at 782 nm and 100 mW . The composition of the tablet was known a-priori 

and was as follows: Avicel (microcrystalline cellulose) at 48% w/w; API (active 

pharmaceutical ingredient) at 24% w/w; DCP (di-calcium phosphate) at 24% w/w, 

Explotab (sodium starch glycolate) at 3% w/w; MgSt (Magnesium Stearate) at 1% w/w. 

Therefore, the main constituent compounds were Avicel, API and DCP, with Explotab 

and MgSt minor components. Data were collected through a 20  objective. Images with 
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an area of approximately 22  2mm  were obtained with a spatial resolution of 25 m . 

Typical acquisition time was approximately 21 hours. Overall 6000 spectra, measured at 

576 different spectral channels, i.e. wavenumbers, were used in the following statistical 

analysis.  
 

Chemical imaging data obtained by Raman spectroscopy can be considered to be a three-

dimensional cube with two spatial dimensions, known as a hypercube, and a third spectral 

wavelength dimension (See Figure 3.11) [115, 116]. The hypercube can be viewed as a 

series of spatially resolved spectra (called pixels) or, as a series of spectrally resolved 

images (called image planes or channels). Choosing one pixel, the intensity for this pixel 

plotted as a function of the wavelengths is the standard Raman spectrum, or a single-pixel 

spectrum, shown in the lower left of Figure 3.11. Choosing one wavelength, the 

intensities for all pixels is an image of that location, which is referred to as a single-

channel image, which is shown in the lower right of Figure 3.11.  
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Figure 3.11: Schematic Representation of a Spectral Imaging Hypercube Showing the Relationship 

between Spatial and Spectral Dimensions [116].  

 

The collected spectral data forms what is known as a three-way matrix. Unfortunately, 

most statistical methods are applicable to two-dimensional data sets only [117, 118]. 

Although three dimensional methodologies such as PARAFAC [119], are available, they 

are very complex and require significant computation, which restricts their use. Studies 

have shown that there are benefits in describing three-way curve resolution problems in a 

two-way form. The unfolding procedure [120-122], also called reorganization, is used to 

change the three-way array into a two-way array, as shown in Figure 3.12. Following this 

transformation, traditional curve resolution methods can be applied to the two-way array. 
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Figure 3.12: Diagrammatic Representation of Three-way Array Conversion into a Two-way Array by Array 

Reorganization (Also Called Array Unfolding) 

 

Reference Spectra for the Pharmaceutical Tablet 

Reference spectra were obtained by scanning the pure constituent compounds. Figure 

3.13 and Figure 3.14 display the reference spectra of the five constituent compounds. 

 
Figure 3.13: Plot of the Reference Spectra of API and MgSt 
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Figure 3.14: Plot of the Reference Spectra of Avicel, DCP and Explotab 

 

Note that there is a substantial overlap between the reference spectra of Avicel and 

Explotab. There is also some overlap between Avicel, Explotab and DCP in the 

wavenumber range 1050-1200. These observations were confirmed by performing 

correlation analysis (cross-correlation coefficient between the Avicel and Explotab 

reference spectra was found to be equal to 0.6745). The correlation coefficients between 

the reference spectra are shown in Table 3.3. Such significant levels of correlation were 

expected to make the subsequent analysis of the data a challenging task for multivariate 

statistical methods [78]. 

 
Table 3.3: Correlation Coefficients between Reference Spectra 

     API      Avicel     DCP      Explotab   Mgst  

API 

Avicel 

DCP 

Explotab 

Mgst 

 1.0000   -0.1065    0.0602   -0.1782   -0.0680 

-0.1065    1.0000   -0.2012    0.6745    0.2120 

 0.0602   -0.2012    1.0000   -0.3638   -0.1525 

-0.1782    0.6745   -0.3638    1.0000    0.0909 

-0.0680    0.2120   -0.1525    0.0909    1.0000 

 

Pre-processing 
As with the earlier simulated examples, the data was firstly autoscaled to zero mean and 

unit variance. This removes the influence of system variance on the image data. 

Following this, a Savitzky-Golay filter [114, 123-125] was used to smooth the image data.  
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The details of autoscaling and Savitzky-Golay Filter method are described in the 

following section. 

 

Savitzky-Golay Filter 

The Savitzky-Golay filter [114, 123-125] is a smoothing filter which performs a 

polynomial regression on a set of data within a window to determine the smoothed value 

for each point. To smooth a set of data using the Savitzky-Golay Filter algorithm, the 

order and frame size of the window should be chosen first. A high polynomial order tends 

to be good at keeping narrow and high features, while a low polynomial order is good at 

smoothing broad features. A small frame size tends to be good at keeping narrow and 

high features, while large frame size is good at smoothing broad features. After deciding 

upon the order and frame size, least squares is used to find the polynomial curve that best 

approximates the data in fixed frame size windows. The window contains several data 

points including the central point to be smoothed and points in the neighborhood. The 

data within the window are used to smooth the central point using the least squares 

algorithm, while the neighboring points themselves do not change. The neighboring 

points are adjusted as the window moves.  

 

When the frame size of the window is 12 N  and the order of polynomial is m , the 

polynomial curve is of the form. 

m
mmmmm

mk

k

k
mki ibibibbibf 





...2
210

0

                      (3.16) 

where i  changes from N  to N . if  is substituted by the original data iD  to calculate 

the parameters mmmmm bbbb ,...,,, 210 , using least squares. 

 

The derivatives of this equation are: 
12

321 ...32  m
mmmmmi imbibibbdidf                         (3.17) 

2
32

22 *)1(*...*2*32  m
mmmmi ibmmibbdifd                (3.18) 

...... 
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Since the data being smoothed is the central point, 0i . The value of the m -th 

derivative for the central point is as follows. 

00 mbf                                                           (3.20) 

10 mbdidf                                                        (3.21) 

2
2

0
2 2 mbdifd                                                  (3.22) 

...... 

mm
m

i
m bmdifd !*                                              (3.23) 

 

Using the Savitzky-Golay Filter, the n -th derivative of the spectra can be determined. In 

spectroscopy, the first derivative removes the baseline offset variance in the spectra, and 

the second derivative removes both the baseline offset difference and the baseline slope 

difference. As such these derivatives are quite useful when analyzing spectroscopic data. 

 

3.3.2 Multivariate Data Analysis in Raman Images of a 

Common Pharmaceutical Tablet 

In this section, the multivariate data analysis methods of PCA and ICA are applied to 

Raman images of a pharmaceutical tablet. The results obtained using PCA and ICA are 

then compared. 

 

Application of PCA 
The Raman images of pharmaceutical tablet are analyzed by PCA in this section. Figure 

3.15-3.19 show a selection of the identified scores compared with the reference spectra 

that they most closely resemble. A number of observations can be made from the results. 

1) Five of the eight scores were found to resemble the spectra of the constituent 

compounds.  



3. Application of Multivariate Statistical Analysis to Raman Images of a Common Pharmaceutical Tablet                   61 

 

2) Two of the scores were found to be similar to the reference spectrum for the API. 

The reason for this is that it was found that the locations of the peaks for this 

particular component were shifted in some samples by one wavenumber. 

Unfortunately with the analysis methods applied in this paper, this issue means that 

two independent reference spectra were identified. This is highlighted in Figure 3.15 

and Figure 3.16, which show the reference spectra for the API and PC2 and PC6, 

which are all very similar in structure. 

3) None of the components matched the spectra of Avicel, which was the component 

with the highest concentration in the tablet.  

4) Out of the eight retained principal components, the 1st, 4th and 7th PCs were found to 

contain no useful information relating to any of the constituent compounds. 

Furthermore, these components did not appear to be composed of noise as there is 

clear structure to them. This poses a serious challenge in situations when the 

reference spectra of the constituent compounds are unknown as it is not clear which 

components contain useful information and which do not. The 4th and 7th components 

are shown in Figure 3.20 and Figure 3.21. These figures illustrate that there is no 

clear similarities between the reference spectra and either of these components. The 

first principal component was found to be almost identical to the mean measured 

spectrum, as shown in Figure 3.22. Therefore, the first principal component was 

observed to contain no consequential information regarding the reference spectra of 

the constituent compounds.  

5) The scores beyond the eighth PC were found to contain no information relating to the 

reference spectra. 

6) In this analysis, eight PCs were retained in the model. This number was chosen as the 

eighth PC was the last PC to contain clear information regarding the reference 

spectra. In situations where the reference spectra are unavailable it is not obvious 

how many components should be retained. 



3. Application of Multivariate Statistical Analysis to Raman Images of a Common Pharmaceutical Tablet                   62 

 

800 900 1000 1100 1200 1300 1400
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Wavenumber /cm-1

A
rb

. U
ni

ts

API
PC2

 
Figure 3.15: Reference Spectrum of API and 2nd PC 
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Figure 3.16: Plot of the 6th PC and Reference Spectrum of API 
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Figure 3.17: Plot of the 3rd PC and Reference Spectrum of DCP 
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Figure 3.18: Plot of the 5th PC and Reference Spectrum of Explotab 
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Figure 3.19: Plot of the 6th PC and Reference Spectrum of MgSt 
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Figure 3.20: Plot of the 4th PC 
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Figure 3.21: Plot of the 7th PC 

 
Figure 3.22: Plot of the 1st PC and the Mean of the Measured Spectra 

 

When applying PCA, each PC is calculated by maximizing the amount of variance it can 

explain. The PCs will therefore not necessarily correspond to one specific chemical 

component, as argued by Zhang et al. [78] and Vrabie et al. [126]. In fact, principal 

components will typically be linear combinations of the reference spectra. This 

phenomenon is generally known as “rotational ambiguity” and is particularly evident 

when several reference spectra overlap significantly [78]. 

 

Application of ICA 
When ICA was applied to the data collected from the tablet, the following observations 

were made: 
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1) ICA was able to identify the reference spectra of the constituent compounds far more 

readily than PCA. 

2) ICA successfully identified the reference spectra of all of the five constituent 

compounds. However, in order to identify all of the reference spectra it was 

necessary to calculate seven independent components in the ICA model. As with 

PCA, without knowledge of the reference spectra it is not obvious how many 

components should be used in the model. 

3) The reference spectrum for the API was captured by the 1st and the 5th IC as shown in 

Figure 3.23 and Figure 3.24 respectively. As with the analysis using PCA, the shift in 

this spectrum meant that it needed to be described by two components. The 6th IC 

identified the reference spectrum of Avicel, as shown in Figure 3.25, while the 3rd IC 

estimated the reference spectrum belonging to DCP, as shown in Figure 3.26. Finally, 

the reference spectra corresponding to Explotab and MgSt were identified by the 7th 

and the 4th IC as illustrated in Figure 3.27 and Figure 3.28, respectively. 

4) There was one independent component (IC2) which was found to contain no useful 

information regarding the reference spectra of any of the constituent compounds. As 

with PCA, this poses a serious problem when attempting to identify reference spectra 

in situations when such reference spectra are unknown a priori. This IC is shown in 

Figure 3.29. 
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Figure 3.23: Plot of the 1st IC and the Reference Spectrum of the API 
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Figure 3.24: Plot of the 5th IC and the Reference Spectrum of the API 
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Figure 3.25: Plot of the 6th IC and the Reference Spectrum of the Avicel 
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Figure 3.26: Plot of the 3rd IC and the Reference Spectrum of the DCP 
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Figure 3.27: Plot of the 7th IC and the Reference Spectrum of the Explotab 
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Figure 3.28: Plot of the 4th IC and the Reference Spectrum of the MgSt 
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Figure 3.29: Plot of the 2nd IC 

 

Careful analysis of the components identified using PCA and ICA suggest that ICA 

provides the clearer differentiation of the reference spectra. Furthermore, when ICA was 
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applied, all the reference spectra were identified and only one of the seven components 

contained information which did not appear to be related to the reference spectra. In 

contrast PCA failed to identify one of the reference spectra and three of the eight 

components contained information unrelated to the reference spectra.  

 

For PCA and ICA to gain wider acceptance in the applied spectroscopy community it is 

important to address a number of practical issues that hamper their effectiveness. In 

particular, choosing the number of components retained in the model and also 

differentiating between those components that carry relevant information and those that 

depict mainly noise are non-trivial tasks. This is particularly true in those circumstances 

for which the number of constituent compounds and/or the shapes of the reference spectra 

of the constituent compounds are unknown. Also, the issue of dealing with inevitable 

peak shifts present in measured spectra remains to be comprehensively addressed.  

 

3.3.3 Image Maps 

The production of an image of a tablet describing the distribution of all the constituent 

compounds would be of great benefit to the pharmaceutical industry [42].  

 

Having identified the reference spectra for the individual constituents, it is possible to 

construct a map showing the relative distribution of the individual compounds in the 

tablet. Given the improvement in using ICA rather than PCA, only the image maps 

produced using ICA are provided here. 

 

Using the appropriate ICs from the developed ICA model, the relative concentrations of 

the five constituent compounds were determined for all 6000 pixels. These samples 

covered an area of 22  2mm  on the tablet. The image of each component is obtained 

according to the concentration of corresponding constituent compounds. Because the 

reference spectrum for the API was captured by the 1st and the 5th IC, the concentration 

of the API is calculated as the addition of the weights of the 1st and the 5th IC.  
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In order to illustrate the level of spatial distribution of the constituent compounds, spatial 

distribution images corresponding to the score of each IC are deployed and shown in 

Figure 3.30. Note that pixels coloured white represent those segments of the tablet for 

which a particular score had a large value (i.e. high concentration of the associated 

compound) and pixels coloured black represent segments of the tablet with small score 

values (i.e. low concentration of the associated compound). 

 

Figure 3.30 shows the score images of IC1 and IC3 to be very similar, which is 

unsurprising since they both relate to the same constituent compound (API) although 

their loadings are slightly shifted versions of each other. Hence, it is observed that a slight 

shift between the loadings of IC1 and IC3 does not seem to have a consequential impact 

on the resulting image maps. Score images of IC1 (API) and IC4 (MgSt) appear to be 

related even though there is an insignificant overlap between the corresponding reference 

spectra of API and MgSt, as shown in Figure 3.13. Hence, the similarity of these score 

images indicates that the spatial distributions of these two compounds may be similar. 

 
Figure 3.30: Score Images of the ICA Model 

Finally, a composite image where the images for all compounds are shown to give a 

better understanding of the distribution of each compound is also identified. To make a 

composite image, each component is given a single colour. In a composite image, each 
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pixel is allocated to one constituent compound. Thus, the binarization threshold for each 

compound was selected such that the overall percentage of pixels allocated to that 

particular compound is close to the percentage concentration of that compound in a tablet. 

There are 6000 pixels in the tablet, and the composition of the tablet was as follows: 

Avicel at 48% w/w; API at 24% w/w; DCP at 24% w/w, Explotab at 3% w/w; MgSt at 

1% w/w. Thus, the numbers of pixels allocated to Avicel, API, DCP, Explotab and MgSt 

are 2880, 1440, 1440, 180 and 60 respectively. If the thresholds for all compounds are 

selected simultaneously, some pixels will be allocated to two or more compounds, and 

some pixels will not be allocated to any compounds. To solve this problem, the low-

weight compounds such as Explotab and MgSt pixels are firstly granted sufficient 

numbers of pixels, then high-weight compounds such as API, DCP and Avicel are 

granted sufficient numbers of pixels. 

 

The basic threshold selection process is shown below (from low-weight compound to 

high-weight compound): 

1) The threshold for MgSt is firstly selected to make sure that the number of MgSt 

pixels with values above this threshold is 60.  

2) In the remaining pixels, 180 are allocated to Explotab by selecting an appropriate 

threshold. 

3) In the remaining pixels, 1440 are allocated to DCP by selecting an appropriate 

threshold. 

4) 1440 are allocated to API by selecting an appropriate threshold. 

5) 2880 are allocated to Avicel by selecting an appropriate threshold. 

 

After the threshold selection process, each pixel in the tablet is allocated to a unique 

compound.  

 

A composite image map showing the gross spatial distribution of all five constituent 

compounds is shown in Figure 3.31. There is more than one pound in a pixel. In this 

image map, a pixel is assigned to a compound because this compound is the main 
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compound in this pixel. This is an illustrative map showing the distribution of the 

compounds, and it is not a map which shows the actual distribution of the compounds. 
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Figure 3.31: Image Map of all the Constituent Compounds 

 

By observing Figure 3.31 it appears that Avicel and API are the most abundant 

compounds present in the tablet while Explotab and MgSt appear to be the least abundant 

constituents. This finding is expected due to the fact that the threshold concentration for 

each constituent compound was determined from knowledge of the absolute 

concentrations of each of the compounds within the tablet. Also, note that Figure 3.31 

shows the most prevailing compound in each pixel rather than the only compound present 

in each pixel. Hence, it does not provide information regarding each compound’s spatial 

distribution. 

 

3.4 Summary 

This chapter has briefly described the algorithms of PCA and ICA, and applied these 

techniques to two simulated sets of data. This study was used to illustrate how the 

algorithms work when applied to spectral data. Following this, the relative abilities of 

PCA and ICA to infer reference spectra of the five constituent compounds present in a 

common pharmaceutical tablet was compared. In this study, 6000 Raman observations 
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were made of a single tablet and ICA and PCA were applied to this data. The analysis 

showed the relative abilities of PCA and ICA to identify the constituent compounds from 

the data. ICA was able to identify the reference spectra of all five constituent compounds 

within this tablet, whereas PCA was only able to identify four, missing the most 

concentrated constituent. Finally, the spatial distribution of each of the five constituent 

compounds was estimated using the results of the ICA analysis and presented in a clear 

graphical form. This provided a gross distribution of the constituent compounds in the 

tablet. 
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4 Trajectory Tracking of Batch Processes 
This chapter addresses the issue of quality control in the pharmaceutical industry by 

incorporating NIR measurements as feedback information in process control systems. 

Two approaches to this are proposed, each utilizing Model Predictive Control (MPC) 

technology, but in each case different control variables are used. The proposed 

approaches are applied to control quality in a simulated chemical batch reactor. The 

performances of the two controllers are compared with the performance achieved by a 

control system which does not feedback the NIR measurements. 

 

This chapter is divided into the following sections: 

1) Description of Model Predictive Control (MPC) algorithm; 

2) Introduction to the model of the batch reactor used in this study; 

3) Presentation of the proposed trajectory tracking methods; 

4) Comparison of the performance of the two control methods; 

5) Summary of the chapter. 

 

4.1 Model Predictive Control (MPC) 

Model predictive control (MPC) [95] is an advanced control technique widely applied in 

industrial process control. It has the following advantages in process control [127]: 

1) It handles multivariable control, multi-input multi-output processes naturally. 

2) It can take account of actuator limitations. 

3) The control concepts are very intuitive and the tuning straight forward. 

4) It allows operation closer to constraints compared with conventional control, which 

frequently leads to more profitable operation. Remarkably short pay-back periods 

have been reported. 

5) Control update rates are relatively low in these applications, so that there is sufficient 

time for the online computations. 

6) Process constraints can be treated readily in the optimization process. 
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Based on these properties, MPC is employed in this chapter in the two proposed methods 

for controlling the quality of batch processes. MPC is now described in further detail.  

 

MPC relies on a model of the plant, which is typically obtained using system 

identification techniques. It utilizes this model to predict the future response of the plant, 

and then attempts to optimize plant behavior by adjusting a sequence of future 

manipulated variable changes. Only the first manipulated variable change is applied and 

the optimization procedure is repeated at the next control interval.  

 

MPC has been applied in many different areas. Zhu et al. [128], for example, applied 

linear model predictive control (LMPC) to control large-scale gas pipeline networks. The 

approach was evaluated using a simulated industrial-scale oxygen pipeline network. 

Kiran and Jana [129] applied MPC to control the feed rate in a fed-batch yeast 

fermentation process. In [130], MPC techniques were applied to optimize oil yield. The 

process was identified using multivariable methods and a predictive controller was 

implemented on the real plant. Improved oil yield and extraction performance was 

achieved using the control technique. In [131], MPC was combined with a knowledge 

based control system to control the flow rate of each reflux in a petroleum plant. The 

combined control system achieved satisfactory performance when controlling the 

pressure in the plant. To obtain a comprehensive understanding of MPC algorithms and 

their applications, several textbooks are available  [127, 132-136].  

 

MPC operates by tracking one or more control variables to their set point while 

maintaining the manipulated variables within specific ranges.  The basic concept for 

MPC is shown in Figure 4.1. 
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Figure 4.1 Basic Concept for Model Predictive Control [95] 

 

The implementation of MPC consists of three steps [95]: 

 

1) The future outputs Pjjky ...1),( 


 over the prediction horizon P  are predicted at 

each sampling instant k . These predictions are based on the process model and 

future control signals 1...0),( 


Mjjku . 

2) A set of future control signals 1...0),( 


Mjjku  for the control horizon M are 

calculated at each sampling instant k  using the predicted future outputs and set point. 

The objective is to keep the future outputs as close to the set point as possible.  

3) Only the first control signal )(ku


 is sent to the process. In the next sampling instant 

1k , the same procedure is performed, and the control signal )1( 


ku  is obtained. 

 

To identify the necessary control moves subject to process constraints, u  is determined 

such that it minimizes the quadratic objective: 
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subject to the constraints: 

1,...,2,1,0)( maxmin  Mjujkuu                      (4.2) 

1,...,2,1,0)( maxmin  Mjujkuu                         (4.3) 

1,...,2,1,0)( maxmin 


Pjyjkyy                         (4.4) 

where, )( jky sp   is the reference trajectory, )(1 jQ  and )(2 jQ  are the j th elements in 

the weighting matrices 1Q  and 2Q . P  and M  are the prediction and control horizon 

respectively. The weighting matrices, prediction horizon and control horizon are the 

important factors that influence the performance of MPC algorithm. The weighting 

matrices are selected according to the relative importance of the variables, with the most 

important variable typically having the largest weight. In this work, the weight matrices 

1Q  and 2Q  are selected as I  and 0 separately. The prediction horizon P  and control 

horizon M   are selected as 100 and 10 separately. 

 

4.2 Batch Reactor Model 

The batch reactor process is shown schematically in Figure 4.2 [137]. Steam is used to 

heat up the reactor, while the coolant is used to cool down the reactor. The reactor 

temperature is affected by disturbance variables, including the reactant feed temperature 

and the rate at which the reaction in the vessel proceeds. The jacket temperature, jT , is 

controlled using a proportional controller, which switches between providing cooling 

water or steam to the jacket depending on the jacket temperature set point, jspT . The 

reactor temperature, rT , is controlled by regulating the jacket temperature set point, jspT , 

using an outer, or primary controller. In this chapter, for simplicity, proportional-integral-

derivative controller is used.  

 

Batch reactors have nonlinear characters and they operate over a wide temperature range. 

An optimal temperature profile is the precondition of manufacturing good quality product. 
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Optimal temperature profiles typically consist of heating up the reactor in the initial phase, 

maintaining the reactor temperature at a specific temperature for an appropriate amount 

of time and then cooling down the reactor. Temperature control of batch reactor can be a 

difficult task because the process is nonlinear and the operating state is not fixed. The 

reactor temperature may run away if heat generated exceeds the cooling capacity of the 

reactor, which can cause great risk to the plant personnel and equipment. Thus, the rate of 

change of reactor temperature should be carefully controlled. Cott and Macchietto [138] 

used generic model control (GMC) to track the reactor temperature in this particular 

batch process. Dual-model (DM) controller was used to achieve a minimum time control 

strategy in tracking reactor temperature by Shinskey [139]. The reactor temperature 

reaches the set point by maximum heating the reactor, and the error was reduced by 

maximum cooling the reactor. The PID controller was used to regulate the reactor 

temperature while it was in the set point.  

rT

jT
jspT

rV rQ

 
Figure 4.2 A Batch Reactor with a Reactor Temperature Control System (TC: Temperature Controller) 

[137] 

 

The reaction taking place in the batch reactor, to be studied in this chapter is as follows 

[138]. 
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CBA  ; DCA                                               (4.5) 

where A , B  are the raw material, C  is the desired product and D  is the unwanted 

byproduct. The operating objective is to maximize the production of C  and minimize the 

production of D . 

 

The model equations are shown below:  

21 RR
dt

dM A                                                   (4.6) 

1R
dt

dM B                                                      (4.7) 
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dt
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where the constant parameter values of the model are as follows: 

CkmolkcalCPA  /0.18  

CkmolkcalCPB  /0.40  

CkmolkcalCPC  /0.52  

CkmolkcalCPD  /0.80  

kmolkcalH /0.100001   

kmolkcalH /0.60002   

CkgkcalC p  /45.0  

CkgkcalC pj  /45.0  

CmkcalU  2min/76.9  
3/0.1000 mkgj   

8057.201
1 k  11  skmol  

100002
1 k  11  skmol  

9057.381
2 k  11  skmol  

170002
2 k  11  skmol  

36921.0 mV j   

224.6 mA   

min2.0t  

min0.31   

kgWr 0.1560  

 

The NIR spectra for A , B , C  and D  are acquired from [140]. 
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4.3 Control Methodology 

4.3.1 Cascade Control (CC) 

The control systems that are proposed in this chapter are built above standard feedback 

control mechanism. [95] showed that the batch reactor studied here can be regulated 

using a cascade controller. Such a strategy is applied in many industrial batch control 

systems and was therefore considered a sensible low level control system to adapt in this 

work. Reactor temperature is typically controlled by manipulating the flow of a coolant 

or steam through a jacket surrounding the reactor. Feedback control takes action to 

correct any deviation in the controlled variables from their desired set-points. The 

disadvantage with feedback control is that corrective action is only taken after the 

controlled variables deviate from their set points. For processes that have large time 

constants, cascade control, is often applied. Cascade control consists of two control loops: 

the primary and secondary loops. The secondary control loop is able to identify the 

disturbances quality and take actions to reduce its influence one the controlled variable.  

 

The structure of cascade control for the batch reactor is shown in Figure 4.3. The primary 

control loop, also known as the master loop, regulates the reactor temperature by 

adjusting the jacket temperature set-point. The secondary control loop, known as the 

slave loop, regulates the jacket temperature by manipulating the flow of either coolant or 

steam into it. Hence, the manipulating variable of the master control loop is the set-point 

for the slave control loop. 

 
Figure 4.3 Control of Reactor Temperature Using CC System 
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In this work, a PI controller was used in the slave loop while a PID controller is 

employed in the master loop, as this was found to achieve good temperature control in the 

simulation. The proportional gain and integral gain used in PI controller were 10.7574 

and 53.4882 separately. The proportional gain, integral gain and derivative gain used in 

PID controller were 13, 28.658 and 0.42884 separately. 

 

Note that in the CC system described above, product quality is controlled implicitly, 

through the regulation of reactor temperature. Unfortunately, this type of control structure 

is unable to cope with disturbances that affect the underlying relationship between the 

reactor temperature and the product quality. As a result, the temperature profile required 

to provide a product of the correct quality may change. Without knowledge of an 

‘optimal’ temperature profile required to meet product quality specifications, the CC is 

likely to result in unsatisfactory product quality. This is demonstrated later in this chapter. 

 

4.3.2 Wavenumber-Based MPC Control (Wn-MPC) 

As discussed in Chapter 2, spectroscopic instrumentation is being increasingly used in 

batch processes to provide measurements that are in some way related to product quality. 

By incorporating these measurements, as feedback information, into the control system, 

product quality can be regulated more explicitly, compared with the traditional CC 

scheme. One possible control system structure that incorporates NIR spectra as feedback 

information is shown in Figure 4.4. 

 
Figure 4.4 Basic Structure of Wn-MPC Control 
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This proposed control structure incorporates the CC system from Figure 4.3 and 

augments it with an additional outer control loop, namely the MPC control loop. The 

manipulated variable of the MPC controller is the reactor temperature set-point while the 

controlled variables are the intensities of the NIR spectra at a particular set of 

wavenumbers. Hence, within this control system structure, the CC system can be viewed 

as a slave controller with MPC as a master controller. This control system structure will 

be referred to in this thesis as Wn-MPC.  

 

The reference profile for the wavenumber is obtained by collecting NIR spectra from a 

‘nominal’ or ‘golden’ batch, This batch will have progressed with no major disturbances 

using the standard CC control scheme and would be considered to be an ‘ideal’ batch. 

 

Since each wavenumber in the NIR spectra represents a candidate variable to be used as 

feedback information, there may be hundreds of potential controlled variables. Therefore, 

a serious practical problem that arises when attempting to implement Wn-MPC is the 

decision as to which wavenumbers should be regulated by the control system. The limited 

number of manipulated variables available in this system will prevent the entire NIR 

spectra being controlled explicitly. Currently, there are no clear guidelines as to which 

wavenumber should be selected for control purposes and therefore the sensible selection 

of appropriate wavenumbers is investigated in this chapter. 

 

4.3.3 PCA Score-Based MPC Control (Sc-MPC) 

In order to incorporate information from the entire spectral measurements into the 

feedback signal, a modified control system structure was used, as shown in Figure 4.5. 
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Figure 4.5 Basic Structure of the Sc-MPC Control 

 

This control scheme differs from Wn-MPC in that it pre-processes the feedback 

measurement using PCA. The result of the PCA processing is a small set of variables, or 

scores, that contain information related to all of the measured wavenumbers. The first PC 

captures the most of the variances in the dataset. ICA identifies the independent variables 

in the dataset, and each IC only captures a small variance in the dataset. Thus, PCs are 

used here. This is in contrast to Wn-MPC where the feedback information relates to only 

a select number of wavenumbers.  

 

In this chapter it is assumed that a PCA model is constructed using NIR spectra collected 

from a nominal batch. This nominal batch is run in the absence of any major disturbances 

using CC scheme. Hence, the resulting NIR spectra are assumed to represent a reference 

profile that is to be replicated by Sc-MPC. 

 

4.4 Case Study 

The three different control systems, described in Section 4.3, were evaluated by 

introducing a disturbance into the simulation and observing the response of the control 

loop system. In this study the disturbance was chosen to be a reduction in the value of the 

reaction rate constant 1k  by 8%. The objective of the three methods was to regulate the 

end-point NIR spectra to its nominal values, as shown in Figure 4.6. 
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Figure 4.6 Nominal NIR Spectra of End Product 

 

4.4.1 Prediction Model Identification 

The main feature of MPC is that it forecasts process behavior and then determines future 

manipulated variables. The forecasting is based on the process model. Therefore, to 

develop the MPC scheme it is necessary to build a dynamic model relating the 

manipulated variables to the controlled variables. In this study an autoregressive with 

exogenous terms (ARX) model [141] was used. The ARX model is simple in structure 

and although only linear, has been shown in many studies to provide acceptable 

performance when used with ARX system [142, 143]. In all the studies in this thesis, 

recursive least squares (RLS) was used to identify the model. RLS has been shown to 

provide excellent identification capabilities, particularly for MPC application [144]. The 

training data for the model was obtained using the CC system structure, shown in Figure 

4.3. To excite the process dynamics, the reference temperature trajectory was perturbed 

for three batches by adding a PRBS signal of amplitude 0.1 C0 and switching time of 60 

seconds. In this case study ARX based prediction models were developed with 2yn  

and 80un  using Akaike information criterion [145]. The data-driven identification 

method of RLS was used to develop dynamic models for both Wn-MPC and Sc-MPC 

controllers. In cross validation tests using an unseen data set from 10 further batches, 

2yn  and 80un  was found to provide the most accurate model. 
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4.4.2 Wavenumber Selection 

In the case of Wn-MPC, candidate controlled variables were taken to be those 

wavenumbers that corresponded to a local peak in the measured NIR spectrum. In this 

case study the wavenumbers corresponding to local peaks in the NIR spectra and, 

therefore, representing the candidate controlled variables were 2, 77, 98, 127, 161 and 

232, as illustrated in Figure 4.7.  
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Figure 4.7 Selection of Spectral Peaks As Controlled Variables  

 

For each of these wavenumbers, a prediction model was identified and the corresponding 

MPC controller was constructed and evaluated. The corresponding controllers are 

referred to with the chosen wavenumber written within brackets following the label Wn-

MPC. For example, Wn-MPC(127) relates to the Wn-MPC controller that utilizes 

wavenumber 127 as the controlled variable.  

 

4.4.3 PCA Model Development 

A PCA model was developed using NIR spectra collected from a single nominal batch.  

The first PCA score captured 93.8% of the variation present in the NIR spectra and was 

used as a reference trajectory in the subsequent implementation of Sc-MPC controller. 

The loadings vector associated with the first PCA score was then used in real-time to 

compute a score value from the measured NIR spectra. 
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4.4.4 Results and Discussion 

For each controller (CC, Wn-MPC and Sc-MPC) the process was perturbed using the 

disturbance described in Section 4.4. The resulting NIR spectra for each of the control 

systems, compared with the reference spectrum are plotted in Figure 4.8 and Figure 4.9. 

 

Figure 4.8 shows the NIR spectra obtained when CC, Sc-MPC and Wn-MPC(77) were 

used to regulate the process. Sc-MPC can be seen to outperform both CC and Wn-

MPC(77). In fact, the NIR spectrum obtained when using Sc-MPC controller was found 

to be very similar to the reference spectrum, as shown in Figure 4.8. On the other hand, 

both CC and Wn-MPC(77) clearly failed to reject the disturbance as evidenced by 

considerable deviation of their respective NIR spectra from the reference spectrum.  
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Figure 4.8 NIR Spectra of End Product Obtained When Using CC, Wn-MPC(77) and Sc-MPC 

 

The reason for the difference in performance between CC and Sc-MPC lies in the fact 

that the CC control system does not consider the NIR spectra. Hence, its reference 

temperature profile is not adjusted to account for the presence of the disturbance, which 

has modified the underlying relationship between temperature and product quality. In 

constrast, Sc-MPC regulates the NIR spectra directly. The results also show that Wn-

MPC(77) also provided poor control performance. This was because the spectral data 

contained in wavenumber 77 appeared not to be sufficient to characterize the entire NIR 

spectrum.  
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The performances obtained by controlling NIR trajectories at different wavenumbers (77 

127 161) using Wn-MPC differed significantly, as shown in Figure 4.9. This figure 

shows that the controllers regulate the spectra around the specific wavenumber, for which 

they were designed, but that errors are introduced at other wavenumbers. 
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Figure 4.9 NIR Spectra of End Product Obtained When Using Wn-MPC(127), Wn-MPC(161) and Wn-

MPC(77) 

 

Wn-MPC controller was developed to regulate every wavenumber. The sum of the 

squared errors of the NIR spectra and its nominal values when using Wn-MPC for each 

wavenumber are calculated and displayed in Figure 4.10. This figure shows a large 

variation in performance achieved by Wn-MPC controllers that utilise different 

wavenumbers as their controlled variables. This suggests that the performance of Wn-

MPC is very much reliant on the selection of the wavenumber which is to be controlled. 

As such, the performance of this controller is likely to be very unreliable. 
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Figure 4.10 The Sum of Square Errors (SSQ) by Wn-MPC at Different Wavenumbers 

 

Even if the Wn-MPC is used with an optimally selected wavenumber, which is 

wavenumber 127 in this particular case study, the resulting control performance was 

found to be very similar to the performance of the Sc-MPC controller. This is 

demonstrated in Figure 4.11 where the NIR spectra displayed were obtained when the 

process was being controlled using Sc-MPC and Wn-MPC(127).   

 

The improvement in performance delivered by Wn-MPC(127) is not considerable and the 

trial-and-error procedure involved in selecting this wavenumber is likely to be 

prohibitively time-consuming and expensive. On the other hand, Sc-MPC delivered 

performance that was similar to that of the Wn-MPC(127) controller, but did not require 

any trial and error selection of control variable. Hence, Sc-MPC controller was found to 

require minimal user interaction when selecting an appropriate controlled variable while 

also delivering a highly satisfactory performance. 
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Figure 4.11 NIR Spectra of End Product Obtained When Using Wn-MPC(127) and Sc-MPC 

 

4.5 Summary 

This chapter investigated the ability of two different control strategies to regulate a 

simulated batch reactor using the NIR measurements in the feedback loop. One of the 

controllers, Wn-MPC used the spectral intensity at a specific wavenumber (spectral 

channel) corresponding to a peak in the NIR spectra as the single measurement feedback 

to the controller. The other controller used the multivariate statistical tool, Principal 

Component Analysis (PCA), to extract and condense the main features present in all of 

the wavenumbers into a single composite variable that was then controlled. This 

controller was referred to as Sc-MPC. The performance of these controllers was 

compared with a more traditional batch control strategy – cascade control. This controller 

was found to be inadequate when disturbances were introduced that altered the 

underlying relationship between reactor temperature and product quality.  

 

By implementing the three controllers on a simulated batch reactor, it was observed that 

Sc-MPC achieved satisfactory control while also requiring no user interaction when 

deciding on the variable to be controlled. On the other hand, the performance achieved by 

Wn-MPC was found to be highly dependent on the choice of the wavenumber that was to 

be controlled. Due to the lack of rigorous guidelines when selecting appropriate 
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wavenumber and the resulting trial and error approach necessary to determine optimal 

wavenumber, it is questionable whether Wn-MPC can be used as a practical solution. 



91 

5 End-point Control of Batch Processes 
This chapter studies the application of an end-point control method for incorporating NIR 

spectral measurements in a feedback control strategy for batch processes. The benefit of 

the end-point controller is that it can be used to regulate NIR measurements across all 

wavenumbers, rather than a composite, or specific selection of the wavenumbers, as 

investigated in Chapter 4. The end-point controller is applied to a simulated batch reactor, 

where its response to a reaction rate and set point change is investigated. The 

performance of this controller is also compared to that achieved by the PCA Score-Based 

MPC Controller (Sc-MPC). 

 

This chapter is divided into the following sections: 

1) Description of partial least squares and the end-point control algorithm; 

2) Introduction to the proposed control methodology – PCA Score-based MPC control 

(Sc-MPC) and end-point control; 

3) Application of PCA Score-based MPC controller (Sc-MPC) and end-point controller 

to a simulated batch process; 

4) Summary of the chapter. 

 

5.1 Preliminary Methodology 

Quality control is very important in batch processing. In Chapter 4, NIR measurements 

were fedback to a control system that regulated quality in a simulated batch process. In 

that control system, the intensity of the NIR measurement at a single wavenumber was 

selected as the variable to be controlled. Although this control system was found to 

perform reasonably well, errors were introduced in the NIR measurement at non-

controlled wavenumbers. This suggests that the control system cannot ensure that all 

product quality requirements will be met. To ensure the final product quality 

requirements are met, the entire NIR spectrum should be controlled. This chapter 

investigates an end-point control algorithm which is applied to control the entire NIR 

spectrum. The performance achieved by the end-point controller is compared with that of 
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Sc-MPC, which condensed the information in the NIR measurement using PCA and then 

regulated a single score. To begin, the end-point control algorithm and the partial least 

squares (PLS) algorithm used in model building are described.  

 

5.1.1 Partial Least Squares (PLS) 

Partial least squares (PLS) [61] is a method used to find a linear regression model by 

projecting the predicted variable matrix Y  and the observed variable matrix X  to a latent 

variable space. Identification then takes place in this score space. The model for PLS is 

shown in Equations (5.1) and (5.2). 
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where T  is a matrix of the PLS scores which capture most of the variability in the data. 

P  and Q  are loading matrices for X  and Y , respectively. E  and F  are the residual 

errors. np  and nx  are the number of latent variables and dimension of matrix X , 

respectively. 

 

Several algorithms have been proposed for calculating the PLS model parameters. The 

most popular method is the Non-linear Iterative Partial Least Squares (NIPALS) 

algorithm [146]. In NIPALS, a pair of scores is obtained by decomposing X  and Y . The 

predicted variable matrix X  and observed variable matrix Y  are deflated by the variance 

captured by the existing scores. The remaining data matrices are used to acquire the next 

pair of scores. Another method – Straightforward Implementation of a Statistically 

Inspired Modification of the Partial Least Squares (SIMPLS) [147] – is also a widely 

used algorithm for calculating PLS models. The advantage with this technique is that it is 

faster in the calculation and thus saves time. In this work, SIMPLS was applied. 

 

A particular challenge when using PLS is identifying an appropriate number of scores or 

latent variables. Several methods have been proposed for helping with this, of which 
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cross validation [45] is the most commonly applied, and was the method applied in this 

study. 

 

5.1.2 End-Point Control Algorithm 

Flores-Cerrillo and MacGregor [5] proposed a method of end-point quality control. In 

their controller, the quality of the end-product was regulated by adjusting the trajectory of 

the manipulated variables in a reduced space of latent variable models. This controller 

was referred to as end-point control. The end-point control algorithm proposed by Flores-

Cerrillo and MacGregor [5] is described in more detail in this section. 

 

Model Building 
The model used in end-point control is obtained using PLS and the dataset used to 

identify the model must contain data that is representative of the process being studied. In 

other words, the dataset should contain data collected while the process is being excited. 

The most appropriate method for exciting batch processes is an open research question. 

In this work, PRBS was applied, which is consistent with the work of Flores-Cerrillo and 

MacGregor [5]. The dataset used for identification should be arranged into a three 

dimensional array X , and a two dimensional matrix Y  ( MK  ), as shown in Figure 5.1.  

 
TX  is a data matrix composed of online process variables T

onX , offline measurements 

T
offX  and manipulated variables T

cu . T
onX , T

offX , and T
cu  consist of l , r  and n  variables 

respectively. In Figure 5.1,  
jfonon

T
jon xxX ,1,, ,  ,  

sgoffoff
T

soff xxX ,1,, ,   and 

 
mwcc

T
mc uuu ,1,, ,   represents, respectively, f on-line measurements for the j th 

variable, g  off-line analysis for the s th variable, and w  manipulated variables for the 

m th variable.  

 

As mentioned in Chapter 3, most statistical methods are suitable for two dimensional 

datasets only. It is therefore necessary to convert the three dimensional dataset into a two 
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dimensional dataset. In this work, the three dimensional X matrix is unfolded into a two 

dimensional ( NK  ) matrix, as shown in Figure 5.1, where K  is the number of batches, 

and nwrglfN  . 
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K K K
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Figure 5.1 Unfolding of Database for Model Building [5] 

 

Control 
Following the development of the model, the control system can be formulated. Flores-

Cerrillo and MacGregor [5] proposed using decision points during the batch. At each 

decision point, a forecast of the end-point quality was made. If this estimate indicated that 

quality requirements would not be met then appropriate control action was taken.  

 

At decision point i , the end-point quality is predicted using the PLS model: 
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where T
imeasuredmX

,,
 and T

idimplementecu
,,

 are the measured variables and implemented 

manipulated variables in the period ( i 0 ). futuremX ,  and futurecu ,  are the future 



5. End-point Control of Batch Processes                                                                                                                         95 

 

variables and the future manipulated variables in the period fi  1 , i.e. in the 

remainder of the batch. fuguremX ,  is obtained using the PLS model and the missing data 

algorithms available in the literature [148]. Single Component Projection (SCP) [149] is 

the simplest method for missing data prediction and was the technique applied in this 

Chapter. W  and Q  are projection matrices obtained from the PLS model. presentt


 is the 

projection of the X  matrix onto the latent variable space. 


y  is the predicted output.  

 

Following the prediction procedure, necessary changes in the scores, t , are identified 

which will ensure that the predicted end-point measurement will match the set-point, spy . 

Flores-Cerrillo and MacGregor [5] proposed identifying the value of t  which 

minimized the following cost function.  
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where 1Q  and 2Q  are the diagonal weighting matrices for the variables in y  and t  

respectively. 2T  is the Hotelling’s statistics. as  is the variance of the score at .   is the 

weighting matrix which constrains the regions of the score space. mint  and maxt  are the 

constraints which define the minimum and maximum values for t . This final constraint 

is included to limit the action of the control system. 

 

To identify the value of t  which minimizes Equation (5.5), the vector X  is considered 

to be made up of a series of known trajectories, 1X , and future trajectories, 2X . Where 

 T
dimplementec

T
measuredm

T
ii

uXX ):0(,):0(,1   is the known trajectory during the time interval 

(0: iθ ), i.e. these are the measurements recorded earlier in the batch. 
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T
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uXX ):(,):(,2   is the future unknown trajectory during the time interval 

( fi:θθ ).  The change in the future process measurements, futuremX , , and the manipulated 

variables, futurecu , , can be estimated by inverting the PLS model.  
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where 
T

present
TT ttt



  is the future score. TP1  and TP2  are the loading matrices for TX1  

and TX 2  respectively. 1W  and 2W  are the weighting matrices for TX1  and TX 2  

respectively. The controller then applies the manipulated variable changes contained 

within 2X  until the next decision point is reached.  

 

5.2 Control Methodology 

In the studies undertaken by Flores-Cerrillo and MacGregor [5], the end-point controller 

was used to regulate a single end-point quality measurement. In this chapter, the end-

point controller is applied to regulate the end-point NIR spectral measurements that are 

recorded in the batch simulation introduced in Section 4.4. The performance of the end-

point controller is then compared with that achieved using the Score-Based MPC 

Controller (Sc-MPC). The structure of the end-point controller is described in more detail 

in the following section. 
 

5.2.1 End-Point Control 

The structure of end-point controller is shown in Figure 5.2, which was described in 

[150]. The key difference when compared to Sc-MPC is that the end-point controller 

augments the CC system with an end-point controller while Sc-MPC augments the CC 

system with a conventional MPC controller. The manipulated variable of the end-point 

controller is the reactor temperature set-point while the controlled variables are the 

intensities of the end-point NIR spectrum measured over all wavenumbers. The end-point 

control system adjusts the reactor temperature set point to minimize the difference 

between the estimated end-point NIR spectrum and the reference spectrum, which is 
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obtained from the reference batch. The controller can either act at every sampling instant 

and re-compute the trajectories of the manipulated variables, or as proposed by Flores-

Cerrillo and MacGregor [5], the controller can act at a number of decision points during 

the batch. 

 
Figure 5.2 Basic Structure of End-Point Control ([150]) 

 

The model utilised by the end-point controller was identified using PLS. The data for this 

model was collected from a varying number of batches, each of which had a PRBS signal 

with amplitude 0.2 C  with switching time of 60 seconds applied to the reactor 

temperature set-point. For application to real batch processes, an important factor will be 

the effect that the number of batches of data there are available for model identification. 

Section 5.3.1 describes the effect that increasing the number of batches of data from 3 to 

90 had on the performance of the model and controller. This study found that there was 

limited benefit in using more than 10 batches of data to identify a model and a further 10 

to validate it. Therefore in this section it is assumed that only 10 training batches are 

available. Following the development of the PLS model, the control methodology was 

applied in two stages. The first stage was to predict the values of the future outputs at 

each decision point using online and offline process measurements and MVTs available 

up to the decision point. To predict outputs 


y , future measurements fuguremX ,  needed to 

be estimated. These were computed using the PLS model and the missing data projection 

method of Single Component Projection (SCP) [149]. The second stage of the controller 
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was to determine the necessary control actions to regulate the outputs. The control actions 

were first taken in the latent variable space and then model inversion was used to obtain 

appropriate MVTs. The two-stage procedure was taken at every decision point until the 

batch terminated.  

 

5.3 Case Study 

In this section, the Sc-MPC and end-point controller were compared in terms of their 

ability to regulate the end-point NIR spectrum in the presence of an unmeasured 

disturbance, and also in their ability to track a set point change. 

 

5.3.1 Case Study 1: Disturbance Rejection 

The disturbance considered here was a change in reaction rate 1
1k . Specifically, 1

1k  was 

decreased by 1.5% at the very start of a batch. This represents a typical disturbance which 

may occur on a process such as this. 

 

In Sc-MPC, the model used in the MPC controller had an ARX structure, as described in 

Section 4.4.1, and was identified using the data collected from 10 batches. Similarly, for 

the end-point controller, 10 batches of data were used to build the PLS model. Cross 

validation revealed that the root mean square error of calibration (RMSEC) over the 10 

validating batches did not decrease appreciatively after five latent variables were used, as 

shown in Figure 5.3. It shows that the error keeps reducing! Thus, five latent variables 

were selected when identifying the PLS model. The predicted and actual outputs, in this 

case the NIR spectra at wavenumber 127, for the testing batches are compared in Figure 

5.4. It can be seen that the predicted outputs were different from the actual outputs. 

However, the prediction accuracy was assumed to be acceptable. 
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Figure 5.3 Root Mean Square Error of Calibration (RMSEC) 
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Figure 5.4 The Comparison of Predicted and actual Outputs in the test Data 

 

The resulting NIR spectra at the end-point, obtained when using the end-point controller 

and Sc-MPC during the unmeasured disturbance are compared in Figure 5.5. The NIR 

spectrum obtained by Sc-MPC is similar to the nominal NIR spectra, which is desired. 

However, the NIR spectrum obtained using the end-point controller is significantly 

different from the nominal NIR spectra, illustrating that this controller is unable to reject 

the disturbance.  
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Figure 5.5 Comparison of NIR Spectra at Batch End-point 

 

Figure 5.6 shows the reactor temperature for each of the control systems. This figure 

confirms that the end-point controller makes little change to the reactor temperature 

trajectory. However, Sc-MPC increases the temperature to reduce the impact of the 

disturbance. Sc-MPC adjusts the reactor temperature at every sampling number, while the 

end-point controller adjusts the reactor temperature at decision point 400. 
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Figure 5.6 Comparison of Reactor Temperature Set-Point 
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A number of tests were conducted with varying sizes of reaction rate disturbance. The 

performances of Sc-MPC and the end-point controller for these disturbances are 

compared in Table 5.1. For different reaction rate changes, the sum of squared (SSQ) 

residuals of controlled and nominal NIR spectra for Sc-MPC and the end-point controller 

are provided in Table 5.1. From this table it can be seen that Sc-MPC was able to control 

the end-point NIR spectrum when the reaction rate changes were within a certain range 

between -1.5% and 1.5%. Figure 5.7 shows the performance of the control system when 

the reaction rate was changed by -2%. This figure shows that a significant difference 

exists between the controlled and nominal NIR spectra, indicating the poor performance 

of the controller. 

 

In contrast, SSQ for the end-point controller was large for all reaction rate changes 

investigated. Thus, the end-point controller was unable to reject the disturbances. This 

result might be expected as there is no real feedback in the end-point controller to reflect 

the effect of the disturbance. The end-point controller acts more in a feedforward manner. 
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Figure 5.7 Comparison of NIR Spectra at Batch End-point 

 



5. End-point Control of Batch Processes                                                                                                                         102 

 

Table 5.1  Control Performances of Sc-MPC and the End-Point Controller 

Percentage of Reaction Rate 

Change 

SSQ for Sc-MPC SSQ for the End-Point 

Controller 

-3% 0.8355 8.8246 

-2.5% 0.5140 6.4571 

-2% 0.3261 4.3531 

-1.5% 0.1135 2.5823 

-1% 0.0478 1.2173 

-0.5% 0.0102 0.3323 

0.5% 0.0075 0.2936 

1% 0.0257 1.2767 

1.5% 0.0499 3.0106 

2% 2.5040 5.5547 

 

5.3.2 Case Study 2: Set Point Change 

The performance of the end-point control method in tracking a set-point change is 

demonstrated in this test. The algorithms were first applied to track a set-point change in 

the NIR spectrum at the specific wavenumber of 127, and then to a set-point change 

across the entire NIR spectrum.  

 

Set-Point Change for the NIR Spectrum at Specific Wavenumber 127 
In this case study, the end-point control algorithm was applied to track a set-point change 

in the NIR spectrum at the end point of the batch, at the specific wavenumber of 127. The 

wavenumber of 127 was selected as this was the position where one of the peak 
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intensities was located. In this test the set-point for the NIR spectrum at wavenumber 127 

was increased by 0.01, compared with its nominal value.  

 

In this test, a single decision point was used, with that point occurring at sample number 

400, with each batch lasting for 750 sampling points. The effect altering the decision 

point is discussed in the following section, where it is shown that the decision point of 

400 samples provided the most accurate results. 

 

When this control system was first implemented, the results were very poor. Investigation 

showed that this was because the control system did not consider the constraints on the 

process. For example, the reactor and jacket temperatures can only increase up to a 

maximum rate. Without considering this limit the performance of the control system was 

compromised. Based on dynamic analysis of the simulation, upper and lower limits for 

the rate of change of reactor temperature were set to c/min512 o. and 

c/min75.3 o respectively. For jacket temperature, the upper and lower limits were set to 

be c/min25o and c/min5.37 o respectively. When the rate of change of reactor or 

jacket temperature exceeds the limit, it is constrained to the limit. This is the hard 

constraints that are physically impossible to exceed 

 

Figure 5.8 to 5.16 show the results when using the end-point controller. From these 

figures, the following observations can be made: 

 The controlled and nominal NIR spectra of end product, were obtained and compared 

in Figure 5.8. For clarity, the NIR spectrum between wavenumbers 120 and 135 is 

magnified and is shown in the inset in the lower right corner of the figure. It can be 

seen that the controlled NIR spectrum of end product deviated from the nominal NIR 

spectrum and tracked the NIR set-point change well. The deviation of the controlled 

NIR spectrum at wavenumber 127 from its nominal value was 0.0116, which 

compares well with the set-point change, which was 0.01. The error was caused by 

plant-model mismatch. 

 To achieve the required end-point quality, the controller adjusts the actual reactor 

temperature set point following the decision point. The actual and nominal reactor 
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temperature set-points are compared in Figure 5.9. The actual and nominal reactor 

temperature set-points between samples 380 and 750 are magnified and are shown in 

the inset. It can be see that the actual reactor temperature set-point deviates slightly 

from the nominal reactor temperature set-point. With the adjustment of reactor 

temperature set-point, the reactor temperature also changes accordingly. Figure 5.10 

compares the actual and nominal reactor temperatures, with the period between 

samples 380 and 750 magnified in the inset. A small change between the actual and 

nominal reactor temperature can be observed. 

 To achieve the reactor temperature set-point, the jacket temperature set-point has 

been adjusted. The actual and nominal jacket temperature set-points are compared in 

Figure 5.11. It can be seen that the jacket temperature set-point required a significant 

adjustment. With the adjustment of the jacket temperature set-point, the jacket 

temperature changes accordingly. A comparison of the actual and nominal jacket 

temperatures is shown in Figure 5.12. 

 The limits imposed on the rate of change of reactor and jacket temperatures should 

also be checked. These changes are shown in Figure 5.13 and Figure 5.14 

respectively, and it can be observed that they are all within constraints.  
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Figure 5.8 Comparison of Controlled and Nominal NIR Spectra of End Product, and the Set-Point 
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Figure 5.9 Comparison of Actual and Nominal Reactor Temperature Set-Points (Trsp) 
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Figure 5.10 Comparison of Actual and Nominal Reactor Temperature (Tr) 

 



5. End-point Control of Batch Processes                                                                                                                         106 

 

0 100 200 300 400 500 600 700 800
20

30

40

50

60

70

80

90

100

110

120

Sample Number

Te
m

pe
ra

tu
re

 ( 
C

)

Tjsp
Nominal Tjsp

 
Figure 5.11 Comparison of Actual and Nominal Jacket Temperature Set-Points (Tjsp) 
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Figure 5.12 Comparison of Actual and Nominal Jacket Temperature (Tj) 
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Figure 5.13 Comparison of Change Rate of Actual and Nominal Reactor Temperature (Tr) 
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Figure 5.14 Comparison of Change Rate of Actual and Nominal Jacket Temperature (Tj) 

 

In conclusion, the end-point controller was able to track the set point change in this case 

study. The process variables were adjusted to achieve the set-point change, and they were 

well within the constraints. However, the selection of decision points and the number of 

batches used to identify the model are important to consider.  
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The influence of the number of batches used in modeling was first tested. The set-point 

change chosen was also the same, namely a step change of 0.01 in the NIR intensity at a 

wavenumber of 127. The decision point was initially chosen to be at sample time 400, 

approximately half-way through the batch. The performances of the controller when 

different numbers of batches were used to identify the model are compared in Table 5.2. 

In this study a total of 100 batches of data were made available, and the numbers of 

batches k  selected for model building were 3, 5, 10, 20, 50 and 90. For each test, k  

batches of data were randomly selected to identify the PLS model, and the controller was 

then applied. The difference between the controlled variable, actual NIR spectrum at 

wavenumber 127, and its nominal value, were then calculated. This procedure was 

repeated 20 times, and means and standard deviations of the control performance were 

determined and shown in Table 5.2. This table shows that the difference between the 

actual and nominal NIR values is relatively small. The standard deviations can be seen to 

reduce as the number of batches increases to 10, which means the control performance of 

the control system is more consistent. However, the performance of the controller does 

not improve considerably when more than 10 batches are used to identify the model. This 

suggests that for this study 10 batches is reasonable fro model identification. 

 
Table 5.2. The Comparison of Control Performance with Different Number of Batches 

Number of 

Batches ( k ) 

Mean of difference between NIR 

Spectrum and its Nominal Value 

at Wavenumber 127 

Standard Deviation of difference 

between NIR Spectrum and its 

Nominal Value at Wavenumber 127 

3 0.0112 0.0017 

5 0.0115 0.0024 

10 0.0113 4109244.3   

20 0.0114 4103113.6   

50 0.0115 4101866.3   

90 0.0116 4102389.3   

 

The selection of different decision points is also very important and this too was tested. 

Various decision points were used in the end-point controller and the performance 
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compared, as shown in Table 5.3. This table shows that the performances of the 

controllers were similar, until the decision point was increased to 700. At this point the 

consistency and performance of the controller reduced. The reason for this is that 

selecting a decision point too close to the end of the batch will mean there is insufficient 

time for the process variables to adjust. Although the results when more than one decision 

point is used are encouraging, more work is required to determine whether they would 

provide consistently improved control. This is the subject of future research. 

 
Table 5.3 The Comparison of Control Performance with Different Decision Points 

Decision Points Mean of difference 

between NIR Spectrum 

and its Nominal Value at 

Wavenumber 127 

Standard Deviation of 

difference between NIR 

Spectrum and its Nominal 

Value at Wavenumber 127 

200 0.0118 5103560.2   

300 0.0115 4107777.2   

400 0.0111 4103483.4   

500 0.0111 4109751.5   

600 0.0118 4108148.6   

700 0.0124 0.0019 

[300 500] 0.0114 4109739.2   

[500 700] 0.0113 4102975.6   

[200 400 600] 0.0116 5103067.9   

[500 600 700] 0.0114 4104277.8   

[200 300 400 500 600 700] 0.0116 4101750.2   

 

The performance of the end-point controller when it was applied to track different set-

point changes is shown in Table 5.4. The set-point changes were chosen as -0.015, -0.01, 

-0.0075, -0.005, -0.0025, 0.0025, 0.005, 0.0075, 0.01, 0.015, and 0.02. This table shows 

that control performance is, as might be expected, better for small changes in set-point. 

Further investigation found that the process variables, such as the rate of change of jacket 
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temperature, exceeded constraint limits for the larger set-point changes. For Flores-

Cerrillo’s end-point controller, if the process variables are within the constraints, the set-

point change will be well tracked. However, if the process variables exceed the 

constraints, the values of process variables are constrained and the process variables 

required in the controller are not fully implemented, and thus the performance of the 

controller will deteriorate. This is investigated further in Chapter 6, where a novel end-

point controller which takes into consideration process constraints is proposed, and its 

ability to track larger set-point changes is compared with the Flores-Cerrillo’s end-point 

controller.  

 
Table 5.4. The Comparison of Control Performance for Different Set-Point Changes 

Set Point 

Change 

Mean of difference between 

NIR Spectrum and its 

Nominal Value at 

Wavenumber 127 

Standard Deviation of difference 

between NIR Spectrum and its 

Nominal Value at Wavenumber 127 

-0.015 -0.0085 0.0054 

-0.01 -0.0042 0.0043 

-0.005 -0.0002 0.0032 

0.005 0.0075 4109101.8   

0.01 0.0112 4109964.3   

0.015 0.0148 0.0016 

 

With respect to the ability of Sc-MPC to track a set-point change, the situation becomes 

complicated. To track a change in the NIR end-point set-point, a new trajectory for the 

first score must be determined. If an example trajectory exists, as was the case in the first 

test, then this new trajectory can be applied. However, if a trajectory is unavailable then it 

may be difficult to compute. The trajectory of the first score is a linear combination of the 

trajectories of NIR spectra at different wavenumbers. Therefore, finding the trajectories 

for the NIR spectra at every wavenumber is required which may present difficulties.  
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Set-Point Change for the Entire NIR Spectrum 
To guarantee product quality in a batch process, the entire NIR spectrum of end product 

should be controlled. This section expands the application of the end-point control 

methods to a more complicated situation, where the set-point of the entire end-point NIR 

spectrum changes. 

 

The model used for the controllers was once again identified using the PLS algorithm. On 

this occasion, the output used in the training data was the entire NIR spectrum of the end 

product. In other words there were 256 output variables. The number of batches selected 

for model building, as before, was 10. The decision point was also chosen at sample time 

400. The constraints imposed for the process variables were the same as before. In this 

section, the process variables and end-point conditions obtained with the application of 

Sc-MPC and the end-point control methods are compared.  

 

Set-point tracking for the entire end-point NIR spectrum was implemented using the 

previous end-point control method in which the MVTs were manipulated in the reduced 

space of a latent variable model without consideration of constraints. The following 

observations were made using this method: 

 Figure 5.15 shows the actual and nominal NIR spectra of the end product, as well as 

the new set-point for the NIR spectrum. The actual NIR spectrum is almost 

overlapped with the new desired NIR spectrum instead of the nominal NIR spectrum, 

which shows that the set-point change has been tracked successfully.  

 The reactor temperature set-point was adjusted to track the set point change in the 

NIR spectrum. The comparison of actual and nominal reactor temperature set-points 

is shown in Figure 5.16. A small change can be observed between the actual and 

nominal reactor temperature set-points. As a consequence, the actual reactor 

temperature can also be seen to change from the nominal conditions, as shown in 

Figure 5.17. The adjustment of reactor temperature is reasonable. 

 To achieve the reactor temperature set-point, the jacket temperature set-point was 

adjusted. The comparison of the actual jacket temperature set-point and its nominal 

value is shown in Figure 5.18.  
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 To identify the limitation of the process, the rates of change of reactor and jacket 

temperatures are shown in Figure 5.20 and 5.20. It can be seen in these two figures 

that the rates of change of reactor and jacket temperatures were all within the 

constraints. 
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Figure 5.15 Comparions of Nominal NIR, Actual NIR and NIR Set Point  
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Figure 5.16 Comparison of Actual and Nominal Reactor Temperature Set Points (Trsp) 
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Figure 5.17 Comparison of Actual and Nominal Reactor Temperature (Tr) 
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Figure 5.18 Comparison of Actual and Nominal Jacket Temperature Set Points(Tjsp) 



5. End-point Control of Batch Processes                                                                                                                         114 

 

0 100 200 300 400 500 600 700 800
20

30

40

50

60

70

80

90

100

Sample Number

Te
m

pe
ra

tu
re

 ( 
C)

Tj
Nominal Tj

 
Figure 5.19 Comparison of Actual and Nominal Jacket Temperature (Tj) 
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Figure 5.20 Comparison of Actual and Nominal Rates of Change for Reactor Temperature (Tr) 
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Figure 5.21 Comparison of Actual and Nominal Rates of Change for Jacket Temperature (Tj) 

 

5.4 Summary 

This chapter described the application of PCA Score-Based MPC (Sc-MPC) and end-

point control to the quality control in batch processes. The first method regulated a single 

score obtained in the NIR measurement using PCA, while the second method regulated 

the full end-point NIR spectrum. 

 

Detailed comparison of these methods showed that the end-point method could track set-

points very well. However, the performance of end-point method depended on the model 

of the batch and it was unable to cope with unmeasured disturbances effectively. This 

limitation could potentially be addressed by selecting other process variables in the model 

and this is the subject of on-going research. In contrast it was not possible to employ the 

score based controller for set-point tracking but it was able to reject unmeasured 

disturbances very well. 
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6 Quality Control in Batch Processes Using a 
Proposed End-point Controller 

This chapter proposes a novel end-point controller which adjusts the trajectories of 

manipulated variables (MVTs) in the real process space, while taking into consideration 

process constraints. To begin, the disadvantages of the Flores-Cerrillo’s end-point 

controller, in which the MVTs are manipulated by controlling the process in the reduced 

space of a latent variable model, are presented. The two end-point control methods are 

then applied to track set-point changes, and their performances are compared.  

 

This chapter is divided into the following sections: 

1) Presentation of the disadvantages of the Flores-Cerrillo’s end-point controller. 

2) Proposal of a novel end-point controller. 

3) Application of the two end-point controllers to the quality control of a batch process.  

4) Summary of this chapter. 

 

6.1 Disadvantages of the Flores-Cerrillo’s End-Point 
Controller 

The end point control algorithm proposed by Flores-Cerrillo and MacGregor [5] is an 

effective method for controlling product quality in a batch process, however the approach 

assumes that there are no hard constraints on the process variables. Unfortunately, to 

ensure the maximum control performance, it is necessary to consider the process 

constraints. To address the constraints problem, Flores-Cerrillo and MacGregor [151] 

proposed two alternative algorithms. In both of these algorithms, the new MVTs are 

computed such that the change in scores, t , is as small as possible, while the quality 

targets are met and the process constraints are not violated. However, t  is a linear 

combination of different process and manipulated variables and has little physical 

meaning, as shown in Equation (5.3). The constraints on the changes to scores t , mint  

and maxt , are difficult to define. Furthermore, a small change in t  might lead to a 
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significant change in the new calculated trajectory, 2X , and a correspondingly large 

change in the manipulated variables. An illustrative example is shown here.  

 

Suppose the current values of the scores are 0t  and a small change in the scores t  is 

applied. Where 
Tt0 = [1.0894    1.8847   -0.1564    0.4015   -0.1930]                 (6.1) 

Tt = [0.1 -0.2 0 0 0]                                      (6.2) 

The actual values for the new scores 1t  are now: 

TTT ttt 01  = [1.1894    1.6847   -0.1564    0.4015   -0.1930]       (6.3) 

 

Figure 6.1 shows the values of the MVTs calculated by inserting the 0t  and 1t  vectors 

into Equation (5.6). This figure shows that although the t -vector has only changed 

slightly, it has had a significant effect on the calculated MVT. This simple example 

illustrates the danger of solving the control problem in the latent variable space. To 

address this problem, a method is proposed for solving the control problem, using a 

MPLS model, in the real-space. 
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Figure 6.1 Change of Manipulated Variables for t  and 1t  
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6.2 Proposed End-Point Controller 

This section proposes a novel end-point control method which manipulates the MVTs in 

the real space of the manipulated variables, while taking into consideration process 

constraints.  

 

The data requirements and model building procedure are the same as those described in 

Section 5.2.1 for Flores-Cerrillo’s end-point controller. The difference is in how the 

control problem is formulated and solved. The control system, once again, makes use of 

decision points. At each decision point, the end-point outputs are predicted using the 

MPLS model. If the predicted outputs are sufficiently different from the desired outputs 

then control action is taken. The control action is computed to minimize the quadratic 

objectives:  

min )()()()( nominal2nominal1 XXQXXyyQyy T
sp

T
sp 


                 (6.4) 

st TPQXy


  

maxnominalmin XXXX 


 

where P  and Q  are loading matrices in the PLS model, respectively. 


y  and spy  are the 

predicted and desired outputs. 


X  and nominalX  are the predicted and nominal vectors of 

the process variables. 1Q  and 2Q  are the diagonal weighting matrices for the variables in 

y  and X  respectively. minX  and maxX  are the constraints which define the minimum 

and maximum values for nominalXX 


 respectively.  

 

The computation of the quadratic objectives requires all the variables in the vector 

nominalXX 


 to be calculated. The vector nominalXX 


 consists of known trajectories 
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nominal,11


 XX  and future trajectories nominal,22



 XX , 

















 



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nominal,11
nominal

XX

XX
XX . Only 

future trajectories nominal,22



 XX  need to be calculated, as 


1X  is already known.  

 

The minimization of quadratic objectives can therefore be restated as follows: 

min  )()()()( nominal2nominal1 XXQXXyyQyy T
sp

T
sp 


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nominal,22

nominal,11

22
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nominal,22

nominal,11
1 )()(

XX
XX

Q
Q

XX
XXyyQyy

T

sp
T

sp   (6.5) 

The output and input should satisfy the PLS model.    













 



2

1
nominal,22nominal,11nominal

T )()()()(



 TTT
sp XXXXXXyy  

= 2nominal,221nominal,11 *)(*)(  TT XXXX


  

2max,nominal,222min,


 XXXX  

 

where 21Q  is the diagonal weighting matrix corresponding to 1X  

22Q  is the diagonal weighting matrix corresponding to 2X  

T  is the regression coefficient of the PLS model  
T
1  is the regression coefficient relevant to 1X  
T
2  is the regression coefficient relevant to 2X  

nominal,1X  is the nominal value for 1X  

nominal,2X  is the nominal value for 2X  

2min,


 X  and 2max,


 X  are the constraints which defines the minimum and maximum 

value for nominal,22



 XX  respectively.  
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Choosing IQ 1  and 02 Q , gives the minimum variance controller, and the quadratic 

programming objective becomes: 

)()()(
2
1

nominal,22nominal,22nominal,22



 XXfXXHXX TT                 (6.6) 

where 

)(2 22212 QQH T                                      (6.7) 

2111 )(2  QyXf T
sp

TT 


                                (6.8) 

nominal,22



 XX  can be computed by minimizing the quadratic objective Equation (6.6) and 

thus 2


X  can be obtained. Following this, a series of calculated manipulated variables are 

applied to the system to adjust the output to be as close to the desired output as possible. 

 

6.3 End Product Quality Control of Batch Processes 

In this section, the capabilities of Flores-Cerrillo’s end-point controller and the proposed 

end-point controller in regulating the product quality are compared. First, these 

algorithms are applied to track the set point change for the NIR spectrum at a specific 

wavenumber 127. Following this, they are applied to track a set point change over the 

entire NIR spectrum.  

6.3.1 Case Study 1: Control of NIR Spectrum at a Specific 

Wavenumber 

Comparison of Flores-Cerrillo’s End-Point Controller and the Proposed 

End-Point Controller 
The ability to track a set-point change in the NIR spectrum at wavenumber 127 was 

implemented using both Flores-Cerrillo’s and the proposed end-point controllers. The 

decision point was selected at sampling 400. To achieve consistent results, 20 sets of data 

were collected. Each set of data contained the measurements collected from 10 batch runs. 

Based on the results reported in Chapter 5, for each set of data a PLS model was 
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identified using 10 training batches. The controller was then applied to regulate the 

nominal batch through a series of set-point changes to the spectral intensity at 

wavenumber 127.  

 

The results of the control runs are presented in Table 6.1. For each set-point change 

(+0.015 to -0.015) the mean product quality (achieved spectral intensity at wavenumber 

127) is provided, together with the standard deviation of the product quality over the 20 

repetitions. The results in Table 6.1 show that for set-point changes of 0.005, 0.01 and 

0.015, the mean and standard deviation of product quality for the two controllers was 

very similar. Further investigation found that the process variables for the two controllers 

in this case were all within the constraints and similar control performances were 

achieved. However, in tracking the set-point changes of -0.005, -0.01 and -0.015, the 

control performance of the proposed end-point controller was significantly better than 

Flores-Cerrillo’s end-point controller. Further investigation found that the process 

variables for the proposed end-point controller were well within the constraints because 

these were adhered to by the controller. However, the process variables in Flores-

Cerrillo’s end-point controller did not respect the constraints, and thus the process 

variables required were not fully implemented, which introduced errors. Further details 

for the set-point change of -0.01 are now provided. 
Table 6.1 Performance of two End-Point Controllers in Tracking Set-Point Change 

Set-Point 

Change 

Mean Product 

Quality (Flores-

Cerrillo’s End-

Point Controller) 

Standard Deviation of 

Product Quality 

(Flores-Cerrillo’s 

End-Point Controller) 

Mean Product 

Quality (Proposed 

End-Point 

Controller) 

Standard Deviation 

of Product Quality 

(Proposed End-

Point Controller) 

0.015 0.0148 0.016 0.0149 0.019 

0.01 0.0112 410*9964.3   0.0110 410*6.6515   

0.005 0.0075 410*9101.8   0.0065 410*8.6834   

-0.005 410*6862.1   0.0032 -0.0037 0.0011 

-0.01 -0.0042 0.0043 -0.0084 0.0011 

-0.015 -0.0085 0.0054 -0.0138 0.0018 
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For this set-point change, the following observations could be made regarding the two 

controllers: 

 The controlled and nominal end-point NIR spectra compared in Figure 6.2. For 

clarity, the NIR spectrum between wavenumbers 120 and 135 is magnified and is 

shown in the inset in the lower right corner of the figure. It can be seen that the NIR 

spectrum obtained using the proposed end-point controller was closer to the set-point 

than the NIR spectrum obtained using Flores-Cerrillo’s end-point controller. The set-

point change was -0.01 for the NIR spectrum at wavenumber 127. After the 

application of the two controllers, the peak intensity of the NIR spectrum at 

wavenumber 127 had changed by -0.0084 for the proposed end-point controller, and 

changed by -0.0045 for Flores-Cerrillo’s end-point controller. It shows that the 

proposed end-point controller was better at tracking the set-point change than Flores-

Cerrillo’s end-point controller. 

 To achieve the required end-point quality, the controller adjusts the actual reactor 

temperature set point following the decision point. The actual and nominal reactor 

temperature set-points are compared in Figure 6.3. The actual and nominal reactor 

temperature set-points between samples 380 and 750 are magnified and are shown in 

the inset. It can be seen that the actual reactor temperature set-point used in Flores-

Cerrillo’s controller has a slightly bigger adjustment from the nominal value than that 

used in the proposed controller. Figure 6.4 compares the actual reactor temperatures 

obtained using the two controllers and their nominal values, with the period between 

samples 380 and 750 magnified in the inset. The actual reactor temperatures obtained 

using the two controllers both have small changes from the nominal value. It is 

evident that the temperature changes required by Flores-Cerrillo’s are significantly 

larger than those required by the proposed controller. 

 To achieve the reactor temperature set point, the jacket temperature set point has 

been adjusted. The actual jacket temperature set points used in the two controllers 

and their nominal values are compared in Figure 6.5. It can be seen that the jacket 

temperature set point required a significant adjustment for Flores-Cerrillo’s 

controller, while it needed a smaller adjustment for the proposed controller. With the 

adjustment of jacket temperature set point, the jacket temperature changes 
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accordingly. A comparison of the actual and nominal jacket temperatures is shown in 

Figure 6.6. The adjustment of the actual jacket temperature used in Flores-Cerrillo’s 

end-point controller was larger than that used in the proposed end-point controller. 

 The limits imposed on the rates of change of reactor and jacket temperature should 

also be checked. These changes are shown in Figure 6.7 and Figure 6.8 respectively. 

The rate of change of the actual reactor and jacket temperature for Flores-Cerrillo’s 

end-point controller both exceeded the constraints, while those for proposed end-

point controller were within the constraints. 

 Flores-Cerrillo’s end-point controller does not directly consider the process 

constraints in the control algorithm, and it only constrains the process variables when 

the process variables exceed the limits after the control action. Thus, large process 

variables changes are required to achieve good control performance. However, these 

changes are not achievable in the process, and thus the set point of the NIR spectrum 

was not well tracked. However, the proposed end-point controller explicitly 

considers the process constraints in the control algorithm, and thus the process 

variables were well within the constraints. The desired process variable changes 

required to achieve good control performance were fully implemented and thus the 

set point of NIR spectrum was well tracked. 
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Figure 6.2 Comparison of NIR Spectra obtained using two Controllers and the Set-Point 
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Figure 6.3 Comparison of Actual Reactor Temperature Set Points (Trsp) and their Nominal Values 
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Figure 6.4 Comparison of Actual Reactor Temperatures (Tr) and their Nominal Values 
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Figure 6.5 Compariosn of Actual Jacket Temperature Set Points (Tjsp) and their Nominal Values 
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Figure 6.6 Comparison of Actual Jacket Temperatures (Tj) and their Nominal Values 
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Figure 6.7 Comparison of Actual Rates of Change of Reactor Temperature (Tr) and the Nominal Values 
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Figure 6.8 Comparison of Actual Rates of Change of Jacket Temperature (Tj) and the Nominal Values 

 

6.3.2 Control of the Entire NIR Spectrum of End Product 

The tracking of set-point changes over the entire end-point NIR spectrum using the 

proposed end-point controller and Flores-Cerrillo’s end-point controller is compared in 

this section. The decision point was selected again to be at sample number 400. The 

following observations could be made using these methods: 

 Figure 6.9 shows the actual NIR spectra obtained using the two controllers, and their 

nominal values. The actual NIR spectrum obtained using the proposed end-point 

controller was closer to the set points than those achieved using Flores-Cerrillo’s 

end-point controller. 

 The reactor temperature set point was adjusted to track the set-point change in the 

NIR spectrum. The comparison of actual reactor temperature set points used in the 

two controllers and their nominal values are compared in Figure 6.10. The proposed 

end-point controller required a reduced change in the reactor temperature set point 

than that required by Flores-Cerrillo’s end-point controller. The actual reactor 

temperatures used in the two controllers are compared in Figure 6.11. A smaller 
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change can also be observed in the reactor temperature when the proposed end-point 

controller was used. 

 To achieve the reactor temperature set point, the jacket temperature set point is also 

adjusted. The comparison of the actual jacket temperature set points used in the two 

controllers and their nominal values is made in Figure 6.12. The change of jacket 

temperature set point used in Flores-Cerrillos’s end-point controller was sharper and 

more significant than that used in the proposed end-point controller. The jacket 

temperature was also tuned to adapt to the adjustment of jacket temperature set point. 

The actual jacket temperatures and their nominal values are compared in Figure 6.13. 

A smaller adjustment was required in the jacket temperature when using the 

proposed end-point controller.  

 Finally, the limits imposed on the process were checked. The rates of change of 

reactor temperature used in the two controllers and their nominal values are 

compared in Figure 6.14. The rate of change of reactor temperature used in Flores-

Cerrillo’s end-point controller exceeded the constraints, while that used in the 

proposed end-point controller was well within the constraints. In Figure 6.15, the 

rates of change of jacket temperature used in the two controllers and their nominal 

values are compared. The rate of change of jacket temperature used in Flores-

Cerrillo’s end-point controller was sharper and more significant than that used in the 

proposed end-point controller. The reason is the same as that in cast study 1. The 

process variables required to achieve good performance were not fully implemented 

bu Flores-Cerrillo’s controller, thus the set-point change was not well tracked. 
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Figure 6.9 Comparison of NIR Spectra obtained using two Controllers and the new Set Point 
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Figure 6.10 Comparison of Actual Reactor Temperature Set Points (Trsp) and their Nominal Values 
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Figure 6.11 Comparison of Actual Reactor Temperatures (Tr) and their Nominal Values 
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Figure 6.12 Comparison of Actual Jacket Temperature Set Points (Tjsp) and their Nominal Values 
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Figure 6.13 Comparison of Actual Jacket Temperatures (Tj) and their Nominal Values 
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Figure 6.14 Comparison of Actual Rates of Change of Reactor Temperature (Tr) and the Nominal Values 
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Figure 6.15 Comparison of Actual Rates of Change of Jacket Temperature (Tj) and the Nominal Values 

 

The above results show that the proposed end-point controller is better at tracking the 

large set-point change than Flores-Cerrillo’s end-point controller. With the application of 

the proposed end-point controller, the actual process variables are fully implemented and 

good set-point tracking is achieved. However, Flores-Cerrillo’s end-point controller does 

not directly take into consideration process constraints in the control algorithm, and the 

actual process variables are not fully implemented in the process, and thus the 

performance of the controller is reduced. 

 

6.4 Summary 

This chapter has presented two end-point control methods to track set-point changes in 

the NIR spectrum. Flores-Cerrillo’s end-point controller calculates the MVTs in the 

reduced space of a latent variable model. The proposed end-point controller calculates the 

MVTs by controlling in the real space of the process while taking into consideration 

process constraints. The capabilities of the two end-point control methods in tracking the 
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set-point change in the NIR spectrum of end product are compared. The results show that 

the proposed end-point control method is better at tracking the set-point changes.  
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7 Conclusions and Future Work 
This chapter provides conclusions of the work presented in this thesis and suggestions for 

further work which should be explored to extend the results of the thesis. 

 

The chapter is divided into the following sections: 

1) Summary of the main research from the work reported in this thesis. 

2) Suggestions for future work in this field. 

 

7.1 Summary and Conclusions 

This thesis has focused on the application of multivariate statistical analysis methods to 

Raman images of pharmaceutical tablets and various control strategies for application to 

batch processes. Chapter 2 provided a literature review of the multivariate statistical 

analysis methods and batch process control in industrial processes. Chapter 3 addressed 

multivariate statistical analysis methods and their applications in the pharmaceutical 

industry. Different strategies for controlling product quality in batch processes were 

discussed in Chapters 4-6. 

 

7.1.1 Summary of Multivariate Statistical Analysis 

To better understand the process, chemical imaging techniques including NIR 

spectroscopy and Raman spectroscopy are being used with greater frequency in the 

pharmaceutical industry. To extract useful information from the large quantities of data 

these instruments routinely collect, multivariate data analysis methods, PCA and ICA 

were applied to extract the chemical information from the measurements.  

 

Chapter 2 presented a literature review of the chemical imaging techniques and 

multivariate statistical analysis methods. Specific attention was paid to the application of 

multivariate statistical analysis methods in the pharmaceutical industry. 
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In Chapter 3, information regarding the composition of a pharmaceutical tablet was 

extracted using both PCA and ICA. The ability of each of these techniques to extract the  

spectrum and concentration of specific compounds in the tablet was compared and their 

ability to provide a robust method for identifying the composition of pharmaceutical 

tablets assessed. A map showing a visual representation of the gross spatial distribution 

of the constituent compounds was provided.  

 

7.1.2 Summary of Batch Process Quality Control 

Quality control is a key issue in batch processes. Quality control can be achieved by 

controlling several process variables and making them track specified trajectories. An 

overview of quality control in batch processes was given in Chapter 2.  

 

The general problem in batch processes is that fixed process variable trajectories do not 

guarantee consistent product quality. Change in reaction rates or inclusion of a new raw 

material, for example, can introduce new reaction pathways, and cause the quality of the 

final product to change significantly. To address this problem, two control approaches 

where NIR spectra were incorporated as feedback information are proposed in Chapter 4. 

One approach, Wn-MPC, selects a single wavenumber, corresponding to a specific 

spectral peak, as a controlled variable. The second approach uses PCA to extract the 

information from the spectral measurement and uses the compressed information from 

this analysis as a controlled variable. This method was referred to as PCA Score-Based 

MPC (Sc-MPC). The two control strategies were applied to control final product quality 

in a simulated chemical reaction process and their performance compared. Sc-MPC 

achieved a satisfactory performance with no user interaction. In contrast, the performance 

achieved using Wn-MPC was highly dependent on the choice of wavenumber that was to 

be controlled. 

 

To control the entire NIR spectrum, an end-point control algorithm was used in Chapter 5. 

The end-point control algorithm and Sc-MPC were applied in two case studies: reaction 

rate change and set point change. The performances of the end-point control and Sc-MPC 
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in these two case studies was compared, and it was shown that the end-point controller 

was able to track set point changes well.  

 

In Chapter 6, a novel end-point controller which adjusted the trajectories of the 

manipulated variables (MVTs) in the real process space, while taking into consideration 

process constraints was proposed. This proposed end-point control algorithm and the 

Flores-Cerrillo’s end-point controller were applied to track set-point changes in the NIR 

spectrum, and their performance compared. The results showed that the proposed end-

point control method was better at tracking set-point changes. 

 

7.2 Recommendations for Future Work 

Though there is much work left to do, only the most promising directions are suggested: 

 

(1) In the application of PCA and ICA to analyze Raman images of pharmaceutical 

tablets, there are some issues that needed to be addressed. In the PCA and ICA 

models, choosing the number of components retained is not obvious, especially when 

the reference spectra of the constituent compounds are unknown. It is difficult to 

decide which component has relevant features and which mainly consists of noise. 

Another issue is the peak shift problem, which causes the PCA/ICA methods to 

identify two components. This issue also needs further research. 

(2) In batch process control, the performance of Wavenumber-Based MPC control (Wn-

MPC) is highly dependent on the selection of the wavenumber which is to be 

controlled. Choosing the wavenumber at which the NIR spectrum is controlled is a 

non-trivial task. 

(3) In the end-point controller, the selection of decision points is very important. There 

are no general guidelines for the selection procedure. This is an issue that needs 

further research. 
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