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Abstract
The efficiency of the conventional, explicit finite difference time domain (FDTD)

method is constrained by the upper limit on the temporal discretization, imposed
by the Courant–Friedrich–Lewy (CFL) stability condition. Therefore, there is a
growing interest in overcoming this limitation by employing unconditionally sta-
ble FDTD methods for which time-step and space-step can be independently
chosen. Unconditionally stable Crank Nicolson method has not been widely used
in time domain electromagnetics despite its high accuracy and low anisotropy.
There has been no work on the Crank Nicolson FDTD (CN–FDTD) method for
frequency dependent medium.

In this thesis a new three-dimensional frequency dependent CN–FDTD (FD–
CN–FDTD) method is proposed. Frequency dependency of single–pole Debye
materials is incorporated into the CN–FDTD method by means of an auxiliary
differential formulation. In order to provide a convenient and straightforward
algorithm, Mur’s first-order absorbing boundary conditions are used in the FD–
CN–FDTD method. Numerical tests validate and confirm that the FD–CN–
FDTD method is unconditionally stable beyond the CFL limit.

The proposed method yields a sparse system of linear equations which can
be solved by direct or iterative methods, but numerical experiments demonstrate
that for large problems of practical importance iterative solvers are to be used.
The FD–CN–FDTD sparse matrix is diagonally dominant when the time-step
is near the CFL limit but the diagonal dominance of the matrix deteriorates
with the increase of the time-step, making the solution time longer. Selection
of the matrix solver to handle the FD–CN–FDTD sparse system is crucial to
fully harness the advantages of using larger time-step, because the computational
costs associated with the solver must be kept as low as possible. Two best–known
iterative solvers, Bi-Conjugate Gradient Stabilised (BiCGStab) and Generalised
Minimal Residual (GMRES), are extensively studied in terms of the number of
iteration requirements for convergence, CPU time and memory requirements.
BiCGStab outperforms GMRES in every aspect. Many of these findings do not
match with the existing literature on frequency–independent CN–FDTD method
and the possible reasons for this are pointed out.

The proposed method is coded in Fortran and major implementation tech-
niques of the serial code as well as its parallel implementation in Open Multi-
Processing (OpenMP) are presented. As an application, a simulation model of
the human body is developed in the FD–CN–FDTD method and numerical sim-
ulation of the electromagnetic wave propagation inside the human head is shown.

Finally, this thesis presents a new method modifying the frequency dependent
alternating direction implicit FDTD (FD–ADI–FDTD) method. Although the
ADI–FDTD method provides a computationally affordable approximation of the
CN–FDTD method, it exhibits a loss of accuracy with respect to the CN-FDTD
method which may become severe for some practical applications. The modified
FD–ADI–FDTD method can improve the accuracy of the normal FD–ADI–FDTD
method without significantly increasing the computational costs.

11



Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

12



Copyright

The author of this thesis (including any appendices and/or schedules to this the-

sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has

given The University of Manchester certain rights to use such Copyright, includ-

ing for administrative purposes.

Copies of this thesis, either in full or in extracts and whether in hard or elec-

tronic copy, may be made only in accordance with the Copyright, Designs and

Patents Act 1988 (as amended) and regulations issued under it or, where appro-

priate, in accordance with licensing agreements which the University has from

time to time. This page must form part of any such copies made.

The ownership of certain Copyright, patents, designs, trade marks and other

intellectual property (the “Intellectual Property”) and any reproductions of copy-

right works in the thesis, for example graphs and tables (“Reproductions), which

may be described in this thesis, may not be owned by the author and may be

owned by third parties. Such Intellectual Property and Reproductions cannot

and must not be made available for use without the prior written permission of

the owner(s) of the relevant Intellectual Property and/or Reproductions.

Further information on the conditions under which disclosure, publication

and commercialisation of this thesis, the Copyright and any Intellectual Property

and/or Reproductions described in it may take place is available in the Uni-

versity IP Policy (see http://www.campus.manchester.ac.uk/medialibrary/

policies/intellectual-property.pdf), in any relevant Thesis restriction dec-

larations deposited in the University Library, The University Library’s regulations

(see http://www.manchester.ac.uk/library/aboutus/regulations) and in The

University’s policy on presentation of Theses.

13

http://www.campus.manchester.ac.uk/medialibrary/policies/intellectual-property.pdf
http://www.campus.manchester.ac.uk/medialibrary/policies/intellectual-property.pdf
http://www.manchester.ac.uk/library/aboutus/regulations


Acknowledgements

I would like to express my deepest gratitude to my supervisor, Dr. Fumie Costen

for her advice, guidance, support and encouragement throughout this research.

Her indefatigable enthusiasm and counsel, in particular, emphasis on simplicity

and elegance in research, insightful and thought-provoking feedback have been

invaluable to me. Thank you, Fumie!

I am grateful to Dr. Michael Bane of Research Computing Services for pro-

viding technical advices and supports on many occasions of this research.

Thanks to the National Grid Service (NGS), Research Computing Services

(RCS) at The University of Manchester and Kyushu University Computing Sys-

tems for Research, Japan for their computational resources that were used to run

the numerical simulations.

I would like to thank The University of Manchester for granting me the Over-

seas Research Students (ORS) Award for this study.

Above all, the endless supports that I have got from my loving parents and

siblings are beyond recognition.

14



Chapter 1

Introduction

1.1 Background

To solve the physical field problems several techniques are used, which can be clas-

sified into experimental, analytical and numerical. Experiments are expensive,

time consuming, sometimes hazardous and usually do not allow much flexibility

in parameter variation [3]. For many practical and complex problems, analytical

solutions do not exist or are not obtainable. Numerical methods do not suffer

from these limitations, yet can give approximate solutions of sufficient accuracy.

With the availability of the digital computers, since 1960s studies on the numer-

ical methods for electromagnetic field problems started.

A number of numerical techniques are commonly used in the study of elec-

tromagnetic problems, namely, method of moments (MoM) [4, 5], transmission

line matrix (TLM) method [6], finite element method (FEM) [7, 8], finite differ-

ence time domain (FDTD) method [9]. Each method has advantages in some

application areas, but there is no method that is the best in all the areas of ap-

plications. FEM, TLM and FDTD methods are based on the discretization of

Maxwell’s equations over the entire computational domain. On the other hand,

integral methods, such as, MoM are based on the discretization of certain inte-

gral equations involving the Green’s function. In the integral methods there are

fewer number of unknowns but the matrix to be solved is a full matrix, while in

the differential methods the matrix is sparse. FEM and MoM methods solve the

Maxwell’s equations in frequency domain while FDTD and TLM methods work

15



CHAPTER 1. INTRODUCTION 16

in time domain. Frequency domain methods give the solutions for a specific fre-

quency and therefore repeated simulation runs are required to obtain the system

response over a range of frequencies. Because of this, for wide-band applications

a time domain method like TLM or FDTD should be used. In many ways TLM

method is similar to FDTD method and shares many of the advantages and dis-

advantages of FDTD method. But TLM method requires more storage space for

computation than FDTD method.

This thesis is on the FDTD method. FDTD method was originally devel-

oped by K.S. Yee in 1966 [9]. Initially it had drawn little interest because of the

constraints of the computational resources [10]. However, the availability of pow-

erful computing resources later made it a very popular numerical technique for

computational electrodynamics. Yee’s FDTD method discretizes Maxwell’s curl

equations to solve for both electric and magnetic fields. It uses central-difference

equations for both space and time derivatives. The FDTD algorithm progresses

in a leap-frog manner which means that, first electric field is solved for a certain

instant, then magnetic field is solved for the next instant and this progression

repeats. The method is explicit because the fields at a certain instant are calcu-

lated using the fields at the previous instant.

FDTD methods have several advantages. They are said to be the most

straightforward, robust and widely applicable electromagnetic modelling tech-

niques. They are easy to understand and easy to implement in computer pro-

grammes. FDTD methods operate in the time domain. So a single simulation

run can get the solutions for a wide frequency range. By specifying the material

parameters at different points in the computational domain the FDTD method

can easily model various materials. On the other hand, FDTD is not good at

modelling the complex geometries with a high precision. The method becomes

computationally intensive and requires large amount of memory when very fine

spatial discretization needs to be used for accurate modelling.

1.2 Research Context

The standard explicit FDTD method has some major limitations. Media parame-

ters in standard FDTD method are specified as frequency-independent constants
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while, in reality, they depend on frequency. Media parameters can be considered

constant only within a narrow frequency band, but if a broadband pulse propa-

gates through such a medium, the frequency dependency of the medium has to

be taken into account [11]. The merit that a single FDTD simulation run can

cover a wide range of frequencies can fully be attained when standard FDTD

method is modified to accommodate frequency dependent materials. This is par-

ticularly important as many current and emerging technological applications use

wide frequency bands and for their accurate studies incorporation of frequency

dependent materials in FDTD method is essential.

One of the main drawbacks of the conventional FDTD method is the reduced

computational efficiency resulting from the upper limit on the time-step that

needs to satisfy the Courant–Friedrich–Lewy (CFL) stability condition [12]. This

condition imposes an upper bound on the time-step depending on the minimum

spatial step. Thus, when very small spatial step relative to the wavelength of

interest is employed to accurately model the fine geometrical details of a given

application, an unnecessarily small time-step is enforced, with an increase of the

total CPU time. Therefore, there is a growing interest in overcoming this lim-

itation by employing unconditionally stable implicit FDTD methods, for which

time-step and space-step can be independently chosen [13][14]. This trend will

continue because high accuracy in modelling is increasingly in demand.

An alternative to the explicit FDTD method is provided by the Crank Nicolson

FDTD (CN–FDTD) method [15] which presents unconditional stability beyond

the CFL limit. Both methods share in common the discretization of the time

and space derivatives by centred differences, with the only difference being that

the fields affected by the curl operator are averaged in time by the CN–FDTD

method, whereas in explicit FDTD method they are not. The resulting scheme

is a fully implicit marching–on–in–time algorithm with the same potential of the

classical FDTD method. However, despite its accuracy and low anisotropy [16]

it has not been widely used in time domain electromagnetics as it involves large

sparse matrix computations. Instead, there have been many works attempting

to simplify or approximate its implementation, such as, alternating direction im-

plicit (ADI–FDTD) method [17], CN Douglas Gunn method [18], CN cycle sweep
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method [19], CN approximate factorization splitting method [20]. Such approxi-

mations suffer up to some extent of numerical errors, which may become severe

for some practical applications [21]. All these works on simplification or ap-

proximation of CN–FDTD method have been limited to frequency-independent

materials. Quite recently [22] investigated the original CN–FDTD method for

frequency-independent materials. To the best knowledge of the author, there has

been no work on the CN–FDTD method for frequency dependent media.

1.3 Contributions and Outline of the Thesis

The purpose of this research project is to develop novel unconditionally stable

FDTD algorithms for the frequency dependent media. A three-dimensional fre-

quency dependent CN–FDTD (FD–CN–FDTD) method is proposed in this thesis.

This thesis also presents an accuracy improved frequency dependent ADI–FDTD

(FD–ADI–FDTD) method.

Chapter 2 provides the background knowledge of the FDTD method and lit-

erature review covering the state-of-the-art in the developments and studies of

the FDTD methods.

The proposed three-dimensional FD-CN-FDTD method is presented in Chap-

ter 3. The formulation of the FD-CN-FDTD method and the inclusion of Mur’s

absorbing boundary condition are described. The proposed method is uncondi-

tionally stable beyond the CFL limit and has higher accuracy than other uncon-

ditionally stable methods, such as, ADI–FDTD method.

Numerical validation of the proposed method is shown in Chapter 4. By car-

rying out several numerical tests with the FD–CN–FDTD method, this chapter

shows the average error of the method, effects of the CFL number and spatial

resolution, effects of the conductivity and the transmission and reflection coeffi-

cients errors.

The FD-CN-FDTD method requires solution of a sparse system of linear equa-

tions. An efficient sparse matrix solver is essential to fully harness the advantages
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of using larger time–step beyond CFL limit. Chapter 5 deals with the issues re-

lated to the solution of the FD–CN–FDTD method. The effects of time–step

beyond CFL limit on the characteristics of the FD-CN-FDTD sparse matrix and

effectiveness of different solvers, of direct and iterative types, to solve the sparse

system are extensively studied in this chapter.

An application of the FD–CN–FDTD method is described in Chapter 6. A

simulation model of the human body is developed in the FD–CN–FDTD method

with all the fine structures and frequency dependent dielectric properties of the

human tissues. Numerical simulation of electromagnetic wave propagation inside

the human head is shown. The implications of this study for further research on

bioelectromagnetics is also explained in this chapter.

In Chapter 7 a method is presented modifying the FD–ADI–FDTD method

in order to improve the accuracy. The ADI–FDTD method is a computation-

ally affordable approximation of the CN–FDTD method [23], found by adding

a perturbation term to the latter. However, the ADI–FDTD method exhibits a

loss of accuracy with respect to the CN-FDTD method that may become severe

for some practical applications [23]. By numerical experiments in Chapter 7 it is

shown that, the modified FD–ADI–FDTD method is more accurate than normal

FD–ADI–FDTD method and it does not significantly increase the computational

costs.

Major implementation techniques of the proposed FD–CN–FDTD and mod-

ified FD–ADI–FDTD methods are presented in Chapter 8. The FD–CN–FDTD

method is implemented in serial Fortran code and its parallel implementation

is performed in Open Multi-Processing (OpenMP). There are scarce precedence

of implementation of the CN–FDTD method in computer programmes and no

precedence of implementation of the frequency dependent CN–FDTD method

which is more complicated. Therefore, the implementation techniques described

in this chapter bear significance and would be useful for further research on the

CN–FDTD method.

Chapter 9 concludes the thesis with a short discussion on the works presented

and highlights their limitations. Some possible future research works are also

suggested in this chapter.



Chapter 2

Finite Difference Time Domain

Method

The FDTD method is said to be the most straightforward, robust and versatile

electromagnetic modelling technique. It is one of the most widely used numerical

techniques used in computational electrodynamics. The method owes its success

to the power and simplicity it provides [24]. This chapter provides the background

knowledge of FDTD methods and literature review covering the state-of-the-art

in the development and studies of the FDTD method.

2.1 FDTD Method

2.1.1 Finite Difference Concept

The concept of finite differencing is briefly described first because it is the basis

of the FDTD method [3]. The increment of a function f(x) at a certain point x0

can be written as

∆f(x0) = f(x0 + ∆x)− f(x0) (2.1)

Then the difference quotient or slope of the function f(x) with respect to x

can be expressed as

∆f(x0)

∆x
=

f(x0 + ∆x)− f(x0)

∆x
(2.2)

20
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As ∆x approaches zero, the derivative of the function f(x) with respect to x

can be written as

f ′(x0) = lim
∆x→0

∆f(x0)

∆x
= lim

∆x→0

f(x0 + ∆x)− f(x0)

∆x
(2.3)

Thus, when ∆x is very small the derivative of a function can be approximated

by its difference quotient: df
dx
≈ ∆f

∆x
. Now the derivate of the function f(x) can

be expressed in three ways – forward, backward and central difference and their

expressions are:

f ′(x0) ≈
f(x0 + ∆x)− f(x0)

∆x
forward difference (2.4)

f ′(x0) ≈
f(x0)− f(x0 −∆x)

∆x
backward difference (2.5)

f ′(x0) ≈
f(x0 + ∆x

2
)− f(x0 − ∆x

2
)

∆x
central difference (2.6)

Similarly the second derivative of f(x) can be expressed as

f ′′(x0) ≈
f ′(x0 + ∆x

2
)− f ′(x0 − ∆x

2
)

∆x

=
1

∆x

[
f(x0 + ∆x)− f(x0)

∆x
− f(x0)− f(x0 −∆x)

∆x

]

∴ f ′′(x0) ≈
f(x0 + ∆x)− 2f(x0) + f(x0 −∆x)

(∆x)2
(2.7)

These approximations of derivatives in terms of the values at a discrete set of

points are called finite difference approximations [3]. Taylor’s expansion series

give the general approach for the above finite difference approximations. During

the approximations higher-order terms in the Taylor series are usually truncated

considering them negligible which introduces some degree of errors. According to



CHAPTER 2. FINITE DIFFERENCE TIME DOMAIN METHOD 22

Taylor’s expansion,

f(x0 + ∆x) = f(x0) + ∆xf ′(x0) +
1

2!
(∆x)2f ′′(x0) +

1

3!
(∆x)3f ′′′(x0) + . . . (2.8)

and

f(x0 −∆x) = f(x0)−∆xf ′(x0) +
1

2!
(∆x)2f ′′(x0)−

1

3!
(∆x)3f ′′′(x0) + . . . (2.9)

Adding (2.8) and (2.9) and truncating higher-order terms (considering them

negligible) (2.7) is obtained. Subtracting (2.9) from (2.8) and truncating higher-

order terms yield (2.6). The orders of the terms that were truncated make both of

(2.6) and (2.7) second-order accurate. Similarly, rearranging (2.8) and (2.9) and

dropping higher-order terms give (2.4) and (2.5), respectively. These forward and

backward differences are first-order accurate. As the forward difference attempts

to predict the future behaviour of the function using the values of current and

previous time steps it is always unstable. The central difference is conditionally

stable. In general, the backward difference is unconditionally stable but it involves

an implicit update procedure which requires to solve a matrix equation at each

time step [3][25].

2.1.2 Yee’s FDTD Method

The FDTD method, developed by Yee [9], discretizes Maxwell’s curl equations in

both time and spatial domains using the central difference approximations. The

resulting equations are then solved numerically to get the electric and magnetic

fields at each time step in an explicit leapfrog manner. First electric field is solved

for a certain instant, then magnetic field is solved in the next instant and this

progression repeats. The FDTD method is second-order accurate.

Maxwell’s curl equations for a isotropic and linear medium are:

∇× E = −∂B

∂t
(2.10)

∇×H =
∂D

∂t
+ J (2.11)
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where, E is the electric field, H is the magnetic field, D is the electric flux

density, B is the magnetic flux density, J is the conduction current density. The

constitutive relationships, D = εE and B = µH, are used in (2.10) and (2.11)

and then for the source-free medium (J = 0), (2.10) and (2.11) can be written as

following six coupled partial differential equations:

∂Hx

∂t
=

1

µ

(
∂Ey

∂z
− ∂Ez

∂y

)
(2.12)

∂Hy

∂t
=

1

µ

(
∂Ez

∂x
− ∂Ex

∂z

)
(2.13)

∂Hz

∂t
=

1

µ

(
∂Ex

∂y
− ∂Ey

∂x

)
(2.14)

∂Ex

∂t
=

1

ε

(
∂Hz

∂y
− ∂Hy

∂z

)
(2.15)

∂Ey

∂t
=

1

ε

(
∂Hx

∂z
− ∂Hz

∂x

)
(2.16)

∂Ez

∂t
=

1

ε

(
∂Hy

∂x
− ∂Hx

∂y

)
(2.17)

where µ is the permeability and ε is the permittivity.

Applying central finite difference approximations of Section 2.1.1 on both

space and time derivatives of (2.12), (2.13), (2.14), (2.15), (2.16), (2.17) explicit

Yee FDTD equations are obtained. To derive these equations components of E

and H are placed about a unit cell of lattice as shown in Fig. 2.1 and evaluated

at alternate half-time steps. Thus following discretized equations are obtained,
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Figure 2.1: Positions of the field components in the Yee cell

where, ∆t is temporal discretization and ∆x, ∆y and ∆z are spatial discretiza-

tions in x, y and z directions, respectively:

H
n+ 1

2
x (i,j+ 1

2
,k+ 1

2
) = H

n− 1
2

x (i,j+ 1
2
,k+ 1

2
) (2.18)

+
∆t

µ(i, j +
1

2
, k +

1

2
)∆z

[
En

y (i,j+ 1
2
,k+1)− En

y (i,j+ 1
2
,k)

]

+
∆t

µ(i, j +
1

2
, k +

1

2
)∆y

[
En

z (i,j,k+ 1
2
)− En

z (i,j+1,k+ 1
2
)

]

H
n+ 1

2
y (i+ 1

2
,j,k+ 1

2
) = H

n− 1
2

y (i+ 1
2
,j,k+ 1

2
) (2.19)

+
∆t

µ(i +
1

2
, j, k +

1

2
)∆x

[
En

z (i+1,j,k+ 1
2
)− En

z (i,j,k+ 1
2
)

]

+
∆t

µ(i +
1

2
, j, k +

1

2
)∆z

[
En

x (i+ 1
2
,j,k)− En

x (i+ 1
2
,j,k+1)

]
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H
n+ 1

2
z (i+ 1

2
,j+ 1

2
,k) = H

n− 1
2

z (i+ 1
2
,j+ 1

2
,k) (2.20)

+
∆t

µ(i +
1

2
, j +

1

2
, k)∆y

[
En

x (i+ 1
2
,j+1,k)− En

x (i+ 1
2
,j,k)

]

+
∆t

µ(i +
1

2
, j +

1

2
, k)∆x

[
En

y (i,j+ 1
2
,k)− En

y (i+1,j+ 1
2
,k)

]

En+1
x (i+ 1

2
,j,k) = En

x (i+ 1
2
,j,k) (2.21)

+
∆t

ε(i +
1

2
, j, k)∆y

[
H

n+ 1
2

z (i+ 1
2
,j+ 1

2
,k)−H

n+ 1
2

z (i+ 1
2
,j− 1

2
,k)

]

+
∆t

ε(i +
1

2
, j, k)∆z

[
H

n+ 1
2

y (i+ 1
2
,j,k− 1

2
)−H

n+ 1
2

y (i+ 1
2
,j,k+ 1

2
)

]

En+1
y (i,j+ 1

2
,k) = En

y (i,j+ 1
2
,k) (2.22)

+
∆t

ε(i, j +
1

2
, k)∆z

[
H

n+ 1
2

x (i,j+ 1
2
,k+ 1

2
)−H

n+ 1
2

x (i,j+ 1
2
,k− 1

2
)

]

+
∆t

ε(i, j +
1

2
, k)∆x

[
H

n+ 1
2

z (i− 1
2
,j+ 1

2
,k)−H

n+ 1
2

z (i+ 1
2
,j+ 1

2
,k)

]

En+1
z (i,j,k+ 1

2
) = En

z (i,j,k+ 1
2
) (2.23)

+
∆t

ε(i, j, k +
1

2
)∆x

[
H

n+ 1
2

y (i+ 1
2
,j,k+ 1

2
)−H

n+ 1
2

y (i− 1
2
,j,k+ 1

2
)

]

+
∆t

ε(i, j, k +
1

2
)∆y

[
H

n+ 1
2

x (i,j− 1
2
,k+ 1

2
)−H

n+ 1
2

x (i,j+ 1
2
,k+ 1

2
)

]

Field components in the FDTD equations of (2.18), (2.19), (2.20), (2.21),

(2.22), (2.23) lie in non-integer coordinates. To implement them in the computa-

tional systems they are transformed into integer coordinates which finally gives

a new set of equations:
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Hn+1
x (i,j,k) = Hn

x (i,j,k) +
∆t

µ(i, j, k)∆z

[
En

y (i,j,k)− En
y (i,j,k−1)

]
(2.24)

− ∆t

µ(i, j, k)∆y
[En

z (i,j,k)− En
z (i,j−1,k)]

Hn+1
y (i,j,k) = Hn

y (i,j,k) +
∆t

µ(i, j, k)∆x
[En

z (i,j,k)− En
z (i−1,j,k)] (2.25)

− ∆t

µ(i, j, k)∆z
[En

x (i,j,k)− En
x (i,j,k−1)]

Hn+1
z (i,j,k) = Hn

z (i,j,k) +
∆t

µ(i, j, k)∆y
[En

x (i,j,k)− En
x (i,j−1,k)] (2.26)

− ∆t

µ(i, j, k)∆x

[
En

y (i,j,k)− En
y (i−1,j,k)

]

En+1
x (i,j,k) = En

x (i,j,k) +
∆t

ε(i, j, k)∆y
[Hn

z (i,j+1,k)−Hn
z (i,j,k)] (2.27)

− ∆t

ε(i, j, k)∆z

[
Hn

y (i,j,k+1)−Hn
y (i,j,k)

]

En+1
y (i,j,k) = En

y (i,j,k) +
∆t

ε(i, j, k)∆z
[Hn

x (i,j,k+1)−Hn
x (i,j,k)] (2.28)

− ∆t

ε(i, j, k)∆x
[Hn

z (i+1,j,k)−Hn
z (i,j,k)]

En+1
z (i,j,k) = En

z (i,j,k) +
∆t

ε(i, j, k)∆x

[
Hn

y (i+1,j,k)−Hn
y (i,j,k)

]
(2.29)

− ∆t

ε(i, j, k)∆y
[Hn

x (i,j+1,k)−Hn
x (i,j,k)]

(2.24), (2.25), (2.26), (2.27), (2.28), (2.29) are the main equations of the

explicit FDTD method.
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2.1.3 Features of the FDTD Method

The FDTD equations of (2.24) through (2.29) imply some obvious strengths and

weaknesses of the FDTD method. Some of these are mentioned below:

• The FDTD equations can be easily implemented in computer programmes.

• By defining the FDTD grid properly and specifying the values of ε and

µ at the grid points, computational space with any medium can be easily

modelled.

• Since the problems need to be mapped into the cells of the computational

space, the bigger the problem, the bigger the computational space. There-

fore, the requirements of the memory increases with the size of the problem

as all the values of E and H fields and media parameters at each grid point

need to be stored.

• By using the rectangular grids of the explicit FDTD method it is not possi-

ble to accurately model the curves in the problem geometry. This is usually

done by staircasing in the computational space but it leads to large com-

putational errors.

• As the FDTD method is a time-domain technique only a single simulation

run is required to get the results for the whole frequency range of interest.

Because of this the FDTD method can be an attractive choice for modelling

wideband systems. However, in (2.24) through (2.29) the media parameters

are considered to be independent of the frequency, whereas in wideband

systems these parameters vary with the frequency. So inaccuracies will

appear if the standard FDTD method is used in modelling problems in

wideband frequency without any modification.

• From the spatial discretization viewpoint there can be two extreme possi-

bilities: electrically small geometrical details and electrically large geomet-

rical details [26]. For electrically small geometrical problems, the spatial

variations of the fields are dominated by the geometry instead of by the

wavelength and a fine discretization must resolve the geometrical details.

On the other hand, for the electrically large geometrical problems, the spa-

tial variations of the fields are dominated by the minimum wavelength and a

proper space-step must be chosen to achieve an accurate overall resolution.
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For the intermediate region (electrical size of geometrical details compara-

ble to the wavelength) the space-steps must accurately resolve both spatial

variations.

• The choice of the temporal discretization ∆t in Yee FDTD method is re-

stricted by the CFL stability criterion [27] (described in Section 2.4). This

upper bound on the temporal discretization affects the computational effi-

ciency of the FDTD method.

2.2 Absorbing Boundary Condition

The computational domain of the FDTD method needs to be appropriately

terminated because computational resources are limited. The original Yee’s

FDTD method does not explicitly contain any boundary information. The FDTD

method enables to compute the electric and magnetic fields inside the computa-

tional domain through the update equations that use the field values at previous

time steps at these locations and those at the nearest neighbours. But the elec-

tric fields at the boundaries can not be calculated in this way because values

of the magnetic fields outside the domain are required. A boundary condition

would allow to calculate the electric fields at the boundaries by using the field

values available in the interior region. Without introducing boundary condition

the FDTD method can not be used to solve practical problems.

An absorbing boundary condition (ABC) on the periphery of the computa-

tional domain simulates it to be extended to the infinity. The ABC needs to

absorb the reflections of outgoing waves to an acceptable level that otherwise will

make the desired simulation data spurious. Different ways to approach the outer

boundary condition issues lead to the development of different ABCs. One of the

oldest and well-known boundary condition is Mur’s absorbing boundary condition

[28]. It is relatively simple and has been successfully used to solve many engi-

neering problems. Its implementation is straightforward and it is relatively less

computationally demanding. However, Mur’s ABC has room for improvement

in terms of the accuracy of the solution it generates [29]. To improve its accu-

racy, Mei and Fang [30] have proposed the so called super absorption technique,

while Chew [31] has introduced Liao’s boundary condition. Both of these exhibit

better characteristics than that of Mur especially for obliquely incident waves [32].
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However, many of these boundary conditions can suffer from either unstability

or inaccurate solutions. Therefore, the quest for robust and effective boundary

conditions continued until the perfectly matched layer (PML) was introduced by

Bérenger [33]. PML is actually an artificial (mathematical) anisotropic material

which is inserted in the periphery of the computational domain in order to absorb

the outgoing waves. This anisotropic material can be perfectly matched to free

space at all incident angles and frequencies, provided that the interface is an infi-

nite plane. Thus an infinite PML can absorb the incoming waves at all frequencies

and for all incident angles. Since the pioneering work of Bérenger different ver-

sions of PML have been proposed in the literature: unsplit PML (UPML) [34],

stretched coordinate PML [35][36], time convolution PML [37]. While the main

concept of these versions of PMLs is still the same, different versions lead to dif-

ferent computer codes when implemented in the FDTD method [38].

Mur’s ABC can give reasonably good results in the FDTD simulations of ob-

jects like waveguides, patch antennas and microwave circuits without paying the

heavy computational expenses required by some other types of ABCs. Although

higher-order Mur’s ABCs are superior to first-order ABCs their implementation

is more complex. Second-order Mur’s ABC requires tangential derivatives on the

boundary but sufficient information is not available to perform the derivative on

the corners. This is why second-order Mur’s ABC is not very good in handling

the corner regions of the boundary [39]. Higher-order Mur’s ABCs are not well-

suited for parallel processing because they require exchange of field information

that places a heavier burden in terms of communication than do the first-order

Mur’s ABC [40]. In this thesis all the proposed FDTD methods are terminated

by first-order Mur’s ABC.

Mur’s ABC can be viewed as an approximation of the Engquist-Majda bound-

ary condition [41]. For one dimension a plane wave propagating along the negative

x-direction (Fig. 2.2) can be represented by the function φ(x + ct) and satisfies

[27]:

( ∂

∂x
− 1

c

∂

∂t

)
φ(x, t) = 0 (2.30)
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xx = 0 x = 1

Q P

φ(x + ct)
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Figure 2.2: Explanation of Mur’s absorbing boundary condition

Here φ is any function of (x + ct), c is the wave propagation velocity in free

space and t is the time. In Fig. 2.2 the field inside the computational domain (for

example, point P) can be computed through the FDTD update equations but the

field at a point on the boundary (for example, point Q) has to be computed by

using an ABC. In Engquist-Majda ABC the field at the boundary of the domain

is expressed in terms of the known fields in the interior of the domain. Thus when

the wave is normally-incident plane wave using forward difference formula of (2.4)

the field at the boundary x = 0 and at time (n + 1)∆t can be approximated as:

φn
x=1 − φn

x=0

∆x
=

1

c

φn+1
x=0 − φn

x=0

∆t
(2.31)

∴ φn+1
x=0 =

(
1− c∆t

∆x

)
φn

x=0 +
c∆t

∆x
φn

x=1 (2.32)

In (2.32) the field at the domain boundary is expressed in terms of the fields

at the boundary and adjacent to the boundary (inside the domain), both sampled

at the previous time step. Equation (2.32) is valid for a normally-incident plane

wave because (2.30) is an 1-D wave equation. In Mur’s ABC, unlike Engquist-

Majda boundary condition, (2.30) is approximated by using central differencing

in both the time and spatial domains:

1

∆x

[
φ

n+ 1
2

x=1 − φ
n+ 1

2
x=0

]
=

1

c∆t

[
φn+1

x= 1
2

− φn
x= 1

2

]
(2.33)

(2.33) is second-order accurate. However it includes neither the field at the

boundary nor at time (n + 1)∆t. Therefore, Mur represented φ
(n+ 1

2
)

x=0 and φn
x= 1

2

averaging the two adjacent fields in both time and spatial domains:
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φ
n+ 1

2
x=0 =

1

2

(
φn+1

x=0 + φn
x=0

)
(2.34)

φn
x= 1

2
=

1

2

(
φn

x=1 + φn
x=0

)
(2.35)

Substituting (2.34) and (2.35) into (2.33) yields Mur’s first-order boundary

condition:

φn+1
x=0 = φn

x=1 +
c∆t−∆x

c∆t + ∆x

[
φn+1

x=1 − φn
x=0

]
(2.36)

If the boundary is not too close to the simulated objects and excitation sources,

Mur’s first-order ABC can give results of acceptable accuracy. An advantage of

Mur’s first-order ABC is that it can be easily incorporated in a code designed

for parallel processing [40]. This is because the computation of the fields at the

boundaries only requires the knowledge of previous values at the same locations

and the field values adjacent to the boundary at the same time step. Thus all the

information needed for parallel processing is available in the individual parallel

computational subdomains. However, for the problems dealing with propagation

of waves at highly oblique angles or requiring very high accuracy Mur’s first-order

ABC might not be the most suitable boundary condition.

2.3 Frequency Dependent Media

In the explicit FDTD equations of (2.24) through (2.29), the media parameters

are specified as frequency-independent constants but, in reality, these parameters

depend on the frequency. Media parameters can be considered constant only

within a narrow frequency band. If a broadband pulse is propagated through

such a medium the frequency dependence of the medium has to be taken into

account [11]. An example of how relative permittivity and conductivity of the

grey matter of human brain vary over frequency is shown in Fig. 2.3. Tissues of

the human body are frequency dependent and the dielectric properties of these

tissues were measured by Gabriel et al in the frequency range of 10 Hz to 20
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Figure 2.3: Dielectric properties of the grey matter of human brain varies with the
frequency. (From the database of dielectric properties of human tissues compiled
by Gabriel et al [1])

GHz [42] [43] [44] [1]. The variation of the dielectric constant with frequency is

called dispersion and the medium for which ε and µ are functions of frequency is

called dispersive medium. When ε and µ are independent of frequency it is non-

dispersive medium. A dispersive medium responds to an electromagnetic field

as the superposition of two responses: an instantaneous response (also called

infinite frequency response), and a retarded response coming from the energy

initially absorbed by the medium and subsequently returned by it. This second

response is delayed in time because of material inertia and is responsible for the

energy dispersion [24]. The ways in which physical processes in a material can

affect the electric field are described through complex permittivity of the form

[45]: ε = ε′ − ε′′. The real part of the permittivity ε′ is a measure of how much

energy from an external electric field is stored in a material. The imaginary part

of the permittivity ε′′ is called the loss factor and is a measure of how dissipative

or lossy a material is to an external electric field.

Three models are mainly used to represent frequency dispersive materials:
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Debye Model, Lorentz-Drude Model, Cole-Cole Model. At wide frequency band

the frequency dispersion characteristics of the dispersive media can be explained

by the relaxation time required for dipoles to become oriented or polarized, on

the application of an external electric field [46]. At such frequencies the polar

molecules of these media tend to rotate as if they are in a damping frictional

medium. In Debye and Cole-Cole models, the relaxation time of a material τD

is used to describe the dispersive materials. Lorentz-Drude model is based on

the motion of bounded charges and gives a system with a couple of resonant fre-

quencies [47]. Debye model is the most widely used model in the FDTD method

because of its simplicity of implementation. One of the objectives of this research

is to observe the interaction of electromagnetic waves with the human body. Cole-

Cole and Debye models are the most appropriate models to represent frequency

dispersive biological tissues. Out of these, the Debye model is chosen to use in

the FDTD methods proposed in this thesis because it is widely used and easy to

implement.

The single-pole Debye model is given as:

εr = ε∞ +
εS − ε∞
1 + ωτD

(2.37)

where, εr is the relative permittivity, εS is the static permittivity, ε∞ is the

optical permittivity, τD is the characteristic relaxation time of the dipole moment

of the molecule, ω is the angular frequency. This model can be extended to

account for the losses due to the conduction currents and the static conductivity

as follows:

εr = ε∞ +
εS − ε∞
1 + ωτD

− 
σ

ωε0

(2.38)

where, ε0 is the free space permittivity. The wideband frequency dispersion

characteristics of the dielectric materials can be more accurately described by

introducing multiple dispersion processes. Multiple Debye terms are included in

the multi-pole Debye model with relaxation times well separated:
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εr = ε∞ +
∑

k

∆εk

1 + ωτDk

− 
σ

ωε0

(2.39)

where, τDk is the relaxation time and ∆εk is the change in the relative per-

mittivity over the kth dispersion region. For example, in the case of 2-pole Debye

model k = 1, 2, ∆ε1 = εS − εm and ∆ε2 = εm − ε∞, where, εm is the interme-

diate relative permittivity. Although multi-pole Debye models account for the

different dispersion regions, their implementation in the FDTD method may be

quite complicated. On the other hand, with the advantage of less complicated

implementation it may be the case that single-pole Debye model can adequately

describe the materials of a certain problem.

2.4 Unconditionally Stable FDTD Method

To ensure the accuracy of the FDTD method spatial sampling must be smaller

compared to the wavelength (usually less than or equal to one-tenth of the wave-

length) [3]. That means, for higher frequencies when the wavelength is very small

spatial sampling should be even smaller. In the FDTD method time- and space-

steps are related. Because, for example, if the time-step is very large the wave

has to travel over several spatial cells in one time-step. But the field values at

each cell is updated based on the values at the adjacent cells. So a large time-step

may cause major problem and the simulation may become unstable. This frames

the so called Courant-Friedrichs-Lewy (CFL) stability condition [48][49] which

the explicit FDTD method must satisfy to maintain its stability:

∆t ≤ 1

c

(
1

∆x2
+

1

∆y2
+

1

∆z2

)− 1
2

(2.40)

Thus, there is an upper bound on the time-step depending on the minimum

spatial step. This restriction renders the FDTD method inefficient. To overcome

this limitation there is a growing interest in the unconditionally stable implicit

FDTD methods for which time-step and space-step can be independently cho-

sen. The Crank–Nicolson [15] FDTD (CN–FDTD) method is such a method

which provides unconditional stability beyond the CFL limit. In the CN–FDTD

method the time and space derivatives are discretized by centred differences while
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the fields affected by the curl operators are averaged in time. In the standard

FDTD method unknown values are solved explicitly using the values at the pre-

vious time steps while in implicit methods, such as in CN–FDTD method, all

the values of either E or H are computed at the same time by solving a system

of linear equations. Implicit methods allow relatively larger time-step by doing

more computations at each step of the simulation.

Maxwell’s equations ((2.12) through (2.17)) can be written as

∂U

∂t
= AU + BU (2.41)

where,

A =



0 0 0 0 0 1
ε

∂

∂y

0 0 0 1
ε

∂

∂z
0 0

0 0 0 0 1
ε

∂

∂x
0

0 1
µ

∂

∂z
0 0 0 0

0 0 1
µ

∂

∂x
0 0 0

1
µ

∂

∂y
0 0 0 0 0


(2.42)

B =



0 0 0 0 − 1
ε

∂

∂z
0

0 0 0 0 0 − 1
ε

∂

∂x

0 0 0 − 1
ε

∂

∂y
0 0

0 0 − 1
µ

∂

∂y
0 0 0

− 1
µ

∂

∂z
0 0 0 0 0

0 − 1
µ

∂

∂x
0 0 0 0


(2.43)

U =
[

Ex Ey Ez Hx Hy Hz

]T
(2.44)

Using finite differences for the time derivatives and averaging the fields over

time, from (2.41) the CN–FDTD method is found:
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Un+1 − Un

∆t
= (A + B)

Un+1 + Un

2

∴ Un+1 − Un = (
∆t

2
A +

∆t

2
B)(Un+1 + Un)

∴ Un+1 − Un+1(
∆t

2
A +

∆t

2
B) = Un + Un(

∆t

2
A +

∆t

2
B)

∴ (I − ∆t

2
A− ∆t

2
B)Un+1 = (I +

∆t

2
A +

∆t

2
B)Un (2.45)

Here, I is a 6 × 6 identity matrix. Now, to write (2.45) in a factored form

the formula, (1± a1)(1± a2) = 1± a1 ± a2 ± a1a2 is used. Assuming a1 =
∆t

2
A,

a2 =
∆t

2
B and adding a1a2 =

∆t2

4
AB on both sides of (2.45)

(I − ∆t

2
A− ∆t

2
B +

∆t2

4
AB)Un+1 = (I +

∆t

2
A +

∆t

2
B +

∆t2

4
AB)Un

+
∆t2

4
AB(Un+1 − Un)

∴ (I − ∆t

2
A)(I − ∆t

2
B)Un+1 = (I +

∆t

2
A)(I +

∆t

2
B)Un (2.46)

+
∆t2

4
AB(Un+1 − Un)

The CN–FDTD equation (2.46) involves continuous spatial derivatives of

fields. Its discretisation in space yields a large sparse matrix and therefore until

recently it has not been used in time domain electromagnetics. Instead, there

have been many works attempting to simplify or approximate its implementa-

tion: the alternating direction implicit (ADI–FDTD) method [17][50], the CN
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Douglas Gunn method [18], the CN cycle sweep method [19], the CN approxi-

mate factorization splitting method [20]. However, these approximations suffer

up to some extent of numerical errors, which may become severe for some practi-

cal applications [51, 21, 52]. Among these methods, the ADI–FDTD method has

drawn much interest from the researchers over the last decade. The ADI–FDTD

method drops the last term of (2.46) and then splits it into two steps:

Step-1

(I − ∆t

2
A)Un+ 1

2 = (I +
∆t

2
B)Un (2.47)

Step-2

(I − ∆t

2
B)Un+1 = (I +

∆t

2
A)Un+ 1

2 (2.48)

The advantage of ADI–FDTD method over CN–FDTD method is that the

computational overhead is smaller because tridiagonal matrix systems are re-

quired to solve (rather than sparse matrix systems). So, the ADI–FDTD method

is a computationally affordable approximation of the CN–FDTD method [23][21],

found by adding a perturbation term to the latter. Because of the omission of

the last term of (2.46) the ADI–FDTD method leads to truncation error which

is a function of (
∆t

2
)2 times the space derivatives of the field [23]. This means

that the truncation error increases with larger ∆t, thus imposing a restriction

on ∆t, particularly when accuracy of the problem is crucial. Compared to the

explicit FDTD method the ADI–FDTD method has larger numerical dispersion

which increases with the temporal discretization. Dispersion analyses of the ADI–

FDTD method have been shown in [53] assuming lossless media and in [54] for

lossy media. The ADI–FDTD method also experiences numerical errors from the

source condition [55]. In all, the ADI–FDTD method improves the computational

efficiency at the cost of accuracy. On the other hand, although the CN–FDTD

method has higher accuracy and lower anisotropy than the ADI–FDTD method

[20] the computational costs are also higher. Ideally, an FDTD method should

take merits of both of the methods.

There have been works to improve the accuracy of ADI–FDTD method to-

wards CN–FDTD method in different ways [56][57]. The iterative ADI–FDTD
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method of [56] involves loop of iterations at each time steps making it more com-

putationally expensive than normal ADI–FDTD method. An alternative tech-

nique has been suggested by [57] employing an average approximation of some

of the implicit fields. [56] and [57] showed the improvements of ADI–FDTD

method for two dimensional problems while [58] and [59] reported these error

reduction methods diverge in three dimensional cases. To reduce the numerical

dispersion of the ADI–FDTD method higher-order methods have been proposed

[60]. Another development in the area of unconditionally stable FDTD method

is locally one–dimensional (LOD)–FDTD method [61]. The main advantage of

the LOD–FDTD method is that the algorithm is quite simple with a subsequent

reduction in computational time, while maintaining the accuracy comparable to

the ADI–FDTD method [62]. The LOD–FDTD method is more efficient than

other unconditionally stable methods due to lesser arithmetic operations. This

fact has motivated other researchers to extend and improve the LOD–FDTD

method from different viewpoints [63][64]. Recently several unconditionally sta-

ble split–step FDTD methods have also been proposed [65][66].

Studies on the original CN–FDTD method without any approximation is

scarce because of the requirements of large sparse matrix computations. However,

with the massive advancement of the technology of memory and computational

resources, handling huge sparse matrices is no longer a bottleneck. This, together

with the extensive researches during last two decades that resulted in highly

sophisticated, robust, efficient and economical sparse solvers, makes the CN–

FDTD method a promising affordable alternative to the explicit FDTD method.

Quite recently [22] investigated the original CN–FDTD method for frequency-

independent materials. To solve the generated sparse matrix of the frequency-

independent CN–FDTD method [67] used iterative solvers and [68] used precon-

ditioned iterative solvers.

2.5 Other FDTD Methods

From the beginning there have been a lot of research on further development of

the original FDTD method. Some of these have dealt with key aspects of the

method and provided enhanced solutions (mitigating dispersion, material mod-

elling, geometrical modelling etc), while others have described completely new



CHAPTER 2. FINITE DIFFERENCE TIME DOMAIN METHOD 39

concepts providing the method with a new dimension (PML ABCs, uncondi-

tionally stable techniques etc). Some of the most interesting developments are

described here.

One of the major limitations of the FDTD method is its numerical dispersion

[27]. Numerical dispersion causes the phase velocity in the FDTD grid to become

a function of frequency and propagation angle. As a consequence, phase errors

appear in narrowband simulations and pulse distortion appears in broadband

simulations [69]. Because of its cumulative effect numerical dispersion becomes a

dominant factor in large-scale simulations unless very small spatial discretization

is used. But lowering the spatial discretization leads to prohibitively large mem-

ory requirements and computational costs. To address this issue a number of

higher-order FDTD methods have been proposed: second-order accurate in time

and fourth-order accurate in space (2,4), second-order accurate in time and sixth-

order accurate in space (2,6) [70], fourth-order accurate in time and space (4,4)

[71]. Higher-order FDTD methods exhibit reduced dispersion error levels with

lower computational costs and memory requirements. This is particularly attrac-

tive for the analysis of electrically large problems because higher-order FDTD

method allows an increased spatial discretization while maintaining a specified

accuracy level [72]. Other noteworthy alternatives for low dispersion methods to

accurately simulate electrically large problems are Pseudo Spectral Time Domain

(PSTD) method [73], Multi-resolution in Time Domain (MRTD) techniques [74].

Although the FDTD method has the ability to handle problems incorporat-

ing materials with geometrical inhomogeneities, problems arise when the media

interfaces are not plane because in the original form of the FDTD method it is

difficult to model the structures that cannot fit well into Cartesian coordinates.

Approximating the interfaces in such complex geometries through staircasing can

lead to significant errors [75]. Errors also appear because of the assumption of

constant fields inside the cells neighbouring material terminations (e.g. edges,

corners, slots, wires etc). In solving this problem [76][77] suggested combining

the FDTD method with another method that is suitable for accurately modelling

problematic geometrical details: FDTD/FETD, FDTD/MoM methods.

Discretization of the entire computational space with a fine grid to accurately
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handle the geometrical details and field variations will make the method compu-

tationally intensive. To circumvent this problem a few methods of obtaining a

more refined mesh in a subregion have been reported. They can be divided into

three main categories [78], namely: sequential computations, space-only subgrid-

ding and subgridding in space and time. In sequential computations, compu-

tation in the whole problem space is performed using a coarse grid followed by

re-computation in a limited volume using a finer mesh [79]. Fields calculated

by using coarse grid are used as the boundary values in the fine grid computa-

tion. In the space-only subgridding various grid-steps in different directions are

implemented [80]. [81] improved the method to second-order accurate. However,

numerical dispersion varies considerably with the density of the mesh [82] and

due to the CFL stability condition, time-step is restricted by the smallest mesh

size throughout the computational space making it computationally inefficient.

Higher efficiency can be achieved with subgridding in space and time technique

[83] as the time-step is set for each mesh separately. Bérenger proposed a new

subgridding technique called Huygens Subgridding (HSG) [84] that connects the

main grid and the subgrid regions using the Huygens-Kirchhoff principle [85].

HSG has the advantages of allowing arbitrarily large ratio of spatial resolutions.

Furthermore, it can significantly reduce the spurious numerical reflections re-

sulted at the interfaces between the main grid and the subgrid regions.

An alternative strategy to handle the staircasing error to simulate the objects

having boundaries not coinciding with the Cartesian coordinates is to employ the

conformal FDTD technique [86]. Conformal FDTD method requires less memory

than the conventional non-uniform mesh methods and does not suffer from late

time instability problems as many of the subgridding methods do.

Developments in the research on unconditionally stable FDTD methods have

already been described in Section 2.4. As extremely powerful supercomputers

are available these days for handling large-scale computations, parallelization of

the FDTD method is becoming popular. The parallel FDTD algorithm gains the

computational efficiency by distributing the computational burden over a cluster

of processors. It also enables one to solve large problems that could be beyond

the scope of a single processor because of CPU time limitations. Robust strate-

gies of combining different algorithms with the parallelized FDTD have also been
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suggested [40]; for example, parallelizing the conformal FDTD method and en-

hancing it with either subgridding, the ADI–FDTD algorithm or both.

As many current and emerging technological applications involve electromag-

netic wave interactions with the materials having frequency dependent dielectric

properties [12], development of efficient FDTD methods capable of handling fre-

quency dependent materials is important. Frequency dependency has been in-

corporated in the FDTD method mainly by the auxiliary differential equation

method [87], the z–transform method [88] and the discrete convolution method

[89]. To be able to handle practical applications, frequency dependency has been

included in many of the major FDTD techniques, namely, ADI–FDTD method

[90][91], subgridding FDTD method [92], higher-order FDTD method [93], LOD–

FDTD method [62], split-step FDTD method [94], conformal FDTD method [95].

Inclusion of frequency dependent materials is a significant development but it

comes at the cost of higher memory and computational time requirements.

Since the introduction of Yee’s FDTD method many variations and extensions

of it have been proposed and the literature on the FDTD techniques is extensive.

Major trends and developments of FDTD researches have been surveyed here but

this is obviously not exhaustive.
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Frequency Dependent Crank

Nicolson FDTD Method

3.1 Introduction

The main drawback of the conventional, explicit FDTD method is the reduced

computational efficiency resulting from the upper limit on the time-step that

needs to satisfy the CFL stability condition [27]. Thus, when very small spatial

step relative to the wavelength of interest is employed to accurately model the

fine geometrical details of a given application, an unnecessarily small time-step is

enforced, with an increase of the total CPU time. An alternative to the explicit

FDTD method is provided by the CN–FDTD method [15], which presents un-

conditional stability beyond the CFL limit. Both methods share in common the

discretization of the time and space derivatives by centred differences, with the

only difference being that the fields affected by the curl operator are averaged

in time by the CN–FDTD method, whereas in the explicit FDTD method they

are not. The resulting method is a fully implicit marching–on–in–time algorithm

with the same potential of the classical FDTD method. However, despite its ac-

curacy and low anisotropy [16] the CN–FDTD method has not been widely used

in time domain electromagnetics as it involves large sparse matrix computations.

Instead, there have been many works attempting to simplify or approximate its

implementation [96]. Such approximations suffer from some extent of numerical

errors, which may become severe for some practical applications [21]. With the

massive advancement of the technology of memory and computational resources,

handling huge sparse matrices is no longer a bottleneck. This, together with the

42
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extensive researches during last two decades that resulted in highly sophisticated,

robust, efficient and economical sparse solvers, makes the CN–FDTD method a

promising affordable alternative to the explicit FDTD method.

In this chapter a new three-dimensional frequency dependent CN-FDTD method

(FD–CN–FDTD) is proposed. Frequency dependence of single–pole Debye ma-

terials is incorporated into the CN–FDTD method by means of an auxiliary

differential formulation [87]. Mur’s first-order absorbing boundary condition [28]

is used to terminate the boundaries in the FD–CN–FDTD method.

3.2 Formulation of the FD–CN–FDTD Method

The differential time domain Maxwell’s equations in material independent form

are

∇× E = −∂B

∂t
(3.1)

∇×H =
∂D

∂t
+ J (3.2)

∇ ·D = ρ (3.3)

∇ ·B = 0 (3.4)

where

D = εE (3.5)

B = µH (3.6)
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Here E is the electric field, H is the magnetic field, D is the electric flux

density, B is the magnetic flux density, J is the conduction current density, ρ

is the charge density, ε is the permittivity of the medium, µ is the permeability

of the medium. (3.1) through (3.6) provides all the information to describe the

behaviour of the field in the linear, isotropic and non–magnetic medium provided

that the initial field distribution is specified. In fact, the two curl equations ((3.1)

and (3.2)) contain the two divergence equations ((3.3) and (3.4)) and are only re-

quired to be considered. For most materials the relative permeability, µr, is very

near to the unity [p.85, [97]]; therefore, in this thesis permeability of all the mate-

rials is considered to be that of the vacuum (µ0) i.e. µ = µrµ0 = 4π×10−7 H/m .

For many materials of interest, the constitutive parameters change over a wide

band of frequencies [45]. Such frequency dependent materials can be described

by the Debye model. In the FD–CN–FDTD method single–pole Debye model is

used which defines the complex relative permittivity as

εr = ε∞ +
εS − ε∞
1 + ωτD

− 
σ

ωε0

(3.7)

where εr is the complex relative permittivity, ε0 is the free space permittivity,

εS is the static permittivity, ε∞ is the optical permittivity, τD is the characteristic

relaxation time, σ is the static conductivity, ω is the angular frequency.

Using (3.5) and (3.7) the constitutive relationship for single–pole Debye electrically–

dispersive media can be found (in frequency domain):

D = ε0εrE (3.8)

ε0(ε∞ +
εS − ε∞
1 + ωτD

− 
σ

ωε0

)E

= (ε0ε∞ +
ε0εS − ε0ε∞
1 + ωτD

+
σ

ω
)E

=
(ω)2ε0ε∞τD + ω(ε0εS + στD) + σ

ω(1 + ωτD)
E



CHAPTER 3. FREQUENCY DEPENDENT CRANK NICOLSON FDTD METHOD45

(3.8) is simplified to

(ω)2τDD + ωD = (ω)2ε0ε∞τDE + ω(ε0εS + στD)E + σE (3.9)

Mapping (ω)m, in frequency domain, into ∂m

∂tm
, in time domain, (3.9) can be

written as a differential equation in time domain:

τD
∂2D

∂t2
+

∂D

∂t
= ε0ε∞τD

∂2E

∂t2
+ (ε0εS + στD)

∂E

∂t
+ σE (3.10)

For x-direction, when (3.10) is discretized and the last term is averaged over

time, the following equation is obtained

τD(i,j,k)
Dn+1

x (i,j,k)− 2Dn
x (i,j,k) + Dn−1

x (i,j,k)

(∆t)2
(3.11)

+
Dn+1

x (i,j,k)−Dn
x (i,j,k)

∆t

= ε0ε∞(i,j,k)τD(i,j,k)
En+1

x (i,j,k)− 2En
x (i,j,k) + En−1

x (i,j,k)

(∆t)2

+(ε0εS(i,j,k) + σ(i,j,k)τD(i,j,k))
En+1

x (i,j,k)− En
x (i,j,k)

∆t

+σ(i,j,k)
En+1

x (i,j,k) + En
x (i,j,k)

2

(3.11) can be simplified to obtain En+1
x (i,j,k)

En+1
x (i,j,k) =

ν1(i, j, k)

ν4(i, j, k)
Dn+1

x (i,j,k) +
ν2(i, j, k)

ν4(i, j, k)
Dn

x (i,j,k) +
ν3(i, j, k)

ν4(i, j, k)
Dn−1

x (i,j,k)(3.12)

−ν5(i, j, k)

ν4(i, j, k)
En

x (i,j,k)− ν6(i, j, k)

ν4(i, j, k)
En−1

x (i,j,k)

where,

ν1(i, j, k) =
τD(i,j,k)

(∆t)2
+

1

∆t
(3.13)
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ν2(i, j, k) =
−2τD(i,j,k)

(∆t)2
− 1

∆t
(3.14)

ν3(i, j, k) =
τD(i,j,k)

(∆t)2
(3.15)

ν4(i, j, k) =
ε0ε∞(i,j,k)τD(i,j,k)

(∆t)2
+

ε0εS(i,j,k) + σ(i,j,k)τD(i,j,k)

∆t
+

σ(i,j,k)

2
(3.16)

ν5(i, j, k) =
−2ε0ε∞(i,j,k)τD(i,j,k)

(∆t)2
− ε0εS(i,j,k) + σ(i,j,k)τD(i,j,k)

∆t
+

σ(i,j,k)

2
(3.17)

ν6(i, j, k) =
ε0ε∞(i,j,k)τD(i,j,k)

(∆t)2
(3.18)

For the source-free medium (J = 0) using (3.6), Maxwell’s curl equations

((3.1) and (3.2)) can be written in scalar form:

∂Hx

∂t
=

1

µ

(
∂Ey

∂z
− ∂Ez

∂y

)
(3.19)

∂Hy

∂t
=

1

µ

(
∂Ez

∂x
− ∂Ex

∂z

)
(3.20)

∂Hz

∂t
=

1

µ

(
∂Ex

∂y
− ∂Ey

∂x

)
(3.21)
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and

∂Dx

∂t
=

∂Hz

∂y
− ∂Hy

∂z
(3.22)

∂Dy

∂t
=

∂Hx

∂z
− ∂Hz

∂x
(3.23)

∂Dz

∂t
=

∂Hy

∂x
− ∂Hx

∂y
(3.24)

Now in the CN method the time and space derivatives are discretized by

centred differences while the fields affected by the curl operators are averaged in

time. The method uses the same Yee grid as the conventional FDTD. Using this

approach Hn+1
x (i,j,k), Hn+1

y (i,j,k) and Hn+1
z (i,j,k) are obtained from (3.19), (3.20)

and (3.21) while Dn+1
x (i,j,k), Dn+1

y (i,j,k) and Dn+1
z (i,j,k) are obtained from (3.22) ,

(3.23) and (3.24), respectively:

Hx
n+1 = Hx

n +
∆t

2µ
(
∂Ey

n+1

∂z
− ∂Ez

n+1

∂y
+

∂Ey
n

∂z
− ∂Ez

n

∂y
) (3.25)

Hy
n+1 = Hy

n +
∆t

2µ
(
∂Ez

n+1

∂x
− ∂Ex

n+1

∂z
+

∂Ez
n

∂x
− ∂Ex

n

∂z
) (3.26)

Hz
n+1 = Hz

n +
∆t

2µ
(
∂Ex

n+1

∂y
− ∂Ey

n+1

∂x
+

∂Ex
n

∂y
− ∂Ey

n

∂x
) (3.27)

Dx
n+1 = Dx

n +
∆t

2
(
∂Hz

n+1

∂y
− ∂Hy

n+1

∂z
+

∂Hz
n

∂y
− ∂Hy

n

∂z
) (3.28)
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Dy
n+1 = Dy

n +
∆t

2
(
∂Hx

n+1

∂z
− ∂Hz

n+1

∂x
+

∂Hx
n

∂z
− ∂Hz

n

∂x
) (3.29)

Dz
n+1 = Dz

n +
∆t

2
(
∂Hy

n+1

∂x
− ∂Hx

n+1

∂y
+

∂Hy
n

∂x
− ∂Hx

n

∂y
) (3.30)

Substituting the values of Hn+1
y (i,j,k) and Hn+1

z (i,j,k) from (3.26) and (3.27) in

(3.28) to get Dn+1
x (i,j,k) and then using the value of Dn+1

x (i,j,k) in (3.12) give a

equation of Ex
n+1, Ey

n+1 and Ez
n+1. Taking all the (n + 1) terms on the left

hand side this equation eventually becomes

Ex
n+1 − ν1(i, j, k)

ν4(i, j, k)
(
∆t

2
)2 1

µ

∂2Ex
n+1

∂y2
+

ν1(i, j, k)

ν4(i, j, k)
(
∆t

2
)2 1

µ

∂2Ey
n+1

∂x∂y
(3.31)

+
ν1(i, j, k)

ν4(i, j, k)
(
∆t

2
)2 1

µ

∂2Ez
n+1

∂z∂x
− ν1(i, j, k)

ν4(i, j, k)
(
∆t

2
)2 1

µ

∂2Ex
n+1

∂z2

=
ν1(i, j, k)

ν4(i, j, k)
Dx

n +
ν1(i, j, k)

ν4(i, j, k)

∆t

2

∂Hz
n

∂y
+

ν1(i, j, k)

ν4(i, j, k)
(
∆t

2
)2 1

µ

∂2Ex
n

∂y2

−ν1(i, j, k)

ν4(i, j, k)
(
∆t

2
)2 1

µ

∂2Ey
n

∂x∂y
− ν1(i, j, k)

ν4(i, j, k)

∆t

2

∂Hy
n

∂z
− ν1(i, j, k)

ν4(i, j, k)
(
∆t

2
)2 1

µ

∂2Ez
n

∂z∂x

+
ν1(i, j, k)

ν4(i, j, k)
(
∆t

2
)2 1

µ

∂2Ex
n

∂z2
+

ν1(i, j, k)

ν4(i, j, k)
(
∆t

2
)2∂Hz

n

∂y
− ν1(i, j, k)

ν4(i, j, k)
(
∆t

2
)2∂Hy

n

∂z

+
ν2(i, j, k)

ν4(i, j, k)
Dx

n +
ν3(i, j, k)

ν4(i, j, k)
Dx

n−1 − ν5(i, j, k)

ν4(i, j, k)
Ex

n − ν6(i, j, k)

ν4(i, j, k)
Ex

n−1

When (3.31) is discretized in space and same terms are factored out properly

(3.32) is obtained
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[
1 + 2P1(i, j, k)

( 1

∆y2
+

1

∆z2

)]
En+1

x (i,j,k) (3.32)

−P1(i, j, k)

∆y2
En+1

x (i,j+1,k)− P1(i, j, k)

∆y2
En+1

x (i,j−1,k)

−P1(i, j, k)

∆z2
En+1

x (i,j,k+1)− P1(i, j, k)

∆z2
En+1

x (i,j,k−1)

+
P1(i, j, k)

∆x∆y
En+1

y (i,j+1,k)− P1(i, j, k)

∆x∆y
En+1

y (i,j,k)

−P1(i, j, k)

∆x∆y
En+1

y (i−1,j+1,k) +
P1(i, j, k)

∆x∆y
En+1

y (i−1,j,k)

+
P1(i, j, k)

∆z∆x
En+1

z (i,j,k+1)− P1(i, j, k)

∆z∆x
En+1

z (i,j,k)

−P1(i, j, k)

∆z∆x
En+1

z (i−1,j,k+1) +
P1(i, j, k)

∆z∆x
En+1

z (i−1,j,k)

= P2(i, j, k)Dn
x (i,j,k) + P3(i, j, k)Dn−1

x (i,j,k)

+
P4(i, j, k)

∆y
Hn

z (i,j+1,k)− P4(i, j, k)

∆y
Hn

z (i,j,k)

−P4(i, j, k)

∆z
Hn

y (i,j,k+1) +
P4(i, j, k)

∆z
Hn

y (i,j,k)

−P6(i, j, k)En−1
x (i,j,k)−

[
2P1(i, j, k)

( 1

∆y2
+

1

∆z2

)
+ P5(i, j, k)

]
En

x (i,j,k)

+
P1(i, j, k)

∆y2
En

x (i,j+1,k) +
P1(i, j, k)

∆y2
En

x (i,j−1,k)

+
P1(i, j, k)

∆z2
En

x (i,j,k+1) +
P1(i, j, k)

∆z2
En

x (i,j,k−1)

−P1(i, j, k)

∆y∆x
En

y (i,j+1,k) +
P1(i, j, k)

∆y∆x
En

y (i,j,k)

+
P1(i, j, k)

∆y∆x
En

y (i−1,j+1,k)− P1(i, j, k)

∆y∆x
En

y (i−1,j,k)

−P1(i, j, k)

∆z∆x
En

z (i,j,k+1) +
P1(i, j, k)

∆z∆x
En

z (i,j,k)

+
P1(i, j, k)

∆z∆x
En

z (i−1,j,k+1)− P1(i, j, k)

∆z∆x
En

z (i−1,j,k)

In (3.32) P1(i, j, k), P2(i, j, k), P3(i, j, k), P4(i, j, k), P5(i, j, k) and P6(i, j, k)

have the following values:

P1(i, j, k) =
ν1(i, j, k)

ν4(i, j, k)
(
∆t

2
)2 1

µ
(3.33)
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P2(i, j, k) =
ν1(i, j, k)

ν4(i, j, k)
+

ν2(i, j, k)

ν4(i, j, k)
(3.34)

P3(i, j, k) =
ν3(i, j, k)

ν4(i, j, k)
(3.35)

P4(i, j, k) =
ν1(i, j, k)

ν4(i, j, k)
∆t (3.36)

P5(i, j, k) =
ν5(i, j, k)

ν4(i, j, k)
(3.37)

P6(i, j, k) =
ν6(i, j, k)

ν4(i, j, k)
(3.38)

Now for y-direction (3.11) turns into

En+1
y (i,j,k) =

ν1(i, j, k)

ν4(i, j, k)
Dn+1

y (i,j,k) +
ν2(i, j, k)

ν4(i, j, k)
Dn

y (i,j,k) +
ν3(i, j, k)

ν4(i, j, k)
Dn−1

y (i,j,k)(3.39)

−ν5(i, j, k)

ν4(i, j, k)
En

y (i,j,k)− ν6(i, j, k)

ν4(i, j, k)
En−1

y (i,j,k)

Hn+1
x (i,j,k) and Hn+1

z (i,j,k) from (3.25) and (3.27) are substituted into (3.29).

Then the obtained Dn+1
y (i,j,k) is put into (3.39) which, in discretized form, gives
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[
1 + 2P1(i, j, k)

( 1

∆z2
+

1

∆x2

)]
En+1

y (i,j,k) (3.40)

−P1(i, j, k)

∆z2
En+1

y (i,j,k+1)− P1(i, j, k)

∆z2
En+1

y (i,j,k−1)

−P1(i, j, k)

∆x2
En+1

y (i+1,j,k)− P1(i, j, k)

∆x2
En+1

y (i−1,j,k)

+
P1(i, j, k)

∆y∆z
En+1

z (i,j,k+1)− P1(i, j, k)

∆y∆z
En+1

z (i,j,k)

−P1(i, j, k)

∆y∆z
En+1

z (i,j−1,k+1) +
P1(i, j, k)

∆y∆z
En+1

z (i,j−1,k)

+
P1(i, j, k)

∆x∆y
En+1

x (i+1,j,k)− P1(i, j, k)

∆x∆y
En+1

x (i,j,k)

−P1(i, j, k)

∆x∆y
En+1

x (i+1,j−1,k) +
P1(i, j, k)

∆x∆y
En+1

x (i,j−1,k)

= P2(i, j, k)Dn
y (i,j,k) + P3(i, j, k)Dn−1

y (i,j,k)

+
P4(i, j, k)

∆z
Hn

x (i,j,k+1)− P4(i, j, k)

∆z
Hn

x (i,j,k)

−P4(i, j, k)

∆x
Hn

z (i+1,j,k) +
P4(i, j, k)

∆x
Hn

z (i,j,k)

−P6(i, j, k)En−1
y (i,j,k)−

[
2P1(i, j, k)

( 1

∆z2
+

1

∆x2

)
+ P5(i, j, k)

]
En

y (i,j,k)

+
P1(i, j, k)

∆z2
En

y (i,j,k+1) +
P1(i, j, k)

∆z2
En

y (i,j,k−1)

+
P1(i, j, k)

∆x2
En

y (i+1,j,k) +
P1(i, j, k)

∆x2
En

y (i−1,j,k)

−P1(i, j, k)

∆z∆y
En

z (i,j,k+1) +
P1(i, j, k)

∆z∆y
En

z (i,j,k)

+
P1(i, j, k)

∆z∆y
En

z (i,j−1,k+1)− P1(i, j, k)

∆z∆y
En

z (i,j−1,k)

−P1(i, j, k)

∆x∆y
En

x (i+1,j,k) +
P1(i, j, k)

∆x∆y
En

x (i,j,k)

+
P1(i, j, k)

∆x∆y
En

x (i+1,j−1,k)− P1(i, j, k)

∆x∆y
En

x (i,j−1,k)

Similarly for z-direction (3.11) is written as

En+1
z (i,j,k) =

ν1(i, j, k)

ν4(i, j, k)
Dn+1

z (i,j,k) +
ν2(i, j, k)

ν4(i, j, k)
Dn

z (i,j,k) +
ν3(i, j, k)

ν4(i, j, k)
Dn−1

z (i,j,k)(3.41)

−ν5(i, j, k)

ν4(i, j, k)
En

z (i,j,k)− ν6(i, j, k)

ν4(i, j, k)
En−1

z (i,j,k)
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In this case Hn+1
x (i,j,k) and Hn+1

y (i,j,k) from (3.25) and (3.26), respectively, are

substituted into (3.30) and the resulting Dn+1
z (i,j,k) is used in (3.41). This yields[

1 + 2P1(i, j, k)
( 1

∆x2
+

1

∆y2

)]
En+1

z (i,j,k)− P1(i, j, k)

∆x2
En+1

z (i+1,j,k) (3.42)

−P1(i, j, k)

∆x2
En+1

z (i−1,j,k)− P1(i, j, k)

∆y2
En+1

z (i,j+1,k)− P1(i, j, k)

∆y2
En+1

z (i,j−1,k)

+
P1(i, j, k)

∆z∆x
En+1

x (i+1,j,k)− P1(i, j, k)

∆z∆x
En+1

x (i,j,k)− P1(i, j, k)

∆z∆x
En+1

x (i+1,j,k−1)

+
P1(i, j, k)

∆z∆x
En+1

x (i,j,k−1) +
P1(i, j, k)

∆y∆z
En+1

y (i,j+1,k)− P1(i, j, k)

∆y∆z
En+1

y (i,j,k)

−P1(i, j, k)

∆y∆z
En+1

y (i,j+1,k−1) +
P1(i, j, k)

∆y∆z
En+1

y (i,j,k−1)

= P2(i, j, k)Dn
z (i,j,k) + P3(i, j, k)Dn−1

z (i,j,k)

+
P4(i, j, k)

∆x
Hn

y (i+1,j,k)− P4(i, j, k)

∆x
Hn

y (i,j,k)

−P4(i, j, k)

∆y
Hn

x (i,j+1,k) +
P4(i, j, k)

∆y
Hn

x (i,j,k)

−P6(i, j, k)En−1
z (i,j,k)−

[
2P1(i, j, k)

( 1

∆x2
+

1

∆y2

)
+ P5(i, j, k)

]
En

z (i,j,k)

+
P1(i, j, k)

∆x2
En

z (i+1,j,k) +
P1(i, j, k)

∆x2
En

z (i−1,j,k)

+
P1(i, j, k)

∆y2
En

z (i,j+1,k) +
P1(i, j, k)

∆y2
En

z (i,j−1,k)

−P1(i, j, k)

∆x∆z
En

x (i+1,j,k) +
P1(i, j, k)

∆x∆z
En

x (i,j,k)

+
P1(i, j, k)

∆x∆z
En

x (i+1,j,k−1)− P1(i, j, k)

∆x∆z
En

x (i,j,k−1)

−P1(i, j, k)

∆y∆z
En

y (i,j+1,k) +
P1(i, j, k)

∆y∆z
En

y (i,j,k)

+
P1(i, j, k)

∆y∆z
En

y (i,j+1,k−1)− P1(i, j, k)

∆y∆z
En

y (i,j,k−1)
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(3.32), (3.40) and (3.42) are the three main equations of the FD–CN–FDTD

method. These equations are valid for the interior computational space but not on

the boundaries. (3.32) is valid for imin +1 < i ≤ imax, jmin +1 < j ≤ jmax−1 and

kmin+1 < k ≤ kmax−1. Henceforth, imin, jmin, kmin are the lower boundaries and

imax, jmax, kmax are the upper boundaries in the x, y, z directions, respectively.

(3.40) is valid for imin + 1 < i ≤ imax − 1, jmin + 1 < j ≤ jmax and kmin + 1 <

k ≤ kmax − 1. (3.42) is valid for imin + 1 < i ≤ imax − 1, jmin + 1 < j ≤ jmax − 1

and kmin + 1 < k ≤ kmax. To calculate the values on the boundaries suitable

absorbing boundary conditions have to be added in the FD–CN–FDTD method.

3.3 Inclusion of Mur’s First-Order Boundary

Condition

In the FD–CN–FDTD method Mur’s first-order absorbing boundary condition

[28] (equations in Appendix B) is used. (3.32) does not hold when

• i = imin + 1

• j = jmin + 1

• k = kmin + 1

• i = imin + 1 and j = jmin + 1

• j = jmin + 1 and k = kmin + 1

• i = imin + 1 and k = kmin + 1

• i = imin + 1, j = jmin + 1 and k = kmin + 1

• j = jmax

• k = kmax



CHAPTER 3. FREQUENCY DEPENDENT CRANK NICOLSON FDTD METHOD54

When i = imin +1, (3.32) is to be modified using the equations of Mur’s ABC.

The modified equation is (3.43) which has been derived using (B.23) and (B.27)

[
1 + 2P1(i, j, k)

( 1

∆y2
+

1

∆z2

)]
En+1

x (i,j,k)− P1(i, j, k)

∆y2
En+1

x (i,j+1,k) (3.43)

−P1(i, j, k)

∆y2
En+1

x (i,j−1,k)− P1(i, j, k)

∆z2
En+1

x (i,j,k+1)− P1(i, j, k)

∆z2
En+1

x (i,j,k−1)

−P1(i, j, k)

∆x∆y
(h3(i,j,k)− 1)En+1

y (i,j+1,k) +
P1(i, j, k)

∆x∆y
(h1(i,j,k)− 1)En+1

y (i,j,k)

−P1(i, j, k)

∆x∆y
h4(i,j,k) +

P1(i, j, k)

∆x∆y
h2(i,j,k)

−P1(i, j, k)

∆z∆x
(h7(i,j,k)− 1)En+1

z (i,j,k+1) +
P1(i, j, k)

∆z∆x
(h5(i,j,k)− 1)En+1

z (i,j,k)

−P1(i, j, k)

∆z∆x
h8(i,j,k) +

P1(i, j, k)

∆z∆x
h6(i,j,k)

= P2(i, j, k)Dn
x (i,j,k) + P3(i, j, k)Dn−1

x (i,j,k)

+
P4(i, j, k)

∆y
Hn

z (i,j+1,k)− P4(i, j, k)

∆y
Hn

z (i,j,k)

−P4(i, j, k)

∆z
Hn

y (i,j,k+1) +
P4(i, j, k)

∆z
Hn

y (i,j,k)

−P6(i, j, k)En−1
x (i,j,k)−

[
2P1(i, j, k)

( 1

∆y2
+

1

∆z2

)
+ P5(i, j, k)

]
En

x (i,j,k)

+
P1(i, j, k)

∆y2
En

x (i,j+1,k) +
P1(i, j, k)

∆y2
En

x (i,j−1,k)

+
P1(i, j, k)

∆z2
En

x (i,j,k+1) +
P1(i, j, k)

∆z2
En

x (i,j,k−1)

−P1(i, j, k)

∆y∆x
En

y (i,j+1,k) +
P1(i, j, k)

∆y∆x
En

y (i,j,k)

+
P1(i, j, k)

∆y∆x
En

y (i−1,j+1,k)− P1(i, j, k)

∆y∆x
En

y (i−1,j,k)

−P1(i, j, k)

∆z∆x
En

z (i,j,k+1) +
P1(i, j, k)

∆z∆x
En

z (i,j,k)

+
P1(i, j, k)

∆z∆x
En

z (i−1,j,k+1)− P1(i, j, k)

∆z∆x
En

z (i−1,j,k)
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where

h1(i,j,k) =
(∆t−∆x

√
µε(i+1,j,k))

∆t + ∆x
√

µε(i,j,k)
(3.44)

h2(i,j,k) =
(∆t + ∆x

√
µε(i+1,j,k)) En

y (i+1,j,k)− (∆t−∆x
√

µε(i,j,k)) En
y (i,j,k)

∆t + ∆x
√

µε(i,j,k)
(3.45)

h3(i,j,k) = h1(i, j + 1, k) (3.46)

h4(i,j,k) = h2(i, j + 1, k) (3.47)

h5(i,j,k) =
(∆t−∆x

√
µε(i+1,j,k))

∆t + ∆x
√

µε(i,j,k)
(3.48)

h6(i,j,k) =
(∆t + ∆x

√
µε(i+1,j,k)) En

z (i+1,j,k)− (∆t−∆x
√

µε(i,j,k)) En
z (i,j,k)

∆t + ∆x
√

µε(i,j,k)
(3.49)

h7(i,j,k) = h5(i, j, k + 1) (3.50)

h8(i,j,k) = h6(i, j, k + 1) (3.51)
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Similarly, for the case of j = jmin+1, using the Mur’s ABC equation of (B.19),

(3.32) is modified to (3.52)

[
1 + 2P1(i, j, k)

( 1

∆y2
+

1

∆z2

)]
En+1

x (i,j,k)− P1(i, j, k)

∆y2
En+1

x (i,j+1,k) (3.52)

−P1(i, j, k)

∆y2
h9(i,j,k)En+1

x (i,j,k)− P1(i, j, k)

∆y2
h10(i,j,k)

−P1(i, j, k)

∆z2
En+1

x (i,j,k+1)− P1(i, j, k)

∆z2
En+1

x (i,j,k−1)

+
P1(i, j, k)

∆x∆y
En+1

y (i,j+1,k)− P1(i, j, k)

∆x∆y
En+1

y (i,j,k)

−P1(i, j, k)

∆x∆y
En+1

y (i−1,j+1,k) +
P1(i, j, k)

∆x∆y
En+1

y (i−1,j,k)

+
P1(i, j, k)

∆z∆x
En+1

z (i,j,k+1)− P1(i, j, k)

∆z∆x
En+1

z (i,j,k)

−P1(i, j, k)

∆z∆x
En+1

z (i−1,j,k+1) +
P1(i, j, k)

∆z∆x
En+1

z (i−1,j,k)

= P2(i, j, k)Dn
x (i,j,k) + P3(i, j, k)Dn−1

x (i,j,k)

+
P4(i, j, k)

∆y
Hn

z (i,j+1,k)− P4(i, j, k)

∆y
Hn

z (i,j,k)

−P4(i, j, k)

∆z
Hn

y (i,j,k+1) +
P4(i, j, k)

∆z
Hn

y (i,j,k)

−P6(i, j, k)En−1
x (i,j,k)−

[
2P1(i, j, k)

( 1

∆y2
+

1

∆z2

)
+ P5(i, j, k)

]
En

x (i,j,k)

+
P1(i, j, k)

∆y2
En

x (i,j+1,k) +
P1(i, j, k)

∆y2
En

x (i,j−1,k)

+
P1(i, j, k)

∆z2
En

x (i,j,k+1) +
P1(i, j, k)

∆z2
En

x (i,j,k−1)

−P1(i, j, k)

∆y∆x
En

y (i,j+1,k) +
P1(i, j, k)

∆y∆x
En

y (i,j,k)

+
P1(i, j, k)

∆y∆x
En

y (i−1,j+1,k)− P1(i, j, k)

∆y∆x
En

y (i−1,j,k)

−P1(i, j, k)

∆z∆x
En

z (i,j,k+1) +
P1(i, j, k)

∆z∆x
En

z (i,j,k)

+
P1(i, j, k)

∆z∆x
En

z (i−1,j,k+1)− P1(i, j, k)

∆z∆x
En

z (i−1,j,k)
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where

h9(i,j,k) =
(∆t−∆y

√
µε(i,j+1,k))

∆t + ∆y
√

µε(i,j,k)
(3.53)

h10(i,j,k) =
(∆t + ∆y

√
µε(i,j+1,k)) En

x (i,j+1,k)− (∆t−∆y
√

µε(i,j,k)) En
x (i,j,k)

∆t + ∆y
√

µε(i,j,k)
(3.54)

In the same way, for the case of k = kmin + 1, using the Mur’s ABC equation

of (B.21), (3.32) is modified to (3.55)

[
1 + 2P1(i, j, k)

( 1

∆y2
+

1

∆z2

)]
En+1

x (i,j,k)− P1(i, j, k)

∆y2
En+1

x (i,j+1,k)(3.55)

−P1(i, j, k)

∆y2
En+1

x (i,j−1,k)− P1(i, j, k)

∆z2
En+1

x (i,j,k+1)

−P1(i, j, k)

∆z2
h11(i,j,k)En+1

x (i,j,k)− P1(i, j, k)

∆z2
h12(i,j,k)

+
P1(i, j, k)

∆x∆y
En+1

y (i,j+1,k)− P1(i, j, k)

∆x∆y
En+1

y (i,j,k)

−P1(i, j, k)

∆x∆y
En+1

y (i−1,j+1,k) +
P1(i, j, k)

∆x∆y
En+1

y (i−1,j,k) +
P1(i, j, k)

∆z∆x
En+1

z (i,j,k+1)

−P1(i, j, k)

∆z∆x
En+1

z (i,j,k)− P1(i, j, k)

∆z∆x
En+1

z (i−1,j,k+1) +
P1(i, j, k)

∆z∆x
En+1

z (i−1,j,k)

= P2(i, j, k)Dn
x (i,j,k) + P3(i, j, k)Dn−1

x (i,j,k) +
P4(i, j, k)

∆y
Hn

z (i,j+1,k)

−P4(i, j, k)

∆y
Hn

z (i,j,k)− P4(i, j, k)

∆z
Hn

y (i,j,k+1) +
P4(i, j, k)

∆z
Hn

y (i,j,k)

−P6(i, j, k)En−1
x (i,j,k)−

[
2P1(i, j, k)

( 1

∆y2
+

1

∆z2

)
+ P5(i, j, k)

]
En

x (i,j,k)

+
P1(i, j, k)

∆y2
En

x (i,j+1,k) +
P1(i, j, k)

∆y2
En

x (i,j−1,k) +
P1(i, j, k)

∆z2
En

x (i,j,k+1)

+
P1(i, j, k)

∆z2
En

x (i,j,k−1)− P1(i, j, k)

∆y∆x
En

y (i,j+1,k) +
P1(i, j, k)

∆y∆x
En

y (i,j,k)

+
P1(i, j, k)

∆y∆x
En

y (i−1,j+1,k)− P1(i, j, k)

∆y∆x
En

y (i−1,j,k)− P1(i, j, k)

∆z∆x
En

z (i,j,k+1)

+
P1(i, j, k)

∆z∆x
En

z (i,j,k) +
P1(i, j, k)

∆z∆x
En

z (i−1,j,k+1)− P1(i, j, k)

∆z∆x
En

z (i−1,j,k)
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where

h11(i,j,k) =
(∆t−∆z

√
µε(i,j,k+1))

∆t + ∆z
√

µε(i,j,k)
(3.56)

h12(i,j,k) =
(∆t + ∆z

√
µε(i,j,k+1)) En

x (i,j,k+1)− (∆t−∆z
√

µε(i,j,k)) En
x (i,j,k)

∆t + ∆z
√

µε(i,j,k)
(3.57)

For the case of i = imin + 1 and j = jmin + 1, using the Mur’s ABC equations

of (B.23), (B.27) and (B.19), (3.32) is modified to (3.58)

[
1 + 2P1(i, j, k)

( 1

∆y2
+

1

∆z2

)]
En+1

x (i,j,k)− P1(i, j, k)

∆y2
En+1

x (i,j+1,k)(3.58)

−P1(i, j, k)

∆y2
h9(i,j,k)En+1

x (i,j,k)− P1(i, j, k)

∆z2
En+1

x (i,j,k+1)− P1(i, j, k)

∆z2
En+1

x (i,j,k−1)

−P1(i, j, k)

∆x∆y
(h3(i,j,k)− 1)En+1

y (i,j+1,k) +
P1(i, j, k)

∆x∆y
(h1(i,j,k)− 1)En+1

y (i,j,k)

−P1(i, j, k)

∆y2
h10(i,j,k)− P1(i, j, k)

∆x∆y
h4(i,j,k) +

P1(i, j, k)

∆x∆y
h2(i,j,k)

−P1(i, j, k)

∆z∆x
(h7(i,j,k)− 1)En+1

z (i,j,k+1) +
P1(i, j, k)

∆z∆x
(h5(i,j,k)− 1)En+1

z (i,j,k)

−P1(i, j, k)

∆z∆x
h8(i,j,k) +

P1(i, j, k)

∆z∆x
h6(i,j,k)

= P2(i, j, k)Dn
x (i,j,k) + P3(i, j, k)Dn−1

x (i,j,k) +
P4(i, j, k)

∆y
Hn

z (i,j+1,k)

−P4(i, j, k)

∆y
Hn

z (i,j,k)− P4(i, j, k)

∆z
Hn

y (i,j,k+1) +
P4(i, j, k)

∆z
Hn

y (i,j,k)

−P6(i, j, k)En−1
x (i,j,k)−

[
2P1(i, j, k)

( 1

∆y2
+

1

∆z2

)
+ P5(i, j, k)

]
En

x (i,j,k)

+
P1(i, j, k)

∆y2
En

x (i,j+1,k) +
P1(i, j, k)

∆y2
En

x (i,j−1,k) +
P1(i, j, k)

∆z2
En

x (i,j,k+1)

+
P1(i, j, k)

∆z2
En

x (i,j,k−1)− P1(i, j, k)

∆y∆x
En

y (i,j+1,k) +
P1(i, j, k)

∆y∆x
En

y (i,j,k)

+
P1(i, j, k)

∆y∆x
En

y (i−1,j+1,k)− P1(i, j, k)

∆y∆x
En

y (i−1,j,k)− P1(i, j, k)

∆z∆x
En

z (i,j,k+1)

+
P1(i, j, k)

∆z∆x
En

z (i,j,k) +
P1(i, j, k)

∆z∆x
En

z (i−1,j,k+1)− P1(i, j, k)

∆z∆x
En

z (i−1,j,k)
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For the case of j = jmin +1 and k = kmin +1, using the Mur’s ABC equations

of (B.19) and (B.21), (3.32) is modified to (3.59)

[
1 + 2P1(i, j, k)

( 1

∆y2
+

1

∆z2

)]
En+1

x (i,j,k)(3.59)

−P1(i, j, k)

∆y2
En+1

x (i,j+1,k)− P1(i, j, k)

∆y2
h9(i,j,k)En+1

x (i,j,k)− P1(i, j, k)

∆y2
h10(i,j,k)

−P1(i, j, k)

∆z2
En+1

x (i,j,k+1)− P1(i, j, k)

∆z2
h11(i,j,k)En+1

x (i,j,k)− P1(i, j, k)

∆z2
h12(i,j,k)

+
P1(i, j, k)

∆x∆y
En+1

y (i,j+1,k)− P1(i, j, k)

∆x∆y
En+1

y (i,j,k)

−P1(i, j, k)

∆x∆y
En+1

y (i−1,j+1,k) +
P1(i, j, k)

∆x∆y
En+1

y (i−1,j,k)

+
P1(i, j, k)

∆z∆x
En+1

z (i,j,k+1)− P1(i, j, k)

∆z∆x
En+1

z (i,j,k)

−P1(i, j, k)

∆z∆x
En+1

z (i−1,j,k+1) +
P1(i, j, k)

∆z∆x
En+1

z (i−1,j,k)

= P2(i, j, k)Dn
x (i,j,k) + P3(i, j, k)Dn−1

x (i,j,k)

+
P4(i, j, k)

∆y
Hn

z (i,j+1,k)− P4(i, j, k)

∆y
Hn

z (i,j,k)

−P4(i, j, k)

∆z
Hn

y (i,j,k+1) +
P4(i, j, k)

∆z
Hn

y (i,j,k)

−P6(i, j, k)En−1
x (i,j,k)−

[
2P1(i, j, k)

( 1

∆y2
+

1

∆z2

)
+ P5(i, j, k)

]
En

x (i,j,k)

+
P1(i, j, k)

∆y2
En

x (i,j+1,k) +
P1(i, j, k)

∆y2
En

x (i,j−1,k)

+
P1(i, j, k)

∆z2
En

x (i,j,k+1) +
P1(i, j, k)

∆z2
En

x (i,j,k−1)

−P1(i, j, k)

∆y∆x
En

y (i,j+1,k) +
P1(i, j, k)

∆y∆x
En

y (i,j,k)

+
P1(i, j, k)

∆y∆x
En

y (i−1,j+1,k)− P1(i, j, k)

∆y∆x
En

y (i−1,j,k)

−P1(i, j, k)

∆z∆x
En

z (i,j,k+1) +
P1(i, j, k)

∆z∆x
En

z (i,j,k)

+
P1(i, j, k)

∆z∆x
En

z (i−1,j,k+1)− P1(i, j, k)

∆z∆x
En

z (i−1,j,k)
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For the case of i = imin +1 and k = kmin +1, using the Mur’s ABC equations

of (B.23), (B.27) and (B.21), (3.32) is modified to (3.60)

[
1 + 2P1(i, j, k)

( 1

∆y2
+

1

∆z2

)]
En+1

x (i,j,k)− P1(i, j, k)

∆y2
En+1

x (i,j+1,k) (3.60)

−P1(i, j, k)

∆y2
En+1

x (i,j−1,k)− P1(i, j, k)

∆z2
En+1

x (i,j,k+1)

−P1(i, j, k)

∆z2
h11(i,j,k)En+1

x (i,j,k)− P1(i, j, k)

∆z2
h12(i,j,k)

−P1(i, j, k)

∆x∆y
(h3(i,j,k)− 1)En+1

y (i,j+1,k) +
P1(i, j, k)

∆x∆y
(h1(i,j,k)− 1)En+1

y (i,j,k)

−P1(i, j, k)

∆x∆y
h4(i,j,k) +

P1(i, j, k)

∆x∆y
h2(i,j,k)

−P1(i, j, k)

∆z∆x
(h7(i,j,k)− 1)En+1

z (i,j,k+1) +
P1(i, j, k)

∆z∆x
(h5(i,j,k)− 1)En+1

z (i,j,k)

−P1(i, j, k)

∆z∆x
h8(i,j,k) +

P1(i, j, k)

∆z∆x
h6(i,j,k)

= P2(i, j, k)Dn
x (i,j,k) + P3(i, j, k)Dn−1

x (i,j,k)

+
P4(i, j, k)

∆y
Hn

z (i,j+1,k)− P4(i, j, k)

∆y
Hn

z (i,j,k)

−P4(i, j, k)

∆z
Hn

y (i,j,k+1) +
P4(i, j, k)

∆z
Hn

y (i,j,k)

−P6(i, j, k)En−1
x (i,j,k)−

[
2P1(i, j, k)

( 1

∆y2
+

1

∆z2

)
+ P5(i, j, k)

]
En

x (i,j,k)

+
P1(i, j, k)

∆y2
En

x (i,j+1,k) +
P1(i, j, k)

∆y2
En

x (i,j−1,k)

+
P1(i, j, k)

∆z2
En

x (i,j,k+1) +
P1(i, j, k)

∆z2
En

x (i,j,k−1)

−P1(i, j, k)

∆y∆x
En

y (i,j+1,k) +
P1(i, j, k)

∆y∆x
En

y (i,j,k)

+
P1(i, j, k)

∆y∆x
En

y (i−1,j+1,k)− P1(i, j, k)

∆y∆x
En

y (i−1,j,k)

−P1(i, j, k)

∆z∆x
En

z (i,j,k+1) +
P1(i, j, k)

∆z∆x
En

z (i,j,k)

+
P1(i, j, k)

∆z∆x
En

z (i−1,j,k+1)− P1(i, j, k)

∆z∆x
En

z (i−1,j,k)
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For the case of i = imin + 1, j = jmin + 1 and k = kmin + 1, using the Mur’s

ABC equations of (B.23), (B.27), (B.19) and (B.21), (3.32) is modified to (3.61)

[
1 + 2P1(i, j, k)

( 1

∆y2
+

1

∆z2

)]
En+1

x (i,j,k)(3.61)

−P1(i, j, k)

∆y2
En+1

x (i,j+1,k)− P1(i, j, k)

∆y2
h9(i,j,k)En+1

x (i,j,k)− P1(i, j, k)

∆y2
h10(i,j,k)

−P1(i, j, k)

∆z2
En+1

x (i,j,k+1)− P1(i, j, k)

∆z2
h11(i,j,k)En+1

x (i,j,k)− P1(i, j, k)

∆z2
h12(i,j,k)

−P1(i, j, k)

∆x∆y
(h3(i,j,k)− 1)En+1

y (i,j+1,k) +
P1(i, j, k)

∆x∆y
(h1(i,j,k)− 1)En+1

y (i,j,k)

−P1(i, j, k)

∆x∆y
h4(i,j,k) +

P1(i, j, k)

∆x∆y
h2(i,j,k)

−P1(i, j, k)

∆z∆x
(h7(i,j,k)− 1)En+1

z (i,j,k+1) +
P1(i, j, k)

∆z∆x
(h5(i,j,k)− 1)En+1

z (i,j,k)

−P1(i, j, k)

∆z∆x
h8(i,j,k) +

P1(i, j, k)

∆z∆x
h6(i,j,k)

= P2(i, j, k)Dn
x (i,j,k) + P3(i, j, k)Dn−1

x (i,j,k)

+
P4(i, j, k)

∆y
Hn

z (i,j+1,k)− P4(i, j, k)

∆y
Hn

z (i,j,k)

−P4(i, j, k)

∆z
Hn

y (i,j,k+1) +
P4(i, j, k)

∆z
Hn

y (i,j,k)

−P6(i, j, k)En−1
x (i,j,k)−

[
2P1(i, j, k)

( 1

∆y2
+

1

∆z2

)
+ P5(i, j, k)

]
En

x (i,j,k)

+
P1(i, j, k)

∆y2
En

x (i,j+1,k) +
P1(i, j, k)

∆y2
En

x (i,j−1,k)

+
P1(i, j, k)

∆z2
En

x (i,j,k+1) +
P1(i, j, k)

∆z2
En

x (i,j,k−1)

−P1(i, j, k)

∆y∆x
En

y (i,j+1,k) +
P1(i, j, k)

∆y∆x
En

y (i,j,k)

+
P1(i, j, k)

∆y∆x
En

y (i−1,j+1,k)− P1(i, j, k)

∆y∆x
En

y (i−1,j,k)

−P1(i, j, k)

∆z∆x
En

z (i,j,k+1) +
P1(i, j, k)

∆z∆x
En

z (i,j,k)

+
P1(i, j, k)

∆z∆x
En

z (i−1,j,k+1)− P1(i, j, k)

∆z∆x
En

z (i−1,j,k)
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For the case of j = jmax, using the Mur’s ABC equation of (B.20), (3.32) is

modified to (3.62)

En+1
x (i,j,k)− (∆t−∆y

√
µε(i,j−1,k)) En+1

x (i,j−1,k)

∆t + ∆y
√

µε(i,j,k)
(3.62)

=
(∆t + ∆y

√
µε(i,j−1,k)) En

x (i,j−1,k)− (∆t−∆y
√

µε(i,j,k)) En
x (i,j,k)

∆t + ∆y
√

µε(i,j,k)

For the case of k = kmax, using the Mur’s ABC equation of (B.22), (3.32) is

modified to (3.63)

En+1
x (i,j,k)− (∆t−∆z

√
µε(i,j,k−1)) En+1

x (i,j,k−1)

∆t + ∆z
√

µε(i,j,k)
(3.63)

=
(∆t + ∆z

√
µε(i,j,k−1)) En

x (i,j,k−1)− (∆t−∆z
√

µε(i,j,k)) En
x (i,j,k)

∆t + ∆z
√

µε(i,j,k)

Again, (3.40) does not hold when

• i = imin + 1

• j = jmin + 1

• k = kmin + 1

• i = imin + 1 and j = jmin + 1

• j = jmin + 1 and k = kmin + 1

• i = imin + 1 and k = kmin + 1

• i = imin + 1, j = jmin + 1 and k = kmin + 1

• i = imax

• k = kmax



CHAPTER 3. FREQUENCY DEPENDENT CRANK NICOLSON FDTD METHOD63

When i = imin +1, (3.40) is to be modified using the equations of Mur’s ABC.

The modified equation is (3.64) which has been derived using (B.23)

[
1 + 2P1(i, j, k)

( 1

∆z2
+

1

∆x2

)]
En+1

y (i,j,k)− P1(i, j, k)

∆z2
En+1

y (i,j,k+1) (3.64)

−P1(i, j, k)

∆z2
En+1

y (i,j,k−1)− P1(i, j, k)

∆x2
En+1

y (i+1,j,k)

−P1(i, j, k)

∆x2
h1(i,j,k)En+1

y (i,j,k)− P1(i, j, k)

∆x2
h2(i,j,k)

+
P1(i, j, k)

∆y∆z
En+1

z (i,j,k+1)− P1(i, j, k)

∆y∆z
En+1

z (i,j,k)

−P1(i, j, k)

∆y∆z
En+1

z (i,j−1,k+1) +
P1(i, j, k)

∆y∆z
En+1

z (i,j−1,k)

+
P1(i, j, k)

∆x∆y
En+1

x (i+1,j,k)− P1(i, j, k)

∆x∆y
En+1

x (i,j,k)

−P1(i, j, k)

∆x∆y
En+1

x (i+1,j−1,k) +
P1(i, j, k)

∆x∆y
En+1

x (i,j−1,k)

= P2(i, j, k)Dn
y (i,j,k) + P3(i, j, k)Dn−1

y (i,j,k)

+
P4(i, j, k)

∆z
Hn

x (i,j,k+1)− P4(i, j, k)

∆z
Hn

x (i,j,k)

−P4(i, j, k)

∆x
Hn

z (i+1,j,k) +
P4(i, j, k)

∆x
Hn

z (i,j,k)

−P6(i, j, k)En−1
y (i,j,k)−

[
2P1(i, j, k)

( 1

∆z2
+

1

∆x2

)
+ P5(i, j, k)

]
En

y (i,j,k)

+
P1(i, j, k)

∆z2
En

y (i,j,k+1) +
P1(i, j, k)

∆z2
En

y (i,j,k−1)

+
P1(i, j, k)

∆x2
En

y (i+1,j,k) +
P1(i, j, k)

∆x2
En

y (i−1,j,k)

−P1(i, j, k)

∆z∆y
En

z (i,j,k+1) +
P1(i, j, k)

∆z∆y
En

z (i,j,k)

+
P1(i, j, k)

∆z∆y
En

z (i,j−1,k+1)− P1(i, j, k)

∆z∆y
En

z (i,j−1,k)

−P1(i, j, k)

∆x∆y
En

x (i+1,j,k) +
P1(i, j, k)

∆x∆y
En

x (i,j,k)

+
P1(i, j, k)

∆x∆y
En

x (i+1,j−1,k)− P1(i, j, k)

∆x∆y
En

x (i,j−1,k)
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Similarly, for the case of j = jmin + 1, using the Mur’s ABC equations of

(B.29) and (B.19), (3.40) is modified to (3.65)

[
1 + 2P1(i, j, k)

( 1

∆z2
+

1

∆x2

)]
En+1

y (i,j,k)− P1(i, j, k)

∆z2
En+1

y (i,j,k+1) (3.65)

−P1(i, j, k)

∆z2
En+1

y (i,j,k−1)− P1(i, j, k)

∆x2
En+1

y (i+1,j,k)− P1(i, j, k)

∆x2
En+1

y (i−1,j,k)

−P1(i, j, k)

∆y∆z
(h23(i,j,k)− 1)En+1

z (i,j,k+1) +
P1(i, j, k)

∆y∆z
(h21(i,j,k)− 1)En+1

z (i,j,k)

−P1(i, j, k)

∆y∆z
h24(i,j,k) +

P1(i, j, k)

∆y∆z
h22(i,j,k)

−P1(i, j, k)

∆x∆y
(h25(i,j,k)− 1)En+1

x (i+1,j,k) +
P1(i, j, k)

∆x∆y
(h9(i,j,k)− 1)En+1

x (i,j,k)

−P1(i, j, k)

∆x∆y
h26(i,j,k) +

P1(i, j, k)

∆x∆y
h10(i,j,k)

= P2(i, j, k)Dn
y (i,j,k) + P3(i, j, k)Dn−1

y (i,j,k)

+
P4(i, j, k)

∆z
Hn

x (i,j,k+1)− P4(i, j, k)

∆z
Hn

x (i,j,k)

−P4(i, j, k)

∆x
Hn

z (i+1,j,k) +
P4(i, j, k)

∆x
Hn

z (i,j,k)

−P6(i, j, k)En−1
y (i,j,k)−

[
2P1(i, j, k)

( 1

∆z2
+

1

∆x2

)
+ P5(i, j, k)

]
En

y (i,j,k)

+
P1(i, j, k)

∆z2
En

y (i,j,k+1) +
P1(i, j, k)

∆z2
En

y (i,j,k−1)

+
P1(i, j, k)

∆x2
En

y (i+1,j,k) +
P1(i, j, k)

∆x2
En

y (i−1,j,k)

−P1(i, j, k)

∆z∆y
En

z (i,j,k+1) +
P1(i, j, k)

∆z∆y
En

z (i,j,k)

+
P1(i, j, k)

∆z∆y
En

z (i,j−1,k+1)− P1(i, j, k)

∆z∆y
En

z (i,j−1,k)

−P1(i, j, k)

∆x∆y
En

x (i+1,j,k) +
P1(i, j, k)

∆x∆y
En

x (i,j,k)

+
P1(i, j, k)

∆x∆y
En

x (i+1,j−1,k)− P1(i, j, k)

∆x∆y
En

x (i,j−1,k)



CHAPTER 3. FREQUENCY DEPENDENT CRANK NICOLSON FDTD METHOD65

where

h21(i,j,k) =
(∆t−∆y

√
µε(i,j+1,k))

∆t + ∆y
√

µε(i,j,k)
(3.66)

h22(i,j,k) =
(∆t + ∆y

√
µε(i,j+1,k)) En

z (i,j+1,k)− (∆t−∆y
√

µε(i,j,k)) En
z (i,j,k)

∆t + ∆y
√

µε(i,j,k)
(3.67)

h23(i,j,k) = h21(i, j, k + 1) (3.68)

h24(i,j,k) = h22(i, j, k + 1) (3.69)

h25(i,j,k) = h9(i + 1, j, k) (3.70)

h26(i,j,k) = h10(i + 1, j, k) (3.71)
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In the same way, for the case of k = kmin + 1, using the Mur’s ABC equation

of (B.25), (3.40) is modified to (3.72)

[
1 + 2P1(i, j, k)

( 1

∆z2
+

1

∆x2

)]
En+1

y (i,j,k)(3.72)

−P1(i, j, k)

∆z2
En+1

y (i,j,k+1)− P1(i, j, k)

∆z2
h27(i,j,k)En+1

y (i,j,k)− P1(i, j, k)

∆z2
h28(i,j,k)

−P1(i, j, k)

∆x2
En+1

y (i+1,j,k)− P1(i, j, k)

∆x2
En+1

y (i−1,j,k)

+
P1(i, j, k)

∆y∆z
En+1

z (i,j,k+1)− P1(i, j, k)

∆y∆z
En+1

z (i,j,k)

−P1(i, j, k)

∆y∆z
En+1

z (i,j−1,k+1) +
P1(i, j, k)

∆y∆z
En+1

z (i,j−1,k)

+
P1(i, j, k)

∆x∆y
En+1

x (i+1,j,k)− P1(i, j, k)

∆x∆y
En+1

x (i,j,k)

−P1(i, j, k)

∆x∆y
En+1

x (i+1,j−1,k) +
P1(i, j, k)

∆x∆y
En+1

x (i,j−1,k)

= P2(i, j, k)Dn
y (i,j,k) + P3(i, j, k)Dn−1

y (i,j,k)

+
P4(i, j, k)

∆z
Hn

x (i,j,k+1)− P4(i, j, k)

∆z
Hn

x (i,j,k)

−P4(i, j, k)

∆x
Hn

z (i+1,j,k) +
P4(i, j, k)

∆x
Hn

z (i,j,k)

−P6(i, j, k)En−1
y (i,j,k)−

[
2P1(i, j, k)

( 1

∆z2
+

1

∆x2

)
+ P5(i, j, k)

]
En

y (i,j,k)

+
P1(i, j, k)

∆z2
En

y (i,j,k+1) +
P1(i, j, k)

∆z2
En

y (i,j,k−1)

+
P1(i, j, k)

∆x2
En

y (i+1,j,k) +
P1(i, j, k)

∆x2
En

y (i−1,j,k)

−P1(i, j, k)

∆z∆y
En

z (i,j,k+1) +
P1(i, j, k)

∆z∆y
En

z (i,j,k)

+
P1(i, j, k)

∆z∆y
En

z (i,j−1,k+1)− P1(i, j, k)

∆z∆y
En

z (i,j−1,k)

−P1(i, j, k)

∆x∆y
En

x (i+1,j,k) +
P1(i, j, k)

∆x∆y
En

x (i,j,k)

+
P1(i, j, k)

∆x∆y
En

x (i+1,j−1,k)− P1(i, j, k)

∆x∆y
En

x (i,j−1,k)
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where

h27(i,j,k) =
(∆t−∆z

√
µε(i,j,k+1))

∆t + ∆z
√

µε(i,j,k)
(3.73)

h28(i,j,k) =
(∆t + ∆z

√
µε(i,j,k+1)) En

y (i,j,k+1)− (∆t−∆z
√

µε(i,j,k)) En
y (i,j,k)

∆t + ∆z
√

µε(i,j,k)
(3.74)

For the case of i = imin + 1 and j = jmin + 1, using the Mur’s ABC equations

of (B.23), (B.29) and (B.19), (3.40) is modified to (3.75)

[
1 + 2P1(i, j, k)

( 1

∆z2
+

1

∆x2

)]
En+1

y (i,j,k)− P1(i, j, k)

∆z2
En+1

y (i,j,k+1) (3.75)

−P1(i, j, k)

∆z2
En+1

y (i,j,k−1)− P1(i, j, k)

∆x2
En+1

y (i+1,j,k)− P1(i, j, k)

∆x2
h2(i,j,k)

−P1(i, j, k)

∆y∆z
(h23(i,j,k)− 1)En+1

z (i,j,k+1) +
P1(i, j, k)

∆y∆z
(h21(i,j,k)− 1)En+1

z (i,j,k)

−P1(i, j, k)

∆x2
h1(i,j,k)En+1

y (i,j,k)− P1(i, j, k)

∆y∆z
h24(i,j,k) +

P1(i, j, k)

∆y∆z
h22(i,j,k)

−P1(i, j, k)

∆x∆y
(h25(i,j,k)− 1)En+1

x (i+1,j,k) +
P1(i, j, k)

∆x∆y
(h9(i,j,k)− 1)En+1

x (i,j,k)

−P1(i, j, k)

∆x∆y
h26(i,j,k) +

P1(i, j, k)

∆x∆y
h10(i,j,k)

= P2(i, j, k)Dn
y (i,j,k) + P3(i, j, k)Dn−1

y (i,j,k) +
P4(i, j, k)

∆z
Hn

x (i,j,k+1)

−P4(i, j, k)

∆z
Hn

x (i,j,k)− P4(i, j, k)

∆x
Hn

z (i+1,j,k) +
P4(i, j, k)

∆x
Hn

z (i,j,k)

−P6(i, j, k)En−1
y (i,j,k)−

[
2P1(i, j, k)

( 1

∆z2
+

1

∆x2

)
+ P5(i, j, k)

]
En

y (i,j,k)

+
P1(i, j, k)

∆z2
En

y (i,j,k+1) +
P1(i, j, k)

∆z2
En

y (i,j,k−1) +
P1(i, j, k)

∆x2
En

y (i+1,j,k)

+
P1(i, j, k)

∆x2
En

y (i−1,j,k)− P1(i, j, k)

∆z∆y
En

z (i,j,k+1) +
P1(i, j, k)

∆z∆y
En

z (i,j,k)

+
P1(i, j, k)

∆z∆y
En

z (i,j−1,k+1)− P1(i, j, k)

∆z∆y
En

z (i,j−1,k)− P1(i, j, k)

∆x∆y
En

x (i+1,j,k)

+
P1(i, j, k)

∆x∆y
En

x (i,j,k) +
P1(i, j, k)

∆x∆y
En

x (i+1,j−1,k)− P1(i, j, k)

∆x∆y
En

x (i,j−1,k)
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For the case of j = jmin +1 and k = kmin +1, using the Mur’s ABC equations

of (B.29), (B.19) and (B.25), (3.40) is modified to (3.76)

[
1 + 2P1(i, j, k)

( 1

∆z2
+

1

∆x2

)]
En+1

y (i,j,k)− P1(i, j, k)

∆z2
En+1

y (i,j,k+1) (3.76)

−P1(i, j, k)

∆z2
h27(i,j,k)En+1

y (i,j,k)− P1(i, j, k)

∆z2
h28(i,j,k)

−P1(i, j, k)

∆x2
En+1

y (i+1,j,k)− P1(i, j, k)

∆x2
En+1

y (i−1,j,k)

−P1(i, j, k)

∆y∆z
(h23(i,j,k)− 1)En+1

z (i,j,k+1) +
P1(i, j, k)

∆y∆z
(h21(i,j,k)− 1)En+1

z (i,j,k)

−P1(i, j, k)

∆y∆z
h24(i,j,k) +

P1(i, j, k)

∆y∆z
h22(i,j,k)

−P1(i, j, k)

∆x∆y
(h25(i,j,k)− 1)En+1

x (i+1,j,k) +
P1(i, j, k)

∆x∆y
(h9(i,j,k)− 1)En+1

x (i,j,k)

−P1(i, j, k)

∆x∆y
h26(i,j,k) +

P1(i, j, k)

∆x∆y
h10(i,j,k)

= P2(i, j, k)Dn
y (i,j,k) + P3(i, j, k)Dn−1

y (i,j,k)

+
P4(i, j, k)

∆z
Hn

x (i,j,k+1)− P4(i, j, k)

∆z
Hn

x (i,j,k)

−P4(i, j, k)

∆x
Hn

z (i+1,j,k) +
P4(i, j, k)

∆x
Hn

z (i,j,k)

−P6(i, j, k)En−1
y (i,j,k)−

[
2P1(i, j, k)

( 1

∆z2
+

1

∆x2

)
+ P5(i, j, k)

]
En

y (i,j,k)

+
P1(i, j, k)

∆z2
En

y (i,j,k+1) +
P1(i, j, k)

∆z2
En

y (i,j,k−1)

+
P1(i, j, k)

∆x2
En

y (i+1,j,k) +
P1(i, j, k)

∆x2
En

y (i−1,j,k)

−P1(i, j, k)

∆z∆y
En

z (i,j,k+1) +
P1(i, j, k)

∆z∆y
En

z (i,j,k)

+
P1(i, j, k)

∆z∆y
En

z (i,j−1,k+1)− P1(i, j, k)

∆z∆y
En

z (i,j−1,k)

−P1(i, j, k)

∆x∆y
En

x (i+1,j,k) +
P1(i, j, k)

∆x∆y
En

x (i,j,k)

+
P1(i, j, k)

∆x∆y
En

x (i+1,j−1,k)− P1(i, j, k)

∆x∆y
En

x (i,j−1,k)
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For the case of i = imin +1 and k = kmin +1, using the Mur’s ABC equations

of (B.23) and (B.25), (3.40) is modified to (3.77)

[
1 + 2P1(i, j, k)

( 1

∆z2
+

1

∆x2

)]
En+1

y (i,j,k)(3.77)

−P1(i, j, k)

∆z2
En+1

y (i,j,k+1)− P1(i, j, k)

∆z2
h27(i,j,k)En+1

y (i,j,k)− P1(i, j, k)

∆z2
h28(i,j,k)

−P1(i, j, k)

∆x2
En+1

y (i+1,j,k)− P1(i, j, k)

∆x2
h1(i,j,k)En+1

y (i,j,k)− P1(i, j, k)

∆x2
h2(i,j,k)

+
P1(i, j, k)

∆y∆z
En+1

z (i,j,k+1)− P1(i, j, k)

∆y∆z
En+1

z (i,j,k)

−P1(i, j, k)

∆y∆z
En+1

z (i,j−1,k+1) +
P1(i, j, k)

∆y∆z
En+1

z (i,j−1,k)

+
P1(i, j, k)

∆x∆y
En+1

x (i+1,j,k)− P1(i, j, k)

∆x∆y
En+1

x (i,j,k)

−P1(i, j, k)

∆x∆y
En+1

x (i+1,j−1,k) +
P1(i, j, k)

∆x∆y
En+1

x (i,j−1,k)

= P2(i, j, k)Dn
y (i,j,k) + P3(i, j, k)Dn−1

y (i,j,k)

+
P4(i, j, k)

∆z
Hn

x (i,j,k+1)− P4(i, j, k)

∆z
Hn

x (i,j,k)

−P4(i, j, k)

∆x
Hn

z (i+1,j,k) +
P4(i, j, k)

∆x
Hn

z (i,j,k)

−P6(i, j, k)En−1
y (i,j,k)−

[
2P1(i, j, k)

( 1

∆z2
+

1

∆x2

)
+ P5(i, j, k)

]
En

y (i,j,k)

+
P1(i, j, k)

∆z2
En

y (i,j,k+1) +
P1(i, j, k)

∆z2
En

y (i,j,k−1)

+
P1(i, j, k)

∆x2
En

y (i+1,j,k) +
P1(i, j, k)

∆x2
En

y (i−1,j,k)

−P1(i, j, k)

∆z∆y
En

z (i,j,k+1) +
P1(i, j, k)

∆z∆y
En

z (i,j,k)

+
P1(i, j, k)

∆z∆y
En

z (i,j−1,k+1)− P1(i, j, k)

∆z∆y
En

z (i,j−1,k)

−P1(i, j, k)

∆x∆y
En

x (i+1,j,k) +
P1(i, j, k)

∆x∆y
En

x (i,j,k)

+
P1(i, j, k)

∆x∆y
En

x (i+1,j−1,k)− P1(i, j, k)

∆x∆y
En

x (i,j−1,k)
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For the case of i = imin + 1, j = jmin + 1 and k = kmin + 1, using the Mur’s

ABC equations of (B.23), (B.29), (B.19) and (B.25), (3.40) is modified to (3.78)

[
1 + 2P1(i, j, k)

( 1

∆z2
+

1

∆x2

)]
En+1

y (i,j,k)(3.78)

−P1(i, j, k)

∆z2
En+1

y (i,j,k+1)− P1(i, j, k)

∆z2
h27(i,j,k)En+1

y (i,j,k)− P1(i, j, k)

∆z2
h28(i,j,k)

−P1(i, j, k)

∆x2
En+1

y (i+1,j,k)− P1(i, j, k)

∆x2
h1(i,j,k)En+1

y (i,j,k)− P1(i, j, k)

∆x2
h2(i,j,k)

−P1(i, j, k)

∆y∆z
(h23(i,j,k)− 1)En+1

z (i,j,k+1) +
P1(i, j, k)

∆y∆z
(h21(i,j,k)− 1)En+1

z (i,j,k)

−P1(i, j, k)

∆y∆z
h24(i,j,k) +

P1(i, j, k)

∆y∆z
h22(i,j,k)

−P1(i, j, k)

∆x∆y
(h25(i,j,k)− 1)En+1

x (i+1,j,k) +
P1(i, j, k)

∆x∆y
(h9(i,j,k)− 1)En+1

x (i,j,k)

−P1(i, j, k)

∆x∆y
h26(i,j,k) +

P1(i, j, k)

∆x∆y
h10(i,j,k)

= P2(i, j, k)Dn
y (i,j,k) + P3(i, j, k)Dn−1

y (i,j,k)

+
P4(i, j, k)

∆z
Hn

x (i,j,k+1)− P4(i, j, k)

∆z
Hn

x (i,j,k)

−P4(i, j, k)

∆x
Hn

z (i+1,j,k) +
P4(i, j, k)

∆x
Hn

z (i,j,k)

−P6(i, j, k)En−1
y (i,j,k)−

[
2P1(i, j, k)

( 1

∆z2
+

1

∆x2

)
+ P5(i, j, k)

]
En

y (i,j,k)

+
P1(i, j, k)

∆z2
En

y (i,j,k+1) +
P1(i, j, k)

∆z2
En

y (i,j,k−1)

+
P1(i, j, k)

∆x2
En

y (i+1,j,k) +
P1(i, j, k)

∆x2
En

y (i−1,j,k)

−P1(i, j, k)

∆z∆y
En

z (i,j,k+1) +
P1(i, j, k)

∆z∆y
En

z (i,j,k)

+
P1(i, j, k)

∆z∆y
En

z (i,j−1,k+1)− P1(i, j, k)

∆z∆y
En

z (i,j−1,k)

−P1(i, j, k)

∆x∆y
En

x (i+1,j,k) +
P1(i, j, k)

∆x∆y
En

x (i,j,k)

+
P1(i, j, k)

∆x∆y
En

x (i+1,j−1,k)− P1(i, j, k)

∆x∆y
En

x (i,j−1,k)



CHAPTER 3. FREQUENCY DEPENDENT CRANK NICOLSON FDTD METHOD71

For the case of i = imax, using the Mur’s ABC equation of (B.24), (3.40) is

modified to (3.79)

En+1
y (i,j,k)−

(∆t−∆x
√

µε(i−1,j,k)) En+1
y (i−1,j,k)

∆t + ∆x
√

µε(i,j,k)
(3.79)

=
(∆t + ∆x

√
µε(i−1,j,k)) En

y (i−1,j,k)− (∆t−∆x
√

µε(i,j,k)) En
y (i,j,k)

∆t + ∆x
√

µε(i,j,k)

For the case of k = kmax, using the Mur’s ABC equation of (B.26), (3.40) is

modified to (3.80)

En+1
y (i,j,k)−

(∆t−∆z
√

µε(i,j,k−1)) En+1
y (i,j,k−1)

∆t + ∆z
√

µε(i,j,k)
(3.80)

=
(∆t + ∆z

√
µε(i,j,k−1)) En

y (i,j,k−1)− (∆t−∆z
√

µε(i,j,k)) En
y (i,j,k)

∆t + ∆z
√

µε(i,j,k)

Finally, (3.42) does not hold when

• i = imin + 1

• j = jmin + 1

• k = kmin + 1

• i = imin + 1 and j = jmin + 1

• j = jmin + 1 and k = kmin + 1

• i = imin + 1 and k = kmin + 1

• i = imin + 1, j = jmin + 1 and k = kmin + 1

• i = imax

• j = jmax
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When i = imin +1, (3.42) is to be modified using the equations of Mur’s ABC.

The modified equation is (3.81) which has been derived using (B.27)

[
1 + 2P1(i, j, k)

( 1

∆x2
+

1

∆y2

)]
En+1

z (i,j,k)− P1(i, j, k)

∆x2
En+1

z (i+1,j,k) (3.81)

−P1(i, j, k)

∆x2
h5(i,j,k)En+1

z (i,j,k)− P1(i, j, k)

∆x2
h6(i,j,k)

−P1(i, j, k)

∆y2
En+1

z (i,j+1,k)− P1(i, j, k)

∆y2
En+1

z (i,j−1,k)

+
P1(i, j, k)

∆z∆x
En+1

x (i+1,j,k)− P1(i, j, k)

∆z∆x
En+1

x (i,j,k)

−P1(i, j, k)

∆z∆x
En+1

x (i+1,j,k−1) +
P1(i, j, k)

∆z∆x
En+1

x (i,j,k−1)

+
P1(i, j, k)

∆y∆z
En+1

y (i,j+1,k)− P1(i, j, k)

∆y∆z
En+1

y (i,j,k)

−P1(i, j, k)

∆y∆z
En+1

y (i,j+1,k−1) +
P1(i, j, k)

∆y∆z
En+1

y (i,j,k−1)

= P2(i, j, k)Dn
z (i,j,k) + P3(i, j, k)Dn−1

z (i,j,k)

+
P4(i, j, k)

∆x
Hn

y (i+1,j,k)− P4(i, j, k)

∆x
Hn

y (i,j,k)

−P4(i, j, k)

∆y
Hn

x (i,j+1,k) +
P4(i, j, k)

∆y
Hn

x (i,j,k)

−P6(i, j, k)En−1
z (i,j,k)−

[
2P1(i, j, k)

( 1

∆x2
+

1

∆y2

)
+ P5(i, j, k)

]
En

z (i,j,k)

+
P1(i, j, k)

∆x2
En

z (i+1,j,k) +
P1(i, j, k)

∆x2
En

z (i−1,j,k)

+
P1(i, j, k)

∆y2
En

z (i,j+1,k) +
P1(i, j, k)

∆y2
En

z (i,j−1,k)

−P1(i, j, k)

∆x∆z
En

x (i+1,j,k) +
P1(i, j, k)

∆x∆z
En

x (i,j,k)

+
P1(i, j, k)

∆x∆z
En

x (i+1,j,k−1)− P1(i, j, k)

∆x∆z
En

x (i,j,k−1)

−P1(i, j, k)

∆y∆z
En

y (i,j+1,k) +
P1(i, j, k)

∆y∆z
En

y (i,j,k)

+
P1(i, j, k)

∆y∆z
En

y (i,j+1,k−1)− P1(i, j, k)

∆y∆z
En

y (i,j,k−1)
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Similarly, for the case of j = jmin + 1, using the Mur’s ABC equations of

(B.29), (3.42) is modified to (3.82)

[
1 + 2P1(i, j, k)

( 1

∆x2
+

1

∆y2

)]
En+1

z (i,j,k)(3.82)

−P1(i, j, k)

∆x2
En+1

z (i+1,j,k)− P1(i, j, k)

∆x2
En+1

z (i−1,j,k)

−P1(i, j, k)

∆y2
En+1

z (i,j+1,k)− P1(i, j, k)

∆y2
h21(i,j,k)En+1

z (i,j,k)− P1(i, j, k)

∆y2
h22(i,j,k)

+
P1(i, j, k)

∆z∆x
En+1

x (i+1,j,k)− P1(i, j, k)

∆z∆x
En+1

x (i,j,k)

−P1(i, j, k)

∆z∆x
En+1

x (i+1,j,k−1) +
P1(i, j, k)

∆z∆x
En+1

x (i,j,k−1)

+
P1(i, j, k)

∆y∆z
En+1

y (i,j+1,k)− P1(i, j, k)

∆y∆z
En+1

y (i,j,k)

−P1(i, j, k)

∆y∆z
En+1

y (i,j+1,k−1) +
P1(i, j, k)

∆y∆z
En+1

y (i,j,k−1)

= P2(i, j, k)Dn
z (i,j,k) + P3(i, j, k)Dn−1

z (i,j,k)

+
P4(i, j, k)

∆x
Hn

y (i+1,j,k)− P4(i, j, k)

∆x
Hn

y (i,j,k)

−P4(i, j, k)

∆y
Hn

x (i,j+1,k) +
P4(i, j, k)

∆y
Hn

x (i,j,k)

−P6(i, j, k)En−1
z (i,j,k)−

[
2P1(i, j, k)

( 1

∆x2
+

1

∆y2

)
+ P5(i, j, k)

]
En

z (i,j,k)

+
P1(i, j, k)

∆x2
En

z (i+1,j,k) +
P1(i, j, k)

∆x2
En

z (i−1,j,k)

+
P1(i, j, k)

∆y2
En

z (i,j+1,k) +
P1(i, j, k)

∆y2
En

z (i,j−1,k)

−P1(i, j, k)

∆x∆z
En

x (i+1,j,k) +
P1(i, j, k)

∆x∆z
En

x (i,j,k)

+
P1(i, j, k)

∆x∆z
En

x (i+1,j,k−1)− P1(i, j, k)

∆x∆z
En

x (i,j,k−1)

−P1(i, j, k)

∆y∆z
En

y (i,j+1,k) +
P1(i, j, k)

∆y∆z
En

y (i,j,k)

+
P1(i, j, k)

∆y∆z
En

y (i,j+1,k−1)− P1(i, j, k)

∆y∆z
En

y (i,j,k−1)
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In the same way, for the case of k = kmin +1, using the Mur’s ABC equations

of (B.21) and (B.25), (3.42) is modified to (3.83)[
1 + 2P1(i, j, k)

( 1

∆x2
+

1

∆y2

)]
En+1

z (i,j,k)− P1(i, j, k)

∆x2
En+1

z (i+1,j,k) (3.83)

−P1(i, j, k)

∆x2
En+1

z (i−1,j,k)− P1(i, j, k)

∆y2
En+1

z (i,j+1,k)− P1(i, j, k)

∆y2
En+1

z (i,j−1,k)

−P1(i, j, k)

∆z∆x
(h33(i,j,k)− 1)En+1

x (i+1,j,k) +
P1(i, j, k)

∆z∆x
(h11(i,j,k)− 1)En+1

x (i,j,k)

−P1(i, j, k)

∆z∆x
h34(i,j,k) +

P1(i, j, k)

∆z∆x
h12(i,j,k)

−P1(i, j, k)

∆y∆z
(h35(i,j,k)− 1)En+1

y (i,j+1,k) +
P1(i, j, k)

∆y∆z
(h27(i,j,k)− 1)En+1

y (i,j,k)

−P1(i, j, k)

∆y∆z
h36(i,j,k) +

P1(i, j, k)

∆y∆z
h28(i,j,k)

= P2(i, j, k)Dn
z (i,j,k) + P3(i, j, k)Dn−1

z (i,j,k)

+
P4(i, j, k)

∆x
Hn

y (i+1,j,k)− P4(i, j, k)

∆x
Hn

y (i,j,k)

−P4(i, j, k)

∆y
Hn

x (i,j+1,k) +
P4(i, j, k)

∆y
Hn

x (i,j,k)

−P6(i, j, k)En−1
z (i,j,k)−

[
2P1(i, j, k)

( 1

∆x2
+

1

∆y2

)
+ P5(i, j, k)

]
En

z (i,j,k)

+
P1(i, j, k)

∆x2
En

z (i+1,j,k) +
P1(i, j, k)

∆x2
En

z (i−1,j,k)

+
P1(i, j, k)

∆y2
En

z (i,j+1,k) +
P1(i, j, k)

∆y2
En

z (i,j−1,k)

−P1(i, j, k)

∆x∆z
En

x (i+1,j,k) +
P1(i, j, k)

∆x∆z
En

x (i,j,k)

+
P1(i, j, k)

∆x∆z
En

x (i+1,j,k−1)− P1(i, j, k)

∆x∆z
En

x (i,j,k−1)

−P1(i, j, k)

∆y∆z
En

y (i,j+1,k) +
P1(i, j, k)

∆y∆z
En

y (i,j,k)

+
P1(i, j, k)

∆y∆z
En

y (i,j+1,k−1)− P1(i, j, k)

∆y∆z
En

y (i,j,k−1)

where

h33(i,j,k) = h11(i + 1, j, k) (3.84)

h34(i,j,k) = h12(i + 1, j, k) (3.85)
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h35(i,j,k) = h27(i, j + 1, k) (3.86)

h36(i,j,k) = h28(i, j + 1, k) (3.87)

For the case of i = imin + 1 and j = jmin + 1, using the Mur’s ABC equations

of (B.27) and (B.29), (3.42) is modified to (3.88)

[
1 + 2P1(i, j, k)

( 1

∆x2
+

1

∆y2

)]
En+1

z (i,j,k)(3.88)

−P1(i, j, k)

∆x2
En+1

z (i+1,j,k)− P1(i, j, k)

∆x2
h5(i,j,k)En+1

z (i,j,k)− P1(i, j, k)

∆x2
h6(i,j,k)

−P1(i, j, k)

∆y2
En+1

z (i,j+1,k)− P1(i, j, k)

∆y2
h21(i,j,k)En+1

z (i,j,k)− P1(i, j, k)

∆y2
h22(i,j,k)

+
P1(i, j, k)

∆z∆x
En+1

x (i+1,j,k)− P1(i, j, k)

∆z∆x
En+1

x (i,j,k)− P1(i, j, k)

∆z∆x
En+1

x (i+1,j,k−1)

+
P1(i, j, k)

∆z∆x
En+1

x (i,j,k−1) +
P1(i, j, k)

∆y∆z
En+1

y (i,j+1,k)− P1(i, j, k)

∆y∆z
En+1

y (i,j,k)

−P1(i, j, k)

∆y∆z
En+1

y (i,j+1,k−1) +
P1(i, j, k)

∆y∆z
En+1

y (i,j,k−1)

= P2(i, j, k)Dn
z (i,j,k) + P3(i, j, k)Dn−1

z (i,j,k) +
P4(i, j, k)

∆x
Hn

y (i+1,j,k)

−P4(i, j, k)

∆x
Hn

y (i,j,k)− P4(i, j, k)

∆y
Hn

x (i,j+1,k) +
P4(i, j, k)

∆y
Hn

x (i,j,k)

−P6(i, j, k)En−1
z (i,j,k)−

[
2P1(i, j, k)

( 1

∆x2
+

1

∆y2

)
+ P5(i, j, k)

]
En

z (i,j,k)

+
P1(i, j, k)

∆x2
En

z (i+1,j,k) +
P1(i, j, k)

∆x2
En

z (i−1,j,k) +
P1(i, j, k)

∆y2
En

z (i,j+1,k)

+
P1(i, j, k)

∆y2
En

z (i,j−1,k)− P1(i, j, k)

∆x∆z
En

x (i+1,j,k) +
P1(i, j, k)

∆x∆z
En

x (i,j,k)

+
P1(i, j, k)

∆x∆z
En

x (i+1,j,k−1)− P1(i, j, k)

∆x∆z
En

x (i,j,k−1)− P1(i, j, k)

∆y∆z
En

y (i,j+1,k)

+
P1(i, j, k)

∆y∆z
En

y (i,j,k) +
P1(i, j, k)

∆y∆z
En

y (i,j+1,k−1)− P1(i, j, k)

∆y∆z
En

y (i,j,k−1)
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For the case of j = jmin +1 and k = kmin +1, using the Mur’s ABC equations

of (B.29), (B.21) and (B.25), (3.42) is modified to (3.89)

[
1 + 2P1(i, j, k)

( 1

∆x2
+

1

∆y2

)]
En+1

z (i,j,k)− P1(i, j, k)

∆x2
En+1

z (i+1,j,k) (3.89)

−P1(i, j, k)

∆x2
En+1

z (i−1,j,k)− P1(i, j, k)

∆y2
En+1

z (i,j+1,k)

−P1(i, j, k)

∆y2
h21(i,j,k)En+1

z (i,j,k)− P1(i, j, k)

∆y2
h22(i,j,k)

−P1(i, j, k)

∆z∆x
(h33(i,j,k)− 1)En+1

x (i+1,j,k) +
P1(i, j, k)

∆z∆x
(h11(i,j,k)− 1)En+1

x (i,j,k)

−P1(i, j, k)

∆z∆x
h34(i,j,k) +

P1(i, j, k)

∆z∆x
h12(i,j,k)

−P1(i, j, k)

∆y∆z
(h35(i,j,k)− 1)En+1

y (i,j+1,k) +
P1(i, j, k)

∆y∆z
(h27(i,j,k)− 1)En+1

y (i,j,k)

−P1(i, j, k)

∆y∆z
h36(i,j,k) +

P1(i, j, k)

∆y∆z
h28(i,j,k)

= P2(i, j, k)Dn
z (i,j,k) + P3(i, j, k)Dn−1

z (i,j,k)

+
P4(i, j, k)

∆x
Hn

y (i+1,j,k)− P4(i, j, k)

∆x
Hn

y (i,j,k)

−P4(i, j, k)

∆y
Hn

x (i,j+1,k) +
P4(i, j, k)

∆y
Hn

x (i,j,k)

−P6(i, j, k)En−1
z (i,j,k)−

[
2P1(i, j, k)

( 1

∆x2
+

1

∆y2

)
+ P5(i, j, k)

]
En

z (i,j,k)

+
P1(i, j, k)

∆x2
En

z (i+1,j,k) +
P1(i, j, k)

∆x2
En

z (i−1,j,k)

+
P1(i, j, k)

∆y2
En

z (i,j+1,k) +
P1(i, j, k)

∆y2
En

z (i,j−1,k)

−P1(i, j, k)

∆x∆z
En

x (i+1,j,k) +
P1(i, j, k)

∆x∆z
En

x (i,j,k)

+
P1(i, j, k)

∆x∆z
En

x (i+1,j,k−1)− P1(i, j, k)

∆x∆z
En

x (i,j,k−1)

−P1(i, j, k)

∆y∆z
En

y (i,j+1,k) +
P1(i, j, k)

∆y∆z
En

y (i,j,k)

+
P1(i, j, k)

∆y∆z
En

y (i,j+1,k−1)− P1(i, j, k)

∆y∆z
En

y (i,j,k−1)
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For the case of i = imin +1 and k = kmin +1, using the Mur’s ABC equations

of (B.27), (B.21) and (B.25), (3.42) is modified to (3.90)

[
1 + 2P1(i, j, k)

( 1

∆x2
+

1

∆y2

)]
En+1

z (i,j,k)− P1(i, j, k)

∆x2
En+1

z (i+1,j,k) (3.90)

−P1(i, j, k)

∆x2
h5(i,j,k)En+1

z (i,j,k)− P1(i, j, k)

∆x2
h6(i,j,k)

−P1(i, j, k)

∆y2
En+1

z (i,j+1,k)− P1(i, j, k)

∆y2
En+1

z (i,j−1,k)

−P1(i, j, k)

∆z∆x
(h33(i,j,k)− 1)En+1

x (i+1,j,k) +
P1(i, j, k)

∆z∆x
(h11(i,j,k)− 1)En+1

x (i,j,k)

−P1(i, j, k)

∆z∆x
h34(i,j,k) +

P1(i, j, k)

∆z∆x
h12(i,j,k)

−P1(i, j, k)

∆y∆z
(h35(i,j,k)− 1)En+1

y (i,j+1,k) +
P1(i, j, k)

∆y∆z
(h27(i,j,k)− 1)En+1

y (i,j,k)

−P1(i, j, k)

∆y∆z
h36(i,j,k) +

P1(i, j, k)

∆y∆z
h28(i,j,k)

= P2(i, j, k)Dn
z (i,j,k) + P3(i, j, k)Dn−1

z (i,j,k)

+
P4(i, j, k)

∆x
Hn

y (i+1,j,k)− P4(i, j, k)

∆x
Hn

y (i,j,k)

−P4(i, j, k)

∆y
Hn

x (i,j+1,k) +
P4(i, j, k)

∆y
Hn

x (i,j,k)

−P6(i, j, k)En−1
z (i,j,k)−

[
2P1(i, j, k)

( 1

∆x2
+

1

∆y2

)
+ P5(i, j, k)

]
En

z (i,j,k)

+
P1(i, j, k)

∆x2
En

z (i+1,j,k) +
P1(i, j, k)

∆x2
En

z (i−1,j,k)

+
P1(i, j, k)

∆y2
En

z (i,j+1,k) +
P1(i, j, k)

∆y2
En

z (i,j−1,k)

−P1(i, j, k)

∆x∆z
En

x (i+1,j,k) +
P1(i, j, k)

∆x∆z
En

x (i,j,k)

+
P1(i, j, k)

∆x∆z
En

x (i+1,j,k−1)− P1(i, j, k)

∆x∆z
En

x (i,j,k−1)

−P1(i, j, k)

∆y∆z
En

y (i,j+1,k) +
P1(i, j, k)

∆y∆z
En

y (i,j,k)

+
P1(i, j, k)

∆y∆z
En

y (i,j+1,k−1)− P1(i, j, k)

∆y∆z
En

y (i,j,k−1)
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For the case of i = imin + 1, j = jmin + 1 and k = kmin + 1, using the Mur’s

ABC equations of (B.27), (B.29), (B.21) and (B.25), (3.42) is modified to (3.91)

[
1 + 2P1(i, j, k)

( 1

∆x2
+

1

∆y2

)]
En+1

z (i,j,k)(3.91)

−P1(i, j, k)

∆x2
En+1

z (i+1,j,k)− P1(i, j, k)

∆x2
h5(i,j,k)En+1

z (i,j,k)− P1(i, j, k)

∆x2
h6(i,j,k)

−P1(i, j, k)

∆y2
En+1

z (i,j+1,k)− P1(i, j, k)

∆y2
h21(i,j,k)En+1

z (i,j,k)− P1(i, j, k)

∆y2
h22(i,j,k)

−P1(i, j, k)

∆z∆x
(h33(i,j,k)− 1)En+1

x (i+1,j,k) +
P1(i, j, k)

∆z∆x
(h11(i,j,k)− 1)En+1

x (i,j,k)

−P1(i, j, k)

∆z∆x
h34(i,j,k) +

P1(i, j, k)

∆z∆x
h12(i,j,k)

−P1(i, j, k)

∆y∆z
(h35(i,j,k)− 1)En+1

y (i,j+1,k) +
P1(i, j, k)

∆y∆z
(h27(i,j,k)− 1)En+1

y (i,j,k)

−P1(i, j, k)

∆y∆z
h36(i,j,k) +

P1(i, j, k)

∆y∆z
h28(i,j,k)

= P2(i, j, k)Dn
z (i,j,k) + P3(i, j, k)Dn−1

z (i,j,k)

+
P4(i, j, k)

∆x
Hn

y (i+1,j,k)− P4(i, j, k)

∆x
Hn

y (i,j,k)

−P4(i, j, k)

∆y
Hn

x (i,j+1,k) +
P4(i, j, k)

∆y
Hn

x (i,j,k)

−P6(i, j, k)En−1
z (i,j,k)−

[
2P1(i, j, k)

( 1

∆x2
+

1

∆y2

)
+ P5(i, j, k)

]
En

z (i,j,k)

+
P1(i, j, k)

∆x2
En

z (i+1,j,k) +
P1(i, j, k)

∆x2
En

z (i−1,j,k)

+
P1(i, j, k)

∆y2
En

z (i,j+1,k) +
P1(i, j, k)

∆y2
En

z (i,j−1,k)

−P1(i, j, k)

∆x∆z
En

x (i+1,j,k) +
P1(i, j, k)

∆x∆z
En

x (i,j,k)

+
P1(i, j, k)

∆x∆z
En

x (i+1,j,k−1)− P1(i, j, k)

∆x∆z
En

x (i,j,k−1)

−P1(i, j, k)

∆y∆z
En

y (i,j+1,k) +
P1(i, j, k)

∆y∆z
En

y (i,j,k)

+
P1(i, j, k)

∆y∆z
En

y (i,j+1,k−1)− P1(i, j, k)

∆y∆z
En

y (i,j,k−1)
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For the case of i = imax, using the Mur’s ABC equation of (B.28), (3.42) is

modified to (3.92)

En+1
z (i,j,k)− (∆t−∆x

√
µε(i−1,j,k)) En+1

z (i−1,j,k)

∆t + ∆x
√

µε(i,j,k)
(3.92)

=
(∆t + ∆x

√
µε(i−1,j,k)) En

z (i−1,j,k)− (∆t−∆x
√

µε(i,j,k)) En
z (i,j,k)

∆t + ∆x
√

µε(i,j,k)

For the case of j = jmax, using the Mur’s ABC equation of (B.30), (3.42) is

modified to (3.93)

En+1
z (i,j,k)− (∆t−∆y

√
µε(i,j−1,k)) En+1

z (i,j−1,k)

∆t + ∆y
√

µε(i,j,k)
(3.93)

=
(∆t + ∆y

√
µε(i,j−1,k)) En

z (i,j−1,k)− (∆t−∆y
√

µε(i,j,k)) En
z (i,j,k)

∆t + ∆y
√

µε(i,j,k)

3.4 Calculation of Electric Fields

Using the equations derived so far, values of the electric fields are calculated.

These equations can be summed up as:

• En+1
x (imin+1≤i≤imax,jmin+1≤j≤jmax,kmin+1≤k≤kmax) corresponds to (3.32) and those

mentioned in Table 3.1

• En+1
y (imin+1≤i≤imax,jmin+1≤j≤jmax,kmin+1≤k≤kmax) corresponds to (3.40) and those

mentioned in Table 3.2

• En+1
z (imin+1≤i≤imax,jmin+1≤j≤jmax,kmin+1≤k≤kmax) corresponds to (3.42) and those

mentioned in Table 3.3

By applying these equations to each FDTD grid position, a system of linear

equations of Au = c is set up. Here, A is the coefficient matrix, u represents

a vector with the electric field components to be solved, and c is the excitation

vector. It should be mentioned that the equations for the points imin, jmin,

kmin are excluded in order to form the matrix properly. When the three sets of
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x direction y direction z direction (3.32)
replaced by

i = imin + 1 jmin + 1 < j ≤ jmax − 1 kmin + 1 < k ≤ kmax − 1 (3.43)
imin + 1 < i ≤ imax j = jmin + 1 kmin + 1 < k ≤ kmax − 1 (3.52)
imin + 1 < i ≤ imax jmin + 1 < j ≤ jmax − 1 k = kmin + 1 (3.55)

i = imin + 1 j = jmin + 1 kmin + 1 < k ≤ kmax − 1 (3.58)
imin + 1 < i ≤ imax j = jmin + 1 k = kmin + 1 (3.59)

i = imin + 1 jmin + 1 < j ≤ jmax − 1 k = kmin + 1 (3.60)
i = imin + 1 j = jmin + 1 k = kmin + 1 (3.61)

imin + 1 ≤ i ≤ imax j = jmax kmin + 1 ≤ k ≤ kmax (3.62)
imin + 1 ≤ i ≤ imax jmin + 1 ≤ j ≤ jmax − 1 k = kmax (3.63)

Table 3.1: The boundary equations that replace (3.32) and the corresponding
scanning ranges in x, y and z directions.

x direction y direction z direction (3.40)
replaced by

i = imin + 1 jmin + 1 < j ≤ jmax kmin + 1 < k ≤ kmax − 1 (3.64)
imin + 1 < i ≤ imax − 1 j = jmin + 1 kmin + 1 < k ≤ kmax − 1 (3.65)
imin + 1 < i ≤ imax − 1 jmin + 1 < j ≤ jmax k = kmin + 1 (3.72)

i = imin + 1 j = jmin + 1 kmin + 1 < k ≤ kmax − 1 (3.75)
imin + 1 < i ≤ imax − 1 j = jmin + 1 k = kmin + 1 (3.76)

i = imin + 1 jmin + 1 < j ≤ jmax k = kmin + 1 (3.77)
i = imin + 1 j = jmin + 1 k = kmin + 1 (3.78)

i = imax jmin + 1 ≤ j ≤ jmax kmin + 1 ≤ k ≤ kmax (3.79)
imin + 1 ≤ i ≤ imax − 1 jmin + 1 ≤ j ≤ jmax k = kmax (3.80)

Table 3.2: The boundary equations that replace (3.40) and the corresponding
scanning ranges in x, y and z directions.

equations are considered together and applied on all the grid points this exclusion

is required to make the system uniform. Therefore, the electric field values at imin,

jmin, kmin are calculated separately using the Mur’s ABC equations as described

in Section 3.4.1. The system of equations Au = c is solved to find the electric

field values in the scanning range of (imin + 1 ≤ i ≤ imax, jmin + 1 ≤ j ≤ jmax,

kmin + 1 ≤ k ≤ kmax).
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x direction y direction z direction (3.42)
replaced by

i = imin + 1 jmin + 1 < j ≤ jmax − 1 kmin + 1 < k ≤ kmax (3.81)
imin + 1 < i ≤ imax − 1 j = jmin + 1 kmin + 1 < k ≤ kmax (3.82)
imin + 1 < i ≤ imax − 1 jmin + 1 < j ≤ jmax − 1 k = kmin + 1 (3.83)

i = imin + 1 j = jmin + 1 kmin + 1 < k ≤ kmax (3.88)
imin + 1 < i ≤ imax − 1 j = jmin + 1 k = kmin + 1 (3.89)

i = imin + 1 jmin + 1 < j ≤ jmax − 1 k = kmin + 1 (3.90)
i = imin + 1 j = jmin + 1 k = kmin + 1 (3.91)

i = imax jmin + 1 ≤ j ≤ jmax kmin + 1 ≤ k ≤ kmax (3.92)
imin + 1 ≤ i ≤ imax − 1 j = jmax kmin + 1 ≤ k ≤ kmax (3.93)

Table 3.3: The boundary equations that replace (3.42) and the corresponding
scanning ranges in x, y and z directions.

3.4.1 Electric Fields at i = imin, j = jmin, k = kmin

Solution of the system of equations Au = c gives the electric field values in the

scanning range of imin + 1 ≤ i ≤ imax, jmin + 1 ≤ j ≤ jmax, kmin + 1 ≤ k ≤ kmax.

Values of the electric fields for the rest of the boundary locations are found

by using the following equations which come from Mur’s first-order boundary

condition.

En+1
x (i,j,k) =

(∆t−∆y
√

µε(i,j+1,k)) En+1
x (i,j+1,k)

∆t + ∆y
√

µε(i,j,k)
(3.94)

+
(∆t + ∆y

√
µε(i,j+1,k)) En

x (i,j+1,k)− (∆t−∆y
√

µε(i,j,k)) En
x (i,j,k)

∆t + ∆y
√

µε(i,j,k)

[imin + 1 ≤ i ≤ imax, j = jmin, kmin ≤ k ≤ kmax].

En+1
x (i,j,k) =

(∆t−∆z
√

µε(i,j,k+1)) En+1
x (i,j,k+1)

∆t + ∆z
√

µε(i,j,k)
(3.95)

+
(∆t + ∆z

√
µε(i,j,k+1)) En

x (i,j,k+1)− (∆t−∆z
√

µε(i,j,k)) En
x (i,j,k)

∆t + ∆z
√

µε(i,j,k)

[imin + 1 ≤ i ≤ imax, jmin ≤ j ≤ jmax, k = kmin].
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En+1
y (i,j,k) =

(∆t−∆x
√

µε(i+1,j,k)) En+1
y (i+1,j,k)

∆t + ∆x
√

µε(i,j,k)
(3.96)

+
(∆t + ∆x

√
µε(i+1,j,k)) En

y (i+1,j,k)− (∆t−∆x
√

µε(i,j,k)) En
y (i,j,k)

∆t + ∆x
√

µε(i,j,k)

[i = imin, jmin + 1 ≤ j ≤ jmax, kmin ≤ k ≤ kmax].

En+1
y (i,j,k) =

(∆t−∆z
√

µε(i,j,k+1)) En+1
y (i,j,k+1)

∆t + ∆z
√

µε(i,j,k)
(3.97)

+
(∆t + ∆z

√
µε(i,j,k+1)) En

y (i,j,k+1)− (∆t−∆z
√

µε(i,j,k)) En
y (i,j,k)

∆t + ∆z
√

µε(i,j,k)

[imin ≤ i ≤ imax, jmin + 1 ≤ j ≤ jmax, k = kmin].

En+1
z (i,j,k) =

(∆t−∆x
√

µε(i+1,j,k)) En+1
z (i+1,j,k)

∆t + ∆x
√

µε(i,j,k)
(3.98)

+
(∆t + ∆x

√
µε(i+1,j,k)) En

z (i+1,j,k)− (∆t−∆x
√

µε(i,j,k)) En
z (i,j,k)

∆t + ∆x
√

µε(i,j,k)

[i = imin, jmin ≤ j ≤ jmax, kmin + 1 ≤ k ≤ kmax].

En+1
z (i,j,k) =

(∆t−∆y
√

µε(i,j+1,k)) En+1
z (i,j+1,k)

∆t + ∆y
√

µε(i,j,k)
(3.99)

+
(∆t + ∆y

√
µε(i,j+1,k)) En

z (i,j+1,k)− (∆t−∆y
√

µε(i,j,k)) En
z (i,j,k)

∆t + ∆y
√

µε(i,j,k)

[imin ≤ i ≤ imax, j = jmin, kmin + 1 ≤ k ≤ kmax].
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3.5 Calculation of Magnetic Fields and Electric

Flux Densities

Once electric fields are calculated magnetic fields are calculated by the discretized

form of (3.25), (3.26), (3.27) as follows.

Hn+1
x (i,j,k) = Hn

x (i,j,k) (3.100)

+
∆t

2µ

[
1

∆z

(
En+1

y (i,j,k)− En+1
y (i,j,k−1)

)
− 1

∆y

(
En+1

z (i,j,k)− En+1
z (i,j−1,k)

)
+

1

∆z

(
En

y (i,j,k)− En
y (i,j,k−1)

)
− 1

∆y
(En

z (i,j,k)− En
z (i,j−1,k))

]
[imin + 1 ≤ i ≤ imax − 1, jmin + 1 ≤ j ≤ jmax, kmin + 1 ≤ k ≤ kmax]

Hn+1
y (i,j,k) = Hn

y (i,j,k) (3.101)

+
∆t

2µ

[
1

∆x

(
En+1

z (i,j,k)− En+1
z (i−1,j,k)

)
− 1

∆z

(
En+1

x (i,j,k)− En+1
x (i,j,k−1)

)
+

1

∆x
(En

z (i,j,k)− En
z (i−1,j,k))− 1

∆z
(En

x (i,j,k)− En
x (i,j,k−1))

]
[imin + 1 ≤ i ≤ imax − 1, jmin + 1 ≤ j ≤ jmax, kmin + 1 ≤ k ≤ kmax]

Hn+1
z (i,j,k) = Hn

z (i,j,k) (3.102)

+
∆t

2µ

[
1

∆y

(
En+1

x (i,j,k)− En+1
x (i,j−1,k)

)
− 1

∆x

(
En+1

y (i,j,k)− En+1
y (i−1,j,k)

)
+

1

∆y
(En

x (i,j,k)− En
x (i,j−1,k))− 1

∆x

(
En

y (i,j,k)− En
y (i−1,j,k)

) ]
[imin + 1 ≤ i ≤ imax − 1, jmin + 1 ≤ j ≤ jmax, kmin + 1 ≤ k ≤ kmax]

Each of (3.100), (3.101), (3.102) shows the scanning ranges and magnetic fields

beyond these ranges are not required elsewhere in the algorithm.
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Finally electric flux densities are calculated by the discretized form of (3.28),

(3.29), (3.30):

Dn+1
x (i,j,k) = Dn

x (i,j,k)(3.103)

+
∆t

2

[
1

∆y

(
Hn+1

z (i,j+1,k)−Hn+1
z (i,j,k)

)
− 1

∆z

(
Hn+1

y (i,j,k+1)−Hn+1
y (i,j,k)

)
+

1

∆y
(Hn

z (i,j+1,k)−Hn
z (i,j,k))− 1

∆z

(
Hn

y (i,j,k+1)−Hn
y (i,j,k)

) ]
[imin + 1 ≤ i ≤ imax, jmin + 1 ≤ j ≤ jmax − 1, kmin + 1 ≤ k ≤ kmax − 1]

Dn+1
y (i,j,k) = Dn

y (i,j,k)(3.104)

+
∆t

2

[
1

∆z

(
Hn+1

x (i,j,k+1)−Hn+1
x (i,j,k)

)
− 1

∆x

(
Hn+1

z (i+1,j,k)−Hn+1
z (i,j,k)

)
+

1

∆z
(Hn

x (i,j,k+1)−Hn
x (i,j,k))− 1

∆x
(Hn

z (i+1,j,k)−Hn
z (i,j,k))

]
[imin + 1 ≤ i ≤ imax − 1, jmin + 1 ≤ j ≤ jmax, kmin + 1 ≤ k ≤ kmax − 1]

Dn+1
z (i,j,k) = Dn

z (i,j,k)(3.105)

+
∆t

2

[
1

∆x

(
Hn+1

y (i+1,j,k)−Hn+1
y (i,j,k)

)
− 1

∆y

(
Hn+1

x (i,j+1,k)−Hn+1
x (i,j,k)

)
+

1

∆x

(
Hn

y (i+1,j,k)−Hn
y (i,j,k)

)
− 1

∆y
(Hn

x (i,j+1,k)−Hn
x (i,j,k))

]
[imin + 1 ≤ i ≤ imax − 1, jmin + 1 ≤ j ≤ jmax − 1, kmin + 1 ≤ k ≤ kmax]

Again each of (3.103), (3.104), (3.105) shows the scanning ranges and electric

flux densities beyond these ranges are not required elsewhere in the algorithm.



Chapter 4

Detailed Study of the

FD–CN–FDTD Method

In this chapter the proposed FD–CN–FDTD method is validated by numerical

experiments. By calculating the average error of the method, both for non-lossy

and lossy media, the effects of CFLN and spatial resolution, χ, are observed. All

the FDTD methods have their own limitations. Before simulating an unknown

problem, it is essential to know these limitations. Because, by knowing these one

can determine whether the problem in question lies within the confines, where

the concerned FDTD method works properly. To understand the limitations of

the FD–CN–FDTD method i.e. to find out the parameters for which it does not

produce expected results, a number of numerical tests have been performed and

are shown in this chapter.

4.1 Validation of the FD–CN–FDTD Method

In order to validate the FD–CN–FDTD method, numerical tests were conducted

with a computational space of size 30×30×30 cells and composing of inhomoge-

neous, frequency dependent media. Half of the computational space was filled

with medium 1 (εS = 71.66, ε∞ = 34.58, σ = 0.49 S/m and τD = 5.65 ps)

and the other half with medium 2 (εS = 87.34, ε∞ = 49.13, σ = 0.69 S/m and

τD = 26.89 ps) as shown in Fig. 4.1. A z–directed dipole source was placed at

(10,15,15) in medium 1, with a time evolution of a modulated Gaussian pulse

centred at 3 GHz. Signals were observed at (20,15,15) in medium 2. A uni-

form spatial sampling of ∆x = ∆y = ∆z = 10−3m was used. As a reference,

85
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an identical setup was taken for the standard explicit frequency dependent (FD-

)FDTD method. Henceforth, in this thesis ∆t refers to the time-step used in the

simulation, ∆tCFL to the maximum time-step allowed by the CFL stability con-

dition and CFLN to the CFL number defined as CFLN ≡ ∆t/∆tCFL. The first

600×∆tCFL (∆tCFL = 1.9 ps ) time period of the Ez field components at the ob-

servation point are shown in Fig. 4.2, computed both with the FD-FDTD method

when CFLN = 1 and with the FD–CN–FDTD method when CFLN = 1, 3, 5.

ǫs = 71.66, ǫ∞ = 34.58,

ǫs = 87.34, ǫ∞ = 49.13,

τ = 5.65 ps, σ = 0.49 S/m

τ = 26.89 ps, σ = 0.69 S/m

Medium 1

Medium 2

Medium 2Medium 1

x

y
z

Observation
point
( 20, 15, 15 )

Source
point
( 10, 15, 15 )

15

30

30

30

Figure 4.1: Computational space for the validation of the FD–CN–FDTD
method.

Good agreement between the signals from the FD–CN–FDTD method and

the explicit FD-FDTD method is observed. The explicit FD-FDTD method is

stable only when ∆t is within the CFL limit. On the other hand, the FD–CN–

FDTD method is stable beyond the CFL limit in this numerical test, although

numerical errors increasingly appear with higher CFLN .

4.2 Numerical Errors in the FD–CN–FDTD

Method

As seen in Fig. 4.2, the FD–CN–FDTD method is able to use temporal discretiza-

tion, ∆t, above the CFL limit. But numerical accuracy is compromised at higher
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Explicit FD-FDTD(CFLN = 1)

FD-CN-FDTD(CFLN = 5)
E

z(
V

/m
)

FD-CN-FDTD(CFLN = 3)
FD-CN-FDTD(CFLN = 1)

Time(ps)

1

−1

0

400 600 800 1000

Figure 4.2: Observations from explicit FD–FDTD and FD–CN–FDTD methods.

CFLN . Average error of the FD–CN–FDTD method at different CFLN is quan-

tified by numerical tests. In the numerical tests, 160×160×160 cubic computa-

tional space filled with a lossy medium was considered. The medium parameters

were εS = 71.666161, ε∞ = 34.58062, τD = 5.6558308 ps, σ = 0.4993007 S/m.

Source excitation of a modulated Gaussian pulse centred at 3 GHz was located at

the centre (80, 80, 80). Spatial sampling was uniform ( ∆x = ∆y = ∆z = 10−3m),

∆tCFL was 1.9 ps and CFLN was varied from 1 to 10. Observations were taken

at all the grid points within 20 cells away from the source, converted into fre-

quency domain and the average error, E , was calculated using

E =

√√√√√√√√
∑

f

(
Srcd − Sref

rcd

)2

∑
f

(
Sref

rcd

)2 (4.1)

where, Srcd is the frequency spectrum of the received signal using the FD–CN–

FDTD method and Sref
rcd is that of the reference signal which is calculated using

the explicit FD–FDTD method. The average error for the lossy medium is shown

in Fig. 4.3. Similar study was performed for the non-lossy medium where all
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the parameters were the same as lossy medium, except that the conductivity, σ,

was zero. The average error for the non-lossy medium is also plotted in Fig. 4.3.

Fig. 4.3 shows when CFLN ≤ 5 the average error is below 0.1 in both lossy and

non-lossy cases.

E
rr

or

Non-lossy medium

Lossy medium

CFLN

1 2 3 64 5 7 8 9 10

0.1

0.05

0.2

0.4

0.3

0.5

Figure 4.3: Average error of the FD–CN–FDTD method at different CFLN for
lossy and non-lossy media.

The effect of CFLN on the numerical error has been observed above but nu-

merical error also depends on the spatial discretization (∆s). In FDTD methods,

the temporal discretization and the spatial discretization are related and depend-

ing on the spatial resolution, χ, the spatial discretization will have the value,

∆s = λ/χ, where, λ is the wavelength of the signal. If the spatial resolution is

too large the method will become inefficient but for accurate modelling of ob-

jects with fine features, a high spatial resolution is required [99]. So there is a

trade-off between these parameters and their selection is application dependent.

To observe the effect of spatial resolution on the accuracy of FD–CN–FDTD, the

same numerical tests described above were conducted with varying values of χ

(χ = 40, 70 and 100) and the average error was calculated using (4.1). Table 4.1

shows the change in error due to the varying values of χ and CFLN . It is seen

that, as the spatial resolution is lowered the error is increased. The value of the

spatial resolution should be chosen depending on the requirement of accuracy of
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any particular application. Although higher CFLN can reduce the total sim-

ulation time, it should not be set to very high value without considering other

factors. The accuracy requirements for the concerned problem, spatial resolution

and CFL number – each of these needs to be optimized properly considering the

other.

CFLN
Average Error, E

χ = 40 χ = 70 χ = 100

1 0.0271318 0.0211179 0.0167486

3 0.0656218 0.0520507 0.0351224

5 0.182472 0.158372 0.12668

6 0.259739 0.23379 0.196922

8 0.438352 0.410313 0.365371

10 0.614931 0.592478 0.547573

Table 4.1: Average error at different spatial resolution (χ) for the lossy media

To observe how the FD–CN–FDTD method handles the simulation of free

space, the same numerical tests as above were carried out with the whole com-

putational space filled with air (εS = 1.0, ε∞ = 1.0, τD = 0.0 ps, σ = 0.0 S/m).

The value of χ was 100, ∆tCFL was 1.9 ps and CFLN was varied from 1 to

10. For CFLN = 1, 2 and 3 the FD–CN–FDTD method always works normally

without any divergence. However, when CFLN is above 3 the FD–CN–FDTD

method works normally upto certain time steps and thereafter it starts diverg-

ing. When CFLN = 4, 5, 6, 7, 8, 9 and 10, divergence starts after 940/4,

935/5, 936/6, 980/7, 984/8, 1026/9 and 1070/10 time steps, respectively. In

all these numerical tests, the FD–CN–FDTD method works normally at least

upto 900/CFLN time steps without any divergence. In the equivalent time of

900/CFLN steps (i.e. (900/CFLN)×∆t = 900×∆tCFL) the wave propagates

900× 1.9× 10−12 × 3× 108m = 0.513 m in the free space. On the other hand, in

these tests the size of the computational space was 0.16m×0.16m×0.16m. There-

fore, the FD–CN–FDTD method can handle the simulation of free space but in

this case the method has the limitation of diverging after a certain number of

time steps when CFLN ≥ 4. When simulating the free space in the FD–CN–

FDTD method, the total number of time steps the simulation will run needs to
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be carefully selected so that the simulation stops before divergence starts. How-

ever, when the computational space consists of frequency dependent and lossy

media, the FD–CN–FDTD method is always stable beyond the CFL limit at all

the values of CFLN .

4.3 Handling the Lossy Media

Although in the real-world most media are lossy, majority of the recently pro-

posed versions of FDTD methods considered the media to be non-lossy for the

sake of simplicity. One of the strengths of the FD–CN–FDTD method is its

ability to handle the lossy media. In this section, by several numerical tests

the accuracy of the simulation of the lossy media in FD–CN–FDTD method is

studied. Attenuation caused by the lossy media is calculated by using FD–CN–

FDTD and compared against the theoretical attenuation. By studying the effects

of varying spatial resolution, it is observed that in order to match the numeri-

cal and theoretical attenuation, a threshold of the spatial resolution needs to be

maintained.

Plane wave
excitation

Observation
0.01 m away

y = 55

110

110

110
y

z

x
Ez

Figure 4.4: Computational environment with the plane wave source excitation.

Numerical tests were carried out with the computational environment shown
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in Fig. 4.4. The size of the computational space was 110×110×110 cells and it

was filled with three different sets of media parameters, differing only by conduc-

tance: (σ, ε∞, εS, τD) = (0.049 S/m, 3.5, 6.2, 39.0 ps), (0.49 S/m, 3.5, 6.2, 39.0 ps)

and (4.9 S/m, 3.5, 6.2, 39.0 ps). Spatial resolution was variable: 20, 50, 100, 150,

200, 250, 300 cells per wavelength, resulting in variable spatial discretization. To

derive the theoretical attenuation, a plane wave excitation was assumed. In order

to approximate the same in the numerical tests, the plane y = 55 of the com-

putational space was excited (Fig. 4.4) by Gaussian pulses whose time domain

signal is shown in Fig. 4.5 and frequency domain signal is shown in Fig. 4.6.

E
z(

V
/m

)

0.1

−0.1

Time(ps)
95.0

0

285.0 380.0190.00

−0.2

−0.3

Figure 4.5: Excitation Signal in the Time Domain.

For a lossy medium the theoretical propagation constant, Γ, is calculated as

Γ = ω

√
µ

(
ε0ε∞ +

ε0εS − ε0ε∞
1 + ωτD

− 
σ

ω

)
(4.2)

where µ is the permeability, ε0 is the free space permittivity, εS is the static

permittivity, ε∞ is the optical permittivity, τD is the characteristic relaxation

time and ω is the angular frequency. Propagation constant has a real part, called

attenuation constant (α) and an imaginary part, called phase constant (β):
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Figure 4.6: Excitation Signal in the Frequency Domain.

Γ = α + β (4.3)

With distance, d, from the source, the amplitude of the signal decays as

exp (−αd) i.e. exp (−Re (Γ) d). The theoretical attenuation can be calculated

from this expression.

In the numerical tests, observations were taken at 0.01 metres away from the

source (i.e. d = 0.01 m ). As the spatial resolution and thereby the spatial

discretization were varying, the number of cells between the source plane and the

observation point also varied. For spatial resolution χ = 150 cells per wavelength,

the observed signal in time domain is shown in Fig. 4.7 and in frequency domain

in Fig. 4.8. Fig. 4.8 shows the attenuation of the observed signal at each frequency

can be calculated by using

attenuation (f) =
spectrum of observed signal (f)

spectrum of excitation (f)
(4.4)

In the same way, for each of the three different lossy media, at different spatial

resolution, the observed signals were transformed into frequency domain and the
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Figure 4.7: Observed signal (in time domain) at 0.01 m away from the plane
wave source when χ = 150.

attenuation was calculated using (4.4). Fig. 4.9, Fig. 4.10 and Fig. 4.11 show

the attenuation at different spatial resolution for the three different lossy media

along with the theoretical attenuation.

Fig. 4.9, Fig. 4.10 and Fig. 4.11 show for highly lossy medium a higher spatial

resolution (or a smaller spatial discretization) is required by the FD–CN–FDTD

method to match with the theoretical attenuation. The reason for this is, with

the increase of conductivity the wavelength of the signal shortens requiring higher

spatial resolution [100]. This study also manifests that there is a minimum thresh-

old of the spatial resolution that needs to be ensured to get the acceptable level

of attenuation that matches with the theoretical attenuation. The threshold of

the spatial resolution varies with the conductivity. Table 4.2 shows the minimum

threshold of the spatial resolution for different conductivity at or above which the

numerical attenuation matches with the theoretical one. This table also shows

the values of skin depth δ (the distance at which the wave attenuates to 1/e of

the value at the surface) and ∆s for these cases. The values of skin depth for

σ = 0.049 S/m, 0.49 S/m and 4.9 S/m are 124, 78 and 37 cells, respectively, from

the surface.
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Figure 4.8: Observed signal (in frequency domain) at 0.01 m away from the
plane wave source when χ = 150.
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Figure 4.9: Attenuation in the medium with parameters σ = 0.049S/m, ε∞ =
3.5, εS = 6.2, τD = 39.0 ps, for different spatial resolution.
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Figure 4.10: Attenuation in the medium with parameters σ = 0.49S/m, ε∞ =
3.5, εS = 6.2, τD = 39.0 ps, for different spatial resolution.
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Figure 4.11: Attenuation in the medium with parameters σ = 4.9S/m, ε∞ =
3.5, εS = 6.2, τD = 39.0 ps, for different spatial resolution.

4.4 Dealing with the Inhomogeneous Media

The FD–CN–FDTD method is capable of simulating inhomogeneous, frequency

dependent medium. How the FD–CN–FDTD method handles the interface be-

tween two different frequency dependent media is studied in this section. This is
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σ(S/m) 0.049 0.49 4.9

χ 100 200 300

∆s (mm) 0.23 0.115 0.0765

δ (mm) 28.65 9.06 2.865

Table 4.2: Threshold of the spatial resolution (χ) required for the matching of
numerical and theoretical attenuation curves.

done by analysing the reflection and transmission of the wave travelling from one

medium to the other.

For a plane wave travelling from one conductive medium to another with an

angle of incidence of 0◦ the theoretical reflection coefficient is defined as [p.151,

[97]]

η2 − η1

η2 + η1

(4.5)

and the theoretical transmission coefficient is defined as [97]

2η2

η2 + η1

(4.6)

where η1 and η2 are the characteristic or intrinsic impedance of the first and the

second media. If ε and µ are the permittivity and permeability of the medium,

characteristic impedance is related to these parameters by η =
√

µ/ε. For most

materials the relative permeability, µr, is very nearly unity [p.85, [97]]; therefore,

permeability of all the media in this study is considered to be that of the vacuum

µ0 i.e. µ = µrµ0 = 4π × 10−7 H/m . So, the relationship of theoretical reflection

coefficient becomes

√
ε1 −

√
ε2√

ε1 +
√

ε2

(4.7)

and that of theoretical transmission coefficient becomes

2
√

ε1√
ε1 +

√
ε2

(4.8)
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where ε1 and ε2 are the permittivity of the first and second media. The capability

of the FD–CN–FDTD method in dealing with the media interface was studied by

numerically calculating the reflection and transmission coefficients and comparing

these with the theoretical coefficients. In the numerical experiments, computa-

tional space had the size of 120×120×120 cells and consisted of 2 media as shown

in Fig. 4.12. Medium 1 filled the space for 1 ≤ y ≤ 80, while medium 2 filled

for y ≥ 81. Three different cases, all having the same parameters for medium 1

but different parameters for medium 2, were tested. These are described in Table

4.3.

Case 1

Medium εS ε∞ τD (ps) σ (S/m)

1 71.66616 34.58062 5.6558308 0.4993007

2 87.34172 49.1395 26.894634 0.6980397

Case 2

Medium εS ε∞ τD (ps) σ (S/m)

1 71.66616 34.58062 5.6558308 0.4993007

2 207.34172 159.1395 26.894634 0.6980397

Case 3

Medium εS ε∞ τD (ps) σ (S/m)

1 71.66616 34.58062 5.6558308 0.4993007

2 407.34172 389.1395 26.894634 0.6980397

Table 4.3: Media parameters of the computational space for studying media
transition.

For case 1, case 2 and case 3, the permittivity of medium 2 was calculated

using ε = ε0εr and Debye relationship of (3.7). These are 79.53107 − 19.59149,

197.4865− 23.62453, and 395.4420− 27.65755, respectively.

In order to generate a plane-wave travelling along the y-axis and having a wave–

front in the xz-plane, z-directed modulated Gaussian pulses, centred at 6.9 GHz,

were excited at the plane, y = 40 (Fig. 4.12). Spatial resolution was variable:
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Figure 4.12: FD–CN–FDTD computational space for studying media transition.

20, 60, 100, 140, 180 cells per wavelength, making the spatial discretization vary

accordingly. Observations were taken at 3 locations to get the incident, reflected

and transmitted signals:

Signal(i) is the incident signal obtained by filling the whole computational space

with only medium 1 and taking the observation at (60, 80, 60);

Signal(r′) is the signal that contains the reflections from medium 2 and taken

at (60, 80, 60) in Fig. 4.12;

Signal(t) is the transmitted signal taken at (60, 81, 60) in Fig. 4.12.

By deducting the incident signal, signal(i), from the signal with reflections,

signal(r′), the reflected signal can be found. Then the reflection coefficient can

be calculated as

max |signal(r′)− signal(i)|
max |signal(i)|

(4.9)

For the three cases, the numerical reflection coefficients were calculated using

the FD–CN–FDTD method, with the varying values of spatial resolution (χ).

Theoretical reflection coefficients were calculated using (4.7). Fig. 4.13 shows

the theoretical and numerical reflection coefficients as a functions of χ. Both the
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theoretical and numerical coefficients are seen to be in good match. Reflection co-

efficient error of the FD–CN–FDTD method, based on the theoretical coefficients,

are calculated as

|numerical coefficient − theoretical coefficient |
|theoretical coefficient |

(4.10)

and shown in Fig. 4.14. Next using the incident and transmitted signals, the

transmission coefficients are calculated as

max |signal(t)|
max |signal(i)|

(4.11)
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Figure 4.13: Theoretical (symbols) and numerical (solid line) reflection coeffi-
cients.

Using (4.11) the numerical transmission coefficients were calculated for the

three cases with different χ and using (4.8) the theoretical transmission coeffi-

cients were calculated. Both of these coefficients are shown in Fig. 4.15 and found

to be in good agreement. The error in the numerical calculation of the transmis-

sion coefficients were calculated using (4.10) and shown in Fig. 4.16.

The reason for the difference in the reflection (Fig. 4.13) and transmission

(Fig. 4.15) coefficients among the three cases is the differing values of permittivity
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Figure 4.14: Reflection coefficient error.
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Figure 4.15: Theoretical (symbols) and numerical (solid line) transmission coef-
ficients.

of medium 2 (because the wave propagates from medium 1 to medium 2). From

case 1 to case 3, medium 2 has progressively higher values of permittivity. The

speed of wave propagation in a dielectric material is related to the reciprocal of

the square root of the permittivity of the material i.e. speed of propagation =

c× 1
√

εr

, where, c is the speed of light in free space. That means, with the increase



CHAPTER 4. DETAILED STUDY OF THE FD–CN–FDTD METHOD 101

0.1

0.01

0.001

χ
20 40 60 80 100 120 140 160 180

T
ra

n
sm

is
si

on
C

oe
ffi

ci
en

t
E

rr
or

Case 1

Case 2

Case 3

Figure 4.16: Transmission coefficient error.

of permittivity, the speed of propagation goes down. Therefore, as expected [101],

in the case of lower permittivity (case 1) the transmission is higher (Fig. 4.15)

than in the case of higher permittivity (case 3). On the other hand, as the

permittivity increases, there is less penetration and more reflection (Fig. 4.13)

[101].

4.5 Analytical Study of Numerical Stability

A numerically stable FDTD method does not increase the magnitude of the so-

lution without bound as time progresses. If this is not the case, the method is

unstable. In a stable FDTD method, a small error at any stage produces an

smaller cumulative error in the successive stages and the opposite happens in an

unstable method. Von Neumann method is often used to analyze the stability

of FDTD methods [3]. In this method, the instantaneous electric and magnetic

fields, distributed in space across the grid, are Fourier-transformed into the waves

in spatial spectral domain and thereby growth factor or amplification factor is

derived [27]. Eigenvalues of the amplification factor matrix are then computed

to check the stability of the FDTD method. The method is numerically stable if

all the eigenvalues are equal to or less than unity.
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For the electric field, magnetic field and electric flux densities in x, y and z

directions the FD–CN–FDTD equations (3.12), (3.39), (3.41), (3.100), (3.101),

(3.102), (3.103), (3.104), (3.105) are re-written below:

En+1
x (i,j,k) =

ν1(i, j, k)

ν4(i, j, k)
Dn+1

x (i,j,k) +
ν2(i, j, k)

ν4(i, j, k)
Dn

x (i,j,k) +
ν3(i, j, k)

ν4(i, j, k)
Dn−1

x (i,j,k)(4.12)

−ν5(i, j, k)

ν4(i, j, k)
En

x (i,j,k)− ν6(i, j, k)

ν4(i, j, k)
En−1

x (i,j,k)

En+1
y (i,j,k) =

ν1(i, j, k)

ν4(i, j, k)
Dn+1

y (i,j,k) +
ν2(i, j, k)

ν4(i, j, k)
Dn

y (i,j,k) +
ν3(i, j, k)

ν4(i, j, k)
Dn−1

y (i,j,k)(4.13)

−ν5(i, j, k)

ν4(i, j, k)
En

y (i,j,k)− ν6(i, j, k)

ν4(i, j, k)
En−1

y (i,j,k)

En+1
z (i,j,k) =

ν1(i, j, k)

ν4(i, j, k)
Dn+1

z (i,j,k) +
ν2(i, j, k)

ν4(i, j, k)
Dn

z (i,j,k) +
ν3(i, j, k)

ν4(i, j, k)
Dn−1

z (i,j,k)(4.14)

−ν5(i, j, k)

ν4(i, j, k)
En

z (i,j,k)− ν6(i, j, k)

ν4(i, j, k)
En−1

z (i,j,k)

Hn+1
x (i,j,k) = Hn

x (i,j,k) (4.15)

+
∆t

2µ

[
1

∆z

(
En+1

y (i,j,k)− En+1
y (i,j,k−1)

)
− 1

∆y

(
En+1

z (i,j,k)− En+1
z (i,j−1,k)

)
+

1

∆z

(
En

y (i,j,k)− En
y (i,j,k−1)

)
− 1

∆y
(En

z (i,j,k)− En
z (i,j−1,k))

]

Hn+1
y (i,j,k) = Hn

y (i,j,k) (4.16)

+
∆t

2µ

[
1

∆x

(
En+1

z (i,j,k)− En+1
z (i−1,j,k)

)
− 1

∆z

(
En+1

x (i,j,k)− En+1
x (i,j,k−1)

)
+

1

∆x
(En

z (i,j,k)− En
z (i−1,j,k))− 1

∆z
(En

x (i,j,k)− En
x (i,j,k−1))

]
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Hn+1
z (i,j,k) = Hn

z (i,j,k) (4.17)

+
∆t

2µ

[
1

∆y

(
En+1

x (i,j,k)− En+1
x (i,j−1,k)

)
− 1

∆x

(
En+1

y (i,j,k)− En+1
y (i−1,j,k)

)
+

1

∆y
(En

x (i,j,k)− En
x (i,j−1,k))− 1

∆x

(
En

y (i,j,k)− En
y (i−1,j,k)

) ]

Dn+1
x (i,j,k) = Dn

x (i,j,k) (4.18)

+
∆t

2

[
1

∆y

(
Hn+1

z (i,j+1,k)−Hn+1
z (i,j,k)

)
− 1

∆z

(
Hn+1

y (i,j,k+1)−Hn+1
y (i,j,k)

)
+

1

∆y
(Hn

z (i,j+1,k)−Hn
z (i,j,k))− 1

∆z

(
Hn

y (i,j,k+1)−Hn
y (i,j,k)

) ]

Dn+1
y (i,j,k) = Dn

y (i,j,k) (4.19)

+
∆t

2

[
1

∆z

(
Hn+1

x (i,j,k+1)−Hn+1
x (i,j,k)

)
− 1

∆x

(
Hn+1

z (i+1,j,k)−Hn+1
z (i,j,k)

)
+

1

∆z
(Hn

x (i,j,k+1)−Hn
x (i,j,k))− 1

∆x
(Hn

z (i+1,j,k)−Hn
z (i,j,k))

]

Dn+1
z (i,j,k) = Dn

z (i,j,k) (4.20)

+
∆t

2

[
1

∆x

(
Hn+1

y (i+1,j,k)−Hn+1
y (i,j,k)

)
− 1

∆y

(
Hn+1

x (i,j+1,k)−Hn+1
x (i,j,k)

)
+

1

∆x

(
Hn

y (i+1,j,k)−Hn
y (i,j,k)

)
− 1

∆y
(Hn

x (i,j+1,k)−Hn
x (i,j,k))

]
where, ν1(i, j, k), ν2(i, j, k), ν3(i, j, k), ν4(i, j, k), ν5(i, j, k), ν6(i, j, k) are de-

fined in (3.13), (3.14), (3.15), (3.16), (3.17), (3.18). In the spatial spectral domain,

components of the electric field, magnetic field and electric flux densities can be

written as:
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En
r (i,j,k) = Er

ne−(kxi∆x+kyj∆y+kzk∆z) (4.21)

Hn
r (i,j,k) = Hr

ne−(kxi∆x+kyj∆y+kzk∆z) (4.22)

Dn
r (i,j,k) = Dr

ne−(kxi∆x+kyj∆y+kzk∆z) (4.23)

where r = x, y, z and kx, ky, kz are wave numbers along the x, y, z directions,

respectively. Using (4.21), (4.22), (4.23) and assuming ∆x = ∆y = ∆z = ∆s,

(4.12),(4.13),(4.14), (4.15), (4.16), (4.17), (4.18), (4.19), (4.20) can be written in

the following way:

En+1
x (i,j,k)− ν1(i, j, k)

ν4(i, j, k)
Dn+1

x (i,j,k) =
ν2(i, j, k)

ν4(i, j, k)
Dn

x (i,j,k) +
ν3(i, j, k)

ν4(i, j, k)
Dn−1

x (i,j,k)(4.24)

−ν5(i, j, k)

ν4(i, j, k)
En

x (i,j,k)− ν6(i, j, k)

ν4(i, j, k)
En−1

x (i,j,k)

En+1
y (i,j,k)− ν1(i, j, k)

ν4(i, j, k)
Dn+1

y (i,j,k) =
ν2(i, j, k)

ν4(i, j, k)
Dn

y (i,j,k) +
ν3(i, j, k)

ν4(i, j, k)
Dn−1

y (i,j,k)(4.25)

−ν5(i, j, k)

ν4(i, j, k)
En

y (i,j,k)− ν6(i, j, k)

ν4(i, j, k)
En−1

y (i,j,k)

En+1
z (i,j,k)− ν1(i, j, k)

ν4(i, j, k)
Dn+1

z (i,j,k) =
ν2(i, j, k)

ν4(i, j, k)
Dn

z (i,j,k) +
ν3(i, j, k)

ν4(i, j, k)
Dn−1

z (i,j,k)(4.26)

−ν5(i, j, k)

ν4(i, j, k)
En

z (i,j,k)− ν6(i, j, k)

ν4(i, j, k)
En−1

z (i,j,k)



CHAPTER 4. DETAILED STUDY OF THE FD–CN–FDTD METHOD 105

Hn+1
x (i,j,k)− ∆t

2µ∆s
En+1

y (i,j,k) +
∆t

2µ∆s
En+1

y (i,j,k)ekz∆z (4.27)

+
∆t

2µ∆s
En+1

z (i,j,k)− ∆t

2µ∆s
En+1

z (i,j,k)eky∆y

= Hn
x (i,j,k) +

∆t

2µ∆s
En

y (i,j,k)− ∆t

2µ∆s
En

y (i,j,k)ekz∆z

− ∆t

2µ∆s
En

z (i,j,k) +
∆t

2µ∆s
En

z (i,j,k)eky∆y

Hn+1
y (i,j,k)− ∆t

2µ∆s
En+1

z (i,j,k) +
∆t

2µ∆s
En+1

z (i,j,k)ekx∆x (4.28)

+
∆t

2µ∆s
En+1

x (i,j,k)− ∆t

2µ∆s
En+1

x (i,j,k)ekz∆z

= Hn
y (i,j,k) +

∆t

2µ∆s
En

z (i,j,k)− ∆t

2µ∆s
En

z (i,j,k)ekx∆x

− ∆t

2µ∆s
En

x (i,j,k) +
∆t

2µ∆s
En

x (i,j,k)ekz∆z

Hn+1
z (i,j,k)− ∆t

2µ∆s
En+1

x (i,j,k) +
∆t

2µ∆s
En+1

x (i,j,k)eky∆y (4.29)

+
∆t

2µ∆s
En+1

y (i,j,k)− ∆t

2µ∆s
En+1

y (i,j,k)ekx∆x

= Hn
z (i,j,k) +

∆t

2µ∆s
En

x (i,j,k)− ∆t

2µ∆s
En

x (i,j,k)eky∆y

− ∆t

2µ∆s
En

y (i,j,k) +
∆t

2µ∆s
En

y (i,j,k)ekx∆x
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Dn+1
x (i,j,k)− ∆t

2∆s
Hn+1

z (i,j,k)e−ky∆y +
∆t

2∆s
Hn+1

z (i,j,k) (4.30)

+
∆t

2∆s
Hn+1

y (i,j,k)e−kz∆z − ∆t

2∆s
Hn+1

y (i,j,k)

= Dn
x (i,j,k) +

∆t

2∆s
Hn

z (i,j,k)e−ky∆y − ∆t

2∆s
Hn

z (i,j,k)

− ∆t

2∆s
Hn

y (i,j,k)e−kz∆z +
∆t

2∆s
Hn

y (i,j,k)

Dn+1
y (i,j,k)− ∆t

2∆s
Hn+1

x (i,j,k)e−kz∆z +
∆t

2∆s
Hn+1

x (i,j,k) (4.31)

+
∆t

2∆s
Hn+1

z (i,j,k)e−kx∆x − ∆t

2∆s
Hn+1

z (i,j,k)

= Dn
y (i,j,k) +

∆t

2∆s
Hn

x (i,j,k)e−kz∆z − ∆t

2∆s
Hn

x (i,j,k)

− ∆t

2∆s
Hn

z (i,j,k)e−kx∆x +
∆t

2∆s
Hn

z (i,j,k)

Dn+1
z (i,j,k)− ∆t

2∆s
Hn+1

y (i,j,k)e−kx∆x +
∆t

2∆s
Hn+1

y (i,j,k) (4.32)

+
∆t

2∆s
Hn+1

x (i,j,k)e−ky∆y − ∆t

2∆s
Hn+1

x (i,j,k)

= Dn
z (i,j,k) +

∆t

2∆s
Hn

y (i,j,k)e−kx∆x − ∆t

2∆s
Hn

y (i,j,k)

− ∆t

2∆s
Hn

x (i,j,k)e−ky∆y +
∆t

2∆s
Hn

x (i,j,k)

(4.24),(4.25),(4.26),(4.27),(4.28),(4.29),(4.30),(4.31),(4.32) can be written as

W1U
n+1 = W2U

n + W3U
n−1 (4.33)

where W1, W2 and W3 are 9×9 matrices and U is a 9×1 vector. W1, W2, W3

and U are described in (4.34),(4.35),(4.36) and (4.37), respectively, below:
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W
1

=

                 

1
0

0
0

0
0

−
ζ a

0
0

0
1

0
0

0
0

0
−

ζ a
0

0
0

1
0

0
0

0
0

−
ζ a

0
−

Υ
+

Υ
e

k
z
∆

z
Υ
−

Υ
e

k
y
∆

y
1

0
0

0
0

0

Υ
−

Υ
e

k
z
∆

z
0

−
Υ

+
Υ

e
k

x
∆

x
0

1
0

0
0

0

−
Υ

+
Υ

e
k

y
∆

y
Υ
−

Υ
e

k
x
∆

x
0

0
0

1
0

0
0

0
0

0
0

Γ
e−

k
z
∆

z
−

Γ
−

Γ
e−

k
y
∆

y
+

Γ
1

0
0

0
0

0
−

Γ
e−

k
z
∆

z
+

Γ
0

Γ
e−

k
x
∆

x
−

Γ
0

1
0

0
0

0
Γ
e−

k
y
∆

y
−

Γ
−

Γ
e−

k
x
∆

x
+

Γ
0

0
0

1

                 
(4

.3
4)
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W
2

=

                 

−
ζ e

0
0

0
0

0
ζ b

0
0

0
−

ζ e
0

0
0

0
0

ζ b
0

0
0

−
ζ e

0
0

0
0

0
ζ b

0
Υ
−

Υ
e

k
z
∆

z
−

Υ
+

Υ
e

k
y
∆

y
1

0
0

0
0

0

−
Υ

+
Υ

e
k

z
∆

z
0

Υ
−

Υ
e

k
x
∆

x
0

1
0

0
0

0

Υ
−

Υ
e

k
y
∆

y
−

Υ
+

Υ
e

k
x
∆

x
0

0
0

1
0

0
0

0
0

0
0

−
Γ
e−

k
z
∆

z
+

Γ
Γ
e−

k
y
∆

y
−

Γ
1

0
0

0
0

0
+

Γ
e−

k
z
∆

z
−

Γ
0

−
Γ
e−

k
x
∆

x
+

Γ
0

1
0

0
0

0
−

Γ
e−

k
y
∆

y
+

Γ
Γ
e−

k
x
∆

x
−

Γ
0

0
0

1

                 
(4

.3
5)
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W3 =



−ζf 0 0 0 0 0 ζc 0 0

0 −ζf 0 0 0 0 0 ζc 0

0 0 −ζf 0 0 0 0 0 ζc

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


(4.36)

U =



Ex

Ey

Ez

Hx

Hy

Hz

Dx

Dy

Dz


(4.37)

In (4.34),(4.35) and (4.36) following assumptions were made

Υ = ∆t

2µ∆s
Γ = ∆t

2∆s

ζa = ν1(i,j,k)
ν4(i,j,k)

ζb = ν2(i,j,k)
ν4(i,j,k)

ζc = ν3(i,j,k)
ν4(i,j,k)

ζe = ν5(i,j,k)
ν4(i,j,k)

ζf = ν6(i,j,k)
ν4(i,j,k)

If in (4.33), the terms on the left hand side were at (n + 1)∆t and those on

the right hand side were at n∆t, it would have been straightforward to find the

growth factor. However, because of the presence of the term at (n− 1)∆t on the

right hand side of (4.33), calculation of the growth factor of the FD–CN–FDTD
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method is not trivial. To circumvent this, using a 9× 9 null matrix O (4.33) can

be written as

[W1]U
n+1 + [O]Un = [W2]U

n + [W3]U
n−1 (4.38)

If [I] is a 9 × 9 identity matrix, an equation having the same time steps on

both sides of the equality as in (4.38) (i.e. n + 1 and n terms on the left hand

side and n and n− 1 terms on the right hand side) can be written

[O]Un+1 + [I]Un = [I]Un + [O]Un−1 (4.39)

Using W1, W2, W3, I, O as block matrices and combining (4.38) and (4.39)

[
W1 O

O I

][
Un+1

Un

]
=

[
W2 W3

I O

][
Un

Un−1

]
(4.40)

Assuming two vectors, each of size 18× 1, as [T n+1] =

[
Un+1

Un

]
and [T n] =[

Un

Un−1

]
(4.40) becomes

[
W1 O

O I

] [
T n+1

]
=

[
W2 W3

I O

] [
T n

]
(4.41)

Now the growth factor of the FD–CN–FDTD method can be determined from

(4.41) by

Λ =
[
M−1

]
[N ] (4.42)

where both [M ] and [N ] have same dimension, 18× 18, and
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[M ] =

[
W1 O

O I

]
(4.43)

[N ] =

[
W2 W3

I O

]
(4.44)

For the FD–CN–FDTD method to be stable, eigenvalues of Λ have to be less

than or equal to unity. Usually computer programmes like Mathematica is used

to symbolically calculate the eigenvalues of Λ. Because the size of this sym-

bolic computation is prohibitively large, it was not possible to successfully run

this analytical computation to the completion and obtain the eigenvalues of Λ,

neither in Mathematica nor in Matlab Symbolic Math Toolbox. Both of these

programmes exhaust the available computing resources (memory) while handling

the computation of large symbolic matrices of (4.42) having the size of 18 × 18

and involving matrix inversion as well.

On the computing resources of Research Computing Services (RCS) [102] the

Mathematica code for symbolic computation of eigenvalues ran over 7 days 7

hours at about 8 GB of memory. Then on 7th day at 19th hour the memory used

by the code progressively increased to 32.6 GB (by 8 days 3 hours) and it started

swapping to the disk. After 8 days 11 hours it failed completely:

Aug 8 23:13:44 caterpillar3

kernel: Out of memory: Killed process 22261 (MathKernel)

It was not possible to get the access to more powerful computing resources

than RCS to run this Mathematica code to the end.



Chapter 5

Efficient Solvers for the

FD–CN–FDTD Method

The proposed FD–CN–FDTD method requires solution of a large number of

simultaneous linear equations. When the method is applied to electromagnetic

problems most of the CPU time is spent on this solution of linear algebraic

equations. Therefore, an efficient solution is essential to gain the benefit of the

FD–CN–FDTD method. This chapter deals with the issues related to the solution

of the FD–CN–FDTD method which lies at its core.

5.1 Sparse Matrix

The FD–CN–FDTD method yields a large set of linear equations resulting in a

huge sparse matrix. These come from (3.32), (3.40), (3.42) and those mentioned

in Tables 3.1, 3.2, 3.3. By applying these equations to all Yee–grid locations a

system of linear equations of Au = c is found. Here A is the coefficient matrix,

u represents a vector with the electric field components to be solved and c is

the excitation vector. The coefficient matrix A is highly sparse. Its size depends

on the size of the computational space while its characteristics depend on media

parameters: εS, ε∞, σ and τD and temporal discretization, ∆t. The size of matrix

A is (3·(Nx−1)·(Ny−1)·(Nz−1))×(3·(Nx−1)·(Ny−1)·(Nz−1)) where Nx, Ny,

Nz are the size of the computational space in x, y and z directions, respectively.

When the problem space is homogeneous, the coefficient matrix A is symmet-

ric and otherwise asymmetric. Fig. 5.1 shows the sparsity pattern of A in the case

112
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Figure 5.1: Sparsity pattern of the coefficient matrix A of the FD–CN–FDTD
method, when εS = 6.2, ε∞ = 3.5, σ = 0.029 S/m and τD = 39.0 ps.

where the entire computational space is filled with Debye parameters εS = 6.2,

ε∞ = 3.5, σ = 0.029 S/m and τD = 39.0 ps. The sparsity pattern of Fig. 5.1 is

similar to that of three dimensional Finite Difference Frequency Domain (FDFD)

method [103], and therefore the findings in this research could also be useful to

the FDFD researchers.

5.1.1 Condition Number and Diagonal Dominance

The ease of solution of a linear system of equations can be measured by the con-

dition number of A. Condition number measures the stability or sensitivity of

a matrix (and of the linear system it represents) to numerical operations. It is

defined as κ(A) = ‖A‖‖A−1‖ where ‖.‖ is p-norm of the matrix1 and p can be 1,

1The norm of a matrix is a scalar that gives some measure of the magnitude of the elements
of the matrix. 1-norm condition number is considered in this thesis. 1-norm of matrix A is
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2 or ∞. Although κ(A) depends on the choice of norm, either of these norms typ-

ically gives roughly comparable values of it [104]. In this study 1-norm condition

number was considered. A sparse matrix system with a high condition number

is numerically ill-conditioned and is difficult to solve. Conversely a system with

low condition number is well-conditioned and is relatively easy to solve.

In practice, however, computation of the condition number is quite difficult,

time consuming and sometimes impossible. Because to compute the condition

number, inversion of the matrix A is required which is computationally expen-

sive, specially when A is large. For the FD–CN–FDTD method when the compu-

tational space was larger than 15×15×15 cells it was never possible to compute

the condition number of the generated sparse matrix with the available comput-

ing resources (dual core AMD Opteron Processor 250 with 12GB memory and

1GB cache-size). For computational space of 15×15×15 cells 1-norm condition

number was calculated for homogeneous and inhomogeneous media with different

CFLN and is presented in Table 5.1. For the homogeneous case, Debye param-

eters for the whole space was εS = 4.8, ε∞ = 2.8, σ = 0.20 S/m and τD = 7.0 ps.

For the inhomogeneous case, the computational space consisted of 3 stratified

media having equal size: one-third having the parameters εS = 4.8, ε∞ = 2.8,

σ = 0.20 S/m and τD = 7.0 ps; one-third with the parameters εS = 6.2, ε∞ = 3.5,

σ = 0.029 S/m and τD = 39.0 ps and the remaining part with the parameters

εS = 9.5, ε∞ = 4.2, σ = 0.019 S/m and τD = 77.0 ps. Table 5.1 shows for high

CFLN the matrix becomes severely ill-conditioned, requiring high computation

time to be solved. This finding is in line with that of [67] which reports the same

for frequency–independent Crank–Nicolson method. Table 5.1 also shows that,

irrespective of the media being homogeneous or inhomogeneous, the condition

number increases at a similar rate with the CFLN .

Similar conclusions are found when diagonal dominance of the coefficient ma-

trix1 is considered instead of the condition number. Diagonal dominance of the

found by summing the absolute values of the elements in each column of A and then taking

the largest of these column sums i.e. ‖A‖1 = max
1≤j≤n

m∑
i=1

|ai,j | [104]

1If ai,j is the (i,j)-th element of matrix A, then A is diagonally dominant if |ai,i| ≥
n∑

j=1
j 6=i

|ai,j |

for all the i rows.
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CFLN
Condition Number Condition Number

(homogeneous medium) (inhomogeneous medium)

1 3.58934479888516 3.80026294877373

2 4.77889162596216 5.63798835383051

3 12.5571219884572 8.03725239471826

4 88.9828959798497 142.376370566024

5 57150.0480720380 45976.7592194050

6 1434509822.80038 883345491.644407

7 37699399327182.4 19798632060535.8

8 4.382859536859418E+017 2.061438929431951E+017

9 2.255666356921374E+021 9.217501368037234E+020

10 4.677124697624521E+024 1.923201534239998E+024

11 5.831503312083712E+027 2.104623342204125E+027

12 3.849638466963231E+030 1.317912729029270E+030

13 1.435933921690451E+033 5.075254678012810E+032

14 3.797326242305980E+035 1.282211916790933E+035

15 6.933718165858368E+037 2.241768644600929E+037

16 9.136650096500494E+039 2.835285743200455E+039

17 9.015011444539032E+041 2.691888048797409E+041

18 6.870749991581516E+043 1.979287789772085E+043

19 4.153048717710373E+045 1.157282615412316E+045

20 2.036431555022701E+047 5.503870731510703E+046

Table 5.1: 1-norm condition number at different CFLN for homogeneous and
inhomogeneous media for the computational space of 15×15×15 cells

FD–CN–FDTD coefficient matrix improves when CFLN decreases, leading to

matrices which are easier to solve. To study the effect of CFLN on diagonal

dominance an inhomogeneous cubic space of size 80×80×80 cells having 5 differ-

ent media as shown in Fig. 5.2 was considered. A homogeneous computational

space was also considered which had Debye parameters εS = 6.2, ε∞ = 3.5,

σ = 0.029 S/m and τD = 39.0 ps for the whole cubic space of Fig. 5.2. Com-

putational space of such large size was used to demonstrate the merits of using
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diagonal dominance over condition number which allowed the computation of

maximum 15×15×15 cells. Whatever be the size of the computational space,

both diagonal dominance and condition number provide the same observation for

the FD–CN–FDTD coefficient matrix.
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Figure 5.2: Computational environment for numerical studies using the FD–CN–
FDTD method

Fig. 5.3 shows how the absolute values of diagonal and the sum of absolute val-

ues of off-diagonal elements of A vary with CFLN , both for the homogeneous and

inhomogeneous cases. A representative row of A has been taken, corresponding

to the interior computational space, which comprises nearly the whole coefficient

matrix (except the boundary–contributed rows). For low CFLN all the rows of

the coefficient matrix are strictly diagonally dominant except a very few which

are contributed by the boundary cases, whereas high CFLN deteriorates this

property. Fig. 5.3 shows that the advantageous diagonal property of the coeffi-

cient matrix is lost with increased CFLN irrespective of the media parameters

or homogeneity. This perfectly matches to the observation of Table 5.1 in terms

of condition number. For practical problems the diagonal–dominance criterion

is simpler to handle than the condition–number one because of computational

expenses. An additional advantage of the diagonal dominance criterion is that

it points a direction to research in the building of appropriate preconditioners to

ease the solution at higher CFLN .
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Figure 5.3: Absolute values of diagonal and sum of absolute values of off-diagonal
entries of the coefficient matrix changes with CFLN

5.2 Direct Methods

A sparse matrix system is solved at each time step of the FD–CN–FDTD method.

Methods of solution for such sparse systems fall into two categories – the direct

and iterative methods. Direct solvers are extremely robust and reliable and give

the exact solution if there is no rounding errors. Their latest implementations

have improved the memory efficiency and have efficient reordering techniques,

which improve the performance to a great extent. Out of the two types of meth-

ods, first a version of sparse Gaussian elimination based direct solver [105, 106]

was investigated to solve the FD–CN–FDTD method. Following main steps are

executed, in sequence, in the direct solver used in this study [107]:

1. First, reordering of the rows and the columns of the coefficient matrix are

done. This is performed in such a way that the factors get little fill-in

compared to the original matrix. Fill-in refers to those entries in the matrix

that are initially zero but changed to a non-zero value during the operation

of a certain algorithm. If possible, reordering is done to turn the coefficient

matrix into special structure like block-triangular form.

2. Next, the reordered matrix is analyzed and a pivot ordering is computed

in order to do symbolic factorization. The nonzero structure of the factors
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are, thereby, determined and suitable data structures are formed for these

factors.

3. Based on the above two steps, the coefficient matrix is decomposed in factors

of lower and upper triangular matrices (LU factors)

4. After the LU factorization, forward and backward triangular sweeps are

executed using the factors to obtain the solution.

Following these steps, iterative refinement are optionally performed to im-

prove the accuracy of the solution.

The direct solver used with the FD–CN–FDTD method chooses a pivot se-

quence to decompose A into LU factors, in such a way that the sparsity is pre-

served in them. A full Markowitz search technique is used to find the best pivot

and reduce the fill-ins (i.e. not to waste memory). At each time step of the

FD–CN–FDTD algorithm, a new vector c is calculated for the right hand side,

while A is required to be factorized only once (which dominates the computa-

tional time) before the beginning of the FDTD iteration1. Once factorized, the

same factors are repeatedly used at each time step to obtain u. For this reason,

this method showed the potential to become more computationally efficient than

the iterative methods when a large number of FDTD iterations are needed, since

at each time step only forward and backward solutions are required.

Using direct solver in the FD–CN–FDTD method the same numerical test

mentioned in Section 4.1 was performed. The size of the computational space

was (30×30×30) cells; half of which was filled with medium 1 (εS = 71.66,

ε∞ = 34.58, σ = 0.49 S/m and τD = 5.65 ps) and the other half with medium 2

(εS = 87.34, ε∞ = 49.13, σ = 0.69 S/m and τD = 26.89 ps) as shown in Fig. 5.4.

Source excitation of a modulated Gaussian pulse centred at 3 GHz was placed

at (10,15,15). Spatial sampling was uniform, with ∆x = ∆y = ∆z = 10−3m and

CFLN ≡ ∆t/∆tCFL = 1, 3, 5 were tested, where ∆tCFL = 1.9 ps

1In this thesis, FDTD iteration is used to refer to the iteration (time stepping) required to
complete the simulation, in order to avoid confusion with the iteration required to converge in
the iterative solvers
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Figure 5.4: FDTD problem space for simulation with the FD–CN–FDTD method.

In this numerical test in which the sparse matrix system was solved by the

direct solver, CPU time required for LU decomposition was 633 minutes and av-

erage CPU time per FDTD iteration was 6.489 seconds when CFLN = 1 on dual

AMD Opteron 280 with 8 GB of memory. When the computational space was

filled with homogeneous material of medium 1 or when CFLN > 1 there were no

significant differences in these values (i.e. the CPU time for LU decomposition

and average CPU time per FDTD iteration ). This test was in double precision

computation and required 2.4 GB of memory. With the available computational

resources (National Grid Services [108], that also has a limit on the number of

hours a programme can run on) it was never possible to successfully use direct

solver in the FD–CN–FDTD method when the computational space was larger

than 30×30×30 cells.

Despite being robust and reliable, the direct solver is not practical to use

in the FD–CN–FDTD method for real applications. They are computationally

more expensive and require excessively large memory (their memory requirements

grow as a nonlinear function of the matrix size [109]). It might be possible to

use direct solver in the FD–CN–FDTD method for larger problems by doing

distributed memory parallelization (using Message Passing Interface).
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5.3 Iterative Methods

Direct methods can be used to solve problems of upto 30×30×30 cells of compu-

tational space but for larger problems involving unknown variables of the order of

millions the computation is prohibitively expensive and requires excessively large

memory. For example, when 30×30×30 cells computational space is modelled in

the FD–CN–FDTD method the direct solver using sparse Gaussian elimination

requires 2.4 GB of memory whereas iterative solvers BiCGStab and GMRES,

respectively, require only 62 MB and 65 MB of memory. Thus for practical prob-

lems iterative solvers have to be used [110] [104].

Iterative methods work by repeatedly improving an approximate solution until

it is accurate enough [104]. To solve a linear system Au = c, iterative methods

require an initial guess u(0) that approximates the true solution. If no good

approximation to the solution is known u(0) can be taken as zero. In the iterative

process u(0) is used to generate a new guess u(1), which is then used to generate

yet another guess u(2), and so on. In this way after k iterations u(k) is generated.

If u(k) is sufficiently close to the solution, the iteration is stopped and u(k) is

accepted as an adequate approximation to the solution. Residual vector, r(k) =

c −Au(k), is considered to decide if u(k) is sufficiently close to the solution. As

soon as the residual vector meets a pre-specified stopping criterion (for example,

given a very small value of threshold ε, ‖r(k)‖ ≤ ε), the iterative process stops

and convergence is said to be achieved. A good number of iterative methods have

been developed but they mainly belong to two categories [2]:

Stationary methods: Stationary methods are the older of the iterative meth-

ods. They are simpler to understand and implement but usually not very

effective. Some examples of stationary methods: Jacobi method, Gauss-

Seidel method, Successive Over-Relaxation (SOR) method and Symmetric

Successive Over-Relaxation (SSOR) method.

Non-stationary methods: Non-stationary methods were developed relatively

recently. Although their analysis is usually harder to understand, they can

be highly effective. Some examples of non-stationary methods: Conjugate

Gradient (CG) method, Minimal Residual (MINRES) method, GMRES

method, BiConjugate Gradient (BiCG) method, Quasi-Minimal Residual
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(QMR) method, Conjugate Gradient Squared (CGS) method and BiCGStab

method.

Some methods are only important to understand the historical development

of iterative methods and are not relevant for solving the FD–CN–FDTD sparse

matrix system. As the convergence of stationary methods is slow and guaranteed

for a limited class of matrices, these are not considered in this study. Non-

stationary methods that represent the current state-of-the-art for solving large

sparse linear systems have been used in this study. These are also called Krylov

subspace methods.
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Figure 5.5: Choosing an effective iterative method [2]

Although there exists many iterative methods a certain method may work

well for one problem but not for another. An iterative method might be conver-

gent but the convergence might be too slow to be of practical value. Therefore,

it is essential to find the most effective method for the concerned problem. For

this, both the computations required per iteration and the number of iterations

necessary for convergence need to be considered. A flowchart is suggested in the

1If ai,j is the (i,j)-th element of matrix A, then A is symmetric positive definite if ai,j = aj,i

for all the i,j and if it satisfies xT Ax > 0 for all nonzero vectors x
2Maximal and minimal eigenvalues
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Appendix D of [2] as shown in Fig. 5.5 to choose an effective iterative method

from the best known methods for which extensive computational experience has

been gathered. Depending on the homogeneity of the computational space the

FD–CN–FDTD method yields symmetric and asymmetric matrices. Since for

homogeneous problems the coefficient matrix is symmetric, as shown in Fig. 5.5,

iterative solvers like CG method can be used. However practical problems are

inhomogeneous and iterative solvers for asymmetric matrices have to be used.

These are GMRES, BiCGStab, QMR or CGS. Out of these, QMR requires trans-

pose matrix-vector product making the computational costs per iteration higher.

On the other hand, CGS suffers from irregular convergence, which may lead

to substantial build-up of rounding errors because CGS algorithm is based on

squaring the residual polynomial [110] [2]. Therefore, this study focuses on

GMRES(m) [111] and BiCGStab [112]. GMRES is said to be a very robust

solver for nonsymmetric matrices. It leads to the smallest residual for a fixed

number of iteration steps. But these steps become increasingly expensive and in

order to limit the increasing storage requirements and work per iteration step,

restarting is necessary. It is quite difficult to chose the appropriate number of

iterations m after which GMRES restarts. If m is too small GMRES(m) may be

slow to converge, or fail to converge entirely. If it is unnecessarily large excessive

work and more storage are incurred as penalty. BiCGStab is a fast and smoothly

converging variant of BiCG method. The advantage of this method is that its

computational costs per iteration are similar to that of CGS but it avoids the

irregular convergence patterns of CGS while maintaining about the same rate of

convergence. Also BiCGStab does not require transpose matrix-vector product

like QMR.

5.3.1 Performance Study of BiCGStab and GMRES

In this section the performance of BiCGStab and GMRES, both for the homoge-

neous and inhomogeneous media cases, are compared. Two cases are considered

for study. The first one consists of an inhomogeneous medium, in a cubic space

of size 80×80×80 cells, with 5 different media as shown in Fig. 5.2. The second

one involves the same cubic space of the previous case, now filled with a homo-

geneous medium with Debye parameters εS = 6.2, ε∞ = 3.5, σ = 0.029 S/m and

τD = 39.0 ps. In both cases a z-directed dipole hard source with a time variation
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given by a Gaussian pulse centred at 6.9 GHz was placed at the centre of the com-

putational space. Spatial sampling was uniform: ∆x = ∆y = ∆z = ∆s = 10−3m.

The time-step is taken equal or above the CFL stability condition of the explicit

FDTD: ∆t = CFLN × ∆s/(c
√

3), where, c is the free space light–speed. The

level of accuracy in waveform compared with the explicit frequency dependent

FDTD is the same as the one presented in Fig. 4.2. In the iterative solution

algorithms the E values at the previous time step are used as the initial value.
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Figure 5.6: Threshold of residual error versus number of iteration required
by BiCGStab and GMRES for homogeneous and inhomogeneous cases when
CFLN = 20

Fig. 5.6 shows the convergence pattern for CFLN = 20, plotting the threshold

of residual error as a function of the number of iterations required by the itera-

tive solvers to converge. The number of iterations required to achieve a specified

accuracy is demonstrated in this figure. For example, to make the residual error

lower than 10−8 BiCGStab requires about 45 iterations whereas GMRES requires

about 97 iterations in both homogeneous and inhomogeneous cases. The conver-

gence rate of the solvers is weakly affected by homogeneity. In this numerical

test, the value of CFLN is quite high (20) and for the case of CFLN having a

value lower than this, the iteration numbers would certainly be lower than those

shown in Figure 5.6.

Figure 5.7 shows how the average number of iterations, required by BiCGStab
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and GMRES to converge, increases with the CFL number. Stopping criteria in

this case was 10−13 and the reason for selecting this small value of convergence

tolerance is, in the FD–CN–FDTD method, unlike the frequency–independent

CN–FDTD method, D = εE is used and therefore D can have a value of such

small order because of ε (permittivity). GMRES stagnates when convergence

tolerance is below 10−13 while BiCGStab can work even at a lower convergence

tolerance. Both solvers require more iterations to converge as CFLN goes up

but the rate of increase of iteration numbers with CFLN is higher for GMRES

than for BiCGStab. Homogeneity does not affect significantly this rate, particu-

larly, for BiCGStab. The change of iteration number with CFLN for convergence

tolerance values from 10−12 to 10−3 can be assumed from Figure 5.6. In the FD–

CN–FDTD method, the total number of FDTD iterations required to complete

the simulation decreases with CFLN , but the increase of computational costs per

FDTD iteration with CFLN , as shown in Fig. 5.7, can undermine this positive

effect unless the solution is very efficient.
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Figure 5.7: Average number of iterations required to converge at different CFL
numbers (convergence tolerance = 10−13)

Fig. 5.8 plots the CPU time required by the FD–CN–FDTD method with

BiCGStab or GMRES as a function of CFLN . The stopping criterion of 10−13
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Computational Size (cells) 403 603 803

BiCGStab 145MB 487MB 1.1GB

GMRES 151MB 507MB 1.2GB

Table 5.2: Memory required by BiCGStab and GMRES for different computa-
tional spaces

was used and the simulation was performed to reach a fixed time instant by let-

ting the code run for 1200/CFLN time steps on a dual AMD Opteron 280 with

8GB of memory. CPU time decreases with the CFLN , for both solvers, although

GMRES requires more CPU time than BiCGStab. The trend of the curves in

Fig. 5.8 also manifests that the difference between the CPU time required by the

two solvers becomes narrower with the increase of CFLN . Table 5.2 presents the

memory required by the two solvers for three different computational space sizes.

GMRES always requires more memory than BiCGStab.
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Figure 5.8: CPU time required by BiCGStab and GMRES at different CFLN

From all the above, it can be concluded that BiCGStab outperforms GMRES

in computational efficiency. This finding is in contrary to that of [67] which

reports GMRES is the fastest for the frequency–independent CN–FDTD method

presented there. The work of [67] is based on (3.1) and (3.2) while the FD–CN–

FDTD method additionally involves (3.10) which has second-order time derivative
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terms. The FD–CN–FDTD method involves nine field components in place of

six for the CN–FDTD method and the sparsity pattern of the former has more

bands than the latter [68]. Apart from this, the problems concerning simulation

implementation, optimization and parameters tuning have an obvious influence

in concluding which solver is the most efficient.

5.4 Preconditioners

The rate of convergence of the iterative methods depends greatly on the spectrum

of the coefficient matrix1. Often a second matrix, called a preconditioner, is used

with the iterative methods to transform the coefficient matrix into one with a

more favourable spectrum2 [2]. A good preconditioner improves the convergence

of the iterative method but the extra computational costs of constructing and

applying the preconditioner should be minimal. Without a preconditioner the

iterative method may even fail to converge. On the other hand, an inappropriate

preconditioner can be counter-productive by making the convergence more diffi-

cult or giving wrong results. Finding a preconditioner suitable for a particular

problem is challenging and beyond the main focus of this thesis.

To solve for the FD–CN–FDTD method two preconditioners were applied:

Incomplete LU with no fill-in or ILU(0) and Sparse Approximate Inverse (SAI).

ILU(0) did not give any improvement in convergence (rather convergence de-

teriorated). However, SAI gave slight improvement in reducing the number of

iterations to converge but there were two major setbacks making it unsuitable

for use. The time to compute the approximate inverse preconditioner is too large

which makes the total CPU time longer than that without any preconditioner.

[68] showed SAI can reduce iteration numbers for the frequency-independent CN–

FDTD method but did not mention the total CPU time. A second problem is

that memory requirements of SAI restricted the maximum computational space

to only 30×30×30 cells. SAI also showed lack of robustness when used with the

FD–CN–FDTD method.

1The set of the eigenvalues of a matrix is called its spectrum
2For example, by concentrating the spectrum of the preconditioned matrix. The ratio of

the maximum and minimum eigenvalues gives a reasonable idea if a symmetric matrix is ill or
well conditioned. When the spectrum of the matrix is concentrated this ratio becomes smaller,
implying a relatively well conditioned matrix[2]
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5.5 Conclusion

This chapter has presented Krylov–based approach to solve the FD–CN–FDTD

sparse matrix system. Two best–known iterative methods, GMRES and BiCGStab,

were compared in terms of the number of iteration requirements for convergence

with different CFLN , CPU time and memory requirements. BiCGStab outper-

forms GMRES when used with the FD–CN–FDTD method in every aspect of

the study. However there have been a lot of research on the development of pre-

conditioners for GMRES and Fig. 5.8 indicates that GMRES tends to narrow

down the difference in CPU time with BiCGStab at higher CFLN . Therefore,

the potential of using GMRES to use in the FD–CN–FDTD method can not be

ruled out. In this chapter it has also been pointed out that the degradation of

diagonal–dominance of the coefficient matrix with increased CFLN is a main

reason for the increase of the CPU time needed by the solvers. Furthermore, it

was found that ILU(0) and SAI preconditioners can not improve the computa-

tional efficiency of the FD–CN–FDTD method. Many of these findings about the

frequency dependent CN–FDTD method do not match with the existing litera-

ture on the frequency–independent CN–FDTD method and possible reasons for

this are also mentioned. Further work is needed to tailor suitable preconditioners

to improve the iterative solver convergence.



Chapter 6

Modelling Human Body in the

FD-CN-FDTD Method

With the rapid development of the wireless communications technology and the

widespread use of mobile phones and other wireless devices there have been in-

creasing public concern about the hazardous effect of electromagnetic radiation

on the human body [113]. On the other hand, electromagnetic radiation can be

exploited for positive purposes as well. For example, one of the fascinating ap-

plications of bioelectromagnetics is the treatment of neurological diseases using

electromagnetic therapy in which certain tissues of the human body are stimulated

by electromagnetic fields. Recently researches on the effects of mobile phone ra-

diation on mice suggested that, mobile phones might protect against Alzheimer’s

diseases [114]. However, there are ethical restrictions on doing experiments on

the living human being in order to study dosimetry or other bioelectromagnetic

aspects. Therefore, numerical simulation is the possible alternative way for this.

Out of many numerical methods, the FDTD method is the most suitable tech-

nique for this, because of its robustness and simplicity.

This chapter describes the application of the proposed FD–CN–FDTD method

to model a real–life application. Using the FD–CN–FDTD method a simulation

model of the human body is developed. Electromagnetic properties of the human

tissues depend on the frequency. For accurate numerical studies of the interaction

of electromagnetic waves with the human body, the FDTD method should have

the ability to handle frequency dependent media. Therefore, this is an appropriate

application for the proposed frequency dependent CN–FDTD method.
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6.1 Numerical Modelling of the Human Body

In FDTD methods, a numerical model of the human body can be developed by

appropriately discretizing the computational space (i.e. human body) and then

assigning each discretized space, which represents the tissues and organs, its cor-

responding dielectric parameters. The dielectric parameters of the human tissues

were experimentally measured and compiled by Gabriel et al in the frequency

range of 10 Hz to 20 GHz [42][43][44][1]. Mathematically these parameters, which

vary over the frequency, can be modelled by Debye and Cole-Cole models. This

thesis uses the single–pole Debye model because of its simplicity of implemen-

tation in the FDTD method [115]. From the Gabriel’s data, by using Newton’s

method and least square fitting technique, the dielectric parameters of the tis-

sues for the Debye model can be obtained [115]. For all the tissues of the human

body, the single–pole Debye parameters are available in our research group and

are presented in Table 6.1.

A number of computational models of the human body, which mathemati-

cally represents the human anatomy, have been developed [116]. With the ad-

vancement of medical imaging technology, for example, computed tomography

(CT) and magnetic resonance imaging (MRI), it has been possible to develop

high-resolution computational human body models. These medical imaging tech-

nologies can provide high-resolution cross-sectional digital image of the internal

anatomy of the human body [116]. When the pixel data obtained from such med-

ical images are extended to three dimensions it gives the cuboidal representation,

known as voxels. Voxels can be used to digitally represent the three-dimensional

human body. Each voxel contains an uniform volume of the human body such

that it can be assigned with an identifying number that corresponds to a par-

ticular tissue or organ. Such models are called voxel models or phantoms. In

this thesis the whole-body voxel model of [117] which is based on the MRI data

has been used. To model the human body in the FD–CN–FDTD method, the

geometrical features of the human body is read from the 2-mm resolution voxel

model of [117]. This voxel model consists of 320×160×866 voxels for the male

and 320×160×804 voxels for the female models. However, this thesis only deals

with the male model. For each voxel, that represents a certain tissue, the cor-

responding single–pole Debye parameters from Table 6.1 were mapped. In this

way, the realistic human body with the frequency dependent dielectric parameters
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Tissue ε∞ εS τD (ps) σ (S/m)

Bladder 9.6746378 19.3315 6.94441 0.30010962

Blood 30.597572 62.9005 7.00378 1.2557440

Bone Cortical 6.6990891 12.9266 10.6297 0.0686324313

Breast fat 3.0959890 5.48171 8.01535 0.0303096939

Cartilage 19.391968 44.5586 9.9898 0.49346399

Cerebellum 35.194771 58.1546 22.7492 0.82605290

Cerebrospinal fluid 33.147984 70.3996 6.05165 2.1439056

Colon 34.665340 61.1213 10.386 0.71641898

Cornea 32.372139 57.8425 9.57875 1.0688734

Fat 3.9981320 5.53071 7.8745 0.0371063352

Gall Bladder 28.180500 60.7348 5.30142 1.0422504

Bile 33.478043 72.1819 5.38703 1.5769558

Grey Matter 33.057121 56.444 11.7277 0.59515452

Heart 38.085503 65.0845 13.6874 0.77800655

Kidney 39.859943 67.5083 20.1944 0.85720307

Liver 27.985529 50.1529 11.8828 0.52030164

Nerve (Spinal Chord) 20.980206 34.7488 12.1644 0.35986480

Ovary 33.372314 59.2252 22.1513 0.79014659

Small Intestine 39.190655 65.79 15.2864 1.7013499

Spleen 37.115120 62.585 14.2244 0.84441692

Duodenum 31.503292 66.2792 6.32267 0.91899437

Tendon 16.789112 46.7146 6.88525 0.49999046

Prostate 31.306032 62.0644 7.03912 0.93375188

Thyroid 27.738815 60.5505 5.90674 0.80898720

Tongue 28.257284 56.5226 6.81527 0.69344097

Trachea 22.140263 43.1848 7.49705 0.56548506

Uterus 33.134838 63.0676 7.76051 0.96926498

Vitreous Humour 4.2372255 69.0152 2.42065 1.5027161

White Matter 24.371387 41.2808 11.1905 0.34836939

Average Brain 28.713840 48.8598 11.4971 0.47177213

Average Muscle 28.001335 56.9314 6.22154 0.74710500

Average Lung 21.436010 38.2542 9.12811 0.45216662

Average Bone 6.3775983 12.3227 10.6741 0.11563171

Average Skin 29.850496 47.9301 14.536 0.54073584

Table 6.1: Single–pole Debye parameters for the human tissues
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160

320

Free Space
11.4 cm from the top of the head
Cross section of the human head

Figure 6.1: A cross section of the human head at 11.4 cm from the top of the
head. The area outside the head upto the boundary is free space.

is modelled in the FD–CN–FDTD computational space. A cross-section of the

human body from this model is shown in Fig. 6.1. The cross-section of Fig. 6.1

is for z = 57 plane which lies in the human head and has the xy dimensions of

320×160. The area outside the head upto the boundary is free space.

The numerical model of the human body as described above can be useful for

several purposes. For example, to estimate the specific absorption rate (SAR),

for numerical study of the bioelectromagnetic therapies and to design the body-

centric wireless networks. This thesis focuses on the bioelectromagnetic therapies.

6.2 Use of the FD–CN–FDTD Method to Model

Bioelectromagnetic Therapies

The application of electromagnetic fields onto the human to treat the diseases

is called bioelectromagnetic therapy. Some of the treatable diseases in this way

are osteoporosis, arthritis, dystonia, Alzheimer’s disease, essential tremor. This

thesis deals with one of the bioelectromagnetic therapies, called deep brain stim-

ulation (DBS), which is a surgical treatment used for the treatment of neurolog-

ical disorders, such as, Parkinson’s disease and essential tremor. DBS uses an

implanted electrode to deliver electrical stimulation to precisely targeted areas in
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Figure 6.2: Components of a typical DBS system 1

the brain. A typical DBS system includes three components: neurostimulator,

electrodes and insulated wire extension as shown in Fig. 6.2. Neurostimulator is

the power source for the DBS system which runs by a small battery and contains

a programmed computer chip. It is implanted beneath the skin in the chest.

The electrodes are implanted inside the brain and the wire extension connects

the electrode to the neurostimulator and runs underneath the skin. DBS sys-

tem sends the electrical stimulation to the targeted areas within the brain that

control the movement of the body and muscle function, in order to make these

areas function better. As the targeted area differs depending on the disease being

treated, the location of the electrode inside the brain also varies. For Parkinson’s

disease the preferred site of stimulation is the subthalamus nucleus (STN), for

essential tremor it is the ventro intermediate nucleus of the thalamus (Vim) and

for obsessive-compulsive disorder (OCD) it is the anterior limb of the internal

capsule (AIC). This thesis considers Parkinson’s disease and therefore the tar-

geted structure is always STN. STN is a small structure surrounded by several

other nuclei and multiple fiber tracts as shown in Fig. 6.3.

1http://www.wired.com/wired/archive/15.03/images/FF 156 brain4 f.jpg (Date of down-
load : 02/03/2010)
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Although DBS can provide remarkable therapeutic benefits for neurological

disorders, it has a number of potential risks and side effects because it requires

to place the implants invasively inside the brain. Some of these risks and side

effects include: paralysis, coma and even death, brain stroke, seizures, infection,

allergic response to the materials of the implants, confusion and attention prob-

lems, pain at the surgery sites, double vision, dizziness, headache. Also any such

invasive electromagnetic therapy can be unethical if large experiential knowledge

is not available. Even if experiential knowledge is available, accurate prediction

of excitation of the targeted tissues inside the brain is important.

Figure 6.3: Location of the subthalamic nucleus (STN) inside the human head 1

As a precursor of the future research, in this thesis, using the FD–CN–FDTD

method the DBS system is modelled simplistically to suggest FD–CN–FDTD’s

suitability for bioelectromagnetics research. There are two aims of this research.

First, to accurately predict the excitation of the targeted tissues inside the brain.

Such predictions will help the clinicians better understand the mechanisms of

a bioelectromagnetic treatment procedure, its limitations and implications from

1http://www.lloydtan-trust.com/index.php?page=living sub&type=causation (Date of
download : 02/03/2010)
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Subthalamic Nucleus (STN)

Figure 6.4: Location of the STN, inside the human head model, used in the
numerical simulation

an electrical point of view as well as make the appropriate parameters set-up

required for an effective treatment. Second and the ultimate objective is to de-

velop a technique to overcome the invasiveness nature of the DBS procedure, so

that the possible risk factors and side effects can be avoided. With these aims in

mind, electrical field distribution inside the human head is studied by using the

numerical human body model in the FD–CN–FDTD method.

In order to model simplified DBS system, it is sufficient to consider the area

from the top of the head up to the section above the upper chest in the numeri-

cal human body model. Therefore, the size of the FD–CN–FDTD computational
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space was 320×160×220 voxels from the top of the head (220×2mm = 44cm). By

careful calculation, the location of STN (Fig. 6.3) was spotted inside the human

head model at (169,86,57), (169,87,57), (170,88,57) points as shown in Fig. 6.4.

In order to resemble the stimulation of STN in the DBS procedure, source ex-

citations of z–directed modulated Gaussian pulse centred at 3GHz were placed

at these points. Then the simulation was run for 1000/CFLN time steps with

CFLN = 1 and 3. Observations were taken at several points around the head.

This thesis puts forward the idea that, if source excitations based on these obser-

vations are applied at these points around the head, by using some algorithms it

would be possible to stimulate the targeted STN. Twenty five observation points

were chosen around the head with nearly equal distance from one another, as

shown in Fig. 6.5. The locations of these twenty five points are given in Table

6.2.

It should be pointed out that, the location of the STN is on the z = 57 plane

and all the twenty five observation points also lie on the z = 57 plane. Observed

signals at the twenty five locations are shown in Fig. 6.6 for CFLN = 1 and 3.

Signals for CFLN = 3 agree well with the corresponding signals for CFLN = 1.

The amount of CPU time saved when CFLN = 3 is used instead of CFLN = 1

is shown in Table 8.4 in Chapter 8. Fig. 6.6 shows that the observed signals are

phase shifted from one observation location to the next as expected. Because

of the heterogeneities of the tissues of the human head, the amplitude of these

signals vary a lot from one observation location to the next. The time delays or

phase shifts in both cases of CFLN = 1 and CFLN = 3 follow the same pattern.

For example, both CFLN = 1 and CFLN = 3 show conspicuous change of phase

from loc-12 onward and from loc-18 onward in Fig. 6.6.

Electrical field distributions at different time steps on the z = 57 plane in

the human head model are shown in Fig. 6.7 and Fig. 6.8 for CFLN = 1 and 3,

respectively. The electrical field distributions shown in Fig. 6.7 and Fig. 6.8 in-

clude the fields in the free space surrounding the head (Fig. 6.1). To produce

Fig. 6.7 and Fig. 6.8, absolute values of the electrical fields were used. Therefore,

the minimum values of the electrical field distributions are zero at all the time

steps. The changes of electrical field distributions over time when CFLN = 1

match quite well with those when CFLN = 3.
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Observation point Location in the numerical model

loc-1 (135, 51, 57)

loc-2 (130, 57, 57)

loc-3 (127, 64, 57)

loc-4 (124, 78, 57)

loc-5 (123, 85, 57)

loc-6 (119, 92, 57)

loc-7 (122, 98, 57)

loc-8 (124, 106, 57)

loc-9 (127, 113, 57)

loc-10 (130, 120, 57)

loc-11 (138, 127, 57)

loc-12 (146, 134, 57)

loc-13 (160, 134, 57)

loc-14 (175, 134, 57)

loc-15 (180, 127, 57)

loc-16 (190, 120, 57)

loc-17 (195, 113, 57)

loc-18 (201, 106, 57)

loc-19 (205, 98, 57)

loc-20 (207, 92, 57)

loc-21 (208, 85, 57)

loc-22 (207, 78, 57)

loc-23 (206, 71, 57)

loc-24 (203, 61, 57)

loc-25 (197, 51, 57)

Table 6.2: Locations of the twenty five observation points around the human head
model
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loc-1

loc-2

loc-3

loc-4
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loc-6

loc-7
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Figure 6.5: Locations of the twenty five observation points around the human
head model

From these observed signals around the head, using FDTD–based time rever-

sal algorithms as reported in [118], the excitation at the STN can be reproduced.

For this further research on the backpropagation and target localization by FDTD

time reversal algorithms is required. Using such algorithms, if appropriate elec-

tromagnetic wave excitations are applied at the appropriate locations around the

head it would be possible to pinpoint the target location inside the brain, which

at present is stimulated by inserting DBS electrodes. With such non-invasive pro-

cedure, there will be no associated risk factors and side effects of invasive DBS

system.
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Figure 6.6: Observed signals at the selected twenty five locations around the
human head when CFLN = 1 and 3.

6.3 Conclusion

In this chapter, an application of the proposed FD–CN–FDTD method has been

described. With the FD–CN–FDTD method the human body has been modelled

with all their fine structures and frequency dependent dielectric properties. Nu-

merical simulation of electromagnetic wave propagation inside the human head

has been shown. The implications of this study for further research on bioelec-

tromagnetic therapies, such as DBS, using the FD–CN–FDTD method has also

been mentioned.
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Figure 6.7: Electrical field distributions at different time steps of the numerical
simulation on the z = 57 plane within the human head model (CFLN = 1)
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Figure 6.8: Electrical field distributions at different time steps of the numerical
simulation on the z = 57 plane within the human head model (CFLN = 3)



Chapter 7

Modified Frequency Dependent

ADI–FDTD Method

In this chapter a new method modifying the frequency dependent alternating

direction implicit finite difference time domain (FD–ADI–FDTD) is presented.

The method can improve the accuracy of the FD–ADI–FDTD method without

significant increase of computational costs. The derivation of the modified method

is presented in Section 7.2 followed by its validation by numerical experiments.

7.1 Limitations of the FD–ADI–FDTD Method

A major breakthrough in FDTD research has been the development of the alter-

nating direction implicit (ADI)–FDTD method [17], since it removes the bound on

the time-step of conventional FDTD method imposed by CFL stability condition.

Although Crank Nicolson (CN)–FDTD method [96][119] has similar capability,

the advantage of ADI–FDTD method over CN–FDTD method is that the com-

putational overhead is smaller because tridiagonal matrix systems are required

to solve (rather than sparse matrix systems). In fact, the ADI–FDTD method is

a computationally affordable approximation of the CN–FDTD method [23][21],

found by adding a perturbation term to the latter. This term permits to split

the fully implicit step advancing from n to n + 1 in CN–FDTD method, into two

tridiagonally implicit substeps in ADI–FDTD method going from n to n + 1/2

and from n + 1/2 to n + 1. The ADI–FDTD method exhibits a loss of accuracy

with respect to the CN-FDTD method that may become severe for some practical

applications, especially when large time-steps are used [23].
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In summary, the ADI–FDTD method improves the computational efficiency at

the cost of accuracy, while the CN–FDTD method exhibits higher accuracy at the

cost of computational costs. Frequency dependent ADI–FDTD and CN–FDTD

methods also have the same characteristics. There have been efforts to improve

the accuracy of ADI-FDTD method. For instance, the approach of [56] is based

on an iterative procedure ideally converging to the CN-FDTD method. Since this

approach involves loop of iterations at each time steps, it is computationally more

expensive than normal ADI–FDTD method. An alternative solution is given by

[57] employing an average approximation of some of the implicit fields. Although

both of these techniques are stable in 2D, their generalization to 3D seems to

become unstable [59][58].

All these researches to improve the ADI–FDTD method considered frequency

independent material. However the inclusion of the frequency dependency of ma-

terial parameters in FDTD methods is essential for the simulation of broadband

systems. Formulations of the ADI–FDTD method to handle the frequency depen-

dent features of the media have been studied using differential equation method

in [91] and using Z-transform method in [120]. In this thesis, the approach by

[57] is extended for the frequency dependent ADI–FDTD method of [91].

7.2 Modified Frequency Dependent ADI–FDTD

Method

From Maxwell’s equation: ∇×E = −µ
∂H

∂t
and ∇×H =

∂D

∂t
+σE, the equations

for 2D TM polarization are:

∂Dz

∂t
=

∂Hy

∂x
− ∂Hx

∂y
− σEz (7.1)

∂Hx

∂t
= − 1

µ

∂Ez

∂y
(7.2)

∂Hy

∂t
=

1

µ

∂Ez

∂x
(7.3)
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In modified FD–ADI–FDTD method, frequency dependent media have been

modelled by the single–pole Debye relationship D = ε0εrE with εr = ε∞ +
εS − ε∞
1 + ωτD

. The frequency domain constitutive relationship for this medium can

be translated into time domain using an auxiliary differential formulation [87]

τD
∂Dz

∂t
− τDε0ε∞

∂Ez

∂t
= ε0εSEz −Dz (7.4)

Putting (7.1) into (7.4) time derivative of Ez is obtained:

∂Ez

∂t
= −(

εS

τDε∞
+

σ

ε0ε∞
)Ez +

1

τDε0ε∞
Dz +

1

ε0ε∞

∂Hy

∂x
− 1

ε0ε∞

∂Hx

∂y
(7.5)

(7.1), (7.2), (7.3), (7.5) can be written as

∂V

∂t
= PV + QV (7.6)

where

P =


0 1

τDε0ε∞
0 1

ε0ε∞
∂

∂x

0 0 0
∂

∂x

0 0 0 0

1
µ

∂

∂x
0 0 0

 (7.7)

Q =


−( εS

τDε∞
+ σ

ε0ε∞
) 0 − 1

ε0ε∞
∂

∂y
0

−σ 0 −
∂

∂y
0

− 1
µ

∂

∂y
0 0 0

0 0 0 0

 (7.8)

V =
[

Ez Dz Hx Hy

]T
(7.9)

Now using finite differences for the time derivative and averaging the fields

over time in (7.6), the CN–FDTD method is found
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V n+1 − V n

∆t
= (P + Q)

V n+1 + V n

2

∴ V n+1 − V n = (
∆t

2
P +

∆t

2
Q)(V n+1 + V n)

∴ V n+1 − V n+1(
∆t

2
P +

∆t

2
Q) = V n + V n(

∆t

2
P +

∆t

2
Q)

∴ (I − ∆t

2
P − ∆t

2
Q)V n+1 = (I +

∆t

2
P +

∆t

2
Q)V n (7.10)

where I is a 4×4 identity matrix. The CN–FDTD equation of (7.10) can also

be written as

(I − ∆t

2
P )(I − ∆t

2
Q)V n+1 = (7.11)

(I +
∆t

2
P )(I +

∆t

2
Q)V n +

∆t2

4
PQ(V n+1 − V n)

In the ADI–FDTD method the last term of (7.11) is dropped and then solved

in two steps leading to truncation error which is a function of (
∆t

2
)2 times the

space derivatives of the field [23]. This means that the truncation error increases

with larger ∆t, thus imposing a restriction on ∆t, particularly when accuracy of

the problem is crucial for strong–gradient fields. Instead, following the strategy

of [57], using the Peaceman-Rachford algorithm [25], the CN–FDTD equation of

(7.11) can be written in a two–step implicit form, without dropping any term:

Step-1

(I − ∆t

2
P )V n+ 1

2 = (I +
∆t

2
Q)V n +

∆t2

8
PQ(V n+1 − V n) (7.12)
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Step-2

(I − ∆t

2
Q)V n+1 = (I +

∆t

2
P )V n+ 1

2 +
∆t2

8
PQ(V n+1 − V n) (7.13)

In (7.12) and (7.13) the last term of (7.11) is halved at each half–step. By

starting with (7.13) and then using (7.12) it can be shown that the pair of equa-

tions (7.12) and (7.13) are equivalent to (7.11) in the following way:

(I − ∆t

2
P )(I − ∆t

2
Q)V n+1

= (I +
∆t

2
P )(I − ∆t

2
P )V n+ 1

2 +
∆t2

8
PQ(I − ∆t

2
P )(V n+1 − V n)

= (I +
∆t

2
P )
(
(I +

∆t

2
Q)V n +

∆t2

8
PQ(V n+1 − V n)

)
+

∆t2

8
PQ(I − ∆t

2
P )(V n+1 − V n)

= (I +
∆t

2
P )(I +

∆t

2
Q)V n +

∆t2

8
PQ(I +

∆t

2
P )(V n+1 − V n)

+
∆t2

8
PQ(I − ∆t

2
P )(V n+1 − V n)

= (I +
∆t

2
P )(I +

∆t

2
Q)V n +

∆t2

4
PQ(V n+1 − V n)

The right hand sides of (7.12) and (7.13) have (n + 1) terms that need to be

updated. This gives rise to the issue of finding an effective iterative procedure.

To avoid this problem, from the approximations:

V n =
V n+ 1

2 + V n− 1
2

2
and V n+ 1

2 =
V n+1 + V n

2

V n+1 and V n+ 1
2 can be obtained by extrapolation [57] as

V n+1 = 2V n+ 1
2 − V n (7.14)

V n+ 1
2 = 2V n − V n− 1

2 (7.15)
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Using (7.14) in the last term of either (7.12) or (7.13) gives

∆t2

8
PQ(V n+1 − V n) =

∆t2

4
PQ(V n+ 1

2 − V n) (7.16)

Again putting (7.15) into (7.16) gives

∆t2

8
PQ(V n+1 − V n) =

∆t2

4
PQ(V n − V n− 1

2 ) (7.17)

Use of (7.16) and (7.17) in (7.12) and (7.13), respectively, yields a couple

tridiagonally implicit set of equations

Step-1

(I − ∆t

2
P )V n+ 1

2 = (I +
∆t

2
Q)V n +

∆t2

4
PQ(V n − V n− 1

2 ) (7.18)

Step-2

(I − ∆t

2
Q)V n+1 = (I +

∆t

2
P )V n+ 1

2 +
∆t2

4
PQ(V n+ 1

2 − V n) (7.19)

In (7.18) and (7.19), unlike normal ADI–FDTD method, the last term is

not omitted. The existence of this last term reduces the truncation error. This

approach is explicit in nature and therefore simpler than the iterative ADI method

of (7.12) and (7.13).

First half-step

Now replacing (7.7), (7.8) and (7.9) into (7.18), the first substep of equations

are found

Ez
n+ 1

2 − ∆t

2τDε0ε∞
Dz

n+ 1
2 − ∆t

2

1

ε0ε∞

∂Hy
n+ 1

2

∂x
(7.20)

= [1 +
∆t

2
(

εS

τDε∞
+

σ

ε0ε∞
)]Ez

n +
∆t

2

1

ε0ε∞

∂Hx
n

∂y

−(
∆t

2
)2 σ

τDε0ε∞

(
Ez

n − Ez
n− 1

2

)
− (

∆t

2
)2 1

τDε0ε∞

(∂Hx
n

∂y
− ∂Hx

n− 1
2

∂y

)
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Dz
n+ 1

2 − ∆t

2

∂Hy
n+ 1

2

∂x
= −∆t

2
σEz

n + Dz
n +

∆t

2

∂Hx
n

∂y
(7.21)

Hx
n+ 1

2 =
∆t

2

1

µ

∂Ez
n

∂y
+ Hx

n (7.22)

− ∆t

2

1

µ

∂Ez
n+ 1

2

∂x
+ Hy

n+ 1
2 = Hy

n (7.23)

−(
∆t

2
)2 1

µ
(

εS

τDε∞
+

σ

ε0ε∞
)
(∂Ez

n

∂x
− ∂Ez

n− 1
2

∂x

)
−(

∆t

2
)2 1

µε0ε∞

(∂2Hx
n

∂x∂y
− ∂2Hx

n− 1
2

∂x∂y

)

Substituting Dz
n+ 1

2 from (7.21) into (7.20) gives

Ez
n+ 1

2 − ∆t

2τDε0ε∞

(
∆t

2

∂Hy
n+ 1

2

∂x
− ∆t

2
σEz

n + Dz
n +

∆t

2

∂Hx
n

∂y

)
(7.24)

−∆t

2

1

ε0ε∞

∂Hy
n+ 1

2

∂x
= [1 +

∆t

2
(

εS

τDε∞
+

σ

ε0ε∞
)]Ez

n +
∆t

2

1

ε0ε∞

∂Hx
n

∂y

−(
∆t

2
)2 σ

τDε0ε∞

(
Ez

n − Ez
n− 1

2

)
− (

∆t

2
)2 1

τDε0ε∞

(∂Hx
n

∂y
− ∂Hx

n− 1
2

∂y

)
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Putting Ez
n+ 1

2 from (7.24) into (7.23) results in

Hy
n+ 1

2 −
[
(
∆t

2
)3 1

µτDε0ε∞
+ (

∆t

2
)2 1

µε0ε∞

]∂2Hy
n+ 1

2

∂x2
(7.25)

=
∂Ez

n

∂x

{∆t

2

1

µ
[1 +

∆t

2
(

εS

τDε∞
+

σ

ε0ε∞
)]− (

∆t

2
)2σ

µ
− (

∆t

2
)3 σ

µτDε0ε∞

}
+

∆t

2

1

µ

∂Dz
n

∂x
+

∂2Hx
n

∂x∂y

{
(
∆t

2
)2 1

µ
+ (

∆t

2
)2 1

µε0ε∞
− (

∆t

2
)3 1

µτDε0ε∞

}
+(

∆t

2
)3 σ

µτDε0ε∞

∂Ez
n− 1

2

∂x
+ (

∆t

2
)3 1

µτDε0ε∞

∂2Hx
n− 1

2

∂x∂y
+

Hy
n − (

∆t

2
)2 1

µ
(

εS

τDε∞
+

σ

ε0ε∞
)
(∂Ez

n

∂x
− ∂Ez

n− 1
2

∂x

)
−(

∆t

2
)2 1

µε0ε∞

(∂2Hx
n

∂x∂y
− ∂2Hx

n− 1
2

∂x∂y

)

Factoring out the same derivatives (7.25) simplifies into

Hy
n+ 1

2 −
[
(
∆t

2
)3 1

µτDε0ε∞
+ (

∆t

2
)2 1

µε0ε∞

]∂2Hy
n+ 1

2

∂x2
(7.26)

=
∂Ez

n

∂x

{∆t

2

1

µ
[1 +

∆t

2
(

εS

τDε∞
+

σ

ε0ε∞
)]

−(
∆t

2
)2σ

µ
− (

∆t

2
)3 σ

µτDε0ε∞
− (

∆t

2
)2 1

µ
(

εS

τDε∞
+

σ

ε0ε∞
)
}

+
∆t

2

1

µ

∂Dz
n

∂x
+

∂2Hx
n

∂x∂y

{
(
∆t

2
)2 1

µ
− (

∆t

2
)3 1

µτDε0ε∞

}
+

∂Ez
n− 1

2

∂x

{
(
∆t

2
)3 σ

µτDε0ε∞
+ (

∆t

2
)2 1

µ
(

εS

τDε∞
+

σ

ε0ε∞
)
}

+
∂2Hx

n− 1
2

∂x∂y

{
(
∆t

2
)3 1

µτDε0ε∞
+ (

∆t

2
)2 1

µε0ε∞

}
+ Hy

n
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After discretization (7.26) becomes

H
n+ 1

2
y (i,j)−

[
(
∆t

2
)3 1

µτDε0ε∞
+ (

∆t

2
)2 1

µε0ε∞

]
(7.27)

1

∆x2

{
H

n+ 1
2

y (i+1,j)− 2H
n+ 1

2
y (i,j) + H

n+ 1
2

y (i−1,j)

}
=

1

∆x

{∆t

2

1

µ
[1 +

∆t

2
(

εS

τDε∞
+

σ

ε0ε∞
)]− (

∆t

2
)2σ

µ
− (

∆t

2
)3 σ

µτDε0ε∞

−(
∆t

2
)2 1

µ
(

εS

τDε∞
+

σ

ε0ε∞
)
}{

En
z (i,j)− En

z (i−1,j)

}
+

∆t

2

1

µ

1

∆x

{
Dn

z (i,j)−Dn
z (i−1,j)

}
+

1

∆x∆y

{
(
∆t

2
)2 1

µ
− (

∆t

2
)3 1

µτDε0ε∞

}{
Hn

x (i,j+1)−Hn
x (i,j)−Hn

x (i−1,j+1) + Hn
x (i−1,j)

}
+

1

∆x

{
(
∆t

2
)3 σ

µτDε0ε∞
+ (

∆t

2
)2 1

µ
(

εS

τDε∞
+

σ

ε0ε∞
)
}

{
E

n− 1
2

z (i,j)− E
n− 1

2
z (i−1,j)

}
+

1

∆x∆y

{
(
∆t

2
)3 1

µτDε0ε∞
+ (

∆t

2
)2 1

µε0ε∞

}
{

H
n− 1

2
x (i,j+1)−H

n− 1
2

x (i,j)−H
n− 1

2
x (i−1,j+1) + H

n− 1
2

x (i−1,j)

}
+ Hn

y (i,j)

In the modified FD–ADI–FDTD method Mur’s first-order absorbing boundary

conditions [28] (equations in Appendix B) are used. (7.27) does not hold when i =

imin or i = imax (hereafter, imin and imax refer to the lower and upper boundaries

along the x direction, jmin and jmax refer to those along the y direction). When

i = imin and i = imax, for Hy
n+ 1

2 (Figure 7.1) (7.28) and (7.29), respectively, are

used. These equations come from Mur’s ABC.

H
n+ 1

2
y (i,j)− (∆t−∆x

√
µε(i+1,j))

∆t + ∆x
√

µε(i,j)
H

n+ 1
2

y (i+1,j) (7.28)

=
(∆t + ∆x

√
µε(i+1,j)) Hn

y (i+1,j)− (∆t−∆x
√

µε(i,j)) Hn
y (i,j)

∆t + ∆x
√

µε(i,j)

H
n+ 1

2
y (i,j)− (∆t−∆x

√
µε(i−1,j))

∆t + ∆x
√

µε(i,j)
H

n+ 1
2

y (i−1,j) (7.29)

=
(∆t + ∆x

√
µε(i−1,j)) Hn

y (i−1,j)− (∆t−∆x
√

µε(i,j)) Hn
y (i,j)

∆t + ∆x
√

µε(i,j)

Now (7.27), (7.28) and (7.29) can be applied to all the grid points of the com-

putational space. This will form a system of linear equations of Au = c, where
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Hy

Hy

Hy

Hy

Hx

Hx

Hx

Hx

Ez

Ez

Ez

Ez

Hy

Hy

Hy

Hy

Hx

Hx

Hx

Hx

Ez

Ez

Ez

Ez

Hy

Hy

Hy

Hy

Hx

Hx

Hx

Hx

Ez

Ez

Ez

Ez

Hy

Hy

Hy

Hy

Hx

Hx

Hx

Hx

Ez

Ez

Ez

Ez

jmin

y

x

jmax

imin imax

Figure 7.1: Locations on the grid of the boundary values of E and H that are
calculated using the Mur’s ABCs (first half-step). Only those boundary values
that are used in the modified FD–ADI–FDTD equations are calculated.

A is a tridiagonal matrix, u is unknown field vector Hy
n+ 1

2 and c is the excitation

vector. The solution of this tridiagonal system of equations provides the values

of Hy at half-step. Then using Hy
n+ 1

2 in (7.21) Dz
n+ 1

2 is solved explicitly:

Dz
n+ 1

2 =
∆t

2

∂Hy
n+ 1

2

∂x
− ∆t

2
σEz

n + Dz
n +

∆t

2

∂Hx
n

∂y
(7.30)

The discretization of (7.30) gives

D
n+ 1

2
z (i,j) =

∆t

2

1

∆x

{
H

n+ 1
2

y (i+1,j)−H
n+ 1

2
y (i,j)

}
(7.31)

−∆t

2
σEn

z (i,j) + Dn
z (i,j) +

∆t

2

1

∆y

{
Hn

x (i,j+1)−Hn
x (i,j)

}
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(7.31) can not be used when i = imax and j = jmax. However, Dz(imax)

and Dz(jmax) are not required elsewhere in the scheme and therefore, are not

calculated. Using Dz
n+ 1

2 and Hy
n+ 1

2 in (7.20) Ez
n+ 1

2 is explicitly found:

Ez
n+ 1

2 =
∆t

2τDε0ε∞
Dz

n+ 1
2 +

∆t

2

1

ε0ε∞

∂Hy
n+ 1

2

∂x
(7.32)

+[1 +
∆t

2
(

εS

τDε∞
+

σ

ε0ε∞
)]Ez

n +
∆t

2

1

ε0ε∞

∂Hx
n

∂y

−(
∆t

2
)2 σ

τDε0ε∞

(
Ez

n − Ez
n− 1

2

)
− (

∆t

2
)2 1

τDε0ε∞

(∂Hx
n

∂y
− ∂Hx

n− 1
2

∂y

)
The discretization of (7.32) gives

E
n+ 1

2
z (i,j) =

∆t

2τDε0ε∞
D

n+ 1
2

z (i,j)(7.33)

+
∆t

2

1

ε0ε∞

1

∆x

{
H

n+ 1
2

y (i+1,j)−H
n+ 1

2
y (i,j)

}
+ [1 +

∆t

2
(

εS

τDε∞
+

σ

ε0ε∞
)]En

z (i,j)

+
∆t

2

1

ε0ε∞

1

∆y

{
Hn

x (i,j+1)−Hn
x (i,j)

}
− (

∆t

2
)2 σ

τDε0ε∞

(
En

z (i,j)− E
n− 1

2
z (i,j)

)
−(

∆t

2
)2 1

τDε0ε∞

{ 1

∆y
{Hn

x (i,j+1)−Hn
x (i,j)} − 1

∆y

{
H

n− 1
2

x (i,j+1)−H
n− 1

2
x (i,j)

}}
(7.33) can not be used when i = imax and j = jmax. Therefore, Ez(imax) and

Ez(jmax) (Figure 7.1) are determined by Mur’s ABC using (7.34) and (7.35),

respectively:

E
n+ 1

2
z (i,j) =

(∆t−∆x
√

µε(i−1,j))

∆t + ∆x
√

µε(i,j)
E

n+ 1
2

z (i−1,j) (7.34)

+
(∆t + ∆x

√
µε(i−1,j)) En

z (i−1,j)− (∆t−∆x
√

µε(i,j)) En
z (i,j)

∆t + ∆x
√

µε(i,j)

E
n+ 1

2
z (i,j) =

(∆t−∆y
√

µε(i,j−1))

∆t + ∆y
√

µε(i,j)
E

n+ 1
2

z (i,j−1) (7.35)

+
(∆t + ∆y

√
µε(i,j−1)) En

z (i,j−1)− (∆t−∆y
√

µε(i,j)) En
z (i,j)

∆t + ∆y
√

µε(i,j)
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Finally Hx
n+ 1

2 is obtained using (7.22)

Hx
n+ 1

2 =
∆t

2

1

µ

∂Ez
n

∂y
+ Hx

n (7.36)

(7.36) is discretized to (7.37)

H
n+ 1

2
x (i,j) =

∆t

2

1

µ

1

∆y

{
En

z (i,j)− En
z (i,j−1)

}
+ Hn

x (i,j) (7.37)

(7.37) can be used for all the grid points except for j = jmin. Hx(jmin) (Figure

7.1) is calculated using (7.38) which comes from Mur’s ABC:

H
n+ 1

2
x (i,j) =

(∆t−∆y
√

µε(i,j+1))

∆t + ∆y
√

µε(i,j)
H

n+ 1
2

x (i,j+1) (7.38)

+
(∆t + ∆y

√
µε(i,j+1)) Hn

x (i,j+1)− (∆t−∆y
√

µε(i,j)) Hn
x (i,j)

∆t + ∆y
√

µε(i,j)

All the equations to calculate Ez
n+ 1

2 , Dz
n+ 1

2 , Hx
n+ 1

2 and Hy
n+ 1

2 for the first

half-step have been derived above.

Second half-step

Next, using (7.7), (7.8) and (7.9) into (7.19) the second substep of equations

is obtained:

[1 +
∆t

2
(

εS

τDε∞
+

σ

ε0ε∞
)]Ez

n+1 +
∆t

2

1

ε0ε∞

∂Hx
n+1

∂y
(7.39)

= Ez
n+ 1

2 +
∆t

2

1

τDε0ε∞
Dz

n+ 1
2 +

∆t

2

1

ε0ε∞

∂Hy
n+ 1

2

∂x

−(
∆t

2
)2 σ

τDε0ε∞

(
Ez

n+ 1
2 − Ez

n
)
− (

∆t

2
)2 1

τDε0ε∞

(∂Hx
n+ 1

2

∂y
− ∂Hx

n

∂y

)

∆t

2
σEz

n+1 + Dz
n+1 +

∆t

2

∂Hx
n+1

∂y
= Dz

n+ 1
2 +

∆t

2

∂Hy
n+ 1

2

∂x
(7.40)
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∆t

2

1

µ

∂Ez
n+1

∂y
+ Hx

n+1 = Hx
n+ 1

2 (7.41)

Hy
n+1 =

∆t

2

1

µ

∂Ez
n+ 1

2

∂x
+ Hy

n+ 1
2 (7.42)

−(
∆t

2
)2 1

µ
(
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σ

ε0ε∞
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(∂Ez

n+ 1
2

∂x
− ∂Ez

n
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∆t

2
)2 1

µε0ε∞

(∂2Hx
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− ∂2Hx

n
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)
Substitution of Hx

n+1 from (7.41) into (7.39) gives

[1 +
∆t

2
(

εS

τDε∞
+

σ

ε0ε∞
)]Ez

n+1 − (
∆t

2
)2 1

µε0ε∞

∂2Ez
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∂y2
(7.43)

= −∆t
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)
After factoring out the coefficients properly, (7.43) can be re-written as

[1 +
∆t

2
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εS

τDε∞
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σ

ε0ε∞
)]Ez
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∆t

2
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(7.44)
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(7.44) is discretized as

[1 +
∆t

2
(

εS

τDε∞
+

σ

ε0ε∞
)]En+1

z (i,j) (7.45)
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x (i,j)

}
(7.45) can not be applied to the computational grids when j = jmin and

j = jmax. Following Mur’s ABC, (7.46) and (7.47) are used for Ez
n+1 (Figure

7.2) when j = jmin and j = jmax, respectively:

En+1
z (i,j)− (∆t−∆y

√
µε(i,j+1))

∆t + ∆y
√

µε(i,j)
En+1

z (i,j+1) (7.46)

=
(∆t + ∆y

√
µε(i,j+1)) En

z (i,j+1)− (∆t−∆y
√

µε(i,j)) En
z (i,j)

∆t + ∆y
√

µε(i,j)

En+1
z (i,j)− (∆t−∆y

√
µε(i,j−1))

∆t + ∆y
√

µε(i,j)
En+1

z (i,j−1) (7.47)

=
(∆t + ∆y

√
µε(i,j−1)) En

z (i,j−1)− (∆t−∆y
√

µε(i,j)) En
z (i,j)

∆t + ∆y
√

µε(i,j)

When (7.45), (7.46) and (7.47) are applied to all the grid locations, like the

first substep, another tridiagonal system of equations is found. The values of

Ez
n+1 are found by solving this tridiagonal system of equations. Then using

(7.41) Hx
n+1 is solved explicitly:

Hx
n+1 = Hx

n+ 1
2 − ∆t

2

1

µ

∂Ez
n+1

∂y
(7.48)
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Figure 7.2: Locations on the grid of the boundary values of E and H that are
calculated using the Mur’s ABCs (second half-step). Only those boundary values
that are used in the modified FD–ADI–FDTD equations are calculated.

(7.48) is discretized to (7.49)

Hn+1
x (i,j) = H

n+ 1
2

x (i,j)− ∆t

2

1

µ

1

∆y

{
En+1

z (i,j)− En+1
z (i,j−1)

}
(7.49)

As (7.49) is not applicable when j = jmin, Hx(jmin) (Figure 7.2) is determined

using Mur’s ABC

Hn+1
x (i,j) =

(∆t−∆y
√

µε(i,j+1))

∆t + ∆y
√

µε(i,j)
Hn+1

x (i,j+1) (7.50)

+
(∆t + ∆y

√
µε(i,j+1)) Hn

x (i,j+1)− (∆t−∆y
√

µε(i,j)) Hn
x (i,j)

∆t + ∆y
√

µε(i,j)
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Next (7.42) is used to solve for Hy
n+1 explicitly:
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2 (7.51)

−(
∆t

2
)2 1

µ

( εS

τDε∞
+

σ

ε0ε∞

)(∂Ez
n+ 1

2

∂x
− ∂Ez

n

∂x

)
−(

∆t

2
)2 1

µε0ε∞

(∂2Hx
n+ 1

2

∂x∂y
− ∂2Hx

n

∂x∂y

)
The discretization of (7.51) gives
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(7.52) can not be used when i = imin and j = jmax. As Hy(jmax) is not

required elsewhere in the scheme, it is not calculated. Hy(imin) (Figure 7.2) is

determined using (7.53) which comes from Mur’s ABC.

Hn+1
y (i,j) =

(∆t−∆x
√
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∆t + ∆x
√
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+
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Finally using (7.40) Dz
n+1 is calculated explicitly

Dz
n+1 = Dz

n+ 1
2 +
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2

∂Hy
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− ∆t

2
σEz
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2
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(7.54)
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(7.54) is discretized to (7.55)

Dn+1
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n+ 1
2

z (i,j) +
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2
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H
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2
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2
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(7.55)

−∆t

2
σEn+1

z (i,j)− ∆t

2

1

∆y

{
Hn+1

x (i,j+1)−Hn+1
x (i,j)

}
(7.55) is not applicable when i = imax and j = jmax. But as the values of

Dz(imax) and Dz(jmax) are not required elsewhere in the scheme, they are not

calculated. All the equations to calculate the values of E, D and H have been

now derived. A close look to these equations shows that the tridiagonal matrices

of the modified FD–ADI–FDTD method are those of the normal FD–ADI–FDTD

method [91] except for additional terms which do not increase the computational

burden significantly.

7.3 Numerical Validation

To validate the proposed modified FD–ADI–FDTD method, numerical tests were

conducted for a 2D computational space of 400×400 cells (in x and y directions)

consisting of 2 media. Half of the computational space (x ≤ 200) had the pa-

rameters εS = 9.5, ε∞ = 4.2, σ = 0.0 S/m and τD = 77.0 ps and the other

half (x > 200) had εS = 6.2, ε∞ = 3.5, σ = 0.0 S/m and τD = 39.0 ps. A

line source was applied at (180,200) in the first medium. The excitation wave-

form was a Gaussian pulse centred at 2.3 GHz. A uniform spatial sampling

of ∆x = ∆y = ∆s = 0.3 × 10−3m was used. The time-step was variably

taken at or above the CFL stability condition of the explicit FDTD method:

∆t = CFLN ×∆s/(c
√

2) with CFLN referred to as CFL number and c the free

space light–speed.

A test point, 40 cells away into the second medium, at (220,200) was taken.

The solution provided by the FD–ADI–FDTD method [91] for CFLN = 1 was

used as the reference. Results for the time evolution of Ez at the test point

for the FD-ADI–FDTD method and the modified FD–ADI–FDTD method are

shown in Figure 7.3 and 7.4, respectively, when CFLN was varied from 1 to

30. Noticeable errors are seen when FD–ADI–FDTD method is used while in the
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Figure 7.3: Observed signals of the normal FD–ADI–FDTD method with chang-
ing CFL numbers.

case of modified FD–ADI–FDTD method these are significantly reduced. Split-

ting errors resulting from the dropped last term of (7.11) account for these errors,

which have been taken care of in the modified FD–ADI–FDTD method.

To quantify the improvement of the modified FD–ADI–FDTD method, an av-

erage error E calculated over the whole frequency band of the transient excitation

has been defined:

E =

√√√√√√√√
∑

f

(
Srcd − Sref

rcd

)2

∑
f

(
Sref

rcd

)2 (7.56)

where Srcd is the amplitude spectrum of the field received at the test point

by the modified FD–ADI–FDTD method and Sref
rcd is that of the reference. The

average errors for FD–ADI–FDTD and modified FD–ADI–FDTD methods for
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Figure 7.4: Observed signals of the modified FD–ADI–FDTD method with vary-
ing CFL numbers.

CFLN FD–ADI–FDTD Modified FD–ADI–FDTD

10 0.096932 0.052911

20 0.471145 0.091383

30 0.718453 0.124622

Table 7.1: Average error of normal FD–ADI–FDTD method and modified FD–
ADI–FDTD method at different CFLN

three values of CFLN > 1 are given in Table 7.1. The proposed method re-

duces the errors of the FD–ADI–FDTD method without significant increase in

the computational costs.
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7.4 Conclusion

A method capable of reducing the numerical errors in the FD–ADI–FDTD method

has been presented and numerically verified in this chapter. Like the normal

FD–ADI–FDTD method, the modified method still requires only to solve the

tridiagonal matrix systems but can reduce the perturbations introduced in the

CN–FDTD method to formulate the ADI–FDTD method. In other words, the

improvement of accuracy comes without significant increase in the computational

costs.



Chapter 8

Implementation of the Proposed

Methods

The implementation of the FD–CN–FDTD method in serial code as well as its

parallel implementation in OpenMP are presented in this chapter. As the power

of computation and technology of memory are galloping fast, in parallel with

the development of sophisticated sparse matrix solvers, the CN–FDTD method

poses itself as a promising, affordable alternative to the conventional explicit

FDTD method. However, there are scarce precedence of implementation of the

CN–FDTD method in computer programmes and no precedence of implementa-

tion of the frequency dependent CN–FDTD method which is more complicated.

Therefore, the implementation techniques described in this chapter bear signifi-

cance and would be useful for future researchers on the CN–FDTD method. Also

the implementation of the modified FD–ADI–FDTD method proposed in this

thesis is described in this chapter.

8.1 Introduction

Ideally, implementation of a numerical method in computer code should sat-

isfy a number of criteria. For example, it should be simple, easily understood,

portable and easily parallelizable. Simplicity in coding ensures potential bugs and

problems can be avoided and other researchers can re-use the code with simple

modification as required. Portability means the code can be compiled on different

architectures and operating systems without any change in it. Parallelization of

the code should enable a larger computation than a CPU can handle.

163
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All the unconditionally stable FDTD methods presented in this thesis were

implemented in Fortran 90. In the scientific computation, specially when high

performance is required, Fortran is the most widely used programming lan-

guage [121]. It is said to be a natural language for expressing science and engineer-

ing ideas. In addition to normal features present in other high-level programming

languages, Fortran provides some additional merits:

• It allows variable-dimension array arguments in the subroutines.

• It has a rich set of useful generic-precision intrinsic functions.

• The new intrinsic functions of Fortran 90 allow very sophisticated array

manipulations.

• Fortran 90 supports various useful features of C (column independent code,

pointers, dynamic memory allocation) and C++ (operator overloading,

primitive objects).

• The good design of Fortran allows maximal speed of execution.

• There is a huge amount of high quality scientific legacy code written in

Fortran and much of which is publicly available.

The code can be parallelized using OpenMP in shared memory architecture

or message passing interface (MPI) in distributed memory architecture. Adding

OpenMP constructs to the serial Fortran code is straightforward to get some level

of parallelization in shared memory. Use of MPI to distribute the computational

load among several nodes can get the most benefit of parallelization but its im-

plementation is complicated.

In this thesis, two implicit FDTD methods, namely, FD–CN–FDTD method

and modified FD–ADI–FDTD method have been proposed. Since the FD–CN–

FDTD method yields sparse matrices and the modified FD–ADI–FDTD method

yields tridiagonal matrices, their implementation using standard matrix struc-

tures and algorithms will not give fast computation with the least memory re-

quirements. Therefore, for efficient implementation of the proposed methods, the

special characteristics of the matrices have to be exploited.
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8.2 Implementation of the FD–CN–FDTD

Method

Some of the key techniques used in the implementation of the FD-CN-FDTD

method in Fortran code are described in this section. As explained in Chapter 5,

the FD-CN-FDTD method can use either direct or iterative solvers to solve the

sparse system of linear equations Au = c. Fig. 8.1 shows the flowchart of the

FD-CN-FDTD method in both approaches of direct and iterative solvers. When

the direct solver is used, the sparse matrix A generated by the FD-CN-FDTD

method is first decomposed in factors of lower and upper triangular matrices (LU

factors). Then during the iterations of the simulation (FDTD iteration), these

factors are repeatedly used with a new value of vector c at each iteration and

the system is solved by forward and backward triangular sweeps. In the itera-

tive solver approach, at each step of the simulation, an initial estimation of the

solution is made and by repeated use of a certain algorithm (depending on the

iterative method used) this initial estimation approaches to the desired solution.

In both cases, the first step is to form the sparse matrix from the FD–CN–FDTD

equations (3.32), (3.40), (3.42) and those mentioned in Tables 3.1, 3.2, 3.3. As

this matrix is mostly filled with zeroes and only a few non-zeroes, advantages

can be taken from the sparseness of the matrix. Because, there is no necessity of

storing the zeroes and only the non-zero values and their positions in the matrix

(row and column indices) are important. To form the sparse matrix in the FD–

CN–FDTD method, the function of Fig. 8.2 is used.

In the function of Fig. 8.2, the values of (i,j,k) are passed to (p,q,r),

where, (i,j,k) are the locations of the grid points in the computational space.

iminplusone = imin + 1, jminplusone = jmin + 1, kminplusone = kmin + 1,

where, imin, jmin, kmin and imax, jmax, kmax are the lower and upper limits of the

computational space. Based on the values of (i,j,k), the function mat_ind(p,q,r)

of Fig. 8.2 returns the values which are used to calculate the row and column in-

dices of each of the elements of the sparse matrix. The elements of the sparse

matrix come from the coefficients of Ex , Ey and Ez of the FD–CN–FDTD equa-

tions (3.32), (3.40), (3.42) and those mentioned in Tables 3.1, 3.2, 3.3.

The sequence in the unknown vector u of the system of equation Au = c of
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Initialization

Form the sparse matrix & 
do LU decomposition

t=0

Update [c] and use the same 
LU factors at each iteration
to solve for E by forward/ 
backward substitution

H field Calculation

D field Calculation

t<tmax?
Yes

End simulation

No

t=t+1

Initialization

Form the sparse matrix

t=0

Update [c] and solve the
sparse matrix system 
Au=c by an iterative 
method to get E

H field Calculation

D field Calculation

t<tmax?
Yes

End simulation

No

t=t+1

Direct Solver Approach: Iterative Solver Approach:

Figure 8.1: Flowchart of the FD–CN–FDTD method in direct and iterative solvers
approaches

integer function mat_ind (p,q,r)

implicit none

integer, intent(in):: p,q,r

integer pmax, qmax, rmax

pmax=imax-iminplusone+1

qmax=jmax-jminplusone+1

rmax=kmax-kminplusone+1

mat_ind=(p-iminplusone)*qmax*rmax+(q-jminplusone)*rmax+r-kminplusone+1

end function mat_ind

Figure 8.2: Function for computing the matrix indices in the implementation of
the FD–CN–FDTD method
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the FD–CN–FDTD method is useful in determining the row and column indices

of the elements of the sparse matrix. Fig. 8.3 shows the sequence of unknowns

in the vector u, when the FD–CN–FDTD equations are applied to all the grid

points. In u, unknown values of Ex at all the grid points come first, followed

by those of Ey and Ez , respectively. When the FD–CN–FDTD equations are

applied to all the grid points, first (3.32) is used at all those points, followed by

(3.40) and (3.42). Row indices for the coefficients of Ex , Ey and Ez of (3.32) are

calculated by passing (i,j,k) to the function mat_ind(p,q,r). Now, in the

Fortran code the total number of grid points is calculated as

max_mul=(imax-iminplusone+1)*(jmax-jminplusone+1)*(kmax-kminplusone+1)

Therefore, the row indices for the coefficients of Ex , Ey and Ez of (3.40) and (3.42)

are calculated by max_mul+mat_ind(p,q,r) and 2*max_mul+mat_ind(p,q,r),

respectively.

Each column of A is multiplied with the unknown vector u which has the

sequence of Fig. 8.3. Therefore, for either of (3.32), (3.40) or (3.42), the column

indices for the coefficients of Ex , Ey and Ez are calculated by mat_ind(p,q,r),

max_mul+mat_ind(p,q,r) and 2*max_mul+mat_ind(p,q,r), respectively. In this

way, all the non-zero values of the matrix A and their row and column indices

are calculated and stored in coordinate sparse matrix format (COO) as shown in

Fig. 8.4. So if there are n non-zeroes in matrix A, two integer arrays each of size

n and a double precision array of size n are required.

The memory requirements for storing the sparse matrix can be further reduced

by converting the COO format to compressed sparse row (CSR) format. CSR

is the most popular sparse matrix storage format as it is more convenient to

perform typical matrix computations in this format [110]. Many of the useful

sparse matrix software packages are compatible with this format. In CSR format

the sparse matrix is represented by three arrays:

• A double precision array, val, of the length of the number of non-zeroes

present in the sparse matrix. It stores the non-zero elements of the matrix

row by row.

• An integer array, jj, of the length of the number of non-zeroes present in

the sparse matrix. It contains the column indices of the non-zero elements

stored in the above-mentioned double precision array.
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Ey(imin, jmin, kmin + 1)
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Ey(imax, jmax, kmax)
Ez(imin, jmin, kmin)

Ez(imin, jmin, kmin + 1)
. . .
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Figure 8.3: The sequence in the unknown vector u of the system of equation
Au = c of the FD–CN–FDTD method

• An integer array, ptr, of length s + 1, where, s is the order of the sparse

matrix. It contains the pointers (indices) to the beginning of each row in

either of the previous two arrays. The last element of ptr array always has

the value nnz + 1, where, nnz is the number of non-zeroes in the sparse

matrix.
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RowIndex

ColumnIndex

V alues

r1, r2, r3, . . . . . . . . . rn

c1, c2, c3, . . . . . . . . . cn

val1, val2, val3, . . . . . . . . . valn

Figure 8.4: Coordinate (COO) storage format of sparse matrix

For example, the matrix G in (8.1) is represented in CSR format in (8.2),

(8.3) and (8.4). val in (8.2) and jj in (8.3) can be easily understood from the

above description of the CSR arrays. ptr array holds the position of the left-most

non-zero element among all the non-zero elements of the matrix (row by row).

Thus the contents of the ptr array in (8.4) are the positions of 2, 4, 7, 8 in val,

which holds all the non-zero elements of the matrix. As the total number of

non-zero elements in G is 8, the last element of ptr is 8 + 1 = 9.

G =


2 1 0 0

0 4 3 5

7 0 6 0

0 0 0 8

 (8.1)

val= 2 1 4 3 5 7 6 8 (8.2)

jj= 1 2 2 3 4 1 3 4 (8.3)

ptr= 1 3 6 8 9 (8.4)

The FD–CN–FDTD sparse matrix in COO format is converted to CSR format

using SPARSEKIT package [122]. In order to solve the sparse system, Au = c,

using direct or iterative solvers, Harwell Subroutine Library (HSL) packages [123]
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were used. For this, the matrix in CSR format is again required to convert to

HSL_ZD11 type which is the HSL’s own derived type for sparse matrices. HSL_ZD11

type is used to allow the exchange of data between HSL subprograms and other

codes [124]. An excerpt of the code for the solution of Au = c using HSL’s

BiCGStab routine, MI–26, is shown in Fig. 8.5. In Fig. 8.5, iact is an integer

variable whose value decides the next course of action in the solution of Au = c.

Value of iact determines whether an error is occurred or further iteration is

required to reach the convergence or convergence is achieved and computation

should be terminated. The details of other variables n, w, ldw, locy, locz, resid,

icntl, cntl, info26, isave, rsave, info65 can be found in the HSL documen-

tations [125][126]. At each FDTD iteration using a sparse matrix solver routine,

like MI–26 in Fig. 8.5, the values of electric fields are obtained. Thereafter, calcu-

lation of magnetic fields and electric flux densities is quite straightforward using

the explicit equations of Section 3.5.

iact = 0

do

call mi26ad(iact,n,w,ldw,locy,locz,resid,icntl,cntl,info26,isave,rsave)

if (iact == -1) then

write(*,*) "Error in solver loop"

exit

else if (iact == 1) then

if (resid <= tolerance) then

exit

end if

else if (iact == 2) then

call mc65_matrix_multiply_vector(a, w(:,locz), w(:,locy), info65)

end if

end do

Figure 8.5: An excerpt of the FD–CN–FDTD code where Au = c is solved using
the BiCGStab method

When the sparse matrix system is solved in iterative methods, multiplications

of a matrix and a vector are required. For this matrix-vector multiplication, HSL

documentations suggested to use HSL routine MC–65

(mc65_matrix_multiply_vector in Fig. 8.5). However there are other subrou-

tines for sparse matrix-vector multiplications, for example, amux from SPARSEKIT
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Subroutine
% of total CPU time

Total CPU time
used by the subroutine

mc65_matrix_multiply_vector 47.8
84 min 31 sec

mi26ad 18.5

Table 8.1: Performance when matrix-vector multiplication subroutine,
mc65 matrix multiply vector, is used in the implementation of the FD–CN–
FDTD method (CFLN = 1)

Subroutine
% of total CPU time

Total CPU time
used by the subroutine

amux 42.4
70 min 49 sec

mi26ad 25.3

Table 8.2: Performance when matrix-vector multiplication subroutine, amux, is
used in the implementation of the FD–CN–FDTD method (CFLN = 1)

[122]. Matrix-vector multiplications account for a significant portion of the com-

putations. Therefore, for computationally efficient implementation of the FD–

CN–FDTD method, this was carefully studied with Fortran profiler (gprof). For

the numerical tests described in Section 5.3.1 (Fig. 5.2), when the simulation is

run for 1200 time steps with CFLN = 1 on AMD Athlon 64 X2 4200+ Dual

Core Processor, the performance of matrix-vector multiplication subroutines,

mc65_matrix_multiply_vector and amux are shown in Table 8.1 and Table 8.2.

Intel Fortran Compiler was used in these tests and in all the studies described in

this thesis except the parallelization described in Section 8.3. In Table 8.1 and

Table 8.2, the performance is shown in terms of the percentage of total CPU time

used by a particular subroutine and total CPU time required by the whole FD–

CN–FDTD code. amux accounted for 42.4% of the total time spent to run the code

in comparison to 47.8% for mc65_matrix_multiply_vector. Depending on the

choice of matrix-vector multiplication subroutine, the percentage of time used by

the BiCGStab solver subroutine, mi26ad, is also affected. The percentage of time

for mi26ad includes Basic Linear Algebra Subprograms (BLAS) routines: dnrm2,

daxpy, ddot, dcopy and dscal, which are called by mi26ad during its execution.

The most noticeable observation in Table 8.1 and Table 8.2 is the reduction of to-

tal CPU time when amux is used instead of mc65_matrix_multiply_vector. An

advantage of using amux is that it can do the matrix-vector multiplication when



CHAPTER 8. IMPLEMENTATION OF THE PROPOSED METHODS 172

CFLN
% of total CPU time

amux mi26ad

1 42.4 25.3

2 44.4 28.1

3 48.7 30.7

4 51.8 31.3

5 56.4 32.5

Table 8.3: Performance of the two most computationally expensive subroutines
at different CFLN

the sparse matrix is stored in CSR format, while mc65_matrix_multiply_vector

requires the matrix in HSL_ZD11 format. So, use of amux simplifies the implemen-

tation by not requiring to convert the sparse matrix into HSL_ZD11 format.

As in each time step of the FD–CN–FDTD method, usually matrix-vector

multiplication needs to be performed a number of times, it has a significant con-

tribution in the overall computational performance. This is because, as shown

in Fig. 8.5, matrix-vector multiplications need to be done repeatedly until the

solution converges. Furthermore, Section 5.3.1 (Fig. 5.7) showed, in solving the

sparse matrix system, more iterations are required to converge at higher CFLN .

This means that the number of matrix-vector multiplications would increase at

higher CFLN . For the same numerical test mentioned above, the performance

of amux and mi26ad subroutines at different CFLN is shown in Table 8.3. These

two are the most computationally expensive subroutines used in the implemen-

tation of the FD–CN–FDTD method. Table 8.3 shows that with the increase

of CFLN , the percentage of total CPU time used by both of the subroutines

increases. Preconditioners are usually used with the sparse matrix by matrix-

vector multiplication operation. Therefore, if a suitable preconditioner is found

for the FD–CN–FDTD method in future, the computational effects of matrix-

vector multiplications need to be taken into account.

In order to reduce the computational costs and memory requirements, some

techniques were used during the implementation of the FD–CN–FDTD method.
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To implement the FD–CN–FDTD equations (3.32), (3.40), (3.42) and those men-

tioned in Tables 3.1, 3.2, 3.3, instead of repeatedly calculating the coefficients of

Ex , Ey , Ez , Hx , Hy , Hz , Dx , Dy , Dz , they are calculated only once before the for-

mation of the sparse matrix, stored and reused. In most cases of the simulation,

uniform space discretization of ∆x = ∆y = ∆z = ∆s is used. Therefore, in the

implementation the constant multiplying terms of the FD–CN–FDTD equations
P1(i, j, k)

∆x2
,
P1(i, j, k)

∆y2
,
P1(i, j, k)

∆z2
,
P1(i, j, k)

∆x∆y
,
P1(i, j, k)

∆y∆z
,
P1(i, j, k)

∆z∆x
can be equated

to
P1(i, j, k)

∆s2
. The number of arithmetic operations and the computational time

are saved in these ways.

Setting up the computational environment: Fig. 8.6 shows the way in which

the computational environment of the FD–CN–FDTD method is set up. As the

FD–CN–FDTD method is meant for inhomogeneous media, for each grid point

(i, j, k) corresponding media parameters have to be defined. The coefficients for

each field component of the FD–CN–FDTD equations are functions of the media

parameters ((3.33), (3.34), (3.35), (3.36), (3.37), (3.38) and (3.13), (3.14), (3.15),

(3.16), (3.17), (3.18)). Therefore, their values also depend on the location of the

grid point in the computational space and need to be calculated based on the

media parameters at that grid point. However, storing media parameters and co-

efficients for all the grid points will take a lot of memory. Therefore, a technique

is used to save the memory.

The computational space consists of different type of media, each having dif-

ferent parameters. Each of the media is identified by an integer m. An array

named idmed(i,j,k) holds the media type (m) for each (i, j, k). The coefficients

are calculated for each media type, rather than for each (i, j, k). The total num-

ber of media present in the computational space is limited and usually less than

the total number of grid points in the computational space. Therefore, this ap-

proach can avoid expensive calculation and storing of data for each (i, j, k). In

the skeleton code of Fig. 8.6 dt, dx, dy, dz are ∆t, ∆x, ∆y, ∆z and debcoeff1,

debcoeff2, debcoeff3, debcoeff4, debcoeff5,debcoeff6, p1, p2, p3, p4, p5,

p6 are ν1(i, j, k), ν2(i, j, k), ν3(i, j, k), ν4(i, j, k), ν5(i, j, k), ν6(i, j, k), P1(i, j, k),

P2(i, j, k), P3(i, j, k), P4(i, j, k), P5(i, j, k), P6(i, j, k), respectively ((3.33)–(3.38),

(3.13)–(3.18)). tau_d, sigma, eps_s, eps_inf, eps_0, mu are τD, σ, εS, ε∞, ε0, µ,

respectively. In this example, the computational space is formed by 2 different
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media. As seen in Fig. 8.6 it is not necessary to store the media parameters

tau_d, sigma, eps_s, eps_inf for all the grid points, rather, they are stored

only for the two types of the media. The coefficients (for example, debcoeff1,

debcoeff2, p1, p2) are calculated and stored only for the two types of media as

well. Fig. 8.6 also shows how this technique is used in the formation of the sparse

matrix. The first and second rows of the array matrix_A_ind hold the row and

column indices of the matrix, respectively and the array matrix_A_val holds the

value of the corresponding non-zero elements. In the last do loop of Fig. 8.6 by

using the array idmed the media type (m) for a point (i, j, k) is determined first

and then the value of p1 for that media type is used to calculate the non-zero el-

ements of the matrix. This approach saves the amount of memory, computations

and requires less data reading.

Setting up the computational environment for human body model: Chapter 6

presented the modelling of human body in the FD–CN–FDTD method. In this

model the geometrical features of the human body is read from the 2-mm resolu-

tion voxel model or phantom of [117], hereafter called NICT (National Institute of

Information and Communications Technology, Japan) phantom. Each voxel rep-

resents an uniform volume of the human body such that it can be assigned with

an identifying number that corresponds to a particular tissue or organ. The male

NICT phantom consists of 320×160×866 voxels i.e. imax = 320, jmax = 160,

kmax = 866. The NICT phantom has 866 files corresponding to k = 1 to kmax,

each containing the identifying numbers of all the tissues on the cross section of

xy plane having the dimensions of imax×jmax = 320×160. Each of these files has

the name ’numXXX’, where ’XXX’ is the value of k (i.e. 001 to 866). Fig. 8.7 shows

the code for reading the identifying numbers of the tissues from the ’numXXX’ files

and storing them into the idmed array. Here nom is a character variable that holds

the NICT phantom filename and integer variables d0, d1, d2 are used to produce

the ’numXXX’ filenames in a sequential order. The code in Fig. 8.7 thus places

the tissues represented by the identifying numbers in the computational space of

the FD–CN–FDTD code. For each of these tissues the corresponding Debye pa-

rameters (Table 6.1) are stored appropriately in the arrays tau_d, sigma, eps_s,

eps_inf. Then the calculation of the coefficients and rest of the implementation

follow the same techniques described earlier (Fig. 8.6). In this way, the human

body is modelled in the FD–CN–FDTD computational space.
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integer m !media id

integer, parameter :: med=2 !in total, 2 types of media

integer, dimension (imin:imax,jmin:jmax,kmin:kmax) :: idmed

...........

...........

<more declarations>

...........

...........

!defining which grid point has which type of media. the value

!of x1 determines the dividing plane in the computational space

do k = kmin,kmax

do j = jmin,jmax

do i = imin,imax

if (i.le.x1) then

idmed(i,j,k)=1

else

idmed(i,j,k)=2

end if

end do

end do

end do

!assigning the media parameters

!t1, s1, es1, es1 are the values of the media parameters

tau_d(1)= t1

sigma(1)= s1

eps_s(1)= es1

eps_inf(1)= es2

!t2, s2, es2, es2 are the values of the media parameters

tau_d(2)= t2

sigma(2)= s2

eps_s(2)= es2

eps_inf(2)= es2

...........

...........

<more assigments>

...........

...........

contd.



CHAPTER 8. IMPLEMENTATION OF THE PROPOSED METHODS 176

! calculation of the coeffecients
do m=1,med

debcoeff1(m)=tau_d(m)/(dt**2.0)+1.0/dt
debcoeff2(m)=-2.0*tau_d(m)/(dt**2.0)-1.0/dt
debcoeff3(m)=tau_d(m)/(dt**2.0)
debcoeff4(m)=eps_0*eps_inf(m)*tau_d(m)/(dt**2.00 &

+(eps_0*eps_s(m)+sigma(m)*tau_d(m))/dt+sigma(m)/2.0
debcoeff5(m)=-2.0*eps_0*eps_inf(m)*tau_d(m)/(dt**2.0) &

-(eps_0*eps_s(m)+sigma(m)*tau_d(m))/dt+sigma(m)/2.0
debcoeff6(m)=eps_0*eps_inf(m)*tau_d(m)/(dt**2.0)
p1(m)=((dt/2.0)**2.0)*debcoeff1(m)/debcoeff4(m)/mu
p2(m)=debcoeff1(m)/debcoeff4(m)+debcoeff2(m)/debcoeff4(m)
p3(m)=debcoeff3(m)/debcoeff4(m)
p4(m)=debcoeff1(m)*dt/debcoeff4(m)
p5(m)=debcoeff5(m)/debcoeff4(m)
p6(m)=debcoeff6(m)/debcoeff4(m)

end do
...........
...........

!matrix A is being formed now
do k = kminplusone,kmax

do j = jminplusone,jmax
do i = iminplusone,imax

m=idmed(i,j,k)
...........
...........

<programme statements>
...........
...........

matrix_A_ind(1,next)=mat_ind(i,j,k)
matrix_A_ind(2,next)=mat_ind(i,j,k)
matrix_A_val(next)=1.0+2.0*p1(m)/(dy**2.0)+2.0*p1(m)/(dz**2.0)
next=next+1

...........

...........
<programme statements>

...........

...........

end do
end do

end do
...........
...........
...........

Figure 8.6: Skeleton code showing the computational environment set-up and
memory saving techniques in the implementation.
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do k = 1,kmax

d2=k/100; d1=(k-d2*100)/10; d0=(k-d2*100)-d1*10;

nom=’num’ // CHAR(48+d2) // CHAR(48+d1) // CHAR(48+d0)

open(unit=53, file=nom, status="old", iostat=err)

if (err.NE.0) then

print *, "Error opening file: ’", nom, "’"

stop

end if

do j = 1, jmax

do i = 1, imax

read(53, *, iostat=err) idmed (i,j,k)

if (err.NE.0) then

print *, "Error reading file: ’", nom, "’"

stop

end if

end do

end do

close(53)

end do

Figure 8.7: Code for reading the data from the human body phantom.

8.3 Parallelization of the FD–CN–FDTD Method

in Shared Memory Architecture

The simulation of 2-millimetre resolution human body model in the FD–CN–

FDTD method requires enormously large amount of memory and very long CPU

time. One way to overcome these constraints is parallelising the FD–CN–FDTD

code. In this thesis, parallelization has been done using OpenMP in a shared

memory architecture. OpenMP provides the specifications for parallelizing the

programmes written in C, C++ and Fortran in a shared memory environment.

It consists of a set of compiler directives, runtime routines and environment vari-

ables using which the shared memory parallelism is specified. OpenMP provides

an elegant and portable interface to parallelize the programme on various archi-

tectures and systems by small incremental changes to the source code.

In the parallel execution of the code, OpenMP uses the fork-join model as
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shown in Fig. 8.8. An OpenMP programme begins as a single thread of execution.

When it encounters a parallel construct, it creates (’forks’) the required number of

threads and becomes the master thread of all the threads. Programme statements

within the parallel construct are executed in parallel by each thread of the team

of threads. At the end of the parallel construct, threads synchronize back (’join’)

and only the master thread continues the execution. There can be any number of

parallel regions and different number of threads in each parallel region, as shown

in Fig. 8.8.

Slaves

Slaves

Synchronization

Synchronization

Master Thread

start of parallel construct

start of parallel construct

end of parallel construct

end of parallel construct

Figure 8.8: Execution model of OpenMP

To parallelize the code in OpenMP, appropriate OpenMP directives are added

in the appropriate places in the source code. Then the code is compiled with

a compiler that supports OpenMP and with the appropriate compiler options.

The compiler interprets the OpenMP directives and parallelizes the code. In

the serial implementation of the FD–CN–FDTD method, there are a number

of nested do loops to cover the whole three-dimensional computational space

as shown in Fig. 8.9. Computational efficiency can be achieved by distributing

these loops over a number of threads using OpenMP directives. This will make
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do k = kminplusone,kmax

do j = jminplusone,jmax

do i = iminplusone,imax

...........

...........

<programme statements>

...........

...........

end do

end do

end do

Figure 8.9: Nested do loops in the serial code

the programme statements inside the loops execute in parallel by each thread.

For example, OpenMP directives are used during the formation of matrix A of

the FD–CN–FDTD method and shown in Fig. 8.10. In Fig. 8.10, the starting

and ending OpenMP directives are, respectively

!$OMP PARALLEL DO SHARED(max_mul,p1,permittivity,matrix_A_val,

matrix_A_ind) PRIVATE(i,j,k,m,next)

and

!$OMP END PARALLEL DO

In the starting OpenMP directive, the data scoping clauses, SHARED and

PRIVATE, were used to control access to the variables properly. If no such access

control mechanism is used, the problem of ’race conditions’ can arise. In race con-

dition, the programme will run but due to the ’racing’ of the threads to modify

a variable, it can produce wrong results. In Fig. 8.10 the clause SHARED spec-

ifies max_mul,p1,permittivity,matrix_A_val,matrix_A_ind as shared vari-

ables among all the threads for the duration of the parallel construct. All the

threads use the same storage area for each shared variable and have access to

that storage area. On the other hand, the clause PRIVATE makes the variables

i,j,k,m,next ’local’ to each thread. They will have multiple storage locations,

one within the execution context of each thread, for the duration of the parallel

construct. When read and write operations are performed by a thread on these

private variables, they will refer to the local copy of the variable within that
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! formation of matrix a

!$OMP PARALLEL DO SHARED(max_mul,p1,permittivity,matrix_A_val,

matrix_A_ind) PRIVATE(i,j,k,m,next)

do k = kminplusone,kmax

do j = jminplusone,jmax

do i = iminplusone,imax

...........

...........

<codes to produce matrix a>

...........

...........

end do

end do

end do

!$OMP END PARALLEL DO

Figure 8.10: An excerpt of the code showing the use of OpenMP directives in the
nested do loops during the formation of matrix A

thread. Their memory locations are inaccessible to other threads. When the

code of Fig. 8.10 is run, the loops are distributed across the threads and for a

certain loop a thread will have its own private values of i,j,k. Since the media

parameter index m depends on the location in the computational space i.e. i,j,k,

it is also local to that thread. The integer variable next is used for the purpose

of indexing the matrix elements and is local because its value can not be changed

by any operation outside a particular loop. Thus the race condition is avoided

and the set of statements within the OpenMP starting and closing directives are

executed in parallel. Likewise, at each time step of the FD–CN–FDTD method,

vector c is computed using the OpenMP code which looks like Fig. 8.11.

In Section 8.2 it was mentioned that at each time step of the FD–CN–FDTD

method, matrix-vector multiplications need to be done repeatedly until the con-

vergence is achieved and a significant amount of computational time is spent on

this operation. To reduce the computational time, matrix-vector multiplication

has been parallelized using OpenMP orphaned directives. Matrix-vector multi-

plication is done by calling the subroutine amux and the operations within that
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! computation of vector c

!$OMP PARALLEL DO SHARED(max_mul,p1,p2,p3,p4,p5,p6,permittivity,

ex,ey,ez,hx,hy,hz,flux_density_dx,flux_density_dy,

flux_density_dz,b) PRIVATE(i,j,k,m)

do k = kminplusone,kmax

do j = jminplusone,jmax

do i = iminplusone,imax

...........

...........

<codes to compute vector c>

...........

...........

end do

end do

end do

!$OMP END PARALLEL DO

Figure 8.11: An excerpt of the code showing the use of OpenMP directives in the
computation of vector c

subroutine also need to be parallelized. Usual OpenMP directives are used before

calling amux as shown in Fig. 8.12 and orphaned directives are used inside the

subroutine as shown in Fig. 8.13. Orphan directives appear outside the lexical

scope (i.e. between PARALLEL and END PARALLEL in Fig. 8.12), but inside the dy-

namic scope (meaning that, the lexical scope as well as all statements executed

as a result of the execution of statements within the lexical scope i.e. statements

in amux) of the parallel region.

!matrix-vector multiplication using amux

!$OMP PARALLEL

call amux ( mat_size, w(:,locz), w(:,locy), ao, jao, iao )

!$OMP END PARALLEL

Figure 8.12: OpenMP code for matrix-vector multiplication

Most of the do loops in the serial implementation of the FD–CN–FDTD

method were parallelized using OpenMP directives as described above. How-

ever, it is not computationally efficient to parallelize the smaller do loops which
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!$OMP PARALLEL DO SHARED(ia,a,x,ja,y,t) PRIVATE(i,k)

do i = 1, n

!

! Compute the inner product of row I with vector X.

!

t = 0.0D+00

do k = ia(i), ia(i+1)-1

t = t + a(k) * x(ja(k))

end do

y(i) = t

end do

!$OMP END PARALLEL DO

Figure 8.13: Orphaned OpenMP directives inside the matrix-vector multiplica-
tion subroutine amux

! calculating Hx in the interior space

!$OMP PARALLEL SHARED(ey,ez,hx) PRIVATE(i,j,k)

!$OMP DO

do k = kminplusone,kmax

do j = jminplusone,jmax

do i = iminplusone,imax

hx(current_step,i,j,k)=(dt/2.0/mu/dz)*(ey(current_step,i,j,k) &

-ey(current_step,i,j,k-1))-(dt/2.0/mu/dy) &

*(ez(current_step,i,j,k)-ez(current_step,i,j-1,k)) &

+hx(previous_step1,i,j,k)+(dt/2.0/mu/dz)*(ey(previous_step1,i,j,k) &

-ey(previous_step1,i,j,k-1))-(dt/2.0/mu/dy) &

*(ez(previous_step1,i,j,k)-ez(previous_step1,i,j-1,k))

end do

end do

end do

!$OMP END DO NOWAIT

!$OMP END PARALLEL

Figure 8.14: Use of NOWAIT clause in the OpenMP code
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have small range between the minimum and maximum integer values over which

it runs. During the parallelization of a do loop, parallel overhead costs have to

be taken into account. When a loop is run in parallel, it adds the runtime costs

because the master thread needs to start the slaves, the loops need to be divided

across the threads and the threads need to be synchronized back at the end of the

parallelization. All these add up to parallel overhead costs. Therefore, smaller

do loops were not parallelized.

To enhance the computational efficiency, where appropriate NOWAIT clause

was used with the OpenMP do loop. An example is shown in Fig. 8.14, where

Hx
n+1 is being calculated explicitly after the calculation of electric fields. When

the parallel OpenMP block is closed with !$OMP END DO directive, all the threads

that execute the statements inside the parallel block are synchronized by this di-

rective. If any thread finishes earlier than other threads, it has to wait until all the

threads finish. Sometimes this can be wasteful. The NOWAIT clause of !$OMP DO

loop removes this synchronization point and allows the thread that finishes early

to proceed. In Fig. 8.14, to calculate hx(current_step,i,j,k), a thread does

not need the computed values from another thread and thereby, does not need to

wait. Because, all the required values to calculate hx(current_step,i,j,k) (i.e.

the electric field and magnetic field arrays on the right hand side in Fig. 8.14)

are already available. Therefore, by removing the synchronization at the end of

the loop and letting the thread that finishes early to go ahead to do the next

computation, computational efficiency was achieved.

Numerical modelling of the human body in the FD–CN–FDTD method, as

described in Chapter 6, was studied for the cases of CFLN = 1 and 3. Its imple-

mentation in OpenMP was compiled by Hitachi f90 compiler with -Oss option

and run on Hitachi SR16000 Model L2, POWER6 4.7GHz (dualcore)x16 pro-

cessors. Table 8.4 shows the achieved improvement by the OpenMP code over

the serial code, in terms of CPU time, when it was run for 1050/CFLN time

steps. With the OpenMP code, the CPU time has been greatly reduced when

CFLN = 1 and as expected, the most significant reduction in CPU time has

been achieved in the case of CFLN = 3. However, the scaling is not perfect

for the number of threads (32) the code uses. In OpenMP, usually, it is hard

to obtain perfect speed-ups even when the parallelization is done correctly [127].
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Therefore, this performance of the OpenMP code is not very unusual. Under-

standing the details of underlaying hardware and using vendor-supplied parallel

mathematical operation libraries may improve the performance to some extent.

But the ultimate benefits of parallelization can be fully achieved by using MPI

in the dynamic memory architecture, although its implementation is complicated.

An interesting observation in Table 8.4 is the increase of speed-up by OpenMP

parallelization at higher CFLN . Speed-up by OpenMP for CFLN = 1 and 3

are 2.63 and 5.85, respectively. Further tests with different CFLN need to be

performed to check whether the increase of speed-up is always linear with the

CFLN . If it is found that better speed-up always comes at higher CFLN , it

would indicate that the use of the FD–CN–FDTD method is more appropriate

while parallelized.

CFLN = 1

Code type CPU time Speed-up

Serial 39hr 53min 1

OpenMP 15hr 11min 2.63

CFLN = 3

Code type CPU time Speed-up

Serial 37hr 38min 1

OpenMP 6hr 26min 5.85

Table 8.4: Speed-up by the OpenMP code on 32 cores at different CFLN .

8.4 Implementation of the Modified FD–ADI–

FDTD Method

In Chapter 7 modified FD–ADI–FDTD method has been proposed. This ac-

curacy improved modified FD–ADI–FDTD method is a two-step process and

requires to solve a tridiagonal matrix system at each step as explained in Sec-

tion 7.2. Fig. 8.15 shows the flowchart of this method. In the first step, Hy
n+ 1

2 is
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Figure 8.15: Flowchart of the modified FD–ADI–FDTD method
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found by solving a tridiagonal matrix system, followed by the explicit update of

Dz
n+ 1

2 , Ez
n+ 1

2 and Hx
n+ 1

2 . In the second step, Ez
n+1 is found by solving another

tridiagonal matrix system, followed by the explicit update of Hx
n+1, Hy

n+1 and

Dz
n+1. Linear Algebra PACKage (LAPACK) [128] tridiagonal matrix solver sub-

routine DGTSV was used in the implementation of the modified FD–ADI–FDTD

method.

The modified FD–ADI–FDTD equations, described in Section 7.2, show that

the coefficients of Ez , Dz , Hx , Hy are repeatedly used during the computation

of the method. These coefficients are functions of the media parameters. For

inhomogeneous media, the media parameters are space–dependent but storing

these parameters for all the grid points will take a lot of memory. Also the cal-

culation of all the coefficients for each grid point and storing them are expensive,

both in terms of computational time and memory. To handle this, a strategy

similar to the one described in Section 8.2 was followed. An integer m is used

to represent each type of different media present in the computational space.

For each grid point (i, j) an array idmed(i,j) holds the media type m. For the

calculations involving the media parameters and the coefficients for the field com-

ponents of modified FD–ADI–FDTD equations, the value of m at a point (i, j) is

first checked. Then the media parameters and the coefficients for that m are used

in the computation. Thus, for each type of media the coefficients are calculated

only once in the beginning of the execution of the code. This approach saves

memory and computational time because the total number of media present in

the computational space is usually limited and far less than the total number of

grid points.



Chapter 9

Conclusion and Future Works

9.1 Conclusion

The efficiency of conventional explicit FDTD method is constrained by the up-

per limit on the temporal discretization, imposed by the CFL stability condition.

Therefore, there is a growing interest in overcoming this limitation by employ-

ing unconditionally stable FDTD methods for which time-step and space-step

can be independently chosen. This trend will continue because high accuracy

in modelling is increasingly in demand. For wideband applications the FDTD

methods should take the frequency dependency of the medium into account. In

this thesis two unconditionally stable FDTD methods have been presented for the

frequency dependent media. The first one is three-dimensional FD–CN–FDTD

method, which has higher accuracy than other unconditionally stable methods,

such as, ADI–FDTD method. The formulation of the FD–CN–FDTD method was

presented in Chapter 3. To model frequency dependent media single–pole Debye

model has been used in the FD-CN-FDTD method. By means of an auxiliary

differential equation the frequency dependency has been incorporated into the

proposed method. Numerical experiments validate and confirm that the method

is unconditionally stable for time-steps over the CFL limit of conventional FDTD

method. Although in the real-world most media are lossy, majority of the re-

cently proposed versions of FDTD methods considered the media to be non-lossy

for the sake of simplicity. The proposed FD–CN–FDTD method is capable of

simulating frequency dependent as well as lossy media and for such media it is

always stable at all the values of CFLN . The FD–CN–FDTD method can han-

dle the simulation of free space but in this case the method has the limitation

187
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of diverging after a certain number of time steps when CFLN ≥ 4. Therefore,

when simulating the free space in the FD–CN–FDTD method, the total number

of time steps the simulation will run needs to be carefully selected so that the

simulation stops before divergence starts.

The FD–CN–FDTD method requires solution of a large number of simultane-

ous linear equations. When the method is applied to electromagnetic problems,

most of the CPU time is spent on this solution of linear algebraic equations.

Therefore, an efficient solution is essential to gain the benefit of the FD–CN–

FDTD method. Chapter 5 dealt with the issues related to the solution of FD–

CN–FDTD sparse matrix system, which lies at the core of the method. The

FD–CN–FDTD sparse matrix system can be solved by direct or iterative meth-

ods. Through numerical experiments it was shown that although direct solvers are

robust and reliable, they are not practical to use in the FD–CN–FDTD method

for real applications. They are computationally more expensive and require ex-

cessively large memory. For practical problems iterative solvers have to be used

in the FD–CN–FDTD method. It was found out that, when CFLN is increased

more CPU time is needed by the iterative solvers to solve the FD–CN–FDTD

sparse matrix system. Studies on the generated sparse matrix revealed that, the

degradation of diagonal–dominance of the sparse matrix with increased CFLN

is the main reason for the increase of the CPU time needed by the solvers. Two

best–known iterative methods, GMRES and BiCGStab, have been extensively

studied and compared to solve the FD–CN–FDTD sparse matrix system. The

comparison was made in terms of the number of iterations required to converge at

different CFLN , CPU time and memory requirements. BiCGStab outperforms

GMRES when used with FD–CN–FDTD in every aspect of the study. However,

GMRES tends to narrow down the difference in CPU time with BiCGStab at

higher CFLN and there have been a lot of research on the development of pre-

conditioners for GMRES. Therefore, the potential of using GMRES to use in the

FD–CN–FDTD method can not be ruled out.

Many of these findings about the frequency dependent CN–FDTD method

do not match with the existing literature on the frequency–independent CN–

FDTD method. For example, [67] reports that GMRES is the fastest for the

frequency–independent CN–FDTD method presented there. The work of [67] is
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based on (3.1) and (3.2) while the FD–CN–FDTD method additionally involves

(3.10) which has second-order time derivative terms. The FD–CN–FDTD method

involves nine field components in place of six for the CN–FDTD method and the

sparsity pattern of the former has more bands than the latter [68]. Apart from

this, the concerned problem of simulation, implementation, optimization and pa-

rameters tuning have an obvious influence in concluding which solver is the most

efficient.

Several studies were carried out with the commonly used preconditioners, such

as, ILU(0) and SAI. Neither of these can improve the computational efficiency

of the FD–CN–FDTD method. Further work is needed to tailor suitable pre-

conditioners to improve the convergence of the iterative solvers. The change of

diagonal–dominance with the CFLN points a research direction in the building

of appropriate preconditioners to ease the solution at higher CFLN .

An important finding in this thesis is that, although at higher CFLN the

FD-CN-FDTD method reduces the total number of iterations to complete the

simulation, the computational costs at each of these iterations increase with

CFLN . This can undermine the benefit of using temporal discretization above

the CFL limit, unless the sparse solver is very efficient. This issue can potentially

be addressed by either parallelising the FD–CN–FDTD code or using appropri-

ate preconditioners. The use of BiCGStab and GMRES in the FD–CN–FDTD

method, as was done in this thesis, is relevant in this context. The algorithm of

BiCGStab involves performing matrix-vector product and arithmetic operations

on the vectors (e.g. vector-vector addition and dot-product of two vectors). As

these operations possess inherent parallelism, in the parallelisation of the FD–

CN–FDTD method BiCGStab is likely to be the appropriate solver. On the

other hand, a lot of research on the preconditioners for GMRES has been carried

out by the researchers of applied mathematics. The acquired knowledge on such

preconditioners and their computer code might be useful for the development of

suitable preconditioners for the FD–CN–FDTD method.

The implementation of the FD–CN–FDTD method in serial code is presented

in Chapter 8. There are scarce precedence of implementation of CN–FDTD
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method in computer programmes and no precedence of implementation of fre-

quency dependent CN–FDTD method which is more complicated. Therefore the

presented implementation techniques bear significance and would be useful for

further research on the CN–FDTD method. Chapter 8 also presented the par-

allel implementation of the FD–CN–FDTD method in OpenMP. However, with

OpenMP the perfect speed-up was not achieved. This is not unusual when par-

allelisation is done using OpenMP. The benefits of parallelization can be fully

achieved by using MPI in the distributed memory architecture.

Chapter 6 described an application of the FD–CN–FDTD method. Using the

FD–CN–FDTD method a simulation model of the human body was developed

with all the fine structures and frequency dependent dielectric properties of the

human tissues. With a view to study bioelectromagnetic therapies, specifically

DBS, numerical simulation of electromagnetic wave propagation inside the human

head has been shown in this chapter. However, modelling of the DBS system has

been performed in a very simplistic way. A more realistic model should use the

parameters described in, for example, [129]. Numerical simulation of the human

body in the FD–CN–FDTD method presented in this thesis forms a significant

footing for further research on bioelectromagnetics using this method. It will be

useful for the research towards the understanding of bioelectromagnetic therapies,

to accurately predict the excitation of the targeted tissues inside the human head

in DBS system and to develop techniques for non-invasive DBS. Some research

directions to develop such non-invasive DBS technique have also been suggested

in Chapter 6.

The second unconditionally stable FDTD method presented in this thesis

is the accuracy improved FD–ADI–FDTD method. The ADI–FDTD method

provides a computationally affordable approximation of the CN–FDTD method

by adding a perturbation term to the latter. Therefore, the ADI–FDTD method

exhibits a loss of accuracy with respect to the CN–FDTD method that may

become severe for some practical applications, especially when large time-steps

are used. The modified frequency dependent ADI–FDTD method presented in

this thesis can improve the accuracy of the normal frequency dependent ADI–

FDTD method. The modified method does not increase the computational costs

significantly because it still requires to solve the same tridiagonal matrix system
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as is required by the normal method. The modified FD–ADI–FDTD method

presented in this thesis is for two-dimension and needs to be extended to three-

dimension.

9.2 Suggested Future Works

Based on the discussions and limitations of the works presented in this thesis,

some potential future research-works are suggested below.

In the FD-CN-FDTD method, the CPU time spent on the solution of the

sparse matrix system becomes increasingly longer with the increase of CFLN ,

because the matrix becomes ill-conditioned. To take the ultimate benefit of us-

ing higher CFLN , the solution time of the FD–CN–FDTD sparse matrix system

needs to be improved. For this further research is needed to find a suitable pre-

conditioner which will improve the convergence of the iterative solver. The fact

that, the diagonal–dominance of the coefficient matrix of the FD–CN–FDTD

method deteriorates when CFLN increases, gives some hints on this issue. The

idea presented in [130] to make a given matrix strictly diagonally dominant can

be useful in building a suitable preconditioner.

Numerical simulation of practical applications, such as, modelling whole hu-

man body requires enormously large amount of memory and very long simulation

time. One of the ways to overcome these constraints is to parallelize the FD–CN–

FDTD code. This thesis presented parallelization in OpenMP in shared memory

architecture. But to achieve better performance, parallelization has to be done

in MPI in the distributed memory architecture.

Modelling of the human body in the FD–CN–FDTD method as presented

in Chapter 6 serves as the foundation for many future researches on bioelectro-

magnetics. For example, research should be conducted on the backpropagation

and target localization by FDTD time reversal algorithms [118] in order to de-

velop a non-invasive DBS technique. One application of the numerical human

body model is estimation of the parameters that describe the electromagnetic

field interaction with the human body, such as, specific absorption rate (SAR).

By estimating SAR the amount of radio wave energy absorbed by the human
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body during the use of mobile phones or other wireless devices can be measured.

Another potential research can be numerical modelling of body-centric wireless

networks. It will be interesting to perform FD–CN–FDTD based on-body propa-

gation channel modelling and study the effects of the dynamic on-body environ-

ment on the communication path between body-worn devices, considering various

body postures.
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Mur’s ABC

Numerical Formulation from One-Way

Wave Equation

From the Maxwell’s equation ∇×E = −∂B

∂t
= −∂µH

∂t
, taking curl on both sides

of equality

∇×∇× E = −∇× ∂µH
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(B.1)

Assuming that boundary is source-free (∇ • E = 0), utilizing ∇∇× E = ∇(∇ •
E)− (∇ •∇)E, (B.1) is modified as follows:
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1Appendix B is cited from [98]
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Figure B.1: Phase velocity concept

(B.2) means that forward travelling wave × backward travelling wave = 0.

Propagation constants Γ for x, y and z directions satisfy the following:

Γ2
x + Γ2

y + Γ2
z + ω2εµ = 0 (B.3)

The propagation constant Γ consists of attenuation element β and phase element

κ as follows

Γx = κx + βx = 
2π

λx

+ βx (B.4)

Γy = κy + βy = 
2π

λy

+ βy

Γz = κz + βz = 
2π

λz

+ βz

The assumption of ωt−Γxx−Γyy−Γzz = constant leads to the phase velocity

for the x direction as follows.

∂x

∂t
=

ω

Γx

(B.5)

It is assumed that the plane wave arrives with the angle of θ as in Fig. B.1.

When the wave moves from the point P1 to P3 (Fig. B.1), the point P2 moves
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to P3 along x-axis. In the free space where the wave moves a distance υ from P1

to P3, the length between P2 to P3, that is,
υ

cos θ
, is the phase velocity in the x

direction.

∂x

∂t
=

υ

cos θ
(B.6)

On the other hand, in the free space where it can be assumed that the attenuation

constant β is zero, these phase constants κ satisfy the following.

κ2
x + κ2

y + κ2
z = ω2εµ (B.7)

Therefore, phase velocity for the x direction is
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At x = imin, that is, the boundary parallel to the y-z plain, the forward travelling

wave = 0 and at x = imax, the backward travelling wave = 0. At x = imin, where

it is assumed that κy and κz are nearly zero, one-term Taylor approximation

yields

(
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In the same way, at x = imax, one-term Taylor approximation yields
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At x = imin, two-terms Taylor approximation yields ∂
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In the same way, at x = imax, two-terms Taylor approximation yields ∂
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∂2

∂y2
+

∂2

∂z2

µε
∂2

∂t2

)

E = (B.12)

(
√

µε
∂

∂t

∂

∂x
+ µε

∂2

∂t2
− 1

2
(

∂2

∂y2
+

∂2

∂z2
)

)
E = 0

Discretization of these equations is required to implement these ABCs into the

FDTD method, following Taylor’s series approximations in (B.13) of the solutions

to the partial differential equations:

E|x+h = E|x + h
∂E|x
∂x

+
1

2
h2∂2E|x

∂x2
+

1

6
h3∂3E|x

∂x3
(B.13)

E|x−h = E|x − h
∂E|x
∂x

+
1

2
h2∂2E|x

∂x2
− 1

6
h3∂3E|x

∂x3

(B.13) produces the following approximations for the first and second deriva-

tive of E :

∂E|x
∂x

∼ E|x+h − E|x−h

2h
(B.14)

∂2E|x
∂x2

∼ E|x+h − 2E|x + E|x−h

h2

(B.14) is second-order accurate in the discretization, i.e. O(h2). This means

that the error will be reduced by one-fourth if a spatial discretization is reduced

by one-half. If terms which are O(h2) and higher than O(h2) are ignored, the

following first-order forward and backward approximations to
∂E|x
∂x

is obtained:

∂E|x
∂x

∼ E|x+h − E|x
h

(B.15)

∂E|x
∂x

∼ E|x − E|x−h

h

At the y-z plane boundary, the boundary condition is placed to Ey(i,j,k) and

Ez(i,j,k). As an example, the boundary condition is placed to Ey(i,j,k) at x = imin.
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First-order Mur’s ABC

Based on (B.15) and (B.14), (B.9), (B.10), (B.11), (B.12) are discretized as fol-

lows: In case of the first-order approximation, (B.9) is discretized as

En+1
y (imin,j,k) =

∆t−∆x

√
µn+1

(imin+1,j,k)εn+1
(imin+1,j,k)

∆t + ∆x

√
µn+1

(imin,j,k)εn+1
(imin,j,k)

En+1
y (imin+1,j,k) (B.16)

+
∆t + ∆x

√
µn

(imin+1,j,k)εn
(imin+1,j,k)

∆t + ∆x

√
µn+1

(imin,j,k)εn+1
(imin,j,k)

En
y (imin+1,j,k)

− ∆t−∆x
√

µn
(imin,j,k)εn

(imin,j,k)

∆t + ∆x

√
µn+1

(imin,j,k)εn+1
(imin,j,k)

En
y (imin,j,k)

Similarly, (B.10) is discretized as

En+1
y (imax,j,k) =

∆t−∆x

√
µn+1

(imax−1,j,k)εn+1
(imax−1,j,k)

∆t + ∆x

√
µn+1

(imax,j,k)εn+1
(imax,j,k)

En+1
y (imax−1,j,k) (B.17)

+
∆t + ∆x

√
µn

(imax−1,j,k)εn
(imax−1,j,k)

∆t + ∆x

√
µn+1

(imax,j,k)εn+1
(imax,j,k)

En
y (imax−1,j,k)

− ∆t−∆x
√

µn
(imax,j,k)εn

(imax,j,k)

∆t + ∆x

√
µn+1

(imax,j,k)εn+1
(imax,j,k)

En
y (imax,j,k)

(B.16) and (B.17) are obtained using (B.18).

∂En+1
y (imin,j,k)

∂x
= (B.18)

En+1
y (imin+1,j,k)− En+1

y (imin,j,k)

∆x
+

En
y (imin+1,j,k)− En

y (imin,j,k)

∆x
2

∂En+1
y (imin,j,k)

∂t
=

En+1
y (imin+1,j,k)− En

y (imin+1,j,k)

∆t
+

En+1
y (imin,j,k)− En

y (imin,j,k)

∆t
2

(B.16) and (B.17) are called Mur’s first-order ABC which is versatile on all types

of models. This algorithm can result in a large percentage of the outgoing energy
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being reflected from the boundary if materials with high dielectric constants are

present. In the same way as (B.16) and (B.17) all the equations for Mur’s first-

order ABC are derived below:

Mur’s ABC to update Ex(i,j,k)

En+1
x (i,j,k) =

(∆t−∆y
√

µ(i,j+1,k)ε(i,j+1,k)) En+1
x (i,j+1,k)

∆t + ∆y
√

µ(i,j,k)ε(i,j,k)
(B.19)

+
(∆t + ∆y

√
µ(i,j+1,k)ε(i,j+1,k)) En

x (i,j+1,k)− (∆t−∆y
√

µ(i,j,k)ε(i,j,k)) En
x (i,j,k)

∆t + ∆y
√

µ(i,j,k)ε(i,j,k)

[imin + 1 ≤ i ≤ imax, j = jmin, kmin ≤ k ≤ kmax].

En+1
x (i,j,k) =

(∆t−∆y
√

µ(i,j−1,k)ε(i,j−1,k)) En+1
x (i,j−1,k)

∆t + ∆y
√

µ(i,j,k)ε(i,j,k)
(B.20)

+
(∆t + ∆y

√
µ(i,j−1,k)ε(i,j−1,k)) En

x (i,j−1,k)− (∆t−∆y
√

µ(i,j,k)ε(i,j,k)) En
x (i,j,k)

∆t + ∆y
√

µ(i,j,k)ε(i,j,k)

[imin + 1 ≤ i ≤ imax, j = jmax, kmin ≤ k ≤ kmax].

En+1
x (i,j,k) =

(∆t−∆z
√

µ(i,j,k+1)ε(i,j,k+1)) En+1
x (i,j,k+1)

∆t + ∆z
√

µ(i,j,k)ε(i,j,k)
(B.21)

+
(∆t + ∆z

√
µ(i,j,k+1)ε(i,j,k+1)) En

x (i,j,k+1)− (∆t−∆z
√

µ(i,j,k)ε(i,j,k)) En
x (i,j,k)

∆t + ∆z
√

µ(i,j,k)ε(i,j,k)

[imin + 1 ≤ i ≤ imax, jmin ≤ j ≤ jmax, k = kmin].

En+1
x (i,j,k) =

(∆t−∆z
√

µ(i,j,k−1)ε(i,j,k−1)) En+1
x (i,j,k−1)

∆t + ∆z
√

µ(i,j,k)ε(i,j,k)
(B.22)

+
(∆t + ∆z

√
µ(i,j,k−1)ε(i,j,k−1)) En

x (i,j,k−1)− (∆t−∆z
√

µ(i,j,k)ε(i,j,k)) En
x (i,j,k)

∆t + ∆z
√

µ(i,j,k)ε(i,j,k)

[imin + 1 ≤ i ≤ imax, jmin ≤ j ≤ jmax, k = kmax].
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Mur’s ABC to update Ey(i,j,k)

En+1
y (i,j,k) =

(∆t−∆x
√

µ(i+1,j,k)ε(i+1,j,k)) En+1
y (i+1,j,k)

∆t + ∆x
√

µ(i,j,k)ε(i,j,k)
(B.23)

+
(∆t + ∆x

√
µ(i+1,j,k)ε(i+1,j,k)) En

y (i+1,j,k)− (∆t−∆x
√

µ(i,j,k)ε(i,j,k)) En
y (i,j,k)

∆t + ∆x
√

µ(i,j,k)ε(i,j,k)

[i = imin, jmin + 1 ≤ j ≤ jmax, kmin ≤ k ≤ kmin].

En+1
y (i,j,k) =

(∆t−∆x
√

µ(i−1,j,k)ε(i−1,j,k)) En+1
y (i−1,j,k)

∆t + ∆x
√

µ(i,j,k)ε(i,j,k)
(B.24)

+
(∆t + ∆x

√
µ(i−1,j,k)ε(i−1,j,k)) En

y (i−1,j,k)− (∆t−∆x
√

µ(i,j,k)ε(i,j,k)) En
y (i,j,k)

∆t + ∆x
√

µ(i,j,k)ε(i,j,k)

[i = imax, jmin + 1 ≤ j ≤ jmax, kmin ≤ k ≤ kmin].

En+1
y (i,j,k) =

(∆t−∆z
√

µ(i,j,k+1)ε(i,j,k+1)) En+1
y (i,j,k+1)

∆t + ∆z
√

µ(i,j,k)ε(i,j,k)
(B.25)

+
(∆t + ∆z

√
µ(i,j,k+1)ε(i,j,k+1)) En

y (i,j,k+1)− (∆t−∆z
√

µ(i,j,k)ε(i,j,k)) En
y (i,j,k)

∆t + ∆z
√

µ(i,j,k)ε(i,j,k)

[imin ≤ i ≤ imax, jmin + 1 ≤ j ≤ jmax, k = kmin].

En+1
y (i,j,k) =

(∆t−∆z
√

µ(i,j,k−1)ε(i,j,k−1)) En+1
y (i,j,k−1)

∆t + ∆z
√

µ(i,j,k)ε(i,j,k)
(B.26)

+
(∆t + ∆z

√
µ(i,j,k−1)ε(i,j,k−1)) En

y (i,j,k−1)− (∆t−∆z
√

µ(i,j,k)ε(i,j,k)) En
y (i,j,k)

∆t + ∆z
√

µ(i,j,k)ε(i,j,k)

[imin ≤ i ≤ imax, jmin + 1 ≤ j ≤ jmax, k = kmax].

Mur’s ABC to update Ez(i,j,k)

En+1
z (i,j,k) =

(∆t−∆x
√

µ(i+1,j,k)ε(i+1,j,k)) En+1
z (i+1,j,k)

∆t + ∆x
√

µ(i,j,k)ε(i,j,k)
(B.27)

+
(∆t + ∆x

√
µ(i+1,j,k)ε(i+1,j,k)) En

z (i+1,j,k)− (∆t−∆x
√

µ(i,j,k)ε(i,j,k)) En
z (i,j,k)

∆t + ∆x
√

µ(i,j,k)ε(i,j,k)

[i = imin, jmin ≤ j ≤ jmax, kmin + 1 ≤ k ≤ kmin].
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En+1
z (i,j,k) =

(∆t−∆x
√

µ(i−1,j,k)ε(i−1,j,k)) En+1
z (i−1,j,k)

∆t + ∆x
√

µ(i,j,k)ε(i,j,k)
(B.28)

+
(∆t + ∆x

√
µ(i−1,j,k)ε(i−1,j,k)) En

z (i−1,j,k)− (∆t−∆x
√

µ(i,j,k)ε(i,j,k)) En
z (i,j,k)

∆t + ∆x
√

µ(i,j,k)ε(i,j,k)

[i = imax, jmin ≤ j ≤ jmax, kmin + 1 ≤ k ≤ kmin].

En+1
z (i,j,k) =

(∆t−∆y
√

µ(i,j+1,k)ε(i,j+1,k)) En+1
z (i,j+1,k)

∆t + ∆y
√

µ(i,j,k)ε(i,j,k)
(B.29)

+
(∆t + ∆y

√
µ(i,j+1,k)ε(i,j+1,k)) En

z (i,j+1,k)− (∆t−∆y
√

µ(i,j,k)ε(i,j,k)) En
z (i,j,k)

∆t + ∆y
√

µ(i,j,k)ε(i,j,k)

[imin ≤ i ≤ imax, j = jmin, kmin + 1 ≤ k ≤ kmax].

En+1
z (i,j,k) =

(∆t−∆y
√

µ(i,j−1,k)ε(i,j−1,k)) En+1
z (i,j−1,k)

∆t + ∆y
√

µ(i,j,k)ε(i,j,k)
(B.30)

+
(∆t + ∆y

√
µ(i,j−1,k)ε(i,j−1,k)) En

z (i,j−1,k)− (∆t−∆y
√

µ(i,j,k)ε(i,j,k)) En
z (i,j,k)

∆t + ∆y
√

µ(i,j,k)ε(i,j,k)

[imin ≤ i ≤ imax, j = jmax, kmin + 1 ≤ k ≤ kmax].

In the implementation of FD–CN–FDTD and modified FD–ADI–FDTD meth-

ods ε = ε0εr is used in the above Mur’s ABC equations where εr comes from (3.7)

which is a function of Debye media parameters and angular frequency. For Mur’s

ABCs the centre frequency is used to compute the real part of ε in (3.7). Thus

the Mur’s ABCs are frequency independent and fixed at the centre frequency.
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[84] J.-P. Bérenger. A Huygens Subgridding for the FDTD method. IEEE

Transactions on Antennas and Propagation, 54:3797–3804, 2006.

[85] C. Huygens. Treatise on Light. http://www.gutenberg.org/etext/14725,

1690.

[86] W. Yu and R. Mittra. A conformal finite difference time domain technique

for modeling curved dielectric surfaces. IEEE Microwave and Guided Wave

Letters, 11(1):25–27, 2001.

[87] R. Joseph, S. Hagness, and A. Taflove. Direct time integration of Maxwell’s

equations in linear dispersive media with absorption for scattering and prop-

agation of femtosecond electromagnetic pulses. Optics Letters, 16(18):1412–

1414, 1991.

[88] D. M. Sullivan. Frequency-dependent FDTD methods using Z transforms.

IEEE Transaction on Antennas and Propagation, 40:1223–1230, 1992.

[89] R. J. Luebbers, F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schnei-

der. A frequency-dependent finite-difference time-domain formulation for

dispersive materials. IEEE Transactions on Electromagnetic Compatibility,

32-3:220–227, 1990.

[90] S. G. Garcia, R. G. Rubio, A. R. Bretones, and R. G. Martin. Extension of

the ADI-FDTD method to Debye media. IEEE Transactions on Antennas

and Propagation, 51-11:3183–3186, 2003.

http://www.gutenberg.org/etext/14725


BIBLIOGRAPHY 212

[91] F. Costen and A. Thiry. Alternative formulation of three dimensional fre-

quency dependent ADI-FDTD method. IEICE Electronics Express, 1:528–

533, 2004.

[92] Fumie Costen and Jean-Pierre Berenger. Extension of the FDTD Huygens

subgridding to frequency dependent media. Journal Annals of Telecommu-

nications, 65:211–217, April 2010.

[93] K.P. Prokopidis, E.P. Kosmidou, and T.D. Tsiboukis. An FDTD algorithm

for wave propagation in dispersive media using higher-order schemes. Jour-

nal of Electromagnetic Waves and Applications, 18(9):1171–1194, 2004.

[94] O. Ramadan. An improved implicit split-step algorithm for dispersive band-

limited FDTD applications. IEEE Microwave and Wireless Components

Letters, 18(8):497 – 499, 2008.

[95] Y. Zhao and Y. Hao. A conformal dispersive FDTD method for modelling

of nano-plasmonic waveguides. IEEE Antennas and Propagation Society

International Symposium, 2007, pages 4461–4464.

[96] Hasan Khaled Rouf, Fumie Costen, and Salvador G. Garcia. 3-D Crank–

Nicolson finite difference time domain method for dispersive media. Elec-

tronics Letters, 45(19):961–962, September 10 2009.

[97] E. C. Jordan and K. G. Balmain. Electromagnetic Waves and Radiating

Systems. Prentice Hall, second edition, 1968.

[98] Fumie Costen. High Speed Computational Modelling in the Application of

UWB Signals. PhD thesis, Kyoto University, Japan, 2005.

[99] A.C. Cangellaris and R. Lee. On the accuracy of numerical wave simu-

lations based on finite methods. Journal of Electromagnetic Waves and

Applications, 6(12):1635–1653, 1992.

[100] A. Thiry. Efficient FDTD for Broadand Systems. PhD thesis, The Univer-

sity of Manchester, UK, 2006.

[101] G. Stratis and D. Demetriou. Numerical study of reflection and transmis-

sion coefficients for different inhomogeneous walls. IEEE Antennas and

Propagation Society International Symposium, 1:590–593, August 1999.



BIBLIOGRAPHY 213

[102] Research Computing Services, The University of Manchester, UK. http:

//www.rcs.manchester.ac.uk/home.

[103] M.H.A. Sharkawy, V. Demir, and A.Z. Elsherbeni. An efficient ILU precon-

ditioning for highly sparse matrices constructed using the FDFD method.

IEEE Antennas and Propagation Magazine, 49(6):135–139, 2007.

[104] David S. Watkins. Fundamentals of Matrix Computations, page 521. Wiley-

Interscience, Second Edition, 2002.

[105] S. Salvini and G. Shaw. An evaluation of new NAG library solvers for

large sparse unsymmetric linear systems. NAG Technical Report TR2/96,

Numerical Algorithms Group Ltd., UK, 1996.

[106] I. S. Duff and J. K. Reid. MA48, a Fortran code for direct solution of sparse

unsymmetric linear systems of equations. Rutherford Appleton Laboratory,

Oxfordshire, 1993.

[107] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Tem-

plates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide.

SIAM, 2000.

[108] The National Grid Service (NGS), UK. http://www.ngs.ac.uk/.

[109] K. Nakajima. Preconditioned iterative linear solvers for unstructured grids

on the earth simulator. In Proceedings of Seventh International Conference

on High Performance Computing and Grid in Asia Pacific Region, 2004.,

pages 150–159, July 2004.

[110] Y. Saad. Iterative Methods for Sparse Linear Systems, page 297. PWS

Publishing Company, Boston, MA, 1996.

[111] Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual method

for solving nonsymmetric linear systems. SIAM Journal on Scientific and

Statistical Computing, 7:856–869, 1986.

[112] H. van der Vorst. BiCGSTAB: a fast and smoothly converging variant of

BiCG for the solution of nonsymmetric linear systems. SIAM Journal on

Scientific and Statistical Computing, 13:631–644, 1992.

http://www.rcs.manchester.ac.uk/home
http://www.rcs.manchester.ac.uk/home
http://www.ngs.ac.uk/


BIBLIOGRAPHY 214

[113] Y. Liu, Z. Liang, , and Z. Yang. Computation of electromagnetic dosimetry

for human body using parallel FDTD algorithm combined with interpola-

tion technique. Progress in Electromagnetics Research, PIER 82:95–107,

2008.

[114] G. Arendash, J. Ramos, T. Mori, M. Mamcarz, X. Lin, M. Runfeldt,

L. Want, G. Zhang, V. Sava, J. Tan, and C. Cao. Electromagnetic field

treatment protects against and reverses cognitive impairment in alzheimer’s

disease mice. Journal of Alzheimer’s Disease, 19(1):191–210, January 2010.

[115] T. Wuren, T. Takai, M. Fujii, and I. Sakagami. Effective 2-Debye-pole

FDTD model of electromagnetic interaction between whole human body

and UWB radiation. IEEE Microwave and Wireless Components Letters,

17(7):483–485, 2007.

[116] Martin Caon. Voxel-based computational models of real human anatomy: a

review. Radiation and Environmental Biophysics, 42(4):229–235, February,

2004.

[117] T. Nagaoka, S. Watanabe, K. Sakurai, E. Kunieda, S. Watanabe, M. Taki,

and Y. Yamanaka. Development of realistic high-resolution whole-body

voxel models of Japanese adult males and females of average height and

weight, and application of models to radio-frequency electromagnetic-field

dosimetry. Physics in Medicine and Biology, 49:1–16, 2004.

[118] C.M. Rappaport P. Kosmas. FDTD-based time reversal for microwave

breast cancer detection : localization in three dimensions. IEEE Transac-

tions on Microwave Theory and Techniques, 54(4):1921–1927, April, 2006.

[119] Hasan Khaled Rouf, Fumie Costen, Salvador G. Garcia, and Seiji Fujino.

On the solution of 3-D frequency dependent Crank–Nicolson FDTD scheme.

Journal of Electromagnetic Waves and Applications, 23:2163–2175, 2009.

[120] X. T. Dong, N. V. Venkatarayalu, B. Guo, W. Y. Yin, and Y. B. Gan.

General formulation of unconditionally stable ADI-FDTD method in linear

dispersive media. IEEE Transactions on Microwave Theory and Techniques,

pages 170–174, 2004.

[121] V. Decyk, C. Norton, and H. Gardner. Why fortran?. Computing in Science

and Engineering, 9:68–71, 2007.



BIBLIOGRAPHY 215

[122] Y. Saad. SPARSKIT: A basic toolkit for sparse matrix computations (Ver-

sion 2). http://www-users.cs.umn.edu/∼saad/software/SPARSKIT/

sparskit.html, Research Institute for Advanced Computer Science, NASA

Ames Research Center.

[123] Rutherford Appleton Laboratory Numerical Analysis Group. Harwell Sub-

routine Library (HSL) 2007 for Researchers. http://www.hsl.rl.ac.uk/

hsl2007/hsl20074researchers.html.

[124] Rutherford Appleton Laboratory Numerical Analysis Group. ZD11: De-

rived type for sparse matrix storage schemes. http://hsl.rl.ac.uk/

hsl2007/distrib/packages/hsl zd11/hsl zd11.pdf.

[125] Rutherford Appleton Laboratory Numerical Analysis Group. MI26: Un-

symmetric system: BiConjugate Gradient Stabilized (BiCGStab) method.

http://hsl.rl.ac.uk/hsl2007/distrib/packages/mi26/mi26.pdf.

[126] Rutherford Appleton Laboratory Numerical Analysis Group. MC65: Con-

struct and manipulate sparse matrix objects. http://hsl.rl.ac.uk/

hsl2007/distrib/packages/hsl mc65/hsl mc65.pdf.

[127] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and J. McDonald.

Parallel Programming in OpenMP. Morgan Kaufmann, 2001.

[128] LAPACK: Linear Algebra PACKage. http://www.netlib.org/lapack/.

[129] E. Moro, R. Esselink, J. Xie, M. Hommel, A. Benabid, and P. Pollak.

The impact on Parkinson’s disease of electrical parameter settings in STN

stimulation. Neurology, 59:706–713, 2002.

[130] J. Yun, Y. Plamen, and Y. Yalamov. A method for constructing diagonally

dominant preconditioners based on Jacobi rotations. Applied Mathematics

and Computation, 174(1):74–80, March 2006.

[131] Kyushu University Computing Systems for Research, Japan. http://www.

cc.kyushu-u.ac.jp/scp/system/SR16000/intro.html.

http://www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html
http://www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html
http://www.hsl.rl.ac.uk/hsl2007/hsl20074researchers.html
http://www.hsl.rl.ac.uk/hsl2007/hsl20074researchers.html
http://hsl.rl.ac.uk/hsl2007/distrib/packages/hsl_zd11/hsl_zd11.pdf
http://hsl.rl.ac.uk/hsl2007/distrib/packages/hsl_zd11/hsl_zd11.pdf
http://hsl.rl.ac.uk/hsl2007/distrib/packages/mi26/mi26.pdf
http://hsl.rl.ac.uk/hsl2007/distrib/packages/hsl_mc65/hsl_mc65.pdf
http://hsl.rl.ac.uk/hsl2007/distrib/packages/hsl_mc65/hsl_mc65.pdf
http://www.netlib.org/lapack/
http://www.cc.kyushu-u.ac.jp/scp/system/SR16000/intro.html
http://www.cc.kyushu-u.ac.jp/scp/system/SR16000/intro.html

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Background
	Research Context
	Contributions and Outline of the Thesis

	Finite Difference Time Domain Method
	FDTD Method
	Finite Difference Concept
	Yee's FDTD Method
	Features of the FDTD Method

	Absorbing Boundary Condition 
	Frequency Dependent Media
	Unconditionally Stable FDTD Method
	Other FDTD Methods

	Frequency Dependent Crank Nicolson FDTD Method
	Introduction
	Formulation of the FD--CN--FDTD Method
	Inclusion of Mur's First-Order Boundary  Condition
	Calculation of Electric Fields
	Electric Fields at  i = imin, j = jmin, k = kmin

	Calculation of Magnetic Fields and Electric Flux Densities

	Detailed Study of the FD--CN--FDTD Method
	Validation of the FD--CN--FDTD Method
	Numerical Errors in the FD--CN--FDTD  Method
	Handling the Lossy Media
	Dealing with the Inhomogeneous Media
	Analytical Study of Numerical Stability

	Efficient Solvers for the FD--CN--FDTD Method
	Sparse Matrix
	Condition Number and Diagonal Dominance

	Direct Methods
	Iterative Methods
	Performance Study of BiCGStab and GMRES

	Preconditioners
	Conclusion

	Modelling Human Body in the FD-CN-FDTD Method
	Numerical Modelling of the Human Body
	Use of the FD--CN--FDTD Method to Model  Bioelectromagnetic Therapies
	Conclusion

	Modified Frequency Dependent ADI--FDTD Method
	Limitations of the FD--ADI--FDTD Method
	Modified Frequency Dependent ADI--FDTD Method
	Numerical Validation
	Conclusion

	Implementation of the Proposed Methods
	Introduction
	Implementation of the FD--CN--FDTD  Method
	Parallelization of the FD--CN--FDTD Method  in Shared Memory Architecture
	Implementation of the Modified FD--ADI--FDTD Method

	Conclusion and Future Works
	Conclusion
	Suggested Future Works

	List of Publications
	Mur's ABC
	Bibliography

