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Abstract

Inference in Stochastic Systems with Temporally
Aggregated Data

Maria Myrto Folia
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2017

The stochasticity of cellular processes and the small number of molecules in a

cell make deterministic models inappropriate for modelling chemical reactions at

the single cell level. The Chemical Master Equation (CME) is widely used to

describe the evolution of biochemical reactions inside cells stochastically but is

computationally expensive. The Linear Noise Approximation (LNA) is a popular

method for approximating the CME in order to carry out inference and parameter

estimation in stochastic models.

Data from stochastic systems is often aggregated over time. One such exam-

ple is in luminescence bioimaging, where a luciferase reporter gene allows us to

quantify the activity of proteins inside a cell. The luminescence intensity emitted

from the luciferase experiments is collected from single cells and is integrated over

a time period (usually 15 to 30 minutes), which is then collected as a single data

point.

In this work we consider stochastic systems that we approximate using the

Linear Noise Approximation (LNA). According to the LNA, the state of the

system follows Xt = φt + ξt, where φt is the deterministic part of the system

and ξt the stochastic part representing the fluctuations around φt. ξt is described

by a linear stochastic differential equation. Therefore, its solution is a Gaussian

process with mean mt and covariance matrix St and so, Xt ∼ N(φt +mt, St).

For the problem of aggregation most existing approaches treat the data as

being proportional to the actual quantities. We instead generalize the LNA to

aggregated data by taking the integral of the state process Xt over the period of

aggregation:
∫ t
t0
X(u)du =

∫ t
t0
φudu+

∫ t
t0
ξudu = I(t) +Q(t). The function Qt will

also follow a Gaussian process, as it is the time integral of ξt. Hence, the data

follow a multivariate Gaussian distribution and we can perform inference with a



continuous-discrete-time Kalman Filter in order to compute the data likelihood

and subsequently to infer the model parameters.

We demonstrate our method by learning the parameters of three different

models from which aggregated data was simulated, an Ornstein-Uhlenbeck model,

a Lotka-Voltera model and a gene transcription model. We have additionally

compared our approach to the existing approach and find that our method is

outperforming the existing one. Finally, we apply our method in microscopy

data from a translation inhibition experiment.
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Chapter 1

Introduction

1.1 Computational Systems Biology

In recent years, major advances in experimental techniques in Biology resulted in

an unprecedented increase of available data and new insights into the workings

of biological systems. The vast amount of data made the need for novel compu-

tational and mathematical tools in Biology apparent, leading to the emergence

of new scientific fields. Computational Systems Biology is concerned with the

development of computational methods that, combined with biological data, can

describe a biological system of interest [49].

Biochemical networks are used to represent biochemical reactions. Mathe-

matical modelling of such networks is crucial in Systems Biology. Together with

biological data, mathematical models can be used to infer quantities that cannot

be directly measured by biologists or estimate parameters, e.g. reaction rates, of

the biochemical networks.

The most common approach for modelling biochemical networks assumes that

their time evolution is described by a set of coupled Ordinary Differential Equa-

tions (ODEs). By making this assumption, we have a continuous, deterministic

model. Various methods for inference and parameter estimation in ODE mod-

els are available in the literature. Available methods emerged from fields such as

optimisation [56], Bayesian (nonparametric) statistics [50] and control theory [51].

ODEs provide a reasonable representation of data describing an average over

millions of cells, as for example in tissues or cell cultures. Nevertheless, there

are cases where an average over cells will not be appropriate for studying a sys-

tem. For example, the NF-κB transcription factors show out-of-phase oscillations

between the nucleus and the cytoplasm (N-C) with a typical frequency of 100 min-

utes [78, 82]. These oscillations have been found to control the dynamics of gene

expression [58], and are therefore of great importance. However, if we consider

a whole population of cells, this oscillatory behaviour is not apparent due to
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population averaging. This is illustrated in Figure 1.1 [78], where the coloured

lines correspond to out-of-phase oscillations in different single cells and the black

line indicates the population average. This indicates the need for studying and

modelling biological processes at the single-cell level.

Figure 1.1: Out of phase oscillations at single cells (coloured lines) and population
average (black line), adapted from [78].

Microscopy data at the single cell level, such as fluorescence and luminescence

data, have shown that biochemical processes inside a cell are intrinsically and

extrinsically stochastic [16]. Intrinsic noise is due to the inherent randomness of

biochemical processes such as transcription, while extrinsic stochasticity is due

to cell-to-cell variation, e.g. in molecular abundance. Furthermore, at the level

of single cells, molecule numbers are discrete rather than continuous. Therefore,

instead of an ODE approach, a discrete stochastic approach is needed in order to

capture their nature correctly.

One of the first obstacles to a stochastic approach in Systems Biology is the

exact simulation of biochemical processes. This was solved in 1977 by Daniel T.

Gillespie with his famous stochastic simulation algorithm [25]. However, as in

the case of ODE models, the parameters governing the system are rarely known

completely. Therefore, another important problem is to perform parameter es-

timation given single cell data. A stochastic model consists of an ensemble of

all the possible paths the system can take, making parameter estimation much

more difficult than in deterministic models. Studies in this direction have already

been performed [47, 18, 89] but parameter estimation in stochastic kinetic models

remains an active research area.
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1.2 Stochastic vs. deterministic models

Is a stochastic modelling approach really important? In order to answer this

question, we will look at some examples.

Firstly, consider the dynamics of a fairly simple system such as that of a molec-

ular decay. We assume the same initial condition for the number of molecules

before decaying, while there is a constant production rate that will keep the

molecule numbers from disappearing completely. We simulate different paths

using both a deterministic and a stochastic approach. Clearly, the determinis-

tic approach will always give us the same result since we use the same initial

conditions. As we can see from Figures 1.2(a) and (b), the deterministic ap-

proach has ignored the fluctuations that are apparent in the stochastic model.

Although the mean behaviour, in this case, seems equivalent for both approaches,

the stochastic model gives us the extra information about the volatility in the

system. This extra information can become very important for parameter esti-

mation. In Figures 1.2(c) and (d), we see the same system again, but now it is

initialised to a higher number of molecules leading to more resemblance between

the deterministic and the stochastic approach.

As a second example, consider a Lotka-Volterra model. The Lotka-Volterra

model has been used to model biochemical reactions when there are competi-

tive interactions between chemical species (e.g. autoregulatory networks). In

Figure 1.3, we see the time evolution of the prey and predator numbers using

a deterministic and a stochastic approach. Here, we see that the differences in

the behaviour of the system between the stochastic and deterministic model are

much more obvious than before. We first remark that in the stochastic case the

oscillations possess a different amplitude, while in the deterministic case, they

are repeated with the same amplitude and period. The next observation we can

make is that the stochastic case allows for the extinction of the species, allowing

us to investigate the distribution of the time to extinction—something that is

impossible using the deterministic model.

1.3 Thesis motivation - Aggregated data

The stochasticity of cellular processes and the small number of molecules in a cell

is the reason why stochastic modelling is needed to describe biological processes
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(a) Deterministic model (50 initial
molecules).

(b) Stochastic model (50 initial
molecules).

(c) Deterministic model (2000 initial
molecules).

(d) Stochastic model (2000 initial
molecules).

Figure 1.2: Time evolution of a deterministic and stochastic model for molecular
decay with different initial states.

at the single cell level. The work for this thesis has been motivated by the need

for stochastic models for different kinds of single cell data.

Most of the current work on Stochastic Systems Biology using microscopy

data [89] has been successfully applied to fluorescence data. However, another

interesting technology for capturing information at the single cell level is lumines-

cence bioimaging. In luminescence bioimaging, a luciferase reporter gene allows

us to quantify the activity of proteins inside a cell. The luminescence inten-

sity emitted from the luciferase experiments is collected from single cells and

is integrated over a time period, which is then collected as a single data point.

The length of the integration period depends on the type of experiment and the

strength of the luminescence signal, and can in certain cases be up to 30 minutes.

Luciferase is a highly sensitive and non-toxic reporter making it more appropriate

for long-term studies than other technologies such as fluorescent reporters [87].
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(a) Prey (deterministic model). (b) Predator (deterministic model).

(c) Prey (stochastic model). (d) Predator (stochastic model).

Figure 1.3: Time evolution of a deterministic versus stochastic Lotka-Volterra
model.

To our knowledge, the available literature does not take into account both the

stochastic and aggregated nature of luciferase data. However, aggregation can

include extra information of a system and ignoring it can result in loss of accuracy

in the results. Thus, we believe it is important to use the appropriate models when

working with luciferase data. In this thesis, we focus on Bayesian inference and

parameter estimation for stochastic systems that we observe through aggregated

time series, such as luciferase data. We have built on the work of [47, 18] and

extended it for the case of aggregated data.

Although the examples in this thesis will be inspired by biological applications,

our method is not restricted to these applications and could be used in other

domains as well. Stochastic modelling has been also used extensively in domains

other than biology, such as finance or physics. The idea of temporal aggregation

is found in these domains too. For example, in a physics application, we might

be interested in studying the position component of a particle when we know
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(a) Velocity of a particle. (b) Position of a particle.

Figure 1.4: Time evolution of an Ornstein-Uhlenbeck process (velocity) and its
integral (position).

that its velocity component is described by a known process, i.e. an Ornstein-

Uhlenbeck process [31]. On the other hand in finance temporal aggregation plays

an important role for stochastic volatility models (e.g. [5]).

In Figure 1.4, we show plots of the time evolution of the velocity and position

of a particle. The process describing the position of the particle can be seen as the

time integral of the velocity process which is described by an Ornstein-Uhlenbeck

process. As we can see in Figure 1.4, the position process looks much smoother

than the velocity process. In general, aggregation tends to reduce fluctuations

and therefore the stochasticity of the original non-aggregated process may be

underestimated.

1.4 Overview of the thesis

In Chapter 2, we introduce the mathematical background needed for this thesis.

We start with an introduction to stochastic processes and move on to their use in

biochemical reaction networks. We present a proof from [27] for the derivation of

the Chemical Master Equation (CME) and present the Linear Noise Approxima-

tion as an approximation of the CME. We finish the chapter with an introduction

to Bayesian statistics, which provides us with a framework for inference.

In Chapter 3, we move to inference and parameter estimation for stochastic

systems. We discuss how we can use the Kalman Filter methodology for systems

described by Stochastic Differential Equations and how we can combine it with
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the Linear Noise Approximation. Finally, we present our novel method for in-

corporating temporally aggregated observations, which is the main result of this

thesis.

In Chapters 4 and 5, we present inference and parameter estimation results

on synthetic and real datasets respectively. The purpose of these chapters is

to investigate the effect of aggregation in stochastic systems and to assess the

performance of our method. In all cases we investigated our method works well

and outperforms existing methods that do not model aggregation explicitly.

In Chapter 6, we summarise the concluding remarks and contributions of

this thesis and propose directions for future research.



Chapter 2

Mathematical Background

In this chapter, we cover the mathematical background needed for the remain-

der of the thesis. We discuss some basic concepts around Markov processes in

discrete/continuous time and discrete/continuous state. We continue by deriving

the Chemical Master Equation (CME) and presenting the Gillespie algorithm.

An approximation of the CME, known as the Linear Noise Approximation, is

presented, and we discuss some of its limitations. Finally, we introduce some

notions of Bayesian statistics and inference.

2.1 Introduction to stochastic processes

In the following, we will introduce the mathematical ideas related to systems

that evolve probabilistically over time. We will focus on interpreting these ideas,

rather than providing a strict mathematical formulation.

Since we are adopting a probabilistic view, we will commonly refer to variables

that take different values with a specific probability, i.e. random variables. We

start by giving the definition of a stochastic process and continue with some

special categories of stochastic processes and their properties.

A stochastic process {Xt, t ∈ T} is a collection of random variables indexed

by t, where t usually represents time. For a specific t, Xt is a random variable.

If the index set T is discrete, we have a discrete-time stochastic process, while if

it is continuous, we have a continuous-time stochastic process [70].

If Xt = x, we say that Xt is at state x at time t. The set of possible values

Xt can take is called the state space of the stochastic process {Xt, t ∈ T}. As

with time, we can have discrete-state and continuous-state stochastic processes.

Given that Xt1 = x1, Xt2 = x2, ..., we can describe a stochastic process by its joint

probability density p(x1, t1;x2, t2; ...). Note that for continuous time or continuous

states, we will have infinitesimal increments, i.e. [ti, ti + dti), [xi, xi + dxi). A

particular realisation of a stochastic process for all t, e.g. (x1, x2, x3, ...), is called
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a sample path of the process.

An important category of stochastic processes are the so-called Markov pro-

cesses. Markov processes are stochastic processes that possess the Markov

property. The Markov property tells us that the future state of a stochastic

process, given its past and its present state, is only depended on the present [70].

The theory of Markov processes is well developed and this makes Markov pro-

cesses popular modelling tools in many domains including biology. In what fol-

lows, we present a brief introduction in key aspects of the Markov process theory.

2.1.1 Markov chains

Although there is no universal agreement, with the term Markov chain we will

refer here to a discrete-time, discrete-state1 Markov process. The Markov prop-

erty for a Markov chain can be written in probabilistic terms as p(xt, t|xt−1, t −
1; ...;x1, t1;x0, t0) = p(xt, t|xt−1, t−1), which also defines its transition probability.

If the transition probability does not depend on time, then we can simply

denote it by p(i, j), where p(i, j) = p(Xt+1 = j|Xt = i) expresses the probability

of the process transitioning to state j after being at state i. Markov chains with

this property are said to be time homogeneous. In this thesis, unless otherwise

stated, we will assume that a Markov chain is time-homogeneous.

The one-step transition matrix P of a Markov chain is given by the transition

probabilities p(i, j):

P =



p(0, 0) p(0, 1) p(0, 2) ...

p(1, 0) p(1, 1) p(1, 2) ...
...

...
...

p(i, 0) p(i, 1) p(i, 2) ...
...

...
...


. (1)

The matrix P is a stochastic matrix, i.e. its elements are non-negative and its

rows sum up to 1.

The n-step transition probabilities pn(i, j) = p(Xt+n = j|Xt = i) are express-

ing the probability of transitioning from state i to state j in n steps. They can

be computed by the Chapman-Kolmogorov (C-K) equation:

1finite or countable numbers
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pm+n(i, j) =
∞∑
k=0

pn(i, k)pm(k, j),∀n,m ≥ 0 . (2)

What these equations actually tell us is that, in order to go from state i to

state j in m + n steps, we have to sum over all the possible paths that can take

the process from state i to state k in n steps and then from state k to state j in

m steps [70]. Proving the C-K equations for a Markov chain is straightforward

using the law of total probability.

Equation (2) can be written in matrix notation as P (n+m) = P (n)P (m),

where P (n) refers to the n-step transition matrix with elements pn(i, j). It is

induced that P (n) = P n, where P n indicates the multiplication of P with itself

n times.

For a Markov chain with transition matrix P , the stationary distribution

π of the process can be found by solving π = πP .

2.1.2 Discrete-time continuous-state Markov process

Another category of stochastic processes corresponds to a stochastic process

where the index set of time takes only discrete values, as in a Markov chain,

but the states correspond to continuous random variables. If we further assume

that such a stochastic process possesses the Markov property, then we are dealing

with a discrete-time, continuous-state Markov process.

We can deduce the usual rules of the Markov chains for the case of the discrete-

time, continuous-state Markov processes by just replacing sums with integrals.

Thus, the C-K equation becomes:

pm+n(i, j) =

∫
pn(i, k)pm(k, j)dk,∀n,m ≥ 0 . (3)

The most common discrete-time, continuous-state process is the Autoregres-

sive (AR) Process. The AR process takes its name from the fact that if Xt is

an AR process, then it can be inferred by its previous states through a regres-

sion equation [64]. AR processes have been studied extensively in the time series

literature [7]. As an example, Equation (4) describes a first order AR(1) process.

Xt+1 = aXt + wt , (4)
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where wt ∼ N(0, σ2) and wt is independent of wt′ for all t 6= t′. The Markov

property can be established easily for an AR(1) process since its future state at

t+1 depends only on the present state at time t. The form of wt leads to Xt being

also a Gaussian process.2 An AR(1) is a discrete-time Gaussian Markov process

and its extension to continuous time leads to stochastic differential equations that

will be studied later [64].

2.1.3 Continuous-time Markov chains

A continuous-time Markov chain is a Markov process with continuous time

and discrete states and can be interpreted as the continuous analogue of a Markov

chain. The Markov property for this case can be written as [70]:

p(Xt+dt = j|Xt = i,Xu = xu, 0 ≤ u < t) = p(Xt+dt = j|Xt = i) . (5)

A continuous-time Markov chain is a process that jumps from one state to

another state in accordance with a Markov chain, but the amount of time spent

at a state before jumping to the next is exponentially distributed [70].

In analogy with the discrete case, the process is time homogeneous if (5)

is independent of t. In that case we can write its transition probability just as

p(i, j, τ), where τ is the time spent at state i before it jumps to state j. Once

again, analogously to the discrete case, we can define the C-K equation as:

p(i, j, t+ τ) =
∞∑
k=0

p(i, k, t)p(k, j, τ),∀t, τ ≥ 0 . (6)

For continuous-time Markov chains we will need to introduce two more quan-

tities: qij, which denotes the transition rate from state i to j and vi, the rate

at which the process makes a transition from state i, such that vi =
∑
i

qij. These

two quantities are defined by:

qij = lim
h→0

p(i, j, h)

h
, i 6= j (7)

vi = lim
h→0

1− p(i, i, h)

h
(8)

2A Gaussian process is a stochastic process that consists of random variables any finite
number of which have a joint Gaussian distribution [64]
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We can now find how the process varies over time by:

dp(i, j, t)

dt
=
∑
k 6=j

qkjp(i, k, t)− vjp(i, j, t) . (9)

Equation (9) is known as the forward Kolmogorov equation for a continuous-

time Markov chain. Using matrix notation we can define the transition rate

matrix R with elements:

Rij =

qij, i 6= j

−vi, i = j
. (10)

The transition rate matrix has rows that sum to 0 and non-negative off-

diagonal elements. Using R we can deduce the matrix form of the forward

Kolmogorov equation:

dP (t)

dt
= P (t)R , (11)

where P (t) is the transition matrix with elements p(i, j, t) and has solution

P (t) = eR. For a continuous-time Markov chain we have that π is a stationary

distribution iff πR = 0 [13].

An important class of continuous-time Markov chains are the so-called Birth-

Death processes. A Birth-Death process is a continuous-time Markov chain

with non-negative discrete states (0,1,2,...), where all jumps are of length 1. We

can think of a Birth-Death process as a system where we have n people initially

and new individuals arrive at the system at rate λn and leave at rate µn. Here,

λn and µn are the birth and death rates respectively [70].

A special case of a Birth-Death process is a Poisson process. A Poisson process

is a pure birth process with constant birth rate, i.e. µn = 0 and λn = λ, so we

can define its transition rate matrix as:

Rij =


λ, j = i+ 1

−λ, i = j

0, otherwise

. (12)

The forward Kolmogorov equation for a Poisson process can be written as:
dp(i,j,t)
dt

= λp(i, j − 1, t)− λp(i, j, t).
A sample path from a Poisson process is shown in Figure 2.1. The key to
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simulating the Poisson process is that we have a new jump that will update the

size of the system by +1 at independent exponential times [26].

Figure 2.1: Sample path of a Poisson process with rate = 0.5.

2.1.4 Diffusions

A diffusion process is a continuous-time, continuous-state Markov process. The

most well-known diffusion process is Brownian motion. Brownian motion de-

scribes the motion of tiny particles that are immersed in a fluid (liquid or gas).

It owes its name to the botanist Robert Brown who in 1827 observed the random

motion of particles of pollen grains in water through his microscope [9]. Einstein

in 1905 [14] was the first to model this motion in a probabilistic way and Wiener

finally established a mathematical analysis of this motion in a series of papers

starting in 1918 [70]. Thus, the Brownian motion is also called a Wiener process

and is denoted with Wt.

The Wiener process Wt has the following properties:

1. Wt is continuous.

2. W0 = 0.

3. It has independent increments. Wt1 ,Wt2−Wt1 , ...,Wtκ−Wtκ−1 are indepen-

dent for all tκ > ... > t1 ≥ 0.

4. It has stationary increments. Wt −Ws ∼ N(0, t− s) ∀t > s ≥ 0.



30 CHAPTER 2. BACKGROUND

Figure 2.2: Five sample paths of a one dimensional Wiener process.

From the definition, we can see that Wt ∼ N(0, t) is a Gaussian process. Five

different sample paths of Wt are shown in Figure 2.2.

Diffusion processes appear as solutions to stochastic differential equations.

Therefore, stochastic differential equations need to be defined before we can move

on to diffusion processes.

Stochastic differential equations (SDEs)

Ordinary differential equations (ODEs) are used to describe the evolution of a

system in which no randomness takes place. Therefore, the result will always

be determined for specified initial conditions. If we want to take into account

the randomness or uncertainty in a model, we are naturally lead to stochastic

differential equations (SDEs).

Assume a deterministic model for population growth with growth rate a(t)

that is described by the following ODE:

dNt

dt
= atNt , N0 = A . (13)

In many real life situations, we will not be able to deterministically model popu-

lation growth due to uncertainty in the rate parameter, i.e. at = rt + noise [60],

or due to some general noise term inserted in the system such as atNt + noise, as

a result of noisy measurements, for example. Randomness can also be inserted in

the initial conditions or other coefficients of an ODE. In these cases, we consider
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to model the system using an SDE given by the general form:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt , (14)

where for a d-dimensional process Xt, µ(t,Xt) is a d-vector, σ(t,Xt)σ(t,Xt)
T

is a (d × d) matrix and Wt stands for the m-dimensional Wiener process with

components W 1
t , ...,W

m
t and represents the noise term. Functions µ(t,Xt) and

σ(t,Xt) are referred to as the drift and diffusion term of the SDE respectively.

As an example, the univariate Wiener process is described by an SDE with

drift equal to 0 and diffusion equal to 1. Returning to the population growth

model (13) in the case of at = rt+noise we can formulate its stochastic counterpart

given by the SDE: dNt = rtNtdt+NtdWt [60].

The general solution Xt to (14) is a diffusion process and is given by:

Xt = X0 +

∫ t

t0

µ(t′, Xt′) dt
′ +

∫ t

t0

σ(t′, Xt′) dWt′ , (15)

where the last integral is a stochastic integral in the Ito sense 3. We can observe

that if the diffusion term is zero then we are lead to a purely deterministic process,

also known as a Liouville process.

Existence and uniqueness theorems for the solutions of SDEs exist, and the

interested reader is referred to [60]. For this thesis, we will assume that µ(t,Xt)

and σ(t,Xt) are known smooth, non-anticipating4 functions of t.

Ito stochastic integrals can be calculated using Ito’s formula (see Appendix A.1)

and three important rules:

1. dWtdWt = dt ,

2. dWtdt = 0 ,

3. dtdt = 0 .

In case we cannot solve a stochastic integral analytically, we can rely on nu-

merical methods [46]. The Euler-Maruyama approximation is the equivalent

of the Euler approximation for ODEs. The approximation is based on a time

discretisation such as 0 < t1 < ...tn−1 < T , where ∆t = T/n for equidistant time

3The Ito integral I(f) =
∫ t
t0
f(t′, Xt′) dWt′ of a random function f(t,X(t)) given a partition

0 < t1 < ... < tk−1 < t is defined as the limit I(f) = limk→∞
∑k−1
j=0 f(tj−1, Xtj−1

)(Wtj −Wtj−1
)

4A function f(t) is non-anticipating if it is independent of Ws −Wt for t ≤ s [21].
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steps. Setting X0 = x0 and ∆Wn = Wtn+1 −Wtn , the scheme proceeds iteratively

as follows:

Xn+1 = Xn + µ(tn, Xn)∆t+ σ(tn, Xn)∆Wn . (16)

We will be interested in a particular class of SDEs, where the drift and diffu-

sion terms in Equation (14) have a specific form. A linear SDE in the narrow

sense is one that has a linear drift term in terms of Xt, µ(t,Xt) = a1(t)Xt+a2(t)

and a diffusion term independent of Xt σ(t) = b1(t), such that the noise appears

only additively [1]. A linear SDE in the narrow sense can be obtained by a linear

ODE plus a noise term and has the following form:

dXt = (a1(t)Xt + a2(t))dt+ b2(t)dWt . (17)

In order to calculate the solution of (17), we use the fundamental solution Φt

which can be obtained from the homogeneous ODE: dΦt
dt

= a1(t)Φt. Using the

transformation Φ−1
t Xt and the Ito formula, the solution of Equation (17) is given

by [1]:

Xt = Φt(Xt0 +

∫ t

t0

a2(s)Φ−1
s ds+

∫ t

t0

b2(t)Φ−1
s dWs) . (18)

The solution of (17) is a Gaussian process iff the initial value Xt0 is a constant

or normally distributed [1]. This result agrees with the form of (18), as Xt is

a linear combination of Gaussian random variables. Note that the stochastic

integral
∫ t
t0
σ(t′, Xt′) dW

′
t is Gaussian, as it refers to the Ito integral of a non-

random function and Xt0 is assumed to be non-random or Gaussian.

The evolution of the first two moments of the solution can be defined by two

ODEs. For the first moment m(t) = E[Xt], we can easily deduce that [1]:

dm(t)

dt
= a1(t)m(t) + a2(t) . (19)

For the second moment P (t) = E[XtX
T
t ] we get [1]:

dP (t)

dt
= P (t)a1(t)T + a1(t)P (t)T +m(t)aT2 + a2m(t)T + b2b

T
2 . (20)

Equations (19) and (20) are obtained by taking the expectation on the integral

solution (18) and making use of the Ito’s formula. We provide an alternative

proof for Equations (19) and (20) in Appendix A.2.
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It follows that the ODE of the variance K(t) = P (t)−m(t)m(t)T is given by:

dK(t) = dP (t)−m(t)dm(t)T − dm(t)m(t)T

dK(t)

dt
= K(t)a1(t)T + a1(t)K(t)T + b2b

T
2 .

(21)

So far, we have examined diffusion processes as solutions to SDEs. However,

as diffusion processes are Markov processes, we would be interested to look at the

time evolution of their transition densities. So, we want the equivalent of a for-

ward Kolmogorov equation for a continuous-time, continuous-state Markov pro-

cess. This is given by the Fokker-Planck equation, which, for a d-dimensional

diffusion process as described by Equation (14), is [1]:

∂p(Xt, t)

∂t
= −

d∑
i=1

∂

∂t
[µi(Xt, t)p(Xt, dt)] +

1

2

d∑
i=1

d∑
j=1

∂2

∂Xti∂Xtj

[Σij(Xt, t)p(Xt, t)] ,

(22)

where Σij(Xt, t) = σ(t,Xt)σ(t,Xt)
T and is symmetric and positive definite.

The Fokker-Planck equation can be used for obtaining the stationary distri-

bution of the underlying process by just setting Equation (22) to zero. Fokker-

Planck equations are also used to approximate continuous-time Markov chains.

One particular approximation will be studied in Section 2.4.

2.2 The Chemical Master Equation (CME)

Here, we attempt a stochastic description of biochemical systems with the help

of Markov processes as presented in the literature [26, 84, 21, 89]. The presence

of intrinsic noise in the way biochemical reactions occur at the single cell level

makes a stochastic approach necessary.

2.2.1 Biochemical reaction networks

Molecules inside the cell can collide and, provided there is enough energy, they

will react. A biochemical reaction where a molecule of the A species is converted

to a molecule of the B species is represented by [83]:

A→ B. (23)
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Following this notation, an A molecule could react with a B molecule and produce

a C molecule, i.e.

A+B → C, (24)

This reaction could also be reversed so that a C molecule decomposes back

to an A and B molecule:

C → A+B. (25)

Degradation of an A molecule is denoted by

A→ ∅, (26)

while the production of a molecule of species A can be denoted by

∅ → A. (27)

Note here that ∅ does not correspond to ‘nothing’, but represents a species

that we are not interested in including into the description of the system. Species

on the left side of → are called reactant species and on the right side product

species. Reaction (27) is a zeroth-order reaction, Reactions (23), (25) and (26)

are of first-order and Reaction (24) is of second-order. Higher-order reactions

are less common [84] and can usually be decomposed into pairs of lower order

reactions [89].

Assume a biochemical reaction network consisting of u chemical species X1, ...,

Xu (usually mRNA or protein) and v reactions R1, ..., Rv (usually transcription,

mRNA degradation, translation, protein degradation) as shown in (28) [89].

R1 : p11X1 + p12X2 + ...+ p1uXu → q11X1 + q12X2 + ...+ q1uXu
R2 : p21X1 + p22X2 + ...+ p2uXu → q21X1 + q22X2 + ...+ q2uXu

. . .

Rv : pv1X1 + pv2X2 + ...+ pvuXu → qv1X1 + qv2X2 + ...+ qvuXu .

(28)

Xt = (X1, ..., Xu)
T represents the state of the system at time t, i.e. Xi corresponds

to the molecules of chemical species Xi at time t.

We denote with P the v × u matrix whose elements are given by pij, and Q
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the v × u matrix given by qij. Now, we can define the stoichiometry matrix S:

S = (Q− P )T . (29)

S is a u× v matrix whose columns represent the effect of individual transitions

(reactions) on the state of the network. Each Sij describes the change in the

number of molecules of type i from ni to ni + Sij due to reaction j [89].

Assume further that the system described by the biochemical network (28) is

kept well stirred in a container of constant volume Ω and in thermal equilibrium

at a constant temperature T . By keeping the system well stirred, we make sure

that the position of any molecule is assumed to be uniformly distributed in the

container [27].

2.2.2 Derivation of the CME

We are interested in determining the probability of the system being at different

states over time. We provide here a very intuitive derivation of the equation

that describes the time evolution of Xt, which is known as the Chemical Master

Equation (CME). The specific derivation was first presented in [27].

Before we describe the derivation, we need to define some quantites of interest.

Each reaction Ri is associated with a scalar called the stochastic rate constant

and denoted by ci [89]. The probability that a randomly selected combination

of the reactant molecules from Ri reaction will react in the infinitesimal interval

[t, t+ dt) is given by cidt. Note that ci is independent of dt.

We denote by wi(X1, ..., Xu) the number of distinct combinations of reactant

molecules from Ri reaction at the current state of the system. The form of wi,

where we have dropped the dependency of wi on X1, ..., Xu, will vary according

to the order of the reaction [89].

Consider a first order reaction, for example, Reaction (23), and assume that

there are nA molecules of the reactant species A. In order for Reaction (23) to

occur, we need one particular molecule of A to react, but there are nA molecules

of A, such that w = nA. If we look at the second order Reaction (24) and

assume that there are nA molecules of species A and nB molecules of species B,

we would need one particular pair of molecules A and B to react, according to

the multiplication principle w = nAnB. Now, if we had a second order reaction

where both reactant species were the same such as A + A → C we would need
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two distinct molecules of A to react. Given that we have nA molecules of species

A, there are nA(nA − 1)/2 pairs of molecules A, so w = nA(nA − 1)/2. For a

zeroth-order reaction of the form (27), we essentially have w = 1.

The derivation of the CME in [27] is based on the following three theorems

regarding a well stirred thermally equilibrated system such as System (28).

Theorem 1. If Xt = X, then the probability that exactly one Rµ reaction

occurs in [t, t+ dt) is given by hµ(X, cµ)dt+ o(dt) , where hµ(X, cµ) = cµwµ and

o(dt)/dt→ 0 as dt→ 0.

Proof. Since we are assuming a well stirred system, we can randomly choose

any one of the wµ distinct combinations of the Rµ reactant molecules. Each of

these combinations has a probability cµdt of reacting and 1− cµdt of not reacting

according to Rµ in [t, t + dt). The probability of a specific one from the wµ

combinations reacting, while the other wµ−1 combinations do not react, is given

by the multiplication law as cµdt(1 − cµdt)
wµ−1 = cµdt(1 + (wµ − 1)(−cµdt) +

(wµ−1)(wµ−2)

2
cµ

2dt2 + ...) = cµdt + o(dt). Since we have wµ distinct combinations,

the probability of having any of the wµ combinations reacting alone is given by

p(1st combination only reacting)+p(2nd combination only reacting)+...+p(wµth

combination only reacting)= wµ(cµdt+ o(dt)) = wµcµdt+ o(dt) = hµ(X, cµ)dt+

o(dt), as we refer to mutually exclusive events. The function hµ(X, cµ) is usually

called the hazard function of reaction Rµ [89]. �

Theorem 2. If Xt = X, then the probability that no reaction will occur in

the system in the time interval [t, t+ dt) is given by 1−
v∑

µ=1

hµ(X, cµ)dt+ o(dt)

Proof. For each of the wµ distinct combinations of the Rµ reactant molecules

at time t, there is a 1 − cµdt probability of not reacting according to Rµ in

[t, t+dt). So, using the multiplication law, the probability of all wµ combinations

not reacting is given by: (1 − cµdt)wµ = 1 + wµ(−cµdt) + wµ(wµ−1)

2
cµ

2dt2 + ... =

1 − wµcµdt + o(dt) = 1 − hµ(X, cµ)dt + o(dt). Now, we are interested in the

probability that none of the v reactions of System (28) will react, i.e. p((no R1)

AND (no R2) AND ... AND (no Rv)). The probability of the intersection of

independent events is given by their product; thus, the probability of no reaction

occurring in the system in [t, t + dt) is given by
v∏

µ=1

(1 − hµ(X, cµ)dt + o(dt)) =

1−
v∑

µ=1

hµ(X, cµ)dt+ o(dt). �

Theorem 3. The probability of more than one reaction occurring in the

system in the time interval [t, t+ dt) is o(dt).
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Proof. Using the multiplication law and the fact that a distinct combination

of Rµ reactant molecules has a probability of cµdt to react in [t, t+dt), we conclude

that the probability of k reactions to occur in [t, t+dt) is proportional to dtk and

thus o(dt) for k > 1. �

At this point, we are able to calculate the probability of the system being at

state X at time t, given its state X0 at time t0, i.e. p(Xt = X|Xt0 = X0).

We start by expressing the probability p(Xt+dt = X|Xt0 = X0). For this,

we have to consider three possible routes to reach X at t+ dt from X0 at t0.

The first route concerns the probability of no reaction occurring in [t, t+ dt).

In order to be at state X at time t + dt, we need to have reached state X

at time t from state X0. According to the multiplication law and Theorem

2, the probability of the first route is given by p(Xt = X|Xt0 = X0)(1 −
v∑

µ=1

hµ(X, cµ)dt+ o(dt)).

For the second route we are interested in the probability of having exactly one

of the v reactions of System (28) occurring in [t, t+dt). Assuming that the reaction

occurring is Rµ, this means that at time t the state of the system Xt = n1 will be

updated according to the µth column of the stoichiometry matrix (29): n1+S(µ).

In order for the system to be at state X at time t + dt it should have reached

state n1 = X − S(µ) at time t. Using Theorem 1 and the multiplication law,

the probability of reaching state X −S(µ) at time t from state X0 and Rµ taking

place in [t, t+ dt) is given by p(Xt = X − S(µ)|Xt0 = X0)(hµ(X, cµ)dt+ o(dt)).

However, there are v different reactions that could happen in [t, t + dt); thus,

the probability of the second route is given by
v∑

µ=1

p(Xt = X − S(µ)|Xt0 =

X0)(hµ(X − S(µ), cµ)dt+ o(dt).

The third route concerns the probability of having more than one reaction

occurring at [t, t + dt). According to Theorem 3, the probability of this route

is of order o(dt).

All of these routes refer to mutually exclusive events; therefore, we can add
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their probabilities and conclude that:

p(Xt+dt = X|Xt0 = X0) =

= p(Xt = X|Xt0 = X0)(1−
v∑

µ=1

hµ(X, cµ)dt+ o(dt))+

+
v∑

µ=1

p(Xt = X − S(µ)|Xt0 = X0)(hµ(X − S(µ), cµ)dt+ o(dt))+

+ o(dt) .

(30)

If we subtract p(Xt = X|Xt0 = X0) from both sides of Equation (30) and

divide by dt, we can take the limit as dt → 0, vanishing all o(dt)/dt terms, and

consequently have:

dp(X, t)

dt
=

=
v∑

µ=1

[p(X − S(µ), t)hµ(X − S(µ), cµ)− p(X, t)hµ(X, cµ)] ,
(31)

where we have dropped the dependence on the initial state n0 at t0. By p(X, t),

we refer to the probability of being at state X at time t. This way we have

derived the CME which refers to the Equation (31).

It is useful, in particular when Taylor expansions are considered, to write the

CME in a more compact form using a step operator E−Sij such as

E−Sijg(..., Xi, ...) = g(..., Xi − Sij, ...) and E−SijE−Skjg(..., Xi, ..., Xk, ...) =

g(..., Xi − Sij, ..., Xk − Skj, ...). The CME can be written then as:

dp(X, t)

dt
=

v∑
j=1

(
N∏
i=1

E−Sij − 1)hj(X, cj)p(X, t) . (32)

We can regard the time evolution of System (28) as a continuous-time Markov

chain. The Markov property is obvious since the future state (i.e. number of

molecules) of the system depends only on the present state. The system evolves

at a continuous time, but its state is discrete, as molecule numbers can only take

discrete values. In fact, each reaction Rµ occurs according to a Poisson process

with rate hµ(X, cµ). The CME is nothing more than the forward Kolmogorov

equation of the Markov process describing System (28).
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2.3 The Gillespie algorithm

It is of great interest to be able to simulate realisations of the CME. In [25] we

are provided with a stochastic simulation algorithm that allows us to simulate

sample paths from the CME. This algorithm, known as the Gillespie algorithm,

is exact in the sense that it can be derived from the same principles as the CME,

which makes them logically equivalent to each other [27].

The Gillespie algorithm refers to systems of the form of System (28) where

the three theorems discussed in the previous section hold. The rationale behind

the algorithm depends on answering two questions. Given that the system is at

state n at time t a) When will the next reaction occur? and b) Which one of the

v reactions R1, ... ,Rv will it be?

Before we answer these two questions, consider the probability that there will

be a jump in the time interval [t, t+dt). We already know from Theorem 1 that

the hazard of reaction Rµ occurring in [t, t+ dt) is given by the hazard function

hµ(Xt, cµ). Thus, the combined hazard expressing the probability of a reaction

occurring in [t, t+ dt) is given by h0(Xt, cµ) =
v∑

µ=1

hµ(Xt, cµ).

Now, we can answer questions a) and b). The time to the next event can be

sampled from Exp(h0(Xt, cµ)) and the type of the reaction Ri can be sampled

as a discrete random variable with probabilities hi(Xt, cµ)/h0(Xt, cµ).

A pseudocode for the algorithm is given below [89].

1. Initialize the state Xt = n of the system.

2. Calculate the hazard function hi(Xt, cµ) for each reaction of the system.

3. Calculate the combined hazard h0(Xt, cµ).

4. Find the time t1 for the next reaction by sampling from Exp(h0(Xt, cµ)).

5. Update time: t = t+ t1

6. Sample the type i of the next reaction according to the probabilities hi(Xt, cµ)/h0(Xt, cµ).

7. Update the state of the system: n = n+ Si.

8. While t < Tmax, go to step 2.
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The Gillespie algorithm becomes very slow as the size of the system increases

since it simulates every single reaction occurring. Methods to accelerate the

algorithm have been proposed, such as the τ -leap method [30, 11]. The main

idea behind the τ -leap method is to calculate all reactions that happen in a time

interval of length τ and then update the hazard function. Of course, the method

is not exact anymore, leading to an, albeit small, cost in accuracy.

2.4 The LNA as an approximation to the CME

The CME is computationally expensive and, only in rare cases, analytically solv-

able [55]. Consequently, approximation methods are necessary. We will present

the Linear Noise Approximation (LNA), also known as van Kampen’s system size

expansion [84], as an approximation to the CME. The LNA has been recently suc-

cessfully applied in Systems Biology applications [18, 47].

The idea behind the LNA is an expansion of the CME in powers of a small

parameter that regulates the size of fluctuations in the system. Following [84],

we denote with Ω a parameter that for large values of it the fluctuations become

relatively small. One such parameter is the size of the system; in the case of

System (28), Ω is taken to be the volume of the system. In that case, a small

parameter is taken to be the 1/
√

Ω.

Our next step in the expansion of the CME is the inclusion of Ω in Equa-

tion (32). We denote with x = X
Ω

the concentration of molecules at the current

state of the system and rescale the hazard function hµ(X, cµ) to include Ω as

Ωf̃j(x,Ω). The CME now becomes:

dp(X, t)

dt
= Ω

v∑
j=1

(
N∏
i=1

E−Sij − 1)f̃j(x,Ω)p(X, t) . (33)

It is expected that p(X, t) will have a peak around a macroscopic value of order

Ω and width of order Ω1/2 [84]. This would lead us to decompose the system into

a deterministic part denoted by φ and a stochastic part ξ:

X = Ωφ+ Ω1/2ξ . (34)

We will illustrate the system size expansion of [84] using a simple one dimen-

sional example. Consider the following reaction network, where we simply have
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production and degradation of a species X:

∅ γ−→ X (35a)

X
κ−→ ∅ (35b)

Reaction 1 happens with a stochastic rate constant γ and reaction 2 happens

with a stochastic rate constant κ; X/Ω = x denotes the concentration of X.

The above equations result in the following stoichiometry matrix:

S =
[
1 −1

]
, (36)

and reaction rates:

f̃(x,Ω) =

[
γ

κx

]
, (37)

The CME (33) for this reaction can be written using Ωf̃(x,Ω) as:

dp(X, t)

dt
=

= Ωγp(X − 1, t)− Ωγp(X, t) + Ωκ
X + 1

Ω
p(X + 1, t)− Ωκ

X

Ω
p(X, t)

= Ωγ(E−1 − 1)p(X, t) + κ(E − 1)Xp(X, t) .

(38)

Using now Equation (34), we get that X = Ωφ + Ω1/2ξ, and we can express

p(X, t) = p(Ωφ + Ω1/2ξ, t) = Π(ξ, t). Assuming constant X for the time deriva-

tives, we get that dX
dt

= 0, which gives us:

dξ

dt
= −Ω1/2dφ

dt
. (39)

With the help of (39), we can express the left hand side of (38) as:

dp(X, t)

dt
=
∂Π(ξ, t)

∂t
+
∂Π(ξ, t)

∂ξ

dξ

dt
=
∂Π(ξ, t)

∂t
− Ω1/2dφ

dt

∂Π(ξ, t)

∂ξ
. (40)

For the right hand side of (38), care should be taken about the step operator

E. We know that the operator changes the molecules of X to X + 1: Eg(X) =

g(X + 1). Observe that X + 1 = Ωφ+ Ω1/2ξ + 1 = Ωφ+ Ω1/2(ξ + Ω(−1/2)), thus

E changes ξ to ξ + Ω−1/2. So, Eg(ξ) = g(ξ + Ω−1/2) and this leads us to the
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following result:

Eg = (1 + Ω−1/2 ∂

∂ξ
+ 1/2Ω−1 ∂

2

∂2ξ
)g . (41)

Equivalently, for E−1, we can find that

E−1g = (1− Ω−1/2 ∂

∂ξ
+ 1/2Ω−1 ∂

2

∂2ξ
)g . (42)

We will now express the right hand side of (38) using (34), (41) and (42).

Ωγ(−Ω−1/2 ∂

∂ξ
+

1

2
Ω−1 ∂

2

∂2ξ
)Π(ξ, t)+

+ κ(Ω−1/2 ∂

∂ξ
+

1

2
Ω−1 ∂

2

∂2ξ
)(Ωφ+ Ω1/2ξ)Π(ξ, t) .

(43)

By looking at (40), we notice that terms of order Ω1/2 will involve the deterministic

part φ of the state, while terms of order Ω0 involve the stochastic part. Terms of

higher order will not be included in the analysis.

By collecting terms of order Ω1/2 in (43), we get:

− Ω1/2dφ

dt

∂Π(ξ, t)

∂ξ
= −γΩ1/2∂Π(ξ, t)

∂ξ
+ κΩ1/2φ

∂Π(ξ, t)

∂ξ
. (44)

If ∂Π(ξ,t)
∂ξ

cancel out, we are lead to the deterministic equation:

dφ

dt
= γ − κφ . (45)

Cancelling out ∂Π(ξ,t)
∂ξ

is valid since we have made the hypothesis that X = Ωφ+

Ω1/2ξ, where φ corresponds to the solution of the deterministic equation (45).

Collecting now terms of order Ω0 we get:

Ω0∂Π(ξ, t)

∂ξ
=

= Ωγ
1

2
Ω−1∂

2Π(ξ, t)

∂2ξ
+ κ

1

2
Ω−1Ωφ

∂2Π(ξ, t)

∂2ξ
+ κΩ−1/2Ω1/2 ∂

∂ξ
Π(ξ, t)ξ .

(46)

which leads to the following Fokker-Planck equation:

∂Π(ξ, t)

∂ξ
=

∂

∂ξ
κξΠ(ξ, t) +

1

2
(γ + κφ)

∂2

∂ξ2
Π(ξ, t) . (47)
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Equation (47) corresponds to the following SDE:

dξ = −κξdt+
√
κ+ γφdWt . (48)

As discussed in Section 2.1, this is a linear SDE in the narrow sense, and its

solution is a Gaussian process. Depending on the author, LNA either refers just

to this SDE, or to the expansion method of van Kampen in general; we will use

the latter definition.

In summary, the LNA decomposes the state of the system into a deterministic

part and a stochastic part that represents the fluctuations around the determin-

istic one as seen in (34). The correctness of this decomposition is supported by

the fact that (47) is independent of Ω, indicating that fluctuations were assumed

to be of the correct order.

This example has been used to illustrate exactly the method used in [84]

for approximating the CME. A detailed derivation of a general multidimensional

system can be found in [15]. Fortunately, we can just use the general result of

this method in order to approximate the CMEs of more complex networks.

Given a biochemical reaction network with stoichiometry matrix S and the

rescaled hazard function defined by f̃(x,Ω), we can calculate its deterministic

solution by:
dφi
dt

= Sif̃(φt) , (49)

where i stands for the i-th species. For the linear SDE that characterizes the

fluctuations around φ, we need to first calculate the following matrices:

At = SFt, (50)

where the elements of the matrix F are given by:

Fij =
∂f̃i(φt)

∂φj(t)
, (51)

Again, subscript i corresponds to the i-th reaction and j to the j-th species.

EEt
T = Sdiag(f̃(φt))S

T , (52)

where Et = S
√

diag(f̃(φt)). Using (50) and (52), we get the following linear SDE

in the narrow sense:
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dξt = Atξtdt+ EtdWt . (53)

2.4.1 Limitations of the LNA

At this point, we would like to discuss some limitations of the LNA and how

they can be overcome. Omitting discretisation can become problematic for low

molecule numbers. Thus, LNA does not work well when the number of molecules

is very low. Therefore, hybrid models have been proposed [71, 76] that partition

the system into fast and slow reactions. Fast reactions are simulated using the

LNA, and slow reactions are simulated using a discrete scheme such as Gillespie

algorithm.

An assumption that is implied by the derivation of the LNA is that the macro-

scopic state has one stable stationary solution. This assumption keeps the fluctu-

ations around the macroscopic state bounded [84]. However, as discussed in [15]

the LNA seems to work well even when there are large fluctuations (e.g. weakly

attracting stable state). In addition, the authors suggested a variable transfor-

mation to improve LNA in such cases. For bistable systems, the LNA can give

misleading results due to its dependence on the deterministic solution, but if the

system is very close to its thermodynamic limit, then, for a limited time, the LNA

can describe the system quite accurately [86].

The LNA involves a Taylor expansion of up to second order. In [80] it has

been shown that in certain cases, where there is a low number of molecules and

non-linear reactions, including higher order terms can improve the accuracy of

the LNA. As stated in [84], higher order terms can be seen as a non-Gaussian

correction to the LNA, but, in most applications, it will not be of practical

importance. Although we are not dealing with the limitations of LNA in this

thesis, some of the suggested approaches can be used to extend our method

when LNA fails to give an accurate estimation. Diagnostic tools for assessing the

suitability of the LNA for a specific system have been recently proposed in [24].

2.5 Bayesian Inference

We will begin with a brief introduction to Bayesian inference, which has found

many applications in Computational Biology [49]. The Bayesian approach to

statistics involves three steps. First, we form a probability distribution to link
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(a) Triplot using 5 data points. (b) Triplot using 20 data points.

Figure 2.3: Triplots of the likelihood, prior and posterior distribution. Data
points (denoted by dots) were sampled from N(2,16) and prior on θ is N(1,4).

the model parameters θ with the data X, p(X|θ), which is called the likelihood.

Then we incorporate our prior beliefs about the parameters by defining the prior

distribution p(θ). This immediately means that in Bayesian statistics, parameters

are treated as random variables. Finally, we combine the likelihood and the prior

through Bayes’ rule to get the posterior distribution, which forms an updated

distribution for the parameters:

p(θ|X) =
p(X|θ)p(θ)
p(X)

. (54)

In Figure 2.3, we can see a plot of the prior, the likelihood and the posterior

distribution of a hypothetical model. In Figure 2.3a, we sampled five points from

N(2,16), while in Figure 2.3b, we sampled twenty points from N(2,16); in both

cases, the prior on θ was set to N(1,4). The posterior distribution combines

information of both the data and the prior and lies somewhere between the prior

and likelihood. If the prior is not informative, then the posterior will be closer to

the likelihood. A narrower curve for the posterior indicates that we have stronger

information [59]. As we are getting more and more data, we will move further

from the prior and become increasingly confident.

Many problems in Bayesian statistics involve intractable integrals. One ex-

ample is the marginal likelihood (or evidence) p(X), i.e. the denominator in (54).

The marginal likelihood plays an important role in model comparison, but it is

usually not possible to compute it analytically. It is computed by marginalising
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(integrating) out the parameters of the model:

p(X) =

∫
p(X|θ)p(θ) dθ. (55)

In the biological applications that we are going to investigate in Chapters 4 and

5, we use Bayesian statistics to infer parameter values of our models for synthetic

and real data. This means that we have some prior belief about the parameters,

which can be less or more informative, and we want to compute a posterior

over the parameters of interest. The posterior probability of one parameter θ1,

regardless of the rest θ2, ..., θn, is computed by the following, typically intractable,

integral:

p(θ1|X) =

∫
p(θ|X)dθ2...dθn. (56)

In the following, we discuss calculating posterior distributions, which can

be difficult due to the denominator in (54). However, we can sample from the

posterior using a Markov Chain Monte Carlo (MCMC) algorithm. MCMC is a

Monte Carlo method, i.e. a statistical method to compute samples from quantities

we cannot compute analytically, such as the integrals in (55) or (56) [48]. We

have already seen an example of a Monte Carlo algorithm in Section 2.3, the

Gillespie algorithm. In an MCMC algorithm, samples are taken from a Markov

chain. The distribution of interest, such as the posterior, is, in that setting,

called the target distribution. In order to achieve sampling from the target

distribution, the Markov chain must be constructed in such a way that it has the

target distribution as its unique stationary distribution.

The Metropolis-Hastings (MH) algorithm [41] is one of the most common

MCMC algorithms. Given an initial state θ0, we sample from a proposal transition

distribution q(θ∗|θt−1) and accept samples according to an acceptance function

α. If we want to sample from the posterior, the acceptance function becomes

α(θ∗, θt−1) = min
(

1, p(θ∗|X)q(θt−1|θ∗)
p(θt−1|X)q(θ∗|θt−1)

)
= min

(
1, p(X|θ∗)p(θ∗)q(θt−1|θ∗)

p(X|θt−1)p(θt−1)q(θ∗|θt−1)

)
. As we

can see, the denominator of (54) cancels out so that the acceptance function can

be computed given the likelihood and prior. A common choice for the proposal

distribution is a symmetric distribution such as the Gaussian distribution centered

at the current state N(θt, λΣ). The parameter λ is called the scale factor of the

proposal, as it defines the size of the proposal’s variance. An MH algorithm with

a symmetric distribution is also called a random-walk Metropolis. Below, we
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provide pseudocode for the general MH algorithm:

(1) Initialize the state at θ0 and set t = 1.

(2) Sample a new state θ∗ from q(θ∗|θt−1).

(3) Set θt according to α(θ∗, θt−1).

(a) Sample u from U(0, 1).

(b) If u < α : accept θ∗ and set θt = θ∗

(c) Else reject and set θt = θt−1.

(4) Update time: t = t+ 1

(5) While t < Tmax go to step 2.

Note that for a symmetric proposal, the acceptance function reduces to just

α(θ∗, θt−1) = min
(

1, p(θ∗|X)
p(θt−1|X)

)
.

The resulting sequence of samples forms a time-reversible Markov chain5 with

p(θ) as its stationary distribution. If we denote with G(j, i) = G(θt = i|θt−1 = j)

the transition matrix of the resulting Markov chain,6 it can be proved that the

following condition holds for the MH algorithm:

G(j, i)p(i) = G(i, j)p(j) (57)

Condition (57) is called detailed balance and it is a sufficient but not a nec-

essary condition for the existence of p(θ) as the stationary distribution of the

Markov chain. Although the construction of the time reversible Markov chain in

the MH algorithm guarantees convergence to the target distribution, we cannot

know in how many iterations this convergence will be reached. In many cases,

convergence can be very slow, and techniques to improve the proposal distribu-

tion and accelerate convergence have been studied. We discuss some of these

techniques in the following paragraphs.

A lot of effort has been put in finding an optimal acceptance rate for the MH

algorithm. In [66] the asymptotically optimal rate for a random walk Metropo-

lis is found to be around 0.234 under general conditions. However, in [67] an

5The reversed chain θT , θT−1, ..., θ0 is also a Markov chain
6The elements of the transition matrix are given by g(θt|θt−1) = q(θt|θt−1)α(θt|θt−1) for

θt 6= θt−1 and g(θt−1|θt−1) = 1−
∑
θt 6=θt−1
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acceptance rate between 0.1 and 0.4 was about optimal for the random walk

Metropolis. Convergence can be improved by tuning the scale factor λ to give

a reasonable acceptance rate, while recommendations for the value of λ also ex-

ist [22]. Depending on the complexity of the problem tuning of the scale factor

might not be enough for rapid convergence.

One simple way to improve the performance of the MH is to tune the variance

of the proposal distribution so that it resembles the shape of the covariance of the

target distribution. By letting the chain run for a sufficient number of iterations,

we can calculate an estimate of the covariance from the sample covariance of the

posterior samples [22]. The scale factor λ can be tuned afterwards for getting a

desirable acceptance rate. Again, this is not an optimal method, especially if we

have sampled the covariance from a region of low interest.

An alternative approach would be to tune the MH continuously at runtime.

This leads to the concept of adaptive MCMC. However, the adaptation can lead

to violations of the assumptions that guarantee convergence to the target distri-

bution. In [68], two conditions that guarantee convergence are presented. The

first one is diminishing adaptation, which means that changes to the proposal

tend to vanish as the number of iterations tends to infinity. The second one is

containment, which implies that the convergence time is bounded.

An example of an adaptive MH algorithm where diminishing adaptation and

containment hold was developed in [69, 75]. According to the specific adaptive

MH, the new state θ∗ is sampled from a mixture of Gaussians:

θ∗ =

N(θt,Σ0), w.p. δ

N(θt, λΣt), w.p. 1− δ
(58)

Σt corresponds to the sampled variance up to iteration t and is estimated after

enough samples have been accepted. The parameter δ ∈ (0, 1) and is defined

by the user. The scaling factor λ can either be fixed [69] or be tuned [75, 18].

This algorithm targets an acceptance rate of ≈ 0.3. In Chapters 4 and 5, the

MH algorithm, and when necessary the adaptive MH algorithm, will be used for

parameter estimation.
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2.6 Summary

In this chapter, we presented the mathematical background for studying stochas-

tic systems. We reviewed basic concepts of Markov processes in both continuous

and discrete time. We continued by introducing the notation and definitions of

biochemical reaction networks and presented a probabilistic proof of the Chem-

ical Master Equation (CME). We showed how we can simulate sample paths of

the CME exactly using the Gillespie algorithm. We introduced the Linear Noise

Approximation (LNA) as an approximation to the CME and followed van Kam-

pen’s proof of the LNA using a simple example. We further discussed limitations

of this approximation method. We closed the chapter by a brief introduction

to Bayesian inference, which forms the basis of the next chapter, where we are

concerned with inference in stochastic systems.



Chapter 3

Kalman Filter inference in stochas-

tic systems

This chapter begins with a discussion of existing methods for inference in stochas-

tic systems that are described by continuous-time Markov chains and observed

at discrete times. We introduce the Kalman Filter methodology and show how

it can be used for inference in systems described by SDEs. We continue showing

how we can incorporate the LNA in a continuous-time Kalman Filter. Finally, we

present our method for making inference in biochemical networks given aggregate

data that is based, again, on the Kalman Filter and the LNA.

3.1 Existing methods

High quality microscopy data that allow for measurement of molecular processes

at the single cell level have recently become available [2, 10, 78]. As discussed

in Chapter 1 of this thesis, single cell data are highly stochastic, requiring new

modelling approaches to replace ODE models which are appropriate for smoothly

varying trajectories observed in data from large cell populations. In many cases,

it is not possible to measure all quantities of interest in a system directly due

to technical difficulties or high cost. In addition, measurements are usually cor-

rupted by technical noise. It is, therefore, useful to develop the tools for inferring

both the state of the system and any unknown parameters from single cell data.

Inference in models fitted to single cell data has become an increasingly popular

area of research over the last decade. In the Systems Biology literature, more em-

phasis is put on parameter estimation; this, however, usually requires inference

of the latent states of the model. In this section, by inference we refer to both

state and parameter estimation.

The standard way of describing molecular reactions stochastically was pre-

sented in Section 2.2.2. Consequently, we are interested in performing inference
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for a continuous-time Markov chain observed at discrete times. In the ideal sce-

nario, where we observe a system completely, i.e. we know all the times and types

of reactions occurring at a time interval, we can directly compute and work with

the exact likelihood of the system [8]. In a realistic scenario, we will only be able

to observe the level of (some) species of a system at discrete times. Even in that

case, we are still able to adhere to the exact underlying structure of the stochas-

tic model, i.e. discrete states and continuous time. A Bayesian approach to the

problem of inference given discrete data is presented in [8]. There, a sophisti-

cated MCMC algorithm with two blocks is developed, where one block is used to

infer the exact process given the data and the parameters, and the second one is

used to infer the parameters given the process. In [65], parameter estimation is

performed within a Hidden Markov Model (HMM) setting, where hidden states

represent molecular numbers and transitions between the states represent differ-

ent reactions. An approximate likelihood of the HMM is maximised, imposing a

restriction on the maximum number of reaction events between the observations

and making the method applicable only to frequently sampled time series. In

a different work [81], a simulated maximum likelihood approach was adopted.

There, a frequency distribution of simulated realisations of the process is used for

estimating the transition distribution of the Markov chain and constructing the

likelihood.

The methods described so far are computationally expensive since the state

space of the Markov chain can become very high dimensional. Therefore, other

means of making inference have been further considered in the literature; for

example, a variational inference scheme is considered in [61] that has a lower

computational cost. However, a more common approach for inference in stochas-

tic biochemical networks is based on approximating the stochastic model itself.

This way we can carry out inference on a simplified model. A first thought is to

neglect any fluctuations and make a deterministic approximation. Consequently,

the system would be described by an ODE instead of a continuous-time Markov

chain. However, such an approximation assumes that the fluctuations in the

system are negligible. Therefore, this approximation can become particularly

problematic in the case of a low molecular number of species in a system, leading

to inaccurate results as shown in [81].

Alternatively, a diffusion process can be used to approximate the continuous-

time Markov chain. The Chemical Langevin equation (CLE) [29] is a non-linear
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SDE that describes the diffusion process that approximates the system. Although

using a diffusion approximation simplifies inference in contrast to the exact model,

it is still not straightforward. The problem of inference for discretely observed

diffusion processes has been studied more thoroughly in the mathematical finance

literature, where various techniques have been proposed [77]; it remains an active

area of research. Examples of using the CLE for inference in biochemical reaction

networks can be found in [36] and [37]. In [36], latent data are augmented between

the observations and an MCMC is employed for inference, while in [37], the

authors demonstrate how a particle MCMC can be used for inference with the

CLE.

In Section 2.4, we discussed the Linear Noise Approximation (LNA) as an

alternative approximation of the CME. The LNA decomposes the system into a

macroscopic part, given as a solution to a deterministic system, and the fluctu-

ations around it, described by a linear (multivariate) SDE in the narrow sense.

Different authors have argued in favor of the LNA [84] or the CLE [29, 80], while

in [86] the LNA is viewed as an approximation to the CLE. Note that both dif-

fusion approximations are valid for systems that are close to the thermodynamic

limit (i.e. large system size) [86]. In our work, the tractability of the SDE arising

from the LNA gives the LNA an advantage over the CLE.

Applications of the LNA for inference in biochemical reaction networks can be

found in [47, 18, 79]. In all these cases, parameter estimation has been achieved

with an MCMC algorithm ranging from a simple Metropolis-Hastings [47] to a

Riemannian-Manifold MCMC [79] that leads to an improved mixing of the chain.

We are interested in using the LNA for making inference given noisy, discrete

and aggregated (partial) observations of the system. Fearnhead et al. [18] devel-

oped a continuous-discrete Kalman filter to deal with noisy and discrete (partial)

observations of a system. We will extend this work and develop a Kalman filter

framework for aggregated data. In the following sections, we provide the theory

for optimal filtering and present our work for the aggregated case.

3.2 Optimal filtering

Here, we focus on the problem of inferring the state xk of a system using noisy,

indirect or even partial observations y1:k up to time k. This problem is known in
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the literature as filtering [45] and has its roots in the Wiener filter [88] for station-

ary signals. In 1960, a recursive algorithm based on least squares was proposed

for solving the filtering problem in linear systems known as the Kalman Filter

(KF) [45]. The KF became popular due to its simplicity and found immediate

applications in engineering. The Bayesian community has also been interested in

the problem of filtering [44, 43], and extensions for non-linear systems have been

developed as well [72, 73].

The KF aims at the computation of the marginal posterior distribution of

the state p(xk|y1:k). The reason for computing the marginal posterior instead of

the joint posterior of all states is the reduced computational complexity of the

marginal posterior since the posterior needs to be updated for every observa-

tion [73]. The marginal posterior p(xk|y1:k) can be calculated recursively given

the following quantities:

1. The prior distribution p(x0) that initialises the recursion.

2. The predictive distribution p(xk|y1:k−1) =
∫
p(xk, xk−1|y1:k−1)dxk−1.

At each recursion, the posterior of the previous step is assumed to be the

prior distribution for the current step. The KF can also be used for inferring

unknown parameters of a system. For that task, we would need to compute

the likelihood function of the parameters of the system given the observations,

as further discussed in Sections 3.3 and 3.4. In the following, we introduce the

discrete KF, where both the state and the observations of the system are discrete-

time stochastic processes before we move on to the continuous-discrete case that

deals with discrete observations from a system described by a continuous-time

process.

3.2.1 The discrete Kalman Filter

We will represent the state xt and the observation process yt of the system in a

state-space model such as:1

xt = At−1xt−1 + ζt−1 , (1a)

yt = Ptxt + εt . (1b)

1In the literature, it is common to have a control vector ut in the state process such as
xt = At−1xt−1 +Wtut + ζt−1, but that is not required in our applications.
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where ζt ∼ N(0, Qt) and εt ∼ N(0, Rt) represent Gaussian noise. The state

process has the form of an AR(1) process. Pt is the observability matrix that

deals with partial and indirect observations. In case of a fully observed system,

Pt will be of full rank.

The following assumptions are made for the state-space model:

1. The states xt form a Markov chain, so p(xt|x1:t−1, y1:t−1) = p(xt|xt−1).

2. The measurements yt are conditionally independent of past measurements

and states, p(yt|x1:t, y1:t−1) = p(yt|xt).

We can represent a state-space model by a directed acyclic graph [6]. The

nodes of the graph represent the random variables of the system (discrete or con-

tinuous) and the arrows correspond to dependencies between the random vari-

ables. The graphical model represents the joint distribution of the system. The

state process of the discrete KF is a discrete-time, continuous-state Markov pro-

cess which is observed through noisy measurements at discrete times. A graph-

ical representation of the state-space model (1) is shown in Figure 3.1, from

where we can deduce that the joint distribution can be decomposed according to

p(x1, x2, x3, ..., y1, y2, y3, ...) = p(x1)p(x2|x1)p(x3|x2)....p(y1|x1)p(y2|x2)p(y3|x3)... .

Since we have assumed Gaussian noise, Equation (1) can be written in prob-

abilistic terms as:

p(xt|xt−1) = N(xt|At−1xt−1, Qt−1) , (2a)

p(yt|xt) = N(yt|Ptxt, Rt) . (2b)

We are now ready to write the recursive equations that are needed to compute

the marginal posterior p(xk|y1:k). Different derivations of the KF equations have

been suggested in the literature. Here, we show a purely probabilistic derivation

as in [72, 43, 44].

We start by computing the predictive distribution p(xt|y1:t−1) at time t. Using

the Markov property of the states we can write:2

p(xt, xt−1|y1:t−1) = p(xt|xt−1, y1:t−1)p(xt−1|y1:t−1) ,

= p(xt|xt−1)p(xt−1|y1:t−1) .
(3)

2P (A,B|C) = P (A,B,C)
P (C) = P (A|B,C)P (B,C)

P (C) = P (A|B,C)P (B|C)
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Figure 3.1: Graphical representation of a discrete Kalman Filter. The shaded
circles correspond to the observations and the unshaded to the latent states.

We already know that p(xt|xt−1) = N(xt|At−1xt−1, Qt−1), and we further assume

that the posterior at the previous time step is known and follows a Gaussian

distribution3 p(xt−1|y1:t−1) = N(mt−1,Σt−1). Using Lemma 2 from Appendix A.3

we conclude:

[
xt−1

xt

]
|y1:t−1 ∼ N

([
mt−1

At−1mt−1

]
,

[
Σt−1 Σt−1A

T
t−1

At−1Σt−1 At−1Σt−1A
T
t−1 +Qt−1

])
(4)

In order to get p(xt|y1:t−1) from (4) we need to use Lemma 1 (Appendix A.3),

which gives:

p(xt|y1:t−1) = N(At−1mt−1, At−1Σt−1A
T
t−1 +Qt−1) = N(m−t ,Σ

−
t ) . (5)

In the same way, we can now derive the marginal posterior distribution p(xt|y1:t)

at time t. We start by computing the joint distribution:4 p(xt, yt|y1:t−1) =

p(yt|xt, y1:t−1)p(xt|y1:t−1) = p(yt|xt)p(xt|y1:t−1). We have knowledge of both dis-

tributions p(yt|xt) = N(yt|Ptxt, Rt) and p(xt|y1:t−1) = N(m−t ,Σ
−
t ), so we can use

again Lemma 2 (Appendix A.3) and conclude that:[
xt

yt

]
|y1:t−1 ∼ N

([
m−t

Ptm
−
t

]
,

[
Σ−t Σ−t P

T
t

PtΣ
−
t PtΣ

−
t P

T
t +Rt

])
. (6)

3The joint distribution of a directed graph of linear Gaussian units is Gaussian, leading to
all marginals and conditional distributions being Gaussian too [6].

4We make use of the conditional independence of measurements p(yt|xt, y1:t−1) = p(yt|xt).
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Finally, we can compute p(xt|y1:t) by noting that p(xt|yt, y1:t) = p(xt|y1:t). By

applying Lemma 1 (Appendix A.3) on the joint distribution (6), we can find the

conditional distribution p(xt|yt, y1:t):

xt|y1:t ∼ N(m−t +Kt[yt − Ptm−t ],Σ−t −KtPtΣ
−
t ) , (7)

where Kt = Σ−t P
T
T [PtΣ

−
t P

T
t +Rt]

−1 is the Kalman gain.

In summary, we have derived the following results:

� The predictive distribution is p(xt|y1:t−1) = N(xt|m−t ,Σ−t ).

� The posterior distribution is p(xt|y1:t) = N(xt|mt,Σt),

where m−t ,Σ
−
t and mt,Σt are given by:

m−t = At−1mt−1 , (8)

Σ−t = At−1Σt−1A
T
t−1 +Qt−1 , (9)

Kt = Σ−t P
T
t [PtΣ

−
t P

T
t +Rt]

−1 , (10)

mt = m−t +Kt[yt − Ptm−t ] , (11)

Σt = Σ−t −KtPtΣ
−
t . (12)

The KF recursions (8), (9), (11), (12) tell us that at each time point, we make a

prediction about the state (Equations (8) and (9)) which is subsequently corrected

when we make a new observation (Equations (11) and (12)). The Kalman gain

(10) tells us how much we can trust the observations. A high Kalman gain will

give more weight in the observations. Eventually, the KF is making predictions of

the actual state of the system that are corrected every time we have an observation

iteratively . The KF recursions we have derived give the best state estimate for

a Gaussian linear system and coincide with the least square solution developed

in [45].

In Figure 3.2, we provide filtering results from a discrete KF. The discrete true
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(a) Rt = 0.5 (b) Rt = 2.0

Figure 3.2: Filtering results from a discrete KF from observations at different
noise levels, Rt = 0.5 (a) and Rt = 2.0 (b).

state process 5 is shown with grey crosses, and noisy observations are shown with

red dots. The posterior mean of the KF is shown as a blue star along with one

standard deviation. In Figure 3.2(a), we have generated data with observation

noise set to 0.5, while in Figure 3.2(b), observation noise was set to 2.0. As we

can see from the larger error bars, adding more observation noise will increase

uncertainty.

3.2.2 The continuous-discrete Kalman Filter

The continuous-discrete KF [44, 72] refers to a system with continuous-time states

that we observe discretely over time. The state process is now described by an

SDE, while the observation process has the same form as in the discrete KF.

The state and observation process are now described by the following state-space

model:

dxt = µ(t, xt)dt+ σ(t, xt)dWt , (13a)

yt = Ptxt + εt . (13b)

As in the discrete case, we need to be able to calculate the transition probabil-

ity of the states p(xt|xt−1), which is not analytically tractable for general SDEs.

However, in the case of linear systems that evolve according to a linear SDE

5corresponding to At = 1 and Qt = 0.00001
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(in the narrow sense), which we studied in Chapter 2, there exists an analytical

solution. We will focus on linear filtering and, henceforth, will only refer to the

linear case of the discrete-continuous KF which is represented by the following

state-space model:

dxt = Ftxtdt+GtdWt , (14a)

yt = Ptxt + εt . (14b)

The graphical representation of the continuous-discrete KF is shown in Fig-

ure 3.3. In the continuous-discrete KF, we assume that the states are continuous—

in contrast with the discrete KF, where the system is assumed to have discrete

states. The graphical model of Figure 3.3 extends the graphical model of Fig-

ure 3.1 by assuming an infinite number of states between the observation times.

Figure 3.3: Graphical representation of a continuous-discrete Kalman Filter. The
shaded circles correspond to the observations and the unshaded circles to the
continuous states, there are infinitely many states between the observation points.

The transition probabilities of a linear SDE in the narrow sense have been

shown to follow a Gaussian distribution with mean and variance given by Equa-

tions (19) and (21), see Chapter 2. We can use this result to write the state-space

model of the continuous-discrete KF in probabilistic terms such as:

p(xt|xt−1) = N(xt|At−1xt−1, Qt−1) , (15a)

p(yt|xt) = N(yt|Ptxt, Rt) , (15b)
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where the matrices At−1 and Qt−1 can be calculated by the following ODEs:

dAt
dt

= FtAt , (16a)

dQt
dt

= FtQt +QtF
T
t +GtG

T
t . (16b)

In order to calculate the predicted mean and variance we move on by solving

forward the ODEs for the mean and variance of the state process initialised

at their previous posterior values [4]. The prediction and update steps of the

continuous-discrete KF are summarized in the following paragraph.

� The mean and variance of the predictive distribution are found by solving

the ODEs:

dm−t
dt

= Ftm
−
t , (17a)

dΣ−t
dt

= FtΣ
−
t + Σ−t F

T
t +GtG

T
t , (17b)

initialised at the previous posterior mean mt−1 and variance Σt−1.

� The posterior mean mt and variance Σt are given by:

Kt = Σ−t P
T
t [PtΣ

−
t P

T
t +Rt]

−1 , (18)

mt = m−t +Kt[yt − Ptm−t ], (19)

Σt = Σ−t −KtPtΣ
−
t . (20)

Note that, since we have discrete observations, the observation process remains

the same as in the discrete case, and so do the updated mean and variance of the

posterior p(xt|y1:t) = N(xt|mt,Σt).

In Figure 3.4, we present estimate results from a continuous-discrete KF,

where we have assumed discrete observations from a linear SDE.6 In panel (a) we

have noisy (Rt = 0.01) discrete observations sampled every 1 minute, whereas in

6We have used an Ornstein-Uhlenbeck process which will be studied extensively in Sec-
tion 4.1.
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(a) Rt = 0.01 (b) Rt = 0.5

Figure 3.4: Filtering results from a continuous-discrete KF from observations at
different noise levels, Rt = 0.01 (a) and Rt = 0.5 (b). The grey trace represents
the SDE driving the state process and red dots represent noisy observations. Blue
lines correspond to the posterior mean estimate and green lines to 1 s.d. .

panel (b) we have increased the noise (Rt = 0.5). The grey trace corresponds to

the underlying SDE, red circles correspond to the noisy observations, while the

black and green lines represent the posterior mean estimate of the KF and one

standard deviation respectively. As we can see, the estimate between the obser-

vations is smooth, while, at observation time, there are discontinuities and jumps

towards the observations. This is a characteristic behaviour of the continuous-

discrete KF since the observations are discrete but the states are described by

a continuous-time process. By comparing the two panels, we can observe the

effect of observation noise in our estimations. In panel (a) we are, due to the low

noise, very confident at observation time, while in panel (b) the jumps towards

the observations are less extreme, since the increased noise makes us less certain

about our observations, indicating a lower Kalman gain.

3.3 Kalman Filter for the LNA

The KF can be used in conjunction with the LNA for making inference in stochas-

tic systems that are observed discretely over time and whose dynamics can be

approximated by the LNA. In Chapter 2, we have seen that the LNA decomposes

the system Xt into a deterministic part φt and a stochastic part ξt:

Xt = Ωφt + Ω1/2ξt . (21)
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The solution to the SDE driving the stochastic part ξt was shown to be a

Gaussian process with a known mean and variance that can be calculated by

a set of ODEs. The initial distribution of the state X0 can be either set to a

constant or follow a Gaussian distribution X0 ∼ N(µ0,Σ0). The ODEs that give

the deterministic part along with the mean and variance of the stochastic part

are repeated here for convenience:

dφt
dt

= Stf̃(φt) , (22)

dmt

dt
= Atmt , (23)

dVt
dt

= VtAt
T + AtVt + EEt

T . (24)

The system is approximated by a Gaussian process as it is the sum of a deter-

ministic term and a Gaussian term. By taking the expectation and variance in

Equation (21), we conclude that:

Xt|X0 ∼ N(Ωφt + Ω1/2mt,ΩVt) = N(µ1
t ,Σ

1
t ) . (25)

Assuming that the observation process is given, again, by yt = PtXt + εt with

εt ∼ N(0, Rt), the continuous-discrete KF can be used to carry on inference.

� The predictive distribution p(Xt|y1:t−1) = N(µ1
t
−
,Σ1

t
−

) is calculated by

solving ODEs (22), (23) and (24). There are two ways to proceed for

solving these ODEs.

1. ODE (22) concerning the deterministic part φt is solved subject to the

initial observation until time t. At each observation point, the initial

condition for the ODE of the stochastic mean mt is updated according

to the posterior mean µ1
t and Equation (21) [47].

2. The deterministic solution is restarted at each observation point ac-

cording to the posterior mean µ1
t . This implies that the stochastic

mean mt is reset to zero at each observation point [18].

We will refer to the first method as the Non-Restarting LNA and to the

second one as the Restarting LNA in accordance with [23].
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� The mean and variance of the posterior distribution p(Xt|y1:t) = N(µ1
t ,Σ

1
t )

are given by Equations (19) and (20), so for both the Restarting and the

Non-Restarting LNA we have:

Kt = Σ1
t
−
P T
t [PtΣ

1
t
−
P T
t +Rt]

−1 , (26)

µ1
t = µ1

t
−

+Kt[yt − Ptµt−] , (27)

Σ1
t = Σ1

t
− −KtPtΣ

1
t
−
. (28)

The Restarting and Non-Restarting LNA have been studied and compared

in [23] and [18]. By restarting the deterministic part at each observation point, we

get an improved approximation of the system dynamics, since the LNA depends

on the deterministic solution which can become inaccurate over long periods of

time, especially in non-linear systems. A computational advantage of the restart-

ing method is that Equation (23) does not need to be solved if it is initialised to

zero, since it will always be zero. For these reasons, the Restarting LNA will be

the preferred method in this thesis.

A major challenge in Systems Biology is parameter inference. The setting that

we have assumed so far can also be used for inferring the unknown parameters

of the system. We will denote the set of unknown parameters by the vector θ =

(θ1, ..., θn); in biological models, θ usually corresponds to reaction rate constants.

For this task, we will need to obtain the likelihood L(θ) of the system:

L(θ) = p(y1, ..., yt|θ) = p(y1|θ)
t∏
i=1

p(yi|y1:i−1, θ) . (29)

According to the observation process yt = PtXt+εt and the predictive distribution

p(Xt|y1:t−1) = N(µ1
t
−
,Σ1

t
−

), the conditional distribution of the observations will

be:

p(yt|y1:t−1) = N(Ptµ
1
t
−
, PtΣ

1
t
−
P T
t +Rt) . (30)

The likelihood can then be used for obtaining estimates of the parameter

vector θ. If a frequentist approach is considered, the likelihood can be directly

maximised, either analytically or via a numerical optimisation algorithm such
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as Nelder-Mead [57]. In the case of a Bayesian approach, priors should be

placed on the parameters which, together with the likelihood, will be used to

form the posterior distribution that can be computed with an MCMC algorithm

(e.g. Metropolis-Hastings). A review of MCMC methods for state-space models

can be found in [17]. The algorithms for calculating the likelihood of the system

using both the Restarting and the Non-Restarting LNA are presented below.

Algorithm 3.3.1: Kalman Filter for Non Restarting LNA

1: procedure Likelihood(y1:T , θ)
2: Initialisation (t = 0) Set prior for X0 ∼ N(µ1

0
−
,Σ1

0
−

) .

3: Set initial conditions for the ODEs (22), (23), (24): φ0 =
µ10
Ω

, m0 = 0

and V0 =
Σ1

0

Ω
.

4: prod← 1
5: loop:
6: Solve the ODEs (22), (23), (24) of φt mt and Vt s.t. the initial

conditions for [t− 1, t] to obtain µ1
t
−

and Σ1
t
−

.
7: Calculate p(yt|y1:t−1, θ), µ1

t and Σ1
t according to (29), (27) and (28).

8: prod← prod ∗ p(yt|y1:t−1, θ).

9: Reset initial conditions: mt =
µ1t−Ωφt√

Ω
and Vt =

Σ1
t

Ω
.

10: Set t = t+ 1
11: if t < T goto loop .
12: Return prod
13: end procedure

3.4 Kalman Filter Aggregate LNA

In this section, we present our method for making inference in stochastic systems

with aggregated data, i.e. the observations are aggregated over a period of time

and then collected as a single point. The tricky part of making inference with

integrated diffusions is that, as we will see later, they do not possess the Markov

property. In our approach, we are using a KF for the bivariate process consisting

of the integrated and the original process.

Inference in integrated diffusions has been considered in particular in finance,

and various estimators of unknown parameters have been suggested. In [33]

parameter estimation of the integrated Ornstein-Uhlenbeck process is considered

using an estimator that is asymptotically equivalent to the maximum likelihood
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Algorithm 3.3.2: Kalman Filter for Restarting LNA

1: procedure Likelihood(y1:T , θ)
2: Initialisation (t = 0) Set prior for X0 ∼ N(µ1

0
−
,Σ1

0
−

) .

3: Set initial conditions for the ODEs (22) and (24): φ0 =
µ10
Ω

and

V0 =
Σ1

0
−

Ω
.

4: prod← 1
5: loop:
6: Solve the ODEs (22), (24) of φt and Vt s.t. the initial conditions for

[t− 1, t] to obtain µ1
t
−

and Σ1
t
−

.
7: Calculate p(yt|y1:t−1, θ), µ1

t and Σ1
t
−

according to (29), (27) and (28).
8: prod← prod ∗ p(yt|y1:t−1, θ).

9: Reset initial conditions: φt =
µ1t
Ω

and Vt =
Σ1
t

Ω
.

10: Set t = t+ 1
11: if t < T goto loop .
12: Return prod
13: end procedure

solution. A non-parametric estimator for discretely observed integrated diffusions

is suggested in [12]. Additionally, a simulated EM algorithm is proposed in [3].

Here, we assume that the dynamics of the system can be approximated using

the LNA, so the system is decomposed according to (21). Integration can be

regarded as an infinite summation. Therefore, we will estimate the aggregated

process of the system Xt by its integral. Assuming that we have aggregated

observations over the period [t0, t], the corresponding aggregated process is given

by:

Ht =

∫ t

t0

Xudu = Ω

∫ t

t0

φudu+ Ω1/2

∫ t

t0

ξudu = ΩIt + Ω1/2Qt . (31)

So, the deterministic part of the aggregated process is given by It, and the stochas-

tic part is given by Qt. Subsequently, we have the following ODEs:

dIt
dt

=
d

dt

∫ t

t0

φudu = φt , (32)

dQt

dt
= ξt . (33)

Qt will also follow a Gaussian process, as it is the integral of a Gaussian process

and we need to compute its mean and variance. We will use the Restarting LNA;
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as a result, the mean mt of the stochastic part ξt will be zero.

We start by computing E[Qt], i.e. the mean of Qt. So far we have that:

dξt = Atξtdt+ EtdW , (34)

dQt = ξtdt⇔ Qt+dt = Qt + ξtdt . (35)

� Averaging Equation (35), dividing by dt and letting dt→ 0, gives us:

E[Qt+dt] = E[Qt] + E[ξt]dt

E[Qt+dt]− E[Qt] = E[ξt]dt

dE[Qt]

dt
= E[ξt] = mt = 0

(36)

The mean of Qt is set to zero, as we have chosen to use the Restarting LNA.

We now need to compute the covariance between Qt and ξt. Again E[Qt] = 0

and E[ξt] = 0 since we are using the Restarting LNA and thus, the covariance is

given by Ct = E[Qtξ
T
t ]. For our derivation, we need to use:

ξTt+dt = ξTt + ξTt A
T
t dt+ ET

t dWt . (37)

� By multiplying Equations (35) and (37) we get:

Qt+dtξt+dt
T = (Qt + ξtdt)(ξ

T
t + ξTt A

Tdt+ ET
t dWt)

= Qtξ
T
t +Qtξ

T
t A

T
t dt+QtE

T
t dWt+

+ ξtξ
T
t dt+ ξtξ

T
t A

T
t dtdt+ ξtE

T
t dtdWt .

(38)

Averaging the result (38), retaining terms up to first order in dt, dividing

by dt and letting dt→ 0, we get:

E[Qt+dtξt+dt
T ] = E[Qtξ

T
t ] + E[Qtξ

T
t ]ATt dt+ E[QtdWt]E

T
t + E[ξtξ

T
t ]dt ,

dE[Qtξ
T
t ]

dt
= E[Qtξ

T
t ]A(t)T + E[ξtξ

T
t ] ,

dCt
dt

= CtA(t)T + Vt

(39)

� The variance of Qt is given by Gt = E[QtQ
T
t ] since E[Qt] = 0. We have

that,
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Qt+dtQt+dt
T = (Qt + ξtdt)(Qt + ξtdt)

T ,

Qt+dtQt+dt
T = QtQ

T
t +Qtξ

T
t dt+ ξtQ

T
t dt+ ξtξ

T
t dtdt .

(40)

By averaging (40), retaining terms up to first order in dt, dividing by dt

and letting dt→ 0, we get:

E[Qt+dtQt+dt
T ] = E[QtQ

T
t ] + E[Qtξ

T
t ]dt+ E[ξtQ

T
t ]dt ,

E[Qt+dtQt+dt
T ]− E[QtQ

T
t ] = E[Qtξ

T
t ]dt+ E[ξtQ

T
t ]dt ,

dGt

dt
= E[Qtξ

T
t ] + E[ξtQ

T
t ] ,

dGt

dt
= Ct + Ct

T .

(41)

If instead we were using the Non-Restarting LNA, additional ODEs would

have to be solved, since E[Qt] 6= 0 and E[ξt] 6= 0, so the variance and covariance

terms would not be given by Gt and Ct anymore. It is straightforward to extend

to the Non-Restarting case, and the relevant ODEs can be found in Appendix A.5.

We are now at a position to construct a Kalman Filter framework to carry out

inference. So far, we have been dealing with Markovian processes. The aggregated

process Qt, however, is clearly not Markovian, since knowing the state at a present

time t is not enough for determining the state at a future time t + dt. However,

if we also knew the state of ξt at time t, we would be able to determine Qt+dt. As

a result, Qt and ξt jointly form a bivariate Markov process that is characterised

by the following linear SDE in the narrow sense:

d

[
ξt

Qt

]
=

[
At 0

1 0

][
ξt

Qt

]
dt+

[
Et

0

]
dWt,

[
ξ0

Q0

]
=

[
0

0

]
. (42)

We know that the solution to a linear SDE in the narrow sense is a Gaussian

process. From Equation (42) we have that Qt and ξt are jointly Gaussian and

consequently their marginals are also Gaussians. Equation (31) suggests that Ht

will follow a Gaussian process, since it is the sum of a Gaussian random variable

with a deterministic variable:

Ht|H0, X0 ∼ N(µ2
t ,Σ

2
t ), (43)

where µ2
t = ΩIt + Ω(1/2)E[Qt] and Σ2

t = ΩV ar[Qt] = ΩGt. Since we are working
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with the Restarting LNA, µ2
t simplifies to just µ2

t = ΩIt.

We have assumed that we have a system Xt with continuous states, and that

we have noisy, partial observations from the aggregated process Ht. A graphical

representation of this system is shown in Figure 3.5, where we can see that Ht is

not a Markov process, since it depends on the past of Xt too.

Figure 3.5: Graphical representation of the aggregated state-space model. The
shaded circles correspond to noisy observations of the aggregated process, the
circles of the second layer correspond to the aggregated process Ht, and the
bottom layer corresponds to the underlying process Xt.

Since we are using the Restarting LNA, the predictive distribution of our

system p(

[
Xt

Ht

]
|y1:t−1) = N

([
µ1
t
−

µ2
t
−

]
,

[
Σ1
t
−

C−t
T

C−t Σ2
t
−

])
will be given by solving the

ODEs (22), (24), (32), (41) and (39) with the appropriate initial conditions. Note

that the integrated process Ht needs to be restarted at each observation point in

order to capture correctly the “area under graph” of the underlying process Xt.

In order to compute the posterior distribution p(Xt|y1:t), consider the joint

distribution of (Ht, Xt, yt) conditioned on y1:t−1:Xt

Ht

yt

 |y1:(t−1) ∼ N

( µ1
t
−

µ2
t
−

Ptµ
2
t
−

 ,
 Σ1

t
−

C−t
T

C−t
T
P T
t

C−t Σ2
t
−

Σ2
t
−
P T
t

PtC
−
t PtΣ

2
t
−

PtΣ
2
t
−
P T
t +Rt

) . (44)

More details about the terms of (44) are found in Appendix A.4. By using

Lemma 1 (Appendix A.2), we can now calculate the posterior mean and variance

of p(Xt|y1:t) by using the corresponding blocks of the joint distribution (44):



68 CHAPTER 3. INFERENCE

µ1
t = µ1

t
−

+ C−t
T
P T
t (PtΣ

2
t
−
P T
t +Rt)

−1(yt − Ptµ2
t
−

),

Σ1
t = Σ1

t
− − C−t

T
P T
t (PtΣ

2
t
−
P T
t +Rt)

−1PtC
−
t .

(45)

If we are interested in parameter inference, we will need to compute the like-

lihood L(θ) of the system. As in the case of non-aggregate data, L(θ) is given

by:

L(θ) = p(y1|θ)
t∏
i=1

p(yi|y1:i−1, θ) , (46)

where p(yt|y1:t−1) = N(Ptµ
2
t
−
, PtΣ

2
t
−
P T
t +Rt). The algorithm that we have used

for calculating the likelihood of a system observed through its aggregate process

is given in Algorithm 3.4.1.

Algorithm 3.4.1: Kalman Filter for aggregate LNA

1: procedure Likelihood(y1:T , θ)
2: Initialisation (t = 0) Set prior for X0 ∼ N(µ1

0
−
,Σ1

0
−

) .
3: Set initial conditions for the ODEs (22), (24), (32), (39), (41):

φ0 =
µ10
Ω

, V0 =
Σ1

0
−

Ω
, I0 = 0, C0 = 0, S0 = 0.

4: prod← 1
5: loop:
6: Solve the ODEs (22), (24), (32), (39), (41) s.t. the initial conditions for

[t− 1, t] to obtain mx−t , Sx−t , µ−t , C−t , S−t .
7: Calculate p(yt|y1:t−1, θ), mxt and Sxt according to (46) and (45).
8: prod← prod ∗ p(yt|y1:t−1, θ).

9: Reset initial conditions: φt =
µ1t
Ω

, Vt =
Σ1
t

Ω
, It = 0, Ct = 0, St = 0.

10: Set t = t+ 1
11: if t < T goto loop .
12: Return prod
13: end procedure

3.5 Summary

In this chapter, we studied inference in stochastic systems that evolve contin-

uously over time but are observed at discrete time points. We briefly reviewed

various existing methods for inference, before focussing on the Kalman Filter (KF)

methodology. We first introduced the discrete KF, where both the state of the

system and the observations are discrete-time stochastic processes. We continued



3.5. SUMMARY 69

with the variation of the KF for continuous time stochastic systems described by

SDEs and discussed how the LNA could be incorporated in the KF methodology

when needed. Finally, we studied inference with temporally aggregated data. We

proved the integral form of the LNA and developed a KF framework for tempo-

rally aggregated data from continuous-time processes approximated by the LNA.

In the following chapters, we are going to apply our method to different systems

and assess the effect of temporal aggregation on inference.



Chapter 4

Results on synthetic datasets

In this chapter, we present results of the Kalman Filter (KF) methodology de-

veloped in Chapter 3. We study stochastic systems with aggregated observations

and compare inference between two cases: treating the aggregate data as (1) com-

ing directly from the system itself or (2) coming from the integral of the studied

system. In the first case, we will be using a standard continuous-discrete KF

(Algorithm 3.4.1) referred to as KF1, and in the second case, we will be using

our newly proposed aggregate KF (Algorithm 3.3.2), referred to as KF2. We

first study the Ornstein-Uhlenbeck process as an example of an exactly tractable

system. We continue with two systems that are approximated by the LNA, the

Lotka-Volterra model and a single gene expression model. The datasets in this

chapter are synthetic; we will consider a real world application in Chapter 5. All

experiments in this thesis were carried out on a cluster of 64bit Ubuntu machines

with an i5-3470 CPU @ 3.20 GHz x 4 processor and 8 GB RAM. All scripts were

run in Spyder (Anaconda 2.5.0, Python 2.7.11, Numpy 1.10.4).

4.1 The Ornstein-Uhlenbeck process and

its integral

In this section, we investigate the effect of aggregation on parameter estimation

in systems modelled by a linear SDE1 using different observation intervals. We

assume that we have aggregated data from the integral of a linear SDE and we

compare the accuracy of the inferred parameters with and without ignoring the

aggregated nature of the observations. As an example, we are working with the

one-dimensional Ornstein-Uhlenbeck (OU) process. A zero mean OU process

satisfies the following linear SDE:

1We refer to linear SDEs in the narrow sense.



4.1. THE ORNSTEIN-UHLENBECK PROCESS AND ITS INTEGRAL 71

dXt = −αXtdt+ σdWt, (1)

where α is the drift or decay rate of the process, σ is the diffusion constant, both

being time-invariant. The OU process has the property of reverting towards its

long term mean which, for Equation (1), is zero. The rate at which it reverts to

the zero mean depends on the drift α. The OU process has found applications

in finance, where it is also known as the Vasicek model, as well as in physics and

biology. It also appears as the solution to the stochastic part of the LNA when

the deterministic state is at a stationary point [84].

We denote by Yt the integral of Xt such that

dYt = Xtdt . (2)

The Euler-Maruyama algorithm can be used to simulate the OU process and

its integral according to Equations (1) and (2). In Figures 4.1 (a) and (b), the

trace of a realisation of Xt and the corresponding Yt is shown. We have set the

drift of the process equal to α = 4, and the diffusion constant equal to σ = 2,

with Xt initialised to 20. However, in our applications, the aggregated data are

not collected directly from Yt, as depicted in Figure 4.1 (b), but instead at each

observation point Yt is restarted. This process is shown in Figure 4.1 (c), and we

will refer to it as the aggregated process. For the aggregated process in Figure 4.1

(c), we assume observations every 2 minutes. We observe that the OU process

has reverted towards its zero mean from its initial state, which was set to 20, and

that the traces of both the integrated and aggregated process appear to be much

smoother than the corresponding OU process.

Analytical solutions of both the OU and its integral are available [28] and

derivations can be found in Appendix A.6. As a solution to a linear SDE in the

narrow sense, the OU is a Gaussian Markov process characterised by its mean

and variance. The mean mt and variance Vt of Xt satisfying (1) are given below

for ∆ = t− t0

mt = m0e
−α∆, (3a)

Vt = e−2α∆V0 + σ2

2α
(1− e−2α∆). (3b)
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(a) OU process. (b) Integrated process.

(c) Aggregated process.

Figure 4.1: Simulated trajectories from an OU process with α = 4 and σ = 2,
along with its integrated and aggregated process. For the aggregated process, we
assumed observations every 2 minutes, which are indicated by red crosses.

Since Yt is the integral of a Gaussian process, it will also follow a Gaussian

process. By setting the initial condition of Yt to zero, its mean, variance and

covariance are given below for ∆ = t− t0:

E[yt] = m0

α
(1− e−α∆), (4a)

Cov(Xt, Yt) =

σ2

2α2 + (−σ2

α2 + V0
α

)e−α∆ + ( σ2

2α2 − V0
α

)e−2α∆, (4b)

Var[yt] =

σ2

α2 ∆ + ( σ2

2α3 − V0
α2 )(1− e−2α∆)

+2(−σ2

α3 + V0
α2 )(1− e−α∆). (4c)
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We are interested in inferring the parameters α and σ given observations from

Yt at discrete times, where the interval ∆ between two observations is constant.

We want to compare two approaches. In the first approach, we will use the

standard continuous-time KF ignoring the aggregated nature of the observations.

According to the current methodology [47, 18], aggregated observations of single

cell data are being treated with the use of a multiplication constant in the ob-

servation matrix P . For the first approach, we will, therefore, use the normalised

observations by dividing the observations with ∆. In the second approach, we

will use an aggregated KF as described in Section 3.4. As there is no need for

using the LNA in this example, the mean and variance of the aggregated process

are given solely by the statistics of Yt and the underlying process Xt. We will

refer to the first approach as the standard KF (KF1) and to the second as the

aggregate KF (KF2).

By taking ∆ → ∞ in Equation (3), it can be shown that Xt will reach its

stationary distribution after a time of order 1
α

, which is given by N(0, σ
2

2α
). This

means that for a time sufficiently greater than 1
α

, the estimate of Xt will be the

same, although Xt will keep changing over time [26]. However, the integrated

process Yt is non-stationary since Var[yt]→∞ in Equations (4), when ∆→∞ .

This already shows us that the two processes behave differently.

Since we are going to use the normalised observations from Yt in the first

scenario, we will take a look at the averaged process Zt = 1
∆
Yt:

E[zt] = E[ 1
∆
Yt] = 1

∆
E[yt] = m0

α∆
(1− e−α∆) (5a)

Var[zt] = Var[ 1
∆
Yt] = 1

∆2 Var[yt] =

σ2

α2∆
+ 1

∆2 ( σ2

2α3 − V0
α2 )(1− e−2α∆) +

+ 2
∆2 (−σ2

α3 + V0
α2 )(1− e−α∆) (5b)

By taking the limit as ∆ → ∞ in Equation (5) and using L’Hospital’s rule,

we can we can show that E[zt] → 0 and Var[zt] → 0. So the averaged process

does not approach the stationary distribution of Xt and the variance will tend to

be lower.
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We briefly describe here the procedure we followed for simulating the ag-

gregated data. This procedure is followed in the other two case studies of this

chapter. To simulate data from Yt, we need first to be able to simulate data

from Xt. This can be done in general by discretising the process and using the

Euler-Maruyama algorithm. However, in the case of the OU process, we can also

use an exact updating formula, see Appendix A.7. The aggregated data can then

be collected using the discretised form of Equation (2) or a numerical integration

method such as the trapezoidal rule.

For the example studied in this section, we have simulated data from the ag-

gregated process of an OU process with α = 4 and σ = 2. We have compared

the two approaches, standard KF (KF1) and aggregate KF (KF2), using different

time intervals ∆ between the observations. For this example, we have assumed

no observation noise. Parameter estimation was carried out using a random walk

MH algorithm with a Gaussian proposal and improper uniform priors on the log

parameters log(α) and log(σ). The initial states of the parameters were sampled

from a uniform distribution U(0,10) and the MH was run for 50K iterations 30K

of which were discarded as burn-in. The case of inferring the parameters of an

OU process using non-aggregate data with an MCMC algorithm has already been

studied in [54]. We also checked parameter estimation using a numerical optimi-

sation algorithm. The Nelder-Mead algorithm was chosen among the available

scipy optimisation2 methods and was initialised to 0.1 for both parameters.

Results of parameter estimation using the random walk MH algorithm and the

Nelder-Mead algorithm are presented in Tables 4.1 and 4.5 respectively. Different

time intervals ∆ have been tested using each time a single dataset. To verify the

validity of the results, we have run nine more datasets, separately each time,

and an average over all ten datasets is presented in Tables 4.1 and 4.5 for MH

and Nelder-Mead respectively. Both the MH and the Nelder-Mead have given

similar results. However, the Nelder-Mead provides us with a point estimate in

contrast to the MH that converges to a distribution. As expected, the estimates

for KF1 deteriorate for a larger ∆, since the aggregated process diverges from

the OU process as ∆ increases. Estimates remain good for KF2 even when ∆ is

large. However, they become more uncertain, as shown by the increased standard

deviations.

In the first two columns of Figure 4.3, we can see the traces of the posterior

2https://www.scipy.org/

https://www.scipy.org/
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∆ α KF1 σ KF1 α KF2 σ KF2
0.1 3.020±0.235 1.891±0.135 4.015±0.292 2.107±0.158
0.5 1.905±0.141 1.256±0.095 4.085±0.335 2.301±0.204
1.0 1.420±0.102 0.868±0.068 3.865±0.368 2.234±0.240
2.0 1.022±0.074 0.539±0.044 3.703±0.530 2.082±0.321

Table 4.1: Mean posterior ± 1 s.d. for α and σ using a Metropolis-Hastings
algorithm. Data were simulated from an OU process with α = 4 and σ = 2.

∆ α KF1 σ KF1 α KF2 σ KF2
0.1 3.035 1.874 4.029 2.083
0.5 1.898 1.239 4.061 2.270
1.0 1.414 0.856 3.799 2.170
2.0 1.014 0.532 3.560 1.984

Table 4.2: Nelder-Mead estimates for α and σ. Data were simulated from an OU
process with α = 4 and σ = 2.

estimate of α using both KF1 and KF2 that correspond to the results presented

in Table 4.1. In the third column, we provide the histograms of the posterior

estimate of α for both KF1 and KF2. As we can see, the chains appear to mix

well. All chains were started off at random initial states and were run for 50000

iterations from which 30000 were regarded as burn-in, with the acceptance rate

varying between 0.1 and 0.2. The equivalent plots for parameter σ are provided

in Appendix B.1.

It is of interest to investigate the inferred stationary variance of the OU process

using KF1 and KF2. We show the inferred stationary variances obtained by the

MH for both KF1 and KF2 in Figure 4.2. The boxplots are obtained by the

average of the 10 different datasets and correspond, again, to an OU process with

α = 4 and σ = 2, thus giving rise to a stationary variance of σ2

2α
= 0.5. As we

can see, by using the normalised aggregate data directly with a KF, we infer the

wrong stationary variance of the underlying OU process, which tends to zero as ∆

becomes larger, something that we had already verified by the theoretical results

from Equation 5. For a sufficiently small ∆, parameter estimation results of the

two different Kalman Filters will tend to agree.

In this section, we have looked at an example of inferring the parameters of

an SDE using aggregated data and we have found that to obtain accurate results,

we need to explicitly model the aggregated process. As the observation intervals

become larger, we showed that there is a greater mismatch between KF1 and



76 CHAPTER 4. RESULTS ON SYNTHETIC DATASETS

∆ α KF1 σ KF1 α KF2 σ KF2
0.1 2.985±0.233 1.703±0.198 3.979±0.319 1.917±0.202
0.5 1.924±0.152 1.199±0.124 3.999±0.353 2.028±0.255
1.0 1.475±0.106 0.796±0.087 4.027±0.420 2.045±0.274
2.0 1.053±0.086 0.483±0.046 4.105±0.735 2.044±0.362

Table 4.3: Average of mean posterior ± 1 s.d. over 10 different datasets for α
and σ using a Metropolis-Hastings algorithm. Data were simulated from an OU
process with α = 4 and σ = 2.

∆ α KF1 Median[LB,UB] σ KF1 Median[LB,UB]
0.1 3.078 [2.984,3.232] 1.637 [1.552,1.768]
0.5 1.958 [1.909,1.978] 1.190 [1.150,1.237]
1.0 1.486 [1.435,1.538] 0.782 [0.762,0.828]
2.0 1.041 [1.016,1.093] 0.478 [0.457,0.484]

∆ α KF2 Median[LB,UB] σ KF2 Median[LB,UB]
0.1 4.146 [3.978,4.463] 1.951 [1.909,2.058]
0.5 4.157 [3.913,4.265] 2.001 [1.879,2.206]
1.0 4.070 [3.943,4.212] 2.0357 [1.908,2.162]
2.0 3.885 [3.709,4.453] 1.935 [1.862,2.108]

Table 4.4: Median values of the Nelder-Mead estimates over 10 different datasets
for α and σ along with lower and upper bounds for KF1 and KF2. Data were
simulated from an OU process with α = 4 and σ = 2.

KF2. In the next sections, we will look at examples of stochastic systems that

can be approximated by the LNA and compare, again, inference results for KF1

and KF2.

4.2 The Lotka-Volterra model

We are now going to look at a system of two species that interact with each other

according to three reactions:

X1
θ1−→ 2X1 (prey production) (6a)

X1 +X2
θ2−→ 2X2 (predator production) (6b)

X2
θ3−→ � (predator death) (6c)
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(a) KF1 (b) KF2

Figure 4.2: Boxplots of inferred stationary variance of the OU process for different
∆. The simulated OU process has α = 4 and σ = 2 corresponding to a stationary
variance of 0.5, as indicated by the dotted horizontal line. The inferred stationary
variance using KF1 tends to zero as ∆ grows, but the stationary variance from
KF2 is inferred correctly at all ∆.

This model was initially developed by Lotka [52] to explain oscillatory be-

haviour in autocatalytic chemical reactions and was later applied in predator-

prey interactions [53]. Volterra [85] came up with the same model to explain the

interactions between voracious fishes (selachians) and eaten fishes in the Adriatic

sea. The model is named after both Lotka and Volterra. In the biochemical

reaction network (6) X1 represents the prey species and X2 the predator species.

Modifications of the Lotka-Volterra model have also found applications in eco-

nomics, where the Lotka-Volterra model is commonly referred to as the Goodwin

model [39].

We assume that Ω = 1 and move forward to constructing the LNA represen-

tation of (6). Following the LNA methodology, we decompose the system into a

macroscopic part φt and a stochastic part ξt. In order to compute the macroscopic

part, we need to define the stoichiometry matrix S and the hazard function f̃(X)

of (6),

S =

[
1 −1 0

0 1 −1

]
, (7)

f̃(X) =

 θ1X1

θ2X1X2

θ3X2

 . (8)
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(a) KF1, ∆ = 0.1. (b) KF2, ∆ = 0.1. (c) Posterior of α.

(d) KF1, ∆ = 0.5. (e) KF2, ∆ = 0.5. (f) Posterior of α.

(g) KF1, ∆ = 1.0. (h) KF2, ∆ = 1.0. (i) Posterior of α.

(j) KF1, ∆ = 2.0. (k) KF2, ∆ = 2.0. (l) Posterior of α.

Figure 4.3: MCMC traces and histograms of the posterior of α using a MH for
both KF1 and KF2. Ground truth for α = 4 , indicated by the vertical blue line
on the histogram plots.
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The following matrices are needed in order to compute the stochastic part ξt

such as dξt = Atξtdt+ EtdWt,

F =

 θ1 0

θ2φ2 θ2φ1

0 θ3

 , (9)

SF T = A =

[
θ1 − θ2φ2 −θ2φ1

θ2φ2 θ2φ1 − θ3

]
, (10)

Sdiag(f̃(φt))S
T = EET =

[
θ1φ1 + θ2φ1φ2 −θ2φ1φ2

−θ2φ1φ2 θ2φ1φ2 + θ3φ2

]
. (11)

We can now define the ODEs that correspond to the macroscopic part by

using the formula dφi/dt = Sif̃(φt, c),

dφ1

dt
= θ1φ1 − θ2φ1φ2 , (12)

dφ2

dt
= θ2φ1φ2 − θ3φ2 . (13)

As we are using the Restarting method (see Chapter 3), we only need to

compute the elements of the covariance matrix of the solution to the stochastic

part where p(ξt|ξ0) = N(mt, Vt),

dV11

dt
= 2V11(θ1 − θ2φ2)− 2V12θ2φ1 + θ2φ1φ2 + θ1φ1 , (14)

dV12

dt
= V12(θ2φ1 − θ3 + θ1 − θ2φ2) + V11θ2φ2 − θ2φ1V22 − θ2φ1φ2 , (15)

dV22

dt
= 2V22(θ2φ1 − θ3) + 2V12θ2φ2 + θ2φ1φ2 + θ3φ2 . (16)

We can simulate the stochastic dynamics of the Lotka-Volterra model using

either the Gillespie algorithm or the LNA. In Figures 4.4 (a), (b), (d) and (e), we

present 10 different simulated trajectories of the prey and predator populations

using the Gillespie algorithm and the LNA. As we can see, there is a different

behaviour between the two simulators. The reason for this mismatch is that the

LNA simulator assumes that the expected value of the process corresponds to the
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macroscopic solution. However, this is not true for systems including second order

reactions [89]. By using the Gillespie algorithm, we can see that the resulting

oscillations are more noisy compared to the LNA simulator. Additionally, some

of the predator trajectories have reached extinction by the time of the second

oscillation. Extinction cannot be achieved by using the LNA simulator, where

predators can reach negative values, but they will continue oscillating according

to the repeated oscillations of the macroscopic solution as shown in Figures 4.4 (g)

and (h). We can also observe the mismatch in the phase diagrams in Figures 4.4

(c), (f) and (i), produced by each method.

Our LNA simulator uses the Euler and Euler-Maruyama algorithms for simu-

lating the macroscopic part φt and the stochastic part ξt respectively. In [34] the

Restarting method was used for simulating the Lotka-Volterra model. According

to [34], simulation of the stochastic part of the LNA simulator is achieved via its

solution. Consequently, an ODE solver is used for simulating forward the ODEs

(12) - (16) at specified intervals (t, t+ dt). At the end of each interval, the ODE

solver is restarted by sampling from N(φt+dt, Vt+dt), which corresponds to the ap-

proximate solution of the Restarting LNA. This simulator matches the Gillespie

output more closely, but still cannot account for the extinction of species.

Although the LNA does not seem to be a very good simulator for the Lotka-

Volterra system, it does not mean that it will not be appropriate for inference,

since the observations will drive the approximation to the correct mean when

using the Restarting method. In the following, we present parameter estimation

results comparing, again, KF1 and KF2. Results for non-aggregate data using

KF1 have also been previously presented in [18].

We have collected aggregated data from a Lotka-Volterra model using the

Gillespie algorithm. We assumed a known initial population of 10 preys and 100

predators. The parameters of the system used for producing the synthetic data

were set to (θ1, θ2, θ3) = (0.5, 0.0025, 0.3), following the setting of [8]. We have

added Gaussian noise with a zero mean and a variance of 3. We have assumed

that initial populations and the noise level were known during inference. Our goal

was to infer the three parameters (θ1, θ2, θ3) of the system using only observations

of the predator population.

The Gillespie algorithm was run for 20 minutes, corresponding to one period

of the system as indicated by Figure 4.4, and data were aggregated and collected

every 2 minutes resulting in 10 observations per sample. To infer the parameters,
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(a) Prey - Gillespie. (b) Predator - Gillespie.
(c) Phase diagram - Gille-
spie.

(d) Prey - LNA. (e) Predator - LNA. (f) Phase diagram - LNA.

(g) Prey - Macroscopic. (h) Predator - Macroscopic.
(i) Phase diagram - Macro-
scopic.

Figure 4.4: Simulated trajectories from the Lotka-Volterra model using the Gille-
spie algorithm, the LNA and the macroscopic solution. The Gillespie algorithm
leads to more noisy oscillations in contrast to the LNA and extinction of species.
The macroscopic solution leads to repeated oscillations of equal peak and phase.
The phase diagrams corresponding to one trajectory are shown in the third col-
umn.



82 CHAPTER 4. RESULTS ON SYNTHETIC DATASETS

we assumed that we had 40 independent samples available. Since we assumed

independence between the samples, we worked with the product of their likeli-

hoods. Gamma(2,10) priors were placed on all three parameters, and we worked

in the log space since we know that we want all parameters to be positive. The

adaptive MCMC with the Gaussian mixture proposal (58) described in Chapter

2 was used. It was run for 30000 iterations, and a burn-in of 10000 samples was

assumed. The MCMC was initialised to random values sampled from uniform

distributions U(0,1). Parameter estimation results for all three parameters using

the adaptive MCMC are shown in Table 4.5, while Figure 4.5 shows histograms

of their posterior densities. As we can see, KF1 leads to an inaccurate estimate

of the parameters, underestimating all three parameters.

In order to further assess the consistency of our results, we used a numerical

optimisation algorithm (Nelder-Mead) on 100 datasets, each consisting of 40 in-

dependent samples. As the optimiser was failing to converge when initialised at

random values, we initialised it at the ground truth, since we were only interested

in comparing it to the MCMC results. In Table 4.6, we present the results of the

optimised parameter values across all 100 datasets. Again, we see that KF1 un-

derestimates the parameter values, thus verifying our previous results using the

MCMC algorithm.

θ Ground truth KF1 KF2
θ1 0.5 0.4793±0.0057 0.4928±0.0053
θ2 0.0025 0.0023±5·10−5 0.0025±5·10−5

θ3 0.3 0.2450±0.0108 0.2997±0.0102

Table 4.5: Mean posterior ± 1 s.d. for θ1, θ2, θ3 using an adaptive MCMC. Data
were simulated from a Lotka-Volterra model according to the ground truth values.

θ Ground truth KF1 Median[LB,UB] KF2 Median[LB,UB]
θ1 0.5 0.48160 [0.47770,0.48651] 0.49746 [0.49278,0.50122]
θ2 0.0025 0.00227 [0.00222,0.00232] 0.00248[0.00244,0.00254]
θ3 0.3 0.24773 [0.23927,0.25797] 0.30047[0.29320,0.31061]

Table 4.6: Nelder-Mead results for θ1, θ2, θ3. The median values across 100
datasets are shown in the third and fourth column for KF1 and KF2 respec-
tively. Lower and upper bounds are shown in brackets.

At this point, we want to emphasise that the strong correlations among the

parameters made the tuning of the MCMC hard; we therefore used an adaptive
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(a) Posterior density of θ1. (b) Posterior density of θ2. (c) Posterior density of θ3.

Figure 4.5: Posterior densities of θ1, θ2, θ3 from aggregate data using KF1 (red
histogram) and KF2 (green histogram).

Figure 4.6: Correlations between the MCMC samples of the three parameters
θ1, θ2, θ3.

MCMC. In Figure 4.6, we can observe the correlations between the parameters by

looking at their MCMC samples. The parameters θ2 and θ3 are particularly highly

correlated with a Pearson correlation coefficient of 0.93. We have attempted to

run a random walk MH with a Gaussian proposal for the same dataset, where we

only tuned the step size of the random walk for the first 10000 runs to keep the

acceptance rate between 0.2 and 0.4. Again, the initial states of the parameters

were sampled from uniform distributions U(0,1). The mixing of the chain was

considerably slower. Trace plots of the parameters using the adaptive MCMC

and the random walk Metropolis with KF2 are shown in Figure 4.7, while trace

plots corresponding to KF1 can be found in Appendix B.2.

As we have already discussed, the LNA is not a good simulator of the Lotka-

Volterra model. However, we see that it leads to accurate estimates of the parame-

ters if we work with the Restarting method, since the observations help the model

revert to the correct solution. In Figure 4.8, we can see filtering plots using the

Restarting and Non-Restarting method for the prey population using KF1 and

KF2. Filtering plots for the predator population can be found in Appendix B.3.

For the purposes of this example, we have used aggregate observations only for
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Figure 4.7: Trace plots of the Lotka-Volterra parameters using KF2 with an
adaptive MCMC (first row) and a random walk MH (second row).

KF2 while in both KF1 and KF2, we use the actual values of the parameters

(θ1 = 0.5, θ2 = 0.0025, θ3 = 0.3). As we can observe, the Restarting method

proves to be beneficial when a system does not follow its deterministic solution.

4.3 Single gene expression (SGE) model

In the following, we consider a simple model for describing single gene expression

stochastically. The model was presented in [47] and was used in conjunction

with the LNA for inference using non-aggregate data.3 Furthermore, it has been

used as a reference model by different authors when evaluating their methods in

systems approximated by the LNA [79, 35].

The model can be described by a biochemical reaction network involving three

species X =(DNA, mRNA, protein) and four reactions,

DNA
kR(t)−−−→ DNA+R (transcription) (17a)

R
γR−→ � (mRNA degradation) (17b)

R
κP−→ R + P (translation) (17c)

P
γP−→ � (protein degradation) (17d)

where c = (kR(t), γR, κP , γP ) correspond to the vector of stochastic rate constants

3Equivalent to what we refer to as the KF1.
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(a) Non-Restarting KF1 with non-
aggregate data from the prey population.

(b) Restarting KF1 with non-aggregate
data from the prey population.

(c) Non-Restarting KF2 with aggregate
data from the prey population.

(d) Restarting KF2 with aggregate data
from the prey population.

Figure 4.8: Filtering plots for the prey population with (KF2) and without (KF1)
aggregate data. The Non-Restarting method is shown in the first column and the
Restarting on the second column. Red dots correspond to the observation data
available; the black line represents the actual process. Purple lines represent the
mean estimate, and green lines 1 standard deviation.
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of each reaction. Given the form of the biochemical reaction network (17) we can

form its LNA representation by forming the appropriate matrix from Section 2.4.

In the following, we will assume that the volume Ω = 1 leading to the molecule

numbers being equal to the molecular concentrations.

In order to compute the macroscopic part φt of the LNA, we need the stoi-

chiometry matrix S and the hazard function f̃(X) of the system,

S =

[
1 −1 0 0

0 0 1 −1

]
, (18)

f̃(X) =


kR(t)

γRR

kPR

γPP

 . (19)

The macroscopic part is then given by dφi/dt = Sif̃(φt). For the stochastic part

ξt, we need to compute the matrices,

Fij =
∂f̃i(φt, ci)

∂φj(t)
=


0 0

γR 0

kP 0

0 γP

 , (20)

At = SFt =

[
−γR 0

kP −γP

]
, (21)

Sdiag(f̃(φt, c))S
T = EET =

[
kR(t) + γRr 0

0 kP r + γPp

]
, (22)

The stochastic part is then given by dξt = Atξtdt+EtdWt, with mean and variance

given by the following equations:

dm

dt
= Am, (23)

dV

dt
= V AT + EET + AV. (24)

Therefore, the system of ODEs that gives the LNA solution using the Restarting

method is given by:
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dφr
dt

= kR(t)− γRr (25)

dφp
dt

= kP r − γPp (26)

dV11

dt
= −2γRV11 + kR(t) + γRr (27)

dV12

dt
= kPV11 − (γR + γP )V12 (28)

dV22

dt
= 2(kPV12 − γPV22) + kP r + γPp (29)

Note that V12 = V21, as Vt corresponds to a covariance matrix. In this example,

the transition rate kR(t) is a function of time and not a constant. It is used to

describe an experiment where transcription switches from an on- to an off-period.

The specific chosen form of kR(t), according to [47], is given by:4

kR(t) = b0exp(−b1(t− b2)2) + b3 . (30)

Such a function is increasing for t ≤ b2 and decreasing towards b3 for t > b2. A

plot of kR(t) for specific values of its parameters is shown in Figure 4.9.

It is now straightforward to approximate data from System (17) using the

LNA. Alternatively, we can use an exact simulation algorithm such as the Gille-

spie algorithm described in Section 2.3. In Figure 4.10, we have simulated 40

trajectories of the protein molecules using the Gillespie and the LNA. We can see

that both the Gillespie and the LNA give us equivalent results, and we can con-

clude that for this example, the LNA can be regarded as a valid approximation

of the system. Figures of the mRNA trajectories are provided in Appendix B.4,

which also verify the validity of the LNA.

We move now to parameter estimation using temporally aggregated data. We

assume that only the protein levels are observed, and we sample from the protein

time series generated by the Gillespie algorithm. The data are aggregated over

a period of 3 hours and corrupted by Gaussian noise with a mean of zero and a

variance of 1. Additionally, we assume that the observations are proportional to

4Note that in the original paper, b1 is allowed to change after b3. However, in the actual
application of the model, b1 is kept constant.
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Figure 4.9: Plot of kR(t) with b0 = 15.0, b1 = 0.4, b2 = 7.0, b3 = 3.0.

the actual quantities and we denote with k the constant of proportionality. We

used 30 time series and sampled 10 data points from each. The noise level as well

as the initial protein and mRNA levels are assumed to be known, and we want

to infer the parameters included in the set θ = (γR, kP , γP , k, b0, b1, b2, b3).

Again, the adaptive MCMC from Chapter 2 with proposal (58) was used

due to high correlations among the parameters. Informative Gamma priors were

placed on the degradation rates of both the protein and mRNA according to [35];

otherwise, the system was unidentifiable due to non-observability of the mRNA.

For the rest of the parameters, we used weakly informative exponential priors.

The full set of priors can be found in Appendix A.8. As all parameters are

positive, we preferred to work with their log values. The initial states of the

parameters were sampled from Uniform distributions that were covering their

ground truth values and the MCMC was run for 80K iterations, from which 40K

were discarded as burn-in. Trace plots from KF2 are found in Figure 4.12, where

convergence seems to have been reached. Equivalent trace plots for KF1 can be

found in Appendix B.5.

Results of parameter estimation using both KF1 and KF2 are presented in

Table 4.7, where we have chosen to report the median and the interquartile range

due to the skewness of the posterior distributions. A better overview of the

results can be found by looking at the posterior histograms of the parameters

in Figure 4.11. As we can see, all parameters but b2 were identified by both
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(a) Gillespie (b) LNA

Figure 4.10: Simulated trajectories of protein using the Gillespie algorithm (a)
and the LNA (b).

algorithms. However, b2 determines the switch time of the system and remains

a very important parameter which would be inaccurately inferred if aggregation

was not taken into consideration. We believe that the prior assumptions we made,

as well as knowledge of the initial molecular abundance and noise level, restricted

the parameter space so that KF1 could give accurate results for the rest of the

parameters. We note that as the aggregation period becomes smaller, b2 becomes

identifiable by KF1 as well.

θ Ground Truth KF1 Median[IQR] KF2 Median[IQR]
γR 0.44 0.4303 [0.1192] 0.4406[0.1204]
kP 10.0 9.3078 [9.2720] 9.0071[8.1740]
γP 0.52 0.5067[0.1237] 0.5149[0.1251]
k 1.0 0.6645 [0.5925] 0.8988[0.4142]
b0 15.0 23.5970[14.3870] 22.1950[13.9552]
b1 0.4 0.3248[0.3794] 0.4760[0.5636]
b2 7.0 8.4379[0.4755] 7.0199[0.4397]
b3 3.0 5.4389[3.5004] 4.1378[2.7951]

Table 4.7: Posterior medians and interquartile ranges for θ =
(γR, kP , γP , k, b0, b1, b2, b3) using an adaptive MCMC. Data were simulated
from the SGE model according to the ground truth values.
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(a) Posterior of γR. (b) Posterior of kP . (c) Posterior of γP .

(d) Posterior of k. (e) Posterior of b0. (f) Posterior of b1.

(g) Posterior of b2. (h) Posterior of b3.

Figure 4.11: Posterior histograms of the parameter set θ =
(γR, kP , γP , k, b0, b1, b2, b3) using the adaptive MCMC for both KF1 (red)
and KF2 (green). Ground truth is indicated in each case by a vertical blue line.



4.3. SINGLE GENE EXPRESSION (SGE) MODEL 91

(a) log(γR). (b) log(kp). (c) log(γp).

(d) log(k). (e) log(b0). (f) log(b1).

(g) log(b2). (h) log(b3).

Figure 4.12: Adaptive MCMC traces for the log parameters of the SGE model
using KF2 with aggregated data.
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4.4 Summary

In this chapter, we studied three different stochastic systems using synthetic data

that were aggregated over time. We focused on parameter estimation with syn-

thetic aggregated data using the algorithms developed in Chapter 3 and compared

our results with and without ignoring the aggregated nature of the observations,

i.e. KF1 against KF2.

We began our analysis by studying an Ornstein-Uhlenbeck (OU) process,

where analytical expressions for its distribution and its integral are available.

We showed that the OU process possesses different statistical properties than its

integral, such as stationary variance. We studied inference using synthetic data

with different aggregation intervals and compared the results between KF1 and

KF2. The accuracy of KF1 decreased with increasing aggregation intervals while

KF2 retained a high accuracy at all aggregation intervals tested.

We further studied a non-linear system, the Lotka-Volterra (LV) model, using

the LNA to approximate its dynamics. Simulations of the LV model using the

Gillespie algorithm and the LNA showed us that the LNA would not be an ap-

propriate simulator of the system. However, since we simulated observations of

the system, the LNA was still able to give accurate results for inference. We com-

pared parameter estimation results with aggregated observations over a period of

2 minutes where KF2 outperformed KF1.

Finally, we studied a single gene expression (SGE) model. Again, its dynamics

were approximated by the LNA, which also seemed to be a reasonable simulator of

the system. Informative priors were needed in order to ensure identifiability of the

system. The effect of integration was apparent in the inferred switch times of the

system only after a period of 3 hours. All studies in this chapter were concerned

with synthetic data. In the next chapter, we are going to study microscopy data

with an inherently aggregated nature.



Chapter 5

Results on real data from single

cell experiments

In this chapter, we apply our method to real data from a translation inhibition ex-

periment. By inhibiting protein translation, it is possible to estimate the protein

degradation rate. We first discuss the case where all cells have the same initial

protein abundance. We further study the case of different initial conditions for

each cell, which accounts for extrinsic noise but increases the size of the parameter

space. We have tested both cases using synthetic data before applying them on

the experimental data. We conclude that extrinsic noise, as well as aggregation,

should be modelled explicitly to obtain accurate results.

5.1 Translation inhibition model

In Section 4.3, we studied a stochastic gene expression model and performed

inference using synthetic data corresponding to aggregated observations of the

protein molecules. In order to perform inference, we assumed that the degradation

rates of both the protein and mRNA were known. Here, we focus on inferring the

protein degradation rate from a translation inhibition experiment. The purpose

of a translation inhibition experiment is to decrease the protein production to a

basal level allowing us to measure the rate at which the initial protein abundance

degrades. As we are only interested in inferring the protein degradation rate

we choose to use a simple model that does not consider mRNA degradation.

We assume the following translation inhibition model involving two molecular

species X = (R,P ), where R and P stand for gene mRNA and protein molecules

respectively:

R
cP−→ R + P (translation) (1a)

P
dPP/Ω−−−−→ � (protein degradation) (1b)
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The vector of the stochastic rate constants is denoted by c = (cp, dp), where cP

corresponds to the protein basal rate and dp to the protein degradation rate. The

stoichiometry matrix corresponding to the biochemical network (1) is given by

S =
[
1 −1

]
, (2)

while the hazard function is given by

f̃(X) =

[
cP

dPP

]
. (3)

The macroscopic part of the system can then be formulated according to dφi\dt =

Sif̃(φt), giving rise to a linear ODE,

dφp
dt

= cP − dPφp. (4)

The stochastic part of the system is easily obtained using the following matrices:

F =
[
0 dP

]
, (5)

SF T = A =
[
−dP

]
, (6)

Sdiag(f̃(φt))S
T = EET =

[
cP + dPφp

]
, (7)

such that the variance of the stochastic part Vp is given by

dVp
dt

= −2dPVp + cP + dPφp. (8)

For the deterministic part of the integrated process Ip we simply have:

dIp
dt

= φp, (9)

Finally, the variance of the integrated process Sp and the covariance of the inte-

grated process with the unintegrated process Cp are given by:

dCp
dt

= −dPCp + Vp (10)
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dSp
dt

= 2Cp (11)

Since (1) is a low dimensional linear system, it is also possible to work with the

analytical solution of the system of ODE equations (4), (8), (9), (10), (11).

To test the performance of our method, we have simulated synthetic data

according to (1) using the Gillespie algorithm. We simulated 30 time series (cor-

responding to 30 different cells), assuming the following values as the ground

truth for the kinetic parameters: cP = 200 and dP = 0.97. We further set the

initial protein abundance of m0 to 400 molecules. We have scaled the data by a

factor k = 0.03 so that they are proportional to the original synthetic data and

added Gaussian noise with a variance of s = 0.1. For the purposes of this study,

we have assumed that data were integrated over 30 minutes.

Parameter estimation results from running the adaptive MCMC are sum-

marised in Table 5.1. Non-informative exponential priors with mean 104 were

placed on all parameters. We have adopted the parametarisation used in [47, 20]

such as c̃P = k ·cp and m̃0 = k ·m0 and worked in the log parameter space. MCMC

traces and posterior histograms are presented in Figure 5.1. As we can see the

degradation rates are successfully inferred by both KF1 and KF2, however, KF1

cannot infer the initial condition and underestimates the noise level.

c Ground Truth1 KF1 KF2
cp 200 254.0284 ± 22.2252 196.6355 ± 26.4500
dp 0.97 0.9819 ± 0.0350 0.9949 ± 0.0431
s 0.1 0.0351 ± 0.0244 0.0998 ± 0.0097
k 0.03 0.0236 ± 0.0016 0.0312 ± 0.0040
m0 400 589.0252 ± 42.6292 393.2417 ± 50.4983

Table 5.1: Mean posterior ± 1 s.d. for (cP , dP , s, k,m0) using an adaptive MCMC.
Data were simulated from a translation inhibition model according to the ground
truth values.

Additionally, we have used the Nelder-Mead algorithm to assess further the

validity of our results using different datasets. For that reason, we generated 10

different datasets, each consisting of 30 time series. Due to convergence issues

with the Nelder-Mead algorithm, initialisation was done at the ground truth

values. These results are only used as an indication of the maximum likelihood

regions using KF1 and KF2. Indeed, the tendency to underestimate the noise

variance and overestimate the initial molecule numbers by KF1 is confirmed by
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(a) MCMC traces for cP . (b) Posterior of cP .

(c) MCMC traces for dP . (d) Posterior of dP .

(e) MCMC traces for s. (f) Posterior of s.

(g) MCMC traces for k. (h) Posterior of k.

(i) MCMC traces for m0. (j) Posterior of m0.

Figure 5.1: MCMC traces and histograms of the posterior of the parameters
(cP , dP , s, k,m0) using an adaptive MCMC for both KF1 and KF2. Ground truth
for the parameters and is indicated by the vertical red line on the histogram plots.
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the results presented in Table 5.2. These results can be intuitively explained,

as data is smoothed by averaging, such that low noise and higher molecular

abundance agrees with a macroscopic view of the system that underestimates its

inherent stochasticity.

c Ground Truth KF1 Median[LB,UB] KF2 Median[LB,UB]
cp 200 251.2680 [232.9793,270.3414] 213.6844[191.0145,240.4731]
dp 0.97 0.9748 [0.9526,0.9873] 0.9891 [0.9694,1.0074]
s 0.1 3.6·10−8 [2.6·10−8, 4.1·10−8], 0.1018 [0.0993, 0.1059]
k 0.03 0.0236 [0.0226,0.0239] 0.0274 [0.0255,0.0321]
m0 400 579.4208 [577.3605,611.2480] 441.0402 [378.6169],475.2906]

Table 5.2: Nelder-Mead results for (cP , dP , s, k,m0) across 10 different datasets.
Median values are shown on the third and fourth column for KF1 and KF2
respectively, while lower and upper bounds are shown in brackets.

5.2 Data with similar initial conditions

We are now ready to use our model for fitting real data from single cell experi-

ments. We have data from a translation inhibition experiment using rat pituitary

GH3 cells [40] expressing luciferase under the control of the human prolactin pro-

moter. Cycloheximide (CHX) was chosen as an inhibitor of protein synthesis in

the cells. At first, the cells were stimulated with 5µM of Forskolin and 0.5µM

of BayK-8644 for some hours (3-6). 10µg/ml of CHX were then added and were

subsequently imaged for some more hours.

The cells were seeded in 35 mm glass coverslip-based dishes for 20 hours before

imaging. 1 mM of luciferin was then added to the cells, and they were transferred

to a Zeiss Axiovert 200 with an XL incubator where they were maintained at stan-

dard cell incubator conditions (37◦C, 5% CO2). Luminescence images were taken

using an air objective (Fluar x20, 0.75 NA Zeiss) and a photocounting charge

coupled device camera. The integration period of the luminescence signal was 30

minutes. The Kinetic Imaging software AQM6 was used for analysing sequential

images of the cells. In Figure 5.2, we can see an image of the luminescence signal

in GH3 cells from the translation inhibition experiment. The 37 circled cells are

the ones that were considered for the final analysis.

In the following, we study a subset of the 37 cells that are depicted in Fig-

ure 5.2. The time series corresponding to the subset of cells after the addition
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Figure 5.2: Luminescence signal in GH3 cells from the translation inhibition
experiment. Circled cells were chosen to be analysed.

of CHX is shown in Figure 5.3. Equivalent datasets have been studied in [40].

However, a deterministic approach was used to estimate the degradation rate of

the luciferase protein. We have tested fitting an exponential decay curve to an

average over all cells in the subset by using the curvefit function of the scipy

module. This resulted in a degradation rate of 1.01811877. A Bayesian approach

can also be used in a deterministic setting, as presented in [19].

We used, again, an adaptive MCMC algorithm with exponential priors in

order to estimate the unknown parameters. We first tried to fit the time series

from each cell separately. However, this led to very flat posteriors for cp and

m0, indicating high uncertainty for our results and the need for additional data.

Results from a single cell are shown in Table 5.4.

c KF1 KF2
cp 3951.9602 ± 2894.6981 3739.0568 ± 3357.08006
dp 1.2444 ± 0.1229 1.2603 ± 0.1289
s 0.0119 ± 0.0090 0.0033 ± 0.0023
k 0.0023 ± 0.0017 0.0028 ± 0.0025
m0 7938.0594 ±5846.8587 6184.9648 ± 5475.5964

Table 5.3: Mean posterior ± 1 s.d. for (cP , dP , s, k,m0) from an adaptive MCMC
using only one cell.
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Figure 5.3: Time series of 13 cells from the translation inhibition experiment.

To get better estimates, we then fit all cells together assuming independence

between their time series. Parameter estimation results using KF1 and KF2

on all 13 cells are shown in Table 5.4. In accordance with the synthetic data,

the estimated initial condition is higher with KF1 than with KF2. To assess

convergence with real data, we ran two additional chains with different starting

values to calculate the Gelman-Rubin convergence diagnostic [22]. MCMC traces

for 3 chains using KF2 are shown in Figure 5.4, and traces for KF1 can be

found in Appendix B.6. The main parameter of interest in this experiment is the

degradation rate. In Figure 5.5 we can see that the degradation rates inferred by

KF1 and KF2 are close to each other, and both include the deterministic value

of 1.01811877 within their credible regions. This is expected due to the simple

form of this experiment, as the data follow their deterministic mean. We have

also tried fitting the data using improper uniform priors on all parameters, which

showed no difference in the results.

c KF1 KF2
cp 217.7365 ± 32.3792 167.8247 ± 42.2919
dp 1.1041 ± 0.0762 1.2082 ± 0.1070
s 0.0026 ± 0.0025 0.0079 ± 0.0038
k 0.0255 ± 0.0028 0.0379 ± 0.0089
m0 450.2443 ± 52.3521 273.7025 ± 68.3398

Table 5.4: Mean posterior ± 1 s.d. for (cP , dP , s, k,m0) using an adaptive MCMC
with real data.
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(a) MCMC trace of cP . (b) MCMC trace of dP . (c) MCMC trace of s.

(d) MCMC trace of k. (e) MCMC trace of m0.

Figure 5.4: Adaptive MCMC traces of the translation inhibition model parame-
ters using KF2 with real data.

Figure 5.5: Posterior histograms of degradation rate using KF1 and KF2.

It is necessary to mention here that in [47], fluorescence data from a trans-

lation inhibition experiment of the same biological group were studied using the

Non-Restarting KF1. As fluorescence data do not have the aggregated nature of

luminescence data, there is no need for using KF2.
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5.3 Data with heterogeneous initial conditions

If we now take a look at the whole dataset of the 37 cells in Figure 5.6, we see that

there is a lot of variability in the initial conditions between the different cells. The

variability in the initial conditions can be caused by different external factors and

can be regarded as extrinsic noise. In this section, we consider different initial

conditions for each cell, something that will significantly increase the parameter

space of our model. Before we move on fitting the translation inhibition model

Figure 5.6: Time series of all 37 cells from the translation inhibition experiment.

with the different initial conditions of each cell to real data, we will work with a

synthetic dataset of 30 cells as before, where half of them come from an initial

population of 400 molecules and the other half from an initial population of 300

molecules; the rest of the parameters follow our previous setting.

In the experiment, we have prior information on the protein levels just before

adding the CHX, which can be used as a prior for the initial protein abundance

m̃i0 of each cell i. Consequently, we will use an informative prior for the log(m̃i0)

in the synthetic dataset as well. We further place a N(0, 2) prior on the log

variance, so that it does not reach extreme values. Improper uniform priors

were set on the rest of the parameters. Inference results using KF2 with the

adaptive MCMC for 150K iterations are shown in Figure 5.7. We can clearly see

in Figure 5.7 (j) that the two modes of m0 have been correctly inferred, as well

as the rest of the parameters. MCMC results using KF1 are presented in Figure

5.8, where we can see that it was not possible to converge to a value for s even
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after 200K iterations. We have also tested inference by placing improper uniform

priors on all parameters but inference with KF2 was not affected.

We proceed by fitting the reduced dataset of the 13 cells of Figure 5.3, con-

sidering a different initial condition for each one of them. We will use, again,

normal priors for log(m̃i0) and log(s). However, we will only show results using

KF2, as convergence with KF1 would, as already indicated by the experiment

with synthetic data, take a longer time. To ensure convergence of the MCMC, we

ran 3 chains and calculated the Gelman-Rubin statistic [22], which was close to 1

for all parameters. In Figure 5.9, we see the MCMC traces of the 3 chains which

indicate convergence after the first 20K iterations. Again, the deterministic value

of the degradation rate is included in the posterior histogram of dp.

Finally, we fit the whole dataset of the 37 cells considering, again, different

initial conditions for each cell. We adopt the same priors as in the case of the

reduced dataset and run three MCMC chains for calculating the Gelman-Rubin

statistic [22]. In Figure 5.10 we see the results of fitting the experimental data.

Convergence was slower than fitting the reduced dataset but the posterior his-

tograms are narrower indicating more confidence in our results. Notice that the

histograms of the initial conditions m0 are now more spread as the full dataset

includes highly heterogeneous cells.

As we cannot know the real values of the parameters, we have generated

data using the inferred values from the MCMC as shown in Figure 5.10 and

compared them to the time series of the experimental data of Figure 5.6. In

Figure 5.11, we have plotted sampled values (red dots) from synthetic data

against the experimental data. This way we have verified that the inferred values

can reproduce time series equivalent to the experimental data.

In [20], the authors developed a hierarchical model following their work in [47]

to deal with the extrinsic noise related to the heterogeneity between the different

cells. They have concluded that protein degradation rates show little cell to cell

variability, while the basal rates show more cell to cell variability as they are

also affected by the initial protein abundance in each cell. Although considering

different initial condition for each cell captures a lot of their variability, we believe

that a hierarchical approach could benefit our method as well.
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(a) KF2 - MCMC trace cP . (b) KF2 - Posterior cP .

(c) KF2 - MCMC trace dP . (d) KF2 - Posterior dP .

(e) KF2 - MCMC trace s. (f) KF2 - Posterior s.

(g) KF2 - MCMC trace k. (h) KF2 - Posterior k.

(i) KF2 - MCMC trace of all
m0.

(j) KF2 - Posterior of all
m0.

Figure 5.7: Adaptive MCMC traces and histograms of the parameters of the
translation inhibition model for different initial conditions using KF2. Ground
truth for the parameters is indicated by a vertical blue line on the histogram
plots.
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(a) KF1 - MCMC trace cP . (b) KF1 - Posterior cP .

(c) KF1 - MCMC trace dP . (d) KF1 - Posterior dP .

(e) KF1 - MCMC trace s. (f) KF1 - Posterior s.

(g) KF1 - MCMC trace k. (h) KF1 - Posterior k.

(i) KF1 - MCMC trace of all
m0.

(j) KF1 - Posterior of all
m0.

Figure 5.8: Adaptive MCMC traces and histograms of the parameters of the
translation inhibition model for different initial conditions using KF1. Ground
truth for the parameters is indicated by a vertical blue line on the histogram
plots.
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(a) KF2 - MCMC trace cP . (b) KF2 - Posterior cP .

(c) KF2 - MCMC trace dP .
(d) KF2 - Posterior dP

(e) KF2 - MCMC trace s. (f) KF2 - Posterior s.

(g) KF2 - MCMC trace k. (h) KF2 - Posterior k.

(i) KF2 - MCMC trace m0

from cell1.
(j) KF2 - Posterior m0 from
cell1.

Figure 5.9: Adaptive MCMC traces and histograms of the parameters of the
translation inhibition model for different initial conditions using the reduced
dataset with KF2.
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(a) KF2 - MCMC trace cp. (b) KF2 - Posterior cP .

(c) KF2 - MCMC trace dp.
(d) KF2 - Posterior dP .

(e) KF2 - MCMC trace s. (f) KF2 - Posterior s.

(g) KF2 - MCMC trace k. (h) KF2 - Posterior k.

(i) KF2 - MCMC trace m0

from cell1.

(j) KF2 - Posterior m0 from
cell1.

Figure 5.10: Adaptive MCMC traces and histograms of the parameters of the
translation inhibition model for different initial conditions using the full real
dataset with KF2.
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Figure 5.11: Experimental data against synthetic data. The colored traces corre-
spond to the experimental time series from Figure 5.6 from 0.5 to 8.5 hours. The
red dots correspond to aggregated synthetic data simulated from the translation
inhibition system with different initial conditions using the inferred parameter
values corresponding to Figure 5.10.

5.4 Summary

In this chapter, we studied a basic system corresponding to a translation in-

hibition experiment. We performed our analysis using luciferase data with an

integration period of 30 minutes. At first, we attempted to fit the data assuming

that the different cells in the dataset had the same initial protein abundance. We

first verified our results using synthetic data, where ignoring the aggregated na-

ture of the data (KF1) resulted in the wrong estimation of noise level and initial

protein abundance. For this case, we fitted only a subset of the experimental

data that had similar initial protein levels.

We further studied the case were the initial protein abundance of each cell is a

different parameter in our system. This lead to an increase in the parameter space,

which made inference more difficult. Again, parameter estimation with synthetic

data was tested before using the real data. When ignoring the aggregated nature

of the data (KF1), it was not possible to reach convergence for all parameters at

a reasonable time, so real data were tested only in conjunction with KF2.



Chapter 6

Conclusion

6.1 Conclusions and contributions to research

In this thesis, we studied inference in stochastic systems given temporally aggre-

gated data. We were motivated by recent advances in single cell imaging data

and were particularly interested in modelling luciferase data, due to their aggre-

gated nature. To our knowledge, luciferase data are typically treated in much

the same way as fluorescence data, which comprises observations of single time

points rather than aggregated signals. We based our work on [47] and [18], which

consider inference in biochemical reaction networks stochastically using the Lin-

ear Noise Approximation (LNA). We extended the work of [47] and [18] to take

aggregated data into account when carrying out inference of state trajectories

and model parameters.

We decided to work with the LNA, as it was used in [47, 18], which provided

us with a tractable Gaussian likelihood for inference. The LNA was presented in

detail in Chapter 2 and derived for a simple system (translation inhibition model)

following the proof of van Kampen.

The Kalman Filter (KF) framework provides us with a straightforward way

to update the state of a system given noisy measurements. When the state of the

system is described by an SDE but is observed at discrete time points, we refer to

a continuous-discrete KF. The LNA results in an approximation of the state dy-

namics by a linear SDE (in the narrow sense) that can represent the state process

in a continuous-discrete KF. As we were interested in aggregated observations,

we needed to consider the integral of the LNA. The solution of a linear SDE is a

Gaussian process; thus, the integral of the LNA is another Gaussian process. The

solution of the LNA Xt and its integral Ht are characterised by their two means,

variances and their covariance. The mean and variance of Xt were already known,

but we were able to provide proofs for the other three quantities corresponding to

the mean and variance of Ht, as well as the covariance of Xt with Ht. Together
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Xt and Ht form a Markov process that is used as the state process in the KF.

This way, we have developed a novel method for treating temporally aggregated

data, which can be applied to any stochastic system described by a linear SDE.

We have presented inference results from different stochastic systems with

aggregated observations using our method. By aggregating over time, we smooth

out the original process and reduce the fluctuations. Therefore, the stochastic

contribution of the observed process may be underestimated if aggregation is not

taken into account. We, therefore, expected that aggregation would influence the

inferred process. To assess its impact, we compared two approaches for fitting

temporally aggregated data. In the first approach, we assumed that the data were

coming directly from the system without aggregation (KF1), and in the second

one we used our method for aggregated data (KF2). We followed a Bayesian

approach in parameter estimation so, in all cases, we have used an (adaptive)

Metropolis-Hastings algorithm. We provided, however, whenever possible, results

using an optimisation algorithm. The Nelder-Mead algorithm was chosen among

other optimisation algorithms in the scipy library, as it was able to converge in

more cases. The success of the Nelder-Mead algorithm is attributed to its affine-

invariant property [38]. Since it was not always possible for the Nelder-Mead to

converge to the global optimum, it had to be initialised, in most cases, very close

to the ground truth values.

The study of an analytically tractable system such as the Ornstein-Uhlenbeck

(OU) model was important for understanding, theoretically, how aggregation

changes the properties of the original process. In the case of the OU process, for

example, we saw that by taking its integral, we no longer have a stationary pro-

cess. So, the aggregated and the original process do not have the same statistical

properties. As confirmed by our study of the OU process, the effect of aggre-

gation becomes more apparent as we increase the aggregation period ∆t. For

large ∆t ignoring aggregation led to an underestimation of the process variance

and inaccurate estimation of the parameters. The OU model, therefore, helped

us to gain insight on the importance of aggregation in modelling and parameter

estimation.

The Lotka-Volterra (LV) model corresponds to a non-linear, two-dimensional

system. Surprisingly, although the LNA did not appear to be a suitable simu-

lator for the LV model, it was found to be appropriate for inference using the

Restarting method [23, 18]. Aggregation over two minutes in our simulations led



110 CHAPTER 6. CONCLUSION

to inaccuracies in the inferred values of the unknown model parameters when us-

ing KF1 instead of KF2. Our method (KF2) was able to give accurate parameter

estimation results using aggregate measurements from only one of the species.

The adaptive MCMC was needed for fast convergence due to high correlations

between the unknown parameters, which lead to slow convergence when using a

standard Metropolis-Hastings (MH) sampler.

A Single Gene Expression (SGE) model [47] has also been studied, since our

initial motivation for this thesis originated from Systems Biology. This model

assumes that there is a switch in the level of transcription at a specific point

in time that needs to be inferred. Synthetic data corresponding to aggregated

protein levels were sampled with the help of the Gillespie algorithm, with no

knowledge of the mRNA levels being assumed apart from the initial abundance.

This model is identifiable only if we assume that the degradation rates of both

the protein and the mRNA are known. Knowledge of the degradation rates and

initial molecular levels seem to restrict the parameter space enough so that both

KF1 and KF2 would give good estimates for short aggregation periods. As the

aggregation period becomes larger, e.g. 3 hours, we showed that only KF2 was

able to recover the correct switch time of the model. Using a different setting,

where for example the mRNA half-life is shorter, we can expect that the effect

of aggregation could become apparent in a shorter aggregation interval than 3

hours.

Finally, we applied our method to Luciferase reporter data from single cells

from a translation inhibition experiment. The purpose of the translation inhi-

bition experiment is to infer the protein degradation rate that is used as prior

information in the SGE model. Luciferase data are treated as aggregated data

with added Gaussian noise. We first assumed that the initial protein abundance

in each cell was the same, and fitted a subset of luciferase data whose time se-

ries were starting around the same values. We compared parameter estimation

results using KF1 and KF2 using both the luciferase data and synthetic data

and observed that KF1 would overestimate the initial protein abundance and

underestimate the noise level. Although the degradation rate posteriors were

close to each other and both included the deterministic estimate, the abundance

of molecules is also an important parameter of the system as it can suggest the

appropriate modelling technique. We further studied the case where all cell time

series had different initial protein levels in an attempt to include extrinsic noise.
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The increased parameter space makes inference more challenging and a longer

burn-in period is needed for the MCMC sampler to converge. The MCMC sam-

pler was not able to converge using KF1 when tested with synthetic data, and

real data were only modelled using KF2.

In summary, we have developed and evaluated a novel method for inference

in stochastic systems using aggregated measurements. Our examples have shown

that aggregation needs to be taken into consideration for the task of inference for

stochastic systems and our method provides a way to successfully deal with it.

6.2 Discussion and future work

In this thesis, we have focused on developing a methodology for treating aggre-

gated data in stochastic systems. In the following, we will briefly describe some

of the directions we want to pursue in the future.

6.2.1 Hierarchical structure

Extrinsic noise is an important source of heterogeneity among cells. Hetero-

geneity plays an important role in biological processes, as, for example, it can

control population robustness [62]. Consequently, it should be taken into ac-

count when developing computational models. When we fitted the translation

inhibition model to the luciferase data, we only accounted for extrinsic noise by

assuming different initial protein levels among the cells. However, we would like

to adopt a more elegant approach such as a hierarchical model [20] that has the

additional advantage of treating more parameters as heterogeneous among the

cell population. The hierarchical model in [20] is an extension of [47] and our

method could be applied in the specific framework immediately.

6.2.2 Applications

The translation inhibition model that we studied was a simple system; the main

parameter of interest (degradation rate) would not necessarily require a stochastic

approach. Consequently, we would be interested in fitting more complex models

to luciferase data. The SGE model presented in Chapter 4, or the more general

switch model in [42] that allows for multiple switch points, have a more complex
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structure than the translation inhibition model. In the future, we would be

interested in using our method to model experimental data from these systems.

An example of a system where stochasticity is crucial for understanding its

dynamics is presented in [63]. There, a Hes1/miR-9 oscillator is studied, and the

LNA was successfully used as a simulator of the system when the system size was

sufficiently large. It would be of interest to study luciferase data corresponding

to this model, as it is a system that necessitates a stochastic approach. Addition-

ally, it is suggested that molecular abundance is an important parameter of this

system, and we have already shown in our translation inhibition model that, by

ignoring temporal aggregation, we are lead to inaccurate estimates of the initial

molecular abundance.

We would be particularly interested in applying our method in different do-

mains such as finance. Integrated stochastic processes are studied in finance in

the concept of integrated volatility [5]. Additionally, temporal aggregation ap-

pears in economic time series, for example in income data [74]. Therefore, we

believe that there are potential applications of our method in that domain as

well.

6.2.3 Inference and computational efficiency

Most of the systems we studied exhibited a strong correlation between the pa-

rameters, and an adaptive MCMC was needed for convergence at a reasonable

time. Studying more complex systems would lead to an even harder inference

problem; therefore, it would be advisable to study alternative MCMC schemes.

In [32], the authors have exploited the geometric structure of the parameter space

in order to develop an efficient MCMC algorithm which was shown to outperform

an adaptive MH. This algorithm has also been applied to the SGE model stud-

ied in Section 4.3 [79]. Therefore, we believe it would lead to a more efficient

MCMC for the systems we studied. Strong correlations can also arise between

the state and parameters which can make an MCMC inefficient. A way to tackle

this problem is to jointly update the state and parameters [17].

The KF methodology is very intuitive and easy to implement algorithmically.

However, it can be computationally expensive, due to the matrix operations in-

volved in its steps. Additionally, in our specific applications, it was necessary to

solve ODE systems for the state process which can become particularly costly
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when dealing with stiff systems. Since we are using Bayesian inference, the like-

lihood function from the KF needs to be computed for thousands of iterations,

which slows down the implementation of our algorithm considerably. We have

implemented our method using Python 2.7 and Numpy 1.10.4. We believe that

the runtime could be significantly reduced by using a more efficient, compiled

language such as C/C++. An alternative would be the Cython language, which

allows for the integration of (efficient) C functions with regular Python scripts.
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Appendix A

Supporting materials

A.1 Ito’s formula

Let,

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt, (1)

be a d-dimensional process and define Yt = f(t,Xt) for a twice differentiable

function f(·). Then Yt is given by [60]:

dYk =
∂fk
∂t

(t,Xt)dt+
∑
i

∂fk
∂xi

(t,Xt)dXi +
1

2

∑
i,j

∂2fk
∂xixj

(t,Xt)dXidXj, (2)

A.2 Moments of a linear SDE in the narrow

sense

dXt =(a1(t)Xt + a2(t))dt+ b2(t)dWt,

⇔

Xt+dt =Xt + (a1(t)Xt + a2(t))dt+ b2(t)dWt

(3)

Averaging equation (35) and noting that E[dWt] = 0 results in:

E[Xt+dt] = E[Xt] + a1(t)E[Xt]dt+ a2dt

E[Xt+dt]− E[Xt] = a1(t)E[Xt]dt+ a2dt

dE[Xt]

dt
=
dm(t)

dt
= a1(t)m(t) + a2

(4)

For the second moment P (t) = E[XtX
T
t ] we get from (35):
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Xt+dtXt+dt
T = (Xt + (a1(t)Xt + a2(t))dt

+ b2(t)dWt)(Xt + (a1(t)Xt + a2(t))dt+ b2(t)dWt)
T

Xt+dtXt+dt
T = XtX

T
t +Xt[(a1(t)Xt + a2(t))dt+ b2(t)dWt]

T+

+ (a1(t)Xt + a2(t))dt+ b2(t)dWt)X
T
t +

+ (a1(t)Xt + a2(t))dt+ b2(t)dWt)(a1(t)Xt + a2(t))dt+ b2(t)dWt)
T

Xt+dtXt+dt
T = XtX

T
t +XtX

T
t a1(t)Tdt+Xta2(t)Tdt+Xtb2(t)TdW T

t +

+ a1(t)XtX
T
t dt+ a2(t)XT

t dt+ b2(t)dWtX
T
t + b2b

T
2 dt

(5)

By averaging we get:

E[Xt+dtXt+dt
T ] =

E[XtX
T
t ] + E[XtX

T
t ]a1(t)Tdt+ a1(t)E[XtX

T
t ]Tdt

+ E[Xt]a2(t)Tdt+ a2(t)E[Xt]
Tdt

E[Xt+dtXt+dt
T ]− E[XtX

T
t ] =

Pa1(t)Tdt+ a1(t)P Tdt+m(t)aT2 dt+ a2m(t)Tdt+ b2b
T
2 dt

dP (t)

dt
= Pa1(t)T + a1(t)P T +m(t)aT2 + a2m(t)T + b2b

T
2

(6)

where terms have been canceled out according to the three rules from (3).

A.3 Gaussian variables

The following Lemmas for distributions of Gaussian variables hold. Proofs of

these lemmas can be found in the literature [6].

Lemma1 Partitioned Gaussians:

Let xa and xb be jointly Gaussian random vectors:[
xa

xb

]
∼ N(

[
µa

µb

]
,

[
Σaa Σab

Σba Σbb

]
) (7)

Then the marginal and conditional distributions of xa (equivalently for xb) are
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respectively:

xa ∼ N(µa,Σaa) (8a)

xb ∼ N(µb,Σbb) (8b)

xa|xb ∼ N(µa + ΣabΣ
−1
bb (xb − µb),Σaa − ΣabΣ

−1
bb Σba) (8c)

xb|xa ∼ N(µb + ΣbaΣ
−1
aa (xb − µa),Σbb − ΣbaΣ

−1
aa Σab) (8d)

Lemma2 Joint and Marginal Gaussians:

Assume that the distribution of x and the conditional distribution of x given

y are normally distributed:

x ∼ N(µ, S) (9)

y|x ∼ N(Ax+ b, R) (10)

Then the following joint and marginal densities can be computed:[
x

y

]
∼ N(

[
µ

Aµ+ b

]
,

[
S SAT

AS ASAT +R

]
) (11)

y ∼ N(Aµ+ b, ASAT +R). (12)

A.4 Terms of joint distribution

For the covariance terms of Xt and yt and keeping in mind that Xt and εt are

independent we have that :

cov(Xt, yt) = E[(Xt − µ1
t )(yt − Ptµ2

t )
T ]

= E[(Xt − µ1
t )(PtHt + εt − Ptµ2

t )
T ]

= E[(Xt − µ1
t )(Pt(Ht − µ2

t ))
T ] + E[(Xt − µ1

t )(εt − 0)T ]

= E[(Xt − µ1
t )((Ht − µ2

t ))]P
T

= cov(Xt, Ht)P
T

(13)

Making use of Lemma2 it is straightforward to calculate the rest of the terms.
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A.5 Variance and covariance for integrated LNA

with the Non-Restarting method

For the Non-Restarting case the variance will be given by St = V ar[Qt] = Gt −
E[Qt]E[Qt]

T , by setting E[Qt] = mqt we get the following:

dSt = dGt −mqtd(mqt)
T − d(mqt)mq

T
t

dSt = E[Qtξ
T
t ]dt+ E[ξtQ

T
t ]dt−mqtmT

t dt−mtmq
T
t dt

dSt
dt

= E[Qtξ
T
t ] + E[ξtQ

T
t ]−mqTt mt −mtmq

T
t

(14)

The cross covariance is calculated by Kt = V ar[Qtξt] = E[Qtξ
T
t ] − mqtm

T
t

where E[Qt] = mqt and E[ξt] = mt :

dKt = dE[Qtξ
T
t ]−mqtd(mt)

T − d(mqt)m
T
t

dKt = E[Qtξ
T
t ]A(t)Tdt+ E[ξtξ

T
t ]dt−mqtmT

t A
Tdt−mtm

T
t dt

dKt

dt
= E[Qtξ

T
t ]A(t)T + E[ξtξ

T
t ]−mqtmT

t A
T −mtm

T
t

(15)

A.6 Analytical solutions for the OU process and

its integral

Given an OU process of the following form:

dXt = −αXtdt+ σdWt (16)

We can derive its solution according to the general theory for linear SDEs in

the narrow sense. Since the solution is a Gaussian process we will only need to

define its mean and variance. All the ODEs in this case are first order linear ODEs

with constant coefficients, so using for example an integrating factor we can derive

the following solution for an ODE of the form dx
dt

+ ax = g(t), x(t = 0) = x0:

xt = e−a(t−t0)x0 +

∫ t

t0

e−a(t−τ)g(τ)dτ. (17)
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For the mean we have:

dmt

dt
= −αmt, mt0 = m0 ⇒

mt = m0e
−a(t−t0)

(18)

For the variance we have the following:

dVt
dt

= −2αVt + σ2, Vt0 = V0 ⇒

Vt = e−2α(t−t0)V0 +

∫ t

t0

e−2α(t−τ)σ2dτ ,

Vt = e−2α(t−t0)V0 +
σ2

2α
(1− e−2α(t−t0))

(19)

For the solution of the integrated OU process dYt/dt = Xt we need to calculate

its mean, covariance and variance. The initial conditions for these ODEs will be

set to 0, since the integated process starts from 0. The solutions are making use

of the results A,B,C from part (A.6.1).

First we find the mean:

dmyt
dt

= mt = m0e
−α(t−t0), my(t0) = 0⇒

myt =

∫ t

t0

m0e
−α(τ−t0)dτ

A⇒

myt =
m0

α
(1− e−α(t−t0))

(20)

For the covariance we have:

dE[XtYt]

dt
= −αE[XtYt] + E[Xt

2], E[X0Y0] = 0⇒

E[XtYt] =

∫ t

t0

E[Xt
2]e−α(t−τ)dτ

E[Xt2]=Vt+mt2⇒

E[XtYt] =

∫ t

t0

((m2
0 −

σ2

2α
+ V0)e−2α(τ−t0) +

σ2

2α
)e−α(t−τ)dτ

A,C⇒

E[XtYt] =

=
σ2

2α2
(1− e−α(t−t0)) +

1

α
(m2

0 −
σ2

2α
+ V0)(e−α(t−t0) − e−2α(t−t0))

(21)
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Now the covariance can be calculated from:

Cov(Xt, Yt) = E[XtYt]−mtmyt⇒

Cov(Xt, Yt) =

=
σ2

2α2
+ (−σ

2

α2
+
V0

α
)e−α(t−t0) + (

σ2

2α2
− V0

α
)e−2α(t−t0)

(22)

For the variance we need to calculate:

dE[Yt
2]

dt
= 2E[XtYt], E[Y0

2] = 0⇒

E[Yt
2] = 2

∫ t

t0

E[XτYτ ]dτ
B⇒

E[Yt
2] =

m0
2

α2
(1− 2e−α(t−t0) + e−2α(t−t0))

(23)

Now we can derive the variance:

V yt =E[Yt
2]−myt2⇒

V yt =
σ2

α2
(t− t0) + (

σ2

2α3
− V0

α2
)(1− e−2α(t−t0))+

+ 2(−σ
2

α3
+
V0

α2
)(1− e−α(t−t0))

(24)

A.6.1 Frequently used integrals for part (A.6)

A =
∫ t
t0
e−α(τ−t0)dτ (25a)

= 1
α

(1− e−α(t−t0)) (25b)

B =
∫ t
t0
e−2α(τ−t0)dτ (26a)

= 1
2α

(1− e−2α(t−t0)) (26b)
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C =
∫ t
t0
e−α(t−τ)e−2α(τ−t0)dτ (27a)

= 1
α

(e−α(t−t0) − e−2α(t−t0)) (27b)

A.7 Exact Updating formula of OU process

The OU process dXt = −αXtdt + σdWt admits an exact update formula given

by [26]:

Xt+dt = Xte
−αdt +

√
σ2

1

2σ
e−2αdtN(0, 1), (28)

A.8 Priors for SGE model

θ Prior
γR Gamma(19.36,1/44)
kP Exp(10)
γR Gamma(27.04,1/52)
k Exp(1)
b0 Exp(10)
b1 Exp(1)
b2 Exp(10)
b3 Exp(10)

Table A.1: Table of priors used with the SGE model.
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(a) MH trace of σ from KF1
for ∆ = 0.1.

(b) MH trace of σ from KF2
for ∆ = 0.1.

(c) Posterior of σ using
KF1(blue) and KF2(green)

(d) MH trace of σ from KF1
for ∆ = 0.5.

(e) MH trace of σ from KF2
for ∆ = 0.5.

(f) Posterior of σ using
KF1(blue) and KF2(green)

(g) MH trace of σ from KF1
for ∆ = 1.0.

(h) MH trace of σ from KF2
for ∆ = 1.0.

(i) Posterior of σ using
KF1(blue) and KF2(green)

(j) MH trace of σ from KF1
for ∆ = 2.0.

(k) MH trace of σ from KF2
for ∆ = 2.0.

(l) Posterior of σ using
KF1(blue) and KF2(green)

Figure B.1: MCMC traces and histograms of the posterior of σ using a MH for
both KF1 and KF2. Ground truth for α = 2 and is indicated by the vertical blue
line on the histogram plots.
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Figure B.2: Traceplots of the Lotka-Volterra parameters using KF1 with an adap-
tive MCMC (first row) and a random walk MH (second row).
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(a) Filtering results of the Non-Restarting
KF1.

(b) Filtering results of the Restarting
KF1.

(c) Filtering results of the Non-Restarting
KF2.

(d) Filtering results of the Restarting
KF2.

Figure B.3: Filtering plots for the predator population with (KF2) and without
(KF1) aggregate data. The Non-Restarting method is shown on the first column
and the Restarting on the second column. The predator population is unobserved.
Black lines represent the actual process, while purple lines represent the mean
estimate and green 1 s.d. .
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(a) Gillespie (b) LNA

Figure B.4: Simulated trajectories of mRNA using the Gillespie algorithm (a)
and the LNA (b).

(a) MCMC trace of log(γR). (b) MCMC trace of log(kp). (c) MCMC trace of log(γp).

(d) MCMC trace of log(k). (e) MCMC trace of log(b0). (f) MCMC trace of log(b1).

(g) MCMC trace of log(b2). (h) MCMC trace of log(b3).

Figure B.5: Adaptive MCMC traces for the log parameters of the SGE model
using KF1 with aggregated data.
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(a) MCMC trace of cP . (b) MCMC trace of dP . (c) MCMC trace of s.

(d) MCMC trace of k. (e) MCMC trace of m0.

Figure B.6: Adaptive MCMC traces of the Translation inhibition model param-
eters using KF1 with real data.
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