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Abstract

In this work the predictive capability of a number of Reynolds stress transport

(RST) models was first tested in a range of non-equilibrium homogeneous flows,

comparisons being drawn with existing direct numerical simulation (DNS) results

and physical measurements. The cases considered include both shear and nor-

mally strained flows, in some cases with a constant applied strain rate, and in

others where this varied with time.

Models were generally found to perform well in homogeneous shear at low

shear rates, but their performance increasingly deteriorated at higher shear rates.

This was attributed mainly to weaknesses in the pressure–strain rate models,

leading to over–prediction of the shear stress component of the stress anisotropy

tensor at high shear rates.

Performance in irrotational homogeneous strains was generally good, and was

more consistent over a much wider range of strain rates. In the experimental

plane strain and axisymmetric contraction cases, with time-varying strain rates,

there was evidence of an accelerated dissipation rate generation. Significant im-

provement was achieved through the use of an alternative dissipation rate gen-

eration term, Pε, in these cases, suggesting a possible route for future modelling

investigation.

Subsequently, the models were also tested in the inhomogeneous case of pul-

sating channel flow over a wide range of frequencies, the reference for these cases

being the LES of Scotti and Piomelli (2001). A particularly challenging feature

in this problem set was the partial laminarisation and re-transition that occurred

cyclically at low and, to a lesser extent, intermediate frequencies. None of the

models tested were able to reproduce correctly all of the observed flow features,

and none returned consistently superior results in all the cases examined.

14



Finally, models were tested in the case of a plane jet interacting with a rect-

angular dead-end enclosure. Two geometric configurations are examined, corre-

sponding a steady regime, and an intrinsically unsteady regime in which periodic

flow oscillations are experimentally observed (Mataoui et al., 2003). In the steady

case generally similar flow patterns were returned by the models tested, with some

differences arising in the degree of downward deflection of the impinging jet, which

in turn affected the level of turbulence energy developing in the lower part of the

cavity.

In the unsteady case, only two of the models tested, a two-equation k−ε
model and an advanced RST model, correctly returned purely periodic solutions.

The other two RST models, based on linear pressure–strain rate terms, returned

unsteady flow patterns that exhibited complex oscillations with significant cycle-

to-cycle variations. Unfortunately, the limited availability of reliable experimental

data did not allow a detailed quantitative examination of model performance.
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see equation (2.23), page 32
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Dε Diffusion of ε, see equation (2.29), page 35
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tion (6.3), page 178

E Flatness parameter based on dissipation rate anisotropy tensor invariants,

see equation (2.64), page 43
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Chapter 1

Introduction

1.1 Motivation

Computational fluid dynamics has in many respects matured as a tool in engi-

neering applications. It has become a standard tool in the aerospace, automo-

tive, turbomachinery, chemical process, and several other industries. Its use in

engineering, however, has been predominantly in steady-flow, design-point and

optimisation type of simulations, where the flow is in a state of equilibrium, and

there is no large-scale flow separation. Nevertheless, the need for reliable and

accurate simulations of unsteady, non-equilibrium turbulent flows arises in many

fields of engineering and scientific studies. Examples include internal combustion

engines, aerofoils at high angles of incidence, coastal hydrodynamics, and the flow

of blood in veins and arteries, to name but a few.

The requirements of unsteady or largely off-design simulations stretch, and are

sometimes beyond, the capabilities of standard eddy-viscosity based Reynolds-

averaged treatments of turbulent flows. Nevertheless, typical time and cost lim-

itations make it highly desirable to be able to tackle such problems with an

averaged approach that is sensitive to the non-equilibrium effects on the flow

quantities of interest, while avoiding the need for high-resolution approaches.

Reynolds stress transport (RST) models potentially offer some of this desired

sensitivity to unsteadiness and non-equilibrium conditions by allowing for mis-

alignment between mean velocity gradients and turbulent stresses that can affect

the rate of production of turbulence. However, other important aspects of flow

non-equilibrium, such as delays in the transfer of energy across the turbulence

spectrum, are not built-in. Moreover, it is not clear a priori how the principal
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modelled elements in the stress transport equations, particularly pressure–strain

rate redistribution, are themselves affected by non-equilibrium conditions. It is

thus desirable to test existing models in a wide range of unsteady non-equilibrium

flows to identify the major strengths and weaknesses of the models and main areas

requiring improvement.

1.2 Development of RST Modelling

Early work leading to the development of Reynold-stress transport (RST) mod-

elling was mainly theoretical, due to the relative complexity of this level of mod-

elling compared to the available computational capabilities of the time. Chou

(1945) constructed a formal solution to the fluctuating pressure Poisson equa-

tion that is the basis for current models of the pressure–strain-rate correlation.

Later Rotta (1951), laid the foundation for Reynolds stress transport modelling

by being the first to develop a closed model of all the terms in the exact equation

(Speziale, 1991). Because of limited computational capability at the time, suc-

cessful computations were not carried out until several decades later (Speziale,

1991). Another important development came when the continuum mechanics

community speculated on the potential similarity between turbulent flow and the

flow of non-Newtonian fluids (Gatski, 2004). This meant that tensor representa-

tion results from the continuum mechanics literature could be used to formulate

expressions for the Reynolds-stress tensor, as first proposed by Rivlin (1957).

These ideas were then expanded by Crow (1967, 1968), and Lumley (1967, 1970).

Computational work accelerated in the 1970’s with the works of Daly and

Harlow (1970), Reynolds (1970), Donaldson (1971), Naot et al. (1972), Hanjalić

and Launder (1972), and Lumley and Khajeh-Nouri (1974). In a landmark pa-

per, Launder, Reece, and Rodi (1975), developed a hierarchy of Reynolds-stress

transport models by consolidating the work of various separate groups into a

unified framework. They were able to successfully apply the models to a variety

of free-shear and wall-bounded flows of practical interest (Launder et al., 1975).

Their model, particularly the simple version (the ‘Basic’ model), has since been

one of the most widely used RST models in engineering applications because

of the combined advantage of being simple in form, yet retaining the ability to

overcome many of the weaknesses of eddy-viscosity formulations (Hanjalić and

Jakirlić, 2002).
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Later Schumann (1977) introduced the concept of realisability as a constraint

to guide model formulation. By this it is meant that models should be designed

to prevent certain unphysical solutions, such as negative normal stress compo-

nents, or a stress tensor that violates the Cauchy-Schwartz inequality. Lumley

(1978) extensively discussed the significance and implementation of realisability

requirements. He devised and used anisotropy invariant maps, or Lumley tri-

angles, to illustrate the limiting states of turbulence with respect to values of

the second and third invariants of the Reynolds-stress anisotropy tensor. Lumley

pointed out that to prevent a negative normal stress component from arising dur-

ing computations, the time derivative of the component must be made to vanish

at the instant when the component itself vanishes, thereby preventing a negative

value from arising as time progresses. Such a situation can arise near a wall or

a free-surface, where the interface-normal component decays much faster than

the other components as the interface is approached, thus approaching a two-

component limit. Shih and Lumley (1985) later used these arguments to devise a

realisable model for the pressure–strain-rate correlation. Their model, however,

did not perform well in simple shear flows, and higher order corrections were later

added to achieve better agreement with these flows (Craft and Launder, 2002).

Speziale (1985, 1987) used arguments of material-frame indifference in the limit

of two-dimensional turbulence to develop a model for the rapid pressure–strain-

rate correlation. Speziale et al. (1991) later considered the simplest topologically

equivalent form (returning the same equilibrium states) to that of the Speziale

(1987) model, to arrive at a more simplified, similarly performing version (Speziale

et al., 1991). This latter model is also in relatively common use in engineering

RST computations.

The UMIST group, starting with the work of Fu et al. (1987), Fu (1988),

Craft et al. (1989), and Craft (1991) developed a model also based on ensuring

realisability in the two-component limit, but using an approach slightly different

from that used by Shih & Lumley. This model (the ‘TCL’ model, in what follows)

uses a cubic expansion of the rapid pressure–strain-rate correlation in k and aij.

It was shown to achieve significant improvements over previous models in a wide

range of flows.
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1.3 The Present work

The present work thus aims to study the performance of a number of existing

Reynolds stress transport models in a range of non-equilibrium flows. The models

tested include the LRR-IP and LRR-QI models of Launder et al. (1975), the

Speziale et al. (1991) model (‘SSG’), the Shima (1998) low-Re model, the Jakirlić

and Hanjalić (1995) low-Re model (‘HJ’), and the TCL model (Craft, 1998; Craft

and Launder, 2002). Both homogeneous and inhomogeneous flows are studied.

Chapter 2 presents a theoretical background on Reynolds stress transport

modelling rationale and practice. The models used in the present work are also

listed in this chapter. This is followed by a description, in Chapter 3, of the

numerical solution techniques employed in solving the inhomogeneous turbulence

cases studied in later chapters. The performance of RST models in a wide range

of homogeneous turbulence cases is the subject of Chapter 4. Results are first

reported for homogeneous shear flows, both with constant shear rates and also

for a case with a time-varying shear. Some irrotational, plane-strain, cases are

then presented, again with both constant and time-varying strain rates.

Chapter 5 considers the problem of turbulent channel flow subject to a pul-

satile pressure gradient. Simulations are carried out for three frequencies cor-

responding to three different regimes identified in the literature. A number of

challenging aspects in this set of cases are reported and discussed.

Chapter 6 presents a study of the problem of a plane jet interacting with

a dead-end rectangular enclosure. Two configurations are examined, the first

corresponding to a steady flow regime, and the second producing intrinsically

unsteady flow interactions of a periodic nature.

Finally, conclusions are drawn in Chapter 7, and possible directions for further

work are suggested.



Chapter 2

Reynolds Stress Transport

Modelling

In this chapter the basic equations for the mean flow of incompressible fluids

are presented, along with the equations for the relevant turbulence statistics. At

the level of Reynolds stress transport modelling, the Reynolds averaged Navier–

Stokes (RANS) equations are solved, along with separate equations for each inde-

pendent component of the Reynolds stress tensor, as well as a transport equation

for the scalar rate of dissipation of turbulent kinetic energy. The modelling ap-

proach used for the various terms appearing in the exact Reynolds stress transport

equation are briefly reviewed.

2.1 Basic equations of turbulent flow

Turbulent flows are characterised by highly fluctuating velocity, pressure, and

other field variables. One approach for dealing with this fluctuating nature of the

flow, the one most widely used by engineers, is to work with an averaged form of

the basic equations. In Reynolds averaging the instantaneous flow variables are

decomposed into an average quantity and a fluctuation. Thus,

Ũi = Ui + ui

P̃ = P + p ,
(2.1)

where capital letters denote averaged quantities, and small letters denote purely

fluctuating quantities. The averaging can be either over time or over a repeated
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realisation of an experiment with the same nominal conditions. The latter, en-

semble averaging, will be implied in the following, to allow for temporal varia-

tions of mean quantities. When this decomposition is substituted into the Navier

Stokes equations for incompressible flow, and the result is ensemble averaged, one

obtains the Reynolds-averaged Navier-Stokes (RANS) equations

∂Ui

∂t
+ Uj

∂Ui

∂xj
= −1

ρ

∂P

∂xi
+ ν

∂2Ui

∂x2j
− ∂uiuj

∂xj
. (2.2)

When the decomposition is substituted into the continuity equation for incom-

pressible flow, and averaging is applied, one obtains for the mean flow

∂Ui

∂xi
= 0 . (2.3)

If this is subtracted from the instantaneous continuity equation, the continuity

condition for the fluctuating velocity is obtained

∂ui
∂xi

= 0 , (2.4)

meaning that both the mean and fluctuating velocity fields are individually di-

vergence free. The last term in the RANS equation (2.2) contains the Reynolds

stress tensor uiuj. Thus the averaging process introduced a new unknown tensor

term, and the set of equations is no longer closed. This is called the closure prob-

lem of averaging approaches. The task of turbulence modelling is to construct

appropriate models for these stresses that relate them to the mean flow quantities,

and thus to construct a closed set of equations allowing numerical solutions to be

obtained. An additional implied objective in the engineering context is for the

models to be as computationally cheap as possible while being able to reproduce

the behaviour and phenomena of relevance to the problem in question, at the

required level of accuracy.

A transport equation for the fluctuating velocity can be obtained by sub-

tracting the RANS equation (2.2) from the Navier-Stokes equation. Using the

divergence-free property of the fluctuating field, the result can be written as

Dui

Dt
= −1

ρ

∂p

∂xi
− uj

∂Ui

∂xj
− ∂

∂xj

[
uiuj − uiuj − ν

∂ui
∂xj

]
(2.5)
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The operator D/Dt is used to denote the material derivative following the mean

flow
D

Dt
=

∂

∂t
+ Uj

∂

∂xj
. (2.6)

Since this interpretation will be used exclusively here, the over-bar on this mean-

flow material derivative will subsequently be dropped. An exact equation for the

Reynolds stresses can be obtained by using (2.5) to construct

Duiuj
Dt

= uj
Dui
Dt

+ ui
Duj
Dt

.

Where it has been assumed that averaging and taking the material derivative

(2.6) commute. The result is

Duiuj
Dt

=−
(
uiuk

∂Uj

∂xk
+ ujuk

∂Ui

∂xk

)

+
p

ρ

(
∂ui
∂xj

+
∂uj
∂xi

)

+
∂

∂xk

[
ν
∂uiuj
∂xk

− uiujuk −
p

ρ
(uiδjk + ujδik)

]

−2ν ∂ui
∂xk

∂uj
∂xk

(2.7)

The first term on the right hand side above is the production rate of Reynolds

stress by mean velocity gradients. This term is closed at the RST level since

it is given in terms of quantities that are being solved for at this level. All the

remaining terms in the equation, except for viscous diffusion, require modelling.

The second term is a correlation between the fluctuating pressure and the fluctu-

ating strain rate. From continuity this term is traceless, so it does not contribute

directly to the kinetic energy of the turbulence. Its effect is to redistribute the

energy between the stress components, so it plays a very important role in de-

termining the degree of anisotropy of the stresses. Accordingly, it has received

much attention from researchers, and continues to do so. The third term in (2.7)

is a combination of several diffusion terms, all having the effect of spatial redis-

tribution of the Reynolds stresses. Finally, the last term is the dissipation rate of

Reynolds stresses by viscous action at the smallest scales of turbulence. Since the

smallest scales of motion are assumed to be isotropic, the dissipation rate tensor
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is frequently modelled as εij = 2
3
ε δij, where ε is the scalar dissipation rate of

turbulent kinetic energy. This approximation is not applicable near walls or free

surfaces, where the dissipation tensor becomes markedly anisotropic. Equation

(2.7) can be written in short form as

Duiuj
Dt

= Pij + φij +Dij − εij , (2.8)

where it is understood that each term above defines the notation for the corre-

sponding term in (2.7).

An equation for the kinetic energy associated with the turbulent fluctuations,

k = uiui

2
, can be obtained by taking half the contraction of (2.7). The resulting

equation is

Dk

Dt
= −uiuk

∂Ui

∂xk
+

∂

∂xk

[
ν
∂k

∂xk
− uiuiuk −

1

ρ
puiδik

]
− ν ∂ui

∂xk

∂ui
∂xk

. (2.9)

In short form, this can be written

Dk

Dt
= Pκ +D− ε (2.10)

The first term on the right hand side of (2.9) is the production of turbulent

kinetic energy by mean velocity gradients. The next term is the diffusion of

turbulent kinetic energy by various mechanisms. Finally, the last term is the

scalar dissipation rate of turbulent kinetic energy. The short form (2.10) defines

the notation that will be used in the following for the respective terms in (2.9). It

is often convenient to work with the deviatoric Reynolds stress anisotropy tensor

aij defined as,

aij =
uiuj
k
− 2

3
δij . (2.11)

2.2 Pressure–strain rate correlation

Modelling of the pressure–strain rate correlation is to a large extent guided by

consideration of the exact equation for it. An equation for the fluctuating pressure

can be obtained by taking the divergence of (2.5), and invoking continuity (2.4).
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This gives
1

ρ

∂2p

∂xk∂xk
= −2∂Ui

∂xj

∂uj
∂xi
− ∂2

∂xi∂xj
(uiuj − uiuj) (2.12)

A formal solution to this Poisson equation can be constructed using the method

of Green’s functions, as first demonstrated by Chou (1945). The Green’s function

of the Laplacian operator is

g(x|x′) =
−1

4π|x− x′| .

The fluctuating pressure is thus given by

p

ρ
=

1

4π

∫∫∫

V

[
−2∂Ui

∂x′j

∂uj
∂x′i
− ∂2

∂x′i∂x
′

j

(uiuj − uiuj)
]

x
′,t

dx′

|x− x′| + Surface integral.

(2.13)

It can be seen from this equation that the fluctuating pressure can be decomposed

into three components (Pope, 2000), corresponding to the three terms appearing

on the right-hand side of (2.13). The first term is linear in the turbulent fluc-

tuations, and responds directly to changes in mean velocity gradient. It is thus

called the rapid pressure, pr. The second is a turbulence-turbulence interaction

term, that does not respond directly to changes in the mean flow, but through the

turbulent cascade process, and is thus called the slow pressure, ps. The last term

is the solution to the homogeneous (Laplace) equation and satisfies appropriate

boundary conditions that ensure the superposition of the three parts, p, satisfies

its own boundary conditions (Pope, 2000). This final term is only significant close

to a wall or a free surface, and, since the emphasis here is on modelling regions

away from walls, it will be neglected. Wall effects on φij are considered in Section

2.2.1.

Based on the above decomposition, the pressure–strain rate correlation can

similarly be decomposed into rapid, slow, and wall influence terms. The rapid

part can be constructed as follows

φr
ij =

pr

ρ

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.14)
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pr

ρ

(
∂ui
∂xj

)
=

1

2π

∞∫∫∫

−∞

(
∂Uk

∂x′l

∂ul
∂x′k

)

x
′,t

(
∂ui
∂xj

)

x,t

dx′

|x− x′|

=
1

2π

∂Uk

∂xl

∞∫∫∫

−∞

∂2

∂xj∂x′k
(ui(x)ul(x

′))
dx′

|x− x′| .
(2.15)

In taking ∂Uk

∂x′

l

outside the integral it is assumed that this term is reasonably

constant over the volume integral. In homogeneous flows, that is of course exact,

but is an approximation in inhomogeneous ones. One can thus write:

φr =
∂Uk

∂xl
(Miljk +Mjlik) , (2.16)

where the fourth rank tensor Miljk is given by

Miljk =
−1
2π

∞∫∫∫

∞

∂2ui(x)ul(x+ r)

∂rj∂rk

dr

|r| , (2.17)

using r = x′ − x for the separation distance. The Miljk tensor is symmetric in

the first two indices, and in the last two

Miljk = Mlijk = Milkj. (2.18)

The divergence-free velocity condition means that contraction over the middle

indices results in the quantity vanishing:

Mijjk = 0 , (2.19)

and contraction over the last two indices can be shown to yield (twice) the

Reynolds stress tensor

Milkk = 2uiul . (2.20)

The last of these kinematic conditions (2.20) suggested to workers that the M

tensor could be modelled as a function of the Reynolds stresses (Launder et al.,

1975). The approach taken was to model M as a polynomial function in the

stresses. The most general fourth-rank tensor linear in the Reynolds stresses
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satisfying the symmetry conditions (2.18) is

Mijkl =αδkluiuj + β(δikujul + δilujuk + δjkuiul + δjluiuk)

+γδijukul + [ηδijδkl + v(δikδjl + δilδjk)]k,
(2.21)

where the coefficients α, β, γ, η, v are constants (or functions of the invariants of

aij). The continuity condition (2.19), and the normalisation condition (2.20) can

be used to reduce the number of undetermined constants to one. When this is

done, and the resulting modelled Mijkl is substituted into (2.16) the resulting

linear rapid pressure–strain rate model is

φr
ij = −

γ + 8

11
(Pij−2/3Pδij)−

30γ − 2

55
k

(
∂Ui

∂xj
+
∂Uj

∂xi

)
− (8γ − 2)

11
(Dij−2/3Dδij) ,

(2.22)

where Dij is given by

Dij = −uiuk
∂Uk

∂xj
− ujuk

∂Uk

∂xi
, (2.23)

and D = Dii/2. This is the first of the two Launder-Reece-Rodi (LRR) models in

Launder et al. (1975), called the Quasi-Isotropic model (LRR-QI). A simplified

version of (2.22) was also suggested in Launder et al. (1975) by observing that

the dominant term in this equation is the first one appearing on the right hand

side. The model thus obtained, first proposed by Naot et al. (1972), is sometimes

termed the isotropization of production model (LRR-IP),

φr
ij = −c2(Pij − 2

3
P δij). (2.24)

Various other models have been proposed following similar lines of reasoning,

in which M is modelled as a tensor-polynomial function of the Reynolds stress

tensor or, equivalently, expressed in terms of k and aij

M = M(k, a) . (2.25)

It is worth pointing out at this stage that there is an intrinsic weakness in all such

models of the form (2.25). The tensor M, as defined by (2.17), contains two kinds

of directional information – the direction of the energetic velocity components,

and the direction of variation or dependence of the two-point correlation (Pope,
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2000). Only the former type of information is contained in the Reynolds stress

tensor, so two fields having the same Reynolds stresses can have different M ten-

sors. More explicitly put, the evolution of the Reynolds stresses is not uniquely

determined by the Reynolds stresses (Pope, 2000). This is an intrinsic limitation

in RST modelling, that is difficult to overcome without significantly complicat-

ing the modelling approach and/or computational cost (Johansson and Hallbäck,

1994; Kassinos and Reynolds, 1994). This limitation is known to cause poor re-

sults in flows where the velocity gradient has a strong rotational component, such

as in pure (or dominant) rotation, and in high shear rate flows (Johansson and

Hallbäck, 1994). However, in many other flows, including ones with significant

rotational effects, RST models have been shown to produce very good results.

As for the slow pressure–strain rate term, φs
ij, it is difficult to extract anything

from the exact expression, pertaining to the non-linear turbulence–turbulence

interaction part of (2.13). Most early models followed Rotta’s (1951) linear return

to isotropy model for the slow term

φs
ij = −C1εaij . (2.26)

This model is motivated by the decay of homogeneous anisotropic turbulence in

the absence of mean velocity gradients. It is generally observed that in such cases

turbulence progressively tends towards an isotropic state, hence the negative sign

in (2.26).

Experimental evidence shows that the return-to-isotropy process is in fact

non-linear in aij (Chung and Kim, 1995). When plotted on anisotropy invariant

maps, the paths taken during return-to-isotropy experiments are not straight

lines, and have different behaviour depending on the sign of the third invariant

(Pope, 2000). It is also found that the rate of return is highly dependent on the

Reynolds number. A number of nonlinear models for the slow pressure strain

term have been suggested in the literature.

2.2.1 Wall effects on φij

The presence of a wall alters pressure fluctuations by viscous effect through the no-

slip condition, and by inviscid effect through the impermeability condition. DNS

results show that the viscous effect is confined to a region within y+ ≈ 15 from the

wall (Mansour et al., 1988). The inviscid wall-blocking effect on the other hand is
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significant where the distance from the wall is of the same order as the turbulent

length scale. Wall blocking causes two opposing effects; wall reflection of the

fluctuating pressure field increases the energy-redistributing pressure fluctuations,

which pushes turbulence towards isotropy, while it also causes selective damping

of the wall-normal fluctuating velocity component in turbulent eddies, thereby

increasing anisotropy. The latter effect dominates, and turbulence anisotropy

near a wall is higher than that in a free shear flow at a similar rate of shear. To

account for this, Gibson and Launder (1978) proposed two additive corrections to

φij using the unit normal vector to the wall, ni. The first, based on the proposal

of Shir (1973), is an additive correction to the slow part

φs,w
ij = Cw

1

ε

k

(
ukumnknmδij − 3

2
uiuknknj − 3

2
ujuknkni

)
fw (2.27)

and the second, is a correction to the rapid part

φr,w
ij = Cw

2

(
φr
kmnknmδij − 3

2
φr
iknknj − 3

2
φr
jknkni

)
fw (2.28)

where Cw
1 = 0.5, Cw

2 = 0.3, and fw = 0.4k3/2/(εxn) is a damping function based

on the ratio of the turbulence length scale to the normal distance to the wall, xn.

2.3 Modelling dissipation

While modelling of the turbulent kinetic energy, and of the pressure–strain rate

correlation, has been to at least some degree guided by consideration of their exact

equations, the same is not true for the standard dissipation rate model (Pope,

2000). Dissipation of turbulent kinetic energy is associated with the smallest

scales of the fluctuating field, while the kinetic energy itself is mostly contained in

the largest scales of fluctuations. The exact dissipation rate equation is comprised

of a large number of terms that are all related to dissipative-scale processes, and

all but one of the source-terms require modelling. It is thus not a useful starting

point for modelling the dissipation rate. Instead the more empirical approach

taken is motivated by the spectral energy transfer view of dissipation. The kinetic

energy of the larger energy containing eddies is transferred by vortex-stretching

in the presence of mean velocity gradients to smaller eddies, and the same process

occurs at the ‘next’ smaller scales, and so on to the smallest dissipative scales,

where kinetic energy is finally converted to heat by viscous (molecular) action. If
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the molecular viscosity is somehow changed, all that happens is that the size of

the dissipative scales change to accommodate the rate of energy they receive, but

the rate itself is not affected. Thus even though the mechanism of dissipation is

governed by processes that occur at the smallest scales, dissipation can also be

viewed as an energy-transfer rate that readjusts itself with the amount of energy it

receives. In this sense, the amount (as opposed to the mechanism) of dissipation is

in fact determined by the energy in larger scales. Under the assumption of spectral

equilibrium, the transfer rate of energy across the spectrum of turbulence scales is

constant and determined by the rate of energy input. Based on this assumption,

and the preceding arguments, the conventional equation for dissipation is assumed

to be of the form
Dε

Dt
= Cε1

ε

k
P +Dε − Cε2

ε2

k
, (2.29)

where Dε is the diffusion of ε. The modelled production term above reflects

the assumed direct link between a single rate of transfer of energy across the

spectrum and production of energy at the large scales. This assumption is an

obvious weakness in the model when the turbulence is not in equilibrium, as

when unsteady solutions are sought, or where the time-scale of the mean flow is

of the same order or smaller than the characteristic time-scale of turbulence. In

such cases the small-scale turbulence may not have enough time to adjust to the

large-scale scale variations, and the instantaneous link implied by the production

term in (2.29) is questionable.

The destruction term in (2.29) is motivated by consideration of the decay of

homogeneous isotropic turbulence in the absence of production (Pope, 2000). In

such a flow one expects that the turbulence will decay in a self-similar form in

which the rates of decay of k and ε are proportional

k/dk
dt

ε/dε
dt

=
−k/ε
ε/dε

dt

= C

If this proportionality constant is labelled Cε2, the following destruction term is

implied
dε

dt
= −Cε2

ε2

k
(2.30)
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2.4 Diffusion modelling

There are three diffusive transport terms on the right hand side of (2.7). The

first is the viscous diffusion term

Vij = ν
∂2uiuj
∂xk∂xk

(2.31)

which is closed and does not require modelling. The following two terms are

the pressure diffusion and turbulent convection, respectively. Most commonly

these are modelled together as a combined turbulent diffusion term, Tij, using

the generalised gradient diffusion hypothesis (GGDH) of Daly and Harlow (1970),

Tij =
∂

∂xl

(
Cs
ε

k
uluk

∂uiuj
∂xk

)
(2.32)

where Cs is typically 0.22.

A deficiency of this model is that it does not preserve the symmetry under

cyclic permutation of indices that is exhibited by the triple velocity moments

uiujuk. This is only significant when the triple moments and pressure diffusion

are modelled separately. In such case an improved model that has been suggested

by Hanjalić and Launder (1972) is often used,

uiujuk = −Cs
k

ε

(
uiul

∂ujuk
∂xl

+ ujul
∂ukui
∂xl

+ ukul
∂uiuj
∂xl

)
. (2.33)

More elaborate models exist in the literature, but have not been used in the

present work.

2.5 Accounting for low-Re effects

Viscous effects on turbulence properties and their implications on modelling are

considered in this section. The absence of viscous terms in the equation for fluc-

tuating pressure (2.12) suggests that viscous effects on the fluctuating pressure

will be of secondary importance compared to the inviscid effects due to imper-

meability, considered in section 2.2.1. The focus of the discussion is thus directed

to the dissipation rate tensor, and the transport equation for the scalar dissipa-

tion rate. When discussing low-Re effects, reference is frequently made to the
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turbulent Reynolds number, Ret, defined as

Ret =
k2

νε
(2.34)

As previously mentioned, at high Reynolds numbers the dissipation rate tensor

is assumed to be isotropic, εij = 2
3
ε δij. This, however, will cease to be true near

a wall where the high anisotropy of the turbulence is expected to be increasingly

felt at the smaller scales as the wall is approached. The simplest model for this

effect is that of Rotta (1951), which is based on the idea that the anisotropy of

the dissipation rate tensor is similar to the stress anisotropy, thus

εij =
uiuj
k
ε (2.35)

This model was used by Hanjalić and Launder (1976) to give the following blend-

ing approximation for the dissipation rate tensor

εij =
2

3
ε

[
(1− fs) δij + fs

3

2

uiuj
k

]
, (2.36)

where fs is a function of Ret whose value ranges from 1 to 0 as Ret ranges from 0

to ∞, ensuring the desired behaviour of εij in these limits. The near-wall model

(2.35) is the simplest form accounting for near-wall anisotropy of the dissipation

tensor. Launder and Reynolds (1983) have shown that this form does not give the

correct near-wall asymptotic behaviour of the individual tensor elements, which

are rather given by

εij
ε

=
uiuj
k
, i 6= 2, j 6= 2

ε12
ε

=2
uiu2
k
, i 6= 2

ε22
ε

=4
u2u2
k

.

(2.37)

What is needed then is a term to replace the Rotta model in (2.36) which yields

the correct asymptotic behaviour described by (2.37), and which contracts to 2ε.

One possible form that satisfies these requirements is

ε∗ij =
ε/k (uiuj + uiuk nj nk + ujuk ni nk + ukul nk nl δij)(

1 + 5
2
npnqupuq/k

) , (2.38)
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where ni represents a component of the wall-normal unit vector (Pope, 2000).

The use of the wall vector in a model is undesirable because of the ambiguity it

introduces in complex geometries. One way to avoid it is based on the observation

that the quantity ∇k1/2, evaluated near a wall, is a vector that points in the wall-

normal direction. Thus

~n =
∇k1/2
|∇k1/2| , (2.39)

and using the value of the dissipation at the wall for a wall with ~n = (0, 1, 0),

|∇k1/2|x2=0 =

(
∂k1/2

∂x2

∂k1/2

∂x2

)1/2

x2=0

=

√
ε

2ν
. (2.40)

The quantity ninj can therefore be replaced by

ninj =
2ν

ε

∂k1/2

∂xi

∂k1/2

∂xj
. (2.41)

Following Hanjalić and Launder (1976), when considering the implications

of Low-Re effects on dissipation rate modelling, it is instructive to consider the

exact transport equation for the energy dissipation rate. This is given by (Daly

and Harlow, 1970)

Dε

Dt
=− 2ν

∂ui
∂xk

∂ui
∂xl

∂uk
∂xl
− 2

(
ν
∂2ui
∂xk∂xl

)2

− ∂

∂xk

[
ukε′ +

2ν

ρ

∂uk
∂xl

∂p

∂x
− ν ∂ε

∂xk

]

− 2ν

(
∂ui
∂xl

∂ul
∂xi

+
∂ul
∂xi

∂ul
∂xk

)
∂Ui

∂xk
− 2νuk

∂ui
∂xl

∂2Ui

∂xk∂xl
.

(2.42)

All the terms on the right hand side above are unclosed, with the exception of

viscous diffusion. The first two terms on the right hand side of (2.42) are the

dominant ones in high Re flows. Respectively they represent generation and

destruction of ε. The third term, which represents a combination of diffusive

processes, can be of the same order as the difference of the first two, and must

therefore be retained. These three terms are modelled by the three terms that

typically appear in high-Re ε transport models, as in section 2.3. The fourth

and fifth terms are respectively of order Ret
1/2 and Ret smaller than the other

terms (Hanjalić and Launder, 1976), and are thus neglected in high-Re model

versions. In low-Re models these terms need to be reconsidered and accounted
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for if necessary. The last term is often modelled as

−2νuk
∂ui
∂xl

∂2Ui

∂xk∂xl
= Cε3ν

kujuk
ε

(
∂2Ui

∂xj∂xl

)(
∂2Ui

∂xk∂xl

)
. (2.43)

This term is present in several Low-Re models developed by the Manchester

group. As for the fourth term, initial proposals meant to account for it by al-

lowing the coefficient of the production and destruction terms, Cε1and Cε2, to be

functions of Ret. Similarly, possible viscous effects on the diffusion terms were

to be accounted for by allowing the term Cε to depend on Ret (Hanjalić and

Launder, 1976). However, computations revealed that adding the term in (2.43)

alone was sufficient in producing good agreement between computed energy pro-

files and available data to within experimental accuracy. Thus dependence of the

coefficients Cε1, Cε2, Cε on the turbulence Reynolds number is often (not always)

abandoned. Finally the viscous diffusion term, neglected in high-Re models, is

retained in its exact form.

2.6 The Launder–Reece–Rodi models

In their seminal 1975 paper, Launder, Reece, and Rodi laid out a hierarchy of RST

models based on arguments presented in section 2.2. Two rapid pressure-strain

rate models were proposed. The first is the quasi-isotropic model (LRR-QI),

which has the most general linear tensorial form satisfying the required symmetry

conditions, and is given by

φr
ij = −C2(Pij − 2

3
δij Pκ)− C3(Dij − 2

3
δij Pκ)− 2C4k Sij, (2.44)

where Sij is the mean strain rate tensor, defined as:

Sij =
1

2

(
∂Ui

∂xj
+
∂Uj

∂xi

)
(2.45)

and the coefficients have the following values

C2 = 0.764, C3 = 0.182, C4 = 0.109 (2.46)

The second rapid pressure-strain rate model is the isotropization of production

model (LRR-IP), which is also referred to as the ‘Basic’ model, and simply retains
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the first term of the QI model and neglects the other two. Thus,

φr
ij = −C2(Pij − 2

3
δij Pκ), (2.47)

where the coefficient C2 is now set at 0.6. Both models use the Rotta return-to-

isotropy model for the slow pressure-strain rate term,

φs
ij = −C1εaij , (2.48)

but the coefficient C1 is 1.5 for the QI model and 1.8 for the IP model.

In the original proposal turbulent diffusion Tij is modelled using (2.33) for

the triple velocity moments (pressure diffusion is usually neglected). In many

later implementations, as is in the present work, this is replaced by the simpler

GGDH. Thus the models can be written as

Duiuj
Dt

= Pij −C1εaij + φr
ij + φs,w

ij + φr,w
ij +

∂

∂xl

(
Cs
ε

k
uluk

∂uiuj
∂xk

)
− 2

3
δijε (2.49)

where φr
ij is replaced by either the QI or IP models, and the wall-reflection terms

φs,w
ij , φ

r,w
ij are given by (2.27) and (2.28), respectively. Since these models are in-

tended as high Re models, the viscous diffusion term is neglected and an isotropic

dissipation rate tensor is assumed.

Finally, closure is completed with the standard high-Re dissipation rate equa-

tion, given by

Dε

Dt
= Cε1

ε

k
Pκ − Cε2

ε2

k
+

∂

∂xk

(
Cε
k

ε
ukul

∂ε

∂xl

)
, (2.50)

where

Cε1 = 1.44, Cε2 = 1.92, Cε = 0.15. (2.51)

2.7 The Shima low-Re model

In its original form the Launder and Shima (1989) model is a low-Re version of

the Basic model that uses wall reflection terms and includes Ret-based damp-

ing coefficients to return the correct near-wall behaviour. Shima (1998) later

proposed a low-Re model based on the QI pressure-strain rate model that does

away with the wall reflection terms in the interest of more general applicability
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to complex geometries. The model admittedly gives stress anisotropy results in

steady channel flow that are inferior to his previous low-Re formulation, but this

is a compromise made in order to discard the wall reflection terms with their

associated difficulties related to complex geometries. The pressure-strain rate

coefficients are no longer constant, and are given by the following expressions:

C1 = 1 + 2.45A0.25
2 A0.75[1− exp(−49A2)]× {1− exp[−(Ret/60)2]} (2.52a)

C2 = 0.7A (2.52b)

C3 = 0.3A0.5 (2.52c)

C4 = 0.65A(0.23C1 + C2 − 1) + 1.3A0.25
2 C3 (2.52d)

where A2, A3 are the second and third invariants of the stress anisotropy tensor:

A2 = aijaji A3 = aijajkaki . (2.53)

and A is the ‘flatness’ parameter first defined by Lumley (1978),

A = 1− 9
8
(A2 − A3). (2.54)

Turbulent diffusion, comprising the triple velocity correlation and the pressure

velocity correlation, is modelled using the simple gradient diffusion of Daly and

Harlow (1970)

Tij =
∂

∂xk

(
Cs
k

ε
ukul

∂uiuj
∂xl

)
(2.55)

where Cs = 0.22.

The dissipation equation is given by

Dε

Dt
= Cε1

ε

k
P − Cε2

εε̃

k
+

∂

∂xk

(
Cε
k

ε
ukul

∂ε

∂xl
+ ν

∂ε

∂xk

)
. (2.56)

where ε̃ is the homogeneous dissipation rate, defined as:

ε̃ = ε− 2ν

(
∂k1/2

∂xi

)2

. (2.57)

The coefficients Cε2,Cε retain their typical values 1.92, 0.15 respectively, but Cε1



CHAPTER 2. REYNOLDS STRESS TRANSPORT MODELLING 43

is prescribed as:

Cε1 = 1.44 + β1 + β2 , (2.58a)

β1 = 0.25Amin(λ/2.5− 1, 0)− 1.4Amin(P/ε− 1, 0) , (2.58b)

β2 = 1.0Aλ2 max(λ/2.5− 1, 0) , (2.58c)

λ = min(λ∗, 4) , (2.58d)

λ∗ =

[
∂

∂xi

(
k1.5

ε

)
∂

∂xi

(
k1.5

ε

)]
(2.58e)

2.8 The Speziale–Sarkar–Gatski model

Speziale et al. (1991) developed a pressure-strain rate model that is quadratic

in aij by first considering the most general form for φij (slow and rapid) that is

linear in the mean strain and rotation tensors and quadratic in aij. Then they

obtained their model by considering the simplest subset of that general form

that has an equivalent structural equilibrium in plane homogeneous flows. The

resulting model has a rapid part that is linear in aij, and a quadratic slow part,

given by

φij =− (2d1ε+ d∗1Pκ)
aij
2

+
d2
4
ε(aikakj − 1

3
aklaklδij)

+

(
d3 − d∗3

√
A2

2

)
kSij +

d4
2
k(aikSjk + ajkSik − 2

3
aklSklδij)

+
d5
2
k(aikΩjk + ajkΩik) ,

(2.59)

where Ωij is the mean vorticity tensor defined as:

Ωij =
1

2

(
∂Ui

∂xj
− ∂Uj

∂xi

)
, (2.60)

and the coefficients have the following values

d1 = 1.7, d∗1 = 1.8, d2 = 4.2, d3 =
4
5
, d∗3 = 1.3, d4 = 1.25, d5 = 0.4 .

(2.61)

The rapid part of the SSG model, aside from the nonlinear dependence on A2 in

third term of (2.59), is tensorially equivalent to the QI model.

Diffusion is modelled using the GGDH, and the standard high-Re version of
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the ε equation (2.50) is used, but the coefficient Cε2 is assigned the slightly lower

value of 1.83.

2.9 The Hanjalić–Jakirlić low-Re model

Jakirlić and Hanjalić (1995) developed a low-Re RSTM that is based on the LRR-

IP model, and the Gibson and Launder (1978) wall corrections (2.27) and (2.28),

making modifications to handle Low-Re and near-wall effects. The modifications

are expressed in terms of Ret, the stress anisotropy invariants, A2, A3, in addition

to invariants of the stress dissipation rate anisotropy tensor, E2, E3, defined as:

E2 = eijeji E3 = eijejkeki , (2.62)

eij =
εij
ε
− 2

3
δij . (2.63)

A ‘flatness’ parameter based on the stress dissipation rate anisotropy invariants

is also used:

E = 1− 9

8
(E2 − E3) (2.64)

The modelled RST equation is given by:

Duiuj
Dt

=Pij − C1εaij − C2

(
Pij −

2

3
δijPκ

)
+ φs,w

ij + φr,w
ij

+
∂

∂xl

(
Cs
ε

k
uluk

∂uiuj
∂xk

)
− εij .

(2.65)

The coefficients are specified by:

C1 = C +
√
AE2, C = 2.5AF 1/4f, F = min(0.6, A2) (2.66)

C2 = 0.8
√
A (2.67)

f = min
[(Ret

150

)3/2
, 1
]
, (2.68)

Cw
2 = max(1− 0.7C, 0.3), Cw

2 = min(A, 0.3) (2.69)

The damping coefficient appearing in the wall correction terms (2.27) and (2.28)
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is given by:

fw = min
[ k3/2

2.5εxn
, 1.4

]
(2.70)

The modelled dissipation rate transport equation is given by:

Dε

Dt
= Cε1

ε

k
Pκ − Cε2fε

εε̃

k
+

∂

∂xk

(
Cε
k

ε
ukul

∂ε

∂xl
+ ν

∂ε̃

∂xk

)

+ Cε3 ν
k

ε
uiuj

∂2Uk

∂xi∂xl

∂2Uk

∂xj∂xl
− Cε4f4kΩk Ωk + Sl.

(2.71)

The coefficients have the following specified values:

Cε1 = 2.6 Cε2 = 1.92 Cε3 = 0.25 Cε4 = 0.1 Cε = 0.18 , (2.72)

and

fε = 1− Cε2 − 1.4

Cε2

exp

[
−
(
Ret
6

)2
]
. (2.73)

The length-scale growth correction, Sl, is given by:

Sl = max

{[(
1

Cl

∂l

∂xn

)2

− 1

](
1

Cl

∂l

∂xn

)2

, 0

}
ε̃ε

k
A (2.74)

where l = k3/2/ε, and Cl = 2.5.

The anisotropic stress dissipation rate tensor is modelled as:

εij = fsε
∗

ij + (1− fs)
2

3
δijε, (2.75)

where ε∗ij is given by:

ε∗ij =
ε

k

uiuj + (uiuk nj nk + ujuk ni nk + ukul nk nl ni nj)fd

1 + 3
2
npnq

upuq

k
fd

, (2.76)

fs = 1−
√
AE2, fd = (1 + 0.1Ret)

−1. (2.77)

2.10 The Two-Component-Limit model

Workers at UMIST, starting with the work of Fu et al. (1987), and Craft et al.

(1989), used realisability in the limit of two component turbulence to obtain a
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cubic model for the rapid term. Using similar arguments as in (2.21), but retain-

ing up to cubic terms in aij, and using the additional constraint of realisability

in the two component limit (TCL), the following model for φr
ij was obtained

φr
ij =− 0.6 (Pij − 2/3δijP ) + 0.6aijP

− 0.2

{
ukuj ului

k

[
∂Uk

∂xl
+
∂Ul

∂xk

]
− uluk

k

[
uiuk

∂Uj

∂xl
+ ujuk

∂Ui

∂xl

]}

− c2
{
A2(Pij −Dij) + 3amianj(Pmn −Dmn)

}

+ c′2

{(
7

15
− A2

4

)
(Pij − 2/3δijP )

+ 0.2[aij − 1/2(aikakj − 1/3δijA2]P − 0.05aijalkPkl

+ 0.1

[
uium
k

Pmj +
ujum
k

Pmi − 2/3 δij
ulum
k

Pml

]

+ 0.1

[
ului ukuj

k2
− 1/3 δij

ulum ukum
k2

]
·
[
6Dlk + 13k

(
∂Ul

∂xk
+
∂Uk

∂xl

)]

+ 0.2
ului ukuj

k2
(Dlk − Plk)

}

(2.78)

where A2 is the second invariant of the stress anisotropy tensor

A2 = aijaji , (2.79)

and the recommended values of the coefficients, in the earliest, high-Re version

of the model are

C2 = 0.55, C ′

2 = 0.6 .

In the TCL modelling framework (in its high Reynolds number formulation)

a second-order expression for φs
ij is used, where the coefficients are allowed to

depend on the invariants in such a way as to satisfy realisability in the two-

component limit (Craft and Launder, 2002). Dependency on the third invariant

A3 = aijajkaki ,
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is introduced through the flatness parameter,

A = 1− 9
8
(A2 − A3). (2.80)

This flatness parameter becomes zero when one component vanishes. Thus using

φs
ij = −C1ε[aij + c′1(aijajk − 1

3
A2δij)]− f ′

Aεaij , (2.81)

where the coefficients are given by

C1 = 3.1(A2A)
1/2 C ′

1 = 1.1 f ′

A = A1/2 ,

ensures that φs
ij drops to zero when the turbulence is two-component.

2.10.1 Low-Re TCL model

A low-Re version of the TCL model was presented by Craft (1998). This version

adopts a slightly different decomposition of the velocity-pressure gradient corre-

lation Πij that was found to be more appropriate when modelling inhomogeneous

flows. Where this correlation is typically decomposed into the pressure strain

rate correlation and pressure diffusion, an alternative decomposition is obtained

be defining:

φ∗

ij = Πij − 1
3
δijΠkk (2.82)

Constructing φ∗

ijin this way ensures that it is redistributive in nature, since it is

traceless and thus cannot contribute to the level of kinetic energy. This redis-

tributive quantity is modelled as

φ∗

ij = φ∗,s
ij + φ∗,r

ij + φinh,s
ij + φinh,r

ij (2.83)

The quantities φ∗,s
ij , φ

∗,r
ij have the same form as their homogeneous counterparts

(2.81) and (2.78), respectively, but the coefficients C1, C2 and C ′

2 are prescribed
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by

C1 = 3.1fAfRetA
1/2
2 (2.84a)

C2 = min

{
0.55

[
1− exp

(−A1.5Ret
100

)]
,

3.2A

1 + S∗

}
(2.84b)

C ′

2 = min(0.6, A) +
3.5(S∗ − Ω∗)

3 + S∗ + Ω∗
− 2SI (2.84c)

where

f ′

A =
√
AfRet + A(1− fRet) (2.85)

fRet = min[(Ret/160)
2, 1] (2.86)

fA ==





(A/14)1/2 A < 0.05

A/0.8367 0.05 < A < 0.7

A1/2 A > 0.7

(2.87)

S∗ = Sk/ε, Ω∗ = Ωk/ε, (2.88)

S = (2SijSji)
1/2, Ω = (2ΩijΩji)

1/2, (2.89)

SI =
2
√
2SijSjkSki

(SlmSml)3/2
, (2.90)

and

Sij =
1

2

(
∂Ui

∂xj
+
∂Uj

∂xi

)
, Ωij =

1

2

(
∂Ui

∂xj
− ∂Uj

∂xi

)
. (2.91)

The inhomogeneous corrections are independent of the wall-normal vector,

and are given by

φinh,s
ij =fw1

ε

k
(ulukd

A
l δij − 3

2
uiukd

A
j − 3

2
ujukd

A
i )d

A
k

+fw2
ε

k2
ulun(unukd

A
k δij − 3

2
uiund

A
j − 3

2
ujund

A
i )d

A
l

+fw3ν

(
ail
∂
√
k

∂xl

∂
√
k

∂xj
+ ajl

∂
√
k

∂xl

∂
√
k

∂xi
− 2

3
anl

∂
√
k

∂xl

∂
√
k

∂xn
δij −

4

3
aij
∂
√
k

∂xl

∂
√
k

∂xl

)

+f ′

w1

k2

ε

(
ukul

∂
√
A

∂xk

∂
√
A

∂xl
δij −

3

2
uiuk

∂
√
A

∂xk

∂
√
A

∂xj
− 3

2
ujuk

∂
√
A

∂xk

∂
√
A

∂xi

)

(2.92)
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φinh,r
ij = fIk

∂Ul

∂xn
dldn(didj − 1

3
dkdkδij) (2.93)

where the ‘normalised length-scale gradients’ di, d
A
i , introduced by Craft and

Launder (1996), are used indicate the direction of strong inhomogeneity, when

present, without the use of a wall-normal vector. These are defined by

di =
Ni

0.5 + (NkNk)0.5
, where Ni =

∂(k1.5/ε)

∂xi
, (2.94a)

dAi =
NA

i

0.5 + (NA
k N

A
k )

0.5
, where NA

i =
∂(k1.5A0.5/ε)

∂xi
. (2.94b)

The coefficients appearing in the inhomogeneous corrections are given by:

fw1 = 0.4 + 1.6min[1,max(0, 1− (Ret − 55)/20)] (2.95)

fw2 = 0.1 + 0.8A2 min[1,max(0, 1− (Ret − 50)/85)] (2.96)

fw3 = 2.5
√
A (2.97)

f ′

w1 = 0.22 (2.98)

fI = 2.5 fA (2.99)

As discussed in Section 2.5, the dissipation tensor near a wall or free surface is

anisotropic, and the low-Re TCL accordingly prescribes the following anisotropic

model for the dissipation rate tensor,

εij = (1− fε)
ε′ij + ε′′ij + ε′′′ij

D
+ 2

3
fεεδij (2.100)

where

ε′ij =ε
uiuj
k

+ 2ν
ulun
k

∂
√
k

∂xl

∂
√
k

∂xn
δij

+2ν
ului
k

∂
√
k

∂xj

∂
√
k

∂xl
+ 2ν

uluj
k

∂
√
k

∂xi

∂
√
k

∂xl
,

ε′′ij =ε

(
2
uluk
k

dAl d
A
k δij −

ului
k
dAl d

A
j −

uluj
k
dAl d

A
i

)
,

ε′′′ij =Cεsνk

(
∂
√
A

∂xk

∂
√
A

∂xk
δij + 2

∂
√
A

∂xi

∂
√
A

∂xj

)
,

D =
ε′kk + ε′′kk + ε′′′kk

2ε
,

(2.101)
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and the coefficients are taken as fε = A3/2, Cεs = 0.2. The term ε′ij is similar

in nature to the model in (2.38), and its purpose is to ensure the correct wall-

limiting behaviour of εij, as discussed in Section 2.5. The term ε′′ij serves the

specific purpose of producing the dip in ε12 near y/δ = 0.1 observed in DNS

studies of plane channel flow, and finally the term ε′′′ij improves the behaviour of

εij at a free surface where there is strong inhomogeneity even without significant

viscous effects (Craft and Launder, 1996).

2.10.2 Dissipation rate equation

Early high-Re implementations of the TCL model used the same transport equa-

tion for the scalar dissipation rate (2.50) as in the LRR models. In later versions

of the TCL model (Craft, 1998; Batten et al., 1999), an equation for the homo-

geneous dissipation rate,

ε̃ = ε− 2ν

(
∂k1/2

∂xi

)2

, (2.102)

is solved, which takes the form

Dε̃

Dt
= Cε1

ε̃

k
Pκ − Cε2

ε̃2

k
− C ′

ε2

(ε− ε̃)ε̃
k

+
∂

∂xk

(
Cε
k

ε
ukul

∂ε̃

∂xl
+ ν

∂ε̃

∂xk

)

+ Cε3 ν
k

ε
uiuj

∂2Uk

∂xi∂xl

∂2Uk

∂xj∂xl
+ YE.

(2.103)

The term YE is a length-scale correction based on the proposal of Iacovides and

Raisee (1997), and is given by

YE = Cεl
ε̃2

k
max[F (F + 1)2, 0], (2.104)

and F in turn is given by

F =

(
∂l

∂xj

∂l

∂xj

)
− Cl{[1− exp(−BεRet)] + BεClRet exp(−BεRet)} , (2.105)

l = k3/2/ε, Bε = 0.1069, Cl = 2.55 . (2.106)
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The remaining coefficients are given by

Cε1 = 1.0, Cε2 =
1.92

1 + 0.7Ad

√
A2

, Ad = max(A, 0.25),

C ′

ε2 = 1.0, Cε3 = 0.875,

Cεl = 0.5, Cε = 0.15.

(2.107)



Chapter 3

Numerical Solution Techniques

This chapter presents the numerical solution techniques used to solve the govern-

ing equations presented in Chapter 2, for inhomogeneous turbulence cases. Nu-

merical solution of the governing equations in these inhomogeneous turbulence

cases, which are examined in Chapters 5 and 6, was carried out using the in-house

code STREAM. The code is based on the finite volume method for structured

grids, which can be body-fitted non-orthogonal, using Rhie–Chow interpolation

(Rhie and Chow, 1983) to allow a collocated velocity and pressure storage ar-

rangement. It uses the SIMPLE algorithm for pressure-velocity coupling, and

a number of possible interpolation schemes for the convective terms. The main

features of this code, relevant to the present work, will be presented briefly.

Presentation in this chapter will focus on the numerical features of the code

that are relevant to the problems examined in this work. Thus generalisation

to 3 dimensions, non-orthogonal grids, variable density or compressibility effects,

etc. which the STREAM code is capable of handling, but were not used, will not

be described here. Further details of numerical implementation and the above

generalisations are available in Lien and Leschziner (1994).

3.1 The Finite volume method

In the finite volume method one works with the integral form of the relevant

governing equations. Thus the transport equation for the generic scalar φ in

differential form
∂(Ujφ)

∂xj
=

∂

∂xj

(
γ
∂φ

∂xj

)
+ Sφ, (3.1)

52
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Ω

∂Ω

Figure 3.1: 2-D Finite volume cell

where Sφ is a point source, is integrated over a control volume Ω having a surface

denoted ∂Ω, as depicted in Figure 3.1, to give

∫

Ω

∂

∂xj

(
Ujφ− γ

∂φ

∂xj

)
dV =

∫

Ω

SφdV. (3.2)

It is more convenient to work with surface integrals, thus using the Gauss diver-

gence theorem to transform the integral on the left hand side to a surface integral,

the equation becomes

∫

∂Ω

(
Ujφ− γ

∂φ

∂xj

)
njdS =

∫

Ω

SφdV, (3.3)

where nj represents an element of the unit vector normal to the differential ele-

ment of surface area dS. The domain is discretised by a set of control volumes,

cells, and variables are stored at the cell centres. The surface integral is thus

discretised as

∫

∂Ω

(
Ujφ− γ

∂φ

∂xj

)
njdS ≈

∑

k

[(
Ujφ− γ

∂φ

∂xj

)
nj∆S

]

k

, (3.4)

where values in the square brackets are evaluated at the centre of the edge segment

k. The source term on the right hand side of (3.3) is discretised using the following

approximation ∫

Ω

SφdV ≈ Sφ∆V ≈ Sφ|P ∆V, (3.5)

where the subscript P denotes the quantity evaluated at the storage node located

at the cell centre.
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Figure 3.2: 2-D Finite volume computational stencil

Using the preceding approximations to integrate (3.3) over the 2-D finite vol-

ume cell in Figure 3.2 leads to

[Uφ∆y]ew + [V φ∆x]ns =

[
γ
∂φ

∂x
∆y

]e

w

+

[
γ
∂φ

∂y
∆x

]n

s

+ Sφ∆x∆y. (3.6)

All variables appearing above, except for the source term Sφ are to be evaluated at

the cell faces e, w, n, s, while values are stored at cell centres, and interpolation is

therefore required. The diffusive terms are discretised using central differencing,

[
γ
∂φ

∂x
∆y

]e

w

+

[
γ
∂φ

∂y
∆x

]n

s

=

[
γ
∂φ

∂x
∆y

]

e

−
[
γ
∂φ

∂x
∆y

]

w

+

[
γ
∂φ

∂x
∆y

]

n

−
[
γ
∂φ

∂x
∆y

]

s

≈

(φE−φP )

[
γ
∆y

∆x

]

e

−(φP−φW )

[
γ
∆y

∆x

]

w

+(φN−φP )

[
γ
∆x

∆y

]

n

−(φP−φS)

[
γ
∆x

∆y

]

s

.

(3.7)

The above diffusive contribution can be rearranged in the form

adEφE + adWφW + adNφN + adSφS − adPφP , (3.8)
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where the coefficients associated with the neighbouring nodal values are given by

adE =
(
γ
∆y

∆x

)
e
, adW =

(
γ
∆y

∆x

)
w
,

adN =
(
γ
∆x

∆y

)
n
, adS =

(
γ
∆x

∆y

)
s
,

adP = adE + adW + adN + adS.

(3.9)

Expanding the convective terms in (3.6) leads to

[Uφ∆y]ew + [V φ∆x]ns =

(U∆y)e φe − (U∆y)w φw + (V∆x)n φn − (V∆x)s φs =

ceφe − cwφw + cnφn − csφs (3.10)

where the coefficients ce, cw, cn, cs are the volumetric fluxes through the sub-

scripted faces.

As in the case of the diffusive terms, variable values (U , V , φ) are required at

cell faces while they are stored at cell centres, and interpolation is thus required.

Interpolation schemes suitable for convective fluxes are briefly outlined in the

next section.

3.2 Convective differencing schemes

The directional nature of convection means that special treatment is required in

the discretisation of convective terms. The use of central differencing leads to

un-physical wiggles in the solution, since this scheme is neither directional nor

bounded. A number of convective schemes are available for use in STREAM.

These include upwind differencing, QUICK and UMIST. The simplest method

is upwind differencing where, as the name suggests, the value of φface is taken

simply as the value of φ at the upwind node. For example,

φe =




φP if ce > 0

φE if ce < 0

Using this approximation, the discretised convective terms can be written

−acEφE − acWφW − acNφN − acSφS + acPφP , (3.11)
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where

acE = max(−ce, 0) acW = max(cw, 0)

acN = max(−cn, 0) acS = max(cs, 0)

acP = acE + acW + acN + acS

(3.12)

The upwind differencing scheme is unconditionally bounded, but is only first order

accurate. Accuracy can be increased by using a higher order interpolation. This

is the approach taken in the QUICK scheme, where a quadratic polynomial is

fitted through three nodes with an upwind bias, to achieve the desired property

of directionality (transportiveness). Using the subscripts U,D,UU to denote the

upwind, downwind, and upwind-upwind nodes, the value of φ at a face can be

interpolated by

φface = −1
8
φUU + 3

4
φU + 3

8
φD. (3.13)

This scheme is third order accurate and is transportive, but is not bounded, which

can cause serious problems when solving for non-negative turbulent quantities

such as k, ε and the normal Reynolds stresses. One solution to this problem

is to use flux-limiting, or total variation diminishing (TVD) schemes. In such

schemes, a higher order interpolant is fitted through the nodes only if the variable

is monotonically increasing or decreasing over these nodes. If not, they switch to

first order upwind to maintain boundedness. The variable is monotonic if

(φD − φU)(φU − φUU) > 0

The following auxiliary quantity representing a ratio of successive gradients is

used in formulating TVD schemes,

r =
φU − φUU

φD − φU

(3.14)

There are two TVD schemes available in STREAM, the Upstream Monotonic

Interpolation for Scalar Transport (UMIST) scheme Lien and Leschziner (1994),

and van Leer’s harmonic scheme (1974). Only the UMIST scheme has been used
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in the present work, and it is given by

φface =




φU + (φD − φU)max[0,min(1, r, 1

8
+ 3

8
r, 3

8
+ 1

8
r)] if monotonic,

φU otherwise.

(3.15)

The UMIST scheme is a flux-limited variant of the QUICK scheme, and is third

order accurate where the solution is monotonic.

3.3 Algebraic system of equations

Substituting the diffusive contributions (3.8), and the convective contributions as

outlined in Section 3.2 back into (3.6), a linear equation of the following form is

obtained for each node:

aPφP = aEφE + aWφW + aNφN + aSφS + S , (3.16)

where aE = adE+a
c
E, and similarly for the other faces, and aP = aE+aW+aN+aS.

This can also be written as

aPφP −
∑

i

aiφi = S , (3.17)

where the index i runs over the neighbouring nodes. When such an equation is

written for each cell in the finite volume grid, an algebraic system of equation is

constructed

Aφ = S (3.18)

where φ is the global vector of nodal values of variable φ, A is the coefficient

matrix of the algebraic equations system, and S is the global vector of source

terms. Since the STREAM code uses structured grids exclusively, the coefficient

matrix has a pre-defined sparse structure (5 non-zero diagonals in 2D). This al-

lows the use of the highly efficient tridiagonal matrix algorithm (TDMA), within

a line iteration method, where the solution is updated in sweeps along the rows

and columns in an alternating fashion. This involves temporarily treating adja-

cent lines during a sweep as having known values, so that only three variables

are treated as unknown, and the matrix becomes tridiagonal. The process must
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therefore be done iteratively until a converged solution is obtained. Further de-

tails of this method are available in textbooks such as Versteeg and Malalasekera

(2007).

3.3.1 Source–term linearisation

Numerical stability of the solution algorithm is enhanced by increasing the diag-

onal dominance of the coefficient matrix. To this end, source-term linearisation

is performed provided the source term can be re-written as

S = SPφP + SU (3.19)

with the solution dependent part having an unconditionally negative slope (i.e.

SP < 0). This allows part of the source term to be treated implicitly by absorbing

the coefficient SP into aP

aP ← aP + SP (3.20)

For a non-negative quantity φ, such as, for example, a normal Reynolds stress

component, if form of the source term admits negative values, the source term is

treated

SU = max[S, 0], SP =
min[S, 0]

φP

(3.21)

This also helps to prevent negative values of the variable from arising in a com-

putation.

3.4 Pressure–velocity coupling

There is no explicit equation for pressure among the governing equations for mean

turbulent flow. Since the momentum equations provide a link between velocity

fields and pressure gradients, requiring velocity fields that satisfy the momentum

equations to simultaneously satisfy the continuity equation provides a route to

obtaining an equation for pressure. This is the idea behind pressure-velocity cou-

pling algorithms. The algorithm used in STREAM is the Semi-Implicit Method

for Pressure-Linked Equations (SIMPLE) of Patankar and Spalding (1972). This

involves solving the momentum equations using an initial guess for the pres-

sure field, then using the thus obtained velocity field to solve an equation for a

continuity-based pressure correction equation. The pressure correction is then
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used to ‘nudge’ the pressure field in the correct direction, and use this improved

pressure estimate in the momentum equation. The process is repeated iteratively

until a converged solution for velocity and pressure satisfying both momentum

and continuity equations within a specified tolerance is obtained.

The solution starts by solving the discretised momentum equations with the

current pressure field, which might be an initial guess.

aUPUP =
∑

i

aUi Ui+
∆y

aUP
(Pw−Pe)+S

U aVPVP =
∑

i

aVi Vi+
∆x

aVP
(Ps−Pn)+S

V

(3.22)

UP =
∑

i

aUi Ui

aUP
+DU(Pw−Pe)+s

U VP =
∑

i

aVi Vi
aVP

+DV (Ps−Pn)+s
V (3.23)

where

DU =
∆y

aUP
, DV =

∆x

aVP
, sU =

SU

aUP
, sV =

SV

aVP
.

The resulting velocity field generally will not satisfy continuity. We thus wish to

find corrections U ′, V ′, P ′ such that the corrected variables

U∗ = U + U ′, V ∗ = V + V ′, P ∗ = P + P ′, (3.24)

satisfy both momentum and continuity. If these are substituted into the discre-

tised momentum equations, and (3.22) is subtracted, the following equations for

the velocity corrections are obtained

U ′

P =
∑

i

aUi U
′

i

aUP
+DU(P ′

w − P ′

e) V ′

P =
∑

i

aVi V
′

i

aVP
+DV (P ′

s − P ′

n) (3.25)

The discretised continuity equation is

(U∗

e − U∗

w)∆y + (V ∗

n − V ∗

s )∆x = 0 (3.26)

Or,

(U ′

e − U ′

w)∆y + (V ′

n − V ′

s )∆x =

− ((Ue − Uw)∆y + (Vn − Vs)∆x) = −Sm (3.27)

The current mass imbalance (Sm) thus represents a source term for this form of

the continuity equation. At this point expressions equivalent to (3.25) for the
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velocity corrections at cell faces are substituted in the above expression, bearing

in mind that the SIMPLE scheme neglects the first term on the RHS of equations

(3.25) (which go to zero as the solution converges). Thus,

(DU∆y)e(P
′

P − P ′

E)− (DU∆y)w(P
′

W − P ′

P )+

(DV∆x)n(P
′

P − P ′

N)− (DV∆x)s(P
′

S − P ′

P ) = −Sm (3.28)

This can be re-arranged into a set of equations of the form

aPP
′

P =
∑

i

aiP
′

i − Sm , (3.29)

which are then solved using the same methods described in Section 3.3.

3.4.1 Rhie–Chow velocity interpolation

It is well known that the use of a collocated grid where all variable are stored at

the same node locations, in conjunction with straightforward linear interpolation

for the velocity at cell faces when calculating mass fluxes, leads to ‘checker-

boarding’ of the pressure field. This results from odd-even decoupling between the

velocity and pressure fields, where node velocities are dependent on the pressure

at adjacent nodes but not at the node itself. One possible remedy for this problem

is to use a staggered grid where the pressure and all other variables aside from

velocities are stored at cell centres, while velocities are stored at cell faces. This

provides a stronger coupling between local velocities and pressures and solves the

problem of checker-boarding. Staggered grids present some difficulties, however,

in non-Cartesian grids, and in the interest of geometrical flexibility the STREAM

code uses a collocated grid arrangement. This necessitates special treatment in

velocity interpolation that avoids odd-even decoupling. The STREAM code uses

the technique proposed by Rhie and Chow (1983), which provides a means for

using a collocated velocity and pressure storage while retaining the necessary

local coupling between these variables.

The method can be outlined as follows. The x-momentum equation for the
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cell centred at node P , as shown in Figure 3.2, yields an equation for UP

UP =
∑

i

aUi Ui

aUP
+ sU

︸ ︷︷ ︸
HP

+(DU)P (Pw − Pe), (3.30)

or,

UP = HP + (DU)P (Pw − Pe)P . (3.31)

Similarly for the neighbouring node to the east:

UE = HE + (DU)E(Pw − Pe)E (3.32)

To obtain the velocity at the cell face e, the idea of Rhie-Chow interpolation is

to interpolate the two parts of the velocity source terms differently. Thus

Ue = He + (DU)e(Pw − Pe)e

= 1
2
(HP +HE) +

1
2

[
(DU)P + (DU)E

]
(PP − PE)

(3.33)

Bearing in mind that

HP = UP − (DU)P (Pw − Pe)P HE = UE − (DU)E(Pw − Pe)E (3.34)

We have

Ue =
1
2

[
UP − (DU)P (Pw − Pe)P + UE − (DU)E(Pw − Pe)E

]

+ 1
2

[
(DU)P + (DU)E

]
(PP − PE)

(3.35)

This expression may be viewed as a linear interpolation and a pressure smoothing

term by rewriting in the form (Leschziner and Lien, 2002)

Ue =
1
2
(UP + UE)︸ ︷︷ ︸

linear interpolation

+
1

2

{[
(DU)P + (DU)E

]
(PP − PE)− (DU)P (Pw − Pe)P − (DU)E(Pw − Pe)E

}
.

︸ ︷︷ ︸
pressure smoothing

(3.36)

Rhie-Chow interpolation is applied to calculate mass fluxes through cell faces



CHAPTER 3. NUMERICAL SOLUTION TECHNIQUES 62

before solving the pressure-correction equations, exemplified by (3.28).

3.5 Time-stepping

Integration in time for time-dependent problems which have the (semi) discretised

form
∂(∆Vφ)

∂t
+
∑

k

[(
Ujφ− γ

∂φ

∂xj

)
nj∆S

]

k

= Sφ∆V (3.37)

can be achieved by a simple extension of the FV method for steady state problems.

The default method for time-stepping in STREAM is the backward differencing

scheme, which may be written as

(∆Vφ)new − (∆Vφ)old

∆t
+
[
aφPφP −

∑
aφi φi − Sφ

]new
= 0 (3.38)

This can be rearranged to write

(
aφP +

∆V

∆t

)
φP −

∑
aφi φi = Sφ +

(
∆VφP

∆t

)old

(3.39)

It can be seen that this method is implemented by a change of coefficients and

the source term:

aφP ← aφP +
∆V

∆t
Sφ ← Sφ +

(
∆VφP

∆t

)old

(3.40)

This method has the advantage that there are no time-step restrictions dictated

by stability, but it is only first order accurate. The second order Crank-Nicolson

scheme is also available in STREAM. This is defined by

(∆Vφ)new − (∆Vφ)old

∆t
+

1

2

[
aφPφP −

∑
aφi φi − Sφ

]old
+

1

2

[
aφPφP −

∑
aφi φi − Sφ

]new
= 0. (3.41)
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Upon rearrangement,

(
aφP + 2

∆V

∆t

)
φP −

∑
aφi φi =

Sφ +

[(
2
∆VφP

∆t
− aφP

)
φP +

(
Sφ +

∑
aφi φi

)]old
(3.42)

This is implemented by applying the following change of coefficients and source

term:

aφP ← aφP + 2
∆V

∆t

Sφ ← Sφ +

[(
2
∆VφP

∆t
− aφP

)
φP +

(
Sφ +

∑
aφi φi

)]old
.

(3.43)

3.6 Numerical issues specific to RST modelling

There are a number of difficulties associated with the use of RST models that are

not present when using eddy viscosity formulations. In particular, the use of RST

models results in relatively large source terms that increase the stiffness of the

algebraic equation system, in addition to the fact that the equation set becomes

highly non-linear and strongly coupled (Lien and Leschziner, 1994; Leschziner

and Lien, 2002). When using a collocated grid, there is also the issue of odd-even

decoupling of the velocities and the Reynolds stresses.

The use of an eddy-viscosity approach adds to the momentum equations a

momentum diffusion term that can be treated implicitly, thus enhancing stabil-

ity. Since no such term is present in RST model equations, one approach to

improve stability when applying RST models, the approach used in STREAM, is

to add and subtract a gradient-diffusion term based on an effective viscosity, νeff .

Considering u2 for example, one may write

u2 =
(
u2 + νeff

∂U

∂x

)
− νeff

∂U

∂x

allowing the unbracketed term to be treated implicitly in the U -momentum equa-

tion.

Since the effective viscosity does not affect the final converged solution, it is

not uniquely specified, and one would, in general, simply be trying to significantly

reduce the residual stress term that must be treated explicitly in the source term.
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One way to specify the effective viscosity is by reference to a simplified form of

the Basic Reynolds stress model equations. What is needed is to construct a

relation between u2 and ∂U
∂x
, between v2 and ∂V

∂x
, and so on. Take u2 for example,

and start by assuming its transport equation is source dominated:

P11 + φ11 −
2

3
εδij = 0 (3.44)

Substituting for φ11 from the Basic model,

P11 − C1ε
(u2
k
− 2

3

)
− C2

[
P11 −

1

3
(P11 + P22 + P33)

]
− 2

3
εδij = 0 (3.45)

This leads to

− 2u2
∂U

∂x

(
1− 2

3
C2

)
− C1

ε

k
u2+

(
other terms not containing u2 or

∂U

∂x

)
= 0 (3.46)

or

u2 =
(2− 4

3
C2)u2

C1

k

ε

∂U

∂x
+O.T. (3.47)

Thus a suitable choice for ν11 is

ν11 =
2− 4

3
C2

C1

ε

k
u2 (3.48)

Similar consideration of the v2 transport equation leads to the specification

ν22 =
2− 4

3
C2

C1

ε

k
v2, (3.49)

and finally relating the shear stress uv to ∂U
∂y

leads to the following specification

for ν12

ν12 =
1− C2

C1

ε

k
v2, (3.50)

Maintaining the required coupling between the velocity and Reynolds stress com-

ponents is accomplished through a Rhie-Chow-type interpolation (Leschziner and
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Lien, 2002):

u2P =
1

aP

(∑

i

aiu2i + Su

)
+
Su

aP
︸ ︷︷ ︸

HP /ap

+νP11
(Uw − Ue)P

∆x
. (3.51)

Similarly,

u2E =
HE

aE
+ νE11

(Uw − Ue)E
∆x

, u2e =
He

ae
+ νe11

(UP − UE)

∆x

Using linear interpolation for νe11 and He/ae, one obtains for the value at face e:

u2e =
1
2
(u2P + u2E)︸ ︷︷ ︸

linear interpolation

+
1

2∆x

{[
νP11 + νE11

]
(UP − UE)− νP11(Uw − Ue)P − νE11(Uw − Ue)E

}

︸ ︷︷ ︸
velocity smoothing

(3.52)

3.7 Wall functions

Wall functions are used in the jet-cavity interaction problem examined in Chap-

ter 6. The form used is a simplified version of the Chieng and Launder (1980)

formulation based on the modified Log-law

U∗ =
U

u∗
=

1

κ
log(E∗y∗) (3.53)

where

u∗ = C1/4
µ k1/2v , y∗ =

yk
1/2
v

ν
, (3.54)

and kv denotes the value of k at the edge of the viscous sub-layer, which is

assumed to lie at y∗ = 20. In practice, k is assumed to be constant over the

fully turbulent region, so that kv is assumed to be the same as the value kP , at

the wall-adjacent node. The nominal friction velocity u∗ is based on the eddy

viscosity specification of uv

−uv =
τw
ρ

= u2τ = C1/2
µ

Pκ

ε
k. (3.55)
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Under equilibrium conditions Pκ/ε = 1, and the quantity on the right hand side

is used to provide an alternative estimate of uτ that does not vanish at separation

and reattachment points. Using the form of the log law above the value of wall

shear stress is set as:

τw =




µUP

yP
if yP < yv,

ρκ∗u∗yP
log(E∗y∗

P
)
UP

yP
otherwise.

(3.56)

If the wall is assumed to lie on the south face of cell P , the above is implemented

by modifying the coefficients of the wall parallel velocity at the wall adjacent

node, UP , as:

aS = 0

SP = −τwA
UP

,
(3.57)

where A is the area of the wall segment. Setting aS = 0 is to suppress the link

with the south face, which would erroneously imply a linear velocity variation if

the node lies outside the viscous sub-layer.

Because of the large variation of the production and dissipation rates over the

wall adjacent cell, cell-averaged values of these quantities are used in the source

terms of the k equation. These are obtained by integration,

Pκ =
1

yn

∫ yn

0

Pκ dy , ε =
1

yn

∫ yn

0

ε dy (3.58)

The integrals are evaluated by employing simplified assumptions regarding the

variations of the integrands over the wall adjacent cell. In this case, the assump-

tions are:

• The Reynolds shear stress is zero across the viscous sub-layer, and is con-

stant and equal to the wall shear stress over the fully turbulent region.

• The dissipation rate is uniformly equal to its wall value, assumed to be:

εw =
2νkP
y2v

, (3.59)

over the viscous sub-layer. In the fully turbulent region, the length scale is

assumed to vary linearly with the distance from the wall k3/2/ε = cly.
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• k varies quadratically in the viscous sub-layer, and is constant in the fully

turbulent region.

These assumptions lead to the following cell-averaged Pκ and ε:

Pκ =




0 if yn < yv

τ2w
ρ2κ∗u∗yn,

log
(
yn
yv

)
otherwise,

(3.60)

and

ε =




εw if yn < yv

εw
yv
yn

+ u∗3

κ∗yn,
log
(
yn
yv

)
otherwise.

(3.61)

The above cell-averaged production and dissipation are then used to over-write

the corresponding previously set local values in the source terms of the k equation

(where one is solved) in all wall adjacent nodes.

The boundary condition for ε is applied at the wall-adjacent nodes, where it

set by assuming equilibrium of production and dissipation, and using the scale

u∗ instead of the typical uτ , to be:

εP =
u∗3

κ∗yP
=

k
3/2
P

2.55yP
(3.62)

Similarly, the boundary conditions for the Reynolds stress components are

applied at the wall-adjacent nodes. The Reynolds stresses are derived by assuming

local equilibrium and applying the Basic model with wall reflection terms, which

leads to:

(u2)P = 1.098kP , (v2)P = 0.248kP , (w2)P = 0.654kP , (uv)P = −0.255kP .
(3.63)

In the above equations yP is used to represent the wall distance, implying a

Cartesian coordinate system with the wall coinciding with the south face of the

cell. The STREAM code is able to handle more general cases than that, but for

present purposes the only other possibility is for the wall to coincide with another

single face or, if the cell is a corner of the geometry, two faces coincide with that

wall. All these possibilities are handled by using a distance variable that is half

the volume of the cell divided by the area of the face tagged as a wall. In the

latter case, when the cell is at a corner, only one of the two wall distance variables

will be used (the one appearing later in a loop over all wall segments).
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3.8 Convergence criteria

The root-mean-square of the normalised residual error is used as the convergence

measure in the present work. The normalised residual error at each node is

defined as

ǫr =
aPφP −

∑
i φi − S

aP
, (3.64)

and the rms residual error is

ǫrms =

√
1

N

∑
ǫ2r (3.65)

where N is the total number of nodes.



Chapter 4

Homogeneous Turbulence

This chapter deals with the performance of Reynolds Stress Transport models

in various types of homogeneous turbulent flow. The concept of homogeneous

turbulence is introduced in Section 4.1. Next, a review of experiments and nu-

merical simulations in homogeneous turbulence is provided in section 4.2. Section

4.3 presents the governing equations for homogeneous turbulent flows in the RST

modelling framework. Numerical results arising from the application of the mod-

els to reference cases identified from the literature are presented and discussed

in section 4.4. Finally, the chapter is ended with some concluding remarks in

section 4.5.

4.1 Introduction

Considerable simplification of the governing equations is obtained if the turbu-

lence can be said to be homogeneous. By this it is meant that all spatial gradi-

ents of statistical moments are negligibly small. The mean velocity gradients, if

present, must be constant in space for this to be true, implying that there can

be no boundaries in such a flow. This can be approximated experimentally in a

duct by considering a ‘turbulent box’ convected with the mean flow, and having

dimensions larger than the integral length scales of the turbulence, and smaller

than those of the duct. The time dependence can then be related to the spatial

dependence for a flow with mean velocity U1 along the axial direction of the duct

x1 by

t ∼ x1/U1

69
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In such a case turbulence cannot strictly be homogeneous along the axial direc-

tion, but it can be treated as such if

dL

dx1
≪ 1 and

dQ

dx1
≪ Q

L
, (4.1)

where L is an integral length scale, and Q represents a turbulent statistic (Gence,

1983). Numerically, homogeneous turbulence is in principle more straight-forward

to produce, but other limitations apply. In direct numerical simulation (DNS) of

homogeneous turbulence, the Navier-Stokes equations are solved using a pseudo-

spectral method on a periodic box of side L, larger than the integral length scales.

The number of grid-points, N , determines the largest wavenumber κmax (smallest

length-scale) that can resolved by

κmax =
πN

L
.

As the Reynolds number increases, the disparity of scales increases, thus demand-

ing a larger number of nodes for adequate resolution. This, along with stringent

requirements on the time step required for accuracy and stability, which must de-

crease as the number of nodes increases, means that a very large computational

cost is associated with the DNS approach. One implication of the high cost of

direct numerical simulations is that ensemble averaging is often not feasible, and

volume averaging is used to take advantage of homogeneity. The results are thus

often single realisations of a random process (Tavoularis et al., 1997). In addition

to that, the number of large eddies in a computational box is limited. When the

length of the computational box is 3 times the integral length scale, as is typi-

cally the case, one can expect the uncertainty of large scale properties, such as the

Reynolds stresses, to be of the order of 10% (Tavoularis et al., 1997). When the

turbulence is strained the turbulent length scales grow, so the simulation must

eventually be stopped, as the length-scales begin to outgrow the computational

box. If the box size is too small, this may happen before the effects of the initial

conditions are lost and self-similar evolution of the flow is attained. Despite these

difficulties, high quality DNS results, when available, provide far more detailed

information than experiments possibly can, since all turbulent statistics can be

calculated.

Because there can be no gradients of Reynolds stresses in homogeneous tur-

bulence, the turbulence can have no effect on the mean flow. The mean flow
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gradients can thus be prescribed independently, and their effect on the turbulence

evolution can be studied. The governing equations reduce to ordinary differential

equations to be solved with appropriate initial conditions. Thus the effects of

convection and diffusion, in addition to near–wall effects, with all their modelling

and numerical burden, can be temporarily eliminated from the analysis, allowing

other important effects to be studied more closely. Specifically, the redistributive

effects due to pressure–strain-rate interaction, and the dissipation rate are the

only unclosed source terms that remain in the Reynolds-stress equations.

4.2 Homogeneous turbulence data

Homogeneous shear

Simulations of homogeneous simple shear have been carried out by several re-

searchers. Rogers and Moin (1987) generated a database of homogeneous tur-

bulence fields by direct numerical simulation of the unsteady, incompressible

Navier-Stokes equations on a domain of up to 1283 grid points. The purpose

of their study was to examine the structure and development of the vorticity field

under various mean strain configurations. They were interested in particular in

the conditions under which ‘hairpin’ vortices develop. They found that such vor-

tices require a nonzero mean shear to develop, and thus are not found in purely

irrotational strain fields. Of relevance to the current work are the results for

the evolution of turbulent kinetic energy, its dissipation rate, and the Reynolds

stresses obtained from their simulations. Three simulations are available, for

which the initial shear parameter was kept constant at S∗

0 = 2.365 and the initial

turbulence Reynolds number was varied in the range Ret0 = 33− 530. A random

initial velocity field satisfying continuity, and having a prescribed three dimen-

sional energy spectrum was specified in each case. The initial stage of evolution

might thus be of less value for comparison in these simulations since a realistic

turbulence field might not have fully developed. A deforming computational grid

that followed the mean flow was used, and the grid was re-meshed at regular

intervals as it became skewed following the deforming flow. The data were saved

at time steps when the mesh was orthogonal. The length scale was found to grow

more slowly as the turbulence Reynolds number was increased.
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Jakobitz et al. (1997) performed DNS of homogeneous, uniformly sheared, and

stably stratified flow. They considered the effects of varying the gradient Richard-

son number, the initial micro-scale Reynolds number, Reλ0 = (
√
2kλ/ν)0, and the

initial shear number on turbulence evolution. A base case in their study was one

having a zero Richardson number, and the results of that case are relevant to

the current study since stratification is not considered here. A spectral colloca-

tion method on a 1283 grid was used in the simulations. A deforming grid with

regular re-meshing was also used in this study. Aliasing errors which arise from

re-meshing were handled by truncation of the modes corresponding to the highest

third of the wavenumber spectrum, before and after re-meshing. This translates

to a loss in energy and dissipation rate, of the order of 1-5% when the shear is

‘weak’ (Lee et al., 1990), as it is here. The researchers demonstrated the effect of

the assumed initial velocity spectrum (energy spectrum) on the evolution of tur-

bulence statistics. Their concern was that, in order for a parametrisation based

on initial values of the statistics to be meaningful, these initial values must be

characteristic of the evolution to follow. They demonstrated that using a random

field with a prescribed energy spectrum (usually top hat or exponential) results

in an initial transient in which there is a large drop in Reλ and S∗. This drop

is due to to the energy redistributing into the high wavenumber portion of the

spectrum, whose energy the initial conditions largely underestimate, thus sharply

increasing the viscous dissipation. The result is a large unrealistic drop in Reλ

and S∗ (Jakobitz et al., 1997). To avoid this, an initialization simulation was

carried out for a time interval larger than the initial transient, and the field thus

obtained was used as an initialization for the subsequent study cases.

Matsumoto et al. (1991) ran two simulations at an intermediate and high

initial strain parameter. They used a Fourier spectral method on a 643 grid for

the lower shear case, and a 256 × 64 × 64 grid for the higher shear case. A

deforming grid, with re-meshing and aliasing treatment similar to the previously

mentioned workers was used. An isotropic velocity field satisfying continuity,

with a specified energy spectrum, was used to initialise the simulation.

Lee et al. (1987, 1990) used DNS to study the structure of turbulence at high

shear rate. They report the results of simulation cases having S∗

0 of 17 (Lee

et al., 1990) and 50 (Lee et al., 1987). The numerical scheme used in these cases

is similar to the previous ones, except that re-meshing was not used because the

anti-aliasing measure it requires would introduce too large an error (energy loss).
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Figure 4.1: Evolution of turbulent kinetic energy and the ratio of the production
to dissipation rates in homogeneous shear DNS cases. Symbols are defined in
Table 4.1.
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Reλ0 = (
√
2kλ/ν)0 Ret0 S∗

0 Symbol
Jakobitz et al. (1997) 44.72 2.0 ⊲
Rogers and Moin (1987) 1 ∼ 70 33.4 2.365 ⋄
Rogers and Moin (1987) 2 133.6 2.365 ×
Rogers and Moin (1987) 3 534.25 2.365 *
Sarkar (1995) 24.3 2.6 ▽

Matsumoto et al. (1991) 1 55.24 152.5 4.715 △
Matsumoto et al. (1991) 2 19.24 18.1 30.65 I

Lee et al. (1990) 1 ∼ 40 75 16.75 ◦
Lee et al. (1987) 2 ∼ 20 10 50 �

Table 4.1: Summary of initial data of simple shear DNS cases, and symbols used
in Figures 4.1 and 4.2

Their argument was that, because of the high shear involved, the turbulence scales

grow rapidly so the skewed mesh is still able to resolve the fine scales. The grid

used in these cases is also larger than the previous studies with 512× 128× 128

nodes in the stream-wise, normal and span-wise directions respectively. This is

necessary to resolve properly the elongated eddies that form due to the high shear

rate (Lee et al., 1990).

The relevant initial data for the above DNS cases are summarised in table 4.1.

The evolutions of turbulent kinetic energy and the production-to-dissipation ratio

are shown in figure 4.1, and evolution of the anisotropy components is shown in

figure 4.2. The three lowest curves in figure 4.1a are for the Rogers and Moin

(1987) cases with S∗

0 = 2.37, followed by that from Sarkar (1995) with S∗

0 = 2.6,

then Jakobitz et al. (1997) with S∗

0 = 2.0. The significant variation in this set

of curves with similar initial shear rate parameter reflects the strong effect that

the choice of initial spectrum has on the evolution of the level of turbulence,

something that conventional RANS models cannot replicate. While there seems

to be a large degree of variation in kinetic energy evolution for the different DNS

cases, a clear pattern can be observed in the evolutions of the production-to-

dissipation ratio and stress anisotropy. The anisotropy is independent of the

level of turbulence, but rather depends on the turbulence time scale k/ε, so it

is not strongly affected by the choice of initial velocity field. Similarly, at the

smaller shear rates Pκ/ε seems to be affected only slightly in the initial stages,

but later on, curves with similar initial shear rates tend to converge to a similar

equilibrium level. The two general patterns of Pκ/ε and aij are reflected in the
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Figure 4.2: Evolution of Reynolds stress anisotropy in homogeneous shear DNS
cases. Symbols are defined in Table 4.1.

clustering of the lower-shear rate data, and the departing higher shear rate data

observable in figures 4.1b and 4.2 (if the lowest Ret case of Rogers and Moin is

excluded).

Yu and Girimaji (2006) carried out a DNS study of homogeneous turbulence

subjected to a sinusoidally oscillating shear, given by

∂U

∂y
= Smax sinωt, (4.2)

where Smax is the amplitude of the shear, and ω is the angular frequency. The

periodic shear was imposed on the flow through the addition of a body force to

the governing equations. Their numerical simulations were based on the Lattice-

Boltzmann method which, rather than solving the Navier–Stokes equations, solves

the discrete Boltzmann equation for a function describing the statistical distribu-

tion of single particles. The macroscopic phenomena of viscous fluid flow emerge

when simulating the interactions between a sufficiently large number of particles.

Yu and Girimaji performed validations of this method by comparing with other
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Case S∗

0 Ret0
LRPS1 1.0 9.8
LRPS2 8.0 11
LRPS3 154 9.8
LRAC1 0.965 12
LRAC2 9.65 14
LRAC3 96.5 12
LRAE1 0.707 11
LRAE2 7.07 14
LRAE3 70.7 14

Table 4.2: Summary of initial data in DNS cases of Lee and Reynolds (1985),
and symbols used in corresponding figures

well-established DNS results, such as those of Rogers and Moin (1987) and Jako-

bitz et al. (1997), and obtained good agreement. The initial shear parameter, in

this case defined as S∗

0 = Smaxk0/ε0, was fixed at 3.3 for all their simulations, and

the initial Taylor-micro-scale Reynolds number was Reλ = 33. Simulations were

carried out for a range of frequencies 0.125 < ω/Smax < 10.

Irrotational strains

Lee and Reynolds (1985) carried out simulations of homogeneous turbulence sub-

jected to three classes of irrotational strains: plane strain, axisymmetric contrac-

tion, and axisymmetric expansion. Each type of strain was run at several different

strain rates. Three strain-rates are selected for study here for each type of strain,

each separated from the next by an order of magnitude, as summarised in ta-

ble 4.2. The numerical solutions of Lee and Reynolds were obtained on grids of

1283 points, using a procedure very similar to those mentioned above for homoge-

neous shear. Regarding the specification of initial conditions, Lee and Reynolds

devised and used a rational method for specifying the initial energy spectrum

and micro-scale Reynolds number in their simulations based on specifying the

required resolutions of the energy-containing eddies, and the smallest dissipative

eddies (Lee and Reynolds, 1985).

Sjögren and Johansson (1998) carried out an axisymmetric contraction experi-

ment with the purpose of demonstrating the application of new theoretical results
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that allow the pressure–strain-rate correlation to be measured directly in axisym-

metric turbulence without having to infer it from a balance of the Reynolds-

stresses. The method, due to Lindborg (1995), is based on evaluating integrals

of measurable second and third order two-point velocity correlations. The duct

had a contraction ratio of 9, and a relaxation section of constant area. Mea-

surements of k, ε, and the normal stress anisotropy a11, as well as the slow and

rapid pressure–strain-rate correlations, among other statistics, are reported at a

turbulence Reynolds number of 1250.

Chen et al. (2006) used an experimental setup to study the response of tur-

bulence to a sequence of straining-relaxation-destraining. The experimental ap-

paratus consisted of a water tank having dimensions 325 (L)×125 (H)× 20 (W)

cm, active grids for generation of turbulence, and a piston used to effect plane

straining and destraining. The test section was at the bottom centre of the tank,

and two active grids were located a distance away on each side of it. Particle

image velocimetry (PIV) measurements were made through windows located be-

low and on both sides of the test section. The turbulent field generated by the

active grids was strained by the descending piston, creating a plane strain field.

This was followed by a relaxation period during which the piston was stationary,

then a period of plane destraining as the piston ascended to its starting posi-

tion. The measurements were repeated 1000 times at each recording time step,

and the data was ensemble-averaged. The researchers report the strain history,

and the Reynolds stresses in the strained directions only. Unfortunately, the w2

component, and therefore the total turbulent kinetic energy, was not measured.

4.3 Governing equations

In homogeneous turbulence the mean velocity gradients, and all turbulent statis-

tics, are constant in space. The exact turbulent kinetic energy equation (2.10) in

this case reduces to
dk

dt
= Pκ − ε (4.3)

It is convenient under such situations to consider separately the evolutions of the

level of turbulence, represented by k (4.3), and the degree of anisotropy of the
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stresses, given by aij. Using the definition (2.11), one can write

daij
dt

=
1

k

dRij

dt
− Rij

k

Pκ − ε
k

=
1

k
(Pij + φij − εij)− (aij +

2

3
δij)

Pκ − ε
k

,

or
daij
dt

= P a
ij +

1

k
φij −

ε

k
(eij − aij) , (4.4)

where P a
ij is the production of stress anisotropy,

P a
ij =

1

k
(Pij − (aij +

2

3
δij)Pκ) , (4.5)

and eij is the anisotropy of dissipation,

eij =
εij
ε
− 2

3
δij (4.6)

The mean strain rate and vorticity tensors are defined as

Sij =
1

2

(
∂Ui

∂xj
+
∂Uj

∂xi

)
, Ωij =

1

2

(
∂Ui

∂xj
− ∂Uj

∂xi

)
(4.7)

respectively, and

S =
√
2SijSji , (4.8)

is an invariant of the mean strain, which can be interpreted as a modulus of the

mean strain rate.

For a constant strain rate modulus, as in the cases to be considered shortly,

the parameter S∗ = Sk
ε

has the interpretation of a dimensionless turbulent time-

scale. Evolution of this time-scale, or more conveniently its inverse ψ = 1
S∗
, with

respect to the dimensionless time t∗ = St is given by

d

dt∗

( ε

Sk

)
=

1

S2k

dε

dt
− ε

S2k2
(Pκ − ε) (4.9)

If the modelled dissipation equation (2.29) is substituted, one obtains

dψ

dt∗
=

[
(Cε1 − 1)

Pκ

ε
− (Cε2 − 1)

]
ψ2 (4.10)
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This result is significant because it states that, regardless of the type of homo-

geneous flow (provided S is constant), using (2.29) will always produce the same

equilibrium value of the production-to-dissipation ratio at which the time-scale

becomes constant (Pκ

ε

)
∞

=
Cε2 − 1

Cε1 − 1
. (4.11)

Whether this is realistic or not will be considered in relation to the available data.

4.3.1 Simple shear

In simple shear the velocity gradient tensor is given by

∂Ui

∂xj
=

dU

dy




0 1 0

0 0 0

0 0 0


 (4.12)

The Reynolds stress production tensor is thus

Pij = −
dU

dy




2uv v2 0

v2 0 0

0 0 0


 (4.13)

The production of turbulent kinetic energy is

Pκ = −uvdU
dy

= −ka12
dU

dy
(4.14)

Thus, the production of stress anisotropy is

P a
ij =

dU

dy



−4

3
a12 + a12a11 −2

3
− a22 + a212 0

−2
3
− a22 + a212

2
3
a12 + a12a22 0

0 0 2
3
a12 + a12a33


 (4.15)

The above expressions are the exact terms in the transport equations. In order

to get complete evolution equations for k and aij, modelled redistributive and

dissipative parts need to be included. Using the Basic model, evolutions of k∗ =
k
k0
, aij and ψ = 1

S∗
= ε

Sk
are given by

dk∗

dt∗
= −k∗(a12 + ψ) (4.16)
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da11
dt∗

= −4
3
(1− c2)a12 + a12a11 − (c1 − 1)ψa11 (4.17)

da22
dt∗

= 2
3
(1− c2)a12 + a12a22 − (c1 − 1)ψa22 (4.18)

da12
dt∗

= −(1− c2)(a22 + 2
3
) + a212 − (c1 − 1)ψa22 (4.19)

dψ

dt∗
= −(cε1 − 1)ψa12 − (cε2 − 1)ψ2 (4.20)

4.3.2 Plane strain

The velocity gradient tensor in homogeneous plane strain is

Gij =
∂Ui

∂xj
=

dU

dx




1 0 0

0 −1 0

0 0 0


 (4.21)

The Reynolds stress production tensor is

Pij = −
dU

dx




2u2 0 0

0 −2v2 0

0 0 0


 (4.22)

The production of turbulent kinetic energy is now

Pκ = −dU

dx
(u2 − v2) = −dU

dx
k (a11 − a22) (4.23)

We then have, for the evolution of the anisotropy using the Basic model:

da11
dt∗

= −4

3
(1− c2)a11 −

2

3
(1− c2)a22

− a11(a22 − a11)− (c1 − 1)ψa11 −
4

3
(1− c2), (4.24)

da22
dt∗

=
4

3
(1− c2)a22 +

2

3
(1− c2)a11

− a22(a22 − a11)− (c1 − 1)ψa22 +
4

3
(1− c2), (4.25)

da33
dt∗

= −a33(a22 − a11)−
2

3
(1− c2)(a22 − a11)− (c1 − 1)ψa33, (4.26)
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dψ

dt∗
= (cε1 − 1)(a22 − a11)ψ − (cε2 − 1)ψ2. (4.27)

4.3.3 Axisymmetric contraction

In this class of flow the velocity gradient tensor is

Gij =
∂Ui

∂xj
=

dU

dx




1 0 0

0 −1/2 0

0 0 −1/2


 (4.28)

The Reynolds stress production tensor is

Pij = −
dU

dx




2u2 0 0

0 −v2 0

0 0 −w2


 (4.29)

The production of k in homogeneous axisymmetric contraction flow is given by

Pκ = −1

2
(2u2 − v2 − w2)

dU

dx
= −

(3
2
u21 − k

)dU
dx

= −3

2
a11k

dU

dx
(4.30)

Using the Basic model, the evolution of the stress anisotropy and ψ are given by

(note that, because of symmetry, a33 = a22):

da11
dt∗

=
3

2
a211 − (1− c2)a11 − (c1 − 1)ψ a11 −

4

3
(1− c2), (4.31)

da22
dt∗

=
3

2
a11a22 + (1− c2)a11 + (1− c2)a22 − (c1 − 1)ψ a22 +

2

3
(1− c2), (4.32)

dψ

dt∗
= −3

2
(cε1 − 1)a11 ψ − (cε2 − 1)ψ2. (4.33)

4.3.4 Axisymmetric expansion

In this type of strain the velocity gradient tensor is given by:

Gij =
∂Ui

∂xj
=

∣∣∣∣
dU

dx

∣∣∣∣



−1 0 0

0 1/2 0

0 0 1/2


 (4.34)
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The Reynolds stress production tensor is

Pij =

∣∣∣∣
dU

dx

∣∣∣∣




2u2 0 0

0 −v2 0

0 0 −w2


 (4.35)

The production of k in homogeneous axisymmetric expansion flow is given by

Pκ =
1

2
(2u2 − v2 − w2)

∣∣∣∣
dU

dx

∣∣∣∣ =
3

2
a11k

∣∣∣∣
dU

dx

∣∣∣∣ (4.36)

and the anisotropy evolution, using the Basic model, is obtained from

da11
dt∗

= −3

2
a211 + (1− c2)a11 − (c1 − 1)ψ a11 +

4

3
(1− c2), (4.37)

da22
dt∗

= −3

2
a11a22 − (1− c2)a11 − (1− c2)a22 − (c1 − 1)ψ a22 −

2

3
(1− c2),

(4.38)

dψ

dt∗
=

3

2
(cε1 − 1)ψ a11 − (cε2 − 1)ψ2. (4.39)

4.4 Results

4.4.1 Simple shear

The evolution of turbulent kinetic energy and the a11 and a12 components of

stress anisotropy as predicted by four different models are shown in Figure 4.3,

along with reference DNS data, for a range of values of the initial dimensionless

shear parameter S∗

0 . The models used are the Basic, LRR-QI, SSG, and TCL

models. The reference DNS data used for these cases are listed in Table 4.3. At

the lowest initial shear rate S∗

0 = 1.2, both k and the two anisotropy components

are well predicted by all the models. At the next level of dimensionless shear, the

SSG model slightly under-predicts the rate of k∗ evolution. In simple shear the

evolution of k∗ is given exactly by

dk∗

dt∗
=
Pk − ε
Sk0

= −a12k∗ −
ε∗

S∗

0

. (4.40)

Thus, given the initial value S∗

0 , any error in the predicted k∗ evolution must

originate from errors in the shear stress anisotropy or dissipation rate predictions.
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Table 4.3: DNS data used as reference for homogeneous shear cases. t∗0 is the
dimensionless time taken as the starting point for the models, and to which S∗

0

corresponds, and t∗end is the end point of the available DNS data.

S∗

0 t∗0 t∗end Reference
1.2 2 14 Rogers and Moin (1987) Case 3
2.0 1 12 Sarkar (1995)
5.16 2 14 Matsumoto et al. (1991) Case 1
16.75 0 16 Lee et al. (1990)
50 0 16 Lee et al. (1987)

Figure 4.4 shows the terms appearing on the right hand side of (4.40). It can be

seen in this figure that the SSG model more closely reproduces both production

and dissipation rates of k∗ at S∗

0 = 1.2, while it slightly under-predicts these rates

(particularly the production) at S∗

0 = 2.0. The opposite is true for the other three

models. These trends are reflected in the k∗ evolutions as seen in the top two rows

of Figure 4.3. Considering that the value of a12 at t
∗

end that is returned by the SSG

model is closer to those of the DNS than the other models, the under-predicted

level of k∗ and production rate must be due to the slight under-prediction of a12 in

the initial stage of development, as can be seen by inspection of Figure 4.3. This

leads to less energy being accumulated from the initial stage in the integration of

(4.40).

These discrepancies notwithstanding, it can generally be said that at these

two rates of shear both turbulence energy and the a11, a12 components of the

anisotropy tensor are reasonably reproduced by the models.

It should be noted here that the TCL results presented in Figures 4.3 and 4.4

were obtained using Cε1 = 1.44 and Cε2 = 1.92. Although later references on the

TCL model, such as Craft (1998) and Craft and Launder (2002), recommend the

alternative prescription, listed previously in Equations (2.107):

Cε1 = 1.0, Cε2 =
1.92

1 + 0.7Ad

√
A2

, (4.41)

the former more conventional values were used here because, as (4.11) suggests,

the use of Cε1 = 1 (in conjunction with the standard ε equation) in homogeneous

turbulence leads to an unbounded ‘equilibrium’ level of Pκ/ε. It was found, for

instance, that the use of (4.41) leads to odd behaviour in aij. The prescription

in (4.41) is retained, however, in later chapters where inhomogeneous flows are
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Figure 4.3: Evolution of turbulent kinetic energy (left) and a11,a12 components
of anisotropy (right) in simple homogeneous shear at various shear rates.
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examined.

At the intermediate level of shear, S∗

0 = 5.16, the Basic, LRR-QI and TCL

models significantly over-predict k∗, this is due to over-predicting the magnitude

of a12 (21, 23%, and 18% higher than the DNS value, respectively, compared to

7% higher for the SSG model). It can still be said, however, that at this level of

shear the anisotropy prediction is qualitatively correct.

At the higher shear levels, S∗

0 = 16.75 and 50, there is a marked qualitative

change in the behaviour exhibited by the DNS turbulence statistics. Due to the

high shear rate in these cases, the DNS results resemble the Rapid Distortion

Theory (RDT) solution for simple shear, as confirmed by Lee et al. (1990). In

the rapid distortion limit, simply-sheared homogeneous turbulence tends towards

a one-component limit, where all of the energy is contained in the u2 component,

the uv component is suppressed, and the asymptotic growth of k is linear rather

than exponential (Pope, 2000). These trends are seen in the bottom two rows of

Figure 4.3. Specifically, the normal anisotropy a11 is markedly higher than in the

previous cases, and is largely under-predicted by the models, and the magnitude

of the turbulence energy-producing a12 is lower than in previous cases, and over-

predicted by all the models. The over-prediction of a12 leads to an exaggerated

rate of growth of k. The reduction in the magnitude to which a12 falls with

increasing S∗

0 is also highlighted in Table 4.4, showing the value of a12 at the end

of each simulation. The table reveals that, in the DNS results, there is a definite

decreasing trend in the long-time shear stress anisotropy.

4.4.2 Modelling explorations

Constant φr
ij model coefficients

The simplest variation applied to the TCL model that was surprisingly found

to yield significant improvements in all the homogeneous shear cases (including

the unsteady cases to follow shortly), was to use constant values for the rapid

pressure-strain rate model, using the values C2 = 0.55, C ′

2 = 0.6, as originally

recommended by Fu (1988).

The currently used variable prescription of these coefficients in the Low-Re

TCL model was found by Craft (1998) to improve the model’s performance in

near-wall shear flows and the backward facing step problem, where it was noted

that a higher C2 contributed an excessively large sink for the shear stress (Craft,
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Figure 4.4: Evolution of the quantity (Pκ − ε)/Sk0, representing the right-hand
side of k/k0 evolution equation.
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1998), it was therefore desirable to reduce the C2 coefficient in regions of high

shear rate. In the present homogeneous shear cases, the former effect (C2 con-

tributing a large sink for the shear stress) is precisely what is desired, as the RDT

solution predicts that a12 decays. Inspection of Table 4.4, shows that only the

TCL model with constant coefficients (denoted TCL cc) displays a decreasing

trend of a12 with increasing S∗

0 . The low-Re TCL exhibits an opposite trend.

The improvement brought about by using constant C2 and C
′

2 coefficients was

not found to extend to irrotational strains where, as will be seen later, the more

recent version of the TCL, with variable C2, C
′

2 coefficients, gives superior results.

The preceding observations therefore suggest that the modelled term should

be reformulated in order to only bring about the reduction of the C2 coefficient

with strain rate in near-wall, or strongly inhomogeneous, flow regions.

Modifications to Pε

Another modification that was also tested is to use an alternative form for Pε

borrowed from the eddy-viscosity formulation. In eddy viscosity models Pκ is

given by

Pκ = 2Cµ
k2

ε
SijSji. (4.42)

If this is used in the modelled dissipation rate production term, one obtains the

following,

Pε = Cε1
ε

k
Pκ = 2Cε1Cµk SijSji. (4.43)

This modification has the effect of increasing the sensitivity of the model, through

the dissipation rate production rate, to the strength of the mean strain. It is

denoted TCL mod Pε in Table 4.4 and upcoming figures.

The effect of the previous two modifications, compared to the Craft (1998)

version of the TCL model, is shown in Figures 4.5 and 4.6, where they are applied

to the same cases presented previously in Figures 4.3 and 4.4. The effect of both

modifications at low S∗

0 is small. Starting from the intermediate dimensionless

shear level S∗

0 = 5.56 onwards, the TCL model, as was previously seen, over-

predicts the rate of growth of k/k0. Both modifications bring down this growth

rate at intermediate to high S∗

0 . In the case of the TCL model with the modified

Pε, the growth rate of k/k0 is brought down excessively at S∗

0 = 5.56 and 16.75,

but is in good agreement with the DNS results at S∗

0 = 50. The constant coef-

ficient version does relatively well over the whole range of S∗

0 , but exhibits some
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Table 4.4: Magnitude of a12 from DNS and models at t∗end at various levels of
dimensionless shear. Values in brackets are the percentage difference between the
model and DNS values.

a12 % difference in a12 at t∗
end

between models and DNS
S∗

0 DNS Basic LRR-QI SSG TCL TCL cc TCL mod Pε

1.2 0.318 15.6% 18% 2.97% 10.7% -2.97% 3.03%
2.0 0.330 11.5% 13.8% -0.773% 6.73% -6.68% -0.734%
5.56 0.306 20.9% 22.8% 7.03% 17.6% -4.55% 6.91%
16.75 0.204 83.1% 84.9% 60.6% 80.6% 21.9% 60.44%
50 0.086 342% 342.5% 281% 342% 66.2% 281%

oscillatory behaviour, not seen in the reference DNS data, at the highest shear

rate.

The impact of the dissipation rate on the observed behaviour at high shear

rates can be assessed by using pressure–strain rate data from DNS results, which

leaves the dissipation rate as the only remaining modelled element in the evolu-

tion equations. This is done in Figures 4.7 and 4.8, using data from the Lee et al.

(1990) DNS at S∗

0 = 16.75. As can be seen in Figure 4.8, the rate of growth of

k/k0 is substantially improved when the correct level of a12 is achieved. This in-

dicates that the standard dissipation model does give roughly the correct balance

between generation and distruction processes in this case. Further improvement

is achieved in Figure 4.9 when a smaller value 1.25 is used for Cε1 instead of 1.44,

which means that the actual rate of production of ε appears to be lower, in this

case, than the widely–accepted equilibrium rate implied by Cε1 = 1.44.

4.4.3 Oscillating homogeneous shear

The case of homogeneous turbulence subjected to an oscillating shear is consid-

ered next. The DNS and modelled evolution of k/k0 at different forcing frequen-

cies (up to ω/Smax = 1.0) are shown in Figure 4.10. It can be seen that turbulence

energy grows (on average) at the lower frequencies of the applied shear, and de-

cays at high frequencies. Yu and Girimaji identified the frequency at which this

change in behaviour occurs to be around ω/Smax ∼ 0.5. The critical mechanism

determining whether k grows or decays is the phase shift between the shear stress

uv and the applied rate of shear ∂U
∂y
. The models correctly reproduce this quali-

tative change of behaviour between low and high frequencies, due to the intrinsic

quality of RST models, where the Reynolds stresses are obtained from individual

transport equations, and thus need not be in phase with the mean strain. The
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Figure 4.5: Evolution of turbulent kinetic energy (left) and a11,a12 components
of anisotropy (right) in simple homogeneous shear at various shear rates.
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side of k/k0 evolution equation.
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Figure 4.9: Evolution of k/k0 and ε/ε0 using pressure–strain rate data from DNS
and the standard dissipation rate model, for the case S∗

0 = 16.75, showing the
effect of using Cε1 = 1.25.

observed critical frequency at which the growth behaviour changes appears to be

picked up most closely by both versions of the TCL model. Although they do not

capture the entire temporal variation, at ω/Smax = 0.5 they both return solu-

tions oscillating with approximately the same amplitude as the DNS data, with a

mean that is almost constant. The DNS shows a very slow long-term increase at

this frequency, whilst both Basic and SSG models return a mean that is already

decreasing at this frequency. When considering the performance over the whole

range of frequencies, the TCL model with constant C2 and C
′

2 coefficients appears

to most closely follow the trend of the DNS data over the considered range, while

the version with variable coefficients significantly over-predicts the rate of growth

of k at the lower frequencies.

Figure 4.11 shows the Reynolds shear stress anisotropy evolution at ω/Smax =

0.5 for the Basic and TCL models. It is clearly seen in this figure that the

Reynolds stress and the applied strain are not in phase. The lag between these

two quantities determines the intervals where they have opposite signs, leading

to a positive turbulence energy production, and where they have the same sign,

leading to negative production. This can be seen in Figure 4.12, which shows

the ratio of production to dissipation rates, for the same models and frequency

as the previous figure. A difficult feature of this problem is made clear by the

last two figures, where it can be seen that, even with reasonably good prediction

of a12, and a stress–strain lag that is not much different from the reference data,
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over the whole simulation interval, small differences in production (between the

models and the data, mostly over-prediction) accumulate in k with integration.

This in turn feeds back into Pκ = −a12k ∂U
∂y
, and, in the low frequency cases where

k grows, initially small differences quickly grow. This helps explain the increasing

deviation between the models and the reference data as the frequency decreases,

as seen in Figure 4.10.

4.4.4 Irrotational strains

The performance of the models in various irrotational strain fields is considered

next. Figure 4.13 shows the evolution of turbulent kinetic energy and Reynolds

stress anisotropy components, as well as the rate of production of turbulence en-

ergy, in plane strain at three dimensionless strain rates. The reference data for

these cases are from the DNS results of Lee and Reynolds (1985). In plane strain

the production of turbulent kinetic energy is given by Pκ = −S11k(a11−a22). The
dimensionless strain parameter in this case is defined as S∗ =

√
2SijSji k/ε =

2dU
dx
k/ε. One immediately notices in Figure 4.13 that, in contrast to the homo-

geneous shear cases, the evolution of k is quite well predicted over a much larger

range of S∗ by all the models tested. This is true even though in all the models,

with the exception of the Low-Re TCL, the anisotropy evolution tends to deviate

from the reference data. Evidently, in the two higher strain rate cases, S∗

0 = 8

and 154, both a11 and a22 deviate in the same direction and, since it is the differ-

ence (a11 − a22) that determines Pκ, the errors tend to cancel and the turbulent

kinetic energy evolution is well predicted. This is not true at the lowest strain

rate, S∗

0 = 1, where the magnitude of both a11 and a22 is under-predicted, leading

to under-prediction of Pκ and thus also of k. It is also notable that all the models,

except for the low-Re TCL, predict the wrong sign for the third normal stress

anisotropy component a33 (unstrained direction) particularly at the higher strain

rates, predicting negative a33 where the reference data shows it to be positive.

Since a33 = −(a11+ a22), the error cancellation that is favourable for Pκ does not

apply for a33. Given that a22 is positive and a11 is negative, it is seen that

a33 = −(a11 + a22) = −(a22 − |a11|) .

Thus, if a22 > |a11|, a33 will (erroneously) be negative. This is clearly observable

in Figure 4.13. The low-Re TCL model (with coefficients C2 and C
′

2 dependent on
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strain rates) in these cases predicts the correct production and stress anisotropy

levels, as well as turbulence energy evolution, over the range of strain rates con-

sidered. Figure 4.14 compares the results obtained using the TCL model with

constant coefficients (TCL cc), with those obtained with the Low-Re, variable

coefficient version (TCL) for the same plane strain cases as in the previous fig-

ure. It can be seen that the constant-coefficient version is significantly worse

in predicting anisotropy and Pκ for this set of cases. Similar comments can be

made regarding the performance of the constant coefficient version in the remain-

ing irrotational strain cases, and results using this version will therefore not be

presented.

Next, attention is turned to the axisymmetric contraction cases from Lee and

Reynolds (1985). Similar to the previous figure, Figure 4.15 shows the evolution

of turbulence energy, stress anisotropy and the rate of turbulence production

at three strain rates. In axisymmetric contraction flow the evolution of stress

anisotropy of homogeneous turbulence depends only on the total strain (time),

and is independent of the rate of strain (Lee and Reynolds, 1985). This is evident

in the DNS data from the second column of plots in Figure 4.15, where it is seen

that the anisotropy levels are practically constant over two orders of magnitude

of the strain rate. Further, due to symmetry, only one anisotropy component is

independent. Written in terms of a11, the production rate of k in this case is

Pκ = −3
2
S11ka11. As in the previous set of cases, evolution of turbulence kinetic

energy seems to be fairly well predicted over a wide range of strain rates. In

these cases however, there is no favourable error cancellation in the production

in the Basic and SSG models, since the clearly under-estimated anisotropy levels

by these models can be seen to lead to under-estimated Pκ. The fact that these

models nevertheless give reasonable predictions of the evolution of k must mean

that the dissipation rate (data not available) is also under-estimated, which is

understandable because of the link between Pκ and Pε. The low-Re TCL re-

turns the correct anisotropy levels over the range of strain rates considered. At

the lowest stain rate, however, the level of k is slightly over-predicted by this

model towards the end of the integration time, and Pκ is slightly over-predicted.

Considering that the model gives the correct anisotropy level, the over-estimated

Pκ must be a result of the over-estimated k, which, in turn, must be due to an

under-estimation of ε.

Figure 4.16 shows the evolution of k, aij and Pκ in the axisymmetric expansion
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traction flow at various rates. Symbols: DNS, Lee and Reynolds (1985). Lines:
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rate in axisymmetric expansion flow at various rates. Symbols: DNS, Lee and
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cases of Lee and Reynolds (1985). At the higher strain rates there is a clear over-

prediction of all the turbulence statistics. The root cause of this is believed to be

the over-prediction of anisotropy magnitudes. It can be seen in Figure 4.16 that

the Low-Re TCL gives the least over-predicted anisotropies, and correspondingly

the least over-predicted turbulence energy and production rate. To underline

that the over-prediction of k is linked to over-predicted anisotropy (rather than

an under-prediction of ε), a test was done in which Cε1 was increased by over 70%,

in order to raise the dissipation rate. Despite this substantial increase in the rate

of growth of ε, almost no effect was seen on the growth of k at the highest strain

rate. At the lowest strain rate the SSG model gives the most accurate results for

all three quantities considered.

As a further test in an axisymmetric contraction case, Figure 4.17 summarises

data and results pertaining to the axisymmetric contraction experiment of Sjögren

and Johansson (1998). The applied mean strain due to the contraction, and the

mean velocity along it are shown in the top row. In this case the flow development

occurs along the axial distance, x, as opposed to in time, as in the previous cases.

The governing equations for the turbulent statistics, which involve convective

terms, are thus now solved by an initial value problem marching in space after

dividing the right hand side of the equations by the instantaneous mean velocity.

Thus, for example, the u2 stress component is obtained by solving

du2

dx
=

1

U
(P11 + φ11 − ε11 ) .

The models correctly predict the evolution of turbulent kinetic energy up to the

point of maximum strain about half way through the contraction. After that,

the models over-predict the level of energy to various degrees, with the Basic

model results being the closest to the experimental values, and those of the TCL

model being the most over-predicted (by about 33-37%). The SSG and LRR-QI

models give k evolutions that are similar to each other. A high degree of stress

anisotropy is reached towards the end of the contraction, with a11 approaching

the value corresponding to the two-component limit a11 = −2
3
. The TCL model

gives the best agreement with experimental results in this respect, while the other

models under-predict the degree of anisotropy. The turbulence production rate

is reasonably well predicted by all the models (within about 15% at the point of

maximum straining), except the Basic model, which significantly under-predicts



CHAPTER 4. HOMOGENEOUS TURBULENCE 102

−4 −2 0 2

0

2

4

6

8

dU/dx k
0
/ε

0

−4 −2 0 2
0

2

4

6

8

U/U
0

−4 −2 0 2
0.2

0.4

0.6

0.8

1

1.2

k/k
0

−4 −2 0 2
−0.8

−0.6

−0.4

−0.2

0

0.2

a
11

 

 

−4 −2 0 2

0

0.1

0.2

0.3

x, m

P
k

−4 −2 0 2
0

1

2

3

x, m

ε/ε
0

Basic

LRR−QI

SSG

TCL

Figure 4.17: Applied mean velocity and strain, and the evolution of various tur-
bulence statistics in the axisymmetric contraction experiment of Sjögren and
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it, giving a peak that is about 30% lower than the experimental data. The

experimental results show the dissipation rate to go through a strong peak which

none of the models is able to pick up. During this peak the experimental value

of the dissipation rate is more that 4.5 times greater than the largest value of

dissipation from the models at the same instant (belonging to the TCL model),

and about 3.6 times the peak value given by that model. The small model peaks

for ε also slightly lag behind the experimentally observed one. The low values

of ε returned by the models explains their tendency to predict k to continue to

growing too much after the peak contraction.

The final irrotational strain case is the successive plane strain-relaxation-

destraining experiment of Chen et al. (2006). The form of the mean velocity

gradient is the same as in the Lee and Reynolds (1985) set of plane strain cases,

but the strain rate, S11 =
dU
dx
, now varies in time. This time-varying applied strain

rate is shown in the top plot of Figure 4.18, and the Reynolds stress components

u2, v2 (labelled as R11 and R22) are shown in the bottom plot normalised by their

initial values. All the models return the correct v2 evolution up to the point

at which S11(t) peaks, after which they all over-predict this stress component,

with the TCL giving the least over-prediction. The magnitude of u2 is under-

predicted throughout the cycle, but to a lesser extent. Unfortunately, since the

third stress component was not measured in the experiment, it is not possible to

tell to what extent these discrepancies are the result of an over-predicted level of

turbulence energy, or degree of anisotropy. If one assumes that the redistribution

is adequately accounted for, at least by the TCL as in the previous plane strain

cases, the rapid decay of v2 after the peak of straining suggests an accelerated

turbulence dissipation rate.

In the previous two cases it appears that there is scope for improved per-

formance if the dissipation rate is increased. To explore this possibility, the

previously introduced modified Pε was tested in these two cases, in addition to a

simple test of adjusting of the coefficient Cε1 to a higher value, Cε1 = 2.8. The

effect of these two modifications on the last two cases is shown in Figures 4.19

and 4.20 (the latter modification is denoted TCL mod Cε1). Also shown in the

figures is the standard TCL as used in previous figures, for reference. It can be

seen in Figure 4.19 that both modifications improve the modelled evolution of

k/k0 by increasing the dissipation rate level. In Figure 4.20, both modifications

can also be seen to bring the v2 stress component closer to the experimentally
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measured levels.

4.5 Concluding remarks

This chapter has examined a number of homogeneous turbulence problems cover-

ing various modes of mean strain and a wide range of strain rates. The evolution

of various turbulence statistics using several RST models was presented and dis-

cussed.

In simple shear it was generally found that models predict the correct evolution

of turbulent kinetic energy k and dissipation rate ε at lower dimensionless shear

rates Sk/ε < 4. Despite some variation among the models in the quality of the

anisotropy prediction, the more important components a12, a11 are reasonably

well predicted by most models. A gradually decreasing trend was observed in the

reference data for the long-time a12, as the shear rate is increased. This trend is

reflected in an increasingly over-predicted rate of production of turbulence energy

by most models, which begins to be visible from the intermediate level of shear

rate Sk/ε ≈ 4 − 5, onwards. The variation in the ‘equilibrium’ (or long-time)

level of anisotropy with the mean strain rate is something that the Basic and

LRR-QI models, using constant coefficients, are unable to replicate, which is

an argument for the use of variable coefficients, if one wishes to retain a linear

tensorial expansion for φr
ij.

At the higher shear rates tested, Sk/ε > 16, existing models grossly over-

predict the evolution of k and ε. This is attributed mainly to the inability of the

models to replicate the decay of a12 at high shear rates as predicted by Rapid

Distortion Theory (RDT), and observed in DNS results. In addition, the normal

stress anisotropies are also under-predicted by the models. It is observed that

with some modifications to the coefficients of the pressure-strain rate correlation,

it is possible to correct or improve the a12 level at least, thus correcting the

rate of evolution of k and ε. Specifically, the TCL model using constant C2, C
′

2

coefficients was the only one found to have the desirable feature of a decreasing

trend of long–time a12 with increasing shear rate. This feature perhaps needs

to be restored in the Low-Re, variable coefficient, formulation of the model by

re-associating the C2 reduction, found by Craft (1998) to be desirable in some

near-wall shear flows, with correction terms that only come into effect in regions

of strong inhomogeneity.
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It is worth noting that the RDT solution is an idealised limiting behaviour,

and the reference data, as indicated above, suggest a gradual transition from

the low–shear behaviour towards this high–shear RDT limit, the effect of which

begins to be felt even at shear rates that are not typically considered ‘high’. This

gradual change in the long-time anisotropy behaviour is something that should

be taken into account when re-tuning model coefficients, whether it be variable

coefficients for the linear models, or the TCL model.

Some limited improvement in homogeneous shear flows was obtained with the

alternative Pε formulation, but the DNS data indicated that correction of a12 is

a more critical factor in these cases.

In the case of homogeneous turbulence subjected to oscillating shear it was

found that the models, owing to the intrinsic lag between stress and strain asso-

ciated with solving an individual transport equation for each stress component,

were able to return the correct qualitative trend of turbulence energy growth at

low frequencies and decay at high frequencies. The critical frequency at which

this change in behaviour occurs depends on the modulation of the shear stress

and the applied shear, and is picked up most closely by the TCL model, although

not all of the temporal variations shown by the DNS were reproduced.

Model performance was found to be consistent over a much wider range of

strain rates in the homogeneous irrotational strain cases, where the Low-Re TCL

model was found to return the best results. In the experimental irrotational

strain cases examined (plane strain and axisymmetric contraction flows) there was

evidence of an accelerated dissipation rate generation. Significant improvement

was achieved through the use of the alternative Pε mentioned earlier, and through

a simple (though large) increase of the coefficient Cε1 in the conventional Pε term.

It would be interesting and worthwhile to further explore this trend of accelerated

dissipation rate production through additional detailed experimentation or high

quality simulations. If this trend is found to be generally applicable in irrotational

strains, the modifications mentioned above, or others, might be selectively applied

in irrotational strains and switched off in shear dominated flows. The additional

data could contribute to the optimisation of the coefficient terms over a wider

range of cases.



Chapter 5

Pulsatile Internal Flows

5.1 Introduction and literature review

This chapter considers the problem of fully-developed channel flow subjected to

imposed pressure pulsations. The general problem of pulsatile shear flows is of

relevance to many practical engineering problems such as pipe flows driven by

reciprocating pumps, sediment transport in coastal and river flows, and physi-

ological flows, to name some examples. The addition of imposed pulsation sig-

nificantly complicates the physics of the problem relative to the corresponding

steady flow situation. The flow pulsation, in conjunction with the no-slip con-

dition at the wall, creates a periodic shearing action that starts at the wall and

propagates into the flow. This introduces an additional time-scale and amplitude

to the problem, and the flow characteristics have been observed to vary signifi-

cantly in previous work according to the ranges of these parameters. The flow

exhibits two limiting behaviours corresponding to the extremes of the imposed

frequency. At the limit of very low frequencies, when the rate of variation of

mean flow quantities is very slow, the turbulence has ample time to adjust to

the changing flow conditions. The flow in this limit behaves as if progressing

through a series of equilibrium states at different conditions, hence it is called

the ‘quasi-steady’ limit. At the other extreme, when the frequency is sufficiently

high, the inertia of the bulk flow confines fluctuations of flow quantities to a small

region near the wall, and the turbulence is ‘frozen’ in the outer region. At the

point when fluctuations are confined to the viscosity affected region, the mean

flow modulation mimics the laminar Stokes solution of this problem, and this is

hence called the ‘quasi-laminar’ limit.

109
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There have been various suggestions in the literature regarding the scaling

parameters appropriate for this class of flows (Tardu et al., 1994). For example,

in their study of pulsatile turbulent pipe flow, Ramaprian and Tu (1983) recom-

mended the parameter ωD
uτ

, where ω is the angular frequency of the pulsations, D

is the pipe diameter, and uτ is the mean friction velocity; other scalings based on

outer variables have also been suggested. Ronneberger and Ahrens (1977) intro-

duced the parameter l+s , which is the laminar Stokes layer thickness, ls =
√

2ν
ω
,

normalised by the viscous length scale, δv = ν
uτ
. The Stokes thickness is a mea-

sure of the penetration depth of oscillatory motion in the laminar problem, and

the parameter is thus a ratio of the laminar penetration depth to the charac-

teristic viscous scale. This scaling is especially useful in explaining the viscous

behaviour observed in the high frequency regime. As the frequency is increased,

the Stokes layer becomes progressively thinner until it is confined to the viscosity

affected region near the wall, at which point the flow modulation is governed by

viscous effects. The angular frequency normalised by wall variables, ω+ = ων/u2τ ,

is related to l+s by ω+ = 2/l+s
2
.

5.1.1 Experimental studies

There are numerous experimental studies of pulsatile turbulent pipe and channel

flow reported in the literature. Among the earlier studies are those of Mizushina

et al. (1973) and Mizushina et al. (1975), who studied pulsatile pipe flow at a mean

Reynolds number of 10,000, subject to a range of frequencies. The quantities mea-

sured were the pressure gradient, velocity, and streamwise velocity fluctuations.

The Reynolds stresses were deduced from the momentum equation. The authors

observed different flow regimes over the range of frequencies studied, identifying

a critical frequency, which they suggested is related to the so-called turbulence

‘bursting’ frequency.

A range of experiments was also carried out by Tu and Ramaprian (1983)

who examined fully-developed turbulent pipe flow subjected to controlled sinu-

soidal oscillations of the bulk velocity. The authors used single channel Laser-

Doppler anemometry to measure the instantaneous streamwise velocity, as well

as flush-mounted heat transfer probes to measure the wall shear stress. The mean

Reynolds number of the bulk flow was approximately 50,000. Detailed measure-

ments were made at two conditions of frequency and amplitude of bulk velocity,

0.5 Hz at 65% amplitude, and 3.6 Hz at 15% amplitude, respectively. The aim of
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the study was to investigate the effects of flow pulsations on the time-mean, phase-

averaged and fluctuating flow properties. The time-mean bulk velocity was found

to differ slightly from that of a steady flow at the mean Reynolds number. Pro-

files of phase-averaged velocity, longitudinal turbulence intensity, and Reynolds

shear stress (obtained from the integrated momentum equation) were all found to

exhibit marked departures from corresponding quasi-steady profiles. It should be

noted that later studies (Burnel et al., 1990) at similar conditions have disagreed

with important aspects of the high frequency data of Tu and Ramaprian (1983).

Specifically, the data of Tu and Ramaprian show the phase-averaged streamwise

velocity fluctuation intensity to be ‘frozen’, while the profiles of phase-averaged

Reynolds shear stress continue to exhibit large amplitudes across the flow at high

frequency, an unexpected result that is probably due to the indirect determina-

tion of the Reynolds shear stress. In addition, Mao and Hanratty (1986) criticised

the wall shear stress data of Tu and Ramaprian (1983) for not accounting for the

frequency response of the probes.

The problem was also studied by Mao and Hanratty (1986) and Finnicum and

Hanratty (1988), who investigated fully-developed turbulent pipe flow subject to

controlled oscillations of the pressure gradient. The frequencies varied over the

range 0.00012 < ω+ < 0.0912 in the earlier study and over the range 0.0075 <

ω+ < 0.21 in the later study. The amplitude of the phase-averaged centreline

velocity was fixed at 10% of the mean velocity at that location, and the mean

Reynolds number was varied between 15,000-70,000, and 8,650-44,900, in the first

and second studies, respectively. The researchers used electrochemical techniques

to measure the instantaneous velocity gradient at the wall. The instantaneous

velocity across the pipe was not measured, and their study was focused on the

characteristics of the modulation of wall shear stress (or velocity gradient at the

wall) at different frequencies.

A series of studies of pulsating channel flow was carried out by Binder and

co-workers for a wide range of amplitudes and frequencies (Binder and Kueny,

1981; Binder et al., 1985; Tardu et al., 1994). In the later study, Tardu et al.

(1994) used LDA and hot film techniques to measure instantaneous velocity and

wall shear stress in turbulent channel flow subjected to controlled pulsations of

the flow rate. The pulsation frequencies varied in the range 0.0005 < ω+ < 0.03

and the amplitudes varied in the range of 10 to 70% of the centreline velocity.

Measurements of phase-averaged streamwise velocity and turbulence intensity
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across the flow cross section, as well as phase-averaged wall shear stress and wall

shear stress fluctuations are reported.

5.1.2 Computational studies

A number of early computational studies of pulsatile turbulent flows used Prandtl’s

mixing length hypothesis (MLH) to provide the necessary closure of the phase-

averaged momentum equation. These include Ronneberger and Ahrens (1977),

who studied turbulent boundary layer flow subjected to small amplitude periodic

perturbations, and Mao and Hanratty (1986) whose previously mentioned experi-

mental study of pulsatile pipe flows also included calculations based on the MLH.

It was found that, without modification, the MLH is unable to reproduce the ex-

perimentally observed modulation of the wall shear stress. Some improvement

was achieved by Mao and Hanratty by modifying the basic MLH to account for

‘lag’ effects in response to the varying pressure gradient.

Several computational studies targeted the experimental results of Tu and

Ramaprian (1983), employing a number of different turbulence models to simu-

late the flows. Blondeux and Colombini (1985) and Cotton and Ismael (1991)

used two-equation eddy-viscosity models (EVM), of the k–ω and k–ε type, re-

spectively, while Kebede et al. (1985) compared the results of an EVM with

those of an RSTM. Generally, these computational studies obtained reasonable

qualitative and quantitative agreement with the low frequency data, but differed

qualitatively with the high frequency data. As previously mentioned, there is

reason to question the accuracy of this subset of the data.

Ismael and Cotton (1996) used the Launder and Sharma (1974) k–εmodel to

carry out a detailed study of the characteristics of wall shear stress modulation

in pulsating pipe flow over a wide range of frequencies, making comparisons with

the Finnicum and Hanratty (1988) data.

Cotton et al. (1997) and Cotton et al. (2001) carried out studies using the

Launder and Sharma (1974) k–ε as well as the Shima (1989) RSTM, examining

these models against the data of Finnicum and Hanratty (1988) and Tu and

Ramaprian (1983). The RSTM was found to yield better accuracy in the near

wall region up to one quarter of the diameter, while both models performed

relatively poorly in the core region.

Scotti and Piomelli (2001) carried out a DNS and LES study of pulsatile tur-

bulent channel flow at various frequencies. The flow was subjected to a specified
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H = 2h

x

y

Figure 5.1: Channel geometry.

Table 5.1: Parameters of applied pressure gradient tests

Low Intermediate High
ω (rad/s) 0.0056 0.035 0.14

ω+ 0.0016 0.01 0.04
γp 8 50 200

pressure gradient oscillating sinusoidally about a fixed mean value. Since the

mean pressure gradient is fixed in all cases, the mean wall shear stress, τw, when

a periodic state is reached, is also fixed. The friction Reynolds number based

on the channel half-height, h, and the mean friction velocity, Reτ = uτh
ν
, is thus

constant at 350. This set of cases forms the basis for comparison in the present

study. A schematic of the flow configuration is presented in Figure 5.1.

Scotti and Piomelli used a pseudo-spectral code with Fourier expansions in the

homogeneous directions and Chebyshev collocation across the channel height. A

number of different grids were used, but only results using a mesh of 32× 32× 49

nodes, for the three frequencies listed in Table 5.1, were made available. A

dynamic eddy-viscosity model was used for the sub-grid scale stresses. The LES

results were validated against a DNS study the researchers carried out for the high

frequency case. It was found that LES results obtained using the aforementioned

grid (‘LES1’ in the paper of Scotti and Piomelli (2001)) were in good agreement

with both the time-mean velocity, and the amplitude of the fundamental mode of

velocity oscillation in the corresponding DNS results. Similarly, the amplitudes

of the fundamental modes of the Reynolds stress components were also in good

agreement with the DNS. However, the time-mean profile of v2, which is the

component most affected by the small scales, was significantly under-predicted,

while that of u2 was somewhat over-predicted in comparison with the DNS.



CHAPTER 5. PULSATILE INTERNAL FLOWS 114

5.2 Governing equations

The flow is subjected to a specified applied pressure gradient given by

∂P

∂x
=
∂P

∂x

[
1 + γP cos

(
ωt+ π

2

)]
(5.1)

where, following Scotti and Piomelli (2002), the mean pressure gradient ∂P
∂x

is

held fixed at −10−4 in all the calculations. The amplitude factor γp, and the

angular frequency are varied as in Table 5.1. The π
2
phase shift is added purely

for numerical convenience, since it was found in some cases that starting with the

deceleration part of the cycle aided convergence to a turbulent periodic solution.

The flow is governed by the x-momentum equation for fully-developed flow

∂U

∂t
= −1

ρ

∂P

∂x
+

∂

∂y

(
ν
∂U

∂y
− uv

)
(5.2)

To provide the necessary closure of Equation (5.2), four turbulence models

have been used in this chapter: the Launder and Sharma (1974) k–εmodel (‘LS’),

the Shima (1998) model, the Jakirlić and Hanjalić (1995) model (‘HJ’), and the

Craft (1998) model (‘TCL’).

5.3 Numerical implementation

The problem was computed using the STREAM code, in which a single column

of finite volume cells discretised the bottom half of the channel. Therefore a

wall boundary condition was specified at the lower edge of the domain, and a

symmetry (zero-gradient) condition at the top edge corresponding to the channel

axis. The domain was discretised using 101 nodes, with 51 nodes in the region

from the wall up to y+ = 60, and 50 nodes for the remainder of the channel half-

height (up to y+ = 350). Since the flow is fully-developed in the axial direction,

zero-gradient boundary conditions are applied to the east and west walls of all

cells for all transport equations, so that for all variables other than the pressure,

only variation in the vertical, y-direction, is allowed. The pressure is set at each

node at each time-step according to (5.1) and

Pn(t) =
∂P

∂x
xn , (5.3)
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where n is the index of the node in question. Since a single column of cells was

used, the east and west faces of the cells correspond to boundary nodes, and

setting the pressure according to (5.3) insures that the instantaneous pressure

gradient is given by (5.1), as required. The pressure-correction equation is pre-

vented from changing the specified pressure by setting its source term coefficients

to Su = 0.0, Sp = −1020.
Since interest is currently directed to the purely periodic state, which is in-

dependent of the initial state, the initial conditions are inconsequential from a

physical point of view. From a numerical point of view, however, (and consid-

ering that the problem admits a laminar solution), it is found that the choice

of initialisation can affect the ability of the code to obtain a turbulent periodic

solution. For all cases examined the flow was initialised using the results of a

steady channel flow. This was done by setting γP to zero in (5.1). It was also

found helpful, as previously mentioned in Section 5.2, to shift the phase of the

pressure gradient so as to start the solution in the deceleration part of the cycle.

Despite that, it was not possible to obtain a turbulent periodic solution at the

lowest frequency with the Shima or HJ models, both of which returned laminar

solutions. This is discussed further in Section 5.5.

As a measure of code verification, the present code was used to reproduce the

calculations of Cotton et al. (2001) (who used a different code) for the pulsatile

pipe flow case of Tu and Ramaprian (1983). The Launder-Sharma k–εmodel

was used. As can be seen in Figure 5.2, very good agreement with the previous

calculations is achieved.

5.4 Steady turbulent channel flow results

To provide a reference for the pulsatile flow cases to follow, the performance of

the selected turbulence models in steady turbulent channel flow is briefly pre-

sented in this section. The velocity profiles returned by the models are shown in

Figure 5.3 along with the DNS results of Moser et al. (1999) for Reτ = 395. As

previously mentioned, the simulations were carried out by specifying the applied

pressure gradient (in this case, in order to match Reτ of the DNS), rather than

the bulk velocity, and it is thus to be expected that there will be variations in

the bulk velocities returned by the models compared to the DNS results; these
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Figure 5.2: Reynolds shear stress profiles in the 0.5 Hz pulsatile pipe flow case of
Tu and Ramaprian (1983).
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Table 5.2: Bulk velocity returned by turbulence models in steady turbulent chan-
nel flow at Reτ = 395 compared to the DNS of Moser et al. (1999)

DNS TCL Shima HJ LS
U+
b 17.5 18.3 16.0 15.5 18.4

% difference - +4.2% -9.3% -11.8% +5%

Figure 5.3: Velocity profiles returned by various turbulence models for steady
turbulent channel flow at Reτ = 395. (Every fourth symbol shown for DNS).

are summarised in Table 5.2. The TCL and LS models return very similar veloc-

ity profiles and slightly over-predict the bulk velocity compared to the DNS by

about 4-5%. The Shima and HJ models both under-predict U+
b by 9 and 12%

respecively.

The TCL and LS models more accurately reproduce the shape of the mean

velocity gradient profile in the near wall region, as shown in Figure 5.4, while the

Shima and HJ models under-predict the mean velocity gradient in the near-wall

region.

Profiles of turbulent kinetic energy are shown in Figure 5.5, where it is seen

that, characteristically, none of the models is able to reproduce accurately the

peak in k near the wall. The HJ model gives the closest prediction of the peak

k value, with an under-estimate of 11%, followed by the TCL model which gives

a 17% under-estimate. The Shima and LS models under-estimate the peak by
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Figure 5.4: Velocity gradient profiles returned by various turbulence models for
steady turbulent channel flow at Reτ = 395.

about 30%. In the region between y+≈70 and y+≈ 200 the level of k is fairly

well predicted by the HJ, Shima and LS models, but somewhat over-predicted

by the TCL model. Beyond that, in the central region of the channel, the level

is over-predicted by all four models.

Figure 5.6 shows the normal Reynolds stresses (RSTM only). Here it is seen

that, in general, the HJ and TCL models more accurately predict the near-wall

profiles of the normal stresses, compared to the Shima model. All three models

under-predict the peak in u2 component, but less dramatically so in the case

of the HJ and TCL models than the Shima model. By over-predicting the v2

component in the region y+ < 50, in addition to dramatically under-predicting

the u2 component, the Shima model is closer to isotropy than it should be in this

region. All three models over-predict u2 at the centre of the channel. The HJ

and TCL model over-predict the w2 for most of the channel cross-section away

from the wall, y+ > 10. The Shima model is superior in the near-wall region, but

over-predicts w2 in the region y+ > 150.

Reynolds shear stress profiles, and profiles of the production rate of turbulent

kinetic energy, are shown in Figures 5.7 and 5.8, respectively. The magnitude

of Reynolds shear stress can be seen to be over-predicted by the HJ and Shima
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Figure 5.5: Turbulent kinetic energy profiles returned by various turbulence mod-
els for steady turbulent channel flow at Reτ = 395.

models in the near-wall region, while the LS and TCL return more accurate

levels over the whole profile. The production rate profiles reflect the previous

observations on the mean velocity gradient in Figure 5.4, and the Reynolds shear

stress 5.7. In the case of the Shima and HJ models, it appears that the over-

prediction of the magnitude of uv has a larger effect than the underprediction of
dU
dy

in the near wall region, as evidenced by the over-estimated production rate in

Figure 5.8.
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Figure 5.7: Profiles of Reynolds shear stress returned by various turbulence mod-
els for steady turbulent channel flow at Reτ = 395.

Figure 5.8: Profiles of turbulent energy production returned by various turbulence
models for steady turbulent channel flow at Reτ = 395.
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Figure 5.9: Time mean profile of velocity in wall units for the low frequency case
ω+ = 0.0016.

5.5 Low frequency results

5.5.1 Time-mean behaviour

The time-mean velocity profiles returned by the TCL and LS models for the

low frequency case, ω+ = 0.0016, are compared against time-mean LES results

and steady DNS results at Reτ = 395, in Figure 5.9. At this low frequency

the time-mean velocity profile of the pulsatile flow LES is in close agreement

with the steady channel flow DNS profile at a comparable Reτ . Both turbulence

models underestimate the velocity, and thus under-estimate the time-mean bulk

velocity. This is somewhat surprising, since these same models were seen to over-

predict the bulk-velocity in steady channel flow (Figure 5.3). It will be seen later,

when the phase-averaged behaviour is examined, that this is most likely due to

periodic laminarisation and re-transition within each cycle. The profile of the

time-mean velocity gradient, shown in Figure 5.10 is reasonably well predicted

by both models.

In the time-mean turbulent kinetic energy profiles, shown in Figure 5.11, there

appears to be some difference between the time-mean pulsatile flow profile (LES)

and the steady flow profile (DNS). The pulsatile mean profile exhibits a sharper
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Figure 5.10: Time mean profile of velocity gradient in wall units for the low
frequency case ω+ = 0.0016.

peak near the wall (y+ ≈ 10), and a consistently lower level of k in the inner

region (y+>50). Setting aside the models’ inability to fully reproduce the peak

in the k profile, their time-mean profiles appear to follow the steady channel

flow rather than the time-mean profile of the pulsatile LES results. Examination

of the normal stresses, shown in Figure 5.12, shows that in the pulsatile case

there is increased energy in the time-mean u2 component near the wall, and

decreased energy in the two other components compared to the steady channel

case. The previous observations suggest that the pulsations tend to polarise the

energy distribution across the cross-section, and enhance the streamwise velocity

fluctuations at the expense of the normal and spanwise fluctuations. However,

by reference to the LES validation that Scotti and Piomelli (2001) carried out

(Figure 4 in their paper), these effects appear to be a result of under-resolution of

the small scales in the near-wall region of the LES, rather than an actual physical

effect of the pulsations. Their validation (at a higher frequency than the present

case) shows the mean normal Reynolds stresses of the LES to deviate from the

DNS at the same conditions. The mean normal stresses of their pulsatile DNS

agreed more with the profiles of the steady flow DNS, shown Figure 5.12. Notably,

profiles of normal stress amplitudes (to be examined later) of the LES were in
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Figure 5.11: Time mean profile of turbulent kinetic energy in wall units for the
low frequency case ω+ = 0.0016.

good agreement with the amplitudes of their pulsatile DNS. Comparing Figure

5.6 and Figure 5.12, it is seen that this trend is not mimicked by the TCL model,

which returns fairly similar time-mean profiles of normal stress components in

the steady and pulsatile cases.

Figures 5.13 and 5.14 show the time-mean Reynolds shear stress and the

time-mean production of k, respectively. Both quantities show a decrease in the

pulsatile compared to the steady case. This decrease is over a large portion of

the cross section, y+ > 10, in the case of uv, and over a limited near-wall region,

y+ ≈ 5−20, in the case of Pκ. Again, the models return profiles that more closely

follow the steady case profiles.

5.5.2 Phase-averaged behaviour

Figures 5.15, 5.16 and 5.17 show profiles of phase-averaged velocity, k, and uv,

respectively, over a period of oscillation T , at T
8
intervals. The velocity profiles

returned by both models are in phase with the phase-averaged LES profiles and,

aside from a general tendency to slightly under-predict the velocity in the core

region (more visible around mid-cycle because of the varying plot scale in Figure

5.15), they can be said to be in good agreement with the reference data. The
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Figure 5.13: Time mean profile of Reynolds shear stress in wall units for the low
frequency case ω+ = 0.0016.

Figure 5.14: Time mean profile of production of turbulent kinetic energy in wall
units for the low frequency case ω+ = 0.0016.
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turbulent kinetic energy profiles in Figure 5.16 generally exhibit a significant

departure from the characteristic shape associated with steady channel flow. This

indicates that, even at this low frequency, the modulation of k is not a simple

harmonic oscillation about the steady flow profile, and this frequency therefore

does not fall in the quasi-steady regime. Throughout most of the cycle, the LES

profiles exhibit a larger near-wall peak, followed by a more rapid decrease, than

the profiles returned by both models, which seem to distribute the energy more

evenly over the cross-section. Towards the centre of the channel the level of

turbulence is fairly well predicted by both models throughout the cycle. Slightly

after mid-cycle the level of turbulence decreases to the point that the flow is

partially laminarised. In the period between 6T/8 to 7T/8 there is an abrupt and

dramatic increase in both model profiles causing them to overshoot the reference

LES data. The phase-averaged Reynolds shear stress, shown in Figure 5.17, is

well predicted by the models during the first half of the cycle, after which it is

under-predicted in the near-wall region during the laminarised part of the cycle.

At around 6T/8 a small peak appears in the profile returned by the TCL model,

and a similar peak appears slightly later in the LS profile (not shown). This is

then followed by a dramatic overshoot in both model profiles, similar to that seen

in the k profiles in the previous figure.

An alternative view of the data is provided in Figures 5.18, 5.19 and 5.20,

which show the cyclic variation of the four phase-averaged quantities: U , dU/dy,

k and uv, normalised by wall variables, at three locations, y+ = 19, 74 and

265, respectively. What immediately stands out in these three figures are local

discontinuities in the TCL results in what are otherwise smooth curves. This

effect occurs at about 0.8 of the full cycle (slightly later as one moves away

from the wall, in Figure 5.20, due to the time it takes for the disturbance to

propagate outwards), and it appears to be related to the process of re-transition

to turbulence. The wall shear stress modulation is shown in Figure 5.21. In this

figure it is seen that both models are generally in reasonable agreement with the

reference data (LS giving better agreement), only slightly under-estimating the

wall shear stress, up to their respective re-transition points (i.e. time instances),

at which point they over-shoot the reference data for a portion of the cycle. Since

the mean wall shear stress is set by the imposed mean pressure gradient, the slight

under-estimation of τw over most of the cycle is to compensate for the over-shoot

that follows re-transition, and since the re-transiton is more abrupt in the TCL
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Figure 5.15: Profiles of phase-averaged velocity in wall units for the low frequency
case ω+ = 0.0016.
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Figure 5.16: Profiles of phase-averaged turbulent kinetic energy in wall units for
the low frequency case ω+ = 0.0016.
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Figure 5.17: Profiles of phase-averaged Reynolds shear stress uv energy in wall
units for the low frequency case ω+ = 0.0016.
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Figure 5.18: Cyclic variation of various phase-averaged flow quantities in wall
units for the low frequency case ω+ = 0.0016 at the location y+ = 19.

Figure 5.19: Cyclic variation of various phase-averaged flow quantities in wall
units for the low frequency case ω+ = 0.0016 at the location y+ = 74.
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Figure 5.20: Cyclic variation of various phase-averaged flow quantities in wall
units for the low frequency case ω+ = 0.0016 at the location y+ = 265.

Figure 5.21: Modulation of phase-averaged wall shear stress in wall units for the
low frequency case ω+ = 0.0016.



CHAPTER 5. PULSATILE INTERNAL FLOWS 133

case, its under-estimation is necessarily larger.

While it is known that transition to turbulence generally presents a serious

challenge to turbulence models, it is believed that what is observed here is partly

due to the low-Re corrections of the TCL model. Low-Re model coefficients are

generally tuned to the typical spatial variation of Ret in steady thin-shear flows.

In this case however, there is an additional challenge in that the Ret profile varies

in time, and because of the periodic laminarisation and re-transition, the phase-

averaged profiles of Ret will understandably be largely different from the profile

in steady turbulent channel flow. Over a cycle, Ret periodically oscillates, in a

large portion of the flow, about the values used to tune the near-wall corrections.

The previous comments are demonstrated in the time-series plots of Ret and

the main TCL pressure-strain rate coefficients, C1, C2, C
′

2, presented in Figure

5.22 and 5.23, at y+ = 19 and 74, respectively. The coefficients were presented

in equations (2.84), and are repeated here, omitting terms that evaluate to zero

in the present case,

C1 = 3.1fAA
1/2
2 min

[(
Ret
160

)2

, 1

]
(5.4a)

C2 = min

{
0.55

[
1− exp

(−A1.5Ret
100

)]
,

3.2A

1 + S∗

}
(5.4b)

C ′

2 = min(0.6, A). (5.4c)

Examination of Figures 5.22 and 5.23, reveals that the coefficients do indeed go

through an abrupt change at about 0.8T . To explore this issue further, Figure

5.24 presents profiles of Ret based on TCL results, and Figures 5.25-5.27 present

profiles of the TCL coefficients listed above, all around the time of the abrupt re-

transition. Also shown in these figures is the corresponding level of the variables

in steady channel flow at Reτ = 395 as a reference for comparison (dashed-lines).

It can be seen in Figure 5.24 that by 0.75T Ret has dropped over most of the

profile to less than 160-180, with the region y+ < 100 having Ret < 100. As

the cycle progresses, the level of Ret increases far more rapidly in this near-wall

region than over the rest of the flow. The peak is then diffused away from the

wall, causing it to drop slightly at first, then recovering slightly as the level of

turbulence continues both to grow and spread outwards. Considering that the

whole of Figure 5.24 represents only 10% of the cycle, and that between 0.775T

and 0.8T (corresponding to 2.5% of the cycle) there is almost a threefold increase
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Figure 5.22: Cyclic variation of TCL model coefficients for the low frequency case
ω+ = 0.0016 at the location y+ = 18.9.

in the near-wall peak of Ret, it can be seen that these observed changes are quite

abrupt. Profiles of the coefficients C1, C2 in Figures 5.25, 5.26 follow a similar

trend to Ret, while C
′

2 is affected indirectly through its dependence on A (when

A < 0.6). To examine the possible impact of these coefficients on the observed

behaviour, Figure 5.28 shows profiles of Reynolds stress production, as well as

the modelled slow and rapid pressure-strain rate correlations, for the uv, u2, and

v2 stress components. The bottom row shows the profiles at 0.775T just before

the observed transition, and the top row shows the profiles at 0.8T . There is

a huge jump in all the variables plotted in this figure within the short time of

0.025T . Considering the relative magnitude of the various quantites, it is seen

that in the uv and u2 components both pressure-strain terms are relatively small

compared to the production terms. It is therefore concluded that the abrupt

change in the pressure strain model coefficients, C1 in particular, first causes a

jump in the production-less v2 stress component, which in turn feeds into uv

through its production term, which in turn feeds into u2, thus raising the levels

of all turbulence quantities.
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Figure 5.23: Cyclic variation of TCL model coefficients for the low frequency case
ω+ = 0.0016 at the location y+ = 74.

5.5.3 Harmonics

Some further insight is gained by examining the fundamental mode of modulation

of the various quantities by fitting pure sinusoids to represent the data. For a

scalar quantity φ the data can be represented in the form:

φ ≈ φ+ Aφ cos(ωt− ϕφ). (5.5)

From a practical point of view however, it was found that using the equivelent

form

φ ≈ φ+ Ac cos(ωt) + As sin(ωt), (5.6)

is more numerically robust, because of the difficulty associated with finding Aφ,

and ϕφ directly (such as converging on negative amplitudes with largely shifted

phases). Thus, a least-squares fit was performed to find the mean φ, and the

amplitudes of the cosine and sine, Ac, As, that minimise the residual r in:

r = φ−
(
φ+ Ac cos(ωt) + As sin(ωt)

)
. (5.7)
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Figure 5.24: Profiles of phase-averaged turbulence Reynolds number returned
by the TCL model around the phase of re-transition to turbulence, for the low
frequency case ω+ = 0.0016.
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Figure 5.25: Profiles of the TCL coefficient C1 around the phase of re-transition
to turbulence, for the low frequency case ω+ = 0.0016.
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Figure 5.26: Profiles of the TCL coefficient C2 around the phase of re-transition
to turbulence, for the low frequency case ω+ = 0.0016.
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Figure 5.27: Profiles of the TCL coefficient C ′

2 around the phase of re-transition
to turbulence, for the low frequency case ω+ = 0.0016.
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The desired amplitude and phase angle in (5.5) were then obtained by

Aφ =
√
A2

c + A2
s, ϕφ = tan−1(

−As

Ac

). (5.8)

A measure of the significance of the higher harmonics contribution is provided by

the amplitude-normalised discrete rms error,

ǫφ =
1

Aφ

√∑
r2δ(ωt)

∆(ωt)
(5.9)

Figures 5.29, 5.30, 5.31 present the amplitude and phase angle of the fundamental

modes of U+, k/uτ
2 and uv/uτ

2, respectively, using the least-squares fit described

above. The contribution of higher harmonics in the case of U+ is less than 5%

for the whole region y+ > 50, but it increases near the wall to reach a maximum

of around 20%. This information is shown in Figure 5.32. It can thus be said

that the modulation in this case is well represented by the fundamental mode

alone. As seen in Figure 5.29, the amplitudes and phase angles of phase averaged

velocity modulation predicted by the models are in very good agreement with the

reference LES data.

In the case of the k and uv modulation, the estimated contribution of the

higher harmonics is higher, as seen in Figure 5.32. This might be expected,

considering that the modulation of these quantities, as seen in the time series

plots on Figures 5.18-5.20, does not follow a symmetrical sinusoid-like pattern,

but rather has a gradual decrease from a peak value during the laminarisation

part of the cycle, followed by a steep increase in the re-transition part. This is

further illustrated in Figure 5.33, which shows discrete Fourier transforms (DFT)

of the phase-averaged quantities U+ and k+ at location y+ = 265 (LES and TCL).

Compared to U+, which has a single modulation frequency, the DFTs of k+, for

the reference LES and of the TCL results, contain signifant amplitudes at higher

frequencies.

Figure 5.30 shows that the models adequately predict the amplitude of the

fundamental mode of k+, with slight over-estimation, for the region y+ > 50. For

the remaining near-wall part of the cross-section the models under-predict the

amplitude. In addition, they are out of phase with the reference data by about

35◦-40◦. As for uv+, Figure 5.31 shows that the models significantly over-estimate

the amplitude of the fundamental within the approximate region 10 < y+ < 100.
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Figure 5.29: Amplitude and phase angle of the fundamental mode of phase-
averaged velocity oscillation for the low frequency case ω+ = 0.0016.

The TCL adequately reproduces the amplitude outside this region, while the LS

model slightly over-estimates it. The model results for uv+ are out of phase with

the reference data by about 3◦ for the LS model and about 10◦ for the TCL

model.
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Figure 5.30: Amplitude and phase angle of the fundamental mode of phase-
averaged turbulent kinetic energy oscillation for the low frequency case ω+ =
0.0016.

Figure 5.31: Amplitude and phase angle of the fundamental mode of phase-
averaged Reynolds shear stress oscillation for the low frequency case ω+ = 0.0016.
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Figure 5.32: Estimated contribution of higher harmonics in the modulation of
phase-averaged U+ (top), k/uτ

2 (middle), and uv/uτ
2 for the low frequency case

ω+ = 0.0016.
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(a) DFT of phase-averaged U+

(b) DFT of phase-averaged k+

Figure 5.33: Discrete Fourier transform of phase-averaged U+ and k+ at the
location y+ = 264.7 for the low frequency case ω+ = 0.0016.
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Figure 5.34: Time mean profile of velocity in wall units for the intermediate
frequency case ω+ = 0.01.

5.6 Intermediate frequency

5.6.1 Time-mean behaviour

Time-averaged profiles of the flow variables: U , dU/dy, k, uαuα, uv and Pκ,

normalised by wall variables, for the intermediate forcing frequency ω+ = 0.01 are

shown in Figures 5.34-5.39. Considering first the time-averaged velocity profile,

shown in Figure 5.34, it is noted that at this frequency, in contrast to the previous

lower frequency, the time-mean bulk velocity of the pulsatile flow (LES) is slightly

higher (6%) than steady channel flow at a similar Reτ (DNS). The time-mean

profile of the pulsatile flow is most closly matched by the Shima model in this

case. The three remaining models all under-estimate the time-averaged bulk

velocity, by up to 18.8% in the case of HJ model (See Table 5.3). Similarly, the

time-averaged velocity gradient, shown in Figure 5.35, is most closely matched

by the Shima model.

In this case, as in the previous lower frequency case, the time-mean turbulent

kinetic energy (Figure 5.36) of the pulsatile flow (LES) has a higher near-wall

peak than in the steady case. The Shima model similarly has a much higher peak

in this case, in agreement with the LES, but it over-predicts the level of turbulence
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Figure 5.35: Time mean profile of velocity gradient in wall units for the interme-
diate frequency case ω+ = 0.01.

Figure 5.36: Time mean profile of turbulent kinetic energy in wall units for the
intermediate frequency case ω+ = 0.01.
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Figure 5.38: Time mean profile of Reynolds shear stress in wall units for the
intermediate frequency case ω+ = 0.01.

Figure 5.39: Time mean profile of production of turbulent kinetic energy in wall
units for the intermediate frequency case ω+ = 0.01.
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for the remainder of the channel cross-section. The HJ model returns a profile

that closely follows the steady profile, while the TCL and LS models, once again,

under-estimate the peak, then follow the steady profile in the inner region. This

pattern is also to some extent reflected in the profiles of the streamwise normal

stress, shown in Figure 5.37, where the same observations on the time-averaged

k are reflected in the profiles of the time averaged u2 of the models. All four

models over-predict the magnitude of the time-averaged Reynolds shear stress,

shown in Figure 5.38, over a large portion of the channel cross-section, resulting

in a higher peak in energy production, as seen in Figure 5.39.

5.6.2 Phase-averaged behaviour

Profiles of phase-averaged velocity, turbulent kinetic energy, and Reynolds shear

stress for the case ω+ = 0.01 over a period are shown in Figures 5.40, 5.41

and 5.42 respectively. Time series of the cyclic variation of these variables, in

addition to the phase-averaged velocity gradient, at four locations y+ = 0.7, 18.4,

71.8 and 257.4 are shown in Figures 5.43-5.46. Bearing in mind the varying scale

of the axes in Figure 5.40, it can be said that the models are generally able to

reasonably mimic the phase-averaged profiles of U+. Flow separation in the near-

wall region is observed at this frequency around mid-cycle (more visible in Figure

5.43). The extent of the region experiencing flow separation is over-estimated

by the models–slightly so by the Shima and LS models, but more significantly

by the TCL and HJ models. Figure 5.43 makes it clear that the TCL model,

as in the lower frequency case, suffers from an abrupt jump at the end of the

laminarisation portion of the cycle as the flow re-transitions to turbulence. As

discussed previously, this is most likely attributed to the Ret-dependencies in the

model coefficients.

Examining the phase-averaged kinetic energy profiles in Figure 5.41, it is seen

that in the near-wall region k is at its lowest at the end of the cycle and gradually

increases until it reaches its peak at around 3T
8
and gradually decreases afterwards.

Most of the modulation in k is confined to the region y+ < 150. The models are

all in advance of the reference data, all having their highest near-wall peak within

the first quarter cycle.

Regarding the phase-averaged uv, shown in 5.42, there is considerable varia-

tion among the models in the region y+ < 150, particularly in the portion of the

cycle wher uv is increasing in magnitude (roughly 7T
8

to 2T
8
). The TCL, HJ and
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Figure 5.40: Phase-averaged profiles of phase-averaged velocity in wall units for
the intermediate frequency case ω+ = 0.01.
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Figure 5.41: Phase-averaged profiles of phase-averaged turbulent kinetic energy
in wall units for the intermediate frequency case ω+ = 0.01.
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LS models tend to over-estimate phase-averaged uv within the first quarter of the

cycle, but are in better agreement with the reference data afterwards. The Shima

model tends to over-estimate uv during the second half of the cycle. Agreement

between the models and the reference data, and among the models themselves, is

improved in the outer region of the flow y+ > 150, as can be seen in Figure 5.46.

Modulation of the phase-averaged wall shear stress is shown in Figure 5.47.

The Shima model is in good agreement with the reference data in this case. The

HJ and LS models slightly under-estimate the amplitude of the modulation, and

are somewhat out of phase with the reference data. The TCL model’s wall shear

stress modulation is adversely affected by the kink at the start of the re-transition

portion of the cycle.

5.6.3 Harmonics

The fundamental mode of modulation of the phase-averaged U+, k+ and uv+

was calculated using the least-squares technique described in Section 5.5.3. The

estimated contribution of higher harmonics in this case is plotted in Figure 5.48.

As might be expected from the previous time series plots in Figures 5.43-5.46, it

is found that the fundamental modes of k+ and uv+ are inadequate for describing

the TCL model results in the approximate region y+ < 100. This is due to the

sharp rise followed by a slow and gradual decrease in this model’s results. The

Shima and, to a slightly lesser extent, the HJ results, are closer to pure sinusoids.

The amplitude and phase angle of the fundamental mode of U+ are shown in

Figure 5.49, where it is seen that the models successfully reproduce the amplitude

of U+ modulation, as well as the phase angle over most of the profile. The shape

of the AU profile at this frequency has changed from that at the lower frequency

case, with the amplitude becoming essentially constant over y+ > 200. The

amplitude of the k+ fundamental predicted by the models, shown in Figure 5.50,

is in fair agreement with that of the reference data, particularly in the outer

region of the flow profile. There is however roughly a 70◦ phase advance between

the models (higher for TCL) and the reference data modulation. Finally, the

amplitude of uv, shown in Figure 5.51, is over-estimated by the TCL, HJ and LS

models over the approximate region 10 < y+ < 150, and is under-predicted by

the Shima model over the whole flow cross-section.
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Figure 5.42: Phase-averaged profiles of phase-averaged Reynolds shear stress uv
energy in wall units for the intermediate frequency case ω+ = 0.01.
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Figure 5.43: Cyclic variation of various phase-averaged flow quantities in wall
units for the intermediate frequency case ω+ = 0.01 at the location y+ = 0.7.

Figure 5.44: Cyclic variation of various phase-averaged flow quantities in wall
units for the intermediate frequency case ω+ = 0.01 at the location y+ = 18.4.
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Figure 5.45: Cyclic variation of various phase-averaged flow quantities in wall
units for the intermediate frequency case ω+ = 0.01 at the location y+ = 71.8.

Figure 5.46: Cyclic variation of various phase-averaged flow quantities in wall
units for the intermediate frequency case ω+ = 0.01 at the location y+ = 257.4.
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Figure 5.47: Modulation of phase-averaged wall shear stress in wall units for the
intermediate frequency case ω+ = 0.01.
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Figure 5.48: Estimated contribution of higher harmonics in the modulation of
phase-averaged U+ (top), k/uτ

2 (middle), and uv/uτ
2 for the intermediate fre-

quency case ω+ = 0.01.
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Figure 5.49: Amplitude and phase angle of the fundamental mode of phase-
averaged velocity oscillation for the intermediate frequency case ω+ = 0.01.

Figure 5.50: Amplitude and phase angle of the fundamental mode of phase-
averaged turbulent kinetic energy oscillation for the intermediate frequency case
ω+ = 0.01.
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Figure 5.51: Amplitude and phase angle of the fundamental mode of phase-
averaged Reynolds shear stress oscillation for the intermediate frequency case
ω+ = 0.01.
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5.7 High frequency

5.7.1 Time-mean behaviour

Time-averaged results for the highest frequency case ω+ = 0.04 are presented

in Figures 5.52-5.57. At this frequency, the TCL model gives the closest agree-

ment with thereference data for the time-averaged velocity and velocity gradient

profiles, shown in Figures 5.52 and 5.53, respectively. The LS model overpre-

dicts the time-averaged bulk velocity by about 7% and the remaining two models

under-estimate it by about 13% (Table 5.3). At this frequency, as in the previ-

ous intemediate frequency, the time-averaged bulk velocity of the pulsatile flow

is higher than the bulk velocity of the steady flow DNS.

The turbulent kinetic energy profiles returned by the models, shown in Figure

5.54, are similar to their steady channel flow profiles (Figure 5.5). The exception

being the Shima model which returns a slightly higher level of turbulence than

its steady solution, and in this respect it seems to be the most sensitive to the

imposed frequency.

The time-mean profiles of the normal Reynolds stresses is shown in Figure

5.55. As mentioned previously, the tendency for the energy in the time-mean

LES to be intensified in the streamwise fluctuations, u2, and drawn away from

the fluctuations in the other directions, w2, v2, compared to the steady channel

reference case is a questionable feature of data, and is most likely a result of

under-resolved small scales.

When comparing time-mean profiles returned at various frequencies (Figures

5.12, 5.37 and 5.55), it is evident that the normal stresses returned by the Shima

model, and to a lesser extent the HJ model, are more sensitive to the imposed

frequency than the TCL model. The insensitivity in this case is perhaps a desir-

able feature, since the corresponding LES data do not show significant variation

with frequency.

The time-averaged Reynolds shear stress is shown in Figure 5.56. While it

still over-predicted in magnitude, as was observed at lower frequencies, this is

true over a significantly smaller portion of the channel profile in the case of the

TCL and LS models. This is also reflected in the profiles of Pκ shown in Figure

5.57.
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Figure 5.52: Time mean profile of velocity in wall units for the high frequency
case ω+ = 0.04.

Figure 5.53: Time mean profile of velocity gradient in wall units for the high
frequency case ω+ = 0.04.
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Figure 5.54: Time mean profile of turbulent kinetic energy in wall units for the
high frequency case ω+ = 0.04.

5.7.2 Phase-averaged behaviour

Profiles of phase-averaged velocity, turublent kinetic energy and Reynolds shear

stress over a full cycle are shown at T
8
intervals in Figures 5.58, 5.59 and 5.60,

respectivly, while Figures 5.61, 5.62 and 5.63 show the time-series of these vari-

ables, in addition to the phase-averaged velocity gradient, at the fixed locations,

y+ =18.2, 70.9 and 254.3, respectively. It is evident in Figure 5.58 that the

models, particularly the LS and TCL models, more closely reproduce the phase-

averaged velocity profiles in this case than in the lower frquency cases. There

is a significant degree of flow reversal towards the end of the deceleration por-

tion of the cycle. The phase position at which this occurs and the extent of the

region affected is very well reproduced by the LS and TCL models. The Shima

and HJ models produce almost indistinguishable velocity profiles that are slightly

under-estimated throughout the cycle.

Comparing the cyclic profiles of phase-averaged k in Figure 5.59, with corre-

sponding ones at the two lower frequencies (Figures 5.16, 5.41), it can be seen

that the level of turbulence and the shape of the profiles varies less throughout

the cycle in the present high-frequency case. Correspondingly, there is generally
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Figure 5.56: Time mean profile of Reynolds shear stress in wall units for the high
frequency case ω+ = 0.04.

Figure 5.57: Time mean profile of production of turbulent kinetic energy in wall
units for the high frequency case ω+ = 0.04.
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better agreement between the models and the reference data in this case. How-

ever, the near-wall peak in the k profile remains to be the most difficult feature

for the models to reproduce. Similar comments can be made regarding the phase-

averaged Reynolds shear stress, shown in Figure 5.60, where it is seen that there

is good agreement between the models and the reference data over a large portion

of the cross-section.

There is also excellent agreement between the models and the reference data

for the modulation of wall shear stress at this frequency, as shown in Figure 5.64.

5.7.3 Harmonics

The estimated contributions of higher harmonics in the modulation of the phase-

averaged variables U+, k+ and uv are presented in Figure 5.65. Velocity modula-

tion in this case is closer to a pure sinusoid, over a larger portion of the channel,

than in the lower frequency cases. The scatter and relatively high values of ǫk

and ǫuv of the reference data in the outer part of the profile are a result of the

small amplitudes in this region, which means that the randomness in the data

becomes more significant. Consider, for example, the time-series in Figure 5.63.

The velocity modulation predicted by the models is in excellent agreement

with the reference data, as seen in Figure 5.66. At this frequency, the velocity

over most of the flow cross-section (y+ > 50) oscillates in phase with the ap-

plied pressure gradient with a uniform amplitude. There is a small increase in

amplitude as one approaches the wall, followed by a sharp decease dictated by

the no-slip condition, and there is about 43◦ phase-shift between the velocity

modulation adjacent to the wall and that in the core region.

The amplitude and phase angle of the fundamental mode of k+ is shown in

Figure 5.67. Because of the small amplitudes involved, phase angle data beyond

y+ = 150 is unreliable and is therefore not shown in the figure (and in Figure

5.68). Both the amplitude and phase angle are most closely reproduced by the

HJ model, which is in very good agreement with the reference data. The Shima

and LS models give good predictions for the amplitude in the outer region of the

channel, but are out of phase with the reference data. The TCL model tends to

over-estimate the amplitude over a significant portion of the cross-section, but is

mostly in phase with the data.

As for the amplitude and phase of uv+, plotted in Figure 5.68, the TCL
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Figure 5.58: Phase-averaged profiles of phase-averaged velocity in wall units for
the high frequency case ω+ = 0.04.
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Figure 5.59: Phase-averaged profiles of phase-averaged turbulent kinetic energy
in wall units for the high frequency case ω+ = 0.04.
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Figure 5.60: Phase-averaged profiles of phase-averaged Reynolds shear stress uv
energy in wall units for the high frequency case ω+ = 0.04.
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Figure 5.61: Cyclic variation of various phase-averaged flow quantities in wall
units for the high frequency case ω+ = 0.04 at the location y+ = 18.2.

Figure 5.62: Cyclic variation of various phase-averaged flow quantities in wall
units for the high frequency case ω+ = 0.04 at the location y+ = 70.9.
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Figure 5.63: Cyclic variation of various phase-averaged flow quantities in wall
units for the high frequency case ω+ = 0.04 at the location y+ = 254.3.

Figure 5.64: Modulation of phase-averaged wall shear stress in wall units for the
high frequency case ω+ = 0.04.
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Table 5.3: Time-mean bulk velocity returned by models at various frequencies.

ω+ Steady LES TCL Shima HJ LS
0.0016 17.5 17.3 15.7 – – 16.1

(-9.1%) (-7.1%)
0.01 17.5 18.6 16.0 18.5 15.1 17.3

(-13.8%) (-0.1%) (-18.8%) (-7.0%)
0.04 17.5 18.7 19.0 16.2 16.3 20.1

(+1.4%) (-13.4%) (-13.1%) (+7.4%)

model also tends to over-predict the amplitude over a large portion of the cross

section, but is in reasonable agreement with the data for the phase angle. Similar

comments can be made about the LS model results. The Shima model under-

predicts the amplitude in the outer region and is largely out of phase with the

data. The HJ model does the best job in predicting both the amplitude and the

phase over the largest portion of flow, compared to the other models.

5.8 Concluding remarks

The problem of fully-developed channel flow subject to imposed sinusoidal pres-

sure pulsations has been examined in this chapter. Three frequencies were se-

lected for examination, corresponding to the low, intermediate, and high fre-

quency regimes as described in the literature. None of the models tested repro-

duce all the flows correctly.

As summarised in Table 5.3, there was a considerable degree of variation in

the model predictions of mean bulk velocity, which tend to be under-predictions,

compared to the LES. At intemediate and high frequencies, the time-mean bulk

velocity of the LES was higher than the mean bulk velocity of the steady channel

DNS by about 6–7%, a feature that the models did not in general seem to mimic,

and which contributes to their general tendency to underpredict the time mean

U+
b .

Notably, the flow feature that was most consistently well reproduced by the

models over the range of frequencies examined is the fundamental mode of phase-

averaged velocity modulation. Both the amplitudes and phase angles were well

reproduced by the models over most of the channel height. Figure 5.69 shows

the amplitude profiles, over the frequency range examined, using the TCL model.

Very similar profiles are returned by the LS model at the same frequencies, and
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Figure 5.65: Estimated contribution of higher harmonics in the modulation of
phase-averaged U+ (top), k/uτ

2 (middle), and uv/uτ
2 for the high frequency case

ω+ = 0.04.
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Figure 5.66: Amplitude and phase angle of the fundamental mode of phase-
averaged velocity oscillation for the high frequency case ω+ = 0.04.

Figure 5.67: Amplitude and phase angle of the fundamental mode of phase-
averaged turbulent kinetic energy oscillation for the high frequency case ω+ =
0.04. Phase angle data only shown up to y+ = 150.
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Figure 5.68: Amplitude and phase angle of the fundamental mode of phase-
averaged Reynolds shear stress oscillation for the high frequency case ω+ = 0.04.
Phase angle data only shown up to y+ = 150.

by the HJ and Shima models at the intermediate and high frequencies (not shown

in Figure 5.69, but appeared in previous figures).

The phase-averaged velocity profiles were not as well reproduced as the (fun-

damental mode) velocity amplitude profiles, and were often somewhat under-

predicted. The preceding observations imply that this is a result of errors in the

time-mean velocity.

The wall shear stress modulation returned by the LS and TCL models at the

lowest frequency, ω+ = 0.0016, was in reasonable agreement with the reference

data up to the re-transition phase of the cycle, where both models tended to

overshoot the reference data modulation. The LS model performed better than

the TCL at this frequency. At the highest frequency, ω+ = 0.04, the wall shear

stress modulation predicted by all four models was in very good agreement with

the reference data. The largest variation between the models in wall shear stress

modulation was observed at the intermediate frequency, ω+ = 0.01. The LS and

HJ models under-predicted the amplitude of the modulation, and were out of

phase with the reference data, while the TCL model once again performed poorly

due to the abrupt re-transition. The Shima model in this case was in very good

agreement with the LES wall shear stress modulation.
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Figure 5.69: Amplitude of the fundamental mode of phase-averaged velocity os-
cillation at various frequencies.

The time-mean turbulence statistics of the pulsatile flow LES generally ex-

hibited some differences compared to a steady turbulent channel DNS at a com-

parable Reτ . However, this aspect of the LES data is somewhat questionable as

has been pointed out earlier. The time-mean turbulence statistics returned by

the Shima model was found to be particularly sensitive to the forcing frequency.

This was also true, to a lesser extent, for the HJ model. The LS and TCL mod-

els generally returned time-mean turbulence statistics that were fairly similar to

their steady flow results, showing little sensitivity to the forcing frequency.

The phase-averaged turbulent kinetic energy at the low and intermediate fre-

quencies was generally poorly predicted by the models. This appeared to be due

mainly to the partial laminarisation and retransition that occured cyclically at

these frequencies. At the lowest frequency, the Shima and HJ models could not

recover from the laminarisation portion of the cycle, and a periodic turbulent

solution could not be obtained using these models. The TCL model, on the other

hand, suffered from excessively abrupt re-transition at the low and intermediate

frequencies, which adversely affected the accuracy of its predictions. The cause of

this behaviour was attributed to low-Ret dependecies in some of the TCL model

coefficients. This suggests the need to reformulate the near-wall damping in some



CHAPTER 5. PULSATILE INTERNAL FLOWS 177

of the model coefficients to allow the model to handle the cyclic transition more

gracefully. At the highest frequency examined, all four models were in much bet-

ter agreement with the LES data for the phase averaged turbulent kinetic energy

over most of the channel height (y+ > 50). The near wall modulation of k how-

ever, remained a difficult feature for the models to reproduce. Similar comments

can be made regarding the phase-averaged Reynolds shear stress.



Chapter 6

Jet-Cavity Interaction

6.1 Introduction

This chapter reports on a brief comparative study of turbulence model perfor-

mance in the problem of a turbulent planar jet issuing into a dead-end enclosure.

The case is based on the experimental and computational studies of Mataoui

et al. (2001) and Mataoui et al. (2003).

The experimental setup used by Mataoui et al. consists of a wind tunnel

supplying air to a rectangular enclosure through a plane duct. Air flows into

the enclosure through a nozzle designed to reduce the level of turbulence. The

rectangular cavity is closed downstream of the issuing jet and open to the at-

mosphere at the opposite end, and the location of the jet inlet can be moved

within the cavity. The geometric configuration and dimensions of the cavity are

shown schematically in Figure 6.1. Velocity measurements were made using a

single hot wire probe, and the signal was filtered to remove the high-frequency

turbulent fluctuations using a signal conditioning system. Flow visualisation was

also carried out using smoke injected at the inlet channel (Mataoui et al., 2003).

Mataoui et al. observed that different flow regimes develop in the cavity

depending on the location of the jet inlet. When the jet inlet is brought close to

a wall, a steady flow pattern results. When it is placed in a more central location,

away from any wall, the resulting flow is unsteady. The unsteadiness can be either

stable (periodic), or unstable (transitory), depending on the distance of the jet

inlet to the end wall. The regions associated with each of these regimes are shown

in Figure 6.2, taken from Mataoui et al. (2003).

178
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X0 = 0.5m

H0 = 0.2m
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H1h0 = 0.01m

MXM
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x

y

Figure 6.1: Schematic diagram of the plane jet in an enclosed cavity.

6.2 Problem description

The simplified flow domain used for computational modelling is shown in Figure

6.1, along with the employed geometrical notation. The following definitions are

used for non-dimensionalising the geometrical and flow parameters:

• Dimensionless ‘impingement distance’:

X =
X0 −X1

X0

. (6.1)

• Dimensionless jet exit height:

H =
H1

H0

. (6.2)

• Dimensionless (horizontal) distance between monitor point M and jet exit:

dM =
XM −X1

X0 −X1

. (6.3)

• Dimensionless height of monitor point:

hM =
HM

H0

. (6.4)
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• Jet Reynolds number:

Rejet =
U0h0
ν

. (6.5)

• Strouhal number:

St =
fh0
U0

(6.6)

In the above definitions U0 is the jet exit velocity and f is the fundamental or

dominant frequency in an unsteady case.

Following Mataoui et al. (2003), the following fixed boundary conditions were

applied to the jet inlet:

U = U0, V = 0, k = 0.03U2
0 , ε = 10

k3/2

h0
(6.7)

On the plane at the open end of the cavity (dashed line in Figure 6.1), a zero

(plane-normal) gradient condition is applied to all flow variables except pressure,

which is set to zero on that plane.

Two configurations have been examined in the present work. The first is

X = 0.2, H = 0.425, which lies in the region reported to yield a steady flow

regime, and the second is X = 0.8, H = 0.425, which is reported to yield a stable

periodic flow regime. In both cases the jet Reynolds number is Rejet = 4000. The

working fluid is assumed to be air at 20◦C, for which the density is ρ = 1.2 kg/m3,

and the dynamic viscosity is µ = 1.837× 10−5 Pa s.

6.3 Numerical implementation

The flow domain was discretised by a uniform grid of 100 × 120 finite volume

cells. The jet inlet boundary conditions are applied at the exit of the nozzle, and

the cells lying in the inlet duct of the jet are thus effectively blocked out of the

computations by specifying values of their variables to be the same as the jet inlet

boundary conditions. This is implemented by setting the following modifications

to the discretised equations for each variable φ at each node within the blocked-off
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Figure 6.2: Observed flow regimes for various jet inlet placements, from Mataoui
et al. (2003). The orientation of the figure is opposite to the one adopted here.

region:

aE = aW = aN = aS = 0

SP = −1020

SU = 1020 × φinlet

(6.8)

where aE, aW , etc. are the terms appearing in the discretised scalar-transport

equation (3.16); SU and SP are the terms of the linearised source term in (3.19).

This essentially ensures that the variable φ at the node retains its preset value

and remains unaltered.

The near-wall viscous regions are not believed to be the most influential in

this application, and so, to reduce the overall grid size required, the wall function

approach described in Section 3.7 has been applied. Low-Re terms were, never-

theless, still retained in the turbulence models employed in the calculations, since

in this type of complex flow it is difficult to ensure that the grid spacing is such

that all the near-wall nodes lie fully outside the viscous sublayer.

The selection of the grid was a balancing process between accuracy and com-

putational cost. The RSTM calculations were especially difficult because of their

slower rate of convergence and higher computational cost compared to the LS

model, in addition to difficulties of computational stability. The steady case was

considered first, primarily to simplify the grid selection. The near wall grid re-

quirements differ somewhat between these cases, because in the unsteady case

the end wall is relatively far from the jet exit and the velocity at that wall is

thus relatively low. The top and bottom walls on the other hand become sites

of alternating jet impingement in the unsteady case, so these walls become the
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more important ones in setting the spacing. The selected grid results in non-

dimensional distances y∗ (or x∗) between the wall and the wall-adjacent nodes of

around 20-25 in the unsteady case at active regions of interaction with the wall,

but can fall to around 5 in other places.

All calculations were run as unsteady cases. For the first configuration ex-

amined, X = 0.2, H = 0.425, identified in Figure 6.2 to correspond to a steady

regime, a large step-size was used to accelerate convergence to a steady-state so-

lution. For the second configuration, X = 0.8, H = 0.425, corresponding to a

periodic regime in Figure 6.2, the code was left to run the intial flow development

was surpassed, and around four to five periodic cycles could be identified. Results

were only taken after this period of development.

Figure 6.3 shows a comparison of solutions obtained using the LS model for

the steady case X = 0.2, H = 0.425 using grids of 80× 100 and 100× 120 cells.

It can be seen that the difference between the two solutions is small, and this is

consistent with the findings of Mataoui et al. (2003), who used a grid of 80× 100

in their computations.

As a further demonstration of numerical accuracy, for the unsteady case X =

0.8, H = 0.425, Figure 6.4 shows the frequency spectra of four variables at two

monitor locations, using the 80× 100 grid and a time step of 0.002 seconds, and

the 100×120 grid and time step of 0.001 seconds. The difference in the frequencies

of the observed harmonics is only around 2-3%, and a time step of 0.001 seconds

was thus used for all the unsteady results presented here.

6.4 Results

6.4.1 Steady case

Figure 6.5 shows the flow patterns obtained for the case X = 0.2, H = 0.425,

using the LS, TCL and HJ models, and Figures 6.6, 6.7 show corresponding

contours of pressure and turbulent kinetic energy for theses same models. This

geometric configuration lies in the region which Mataoui et al. report to give

a steady flow, and all three models did indeed reach a steady solution. In this

configuration the nozzle is relatively close to the end-wall and there is direct

impingement of the issuing jet onto this wall. The jet then splits into two streams

which flow in both directions along the end-wall until they are forced to turn at
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Figure 6.3: Contours of U and V velocity components, pressure, and turbulent
kinetic energy obtained for the case X = 0.2, H = 0.425 at Re0 = 4000 using two
different grids. Thick lines correspond to a grid of 100× 120 cells, and thin lines
correspond to a grid of 80× 100.
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(a) Monitor location near bottom wall.

(b) Monitor location near mid-plane.

Figure 6.4: Comparison of frequency spectrum of velocity magnitude, V -velocity
component, pressure, and turbulent kinetic energy returned by two solutions, the
first obtained using a grid of 80×100 cells and a time step of .002 seconds (dashed
lines), and the second using 100× 120 cells and a time-step of 0.001 seconds, for
the case X = 0.8, H = 0.425 at Rejet = 4000 using the TCL model.
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the corners. Fluid near the jet inlet on both sides of the nozzle is entrained

along the jet. A larger negative pressure develops below the jet than above

it, which causes the jet to deflect downwards and the impingement point on

the wall is moved correspondingly. The general flow pattern returned by the

models is qualitatively similar, with differences arising in the degree of downward

deflection of the impinging jet. The lowest pressure develops in the LS case, as

can be seen in Figure 6.6, followed by the TCL, then the HJ cases, respectively.

Correspondingly, the jet is deflected downwards the most in the LS case, and

a noticeably larger stream of air flows along the lower wall than that along the

top wall. The jet impingement point is deflected least in the case of the HJ flow

pattern, which causes the flow along the top wall to be the largest in this case.

The top wall stream is then deflected because of the low pressure region, causing

the stream to impinge on the top wall of the inlet duct and split in two directions.

Figure 6.7 shows that the highest levels of turbulence energy are at the location

of jet impingement on the end-wall, and at the edge of the stream along the

lower wall. The level of energy is highest in the TCL and LS flow fields, and is

substantially lower in the HJ case. This might be due to the proximity of the

shear layers from the edge of the lower wall stream and the entrainment stream

under the jet in the former two model results, causing a concentration of the

turbulence generated at these two locations. In the TCL case there is substantial

spreading of the lower wall stream and this tends to shrink the region between the

two mentioned shear layers where the fluid is relatively stagnant (in the mean).

This spreading also explains the tilt in the contours of k/U2
0 observed in the TCL

case, and to a lesser extent in the HJ case.

6.4.2 Unsteady case

When the jet inlet was moved to X = 0.8, H = 0.425, all the models returned

unsteady solutions. The simulations were run for at least 4 to 5 cycles, beyond

the initial flow development, to ensure periodicity. In the case of the LS and TCL

models, purely periodic solutions were obtained. For the HJ and Shima models,

on the other hand, purely periodic solution were not obtained. Even after running

the simulations for 10 additional cycles, the results obtained exhibited significant

cycle-to-cycle variation in amplitude and period, as will be seen later.

The flow patterns over an approximate cycle and the corresponding pressure

contours using the LS model are shown in Figure 6.8. The jet flapping motion
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(a) LS model

(b) TCL model

(c) HJ model

Figure 6.5: Flow patterns for the steady case X = 0.2, H = 0.425 using three
different turbulence models.
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(a) LS model

(b) TCL model

(c) HJ model

Figure 6.6: Pressure contours for the steady case X = 0.2, H = 0.425 using three
different turbulence models.
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(a) LS model

(b) TCL model

(c) HJ model

Figure 6.7: Turbulent kinetic energy contours for the steady case X = 0.2, H =
0.425 using three different turbulence models.
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is driven by the low pressure regions that appear above and below the jet in an

alternating fashion, and the impingement on the top and bottom walls causes

splitting of the main jet stream to cause weaker secondary streams. Figure 6.9

shows contours of velocity magnitude and turbulent kinetic energy. Also shown

in Figures 6.8 and 6.9 are the locations of two monitor points at which the time

series of selected flow variables will be examined and analysed. Figure 6.10 shows

the time series and frequency spectra of normalised velocity magnitude, trans-

verse velocity component, pressure, and turbulent kinetic energy at the near wall

monitor location. The time series of all four variables are clearly periodic with

a main period of oscillation and higher frequency spikes. Observation of the

monitor points over a period on the contour plots of Figures 6.8 and 6.9 sheds

some light over the nature of the time series behaviour. The contours in these

figures are annotated with the normalised time of the snapshot that corresponds

to the times appearing in the time-series in Figure 6.10. Following the velocity

magnitude at the near-wall monitor in Figures 6.9 and 6.10, it can be seen that

at tU0/h0 = 30 the monitor lies in a stagnant region of the flow, and remains

so over the next 1/6 of the cycle while the jet is heading towards the upper

wall. However, the monitor point during this time is being approached by a sec-

ondary stream along the lower wall, and the velocity magnitude thus is increasing.

Slightly after tU0/h0 = 200, the velocity tends to plateau slightly as a stream of

fluid of slowly varying velocity crosses the monitor point, but the main jet is

now in its downwards motion and the velocity is set to increase rapidly as the

main jet approaches. Between tU0/h0 = 367 and 453, the main jet traverses the

monitor point, and the velocity reaches a local peak, followed by a sharp trough

and then another peak (absolute maximum). The trough is due to the stagnation

region between the splitting streams of the impinging jet. The second peak is

then followed by a sharp decrease in velocity magnitude as the jet proceeds in

its upwards motion and the monitor point lies in the stagnant region beneath

the lower entrainment stream, and the process is then repeated cyclically. The

spikes in the time series of the other variables are also due to traversal of the jet

impingement across the monitor point.

Similar time series of the same four variables and their frequency spectra at

the second monitor near the centre of the cavity are shown in Figure 6.11. The

velocity magnitude signal now shows two clear peaks of unequal magnitude in

each cycle. Following the velocity magnitude contours in Figure 6.9, it can be
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seen that the jet tends to be relatively straight when it crosses this monitor point

on its way up at around tU0/h0 = 120, and more bent as it heads towards the

monitor point on its way down (peak at around tU0/h0 = 320, as determined

from Figure 6.11, not shown in Figure 6.9). This is due to the asymmetry of the

jet inlet location with respect to the upper and lower walls; because of the larger

distance, the jet sweeps through a larger angle before it impinges on the upper

wall than when it impinges on the lower wall. The turbulent kinetic energy signal

also has two clear peaks that correspond to the passing of the jet on its upward

and downwards motion, with the width of the peak reflecting the asymmetry in

the width of the contours and their degree of penetration in the cavity during

these two strokes.

The frequency spectra shown in Figures 6.10 and 6.11 show an essentially

purely periodic oscillation with a fundamental frequency of 1.23 Hz (St = 0.002),

or a period T = 0.81s. According to Figure 11 in Mataoui et al. (2003) the

frequency they observe experimentally for this configuration and Reynolds num-

ber is 0.51 Hz. However, it is not entirely clear how their frequency data was

processed, and there seems to be a consistent factor of two difference between

what can be read from their graphs and what they report. For example, Fig-

ure 6.12, taken from Mataoui et al. (2003), shows the time series of normalised

velocity magnitude for the configuration X = 0.8, H = 0.5 at Rejet = 4500 ob-

tained experimentally, and that obtained using the standard high-Re k–ε and a

two-scale eddy-viscosity model. Mataoui et al. report that the period obtained

experimentally for this case is 1.83 s, and computationally, 1.785 s and 1.875

s for the single-scale and multiple-scale models, respectively. However, reading

directly off the graphs in Figure 6.12, the periods in normalised time units are

roughly 580, 580, and 595, in the order of the graphs. Given that they state

U0 = 6 m/s at Rejet = 4000, the jet velocity at Rejet = 4500 is U0 = 6.75 m/s,

and the nozzle height is given to be h0 = 0.01m; the respective periods according

to Figure 6.12 are thus ∆t = 0.86 s, 0.86 s, and 0.88 s. These are roughly half

the values they report, allowing for small differences between reading the period

graphically and obtaining it by processing the time series using a discrete Fourier

transform. Similarly, Figure 11 in Mataoui et al. (2003) states that the frequency

of oscillation obtained for the case X = 0.8, H = 0.425 at Rejet = 4000 (equiv-

alent to the presently considered case) using the standard k–εmodel is 0.56 Hz,

whereas reading the peak-to-peak time interval directly off Figure 6 (for the same
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configuration and Reynolds number) in the same reference implies a frequency of

1 Hz. Therefore there appears to be a systematic factor of two difference between

the frequencies they report and what can be inferred from their time-series plots,

and this would result in the present LS prediction of the frequency being only

slightly higher than that measured.

The time series and frequency spectra obtained using the TCL model for the

same variables and monitor points described previously for the LS model are

shown in Figures 6.13 and 6.14. In this case, as in the case of the LS model,

the flow reaches a purely periodic state, as seen in the time series and frequency

spectra shown in these figures. The fundamental frequency of oscillation, as

determined by the lowest dominant frequency in the shown spectra, is 1.20 Hz.

Figure 6.15 shows the flow patterns and pressure contours over a cycle, and Figure

6.16 shows the velocity magnitude and turbulent kinetic energy contours for the

same model. The contour snapshots are annotated with the normalised time that

corresponds to that shown on Figures 6.13 and 6.14.

The flow patterns obtained using the TCL model are qualitatively similar to

those obtained using the LS model presented previously. Although it is difficult to

make direct comparisons between the flow fields at various instances, due to the

difficulty of identifying a common starting point for the cycles, it was generally

observed that the TCL model tends to predict stronger recirculation of the jet

stream to the left of the impingement point. This can be seen in the top velocity

magnitude contours in Figures 6.9 and 6.16, and at other instances not shown

in these figures. Notably, the pressure gradient in these regions of recirculation

tend to be larger (closer contours) in the case of the TCL model than in the LS,

which leads to the stream being pulled laterally towards the lower pressure.

Corresponding time series and frequency spectra plots using the HJ model

are shown in Figures 6.17 and 6.18, and using the Shima model in Figures 6.21

and 6.22. Contour plots of flow variables similar to those presented previously are

shown in Figures 6.19 and 6.20 for the HJ model, and in Figures 6.23 and 6.24 for

the Shima model. The first observation that stands out from the time series of the

HJ and Shima models is that these models do not reach a purely periodic state.

From the frequency spectra it is possible to identify a dominant frequency that

is associated with the flapping motion, but the degree of cycle-to-cycle variation

is enough to make it difficult to identify this frequency (its associated period)

in the time domain plots. The lowest dominant frequency identified is 1.16 Hz
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for the HJ model, and 0.95 Hz for the Shima model. The number of variables

solved for in RST models is larger than in eddy-viscosity models and these vari-

ables are thus free to have independent time scales. It might thus be expected

that this feature of RST models would lead to increased complexity of interac-

tion between the time-scales. The TCL model does not exhibit this behaviour

however, and, in agreement with the experimental observations, it returns a pe-

riodic solution. This suggests that, since the Shima and HJ models are closer to

linear RSTM’s, it would appear that these do not return the correct interaction

between processes. Notably, Guo et al. (2001) who studied computationally a

two-dimensional confined jet using three different eddy viscosity models and the

Basic Reynolds stress transport model (LRR-IP), in a slightly different geometry

than the present one, similarly found that all the eddy-viscosity models returned

purely periodic oscillatory solutions. The RST model, on the other hand, re-

turned a complex oscillation pattern with significant cycle-to-cycle variations in

amplitude and period. The dominant frequency of these oscillations was compa-

rable however to the eddy-viscosity results. These observations are similar to the

present findings.

Unfortunately, Mataoui et al. (2003) present very limited quantitative experi-

mental data to compare with. The experimental time series introduced previously

in Figure 6.12, for a slightly different configuration, shows a signal that is not

purely periodic, and some cycle-to-cycle variation is clearly evident (although the

configuration does lie in the region identified in Figure 6.2 as producing a periodic

flow). However, the small cycle-to-cycle variation shown in the measurements is

significantly less than that returned by the HJ and Shima models, and to within

measurement error, the series shown in Figure 6.12 can be said to be essentially

periodic.

Comparing the time series at the two monitor points, across the various mod-

els, it is observed that the velocity magnitude fluctuations generally tend to

contain more frequency components at the central monitor location than at the

near wall one. The opposite is true for the pressure fluctuations, where the spec-

trum can be seen to decay faster at the central monitor. The latter observation

is attributed to the pressure spikes that correspond to impingement at the wall

and the pressure rise associated with stagnation. At the central monitor the LS

pressure signal is dominated by the fundamental mode and the first harmonic,
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having almost equal amplitudes, with small contributions from higher frequen-

cies. The TCL pressure signal at this location is dominated by the first three

frequencies. The HJ and Shima pressure signal frequencies cluster around the

dominant frequency identified previously, up to around 5 Hz, and tend to be neg-

ligible beyond that. A notable feature in the pressure signal of these two models

at both monitor points is the relatively large negative pressures compared to the

LS and TCL models. These larger negative pressures are associated with stronger

vortex rings, as observed when the respective flow patterns are examined. The

largest amplitudes of pressure fluctuations are observed in the HJ results.

6.5 Concluding remarks

The problem of a turbulent planar jet issuing into a dead-end enclosure has been

examined in this chapter. Two configurations have been selected for simulation:

the first corresponding to the steady regime, as reported in the literature, and

the second belonging to the periodic regime.

In the steady case, the general flow pattern returned by the models was qual-

itatively similar, with differences arising in the degree of downward deflection

of the impinging jet. Due to the asymmetric position of the jet inlet, a larger

negative pressure develops below the jet than above it, causing the jet to deflect

downwards. A lower negative pressure results in a larger deflection, which in turn

lowers the location of the impingement point on the lower wall, and increases the

flow rate of the lower exiting stream relative to the upper stream. The lowest

negative pressure developed in the LS case, followed by the TCL case. This ex-

plains the difference in the flow patterns returned by the models. In all cases, a

higher level of turbulent kinetic energy develops in the lower part of the cavity,

below the jet inlet duct, than in the upper part. The level of turbulent kinetic

energy returned by the TCL and LS models was significantly higher than that

returned by the HJ model. This was attributed to the larger lower stream in

the LS and TCL cases, which brings the two shear layers from the lower wall

stream and entrainment stream closer to each other, causing a concentration of

the turbulence generated at these two shear layers.

In the unsteady case, a jet flapping motion arises, which is driven by low pres-

sure regions that develop above and below the jet in an alternating fashion. The

flapping motion is experimentally observed to be periodic for the configuration
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examined (Mataoui et al., 2001, 2003). However only the LS and TCL models, in

this case, returned purely periodic solutions. The Shima and HJ models returned

unsteady flow patterns that exhibited complex oscillations with significant cycle-

to-cycle variations. Since each of the four indepndent Reynolds stress components

is obtained from its own transport equation in RSTM’s, each is free to have its

own time-scale, and the potential interactions between the various time-scales

is much more complex than in eddy-viscosity models. Since the TCL model in

this case is the only RSTM that correctly returns a periodic solution, it appears

that, being closer to linear RSTM’s, the Shima and HJ models do not return the

correct interaction between processes.

The lowest dominant frequencies returned by the LS, TCL, and HJ models

were relatively close to each other, having a mean value of 1.2 Hz and a standard

deviation that is 2.4% of the mean. The Shima model returned a frequency

that was 20% lower than the mean frequency returned by three other models.

Unforunately, differences between the reported freuquencies in the reference case

of Mataoui et al. (2003), and values implied by their graphs make it difficult to

make a reliable comparison with the experimental data.
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Figure 6.8: Velocity vectors and pressure contours over the dominant period of
oscillation for the case X = 0.8, H = 0.425 obtained using the LS model.
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(a) Velocity magnitude (b) Turbulent kinetic energy

Figure 6.9: Contours of normalised velocity magnitude and turbulent kinetic
energy over the dominant period of oscillation for the case X = 0.8, H = 0.425
obtained using the LS model.
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(a) Time series.

(b) Fourier transform.

Figure 6.10: Time series and frequency spectra of the variables |~U |/U0, V/U0,
P/ρU2

0 and k/U2
0 for a monitor located at dM = 0.3, hM = 0.086 obtained using

the LS model.
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(a) Time series.

(b) Fourier transform.

Figure 6.11: Time series and frequency spectra of the variables |~U |/U0, V/U0,
P/ρU2

0 and k/U2
0 for a monitor located at dM = 0.3, hM = 0.49 obtained using

the LS model.



CHAPTER 6. JET-CAVITY INTERACTION 199

Figure 6.12: Time series of normalised velocity magnitude for the case X = 0.8,
H = 0.5 at Rejet = 4500 obtained by Mataoui et al. (2003).
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(a) Time series.

(b) Fourier transform.

Figure 6.13: Time series and frequency spectra of the variables |~U |/U0, V/U0,
P/ρU2

0 and k/U2
0 for a monitor located at dM = 0.3, hM = 0.086 obtained using

the TCL model.



CHAPTER 6. JET-CAVITY INTERACTION 201

(a) Time series.

(b) Fourier transform.

Figure 6.14: Time series and frequency spectra of the variables |~U |/U0, V/U0,
P/ρU2

0 and k/U2
0 for a monitor located at dM = 0.3, hM = 0.49 obtained using

the TCL model.
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Figure 6.15: Velocity vectors and pressure contours over the dominant period of
oscillation for the case X = 0.8, H = 0.425 obtained using the TCL model.
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(a) Velocity magnitude (b) Turbulent kinetic energy

Figure 6.16: Contours of normalised velocity magnitude and turbulent kinetic
energy over the dominant period of oscillation for the case X = 0.8, H = 0.425
obtained using the TCL model.
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(a) Time series.

(b) Fourier transform.

Figure 6.17: Time series and frequency spectra of the variables |~U |/U0, V/U0,
P/ρU2

0 and k/U2
0 for a monitor located at dM = 0.3, hM = 0.086 obtained using

the HJ model.
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(a) Time series.

(b) Fourier transform.

Figure 6.18: Time series and frequency spectra of the variables |~U |/U0, V/U0,
P/ρU2

0 and k/U2
0 for a monitor located at dM = 0.3, hM = 0.49 obtained using

the HJ model.
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Figure 6.19: Velocity vectors and pressure contours over the dominant period of
oscillation for the case X = 0.8, H = 0.425 obtained using the HJ model.
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(a) Velocity magnitude (b) Turbulent kinetic energy

Figure 6.20: Contours of normalised velocity magnitude and turbulent kinetic
energy over the dominant period of oscillation for the case X = 0.8, H = 0.425
obtained using the HJ model.
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(a) Time series.

(b) Fourier transform.

Figure 6.21: Time series and frequency spectra of the variables |~U |/U0, V/U0,
P/ρU2

0 and k/U2
0 for a monitor located at dM = 0.3, hM = 0.086 obtained using

the Shima model.
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(a) Time series.

(b) Fourier transform.

Figure 6.22: Time series and frequency spectra of the variables |~U |/U0, V/U0,
P/ρU2

0 and k/U2
0 for a monitor located at dM = 0.3, hM = 0.49 obtained using

the Shima model.
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Figure 6.23: Velocity vectors and pressure contours over the dominant period of
oscillation for the case X = 0.8, H = 0.425 obtained using the Shima model.
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(a) Velocity magnitude (b) Turbulent kinetic energy

Figure 6.24: Contours of normalised velocity magnitude and turbulent kinetic
energy over the dominant period of oscillation for the case X = 0.8, H = 0.425
obtained using the Shima model.



Chapter 7

Conclusions

A number of homogeneous turbulence problems covering various modes of mean

strain and a wide range of strain rates was examined in Chapter 4. The evolution

of various turbulence statistics using several RST models was presented and dis-

cussed. Somewhat different effects were observed in homogeneous shear than in

irrotational strain cases, each class presenting different challenges to the models

tested.

In simple shear it was generally found that models predict the correct evolu-

tion of turbulent kinetic energy k and dissipation rate ε at lower dimensionless

shear rates, Sk/ε < 4. Despite some variation among the models in the quality of

the anisotropy prediction, the more important components, a12 and a11, were rea-

sonably well predicted by most models. It was observed that pressure–strain-rate

modelling was, in general, the more critical modelling element in homogeneous

shear flows, where it was found that when the models returned the correct level

of a12 the predicted evolution of k was generally also satisfactory. This indicates

that the standard ε model equation gives roughly the correct balance of terms in

these flows. This was confirmed by tests using DNS redistribution data as input

to the Reynolds stress evolution equations.

A gradually decreasing trend was observed in the reference data for the long-

time a12, as the shear rate is increased. This trend was not captured by most

models, and was reflected in an increasingly over-predicted rate of production of

turbulence energy by them, which begins to be visible from the intermediate level

of shear rate Sk/ε ≈ 4−5, onwards. Since the linear pressure–strain-rate models,

using constant model coefficients (such as LRR-IP and LRR-QI), were unable

to replicate the variation in the long-time level of anisotropy with increasing

212
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mean strain rate, this suggests one might need to adopt variable (strain-rate

dependent) coefficients if one wishes to retain a linear tensorial expansion for φr
ij

and reproduce the response of the Reynolds stresses to a wide range of strain

rates.

At the higher shear rates tested, Sk/ε > 16, existing models grossly over-

predict the evolution of k and ε. This is attributed mainly to the above-noted

inability of the models to replicate the decay of a12 at high shear rates as pre-

dicted by Rapid Distortion Theory (RDT), and observed in DNS results. In

addition, the normal stress anisotropies are also under-predicted by the models.

With respect to the former effect, in contrast to the linear schemes, the TCL

model using constant C2, C
′

2 coefficients was found to have the desirable feature

of a decreasing trend of long–time a12 with increasing shear rate. Unfortunately

the low-Re, variable coefficient formulation did not retain this desired behaviour,

and future work might possibly look into restoring this feature by re-associating

the C2 reduction, found by Craft (1998) to be desirable in some near-wall shear

flows, with correction terms that only come into effect in regions of strong in-

homogeneity. The large increase in normal stress anisotropy at high shear rates

(approaching the RDT limit) is another feature that present models are unable

to mimic and could therefore be addressed in future work.

In the case of homogeneous turbulence subjected to a periodic shear it was

found that the models, owing to the intrinsic lag between stress and strain asso-

ciated with solving an individual transport equation for each stress component,

were able to return the correct qualitative trend of turbulence energy growth at

low frequencies and decay at high frequencies. The critical frequency at which

this change in behaviour occurs depends on the modulation of the shear stress

and the applied shear, and is picked up most closely by the TCL model, although

not all of the temporal variations shown by the DNS were reproduced.

In the homogeneous irrotational strain cases examined, model performance

was found to be consistent over a wide range of strain rates. In these cases the

Low-Re TCL model was found to return the best results. In the experimental irro-

tational strain cases examined (plane strain and axisymmetric contraction flows)

there was evidence of an accelerated dissipation rate generation. Significant im-

provement was achieved through the use of an alternative Pε model, and through

a simple (though large) increase of the coefficient Cε1 in the conventional Pε term.

This feature would be an interesting and worthwhile subject for further study.
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Possible future work could explore this trend of accelerated dissipation rate pro-

duction in irrotational strain fields through additional detailed experimentation

or high quality simulations. If this trend is found to be generally applicable in

irrotational strains, the modifications mentioned above, or others, might be se-

lectively applied in irrotational strains and switched off in shear dominated flows

(where, as was previously discussed, the standard dissipation model and coeffi-

cient values appear to be reasonably good approximations). The additional data

could contribute to the optimisation of the coefficient terms over a wider range

of cases.

The problem of fully-developed channel flow subject to imposed sinusoidal

pressure pulsations was examined in Chapter 5. Three frequencies were selected

for study, corresponding the low, intermediate, and high frequency regimes as

described in the literature. None of the models tested were able to reproduce cor-

rectly all of the observed flow features, and none returned consistently superior

results in all the cases examined. A particularly challenging feature in this prob-

lem set was the partial laminarisation and re-transition that occurred cyclically

at low and, to a lesser extent, intermediate frequencies.

There was a considerable degree of variation in the model predictions of mean

bulk velocity, which frequently tended to be under-predicted. At intermediate

and high frequencies, the time-mean bulk velocity of the LES was higher than

the bulk velocity of the steady channel DNS by about 6–7%, a feature that the

models did not in general seem to mimic, and which contributes to their general

tendency to under-predict the time mean U+
b .

A flow feature that was consistently well reproduced by the models over the

range of frequencies examined is the fundamental mode of phase-averaged velocity

modulation. Both the amplitudes and phase angles predicted by the models were

in good agreement with the corresponding reference data over most of the channel

height.

Because of the errors in the time-mean velocity, the phase-averaged velocity

profiles were not as well reproduced as the velocity amplitude profiles (fundamen-

tal mode), and were often somewhat under-predicted.

The wall shear stress modulation returned by the LS and TCL models at the

lowest frequency, ω+ = 0.0016, was in reasonable agreement with the reference

data up to the re-transition phase of the cycle, where both models tended to

overshoot the reference data modulation. The LS model performed better than
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the TCL at this frequency. At the highest frequency, ω+ = 0.04, the wall shear

stress modulation predicted by all four models was in very good agreement with

the reference data. The largest variation between the models in wall shear stress

modulation was observed at the intermediate frequency, ω+ = 0.01. The LS and

HJ models under-predicted the amplitude of the modulation, and were out of

phase with the reference data, while the TCL model once again performed poorly

due to the abrupt re-transition. The Shima model in this case was in very good

agreement with the LES wall shear stress modulation.

The time-mean turbulence statistics of the pulsatile flow LES generally ex-

hibited some differences compared to a steady turbulent channel DNS at a com-

parable Reτ . However, this aspect of the LES data is somewhat questionable as

has been pointed out earlier. The time-mean turbulence statistics returned by

the Shima model were found to be particularly sensitive to the forcing frequency.

This was also true, to a lesser extent, for the HJ model. The LS and TCL mod-

els generally returned time-mean turbulence statistics that were fairly similar to

their steady flow results, showing little sensitivity to the forcing frequency.

The phase-averaged turbulent kinetic energy at the low and intermediate fre-

quencies was generally poorly predicted by the models. This appeared to be due

mainly to the partial laminarisation and re-transition that occurred cyclically at

these frequencies. At the lowest frequency, the Shima and HJ models could not

recover from the laminarisation stage of the cycle, and a periodic turbulent so-

lution could not be obtained using these models. The TCL model, on the other

hand, suffered from excessively abrupt re-transition at the low and intermediate

frequencies, which adversely affected the accuracy of its predictions. The cause

of this behaviour was attributed to the low-Ret dependencies in some of the

TCL model coefficients. It is believed that considerable improvement of the TCL

model’s performance at the low and intermediate frequencies might be possible

if this problem were corrected.

At the highest frequency examined, all four models were in much better agree-

ment with the LES data for the phase averaged turbulent kinetic energy over most

of the channel height (y+ > 50). The near wall modulation of k, however, re-

mained a difficult feature for the models to reproduce. Similar comments can be

made regarding the phase-averaged Reynolds shear stress.

The ability of the TCL model, in contrast to the Shima and HJ models, to

recover from the laminarisation phase of the cycle and return a turbulent periodic
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solution at the lowest frequency is a desirable feature that needs to be preserved

while simultaneously addressing the problem of excessively abrupt transition that

adversely affects its performance. Future work in this area might take a closer

look at the performance of these three RST models in predicting transition over

a flat plate, as well as the present pulsatile channel cases, with the aim of making

adjustments to the models for improved performance. In the case of the TCL

model, it appears that there is a need reformulate the near-wall damping in some

of the model coefficients to allow the model to handle the cyclic transition more

gracefully.

The problem of a turbulent planar jet issuing into a dead-end enclosure has

been examined in Chapter 6. Two configurations were selected for simulation: the

first corresponding to a steady regime, and the second belonging to the periodic

regime.

In the steady case, the general flow pattern returned by the models was qual-

itatively similar, with differences arising in the degree of downward deflection of

the impinging jet. A lower negative pressure developing below the jet results in a

larger deflection, which in turn lowers the location of the impingement point on

the end wall, and increases the flow rate of the lower exiting stream relative to

the upper stream. The lowest negative pressure was developed in the LS case, fol-

lowed by the TCL case. This explains the difference in the flow patterns returned

by the models.

The level of turbulent kinetic energy returned by the TCL and LS models was

significantly higher than that returned by the HJ model. This was attributed

to the larger lower stream in the LS and TCL cases, which brings the two shear

layers from the lower wall stream and entrainment stream closer to each other,

causing a concentration of the turbulence generated in these two shear layers.

In the unsteady case, a jet flapping motion arises, which is driven by low pres-

sure regions that develop above and below the jet in an alternating fashion. The

flapping motion is experimentally observed to be periodic for the configuration

examined (Mataoui et al., 2001, 2003). However only the LS and TCL mod-

els, in this case, returned purely periodic solutions. The Shima and HJ models

returned unsteady flow patterns that exhibited complex oscillations with signifi-

cant cycle-to-cycle variations. Since each of the four independent Reynolds stress

components is obtained from its own transport equation in RSTM’s, each is free

to have its own time-scale, and the potential interactions between the various
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time-scales is much more complex than in eddy-viscosity models. Since the TCL

model in this case is the only RSTM that correctly returns a periodic solution,

it appears that, being closer to linear RSTM’s, the Shima and HJ models do not

return the correct interaction between processes.

The lowest dominant frequencies returned by the LS, TCL, and HJ models

were relatively close to each other, having a mean value of 1.2 Hz and a standard

deviation that is 2.4% of the mean. The Shima model returned a frequency

that was 20% lower than the mean frequency returned by three other models.

Unfortunately, differences between the reported frequencies in the reference case

of Mataoui et al. (2003), and values implied by their graphs make it difficult to

make a reliable comparison with the experimental data.

Possible future work might be directed towards generating more detailed data

for validation and comparison. This might be through detailed experiments or

high-quality LES. In addition, additional geometric configurations, covering a

wider range of jet-inlet locations and the corresponding flow-regimes, might be

tested using the present models to establish a better understanding of the factors

driving their performance.

Taking a broad look at the results obtained in the present study, it can be

said that, while no single model has consistently out-performed all other models

tested, the TCL model has exhibited a number of strong points:

• In homogeneous irrotational strains it has consistently returned superior

results when compared to other models tested.

• In homogeneous shear the constant coefficient version of the model was

found to return improved predictions of the critical a12 anisotropy compo-

nent, leading to improved predictions of turbulent kinetic energy production

compared to other models.

• The TCL model, when compared to a number of other RSTM’s tested, was

found to be relatively ‘robust’, returning qualitatively correct results where

other RSTM’s were either unable to, or returned qualitatively incorrect

behaviour. While numerical robustness is probably not as highly attractive

as numerical accuracy, it is, nevertheless, a valuable feature in a RANS

model.

Despite the above comments, a number of weakness in the present form of the
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TCL model have also been identified above and some possible routes to improved

performance are suggested below:

1. As noted in the discussion of homogeneous shear flows, the functional form

of the more recent variable C2 coefficient needs to be reformulated to only

bring about a decrease from the original constant value of 0.55 in near–

wall or strongly inhomogeneous flow regions. The effect of the current

formulation (2.84) is to decrease C2 as S∗ increases. One route could be to

modify this so that the reduction in C2 occurs only above a certain threshold

value of some indicator of the direction of strong inhomogeneity, such as:

~n =
∇k1/2
|∇k1/2| ,

or the quantities di and d
A
i , introduced in (2.94). It might also be possible

to link the decrease in C2 to wall proximity using anisotropy invariants or

the parameter A, although this may be less reliable since A can approach

values associated with two-component, and even one-component, turbu-

lence in homogeneous turbulence where there are no walls at all. It is thus

recommended to employ the former approach, using gradients of a suitable

turbulence statistic, which would vanish in homogeneous flows.

2. The trend of accelerated dissipation rate generation in irrotational strain

fields observed in some of the experimental results requires further verifica-

tion. Ideally this should be through high–quality DNS studies at higher Ret

and for a larger total strain than in the Lee and Reynolds (1985) database.

If this trend is indeed confirmed for irrotational strains in general, one could

employ suitable adjustments to the dissipation rate generation term such

as the ones explored in the present study, or others, that are selectively

applied in irrotational strains and switched off in shear dominated flows.

One possibility for achieving this is to use factors of the form

S∗ − Ω∗

S∗ + Ω∗
,

which evaluates to zero in simple shear and unity in irrotational strains.

3. The pulsatile channel flow results suggest that there is a need to re-examine

the near-wall damping in the TCL model in transitional flows with the aim
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of correcting the strongly discontinuous behaviour. In this case, contrary to

what has been mentioned earlier, there may be an argument for associating

the near-wall damping to geometrical parameters (e.g. the wall–normal

vector), rather than Ret, the former being unaffected by the cyclic variation

of turbulence statistics that is unavoidable in a periodically transitional

flow. Alternatively, one can employ turbulence quantities that are less

sensitive to the level of turbulence, such as the anisotropy invariants, and

it may be that a careful study and tuning of the model to bypass transition

on a flat plate would lead to improvements in the pulsatile channel flows.
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Sjögren, T., Johansson, A. V., 1998. Measurement and modelling of homogeneous

axisymmetric turbulence. Journal of Fluid Mechanics 347, 59–90.

Speziale, C., Sarkar, S., Gatski, T., 1991. Modelling the pressure-strain correla-

tion of turbulence: an invariant dynamical systems approach. Journal of Fluid

Mechanics 227, 245–272.



BIBLIOGRAPHY 227

Speziale, C. G., 1985. Modelling the pressure gradient-velocity correlation of tur-

bulence. Physics of Fluids 28, 69–71.

Speziale, C. G., 1987. Second-order closure models for rotating turbulent flows.

Quarterly of Applied Mathematics 45, 721–733.

Speziale, C. G., 1991. Analytical methods for the development of reynolds-stress

closures in turbulence. Annual Review of Fluid Mechanics 23, 107–157.

Tardu, S., Binder, G., Blackwelder, R. F., 1994. Turbulent channel flow with

large-amplitude velocity oscillations. Journal of Fluid Mechanics 267, 109–151.

Tavoularis, S., Jimenez, J., Leuchter, O., 1997. Homogeneous flows. In: A selec-

tion of test cases for the validation of large-eddy simulations of turbulent flows.

No. AR-345. AGARD, Ch. 3.

Tu, S., Ramaprian, B., 1983. Fully developed periodic turbulent pipe flow. part

1. main experimental results and comparison wiht predictions. Journal of Fluid

Mechanics 137, 31–58.

van Leer, B., 1974. Towards the ultimate conservative difference scheme. ii. mono-

tonicity and conservation combined in a second-order scheme. Journal of Com-

putational Physics 14 (4), 361–370.

Versteeg, H. K., Malalasekera, W., 2007. An introduction to Computational Fluid

Dynamics: the Finite-Volume Method, 2nd Edition. Pearson.

Yu, D., Girimaji, S., 2006. Direct numerical simulations of homogeneous turbu-

lence subject to periodic shear. Journal of Fluid Mechanics 566, 117–151.


