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B.13 Figure shows the performance of the TSS-centric NB model on odd
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B.15 Figure shows the comparison of performance of the NB model be-
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B.17 Figure shows the comparison of performance of the TSS-centric NB
model between odd and even chromosomes (training and test data)
measured by Precision-TPR and MAP scores for selected combina-
tions of datasets. The Precision-TPR curves show the accuracy of
the predictions with the highest 10%, 20%, 30% scores i.e. poste-
rior probabilities. The second and the third rows stratify predictions at
each of the thresholds into those which take place within domains and
those involving inter-domain contacts. The set of positive and negative
pairs for the first model was constructed using TSS-centred 3000bp-
long regions and distal enhancers. The correlation-based attributes of
the two models were estimated using signals (time series) aggregated
over 300bp-upstream-extended-genes, and distal enhancer bodies. For
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B.19 Figure shows the comparison of the performance between promoter-
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Abstract

PREDICTING CONTEXT SPECIFIC ENHANCER-PROMOTER

INTERACTIONS FROM CHIP-SEQ TIME COURSE DATA

Tomasz Dzida
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2016

We develop machine learning approaches to predict context specific enhancer-
promoter interactions using evidence from changes in genomic protein occupancy over
time. Occupancy of estrogen receptor alpha (ER-α), RNA polymerase (Pol II) and
histone marks H2AZ and H3K4me3 were measured over time using ChIP-Seq experi-
ments in MCF7 cells stimulated with estrogen.

Two Bayesian classifiers were developed, unsupervised and supervised. The su-
pervised approach uses the correlation of temporal binding patterns at enhancers and
promoters and genomic proximity as features and predicts interactions. The method
was trained using experimentally determined interactions from the same system and
achieves much higher precision than predictions based on the genomic proximity of
nearest ER-α binding. We use the method to identify a confident set of ER-α target
genes and their regulatory enhancers genome-wide. Validation with publicly available
GRO-Seq data shows our predicted targets are much more likely to show early nascent
transcription than predictions based on genomic ER-α binding proximity alone.

Accuracy of the predictions from the supervised model was compared against
the second more complex unsupervised generative approach which uses proximity-
based prior and temporal binding patterns at enhancers and promoters to infer protein-
mediated regulatory complexes involving individual genes and their networks of mul-
tiple distant regulatory enhancers.
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Chapter 1

Introduction

Gene expression requires the binding of transcription factor (TF) proteins to genomic
regions which regulate transcriptional initiation [83]. In eukaryotic cells these regu-
latory genomic regions are referred to as promoters and enhancers and their activity
is associated with specific changes to chromatin such as histone modifications [11, 7,
138, 111]. Due to the mechanism of action as well as the cell- and context-specific
activity of enhancers, their location and associated target genes are however difficult
to predict. Specifically, the enhancers can act upstream or downstream of their tar-
get gene promoters and are often distal, separated by large inter-genic regions [100,
97, 105]. Their enhancer-promoter interactions require protein-mediated physical con-
tacts through formation of chromatin loops [120]. The contacts can affect the rate
of transcription and may be associated with paused RNA polymerase (Pol II) [38].
Some enhancers can mediate contacts between promoters and the body of the genes
[2, 32]. For instance in [61], enhancers were shown to connect promoter, gene-bodies
and follow a precise location of actively elongating Pol II. Although most contacts are
intra-chromosomal, there are some interactions between loci from different chromo-
somes [34, 63, 64]. Transcriptional regulation may be mediated by large multi-gene
and multi-enhancer complexes [34, 64].

Recent progress in experimental techniques such as ChIA-PET, 3C and its deriva-
tives 4C, 5C, and Hi-C [34, 23, 41, 137, 29, 108, 124, 82, 52] have mapped large
numbers of chromatin interactions including enhancer-promoter interactions. How-
ever, these methods are technically challenging and genome-wide methods such as
Hi-C typically lack the genomic resolution required to identify individual interacting
enhancer elements. Some methods are also thought to produce a high false negative
rate (in case of ChIA-PET, 5C) [64, 46] or cannot be applied on a genome-wide scale
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(3C, 4C) [108]. Capture-HiC methods have recently been developed [78] to improve
genomic resolution through focussing on pre-determined genomic regions, e.g. pro-
moters or known enhancers, and show promise but are not yet widely used. Data from
these technologies can also be noisy and subject to various sources of bias which can be
difficult to correct for [124]. In addition, the physical contact between two chromatin
regions does not determine a functional interaction [106] and the stimulus-dependant
behaviour of chromatin looping adds another layer of complexity [30, 123].

To allow for a better insight and correct for some of these pitfalls, experimen-
tal methods can be usefully complemented by computational approaches that exploit
other more readily available sources of genomic data such as ChIP-seq and RNA-seq
data [87, 73]. The existing methods, however, typically require data from multiple
cell-types or tissues and therefore do not allow discovery of interactions given data
from one cell-type. The methods also do not take into account cell-type specific evi-
dence from time course ChIP-seq data across gene bodies. Most existing methods also
assume a stringent maximum distance constraint and are therefore unable to discover
distal links beyond this constraint.

In contrast, in this thesis we investigate whether cell-line specific ChIP-seq time
course data measuring TF and RNA polymerase occupancy changes after a cellular
stimulation can be used to accurately predict cell-line-specific enhancer-promoter and
enhancer-intra-gene interactions within chromosomes. Our hypothesis is that time
course data from a single cell-type is sufficient to predict many enhancer-promoter
interactions and we develop methods to carry out this task.

1.1 Thesis outline

Our analysis involves several steps, and here we summarise the structure of the thesis
and outline of the study.

In Chapter 2 we provide a general overview of the gene regulation including the
role of regulatory elements such as promoters and enhancers, transcription factors and
higher order chromatin topologies. We review experimental and computational meth-
ods for discovery of chromatin interactions and their inference. We introduce un-
derlying theoretical aspects of the Bayesian methodology used for the design of our
computational methods in the remaining part of the thesis.

In Chapter 3 we describe our pre-processing of multiple time course ChIP-seq
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datasets from MCF7 breast cancer cells after the stimulation with estradiol. The anal-
ysis includes alignment of raw ChIP-seq reads, TF binding discovery, normalisation of
time course data and preliminary clustering of the time series data for the analysis of
their dynamics.

In Chapter 4 we propose a supervised classification model that combines evidence
from the correlation of ChIP-seq time course data at enhancers and promoters or
across gene bodies with genomic separation data, to predict the probability of puta-
tive enhancer-gene contacts. We benchmark performance against publicly available
ChIA-PET data from the same cell-line and stimulation. We use the method to find
gene targets of the ER-α enhancers which lack assignments in ChIA-PET data and
provide a highly confident list of directly ER-α regulated genes.

In Chapter 5 we introduce a generative unsupervised model. The model combines
genomic separation and shapes of time series of multiple ChIP-seq datasets, to pro-
vide us with the posterior probability of enhancer-gene contacts. As opposed to the
supervised approach, the model allows for the involvement of multiple enhancers in
regulating each gene. We validate the model with ChIA-PET data and compare its
performance against the one in the previous chapter.

In Chapter 6 we summarise achieved results and discuss potential limitations of
the data and of our models. We also discuss possible future extensions of the proposed
approaches.

1.2 Reproducibility

In recent years, a lack of reproducibility of many scientific findings has been recog-
nised to be a serious issue. To address the problem in computational science, many
journals now require that each submission should be accompanied by the code and
data used in the study [28]. Those allow a later verification of scientific findings and
potentially further development of alternative methods. Recognising the importance of
the practice, we decided to make the research presented in this thesis fully reproducible
and satisfying the criteria given by [96].

Our analysis is implemented in Python and all figures and output results can be
reproduced by running appropriately named scripts. The supervised Bayesian model
in chapter 4 can be run on a standard desktop machine. For the unsupervised model in
chapter 5, we recommend using a multi-core node and for each chromosome the model
can be run as a separate process. Additionally, thanks to use of numexpr library, the
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computations for each process can be run on multiple cores in a cluster. The code relies
on the bedtools package, numpy and the numexpr. The package along with scripts is
located in GitHub at: https://github.com/ManchesterBioinference/EP_Bayes.
The repository also contains a readme file with the list of scripts and their descriptions.

https://github.com/ManchesterBioinference/EP_Bayes


Chapter 2

Background

In this section we will provide an insight into the role of various layers of the cellular
system which play a part in the control of gene expression in eukaryotic cells. We
elucidate how functional DNA sequences, such as promoters and enhancers, higher
order structural units and properties of chromatin encode various cellular programs
and determine cellular identity. We describe the role of transcription factors in the
regulation of transcription. We also summarise and review current experimental and
computational methods which identify elements and associations in gene regulatory
networks.

2.1 Transcription and its Regulation

Transcription is the initial process of gene expression which involves a transfer of ge-
netic information from a DNA sequence into an RNA molecule by RNA polymerase.
Fig. 2.1a illustrates the most common elements involved in regulation of transcrip-
tion. The process requires binding of RNA polymerase at a promoter region located
upstream of the transcription start site (TSS) of a gene. Proteins are produced from
messenger RNA (mRNA) which is synthesised by RNA polymerase II (Pol II) in eu-
karyotes. The efficiency of transcription is regulated by DNA-sequence-specific tran-
scription factors (TFs), protein molecules which aid or repress the process and whose
recognition motif sequences and binding hubs are often located away from the con-
trolled TSS, at so called enhancer regions [132]. Enhancers can be located upstream
or downstream of the TSS, in introns of genes or even on different chromosomes from
their target promoters [56, 84]. The enhancer-promoter interactions require protein-
mediated physical contacts enabled via chromatin loops which bring enhancers in close
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proximity of their target gene promoters (see Fig. 2.1b). Mediator proteins play var-
ious roles, examples of which are stabilisation of loop structures by cohesin [109] or
activation/repression of Pol II by mediator complex [40]. CTCF protein was shown to
restrict the action of enhancers and thus can play the role of an insulator [93, 85], how-
ever in general it assists in tethering of distant enhancers to their target promoters [85].
Interactions can also exist as part of large multi-gene and multi-enhancer complexes,
which enable a coordinated gene expression [34, 64].

The activity of enhancers, repressors, insulators as well as other functional struc-
tures encode a transcriptional program of a cell, and therefore varies between cell-
types, tissues, and in time [47]. Regulation of transcriptional activity is achieved by
combination of reduction or widening of chromatin accessibility, achieved by action
of proteins such as pioneer factors, affecting TF binding in those regions, as well as
a pattern of histone modifications (chromatin marks) such as acetylations and methy-
lations of N-terminal tails [134]. Examples include the chromatin marks present in
the vicinity of active enhancers and promoters. Although active enhancer regions lack
histones, which widens their accessibility to TF bindings, the regions are flanked by
histones enriched in H3K4me1 and H3K27ac modifications but displaying low lev-
els of H3K4me3 [47, 15]. In contrast, active promoters are depleted of H3K4me1,
show different levels of H3K27ac and are enriched in H3K4me3 [105]. Some of the
chromatin marks are recognised by other regulatory proteins, e.g. Tri-methylation of
histone 3 lysine 27 H3K27me3 was shown to be associated with silencing of enhancers
by polycomb proteins (PcG)[31]. The exact mechanism of action of PcG proteins re-
mains to be elucidated however the proteins are known to be crucial in differentiation
and maintenance of cell-type identity [5].

2.2 Nuclear Receptors and ER-α

The activity and binding location of transcription factors is controlled spatially by
recognition motif sequences, epigenetic modifications of chromatin, developmental
stage or a presence of extracellular stimuli. The latter type of regulation is particu-
larly vivid in the case of TFs called nuclear receptors which harbour ligand binding
domains. The nuclear receptors, in contrast to other receptors, are classified as TFs
due to their ability to directly interact with genomic DNA. Although the majority of
nuclear receptors only bind DNA in the presence of their ligands, some nuclear recep-
tors display a basal weak ability to bind DNA even in a ligand free environment. In
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(a) regulatory elements of gene regulation

(b) loop formation
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Figure 2.1: (a) shows the most common genomic elements involved in transcription.
ChIP-seq method (Section 2.4) measures genome-wide occupancy of a selected pro-
tein. (b) shows the loop mechanism involved in transcriptional regulation in Eukary-
otes. The mechanism enables spacial contacts of distal enhancers, promoters, and
other loci and interactions of their associated proteins. Chromatin Conformation Cap-
ture experiments (Section 2.7) allow identification of spatially (in 3D) proximal loci.
ChIA-PET allows identification of all loci whose contact is mediated by a particular
protein. The figure was adapted from [6].
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the event of extracellular stimulation and binding of the ligand to its domain a confor-
mation of the receptor alters. This results in either a formation of new or stabilisation
of existing nuclear receptor-DNA bindings, which in consequence, depending on the
nature of the ligands, either elevate or suppress transcription of regulated genes.

A particularly well studied example of a nuclear receptor, partly due to its role in
breast cancer development, is estrogen-receptor-alpha (ER-α) encoded by gene ESR1.
Its genome-wide binding pattern under stimulation with estrogen has been established
through ChIP-seq experiments (see Section 2.4) [68, 72, 94]. The receptor can also
exhibit a basal function in a ligand-free environment [14, 112]. Although the ac-
tual pattern and strength of bindings under estrogen stimulation is cell-type specific
and determined by epigenetic marks and accessibility of chromatin, theoretically the
estrogen-bound-receptor could bind to at least 70,000 of its motifs, so called estrogen
responsive elements (ERE)[13]. The actual number of possible locations of bindings,
however is restricted, cell-type specific, and orchestrated by pioneer and other TFs
[51]. Pioneer TFs possess the ability to bind to hetero-chromatin and increase its ac-
cessibility [106]. Removal of the pioneer factors results in chromatin compaction and
either weakening of binding or total inability of binding at affected locations. Pioneer
factors are also involved in chromatin interactions [16].

ER-α and Pol II-mediated chromatin loops

ER-α preferentially binds at distal regions away from the vicinity of their target pro-
moters [17]. The experiments with ChIA-PET (Section: 2.7) show that ER-α takes
active part in formation of chromatin loops which bring distal ER-α bound enhancers
to their target genes [34]. The loop formation is induced by estrogen which is recruited
to ER-α [79]. Additionally, enrichment of Pol II as well as pattern of epigenetic marks
at loci involved in loops, suggest that the structures are involved in regulation of tran-
scription [64]. Some of the Pol II contacts were shown to be further involved in Pol
II-mediated interactions. Although the majority of the ER-α and Pol II-mediated in-
teractions were intra-chromosomal, some of them also involved loci from different
chromosomes [34, 64, 136]. In addition both types of interactions formed duplex and
more complex interactions involving several loci and protein mediators. The distribu-
tion of distances between interacting loci was far from uniform. According to [34], the
majority (86%) of ER-α-mediated links lay within distance of less than 100Kb, 13%
from 100Kb to 1Mb and 1% above the region [34]. Among the ER-α bindings which
were involved in the chromatin interactions with a promoter, 83% were distal and 17%
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proximal to TSS (based on a cut-off of 5kB from the closest TSS). The same ratio hold
true also for the ER-α bindings uninvolved in the interactions. Additionally in [17],
their genome-wide approach, shows that only 4% of estrogen receptor bindings occur
within 1-Kb promoter-proximal regions. Further experiments with 5C technique (Sec-
tion: 2.7) and comparative analysis of cell-lines showed that the majority of loops are
cell-type-specific, which suggests that chromatin loops define a unique transcriptional
program of each cell [97].

Pioneer factors are present prior to ER-α recruitment and are in-
volved in chromatin interactions

The first reported pioneer factor which is present at more than a half of ER-α binding
sites and involved in estrogen associated loops is FOXA1 [72, 115]. Due to its role in
regulation of estrogen associated transcription and modulation of chromatin accessi-
bility of EREs, its malfunctional behaviour is associated with breast cancer [10]. Other
pioneer factors present individually or in clusters at ER-α bindings and implicated in
ER-mediated loops are AP2γ, PBX1 and GATA3 [54, 71, 118]. The factors increase
chromatin openness, collectively bind near estrogen responsive genes and impact their
transcription [72].

Other factors such as chromatin modifiers, act on histones around the binding site
in the event of estrogen recruitment. These factors may further acetylate or methy-
late histones or may trigger other histone modification. An example of such factor is
P300 [140], a form of histone acetyl transferase (HAT). HAT appears at the sites of
ESR1 bindings and plays a role of co-activator, therefore increasing accessibility of
chromatin [72]. Binding of P300 is commonly used as a mark for active enhancers
[126, 131]. The binding also changes the activity of some of enhancers in the vicinity
of differentially expressed genes under estrogen stimulation. Other factors such as Mi2
can act as co-repressors [22].

2.3 Topologically Associating Domains

Recent maps of chromatin interactions have revealed that the majority of chromatin
contacts take place within distinct domains called Topologically Associating Domains
(TADs) of variable sizes ranging from a few kilobases up to megabase structures, with
the average size of 1 Mb [26, 20]. TADs segregate chromatin into non-overlapping
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adjacent regions with clear boundaries. A cross-species comparison of the structures
shows that the domains are evolutionarily conserved between mammals and even more
distant species [26]. The domains differ from each other in their chromatin accessibil-
ity, replication time, epigenetic marks, as well as transcriptional activity [90, 25]. In
addition, it was shown that the majority of enhancer-promoter interactions occur within
domains, thus domains serve as a spatial constraint on the range of enhancer action
[75]. The above observations indicate that the domains may function as autonomous
regulatory units which provide a spatially restricted compartment for coordinated gene
regulation, utilising intra-domain distal regulators. Depending on their epigenetic pro-
file, the domains can be transcriptionally active or silent. The active domains have
the characteristics of euchromatin, and are enriched in H3K4me3 [104, 103]. In con-
trast, the inactive TADs are more heterochromatin-like, and enriched in H3K27me3
[5]. Transcription of some TADS is additionally controlled by their location within
the cell. Their association with peripheral nuclear lamina was shown to be linked with
transcriptional repression [5]. The exact mechanism of an establishment of the struc-
tural units is unknown, although sub-domains within TADs are known to be important
in cell differentiation and determine cell-identity [25]. Studies show that the bound-
aries of TADS are enriched in structural proteins such as cohesin and CTCF proteins
[110, 26]. However, CTCF was shown to be present also within TADS [85]. Restric-
tive domains are also enriched for restrictive forms of PcG proteins [5]. These factors
are likely contributing to the overall chromatin conformation. However, a depletion
of the putative structural proteins, although altering the frequency of inter-domain in-
teractions, does not abrogate the structures and they are unlikely to be sufficient for
maintenance or formation of the structures. Thus, their role is likely supportive, and
an interplay between the elements is more complex [139, 85].

2.4 Discovery of protein-DNA TF binding by ChIP-seq

High throughput methods such as chromatin immunoprecipitation followed by se-
quencing (ChIP-seq) [87], enable a genome-wide in vivo detection of antibody specific
DNA-protein bindings. ChIP-seq is routinely used to identify the genomic location of
TFs, RNA polymerase, and histone modifications. In the method cells are mixed with
formaldehyde, which fixes native DNA-protein bindings, by formation of cross-links.
The step is followed by sonication which shears the chromatin into short 200-600 bp
long fragments. The fragmented chromatin is then immunoprocipitated with a selected
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antibody-coated-magnetic beads, to enable an isolation of DNA-bound-protein com-
plexes from the unbound sequences in the process of purification. The cross-links in
the purified sample are reversed which results in the separation of DNA fragments
from the bound proteins. The fragments may then be processed with subsequent steps
such as sequencing, mapping and detection of genome-wide bindings and occupancy
of a selected TF or protein.

Treatment of cells with formaldehyde results in cross-linking, i.e. formation of
covalent bonds in protein-protein and protein-DNA contacts. Among the cross-linked
protein-DNA contacts are bindings of TFs to their recognition sites. Some cross-linked
protein-protein contacts, on the other hand, are associated with proteins which either
directly interact with the enhancer-bound protein of our interest or are in close proxim-
ity to the protein. Due to the nature of treatment with formaldehyde, ChIP-seq method
is belived to detect not only directly TF-bound loci but also those in genomic proximity
to the selected TF, and thus retain information about chromatin conformation [76] (see
Section 2.7).

Sequencing and Alignment

After purification, the recovered fragments undergo the sequencing procedure which
reveals the nucleotide content of the DNA fragments (templates). The most widespread
sequencing method is the one provided by Illumina [87]. In this massively parallel
technique, after initial size selection, each fragment is consecutively separated and
immobilised, amplified by bridge PCR, and sequenced. The sequencing is a cyclic
process which consists of incorporation of four colour dyed fluorescence nucleotides,
singular extension of each fragment’s complementary strand by polymerase, detection
of a light emitted after each successful synthesis via a camera device, and the removal
of remaining unattached nucleotides. Usually one end of a fragment is sequenced and
the cycle is repeated a fixed number of times until a desired read length is achieved.
The resultant reads are aligned to a reference genome.

The reads can be aligned to a single location or multiple locations depending on
the frequency of appearance of a given read sequence in the reference genome. Due
to the vast number of reads produced by the above protocols the process requires a
vast amount of processing power and specialised algorithms. Examples of alignment
programs are BWA, Bowtie and STAR [65, 59, 27]. In order to reduce the number
of mismatches and increase the number of uniquely aligned reads, the reads can be
aligned to a reference genome using paired-end reads. In this case, the sequencing
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is repeated from the opposite end, and both complementary reads are used for map-
ping. Sample-specific differences between a reference genome and sequences, such
as single nucleotide polymorphisms also need to be addressed. The aligners deal with
individual-specific variations by allowing two nucleotides to differ between the refer-
ence and 35 bp long reads.

Peak calling

The real challenge is to locate the precise binding sites of the regulatory proteins and
histone modifications. The aligned reads will constitute not only the true signal, but
will also contain a substantial amount of noise reads originating from both protein-
DNA and antibody-DNA random binding events. Additionally, the enrichment of true
signal as well as noise will be affected by factors such as chromatin openness, PCR am-
plification, nucleic acid isolation, sequencing artefacts or mappability [117, 24, 101].
In terms of mappability bias, it is a common practice to discard the reads which map
to multiple locations. Those reads, however, often originate from the regions with fre-
quently occurring sequences. GC content of fragments was also shown to affect read
density, i.e fragments with a high GC-content tend to be overrepresented in ChIP-seq
fragment pool [9].

The presence of these biases pose a substantial challenge to distinguish the true
especially weak signal from noise, and any classification method should take those
into account and model their effect on the predictions. Control experiments enable the
tracking of the bias, and the types of control, each addressing different bias, are: input
DNA, which is obtained by removing a sample of DNA prior to immunoprecipitation,
DNA immunoprecipitation with non-specific antibody or DNA immunoprecipitation
without antibodies. In general it is assumed that the ChIP treatment and the control
samples have identical biases. A treatment set is usually compared against its control
set in order to find true TF bindings. However in some cases, for instance, in the
problem of determination of differential bindings between experiments performed at
different times or under different conditions, and when the biases between experiments
are comparable, one of the experiments would serve as a control and the preparation
of a control could be avoided.

Several computational methods has been designed for detection of TF bindings (so
called peak calling algorithms), each with a different signal to noise model [129, 48,
135]. In this study we use the popular method MACS [135] which uses a Poisson
model. The advantage of using a Poisson model over a simple fold enrichment is that
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it associates a higher probability to e.g. 400 reads in treatment and 100 reads in control
than it would to 40 and 10. The peak searching procedures in MACS is divided into
two stages. In the first stage, MACS scales the number of reads in a selected control
to be equal to the number of reads in a treatment ChIP-seq experiment and estimates
the λBG parameter which is a ratio of the total number of reads and genome size, thus
the expected number of reads per bp. It then shifts a frame of a fixed short size d

along the genome, for each estimates read enrichment and the corresponding p value,
and calls a peak if the p value is below a user defined (default 10−5) threshold. The
adjacent significantly enriched frames are merged together to form a single peak. In
the second stage MACS corrects for the local chromatin structure of each detected
peak and biases, using the parameters λlocal which is defined as either a maximum of
a set of {λBG,λ1k,λ5k,λ10k} if control is used, or {λBG,λ5k,λ10k} otherwise. The λ is
estimated from a window of [1kb],5kb,10kb, centred at the location of maximal read
pile up, and captures the above average background enrichment of regions surrounding
a peak. The peak is considered significant if its p value under the new Poisson(λlocal)
model is below a set threshold (default 10−5).

Enhancer discovery

ChIP-seq experiments enable the discovery of the genomic location of transcriptionally
relevant proteins such as TFs, RNA polymerase and modified histones. Accordingly,
the technique is usually able to detect previously reported enhancers. The method
however also has a high false positive rate. Some of the reported events correspond
to non-functional enhancers, probably due to a lack of other co-factors at these loca-
tions, others to transient bindings caused by general affinity of TFs to even non-specific
DNA sequences. One solution to overcome the problem is to investigate dynamics
of the bindings of one or ideally also other complementary TFs. Alternatively as in
[31, 138] multiple ChIP-seq datasets can be combined with data from other relevant
genomic assays to identify active promoters and enhancers using genomic segmenta-
tion algorithms.

2.5 RNA-seq, eRNA, and cellular program

The set of all messenger RNA produced by the particular cell population defines a
transcriptome, which in turn is determined by the transcriptional program of a cell.
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Eucaryotic protein-coding genes consists of coding exonic and non-coding intronic
regions, which enables alternative splicing and further increase in combinatorial com-
plexity of produced transcripts. RNA-seq is a genome-wide method which enables
quantification of all expressed transcripts, on a base-pair precision level [73]. The high-
throughput DNA sequencing allows RNA analysis through reverse-transcription onto
cDNA and sequencing. The content of the transcriptome undergoes dynamic changes
caused by selective enhancer action, and is tissue and context specific. This is fur-
ther complicated by the fact that transcription is not only limited to promoters but can
also occur at enhancers. In the latter case, enhancer regions recruit RNA polymerase
and produce so called enhancer RNA (eRNA) [55]. The role of enhancer transcripts
on gene expression is unclear. However, the eRNA expression is positively correlated
with the expression of targeted genes, and can be triggered by the presence of specific
TFs, including the estrogen receptor ER-α [66, 80]. Additionally the targets of eRNA
producing enhancers have higher expression [19, 66, 80].

2.6 Discovery of elongating polymerase - GRO-seq

Although RNA polymerase ChIP-seq (Pol II) allows the discovery of Pol II binding
location and density, the method does not discriminate between its various transcrip-
tional states and dynamics. As part of transcriptional regulation the molecule can be
promoter-bound, paused downstream from the promoter or can elongate unconstrained
over a gene. The GRO-seq [62] technique enables a genome-wide detection of tran-
scriptionally engaged polymerases at a certain time point. The method uses nuclear
run-on assays to tag growing RNA chains of elongating polymerases. New polymerase
initiations are prevented by Sarkosyl. The method thus enables identification of a loca-
tion and orientation of active transcription. When used to investigate nascent transcrip-
tion in the experiment involving stimulation of MCF7 cells with estradiol, the method
showed firstly that a large proportion of the transcripts are unannotated, noncoding,
and enhancer centric (eRNA), and secondly that in that cellular context, ER-α can be
involved in eRNA transcription [42]. The method was also used in the same study to
identify early estradiol-responsive genes.
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2.7 Empirical discovery of chromatin interactions

The first method which allowed the identification of chromatin interactions was C3
[23]. The method led to development of several of its derivatives, such as C4, C5 and
Hi-C [137, 29, 67], each with growing ability to map interactions on a genome-wide
scale but sharing most experimental steps in common. The steps involve: treatment
of cells with formaldehyde to cross-link spatially proximal chromatin, digestion of
chromatin with restriction enzymes, possessing either 4 or 6 bp recognition sequences
and producing fragments (restriction fragments) with cohesive ends located at sites
of cuts, ligation of spatially proximal cross-linked DNA fragments via their cohesive
ends and under very diluted conditions to favour proximal intra-molecular ligations but
avoid non-specific inter-molecular ones, and reversal of cross-links to produce linear
ligations which can be detected with a method-specific procedure. The 1D sequences
offer a method to investigate population-averaged 3D chromatin conformation, as well
as a relative frequency of the contacts.

3C

In the 3C [23] method the detection of chromatin contacts is performed via PCR with
two pre-designed sequence-specific primers and quantification of relative speed of
fragment amplification. The primer design requires a previous knowledge of candi-
date interacting sequences hence the method is unsuitable for mass scale genome-wide
detection of interactions. The method however is often used for validation of interac-
tions.

4C

A big step forward was offered by 4C-seq [137] method, which enabled creation of
genome-wide contacts profile of one selected locus, so called bait. The protocol in-
volves PCR amplification and high-throughput sequencing of all bait ligated partners.
The PCR is initiated with two bait-specific pre-designed primers, each containing a
sequence of single end of bait.

5C

The 5C [29] method in contrast to 3C allows a simultaneous use of thousands of loci-
specific primers per single run of PCR. The amplification, similarly to C3, is limited
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only to the fragments representing the contacts between pre-selected loci. Such frag-
ments contains two primer recognition sites at their ligation junctions, which can be
targeted by the pre-designed primers. Additionally, the primers contain sequences
which allow quantification of amplified fragments by NGS.

Hi-C

All above methods require a design of loci-specific primers therefore cannot be ap-
plied in a genome wide fashion. The Hi-C [67] method circumvents the requirement
by introducing biotin-marked ligation junctions and paired-end sequencing of ligation
products. The first modification turns cohesive ends of restriction fragments into blunt
ends by filling the restriction sites with nucleotides, where one of them is biotiny-
lated. After ligation of blunt-ends and additional round of chromatin fragmentation,
the biotyn-marked ligation junctions can be pulled down with streptavidin, the cross-
links reversed and fragments sequenced using paired-end sequencing, with starting
points close to ligation junction.

Promoter Capture Hi-C

Although the Hi-C method enables a proximity scan of the chromatin conformation,
the resultant maps are very complex and require a depth of tens of billions of reads to
accurately distinguish true interactions from random non-specific bindings. To circum-
vent that requirement and in consequence increase statistical significance of findings,
the Capture Hi-C [78] technique concentrates on promoter-centric interactions. The
experiment mirrors the steps of Hi-C experiment with an additional filtering step. In
the process ligated fragments in Hi-C libraries are treated with multiple biotynaleted
RNA oligomers with complementary sequences of all promoters. When bound to their
recognition sequences, the oligomers enable the extraction of promoter-containing
fragments, in consequence increasing the specificities of the libraries. After sequenc-
ing of the fragment, the technique can be used for genome-wide capture of promoter-
centric links with other promoters, enhancers and potentially other functional genomic
loci. The resolution of the technique is higher than 5kB, and provides a coverage of
long-distance interactions of on average 250 kb [78].
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ChIA-PET protocol

ChIA-PET [63], similarly to Hi-C offers a genome-wide assessment of proximity be-
tween genomic regions. However, the ChIA-PET method concentrates on the contacts
mediated by a protein of interest and as a result its predictions are of higher resolu-
tion (100 bp, which due to read specificity is 10 fold higher than corresponding Hi-C),
and statistical confidence. Additionally, the method, as opposed to Hi-C, enables a
statistical assessment of the amount of inter-ligations.

Although ChIA-PET is experimentally similar to C3-based methods, it differs in
several steps. After cross-linking, the fragmentation of chromatin involves sonication
instead of digestion. Next, protein-bound fragments are purified via immunoprecipita-
tion with an antibody of interest. The cohesive ends of fragments are filled in with nu-
cleotides, and extended by half-linkers which contain restriction enzyme cutting sites
and biotinylated nucleotide. Following the ligation, the digestion cuts fragments 20 bp
away from the ligation junctions. The fragments are pulled down with streptavidin,
the cross-links reversed and resultant short fragments sequenced using paired-end se-
quencing.

The ChIA-PET protocol, apart from the additional ligation step which joins copre-
cipitated fragments, mimics that of ChIP-seq method. Thus in contrast to ChIP-seq
which is only informative of close proximity of a DNA fragment to a selected protein,
ChIA-PET method is able to identify regions which coprecipitate because of simul-
taneously laying in close proximity of the protein. The crucial step of the process is
initial treatment of cells with formaldehyde which results in cross-linking, i.e. forma-
tion of covalent bonds, of protein-protein and protein-DNA contacts. Some contacts
involve functional bindings between TFs and their recognition sites as well as contacts
of those TFs with other mediator proteins which take part in their regulatory com-
plexes. Other contacts are believed to be less specific and originate from polymer-like
character of chromatin fibres which by law of thermodynamics would collide at fre-
quency inversely proportional to linear distance between loci. These interactions are
believed to occur on the peripheries of the regulatory complexes and would form less
covalent bonds under treatment with formaldehyde. The gentle restriction enzyme di-
gestion, a common step of C3 and its derivatives, is unable to break the non-specific
bonds. Those methods relay on elaborate control experiments. In contrast, the vigor-
ous sonication step of ChIA-PET (and ChIP-seq) is believed to remove the non-specific
weaker bonds, and hence the need for extra control experiments [35].
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The immunoprecipitation step of ChIA-PET is used to reveal all sequences in-
volved in a molecular process associated with a particular protein. For instance in [64]
immunoprecipitation with Pol II antibody revealed all Pol II-mediated contacts and in
consequence loci involved in transcription. Similarly, in [34] and [43] immunoprecip-
itation with ER-α and CTCF antibodies revealed all contacts mediated by ER-α and
CTCF, respectively. Those experiments enabled in consequence better understanding
of mechanisms affecting gene expression and chromatin folding.

2.8 Bayesian Inference

Bayesian inference is a statistical procedure to make inferences from data. The method
provides means to update our prior beliefs in the light of new evidence, which results
in an updated posterior belief. In mathematical formulation, the prior assumptions,
evidence, and likelihood of observed evidence given our initial beliefs are expressed
and encoded as probability distributions. To simplify the notation we will use symbols
E, B for evidence and belief, respectively. The Bayes’ formula states that:

P(B|E) = P(E|B)P(B)
P(E)

(2.1)

Here,

• P(B) is the prior distribution of beliefs.

• P(E|B) is the likelihood, the probability distribution of observing some evidence
given our belief.

• P(E,B) = P(E|B)P(B) is the joint likelihood and the product of the prior and
the likelihood P(E|B) functions.

• P(E) is the probability distribution of observed evidence irrespective of any be-
lief that we may apriori possess. The function is sometimes called the marginal
distribution and is either a sum or an integral over beliefs, fixed E, and over the
set of all probabilities P(B,E).

1. P(E) = ∑P(E,Bi) for countable set of beliefs.

2. P(E) =
∫

P(E,B)dB for uncountable set of beliefs.

• P(B|E) is the updated posterior distribution of our beliefs given observed evi-
dence.
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Regardless of application, the evidence will usually correspond to observed values
of data. In contrast an interpretation of belief B will depend on the problem tackled.
For instance, in clustering our belief will represent a membership class of an object,
while in inference it will usually be equivalent to a distribution of parameter values.
Similarly, the posterior distribution will describe class memberships of clustered ob-
jects given their value of features, or in regression a distribution of probable output
response variables of a learnt function of predictor features.

In many situations we are not interested in a distribution over many possible values
of learnt posterior distribution but in a single estimate. In such cases we will often take
a maximum a posteriori value i.e the optimum of a function of response variable, value
of inferred parameter or membership of an object.

2.8.1 Parameter inference

The search for a set of parameters θ consistent with the data X is called parameter
inference,

P(θ|X) =
P(X |θ)P(θ)∫
P(X |θ)P(θ)dθ

∝ P(X |θ)P(θ) . (2.2)

Here, P(θ) denotes a prior distribution of a parameter θ. P(X |θ) denotes a likelihood
given the value of parameter and P(θ|X) an updated version of the parameter given
observed data X . The

∫
P(X |θ)P(θ)dθ is the normalisation factor which ensures that

the posterior probabilities sum up to one. The normalisation factor is a function of
data X and does not depend on the parameter θ. This quantity is however usually
intractable. In such cases we use approximate inference methods. Various methods
have been developed to tackle the problem. One of the approaches is the Expectation
Maximisation or variational bayes algorithms which provide computationally fast but
partially inaccurate approximations to the true posterior distribution. Alternatively one
can use use slower but more accurate iterative sampling methods such as Markov chain
Monte Carlo (MCMC). The accuracy of the MCMC methods increases with the num-
ber of iterations and theoretically after infinite time the sampler would sample from a
true posterior distribution. However, due to computational limitations the inference is
always based on a finite number of samples.
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2.8.2 MCMC algorithms

Monte Carlo methods form a general class of numerical algorithms which rely on
Monte Carlo simulation to approximate a desired function P(θ) from its samples. The
methods are particularly useful due to their ability to sample from a target distribution
P(θ) when the distribution is only known up to a normalisation constant. In such cases
the unnormalised distribution serves as a proposal distribution Q(θ), which is used
by the methods to sample from the desired distributions. The problem of intractable
normalisation constants often occurs in bayesian inference where the evaluation of the
marginal distribution of data, the normalisation constant of a posterior distribution, is
often difficult or impossible. In MCMC algorithms the proposal distribution is equal to
Q(θ′|θ) and therefore the draws form a Markov chain. A Markov chain is a stochastic
process, a sequence of random variables θ0,θ1, . . . ,θn with the property that

P(θn|θn−1,θn−2, . . . ,θ0) = P(θn|θn−1) . (2.3)

Hence the value of the random variable θn only depends on the value of the last
value in the sequence. Each Markov chain can be characterised by its initial distri-
bution P(θ0) over a finite or infinite state space S, and a set of transition probabilities
Pi j = P(θn+1 = j|θn = i) i.e. the set of probabilities of moving from state i to state j

which can be summarised in a |S|-dimensional square matrix P, or kernel K(θn+1|θn)

in case of continues state space. As the chain progresses, moving from state θn = i to
θn+1 = j, the initial distribution P(θ0) and each consecutive distribution P(θn) evolves,
according to the equations:

P(θn) = ∑
θn−1∈S

P(θn−1)P(θn|θn−1) (2.4)

or,
P(θn) =

∫
P(θn−1)K(θn|θn−1)dθ

n−1 (2.5)

hence each update depends only on the distribution of the last step P(θn−1) and fixed
transition probabilities Pi j.

When the chain is ergodic i.e. aperiodic (any state i does not return to i in a finite k

number of iterations), and irreducible (any state is reachable from any state in a finite
number of steps), then

∀P(θ0), as n→ ∞, P(θn)→ π(θ) (2.6)
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π(θ′) = ∑
θ∈S

π(θ)P(θ′|θ) (2.7)

for large N, P(θn) = P(θn−1) = π, the distribution over S converges to a fixed distri-
bution π, so called steady state or invariant distribution.

2.8.3 Metropolis-Hastings

The Metropolis-Hastings algorithms [77, 45] is a class of MCMC algorithms which
can be used to sample from an arbitrary posterior distribution P(θ), as long as it is
known up to a normalisation constant. The methods often rely on an iterative two
step procedure. Firstly a proposal sample θ∗ is drawn from an appropriate proposal
distribution Q(θ∗|θn−1), secondly the sample is either accepted or rejected according
to acceptance/rejection rule,

θn =

θ∗ with Paccept

θn−1 otherwise,

where,

Paccept = min
(

1,
P(θ∗)Q(θn−1|θ∗)

P(θn−1)Q(θ∗|θn−1)

)
. (2.8)

The Paccept depends on the ratio P(θ∗)/P(θn−1) thus any normalisation term of the
distribution P(θ) cancels out. The two step rate adjusted random walk is an ergodic
Markov chain which in long-term converges to a target stationary distribution P(θ).
The choice of Q(θ∗|θn−1) is crucial since it determines the convergence rate of the
methods. A good distribution should possess a high degree of mobility to minimise a
possibility of getting stacked in a local node of a state space of the target distribution,
and a low sample rejection rate which would result in slow convergence.

2.8.4 Gibbs Sampler

The Gibbs Sampler [37] is a special case of Metropolis-Hastings algorithm which sam-
ples a new θn sequentially updating d sub-vectors θi. Each update is conditional on the
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values of all the other components θ−i. The steps are:

θ
n
1 ∼ P(θ1|θn−1

2 ,θn−1
3 , . . . ,θn−1

d )

θ
n
2 ∼ P(θ2|θn

1,θ
n−1
3 , . . . ,θn−1

d )

...

θ
n
d ∼ P(θd|θn

1,θ
n
2, . . . ,θ

n
d−1)

(2.9)

At each sub-step i the Markov random walk makes a restricted transition:

θ
(n−1,n),i−1→ θ

(n−1,n),i

=

(θn
1, . . . ,θ

n
i−1,θ

n−1
i ,θn−1

i+1 , . . . ,θ
n−1
d )→ (θn

1, . . . ,θ
n
i−1,θ

n
i ,θ

n−1
i+1 , . . . ,θ

n−1
d )

(2.10)

where the notation (n−1,n) in the exponent of θ emphasizes that the resultant random
vector is a transient state between θn and θn−1. The random vectors θ(n−1,n),i−1,θ(n−1,n),i

share a fixed θ−i and differ in θi part.

Let’s denote the new proposed state as θ∗. The transitions in the above procedure
are made according to the proposal distributions

Q
(

θ∗(n−1,n)|θ(n−1,n),i−1
)
=

P
(

θ
∗(n−1,n)
i |θ(n−1,n)

−i

)
if θ
∗(n−1,n)
−i = θ

(n−1,n)
−i

0 otherwise

Substituting the transition probabilities into eq. 2.8, rewriting the P(θ) as P(θi)P(θ−i),
and for readability dropping the superscripts (n−1,n), yields

Paccept =
P(θ∗)Q(θ|θ∗)
P(θ)Q(θ∗|θ)

=
P(θ∗i |θ∗−i)P(θ

∗
−i)P(θi|θ∗−i)

P(θi|θ−i)P(θ−i)P(θ∗i |θ−i)
= 1 (2.11)

and shows that the set of proposal distributions guarantees that none of the samples
is rejected. Due to its reliance on conditional distributions the scope of application of
the algorithm is limited to the models with conditional distributions of standard and
tractable form.

2.8.5 Convergence of Gibbs sampler

One of the most important aspects of Markov Chain Monte Carlo methods is their con-
vergence to the true target distribution and the rate of that convergence. In general, the
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faster the chain converges, measured by the number of samples, the better. The con-
vergence is dependent on the initial conditions, and since the sampling procedures are
usually started from a different, usually random, initial conditions, therefore different
chains will need different time to reach the stationary distribution. Here we employ
the Gelman’s and Rubin’s multi-chain diagnostic to assess the convergence (reviewed
by Gelman [36]).

Burn-in

To resolve the issue with the initial bias due to a starting position, we apply burn-in. In
burn-in one discards B initial samples before starting to collect the samples. Burn-in
allows the Markov Chain to reach its steady-state equilibrium distribution, and prevents
retaining samples from regions which are very rare under equilibrium distribution of
Marcov chains. Although the burn-in is arbitrary in practice we run the chain for 2S

samples and discard the first S samples. The sampling is then either doubled or stopped
if the chain converged.

Gelman’s and Rubin’s multi-chain diagnostic

Multiple diagnostics can be run to establish the convergence of Macrov Chains. Here
we assess the convergence using Galman’s R̂ statistics which relies on comparison of
within chain and between chain variability. The diagnostics requires running M > 2 in-
dependent chains with over-dispersed initial conditions for S iterations and then assess-
ing within-chains (W ) and between-chains (B) variances of the parameter θ, defined as:

W =
1
M

K

∑
m=1

(
1

S−1

L

∑
s=1

(θm,s− θ̄m)
2

)
(2.12)

θ̄m =
1
S

L

∑
s=1

(θm,s) (2.13)

B =
S

M−1

M

∑
m=1

(θ̄m− ¯̄
θ)2 (2.14)

¯̄
θ =

1
M

M

∑
m=1

θ̄m (2.15)

Due to initial non-stationarity of the chains we can expect that a number of initial draws
will be biased to a particular subspaces of the sampling space of the target distribution
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and that the variance W estimated on the draws would provide underestimated esti-
mates of the true variance of the target distribution. If we knew the starting values
which would result in immediate stationarity we could expect that the variance would
be unbiased, however the information is in practice unknown. As the number of sam-
ples increases the sampling methods explores the sampling space to a wider extent,
reaches more states, and loses the initial bias. We can expect that once the chains have
converged to the same distributions the within and between chain variances should be
approximately equal. The intuition can be summaries in R̂ which can be shown to
converge to 1 as S→ ∞.

R̂ =

√
V̂ar(θ)

W
(2.16)

where,

V̂ar =
(

S−1
S

)
W +

1
S

B (2.17)

which is a weighted average of W and B.

Gelman’s and Rubin’s multi-chain diagnostic - practice

In practice we iteratively double the number of samples, removing the first half of the
produced samples as burn-in and repeat the process until the convergence criterion is
met. The convergence is assumed to be met if for each parameter the R hat is close to
1. We test the convergence for every inferred parameter.

2.8.6 Supervised and unsupervised learning

Two of the main learning strategies in machine learning are supervised and unsuper-
vised learning. In a supervised learning problem a ML algorithm receives a labelled
training data to learn an underling function which could be used to assign unobserved
new data points to their labels. The typical examples of supervised learning algorithms
are SVM, Naive Bayes, linear regression, logistic regression, neural networks and de-
cision trees (reviewed by Hostie [44] and in Bishop [12]) each with its strengths and
weaknesses. On the contrary in unsupervised problem the task is to learn the function
from unlabelled data. Examples of the algorithms include mixture models, hierarchi-
cal clustering, and AP algorithm [44, 12, 33]. The problem in supervised learning
usually encompasses problems of finding similarities between feature vectors i.e clus-
tering or finding density function. Regardless of the modelling approach, the factors
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which needs to be taken into account when building a model are the feature represen-
tation of classified objects, number of features, function complexity, and amount of
data available. In general, the more complex the underling function the more data is
needed.

2.8.7 Naive Bayes

Naive Bayes is a supervised learning algorithm which is commonly used in sparse data
problems when the number of parameters of inferred model - suggested solution out-
numbers the amount of available training data. The model can also be used to combine
data from different experiments. The model approximates a posterior distribution by
assuming conditional independence assumption between data points in the likelihood
i.e.

P(C)P(X |C) = P(C)P(X1, . . . ,Xn|C) = P(C)
N

∏P(X = xi|C) (2.18)

Thus, the Bayes’ formula becomes,

P(C|X) =
P(C)P(X |C)

∑P(C)P(X |C)
=

P(C)∏
N P(Xn|C)

∑P(C)∏
N P(Xn|C)

(2.19)

Although the assumption of conditional independence is quite strong, the algorithm is
shown to give a good performance in a number of applications.

2.8.8 Mixture of Gaussians and hidden variable models

The mixture of Gaussians (eq: 2.20) can be used in unsupervised learning scenario and
is an example of more general class of models called mixture models. Mixture models
are linear combinations of probability density functions (PDF), which can be used to
generate and approximate more complex functions. In that specific mixture combining
the Gaussian PDFs with different means and covariance matrices let us approximate
almost any continues PDF to any desired accuracy.

P(X|θ) =
N

∑
k=1

P(k)p(X|k) =
N

∑
k=1

πkN (X|µk,Σk) (2.20)

where k is a class variable with probability of occurrence given by mixing components
πi, satisfying ∑

K
πi = 1, and θ is a vector of all parameters πi,µi, Σi.

Mapping k onto 1-of-K representation i.e binary vector Zk with 1 at kth position
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and 0 elsewhere, and defining P(Zk) = ∏
K
k=1 π

zk
k and P(X|Zk) = ∏

K
k=1 N (X|µk,Σk)

zk

P(X|θ) = ∑
Z

P(Z)p(X|Z) = ∑
Z

K

∏
k=1

(πkN (X|µk,Σk))
zk =

K

∑
j=1

K

∏
k=1

(πkN (X|µk,Σk))
Ik j =

N

∑
j=1

π jN (X|µ j,Σ j)

(2.21)

shows (eq: 2.21) that each occurrence of Zk, so called called hidden variable, deter-
mines which Gaussian distribution P(X|Z) generates Xk, and that the two variables
are inseparable. Although, we usually observe only the marginalised version P(X|θ)
of P(X,Z), and as the name suggests the value of Zk remains hidden, we can however
use the posterior P(Z|Xn) to infer the origin of Xn. In practice we will usually be
interested in the values of the parameters of each component function. These will be
usually obtained from the posterior of parameters P(θ|X,Z).

2.8.9 Kernel Density Estimation

P(X) =
1
N

N

∑
n=1

1
hD k

(
X−Xn

h

)
(2.22)

Kernel Density Estimation (KDE) [81, 88] is an example of non-parametric probabil-
ity density estimation method which as opposed to parametric approaches makes vary
little assumptions about underling functional form of a modelled distribution. The
simplest example of non-parametric approach is a histogram function. KDE has an ad-
vantage over the histogram that it provides smooth continues PDFs. In non-parametric
approaches we still select a kernel function and bandwidth, where the choices deter-
mine the smoothness of the output function. The common choice of kernel function is
a gaussian, and the bandwidth can be obtained either via cross-validation or Scotts or
Silverman’s rules [102, 107].

P(X) =
1
N

N

∑
n=1

1
(2πh2)1/2 exp

{
−‖X−Xn‖2

2h2

}
(2.23)

2.9 Related work

In addition to the standard already covered applications of ChIP-seq data, and more rel-
evant to the present study, others have used ChIP-seq data to infer enhancer-promoter
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interactions. For example, Ernst et al. [31] used histone mark data from multiple cell-
types to identify active enhancers and promoters and then enhancer-associated data
was correlated with expression data from genes within 125kbp to identify likely inter-
actions [31]. Thurman et al. used DNase I hypersensitivity (DHS) data from multiple
cell-types to correlate and link distal DNase hypersensitivity sites (within 500kbp) to
those within putative gene targets [119]. Similarly, in Andersson et al. [3], enhancer-
promoter links were predicted by correlating CAGE enhancer RNA to CAGE promoter
RNA.

Approaches for discovering cell-type specific interactions include PreSTIGE [21],
RIPPLE [95], and the method developed in [74]. PreSTIGE uses a method based on the
Shannon entropy to identify cell-type specific enhancers and genes using H3K4me1
and RNA-seq data respectively. The regions are linked within promoter-centric do-
mains, bounded on each side by the minimal distance of 100kbp up to the first CTCF
binding site from a TSS. RIPPLE uses four cell-lines and per each 11 ENCODE
datasets (RNA-seq, CTCF, RAD21, DNAse1, TBP and histone marks) to train ran-
dom forest classifier which predicts enhancer-gene interactions within 1MB distance.
The features used are two joint binary vectors of presence/absence of dataset signal
peak over a promoter and enhancer, correlation of entries of the vectors, as well as
gene expression of the promoter controlled gene. The method from [74] aggregates
RNA-seq data over genes and DHS data over ± 200kb regions surrounding them for
twenty different cell lines. The method searches through each gene and cell-line for
unexpected DHS/RNA-seq ratios and once found, scanned across the gene vicinities
in search of causal, local DHS variabilities. Lastly, a method proposed by He at al.
uses a random forest classifier to find enhancer-gene interactions [46]. The method
uses three features: evolutionary conservation, correlation of enhancer scores derived
from histone marks with RNA-seq data, as well as an average of correlations between
TF ChIP-seq and gene expression across 12 cell-types. A distance constraint is also
imposed to aid inference.

In summary, firstly the great part of the methods presented above require data from
multiple cell-types and therefore do not allow discovery of interactions given data from
one cell-type. Secondly, the imposed stringent distance constrain of most of the meth-
ods prevents a discovery of more distant enhancer links. Thirdly, the methods above do
not take into account an evidence from time course data over gene region nor consider
evidence from TFs across gene bodies.

Here, we attempt to address the drawbacks. We build statistical models for the
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inference of the enhancer-gene links mediated by ER-α and Pol II within MCF7 cell-
line. For that we utilise time course data from the same cellular context and cell-line,
one which is complementary to the chromatin conformation capture experiments such
as ChIA-PET.



Chapter 3

ChIP-seq Time Series Data Processing

In this section we describe the experimental data used and the initial processing of the
ChIP-seq data which transforms the raw data into a form which is more appropriate
for the modelling in chapters 4 and 5. The pre-processing steps include: alignment
of short reads originating from ChIP-seq experiments to a reference human genome,
discovery of TF bindings via identification of TF-specific peaks with MACS, merging
of time persistent peaks to reduce the amount of noise and to create shared regions for
counting of the enrichments of the ER-α datasets and other ER-α-binding-associated
ChIP-seq datasets. Due to a non-unique mapping of some reads, differences in read
depth and quantity of starting material, the alignment of the ChIP-seq reads results in
a variable total number of reads across datasets, and thus in a loss of comparability
of the enrichments between time points. Here, we show how we normalise the data
to deal with this issue. Additionally, the chapter covers the initial analysis of vari-
ability in the ChIP-seq time series data using the Affinity Propagation (AP) clustering
algorithm. The clustering reveals underling dynamics of the ER-α bindings and other
associated datasets, and provides initial insight into the usefulness of the time series
for the modelling of chromatin contacts.

3.1 The experiment - studying ER-α responsive genes

The experiment which produced our data was designed to uncover a response of genes
to estrogen, more specifically estradiol (E2), in MCF7 breast cancer cells, and was
already presented and described in [49, 127]. Thus, the first step was to create a refer-
ence sample in a ligand free environment. For that, the cells were placed into estradiol
free media for 3 days, which reduced the binding between ER-α and E2. The cells

54
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Figure 3.1: Preprocessing pipeline



56 CHAPTER 3. CHIP-SEQ TIME SERIES DATA PROCESSING

were then ready to be re-exposed to E2. Following the introduction of E2, the resul-
tant changes were tracked by multiple ChIP-seq experiments. The experiments were
performed at 0,5,10,20, . . . ,1280 minutes after the stimulation. Each ChIP-seq exper-
iment was carried out with a different antibody to measure genome-wide fluctuations
in levels of their specific protein targets. Specifically, the studied protein factors and
histone modifications were: ER-α, Pol-II (two replicates), H3K4me3, and H2AZ. To
enable an analysis of gene expression, time series RNA-seq data was also produced.
The experiments at 0 min correspond to the untreated sample. To ensure the compara-
bility across time points and datasets, the cells used for the measurements were taken
from the same initial population.

3.1.1 Alignment to a reference human genome

Raw reads from the experiments were mapped onto the human reference genome
(NCBI build37) using the Genomatix Mining Station (version 3.5.2) to enable fur-
ther analysis. The sequencing depth, i.e. the total number of sequenced reads, was
the same for each dataset, however, on average only 81%, 76%, 67%, 61%, 64% of
ER-α, Pol-II (rep 1), Pol-II (rep 2), H3K4me3, and H2AZ ChIP-seq reads respecively
were mapped uniquely to the genome. Reads which mapped to several locations were
discarded from further analysis. Using the statistical criterion provided by MACS,
we established that our sequencing depth allows for no duplicates of reads, thus we
discarded any duplicated reads. The duplicated reads are potentially an artefact in
ChIP-seq.

3.1.2 Discovery of ER-α bindings

We wish to identify the binding sites of ER-α, occurring after the stimulation with E2.
Bound regions of the genome are accompanied by aggregations of ChIP-seq reads, so
called peaks. Fig. 3.2 (first row) shows an example of sharp ER-α peaks at 5 min after
stimulation around the GREB gene locus. Given a set of peaks, the question is which
of these originate from random noise and which corresponds to true binding sites. To
answer this question, we used MACS (v1.4.2) [135] (for peak calling challenges, pro-
cedure of MACS and technical details see Section 2.4)). The algorithm scans across
a reference genome comparing enrichments of background and treatment reads and
probabilistically assesses adjacent regions for the presence of potential peaks. It is
often considered that control datasets play a vital role in this task. A control dataset
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enables modelling of the background distribution of reads, which provides a reference
point for the assessment of significance of the peaks. More precisely, after the initial
search for peaks using rate parameter λBG, i.e. genome-wide average enrichment of
reads per bp estimated from treatment or control (i.e. MACS normalises the total size
of reads of each set to be the same), and significance under a Poisson model, MACS
can be chosen to run a local background correction. This process re-assesses each pu-
tative peak from the first run using averages [λ1k],λ5k,λ10k estimated over [1k],5k,10k

regions. The λs are either estimated using control (if a control is available), or treat-
ment dataset (if it is not available), with the λ1k estimated only in the presence of a
control dataset. The most relaxed case corresponds to switching the lambda flag off.
In such case the local estimates of λ are ignored.

Our initial choice was to use the 0 min untreated dataset as the control. However,
visual inspection of the density of reads revealed a large amount of pile ups at loci
which are known to play important functional roles. Figure 3.2 (second row) shows
examples of the peaks in the E2 depleted sample, prior to stimulation and around the
GREB gene locus. To confirm the significance of the peaks in the E2 depleted sample,
we overlapped them with chromatin interactions mediated by ER-α and detected by
ChIA-PET in an independent MCF7 sample. Figure 3.2 (third row) shows that many
of the ChIA-PET links overlap with the ER-α bindings. We conclude that the reduction
of the level of E2 does not abolish all of ER-α bindings, equivalently that not all of
the ER-α bindings require presence of the ligand. Our conclusion is based on the
phenomena described in Section 2.2 i.e. ER-α possesses known ability to bind to
chromatin even in the complete absence of its ligands and therefore we can expect
that a portion of the bindings are present prior to the stimulation. As shown in the
Figure 3.2, even if the peaks in the untreated sample may have generally lower signals,
running MACS on our treatment datasets with that set as the control would render many
functional peaks, which could be involved in chromatin interactions, as statistically
insignificant.

We therefore tried two alternative approaches, which do not use control datasets to
estimate the local backgrounds. Firstly, we used MACS on each of our ER-α ChIP-
seq datasets, with the stringent p-value of 1e-11 (default 1e-05) and the local control
switched off. Secondly, we compared the first parametrisation against the search with
no control, default p-value, and the local control flag on (Section 3.1.3). In subsequent
analysis of the study and in building of our models we choose the first parametrisation.
However for the sake of comparison, in Section 4.4.5 we benchmark the model based
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Figure 3.2: The upper part of the figure shows the ChIP-seq data across GREB region
5 min after the incorporation of E2 to the estrogen deprived MCF7 cell-line. The
peaks correspond to putative ER-α bindings. The second row shows ChIP-seq data of
0 min unstimulated sample. The third row shows the corresponding local chromatin
interactions mediated by ER-α and captured by ChIA-PET. A large fraction of the
ER-α bindings coincide with links from ChIA-PET.

on the default and alternative parametrisations and present the results in the appendix.
Before using the resultant multiple sets of MACS-found peaks in our model, we pre-
processed them to find a set of time persistent ER-α bindings. In the next section we
describe the process and creation of time series at each of the resultant regions.

3.1.3 ChIP-seq time series data

We ran MACS on 0,5,10,20, ...,320 min time course datasets. The remaining 640 and
1280 min datasets were omitted from any further analysis due to their relatively lower
total number of tags and putatively also quality of the datasets. Next, we checked
which peaks co-occurred in time. Since the locations of bindings are imprecise and
vary between time points, we sought to identify consensus regions. For that, we merged
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the resultant sets in a fashion similar to the mergeBED method from BEDTools [91].
That is, treating each region as a set we merged by union operation the regions which
co-occurred in time and were present at least twice across time points. The single
occurrences of peaks were discarded. The method is illustrated in Figure 3.3. We tried
the approach on the MACS outputs from the default and the second parametrisation
(see Section 3.1.2). When merging the peaks from the default parametrisation, we did
not include peaks from the unstimulated sample (0 min). In case of the alternative
parametrisation, to test a potential effect of adding peaks from the 0 min time point
dataset on the total number of produced consensus regions, we first included and then
discarded the set of peaks from the process.

Merging of the peaks from the default parametrisation resulted in 45598 regions,
20652 overlapped with a known gene or 300bp region upstream from its TSS while
24946 were distant from genes (distal enhancers). We extended the genes from their
canonical ENCODE (Homo Sapiens GRCh37.75 - hg19) annotated TSS to account for
their promoter region. Only the distant (non-overlapping) peaks are used in the further
analysis as our aim is to link distal enhancers to genes. Merging of the outputs from
the alternative parametrisation produced 56844 (31214 distal, 25630 overlapping) or
56407 (31014 distal, 25393 overlapping) depending on whether we included or ignored
peaks from the unstimulated sample.

We calculated the tag enrichment of each of our ChIP-seq datasets over promoter-
extended-gene bodies and over our resultant distant non-overlapping consensus ER-α
binding sites to create time series data for genes and enhancers. To create the time
series for each of our ChIP-seq datasets, we first counted the number of reads at our
consensus ER-α binding sites and at promoter-extended genes for each time point.
In order to make the time points comparable we normalized each count by dividing it
over the total number of uniquely mapped and non-duplicated tags of its corresponding
dataset. The normalised counts were then concatenated into a data-specific time series
for each ChIP-seq antibody.

3.2 Clustering Pol-II and ER-α time series data

To help visualise the occupancy dynamics at enhancers and genes we clustered the
data with the R-implementation of Affinity Propagation (AP) [33]. AP is a cluster-
ing method based on belief propagation and works iteratively by passing messages be-
tween data points until exemplars (cluster centres) automatically emerge. A preference
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Figure 3.3: Cartoon shows the process of merging individual MACS-called peaks with
the objective of finding approximate locations of time persistent ER-α bindings. In the
process MACS-detected time varying peaks from [0], 5, . . . , 320 min time points (0 is
optional and by default not included) which co-occur at least twice across time points
are merged by union operation to produce the approximate consensus locations of a
single binding. The single occurrences of peaks are discarded.
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parameter p has an effect on the final number of clusters. The R implementation of AP
can search through values of p to achieve an approximately pre-specified number of
clusters. The method is similar to k-means but can achieve much better optimisation
of the k-means objective function than the standard EM algorithm.

Prior to the clustering we standardized each time series to z-scores to bring all time
series onto the same scale. Figure 3.4 shows the clustering of the time series of Pol
II replicates and ER-α over enhancers and genes. To reduce the effect of noise, for
Pol II we clustered only the pairs of the time series for which the Pearson correlation
coefficient was at least 0.2 between replicates and the total enrichment of each time
series at least 30. For ER-α, due to lack of replicates, we only clustered the time series
with total enrichments of more than 100 reads.

The clusters show substantial differences in occupancy dynamics across both genes
and enhancers. This is expected for Pol II which is known to show a broad range of
response profiles in this system [49] but we also see some differences in ER-α profiles
suggesting that occupancy is not solely determined by the nuclear concentration of
ER-α but is also influenced by other cofactors.

3.2.1 Linking Pol II dynamics with TF occupancy

In [127] the Pol II ChIP-seq time course data considered here was used to model and
infer the Pol II dynamics across selected genes. Clustering of the inferred dynamics
identified clusters associated with ER-α-regulated early responsive genes following the
simulation with E2, characterised by early peaking (maximum) of Pol II occupancy in
their mean dynamics. Subsequently, the genes in each cluster and their Pol II dynamics
were linked to cluster-specific combinations of TF bindings occurring in vicinity of
their promoters. The analysis confirmed that FOXA1 binding is associated with ER-
α [51] and that it is involved in early transcriptional response of ER-α responsive
genes under E2 stimulation. Analogously, in this section we attempt to identify cluster-
specific patterns of TF-bindings of our AP-clustered Pol II and ER-α time series of
genes and enhancers using complementary publically available ChIP-seq data from
Cistrome Project’s database. Among the data sets which we analysed are ER-α [128],
FoxA1 [70], c-MYC [50], c-Jun [53], c-Fos [53], SRC-3 [60], TRIM24 [122], RAD21
[98], CTCF [98] and STAG1 [98]. The datasets come from the same cell-line and
stimulation, from between 45 to 60 min after E2 stimulation. Tables 3.1 and 3.2 show
the results of our analysis for Pol II clusters, the examples of which are presented in
Figures 3.4a (over enhancer) and 3.4c (over genes). In the appendix, Tables A.2 and
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(d) ER-α time series over genes

Figure 3.4: The first column of the figure shows the results of the clustering of joint
time series of both Pol II replicates at enhancers (top row) and genes (bottom row) with
Affinity Propagation. The second column shows the corresponding clustering for ER-
α time series at the enhancer (top row) and gene regions (bottom row). The remaining
clusters can seen in A.1, A.2, A.3.
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A.3 show the corresponding analysis for our clustered ER-α time series, the examples
of which are presented in Figures 3.4b and 3.4d. In each row of the tables we assess
the statistical significance of an observed number of overlaps of each TF with distal
enhancers or TSS-centred 2000bp-long regions to the expected number of overlaps
(i.e. the same size drawn at random from the set of all distal enhancers or 2000bp-
long region around each TSS). Each cluster is enriched or depleted in a TF, if the
probability of observing its fraction of overlaps with that TF is below p-value of 0.01.
The value determined from the two-tailed binomial test. The last two columns of
each row correspond in turn to the size of each cluster and difference in occupancy
between time points 0 min (E2-deprived sample) and 40 min of the mean of each
cluster, multiplied by 100 and rounded up to the first integer for easier visualisation.

The cluster-specific patterns of bindings around promoters for Pol II time series
in Table 3.2 show that the largest clusters tend to be enriched in ER-α bindings as
well as most other TFs and show elevated levels of Pol II 40 min after the stimulation
with E2, thus their profiles are associated with early transcription. In contrast the
majority of the clusters with smaller sizes which are depleted in ER-α and most of
the other bindings are associated with lower Pol II occupancy after the simulation,
which suggest lower response to stimulation with E2 or no changes comparing to the
basal level of transcription of the genes. In Table A.1 we also considered overlaps
of the TFs across the whole 300bp-extended genes. The patterns of bindings for the
genes are similar to the ones around the promoters. In case of the distal enhancers
and their Pol II dynamics, Table 3.1 shows that the five largest clusters are not only
enriched in ER-α and FoxA1 beyond average level but also all other considered TFs,
and show high occupancy of Pol II 40 min after the stimulation, suggesting that the
enhancers may be associated with active transcription occurring at their target ER-α
responsive genes. The profiles with lower than average enrichments of ER-α are linked
with occupancies of Pol II which are lower or comparable to the levels before the
stimulation. Comparison of the cluster-specific binding patterns around the promoters
and at the enhancers, suggests that ER-α and FoxA1 bindings tend to co-occur more
often at the enhancers than around the promoters.

We also considered cluster-specific bindings for ER-α. In Tables A.3 and A.4 we
observe that for the largest ER-α clusters their binding-patterns over promoter and
genes are enriched in FoxA1 and ER-α as well as most of other considered TFs. Their
links with ER-α occupancy at time 40 min after the stimulation is less clear. For
completeness, in Table A.2 we also considered the clusters of ER-α time series over
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enhancers however we do not draw any conclusions from their TF-binding patterns.

3.3 Gene-enhancer links confirmed by ChIA-PET

Next, we determined how many of our distal ER-α-bound enhancers are known to
form links with promoter-extended genes. Before proceeding, in order to refine sig-
nal to noise ratio of our data, we removed genes and distal enhancers which pos-
sessed a total of less than 30 tags across all time points of their time series in each
of our time course datasets. Next, we collected publically available ChIA-PET dataset
from ENCODE/GIS-Ruan [64] for PolII and ER-α and MCF7. The datasets can be
downloaded from http://rohsdb.cmb.usc.edu/GBshape/cgi-bin/hgFileUi?

db=hg19&g=wgEncodeGisChiaPet or GEO accession numbers: GSM970209 and
GSM970212, and viewed in UCSC browser at http://genome.ucsc.edu/cgi-bin/
hgTrackUi?db=hg19&g=wgEncodeGisChiaPet. The overall design and processing of
the datasets can be found under GEO accession number GSE39495. The sources con-
tain the high-confidence binding sites and protein-mediated chromatin interactions for
ER-α and Pol II, including respectively 3 and 4 replicates for ChIA-PET with each of
the antibodies. For the analysis we concatenated the replicates together.

In order to establish which of our promoter-extended-genes and distal ER-α bind-
ings are confirmed to interact with ChIA-PET-detected interactions, we overlapped the
joint set of regions of the both types (file B) with the concatenated set of CHiA-PET
interactions (file A). For that we used bedtools’ pairToBed. The function reports each
interaction in file A, i.e. the file which stores coordinates of head and tail of each
ChIA-PET interaction, which overlaps via both its head and its tail with at least two
regions in file B, i.e. the file which stores coordinates of genomic regions. The output
of the function consists of ChIA-PET links and per each a list of regions which over-
lap with that link. Using each list we generated all possible pairs of its elements and
retained those pairs whose elements laid on the opposite sites of its ChIA-PET link.
That process revealed a total of 2449 enhancer-promoter links, and shows that 1864
of our distal enhancers interact with at least one promoter. We suppose that many of
our ER-α distal enhancers and their associations are most likely not picked up by the
ChIA-PET method due to its limited sensitivity, and that the real number of interac-
tions is much higher. The ChIA-PET detected interactions are used as a positive set
for the purpose of developing our classifiers in chapter 4 and our prior in chapter 5 as
well as in evaluation of the performance of the models.

http://rohsdb.cmb.usc.edu/GBshape/cgi-bin/hgFileUi?db=hg19&g=wgEncodeGisChiaPet
http://rohsdb.cmb.usc.edu/GBshape/cgi-bin/hgFileUi?db=hg19&g=wgEncodeGisChiaPet
http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeGisChiaPet
http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeGisChiaPet
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CTCF ESR1 FoxA1 SRC-3 STAG1 TRIM24 c-Fos c-Jun c-MYC Count Amplitude
1 170 390 220 556 436 153 220 66 3 731 199
2 128 303 175 378 317 111 165 54 4 502 197
3 128 310 128 344 279 106 129 38 1 491 264
4 72 224 100 260 171 59 61 17 4 434 165
5 87 168 127 277 210 72 77 22 5 425 73
6 42 113 118 221 152 39 67 21 3 355 -22
7 126 114 90 215 230 76 96 28 3 342 105
8 52 109 49 143 93 28 35 10 2 335 256
9 44 168 78 193 125 45 59 14 3 292 184

10 39 103 72 158 114 32 47 6 0 291 8
11 40 104 57 131 89 28 22 3 0 282 95
12 16 101 52 132 54 18 32 1 0 276 57
13 55 72 88 160 122 34 82 10 2 265 -27
14 24 49 96 148 95 23 46 3 0 263 -34
15 27 123 42 119 74 18 28 4 0 258 206
16 52 97 69 167 115 44 80 15 1 253 233
17 21 70 33 71 40 14 6 0 0 233 -8
18 17 66 31 65 37 6 8 4 0 221 -2
19 14 46 38 51 27 8 9 1 0 219 8
20 26 52 36 72 42 13 25 3 1 218 68
21 40 81 48 110 75 28 41 8 0 215 105
22 60 63 29 96 81 33 43 6 1 213 116
23 42 50 53 93 75 18 46 12 4 212 211
24 26 39 35 69 49 16 28 1 0 211 136
25 25 68 25 65 43 12 31 7 1 211 171
26 12 44 23 49 19 5 2 0 0 203 -15
27 10 49 27 41 28 14 20 5 0 203 -206
28 30 54 35 89 57 14 21 2 1 202 112
29 29 38 29 59 45 22 36 5 1 198 -2
30 22 66 54 94 51 14 21 5 0 198 137
31 15 47 48 75 36 12 9 0 0 190 120
32 22 32 49 91 67 14 40 12 2 183 -88
33 11 45 25 49 15 5 5 0 0 182 51
34 15 40 30 47 27 15 7 4 0 180 61
35 8 33 43 48 34 14 17 3 0 174 62
36 5 30 14 45 18 10 8 1 2 170 -51
37 10 29 25 40 18 7 12 1 0 167 -82
38 14 37 34 64 43 12 9 1 1 163 45
39 8 31 13 26 16 17 11 5 0 160 -127
40 16 47 23 38 24 10 6 1 0 160 177
41 13 46 9 25 13 14 3 1 0 143 -145

enriched, p < 0.01
enriched, p < 0.005
enriched, p < 0.001
depleted, p < 0.01
depleted, p < 0.005
depleted, p < 0.001
neither

enriched, p < 0.01
enriched, p < 0.005
enriched, p < 0.001
depleted, p < 0.01
depleted, p < 0.005
depleted, p < 0.001
neither

drops between 0-40min

stationary

rises between 0-40min

Table 3.1: The table shows the cluster-specific patterns of TF bindings across ER-
α enhancers for the corresponding Pol II clusters in figure 3.4a. The count column
indicates the size of the cluster. The amplitude column shows the difference between
Pol II occupancies in E2-deprived (0 min) and E2-stimulated samples (40 min) in the
mean dynamics of each cluster. (dynamics of orange replicate)
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CTCF ESR1 FoxA1 SRC-3 STAG1 TRIM24 c-Fos c-Jun c-MYC Count Amplitude
1 244 64 18 84 305 77 32 24 50 434 258
2 216 95 32 77 255 79 28 12 3 391 216
3 206 44 18 57 235 81 36 25 30 359 185
4 215 57 28 59 242 69 31 14 2 341 82
5 160 27 11 34 185 39 10 3 15 299 78
6 154 38 27 41 189 44 21 6 7 290 28
7 187 48 31 43 225 78 34 9 8 287 224
8 165 49 15 42 187 62 24 11 7 270 301
9 152 56 23 68 199 64 22 9 6 259 331

10 152 26 31 36 184 55 17 9 9 255 -24
11 166 52 15 58 198 65 19 9 5 243 302
12 135 59 14 42 165 50 16 12 7 237 313
13 47 7 5 10 52 14 3 2 2 227 -238
14 123 33 14 42 144 50 21 11 3 226 14
15 115 26 15 32 121 32 15 11 12 218 264
16 140 34 16 37 159 50 20 6 5 208 206
17 93 20 24 36 118 42 25 9 2 196 2
18 111 30 8 38 142 43 18 13 7 194 229
19 63 12 7 13 87 19 5 0 1 194 -27
20 127 23 22 41 134 53 25 14 7 192 120
21 50 10 4 6 54 21 2 1 0 190 -174
22 36 6 7 6 41 9 2 0 0 161 -271
23 49 5 6 11 63 13 2 1 2 154 -117
24 86 15 18 31 102 26 12 2 2 152 -186
25 51 9 7 11 64 13 1 1 1 146 -219
26 34 10 2 5 40 7 5 1 0 146 -228
27 35 6 2 5 36 9 1 0 1 142 -39
28 56 10 10 9 71 20 6 0 0 140 -99
29 59 7 7 10 59 17 9 3 2 136 -106
30 86 17 9 24 99 33 11 7 4 133 215
31 58 11 7 18 67 19 3 3 3 118 57
32 50 9 7 10 63 22 1 1 0 117 -186
33 43 5 2 4 40 10 2 1 1 99 -45
34 36 12 6 9 43 10 4 0 1 96 63
35 22 7 6 4 22 9 0 0 1 93 -7
36 25 2 1 2 20 13 0 0 0 93 -99
37 15 6 1 3 14 3 1 1 0 85 133
38 17 4 1 1 17 5 1 0 0 85 -79
39 27 9 3 6 20 10 1 0 1 74 97
40 22 7 2 2 30 8 1 0 1 73 214
41 13 6 0 5 13 5 4 1 0 73 -24

enriched, p < 0.01
enriched, p < 0.005
enriched, p < 0.001
depleted, p < 0.01
depleted, p < 0.005
depleted, p < 0.001
neither

enriched, p < 0.01
enriched, p < 0.005
enriched, p < 0.001
depleted, p < 0.01
depleted, p < 0.005
depleted, p < 0.001
neither

drops between 0-40min

stationary

rises between 0-40min

Table 3.2: The table shows the cluster-specific patterns of TF bindings across 2000bp-
long TSS-centred regions for the corresponding Pol II clusters in figure 3.4c. The count
column indicates the size of the cluster. The amplitude column shows the difference
between Pol II occupancies in E2-deprived (0 min) and E2-stimulated samples (40
min) in the mean dynamics of each cluster. (dynamics of orange replicate)
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3.3.1 Comparison of ChIA-PET confirmed and unconfirmed en-
hancers

We analysed the enrichments across the time series of ChiA-PET-confirmed interacting
enhancers and those with no ChIA-PET data to check whether there are any underlying
differences in the number of tags across their time series, and thus to assess the relative
strength of their signals. The histograms of their enrichments are shown in Fig. 3.5,
we observe that the distributions of each of the two classes are comparable. This
analysis was carried out to provide evidence that the results derived on the basis of the
interacting enhancers generalise to the set of enhancers with unknown status. This will
be important in the predictive phase in Chapter 4 and in the inference of the model in
Chapter 5.

3.3.2 Links within and outside domains

Since Topologically Associating Domains (TADS, see Section 2.3) are shared across
mammalian genomes, we therefore use the TADS from [26] (Table S3 - Domains in
mESC, mouse Cortex, hESC, IMR90) to stratify our interactions to inter-domain inter-
actions and intra-domain interactions. The majority (82%) of enhancer-gene interac-
tions lay within domains. In case when one of the interacting loci lays on a border of
two domains, the interaction is considered intra-genic if the other interacting element
is in any of the two adjacent domains.

3.4 Discussion

In this chapter we present the experimental protocol and methodology designed to in-
vestigate the effect of estradiol treatment on ER-α receptor and its resultant profile
of genome-wide binding. We include the description of the pre-processing and trans-
formation of the raw ChIP-seq data into a form which will be used as features in the
supervised and unsupervised models covered in the Chapters 4 and 5. Among aspects
of the pre-processing of data discussed, we include the alignment of sequenced reads
of ER-α and other associated ChIP-seq datasets, discovery of estrogen binding sites
with MACS and our approach to estimate the locations of time persistent bindings of
ER-α given their time-dependent variability and noise in the data. The regions were
used for the evaluation of time point read counts, and creation of time series data. The
counts were normalised by a total number of reads in each dataset to correct for a
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Figure 3.5: The graphs (a, b, c, d, e) show distributions of sums of ChIP-seq tags across
time series of ChIA-PET-confirmed interacting enhancers (green) and the ones with
unknown status (red) collected across all 23 chromosomes. The tags are calculated
over enhancer bodies for ER-α, both Pol II replicates, H2AZ and H3K4me3 ChIP-seq
datasets and normalised by the total size of each set.
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lack of comparability between enrichment of time points in time series, resulting from
non-unique mappings of some reads, differences in read depth and quantity of starting
material.

We subjected the time series to a preliminary clustering analysis with the AP al-
gorithm to reveal dynamics of time series across genes and distal ER-α bindings, and
their putative usefulness for association of ER-α enhancers to their target genes. The
clusters show substantial differences in occupancy dynamics across both genes and en-
hancers. This is expected for Pol II which is known to show a broad range of response
profiles in this system [49] but we also see some differences in ER-α profiles suggest-
ing that occupancy is not solely determined by the nuclear concentration of ER-α but
could also be influenced by other cofactors. We attempted to link the clusters of Pol
II across genes and enhancers to patterns of TF bindings at those two types of regions.
The enrichments of several ER-α associated TFs from the system, stimulation and sim-
ilar timing show that some early transcription could be associated with patterns of TFs.
In general the higher the levels of enrichments of the TFs the more likely that the genes
are transcriptionally active after the stimulation with E2. For enhancer time series of
Pol II we observe that the largest clusters and their enhancers are significantly enriched
for most of the considered TFs which suggests their involvement in active transcrip-
tion, presumably occurring at their target genes. Also, the simultaneous binding of
ER-α and FoxA1 is more likely to occur at the enhancers than at the promoters.

Overlapping the set of pairs of ER-α distal bindings sites and gene and promoter
regions with ChIA-PET data revealed that the majority of enhancers lack experimen-
tally confirmed empirical assignments most likely due to the limited sensitivity of
the experimental technique. We showed that the interaction data were not biased to-
wards enhancers, with higher number of ChIP-seq tags. Using experimentally vali-
dated pairs and publicly available locations of TADs, we confirm that the majority of
ER-α-mediated enhancer-promoter contacts occur within the domains. The unknown
targets of the ER-α enhancers could be addressed and inferred by computational mod-
els which use other complementary sources of evidence of chromatin contacts. Our
efforts to build such models are presented in the next two chapters.



Chapter 4

Supervised learning

In this chapter we attempt to address the problem of linking ER-α-bound enhancers
to their target genes by applying a Naive Bayes algorithm which is a supervised clas-
sification algorithm. We investigate whether similarities between time series data at
enhancers and genes, quantified by the Pearson correlation coefficient, can be used
to discriminate interacting from non-interacting enhancer-gene pairs. An important
feature of our approach is that we combine time course ChIP-seq data with genomic
distance to greatly improve performance.

In order to classify each pair of the loci, the method approximates the joint distri-
bution of the features through an assumption of their conditional independence. Thus,
each input dataset contributes equally to the binary classification task. This property
is especially useful for our task since it allows densities to be modelled using simple
one-dimensional estimates. In order to make the classifier robust to zero frequencies
in test mode, corresponding to unobserved values in the training set, we apply kernel
density estimation to model densities.

We train the method on the ChIA-PET interactions from all odd chromosomes,
and test the model on interactions from all even chromosomes. Using the test data, we
estimate FDR for previously unseen instances and in consequence make predictions
for the ER-α enhancers which lack assignments in the ChIA-PET data.

Finally, we associate target genes with their chance of being differentially ex-
pressed under stimulation with estradiol, and validate our predictions using indepen-
dent publicly available GRO-seq and RNA-seq data from the same system.

70
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4.1 Enhancer-centric Naive Bayes model

Suppose that an enhancer j = 1, . . . ,J regulates a gene k = 1, . . . ,K at a number of
time points, and that their contact is mediated by a protein. We can expect that the
time course data at an enhancer j i.e. X j = (x j,1, . . . ,x j,D) and gene k i.e. Yk =

(yk,1, . . . ,yk,D) would on average be more correlated for interacting pairs than their
non-interacting counterparts. Here, we intend to learn the underlying distribution of
correlations of the two classes of pairs for four complementary datasets and on their
basis jointly classify a new unobserved instance. In addition, we combine the time
course derived attributes with the corresponding distribution of genomic separation for
interacting and non-interacting elements.

We propose an enhancer-centric model of contacts, where each enhancer can in-
teract with only one gene. The model takes into account the ratios of products of two
distributions to provide a probabilistic assessment that an enhancer j is more likely to
be interacting with a particular gene k than any other gene. The gene-centric model
is simplified in a sense that it does not take into account the promoter-promoter in-
teractions which are known to play important part in the higher order gene regulatory
complexes. There is also no model of the relationship between enhancers regulating
the same promoter. This simplification leads to a particularly simple classification
model.

4.1.1 The definition of the model

Our model is defined in terms of two K-dimensional random variables I j = I j,1, . . . , I j,K

and D j = D j,1, . . . ,D j,K . The first variable I j encodes a structure of simultaneous
contacts of a given enhancer j with its surrounding K putative target genes. The ran-
dom variable I j is composed of K binary entries I j,k indicating whether the (E j,Gk)

forms an interacting (I j,k = 1) or non-interacting pair (I j,k = 0). The random variable
D j is a KxN-dimensional matrix of observed attributes with each row (D j,k) consist-
ing of N values of pair-wise comparisons between time series of an enhancer j and
a gene k, and their genomic location. The first set of comparisons rely on Pearson
correlation and involves calculating its value c j,k,n for each pair (E j,Gk), i.e. its time
series (X j,n,Yk,n), and for each dataset n ∈ N, where N is a number of time course
ChIP-seq datasets. Additionally, the vector also contains the Euclidean distance d j,k

calculated between the genomic coordinates of the ENCODE defined canonical TSS
(Homo.Sapiens.GRCh37.75 (hg19)) of a gene k to the centre of an enhancer j. The
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distance serves as another attribute.

The joint likelihood of the model can be written as:

P(D j,I j) = P(D j|I j)P(I j) . (4.1)

The model provides a probability of observing a particularD j under a given struc-
ture I j. Due to its regulatory role, an enhancer is unlikely to regulate a high number
of genes, thus we can expect that the true P(I j), which in the Bayesian treatment is
a prior distribution over the structures, would be sparse. Moreover, we could expect
that D j,k and D j,k′ of any two interacting pairs k,k′ would be interlinked, as correla-
tions between gene-enhancer pairs are not independent variables. These dependencies
would be reflected in a true form of the likelihood P(D j|I j). Lastly, we could also
expect that the N + 1 attributes i.e correlations c j,k,n and distance d j,k of a pair j,k of
the vector D j,k would also be correlated.

4.1.2 Approximate joint likelihood

The modelling of all dependencies however is infeasible given the sparsity of our train-
ing data. Here, we restrict the form of the joint distribution and construct an approxi-
mate joint probability of enhancer-gene contacts. Pairwise correlations allows a valid
likelihood if we restrict ourselves to one gene per enhancer. To model multiple en-
hancers per gene requires a likelihood over the data vectors as considered in Chapter
5.

a) The joint distribution factorises

We assume that the likelihood P(D j|I j) can be factorised and written in the form:

P(D j|I j) = ∏
{k:I j,k=1}

P(D j,k|I j,k = 1) ∏
{k:I j,k=0}

P(D j,k|I j,k = 0) (4.2)

where I j = I j,1, . . . , I j,N and D j = D j,1, . . . ,D j,N . Hence the distribution of each D j,k

is conditionally independent of other allocations and conditional only on the indicator
variable I j,k.
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b) An enhancer regulates a single gene

We assume further, that an enhancer j can interact with only one gene k. We restrict
the event space of P(D j, I j) to its subspace P(D j,I

(1)
j,k ), where I(1)j,k = 0, . . . , 1

kth
, . . . ,0 .

From 4.2 the events are given by:

P(D j|I
(1)
j,k = 0, . . . , 1

kth
, . . . ,0) = P(D j,k|I j,k = 1) ∏

{l:l 6=k}
P(D j,l|I j,l = 0) . (4.3)

The prior distribution P(I j) follows a multivariate Bernoulli distribution, and thus the
restriction is equivalent to setting the probabilities of all the structures I j with non-
singular number of contacts i.e. I(2)j ,I

(3)
j , . . . ,I

(K)
j to zero. For the remaining I(1)j,k we

assume that the prior is uniform across these sparse vector, i.e.

P(I(1)j,k = 0, . . . , 1
kth
, . . . ,0) = 1/K . (4.4)

hence each I(1)j,k is equally likely.

c) The distribution of attributes is independent

Assuming that the attributes are conditionally independent, the likelihood component
P(D j,k|I j,k) becomes:

P(D j,k|I j,k) = P(d j,k,c j,k,1, . . . ,c j,k,N |I j,k) = P(d j,k|I j,k) ∏
n∈N

P(c j,k,n|I j,k) (4.5)

where d j,k is a distance from the centre of an enhancer j to the TSS of a gene k, whereas
c j,k,n is a correlation between the time series of the nth time course dataset between an
enhancer j and gene k.

The above assumption of conditional independence in 4.5 and the fact that each
vector I(1)j,k is a 1-of-K (i.e one-to-one relation) representation of K class indicators
makes this algorithm a special case of Naive Bayes (NB) model and hence we will
refer to our model as Naive Bayes.
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The likelihood

Combining the assumption of the factorisable likelihood (4.2) with the conditional
independence of attributes (4.5) yields,

P(D j|I j) =
K

∏
k=1

P(D j,k|I j,k) =
K

∏
k=1

[
P(d j,k|I j,k)∏

n∈N
P(c j,k,n|I j,k)

]
(4.6)

Restricting the event space to single enhancer-gene events (4.3) results in,

P(D j|I
(1)
j,k ) =

[
P(d j,k|I j,k = 1)∏

n∈N
P(c j,k,n|I j,k = 1)

]
∏
{l:l 6=k}

[
P(d j,l|I j,l = 0)∏

n∈N
P(c j,l,n|I j,l = 0)

]
(4.7)

4.1.3 Posterior enhancer-gene allocations

The posterior distribution of the model is:

P(I(1)j,k |D j) =
P(D j|I

(1)
j,k )P(I

(1)
j,k )

∑
K
k=1 P(D j|I

(1)
j,k )P(I

(1)
j,k )

(4.8)

The posterior distribution can be used to find the probability of each structure I(1)j,k

given the pair-wise comparisons inD j, i.e. the values of the data-specific correlations
and distance for each pair (E j,Gk) and all complementary pairs (E j,G{l:l 6=k}). The
posterior probabilities can be used to infer the most likely target of an enhancer j out
of K genes.

4.2 Training of the model

Since the P(D j|I j) is factorisable (4.2) and the attributes are conditionally indepen-
dent (4.5), thus we only need to estimate the univariate distributions of attributes for
positive (I j,k = 1) and negative (I j,k = 0) pairs, i.e. P(d j,k|I j,k) and P(c j,k,n|I j,k) where
n ∈ N, to train the model. The product of the attributes i.e. P(D j,k|I j,k), along with
the prior P(I j,k) completely characterises each interacting and non-interacting pair
(E j,Gk).
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4.2.1 Set of data-specific correlations and genomic distances

The method uses five attributes: correlations of Pol II, ER-α, H2AZ, and H3K4me3
ChIP-seq time course data as well as one distance-based. In order to create the first
four sets, we correlated each individual normalized time series from distal ER-α en-
hancers with their corresponding time series from promoter-extended gene bodies (i.e
data aggregated over a gene region and the 300bp-long upstream region). To insure
robustness, for the Pol II replicates we replaced each pair of correlations with their
average value. The other feature is a genomic distance between each (E, G) pair, cal-
culated from an enhancer’s centre to a gene’s canonical TSS shifted upstream by 300
bp. We transformed the absolute values of the distances to log10 space and used the
sign to distinguish upstream (positive sign) and downstream (negative sign) connec-
tions.

4.2.2 Set of interacting and non-interacting pairs

In order to estimate the distributions of correlation P(c j,k,n|I j,k) and distance P(d j,k|I j,k)

as well as to validate the model, we required a labelled dataset consisting of examples
of interacting and non-interacting enhancer-gene pairs. For the positive set, we over-
lapped the combined set of MCF7 ChIA-PET of Pol II and ER-α with the set of pairs
of non-overlapping ER-α enhancers and extended-genes (refer to Section 3.3 for more
technical details).

To define the negative set, we restricted ourselves to all enhancer-gene pairs involv-
ing known interacting enhancers coming from the positive set and all the remaining
non-targeted genes. Enhancers without any confirmed interactions from ChiA-PET
data were not used for training as we have no information about their target genes.

4.2.3 Training, test and predictive sets

We partitioned the total set of positive and negative interactions into training and test
sets. The training set consisted of full set of enhancer-promoter pairs from odd chro-
mosomes where enhancers have a known interaction partner from ChIA-PET evidence.
Similarly, the test set was formed from all corresponding pairs from even chromo-
somes. When training and testing the classifier, we have not included enhancers that
do not have any interactions according to the ChIA-PET data. These enhancers are
most likely not picked up by the ChIA-PET method due to its limited sensitivity and
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would introduce many false negatives into our training and testing data. However, we
do apply the classifier to all enhancers when making target gene predictions.

4.2.4 Kernel density estimation of distributions of attributes

We used KDE with a Gaussian kernel and interacting (positive) and non-interacting
(negative) samples from the training set to estimate the distributions P(c j,k,n|I j,k) and
P(d j,k|I j,k). KDE provides smooth PDFs over a pre-specified region which ensures that
the frequencies for unseen instances, lying in-between observed values, are non-zero.
That provides the advantage that any distributions estimated in the training phase can
be also used for testing and in predictive phase.

We used the data-specific correlations and distance of our interacting (positive)
and non-interacting (negative) pairs to estimate each distribution. To ensure that the
bandwidths of positive distributions are biologically meaningful and robust, we used
cross-validation. As part of the approach, we iteratively ignored all pairs of each indi-
vidual chromosome from our total and calculated the likelihood of KDE of the resultant
reduced set. We then used the maximum of the sum of the log-likelihood for multiple
values of the bandwidth as an estimate of its value. In contrast, due to a large num-
ber of negative examples and computational cost associated with the KDE, employing
the same approach for negative distributions would be infeasible. Their size, however,
also entails less requirement for optimised fitting, and thus to select the bandwidth we
resorted to the Scott’s rule [102].

4.3 Evaluation of the model

Following the training of the model on the training data, we evaluated the posterior
probabilities for each enhancer-promoter interaction in the training and test sets. We
could then make predictions based on posterior probabilities and estimate precisions
for different posterior probability thresholds and different combinations of attributes.
The precisions were then visualised using precision-recall (PR) curves. The training
and test errors could also be established for different cut-offs. Since the test data was
not used to train the model we consider the test errors to be reasonable estimates of
performance. Even though in Section 3.3.1 we established that the average ChIP-
seq tag counts across time courses of ChIA-PET-confirmed interacting enhancers and
unconfirmed enhancers and thus signal strengths are comparative, we note that the
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performance assessed for enhancers with grand truth ChIA-PET data could be unrep-
resentative for those enhancers with no data.

4.3.1 Precision-Recall curves

In order to create the curves, we sorted the probabilities of positive and negative
elements. Next using the ordered scores, we estimated precisions at a number of
monotonously decreasing probability cut-offs. The precisions are defined as a num-
ber of positives to the number of negatives and positives, with posterior probabilities
over a threshold value. We also obtained a corresponding true positive rate (TPR),
defined as ratio of the number of predicted positives to the total number of predicted
positives.

To measure the performances of the model, we plotted the TPR values of 10%,
20%, and 30% against their precisions. Both values corresponded to some levels of
threshold. We measured the model’s performance for a number of selected combina-
tions of input data, to choose the most informative combination.

4.3.2 MAP curves

Additionally, we considered an alternative global MAP measure. Under our model
each enhancer possesses a maximum aposteriori (MAP) choice of gene. This gene is
our best guess of an enhancer’s target. The MAP measure is the fraction of times the
MAP inferred target genes could be found among positive set of interactions.

4.3.3 The test and training errors

The test and training errors (FDRs) were computed at each posterior probability thresh-
old as,

FDR = 1−Precision(TPR) . (4.9)

Since the error function is not monotonously decreasing, we searched for a unique
lowest threshold which satisfied a selected error rate while maximising the TPR (a
right most TPR value of PR curves). This value of test error is used in the predictive
phase for inferring missing links of the remaining non-interacting (according to ChIA-
PET) ER-α enhancers.
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4.3.4 Performance within and outside TADs

We stratified our predicted interactions at 10%, 20%, and 30% TPR thresholds into
those that lie within domain and those that crossed domain boundaries. Each TPR
threshold maps to a subsets of negative and positive links, and therefore each subset
was partitioned into inter- and intra- domain interactions. We then tested precisions at
each of the thresholds for each of the two subsets.

4.3.5 Validation of model’s predictions with GRO-seq and RNA-
seq data

We used our model to infer gene targets of interacting and non-interacting enhancers.
We only accepted the enhancer-gene pairs with probability values exceeding a test-data
determined threshold with the FDR > 0.25. To summarise the links, we combined the
filtered posterior probabilities according to the rule in eq 4.10

P(card({ j ∈ J : I j,k = 1})> 0) = 1− ∏
{ j∈J:I j,k=1}

(1−P(I(1)j,k |D j)) (4.10)

to provide the probabilities that a gene k is regulated by at least one enhancer. The
product in the equation is equal to the probability that none of the predicted regula-
tors { j ∈ J : I j,k = 1} of the gene k regulates the gene. The higher the number of the
assigned regulators the lower the product in the equation and thus the higher the prob-
ability that at least one of the predicted enhancers regulates the gene k, increasing our
confidence that the gene k is ER-α regulated.

The high-precision, publically available GRO-seq data from [42], described and
accessible at GEO accession number GSM678536, aimed to detect the primary estro-
gen target genes, i.e., those genes which are being actively transcribed shortly after
treatment with E2. This experiment detects only the early changes in gene expression
of the primary targets, while later changes in the expresion of genes which are not
dirrecly regulated by ER-α are not detected.

The experiments were performed in the same cell-line and context as ours. Using
the data and our cumulative scores from 4.10, we assessed how many of our predicted
distally regulated genes were differentially expressed at early time points. Using the
EdgeR processed GRO-seq data from GSE27463 we filtered the GRO-seq determined
DE genes at 10, 40, 160 min after E2 stimulation with q-value (multiple hypotheses
testing adjusted p-values from EdgeR) of less than 0.05, 0.01 and 0.001. For each
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q-value, we combined the DE genes from each of the time points into a single list.

Similarly, we repeated the assessment with our in-house RNA-seq data determined
DE genes. In order to determine the DE genes from our RNA-seq data, we first mapped
our t = 0, 30, 60, and 90 (two replicates for each time-point) RNA-seq datasets to hg19
genome using Tophat [121] and counted the reads over genes using HTseq-count [1].
We then used DESeq2 [69] to perform differential expression for t = 30, 60, and 90
against time 0 (control). We filter the genes with q-value of less then 0.05, 0.01, 0.001,
and as previously combined the DE genes from each time point into one list of early
responsive DE genes. The data will be used for validation of our predictions (see
Section 4.4.6).

4.4 Results

We demonstrate our method using ChIP-seq time course data collected from the MCF7
breast cancer cell-line stimulated by estrogen. After stimulation, the ER-α TF translo-
cates into the nucleus where it binds numerous enhancers to regulate transcription of
target genes. The genome-wide occupancy of ER-α along with RNA polymerase (Pol
II) and two histone marks (H3K4me3 and H2AZ) were measured via ChIP-seq at eight
consecutive times after exposure of cells to estradiol. Public ChIA-PET data are also
available in this system for testing our method’s performance [34, 63, 64]. We train and
test the model as described in Section 4.2. Here we show the results of the analysis.

4.4.1 Time series correlation and distance-based features are in-
formative about enhancer-promoter interactions

Figure 4.1 shows the distributions of P(c j,k,n|I j,k) for each dataset estimated on the
training dataset. As expected, the distributions of positive interactions differ substan-
tially from the non-interacting pairs for all four datasets, with interacting regions more
highly correlated on average. The difference is most pronounced for ER-α and Pol II
(Fig. 4.1a and Fig. 4.1b) while there is a much smaller difference for the histone marks
H2AZ and H3K4me3 (Fig. 4.1c and Fig. 4.1d).

Similarly, we also compare the distribution of genomic separation for interacting
and non-interacting pairs in Fig. 4.1e. Although a highly informative feature, there is
a substantial overlap in the positive and background distance densities due to the large
separation of many ER-α bound enhancers from their target promoters; distance alone
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is insufficient for accurate prediction of interactions, it is however a useful addition to
the other attributes.

4.4.2 Fisher’s Linear Discriminant performance

Prior to developing our models, we investigated whether Fisher’s linear discriminant
analysis, which is a commonly used classifier, could perform efficient discovery of
interacting and non-interacting enhancer-promoter pairs using combinations of corre-
lation and distance-based features. Fisher’s discriminant analysis finds c− 1 linear
discriminant axis, where c equals to the number of class labels in a given problem,
such that when data points of each class are projected on the axis, the between-class
separation of the resultant projections is highest.

We trained Fisher’s linear discriminant analysis on the data from odd chromosomes
with 1305 interacting and 1,068,522 non-interacting pairs (i.e. c = 2), and tested the
method on all remaining 1144 of interacting and 713,790 of non-interacting pairs from
all even chromosomes. Figures B.1 and B.2 show class-size-normalised (i.e. divided
by their class size) and standard relative-size-reflecting histograms for the projections
of the two classes of data in the training set. Fig. B.1 shows that size-normalised
histograms of the projections of the two classes appear to be well separated. However,
Fig. B.2 shows that the projections of interacting pairs account for a very small fraction
in the total number of projections.

In order to formally test performance of the classifier, we used Precision-Recall
(PR) curves with increasing values (i.e. from the most negative to the most positive
value of the projections) of the cut-off levels. Fig. B.3 shows that performance of
the classifier is very low. That finding highlighted the need for less generic and more
problem-specific methods.

4.4.3 Naive Bayes classifier performance

We developed a Naive Bayes classifier which integrates several discriminative features
to estimate the probability of interactions between an enhancer and putative target
genes. Fig. 4.2 shows predicted interactions with only a small number confirmed by
ChIA-PET (green). We evaluated classifier performance using precision-recall (PR)
curves (Fig. 4.3a and Fig. 4.3b). The classifier was trained on data from odd chro-
mosomes and the results were used to establish which combination of features is most
informative. Data from even chromosomes was then used as an unbiased test set to
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Figure 4.1: The graphs (a, b, c, d) show positive (green) and negative (yellow) distri-
butions of correlations between pairs of time series of 300bp-upstream-extended-gene
regions and enhancer bodies for ER-α, Pol II, H2AZ and H3K4me3 collected across
all odd chromosomes. The figure (e) shows the distribution of genomic distances be-
tween centres of distal enhancers and 300bp-upstream-shifted-TSS of genes. The set
of positive and negative pairs was constructed using 300bp-upstream-extended-genes
and distal enhancers.
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establish the performance of the selected model and to estimate decision cut-off lev-
els. However, we do not observe significant over-fitting which is not surprising given
the relatively small number of features used. Comparison of different combinations
of correlations and distance features, including distance-alone and correlation-alone
variants shows that data from ER-α or Pol II or both can be combined with distance to
greatly enhance predictive performance. The H2AZ and H3K4me3 time course data
were found not to be particularly informative, consistent with Fig. 4.1 which shows
these histone marks to have a less pronounced difference in distribution for positive
and negative links. Table 4.1 shows that using the probability cut-offs to infer links
across all 23 chromosomes our model (combination of features: Pol II, ER, distance)
consistently outperforms the distance-alone model in terms of the number of discov-
ered true links. We show that at FDR equal to 0.25 our model infers 33-times more
interactions than predictions based on proximity alone (see table 4.1). In addition to
considering PR benchmark we also tested how often using maximum a posteriori prob-
abilities (MAP) to link enhancers (in the training and test data) to their most probable
promoters would result in correct assignments according to the ChIA-PET data (right-
most column of plots in Fig. 4.3a and Fig. 4.3b).

FDR data/distance distance ratio
0.4 20987 7947 2.6
0.3 12645 1611 7.8

0.25 8432 258 32.7
0.2 4359 230 19.0
0.1 1132 213 5.3

Table 4.1: Table shows the number of predicted links by distance-alone and distance-
assisted models and varying test errors.

4.4.4 Inter-domain and Intra-domain predictions

In order to assess the performance of the model on discovery of intra-domain inter-
actions and the ones involving elements from two different domains, we stratified our
predicted interactions into those two groups, and used PR and MAP measures.

The majority (81%) of enhancer-promoter interactions lay within domains. The PR
curves in Fig. 4.4a and 4.4b show that combining ER-α data with distance information
yields the best results. Interestingly, a comparison of distance-alone and data-alone
cases within domains, showed us that the performances of those two are comparable,
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Figure 4.2: The cartoon shows the NB inferred interactions in three classes with de-
creasing test errors of 0.2, 0.25, 0.3 FDR levels, and corresponding lower bound prob-
ability cut-offs of 0.66, 0.47, 0.35. The class membership of each predicted link and its
confidence level is indicated by its darker/lighter shading of its colour (more/less con-
fident). The green/grey colour indicates whether each predicted link is confirmed/un-
confirmed by ChIA-PET.

and that data alone possesses a very high predictive power. Thus, in summary, we
deduce that these features are complementary to each other.

On the contrary, see Figures: 4.5a, 4.5b, focusing on the remaining inter-domain
interactions we noticed that, due to a large number of negative interactions for feature
spanning TADS, the correlation data alone is insufficient for efficient classification.
The proximity criterion, despite being better than the data-alone, also does not offer
the performance that we achieved in the intra-domain cases. Interestingly although the
above are largely imprecise, the distance-assisted correlation variants still performs
not only better than data but also distance-alone models, consistent with the previous
section.

4.4.5 Alternative data processing strategies

We investigated different promoter sizes for promoter-extended-gene regions and their
effect on the performance of the model. The comparison between PR curves in Fig.
B.9, B.10 and B.11, B.12 in the appendix shows that increasing the promoter sizes
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Figure 4.3: Figure shows the performance of the model for training/test data, measured
by Precision-TPR and MAP scores, for selected combinations of datasets in the model.
The Precision-TPR curves show the accuracy of the predictions with the highest 10%,
20%, 30% scores (posterior probabilities), and values above corresponding thresholds.
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Figure 4.4: Figure shows the performance of the model for training/test data. As in
Fig. 4.3 but only considering interactions within TADs.
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Figure 4.5: Figure shows the performance of the model for training/test data. As in
Fig. 4.3 but only considering interactions spanning two TADs.

from 300bp to 1500bp produces no effect on the overall performance.

We also tested an alternative promoter-centric approach in which we overlapped
the ER-α enhancers with 3000bp-long regions centred at TSS. That resulted in a posi-
tive set with reduced number of enhancer-intragenic links. We used the positive set and
the unchanged negative set from the previous definition for training and testing of the
model. Figures B.11, B.12 and B.13, B.14 show a performance comparison between
the promoter-centric and the promoter-extended (1500 bp) gene models. In contrast to
the original promoter-extended-gene model, the Fig. B.13 shows that the time course
data of H3K4me3 and H2AZ, which are characteristic chromatin marks of promoter
regions, improve the performance of the promoter-centric model, however the model
has less coverage and ignores some functional intra-genic links. Comparison of the his-
tograms of the features for the TSS-centric and the original promoter-extended model:
B.5, B.6, B.7, B.8 shows that the enrichments of H3K4me3 for the TSS-centric model
are more positively correlated.

We used GRO-seq data to compare the ability of inferring DE genes of the two
model. The Fig. B.20 shows that the precision and the number of predictions of ER-α
targeted genes differs, however the differences are not statistically significant.
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4.4.6 Naive Bayes predicts ER-α-regulated transcriptionally ac-
tive genes

Finally, we used our method with Pol II and ER-α time course data to provide a highly
confident (FDR > 0.25) list of direct gene targets of ER-α in the context and cellular
system under study. This list included 3146 genes with at least one enhancer link, and
consisted of those genes which are regulated either by both distal and by our previ-
ous assumption intra-genic enhancers located within their bodies or the ones regulated
solely by distal enhancers. For each gene on the list, using 4.10, we calculated the
probability that at least one of its NB assigned regulators controles its gene. The score
is higher for those genes for which our model assignes a higher number of distal en-
hancers.

We then investigated whether any of the genes from our list were actively being
transcribed shortly after the stimulation with E2. For that we used GRO-seq and RNA-
seq data-dermined differenentially expressed genes. The data came from the same
context and cell line as our experiments, and early time points after stimulation with
E2 (see Section 4.3.5).

In Fig. 4.6 we linked the scores of our genes with their transcriptional activity.
In that figure, starting from the highest and gradually decreasing the value of cut-off
level until it reached its minumum, we extracted subsets of genes from our list with
values of scores above each cut-off level and at each of the steps compared against a
list of differentially expressed (DE) genes obtained from GRO-seq data in [42]. PR
curves showed that the larger the value of the score of a gene, the higher the chance
that the gene is differentially expressed. Fig. 4.7 shows the corresponding DE genes
as established from our in-house RNA-seq data. Both figures show also the accuracy
of using the absolute value of the distance (proximity) between gene’s canonical TSS
and its closest ER-α binding as a predictor of gene’s activity for the list of genes which
possessed at least one ER-α binding within 40kB from their canonical TSS. Both GRO-
seq and RNA-seq Figures show that NB is capable of discovering DE genes with a
much higher precision than the closest gene approach.

4.4.7 GO enrichment

We tested whether our predicted genes are enriched in gene ontology classes with
ToppGene GO tool [18]. We assessed the ER-α regulated genes on the basis of their
involvement in biological processes, diseases, and potential treatments. Table 4.2
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Figure 4.6: The PR curves assess the performance of Naive Bayes and proximity cri-
terium on the ability to predict differentially expressed genes as detected by GRO-seq
experiment and extracted at 3 different q-values (confirdence levels) of 0.001, 0.01,
0.05. The predictor for the transciptional activity of each gene of the NB predicted
ER-α regulated genes is the probability that at least one of its NB assigned distal reg-
ulators indeed controls it. The Second predictor for the transciptional activity of each
gene of the genes with at least one ER-α binding within 40kB from their cannonical
TSS is the absolute value of the distance (proximity) between its canonical TSS and
its closest ER-α binding.
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Figure 4.7: The PR curves assess the performance of Naive Bayes and proximity cri-
terium on the ability to predict differentially expressed genes as detected by RNA-seq
experiment and extracted at 3 different q-values (confirdence levels) of 0.001, 0.01,
0.05. The predictor for the transciptional activity of each gene of the NB predicted
ER-α regulated genes is the probability that at least one of its NB assigned distal reg-
ulators indeed controls it. The Second predictor for the transciptional activity of each
gene of the genes with at least one ER-α binding within 40kB from their cannonical
TSS is the absolute value of the distance (proximity) between its canonical TSS and
its closest ER-α binding.
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shows the enrichment for the genes which were either targeted solely by distal en-
hancers (803, FDR = 0.25) or the ones which apart from being distally regulated also
overlapped either with their gene body or 300bp-long promoter with intra-genic ER-α
bindings (2343, FDR = 0.25). The intra-genic enhancers are assumed to control their
host genes, and thus their targets are not inferred by the model. Although the assump-
tion may hold for most genes, it is known that intronic enhancers can also target other
not necessary their host genes [56, 132, 57]. The gene list was prepared using selected
the 100 most significant GO classes with the lowest p-values and sorted by their pro-
portions. The proportions are the ratios of the number of genes from our list which
are associated with a given GO class to the total number of genes in that class. Ta-
ble 4.2 shows that the two combined groups of genes are confidently predicted to be
associated with MCF7 breast cancer, and show enrichments for several treatments of
MCF7. Additionally, Table 4.3 shows the enrichments for biological processes such
as E2-induced cell proliferation [58], regulation of cell differentiation [113], tissue
morphology [125], and several developmental processes including vascularisation of
MCF7 tumors [4], and gland (mammary) development [116]. The genes are enriched
also for epithelial and motility classes [89].

The above list did not include genes without distal enhancer allocations. How-
ever, some of the genes still possessed at least one intra-genic or promoter-overlapping
ER-α binding (5440, FDR = 0.25), which by our previous assumption are involved in
regulation of their host genes. Combined with our previous list of genes that led to
a total of 8586 ER-α targets. The gene ontologies (GO) for the genes can be seen in
the table B.3. Most of the GO terms for biological functions of the extended gene list
are unchanged, however, we additionally observed involvement of our genes in more
specific Ras protein signal transduction and the enrichments in other 3 GTPase-related
categories. All 216 of our genes in Ras category are found among genes in GTPase
categories. Ras is a subfamily within a larger family of GTPases, which among other
proteins includes R-Ras. In MCF7 R-Ras mediates interplay between estrogen and in-
sulin signalling, and in consequence affects glucose metabolism and cell proliferation
[133]. R-Ras was also shown to be involved in cell migration. Other Ras proteins
(reviewed in [114]) regulate apaptosis, cell proliferation and differentiation. Mutations
in their target genes are associated with cancers.
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Significant GO terms for diseases

Name pValue ER-α Genes Genes in Annot. Prop.
Noninfiltrating Intraductal Carcinoma 3.03E-11 85 281 30%
Fibroid Tumor 1.01E-10 85 287 30%
Ductal Carcinoma 9.50E-08 58 196 30%
Monosomy 2.64E-06 46 157 29%
Invasive breast carcinoma 1.66E-12 107 369 29%
Craniofacial Abnormalities 8.49E-07 53 184 29%

Significant GO terms for drugs

Name pValue ER-α Genes in Annot. prop.
Retinoic acid; MCF7; 1.96E-22 77 178 43%
Thioridazine hydrochloride; MCF7; 1.11E-19 67 155 43%
Forskolin; MCF7; 2.55E-19 67 157 43%
Digitoxigenin; MCF7; 2.87E-19 69 165 42%
Niclosamide; MCF7; 1.84E-18 66 158 42%
Trichostatin A, Streptomyces sp.; MCF7; 9.51E-20 71 170 42%
Digoxin; MCF7; 1.97E-18 68 166 41%

Table 4.2: The table shows significantly enriched GO classes for drugs and diseases
for the predicted targets of ER-α enhancers, FDR = 0.25.

4.5 Summary

In this chapter we showed how ChIP-seq time course data measuring TF and RNA
polymerase occupancy changes after cellular stimulation can be used to predict enhancer-
promoter/gene interactions within chromosomes. We developed a Bayesian classifier
that combines the correlation of ChIP-seq time course data at enhancers and across
gene bodies and genomic proximity as features. We applied our method to time course
data from MCF7 breast cancer cells after stimulation with estradiol and we bench-
mark performance against publically available ChIA-PET data from this system. We
showed that our method performs much better than association by proximity, identi-
fying 33 times more interactions at a False Discovery Rate (FDR) of 0.25 than pre-
dictions based on proximity alone. Estrogen Receptor (ER-α) and RNA polymerase
(Pol II) ChIP-seq time course data were shown to be highly informative for predict-
ing interactions. We also stratified our predicted interactions to those that lie within
Topologically Associating Domains (TADs [26]) and those that span TADs, showing
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Significant GO terms for biological processes

Name pValue ER-α in Annot, prop.
Gland morphogenesis 6.06E-14 62 154 40%
Epithelial cell differentiation 1.17E-12 60 155 39%
Morphogenesis of a branching epithelium 6.32E-16 83 222 37%
Placenta development 1.04E-11 61 166 37%
Stem cell development 4.93E-13 70 192 36%
Branching morphogenesis of an epithelial tube 2.21E-12 67 185 36%
Morphogenesis of a branching structure 2.01E-15 86 238 36%
Mesenchymal cell development 2.94E-12 67 186 36%
Mesenchymal cell differentiation 1.50E-12 71 200 36%
Ossification 7.43E-14 121 406 30%
Gland development 7.23E-17 151 508 30%
Epithelial cell differentiation 1.38E-19 193 670 29%
Morphogenesis of an epithelium 5.18E-16 171 613 28%
Tissue morphogenesis 3.54E-19 212 766 28%
Vasculature development 1.02E-15 184 680 27%
Blood vessel morphogenesis 7.33E-13 149 552 27%
Regulation of cell migration 9.80E-17 200 743 27%
Blood vessel development 1.38E-14 175 653 27%
Response to growth factor 5.39E-14 177 672 26%
Response to steroid hormone 3.95E-12 152 578 26%
Epithelium development 3.43E-26 343 1307 26%
Circulatory system development 4.51E-21 278 1062 26%
Cardiovascular system development 4.51E-21 278 1062 26%
Cellular response to growth factor stimulus 2.06E-12 166 643 26%
Cellular response to endogenous stimulus 3.72E-17 307 1280 24%
Response to hormone 6.08E-14 248 1035 24%
Regulation of cell development 1.33E-12 234 989 24%
Regulation of cell differentiation 2.03E-19 396 1706 23%
Regulation of cell proliferation 1.83E-14 369 1674 22%
Regulation of cell death 9.05E-13 359 1663 22%
Programmed cell death 2.72E-12 410 1963 21%

Table 4.3: The table shows significantly enriched GO classes for biological processes
for the predicted targets of ER-α enhancers, FDR = 0.25.
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that our classifier can make useful predictions in both categories. Finally, we used our
predictions to provide a highly confident list of directly ER-regulated target genes in
this system and validated it against GRO-seq data. The validation showed that our
predicted targets are much more likely to show early nascent transcription than predic-
tions based on genomic ER-α binding proximity alone. Gene Ontology showed that
our ER-α-bound enhancers and their predicted targets are involved in many biolog-
ical processes associated with breast cancer. Our models can thus offer biologically
meaningful insight into the transcriptional regulation involving ER-α.

The enhancer-centric model is simplified in a sense that it does not take into account
the similarities of all enhancers which interact at a common target gene, as part of a
larger gene regulatory complex. In the next section we propose another model which
addresses that drawback.



Chapter 5

Unsupervised learning

We introduce a generative unsupervised model which combines distance and shape
of time course of multiple TF ChIP-seq datasets to probabilistically assign regulatory
ER-α-bound enhancers to their target genes. At each assignment, in order to model the
complex multi-enhancer aspect of protein-mediated transcriptional regulation of genes,
the model assesses similarity between the time series of not only a single enhancer and
its putative target gene but also of all the enhancers which are part of the inferred
regulatory complex of the candidate gene.

The inference of the special form of the latent variable mixture model presented
here requires us to apply approximate Bayesian techniques. Here we employ a Gibbs
sampler to sample from the posterior distribution of our model. The main variable of
interest is an assignment vector which is used to calculate the relative contact frequen-
cies of enhancers and genes.

We validate the model with ChIA-PET Pol II/ER-α links and compare the perfor-
mance of the model against the classification approach in the previous chapter. We
investigate whether the integration of multiple datasets improves the performance of
the model, we test alternative parametrisations of the model which corresponds to
reweighing the importance of gene and enhancer time series in the assignment. We
also investigate the effect of time course data from the enhancers with no ChIA-PET-
confirmed links on the inference of the model.

5.1 Gene-centric Latent Variable Allocation model

Suppose that an enhancer j = 1, . . . ,J regulates a gene k = 1, . . . ,K at a number of time
points, and that their contact is mediated by a protein. In the previous chapter we have
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observed that the time varying ChIP-seq signals at the interacting loci are correlated
to a higher extent than their non-interacting counterparts for multiple datasets. We can
therefore expect that the time series at the enhancer j i.e. X j = (x j,1, . . . ,x j,D) and the
gene k i.e. Yk = (yk,1, . . . ,yk,D) would exhibit similarity. Here we would like to exploit
the similarities to find the interacting pairs and propose an alternative generative gene-
centric model of multi-enhancer-gene contacts. According to our model an enhancer
time series X j is generated from one of K underlying gene-based patterns (µk,Σk),
where the prior mean µk of each profile is equal to the time series of gene Yk. As
in the previous chapter, the gene-centric model is simplified in a sense that it does
not take into account the promoter-promoter interactions which are known to play an
important part in the higher order gene regulatory complexes. However, we do model
the potential interaction of multiple enhancers with one target gene. The main variable
of interest is the indicator variable Z = (z1, . . . ,zJ), which indicates the source of an
enhancers’ time series and specifies the clustering of enhancers at their target genes.
In our model the samples X{ j:z j=k} which shares the value of the indicator variable
are generated from one of K multivariate Gaussians N (µk,σkI), where I is the DxD

identity matrix.

5.1.1 Generative Latent Variable model

Here, we review a standard latent variable mixture of Gaussians which generates vec-
tors of data X with independent dimensions (for a more general model refer to [39]).
The graphical representation of the model can be seen in Fig. 5.1(a). The assumption
of independent entries reduces the number of parameters of the model and therefore
reduces the computational cost of its inference. The model is hierarchical and consists
of multiple layers. The first layer,

p(X j|z j = k,µk,σ
2
k I) = N (X j|µk,σ

2
k I) (5.1)

states that the vectors of observations X are generated from one of conditionally in-
dependent clusters K, characterised by µ1,σ1I, . . . ,µK,σKI. Given data, we would
usually be interested in finding a set of patterns which generated our observations, and
the origin of each observation. The origin of observationsX is specified by the indica-
tor variables z j (one perX j) which follows a categorical distribution with probabilities
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Figure 5.1: Directed factor graph representation of: a) standard latent Dirichlet alloca-
tion of mixture of Gaussians generating data with independent dimensions and b) our
latent variable gene-centric mixture of Gaussians with the separation-based prior.
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π (mixture components), that is

p(z j|π1, . . . ,πK) =Cat(z j|π) (5.2)

The next layer is the one defining the means and standard deviations. In the Bayesian
setting the means and standard deviations are also random variables which follow,

p(µk,d|µ0k,d ,σ
2
k,d,κ0) = N (µk,d|µ0k,d ,σ

2
k,d/κ0) (5.3)

p(σ−2
k,d|α0,β0) = Ga(σ−2

k,d|α0,β0) (5.4)

where the sampling is repeated D times. The gamma function is a conjugate prior to the
normal distribution and the conjugacy requires that the µk,d , depends on σ2

k,d . The pair
of functions which generates the parameters is jointly referred to as normal-gamma
(N Ga) prior. Here the parameter κ0 reflects how strongly we believe in a prior mean
µ0 of a cluster. The parameters α0 and β0 regulate the shape of the gamma function
and thus control the value of the variances.

5.1.2 Latent Variable Allocation with a Dirichlet prior

The standard prior for mixture components is a uniform Dirichlet,

p(π1, . . . ,πK) = Dir(α/K, . . . ,α/K) (5.5)

where parameter πk controls how strongly we believe that a cluster k is a priori re-
sponsible for generating the observed data. Given a sample of mixture components π,
occupation numbers nk = |{ j : z j = k}|, which are equal to the number of indicators z j

equal to k, follow a multinomial distribution

p(n1, . . . ,nK) = multi(n1, . . . ,nK|N,π) (5.6)

and the joint distribution of z j is

p(z1, . . . ,zJ|π) =
K

∏
k=1

π
nk
k . (5.7)
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In order to remove the need to sample the parameters, the component variables π may
be integrated out. This results in the collapsed model

p(z1, . . . ,zJ|α) =
∫

p(z1, . . . ,zJ|π)dπ =
Γ(α)

Γ(α+N)

K

∏
k=1

Γ(nk +α/K)

Γ(α/K)
. (5.8)

Once the variables are collapsed, the indicator variables become dependent on each
other. The conditional prior is obtained after fixing all but one z j, the remainingZ− j =

z1, . . . ,z j−1,z j+1, . . . ,zJ are assumed to be known. That results in:

p(z j = k|Z− j,α) =
n− j,k +α/K
N−1+α

. (5.9)

Note that the form of the distribution indicates that the model will favour allocations
of observedX j to the clusters with a higher number of assignments.

5.1.3 Latent Variable Allocation with a separation-based prior

To address the problem of assigning regulatory enhancers to their target genes we
changed the prior of the model to one which we believe is better suited to tackle the
task of identifying enhancer-gene links. We will refer to the altered model as LVA.
Specifically, we make use of a non-uniform distribution of separations between en-
hancers and their target genes. Fig. 5.1(b) illustrates the form of the generative model.

Firstly, since each cluster k corresponds to a unique gene Gk, we encode each Yk

into the model by setting the prior mean µ0k of each cluster to Yk. Thus, the equation
5.3 becomes:

p(µk|Yk,σ
2
kI,κ0) = N (µk|µ0k = Yk,σ

2
kI/κ0) (5.10)

Secondly, we estimate the average frequencies of the contacts at a number of re-
gions bm away from an enhancer. We take the ratio of the average density of ChIA-
PET confirmed ER-α targeted genes to the average density of genes at that location,
summed up across all gene distributions of ER-α enhancers, i.e:

f req|bm ≈
ρ(target genes|bm)

ρ(genes|bm)
(5.11)

Each enhancer j possesses its own unique genomic location and a set of K distances
d j to its putative target genes. The distances fall into bins {bm} where m ∈ {1, . . . ,M},
so that if d j,k ∈ bm then π j,k|d j,k ∝ f req|bm. Normalising the frequencies by their sum
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leads to,

π j,k|d j,1, . . . ,d j,K =
π j,k|d j,k

∑K π j,k|d j,k
(5.12)

so that the π j sum up to one, and take into account the genomic distribution of genes
around an enhancer j. The vector of the resulting π j|d j serves as mixture components
for the enhancer j. Thus the prior probability that the enhancer j targets a gene k

located at d j,k is,
p(z j = k|π j,d j) =Cat(z j = k|π j,d j) (5.13)

5.1.4 Estimation of the separation-based prior with ChIA-PET data

In order to estimate the relative contact frequencies of the chromatin between ER-α
enhancers and ENSEMBL-annotated genes at a distance d (5.11), we divide the local
density of positive contacts by the local density of genes. The ratio can be interpreted
as an average number of successes (targeted genes, i.e positives from Chapter 4) at that
location to the total average number of trials (genes, i.e positives and negatives from
Chapter 4) at that location.

The nominator of the equation is equal to the density of distance of positive enhancer-
gene pairs P(d j,k|I j,k = 1) from Chapter 4, except that we estimate it on all chromo-
somes. The denominator however, as opposed to the distribution of negative pairs
P(d j,k|I j,k = 0), is a KDE of a total number of positive and negative pairs. Due to the
large sample size, the procedure for estimating the distribution, mirrors that of non-
interacting negative pairs (Section 4.2.4). The estimation of those two distributions
with KDE ensures that the frequencies for potential unobserved instances of distance
are non-zero.

As preliminary test, we checked whether the samples from our prior could recover
the distribution of contacts as established from the ChIA-PET-confirmed links. For
that, we sampled one candidate indicator variable z j per each interacting enhancer
according to our prior 5.13 and estimated the distribution of frequencies of the corre-
sponding distances via KDE. Fig. 5.2 shows that the approach correctly approximates
the frequencies of the data-confirmed contacts.

5.1.5 Inference with a Gibbs sampler

Due to the requirement to know the marginal distribution (denominator of the Bayes
equation) of the latent variable mixture of Gaussians, the exact posterior distribution of
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interacting enhancers sampled from LVA’s prior (purple).
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the model is intractable. One solution is to use approximate inference method such as
Gibbs sampling which approximate the posterior distribution by sequentially drawing
samples from conditional distributions of the model. The sampling scheme for this
model can be seen in Algorithm 1. The conditional distributions enable the algorithm
to draw subsets of parameters of the target distribution, conditional on the remaining
parameters of the model. Although Gibbs conditions each update of a variable on the

Algorithm 1 Gibbs sampler for the latent variable mixture of Gaussians
Input: X
Initialize: µ, σ, Z
for each sample s ∈ {1,2, . . . ,S} do

for each sample j ∈ {1,2, . . . ,J} do
Draw z j|µ,σ,Z− j ∼ Eq: 5.14 or 5.15

for each sample k ∈ {1,2, . . . ,K} do

for each sample d ∈ {1,2, . . . ,D} do
Draw µkd,σkd|µ−k,σ−k,Z,X ∼ Eq: 5.16

remaining variables, many variables of the model are conditionally independent. This
greatly reduces the complexity and the form of the posterior distributions. Each itera-
tion involves reallocating each enhancer X j to a new gene cluster, that is re-sampling
the full Z. In mixture of Gaussians with Dirichlet prior the updates follow:

p(z j = k|Z− j,µk,σk,α)

∝ p(z j = k|Z− j,α)p(X j|µk,σkI)

∝
n− j,k +α/K

n−1+α
N (X j|µk,σkI))

(5.14)

In our model with the distance-based prior,

p(z j = k|µ j = Yk,σk,π j)

∝ p(z j = k|π j)p(X j|µk = Yk,σkI)

∝ π jN (X j|µk = Yk,σkI))

(5.15)

where π j depends on the distribution of distances from an enhancer j to its potential
target genes and can no longer be integrated out to obtain a collapsed sampler. Once
the vector Z is updated, the parameters controlling the shape of the gene clusters have
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to be re-determined. The updates follow the equation:

p(µ j,d,σ
−2
j,d) = N Ga(µ j,d,σ

−2
j,d|µ

′
0 j,d

,κ′0 j
,α′0 j

,β′0 j,d
). (5.16)

where,

κ
′
0 j
= κ0 +n j

µ′0 j,d
=

κ0 jµ0 j,d +n jx̄ j,d

κ j

α
′
0 j
= α0 +

n j

2

β
′
0 j,d

= β0 +
1
2 ∑
{k|zk= j}

(xk,d− x̄ j,d)
2 +

κ0n j(x̄ j,d−µ0 j,d)
2

2κ j
.

(5.17)

Notice that the updated pairs (σ j, µ j) take into account all enhancer time series clus-
tered at a gene j and the time series at the gene to a degree specified by the parameter
κ0. The κ0 weights the importance of the gene time series against that of the associated
enhancer time series.

As the number of samples drawn from our model increases, the samples approx-
imate the underling joint multivariate posterior distribution of all parameters. It is
important to discard a number of initial samples as part of so called burn-in period,
since they may be erroneous.

5.1.6 Estimation of the frequency of enhancer-gene contacts

The sampled indicator vectors ZB, . . . ,ZS, where the first B samples are discarded as
part of the burn-in period, can be used to estimate the frequency of contacts between
an enhancer j and a gene k such that,

P(z j,k) =
∑

S
s=B δ(z j,s,k)

S−B
(5.18)

where δ is the Kronecker delta function which is equal to 1 if z j,s = k or 0 otherwise.
The expression is equal to the average number of times an enhancer j targets a gene k

across all S−B samples .
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5.2 Results

We demonstrate our method using ChIP-seq time course data collected from MCF7
breast cancer cell-line stimulated by estrogen (E2) as discussed in Section 3.1.3. The
genome-wide occupancy of ER-α along with RNA polymerase (Pol II) and two histone
marks (H3K4me3 and H2AZ) were measured via ChIP-seq at eight consecutive times
after exposure of cells to estradiol. ChIA-PET data are available in this system for
testing our method’s performance [34, 63, 64]. The estimation of the prior of the
model is described in Section 5.1.4. Here, we measure the performance of the model
and compare it to the model in chapter 4.

5.2.1 Model inference - technical details

Similarly as prior to the AP clustering in Section 3.2, the normalised time course
data of ER-α along with RNA polymerase (Pol II) and two histone marks (H3K4me3
and H2AZ) at enhancers and 300bp-upstream-extended-genes were standardized to z-
scores to bring all time series onto the same scale. In order to refine signal to noise
ratio of our data, we removed genes and distal enhancers which possessed a total of
less than 30 tags across all time points of their time series in each of our time course
datasets.

We set the prior parameters of the model to κ0 = 1, α0 = 2, β0 = 2. This choice
of κ0 set the importance of gene time series to be equal to that of each enhancer. The
choice of α0 and β0, ensured that the prior variance of each time point is centred around
1. In order to benchmark performance of the model with κ0 = 1 against the one with
an alternative parametrization we repeated the sampling with κ0 = 3. The initial values
for vectors Z and σ were random.

We aimed to compare the performances of the model with five selected combina-
tions of the input data (the same combinations as in Section 4.3). For each combina-
tion we ran three independent chains to assess their convergence with 62,000, 62,000,
240,000, 240,000, and 600,000 samples respectively. In each case we discarded half
of the samples as burn-in. Fig. 5.3, shows that most of the values of the multi-chain-
based R̂ statistics are relatively low and lie in the interval between 1. and 1.1, which
suggest that the chains have reached equilibrium.
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Figure 5.3: Gelman R̂ statistics for the samples of Z generated by the Gibbs Sampler
of the LVA model with κ0 = 1, α0 = 2, β0 = 2.

5.2.2 Performance

We present performance of the model validated on the ChIA-PET-detected promoter-
enhancer links from all even chromosomes (as described in Section 3.3). As opposed
to the NB in Chapter 4, the model is inferred using the time course data from all
enhancers, not only the ones with the ChIA-PET data. We validated the predictions
of the model using PR curves (precisions against the true positive rate of 10%, 20%,
and 30%) of the posterior probabilities of our predictions, using cut-offs of 0.92, 0.56,
0.18. The low value of the last cut-off suggests that the events in the group are relatively
infrequent and therefore harder to detect. Additionally, we compared performance of
LVA to that of NB model. Fig. 5.4 shows that the evidence from the ER-α dataset
improves the performance of the model. Nevertheless, the model is neither able to
take advantage of the data to the degree observed in the Naive Bayes model, nor gains
enhanced performance with an inclusion of additional datasets. In fact, we observe that
combining datasets decreases its performance. Fig. 5.7 shows that the separation-based
prior of our LVA model performs similarly to the distance-only NB, thus its lower
performance does not stem from its ability to tackle the evidence from separation.
Additionally, Fig. 5.4 shows that increasing the value of κ0 and thus elevating the
importance of gene time series does not lead any significant performance changes,
which suggests a more vital role of individual enhancers and their time series in the
discovery of their target genes.
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Performance for intra-domain and inter-domain links

Fig. 5.5 shows the performance of the model on intra-domain interactions. In contrast
to NB, where integrating Pol II and ER-α led to the best performance, the best perfor-
mance is achieved when the model is inferred solely from the ER-α time course data.
Other datasets inclusions typically decrease the accuracy of the model. As for the NB
model, the data leads to improved predictions over using separation alone. Fig. 5.6
shows that LVA performs also worse than NB on links passing TAD boundaries. The
data aided LVA achieves worse accuracy than only using a distance-based prior in this
case. Both figures shows that changing the parameter κ0 does not lead to significant
changes in the performance of the model for any of the two groups.

5.2.3 Testing the effect of ER-α enhancers with unknown status

We investigated whether the relatively poor performance of the LVA model relative
to the NB method can be attributed to the incorporation of time course data from the
enhancers with no ChIA-PET-confirmed links. In the constriction of the NB model we
only used data from enhancers with ChIA-PET evidence of interaction.

Fig. 5.8 shows that inclusion of the data from enhancers without ChIA-PET ev-
idence lowers the ability of LVA to predict interactions from the odd chromosomes.
Fig. C.2 show that the observation is true regardless of whether we measure the ac-
curacy for inter- or intra-domain subsets of predictions or global-wise, however the
decrease is most clearly observed for the intra-domain interactions. Interestingly, we
show that for the within-domain predictions the performance of the model inferred
from the enhancer-restricted ER-α time course data can be similar to that of the corre-
sponding NB model. In the ER-α-inferred enhancer-restricted LVA model Pol II seems
to either have a small or at least no negative effect on the accuracy of the predictions.

We draw similar conclusions when we test the performance for the interactions
located on the even chromosomes in Fig. C.3. However, here the within-domain per-
formance is lower than that achieved by NB.

5.3 Summary

In this chapter we developed a generative gene-centric model which combines ob-
served time course ChIP-seq data over enhancers and gene bodies with the prior based
on the genomic separation of interacting elements and local gene densities to infer
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Figure 5.4: The comparison of the performance between the Naive Bayes algorithm
and the Latent Variable Allocation models with different parametrisation of κ0 on all
even chromosomes. The parametrisation of the model in the first row is κ0 = 1, α0 =
2, β0 = 2, the second κ0 = 3, α0 = 2, β0 = 2. The Precision-TPR curves show the
accuracy for the predictions with the highest 10%, 20%, 30% posterior probabilities.
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Figure 5.5: Figure shows the performance of the model, as in Fig. 5.4 but only consid-
ering interactions within TADs.
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Figure 5.6: Figure shows the performance of the models, as in Fig. 5.4 but only
considering interactions spanning two TADs.
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Figure 5.7: Comparison of performance between the separation-based prior of Latent
Variable Allocation model and distance-only Naive Bayes model.

protein-mediated regulatory complexes involving individual genes and their networks
of multiple distant regulatory enhancers.

The inference of the generative model presented here required us to employ ap-
proximate Bayesian inference techniques. Here we chose to use a Gibbs sampler which
produces samples from the posterior distribution of our model. The convergence of our
MCMC chains was established via multi-chain R̂ statistics. Due to efficient multi-core
implementation, the sampler achieves a speed of approximately one second per sample
when applied to the human genome.

Here, we showed that LVA inferred from the data of all enhancers performs signif-
icantly worse than the NB model from Chapter 4. However in order to allow a more
comparative benchmark, since the NB model was trained only from the time course
data of the enhancers with ChIA-PET-confirmed links, we re-inferred LVA using the
same restricted set of data and re-assessed it against NB and the previous LVA. We
observed a significant increase in the accuracy between LVA inferred from the full and
the restricted dataset, however NB was still considerably better. We conclude that us-
ing collective similarities of multiple time series of putative regulatory enhancers of a
gene complex to predict individual enhancer-gene contacts may lower confidence of at
least some of the true contacts.

The higher performance of the data-restricted LVA may be associated with a poten-
tial bias of our ChIA-PET-derived prior or be a result of different underlying character-
istic of the enhancers with no ChIA-PET evidence. In the next chapter we will discuss
means to clarify the findings (Section 6.4), consider potential solutions and propose



5.3. SUMMARY 109

0.1 0.2
 TPR 

0.3
MAP

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

PolII
NB
LVA data+prior
LVA prior

0.1 0.2
 TPR 

0.3
MAP

ER

0.1 0.2
 TPR 

0.3
MAP

PolII,ER

0.1 0.2
 TPR 

0.3
MAP

PolII,H2AZ,ER

0.1 0.2
 TPR 

0.3
MAP

All

0.1 0.2
 TPR 

0.3
MAP

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

PolII
NB
LVA data+prior
LVA prior

0.1 0.2
 TPR 

0.3
MAP

ER

0.1 0.2
 TPR 

0.3
MAP

PolII,ER

0.1 0.2
 TPR 

0.3
MAP

PolII,H2AZ,ER

0.1 0.2
 TPR 

0.3
MAP

All

Figure 5.8: Figure shows the comparison of the performance between NB and two
LVA models on discovery of ChIA-PET-detected links from odd even chromosomes.
LVA in the first row was inferred from time course data of all enhancers. LVA in
the second row was inferred from the time course data of only those enhancers with
ChIA-PET-confirmed links.
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further development of the study.



Chapter 6

Conclusions

6.1 Achieved Results

In this study we presented two methods which can utilise ChIP-Seq time course data
measuring TF and RNA polymerase occupancy changes and histone modifications af-
ter cellular stimulation to predict enhancer-promoter/gene interactions within chromo-
somes. The methods combine observed time course ChIP-Seq data over enhancers
and gene bodies with the genomic separation of interacting elements to predict pu-
tative cell-type-specific and protein-mediated associations of enhancer-promoter/gene
pairs. We applied our method to time course data from MCF7 breast cancer cells after
stimulation with estradiol and we benchmark performance against publically available
ChIA-PET data from this system.

We show that our methods performs much better than association by proximity
and estrogen receptor (ER-α) ChIP-Seq time course data is shown to be highly infor-
mative for predicting interactions. We also stratify our predicted interactions to those
that lie within Topologically Associating Domains (TADs [26]) and those that span
TADs, showing that our classifiers can make useful predictions in both categories. The
method thus is a complementary approach to protein-specific chromosome conforma-
tion capture methods such as ChIA-PET.

Using complementary GRO-seq data from the same cell-line and context we show
that our supervised approach can accurately predict distally regulated, early responsive
genes under stimulation with estrogen. Gene Ontology analysis showed our ER-α-
bound enhancers and their predicted targets are involved in many biological processes
associated with breast cancer. Our models can thus offer biologically meaningful in-
sight into the transcriptional regulation involving ER-α.
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6.2 Limitations of the models

Our models possess a number of limitations, the majority of which are shared be-
tween the first and the second model. Both methods are unable to model the interac-
tions involving promoter-promoter contacts. If available, this would likely enhance the
model’s predictions and incorporate more realism to the model [64]. In addition, the
NB model assumes that each enhancer interacts with only one gene, which is unlikely
to be realistic for all contacts. The models are also not optimised to take the advantage
of the time course data. That is, neither the choice of Pearson correlation as a mea-
sure of association nor the diagonal covariance matrices in the latent variable model
allows capture of covariance structures in the data. The assumption of a conditionally
independent structure in the likelihood was motivated by good performance of such
models in practice. It is suggested in [130] that making the independence assump-
tion in modelling of temporal data can be often more justified if one uses differences
between data of adjacent time points rather than time point data itself, and it shows
examples of models where it can naturally hold. However, their findings were drawn
under the assumption of stationary character of time series data which is unlikely to be
met in the experiment which produced our data. Another issue of practical relevance
is the uneven logarithmic spacing of our time points. The spacing has proved to be
problematic when we attempted to fit models based on Gaussian Processes to our data.
In the next section we will discuss some other sources of limitations resulting from the
quality of the available experimental data and possible future solutions.

6.3 Limitations of the data

The major factor which entailed the simplification of assumptions was the availability
and quality of public experimental data from the cellular context and cell-line, as well
as limitations of the ChIA-PET method. Firstly, the ChIA-PET data which was used
for the design and validation of our models is inherently very conservative and pos-
sesses a very low coverage of chromatin associations. Secondly, the contacts which
were established by the method correspond to a single time point, thus the resulting
data is unlikely to reveal the whole spectrum of chromatin contacts. Thirdly, PETs
separated by less than 10Kb are often the result of self-ligation, and thus often unreli-
able. The FDA of the method is likely to be associated with distance between PETs.
In consequence, the majority of our distal MACS-detected ER-α binding sites lack
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experimentally confirmed enhancer links, and thus our training and validation datasets
are very sparse. The degree of sparsity is even higher for the promoter-promoter in-
teractions, where the amount of confirmed interactions is around one percent of that
of enhancer-promoter links. Those factors are prohibitive for building a more complex
model and especially limit our ability to model multi-loci complexes.

An alternative in the form of Hi-C technique, provides a genome-wide snapshot of
proximity between loci of chromatin in a selected cell-line, however, the links are, in
comparison with ChIA-PET, less likely to be functional and are in general not medi-
ated by a specific protein of interest. That combined with relatively low resolution of
publicly available Hi-C data for the MCF7 cell line [8], i.e. the resolution of 40kB,
the highest which is available for this cell-type, is too low to distinguish individual
enhancers and promoters/genes which take part in the interactions.

6.4 Comparison between NB and LVA and study of bias

Comparison of performance of LVA inferred from the data of ChIA-PET-confirmed
enhancers which possessed the ability to jointly assess the similarities between the
time series of multiple potentially inter-linked regulatory enhancers and their individ-
ual putative target genes with that of the supervised approach which lacked that ability
showed that predictions of the less complex NB model can be more accurate. Compar-
ing LVA inferred from the data of the same enhancers as the used in the construction
of NB ensured a comparability of our two models, and enabled a fairer comparison of
their performance.

The form of the LVA allowed us to study the effect of inclusion of the time course
data from enhancers with no ChIA-PET-confirmed links on the predictions of ChIA-
PET-confirmed interacting enhancers, and study of potential bias of the models which
ignores that data. The time course data from the enhancers with no ChIA-PET evidence
could not be used and thus was ignored in training and testing of the NB model 4.2.3,
however the data was used in the predictive phase of the modelling to find the most
likely targets of the enhancers with missing links. In that phase we assumed that the test
error estimated on the test set which was not used to train the model was a reasonable
estimate of the accuracy of the predictions for the group of enhancers with no ChIA-
PET confirmed links. Inferring LVA from all data of all enhancers, and comparing its
performance to the model inferred solely from the data of enhancers with ChiA-PET
evidence allowed us to indirectly test the validity of our assumption. LVA inferred from
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the extended set of all data of all enhancers showed decreased performance relative
to the enhancer-restricted LVA, as validated on the ChIA-PET-detected links. Since
the distributions of enrichments of the two groups of enhancers (Section 3.3.1) are
similar, the difference in performance are unlikely to be caused by lower signal to
noise ratio and quality of the ChIA-PET-undetected enhancers. However, the lack of
associations in ChIA-PET data for the ER-alpha-bound enhancers could suggest that
at least some of the enhancers may not be engaged with a nearby promoter in the
cellular context (we propose how to test this hypothesis in Section 6.5), in such case
the prior of the LVA based on ChIA-PET confirmed links would be unrepresentative
for the group of enhancers. The prior could lead to erroneous allocations for the group
of enhancers with no ChIA-PET data, which could in turn affect the mean time series
of its assigned gene complexes, and in consequence reduce similarity between time
series of the gene and it true regulatory enhancers, lowering confidence of some true
pairs. To address the issue the LVA would need to be equipped with additional clusters
to address the existence of non-interacting enhancers in the system. Alternatively, to
study the potential bias we could compare our prior derived from ChIA-PET to an
analogous prior derived from high resolution Hi-C data. The prior would be built
as in Section 3.3 from separations of Hi-C-confirmed pairs of interacting ER-bound-
enhancers and genes.

6.5 Future work

The future development would likely concentrate on the second model since its design
allows more flexibility. One of the layers which could be used to improve the model’s
performance and enable a more realistic modelling of the system of context-specific
gene regulation could be the one capturing interactions between pairs of promoters.
That combined with the ability of LVA to model assemblies of multiple regulatory
enhancers at a single gene, could lead to full-scale realistic predictions of regulation
involving multi-enhancers-multi-genes regulatory complexes. However, the relative
scarceness of the links involving multiple-promoters in ChIA-PET data can be pro-
hibitive if the prior of the promoter-promoter layer was to be estimated analogously
to that in Chapter 5. The problem could be addressed via more appropriate chromatin
conformation data such as promoter capture HiC (PCHi-C) or HiCap experiments,
similar to the one available for mouse ES cells [99], which are specifically designed
for capture of promoter-centred contacts.
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In order to investigate potential bias of the ChIA-PET-derived prior, we could
use an analogous Hi-C-derived prior estimated from contacts of ER-alpha-bound en-
hancers and genes confirmed by Hi-C data with a resolution higher than 40kb.

The decreased performance of the LVA caused by inclusion of time course data
from enhancers with no ChIA-PET confirmed links could be likely solved by incor-
poration of additional clusters which could aggregate true non-interacting potentially
inactive ER-α-bound enhancers. In order to test the hypothesis of the existence of the
class of inactive enhancers, we could design multiple 4C experiments centred at some
instances of the class of enhancers, to show that the enhancers do not form loops in
the studied context. If successfully confirmed, we could attempt to characterise and
distinguish enhancer activity using complementary ChIP-seq datasets of other TFs and
patterns of their bindings at the enhancer.

Although, the currently available resolution of the Hi-C experiment (up to 40kB)
is insufficient for accurate and unambiguous detection of loci involved in chromatin
contacts between the windows of that size. We believe that our model could potentially
be used to establish which of the loci within windows of 40kB are most likely engaged
in the protein mediated enhancer-gene contacts.

The unrealistic assumption of the independence of the time points of the time
course data in our mixture model, could potentially have a high impact on the per-
formance of the mixture model. The non-diagonal covariance matrix structures, could
be investigated to confront the assumption, at the cost of the more difficult and slower
inference procedure. Alternatively, we could also use a form of gaussian processes
model with an appropriate time series-aware kernel function.

Although the linear-distance prior is experimentally confirmed to be a limiting fac-
tor for the range of plausible enhancer-gene, gene-enhancer-gene interactions, with
the enhancer sharing as an underling mechanism for coordinated gene expression [92],
it would be interesting to investigate whether other distance priors and measures of
association could be more suitable for capture of multi-enhancer-multi-gene network
topologies, such as the associativity measure applied genome-wide in [86].

Lastly, it would be interesting to investigate how the performance of the models
changes after the introduction of additional publicly available cell-line specific single
time point assays from other stimulation, cell types and their replicates from ENCODE
and BLUEPRINT consortium. Among the datasets we can find experiments with the
same stimulation of E2 as our time course data, such as c-MYC and CTCF ChIP-seq
datasets (analysed in Section 3.2.1), as well as forty others from MCF-7 cell-line but
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with basal unchanged concentration of ER-α ligands.
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Figure A.1: Figure shows subsequent clusters of Fig. 3.4. The first column of the
figure shows the results of the clustering of joint time series of both Pol II replicates
at enhancers (top row) and genes (bottom row) with Affinity Propagation. The second
column shows the corresponding clustering for ER-α time series at the enhancer (top
row) and gene regions (bottom row).
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Figure A.2: Figure shows subsequent clusters of Fig. 3.4. The first column of the
figure shows the results of the clustering of joint time series of both Pol II replicates
at enhancers (top row) and genes (bottom row) with Affinity Propagation. The second
column shows the corresponding clustering for ER-α time series at the enhancer (top
row) and gene regions (bottom row).
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Figure A.3: Figure shows subsequent clusters of Fig. 3.4. The first column of the
figure shows the results of the clustering of joint time series of both Pol II replicates
at enhancers (top row) and genes (bottom row) with Affinity Propagation. The second
column shows the corresponding clustering for ER-α time series at the enhancer (top
row) and gene regions (bottom row).
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CTCF ESR1 FoxA1 SRC-3 STAG1 TRIM24 c-Fos c-Jun c-MYC Count Amplitude
1 324 164 69 152 363 230 71 36 65 434 258
2 348 284 177 287 355 261 154 56 28 391 216
3 285 123 53 119 303 198 62 34 41 359 185
4 293 195 154 214 307 221 121 36 21 341 82
5 240 108 69 105 248 165 39 7 24 299 78
6 210 80 48 89 238 161 41 13 20 290 28
7 240 158 113 162 262 200 104 41 25 287 224
8 227 189 112 190 238 183 115 44 24 270 301
9 219 156 97 148 233 174 82 40 18 259 331

10 213 108 108 137 228 154 78 20 23 255 -24
11 212 140 67 139 227 140 67 25 5 243 302
12 193 148 80 134 200 156 73 37 28 237 313
13 123 73 43 53 130 98 22 7 10 227 -238
14 176 88 60 93 188 126 54 21 14 226 14
15 170 71 52 79 169 113 41 27 23 218 264
16 168 92 47 85 190 98 45 19 6 208 206
17 147 76 72 100 153 122 54 20 7 196 2
18 145 74 27 79 167 113 38 20 12 194 229
19 138 75 35 60 143 110 34 7 11 194 -27
20 150 49 31 62 158 89 37 23 10 192 120
21 118 72 38 64 120 93 32 5 8 190 -174
22 76 35 32 45 83 59 19 3 4 161 -271
23 103 58 42 57 104 77 28 8 10 154 -117
24 121 67 71 83 130 93 49 8 11 152 -186
25 95 46 38 53 95 70 24 2 8 146 -219
26 72 35 39 42 77 50 22 5 9 146 -228
27 80 37 16 33 74 51 11 3 4 142 -39
28 100 74 65 75 103 72 45 7 16 140 -99
29 90 29 23 37 87 53 22 5 7 136 -106
30 99 37 14 38 112 56 17 11 7 133 215
31 88 36 23 43 95 70 15 7 9 118 57
32 81 40 40 46 83 63 16 5 5 117 -186
33 60 20 5 13 57 24 5 1 1 99 -45
34 61 41 26 35 66 40 19 2 3 96 63
35 49 23 10 18 43 27 4 0 3 93 -7
36 53 18 15 22 51 47 5 4 4 93 -99
37 37 16 10 20 41 22 6 2 1 85 133
38 29 14 8 11 31 28 7 0 1 85 -79
39 54 28 9 32 55 29 9 3 2 74 97
40 51 25 21 30 52 38 13 4 5 73 214
41 31 11 3 12 31 26 6 0 1 73 -24

enriched, p < 0.01
enriched, p < 0.005
enriched, p < 0.001
depleted, p < 0.01
depleted, p < 0.005
depleted, p < 0.001
neither

enriched, p < 0.01
enriched, p < 0.005
enriched, p < 0.001
depleted, p < 0.01
depleted, p < 0.005
depleted, p < 0.001
neither

drops between 0-40min

stationary

rises between 0-40min

Table A.1: The table shows the cluster-specific patterns of TF bindings across 300bp-
upstream-extended-genes for the corresponding Pol II clusters in figure 3.4c. The
count column indicates the size of the cluster. The amplitude column shows the dif-
ference between Pol II occupancies in E2-deprived (0 min) and E2-stimulated samples
(40 min) in the mean of each cluster. (dynamics of orange replicate)
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CTCF ESR1 FoxA1 SRC-3 STAG1 TRIM24 c-Fos c-Jun c-MYC Count Amplitude
1 137 852 350 920 446 135 249 29 5 1819 286
2 162 982 111 508 287 106 50 15 4 1816 272
3 228 710 174 526 420 149 108 34 4 1662 210
4 221 918 359 945 565 215 294 69 7 1613 287
5 254 558 252 631 501 168 202 55 11 1312 251
6 200 132 131 265 329 80 72 22 8 851 121
7 108 194 45 132 156 55 22 4 0 844 171
8 124 392 273 517 358 147 242 66 3 837 327
9 80 180 147 267 192 48 59 4 3 816 183

10 61 141 201 316 168 41 125 11 3 739 184
11 104 141 74 207 163 51 32 10 0 706 255
12 72 175 90 189 158 48 45 6 4 694 160
13 105 167 38 118 130 37 18 8 1 689 197
14 46 183 48 116 81 23 18 4 2 677 229
15 39 173 222 364 178 38 124 8 4 668 269
16 163 152 93 261 277 102 86 30 2 649 260
17 87 143 58 144 122 39 26 14 4 641 264
18 24 44 269 324 137 24 172 10 0 620 159
19 51 82 172 290 125 20 98 2 2 613 239
20 34 146 78 182 81 23 33 10 1 568 309
21 64 154 172 298 187 44 186 33 0 567 281
22 58 106 86 179 119 26 28 2 1 507 252
23 70 106 167 250 202 48 117 17 1 493 218
24 31 36 155 219 97 27 72 6 2 431 277
25 32 26 133 159 87 21 105 12 4 351 110
26 38 28 144 238 94 17 47 12 1 346 88
27 100 35 69 119 158 37 44 14 4 334 116
28 27 28 122 174 85 21 70 8 1 331 118
29 62 47 99 167 120 38 61 12 0 330 238
30 53 47 59 124 87 23 36 5 1 305 221
31 54 53 31 69 61 108 7 12 0 291 -106
32 48 45 20 68 63 75 19 22 1 286 -157
33 34 26 66 93 72 32 67 14 2 244 135
34 55 28 65 105 103 32 56 14 2 235 134
35 32 22 47 87 60 10 32 5 1 225 187
36 19 8 13 118 29 38 29 19 1 208 -131
37 8 9 37 100 30 12 31 9 0 207 -85
38 32 23 23 60 47 22 18 9 1 152 17
39 26 6 33 60 43 16 14 7 0 142 179

enriched, p < 0.01
enriched, p < 0.005
enriched, p < 0.001
depleted, p < 0.01
depleted, p < 0.005
depleted, p < 0.001
neither

enriched, p < 0.01
enriched, p < 0.005
enriched, p < 0.001
depleted, p < 0.01
depleted, p < 0.005
depleted, p < 0.001
neither

drops between 0-40min

stationary

rises between 0-40min

Table A.2: The table shows the cluster-specific patterns of TF bindings across en-
hancers for the corresponding ER-α clusters in figure 3.4b. The count column in-
dicates the size of the cluster. The amplitude column shows the difference between
ER-α occupancies in E2-deprived (0 min) and E2-stimulated samples (40 min) in the
mean dynamics of each cluster.



138 APPENDIX A. SUPPLEMENTARY FIGURES FOR CHAPTER 3

CTCF ESR1 FoxA1 SRC-3 STAG1 TRIM24 c-Fos c-Jun c-MYC Count Amplitude
1 598 216 81 166 716 192 71 30 32 1178 278
2 596 183 65 182 661 227 79 35 12 1076 201
3 589 112 75 187 705 255 87 64 37 940 -222
4 482 103 46 108 556 170 52 33 23 847 -190
5 383 78 38 88 459 112 33 20 21 694 -287
6 350 88 50 131 408 179 54 39 23 620 -189
7 394 73 37 111 442 166 59 56 35 617 -137
8 196 24 13 22 221 54 6 3 5 587 -184
9 197 41 11 48 252 69 19 13 12 559 -189

10 278 47 26 50 343 86 23 17 13 559 -197
11 308 57 33 86 356 112 33 26 22 514 -136
12 264 49 25 65 315 93 26 10 16 497 -247
13 257 50 19 66 285 105 35 17 16 497 -56
14 236 49 24 59 279 98 18 18 17 495 -216
15 262 54 29 80 316 83 37 24 19 473 -269
16 219 31 22 41 256 68 24 16 15 461 -214
17 217 42 23 54 260 82 22 16 11 453 -145
18 192 32 11 34 224 46 16 6 13 446 -51
19 228 88 29 63 269 98 36 16 5 441 305
20 232 45 21 81 291 94 36 31 20 431 -139
21 181 56 23 51 216 63 24 7 9 400 238
22 198 52 20 41 215 64 21 20 8 370 81
23 158 21 14 26 191 50 13 3 11 368 -252
24 100 23 10 9 123 26 7 1 2 347 0
25 134 25 11 42 149 42 15 4 7 330 -7
26 199 44 20 55 213 81 17 12 8 329 188
27 138 26 15 35 167 51 14 9 7 324 37
28 126 22 15 27 133 51 14 8 6 293 -146
29 120 19 17 21 150 43 6 6 5 288 22
30 143 32 14 42 170 64 20 17 12 280 103
31 119 24 7 37 129 35 17 10 11 278 -57
32 96 21 8 13 119 24 3 0 4 261 54
33 151 33 15 35 166 61 20 16 4 258 -13
34 84 19 13 22 101 30 2 3 5 257 -159
35 106 19 11 23 128 35 11 6 5 245 -233
36 110 31 13 34 133 43 13 5 6 243 23
37 97 25 12 19 112 30 6 3 8 243 5
38 128 25 6 22 141 38 10 11 7 242 -83
39 96 18 16 27 104 35 13 8 8 230 117
40 50 8 6 8 60 12 0 2 0 183 19

enriched, p < 0.01
enriched, p < 0.005
enriched, p < 0.001
depleted, p < 0.01
depleted, p < 0.005
depleted, p < 0.001
neither

enriched, p < 0.01
enriched, p < 0.005
enriched, p < 0.001
depleted, p < 0.01
depleted, p < 0.005
depleted, p < 0.001
neither

drops between 0-40min

stationary

rises between 0-40min

Table A.3: The table shows the cluster-specific patterns of TF bindings across 2000bp-
long TSS-centred regions (around promoters) for the corresponding ER-α clusters in
figure 3.4d. The count column indicates the size of the cluster. The amplitude col-
umn shows the difference between ER-α occupancies in E2-deprived (0 min) and E2-
stimulated samples (40 min) in the mean dynamics of each cluster.
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CTCF ESR1 FoxA1 SRC-3 STAG1 TRIM24 c-Fos c-Jun c-MYC Count Amplitude
1 996 973 548 871 1023 765 449 131 105 1178 278
2 905 700 395 695 924 672 351 148 60 1076 201
3 800 401 258 450 853 649 208 115 81 940 -222
4 686 287 177 288 729 501 141 63 80 847 -190
5 559 235 176 249 597 419 110 35 48 694 -287
6 511 296 198 311 549 425 138 79 52 620 -189
7 530 222 147 249 544 393 122 80 52 617 -137
8 423 199 166 161 449 323 103 16 49 587 -184
9 382 151 103 139 417 279 62 23 42 559 -189

10 417 154 96 139 451 288 63 27 36 559 -197
11 408 137 101 161 430 276 71 49 34 514 -136
12 378 120 85 144 407 255 56 22 24 497 -247
13 395 168 89 183 408 265 97 44 37 497 -56
14 344 113 82 131 369 252 54 25 27 495 -216
15 361 139 82 162 392 217 65 32 36 473 -269
16 335 119 87 141 367 241 74 32 35 461 -214
17 327 105 62 114 348 206 50 27 18 453 -145
18 310 110 76 127 330 212 58 16 19 446 -51
19 358 287 141 258 376 261 135 54 29 441 305
20 315 106 63 147 344 201 57 47 28 431 -139
21 314 253 192 253 328 241 137 20 32 400 238
22 312 202 109 185 322 235 84 41 23 370 81
23 255 99 71 84 280 174 35 8 22 368 -252
24 251 157 116 133 257 191 59 8 27 347 0
25 211 76 41 75 224 150 36 15 13 330 -7
26 276 151 79 164 290 174 87 35 23 329 188
27 207 66 48 82 231 134 39 16 14 324 37
28 206 60 40 68 208 127 28 11 12 293 -146
29 183 59 57 76 201 129 36 11 12 288 22
30 204 101 61 112 216 144 47 29 18 280 103
31 171 59 27 62 184 98 34 16 11 278 -57
32 160 79 50 67 179 108 26 7 16 261 54
33 205 74 54 87 214 121 40 27 11 258 -13
34 151 49 43 61 158 102 21 5 12 257 -159
35 152 53 40 60 170 90 28 9 10 245 -233
36 177 93 49 93 185 110 46 17 12 243 23
37 149 74 63 99 164 90 44 10 15 243 5
38 171 64 31 62 183 97 29 19 14 242 -83
39 152 62 56 85 159 110 42 17 13 230 117
40 106 44 25 43 106 55 8 3 2 183 19

enriched, p < 0.01
enriched, p < 0.005
enriched, p < 0.001
depleted, p < 0.01
depleted, p < 0.005
depleted, p < 0.001
neither

enriched, p < 0.01
enriched, p < 0.005
enriched, p < 0.001
depleted, p < 0.01
depleted, p < 0.005
depleted, p < 0.001
neither

drops between 0-40min

stationary

rises between 0-40min

Table A.4: The table shows the cluster-specific patterns of TF bindings across across
300bp-upstream-extended-genes for the corresponding ER-α clusters in figure 3.4d.
The count column indicates the size of the cluster. The amplitude column shows the
difference between ER-α occupancies in E2-deprived (0 min) and E2-stimulated sam-
ples (40 min) in the mean dynamics of each cluster.
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Figure A.4: The figure shows the clustering of the joint time course of Pol II and ER-α
at enhancers with Affinity Propagation. The clustering involves only the time series
which individually possess a sum of at least 100 tags across all time point.
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CTCF ESR1 FoxA1 SRC-3 STAG1 TRIM24 c-Fos c-Jun c-MYC Count Amplitude
1 220 775 503 1033 655 257 415 94 11 1270 225
2 309 683 297 799 650 226 246 68 9 1232 270
3 217 582 440 862 632 212 299 79 11 1164 118
4 362 379 197 506 549 183 201 47 3 899 188
5 181 428 410 645 477 168 364 101 8 833 216
6 179 281 269 536 410 117 153 42 4 806 53
7 105 303 160 466 260 68 106 17 3 782 124
8 142 319 213 482 302 97 112 29 2 778 55
9 139 320 145 355 244 78 88 22 6 772 311

10 140 279 219 465 312 88 150 31 5 719 107
11 109 296 221 456 294 83 152 25 3 713 238
12 130 227 222 408 294 87 140 26 4 634 109
13 143 247 155 360 271 101 139 24 3 611 210
14 307 212 84 213 390 121 72 37 15 603 193
15 52 136 255 435 172 50 181 21 4 587 278
16 39 87 35 67 51 183 14 13 1 580 -239
17 93 198 135 285 169 45 78 13 3 552 195
18 57 92 233 379 173 38 111 12 3 551 92
19 99 178 114 281 181 53 71 13 2 526 147
20 38 142 174 298 134 39 76 15 1 499 132
21 43 52 257 356 150 19 171 9 2 491 134
22 80 193 126 253 159 50 57 12 1 489 138
23 274 112 90 236 365 127 93 51 12 486 180
24 47 145 142 252 112 25 46 7 1 466 16
25 42 59 203 271 117 20 171 12 3 449 135
26 58 113 171 246 174 46 76 14 2 443 -147
27 27 61 186 257 106 10 121 8 3 423 144
28 28 81 216 261 136 32 127 17 4 419 -69
29 119 64 58 140 144 136 37 30 0 403 133
30 78 72 132 208 157 59 152 28 8 400 159
31 54 42 168 221 134 36 129 16 1 364 112
32 61 44 174 208 123 41 126 17 5 351 66
33 10 44 159 215 87 18 74 5 3 346 -88
34 43 83 83 139 90 44 34 6 1 343 -54
35 57 104 74 150 93 31 35 2 2 335 -56
36 48 89 70 108 72 21 35 6 3 326 18
37 30 92 39 88 53 31 17 3 1 317 -147
38 44 39 26 55 40 123 12 15 0 305 -187
39 65 44 112 194 139 34 82 10 2 293 174
40 31 22 21 136 41 58 32 23 1 227 -19
41 107 36 38 98 131 57 66 48 16 209 195
42 3 8 40 89 18 19 31 15 0 207 -120

enriched, p < 0.01
enriched, p < 0.005
enriched, p < 0.001
depleted, p < 0.01
depleted, p < 0.005
depleted, p < 0.001
neither

enriched, p < 0.01
enriched, p < 0.005
enriched, p < 0.001
depleted, p < 0.01
depleted, p < 0.005
depleted, p < 0.001
neither

drops between 0-40min

stationary

rises between 0-40min

Table A.5: The table shows the cluster-specific patterns of TF bindings across en-
hancers for the corresponding joint Pol II and ER-α clusters in figure A.4. The count
column indicates the size of the cluster. The amplitude column shows the difference
between Pol II occupancies in E2-deprived (0 min) and E2-stimulated samples (40
min) in the mean Pol II dynamics of each cluster.



142 APPENDIX A. SUPPLEMENTARY FIGURES FOR CHAPTER 3

CTCF ESR1 FoxA1 SRC-3 STAG1 TRIM24 c-Fos c-Jun c-MYC Count Amplitude
1 220 775 503 1033 655 257 415 94 11 1270 288
2 309 683 297 799 650 226 246 68 9 1232 250
3 217 582 440 862 632 212 299 79 11 1164 249
4 362 379 197 506 549 183 201 47 3 899 236
5 181 428 410 645 477 168 364 101 8 833 289
6 179 281 269 536 410 117 153 42 4 806 197
7 105 303 160 466 260 68 106 17 3 782 239
8 142 319 213 482 302 97 112 29 2 778 251
9 139 320 145 355 244 78 88 22 6 772 253

10 140 279 219 465 312 88 150 31 5 719 261
11 109 296 221 456 294 83 152 25 3 713 263
12 130 227 222 408 294 87 140 26 4 634 250
13 143 247 155 360 271 101 139 24 3 611 247
14 307 212 84 213 390 121 72 37 15 603 230
15 52 136 255 435 172 50 181 21 4 587 237
16 39 87 35 67 51 183 14 13 1 580 -88
17 93 198 135 285 169 45 78 13 3 552 249
18 57 92 233 379 173 38 111 12 3 551 199
19 99 178 114 281 181 53 71 13 2 526 242
20 38 142 174 298 134 39 76 15 1 499 254
21 43 52 257 356 150 19 171 9 2 491 164
22 80 193 126 253 159 50 57 12 1 489 249
23 274 112 90 236 365 127 93 51 12 486 177
24 47 145 142 252 112 25 46 7 1 466 251
25 42 59 203 271 117 20 171 12 3 449 189
26 58 113 171 246 174 46 76 14 2 443 213
27 27 61 186 257 106 10 121 8 3 423 224
28 28 81 216 261 136 32 127 17 4 419 216
29 119 64 58 140 144 136 37 30 0 403 -112
30 78 72 132 208 157 59 152 28 8 400 207
31 54 42 168 221 134 36 129 16 1 364 176
32 61 44 174 208 123 41 126 17 5 351 145
33 10 44 159 215 87 18 74 5 3 346 176
34 43 83 83 139 90 44 34 6 1 343 225
35 57 104 74 150 93 31 35 2 2 335 233
36 48 89 70 108 72 21 35 6 3 326 224
37 30 92 39 88 53 31 17 3 1 317 220
38 44 39 26 55 40 123 12 15 0 305 -118
39 65 44 112 194 139 34 82 10 2 293 155
40 31 22 21 136 41 58 32 23 1 227 -120
41 107 36 38 98 131 57 66 48 16 209 -130
42 3 8 40 89 18 19 31 15 0 207 -38

enriched, p < 0.01
enriched, p < 0.005
enriched, p < 0.001
depleted, p < 0.01
depleted, p < 0.005
depleted, p < 0.001
neither

enriched, p < 0.01
enriched, p < 0.005
enriched, p < 0.001
depleted, p < 0.01
depleted, p < 0.005
depleted, p < 0.001
neither

drops between 0-40min

stationary

rises between 0-40min

Table A.6: The table shows the cluster-specific patterns of TF bindings across en-
hancers for the corresponding joint Pol2 and ER-α clusters in figure A.4. The count
column indicates the size of the cluster. The amplitude column shows the difference
between ER-α occupancies in E2-deprived (0 min) and E2-stimulated samples (40
min) in the mean ER-α dynamics of each cluster.
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Figure B.1: The graphs show positive (blue) and negative (red) class size-normalised
histograms of projections of the training set of Fisher’s linear discrimiant analysis
when applied on five selected variants of vectors of features (see sub-titles).
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Figure B.2: The graphs show positive (blue) and negative (red) histograms of projec-
tions of the training set of Fisher’s linear discrimiant analysis when applied on five
selected variants of vectors of features (see sub-titles). Due to a large difference in
sizes of the two classes, the histograms of the positives are invisible.
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Figure B.3: Precision-Recall curves measuring performance of Fisher’s linear discrim-
inant analysis for increasing values of cut-off levels (i.e. from the most negative to the
most positive value of projection) for (a) training and (b) test sets. Each colour shows
performance of the classifier for a different selected combination of features.
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Figure B.4: The graphs (a, b, c, d) show positive (green) and negative (yellow) distri-
butions of correlations between pairs of time series of 300bp-upstream-extended-gene
regions and enhancer bodies for ER-α, PolII, H2AZ and H3K4me3 collected across
all 24 chromosomes. The figure (e) shows the distribution of genomic distances be-
tween centres of distal enhancers and 300bp-upstream-shifted-TSS of genes. The set
of positive and negative pairs was constructed using 300bp-upstream-extended-genes
and distal enhancers.
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Figure B.5: The graphs (a, b, c, d) show positive (green) and negative (yellow) dis-
tributions of correlations between time series of 300bp-upstream-extended-gene re-
gions and enhancer bodies for ER-α, PolII, H2AZ and H3K4me3 collected across all
odd chromosomes (training data). The figure (e) shows the distribution of genomic
distances between centres of distal enhancers and 1500bp-upstream-shifted-TSS of
genes. The set of positive and negative pairs was constructed using 1500bp-upstream-
extended-genes and distal enhancers.
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Figure B.6: The graphs (a, b, c, d) show positive (green) and negative (yellow) distri-
butions of correlations between time series of 300bp-upstream-extended-gene regions
and enhancer bodies for ER-α, PolII, H2AZ and H3K4me3 collected across all 24
chromosomes. The figure (e) shows the distribution of genomic distances between
centres of distal enhancers and 1500bp-upstream-shifted-TSS of genes. The set of
positive and negative pairs was constructed using 1500bp-upstream-extended-genes
and distal enhancers.
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Figure B.7: The graphs (a, b, c, d) show positive (green) and negative (yellow) distri-
butions of correlations between time series of 300bp-upstream-extended-gene regions
and enhancer bodies for ER-α, PolII, H2AZ and H3K4me3 collected across all odd
chromosomes. The figure (e) shows the distribution of genomic distances between cen-
tres of distal enhancers and 1500bp-upstream-shifted-TSS of genes. The set of positive
and negative pairs for the first model was constructed using TSS-centred 3000bp-long
regions and distal enhancers.
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Figure B.8: The graphs (a, b, c, d) show positive (green) and negative (yellow) distri-
butions of correlations between time series of 300bp-upstream-extended-gene regions
and enhancer bodies for ER-α, PolII, H2AZ and H3K4me3 collected across all 24
chromosomes. The figure (e) shows the distribution of genomic distances between cen-
tres of distal enhancers and 1500bp-upstream-shifted-TSS of genes. The set of positive
and negative pairs for the first model was constructed using TSS-centred 3000bp-long
regions and distal enhancers.
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(c) inter-domain performance

Figure B.9: Figure shows the comparison of performance of the NB model on odd
chromosomes (training data) measured by Precision-TPR and MAP scores. The
Precision-TPR curves show the accuracy of the predictions with the highest 10%, 20%,
30% scores i.e. posterior probabilities. The second and the third rows stratify predic-
tions at each of the thresholds into those which take place within domains and those
involving inter-domain contacts. The set of positive and negative pairs for the first
model was constructed using 300bp-upstream-extended-genes and distal enhancers.
The correlation-based attributes of the two models were estimated using signals (time
series) aggregated over 300bp-upstream-extended-genes, and distal enhancer bodies.
For separation-based from 300bp-upstream-shifted TSS to the centres of the ER-α en-
hancers.
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(c) inter-domain performance

Figure B.10: Figure shows the comparison of performance of the NB model on even
chromosomes (test data) measured by Precision-TPR and MAP scores. The Precision-
TPR curves show the accuracy of the predictions with the highest 10%, 20%, 30%
scores i.e. posterior probabilities. The second and the third rows stratify predictions
at each of the thresholds into those which take place within domains and those in-
volving inter-domain contacts. The set of positive and negative pairs for the first
model was constructed using 300bp-upstream-extended-genes and distal enhancers.
The correlation-based attributes of the two models were estimated using signals (time
series) aggregated over 300bp-upstream-extended-genes, and distal enhancer bodies.
For separation-based from 300bp-upstream-shifted TSS to the centres of the ER-α en-
hancers.
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(c) inter-domain performance

Figure B.11: Figure shows the comparison of performance of the NB model on
odd chromosomes (training data) measured by Precision-TPR and MAP scores. The
Precision-TPR curves show the accuracy of the predictions with the highest 10%, 20%,
30% scores i.e. posterior probabilities. The second and the third rows stratify predic-
tions at each of the thresholds into those which take place within domains and those
involving inter-domain contacts. The set of positive and negative pairs for the first
model was constructed using 1500bp-upstream-extended-genes and distal enhancers.
The correlation-based attributes of the two models were estimated using signals (time
series) aggregated over 300bp-upstream-extended-genes, and distal enhancer bodies.
For separation-based from 1500bp-upstream-shifted TSS to the centres of the ER-α
enhancers.
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(c) inter-domain performance

Figure B.12: Figure shows the comparison of performance of the NB model on even
chromosomes (test data) measured by Precision-TPR and MAP scores. The Precision-
TPR curves show the accuracy of the predictions with the highest 10%, 20%, 30%
scores i.e. posterior probabilities. The second and the third rows stratify predictions
at each of the thresholds into those which take place within domains and those involv-
ing inter-domain contacts. The set of positive and negative pairs for the first model
was constructed using 1500bp-upstream-extended-genes and distal enhancers. The
correlation-based attributes of the two models were estimated using signals (time se-
ries) aggregated over 300bp-upstream-extended-genes, and distal enhancer bodies. For
separation-based from 1500bp-upstream-shifted TSS to the centres of the ER-α en-
hancers.
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(c) inter-domain performance

Figure B.13: Figure shows the performance of the TSS-centric NB model on odd chro-
mosomes (training data) measured by Precision-TPR and MAP scores. The Precision-
TPR curves show the accuracy of the predictions with the highest 10%, 20%, 30%
scores i.e. posterior probabilities. The second and the third rows stratify predictions
at each of the thresholds into those which take place within domains and those involv-
ing inter-domain contacts. The set of positive and negative pairs for the first model
was constructed using TSS-centred 3000bp-long regions and distal enhancers. The
correlation-based attributes of the two models were estimated using signals (time se-
ries) aggregated over 300bp-upstream-extended-genes, and distal enhancer bodies. For
separation-based from 1500bp-upstream-shifted TSS to the centres of the ER-α en-
hancers.
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(c) inter-domain performance

Figure B.14: Figure shows the performance of the TSS-centric NB model on even
chromosomes (test data) measured by Precision-TPR and MAP scores. The Precision-
TPR curves show the accuracy of the predictions with the highest 10%, 20%, 30%
scores i.e. posterior probabilities. The second and the third rows stratify predictions
at each of the thresholds into those which take place within domains and those involv-
ing inter-domain contacts. The set of positive and negative pairs for the first model
was constructed using TSS-centred 3000bp-long regions and distal enhancers. The
correlation-based attributes of the two models were estimated using signals (time se-
ries) aggregated over 300bp-upstream-extended-genes, and distal enhancer bodies. For
separation-based from 1500bp-upstream-shifted TSS to the centres of the ER-α en-
hancers.
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(f) test data inter-genic

Figure B.15: Figure shows the comparison of performance of the NB model between
odd and even chromosomes (training and test data) measured by Precision-TPR and
MAP scores for selected combinations of datasets. The Precision-TPR curves show
the accuracy of the predictions with the highest 10%, 20%, 30% scores i.e. posterior
probabilities. The second and the third rows stratify predictions at each of the thresh-
olds into those which take place within domains and those involving inter-domain
contacts. The set of positive and negative pairs for the first model was constructed
using 300bp-upstream-extended-genes and distal enhancers. The correlation-based at-
tributes of the two models were estimated using signals (time series) aggregated over
300bp-upstream-extended-genes, and distal enhancer bodies. For separation-based
from 300bp-upstream-shifted TSS to the centres of the ER-α enhancers.
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(f) test data inter-genic

Figure B.16: Figure shows the comparison of performance of the NB model between
odd and even chromosomes (training and test data) measured by Precision-TPR and
MAP scores for selected combinations of datasets. The Precision-TPR curves show
the accuracy of the predictions with the highest 10%, 20%, 30% scores i.e. posterior
probabilities. The second and the third rows stratify predictions at each of the thresh-
olds into those which take place within domains and those involving inter-domain
contacts. The set of positive and negative pairs for the first model was constructed
using 1500bp-upstream-extended-genes and distal enhancers. The correlation-based
attributes of the two models were estimated using signals (time series) aggregated over
300bp-upstream-extended-genes, and distal enhancer bodies. For separation-based
from 1500bp-upstream-shifted TSS to the centres of the ER-α enhancers.
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(f) test data inter-genic

Figure B.17: Figure shows the comparison of performance of the TSS-centric NB
model between odd and even chromosomes (training and test data) measured by
Precision-TPR and MAP scores for selected combinations of datasets. The Precision-
TPR curves show the accuracy of the predictions with the highest 10%, 20%, 30%
scores i.e. posterior probabilities. The second and the third rows stratify predictions
at each of the thresholds into those which take place within domains and those involv-
ing inter-domain contacts. The set of positive and negative pairs for the first model
was constructed using TSS-centred 3000bp-long regions and distal enhancers. The
correlation-based attributes of the two models were estimated using signals (time se-
ries) aggregated over 300bp-upstream-extended-genes, and distal enhancer bodies. For
separation-based from 1500bp-upstream-shifted TSS to the centres of the ER-α en-
hancers.



161

0.1 0.2
 TPR 

0.3
MAP

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

PolII
NB
distance
data

0.1 0.2
 TPR 

0.3
MAP

ER

0.1 0.2
 TPR 

0.3
MAP

PolII,ER

0.1 0.2
 TPR 

0.3
MAP

PolII,H2AZ,ER

0.1 0.2
 TPR 

0.3
MAP

All

(a) training data performance

0.1 0.2
 TPR 

0.3
MAP

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

PolII
NB
distance
data

0.1 0.2
 TPR 

0.3
MAP

ER

0.1 0.2
 TPR 

0.3
MAP

PolII,ER

0.1 0.2
 TPR 

0.3
MAP

PolII,H2AZ,ER

0.1 0.2
 TPR 

0.3
MAP

All

(b) test data performance

0.1 0.2
 TPR 

0.3
MAP

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

PolII
NB
distance
data

0.1 0.2
 TPR 

0.3
MAP

ER

0.1 0.2
 TPR 

0.3
MAP

PolII,ER

0.1 0.2
 TPR 

0.3
MAP

PolII,H2AZ,ER

0.1 0.2
 TPR 

0.3
MAP

All

(c) training data intra-genic

0.1 0.2
 TPR 

0.3
MAP

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

PolII
NB
distance
data

0.1 0.2
 TPR 

0.3
MAP

ER

0.1 0.2
 TPR 

0.3
MAP

PolII,ER

0.1 0.2
 TPR 

0.3
MAP

PolII,H2AZ,ER

0.1 0.2
 TPR 

0.3
MAP

All

(d) test data intra-genic

0.1 0.2
 TPR 

0.3
MAP

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

PolII
NB
distance
data

0.1 0.2
 TPR 

0.3
MAP

ER

0.1 0.2
 TPR 

0.3
MAP

PolII,ER

0.1 0.2
 TPR 

0.3
MAP

PolII,H2AZ,ER

0.1 0.2
 TPR 

0.3
MAP

All

(e) training data inter-genic

0.1 0.2
 TPR 

0.3
MAP

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

PolII
NB
distance
data

0.1 0.2
 TPR 

0.3
MAP

ER

0.1 0.2
 TPR 

0.3
MAP

PolII,ER

0.1 0.2
 TPR 

0.3
MAP

PolII,H2AZ,ER

0.1 0.2
 TPR 

0.3
MAP

All
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Figure B.18: Figure shows the performance of the NB model of training data and
for selected combinations of datasets under two different parametrisations of MACS
peak-calling. The Precision-TPR curves show the accuracy of the predictions with
the highest 10%, 20%, 30% scores i.e. posterior probabilities. The second and the
third rows stratify predictions at each of the thresholds into those which take place
within domains and those involving inter-domain contacts. The first column of the
figure shows the performance of the NB model trained on the stringent time persistent
merged MACS-called peaks (i.e. distal ER-α bindings) from the scan with the p-value
of 1e-11 and the local control switched off, in which case the search is done with λBG.
In the second column we see the performance under the alternative peak calling with
the p-value of 1e-05 (MACS’ default), no control and the local control flag on. The
set of positive and negative pairs for the first model was constructed using 1500bp-
upstream-extended-genes and distal enhancers. The correlation-based attributes of the
model were estimated using pairs of 300bp-upstream-extended-genes, and enhancers
(merged distal MACS-called peaks). The separation-based from 1500bp-upstream-
shifted TSS to the centres of the ER-α enhancers.
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Figure B.19: Figure shows the comparison of the performance between promoter-
extended-gene and TSS-centric models on odd chromosomes (training data) mea-
sured by Precision-TPR and MAP scores and for selected datasets. The Precision-
TPR curves show the accuracy of the predictions with the highest 10%, 20%, 30%
scores i.e. posterior probabilities. The second and the third rows stratify predictions
at each of the thresholds into those which take place within domains and those in-
volving inter-domain contacts. The set of positive and negative pairs for the first
model was constructed using 1500bp-upstream-extended-genes and distal enhancers,
whereas for the second using TSS-centred 3000bp-long regions and distal enhancers.
The correlation-based attributes of the two models were estimated using signals (time
series) aggregated over 300bp-upstream-extended-genes, and distal enhancer bodies.
For separation-based from 1500bp-upstream-shifted TSS to the centres of the ER-α
enhancers.
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Figure B.20: The PR curves show the comparison of the performance between
the 1500bp-upstream-extended-gene and 1500bp-TSS-centric Naive Bayes models on
their ability to predict differentially expressed genes. The positive set consists of GRO-
seq-detected genes for 3 different confidence levels of 0.001, 0.01, 0.05. Score of each
tested gene is a cumulative posterior probability of the set of its NB-predicted regula-
tors. The graph also shows the accuracy of using an absolute value of the separation
(proximity) between its closest ER-α binding and a canonical TSS of a gene as a pre-
dictor of gene activity. Gene was regarded as ER-α regulated if the distance to its
putative regulator was within 40kB.
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Significant GO terms for diseases

Name pValue ER-α Genes Genes in Annot. Prop.
Adenoid Cystic Carcinoma 7.20E-08 108 185 58%
Fibroid Tumor 3.19E-10 164 287 57%
Invasive breast carcinoma 3.82E-12 209 369 57%
Noninfiltrating Intraductal 1.58E-09 159 281 57%
Carcinoma
Carcinoma, Papillary 1.05E-06 105 186 56%
Ductal Carcinoma 1.76E-06 109 196 56%

Table B.1: Significant GO terms for drugs

Name pValue ER-α Genes Genes in Annot. Prop.
Irinotecan; MCF7; 9.41E-29 136 174 78%
Verteporfin; MCF7; 4.76E-26 125 161 78%
Retinoic acidMCF7; 1.81E-23 121 160 76%
Colcemid; MCF7; 5.28E-25 140 190 74%
Afimoxifene 2.18E-37 313 478 65%

Table B.2: The tables show the gene ontology annotations for predicted ER-α regulated
genes and three categories: biological process, disease, and drugs. The genes consist
of NB predicted targets of ER-α distal enhancers (enhancer-gene links with FDA of
0.25) and the genes with an intra-genic ER-α binding.
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Significant GO terms for biological processes

Name pValue ER-α in Annot prop
Regulation of Ras protein signal transduction 5.48E-13 135 200 68%
Cell-cell junction organization 3.72E-14 154 230 67%
Epithelial cell development 7.57E-15 167 251 67%
Ras protein signal transduction 1.151E-16 216 334 65%
Regulation of small GTPase mediated signal transduction 8.84E-14 188 295 64%
Small GTPase mediated signal transduction 5.742E-18 352 589 60%
Positive regulation of GTPase activity 4.854E-18 374 632 59%
Regulation of GTPase activity 1.685E-19 407 688 59%
Regulation of cell morphogenesis 2.21E-15 354 610 58%
Blood vessel development 7.91E-16 377 653 58%
Circulatory system development 3.735E-25 613 1062 58%
Cardiovascular system development 3.735E-25 613 1062 58%
Vasculature development 5.43E-16 391 680 58%
Blood vessel morphogenesis 7.88E-13 316 552 57%
Tissue morphogenesis 3.347E-17 438 766 57%
Morphogenesis of an epithelium 7.38E-14 350 613 57%
Cellular response to growth factor stimulus 1.20E-13 364 643 57%
Response to growth factor 4.24E-14 380 672 57%
Regulation of cell development 2.011E-17 548 989 55%
Epithelial cell differentiation 4.24E-12 371 670 55%
Cell migration 6.435E-22 718 1302 55%
Epithelium development 1.405E-21 719 1307 55%
Cell motility 7.426E-23 785 1433 55%
Cell morphogenesis 2.952E-21 734 1341 55%
Cellular response to endogenous stimulus 6.260E-20 699 1280 55%
Response to hormone 2.22E-13 552 1035 53%
Regulation of cell differentiation 4.680E-20 902 1706 53%

Table B.3: The tables show the gene ontology annotations for predicted ER-α regulated
genes and three categories: biological process, disease, and drugs. The genes consist
of NB predicted targets of ER-α distal enhancers (enhancer-gene links with FDA of
0.25) and the genes with an intra-genic ER-α binding.
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Figure C.1: Gelman R̂ statistics for the samples of Z generated by the Gibbs Sam-
pler of the LVA model inferred from the time series of the enhancers with ChIA-PET
evidence and parameters κ0 = 1, α0 = 2, β0 = 2.



168 APPENDIX C. SUPPLEMENTARY FIGURES FOR CHAPTER 5

0.1 0.2
 TPR 

0.3
MAP

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

PolII
NB
LVA data+prior
LVA prior

0.1 0.2
 TPR 

0.3
MAP

ER

0.1 0.2
 TPR 

0.3
MAP

PolII,ER

0.1 0.2
 TPR 

0.3
MAP

PolII,H2AZ,ER

0.1 0.2
 TPR 

0.3
MAP

All

(a) odd chromosomes all enhancers

0.1 0.2
 TPR 

0.3
MAP

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

PolII
NB
LVA data+prior
LVA prior

0.1 0.2
 TPR 

0.3
MAP

ER

0.1 0.2
 TPR 

0.3
MAP

PolII,ER

0.1 0.2
 TPR 

0.3
MAP

PolII,H2AZ,ER

0.1 0.2
 TPR 

0.3
MAP

All

(b) odd chromosomes interacting enhancers

0.1 0.2
 TPR 

0.3
MAP

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

PolII
NB
LVA data+prior
LVA prior

0.1 0.2
 TPR 

0.3
MAP

ER

0.1 0.2
 TPR 

0.3
MAP

PolII,ER

0.1 0.2
 TPR 

0.3
MAP

PolII,H2AZ,ER

0.1 0.2
 TPR 

0.3
MAP

All

(c) all enhancers; intra-domain

0.1 0.2
 TPR 

0.3
MAP

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

PolII
NB
LVA data+prior
LVA prior

0.1 0.2
 TPR 

0.3
MAP

ER

0.1 0.2
 TPR 

0.3
MAP

PolII,ER

0.1 0.2
 TPR 

0.3
MAP

PolII,H2AZ,ER

0.1 0.2
 TPR 

0.3
MAP

All

(d) interacting enhancers; intra-domain

0.1 0.2
 TPR 

0.3
MAP

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

PolII
NB
LVA data+prior
LVA prior

0.1 0.2
 TPR 

0.3
MAP

ER

0.1 0.2
 TPR 

0.3
MAP

PolII,ER

0.1 0.2
 TPR 

0.3
MAP

PolII,H2AZ,ER

0.1 0.2
 TPR 

0.3
MAP

All

(e) all enhancers; inter-domain

0.1 0.2
 TPR 

0.3
MAP

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

PolII
NB
LVA data+prior
LVA prior

0.1 0.2
 TPR 

0.3
MAP

ER

0.1 0.2
 TPR 

0.3
MAP

PolII,ER

0.1 0.2
 TPR 

0.3
MAP

PolII,H2AZ,ER

0.1 0.2
 TPR 

0.3
MAP

All

(f) interacting enhancers; inter-domain

Figure C.2: Figure shows the comparison of the performance between NB and two
LVA models on discovery of ChIA-PET-detected links from all odd chromosomes.
LVA in the first column was inferred from time course data of all enhancers. LVA in
the second column was inferred from the time course data of only those enhancers with
ChIA-PET-confirmed links.
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Figure C.3: Figure shows the comparison of the performance between NB and two
LVA models on discovery of ChIA-PET-detected links from all even chromosomes.
LVA in the first column was inferred from time course data of all enhancers. LVA in
the second column was inferred from the time course data of only those enhancers with
ChIA-PET-confirmed links.
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