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Active pharmaceutical ingredients (APIs) and their metabolites are 
ubiquitous in the environment and their occurrence in the aquatic environment 
is of growing concern.  However, despite the fact that these may cause harmful 
effects in organisms found within this niche, little is currently known about the 
effects of APIs in the aquatic environment.  Chiral pharmaceuticals are of 
particular concern as the enantiomers may be metabolised differently, with the 
potential for the production of an array of harmful compounds.  There are many 
racemic APIs for treating human and animal conditions, and even in these 
target organisms the pharmacodynamic effects of the enantiomers are not 
always known.  Within recent years the importance of the interactions of these 
compounds within the aquatic environment has been realised and information 
regarding the fate and biodegradation of such environmental pollutants is of 
great importance.  The advent of post-genomic technologies has proved 
advantageous in the study of the effects of these environmental pollutants.  

In this thesis, the effects of a range of chiral APIs, and other 
environmental pollutants, on environmentally relevant microorganisms were 
investigated at the metabolome level.  The effects of chiral APIs were 
investigated in a number of prokaryotic and eukaryotic systems in order to 
provide a comprehensive study of the effects of the APIs in the aquatic 
environment.  FT-IR spectroscopy was employed for metabolic fingerprinting of 
some environmentally relevant bacteria and GC-MS was subsequently 
employed for metabolite profiling of two pseudomonads that had shown 
differential chiral effects with Propranolol.  In addition, FT-IR microspectroscopy 
was employed for the investigation of the phenotypic and localised effects of 
chiral APIs in a eukaryotic system.  Furthermore, the effects of a range of 
environmental pollutants on a complex bacterial community were investigated 
with the use of FT-IR spectroscopy and multivariate analysis.  Initial results 
indicated a large phenotypic response in relation to phenol, and this was further 
explored with a range of ageing experiments and metabolic fingerprinting.  An 
FT-IR peak was found to be characteristic of the phenotypic changes in the 
actively degrading communities and this was likely to be a degradation product 
of phenol, and armed with this knowledge the activated sludge community was 
monitored during the active degradation of phenol with the use of GC-MS. 

The work presented in this thesis has shown for the first time that 
metabolomics allows subtle phenotypes in microorganisms to be revealed when 
they are exposed to chiral forms of APIs which are commonly found in the 
aquatic environment.  Despite these APIs not being designed for any interaction 
with bacteria and aquatic life in general these are significant findings and may 
have implications as more and more APIs become detectable and concentrated 
in the environment due to continued use in man and indeed animals or 
aquaculture.   
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1 Introduction 

1.1 Pharmaceuticals in the Aquatic Environment 

Active pharmaceutical ingredients (APIs) and their metabolites are ubiquitous in the 

environment (Escher et al., 2005) and the occurrence of APIs in the aquatic 

environment is of growing concern (Fent et al., 2006).  There are a number of routes 

through which APIs and resulting metabolites / degradation products may enter these 

ecosystems (Figure 1.1), and a common avenue is through the excretion of the APIs 

and their metabolites in urine and faeces (Heberer, 2002).  It is known that APIs have 

different rates of metabolism within man.  For example, the β-blocker Propranolol is 

almost completely metabolised within the liver and only 1-4% of an oral dose is 

excreted as the unchanged API and its metabolites.  By contrast, 40-50% of an oral 

dose of Atenolol (also a β-blocker), is excreted as the API or its constituent metabolites 

(Ashton et al., 2004, Carlsson et al., 2006a, Carlsson et al., 2006b).  The subsequent 

degradation of the APIs and their metabolites may also occur at sewage treatment 

plants (STPs); this is usually substrate specific and will vary greatly between APIs.  The 

rate of adsorption to activated sewage sludge during treatment differs between APIs, 

and is dependant on the hydrophobic and electrostatic interactions of the API with the 

particulates and microorganisms, within the activated sewage sludge (Fent et al., 

2006).  Any remaining API and relevant metabolites are diluted into the surface water 

when the effluent is released from the STP.  Hence, many APIs are present in low 

concentrations (ng - µg L-1) in aquatic environments such as rivers, streams and 

estuaries (Escher et al., 2005, Ashton et al., 2004, Carlsson et al., 2006b).  The 

majority of APIs are neither persistent nor highly bioaccumulative; however, the 

continuous release of APIs into the aquatic environment poses a potential risk to 

aquatic organisms even though the concentrations of APIs in receiving waters are quite 

low (Escher et al., 2005).  In addition, concentrations up to 31 mg L-1 have been 

reported in wastewater effluents of API production facilities, and 11 of the APIs 

detected in the effluent were found be present at concentrations >100 µg L-1 (Larsson 

et al., 2007).  Furthermore, the high concentrations of APIs in this effluent were found 

to elicit toxicity effects in the aquatic vertebrate Xenopus tropicalis and a fish species 

(Danio rerio) (Carlsson et al., 2009).   

 

Despite little being known about the effects of APIs in the environment, it must be taken 

into account that they are designed to elicit a specific mode of action in humans 
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(Escher et al., 2005).  Adverse side effects may be encountered in humans at higher 

doses of these APIs, and it can be expected that any beneficial or adverse effect may 

also be observed in aquatic organisms with similar biological functions or receptors.  It 

must also be noted that similar targets may control different metabolic processes in 

different species (Seiler, 2002), and therefore APIs and their metabolites may act 

through additional modes of action in aquatic organisms.  The effects of the APIs may 

be subtle due to the very low concentrations observed in the aquatic environment, and 

as a result these effects may go unnoticed (Escher et al., 2005).  It is also likely that the 

effect of the API will impact on the local population dynamics throughout the whole 

ecosystem, from bacteria up to higher organisms.  To explore the effects of the APIs on 

biological systems a wide range of concentrations should be employed with the 

application of appropriate analytical platforms to profile the complement of biochemical 

components in the cell.  Indeed it is known that APIs could become concentrated in the 

benthic environment of river beds and as bacteria inhabit this niche, this community 

may be exposed to higher levels than expected (Thacker, 2005, Halling-Sørensen et 

al., 1998, Pouliquen et al., 1992). 
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Figure 1.1:  Scheme showing possible sources and pathways for the occurrence of API 
residues in the aquatic environment.  Points outlined in red represent significant aquatic end-
points in the pathways.  Adapted from Heberer et al. (2002). 
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1.1.1 Chiral Pharmaceuticals 

Whilst the effects of APIs in the environment is currently a growing area of research 

there is very little understanding of the environmental effects of chiral pharmaceuticals 

(Fono and Sedlak, 2005, Buser et al., 1999).  A chiral molecule is one that lacks an 

internal plane of symmetry.  The non-superimposable mirror images are termed 

enantiomers and are labelled ‘(R)’ or ‘(S)’ according to a priority system (Cahn Ingold 

Prelog priority rules) based on the atomic number of the molecules substituents.  

Approximately 56% of the APIs currently in use are chiral compounds, 88% of which 

are administered therapeutically as the racemate (i.e., an equal mixture of the two 

enantiomers, represented by the symbol (±)).  The chirality of environmental 

contaminants such as APIs must be taken into consideration in order to understand the 

environmental fate and effects of these compounds fully.   

 

The enantiomers of a chiral API are able to interact differently with other chiral 

compounds such as enzymes, and therefore potentially exert different effects when 

released into the environment (Fono and Sedlak, 2005, Buser et al., 1999, Nikolai et 

al., 2006).  It is widely known that the enantiomers of a chiral API may possess differing 

toxicological and biological effects both from each other, and the racemate (Lees et al., 

2003, Yang et al., 2005).  It has been shown that the (S)- enantiomers of the β-blocking 

agents Atenolol and Propranolol (Figure 1.2) are more potent in man than their 

respective antipodes (Davies, 1990, Pearson et al., 1989, Kurt et al., 1993, Barrett and 

Cullum, 1968) and that a number of the biotransformation pathways for β-blockers are 

stereoselective in humans (Mehvar and Brocks, 2001).  The mode of action of the 

drugs and their enantiomers is not known in prokaryotic systems.  It is therefore 

necessary to enhance our understanding of the fate and biological effects of chiral 

pharmaceuticals on typical microflora from the aquatic environment in order to fully 

appreciate the risks (Huggett et al., 2002).  Of particular interest is the group of APIs 

termed β-blockers as they all contain at least one chiral centre and are generally 

administered therapeutically as the racemate (Mehvar and Brocks, 2001).  In addition, 

they are widely used with approximately 29 and 12 tonnes of Atenolol and Propranolol, 

respectively, consumed each year in the UK.  Furthermore, these APIs have been 

detected in STP effluents and surface waters and are frequently found to be within the 

top 15 most concentrated APIs present within the aquatic environment (Jones et al., 

2002, Ashton et al., 2004, Carlsson et al., 2006a, Carlsson et al., 2006b). 
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The chiral API Propranolol is a non-selective β-adrenergic blocking agent and whilst it 

is known that the (S)- enantiomer exerts the majority of the β-blocking effect, it is 

administered therapeutically as the racemate (Barrett and Cullum, 1968).  Studies 

carried out in cats and on the atrial muscle taken from guinea pigs found the (S)- 

enantiomer to be approximately 100 times more potent and have a longer half-life than 

its respective antipode (Barrett and Cullum, 1968).  In addition, (R)- Propranolol is 

reported to exert membrane stabilising activity (MSA) at therapeutic concentrations 

(Wood, 1984).  The term MSA is employed to describe non-specific interactions that 

may occur between membrane lipid bilayers and lipophilic drugs and chemicals (Roth 

and Seeman, 1971).  These interactions may inhibit membrane permeability to 

electrolytes, through the blockade of sodium fast channels.  MSA may also be used to 

describe the non-specific physical protection of membranes, reports of which include 

red blood cell studies (Langslet, 1970, Seeman and Carl, 1966), and the release of 

lysosomal enzymes (Welman, 1979).  However, studies in which properties of β-

blockers may not be explained by competitive interaction with the adrenergic receptor 

frequently result in such effects being attributed to MSA (Arnim and Welman, 1981, 

Nayler et al., 1980).   

 

Toxicity studies carried out by Kim and co workers in the crustacean Thamnocephalus 

platyurus and a fish species (Oryzias latipes) reported that (±)- Propranolol caused 

acute toxicity in T. platyurus at a concentration of 10.61 µg mL-1 and in O. latipes at a 

concentration of 11.40 µg mL-1.  In addition, toxicity studies have been carried out on a 

range of APIs (including (±)- Propranolol) in the Japanese medaka fish (Oryzias 

latipes) an amphipod (Hyalella azteca) and two crustaceans (Ceriodaphnia dubia and 

Daphnia magna).  It was found that Propranolol caused the greatest effect in the 

organisms studied.  The crustacean C. dubia displayed toxicity responses at a 

concentration of 250 µg mL-1.  Propranolol was the only API investigated which was 

found to cause acute toxicity effects in the Japanese medaka fish.  These effects were 

observed at a concentration of 0.5 µg mL-1 (Huggett et al., 2002).   

 

In contrast to the non-selective β-blocking agent Propranolol, Atenolol is a β1-selective 

blocking agent.  The (S)- enantiomer is reported to posses the majority of the 

pharmacological action in man (Kurt et al., 1993, Pearson et al., 1989).  However, no 

additional action has been reported for either of the enantiomers.  Atenolol is a 

hydrophilic β-blocker and as such does not posses MSA as it does not interact with the 

membrane lipid bilayer (Pearson et al., 1989).  Toxicity studies have shown reported 
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effects on polyp structure of the freshwater cnidarian H. vulgaris at 10 µg mL-1 following 

seven day exposure to the β-blocker (Pascoe et al., 2003).  In addition, reductions in 

heart beat rate and biomass were observed in Daphnia magna following chronic 

exposure to 0.11 µg mL-1 (±)- Atenolol (Fent et al., 2006).  To date, there have been no 

reports on the effects of the pure enantiomers of either Atenolol or Propranolol in 

aquatic organisms and this is an area of environmental concern.   

 

 

(R)-Atenolol (S)-Atenolol

(R)-Propranolol (S)-Propranolol

(R)-Atenolol (S)-Atenolol

(R)-Propranolol (S)-Propranolol
 

Figure 1.2:  The chemical structures of the chiral β-blocking agents Atenolol and Propranolol. 
 

 

1.1.2 Aromatic Hydrocarbons 

The risks posed to the aquatic environment by aromatic hydrocarbons such as phenol 

and toluene are becoming increasingly apparent and many aromatic hydrocarbons are 

classed as environmental pollutants (Nahar et al., 2000).  Industrial processes such as 

the production of plastics, synthetic fibres and pesticides and the coking process result 

in the production of vast quantities of wastewaters containing aromatic hydrocarbons 

(Abuhamed et al., 2004).  Regulations regarding the discharge of such wastewaters 

are becoming increasingly more stringent worldwide (Lu et al., 2008).   

 

Phenol has been shown to cause toxicity responses in aquatic organisms including 

Daphnia magna, and a range of fish species.  Kühn et al (1989) reported Daphnia 

magna exposed to phenol for 24 h displayed toxicity responses at 10 µg mL-1 and 
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these effects were noted in organisms exposed to only 4 µg mL-1 for 48 h.  The 

reported increase in toxicity of phenol for extended exposure periods is highly relevant 

to aquatic organisms that are likely to be exposed to such pollutants during their entire 

lifespan.  The range of observed toxicity responses in fish include genotoxic, 

immunotoxic, and physiological effects (Hori et al., 2006, Saha et al., 1999, Taysse et 

al., 1995).  In addition, phenol is highly bioaccumulative due to its lipophilic nature and 

environmental concentrations may exceed those previously expected (Hori et al., 

2006).  Furthermore, the toxicity of mixtures of aromatic hydrocarbons such as phenol, 

toluene and benzene has been shown to increase in comparison with the isolated 

chemicals (Abuhamed et al., 2004).  This is of great relevance to the aquatic 

environment, which is likely to contain a variety of chemicals.   

 

 

OHCH3

Benzene Toluene Phenol

OHOHCH3CH3

Benzene Toluene Phenol  
Figure 1.3:  The chemical structures of the aromatic hydrocarbons benzene, toluene and 
phenol. 
 

 

1.2 Ecotoxicogenomics 

The term genomics encompasses a wide range of scientific disciplines including, 

genome sequencing, assigning gene function to known genes, determination of the 

genome architecture, investigating gene expression at the transcriptome level, protein 

expression at the proteome level and metabolite flux at the metabolome level (Snape et 

al., 2004).  Toxicogenomics combines the disciplines of genomics and toxicology, and 

may be described as the study of genes and their products which play a central role in 

the adaptive responses to abiotic perturbations within biological systems (Nuwaysir et 

al., 1999, Iannaccone, 2001, Rockett and Dix, 1999, Lovett, 2000, Pennie et al., 2000, 

Watanabe, 2007).  This approach enables the further understanding of the underlying 

molecular responses to chemical contaminants (Bradley and Theodorakis, 2002, 

Moore, 2002).  Similarly, the term ecogenomics refers to the application of genomics to 

the field of ecology (Chapman, 2001).  This approach aims to develop further 

understanding of the interactions between organisms in the environment and the 
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interactions between organisms and the environment itself (Snape et al., 2004, Zelikoff, 

1993, Hutchinson et al., 1999, Hutchinson et al., 2003, Harvell et al., 1999, Eggen and 

Suter, 2007).   

 

The term ecotoxicogenomics was first proposed by Snape et al. (2004) to describe the 

integration of the ‘omics technologies, transcriptomics, proteomics and metabolomics 

into the field of ecotoxicology.  This is defined as the study of gene, protein and 

metabolite expression in biological systems that is important in response to 

environmental toxicant exposure (Snape et al., 2004) and aims to understand the key 

mechanisms of toxicity (Poynton and Vulpe, 2009, Poynton et al., 2008, Watanabe and 

Iguchi, 2006).  In addition, ecotoxicogenomics aims to link molecular and cellular 

biomarkers with the higher level population and ecosystem responses; in order to 

predict potential ecological risks for new compounds providing an enhanced 

mechanistic understanding of aquatic ecotoxicology (Snape et al., 2004, Watanabe and 

Iguchi, 2006, Crane et al., 2006).  Environmental contaminants are likely to produce 

genomic responses within an organism (Snape et al., 2004) and within the field of 

biomedicine, it has been shown that exposure to toxicants (such as polycyclic aromatic 

hydrocarbons) almost always results in altered gene expression (Nuwaysir et al., 

1999).  At present, the relationship between genotype and phenotype is poorly 

understood, and the application of functional genomics may provide insight into both 

the genotypic and phenotypic effects of contaminants in the environment (Snape et al., 

2004, Thompson, 1991, Depledge, 1994, Shugart and Theodorakis, 1996, Hood et al., 

2000).   

 

A broad range of gene expression technologies have been developed in order to 

investigate organisms at a genome wide level (Patanjali et al., 1991, Arnheim and 

Erlich, 1992, Schena et al., 1995, Velculescu et al., 1995, Rockett and Dix, 2000, Clark 

et al., 2002).  In addition, methods for the investigation of biological systems at the 

proteome (Gevaert and Vandekerckhove, 2000, Mann et al., 2001) and metabolome 

level (Nicholson et al., 1999, Thomas, 2001, Watkins and German, 2002, Buchholz et 

al., 2002) have also been developed.  However, few of these methods have so far 

been applied to the response of organisms to contaminants in complex environments 

(e.g. sediments or soil).  A key objective for ecotoxicogenomics is the improvement of 

existing, and the development of new, technologies capable of measuring the genome, 

proteome and metabolome profiles for environmental organisms that are exposed to 

numerous perturbations in complex natural environments (Snape et al., 2004).   
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Modern high-density DNA techniques are capable of simultaneously analysing 

thousands of genes and are becoming widely available for both model and non-model 

organisms (Snape et al., 2004, Schena et al., 1995, Rockett and Dix, 2000).  

Application of these techniques allows for the identification of transcripts which are up- 

or down- regulated.  The major advantage of these techniques is the ability to rapidly 

analyse vast numbers of transcripts within a single analysis.  However, such 

techniques are only semi-quantitative as they are dependent on the efficiency of the 

labelling and hybridisation of the individual clones (Snape et al., 2004).  In addition, the 

detection of low copy number transcripts is currently rather difficult (Bartlett, 2001).  

Furthermore, array-based techniques rely on a priori knowledge of the transcripts that 

are likely to be present within a sample in order that gene probes may be designed 

prior to analysis (Clark et al., 2002).   

 

Proteomics is the measurement of the complement of proteins within a biological 

system that are expressed under specific conditions (Snape et al., 2004, Monsinjon 

and Knigge, 2007).  This approach generally employs 2D gel electrophoresis for the 

separation of proteins (firstly by charge and then by size).  However, for peptides or 

protein fragments, high-resolution chromatography techniques such as high 

performance liquid chromatography (HPLC) are more commonly employed.  The 

separation of proteins is then followed by the chemical characterisation of the 

proteome, usually by mass spectrometry which has the sensitivity, selectivity and 

throughput required in order to identify each protein within the proteome (Snape et al., 

2004).  The resultant peptide mass fingerprint (PMF) may then be compared with 

fragment databases in order to provide identification of the proteins (Gevaert and 

Vandekerckhove, 2000, Mann et al., 2001).  Proteomics approaches to ecotoxicology 

investigations, in which measurements of the proteomic response to disease or abiotic 

perturbation during a time course may be required, are both costly and time-

consuming.  A further disadvantage to the application of proteomics to the study of the 

effects of contaminants in environmental populations is the lack of relevant DNA 

sequence information and PMF databases meaning that identification is not possible 

for many of the proteins within a sample (Snape et al., 2004).  However, the continuing 

advances in the DNA sequencing of environmental metagenomic samples and the de 

novo sequencing of protein MS/MS spectra, may provide further insight into the effects 

of contaminants on environmental populations (Maroti et al., 2009, Schulze et al., 2005, 

Venter et al., 2004). 
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Metabolomics is the non-biased identification and quantification of all metabolites within 

an organism or biological system. (Fiehn, 2002, Harrigan and Goodacre, 2003, Oliver 

et al., 1998).  Metabolomics and proteomics approaches possess two clear advantages 

with respect to the analysis of gene function in ecotoxicology studies; the total 

complements of proteins and metabolites change according to the physiological, 

developmental or pathological state of the biological system studied, and are functional 

entities within an organism.  Analysis at the proteomic and metabolomic levels 

therefore enables the characterisation of a biological system at the functional level 

(Raamsdonk, 2001, Snape et al., 2004).  In addition, for many organisms the number 

of metabolites is far fewer than the number of genes or gene products (Raamsdonk, 

2001). 

 

Disease or abiotic effects on gene expression may be detected at the genomic, 

proteomic and metabolomics levels.  However, some environmental contaminants may 

only act at a pharmacological level and will not affect gene regulation and expression 

or protein production, and may therefore only be detected at the metabolome level 

(Lindon et al., 2001b).  Drug induced and other pathophysiological changes result in 

alterations of the ratios, concentrations, binding and fluxes of endogenous 

biochemicals, through direct chemical reaction or binding to key metabolic 

macromolecules.  Sufficiently large disturbances will however, affect the efficient 

functioning of the whole organism and will therefore be reflected in the genome, 

proteome and metabolome (Lindon et al., 2001a). 

 

Functional studies have emphasised analyses at the transcriptomics, proteomic and 

metabolomic levels with a view to a ‘systems biology’ approach of defining the 

phenotype and to identify the linkages between the genotype and phenotype 

(Goodacre et al., 2004, Fiehn, 2002).  The observed response of an organism to toxic 

or other stresses at all three levels gives a comprehensive description of the RNAs, 

proteins and metabolites within the system in response to such stresses.  This 

approach enables analysis of the relevant associations between macromolecules, 

identification of functional linkages, and the production of models that quantitatively 

describe the dynamics of the biological system (Goodacre et al., 2004, Snape et al., 

2004). 
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1.3 Introduction to metabolomics 

In the post-genomic era, the high degree of complexity inherent in the information 

produced by genomic studies has exposed the limitations of solely genomic-based 

investigations.  Recent research has extended to the transcriptome, the proteome; and 

most recently, the metabolome.   

 

The metabolome is the final downstream product of the genome, and has been defined 

as the qualitative and quantitative collection of all low molecular weight molecules 

present in a cell that participate in general metabolic reactions (Dunn et al., 2005, 

Oliver et al., 1998, Harrigan and Goodacre, 2003, Goodacre et al., 2004).  Analysis of 

the metabolome can provide a comprehensive evaluation of the physiological state of 

an organism coupled with unique insights into specific biochemical processes (Oliver et 

al., 1998, Fiehn, 2001, Fiehn, 2002).  The size of the metabolome varies greatly 

depending on the organism studied, for example Saccharomyces cerevisiae contains 

approximately 600 metabolites (Forster et al., 2003) whereas the plant kingdom is 

estimated to have a total of approximately 200,000 metabolites although individual 

species have significantly lower numbers (Fiehn, 2001).  The metabolome is more 

diverse in chemical and physical properties than the genome or the proteome due to 

the greater variations in atomic arrangements (Dunn et al., 2005).  Consequently, 

metabolomic investigations comprise the analyses of an extensive range of chemical 

species, from low molecular weight polar volatiles such as ethanol, to high molecular 

weight polar glucosides, non-polar lipids and inorganic species (Dunn et al., 2005, 

Lahner et al., 2003).  Furthermore, the range of metabolite concentrations present in a 

cell can vary over nine orders of magnitude (pM-mM), making analysis of the 

metabolome significantly more complex than that of the genome or proteome (Dunn et 

al., 2005).   

 

1.3.1 Applications of Metabolomics 

Metabolomics is a complementary technique to the other ‘omics disciplines and is 

perceived as having a number of advantages (Goodacre et al., 2004).  As the final 

downstream product of the genome, the metabolome more accurately reflects the 

activities of the cell at a functional level and changes in the metabolome are amplified 

relative to the proteome or the transcriptome (Urbanczyk-Wochniak, 2003).  In general 

the number of metabolites is lower than the number of genes or gene products 

(Raamsdonk, 2001).  Changes in the quantities of enzymes have significant effects on 
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metabolite concentrations despite having little effect on metabolic fluxes (Raamsdonk, 

2001).  However, some research has found metabolic flux analysis to be very useful for 

understanding biochemical processes in cancer (Boros et al., 2003, Boros et al., 2002, 

Boros et al., 2004, Lane et al., 2009, Fan et al., 2009, Forbes et al., 2006).  In addition, 

there is evidence that metabolic fluxes are regulated by environmental stresses as well 

as gene expression (Johnson et al., 2003), and therefore the measurement of the 

metabolome may be a more sensitive technique to yield information about the 

biological system (Brown et al., 2005, Harrigan and Goodacre, 2003).  Global 

metabolomics approaches have been applied to many different areas of biological and 

clinical study including; clinical diagnosis (Lindon et al., 2003, Nicholls et al., 2001, 

Matsumoto and Kuhara, 1996, Rashed, 2001, Brindle et al., 2002), mode of action 

investigations (Allen et al., 2004, Aranìbar et al., 2001), microbial systems (MacKenzie 

et al., 2008, Smedsgaard and Nielsen, 2005), metabolic engineering studies (Fiehn et 

al., 2000, Weckwerth et al., 2004, Bro and Nielsen, 2004) and environmental stress 

(Viant, 2007, Viant et al., 2003). 

 

1.3.2 Instrumentation Employed in Metabolomics Investigations 

The biochemical status of an organism can be revealed through the qualitative and 

quantitative measurements of its cellular metabolites and these data can be employed 

to both monitor, and determine gene function (Fiehn, 2001, Fiehn, 2002).  The analytes 

studied vary greatly in both concentration and nature and this complexity makes the 

simultaneous profiling of the global metabolome particularly challenging to the 

analytical technologies employed in metabolomics investigations.  At present no single 

analytical technology or extraction method is able to detect every metabolite (Hall, 

2006).  Therefore, a range of targeted extraction procedures and analytical 

technologies are employed (Sumner et al., 2003, Weckwerth, 2003). 

 

A range of terminologies have been applied to the varying metabolomics approaches 

and these are detailed in Table 1.1.  Metabolomics studies may employ a wide range of 

metabolic fingerprinting and profiling methods.  Metabolic fingerprinting methods 

involve the high-throughput analysis of crude samples or simple cellular extracts and 

provide a global metabolite fingerprint.  These techniques are frequently employed in 

the classification or screening of samples (Johnson et al., 2003, Winder et al., 2004, 

Winder et al., 2006).  However, quantification and identification of metabolites is not 

generally carried out in this approach (Dunn et al., 2005).  Fingerprinting methods 
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present an inexpensive means of screening a biological system prior to metabolic 

profiling with more costly techniques (Kaderbhai et al., 2003).  Metabolic profiling 

methods commonly employ hyphenated mass spectrometry (MS) approaches with the 

aim of detecting, identifying and quantifying the metabolites within a biological sample 

(Bino et al., 2004, Dunn et al., 2005).  
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Table 1.1:  Terms and Definitions used in Metabolomics. 
Term Definition 
 
Metabolome 

 
The complete biochemical complement present in an  
organism (Fiehn, 2002, Goodacre et al., 2004). 
 

Metabolomics Non-biased identification and quantification of all metabolites 
within an organism or biological system. Requires the use of 
highly selective and sensitive analytical techniques.   
 
At present, no single analytical technique, or combination of 
techniques can determine all metabolites in microbial, plant or 
mammalian metabolomes (Dunn et al., 2005, Goodacre et al., 
2004, Kell, 2006). 
 

Metabonomics The quantitative analysis of the dynamic multiparametric 
metabolic response of living systems to pathophysiological 
stimuli or genetic modification (Nicholson et al., 1999). 
 
Often used synonymously with metabolomics 
 

Metabolic profiling The identification and quantification of metabolites related 
through similar metabolic pathways or chemistries.   
 
Chromatographic separation is normally employed prior to 
detection. 
 

Targeted 
metabolite analysis 

The quantitative determination of one or a few metabolites 
related to a specific metabolic pathway following extensive 
sample preparation and separation from the sample matrix.   
 
This approach employs chromatographic separation and 
sensitive detection 
 

Metabolic flux 
analysis 

The quantitative monitoring of whole network operation.  MFA 
provides a global perspective on the integrated regulation at 
all levels (including gene expression, enzyme kinetics, and 
allosteric regulation) (Sauer, 2005). 
 

Metabolic 
fingerprinting 

Rapid and high-throughput methods where global metabolite 
profiles are obtained for sample classification or screening.   
 
Analysis is of crude samples or simple cellular extracts.  
Identification and quantification of metabolites is not 
performed.   
 

Metabolic 
footprinting 

The global measurement of metabolites secreted from the 
intracellular complement into the extracellular growth 
medium.   
 
High-throughput method which requires minimal metabolite 
quenching and extraction.  Has been frequently employed in 
microbial metabolomics. 
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1.4 Metabolic Fingerprinting Technologies  

Metabolic fingerprinting is the high-throughput screening of intact samples and cellular 

extracts.  These biochemical fingerprints are usually analysed with chemometrics 

techniques and used to model relationships between samples and to classify them 

according to their origin or biological relevance (Fiehn, 2001).  Metabolic fingerprinting 

provides “biochemical snapshots” of biological samples at a specific time (Dunn et al., 

2005). 

 

One of the popular approaches for metabolic fingerprinting is based on vibrational 

spectroscopy.  These techniques measure the vibrations of bonds within functional 

groups when they interact with electromagnetic (EM) radiation (light).  The two 

vibrational spectroscopy techniques that are used routinely for metabolic fingerprinting 

(or what has been termed disease pattern recognition (Himmelreich et al., 2003, 

Petrich et al., 2000, Staib et al., 2001)) include: Fourier transform infrared (FT-IR) 

spectroscopy, which is based on the absorption of EM radiation; and Raman 

spectroscopy, which is based upon inelastic light scattering (Choo-Smith et al., 2001).  

These vibrational spectroscopy techniques are not as sensitive as mass spectrometry 

or nuclear magnetic resonance (NMR) spectroscopy methods and do not provide 

metabolite identification from complex biological samples, however, they do provide a 

relevant metabolomics tool.  Fourier transform-infrared (FT-IR) spectroscopy is 

currently the most frequently employed technique in metabolic fingerprinting and 

enables the rapid, non-destructive and comparatively inexpensive analysis of complex 

biological systems (Dunn et al., 2005, Kell, 2004, Oliver et al., 1998).  Therefore, FT-IR 

spectroscopy provides a first round screening, or starting point for metabolomic 

analyses, which may direct the focus of more extensive metabolomics studies in 

complementary and more sensitive analytical platforms (Dunn et al., 2005).   

 

 

1.4.1 FT-IR spectroscopy 

Infrared spectrometers have been commercially available since the 1940s; however, 

the technology employed a conventional prism and grating monochromators and each 

wavelength within the IR region had to be measured in succession.  This technology 

therefore, had several drawbacks with respect to analysis time, heat damage, 

sensitivity and reproducibility.  The most significant advances in infrared spectroscopy 
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occurred with development of the interferometer and the introduction of the 

mathematical Fourier transform.  The utilisation of these methods enables the rapid 

and simultaneous analysis of the entire IR spectrum (Banwell and McCash, 1994).  

Consequently, the field of FT-IR spectroscopy has made great strides within recent 

years (Stuart, 1996). 

 

Infrared spectroscopy is based on the various vibrations of the bonds between the 

atoms of a molecule.  Following interrogation with IR light the functional groups within a 

sample absorb the light at specific wavelengths and vibrate in bending, twisting and 

stretching motions thus causing changes in the dipole moment of that bond.  FT-IR 

spectroscopy measures the frequency and intensity of the radiation which is absorbed 

by a sample and the resultant spectrum is therefore representative of these various 

vibrations (Banwell and McCash, 1994).  The determination of such factors may 

provide insight into the chemical composition of a biological sample or allow for the 

identification of an unknown compound (Harrigan and Goodacre, 2003). 

 

The infrared spectrum can be divided into three regions corresponding to 

wavenumbers between 14000 – 4000 cm-1 (near-infrared), 4000 – 400 cm-1 (mid-

infrared) and 400 – 10 cm-1 (far-infrared).  Measurement of the far-infrared (FIR) region 

is more difficult that that of the near- and mid-infrared regions due to the weakness of 

the source employed.  A mercury lamp is most often employed as the source for 

measurement of the FIR; however the signal-to-noise ratio is often higher than that of 

the mid- or near-infrared regions.  Consequently, the majority of infrared applications 

utilise the mid-infrared (MIR) and near-infrared (NIR) regions.  Measurement of the NIR 

region provides information regarding the absorption characteristics of CH, OH and NH 

groups (Belton et al., 1987, Dunn et al., 2005).  The spectra produced from the NIR 

region contain broad features which strongly overlap and therefore require high levels 

of statistical manipulation (Belton et al., 1987).  In contrast, measurement of the MIR 

region gives information regarding the chemical and structural composition of a sample 

which is open to direct interpretation (Griffiths and de Haseth, 2007).  Thus, the use of 

the MIR in metabolomics FT-IR spectroscopy applications is currently favoured 

(Johnson et al., 2003, Johnson et al., 2004, Dunn et al., 2005).  The IR absorption of 

water is particularly strong within the MIR region resulting in the production of broad 

bands in the spectra which may mask the biologically important chemical information.  

These effects may be removed from the FT-IR spectra by post-analysis data 

processing methods, however, the most common approach employed is the drying of 
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samples prior to analysis (Johnson et al., 2003, McGovern et al., 1999, Timmins et al., 

1998, Schuster et al., 2001, Curk et al., 1994).  Alternatively an optics accessory such 

as an attenuated total reflectance (ATR) cell may be employed for the sampling of 

liquids such as plasma or growth media.  It is composed of a crystal such as zinc 

selenide and reduces the absorption of water enabling the direct and non-destructive 

analysis of liquids (Bouhedja et al., 1997, Winder and Goodacre, 2004, Dunn et al., 

2005). 

 

The MIR region may be further broken down into 5 major regions of biological 

significance (Forster et al., 2003).  These regions are termed the fatty acid region 

(3000 – 2800 cm-1), the amide region (1700 – 1500 cm-1) which can be divided into 

bands dominated by amide I and amide II, a region at wavenumbers 1450 - 1200; 1200 

– 1250 cm–1 displaying vibrations from the carboxylic groups of proteins and PO2
– of 

phosphodiesters, the polysaccharide region (1200 – 900 cm-1) and the fingerprint 

region (<900 cm-1) which consists of a variety of weak spectral features (Dunn et al., 

2005, Naumann et al., 1996) (See Figure 1.4 for further details).  The characteristics of 

the spectra; the frequency, intensity, number of bands and half widths are distinctive, 

therefore providing a unique fingerprint for the sample (Naumann et al., 1991b). 
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Figure 1.4:  A typical FT-IR absorbance spectrum of Pseudomonas aeruginosa PA14.  The 
major regions of biological interest are highlighted A-E.  Refer to Table 1.2 for further details. 
 

 

 

 

Table 1.2:  Major spectral regions of biological interest. 
 Wavenumber (cm

-1
) range Dominant Compounds 

A 3000-2800 CHx stretches from fatty acids 
   
B 1700-1500  

   (1700-1600) 
   (1600-1500)   

Proteins 
   C=O from amide I 
   C-N and C-N-H from amide II 

   
C 1450-1200 

 
   (1250-1200) 

Carboxylic groups of proteins, free amino acids, 
polysaccharides 
   P-O from RNA/DNA, phospholipids 

   
D 1200-900 C-O or O-H from polysaccharides 
   
E <900 Unassigned 
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Figure 1.5 highlights the basic components of an FT-IR spectrometer.  Infrared 

radiation emerges from the source, passes through the interferometer to the sample.  

The IR radiation is absorbed by the sample before reaching the detector.  The signal is 

then amplified prior to conversion to a digital form by an analogue to digital converter 

and then transferred to a computer when the Fourier transformation is carried out and 

the data are converted to an IR spectrum (Stuart, 1996). 

 

 

Source Interferometer Sample Detector Amplifier

Analogue/ 

digital 

converter
ComputerSource Interferometer Sample Detector Amplifier

Analogue/ 

digital 

converter
Computer

 
Figure 1.5:  Flowchart of the components of an FT-IR spectrometer. 

 

 

1.4.1.1 The Infrared Source 

The source of infrared emission in IR spectrometers typically consists of an inert solid 

filament which is electrically heated to incandescence.  The most commonly used mid-

infrared source is the Globar, which is a resistively heated rod constructed of silicon 

carbide (Griffiths and de Haseth, 2007).  In addition, the Nernst glower, which is 

composed of a mixture of refractory oxides, and a tungsten filament is commonly 

employed (Griffiths and de Haseth, 2007).  Following heating of the source to 

incandescence, IR radiation is emitted and directed to a power mirror, which directs the 

IR beam through an aperture resulting in collimation of the beam.  A series of flat 

mirrors then direct the IR beam to the interferometer (Stuart, 1996, Griffiths and de 

Haseth, 2007, Banwell and McCash, 1994). 
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1.4.1.2 The Michelson Interferometer 
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Figure 1.6:  A Michelson interferometer showing planar mirrors and the beamsplitter.  Adapted 
from Stuart (1997).   
 

 

The Michelson interferometer is the basic optical component of the FT-IR spectrometer 

(Figure 1.6) (Stuart, 1996).  It consists of two mirrors, one of which is stationary and the 

other of which can travel in a direction perpendicular to the plane.  The planes of these 

two mirrors are bisected by a semi-reflecting film termed the beamsplitter.  The 

beamsplitter is composed of material which is chosen according to the infrared region 

of investigation.  For the near- or mid-infrared region, an infrared transparent substrate 

such as caesium iodide or potassium bromide is employed.  The substrate is coated 

with germanium or iron oxide, and 50% of the radiation falling onto the beamsplitter is 

reflected by this coating (Stuart, 1996, Banwell and McCash, 1994).   

 

Once the IR beam reaches the interferometer it is directed onto the beamsplitter, the 

coating of which reflects 50% of the beam to the stationary mirror.  The mirror reflects 

the beam back to the beamsplitter, where it has travelled a fixed distance.  The 

remaining 50% of the beam transmits through the beamsplitter to the moving mirror 

where it is reflected back to the beamsplitter and the two IR beams recombine and 

interfere.  The transmitted beam interferes destructively and the reflected beam 
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interferes constructively (Stuart, 1996, Banwell and McCash, 1994).  The spectral 

information is contained within this interference, which is then directed to the detector.  

The moving mirror produces a difference in the optical path between the two mirrors.  It 

therefore has to be aligned in order to enable it to accurately scan distances.  This 

alignment is carried out by a visible helium neon (HeNe) laser which is focused onto 

the corner of the mirror (Stuart, 1996, Griffiths and de Haseth, 2007, Banwell and 

McCash, 1994).   

 

The interferometer enables the simultaneous and rapid analysis of all of the 

frequencies within the infrared spectrum.  The function of the interferometer is to 

produce a novel signal of lower frequency than the original IR signal of a type that the 

detector can recognise.  The resulting variations in beam intensity are then measured 

as a function of path difference.  In FT-IR spectroscopy the spectral resolution is limited 

by the maximum path difference between the two infrared beams and the limiting 

resolution in wavelength (cm-1) is calculated as the reciprocal of the pathlength 

difference (cm).  A key advantage of rapid scanning instruments is the potential 

increase in the signal-to-noise ratio (SNR).  This may be achieved by the collection of a 

number of interferograms which are then signal averaged (referred to as co-adds) by 

the computer.   

 

1.4.1.3 The Infrared Detector 

There are two types of detectors which are most commonly used in the mid-infrared 

region.  The most common detector is a pyroelectric device which incorporates 

deuterated triglycine sulphate (DTGS) in a temperature resistant alkali halide window 

(Stuart, 1996).  These thermal detectors are commonly employed due to their 

sensitivity across the entire infrared range (Banwell and McCash, 1994).  

Photoconductive detectors such as mercury-cadmium-telluride (MCT) are often 

employed in more sensitive applications.  This type of detector contains conductive 

bands in which electrons are readily excited by the absorption of energy from an 

external source such as infrared radiation (Banwell and McCash, 1994).  MCT 

detectors are highly sensitive and have a rapid response compared with DTGS 

detectors, requiring minute levels of excitation energy (Banwell and McCash, 1994).  

Consequently, excitation of electrons within the detector may effected by thermal 

sources other than the infrared radiation and are therefore cooled with liquid nitrogen 

(Griffiths and de Haseth, 2007).   
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1.4.2 FT-IR Microspectroscopy 

FT-IR microspectroscopy, referred to as fast or hyperspectral imaging, is a relatively 

recent development, combining the data obtained from mid-infrared spectroscopy with 

the ability to acquire this data in a spatially resolved manner (Lewis et al., 1995, Snively 

et al., 1999, Treado et al., 1994).  A FT-IR imaging dataset contains both spatial and 

spectral information regarding the sample under investigation.  The typical dimensions 

of a FT-IR imaging dataset range from 64 × 64 to 320 × 256 pixels, within which, each 

pixel contains an infrared spectrum (Snively et al., 1999).  This technique enables 

analysis of the spatial distribution of functional groups which may be connected to 

specific components within a cell or tissue sample (Patel et al., 2008, Lewis et al., 

1995, Beardall et al., 2001, Lasch et al., 2002).   

 

Traditionally FT-IR microscopes were employed to generate chemical maps by a single 

pixel at a time.  In this approach the stage is moved over a raster in order to collect the 

spectrum for each individual pixel to generate a FT-IR map (Lewis et al., 1995).  This 

lengthy technique is both time consuming and limiting in respect to the fidelity of the 

images acquired.  The use of a focal-plane array (FPA) detector significantly reduces 

the acquisition time, thus permitting the measurement of high density chemical maps in 

seconds to minutes (Lewis et al., 1995).  FT-IR imaging currently employs a step-

scanning approach in which the moving mirror waits for the detector read-out prior to 

moving to the next position.  In this approach all of the interferograms are collected 

simultaneously and subsequently transformed into IR spectra.  The instrumentation is 

generally composed of a step-scan FT-IR spectrometer as a light source, a microscope 

with Cassegrainian optics, and an FPA detector (Snively et al., 1999).  The moving 

mirror of the interferometer modulates the light coming from the spectrometer and this 

is translated in order to collect a dataset.  At specific intervals (i.e., retardations), the 

intensity values for all of the pixels are measured, resulting in the collection of a 

complete interferogram for each pixel in the array (Snively et al., 1999).  Subsequent 

Fourier transformation of all of the interferograms produces an array of infrared spectra 

which are spatially resolved (Snively et al., 1999).  The pixel size is diffraction limited 

and therefore the resolution is typically in the 4 - 10 µm range in the mid infrared 

region.  
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1.4.3 Applications of FT-IR spectroscopy 

The principal applications of FT-IR spectroscopy in the study of complex biological 

systems have been in the field of microbiology.  In general FT-IR spectroscopy has 

been applied to biomedical and industrial studies and has previously been used to 

generate informative metabolic fingerprints from biological material (Johnson et al., 

2004, Winder et al., 2007).  Previous studies have also proved its applicability to 

biological systems by successfully demonstrating the discrimination of bacteria to sub-

species level (Winder et al., 2006, Timmins et al., 1998, Naumann et al., 1991a). The 

high-throughput nature of the technique combined with the minimal sample preparation 

has proven the technique ideal for the rapid identification of clinically significant 

bacterial isolates such as, Eubacterium associated with oral infections (Alsberg et al., 

1998), and the differentiation between Candida isolates (Timmins et al., 1998, 

Udelhoven et al., 2000).  FT-IR spectroscopy has also been applied to the field of 

disease pattern recognition (Petrich et al., 2000, Staib et al., 2001) and to the grading 

of lymphoid tumours (Andrus and Strickland, 1998).  In addition, FT-IR spectroscopy 

has been successfully employed to monitor industrial fermentation processes for the 

quantification of metabolite production (McGovern et al., 2002, Schuster et al., 2001).  

The technique has also been employed in the field of plant science, with application to 

the discrimination and classification of plants, including the study of Arabidopsis cell 

wall mutants (Wang et al., 1998, Mouille et al., 2003) and plant responses to abiotic 

stresses (Johnson et al., 2003, Johnson et al., 2004).  In more recent years FT-IR 

spectroscopy has been successfully applied to environmentally relevant investigations 

such as the study of microbial survival during extreme starvation (Barton and Northup, 

2007, Bullen et al., 2008), the discrimination of mycobacteria (Winder et al., 2006) and 

the metabolic effect of salinity in both plant (Johnson et al., 2003) and animal (Bussell 

et al., 2008) species.   

 

The application of FT-IR imaging has been successfully demonstrated in the study of 

biological (Heraud et al., 2005, Kidder et al., 1997, Lewis et al., 1996) and chemical 

(Bhargava et al., 1998, Oh and Koenig, 1998) systems and is popular for the study of 

spatially heterogeneous samples (Snively et al., 1999).  The high spatial resolution now 

available with FT-IR microspectroscopy has allowed investigations of the minute details 

in leaf tissues (Heraud et al., 2007), the classification of malignant gliomas (Krafft et al., 

2007) the study of abiotic perturbations in environmentally relevant microorganisms 

(Patel et al., 2008) and the investigation of single cells to the sub-cellular level (Lasch 

et al., 2002, Giordano et al., 2001).  Furthermore, FT-IR spectroscopy has been 
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successfully applied to the investigation of sub-cellular changes in living algal cells 

induced by nutrient starvation (Heraud et al., 2005).   

 

1.5 Mass Spectrometry 

Mass spectrometry (MS) is a powerful detection method and is widely employed in 

metabolomics investigations.  MS is commonly combined with chromatographic 

techniques such as gas chromatography (GC) and liquid chromatography (LC ) and the 

use of hyphenated-MS instrumentation improves quantification and compound 

identification (Dunn et al., 2005).  Identification of metabolites is possible by spectral 

library matching with standard compounds, interpretation of mass spectra or 

determination of the molecular formula from accurate mass measurements (Dunn et 

al., 2005). 

 
In GC-MS, compounds are separated by GC and then transferred online to a mass 

spectrometer for further separation and detection (Kopka et al., 2004).  The use of GC-

MS combines two highly complementary techniques: GC separates metabolites on the 

basis of polarity and boiling point and is able to separate metabolites that have nearly 

identical mass spectra such as isomers, whilst the fragmentation patterns produced by 

MS can differentiate between co-eluting, but chemically diverse metabolites, which can 

then be identified by database searching (Kopka et al., 2004).  GC-MS is the most 

widely used technology in metabolomics and has been described as the ‘gold’ standard 

(Harrigan and Goodacre, 2003). 

 

1.5.1.1 Metabolite Extraction 

The extraction process should be both non-selective and comprehensive; however, 

each extraction method introduces a level of chemical bias towards a particular group 

of metabolites.  For example metabolites such as carbohydrates have a high solubility 

and are therefore typically extracted in methanol:water.  However, non-polar 

metabolites such as lipids have low solubilities and are therefore typically extracted in 

chloroform.  Consequently, a range of extraction methods may be considered in order 

to obtain a comprehensive metabolite profile from a sample (Soga et al., 2003, Winder 

et al., 2008).    
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1.5.1.2 Derivatisation 

Volatile low-MW metabolites may be sampled and analysed directly.  However, the 

majority of metabolites analysed require chemical derivatisation prior to analysis to 

provide volatility and thermal stability (Roessner et al., 2000, Dunn et al., 2005).  

Derivatisation is a two step process: methoximation is carried out in order to convert 

carbonyl groups to oximes therefore eliminating slow and reversible silylation reactions.  

Trimethylsilylation is then carried out, during which exchangeable protons are replaced 

with trimethylsilyl esters.  The stability of samples is of concern as residual water within 

the samples can result in the breakdown of trimethylsilyl esters.  However, this effect 

can be reduced by extensive sample drying (Dunn and Ellis, 2005).   

 

1.5.1.3 Ionisation and Detection 

Electron impact (EI) ionisation is the most widely used ionisation method for GC-MS as 

it is highly reproducible, and provides molecular ion fragmentation.  This fragmentation 

results in the production of a mass spectrum which is indicative of the metabolites 

structure, therefore aiding the identification of the metabolite (Dunn et al., 2005, Kopka 

et al., 2004).  Typically, three types of detector may be employed in GC-MS couplings, 

and the sensitivity of detection may be influenced by the mass spectrometer employed 

(Dunn et al., 2005).  Mass detection may be conducted by either single quadrupole 

detectors (QUAD), ion-trap technology (TRAP), or time-of-flight detectors (TOF) (Kopka 

et al., 2004).  QUAD detectors may be employed in single ion monitoring mode in order 

to enhance sensitivity.  This method also generally has a wider dynamic range than 

TRAP or TOF instruments.  However, information regarding the metabolites present 

within a sample is required and so this method may introduce bias into metabolic 

profiling studies (Dunn et al., 2005).  TOF detectors do not require such information 

regarding the sample, are high-throughput and can provide good sensitivity (Dunn et 

al., 2005, Kopka et al., 2004). 

 

1.5.1.4 Deconvolution 

The chromatograms produced by GC-MS are complex, containing hundreds of 

metabolite peaks and are further complicated by multiple derivatisation products (Dunn 

and Ellis, 2005).  The application of retention indices (RI) aids metabolite identification 

by the alignment of chromatograms.  Deconvolution software acts by using pure mass 

spectra to define chromatographic peaks, including overlapping peaks.  It also 
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potentially allows reductions in run time, from approximately 60 minutes to less than 15 

minutes (Dunn et al., 2005, Roessner et al., 2000, Weckwerth et al., 2004), as full 

chromatographic separation is not required, and, in many metabolomics analyses, is 

difficult or impossible to achieve (Dunn et al., 2005).  Metabolites are then identified by 

matching their chromatographic retention times and mass-spectral fragmentation 

patterns to known information available in databases (Wagner et al., 2003). 

 

Targeted GC-MS analyses can provide absolute quantification of the level of a given 

metabolite in a concentration range of up to four orders of magnitude, provided that 

appropriate external and internal standardisation have been carried out (Dunn et al., 

2005).  However, each step during extraction, preparation and analysis can introduce 

general and substance-specific losses and these can vary with the biological material.  

Current methods are capable of detecting trisaccharides, steroids, diglycerides and 

some monophosphorylated metabolites (such as glycerol 3-phosphate and glucose 6-

phosphate), but most polyphosphorylated and activated metabolic intermediates are 

presently not accessible to GC-MS analyses.  Another major limitation of GC-MS is that 

many of the peaks are still unidentified.  Some of these unidentified peaks may be 

analytes generated during extraction or by fragmentation in the MS step, but others 

may be significant and even novel metabolites (Kopka et al., 2004).  However the 

development of mass spectral libraries and databases aims to improve the chemical 

identification of these peaks (Allwood et al., 2006, Brown et al., 2009, Kopka et al., 

2005, Wishart et al., 2009).   
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1.6 Multivariate Data Analysis 

Metabolomics experiments generate extensive amounts of multivariate data, and the 

differences between samples are not generally discernable by visual inspection.  In 

addition, only a few of these data points may be required in order to describe the 

problem sufficiently (Goodacre et al., 2004).  It is therefore essential to extract the most 

meaningful elements of these data for the generation of new knowledge in a robust and 

interpretable manner (Goodacre et al., 2004, Eriksson et al., 2004).  Multivariate 

statistical analyses are an important tool for the analysis of complex spectral 

information and are used to extract the maximum information from these datasets.  

Pattern recognition (PR) strategies may be employed for the reduction of the 

complexity of the datasets produced in metabolomics investigations, and in the 

generation and testing of novel hypotheses (Goodacre et al., 2004).  The use of PR 

algorithms may allow the identification and interpretation of non-random behaviour in a 

complex system, which may be obscured by noise or random variations within a 

biological system (Lindon et al., 2001a).  There are a number of different pattern 

recognition strategies employed in the analysis of metabolomic data, many of which 

are based on unsupervised methods such as principal components analysis (PCA) 

(Lindon et al., 2001a, Manly, 1994).  This multivariate approach uses clustering 

methods to assess the similarity in a dataset on the basis of their metabolite profiles 

(Goodacre et al., 2004).  In addition, a number of supervised methods may be 

employed in pattern recognition.  Methods such as discriminant function analysis 

(DFA), principal components regression (PCR), partial least squares regression 

(PLSR), genetic algorithms (GAs) and artificial neural networks (ANNs) seek to 

transform multivariate data extracted from metabolite profiles into something of 

biological interest under the guidance of a “teacher” (Goodacre et al., 2004, Manly, 

1994, Martens and Naes, 1989).  Within these techniques there are two types of data; 

inputs which are explanatory variables, and targets (or outputs).  Supervised learning 

aims to find a “model” in which these data are correctly associated (Goodacre et al., 

2004). 

 

1.6.1 Data Pre-processing 

In metabolomics investigations the multivariate data are generally arranged in a matrix 

in which each row corresponds to a sample and each column corresponds to one 
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variable (e.g. metabolite, or wavenumber).  The matrix, termed X, has N rows 

(samples) and K columns (variables), (Figure 1.7).   

 

K

N

X

K

N

X
 

Figure 1.7:  A visual representation of a dataset or matrix X (input data), employed in 
multivariate analyses.  The dataset X consists of N rows and K columns.  Each row in the matrix 
corresponds to one sample and each column to one variable. 
 

 

Pre-processing of multivariate data prior to statistical analysis is often required in order 

to improve the reproducibility of the data.  The variables within the dataset are often 

mean centred, in which the average of each variable is subtracted.  In addition, the 

variables may be scaled to unit variance such that each variable has an equal chance 

of influencing subsequent statistical analyses.  The pre-processing methods employed 

may be data dependant, and therefore a vast range of methods may be investigated for 

any one experiment.  There are numerous pre-processing methods which may be 

employed in metabolomics data analyses and many of these methods are order-

independent (Goodacre et al., 2007).  The methods most commonly employed in the 

pre-processing of multivariate datasets are detailed in Table 1.3 (Brown et al., 2005, 

Lindon et al., 2001a).   
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Table 1.3:  Methods commonly employed in the pre-processing of multivariate 
datasets.  Adapted from Goodacre et al. (2007). 
Term Description 
 
Normalisation 

 
An operation performed within or across rows in order to make the 
row profiles comparable in size. 
 

Centering An operation performed across the rows in order to translate the 
centre of gravity of the dataset (Keun et al., 2004). 
 

Mean-centering A method which is commonly employed for centering.  Each 
column is expressed in deviations from its mean, across the rows. 
 

Scaling An operation which is performed within a column in order to make 
the column profiles more comparable.  
 

Autoscaling A type of scaling which mean-centres each value of the column 
and then divides the row entries of a column by the standard 
deviation within the column.  
 

Range scaling A scaling method that mean-centres prior to dividing the row 
entries of a column through the range within the column (van den 
Berg et al., 2006).  
 

Pareto scaling A scaling method that mean-centres prior to dividing the row 
entries of a column through the square root of the standard 
deviation within the column.  
 

Transformations 
 

Transformations that linearise or change the scale of the data.  
These could be Log, Square Root, Box-Cox. 
 

Missing Values Data in the table which are not available for analysis. 
 

Outliers Data points which deviate from the distribution of the majority of 
the data.  These data points may be samples, variables or a 
specific combination of both. 
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1.6.2 Principal Component Analysis 

Principal component analysis (PCA; (Jolliffe, 1986, Wold et al., 1987)) is an 

unsupervised multivariate projection method employed as a data reduction strategy in 

which principal components (PCs) are derived that explain the majority of the variance 

within a complex dataset.  The aim of the data compression is to obtain a set of novel 

PCs which describe as much of the variance in the original dataset as possible.  

Reducing the dimensionality of the data allows easier interpretation of the variation 

within a dataset, so that groups, trends and outliers may be identified within the 

samples.  In many cases correlations between variables (e.g. metabolites) occur 

because they change according to some systematic underlying common factor e.g. a 

genetic modification.  PCA has the ability to detect these underlying factors and 

compress the information based upon them.   

 

PCs are new variables which are created from linear combinations of the starting 

variables with the appropriate weighting coefficients (Nicholson et al., 1999).  Each PC 

is orthogonal (uncorrelated) with all the other PCs and consists of one score vector T 

and one loading vector P (Figure 1.8).  The score vector is considered as the new 

variable and the loading vector may be described as the link between the score vector 

and the original variable.  The scores are linear combinations of the original variables 

within the dataset, and the loadings represent the influence (i.e. weighting) of the 

original variables on the scores.   

K

N

X

T

P

K

N

X

K

N

X

T
K

N

X

K

N

X

T

P

K

N

X

K

N

X

T

 
Figure 1.8:  PCA compresses the information in the data matrix X into scores T and loadings P, 
describing the underlying systematic structures of X. 
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PCs are commonly calculated using one of two algorithms; the Non-Iterative Partial 

Least Squares (NIPALS) algorithm (Wold, 1966), in which the PCs are calculated 

sequentially; or by Singular Value Decomposition (SVD) (Jolliffe, 1986) in which all of 

the possible PCs are computed in one step.  The length of a PC is termed the 

eigenvalue and is proportional to the amount of variation the PC describes.  The first 

PC contains the greatest variance, with subsequent PCs containing correspondingly 

smaller amounts of variance and at some point the PCs will consist only of data noise 

(Nicholson et al., 1999, Lindon et al., 2001a). 

 

PCA models are both linear and additive; as more PCs are used more of the variance 

within the dataset is explained.  A plot of the first two or three PCs will generally 

provide maximum information content of the data in two dimensions (Jolliffe, 1986, 

Wold et al., 1987).  Thus, PCA offers a rapid method for visualising and comparing the 

variance within a dataset.  Furthermore, PCA is an unsupervised method which does 

not require a priori knowledge of the dataset structure and therefore models the total 

variance within a dataset.   

 

Scores plots may provide insight into the relationships between samples within a 

dataset and can be obtained by plotting the score values for different PCs against each 

other.  In addition outliers within a dataset (i.e. data points which deviate from the 

distribution of the majority of the data.  See Table 1.3) may be identified from PC 

scores plots and removed from the dataset prior to additional analyses.  Plotting the 

corresponding loadings may illustrate the variables responsible for the trends observed 

in these scores plots.   

 

1.6.3 Discriminant Function Analysis 

Discriminant function analysis (DFA; (Manly, 1994)) is a supervised projection method 

which is also known as canonical variates analysis (CVA).  DFA generates a number of 

linear discriminant functions by finding the eigenvalues and eigenvectors of the 

expression: 

 

  W-1B      (Equation 1.1) 

 

Where W is the within group matrix of sums of squares and cross products, and B is 

the between group matrix of sums of squares and cross products. 
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The DFA algorithm cannot analyse datasets which contain colinear variables or too 

many variables, and it is therefore necessary to perform a data compression such as 

PCA, prior to the analysis of a multivariate dataset, and the combination is referred to 

as PC-DFA (Goodacre et al., 1998).  A priori knowledge of class structure is employed 

to achieve the supervision of the algorithm.  Each group of samples is mean centred to 

each of the group means, from which the within group matrix of sums of squares and 

cross products (W) is calculated.  In order to determine the corresponding between 

group matrix (B) the algorithm calculates the difference between W and the total sum of 

squares and cross products.  These matrices are employed by the algorithm in 

Equation 1.1 in order to determine the Fisher (F) ratio (the ratio of between-group to 

within-group variance).  The linear combination of discriminant functions that maximise 

F for the dataset is then sought by the algorithm. 

 

The a priori class structure employed by the DFA algorithm may be based on technical 

experimental replicates, which do not bias analyses designed to observe or model the 

class structure of biological replicates in an experiment (e.g. for the classification of 

unknown microorganisms) (Jarvis and Goodacre, 2004b).  Alternatively, for 

experiments designed to observe or model the class structure according to other 

parameters (e.g. exposure to abiotic perturbation) the a priori class structure may be 

based on the biological replicates (Lopez-Diez et al., 2005).   

 

As DFA is a supervised technique, appropriate validation (Section 1.6.6) methods need 

to be employed in order to ensure that the quality of the data is of a high standard, and 

that the subsequent conclusions drawn from the data are valid.   

 

1.6.4 Principal Component Regression 

Principal component regression (PCR; (Gemperline et al., 1991)) is a supervised linear 

regression method the purpose of which, is to provide an estimation of the values of a 

response variable (Y; e.g. API concentrations) on the basis of selected PCs of the 

explanatory variables (X; e.g. FT-IR spectra).  In this approach PCA is first carried out 

on the dataset and the PC scores are then regressed against the response variables 

(e.g. concentration of abiotic perturbation).   

 

The explanatory variables in multivariate datasets are often highly correlated 

(multicollinearity) and this may lead to the inaccurate estimation of the least squares 
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regression coefficients.  Such difficulties are avoided by decomposition of the data 

matrix (X) into latent variables by PCA, as PCs are uncorrelated.  Furthermore, the use 

of PCs reduces the dimensionality of the regressors as a subset of PCs is typically 

employed in the regression.  This subset usually consists of those PCs which account 

for the highest explained variance within the dataset; however, the PCs which account 

for smaller amounts of variance may also be significant for some analyses (Jolliffe, 

1982).  Moreover as PCA is used it is possible that the largest variation in the data is 

not directly correlated to the Y variable, so alternative regression methods may need to 

be employed. 

 

1.6.5 Partial Least Squares Regression 

The partial least squares regression (PLSR; (Martens and Naes, 1989)) method 

provides another biased (supervised) regression approach with improvements over 

PCR (Geladi and Kowalski, 1986, Höskuldsson, 1995, Wold et al., 2001a, Wold et al., 

2001b, Geladi, 1988, Wold, 1984, Jolliffe, 1986).  It has been shown that PLSR is 

comparable to finding successively linear functions of the predictor variables that have 

maximum covariance with the dependent variables (Jolliffe, 1986, Stone and Brooks, 

1990).  This is reliant upon each of the linear functions being uncorrelated with the 

previous linear functions (Stone and Brooks, 1990).  In contrast to the PCR technique 

which models the variances derived from X, and least squares regression techniques 

which maximise the correlations between Y and X, PLSR combines both correlation 

and variance to model covariance between the predictor matrix (X) and the response 

matrix (Y) (Jolliffe, 1986).  PLSR is particularly useful for the prediction of a set of 

dependent variables from a large set of independent variables, and can deal efficiently 

with multivariate datasets that are highly correlated and contain noise.  PLSR allows 

the relationships between different blocks of data to be derived using modelling with 

“latent variables” which are derived by an iterative procedure.  These latent variables 

are mutually orthogonal (uncorrelated) within each data block and are linear 

combinations of the original variables (Martens and Naes, 1989, Lindon et al., 2001a).   

 

PLSR employs the latent variables (i.e. scores) of X to explain the variance in both X 

and Y (whereas PCA only models the variance in X).  Consequently, the aim is also 

different in the calculation of the latent variables in PLSR and the variance in X which is 

needed to predict the variance in the response variable (Y) is extracted (See Figure 

1.9).  The first score (T1) is calculated by the algorithm in order to maximise the 
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covariance between the T1 score vector and Y.  The weight vector W1 contains the 

influence of the original variable in X on the T1 score.  Information regarding the 

variance described by the T1 score vector is contained in the P1 and C1 loadings of X 

and Y respectively.  The variance explained by the first score vector is removed from 

the X and Y matrices by the subtraction of T1P1 and T1C1 from X and Y resulting in 

the formation of the residuals E and F respectively.  These residuals replace the 

original X and Y, and the method is repeated until the optimal number of components 

has been calculated.   
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Figure 1.9:  PLSR combines both correlation and variance to model covariance between the 
predictor matrix (X) and the response matrix (Y). 
 

 

The number of significant components in a PLSR model can be estimated through the 

use of validation techniques (Wold, 1978).  PLSR models may be validated through 

either internal or external techniques.  Cross validation is commonly used for internal 

validation (Wold, 1978) and may be employed to estimate the number of model 

components and to estimate the predictive capability of the model.  For external 

validation techniques, the PLSR model is used to predict a test set of samples with 

known responses (Y) and the accuracy of the predictions is assessed based upon the 

size of the root mean square error of prediction (RMSEP).  For each response variable 
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in Y a RMSEP value is obtained and is presented in the same units as the response 

(e.g. µg mL-1 for concentration based studies).  In external validation techniques, 

samples that have not been employed to build the model are predicted, therefore 

providing an independent measure of the predictive ability of the model.  Consequently 

external validation is considered the best method for PLSR model validation 

(Broadhurst and Kell, 2006).   

 

1.6.6 Model Validation 

As highlighted for PLSR, model validation is an essential step in multivariate data 

analysis.  It is carried out in order to ensure that the quality of the model is of a high 

standard, and that the subsequent conclusions drawn from the data are valid.  Without 

the application of appropriate model validation techniques, models may over-fit the 

data, finding relationships between the data and the dependent variables that do not 

hold for subsequent analyses (Picard and Cook, 1984); that is to say, there is a lack of 

generalisation.   

 

A common method of validation is to split the data into three sets; a training set which 

is used for training the model, a validation set which is used to avoid over training of 

the data, and a test set which is used to test the ability of the model to generalise.  

Careful consideration should be taken when splitting the data as the groups should 

represent the spread of the variance within the dataset (Brown et al., 2005, Picard and 

Berk, 1990).  For techniques such as PCR, PC-DFA and PLSR the models are 

generated using the training dataset and the test set is then projected into the same 

ordinate space.  The optimum number of latent variables or PCs may then be selected 

for the model where the validation data falls within the bounds of the training and test 

datasets (Handl et al., 2005, Kaderbhai et al., 2003). 
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1.7 Research Objectives 

There are a number of classes of environmental pollutants of which APIs - with specific 

focus on those which contain a chiral centre - are just one.  Within recent years the 

importance of the interactions of these compounds within the aquatic environment has 

been realised (Escher et al., 2005, Fent et al., 2006, Heberer, 2002).  Information 

regarding the fate and biodegradation of such environmental pollutants is now required.  

 

The intention of this study is to investigate the effects of chiral APIs and other 

environmental pollutants on the metabolome(s) of environmentally relevant 

microorganisms (both axenic cultures and communities) and the metabolic pathways in 

which these pollutants undergo degradation.  The effects of these pollutants will be 

tested in both prokaryotic and eukaryotic systems, and a variety of technologies will be 

employed, including FT-IR spectroscopy and GC-MS.  The chemical analyses of these 

systems will be combined with multivariate analysis methods in order to model the 

metabolic effect of chiral APIs and other environmental pollutants on microbial species.   

 

A combination of multivariate methods will be employed for the effective analysis of the 

analytical data obtained, in order to provide classification of the samples.  In addition it 

is intended that the spectral and chromatographic regions important in the 

discrimination and quantification of the metabolic effects may be identified in order to 

fully appreciate the effects of the pollutants on the microbial systems.  Furthermore, 

any possible degradation products will be identified.  

 

In particular the environmental metabolomics investigation presented here will 

investigate the following areas; 

 

1. The growth dynamics of a range of environmentally relevant bacterial species 

will be monitored following exposure to a range of concentrations of the chiral 

APIs Atenolol and Propranolol.  FT-IR spectroscopy - combined with the 

relevant multivariate analysis methods - will be employed as a metabolic 

fingerprinting tool in order to monitor any phenotypic effects exerted on the 

bacterial species at a range of concentrations and enantiomeric ratios.  In 

addition, GC-MS will be employed for metabolic profiling of the observed of 

chiral specific effects. 
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2. The potential chiral specific effects of the APIs Atenolol and Propranolol will be 

investigated in a eukaryotic system.  FT-IR microspectroscopy will be employed 

in order to monitor the general phenotypic effects and more specific localised 

effects of a range of enantiomeric ratios of the APIs at a given concentration in 

the green alga Micrasterias hardyi.  In addition a wide range of multivariate 

analysis methods will be employed to interrogate the hyperspectral data. 

 

3. The phenotypic effects of the chiral APIs Atenolol and Propranolol and the 

aromatic hydrocarbons toluene and phenol on a complex activated sludge 

community will be investigated.  FT-IR spectroscopy will be employed as a 

phenotypic fingerprinting technique in order to model the phenotypic differences 

in the community following exposure to the various environmental 

contaminants.  In addition, any possible degradation of these compounds will 

be monitored with the use of HPLC or a colorimetric assay. 

 

4. Biochemical changes in the activated sludge community will be monitored 

during the degradation of phenol over a 48 h period through the use of FT-IR 

spectroscopy.  In addition the phenotypic effect of storing the activated sludge 

for extended periods of time (without added phenol), will be determined by FT-

IR analysis in order to understand the ability of this microbial community to 

degrade phenol.  In addition, GC-MS will be employed for metabolic profiling of 

the activated sludge community in order to monitor the changes in the meta-

metabolome during the active degradation of phenol. 
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The work presented in this chapter has been published: 
 
E. S. Wharfe, C. L. Winder, R. M. Jarvis and R. Goodacre (2010) Monitoring the Effects 
of Chiral Pharmaceuticals on Aquatic Microorganisms by Metabolic Fingerprinting.  
Applied and Environmental Microbiology 76, 2075-2085. 
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2.1 Abstract 

The effects of the chiral pharmaceuticals Atenolol and Propranolol on Pseudomonas 

putida, Pseudomonas aeruginosa, Micrococcus luteus, and Blastomonas natatoria 

were investigated.  The growth dynamics of exposed cultures were monitored using a 

Bioscreen instrument.  In addition, Fourier-transform infrared (FT-IR) spectroscopy with 

appropriate chemometrics and high-performance liquid chromatography (HPLC) were 

employed in order to investigate the phenotypic changes and possible degradation of 

the drugs in exposed cultures.  For the majority of the bacteria studied there was not a 

statistically significant difference in the organism’s phenotype when it was exposed to 

the different enantiomers or mixtures of enantiomers.  In contrast, the pseudomonads 

appeared to respond differently to Propranolol, and the two enantiomers had different 

effects on the cellular phenotype.  Furthermore, GC-MS metabolic profiling results 

corresponded with these findings, implying that there were different metabolic 

responses in the organisms when they were exposed to the different enantiomers.  We 

suggest that our findings may indicate that there are widespread effects on aquatic 

communities in which active pharmaceutical ingredients are present. 
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2.2 Introduction 

Active pharmaceutical ingredients (APIs) and their metabolites are ubiquitous in the 

environment (Escher et al., 2005), and the occurrence of APIs in the aquatic 

environment is of growing concern (Fent et al., 2006).  There are a number of routes 

through which APIs and resulting metabolites / degradation products may enter these 

ecosystems, and a common avenue is through the excretion of the APIs and their 

metabolites in urine and faeces.  It is known that APIs have different rates of 

metabolism within man.  For example, the β-blocker Propranolol is almost completely 

metabolised within the liver and only 1-4% of an oral dose is excreted as the 

unchanged API and its metabolites.  By contrast, 40-50% of an oral dose of Atenolol 

(also a β-blocker), is excreted as the API or its constituent metabolites (Ashton et al., 

2004, Carlsson et al., 2006a, Carlsson et al., 2006b).  The subsequent degradation of 

the APIs and their metabolites may also occur at sewage treatment plants (STPs); this 

is usually substrate specific and will vary greatly between APIs.  The rate of adsorption 

to activated sewage sludge during treatment differs between APIs, and is dependant 

on the hydrophobic and electrostatic interactions of the API with the particulates and 

microorganisms within the activated sewage sludge (Fent et al., 2006).  Any remaining 

API and relevant metabolites are diluted into the surface water when the effluent is 

released from the STP.  Hence, many APIs are present in low concentrations (ng - µg 

L-1) in aquatic environments such as rivers, streams and estuaries (Escher et al., 2005, 

Ashton et al., 2004, Carlsson et al., 2006b).  The majority of APIs are neither persistent 

nor highly bioaccumulative; however, the continuous release of APIs into the aquatic 

environment poses a potential risk to aquatic organisms even though the 

concentrations of APIs in receiving waters are quite low (Escher et al., 2005).  

 

Despite little being known about the effects of APIs in the environment, it must be taken 

into account that they are designed to elicit a specific mode of action in humans 

(Escher et al., 2005).  Adverse side effects may be encountered in humans at higher 

doses of these APIs and it can be expected that any beneficial or adverse effect may 

also be observed in aquatic organisms with similar biological functions or receptors.  It 

must also be noted that similar targets may control different metabolic processes in 

different species (Seiler, 2002) and therefore APIs and their metabolites may act 

through additional modes of action in aquatic organisms.  The effects of the APIs may 

be subtle due to the very low concentrations observed in the aquatic environment and 

as a result these effects may go unnoticed (Escher et al., 2005).  It is also likely that the 
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effect of the API will impact on the local population dynamics throughout the whole 

ecosystem, from bacteria up to higher organisms.  To explore the effects of the APIs on 

biological systems a wide range of concentrations should be employed with the 

application of appropriate analytical platforms to profile the complement of biochemical 

components in the cell.  Indeed it is known that APIs could become concentrated in the 

benthic environment of river beds and as bacteria inhabit this niche this community 

may be exposed to higher levels than expected (Thacker, 2005, Halling-Sørensen et 

al., 1998, Pouliquen et al., 1992). 

 

Whilst the effects of APIs in the environment is currently a growing area of research 

there is very little understanding of the environmental effects of chiral pharmaceuticals 

(Fono and Sedlak, 2005, Buser et al., 1999).  A chiral molecule is one that lacks an 

internal plane of symmetry.  The non-superimposable mirror images are termed 

enantiomers and are labelled ‘(R)’ or ‘(S)’ according to a priority system (Cahn Ingold 

Prelog priority rules) based on the atomic number of the molecules substituents.  

Approximately 56% of the APIs currently in use are chiral compounds, 88% of which 

are administered therapeutically as the racemate (i.e. an equal mixture of the two 

enantiomers, represented by the symbol (±)).  The chirality of environmental 

contaminants such as APIs must be taken into consideration in order to fully 

understand the environmental fate and effects of these compounds.  The enantiomers 

of a chiral API are able to interact differently with other chiral compounds such as 

enzymes, and therefore potentially exert different effects when released into the 

environment (Fono and Sedlak, 2005, Buser et al., 1999, Nikolai et al., 2006).  It is 

widely known that the enantiomers of a chiral API may possess differing toxicological 

and biological effects both from each other, and the racemate (an equal mixture of the 

two enantiomers) (Lees et al., 2003, Yang et al., 2005).  It has been shown that the (S)- 

enantiomers of the β-blocking agents Atenolol and Propranolol are more potent in man 

than their respective antipodes (Davies, 1990, Pearson et al., 1989, Kurt et al., 1993, 

Barrett and Cullum, 1968) and that a number of the biotransformation pathways for β-

blockers are stereoselective in humans (Mehvar and Brocks, 2001).  The mode of 

action of the drugs and their enantiomers is not known in prokaryotic systems.  It is 

therefore necessary to enhance our understanding of the fate and biological effects of 

chiral pharmaceuticals on typical microflora from the aquatic environment in order to 

fully appreciate the risks (Huggett et al., 2002).  Of particular interest is the group of 

APIs termed β-blockers as they all contain at least one chiral centre and are generally 

administered therapeutically as the racemate (Mehvar and Brocks, 2001).  In addition, 
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they are widely used with approximately 29 and 12 tonnes of Atenolol and Propranolol 

respectively consumed each year in the UK (Ashton et al., 2004, Carlsson et al., 

2006a, Carlsson et al., 2006b). 

 

In order to explore the effect of the APIs on biological systems we employed Fourier-

transform infrared (FT-IR) spectroscopy, this is a phenotyping technique which has 

previously been used to generate metabolic fingerprints from bacteria (Johnson et al., 

2004, Winder et al., 2007).  Previous studies have proved successful in the 

discrimination of bacteria to sub-species level (Winder et al., 2006, Timmins et al., 

1998, Naumann et al., 1991a) through the detection of subtle changes in the 

biochemical phenotype of the bacteria and the use of FT-IR coupled with suitable 

chemometrics to allow the physiological assessment of bioprocesses has been 

demonstrated.  In addition, the combination of FT-IR and trajectory analysis has proved 

successful in the identification of metabolic changes in fermentations (Johnson et al., 

2004).  FT-IR is an automated high-throughput technique (10-60 s per sample is 

typical); requiring minimal sample preparation, and this makes it relatively inexpensive.  

It is therefore an ideal screening method to explore the effect of the APIs on a number 

of bacterial systems. 

 

In this study the chiral specific metabolism of the β1 – selective adrenergic blocking 

agent Atenolol and the non-selective β-adrenergic blocking agent Propranolol by a 

range of environmental microorganisms was investigated (Ternes, 1998, Fono and 

Sedlak, 2005, Roberts and Thomas, 2006).  FT-IR spectroscopy was employed to 

monitor biochemical changes in the spectral fingerprint of the whole bacterial cells 

during the growth of these microorganisms in the presence of the selected APIs.  The 

fate of the API was monitored with chiral HPLC, enabling quantification of the 

enantiomers.  In addition, GC-MS was employed in order to monitor the changes in the 

metabolite profiles of two pseudomonads following exposure to a range of enantiomeric 

ratios of Propranolol.  
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2.3 Materials and methods 

2.3.1 Cultivation of Bacteria 

In order to monitor the effects of the chosen APIs within the aquatic environment a 

variety of microorganisms were selected for investigation.  All of the microorganisms 

employed within this study have been reported to be commonly found within the 

aquatic environment, and are amenable to growth in the laboratory.  Four bacteria were 

selected for this study, Pseudomonas putida KT2440 which has been known to inhabit 

freshwater streams and activated sewage sludge (John and White, 1998, Martínez-

Bueno et al., 2002), P. aeruginosa PA14 which is commonly isolated from freshwater 

streams (Tan et al., 1999), and Micrococcus luteus 2.13 (Rickard et al., 2000), and 

Blastomonas natatoria 2.1 (Sly and Cahill, 1997, Rickard et al., 2000) which have been 

isolated from freshwater biofilms.  The bacteria were cultured in R2A medium 

(Reasoner and Geldreich, 1985) at 15 °C for 24 h, 200 r.p.m. in a Multitron (INFORS 

HT, Switzerland) orbital shaker unless otherwise stated.  The pure enantiomers (i.e. 

(R)- and (S)-) of both Atenolol and Propranolol (as hydrochloride) were purchased from 

Sigma-Aldrich Company Limited, (Poole, Dorset, U.K.).   

 

2.3.2 Screening of microorganisms for growth in the presence of APIs 

The growth of the bacteria was monitored (at 600 nm using a Bioscreen 

spectrophotometer (Labsystems, Basingstoke, U.K.)) for each microorganism at a 

range of concentrations (10-130 µg mL-1) of each enantiomer of the API and the 

racemate.  The data collected from these investigations were used to calculate the 

specific growth and death rates (this is when the rate of cell death or lysis exceeds the 

rate of growth so that a decrease is observed in the turbidity of the culture (Rice and 

Bayles, 2003)) from the exponential phases using the following equation: 

 

( )10 10

2 1

log OD2-log OD1
µ=2.303

t -t
 

Where: log10OD1 = log10 value of OD reading at time point 1 

 log10OD2 = log10 value of OD reading at time point 2 

 t1 = time point 1 and t2 = time point 2 
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The growth rate data (vide infra) was used to select a reduced range of concentrations 

for further investigation; this was based on identifiable difference in growth rate, but 

which did not result in cell death. 

 

2.3.3 Batch growth 

Bacterial cultures were exposed in triplicate to a range of concentrations of the chosen 

API, the pure enantiomers and a range of enantiomeric mixtures were used (see Table 

2.1).  An aliquot (1 mL) of sterile water was added to an additional set of bacterial 

samples to act as a control.  Samples were maintained at 15 °C, 200 r.p.m. in a 

Multitron orbital shaker for 24 h.  Aliquots (2 mL) were taken in triplicate from each flask 

and centrifuged (5 min, 0 °C, 16089 g) to harvest the biomass.  The supernatant and 

pelleted biomass was stored at -80 °C for further analysis. 

 

Table 2.1:  Microorganisms and conditions for batch growth. 

Microorganism 
 

API 
 

Concentration of API (µg mL
-1
) 

 

Growth 
Temperature 

(°C) 

Incubation 
Period (h) 

P. putida KT2440 Propranolol (±): 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 
120 

15 24 

     

 
Propranolol 
 

50 µg mL-1 of (R) : (S) in the following ratios: 
(0, 25:75, 50:50 75:25 100) 
 

15 24 

 Atenolol (±), (R), (S): 90, 100, 110, 120, 130 15 24 

     

P. aeruginosa PA14 Propranolol (±), (R), (S): 40, 50, 60, 70, 80 15 48 

     

 
Propranolol 
 

50 µg mL-1 of (R) : (S) in the following ratios: 
(0, 25:75, 50:50 75:25 100) 
 

15 48 

 Atenolol (±), (R), (S): 40, 50, 60, 70, 80 15 48 

     

M.  luteus 2.13 Propranolol (±), (R), (S): 40, 50 15 336 

     

B.  natatoria 2.1 Propranolol (±), (R), (S): 40, 50 15 336 

 

 

2.3.4 Quantitative analysis of API concentration with HPLC 

Concentrations of Atenolol and Propranolol were determined by HPLC (Agilent 1100 

series).  The supernatant samples were allowed to thaw at room temperature and were 

filtered (0.22 µm, MilliporeTM) in order to remove any microbial cells remaining in the 

medium.  Aliquots (25 µL) were injected onto the HPLC column in a random order.  

Each sample was injected three times during the analysis, resulting in three analytical 



Monitoring the effect of chiral pharmaceuticals on aquatic microorganisms by metabolic 
fingerprinting and metabolite profiling 

 

An environmental metabolomics investigation of the effects of chiral pharmaceuticals 
and environmental pollutants on microorganisms 

- 63 -   

replicates for each biological sample.  The HPLC system was equipped with a 

Chirobiotic V2 column (250 mm × 4.6 mm i.d.), particle size 5 µm (ASTEC, Whippany, 

NY, USA) and a UV detector operating at a wavelength of 230 nm.  The column was 

eluted with an isocratic mixture of methanol and water (90:10, v/v) and 1.0% 

triethylamine acetate (TEAA) buffer, pH 5.0.  The pH of the buffer was adjusted with 

acetic acid prior to the addition of methanol.  The measurements were carried out a 25 

± 1 °C at a flow rate of 1 mL min-1 (Bosakova et al., 2005).  

 

2.3.5 FT-IR spectroscopy 

A 96-well zinc selenide (ZnSe) plate was cleaned by rinsing with 2-propanol and 

deionised water (three times) and allowed to dry at room temperature (Winder et al., 

2006, Harrigan et al., 2004).  The cell pellets stored at -80 °C were allowed to thaw at 

room temperature and washed in order to remove any traces of residual API.  Ice cold 

sterile water (2 mL) was added to each sample and gently vortexed.  The samples 

were centrifuged for 10 min (0 °C, 16089 g), and the supernatant was discarded; this 

cycle was repeated 3 times.  A final aliquot of 100 µL sterile water was added to each 

sample and the solution was vortexed.  Aliquots (20 µL) of each resuspended sample 

were applied to the ZnSe plate and oven dried at 50 °C for 10 min.  Drying was used to 

minimise any signal arising from the absorption of water in the mid-IR region, which 

would mask the biologically important chemical information in the spectra.  Three 

replicates of each of the samples were randomly applied to the ZnSe plates and 

triplicate spectra were obtained from different positions of each well, a total of nine 

spectra (so called technical replicates) were collected per sample.  The plate was 

loaded onto a motorised microplate module HTS-XT under computer control by the 

OPUS software version 4 (Winder et al., 2006).  Spectra were collected using an 

Equinox 55 FT-IR spectrometer (Bruker Optics Ltd), in transmission mode using a 

deuterated triglycine sulphate (DTGS) detector over the wavelength range of 4000-600 

cm-1 and with a resolution of 4 cm-1.  64 spectra were co-added to improve the signal-

to-noise ratio.  The spectra are displayed in terms of absorbance (see Figure 2.1 for 

typical example spectra). 

 



Monitoring the effect of chiral pharmaceuticals on aquatic microorganisms by metabolic 
fingerprinting and metabolite profiling 

 

An environmental metabolomics investigation of the effects of chiral pharmaceuticals 
and environmental pollutants on microorganisms 

- 64 -   

5001000150020002500300035004000

Wavenumber (cm-1)

A
bs

or
ba

nc
e 

(a
rb

itr
ar

y)

Con

(±)

(S )

(R )

Con

(±)

(S )

(R )

Con

(±)

(S )

(R )

Con

(±)

(S )

(R )

 
Figure 2.1:  Typical processed FT-IR spectra for Pseudomonas aeruginosa PA14 exposed to 
80 µg mL-1 (R), (S), and (±)- Propranolol.  Additional control samples are included which were 
not exposed to Propranolol.  The spectra are offset for clarity. 
 

 

2.3.6 FT-IR Spectral pre-processing 

The ASCII data were imported into Matlab version 7.1 (The MathWorks, Inc., Natick, 

MA, USA) and as an initial step spectral regions which are dominated by CO2 

vibrations arising from the atmosphere (2403 – 2272 cm-1 and 683 – 656 cm-1) were 

removed and filled with a linear trend. The spectra were corrected using extended 

multiplicative scatter correction (EMSC) which normalises and smoothes the spectra by 

application of a polynomial smoothing function (Martens et al., 2003).  These pre-

processed spectra were used for subsequent multivariate analyses. 

 



Monitoring the effect of chiral pharmaceuticals on aquatic microorganisms by metabolic 
fingerprinting and metabolite profiling 

 

An environmental metabolomics investigation of the effects of chiral pharmaceuticals 
and environmental pollutants on microorganisms 

- 65 -   

2.3.7 Metabolite profiling with GC-MS 

In order to quench metabolism, culture samples (20 mL) were plunged rapidly into an 

equal volume of 60% aqueous methanol solution (−48 °C).  The quenched biomass 

was centrifuged for 10 min (3000 g, −9 °C) and the supernatant was removed.  The 

biomass pellets were stored at −80 °C for further analysis (Winder et al., 2008).  

 

For metabolite extraction, the biomass pellets were suspended in 550 µL of 80% 

aqueous methanol solution (−48 °C), frozen in liquid nitrogen, and allowed to thaw on 

dry ice.  The freeze thaw cycle was carried out three times in order to permeabilise the 

cells and allow leakage of the metabolites into the supernatant.  The suspensions were 

centrifuged for 7 min (16,060g, −9 °C) and the supernatant was retained and stored on 

dry ice.  An additional aliquot (550 µL) of 80% aqueous methanol solution was added 

to the biomass pellet and the procedure was repeated.  The second aliquot of the 

supernatant was combined with the first and the sample was stored on dry ice for 

further analysis (Winder et al., 2008).  In order to prepare the metabolite extracts for 

GC-MS analysis, aliquots (1 mL) of each extract was spiked with 100 µL of internal 

standard solution (0.19 mg mL-1 succinic-d4 acid, 0.27 mg mL-1 malonic-d2 acid, 0.22 

mg mL-1 glycine-d5 in HPLC-grade water) and lyophilised (HETO VR MAXI vacuum 

centrifuge attached to a HETO CT/DW 60E cooling trap; Thermo Life Sciences, 

Basingstoke, U.K.) (Winder et al., 2008).   

 

Samples were subsequently derivatised in two stages.  An aliquot (40 µL) 20 mg mL-1 

O-methylhydroxylamine solution in pyridine was added and heated at 40 °C for 80 min 

followed by addition of 40 µL of MSTFA (N-acetyl-N-(trimethylsilyl)-trifluoroacetamide) 

and heating at 40 °C for 80 min.  A retention index solution was added for 

chromatographic alignment (20 µL, 0.6 mg mL-1 C10/C12/C15/C19/C22 n-alkanes).  

 

The gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) method used 

to analyse the metabolites has been shown to be suitable for detection and semi-

quantification of a wide range of metabolite classes as detailed in available mass 

spectral / retention index libraries (Kopka et al., 2005) or genome-scale reconstructions 

of metabolic networks (Feist et al., 2007).  Samples were analysed in a random order 

employing GC-TOF-MS (Agilent 6890 GC coupled to a LECO Pegasus III TOF mass 

spectrometer) and using the optimal settings determined previously for yeast analysis 

(O'Hagan et al., 2004).  The raw data were processed using LECO ChromaTof v2.12 
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and its associated chromatographic deconvolution algorithm, with the baseline set at 

1.0, data point averaging of 3, and average peak width of 2.5.  A reference database 

was prepared which incorporated the mass spectrum and retention index of all 

metabolite peaks detected in a random selection of samples in order to allow the 

detection of all metabolites present.  Each metabolite peak in the reference database 

was searched for in each sample, and if matched, the peak area was reported and the 

response ratio relative to the internal standard was calculated (Winder et al., 2008).   

 

2.3.8 Multivariate Analysis  

Multivariate analysis followed a protocol developed previously (Goodacre et al., 1998, 

Alsberg et al., 1998).  Principal components analysis (PCA) is an unsupervised method 

for reducing the dimensionality of multivariate data whilst preserving the variance.  This 

transformation was performed prior to canonical variates analysis (CVA).  CVA is a 

supervised learning method that seeks to minimise within group variance whilst 

maximising between group variance, and can be used in conjunction with PCA to 

discriminate between groups on the basis of retained principal components (PCs), 

given a priori knowledge of group membership of the spectral replicates (Manly, 1994, 

Winder et al., 2004).  In this study, PC-CVA models were constructed with a priori 

knowledge of the biological replicates.  In order to make sure these models were not 

over- or under-trained, validation was performed using the method of full cross-

validation, where two of the biological replicates were used for model training with the 

third projected into the model for cluster validation purposes (Jarvis and Goodacre, 

2004a).  Finally, CVA also allows statistical significance to be displayed on the scores 

plots and circles were used to represent the 95% χ2 confidence region constructed 

around each group mean based upon the χ2 distribution with two degrees of freedom 

(Krzanowski, 1988). 

 

Partial least squares (PLS (Martens and Naes, 1989)) regression is a multivariate 

linear regression method which allows the quantitative relationship between different 

variables (i.e., API concentration and FT-IR spectra) to be modelled, and can deal 

efficiently with datasets that are highly correlated.  In this study, PLS regression was 

employed to predict the API concentration values from the FT-IR data.  As for PC-CVA, 

the regression models were calibrated with two of the three biological replicates and 

the third replicate was used as an independent test set to validate the model and 

establish whether the models could generalise. 
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2.4 Results and Discussion 

2.4.1 The effect of the chiral APIs on the bacterial growth rates 

A number of aquatic microorganisms were exposed to the chiral APIs Atenolol and 

Propranolol, and growth rates, death rates and maximum optical density (OD) were 

determined to monitor the effect of the APIs on culture progression (see Figure 2.2 for 

examples of 0, 10, 50, 90 and 130 µg mL-1 for (R)-, (S)- and the racemic mix).  Slight 

variations were observed in the specific growth rates within the Pseudomonas species 

exposed to varying concentrations (10-130 µg mL-1) of (R)-, (S)- and (±)- Propranolol.  

There was a considerable difference in the growth rates observed between species, 

and a marked effect was observed in P. aeruginosa PA14 exposed to Propranolol.  By 

contrast, minimal changes were detected in the growth rates, death rates or maximum 

amount of biomass of both organisms exposed to 10-130 µg mL-1 of (R)-, (S)- and (±)-

Atenolol.   
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Figure 2.2:  Specific growth rate data for Pseudomonas putida KT2440 and P. aeruginosa 
PA14 exposed to 0-130 µg mL-1 of Propranolol or Atenolol.  Maximum OD (600 nm) and 
“specific death rates” are also shown.  Data are averaged from 5 biological replicates and error 
bars show standard deviation. 
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An interesting effect was observed for P. aeruginosa PA14 exposed to both of the 

Propranolol enantiomers and the racemate.  At concentrations of 50-70 µg mL-1 there 

appeared to be no death of the microbial cells.  By contrast, for cells exposed to 10-40 

and 80-130 µg mL-1 the death rate was equivalent to that from the control cells.  This is 

likely to be due to the lower concentrations (<40 µg mL-1) of Propranolol having very 

little effect on metabolism so cells quickly reach stationary and death phases, higher 

concentrations (>80 µg mL-1) having a negative impact on metabolism and killing cells 

(as also seen in the final turbidity measurements being significantly lower than control 

cells), whilst the intermediate concentrations (50-70 µg mL-1) might slow growth but the 

cells have not yet entered the death phase.  Inspection of the growth curves indicated a 

second phase of growth several hours into the stationary phase.  Whilst this may be 

indicative of the utilisation of a secondary carbon source this was not observed in the 

control cultures and as such is not the likely explanation.  The biomass of the culture 

decreased as the concentration of the API increased and thus the original carbon 

source was potentially not depleted at the onset of stationary phase.  Whilst at the 

higher concentrations of Propranolol a slight increase in the biomass was immediately 

followed by a noticeable decrease in the OD of the culture (death phase) the maximum 

biomass was severely inhibited by the presence of the API.  Our observations would 

suggest that a differential effect is exerted by the API depending on the concentration 

applied.  At lower concentrations the growth trend is unaffected by the API, and at high 

concentrations a death is observed during the growth period.  However, at intermediate 

concentrations the production of biomass is extended throughout the growth period 

(the onset of death phase may be observed if the growth was monitored for extended 

periods).  The APIs were not metabolised during the growth (Table 2.2) and we would 

hypothesise that the intermediate concentrations of Propranolol were either affecting 

the transport of nutrients into the cell or the rate of metabolism.   

 

 

Table 2.2:  Quantification of Propranolol from HPLC data for bacterial cells exposed to 
varying ratios of (R)- and (S)- Propranolol at 50µg mL-1. 

Ratio of Enantiomers (R:S)
b 

75:25 50:50 25:75 
 

Microorganism or 
Medium 

100% 
(R) (R) (S) (R) (S) (R) (S) 

100% 
(S) 

Mediuma 49.6 (1.3) 36.9 (1.2) 11.3 (1.4) 23.8 (1.6) 24.3 (1.2) 11.6 (0.8) 37.2 (1.5) 48.4 (2.1) 

P.  putida KT2440 48.9 (1.7) 37.1 (0.9) 12.3 (1.1) 24.3 (0.8) 24.7 (1.1) 12.1 (0.7) 36.8 (1.4) 48.8 (1.8) 

P. aeruginosa PA14 48.2 (1.9) 36.7 (1.4) 11.9 (1.8) 23.9 (1.9) 24.6 (1.0) 11.9 (1.5) 37.0 (0.9) 49.3 (1.5) 

a Control experiments (labelled medium) were performed to determine the experimental effect on the drug concentration 
(i.e., loss of API during incubation in growth medium). 
b The values are averages for five measurements. The values in parentheses are standard deviations. 
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It can be clearly noted in the growth rate data for the Propranolol exposed cells that the 

specific growth rate decreases as the concentration of the API increases.  This trend is 

also observed in the maximum optical density data and death rates for both 

pseudomonads.  Our findings indicate that Propranolol has considerably different 

affects on the two Pseudomonas species.  These findings are rather surprising as 

these species are genetically closely related.  Estimates show that greater similarity 

(60% of the predicted coding sequences) is shown between the two pseudomonads 

than any other completed microbial genomes to date (Nelson et al., 2002).  In addition, 

comparative genome analysis has shown that 85% of the P. putida KT2440 genome 

has homologues in the P. aeruginosa PAO1 genome (Stover et al., 2000).    

 

The toxicity effects of the APIs observed here in aquatic organisms have been 

previously reported.  Toxicity studies carried out by Kim and co workers in the 

crustacean Thamnocephalus platyurus and a fish species (Oryzias latipes) reported 

that Propranolol caused acute toxicity in T. platyurus at a concentration of 10.61 µg mL-

1 and in O. latipes at a concentration of 11.40 µg mL-1.  In contrast to the results 

presented here, they found that Atenolol did not cause toxicity effects in the aquatic 

organisms at the concentrations used (<100 µg mL-1) (Carlsson et al., 2009).  In 

addition, toxicity studies have been carried out on a range of APIs (including 

Propranolol) in the Japanese medaka fish (Oryzias latipes) an amphipod (Hyalella 

azteca) and two crustaceans (Ceriodaphnia dubia and Daphnia magna).  It was found 

that Propranolol caused the greatest effect in the organisms studied.  The crustacean 

C. dubia displayed toxicity responses at a concentration of 0.25 µg mL-1.  Propranolol 

was the only API investigated which was found to cause acute toxicity effects in the 

Japanese medaka fish.  These effects were observed at a concentration of 0.5 µg mL-1 

(Huggett et al., 2002). 

 

Previous studies have suggested that β-blockers would not affect microbes due to the 

absence of the API receptors within microbial organisms (Jones et al., 2002, CSTEE, 

2001).  However, in another study conducted by our group we reported that (±)- 

Propranolol significantly reduced the lipid storage components of the algae 

Micrasterias hardyi 649/15 and caused a marked reduction in the cellular protein 

content (Patel et al., 2008).  In addition, the findings from the metabolic fingerprinting 

suggested that the phenotype was altered during exposure to the API (Patel et al., 

2008).  To our knowledge no further studies have been carried out on the metabolic 

effect of Propranolol within aquatic microorganisms.   
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The effects on the growth dynamics of the bacteria are likely to reflect changes in the 

metabolic potential of these cells and this quantitative drug effect was explored further 

using FT-IR spectroscopy and P. putida KT2440 exposed to (±)- Propranolol. 

 

2.4.2 Quantitative effects of APIs on bacteria measured using FT-IR 

spectroscopy 

In order to asses any possible quantitative effects of Propranolol on the phenotype of 

P. putida KT2440 we employed partial least squares (PLS) regression analysis to 

investigate whether the effect on the phenotype as measured using FT-IR 

spectroscopy was directly proportional to the concentration of API applied (Figure 2.3).  

A clear linear relationship was observed between the concentration of (±)- Propranolol 

to which the P. putida KT2440 cells had been exposed to and the metabolic fingerprint.  

In addition, we were able to predict the concentration of Propranolol to which the 

bacterial cells had been exposed with an accuracy of 95.45%.  This is perhaps not 

surprising as the inhibitory effect of the Propranolol on the cells was proportional to the 

concentration of API.  This was a clear phenotypic effect as we were unable to collect a 

spectrum of Propranolol at these concentrations using FT-IR spectroscopy.  We also 

performed PLS regression on the profiles of P. aeruginosa PA14 exposed to the 

intermediate concentrations of Propranolol, to determine if the secondary growth effect 

was proportional to the concentration of API applied (data not shown).  Under these 

conditions it was not possible to generate a correlation between drug exposure 

concentration and the FT-IR data.  Therefore, the presence of the drug may have led to 

more complex biochemical perturbations in the organisms that we are unable to model 

using PLSR.   
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Figure 2.3:  Partial least squares regression model for Pseudomonas putida KT2440 exposed 
to varying concentrations (0 – 100 µg mL-1 in steps of 10 µg mL-1) of (±)- Propranolol.  The 
model was trained with FT-IR data using two of the biological replicates and validated using the 
third biological replicate.  The PLSR model was built using 10 factors. 
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2.4.3 Quantitative analysis of API concentration with HPLC 

Chiral HPLC analysis was performed to quantify the amount of the enantiomers 

remaining at the end of the growth period.  The analysis was targeted to explore the 

effects observed in the growth rate data.  In addition, control experiments were 

performed to determine the experimental effect on the drug concentration; i.e., the loss 

of API during incubation in growth medium.  To determine the effect of the enantiomers 

on the growth of the pseudomonads a range of ratios of Propranolol were employed at 

50 µg mL-1.  The findings of the HPLC analysis (Table 2.2) demonstrated that neither of 

the enantiomers were degraded during the batch growth.  In addition, the 

pseudomonads were exposed to a range of concentrations of the API Atenolol (Table 

2.3), the concentrations selected were chosen from the findings of the growth rate data.  

There was no notable indication of API degradation during the growth of these bacteria. 

 

 

Table 2.3:  Quantification of Atenolol from HPLC data for bacterial cells exposed to 
varying ratios of (R)- and (S)- Atenolol at a range of concentrations. 

HPLC Quantification 
Racemate Pure Enantiomers 

Microorganism 
or Medium 

Concentration 
(µg mL

-1
) 

(R) (S) Total (R) (S) 
Medium* 80 38.7 (1.9) 39.1 (1.6) 77.8 (3.5) 79.0 (1.4) 78.2 (2.6) 

       
P. putida KT2440 90 42.1 (1.8) 43.8 (1.2) 85.9 (3.0) 88.9 (2.1) 88.7 (2.6) 

 100 48.3 (1.9) 47.8 (2.4) 96.1 (4.3) 99.3 (1.9) 98.8 (2.2) 
 110 53.9 (1.8) 54.2 (1.1) 108.1 (2.9) 108.7 (2.6) 109.3 (1.4) 
 120 59.4 (1.3) 58.7 (1.8) 118.1 (3.1) 118.9 (2.4) 119.6 (1.2) 
 130 62.9 (2.3) 63.8 (1.4) 126.7 (3.7) 129.7 (1.8) 128.9 (1.9) 
       

40 18.6 (1.5) 19.1 (1.2) 37.7 (2.7) 39.7 (1.5) 38.5 (2.1) P. aeruginosa 
PA14 50 23.8 (1.6) 22.9 (2.2) 46.7 (3.8) 47.6 (4.2) 49.3 (1.6) 

 60 29.2 (1.3) 28.6 (2.1) 57.8 (3.4) 58.4 (1.9) 59.1 (1.7) 
 70 32.9 (2.6) 33.5 (1.4) 66.4 (4.0) 68.9 (1.8) 68.7 (2.2) 
 80 39.2 (1.7) 38.8 (2.3) 78.0 (4.0) 79.9 (1.3) 78.6 (1.9) 

 

 

2.4.4 Effects of chiral APIs on FT-IR metabolic fingerprints  

In order to investigate whether there were any chiral specific phenotypic changes on 

the various aquatic bacteria, a single drug concentration in which there was no 

observable difference in growth rate between the enantiomers was chosen for 

investigation. 

 

During the investigation into the chiral API specific effects on microorganisms the four 

bacteria were exposed to a number of drug concentrations (detailed in Table 2.1).  A 
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summary of the statistically significant differences between the drug enantiomers, 

enantiomeric ratios, or the racemate is shown in Table 2.4. 

 

 

Table 2.4:  The concentration of Propranolol and Atenolol at which a significant effect 
on the bacterial phenotype was observed using FT-IR spectroscopy. 

Concentration of observed effect * Microorganism 
 Propranolol Atenolol 

P.  putida KT2440 50µg mL-1 > 130µg mL-1 

P.  aeruginosa PA14 50µg mL-1 > 80µg mL-1 

M.  luteus 2.13 50µg mL-1 ND 

B.  natatoria 2.1 40 and 50µg mL-1 ND 
* Effects are deemed significant in PC-CVA plots based on confidence regions being statistically different at the 95% χ2 
limit. This is to say at the concentration given, below this all bacteria had an equivalent phenotype (overlapping clusters) 
and above this there was clear differentiation. 
ND; not determined as Propranolol appeared to produce the most notable effects during earlier experiments. 

 

 

PC-CVA was carried out in order to investigate any chiral specific effects on the 

microorganisms as determined by FT-IR spectroscopy.  The distance between samples 

plotted on a PC-CVA scores plot represents the degree of similarity or dissimilarity 

between those samples.  A smaller distance indicates greater similarity and a larger 

distance would indicate that there are greater differences between samples.  Loading 

plots provide an indication of which regions of the spectrum are used to define these 

patterns of separation, which allows for meaningful biochemical interpretation of the 

results.  FT-IR analysis demonstrates that each of the Propranolol enantiomers exerts 

a metabolic effect on the microbial cells of P. aeruginosa PA14 at 80 µg mL-1 (Figure 

2.4a) compared to the control.  It can clearly be observed in the PC-CVA scores plot 

that the control samples separate across PC-CV 1, which accounts for the greatest 

variance within the data according to the putative class assignment, and as discussed 

above this finding was perhaps not surprising given the effect the of the API on the 

bacterial growth dynamics (Figure 2.2).  In addition, the samples exposed to (±)- 

Propranolol are clearly separate from those exposed to each of the enantiomers ((R)- 

and (S)-), which in this analysis show no separation across the first two PC-CV scores.  

As described above, 2 of the 3 biological replicates were used for calibration (shown in 

black) and the 3rd projected into the model (grey font).  The majority of these projected 

data are grouped with the appropriate calibration samples indicating that the separation 

displayed in the model was valid.  Moreover, the 95% confidence intervals for the 

groups are also plotted showing that for 3 of the groups there is a distinct separation in 

CVA scores space.  The analysis demonstrated that the microbial cells exposed to both 

(R)- and (S)- Propranolol cluster together in this analysis, indicating that there was no 
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metabolic difference in the microbial cells exposed to each of the pure enantiomers.  It 

was very surprising to observe that the cultures exposed to the racemate formed a 

distinct cluster separate from the cultures exposed to the pure enantiomers or control 

samples in the CVA space.  The loadings plot (Figure 2.4b) indicates that very specific 

changes in the metabolic fingerprint of the microbial cells account for the patterns of 

separation observed between the control and drug exposed samples in the scores plot.  

The major chemical changes arise in the protein (1681 – 1629 cm-1) and carbohydrate 

(1155 – 999 cm-1) regions of the FT-IR spectrum, with a less pronounced contribution 

from lipid species (2951 – 2845 cm-1) changing in the same direction as the 

carbohydrates.  To further investigate the effect on the biochemical components of the 

cell between the racemate and enantiomers, we calculated difference spectra (for 

example the metabolic fingerprint of the (R)- enantiomer was divided by that of the 

racemate) for each combination of interest.  This data was then used to determine the 

relative changes in the lipid and amide components of the cells with respect to the API 

exposure.  Inspection of the difference spectra (Figure 2.5) revealed that the bacterial 

cells exposed to the racemate contained lower levels of amides and higher levels of 

lipid compared to those exposed to either of the enantiomers.  This suggests that the 

racemate exerts less of a metabolic effect on the bacterial cells, and this is supported 

by the PC-CVA scores plot in which the racemate lies between the control and the 

enantiomer exposed cells across PC-CV 1.  As discussed above, HPLC analysis 

suggests that degradation or a significant uptake of the API does not occur within the 

microbial cells.  Therefore, it is unlikely that the increase in proteins observed in the FT-

IR spectra of Propranolol exposed cells is due to the expression of enzymes in order to 

metabolise the API.  It is more probable that this effect is due to the expression of an 

efflux system to remove the API from the bacterial cell.  In addition, Propranolol is a 

lipophilic API which is known to interact with cell membranes of mammalian cells and 

the observed reduction of lipids in exposed cells is likely to be due to interactions of the 

API with the bacterial cell membrane.  Propranolol is routinely administered to man as 

the racemate. The (S)- enantiomer accounts for the majority of the β-blocking effect, 

while the (R)- has a predominantly membrane stabilising effect (Barrett and Cullum, 

1968, Potter and Sweetland, 1967, Hanna and Evans, 2000, Walle et al., 1984).  One 

can hypothesise that the reason the racemate (±) was different compared to either of 

the enantiomers is because of the difference in the physical properties between the 

racemate and enantiomers (Chickos et al., 1981, Secor, 1963). 

 



Monitoring the effect of chiral pharmaceuticals on aquatic microorganisms by metabolic 
fingerprinting and metabolite profiling 

 

An environmental metabolomics investigation of the effects of chiral pharmaceuticals 
and environmental pollutants on microorganisms 

- 75 -   

-6 -4 -2 0 2 4 6
-5

-4

-3

-2

-1

0

1

2

3

4

S

C

C

S
R

MM

R S

C

C

S

R

M

M

R S

C

C

S

R

M

M

R

S

C C

S
R

M

M

R

R

C

M

S

MS

R

C

R

C

M

S

MS

R

C

PC-CV 1

P
C

-C
V

 2

5001000150020002500300035004000

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Wavenumber (cm-1)

P
C

-C
V

 L
oa

di
ng

-6 -4 -2 0 2 4 6
-4

-3

-2

-1

0

1

2

3

4

R:s

R:S R:s

r:S

S  

r:S

S  

R:S

R  

R  

R:s

R:S

R:s

r:S

S  

r:S

S  

R:S
R  

R  

R:s

R:S

R:s

r:S

S  
r:S

S  

R:S

R  R  

S  

r:S

R:S

R:s

R  S  

r:S

R:S

R:s

R  

S  

r:S

R:S

R:s

R  

PC-CV 1

P
C

-C
V

 2

5001000150020002500300035004000

-0.2

-0.1

0

0.1

0.2

0.3

Wavenumber (cm-1)

P
C

-C
V

 L
oa

di
ng

-3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

4

S

R

M

R

M

S

S

R
M

R

M

S

S

R

M
R

M

S

S

R

M

R

M

S

S

R

M

R

M

S

S

R M

R

M

S

S

R
M

R

M

S

S

RM
R

M

S

M

R

S

M

R

S

M

R
S

M
R

S
M

R
S

M

R
S

M

R

S

MR
S

PC-CV 1

P
C

-C
V

 2

5001000150020002500300035004000

-0.15

-0.1

-0.05

0

0.05

0.1

Wavenumber (cm-1)

P
C

-C
V

 L
oa

di
ng

a.

c.

e.

b.

d.

f.

-6 -4 -2 0 2 4 6
-5

-4

-3

-2

-1

0

1

2

3

4

S

C

C

S
R

MM

R S

C

C

S

R

M

M

R S

C

C

S

R

M

M

R

S

C C

S
R

M

M

R

R

C

M

S

MS

R

C

R

C

M

S

MS

R

C

PC-CV 1

P
C

-C
V

 2

-6 -4 -2 0 2 4 6
-5

-4

-3

-2

-1

0

1

2

3

4

S

C

C

S
R

MM

R S

C

C

S

R

M

M

R S

C

C

S

R

M

M

R

S

C C

S
R

M

M

R

R

C

M

S

MS

R

C

R

C

M

S

MS

R

C

PC-CV 1

P
C

-C
V

 2

5001000150020002500300035004000

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Wavenumber (cm-1)

P
C

-C
V

 L
oa

di
ng

5001000150020002500300035004000

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Wavenumber (cm-1)

P
C

-C
V

 L
oa

di
ng

-6 -4 -2 0 2 4 6
-4

-3

-2

-1

0

1

2

3

4

R:s

R:S R:s

r:S

S  

r:S

S  

R:S

R  

R  

R:s

R:S

R:s

r:S

S  

r:S

S  

R:S
R  

R  

R:s

R:S

R:s

r:S

S  
r:S

S  

R:S

R  R  

S  

r:S

R:S

R:s

R  S  

r:S

R:S

R:s

R  

S  

r:S

R:S

R:s

R  

PC-CV 1

P
C

-C
V

 2

-6 -4 -2 0 2 4 6
-4

-3

-2

-1

0

1

2

3

4

R:s

R:S R:s

r:S

S  

r:S

S  

R:S

R  

R  

R:s

R:S

R:s

r:S

S  

r:S

S  

R:S
R  

R  

R:s

R:S

R:s

r:S

S  
r:S

S  

R:S

R  R  

S  

r:S

R:S

R:s

R  S  

r:S

R:S

R:s

R  

S  

r:S

R:S

R:s

R  

PC-CV 1

P
C

-C
V

 2

5001000150020002500300035004000

-0.2

-0.1

0

0.1

0.2

0.3

Wavenumber (cm-1)

P
C

-C
V

 L
oa

di
ng

5001000150020002500300035004000

-0.2

-0.1

0

0.1

0.2

0.3

Wavenumber (cm-1)

P
C

-C
V

 L
oa

di
ng

-3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

4

S

R

M

R

M

S

S

R
M

R

M

S

S

R

M
R

M

S

S

R

M

R

M

S

S

R

M

R

M

S

S

R M

R

M

S

S

R
M

R

M

S

S

RM
R

M

S

M

R

S

M

R

S

M

R
S

M
R

S
M

R
S

M

R
S

M

R

S

MR
S

PC-CV 1

P
C

-C
V

 2

-3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

4

S

R

M

R

M

S

S

R
M

R

M

S

S

R

M
R

M

S

S

R

M

R

M

S

S

R

M

R

M

S

S

R M

R

M

S

S

R
M

R

M

S

S

RM
R

M

S

M

R

S

M

R

S

M

R
S

M
R

S
M

R
S

M

R
S

M

R

S

MR
S

PC-CV 1

P
C

-C
V

 2

5001000150020002500300035004000

-0.15

-0.1

-0.05

0

0.05

0.1

Wavenumber (cm-1)

P
C

-C
V

 L
oa

di
ng

5001000150020002500300035004000

-0.15

-0.1

-0.05

0

0.05

0.1

Wavenumber (cm-1)

P
C

-C
V

 L
oa

di
ng

a.

c.

e.

b.

d.

f.

 
Figure 2.4:  PC-CVA scores (LHS) and loadings (RHS) plots performed on FT-IR data for 
Pseudomonas aeruginosa PA14 exposed to 80µg mL-1 (R)-, (S)- and (±)- Propranolol (a and b), 
P. putida KT2440 exposed to varying ratios of 50 µg mL-1 (R), (S)- Propranolol (c and d), and P. 
aeruginosa PA14 exposed to 80µg mL-1 (R)-, (S)- and (±)- Atenolol (e and f).  In the scores plots 
points shown in black represent the 2 biological replicates used to train the PC-CVA models.  
Points shown in grey represent the third biological replicate which was used to validate the PC-
CVA model.  Blue circles represent the 95% confidence interval about the group centroid, and 
green circles the 95% confidence region about the group sample population.  In the loadings 
plots the loadings for PC-CV 1 is represented in red and PC-CV 2 in blue.  Points C, M, R and S 
represent control, racemic mixture, (R)- and (S)- respectively.  The enantiomeric ratios 75:25 
and 25:75, (R) : (S) are represented by R:s and r:S respectively.  
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Figure 2.5:  FT-IR difference spectra for Pseudomonas aeruginosa PA14 exposed to 80 µg mL-

1 Propranolol.  The average FT-IR spectrum for control samples divided by the average 
spectrum for the pure enantiomers ((R)- and (S)-) is shown in (a.).  The average FT-IR spectrum 
for the pure enantiomers divided by the average spectrum for the bacterial cells exposed to the 
racemate is shown in (b.). 
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To explore the chiral specific effect noted in earlier experiments further the 

pseudomonads were exposed to varying ratios of 50 µg mL-1 (R) : (S)- Propranolol.  

The results of the chemometric analysis of the FT-IR spectra again illustrated a 

metabolic difference in the microbial cells exposed to varying ratios of (R)-, and (S)- 

Propranolol from the control samples (data not shown) and these controls were 

removed prior to PC-CVA so that only chiral specific changes were observed.  The 

results of this PC-CVA are shown in Figure 2.4c where P. putida KT2440 exposed to 

50 µg mL-1 (±)- Propranolol (racemate, labelled R:S) are recovered on the left hand 

side of this plot and the 25:75 mixture (r:S) as well as the pure enantiomers are located 

on the right hand side.  The 75:25 (R:s) mixture falls between these two groups.  The 

clear separation of P. putida KT2440 exposed to the racemate supports the earlier 

observations on the effect of Propranolol on the metabolic fingerprints of P. aeruginosa 

PA14. 

 

By contrast, there was no phenotypic variation observed in the metabolic fingerprints of 

the samples exposed to the (R)-, (S)- and (±)- Atenolol (Figure 2.4e and f) as the 95% 

χ2 confidence regions overlap.  The analysis clearly illustrates that no discrimination 

was observed between the three conditions.  This result differs from the analysis of P. 

aeruginosa PA14 exposed to Propranolol (Figure 2.4a) and indicates that Atenolol 

does not have a chiral specific metabolic effect on P. aeruginosa PA14.  
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Figure 2.6:  PC-CVA scores (LHS) and loadings (RHS) plots performed on FT-IR data for 
Blastomonas natatoria 2.1 exposed to 40 and 50µg mL-1 (R), (S) and (±)- Propranolol (a and b) 
and Micrococcus luteus 2.13 exposed to 50µg mL-1 (R), (S) and (±)- Propranolol.  In the scores 
plots points shown in black represent the 2 biological replicates used to train the PC-CVA 
models.  Points shown in grey represent the third biological replicate which was used to validate 
the PC-CVA model.  Blue circles represent the 95% confidence interval about the group 
centroid, and green circles the 95% confidence region about the group sample population.  In 
the loadings plots the loadings for PC-CV 1 is represented in red and PC-CV 2 in blue.  Points 
M, R and S represent the racemic mixture (±), (R)- and (S)- respectively. 
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Due to the chiral specific effects observed in the pseudomonads when exposed to 

Propranolol, two additional bacteria were selected to investigate the effects of 

Propranolol.  Propranolol had a very noticeable metabolic effect on B. natatoria 2.1 at 

40 and 50 µg mL-1 (Figure 2.6a and b) and on M. luteus 2.13 at 50 µg mL-1 (Figure 2.6c 

and d).  The greatest difference observed in these analyses was between the control 

and API exposed samples.  To investigate the more subtle differences between the 

cultures exposed to the different enantiomers and the racemate the control samples 

were removed from the analysis.  B. natatoria 2.1 samples in the PC-CVA scores plot 

are separated across the 1st CV with respect to the enantiomers. The (S)- and (R)- 

enantiomers are clearly separated in the CVA space, with the racemate located 

between them.  A concentration effect was also observed in the metabolic fingerprints 

across PC-CV 2.  This is in contrast to the chiral specific effects for this API on the two 

pseudomonads, in which the greatest variation was noted between the cells exposed to 

the racemate and the enantiomers.  The loadings data for B. natatoria 2.1 indicate the 

major chemical changes arise in the lipid (2936 – 2851 cm-1) region of the FT-IR 

spectrum and at wavenumbers 1748 – 1654 cm-1.  Vibrations in this region may be 

attributed to the C=O stretching of esters and carboxylic acids, however this region is 

dominated by amide I.  The FT-IR difference spectra (Figure 2.7) demonstrate that 

cells exposed to (S)- Propranolol contained lower levels of lipids but higher levels of 

amide and carbohydrate compared to those exposed to the (R)- enantiomer.  This 

suggests that (S)- Propranolol exerts a greater biological effect on the bacterial cells.  

The effect of the API on the M. luteus 2.13 and B. natatoria 2.1 is perhaps more 

predictable as the differing metabolic effects of the enantiomers is linearly additive.  

The difference in phenotypic effect following exposure to Propranolol compared to the 

pseudomonads is likely to be a consequence of the metabolic differences between the 

bacteria.   

 

To our knowledge, the β-blockers Atenolol and Propranolol have not previously been 

studied for chiral specific effects within microbial systems.  Nevertheless, the effects of 

APIs within these systems are highly relevant, as microorganisms populate the lower 

trophic levels within foodwebs.  Therefore, differences in the population dynamics could 

represent a significant effect on the whole of the freshwater community (Jones et al., 

2002). 
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Figure 2.7:  FT-IR difference spectra for Blastomonas natatoria exposed to 40 and 50 µg mL-1 
Propranolol.  The average FT-IR spectrum for samples exposed to 40 µg mL-1 divided by the 
average spectrum for samples exposed to 50 µg mL-1 Propranolol is shown in (a.).  The average 
FT-IR spectrum for bacterial cells exposed to (R)- Propranolol divided by the average spectrum 
for the bacterial cells exposed to the (S)- enantiomer is shown in (b.). 
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2.4.5 Effects of the chiral API Propranolol on selected pseudomonas 

analysed by GC-MS 

In order to investigate the potential chiral specific effects of Propranolol on the two 

pseudomonads, GC-MS was employed for metabolic profiling of the bacterial 

metabolomes following exposure to a range of enantiomeric ratios of (R) : (S)- 

Propranolol at 50 µg mL-1.  The multivariate analysis method PC-DFA was employed in 

order to visualise the trends within the bacterial metabolic profiles in response to the 

varying enantiomeric ratios.  Figure 2.8 shows the PC-DFA scores plot (PC-DF 1 vs. 

PC-DF 2) constructed from the GC-MS profiles of both pseudomonads following 

exposure to the varying enantiomeric ratios of Propranolol and the control samples.  

PC-DF 1 accounts for the greatest variation within the dataset, and this appeared to be 

due to the biological differences between the two species (P. aeruginosa PA14 and P. 

putida KT2440).  The samples appeared to display some separation across PC-DF 2 

according to the enantiomeric ratio of Propranolol to which the bacteria had been 

exposed.   

 

In order to explore the differential metabolic effect further, PC-DFA was carried out on 

the data for each of the pseudomonads separately.  A notable chiral specific effect was 

observed in the metabolic profile for P. aeruginosa PA14 (Figure 2.9) and the samples 

formed distinct clusters according to the enantiomeric ratio of Propranolol to which the 

cells had been exposed.  The samples exposed to the racemate appeared to display 

the greatest difference in comparison with the control samples according to the GC-MS 

data, and this finding corresponded with the earlier FT-IR spectroscopy analysis 

(Figure 2.4).  However, it was not possible to differentiate between the pure 

enantiomers with FT-IR spectroscopy.  By contrast, this GC-MS analysis demonstrated 

a notable difference in the metabolic response to the enantiomers, which showed a 

clear separation across PC-DF 2 (Figure 2.9).  In addition, the remaining enantiomeric 

ratios (75:25 and 27:75 (R) : (S)- Propranolol) also appeared to form distinct clusters, 

suggesting that all of the various enantiomeric ratios exerted differing metabolic effects 

on the bacterial cultures.   

 

Figure 2.10 shows the PC-DFA scores plot for the GC-MS metabolome data of P. 

putida KT2440 following exposure to the enantiomeric ratios of Propranolol and the 

control cultures.  It can be clearly observed that the greatest variation within the dataset 

was between the control and Propranolol exposed cells.  The control samples were 
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therefore removed from the analysis in order to investigate more subtle metabolic 

responses to the enantiomeric ratios within the bacterial cells (Figure 2.11).  As 

observed for P. aeruginosa PA14, the bacterial cells appeared to display differing 

metabolic responses according to the enantiomeric ratios.  Cultures exposed to the 

pure enantiomers displayed distinct clusters from the remaining samples.  Previous 

analyses of P. putida KT2440 exposed to Propranolol were not able to differentiate fully 

between the experimental conditions based on the FT-IR spectra (Figure 2.4c).  

However, distinct clusters were observed for each of the enantiomeric ratios in the PC-

DFA of the metabolic profile data (with the exception of one possible outlier labelled r:S 

which appeared to co-cluster with the racemate exposed cultures, labelled R:S).  

These findings indicated that differential effects were exerted on P. putida KT2440 

when exposed to the enantiomeric ratios and corresponded with the findings for the 

closely related bacterial species, P. aeruginosa PA14.   
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Figure 2.8:  PC-DFA scores plots performed on GC-MS metabolome profiles from 
Pseudomonas aeruginosa PA14 and P. putida KT2440 exposed to varying enantiomeric ratios 
of 50 µg mL-1 (R) : (S)- Propranolol.  The model was constructed using 20 PCs.  Points A and P 
represent P. aeruginosa PA14 and P. putida KT2440 samples respectively.  The enantiomeric 
ratios 100:0, 75:25, 50:50 25:75 and 0:100, (R) : (S)- Propranolol are represented by R, R:s, 
R:S, r:S and S respectively.  Control samples are represented by Con.     
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Figure 2.9:  PC-DFA scores plots performed on the GC-MS metabolome profiles from 
Pseudomonas aeruginosa PA14 exposed to varying ratios of 50 µg mL-1 (R) : (S)- Propranolol.  
The model was constructed using 15 PCs.  The enantiomeric ratios 100:0, 75:25, 50:50 25:75 
and 0:100, (R) : (S)- Propranolol are represented by R, R:s, R:S, r:S and S respectively.  
Control samples are represented by Con.   
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Figure 2.10:  PC-DFA scores plots performed on the GC-MS metabolome profiles from 
Pseudomonas putida KT2440 exposed to varying ratios of 50 µg mL-1 (R) : (S)- Propranolol.  
The model was constructed using 10 PCs.  The enantiomeric ratios 100:0, 75:25, 50:50 25:75 
25:75 and 0:100, (R) : (S)- Propranolol are represented by R, R:s, R:S, r:S and S respectively.  
Control samples are represented by Con.   
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Figure 2.11:  PC-DFA scores plots performed on the GC-MS metabolome profiles from 
Pseudomonas putida KT2440 exposed to varying ratios of 50 µg mL-1 (R) : (S)- Propranolol.  
The model was constructed using 13 PCs.  The enantiomeric ratios 100:0, 75:25, 50:50 25:75 
25:75 and 0:100, (R) : (S)- Propranolol are represented by R, R:s, R:S, r:S and S respectively.  
The control samples were removed for this analysis.   
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The Lilliefors test for normality was carried out on the GC-MS profiling data in order to 

assess whether the data followed a normal distribution (Lilliefors, 1967).  The profiling 

data was not found to be normally distributed and therefore appropriate non-parametric 

tests were employed for subsequent analysis of the data.  The Friedman test is a non-

parametric two-way analysis of variance which does not make assumptions regarding 

the distribution of the data (Theodorsson-Norheim, 1987).  A number of pair wise 

comparisons (p <0.02) were carried out on the GC-MS profiling data in order to 

determine the significant changes in metabolites within the pseudomonads following 

exposure to the API in comparison with the control samples.  Table 2.5 and Table 2.7 

summarise the metabolites which displayed a significant difference compared to the 

control cultures in P. aeruginosa PA14 and P. putida KT2440 respectively.  A total of 

34 metabolites were found to change significantly in P. aeruginosa PA14 following 

exposure to the pure enantiomers or the racemate in comparison with the control 

cultures.  Unfortunately, identification was only possible for 12 of these metabolites by 

means of matching to authentic standards by retention time and mass spectrum or by 

mass spectrum only (Winder et al., 2008).  Comparison of the P. putida KT2440 

metabolic profiles following exposure with the control cultures revealed significant 

changes in 29 of the observed metabolites, of which 16 were identified.   

 

The univariate data analysis of the P. putida KT2440 metabolic profile revealed 

significant reductions in the levels of fatty acids such as myristic acid, hexadecanoic 

acid and octadecanoic acid in cultures exposed to (S)- Propranolol.  By contrast, the 

pure (S)- enantiomer appeared to exert a different metabolic effect in P. aeruginosa 

PA14, and levels of octadecanoic acid were significantly higher in cultures exposed to 

the enantiomer compared to the control cultures.  These findings supported the earlier 

hypotheses that Propranolol exerts a metabolic effect on the lipid components within 

the pseudomonads and in addition, the API appeared to exert differing metabolic 

effects in the two species.  Furthermore, levels of the phospholipid head group 

ethanolamine, commonly found in bacterial cell membranes, was significantly 

increased in P. aeruginosa PA14 cultures exposed to (±)- Propranolol.  By contrast, P. 

putida cultures exposed to (S)- and (±)- Propranolol displayed lower levels of glycerol-

3-phosphate; a component of glycerophospholipids and cultures exposed to the (S)- 

enantiomer displayed lower levels of N-acetylglucosamine, which is a component of the 

peptidoglycan bacterial cell wall.  These results suggest that (S)- and (±)- Propranolol 

exerted an enhanced metabolic effect on the bacterial cell membrane and cell wall in P. 

putida KT2440 in comparison to the (R)- enantiomer.  In addition, these findings 
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indicate that the API exerts a greater effect on the cell membranes in P. putida KT2440 

than in the closely related P. aeruginosa PA14.   

 

A number of amino acids including valine, leucine, isoleucine and tyrosine were 

significantly reduced in P. putida KT2440 following exposure to (S)- Propranolol.  In 

addition, glutamic acid / pyroglutamic acid was reduced in (R)- exposed cultures.  A 

reduction in valine was also observed in the P. aeruginosa PA14 cultures exposed to 

(R)- Propranolol and the racemate and an increase in tryptophan was observed 

following exposure to the racemate.  However, no other significant changes in amino 

acids were observed in the metabolic profiles of P. aeruginosa PA14.  A number of 

intermediates in the urea cycle (citrulline, ornithine and xanthine) were found to 

increase significantly in P. aeruginosa PA14 following exposure to (±)- Propranolol.  

However, no notable difference was observed for these metabolites in the metabolic 

profile of P. putida KT2440 providing further evidence of the different metabolic effects 

of Propranolol in the two pseudomonad species.   

 

Kruskal-Wallis univariate data analysis (Kruskal and Wallis, 1952) was employed in 

order to determine any significant changes in the metabolite profiles of the 

pseudomonads following exposure to the pure enantiomers and the racemate.  The 

Venn diagrams in Figure 2.12 and Figure 2.13 provide a summary of the numbers of 

metabolites displaying a significant change between the experimental conditions for P. 

aeruginosa PA14 and P. putida KT2440 respectively (p <0.02), and Table 2.6 and 

Table 2.8 provide identifications for these metabolites.  The univariate analyses 

indicated that only one metabolite displayed a significant difference in the metabolic 

profiles of P. aeruginosa PA14 exposed to (R)- and (S)- Propranolol.  However, it was 

not possible to identify this metabolite.  By contrast, 5 metabolites displayed significant 

differences in the P. putida KT2440 cultures exposed to the pure enantiomers, of which 

the amino acids tyrosine and tryptophan and the disaccharide trehalose were identified.  

Further inspection of the data revealed significantly lower levels of all of the metabolites 

in the (S)- exposed cultures compared to the (R)- enantiomer, suggesting that (S)- 

Propranolol exerts an enhanced metabolic effect on P. putida KT2440.  These findings 

suggest that (S)- Propranolol exerts an enhanced metabolic effect on P. putida KT2440 

and this is not perhaps surprising as the (S)- enantiomer exerts the majority of the 

intended β-blocking activity in man (Barrett and Cullum, 1968, Hanna and Evans, 2000, 

Potter and Sweetland, 1967, Walle et al., 1984).   
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Comparison of the cultures exposed to (R)- or (±)- Propranolol revealed significant 

changes in a number of metabolites in the metabolic profile of P. aeruginosa PA14 

(Figure 2.12).  The racemate appeared to have a greater metabolic effect on the 

glycolysis intermediate, Fructose-6-phosphate, whilst the (R)- enantiomer appeared to 

exert the greatest effect on gluconolactone.  In contrast, only one metabolite was 

identified as significantly different between the (R)- and (±)- Propranolol exposed 

cultures of P. putida KT2440 in the metabolic profile data (Figure 2.13).  Unfortunately 

it was not possible to identify this metabolite.  In addition, comparison of the metabolic 

profiles of the pseudomonads exposed to (S)- Propranolol or the racemate revealed 

reductions in the levels of glucose-6-phosphate in the P. putida KT2440 metabolic 

profile of the (S)- exposed cultures.  By contrast, P. aeruginosa PA14 cultures 

displayed lower levels of lactose following exposure to the racemate.  An additional two 

metabolites were identified as significantly different for this comparison and inspection 

of the data revealed significant reductions in the levels of these metabolites following 

exposure to the racemate in comparison to the (S)- enantiomer, however it was not 

possible to identify them from the retention time and mass spectra.  These results 

suggest that (±)- Propranolol exerts a greater effect on the P. aeruginosa PA14 

metabolic profile than (S)- Propranolol, whereas the pure (S)- enantiomer appeared to 

exhibit a greater metabolic effect in P. putida KT2440. 
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Table 2.5:  Metabolites found to be significantly altered in Pseudomonas aeruginosa 
PA14 following exposure to (R)-, (S)- or (±)- Propranolol.  Metabolites are listed in 
order of significance (highest first) according to the Friedman test. * 
Metabolite R ± S 

Valined    

Amined    

Tryptophand    

2-hydroxyglutarated    

Octadecanoic acidd    

Hexadecanoic acidd    

Ethanolamined    

Citrullined    

Nicotinamided    

Ornithined    

Xanthinep    

Myristic acidd    

Unknown peak (24)    

Unknown peak (163)    

Unknown peak (69)    

Unknown peak (93)    

Unknown peak (134)    

Unknown peak (190)    

Unknown peak (181)    

Unknown peak (8)    

Unknown peak (91)    

Unknown peak (195)    

Unknown peak (182)    

Unknown peak (108)    

Unknown peak (172)    

Unknown peak (5)    

Unknown peak (159)    

Unknown peak (206)    

Unknown peak (29)    

Unknown peak (135)    

Unknown peak (137)    

Unknown peak (62)    

Unknown peak (129)    

Unknown peak (143)    

* Green points represent a significant increase and red points represent a significant decrease in the 
metabolites identified in the Friedman test (p<0.02). 
d represents definitive identification by means of matching to authentic standard by retention time and 
mass spectrum.  p represents putative identification by mass spectrum only.  For the unknown peaks 
the database identifier is provided in parentheses.  
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Figure 2.12:  Venn diagram illustrating the number of metabolites identified as significantly 
different in Pseudomonas aeruginosa PA14 following exposure to (R)- , (S)- and (±)- 
Propranolol exposed cultures.  Identification of the metabolites from each section is detailed in 
Table 2.6. 
 

 

 

 

Table 2.6:  Identification of the metabolites displaying significant differences in 
Pseudomonas aeruginosa PA14 following exposure to (R)- , (S)- and (±)- Propranolol, 
illustrated in the Venn diagram.  Columns A-K refer to the different sections of the Venn 
diagram. 
A C I 
Tryptophand Unknown peak (1) Aminep 
2-hydroxyglutarated D Unknown peak (1) 
Ethanolaminep Valined J 
Citrullined Unknown peaks (3) Lactosed 

Nicotinamided E Unknown peaks (2) 

Ornithined 
Glycerate-3-phosphate / 
glycerol-3-phosphatep 

K 

Xanthinep Aminep Octadecanoic acidd 
Unknown peaks (11) F Unknown peaks (2) 
B Unknown peaks (3)  
Gluconolactonep 

G  
Fructose-6-phosphated  Unknown peaks (2)  
Unknown peaks (4)   
d represents definitive identification by means of matching to authentic standard by retention 
time and mass spectrum.  p represents putative identification by mass spectrum only.   
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Table 2.7:  Metabolites found to be significantly altered in Pseudomonas putida 
KT2440 following exposure to (R)-, (S)- or (±)- Propranolol.  Metabolites are listed in 
order of significance (highest first) according to the Friedman test. * 
Metabolite R ± S 

Glycerol-3-phosphated    

Citric acidd    

Myristic acidd    

5-aminovaleric acidd    

N-acetylglucosaminep     

Leucined     

Isoleucined     

Tyrosined     

Hexadecanoic acidd     

Citrullined    

Lysined     

Aminep    

Glutamic / pyroglutamic acidd     

Octadecanoic acidd    

Gluconolactonep    

Valined    

Unknown peak (158)    

Unknown peak (181)    

Unknown peak (163)    

Unknown peak (182)    

Unknown peak (94)    

Unknown peak (91)    

Unknown peak (48)    

Unknown peak (28)    

Unknown peak (76)    

Unknown peak (116)    

Unknown peak (183)    

Unknown peak (200)    

Unknown peak (111)    

* Green points represent a significant increase and red points represent a significant decrease in the 
metabolites identified in the Friedman test (p<0.02). 
d represents definitive identification by means of matching to authentic standard by retention time and 
mass spectrum.  p represents putative identification by mass spectrum only.  For the unknown peaks 
the database identifier is provided in parentheses.  
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Figure 2.13:  Venn diagram illustrating the number of metabolites identified as significantly 
different in Pseudomonas putida KT2440 following exposure to (R)- , (S)- and (±)- Propranolol.  
Identification of the metabolites from each section is detailed in Table 2.8. 
 

 

 

 

Table 2.8:  Identification of the metabolites displaying significant differences in 
Pseudomonas putida KT2440 following exposure to (R)- , (S)- and (±)- Propranolol, 
illustrated in the Venn diagram.  Columns A-K refer to the different sections of the Venn 
diagram. 
A F I 
Unknown peaks (3) Valined N-acetylglucosaminep 

B Glycerol-3-phosphated Octadecanoic acidd 

Unknown peak (1) Lysined J 
C Aminep Glucose-6-phosphated 

Tyrosined Unknown peaks (3) K 
Tryptophand G Leucined 

Trehalosed Glutamic / pyroglutamic acidd Isoleucined 

S-adenosylmethionine p Gluconolactonep Glycerol-3-phosphated 

Unknown peak (1) Unknown peaks (2) Citric acidd 

D H Myristic acidd 

5-aminovaleric acidd Unknown peak (1) Tyrosined 

Unknown peaks (2)  Hexadecanoic acidd 

  Unknown peak (1) 
d represents definitive identification by means of matching to authentic standard by retention 
time and mass spectrum.  p represents putative identification by mass spectrum only.   
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2.5 Conclusions 

It was clearly observed from the growth data that Propranolol had a biological effect on 

all the microorganisms studied. At the higher concentrations tested the growth was 

retarded and in most cases the death rate was increased, with associated changes 

observed in the metabolic fingerprints.  The loadings plots from the PC-CVA of API 

dosed and unexposed P. aeruginosa PA14 cells (Figure 2.4b) indicated that 

Propranolol exerts a widespread effect on the bacterial cells and this finding was also 

observed in the other bacteria studied.  The results from the HPLC analysis showed 

that the API was not degraded during the growth period and this suggests that the 

observed changes in the multivariate analysis of the metabolic fingerprints were not 

due to degradation of the API but more likely to be a secondary effect of the drug.  

Despite the genetic similarity of the two pseudomonads studied, our findings show that 

Propranolol exerted a different effect in the two species.  In contrast, the growth data 

showed that an effect was not observed in the Atenolol exposed cultures and this 

finding was reflected in the multivariate analyses of the bacterial fingerprints (Figure 

2.4e).  

 

All four aquatic bacteria were exposed to the enantiomers of Propranolol at 

concentrations in which there was no difference observed in the growth rates.  The FT-

IR analysis revealed that Propranolol affected both the lipid and protein content of the 

bacterial cells.  We hypothesise that this is likely due to the interaction of the APIs with 

the microbial cell walls.  A more predictable effect on the metabolic fingerprints was 

noted during the exposure of B. natatoria 2.1 and M. luteus 2.13 to the Propranolol in 

which the racemate fell between the (R)- and (S)- enantiomers in the PC-CVA.  Rather 

surprisingly the most significant effect on the two pseudomonads was with the 

racemate, whilst the enantiomers had identical effects on the phenotype of the cells.  It 

is possible that the physical properties of the racemate were significantly different from 

the (R)- and (S)- enantiomers and this was reflected in how the cells responded to 

exposure to the API. 

 

Multivariate analysis of the metabolite profile data from GC-MS of the two 

pseudomonads following exposure to a range of enantiomeric ratios of (R) : (S)- 

Propranolol revealed notable chiral specific effects in both P. aeruginosa PA14 and P. 

putida KT2440.  The analysis revealed that it was possible to differentiate between all 

of the various enantiomeric ratios and indicated that differential metabolic effects were 
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exerted on the bacterial cells according to the enantiomeric ratios to which they had 

been exposed.  In addition, significant reductions in a number of fatty acids were 

observed in P. putida KT2440 following exposure to the pure (S)- enantiomer and 

components from the bacterial cell membrane and cells wall were significantly reduced.  

The findings indicated that (S)- and (±)- Propranolol exerted an enhanced metabolic 

effect on P. putida KT2440 in comparison with the (R)- enantiomer.  Furthermore, 

significant changes were observed in a number of intermediates of the urea cycle in P. 

aeruginosa PA14 cultures exposed to (±)- Propranolol.  No significant changes were 

observed for these metabolites in P. putida KT2440, providing further evidence of a 

different metabolic effect in the two closely related pseudomonads.   

 

In conclusion it has been shown that chiral specific effects do occur in bacteria which 

may have implications for environmental ecosystems as these APIs are regularly found 

in the aquatic environment.  We believe FT-IR spectroscopy with appropriate 

chemometrics to be a very powerful method for investigating the phenotype and 

metabolic differences that APIs have when they interact with the bacterial cell.   
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3.1 Abstract 

Pharmaceuticals are an emerging class of environmental contaminants.  Active 

pharmaceutical ingredients (APIs) and their metabolites are ubiquitous in the 

environment and a number of APIs have been detected in wastewaters due to 

excretion of the API following medicinal and veterinary use.  Despite the low 

concentrations detected (ng - µg L-1), the presence of APIs in the aquatic environment 

is of great concern due to the potential for causing undesirable ecological effects.  In 

addition, the enantiomers of chiral APIs may possess differing toxicological and 

biological effects both from each other, and the racemate (an equal mixture of the two 

enantiomers).  It is therefore necessary to enhance our understanding of the fate and 

biological effects of chiral pharmaceuticals in the aquatic environment.  Of particular 

interest is the group of chiral APIs termed β-blockers as they all contain at least one 

chiral centre and are generally administered as the racemate.  In this investigation FT-

IR microspectroscopy was employed to investigate the chirality specific effects of the 

enantiomeric ratios of the β-blockers Atenolol and Propranolol on the total cellular 

fingerprints of the green algae Micrasterias hardyi.  In addition, the spatially localised 

effects of the APIs and their enantiomer ratios on the biochemical components of the 

algal cells were also investigated.  No notable difference was observed in M. hardyi 

exposed to Atenolol compared to the control samples.  By contrast, a phenotypic effect 

on the algal cells was observed when exposed to Propranolol.  A clear difference was 

observed in the FT-IR spectra of the algal cells exposed to 30 µg mL-1 Propranolol at 

all of the enantiomeric ratios and a dominant peak was observed in the FT-IR spectra 

at wavenumbers 1500 - 1200cm-1 which was not observed in cells exposed to (R)- 

Propranolol or the enantiomer.  Inspection of the photomicrographs and functional 

group maps revealed that the algal cells exposed to (R)- and (±)- Propranolol were 

particularly affected by the API.  The greatest reduction in the amide region of the FT-

IR spectra was observed in cells exposed to the racemate.  However, it was not 

possible to determine any specific localised effects in the algal cells relating to the 

cellular components.  Analysis of both the lipid rich and amide I rich areas of the algal 

cells did not reveal significantly different responses from those observed throughout the 

cell.  It is therefore likely that Propranolol exerts a general effect on the whole algal cell.  

This investigation illustrates the power of spatial metabolic fingerprinting with FT-IR 

microspectroscopy for the study of abiotic stresses on complex biological species. 
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3.2 Introduction 

Pharmaceuticals are an emerging class of environmental contaminants (Fent et al., 

2006).  Active pharmaceutical ingredients (APIs) and their metabolites are ubiquitous in 

the environment and a number of APIs have been detected in wastewaters due to 

excretion of the API following medicinal and veterinary use (Escher et al., 2005).  In 

addition, the incomplete removal of these compounds during the wastewater treatment 

processes has led to the presence of many APIs such as antibiotics, estrogens, non-

steroidal anti-inflammatories, and β-blockers in aquatic environments such as rivers 

streams and estuaries (Fent et al., 2006, Escher et al., 2005, Ashton et al., 2004, 

Carlsson et al., 2006b).  Despite the low concentrations detected (ng - µg L-1), the 

presence of APIs in the aquatic environment is of great concern due to the potential for 

causing undesirable ecological effects (Huggett et al., 2002, Kümmerer, 2009, 

Kümmerer et al., 2000).    

 

Although little is known about the effects of APIs in the environment, it must be taken 

into account that they are designed to elicit a specific mode of action in humans 

(Escher et al., 2005) and it can be expected that any beneficial or adverse effect may 

also be observed in aquatic organisms with similar biological functions or receptors.  It 

must also be noted that similar targets may control different metabolic processes in 

different species (Seiler, 2002), and therefore APIs and their metabolites may act 

through additional modes of action in aquatic organisms.  The effects of APIs may be 

rather subtle due to the very low concentrations observed in the aquatic environment, 

and as a result these effects may go unnoticed (Escher et al., 2005).  In addition, it is 

likely that the effect of the API will impact on the local population dynamics throughout 

the whole ecosystem, from bacteria up to higher organisms.   

 

The chirality of environmental contaminants such as APIs must be taken into 

consideration in order to understand fully the environmental fate and effects of these 

compounds.  The enantiomers of a chiral API are able to interact differently with other 

chiral compounds such as enzymes, and therefore potentially exert different effects 

when released into the environment (Fono and Sedlak, 2005, Buser et al., 1999, 

Nikolai et al., 2006).  In addition, the enantiomers of a chiral API may possess differing 

toxicological and biological effects both from each other, and the racemate (an equal 

mixture of the two enantiomers) (Lees et al., 2003, Yang et al., 2005).  It is therefore 

necessary to enhance our understanding of the fate and biological effects of chiral 
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pharmaceuticals in the aquatic environment in order to appreciate the risks fully 

(Huggett et al., 2002).  Of particular interest is the group of APIs termed β-blockers as 

they all contain at least one chiral centre and are generally administered as the 

racemate (Mehvar and Brocks, 2001).  In addition, they are widely used; with 

approximately 29 and 12 tonnes of Atenolol and Propranolol respectively taken each 

year in the UK (Ashton et al., 2004, Carlsson et al., 2006a, Carlsson et al., 2006b). 

 

It is difficult to determine the total effect of APIs in the environment as little information 

on the ecotoxicological effects of pharmaceuticals on both aquatic and terrestrial 

organisms is currently available.  The effect of APIs on aquatic organisms is 

considered particularly important as they are exposed to these compounds via 

wastewater residues during their entire lifespan (Fent et al., 2006).  Microalgae account 

for approximately 50% of total planetary primary productivity and are the major primary 

producers in most aquatic ecosystems (Beardall et al., 2001, Heraud et al., 2005, 

Shelly et al., 2002).  These photosynthetic, unicellular organisms are known to produce 

hydrogen and lipids under stress conditions and have also been used as biomarkers of 

contamination in aquatic environments (Torres et al., 2008).  In addition, it is known 

that algae play an important role in the dispersal, chemical transformation and 

bioaccumulation of many APIs (Bopp and Lettieri, 2007, Kowalewska, 1999, Lei et al., 

2002, Murray et al., 2003, Okay et al., 2000, Todd et al., 2002, Wang et al., 1998).  

Microalgal cells have been reported to display reorganisation of the composition of 

macromolecular components in response to alterations in available nutrients within 

their environment.  This effect has been accurately determined using FT-IR 

microspectroscopy (Beardall et al., 2001, Giordano et al., 2001, Heraud et al., 2005).  

 

As discussed above (Section 1.4.1, page 33) FT-IR spectroscopy is a rapid, 

reagentless and non-destructive technique, facilitating the identification of functional 

chemical groups and polar bonds within a biological sample through the generation of a 

spectral “fingerprint” (Stuart, 1996, Goodacre et al., 1998, Winder et al., 2004, 

Naumann et al., 1994).  FT-IR spectroscopy has previously been used to generate 

informative metabolic fingerprints from biological material (Johnson et al., 2004, Winder 

et al., 2007).  Previous studies have also proved its applicability to biological systems 

by successfully demonstrating the discrimination of bacteria to sub-species level 

(Winder et al., 2006, Timmins et al., 1998, Naumann et al., 1991a).  In addition, the 

combination of FT-IR and trajectory analysis has proved successful in the identification 

of metabolic changes in natural multi-organism fermentations (Johnson et al., 2004).  
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The integration of FT-IR spectroscopy with microscopic imaging techniques enables 

analysis of the spatial distribution of the functional groups which may be connected to 

specific components within the cell or tissue sample (Patel et al., 2008, Lewis et al., 

1995, Beardall et al., 2001, Lasch et al., 2002).  

 

Previous studies investigated the phenotypic effects of the β-blockers Atenolol and 

Propranolol on a number of prokaryotes commonly found in the aquatic environment 

(Chapter 2).  The aim of the present study was to explore both the phenotypic and 

spatial effects of these APIs in a eukaryotic system.  The green alga Micrasterias 

hardyi was selected for investigation following exposure to Atenolol and Propranolol; 

both of which have been found in effluent from wastewater treatment plants and in 

surface water of freshwater streams.  The Micrasterias cells were exposed to a range 

of enantiomeric ratios at a fixed concentration of either Atenolol or Propranolol and 

analysed using FT-IR microspectroscopy.  Through the comparison of both phenotypic 

and physiological changes, this investigation attempted to understand the effects 

exerted on the algal cells by these chiral APIs. 
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3.3 Materials and methods 

3.3.1 Culture conditions 

Micrasterias hardyi strain CCAP 649/15 was purchased from Culture Collection of 

Algae and Protozoa (Dunstaffnage Marine Laboratory, Oban, U.K.). M. hardyi was 

cultured in Jaworski’s Medium (JM, (Thomkins et al., 1995)) at 15 °C for 8 w, 60 r.p.m. 

in a Multitron (INFORS HT, Switzerland) orbital shaker, under photo periods of 12 h 

light and 12 h dark.  Nine stock solutions (200 mL) were prepared as detailed in Table 

3.1 and an aliquot (1 mL) of each stock solution was combined in 1 L of water and 

autoclaved (121 °C, 45 min, 15 psi).   

 

M. hardyi was exposed to Propranolol and Atenolol individually at a variety of 

enantiomeric ratios (100:0, 75:25, 50:50, 25:75 and 0:100 (R):(S) ) in triplicate at a 

concentration of 30 µg mL-1, with additional control flasks that did not contain any API.  

The concentration selected for investigation has been shown previously to exert 

phenotypic effects in M. hardyi (Patel et al., 2008); however, the phenotypic effects of 

Atenolol have not been reported for M. hardyi.  Following growth, aliquots (20 mL) were 

taken from each flask and centrifuged at a low speed (3,080 g, 4 °C, 40 min) using a 

Jouan CR 322 (Thermo scientific) to harvest the algal cells without causing damage to 

the cellular structure.  The biomass was resuspended in sterile distilled water (20 mL) 

and this washing process was carried out a total of 3 times in order to remove any 

residual API.  A final aliquot (100 µL) of sterile distilled H2O was added to the algal cells 

and this suspension was used for FT-IR microspectroscopic imaging.  

 

Table 3.1:  Stock solutions required for Jaworski’s medium and their components. 
Stock  g 200 mL

-1 

1 Ca(NO3)2·4H2O 4.0 
2 KH2PO4 2.48 
3 MgSO4·7H2O 10.0 
4 NaHCO3 3.18 
5 EDTA FeNa 0.45 
 EDTA Na2 0.45 
6 H3BO3 0.496 
 MnCl2·4H2O 0.278 
 (NH4)6Mo7O24·4H2O 0.20 
7 Cyanocobalamin 0.008 
 Thiamine HCl 0.008 
 Biotin 0.008 
8 NaNO3 16.0 
9 NaHPO4·12H2O 7.2 
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3.3.2 FT-IR microspectroscopic imaging 

Aliquots (20 µL) of each resuspended sample were applied onto CaF2 disks (Crystran 

Ltd, Dorset, U.K.), and air dried prior to analysis.  Drying was used to avoid absorption 

of water in the mid-IR region which may mask biologically important chemical 

information in the spectra.  The spectra were collected in transmission mode using an 

Equinox 55 module step scan Fourier transform spectrometer coupled to a Hyperion 

3000 microscope (Bruker optics Ltd).  The microscope was equipped with a 64 × 64 

liquid nitrogen cooled mercury cadmium telluride focal plane array (MCT FPA) detector, 

which allows the simultaneous acquisition of spectral data from a 267 µm × 267 µm 

area when employing a ×15 objective lens.  The FT-IR spectral maps were collected 

over the wavelength range of 4000-900 cm-1 with a spectral resolution of 8 cm-1.  The 

data acquisition time was approximately 25 min for sample and 25 min for background 

measurements (Patel et al., 2008, Lasch et al., 2002).   

 

Spectral data were collected using routines within the OPUS 4.0 IR imaging software 

(Bruker Optics).  The ratio of the sample and background datasets was taken to 

generate transmittance images of each algal sample.  The spectral images were 

converted to absorbance within the OPUS software and exported as ASCII files 

 

3.3.3 Data analysis 

The ASCII data were imported into Matlab version 7.1 (The MathWorks, Inc., Natick, 

MA, USA) and a number of in-house algorithms were used in order to explore the 

spectral data (see Figure 3.1 for workflow). 

 

The pixels for each image were first selected as either “background” or those 

containing biological information using an automatic routine.  Selection criteria were 

employed using a deterministic approach to set a threshold IR signal; this was 

compared with the optical image to ascertain if only those pixels of biological relevance 

were selected.  The remaining pixels identified as “background” (or from sections of a 

second algal cell in the field of view) were set to zero in order to avoid any interference 

from these pixels which may lead to incorrect interpretation of the subsequent 

analyses.  Following the removal of the background pixels two main approaches were 

employed for the analysis of the spectral data.  Firstly, the spectra for each map were 

summed in order to provide a composite spectrum for each biological replicate, and 
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these composite spectra were used for subsequent multivariate analyses.  Secondly, 

functional group mapping was performed on the spectral maps to investigate the 

spatial distribution of selected functional groups and to gain further insight into the 

effects of the APIs on the algal cells. 

 

Once functional group mapping had been carried out, a threshold was set for the 

lipid:amide ratio maps.  All of the pixels above the chosen threshold were considered to 

be areas rich in lipids and those below the threshold were considered to be pixels rich 

in amide I.  The threshold was selected individually for each spectral map (biological 

replicate) in order to select the correct pixels for analysis (See Figure 3.1 for example).  

The spectral information for each of the pixels identified as rich in lipids or amide I were 

summed to form a composite spectrum for each of the biological replicates.   

 

The composite spectra were pre-processed prior to multivariate analysis.  Spectral 

regions which are dominated by CO2 vibrations arising from the atmosphere (2403 – 

2272 cm-1 and 683 – 656 cm-1) were removed and filled with a linear trend and the 

spectra were row normalised (centred about the mean and scaled to unit variance).  

These pre-processed spectra were used for subsequent multivariate analyses.  

Principal components analysis (PCA; (Jolliffe, 1986)) is an unsupervised method for 

reducing the dimensionality of multivariate data whilst preserving the variance; this 

transformation was performed prior to canonical variates analysis (CVA).  CVA is a 

supervised machine learning method that seeks to minimise within-group variance 

whilst maximising between-group variance, and can be used in conjunction with PCA to 

discriminate between groups on the basis of retained principal components (PCs), 

given a priori knowledge of group membership of the spectral replicates (Manly, 1994, 

Winder et al., 2004).  In this study, PC-CVA was performed on the composite spectra in 

order to investigate any phenotypic changes occurring in the algal cells when exposed 

to the APIs in their various enantiomeric ratios.  The PC-CVA models were constructed 

with a priori knowledge of the biological replicates.  In order to ensure these models 

were not over- or under-trained, validation was performed using the method of full 

cross-validation, where two of the biological replicates were used for model training 

with the third projected into the model for cluster validation purposes (Jarvis and 

Goodacre, 2004a).  Finally, CVA also allows statistical significance to be displayed on 

the scores plots and circles were used to represent the 95% χ2 confidence region 

constructed around each group mean based upon the χ2 distribution with two degrees 

of freedom (Krzanowski, 1988). 
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Principal component regression (PCR, (Gemperline et al., 1991)) is a supervised linear 

regression method and was used to ascertain if any linear relationships between the 

FT-IR spectra and the drug (R):(S) exposure existed.  In this approach PCA is first 

conducted and the PC scores regressed against the %(R)- enantiomer.  This process 

was again validated as detailed above as the optimal number of PCs (latent variables) 

against which to calibrate the model needs to be chosen.  

 

Functional group mapping is widely used in the analysis of spectroscopic maps.  It 

utilises the integrated peak area, intensity and position of FT-IR absorption bands 

attributed to specific functional groups and plots them as a function of X-Y position 

which can be laid over the optical image of the same sample area.  Thus revealing the 

spatial distribution of chemical constituents within a biological sample and providing 

information regarding a single peak (functional group) or a ratio of two peaks (McIntosh 

et al., 1999).  Table 3.2 highlights the major functional groups of interest.  The IR bands 

which are attributed to amide I and II are known to be sensitive to protein conformation 

(Fabian and Mäntele, 2002).  The amide I band corresponds to a high fraction of α-

helices compared to β-sheet secondary structure in the average protein content (Byler 

and Susi, 1986).  The most intense of the lipid absorptions are found at wavenumbers 

3000 – 2800 cm-1.  These bands are attributed to the symmetric and asymmetric 

stretching vibrations of CH3 and CH2 groups of the acyl chains.   

 

Functional group mapping was employed in order to investigate localised biochemical 

effects in the Micrasterias cellular components following exposure to the APIs.  The 

intensity and spatial distribution of amide I (1700 – 1600 cm-1) and lipids (3000 – 2800 

cm-1) within the algal cells, were analysed in order to obtain information regarding the 

specific effects of the APIs in the nucleus and chloroplasts respectively.  In addition, 

due to the high levels of amides observed throughout the algal cells, a ratio of 

lipid:amide mapping was employed in order to investigate those areas high in lipids.  
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Table 3.2:  FT-IR band assignments for the major regions of biological interest of the 
Micrasterias hardyi algal cell.  
Wavenumber (cm

-1
) range Dominant Compounds 

3000-2800 CHx stretches from Fatty acids 
  
1700-1500  
   (1700-1600) 
   (1600-1500)   

Proteins 
   C=O from Amide I 
   C-N and C-N-H from Amide II 

  
1450-1200 
 
   (1250-1200) 

Carboxylic groups of proteins, free amino acids, 
polysaccharides 
   P-O from RNA/DNA, phospholipids 

  
1200-900 C-O or O-H from Polysaccharides 

 

 

For each of the spectral maps the IR spectral intensity was converted into a colour 

code in which blue represents low IR absorbance and red represents high IR 

absorbance (see Figure 3.1 for example).  Gouraud shading is an interpolated shading 

function and was applied to the maps in order to reduce the appearance of pixilation 

(Gouraud, 1971).  It is piecewise bilinear, in which the value (i.e. colour) for each 

individual pixel varies linearly and interpolates with the values from the 8 pixels 

surrounding it. 

 

As described above, PCA reduces the dimensionality of multivariate data whilst 

preserving the variance.  PCA imaging transforms the data according to the variance 

within the dataset and constructs a map based on the PCA.  PCA imaging was 

performed on the spectral maps and the first principal component (PC) was plotted for 

each sample; lower PCs were also inspected but contained little additional knowledge.  

This provides a visualisation of the areas of the algal cells which account for the 

greatest variance within the analysis.  PCA imaging was employed in order to gain 

insight into the major spatial differences occurring within the cells when exposed to 

varying enantiomeric ratios of the APIs and the FT-IR bands related to these 

differences.  Most PCA images are constructed on single images and do not allow 

direct comparison between different images.  Therefore PCA was constructed from one 

alga and the FT-IR spectra from a different Micrasterias sample from the whole FPA 

was projected into its PC scores space.  Thus allowing direct comparison of the PC 

scores from image 1 with PC projected scores from a second image.  This method was 

performed in order to investigate the differences observed in algal cells exposed to 

differing enantiomeric ratios of the APIs and between the control and API exposed 

cells. 
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Figure 3.1:  Workflow showing the different steps and methods involved in the analysis of the 
FT-IR spectroscopy data. 
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3.4 Results and discussion 

3.4.1 Micrasterias hardyi 649/15 

 

 
Figure 3.2:  Photomicrograph image of Micrasterias hardyi 649/15 and the major cellular 
components.  
 

 

FT-IR microspectroscopic imaging is well suited to the spectral analysis of M. hardyi; a 

single-celled organism which has a depth of <12 µm, allowing for the collection of 

spectra without issues regarding over absorbance of the infrared light (Heraud et al., 

2005).  In addition M. hardyi has a large diameter (~80 – 200 µm), which permits 

imaging of the whole cell using a ×15 objective (Heraud et al., 2005, Patel et al., 2008).  

The algal cell consists of two semicells, each of which has four main lateral lobes and 

one larger polar lobe.  The semicells are connected by a central constriction termed the 

isthmus, which accommodates the nucleus.  Generally, one large chloroplast which 

extends into the lobes is found in each semicell (See Figure 3.2).  The chloroplasts 

enable photosynthesis and pyrenoids are highly differentiated areas of the chloroplasts 

which are surrounded by a thick sheath composed of starch.   

 

3.4.2 Investigating whether Atenolol or Propranolol exert a notable effect 

on the algal phenotype as judged by FT-IR spectroscopy 

Figure 3.3 shows average composite FT-IR spectra of the whole algal cells exposed to 

Atenolol and Propranolol, and cells not exposed to the APIs (i.e. control); the averages 

were calculated as detailed above and show information about the whole algal cells 

-
-
-
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Lateral lobeD
Polar lobeC
ChloroplastB
Isthmus and nucleusA
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rather than any specific region.  The dominant spectral regions typify the patterns 

commonly associated with the FT-IR spectra of (micro)organisms, and the major 

spectral bands of biological interest are highlighted in Table 3.2 (Winder et al., 2004, 

Winder et al., 2006, Zhao et al., 2006, Naumann et al., 1991a).  There was no notable 

difference in the FT-IR spectrum of M. hardyi exposed to Atenolol compared to the 

control sample.  However, for cells exposed to Propranolol there appeared to be a 

reduction in the level of lipids within the algal cells (3000 – 2800 cm-1).  In addition a 

dominant peak was observed at 1500 – 1200 cm-1; a region typically associated with 

the carboxylic groups of proteins, free amino acids and polysaccharides (Winder et al., 

2004, Winder et al., 2006, Zhao et al., 2006, Naumann et al., 1991a).  The algal cells 

were washed during the harvesting stage and it is therefore unlikely that this peak is 

due to the presence of a contaminant from the Propranolol enantiomers.  Further 

inspection of the FT-IR spectra revealed this peak was only present in samples 

exposed to 25:75 and 75:25 ratios of (R):(S)- Propranolol and the (S)- enantiomer.  The 

intensity of the peak appeared to be higher in the algal cells exposed to the 

enantiomeric ratios of Propranolol compared to those exposed to the (S)- enantiomer; 

however there was no notable difference in the intensity of the peak between the 

enantiomeric ratios.  This peak was not observed in the spectra of cells exposed to (R)-

Propranolol and the racemate (Figure 3.4). 

 

PC-CVA was performed on the composite average spectra from each alga individually 

in order to investigate any phenotypic changes occurring within the cells when exposed 

to the APIs and their various enantiomeric ratios.  There was no notable phenotypic 

variation in the metabolic fingerprints of the samples exposed to the enantiomeric ratios 

of 30 µg mL-1 Atenolol (Figure 3.5a), because the different groups used by the CVA 

algorithm were not separated and the 95% χ2 tolerance regions overlap with those of 

the control samples.  This analysis clearly illustrates that no discrimination was 

observed between the control and Atenolol exposed conditions and suggests that 

Atenolol does not have a phenotypic effect on the algal cells detectable by FT-IR 

spectroscopy.  By contrast, Propranolol exposed samples separate from the control 

samples across PC-CV 1.  To further explore this separation, the Atenolol exposed 

samples were removed from the dataset and PC-CVA was carried out on the 

Propranolol exposed and control samples (Figure 3.5b).  In this model the Propranolol 

exposed samples clearly separate from the control samples across PC-CV 1.  As CVA 

uses a priori class knowledge (in this case pertaining to the different treatments) the 

model needs to be validated.  Therefore as described above, 2 of the 3 biological 
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replicates were used for calibration (shown in black) and the 3rd replicate (grey font) 

was projected into the model.  The majority of these projected data are grouped with 

the appropriate calibration samples indicating that the separation displayed in the 

model was valid.  Moreover, the 95% confidence intervals for the groups are also 

plotted showing that for the control samples there was a distinct separation in CVA 

scores space from the Propranolol exposed cultures indicating that Propranolol exerts 

a phenotypic effect on the algal cells.  It was perhaps unsurprising that the (R)- and (±)- 

exposed samples display some separation across PC-CV 2 as these samples are 

visibly distinct from the other enantiomeric ratios in the FT-IR spectra (Figure 3.4).  

However, the 95% confidence intervals for these samples indicated that the separation 

of these samples in this analysis was not wholly statistically significant.  Inspection of 

the loadings for this analysis (data not shown) revealed that this partial separation was 

due to vibrations at wavenumbers 1509 – 1478 cm-1 , which correlate with the dominant 

peak observed in the average spectra for the algal cells exposed to the (S)- 

enantiomer, and the enantiomeric ratios (25:75 and 75:25 of (R) : (S)- Propranolol) 

(Figure 3.4).  Previous studies have shown that (±)- Propranolol significantly altered the 

phenotype of M. hardyi during exposure to the API at 60 µg mL-1 (Patel et al., 2008).  

However, the effects of the enantiomers on the algae have not been studied previously, 

and to our knowledge the phenotypic effect of Atenolol has not been investigated in 

algae. 

 

3.4.3 Multivariate analysis of localised lipid and amide rich regions within 

the algae 

The multivariate analysis of the composite spectra from the whole algae revealed a 

phenotypic difference in the algal cells exposed to all of the enantiomeric ratios of 30 

µg mL-1 Propranolol.  In order to investigate any localised effects exerted on the M. 

hardyi cells following exposure to the APIs multivariate analysis was carried out on 

composite spectra taken from areas of the algal cells which had been identified as 

being rich in either lipids or amide I relating to the lobes and the central cellular region 

respectively.  Figure 3.6 shows the PC-CVA scores plots for the amide I and lipid rich 

regions of Micrasterias cells exposed to the enantiomeric ratios of 30 µg mL-1 Atenolol.  

It was clear from these plots that Atenolol exposed samples showed no separation 

from the control samples and this correlates with the PC-CVA results from the 

composite spectra of the whole algal cells.  In addition no notable phenotypic variation 

was observed in the metabolic fingerprints of these samples for any of the enantiomeric 
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ratios.  By contrast, Propranolol exposed samples showed a clear separation from the 

control samples across PC-CV 1 in both amide I and lipid regions (Figure 3.7).  As 

observed in the PC-CVA carried out on the composite spectra from the whole algal 

cells, the (R)- and (±)- Propranolol exposed samples show some separation across 

PC-CV 2 but this separation was also not considered to be statistically significant.  In 

addition, the loadings for these analyses demonstrated that the observed separation 

was attributable to vibrations at wavenumbers 1489 – 1478 cm-1.  The FT-IR spectra 

for both the amide I and lipid rich regions of the Propranolol exposed cells exhibited a 

similar phenotypic response, suggesting that the API does not exhibit a localised effect 

within the cellular components in the FT-IR spectra.   
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Figure 3.3:  Average FT-IR spectra for Micrasterias hardyi cells exposed to 30 µg mL-1 Atenolol 
and Propranolol, and those grown in the absence of API (Con = control).  The spectra are offset 
on the Y axis to allow easier visualisation, and the absorbance is relative. 
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Figure 3.4:  Average FT-IR spectra for Micrasterias hardyi cells exposed to varying ratios of 30 
µg mL-1 Propranolol, and those grown in the absence of API (i.e. control).  The spectra are 
offset on the Y axis to allow easier visualisation, and the absorbance is relative.  Ratios 100:0, 
75:25, 50:50, 25:75 and 0:100 (R) : (S) are represented by points R, R:s, ±, r:S and S 
respectively.  Control samples are labelled “Con”. 
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Figure 3.5:  PC-CVA scores plots for Micrasterias hardyi exposed to enantiomeric ratios of 30 
µg mL-1 Atenolol and Propranolol (a.) and Propranolol (b.).  Plots were constructed using the 
composite spectra for the whole algal cells.  Points shown in black represent the 2 biological 
replicates that were used to train the PC-CVA models.  Points shown in grey represent the third 
biological replicate which was used to validate the PC-CVA model.  Blue circles represent the 
95% confidence interval about the group centroid, and green circles the 95% confidence region 
about the group sample population.  Plots a and b were constructed using 5 and 3 PCs and 
account for 94.1 and 77.4 % explained variance respectively.  Points R, R:s, R:S, r:S, S and 
Con represent samples exposed to 100:0, 75:25, 50:50, 25:75, 0:100 (R) : (S) and control 
samples respectively. 
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Figure 3.6:  PC-CVA scores plots for amide (LHS) and lipid rich (RHS) regions of Micrasterias 
hardyi exposed to enantiomeric ratios of 30 µg mL-1 Atenolol.  Points shown in black represent 
the 2 biological replicates used to train the PC-CVA models.  Points shown in grey represent the 
third biological replicate which was used to validate the PC-CVA model.  Blue circles represent 
the 95% confidence interval about the group centroid, and green circles the 95% confidence 
region about the group sample population.  The plots were constructed using 3 PCs and 
account for 86.2 and 92.7 % explained variance respectively (LHS and RHS).  Points R, R:s, 
R:S, r:S, S and Con represent samples exposed to 100:0, 75:25, 50:50, 25:75, 0:100 (R) : (S) 
and control samples respectively. 
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Figure 3.7:  PC-CVA scores plots for amide (LHS) and lipid rich (RHS) regions of Micrasterias 
hardyi exposed to the enantiomeric ratios of 30 µg mL-1 Propranolol.  Plots were constructed 
using the composite spectra for the whole algal cells.  Points shown in grey represent the third 
biological replicate which was used to validate the PC-CVA model.  Blue circles represent the 
95% confidence interval about the group centroid, and green circles the 95% confidence region 
about the group sample population.  The plots were constructed using 4 PCs and account for 
93.6 and 88.0 % explained variance respectively (LHS and RHS).  Points R, R:s, R:S, r:S, S 
and Con represent samples exposed to 100:0, 75:25, 50:50, 25:75, 0:100 (R) : (S) and control 
samples respectively. 
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3.4.4 Investigating supervised learning for quantification of the 

enantiomer effect of the APIs 

As described above principal component regression (PCR) is a supervised learning 

method that effects quantitative analysis and was carried out in order to investigate the 

relationship between the percentage of enantiomer to which the algae had been 

exposed to and the phenotypic response.  PCR was trained to quantify the percentage 

of (R)- enantiomer to which the samples had been exposed and the control samples 

were removed from the dataset prior to analysis in order to prevent any subsequent 

bias within the analyses.  The PCR results (Figure 3.8) appeared to show some 

correlation, however the errors for these models were rather high.  The root mean 

squared (RMS) errors for the Atenolol and Propranolol exposed cells were +/- 83.48 

and +/- 99.54 respectively demonstrating that it was not possible to predict the ratio of 

enantiomers to which the algal cells had been exposed for either of the APIs from the 

FT-IR spectroscopy data.  In addition PCR was also carried out on the composite 

spectra of the amide I and lipid rich regions of the cells exposed to Atenolol and 

Propranolol (data not shown).  However, the results were consistent with those from 

the whole algal cells and it was not possible to model the relationship between the ratio 

of enantiomers to which the algal cells had been exposed and the phenotypic response 

for either of the APIs.  PCR is capable of modelling linear relationships and therefore it 

was not perhaps surprising that a correlation was not observed in these analyses as 

this would rely on a mainly linear relationship between enantiomeric ratio and 

phenotypic response within the algal cells.  Therefore a correlation would presume that 

the majority of the biological effect exerted on the algae was due to one of the 

enantiomers.  Whilst it is known that the (S)- enantiomer of Propranolol exerts the 

majority of the β-blocking effect in man, the effects of this API and its enantiomers have 

not previously been studied in algae (Barrett and Cullum, 1968, Walle et al., 1984).  

The multivariate data analyses indicated that both of the Propranolol enantiomers exert 

a phenotypic effect on M. hardyi, and appeared to exert differing phenotypic effects.  

Therefore, the PCR algorithm may not be able to model such complex phenotypic 

variations.  In addition, the initial results from the PC-CVA suggested that Atenolol did 

not exert a noticeable phenotypic effect on the composite spectra of the algal cells and 

it is therefore unlikely that a linear relationship between %(R)- enantiomer and 

phenotypic response may be modelled for Atenolol. 
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Figure 3.8:  Principal component regression (PCR) carried out on composite spectra from 
whole Micrasterias hardyi cells exposed to varying ratios of 30 µg mL-1 Atenolol (a.) and 
Propranolol (b.).  The models were built using two out of the three biological replicates and were 
given knowledge of the percentage of the (R)- enantiomer to which the algal cells had been 
exposed.  The model for Atenolol and Propranolol were built using 5 and 7 PCs and had errors 
of +/- 83.48 and +/- 99.54 respectively.  
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3.4.5 Investigating whether the APIs effect the distribution and 

concentration of the chemical constituents within the algal cells 

FT-IR microspectroscopy was carried out on whole algal cells exposed to the 

enantiomeric ratios of 30 µg mL-1 Atenolol or Propranolol in order to investigate any 

potential spatial effects on M. hardyi.  Spectral maps were constructed for the total IR 

signal absorbed by the Micrasterias cell at wavenumbers 4000 – 900 cm-1.  In addition, 

functional group mapping was carried out on these spectral maps in order to provide a 

visualisation of the spatial distribution of the chemical constituents of the algal cells 

when exposed to the APIs and their enantiomeric ratios.  Maps were constructed for 

the integrated peak areas under the amide I peak at wavenumbers 1700 – 1600 cm-1 

and the lipid peak at wavenumbers 3000 – 2800 cm-1.  In addition, due to the high 

levels of amides observed throughout the algal cells, a ratio of lipid:amide I was 

employed in order to normalise to the same protein level.  Finally, maps were 

constructed for the integrated peak areas under the peak observed at wavenumbers 

1500 – 1200 cm-1 for the Propranolol exposed cells.  Figure 3.9 and Figure 3.10 show 

the functional group maps for a selection of samples exposed to the enantiomeric 

ratios of 30 µg mL-1 Atenolol and Propranolol respectively and Figure 3.11 shows the 

functional group maps for the Propranolol exposed cells at wavenumbers 1500 – 1200 

cm-1.  

 

The morphological components of the algal cells can be clearly observed in the total 

signal maps of the Micrasterias control cells (Figure 3.9a).  These relate well to the 

relevant photomicrograph images and previous reports which have shown FT-IR 

microspectroscopy to be capable of resolving these cellular components (Heraud et al., 

2005, Patel et al., 2008).  Integration of the amide I band revealed a high concentration 

of amides throughout the centre of the cell and partially extending into the lobes.  A 

particularly high intensity of the amide I band was observed in the isthmus, the region 

in which the nucleus is found (Meindl et al., 1994, Heraud et al., 2005).  This correlates 

with the known composition of the nucleus, which has high levels of histones and low 

levels of lipids (Laskowski et al., 1997, Heraud et al., 2005).  The presence of amides 

in the semi-cells extending into the lobes may be attributed to the presence of the 

chloroplasts, in particular the pyrenoids which are highly differentiated areas of the 

chloroplast responsible for the fixation of CO2.  Pyrenoids are known to contain high 

levels of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO); the key 

enzyme of the Calvin Cycle which is the main process for carbon fixation in plants, 
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algae and photosynthetic bacteria (Laskowski et al., 1997, Venter et al., 2004).  Both 

RubisCO and histones are known to contain a high proportion of α-helices within their 

structure, and it is therefore likely that the intense amide I bands observed in the region 

of the chloroplasts and nucleus respectively was due to the presence of these proteins 

(Laskowski et al., 1997).  High levels of lipids are also observed throughout the control 

cells particularly within the centre of the semicells in the region in which the 

chloroplasts are observed.  It has been suggested that this may be attributed to the 

closely packed membranes termed thylakoids found within the chloroplasts (Meindl, 

1993, Heraud et al., 2005).  The spectral maps demonstrating the lipid:amide I ratio 

display highly differentiated areas in the end of the lobes which contain high 

concentrations of lipids, and have previously been suggested to be lipid storage bodies 

(Heraud et al., 2005). 

 

The photomicrograph images for Micrasterias exposed to the enantiomeric ratios of 30 

µg mL-1 Atenolol do not reveal a notable difference in the appearance of the algal cells 

when compared to the control cells.  This was reflected in the maps of the total FT-IR 

signal which appear similar to those of the control cells for all of the ratios.  In addition 

the functional group maps for the integration under the amide I and lipid peaks do not 

display a difference from the control cells (Figure 3.9).  This was not unexpected as the 

multivariate analysis did not show a difference between the Atenolol exposed and the 

control cells based on the composite spectra.  Figure 3.10 shows the photomicrograph 

images and the functional group maps for M. hardyi control cells and a selection of 

those exposed to the enantiomeric ratios of 30 µg mL-1 Propranolol.  It is clear from the 

photomicrograph images that Propranolol exerts a notable effect on the algal cells.  

The cells appear to be chlorotic following exposure to all of the selected enantiomeric 

ratios.  In addition, the maps of the total FT-IR signal display a general reduction in 

intensity for all of the enantiomeric ratios, which was not surprising given the 

appearance of the algal cells.  This trend was also observed for the amide I band which 

exhibits a dramatic reduction in amides throughout the Propranolol exposed cells 

compared to the control cells and corresponded to the chlorotic appearance of the algal 

cells.  The Micrasterias cells exposed to the racemate (Figure 3.10d) display the 

greatest reduction in amide I.  Although Figure 3.10 only displays one of the replicates 

from each of the experimental conditions, these trends are consistent throughout all of 

the replicates.  The functional group mapping for the lipid:amide I ratio also reveals a 

notable effect in the Propranolol exposed cells.  A general reduction of lipids was 

observed in the lipid storage bodies found at the end of the lobes in the algal cells 
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(Heraud et al., 2005).  Microalgae are well known for the production of lipids under 

stress conditions (Torres et al., 2008), however Propranolol is a lipophilic compound 

(Lemmer et al., 1985, Westerlund, 1985) and it was not surprising to note that it 

interacts with the lipid components of the M. hardyi cells.  The reduction of lipids in 

these areas was particularly noticeable in the Micrasterias cells exposed to both (R)- 

and (±)- Propranolol (Figures Figure 3.10b and Figure 3.10d respectively).  This 

observation was consistent with earlier analyses as these samples were notably 

different in the FT-IR spectra and showed some separation from the remaining 

samples in the PC-CVA carried out on the composite spectra for the whole algal cells.  

In addition, the photomicrograph images appear to reflect this enhanced effect on the 

algal cells by (R)- and (±)- Propranolol in comparison with the other enantiomeric 

ratios.  The (R)- enantiomer is known to have a predominantly membrane stabilising 

effect in man, whilst (S)- Propranolol accounts for the majority of the β-blocking effect 

(Barrett and Cullum, 1968, Potter and Sweetland, 1967, Hanna and Evans, 2000, 

Walle et al., 1984).  It is therefore likely that the enhanced effect on the lipids may be 

due to interactions with the algal membrane and the lipid components.  In addition the 

racemate possesses differing physical properties from the enantiomers and it may be 

expected that it could produce different effects in biological systems (Chickos et al., 

1981, Secor, 1963). 

 

The FT-IR spectra of cells exposed to the (S)- enantiomer and the enantiomeric ratios 

(25:75 and 75:25 of (R) : (S)- Propranolol), compared to the (R)- enantiomer and the 

racemate, revealed an additional feature at 1500 – 1200 cm-1 (Figure 3.4) which was 

also observed from the PC-CVA (Figure 3.5b).  Therefore in order to investigate this 

further, functional group maps for M. hardyi control cells and a selection of those 

exposed to the enantiomeric ratios of 30 µg mL-1 Propranolol for the total signal and the 

region at wavenumbers 1500 – 1200 cm-1 were constructed (Figure 3.11).  The IR 

signal for this peak was most intense in the centre of the cells, the region in which the 

chloroplasts and the nucleus are located.  The maps correspond to those for the amide 

I, lipid and lipid: amide I ratios maps (Figure 3.10) and show that Propranolol exerted a 

notable effect on the algal phenotype.  Comparing the series of Propranolol exposures 

as the amount of (S)- enantiomer it was not readily possible to determine any 

differential effect on the algal cells when exposed to the pure enantiomers and the 

various enantiomeric ratios.  However, on closer inspection it was possible to see that 

the overall signal strength for the integration between 1500 – 1200 cm-1 in the central 

region of the cells decreased as the (S) : (R) ratio increased, which may suggest  that  
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the (S)- enantiomer had a more profound effect on the chloroplast or nucleus of the 

algae. 
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Figure 3.9:  Photomicrograph images and functional group maps for Micrasterias hardyi cells 
exposed to varying ratios of 30 µg mL-1 (R) : (S)- Atenolol.  Row a. shows results for control 
cells.  Rows b-f represent cells exposed to 100:0, 75:25, 50:50, 25:75, 0:100 (R) : (S) 
respectively. 
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Figure 3.10:  Photomicrograph images and functional group maps for Micrasterias hardyi cells 
exposed to varying ratios of 30 µg mL-1 (R) : (S)- Propranolol.  Row a. shows results for control 
cells.  Rows b-f represent cells exposed to 100:0, 75:25, 50:50, 25:75, 0:100 (R) : (S) 
respectively. 
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Figure 3.11:  Functional group maps for Micrasterias hardyi cells exposed to varying ratios of 
30 µg mL-1 (R) : (S)- Propranolol.  Maps for the total IR signal are shown on the left and 
functional group maps for the peak found at wavenumbers 1500-1200 cm-1 are shown on the 
right hand side.  Control samples are represented by (a.).  Samples b-f represent cells exposed 
to 100:0, 75:25, 50:50, 25:75, 0:100 (R) : (S)- Propranolol respectively. 
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3.4.6 PCA Mapping 

Functional group mapping was employed to investigate the phenotypic effects of the 

APIs on specific regions of the FT-IR spectra.  Therefore, in order to investigate the 

whole spectrum rather than specific regions PCA mapping was performed where PCA 

was conducted on the whole algae and the first PC score plotted on the chemical map.  

As the scores may have a different scale these were all normalised to lie within the 

same range.  However, on inspection of the PCA chemical maps it was clear that there 

was no obvious visual difference between the controls and any of the Atenolol exposed 

cells (Figure 3.12).  By contrast, for the Propranolol treated cells the overall ‘intensity’ 

of the maps was generally lower in the treated cells compared to the controls, but no 

specific differences could be observed in the PC loadings matrices (Figure 3.13).  

Therefore, chemical mapping using PCA did not bring anything more to the 

investigation compared to functional group mapping. 

 

Projections were used to highlight differences from controls and API exposed cells. In 

this process PCA was constructed on one alga and spectra from other algae were 

projected into this PCA space.  The idea behind this is that if there is a phenotypic 

difference between the algae then the spectra will also be different and so when 

projected into the PCA space these projected scores should fall outside the PC scores 

range.  This was tested within a replicate group; i.e. PCA was conducted on one of the 

control algae and the other two replicates projected in.  The images (data not shown) 

were equivalent, showing that there was no phenotypic difference.  However, when an 

alga treated with Atenolol or Propranolol was projected in it also looked very similar to 

the control.  Thus the project routine also did not identify any enantiomeric specific 

changes. 
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Figure 3.12:  PCA maps for Micrasterias hardyi cells exposed to varying enantiomeric ratios of 
30 µg mL-1 Atenolol.  PCA was carried out on the whole algal cells and the first PC is plotted for 
each sample.  Samples exposed to 100:0, 75:25, 50:50 25:75 and 0:100 (R) : (S)- Atenolol are 
labelled R, R:s, ±, r:S and S respectively. 
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Figure 3.13:  PCA maps for Micrasterias hardyi cells exposed to varying enantiomeric ratios of 
30 µg mL-1 Propranolol.  PCA was carried out on the whole algal cells and the first PC is plotted 
for each sample.  Samples exposed to 100:0, 75:25, 50:50 25:75 and 0:100 (R) : (S)- 
Propranolol are labelled R, R:s, ±, r:S and S respectively. 
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3.5 Conclusions 

The Propranolol racemate has previously been shown to exert phenotypic effects on M. 

hardyi at 30 µg mL-1.  In this investigation FT-IR microspectroscopy was employed to 

investigate the chirality specific effects of the enantiomeric ratios of the APIs 

Propranolol and Atenolol on the total cellular fingerprints of the algal cells.  In addition 

the spatially localised effects of the APIs and their enantiomer ratios on the biochemical 

components of the algal cells were also investigated.   

 

No notable difference was observed in M. hardyi exposed to Atenolol compared to the 

control samples as analysed by FT-IR spectroscopy.  The spectra appeared to be 

indistinguishable from those of the control when subjected to multivariate analyses.  In 

addition, the functional group mapping did not reveal any localised phenotypic 

differences in the Atenolol exposed cells for any of the enantiomeric ratios.   

 

By contrast, as observed previously, a phenotypic effect on the algal cells was 

observed when exposed to Propranolol.  A clear difference was observed in the FT-IR 

spectra of the algal cells exposed to 30 µg mL-1 Propranolol at all of the enantiomeric 

ratios and a dominant peak was observed in the FT-IR spectra at wavenumbers 1500 - 

1200cm-1 which was not observed in cells exposed to (R)- Propranolol or the 

enantiomer.  Inspection of the photomicrographs and functional group maps revealed 

that the algal cells exposed to (R)- and (±)- Propranolol were particularly affected by 

the API.  However, these samples were not satisfactorily separated from the remaining 

Propranolol exposed samples in the multivariate analysis of the spectral data.   

 

The greatest reduction in the amide region of the FT-IR spectra was observed in cells 

exposed to the racemate.  However, it was not possible to determine any specific 

localised effects in the algal cells relating to the cellular components.  Analysis of both 

the lipid rich (lobes) and amide I rich (centre of cell housing the nucleus and 

chloroplasts) areas did not reveal significantly different responses from those observed 

throughout the cell.  It is therefore likely that Propranolol exerts a general effect on the 

whole algal cell.  
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4.1 Abstract 

A number of methods are employed in the removal of harmful substances both from 

domestic and industrial wastewaters prior to the release of effluents into the aquatic 

environment.  These include chemical and physical remediation processes such as 

ozonation, and biological processes such as biofilm and membrane bioreactors and 

activated sludge systems.  In this investigation we acquired activated sludge from an 

industrial bioreactor capable of degrading phenol.  The sludge was incubated in the 

laboratory and monitored for the phenotypic effects exerted on the sludge by a range of 

environmental pollutants over a 48 h period.  Multiple samples were taken across the 

time course and analysed by Fourier transform infrared (FT-IR) spectroscopy.  FT-IR 

spectroscopy was employed as a whole organism fingerprinting approach to monitor 

biochemical changes in the bacterial cells during exposure to the chosen compounds.  

The ability of the activated sludge to degrade these compounds during the time course 

was also investigated.  The microbial community was able to degrade 5 mM phenol 

within 36 h and this was accompanied by a detectable biochemical change in the FT-IR 

fingerprint related to the cellular phenotype of the microbial community.  However, no 

notable phenotypic effect was observed in the microbial community when exposed to 

toluene, Atenolol and Propranolol.  FT-IR spectroscopy, when combined with 

chemometric analysis is a very useful high-throughput screening approach for 

assessing the metabolic capability of complex microbial communities.  The study 

demonstrates that the acquired ability of the microbial community is specific to phenol 

and it is not transferable to degrade compounds of a similar structure.  
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4.2 Introduction 

The release of effluents containing harmful chemicals into receiving waters may cause 

long term effects in aquatic biota and the occurrence and fate of environmental 

contaminants such as aromatic hydrocarbons, personal care products and 

pharmaceuticals in the aquatic environment has drawn increasing attention over the 

last decade (Daughton and Ternes, 1999, Jjemba, 2006, Alvarez and Vogel, 1991, 

Nahar et al., 2000, Ternes, 1998, Halling-Sørensen et al., 1998, Kümmerer, 2009).  

However, little is currently known about the fate of these compounds following their 

intended use (Kolpin et al., 2002) and there are a number of concerns regarding the 

presence of these compounds in the environment.  These concerns include risks to 

physiological and reproductive processes (Huggett et al., 2002, Kime and Nash, 1999, 

Purdom et al., 1994, Larsson et al., 1999), the development of antibiotic-resistance in 

bacteria (Khachatourians, 1998, Smith et al., 1999, Gilliver et al., 1999), and the likely 

increase in the toxicity of chemical mixtures (Abuhamed et al., 2004, Sumpter and 

Jobling, 1995).  For numerous substances, the potential effects on both man and 

aquatic ecosystems are not fully understood (Ayscough et al., 2000, Halling-Sørensen 

et al., 1998, Daughton and Ternes, 1999).  A number of harmful compounds have been 

indentified as causing undesirable effects in aquatic organisms.  For example the 

synthetic oestrogen ethinyloestradiol and the β-blocking agent Propranolol have been 

shown to exert a significant risk to reproduction in fish (Huggett et al., 2002, Kime and 

Nash, 1999, Larsson et al., 1999, Purdom et al., 1994).  In addition phenol has been 

shown to produce detrimental effects in aquatic organisms (Kühn et al., 1989).   

 

A number of methods are employed in the removal of harmful substances both from 

domestic and industrial wastewaters prior to the release of effluents into the aquatic 

environment.  These include chemical and physical remediation processes such as 

ozonation (Huber et al., 2003, Ternes et al., 2003, Ahmaruzzaman and Sharma, 2005, 

Vázquez et al., 2007, Qian et al., 1994), and biological processes such as biofilm and 

membrane bioreactors (Jeong and Chung, 2006, Morper and Wildmoser, 1990, 

Zuehlke et al., 2003, Kloepfer et al., 2004) and activated sludge systems (Sutton et al., 

1999, Suzuki et al., 2002, Fent et al., 2006).  Activated sludge systems are employed 

worldwide for the treatment of wastewaters and offer an effective alternative to the 

traditional chemical and physical methods which are known to produce hazardous by-

products (Singleton, 1994, Suzuki et al., 2002).  A key characteristic of the activated 

sludge process is the recycling of a large proportion of the biomass, resulting in a 
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significant community of microorganisms capable of efficiently processing wastewaters 

to degrade hazardous contaminants (Bitton, 2005).  The use of activated sludge has 

been shown to be more efficient than other methods for the removal of environmental 

pollutants such as pharmaceuticals (Drewes et al., 2002, Quintana et al., 2005), 

personal care products and aromatic hydrocarbons such phenols and toluene 

(Singleton, 1994, Sutton et al., 1999, Tisler et al., 1999) from wastewaters.   

 

FT-IR spectroscopy is a phenotyping technique which has previously been used to 

generate informative metabolic fingerprints from biological material (Johnson et al., 

2004, Winder et al., 2007).  Previous studies have also proved its applicability to 

biological systems by successfully demonstrating the discrimination of bacteria to sub-

species level (Winder et al., 2006, Timmins et al., 1998, Naumann et al., 1991a) but 

only when combined with chemometrics (Goodacre et al., 1998).  In addition, the 

combination of FT-IR and trajectory analysis has proved successful in the identification 

of metabolic changes in natural multi-organism fermentations (Johnson et al., 2004).  

FT-IR is particularly useful in gaining insight into complex biological problems as an 

initial screening method because it is high-throughput with analysis times of 10-60s per 

sample, requires minimal sample preparation, and is automated and relatively 

inexpensive.  

 

In this investigation we aim to explore the phenotypic effects exerted on an activated 

sludge community when exposed to a range of environmental pollutants.  The activated 

sludge community selected for investigation originated from an industrial steelworks 

where it was used in the degradation of phenol from coking effluents.  The activated 

sludge was monitored for the phenotypic effects and potential degradation of phenol, 

the structurally similar aromatic hydrocarbon toluene, and the β-blocking agents 

Atenolol and Propranolol over a 48 h period using FT-IR spectroscopy and HPLC 

analysis.  Through the comparison of the phenotypic changes with the degradation 

data, we aim to develop an understanding of the effects exerted on the activated 

sludge community by these environmental pollutants. 

 



FT-IR spectroscopy as a tool for monitoring the effects of environmental pollutants on 
complex biological communities 

 

An environmental metabolomics investigation of the effects of chiral pharmaceuticals 
and environmental pollutants on microorganisms 

- 129 -   

4.3 Materials and methods 

4.3.1 Activated sludge 

Activated sludge was collected from a bioreactor at an industrial wastewater treatment 

plant (Corus Steelworks, Scunthorpe, UK) and transported at room temperature 

immediately back to the laboratory where it was subsequently stored at 4°C until further 

use.  This microbial community was stored for 1 day prior to supplementation with any 

of the chosen compounds.   

 

4.3.2 Incubation conditions 

Prior to the addition of the chosen pollutants the activated sludge samples (150 mL) 

were incubated aerobically for 2 h at 25 °C at 150 r.p.m. in a Multitron (INFORS HT, 

Switzerland) orbital shaker.  Triplicate samples (so called biological replicates) were 

supplemented with the environmental pollutants 5 mM phenol, 1 mM toluene, 0.17 mM 

Propranolol, or 0.18 mM Atenolol, all of which have been shown to exert undesirable 

effects on aquatic organisms (vide supra).  Additional triplicate control samples were 

incubated without the addition of any pollutant and were used to monitor the activity of 

the activated sludge during incubation under laboratory conditions.  The activated 

sludge samples were maintained aerobically at 25 °C with 150 r.p.m. shaking 

throughout the incubation and sampling periods (Manefield et al., 2002).  Hourly 

samples were taken over a 10 h period (including t = 0 h and t = 15 min) and 

subsequently at 15, 20, 24, 36 and 48 h for analysis with FT-IR spectroscopy.  An 

aliquot (1 mL) was centrifuged for 6 min at 16089 g and the supernatant was removed 

for quantitative analysis of the pollutant with HPLC or a colorimetric assay.  The cell 

pellets were stored at -80 °C until required. 

 

4.3.3 Phenol quantification 

Quantification of phenol was performed using a colorimetric assay in which a red 

antipyrine dye is produced (King et al., 1991).  During this assay condensation of 4-

aminoantipyrine with phenol in the presence of alkaline oxidising agents produces a 

red antipyrine dye (AAPPC) in what is known as the Emerson reaction (Emerson, 

1943, Emerson and Kelly, 1948).  It is known that this assay has a greater sensitivity 

than other colorimetric assays of phenol (Svobodová and Gasparič, 1971).  The assay 

is most sensitive in the range of 0.002 – 0.02 mM.  It was therefore necessary to dilute 
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the phenol samples from early time-point determinations with sterile H2O in order to 

achieve the most sensitive assay.  The colour develops within 2 min, and changes with 

time, but it does not significantly change within 1 h (Martin, 1949).  The colorimetric 

assay is influenced by such factors as concentration of the reagents in relation to 

phenol concentration (Gasparic et al., 1974, Svobodová and Gasparič, 1971) the pH at 

which the assay is performed (7.5 – 9.5) and the order in which the reagents are 

added.  It is also considered necessary to have a least a 10-fold excess of 4-

aminoantipyrine and the oxidising agent relative to phenol (Svobodová and Gasparič, 

1971).  For this reason, a blank was run with each series of determinations by mixing 

4-aminoantipyrine, buffer, and the oxidising agent with sterile H2O.  The reagents and 

phenol standards were prepared just prior to their use. 

 

The aliquots (1 mL) were filtered (0.22 µm, MilliporeTM) and treated with 25µL of 0.5 M 

NH4OH and adjusted to pH 7.9 with 22.5 µL of phosphate buffer (0.5M KH2PO4, 0.6M 

K2HPO4).  Samples were treated with 10 µL of 100mM 4-aminoantipyrine and 10 µL of 

250 mM potassium ferricyanide.  The samples were allowed to react for 5 min, and the 

reaction products were determined in triplicate against a blank for each replicate with a 

BioMate™ 5 (Thermo Electron Corporation) spectrophotometer at 500 nm.  Phenol 

concentrations were calculated from standard curves prepared in parallel.   

 

4.3.4 HPLC analysis 

Concentrations of toluene, Atenolol and Propranolol were determined by HPLC (Agilent 

1100 series).  The supernatant samples were allowed to thaw at room temperature and 

were filtered (0.22 µm, MilliporeTM) in order to remove any microbial cells remaining in 

the medium.  Aliquots (25 µL) were injected onto the HPLC column in a randomised 

order.  Each sample was injected three times during the analysis, resulting in three 

analytical replicates for each biological sample.  The HPLC system was equipped with 

a Chirobiotic V2 column (250 mm × 4.6 mm i.d.), particle size 5 µm (ASTEC, 

Whippany, NY, USA) and a UV detector operating at a wavelength of 230 nm.  The 

column was eluted with an isocratic mixture of methanol and water (90:10, v/v) and 

1.0% triethylamine acetate (TEAA) buffer, pH 5.0.  The pH of the buffer was adjusted 

with acetic acid prior to the addition of methanol.  The measurements were carried out 

a 25 ± 1 °C at a flow rate of 1 mL min-1 (Bosakova et al., 2005).  
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4.3.5 FT-IR spectroscopy 

A 96-well zinc selenide plate was rinsed with analytical grade 2-propanol and deionised 

water and allowed to dry at room temperature (Winder et al., 2006).  The dry cell 

pellets stored at -80 °C were allowed to thaw at room temperature and washed in order 

to remove any traces of phenol.  Ice cold sterile water (2 mL) was added to each 

sample and vortexed.  The samples were centrifuged for 10 mins (0 °C, 16089 g), and 

the supernatant was discarded.  This cycle was repeated 3 times.  A final aliquot of 100 

µL sterile water was added to each sample and the solution was vortexed.  Aliquots (20 

µL) of each resuspended sample were applied to the ZnSe plate and oven dried at 50 

°C for 10 min.  Drying was used to avoid absorption of water in the mid-IR region which 

may mask biologically important chemical information in the spectra.  Three replicates 

of each of the samples were randomly applied to the ZnSe plates and triplicate spectra 

were obtained from different positions of each well, a total of nine spectra (so called 

technical replicates) were collected per sample.  The plate was loaded onto a 

motorised microplate module HTS-XT under the control of a computer programme with 

OPUS software version 4 (Winder et al., 2006).  Spectra were collected using an 

Equinox 55 FT-IR spectrometer (Bruker Optics Ltd), in transmission mode using the 

deuterium triglycine sulphate (DTGS) detector over the wavelength range of 4000-600 

cm-1 and with a resolution of 4 cm-1.  In order to improve the signal to noise ratio, 64 

spectra were co-added and averaged.  The spectra are displayed in terms of 

absorbance (see Figure 4.2 for typical example spectra). 

 

4.3.6 Data analysis 

The ASCII data were imported into Matlab version 7.1 (The MathWorks, Inc., Natick, 

MA, USA) and as an initial step CO2 vibrations arising from the atmosphere (2403 – 

2272 cm-1 and 683 – 656 cm-1) were removed and filled with a linear trend.  The 

spectra were then corrected using extended multiplicative scatter correction (EMSC) 

which normalises and smoothes the spectra by application of a polynomial smoothing 

function (Martens et al., 2003).  These pre-processed spectra were used for 

subsequent multivariate analyses. 

 

Principal components analysis (PCA; (Jolliffe, 1986)) is an unsupervised method for 

reducing the dimensionality of multivariate data whilst preserving the variance.  This 

transformation was performed prior to canonical variates analysis (CVA).  CVA is a 

supervised learning method that seeks to minimise within-group variance whilst 
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maximising between-group variance, and can be used in conjunction with PCA to 

discriminate between groups on the basis of retained principal components (PCs), 

given a priori knowledge of group membership of the spectral replicates (Manly, 1994, 

Winder et al., 2004).  PC-CVA models were constructed with a priori knowledge of the 

biological replicates.  In order to make sure these PC-CVA score plots were not over- 

or under-trained, these models were trained (constructed) with two of the biological 

replicates and cross-validated using the third biological replicate as detailed in (Jarvis 

and Goodacre, 2004a).  Finally, CVA also allows statistical significance to be displayed 

on the scores plots and circles were used to represent the 95% χ2 tolerance region 

constructed around each group mean by the χ2 distribution of two degrees of freedom 

(Krzanowski, 1988). 
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4.4 Results and discussion 

4.4.1 Quantification of the environmental pollutants 

The concentration of the environmental pollutants remaining in the activated sludge 

samples was monitored during the 48 h incubation period.  A colorimetric assay was 

used to determine levels of phenol in the supernatant for all of the experimental 

conditions.  Figure 4.1 shows the quantification results for the phenol supplemented 

and control activated sludge samples.  The activated sludge samples contained 

residual levels of approximately 0.22 mM phenol which was gradually degraded by the 

microbial community within 48 h.  Activated sludge samples supplemented with 5 mM 

phenol displayed a notable degradation of the phenol within 2 h and complete 

degradation was achieved within 36 h.   
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Figure 4.1:  Quantification of phenol remaining in the supernatant of phenol supplemented and 
control samples during the 48 h incubation period.  Data are averaged from 3 biological 
replicates and error bars show standard deviation. 
 

 

Quantification of phenol in the activated sludge samples supplemented with toluene, 

Atenolol and Propranolol corresponded with the control data; containing a residual 
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concentration of approximately 0.22 mM phenol remaining in the activated sludge 

following collection from the industrial steelworks.  This residual phenol was fully 

degraded by the activated sludge community within the 48 h incubation period and 

these samples were not supplemented with additional phenol.  Unfortunately, due to 

the complex nature of the activated sludge samples, it was not possible to quantify the 

levels of the other environmental pollutants with HPLC.  The samples produced high 

levels of background noise and as a result it was not possible to resolve the 

compounds using this method. 

 

4.4.2 Effects of the environmental pollutants on the FT-IR metabolic 

fingerprints 
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Figure 4.2:  Average FT-IR spectra for activated sludge samples following 48 h incubation at 25 
°C in the presence of the phenol, toluene, Propranolol and Atenolol.  Samples are labelled Phe, 
Tol, Prop and Aten for samples exposed to phenol, toluene, Propranolol and Atenolol 
respectively.  Control samples are labelled “Con”.  The spectra are offset on the Y axis to allow 
easier visualisation, and the absorbance is relative. 
 

 

Typical FT-IR spectra of the activated sludge samples incubated with phenol, toluene, 

Propranolol or Atenolol and samples incubated without any supplementary compounds 

are shown in Figure 4.2.  FT-IR spectroscopy results in the production of a composite 

spectrum that is representative of a wide range of endogenous and exogenous 
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metabolites.  The resultant spectrum is therefore highly complex and not open to direct 

interpretation of individual compounds of interest (See section 1.4.1, page 33).  On 

initial inspection a dominant peak was observed in all of the spectra at wavenumbers 

2120 - 2000 cm-1, which is not typically observed in the FT-IR spectra of bacterial 

samples (Winder et al., 2006), and there are very few functional groups that vibrate in 

this area of the infrared spectrum.  The most common are S-O from sulphates, C≡N 

from unsaturated N compounds, C-C stretching vibrations of alkynes and S=C=N from 

thiocyanates (Degen, 1997, Peoples et al., 1987).  It is known however, that phenol 

and thiocyanates are the two primary pollutants in coking effluent (Jeong and Chung, 

2006, Prater and Fisher, 1991, Manefield et al., 2005) and furthermore the effluent from 

the industrial plant in which the samples originate is known to contain thiocyanates at 

concentrations as high as 2.4 mM (Manefield et al., 2005).  It is therefore likely that this 

peak was attributable to the presence of thiocyanates within the activated sludge 

samples.  The remaining spectral regions typify the patterns commonly associated with 

the FT-IR spectra of microorganisms.  Many of the spectral bands have previously 

been assigned to functional groups of biological interest (Fabian and Mäntele, 2002, 

Lasch et al., 2002, Schultz et al., 1999, Winder et al., 2006).  The spectra for all of the 

experimental conditions appear to be dominated by the amide I and amide II functional 

group bands at wavenumbers 1700 – 1600 cm-1 and 1600 – 1500 cm-1 respectively.  

The band at 1200 – 900 cm-1 is attributed to C-O or O-H from polysaccharides.  In 

addition, the absorptions at wavenumbers 3000 – 2800 cm-1 are attributed to lipids; in 

particular, the symmetric and asymmetric stretching vibrations of the CH, CH2 and CH3 

groups of the acyl chains (Lorin-Latxague and Melin, 2005, Udelhoven et al., 2000, 

Patel et al., 2008).  

 

Due to the complex nature of the FT-IR dataset multivariate analysis (MVA) methods 

were employed to investigate the relationship between the bacterial communities from 

their FT-IR data.  PC-CVA was employed to investigate the phenotypic effect of the 

compounds on the activated sludge during incubation at 25 °C over a 48 h period.  Due 

to the large number of groups within the FT-IR dataset (5 experimental conditions x 17 

time points x 3 biological replicates x 9 analytical replicates) and in order to aid 

visualisation of the general trends within the data, a subset of samples were selected 

for multivariate analysis with PC-CVA.  Figure 4.3 shows the PC-CVA scores and 

loadings plots for the FT-IR data of the activated sludge communities supplemented 

with phenol, toluene, Atenolol or Propranolol and those not supplemented with any 

additional compounds (i.e., the control samples) at 0, 4, 8, 15, 20, 24 and 48 h.  The 0 
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h samples were collected just prior to the addition of any compounds for all of the 

experimental conditions and therefore as expected, all of the samples for this time point 

clustered with the control.  A clear separation was observed across the first canonical 

variate (PC-CV 1) which correlated to the time of sampling.  The activated sludge 

samples supplemented with phenol displayed a distinct separation from the remaining 

samples across PC-CV 2 following the 15 h time point.  This separation demonstrates 

a clear phenotypic difference in the activated sludge samples when supplemented with 

phenol; a finding which was not perhaps surprising, as the activated sludge community 

selected for investigation was employed for the degradation of phenols in the coking 

effluent (Manefield et al., 2005).  It is probable that the observed change in the 

phenotype of the sludge was directly related to the time at which the community was 

actively degrading phenol, and this will be investigated further.  By contrast, samples 

supplemented with toluene, Atenolol and Propranolol displayed no notable separation 

from the control samples, as the 95% χ2 tolerance regions around the group means 

overlap.  Visual inspection of the PC-CVA loadings plot for this analysis (Figure 4.3b) 

provides information relating to which spectral features are important for this 

separation.  In these analyses the 95% χ2 confidence band is represented as a green 

ellipse, such that any spectral features which are positioned outside of this region are 

considered significant in the PC-CV loadings plot.  The separation across PC-CV 1 

appeared to be due to variation in the FT-IR spectra at wavenumbers 2125 – 2055 cm-

1.  As described above this peak was likely to be due to the presence of thiocyanates 

within the samples.  A number of studies have investigated the degradation of 

thiocyanates in coking effluent by activated sludge communities (Paruchuri et al., 1990, 

Shieh and Richards, 1988, Hung and Pavlostathis, 1997, du Plessis et al., 2001, Staib 

and Lant, 2007).  Thiocyanates are employed as a growth substrate by the activated 

sludge and whilst it is known that phenol does not affect this process, the presence of 

cyanides within the effluent have been shown to significantly inhibit thiocyanate 

degradation (Staib and Lant, 2007).  Furthermore the degradation of thiocyanates 

within activated sludge communities has been reported to be much slower than that of 

phenol and cyanide (Staib and Lant, 2007).  Thus it is likely that the changes in this 

peak of the FT-IR spectra for the control samples may be due to the degradation of 

thiocyanates by the activated sludge during the incubation period.   
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Figure 4.3:  PC-CVA scores (a.) and loadings (b.) plots for FT-IR spectra of activated sludge 
samples supplemented with phenol, toluene, Atenolol and Propranolol for 0, 4, 8, 15, 24 and 48 
h at 25 °C.  Samples supplemented with phenol, toluene, Atenolol and Propranolol are labelled 
“S”, “T”, “A” and “P” respectively.  Control samples are represented by “C”.  PCs 1-8 were 
employed by the CVA algorithm with the a priori knowledge of the biological replicates and 
accounts for 98.9% explained variance.  In the scores plot points shown in black represent the 2 
biological replicates used to train the PC-CVA models.  Points shown in grey represent the third 
biological replicate which was used to validate the PC-CVA model.  Black circles represent the 
95% confidence interval about the group centroid, and grey circles the 95% confidence region 
about the group sample population.  For the loadings biplot (b.), contiguous spectral regions 
falling beyond 2 standard deviations from the mean are encoded by colours and symbols 
detailed in the legend. 
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The greatest variance observed in the PC-CVA of all of the experimental conditions 

was between the samples with / without supplementary phenol.  Therefore, the data for 

each of the experimental conditions was analysed individually with the control samples 

in order to investigate any more subtle phenotypic changes in these communities when 

exposed to the chosen compounds.  As described above, a subset of samples was 

selected for analysis in order to allow visualisation of the strongest trends within the 

dataset.  The full datasets were also analysed (data not shown) to ensure that the 

trends observed in the selected samples represent the trends observed in the entire 

dataset.  Figure 4.4a and Figure 4.4b show the PC-CVA scores and loadings plots for 

the activated sludge samples at 0, 24 and 48 h following the addition of phenol, and the 

control samples.  As observed in the analysis of the whole dataset (Figure 4.3a) the 

samples for the 0 h time point clustered together and those supplemented with phenol 

at 24 and 48 h show a distinct separation from the control samples across PC-CV 1.  

The PC-CVA loadings plot (Figure 4.4b) demonstrates that this separation was due to 

changes in the FT-IR spectra at wavenumbers 1755 – 1718 cm-1 which is most 

commonly associated with the C=O stretching vibrations of esters, aldehydes or 

ketones.  In addition the separation across PC-CV 1 was also shown to be due to 

changes at wavenumbers 1199 – 1178 cm-1, most often associated with the C-N 

stretching vibrations of amines and the C-O stretching vibrations of alcohols, ethers 

and esters.  Some separation of the 24 and 48 h phenol supplemented samples is 

observed across PC-CV 1, however, the 95% confidence regions overlap and therefore 

the separation is not considered significant for this analysis.  The control communities 

display separation across PC-CV 2 according to the time of sampling.  Inspection of the 

PC-CVA loadings plot for this analysis indicated that this separation was due to 

variation at wavenumbers 2123 – 2047 cm-1 corresponding with the analysis carried out 

on the whole dataset (Figure 4.3b).  The observed separation of the control samples 

according to the time of sampling indicates a phenotypic change within the activated 

sludge community during the incubation period. 

 

The PC-CVA scores and loadings plots for activated sludge samples for 48 h with and 

without the addition of toluene are shown in Figure 4.4c and Figure 4.4d respectively.  

As described above, the 0 h samples displayed no separation in this analysis, whilst a 

clear separation between the 24 and 48 h time points from the 0 h samples was 

observed across PC-CV 1.  However, no notable difference was observed between the 

control and toluene supplemented samples indicating that there was no phenotypic 

difference in the toluene supplemented and non-supplemented sludge samples, 
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despite toluene’s somewhat close structural similarity to phenol.  The loadings plot for 

this analysis demonstrates that the separation of samples across PC-CV 1 was due to 

changes at wavenumbers 2121 – 2084 cm-1, 1036 – 1018 cm-1 and 1651 – 1618 cm-1 

which are associated with the S=C=N from thiocyanates, the C-O stretching vibrations 

of alcohols and the C=C stretch of aromatic rings respectively.  The presence of 

aromatic rings within the activated sludge samples was not unexpected as the 

chemical structures of phenol (residual levels of phenol in the activated sludge 

samples) and toluene both contain an aromatic ring (Figure 4.5).  Unfortunately, due to 

the high levels of background noise from the supernatant it was not possible to use 

HPLC to quantify levels of toluene remaining in the medium following the incubation 

period.  However, the phenotypic response appears dramatically different in samples 

actively degrading phenol and that of the activated sludge community supplemented 

with toluene appears to mimic the control communities suggesting that it did not exert a 

great phenotypic response in the activated sludge community.  This was rather 

surprising as toluene is very similar in structure to phenol (Figure 4.5).  In addition it is 

known that a number of microorganisms are capable of degrading both toluene and 

phenol, however; there have been no reports on the ability of the activated sludge used 

in this investigation to degrade toluene (Kahng et al., 2001, Kukor and Olsen, 1990, 

Nelson et al., 1987).  The first step in the degradation pathways for both of these 

compounds is a monooxygenase and it has been shown that the monooxygenase 

employed in the degradation of toluene has close homology with that of the phenol 

degradation pathway (Shingler et al., 1992, Yen et al., 1991, Nordlund et al., 1990).  A 

number of the same enzymes are employed for the degradation of both of these 

compounds in P. putida F1 (Reardon et al., 2000, Spain et al., 1989).  Furthermore, 

Rogers and Reardon demonstrated the simultaneous degradation of toluene and 

phenol showing that the same pathway was utilised in the degradation of both of the 

compounds in Burkholderia sp. (Rogers and Reardon, 2000).  The activated sludge 

was exposed to a relatively low concentration of toluene (1mM) in comparison with the 

concentration of phenol (5mM) to which it was exposed.  It is therefore possible that 

some degradation of toluene did occur within the activated sludge community that may 

have not been detectable with FT-IR spectroscopy due to the low levels of toluene with 

which is was exposed.  However, it is not possible to investigate this further without the 

relevant toluene quantification data. 
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Figure 4.4:  PC-CVA scores (LHS) and loadings (RHS) plots for FT-IR spectra of activated 
sludge samples supplemented with phenol (a and b) and toluene (c and d) for 0, 24 and 48 h at 
25 °C.  Samples supplemented with phenol and toluene are labelled “S” and “T” respectively.  
Control samples are represented by “C”.  PCs 1-5 were employed by the CVA algorithm with the 
a priori knowledge of the biological replicates and account for 97.7% and 98% explained 
variance respectively.  In the scores plots points shown in black represent the 2 biological 
replicates used to train the PC-CVA models.  Points shown in grey represent the third biological 
replicate which was used to validate the PC-CVA model.  Black circles represent the 95% 
confidence interval about the group centroid, and grey circles the 95% confidence region about 
the group sample population.  For the loadings biplots (RHS), contiguous spectral regions falling 
beyond 2 standard deviations from the mean are encoded by colours and symbols detailed in 
the legend. 
 

 

 

Phenol ToluenePhenol Toluene  
Figure 4.5:  The chemical structures of the aromatic hydrocarbons phenol and toluene. 
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PC-CVA was also carried out on the FT-IR spectra of activated sludge samples 

incubated in the presence of the APIs Atenolol and Propranolol.  Figure 4.6 shows the 

PC-CVA scores and loadings plots for this analysis.  As noted for the toluene 

‘supplementation’ no notable difference was observed in samples supplemented with 

Atenolol from the control samples (Figure 4.6a).  As described above, the samples 

separate across PC-CV 1 according to the time point in the incubation period.  

However, the samples supplemented with Atenolol co-cluster with the control samples, 

indicating that the API did not exert a phenotypic effect on the activated sludge 

community.  In addition, Propranolol did not appear to exert an effect on the phenotypic 

fingerprint of the activated sludge community (Figure 4.6c).  A separation of the 0 h 

samples from the 24 and 48 h samples was observed across PC-CV 1, but there was 

no observable separation between the control and API supplemented samples for both 

Atenolol and Propranolol.  The PC-CVA loadings for these analyses (Figure 4.6b and 

Figure 4.6d) show similarities in the wavenumbers responsible for the separation 

observed in both of the PC-CVA scores plots.  For example the majority of the 

separation observed across PC-CV 1 for samples supplemented with Atenolol was due 

to wavenumbers 2115 – 2080 cm-1.  The differences observed between control 

samples and those supplemented with Propranolol is due to changes in the FT-IR 

spectra at wavenumbers 2124 – 2078 cm-1 and as described above, this falls within the 

region which is associated with the S=C=N vibrations from thiocyanates (Peoples et al., 

1987).  Again it was not possible to quantify the concentration of Atenolol and 

Propranolol remaining in the supernatant following the 48 h time course.  This was due 

to the complex nature of the samples which masked the presence of the APIs in the 

HPLC analysis.  However, since the activated sludge samples supplemented with 

Atenolol or Propranolol did not display any phenotypic variation from the control 

samples in the analysis of the FT-IR data it was unlikely that any degradation of the 

APIs occurred.   
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Figure 4.6:  PC-CVA scores (LHS) and loadings (RHS) plots for FT-IR spectra of activated 
sludge samples supplemented with Atenolol (a and b) and Propranolol (c and d) for 0, 24 and 
48 h at 25 °C.  Samples supplemented with Atenolol and Propranolol are labelled “A” and “P” 
respectively.  Control samples are represented by “C”.  PCs 1-5 were employed by the CVA 
algorithm with the a priori knowledge of the biological replicates and account for 97.5% and 
98.4% explained variance respectively.  In the scores plots points shown in black represent the 
2 biological replicates used to train the PC-CVA models.  Points shown in grey represent the 
third biological replicate which was used to validate the PC-CVA model.  Black circles represent 
the 95% confidence interval about the group centroid, and grey circles the 95% confidence 
region about the group sample population.  For the loadings biplots (RHS), contiguous spectral 
regions falling beyond 2 standard deviations from the mean are encoded by colours and 
symbols detailed in the legend. 
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4.5 Conclusions 

In this investigation activated sludge was acquired from an industrial bioreactor capable 

of degrading phenol.  The sludge was incubated in the laboratory and monitored for the 

phenotypic effects exerted on the sludge by a range of environmental pollutants over a 

48 h period.  Multiple samples were taken across the time course and analysed by FT-

IR spectroscopy.  FT-IR was employed as a whole organism fingerprinting approach to 

monitor biochemical changes in the bacterial cells during exposure to the chosen 

compounds.  We also investigated the ability of the activated sludge to degrade these 

compounds during the time course.  The phenol quantification data obtained from 

samples supplemented with 5 mM phenol showed that the activated sludge community 

was capable of degrading 5 mM phenol in 36 h, and it was evident from the FT-IR data 

that a metabolic effect was exerted on the microbial cells.  However, no notable 

phenotypic effect was observed in the microbial community when exposed to toluene, 

Atenolol or Propranolol and this was likely to be because this complex microbial 

community had been selected to degrade phenol rather than its close analogue toluene 

or the two structurally diverse APIs.   

 

Phenotypic differences were observed in the control cells during the time course and 

we hypothesise that this effect may be attributed to the presence of thiocyanates.  

However, further investigation is required to confirm these observations.  In conclusion, 

high-throughput metabolic fingerprinting with FT-IR spectroscopy has been used to 

monitor phenotypic shifts within complex microbial communities when exposed to a 

range of environmental pollutants.  This investigation demonstrates that FT-IR 

spectroscopy when combined with chemometric analysis is a very useful high-

throughput screening approach for assessing the metabolic capability of complex 

microbial communities.  
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5.1 Abstract 

The coking process produces great volumes of wastewater contaminated with 

pollutants such as cyanides, sulphides and phenolics.  Chemical and physical 

remediation of this wastewater removes the majority of these pollutants; however, 

these processes do not remove phenol and thiocyanate.  The removal of these 

compounds has been effected during bioremediation with activated sludge containing a 

complex microbial community.  In this investigation we acquired activated sludge from 

an industrial bioreactor capable of degrading phenol.  The sludge was incubated in our 

laboratory and monitored for its ability to degrade phenol over a 48 h period.  Multiple 

samples were taken across the time course and analysed by Fourier transform infrared 

(FT-IR) spectroscopy.  FT-IR spectroscopy was employed as a whole organism 

fingerprinting approach to monitor biochemical changes in the bacterial cells during the 

degradation of phenol.  We also investigated the ability of the activated sludge to 

degrade phenol following extended periods (2-131 days) of storage in the absence of 

phenol.  A reduction was observed in the ability of the microbial community to degrade 

phenol and this was accompanied by a detectable biochemical change in the FT-IR 

fingerprint related to cellular phenotype of the microbial community.  In the absence of 

phenol a decrease in thiocyanate vibrations was observed, reflecting the ability of these 

communities to degrade this substrate.  Actively degrading communities showed an 

additional new band in their FT-IR spectra that could be attributed to phenol 

degradation products from the ortho- and meta-cleavage of the aromatic ring. We 

believe that FT-IR spectroscopy when combined with chemometric analysis is a very 

useful high-throughput screening approach for assessing the metabolic capability of 

complex microbial communities.  
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5.2 Introduction 

Phenolic compounds are ubiquitous in the environment due to their release from both 

industrial and natural processes.  The accumulation of phenolic compounds comprises 

an environmental hazard, and the removal of these pollutants is required prior to the 

release of wastewater from such industrial processes (Environment Agency, 1995, 

Whiteley and Bailey, 2000).  The coking process produces great volumes 

(approximately 1,800 L min-1) of wastewater contaminated with pollutants such as 

cyanides, sulphides, thiocyanates and phenolics (Patterson, 1985, Manefield et al., 

2002, Neufeld and Valiknac, 1979, Philp et al., 2003, Vázquez et al., 2006).  Chemical 

and physical remediation of this wastewater removes the majority of these pollutants 

(Vázquez et al., 2007, Ahmaruzzaman and Sharma, 2005, Minhalma and de Pinho, 

2002, Minhalma and de Pinho, 2004, Qian et al., 1994, Vázquez et al., 2006).  

However, these processes do not remove phenol and thiocyanate, and the removal of 

these compounds takes place during bioremediation with activated sludge (Manefield 

et al., 2005).  

 

The use of microorganisms in the bioremediation of phenols produced during industrial 

processes is widespread (Sutton et al., 1999, Tisler et al., 1999).  However, until the 

development of RNA stable isotope probing (RNA-SIP), the composition of the 

microbial communities specifically degrading phenolics within activated sludge was 

largely speculative and based upon the presence of phenolic degradation pathways 

within isolates cultured axenically from the system under study (Whiteley and Bailey, 

2000).  In order to target the key degraders directly, Manefield et al. (2002) applied 

RNA-SIP on the activated sludge utilised in this investigation, to identify the dominant 

members of this community responsible for the degradation of phenol.  Bacterial 

genera found to dominate the acquisition of carbon from phenol, through cellular 

isotopic labelling after 13C labelled phenol degradation, included members of the β-

Proteobacteria, including the Thauera and Acidovorax genera, and the α-

proteobacterial Rhodopseudomonas genus.  All of the phenol degrading 

microorganisms highlighted by this study have previously been isolated when aromatic 

compounds such as phenol, benzoate, or toluene were used as the sole source of 

carbon (Tschech and Fuchs, 1987, Harwood and Gibson, 1988).  However, whilst 

members of the Thiobacillus and Acidobacterium genera were also found to be 

dominant within this activated sludge community, these species do not assimilate 

carbon from phenol (Manefield et al., 2002). 
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Whilst there has been considerable interest in characterising the members of the 

complex microbial community involved in biodegradation, little attention has been 

directed towards the metabolic pathways utilised in the degradation of phenol.  In this 

investigation we have employed Fourier transform infrared (FT-IR) spectroscopy as a 

phenotypic typing technique which has previously been used to generate informative 

metabolic fingerprints from biological material (Johnson et al., 2004, Winder et al., 

2006).  Previous studies have also proved its applicability to biological systems by 

successfully demonstrating the discrimination of bacteria to sub-species level (Winder 

et al., 2006, Timmins et al., 1998, Naumann et al., 1991a) but only when combined with 

chemometrics (Goodacre et al., 1998).  In addition, the combination of FT-IR and 

trajectory analysis has proved successful in the identification of metabolic changes in 

natural multi-organism fermentations (Johnson et al., 2004).  FT-IR spectroscopy is 

particularly useful in gaining insight into complex biological problems as an initial 

screening method because it is high-throughput with analysis times of 10-60s per 

sample, requires minimal sample preparation, is automated and relatively inexpensive.  

 

In this study three objectives were investigated to provide insight into the process of 

phenol degradation by an activated sludge community previously developed for the 

degradation of phenol in coking effluent.  In the first instance, biochemical changes in 

the activated sludge community were monitored during the degradation of phenol over 

a 48 h period through the use of FT-IR spectroscopy.  In addition we determined the 

effect of storing the activated sludge for extended periods of time, (without added 

phenol) to understand the ability of this microbial community to degrade phenol and 

investigated the phenotypic changes by FT-IR analysis.  In addition, GC-MS was 

employed for metabolite profiling of the activated sludge community in order to monitor 

the changes in the meta-metabolome during the active degradation of phenol. 
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5.3 Materials and methods 

5.3.1 Sample Information 

The overall workflow for this series of experiments is detailed in Figure 5.1.  Activated 

sludge was obtained from a bioremediation system at an industrial steelworks where it 

was employed in the degradation of phenol in coking effluent (Manefield et al., 2005, 

Manefield et al., 2002, Whiteley and Bailey, 2000).  As described above, coking 

effluents also typically contain pollutants such as sulphides, cyanides and thiocyanates.  

The activated sludge was collected and transported immediately back to the laboratory 

(Manchester University) at room temperature where it was stored at 4°C until further 

use.  Activated sludge was stored for 2, 9, 16 and 131 days prior to any 

supplementation with phenol.  This ageing of the samples was carried out in order to 

assess the phenol degrading capabilities of the activated sludge following extended 

storage periods, during which no additional phenol was added to the samples. 

 

5.3.2 Laboratory Microcosms 

Prior to the addition of phenol the activated sludge samples (150 mL) were incubated 

aerobically for 2 h at 25 °C at 150 r.p.m. in a Multitron (INFORS HT, Switzerland) 

orbital shaker.  Triplicate samples (so called biological replicates) were supplemented 

with 5 mM phenol as the sole carbon source.  Additional triplicate control samples were 

incubated without added phenol, and were used to monitor the activity of the activated 

sludge during incubation under laboratory conditions.  All of the activated sludge 

samples were maintained aerobically at 25 °C with 150 r.p.m. shaking throughout the 

incubation and sampling periods (Manefield et al., 2002).  Hourly samples were taken 

over a 10 h period (including t = 0 h and t = 15 min) and subsequently at 15, 20, 24, 36 

and 48 h for the quantification of phenol and analysis with FT-IR spectroscopy.  For FT-

IR spectroscopy a 1 mL aliquot was centrifuged for 6 min at 16089 g, the supernatant 

was removed and the cell pellets were stored at -80 °C until required.  Cell pellets were 

stored so that all of the activated sludge samples may be analysed by FT-IR 

spectroscopy at the same time, in order to reduce any minor instrument variation within 

the dataset.   
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Figure 5.1:  Experimental workflow showing the different steps between collection of the 
activated sludge samples, incubation with phenol and phenol quantification and FT-IR 
spectroscopy. 
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5.3.3 Assay for Phenol Quantification 

The phenol concentration at each sampling point was determined by the Emerson 

reaction; a colorimetric assay in which a red coloured antipyrine dye (AAPPC) is 

produced through the condensation of 4-aminoantipyrine with phenol in the presence of 

alkaline oxidising agents (King et al., 1991).  The assay has a greater sensitivity than 

other colorimetric assays of phenol (Svobodová and Gasparič, 1971) and is most 

sensitive in the range of 0.002 – 0.02 mM.  The colour develops within 2 min, and 

changes with time, but it does not significantly change within 1 h (Martin, 1949, 

Gasparic et al., 1974, Svobodová and Gasparič, 1971).  The reagents and phenol 

standards were prepared just prior to their use. 

 

Sample supernatants generated by centrifugation as detailed above (1 mL) were 

filtered (0.22 µm, MilliporeTM) and treated with 25 µL of 0.5 M NH4OH and adjusted to 

pH 7.9 with 22.5 µL of phosphate buffer (0.5 M KH2PO4, 0.6 M K2HPO4).  Samples 

were treated with 10 µL of 100 mM 4-aminoantipyrine and 10 µL of 250 mM potassium 

ferricyanide.  The samples were allowed to react for 5 min, and the reaction products 

were determined in triplicate against a blank (4-aminoantipyrine, buffer, and the 

oxidising agent was mixed with sterile H2O) for each replicate with a BioMate™ 5 

(Thermo Electron Corporation) spectrophotometer at 500 nm.  Phenol concentrations 

were calculated from standard curves prepared in parallel.  The samples were diluted 

with sterile deionised water when not in the sensitive range of the assay (i.e. 0.002 – 

0.02 mM).   

 

5.3.4 Analysis of microbial cells by FT-IR spectroscopy 

Fingerprint analysis using FT-IR spectroscopy (Maquelin et al., 2002) was performed 

on all of the activated sludge samples, taken from each of the four time delayed 

experiments at the same time in order to reduce any minor instrument variation within 

the dataset.  FT-IR spectroscopy is a whole organism fingerprint analysis approach and 

analyses the total complement of the (bio)chemical components from bacterial cells 

(Goodacre et al., 1998, Magee, 1993); this includes lipids, sugars, nucleic acids as well 

as proteins (Helm and Naumann, 1995).  A 96-well zinc selenide plate was rinsed with 

2-propanol and deionised water and allowed to dry at room temperature (Winder et al., 

2006).  The dry cell pellets stored at -80 °C were allowed to thaw at room temperature 

and washed in order to remove any traces of phenol.  Ice cold sterile water (2 mL) was 
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added to each sample and vortexed.  The samples were centrifuged for 10 mins (0 °C, 

16089 g), and the supernatant was discarded.  This cycle was repeated 3 times.  A 

final aliquot of 100 µL sterile water was added to each sample and the solution was 

vortexed.  Aliquots (20 µL) of each resuspended sample were applied to the ZnSe 

plate and oven dried at 50 °C for 10 min.  Drying was used to avoid absorption of water 

in the mid-IR region which may mask biologically important chemical information in the 

spectra.  Three analytical replicates of each of the samples were randomly applied to 

the ZnSe plates and triplicate spectra were obtained from different positions within 

each well, a total of nine spectra (so called analytical replicates) were collected per 

biological sample.  For subsequent multivariate models one biological sample (i.e. 

biological replicate) is represented by nine FT-IR spectra.  The plate was loaded onto a 

motorised microplate module HTS-XT under the control of a computer programme with 

OPUS software version 4 (Winder et al., 2006).  Spectra were collected using an 

Equinox 55 FT-IR spectrometer (Bruker Optics Ltd), in transmission mode using the 

deuterated triglycine sulphate (DTGS) detector over the wavelength range of 4000-600 

cm-1 and with a resolution of 4 cm-1.  In order to improve the signal to noise ratio, 64 

spectra were co-added and averaged.  The spectra are displayed in terms of 

absorbance. 

 

5.3.5 Metabolite profiling with GC-MS 

In order to quench metabolism, activated sludge samples (2 mL) were plunged rapidly 

into an equal volume of 60% aqueous methanol solution (−48 °C).  The quenched 

biomass was centrifuged for 10 min (3,000 g, −9 °C) and the supernatant was 

removed.  The biomass pellets were stored at −80 °C for further analysis (Winder et al., 

2008).  

 

For metabolite extraction, the biomass pellets were suspended in 550 µL of 80% 

aqueous methanol solution (−48 °C), frozen in liquid nitrogen, and allowed to thaw on 

dry ice.  The freeze thaw cycle was carried out three times in order to permeabilise the 

cells and allow leakage of the metabolites into the supernatant.  The suspensions were 

centrifuged for 7 min (16,060g, −9 °C) and the supernatant was retained and stored on 

dry ice.  An additional aliquot (550 µL) of 80% aqueous methanol solution was added 

to the biomass pellet and the procedure was repeated.  The second aliquot of the 

supernatant was combined with the first and the sample was stored on dry ice for 

further analysis (Winder et al., 2008).  In order to prepare the metabolite extracts for 
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GC-MS analysis, aliquots (1 mL) of each extract was spiked with 100 µL of internal 

standard solution (0.19 mg mL-1 succinic-d4 acid, 0.27 mg mL-1 malonic-d2 acid, 0.22 

mg mL-1 glycine-d5 in HPLC-grade water) and lyophilised (HETO VR MAXI vacuum 

centrifuge attached to a HETO CT/DW 60E cooling trap; Thermo Life Sciences, 

Basingstoke, U.K.) (Winder et al., 2008).   

 

Samples were subsequently derivatised in two stages.  An aliquot (40 µL) 20 mg mL-1 

O-methylhydroxylamine solution in pyridine was added and heated at 40 °C for 80 min 

followed by addition of 40 µL of MSTFA (N-acetyl-N-(trimethylsilyl)-trifluoroacetamide) 

and heating at 40 °C for 80 min.  A retention index solution was added for 

chromatographic alignment (20 µL, 0.6 mg mL-1 C10/C12/C15/C19/C22 n-alkanes).  

 

The gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) method used 

to analyse the metabolites is suitable for detection and semi-quantification of a wide 

range of metabolite classes as detailed in available mass spectral / retention index 

libraries (Kopka et al., 2005) or genome-scale reconstructions of metabolic networks 

(Feist et al., 2007)  Samples were analysed in a random order employing GC-TOF-MS 

(Agilent 6890 GC coupled to a LECO Pegasus III TOF mass spectrometer) and using 

the optimal settings determined previously for yeast analysis (O'Hagan et al., 2004).  

The raw data were processed using LECO ChromaTof v2.12 and its associated 

chromatographic deconvolution algorithm, with the baseline set at 1.0, data point 

averaging of 3, and average peak width of 2.5.  A reference database was prepared 

which incorporated the mass spectrum and retention index of all metabolite peaks 

detected in a random selection of samples in order to allow the detection of all 

metabolites present.  Each metabolite peak in the reference database was searched 

for in each sample, and if matched, the peak area was reported and the response ratio 

relative to the internal standard was calculated (Winder et al., 2008).   

 

5.3.6 Data analysis 

The IR data were imported into Matlab version 7.1 (The MathWorks, Inc., Natick, MA, 

USA) and as an initial step CO2 vibrations arising from the atmosphere (2403 – 2272 

cm-1 and 683 – 656 cm-1) were removed and filled with a linear trend using a protocol 

we have developed previously (Alsberg et al., 1998).  The spectra were then corrected 

using extended multiplicative scatter correction (EMSC) which normalises and 

smoothes the spectra by application of a polynomial smoothing function (Martens et al., 
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2003).  EMSC was employed as a baseline correction technique and was carried out 

on the entire dataset such that unavoidable baseline variations were removed; visible 

inspection of this processing step was used to check for the inclusion of any artefacts 

and these were not seen.  Other potential pre-processing methods were assessed 

empirically and we found EMSC to correct for the non-linear background most 

effectively, when compared against basic scaling and normalisation functions.  The 

pre-processed spectra were used for subsequent multivariate analyses. 

 

Principal components analysis (PCA; (Jolliffe, 1986)) is an unsupervised multivariate 

projection method employed as a data reduction strategy in which principal 

components (PCs) are derived that explain the majority of the variance within a 

complex dataset.  The aim of the data compression is to obtain a set of novel PCs 

which describe as much of the variance in the original dataset as possible.  This 

transformation was performed prior to canonical variates analysis (CVA).  CVA is a 

supervised learning method that seeks to minimise within-group variance whilst 

maximising between-group variance, and can be used in conjunction with PCA to 

discriminate between groups on the basis of retained principal components (PCs), 

given a priori knowledge of group membership of the spectral replicates (Manly, 1994, 

Winder et al., 2004).  In these analyses, a priori knowledge of class structure of the 

biological replicates was employed to achieve the supervision of the algorithm (Windig 

et al., 1983, MacFie et al., 1978, Goodacre et al., 1998).  In order to make sure these 

PC-CVA score plots were not over- or under-trained, the models were trained 

(constructed) with two of the biological replicates and cross-validated using the third 

biological replicate as detailed in (Jarvis and Goodacre, 2004a). 
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5.4 Results and discussion 

Phenol quantification data (Figure 5.2) indicated that the fresh activated sludge was 

capable of degrading 5 mM phenol within 48 h.  When aged for 2 d, a notable 

degradation of phenol by the microbial community was observed within 2 h, and 

complete degradation of 5 mM phenol was achieved within 36 h.  By contrast, the 

microbial community aged for 9 d did not exhibit a noticeable degradation of phenol 

until after an 8 h lag period and complete degradation occurred within 48 h.  In 

contrast, activated sludge samples which were aged for 16 and 131 d were not able to 

degrade 5 mM phenol within the 48 h period, indicating a gradual loss in the ability of 

the activated sludge community to degrade phenol effectively during the ageing 

process; a finding which has not previously been noted.   

 

Typical FT-IR spectra of the activated sludge samples incubated with / without 5 mM 

phenol as the sole carbon source are shown in Figure 5.3.  FT-IR spectroscopy results 

in the production of a composite spectrum that is representative of a wide range of 

endogenous and exogenous metabolites.  The resultant spectrum is therefore highly 

complex and not open to direct interpretation of individual compounds of interest (See 

section 1.4.1, page 33).  On initial inspection of the spectra a dominant peak is 

observed in both spectra at wavenumbers 2124.6 - 2082.2 cm-1, this is not observed in 

the FT-IR spectra of bacterial samples (e.g., see Winder et al., 2006), and there are 

very few functional groups that vibrate in this area of the infrared spectrum.  The most 

common are S-O from sulphates, C≡N from unsaturated N compounds, C-C stretching 

vibrations of alkynes and S=C=N from thiocyanates (Degen, 1997, Peoples et al., 

1987).  It is known however, that phenol and thiocyanates are the two primary 

pollutants in coking effluent (Neufeld and Valiknac, 1979, Patterson, 1985, Vázquez et 

al., 2006, Jeong and Chung, 2006, Prater and Fisher, 1991, Manefield et al., 2005) and 

furthermore the effluent from the industrial plant in which our samples originate is 

known to contain thiocyanates at concentrations as high as 2.4 mM (Manefield et al., 

2005).  It is therefore likely that this peak is attributable to the presence of thiocyanates 

within the activated sludge samples.  In order to confirm this we obtained the FT-IR 

spectrum from potassium thiocyanate (see Figure 5.4) and the 2050 cm-1 vibration from 

S=C=N is clearly observed.  The remaining spectral regions typify the patterns 

commonly associated with the FT-IR spectra of bacteria, and the major spectral bands 

of biological interest are highlighted in Table 5.1 (Winder et al., 2004, Winder et al., 

2006, Zhao et al., 2006, Naumann et al., 1991a). 
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Figure 5.2:  Phenol quantification data (black symbols and lines) with the ratio of COOH and 
thiocyanate peak areas (1754.5 - 1710.2 cm-1 / 2124.6 - 2082.2 cm-1) shown in green.  Data for 
all ageing experiments are shown (2, 9, 16 and 131 days; a, b, c and d respectively). Samples 
supplemented with 5 mM phenol are depicted on the left hand side and samples incubated in 
the absence of phenol (control) are on the right hand side. 
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Figure 5.3:  Typical FT-IR spectra of activated sludge samples incubated (a) without phenol 
and (b) in the presence of 5 mM phenol, both maintained at 25 °C for 48 h.  Grey spectra 
indicate samples taken after 15 min of incubation and black offset spectra incubated for 48 h.  
The major spectral regions of biological interest are highlighted for both plots (See Table 5.1 for 
details).  The arrow highlights shoulder due to carbonyl vibration from COOH. 
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Table 5.1:  Major spectral regions of biological interest. 
 Wavenumber (cm

-1
) range Dominant Compounds 

A 3000-2800 CHx stretches from Fatty acids 
   
B 2130-2085 S-O  

C≡N from unsaturated N compounds 
C=N=S from isothiocyanates 

   
C 1700-1500  

   (1700-1600) 
   (1600-1500)   

Proteins 
   C=O from Amide I 
   C-N and C-N-H from Amide II 

   
D 1450-1200 

 
   (1250-1200) 

Carboxylic groups of proteins, free amino acids, 
polysaccharides 
   P-O from RNA/DNA, phospholipids 

   
E 1200-900 C-O or O-H from Polysaccharides 
   
F <900 Unassigned 
 

 

 

5001000150020002500300035004000

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Wavenumber (cm-1)

A
bs

or
ba

nc
e 

(a
rb

itr
ar

y)

*

 
Figure 5.4:  FT-IR absorbance spectrum of potassium thiocyanate.  An asterisk is used to 
highlight the main vibration feature at 2050 cm-1 which arises from S=C=N. 
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Due to the large dimensionality and qualitative similarity observed in these spectra, 

multivariate analysis (MVA) methods were employed to interrogate the data, as 

described above.  The full dataset comprised 1836 spectra (4 experiments x 17 time 

points x 3 biological replicates x 9 analytical replicates) and PC-CVA on this whilst 

possible would be very difficult to visualise.  Therefore to allow a general visualisation 

of the phenotypic changes between the control and phenol supplemented samples 

across the total experimental time course, the analytical replicates from each sample 

condition were averaged (so that the 3 biological replicates for every time point within 

the ageing conditions each represented 9 FT-IR spectra) prior to PC-CVA.  The PC-

CVA scores plot (Figure 5.5) was constructed using the first 9 PCs (which accounts for 

99.95 % of the total explained variance) with the a priori knowledge of the biological 

replicates (i.e., 68 (4 ageing experiments x 17 time points) groups).  In Figure 5.5 the 

arrows indicate the general trends observed within the FT-IR spectra with respect to 

time; both in terms of storage time and experimental sampling time supplemented (or 

not) with phenol.  It can be observed that all of the samples exhibit a strong trend with 

relation to the time of sampling across the first canonical variate (PC-CV 1).  It can also 

be observed that the two experimental conditions cluster together to left of the origin 

which corresponds to samples either not being exposed to phenol or being exposed 

but not yet degrading phenol.  By contrast, samples to the right of the origin bifurcate in 

PC-CV 2; those that continue on a horizontal trajectory are samples not supplemented 

with phenol, and those that increase in PC-CV 2 are now metabolically active with 

respect to phenol and are able to degrade it.  This separation suggests that there is a 

strong phenotypic difference between the samples supplemented with 5 mM phenol as 

the sole carbon source and those maintained without the addition of phenol.  Moreover, 

this PC-CVA scores plot indicates when the bacteria become metabolically active and 

able to degrade phenol.  This activity appeared different and reflected the various 

storage conditions. 
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Figure 5.5:  PC-CVA scores plot performed on averaged FT-IR data (from the 3 biological 
replicates at each of the 17 time points) from all of the “time-delay” experiments (2, 9, 16 and 
131 days).  PCs 1-9 were employed by the CVA algorithm with the a priori knowledge of the 
biological replicates (64 classes; 3 experiments (biological replicates) x 17 time points).  The 
black triangles represent the samples incubated in the presence of 5 mM phenol and the green 
circles represent the samples incubated in the absence of phenol.  The arrows illustrate a 
general trend with respect to time (including storage and time during incubation) and hold no 
statistical significance.  (Note that unfortunately the 48 h time point for the 16 day storage 
sample was lost during storage). 
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Since a strong phenotypic difference was observed in the PC-CVA for the entire 

dataset, further PC-CVA was carried out for each of the time-separated investigations 

(Figure 5.6).  This strategy was used in order to observe the effects of extended 

storage periods or “ageing” in the absence of phenol on this activated sludge, which 

may affect the metabolic potential of the community.  

 

The analysis of the spectral data obtained from the investigation carried out on 

activated sludge samples aged for 2 d shows a strong trend with respect to time across 

PC-CV 1 (Figure 5.6a).  Both the control samples and those supplemented with 5 mM 

phenol as the sole carbon source cluster together until 15 h, after which point the 

samples supplemented with phenol separate from the control samples across PC-CV 

2.  The trends observed here are also observed in the PC-CVA of the samples aged for 

9 d (Figure 5.6b).  The separation of the samples after 15 h suggests that the activated 

sludge communities phenotype changes significantly during the degradation of phenol.  

Moreover, these data support the general trends observed in the PC-CVA scores plots 

for the complete FT-IR dataset (Figure 5.5).  
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Figure 5.6:  PC-CVA scores (left hand side) and loadings plots (right hand side) performed on 
FT-IR data from each of the “time-delay” experiments individually (2-131 days; (a) – (d) 
respectively).  PCs 1-7 were employed by the CVA algorithm with the a priori knowledge of the 
biological replicates (17 classes for each experiment, representing the 17 time points).  In the 
scores plots (LHS) the time at which each sample was taken following the addition of phenol is 
represented by a grey-scale in which the intensity decreases as the time of sampling increases.  
The arrows illustrate the trend with respect to time and hold no statistical significance.  For the 
loadings biplots (RHS), contiguous spectral regions falling beyond 2 standard deviations from 
the mean are encoded by colours and symbols detailed in the legend. 
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Visual inspection of the PC-CVA loadings plots for these analyses (Figure 5.6a and 

Figure 5.6b, RHS) provides information relating to which spectral features are 

important for this separation.  In this plot a boundary of 2 standard deviations from the 

loadings centroid was used to give a non-statistical approximation of a 95% confidence 

interval (this aid to visualisation highlights bands which are changing the most).  The 

PC-CVA loadings plot for the activated sludge samples aged for 2 d (Figure 5.6a) 

shows that the separation of the samples supplemented with phenol at 15 h is due to a 

new peak occurring at 1754.5 - 1710.2 cm-1 in the samples supplemented with phenol 

(highlighted in Figure 5.3 by an arrow), and a concomitant increase in the thiocyanate 

peak (2124.6 - 2082.2 cm-1) in the control samples.  In order to highlight this further we 

generated an FT-IR difference spectrum by subtracting the (average control spectrum 

at time=48) from (average phenol spectrum at time=48), and this also highlighted the 

band at 1754.5 - 1710.2 cm-1 as being important (see Figure 5.7).  Note that vibrations 

from phenol itself did not appear to be of importance upon inspection of the PC-CVA 

loadings.  Closer inspection of the FT-IR spectra for the control samples showed that 

the thiocyanate peak broadens over time, accounting for the observed increase in the 

peak area during the incubation period.  The PC-CVA loadings plot for the activated 

sludge aged for 9 d (Figure 5.6b) shows a very similar effect as described above.  The 

fact that those activated sludge samples supplemented with 5 mM phenol are clearly 

separated across PC-CV 2 in both the PC-CVA scores plots (Figure 5.6a and Figure 

5.6b) when these activated sludge communities are actively degrading phenol (Figure 

5.2a and Figure 5.2b) supports the hypothesis that a strong phenotypic change is 

observed in the FT-IR spectra of the whole bacteria (i.e. the total biological 

components of the bacterial cells), and FT-IR spectroscopy has been used to follow 

metabolic events in complex microbial communities (Huang et al., 2005, Huang et al., 

2006).   
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Figure 5.7:  FT-IR difference spectrum of: (average phenol IR spectrum at t=48) minus 
(average control IR spectrum at t=48).  The peak highlighted with an asterisk is the carbonyl 
stretch at 1754.5 - 1710.2 cm-1 which increases following supplementation with phenol. 
 

 

 

This change in the FT-IR spectra for communities actively degrading phenol (Figure 

5.2) is likely to be due to the community altering its metabolic potential as it induces 

gene transcription to produce enzymes capable of catabolising phenol and its 

byproducts (Agarry et al., 2008).  The degradation process is generally initiated by a 

monooxygenase phenol hydroxylase which produces catechol.  Subsequently, one of 

two metabolic pathways may be employed.  The ortho pathway results in the formation 

of succinyl Co-A and acetyl Co-A, and the meta pathway produces pyruvate and 

acetaldehyde (Schlegel, 1993, Agarry et al., 2008, Leonard and Lindley, 1998, Paller et 

al., 1995, Zhao and Ward, 1999).  The initial intermediates of these pathways are 

detailed in Figure 5.8 and Figure 5.9. 
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Figure 5.8:  Ortho cleavage of the aromatic ring and the 3-oxoadipate pathway.  Adapted from 
Schlegel (1993). 
Enzymes involved: (1) catechol 1,2-dioxygenase; (2) muconate cycloisomerase; (3) 
muconolactone isomerase; (4) protocatecuate-3,4-dioxygenase; (5) 3-carboxymuconate 
cycloisomerase; (6) 4-carboxymuconolactone decarboxylase; (7) 4-oxoadipatenollactone 
hydrolase; (8) 3-oxoadipate-succinyl-CoA transferase; (9) 3-oxoadipyl-CoA thiolase. 
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Figure 5.9:  Meta cleavage of the aromatic ring.  Adapted from Schlegel (1993). 
Enzymes involved: (1) metapyrocatechae (catcechol-2,3-dioxygenase); (2) protocatcechuate-
4,5-dioxygenase. 
 

 

Unfortunately these metabolite intermediates from the ortho- or meta-cleavage of the 

aromatic ring in catechol are not available for FT-IR analysis.  However, immediately 

downstream of catechol these products contain carboxylic acid groups (-COOH) and in 

addition to these moieties mucono-lactone and 4-oxoadipate enol-lactone also have a 

lactone ring that may constrain the carbonyl group (C=O) vibration.  The region 

highlighted at 1754-1710 cm-1 increased after 15 h only in activated sludge samples 

exposed to phenol that are actively degrading it.  This region is due to the carbonyl in 
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the COOH group.  Moreover, we have also observed previously constrained carbonyl 

vibrations in penicillin due to its β-lactam ring that when cleaved by the enzyme β-

lactamase resulted in a shift from 1767 cm-1 to ca. 1740 cm-1 (Winson et al., 1997) 

providing further evidence for the detection of phenol degradation products by FT-IR 

spectroscopy.  If the sequences of these genes are known then a targeted 

transcriptomics and proteomics analysis, while the sludge community is actively 

degrading phenol, may provide further information.  This type of analysis is rather 

difficult in complex microbial communities particularly in communities which contain 

bacteria with unsequenced genomes.  However, a number of methods have been 

developed in recent years for the proteomic analysis of complex communities (Lacerda 

et al., 2007, Lacerda and Reardon, 2009, Ram et al., 2005, Valenzuela et al., 2005).  

 

The PC-CVA scores plots for the samples aged for 16 d and 131 d can be seen in 

Figure 5.6c and Figure 5.6d.  Whilst a trend with respect to time can be observed 

across PC-CV 1 and PC-CV 2 in both plots, there is no noticeable separation of the 

control samples and those supplemented with phenol.  This observation is supported 

by the phenol quantification data (Figure 5.2c and Figure 5.2d) which show a visible 

reduction in the ability of the bacterial community to degrade phenol.  Interestingly, the 

PC-CVA loadings plots (Figure 5.6c and Figure 5.6d) show the separation of samples 

according to time, irrespective of phenol degrading ability, is due to an increase in the 

thiocyanate peak (2122.7 – 2082.2 cm-1 for 16 d and 2126.5 – 2061.0 cm-1 for 131 d), 

an effect which was observed in the control samples for earlier ageing periods.  This 

indicates that whilst the activated sludge community has lost the ability to degrade 

phenol during the extended storage periods, it appears to still be equivalent at the 

phenotypic level to the control samples stored for 2 and 9 d; a result that is also clear 

from the analysis of the whole dataset (Figure 5.5).  This suggests that the bacterial 

community is still metabolically active despite the loss of phenol degrading ability.  

 

As detailed above, the PC-CVA highlighted two major differences in the FT-IR spectra 

between actively degrading phenol communities and non-supplemented controls or 

non-degrading communities.  These differences were due to changes in the peaks at 

wavenumbers 1754.5 - 1710.2 cm-1 (from the -COOH on metabolites in the phenol 

degradation pathways) and 2124.6 - 2082.2 cm-1 (from thiocyanates).  In order to 

investigate this further and determine any time-related or phenol-degradation related 

trends, the phenol quantification data were plotted with a ratio of these peak areas 
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(1754.5 - 1710.2 cm-1 / 2124.6 - 2082.2 cm-1) calculated from the raw spectra against 

time (Figure 5.2).   

 

The phenol quantification and FT-IR peak area ratios for activated sludge samples 

aged for 2, 9, 16 and 131 d can be seen in Figure 5.2 (and also see Figure 5.10 for the 

areas under carbonyl peak).  The control samples did not contain phenol (with the 

exception of a possible residual amount (~0.1 mM) in the 2 d old samples) and the ratio 

of the COOH / thiocyanate vibrations more-or-less follows the same trend and 

decreases with respect to time (clearly with different rates).  By contrast the ratio 

increases in samples that are actively degrading phenol; for 2 d old activated sludge 

samples this occurs after 8 h and for 9 d is after 24 h, a possible trend was also 

observed at the 36 h time point in the 16 d aged sample, although this was less 

obvious than in the previous samples.  For the 131 d aged activated sludge the ratio 

follows the same trend as the control experiments, and with the exception of the 36 h 

time point so do the 16 d stored samples.  Inspection of the peak areas alone (Figure 

5.10 and Figure 5.11) indicate that the COOH vibration also increases when the sludge 

is actively degrading phenol.  This is not surprising given the complex biological 

processes involved in the degradation of phenol as discussed above (Agarry et al., 

2008).   

 

It is likely that the community structure of the activated sludge changes during the 

degradation of phenol (Manefield et al., 2005, Manefield et al., 2002, Whiteley and 

Bailey, 2000).  Changes in the structure of the bacterial community may be 

investigated with RNA stable isotope probing (SIP) (Manefield et al., 2002, Madsen, 

2006, Dumont and Murrell, 2005, Whiteley et al., 2006).  This data combined with 

metabolomic analyses may provide valuable insight into the principal bacterial species 

and metabolic pathways employed by the activated sludge community during the 

degradation of phenol, and this will be an area of future work.  
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Figure 5.10:  Phenol quantification data (black symbols and lines) plotted with the COOH band 
(1754.5 - 1710.2 cm-1); FT-IR peak areas shown in green.  Data for all ageing experiments are 
shown (2, 9, 16 and 131 days; a, b, c and d respectively).  Samples supplemented with 5 mM 
phenol are shown on the left hand side and samples incubated in the absence of phenol 
(control) are on the right hand side. 
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Figure 5.11:  Phenol quantification data (black symbols and lines) plotted with the thiocyanate 
band (2124.6 - 2082.2 cm-1); FT-IR peak areas shown in green.  Data for all ageing experiments 
are shown (2, 9, 16 and 131 days; a, b, c and d respectively).  Samples supplemented with 5 
mM phenol are shown on the left hand side and samples incubated in the absence of phenol 
(control) are on the right hand side. 
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Metabolite profiling by GC-MS was employed in order to investigate the metabolic 

changes occurring in the activated sludge community during the degradation of phenol.  

Parallel samples were supplemented with 5 mM of either 12C-phenol or 13C6-phenol and 

monitored during a 48 h period, for the degradation and possible degradation products 

of phenol within the metabolite profiles.  From the GC-MS data two pairs of metabolite 

peaks were identified as a mix of 12C and 13C analogues, thus indicating uptake of 13C 

from the labelled phenol.  The metabolite peaks were identified as the amino acids 

glycine and glutamic / pyroglutamic acid.   

 

The multivariate analysis method PC-DFA was employed in order to provide a 

visualisation of the general trends in the metabolic profiles during the time course.  

Figure 5.12 shows the PC-DFA scores plot (PC-DF 1 vs. PC-DF 2) for the 12C and 
13C6-phenol supplemented activated sludge samples during the 48 h time course.  A 

general trend was observed across PC-DF 1 according to the time of sampling.  These 

findings corresponded with those of the FT-IR spectroscopy analyses (Figure 5.6) and 

indicated a strong metabolic response to the phenol supplement within the activated 

sludge community.  There was a clear separation across PC-DF 2 and this appeared to 

be due to the presence of an outlier (labelled P24).  Therefore, the scores for PC-DF 1 

vs. PC-DF 3 were plotted (Figure 5.13) in order to investigate any further changes 

within the metabolic profiles of the activated sludge communities during the 

degradation of phenol.  The samples displayed a clear separation across PC-DF 1 

according to the time of sampling until the 24 h time point, after which, the samples at 

36 and 48 h appeared to co-cluster.  It is likely that this was due to a reduction in the 

metabolic activity of the activated sludge following the depletion of phenol, as it was 

shown above that following phenol supplementation it was significantly removed by the 

community in the first 20 h.  Some separation between the 12C-phenol and 13C6-phenol 

supplemented samples between 1-10 h was observed across PC-DF 3.   
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Figure 5.12:  PC-DFA scores plot for the metabolic profile data of activated sludge 
supplemented with 5 mM phenol (12C or 13C6) over 48 h.  PCs 1-20 were employed by the DFA 
algorithm with the a priori knowledge of the biological replicates.  Points labelled P are those 
supplemented with 12C phenol, and those labelled E were supplemented with 13C labelled 
phenol.   

-30 -20 -10 0 10 20 30
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P0 

P0 

P0 

P1 

P1 P1 

P4 

P4 

P4 

P8 

P8 

P10

P10

P10

P15

P15

P15

P24
P24

P24

P36P36
P36

P36

P48
P48

P48
P48

P48

P48

E0 

E0 

E1 

E1 
E4 

E4 
E4 

E8 
E8 

E8 

E10
E10 E10

E15

E15
E15

E24

E24
E24

E36E36

E36

E36

E36
E48

E48

E48

E48

E48
E48

Discriminant function 1    

D
is

cr
im

in
an

t f
un

ct
io

n 
3 

   mixed

-30 -20 -10 0 10 20 30
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P0 

P0 

P0 

P1 

P1 P1 

P4 

P4 

P4 

P8 

P8 

P10

P10

P10

P15

P15

P15

P24
P24

P24

P36P36
P36

P36

P48
P48

P48
P48

P48

P48

E0 

E0 

E1 

E1 
E4 

E4 
E4 

E8 
E8 

E8 

E10
E10 E10

E15

E15
E15

E24

E24
E24

E36E36

E36

E36

E36
E48

E48

E48

E48

E48
E48

Discriminant function 1    

D
is

cr
im

in
an

t f
un

ct
io

n 
3 

   mixed

 
Figure 5.13:  PC-DFA scores plot for the metabolic profile data of activated sludge 
supplemented with 5 mM phenol (12C or 13C6) over 48 h.  PCs 1-20 were employed by the DFA 
algorithm with the a priori knowledge of the biological replicates.  Points labelled P are those 
supplemented with 12C phenol, and those labelled E were supplemented with 13C labelled 
phenol.  The trends are highlighted with red and blue arrows, which represent 12C-phenol and 
13C6-phenol respectively. 
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Kruskal-Wallis analysis was carried out in order to determine any significant changes in 

the levels of metabolites during the time course.  A total of 23 metabolite peaks were 

found to display significant changes of which 16 could be identified by means of 

matching to authentic standards by retention time and mass spectrum, or by the mass 

spectrum only (Winder et al., 2008).  Comparison of the 12C-phenol and 13C6-phenol 

supplemented samples with Kruskal-Wallis analysis did not find any significant 

changes in the metabolic profiles and it is therefore unlikely that the observed 

separation across PC-DF 3 in the PC-DFA scores plot (Figure 5.13) was due to a small 

contaminant within the activated sludge samples and may be due to the quantification 

ion used for defining the chromatographic peak.   

 

Phenol was not detected by the GC-MS analysis and it is likely that it was lost during 

the sample preparation due to its high volatility.  However a number of aromatic 

hydrocarbons (including fluoranthene and pyrene, see Figure 5.14) were detected and 

it is likely that these were hydrocarbons present in the activated sludge from the coking 

effluent.  In addition, the presence of aromatic hydrocarbons within the activated sludge 

samples may be due to degradation products of phenol.  It was observed that the 

levels of these aromatic hydrocarbons reduced during the time course, thus indicating 

degradation by the activated sludge.  In addition, a number of sugars were detected in 

the metabolic profiles of the activated sludge, some of which decreased significantly 

during the incubation period and others displayed a significant increase in 

concentration during the time course.  It was not possible to provide definitive 

identification for these sugars.  The amino acids cysteine and glutamine were found to 

increase significantly in the 36 and 48 h time points (Figure 5.15).  In addition, the 

carboxylic acid malonic acid was found to gradually reduce in concentration during the 

time course.  
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Figure 5.14:  Box and whisker plots showing the changes in metabolite levels during the 48 h 
time course.  d represents definitive identification by means of matching to authentic standard by 
retention time and mass spectrum.  p represents putative identification by mass spectrum only.  
Classes 1-9 represent the sampling time points during the incubation period at 0, 1, 4, 8, 10, 15, 
24, 36 and 48 h. 
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Figure 5.15:  Box and whisker plots showing the changes in metabolite levels during the 48 h 
time course.  d represents definitive identification by means of matching to authentic standard by 
retention time and mass spectrum.  p represents putative identification by mass spectrum only.  
Classes 1-9 represent the sampling time points during the incubation period at 0, 1, 4, 8, 10, 15, 
24, 36 and 48 h. 
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5.5 Conclusions 

The phenol quantification data obtained from samples aged for 2 and 9 d show that the 

activated sludge community is capable of degrading 5 mM phenol in 48 h, and it is 

evident from the FT-IR data that this has a metabolic effect on the microbial cells since 

vibrations that are non-phenol related are clearly important.  The results also show that 

the activated sludge community loses its ability to degrade phenol when aged for 

extended periods of time (16 and 131 d), and it is likely that this is due to a phenotypic 

adaptation from long storage in a phenol-free medium.  The increase in the area of 

COOH vibration (C=O at 1754.5 - 1710.2cm-1) during the degradation of phenol 

suggests that FT-IR spectroscopy is detecting the products of phenol degradation.  

Further analyses could target key enzymes involved in the degradation of phenol, such 

as monooxygenase phenol hydroxylase and catechol-2, 3- dioxygenase.  However, this 

is rather difficult in complex communities.  GC-MS analysis was able to detect 

significant changes in a number of metabolites during the degradation of phenol and 

shows the power of employing mass spectrometry-based metabolomics approaches 

(Dunn et al., 2005, Goodacre, 2004, Winder et al., 2008) for the analysis of activated 

sludge samples exposed to 5 mM phenol.  In conclusion, high-throughput metabolic 

fingerprinting with FT-IR spectroscopy has been used to monitor phenotypic shifts 

within complex microbial communities, and this snapshot of biochemical changes 

supports the further investigation of this important bioremedial process using mass 

spectrometry-based metabolomics and this is an area of current study.  
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6 Conclusions and Future Work 

Active pharmaceutical ingredients and their metabolites are ubiquitous in the 

environment and their occurrence in the aquatic environment is of growing concern.  

However, despite the fact that these may cause harmful effects in organisms found 

within this niche, little is currently known about the effects of APIs in the aquatic 

environment.  Chiral pharmaceuticals are of particular concern as the enantiomers may 

be metabolised differently, with the potential for the production of an array of harmful 

compounds.  There are many racemic APIs for treating human and animal conditions, 

and even in these target organisms the pharmacodynamic effects of the enantiomers 

are not always known.  Within recent years the importance of the interactions of these 

compounds within the aquatic environment has been realised and information 

regarding the fate and biodegradation of such environmental pollutants is of great 

importance.  The advent of post-genomic technologies has proved advantageous in the 

study of the effects of these environmental pollutants.  The aim of this study was 

therefore, to investigate the effects of chiral APIs and other environmental pollutants on 

environmentally relevant microorganisms and the metabolic pathways in which these 

pollutants undergo degradation at the metabolome level.  

 

The effects of the chiral APIs Atenolol and Propranolol were investigated in a number 

of prokaryotic and eukaryotic systems in order to provide a comprehensive study of the 

effects of the APIs in the aquatic environment.  FT-IR spectroscopy was employed in 

the first instance as a metabolic fingerprinting tool for the phenotypic analysis of a 

range of environmentally relevant bacteria.  In addition, FT-IR microspectroscopy was 

employed for the investigation of the phenotypic and localised effects of chiral APIs in a 

eukaryotic system.   

 

Initially the selected bacteria were exposed to a range of concentrations of the pure 

enantiomers and the racemate for each of the APIs.  FT-IR spectra were acquired for 

these exposures and a range of multivariate analysis methods were employed in the 

analysis of these data.  Initial results showed that the data reduction strategy PCA 

followed by the clustering method CVA was sufficient to characterise the metabolic 

effects exerted on the bacteria from the FT-IR spectra.  Propranolol was found to have 

a notable effect on the bacterial phenotype, whilst Atenolol did not appear to have a 

considerable phenotypic effect.  The regression method PLSR was employed in the 
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quantification of the metabolic effects exerted on P. putida KT2440 when exposed to 

increasingly large concentrations of (±)- Propranolol and the algorithm was able to 

model and predict these effects successfully.  In particular the pseudomonads 

employed in this study displayed differing phenotypic effects when exposed to 

Propranolol and were thus selected for exposure to a range of enantiomeric ratios of 

the API at a fixed concentration.  Analysis of the FT-IR spectra revealed chiral-specific 

effects when the bacteria were exposed to the various enantiomeric ratios of 

Propranolol.  Any potential degradation of the APIs during the growth period was 

investigated with HPLC.  However, the results indicated that degradation of the APIs 

did not occur and it was therefore not possible to link the differential phenotypic effects 

observed in the bacterial cells to the degradation of the APIs.  It was concluded that the 

observed phenotypic effects were more likely to be a secondary effect of the API and it 

is likely that this was due to interactions of Propranolol with the bacterial cell 

membranes.  Further work could aim to provide more accurate quantification of the 

APIs both in the remaining supernatant and the within the bacterial cells. 

 

It was important to consider the metabolic effects of the APIs in both prokaryotic and 

eukaryotic microorganisms and therefore, the green alga Micrasterias hardyi was 

selected for investigation of the chiral specific effects of Atenolol and Propranolol.  

Previous reports have demonstrated that Propranolol exerts a phenotypic effect on the 

green alga (Patel et al., 2008).  However, the effects of Atenolol in the alga have not 

previously been reported, and the chiral specific effects of Propranolol were unknown 

for M. hardyi.  FT-IR microspectroscopy was employed to generate chemical maps in 

order to monitor the general phenotypic effects throughout the whole cell and within 

localised areas of the algal cells.  A wide range of multivariate analysis methods were 

employed in order to analyse both the general and localised effects of the APIs.  No 

observable difference was reported for the algal cells exposed to Atenolol and this 

finding corresponded with that of the prokaryotic systems (Chapter 2).  By contrast, 

noticeable differences were observed in the FT-IR spectra of the Propranolol exposed 

cells.  PC-CVA revealed a significant phenotypic difference in cells exposed to 

Propranolol; however, the algorithm was not able to differentiate between the 

enantiomeric ratios.  Functional group mapping was successfully employed to 

investigate the localised effects of the APIs within the algal cells.  In addition, an 

enhanced metabolic effect was reported for the cells exposed to the (R)- enantiomer 

and the racemate, an effect which was not noted in the bacterial species exposed to 

the APIs.  PCA mapping was able to analyse the entire FT-IR spectrum in a spatially 
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relevant manner, and was employed in order to explore the localised phenotypic effects 

within the algal cells further.  However, this method was unable to differentiate any 

significant difference in the algal cells according to the experimental conditions.  It was 

concluded that Atenolol did not exert a detectable phenotypic effect in the algal cells.  

Whilst Propranolol exerted a significant phenotypic effect on M. hardyi and all of the 

bacterial species studied, and a notable phenotypic effect was observed between the 

enantiomeric ratios.   

 

As changes in the FT-IR spectra suggested that lipids were being altered then future 

work could concentrate on this and combine a GC-MS approach for exploring central 

metabolism with LC-MS for the analysis of the lipids.  Particular attention could be paid 

to the difference observed in the cells exposed to the (R)- enantiomer and the 

racemate in comparison to the remaining (R) : (S) ratios. 

 

The greatest phenotypic effect observed in all of the microorganisms studied was in the 

pseudomonads following exposure to Propranolol.  GC-MS was therefore employed for 

the metabolic profiling of the two pseudomonads following growth in the presence of a 

range of enantiomeric ratios of Propranolol at a fixed concentration.  Initial results 

demonstrated a clear phenotypic difference between the bacterial species.  In addition 

chiral specific metabolic effects were observed for both pseudomonads when exposed 

to the enantiomeric ratios of Propranolol, corresponding with the results of the FT-IR 

spectroscopy.  In particular P. aeruginosa PA14 displayed a different metabolic 

response to each of the enantiomeric ratios of (R)-:(S)- Propranolol.  The multivariate 

and univariate analyses of the GC-MS data highlighted significant differences in a 

number of metabolites between the varying enantiomeric ratios which could not be 

identified.   

 

Further work should aim to provide identification of these metabolites.  In addition, 

complementary techniques such as LC-MS could be employed in order to provide a 

comprehensive analysis of the metabolic effects of these APIs in aquatic 

microorganisms.  The enantiomers of the APIs are likely to be present in the 

environment as a range of concentrations and therefore a range of enantiomeric ratios.  

Further work may investigate the more subtle differences observed by GC-MS in the 

bacterial cells exposed to the 75:25 and 25:75 ratios (R)- : (S)- Propranolol in order to 

provide a more detailed characterisation of the metabolic effects of the Propranolol 

enantiomers.  In addition, the methods employed here may be further developed to 
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analyse mixed culture samples which are more representative of the aquatic 

environment and samples from an aquatic environment known to contain API 

pollutants.  

 

Aromatic hydrocarbons represent another important class of environmental pollutants.  

The phenotypic effects of the aromatic hydrocarbons phenol and toluene and the chiral 

APIs Atenolol and Propranolol were investigated in more complex biological 

communities.  Activated sludge previously developed for the degradation of phenol in 

coking effluent was employed (Manefield et al., 2005, Manefield et al., 2002) and FT-IR 

spectroscopy was utilised to monitor the phenotypic effects of the environmental 

pollutants during a 48 h period.  In addition HPLC was employed to quantify the 

pollutants remaining in the supernatant following incubation.  However, HPLC did not 

successfully quantify the pollutants due to the complex nature of the community flocs.  

FT-IR spectroscopy was only able to monitor the phenotypic effects occurring in the 

microbial community supplemented with phenol and results from the multivariate 

analyses suggested that these changes were due to shifts in the levels of thiocyanates 

found within the activated sludge, and this was further explored with a range of ageing 

experiments and metabolic fingerprinting (Chapter 5).  By contrast, no notable 

difference was observed in the communities exposed to the other environmental 

pollutants.  In contrast to the findings presented in Chapter 2 and Chapter 3, the APIs 

did not appear to exert a phenotypic effect on the activated sludge community.  In 

addition, no detectable phenotypic effects were observed in the FT-IR analysis of the 

activated sludge following exposure to the aromatic hydrocarbon toluene. 

 

Whilst this complex microbial community had been previously investigated using 

molecular approaches for the identification of the main phenol degrader (Manefield et 

al., 2005, Manefield et al., 2002), little is known regarding the changes in the 

community phenotype that may occur within the activated sludge when it is actively 

degrading phenol.  FT-IR spectroscopy was employed in a temporal manner to monitor 

the community phenotype during phenol degradation.  Phenol consumption was 

confirmed using a colorimetric assay for phenol and degradation took ca. 36 h but only 

in ‘young’ cultures compared to communities that had been allowed to age for between 

16 and 131 days.  Multivariate analyses of the FT-IR spectra showed different 

phenotypic trajectories depending on whether the community was able to degrade 

phenol or whether this metabolic potential was lost. 
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During incubation changes in the FT-IR spectra of the control samples were dominated 

by changes in the levels of thiocyanates.  By contrast, a new peak was only observed 

in the FT-IR spectra of the phenol supplemented communities and this could be 

attributed to a COOH group vibration that was likely due to phenol degradation 

products from either the ortho- or meta-cleavage pathways.  Armed with this 

knowledge the activated sludge community was monitored during the active 

degradation of phenol with the use of GC-MS.  Further work could target these 

pathways and monitor the activated sludge for the production of these intermediates.  It 

would be particularly interesting to see if changes in the community structure occur 

during phenol degradation as this may provide evidence of cross-feeding, and this 

could be achieved using the RNA-SIP molecular methods detailed in Manefield et al., 

(2002). 

 

This work demonstrated the utility of FT-IR spectroscopy to investigate the phenotypic 

variations in complex biological communities during exposure to environmental 

pollutants.  Further work in this area should develop the methods presented here for 

monitoring phenotypic changes in complex communities.  In addition alternative 

methods for quantifying the remaining levels of the pollutants should be explored, 

which may involve specific solvent extractions.   

 

In conclusion, the work presented in this thesis has shown for the first time that 

metabolomics allows subtle phenotypes in microorganisms to be revealed when they 

are exposed to chiral forms of APIs which are commonly found in the environment.  

Despite these APIs not being designed for any interaction with bacteria and aquatic life 

in general these are significant findings and may have implications as more and more 

APIs become detectable and concentrated in the environment due to continued use in 

man and indeed animals or aquaculture.  I believe that metabolomics will play an 

important role in toxicological studies, in understanding pollutant-species interactions, 

and should become an important tool for environmental monitoring. 
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