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Abstract

The efficiency of the conventional, explicit finite difference time domain (FDTD)
method is constrained by the upper limit on the temporal discretization, imposed
by the Courant-Friedrich-Lewy (CFL) stability condition. Therefore, there is a
growing interest in overcoming this limitation by employing unconditionally sta-
ble FDTD methods for which time-step and space-step can be independently
chosen. Unconditionally stable Crank Nicolson method has not been widely used
in time domain electromagnetics despite its high accuracy and low anisotropy.
There has been no work on the Crank Nicolson FDTD (CN-FDTD) method for
frequency dependent medium.

In this thesis a new three-dimensional frequency dependent CN-FDTD (FD-
CN-FDTD) method is proposed. Frequency dependency of single-pole Debye
materials is incorporated into the CN-FDTD method by means of an auxiliary
differential formulation. In order to provide a convenient and straightforward
algorithm, Mur’s first-order absorbing boundary conditions are used in the FD—
CN-FDTD method. Numerical tests validate and confirm that the FD-CN-
FDTD method is unconditionally stable beyond the CFL limit.

The proposed method yields a sparse system of linear equations which can
be solved by direct or iterative methods, but numerical experiments demonstrate
that for large problems of practical importance iterative solvers are to be used.
The FD-CN-FDTD sparse matrix is diagonally dominant when the time-step
is near the CFL limit but the diagonal dominance of the matrix deteriorates
with the increase of the time-step, making the solution time longer. Selection
of the matrix solver to handle the FD-CN-FDTD sparse system is crucial to
fully harness the advantages of using larger time-step, because the computational
costs associated with the solver must be kept as low as possible. T'wo best—known
iterative solvers, Bi-Conjugate Gradient Stabilised (BiCGStab) and Generalised
Minimal Residual (GMRES), are extensively studied in terms of the number of
iteration requirements for convergence, CPU time and memory requirements.
BiCGStab outperforms GMRES in every aspect. Many of these findings do not
match with the existing literature on frequency-independent CN-FDTD method
and the possible reasons for this are pointed out.

The proposed method is coded in Fortran and major implementation tech-
niques of the serial code as well as its parallel implementation in Open Multi-
Processing (OpenMP) are presented. As an application, a simulation model of
the human body is developed in the FD-CN-FDTD method and numerical sim-
ulation of the electromagnetic wave propagation inside the human head is shown.

Finally, this thesis presents a new method modifying the frequency dependent
alternating direction implicit FDTD (FD-ADI-FDTD) method. Although the
ADI-FDTD method provides a computationally affordable approximation of the
CN-FDTD method, it exhibits a loss of accuracy with respect to the CN-FDTD
method which may become severe for some practical applications. The modified
FD-ADI-FDTD method can improve the accuracy of the normal FD-ADI-FDTD
method without significantly increasing the computational costs.
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Chapter 1

Introduction

1.1 Background

To solve the physical field problems several techniques are used, which can be clas-
sified into experimental, analytical and numerical. Experiments are expensive,
time consuming, sometimes hazardous and usually do not allow much flexibility
in parameter variation [3]. For many practical and complex problems, analytical
solutions do not exist or are not obtainable. Numerical methods do not suffer
from these limitations, yet can give approximate solutions of sufficient accuracy.
With the availability of the digital computers, since 1960s studies on the numer-

ical methods for electromagnetic field problems started.

A number of numerical techniques are commonly used in the study of elec-
tromagnetic problems, namely, method of moments (MoM) [4], 5], transmission
line matrix (TLM) method [6], finite element method (FEM) [7, 8], finite differ-
ence time domain (FDTD) method [9]. Each method has advantages in some
application areas, but there is no method that is the best in all the areas of ap-
plications. FEM, TLM and FDTD methods are based on the discretization of
Maxwell’s equations over the entire computational domain. On the other hand,
integral methods, such as, MoM are based on the discretization of certain inte-
gral equations involving the Green’s function. In the integral methods there are
fewer number of unknowns but the matrix to be solved is a full matrix, while in
the differential methods the matrix is sparse. FEM and MoM methods solve the
Maxwell’s equations in frequency domain while FDTD and TLM methods work

15



CHAPTER 1. INTRODUCTION 16

in time domain. Frequency domain methods give the solutions for a specific fre-
quency and therefore repeated simulation runs are required to obtain the system
response over a range of frequencies. Because of this, for wide-band applications
a time domain method like TLM or FDTD should be used. In many ways TLM
method is similar to FDTD method and shares many of the advantages and dis-
advantages of FDTD method. But TLM method requires more storage space for
computation than FDTD method.

This thesis is on the FDTD method. FDTD method was originally devel-
oped by K.S. Yee in 1966 [9]. Initially it had drawn little interest because of the
constraints of the computational resources [10]. However, the availability of pow-
erful computing resources later made it a very popular numerical technique for
computational electrodynamics. Yee’s FDTD method discretizes Maxwell’s curl
equations to solve for both electric and magnetic fields. It uses central-difference
equations for both space and time derivatives. The FDTD algorithm progresses
in a leap-frog manner which means that, first electric field is solved for a certain
instant, then magnetic field is solved for the next instant and this progression
repeats. The method is explicit because the fields at a certain instant are calcu-

lated using the fields at the previous instant.

FDTD methods have several advantages. They are said to be the most
straightforward, robust and widely applicable electromagnetic modelling tech-
niques. They are easy to understand and easy to implement in computer pro-
grammes. FDTD methods operate in the time domain. So a single simulation
run can get the solutions for a wide frequency range. By specifying the material
parameters at different points in the computational domain the FDTD method
can easily model various materials. On the other hand, FDTD is not good at
modelling the complex geometries with a high precision. The method becomes
computationally intensive and requires large amount of memory when very fine

spatial discretization needs to be used for accurate modelling.

1.2 Research Context

The standard explicit FDTD method has some major limitations. Media parame-

ters in standard FDTD method are specified as frequency-independent constants
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while, in reality, they depend on frequency. Media parameters can be considered
constant only within a narrow frequency band, but if a broadband pulse propa-
gates through such a medium, the frequency dependency of the medium has to
be taken into account [II]. The merit that a single FDTD simulation run can
cover a wide range of frequencies can fully be attained when standard FDTD
method is modified to accommodate frequency dependent materials. This is par-
ticularly important as many current and emerging technological applications use
wide frequency bands and for their accurate studies incorporation of frequency

dependent materials in FDTD method is essential.

One of the main drawbacks of the conventional FDTD method is the reduced
computational efficiency resulting from the upper limit on the time-step that
needs to satisfy the Courant-Friedrich-Lewy (CFL) stability condition [I2]. This
condition imposes an upper bound on the time-step depending on the minimum
spatial step. Thus, when very small spatial step relative to the wavelength of
interest is employed to accurately model the fine geometrical details of a given
application, an unnecessarily small time-step is enforced, with an increase of the
total CPU time. Therefore, there is a growing interest in overcoming this lim-
itation by employing unconditionally stable implicit FDTD methods, for which
time-step and space-step can be independently chosen [13][14]. This trend will

continue because high accuracy in modelling is increasingly in demand.

An alternative to the explicit FDTD method is provided by the Crank Nicolson
FDTD (CN-FDTD) method [I5] which presents unconditional stability beyond
the CFL limit. Both methods share in common the discretization of the time
and space derivatives by centred differences, with the only difference being that
the fields affected by the curl operator are averaged in time by the CN-FDTD
method, whereas in explicit FDTD method they are not. The resulting scheme
is a fully implicit marching—on—in—time algorithm with the same potential of the
classical FDTD method. However, despite its accuracy and low anisotropy [16]
it has not been widely used in time domain electromagnetics as it involves large
sparse matrix computations. Instead, there have been many works attempting

to simplify or approximate its implementation, such as, alternating direction im-
plicit (ADI-FDTD) method [17], CN Douglas Gunn method [I8], CN cycle sweep
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method [19], CN approximate factorization splitting method [20]. Such approxi-
mations suffer up to some extent of numerical errors, which may become severe
for some practical applications [21]. All these works on simplification or ap-
proximation of CN-FDTD method have been limited to frequency-independent
materials. Quite recently [22] investigated the original CN-FDTD method for
frequency-independent materials. To the best knowledge of the author, there has

been no work on the CN-FDTD method for frequency dependent media.

1.3 Contributions and Outline of the Thesis

The purpose of this research project is to develop novel unconditionally stable
FDTD algorithms for the frequency dependent media. A three-dimensional fre-
quency dependent CN-FDTD (FD-CN-FDTD) method is proposed in this thesis.
This thesis also presents an accuracy improved frequency dependent ADI-FDTD
(FD-ADI-FDTD) method.

Chapter |2 provides the background knowledge of the FDTD method and lit-
erature review covering the state-of-the-art in the developments and studies of
the FDTD methods.

The proposed three-dimensional FD-CN-FDTD method is presented in Chap-
ter Bl The formulation of the FD-CN-FDTD method and the inclusion of Mur’s
absorbing boundary condition are described. The proposed method is uncondi-

tionally stable beyond the CFL limit and has higher accuracy than other uncon-
ditionally stable methods, such as, ADI-FDTD method.

Numerical validation of the proposed method is shown in Chapter [l By car-
rying out several numerical tests with the FD-CN-FDTD method, this chapter
shows the average error of the method, effects of the CFL number and spatial
resolution, effects of the conductivity and the transmission and reflection coeffi-

cients errors.

The FD-CN-FDTD method requires solution of a sparse system of linear equa-

tions. An efficient sparse matrix solver is essential to fully harness the advantages
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of using larger time-step beyond CFL limit. Chapter [5| deals with the issues re-
lated to the solution of the FD-CN-FDTD method. The effects of time—step
beyond CFL limit on the characteristics of the FD-CN-FDTD sparse matrix and
effectiveness of different solvers, of direct and iterative types, to solve the sparse

system are extensively studied in this chapter.

An application of the FD-CN-FDTD method is described in Chapter [6] A
simulation model of the human body is developed in the FD-CN-FDTD method
with all the fine structures and frequency dependent dielectric properties of the
human tissues. Numerical simulation of electromagnetic wave propagation inside
the human head is shown. The implications of this study for further research on

bioelectromagnetics is also explained in this chapter.

In Chapter [7] a method is presented modifying the FD-ADI-FDTD method
in order to improve the accuracy. The ADI-FDTD method is a computation-
ally affordable approximation of the CN-FDTD method [23], found by adding
a perturbation term to the latter. However, the ADI-FDTD method exhibits a
loss of accuracy with respect to the CN-FDTD method that may become severe
for some practical applications [23]. By numerical experiments in Chapter [7]it is
shown that, the modified FD-ADI-FDTD method is more accurate than normal
FD-ADI-FDTD method and it does not significantly increase the computational

costs.

Major implementation techniques of the proposed FD-CN-FDTD and mod-
ified FD-ADI-FDTD methods are presented in Chapter [§, The FD-CN-FDTD
method is implemented in serial Fortran code and its parallel implementation
is performed in Open Multi-Processing (OpenMP). There are scarce precedence
of implementation of the CN-FDTD method in computer programmes and no
precedence of implementation of the frequency dependent CN-FDTD method
which is more complicated. Therefore, the implementation techniques described

in this chapter bear significance and would be useful for further research on the

CN-FDTD method.

Chapter [9) concludes the thesis with a short discussion on the works presented
and highlights their limitations. Some possible future research works are also

suggested in this chapter.



Chapter 2

Finite Difference Time Domain
Method

The FDTD method is said to be the most straightforward, robust and versatile
electromagnetic modelling technique. It is one of the most widely used numerical
techniques used in computational electrodynamics. The method owes its success
to the power and simplicity it provides [24]. This chapter provides the background
knowledge of FDTD methods and literature review covering the state-of-the-art
in the development and studies of the FDTD method.

2.1 FDTD Method

2.1.1 Finite Difference Concept

The concept of finite differencing is briefly described first because it is the basis
of the FDTD method [3]. The increment of a function f(x) at a certain point zg

can be written as

Af(zg) = f(zo + Az) — f(z0) (2.1)

Then the difference quotient or slope of the function f(z) with respect to x

can be expressed as

Af(xo)  flwo+ Aw) — f(xo)
Az Az

20



CHAPTER 2. FINITE DIFFERENCE TIME DOMAIN METHOD 21

As Ax approaches zero, the derivative of the function f(x) with respect to x

can be written as

/ T Af(l’o)_ . flzo+ Az) — f(x0)
Flwo) = Jim —7= = lim Az

(2.3)

Thus, when Az is very small the derivative of a function can be approximated

% ~ ﬁ—ﬁ. Now the derivate of the function f(z) can

be expressed in three ways — forward, backward and central difference and their

by its difference quotient:

expressions are:

f(xg) ~ Ao forward difference (2.4)
~ flae—A
f(xg) ~ f(@o) i(ivo 7) backward difference (2.5)
T
4 Asy p(p A
I (o) ~ f@o+5) = f(@o = 5) central difference (2.6)

Similarly the second derivative of f(z) can be expressed as

f(@o+ 8E) — (o — 55)

f’/(l’o) ~ -
_ 1 [f(wo+Ax) = flwo)  f(xo) — flwo — Ax)
Az Az Az

. " ) A f(l‘o + AZE) — 2f<I0) + f(ZL’O — AZL’)
. f ( 0) ~ (AJJ)Q

(2.7)

These approximations of derivatives in terms of the values at a discrete set of
points are called finite difference approximations [3]. Taylor’s expansion series
give the general approach for the above finite difference approximations. During
the approximations higher-order terms in the Taylor series are usually truncated

considering them negligible which introduces some degree of errors. According to
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Taylor’s expansion,

Fwo + Az) = (o) + Axf (wo) + %(M)? F(20) + - (Az) £ (20) + ... (2.8)

3
and
o — Az) = f(xo) — Axf(wo) + %(Ax)Q (o) — %(Am)?’ £+ (2.9)

Adding and and truncating higher-order terms (considering them
negligible) (2.7) is obtained. Subtracting from and truncating higher-
order terms yield (2.6). The orders of the terms that were truncated make both of
(2.6) and second-order accurate. Similarly, rearranging and and
dropping higher-order terms give and , respectively. These forward and
backward differences are first-order accurate. As the forward difference attempts
to predict the future behaviour of the function using the values of current and
previous time steps it is always unstable. The central difference is conditionally
stable. In general, the backward difference is unconditionally stable but it involves
an implicit update procedure which requires to solve a matrix equation at each
time step [3][25].

2.1.2 Yee’'s FDTD Method

The FDTD method, developed by Yee [9], discretizes Maxwell’s curl equations in
both time and spatial domains using the central difference approximations. The
resulting equations are then solved numerically to get the electric and magnetic
fields at each time step in an explicit leapfrog manner. First electric field is solved
for a certain instant, then magnetic field is solved in the next instant and this
progression repeats. The FDTD method is second-order accurate.

Maxwell’s curl equations for a isotropic and linear medium are:

oB

E=——
V x T

(2.10)

oD
H=— 2.11
V x T +J (2.11)
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where, E is the electric field, H is the magnetic field, D is the electric flux
density, B is the magnetic flux density, J is the conduction current density. The
constitutive relationships, D = ¢E and B = pH, are used in (2.10) and ({2.11])

and then for the source-free medium (J = 0), (2.10) and (2.11)) can be written as

following six coupled partial differential equations:

a;;rx _ %(% B 8@%) (2.12)
agy _ % (68% B aaix) (2.13)
8;% _ %(88% B %) (2.14)
a(;z;x _ %(85? B 3;3) (2.15)
% _ %(a(gx B 8(;?) (2.16)
aab;z _ % (8£y B 85) (2.17)

where p is the permeability and e is the permittivity.

Applying central finite difference approximations of Section [2.1.1] on both
space and time derivatives of (2.12)), (2.13)), (2.14), (2.15), (2.16)), (2.17)) explicit
Yee FDTD equations are obtained. To derive these equations components of E
and H are placed about a unit cell of lattice as shown in Fig. and evaluated

at alternate half-time steps. Thus following discretized equations are obtained,
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Figure 2.1: Positions of the field components in the Yee cell

where, At is temporal discretization and Az, Ay and Az are spatial discretiza-

tions in x,y and z directions, respectively:

n—+

Hy

1 n—2
P(dtykty) = He 2 (itgh+y) (2.18)
At [ ]
_|_

— . T N EyG+3 k1) — EJ G+ k)
M(Zaj + 57 + 5) 2 -
At

+ i i E7 (i jk+1) — BT +1,k+1)
74+ = k+ =)Ayt e
(i, j + 5kt 2) y
ntl nol
Hy ?(i+1k+d) = Hy 2(i+15k+1) (2.19)
At [ 1
+ 1 1 E7(iv14k+)) — E7 (15k+1)
4+ — 1. k+=)Azt
ulit 5,5k + 5)Az
JAN? [
+ i i B (i+4.5k) — By (455 k+1)
M(i+_7j7k+_>AZ-

2 2
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nal 1
H, ?avljviny = H, ?@+li+ip

At
+ i 1 Eli+1+1k) — ElG+L k)
M(Z+§7j+§7k)Ay_ -
At
+ I I EyGi+5k) — By (i+1,+5 k)
Ef i am = ElGrdam
At ntl a1 T
+ i |:Hz+2(i+§,j+é,k) — Hz+2(i+%,j—%,k)
€(i+§,j7 kf)Ay |
At ntl ntl 1
+ I [Hy+2(i+§,y’,k—;) — Hy+2(i+§,j,k+§)
€(Z+§,j,k>AZ -
Eptgrtm = EjGithh
At [ n+ 1 ntl 1
+ Hx+2(i,j+§,k+é) - Hx+2(i,j+%,k—%)

2

At
_l’_

At
. 1
(i, g, k + §)Ax
At
* I

+

1
€(i,j+=,k)Azt

1
e(i, g+ o1 k)Ax b

[ nt i nt i
H, ?(-Lj+3k — H, @+ii+ik

n+1,. . _ m,. .
Ez (17]7k+%) - EZ (7’7]71{:—"_%)
n+3 n+3 |
[Hy 2+ 3k+3) — Hy 2 (-1.5k+3)

1

1
n+s5 n+s5

ke

25

(2.20)

(2.21)

(2.22)

(2.23)

Field components in the FDTD equations of (2.18), (2.19), (2.20]), (2.21)),
(2.22), (2.23) lie in non-integer coordinates. To implement them in the computa-

tional systems they are transformed into integer coordinates which finally gives

a new set of equations:
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At
H" gk = H 0., ————— | & k) — B (i k— 2.24
k) = Hyp( ]k)‘{'u(i’j’k)Az[ Mgk — By k1] (2.24)
At
————— [EZ(i4k) — ElG,j-1.k)]
(i, 3, k) Ay
At
H" Y ijw = H G, — = [E™ijk) — E™i-1, 2.25
) Ggk) y(’]’k)+u(i,j,k)Ax[ Tigk) — B =15k (2.25)
At
—— [E™ijk) — E™Gjk—
/,L(’l,j,k’)AZ[ I(Jk) I(Jk 1)]
At
H" gy = H jik) + —————— [E™(ij.k) — B2 —1,5)] (2.26)
(i, 3, k) Ay
At
T T N A En 7:7‘7 _En i— 7‘7
Wiy, B)Ar 003 = Byin)
At
Eytagm = EpGik) + ——— [HE Gtk — HI' G, 2.27
T k) x(jk)+e(i,j,k)Ay[ D (ig+1,k) 2 (i,4.k)] (2.27)
At
- Hn ij, _ Hn i,
e(i,j,k)Az[ Wight1) — H'gk)]
At
n+1,. . _ mn,. . n,. . n,. .
Ey (i,5,k) = Ey (i,5,k) + m [Hx (i.g.k+1) — H (Z,J,k)] (2-28)
At
- [H"™u J, —Hni,‘,
E(i,j’k)m[zww) 2 (igk)]
At
E™" gk = E k) + —————— [H™(+1,5k) — H (i), 2.29
RN Z(]k)+e(i,j,k)Ax[ ML) — H (140 (2.29)
At
- Hﬂ i1, _Hn 5.4,
€<i7j7 k)Ay [ oc( A x( ]k)]

(2.24), (2.25), (2.26), (2.27), (2.28), (2.29) are the main equations of the
explicit FDTD method.
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2.1.3 Features of the FDTD Method

The FDTD equations of (2.24]) through (2.29)) imply some obvious strengths and

weaknesses of the FDTD method. Some of these are mentioned below:

e The FDTD equations can be easily implemented in computer programmes.

e By defining the FDTD grid properly and specifying the values of ¢ and
i at the grid points, computational space with any medium can be easily
modelled.

e Since the problems need to be mapped into the cells of the computational
space, the bigger the problem, the bigger the computational space. There-
fore, the requirements of the memory increases with the size of the problem
as all the values of E and H fields and media parameters at each grid point

need to be stored.

e By using the rectangular grids of the explicit FDTD method it is not possi-
ble to accurately model the curves in the problem geometry. This is usually
done by staircasing in the computational space but it leads to large com-

putational errors.

e As the FDTD method is a time-domain technique only a single simulation
run is required to get the results for the whole frequency range of interest.
Because of this the FDTD method can be an attractive choice for modelling
wideband systems. However, in through the media parameters
are considered to be independent of the frequency, whereas in wideband
systems these parameters vary with the frequency. So inaccuracies will
appear if the standard FDTD method is used in modelling problems in

wideband frequency without any modification.

e From the spatial discretization viewpoint there can be two extreme possi-
bilities: electrically small geometrical details and electrically large geomet-
rical details [26]. For electrically small geometrical problems, the spatial
variations of the fields are dominated by the geometry instead of by the
wavelength and a fine discretization must resolve the geometrical details.
On the other hand, for the electrically large geometrical problems, the spa-
tial variations of the fields are dominated by the minimum wavelength and a

proper space-step must be chosen to achieve an accurate overall resolution.
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For the intermediate region (electrical size of geometrical details compara-
ble to the wavelength) the space-steps must accurately resolve both spatial

variations.

e The choice of the temporal discretization At in Yee FDTD method is re-
stricted by the CFL stability criterion [27] (described in Section [2.4]). This
upper bound on the temporal discretization affects the computational effi-
ciency of the FDTD method.

2.2 Absorbing Boundary Condition

The computational domain of the FDTD method needs to be appropriately
terminated because computational resources are limited. The original Yee’s
FDTD method does not explicitly contain any boundary information. The FDTD
method enables to compute the electric and magnetic fields inside the computa-
tional domain through the update equations that use the field values at previous
time steps at these locations and those at the nearest neighbours. But the elec-
tric fields at the boundaries can not be calculated in this way because values
of the magnetic fields outside the domain are required. A boundary condition
would allow to calculate the electric fields at the boundaries by using the field
values available in the interior region. Without introducing boundary condition

the FDTD method can not be used to solve practical problems.

An absorbing boundary condition (ABC) on the periphery of the computa-
tional domain simulates it to be extended to the infinity. The ABC needs to
absorb the reflections of outgoing waves to an acceptable level that otherwise will
make the desired simulation data spurious. Different ways to approach the outer
boundary condition issues lead to the development of different ABCs. One of the
oldest and well-known boundary condition is Mur’s absorbing boundary condition
[28]. It is relatively simple and has been successfully used to solve many engi-
neering problems. Its implementation is straightforward and it is relatively less
computationally demanding. However, Mur’s ABC has room for improvement
in terms of the accuracy of the solution it generates [29]. To improve its accu-
racy, Mei and Fang [30] have proposed the so called super absorption technique,
while Chew [31] has introduced Liao’s boundary condition. Both of these exhibit

better characteristics than that of Mur especially for obliquely incident waves [32].
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However, many of these boundary conditions can suffer from either unstability
or inaccurate solutions. Therefore, the quest for robust and effective boundary
conditions continued until the perfectly matched layer (PML) was introduced by
Bérenger [33]. PML is actually an artificial (mathematical) anisotropic material
which is inserted in the periphery of the computational domain in order to absorb
the outgoing waves. This anisotropic material can be perfectly matched to free
space at all incident angles and frequencies, provided that the interface is an infi-
nite plane. Thus an infinite PML can absorb the incoming waves at all frequencies
and for all incident angles. Since the pioneering work of Bérenger different ver-
sions of PML have been proposed in the literature: unsplit PML (UPML) [34],
stretched coordinate PML [35][36], time convolution PML [37]. While the main
concept of these versions of PMLs is still the same, different versions lead to dif-

ferent computer codes when implemented in the FDTD method [38].

Mur’s ABC can give reasonably good results in the FDTD simulations of ob-
jects like waveguides, patch antennas and microwave circuits without paying the
heavy computational expenses required by some other types of ABCs. Although
higher-order Mur’s ABCs are superior to first-order ABCs their implementation
is more complex. Second-order Mur’s ABC requires tangential derivatives on the
boundary but sufficient information is not available to perform the derivative on
the corners. This is why second-order Mur’s ABC is not very good in handling
the corner regions of the boundary [39]. Higher-order Mur’s ABCs are not well-
suited for parallel processing because they require exchange of field information
that places a heavier burden in terms of communication than do the first-order
Mur’s ABC [40]. In this thesis all the proposed FDTD methods are terminated
by first-order Mur’s ABC.

Mur’s ABC can be viewed as an approximation of the Engquist-Majda bound-
ary condition [41]. For one dimension a plane wave propagating along the negative
x-direction (Fig. can be represented by the function ¢(z + ct) and satisfies
[27]:

(2o =0 (2.30)
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Figure 2.2: Explanation of Mur’s absorbing boundary condition

Here ¢ is any function of (z + ct), ¢ is the wave propagation velocity in free
space and t is the time. In Fig. the field inside the computational domain (for
example, point P) can be computed through the FDTD update equations but the
field at a point on the boundary (for example, point Q) has to be computed by
using an ABC. In Engquist-Majda ABC the field at the boundary of the domain
is expressed in terms of the known fields in the interior of the domain. Thus when
the wave is normally-incident plane wave using forward difference formula of

the field at the boundary z = 0 and at time (n + 1)At can be approximated as:

+1
p=1 — Pomo _ 10250 — diyg

Ar = AL (2.31)
n cAt, cAt
g %:3 = (1 - E) =0 T Ay Ve (2.32)

In the field at the domain boundary is expressed in terms of the fields
at the boundary and adjacent to the boundary (inside the domain), both sampled
at the previous time step. Equation ([2.32) is valid for a normally-incident plane
wave because is an 1-D wave equation. In Mur’s ABC, unlike Engquist-
Majda boundary condition, is approximated by using central differencing

in both the time and spatial domains:

el = L e e ) .39

(2.33)) is second-order accurate. However it includes neither the field at the
1
boundary nor at time (n + 1)At. Therefore, Mur represented gbijoz) and ¢"_ 1

averaging the two adjacent fields in both time and spatial domains:
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B8 = < (1t + 61) (2.34)

DN | —

(Pomr + Pio) (2.35)

N | —

n _
oy =

Substituting (2.34)) and (2.35)) into (2.33) yields Mur’s first-order boundary

condition:

cAt — Ax

n+1 )
¢x:0 ¢m:1 + CAt—f—A[E

(9241 — &0 (2.36)

If the boundary is not too close to the simulated objects and excitation sources,
Mur’s first-order ABC can give results of acceptable accuracy. An advantage of
Mur’s first-order ABC is that it can be easily incorporated in a code designed
for parallel processing [40]. This is because the computation of the fields at the
boundaries only requires the knowledge of previous values at the same locations
and the field values adjacent to the boundary at the same time step. Thus all the
information needed for parallel processing is available in the individual parallel
computational subdomains. However, for the problems dealing with propagation
of waves at highly oblique angles or requiring very high accuracy Mur’s first-order

ABC might not be the most suitable boundary condition.

2.3 Frequency Dependent Media

In the explicit FDTD equations of through , the media parameters
are specified as frequency-independent constants but, in reality, these parameters
depend on the frequency. Media parameters can be considered constant only
within a narrow frequency band. If a broadband pulse is propagated through
such a medium the frequency dependence of the medium has to be taken into
account [I1]. An example of how relative permittivity and conductivity of the
grey matter of human brain vary over frequency is shown in Fig. [2.3] Tissues of
the human body are frequency dependent and the dielectric properties of these

tissues were measured by Gabriel et al in the frequency range of 10 Hz to 20
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Figure 2.3: Dielectric properties of the grey matter of human brain varies with the
frequency. (From the database of dielectric properties of human tissues compiled

by Gabriel et al [1])

GHz [42] [43] [44] [I]. The variation of the dielectric constant with frequency is
called dispersion and the medium for which € and g are functions of frequency is
called dispersive medium. When ¢ and p are independent of frequency it is non-
dispersive medium. A dispersive medium responds to an electromagnetic field
as the superposition of two responses: an instantaneous response (also called
infinite frequency response), and a retarded response coming from the energy
initially absorbed by the medium and subsequently returned by it. This second
response is delayed in time because of material inertia and is responsible for the
energy dispersion [24]. The ways in which physical processes in a material can
affect the electric field are described through complex permittivity of the form
[45]: € = € — 7¢". The real part of the permittivity € is a measure of how much
energy from an external electric field is stored in a material. The imaginary part
of the permittivity €” is called the loss factor and is a measure of how dissipative

or lossy a material is to an external electric field.

Three models are mainly used to represent frequency dispersive materials:
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Debye Model, Lorentz-Drude Model, Cole-Cole Model. At wide frequency band
the frequency dispersion characteristics of the dispersive media can be explained
by the relaxation time required for dipoles to become oriented or polarized, on
the application of an external electric field [46]. At such frequencies the polar
molecules of these media tend to rotate as if they are in a damping frictional
medium. In Debye and Cole-Cole models, the relaxation time of a material m
is used to describe the dispersive materials. Lorentz-Drude model is based on
the motion of bounded charges and gives a system with a couple of resonant fre-
quencies [47]. Debye model is the most widely used model in the FDTD method
because of its simplicity of implementation. One of the objectives of this research
is to observe the interaction of electromagnetic waves with the human body. Cole-
Cole and Debye models are the most appropriate models to represent frequency
dispersive biological tissues. Out of these, the Debye model is chosen to use in
the FDTD methods proposed in this thesis because it is widely used and easy to

implement.

The single-pole Debye model is given as:

€s — €
€ = €0 + —— 2.37
" 1+ ywm ( )
where, €, is the relative permittivity, eg is the static permittivity, e, is the
optical permittivity, 7 is the characteristic relaxation time of the dipole moment
of the molecule, w is the angular frequency. This model can be extended to
account for the losses due to the conduction currents and the static conductivity

as follows:

€5 — €so o
€ =€+ —m — J— 2.38

T 14w jweo (2.38)

where, €, is the free space permittivity. The wideband frequency dispersion
characteristics of the dielectric materials can be more accurately described by
introducing multiple dispersion processes. Multiple Debye terms are included in

the multi-pole Debye model with relaxation times well separated:
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eoo+z B, 0 (2.39)

1+ jwrpk weo

where, 7p; is the relaxation time and Aey is the change in the relative per-
mittivity over the k" dispersion region. For example, in the case of 2-pole Debye
model £k = 1,2, Ae; = €5 — € and Aey = €, — €5, Where, €, is the interme-
diate relative permittivity. Although multi-pole Debye models account for the
different dispersion regions, their implementation in the FDTD method may be
quite complicated. On the other hand, with the advantage of less complicated
implementation it may be the case that single-pole Debye model can adequately

describe the materials of a certain problem.

2.4 Unconditionally Stable FDTD Method

To ensure the accuracy of the FDTD method spatial sampling must be smaller
compared to the wavelength (usually less than or equal to one-tenth of the wave-
length) [3]. That means, for higher frequencies when the wavelength is very small
spatial sampling should be even smaller. In the FDTD method time- and space-
steps are related. Because, for example, if the time-step is very large the wave
has to travel over several spatial cells in one time-step. But the field values at
each cell is updated based on the values at the adjacent cells. So a large time-step
may cause major problem and the simulation may become unstable. This frames
the so called Courant-Friedrichs-Lewy (CFL) stability condition [48][49] which
the explicit FDTD method must satisfy to maintain its stability:

1/ 1 1 1\ 2
<= 4
At < = Ay2 + A22> (2.40)

Thus, there is an upper bound on the time-step depending on the minimum

spatial step. This restriction renders the FDTD method inefficient. To overcome
this limitation there is a growing interest in the unconditionally stable implicit
FDTD methods for which time-step and space-step can be independently cho-
sen. The Crank—Nicolson [15] FDTD (CN-FDTD) method is such a method
which provides unconditional stability beyond the CFL limit. In the CN-FDTD

method the time and space derivatives are discretized by centred differences while
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the fields affected by the curl operators are averaged in time. In the standard
FDTD method unknown values are solved explicitly using the values at the pre-
vious time steps while in implicit methods, such as in CN-FDTD method, all
the values of either E or H are computed at the same time by solving a system
of linear equations. Implicit methods allow relatively larger time-step by doing

more computations at each step of the simulation.

Maxwell’s equations ((2.12]) through (2.17))) can be written as

oU
— = AU + BU (2.41)
ot
where,
d
0 0 0 0 0 1=
€y
d
19
0 0 0 3 0 0
0 0 0 0 %ﬁ 0
A= 9 Oz (2.42)
0 1= 0 0 0 0
M9z
0 0 19 0 0 0
o K oz
1= 0 0 0 0 0
0 0 0 0 _%Q 0
0z
0 0 0 0 0 19
€ dx
0 0 0 —%32 0 0
B= y (2.43)
0 0 19 0 0 0
o)
-1 = 0 0 0 0 0
Koz
0 19 0 0 0 0
K oz
T
v-|E B, B oHoH H (2.44)

Using finite differences for the time derivatives and averaging the fields over
time, from (2.41]) the CN-FDTD method is found:
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Un+1 —_yn Un+1 + unr
At At B)—

At At
LU U = (G A+ S B)(UTT U

At At At At
LU UM (A 5B = UM UM (A B)

At At At At
(I - A= 71}3)U“+1 =(I+ 5 A+ 7B)U" (2.45)

Here, I is a 6 x 6 identity matrix. Now, to write (2.45)) in a factored form
At

the formula, (1 +a1)(1+as) =1+ ay + as + ajay is used. Assuming a; = 714,

At?

4

AB on both sides of (2.45

t
ay = TB and adding a,a, =

At AL AP At AL AP
(I — 7@1 _ 7753 + TtAB)U"“ — I+ 7@1 + gB + TtAB)U”

At?

(- %A}([ _ A gy — 4 %A)(I + A gy (2.46)

2 2
At?
The CN-FDTD equation ([2.46) involves continuous spatial derivatives of
fields. Its discretisation in space yields a large sparse matrix and therefore until
recently it has not been used in time domain electromagnetics. Instead, there

have been many works attempting to simplify or approximate its implementa-
tion: the alternating direction implicit (ADI-FDTD) method [17][50], the CN
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Douglas Gunn method [I§], the CN cycle sweep method [19], the CN approxi-
mate factorization splitting method [20]. However, these approximations suffer
up to some extent of numerical errors, which may become severe for some practi-
cal applications [51 21, 52]. Among these methods, the ADI-FDTD method has
drawn much interest from the researchers over the last decade. The ADI-FDTD
method drops the last term of and then splits it into two steps:
Step-1
At At

(I- 7A)U”*é =+~ BU" (2.47)

Step-2

(I - %B)U”“ —(I+ %A)U”*é (2.48)

The advantage of ADI-FDTD method over CN-FDTD method is that the
computational overhead is smaller because tridiagonal matrix systems are re-
quired to solve (rather than sparse matrix systems). So, the ADI-FDTD method
is a computationally affordable approximation of the CN-FDTD method [23][21],
found by adding a perturbation term to the latter. Because of the omission of

the last term of (2.46)) the ADI-FDTD method leads to truncation error which

is a function of ()2 times the space derivatives of the field [23]. This means
that the truncation error increases with larger At, thus imposing a restriction
on At, particularly when accuracy of the problem is crucial. Compared to the
explicit FDTD method the ADI-FDTD method has larger numerical dispersion
which increases with the temporal discretization. Dispersion analyses of the ADI-
FDTD method have been shown in [53] assuming lossless media and in [54] for
lossy media. The ADI-FDTD method also experiences numerical errors from the
source condition [55]. In all, the ADI-FDTD method improves the computational
efficiency at the cost of accuracy. On the other hand, although the CN-FDTD
method has higher accuracy and lower anisotropy than the ADI-FDTD method
[20] the computational costs are also higher. Ideally, an FDTD method should
take merits of both of the methods.

There have been works to improve the accuracy of ADI-FDTD method to-
wards CN-FDTD method in different ways [56][57]. The iterative ADI-FDTD
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method of [56] involves loop of iterations at each time steps making it more com-
putationally expensive than normal ADI-FDTD method. An alternative tech-
nique has been suggested by [57] employing an average approximation of some
of the implicit fields. [56] and [57] showed the improvements of ADI-FDTD
method for two dimensional problems while [58] and [59] reported these error
reduction methods diverge in three dimensional cases. To reduce the numerical
dispersion of the ADI-FDTD method higher-order methods have been proposed
[60]. Another development in the area of unconditionally stable FDTD method
is locally one-dimensional (LOD)-FDTD method [61]. The main advantage of
the LOD-FDTD method is that the algorithm is quite simple with a subsequent
reduction in computational time, while maintaining the accuracy comparable to
the ADI-FDTD method [62]. The LOD-FDTD method is more efficient than
other unconditionally stable methods due to lesser arithmetic operations. This
fact has motivated other researchers to extend and improve the LOD-FDTD
method from different viewpoints [63][64]. Recently several unconditionally sta-
ble split-step FDTD methods have also been proposed [65][66].

Studies on the original CN-FDTD method without any approximation is
scarce because of the requirements of large sparse matrix computations. However,
with the massive advancement of the technology of memory and computational
resources, handling huge sparse matrices is no longer a bottleneck. This, together
with the extensive researches during last two decades that resulted in highly
sophisticated, robust, efficient and economical sparse solvers, makes the CN—
FDTD method a promising affordable alternative to the explicit FDTD method.
Quite recently [22] investigated the original CN-FDTD method for frequency-
independent materials. To solve the generated sparse matrix of the frequency-
independent CN-FDTD method [67] used iterative solvers and [68] used precon-

ditioned iterative solvers.

2.5 Other FDTD Methods

From the beginning there have been a lot of research on further development of
the original FDTD method. Some of these have dealt with key aspects of the
method and provided enhanced solutions (mitigating dispersion, material mod-

elling, geometrical modelling etc), while others have described completely new
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concepts providing the method with a new dimension (PML ABCs, uncondi-
tionally stable techniques etc). Some of the most interesting developments are

described here.

One of the major limitations of the FDTD method is its numerical dispersion
[27]. Numerical dispersion causes the phase velocity in the FDTD grid to become
a function of frequency and propagation angle. As a consequence, phase errors
appear in narrowband simulations and pulse distortion appears in broadband
simulations [69]. Because of its cumulative effect numerical dispersion becomes a
dominant factor in large-scale simulations unless very small spatial discretization
is used. But lowering the spatial discretization leads to prohibitively large mem-
ory requirements and computational costs. To address this issue a number of
higher-order FDTD methods have been proposed: second-order accurate in time
and fourth-order accurate in space (2,4), second-order accurate in time and sixth-
order accurate in space (2,6) [70], fourth-order accurate in time and space (4,4)
[71]. Higher-order FDTD methods exhibit reduced dispersion error levels with
lower computational costs and memory requirements. This is particularly attrac-
tive for the analysis of electrically large problems because higher-order FDTD
method allows an increased spatial discretization while maintaining a specified
accuracy level [72]. Other noteworthy alternatives for low dispersion methods to
accurately simulate electrically large problems are Pseudo Spectral Time Domain
(PSTD) method [73], Multi-resolution in Time Domain (MRTD) techniques [74].

Although the FDTD method has the ability to handle problems incorporat-
ing materials with geometrical inhomogeneities, problems arise when the media
interfaces are not plane because in the original form of the FDTD method it is
difficult to model the structures that cannot fit well into Cartesian coordinates.
Approximating the interfaces in such complex geometries through staircasing can
lead to significant errors [75]. Errors also appear because of the assumption of
constant fields inside the cells neighbouring material terminations (e.g. edges,
corners, slots, wires etc). In solving this problem [76][77] suggested combining
the FDTD method with another method that is suitable for accurately modelling
problematic geometrical details: FDTD/FETD, FDTD/MoM methods.

Discretization of the entire computational space with a fine grid to accurately
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handle the geometrical details and field variations will make the method compu-
tationally intensive. To circumvent this problem a few methods of obtaining a
more refined mesh in a subregion have been reported. They can be divided into
three main categories [78], namely: sequential computations, space-only subgrid-
ding and subgridding in space and time. In sequential computations, compu-
tation in the whole problem space is performed using a coarse grid followed by
re-computation in a limited volume using a finer mesh [79]. Fields calculated
by using coarse grid are used as the boundary values in the fine grid computa-
tion. In the space-only subgridding various grid-steps in different directions are
implemented [80]. [81] improved the method to second-order accurate. However,
numerical dispersion varies considerably with the density of the mesh [82] and
due to the CFL stability condition, time-step is restricted by the smallest mesh
size throughout the computational space making it computationally inefficient.
Higher efficiency can be achieved with subgridding in space and time technique
[83] as the time-step is set for each mesh separately. Bérenger proposed a new
subgridding technique called Huygens Subgridding (HSG) [84] that connects the
main grid and the subgrid regions using the Huygens-Kirchhoff principle [85].
HSG has the advantages of allowing arbitrarily large ratio of spatial resolutions.
Furthermore, it can significantly reduce the spurious numerical reflections re-

sulted at the interfaces between the main grid and the subgrid regions.

An alternative strategy to handle the staircasing error to simulate the objects
having boundaries not coinciding with the Cartesian coordinates is to employ the
conformal FDTD technique [86]. Conformal FDTD method requires less memory
than the conventional non-uniform mesh methods and does not suffer from late

time instability problems as many of the subgridding methods do.

Developments in the research on unconditionally stable FDTD methods have
already been described in Section As extremely powerful supercomputers
are available these days for handling large-scale computations, parallelization of
the FDTD method is becoming popular. The parallel FDTD algorithm gains the
computational efficiency by distributing the computational burden over a cluster
of processors. It also enables one to solve large problems that could be beyond
the scope of a single processor because of CPU time limitations. Robust strate-

gies of combining different algorithms with the parallelized FDTD have also been
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suggested [40]; for example, parallelizing the conformal FDTD method and en-
hancing it with either subgridding, the ADI-FDTD algorithm or both.

As many current and emerging technological applications involve electromag-
netic wave interactions with the materials having frequency dependent dielectric
properties [12], development of efficient FDTD methods capable of handling fre-
quency dependent materials is important. Frequency dependency has been in-
corporated in the FDTD method mainly by the auxiliary differential equation
method [87], the z—transform method [88] and the discrete convolution method
[89]. To be able to handle practical applications, frequency dependency has been
included in many of the major FDTD techniques, namely, ADI-FDTD method
[90][91], subgridding FDTD method [92], higher-order FDTD method [93], LOD-
FDTD method [62], split-step FDTD method [94], conformal FDTD method [95].
Inclusion of frequency dependent materials is a significant development but it

comes at the cost of higher memory and computational time requirements.

Since the introduction of Yee’s FDTD method many variations and extensions
of it have been proposed and the literature on the FDTD techniques is extensive.
Major trends and developments of FDTD researches have been surveyed here but

this is obviously not exhaustive.



Chapter 3

Frequency Dependent Crank
Nicolson FDTD Method

3.1 Introduction

The main drawback of the conventional, explicit FDTD method is the reduced
computational efficiency resulting from the upper limit on the time-step that
needs to satisfy the CFL stability condition [27]. Thus, when very small spatial
step relative to the wavelength of interest is employed to accurately model the
fine geometrical details of a given application, an unnecessarily small time-step is
enforced, with an increase of the total CPU time. An alternative to the explicit
FDTD method is provided by the CN-FDTD method [15], which presents un-
conditional stability beyond the CFL limit. Both methods share in common the
discretization of the time and space derivatives by centred differences, with the
only difference being that the fields affected by the curl operator are averaged
in time by the CN-FDTD method, whereas in the explicit FDTD method they
are not. The resulting method is a fully implicit marching—on—-in—time algorithm
with the same potential of the classical FDTD method. However, despite its ac-
curacy and low anisotropy [16] the CN-FDTD method has not been widely used
in time domain electromagnetics as it involves large sparse matrix computations.
Instead, there have been many works attempting to simplify or approximate its
implementation [96]. Such approximations suffer from some extent of numerical
errors, which may become severe for some practical applications [2I]. With the
massive advancement of the technology of memory and computational resources,

handling huge sparse matrices is no longer a bottleneck. This, together with the
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extensive researches during last two decades that resulted in highly sophisticated,
robust, efficient and economical sparse solvers, makes the CN-FDTD method a

promising affordable alternative to the explicit FDTD method.

In this chapter a new three-dimensional frequency dependent CN-FDTD method
(FD-CN-FDTD) is proposed. Frequency dependence of single-pole Debye ma-
terials is incorporated into the CN-FDTD method by means of an auxiliary
differential formulation [87]. Mur’s first-order absorbing boundary condition [28§]
is used to terminate the boundaries in the FD-CN-FDTD method.

3.2 Formulation of the FD-CN-FDTD Method

The differential time domain Maxwell’s equations in material independent form

are
0B
E = - -1
V X T (3.1)
oD
H = -— -2
V x 5 +J (3.2)
V-D=p (3.3)
V-B=0 (3.4)
where
D =¢E (3.5)
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Here E is the electric field, H is the magnetic field, D is the electric flux
density, B is the magnetic flux density, J is the conduction current density, p
is the charge density, € is the permittivity of the medium, p is the permeability
of the medium. through provides all the information to describe the
behaviour of the field in the linear, isotropic and non—magnetic medium provided
that the initial field distribution is specified. In fact, the two curl equations ((3.1
and (3.2)) contain the two divergence equations ((3.3) and (3.4)) and are only re-
quired to be considered. For most materials the relative permeability, u,, is very
near to the unity [p.85, [97]]; therefore, in this thesis permeability of all the mate-
rials is considered to be that of the vacuum (p) i.e. p = pppio = 47 x 1077 H/m .

For many materials of interest, the constitutive parameters change over a wide
band of frequencies [45]. Such frequency dependent materials can be described
by the Debye model. In the FD-CN-FDTD method single-pole Debye model is

used which defines the complex relative permittivity as

€S — €xo o
€ = €+ ——m — J— 3.7
" 14 gwm ]weo (37)
where €, is the complex relative permittivity, €, is the free space permittivity,
€s is the static permittivity, €., is the optical permittivity, 7p is the characteristic

relaxation time, o is the static conductivity, w is the angular frequency.

Using ([3.5)) and (3.7]) the constitutive relationship for single-pole Debye electrically—

dispersive media can be found (in frequency domain):

D = ¢y, E (3.8)
€5 — €0 o
o+t — —71—)E
60(6 + 14 jwm jwe[))

€0€S — €0€oo N IE
14 jwm Jw
_ (Jw)%€p€oe™ + Jw(€ges + oTp) + O’E
Jw(1 4+ jwm)

- (EOEOO +
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(3.8) is simplified to

(jw)ZTDD + wD = (jw)2€06007'DE + yw(eoes + o) E + oE (3.9)

Mapping (jw)™, in frequency domain, into %—Z, in time domain, 1} can be

written as a differential equation in time domain:

9D 0D O°E 0K
™D ot? +E ZGDEOOTDW‘F(%GS-FUTD)E"‘UE (3.10)

For x-direction, when (3.10)) is discretized and the last term is averaged over

time, the following equation is obtained

D i jky — 2D (k) + D i .k)

TD(i’j’k) (At)2 (311)
_I_DZH(i,J’,k) — D (i,j.k)
At
= €0€ (i k) T (iro) Eylagn — 2676k + By i
Do bR (At)?
En-‘rl i) — En i
+(€0€g(idik) + O (5 k)T (irdsk) ) — (g k)At z (13%)
o Ee )+ By
’-7’ 2

(3.11) can be simplified to obtain Ej;“(i,j,k)

,J, k) vy(i, j, k) v3(t,7,k)
En+1 i :MDWJ-&-I i 2\% J> D", AR 10 lz', 3.12
* (30 V4(i7ja k) ’ ( Jk)+ V4(i7j7 k) CE( " * V4(i7j7 k) * ( Jk)( )
vs(,7,k) V(% 7, k) e
— 5<.‘7. )E;,,,(mk)— 6(.‘7. )Em )
I/4<Zvj7k) V4(7’7]7k)

where,

Vl(iaj7k): ’ + (313)
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—27p (i.5.k) 1

vo(i, J, k) = A2 A (3.14)
.. T (iv '7k)
V3<Z7jak> = (DA;>2 (315)

o €0€o0 (15K T (i,4k)  €0€g(ijik) + O (1.4 k)Tp(6gk) O (igk)

o —2€0€0 (1,4.k)Tp (L.5.k)  €0€gliik) + O (i3 k)Tp(igk) O (ijk)
3 k) = = — 3.17
vs(isJ, k) (A1) At Ty GBI
k) = 3.18
VG(ZL]? ) (At)2 ( )

For the source-free medium (J = 0) using (3.6), Maxwell’s curl equations
((3.1) and (3.2)) can be written in scalar form:

OH, 1(0E, OFE,
o ;(W ay) (3:19)
0H, 1/0E. OE,
ot ;( r 0z ) (8:20)
OH, 1(0E, OE,
ot p( y a_z) (3:21)
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and

ot oy 0z (3.22)
oD, OH, OH,

ot 0z  Ox (3.23)
0D. _ OH, OH, (3.24)

ot ox oy

Now in the CN method the time and space derivatives are discretized by
centred differences while the fields affected by the curl operators are averaged in
time. The method uses the same Yee grid as the conventional FDTD. Using this
approach H;H_l(i,j,k), H;H_l(i,j,k) and H:H(z‘,j,k) are obtained from , (13.20))
and while D™ k), DZ’+1(i,j,k) and D" (ijk) are obtained from (3.22) ,
and , respectively:

At OE,"Y 9" N OE," OE."

H,""' = H," + ﬂ( B 5 5 s ) (3.25)
O e Sk Ek IR
H" = H." + ?—:(a%;l - 8%’;“ + 855 — ag;’n) (3.27)
D,"*'=D," + %(8%;1 — 8[%:“ + agyf — 322’") (3.28)
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At OH,"T o, N OH,” OH,™

D n+1 n =" _ ]
=D 2 ( 0z ox 0z ox ) (3:29)
At OH,"T'  oH,"™ 0H,” 0OH,"
D" =D —(—F— - — L == :
* 2 ( ox oy + Ox dy ) (3.:30)

Substituting the values of H'*'(ijk) and H*'(ijk) from (3.26) and (3.27) in
(3.28) to get D"™(ijk and then using the value of D" (i k) in (3.12) give a
equation of E,"*!, E,"*" and E.,""'. Taking all the (n + 1) terms on the left

hand side this equation eventually becomes

4, k) 1 (i, 7, k)
Eszrl ( Js it Vi v J I Ve Y ( ) 1
+V1(iaj7 k) (§)2182Ezn+1 . V1<i7]>k> (§)2162Emn+1
valijo k) 2 @ 0z0r (k) 2 p 92
b AR MOT | i ) M) 2B
va(i, j, k) va(i,5,k) 2 Oy wali,j,k) 27 pu Oy
1/1(Z ja )(_t 21 62E " Vl(ivja k‘l)gaHyn . Vl(imj? k) (g) laZEzn
V4(Z ja ) 2 H al‘ay V4(i7]ak) 2 0z V4(i7j7 k:) 2 2 0z0x
+V1<Z 7 )(g) ,10°E," Vl(z,j,k)(g)Qc?HZ" (i, g, k) At) ZOH,"
V4<i7j7 k) 2 H 02? V4(i7j7 k) 2 ay V4(i?37k> 2 8’2
V2(Z:7j:’ k)Dzn V3(Z'7]:7 k)Dxn_l . VS(Z:aj:v k) Exn . Vﬁ(??i? k) Exn_l
V4(Zuj7k) V4(7’7]7 k) V4(Z7j7k) V4(Z7.]7k)

When (3.31)) is discretized in space and same terms are factored out properly

(3.32) is obtained
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1 1.7
1+ 2P (i, 7, k)(—Ay2 + _AzQ) EM i (3.32)
Py(i,j. k) Py(i,j. k)
_ R En+1 i _ e En+1 il
Ayz X ( 1J+11k) Ay2 T ( 5J l,k)
Pl(iv.j?k) n+1,. . Pl(za.]7k) n+1,. .
_TE‘T (4,5,k+1) — TEJC (4,5,k—1)
Py(i, 5, k) Py(i,j, k)
vJ En+1i' o J En+1i'
Pi(i, g, k) Py(i, j, k)
_ ’ ) En+1 i1 ' En+1 i1
AzAy Y (i-1,j+1,k) + AzAy Y (i—1.5,k)
Py(i, 5, k) Py(i,j, k)
vJ En+1i' o 9J En+1i‘
+—AZAZL‘ 5 (4,5,k+1) NN (4,5,k)
Py(i, . k) Py(i,j k)
- rJ En+1 ie1. v J En+1 il
NN (i—1,4,k+1) + NN (i—1,5,k)
= Py(i, j, k) Dy gk) + Ps(i, 4, k) Dy~ i.gib)
P,(i, g, k Py(i,5,k) ..
+—4(A; )Hﬁ(z‘,m,k) - —4(2; )Hz (i.5.k)
Py(t,5,k) .., Py(t,5,k) ..,
_—4(&2 )Hy (i.3.k+1) + —4(Ai )Hy (i,4,k)
o - . 1 1 o n
—Py(i, 4, k)E" k) — | 2P (4, 7, k)<_Ay2 + _AZQ) + Ps(i, 4, k) | B} ..k
Pl(imj?k) n,. . P1<27.]7k> n,. .
+ Ayg E.l‘ (Zvj+17k) + Ay2 Ez (Zvjflvk)
P1<i7j’k) n,. . Pl(iﬂj’k) n,. .
TR Betake) O k)
P1<i7j7k> P1<Z7j7k>
————— " —————= "
AyAz y (i 1K) + AyAz y (1:3,k)
P1<i7j>k) Pl(za.%k)
———— = F"i-1, — —————2FE"i-1;
+ AyAz y (i=1j+1,k) AyAz y (i=1.5.k)
P1<i7j7k> P1<Z7j7k>
———" " ———— "
NN o (i,4,k+1) + NN 2 (i,4,k)
P1<i7j7k> n, . . P1<i7j7k) n,. .
FTasAg DT TR A B

In " Pl(iuja k)? PQ(i7j7 k)v P3<i7j7 k)a P4(7;7j7 k)a P5(i7j7 k) and Pﬁ(i7j7 k)
have the following values:

(3.33)
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Vl(iaja k) + VQ(iajv k)

Py(i, j, k) = oG k) k) (3.34)
Py(i, j, k) = % (3.35)

P(i, j,k) = %At (3.36)
Py, j,k) = % (3.37)

Py(i, j, k) = % (3.38)

Now for y-direction (3.11]) turns into

i, 5, k) vy (i, j, k) vs(i,j, k) .

En+1i,', :MDH+17L' 2\% J> D" i 3\ D" 11. 3.39

vk = Dy Dy + s Dt + DR D, (i.3,k)(3.39)
V5(i7j7k) Vﬁ(iajﬂk) -1
— E" k) — L LR,
vl g k) Y T gk Y

H" ik and H' gk from (3.25) and (3.27) are substituted into (3.29)).

Then the obtained DZH(z‘,j,k) is put into (3.39)) which, in discretized form, gives
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1+ 2P (i, 4, k)(A%Q + ALxZ) EM g (3.40)
_Ag k) X’ZJQ’ k) EP g — Ailigi k) Z’;’ k) E} g1
BESLUFL) Z’;Q’ k) El i1k — e iGFILY; X’a‘;’ k) El io1k)
-I——Pizy’i’f) EM i jkt1) — —PXZX;) E" k)
——Pigi’zk) EI -1k41) + —PXZi,zk) B ij-1k)
+—P1A(Zi>yk) E" iv1,5,0) — —P1A<;i’yk) E" L i,5k)
= Py(i, j, k) D} k) + Ps(i, j, k) D)~ i)
—i—%[{g(m,ku) — WHQW,@
—%i’k)ff 2 (+15k) + %ﬁ;’@wmm
—Ps(i, 4, k)E) gk — | 2P (i, 5, k)(ALz? + AL:L-?) + P5(i, J, k) | By (i.gik)
(Alsk) Z;Q ) Ey k1) + Al k) Z;Q ) E} (ijk-1)
—I—%E;(i—i—l,j,k) + %E;(i—l,j,k)
- —PZ(;Z:) EZ (i+1,5.k) + —PZ(ZZ;) E3 (k)
%Eg(i—f—l,j—l,k) — %Eﬁ(i,j—l,k)
Similarly for z-direction is written as
B = P G PR Ly P )
D T e
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In this case Hy (k) and H) g from (3.25) and (3.26), respectively, are
substituted into (3.30) and the resulting D™ (ijk) is used in (3.41). This yields

o Pl(ivja k)
Ax?
Pl(iuja k)

R TN
1+ 2P1(Z,j, k)(A_xQ + A_yQ):| Ez+1(i’j’k)

E"iv1,k) (3.42)
D(i i D(i i
. 1(%]7 k) Eg+1(i—1,j,k) . 1(%]7 k)
Ax? Ay? Ay?
Py (i, j, k) Py (i, j, k) Py(i, j, k)
SR RASCELRAYA -y (5 DO A S LA RATA
+ AzAzx AzAx —° (k) AzAzx
Py (i, j, k) Py (i, j, k) Py(i, 7, k)
v J) En+1i' _ v J rJ)
* AzAg o D * AyAz AyAz
Py(i, 5, k) Py(i,j, k)
_ 5 J En+1i' _ ) J) En—Hi'f
AyAz Y (k=) AyAz Y (k=)
= Py(i, j, k) D2igk) + Ps(i, §, k) DI k)
_’_P4(Z7.]7k) P4(Z7.]7k)
Az Az
P4(7:7j7 k)

P4(i7j7k)
- S H"Gj+1.k) + ———H" G5k
Ay 2 (G+1k) + Ay z (5:3:K)

E' i1k — B -1k)

EM 1,50 — B 41,5 k-1)

By gLk — By k)

H i1,k — H, gk

o _— o 1 1 o n
_PG(Zajv k)Ez l(i»j»k) - 2P1(Za]a k)(A_.TQ + A_yQ) + PS(Zvja k) EZ (4,5,k)

P1<i7jak)
+ Ax?
Pi(2,5,k
+ 1(%]7 )
Ay?
_Pl(lujuk)
AzAz
Pl(ia.juk)
AzAz
_Pl(iajak)
AyAz
Pi(i,9,k
+ 1(Zaja )
AyAz

Pl(iaja k)
Ax?
Pl(ivja k)
Ay?

Pl(iuju k)
Eni .
« (i+1,5.k) + TAZAS

Pl(iajv k)
AzAz
Pl(iaja k)
AyAz
Pl(ivja k) n,. .
WE?J (3,7,k—1)

Eli+1,4k) + E7(i-1,5k)

E7 (ij+1.k) + E7(i.j-1k)
E i,k
_|_

n, . . mn,. .
Eq; (7“+17]7k_1) - Ex (szzk_l)

E;‘(i,jﬂ,k) + E;L(i,j,k)
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(3-32), (3.40) and (3.42) are the three main equations of the FD-CN-FDTD

method. These equations are valid for the interior computational space but not on
the boundaries. (3.32)) is valid for ¢, +1 < @ < ipazs Jmin+1 < J < Jmae — 1 and
kmin+1 < k < ke — 1. Henceforth, .5, Jmin, kmin are the lower boundaries and
Ymazs Jmaz, Kmae are the upper boundaries in the x, y, z directions, respectively.
is valid for imin +1 < @ < tmaz — 1, Jmin + 1 < § < Jmae and ki +1 <
k< kpaw — 1. is valid for ipmin + 1 <@ < tmaz — 1, Jmin +1 < 7 < Jmaz — 1
and kpin +1 < k < kee. To calculate the values on the boundaries suitable
absorbing boundary conditions have to be added in the FD-CN-FDTD method.

3.3 Inclusion of Mur’s First-Order Boundary

Condition

In the FD-CN-FDTD method Mur’s first-order absorbing boundary condition
[28] (equations in Appendix [B)) is used. (3.32)) does not hold when

o ]:jm2n+1andk:kmzn+1

® i =i+ 1land k=FK,,+1

b j:jmaa:

o k= kmax
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When i = i, + 1, (3.32) is to be modified using the equations of Mur’s ABC.
The modified equation is (3.43]) which has been derived using (B.23) and (B.27)

A T B
1+ 2P (i, 7, /{:)(A—y2 + E) E" i k)

P(i,5,k) .,
— %Ex—ﬂ(i,ﬁl,k) (3.43)
_Pl(iaja k)
Ay?
_Pl(i7j> k)
AxzAy

Em -1k —

P1<i7j7k> . n+1, . .

TAyUll(m’k) - 1)Ey+ (4,5,k)
Pl(i>j7k) Pl(luyvk:)

— " h4(.j —_

Py (i, j, k)
hotigk) — D) E™ AN AR,
(hr(igk) — 1) BT jk+1) + N

(hstak) — D) Ep+ g +

ha(ijk)

Pl(ihjak') N .

 AzAx (hsigk) — 1) BT (i,5,k)

Pi(i,j.k), Py, jk)

_mh8(27]7k) + W

= PQ(L]', k>DZ(i:j:k) + Pg(i,j, ]C)D;L_l(i,j’k)

Py(i, j, k) Py(i, j, k)
Ay Ay

Py(i,5,k) 1on Py(i, 4, k)

—THy (1) + ==X

o e . 1 1 . n
_P6(Z7j7 k>Ex l(ivjvk) - 2P1(Z>]7 k)(A_yg + E) + P5(Zvj7 k) Ex (8,3,k)
Pl(iuju k)

Pl (27 ju k)
= Ay

Ay?
+P1(27]7k) Pl(zajak)
Az?

A2 E7 (i,jk+1) +
Pl (Za ja k)

_Pl(iaja k)
AyAx

AyAx
_i_Pl(Zu]Jk) Pl(lajuk)
AyAx

AyAx
Pl(iajak) n, . . Pl(z?j’k)
AzAzx B Gakin + AzAzx
Pl(iajak) Pl(lvjak)
AzAx AzAzx

e (i.g.k)

+ HT (ij+1,k) — H (i.j,k)

H,(i,jk)
EMij+1k) + B .i-1k)
E7 (i,jk—1)
B j+1k) + B} Gk
B (i-1,j+1k) — Ey (i—1,5k)
EZ (k)

EZ (1_17]7k+1) - Ez (Z_lajak)
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where
At — Ax\/pei+1,5
i) = TVREGHLIb) (3.44)
At + AZL‘\/IUE(z,],k)
(At + Azy/pe(i+1,5.k) By (41,50 — (At — Azv/petik) By G.ik)
ha(ijik) = (3.45)
At + Az (i k)
hg(i,j,k) = hl (Z,] + ]_, k’) (346)
haGijk) = ho(i,j + 1, k) (3.47)
At — Ax/pei+1,5
B = TVREGHLIb) (3.48)
At + Al‘\/ﬂﬁ(z,],k)
N (At + Axv/pe(i+1,4.k)) B (i+1,5,k) — (At — Axv/petigk)) B (i5k)
he (k) = (3.49)
At + A/ e (i k)
hatigk) = hs(i, j, k + 1) (3.50)

hs(ijk) = he(i, 3,k + 1) (3.51)
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Similarly, for the case of j = j,in+1, using the Mur’s ABC equation of (B.19)),
(3.32)) is modified to ({3.52))

1+ 2P (i, 7, k)(ALyQ + é) E" k) — %Eﬁ“(i,ﬁl,m (3.52)
—%y];mhga,m)ES“(im - %j;mhmmm
PGk Z’;’ k)E;}“(i,j,kH) e UYL (AZ’ZJQ’ k) Er k-
+P1A<Zi’yk> By i - PX;X:) By ik
——Pz(ii’yk) Ept i1k + —PlA(Zi?yk) Ept i1k
N —Piiixm B atry = ‘P1A<—i’i’f) B k)
_—PlA(i’i’:) El i1k41) + —PXZZ’X:) B i-1,,k)
= Py(i,j,k)D"Gijk) + P3(i, 7, k) D™ k)
—1—%;’@]{2(1,3‘“,@ — %?‘j’kj)]{?(i,j,k)
_—P4(Z‘Z’ k) H ' (ij.k+1) + —P4(Zi’ k) H.(i.jk)
—Pg(i, 5, K)E" gk — | 2P (4, 7, k)(ALgﬂ + Ai,zﬁ) + Ps(i, 7, k) | B2 i..k)
FEEGHL Z;z ) Erggig + 200k Zyﬂ ) B} j-1k)
—i—%E;(i,j,kJrl) + %Eﬁ(m,kl)
——Pl(z’i’:) By Gg+1.k) + —PlA(;if) By (.5 k)
—1—%[?;@—1,3'“,@ — %Eﬁ(i—u,k)
——PlA(i’i’f) EZ (ijke+1) + —PlA(ZZ’i’f) E7 (ijk)
+—P§i’i’:> E’(i-1,4k+1) — —PlA(i’i,xm E7 (i-1,5.k)
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where
At — Ay/pe(i,j+1,k)
o) — N ) +10) (3.53)
Y/ HE(i,5,k)
o (At—'—Ayqu zg—l—lk) zy—l—lk) (At—Ay\/,uE(ij) zjk)
hioGigik) = (3.54)

At + Ay+/ € (i,,k)

In the same way, for the case of k = k,,,;,, + 1, using the Mur’s ABC equation

of (B:21), (3:32) is modified to (3.53)

o 1 1 nl Py(i, 5, k) n+l .
1 +2P1(Z,j,k)(A 2 T Az 2) By k) — Ay2 By (i.5+14(3.55)
P1(7'7.]7k) n+1,. . Pl(i7j7 k) n+1
TTAp e Ty Bk
Pi(i, 7,k " Pi(i,7,k
——1252 )hn(i,j,k)ExH(i,j,k) - —1252 )h12(i,j,k)
Py(i,j, k) Py(i,j. k)
v J) En+1i' o rJ En+1i'
P1<i7j7k> n+1,. . Pl(ivjvk) n+1 . . Pl(ihj’k) n+1,. .
TTAady Ty T Ty B TNy B ke
Py(i, j, k) Pi(i, j, k) Py(i, g, k)
o v J En+1 i o vJ En+1 il v J En+1 i1
P,(i, g, k
= P2(i7j> k)Dz(m,k’) + P3(i7j7 k)D;Lil(iJ}k) + Zl(ZA—;)Hn Jj+1, k’
PG g k) Py, g k) P k)
_—4<A; >HZ (i,j,k) — —4(Ai )Hy (6,5, k+1) + —(Az )H (i,5,k)
1 1
.. n—1, . .o .- n,. .
_PG(Zuj7 k)Ex (,5,k) — 2P1(Z,], k?) (A—y2 + E) + P5(Z,j, :I{?) E]a7 (%,5,k)
Py, j.k) . P, j, k) . P, j. k) .
+—1(A;2 )Ex(i,jJrl,k)—l——l(A;Z )Ex(i,jfl,k)-i- _1(Az]2_) E Gi.j.k+1)
Pl(zajak) Pl(l,j,k) Pl(zvjak)
En igk—1) — Ay L ij+1, — 2 L pn .7,
+—Az2 z (6:3,k—1) AyAz y (bi+1k) + AyAz y (1:3:k)
Pl(zvjak) Pl(Zvjvk) Pl(Zajvk;)
—— L FE"i-1, — L " i-14k) — ————=FE" (i
Pl(zajak) P1(7'7.]7k) Pl(zv.]7k)
E™iq E™Gi—1.4 . E™Gi—1.4
TAAL 5 (i,5.k) + TAAL 5 (i—1,5,k+1) TAAL 5 (i—1,5,k)
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where
At — Az 1€ (i g k+1)
hi1Ggk) = ( E i ) (3.56)
At + AZ\/,[L€(1,],I€)
(At + Azr/pe(igk+1)) B gk+1) — (At — Azy/uegk) E k)
hia(ijk) = (3.57)

At + Azy/ i€ ,gk)

For the case of i = i, + 1 and j = Jpin + 1, using the Mur’s ABC equations

of (B:23), (B27) and (B.19), (:32) is modified to (3.55)

Pl(i7j7k> n+1,. .
SV E" i j1163.58)

P Z? 7k mn P Z’? .7 k n
%&“( k1) — %Eﬁ(w—ﬂ
AxAy

AzAy hateid) +

P (i, g,k n

(hrGigk) — D) E" g k+1) + %(hdiu‘k) — DEM k)

P, (i, j, k) Py(i, j, k)

T T Rt T e—

AzAx 8000+ AzAz

. . n . . n— P Z’ ’k

= Py(i, j, k) D2 i.gk) + Py(i, . k)Di " gk + Ll(A—?i)

Py(i,j, k) Pu(i g, k)

BT ) e
Ay =00 Az

o] 1.1
1+2P1(Z,],k)(F+A—Z2) E +1

_Pl(iajv k)
Ay?
_P1<i7j> k)
AzxAy

hoGigoke) ER T (i, ) —

(hatigk — 1) By ek + (haigky — 1) ErH e

k)

_PI(ZMLI{;) ( j
AxAy

Ay? N (ij.k)

Rio k) —

_P1<i7j> k)
AzAzx

hﬁ (4,5,k)
HY Gj+1,k)

P, k
Hy Gojke+1) + %Hn(wk)
. n— . 1 1 - n
_PG(Zuju k)Ex l(i:j:k) - 2P1(7'7]7 k) (_ + _2) + P5<Z7j7 k) Em (4,5,k)

Ay? Az
Pl(iajvk:) Pl(lajvk)
Az?

Ay? Ay?
—I—%j;mEg(i,j,k—l) - %Eﬁ(mﬂ,k) + %
e R v (T o
L L

P (i, 5,k
+ME:(i,j+l,k) +

E -1k + E7 (ijk+1)
Ey k)
E7 ,5,k+1)

ETijk) + E7 (i-1,.k)
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For the case of j = jin+ 1 and k = ki, + 1, using the Mur’s ABC equations
of (B.19) and (B.21)), (3.32)) is modified to ([3.59)

1 n 1 )
Ay? Az
Pl(ivja k)

Ay?
Pl(ia.jv k)
Az?

Pii,jk) .
1 (4, )Ey+1(i,j,k)
AxAy AxAy

Pl(i>j7k:) n+1,. . Pl(ihj?k:) n+1,. .

_TAyEyJF (i—1,j+1,k) + TAyEyJF (i—1,5,k)
+P1(Zajak) Pl(%]ak)
AzAx AzAx
Py(i, j, k) Py(i, 5, k)
. v J v J En+1 i1

AzAz AzAz = TR
= Py(i, 5, k) D2 igk) + P3(i, j, k) D2 (i)
_’_P4(Zajvk) _P4(Z7J7k)

Ay Ay
P4<i7j7 k) P4(7;7j7 k)
R ANCPLIYS 2 kAN PR,

A y (3 k+1) + As

. e o 1 1 . "
—Pg(i, §, k) By k) — 2P1(2,J,k)(A—y2+A—Z2)+P5(Z,J,k) Eijih)
Pl(iuja k)

Pl(iaja k)

Ay? Ay?
Pl(iajvk) n,. . Pl(Zajvk)
B v

Pl(iajv k)

Pl(ivja k)
_—E” i+, En i,

Pl(iajvk) n, . . Pl(ivjak) n, . .
+mEy (i—1,j+1,k) — mEy (i—1,5,k)
_Pl(lvjvk) Pl(lvjvk)

AzAx AzAx
_|_P1(Z7.]7k) PI(ZL]:]C)

AzAx AzAx

1+ 2P (i, 5, k)(

_ Pl(iajv k)
Ay?

. Pl(i7j7 k)
Az?

Pl(iaja k)

E" L i.6)(3.59)
hoG.gk) Ent (igk) — )
hll(ivjvk)E;+l(ivjvk) - h12(i7j7k)
+ Er gk —
EZ (k)

Eg+1(i,j,k+1) —

1
EM otgk41) +

HY (ij+1.k) H gk

Hy k)
E(ij+1k) + E7(i.j-1k)

E7 (i,jk—1)

E7 (i.jk+1) + EZ(i.4.k)

EZ (7’_17]7k+1) - Ez (Z_lvjvk)
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For the case of i = 4,,;, + 1 and k = k,,;,, + 1, using the Mur’s ABC equations

of (B:23), (B:27) and (B:21), (:32) is modified to (3.60)

1 1
)(A—ngr ~z)
_Pl(iaja k)
Ay?
_P1<i7j7 k)
Az?

(hstigk) — 1) Ep+ agem +

- Pl(ivja k)
Ay?
Pl(ivj’k) n+1,. .

TE:BJF (4,9,k+1)

. Pl@aj? k)
Az?

(M1 (k) — 1)E;‘+1(i,j,k)

14 2P (4,5, k E" i k) E" i1k (3.60)

Em -1k —

ha1 Gk Bt (i)
Pl(iaja k)
AzxAy

Pl(imjak) Pl(lajvk)
— 2 T ha(ij —
AzAy 465k + AxAy

Py (i, 5, k)
hoGjk) — 1 Ertl i4, AR
(hr(igk) — 1) BT (k+1) + N

hia(ijk)
_ Pl (27 ja k)
AxAy

ha(i.j k)

P(i,j, k n
B Z(Zil' ) (h’5(i7j7k) - 1)EZ+1(i’j’k)
Py(i, j, k) Py(i, g, k)
AzAx sk F AzAx
= Py(i, 4, k) Dy.gm) + Ps(i, j, k) D" k)
+P4(Zvja k) P4(Z"]’_k)
Ay Ay
P4(7;7j7 k) P4(Z.’j’ k)
A, y (b3 k+1) 4 A

_PG(Z>]> k)Ex 1("7]7]“) - 2P1(27]7 k)(A_y2 + A_Z2) + P5(7/7.77 k) Ex (4.,k)
Pl(iuja k)

_i_Pl(iaj? k)

Ay? Ay?
Pl(iajak) n,. . Pl(zajak)
T Az e A

Pl(iajv k)

_Pl(iaj7 k)
AyAx

AyAx
+P1<Zuj7k) Pl(zvjuk)
AyAx

AyAx

Pi(i,9,k Pi(i,9,k
. 1('%]7 )E;L(i,j,k+1)+ Z(Z;iv )
ZLATL

AzAzx
+P1(Zaj7k) Pl(zujak)
AzAzx

AzAx

D (i.5.k)

H;‘(i,jﬂ,k) — H?(i,jyk)

H (i.jk)
E"(i,j+1,k) + B (ij-1k)
E% ,jk—1)
B ij+1k) + E} .k
B i-1,5+1,k) — EjG-1,5k)
E7 (i.jk)

Ez (Z_17J7k+1) - EZ (Z_lvjvk)
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For the case of i = 450 + 1, J = Jmin + 1 and k = k,,;,, + 1, using the Mur’s

ABC equations of (B.23)), (B.27)), (B.19) and (B.21)), (3.32)) is modified to (3.61)

1 n 1)
Ay? Az
Pl(ivjak)
Ay?
Pl(ia.jak)
Az?

(hatigky — 1) Ep k)

1+ 2P (i, 5, k)(

_ Pl(iajv k)
Ay?

. Pl(i7j7 k)
Az?

E" i .6)(3.61)

hoi,jk) B2 ij.k) — 10 k)

hll(ivjvk)E;+l(ivjvk) - h12(i7j7k)

P1<i7j7 k)
AxAy
Pl(i7j7k> Pl(la.]Jg)

R LAR AR

AzAy 4(6dk) + AzAy

P(i, 5, k)
hoGijk) — 1 Ertl ij, S
(hr(igk) — 1) ET T g k+1) + N

_Pl(i>j7 k)

ha(i.jk)

Py(i, j, k n
- IA(Zi(E ) (h‘5(i’j’k) - 1)EZ +1(i’j’k)
Py(i, j, k) Py(i, j, k)
AzAx 80 AzAzx
= Py(i, j, k) D} gk + Ps(i, §, k) Dy~ (i)
L Palin o k) ~ Py(i g, k)
Ay Ay
Py(i, 5, k) Pa(i, j, k)
A, y (b3k+1) 4 A

. e o 1 1 . "
—Pg(i, §, k) By k) — 2P1(2,J,k)(A—y2+A—Z2)+P5(Z,J,k) Eijih)
Pl(iuja k)

Pl(iaja k)

Ay? Ay?
Pl(iajvk) n,. . Pl(Zajvk)
B v

Pl(iajv k)

Pl(ivja k)
_—E” i+, En i,

Pl(iajvk) n, . . Pl(ivjak) n, . .
+mEy (i—1,j+1,k) — mEy (i—1,5,k)
_Pl(lvjvk) Pl(lvjvk)

AzAx AzAx
_|_P1(Z7.]7k) PI(ZL]:]C)

AzAx AzAx

D (i.g.k)

HY (ij+1.k) H gk

Hy k)
E(ij+1k) + E7(i.j-1k)

E7 (i,jk—1)

E7 (i.jk+1) + EZ(i.4.k)

EZ (7’_17]7k+1) - Ez (Z_lvjvk)
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For the case of j = ju4e, using the Mur’'s ABC equation of (B.20)), (3.32) is
modified to (3.62))

At — A /—i,'— 7 En+1 ig—1,
E" k) — ( YVHeGi1R) By i1 (3.62)
At + Ay~/ L€ ,j,k)
(At + Ay/peGi—1.k) Erj—1k) — (At — Ay/1eGigk) Erigk)
At + Ayr/1ie(i,gk)

For the case of k = kpaz, using the Mur’s ABC equation of (B.22)), (3.32)) is
modified to (3.63))

B — (At — Azy/petik—1) B k-1 (3.63)
w b At + Az\/ € igk) '
(At + Azy/pe(igk—1)) EXgk—1) — (At — Az uegk) E k)
At + Azy/i€,jk)

Again, (3.40) does not hold when

b ]:]mzn+1andk:kmzn+1

1= tpin +1and k= km + 1
i:ima$

o k= kmax
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When i = i, + 1, (3.40) is to be modified using the equations of Mur’s ABC.
The modified equation is (3.64)) which has been derived using (B.23|)

1+ 2Py(i, ], k)(ﬁ + ﬁ) EMt gk — %Eﬁl(mm (3.64)
h Z’ZJQ’ k) Ert k1) — LRIC¥IL)) (Az,sz, k) Er i1k
_%hl(ig,k)E;JA(i,g’,m — %hz(mm
—i——PX;’i’zk) Bl i gket1) — —PX;’X;{) E" i k)
——PXZXZ]{) B i-1k41) + —PXZXZIC) B -1k)
_—PlA(Ziyk) B iv1,j-1.8) + —Piiiyk) EM L -1k)
= Py(i, J, k)D;L(i,j,k) + P5(i, 7, k)DZ’l(i,j,k)
+wﬁlﬁ(myk+l) - wﬁlﬁmm
—WHS(Z'-&-L}’C) + %Hjmm
—Pg(i, 7, k)E;L_l(i,j,k) — |2P (1, 7, k)(ﬁ + ﬁ) + P5(i, J, k) | By g k)
—i—%ﬁ?g(m,kﬂ) + %E;(i,j,k—l)
+%E§(z‘+mm + w%@—m
+%E?(i,j1,k+l) — %Eg(i,jl,k)
%Eﬁ(wﬂ,jl,m — %E;(i,jl,k)
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Similarly, for the case of j = jin + 1, using the Mur’s ABC equations of

(B.29)) and (B.19)), (3.40) is modified to (3.65))

o 1 1 . P, k)
1+ 2P (4,7, k)(m + @) Ey+1(i,j,k) — %Ey—i-l(i,j,kJrl) (3.65)
_Pl(Zvjvk) _Pl(lajvk) Pl(lmjak/i)

1. . 1. . +1,. .
AZQ E;L+ ('ijka]-) Al’2 E;L+ (7'+17]7k) - sz E;L (7’717]7]6)

Py(i, g, k) Py(i, j, k)
—— 7 (hoq (i —1En+1i'
AyAz AyAz (ha1(Gigik) VEZ T (i.5.k)
Pl(iajak) o Pl(l,j,k)
AyAz haa(ijk) + Ayz
Py(i, 5, k)
AzxAy
Pi(ig k), Pi(ijk)
- Azly hag (i.j.k) + Aziy
= Py(i, j, k) D} k) + P3(i, §, k) D)~ (i)
_f_M P4(Z>]7 k)
AZ AZ
_MHg(iJrl,j,k) + 4(2737 k)
Az

Ax
. - . 1 1 . -
_PG(Zuja k)Ey l(i:j:k) - 2P1(17.]7 k) (E + E) + P5(7”]7 k) Ey (4,3,k)
Pi(i, g, k
1(7'7]7 )En(i,j,kfl)

—I——Pl (AZ’Z‘;’ k) By (i k+1) + e $
LRIGVIL)) (AZ;?Q’ k) By (i+1,4.k) + LRICN/L)) (AZ;?Q’ k)
_Pl(iajvk) Pl(lajak)

AzAy AzAy

Pl(ivjak) Pl(zajak)
AzAy AzAy
_P1<i7j7k) Pl(lajvk)

AxAy AxAy
+P1(27]7k) Pl(zajak)
AzxAy AxAy

(haz(igk) — V) EM T G gkr1) +

haa(i.j.k)

_Pl(ivja k)

hotiik) — 1 En+1 i
AxAy (ho(i.jk) VEI T (i,5,k)

(hasigk) — V) EIM (i+1,5,0) +

hio(i.g.k)

Hg(i,j,kJrl) — Hg(i,j,k)

H (ijk)

By i-1,jk)

E? (i.jk+1) + E7 (i,j.k)

+ E7(i,j-1k+1) — E7 (i,j-1.k)

EP(i+1,5,k) + E (i.jk)

mn . . mn., . .
E(i+1,-1k) — E7 (i,j-1.k)
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where
At — A €(i,j+1,k)
haniy = AL AYVIHEGr10) (3.66)
At + Ay ek
(At 4 Ayypegrig) B Gk — (At — Ayy/peiik) E7 k)

At + Ayy/ € (igik)

hgg(i,j,k) = h21 (?:,j, k+ 1) (368)
h24(i7j7k) - h’22(i7j? k + 1) (369)
h25(i:j:k) = hg(Z + 17j7 kj) (370)

h26(i,j,k) = th(i + 17j7 k) (371)
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In the same way, for the case of k = k,,,;,, + 1, using the Mur’s ABC equation

of (B:25), (B-0) is modified to (B72)

1+ 2P (i, j, k) ( Al Alla) Ey5k)(3.72)
= (ijz—@ By gkt1) — CEL ZZ‘L ) har k) By (i) — %h%“’j’“
— (AZ;Q ) Ept 150 — Falli ), k) (AZ;;’ k) Ept i1k
+%E§H(i,j,k+l) _ %E}Ll(i,j,k)
——PXZXZ]{) EM i j-1k+1) + —PX;’X:) EM -1k
%Eﬁ+l(i+l,j,k) — %EQJA(M,M
_%Efl( 1,j—1,k) + %Eyl(mlw
= Py(i, ], k) Dl ijk) + Py (3, 5, k) DI ik
+%H§<m+l> - wlfﬁ (i.3:F)
—wl—[ﬁ(iﬂ,j,m + WHS(LM)
—Ps(i, 4, k)E'  am — 2P (3, ], k)(& +x3) + B0, F) | EjGin
- (izjg—k) E}gk+1) + A5,k (i’ ZJQ £ L (k1)
—|—%E§(i+l,j,kﬂ - %Eg(i—l,jyk)
_%Egu,j,m) + %Enm k)
+%E§(i,jl,k+l) — %E?(i,jl,k)
_%Eg(wu,k) + %Eg(i,j,m
%Eﬁ(iﬂ,jl,k) — %Eﬁ(i,jl,m
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where
At — Az 1€ (i g k+1)
h27(i,j,k) = ( o ] . ) (373)
At + AZ\/,[L€(1,],I€)
(At + Azy/pe(gk+1)) By (i, k1) — (At — Azy/11€(i5ik)) By (i)
hgg(i,j,k) = (374)

At + Azy/pe(ingk)

For the case of i = 4,5, + 1 and j = Jun + 1, using the Mur’s ABC equations

of (B:23), (B:29) and (B.19), (-40) is modified to (3.73)

o 1 1 P,k
1+ 2P (i, 4, k) (= + ) | Ep k) — ME"“W,;CH) (3.75)
Az? A 2 Az2? v
Pi(i,5,k) ., Pi(i,5,k) ., P(i, g,k
——I(A;Q )Ey“(z',j,k—l) - —12;2 )Ey“(z'ﬂ,j,k) - —I(A:ZQ >h2(z‘,j,k>
P(i,j, k " Py(i, 5,k n
_%Um(”k ~ DE ke + %(hﬂw’f) — 1) EM g
P (i, ],k . P (i, k P (i, ],k
—%hl( mE, ) — %hm(m,k) + %hm(i,j,k)
P(i, 4,k . Py(i, j, k n
_Z(x—iy)(h%(i’j’k) — D) EM 41,50 + Z(x—iy)(hg(i,j,k) — 1D)E ik
Pl(lujak) Pl( k)
— " hos(i —h i
AzAy 26(4,4,k) + AzAy 10(i,4,k)
L. .. _ P 2, >k n
= Py(i,j,k) Dy k) + Ps(i, j, k) Dy Lk + %Hx (i,5,k+1)
P4<Z7j>k) P4(Z7]7k) P4(Z>]7k)
—————"H(i.jk) — ————=H (i+1,, ———H7(j,
As 2 (6:3,K) Ar o (i+1,5,k) + Ar - (is4.k)
o e o 1 1 o "
—Ps(i 5, k) By Gam — | 2P 5. k) (55 + 3oz) + Palin . R) | By
Pi(i,5,k) ., Pi(i,5,k) ., Pi(i,5,k) .,
+—1(A 2‘72 )Ey (i.5.k+1) + —I(AZJQ )Ey (i.g,k—1) + —I(A;Q )Ey (i+1,7,k)
Pi(i,j,k) . Pi(i,j,k) ., Pi(i,j,k) .,
%Ey (i—1,4,k) — Xz—iy)Ez (i,4,k+1) + Xz—iy)Ez (i,9,k)
Pl(,lvjuk) Pl(zaj7k> Pl(zvjak)
REAARA 5L — — 1 LR j—1k) — ——L E"(i+1,j,
AzAy 2 (b= LR+ AzAy 2 (hI=LR) AxAy z (FHL3K)
Pi(i, 7.k Pi(i, 7.k Pi(i, 7.k
+ 1(27ja >En(z]k)—|— 1(17]a )En(iJrljflk) 1(%]7 )Eg(i,jfl,k)

AzAy 7 AzAy 2T T ArAy
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For the case of j = jin+ 1 and k = ki, + 1, using the Mur’s ABC equations

of (B:29), (B-I9) and (B:25), (B-A0) is modified to (3.76)

Py, k)
%Eyﬂ(i,j,kﬂ) (3.76)

Pl(ivjv k)

.. 1 1
1+2P1(Z"]’k)(A 5 AZEQ)

Pl(zajak) . n+1l,. .
_ThQ’?(Zv]vk)Ey (Z7J7k) - AZQ

P i?j) k mn P i?j) k mn
—1(A—xQ)Ey+1(i+1,j,k) — 1(A—xQ)Ey+1(i—1,j,k:)

Py k
(has (k) — 1)En+1( i,5,k+1) + A(—A)(hm(w k) — 1)En+1

Pl(iajak) Pl(Z,],k?)
— " L No4(i,j _
AyAz 24(i,5,k) + AyAz
Pl@aj? k)
AxAy
_Pl(iaja k)
AzxAy
= Py(i, j, k) Dy igk) + P3(i, §, k) Dy~ i)
P4(i>j7k) P4(Z7]>k)
+ Az Az z (b3:)
P,(i,9.k P.(i, g,k
4(27]7 ) 4(27]7 )Hg(i,j,k)

—— T T H™i+1,5,k
Az z (H1,3) + Az

. 1 1 . "

_PG(Zujak)E (ZJk 2P1(7' ]7k) (m + E) + P5(27]7 k) Ey(i,j,k)
Pl(imjv k)

Az?
Pl(ihja k) n, . .
+TEZJ (i+1,5,k) +
_Pl(i7j7 k)

AzAy

Pi(i, g,k
+ 1(Zvja )

AzAy
_Pl(iuja k)

AzAy
Pl(ivja k)

AxAy

Ep k) —

hag(i.j.k)

_P1<i j. k)
AyAz

haa(i.jk)

Pi(i, j, k)
AxAy

(h25(2] k) — 1)En+1(z+1 k) + (hg(i,j,k) — 1)E§+1(i,j,k)

hag (i.j.k) +

H (i jk+1) —

Pi(i,j. k)
%Ey (i.5,k—1)
Pl(imja k) n

A2 Ey
Pl(i7j7 k)

ETLZ. .
—Asz 5 (1,5,k)
Pl(iajv k)
AzAy
Pl(iuja k)

ETLZ. .

AxAy z (h34)
Pl(iajv k)
————= E" -

AzAy z (b7 =1k)

E;L(i,j,k-i-l) +
(i—1.5,k)
E7 (ijk+1) +
El(i,j-1k+1) — E(i,j—1,k)

E7 (i+1,5,k) +

n., . .
Ex (Z"”l:]*l:k‘) -
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For the case of i = 4,,;, + 1 and k = k,,;,, + 1, using the Mur’s ABC equations

of (B.23]) and (B.25)), (3.40)) is modified to (3.77))

o 1 1 o
1+2P1(z,j,k;)(A A:c2) E 1 5k(3.77)
P (i,5,k) . Pi(i, g, k " Pi(i, g, k
—%Eﬁ(mm - %hm@,j,mEy“mm - %hmm
Pl(l ]7k) n+1,. . P1<Z7]7k) n+1 Pl(la.]7k) .
AI‘Q Ey (i4+1,5,k) — Thl E Thg(z,],k)
Pi(i,j, k) P1<z' jo k)
) En+1i. o ) J En+1i‘
+ AyAz F (o +1) AyAz F (63:4)
Py(i, j, k) Py(i, j, k)
o ’J En+1 il ’J) En+1 il
AyAz 7 (bg=Lh+1) + AyAz 7 (g =Lk)
Pi(i,j, k) Pi(i,j, k)
) En+1 i . o ) J) EnJrl i
AzAy ° (E+L5k) AzAy ° (63:k)
Py(i, j, k) Py(i, j, k)
_ 'S En+1 . I En+1 P
AzAy 7 (H+Li—1E) + AzAy 7 (i =Lk)
= Py(i, j, k) Dy i) + Ps(i, j, k) Dy~ gy
Py(i,5,k) . Py(i,5,k) .
—1—%}]1 (4,4,k+1) — %Hx (3,5,k)
Py(i, 5, k) . Py(t,5,k) .
—%HZ (i+1,5,k) + %Hz (i,3,k)
. e 1 . "
_P6(17j7k)Ey l(ljk 2P1(7' .]7 k) (E + m) + P5(Zvj7 k) Ey(i,j,k)
Pi(i,5,k) ., Pi(i,5,k) .,
Pi(i,5,k) ., Pi(i,5,k) .,
+%Ey (i+1,5.k) + %Ey (i—1,j,k)
Pi(i,5,k) ., P k) ..
_iz—iy)EZ (4,5,k+1) + %E (i,4,k)
Pl(ivjak) Pl(Zajvk)
—— " FE"j— - —— L FE" -
+ AzAy 2 (b7 LA+HD) AzAy 2 (b7~ 1K)
Pi(i,5,k) ., Pi(i,5,k) .,
—Z(x—iy)Ex (i4+1,5,k) + IA(x—iy)Ex (4,5,k)
Pl(ivjak> Pl(Zajvk)
E™ . _ E™ i
AzAy z (FHLI=1K) AzAy z (b7 =1k)
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For the case of i = 450 + 1, J = Jmin + 1 and k = k,,;,, + 1, using the Mur’s

ABC equations of (B.23)), (B.29), (B.19) and (B.25)), (3.40) is modified to ([3.78|)

1+2P (i, 5, k)( Al Alﬁ) E 1 ,5.k)(3.78)
—%E{}“m,mn - %hmmkﬂflmm - %hmm
A (AZ ZQ’ £) Ept i1k — G X’IJQ’ ) hiG.ik By SECHL) (AZ’ZQ’ £ ha(i.i.k)
—%(h%(m}k) — DEM k1) + A( s )(hzl(wwm — DB k)
——Pizi’ k) oy (igk) + —PXZX::) o (inj.k)
_—A( i )(h25(i,j,k) — 1) EM i1,5) + %(hg(i,jk) — 1D)E™ k)
—PlA(Z i’ al Do (g PlA(;’i’yk) h10(.jk)
= Py(1, 7, k)DZ(i,j,k) + Ps(i, 7, k)DZ’l(z‘,j,k)
+%H;‘umm - %Hﬁum
_—P4<Zi’ k) HZ (i+1,4,k) + —P4(Zi’ k) HZ i3k
—Ps(i, j, k) B}~ gy — | 2Py (4, g,k:)(& + @> + Ps(i,j, k) | B} G.ik)
wEg(i,j,k-i—l) + %Eg(i,j,k—l)
FERlUFL) (AZ xJQ k) By (i+1,5k) + RlUL) (AZ xJQ k) Ey -1k
——Pii’i’yk) EZ (i k+1) + —PX A J. 1) E7Z (i, k)
——PIA(ZZ’;) EP(i+1,5,k) + —PlA(Zijyk) B k)
—PlA(::i’yk) EP (i4+1,j-1,k) — —PlA(;’i’yk) B G-1k)
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For the case of i = iy, using the Mur’'s ABC equation of (B.24)), (3.40) is
modified to (3.79))

(At — Azy/pe(i—1,5k)) E;LH(i—Lj,k)
At + Ax/ 1€ rj.k)
(At + Azy/pei-1,5.k) By (i-1,5.k) — (At — Axv/petigk) By G.ik)
At + Ax/ 1€ irj.k)

Ept e —

(3.79)

For the case of k = kpaz, using the Mur’s ABC equation of (B.26), (3.40)) is
modified to (3.80))

(At — Az\/ueGjk—1)) E;L+1(z‘,j,k—1)
At + Azy/peigk)
(At + Azy/peGih—1) B (k1) — (At — Azy/petik) By G.k)
At + Azy/p€igk)

Eptl e — (3.80)

Finally, (3.42) does not hold when

b ]:]mzn+1

b ]:]mzn+1andk:kmzn+1

1= tmin + 1 and k = Kk, + 1
i:ima$

b j:jmax
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When i = i, + 1, (3.42)) is to be modified using the equations of Mur’s ABC.
The modified equation is (3.81])) which has been derived using (B.27))

1+2P(i,7, k) (A1 : Al —5) | B2 g — %Eﬁ“(iﬂ,jm (3.81)
_Abhg k) (AZ’ ;2’ B aam B+ — T2Un) X’ ;2 ) oo
_ i, k) (AZ’;Q’ k) B i j41k) — D5 k) (Xy]; k) EM i j-1.k)
- —Pl(iixk) B rtan = ‘PZ(—i’i’f)Eﬁ“mm
_—PXZi’zk)E‘ZH( j+1E—1) + —Pigi’zk>Eg+l(i,j,k—l)
= Py(i, §, k) D k) + Ps(i, J, k) D" (i)
+—P4 (Zi’ k) Hl(i+1,5,k) — Falt, g, k) (Zi’ k) H,) (i.jik)
_—P4(ZZ’ k) H Gg+1k) + —P4(Z;’ k) H; k)
—Ps(i, 7, k) E" gk — | 2P (4, 4, k) (AL + Al 2) + Ps(i,7,k) | EZ i,.k)
%EQ(HM,@ + %EQ@—LJ;@
+%E2<i,j+1,k> + %Eﬁm—w
a PlA(Zizk) Eotertam + PlA(Zizk) Bz 6ab
—PIA(ZX::) E7 (i+1,5,k—1) — —PIA(;’X:C) E7 ,5,k—1)
- —PXZX;) By g+1.k) + —PXZK;) E}i.j.k)
+—P1(i’j’ k) ElGj+1k-1) — Pl g, k) Ei.jk-1)

AyAz V7T AyAz Y
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Similarly, for the case of j = jin + 1, using the Mur’s ABC equations of

(B.29)), (3.42)) is modified to (3.82)

1+ 2P (i, j, k) (& + ALyQ) E7(0,5.0)(3.82)
—%E:_H(Prl,j,k) — %Eg—i-l(il,j,k)
—%Eﬁ“u,ﬂw - %;;mhm(i,j,mEZ“mm - %yj;mhm,j,k)
- —Pl(iixk) B rtan = ‘PZ(—i’i’f)E?%m
_—Piz/’i’f) El T ig+1k-1) + —PXZJX’;) El k1)
= Py(i,§,k)D"Gjk) + Ps(i, 7, k) D™ i jik)
+%H5u+1,xk> - %ngm
_—P4<ZZ’ k) H (i,j+1.k) + —P4(Z;’ k) Hy k)
—Pgs(i,7,k)E" gk — | 2P (4, 4, lc)(AL372 + A%ﬂ) + Ps(i,7, k) | EZ i,.k)
%EQL(MJ,M + %Ew—u,k)
+%E§(i,j+1,k) + %E’;(m—m)
—%Eg(iﬂ,j,k) + %Eg(i,j,k)
%Eﬁb(i-ﬁ-l,j,k—l) — %Eﬁ(i,j,k—l)
—%Egu,jﬂ,k) + %Egmk)
+—Pi;’i’zk) E}Gj+1k-1) — —PXZZ’:) E} G, k=1)
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In the same way, for the case of k = k,,,;,, + 1, using the Mur’s ABC equations

of (B.21)) and (B.25)), (3.42)) is modified to ([3.83)

o Pl(ivja k)
Ax?

_ Pl(ivja k)
Ay?

R SR BN )
1+ 2P (i, j, k)(A_x? + A_yQ) EX k) E"i+1,5,k) (3.83)
Pl(’i,j, k) n+1,. .
TTa T T
_P1<i7j7 k)
AzAzx

EM i i-1,k)

Py(i, j, k)

hasGigk) — 1) E™ g1, EANC LR
(has(igk) — 1) EN T (i+1,5k) + A

Pl(iaj7 k)

— L haa(i,j

A-Ar 34(4,,k) +

Pl(imja k)
AyAz

Pl (Za j? k)
———" "L hs34(i,j —
AyAz 36(6dk) + AyAz

(R11Ggk) — V) EM k)

Pl (27 ja k)
AzAzx

(har(igk) — 1) By gk

hia(igk)
- Pl(i7 j7 k)

Az (hasigk) — 1) ES T Gk +

P4(i7j7 k)
+ Ax

Py(i,7,k
_ B3 k) )Hg(i,jﬂ,k) +
Ay

Hn(l-"_lv]vk) - T A sJ
Y AI’ Y

P4(7;7.j7 k)
Ay z (6:3k)
1 . n,. .
A2 + A_y?) + Ps(i,J, k) | EZ k)
Pl(iaja k)
* Ax?
Ay?
Pk
AxAz
Pl(iaja k)
+ AxAz
Pk
AyAz
P(7,9, k
+M
AyAz

—Py(i, 4, k) E Y — 2Py (i, 5, k) (

Pl(ivja k)
Az?
Pl(ivja k)
Ay?

Py(i, ], k

Pl(iaja k)
AxAz
Pl(i?ja k)
AyAz
Pl(iajv k)
AyAz

Eli+1,4k) + E7(i-1,5k)

ElGj+1.k) + El -1k
B (k)
EZ (i41,5,k—1) — EY (i,jk—1)
B j+1k) + E (k)
E;L(i,j+1,k—1) — E;(m}k—l)

where

hss(igk) = hi1(i + 1,7, k) (3.84)
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has(igk) = hor(i,7 + 1, k) (3.86)

hae(igk) = hos(i, 7 + 1, k) (3.87)

For the case of i = 4,,;, + 1 and j = j,.in + 1, using the Mur’s ABC equations

of (B.27) and (B.29)), (3.42)) is modified to ([3.88))

1

1+2P(4,7, k) (& + A_yz) E" M ij.1)(3.88)
_Hlk) X’QZQ’ ) B iy — 10T ) (Al’afg’ k) o B oy — L1 K) (AZ’;Q ) i
—%yj{k)@ gtk — %j;mhm(m,k)@ ik — %;;k)hm(i,j,k)
+—P1A(i’i’xk) EX k1) + —PX(Zi’Zk) Ert k) — —PXZZ’;) E k)
——PXZX;) Eptligeik-1) + —PXZX:C) Ept k1)
= Py(i, 5, k) D2 k) + Ps(i, j, k) D2 ijik) + %H;(ﬂrl,j,k)
_—P4(Zi’ k)Hg(i,j,k) — —P4(ZZ’ k)Hg(i,jJrl,k) + —P4(ZZ’ k)H;‘(i,j,k)
=Py 3RV E it = 2Py (05 R) (5 + o) + Pl B)| B2t
+%Ef(i+u,m + %Eg(i—l,j,k) + %E?(i,j—kl,k)
Atk Z’ ;2 £) E2Gi-1k) — —PlA(ij i’zk) EMi+1,5.8) + —PlA(ij i’f) E7 (k)
+%E;‘(i+u,k—1) — %EQ@M—U — %Eﬁ(i,j+l,k)
—{——PiZi’j) B Gk + —Piz/’i’zk) E}Gj+1k-1) — —PX;’K:) E} Gjk-1)
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For the case of j = jin+ 1 and k = ki, + 1, using the Mur’s ABC equations

of (B:29), (B:21) and (B:25), (B-22) is modified to (3:89)

1+2P1(@;Jak7)(A 2 T Ay 2) 1AT
P 1, ’k n P iv ‘7 k m
_%Eﬁum,w N %EZH@M,@
Ay? Ay?

EM i) — E" i1 (3.89)

h21(i7j7k)Eg+l(ivjvk) -

P,(i, ], k)
hssigk) — 1) EPT mRAELLSA
(h33(ig.k) ) (i+1,5,k) + NN

Pi(i, g,k
—%hu(imk) +

Pl(i7j7 k)
AyAz
_Pl(iaja k)

AyAz
= Py(i, j,k) D Gigk) + P3(i, j, k) D2 (i.3.k)
+P4(Z7]7k) P4(7'7.]7k)
Az Az
P4<i7j7k> P4(i7j7k)Hn

—————H(i,j+1.k) + z (6:3,k)
Ay Ay

haa(i.jk)

Pi(i, g, k
Pl(iaju k)
AzAx

(hartigk) — 1) Ey g

hia(igik)
Py(i, j, k)
AyAz

(has(ijik) — 1)En+1(u+1 k) +

hse(igk) +

Hy(it1,k) — Hy k)

. - . 1 1 . n
_PG(ZL])]{:)EZ 1(i’j’k)_ 2P1(Zajak)(A_+ A 2) +P5<Z7.]7 k:) Ez (4,3,k)

+P1(i7j7 k)
Ax2 Ax?
Pl(iajak) n,. . Pl(Zvjvk)
BV A v
Pl(i,j,k) n ) Pl(z7jak) n, . .
—mEx (Z+1,],k) _'_ mEx (Zvjvk)
+P1(Z,],k’) Pl(Zvj7k)
AxAz AzAz
Py (i, j, k) Py(i,j, k)
D R ———FE.j
Ayiz y (E3+1k) + AyAz y (1.3:K)
Pl(i,j,k?) Pl(lhjak)
ST E) pn TGS e
TTAyAr Ty T A AL PGk

Pl(iaja k)

E7(i+1,5k) + B i-1,5k)

E (i,j—1,k)

Ex (7‘+17.]7k_1) - E’x (l)])k_l)
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For the case of i = 4,,;, + 1 and k = k,,;,, + 1, using the Mur’s ABC equations

of (B:27), (B2) and (B:25), (B-22) is modified to (3:90)

Pl(iaja k)
Ax?

Pi(i,7,k)
hs (i) BV gy — —
5000k L, (4,5,k) N

Pl(imjak) n 1
A—yQE + i,j—1,k)

(R11Ggk) — 1) EM k)

Pl (iaja k)
AzAx

(harGik) — 1) Ep i)

1
1+2P (0,5, k) (— + — ) | EL T k) —

A Ay2 E" i1k (3.90)

hg (ij.k)
EM i j41k) —

Pu(i gk
(hgg(zg k) — 1)En+1( i+1,5,k) + %

Pi(i, g,k
_%hiﬂl(i’j?k) +

Py(i, j, k)
has(igk) — 1) EnH R
(hss(igk) ) (i,j+1,k) + AyAz
_Pl(’iu.jv k) Pl(iaja k)
AyAz AyAz
- P2(i7j7 k)D?(z,],k) + P3(7;7j7 k)D:_l(ivjyk)
+P4(i>j7 k:) P4(i>j7 k)
Az Az
P4(i7j7 k) P4(i7j7 k)
LT R g L5 8)
Ay o (ij+1.k) + Ay

_P1<i Js k)
AzAx
hia(ijk)
Py(i, 5, k)
AyAz

he(igk) + hog (i,j.k)

Hy(it1,k) — H,/' (i k)

H? (i,j.k)

. - . 1 1 . n
_P6<Z7j7k>Ez 1(i1j1k)_ 2P1(7’7j7k)(A_+ A 2) +P5(Z7]7 k) Ez(ivjvk)

Pl(imja k)
Ax?
Pl(ivja k)
Ay?
_Pl(iajv k)

AzAz
P1<7;7j7 k)
AzAz AzAz
Pl(iajak) P1(17],l€)
. E™iq E™ i
AyAz y (b 10) + AyAz y (B7K)
Pl(iajak) Pl(Zvjak)

—— = B (i,j4+1,k—1) — E7 (i, k—
+ AyAz y (3 +1,k—1) AyAz y (123, —1)

Pl(imja k)
Ax?
Pl(ivja k)

Ay?
P (i,9,k
E7 (i+1,5,k) + —Z(;ZZ )

Pl(ihj? k)

E7 Gi+1,5.0) + B i-1,5k)

+ E” G j+1k) + E(i.j-1k)

E (i.5.k)

E7 (i+1,5,k—1) — E i,5,k-1)
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For the case of i = 450 + 1, J = Jmin + 1 and k = k,,;,, + 1, using the Mur’s

ABC equations of (B.27), (B.29), (B.21)) and (B.25)), (3.42) is modified to (3.91)

. 1 1
1+ 2P (i, ], k;)(E + A—yQ)

. Pl(iajv k)
Ax?

- Pl(iajv k)
Ay?

(hn (i,5,k) — 1)Eg+1(i,j,k)

Pl (7’7 ja k)
AzAx

(harG.ik) — 1) Ep i)

E" L i5.1)(3.91)

_P1<i7j7 k)
Ax?
_Pl(iaj7k>
Ay?
_P1<i7j?k)
AzAx

Pl(i7j7 k)
Ax?

Pl(iaja k)

Ay?

B iv1,5,0) — R (i, k) B2 (0,5 ) R (i k)

hzl(i,j,k)EQH(i,j,k)

Py (i, 5, k)
a3 (igk) — 1) EM T 41,5 mRASEAR
(has(igk) — 1) EN T (i+1,45,k) + N

Pl(iaja k) ..
Whm(m,k) +
Pl(i7j7 k:)
AyAz
Pl(ivjak) . Pl(zajuk)
AyAz hsiab) + AyAz
- Pg(i,j, k)D?(z,],k) + P3(7;7j7 k)D::L_l(ivjvk)
+P4(Z>]7k) . P4(Z7]7k)
Az Az
P4<i7j7k) P4(Za.]7k:)

- " H"(ij+1,k
Ay 2 (6,3+1 ) + Ay

1, .
E;LJF (4,3+1,k) — s i.gk)

hia(igk)
. Pl (27 j7 k)

AyAs (has(i5k) — 1)E;+1(i,j+1,k) +

hog (i.j.k)

H(i41,4.k) Hy'(ij k)

H? (i,j.k)

o - o 1 1 . "
_p6(27]> k>Ez 1(i7j,k) - 2P1(Z,j, k)(A_IQ + A_'y2) + PS(Z>]7 k) EZ (2,3,k)

Pl(i,j, k)
Az?
Py (i, j, k)
Ay?

Pl(iwjv k)
 AzAz
Pl(iajv k)

AxAz

_Pl(iajv k)

AyAz
Pl(ivja k)

—f—mEg(i,jJrl,kfl) —

Pl(imja k)
Ax?
Pl(ivja k)

Ay?
Pi(i,7,k
EM(i+1,5,k) + %
Pl(imja k)
AzAz
Pl(iuja k)
AyAz
Pl(ivja k) n,. .
mEy (3,5,k—1)

E7G+1,5.0) + E -1,k

+ E7 (ij+1.k) + E(i.j-1k)

E7 (i.5.k)
E7 (i+1,5,k—1) —

E i,jk—-1)

E} g1k + Ey (k)
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For the case of i = i, using the Mur’'s ABC equation of (B.28)), (3.42)) is
modified to (3.92))

At—A i1, En+1 i1,
E™ ) — ( Ty/pei-15k) BT (i-15k) (3.92)
At + Az (igk)
(At + Axv/pei—1,4.k)) BT i—1,4k) — (At — Axv/peGigk) B ,5k)
At 4+ Axr/ € (ig.k)

For the case of j = jaz, using the Mur’'s ABC equation of (B.30)), (3.42) is
modified to (3.93))

At—A -1, En+1 ig—1,
ErH o — ( yv/pei—1ke) B2 -1k (3.93)
At + Ay~/ L€ (,j,k)
(At + Ay\/peGj—1.k) EXi-1,k) — (At — Ay/petigk)) B ,5k)
At + Ayn/pie,gk)

3.4 Calculation of Electric Fields

Using the equations derived so far, values of the electric fields are calculated.

These equations can be summed up as:

© B innin t1<iSimaz dmin +1<ijmaz Fmin+1<k<kmaz) cOrresponds to (3.32) and those
mentioned in Table [3.1]

o E;l+1(imin+1§i§’imaz7jmin+1gj§jmaz’kMin+1§k§kmaz) corresponds to (3.40|) and those
mentioned in Table 3.2

O B int1<i Cimaz dmin+1<) jmaz kmin-+1<k<kmaz) corresponds to (3.42)) and those
mentioned in Table B.3]

By applying these equations to each FDTD grid position, a system of linear
equations of Au = ¢ is set up. Here, A is the coefficient matrix, u represents
a vector with the electric field components to be solved, and ¢ is the excitation
vector. It should be mentioned that the equations for the points imin, Jmin,

kmin are excluded in order to form the matrix properly. When the three sets of



CHAPTER 3. FREQUENCY DEPENDENT CRANK NICOLSON FDTD METHODS0

x direction y direction z direction 3.32
replaced by
L= lmin + 1 jmzn+1<j§]maa:_1 kmzn+1<k§kmacc_1 3.43
tmin T 1 <1 <ippag ]:]mzn_l'l kmzn+1<k§kmax_1 3.52
tmin T 1 <1 <ipas ]mzn+1<]§jmax_1 k:kmzn+1 3.55
T = Yymin + 1 ]:]mzn+1 kmin +1 < k < kpazs — 1 3.58
tmin + 1 <t < Tman ] = ]m'm +1 k= kpn +1 3.59
L= lmin + 1 jmzn+1<j§]maac_1 k:kmzn+1 3.60,
bmin T 1 <1 <ipag J = jmax Emin +1 <k < Ko 3.62
Z.min + 1 S { S Z.maac .]mzn + 1 S J S jmaac -1 k= kmax 3.63

Table 3.1: The boundary equations that replace (3.32) and the corresponding
scanning ranges in x, y and z directions.

x direction y direction z direction 3.40
replaced by

U= lmin + 1 jmzn+1<jg.7max kmzn+1<k§kmam_1 3.64

tmin T 1 <1 <lpae — 1 ]:jmzn+1 kmzn+1<k§kmax_1 3.65
tmin T 1 < <lpge — 1 ]mm+1<]§]max k:kmzn+1 3.72
1= lmin + 1 J = Jmin+1 kmin +1 < k < kg — 1 3.7

Tin + 1 <1 < lpae — 1 ]:jmzn+1 k= kpn +1 3.76]
U= lmin + 1 jmm +1< j < jma:c k= kmm +1 3.77)
S | 7 = Jmin +1 k= kpin+1 3.78

L= Z‘maac ]mzn + 1 S ] S jmax kmm + 1 S k S kmax 3.79

Z-min + 1 S { S imam -1 ]mm + 1 S j S jmax k= kmam 3.80,

Table 3.2: The boundary equations that replace ([3.40) and the corresponding
scanning ranges in x, y and z directions.

equations are considered together and applied on all the grid points this exclusion

is required to make the system uniform. Therefore, the electric field values at 4,,,,

Jmin, kmin are calculated separately using the Mur’s ABC equations as described

in Section [3.4.1] The system of equations Au = c is solved to find the electric

field values in the scanning range of (imin + 1 < @ < imaz, Jmin + 1 < J < Jmaz,

kmin + 1 S k § kmax)-
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x direction y direction z direction 3.42
replaced by

U= lmin + 1 ]mzn+1<]§jma1‘_1 kmzn+1<k§kmaac 3.81

tmin T 1 <1 <lpae — 1 j:]mln+1 kmzn+1<k§kmax 3.82
Umin T 1 <1 <lppge — 1 ]mm+1<.7§]max_1 k:kmzn+1 3.83
1= Tmin + 1 ] = ]mm +1 kmin +1 < k < kpas 3.88

tmin 1 <t < tpae — 1 J:]mm+1 k =k + 1 3.89
Z:Zmzn+1 ]mm+1<]§jma1’_]— k:kmzn+1 3.90

i = Zmax ]mm + 1 S ] S jmaa: kmin + 1 < k S kmax 3.92

bin T 1 <0 <ippge — 1 J = Jmaz Emin +1 <k < Epae 3.93

Table 3.3: The boundary equations that replace (3.42) and the corresponding
scanning ranges in x, y and z directions.

3.4.1 Electric Fields at i = immin, j = Jmins K = Kmin

Solution of the system of equations Au = ¢ gives the electric field values in the
scanning range of 4, + 1 < @ < lnaw, Jmin + 1 < 7 < Jmazs kmin + 1 < k < Epaz-
Values of the electric fields for the rest of the boundary locations are found
by using the following equations which come from Mur’s first-order boundary

condition.

B — (At — Ay\/ue(grik) EM g1k (3.94)
S At + Ayr/pe k) '
(At—FAy\/ILLEzj—i—lk)E(z]-l—lk (At_Ay\/u€ijJ) zyk)
At—FAy\/,LLE (3,7,k)

[1mm + 1 S 1 S Zmaxa] - .]mzn7 kmin S k S kmam]'

At — Az 1€, E™ 6,
B g = SVHEG k) Zo WD) (g g5)
At + AZ\/,UE (4,5,k)
N (At + Azr/pegk+1)) EDGgk+1) — (At — Azy/1€igk)) E2 ..k
At -+ AZ\/,U/E (4,9,k)

[imin +1 S { S imaxajmin S ] S jmaaz; k= kmzn]
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(At — Ax+/p€(i+1,5.k)) E§+1(i+1,j,k)

Ey gk = At Aries (3.96)
N (At + Azy/pei+1gh) By (41,50 — (At — Azv/petiik) By G.ik)
At + Ax/11€ (i) k)
[0 = bmins Jmin + 1 < J < Jmazs kmin < k < Kinaa)-
EM k) = (At = As/pctiibe) By sk (3.97)
v At + Az\/m
N (At + Azy/petiik+n) By gk+1) — (At — Azy/peiigk) By k)
At + Az\/ 1€ Gjk)

[me S ? S imamujmm +1 S ] S jmaz; k= kmm]

- - n+1,. .
B — (At — Az/pe+1,4k) EX 1,5k) (3.98)

At + Ax/ e ingk)
N (At + Axv/pe(i+1,4.k)) B 41,5,k — (At — Axv/peGigk) BT ,5k)
At + Al’\/ JLE (3,5,k)

[Z - iminajmin S ] S jmawa kmin +1 S k S kmax]-

At — A i Entl;
B — ( yVEG+LR) EX G (3.99)

At + Ayr/ 1€ igk)
(At+Ay\/,ueu+1k) "1k — (At — Ay~/pe,gk)) E7 k)
At"—Ay\/IMG ,5,k)

[Zmzn S Z S Zmaxy] - ]mma kmm + 1 S k S kmax]'
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3.5 Calculation of Magnetic Fields and Electric
Flux Densities

Once electric fields are calculated magnetic fields are calculated by the discretized
form of (3.25)), (3.26)), (3.27) as follows.

H' gk = H G (3.100)
At 1 1
n+1,. . n+1,. . n+l,. . ntl,
on | A (B 0o = By ay) = o (B2 6sm — B2 asm1)
1
Ay

[me + 1 S 1 S imaz - ]-)jmin + 1 S] S jmaxykmin + 1 S k S kmaw]

1
7 (E}ik) — Epjk-1)) (EMigk) — E™(ij-1k)

H gk = Hl ik (3.101)

At 1 1
+ﬂ Ar (B2 k) — EX -14k)) — ~ (EM sk — B jken)

1 1
+E (EZ (k) — ETi—1,4k) — s (EZ (k) — E2i5k—1))
[Zmzn + 1 S ? S imax - lajmin + 1 S] S jmaa:; kmzn + 1 S k: S kmax]

H gy = H 6.0 (3.102)

At] 1 1
n+1,. . n+1,. . n+1,. . n+1,. .
o | Ay (Ext gk — EX Gg-1m) — o (Ep gm — E) T a-140)
+_Ay (E™Ggk) — EMGj-1k)) — o (Ey (k) — B (i-15k))

[me + 1 S ? S ima:c - 17szn + 1 S.] S jmaxakmm + 1 S k S kmaw]

Each of (3.100)), (3.101)), (3.102)) shows the scanning ranges and magnetic fields

beyond these ranges are not required elsewhere in the algorithm.
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Finally electric flux densities are calculated by the discretized form of (3.28)),
(3-29), (3-30):

D™ Y ijky = D™igk)(3.103)

1
+— | — (HI M Gg+rm) — HI  Ggiy) — s (H;‘“(z',j,kﬂ) — H;+1(i,j,k))

1 1
Ay (HZGavim = HEGaw) = 2= (HyGaks) = Hjsm)
[me + 1 S l S imax;jmin + 1 S .] S jma:p - 1>kmin + 1 S k S kma:v - 1]

Dy = Dyiijik)(3.104)
AtT 1

1
+5 | g (HE o = Hiigm) = = (HI T rigm — HI M igm)

1 1
+A—z (H2Gijk+1) — HY (ijk)) — N (HZ (i+1,5,k) — H (i,,k))
[Zmzn + 1 S l S ima:p - 17jmzn + 1 S ,] S jmam;kmin + 1 S k S kma:v - 1]

DIk = D2 (i.d4)(3.105)
At| 1 1
+7 Ar (H;‘+1(i+l,j,k) - H;H‘l(i,j,k)) — A_y (H;Hl(i,jJrl,k) _ Hg—i_l(i,j,k))

1 1
+A—$ (H} G140 — Hj (g.k)) — Ay (HGj+1,k) — H(i,5,%))

[Zmzn+1 Slglmax_ijzn_"l S] S]ma:r_Lkmm—i_l S kS kmaa:]

Again each of (3.103)), (3.104)), (3.105) shows the scanning ranges and electric

flux densities beyond these ranges are not required elsewhere in the algorithm.




Chapter 4

Detailed Study of the
FD-CN-FDTD Method

In this chapter the proposed FD-CN-FDTD method is validated by numerical
experiments. By calculating the average error of the method, both for non-lossy
and lossy media, the effects of C FFLN and spatial resolution, y, are observed. All
the FDTD methods have their own limitations. Before simulating an unknown
problem, it is essential to know these limitations. Because, by knowing these one
can determine whether the problem in question lies within the confines, where
the concerned FDTD method works properly. To understand the limitations of
the FD-CN-FDTD method i.e. to find out the parameters for which it does not
produce expected results, a number of numerical tests have been performed and

are shown in this chapter.

4.1 Validation of the FD-CN-FDTD Method

In order to validate the FD-CN-FDTD method, numerical tests were conducted
with a computational space of size 30x30x30 cells and composing of inhomoge-
neous, frequency dependent media. Half of the computational space was filled
with medium 1 (g = 71.66, €5, = 34.58, 0 = 0.49 S/m and = 5.65 ps)
and the other half with medium 2 (e = 87.34, €5, = 49.13, 0 = 0.69 S/m and
o = 26.89 ps) as shown in Fig. . A z—directed dipole source was placed at
(10,15,15) in medium 1, with a time evolution of a modulated Gaussian pulse
centred at 3 GHz. Signals were observed at (20,15,15) in medium 2. A uni-

form spatial sampling of Az = Ay = Az = 1073m was used. As a reference,

85
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an identical setup was taken for the standard explicit frequency dependent (FD-
JFDTD method. Henceforth, in this thesis At refers to the time-step used in the
simulation, Atcrr, to the maximum time-step allowed by the CFL stability con-
dition and CF LN to the CFL number defined as CFLN = At/Atcpr. The first
600x Atcrr, (Atcrpr = 1.9 ps ) time period of the F, field components at the ob-
servation point are shown in Fig. [4.2] computed both with the FD-FDTD method
when CFLN =1 and with the FD-CN-FDTD method when CFLN =1, 3,5.

30

Medium 1
€5 = 71.66, €5c = 34.58,
T =5.65 ps, 0 = 0.49 S/m

Source | Observatipn Medium 2
point : point . €5 = 87.34, €50 = 49.13,
(10,15,15) (20,15,15) 7=26.89 ps, o = 0.69 S/m
.© @ |
30 A A R Y Z
Medium 1 Medium 2
15

Figure 4.1: Computational space for the validation of the FD-CN-FDTD
method.

Good agreement between the signals from the FD-CN-FDTD method and
the explicit FD-FDTD method is observed. The explicit FD-FDTD method is
stable only when At is within the CFL limit. On the other hand, the FD-CN-
FDTD method is stable beyond the CFL limit in this numerical test, although

numerical errors increasingly appear with higher CFLN.

4.2 Numerical Errors in the FD-CN-FDTD
Method

As seen in Fig. [4.2] the FD-CN-FDTD method is able to use temporal discretiza-

tion, At, above the CFL limit. But numerical accuracy is compromised at higher
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Figure 4.2: Observations from explicit FD-FDTD and FD-CN-FDTD methods.

N Explicit FD-FDTD(CFLN =1) O
| b\‘, FD-CN-FDTD(CFLN = 1)
3 FD-CN-FDTD(CFLN = 3) mmsmmsm
{3 t FD-CN-FDTD(CFLN =5) === ==
= [ ¢ .
O) 0] o,
é \ d'; L b %
g6 TV PR e
~oo” . !? ;} Q\A/g:’ Qe C~0~—9
Vo ; -
- /:
N 4 Lag
Vo Y-
& ! "\.:
B ¢ i
100 600 800 T000
Time(ps)
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CFLN. Average error of the FD-CN-FDTD method at different CF LN is quan-
tified by numerical tests. In the numerical tests, 160x160x160 cubic computa-
tional space filled with a lossy medium was considered. The medium parameters
were € = 71.666161, €., = 34.58062, 7p = 5.6558308 ps, 0 = 0.4993007 S/m.

Source excitation of a modulated Gaussian pulse centred at 3 GHz was located at

the centre (80, 80, 80). Spatial sampling was uniform ( Az = Ay = Az = 10~%m),

Atcpr, was 1.9 ps and CFLN was varied from 1 to 10. Observations were taken

at all the grid points within 20 cells away from the source, converted into fre-

quency domain and the average error, £, was calculated using

S (Sa—sif)
f
> (s)

f

g:

(4.1)

where, S,.q is the frequency spectrum of the received signal using the FD-CN-
FDTD method and SIZ{ is that of the reference signal which is calculated using
the explicit FD-FDTD method. The average error for the lossy medium is shown
in Fig. 4.3l Similar study was performed for the non-lossy medium where all
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the parameters were the same as lossy medium, except that the conductivity, o,
was zero. The average error for the non-lossy medium is also plotted in Fig. |4.3|
Fig. [4.3] shows when CFLN < 5 the average error is below 0.1 in both lossy and

non-lossy cases.

0.5
0.4

0.3

0.2

0.1

Error

1 2 3 4 5 6 7 8 910
CFLN

Figure 4.3: Average error of the FD-CN-FDTD method at different CF'LN for
lossy and non-lossy media.

The effect of CF LN on the numerical error has been observed above but nu-
merical error also depends on the spatial discretization (As). In FDTD methods,
the temporal discretization and the spatial discretization are related and depend-
ing on the spatial resolution, x, the spatial discretization will have the value,
As = \/x, where, A is the wavelength of the signal. If the spatial resolution is
too large the method will become inefficient but for accurate modelling of ob-
jects with fine features, a high spatial resolution is required [99]. So there is a
trade-off between these parameters and their selection is application dependent.
To observe the effect of spatial resolution on the accuracy of FD-CN-FDTD, the
same numerical tests described above were conducted with varying values of x
(x = 40,70 and 100) and the average error was calculated using . Table
shows the change in error due to the varying values of x and CFLN. It is seen
that, as the spatial resolution is lowered the error is increased. The value of the

spatial resolution should be chosen depending on the requirement of accuracy of
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any particular application. Although higher CFLN can reduce the total sim-
ulation time, it should not be set to very high value without considering other
factors. The accuracy requirements for the concerned problem, spatial resolution

and CFL number — each of these needs to be optimized properly considering the

other.

CFLN Average Error, €

x =40 x =70 x = 100
1 0.0271318 | 0.0211179 | 0.0167486
3 0.0656218 | 0.0520507 | 0.0351224
5 0.182472 | 0.158372 0.12668
6 0.259739 0.23379 0.196922
8 0.438352 | 0.410313 | 0.365371
10 0.614931 | 0.592478 | 0.547573

Table 4.1: Average error at different spatial resolution (x) for the lossy media

To observe how the FD-CN-FDTD method handles the simulation of free
space, the same numerical tests as above were carried out with the whole com-
putational space filled with air (eg = 1.0, €5, = 1.0, 7p = 0.0 ps, ¢ = 0.0 S/m).
The value of x was 100, Atcpr, was 1.9 ps and CFLN was varied from 1 to
10. For CFLN =1, 2 and 3 the FD-CN-FDTD method always works normally
without any divergence. However, when C'F'LN is above 3 the FD-CN-FDTD
method works normally upto certain time steps and thereafter it starts diverg-
ing. When CFLN = 4, 5, 6, 7, 8 9 and 10, divergence starts after 940/4,
935/5, 936/6, 980/7, 984/8, 1026/9 and 1070/10 time steps, respectively. In
all these numerical tests, the FD-CN-FDTD method works normally at least
upto 900/C FLN time steps without any divergence. In the equivalent time of
900/CFLN steps (i.e. (900/CFLN) x At =900 x Atcry) the wave propagates
900 x 1.9 x 107!2 x 3 x 10®m = 0.513 m in the free space. On the other hand, in
these tests the size of the computational space was 0.16mx0.16mx0.16m. There-
fore, the FD-CN-FDTD method can handle the simulation of free space but in
this case the method has the limitation of diverging after a certain number of
time steps when CFLN > 4. When simulating the free space in the FD-CN—

FDTD method, the total number of time steps the simulation will run needs to
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be carefully selected so that the simulation stops before divergence starts. How-
ever, when the computational space consists of frequency dependent and lossy
media, the FD-CN-FDTD method is always stable beyond the CFL limit at all
the values of CFLN.

4.3 Handling the Lossy Media

Although in the real-world most media are lossy, majority of the recently pro-
posed versions of FDTD methods considered the media to be non-lossy for the
sake of simplicity. One of the strengths of the FD-CN-FDTD method is its
ability to handle the lossy media. In this section, by several numerical tests
the accuracy of the simulation of the lossy media in FD-CN-FDTD method is
studied. Attenuation caused by the lossy media is calculated by using FD-CN—
FDTD and compared against the theoretical attenuation. By studying the effects
of varying spatial resolution, it is observed that in order to match the numeri-

cal and theoretical attenuation, a threshold of the spatial resolution needs to be

maintained.
110
110
z
Observation. T
0.01 m away
Y
110

Plane wave
excitation

Figure 4.4: Computational environment with the plane wave source excitation.

Numerical tests were carried out with the computational environment shown
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in Fig. [£.4 The size of the computational space was 110x110x110 cells and it
was filled with three different sets of media parameters, differing only by conduc-
tance: (0, €, €s, ™) = (0.049 S/m, 3.5,6.2,39.0 ps), (0.49 S/m, 3.5,6.2,39.0 ps)
and (4.9 S/m, 3.5,6.2,39.0 ps). Spatial resolution was variable: 20, 50, 100, 150,
200, 250, 300 cells per wavelength, resulting in variable spatial discretization. To
derive the theoretical attenuation, a plane wave excitation was assumed. In order
to approximate the same in the numerical tests, the plane y = 55 of the com-
putational space was excited (Fig. by Gaussian pulses whose time domain

signal is shown in Fig. [£.5] and frequency domain signal is shown in Fig. [4.6]

01 T T T T

—0.1F

Ez(V/m)

—0.2T

03T

0 95.0 190.0 285.0 380.0
Time(ps)

Figure 4.5: Excitation Signal in the Time Domain.

For a lossy medium the theoretical propagation constant, I'; is calculated as

€0€S — €0€oo o
T = w04/ 2 4.2
J \/ (606 + 1 + JwTp jw) ( )

where g is the permeability, € is the free space permittivity, eg is the static
permittivity, €., is the optical permittivity, 7p is the characteristic relaxation
time and w is the angular frequency. Propagation constant has a real part, called

attenuation constant («) and an imaginary part, called phase constant (3):
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Figure 4.6: Excitation Signal in the Frequency Domain.

I'=a+8 (4.3)

With distance, d, from the source, the amplitude of the signal decays as
exp (—ad) i.e. exp(—Re(I')d). The theoretical attenuation can be calculated

from this expression.

In the numerical tests, observations were taken at 0.01 metres away from the
source (i.e. d = 0.0l m ). As the spatial resolution and thereby the spatial
discretization were varying, the number of cells between the source plane and the
observation point also varied. For spatial resolution y = 150 cells per wavelength,
the observed signal in time domain is shown in Fig. and in frequency domain
in Fig.[4.8. Fig. shows the attenuation of the observed signal at each frequency

can be calculated by using

spectrum of observed signal (f) (4.4)
spectrum of excitation (f) '

attenuation (f) =

In the same way, for each of the three different lossy media, at different spatial

resolution, the observed signals were transformed into frequency domain and the
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Figure 4.7: Observed signal (in time domain) at 0.01 m away from the plane
wave source when y = 150.

attenuation was calculated using (4.4). Fig. [4.9] Fig. m and Fig. u show
the attenuation at different spatial resolution for the three different lossy media

along with the theoretical attenuation.

Fig.[4.9] Fig. and Fig. show for highly lossy medium a higher spatial
resolution (or a smaller spatial discretization) is required by the FD-CN-FDTD
method to match with the theoretical attenuation. The reason for this is, with
the increase of conductivity the wavelength of the signal shortens requiring higher
spatial resolution [100]. This study also manifests that there is a minimum thresh-
old of the spatial resolution that needs to be ensured to get the acceptable level
of attenuation that matches with the theoretical attenuation. The threshold of
the spatial resolution varies with the conductivity. Table shows the minimum
threshold of the spatial resolution for different conductivity at or above which the
numerical attenuation matches with the theoretical one. This table also shows
the values of skin depth § (the distance at which the wave attenuates to 1/e of
the value at the surface) and As for these cases. The values of skin depth for
o =0.049 S/m, 0.49 S/m and 4.9 S/m are 124, 78 and 37 cells, respectively, from

the surface.
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Figure 4.8: Observed signal (in frequency domain) at 0.01 m away from the

plane wave source when x = 150.
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Figure 4.9: Attenuation in the medium with parameters o = 0.049S/m, €, =

3.5, 65 = 6.2, = 39.0 ps, for different spatial resolution.
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Figure 4.10: Attenuation in the medium with parameters o = 0.49S/m, e, =
3.5,eg = 6.2, p = 39.0 ps, for different spatial resolution.
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Figure 4.11: Attenuation in the medium with parameters o = 4.95/m,e,, =
3.5,es = 6.2, 1 = 39.0 ps, for different spatial resolution.

4.4 Dealing with the Inhomogeneous Media

The FD-CN-FDTD method is capable of simulating inhomogeneous, frequency
dependent medium. How the FD-CN-FDTD method handles the interface be-

tween two different frequency dependent media is studied in this section. This is
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o(S/m) | 0.049 | 049 | 4.9
X 100 200 300
As (mm) | 0.23 | 0.115 | 0.0765
0 (mm) | 28.65| 9.06 | 2.865

Table 4.2: Threshold of the spatial resolution () required for the matching of
numerical and theoretical attenuation curves.

done by analysing the reflection and transmission of the wave travelling from one

medium to the other.

For a plane wave travelling from one conductive medium to another with an
angle of incidence of 0° the theoretical reflection coefficient is defined as [p.151,
[97]]

2 — (4.5)
N2 +m '

and the theoretical transmission coefficient is defined as [97]

212
N2 +m

(4.6)

where n; and 7, are the characteristic or intrinsic impedance of the first and the
second media. If € and p are the permittivity and permeability of the medium,
characteristic impedance is related to these parameters by n = /pu/e. For most
materials the relative permeability, u,., is very nearly unity [p.85, [97]]; therefore,
permeability of all the media in this study is considered to be that of the vacuum
fo i.e. jt= prpto =47 x 1077 H/m . So, the relationship of theoretical reflection

coeflicient becomes

g - \\g (4.7)

and that of theoretical transmission coefficient becomes

2/a
NG (4.8)



CHAPTER 4. DETAILED STUDY OF THE FD-CN-FDTD METHOD 97

where €; and €5 are the permittivity of the first and second media. The capability
of the FD-CN-FDTD method in dealing with the media interface was studied by
numerically calculating the reflection and transmission coefficients and comparing
these with the theoretical coefficients. In the numerical experiments, computa-
tional space had the size of 120x120x 120 cells and consisted of 2 media as shown
in Fig. [4.12] Medium 1 filled the space for 1 < y < 80, while medium 2 filled
for y > 81. Three different cases, all having the same parameters for medium 1
but different parameters for medium 2, were tested. These are described in Table
4.3l

Case 1
Medium €s €00 ™ (ps) o (S/m)
1 71.66616 | 34.58062 | 5.6558308 | 0.4993007
2 87.34172 | 49.1395 | 26.894634 | 0.6980397
Case 2
Medium €s €oo ™ (ps) o (S/m)
1 71.66616 | 34.58062 | 5.6558308 | 0.4993007
2 207.34172 | 159.1395 | 26.894634 | 0.6980397
Case 3
Medium €s €oo ™ (ps) o (S/m)
1 71.66616 | 34.58062 | 5.6558308 | 0.4993007
2 407.34172 | 389.1395 | 26.894634 | 0.6980397

Table 4.3:

transition.

Media parameters of the computational space for studying media

For case 1, case 2 and case 3, the permittivity of medium 2 was calculated
using € = €ge, and Debye relationship of . These are 79.53107 — 719.59149,
197.4865 — 23.62453, and 395.4420 — j27.65755, respectively.

In order to generate a plane-wave travelling along the y-axis and having a wave—
front in the xz-plane, z-directed modulated Gaussian pulses, centred at 6.9 GHz,
were excited at the plane, y = 40 (Fig. . Spatial resolution was variable:
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Figure 4.12: FD-CN-FDTD computational space for studying media transition.

20, 60, 100, 140, 180 cells per wavelength, making the spatial discretization vary
accordingly. Observations were taken at 3 locations to get the incident, reflected

and transmitted signals:

Signal(i) is the incident signal obtained by filling the whole computational space
with only medium 1 and taking the observation at (60, 80, 60);

Signal(r’) is the signal that contains the reflections from medium 2 and taken
at (60,80, 60) in Fig. [L.12}

Signal(t) is the transmitted signal taken at (60,81, 60) in Fig. |4.12]

By deducting the incident signal, signal(i), from the signal with reflections,
signal(r'), the reflected signal can be found. Then the reflection coefficient can

be calculated as

max |signal(r") — signal(i)|

4.9
mazx |signal ()| (4.9)
For the three cases, the numerical reflection coefficients were calculated using
the FD-CN-FDTD method, with the varying values of spatial resolution (y).
Theoretical reflection coefficients were calculated using (4.7). Fig. [4.13| shows

the theoretical and numerical reflection coefficients as a functions of y. Both the
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theoretical and numerical coefficients are seen to be in good match. Reflection co-
efficient error of the FD—-CN-FDTD method, based on the theoretical coefficients,

are calculated as

|numerical coefficient — theoretical coefficient|

(4.10)

|theoretical coefficient|

and shown in Fig. [£.14] Next using the incident and transmitted signals, the

transmission coefficients are calculated as

max |signal(t)]

4.11
max |signal ()| (4.11)
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Figure 4.13: Theoretical (symbols) and numerical (solid line) reflection coeffi-
cients.

Using (4.11)) the numerical transmission coefficients were calculated for the
three cases with different y and using (4.8]) the theoretical transmission coeffi-
cients were calculated. Both of these coefficients are shown in Fig. and found

to be in good agreement. The error in the numerical calculation of the transmis-
sion coefficients were calculated using (4.10)) and shown in Fig. 4.16

The reason for the difference in the reflection (Fig. [4.13) and transmission
(Fig.4.15)) coefficients among the three cases is the differing values of permittivity
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Figure 4.14: Reflection coefficient error.
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Figure 4.15: Theoretical (symbols) and numerical (solid line) transmission coef-

ficients.

of medium 2 (because the wave propagates from medium 1 to medium 2). From

case 1 to case 3, medium 2 has progressively higher values of permittivity. The

speed of wave propagation in a dielectric material is related to the reciprocal of

the square root of the permittivity of the material 7.e. speed of propagation =

1
¢ X ——, where, ¢ is the speed of light in free space. That means, with the increase

Je
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Figure 4.16: Transmission coefficient error.

of permittivity, the speed of propagation goes down. Therefore, as expected [101],
in the case of lower permittivity (case 1) the transmission is higher (Fig.
than in the case of higher permittivity (case 3). On the other hand, as the
permittivity increases, there is less penetration and more reflection (Fig.
[101].

4.5 Analytical Study of Numerical Stability

A numerically stable FDTD method does not increase the magnitude of the so-
lution without bound as time progresses. If this is not the case, the method is
unstable. In a stable FDTD method, a small error at any stage produces an
smaller cumulative error in the successive stages and the opposite happens in an
unstable method. Von Neumann method is often used to analyze the stability
of FDTD methods [3]. In this method, the instantaneous electric and magnetic
fields, distributed in space across the grid, are Fourier-transformed into the waves
in spatial spectral domain and thereby growth factor or amplification factor is
derived [27]. Eigenvalues of the amplification factor matrix are then computed
to check the stability of the FDTD method. The method is numerically stable if

all the eigenvalues are equal to or less than unity.
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For the electric field, magnetic field and electric flux densities in x, y and z
directions the FD-CN-FDTD equations (3.12)), (3.39), (3.41), (3.100)), (3.101]),
(3.102)), (3.103)), (3.104), (3.105]) are re-written below:

) V(i 4, k) valis i k)
Erin = A2 K 2005 prg 30 L 2 D r(4.12
(i) NS (Hk>+y4(i,j’k) x(Jk)+y4(z',j,k) W (k)(4.12)
—V‘”’(Z.’].’ )E;luak)—yﬁ(l."?.’ )Eﬁ‘lu,gk)
V4(Z7]7k> V4(Z7jak)
13, k) vali ) vali )
B = IR o 20025 prg, D2 Dt (413
v () V4(iajak) Y “ k)+y4<i7j7k) y( ]7k)+y4(7;7jak) Y (]JC)( )
V5<i7j7k) VG(iajak) -1
— E™ k) — L LR,
valig k)0 T gk
i) vali, g, k) vali i k)
En—H k) = 1/1(27]7 Dn+1 i 2\% J> D" 3\ J> D" 11.’ 4.14
: (G5 V4(iaj7k) ¢ ( k)+y4<i7j7k) Z(jk)+y4(i7jak) : (Jk)( )
—V5<Z.’j.’ )E;‘(mk)—yﬁ(l.’j.’ )EZ’lum
V4<Z7j7k> V4(7'7.]7k)

HI gy = H gk (4.15)

At 1 1
+E ~ (E;L+1(i,j,k) - E;L+1(i,j,k—1)) " Ay (E§+1(i,j,k) — E?H(i,j—l,k))
1 1
+E (E;”(i,j,k) — Eg(i,j,kfl)) Ay (EZ k) — Bl i,j-1,k))

Hi gk = Hl gk (4.16)

At 1 1
o | A (B2 k) — EX -14k)) — X~ (Er gk — BV Ggk-1))

1 1
+E (EZ (k) — Ei-1,4k) — N (EZ (k) — Eli5k—1))



CHAPTER 4. DETAILED STUDY OF THE FD-CN-FDTD METHOD 103

H" gk = H gk (4.17)

At] 1 1
Z A_y (E:?Jrl(ivjvk) - E;L+1(i7j—17k)) T Az (E;Hl(i,j,k) — E;L+1(i_1,j,k))
1 1
+A_y (E;(i:j:k) - E;(i,jfl,k)) - E (E;l(i,j,k) — E;(ifl,j,k))
D™ k) = D™k (4.18)
At] 1 1
2 Ay (H k) = HE am) = oo (Hy aaren = Hyt o)
1 1
+A_y (HGg+1k) — H G5k)) — s (Hg(z‘,j,kﬂ) — H;L(i,j,k))
Dyt gk = Dyigk) (4.19)
At| 1 1
n+1l,. . n+1l, . . n+1,. ) ntl,.
+7 A_Z (Hx (4,3,k+1) — ]‘Iz (z,j,k)) — A_x (Hz (i+1,5,k) — Hz (z,],k))
1 n . 1 . .
o He ke = HpGow) = o (HiG+1ak) — HiGib)
D2y = D2k (4.20)
At 1 1
+7 Ar (H;+1(z‘+1,j,k) — H;“rl(i,j,k)) — A_y (Hgﬂ(i,jﬂ,k) _ H;Jrl(i,j,k))
1 1
s (HJ 4150 — H] k) — — (HoGa+10) — HG50)

Ay

Wherea Vl@?j? k)? VZ(iajv k)a V3(Z.7j7 k)? V4(i7ja k)a VS(L]‘? k)? Vﬁ(iaja k) are de-
fined in (3.13), (3.14), (3.15)), (3.16)), (3.17)), (3.18]). In the spatial spectral domain,

components of the electric field, magnetic field and electric flux densities can be

written as:
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E;Z(i,j,k) _ Erne*](kziAa:JrkyjAerkzkAz) (4'21)
H;L(Lj’k) _ Hrnefj(kziAerkyjAerkzkAz) (4'22)
D?(i,j,k) _ Drnefj(kziAerkyjAgﬁkzkAz) (4'23)

where r = x,y, z and k;, k,, k. are wave numbers along the z,y, z directions,
respectively. Using (4.21)), (4.22)), (4.23) and assuming Az = Ay = Az = As,
(4.12)),(4.13]),(4.14), (4.15), (4.16), (4.17), (4.18), (4.19), (4.20) can be written in
the following way:

k) vy(i, 7, k) vs(i, g, k) .
En+1 . _Vl(zy.]) Dn+1 _ 2\% J» D i 3\" J» D 127,7 4.94
‘ (44 V4(27.77k) ’ ) V4(27]7k) x<]k)+y4<i7j7k) ! (]k)( )
_V5(7i7.].7 )E;L(z] )_Vﬁ(z.ujla )Egil(ij)
V4(Z7jak) V4(27]7k)
7, k) vo(i, 7, k) v3(i,5,k)
B g — 20T E) prn sy = 1200 K) D e (4.25
N A R A A R RN S R B e
V‘E’(Z.’].’ )E“(i,j,k)—%(z.’j.’ )E”_l(i,ak)
V4(Z7.]7k:) Y V4(Zajak) Y
', k) vo(i, j, k) va(i g k)
Erttgm — IR pay o a0 K) B VGG E) a0
z ( 7]7k) V4(Z7j’ k) z ( sJ k) V4(Z’ j’ k) Z( »]»k) + ]/4( .’ j7 k‘) z ( 7]7k)( )
_UB(Z‘vj'a )E:(z]k _Vﬁ(flaj‘a )Eg_l(i,jk)
V4(Z,j,k) l/4(@7]7k)
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At At
H;“(@M) - mEgH(i,j,k) + ME;Jrl(i,j,k)e]szz (4,27)

At
Hn+1(1] k) — —En+1(lj k) N En-‘,—l( )ejkxA:v (428)

At
H"™ Yagr) — —E”“(z &)+ —E"“( ek Ay (4.29)




CHAPTER 4. DETAILED STUDY OF THE FD-CN-FDTD METHOD 106

—— H" k) (4.30)

At
Dn+ i o Hn+1 —gk. Az
(4.4,k) IAg la (i.4,k)€ +2A

A At
2A 2As

At
_ n,. . n —9k. Az n
= Dy (i,5,k) + H (3,9,k)€e J — 5As H (,5,k)

A
+ — H (4,3,k)

Hn+1(lj k) (431)

Hn+1 ke —gksAx HnJrl(z )

—— H" k) (4.32)

([@24), ([-25), (*.26), [@.27), ([@.28), (£.29),, (.30) ,(2.31),(&.32) can be written as

WU = WoU™ + WUt (4.33)

where W1, W5 and W3 are 9x9 matrices and U is a 9 x 1 vector. Wy, Wy, W3
and U are described in (4.34)),(4.35)),(4.36)) and (4.37)), respectively, below:
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~; 0 0 0 0 0 ¢ 0 0
0 —¢ 0 0 0 0 0 ¢ O
0 0 —¢ 0 0 0 0 0 C
0o 0 0 0 0 0 0 0 0
Ws = 0o 0 0 0 0 0 0 0 0 (4.36)
o 0 0 0 0 0 0 0 0
o 0 0 0 0 0 0 0 0
0o 0 0 0 0 0 0 0 0
o 0 0 0 0 0 0 0 0
E,
Ey
E.
H,
v=| &, (137
H,
D,
Dy
D

w

In (4.34)),(4.35) and (4.36) following assumptions were made

T = At
211 As
_ At
r 2As
Ca — ylgivjvk;
vy (i,g,k
Cb — V;l(lvjvk)
v Zv]vk)
iy
valt,],
C’e V‘;E%JJZ%
V4(,7,
C J— Vt(lvjvk)
f o V4(i7j7k)

If in (4.33), the terms on the left hand side were at (n + 1)At and those on
the right hand side were at nAt, it would have been straightforward to find the

growth factor. However, because of the presence of the term at (n — 1)At on the
right hand side of (4.33)), calculation of the growth factor of the FD-CN-FDTD
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method is not trivial. To circumvent this, using a 9 x 9 null matrix O (4.33) can

be written as

(WL U™ + [O]U™ = [WL]U™ + [Ws]U™! (4.38)

If [I] is a 9 x 9 identity matrix, an equation having the same time steps on
both sides of the equality as in (4.38)) (i.e. n + 1 and n terms on the left hand

side and n and n — 1 terms on the right hand side) can be written

[O|JU™! + [IU" = [I)U" + [O]JU™* (4.39)

Using Wy, Wy, W3, I, O as block matrices and combining (4.38)) and (4.39))

Un+1
uUn

Un

W, O
[ ! - (4.40)

O 1I

B2
| I O

n+1
Assuming two vectors, each of size 18 x 1, as [T""!] = [ [ ] and [T"] =

Uznl 4.40)) becomes
[Vgl (I) [Tnﬂ}:[“f Vg3 [T”} (4.41)

Now the growth factor of the FD-CN-FDTD method can be determined from

[T by

A=[M"][N] (4.42)

where both [M] and [IN] have same dimension, 18 x 18, and
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W, O

(M| = [ o I ] (4.43)
Wy, Wy

[N] = [ I o ] (4.44)

For the FD-CN-FDTD method to be stable, eigenvalues of A have to be less
than or equal to unity. Usually computer programmes like Mathematica is used
to symbolically calculate the eigenvalues of A. Because the size of this sym-
bolic computation is prohibitively large, it was not possible to successfully run
this analytical computation to the completion and obtain the eigenvalues of A,
neither in Mathematica nor in Matlab Symbolic Math Toolbox. Both of these
programmes exhaust the available computing resources (memory) while handling
the computation of large symbolic matrices of having the size of 18 x 18

and involving matrix inversion as well.

On the computing resources of Research Computing Services (RCS) [102] the
Mathematica code for symbolic computation of eigenvalues ran over 7 days 7
hours at about 8 GB of memory. Then on 7th day at 19th hour the memory used
by the code progressively increased to 32.6 GB (by 8 days 3 hours) and it started
swapping to the disk. After 8 days 11 hours it failed completely:

Aug 8 23:13:44 caterpillar3
kernel: Out of memory: Killed process 22261 (MathKernel)

It was not possible to get the access to more powerful computing resources
than RCS to run this Mathematica code to the end.



Chapter 5

Efficient Solvers for the
FD-CN-FDTD Method

The proposed FD-CN-FDTD method requires solution of a large number of
simultaneous linear equations. When the method is applied to electromagnetic
problems most of the CPU time is spent on this solution of linear algebraic
equations. Therefore, an efficient solution is essential to gain the benefit of the
FD-CN-FDTD method. This chapter deals with the issues related to the solution
of the FD-CN-FDTD method which lies at its core.

5.1 Sparse Matrix

The FD-CN-FDTD method yields a large set of linear equations resulting in a

huge sparse matrix. These come from ({3.32)), (3.40)), (3.42) and those mentioned
in Tables [3.1] 3.2 3.3l By applying these equations to all Yee—grid locations a

system of linear equations of Au = c is found. Here A is the coefficient matrix,

u represents a vector with the electric field components to be solved and c¢ is
the excitation vector. The coefficient matrix A is highly sparse. Its size depends
on the size of the computational space while its characteristics depend on media
parameters: €s, €5, 0 and 7 and temporal discretization, At. The size of matrix
Ais (3-(N;—1)-(N,—1)-(N,—1))x(3-(N,—1)-(N,—1)-(N,—1)) where N, N,

N, are the size of the computational space in x, y and z directions, respectively.

When the problem space is homogeneous, the coefficient matrix A is symmet-

ric and otherwise asymmetric. Fig. shows the sparsity pattern of A in the case

112
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Figure 5.1: Sparsity pattern of the coefficient matrix A of the FD-CN-FDTD
method, when eg = 6.2, €, = 3.5, 0 = 0.029 S/m and 7 = 39.0 ps.

where the entire computational space is filled with Debye parameters es = 6.2,
€o = 3.5, 0 = 0.029 S/m and mp = 39.0 ps. The sparsity pattern of Fig. is
similar to that of three dimensional Finite Difference Frequency Domain (FDFD)
method [103], and therefore the findings in this research could also be useful to
the FDFD researchers.

5.1.1 Condition Number and Diagonal Dominance

The ease of solution of a linear system of equations can be measured by the con-
dition number of A. Condition number measures the stability or sensitivity of
a matrix (and of the linear system it represents) to numerical operations. It is

defined as x(A) = ||A||||A|| where ||| is p-norm of the matrix' and p can be 1,

IThe norm of a matrix is a scalar that gives some measure of the magnitude of the elements
of the matrix. 1-norm condition number is considered in this thesis. l-norm of matrix A is
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2 or 0o. Although x(A) depends on the choice of norm, either of these norms typ-
ically gives roughly comparable values of it [104]. In this study 1-norm condition
number was considered. A sparse matrix system with a high condition number
is numerically ill-conditioned and is difficult to solve. Conversely a system with

low condition number is well-conditioned and is relatively easy to solve.

In practice, however, computation of the condition number is quite difficult,
time consuming and sometimes impossible. Because to compute the condition
number, inversion of the matrix A is required which is computationally expen-
sive, specially when A is large. For the FD-CN-FDTD method when the compu-
tational space was larger than 15x15x15 cells it was never possible to compute
the condition number of the generated sparse matrix with the available comput-
ing resources (dual core AMD Opteron Processor 250 with 12GB memory and
1GB cache-size). For computational space of 15x15x15 cells 1-norm condition
number was calculated for homogeneous and inhomogeneous media with different
CFLN and is presented in Table [5.1} For the homogeneous case, Debye param-
eters for the whole space was es = 4.8, €5, = 2.8, 0 = 0.20 S/m and 7 = 7.0 ps.
For the inhomogeneous case, the computational space consisted of 3 stratified
media having equal size: one-third having the parameters eg = 4.8, €, = 2.8,
0 =0.20 S/m and 7p = 7.0 ps; one-third with the parameters e5 = 6.2, €5, = 3.5,
o = 0.029 S/m and p = 39.0 ps and the remaining part with the parameters
es = 9.5, €0o = 4.2, 0 = 0.019 S/m and 7 = 77.0 ps. Table shows for high
CFLN the matrix becomes severely ill-conditioned, requiring high computation
time to be solved. This finding is in line with that of [67] which reports the same
for frequency—independent Crank—Nicolson method. Table also shows that,
irrespective of the media being homogeneous or inhomogeneous, the condition

number increases at a similar rate with the CFLN.

Similar conclusions are found when diagonal dominance of the coefficient ma-

1

trix* is considered instead of the condition number. Diagonal dominance of the

found by summing the absolute values of the elements in each column of A and then taking
m

the largest of these column sums i.e. ||A|; = max Zl |la; ;| [104]
=

n
1f a; ; is the (i,j)-th element of matrix A, then A is diagonally dominant if |a; ;| > Z la; ;1
j=1
JF
for all the 7 rows.
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Condition Number

Condition Number

CFLN (homogeneous medium) | (inhomogeneous medium)
1 3.58934479888516 3.80026294877373
2 4.77889162596216 5.63798835383051
3 12.5571219884572 8.03725239471826
4 88.9828959798497 142.376370566024
) 57150.0480720380 45976.7592194050
6 1434509822.80038 883345491.644407
7 37699399327182.4 19798632060535.8
8 4.382859536859418E+-017 | 2.061438929431951E+017
9 2.255666356921374E4-021 | 9.217501368037234E4-020
10 4.677124697624521E4-024 | 1.923201534239998E4-024
11 5.831503312083712E4-027 | 2.104623342204125E+027
12 3.849638466963231E+-030 | 1.317912729029270E+030
13 1.435933921690451E+033 | 5.075254678012810E4-032
14 3.797326242305980E4-035 | 1.282211916790933E+035
15 6.933718165858368E4-037 | 2.241768644600929E+037
16 9.136650096500494E+-039 | 2.835285743200455E+039
17 9.015011444539032E4-041 | 2.691888048797409E+041
18 6.870749991581516E4-043 | 1.979287789772085E+043
19 4.153048717710373E+045 | 1.157282615412316E+045
20 2.036431555022701E4-047 | 5.503870731510703E4-046

Table 5.1: 1-norm condition number at different C'F'LN for homogeneous and
inhomogeneous media for the computational space of 15x15x15 cells

FD-CN-FDTD coefficient matrix improves when CFLN decreases, leading to
matrices which are easier to solve. To study the effect of CFLN on diagonal
dominance an inhomogeneous cubic space of size 80x80x80 cells having 5 differ-
ent media as shown in Fig. was considered. A homogeneous computational
space was also considered which had Debye parameters es = 6.2, €, = 3.5,
o = 0.029 S/m and T, = 39.0 ps for the whole cubic space of Fig. . Com-

putational space of such large size was used to demonstrate the merits of using
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diagonal dominance over condition number which allowed the computation of
maximum 15x15x15 cells. Whatever be the size of the computational space,
both diagonal dominance and condition number provide the same observation for
the FD-CN-FDTD coefficient matrix.

30

8 : 4 ; . Medium | €s | €00 |7 (ps)|o (S/m)
L L Medium 1[71.66] 34.58] 5.65 | 0.021
Medium 2| 6.2 | 3.5 |39.0 0.029
Medium 3| 9.5 | 4.2 | 77.0 0.037
Medium 4[87.34149.13126.89 | 0.045
Medium 5| 4.8 | 2.8 | 7.0 | 0.053

il‘C(jh{lI-Il-g- T

80

Medium 1

Medium 2
edinm4d Ll N
+ Medium 5

15 9 24 1220

Figure 5.2: Computational environment for numerical studies using the FD-CN—
FDTD method

Fig.[5.3|shows how the absolute values of diagonal and the sum of absolute val-
ues of off-diagonal elements of A vary with CF LN, both for the homogeneous and
inhomogeneous cases. A representative row of A has been taken, corresponding
to the interior computational space, which comprises nearly the whole coefficient
matrix (except the boundary—contributed rows). For low CFLN all the rows of
the coefficient matrix are strictly diagonally dominant except a very few which
are contributed by the boundary cases, whereas high C'FF'LN deteriorates this
property. Fig. shows that the advantageous diagonal property of the coeffi-
cient matrix is lost with increased C'FLN irrespective of the media parameters
or homogeneity. This perfectly matches to the observation of Table in terms
of condition number. For practical problems the diagonal-dominance criterion
is simpler to handle than the condition—number one because of computational
expenses. An additional advantage of the diagonal dominance criterion is that
it points a direction to research in the building of appropriate preconditioners to
ease the solution at higher CFLN.
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Figure 5.3: Absolute values of diagonal and sum of absolute values of off-diagonal
entries of the coefficient matrix changes with CF LN

5.2 Direct Methods

A sparse matrix system is solved at each time step of the FD-CN-FDTD method.
Methods of solution for such sparse systems fall into two categories — the direct
and iterative methods. Direct solvers are extremely robust and reliable and give
the exact solution if there is no rounding errors. Their latest implementations
have improved the memory efficiency and have efficient reordering techniques,
which improve the performance to a great extent. Out of the two types of meth-
ods, first a version of sparse Gaussian elimination based direct solver [105] [106]
was investigated to solve the FD-CN-FDTD method. Following main steps are

executed, in sequence, in the direct solver used in this study [107]:

1. First, reordering of the rows and the columns of the coefficient matrix are
done. This is performed in such a way that the factors get little fill-in
compared to the original matrix. Fill-in refers to those entries in the matrix
that are initially zero but changed to a non-zero value during the operation
of a certain algorithm. If possible, reordering is done to turn the coefficient

matrix into special structure like block-triangular form.

2. Next, the reordered matrix is analyzed and a pivot ordering is computed

in order to do symbolic factorization. The nonzero structure of the factors
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are, thereby, determined and suitable data structures are formed for these

factors.

3. Based on the above two steps, the coefficient matrix is decomposed in factors

of lower and upper triangular matrices (LU factors)

4. After the LU factorization, forward and backward triangular sweeps are

executed using the factors to obtain the solution.

Following these steps, iterative refinement are optionally performed to im-

prove the accuracy of the solution.

The direct solver used with the FD-CN-FDTD method chooses a pivot se-
quence to decompose A into LU factors, in such a way that the sparsity is pre-
served in them. A full Markowitz search technique is used to find the best pivot
and reduce the fill-ins (i.e. not to waste memory). At each time step of the
FD-CN-FDTD algorithm, a new vector ¢ is calculated for the right hand side,
while A is required to be factorized only once (which dominates the computa-
tional time) before the beginning of the FDTD iteration'. Once factorized, the
same factors are repeatedly used at each time step to obtain w. For this reason,
this method showed the potential to become more computationally efficient than
the iterative methods when a large number of FDTD iterations are needed, since

at each time step only forward and backward solutions are required.

Using direct solver in the FD-CN-FDTD method the same numerical test
mentioned in Section [4.1| was performed. The size of the computational space
was (30x30x30) cells; half of which was filled with medium 1 (es = 71.66,
€00 = 34.58, 0 = 0.49 S/m and 7 = 5.65 ps) and the other half with medium 2
(es = 87.34, €00 = 49.13, 0 = 0.69 S/m and 7 = 26.89 ps) as shown in Fig. [5.4]
Source excitation of a modulated Gaussian pulse centred at 3 GHz was placed
at (10,15,15). Spatial sampling was uniform, with Az = Ay = Az = 107%m and
CFLN = At/Atcrr = 1,3,5 were tested, where Atcpp = 1.9 ps

Tn this thesis, FDTD iteration is used to refer to the iteration (time stepping) required to
complete the simulation, in order to avoid confusion with the iteration required to converge in
the iterative solvers
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Figure 5.4: FDTD problem space for simulation with the FD-CN-FDTD method.

In this numerical test in which the sparse matrix system was solved by the
direct solver, CPU time required for LU decomposition was 633 minutes and av-
erage CPU time per FDTD iteration was 6.489 seconds when C'F'LN = 1 on dual
AMD Opteron 280 with 8 GB of memory. When the computational space was
filled with homogeneous material of medium 1 or when CF LN > 1 there were no
significant differences in these values (i.e. the CPU time for LU decomposition
and average CPU time per FDTD iteration ). This test was in double precision
computation and required 2.4 GB of memory. With the available computational
resources (National Grid Services [10§], that also has a limit on the number of
hours a programme can run on) it was never possible to successfully use direct
solver in the FD-CN-FDTD method when the computational space was larger
than 30x30x30 cells.

Despite being robust and reliable, the direct solver is not practical to use
in the FD-CN-FDTD method for real applications. They are computationally
more expensive and require excessively large memory (their memory requirements
grow as a nonlinear function of the matrix size [109]). It might be possible to
use direct solver in the FD-CN-FDTD method for larger problems by doing

distributed memory parallelization (using Message Passing Interface).



CHAPTER 5. EFFICIENT SOLVERS FOR THE FD-CN-FDTD METHOD120

5.3 Iterative Methods

Direct methods can be used to solve problems of upto 30x30x30 cells of compu-
tational space but for larger problems involving unknown variables of the order of
millions the computation is prohibitively expensive and requires excessively large
memory. For example, when 30x30x30 cells computational space is modelled in
the FD-CN-FDTD method the direct solver using sparse Gaussian elimination
requires 2.4 GB of memory whereas iterative solvers BiCGStab and GMRES,
respectively, require only 62 MB and 65 MB of memory. Thus for practical prob-

lems iterative solvers have to be used [110] [104].

Iterative methods work by repeatedly improving an approximate solution until
it is accurate enough [104]. To solve a linear system Awu = ¢, iterative methods
require an initial guess u(®) that approximates the true solution. If no good
approximation to the solution is known u(?) can be taken as zero. In the iterative

0) is used to generate a new guess u(!, which is then used to generate

process u'
yet another guess u(®, and so on. In this way after k iterations u*) is generated.
If u® is sufficiently close to the solution, the iteration is stopped and uw®) is
accepted as an adequate approximation to the solution. Residual vector, r(*) =
c — Au® | is considered to decide if u®) is sufficiently close to the solution. As
soon as the residual vector meets a pre-specified stopping criterion (for example,
given a very small value of threshold ¢, [|[7*¥)|| < €), the iterative process stops
and convergence is said to be achieved. A good number of iterative methods have

been developed but they mainly belong to two categories [2]:

Stationary methods: Stationary methods are the older of the iterative meth-
ods. They are simpler to understand and implement but usually not very
effective. Some examples of stationary methods: Jacobi method, Gauss-
Seidel method, Successive Over-Relaxation (SOR) method and Symmetric
Successive Over-Relaxation (SSOR) method.

Non-stationary methods: Non-stationary methods were developed relatively
recently. Although their analysis is usually harder to understand, they can
be highly effective. Some examples of non-stationary methods: Conjugate
Gradient (CG) method, Minimal Residual (MINRES) method, GMRES
method, BiConjugate Gradient (BiCG) method, Quasi-Minimal Residual
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(QMR) method, Conjugate Gradient Squared (CGS) method and BiCGStab
method.

Some methods are only important to understand the historical development
of iterative methods and are not relevant for solving the FD-CN-FDTD sparse
matrix system. As the convergence of stationary methods is slow and guaranteed
for a limited class of matrices, these are not considered in this study. Non-
stationary methods that represent the current state-of-the-art for solving large
sparse linear systems have been used in this study. These are also called Krylov

subspace methods.

I's the matrix
I's the matrix| Y symretric y Are the extremal | Chebyshev
symmetric? posi tive-definite? ei genval ues® known? or CG
n n n

M nRES
or CG CG
I's the transpose|Y

avai | abl e? QR

n

I's storage at | Y CGS or
a pr em unf Bi CGSt ab
n
GVRES with

long restart

Figure 5.5: Choosing an effective iterative method [2]

Although there exists many iterative methods a certain method may work
well for one problem but not for another. An iterative method might be conver-
gent but the convergence might be too slow to be of practical value. Therefore,
it is essential to find the most effective method for the concerned problem. For
this, both the computations required per iteration and the number of iterations

necessary for convergence need to be considered. A flowchart is suggested in the

f a; ; is the (i,7)-th element of matrix A, then A is symmetric positive definite if a; ; = a;;
for all the 4,j and if it satisfies 7 Az > 0 for all nonzero vectors x
2Maximal and minimal eigenvalues
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Appendix D of [2] as shown in Fig. to choose an effective iterative method
from the best known methods for which extensive computational experience has
been gathered. Depending on the homogeneity of the computational space the
FD-CN-FDTD method yields symmetric and asymmetric matrices. Since for
homogeneous problems the coefficient matrix is symmetric, as shown in Fig. [5.5]
iterative solvers like CG method can be used. However practical problems are
inhomogeneous and iterative solvers for asymmetric matrices have to be used.
These are GMRES, BiCGStab, QMR or CGS. Out of these, QMR requires trans-
pose matrix-vector product making the computational costs per iteration higher.
On the other hand, CGS suffers from irregular convergence, which may lead
to substantial build-up of rounding errors because CGS algorithm is based on
squaring the residual polynomial [I10] [2]. Therefore, this study focuses on
GMRES(m) [111] and BiCGStab [112]. GMRES is said to be a very robust
solver for nonsymmetric matrices. It leads to the smallest residual for a fixed
number of iteration steps. But these steps become increasingly expensive and in
order to limit the increasing storage requirements and work per iteration step,
restarting is necessary. It is quite difficult to chose the appropriate number of
iterations m after which GMRES restarts. If m is too small GMRES(m) may be
slow to converge, or fail to converge entirely. If it is unnecessarily large excessive
work and more storage are incurred as penalty. BiCGStab is a fast and smoothly
converging variant of BiCG method. The advantage of this method is that its
computational costs per iteration are similar to that of CGS but it avoids the
irregular convergence patterns of CGS while maintaining about the same rate of

convergence. Also BiCGStab does not require transpose matrix-vector product

like QMR.

5.3.1 Performance Study of BiCGStab and GMRES

In this section the performance of BiCGStab and GMRES, both for the homoge-
neous and inhomogeneous media cases, are compared. Two cases are considered
for study. The first one consists of an inhomogeneous medium, in a cubic space
of size 80x80x80 cells, with 5 different media as shown in Fig. 5.2 The second
one involves the same cubic space of the previous case, now filled with a homo-
geneous medium with Debye parameters es = 6.2, €, = 3.5, 0 = 0.029 S/m and

™ = 39.0 ps. In both cases a z-directed dipole hard source with a time variation
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given by a Gaussian pulse centred at 6.9 GHz was placed at the centre of the com-
putational space. Spatial sampling was uniform: Az = Ay = Az = As = 1073m.
The time-step is taken equal or above the CFL stability condition of the explicit
FDTD: At = CFLN x As/(c\/3), where, ¢ is the free space light-speed. The
level of accuracy in waveform compared with the explicit frequency dependent
FDTD is the same as the one presented in Fig. In the iterative solution

algorithms the E values at the previous time step are used as the initial value.

1073 '
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Figure 5.6: Threshold of residual error versus number of iteration required
by BiCGStab and GMRES for homogeneous and inhomogeneous cases when
CFLN =20

Fig.|5.6|shows the convergence pattern for CF LN = 20, plotting the threshold
of residual error as a function of the number of iterations required by the itera-
tive solvers to converge. The number of iterations required to achieve a specified
accuracy is demonstrated in this figure. For example, to make the residual error
lower than 10~ BiCGStab requires about 45 iterations whereas GMRES requires
about 97 iterations in both homogeneous and inhomogeneous cases. The conver-
gence rate of the solvers is weakly affected by homogeneity. In this numerical
test, the value of CFLN is quite high (20) and for the case of CF LN having a
value lower than this, the iteration numbers would certainly be lower than those
shown in Figure [5.6]

Figure [5.7] shows how the average number of iterations, required by BiCGStab
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and GMRES to converge, increases with the CFL number. Stopping criteria in
this case was 107! and the reason for selecting this small value of convergence
tolerance is, in the FD-CN-FDTD method, unlike the frequency-independent
CN-FDTD method, D = €E is used and therefore D can have a value of such
small order because of e (permittivity). GMRES stagnates when convergence
tolerance is below 107!* while BiCGStab can work even at a lower convergence
tolerance. Both solvers require more iterations to converge as CF LN goes up
but the rate of increase of iteration numbers with CF'LN is higher for GMRES
than for BiCGStab. Homogeneity does not affect significantly this rate, particu-
larly, for BICGStab. The change of iteration number with C'F'LN for convergence
tolerance values from 1072 to 1073 can be assumed from Figure[5.6] In the FD-
CN-FDTD method, the total number of FDTD iterations required to complete
the simulation decreases with CF' LN, but the increase of computational costs per
FDTD iteration with CFLN, as shown in Fig. can undermine this positive

effect unless the solution is very efficient.
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Figure 5.7: Average number of iterations required to converge at different CFL
numbers (convergence tolerance = 10713)

Fig. plots the CPU time required by the FD-CN-FDTD method with
BiCGStab or GMRES as a function of CELN. The stopping criterion of 10713
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Computational Size (cells) | 403 603 803
BiCGStab 145MB | 487MB | 1.1GB
GMRES 151IMB | 507MB | 1.2GB

Table 5.2: Memory required by BiCGStab and GMRES for different computa-
tional spaces

was used and the simulation was performed to reach a fixed time instant by let-
ting the code run for 1200/C'F LN time steps on a dual AMD Opteron 280 with
8GB of memory. CPU time decreases with the C'F'LN, for both solvers, although
GMRES requires more CPU time than BiCGStab. The trend of the curves in
Fig. 5.8 also manifests that the difference between the CPU time required by the
two solvers becomes narrower with the increase of CF'LN. Table presents the
memory required by the two solvers for three different computational space sizes.

GMRES always requires more memory than BiCGStab.

400
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Figure 5.8: CPU time required by BiCGStab and GMRES at different CF LN

From all the above, it can be concluded that BiCGStab outperforms GMRES
in computational efficiency. This finding is in contrary to that of [67] which
reports GMRES is the fastest for the frequency—independent CN-FDTD method
presented there. The work of [67] is based on and while the FD-CN—
FDTD method additionally involves which has second-order time derivative
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terms. The FD-CN-FDTD method involves nine field components in place of
six for the CN-FDTD method and the sparsity pattern of the former has more
bands than the latter [68]. Apart from this, the problems concerning simulation
implementation, optimization and parameters tuning have an obvious influence

in concluding which solver is the most efficient.

5.4 Preconditioners

The rate of convergence of the iterative methods depends greatly on the spectrum
of the coefficient matrix!. Often a second matrix, called a preconditioner, is used
with the iterative methods to transform the coefficient matrix into one with a
more favourable spectrum? [2]. A good preconditioner improves the convergence
of the iterative method but the extra computational costs of constructing and
applying the preconditioner should be minimal. Without a preconditioner the
iterative method may even fail to converge. On the other hand, an inappropriate
preconditioner can be counter-productive by making the convergence more diffi-
cult or giving wrong results. Finding a preconditioner suitable for a particular

problem is challenging and beyond the main focus of this thesis.

To solve for the FD-CN-FDTD method two preconditioners were applied:
Incomplete LU with no fill-in or ILU(0) and Sparse Approximate Inverse (SAI).
ILU(0) did not give any improvement in convergence (rather convergence de-
teriorated). However, SAI gave slight improvement in reducing the number of
iterations to converge but there were two major setbacks making it unsuitable
for use. The time to compute the approximate inverse preconditioner is too large
which makes the total CPU time longer than that without any preconditioner.
[68] showed SAI can reduce iteration numbers for the frequency-independent CN—
FDTD method but did not mention the total CPU time. A second problem is
that memory requirements of SAI restricted the maximum computational space
to only 30x30x30 cells. SAT also showed lack of robustness when used with the
FD-CN-FDTD method.

!The set of the eigenvalues of a matrix is called its spectrum

2For example, by concentrating the spectrum of the preconditioned matrix. The ratio of
t