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10 Abstract
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Cracking the brain’s code: How do brain rhythms support information processing?
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The brain processes information sensed from the environment and guides be-
haviour. A fundamental component in this process is the storage and retrieval of past
experiences as memories, which relies on the hippocampal formation. Although there
has been a great progress in understanding the underlying neural code by which neu-
rons communicate information, there are still open questions.

Neural activity can be measured extracellularly as either spikes or field potentials.
Isolated spikes and bursts of high-frequency spikes followed by silent periods can
transmit messages to distant networks. The local field potential (LFP) reflects synaptic
activity within a local network. The interplay between the two has been linked to
cognitive functions, such as memory, attention and decision making. However, the
code by which this neural communication is achieved is not well understood.

We investigated a mechanism by which local network information contained in
LFP rhythms can be transmitted to distant networks in the form of spike patterns fired
by bursting neurons. Since rhythms within different frequency bands are prevalent
during behavioural states, we studied this encoding during different states within the
hippocampal formation. In the first paper, using a computational model we show that
bursts of different size preferentially lock to the phase of the dominant rhythm within
the LFP. We also present examples showing that bursting activity in the subiculum of an
anaesthetised rat was phase-locked to delta or theta rhythms as predicted by the model.

In the second paper, we explored possible neural codes by which bursting neurons
can encode features of the LFP. We used the computational model reported in the first
paper and analysed recordings from the subiculum of anaesthetised rats and the medial
entorhinal cortex of an awake behaving rat. We show that bursting neurons encoded
information about the instantaneous voltage, phase, slope and/or amplitude of the
dominant LFP rhythm (delta or theta) in their firing rate. In addition, some neurons
encoded about 10-15% of this information in intra-burst spike counts.

We subsequently studied how the interactions between delta or theta rhythms can
transfer information between different areas within the hippocampal formation. In
the third paper, we show that delta and theta rhythms can act as separate routes for
simultaneously transferring segregate information between the hippocampus and the
subiculum of anaesthetised mice. We found that the phase of the rhythms conveyed
more information than amplitude.

We next investigated whether neurodegenerative pathology affects this informa-
tion exchange. We compared information transfer within the hippocampal formation
of young transgenic mice exhibiting Alzheimer’s disease-like pathology and healthy
aged-matched control mice and show that at early stages of the disease the information
transmission by LFP rhythm interactions appears to be intact but with some differences.

The outcome of this project supports a burst code for relaying information about
local network activity to downstream neurons and underscores the importance of
LFP phase, which provides a reference time frame for coordinating neural activity, in
information exchange between neural networks.
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Chapter 1

Introduction

1.1 Project motivation

The brain has been puzzling scientists for centuries. As the brain controls a range of

functions from heartbeat and breathing to highly intellectual reasoning and creativity,

understanding its mechanisms is challenging. In terms of behaviour, input from the

sensory systems is translated into neural messages, processed in the central nervous

system, and output is sent to the motor system to carry out the decided actions in a

stimulus-response manner; for example moving the hand away from a hot surface.

Moreover, the brain actively engages behaviour to reach a goal, such as writing a thesis.

A vital aspect for guiding goal-driven behaviour is the ability to record and recall prior

experiences in the form of memories.

In order to carry out these functions, neurons exchange messages in a ‘language’ re-

ferred to as the neural code. Traditionally, studies in the field of neural coding have

focused on stimulus-response recordings from sensory systems and showed that neural

firing of action potentials is fundamental to the neural code (examples include Adrian

and Zotterman (1926); Hubel and Wiesel (1959); Henry et al. (1974); Georgopoulos et al.

(1982)). In the last few decades, accumulating evidence suggests that brain rhythms are

also involved in the neural code (for example O’Keefe and Recce (1993); Lisman and

Idiart (1995); Montemurro et al. (2008); Kayser et al. (2009)). Brain rhythms are oscilla-

tions in extracellular electrical potential reflecting collective neural activity (Logothetis,

2003; Buzsaki et al., 2012). Rhythms within specific frequency bands are associated with

different sleep states and behaviours during arousal (recently reviewed in Watson and

Buzsaki (2015)). Studies on brain rhythms usually investigate their role in cognitive

processing, such as memory and attention (Engel et al., 2001; Ward, 2003; Wang, 2010).

Although there has been a huge progress in understanding the brain’s functions and the

neural code, the role of brain rhythms in information encoding and transmission is still

elusive.

This PhD project aimed to determine how information contained in brain rhythms

13
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associated with different behavioural states can be encoded in neural firing. Moreover,

this project aimed to explore how brain rhythms can transmit information between

distinct neural networks. The hippocampal formation, which is a key structure for

memory processing, is ideal for this purpose because, although the brain rhythms

associated with different states of arousal, sleep and anaesthesia have been already

documented in the literature, their capacity to encode and transmit information within

the hippocampal formation has not been studied quantitatively yet. To this end, I

used neurocomputational methods to analyse electrophysiological recordings from the

hippocampal formation to achieve the aims of the project.

This introduction highlights the relevant background in the study of neural coding, brain

rhythms and the hippocampal formation. The aims of the project are then explained

and the outline of the thesis, which is written in alternative format, is presented.

1.2 Neural code

Neurons fire action potentials, which are impulses of depolarisation of the neuronal

membrane with magnitude of ∼100 mV and lasting ∼1 ms followed by a refractory

period of hyperpolarisation (Hodgkin and Huxley, 1939). In addition to single spikes,

certain types of neurons can fire two or more spikes in bursts followed by silent periods

(Izhikevich, 2010). An overview of the neural code is presented here. Current knowledge

about the role of bursting is discussed in more detail in section 1.2.1.

A number of neural codes have been proposed over the past century. The first one was

the spike rate code or spike count code in which information about the intensity of stim-

uli is transmitted by varying the firing rate of the neuron (Adrian and Zotterman, 1926).

Subsequently, neurons that encode preferred stimuli in their spike counts have been

identified, for example neurons in the primary visual cortex increase their firing rate in

response to a preferred orientation of the stimulus (Hubel and Wiesel, 1959; Henry et al.,

1974) and neurons in primary motor cortex increase their firing rate in response to the

preferred direction of arm movement (Georgopoulos et al., 1982). Moreover, neurons

can modify their firing rate to encode different aspects of the stimulus; for example face

neurons in inferior temporal cortex increase or decrease their firing rate to transmit

global and fine information about faces (Sugase et al., 1999).

Apart from the firing rate of spikes, Bryant and Segundo (1976) provided the first ex-

perimental evidence that the exact timing of spikes might be important for stimulus

encoding. Mainen and Sejnowski (1995) and De Ruyter Van Steveninck et al. (1997)
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then showed that the neural response can depend on the type of stimulus, so that

neurons might encode static stimuli in spike counts but dynamic stimuli in spike times.

Indeed, further studies confirmed that spikes can be fired with high temporal precision

in response to dynamic sensory stimuli repeated over trials (Jones et al., 2004a,b) and

quantitative analysis of their encoding capacity showed that spike time codes can con-

vey more information about sensory stimuli than spike count codes (Panzeri et al., 2001;

Montemurro et al., 2007a). Moreover, complementary information can be encoded by

different temporal codes, such as by a combination of spike count and spike time codes,

in a multiplexed code (reviewed in Panzeri et al. (2010)).

Firing of single neurons can also encode complex stimuli, such as abstract concepts,

instead of the simple sensory ones discussed so far. For example, concept cells in

the human medial temporal lobe can encode a concept, such as a specific person or

object (Quian Quiroga et al., 2007, 2009; Quian Quiroga, 2012). Nonetheless, the brain

does not have just one dedicated neuron encoding each piece of information, an idea

known as ‘grandmother cell’ (Gross, 2002). Instead, groups of neurons can represent a

sensory stimulus or abstract concept in sparse codes or population codes (Britten et al.,

1992; Petersen et al., 2002; Panzeri et al., 2003; Quian Quiroga et al., 2008). Neurons

can convey information using a combination of codes: for instance, a small group of

neurons (sparse code) in the ventroposterior medial nucleus of the thalamus can be

combined with a spike time code to transmit more information than the spike times

of each individual neuron in the group (Montemurro et al., 2007a). The amount of

information that a population of neurons can encode depends on the correlations

in their activity and these correlations can either increase or reduce the information

capacity of the population (Panzeri et al., 1999; Schneidman et al., 2003; Averbeck et al.,

2006).

Firing spike trains is not the only means by which neurons can communicate. Neurons

are constantly immersed in fluctuating electrical potentials which can be recorded from

the extracellular medium as the local field potential (LFP, explained in section 1.3). The

phase of LFP oscillations provides an internally-generated reference frame by which

neurons can obtain timing information about the network activity and coordinate their

firing. Spike firing relative to this reference signal can be part of the neural code. Indeed,

the firing of spatial cells in the hippocampus (explained in section 1.4) with respect

to the phase of ongoing LFP rhythms is thought to encode information about space

(O’Keefe and Recce, 1993; Skaggs et al., 1996) and memories (Lisman and Idiart, 1995).

Moreover, spike firing with respect to the phase of LFP oscillations (phase-of-firing

code) can convey more information than spike firing alone in the monkey primary

visual (Montemurro et al., 2008) and auditory cortices (Kayser et al., 2009). Multiplex

(or nested) codes which combine a phase-of-firing code with temporal and population
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codes can further enhance information encoding (Kayser et al., 2009; Panzeri et al.,

2010).

Although the LFP can contain information about the network activity, its local nature

–spatial reach of ∼0.5–3 mm from the electrode (Logothetis, 2003)– poses a physical

restriction on distant neurons from accessing this information. However, one could ask:

Is there a mechanism by which downstream networks can have access to this network

information? Neurons can transmit information over long distances to downstream

neurons by firing action potentials along their axons, which can range in length from a

few millimeters to more than a meter (Debanne et al., 2011). Therefore, if some features

of LFP rhythms can be encoded in some spike train patterns, the information within

LFP could be transmitted to distant downstream neurons by neural firing. In this way,

downstream neurons could obtain information about the upstream network activity by

only observing the spike trains they receive. In this project, I addressed this question by

investigating whether information about LFP can be encoded in spike patterns fired by

bursting neurons.

1.2.1 Bursting

Bursting neurons fire two or more high-frequency spikes in bursts followed by silent

periods. Bursting is underlined by the interaction of fast and slow currents and thus

bursts are dynamically different from firing tonic spikes at a high rate (Izhikevich,

2010). Bursting is abundant in brain regions such as the cortex (Connors et al., 1982;

McCormick et al., 1985), thalamus (Steriade et al., 1993a; Guido and Weyand, 1995) and

hippocampal formation (Kandel and Spencer, 1961; Ranck, 1973). Originally, bursting

was mainly associated with sleep (Steriade et al., 1993a,b) and pathological conditions

such as epilepsy (Prince, 1978; McCormick and Contreras, 2001). Increasing evidence

from a range of neural systems and animal species has suggested bursts are an important

component in neuronal communication.

In the thalamus, bursts are thought to signal the detection of salient stimuli (Guido

and Weyand, 1995; Sherman, 2001; Swadlow and Gusev, 2001). Moreover, bursts in

the lateral geniculate nucleus of the thalamus encode different simple visual stimuli

more reliably than tonic spikes (Alitto et al., 2005) and encode specific features of

naturalistic visual stimuli (Lesica and Stanley, 2004). In the hippocampus, bursts are

more reliable than spikes for synaptic transmission (Lisman, 1997). In the weakly

electric fish, electrosensory cells fire bursts and tonic spikes to encode information

about different behaviourally-relevant stimuli in parallel (Oswald et al., 2004; Chacron

et al., 2004). In crickets, auditory neurons reliably encode salient increases in the
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amplitude of ultrasound stimuli by bursting and this bursting activity also predicts their

predator-avoidance responses (Marsat and Pollack, 2006; Sabourin and Pollack, 2009).

These are some indicative examples highlighting the role of bursting in diverse systems.

In principle, firing bursts with different spike counts provides a code with many symbols

that can represent a signal in a graded manner as proposed by theoretical studies on

the encoding capacity of bursting (Kepecs and Lisman, 2003; Samengo et al., 2013).

Evidence from computational studies has shown that bursting neurons can encode the

slope (Kepecs et al., 2002) and phase (Samengo and Montemurro, 2010) of an input

signal in the size of bursts fired.

Motivated from these studies, in the first two papers of this project we investigated

whether bursting neurons can encode the phase or some other feature of brain rhythms.

To achieve this, we adjusted the model from Samengo and Montemurro (2010) so

that the distribution of bursts fired matched the distribution of real bursting neurons

and then simulated their responses to signals containing behaviourally-relevant brain

rhythms. We then compared these predictions to the analysis of in-vivo recordings of

bursting activity and LFP. The brain system of choice for this purpose was the rodent

hippocampal formation. This is because the hippocampal formation is known to con-

tain bursting neurons (Kandel and Spencer, 1961; Ranck, 1973; Sharp and Green, 1994;

Gigg et al., 2000; Latuske et al., 2015), and its anatomy and physiologically-important

rhythms have been well-documented in the literature (introduced in section 1.4). In the

next section, brain rhythms are introduced.

1.3 Brain rhythms

Brain rhythms refer to the rhythmic fluctuations in extracellular electrical signals which

are abundant and constantly present throughout the brain. The first report of extracel-

lular electrical activity relating to behaviour dates back to an abstract by Caton (1875)

describing his recordings of electrical currents from the surface of the rabbit and mon-

key brains. This triggered a new field in neuroscience, the study of brain rhythms, that

is still active and expanding to this day. The pivotal point in this field came with the

development of the electroencephalogram (EEG) by Berger (1929) who for the first time

recorded electrical activity from the exposed cortical surface of a patient undergoing

surgery and then refined the method to record from the scalp (Karbowski, 2002). Al-

though initially EEG recordings were dismissed by the community as artefacts, they

were praised by Adrian and Matthews (1934) and the importance of the EEG and brain

rhythms has since been appreciated (Karbowski, 2002).
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Nowadays, EEG is routinely used both in research and clinical settings to record brain

rhythm activity from the scalp in humans. The major advantages of EEG that established

it as one of the methods of choice for human brain recordings are that it is non-invasive,

inexpensive and provides millisecond temporal resolution of electrical brain activity.

Different brain rhythms are associated with different stages of the sleep-wake cycle and

cognitive functions, as well as pathological states (Engel et al., 2001; Ward, 2003; Wang,

2010; Watson and Buzsaki, 2015). In this section, the origin of the field potentials is

explained and their role in cognitive processing is introduced. The brain rhythms in the

hippocampal formation are discussed further in section 1.4.4.

1.3.1 The origin of LFP

Extracellular electrical potentials can be recorded from the scalp as the EEG, from the

surface of the cortex as the electrocorticogram, or from electrodes inserted into the brain

as the intracranial EEG or the LFP (Buzsaki et al., 2012). Extracellular recordings capture

both field potentials and spiking activity. The LFP refers to the lowpass-filtered electrical

potential signal (usually below 250 or 300 Hz). LFPs can be recorded extracellularly

throughout the brain.

The origin of LFP signals is not straightforward because all transmembrane currents,

that is ion fluxes in and out of cells, in the vicinity of the electrode contribute to the

recorded electrical potential (reviewed in Logothetis (2003); Buzsaki et al. (2012)). The

transmembrane currents affecting the signal arise from different sources including

synaptic activity (Einevoll et al., 2007; Pettersen et al., 2008), action potentials (Schom-

burg et al., 2012; Scheffer-Teixeira et al., 2013), calcium spikes (Wong et al., 1979; Schiller

et al., 2000), intrinsic resonances (Llinas, 1988; Silva et al., 1991; Leung and Yim, 1991),

spike afterhyperpolarizations (Buzsaki et al., 1988; Ylinen et al., 1995), gap junctions

(Katsumaru et al., 1988; Cruikshank et al., 2005), neuron-glia interactions (Kang et al.,

1998; Poskanzer and Yuste, 2011) and ephaptic coupling (Jefferys, 1995; Anastassiou

et al., 2011).

Currents leaving cells and thus entering the extracellular medium create current sources;

whereas currents entering cells and thus leaving the extracellular milieu create current

sinks (Mitzdorf, 1985). These current sources and sinks form dipoles of electrical poten-

tial in the extracellular neural tissue. The amplitude of the potential at a given location

is inversely proportional to the distance of its current source or sink and the recording

electrode. Therefore, the LFP recorded at an electrode is a weighted sum of all electrical

potentials arising from ion fluxes in the surrounding tissue (Mitzdorf, 1985).
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The size of the dipoles depends on cell geometry and cytoarchitecture (Einevoll et al.,

2013). Pyramidal neurons, which are highly asymmetric, create large dipoles. In con-

trast, small symmetric neurons have dipoles which cancel out so they have much less

contribution to the extracellular potential. Thus, the main contributors to the extracel-

lular potentials are the synaptic currents across pyramidal neurons (Einevoll et al., 2007;

Pettersen et al., 2008; Einevoll et al., 2013). The spatial reach of the LFP depends on

the correlations among the synaptic inputs to the neurons surrounding the electrode.

For uncorrelated inputs, the recorded LFP captures synaptic activity within 0.2 mm;

whereas for correlated inputs, the reach of the LFP can encompass activity proportional

to the radius of the correlated neural population (Linden et al., 2011).

LFP oscillations within distinct frequency bands, known as brain rhythms, have been as-

sociated with a variety of behavioural states (Watson and Buzsaki, 2015). Brain rhythms

are usually named with Greek letters, such as alpha, beta, gamma, delta, epsilon and

theta rhythms. The boundaries of the frequency bands, as well as the naming, vary

considerably among studies and depend on the experimental setup (e.g. awake or

anaesthetised) and species (e.g. mouse, rat, cat, monkey or human) from which they are

recorded. A historical overview of how some of these terms were coined can be found

in the Supplementary Material of Buzsaki and Wang (2012). The link between brain

rhythms and cognitive processing is introduced in the following section.

1.3.2 Brain rhythms and cognitive function

Brain rhythms are preserved across evolution as it becomes evident from the similarities

in the rhythms recorded from the human brain and non-human primates, mammals,

such as cats, rodents and bats (Wang, 2010; Buzsaki, 2015); and also reptiles (Shein-

Idelson et al., 2016). This implies an important role for these rhythms in brain function.

Moreover, their link with different stages of the sleep-wake cycle and pathological states

is a vital component in clinical settings for disease diagnosis and monitoring (Karbowski,

1990).

Brain rhythms have been linked with cognitive processing such as attention, memory,

perception and decision making (reviewed in Ward (2003); Wang (2010)). The rhythms

involved in memory processing are described in section 1.4.4. Interactions of brain

rhythms are thought to mediate top-down processing, for instance to allow predictions

about forthcoming events (Engel et al., 2001). Synchronisation and desynchronisation of

brain rhythms provide a mechanism for temporal binding of multisensory information

(Engel and Singer, 2001). In particular, large scale frequency-specific interactions can

combine information from multiple modalities to achieve cognitive processes, such as
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decision making and top-down attention (Siegel et al., 2012).

The cognitive role of brain rhythms suggests that they somehow process and transmit

information between neural networks. Temporal correlations in the activity of separate

networks can allow information flow via synchronised rhythms (Fries, 2005; Womelsdorf

et al., 2007). In addition, activity in one network might have a causal effect on another

network so that it entrains the latter in order to transmit information, which implies a

direction of information flow (Friston, 1994). These two types of interactions are well-

defined in the field of neuroimaging, where the first is termed functional connectivity

and the latter effective connectivity (Friston, 1994, 2011). Brain rhythm interactions can

allow not only functional connectivity but also effective connectivity so as to transmit

information about cognitive functions. Indeed, the capacity of brain rhythms to mediate

effective connectivity is supported by computational models showing that transitions in

coupling between brain rhythms can dynamically change the direction of information

flow within interconnected networks along anatomically fixed connections (Battaglia

et al., 2012).

Nevertheless, the exact mechanisms of how brain rhythm interactions can mediate

effective connectivity are still elusive. Which aspects of the rhythms convey the in-

formation between the different networks? Different rhythms can coexist. Hence, do

some frequency bands convey more information than others? Different types of cou-

pling between brain rhythms are possible: phase-phase, amplitude-amplitude and

phase-amplitude (reviewed in Fell and Axmacher (2011); Buzsaki and Wang (2012)).

However, are phase and amplitude equally capable of transmitting information? Is

information conveyed by linear correlations in brain rhythms, or does information rely

on non-linearities? Do neurological diseases alter these mechanisms?

This PhD project aimed to answer these questions in order to unravel how the interac-

tion of brain rhythms in the hippocampal formation, which is essential for declarative

memory and spatial navigation, can process information. Advancements in electrophys-

iological techniques, such as multiple electrodes (Buzsaki, 2004), allow the acquisition

of simultaneous intracranial recordings to investigate effective connectivity between

neural networks. To this end, in the last paper, LFP recordings from multiple sites within

the hippocampal formation (area CA1 and subiculum) were analysed to quantitatively

determine which LFP interactions are involved in information exchange between the

two networks and whether these are altered by early stages of neurological disease. The

hippocampal formation is introduced in the following section.
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1.4 Hippocampal formation

The hippocampal formation is a bilateral structure located in the temporal lobes in

humans. Its function and anatomy are very similar in both rodents and primates

including humans (Insausti, 1993; Strange et al., 2014). Much of the current knowledge

about the hippocampal formation comes from studies using rodents. In this section,

the anatomy of the rodent hippocampal formation is described and the role of the

hippocampal formation in cognitive functions is outlined.

1.4.1 Anatomy of hippocampal formation

The hippocampal formation (Fig. 1.1) is a compound structure comprising the hip-

pocampus, dentate gyrus, subiculum and entorhinal cortex (Amaral and Witter, 1989;

O’Mara et al., 2001). The rodent hippocampus consists of three cornu ammonis fields

(CA1, CA2 and CA3). Primates and humans also have a fourth cornu ammonis field

(CA4). The hippocampal area CA1 has a characteristic laminar structure comprising

the alveus, stratum oriens, stratum pyramidale (pyramidal layer), stratum radiatum

and stratum lacunosum moleculare. The subiculum has cytoarchitecture of allocortex

which is three layers: molecular layer (continuous from strata lacunosum-moleculare

and radiatum of CA1), enlarged pyramidal cell layer (contains soma of principal pyra-

midal neurons) and polymorphic layer (O’Mara et al., 2001). The entorhinal cortex

is multi-laminate, has six functionally distinct layers which are non-homogeneously

connected to input and output structures including the hippocampus (reviewed in Gigg

(2006); Canto et al. (2008)). The connections within the hippocampal formation are

summarised in Fig. 1.2.

The entorhinal cortex, which is divided into medial (MEC) and lateral (LEC) parts,

receives sensory information and projects this to the hippocampus (Canto et al., 2008).

The entorhinal cortex projects the main input to the hippocampus via the perforant

path originating from layer II and the temperoammonic pathway from layer III (Gigg,

2006). The hippocampal area CA3 receives input from the entire dentate gyrus, LEC

and MEC (Gigg, 2006). The projections from area CA3 to area CA1 are more segregated:

proximal CA3, which borders the dentate gyrus, projects to distal CA1, which borders

the subiculum; distal CA3, which borders CA1, projects to proximal CA1, which borders

CA3; and medial CA3 projects to medial CA1 (Gigg, 2006). The projections at each stage

can process different information. For example CA3 to CA1 connections are involved in

memory recall and entorhinal cortex to CA1 in memory acquisition (Brun et al., 2002).
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Figure 1.1: Hippocampal formation of a healthy mouse with annotations labelling the hip-
pocampal areas CA1 and CA3, dentate gyrus (DG) and subiculum (Sub). Histological image was
provided by Daniel Squirrell who obtained the recordings from mice and rats used in this study.

The subiculum mainly receives input from area CA1 and projects the main output of the

hippocampus to the entorhinal cortex and other cortical areas –including the perirhinal,

retrosplenial and prefrontal cortices– as well as to subcortical areas –including the thala-

mus, hypothalamus, amygdala and nucleus accumbens (O’Mara et al., 2001). Proximal

CA1 projects to distal subiculum, which borders presubiculum; distal CA1 projects to

proximal subiculum, which borders CA1; and medial CA1 projects to medial subiculum.

Proximal subiculum and distal CA1 project to LEC. Distal subiculum and proximal CA1

project to MEC. The entorhinal cortex also sends direct input to the subiculum. LEC

projects to distal CA1 and proximal subiculum whereas MEC projects to proximal CA1

and distal subiculum (Gigg, 2006). The subiculum and CA1 also receive direct input

from the perirhinal cortext, which is involved in object perception, and the postrhinal

cortex, which is involved in egocentric spatial and topographical representation. The

perirhinal cortex projects to distal CA1 and proximal subiculum, and the postrhinal

cortex projects to proximal CA1 and distal subiculum (Witter et al., 2000).

The segregated connections throughout the input-output circuitry of projections within

the hippocampal formation support the idea that it can process different types of in-

formation (such as spatial and non-spatial) in parallel. Therefore, the hippocampal
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Figure 1.2: Summary of projections within the hippocampal formation described in the text.
EClat and ECmed: lateral and medial entorhinal cortex, respectively; D: distal; P: proximal.
Figure adapted from Gigg (2006).

formation is an ideal structure to experimentally investigate the idea of dynamic effec-

tive connectivity by LFP interactions introduced in section 1.3.2.

1.4.2 Bursting neurons in the hippocampal formation

Bursting in the hippocampal formation has been reported since early studies by Kandel

and Spencer (1961) and Ranck (1973). In-vitro studies showed that, depending on their

firing properties, neurons in the subiculum can be classified as regular spiking if they

fire only single spikes or intrinsically bursting if they fire bursts of spikes as well as single

spikes (reviewed in O’Mara et al. (2001)). In-vivo studies have confirmed the presence

of bursting neurons in the subiculum (Sharp and Green, 1994; Gigg et al., 2000; Kim

et al., 2012; Kim and Spruston, 2012). More recently, bursting neurons have also been

reported in-vivo in the MEC (Latuske et al., 2015).
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The presence of bursting neurons in the hippocampal formation in-vivo suggests that

bursting might have a distinct role in the neural code. In this project, we studied the

capacity of bursting neurons in the subiculum and the MEC to transmit information

about the local network activity (reflected in particular features of ongoing LFP rhythms)

to downstream neurons as already introduced in section 1.2.1.

1.4.3 Functions of hippocampal formation

The importance of the hippocampal formation for forming declarative memories, which

are memories that can be explicitly expressed, has been first appreciated from studying

amnesic patients, with patient H.M. being one of the most famous cases. Patient

H.M. had bilateral removal of his medial temporal lobes, including large parts of the

hippocampal formation, in order to treat his epilepsy (Scoville and Milner, 1957). After

his surgery, the patient was unable to form new declarative memories, that is he suffered

from severe anterograde amnesia; even though he could recall memories acquired up

until three years before the surgery, he had partial retrograde amnesia (Squire, 2009).

Declarative memories are usually divided into semantic which includes facts, concepts

and meanings, and episodic which includes the context of life experiences (Dickerson

and Eichenbaum, 2010). Although the patient could learn new skills, that is form

procedural memories, he could not recall learning them (Squire, 2009). Following

decades of research into memory processing, the hippocampal formation has been

established as a necessary structure for forming declarative memories but not storing

permanently these memories or forming procedural memories (Squire and Wixted,

2011).

Extensive studies of the hippocampal formation in rodents over the past half century

have also revealed its importance for spatial navigation, which led to a Nobel Prize

in Physiology or Medicine in 2014 (Nobelprize.org, 2016). After the discovery of place

cells, which are neurons responding when the animal moves through a location, in

hippocampal area CA1 (O’Keefe and Dostrovsky, 1971), the hippocampus has been

proposed to form a cognitive map of the space in which the animal navigates (O’Keefe

and Nadel, 1978). Since then, more types of spatial cells have been identified in regions

of the hippocampal formation. Head direction cells, which fire only when the rodent

faces towards a preferred direction, have been found in the postsubiculum (Taube

et al., 1990a,b) and the MEC (Giocomo et al., 2014). Grid cells representing space in a

hexagonal arrangement have been identified in the MEC (Fyhn et al., 2004; Hafting et al.,

2005). Border cells that fire when the animal is near a boundary have been found in the

MEC (Solstad et al., 2008). Boundary vector cells that fire when a perceived boundary

is at their preferred location have been identified in the subiculum (Lever et al., 2009).
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Speed cells, which encode the speed by which the animal moves, have been identified

in the MEC (Kropff et al., 2015). The spatial encoding role of the hippocampal formation

has been also suggested by imaging studies in humans (Maguire et al., 2000, 2006;

Suthana et al., 2009). In addition, recent evidence suggested that grid-like representation

of space is also present in humans (Doeller et al., 2010; Jacobs et al., 2013; Horner et al.,

2016).

Furthermore, the hippocampal formation has been implicated in encoding non-spatial

information. More specifically, neurons in the hippocampal formation may encode the

context in which stimuli are perceived during behaviour rather than simple sensory

stimuli or spatial cues. For example, non-spatial hippocampal cells in rodents may

encode context-dependent representations of episodic memories related to task perfor-

mance (Wood et al., 2000), such as prospective and retrospective aspects of memory

tasks (Ainge et al., 2007). Similarly in humans, concept cells fire in response to complex

stimuli, such as visual and acoustic, representing a specific concept which can be a

particular person or item (Quian Quiroga et al., 2007, 2009; Quian Quiroga, 2012).

1.4.4 Rhythms in the hippocampal formation

Rhythms in the field potentials within the hippocampal formation are also implicated

with specific cognitive functions. The three main rhythms (delta, theta and gamma) in

the hippocampal formation are introduced in this section.

1.4.4.1 Delta rhythms

Delta rhythms (∼1–4 Hz) (Siapas and Wilson, 1998) and slow oscillations (≤1 Hz) (Wolan-

sky et al., 2006) are large amplitude rhythms that are prevalent during slow-wave sleep,

inactivity and anaesthesia (Wolansky et al., 2006; Sharma et al., 2010; Molle and Born,

2011; Rasch and Born, 2013). The boundary between the two rhythms is not always clear,

especially under anaesthesia where the peak of the oscillation is at∼1 Hz (Sharma et al.,

2010). In this thesis, we refer to the ∼1 Hz oscillation as delta rhythms because in our

recordings the band ranged from 0.5 to 2.5 Hz; except in Paper 1 where it was referred

to as slow oscillations consistent with the nomenclature under similar experimental

conditions (Wolansky et al., 2006).

Delta rhythms are generated by thalamic inputs (Amzica and Ster, 1992; Steriade, 2006)

and are thought to mediate memory consolidation during slow-wave sleep (Diekel-

mann and Born, 2010; Molle and Born, 2011; Born and Wilhelm, 2012; Rasch and Born,

2013). Interestingly, evidence of memory consolidation has also been suggested under
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anaesthesia (Culley et al., 2003), suggesting that at least some of the neural activity

underlying memory processing is preserved under anaesthesia.

Delta rhythms organise neural activity in ‘up’ and ‘down’ states of excitability that

enhances or decreases, respectively, neuronal activity in the neocortex (Molle and Born,

2011). During delta rhythms, the hippocampus displays prominent events known as

sharp-waves –aperiodic deflections in the LFP (1–50 Hz)– associated with ripples –fast

oscillations (100–250 Hz) (Buzsaki et al., 1992; Chrobak and Buzsaki, 1994; Ylinen et al.,

1995). Hippocampal ripples are related to cortical spindles (Siapas and Wilson, 1998)

and the interactions between these events is thought to form a neural substrate for

transferring newly acquired memories from the hippocampus to the neocortex for

permanent storage during sleep (Rasch and Born, 2013).

1.4.4.2 Theta rhythms

Theta rhythms refer to the frequency band of ∼3–12 Hz. The frequency range varies

between studies depending on the experimental conditions. Indicative examples of

hippocampal theta bands reported in the literature are listed in Table 1.1. The theta

rhythm can be distinguished in two subtypes based on its sensitivity to the muscarinic

acetylcholine receptor inhibitor atropine: the atropine-sensitive theta (∼4–7 Hz) and

the atropine-resistant theta (∼7–12 Hz) (Kramis et al., 1975).

Table 1.1: Theta frequency bands within the hippocampal formation in different experimental
conditions.

Band (Hz) Species Experimental condition

7–12 rats, rabbits locomotion (Kramis et al., 1975; O’Keefe and Recce, 1993)
6–10 rats locomotion (Skaggs et al., 1996)
5–10 rats locomotion, REM sleep (Harris et al., 2002; Patel et al., 2012)
4–10 rats locomotion, urethane anaesthesia (Lubenov and Siapas, 2009)
4–7 rats, rabbits awake immobility, urethane anaesthesia (Kramis et al., 1975)
3–5 rats urethane anaesthesia (Clement et al., 2008)
3–4 mice urethane anaesthesia (Pagliardini et al., 2013b)
4–8, 3–8 humans memory task (Lega et al., 2012)

In the hippocampus, theta rhythms are generated by inputs from the medial septum

and diagonal band of Broca, which act as the pacemaker for the rhythm (Buzsaki,

2002). Parvalbumin-expressing GABAergic cells in the medial septum projecting to

basket cells rhythmically disinhibit pyramidal neurons in the hippocampus (Buzsaki,

2002; Colgin, 2016), while cholinergic neurons in the medial septum slowly depolarise

hippocampal pyramidal neurons and basket cells (Buzsaki, 2002). These interactions

induce rhythmic inhibitory post-synaptic potentials at the soma of pyramidal neurons.
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Moreover, entorhinal input produces rhythmic excitatory post-synaptic potentials at

the dendrites of hippocampal pyramidal neurons (Buzsaki, 2002). The interactions of

these inhibitory and excitatory post-synaptic potentials produce dipoles of which the

sum is the observed theta rhythm in the recorded LFP (Buzsaki, 2002).

Hippocampal theta rhythms are commonly recorded during spatial navigation (O’Keefe

and Recce, 1993; Skaggs et al., 1996; McNaughton et al., 2006) and REM sleep (Harris

et al., 2002) and are thought to be involved in the declarative memory processing

associated with these states. The interplay between theta rhythms, gamma rhythms

(introduced in the next subsection) and spiking activity is hypothesised to build internal

representations in the hippocampus. Neural firing representing an item of memory, e.g.

place cells firing when the animal visits the preferred place field, is locked at a specific

phase on the theta cycle (O’Keefe and Recce, 1993). This firing shifts to earlier phases on

successive theta cycles, e.g. when the animal traverses the place field, a phenomenon

known as theta phase precession (Skaggs et al., 1996). The firing of an ensemble of

neurons each representing a specific memory (or portion of the space) is replayed on

every theta cycle, and the firing of different ensembles within a theta cycle occurs during

gamma cycles superimposed on the theta cycle (Lisman and Idiart, 1995; Jensen and

Lisman, 2005, 1998; Buzsaki and Draguhn, 2004; Jensen and Lisman, 2005; Jensen, 2006;

Lisman, 2005; Lisman and Buzsaki, 2008; Carr et al., 2012). This hypothesis is mostly

based on rodent studies. Experimental evidence from studies with epileptic patients

supports the idea that the hippocampal theta rhythms, as well as gamma rhythms, are

involved in processing memories in humans (Lega et al., 2012).

The aforementioned evidence suggests that locking of neural firing to the phase of theta

rhythms is key in representing information. In light of this, recent studies have shown

that theta phase gradually shifts along the septotemporal axis of the hippocampus

(Lubenov and Siapas, 2009; Patel et al., 2012) and this spatiotemporal structure of theta

can be regarded as a carrier signal containing information about the position of a rat

during spatial exploration (Agarwal et al., 2014).

Given the importance of phase-locking in the hippocampal formation, the first part of

the project focused on determining whether bursting neurons can encode the phase of

some rhythms and the conditions under which such encoding is possible. In order to

be able to test a range of possible rhythms, we used a bursting neuron model and then

compared the model predictions with the analysis of experimental data. This was the

topic of Paper 1.
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1.4.4.3 Gamma rhythms

Gamma rhythms refer to the frequency band of ∼30–100 Hz. The exact frequency range

varies among studies, e.g. 30–80 Hz (Buzsaki and Draguhn, 2004), 25–100 Hz (Colgin,

2011, 2016) and 30–90 Hz (Buzsaki et al., 2012). The gamma band is further divided

into sub-bands based on their interactions with other bands and networks. This sub-

band classification varies depending on the study (see Table 1.2). Some authors extend

the gamma band to include oscillations with frequencies of >100 Hz (Colgin et al.,

2009; Belluscio et al., 2012; Schomburg et al., 2014). Oscillations of >100 Hz are also

referred to as epsilon (Freeman, 2007; Belluscio et al., 2012; Schomburg et al., 2014) and

high-frequency oscillations (Scheffer-Teixeira et al., 2013) in the literature and can have

different physiological roles than gamma rhythms or might arise from spike leakage

into the field recording (Scheffer-Teixeira et al., 2013).

Table 1.2: Gamma sub-bands within the hippocampal formation reported in different studies.

Gamma sub-band Frequencies (Hz) Study

slow 25–50 Colgin et al. (2009)
fast 65–140

slow 30–50 Belluscio et al. (2012)
midfrequency 50–90
fast/epsilon 90–150

slow 30–80 Schomburg et al. (2014)
midfrequency 60–120
fast/epsilon >100

Gamma rhythms in the hippocampus are generated by the activity of basket cells,

which are fast-spiking parvalbumin soma-inhibiting interneurons, and entorhinal input

(reviewed recently in Bartos et al. (2007); Buzsaki and Wang (2012); Colgin (2016)). Low

gamma or slow gamma ( 25–55 Hz) arises from CA3 input, whereas fast or mid-frequency

gamma ( 60–100 Hz) arises from MEC input (Colgin, 2016).

Gamma sub-bands interact separately as well as with theta rhythms to couple different

networks. More specifically, Colgin et al. (2009) showed that slow gamma was coherent

in CA1 and CA3, and fast gamma was coherent in CA1 and MEC of awake rats. In addi-

tion, fast and slow gamma were locked to different phases of theta rhythms in area CA1

supporting the idea that: fast gamma coupling with CA1 theta rhythms channels extrin-

sic inputs from MEC to CA1; whereas slow gamma coupling with CA1 theta rhythms

channels intrinsic inputs from CA3 to CA1 (Colgin et al., 2009). These experimental

evidence agreed with preceding models proposing the idea of distinct theta-gamma

interactions between the entorhinal cortex and hippocampus for memory encoding,
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and between areas CA3 and CA1 for memory retrieval (Hasselmo et al., 2002).

The mechanism of LFP rhythm interactions for transmitting separate information might

also apply in different contexts. This motivated Paper 3 in this project, which aimed

to determine how LFP rhythms in the output part of the hippocampal formation can

interact to mediate information exchange.

1.5 Brain rhythms in neurological diseases

Considering that the generation of brain rhythms depends on the underlying neural

network, it can be assumed that disruptions in the network by neurological diseases

will affect the brain rhythms and this is expected to correlate with cognitive deficits. In

rodents, loss of inhibitory interneurons results in disruption of gamma rhythms and

impairments in spatial and memory task performance (Fuchs et al., 2007). Abnormal

brain rhythms have also been recorded from patients and animal models with a range

of neurological disorders, such as epilepsy, schizophrenia, autism, Parkinson’s disease

and Alzheimer’s disease (reviewed in Uhlhaas and Singer (2006, 2010)).

Alzheimer’s disease is a neurodegenerative disease (reviewed in Querfurth and LaFerla

(2010); Ittner and Gotz (2011)) with characteristic symptoms of cognitive decline and

memory problems (Larson et al., 1992). The pathological hallmarks of Alzheimer’s dis-

ease are β -amyloid plaques and neurofibrillary tangles of hyperphosphorylated protein

tau (Querfurth and LaFerla, 2010; Ittner and Gotz, 2011). The hippocampal formation is

one of the first brain regions affected by accumulation of β-amyloid plaques and neu-

rofibrillary tangles (Braak and Braak, 1991) and synaptic and neuronal loss (West et al.,

1994). As well as loss of anatomical connections, large-scale functional connectivity

is disrupted by Alzheimer’s disease pathology (He et al., 2009). EEG and MEG studies

have reported abnormal brain rhythms in AD patients (de Haan et al., 2009; Stam et al.,

2009) suggesting a link between patterns of abnormal rhythms and Alzheimer’s disease

pathology.

Early diagnosis of neurological diseases is essential for better outcome of treatments, to

delay the disease progression and improve the life of patients. Therefore, developing

methods that will allow early diagnosis is very important. Identifying abnormal brain

rhythms or impaired interactions between brain rhythms can be possible ways to diag-

nose neurological diseases at early stages. To investigate whether early stages of disease

produce any detectable changes in information transfer by brain rhythms, we extended

the investigation of information transfer within the rodent hippocampal formation to
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a mouse model of Alzheimer’s disease. We quantified information transfer by sponta-

neous LFP in the hippocampal formation of the 3xTg-AD mouse model of Alzheimer’s

disease and compared it with the information transfer within healthy control mice in

order to identify potential impairments.

1.6 Summary

Neurons can transmit information using a combination of codes. Rhythms in the field

potential provide an integral component in this information communication. However,

a mechanism by which information contained in the LFP can be transferred to distant

networks is not known. Bursting is a candidate mechanism for this, since it is reliable

and has the capacity to provide more symbols in the neural code by firing events of

different size.

LFP interactions, especially phase interactions, are involved in information encoding

and transmission. In the hippocampal formation, current hypotheses suggest that

delta rhythms coordinate neural excitability for memory consolidation; and neural

ensemble activity relative to the phase of theta rhythms encodes memories. In addition,

the coupling of oscillations within specific bands can dynamically route and segregate

information along anatomical connections, as in the example of gamma sub-bands for

memory encoding and retrieval. The exact interactions by which the LFP can mediate

this dynamic effective connectivity are still unclear. This project seeks to address these

gaps in our knowledge.

1.7 Aims of project

The main aim of this project is to understand how information contained in brain

rhythms can be projected to distant networks and how brain rhythms can exchange

information between separate neural networks. This aim was achieved in three papers.

The specific aims of the project were:

A. To determine the specific conditions by which bursting neurons can lock to LFP

phase.

B. To determine the neural code by which bursting neurons can encode information

contained in LFP rhythms.
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C. To quantitatively determine how the LFP can transfer information between separate

networks in the hippocampal formation.

D. To apply the method of quantifying information transfer to investigate whether early

stages of neurological disease affect information transfer within the hippocampal

formation.

1.8 Alternative format structure

1.8.1 Paper 1

Title: Phase-locking of bursting neuronal firing to dominant LFP frequency components

Authors: Maria Constantinou, Daniel H. Elijah, Daniel Squirrell, John Gigg, Marcelo A.

Montemurro

Status of paper: Published in BioSystems and available online at doi:10.1016/j.biosystems.

2015.08.004 since 21 August 2015 (see Constantinou et al. (2015)).

Declaration of author contribution: All analyses of experimental and simulated data

and model fitting were conducted by MC under the supervision of MM. Initial work with

the model was also carried out by DE. Experimental data were recorded by DS during

his Masters studies under the supervision of JG. MC wrote the manuscript. MM, JG, DE

and DS provided feedback on the manuscript.

Paper overview: This paper addressed aim A. We used a bursting neuron model, which

we adjusted to match the firing statistics of subicular neurons, to test the conditions by

which bursting output phase-locks to different behaviourally-relevant frequency bands.

The model predicted that bursting locks to the phase of the dominant rhythm in the

input signal irrespective of the specific frequency of the rhythm. Moreover, bursts of

increasing spike count locked to more advanced phases in a graded manner. We tested

these predictions by analysing LFP and spiking activity from the rat subiculum under

urethane anaesthesia. We observed similar phase locking patterns of bursting neuron

output to the phase of the dominant rhythm (delta or theta) in the LFP.

doi:10.1016/j.biosystems.2015.08.004
doi:10.1016/j.biosystems.2015.08.004
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1.8.2 Paper 2

Title: Bursting neurons in the hippocampal formation encode features of LFP rhythms

Authors: Maria Constantinou, Soledad Gonzalo Cogno, Daniel H. Elijah, Emilio Kropff,

John Gigg, Inés Samengo and Marcelo A. Montemurro

Status of paper: Published in Frontiers in Computational Neuroscience and available

online at doi:10.3389/fncom.2016.00133 since 30 November 2016 (see Constantinou

et al. (2016)).

Declaration of author contribution: All analyses of simulated data and model fitting

were conducted by MC under the supervision of MM. The analyses of experimental

data were conducted by MC and SGC under the supervision of IS and MM. In detail,

MC analysed the data from the subiculum and SGC from the entorhinal cortex. MC

produced all Figures of the paper, except Figures 5 and 6, which were produced by IS.

MC, SGC, IS and MM wrote code. Experimental data from the subiculum were recorded

by Daniel Squirrell and Claire Scofield under the supervision of JG. Experimental data

from the entorhinal cortex were recorded by EK. MC wrote the draft of the manuscript.

MC, SGC, IS and MM finalised the submitted manuscript. DE, JG and EK provided

feedback on the manuscript. MC produced all Supplementary Figures and wrote the

Supplementary Material , except Supplementary Methods section 1.3 which was written

by IS.

Paper overview: This paper addressed aim B. We investigated potential neural codes by

which bursting neurons could encode features of the LFP, including the instantaneous

voltage, slope, phase and amplitude. We analysed simulations of bursting neuron

activity and electrophysiological recordings from the rat hippocampal formation under

either urethane anaesthesia or awake behaviour. We show that bursting neurons encode

information about features of delta and theta rhythms in their firing rate and some of

these neurons also encode a smaller amount of information in their intra-burst spike

count. The advantage of this burst code is summarised in Fig. 1.3.

1.8.3 Paper 3

Title: Information transfer by LFP rhythms within the hippocampal formation

Authors: Maria Constantinou, Daniel Squirrell, John Gigg, Marcelo A. Montemurro

doi:10.3389/fncom.2016.00133
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Figure 1.3: Diagram explaining the advantage of a neural code in which bursting neurons
encode information about features of the LFP. In the network containing the bursting neuron
there is a prominent LFP rhythm. The bursting neuron adjusts its firing rate and spike count
to reflect features of this rhythm. The downstream neuron belongs to a separate network that
has no direct access to the LFP surrounding the bursting neuron. However, the decoder neuron
can obtain information about the upstream network state by only observing the arriving spike
patterns.

Status of paper: Manuscript in preparation for eLife

Declaration of author contribution: MC analysed all data and produced all Figures.

MC and MM wrote code. Experimental data were recorded by DS for his PhD project

under the supervision of JG. MC wrote the manuscript. MM and JG provided feedback

on the manuscript.

Paper overview: This paper addressed aim C. We analysed LFP recordings from hip-

pocampal area CA1 and the subiculum of anaesthetised mice to determine how infor-

mation is exchanged between the two networks. There were two prominent rhythms in

the LFP: delta and theta. Therefore, we quantified the information transferred be each

rhythm separately. We show that information is transmitted bidirectionally between the

two networks by both rhythms. We then asked which aspects of the LFP signal convey

the information. We determined that most of the information is conveyed by linear

components in the signals. Moreover, the phase of delta and theta rhythms conveyed

almost double the amount of information when compared to amplitude.

1.8.4 Supplementary material extending Paper 3

Topic: Information transfer by LFP at early stages of Alzheimer’s disease-like pathology

in the 3xTg-AD mouse model

Overview: Aim D was addressed by applying the same methodology used in Paper 3 to

analyse LFP recordings from hippocampal area CA1 and subiculum of anaesthetised

three-month-old 3xTg-AD mice. The results were compared with those obtained for the
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three-month-old control mice presented in Paper 3. The outcome was that information

transfer in 3xTg-AD and control mice appeared similar, but at the population level there

were statistically significant differences between the two phenotypes. The outcome

of this part of the study is presented as Supplementary to Paper 3. This was a meta-

analysis of data collected by Daniel Squirrell for his PhD project. The results presented

in this Supplementary section will be published in combination with the results of the

biological investigation into the pathology of Alzheimer’s disease in this mouse model

(completed by DS).
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Methods

For this PhD project, I analysed electrophysiological data using a range of neurocom-

putational methods in order to address the aims of each paper. These methods are

explained in the Methods section of each paper. In this section, I explain the background

of the key methods used to analyse the data, for which a detailed explanation would

have been unusually long to include in the methods section of a paper. To perform the

data analysis, I wrote custom code or adapted code provided by Marcelo Montemurro

to address the specific requirements of each analysis. Data analysis methods were

implemented in MATLAB (The MathWorks, Inc.), unless otherwise stated.

2.1 In vivo electrophysiology

The electrophysiological data used in this project included LFPs and spiking activity

from rats (Papers 1 and 2) and LFPs from healthy mice and 3xTgAD mice (Paper 3).

The experimentally recorded data from anaesthetised rodents were obtained by Daniel

Squirrell and Claire Scofield under the supervision of John Gigg. The experimental

data from the awake behaving rat used in Paper 2 were recorded by Emilio Kropff. The

experimental procedures for obtaining these recordings are described in the methods

sections of each paper.

2.2 LFP sampling and filtering

Data were recorded with Plexon Recorder/64 (bandwidth: 1 Hz–6 kHz, Plexon Inc., USA).

LFP were extracted by lowpass filtering (1-pole Butterworth) the raw recorded signal to

obtain the components up to 250 Hz and sampled at 2 kHz. The extracted LFP signal

was reverse-filtered with the same 1-pole Butterworth filter to correct for the phase shift

distortion caused by the filter.

In order to speed up computation time, LFP signals were resampled to reduce their

sampling rate. This was achieved in either of two ways depending on the requirements

35
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of the analysis. The first way was to downsample the original 2 kHz signal by a factor

of four to 500 Hz. This was sufficient since the Nyquist frequency of the downsampled

signal was 250 Hz and the LFP signals contained no frequency components higher than

that. The second way was to decimate the original signal from 2 kHz to 200 Hz. The

decimation method was required in this case because the Nyquist frequency of the

downsampled signal was 100 Hz. If downsampling was used, then the resulting signal

would have a distortion called aliasing (Prandoni and Vetterli, 2008). Examples of this

aliasing are illustrated in Fig. 2.1. In the first case, the original 2 kHz signals overlap with

both the downsampled and decimated 500 Hz signals (Fig. 2.1A and B). In the second

case, the original and decimated 200 Hz signals ovelap whereas the downsampled signal

deviates from the original one (Fig. 2.1C and D). This aliasing is caused when signals

of different frequencies cannot be distinguished as explained in Fig. 2.2. To prevent

aliasing in the resampled signal, the original signal was first lowpass-filtered (Kaiser

finite impulse response (FIR) filter) to remove all components above 100 Hz and then

samples were discarded by the process called decimation (Prandoni and Vetterli, 2008).

Figure 2.1: Example sections of bandpass-filtered LFP within 0.5-2.5 Hz (A and C) and 2.5-5 Hz
(B and D) illustrating downsampling is sufficient for reducing the sampling rate to 500 Hz (A and
B) and decimating was required to prevent aliasing in the 200 Hz signals (C and D).

To extract LFP oscillations within specific frequency bands, the LFP signals were filtered

with a Kaiser FIR filter. The sharp transition bandwidth was 1.0 Hz, the stopband at-

tenuation was 60 dB and the passband ripple was 0.01 dB. Filtering is also described

in the Methods section of each paper. Depending on the requirements of each analy-
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Figure 2.2: Example of two possible sinusoids (black line: 1 Hz; grey line: 9 Hz) that could fit
the sampled values (red circles) recorded at a rate of 8 Hz. Aliasing can arise when a signal
contains such components of higher frequencies than the Nyquist frequency. The remnants
of the higher frequency components can result in the signal distortion observed in Fig. 2.1
when downsampling without lowpass-filtering first to remove all components above the Nyquist
frequency.

sis, signals were either narrowband-filtered in overlapping windows of width 1 Hz or

bandpass-filtered for specific behaviourally-relevant rhythms such as slow oscillations

(0.5-2.5 Hz), anaesthetised theta rhythms (2.5-5 Hz) or awake theta rhythms (6-12 Hz).

The cutoff frequencies for each band were chosen based on the spectral analysis of

each dataset as explained in each paper. The width of 1 Hz for narrowband filtering

was chosen so that we could identify which rhythms are important for information

transmission or phase locking and where there is a transition in which rhythms belong

to a different band.

2.3 LFP feature extraction

Oscillations can be described by their frequency, amplitude and phase (Fig. 2.3A). The

frequency f of an oscillation indicates how many cycles are present in a second. This is

inversely proportional to the period T = 1/ f , which determines the duration of a cycle

and is annotated in Fig. 2.3A. The amplitude A(t ) is the distance of the peak or trough

of the signal from zero. The phase indicates at which point of the cycle is the signal. For

instance, the four quarters of the phases of a cycle are coloured differently in Fig. 2.3A.

When an LFP signal is narrowband-filtered to obtain an oscillatory signal x (t ) contain-

ing only one major frequency so that x (t ) is a sinusoid, x (t ) can be described by its

amplitude A(t ) and phaseφ(t ) according to Eq. 2.1:

x (t ) = A(t )cos[φ(t )]. (2.1)

The signal’s amplitude and phase can be computed from the analytical signal z (t )which
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is obtained by projecting the signal on the complex plane as described in Eq. 2.2:

z (t ) = x (t )+ iQ[x (t )] (2.2)

where x (t ) is the real part of z (t ) and Q[x (t )] is a transformation of x (t ) to get the imagi-

nary part of z (t ). An example point of the analytic signal z (t ) is plotted on the complex

plane in Fig. 2.3B to depict the quantities x (t ) and Q[x (t )] and their relationship with

the canonical pair of instantaneous amplitude A(t ) and instantaneous phaseφ(t ). The

instantaneous amplitude A(t ) is the absolute value of the transform (Eq.2.3):

A(t ) = |z (t )|=
p

x (t )2+Q[x (t )]2 (2.3)

and the instantaneous phaseφ(t ) is the angle between the transform and the positive

real axis (Eq.2.7):

φ(t ) = arctan
Q[x (t )]

x (t )
. (2.4)

Figure 2.3: (A) Diagram of a sinusoidal signal x (t ) plotted against time t showing the phase
φ(t ), amplitude A(t ) and period T . (B) The analytic signal z (t ) for an example time point of
signal x (t ) is plotted on the complex plane to illustrate how the real x (t ) and imaginary part
Q[x (t )] are related to the instantaneous phaseφ(t ) and instantaneous amplitude A(t ).

The imaginary part of z (t ) can be computed as the Hilbert transform (Q[x (t )] =H [x (t )])
of x (t ) using the implementation for the discrete-time series by Marple (1999). The

Hilbert transform (Eq.2.5) computes the imaginary part H [x (t )] of the analytic signal of

a continuous signal x (t ) according to:

H [x (t )] =
1

π
p.v.

∫ ∞

−∞

x (t )
t −τ

dτ (2.5)

(Papoulis, 1977) where p.v. indicates that the integral over infinity is computed via the

Cauchy principal value (Cauchy, 1826). This calculation can be easily done using the
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Fourier transform so that:

Z ( f ) =











2X ( f ) f > 0

X (0) f = 0

0 f < 0

(2.6)

where X ( f ) = F [x (t )] is the continuous-time Fourier transform of signal x (t ) over the

interval −∞< f <∞. For band-filtered LFP, which are N -point discrete signals x [n ],
where 0≤ n ≤N −1, the discrete-time analytic-like signal z [n ]was obtained by:

Z [m ] =























X [0] m = 0

2X [m ] 1≤m ≤ N
2
−1

X (N
2
) m = N

2

0 N
2
+1≤m ≤N −1

(2.7)

where X [m ] is the N -point discrete-time Fourier transform (DTFT) of signal x [n ], and

then calculating the inverse DTFT of Z [m ] (Marple, 1999). This method both preserves

the original time series as the real part of the analytic signal:

Re(z [n ]) = x [n ] (2.8)

and ensures the real and imaginary parts are orthogonal:

N−1
∑

n=0

Re(z [n ]) Im(z [n ]) = 0 (2.9)

(Marple, 1999). Thus, in all analyses presented in this thesis, amplitude and phase were

extracted as the absolute and angle, respectively, of the Hilbert transform z [n ] of the

band-filtered LFP x [n ] (Fig. 2.4).

For some of the analyses, the slope of band-filtered LFP signals was also extracted.

Slope s [n ]was defined as the instantaneous gradient of the LFP signal x [n ]. This was

computed as the difference between two consecutive LFP points divided by the time

difference h of those points according to Eq. 2.10:

s [n +
1

2
] =

x [n +1]−x [n ]
h

(2.10)

where 0≤ n ≤N −1. Feature extraction from band-filtered LFP is summarised in Fig.

2.4.
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Figure 2.4: A and B: Example segment of raw LFP signal recorded from the subiculum of an
anaesthetised rat. C-H: The investigated features of the delta-filtered (C, E and G) and theta-
filtered LFP (D, F and H) were the instantaneous voltage (C and D, black lines), the instantaneous
amplitude which is the envelope of the signals (C and D, grey lines), the instantaneous slope (E
and F) and the instantaneous phase (G and H).

2.4 Spectral analysis

LFP are broadband signals, that is they are composed of a mixture of frequencies. To

examine the spectral content of LFP, power spectra and spectrograms were used. These

methods along with their advantages and limitations are explained in this section.

2.4.1 Power spectrum

In order to quantify the power of oscillations contained in the LFP recordings, power

spectra were computed. There are a number of possible methods for constructing

power spectra and some common ones, based on the Fourier decomposition of the

signal, are compared here.
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LFP are time series data, that is they take some value at each equally-sampled time

point. The Fourier transform converts the signal from the time domain to the frequency

domain, where it decomposes the signal into sinusoidal components and returns the

phase and amplitude of each sinusoidal component (Bremaud, 2002).

The simplest way to construct a power spectrum is the periodogram, which com-

putes the squared modulus of the discrete Fourier transform of the signal (Proakis

and Manolakis, 1996). More specifically, the periodogram gives an estimate of the power

spectral density of the signal. However, computing the Fourier transform of finite-length

signals for which the number of periods is not an integer can result in spectral leakage,

that is the creation of artifact frequency components not present in the signal. In order

to avoid spectral leakage, a modified periodogram can be computed by first multiplying

the signal by a window function to taper the signal and then obtaining the periodogram

of this tapered signal (Proakis and Manolakis, 1996). The Hamming window, which is

non-negative and decreases to near zero, can be used to reduce the leakage in peri-

odograms (Proakis and Manolakis, 1996). An example periodogram of LFP constructed

with the Hamming window is shown in Fig. 2.5A.

Figure 2.5: Example modified periodogram (A) and Welch’s periodogram (B) of LFP recorded
from hippocampal area CA1 of an anaesthetised mouse. Both power spectra plotted using
Hamming windows. B: For the Welch’s periodogram, the windows had length of 180 s and 50%
overlap.

As can be seen in Fig. 2.5A, the modified periodogram is very noisy. This is because

random variances in the experimental LFP recordings, which are noisy and finite, are

reinforced by the squaring in the estimation of the power rather than eliminated. The

Welch’s method (Welch, 1967) can be used to reduce this noise. The Welch’s method

divides the signal in a number of overlapping epochs of equal length, computes the

modified periodogram of each epoch and averages the periodograms over all epochs.

An example Welch’s periodogram constructed with overlapping Hamming windows is

shown on Fig. 2.5B.
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The advantage of the periodogram is that it produces a very sharp peak at frequencies

with high power. On the other hand, averaging may result in wider peaks in peri-

odograms constructed with the Welch’s method. In our analyses, both the modified

periodogram and Welch’s periodogram (with the chosen window size) showed the same

spectral peaks for the LFP recordings (examples in Fig. 2.5). The Welch’s method greatly

reduced the noise and thus was used for spectral analysis in all papers in this thesis.

2.4.2 Spectrogram

Periodograms show the spectral composition of LFP but cannot reveal whether and

how this composition changes over time. Since LFP are dynamic and LFP rhythms are

associated with different network states, visualising transitions in LFP composition is

essential to understand the role of different rhythms. To determine how LFP composi-

tion changed over time, spectrograms were computed. The spectrogram calculates the

squared modulus of the discrete Fourier transform over moving time windows along

the signal (Prandoni and Vetterli, 2008).

The time and frequency resolutions of the spectrogram depend on the window size

L. Time resolution is equal to the window size ∆t = L and frequency resolution is

proportional to the window size (∆ f = 2π/L) so that the area of each time-frequency

tile in the spectrogram is ∆t∆ f = 2π (with discrete time and normalised frequency)

(Prandoni and Vetterli, 2008). A long window gives higher frequency resolution but less

time precision; whereas a short window gives high time precision but poorer frequency

resolution. Therefore, a tradeoff between the two is needed for choosing an optimal

window size that will allow identifying separate rhythms that are close by and at the

same time locate transitions between rhythms with reasonable time precision.

For the requirements of our analyses, a window size of 2 seconds was chosen so that

transitions in LFP rhythms could be identified with a 2-second precision and frequency

bands could be separated with resolution of 0.5 Hz. This was sufficient to distinguish

transitions between delta and theta rhythms which were the two bands present in LFP

signals of at least 30-minute length recorded from anaesthetised rodents. Doubling or

halving this window size did not qualitatively change any of the results.

2.5 Information theory

Information theory is a mathematical framework originally devised by Shannon (1948)

to quantify the amount of information that can be transmitted by general communica-
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tion channels. Its origins date back to attempts to understand information transmission

through transatlantic telegraphic cables pioneered by Nyquist (1924, 1928) and Hartley

(1928). Shannon recasted the problem of communication into the already established

paradigm of statistical physics and defined an entropy measure of information that has

become the pivotal quantity from which all other quantities within the mathematical

theory of information are constructed (Shannon, 1948). Since then, information theory

has found ubiquitous applications in almost all areas of science and engineering where

there are entities that exchange information. These applications extend to disciplines

including computer science, cryptology, linguistics, economics and biology.

Shortly after its development, the concept of information was applied in neuroscience

by the landmark work of MacKay and McCullock (1952) where, for the first time, the

capacity of alternative neural codes was quantified. In the last few decades, information

theory has been an instrumental tool to quantify the amount of information that can

be conveyed by neural codes and to quantitatively compare their capacity in encoding

neural messages (examples include De Ruyter Van Steveninck et al. (1997); Strong et al.

(1998); Montemurro et al. (2007a, 2008); Kayser et al. (2009)).

In this thesis, information theory was used in Paper 2 to investigate possible neural

codes by which bursting neurons can convey information about LFP. Here, I explain

the basic concepts of information theory and the properties that make it a useful tool

for addressing the requirements of the analysis in Paper 2. The exact details of how

information theory was used to analyse the data is described in the Methods section of

Paper 2.

2.5.1 Shannon entropy

A discrete signal or variable at any given time point can take one of a number of possible

values each having a certain probability. As the number of possible equiprobable values

increases, the uncertainty about which value occurs at that point also increases. For

example, the outcome of throwing a fair 8-sided die is more uncertain than that of a

6-sided die. Similarly, which letter can occur in a text at random is more uncertain

when the text is written by a 26-letter than a 4-letter alphabet –assuming each letter

has equal probability to occur. Even if a message consists of one letter only, a 26-letter

alphabet could encode more messages than a 4-letter one. Hence, a variable with higher

uncertainty can encode more messages.

The uncertainty of a variable having a value x , which occurs with probability p (x ), is
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quantified as:

h(x ) = log2

1

p (x )
(2.11)

(Shannon, 1948; MacKay, 2003). This measure is the amount of information that value

x can contain. The information contained in a set of variables can be defined as the

average uncertainty of the variables weighted by their probability of occurrence. This

information can be quantified by computing the entropy of the probability distribution

of the set of variables (Shannon, 1948). A set of discrete random variables X with M

possible values x , each occurring with a probability p (x ), has entropy:

H (X ) =−
∑

x∈X

p (x ) log2 p (x ). (2.12)

The entropy can take values 0≤H (X )≤ log M with H (X ) = 0 if and only if X contains one

value x with p (x ) = 1 and all other values have p (x ) = 0. The maximum value of entropy

H (X ) = log M is achieved when all M values x occur at equal probability p (x ) = 1
M

(Shannon, 1948). The units of entropy and information depend on the logarithm base.

When the logarithm base is 2, the entropy and information have units of bits (Shannon,

1948).

A simple application of Eq. 2.12 is calculating the entropy of a 4-symbol code where

X = {1,2,3,4}. If each symbol x occurs with equal probability p (x ) = 1
4

, the entropy of

variable X is:

H (X ) =−
4
∑

x=1

1

4
log2

1

4
= 2 bits/symbol. (2.13)

This means that the code has an average uncertainty of 2 bits/symbol so that, on average,

a symbol can encode 2H (X ) = 22 = 4 messages. This coincides with the uncertainty of

each symbol calculated with Eq. 2.11: h(1) = h(2) = h(3) = h(4) =− log2
1
4
= 2 bits, which

means observing any symbol can discriminate between 4 messages.

If some symbols are more common than others in the code so that p (x = 1) = 1
8

,

p (x = 2) = 3
8

, p (x = 3) = 1
16

and p (x = 4) = 7
16

, the entropy of X is:

H (X ) =−(
1

8
log2

1

8
+

3

8
log2

3

8
+

1

16
log2

1

16
+

7

16
log2

7

16
) = 1.68 bits/symbol, (2.14)

and the uncertainty of each symbol is h(1) = 3 bits, h(2) = 1.4 bits, h(3) = 4 bits,

h(4) = 1.2 bits. The second example illustrates that although rare symbols can convey

more information than frequenctly-occurring symbols, the average uncertainty of 1.68

bits/symbol means that the code can convey an average of 21.68 = 3.2 messages per

symbol, which is less than the previous code where all symbols were equally probable.
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2.5.2 Joint entropy

Entropy can be extended to more than one variables to quantify the uncertainty when

these variables co-occur in a measure referred to as joint entropy. For two sets of discrete

random variables X and Y with possible values x and y , each occurring with probability

p (x ) and p (y ), respectively, and probability of co-occurring p (x , y ), the joint entropy is

defined as:

H (X , Y ) =−
∑

x∈X
y∈Y

p (x , y ) log2 p (x , y ) (2.15)

(Shannon, 1948). The joint entropy can take values H (X , Y )≤H (X )+H (Y )with H (X , Y ) =
H (X ) +H (Y ) if and only if the two variables are independent, that is when p (x , y ) =
p (x )p (y ) (Shannon, 1948).

2.5.3 Conditional entropy

In some cases, knowing one variable Y can influence the uncertainty about another

variable X . The conditional probability of X having a particular value x given Y has a

value y is:

p (x |y ) =
p (x , y )

∑

x∈X p (x , y )
. (2.16)

The uncertainty of X conditional to knowledge of Y can be quantified as the conditional

entropy computed by:

H (X |Y ) =−
∑

x∈X
y∈Y

p (x , y ) log2 p (x |y ) =−
∑

y∈Y

p (y )
∑

x∈X

p (x |y ) log2 p (x |y ). (2.17)

This estimates the average entropy of x for each possible y weighted by the probability

of observing that y value (Shannon, 1948). The uncertainty of variable X can either

decrease by knowing variable Y if X depends on Y (H (X |Y )<H (X )) or stay the same if

X and Y are independent (H (X |Y ) =H (X )) (Shannon, 1948).

Conditional entropy relates to joint entropy by the chain rule:

H (X |Y ) =H (X , Y )−H (Y ). (2.18)

The chain rule can also be extended to more than two variables. For instance, for three

variables:

H (X , Y ,Z ) =H (X |Y ,Z )+H (Y ,Z ) =H (X |Y ,Z )+H (Y |Z )+H (Z ) (2.19)
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(Cover and Thomas, 2006).

2.5.4 Mutual information

How accurately can one predict the value of X by knowing Y ? Variable X has an uncer-

tainty equal to entropy H (X ). Knowing another variable Y can reduce the uncertainty

of X by an amount equal to the conditional entropy H (X |Y ). This reduction in uncer-

tainty is the amount of information about X that can be obtained by observing Y . This

quantity is referred to as mutual information, or simply information, and is defined by:

I (X ; Y ) =H (X )−H (X |Y ) (2.20)

(Shannon, 1948; Cover and Thomas, 2006). From the chain rule (Eq. 2.18), Eq. 2.20 can

also be written as:

I (X ; Y ) =H (X )+H (Y )−H (X , Y ). (2.21)

Mutual information captures the dependence between the random variables X and Y

and is a symmetric measure because I(X;Y)=I(Y;X). Mutual information can be lower

or equal to the entropies of X and Y , that is I (X ;Y ) ≤ H (X ) and I (X ;Y ) ≤ H (Y ); and

can have values I (X ;Y )≥ 0, where I(X;Y)=0 if the two variables are independent from

each other. The greater the value of mutual information, the greater the reduction

in uncertainty obtained about one variable by knowing the other variable (Cover and

Thomas, 2006).

2.5.5 Application of information theory in neural coding

Mutual information is a non-linear, non-parametric measure since it is computed from

the probabilities of observing the possible neural signals in a dataset and, consequently,

makes no assumptions about the probability distributions of the data. This is particu-

larly important when analysing neural responses because the distributions of neural

signals can vary (Penttonen and Buzsaki, 2003; Buzsaki and Mizuseki, 2014). Moreover,

this is a major advantage as compared to other methods, such as correlation and co-

herence, usually used in the analysis of electrophysiological data (reviewed in Pereda

et al. (2005)). Thus, information theory is a valuable tool when studying the neural code

(reviewed in Quian Quiroga and Panzeri (2009)).

Information theory has first been applied in the context of stimulus-response experi-

ments, where a stimulus is presented over multiple trials and the spike train responses
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are analysed to quantify how much information the neural response can convey about

the stimulus (reviewed in Borst and Theunissen (1999)). The implementation of the

method for this type of datasets usually makes use of time bins to discretise the spike

trains in order to estimate the probabilities to be plugged in the equations for com-

puting the mutual information (De Ruyter Van Steveninck et al., 1997; Strong et al.,

1998). In a different setting in which an animal freely moves in space, Skaggs et al.

(1993) proposed an alternative implementation of information theory for analysing

spike trains by binning the stimulus (location of animal) and considering the firing rate

(of spatial neuron) corresponding to each stimulus bin. In the latter, the stimulus can

be replaced by any continuous quantity, not only space. We used an adaptation of the

latter implementation in Paper 2 to compute information from the firing of bursting

neurons in respect to LFP signals (as described in the Methods section of the Paper 2).

Adjusting the underlying representation of the signal, that is changing the definition

of signals X and Y in the computation of mutual information, allows the study of

different aspects of the signal that might encode information. This has been extensively

utilised in the field of neural coding. For example, Montemurro et al. (2008) defined

the neural response as either the number of spikes in a time window or the LFP phase

at which spikes were fired in order to compare the encoding capacity of spike count

and phase-of-firing codes, respectively. Subsequently, Kayser et al. (2009) extended this

by defining neural responses from the same recordings in eight different ways: spike

count, temporal pattern of spikes, pooled response from a small number of neurons

with or without keeping track of individual neuron activity, and labelling each of the four

responses with the LFP phase. The use of information theory showed that combinations

of these codes have greater encoding capacity than individual codes (Kayser et al., 2009).

The second aim of this project was to determine how bursting neurons can encode

features of the LFP. To address this, we compared possible neural codes employed by

bursting neurons. As explained in this section, information theory was the optimal

method for this purpose. The details of the neural codes studied and the way informa-

tion theory was implemented are outlined in the Methods section of Paper 2.

2.6 Transfer entropy

The third aim of this project was to determine how interactions in LFPs can exchange

information between hippocampal area CA1 and the subiculum. Information exchange

need not be bidirectional, that is information might flow in one direction but not the

other direction. As mentioned in section 2.5.4, mutual information is a symmetric
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measure and thus cannot reveal the direction of information flow from one variable (or

signal) to the other. Therefore, mutual information was not an appropriate measure for

this purpose. A more recently developed information theoretic method, called transfer

entropy (Schreiber, 2000), overcomes this limitation while preserving all the advantages

inherent in computing measures from the probability distributions of the recorded data,

that is being model-free, non-parametric and non-linear.

To be able to capture the direction of information flow, the past of the signal should

also be taken into account. This is because if one variable affects another, it will exert

its effect with a time delay. This is the basis of the Wiener-Granger causality principle

(Wiener, 1956; Granger, 1969). Transfer entropy follows this causality principle by

incorporating a time delay in the calculation to reveal the direction of information

transfer. Therefore, transfer entropy was the method of choice for the requirements of

Papers 3. In this section, the Wiener-Granger causality principle and its interpretations

are explained and then transfer entropy estimation is introduced. The details of how

transfer entropy was used to analyse the data in Paper 3 are described in the Methods

section of the paper.

2.6.1 Wiener-Granger causality principle

The concept of causality between two signals was first introduced by Wiener (1956)

and, subsequently, formulated mathematically by Granger (1969). According to the

definition of causality, if the future of a signal can be better predicted by looking at the

past of a second signal than by only considering its own past, then the second signal

can be causal to the first signal (Wiener, 1956; Granger, 1969). This causality principle is

depicted diagrammatically in Fig. 2.6.

The Granger method uses bivariate autoregressive modelling of time series data to

quantify the predictions between signals (Granger, 1969). An extension of this to the

frequency domain with multivariate data has been provided by the partial directed

coherence method (Sameshima and Baccala, 1999; Baccala and Sameshima, 2001).

However, both of these methods are linear and also depend on the parameters used

to fit the autoregressive model. In contrast, the transfer entropy method can capture

non-linear interactions in the LFP and requires no model fitting (Schreiber, 2000). The

way transfer entropy was applied in this project is outlined in the next section.

Methods based on the Wiener-Granger causality principle can imply causal interactions

between signals, however, cannot distinguish whether there is an actual mechanism

by which one signal physically causes the other or whether the captured ‘causality’
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Figure 2.6: Wiener-Granger causality principle. A: Signal Y can be causing signal X if the present
value x t can be better predicted by knowing a past value yt−τ than only knowing a past value
x t−τ. The annotations are the same as the variables used in Besserve et al. (2010). B: Same
schematic as in A but annotating signals X and Y with the variables used in the transfer entropy
equations used to analyse the data for Paper 3. In this diagram, if knowing the present value yt

improves prediction about the future value x t+τ compared to only knowing the present value x t ,
then Y is thought to cause X .

is due to an indirect effect of interactions with other parts within the system. This is

because these methods quantify by how much the past of one signal can predict the

present value of another signal but this on its own does not exclude the possibility of

other signals in the system causing both of the observed signals with a time delay. Thus,

Wiener-Granger causality methods provide a measure of the predictability between two

signals rather than a measure of actual causality.

2.6.2 Transfer entropy estimation

Assuming two discrete time series signals X and Y , the present values of the signals at

time t are denoted by X t and Yt . The present values of the signals depend only on k past

values and not on any value before the k th value in the past, so that: X (k )t = (X t−1, ..., X t−k )
and Y (k )t = (Yt−1, ..., Yt−k ). For these signals, the transfer entropy T (Y →X ) from signal Y

to signal X is given by:

T (Y →X ) =H (X t |X (k )t )−H (X t |X (k )t , Y (k )t ) (2.22)

where H (X t |X (k )t ) is the entropy of the present values of X conditioned to its k past

values; and H (X t |X (k )t , Y (k )t ) is the joint entropy of the k past values of signal Y and

the present values of X conditioned to its k past values (Schreiber, 2000). In fact, this

transfer entropy measure estimates the mutual information of the present of signal X

and the past of signal Y conditioned to the past of signal X .

Transfer entropy can have values T (Y → X )≥ 0, where T (Y → X ) = 0 if the present of

signal X is independent to the past of Y . A positive transfer entropy value, T (Y →X )> 0,



50 Methods

means that signal X can be predicted by the past values of signal Y .

To compute the transfer entropy T (X → Y ) in the reverse direction, that is from signal X

to signal Y :

T (X → Y ) =H (Yt |Y (k )t )−H (Yt |Y (k )t , X (k )t ). (2.23)

The conditioning to the past of the first signal makes the transfer entropy measure

asymmetric and thus indicates the direction of information transfer. Hence, T (Y →X )
and T (X → Y ) need not be equal. If T (Y → X ) = T (X → Y ), then equal information is

transferred from X to Y and from Y to X , that is information flow is bidirectional. If

T (Y →X )> T (X → Y ), then signal Y sends more information to signal X than it receives.

Similarly, if T (Y → X ) < T (X → Y ), then signal X sends more information to signal Y

than it receives. If T (Y → X ) = 0 or T (X → Y ) = 0, then no information flows in the

corresponding direction.

When implementing this method to analyse electrophysiological signals, the parameter

k needs to be defined. Since the number of samples in the past that affect the present

value of the signal is not known, a number of possible values for k should be inves-

tigated. A large enough value of k could theoretically capture all possible influences

on the signals. However, increasing the value of k , would increase exponentially the

sampling bias of the conditioned entropies computed from finite data (bias is explained

in the next section), and thus an unrealistically large dataset would be required for

accurate estimation of transfer entropy. In addition, as the value of k increases, the

computational time of estimating transfer entropy increases exponentially making large

values of k non-feasible for analysing large datasets. To compensate for these limitation,

the parameter k can be set to 1 and a variable time lag τ can be introduced to span the

past of the signals so that:

T (Y →X ) =H (X t |X t−τ)−H (X t |X t−τ, Yt−τ) (2.24)

(Besserve et al., 2010). The time lag can be equal in both signals. Using this approach,

a range of time lags can be investigated so as to determine how different points in the

past of one signal affect the present value of another signal.

Similarly, t can be kept as the present time of the two signals (X t and Yt ) but vary τ in

the future of predicted signal X t+τ so that:

T (Y →X ) =H (X t+τ|X t )−H (X t+τ|X t , Yt ). (2.25)

This is illustrated in Fig. 2.6. In this case, the only change is in the interpretation, which
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becomes: the present value of Yt can predict the future value of X t+τ if the transfer

entropy has some positive value.

Computing transfer entropy from experimental data is easier using joint entropies

rather than conditional entropies. From Eqs. 2.18 and 2.19, Eq. 2.25 can be written as:

T (Y →X ) =H (X t+τ, X t )−H (X t )−H (X t+τ, X t , Yt )+H (X t , Yt ). (2.26)

Transfer entropy T (Y → X ) computed with the method described in this section has

units of bits per time bin d t = 5 ms (bits/d t ), where the bin size depends on the

sampling rate (Fs = 200 Hz) of the LFP signals. Reporting information values in bits/d t

would be arbitrary since, in principle, the d t could be of any length. To overcome

this, the transfer entropy values were converted to bits/s by multiplying the values

obtained from Eq. 6.1 (see section 2.7.3) by the sampling rate. The units of bits/s are

a standardised way of reporting information rate and has been used before in other

studies (for example Strong et al. (1998); Montemurro et al. (2007a, 2008)).

We implemented this method to achieve the third and fourth aims of this project in

Paper 3. The exact details of how this method was used is described in the Methods

section of the paper. In addition, a method was used to estimate biases arising from the

limited sampling of electrophysiological data used to compute the transfer entropy, as

well as mutual information. In the next section, the bias and methods to correct for it

are discussed.

2.7 Bias correction

Despite the advantages of information theory, its application was initially limited due

to the sampling bias in the information estimates. The development of a number of

methods to correct for the bias in the last two decades (reviewed in Panzeri et al. (2007))

allowed for more accurate estimates of information measures and thus paved the way

for the wider application of information theory in the field of neuroscience. In this

section, the origin of bias and bias correction are explained. Subsequently, the methods

used to correct for the bias in the estimates of mutual information in Paper 2 and

transfer entropy in Paper 3 are presented.
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2.7.1 Bias and methods of bias correction

The estimation of information theoretic measures, such as mutual information and

transfer entropy, relies on computing the probabilities of neuronal responses from

experimental or simulated data. In order to obtain the true information values, the

true probabilities of the responses -calculated from an infinite sample- are required.

The empirical probabilities estimated from finite data vary around their true values,

that is they contain statistical errors. Consequently, computing information by directly

‘plugging in’ the empirical probabilities in Eqs. 2.21 or 2.26, results in systematic errors

in the entropy and information values. These statistical and systematic errors give rise

to the bias in the information estimates which is the discrepancy between the true

and empirical information values computed from the true and empirical probabilities,

respectively (Panzeri et al., 2007).

In the case of simulated data, one can repeat the simulations enough times to reach

a close approximate of the true probabilities and obtain an asymptotic estimate of

information. However, in the case of experimental data, there is a limit on the amount

of data that can be obtained from a recording session. This limit is set by the limitations

of experimental techniques, such as how many neurons can be recorded simultaneously

from a set of electrodes, or the experimental setup, such as the realistic duration of

recordings from the brain of an animal. Since these constrains are difficult to overcome,

a number of bias-correction methods have been developed to improve the accuracy of

information theoretic measures computed from finite datasets.

Some of the most widely used methods for estimating and correcting for the sampling

bias include the Panzeri-Treves Bayesian estimation (Treves and Panzeri, 1995; Panzeri

and Treves, 1996), quadratic extrapolation (Strong et al., 1998), Nemenman entropy

estimation (Nemenman et al., 2004), best universal bound (Paninski, 2003) and shuffling

(Montemurro et al., 2007c). These methods have been originally developed for correct-

ing the bias in the estimates of mutual information from stimulus-response datasets

where the responses are usually spike trains. More recently, bias correction methods

have been extended to continuous data such as LFP and EEG (Magri et al., 2009) and

can also be applied to correct for the bias in the estimates of transfer entropy (Besserve

et al., 2010, 2015).

In this project, we estimated mutual information (Paper 2) and transfer entropy (Paper

3) with different types of data. In the first case, mutual information was computed

between bursting neuron firing and ongoing LFP. In the second case, transfer entropy

was computed between two LFP signals. In both cases, bootstrapping methods based
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on Tovee et al. (1993); Montemurro et al. (2007c,b); Panzeri et al. (2007); Montemurro

et al. (2008); Besserve et al. (2010) were used to estimate and correct for the bias in the

information estimates. The details of the implementation of these methods is described

in the next two sections.

2.7.2 Bias correction of mutual information estimates

Information theory was used in Paper 2 to compare three possible neural codes by

which the responses of bursting neurons can encode LFP features. The data comprised

simultaneous LFP recordings of at least 20-minute duration and spike trains fired by

bursting neurons. The recordings were spontaneous, that is there was no stimulus to

the animal or trials. Any information encoded about LFP by bursting neurons should

thus depend on correlations between specific LFP feature values and some aspect of

the neural activity, such as the burst rate or burst size.

To compute the mutual information between the neural responses and LFP features,

the whole duration of the LFP recording was digitised in small time bins to construct a

vector X of LFP feature values at each time bin; and the associated neural response for

each time bin (with or without some time lag) was constructed in the vector Y of neural

responses. As explained in the previous section, computing the mutual information

by directly plugging in these data in Eq. 2.20 or 2.21 would result in sampling bias

overestimating the information values.

In our dataset, the most prominent source of bias was the limited sampling of bursting

neuron responses especially of larger bursts which were generally rare (as it becomes

evident by observing the burst size distributions in Fig. 4.2). To overcome this problem,

a shuffling procedure based on (Tovee et al., 1993; Montemurro et al., 2007c,b; Panzeri

et al., 2007; Montemurro et al., 2008) was used to obtain an estimate of the bias. More

specifically, the neural responses in vector Y were shuffled in respect to the LFP feature

values in vector X in order to remove the correlations between them. This preserves the

marginal probabilities of X and Y , while it eliminates the information that is conveyed

by the correlations between X and Y . The shuffled mutual information was computed

between Y and the shuffled X by:

Is (X ; Y ) =H (X )+H (Y )−Hs (X , Y ). (2.27)

If there were no statistical or systematic errors in computing the entropies, the shuffled

mutual information would have been zero. However, due to the sampling bias, the shuf-

fled mutual information takes a positive value. This shuffling procedure was repeated
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100 times for each time lag and the shuffled mutual information Is (X ;Y ) was com-

puted for each repetition. The mean across these shuffled mutual information values

was taken as the estimate of the bias. The bias-corrected mutual information Ic (X ;Y )
was computed by subtracting the bias estimate from the ‘plug-in’ mutual information

estimate I (X ; Y ):
Ic (X ; Y ) = I (X ; Y )−〈Is (X ; Y )〉 (2.28)

where 〈...〉 indicates mean across repetitions.

More details about the bias correction method and its performance are given in the

Methods and Supplementary Methods of Paper 2.

2.7.3 Bias correction of transfer entropy estimates

Transfer entropy was used in Paper 3 to determine how interactions of LFP signals in

distinct networks within the hippocampal formation can exchange information. To

achieve this, pairs of LFP recordings of approximately 30-minute duration obtained

simultaneously from hippocampal area CA1 and the subiculum were used to compute

transfer entropy.

The LFP signals were digitised in time bins of length δt = 5 ms. The whole duration

of the signals was used to obtain the probabilities for computing the transfer entropy.

Hence, each transfer entropy estimate was obtained from approximately 3.6×105 data

points. Although this dataset was finite, it was large enough to have small sampling

bias (computed with a similar shuffling procedure as in section 2.7.2) compared to the

transfer entropy estimates: the bias was less than 0.02 bits/s while transfer entropy

ranged from approximately 1 to 60 bits/s. The shuffling method used to estimate the

bias was similar to the one used in Besserve et al. (2010).

The pairs of X t and X t+τ were shuffled in respect to Yt , while at each time point t , the

pairs of X t and X t+τ were the same in respect to each other. This method eliminates

the correlations between the future values of signal X and the present values of signal

Y but preserves the correlations between present and future values of signal X . The

shuffled entropies were computed from the shuffled data. Shuffled transfer entropy was

computed from these shuffled entropies by:

Ts (Y →X ) =Hs (X t+τ, X t )−Hs (X t )−Hs (X t+τ, X t , Yt )+Hs (X t , Yt ). (2.29)

Bias was estimated by shuffling the data 100 times, calculating the shuffled transfer
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entropy for each repetion with Eq. 2.29 and taking the mean of these shuffled transfer

entropies. The bias-corrected transfer entropy was then computed by:

Tc (Y →X ) = T (Y →X )−〈Ts (Y →X )〉 (2.30)

where 〈...〉 indicates mean across repetitions. Since the present values X t and the future

values X t+τ were the same in respect to each other for both the actual and shuffled

data, Hs (X t+τ, X t ) =H (X t+τ, X t ). Moreover, Hs (X t ) =H (X t ) since X t comprises the same

values both when shuffled or not. Therefore, Eq. 2.30 simplifies to:

Tc (Y →X ) =H (X t , Yt )−H (X t+τ, X t , Yt )−〈Hs (X t , Yt )−Hs (X t+τ, X t , Yt )〉. (2.31)

Eq. 6.1 was used to compute transfer entropy in Paper 3.
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3.1 Abstract

Neuronal firing in the hippocampal formation relative to the phase of local field poten-

tials (LFP) has a key role in memory processing and spatial navigation. Firing can be in

either tonic or burst mode. Although bursting neurons are common in the hippocampal

formation, the characteristics of their locking to LFP phase are not completely under-

stood. We investigated phase-locking properties of bursting neurons using simulations

generated by a dual compartmental model of a pyramidal neuron adapted to match

the bursting activity in the subiculum of a rat. The model was driven with stochastic

input signals containing a power spectral profile consistent with physiologically relevant

frequencies observed in LFP. The single spikes and spike bursts fired by the model were

locked to a preferred phase of the predominant frequency band where there was a peak

in the power of the driving signal. Moreover, the preferred phase of locking shifted

with increasing burst size, providing evidence that LFP phase can be encoded by burst

size. We also provide initial support of the model results by analysing example data of

56
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spontaneous LFP and spiking activity recorded from the subiculum of a single urethane-

anaesthetised rat. Subicular neurons fired single spikes, two-spike bursts and larger

bursts that locked to a preferred phase of either dominant slow oscillations or theta

rhythms within the LFP, according to the model prediction. Both power-modulated

phase-locking and gradual shift in the preferred phase of locking as a function of burst

size suggest that neurons can use bursts to encode timing information contained in LFP

phase into a spike-count code.

3.2 Introduction

Local field potentials (LFP) are fluctuating extracellular electrical signals that result from

the sum of currents across all excitable membranes within a local volume (Logothetis,

2003; Buzsaki et al., 2012). A major contributor to the LFP is the combined synaptic

activity of neuronal populations (Einevoll et al., 2007; Pettersen et al., 2008). Neuronal

firing relative to the phase of ongoing LFP oscillations in the hippocampal formation has

been linked with spatial navigation (O’Keefe and Recce, 1993; Skaggs et al., 1996) and

memory processing (Lisman and Idiart, 1995). Moreover, evidence from the monkey

sensory cortices suggests that more information about stimuli can be transmitted if

the LFP phase at which spikes are fired is taken into account (Montemurro et al., 2008;

Kayser et al., 2009). The phase of LFP oscillations has been proposed to be involved

in keeping timing information for neural communication (Fell and Axmacher, 2011).

Thus, locking of neuronal firing during a preferred phase range can be a mechanism of

transmitting information for cognitive processing. Although pyramidal neurons in the

hippocampal formation are known to lock their firing to LFP phase, the conditions of

this phase-locking are not completely understood.

Two factors that may affect the locking properties of pyramidal neurons are the fre-

quency composition of the LFP and the dynamics of individual neurons. The former is

relevant to the hippocampal formation since this area is characterised by well-defined

oscillatory states that correlate with cognitive function. Regarding neuronal dynamics,

pyramidal neurons can fire in either tonic or bursting modes. The existence of burst-

ing neurons in the hippocampal formation has been long documented (Ranck, 1973).

Bursting activity is an important mechanism for neural communication because bursts

consisting of different spike counts can provide more basic symbols in the neural code

(Kepecs and Lisman, 2003; Samengo et al., 2013). Modelling studies have provided

some evidence that bursting pyramidal neurons can lock to different phases of the LFP

depending on the burst spike-count (Samengo and Montemurro, 2010), but this has not

been tested in specific models based on experimental data. We address this by studying
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phase-locking of bursting activity in the subiculum which is known to contain intrinsi-

cally bursting neurons (Sharp and Green, 1994; Gigg et al., 2000). The subiculum is the

major output structure of the hippocampus (for reviews on the subiculum see O’Mara

et al. (2001); Gigg (2006)). Similarly to the hippocampus, neurons in the subiculum

encode spatial information (Kim et al., 2012) as for example the boundary vector cells

which are neurons that fire when a rat encounters boundaries in space (Lever et al.,

2009).

We used a neuron model and example in-vivo data from the subiculum of a single

rat to investigate how bursting neuronal dynamics and LFP frequency components

affect phase-locking. The model predicted that bursting neurons locked their firing to a

preferred phase of dominant rhythms irrespective of the frequency of these rhythms and

phase preference shifted with increasing spike count. We show that subicular bursting

neurons locked their firing to a preferred phase of dominant slow oscillations or theta

rhythms within the LFP and the preferred phase of locking to dominant slow oscillations

changed depending on the spike count according to model predictions. These results

suggest a mechanism of encoding timing information in burst spike-count.

3.3 Materials and Methods

3.3.1 Bursting neuron model

A two-compartment (dendrites and soma) conductance-based model of a bursting

pyramidal neuron was used for all simulations (Fig. 4.2A). This model is a reduction

of a 19-compartment (Traub et al., 1991) to a two-compartment model of a CA3 hip-

pocampal neuron (Pinsky and Rinzel, 1994) which was simplified by Kepecs and Wang

(2000) to include the minimal ionic conductances required to generate bursting. This

model has been used to investigate the properties of bursting in response to different

stimuli in previous studies (Kepecs et al., 2002; Kepecs and Lisman, 2003; Samengo

and Montemurro, 2010). For the purpose of this study, the model was fitted to match

its responses to realistic burst firing in the rat subiculum. To achieve this, we used

the equations and parameters as described in Samengo and Montemurro (2010) and

adjusted four parameters (g K , g N a P , g K S and Cm ) so that the probability of firing bursts

of size n, where n is the number of spikes in a burst and n = 1 for single spikes, is similar

to the firing probability of subicular neurons (Fig. 4.1B, C and 4.2C, E, G, I).

An input current I (t ) injected into the dendritic compartment produced bursting activ-
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ity in the somatic compartment according to:

Cm
d Vd

d t
=−IL − IK S − IN a P − g c

Vd −Vs

1−p
+ I (t ) (3.1)

Cm
d Vs

d t
=−IL − IK − IN a − g c

Vs −Vd

p
(3.2)

The relative area between the two compartments was p = 0.15 and the coupling con-

ductance was g c = 1 mS/cm2. The somatic compartment included a Na current: IN a =
g N a m 3

∞h(Vs−EN a ), where m∞ =αm/(αm+βm ), αm =−0.1(Vs+31)/(exp(−0.1(Vs+31))−
1), βm = 4 exp(−(Vs+56)/18),αh = 0.07 exp(−(Vs+47)/20) andβh = 1/exp(−0.1(Vs+17))+
1); and a K current: IK = g K n 4(Vs−EK ), whereαn =−0.01(Vs+34)/(exp(−0.1(Vs+34))−1)
and βn = 0.125exp(−(Vs + 44)/80). The dendritic compartment included a persis-

tent Na current: IN a P = g N a P r 3
∞(Vd − EN a ), where r∞ = 1/(exp(−(Vd + 57.7)/7.7) + 1);

and a slow K current: IK S = g K Sq (Vd − EK ), where q∞ = 1/(exp(−(Vd + 35)/6.5) + 1),
τq =τq0/(exp(−(Vd +55)/30)+exp((Vd +55)/30)) and τq0 = 200. The leak currents were

described by IL = g L(V − EL), where V is Vd or Vs . Each gating variable x followed

the kinetics equation: d x/d t = φx (αx (1− x )− xβx ) = φx (x∞− x )/τx . The maximum

conductances (in mS/cm2) were g N a = 45, g K = 15, g L = 0.18, g N a P = 0.08, g K S = 0.7

and the reversal potentials (in mV) were EN a = 55, EK = −90, EL = −65. Membrane

capacitance was Cm = 0.6 µF/cm2. The temperature scaling factors wereφh =φn = 3.33

andφq = 1. The model was integrated with the 4t h order Runge-Kutta method with a

time step of 0.01 ms.

3.3.2 Input to the model

LFP are broadband signals containing power spectral peaks within frequency bands

which are usually associated with different behavioural states. The input to the model

was a time-varying signal which simulated physiologically relevant rhythms present

in LFP. To obtain this input, a signal containing one peak at a selected frequency in

the power-frequency spectrum was added to a background coloured-noise signal. The

background signal simulated low-power oscillations and temporal correlations present

in LFP. To generate the background signal, a white-noise process was convolved with

an exponential kernel and then high-pass filtered with a 3rd order Butterworth filter

with a cut-off frequency of 1 Hz to remove low frequency components. To create the

signal with a peak in power at a given frequency, a white-noise process was narrowband

filtered with a Kaiser filter (width of band was 1 Hz) so that the signal contained only

a sharp peak centred at either 1, 4, 8 or 12 Hz in the power-frequency spectrum. The
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background coloured-noise and frequency peak signals were scaled to have a standard

deviation of 0.02 and 0.03, respectively, and then added together. The resulting signal

was scaled again to have mean µ= 0 and standard deviationσ= 1.2 for the 1 Hz peak

andσ= 0.8 for the remaining three peaks. This difference in standard deviations was

required to reflect that slow oscillations have higher amplitude compared to higher

frequency rhythms. Assuming that the LFP can be simulated by the sum of synaptic

inputs to neurons (Mazzoni et al., 2008), the input was injected as current into the

dendritic compartment of the model (Eq. 4.5).

3.3.3 In vivo electrophysiology

All experimental procedures were carried out in accordance with the Animals (Scientific

Procedures) Act UK 1986. Ethical approval was provided by the University of Manchester

Ethical Review Panel. In vivo electrophysiological recordings of LFP and spiking activity

were obtained from an adult male Sprague Dawley rat (Charles River, UK: 332 g, group-

housed in a pathogen-free environment with food and water available ad libitum,

maintained on a 12-h light:dark cycle).

Initial anaesthesia was induced via i.p. injection of urethane (30% w/v in 0.9% saline,

1.5 g/kg) and top-up doses of urethane (between 0.1 and 0.15 ml) were administrated

at approximately 30-minute intervals until areflexia was achieved. Body temperature

was kept at 37◦C using a homeothermic heating pad. The rat was head-fixed in a

stereotaxic frame and a 2-mm diameter craniotomy was carried out according to the

Paxinos and Watson (2007) rat brain atlas for the subiculum (Bregma: −8.0 mm, ML:

3.5 mm). The dura was excised and a 4×8 multi-electrode array (A4×8-5-50-200-413,

NeuroNexusTech, USA) was inserted at a 30◦ compound angle from the vertical axis to

match the main dendritic axis of the subiculum. The electrode array was composed of

four shanks, each containing eight 413-µm2 electrodes with 50 µm vertical and 200 µm

horizontal spacing between electrodes/shanks, respectively. The array was attached

to an electrode board and headstage (Plexon, USA) with fixed gain of 20× and an AC

preamplifier providing a total gain of 2000× (Recorder64, Plexon, USA). The positions

of the electrodes were verified from Nissl-stained brain sections (Fig. 4.12) by detecting

small electrolytic lesions produced by applying a 30 µA current for 5 seconds (Townsend

et al., 2002) at the end of the experiment.

Spontaneous LFP (2 kHz sampling rate, low-pass filtered up to 250 Hz) and spiking

activity (40 kHz sampling rate, high-pass filtered above 300 Hz) were recorded simulta-

neously from the electrodes in subiculum for 1 h. Recordings were ground referenced to

the stereotaxic frame. Spikes were detected online by manually setting a threshold for
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each electrode and stored as discrete shapes (1.3 ms duration) for offline spike sorting.

3.3.4 Data analysis

3.3.4.1 Spike sorting

To identify spikes fired by individual neurons, the recordings of spike shapes were

analysed using Offline Sorter V2.8.8 (Plexon Inc). Different spike shape parameters

were clustered until units were distinguished from the ‘noise’ cluster and manually

separated. The separation quality was assessed by visually inspecting the interspike

interval (ISI) histogram for each unit to ensure there were no spikes within the 1 ms

refractory period. Multiple detections of the same unit on adjacent electrodes were

identified by plotting cross-correlograms of each unit versus every other unit and only

the unit with the largest waveforms was kept for each duplicate.

3.3.4.2 Spectral analysis and data segmentation

Spectral analysis was done using the Welch’s periodogram method with 50% overlapping

Hamming windows of length 112.5 s or 450 s for the input signal to the model or

LFP signals, respectively. The 1-h LFP signals contained two spectral peaks: at slow

oscillations and theta rhythms (Fig. 4.1A). To segment the LFP signals into epochs

containing only one dominant rhythm, the power distribution over the frequency ranges

0.5–2.5 Hz for slow oscillations and 2.5–5.0 Hz for theta rhythms was estimated at every

time point from the Fourier time-frequency decomposition over Hamming windows

of 2.048 s with 50% overlap. The power over these frequency ranges was integrated to

compute how much power as a percentage of the total was in each band. The dominant

rhythm at a given time point was defined as the one which had at least 10% higher

power than the other. That is, the fraction of total power within the dominant band was

at least 0.1 greater than the fraction within any other frequency band. The 10% margin

was sufficient to identify epochs of LFP with dominant rhythms in our data recorded

under urethane anaesthesia as shown in the power spectra of the segmented data in Fig.

4.13.

3.3.4.3 Spike segregation into bursts

The spike times recorded for each unit were separated into two datasets depending

on whether spikes were fired when slow oscillations or theta rhythms were dominant.

Units were classified as bursting if in the ISI histograms and autocorrelograms of spike

times there was a sharp peak within 2–8 ms and this peak was larger than any other
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peak within 50 ms. To segregate spikes fired by subicular neurons into bursts, an ISI

threshold of 8 ms was chosen because this time point was after the ISI histogram peak

which indicated the time interval between spikes within bursts. A spike was considered

as part of a burst if the spike occurred within 8 ms from the previous spike in the burst.

If the interval between two spikes was greater than 8 ms, the spikes were considered

as separate events. For segregating burst spikes fired by the model, as ISI threshold of

10 ms was used because the sharp peak in the ISI histograms and autocorrelograms

occurred within 2–10 ms.

3.3.4.4 Filtering and phase extraction

Both the LFP recordings from the rat subiculum and the input signals to the model

were downsampled to 500 Hz. Filtering was carried out with a finite impulse response

(FIR) digital filter with Kaiser window (sharp transition bandwidth: 1.0 Hz, stopband

attenuation: 60 dB, passband ripple: 0.01 dB). The signals were filtered in narrow bands

of 1 Hz with 75% overlap, apart from the first band which ranged from 0.1 Hz to 1 Hz.

The centres of the narrow bands were at 0.55 Hz, 0.75 Hz and then increased in steps of

0.25 Hz up to 10.25 Hz or 14.25 Hz. Phase was extracted as the argument of the Hilbert

transform of the filtered signals. A phase value of 0◦ corresponded to the peak of an

oscillation. For all phase analyses, we used the phase of the filtered signals at the time

of spike or burst onset.

3.3.4.5 Phase-locking estimation

Phase-locking was estimated using histograms because this method captures both the

strength of locking and the distribution of preferred phases. A waveform cycle from

−180◦ to 180◦ was separated in either 125 bins of size 2.88◦ for the simulations or 25

bins of size 14.4◦ for the experimental data. The difference in the number of bins was

because we used the model to simulate enough data to allow for finer binning than was

allowed by the finite number of events fired by subicular neurons during the recording

session. For the model, phase-locking histograms were constructed by calculating the

probability of a spike or burst being fired within each phase bin of the narrowband-

filtered input signal. For the experimental data, phase-locking of spikes and bursts was

calculated relative to the LFP recorded at the same electrode where the spiking activity

of the unit was recorded. Average phase-locking histograms were obtained by averaging

the probabilities of firing spikes and bursts within each phase bin of the narrowband-

filtered LFP across bursting units in epochs when slow oscillations or theta rhythms

were dominant. To accommodate for differences in phase preference of individual units

(examples in Fig. 4.14 and 3.8), the phase of 0◦ was set as the phase of mean maximal
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locking of single spikes and phase-locking of spikes and bursts fired by each unit was

calculated relative to that phase. Mean and standard deviation of the phase-locking

distributions were calculated using the circular statistics toolbox for Matlab (Berens,

2009).

3.4 Results

We investigated bursting activity in relation to LFP using a computational approach. We

first present the experimental data which were used to match the firing statistics of the

neuron model. We then present results of extensive simulations of the model where we

explored the locking properties of spikes and bursts of different spike count. Finally,

we provide an example from subicular bursting neurons illustrating that the patterns

predicted by the model are also present in vivo.

3.4.1 Bursting neurons in subiculum

In order to match the firing statistics of the neuron model to realistic burst firing in the

subiculum, we analysed 1-h multi-electrode recordings of simultaneous LFP and spikes

from the subiculum of a urethane-anaesthetised rat. The power spectrum of the LFP

contained a wide peak around 1–2 Hz and a sharp peak at about 4 Hz (Fig. 4.1A). The

first frequency peak is often referred to as slow oscillations or delta rhythms and the

latter as theta rhythms. These two states under anaesthesia are analogous to non-REM

and REM sleep, respectively (Clement et al., 2008). Since different frequency bands

might correspond to different cognitive processes, we analysed epochs of dominant

slow oscillations and theta rhythms separately. Out of a total of 26 units identified in the

rat subiculum, we identified 13 bursting units firing at a rate of 1.96±1.00 events/s in

epochs when slow oscillations were dominant in the LFP. Eleven of these units were also

bursting with a firing rate of 3.83±2.68 events/s when theta rhythms were dominant.

All bursting units fired single spikes and bursts comprising two or more spikes at a

decreasing probability (Fig. 4.1B and C). Bursts consisting of three or more spikes were

rare so were grouped together for the following analyses.

3.4.2 Bursting neuron model

To explore the phase-locking properties of bursting neurons, we adapted a dual com-

partmental model of a bursting pyramidal neuron (Fig. 4.2A). The model was driven

with an input comprising time-varying stochastic signals with a peak in the power-
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Figure 3.1: (A) Average power-frequency spectrum of LFP recordings in the rat subiculum under
urethane anaesthesia. During the 1-h recording, there were two spectral peaks: a wide peak at
1–2 Hz and a sharper peak at about 4 Hz. (B and C) Average probability of a bursting neuron in
the subiculum of a urethane-anaesthetised rat firing an n-spike burst when slow oscillations (B)
or theta rhythms (C) were dominant in the LFP. The errorbars indicate standard deviation.

frequency spectrum in order to simulate similar frequencies occuring in LFP signals

when there is only one dominant rhythm. The peaks were centred at 1 Hz (Fig. 4.2B),

4 Hz (Fig. 4.2D), 8 Hz (Fig. 4.2F) and 12 Hz (Fig. 4.2H). The peak at 1 Hz simulated

dominant slow oscillations which are characteristic during sleep and anaesthesia. The

peak at 4 Hz and 8 Hz simulated dominant low and high theta rhythms, respectively.

Low theta rhythms are observed under urethane-anaesthesia and high theta rhythms

are prevalent during awake exploratory behaviour. The peak at 12 Hz corresponded

to dominant alpha rhythms which are higher than the frequencies usually found to

be dominant in the LFP recorded from the rat hippocampal formation in vivo. The

model fired n-spike bursts (Fig. 4.2C, E, G and I) in response to these four input signals

with similar positively skewed probability distributions as the bursting units in the rat

subiculum (Fig. 4.1B and C).

3.4.3 Spikes and bursts lock to phase of dominant rhythms

Is phase-locking of bursting neuronal firing to LFP rhythms an intrinsic property of

bursting neurons regardless of the frequency of these rhythms or is locking restricted

to specific frequency bands irrespective of their power? To address this, we used the

model to simulate bursting activity in response to broadband signals with spectral
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Figure 3.2: (A) Diagram of the two-compartment model of a bursting pyramidal neuron showing
the ionic currents. The input signal I i np u t is injected in the dendritic compartment and bursting
activity is recorded from the somatic compartment. (B, D, F and H) Power-frequency spectra of
input signals to the model. The input signal consists of background coloured noise and a power
spectral peak at either 1 Hz (B), 4 Hz (D), 8 Hz (F) or 12 Hz (H). (C, E, G and I) Probability of the
model firing an n-spike burst when the input signal comprised the frequencies depicted in the
plots at the left.

peaks at different frequencies resembling LFP containing only one dominant rhythm. If

neuronal activity is phase-modulated by oscillations within specific frequencies, then

neurons should fire with a high probability at a preferred phase of these oscillations.

Instead, if neuronal activity is independent of the phase of a specific rhythm, then the

firing probability should have a flat distribution relative to the phase of this rhythm.

The single spikes (n = 1), two-spike bursts (n = 2) and larger bursts (n ≥ 3) fired by



66 Paper 1

the model were locked to a preferred phase of the dominant rhythm within the input

signal (Fig. 3.3). In addition, there was weaker phase-locking of spikes and bursts to

the background frequency rhythms present within the input signal (shown as light

blue colour in Fig. 3.3). Notably, the probability of firing a spike or burst at a preferred

phase of the dominant frequency band within the input signal was consistently greater

than the probability of firing relative to the phase of other rhythms. In particular, the

probability of firing an n-spike burst at the preferred phase of the dominant rhythm

(red colours in Fig. 3.3) was approximately two to four times greater than the firing

probability at a preferred phase of background rhythms (light blue colours in Fig. 3.3).

Figure 3.3: Phase-locking histograms of single spikes (A, D, G and J), two-spike bursts (B, E, H
and K) and larger bursts (C, F, I and L) fired by the model when the input signal contained a
frequency peak at 1 Hz (A–C), 4 Hz (D–F), 8 Hz (G–I) or 12 Hz (J–L). Phase of 0◦ corresponds
to the peak of a waveform as calculated by the Hilbert transform. The colourbar shows the
probability of locking to the phase of filtered signal at overlapping steps of 1 Hz. The asterisk (*)
in the colourbar indicates chance probability which is equal to 1/125 or 0.008.

In all simulations, there was a shift in phase-locking as a function of burst size n. When

the input signal contained a peak at 1 Hz, firing of single spikes relative to the dominant
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slow oscillations was concentrated around a preferred phase of 13◦± 41◦ (Fig. 3.3A).

Phase-locking of two-spike bursts and larger bursts advanced by 20◦ and 30◦ (preferred

phases of 33◦±38◦ and 43◦±29◦, Fig. 3.3B and C), respectively, relative to the preferred

phase of single spikes. When rhythms of 4 Hz were dominant, locking of single spikes

relative to low theta rhythms was around a preferred phase of 11◦ ± 30◦ (Fig. 3.3D).

Two-spike bursts were preferentially fired more advance in phase by 28◦ (preferred

phase of 39◦±20◦, Fig. 3.3E) and larger bursts were an additional 15◦ more advanced

(preferred phase of 54◦±13◦, Fig. 3.3F). When the input contained a peak at 8 Hz or 12

Hz, single spikes were locked at a preferred phase of −14◦±28◦ of high theta rhythms

(Fig. 3.3G) or−25◦±27◦ of alpha rhythms (Fig. 3.3J), respectively. Locking of two-spike

bursts was advanced by 36◦ and 39◦ (preferred phases of 22◦±19◦ and 14◦±18◦, Fig. 3.3H

and K), respectively, relative to the preferred phase of single spikes. Locking of larger

bursts was further advanced by 19◦ and 23◦ (preferred phases of 41◦±13◦ and 37◦±14◦,

Fig. 3.3I and L), respectively, relative to the preferred phase of two-spike bursts.

3.4.4 Bursting neuronal firing is phase-locked to dominant LFP rhythms

We tested the model predictions by studying how bursting neurons in the rat subiculum

fire spikes and bursts in relation to the phase of LFP recorded at the same electrode

where bursting activity was recorded. Figs. 4.14, 3.8 and 3.4 show the probability of

firing single spikes (n = 1), two-spike bursts (n = 2) and larger bursts (n ≥ 3) at each

phase of narrowband filtered LFP. Spikes and bursts were fired at a preferred phase

of the dominant rhythm within the LFP signal. This preferred phase varied between

individual units as illustrated in the examples in Figs. 4.14 and 3.8. The preferred phase

of firing single spikes was set to 0◦ (Fig. 3.4A and D) and the average phase-locking

probabilities of n-spike bursts are presented relative to that phase (Fig. 3.4B–C and

3.4E–F, respectively). When slow oscillations were the dominant rhythms in the LFP,

the probability of firing an n-spike burst at the preferred phase of slow oscillations was

20–80% greater than the chance probability (Fig. 3.4A–C). Similarly, when theta rhythms

were dominant, the probability of firing an n-spike burst at the preferred phase of theta

rhythms was 20–80% greater than the chance probability (Fig. 3.4D–F). There was

also some phase preference at frequencies outside the dominant band (yellow colours

in Fig. 3.4) but this was substantially weaker than the phase preference at dominant

frequencies (red colours in Fig. 3.4). Moreover, there was a shift in phase preference of

bursts (n = 2 and n ≥ 3) compared to single spikes (n = 1) when slow oscillations were

dominant (Fig. 3.4A–C). This shift in phase preference was not observed when n-spike

bursts were fired during theta-dominant epochs (Fig. 3.4D–F).



68 Paper 1

Figure 3.4: Phase-locking histograms of single spikes (A and D), two-spike bursts (B and E)
and larger bursts (C and F) fired by subicular neurons. (A–C) Average across 13 units when
slow oscillations were dominant in the LFP signals. (D–F) Average across 11 units when theta
rhythms were dominant. The phase of maximal locking of single spikes (n = 1) was set to 0◦ and
locking of bursts (n = 2 and n ≥ 3) was plotted relative to that phase. The colourbar shows the
probability of locking to the phase of filtered LFP at overlapping steps of 1 Hz. The asterisk (*) in
the colourbar indicates chance probability which is equal to 1/25 or 0.04.

3.5 Discussion

We studied the phase-locking properties of bursting neurons using a pyramidal neuron

model as well as in-vivo recordings of LFP and spiking activity from the rat subiculum.

We simulated different LFP states with physiologically relevant rhythms to determine

how phase-locking of bursting activity depends on frequency composition of LFP. The

model predicted that n-spike bursts lock to dominant oscillations in the input signal

regardless of the frequency of these oscillations. In particular, the same phase-locking

patterns were noticed in simulated states of dominant slow oscillations, low and high

theta rhythms, and also persisted when the input signal contained a power spectral

peak at 12 Hz which corresponds to the lower boundary of beta rhythms in rodents or

upper boundary of alpha rhythms in primates. This suggests that internal cell mecha-

nisms allow bursting pyramidal neurons to lock their firing to dominant LFP rhythms

regardless of their specific frequency.

We observed two prominent rhythms within the LFP recorded from the rat subiculum

under urethane anaesthesia. These were slow oscillations which are characteristic of

slow-wave sleep or non-REM sleep (Wolansky et al., 2006; Clement et al., 2008) and

theta rhythms which are present in the hippocampus during REM sleep (Harris et al.,



3.5. Discussion 69

2002) as well as during exploratory behaviour (O’Keefe and Recce, 1993; Skaggs et al.,

1996), although under urethane anaesthesia the theta peak at 4 Hz is lower than the

theta peak at 7 Hz during REM sleep (Clement et al., 2008). Since these two rhythms

correspond to different cognitive states, we analysed bursting activity during epochs of

each dominant rhythm separately.

As predicted by the model, subicular neurons fired single spikes, two-spike bursts and

larger bursts which were locked at a preferred phase range of the dominant rhythm

within the LFP. The preferred phase range of locking was wider for the subicular neu-

rons than the model. This was possibly a consequence of the lower signal-to-noise in

experimental data than the simulated data. Although, some weaker phase preference

to background rhythms was also observed, locking to rhythms in the dominant fre-

quency band was at least two times stronger than to any other frequency. These results

suggest that the distribution of LFP power modulated the strength of phase-locking of

bursting neuronal firing. Modulation of neuronal firing by theta rhythms, which have

increased power during behavioural tasks, is a known phenomenon in the hippocampal

formation. More specifically, theta phase precession of neuronal firing in the hippocam-

pus has been proposed to be a mechanism to encode spatial position (O’Keefe and

Recce, 1993; Skaggs et al., 1996) and a buffer for working memories (Lisman and Idiart,

1995). Theta phase precession has also been reported in the subiculum (Kim et al.,

2012). Furthermore, organising neuronal firing by high-power slow oscillations during

slow-wave sleep is thought to be important for memory consolidation (Lee and Wilson,

2002; Wolansky et al., 2006; Rasch and Born, 2013).

The model also predicted a gradual shift in phase preference as a function of burst size

n supporting a burst spike-count code in which single spikes and bursts of different

sizes can provide more symbols to encode timing information conveyed by LFP. A

similar shift in phase-locking of subicular bursting neurons was observed during epochs

when slow oscillations were dominant under anaesthesia providing evidence that this

code occurs in vivo. We did not observe a similar shift when theta rhythms were

dominant but this could be due to the anesthesia affecting theta rhythms. Firing bursts

of spikes can have a number of roles as revealed by studies in various brain systems.

Thalamic neurons can fire bursts in response to salient stimuli (Guido and Weyand,

1995; Sherman, 2001; Swadlow and Gusev, 2001). Bursting in the hippocampus improves

the reliability of synaptic transmission (Lisman, 1997). Bursts fired by electrosensory

cells in the weakly electric fish encode different stimuli to those encoded by tonic spikes

(Oswald et al., 2004). Firing bursts with different spike counts also provides a graded

signal that allows encoding of different stimuli (Kepecs and Lisman, 2003; Samengo

et al., 2013). Theoretical studies suggest burst size can encode the slope (Kepecs et al.,

2002) and phase (Samengo and Montemurro, 2010) of input signals. In addition, there
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is experimental evidence that burst size can encode orientation of visual stimuli in the

primary visual cortex of awake monkeys (Martinez-Conde et al., 2002) and intensity

of auditory stimuli in grasshopper auditory receptor neurons (Eyherabide et al., 2008,

2009). The outcome of our study expands understanding about the role of bursting in

the subiculum.

3.5.1 Conclusions

The model suggests phase-locking of n-spike bursts is modulated by the power of the

rhythms present in the LFP signal, so that locking to dominant rhythms is stronger than

to background rhythms. The analysis of experimental data showed that the output of

subicular bursting neurons preferentially locked to the phase of slow oscillations and

theta rhythms in two distinct states under urethane anaesthesia. Since phase-locking to

dominant rhythms was observed regardless of the frequency of these rhythms, locking

appears to be a dynamic property of bursting neurons but not a property of the specific

frequency at which the locking occurs. This means that burst firing can potentially lock

to the dominant frequencies associated with a variety of behaviours. The outcome of

this work needs to be explored further in future studies as the present analyses are based

on data from one rat. Although we presented example data from the subiculum, the

model is more general so can also be applied to understand the properties of bursting

in other cortical and subcortical areas containing pyramidal neurons. Similar phase-

locking patterns of bursting neuronal firing might occur in other regions of the brain

during both sleep and awake states. Therefore, our results suggest that bursting neurons

are likely to play a more significant role in the neural code than previously assumed.
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Figure 3.5: Nissl-stained brain section showing the position of electrodes in the subiculum. The
electrolytic lesions produced at the end of the experiment are marked with an ‘x’ and indicate
the position of the first shank of the multi-electrode array. The remaining three shanks are
located to the left of these lesions. Sub: subiculum; CA1: hippocampal area CA1; DG: dentate
gyrus.

Figure 3.6: Average power-frequency spectra of LFP segments identified as containing dominant
slow oscillations (A) or theta rhythms (B) in the rat subiculum under urethane anaesthesia. (A)
The spectrum contained only a peak at slow oscillations indicating there was no remnant theta
rhythm. (B) The spectrum contained a large peak at theta rhythms and also a small peak at lower
frequencies which was due to coexistence of rhythms in the two bands during theta states under
urethane anaesthesia. Spectra plotted using the Welch’s periodogram method with Hamming
windows of length at least 130 s and 50% overlap.
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Figure 3.7: Phase-locking histograms of single spikes (A and D), two-spike bursts (B and E) and
larger bursts (C and F) fired by two different subicular neurons when slow oscillations were dom-
inant in the LFP signals. The preferred phase range of firing differed for each neuron (A–C and
D–F). Phase of 0◦ corresponds to the peak of a waveform as calculated by the Hilbert transform.
The colourbar shows the probability of locking to the phase of filtered LFP at overlapping steps
of 1 Hz. Chance probability is equal to 0.04.

Figure 3.8: Phase-locking histograms of single spikes (A and D), two-spike bursts (B and E) and
larger bursts (C and F) fired by two different subicular neurons when theta rhythms were domi-
nant in the LFP signals. The preferred phase range of firing differed for each neuron (A–C and
D–F). Phase of 0◦ corresponds to the peak of a waveform as calculated by the Hilbert transform.
The colourbar shows the probability of locking to the phase of filtered LFP at overlapping steps
of 1 Hz. Chance probability is equal to 0.04.
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4.1 Abstract

Burst spike patterns are common in regions of the hippocampal formation such as

the subiculum and medial entorhinal cortex (MEC). Neurons in these areas are im-

mersed in extracellular electrical potential fluctuations often recorded as the local field

potential (LFP). LFP rhythms within different frequency bands are linked to different

behavioral states. For example, delta rhythms are often associated with slow-wave

sleep, inactivity and anesthesia; whereas theta rhythms are prominent during awake

exploratory behavior and REM sleep. Recent evidence suggests that bursting neurons

in the hippocampal formation can encode LFP features. We explored this hypothesis

using a two-compartment model of a bursting pyramidal neuron driven by time-varying

73
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input signals containing spectral peaks at either delta or theta rhythms. The model

predicted a neural code in which bursts represented the instantaneous value, phase,

slope and amplitude of the driving signal both in their timing and size (spike number).

To verify whether this code is employed in vivo, we examined electrophysiological

recordings from the subiculum of anesthetized rats and the MEC of a behaving rat con-

taining prevalent delta or theta rhythms, respectively. In both areas, we found bursting

cells that encoded information about the instantaneous voltage, phase, slope and/or

amplitude of the dominant LFP rhythm with essentially the same neural code as the

simulated neurons. A fraction of the cells encoded part of the information in burst size,

in agreement with model predictions. These results provide in-vivo evidence that the

output of bursting neurons in the mammalian brain is tuned to features of the LFP.

4.2 Introduction

Bursts are groups of high frequency spikes followed by quiescent periods. In the mam-

malian brain, bursting activity has been observed in the cortex (Connors et al., 1982;

McCormick et al., 1985), thalamus (Steriade et al., 1993a; Guido and Weyand, 1995)

and hippocampal formation (Kandel and Spencer, 1961; Ranck, 1973) among other

regions. However, despite being ubiquitous, little is known about the specific role of

bursts in information processing. From a dynamical point of view, bursts are not sim-

ply a sequence of individual spikes fired in rapid succession. They rather constitute a

single dynamical event triggered and supported by the interplay between slow and fast

currents underpinning the cell’s membrane excitability (Izhikevich, 2010).

Bursting neurons have been identified in regions of the rodent hippocampal formation

such as the subiculum (Sharp and Green, 1994; Gigg et al., 2000) and more recently

in the medial entorhinal cortex (MEC) (Latuske et al., 2015). Both of these areas are

important for processing hippocampal information (e.g. Hafting et al. (2005); Kim

et al. (2012)). The subiculum receives input from area CA1 and projects hippocampal

output to cortical and subcortical areas (for reviews see O’Mara et al. (2001); Gigg

(2006)) whereas the MEC receives cortical and subcortical input and projects to the

hippocampus (Canto et al. (2008); Zhang et al. (2014)).

Neurons are immersed in electrical potential oscillations that can be recorded in the

extracellular milieu as the local field potential (LFP). The LFP reflects the sum of all

transmembrane currents in the vicinity of the recording electrode (Logothetis, 2003;

Buzsaki et al., 2012) with a predominant contribution from synaptic activity of pop-

ulations of pyramidal neurons within a volume of neural tissue (Einevoll et al., 2007;
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Pettersen et al., 2008). Hence, extracellular oscillations usually contain information

about the local network activity. Oscillations within specific frequency bands have

been associated with a range of cognitive functions (Engel et al., 2001; Ward, 2003;

Wang, 2010). For instance, in the hippocampal formation theta and gamma rhythms are

involved in memory processing (Lisman and Idiart, 1995; Lisman, 2005) and spatial nav-

igation (O’Keefe and Recce, 1993; Skaggs et al., 1996; McNaughton et al., 2006), whereas

delta rhythms and slow oscillations are involved in memory consolidation (Molle and

Born, 2011; Rasch and Born, 2013; Buzsaki, 2015). In addition, LFP rhythms have been

suggested to provide a time frame for neuronal interactions and organizing neuronal

activity (Fries, 2005; Womelsdorf et al., 2007). Moreover, evidence from the monkey

visual (Montemurro et al., 2008) and auditory cortices (Kayser et al., 2009) suggests

that the instantaneous phase of the LFP can act as an additional channel operating

in parallel to the usual firing-rate code and boost the amount of encoded visual and

acoustic stimuli, respectively. Thus, the LFP can contain information that is not present

in spike firing alone.

However, the precise mechanism by which downstream neurons could read out the

information encoded by the LFP still remains elusive. Recent evidence suggests that

bursting pyramidal neurons can lock their firing to a preferred phase range of the dom-

inant LFP rhythm and this phase preference can change as a function of burst spike

count (Samengo and Montemurro, 2010; Constantinou et al., 2015). Using this idea,

computational models have proposed bursting as a mechanism to encode instanta-

neous features of an oscillating current into a pattern of spikes that can be transmitted

to distant areas (Kepecs and Lisman, 2003; Samengo et al., 2013). In particular, mod-

els of pyramidal neurons suggested that intra-burst spike counts have the capacity to

encode the slope (Kepecs et al., 2002) and phase (Samengo and Montemurro, 2010) of

time-varying input signals.

The main hypothesis in our study is that firing single spikes and bursts of different

counts can be a feasible mechanism to transmit information about local field oscilla-

tions, thus translating information in the LFP into an easily decodable code. We tested

this hypothesis by a two-fold approach involving simulations from a two-compartment

model of a pyramidal bursting neuron and in-vivo data from anesthetized and behaving

rats. The model was constructed to fire with the statistics of experimentally recorded

neurons and used to quantify the information about features of LFP-like oscillations in

their bursting rate and intra-burst spike count. We investigated the encoding of delta

and theta-dominated signals, representing LFPs of anesthetized and behaving animals,

respectively. The model predicted that the output of bursting cells can indeed encode

information about the instantaneous voltage, phase, slope and, to a lesser extent, am-

plitude of the dominant rhythms. Furthermore, there was an encoding advantage in a
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neural code in which single spikes, two-spike bursts and larger bursts are considered

as distinct symbols compared to a code in which all these events are indistinguishable.

We then tested whether the same result appeared in experimental data that we had

access to: from the subiculum of anesthetized rats and the MEC of an awake behaving

rat. The corresponding LFPs were dominated by delta and theta bands, respectively.

The analysis, hence, allowed us to determine whether the encoding of LFP features was

restricted to a specific behavioral state or frequency band, or whether it appeared as

a robust mechanism in the temporal lobe. We found that a large fraction of bursting

cells in both regions encoded information about LFP features in their bursting rate. In

addition, some of these bursting cells also encoded information in burst size according

to the model predictions. Our results suggest that LFP features can be encoded in single-

cell bursting activity in the hippocampal formation of both awake and anesthetized

animals.

4.3 Materials and Methods

4.3.1 In vivo electrophysiology under anesthesia

All experiments under anesthesia were performed in accordance with the Animals

(Scientific Procedures) Act UK 1986 and were approved by the University of Manchester

Ethical Review Panel. Three adult male Sprague Dawley rats and one adult male Wistar

rat were used. The experimental procedures for recording from the subiculum have

been described before in Constantinou et al. (2015). The rats were anesthetized by

intraperitoneal injection of 1.5 g/kg urethane. Their heads were fixed in a stereotaxic

frame, a midline incision was made and craniotomies were drilled according to the

Paxinos and Watson (2007) rat brain atlas coordinate system for subiculum (Bregma:

-8.0 mm and ML: 3.5 mm). Small electrolytic lesions created at the end of the experiment

indicated electrode position in Nissl-stained brain sections.

A 4×8 multi-electrode array was inserted at a 30o compound angle from the vertical axis

to align the main axis of the electrode array parallel to the main pyramidal cell axis in

the subiculum. The electrode array was attached to an electrode board and headstage

and to an AC preamplifier resulting in total gain of ×2000. Simultaneous recordings of

spontaneous LFP (lowpass-filtered up to 250 Hz) and spikes (highpass-filtered above

300 Hz) were obtained for an hour. Spikes were detected by setting a threshold manually

for each electrode to account for differences in signal amplitude. Discrete spike shapes

of 1.3 ms duration and continuous LFP (sampling rates: 40 kHz and 2 kHz, respectively)

were stored for offline analysis.
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4.3.2 In vivo electrophysiology during awake behavior

The data from the MEC during awake behavior were recorded in a previous study (Kropff

et al., 2015). All experimental procedures for the awake recordings were performed

in accordance with the Norwegian Animal Welfare Act and the European Convention

for the Protection of Vertebrate Animals used for Experimental and Other Scientific

Purposes. A Long Evans rat was used. The rat was implanted at 3 months and recorded

until 9 months.

The experimental procedures for recording from the MEC have been described before in

Kropff et al. (2015). The rat was trained to run freely in a 1-m wide square box. The trials

lasted at least 20 min and as long as the rat would exhibit active foraging. Tetrodes were

constructed from four twisted polyimide-coated platinum-iridium wires and mounted

in a group of four into a microdrive. Once the animal was anesthetized, holes were

drilled on the dorsal skull anterior to transverse sinus to reach the entorhinal cortex.

The coordinates for implants were: 4.5-4.8 mm medio-lateral relative to lambda, 0.7

mm anterior to the border of the sinus and 1.8 mm dorso-ventral relative to the surface

of the brain. The rat was connected to the recording equipment via AC-coupled unity-

gain operational amplifiers close to its head. To search for new cells, tetrodes were

lowered in steps of 50 µm. The cells reported here belong to layers III and V. The LFP

(lowpass-filtered up to 500 Hz, sampled at 4800 Hz) was recorded single-ended from

one electrode per drive.

4.3.3 Bursting neuron model

Bursting activity was simulated using a two-compartment conductance-based model

of a pyramidal neuron which has been used in previous studies (Kamondi et al., 1998;

Kepecs et al., 2002; Kepecs and Lisman, 2003; Samengo and Montemurro, 2010; Con-

stantinou et al., 2015). The model contains the minimal ionic conductances required

to generate bursting activity (Kepecs and Wang, 2000) after being reduced from a

19-compartment model of a CA3 hippocampal neuron (Traub et al., 1991) to a two-

compartment conductance-based model (Pinsky and Rinzel, 1994). The input current

I (t )was injected into a dendritic compartment (Supplementary Equation 1) and burst-

ing activity was recorded from a somatic compartment (Supplementary Equation 2).

We had previously adjusted the model parameters (Constantinou et al., 2015) so as to

produce single spikes and bursts with the same probability as subicular neurons (Figure

4.2A,C). Burst production by entorhinal neurons was governed by a similar distribution,

so we only modified the variance of the input current to adapt the model to entorhinal

bursting neurons (Figure 4.2B,D). The parameters and equations of the model are listed
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in the Supplementary Methods and Supplementary Tables 4.1, 4.2.

The model was used to predict the spiking activity of subicular and entorhinal neurons

when immersed in oscillations present in the LFP in vivo. We simulated the effect

of these oscillations by injecting an input current I (t ), which had the same spectral

structure as the experimental LFP, into the dendritic compartment of the simulated

neuron. Since the LFP recordings had limited duration (1 h for subiculum and 30 min for

MEC), we used a method of creating surrogate data that preserves the spectral content

of LFP observed in vivo and can produce input signals of any desired length from a

segment of LFP. To construct the input signals, a 30-min segment of the experimental

LFP signal was interpolated to obtain a sampling frequency of 100 kHz and then used to

create surrogate oscillatory current signals. The surrogate signals were created from the

recorded trace by randomizing the phases of Fourier components and then transforming

back to the time representation. Hence, the power spectra of the surrogate signals

(Supplementary Figure 4.14A,B) are the same as their real counterpart (Figure 4.1C,D),

but the temporal structure is altered (Theiler et al., 1992). The signals were scaled so

that the mean was 0 nA and the standard deviation was 0.7 nA or 0.4 nA depending

on whether the simulation corresponded to anesthetized or behaving experiments,

respectively.

4.3.4 Spike sorting

For the dataset from the subiculum, the spike shapes recorded from each electrode

were imported in Offline Sorter V2.8.8 (Plexon Inc.) to isolate spikes from individual

neurons. Different combinations of spike shape parameters were chosen for clustering

until units were identified and manually separated. Units that were difficult to isolate

from the background noise were discarded. The quality of separation was assessed by

visual inspection of interspike interval (ISI) histograms to ensure no spikes were present

within the neuronal refractory period of 1 ms. To identify multiple detection of the

same unit on adjacent electrodes, cross-correlograms were plotted for each unit vs. all

the other units. For pairs of units with apparent cross-correlation, indicated by a large

peak within 1 ms from zero, only the unit with the largest spike waveforms was used for

subsequent analyses.

For the dataset from the MEC, spikes were assigned to individual neurons offline using

the graphical cluster-cutting software TINT (Axona Ltd.), as described in Kropff et al.

(2015). The procedure was analogous to that for the dataset from the subiculum.



4.3. Materials and Methods 79

4.3.5 Identification of bursting neurons and spike train segmentation

Bursting units were identified from ISI histograms and autocorrelograms of spike times

recorded at each electrode. Units in the subiculum were classified as bursting if the ISI

histogram and the autocorrelogram had a sharp peak within 2-8 ms and these peaks

were larger than any other peak within 50 ms (Supplementary Figure 4.12A,B). Units in

the MEC were classified as bursting if the sharp peak was within 2-5 ms (Supplementary

Figure 4.12C,D). These criteria are consistent with previous studies characterizing

bursting units as having a peak within 6 ms or 10 ms (Ranck, 1973; Harris et al., 2001;

Mizuseki et al., 2009).

Consecutive spikes separated by less than 8 ms or 5 ms (in subiculum and MEC, re-

spectively) were assigned to the same burst. These thresholds were larger than the

prominent peak in the ISI histograms (Supplementary Figure 4.12A,C). Changing the 8

ms threshold to 6 ms or 10 ms gave qualitatively similar burst size distributions, phase

locking and information patterns (data not shown) so spike segregation in bursts was

robust to small differences of threshold.

The time-scale of the response patterns of the simulated neurons was slower, since the

prominent peak of the ISI distribution appeared at longer times (Supplementary Figure

4.14C-F). Hence, consecutive spikes were assigned to the same burst when the ISI was

below 16 ms.

4.3.6 Spectral analysis and data segmentation

LFP and input signals to the model were resampled to 200 Hz to reduce computation

time. Decimation was used in order to prevent the aliasing effect of signal components

above the Nyquist frequency in the downsampled signal. To visualize the spectral con-

tent of LFP signals, power spectra were plotted using the Welch’s periodogram method

with Hamming windows of 200 s and 50% overlap (Figure 4.1C,D). To depict how the

power of LFP oscillations changed over the duration of the experiment, the Fourier

decomposition of the signal across time and frequency was visualized in spectrograms

computed with Hamming windows of 2 s and 50% overlap (Figure 4.1A,B). For illustra-

tion purposes in Figure 4.1A,B and Supplementary Figure 4.13A only, the spectrograms

were smoothed with a 200-ms moving window to overcome excessive pixelation of the

image.

In each rat, the power spectra of the LFP recorded from all electrodes in the subiculum

or MEC were remarkably similar. During the 1-h recording under urethane-anesthesia,
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there was a prevalent peak at ∼1 Hz (example in Figure 4.1A,C) and for three of the four

rats there were epochs in which the network shifted transiently to a different dynamical

state, dominated by a peak at ∼3-4.5 Hz (example in Supplementary Figure 4.13). The

first peak corresponded to delta rhythms and the latter to theta rhythms as recorded

under urethane anesthesia. The ∼1 Hz rhythm under similar experimental conditions

has also been referred to as hippocampal slow oscillations in the literature (Wolansky

et al., 2006; Clement et al., 2008). We isolated the epochs with dominant delta rhythms

as described in Constantinou et al. (2015). In summary, based on the power spectra, the

frequency bands for delta and theta rhythms were defined as 0.5-2.5 Hz and 2.5-5.0 Hz,

respectively. Small changes in the boundaries of these bands did not affect the results in

pilot analyses. The dominant rhythm was defined as the band with the highest power at

a given time point at which the difference between the power of this band and any other

band was at least 10%. The epochs with dominant theta rhythms under anesthesia are

discussed in the Supplementary Results and Supplementary Figures 4.19, 4.20. The LFP

recordings from the awake rat during foraging activity contained a prominent spectral

peak at ∼8 Hz (example in Figure 4.1B,D). This frequency corresponds to the theta

rhythm associated with exploratory behavior and was stable throughout the recordings.

4.3.7 LFP filtering and feature extraction

LFPs were filtered using a finite impulse response (FIR) digital filter with Kaiser window

(sharp transition bandwidth: 1.0 Hz, stopband attenuation: 60 dB, passband ripple: 0.01

dB). LFPs were bandpass-filtered with cut-off frequencies 0.5 Hz and 3 Hz to extract the

delta rhythm in the anesthetized data, or 6 Hz and 12 Hz to extract the theta rhythm

in the awake data. For the systematic narrowband analysis of Figures 4.8-4.11 and

Supplementary Figures 4.16-4.18,4.20, the LFP signals were filtered in 1 Hz windows

with 75% overlap, except for the first frequency window which ranged from 0.1 Hz to 1

Hz.

Features were extracted from the filtered LFP signals. The investigated features were the

instantaneous voltage (or input signal for the model), slope, phase and amplitude. Slope

was calculated as the derivative of the LFP (experiments) or input signal (simulations).

Phase and amplitude were computed as the argument and modulus, respectively, of the

complex Hilbert transform of the LFP or input signal. With our angular convention, a

phase of 0o corresponded to a maximum in the oscillatory signal.
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4.3.8 Information measures

Information theory (Shannon, 1948) was used to quantify how much information about

LFP features can be conveyed by the output of bursting neurons. In the case of simulated

neurons, the features of the LFP are replaced by the same features of the input current

I (t ) injected into the model. Information was defined as the average reduction in

uncertainty about a given LFP feature by knowing the neuronal output.

To estimate information measures, time was binned into small intervals of duration

δt = 5 ms. Each interval was associated with a neural response and a LFP feature. The

latter could be either synchronous with the neural response (no time lag) or could be

located at a fixed time before or after the response. The collection of all the values of a

given feature throughout a session defined the feature set X .

We studied three possible ways – referred to as full burst code, burst rate code and burst

distinction code – by which bursting neurons encode LFP features. For the full burst

code, the set N of all possible neuronal responses consisted of four distinct symbols: no

spike (n = 0), single spike (n = 1), two-spike burst (n = 2) and larger burst (n = 3). Bursts

of three or more spikes were represented by the same symbol because they occurred

rarely (Figure 4.2). Each time bin was associated with one such response, located at

the time of burst initiation. The burst rate code was obtained from the full burst code

by considering all bursts containing one or more spikes (n ≥ 1) as indistinguishable

events. Hence, the 0s of the full burst code were preserved in the burst rate code and

a new symbol representing the initiation of a burst replaced all other n values. The

burst distinction code differed from the previous two in that only a subset of the time

bins was employed: the time bins where a burst was initiated. That is, all the time

bins associated with a 0 response were discarded. Neuronal activity was described

by a response set N = {1,2,3} which distinguished between bursts of different spike

count. The information encoded by the burst distinction code quantifies whether

bursts of different sizes are useful to discriminate LFP features. The data processing

inequality (Cover and Thomas, 2006) ensures that the full burst code cannot encode less

information than any of the other codes and equality is only possible if the discarded

aspect is irrelevant to information encoding.

When the time bin is sufficiently brief, the information I (X ;N ) about a LFP feature

(X ) conveyed by bursts (N ) with the full burst code or with the burst rate code can be

estimated by adapting the method described in Skaggs et al. (1993) to incorporate the
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firing rate of n-spike bursts (Eyherabide et al., 2008) so that:

I (X ; N ) =δt
∑

n∈N

∑

x∈X

p (x )rn (x ) log2

rn (x )
rn

, (4.1)

where p (x ) is the probability of each LFP feature value and rn (x ) is the rate of each

n-spike event conditional to a LFP feature of value x . The average rate of each n-spike

event rn is:

rn =
∑

x∈X

p (x )rn (x ). (4.2)

The information values obtained from Equation 4.1 are in units of bits per time bin. The

information was converted to bits/burst by dividing the value obtained from Equation

4.1 by the average number of bursts in a time bin, that is, by δt r , where r is the total

burst rate.

In the full burst code: N = {0,1,2,3}, in the burst rate code: N = {0, burst}, and in

the burst distinction code: N = {1,2,3}. Applying the chain rule I (X ;Y ,Z ) = I (X ;Y )+
I (X ;Z |Y ) to the case Y = {0, burst},Z = {1, 2, 3}, the three codes are related by I (X ;{0, 1, 2, 3}) =
I (X ;{0, burst})+ rδt I (X ;{1, 2, 3}) (derivation in Supplementary Methods). Therefore, in

order to calculate the information per burst encoded in the burst distinction code, one

may calculate the difference:

I (X ;{1, 2, 3}) =
1

δt r

�

I (X ;{0, 1, 2, 3})− I (X ;{0, burst})
�

. (4.3)

Alternatively, the information of the burst distinction code can be computed directly

from the Shannon equation I (X ; N ) =H (X )−H (X |N )with N = {1, 2, 3} and defining X

as the set of features associated with the time bins where a burst was fired.

The continuous values of the LFP features were discretized into four symbols to define

the set X (a justification of the chosen binning is given in the Supplementary Methods

and Supplementary Figure 4.15). The boundary of bins was adjusted such that the

distribution of the four symbols was uniform. Hence, the probability of each symbol x

was p (x ) = 0.25.

Due to the finite nature of experimental data, the estimated probabilities used to com-

pute mutual information contain statistical errors, which lead to a sampling bias in

the information estimators. The bias is defined as the difference in the information

values calculated from the probabilities estimated from experimental data and from the

true probabilities (Panzeri et al., 2007). To correct for this bias, a bootstrapping method

(Montemurro et al., 2007b,c, 2008) was used. The burst size labels corresponding to

each LFP feature value were shuffled and the mutual information Is (X ;N ) was calcu-
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lated with the shuffled data. Although in principle shuffling eliminates all statistical

correspondence between burst size and LFP features, the resulting information value

still does not vanish, due to the bias. The procedure was repeated 100 times, and the

average of the shuffled information values 〈Is (X ; N )〉was taken as an estimation of the

sampling bias. Since the output statistics varied across cells, the bias estimation was

done individually for each cell.

A given cell was considered to convey a significant amount of information about a given

feature when the information obtained with the real data was larger than the maximum

value of the 100 shuffled information estimates across time. This maximum value could

happen at any point in the time window around burst onset. For significantly encoding

cells, the bias-corrected information Ic (X ;N ) was obtained by subtracting 〈Is (X ;N )〉
from the mutual information estimate I (X ; N ). The bias-corrected information is here-

after referred to as information.

4.3.9 Phase-locking estimation

For each cell and n value, phase-locking was estimated by calculating the probability

of firing a burst of n spikes conditional to a LFP phase of a specific range. The interval

[−180o ,180o] was divided into 25 phase ranges, each of size 14.4o . The phase was

computed at the time of burst onset.

4.3.10 Principal component analysis

In order to determine whether pairwise correlations suffice to explain all the structure

in the statistics of the information data, we performed a principal component analysis

(PCA) of the information transmitted about the four features at the population level.

Each cell in either subiculum or MEC was taken as a sample of a 4-dimensional vector

vi , whose components were the values of the mutual information obtained with the full

burst code about the four explored LFP features (voltage, slope, phase and amplitude).

The 4×4 covariance matrix of each population (subiculum or MEC) is:

C =
�

vi −vi
� �

vi −vi
�T , (4.4)

where the horizontal bar represents a population average on all the bursting cells i of

each brain area, and the supra-script T stands for vector transposition. The eigenvectors

of C are orthogonal, and indicate the directions in which information vectors are uncor-

related. The associated eigenvalues are always non-negative and equal to the variance



84 Paper 2

of the population data along the direction of the corresponding eigenvector. If one of the

eigenvalues is much larger than the other three, then the information about the different

features is strongly correlated throughout the population and all information vectors

are essentially proportional to the principal eigenvector (the one associated with the

largest eigenvalue). The eigenvector associated to the second eigenvalue indicates an

additional direction of variability which, although less important, implies fluctuations

in information values that are uncorrelated with those in the principal direction.

4.4 Results

We investigated how bursting neurons encode information about LFP features in the

hippocampal formation using both a bursting neuron model and electrophysiologi-

cal data recorded in-vivo from the subiculum and the MEC. Three possible ways of

transmitting information were explored: the full burst code, burst rate code and burst

distinction code (see Materials and Methods). Each code corresponds to a different

representation of the bursting responses. The full burst code considers both the timing

and the spike count of each burst, representing the when and what of the encoded

features, respectively (Eyherabide and Samengo, 2010a,b). In the burst rate code, only

the timing of bursts is represented; and in the burst distinction code, only the spike

count.

For shortage of notation, we employ the word burst to all spike patterns including not

only sequences of two or more spikes, but also single spikes, which are considered

as one-spike bursts. In all cases, the statistical correspondence between LFPs and

bursting responses was explored using the LFP recorded at the same electrode where

the single-cell activity was registered.

4.4.1 Information encoded by simulated bursting neurons

In order to mimic the effect of the fluctuating extracellular medium on neuronal ex-

citability, we used variations of the LFP recorded in the experimental data as the input

signal driving a simulated neuron (see Methods for input signal construction and com-

putational model). The LFPs recorded in anesthetized and behaving animals contained

markedly different spectral characteristics (Figure 4.1). Therefore, each of these con-

ditions was simulated independently using a driving signal with the corresponding

spectral profile (Supplementary Figure 4.14). The firing statistics of the simulated

neuron were similar to the in-vivo recorded cells (Figure 4.2).
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Figure 4.1: Spectral content of LFP. Example of spectrograms (A,B) and power-frequency spectra
(C,D) of LFP recorded by an electrode in the subiculum of an anesthetized rat (A,C) and the MEC
of an awake behaving rat (B,D). (A,C): LFP show a peak in spectral power at∼1 Hz throughout the
recording session. (B,D): LFP show a peak in spectral power at ∼8 Hz throughout the recording
session. There is also a smaller peak at frequencies <1 Hz. (A,B): Color scale in (mV2/Hz)0.25.
Warmer colors indicate higher power spectral density.

Neurons integrate information over time and, at a certain moment, fire a response (or

not). Therefore, responses are not only sensitive to the instantaneous properties of

the input signal, they also depend on its past history. Moreover, if the signal contains

temporal correlations, the past values of the signal are correlated with its future values.

Hence, a given event in the neural response may predict a future signal feature. Indeed,

neuronal bursting was not only modulated by features occurring at the time of burst

initiation, but also, to a lesser extent, by features appearing up to 200 ms before or after

(Figures 4.3A-C and 4.4A-C). Out of the four tested features (instantaneous value of

the input signal I (t ) and the associated slope, phase and amplitude), the best encoded

features were the instantaneous value, phase and slope. The information about I (t ) and

slope oscillated with a frequency that doubled the frequency of the dominant rhythm,

both for delta and theta-dominated inputs (Figures 4.3A-C and 4.4A-C). This effect is

explained at the end of section 3.4.

A full burst code, in which all n-spike bursts –where n indicates the intra-burst spike

count and n = 0 for time bins where there is no event fired– corresponding to each

instantaneous LFP feature are distinct symbols, encoded slightly more information than
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Figure 4.2: Probability of firing n-spike events by bursting neurons in the subiculum when delta
rhythms were dominant in the LFP under anesthesia (A) and in the MEC when theta rhythms
were dominant in the LFP during awake behavior (B). Bars show the average probability across
28 units in subiculum (A) and 42 units in MEC (B); error bars indicate standard deviation. (C,D):
Probability of the model firing n-spike bursts when delta (C) or theta rhythms (D) were dominant
in the input signal.

a burst rate code, in which the size of bursts was indistinguishable (Figures 4.3A,B and

4.4A,B). The information obtained with the burst distinction code, which considers the

spike count n only in the time bins where a burst was registered, was approximately

10-20 times smaller than with the other two codes (Figures 4.3C and 4.4C). These results

imply that most of the encoded information was temporal. In other words, the simulated

neuron mainly detected when a given feature fell within a specific range and, to a lesser

extent, encoded finer distinctions in the intra-burst spike count.

Bursting neurons in-vivo exhibited a range of patterns of information encoding, often

resembling the simulated neuron. Figures 4.3D-I and 4.4D-I show examples in the

subiculum under anesthesia and the MEC during awake behavior, respectively.

4.4.2 Population analysis of subicular neurons

We identified 28 bursting units in the subiculum of anesthetized rats during states with

predominant delta rhythms. The probability of firing n-spike bursts decreased with

the intra-burst spike count (Figure 4.2A). The population distributions of information

values obtained with the full burst code are displayed in Figure 4.5A. For each cell
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Figure 4.3: Information encoded by bursting neurons about the instantaneous voltage, slope,
phase and amplitude of the delta-filtered LFP. (A-C): Mutual information obtained with the
computational model when the input signal contains dominant delta rhythms. (D-F) and (G-I):
Mutual information obtained for two different subicular cells under anesthesia. Both cells
encode information about the voltage, slope, phase and amplitude of delta-filtered LFP by the
full burst code (D,G) and burst rate code (E,H). One of the cells encodes information about LFP
features in the distinction between different burst sizes (F) whereas the second does not (I).

in the population and each feature, the reported information values correspond to

features evaluated at the time where information was maximal. The dark bars show

significant information values, and the light bars show non-significant information

values (information values below threshold). There were cells that encoded up to 0.4

bits/burst about voltage and phase, whereas the values corresponding to slope and

amplitude were typically lower. The fraction of cells encoding significant information of

at least 0.1 bits/burst about the voltage, slope, phase and amplitude were 50.0%, 32.1%,

50.0% and 35.7%, respectively (Figure 4.5B).

The information encoded by subicular cells about each LFP feature reached its maxi-

mum value for features occurring synchronously, before or after burst onset (examples

in Figure 4.3). The distributions of times at which information was maximized with

the full burst code are summarized in Figure 4.5C. Most subicular neurons encoded
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Figure 4.4: Information encoded by bursting neurons about the instantaneous voltage, slope,
phase and amplitude of the theta-filtered LFP. (A-C): Mutual information obtained with the
computational model when the input signal contains dominant theta rhythms. (D-F) and (G-I):
Mutual information obtained for two different entorhinal cells during foraging behavior. Both
cells encode information about the voltage, slope and phase of theta-filtered LFP by the full
burst code (D,G) and burst rate code (E,H). One of the cells encodes information about LFP
features in the distinction between different burst sizes (F) whereas the second does not (I).

maximal information about features occurring approximately 200–300 ms before or

after burst onset. At the population level, the timing of maximal information about

voltage and amplitude swept a wider range than for slope and phase. For 81.3% of the

cells encoding significant information about phase, the timing of the maximal informa-

tion corresponded to future phase values. For 82.4% of the cells encoding significant

information about amplitude, the timing of the maximal information corresponded to

past amplitude values. Therefore, bursting neurons can encode information about both

past and future features of the delta-filtered LFP.

The distributions of significant information values for the full burst code are summa-

rized in Figure 4.5D. Some of the four distributions had significantly different medians

(Kruskal-Wallis test: χ2 = 18.57, d f = 67, p = 0.0003; followed by Tukey-Kramer mul-

tiple comparisons test of the averaged group ranks). In particular, at the population



4.4. Results 89

Figure 4.5: Population analysis of the information encoded by subicular bursting neurons
about the delta-filtered LFP. (A): Histograms displaying the information encoded by different
cells in the population about the four explored features. Black and white areas represent cells
with significant and non-significant amounts of information, respectively. (B): Fraction of cells
encoding significant information of at least 0.1 bits/burst. (C): Population statistics of the time
relative to burst onset at which the information encoded by the full burst code reached its
maximum value (only significant values included). Black dot: mean; horizontal bar: median;
upper and lower borders of the box: 25t h and 75t h percentiles; thin lines: maximum and
minimum values. (D): Population statistics of the maximal information encoded by the full
burst code. Box representation same as in (C) (significant values only). (E): Comparison of the
mean maximal information encoded by the burst rate and burst distinction codes (significant
values only). Error bars report standard deviation. (F): Schematic representation of which
features are encoded by each cell in the population. Each cell is indicated as a dot, and each set
encloses only the cells that encoded at least 0.1 bits/burst about voltage (V), slope (S), phase
(P) or amplitude (A). (G): Pearson correlation coefficients between the maximal information
encoded by each bursting neuron (shown as a dot) about all pairs of features. (H): Principal
component analysis (PCA) in which each cell is taken as a sample vector, and each feature
as a dimension. Top: 98% of the variance is explained by only two eigenvectors, 94% and 4%
respectively. Middle and bottom: First two eigenvectors obtained by PCA.
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level, the median information about voltage and phase was not significantly different,

nor was the information about slope and amplitude. However, the median information

about voltage was significantly different from slope and amplitude, and also the median

information about phase was significantly different from slope and amplitude.

The comparison between the population averages of the information encoded in the

burst rate and burst distinction codes is summarized in Figure 4.5E. The population

averages of the ratio Idistinction/I full were 13.8 %, 12.6 %, 13.1 % and 21.2% for voltage,

slope, phase and amplitude, respectively. This indicates that most information was

encoded in the timing of bursts and a smaller fraction in the distinction between burst

sizes.

Figure 4.5F depicts the population profile of feature representation. Each neuron is

indicated as a dot, and the set of each feature includes the neurons that encoded

significant information of at least 0.1 bits/burst. More than half of the cells (57.1%)

encoded at least one of the four features and thus appear inside of at least one of the

sets. Out of all cells, 25.0% encoded all four features and thus appear in the intersection

of the four sets; 14.3% encoded only voltage and phase; 7.1% encoded voltage, slope

and phase but not amplitude; 7.1% encoded only amplitude; and 3.6% encoded voltage,

phase and amplitude but not slope.

Figure 4.5G shows that the information about the four LFP features was typically pair-

wise correlated, most notably between phase and voltage. Amplitude was the most

independently encoded feature. PCA indicated that most of the variance (94%, Figure

4.5H, top) in the distribution of information values was captured by an eigenvector

whose predominant components included voltage and phase, and to a minor extent,

slope and amplitude (Figure 4.5H, middle). An additional 4% of the variance was cap-

tured by a second eigenvector that had a large component in the direction of amplitude

(Figure 4.5H, bottom). These results underscore that a large fraction of cells encoded

the four features simultaneously, with more information encoded about phase and

voltage, and less about slope and amplitude. An independent subset of cells encoded

predominantly the amplitude as indicated by the second eigenvector.

4.4.3 Population analysis of entorhinal neurons

We identified 42 bursting units in the MEC of the awake behaving rat during theta

rhythms. Burst firing probability decreased as the intra-burst spike count increased

(Figure 4.2B). The population distributions of information values obtained with the

full burst code are displayed in Figure 4.6A. The histograms corresponding to voltage
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and slope are remarkably similar, and all but amplitude contain long tails with high-

information values. There were cells that encoded more than 0.9 bits/burst about

voltage and slope, and more than 0.8 bits/bursts about phase. The maximal information

about amplitude was notably lower (0.13 bits/burst). The fraction of cells encoding

significant information of at least 0.1 bits/burst about the voltage, slope, phase and

amplitude were 38.1%, 38.1%, 28.6% and 4.8%, respectively (Figure 4.6B).

Figure 4.6: Population analysis of the information encoded by entorhinal bursting neurons
about the theta-filtered LFP. Panels same as in Figure 4.5. (C): The largest and smallest times
of maximal information about amplitude were+780 and −880 ms (out of scale). (D): Note the
break in the y -axis. (H): 99.7% of the variance is explained by only two eigenvectors: 99% and
0.7% respectively.

Similarly to subicular neurons, the maximal information encoded by bursting cells in

the MEC could correspond to features occurring synchronously, before or after burst

onset (examples in Figure 4.4). The distributions of times of maximal information for

the full burst code are summarized in Figure 4.6C. At the population level, entorhinal

neurons encoded maximal information about the instantaneous voltage, slope and

phase within 50 ms before or after burst onset; whereas maximal information about
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amplitude could be up to approximately 800–900 ms around burst onset. Maximal

information tended to correspond to future feature values of the theta-filtered LFP, in

particular, 87.8% of the encoding cells conveyed maximal information for future voltage

values.

The distributions of significant information values for the full burst code are summa-

rized in Figure 4.6D. The long tails obtained for voltage, slope and phase produced

mean information values that were notably larger than the medians. At the population

level, the median information about voltage, slope and phase was not significantly

different, but the median information about amplitude was different from the other

three (Kruskal-Wallis test: χ2 = 42.5, d f = 161, p = 3×10−9; followed by Tukey-Kramer

multiple comparisons test of the averaged group ranks).

The comparison between the population averages of the information encoded in the

burst rate and burst distinction codes is summarized in Figure 4.6E. The population

averages of the ratio Idistinction/I full were 16 %, 16 %, 23 % and 13 % for voltage, slope,

phase and amplitude, respectively. Thus, the timing of bursts encoded most of the

information, and intra-burst spike counts encoded a smaller fraction of the information.

Figure 4.6F illustrates that 40% of the entorhinal bursting cells encoded at least 0.1

bits/burst of one or more of the four features and thus appear inside at least one of

the feature sets. Out of all cells, 26% encoded at least 0.1 bits/burst of information

about voltage, slope and phase but not amplitude; 10% only voltage and slope; 2% only

amplitude; and 2% all four features.

The information about the four different features was typically pairwise correlated,

most notably, between voltage, slope and phase (Figure 4.6G). Amplitude was the most

independently encoded feature. The PCA indicated that 99% of the variance (Figure

4.6H, top) was captured by an eigenvector with predominant components along voltage,

slope and phase (Figure 4.6H, middle). An additional 0.7% of the variance was captured

by a second eigenvector that had a large component in the direction of amplitude (Figure

4.6H, bottom). Hence, most cells encoded voltage, slope and phase simultaneously,

and an independent subset of cells encoded a small amount of information about

amplitude.

4.4.4 Burst-triggered averages

In order to gain insight about how bursting neurons encode LFP features, for each cell

and n value, we calculated the n-burst triggered average (n-BTA), that is, the average
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bandpass-filtered LFP around n-spike bursts. In both subiculum and MEC, the n-BTA

revealed that specific n values were predominantly associated with specific LFP features

and the code varied from cell to cell. To illustrate these variations, two example units

from each area are shown in Figure 4.7.

Figure 4.7: n-BTA of LFP around single spikes (blue), two-spike bursts (green) and larger bursts
(red) fired by subicular neurons during epochs with dominant delta rhythms in the LFP (A,C)
or entorhinal neurons during dominant theta rhythms (B,D). Each example is from a different
bursting unit. LFP was filtered within 0.5-3 Hz (A,C) or 6-12 Hz (B,D). Shade shows standard
error of mean. Spike or burst onset is at time = 0 ms.

The subicular unit of Figure 4.7A fired bursts near a maximum of the LFP, whereas the

one in Figure 4.7C fired near the trough. In both examples, the slope and amplitude of

the LFP around burst initiation (t = 0) changed with increasing spike count n . Instan-

taneous phase changed with n only for the cell in Figure 4.7A, whereas in Figure 4.7C,

all bursts were triggered at the minimum of the LFP, irrespective of n . At the time of

burst onset, voltage varied with n in Figure 4.7C but not in Figure 4.7A. The information

encoded by the cell of Figure 4.7A is shown in Figure 4.3D-F.

The entorhinal unit of Figure 4.7B encoded LFP features both in the burst rate (Figure

4.4D,E) and, to a much smaller extent, in the distinction between bursts of different

spike-count (Figure 4.4F). Accordingly, the n-BTAs of Figure 4.7B are all similar, implying

that bursts of different sizes hardly discriminate between LFP features. The cell in

Figure 4.7D shows a different case, where the instantaneous voltage, slope, phase and

amplitude vary with n . Hence, the distinction between bursts of different size provides



94 Paper 2

information about the four features.

Figure 4.7 is useful to understand why the information plots in Figures 4.3, 4.4 display

oscillating patterns for voltage and slope (but not for phase and amplitude) and why

the frequency of the oscillations doubled the dominant frequency of the LFP. The LFP

typically remains coherent during several cycles. The voltage therefore displays a rather

regular oscillatory pattern. Whenever the BTAs corresponding to different n values cross

each other, the distinction between these n values cannot convey information about

voltage. The crossings occur at twice the dominant frequency, so this is the frequency at

which information necessarily drops significantly. If all the n-BTAs cross simultaneously,

information drops down to zero. If only some of the n-BTAs cross at a given time, the

information decreases, but does not necessarily vanish. The same argument can be

constructed for the slope of the LFP, since the slope is also an oscillatory signal and

crossings occur at twice the dominant frequency. The case of instantaneous phase and

amplitude is different, since they are not constrained to oscillate, and if they do, their

frequency is not fixed.

4.4.5 Burst generation and phase locking

For a neuron to transmit information about the phase of the LFP, bursting probability

(with or without distinction of different n-values) must be modulated by the phase of

the LFP. Under anesthesia, 61% of bursting units in subiculum locked their firing to

a preferred phase of the delta-filtered LFP (examples in Figure 4.8). Sometimes, the

preferred phase of locking shifted to more advanced or earlier phases as intra-burst

spike count increased (36% and 4% of all bursting units, respectively). Figure 4.8A-C

shows an example where the preferred phase of locking shifted from 0◦ to 90◦ with

increasing burst size. This is the same cell as in Figures 4.3D-F, 4.7A. Not all cells

displayed shifts, see for example Figure 4.8D-F. Two additional examples from the same

dataset are shown in the supplementary data of Constantinou et al. (2015). Cells that are

locked to a specific phase value for all burst sizes encode information about phase in the

burst rate. Instead, cells whose preferred phase depends on n also encode information

in the distinction between different n-values. In MEC, 59 % of bursting units locked

their firing to a preferred phase of the theta rhythm; 12% of neurons exhibited a phase

locking that shifted to more advanced phases, whereas 21% shifted to earlier phases.

Two examples from the MEC are shown in Figure 4.9. Both cells locked to a preferred

phase range of the theta-filtered LFP. For the first cell (Figure 4.9A-C), the preferred

phase of locking shifted with increasing burst size. This shift was not observed in the

second example (Figure 4.9D-F; same unit as in Figure 4.7B), implying that the phase

was hardly encoded in burst size.
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Figure 4.8: Examples of phase locking of two bursting units (A-C) and (D-F) identified in the
subiculum of anesthetized rats when delta rhythms were dominant in the LFP. Phase-locking
histograms of single spikes (A,D), two-spike bursts (B,E) and larger bursts (C,F) fired by the
example bursting units. Phase of 0o indicates the peak of an oscillation. Colorbar: probability of
firing n-spike bursts within a phase bin of narrowband-filtered LFP. Chance probability is equal
to 0.04.

Figure 4.9: Examples of phase locking of two bursting units (A-C) and (D-F) identified in the
MEC of an awake behaving rat when theta rhythms were dominant in the LFP. Phase-locking
histograms of single spikes (A,D), two-spike bursts (B,E) and larger bursts (C,F) fired by the
example bursting units. Phase of 0o indicates the peak of an oscillation. Colorbar: probability of
firing n-spike bursts within a phase bin of narrowband-filtered LFP. Chance probability is equal
to 0.04.
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4.4.6 Bursting neurons encode features of dominant LFP rhythm

So far, we have examined the ability of bursting neurons to encode features of the

dominant frequency band within the LFP: the delta band in the anesthetized animals

and the theta band during exploratory behavior. However, neurons are immersed in a

broadband LFP, so in principle, they could also encode features of more than a single

frequency band. To verify whether such is the case, we narrowband-filtered the LFP

over a range of frequencies and repeated the information analysis for each band.

In agreement with model prediction (Supplementary Figures 4.16, 4.17), most subicular

and all entorhinal neurons that encoded features of the band-filtered LFP showed

maximal information encoding in the frequency band with highest power but not other

frequencies (examples in Figures 4.10, 4.11). Five of the encoding subicular cells also

showed information encoding of the instantaneous amplitude of LFP at frequencies

higher than ∼6 Hz (example in Supplementary Figure 4.18). The information about

voltage and slope exhibited the same oscillatory patterns observed in Figures 4.3, 4.4

with the frequency of the oscillations being twice the frequency at which the signal was

filtered. The oscillations in information therefore became narrower as the frequency

increased. The information encoded by the burst rate code was very similar to that of

the full burst code.

Figure 4.10: Information encoded by bursting neuron output about LFP features as a function of
LFP frequency and time around burst onset. Example from a bursting unit in the rat subiculum
during dominant delta rhythms under anesthesia. Information about the instantaneous voltage
(A,E), slope (B,F), phase (C,G) and amplitude (D,H) of narrowband-filtered LFP conveyed by
the full burst code (A-D) and burst distinction code (E-H). Colorbar: mutual information in
bits/burst.
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Figure 4.11: Information encoded by bursting neuron output about LFP features as a function
of LFP frequency and time around burst onset. Example from a bursting unit in the rat MEC
during awake behavior when theta rhythms were prevalent in the LFP. Information about the
instantaneous voltage (A,E), slope (B,F), phase (C,G) and amplitude (D,H) of narrowband-
filtered LFP conveyed by the full burst code (A-D) and burst distinction code (E-H). Colorbar:
mutual information in bits/burst.

4.5 Discussion

Bursts encode behaviorally-relevant information in several systems (Guido and Weyand,

1995; Sherman, 2001; Swadlow and Gusev, 2001; Chacron et al., 2004; Lesica and Stanley,

2004; Oswald et al., 2004; Marsat and Pollack, 2006; Sabourin and Pollack, 2009). In

particular, temporally-structured neural codes have been found to encode information

both in the timing and the spike count of bursts (DeBusk et al., 1997; Martinez-Conde

et al., 2002; Arganda et al., 2007; Eyherabide et al., 2008, 2009; Marsat and Pollack, 2010).

Neurons in the hippocampal formation are equipped with the endogenous mechanisms

required for bursting (Hablitz and Johnston, 1981; Taube, 1993) and are tightly regulated

by inhibitory networks that modulate bursting (Royer et al., 2012). Moreover, neurons

are immersed in strongly oscillating fields that may favor temporally structured outputs

such as bursting (Mizuseki et al., 2009). Therefore, bursts are likely to subserve a number

of computational functions. For example, bursts generated at different frequencies

induce long-term potentiation involving different ionic mechanisms and lasting dif-

ferent time intervals (Grover et al., 2009). Bursts are also involved in replay sequences

during slow wave sleep (Lee and Wilson, 2002) and REM sleep (Louie and Wilson, 2001).

It is therefore important to determine the contextual conditions in which bursts are

generated, in particular, the statistical relation between the surrounding LFP and burst

initiation.

We found that the probability of generating a burst of n spikes decreased with n , showing
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a steeper decay for the awake data. A large fraction of bursting cells encoded significant

amounts of information about at least one of the tested features (instantaneous voltage,

slope, phase and amplitude), even though cells were only selected according to their

ISI histogram. No criterion regarding neuronal type was used to exclude cells. In the

MEC, the number of informative neurons was smaller than in the subiculum, but the

informative neurons encoded more information. Spikes belonging to the same burst

often decrease progressively in amplitude (Kandel and Spencer, 1961; Ranck, 1973),

and could thus be assigned to different cells by typical spike sorting techniques (Harris

et al., 2000). Therefore, our experimental results constitute a lower bound to the burst-

mediated code, since there are potentially more bursts in the data than the ones we

detected.

In the codes we studied, all bursts of n spikes were described by the same symbol

(indicating the spike count in the full burst and burst distinction codes or the occurrence

of a burst in the burst rate code) assuming that small differences in the ISI inside the

burst are uninformative. As a result, the space of all possible spike patterns is reduced

to a much smaller space, in which only burst-like patterns matter. The reduction

could, in principle, discard information, because the neural code is not guaranteed

to occur by means of a discrete alphabet (Eyherabide and Samengo, 2010a,b). The

advantage, however, is that information measures do not require the study of long

response windows, and by studying a small number of BTAs, the neural code is revealed.

The timing of each burst was defined as the time of the first spike in the burst. In

principle, other choices could have been considered, such as the last spike or the mid-

point. Since the investigated burst codes only make sense if all bursts of the same

duration are taken as the same symbol (fluctuations in the duration are neglected),

shifting the time assigned to each burst is an invertible transformation, so the data

processing inequality reduces to an equality. Therefore, the mutual information values

remain unchanged. The only difference is that the value of information, which we now

assign to time t , would be assigned to time t − tshift, and the same would happen to

BTAs. The shift would therefore displace the graphs, but the conclusions of the paper

would still be valid.

We found that most of the information about the LFP was encoded in the timing of

burst initiation, implying that the code mainly represented temporal information. Burst

onset punctuated LFP features falling within a specific range. Some cells also encoded

10–15% of additional information in the differentiation between bursts of different spike

counts. The additional information represented fine-grained distinctions between the

encoded feature values.
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In the MEC, most cells encoded voltage, phase and slope simultaneously, and an in-

dependent subset of cells encoded amplitude. In the subiculum, most cells encoded

a large amount of information about voltage and phase, and approximately half that

amount about slope and amplitude. In order to understand these correlations, it is

important to notice that the four tested features are not independent from one another.

The LFP contains temporal correlations, and therefore induces a certain amount of

statistical dependence between voltage, slope, phase and amplitude. Both in the theta

and the delta-dominated LFPs, phase was correlated with voltage. The mutual infor-

mation between the two features was approximately 0.8–1 bit (out of a maximum of 2

bits, given the employed binning). Phase and slope were less correlated and the mutual

information between them was approximately 0.5 bits out of 2. Amplitude was mildly

correlated with voltage in the delta-dominated LFP (mutual information was 0.3 bits

out of 2), and even less in the theta-dominated LFP (mutual information was 0.1 bits

out of 2). Importantly, slope was not correlated with voltage (mutual information was

less than 0.1 bit out of 2), and by construction, phase and amplitude were independent.

Therefore, the high correlation between the information encoded by bursting neurons

about voltage, phase and slope found in the MEC could be potentially explained by an

encoding mechanism mainly focused on representing phase, the other two features

being no more than residual epiphenomena. There is no single feature whose encoding

can explain the results found in the subiculum, so we must either conclude that at least

two features are encoded (for example, voltage and slope, or phase and amplitude), or

that a yet unexplored feature plays the protagonist role.

Although there is no complete understanding of the mechanisms through which the LFP

arises, many authors agree that the main contribution is provided by the extracellular

currents produced by synaptic input to a given brain region (Logothetis, 2003; Buzsaki

et al., 2012; Einevoll et al., 2013). Hence, LFP fluctuations mainly reflect fluctuations

in the input, the output activity of the local neurons playing only a minor role. It may

therefore be puzzling to find that bursts also encode future LFP values, which seems

to violate causality. It should be noticed, however, that such future encoding is also

found in the simulations, where by construction, neural activity is the consequence

(and not the cause) of the driving signal. As discussed in Samengo et al. (2013), encoding

of future input features only takes place in signals that contain temporal correlations

themselves. One can only expect a burst to encode future stimulus values if the burst

is driven by input currents whose present value contains information about how they

will evolve in the near future. Therefore, predictive encoding is only expected to occur

up to time windows that are within the range of the temporal correlations of the signal

itself. Indeed, we found that when the LFP is dominated by theta, bursts can predict

features that extend up to 250 ms into the future, that is 1–2 theta cycles. Instead, for

delta-dominated LFPs, the encoding goes as far as 500 ms, again, 1–2 cycles of the much
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slower delta.

The computational model used to simulate bursting neurons was able to reproduce the

main results obtained with the experimental data. The model contained the minimal

ionic conductances required for inducing bursting and thus, by construction, does not

represent every biophysical detail that generates bursts in all real neurons. Even so,

the simulations are useful to show that the differences observed in the neural code of

behaving and anesthetized animals can be obtained by simply changing the frequency

content and the amplitude of the driving signal, rather than the specific biophysical

mechanisms of a particular bursting neuron.

In summary, we have combined computational modeling with analysis of in-vivo data

from awake and anesthetized rats with the aim to determine the code by which burst

firing in the hippocampal formation can convey information about features of ongoing

LFP oscillations. Our results confirm that the burst code represents the temporal

features of the predominant frequency band of the extracellular oscillations, and that

most of the information is encoded in the timing of burst onset. A more complex

code, in which the different burst sizes are distinguished, added a further 10–15% of

information. These findings suggest that bursts may have an important role in relaying

information encoded in the LFP to downstream neurons.

We interpret the term ‘information’ in the technical sense defined by Shannon: the

reduction in uncertainty about the value of a LFP feature by observing the response of

the bursting neuron. This interpretation of the word information follows the line of the

classical studies in the topic, as for example by Rieke et al. (1997); Borst and Theunissen

(1999); Quian Quiroga and Panzeri (2009). We do not, however, address the issue of

whether or how this encoding is further exploited by the brain. However, this does

not preclude us to hypothesize about its possible function. Theta and delta rhythms

are known to be involved in processing information related to declarative memory.

In addition, previous studies demonstrated that the information carried by spikes is

boosted by knowledge of LFP features (Montemurro et al., 2008; Kayser et al., 2009).

After Samengo and Montemurro (2010), the hypothesis that bursting could be involved

in making such information available to downstream neurons became more credible.

Our current paper, then, is the first to actually show that the hippocampal formation is

indeed endowed with the mechanisms to do so. We hope to motivate other scientists to

search for evidence relating to the decoding of this information by downstream neurons

and also whether these mechanisms are present in other regions.
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4.9 Supplementary Material

4.9.1 Supplementary Methods

4.9.1.1 Bursting neuron model

The equations and parameters of the bursting neuron model have been published

before in Constantinou et al. (2015) and are included here for completion. The model
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consisted of two compartments: dendrites and soma. The input signal I (t )was injected

in the dendritic compartment and bursting activity was recorded from the somatic

compartment as described in Supplementary Equations 4.5 and 4.6, respectively.

Cm
d Vd

d t
=−IL − IK S − IN a P − g c

Vd −Vs

1−p
+ I (t ) (4.5)

Cm
d Vs

d t
=−IL − IK − IN a − g c

Vs −Vd

p
(4.6)

The equations of the ionic currents and the model parameters are listed in Supplemen-

tary Tables 4.1 and 4.2, respectively. The 4t h order Runge-Kutta method with 0.01 ms

time step was used for numerical integration of the model.

4.9.1.2 Discretization of LFP feature signals

LFP features (voltage, slope, phase and amplitude) vary continuously. However, esti-

mating the probability of continuous LFP features from a finite sample would result in

an enormous bias. Hence, the continuous signal was discretized into a finite number

of bins M chosen by optimizing the trade-off between being large enough to preserve

most of the information and, at the same time, small enough to reduce the bias, as in

Elijah et al. (2015). In short, we varied M and, for each value, obtained the feature set

X , from which we computed the mutual information I (X ; N ) = I (X )− I (X |N ), the bias

estimate Is (X ; N ) = 〈I (X )− I (X |Ns )〉 (where 〈...〉 indicates average over 100 repetitions),

and the bias-corrected information Ic (X ;N ) = I (X ;N )− Is (X ;N ). We computed these

measures for the burst distinction code with no time lag, so that N = {1,2,3} and X

comprised the features occurring at the time of burst onset.

The results were similar for all bursting neurons (example in Supplementary Figure

4.15). When M < 22, the information measures were underestimated; whereas when

M > 23, there was considerable bias in the information estimate I (X ; N ) as depicted by

the diverging lines of I (X ; N ) and the bias-corrected information estimate Ic (X ; N ). The

bias correction method we used was sufficient to correct for this as indicated by the

plateau of Ic (X ; N ) (Supplementary Figure 4.15). Since there was no considerable gain

in information by using M > 22, LFP features were discretized with M = 4.

4.9.1.3 Relation between the three burst codes

This section explains how we used the chain rule for mutual information to derive

the equation I (X ;{0, 1, 2, 3}) = I (X ;{0, burst})+ rδt I (X ;{1, 2, 3})which relates the three

codes we investigated.



4.9. Supplementary Material 103

In the full burst code: N = {0,1,2,3}, in the burst rate code: N = {0, burst}, and in the

burst distinction code: N = {1, 2, 3}. We define the variables

W = {0, 1, 2, 3},

Y = {0, burst},

Z = {1, 2, 3}. (4.7)

Since the three variables arise from the same neural response, Y is a deterministic

function of W ,

Y (W ) =

(

0 if W = 0,

burst if W 6= 0.
(4.8)

When Y = burst, the variable Z is also a deterministic function of W ,

Z (W ) =

(

W if W > 0,

not defined if W = 0.
(4.9)

The chain rule states that for any three variables X , A, B ,

I (X ; A, B ) = I (X ; A)+ I (X ; B |A). (4.10)

If we take A =W and B = Y , the chain rule becomes

I (X ; W, Y ) = I (X ; W )+ I (X ; Y |W ). (4.11)

The deterministic rule of Supplementary Equation 4.8 implies that H (Y |W ) = 0, so

Y cannot transmit information about any variable, when conditioned on W . That is,

I (X ; Y |W ) = 0. Hence, Supplementary Equation 4.11 reduces to

I (X ; W, Y ) = I (X ; W ). (4.12)

If we now take A = Y and B =W , the chain rule becomes

I (X ; Y , W ) = I (X ; Y )+ I (X ; W |Y ). (4.13)

In addition,

I (X ; W |Y ) = P(y = 0)
∑

x∈X

∑

w∈W

P(x , w |y = 0) log
P(x , w |y = 0)

P(x |y = 0)P(w |y = 0)
+ (4.14)

+ P(y = burst)
∑

x∈X

∑

w∈W

P(x , w |y = burst) log
P(x , w |y = burst)

P(x |y = burst)P(w |y = burst)

Supplementary Equation 4.8 implies that when y = 0, there is no alternative but to

have w = 0. Therefore, in the first term of Supplementary Equation 4.14, only the
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term with w = 0 appears, for all others, P(x , w |y = 0) vanishes. Moreover, P(x , w =
0|y = 0) = P(x |y = 0), so the first term vanishes. Similarly, Supplementary Equation 4.9

implies that when y = burst, w is equal to z , and P(x , w |y = burst) = P(x , z ). Therefore,

Supplementary Equation 4.13 becomes

I (X ; Y , W ) = I (X ; Y )+P(Y = burst)I (X ;Z ). (4.15)

Given that P(Y = burst) = rδt , and taking Supplementary Equation 4.12 into account,

we get

I (X ; W ) = I (X ; Y )+ rδt I (X ;Z ). (4.16)

4.9.2 Supplementary Results

Theta rhythms can be separated in two types based on their sensitivity to atropine

(Kramis et al., 1975). Urethane preserves the atropine-sensitive theta (3-7 Hz) but

eliminates the atropine-resistant theta (7-12 Hz) (Kramis et al., 1975; Clement et al.,

2008). We observed that, under urethane anesthesia, the LFP of three rats exhibited

shifts in which either delta (∼1 Hz) or theta rhythms (∼4 Hz) were dominant (example

in Supplementary Figure 4.13). We identified 13 bursting units during the epochs

containing dominant theta rhythms under anesthesia. These units were also bursting

during epochs of dominant delta rhythms. We analyzed these data separately for the

theta-dominant epochs and present the results here.

We investigated whether these cells encoded features of theta rhythms in their bursting

output. Eleven cells showed evidence of encoding the instantaneous voltage, slope

and phase of theta rhythms by the full burst code and the burst rate code (examples in

Supplementary Figures 4.19A-B,D-E and 4.20A-D); and five of these cells also encoded

the instantaneous amplitude. For the latter cells, the information encoded for voltage,

slope and phase was twice to ten times higher than of amplitude. Four of the encoding

cells also showed evidence of feature encoding by the burst distinction code (example in

Supplementary Figures 4.19C and 4.20E-H). One cell encoded most information about

the instantaneous amplitude of theta rhythms, and less about the voltage and slope, by

the full burst code and burst rate code. These results suggest that bursting neurons can

encode information conveyed by atropine-sensitive theta rhythms during anesthesia.

4.9.3 Supplementary Tables and Figures
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Table 4.1: Equations describing the ionic currents of the two-compartment model. The last row
shows the kinetics equation of the gating variables for the Na, K and slow K currents.

Na current IN a = g N a m 3
∞h(Vs −EN a )

m∞ =αm /(αm +βm )

αm =−0.1(Vs +31)/(exp(−0.1(Vs +31))−1)

βm = 4 exp(−(Vs +56)/18)

αh = 0.07 exp(−(Vs +47)/20)

βh = 1/exp(−0.1(Vs +17))+1)

K current IK = g K n 4(Vs −EK )

αn =−0.01(Vs +34)/(exp(−0.1(Vs +34))−1)

βn = 0.125 exp(−(Vs +44)/80)

Persistent Na current IN a P = g N a P r 3
∞(Vd −EN a )

r∞ = 1/(exp(−(Vd +57.7)/7.7)+1)

Slow K current IK S = g K Sq (Vd −EK )

q∞ = 1/(exp(−(Vd +35)/6.5)+1)

τq =τq0/(exp(−(Vd +55)/30)+exp((Vd +55)/30)) , τq0 = 200

Leak currents IL = g L(V −EL) , where V =Vd or Vs

Kinetics of gating variables d x/d t =φx (αx (1−x )−xβx ) =φx (x∞−x )/τx ,
where x = h, n or q

Table 4.2: Parameters of the two-compartment model.

Reversal potentials (mV) EN a 55
EK -90
EL -65

Maximum conductances (mS/cm2) g N a 45
g K 15
g L 0.18
g N a P 0.08
g K S 0.7

Coupling conductance (mS/cm2) g c 1

Membrane capacitance (µF/cm2) Cm 0.6

Relative area between compartments p 0.15

Temperature scaling factors φh 3.33
φn 3.33
φq 1
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Figure 4.12: Example of ISI histograms (A,C) and autocorrelograms (B,D) of a busting unit in
the subiculum (A,B) and the MEC (C,D). A unit was classified as bursting if there was a sharp
peak within 2-8 ms for subiculum (A,B) or 2-5 ms for MEC (C,D) in the autocorrelogram and ISI
histogram but not another peak within 50 ms.

Figure 4.13: Example of spectrogram (A) and power spectrum (B) of the LFP recorded by an
electrode in the subiculum of a urethane-anesthetized rat. The LFP shifts between states in
which there is a spectral peak at either ∼1 Hz or ∼4 Hz. [A: The color scale is in (mV2/Hz)0.25.
Warmer colors indicate higher power spectral density.]
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Figure 4.14: Power spectra of input signals to the model containing peaks at delta rhythms (A)
or theta rhythms (B). ISI histograms (C,D) and autocorrelograms (E,F) of the spiking output of
the model when the input had the corresponding spectra in A,B.

Figure 4.15: Information and bias estimates as a function of the number of bins M used to
discretize the instantaneous voltage (A), slope (B), phase (C) and amplitude (D) of the LFP.
Information measures were estimated for the burst distinction code at the time of burst onset.
This example is for the same unit as in Figure 4.3D-F.
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Figure 4.16: Information encoded by the bursting neuron model about features of the input
signal I (t ) as a function of frequency and time around burst onset. For these simulations,
I (t ) contained dominant delta rhythms to mimic the LFP rhythms present during anesthesia.
Information about the instantaneous I (t ) (A,E), slope (B,F), phase (C,G) and amplitude (D,H)
of narrowband-filtered I (t ) conveyed by the full burst code (A-D) and burst distinction code
(E-H). Colorbar: mutual information in bits/burst.

Figure 4.17: Information encoded by the bursting neuron model about features of the input
signal I (t ) as a function of frequency and time around burst onset. For these simulations, I (t )
contained dominant theta rhythms to mimic the LFP rhythms present during exploratory be-
havior. Information about the instantaneous I (t ) (A,E), slope (B,F), phase (C,G) and amplitude
(D,H) of narrowband-filtered I (t ) conveyed by the full burst code (A-D) and burst distinction
code (E-H). Colorbar: mutual information in bits/burst.
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Figure 4.18: Information encoded by bursting neuron output about LFP features as a func-
tion of LFP frequency and time around burst onset. Example from a bursting unit in the rat
subiculum during dominant delta rhythms under urethane-anesthesia. Information about
the instantaneous voltage (A,E), slope (B,F), phase (C,G) and amplitude (D,H) of narrowband-
filtered LFP conveyed by the full burst code (A-D) and burst distinction code (E-H). Colorbar:
mutual information in bits/burst.

Figure 4.19: Information encoded by bursting output of two different subicular cells (A-C and
D-F) about the voltage, slope, phase and amplitude of theta rhythms in the LFP during urethane-
anesthesia. Both cells encode information about the voltage, slope and phase of theta-filtered
LFP by the full burst code (A,D) and burst rate code (B,E). One of the cells encodes information
about LFP features in the distinction between different burst sizes (C) whereas the second does
not (F). LFPs were filtered within 2.5-5 Hz. x-axis: time relative to burst onset defined at 0 ms.
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Figure 4.20: Information encoded by bursting neuron output about LFP features as a func-
tion of LFP frequency and time around burst onset. Example from a bursting unit in the rat
subiculum during dominant theta rhythms under urethane-anesthesia. Information about
the instantaneous voltage (A,E), slope (B,F), phase (C,G) and amplitude (D,H) of narrowband-
filtered LFP conveyed by the full burst code (A-D) and burst distinction code (E-H). Colorbar:
mutual information in bits/burst.
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5.1 Abstract

The hippocampal formation is vital for declarative memory. Increasing evidence sug-

gests that rhythms in the electrical potential recorded from the extracellular medium as

the local field potential (LFP) are involved in exchanging information for this cognitive

processing. However, the mechanisms by which LFP can transfer information are still

not clear. We addressed this question by investigating how interactions of LFP rhythms

can transfer information between hippocampal area CA1 and subiculum. These struc-

tures form the last processing point before projecting hippocampal output to cortical

and subcortical areas. We analysed simultaneous LFPs recorded from multiple elec-

trodes positioned along the depth of area CA1 and subiculum in anaesthetised mice.

We used information theoretic methods to quantify how much information can be

transmitted by LFP rhythms as well as to determine the direction of information flow

within the CA1-subicular circuit. We show that delta and theta rhythms can act as two
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independent channels that transmit segregated information. Most of the information

is conveyed by linear correlations in the LFP signals. In particular, interactions of the

phase of delta or theta rhythms transmit most of the information, and a smaller fraction

of information is transmitted by the amplitude of these rhythms. Moreover, we show

that information transfer is bidirectional comprising both feedforward and feedback

connections. These results agree with the anatomical connectivity between area CA1

and subiculum and suggest that information is dynamically processed in bidirectional

loops.

5.2 Introduction

The hippocampal formation is a compound structure which is essential for memory

formation (Scoville and Milner, 1957; Squire, 2009) and spatial navigation (O’Keefe

and Dostrovsky, 1971; O’Keefe and Nadel, 1978). The anatomy of this system has been

well studied (reviewed in Amaral and Witter (1989); O’Mara et al. (2001)). The hip-

pocampus receives input from the entorhinal cortex and projects to the subiculum

which, in turn, projects the hippocampal output to cortical and subcortical areas. Re-

ciprocal projections between these structures also provide feedback at each stage of

information processing (O’Mara et al., 2001). The anatomical connectivity within the

hippocampal formation is non-homogeneous suggesting that information is processed

in interconnected loops (Gigg, 2006).

Cognitive functions are dynamic, occurring at millisecond timescales during which the

anatomical connections are fixed. At these timescales, firing of action potentials, which

last for∼1 ms, can transmit neural messages along anatomical projections (Hodgkin and

Huxley, 1939). However, neural networks might process information about a number

of cognitive functions simultaneously which may result in unwanted interference by

ongoing unrelated information processes. This implies the existence of a mechanism by

which relevant information about a cognitive task is effectively routed along anatomical

connections without interference by unrelated processes. However, such a mechanism

of dynamically routing information remains an open question.

Increasing evidence suggests that electrical potential fluctuations in the extracellular

medium of the brain, often recorded as the local field potential (LFP), are involved

in this dynamic information processing. LFP rhythms have been proposed to ‘bind’

information from distant networks for cognitive processing including working memory,

attention and perception (Engel and Singer, 2001). LFP rhythms can provide a timeframe

for neuronal interactions (reviewed in Fries (2005); Sirota and Buzsaki (2005); Panzeri
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et al. (2010)). In particular, LFP rhythms allow for temporal windows during which

coherent activity can exchange information whereas absence of coherence can block in-

formation flow (Fries, 2005). According to this, synchronised rhythms (indicated by high

correlations) between distant neural networks are thought to allow for the exchange

of information, whereas desynchronised rhythms (uncorrelated) prevent information

exchange (Fries, 2005). Computational studies have provided evidence that LFP in-

teractions can dynamically route information along fixed anatomical connnections

(Battaglia et al., 2012). However, the exact details of how LFP interactions effectively

connect neural networks in the mammalian brain in-vivo is still not known.

LFP in the hippocampal formation have been associated with several cognitive func-

tions. For instance, theta and gamma rhythms are associated with memory retention

(Lisman and Idiart, 1995) and spatial navigation (O’Keefe and Recce, 1993; Skaggs et al.,

1996), and delta rhythms with memory consolidation (Molle and Born, 2011; Rasch and

Born, 2013). Despite the importance of the information processing by the output part

of the hippocampal formation, little is known about how LFP rhythms in area CA1 and

subiculum interact to exchange information.

We sought to determine the intrinsic dynamics by which LFP rhythms route information

among the two networks by analysing LFP recordings from area CA1 and subiculum

of anaesthetised mice. We show that delta and theta rhythms can act as two separate

channels to transmit information from area CA1 to subiculum and vice versa. Most of the

information was transmitted by linear correlations in the rhythms and more specifically

by the phase of delta and theta rhythms. Our results suggest that interactions in the

phase of LFP rhythms can dynamically route information along anatomical connections.

5.3 Methods

5.3.1 In vivo electrophysiology

All experimental procedures were carried out in accordance with the Animals (Scientific

Procedures) Act UK 1986. Ethical approval was provided by the University of Manchester

Ethical Review Panel. Seven male 3-4 month-old C57/129sv mice (LaFerla lab, University

of California, USA) were used. Mice were group-housed in a pathogen-free environment

with food and water available ad libitum and kept on a 12-h light:dark cycle.

Anaesthesia was induced with urethane (30% w/v in 0.9% saline, i.p., 1.5-1.7 g/kg) fol-

lowed by additional doses (10% w/v in 0.9% saline, 50 µl) if required after approximately



114 Paper 3

30-minute intervals to achieve areflexia. Tracheotomy (Moldestad et al., 2009) was

performed to sustain breathing and survival. Body temperature was kept at 37◦C using a

homeothermic blanket and monitored with a rectal thermometer. Mice were head-fixed

in a stereotaxic frame (Kopf 1430, USA) and 2-mm diameter craniotomies were carried

out with a high-speed hand held drill (Foredom, USA) and 0.9-mm drill bit (Fine Science

Tools, Germany) at B: -1.5 mm, ML: 1.7 mm for hippocampal area CA1 and B: -2.8 mm,

ML: 1.7 mm for subiculum based on the Franklin and Paxinos (2007) mouse brain atlas

coordinate system.

Two 2×16 electrode probes (A2×16-10-100-500-413, NeuroNexusTech, USA) were in-

serted at 20◦ and 25◦ compound angles from the vertical axis in area CA1 and subiculum,

respectively, so as to align with the main dendritic axis of pyramidal neurons. Each

probe comprised two shanks containing sixteen 413 µm 2 recording sites with 100 µm

vertical and 500 µm horizontal distance between sites. The probes were attached to an

electrode board and headstage (Plexon, USA) with fixed gain of 20× and an AC preampli-

fier giving a total gain of 2000× (Recorder64, Plexon, USA) and recordings were ground

referenced to the stereotaxic frame. Electrode positions were verified by histological

examination of CM-DiI labelling with fluorescence microscopy.

Spontaneous LFP (2 kHz sampling rate, low-pass filtered up to 250 Hz) were recorded

simultaneously from the electrodes in area CA1 and subiculum for at least 25 minutes.

5.3.2 Spectral analysis

The frequency composition of the LFP recorded at each electrode in hippocampal area

CA1 and subiculum was computed by Welch’s periodograms with 50% overlapping

Hamming windows of 180 s. Spectrograms with 50% overlapping Hamming windows

of 2 s were used to identify changes in the power of LFP rhythms over time. The

spectrograms presented here were smoothed with a moving window of 200 ms to avoid

excessive pixelation of the printed images.

5.3.3 LFP filtering

LFP were resampled to 200 Hz to improve computation time. Decimation was used to

prevent aliasing. LFP were bandpass-filtered using a finite impulse response (FIR) digital

filter with Kaiser window (sharp transition bandwidth: 1.0 Hz, stopband attenuation: 60

dB, passband ripple: 0.01 dB). On the basis of spectral analysis, the cutoff frequencies

were 0.5 Hz and 2.0 Hz for the delta rhythm or 2.5 Hz and 4.5 Hz for the theta rhythm.
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Phase and amplitude were extracted as the angle and modulus, respectively, of the

Hilbert transform of the bandpass-filtered LFP.

5.3.4 Multiple surrogates method

Surrogate LFP signals were created for each pair of LFP signals from area CA1 and the

subiculum as described in Prichard and Theiler (1994) so that the surrogates contained

only linear temporal correlations but no non-linear correlations. To construct these

surrogates: (1) the LFP time series of a pair of recordings were transformed in the

frequency domain by the Fourier transform so that the phase and amplitude could be

decomposed, (2) the phases were ‘randomised’ by rotating each phase of each Fourier

component by a random variable phase which was the same for the two signals, and

(3) the signals were converted back to the time representation by the inverse Fourier

transform. The resulting pairs of surrogate signals had linear autocorrelations and

cross-correlations but no non-linear correlations.

5.3.5 Transfer entropy

Transfer entropy (TE) is a directional information theoretic measure based on the

Wiener-Granger causality principle (Schreiber, 2000). This measure can be used to

quantify the information transfer between two LFP signals and also reveal the direction

of this information flow because it incorporates past values of the signals. To compute

the TE, we implemented a similar procedure to Besserve et al. (2010). The LFP signals

were discretised so that all possible values of LFP belonged in one of four equipopulated

bins.

For a pair of LFP signals X and Y recorded simultaneously, the TE from Y to X is given

by:

T (Y →X ) =H (X t+τ|X t )−H (X t+τ|X t , Yt ) (5.1)

where t indicates a given time point and τ is a variable time lag between the two signals.

H (X t+τ|X t ) is the conditional entropy of the future value X t+τ conditioned to the present

value X t , and H (X t+τ|X t , Yt ) is the joint entropy of the present value Yt and the future

value X t+τ conditioned to the present value X t . If no information is transferred from Y

to X at a given time lag, the TE value will be zero. A positive TE indicates the amount of

information that can be predicted about signal X by only observing the present values

of signal Y .

Computing the entropies from finite data can give rise to sampling bias in the estima-
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tions (reviewed in Panzeri et al. (2007)). To correct for this bias, a shuffling method

similar to Besserve et al. (2010) and Constantinou et al. (2016) was implemented. For

a given time point t , the pairs of X t and X t+τ were shuffled relative to Yt , while X t and

X t+τ were kept the same relative to each other. This method destroyed the correlations

between the future values X t+τ and the present values Yt , and at the same time pre-

served the correlations between the present X t and past X t+τ. Shuffling was repeated

100 times for each time lag τ. For each repetition, the shuffled TE was computed from

the shuffled data by Equation 5.1. The bias was estimated as the average of the shuffled

TE for all repetitions. The bias-corrected TE for a pair of LFP signals was then computed

by subtracting the bias estimate for that given pair from the TE estimate computed from

the actual data.

TE estimates for a pair of LFP signals were considered statistically significant if they

were greater than all 100 estimates of shuffled transfer entropy for that pair of LFP

signals. With this criterion, transfer entropy estimates from all pairs of recordings were

statistically significant and thus were included in the population analyses.

5.4 Results

We investigated how LFP transmit information between the hippocampus and the

subiculum. We analysed LFPs recorded from six equidistant electrodes spanning 500

µm along the depth of hippocampal area CA1 and subiculum of seven mice. The LFP

recordings were from two parallel shanks of electrodes placed 500 µm apart in area

CA1 of six mice and in the subiculum of five mice, or from one shank in area CA1 and

subiculum of the other one and two mice, respectively.

5.4.1 Spontaneous shifts in brain state

The LFPs in area CA1 and subiculum of each mouse exhibited two prominent rhythms

which either coexisted or shifted between each other. For each mouse, the LFP rhythms

were very similar across the whole span of area CA1 and subiculum from which the

recordings were obtained. Three example cases are shown in Figure 5.1. In one of the

mice, there was a prevalent peak at ∼1–2 Hz (Figure 5.1A) which was persistent during

most of the recording. There were also transient changes in the network state in which

rhythms of∼2.5-4 Hz became prevalent (Figure 5.1B). In the second case, there was a

strong rhythm at ∼3.5 Hz which also co-occured with a weaker ∼1–2 Hz rhythm (Figure

5.1C-D). This pattern was observed in three mice. In the third case, both rhythms

co-existed (Figure 5.1E-F), and this was observed in three mice. The slower rhythm
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corresponds to delta rhythms or slow oscillations, and the higher band corresponds to

theta rhythms under urethane anaesthesia (Pagliardini et al., 2013b). The two bands are

hereafter referred to as delta and theta rhythms. These two rhythms were extracted from

the LFP by bandpass-filtering within 0.5-2 Hz or 2.5-4.5 Hz and analysed separately to

determine their role in information transmission within the CA1-subicular circuit.

Figure 5.1: Examples of power spectra (A, C and E) and spectrograms (B, D and F) of LFP
recorded by an electrode in hippocampal area CA1 of three different anaesthetised mice (A-B,
C-D and E-F). B, D and F: Color scale in (mV2/Hz)0.25. Warmer colors indicate higher power
spectral density (PSD).

5.4.2 Information transfer by LFP rhythms

We investigated whether interactions of delta or theta rhythms can communicate in-

formation between hippocampal area CA1 and subiculum. We quantified the amount

of information that can be transmitted between pairs of electrodes in area CA1 and

subiculum using the TE measure, which also reveals the direction of information flow.

To capture the temporal extent by which these interactions take place we computed the

TE for different time lags between the signals. Examples from three pairs of electrodes in

area CA1 and subiculum of three different mice are shown in Figure 5.2. These examples

are from the same mice as the examples presented in Figure 5.1.

The information exchange by delta and theta rhythms was bidirectional. That is, in-

formation was transferred from area CA1 to subiculum and vice versa. The amount of

information transferred between area CA1 and subiculum oscillated with varying time
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Figure 5.2: Examples of information transfer between hippocampal area CA1 and subiculum
(Sub) by delta-filtered (A, C and E) and theta-filtered LFP (B, D and F). Each row (A-B, C-D and
E-F) shows an example from a different mouse. Each example is from the same pair of LFP
signals recorded in area CA1 and subiculum.

lag between the LFP signals of the two regions. The peaks and troughs in TE occurred

at slightly different time delays (in the range of a few milliseconds) for each direction

(Figure 5.2).

For all pairs of LFP signals, the frequency of TE oscillations depended on the frequency

of the LFP rhythms. For delta rhythms, the TE oscillated across the time lag with

a frequency of ∼1-2 Hz (Figure 5.2A, C and E); whereas for theta rhythms, the TE

oscillations were ∼5-7 Hz (Figure 5.2B, D and F), that is almost double the investigated

theta band frequency. These oscillations could arise because of the correlations within

each LFP rhythm. That is for a rhythm with a given frequency, the instantaneous LFP

value at a present time point depends on its past and future values.

The TE oscillations were synchronous for all pairs of electrodes within each animal.

The average TE across all pairs in each mouse were computed and example averages

from three mice are shown in Figure 5.3. These examples are for the same mice shown

in Figure 5.2. The TE oscillations were preserved in the averages across LFP pairs in
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an animal (Figures 5.2 and 5.3). This result indicates that the timing of TE peaks and

troughs is consistent for all LFP pairs suggesting that information flow from area CA1

to subiculum, or vice versa, is homogeneous along the span of the recorded regions.

However, the TE oscillations across time lag differed between animals (Figure 5.3).

Figure 5.3: Average information transfer between hippocampal area CA1 and subiculum (Sub)
by delta-filtered (A, C and E) and theta-filtered LFP (B, D and F). Each row (A-B, C-D and E-F)
shows the averages across all pairs of electrodes in a different mouse (corresponding to the mice
in Figure 5.2). Shadow shows the standard error of mean (SEM).

5.4.3 Information transfer by LFP phase and amplitude

What interactions between LFP rhythms mediate the information exchange in the CA1-

subicular circuit? The information could be transmitted by phase-phase or amplitude-

amplitude interactions of rhythms having the same frequency. To quantitatively com-

pare the contribution of phase and amplitude in information transfer, we decomposed

the bandpass-filtered LFP into its phase and amplitude and computed the informa-

tion transferred by either phase-phase (Figure 5.4) or amplitude-amplitude (Figure 5.5)

interactions in the LFP signals.

On average, the amount of information transferred by interactions in delta phase or
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Figure 5.4: Average information transfer between hippocampal area CA1 and subiculum (Sub)
by the phase of delta (A, C and E) and theta rhythms (B, D and F). Each row (A-B, C-D and E-F)
shows the averages across all pairs of electrodes in a different mouse (corresponding to the mice
in Figure 5.2). Shadow shows the SEM.

theta phase (Figure 5.4) was almost double than the information transferred by the

instantaneous voltage of the bandpass-filtered LFP (Figure 5.3). In contrast, delta

amplitude and theta amplitude interactions (Figure 5.5) conveyed either similar or less

amount of information than the instantaneous voltage (Figure 5.3).

5.4.4 Information transfer by linear correlations in LFP

We further investigated how much information can be conveyed only by linear inter-

actions in the LFP signals. To achieve this, we created surrogates from the pairs of

LFP signals that preserved the linear cross-correlations in the signals but removed all

non-linear interactions. TE analysis revealed that the surrogate signals conveyed almost

the same amount of information as the LFP signals (Figures 5.6, 5.3 and 5.7). This result

suggests that linear correlations in the LFP signals are sufficient to transmit information

between neural networks.
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Figure 5.5: Average information transfer between hippocampal area CA1 and subiculum (Sub)
by the amplitude of delta (A, C and E) and theta rhythms (B, D and F). Each row (A-B, C-D and
E-F) shows the averages across all pairs of electrodes in a different mouse (corresponding to the
mice in Figure 5.2). Shadow shows the SEM.

5.4.5 Population analysis of information transfer

As already mentioned, information transfer between different pairs of electrodes in area

CA1 and subiculum varied considerably across animals. Since the TE across time had

an oscillatory pattern, averaging across animals by parametric statistics (computing the

mean and standard deviation or standard error of mean) would not be an appropriate

method to represent these results. Instead, the data from all pairs were pooled and

non-parametric statistics were used to represent the important aspects of the results.

For each rhythm and each pair of electrodes, we identified the time delay at which

information transfer was maximal for each direction and the associated maximal infor-

mation transferred. These quantities are summarised in box plots shown in Figures 5.7

and 5.8. The distributions of maximal information transferred in either direction (area

CA1 to subiculum or subiculum to area CA1) by each of the four components of the LFP

rhythm signals (instantaneous voltage, phase, amplitude and linear component) were

compared to determine statistically significant differences.
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Figure 5.6: Average information transfer between hippocampal area CA1 and subiculum (Sub)
by linear correlations in delta (A, C and E) and theta rhythms (B, D and F). Each row (A-B, C-D
and E-F) shows the averages across all pairs of electrodes in a different mouse (corresponding to
the mice in Figure 5.2). Shadow shows the SEM.

Delta rhythms conveyed significantly more information in both directions than their

linear component (Figure 5.7A and D). Delta phase transferred significantly more infor-

mation than all other signal components; and delta amplitude transferred significantly

less information (Figure 5.7A-D). The information transferred by phase or amplitude was

equally bidirectional; whereas information transfer by the delta rhythm and its linear

component was greater in one direction than the other (Kruskal-Wallis test: χ2 = 1858,

d f = 6143, p = 0, followed by Tukey-Kramer multiple comparisons test of the averaged

group ranks to identify the distributions with different medians). The information trans-

ferred by theta rhythms, linear component and amplitude were significantly different

for either direction and all other signal components; whereas the information conveyed

by phase was not different between the two directions (Figure 5.7E-H, Kruskal-Wallis

test: χ2 = 3042, d f = 6143, p = 0, Tukey-Kramer multiple comparisons test of the

averaged group ranks).

On average, the time lags at which these maximal transfer entropies occurred in either

direction were significantly different for the delta rhythm, phase and linear component,
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Figure 5.7: Population statistics of the maximum information transfer between area CA1 and
subiculum by delta (A-D) and theta rhythms (E-H) of seven mice. Red horizontal bar: median;
upper and lower borders of the box: 25th and 75th percentiles; dashed lines: maximum and
minimum values.

Figure 5.8: Population statistics of the time lags of maximal information transfer between area
CA1 and subiculum by delta (A-D) and theta rhythms (E-H) of seven mice. Red horizontal bar:
median; upper and lower borders of the box: 25th and 75th percentiles; dashed lines: maximum
and minimum values.

but not amplitude (Figure 5.8A-D, Kruskal-Wallis test: χ2 = 510, d f = 6143, p ≈ 0,

Tukey-Kramer multiple comparisons test of the averaged group ranks). For the theta

rhythm and linear component, the median time lags were not statistically different

in either direction or between the two signal components. For the other two signal

components (phase and amplitude) the time lags were not different in either direction,
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but were different between them and the first two components (Figure 5.8E-H, Kruskal-

Wallis test: χ2 = 910, d f = 6143, p ≈ 0, Tukey-Kramer multiple comparisons test of the

averaged group ranks).

This analysis suggests that on average different components of delta rhythms (e.g. phase,

amplitude, linear component) convey information between area CA1 and subiculum

in both directions with different time delays. An application of this methodology for

quantifying information transfer in the study of neurological disease is also presented

in the Supplementary Material.

5.5 Discussion

We investigated how LFP interactions can transfer information between hippocampal

area CA1 and the subiculum of anaesthetised mice. We show that interactions of delta

or theta rhythms in these regions can transmit information bidirectionally with a time

delay between the two directions: from area CA1 to subiculum and vice versa. This

agrees with the anatomical connections between area CA1 and the subiculum which

comprise both direct and indirect projections (O’Mara et al., 2001; Gigg, 2006). The

directionality in the information flow extends the idea of coherence/synchronisation for

communicating information (Fries, 2005; Womelsdorf et al., 2007) by adding the notion

of effective connectivity, that is a causal relationship between the activities (Friston,

1994, 2011). According to this idea, activity in area CA1 could drive activity in subiculum

to transmit information and vice versa. However, this does not exclude the possibility

of another region, e.g. the entorhinal cortex, driving both regions with a different time

delay.

We further show that phase-phase interactions can transmit most of the information;

whereas amplitude-amplitude interactions can transmit less than half the amount

transmitted by phase-phase interactions. Indeed, studies in monkeys have shown

quantitatively that LFP phase can convey information about sensory stimuli not present

in spike firing alone (Montemurro et al., 2008; Kayser et al., 2009). Moreover, we show

that linear correlations in delta and theta rhythms transmit most of the information

conveyed by LFP interactions. This is consistent with the findings of studies that use

linear methods, such as Granger causality and Granger causality inferences, to quantify

LFP interactions (e.g. Cadotte et al. (2010) and Bosman et al. (2012), respectively).

The frequency ranges of the two rhythms we identified under anaesthesia were consis-

tent with other studies in mice under similar experimental conditions (Pagliardini et al.,
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2013a,b). The lower band corresponded to delta rhythms (or slow oscillations) which

are common under anaesthesia (Sharma et al., 2010). The higher band corresponded

to atropine-resistant theta (Kramis et al., 1975). Urethane, which is a long-acting (8-10

hours) anaesthetic routinely used in rodent studies, preserves REM-like and non-REM-

like states in rats (Wolansky et al., 2006; Clement et al., 2008) and mice (Pagliardini et al.,

2013a,b). Thus, similar patterns of information transfer might be mediated by delta

and theta rhythm interactions during naturalistic sleep. However, further research with

non-anaesthetised animals is required to address this.

Routing of information by LFP rhythms has been reported in awake rodents. More

specifically, coherence of sub-bands of gamma rhythms (slow and fast) were found to

couple areas CA3 and CA1 or medial entorhinal cortex and CA1, respectively, allowing

segregate information flow (Colgin et al., 2009). Moreover, slow and fast gamma rhythms

were locked to different theta phases in area CA1 (Colgin et al., 2009) supporting model

predictions of these interactions as a mechanism to segregate information for memory

encoding and memory retrieval (Hasselmo et al., 2002). In addition, information transfer

by gamma rhythm interactions has been described in the monkey primary visual cortex

(Besserve et al., 2010, 2015).

To conclude, our results provide evidence for a mechanism by which LFP rhythms

mediate dynamic effective connectivity to route information at millisecond timescales

along anatomically fixed connections. Delta and theta rhythms can act as two separate

channels by which segregate information can be routed bidirectinally between the

hippocampus and the subiculum in parallel.

5.6 Supplementary Material

5.6.1 Supplementary Background

In this supplementary section, we applied the same methodology used in the main

paper in the context of investigating information transfer in a neurological disease

affecting the hippocampal formation. More specifically, we quantified information

transfer by LFP at early stages of Alzheimer’s disease-like pathology in the 3xTg-AD

mouse model and compare this to the information transfer in the healthy controls

presented in the main paper.

Alzheimer’s disease (AD), which is the most common form of dementia, is a neurode-

generative disease with increased prevalence among the aging population and is char-
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acterised by cognitive and memory impairments (reviewed in Querfurth and LaFerla

(2010); Ittner and Gotz (2011)). The pathology of AD involves the formation ofβ -amyloid

plaques and neurofibrillary tangles of hyperphosphorylated protein tau and synaptic

and neuronal loss in the hippocampal formation (Braak and Braak, 1991; West et al.,

1994).

The study of AD pathology and cognitive deficits is facilitated by the availability of

rodent models expressing mutations linked to AD pathology (reviewed in Hall and

Roberson (2012)). A useful model, resembling both the β -amyloid and tangle pathology

of AD is the 3xTg-AD mouse. The 3xTg-AD mouse model co-expresses three mutations:

PS1M 146V , APPSw e , and tauP301L. The first two are involved in the pathways producing

β-amyloid plaques and the latter in forming neurofibrillary tangles (Oddo et al., 2003).

5.6.2 Supplementary Results

We investigated whether early stages of Alzheimer’s disease-like pathology in mice

can affect information transfer by LFP rhythms between the hippocampus and the

subiculum. We analysed LFP recordings from equidistant electrodes spanning 500

µm along the depth of hippocampal area CA1 and subiculum of seven 3-month-old

3xTg-AD mice and seven age-matched control mice. The LFP recordings were from

either one electrode shank or two parallel ones placed 500 µm apart in area CA1 and

subiculum of each mouse.

5.6.2.1 Spectral content of LFP in young 3xTg-AD and control mice

The spectral content of LFP recorded from the hippocampal formation of 3xTg-AD

mice appeared similar to the LFP spectra observed for the control mice (described in

Methods section 5.4.1). Two examples from either phenotype are displayed in Figure

5.9. Therefore, all analyses of information transfer in 3xTg-AD mice were performed for

the same frequency bands as for the control mice, that is 0.5-2 Hz for delta and 2.5-4.5

Hz for theta.

5.6.2.2 Information transfer in CA1-subicular circuit of young 3xTg-AD and control mice

We quantified information transfer from hippocampal area CA1 to subiculum and vice

versa from each pair of electrodes in the corresponding regions in the 3xTg-AD mice.

In the example shown in Figure 5.10, the average information flow by delta rhythms

from area CA1 to subiculum and vice versa appears similar among the two phenotype

(Figure 5.10A and B). In the case of theta rhythms, average information flow appears
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Figure 5.9: Examples of spectrograms of spontaneous LFP recorded by an electrode in the
subiculum of two young 3xTg-AD mice (A and C) and two age-matched control mice (B and D)
under anaesthesia. Color scale in (mV2/Hz)0.25. Warmer colors indicate higher power spectral
density (PSD).

to be greater towards the subiculum than towards area CA1 in the example transgenic

mouse (Figure 5.10C) but the reverse pattern is observed in the example control mouse

(Figure 5.10D). Moreover, transfer entropy oscillated across time lag in both phenotypes.

Notably, the delay at which information by theta rhythms peaked in the transgenic

example differed by ∼400 ms (Figure 5.10C), whereas in the control example the peaks

lagged by a few milliseconds (Figure 5.10D). Similarly to the controls, the information

transfer between area CA1 and subiculum varied across 3xTg-AD mice.

5.6.3 Population analysis of information transfer

In addition to computing TE for the delta-filtered and theta-filtered LFP, we also com-

puted TE for the phase, amplitude and linear component of these rhythms. To gain an

insight into how the results for all animals compare, scatter plots were plotted. For each

rhythm and each pair of electrode, the maximal transfer entropy and the time delay at

which it corresponded was plotted as a point in the scatter plot (Figure 5.11). The two

directions of TE for each phenotype are marked with different colours. The patterns of

information transfer in the CA1-subicular circuit of young 3xTg-AD and control mice

appeared very similar as indicated by the overlap of data points in the scatter plots

(Figure 5.11). Notably, an oscillatory pattern (suggested by gaps across time lag) was

evident in the plots.
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Figure 5.10: Average information transfer between hippocampal area CA1 and subiculum (Sub)
by delta-filtered (A and B) and theta-filtered LFP (C and D). Averages across all pairs of electrodes
in a control (A and C) and 3xTg-AD mouse (B and D). Shadow shows the SEM.

Figure 5.11: Scatter plots of maximum transfer entropy versus time lag at which transfer entropy
reached this maximal value for control and 3xTg-AD mice (seven mice for each phenotype). The
transfer entropy of each pair of electrodes is marked by a symbol (+ or x) and colour-coded for
each phenotype according to the legend in the middle of the figure. Each cross (+) indicates
the maximal transfer entropy from an LFP recorded from an electrode in area CA1 to another
LFP recorded from an electrode in the subiculum. Each chi (x) indicates the maximal transfer
entropy from the subiculum to area CA1 for a pair of electrodes. Transfer entropy conveyed by
the LFP (A and E), phase (B and F), amplitude (C and G) and linear components (D and H) of
delta (A-D) and theta rhythms (E-H).

Population analysis was carried out as in the main text, to determine whether there

were differences in the distributions of maximal TE (Figure 5.12) or time lags (Figure
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Figure 5.12: Population statistics of the maximum information transfer between area CA1 and
subiculum by delta (A-D) and theta rhythms (E-H). Red horizontal bar: median; upper and lower
borders of the box: 25th and 75th percentiles; thin lines: maximum and minimum values; Ctrl:
control mice; AD: 3xTg-AD mice; 1: CA1->subiculum; 2: subiculum->CA1. Seven mice for each
phenotype.

Figure 5.13: Population statistics of the time lags of maximal information transfer between area
CA1 and subiculum by delta (A-D) and theta rhythms (E-H). Red horizontal bar: median; upper
and lower borders of the box: 25th and 75th percentiles; thin lines: maximum and minimum
values; Ctrl: control mice; AD: 3xTg-AD mice; 1: CA1->subiculum; 2: subiculum->CA1. Seven
mice for each phenotype.

5.13) across direction or phenotypes. The observed differences in the medians of

the distributions of maximal transfer entropy across directions and phenotypes were

statistically significant for the delta-filtered (Figure 5.12A-D, Kruskal-Wallis test: χ2 =
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3807, d f = 12479, p = 0, Tukey-Kramer multiple comparisons test of the averaged

group ranks) and theta-filtered LFP (Figure 5.12E-H, Kruskal-Wallis test: χ2 = 5701,

d f = 12479, p = 0, Tukey-Kramer multiple comparisons test of the averaged group

ranks). Similarly, the observed differences in the medians of the distributions of time

lags were statistically significant for the delta-filtered (Figure 5.13A-D, Kruskal-Wallis

test: χ2 = 1281, d f = 12479, p ≈ 0, Tukey-Kramer multiple comparisons test of the

averaged group ranks) and theta-filtered LFP (Figure 5.13E-H, Kruskal-Wallis test: χ2 =
2172, d f = 12479, p 0, Tukey-Kramer multiple comparisons test of the averaged group

ranks). These results suggest that information flow within the CA1-subicular circuit was

bidirectional but the amount of information transferred in each direction by different

types of signals (instantaneous voltage, phase, amplitude, linear component) varied

across direction and phenotype.
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Discussion

This PhD project aimed to unravel how brain rhythms can be encoded in spike trains, as

well as to quantify how interactions of brain rhythms can transmit information between

neural networks. The first two papers addressed the first question and the last paper the

second one. The outcome of each is discussed in the Discussion section of the papers. In

this section, the contribution of each outcome and how it relates to current knowledge

in the field is discussed. Moreover, additional explanations and interpretations of the

results, not already covered in the text of the papers, are included here. A final summary

and outlook is presented in the conclusions followed by future directions arising from

the outcomes of the project.

6.1 Bursting neurons lock their firing to the phase of dominant LFP

rhythms

In Paper 1, the model predicted that bursting neurons lock their firing to the phase of

dominant rhythms irrespective of the specific frequency of this LFP-like rhythm. This

prediction was confirmed by the analysis of in-vivo recordings in the rat subiculum

showing that bursting neuron activity was phase-locked to dominant delta or theta

rhythms. Moreover, the model and subicular bursting neurons fired bursts of increasing

spike count that locked to more advance phase of the dominant rhythms in the input

signals or dominant delta rhythms under anaesthesia, respectively. These results pro-

vided evidence for a neural code in which the firing rate and burst size can encode LFP

phase. This motivated the quantitative analysis in Paper 2.

In the subiculum, bursting neurons are distributed unevenly along the proximodistal

axis so that bursting neurons are more common in the distal portion whereas regular

spiking neurons are more common in the proximal portion (Staff et al., 2000; Jarsky

et al., 2008). Moreover, bursting neurons and regular spiking neurons appear to project

to distinct target areas (Kim and Spruston, 2012) suggesting that they process separate

information. Although in our studies we did not specifically investigate the distribution
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of regular spiking and bursting cells in the span of subiculum, we observed more

bursting cells in the distal than proximal portion which agrees with the literature. The

uneven distribution of the two cell types suggests that other mechanisms, such as spike

rate, spike time and sparse codes (explained in the Introduction section 1.2), might be

employed by non-bursting neurons and also co-exist with a burst code.

6.2 Bursting neurons encode LFP features in firing rate and spike

count

In Paper 2, we showed that bursting neurons in the rat subiculum and MEC encode LFP

features both in their firing rate and intra-burst spike counts. Similar burst codes have

also been identified in sensory systems. Experimental evidence suggests that primary

visual cortical neurons encode the orientation of visual stimuli in burst rate and size

in anaesthetised cats (DeBusk et al., 1997) and burst size in awake monkeys (Martinez-

Conde et al., 2002). Burst coding has also been identified in the non-mammalian

brain. For instance, sensory neurons in the leech encode tactile stimulus variance in

burst rate and size (Arganda et al., 2007). Moreover, grasshopper auditory receptor

neurons encode the intensity of acoustic stimuli in burst spike counts (Eyherabide et al.,

2008, 2009). Therefore, bursting is an important part of the neural code for stimulus

representation.

Our study differs in that bursting neurons in the hippocampal formation do not receive

direct stimulation from the external environment. Instead, subicular and entorhinal

bursting neurons can encode information about the ongoing LFPs in the surrounding

milieu. This finding is important because the LFP mainly reflects the synaptic activity of

pyramidal cells and contains information about subthreshold and integrative processes

in the local network (Logothetis, 2003; Buzsaki et al., 2012; Einevoll et al., 2013). There-

fore, although the LFP does not directly cause spiking, it reflects the activity (synaptic

input) that ultimately causes the spiking. One might say that the information we com-

puted reflects the contribution of local spikes to the LFP. However, the contribution of

spiking activity in the LFP is at higher frequencies (>100 Hz) (Schomburg et al., 2012;

Scheffer-Teixeira et al., 2013) than the delta and theta rhythms investigated in our study.

The results obtained with the simulations support the idea that the LFP rhythms we

investigated are not a consequence of spiking activity because by construction in the

model we can be sure that the bursting output is the consequence (and not the cause)

of the LFP features. To conclude, our results extend the role of bursting from merely

sensory encoding to the ability of encoding neural network activity in the mammalian

brain.
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Furthermore, apart from an encoding role, bursting can affect behavioural responses.

This is the case in the auditory system of crickets where the timing of bursts encodes fea-

tures of the ultrasound stimulus and burst size is associated with the avoidance response

of the cricket (Marsat and Pollack, 2010). This provides evidence that a burst code is

read by postsynaptic neurons in order to mediate a behavioural response. Whether

something similar applies for the burst code in the mammalian brain is still to be

investigated.

The number of spikes in bursts is not the only factor that adjusts burst size. The

interspike interval (ISI) also changes the length of the burst. Some studies have shown

that the ISI of bursts is also important in information encoding. For example, in the

weakly electric fish, an interval code has been proposed in which the burst ISI encodes

stimulus intensity (Oswald et al., 2007). In addition, in the cricket auditory system,

bursts might encode stimuli in both the burst ISI and spike count (Marsat and Pollack,

2010). In our studies we focused on the number of spikes in the burst. Further studies

should also determine the role of burst ISI in LFP feature encoding.

The burst code we present in this thesis does not exclude other mechanisms of LFP

encoding. Another mechanism to transmit information about the phase of oscillatory

signals, such as LFP rhythms, has been proposed by a theoretical study (Masquelier

et al., 2009). According to this study, the phase-of-firing code (Montemurro et al.,

2008) can be decoded by spike-timing dependent plasticity which occurs when the

postsynaptic neurons detect spikes arriving repeatedly over some time interval, that

is at a specific phase of an oscillation (Masquelier et al., 2009). This mechanism might

appear contradicting to a burst code, however, the burst code does not exclude any

other possible codes to transmit LFP information. Both mechanisms can coexist or

used by different types of neurons. Further research is required to clarify this.

Bursting cells have also been recorded in the hippocampal formation of monkeys

(Skaggs et al., 2007). The presence of bursting neurons in the primate hippocampus

suggests that our finding of a burst code is not only relevant to rodent research but

might also be applicable in the primate brain. Whether this code is also used by bursting

neurons in the primate and more specifically in the human hippocampal formation to

transmit information about LFP still needs to be investigated in future studies.
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6.3 Interpretation of information encoded by burst code

The capacity of a communication channel (or code) is the maximum rate at which it

can transmit an input X and retrieve the information at the output Y . This capacity C is

defined as the maximum mutual information between X and Y , that is C =max I (X ; Y )
(Shannon, 1948). Similarly, we assume that the capacity of the burst codes investigated

equals the estimated information values C =max I (X ;N ), where X denotes the set of

LFP features and N the set of responses of bursting neurons as defined for each burst

code in Paper 2. However, this does not necessarily mean that downstream neurons

actually obtain this maximal information since decoding could not be investigated by

the datasets used. This is because in our datasets there were no recordings from the

downstream neurons where bursting neurons project. The decoding of the information

of the three burst codes could be a topic for future studies.

The average information values calculated for the full burst code in the subiculum

and MEC were in the range of 0.1 to 0.3 bits/burst. This means that on average an n-

spike burst can convey 0.1 to 0.3 bits of information about the LFP, that is discriminate

between 20.1 = 1.07 to 20.3 = 1.23 LFP features. However, not all bursts convey equal

amount of information. In general, rare symbols in a code can contain more information

than common ones, as explained in section 2.5.1. Similarly for the burst code, according

to the average burst distributions (Fig. 4.2) and Eq. 2.11, the entropy of subicular bursts

is h(n = 1) = 0.41±0.33 bits, h(n = 2) = 2.59±1.05 bits and h(n = 3) = 6.56±1.94 bits;

and the entropy of entorhinal bursts is h(n = 1) = 0.12±0.06 bits, h(n = 2) = 4.02±0.88

bits and h(n = 3) = 7.37±1.12 bits. This implies that bursting neurons have the capacity

to fire two-spike (n = 2) or larger (n = 3) bursts to encode salient feature values of the

LFP.

Moreover, ensembles of hippocampal neurons usually fire together or in a sequence to

encode information such as memories and space (Harris, 2005). We showed that most of

the information is encoded in the firing rate of bursting neurons and, for some neurons,

about 10-15% in the burst spike count. Therefore, assuming little redundancy in the

burst code, a downstream neuron receiving input from a group of bursting neurons

can observe the burst rate and size of its input and obtain enough information to

discriminate between different LFP features. For instance, as few as three bursting

neurons each encoding an average of 0.1 bits/burst about the LFP phase in their firing

rate can encode four distinct phase ranges by each neuron increasing their firing rate

only at a preferred phase range which is different from the other two neurons.

The information values reported in Paper 2 probably underestimate the information
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capacity of the burst code. This is because the shape of the spikes within bursts changes

along the burst (Kandel and Spencer, 1961; Ranck, 1973) and thus the shapes of subse-

quent spikes within bursts become too small or different to be clustered together with

the first few spikes during spike sorting (Harris et al., 2000). Therefore, larger bursts

might have been missed or split in two events. Considering bursts with three or more

spikes as the same symbol for the burst code accounts for this spike sorting limitation

since, even when a neuron fires a larger than three-spike burst but the last spikes are not

captured, this burst is still included in the ‘larger bursts’ symbol even if not specifically

identified.

6.4 Information transfer by LFP in the hippocampal formation

In Paper 3, we showed that interactions among delta or theta rhythms can exchange

information bidirectionally between hippocampal area CA1 and subiculum. The infor-

mation transferred along the two directions is not always equal. Moreover, there is a

time lag between the peaks of information transfer from area CA1 to subiculum and

vice versa. Area CA1 sends direct input to subiculum which, in turn, sends reciprocal

input to area CA1 via indirect projections (O’Mara et al., 2001; Gigg, 2006). Based on

this anatomical connectivity, the time lags might correspond to the delays between the

feedforward and feedback projections.

Our finding that the phase of the rhythms transferred significantly more information

(approximately double) than the amplitude is consistent with the large number of

studies that emphasise the importance of LFP phase for cognitive processing such as

forming memory representations (overviewed in the Introduction sections 1.3.2 and

1.4.4). Moreover, the finding that linear correlations in the LFP rhythms conveyed most

of the information justifies the use of linear methods for analysing electrophysiological

recordings (reviewed in Pereda et al. (2005)). However, the fact that the information

transfer by LFP rhythms was slightly (∼ 2-3 bits/s) but significantly higher than the infor-

mation transfer by only the linear component in the rhythms implies that there is also a

non-linear component involved in the LFP interactions. This non-linear component

still needs to be investigated.

Our results suggest that delta and theta rhythms can route information independently

from each other. This is similar to the mechanism of distinct gamma sub-band in-

teractions for separate information flow in the hippocampal formation (Colgin et al.,

2009) introduced in section 1.4.4.3. The slow frequencies that were prominent in the

LFP within the hippocampal formation of anaesthetised mice might have a role in
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processing separate information. More specifically, our results provide evidence for a

mechanism by which delta and theta rhythms can act as two separate channels for the

transmission of information between area CA1 and the subiculum.

Furthermore, we applied the transfer entropy measure to study neurological disease

(Supplementary Material of Paper 3). Comparing information transfer within the CA1-

subicular circuit of young 3xTg-AD mice and age-matched control mice identified

both similarities and differences between the two phenotypes. Our results suggest that

quantifying information transfer mediated by LFP interactions can provide an insight

about the effects of neuropathology on the brain.

6.5 Conclusions

The outcomes of this project propose a mechanism by which information about local

network activity (reflected in the LFP) can be transmitted in the form of spike patterns

(as bursts of variable size and rate). First, we determined that bursting neuron output

locks to the phase of dominant rhythms in the LFP. Subsequently, we quantified the

capacity of burst rate and burst size to encode LFP features to show that a combination

of both can be used in the burst code. This burst code allows distant downstream

neurons to obtain information about the upstream network activity.

The second outcome provides insight into the LFP interactions that can mediate ef-

fective connectivity in the hippocampal formation. We showed that delta and theta

rhythms can act as two separate channels to route information bidirectionally between

two anatomically connected networks (area CA1 and subiculum). Moreover, we showed

that linear components in the rhythms conveyed most of the information transmitted

by the rhythms. In addition, our results suggest that phase interactions in the LFP

transfer more information than amplitude. Finally, we showed that this method can

also be applied in the study of neurological diseases, such as Alzheimer’s disease, to

identify potential impairments in information transfer as measured by LFP interactions.

6.6 Future Work

6.6.1 Further investigate the burst code

As already mentioned in section 6.2, there is still more to explore about burst coding.

After determining the encoding capacity of bursting neurons to convey information
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about LFP, it becomes natural to ask whether downstream neurons actually decode this

information and how this affects their responses. Therefore, a next step is to record from

both bursting neurons in the hippocampal formation and their downstream neurons.

This will allow to determine how the output of bursting neurons affects the postsynaptic

neurons and whether the latter can decode the information about LFP features.

Moreover, how this burst code affects the behaviour of animals, such as task perfor-

mance, stills need to be investigated. For instance, since the burst code we described

in the hippocampal formation was identified in the subicular and entorhinal regions

encoding space, a follow-up study could investigate the relationship between LFP

encoding by the burst code and the performance in a spatial task.

Other mechanisms might also be employed by neurons to transmit LFP information. For

example, the possibility of an interval code by bursting neurons could be investigated

next. In addition, the combination of other mechanisms with the burst rate and burst

size codes needs to be explored in subsequent studies. For instance, how a burst

code compares with the spike-timing dependent plasticity theory for transmitting LFP

information still needs to be determined. Moreover, the potential of non-bursting

neurons to use a combination of spike rate, spike time and sparse codes to encode LFP

features could also be explored.

LFP are constantly present throughout the brain and also bursting neurons are prevalent

in a number of brain systems, as discussed in the Introduction of the thesis. During

this project, burst coding was investigated in the rat hippocampal formation. A next

aim would be to determine whether burst coding of LFP is also possible in other brain

regions, such as cortex and thalamus, where bursting neurons are common. This need

not be restricted to rodents, but could also be investigated in other mammals including

primates.

The most interesting question is whether this neural code is also employed in the human

brain. This would require intracranial recordings from humans. This type of recordings

are only possible -and ethical- when they are obtained for medical reasons, such as

from epileptic patients before surgery. Thus, to answer this question, meta-analyses

of simultaneous LFP and spike train recordings from human patients could determine

whether bursting can encode features of LFP rhythms in the human brain.
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6.6.2 Further investigate information transfer by LFP

In this thesis, information transfer was quantified as transfer entropy (TE) in units

of bits/s. This quantity does not mean that there is a constant flow of information

of a specific number of bits in every second, rather it standardises the measure of

information transfer as explained at the end of section 2.6.2. An alternative way of

reporting the information transfer values would be to use a normalisation method as

in Gourevitch and Eggermont (2007); Besserve et al. (2010). The normalised transfer

entropy (NTE) quantifies the fraction of information about a signal X that can be

obtained by observing the past of another signal Y but not its own past. Following the

notation introduced in sections 2.6.2 and 2.7.3, NTE can be obtained by:

N T E (Y →X ) =
Tc (Y →X )
H (X t+τ|X t )

(6.1)

NTE can take values from 0 to 1; where NTE = 0 when there is no dependence between

the past of Y and the present of X , and NTE approaches 1 as the dependence of the

present of X on the past of Y increases. Using NTE has the advantage of presenting

information transfer from signal Y to signal X independently of the dependence of X

on its own past (Gourevitch and Eggermont, 2007; Besserve et al., 2010). Therefore, the

next step would be to present the information transfer results of Paper 3 using the NTE

measure.

Information transfer by LFP can be further investigated in future studies. For exam-

ple, the results obtained from the transfer entropy analysis can be compared to other

methods such as the cross-correlation of the instantaneous amplitudes which is a linear,

model-independent method to estimate the direction of functional connectivity and

lag between LFP in different networks (Adhikari et al., 2010). This method has already

been used in other studies to measure the directionality of functional connectivity

between the hippocampus and prefrontal cortex (Adhikari et al., 2010; Place et al., 2016).

Moreover, a next step will be to quantify the information conveyed by the non-linear

component in the LFP rhythms and also try to identify the nature of the non-linearity.

In future studies, the scope could be extended to link information transfer with task

performance. This can be achieved by analysing LFP from awake behaving animals. It

is interesting to determine the interactions of which rhythms in a given brain region

mediate different cognitive functions. The experimental design could be chosen to test

specific aspects of cognitive functioning, such as spatial navigation versus a non-spatial

task, e.g. novel object recognition (Antunes and Biala, 2012).

In non-anaesthetised animals, LFP activity is more complex than under anaesthesia.
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This is because the animal responds dynamically to external stimuli during wakeful-

ness or consolidates memories during sleep. The composition of LFP is also more

interesting because, for example in the hippocampus, it can contain gamma rhythms

and sharp-wave ripples, which were not observed in our recordings under urethane

anaesthesia. Therefore, analysing data from non-anaesthetised animals would allow

the quantification of information transfer by the interplay of slower (delta or theta) with

faster rhythms (ripples or gamma). These interactions could be identified by measures

such as the cross-frequency coupling modulation index (Tort et al., 2010).

The effects of neurological diseases on information transfer by LFP interactions can be

investigated for any type of disease, such as epilepsy, schizophrenia and Parkinson’s

disease, using animal models. The example of studying early Alzheimer’s disease effects

presented in this project can also be extended by analysing LFP recordings from the

hippocampal formation at more advanced stages of the disease to determine how

disease progression affects information transfer.

Information transfer can also be investigated in humans. Similar techniques as the ones

used in this study can be applied to the analysis of EEG, MEG and fMRI data obtained

from humans. Indeed, toolboxes have already been developed for this purpose. These

include the Information Breakdown ToolBox (Magri et al., 2009) and the TRENTOOL

(Lindner et al., 2011). Therefore, the final goal would be to understand how brain

rhythm interactions mediate effective connectivity for cognitive processing in humans.

This would be instrumental for the development of tools for the early diagnosis of

neurological diseases.
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