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ABSTRACT OF THESIS 

 

THE UNIVERSITY OF MANCHESTER 

LESLEY-ANNE CARTER 
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RIGOROUS METHODS FOR THE ANALYSIS, REPORTING AND EVALUATION OF ESM STYLE DATA 

2016 

Experience sampling methodology (ESM) is a real-time data capture method that 
can be used to monitor symptoms and behaviours as they occur during everyday 
life. With measures completed multiple times a day, over several days, this 
intensive longitudinal data collection method results in multilevel data with 
observations nested within days, nested within subjects.  

The aim of this thesis was to investigate the optimal use of multilevel models for 
ESM in the design, reporting and analysis of ESM data, and apply these models to a 
study in people with psychosis. 

A methodological systematic review was conducted to identify design, analysis and 
statistical reporting practices in current ESM studies. Seventy four studies from 
2012 were reviewed, and together with the analysis of a motivating example, four 
significant areas of interest were identified: power and sample size, missing data, 
momentary variation and predicting momentary change. Appropriate multilevel 
methods were sought for each of these areas, and were evaluated in the three-level 
context of ESM. 

Missing data was found to be both underreported and rarely considered when 
choosing analysis methods in practice. This work has introduced a more detailed 
understanding of nonresponse in ESM studies and has discussed appropriate 
statistical methods in the presence of missing data.  

This thesis has extended two-level statistical methodology for data analysis to 
accommodate the three-level structure of ESM. Novel applications of time trends 
have been developed, were time can be measured at two separate levels. The 
suitability of predicting momentary change in ESM data has been questioned; it is 
argued that the first-difference and joint modelling methods that are claimed in the 
literature to remove bias possibly induce more in this context.  

Finally, Monte Carlo simulations were shown to be a flexible option for estimating 
empirical power under varying sample sizes at levels 3, 2 and 1, with 
recommendations made for conservative power estimates when a priori parameter 
estimates are unknown.  

In summary, this work demonstrates how multilevel models can be used to 
examine the rich data structure of ESM and fully utilize the variation in measures 
captured at all levels.  
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1 INTRODUCTION AND MOTIVATION FOR RESEARCH 

This thesis will pursue statistical methods for the design and analysis of intensive 

longitudinal data, with specific applications to experience sampling methodology. This 

chapter will introduce experience sampling methodology, describing how and why it is 

used, and the resulting data structure. The aim and specific objectives of the thesis will 

then be defined. 

1.1 EXPERIENCE SAMPLING METHODOLOGY  

Experience sampling methodology (ESM) (Larson R and Csikszentmihalyi 1983; Delespaul 

1995), also known Ecological Momentary Assessment (EMA) (Stone and Shiffman 1994; 

Shiffman, Stone et al. 2008), is a specialist diary based questionnaire used to gather 

momentary data from participants during their everyday life. ESM has been used to study 

symptoms, behaviours and attitudes in a range of settings including studies into psychosis, 

eating disorders, craving and addiction as well as research into quality of life and social 

relationships. In contrast to traditional questionnaires and clinical interviews delivered at 

the start and end of the study period, ESM is a self-reported assessment that is completed 

during participant’s everyday life, continuously capturing symptoms and thoughts in real 

time.  

One of the main disciplines conducting research using ESM is psychology and as will be 

discussed in Chapter 3, a broad range of topics within psychology are investigated using 

ESM. Although not the only field utilising this methodology, for continuity, psychology and 

mental health research will be the empirical area motivating this thesis.  

A typical ESM questionnaire contains a collection of items designed to gather momentary 

information using short, unambiguous questions such as “Right now I feel cheerful”, “Right 

now I see phenomena”. Here, ‘momentary’ refers to participants rating their experience at 

the current time, capturing the variable cognitive state rather than the more stable trait 

(Larson R and Csikszentmihalyi 1983; Delespaul 1995; Csikszentmihalyi 2014) . Responses 

are given on both numerical scales and as open ended questions. Numerical scales include 

visual analogue scales where the participant marks a score on a continuous line 

representing a score of 1 – 100, and Likert scales which allow the participant to grade their 

answer using distinct categories, for example a 1 – 7 scale representing categories from 

“Not at all” to “Very much”. Open ended questions can be used for items regarding current 

location or for recording present company. In the initial briefing session, participants are 



15 
 

usually given a copy of the questionnaire which is completed with the researcher present 

to ensure the scales and questions are clear. Items are intended to capture the moment to 

moment variation in thoughts and symptoms and thus are designed in a way that 

simultaneously encourages variation in scores and limits ceiling and floor effects.  

In contrast to other longitudinal methods, ESM is often employed to study short term 

variation and as such diaries are completed multiple times a day over several days or 

weeks. Though there is no fixed schedule attached to ESM, 10 diaries a day over a six day 

period is often cited with reference to Delespaul (1995) and the Maastricht University ESM 

research group. The justification for this figure is that 10 measurements a day should 

provide sufficient detail to study within-day variation and one week is considered long 

enough to capture the range of symptom and mood activity. Although this sampling 

routine is adopted by the Maastricht group and those looking to them for procedural 

guidance, there has been no published statistical justification behind this procedure. In the 

ESM literature the number of measurements varies depending on study design, from one 

moment a day (often referred to as daily diary studies rather than ESM studies) to several 

weeks of observation.  

The sampling procedure for ESM studies can be partitioned into two main categories: signal 

contingent designs, where subjects are alerted to complete a diary via a programmed 

device, or an event contingent design in which subjects complete a diary following a 

predetermined event (Bolger, Davis et al. 2003). Signal contingent designs can be further 

divided into random or interval designs. Interval contingent designs require a participant to 

complete a diary at predetermined intervals throughout the day after being signalled by a 

programmed watch, PDA or mobile phone. For example, one might be signalled to 

complete a questionnaire at 7am, 11am, 2pm and 7pm each day.  This design is effective 

for covering the desired study period; however, it has the potential for participants to 

become aware of the routine which could affect their mood or behaviour, skewing the 

results of the study. Random designs remove this problem, but may result in intervals 

between measurements that are hugely varied. This could lead to prompts in rapid 

succession which do not represent the full day’s sampling period. Moreover, this is 

potentially very stressful for participants, which may be reflected in their answers to items, 

skewing the results or may result in uncompleted diaries. Conversely, measurements too 

far apart could be demoralizing for participants (Delespaul 1995). A compromise which 

benefits from the positive aspects of both designs is a block random sampling design, also 
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referred to as a pseudo-random design, in which participants are signalled to complete a 

diary at random points within fixed time intervals, allowing the researcher to ensure 

samples are taken across the entire day while reducing any “anticipatory behavioural 

change” (Delespaul 1995) from participants’ expectation of the next moment.  

In event contingent designs participants complete a diary each time a specific event occurs. 

Events might include each time the participant smokes a cigarette in smoking cessation 

studies, uses drugs in addiction studies or overeating events in studies exploring eating 

disorders. Event contingent designs are useful for capturing rarely occurring events that 

might not be observed using a signal contingent design: as items are often phrased “Right 

now I…” to capture behaviours in the current moment, behaviours in the time between 

measurements will not be recorded. Restricting questionnaires to be completed only after 

events, however, could lead to significant missing data: forgetting to complete one or two 

questionnaires when there are 10 a day may not have too great an impact on the findings 

but missing two rarely occurring events could lead to a participant having no data for the 

study period. This could lead to further problems if the reason the diary was not completed 

was linked to the event, to be discussed further in Chapter 4. To counteract this, one can 

use a mixed design with questionnaires completed at events and signalled prompts. This 

will record an event as it occurs but also gather more data pre- and post-event, providing 

the opportunity to record missed events at a later date and to gather contextual 

information in the moments leading up to and away from the event.  

1.1.1 BENEFITS OF METHODOLOGY 

The momentary nature of ESM allows researchers to identify mood, symptoms and 

behaviours as they occur in everyday life. A number of claims are made regarding the 

benefits of using ESM. Firstly, it allows for detailed monitoring of states which can help 

researchers understand conditions in a different way to traditional questionnaires, 

capturing short term variation and real-time reaction to events. Basic descriptive statistics 

can be used to visualize this moment to moment variation, such as simply plotting the 

variable of interest over time. While traditional measures may be used to study change 

over weeks or months, ESM can look at change throughout a day, and daily trends can be 

visualized over weeks. 

It has been argued that ESM, with its momentary collection of data, can be used to 

memory effects (Larson R and Csikszentmihalyi 1983) or recall bias which can be a problem 

in traditional self-report questionnaires: when asked to summarize or average previous 
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experience (or to use autobiographical memory (Bradburn, Rips et al. 1987)) substantial 

bias can be introduced; subject may only recall extremes and so provide overestimates of 

past experience; or where estimates of past experiences are influenced by their current 

state (Stone and Shiffman 1994; Shiffman, Hufford et al. 1997; Shiffman, Stone et al. 2008; 

Solhan, Trull et al. 2009).  

Time varying associations can be also investigated using ESM, identifying patterns that can 

be used to further explore psychological disorders. These associations may be psychological 

or environmental; a person’s current location or situational context may be used to explain 

variation in symptoms. For example, research has been conducted on the relationship 

between drug use and psychosis (Verdoux, Gindre et al. 2003; Henquet, van Os et al. 2010), 

where the temporal effect of drug use on symptoms is investigated, i.e. does drug use 

predict mood change or mood change predict drug use?   

The effect of treatment or interventions can be studied using this methodology. ESM can 

be used to collect data pre and post treatment to allow comparison, such as in smoking 

cessation studies where craving is monitored before and after intervention (Bolt, Piper et 

al. 2012). ESM also has the potential to be used to monitor symptoms during a treatment 

or intervention. For example, it could be used to monitor adverse reactions and side effects 

to cancer or pain medication. Real-time intervention is an emerging field in electronic data 

collection studies such as ESM, the feasibility of which is currently under study. A review of 

the current literature on ESM interventions in  psychiatry has recently been published 

(Myin-Germeys, Klippel et al. 2016) which found that, whilst still in its infancy, this method 

of intervention appears feasible and acceptable in the population with severe mental 

illness, though published results on efficacy are extremely limited.  

Finally, it has been suggested that ESM can also be used to help patients understand their 

condition and could be used to assist medical professionals in giving more personalized 

care, using graphical examples of symptom variation and links to predictors, for example. 

This personalised feedback has been demonstrated to improve patient symptoms in the 

long term (Kramer, Simons et al. 2014), where patients given weekly feedback while using 

ESM were seen to have significantly improved symptoms at six month follow up compared 

to those completing ESM without feedback and to a control group. This form of 

personalised feedback has also been investigated to support of dementia caregivers (van 

Knippenberg, de Vugt et al. 2016), however with less promising results.  
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These suggested benefits all rely on two key points: that the questionnaire captures the 

construct intended and, importantly, that these constructs vary throughout the 

observation period and the measures used are sensitive enough to capture this moment to 

moment variability. Item selection, therefore, is a very important aspect of study design 

and should be carefully considered, though it is beyond the scope of this work. 

1.1.2 ESM AND TECHNOLOGY 

Originally administered via a paper booklet, developments in technology have allowed ESM 

to be delivered on PDAs and smartphones. These methods benefit from being able to time-

stamp questionnaires allowing researchers to know exactly when (and potentially where) 

each questionnaire was completed. One drawback of ESM using paper booklets has been 

the uncertainty over compliance to protocol. ESM successfully captures momentary data if 

the questionnaires are completed as soon as the participant is alerted to complete it, with 

alerts for paper diaries usually administered via an alarm from a wristwatch or beeper. If 

the participant takes too long to respond, the answers are not thought to accurately 

represent the person’s ‘current’ state as defined by the protocol. Time-stamped responses 

can be used to check adherence to the protocol and PDAs and smartphone can be 

programmed so the device doesn’t allow data entry after suitable time period.  

Smartphones also have the ability to capture more data than just the ESM questions, for 

example GPS (global positioning systems) can provide accurate information on participants’ 

location and applications have been developed to monitor sleep activity (Andriod ; 

SleepCycle). Further developments in software for smartphones (ClinTouch ; Palmier-Claus, 

Ainsworth et al. 2012) only increases the potential for ESM as a viable data collection 

technique. Already used in conjunction with ESM is ambulatory assessment (AA). AA can be 

used to measure biological responses in the same momentary settings as ESM. Wilhelm 

and Grossman (2010) provide a comprehensive summary of biosignals and devices that can 

be used for AA with examples including heart rate, systolic/diastolic blood pressure, 

respiratory rate and cortisol measurements.  

1.2 DATA STRUCTURE 

Data collected using the ESM procedure are a series of repeated measures observed for 

each subject over a set period of time. This type of data is known as longitudinal data. 

Longitudinal data typically captures changes in variables over a long period of time – 

months, years or even decades. As several measurements are taken for each person the 
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data are correlated, where measurements are likely to be more similar within-person 

rather than between-people. This correlation can be accounted for in the analysis of 

longitudinal data but is not often the focus. The ESM data presented here will be discussed 

as multilevel data, where measurements are considered nested within higher level clusters. 

ESM data can have a more complex structure than typical longitudinal data, where 

measurements can be nested within more than one unit.  

Throughout this work ESM will be considered to have a three-level data structure, with 

measurements at the lowest level, level 1, referred to as the moment or ‘beep’ level  

(Delespaul 1995) with reference to the alarm used in signal contingent designs, nested 

within the level 2 ‘day’ level, nested within subject at level 3. Including this day level is 

uncommon in practice, as will be demonstrated in Chapter 3. However, measurements 

taken within a day may be more highly correlated than those taken the next day. 

Identifying this additional level of data allows for not only within- and between-person 

analysis but also within- and between-day analysis. That is, one can study how symptoms 

and behaviours vary moment to moment, day to day and person to person. Higher levels of 

data are also possible, such as participants nested within therapist or centre. 

 

Figure 1:1 Three-level data structure for ESM 

The following notation will be used throughout, with additional notation defined where 

necessary. To allow for various higher levels of ESM data, the moment level will always be 

defined as level 1, the lowest level. Measurements at level 1 will be recorded at moments 

𝑖 = 1,… , 𝑛1𝑗𝑘 where the subscripts 1 denotes the level of measurement, 𝑗 the day number 

to allow for a different number of measurements to be taken each day, and 𝑘 to allow the 

number of measurements to vary per person. Day number is denoted 𝑗 = 1,… , 𝑛2𝑘 where 

similarly the subscripts 2 refer to the level of measurement and 𝑘 to the participant 
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number, allowing each participant to be observed for a different number of days. 

Participants are numbered 𝑘 = 1,… , 𝑛3. For simplicity it will often be assumed that the 

number of moments per day and the number of days of measurement will be the same for 

each participant. In these circumstances the above notation can be simplified to 𝑛1, 𝑛2 and 

𝑛3.  

Analysis of ESM data is dependent on the research question and at which level the interest 

of the researcher lies: the moment-level, day-level or subject-level. Schwartz and Stone 

(1998) categorise this into 3 areas: participant-level variation, within-subject variation, and 

whether participant-level characteristics predict changes in within-subject variation. 

Defining the level of interest will define the outcome of interest and lead to an appropriate 

form for the analysis model.  

Investigating the between-subject variation is possible by aggregating the lower levels and 

performing statistical tests appropriate for single level data. One of the main issues with 

this approach is the problem of heteroskedasticity when one must aggregate over different 

numbers of assessments per participant. In this scenario, Schwartz and Stone (1998) 

describe that the aggregated value, or participant mean, is subject to sampling variability, 

where fewer available observations contribute to a greater amount of variation. Regressing 

on this aggregated value then leads to residual variation from both the usual unexplained 

variance and this sampling variability.  As unbalanced and missing data are common within 

ESM, this is a significant problem as it violates the assumption of linear regression that 

variance of the residuals is constant. A second drawback of this approach is that restricting 

the analysis to the subject level ignores the potentially rich information held in the 

between-subject variation, one of the main benefits of ESM style data.  

To analyse within-subject variation, a model is required that can accommodate repeated 

measurements for each participant and clustering at higher levels. Simple regression 

models are not suitable for analysing this type of data as the assumption of independent 

residuals is not met. This thesis will explore the use of multilevel models to analyse ESM 

data, where momentary-level, day-level and subject-level variation can be accommodated.    

1.3 AIMS AND OBJECTIVES OF THIS THESIS 

The aim of this work is to examine the optimal use of multilevel models for the design, 

reporting, analysis and exploration of ESM studies.  

file://///nask.man.ac.uk/home$/PhD/Year%203/Thesis/Introduction.docx%23_ENREF_3
file://///nask.man.ac.uk/home$/PhD/Year%203/Thesis/Introduction.docx%23_ENREF_3
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This work will be motivated by an example study presented in Chapter 2 which highlighted 

a methodological issue when using multilevel models to study change. The current ESM 

literature will be reviewed in Chapter 3 to identify the types of research questions being 

investigated with ESM, and to determine whether the statistical methods used to address 

these questions are appropriate. Chapter 4 will introduce missing data and how it can be 

explored in ESM data, and Chapters 5 and 6 will investigate methods for exploring 

momentary variation and change, presenting statistical challenges and discussing potential 

solutions. Chapter 7 will examine power and sample size calculations for ESM data.  Finally, 

Chapter 8 will discuss the benefits and limitations of these methods in an ESM setting.  

Objectives: 

1. Reporting  – Understanding missing data in ESM research will be thoroughly 

explored and the implications for analysis will be investigated 

2. Exploration – alternative methods to aggregation will be sought to study 

momentary level variation or fluctuation of outcome that fully utilise the multilevel 

nature of the data 

3. Analysis – models for predicting momentary change will be explored to investigate 

the unusual parameter estimates observed in the recovery data of Chapter 2, with 

an examination of methods and their appropriateness for ESM data. 

4. Design – closed form expressions and empirical power estimates will be 

investigated for three-level data, appropriate for two example research questions 

identified in the systematic review. 

Each of these four objectives will be developed in Chapters 4 - 7. Each chapter will begin 

with an introduction outlining how each concept is currently reported or analysed in ESM 

with a more detailed examination of relevant papers identified in the systematic review of 

Chapter 3. The statistical methodology for each concept will then be discussed with 

extensions developed for three-level data, followed by an application of the method to the 

example dataset of Chapter 2.   
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2  INTRODUCTION TO MULTILEVEL MODELS AND MOTIVATING 

EXAMPLES 

The first half of this chapter will provide an introduction to multilevel modelling from which 

subsequent chapters will expand. To illustrate the data structure and analysis procedure of 

ESM data, two example data sets will be referred to throughout. The second half of this 

chapter presents the details of these two ESM studies. The first assessed self-reported 

recovery in schizophrenic patients, the research conducted by Richard Bentall, Tony 

Morrison and their team at the University of Manchester, and is currently being prepared 

for publication (Bentall et al in preparation). The second study examined the relationship 

between cannabis use and bipolar disorder. This research was undertaken by Elizabeth 

Tyler and colleagues at the University of Manchester (Tyler, Jones et al. 2015). For both 

studies, myself and Richard Emsley advised on and conducted the statistical analysis.  

2.1 AN INTRODUCTION TO MULTILEVEL MODELS 

ESM data can be analysed using multilevel models, also known as random effects, mixed 

effects or hierarchical models. These models allow for multiple levels of data to be 

considered without the need for aggregation, and can be used to examine variation at each 

level. They can accommodate the nested structure of ESM data, are valid for unbalanced 

data sets and can be extended to fit complex covariance structures arising in the data.  

This section will provide a general overview of multilevel models and the data 

requirements necessary for valid parameter estimates. A more detailed examination of the 

statistical methodology for specific research questions will be provided in the introduction 

to the relevant chapters of this thesis.   

2.1.1 RANDOM INTERCEPT MODELS 

The parameterisation of random effect models can be first considered with a simple two 

level example. Equation (1) represents a two-level random intercept model for data in 

which measurements at level 1 are nested within participant at level 2, 

𝑦𝑖𝑘 = 𝛽0 + 𝛽1𝑥𝑖𝑘 + 𝑢𝑘 + 𝑒𝑖𝑘 . (1) 

 

In this model 𝑦𝑖𝑘  is the response value for the 𝑖th measurement of individual 𝑘 and 𝑥𝑖𝑘 is a 

moment level explanatory variable. The model can be split onto two parts: the fixed part 
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and the random part. The fixed part of the model, 𝛽0 + 𝛽1𝑥𝑖𝑘, represents the population 

average effects. The intercept 𝛽0 is the mean value of 𝑦𝑖𝑘  when 𝑥𝑖𝑘 = 0 and 𝛽1 is the 

average effect of covariate 𝑥𝑖𝑘 on 𝑦𝑖𝑘. The random part of the model represents the 

variation in outcome at each level: 𝑢𝑘 is the level 2 random intercept and 𝑒𝑖𝑘 the level 1 

residuals. The level 2 random intercept represent unobserved subject-level heterogeneity 

and can be thought of as the 𝑘th participant’s deviation from the overall mean, or 𝛽0 + 𝑢𝑘 

as the subject-specific intercept for participant 𝑘. The random effects are assumed to be 

normally distributed such that 𝑢𝑘~ 𝑁(0, 𝜎𝑢
2) and similarly the residuals 𝑒𝑖𝑘~𝑁(0, 𝜎𝑒

2), with 

𝑢𝑘 independent across participants 𝑘 and covariates 𝑥𝑖𝑘 , and 𝑒𝑖𝑘 independent over both 

participants 𝑘 and occasions 𝑖. This model can be used to investigate variation at both 

levels by providing estimates of 𝜎𝑢
2, the between participant variation, and 𝜎𝑒

2, the within 

participant variation, as well as examining the effect of level 1 and 2 covariates on the 

outcome.  

Unbiased parameter estimates require the random effect models comply with several 

assumptions. Letting 𝒙𝒊𝒌 = (𝑥1𝑖𝑘 , … , 𝑥𝑝𝑖𝑘)′  be a set of covariates, the exogeneity 

assumptions from single level models still apply and are extended to this two-level 

scenario, where  

𝐸(𝑢𝑘|𝒙𝒊𝒌) =  0 

and  

𝐸(𝑒𝑖𝑘|𝒙𝒊𝒌, 𝑢𝑘) = 0 

from which we have 𝐸(𝑒𝑖𝑘|𝒙𝒊𝒌) = 0. These assumptions mean that the random effects and 

and level 1 residuals are uncorrelated with the covariates 𝒙𝒊𝒌. If this assumption is violated 

the parameter estimates can be substantially biased (Ebbes, Böckenholt et al. 2004).  

Further assumptions of random intercept models include the independence of random 

effects between subjects, that is the random effects for two subjects 𝑘 and 𝑘′ are 

uncorrelated 

𝑐𝑜𝑣(𝑢𝑘 , 𝑢𝑘′) = 0  

the residuals for two observations are uncorrelated within-subject (𝑘 = 𝑘′) and for two 

different individuals (𝑘 ≠ 𝑘′) 

𝑐𝑜𝑣(𝑒𝑖𝑘 , 𝑒𝑖′𝑘′) = 0 
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and the random effects at levels 1 and 2 are uncorrelated within- and between-individuals  

𝑐𝑜𝑣(𝑢𝑘, 𝑒𝑖𝑘′) = 0. 

 

The two-level model can be extended to fit a three-level data structure where 

measurements 𝑖 are now nested within days 𝑗 within participants 𝑘, as in Figure 1:1, by 

including a random intercept for day 𝑣𝑗𝑘: 

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑥𝑖𝑗𝑘 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒𝑖𝑗𝑘. 

Here, 𝑢𝑘~𝑁(0, 𝜎𝑢
2) represents the random intercept for each subject, 𝑣𝑗𝑘~𝑁(0, 𝜎𝑣

2) the 

random intercept for each day 𝑗 within each subject 𝑘 and 𝑒𝑖𝑗𝑘~𝑁(0, 𝜎𝑒
2) the moment level 

residuals. From this model, as well as the participant level variation 𝜎𝑢
2, the day level 

variation 𝜎𝑣
2 can be estimated.  .   

 

 

 

 

 

Figure 2:1 Visual representation of the three-level random intercept model 

In addition to variation at each level of the data, multilevel models can be used to examine 

within- and between-cluster effects (Snijders and Bosker 1999). In this three-level structure 

of ESM data one can investigate both within- and between-subject effects as well as within- 

and between-day effects. The separation of these effects is achieved by including the group 

mean of a level one variable in the model, for example in the model 

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑥𝑖𝑗𝑘 + 𝛽2𝑥̅..𝑘 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒𝑖𝑗𝑘  (2) 
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𝑥̅..𝑘 is the subject-specific mean of the level 1 variable 𝑥𝑖𝑗𝑘. In contrast to equation (1) this 

model estimates the within-subject effect of 𝑥, 𝛽1, and, aggregating to the subject-level on 

both sides of the equation 

𝑦̅..𝑘 = 𝛽0 + 𝛽1𝑥̅..𝑘 + 𝛽2𝑥̅..𝑘 + 𝑢𝑘 + 𝑣̅.𝑘 + 𝑒̅..𝑘 

 =  𝛽0 + (𝛽1 + 𝛽2)𝑥̅..𝑘 + 𝑢𝑘 + 𝑣̅.𝑘 + 𝑒̅..𝑘 

the between-subject effect is shown to be 𝛽1 + 𝛽2. Similarly, within- and between-day 

effects can be studied by including the day-specific mean of 𝑥 

𝑦̅.𝑗𝑘 = 𝛽0 + 𝛽1𝑥𝑖𝑗𝑘 + 𝛽2𝑥̅.𝑗𝑘 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒𝑖𝑗𝑘 . 

 

2.1.2 RANDOM COEFFICIENT MODELS  

Unlike a random intercept model where the relationship between 𝑥 and 𝑦 is fixed, a 

random coefficient model allows this relationship to vary between participants. A two-level 

random coefficient model has the form 

𝑦𝑖𝑘 = 𝛽0 + 𝛽1𝑥𝑖𝑘 + 𝑢0𝑘 + 𝑢1𝑘𝑥𝑖𝑘 + 𝑒𝑖𝑘 

or, rearranging,  

𝑦𝑖𝑘 = (𝛽0 + 𝑢0𝑘) + (𝛽1 + 𝑢1𝑘)𝑥𝑖𝑘 + 𝑒𝑖𝑘  

where 𝑢0𝑘 is the random intercept for individual 𝑘 and 𝑢1𝑘 is the random slope for 𝑥𝑖𝑘. 

These random effects come from a multivariate normal distribution with  

[
𝑢0𝑘

𝑢1𝑘
] ~ 𝑀𝑉𝑁([

0
0
] , [

𝜎𝑢0
2 𝜎𝑢0𝑢1

𝜎𝑢0𝑢1 𝜎𝑢1
2 ]) . 

 

As in the random intercept model, there is a subject-specific intercept, 𝛽0 + 𝑢0𝑘, but now 

there is also a subject-specific effect of 𝑥, 𝛽1 + 𝑢1𝑘. For example, using ESM to study 

psychosis one might hypothesise that increased anxiety leads to an increase in paranoia. 

Fitting a random intercept model one would assume that although subjects may start out 

with different levels of paranoia, accounted for by the random intercept 𝑢0𝑘, the effect of 

anxiety is equal for each individual, resulting in parallel subject-specific slopes with fixed 

gradient 𝛽1. In a random coefficient model, this relationship is allowed to vary between 

people, such that a unit increase in anxiety might have a stronger or weaker effect on 

paranoia for each subject 𝑘; their individual slope being 𝛽1 + 𝑢1𝑘. 
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The random intercept and slope covariance, 𝜎𝑢0𝑢1, is a measure of how the value of the 

intercept influences the slope for each individual. For a positive covariance, 𝜎𝑢0𝑢1 > 0, a 

subject-specific line with a larger intercept value will have a steeper than average slope, 

while a subject-specific line with a smaller intercept will have a shallower than average 

slope – see Figure 2:2. Conversely, for a negative covariance, larger intercept values will 

lead to shallower slopes whereas a smaller intercept will lead to a steeper slope - see 

Figure 2:3. In terms of the psychosis example, a positive covariance would mean that for 

individuals who exhibit higher levels of paranoia for low levels of anxiety, anxiety will have 

a greater effect, where as those with minimal symptoms for low levels of anxiety would see 

a much smaller increase in paranoia as anxiety increases.  

 

 

Figure 2:2 Random coefficient model with 

positive covariance 

 

Figure 2:3 Random coefficient model with 

negative covariance 

 

 

For three-level data it is possible to have random slopes at level 3 and level 2. For ESM data 

this corresponds to variation in subject-specific slopes when a random coefficient is 

included at level 3, 

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑥𝑖𝑗𝑘 + 𝑢0𝑘 + 𝑢1𝑘𝑥𝑖𝑗𝑘 + 𝑣𝑗𝑘 + 𝑒𝑖𝑗𝑘 

or variation in day-specific slopes when included at level 2, 

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑥𝑖𝑗𝑘 + 𝑢𝑘 + 𝑣0𝑗𝑘 + 𝑣1𝑗𝑘𝑥𝑖𝑗𝑘 + 𝑒𝑖𝑗𝑘 . 

The interpretation of three-level random slope models will be discussed in much greater 

detail in Chapter 5.   

The multilevel models described in this thesis will be fitted using maximum likelihood (ML) 

estimation. It is argued that ML can produce biased estimates of the random effect 
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variances when the number of clusters is small (Rabe-Hesketh and Skrondal 2012). 

Restricted maximum likelihood (REML) can be used as an alternative, however the 

difference between the two methods is considered trivial for large numbers of clusters 

(Snijders and Bosker 1999). A drawback of using REML, the likelihood function only includes 

parameters from the random part of the model and so likelihood ratio tests to compare 

nested models with different fixed effect specifications are not possible (Snijders and 

Bosker 1999; Fitzmaurice, Laird et al. 2012). As such, estimation using ML will be the 

preferred method. One exception to this will be when random effect variance and 

covariance estimates are the primary focus, i.e. when fitting random slope models, where 

REML will be used. In this case, likelihood ratio tests will only be used to compare models 

with nested random effects where the fixed effect specification is the same in both models. 

2.1.3 CENTRING 

For the models described above, interpretation of the regression coefficients is dependent 

on the scaling of the model variables. For the fixed effects, the intercept 𝛽0 represents the 

population average value of 𝑦 when all covariates are equal to zero. Inference on 𝛽0 thus 

relies on an interpretable meaning of zero for 𝑥. For ESM research many of the 

questionnaire items are measured on a 1-7 Likert scale with the values representing an 

ordinal style measure of agreement, for example 1 = not at all, through to 7 = very much 

so. For these measures a value of zero makes no conceptual sense and as such in a model 

using these scales as covariates the fixed intercept would be uninterpretable. It is thus 

recommended that variables be rescaled to give meaningful zero values, known as 

centring.  

There are several ways to choose the value with which to centre a variable, each providing 

a different context for interpreting both the fixed and random effects. On a 1-7 scale, 

centring around 𝑥 = 3.5, 𝛽0 represents the population average value of 𝑦 for a mid-level 𝑥 

score of 3.5. If the scale is labelled as above, this would translate to the average value of 𝑦 

for a ‘neutral’ 𝑥 score. Alternatively, one can center by the cluster mean, known as group-

mean centring. In a two level model, the mean of a level 1 variable, 𝑥̅.𝑗, taken over all units 

𝑖 within cluster 𝑘 is deduced from 𝑥𝑖𝑘,  

𝑦𝑖𝑘 = 𝛽0 + 𝛽1(𝑥𝑖𝑘 − 𝑥̅.𝑘) + 𝛽2𝑥̅.𝑘 + 𝑢𝑘 + 𝑒𝑖𝑘  (3) 

 

This is statistically equivalent to the two-level version of equation (2) above.  It is 

recommended that level 1 variables be cluster-mean centred to investigate within- and 
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between-group inference (Snijders and Bosker 1999) referred to in the longitudinal 

literature as longitudinal and cross sectional effects. In an ESM context, 𝛽0 represents the 

average response for the mean 𝑥 score within-subject,  𝛽1 the effect of a unit increase in 𝑥 

within-subject and  𝛽2 the effect of a unit increase 𝑥 between-subject.  

In the three-level data structure for ESM, level 1 variables can be centred at levels 2 or 3. 

Centring at level 2 (𝑥𝑖𝑗𝑘 − 𝑥̅.𝑗𝑘), 𝛽1 represents an effect of an increase in 𝑥 within-day, 

within-person, where as centering at level 3 (𝑥𝑖𝑗𝑘 − 𝑥̅..𝑘) provides an estimate for the 

effect of an increase in 𝑥 within-person, averaged across days.  

Interpretation of random effects is also effected by the choice of centring. Random 

intercept and random slope variances are estimated at 𝑥 = 0.  In random intercept model 

subject-specific slopes stay constant so the choice of this zero value does not affect the 

intercept variance (Figure 2:4), however, in a random slope model subject-specific slopes 

are allowed to vary, and so the random slope variance will depend on the choice of 

centring for 𝑥 (Figure 2:5). 

 

Figure 2:4 Choice of centring in a random 

intercept model - x centered at 1 or 3 

 

Figure 2:5 Choice of centring in a random slope 

models - x centred at 1 and 3 

 

 

2.1.4 VARIATION IN A THREE-LEVEL MODEL 

2.1.4.1 PARTITIONING VARIATION 

Variation in measures can be studied at each level of the data. One method for describing 

this variation is the variance partitioning coefficient (VPC), which calculates the proportion 

of variance at each level. In a random intercept model the variance of measure 𝑦𝑖𝑗𝑘can be 

defined as 
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𝑣𝑎𝑟(𝑦𝑖𝑗𝑘) = 𝑣𝑎𝑟(𝛽0 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒𝑖𝑗𝑘) = 𝑣𝑎𝑟(𝑢𝑘) + 𝑣𝑎𝑟(𝑣𝑗𝑘) + 𝑣𝑎𝑟(𝑒𝑖𝑗𝑘)

= 𝜎𝑢
2 + 𝜎𝑣

2 + 𝜎𝑒
2 

where 𝜎𝑢
2 represent the between-subject variation, 𝜎𝑣

2 the between-day, within-subject 

variation  and 𝜎𝑒
2 the residual variation. 

The proportion of variance at level 3 cab then be defined as the level 3 variance divided by 

the total variation 

𝜌3 =
𝜎𝑢

2

𝜎𝑢
2 + 𝜎𝑣

2 + 𝜎𝑒
2, 

with the proportion of variance at level 2    

𝜌2 = 
𝜎𝑣

2

𝜎𝑢
2 + 𝜎𝑣

2 + 𝜎𝑒
2 

and the proportion of variation at level 1  

𝜌1 = 
𝜎𝑒

2

𝜎𝑢
2 + 𝜎𝑣

2 + 𝜎𝑒
2 

similarly. An alternative way of describing variation is the intraclass correlation coefficient 

(ICC). Hox (2002) writes that the ICC can also be thought of as the “expected correlation 

between two randomly chosen elements in the same group” so for two observations 𝑦𝑖𝑗𝑘  

and 𝑦𝑖′𝑗′𝑘′ 

𝑐𝑜𝑟𝑟(𝑦𝑖𝑗𝑘 , 𝑦𝑖′𝑗′𝑘′) =
𝑐𝑜𝑣(𝑦𝑖𝑗𝑘 , 𝑦𝑖′𝑗′𝑘′)

√𝑣𝑎𝑟(𝑦𝑖𝑗𝑘)√𝑣𝑎𝑟( 𝑦𝑖′𝑗′𝑘′)

 

where 

𝑐𝑜𝑣(𝑦𝑖𝑗𝑘 , 𝑦𝑖′𝑗′𝑘′) = 𝑐𝑜𝑣(𝛽0𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒𝑖𝑗𝑘 , 𝛽0 + 𝑢𝑘′ + 𝑣𝑗′𝑘′ + 𝑒𝑖′𝑗′𝑘′) 

= 𝑐𝑜𝑣(𝑢𝑘 , 𝑢𝑘′) + 𝑐𝑜𝑣(𝑣𝑗𝑘 , 𝑣𝑗′𝑘′) + 𝑐𝑜𝑣(𝑒𝑖𝑗𝑘 , 𝑒𝑖′𝑗′𝑘′). 

For 𝑖 ≠ 𝑖′ 𝑗 ≠ 𝑗′ 𝑘 = 𝑘′ the correlation between two observations from the same person 

measured on different days  

𝑐𝑜𝑟𝑟(𝑦𝑖𝑗𝑘 , 𝑦𝑖′𝑗′𝑘) =
𝜎𝑢

2

𝜎𝑢
2 + 𝜎𝑣

2 + 𝜎𝑒
2 
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as 𝑐𝑜𝑣(𝑣𝑗𝑘 , 𝑣𝑗′𝑘′) = 0  and 𝑐𝑜𝑣(𝑒𝑖𝑗𝑘 , 𝑒𝑖′𝑗′𝑘′) = 0 when 𝑖 ≠ 𝑖′ and 𝑗 ≠ 𝑗′. 

For the correlation between two moments within the same day, within the same person, 

i.e. 𝑖 ≠ 𝑖′ 𝑗 = 𝑗′ 𝑘 = 𝑘′, the ICC can be expressed as  

𝑐𝑜𝑟𝑟(𝑦𝑖𝑗𝑘 , 𝑦𝑖′𝑗𝑘) =  
𝜎𝑢

2 + 𝜎𝑣
2

𝜎𝑢
2 + 𝜎𝑣

2 + 𝜎𝑒
2. 

For random intercept models this interclass correlation coefficient is equal to the variance 

partitioning coefficient. However, for random slope models this is not the case. Taking a 

two-level random coefficient model  

𝑦𝑖𝑘 = 𝛽0 + 𝛽1𝑥𝑖𝑘 + 𝑢0𝑘 + 𝑢1𝑘𝑥𝑖𝑘 + 𝑒𝑖𝑘 

the variance at level 2 is now 

𝑣𝑎𝑟(𝑢0𝑘 + 𝑢1𝑘𝑥𝑖𝑘) = 𝑣𝑎𝑟(𝑢0𝑘) + 2𝑐𝑜𝑣(𝑢0𝑘, 𝑢1𝑘𝑥𝑖𝑘) + 𝑣𝑎𝑟(𝑢1𝑘𝑥𝑖𝑘) 

=  𝜎𝑢0
2 + 2𝜎𝑢01

𝑥𝑖𝑘 + 𝜎𝑢1
2 𝑥𝑖𝑘

2  

a quadratic function of covariate 𝑥𝑖𝑘. The VPC at level 2 is thus 

𝑉𝑃𝐶 =
level 2 variance

total variance
=

 𝜎𝑢0
2 + 2𝜎𝑢01

𝑥𝑖𝑘 + 𝜎𝑢1
2 𝑥𝑖𝑘

2

 𝜎𝑢0
2 + 2𝜎𝑢01

𝑥𝑖𝑘 + 𝜎𝑢1
2 𝑥𝑖𝑘

2 + 𝜎𝑒
2. 

This extends to three level models where both the level 3 and level 2 variances may be 

affected by a random coefficient. For random slope models the VPC rather than the ICC 

should be used when discussing the proportion of variance at each level of the model.  

2.1.4.2 COMPLEX LEVEL 1 VARIATION 

It is possible to model patterns in variance at level 1 in a similar manner to modelling 

variation at the higher levels. In a standard multilevel model it is assumed that the level 1 

variance, 𝜎𝑒
2, is homoscedastic: that the variance of the residuals around the fitted line is 

constant. 
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Figure 2:6 Homoskedastic errors around line 

of best fit 

 

Figure 2:7 Constant level 1 variance with 

homoskedastic errors 

 

This might not always be the case, and it may be of interest to model the level 1 variance in 

terms of some variable 𝑥, described by Steele (2008) as a “complex level 1 variance” model. 

If 𝑥 is binary, heteroskedasticity can be measured by estimating the residuals separately for 

the two groups. For example, if the question of interest is how the outcome varies in each 

of two treatment groups then the following model can be used, 

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑥𝑘 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒0𝑖𝑗𝑘𝑥𝑘(0) + 𝑒1𝑖𝑗𝑘𝑥𝑖𝑗𝑘(1) 

where 𝑥𝑘 is a dummy variable for treatment group, equal to 1 for patients receiving 

treatment and 0 for the control group. The residuals now follow a joint normal distribution 

with means zero and variance matrix  

Σ𝑒 = [
𝜎𝑒0

2 0

0 𝜎𝑒1
2 ]. 

Including the group variable as a fixed effect will estimate the average effect of treatment 

on a moment level outcome 𝑦𝑖𝑗𝑘, while allowing for complex level 1 variance will give  

𝑣𝑎𝑟 (𝑒0𝑖𝑗𝑘𝑥𝑘(0) + 𝑒1𝑖𝑗𝑘𝑥𝑘(1)) = 𝜎𝑒0
2 𝑥𝑘

2(0) + 𝜎𝑒1
2 𝑥𝑘

2(1) 

as 𝜎𝑒01 is assumed to be zero, and will provide separate variance estimates for treatment 

and control which can be interpreted as the level of variation in 𝑦 at the moment level for 

the two groups.  

If 𝑥 is continuous, the complex variation model becomes 
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𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑥𝑘 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒0𝑖𝑗𝑘 + 𝑒1𝑖𝑗𝑘𝑥𝑘 

where the level 1 variance should now be interpreted in terms of the variance function  

𝑣𝑎𝑟(𝑒0𝑖𝑗𝑘 + 𝑒1𝑖𝑗𝑘𝑥𝑘) =  𝜎𝑒0
2 + 2𝜎𝑒01𝑥𝑘 + 𝜎𝑒1

2 𝑥𝑘
2 

providing a different estimate for each value of 𝑥, see Figure 2:9. 

 

 

Figure 2:8 Complex level 1 variance for 

binary 𝑥 

Figure 2:9 Complex level 1 variance for 

continuous 𝑥 

  

Hedeker, Mermelstein et al. (2009) describe methods for examining heterogeneity as a 

function of subject-level covariates. Extending a two level random coefficient model  

𝑦𝑖𝑘 = 𝛽0 + 𝛽1𝑥𝑖𝑘 + 𝛽2𝑥̅𝑘 + 𝑢0𝑘 + 𝑢1𝑘𝑥𝑖𝑘 + 𝑒𝑖𝑘 

where 𝑥𝑖𝑘 is a moment level variable, 𝑥̅𝑘 is the subject level mean of 𝑥𝑖𝑘 and the random 

effects share  a bivariate normal distribution 𝑁(0, Σ𝑢) where 

Σ𝑢 = [
𝜎𝑢0

2 𝜎𝑢0𝑢1

𝜎𝑢0𝑢1 𝜎𝑢1
2 ] , 

they allow random effect variances to be modelled in terms of a subject-level covariate 𝑤𝑘 

such that 

𝜎𝑢0𝑘
2 = exp(𝛼00 + 𝛼01𝑤𝑘) 

𝜎𝑢1𝑘
2 = exp(𝛼10 + 𝛼11𝑤𝑘). 
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The variances now have subscript 𝑘 to indicate their values depend on 𝑤𝑘. This subject-

level covariate could also be included as a fixed effect to model its average effect on 

outcome 𝑦𝑖𝑘. The covariate is modelled as an exponential function in the random variance 

to ensure the variance parameter is greater than zero.  

When 𝑤𝑘 = 0 the intercept and slope variances equal exp(𝛼00) and exp (𝛼10) respectively. 

When 𝑤𝑘 ≠ 0 the variances change by a function of 𝑤𝑘 and its coefficient. For the random 

intercept, when 𝛼00 > 0 the variation in subject-specific intercepts increases as 𝑤𝑘 

increases, or decreases when 𝛼00 < 0. Similarly, for random slopes, when 𝛼11 > 0 the 

variation in subject-specific slopes increases as 𝑤𝑘 increases.  

In their example, the authors are interested in how mood (𝑦𝑖𝑘) changes in adolescents 

during smoking and non-smoking events (𝑥𝑖𝑘), and how this relationship varies in those 

classed as frequent and non-frequent smokers (𝑤𝑘). As the covariate 𝑥𝑖𝑘 is binary, the 

standard model with random coefficient for smoking event estimates 𝜎𝑢0
2  and 𝜎𝑢1

2 , the 

variation in mood at smoking and non-smoking events respectively. The addition of the 

binary smoking frequency 𝑤𝑘 in the random effects then moderates this relationship: 𝛼00 

and 𝛼01 estimate the variation in mood for frequent and non-frequent smokers during non-

smoking events, and 𝛼10 and 𝛼11 estimate the variation in mood for frequent and non-

frequent smokers during smoking events. Thus, for example, the negative values for 𝛼11 in 

their results indicate that “smoking related mood response … is significantly decreased for 

more frequent smokers, relative to less frequent smokers”. 

2.1.5 LEVEL 1 COVARIANCE STRUCTURES 

2.1.5.1 AUTOCORRELATION  

As previously described, one of the assumptions of multilevel models is that residuals 

within-subject are uncorrelated. This assumption may be relaxed and correlation at level 1 

can be estimated.  

Serial autocorrelation occurs when successive observations are correlated, with 

observations taken closer more highly correlated than observations further apart. This is a 

likely feature of ESM data where many observations are taken over a short period of time.   

In a commonly cited paper for ESM studies, Schwartz and Stone (1998) discuss the need to 

model autocorrelation in ESM data, however in the papers reviewed for this thesis 

(Chapter 3) only 16% were found to model autocorrelation. Though not often adopted in 
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ESM studies, modelling autocorrelation is common in similar data structures such as 

longitudinal analysis and time series analysis where methods include autoregressive 

models or dynamic models. Both model the outcome at time 𝑡 as a function of the lagged 

outcome, i.e. outcome at 𝑡 − 1, and a set of covariates. This will be discussed in detail in 

Chapter 6. 

 A different approach widely adopted in the longitudinal literature models the 

autocorrelation within the level 1 errors. In a two-level random intercept model, 

𝑦𝑖𝑘 = 𝛽0 + 𝛽1𝑥𝑖𝑘 + 𝑢𝑘 + 𝑒𝑖𝑘 

the level 1 errors are considered to be normally distributed with mean zero and variance 

𝜎𝑒
2. To allow for correlation at level 1, an autoregressive covariance structure can instead 

be applied. Here the adjacent observations are correlated with a value 𝜌, those one step 

away correlated by 𝜌2, two steps away by 𝜌3 and so on. This structure assumes equally 

spaced time points and allows correlations to diminish as the time gap increases, albeit as a 

function of the original 𝜌. Diggle (1988) proposed a covariance structure for continuous 

time which might be more appropriate for ESM studies when observations are randomly 

spaced. Goldstein, Healy et al. (1994) generalized Diggle’s work, expressing the covariance 

between level 1 errors at time point 𝑡 and 𝑡 − 𝑠 in the form 

𝑐𝑜𝑣(𝑒𝑡 , 𝑒𝑡−𝑠) =  𝜎𝑒
2𝑓(𝛼, 𝑠) =  𝜎𝑒

2 exp(−𝑔(𝛼, 𝑠)) 

where “𝑔(𝛼, 𝑠) is any positive increasing function of 𝑠, not necessarily linear, and 𝛼 is a 

vector of 𝑝 parameters”, 

So, for a first order autocorrelation (AR(1)) model, 

𝑔(𝛼, 𝑠) = 𝛼𝑠 

and so 

𝑐𝑜𝑣(𝑒𝑡, 𝑒𝑡−𝑠) = 𝜎𝑒
2exp (−𝛼𝑠) 

where 𝑠 is the time interval between observations and 𝛼 is to be estimated.  

Other covariance structures which might suitably model ESM data’s potential 

autocorrelation include the 𝑞th order model AR(𝑞), for 𝑞 > 1, as Skrondal and Rabe-

Hesketh (2007) point out that the AR(1) structure is “often unrealistic” as “correlations fall 

off too rapidly with increasing time-lags”. Alternatively, there exists a heterogeneous 
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autoregressive structure (HAR) in which the diagonal elements, the variances, are allowed 

to be heterogeneous. The Toeplitz covariance structure gives further freedom, not 

restricting the correlations between observations to strictly diminish as a proportion of the 

previous correlation. Examples of each of these covariance structures are given below for 4 

time points.   

𝐴𝑅(1): Σ =  

[
 
 
 
 

𝜎2 𝜎2𝜌 𝜎2𝜌2 𝜎2𝜌3

𝜎2𝜌 𝜎2 𝜎2𝜌 𝜎2𝜌2

𝜎2𝜌2 𝜎2𝜌 𝜎2 𝜎2𝜌

𝜎2𝜌3 𝜎2𝜌2 𝜎2𝜌 𝜎2 ]
 
 
 
 

𝐻𝐴𝑅: Σ =

[
 
 
 
 

𝜎1
2 𝜎2𝜎1𝜌 𝜎3𝜎1𝜌

2 𝜎4𝜎1𝜌
3

𝜎1𝜎2𝜌 𝜎2
2 𝜎3𝜎2𝜌 𝜎4𝜎2𝜌

2

𝜎1𝜎3𝜌
2 𝜎2𝜎3𝜌 𝜎3

2 𝜎4𝜎3𝜌

𝜎1𝜎4𝜌
3 𝜎2𝜎4𝜌

2 𝜎3𝜎4𝜌 𝜎4
2 ]

 
 
 
 

  

𝑇𝑜𝑝𝑙𝑖𝑡𝑧: Σ =

[
 
 
 
 
𝜎2 𝜎1 𝜎2 𝜎3

𝜎1 𝜎2 𝜎1 𝜎2

𝜎2 𝜎1 𝜎2 𝜎1

𝜎3 𝜎2 𝜎1 𝜎2]
 
 
 
 

 

2.1.5.2 COVARIANCE MISSPECIFICATION 

The importance of a correctly specified covariance structure has been widely discussed. 

Kwok, West et al. (2007) examine the impact of misspecification in terms of under-

specification, over-specification and general misspecification. These definitions are based 

on the principle of nested covariance structures and they use the identity (ID), AR(1), first 

order autoregression with first order moving average (ARMA(1,1)) and second banded 

Toeplitz (TOEP(2)) covariance structures as examples.  

𝐼𝐷 ∶ Σ =  [

𝜎2 0 0 0
0 𝜎2 0 0
0 0 𝜎2 0
0 0 0 𝜎2

]     𝐴𝑅(1): Σ =

[
 
 
 
 
1 𝜌 𝜌2 𝜌3

𝜌 1 𝜌 𝜌2

𝜌2 𝜌 1 𝜌

𝜌3 𝜌2 𝜌 1 ]
 
 
 
 

  

𝐴𝑅𝑀𝐴(1,1): Σ =

[
 
 
 

1 𝛾 𝛾𝜌 𝛾 𝜌2

𝛾 1 𝛾 𝛾𝜌
𝛾𝜌 𝛾 1 𝛾

𝛾𝜌2 𝛾𝜌 𝛾 1 ]
 
 
 

     𝑇𝑂𝐸𝑃(2): Σ =

[
 
 
 
 
𝜎2 𝜎1 0 0

𝜎1 𝜎2 𝜎1 0

0 𝜎1 𝜎2 𝜎1

0 0 𝜎1 𝜎2]
 
 
 
 

 

The authors define nested covariance structures by “whether one can obtain a specific Σ 

matrix by imposing constraint(s) on another Σ matrix”. In the covariance structures listed 

above it can be seen that ID is nested within AR(1) (setting 𝜌 = 0), which is nested within 

ARMA(1,1) (setting 𝛾 = 𝜌). ID is also nested within TOEP(2) by setting 𝜎1 = 0. Under-

specification is defined within nested covariance matrices as when a more simplistic 

covariance matrix is used than the true structure, for example when the true structure is 

AR(1) but an ID matrix is used. In this situation standard errors of the fixed effects have 

been found to be positively biased (Ferron, Dailey et al. 2002) as well as the variance of the 
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random effects (Sivo, Fan et al. 2005). Over-specification occurs within nested models 

when a more complex covariance matrix is used and general misspecification occurs when 

the true covariance matrix and the assumed covariance matrix are not nested, for example 

when the true structure is TOEP(2) and AR(1) is used. In their simulation study, Kwok, West 

et al. (2007) found that under-specification and general misspecification lead to 

overestimation in the variance of the random effects and the standard errors of the fixed 

effects. However, they found no significant bias in over-specified covariance structures.  

2.2 MOTIVATING EXAMPLE: RECOVERY IN PSYCHOSIS (BENTALL ET AL.) 

The following sections describe the data sets that will be used to illustrate statistical 

methods proposed in the thesis. The recovery study will be the main example referred to 

throughout and so will be described in detail. Following an outline of the study design and 

description of diary items, the research hypotheses and corresponding statistical analyses 

will be presented, demonstrating how the multilevel models introduced above can be 

applied to answer specific ESM related questions.  

In this study ESM was used to monitor self-reported feelings of ‘recovery’ in participants 

with psychosis. The team opted for a paper booklet method of ESM with a pseudo-random 

design. The participants were signalled to complete a diary 10 times a day for 6 days, the 

resulting data was of a 3 level structure with moments nested with days within 

participants. Data were gathered on 134 participants, 40 of which were control participants 

with no diagnosis of schizophrenia. The control participants were not included in this study 

as the recovery items were not relevant to this group. Participants were required to 

complete at least 20 diary entries over the 6 day period to be considered valid. 

This study aimed to investigate self-reported ‘recovery’ as defined subjectively rather than 

by the specific reduction of symptoms. As such, three diary items were included to capture 

the construct: “Since the last beep…”  

 I felt limited by psychological problems  

 I have worries about psychiatric problems 

 I have felt mentally well.  

The diary also contained momentary measures of mood and psychological symptoms. 

These items were phrased “Right now…” to capture feelings at the present moment, rather 

than “Since the last beep…”. Measures included current feelings of self-esteem (four items) 
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and paranoia (three items) as well as visual and auditory hallucinations. These items were 

adapted from previous work by the authors (Thewissen, Bentall et al. 2008; Oorschot, 

Lataster et al. 2012; Udachina, Varese et al. 2012). Following each paranoia item was an 

item quantifying how deserving of the paranoid thoughts they felt. These three items were 

combined to create one measure of deservedness of paranoia. Following the hallucination 

items was a measure of how pleasant the subject felt these hallucinations were, graded 

from unpleasant to pleasant.  

The items were all measured on 7 point Likert scales. Multiple items relating to each 

construct were combined using prorated means to create a single score for each measure. 

Items were first transformed such that higher scores relate to stronger symptoms. For 

example, higher scores relate to a greater sense of self-esteem or stronger feelings of 

paranoia. The full diary questionnaire can be seen in Appendix 1. 

Finally, recovery was also defined at baseline using the Process of Recovery from Psychosis 

Questionnaire (QPR).  Participants rated each of the 15 items on a 5 point Likert scale 

“strongly disagree” to “strongly agree”. They were also asked whether they considered 

themselves recovered as a simple binary yes or no. 

There were three primary research questions:  

1) How do fluctuations in momentary recovery differ between baseline defined recovery 

groups?  

2)  Are there any associations between momentary recovery and the variables self-

esteem, hopelessness, paranoia, deservedness of hallucinations, either concurrently or 

over time?  

3) Do any ESM measured items predict a subsequent change in recovery?  

 

2.2.1 STATISTICAL MODELS 

At baseline, recovery was measured as both a binary variable classifying the participants as 

either recovered or not recovered and using a continuous scale. Research question 1 was 

addressed first for the binary baseline recovery, using a 3 level multilevel model with 

baseline recovery as a fixed effect and allowing a different residual variance for the two 

baseline recovery groups. This model was used to estimate separate variance components 
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for the two baseline groups at level 1, representing the fluctuation, or variation, in 

momentary recovery scores. This model can be expressed by the following equation 

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑥𝑘 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒0𝑖𝑗𝑘𝑥𝑘(0) + 𝑒1𝑖𝑗𝑘𝑥𝑘(1) 

where 𝑦𝑖𝑗𝑘  is the ESM recovery variable measured at moment 𝑖 on day 𝑗 for participant 𝑘, 

𝑥𝑘 is the binary baseline recovery variable measured only once for participant 𝑘 with 𝑥𝑘(0) 

representing the non-recovered group and 𝑥𝑘(1) the recovered group at baseline. 𝛽0 and 

𝛽1 are the fixed effects to be estimated, 𝑣𝑗𝑘 the random day effects and 𝑒0𝑖𝑗𝑘 and 𝑒1𝑖𝑗𝑘 the 

split residuals for the two baseline recovery groups. The estimates of the variances of 𝑒0𝑖𝑗𝑘 

and 𝑒1𝑖𝑗𝑘 were of primary interest, to compare the variation in momentary recovery 

between the two groups.  

For the continuous baseline recovery measure, the model was as above with continuous 

baseline recovery as the fixed effect, which was split into tertiles for the random part of the 

model to allow the residuals to vary by group. Group 1 included total baseline scores of 30-

49, Group 2 scores of 50-56 and Group 3 scores of 57-73.  

For research question 2, concurrent associations were tested using separate three-level 

models with the variables of interest included as fixed effects, controlling for binary 

baseline recovery 𝑥𝑘. For this analysis the covariates and the outcome were both measured 

at the same time point.  

To evaluate temporal associations the same model was used but with lagged covariates, 

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑥𝑖−1,𝑗𝑘 + 𝛽2𝑥𝑘 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒𝑖𝑗𝑘 , 

where the time lag  was restricted to be within each day. Thus, in this model covariates 

measured at moment 𝑖 − 1 are predicting outcome at the following moment, 𝑖. 

For question 3 the change in outcome was calculated as recovery at the current moment 𝑖 

minus recovery at moment 𝑖 − 1,  

𝑦𝑐ℎ = 𝑦𝑖𝑗𝑘 − 𝑦𝑖−1,𝑗𝑘 

for each participant, restricting the lag to be within day as recovery at the first moment of 

the next day is not expected to be predicted by a measurement from the day before. The 

predictors were also lagged so that the results could be interpreted as the effect of the 

predictor at moment 𝑖 − 1 on the change from the recovery score at moment 𝑖 − 1 to 
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moment 𝑖, with the analysis again controlling for baseline recovery 𝑥𝑘. Thus the model was 

of the form 

𝑦𝑐ℎ = 𝛽0 + 𝛽1𝑥𝑖−1,𝑗𝑘 + 𝛽2𝑥𝑘 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒𝑖𝑗𝑘 . 

2.2.2 RESULTS OF RECOVERY DATA ANALYSIS 

2.2.2.1 IS THERE A RELATIONSHIP BETWEEN BASELINE RECOVERY AND FLUCTUATIONS IN 

RECOVERY? 

Momentary variation or ‘fluctuation’ in recovery was compared in the baseline recovered 

and non-recovered groups using a complex level 1 variation model. The results are 

presented in Table 2:1. 

 Fixed Effects Random Effects 

 Coeff. Std. Error P value  Variance Std. Error 

Baseline  0.925 0.343 0.007 Subject 1.522 0.290 

Recovery    Day 0.225 0.027 

    Beep Not recovered 0.530 0.020 

     Recovered 0.281 0.016 

Table 2:1 Complex variation model comparing momentary recovery between baseline groups 

The fixed effects estimate of 𝛽1 = 0.925 implies that, on average, the baseline recovered 

group had significantly higher momentary recovery scores than the baseline non-recovered 

group. The residual variance estimates suggest that there is more variation, or fluctuation, 

in momentary recovery in the non-recovered group than the baseline defined recovered 

group.  

 Fixed Effects Random Effects 

 Coeff. Std. Error P value   Variance Std. Error 

Baseline 

Recovery  

0.086 0.015 <0.001 Subject 1.043 0.199 

   Day 0.217 0.028 

QPR    Beep Group 1 0.539 0.027 

     Group 2 0.491 0.025 

     Group 3 0.368 0.022 

Table 2:2 Complex variation model comparing momentary recovery for continuous QPR scale 

In a similar pattern to the binary baseline recovery variable, there is greater variation in 

momentary recovery for those with lower QPR scores than higher QPR scores.  
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2.2.2.2 ARE THE ‘RIGHT NOW’ VARIABLES CORRELATED WITH RECOVERY?  

Table 2:3 presents the results of the univariate concurrent association models between the 

diary recorded ‘Right now’ variables and recovery.  

  Fixed Effects Random Effects 

Covariate 𝑥𝑖𝑗𝑘   Coeff. Std. Error P value   Variance Std. Error N 

Self Esteem 0.325 0.022 <0.001 Subject 1.009 0.195 2333 

    Day 0.183 0.023  

    Beep  0.420 0.013 

Hopelessness -0.303 0.020 <0.001 Subject 1.009 0.194 2298 

    Day 0.175 0.022  

    Beep  0.19 0.013 

Visual  -0.122 0.024 <0.001 Subject 1.300 0.248 2236 

hallucinations    Day 0.177 0.023  

    Beep 0.444 0.014  

These are  0.165 0.033 <0.001 Subject 1.268 0.398 347 

pleasant    Day 0.068 0.028  

   Beep 0.327 0.028  

Auditory  -0.406 0.019 <0.001 Subject 1.258 0.243 2203 

hallucinations     Day 0.176 0.023  

   Beep  0.443 0.014 

These are  0.128 0.031 <0.001 Subject 1.346 0.368 689 

pleasant    Day 0.196 0.041  

   Beep 0.427 0.026  

Paranoia -0.378 0.023 <0.001 Subject 0.709 0.138 2335 

    Day 0.155 0.020  

   Beep 0.414 0.013  

Deservedness -0.168 0.031 <0.001 Subject 1.269 0.339 913 

    Day 0.324 0.053  

   Beep 0.466 0.024  

Table 2:3 Concurrent associations of Right now variables and recovery 

There are significant associations between each of the ‘Right now’ variables and 

momentary recovery at the 1% level. Higher levels of momentary self-esteem are 

associated with higher recovery while higher levels of hopelessness, hallucinations, 
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paranoia and deservedness are associated with lower recovery scores. However, the more 

pleasant the hallucinations are reported to be the more recovered the participant feels.  

The variance estimates for the random effect for each model suggest that the majority of 

variation in recovery scores is between-person.  

There were significantly fewer observations used for the appraisal of hallucination items 

(N=323 and N=691). These items were only required to be completed if the subject was 

currently experiencing visual or auditory hallucinations, thus there was a large amount of 

missing data. Observations were further reclassified as missing unless the hallucination 

items were scored as 2 or higher (indicating a current hallucination). Similarly, feelings of 

deservedness were only valid if the subject was currently experiencing paranoia, defined as 

scoring a 2 or higher on the corresponding paranoia item, resulting in fewer observations 

for this variable.  

2.2.2.3 IS THERE A TEMPORAL ASSOCIATION BETWEEN THE RIGHT NOW VARIABLES AND 

RECOVERY? 

The results of the univariate lagged analysis between the Right now variables and recovery 

are presented in Table 2:4. 

Comparing the results of Table 2:4 to Table 2:3, the lagged relationships between the Right 

now variables and recovery were weaker than the concurrent association. The associations 

were largely significant at the 5% level, however the appraisal items of hallucinations and 

paranoia were not significantly associated with recovery. 
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 Fixed Effects Random Effects  

Covariate(𝑥𝑖−1,𝑗𝑘) Coeff. Std. Error P value   Variance Std. Error N 

Self Esteem 0.144 0.026 <0.001 Subject 1.164 0.226 1824 

    Day 0.187 0.025  

    Beep 0.418 0.015  

Hopelessness -0.124 0.022 <0.001 Subject 1.190 0.230 1793 

    Day 0.180 0.024  

    Beep 0.418 0.015  

Visual  -0.056 0.028 0.042 Subject 1.288 0.248 1748 

hallucinations    Day 0.164 0.023  

    Beep 0.423 0.016  

These are  -0.030 0.037 0.408 Subject 1.020 0.344 272 

pleasant    Day 0.130 0.049  

   Beep 0.293 0.029  

Auditory  -0.072 0.021 0.001 Subject 1.227 0.239 1730 

hallucinations     Day 0.165 0.023  

   Beep 0.422 0.016  

These are  0.023 0.034 0.506 Subject 1.375 0.390 542 

pleasant    Day 0.180 0.042  

   Beep 0.422 0.029  

Paranoia -0.176 0.026 <0.001 Subject 0.983 0.196 1826 

    Day 0.175 0.024  

   Beep 0.421 0.015  

Deservedness -0.008 0.040 0.831 Subject 1.500 0.411 691 

    Day 0.324 0.060  

   Beep 0.475 0.029  

Table 2:4 Lagged analysis between the Right now variables and recovery 

2.2.2.4 WHAT PREDICTS CHANGE IN RECOVERY? 

Change in recovery was calculated as the difference between recovery at moment 𝑖 − 1 

and recovery at moment 𝑖.  This score was restricted to changes within each day, i.e. 

change in recovery is not calculated between beep 10 of one day and beep 1 of the next 

day. Binary baseline recovery is again included as a covariate in each model.  

The results of the univariate change model are presented in Table 2:5. 
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 Fixed Effects Random Effects  

Covariate (𝑥𝑖−1,𝑗𝑘) Coeff. SE P value Level Variance SE N 

Self Esteem -0.039 0.015 0.011 Person 0.000 0.000 1910 

    Day 0.000 0.000  

    Beep  0.752 0.026  

Hopelessness 0.045 0.014 0.001 Person 0.000 0.000 1879 

    Day 0.000 0.000  

    Beep  0.751 0.025  

Visual  0.024 0.019 0.204 Person 0.000 0.000 1834 

Hallucinations    Day 0.000 0.000  

    Beep 0.763 0.026  

These are -0.121 0.032 <0.001 Person 0.000 0.000 276 

pleasant    Day 0.000 0.000  

    Beep 0.636 0.054  

Auditory  0.000 0.011 0.998 Person 0.000 0.000 1805 

Hallucinations    Day 0.000 0.000  

   Beep  0.759 0.025  

These are  -0.038 0.022 0.086 Person  0.000 0.000 540 

pleasant    Day  0.000 0.000  

    Beep  0.725 0.050  

Paranoia 0.031 0.012 0.008 Person 0.000 0.000 1912 

    Day 0.000 0.000  

   Beep 0.752 0.024  

Deservedness 0.011 0.020 0.588 Person 0.000 0.000 715 

    Day 0.000 0.000  

   Beep 0.805 0.043  

Table 2:5 Change models for Right now variables and recovery 

The fixed effect estimates for these models present unusual directions in the results. 

Increases of self-esteem, in which higher scores relate to higher levels of self-esteem, were 

associated with a decrease in recovery at the following time point. Conversely, increases in 

negatively oriented measures hopelessness and paranoia were associated with an increase 

in recovery, that is, a greater feeling of hopelessness and feeling more paranoid was 

followed by a greater feeling of recovery. These associations are in the opposite direction 

of that anticipated. Furthermore, the subject-level and day-level random effect variances 
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were reduced to zero in these models. These two issues will be discussed further in Chapter 

6. 

2.3 MOTIVATING EXAMPLE: BIPOLAR DISORDER AND CANNABIS USE (TYLER ET AL. 

2015)  

The primary objective of this study was to investigate how cannabis use affects symptoms 

and mood in individuals with bipolar disorder. Specifically, the authors identified 2 main 

hypotheses: 

1. “ frequency of cannabis use will increase  as a function of  affect and BD [bipolar 

disorder] symptom change (i.e. self-medication effects) 

2. cannabis use will be associated with subsequent changes in affect and  BD [bipolar 

disorder] symptoms” 

Twenty-nine participants were recruited into the study, however analysis was conducted 

on a sample for 24: two participants dropped out due to personal reasons and three were 

excluded as they had completed fewer than 20 reports. This exclusion criterion was 

adopted as the validity of assessment may be compromised when less than a third of 

responses are returned (Palmier-Claus, Myin-Germeys et al. 2011). Participants completed 

10 paper diaries a day at “unpredictable times” (pseudo-random intervals) when alerted by 

a digital wristwatch. A response was required within 15 minutes of the signal to be 

considered a reliable assessment of the current moment.  

Each diary contained 10 items relating to affect, such as ‘Right now I feel cheerful’ and 

‘Right now I feel lonely’. Items were rated on a 7-point Likert scales with 1 = ‘not at all’ and 

7 = ‘very much so’. Five items were combined with prorated means to create a positive 

affect score and five to create a negative affect score. Bipolar symptoms were also 

measured in the diary using Likert scales with items including “Right now I feel full of 

energy” and “Right now I feel bad about myself”. Three items were averaged to create a 

mania score, and four items were used to measure depression. Cannabis use was a binary 

variable recorded as “since the last beep I’ve used cannabis” 1=Yes or 0=No.  

This data set will be used in addition to the recovery data set to illustrate methods 

presented throughout the thesis. The recovery data set, however, will feature as the 

primary motivating example and as such further particulars of the cannabis and bipolar 
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analysis will not be presented here. Details of the models and results can be found in our 

published paper Tyler, Jones et al. (2015).   
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3 SYSTEMATIC REVIEW 

3.1 AIMS OF REVIEW 

A systematic review was conducted to determine the methodology being reported in 

studies using ESM. Unlike a traditional systematic review which might focus on the results 

of subset of papers in a particular field, the intentions of this review were to investigate 

which fields of research use ESM and examine their statistical methods and quality of their 

statistical reporting. The primary objective was to record what type of research questions 

were being investigated and which statistical methods were being used to analyse the data. 

Furthermore, the review aimed to establish the consistency of reporting in ESM studies in 

terms of design and analysis. Also of interest was whether any justification for sample size 

was provided. The data extraction form can be found in Appendix 2: Systematic review. 

3.2 DESIGN OF REVIEW 

The databases PubMed and Medline were used to search for published articles using the 

keywords “experience sampling” or “ecological momentary” in the title or abstract. 

‘Ecological momentary’ was used as a search term as ESM is also referred to Ecological 

Momentary Assessment (EMA) (Shiffman and Stone 1998). The search was refined to 

exclude ‘review’ publication types and, due to the limited timeframe to conduct the review, 

to only include English language papers. These search criteria returned a total of 573 

references from Medline and 641 references from PubMed (search carried out on 

11/2/13). The two lists of references were combined in Endnote and duplicates were 

automatically removed. A manual screening of the references identified duplicates missed 

by Endnote and resulted in final sample of 659 papers.  

Titles and abstracts were then screened and refined by a series of exclusion criteria: 

1) Articles must be published journal articles, rather than published abstracts. 

2) Exclude reviews or meta-analyses of ESM studies  

3) Articles should describe a study using ESM, i.e. exclude papers only discussing the 

concepts or benefits of ESM, or discussing it as a method to use in future work. 

4) Of the studies using ESM, exclude: 

a. pilot studies 

b. studies where ESM is not the primary focus of the study 
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c. studies where ESM is used to validate a measure or comparing ESM items 

against a traditional measure 

d. those assessing feasibility of a future study or investigating compliance to 

the procedure 

e. those used to assess recall bias. 

The number excluded due to each of these criteria can be seen in Figure 3:1. 

The exclusion criteria were chosen to ensure the final sample of papers would be 

comparable in terms of the information they contain regarding the ESM procedure and the 

models used for analysis. Pilot studies, though containing details on ESM procedure, may 

not analyse the data gathered. Similarly feasibility studies where the focus would more 

likely be on compliance. Studies where ESM is not the primary focus may not give sufficient 

details about the ESM procedure or analyse the ESM results. Where ESM was used to 

validate measures or to be compared to a singularly administered questionnaire, the 

analysis would likely aggregate the ESM data to compare to the other questionnaire – this 

type of analysis is not of interest for this work. Likewise, studies addressing recall bias were 

excluded as these studies would also be expected to aggregate ESM data to compare with a 

questionnaire. 

3.3 RESULTS OF SYSTEMATIC REVIEW 

Once the abstracts had been screened and studies excluded under these conditions, there 

were 459 eligible studies. Within the four month timeframe allocated for this review, 

reading and extracting data from all these papers would have not been possible so the 

search was further refined to only include papers published in 2012. This would capture 

papers ideally presenting the most up to date methods for analysing data of this structure. 

Although this refinement would likely limit the results to studies using multilevel models, 

and thus not pick up on the change in statistical methodology applied to this type of data, it 

would not detract too much from the original intentions of this review. Instead of 

investigating the range of methods used for analysis, knowing that multilevel models are 

better suited to ESM data than regular linear regression, say, the focus will be on the 

studies not using this methodology and the details provided by those that do. This left 91 

eligible studies 
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There were 49 studies due to be screened for a second time to determine eligibility before 

the full text screening. This group does not include any 2012 papers and so does not affect 

the results of this review.  

After reviewing the full papers, two were excluded as ineligible as defined by points (1-4) 

above and 16 were excluded as they were not print publications in 2012; some papers 

published online in 2012 were not initially excluded. The final sample of papers included in 

the review was 74. This final sample contains 74 studies rather than 73 as one paper 

(LePage, Price et al. 2012) contains the results of two different ESM studies and so these 

studies have been recorded separately. 

Screening and data extraction was only carried out by one reviewer. While it is advisable 

that a proportion of papers are double entered to identify inconsistencies in classification 

or data extraction, this was not feasible in the current study. It is argued that repeatability 

of this process is not a major concern in the present research as this review was conducted 

in order to aid the investigation of contemporary methods of ESM, rather than to provide a 

comprehensive summary of all published ESM studies.    
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Figure 3:1 Systematic review flow of studies diagram 

  

Duplicates 
removed 

519 
Combined 

659 

PubMed 

641 

Medline 

537 

First sift 

459 

Excluded 

Failed exclusion criteria 1-
3: 57 
Feasibility: 47 
Recall: 12 
Validate: 17 
Pilot: 4 
Not main focus: 14 

Unsure: 49 – all prior to 
2012 

Full texts screened 
2012 Articles 

91 Excluded 

Not 2012 print: 16 
Exclusion criteria: 

Validate: 1 
Feasibility: 1 

Final sample 

74 

 

Id
en

ti
fi

ca
ti

o
n

 
El

ig
ib

ili
ty

 
Sc

re
en

in
g 

In
cl

u
d

ed
 



50 
 

3.3.1 OVERVIEW OF STUDIES 

The final papers were from a broad range of research areas and covered all ESM designs. 

Though mostly within the field of psychology other areas were represented, for example 

two papers used ESM to monitor biological mechanisms and three used the method to 

study flow, or optimal experience. A full list of research areas is given in Appendix 2: 

Systematic review. 

Only four studies (5.48%) were classed as a randomised trial, though 22 (29.73%) were 

described as having used a control or a comparison group, for example drug users and non-

drug users.  

The majority of studies used either a paper diary (29.73%) or a type of handheld computer 

(or PDA) (50%). Seven studies used a phone to deliver questions: either by text message 

(1.35%), calling participants (5.41%) or using a programmed application on smart phone 

(2.70%). Four studies (5.41%) asked participants to complete an online questionnaire as the 

ESM method. Only one paper (Bolt, Piper et al. 2012) gave no description of method, 

referring only to “ESM reports”.  

The ESM design was classified as either random, interval or event contingent. Many studies 

used a combination design: six as either event plus random (8.11%), two interval plus 

random (2.70%), five event plus interval (6.76%) and five using all three prompts (6.76%). 

Of those employing a single contingent design, the majority chose a random design (50%), 

which was defined as those specifying a random or stratified block random structure. 

Twelve used an interval design (12.16%) which also included those specifying a random 

structure around fixed time points, for example up to 10 minutes either side fixed points, 

on guidance  of Delespaul (1995). Only four studies used an event only design (5.41%).  

ESM can be used in conjunction with ambulatory assessment to record physical symptoms 

alongside psychological symptoms and behaviours. Only seven studies from the review 

recorded using a form of ambulatory assessment:  three using an accelerometer (4.05%), 

one measuring ambulatory blood pressure (1.35%), one using an electrocardiogram to 

measure heart rate variability (1.35%) and two collecting saliva samples to monitor cortisol 

levels (2.70%).  
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 N % 

Randomised trial   

Yes  4 5.41 

No 70 94.59 

Control group used   

Yes 22 29.73 

No 52 70.27 

Data collection method   

Paper booklet 22 29.73 

PDA 37 50.00 

Phone – text  1 1.35 

Phone – call 4 5.41 

Phone – app 2 2.70 

Internet 4 5.41 

Other 3 4.05 

No method reported 1 1.35 

ESM design   

Event (E) 4 5.41 

Interval (I) 9 12.16 

Random (R) 37 50.00 

Mix - E&R 6 8.11 

Mix - I&R 2 2.70 

Mix - E&I 5 6.76 

Mix - I, R & E 5 6.76 

No design reported 6 8.11 

Ambulatory assessment (AA) used   

Yes  7 9.46 

No  76 90.45 

 AA type   

 Accelerometer 3 4.05 

 bloody pressure monitor 1 1.35 

 Electrocardiogram 1 1.35 

 Saliva sample 2 2.70 

Table 3:1 Overview of published 2012 studies 
 



52 
 

3.3.2 SAMPLE SIZE AND ADHERENCE TO PROTOCOL 

The number of participants ranged between 13 to 1504, with a mean of 169.8 (SD 255.03), 

median 85. Participants were monitored for an average of 13.4 days (range 1-175), though 

the majority of studies used a 7 day or ’1 week’ measurement period (22.97 %). The 

number of measurement taken per day was harder to define in event contingent or mixed 

designs and when the number of measurements varied per day or were dependent on 

previous responses. 47 studies gave a clear description of the number of measurements 

taken per day, with all but one study using between 1 and 12 measurements; only Koval 

and Kuppens (2012) used more, requesting participants complete 60 measures a day for 

two days.   

Only one study (Myers, Ridolfi et al. 2012) mentioned any type of sample size calculation. 

Though not a formal calculation formula, Myers provided a justification for the sample size 

and number of observations chosen and conducted a post hoc power analysis using the 

software PINT (Power in two-level designs) (Snijders and Bosker 1993) to confirm sufficient 

power.    

Compliance and missing data were unclearly defined in studies. For mixed designs 

adherence was gathered on either the random or interval prompts. Data was either not 

available or not clear for 33 studies, however the remaining studies had an average 

(median) compliance of 80.2%, ranging from 30% to ‘over 99%’ (Bruehl, Liu et al. 2012). Of 

those acknowledging missing data (63.51%) only five studies indicated the method used to 

address this issue: Giesbrecht, Campbell et al. (2012) estimates missing data using “full 

information maximum likelihood”, Forbes, Stepp et al. (2012) note that the expectation 

maximization (EM) algorithm used to estimate their linear growth curve model can 

accommodate missing data,  Mak, Prynne et al. (2012) use a “complete case analysis”, 

while Elavsky, Molenaar et al. (2012)  states “the standard time series technique” for 

missing data was used. 

Compensation was recorded to provide a measure of incentive to comply with protocol. 

Compensation was defined as either monetary payment or course credit for student 

populations. It was also recorded if additional compensation was given for complying with 

protocol and returning a predetermined number of questionnaires. 51.35% of studies 

offered some form of compensation with 16 studies (21.62%) offering further rewards for 

high compliance. Comparing this with the adherence figures, mean percentage compliance 
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for those receiving and not receiving compensation for participating in the study was 73.3% 

and 78.5% respectively. A t-test determined no significant difference between the two 

groups (p value = 0.367). Similarly, compliance rates for those receiving additional rewards 

for high levels of completion were not statistically different than those not receiving extra 

(mean difference -1.94, p value=0.740). These results indicate that it might not be 

necessary to offer compensation to secure high compliance, an interesting contrast to 

results of other studies (for a review see Morren, van Dulmen et al. (2009)).    

3.3.3 FACTOR ANALYSIS AND CRONBACH’S ALPHA 

Eleven studies (14.9%) carried out a factor analysis on ESM items, only one of which (Yeh, 

McCarthy et al. 2012) accounted for the multilevel structure. However, in most cases this 

was purely confirmatory, with only Menne-Lothmann, Jacobs et al. (2012) weighting the 

items according to their factor loadings, potentially biasing their results. A further six 

studies used a principal components analysis to group ESM items and twenty six (35.1%) 

studies used Cronbach’s alpha to justify subscales created from ESM items, none 

commenting on how the repeated measures might affect estimates of alpha.   

3.3.4 TYPES OF RESEARCH QUESTIONS 

Research questions were recorded and the questions categorised into the following 

classifications: association; temporal association; group differences; response to treatment; 

predictors or risk factors; mediation and moderation. As studies often define multiple 

research questions per paper, the two most prominent ques6tions were recorded for each 

study if more than one were outlined. These have all been grouped in Table 3:2 to give an 

indication of all research questions. Frequencies are given but without percentages as only 

46 studies defined two questions.  
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Research Question Frequency 

Association 46 

Temporal association 9 

Group difference 11 

Response to treatment 3 

Predictors or risk factors 4 

Mediation 7 

Moderation 24 

Change in outcome 3 

Variation in outcome 5 

Other 5 

Table 3:2 Research questions identified in the review 

In the ‘other’ category questions include using ESM to monitor or count events (3), to 

measure time to relapse (1) and using instability in the explanatory variable to predict 

outcome (1).  

Eight studies investigated temporal associations. Of these, four examined how mood 

changed in response to an event. Wichers, Peeters et al. (2012) defined this event as the 

largest within-day increase in positive affect and Wichers, Lothmann et al. (2012) as an 

increase in physical activity between two moments (𝑡 − 1, 𝑡), while Munsch, Meyer et al. 

(2012) and Muller, Mitchell et al. (2012) investigated how mood changed in the time 

preceding and following binge eating and compulsive buying events. These studies used 

multilevel models to examine how mood changes as a function of time, measured as hours 

or moments from the event.  Buckner, Crosby et al. (2012) uses a simpler method, lagging 

the covariate of interest to see how 𝑥 at time 𝑡 − 1 effects outcome at the following 

moment 𝑡. Similarly, Elavsky, Molenaar et al. (2012) uses lagged covariates within a cross-

lagged dynamic model, treating the ESM data as time series to study within-subject 

variation with separate analyses for each individual. Oorschot, Lataster et al. (2012) also 

treated the data as time series using a vector autoregressive model, a multivariate time 

series technique used to study bidirectional associations. Finally, Shiyko, Lanza et al. (2012) 

uses a time-varying effects model.   

Variation or instability of outcome was analysed in five studies, each defining variation in 

different ways. Udachina, Varese et al. (2012)  and Peters, Lataster et al. (2012) both 
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calculated the difference between successive observations, Peters using the absolute 

difference. An average of these differences was then taken across all time points, providing 

a single variability score for each participant. This method was also used by Palmier-Claus, 

Taylor et al. (2012), where the difference was squared, when calculating instability in a 

covariate used to predict outcome. Selby, Doyle et al. (2012) and Demiralp, Thompson et 

al. (2012) use more standard measures of variability: Selby et al calculating the standard 

deviation for the daily average of ESM reports, resulting in 2 level data which was analysed 

using MLM, while Demiralp et al. used the variance of the average outcome measured 

across all time points and a 2-way ANOVA to test for group differences. Finally, McCabe 

and Fleeson (2012) discussed the ‘within-person and between-person variation’ using the 

ICC and although referred to predicting variation in outcome appeared to predict an 

unadjusted ESM variable as outcome using a multilevel model.  

Change in outcome was also addressed differently by each study. Mata, Thompson et al. 

(2012) used a change score (𝑦𝑖𝑗(𝑡+1) − 𝑦𝑖𝑗(𝑡)) as outcome where as Kuppens, Champagne 

et al. (2012) used a lagged outcome variable as a covariate, referring to the model as an 

‘autocorrelation-crosscorrelation regression model’. Giesbrecht, Letourneau et al. (2012) 

were interested in how positive and negative affect changed over the course of pregnancy, 

which was modelled using a quadratic function of gestational age in a multilevel model.   

3.3.5 ANALYSIS METHOD 

The method of analysis was recorded from each paper along with any details of the model 

specified. As expected, the majority of papers used some form of multilevel or random 

effects model. For simplicity, variation of ‘multilevel models’, ‘linear mixed models’ and 

‘random effects models’ will all be categorised as ‘multilevel models’. As with research 

questions, multiple analysis models were used in each paper. The primary analysis model 

determined from each paper is listed in Table 3:3. 

Though the primary analysis for over two thirds of studies (70.27%) uses multilevel models, 

some studies employed methods which underutilize the multilevel structure of ESM data. 

Seven studies chose to aggregate their data to the person level and use methods suitable 

for single level data.  
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Method N % 

Multilevel model 52 70.27 

2-way ANOVA 1 1.35 

T-test 1 1.35 

Correlation 2 2.70 

Regression 4 5.41 

Regression controlling for clusters 1 1.35 

Generalized estimating equations 3 4.05 

Latent growth curve model 1 1.35 

Latent variable model 1 1.35 

Structural equation model 2 2.70 

Mixed design ANOVA 1 1.35 

Experience fluctuation model 2 2.70 

Time Varying Effect Model 1 1.35 

Vector autoregressive (VAR) modelling 1 1.35 

Times series model 1 1.35 

Table 3:3 Primary analysis method identified in the review 

Of those fitting multilevel models, the majority used random intercept models (67.3%).  

Only ten of these studies specifically stated the use of a random intercept model, the other 

25 were presumed to be a random intercept model as no other random effects were 

mentioned. Of the remaining, twelve (23.1%) were random coefficient models and three 

(5.8%) were random slope models (where time, rather than a measured covariate was 

allowed to vary). One study (Giesbrecht, Letourneau et al. 2012) specified a multilevel 

model but that “results are based on estimation of fixed effects with robust standard 

errors” and one study was unclear (Cook, Calcagno et al. 2012), stating they “allowed all 

effects to vary randomly” but later referring only to tests of fixed effects. Most studies 

using multilevel models analysed their data in a two level structure (86.5%), though a 

minority specified three levels (13.5%).  

3.3.5.1 LAGGED OUTCOME 

Six studies using multilevel models include the lagged outcome variable a covariate. 

Kuppens et al (2012) (Kuppens, Champagne et al. 2012) used the lagged outcome to model 

change between time 𝑡 − 1 and 𝑡, whilst Elavsky et al. (2012) (Elavsky, Molenaar et al. 
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2012) used the lag outcome  within a time series analysis to “reflect the stability of [the 

outcome] across days”.  Goldschmidt, Engel et al. (2012) and Ben-Zeev, Young et al. (2012) 

provide no justification for including the lagged outcome other than to adjust for outcome 

at the previous time point, while Udachina, Varese et al. (2012) included it as “possible 

confounder” when examining the relationship between paranoia at time 𝑡 and self-esteem 

at time 𝑡 + 1. To, Fisher et al. (2012) state that the lagged outcome is included to account 

for the residual autocorrelation at level 1 and similarly Koval and Kuppens (2012) refer to 

the random slope of the lagged outcome as an autocorrelation parameter.  

Bias due to the violation of the exogeneity assumption may be present when including a 

lagged outcome as a covariate (as will be discussed in Chapter 6), however, none of studies 

discussed any potential methodological issues to this effect. 

3.3.5.2 AUTOCORRELATION 

Only twelve studies (16.2%) attempted to model autocorrelated residuals at level 1. Two 

studies (Koval and Kuppens 2012; To, Fisher et al. 2012) used lagged outcome variables, 

Oorschot, Lataster et al. (2012) using  a vector autoregressive model and the remainder 

specifying an alternative level 1 covariance structure. Each of these studies used a first 

order autoregressive structure, with Schwerdtfeger and Scheel (2012) stipulating a 

continuous AR(1) structure and Goldschmidt, Engel et al. (2012) a heterogeneous AR(1) 

structure.   

3.4 DISCUSSION OF SYSTEMATIC REVIEW 

The reporting of ESM specific details were fairly consistent; only minimal missing data in 

terms of prompting and recording (1.4% missing number moments, 2.7% missing number 

days, 1.4% missing data collection method and 8% missing sampling method), though 

details on compliance and missing data were low. Whilst all studies reported at least one 

form of analysis method, those applying multilevel models gave varying levels of 

information on model specifics, with many not specifying the random effects of the model 

and even fewer reporting these in the results. Finally, there was a clear lack of sample size 

justifications or power calculations.  

Guidance for conducting and reporting ESM studies is available within the psychological 

literature (Stone and Shiffman 2002; Palmier-Claus, Myin-Germeys et al. 2011), but 



58 
 

perhaps more specific guidelines are needed on power and sample size calculations for 

ESM studies and how to thoroughly report statistical models used in ESM analysis.  

Although the majority of studies used multilevel models, several studies still chose to 

analyse their data using non-multilevel methods. The limitations of these methods are as 

follows. Firstly, though appropriate for multilevel data, generalized estimating equations 

(GEE) provide population average effects, i.e. the effect of 𝑥 for the average person, rather 

than within-subject effects as in some multilevel models. Gardiner, Luo et al. (2009) argues 

that these interpretations are equivalent for linear models, including those specifying an 

autoregressive covariance structure. However, when using a GEE model to predict a binary 

outcome the results are not equal to those using a multilevel model and must be 

interpreted as population specific effects. A benefit of GEE models is they are robust to 

misspecified covariance structures, however they do not provide estimates of the variation 

at each level and so can’t be used to interpret within- and between-person variability or to 

investigate complex covariance structures at level 1.  

Aggregating ESM data to the subject-level ignored potentially interesting information 

captured within-subject. Moreover, conducting ANOVA or regression analysis on 

aggregated data poses problems as the heterogeneity assumption of these models is 

violated when there is missing data at the lowest level (Schwartz and Stone 1998), as there 

is sampling variation when data with missing values are averaged at a higher level. This is 

also a problem for using a mixed design ANOVA, as aggregating incomplete data to higher 

levels will violate the heterogeneity assumption of this method. Mixed design ANOVA also 

assumes a compound symmetry covariance structure which may not be appropriate for 

this data.  

This review has revealed that although multilevel models are being used to analyse ESM 

data, models are not consistent for similar research questions and have the potential to be 

more statistically sophisticated. Furthermore, statistical issues such as the use of lagged 

outcomes and misspecified covariance structures are not being considered.  
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4 MISSING DATA IN ESM RESEARCH  

Missing data can occur in all types of research but it can be particularly prevalent in 

longitudinal studies where participants are subject to multiple follow ups over time. ESM 

studies are especially vulnerable: participants are required to complete questionnaires 

unsupervised, multiple times a day over several days, all while continuing with their usual 

daily routine. Absolute compliance, where all the data is collected as intended, is unlikely, 

with prompts missed due to the demands of everyday life or as a result of the intensive 

sampling procedure becoming too burdensome. Although ESM study design typically 

includes an element of participant training in the data collection method and consent 

regarding the intensive sampling procedure, the self-reported design means that data 

quality is entirely subject to the participant’s adherence to the study protocol.  

This chapter will discuss missing data in ESM research and how to investigate nonresponse 

in this type of data structure. Firstly, the reporting of missing data in ESM research 

identified in the systematic review will be discussed, followed by an exploration of missing 

data in the recovery study data. Missing data methodology will then be introduced, with 

applications to an ESM setting. 

4.1 SYSTEMATIC REVIEW: ADHERENCE TO PROTOCOL AND MISSING DATA  

One aim of the systematic review of ESM studies presented in Chapter 3 was to identify 

how missing data was being reported and to establish the extent of missingness present in 

this intensive longitudinal data structure. 

Overall, missing data was underreported in the ESM studies reviewed, with 28 of the 74 

studies (38%) failing to comment on the completeness of the data at all. A further five 

papers reported that the data were incomplete but did not quantify the amount of missing 

data. The 41 studies providing data on nonresponse typically reported in terms of 

adherence to protocol or ‘compliance’ rather than nonresponse, presenting the percentage 

of planned prompts which were completed. These studies had a wide range of adherence 

rates: from 30% to “over 99%” (Bruehl et al, 2012) – this is illustrated in Figure 4:1. It 

should be noted, however, that these figures include a mixture of reporting styles: some 

papers presenting total compliance figures, others an average of responses across subjects. 

When the number of diaries administered per subject is equal these rates are 

interchangeable, however if the sampling scheme varies for each subject the total and 

average rates will differ.  With a heavy negative skew, the median compliance rate was 
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80.2%. The observed cut off of 30% is likely due to the common inclusion criteria of 

requiring each subject to return approximately one third of the prompts to be considered 

valid; of the studies contributing to these compliance figures, 13 studies (32%) required a 

minimum number of items or moments completed to be included.   

Determining the amount of missing data in an ESM study may be problematic due to the 

study design. Event based sampling requires a diary to be completed only after the subject 

experiences a specific event, for example after smoking a cigarette. With this design there 

is no expected number of diaries to be completed and often no record of any missed 

events. Of the 33 studies not reporting adherence figures, three used event based designs. 

A further seven reported using a combination of event plus interval or signalled prompts. 

Where adherence rates were reported in a mixed design, these were taken to be the 

percentage of non-event, expected prompts completed.   

 

 

Figure 4:1 Compliance rates in systematic review (n=41) 

 

The definition of compliance or adherence in these ESM papers was ambiguous.  Authors 

refer to the number of ‘valid’ (e.g. Wichers et al 2012) or ‘usable’ (e.g. Walsh et al 2012) 

questionnaires completed without defining these terms. Moreover, the extent of missing 

items within each diary was not reported in any paper, and so it remains unclear as to 

whether a ‘completed’ questionnaire refers to those with at least one item completed, 

certain specific items completed, or all items completed.   

Approaches to missing data were very rarely discussed by the papers in the review. Only 

five studies expanded on basic compliance figures:  Giesbrecht, Campbell et al. (2012) 
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reported estimating missing data using full information maximum likelihood; Forbes, Stepp 

et al. (2012) noted that the expectation maximization (EM) algorithm used to estimate 

their linear growth curve model “handled” the missing data;  Mak, Prynne et al. (2012) 

used a complete case analysis; while Elavsky, Molenaar et al. (2012)  stated “the standard 

time series technique” for missing data was used. Though providing comment on how 

missing data was accommodated, none of these papers presented details or assumptions 

beyond the descriptions above, nor commented on any assumptions these methods 

require. The remaining studies provided no details on how missing data was addressed. No 

studies reported imputing missing data or investigating missing data mechanisms.  

4.1.1 EXAMPLES OF NONRESPONSE IN ESM DATA 

Investigating the cause of missingness in ESM studies does not appear to be widely 

practiced, however two papers have been published explicitly examined missing data in an 

ESM context. Though not methodology papers, they both detail procedures for exploring 

the missing data mechanism. Silvia, Kwapil et al. (2013) focused on how momentarily 

measured symptom dimensions affect nonresponse in their study of 450 university 

students, where data were pooled from several smaller studies. Their participants 

completed eight diaries a day via a PDA for seven days. After each randomly timed alert, 

participants has five minutes to complete the questionnaire before it was declared a 

nonresponse. Participants were incentivised with a draw for a $100 gift card for those who 

responded to at least 70% of signals. The authors generated a binary variable denoting 

momentary missingness, and regressed this on a series of within- and between-subject 

factors using two-level logistic models. Within-subject models investigated whether time of 

day or day of study predicted missingness; in separate models, moment number and day 

number were entered as linear and quadratic terms to study time trends in missingness. All 

measures of time were found to be statistically significant, suggesting that both the within- 

and between-day trends in missing data follow “an inverted-U” pattern with fewer missed 

signals in the morning and evening, and fewer missed beeps at the start and end of the 

week. To investigate how emotional states might affect compliance, the authors fitted a 

two-level model with eight emotions and experiences (such as “Right now I feel happy”, “I 

am currently alone”) at the previous beep predicting missingness at the current beep.  In 

this model only one variable was statistically significant – I feel enthusiastic - with an odds 

ratio 𝑂𝑅 = 1.05 suggesting that higher feelings of enthusiasm were followed with a 

greater odds of subsequent missing data. Several subject-level variables also predicted 

nonresponse, with males significantly less likely to respond to prompts than women and 
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subjects with higher scores of positive schizotypy, depression and hypomania measured at 

baseline less likely to respond to prompts.  

Messiah, Grondin et al. (2011) also explored predictors of nonresponse in their study of 

psychoactive substance use. Five diaries per day were completed on handheld computers 

by 224 university students at fixed time intervals for seven days. Each questionnaire was 

available for 45 minutes before being classified as missing. A total of 13.8% of diaries were 

uncompleted. Two-level logistic regression models were used to investigate predictors of 

missingness which included subject-level variables such as gender, age, temperament and 

character scores, as well as within-subject time variables: calendar day, day number and 

within-day time windows. As in Sylvia et al.’s paper, the outcome of interest was a missed 

moment, both studies using electronic data collection devices where nonresponse could be 

defined as an unanswered diary after the prompt. In this study, time was only entered as a 

linear term and each variable analysed as a categorical variable. A variety of subject level 

variables were found to significantly predict the increased odds of missing data, including 

gender (male vs female), degree course and drug consumption. Chronological day number 

(with day 1 as reference category) indicated a significant decreased odds of nonresponse at 

days 2, 3, 4 and 6 while within-day fewer diaries were completed in the morning (8am – 

11am) compared to the evening (8pm – 11pm). 

Both papers emphasise that steps should be taken during data collection to minimise 

nonresponse, for example meeting with or contacting participants during the study and 

using convenient data collection devices. Where predictors of nonresponse are known, 

particular attention can be paid to subgroups of participants to encourage adherence to 

protocol. A second conclusion of each paper was regarding appropriate statistical analysis 

in the presence of missing data. Silvia et al argued that future studies should control for 

known predictors of missingness to satisfy the missing at random assumption when using 

maximum likelihood estimation. Although finding several predictors of nonresponse in 

their population, the authors suggest that at the very least future studies should consider 

controlling for time of day in their analysis. Messiah et al, on the other hand, naively 

contended that their results were evidence of non-ignorable missingness after finding 

nonresponse was related to the topic of interest: a greater amount of missing data was 

present for poly-substance drug users, similar to the findings of Litt, Cooney et al. (1998) in 

their study of alcoholics. However, the fact that they are able to model this relationship 

with the observed data makes it necessarily ignorable. Including the variable measuring 
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drug use in their model would satisfy the missing at random assumption required for 

maximum likelihood estimation to be valid, and would not require an alternative modelling 

procedure as suggested.  

4.2 NONRESPONSE IN THE RECOVERY EXAMPLE 

This section will use the recovery study data to provide an example of missing data in an 

ESM setting. Suggestions will be given on possible ways to summarize missing ESM data, 

both numerically and graphically, as well as methods for understanding how missing data 

varies and how it can be investigated further.  

With its complex data structure, ESM has the potential for missing data at several levels; to 

succinctly summarize this multilevel nonresponse, new terms for categorising missing data 

in ESM studies will be defined as follows.  

Item nonresponse will refer to missing data at the item level, i.e. the proportion of 

uncompleted questions within a diary. This may be expressed as total item nonresponse – 

the proportion of missing items overall – or as average item nonresponse, describing the 

average proportion of missed items within a diary. Succinctly summarizing item 

nonresponse is challenging. Possible approaches will be presented in this chapter. 

Moment nonresponse will refer to missing data at the moment level, that is, the 

proportion of uncompleted diaries. Again this may be expressed in terms of total moment 

nonresponse or as an average per subject. The definition of moment nonresponse will 

depend on what is considered a ‘completed’ diary, to be defined in terms of item 

nonresponse. An intuitive definition would be to class a diary as uncompleted if all items 

are missing. However, the reciprocal of this is to define a diary as ‘completed’ if at least one 

item has been answered. The argument of response validity holds here as when requiring a 

minimum overall response rate: when only one item has been completed, is the response 

actually representative of the current experience? If one argues for a minimum response 

rate overall for validity then an alternative moment nonresponse definition might be 

required. This does, however, then rely on the researcher’s discretion to define a 

somewhat arbitrary cut-off point in terms of within-diary item completion.  

Day nonresponse will be the proportion of missing data at the day level either overall or by 

subject, occurring when all dairies are considered missing in a day.  



64 
 

Complete nonresponse is a subject-level definition of missingness, where no diaries are 

considered complete.  

4.2.1 COMPLETE NONRESPONSE 

Two subjects returned no data for the entire sampling period. These will be removed from 

the sample. The following summaries will therefore be the amount of missing data for the 

remaining 68 subjects who completed at least one item during the six day sampling period 

4.2.2 ITEM NONRESPONSE 

Each ESM diary in this study consists of 50 questions designed to establish current 

behaviours and states of mind. A full summary of item nonresponse can be found in the 

table of Appendix 3: Missing data. However, while some of these items stand alone, the 

majority of items were combined to create specific measures. For example, the four items 

“I feel cheerful/excited/relaxed/satisfied” were grouped to create a measure of positive 

mood, or affect. As these total measures rather than the individual component items were 

of primary interest, item nonresponse will be defined as an uncomplete measure rather 

than its component questions. It should be noted, however, that as measures were 

computed as the pro-rated mean of the item scores, only half of the items per measure 

were required to produce a mean score. It was thus possible for a measure to be 

considered ‘complete’ while some of its component items were missing. Table 4:1 

summarizes the proportion of missing data for the main ESM measures.  Each column of 

the table presents the percentage of missing data for each measure at each time point, 

averaged across all days, provided that at least one item was completed in a diary. The 

percentages represent the proportion of missing data at each time point, conditional on 

the diary having being answered. That is, the percentage of items left incomplete for the 

subset of diaries where at least one item had been answered on any scale at that moment.  

Partitioning the data in this way helps to differentiate item nonresponse from moment 

nonresponse.  Therefore the resulting data can be used to compare nonresponse across 

measures by reading down the table, to examine patterns of item nonresponse, as well as 

illustrating any trends in missing data by reading across the table.  
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 Beep Number   

 1 2 3 4 5 6 7 8 9 10 Total 

 (n=408) (n=408) (n=408) (n=408) (n=408) (n=408) (n=408) (n=408) (n=408) (n=408) (n=4080) 

Moment nonresponse 48% 43% 36% 36% 33% 32% 30% 31% 38% 42% 37% 

Item nonresponse (n=213) (n=232) (n=263) (n=261) (n=275) (n=279) (n=285) (n=280) (n=254) (n=236) (n=2578) 

Self-esteem 4% 5% 4% 4% 3% 2% 2% 2% 2% 1% 3% 

Hopelessness 8% 6% 5% 5% 5% 5% 4% 3% 4% 1% 5% 

Paranoia 4% 4% 3% 3% 3% 1% 1% 1% 1% 1% 2% 

 Deservedness 62% 60% 65% 62% 64% 60% 61% 64% 63% 60% 62% 

 (N/A removed)1 4% 5% 4% 5% 4% 3% 2% 4% 2% 2% 3% 

Visual Hallucinations 7% 8% 8% 7% 8% 5% 6% 5% 4% 2% 6% 

 Pleasantness 86% 85% 87% 85% 86% 85% 85% 84% 86% 87% 86% 

 (N/A removed) 6% 6% 8% 7% 7% 5% 6% 5% 4% 2% 6% 

Auditory Hallucinations 7% 9% 9% 8% 9% 7% 6% 8% 7% 8% 8% 

 Pleasantness 75% 75% 74% 70% 75% 71% 68% 73% 70% 73% 72% 

 (N/A removed) 7% 9% 10% 9% 9% 6% 6% 8% 6% 8% 8% 

Recovery 8% 5% 5% 5% 3% 3% 2% 3% 2% 2% 4% 

Table 4:1 Recovery data - Percentage missing data conditional on momentary response and that at least one item completed within the whole sampling period: IDs 37 and 

51 dropped. 

                                                           
1
 Deservedness and Pleasantness items originally contained a not applicable missing value for when no corresponding paranoia or hallucinations were currently observed. 

The N/A removed percentages thus represent missing branched items where the original item was rated > 1. 
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The results indicate that item nonresponse conditional on momentary response is low: 

diaries are more likely to be missing completely than sparsely filled. The presence of some 

item level missingness, however, does demonstrate a degree of selective reporting in 

‘completed’ diaries. Moreover, as better expressed through Figure 4:2 and Figure 4:3, 

certain items are more consistently left unanswered than others. Though the difference in 

magnitude is small, visual and auditory hallucination items are unanswered more than the 

other measures, both within-day and across the week. While it can only be speculated, it 

may be possible that these items are skipped when subjects are not currently experiencing 

a hallucinatory event rather than being given a null score.  Selective item reporting is more 

prominent in the bipolar study data, where cannabis use is much more often recorded than 

items relating to mood or symptoms (Figure 4:4 and Figure 4:5). 

The low level of missing data for each item is relatively consistent, with no clear indication 

of drop-off towards the end of the questionnaire (comparing the table rows). Recovery, the 

final three items of the questionnaire for example, has similar levels of nonresponse as self-

esteem which is positioned towards the start, though the level of missing recovery is 

slightly elevated on Day 1. There are no striking time trends in nonresponse, though item 

completion seems to improve slightly  for Hopelessness and Recovery towards the end of 

the day and for most items towards the end of the week (see Figure 4:2 and Figure 4:3), 

though this is likely due to the increase in moment nonresponse observed, resulting in 

fewer partially completed questionnaires.    

Deservedness and the two Pleasantness items exhibited consistent, high levels of 

nonresponse across both the day and the week. However, these three items were the 

second stage of conditional branching providing additional information on their preceding 

items. Deservedness quantified how deserving the subjects felt of their current paranoid 

thoughts, while pleasantness appraised their current hallucinations (unpleasant to 

pleasant). As such, if the main item is given a null score or is missing the subsequent item is 

not applicable. If the non-applicable answers are recoded to remove them from those not 

reported, the proportion of missing data for these items reduces dramatically (row N/A 

removed in Table 4:1). 
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Figure 4:2 Proportion of item nonresponse at 

each beep, conditional on event response. 

Recovery data 

 

Figure 4:3 Proportion of item nonresponse on 

each day, conditional on event response. 

Recovery data 

 

Figure 4:4 Proportion of item nonresponse at 

each beep, conditional on event response. 

Bipolar data 

 

Figure 4:5 Proportion of item nonresponse on 

each day, conditional on event response. Bipolar 

data 

 

 

In this study the phrasing of the deservedness items were particularly ambiguous and 

resulted in inconsistent reporting: these items often scored at strong positive or negative 

feelings of deservedness during moments when no paranoia was observed. These items 

perhaps captured a more global feeling of deservedness of paranoid thoughts, rather than 

momentary reflections on current feelings. Care should thus be taken when making 

inference on this measure as it may not be ecologically valid.  

4.2.3 MOMENT NONRESPONSE   

For the recovery data moment nonresponse was classified as all 50 items of the diary being 

incomplete. An alternative was to define moment nonresponse when the primary outcome 

variable recovery was missing, however, as item nonresponse was low in this data there 

0

.0
2

.0
4

.0
6

.0
8

.1

P
ro

p
o

rt
io

n
 M

is
s
in

g

1 2 3 4 5 6 7 8 9 10
Beep number

Self-esteem Hopelessness

Paranoia Visual hallucinations

Auditory hallucinations Recovery

0

.0
2

.0
4

.0
6

.0
8

.1

P
ro

p
o

rt
io

n
 M

is
s
in

g

1 2 3 4 5 6
Day number

Self-esteem Hopelessness

Paranoia Visual hallucinations

Auditory hallucinations Recovery

0

.0
5

.1
.1

5
.2

P
ro

p
o

rt
io

n
 M

is
s
in

g

1 2 3 4 5 6 7 8 9 10
Beep number

Positive affect Negative affect

Mania Depression

Used cannabis

.0
2

.0
4

.0
6

.0
8

.1

P
ro

p
o

rt
io

n
 M

is
s
in

g

1 2 3 4 5 6
Day number

Positive affect Negative affect

Mania Depression

Used cannabis



 

68 
 

were very few occasions for which recovery was missing and at least one other item was 

complete. 

  At least one item observed All items missing 

Outcome Observed 2481 0 

Missing 97 1502 

Table 4:2 Moment nonresponse definition comparison for recovery data 

Out of the 4,080 diaries administered to participants, 1,502 (37%) were returned with full 

item nonresponse. Between-subject, variation in moment nonresponse was high, ranging 

from zero to 59 (98%) missed diaries from the total of 60 intended entries per subject. The 

distribution of the number of uncompleted diaries was skewed, with a median of 16 fully 

incomplete diaries per subject, as presented in Figure 4:6.  

 

 

 Figure 4:6 Distribution of missed diaries in recovery data  

 

The pattern of nonresponse can be further described by when the missed diaries occur. Are 

signals ignored more often in the morning, for example, or does nonresponse increase 

across the week?  The proportion of completely empty diaries for each moment, averaged 

across the six days, is presented in Table 4:1. Presented graphically, Figure 4:7 shows the 

average proportion of missed diaries at each moment across all days and Figure 4:8 shows 

the proportion of missed diaries on each day of the sampling period. 
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Figure 4:7 Average proportion of missed diaries 

throughout the day in the recovery data 

 

Figure 4:8 Proportion of missed diaries over the 

week in the recovery data 

The graphs indicate greater moment nonresponse at both the start and end of the day, and 

the proportion of missed diaries increases over the course of the week, with almost twice 

as many missing diaries on Day 6 as on Day 1.  

 

4.3 STATISTICAL ANALYSIS WITH PARTIALLY OBSERVED DATA 

Missing data can be problematic for longitudinal studies such as ESM. Fewer observations 

available for analysis leads to a reduction in power to detect effects and with subjects 

completing different numbers of observations, analysis methods which require balanced 

data cannot be used. Depending on the reason data are missing, known as the missing data 

mechanism, and how the data are subsequently analysed, there is the potential for 

substantial bias. Solutions to these problems will be discussed in this section. 

4.3.1 MISSING DATA MECHANISMS 

The classification of missing data can be described by the missing data mechanisms as 

defined by Little and Rubin (1987): missing completely at random (MCAR), missing at 

random (MAR) and missing not at random (MNAR), also known as non-ignorable (NI) 

missingness. The standard definitions of these mechanisms state that all data  intended to 

be collected 𝑌 can be partitioned into 𝑌𝑂, the observed data, and 𝑌𝑀 the missing data and 

that a binary indicator 𝑅 is equal to 1 when 𝑌 is observed and 0 when 𝑌 is missing. The 

three missing data mechanisms can then be defined as follows. MCAR occurs when the 

probability that data are missing depends on neither the observed data nor the missing 

data, that is  

𝑃(𝑅 = 1|𝑌𝑂 , 𝑌𝑀) = 𝑃(𝑅 = 1). 
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In this case the observed data are simply a random subset of the sample. When data are 

stated to be MAR the probability that the data are missing depends on the observed data 

but not the missing data: 

𝑃(𝑅 = 1|𝑌𝑂 , 𝑌𝑀) = 𝑃(𝑅 = 1|𝑌𝑂). 

The observed data are now no longer a random subset of the sample. However, when 

stratified by 𝑌𝑂, the observed data within strata are considered a random subset. Finally, 

the data are described to be MNAR when the probability of missingness depends on the 

values of the missing data 

𝑃(𝑅 = 1|𝑌𝑂 , 𝑌𝑀) ≠ 𝑃(𝑅 = 1|𝑌𝑂). 

These definitions have been applied to longitudinal settings ((Diggle 2002; Fitzmaurice, 

Laird et al. 2012) amongst others), however, there appears to be no extension to a three-

level ESM setting currently defined in the literature. When 𝑛1 measurements are taken on 

each of 𝑛2 days for 𝑘 = 1,… , 𝑛3 subjects, we now define an 𝑛1𝑛2 × 1 vector of all possible 

responses for subject 𝑘  

𝑌𝑘 = (𝑌11𝑘, 𝑌21𝑘 , … , 𝑌𝑛11𝑘, 𝑌12𝑘 , 𝑌22𝑘, … , 𝑌𝑛12𝑘, … , 𝑌𝑛1𝑛2𝑘)
′
 

of which some elements are observed 𝑌𝑖𝑗𝑘
𝑂  and others are missing 𝑌𝑖𝑗𝑘

𝑀 . 𝑅𝑘 is now also 

defined as an 𝑛1𝑛2 × 1 vector 

𝑅𝑘 = (𝑅11𝑘, 𝑅21𝑘, … , 𝑅𝑛11𝑘, 𝑅12𝑘, 𝑅22𝑘, … , 𝑅𝑛12𝑘, … , 𝑅𝑛1𝑛2𝑘)
′
 

where 𝑅𝑖𝑗𝑘 = 1 if 𝑌𝑖𝑗𝑘  is missing and 𝑅𝑖𝑗𝑘 = 0 if 𝑌𝑖𝑗𝑘  is observed. Unlike the standard 

notation above, for longitudinal data 𝑌𝑘 contains the data solely for the variable of interest. 

It is assumed that all other measured data are contained within the 𝑛1𝑛2 × 𝑝 matrix of 

covariates 𝑋𝑘. The missing data mechanisms can then be redefined using this longitudinal 

notation. The definition of MCAR is largely unchanged: the probability the data are missing 

is again independent of both the observed data and the missing data  

𝑃(𝑅𝑖𝑗𝑘 = 1|𝑌𝑘
𝑂 , 𝑌𝑘

𝑀 , 𝑋𝑘) = 𝑃(𝑅𝑖𝑗𝑘 = 1). 

In an ESM study momentary level missingness might be MCAR if, for example, a booklet is 

lost after collection. Alternatively item nonresponse may be considered MCAR due to poor 

layout of the diary. An extension to this definition is presented as covariate dependent 
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MCAR (Little 1995; Fitzmaurice, Laird et al. 2012), where missingness is independent of 

both observed and missing 𝑌 but can depend on covariates 𝑋 

𝑃(𝑅𝑖𝑗𝑘 = 1|𝑌𝑘
𝑂 , 𝑌𝑘

𝑀 , 𝑋𝑘) = 𝑃(𝑅𝑖𝑗𝑘 = 1|𝑋𝑘). 

This is akin to the standard MAR definition where the observed data 𝑌𝑂 contained all 

recorded observations, not just the response. For longitudinal data the distinction is made 

between covariate dependent MCAR and MAR as for MCAR it is still assumed that the 

missing response does not depend on the observed response. The assumption of MCAR 

only holds in this case when conditioning on all covariates that are predictive of 𝑅𝑘 . 

MAR occurs when the probability that data are missing depends on the observed (𝑌𝑘
𝑂) but 

not missing (𝑌𝑘
𝑀) data,  

𝑃(𝑅𝑖𝑗𝑘 = 1|𝑌𝑘
𝑂 , 𝑌𝑘

𝑀 , 𝑋𝑘) = 𝑃(𝑅𝑖𝑗𝑘 = 1|𝑌𝑘
𝑂 , 𝑋𝑘). 

Differentiating between covariate dependent MCAR and MAR may be problematic in an 

ESM context where momentary nonresponse is present, i.e. all diary items are missing. 

Although this longitudinal extension to the missing data mechanism allows data at other 

time points to be predictive of missingness, as all items are missing, instead of a vector of 

all measurements on one variable 𝑌𝑘 is now a 𝑛1𝑛2 × 𝑝 matrix for all ESM diary items. 

Now, using a diary item 𝑋1 at 𝑡 − 1 to predict missingness at time point 𝑡 the data can no 

longer be considered covariate dependent MCAR as 𝑋1 is captured with 𝑌𝑘 and is thus 

defined as 𝑌𝑘
𝑂. Fortunately, a distinction between the two mechanisms is not necessary for 

analysis; valid inference can be obtained with a likelihood-based analysis provided that care 

is taken to ensure both the fixed and random parts of the model are correctly specified, as 

data which are MAR can be sensitive to model misspecification (Fitzmaurice, Laird et al. 

2012). 

MNAR applies when the probability the data are missing depends on the missing values 

themselves. In an ESM setting this might occur when data on hallucinations, for example, 

are missing when a subject is currently experiencing a strong hallucination. In contrast to 

MAR, the distribution of 𝑌𝑘
𝑀 conditional on 𝑌𝑘

𝑂 is not representative of the intended 

sample; in this case the distribution of the missing data is said to depend on both 𝑌𝑘
𝑂 and 

𝑃(𝑅𝑘 = 1|𝑌𝑘 , 𝑋𝑘) and a joint model is required to model both the response and the missing 

data mechanism. Two general approaches to this joint modelling procedure include 

selection models (Heckman 1976; Little 1995) and pattern mixture-models (Little 1993; 
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Little 1995), though these methods are beyond the scope of this thesis. Where data are 

MNAR and the pattern of nonresponse is not sufficiently modelled, parameter estimates 

can be biased (Collins, Schafer et al. 2001). 

Whilst distinguishing between missing data mechanisms is empirically untestable, one can 

test for predictors of nonresponse in an attempt to satisfy the covariate dependent MCAR 

or MAR assumptions. The variables predictive of missingness should be included in the 

analysis model to reduce bias when assuming these mechanisms. If the model is correctly 

specified, estimation using maximum likelihood where all available information is included 

should produce unbiased estimates. However, for large amounts of missing data the 

reduction in sample size could lead to inflated standard errors.  

Finally, it is recommended that following the primary analysis assuming a particular missing 

data mechanism, a sensitivity analysis is carried out to evaluate how robust the results are 

to departures from this assumed mechanism (Carpenter, Kenward et al. 2007; Carpenter 

and Kenward 2012). Carpenter and Kenward (2007) describe how this can be achieved by 

either explicitly modelling the non-response mechanism or via imputation and comparing 

the conclusions of this to the primary analysis to see how they vary.  

 

4.3.2 APPROACHES TO ANALYSIS WITH MISSING DATA 

There are several common approaches to missing data, each with benefits and drawbacks 

in a longitudinal setting. The first approach is to simply ignore the missing data and use a 

complete case analysis. With a complete case analysis only observations for which all 

variables are complete are included in the analysis; missing data in one covariate results in 

no data for this observation being using in the model. For only one variable with missing 

data this might not be too detrimental, but if data are missing on many variables this can 

result in a dramatically reduced dataset. Moreover, a complete case analysis is only valid 

when data are MCAR. If data are MAR a complete case analysis will result in biased fixed 

effect estimates (Fitzmaurice, Laird et al. 2012). So as not to lose all of this observed 

information, missing values are often filled in or ‘imputed’.  Several options for imputation 

are available and will be discussed in terms of their appropriateness for ESM research.  

The most straightforward approach for imputing missing data is known as mean imputation 

which involves replacing the missing values with the mean value of each variable. This 

benefits from its simplicity to execute, however, this form of imputation will underestimate 
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variances, and coefficients will likely be regressed towards the mean. However, for 

repeated measures data where one may expect consecutive measurements to be 

correlated this approach may not be appropriate. Furthermore, for three-level ESM data 

there are several ‘mean’ values to choose from: the grand mean, averaging over all 

measurements; the subject mean, averaging over all measurements within-subject; and the 

day mean, averaging over the measurements within each day for each subject. The day 

mean might be the most appropriate if one expects a large amount of between-day or 

between-subject variation, however, if there are large amounts of missing data on certain 

days this value may be biased, only based on a small amount of data. 

The mean imputation method, even accounting for the nested structure of ESM data, is still 

flawed in that it is unrepresentative in the case of serially correlated data. Where data 

follow a pattern of autocorrelation or time trend, imputing with this method will bias this 

trend towards the mean.  An alternative method from the longitudinal literature is to use 

the last observation carried forward (LOCF). Here the value for 𝑌𝑖𝑗𝑘  at the time point before 

the missing value (𝑌𝑖−1,𝑗𝑘) is used as a substitute, preserving any correlation between 

successive observations more than using a mean value would. This method is widely 

criticised as it produces biased estimates of the means and (co)variances even under the 

assumption of MCAR (Molenberghs, Thijs et al. 2004; Siddiqui, Hung et al. 2009) .  

A more sophisticated method for imputing missing data is to use information from 

completed observations of other variables for each subject. Simple imputation involves 

regressing the variable with missing data on complete variables and predicting the 

unobserved values. This method benefits from using a greater amount of information to 

inform the selection of missing values and being able to take into account any within-

subject correlation in its prediction by imputing using a multilevel model appropriate for 

the data.  

A more sophisticated alternative to missing data, avoiding the bias produced by these more 

simple methods (Donders, van der Heijden et al. 2006), is using multiple imputation. 

Multiple imputation (Rubin 1978) imputes missing data based on complete data from other 

variables. Working under a Bayesian framework, the missing data are sampled from their 

predicted distribution given the observed data. This process is repeated on 𝑚 copies of the 

original dataset resulting in 𝑚 different, complete datasets. The original model of interest is 

then fitted to each of the complete datasets and the parameter estimates averaged to give 

the final results (Sterne, White et al. 2009). Standard errors and confidence intervals for the 
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parameter estimates are calculated using Rubin’s rules (Rubin 1987). By imputing the 

missing data on multiple data sets and combining the results, multiple imputation aims to 

model the uncertainty of the missing values and thus reduce bias in the final result.  

Evidence suggests that the imputation model should have the same structural form as the 

intended analysis model (Rubin 1996; Schafer and Olsen 1998), and as such for an intended 

multilevel analysis model a multilevel imputation model should be used. In a simulation 

study, Black, Harel et al. (2011) investigated changes to parameter estimates in multilevel 

models when imputing using normal (single level) and linear mixed models at varying levels 

of missing data. The authors found that while the fixed effects were “generally unbiased” 

for both imputation models, multiple imputation using a normal model resulted in 

substantial bias at level 1, significantly overestimating the residual variance (𝜎𝑒
2) for all 

levels of missing data. They also reported that although the linear mixed model produced a 

less bias estimate, it slightly overestimated 𝜎𝑒
2 for higher levels of missing data. When 

estimating the variance of the random intercept, the normal model underestimated the 

parameter for all levels of missing data, the estimate biased to zero as random intercepts 

cannot be included in the normal imputation model. 

As the level 1 and level 2 variance estimates may be of interest in an ESM analysis, a 

method of imputation which reduces any bias will be preferential. However, when the fixed 

effects are of primary importance these results suggest a multilevel imputation model may 

not be necessary. 

A second argument against multiple imputation can be made when estimating using 

maximum likelihood. This procedure uses all available information to calculate parameter 

estimates rather than dropping rows as in a complete case analysis. For large samples, 

Schafer (1999) suggests little is gained from multiple imputation other than random noise 

produced by the random draws. Furthermore, in addition to the single-level and multilevel 

multiple imputation models, Black, Harel et al. (2011) also compared the results of simply 

using maximum likelihood estimation in their simulations. They found that the maximum 

likelihood model produced generally unbiased fixed effect estimates, and although bias 

was small across all models (“less than 33%, or one-third of one standard deviation”), for 

large amounts of missing data (50%) estimates were more biased using the multiple 

imputation models than for the maximum likelihood model. Bias in the random effect 

estimates using maximum likelihood was comparable to multilevel multiple imputation, 

and considerably better than imputation using a single level model. Although 
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underperforming in some aspects, for example in efficiency and accuracy of random slope 

variances, maximum likelihood was found to be comparable to using multilevel multiple 

imputation in many areas, and superior to a single level imputation model in most.  

Multiple imputation can be carried out in most software packages, including SAS, Stata, and 

R. However, to impute multilevel data the clustering must be accounted for when creating 

the multiply imputed data sets, which is not a clearly defined process in these packages. 

Multiple imputation is possible in MLwiN for multilevel data using a series of macros 

(missingdata.org.uk) but only for missing data at level 1. To impute missing data at both 

levels of a two-level dataset the newly developed software REALCOM-Impute (Carpenter, 

Goldstein et al. 2011) is available which can be run in conjunction with either MLwiN or 

Stata. Here the multilevel data is exported to REALCOM-Impute along with the variables 

selected for the imputation model. Multilevel imputation models are then specified, in 

which variables with missing data are jointly modelled with multivariate normal random 

effects and estimated by MCMC (Carpenter and Kenward 2012). The imputed data sets are 

subsequently exported back to the original program. The model of interest can then be 

fitted to each of the imputed data sets and combined for an estimate in the usual way. For 

three-level data Goldstein (2009) suggests using a dummy variable for the level 3 clustering 

variable as a third hierarchical level is not currently accommodated. However, considering 

the findings of Black, Harel et al. (2011), the inability to correctly specify the third level in 

the imputation model may result significantly biased results compared to simply fitting a 

multilevel model to the incomplete data and estimating with maximum likelihood.  

4.4 PREDICTORS OF NONRESPONSE IN THE RECOVERY DATA 

Likelihood based analysis methods require the assumption that data are MAR. While this is 

strictly untestable, predictors of nonresponse can be investigated in the observed data. Any 

significant variables can then be included as covariates in the analysis model to satisfy the 

MAR assumption. The following tables present the results of univariate three-level logistic 

regression models, with random intercepts for subject and day, where the outcome is a 

binary indicator variable equal to 1 if the recovery data are missing and 0 if the data are 

observed at each moment. The fixed effects estimates are presented as odds ratios, 

representing the odds of the response being missing for larger values of the predictor.  
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4.4.1.1 ITEM NONRESPONSE  

As partial completion of diaries was possible in the recovery data, the recovery measure 

may be missing in a diary but other items completed. As such these observed items may be 

used to predict missingness in recovery at the same time point. As scales were to be used 

in the main analysis rather than individual items, nonresponse at the item level was 

investigated in terms of the grouped measure. Table 4:3 presents the results of the 

concurrent predictors of item-level nonresponse in recovery.  

 Fixed effects Random effects  

Covariate OR Std. Err P Value  Variance Std. Error N 

Self-esteem 1.023 0.199 0.906 Subject 4.601 2.621 2505 

    Day 1.077 0.847  

        

Hopelessness 1.017 0.167 0.918 Subject 1.137 0.759 2460 

    Day 0.000 0.000  

        

Paranoia 1.113 0.229 0.603 Subject 4.931 2.948 2523 

    Day 2.549 1.315  

        

Auditory  1.099 0.195 0.593 Subject 8.808 4.432 2421 

Hallucinations    Day 1.808 1.130  

        

Visual 1.223 0.195 0.208 Subject 12.681 6.469 2375 

Hallucinations    Day 1.875 1.115  

Table 4:3 Concurrent predictors of missing recovery item 

No variables were significantly associated with an increase in odds of missingness in 

recovery. This is likely due to the findings of Table 4:2, that when recovery is missing the 

whole booklet is also likely to be missing, thus there were very few occasions in the above 

models where predictor data are available when 𝑅 = 1.  

4.4.1.2 MOMENT NONRESPONSE  

Instead of a concurrent prediction of missingness, the diary items can instead be used to 

examine missingness at the following moment. This is achievable using a lagged covariate 

model, with items at time point 𝑖 − 1 predicting momentary level missingness at occasion 
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𝑖. Moment nonresponse was defined as a level 1 binary variable denoting whether a whole 

booklet had been left uncompleted or whether at least one item was answered. 

 

 Fixed effects Random effects  

Lagged covariate OR Std. Err P Value  Variance Std. Error N 

Recovery 0.946 0.063 0.403 Subject 1.563 0.394 2250 

    Day 0.00 0.00  

        

Self-esteem 0.843 0.066 0.029 Subject 1.582 0.411 2271 

    Day 0.00 0.00  

        

Hopelessness 1.050 0.076 0.499 Subject 1.481 0.379 2227 

    Day 0.00 0.00  

        

Paranoia 1.176 0.078 0.015 Subject 1.467 0.377 2289 

    Day 0.00 0.00  

        

Auditory  1.035 0.091 0.693 Subject 1.714 0.435 2190 

Hallucinations    Day 0.00 0.00  

        

Visual  1.053 0.072 0.445 Subject 1.718 0.436 2158 

Hallucinations    Day 0.00 0.00  

Table 4:4 Lagged predictor of missing diary 

Both self-esteem and paranoia significantly predicted a missing diary at the following time 

point: higher self-esteem scores decreased the odds of subsequent momentary 

nonresponse (OR=0.84, SE=0.07, p=0.029) while higher paranoia scores significantly 

predicted greater odds of a diary being missed (OR=1.18, SE=0.08, p=0.015). 

The within-day variation is estimated as negligible in these analyses, likely due to the lack 

of variability in momentary missingness after conditioning on the lagged covariate being 

observed. On further examination of the data, the proportion of missing moments where 

the previous moment was observed is far smaller than when consecutive diaries are both 

completed, as displayed in Table 4:5. Only the data from the top row of the table are 

included in the analysis, i.e. the outcomes for when the lagged predictor is observed, and 
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so out of the 2342 available observations for analysis, 𝑌 = 0 in only 344. Such a low 

proportion of missing diaries following a completed diary suggests that missing diaries are 

not sporadic; completion of the current diary is dependent on completion of the previous 

diary. 

  Diary at moment 𝑖 

  Observed (𝒀 = 𝟏) Missing (𝒀 = 𝟎) 

Predictor at 

𝑖 − 1 

Observed 1,998 (85%) 344 (15%) 

Missing 367 963 

Table 4:5 Table of observed and missing consecutive diaries displaying the relative proportions in 

response categories when the predictor is observed 

4.4.1.3 TIME TRENDS IN EVENT NONRESPONSE  

Time trends both within- and between-day moment nonresponse in the recovery data was 

investigated to compare to the evidence found by both Silvia, Kwapil et al. (2013) and 

Messiah, Grondin et al. (2011). Daily trends were identified by entering beep number 

(centred at 1) as a predictor and weekly trends using day number (also centred at 1). In 

both models the response was the binary indicator variable moment nonresponse, equal to 

zero if at least one diary item was complete and one if the whole diary was missing. 

Nonlinear trends were studies by including each predictor as a linear and quadratic term.  

 Fixed effects Random effects 

 OR Std. Err P Value  Variance Std. Error 

Intercept 1.139 0.324 0.648 Level 3 4.596 0.945 

Beep number (linear) 0.596 0.034 <0.001 Level 2 1.430 0.212 

Beep number (quadratic) 1.052 0.006 <0.001    

Table 4:6 Within-day quadratic trend in event nonresponse  

The results in Table 4:6 suggest that there is a quadratic trend in missing data within the 

day: data are more likely to be missing both at the start and end of each day as 

demonstrated in Figure 4:7. 

 Fixed effects Random effects 

 OR Std. Err P Value  Variance Std. Error 

Intercept 0.222 0.066 <0.001 Level 3 4.379 0.894 

Day number (linear) 1.564 0.232 0.003 Level 2 1.060 0.169 

Day number (quadratic) 0.965 0.027 0.209   
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Table 4:7  Between-day quadratic trend in event nonresponse 

The results of Table 4:7  suggest there is a significant linear weekly trend in missing data; as 

day number increases the odds of nonresponse increase by 56%. This implies that, as one 

might expect, missing data are more prevalent towards the end of the sampling period, 

indicative of typical longitudinal attrition.  

 These results suggest that the hours set for the sampling scheme might not have been 

appropriate for this study population (perhaps with subjects waking later than expected), 

resulting in more ignored or missed prompts. This could potentially be informative for the 

design of future ESM research focused on a population of people with psychosis. The drop 

off towards the end of the week echoes Silvia, Kwapil et al. (2013)’s message, that more 

focus needs to be directed at reducing nonresponse in the study design to prevent 

participant fatigue or loss of interest as the study progresses.   

4.5 SUMMARY 

ESM research has the potential for large amounts of missing data: at the item-level within 

each questionnaire; at the moment-level, where all items are left uncomplete; and at the 

day-level, where no data have been recorded in any diary for the day. Current published 

research poorly describes missing data (where it is even discussed at all) as summarising all 

of this information into one value defined as ‘compliance’ or ‘adherence’ is not informative 

of the breadth of possible sources of nonresponse.   

A detailed understanding of missing data will aid in both the analysis of current research 

and in the design of future studies. This chapter has described options for presenting 

nonresponse at each level so as best to fully describe any missing data patterns both 

within- and between-days. It has demonstrated how current and previous diary 

information can be used to predict missing data and how time trends can be explored.  

Finally, under the assumption of MAR, it is suggested that multilevel multiple imputation 

may not be necessary for missing ESM data when analysis methods estimate using 

maximum likelihood. 
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5 MOMENTARY LEVEL VARIATION AND TIME TRENDS 

One of the suggested benefits of ESM is its ability to capture subtle variation in trait-like 

symptoms that would be unobtainable using a more traditional procedure (Delespaul 1995; 

Csikszentmihalyi 2014). Avoiding the problem of recall bias when providing a retrospective 

account of symptoms and behaviours, ESM can capture moment to moment changes and 

allow researchers a greater understanding of within-subject variation in symptoms and 

behaviours.  

The aim of this chapter is to explore methods for investigating momentary variation in ESM 

measures. Firstly, current practices in studying variation will be presented as identified in 

the review of Chapter 3. This will be followed with an alternative approach, utilizing the 

flexibility of thee-level random slope models.  

5.1 INTRODUCTION FROM SYSTEMATIC REVIEW 

Although novel to this methodology, studying moment to moment variation is 

underutilized in practice with only five of the 74 papers reviewed explicitly identifying 

variation in measures as an interest. Though briefly discussed in Chapter 3, these five 

papers will be described more thoroughly here. Each of the papers defined ‘variation’ in 

slightly different ways; these definitions will be presented with details on the study designs 

and analysis methods.  

5.1.1 PAPERS IDENTIFIED IN SYSTEMATIC REVIEW STUDYING VARIATION 

Peters et al (2012) used ESM to investigate appraisals of symptoms in participants with 

psychosis, questioning whether symptom appraisals and delusional convictions were 

constant. Twelve participants were recruited from the Psychological Interventions Clinic for 

Outpatients with Psychosis in London and were asked to complete an ESM questionnaire 

10 times a day for six days. Items within the questionnaire were designed to assess 

psychotic symptoms and appraisals of these symptoms, rated on 7-point Likert scales. 

Variation was defined in terms of ‘constancy’: the difference between successive 

observations, averaged to create one subject-level score, ∑ (𝑥𝑖𝑘 − 𝑥𝑖−1,𝑘)𝑖 , for 

measurements 𝑖 within subjects 𝑘. The mean constancy of appraisal for each symptom was 

presented with the results of a t-test to test whether each mean was significantly different 

than zero. Non-zero values were considered representative of significant changes in 

appraisal over time.  
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Similar to Peters, Udachina et al (2012) considered variation as an outcome and were 

interested in group differences in the instability of deservedness and self-esteem in 

patients with paranoia. The authors monitored 41 patients and 23 healthy controls for six 

days, requiring them to complete 10 paper diaries a day designed to capture deservedness 

of paranoid thoughts and self-esteem. ‘Instability’ was defined as the averaged absolute 

difference in successive scores for each participant, ∑ |𝑥𝑖𝑘 − 𝑥𝑖−1,𝑘|,𝑖  “indicating a mean 

change from moment to moment”. Group differences were then assessed using multilevel 

models with the subject-level instability measure as the outcome,  

𝐼𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑘 = 𝛽0 + 𝛽1𝐺𝑟𝑜𝑢𝑝𝑘 + 𝑢𝑘 + 𝑒𝑖𝑘  (4) 

 

where it is presumed 𝐺𝑟𝑜𝑢𝑝𝑘 = 0, 1, 2, 3 representing the groups: controls, PM, BM and 

remitted; PM “Poor Me” and BM “Bad Me”, two paranoid states identified from the 

Persecution and Deservedness Scale (PaDS; Melo et al., 2006).    

Palmier-Claus et al (2012) used a sample of 27 individuals at ultra-high risk of developing 

psychosis to investigate the association between instability of affect and suicidal ideation. 

In this study, the variable measuring instability was used as a predictor rather than 

outcome. As in the previous studies, patients completed questionnaires 10 times a day for 

six days, accumulating data on positive and negative mood items. ‘Instability’ of mood was 

calculated similarly to Peters and Udachina, using the mean successive squared difference 

(MSSD)  (von Neumann et al. 1941) , ∑ (𝑥𝑖𝑗𝑘  − 𝑥𝑖−1,𝑗𝑘)
2

𝑖 . Rather than averaging over all 

observations, the MSSD was calculated for each day 𝑗 resulting in two-level data with a 

mean daily mood variability measure for each day per person.  Suicidal ideation was only 

measured once as a subscale of the Comprehensive Assessment of At-Risk Mental State 

(CAARMS) semi-structured interview delivered in the debriefing at the end of the ESM 

period. A linear regression with robust standard errors was used to account for the 

clustering within subject to assess the association between the two variables.  

Daily variability was also created in Selby et al’s (2012) study of affect in patients with 

bulimia nervosa (BN) and borderline personality disorder (BPD). The authors hypothesized 

subjects with both BN and BPD would experience greater daily variability in positive and 

negative affect than subjects with BN only. Twenty five individuals with BN and BPD were 

compared against 108 with BN alone. Both groups were measured for 14 days and were 

required to complete a questionnaire on a PalmPilot at six random times during the day 

plus at any time in which they “engaged in eating disorder behaviours (e.g. binge eating, 
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laxative use, etc.) or self-destructive behaviours (e.g. self-injury, drug use, etc.)”. A measure 

of ‘daily variability’ was calculated for each subject as the standard deviation of the mean 

ESM measured affect for each day. A two-level model was then used with daily variability  

as the dependent variable with predictors including group variable, an indicator for 

whether the day contained an bulimic event and a group-by-event interaction.  

Finally, Demiralp et al (2012) examined emotional differentiation in patients with Major 

Depressive Disorder (MDD), and whether this was unique from other emotional constructs 

such as emotional intensity or variability.  The 106 participants were measured eight times 

a day for “7 to 8 days”, completing a questionnaire when prompted on a PalmPilot. At each 

point participants were asked to rate their current emotions on a 4-point scale. The 

questionnaire contained seven negative emotion items: sad, anxious, angry, frustrated, 

ashamed, disgusted, and guilty and four positive emotion items: happy, excited, alert, and 

active. Similarly to Selby’s study, ‘temporal variability’ was measured as the variance in 

intensity of each emotion over the whole sampling period, where ‘emotional intensity’ was 

defined as the average of the emotion items at each prompt, which was then averaged 

across the whole sampling period for each subject. ‘Emotional differentiation’ was 

calculated by taking the correlations of all pairs of emotion items (e.g. 

𝑟𝑠𝑎𝑑,𝑎𝑛𝑥𝑖𝑜𝑢𝑠, 𝑟𝑠𝑎𝑑,𝑎𝑛𝑔𝑟𝑦 , 𝑟𝑠𝑎𝑑,𝑓𝑟𝑢𝑠𝑡𝑟𝑎𝑡𝑒𝑑, …) to create separate measures for positive and 

negative emotions, “the average of the Fisher’s z-transformed correlations” representing 

the positive and negative emotional differentiation score. High scores indicated higher 

differentiation in emotions. As the variability and differentiation measures were subject 

level variables, a simple linear regression model was used to predict the changes in 

emotional differentiation with depression, emotional intensity and emotional variability as 

predictors. 

5.1.1.1 MSSD MEASURES VS. VARIANCE MEASURES 

The various definitions of variation in the papers can be sectioned into two categories: 

those using a measure of difference in successive observations (MSSD measures; Peters et 

al, Udachina et al and Palmier-Claus et al) and those using a measure of dispersion about 

the mean (variance methods; Selby et al and Demiralp et al). Although these definitions are 

distinct, they both capture the spread of the data; large scores indicating a wide spread, 

small scores indicating observations are more similar.  

The MSSD methods differ from the variance methods by measuring this spread moment to 

moment, where a large score implies that successive observations are widely spaced. 
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Variance methods cannot make this distinction, instead quantifying difference from the 

population mean. For example, when examining the variation in mood using ESM, if mood 

is consistently low for the first half of the sampling period then consistently high for the 

second half, a variance measure would be large but an MSSD measure much smaller. The 

MSSD measure is therefore superior for detecting momentary changes, satisfying the 

definitions of ‘constancy’ or ‘instability’, but is potentially less sensitive to variation as a 

whole. Specific interpretation of this measure, however, is not straightforward. Although 

generally speaking larger values correspond to greater momentary variation, the value 

itself has little meaning and will depend heavily on the way in which it was created.  The 

three MSSD style measures used by Peters et al, Udachina et al and Palmier-Claus et al, for 

example, produce quite different results. Peters’ formula simply sums the difference 

between successive moments, while Udachina’s sums the absolute difference and Palmier-

Claus’ the squared difference. By definition, it is obvious that the three formulae will result 

in very different values. As successive observations may increase and decrease in value, 

summing without accounting of the potential difference in sign Peter’s formula does not 

accurately represent the magnitude of change: negative momentary changes will cancel 

out positive changes, tending the average to zero. Taking the absolute difference 

counteracts this problem, as does squaring the difference. These two methods, however, 

can also result in substantially different totals when momentary changes are large.   

To illustrate how these MSSD style measures differ, each was computed using the recovery 

data set for the variable self-esteem. Figure 5:1 and Figure 5:2 present box plots of each 

method. The first demonstrates the range of values obtained from using the simple mean 

difference compared to the absolute mean difference. The second shows how squaring the 

difference can result in much larger values (note the change in scale on the y axis). 

Although the three MSSD methods are not being compared within papers, it is important to 

note how different the results might be depending on which measure is chosen to 

represent variability.  
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Figure 5:1 Box plot of Peters' vs Udachina's 

MSSD method for recovery data 

 

Figure 5:2 Box plot of Udachina's vs Palmier-

Claus' MSSD method for recovery data 

 

5.2 ALTERNATIVE APPROACHES TO INVESTIGATING VARIATION: TIME TRENDS 

One major drawback of the MSSD methods is how to interpret the value of variability 

obtained. Peters et al. presented the mean value for each of their symptom appraisals 

(subject-level differences averaged across all participants) and used a t-test to establish 

whether these appraisals, as they described it, were constant over time. A mean change of 

0.62 (SD=0.5) in control of hallucinations, for example, was found to be significantly 

different than zero, this appraisal thus described as being “non-constant” over time. 

However, no description of how the mean difference varied across participants was given 

and the summary measure provides no further information on the mean change. As so 

much information is gathered using ESM, much more informative analyses can be 

conducted.   

One study from the systematic review better utilized the intensive longitudinal data 

structure to investigate variation in their sample. Giesbrecht, Letourneau, Campbell, and 

Kaplan (2012) were interested in the trajectory of positive and negative affect over the 

course of pregnancy. They tracked momentary level affect using an electronic ESM diary to 

gather measurements on 76 women for two days in each trimester of their pregnancy. 

Measurements were taken five times a day, 30 minutes after waking and then at four semi-

random intervals throughout the day. The resulting data was thus of a four level structure: 

measurement moments within days, within trimester, within subject. Instead of using a 

four-level model, the authors chose to aggregate scores to the trimester level “for 

simplicity”, resulting in three mean positive and negative affect scores for each subject. 

Two-level multilevel models were then used to investigate the change in affect over time, 
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where ‘time’ was measured as gestational age, centered at six weeks, which was entered 

into the model as both a linear and quadratic term. The authors were also interested in 

whether depressive symptoms moderated the two affect trajectories. Depressive 

symptoms were measured using the Edinburgh Postnatal Depression Scale (EPDS) within 

each trimester, the three scores then aggregated to give a mean score for the whole 

pregnancy where higher values correspond to higher levels of depression.  

Significant quadratic trends were present in both positive and negative affect. For positive 

affect, opposite trends were observed in women with high depressive symptoms (where 

positive affect increased in early gestation but decreased in later gestation) to those with 

low symptoms (where affect decreased during early and middle gestation and increased 

towards the end of pregnancy). For negative affect the same trend was observed in both 

groups, negative affect decreasing over time but increasing towards the end of pregnancy. 

However, women with higher depressive symptoms experienced significantly higher levels 

of negative affect throughout pregnancy.  

The results presented were “based on estimation of fixed effects with robust standard 

errors”, apparently not using two-level models as originally stated. As such, it is assumed 

that no between-subject heterogeneity was modelled in the intercept or slopes, the 

authors choosing not to measure subject-level variation. Aggregating affect to the trimester 

level eliminates all within-trimester variation in these variables. Similarly, aggregating the 

EPDS to the subject level throws away between-trimester information, subtlety further lost 

in dichotomising this variable for analysis.  

This type of model is often referred to as a growth model in the longitudinal literature, and 

is typically used to study trends in longitudinal models where ‘time’ may be a function of 

age, for example. The systematic review suggests the use of growth models in ESM is far 

less common. It may be the fact that researchers do not consider this form of research 

question for ESM studies or are unaware of the potential to use it to examine short time 

periods. The principals of growth modelling can be used to study trends in ESM data and 

can be adapted to accommodate three level data. This chapter will describe how ‘time’ can 

be defined in ESM data and how momentary level variables can be studied across time.  

5.2.1 TWO-LEVEL TIME TREND MODELS 

To discuss time trends in the application of three level models for ESM data it is useful to 

begin with a simpler, two level description. Here, the models will describe the variation in 
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an outcome 𝑦𝑖𝑘  for moments or ‘beeps’ 𝑖 = 1,… , 𝑛1𝑘, nested within participants 

𝑘 = 1,… , 𝑛2. Time will be denoted 𝑡𝑖𝑘 and refer to the time at which a questionnaire is 

completed. The subscripts 𝑖 and 𝑘 are used for the general scenario where the number of 

moments can differ for each participant or when, such as in a random prompt design, 

participants complete questionnaires at different time points to each other. This may be 

simplified to just 𝑡𝑖 when each participant is required to complete the same number of 

questionnaires under a fixed time schedule or when the beep number is used as a proxy for 

time and the number of beeps per subject is balanced.  

Figure 5:3 - Figure 5:6 represent the four possible trends one can observe within a two-

level model.  In each figure the black line represents the population average while the blue 

and green lines represent two subject-specific time trends.  

Figure 5:3 represents the simplest model with no fixed or random effects of time on 

outcome 

𝑦𝑖𝑘 = 𝛽0 + 𝑢𝑘 + 𝑒𝑖𝑘 . 

In this variance components model each subject-specific line runs parallel to the population 

average line with random intercepts 𝛽0 + 𝑢𝑘 for each subject 𝑘. There is no variation in 

outcome over time.  

 

Figure 5:3 Two-level model – Subject level random intercept, no fixed or random effect of time 

When a fixed effect for time is included  

𝑦𝑖𝑘 = 𝛽0 + 𝛽1𝑡𝑖𝑘 + 𝑢𝑘 + 𝑒𝑖𝑘  

each subject sees a 𝛽1 increase in 𝑦 for each unit of time, with subject-specific lines again 

parallel to the average. Here there is a liner trend for time which is the same for each 

subject, Figure 5:4. 
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Figure 5:4 Two-level model – Subject level random intercept, fixed effect of time 

In contrast, in a model with a random effect of time with no fixed effect 

𝑦𝑖𝑘 = 𝛽0 + 𝑢0𝑘 + 𝑢1𝑘𝑡𝑖𝑘 + 𝑒𝑖𝑘 

each subject 𝑘 can have a different slope 𝑢1𝑘. This allows the subject-specific effects of 

time on outcome to vary but only such that the overall effect of time is assumed to be zero, 

as depicted in Figure 5:5. 

 

Figure 5:5 Two-level model – Subject level random intercept and random gradient for time 

Finally, when both fixed and random effects for time are included in the model 

𝑦𝑖𝑘 = 𝛽0 + 𝛽1𝑡𝑖𝑘 + 𝑢0𝑘 + 𝑢1𝑘𝑡𝑖𝑘 + 𝑒𝑖𝑘 

each subject is allowed their own effect of time on outcome (𝛽1 + 𝑢1𝑘)  which is allowed 

to differ from population average slope 𝛽1. 
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Figure 5:6 Two-level model – Subject level random intercept, both fixed and random effect of time 

5.2.2 THREE-LEVEL PARADIGM FOR ESM DATA 

When expanding to three level models, where moments are nested within days, there are 

more options to consider. In the three-level ESM data structure time can be defined in two 

ways: as within-day time 𝑡𝑖𝑗𝑘  (time of beep or beep number) and between-day time 𝑠𝑗𝑘 

(day number). Defining time trends in three level models now requires a combination of a 

within- and between-day time variables in the fixed effects and at each level of the random 

effects.  

In the two-level models, random effects were only required at the subject level; as a 

random intercept 𝑢0𝑘 and as a random slope 𝑢1𝑘 for time. For three level models, in which 

levels are now defined as moments 𝑖 = 1,… , 𝑛1𝑗𝑘, days 𝑗 = 1,… , 𝑛2𝑘, and subjects 

𝑘 = 1,… , 𝑛3,  there is an additional random intercept for day, 𝑣0𝑗𝑘, and the possibility for  

random slopes at the day level, 𝑣1𝑗𝑘. The four two-level models based on the four 

permutations of the fixed and random effects can now be extended to 32 models as there 

are now two fixed terms, within-day time 𝑡𝑖𝑗𝑘  and day number 𝑠𝑗𝑘, and three possible 

random slopes: 𝑡𝑖𝑗𝑘  and 𝑠𝑗𝑘 at level 3, and 𝑡𝑖𝑗𝑘  at level 2. Each can be included or omitted 

giving 25 = 32 model combinations. These models are defined in Table 5:1 with their 

corresponding graphical illustration provided in Figure 5:7. In these graphs the black line 

again represents the average slope and the blue and green lines depict two example 

subject-specific slopes. The dashed vertical lines separate the days of measurement, i.e. 

each graph depicts an example of two participants measured over three days. For ease of 

interpretation of time trends, day-level random intercepts are not depicted on the graphs. 

The reader is advised to assume random variation in daily intercept lines but to interpret 

departures from initial intercept in the graphs as a between-day time trend. 
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The equations and graphs will be labelled 1a) in the top left of the array to 8d) in the 

bottom right, numbers denoting rows and letters columns. To aid interpretation in this 

example it will be assumed that measurements of individuals’ mood are collected over 

seven days. As such, within-day trends will be referred to as daily trends and between-day 

trends will be referred to as weekly trends. 

Fixed effect interpretation 

These three level models are comprised of fixed effects and random effects, the fixed 

effects representing the average trends and the random effects the subject and day 

variations in these trends. The 32 models fit a combination of daily and weekly time trends 

in the fixed part of the model. When modelling within-day time 𝑡𝑖𝑗𝑘  (rows 2, 4, 6, 8), the 

corresponding coefficient 𝛽1 is estimated as the average daily time trend. If 𝛽1 > 0 a 

positive within-day trend is present, i.e. mood improves over the course of the day. If 

𝛽1 < 0, on average, mood deteriorates throughout the day, and if  𝛽1 = 0 no trend is 

observed. 

In the models fitting day number 𝑠𝑗𝑘 (columns b and d), the corresponding coefficient 𝛽2 

represents the average weekly trend. If 𝛽2 > 0 the model suggests that, on average, mood 

improves over the week, if 𝛽2 < 0 on average mood worsens and if 𝛽2 = 0 there is no 

observed weekly trend. 

The fixed intercept 𝛽0 in each of the models represents the average mood score when all 

fixed effects are equal to zero. The interpretation of 𝛽0 thus relies on meaningful zero 

values for all covariates. As there is no natural zero value for time of prompt or day number 

these variables will need to be centred. The choice of centring point, as discussed in 

Chapter 1, will influence both the interpretation of 𝛽0 and the variance of the random 

effects. As we are interested in studying trends over the course of the day and week, both 

time variables will be centered such that the zero value relates to the start of the sampling 

period, i.e. day number𝑠𝑗𝑘  will be centred at 1 and within-day time 𝑡𝑖𝑗𝑘  if moment number 

is used as a proxy for time this too will be centered at 1, otherwise this variable will be 

centered around the time of the first prompt of the day. The intercept 𝛽0 can therefore be 

interpreted as the average mood score at the start of the day/week.  

The inclusion of 𝑡𝑖𝑗𝑘  to model daily trends restricts the trend to be the same each day, 

equal to 𝛽1. This assumption can be relaxed to investigate whether daily trends differ each 

day. As will be discussed, allowing daily trends to vary across the study period can be 
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achieved by modelling 𝑡𝑖𝑗𝑘  as a level 2 random slope, however, this can also be modelled in 

the fixed effects. Adding an interaction between within-day and between-day time 

(𝑡𝑖𝑗𝑘 ∗ 𝑠𝑗𝑘) in the fixed part of the model, 

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑡𝑖𝑗𝑘 + 𝛽2𝑠𝑗𝑘 + 𝛽3𝑡𝑖𝑗𝑘𝑠𝑗𝑘 + (𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑎𝑟𝑡) 

𝛽1 now represents the within-day time trend for Day 1 and 𝛽1 + 𝛽3𝑠𝑗𝑘 the trends for each 

subsequent day 𝑠𝑗𝑘 = 1,… , 𝑛2𝑘 − 1. Alternatively, 𝑠𝑗𝑘 can be modelled as a categorical 

variable to obtain separate estimates for each day. For simplicity, fixed effect interactions 

have been omitted from the equations in Table 5:1 but should be included when it is 

expected that population average daily trends vary across days. Adding random effects for 

within-day time (beep number) at levels 2 will then allow these trends to vary by subject 

each day. Adding random effects for within-day time at levels 3 will allow these trends to 

vary between subjects 

In addition to linear trends, non-linear trends can be studied by fitting higher order 

polynomials in the fixed effects. Interpretation of the model is now the combination of the 

mean response over time and the rate of change in 𝑦 dependent on time. For a 𝑝 order 

polynomial,  

𝑦𝑖𝑗𝑘 =  𝛽0 + 𝛽1𝑡𝑖𝑗𝑘 + 𝛽2𝑡𝑖𝑗𝑘
2 + 𝛽3𝑡𝑖𝑗𝑘

3 + ⋯+ 𝛽𝑝𝑡𝑖𝑗𝑘
𝑝

+ (𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑎𝑟𝑡) 

relates to the mean response over time and  

𝑑𝑦

𝑑𝑡
= 𝛽1 + 2𝛽2𝑡𝑖𝑗𝑘 + 3𝛽3𝑡𝑖𝑗𝑘

2 + ⋯+ 𝑝𝛽𝑝𝑡𝑖𝑗𝑘
𝑝−1

+ (𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑎𝑟𝑡) 

the rate of change. The magnitude and sign of the coefficients can be used to draw 

inference on the shape and direction of the trend. For a quadratic trend, for example, the 

turning point can be found by solving 𝑑𝑦/𝑑𝑡 = 0, the sign of 𝑑2𝑦/𝑑𝑡2 indicating whether 

the point is a maximum or minimum. Moreover, including higher order terms in the 

random effects can allow these non-linear trends to vary between- and within-subject.  

Random effect interpretation  

The random intercepts for subject 𝑢0𝑘 and day 𝑣0𝑗𝑘 allow a different intercept for each 

subject and each day within-subject respectively, i.e. a specific mood score at the start of 

the study can be estimated for each subject, 𝛽0 + 𝑢0𝑘, which can differ by 𝑣0𝑗𝑘 for each 
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day within subject. For example, Subject 1 will have a mood score 𝛽0 + 𝑢01 + 𝑣011 at the 

start of Day 1 but 𝛽0 + 𝑢01 + 𝑣021 at the start of Day 2. 

The random slopes  𝑢1𝑘 and 𝑣1𝑗𝑘  allow different time trends for each individual in the same 

way as the random intercepts. The choice of time variable at each level of the random 

effects will determine which trend varies and how. For weekly trends, including day 𝑠𝑗𝑘 at 

level 3 will allow for a different trend per person, each subject 𝑘 now having their own 

weekly trend 𝛽2 + 𝑢1𝑘. These effects are present the models in column d. Where models 

include a random effect but no fixed effect for 𝑠𝑗𝑘, as in models in column c (i.e. when 

𝛽2 =  0), they still allow for a different weekly trend per person and can be used either 

when the average trend is of no interest but for model fit the between-subject variation is 

still included, or when the average effect is expected to be zero, i.e. the subject-specific 

slopes average to zero. The variance in random slopes (𝑣𝑎𝑟(𝑢1𝑘) = 𝜎𝑢1
2 ) estimates the 

degree of variation in weekly trends. If 𝜎𝑢1
2  is large, there is substantial heterogeneity in 

subject-specific weekly trends. If 𝜎𝑢1
2  is small, individuals experience much more similar 

weekly trends in mood.  

For within-day trends, the models fitting a random slope for 𝑡𝑖𝑗𝑘  at level 3 (models on rows 

5-8) allow each subject a different daily trend, 𝛽1 + 𝑢1𝑘, but the trend is expected to be the 

same each day. For example, if the population average within-day trend is positive 

(𝛽1 > 0), i.e. on average subjects see an improvement in mood over the course of the day, 

Subject 1 may also have a positive trend (𝛽1 + 𝑢11 > 0, where 𝑢11 > 0) indicating they see 

a greater improvement in mood over the day than average, whereas Subject 2 may have a 

negative within-day trend (𝛽1 + 𝑢21 < 0) suggesting their mood declines over the day. The 

variance in random slopes describes the degree to which individuals share similar daily 

time trends. A large variance suggests people are experiencing very different daily mood 

trends to one another, a small variance would imply a more homogeneous daily mood 

profile. 

When a random slope for 𝑡𝑖𝑗𝑘  is fitted at level 2 (models on rows 3, 4, 7 and 8) the within-

day time trend is allowed to differ each day within-subject; the trend 𝛽1 + 𝑣1𝑗𝑘 + 𝑢1𝑘 

containing additional variation 𝑣1𝑗𝑘 for each day 𝑗 for each subject 𝑘. The model estimates 

𝑣𝑎𝑟(𝑣1𝑗𝑘) = 𝜎𝑣1
2 , the variation in day-specific slopes for subject. Unlike 𝜎𝑢1

2 , this variance is 

comparing daily trends within subject. If 𝜎𝑣1
2  is large, within-day trends vary greatly one day 
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to the next. If 𝜎𝑣1
2  is small the daily trends can be assumed to be largely the same within 

each subject.  

In addition to the covariance between random intercept and slope, models 5c-8c and 5d-8d 

estimate the covariance between the random slopes 𝑡𝑖𝑗𝑘  and 𝑠𝑗𝑘, 𝜎𝑢12. In these models 

𝜎𝑢12 represents the relationship between daily and weekly time trends. When  𝜎𝑢12 > 0 

positive daily trends result in positive weekly trends, or negative daily trends in negative 

weekly trends. When 𝜎𝑢12 < 0, the results indicate that while daily trends may be positive 

over the week mood decreases (or vice versa).  

Likelihood ratio tests can be used with nested models to determine the significance of the 

parameters. However, as variance estimates must be non-negative, likelihood ratio tests 

for examining the significance of random effects may not be valid as the null hypothesis 

(that the variance parameter is equal to zero) is on the boundary of the parameter space 

(Fitzmaurice, Laird et al. 2012; Rabe-Hesketh and Skrondal 2012). The distribution of the 

null hypothesis is usually chi-squared with the degrees of freedom equal to the difference 

in the number of parameters in the full model minus those in the reduced model. When on 

the boundary, the null distribution is now a combination of two chi-squared distributions. 

As a consequence, significance tests will be conservative, producing an over estimated p-

value and resulting in overly parsimonious models. An ad hoc solution to this is to simply 

divide the naïve p-value by 2. Alternatively, the correct p-value can be calculated when the 

distribution mix is known. The analysis of the presented random slope models will be 

conducted in Stata 13, which Rabe-Hesketh and Skrondal (2012) state due to the default 

estimation metric for the covariance of the random effects, the asymptotic null distribution 

when testing the significance of the variance of the 𝑞th random effect is 0.5𝜒𝑞
2 + 0.5𝜒𝑞+1

2 , 

which can be computed.     
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Table 5:1 Three-level fixed and random time effects array
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Figure 5:7 Three-level fixed and random time effect array



 

97 
 

Graphs for when within-day trends are modelled as random effects at both level 2 and level 

3 (rows 7 and 8 in Table 5:1) are omitted as they are analogous to rows 3 and 4 (within-day 

random effects at level 2).  

5.3 APPLICATIONS TO DATA 

The methods outlined for using random slope models to summarize variation in three-level 

data and to investigate time trends will be applied to the Recovery study data. These data 

are a subset of the data collected for an ESM study investigating participant reported 

feelings of recovery in a sample of individuals diagnosed with schizophrenia. The data are 

summarized in Chapter 2. Firstly, the proportion of variance at each level will be calculated 

to provide a general description of how recovery scores vary at the subject-level, day-level 

and moment-level. Random slope models will then be used to further investigate this 

variation and determine whether there are trends in feelings of recovery over time. These 

trends will be explored both linearly and non-linearly. Finally, it will be demonstrated how 

variation in a level 1 measure can be examined between groups, the example extending the 

original analysis of Chapter 2, and across a continuous variable. 

5.3.1 VARIANCE COMPONENTS MODEL 

A random intercept model with no covariates, otherwise known as a variance components 

model, can be used to examine the proportion of variance in outcome at each level of the 

data. As ESM are often analysed as two-level data, both a two- and three-level variance 

components models will be presented to demonstrate day-level variation. The two-level 

variance components model is defined as  

𝑦𝑖𝑘 = 𝛽0 + 𝑢𝑘 + 𝑒𝑖𝑘 

where measurements 𝑖 = 1,… , 𝑛1 are nested within subjects 𝑘 = 1,… , 𝑛2. As the recovery 

data are balanced, the subscript 𝑘 can be dropped from 𝑛1. The subject-level random 

intercepts are denoted 𝑢𝑘~𝑁(0, 𝜎𝑢
2) and the level 1 residuals 𝑒𝑖𝑘~𝑁(0, 𝜎𝑒

2).  The three-

level variance components model is defined as 

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒𝑖𝑗𝑘 

with measurements 𝑖 = 1,… , 𝑛1 nested within days 𝑗 = 1,… , 𝑛2 nested within subjects 

𝑘 = 1,… , 𝑛3, where 𝑢𝑘~𝑁(0, 𝜎𝑢
2) is the subject level random intercept, 𝑣𝑗𝑘~𝑁(0, 𝜎𝑣

2) is 

the day level random intercept and 𝑒𝑖𝑗~𝑁(0, 𝜎𝑒
2) are the level 1 residuals. The results of 

these two models are presented in Table 2. 
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Two level model  Three level model 

Random Effects Variance Std. error Random Effects Variance Std. error 

Subject level: 𝜎𝑢
2 1.648 0.295 Subject level: 𝜎𝑢

2 1.627 0.298 

   Day level:  𝜎𝑣
2 0.217 0.026 

Residual: 𝜎𝑒
2 0.667 0.019 Residual: 𝜎𝑒

2 0.496 0.015 

Table 5:2 Estimates of a two- and three-level variance components model for recovery 

The significance of the day-level random effect can then be tested using a likelihood ratio 

test of the two models where the null hypothesis 𝐻0: 𝜎𝑣
2 =  0  is tested against the 

alternative hypothesis 𝐻1: 𝜎𝑣
2 ≠ 0. The log likelihoods for the two level model  (LL =

−3161.013) and the three level model (LL = −2997.785) rejects the null hypothesis 

(χ1
2 = 326.46, adjusted 𝑝 < 0.0001) at the 1% level, indicating the day level random 

intercept is significant and a three-level model should be used. 

The proportion of variance, as described in Section 2.1.4.1, can then be calculated for each 

level of the three-level model:  

𝐿𝑒𝑣𝑒𝑙 3:
𝜎𝑢

2

𝜎𝑢
2 + 𝜎𝑣

2 + 𝜎𝑒
2 =

1.627

1.627 + 0.22 + 0.496
= 0.694 

𝐿𝑒𝑣𝑒𝑙 2: 
𝜎𝑣

2

𝜎𝑢
2 + 𝜎𝑣

2 + 𝜎𝑒
2 =

0.217

1.627 + 0.217 + 0.496
= 0.093 

𝐿𝑒𝑣𝑒𝑙 1: 
𝜎𝑒

2

𝜎𝑢
2 + 𝜎𝑣

2 + 𝜎𝑒
2 =

0.496

1.627 + 0.217 + 0.496
= 0.214 

These results show that approximately 70% of the variation in recovery scores lies between 

subjects, 9% is between days within subject and 21% is moment to moment variation 

within days. The high between-subject variation indicates that individuals in this sample 

report very different levels of recovery to one another and that in comparison, day to day 

variation in recovery within-subject is small. In addition, the correlation between two 

observations within the same day, within subject can be calculated as 

𝑐𝑜𝑟𝑟(𝑦𝑖𝑗𝑘 , 𝑦𝑖′𝑗𝑘) =
𝜎𝑣

2 + 𝜎𝑢
2

𝜎𝑢
2 + 𝜎𝑣

2 + 𝜎𝑒
2 =

0.217 + 1.627

1.627 + 0.217 + 0.496
= 0.788 

which suggests that recovery scores within a subject are highly correlated moment to 

moment. This correlation can be investigated using time trends. 



 

99 
 

5.3.2 TIME TRENDS IN RECOVERY DATA 

Although the models defined in Section 1.2.2 can be used to explore patterns in the data, 

model choice here will be driven by specific research questions.  Model 1 will be used to 

assess the time course of recovery across the week – on average how does recovery 

change over the week? – and by allowing each subject to have a different slope, how 

similar are subject specific trends? Model 2a tests for a within-day time trend – how does 

recovery change within a day? – with each subject allowed to have a different within-day 

slope to assess how similar these trends are between subjects. Model 2b allows the within-

day slope to vary each day, this model describing how different daily trends are both 

between and within subjects. The model equations are presented in Table 5:3. 

A random intercept model with a fixed effect for both within-day and between-day time 

will be used as a base model to compare to the random slope models to test for time 

trends. A fixed effect of time 𝑡𝑖 will describe how on average recovery changes over the 

course of a day and 𝑠𝑗 how recovery changes over the week. The subscripts 𝑗 and 𝑘 are 

dropped from 𝑡𝑖 as beep number will be used as a proxy for within-day time and each 

subject is instructed to complete 10 beeps each day. Similarly, day number 𝑠𝑗 requires no 

subscript 𝑘 as each subject is monitored for an equal number of days. 

The results of each of these models can be seen in Table 5:4. 

 Random Intercept model 𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑡𝑖 + 𝛽2𝑠𝑗 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒𝑖𝑗𝑘  

Model 1 Between-day  

random slope model 

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑡𝑖 + 𝛽2𝑠𝑗 + 𝑢0𝑘 + 𝑢1𝑘𝑠𝑗 + 𝑣𝑗𝑘 + 𝑒𝑖𝑗𝑘  

Model 2a Within-day random slope 

model 

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑡𝑖 + 𝛽2𝑠𝑗 + 𝑢0𝑘 + 𝑢1𝑘𝑡𝑖 + 𝑣𝑗𝑘 + 𝑒𝑖𝑗𝑘  

Model 2b Within-day random slope 

model with across-day 

variation 

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑡𝑖 + 𝛽2𝑠𝑗 + 𝛽3𝑡𝑖𝑠𝑗  

           +𝑢0𝑘 + 𝑢1𝑘𝑡𝑖 + 𝑣0𝑗 + 𝑣1𝑗𝑘𝑡𝑖 + 𝑒𝑖𝑗𝑘  

Table 5:3 Time trend models to be applied to the recovery data 

5.3.2.1 RESULTS OF TIME TREND MODELS  

BETWEEN-DAY TIME TRENDS – MODEL 1 

There is small downward weekly trend (𝛽2 = −0.04, 𝑝 = 0.044)  which suggests that on 

average participants feel less recovered over the course of the week. The variance in 

subject-specific slopes (𝜎𝑢1
2 = 0.02) indicated that 95% of slopes within ±√0.02 ∗ 1.96 =
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±0.28 units of the average, that is 95% of subjects have weekly trends between -0.32 and 

0.24. The likelihood ratio test comparing this model with the random intercept model 

indicates that the random slope is significant (𝜒1
2 = 20.06, adjusted 𝑝 = 0.0001). 

Variation in subject-specific intercepts is larger, with a range of 4.6 units for initial recovery 

scores. The positive covariance (𝜎𝑢𝑜1 = 0.05) indicates that participants with higher 

recovery scores at the start of the week have a stronger than average negative trend over 

the week.  

WITHIN-DAY TIME TRENDS (MODELS 2A AND 2B) 

There is no evidence of linear daily time trends in recovery (𝛽1 = 0.003, 𝑝 = 0.770, model 

2a) and no apparent variation in trend across days (𝛽3 = −0.002, 𝑝 = 0.606, model 2b). 

However, a likelihood ratio test comparing model 2a with the random intercept model 

suggests the subject-level random slope is significant (𝜒2
2 = 43.36, adjusted 𝑝 < 0.0001). 

Similarly, the day-level random slope was found to be significant when comparing model 

2b with 2a (with the addition of the day by beep interaction term in the fixed effects) 

(𝜒2
2 = 38.01, adjusted 𝑝 < 0.0001). Interpreting these random slope coefficients suggests 

there is a small amount of variation in daily trends at the subject level (𝜎𝑢1
2 = 0.003 model 

2a , 𝜎𝑢1
2 = 0.002 model 2b) with model 2b suggesting a greater amount of variation in 

slopes at the day level (𝜎𝑣1
2 = 0.006), i.e. there is more variation in time trends one day to 

the next than there is between subjects.  
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  Random intercept model Model 1 Between-day RS model Model 2a Within-day RS model Model 2b Across-day RS model 

Fixed effects 𝛽 Std.  Error P-value 𝛽 Std.  Error P-value 𝛽 Std.  Error P-value 𝛽 Std.  Error P-value 

Intercept 5.028 0.169 <0.001 5.031 0.154 <0.001 5.035 0.167 <0.001 5.010 0.172 <0.001 

Beep (𝑡𝑖)  0.003 0.005 0.601 0.002 0.005 0.645 0.003 0.009 0.770 0.008 0.013 0.520 

Day (𝑠𝑗) -0.047 0.017 0.009 -0.045 0.022 0.044 -0.046 0.017 0.008 -0.036 0.025 0.141 

Beep*Day -- -- -- -- -- -- -- -- -- -0.002 0.004 0.606 

Random effects Variance Std. Error  Variance Std. Error  Variance Std. Error  Variance Std. Error 

Level 3 Intercept 1.654 0.305  1.351 0.266  1.597 0.303  1.575 0.303 

 Day (slope) -- --  0.014 0.006  -- --  -- -- 

 Covariance (I, D) -- --  0.049 0.027  -- --  -- -- 

 Beep (slope) -- --  -- --  0.003 0.001  0.002 0.001 

 Covariance (I, B) -- --  -- --  0.0001 0.012  0.005 0.012 

Level 2 Intercept 0.210 0.025  0.163 0.024  0.218 0.026  0.333 0.051 

 Beep (slope) -- --  -- --  -- --  0.006 0.001 

 Covariance (I, B) -- --  -- --  -- --  -0.025 0.007 

Level 1 Residual 0.497 0.015  0.497 0.015  0.473 0.015  0.437 0.014 

Log likelihood -3002.683   -2992.663   -2981.001   -2966.573  

Table 5:4 Fixed and random effect estimates of time trend models fitted to the recovery data
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5.3.2.2 INCORPORATING NON-LINEAR TRENDS 

Further exploration of the time trends in recovery can include investigating non-linear 

trends. The results of 5.3.2.1 show no linear trend in beep number, however, a non-linear 

trend may be present. The simplest way to incorporate non-linear trends is by including 

higher order time terms.  

To begin, the three-level random intercept model was refitted with the inclusion of 

quadratic trends in both beep number and day number 

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑡𝑖 + 𝛽2𝑡𝑖
2 + 𝛽3𝑠𝑗 + 𝛽4𝑠𝑗

2 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒𝑖𝑗𝑘 

 Random intercept – Full Random intercept - Reduced 

Fixed effects 𝛽 Std. Error P-value 𝛽 Std. Error P-value 

Intercept 4.959 0.174 <0.001 4.968 0.170 <0.001 

Beep 0.043 0.020 0.026 0.043 0.020 0.026 

Beep2 -0.004 0.002 0.030 -0.004 0.002 0.030 

Day -0.029 0.060 0.623 -0.044 0.017 0.010 

Day2 -0.003 0.012 0.791 -- -- -- 

Random effects Variance Std. Error  Variance Std. Error 

Level 3 Intercept 1.628 0.298  1.628 0.298 

Level 2 Intercept 0.210 0.025  0.210 0.025 

Level 1 Residuals  0.495 0.015  0.495 0.015 

Log likelihood -2991.930  -2991.965 

Table 5:5 Full and reduced quadratic random intercept models fitted to the recovery data 

The results show there to be a significant negative quadratic trend in within-day time, 

indicating that recovery decreases non-linearly over the course of the day. The quadratic 

day trend is does not improve model fit and so will not be included in the subsequent 

models.  

Models 2a and 2b were refit with both the linear and quadratic ‘beep number’ terms to 

investigate how the non-linear daily trends vary between subjects. These models are now 

expressed as models 3a and 3b: 

𝑀𝑜𝑑𝑒𝑙 3𝑎: 𝑦
𝑖𝑗𝑘

= 𝛽
0
+ 𝛽

1
𝑡𝑖 + 𝛽

2
𝑡𝑖
2 + 𝛽

3
𝑠𝑗 + 𝑢0𝑘 + 𝑢1𝑘𝑡𝑖 + 𝑢2𝑘𝑡𝑖

2 + 𝑣𝑗𝑘 + 𝑒𝑖𝑗𝑘  
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𝑀𝑜𝑑𝑒𝑙 3𝑏: 𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑡𝑖 + 𝛽2𝑡𝑖
2 + 𝛽3𝑠𝑗 + 𝛽4𝑡𝑖𝑠𝑗 + 𝛽5𝑡𝑖

2𝑠𝑗 + 𝑢0𝑘 + 𝑢1𝑘𝑡𝑖 + 𝑢2𝑘𝑡𝑖
2 + 𝑣0𝑗

+ 𝑣1𝑗𝑘𝑡𝑖 + 𝑣2𝑘𝑡𝑖
2 + 𝑒𝑖𝑗𝑘 

The quadratic function  𝛽1𝑡𝑖 + 𝛽2𝑡𝑖
2 in the fixed effects will describe the population average 

trend, with turning point where 𝑑𝑦/𝑑𝑡 = 0. Both terms are also included in the random 

effects to allow these trends to vary between-subjects (and between-day in Model 3b). As 

solving the first derivative of the equation provides the turning point at time 𝑡, the random 

effect 𝑢1𝑘𝑡𝑖 allows for variation in subject-specific (and day-specific) turning points while 

the term 𝑢1𝑘𝑡𝑖
2 allows for subject-specific (and day-specific) gradients.  

These full models were compared to a reduced form for each, only including the linear 

term in the random effects and in the interaction of model 3b. Whilst both converge, the 

quadratic variance estimates are very small (𝑀𝑜𝑑𝑒𝑙 3𝑎: 𝜎𝑢2
2 = 0.00009, for example) and 

the variance standard errors could not be calculated whilst specifying unstructured 

covariance matrices at levels 2 and 3; this model is simply too complex for the data. The 

results of reduced forms of these models, with the linear time term in the random effects 

only, are presented in Table 5:6. 

For each of the reduced models there is roughly the same within-day trend: recovery 

increases slightly as the day progresses followed by a turning point towards the middle of 

the day (5.5 in model 3a and 6 in model 3b) after which the recovery starts to decrease 

with time.  

The significance of the between-day and within-day random slopes were tested using 

likelihood ratio tests. The linear random slope at level 3 were found to be significant 

(Model 3a: 𝜒2
2 = 43.64, adjusted 𝑝 < 0.0001)  as was the inclusion of the linear random 

slope at level 2 (Model 3b: 𝜒2
2 = 37.91, adjusted 𝑝 < 0.0001); the within-day models 

demonstrating significant variation in daily trends between subjects and days. 
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  Random intercept model Model 3a Within-day RS 
model 

Model 3b Across-day RS 
model 

Fixed 
effects 

𝛽 SE P-value 𝛽 SE P-value 𝛽 SE P-value 

Intercept 4.968 0.170 <0.001 4.972 0.170 <0.001 4.949 0.174 <0.001 

Beep  0.044 0.020 0.026 0.044 0.021 0.035 0.048 0.022 0.031 

Beep
2
 -0.004 0.002 0.030 -0.004 0.002 0.028 -0.004 0.002 0.029 

Day -0.044 0.017 0.010 -0.046 0.017 0.008 -0.036 0.025 0.141 

Beep*Day       -0.002 0.004 0.614 

Random Effects Variance SE  Variance SE  Variance SE 

Level 3 Intercept 1.628 0.298  1.594 0.303  1.573 0.302 

 Day (slope) -- --  -- --  -- -- 

 
Covariance 
(I, D) 

-- --  -- --  -- -- 

 Beep (slope) -- --  0.003 0.001  0.002 0.001 

 
Covariance 
 (I, B) 

-- --  0.001 0.012  0.005 0.012 

Level 2 Intercept 0.210 0.025  0.218 0.026  0.332 0.051 

 Beep (slope) -- --  -- --  0.006 0.001 

 
Covariance 
(I, B) 

-- --  -- --  -0.025 0.007 

Level 1 Residual 0.495 0.012  0.472 0.015  0.436 0.014 

Log likelihood  -2991.965  -2983.866  -2969.404 

Table 5:6 Fixed and random effect estimates of reduced non-linear time trend models fitted to the 

recovery data – linear terms only in the random effects 

5.3.2.3 EXPANDING TRENDS INTO GROUPS 

One of the main research questions attached to the recovery data was the degree to which 

participant reported recovery fluctuated and whether this differed between groups 

categorised at baseline as ‘recovered’ or ‘non-recovered’. To address this question a three 

level random intercept model with complex level 1 variation was fitted to the data: 

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑥𝑘 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒0𝑖𝑗𝑘𝑥𝑘(0) + 𝑒1𝑖𝑗𝑘𝑥𝑘(1) 

where 𝑥𝑘 is the binary group variable 𝑥𝑘 = 0 the non-recovered group and 𝑥𝑘 = 1 the 

recovered group. The residuals were estimated separately for each group, 𝑒0𝑖𝑗𝑘~𝑁(0, 𝜎𝑒0
2 ) 
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the residuals for the non-recovered group and 𝑒1𝑖𝑗𝑘~𝑁(0, 𝜎𝑒1
2 ) for the recovered group. 

The results (presented in Chapter 1.3) indicated that the baseline ‘recovered’ group had 

significantly higher reported ESM recovery than the ‘non-recovered’ group, although the 

residual variance suggested there was more variation in the ‘non-recovered’ group’s 

scores. Combining this model with the random slope methods outlined in this chapter, we 

can further investigate the group differences in participant reported recovery. Firstly, 

weekly trends will be compared between groups followed by group differences in daily 

trends. For clarity, the non-recovered baseline group will be referred to as Group 1 and the 

recovered baseline group as Group 2.  

GROUP DIFFERENCES IN WEEKLY TRENDS  

A random intercept model was again used to test the significance of the random slopes, the 

nested structure of the models enabling likelihood ratio tests for model comparisons. 

Firstly, weekly trends were compared between baseline groups using a between-day 

random slope model with nonlinear weekly trends 

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑥𝑘 + 𝛽2𝑠𝑗 + 𝛽3𝑠𝑗
2 + 𝛽4𝑥𝑘𝑠𝑗 + 𝛽5𝑥𝑘𝑠𝑗

2 

+ 𝑢𝑜𝑘 + 𝑢1𝑘𝑠𝑗𝑘 + 𝑣𝑗𝑘 + 𝑒0𝑖𝑗𝑘𝑥𝑘(0) + 𝑒1𝑖𝑗𝑘𝑥𝑘(1) 

where average weekly trends for Group 1, 𝛽2𝑠𝑗 + 𝛽3𝑠𝑗
2 , and Group 2, (𝛽2 + 𝛽4)𝑠𝑗 +

(𝛽3 + 𝛽5)𝑠𝑗
2, are separately estimated with additional variation 𝑢1𝑘 for subject specific 

trends. As in the random intercept model, separate residuals are estimated for the two 

baseline groups. 

Although there is a greater amount of variation in the ESM reported recovery scores for 

Group 1, there appears to be no significant week trend. Group 2, however, display a 

significant quadratic trend, with ESM reported recovery decreasing at the start of the week 

and then increasing after Day 2, as displayed in Figure 5:8. Finally, there is significant 

variation in subject-specific weekly trends (𝜎𝑢1
2 = 0.014; 𝜒1

2 = 17.69, adjusted 𝑝 =

0.0003).  
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Figure 5:8 Variation in weekly recovery for the two baseline groups: population average trends plus 

variation at level 1 

GROUP DIFFERENCES IN DAILY TRENDS  

Quadratic within-day trends were also explored in the two groups, using the random slope 

model  

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑥𝑘 + 𝛽2𝑡𝑖 + 𝛽3𝑡𝑖
2 + 𝛽4𝑥𝑘𝑡𝑖 + 𝛽5𝑥𝑘𝑡𝑖

2 

+ 𝑢𝑜𝑘 + 𝑢1𝑘𝑡𝑖 + 𝑣𝑗𝑘 + 𝑒0𝑖𝑗𝑘𝑥𝑘(0) + 𝑒1𝑖𝑗𝑘𝑥𝑘(1). 

 

 

This model estimates the average daily time trend 𝛽2𝑡𝑖 + 𝛽3𝑡𝑖
2 for Group 1 and (𝛽2 +

𝛽4)𝑡𝑖  + (𝛽3 + 𝛽5)𝑡𝑖
2 for the ‘recovered’ group. In the random part of the model, separate 

residual variances are estimated for the two baseline groups in order to measure the 

degree of variability at the momentary level, while the level-3 random slope accounts for 

the subject level variation in the daily trends.  

  

Figure 5:9 Variation in daily recovery for the two baseline groups: population average trends plus 

variation at level 1 
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Group 1 exhibit a significant quadratic daily trend, with ESM reported recovery increasing 

over the morning and beginning to decline around Beep 5.  Group 2 display similar daily 

trends.  

 Weekly trends 
(quadratic dayXgroup interaction) 

Daily trends  
(quadratic beepXgroup interaction) 

Fixed effects 𝛽 SE P-value 𝛽 SE P-value 

Intercept 4.760 0.186 <0.001 4.617 0.203 <0.001 

Group 0.949 0.328 0.004 0.810 0.356 0.023 

Beep (Not recovered) -- -- -- 0.052 0.026 0.049 

Beep2 (Not recovered) -- -- -- -0.006 0.003 0.018 

Beep (Recovered) -- -- -- 0.021 0.040 0.592 

Beep2 (Recovered) -- -- -- 0.001 0.004 0.884 

Day (Not recovered) 0.044 0.070 0.535 -- -- -- 

Day2 (Not recovered) -0.022 0.013 0.100 -- -- -- 

Day (Recovered) -0.264 0.122 0.030 -- -- -- 

Day2 (Recovered) 0.069 0.023 0.003 -- -- -- 

Random effects Variance SE  Variance SE 

Level 3 Intercept 1.251 0.254  1.557 0.304 

 Day (slope) 0.014 0.006  -- -- 

 Covariance (I, D) 0.042 0.028  -- -- 

 Beep (slope) -- --  0.002 0.001 

 Covariance (I, B) -- --  -0.009 0.011 

 Covariance (B, D) -- --  -- -- 

Level 2 Intercept 0.166 0.024  0.233 0.027 

Level 1 Residual (Not recovered) 0.529 0.020  0.503 0.019 

 Residual (Recovered) 0.282 0.016  0.268 0.016 

Log likelihood -2703.862  -2702.454 

Table 5:7 Within- and between-day random slope group difference models fitted to the recovery 

data with quadratic time trends and complex level 1 variance 

  



 

108 
 

TIME TRENDS IN RESIDUAL VARIANCE BETWEEN GROUPS 

The variation in recovery at level 1 was largely similar in the two models. For both models 

the recovery scores for the ‘non-recovered’ group fluctuated more greatly than the 

‘recovered’ group, this degree of fluctuation expressed as the shaded areas in Figure 5:8 

and Figure 5:9. To examine this question of ‘fluctuation’ more closely, a complex variation 

model allowing for differences in group residuals to depend on time can be fitted.  

For weekly trends the model becomes 

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑥𝑘 + 𝛽2𝑠𝑗𝑘 + 𝛽3𝑠𝑗
2 + 𝛽4𝑥𝑘𝑠𝑗𝑘 + 𝛽5𝑥𝑘𝑠𝑗

2 + 𝑢0𝑘 + 𝑢1𝑘𝑠𝑗𝑘 

+ 𝑣𝑗𝑘 + 𝑒0𝑖𝑗𝑘𝑥𝑘(0) + 𝑒1𝑖𝑗𝑘𝑥𝑘(1) + 𝑒2𝑖𝑗𝑘𝑠𝑗 

where  

[

𝑒0𝑖𝑗𝑘

𝑒1𝑖𝑗𝑘

𝑒2𝑖𝑗𝑘

]~𝑁(0, Σ𝑒):  Σ𝑒 = [

𝜎𝑒0
2

0 𝜎𝑒1
2

𝜎𝑒02 𝜎𝑒12 𝜎𝑒2
2

] 

and the level 1 variance function is  

𝑣𝑎𝑟(𝑒0𝑖𝑗𝑘𝑥𝑘(0) + 𝑒1𝑖𝑗𝑘𝑥𝑘(1) + 𝑒2𝑖𝑗𝑘𝑠𝑗)

=  𝜎𝑒0
2 𝑥𝑘(0) + 𝜎𝑒1

2 𝑥𝑘(1) + 2𝜎𝑒02𝑥𝑘(0)𝑠𝑗 + 2𝜎𝑒12𝑥𝑘(1)𝑠𝑗 + 𝜎𝑒2
2 𝑠𝑗

2 

The covariance of 𝑥𝑘(0) and 𝑥𝑘(1) is constrained to be zero as observations cannot be in 

both groups. The results of this model are presented in Table 5:8. The fixed effect estimates 

and levels 3 and 2 variance parameters are much the same as the previous complex 

variation model. The addition of day number as a level 1 variance parameter is statistically 

significant (𝜒1
2 = 61.3, adjusted 𝑝 < 0.0001), indicating there is significant 

heteroskedasticity with respect to time.  The week trends in level 1 variance for the two 

baseline recovery groups can be seen in Figure 5:11 where the variance function is plotted 

over days, the solid line representing Group 1 and the dashed line Group 2. Greater 

fluctuations in recovery can be observed in Group 1 at the start of the week, reducing as 

the week progresses. This reduction in variability, together with the fixed effect results 

plotted in Figure 5:10, imply that ESM recovery is higher but more variable at the start of 

the week and lower, but more consistently so at the end of the week for Group 1, the non-

recovered group. Group 2, classified as ‘recovered’ at baseline, report higher ESM recovery 

scores than the ‘non-recovered’ group, with far less variability that stays constant across 

the week. 
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Figure 5:10 Non-linear population average 

weekly trends in recovery for two groups 

 

Figure 5:11 Time dependent heteroskedasticity 

between two groups: weekly trend 

 

A similar extension can be applied to the within-day trend model to investigate whether 

group differences in outcome fluctuation change over time  

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑥𝑘 + 𝛽2𝑡𝑖 + 𝛽3𝑡𝑖
2 + 𝛽4𝑥𝑘𝑡𝑖 + 𝛽5𝑥𝑘𝑡𝑖

2 + 𝑢0𝑘 + 𝑢1𝑘𝑡𝑖 

+ 𝑣𝑗𝑘 + 𝑒0𝑖𝑗𝑘𝑥𝑘(0) + 𝑒1𝑖𝑗𝑘𝑥𝑘(1) + 𝑒2𝑖𝑗𝑘𝑡𝑖 

The fixed effect estimated (presented in Table 5:8), as in the weekly trend model, were 

largely similar to the model with constant level 1 variance. The parameters of interest here 

are the variance and covariance estimates at level 1 making up the variance function  

𝑣𝑎𝑟(𝑒0𝑖𝑗𝑘𝑥𝑘(0) + 𝑒1𝑖𝑗𝑘𝑥𝑘(1) + 𝑒2𝑖𝑗𝑘𝑡𝑖)

=  𝜎𝑒0
2 𝑥𝑘(0) + 𝜎𝑒1

2 𝑥𝑘(1) + 2𝜎𝑒02𝑥𝑘(0)𝑡𝑖 + 2𝜎𝑒12𝑥𝑘(1)𝑡𝑖 + 𝜎𝑒2
2 𝑡𝑖

2. 

Testing the significance of this complex variance against the constant variance model 

(𝜒3
2 = 104.146, adjusted 𝑝 < 0.0001), it can be concluded that momentary level 

fluctuations in the two groups depends on time. This is illustrated in Figure 5:13 where the 

variance function is plotted for the two groups, the solid line representing level 1 variance 

over the day for Group 1 and the dashed line variation over the day for Group 2. 
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 Between-day random slope model 
(quadratic day group interaction) 

Within-day random slope model  
(quadratic beep group interaction) 

Fixed effects  𝛽 Std. Error  𝛽 Std. Error 

Intercept  4.761 0.184  4.615 0.201 

Group  0.949 0.323  0.840 0.354 

Beep (Not recovered)  -- --  0.053 0.027 

Beep2 (Not recovered)  -- --  -0.006 0.003 

Beep (Recovered)  -- --  0.010 0.041 

Beep2 (Recovered)  -- --  0.002 0.004 

Day (Not recovered)  0.043 0.070  -- -- 

Day2 (Not recovered)  -0.022 0.013  -- -- 

Day (Recovered)  -0.263 0.121  -- -- 

Day2 (Recovered)  0.069 0.023  -- -- 

Random effects Variance Std. Error  Variance Std. Error 

Level 3 Intercept 1.207 0.242  1.521 0.294 

 Day (slope) 0.014 0.005  -- -- 

 Covariance (I, D) 0.041 0.026  -- -- 

 Beep (slope) -- --  0.002 0.001 

 Covariance (I, B) -- --  -0.009 0.011 

Level 2 Intercept 0.160 0.022  0.242 0.027 

Level 1 Residual (Not recovered) 0.660 0.039  0.575 0.048 

 Residual (Recovered) 0.294 0.023  0.480 0.053 

 Residual (Day) -0.001 0.002  -- -- 

 Covariance (NR, D) -0.025 0.007  -- -- 

 Covariance (R, D) 0.000 0.000  -- -- 

 Residual (Beep) -- --  0.010 0.002 

 Covariance (NR, B) -- --  -0.040 0.010 

 Covariance (R, B) -- --  -0.055 0.010 

Log likelihood -2675.6515  2684.403 

Table 5:8 Within- and between-day random slope group difference models fitted to the recovery 

data with quadratic time trends and complex, time dependent level 1 variance 

Both groups exhibit similar patterns within-day, with ESM reported recovery improving 

over the course of the day, Group 1 taking a downward turn later in the day, but with the 

Group 2 exhibiting significantly higher levels of recovery throughout the day. Fluctuations 

in recovery also follow a similar pattern within each group, with more consistent scoring 
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towards the middle of the day and higher variability in the morning and evening, Group 1 

(the ‘non-recovered’ group), however, having higher levels of variability across the whole 

day.  

 

 

Figure 5:12 Non-linear population average daily 

recovery trends in two groups 

 

 

Figure 5:13 Time dependent heteroskedasticity 

between two groups: daily trend 

 

 

The within-day trends of the current models have been restricted to be the same each day. 

However, in Section 5.3.2.1 within-day trends were extended to allow for across-day 

variability. Studying across-day variation between groups in the fixed effects and in terms 

of level 1 heteroskedasticity is conceptually possible, however it requires several two-way 

and three-way interactions. The fixed part of the within-day complex variation model 

above is extended to  

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑥𝑘 + 𝛽2𝑡𝑖 + 𝛽3𝑡𝑖
2 + 𝛽4𝑥𝑘𝑡𝑖 + 𝛽5𝑥𝑘𝑡𝑖

2 

+ 𝛽6𝑠𝑗 + 𝛽7𝑡𝑖𝑠𝑗 + 𝛽8𝑡𝑖
2𝑠𝑗 + 𝛽9𝑥𝑘𝑡𝑖𝑠𝑗 + 𝛽10𝑥𝑘𝑡𝑖

2𝑠𝑗 

where 𝛽2𝑡𝑖 + 𝛽3𝑡𝑖
2 provides the trend for Group 1 on Day 1, (𝛽2 + 𝛽4)𝑡𝑖 + (𝛽3 + 𝛽5)𝑡𝑖

2 the 

trend for Group 2 on Day 1, and (𝛽2 + 𝛽7𝑠𝑗)𝑡𝑖 + (𝛽3 + 𝛽8𝑠𝑗)𝑡𝑖
2 the trends for Group 1 on 

days 𝑠𝑗 > 1 and  (𝛽2 + (𝛽7 + 𝛽9)𝑠𝑗)𝑡𝑖 + (𝛽3 + (𝛽8 + 𝛽10)𝑠𝑗)𝑡𝑖
2 the trends for Group 2 on 

days 𝑠𝑗 > 1.  

In the random part of the model the inclusion of the level 2 random slope 𝑡𝑖, in addition to 

the level 3 random slope, allows for variation in fixed trends within-subject.   

Currently the variance function estimates the momentary variation in recovery for the two 

groups, allowing the variation to depend on time. A quadratic dependency is observed in 
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both groups. To allow this dependency to be different each day, 𝑠𝑗 can also be modelled in 

the variance function by specifying the random part of the model as  

𝑢0𝑘 + 𝑢1𝑘𝑡𝑖 + 𝑣0𝑗𝑘 + 𝑣1𝑗𝑘𝑡𝑖 + 𝑒0𝑖𝑗𝑘𝑥𝑘(0) + 𝑒1𝑥𝑘(1) + 𝑒2𝑡𝑖 + 𝑒3𝑠𝑗 

The level 1 variance function is then  

𝑣𝑎𝑟(𝑒0𝑖𝑗𝑘𝑥𝑘(0) + 𝑒1𝑥𝑘(1) + 𝑒2𝑡𝑖 + 𝑒3𝑠𝑗)

= 𝜎𝑒0
2 + 𝜎𝑒1

2 + 2𝜎𝑒02𝑥𝑘(0)𝑡𝑖 + 2𝜎𝑒12𝑥𝑘(1)𝑡𝑖 + 2𝜎𝑒03𝑥𝑘(0)𝑠𝑗

+ 2𝜎𝑒13𝑥𝑘(1)𝑠𝑗 + 𝜎𝑒2
2 𝑡𝑖

2 + 2𝜎𝑒23𝑡𝑖𝑠𝑗 + 𝜎𝑒3
2 𝑠𝑗

2 

which can be plotted against beep number for each day to compare within-day fluctuation 

in recovery between the two groups, across days. These functions are presented in Figure 

5:14 where each graph depicts the Group 1 and Group 2 variance functions for each day. 

 

Figure 5:14 Time dependent heteroskedasticity between two groups: across-day variation in within-

day trend 

5.4 SUMMARY 

The three-level structure of ESM data allows for variation in measures both within-day and 

across the whole sampling period. Currently used methods for examining moment to 
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moment variation were found to underutilize this rich data, condensing all the variability 

into summary measures.  

As an alternative to summary measures, a three-level paradigm for growth models was 

introduced which allows variation to be studied in terms of time trends, where time  can be 

measured at both level 1 (beep number) and level 2 (day number). Random slope models 

including all permutations of these time variables as fixed and random effects were 

presented, with an explanation provided for how these can be used to study daily and 

weekly trends. Combined with a beep by day interaction term, it was shown how to 

random slopes can also be specified to model daily trends that vary across days.   Further 

extensions to these base models were then explored, including modelling nonlinear time 

trends and how complex level 1 variance models can be used to investigate group 

differences in momentary fluctuation in terms of time dependent heteroskedasticity.  

In summary, this chapter has demonstrated how variation in ESM data can be explored, 

and how complex random slope models can be used to gain a detailed understanding of 

the momentary variation ESM is designed to capture.  
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6 PREDICTING MOMENTARY CHANGE 

Investigating predictors of momentary change was one of the main research questions of 

the Bentall et al study. As presented in Chapter 2.2, using a simple change score in an ESM 

context is not appropriate. This chapter will present how change models are currently 

applied in the ESM literature, the drawbacks these particular models face when used with 

multilevel data and potential methodological solutions. The suggested alternatives will 

then be applied to the Recovery data set.  

6.1 INTRODUCTION 

The term ‘change models’ in the context of ESM research will refer to models used to 

investigate predictors of a change in outcome from one moment to the next. This can be 

defined in two ways: 

1. using a change score as the dependent variable, calculated as the difference in 

consecutive moments 𝑖 and 𝑖 − 1, 𝑦𝑖𝑗𝑘 − 𝑦𝑖−1,𝑗𝑘  

2. using the dependent variable 𝑦𝑖𝑗𝑘  while fitting the lagged outcome 𝑦𝑖−1,𝑗𝑘 as a 

covariate. 

These are analogous to the change score and ANCOVA approaches in single-level models, 

but both methods present challenges when applied to ESM data due to the nesting of 

moments within days. For clarity, definition 1 will be referred to as a change score model, 

while definition 2 will be referred to as a lagged outcome model. 

Inference on change will also depend on the how covariates are entered into the model. To 

investigate predictors of change, covariates 𝑥 should be time lagged such that, in the 

context of definition 2 above,  

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑦𝑖−1,𝑗𝑘 + 𝛽2𝑥𝑖−1,𝑗𝑘 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒𝑖𝑗𝑘 . (5) 

Here both covariates 𝑥 and 𝑦 are included in the model at moment 𝑖 − 1, such that the 

coefficient 𝛽2 is interpreted as the effect of a unit increase in 𝑥 at moment 𝑖 − 1 on a 

change in 𝑦 from moment 𝑖 − 1 to 𝑖. The inference of this model is subtly different from 

the model where 𝑥 is entered at moment 𝑖 

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑦𝑖−1,𝑗𝑘 + 𝛽2𝑥𝑖𝑗𝑘 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒𝑖𝑗𝑘 (6) 
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where  𝑥 and the dependent variable 𝑦 are measured at the same time point and the 

lagged outcome, 𝑦 at moment 𝑖 − 1, is included as a covariate. In this model 𝛽2 is the 

concurrent effect of a unit increase in 𝑥 on 𝑦, controlling for the previous value of 𝑦.  

These two models are referred to by many different terms in the literature, for example 

autoregressive models, dynamic panel models (predominantly in economics literature) and 

lagged-response models (Rabe-Hesketh and Skrondal 2012), but in this chapter they will be 

defined as lagged outcome models, with only model (5) referred to as a change model.  

The remainder of this chapter will be sectioned into three parts. Firstly, ESM papers 

discussing change models identified in the systematic review of Chapter 3 will be presented 

to determine how these models are being defined and used in practice. Following this, the 

issues involved in using change models with intensive longitudinal data will be discussed 

with a motivating example from the recovery data set. Potential solutions to these issues 

will then be investigated and applied to this data.   

6.1.1 CHANGE MODELS IDENTIFIED IN THE SYSTEMATIC REVIEW  

Three papers from the 2012 review investigated associations with change in outcome at 

the momentary level, that is, what predicts a change in outcome from moment to moment. 

A further three papers included the lagged outcome as a predictor. These papers were 

identified either from hypotheses presented on the subject of change or where statistical 

models were presented defining the outcome at the previous time point was “controlled 

for”. 

Mata et al (2012) conducted an ESM study to investigate the relationship between self-

initiated physical activity and affect in subjects diagnosed with major depressive disorder 

(MDD) and healthy controls. A total of 106 subjects (53 with MDD and 53 controls) were 

monitored for “seven to eight days”. Participants were given a palmpilot which emitted 

eight semi-random beeps within 90 minute blocks during waking hours (10am – 10pm). At 

each beep participants were required to complete items relating to their current positive 

and negative affect and questions regarding any physical activity they had undertaken since 

the previous beep. The authors hypothesised that positive affect would increase and 

negative affect decrease following physical activity. Two-level random intercept models 

were used to test for this association, with physical activity at moment 𝑖 + 1 predicting a 

change in affect (from moment 𝑖 to 𝑖 + 1)  
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𝐴𝑓𝑓𝑒𝑐𝑡𝑖+1,𝑘 − 𝐴𝑓𝑓𝑒𝑐𝑡𝑖𝑘 = 𝛽0 + 𝛽1𝐺𝑟𝑜𝑢𝑝𝑘 + 𝛽2𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖+1,𝑘 + 𝛽3𝐺 ∗ 𝐴 + 𝛽4𝑇𝑖𝑚𝑒𝑖𝑘  

+ 𝛽5𝑇 ∗ 𝐺 + 𝛽6𝑇𝑖𝑚𝑒𝑖𝑘
2 + 𝛽7𝑇

2 ∗ 𝐺 + 𝑢𝑘 + 𝑒𝑖𝑘.  

where 𝐺𝑟𝑜𝑢𝑝𝑘 is an indicator variable for control or MDD participants and 𝑇𝑖𝑚𝑒𝑖𝑘 

represents time of day, measured as the number of minutes since the first moment of the 

day, centred across participants. Physical activity was entered into the model at moment 

𝑖 + 1 rather than 𝑖 as it was assumed that activity occurred in the interval between 

prompts and was recorded at the next, thus 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖+1,𝑘 represents activity during the 

interval 𝑖 to 𝑖 + 1. The change score was restricted to occur within the same day, that is 

measures at 𝑖 + 1 were excluded if they occurred on the next day to measurements at 

moment 𝑖.  

The authors acknowledge the day level within their data but argue that as physical activity 

was not reported on a substantial number of days (44%) these days would be excluded 

from analysis, and as such chose a two level model with moments nested within 

participants. It was unclear from the paper whether “days without reported physical 

activity” referred to days where the lack of physical activity was recorded, i.e. activity 

coded as zero and as such there would be no variation in this measure, or whether instead 

reports of physical activity were missing. It is presumed the latter, as the software used for 

the analysis (HLM 6.08; (Raudenbush, Bryk et al. 2004)) uses listwise deletion of missing 

data. 

The results showed that there was no significant change in affect when there was no 

reported physical activity, and although positive affect increased with physical activity, 

there was no significant difference in this change between the depressed and control 

groups.  

Kuppens, Champagne and Tuerlinckx (2012) used ESM to assess the relationship between 

appraisals of events and core affect. A total of 79 students were monitored for two weeks, 

completing 10 ESM questionnaires each day on a Palmpilot using a stratified random 

sampling procedure.  Core affect was measured in terms of valence (attractiveness of an 

event) on a scale of displeasure to pleasure, and arousal, recorded on a scale of active to 

passive, and was scored on a 99x99 square grid – a modified version of the 9x9 Affect Grid 

(Russell, Weiss et al. 1989).  Appraisal items related to the question “What is causing your 

feelings right now?” and were scored on a continuous slider scale of 0-100. The authors 

state that separate two-level “autocorrelation-crosscorrelation regression models” were 
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used to evaluate the relationship between each appraisal item and the change in valence 

and arousal. This term appears to have been coined by Kuppens who explains more fully in 

his 2011 paper (Jackson, Kuppens et al. 2011) the ‘autocorrelation’ relating to the use of 

the lagged outcome as a covariate and the ‘cross correlation’ relating to the use of a lagged 

predictor. The change in core affect was modelled by fitting the lagged outcome model, for 

example, 

𝑉𝑎𝑙𝑒𝑛𝑐𝑒𝑖𝑘 = 𝛽0𝑘 + 𝛽1𝑘𝑉𝑎𝑙𝑒𝑛𝑐𝑒𝑖−1,𝑘 + 𝛽2𝑘𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑎𝑙𝑖−1,𝑘 + 𝑒𝑖𝑘 (7) 

 

where 𝛽2𝑘 represents the effect of appraisal at time 𝑡 − 1 on the change in valence from 

𝑡 − 1 to 𝑡. The authors argue that this “is the closest one can come to examining directional 

and causal relationships on the basis of time series data” referencing Granger (1969)  and 

Gottman (1990). This model was presented in the paper with the additional information 

that both “intercept and slope coefficients were allowed to vary across persons”. Although 

no further details were provided as to which covariates were given a random slope, it is 

assumed that only a random slope for appraisal was included at level 2, allowing for 

separate effects of appraisal on change in valence for each subject. The authors also state 

the lagged variables were restricted to be within the same day but did not allow for 

separate day random intercepts. This suggests that the following model may have been 

used 

𝑦𝑖𝑘 = 𝛽0 + 𝛽1𝑦𝑖−1,𝑘 + 𝛽2𝑥𝑖−1,𝑘 + 𝑢0𝑘 + 𝑢1𝑘𝑥𝑖−1,𝑘 + 𝑒𝑖𝑘 . 

However, the notation of their sample model (equation (7) above) with the double 

subscript on the 𝛽 coefficients is indicative of alternative multilevel notation where models 

for different levels are defined separately, where it can be assumed model (7) is the level 1 

equation of 

𝐿𝑒𝑣𝑒𝑙 1: 𝑦𝑖𝑘 = 𝜋0𝑘 + 𝜋1𝑘𝑦𝑖−1,𝑘 + 𝜋2𝑘𝑥𝑖−1,𝑘 + 𝑒𝑖𝑘 

where 

𝐿𝑒𝑣𝑒𝑙 2: 𝜋0𝑘 = 𝛽00 + 𝑢0𝑘 

𝜋1𝑘 = 𝛽10 + 𝑢1𝑘 

𝜋2𝑘 = 𝛽20 + 𝑢2𝑘 

If this is the case, both covariates may have random slopes as becomes clearer in the full 

model  
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𝑦𝑖𝑘 = 𝛽0 + 𝛽1𝑦𝑖−1,𝑘 + 𝛽2𝑥𝑖−1,𝑘 + 𝑢0𝑘 + 𝑢1𝑘𝑦𝑖−1,𝑘 + 𝑢2𝑘𝑥𝑖−1,𝑘 + 𝑒𝑖𝑘 . 

The fixed effects with accompanying standard errors were reported for each appraisal item 

along with estimates of the standard deviation of the random slope for each item. No 

coefficient of the lagged outcome was presented and so it remains unclear whether this 

variable was allowed to vary at level 2.   

Finally Koval and Kuppens (2012) presented a lagged outcome model to study changes in 

emotional intertia when anticipating a stressful event. A sample of 71 university students 

and recent graduates were monitored using palmtop computers for two days, each day 

completing 60 questionnaires with items relating to their current feelings.  The authors 

define ‘emotional inertia’ as the “autocorrelation of an emotion” here specifically studying 

the ‘threat emotion’ comprised as the average of two ESM items measuring current levels 

of anxiety and stress by way of a 1 – 100 VAS slider. Rather than the typical statistical 

definition of autocorrelation estimated in the residuals, the authors refer to 

autocorrelation in emotional inertia as how feelings “carry over from one moment to the 

next”, what might better be described as ‘change’. The first day of the study period was 

used as a baseline or control measure of the subjects’ emotional experience of normal daily 

life. On the second day they were informed they would completing the Trier Social Stress 

Test (TSST) designed to induce social stress later that day. The second day of sampling 

therefore measured the variation in anxiety and stress in anticipation of this task. The 

authors wished to compare the change in threat emotion during corresponding time 

periods on day 1 as day 2 (after being briefed and up to the TSST) and whether this effect 

was moderated by individual differences in depression, self-esteem and fear of negative 

emotion. The specific models were described in the paper using alternative notation of 

separately specifying the level 1 and level 2 models:  

𝐿𝑒𝑣𝑒𝑙 1: 𝑇ℎ𝑟𝑒𝑎𝑡𝑖𝑘 = 𝜋0𝑘 + 𝜋1𝑘𝑆𝐴𝑖𝑘 + 𝜋2𝑘𝑇ℎ𝑟𝑒𝑎𝑡𝑖−1,𝑘 + 𝜋3𝑘𝑆𝐴𝑖𝑘 ∗ 𝑇ℎ𝑟𝑒𝑎𝑡𝑖−1,𝑘 + 𝑒𝑖𝑘 

𝐿𝑒𝑣𝑒𝑙 2: 𝜋𝑝𝑘 = 𝛽𝑝0 + 𝛽𝑝1𝑅𝑆𝐸𝑘 + 𝑢𝑝𝑘   for 𝑝 = 0,1,2,3.  

where 𝑅𝑆𝐸𝑘  is the subject level Rosenberg Self-Esteem scale, 𝑆𝐴𝑖𝑘  is an indicator variable 

for whether the measurement is on the control or Stressor Anticipated time block and 

Threat is the anxiety/stress composite scale measured at the momentary level. The random 

coefficient 𝜋2𝑘 is described as representing the “autocorrelation (inertia) of person 𝑘’s 

threat emotion during the Baseline block” and 𝜋3𝑘 “represents the change in that 
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autocorrelation slope from Baseline to Stressor Anticipation”. Presented in the as one 

model this expands to  

𝑇ℎ𝑟𝑒𝑎𝑡𝑖𝑘 = 𝛽00 + 𝛽01𝑅𝑆𝐸𝑘 + 𝛽10𝑆𝐴𝑖𝑘 + 𝛽11𝑆𝐴𝑖𝑘 ∗ 𝑅𝑆𝐸𝑘 + 𝛽20𝑇ℎ𝑟𝑒𝑎𝑡𝑖−1,𝑘 

+ 𝛽21𝑇ℎ𝑟𝑒𝑎𝑡𝑖−1,𝑘 ∗ 𝑅𝑆𝐸𝑘 + 𝛽30𝑆𝐴𝑖𝑘 ∗ 𝑇ℎ𝑟𝑒𝑎𝑡𝑖−1,𝑘 

+ 𝛽31𝑆𝐴𝑖𝑘 ∗ 𝑇ℎ𝑟𝑒𝑎𝑡𝑖−1,𝑘 ∗ 𝑅𝑆𝐸𝑘 

+ 𝑢𝑜𝑘 + 𝑢1𝑘𝑆𝐴𝑖𝑘 + 𝑢2𝑘𝑇ℎ𝑟𝑒𝑎𝑡𝑖−1,𝑘 + 𝑢3𝑘𝑆𝐴𝑖𝑘 ∗ 𝑇ℎ𝑟𝑒𝑎𝑡𝑖−1,𝑘 + 𝑒𝑖𝑘 

where the interpretation of individual coefficients is not as intuitive.  A table of results 

were presented for the mean scores (𝛽00,  𝛽01,  𝛽10 and 𝛽11) and what the authors refer to 

as the autocorrelation parameters (𝛽20, 𝛽21, 𝛽30 and 𝛽31) corresponding to the coefficients 

of the lagged outcome covariate and any of its interactions. The effect of anticipatory stress 

on emotional inertia was found to be moderated by self-esteem: subjects with low self-

esteem exhibiting a decrease in threat emotion when anticipating a stressor.  

Three other studies also included the lagged outcome as a covariate in their multilevel 

model, though their hypotheses were not related to change. In addition to their models 

investigating instability of deservedness of paranoid thoughts and self-esteem, Udachina et 

al (2012) also examined whether paranoia was a predictor of subsequent self-esteem, 

while controlling for current self-esteem “as a possible confounder”, and whether this 

effect differed between baseline measured paranoia groups and control subjects. Ben-

Zeev, Young et al. (2012) also reported controlling for the outcome at the previous time 

point in their study examining lagged predictors of suicidal ideation in 31 in-patients with 

Major Depressive Disorder, stating that 

“Predicting suicidal ideation at time t from affect and symptom ratings at time t−1 

controlling for t−1 suicidal ideation allows more direct causal inferences, although the 

design is still correlational”.  

And finally, To, Fisher et al. (2012) controlled for the lagged outcome in both concurrent 

and lagged analyses as a solution for the serial autocorrelation present in ESM data. They 

referenced Ilies and Judge (2002) who in turn cited Bryk and Raudenbush (1992) for this 

parameterisation of the residual correlation.  

In summary, although each of these papers used either change scores or lagged outcome 

models in some way, none commented on the possible flaws of these methods in 

multilevel data. The following sections of this chapter will outline potential problems with 
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fitting change models in ESM data and present solutions with application to the recovery 

data set.  

6.2 ISSUES SURROUNDING CHANGE MODELS: MOTIVATING EXAMPLE 

As presented in Chapter 1.3, change models were a question of primary interest in the 

recovery study. However, the results of these models were not as expected. To answer the 

question of interest “what predicts a change in recovery?”, the change in recovery from 

moment 𝑖 − 1 to 𝑖, calculated as a change score 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑖 − 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑖−1, was regressed 

on level 1 diary constructs such as self-esteem and hopelessness at moment 𝑖 − 1: 

𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑖𝑗𝑘 − 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑖−1,𝑗𝑘 = 𝛽0 + 𝛽1𝑠𝑒𝑙𝑓𝑒𝑠𝑡𝑒𝑒𝑚𝑖−1,𝑗𝑘 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒𝑖𝑗𝑘 . 

This resulted in the estimates of Table 2:5, presented graphically below in Figure 6:1. 

 

 

Figure 6:1 Parameter estimates of naïve change score models in the recovery data 

 

The effect estimates from these models are quite unusual; it is suggested that an increase 

in self-esteem, for example, precedes a reduction in self-reported recovery, while an 

increase in recovery follows a greater feeling of hopelessness. Intuitively one would expect 

the opposite sign on the coefficient for each variable in the table. Moreover, subject-level 

and day-level variation in random intercepts was negligible, implying that all subjects have 

the same change score for mean values of 𝑥.  
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To understand this phenomenon in the fixed effects it is useful to dissect the relationship 

between 𝑋 in 𝑌. If examining 𝑋 at timepoint 𝑖 − 1 and the change in 𝑌 from 𝑖 − 1 to 𝑖, i.e 

𝑐𝑜𝑟𝑟(𝑋𝑖−1, 𝑌𝑖 − 𝑌𝑖−1), we have that 

𝑐𝑜𝑟𝑟(𝑋𝑖−1, 𝑌𝑖 − 𝑌𝑖−1) =
𝑐𝑜𝑣(𝑋𝑖−1, 𝑌𝑖 − 𝑌𝑖−1)

𝜎𝑋𝑖−1
𝜎Δ𝑌

 

where  Δ𝑌 = (𝑌𝑖 − 𝑌𝑖−1). From this, using the properties of covariance, it follows that 

𝑐𝑜𝑣(𝑋𝑖−1, 𝑌𝑖 − 𝑌𝑖−1)

𝜎𝑋𝑖−1
𝜎Δ𝑌

=
𝑐𝑜𝑣(𝑋𝑖−1, 𝑌𝑖)

𝜎𝑋𝑖−1
𝜎Δ𝑌

−
𝑐𝑜𝑣(𝑋𝑖−1, 𝑌𝑖−1)

𝜎𝑋𝑖−1
𝜎Δ𝑌

 

=
𝑐𝑜𝑟𝑟(𝑋𝑖−1, 𝑌𝑖)𝜎𝑌𝑖

𝜎Δ𝑌
−

𝑐𝑜𝑟𝑟(𝑋𝑖−1, 𝑌𝑖−1)𝜎𝑌𝑖−1

𝜎Δ𝑌
 

which, if we assume the standard deviation of 𝑌𝑖  is approximately equal to the standard 

deviation of 𝑌𝑖−1, i.e. 𝜎𝑌𝑖

2 ≈ 𝜎𝑌𝑖−1

2 , is  

=
(𝑐𝑜𝑟𝑟(𝑋𝑖−1, 𝑌𝑖) − 𝑐𝑜𝑟𝑟(𝑋𝑖−1, 𝑌𝑖−1))𝜎𝑌

𝜎Δ𝑌
. 

Thus if the lagged relationship is weaker than the concurrent relationship, that is if 

𝑐𝑜𝑟𝑟(𝑋𝑖−1, 𝑌𝑖) < 𝑐𝑜𝑟𝑟(𝑋𝑖−1, 𝑌𝑖−1), then the relationship between the change in 𝑌 and the 

lagged 𝑋 will be negative (𝑖. 𝑒. 𝑐𝑜𝑟𝑟(𝑋𝑖−1, 𝑌𝑖 − 𝑌𝑖−1) < 0). As the relationship between 𝑋 

and 𝑌 typically diminishes with each lag, this inequality would frequently hold and would 

explain any unexpected direction in coefficient estimates. To illustrate this, two examples 

of these lagged correlation pairs are presented in Table 6:1 for recovery (𝑌) and covariates 

self-esteem and hopelessness using the recovery data. For both these variables 

𝑐𝑜𝑟𝑟(𝑋𝑖−1, 𝑌𝑖) < 𝑐𝑜𝑟𝑟(𝑋𝑖−1, 𝑌𝑖−1), thus explaining the irregular signs in Table 2:5. 

Correlation pair Self-esteem Hopelessness 

𝑐𝑜𝑟𝑟(𝑋𝑖−1, 𝑌𝑖−1) 0.573 -0.588 

𝑐𝑜𝑟𝑟(𝑋𝑖−1, 𝑌𝑖) 0.546 -0.543 

𝑐𝑜𝑟𝑟(𝑋𝑖−2, 𝑌𝑖−1) 0.545 -0.542 

𝑐𝑜𝑟𝑟(𝑋𝑖−2, 𝑌𝑖) 0.533 -0.533 

Table 6:1 Lagged correlation pairs for recovery data 
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6.2.1 ENDOGENEITY 

An alternative approach to using a change score as the outcome is to instead fit a model 

with the lagged outcome as a covariate. This, however, presents its own set of problems 

which is referred to as endogeneity.  

To understand the potential problems with applying lagged outcome models to ESM data it 

is first useful to recall the assumptions underpinning multilevel models. As outlined in 

Section 2.1, it is assumed that the level 1 residuals of a three-level random intercept model 

are normally distributed with mean zero given the random intercepts and the set of 

covariates 𝒙, 

𝐸(𝑒𝑖𝑗𝑘|𝒙, 𝑢𝑘, 𝑣𝑗𝑘) = 0 

and thus the covariates and residuals are uncorrelated, or ‘exogenous’. Similarly at levels 2 

and 3 

𝐸(𝑣𝑗𝑘|𝒙, 𝑢𝑘 , 𝑒𝑖𝑗𝑘) = 0 

 

𝐸(𝑢𝑘|𝒙, 𝑣𝑗𝑘 , 𝑒𝑖𝑗𝑘) = 0 

implying the subject-level and day-level random intercepts are also independent of the 

covariates. If any of these assumptions are violated, wherein the covariates are correlated 

with the residuals or random effects, the covariates are considered ‘endogenous’. Fitting a 

model with endogeneity at levels 1, 2 or 3 would lead to biased estimates of both the fixed 

effects and the random effect variances (Ebbes, Böckenholt et al. 2004; Kazemi and 

Crouchley 2006; Rabe-Hesketh and Skrondal 2012). 

When studying momentary level change using a lagged outcome model, the exogeneity 

assumption is violated as 𝑦𝑖−1,𝑗𝑘 is correlated with the random effects. This can be seen by 

taking the first lag of equation (5) 

𝑦𝑖−1,𝑗𝑘 = 𝛽0 + 𝛽1𝑦𝑖−2,𝑗𝑘 + 𝛽2𝑥𝑖−2,𝑗𝑘 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒𝑖−1,𝑗𝑘 

which shows that the lagged outcome is dependent on both 𝑢𝑘 and 𝑣𝑗𝑘.  

Two methods for overcoming this problem when investigating change are presented 

below. 
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6.2.2 SOLUTION TO ENDOGENEITY: THE FIRST-DIFFERENCE METHOD 

Rabe-Hesketh and Skrondal (2012) advocate a first-difference approach to circumvent the 

endogeneity problem. The method is commonly used in economic literature  and is 

discussed in detail by Anderson and Hsiao (1981); (1982) as a two-level problem, with a 

focus on the coefficient of the lag outcome, rather than covariates 𝑥.  

Presented in the context of ESM, the method is as follows.  Beginning with a two-level 

lagged outcome model with both moment level 𝑥𝑖𝑘 and subject level 𝑥𝑘 predictors 

𝑦𝑖𝑘 = 𝛽0 + 𝛽1𝑦𝑖−1,𝑘 + 𝛽2𝑥1𝑖𝑘 + 𝛽3𝑥2𝑘 + 𝑢𝑘 + 𝑒𝑖𝑘 (8) 

the first lag of equation (8) is taken 

𝑦𝑖−1,𝑘 = 𝛽0 + 𝛽1𝑦𝑖−2,𝑘 + 𝛽2𝑥1𝑖−1,𝑘 + 𝛽3𝑥2𝑘 + 𝑢𝑘 + 𝑒𝑖−1,𝑘 (9) 

followed by the difference of the two models (8) and (9) 

𝑦𝑖𝑘 − 𝑦𝑖−1,𝑘 = 𝛽1(𝑦𝑖−1,𝑘 − 𝑦𝑖−2,𝑘) + 𝛽2(𝑥1𝑖𝑘 − 𝑥1𝑖−1,𝑘) + 𝑒𝑖𝑘 − 𝑒𝑖−1,𝑘 (10) 

which results in the first-difference equation. 

This first-difference approach eliminates the random intercept 𝑢𝑘 solving the original 

endogeneity problem. However, the process creates the lagged first-difference (𝑦𝑖−1,𝑘 −

𝑦𝑖−2,𝑘) on the right hand side of equation (10) which is correlated with the new residuals 

(𝑒𝑖𝑘 − 𝑒𝑖−1,𝑘), which can be seen by taking the first lag of (10):  

𝑦𝑖−1,𝑘 − 𝑦𝑖−2,𝑘 = 𝛽1(𝑦𝑖−2,𝑘 − 𝑦𝑖−3,𝑘) + 𝛽2(𝑥1𝑖−1,𝑘 − 𝑥1𝑖−2,𝑘) + 𝑒𝑖−1,𝑘 − 𝑒𝑖−2,𝑘. 

The authors refer to Anderson and Hsiao (1981, 1982) to solve this problem, who suggest 

using either the second lag of the outcome (𝑦𝑖−2,𝑘) or the second lag of the first-difference 

(𝑦𝑖−2,𝑘 − 𝑦𝑖−3,𝑘) as an instrumental variable for the lagged first-difference. Either of these 

approaches would be appropriate as they fulfil the instrumental variable requirements of 

being correlated with (𝑦𝑖−1,𝑘 − 𝑦𝑖−2,𝑘) while being uncorrelated with (𝑒𝑖𝑘 − 𝑒𝑖−1,𝑘). They 

state that this method will provide consistent estimates for the coefficients of time varying 

variables (𝑥1𝑖𝑘 in equation (10)) and the lagged outcome, however not for the coefficients 

of time invariant variables, i.e. subject level variables (𝑥2𝑘), or the random intercept 

variances. Hsiao (2003) (Section 4.3.3.c) is referenced for instruction on how to obtain 

consistent estimates for these parameters. 

Rabe-Hesketh and Skronal outline the first difference procedure in Stata and recommend 

using the second lag of the predictor (𝑦𝑖−2,𝑘) as the instrumental variable using the 
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IVREGRESS command. This command (pg 931 in Stata manual (StataCorp 2013)) fits the 

model  

𝐲𝒊 = 𝒙𝟏𝒊𝛄𝟏 + 𝒙𝟐𝒊𝛄𝟐 + ϵi (11) 

𝑦𝑖 = 𝐲𝒊𝜷𝟏 + 𝒙𝟏𝒊𝜷𝟐 + 𝑒𝑖 (12) 

 

where 𝑦𝑖  is the outcome, 𝐲𝑖 the vector of endogenous predictors, 𝒙𝟏𝒊 the vector of 

exogenous predictors and 𝒙𝟐𝒊 the vector of instrumental variables, and 𝑒𝑖 and 𝜖𝑖 represent 

the error terms. This command allows the authors to use the second lagged outcome as an 

instrumental variable in their first-difference method, the resulting model specified as  

𝑦𝑖−1,𝑘 − 𝑦𝑖−2,𝑘 =  𝛾1(𝑥1𝑖𝑘 − 𝑥1𝑖−1,𝑘) + 𝛾2𝑦𝑖−2,𝑘 + 𝜖𝑖𝑘 − 𝜖𝑖−1,𝑘 (13) 

𝑦𝑖𝑘 − 𝑦𝑖−1,𝑘 = 𝛽1(𝑦𝑖−1,𝑘 − 𝑦𝑖−2,𝑘)̂ + 𝛽2(𝑥1𝑖𝑘 − 𝑥1𝑖−1,𝑘) + 𝑒𝑖𝑘 − 𝑒𝑖−1,𝑘 (14) 

 

The command runs a two-stage least squares procedure where the predicted values of 

(𝑦𝑖−1,𝑘 − 𝑦𝑖−2,𝑘) in equation (13) are substituted in for the observed values of (𝑦𝑖−1,𝑘 −

𝑦𝑖−2,𝑘) in equation (14). The coefficient of interest is then 𝛽2 of model (14) which can be 

interpreted as the concurrent effect of a change in 𝑥 on a change in 𝑦.  

The requirements of Stata’s available commands for instrumental variable use in 

simultaneous equations, however, does not accommodate three-level data. Section 6.3.1 

of this chapter will introduce how a two-step estimating procedure can be manually 

reproduced for three-level data, with an example using the recovery study data. 

6.2.3 SOLUTION TO ENDOGENEITY: THE INITIAL CONDITIONS PROBLEM  

A further problem of using the lagged outcome as a predictor to study change is referred to 

as the ‘initial conditions problem’ (Rabe-Hesketh and Skrondal 2012; Steele, Rasbash et al. 

2013) which arises when the measurement period does not coincide with the true start of 

the observed process. Steele, Rasbash et al. (2013) posit that the process between which 

two consecutive observations are related reduces to the association between the current 

(𝑦𝑖𝑗𝑘) and initial (𝑦11𝑘) observations. This can be shown through substitution for the 

lagged outcome model. Starting with the first available moment 𝑖 = 2 (as there is no lag for 

𝑖 = 1) 

𝑦21𝑘 = 𝛽0 + 𝛽1𝑦11𝑘 + 𝑢𝑘 + 𝑣1𝑘 + 𝑒21𝑘, 

the following moment 𝑖 = 3 can be written, substituting in for 𝑦21𝑘 above, 
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𝑦31𝑘 = 𝛽0 + 𝛽1𝑦21𝑘 + 𝑢𝑘 + 𝑣1𝑘 + 𝑒31𝑘 

=  𝛽0 + 𝛽1(𝛽0 + 𝛽1𝑦11𝑘 + 𝑢𝑘 + 𝑣1𝑘 + 𝑒21𝑘) + 𝑢𝑘 + 𝑣1𝑘 + 𝑒31𝑘 

=  𝛽0 + 𝛽0𝛽1 + 𝛽1
2𝑦11𝑘 + 𝑢𝑘(1 + 𝛽1) + 𝑣1𝑘(1 + 𝛽1) + 𝛽1𝑒21𝑘 + 𝑒31𝑘 . 

Similarly for moment 𝑖 = 4 

𝑦41𝑘 = 𝛽0 + 𝛽1𝑦31𝑘 + 𝑢𝑘 + 𝑣1𝑘 + 𝑒41𝑘 

=  𝛽0 + 𝛽1(𝛽0 + 𝛽1𝑦21𝑘 + 𝑢𝑘 + 𝑣1𝑘 + 𝑒31𝑘) + 𝑢𝑘 + 𝑣1𝑘 + 𝑒41𝑘 

=  𝛽0 + 𝛽1(𝛽0 + 𝛽0𝛽1 + 𝛽1
2𝑦11𝑘 + 𝑢𝑘(1 + 𝛽1) + 𝑣1𝑘(1 + 𝛽1) + 𝛽1𝑒21𝑘 + 𝑒31𝑘) 

+𝑢𝑘 + 𝑣1𝑘 + 𝑒41𝑘 

=  𝛽0 + 𝛽0𝛽1 + 𝛽0𝛽1
2 + 𝛽1

3𝑦11𝑘 + 𝑢𝑘(1 + 𝛽1 + 𝛽1
2) + 𝑣1𝑘(1 + 𝛽1 + 𝛽1

2) + 𝛽1
2𝑒21𝑘

+ 𝛽1𝑒31𝑘 + 𝑒41𝑘 

and so on within each day 𝑗. Thus for any 𝑖 = 2,… , 𝑛1 the outcome 𝑦𝑖𝑗𝑘  is dependent on 

the initial value of 𝑦 with coefficient 𝛽1
𝑖−1. 

The initial conditions problem arises for ESM data as the initial observation 𝑦11𝑘 will be 

correlated with 𝑢𝑘 and 𝑣𝑗𝑘. However, this initial observation is never used as a response in 

a lagged outcome model as it has no lag; 𝑦01𝑘 is not observed in the ESM study. In only 

including 𝑦11𝑘 as a covariate, it is not influenced by any unmeasured subject-level or day-

level heterogeneity which is assumed to effect all other outcomes 𝑦𝑖𝑗𝑘  for 𝑖 > 1. This 

assumption is unlikely to hold unless 𝑦11𝑘 is considered the true start of the process of 𝑦, 

which is unrealistic in ESM data where the data are presumed to be representative of just a 

snapshot of human experience, and the first measurement represents the start of the 

observation rather than the start of the process.  

The naïve modelling approach of assuming 𝑦11𝑘 is exogenous will result in a misspecified 

model. As a consequence, the variation which would be explained by the unobserved 

heterogeneity for the initial observation will be attributed to the change in 𝑦, resulting in 

positively biased estimates of 𝛽1 and negatively biased estimates of the random effects 𝜎𝑢
2 

(Kazemi and Crouchley, 2006). Furthermore, Kazemi and Crouchley state that the naïve 

model may produce negative variance estimates of the random effects and demonstrate 

via probability limits that this approach will result in inconsistent parameter estimates 

when the number of subjects is large and the number of repeated observations is small.  

Steele et al (2013) propose a solution for the initial conditions problem for two-level 

models where observations 𝑖 are nested within clusters 𝑘, in which a separate model is 

specified for the initial condition to allow 𝑦1𝑘 to depend on 𝑢𝑘. This is then jointly 
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estimated with the model for the remaining observations. For simple change models in 

ESM data, the parametrization from Crouchley, Stott et al. (2009) from a “one-factor 

decomposition” model specifies a shared random effect 𝑢𝑗 in both equations, the variance 

of which can be separately estimated for the initial model  

𝑦1𝑘 = 𝛼0 + 𝜆𝑢𝑢𝑘 + 𝑒1𝑘 (15) 

and subsequent model 

𝑦𝑖𝑘 = 𝛽0 + 𝛽1𝑦𝑖−1,𝑘 + 𝑢𝑘 + 𝑒𝑖𝑘 , for 𝑖 > 1 

 

(16) 

 

where 𝜆𝑢 is described as a “random effect loading” (Steele, Rasbash et al. 2013; Steele 

2014) and can either be estimated, in effect weighting the random effects of the initial 

model, or constrained to 𝜆𝑢 = 1. The 𝑒1𝑘 are the residuals for the initial observation for 

subjects 𝑘 = 1,… , 𝑛2.  

The authors argue that if this initial model is correctly specified, bias in the estimated 

coefficients of the main model will be avoided. This is corroborated by Kazemi and 

Crouchley (2006) who’s “pragmatic approach” also specifies joint modelling the initial 

condition with the remaining observations, estimating separate but correlated random 

effects, and who further contend that this approach eliminates the problem of negative 

variance estimates present in the naïve approach.    

In a three-level ESM scenario, ‘change’ may only be relevant when restricted to be within a 

day: a change in 𝑦 overnight may be considered too long a gap, with no interpretable 

consequence of 𝑥 on a change in 𝑦 when 𝑥 is  measured the night before. In this case, 

when fitting a lagged outcome model the first measurement each day is only ever included 

as a predictor, rather than just the first measurement overall in a two-level scenario. The 

same issues apply in this context as for a two-level model - when the 𝑦1𝑗𝑘 for each day 𝑗 

are not allowed to depend on unobserved heterogeneity at levels 2 and 3, 𝛽1 will be 

overestimated and the random effect variances underestimated. To combat this bias, the 

joint modelling of the initial conditions approach can be extended to three levels and 

rather than just modelling the very first observation for each subject as the response, the 

initial model will now contain the first observation for each day, for each subject. The 

following proposes two ways this might be achieved.  

The most straightforward approach is to simply expand equation (15) to two levels and 

jointly model  
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𝑦1𝑗𝑘 = 𝛼0 + 𝜆𝑢𝑢𝑘 + 𝜆𝑣𝑣𝑗𝑘 + 𝑒1𝑗𝑘 (17) 

for observation 1 on each of days 𝑗 and the remaining observations 

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑦𝑖−1,𝑗𝑘 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒𝑖𝑗𝑘  (18) 

for 𝑖 > 1  in which 𝑢𝑘 and 𝑣𝑗𝑘 are shared random effects, while allowing for independent 

residual variation in each model. As with the two-level paradigm, the option to weight the 

random effects in the initial model exists, this time with the additional loading 𝜆𝑣 for the 

day-level random effects.  

If assuming equal influence of unmeasured heterogeneity on both equations, i.e. 

𝜆𝑢 = 𝜆𝑣 = 1, this approach is acceptable; the separate residual variance estimated for 

each equation reflects the difference in predicted values for the initial and subsequent 

models, whilst the constrained loadings assume the initial observations each day vary 

between-subject and between-days in the same manner as the remaining observations. 

However, to freely estimate either of these loadings is to assume that subject-level or day-

level unmeasured heterogeneity differs for these first observations of the day. In Steele et 

al (2013)’s two-level model this can be explained as unmeasured heterogeneity prior to the 

start of the study influencing the initial measurement. This too can be argued for the initial 

observation in the proposed three-level setting, but not the first measurements of each of 

the remaining days: these values surely instead are affected by unmeasured heterogeneity 

in the same way as the surrounding observations.  

When expecting a differential effect of unmeasured heterogeneity on the initial 

observation in this way, an alternative approach to the model of (17) and (18) would be to 

specify an initial model for observation 1 of day 1 only 

𝑦11𝑘 = 𝛼00 + 𝜆𝑢𝑢𝑘 + 𝜆𝑣𝑣1𝑘 + 𝑒11𝑘 (19) 

 

to be jointly estimated with both a model for the first observation for each remaining day 

𝑗 = 2,… , 𝑛2 

𝑦1𝑗𝑘 = 𝛼01 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒1𝑗𝑘 (20) 

 

and a model for the subsequent observations 𝑖 = 2,… , 𝑛1 on all days 
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𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑦𝑖−1,𝑗𝑘 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒𝑖𝑗𝑘 . (21) 

 

This approach allows for unmeasured heterogeneity prior to the start of the study to 

influence the initial observation via equation (19), whilst also ensuring the first observation 

for the subsequent days is also effected by unmeasured heterogeneity via equation (20) 

but maintains that this effect is equal to that placed on the remaining observations 

modelled in equation (21). Joint modelling all three equations should remove the bias in 𝛽1 

and the variance of the random effects encountered in the naïve model.  

6.2.3.1 JOINT ESTIMATION METHODS 

Two methods will be presented to jointly estimate the multiple multilevel equations 

defined above. The first approach specifies both the initial model for 𝑦11𝑘 and the full 

model for 𝑦𝑖𝑗𝑘  for 𝑖 > 1 as one model, using dummy variables to differentiate between the 

two outcomes. The joint model under specification 1 (two equations) can then be defined 

as  

𝑦𝑖𝑗𝑘 = 𝛼0𝑇1 + 𝛽0𝑇𝐺1 + 𝛽1𝑇𝐺1 ∗ 𝑦𝑖−1,𝑗𝑘 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒11𝑘𝑇1 + 𝑒𝑖𝑗𝑘𝑇𝐺1 (22) 

where dummy variables 

𝑇1 = {
1 for 𝑖 = 1
0 for 𝑖 > 1

 and 𝑇𝐺1 = {
0 for 𝑖 = 1
1 for 𝑖 > 1

 

indicate responses for the initial model (T1) and for the remaining observations for time 

points greater than 1 (TG1). Parameters 𝛽0 and  𝛽1 in this model denote the fixed intercept 

and slope for equation (18)(13), while 𝛼0 represented the intercept for the initial model 

(equation (17)). The dummy variables in the residuals allow for separate estimates of the 

residual variance for each equation. This approach can also accommodate the second joint 

model specification of three equations with the inclusion of an additional dummy variable 

for the equation for observation 1 on days 𝑗 = 2,… , 𝑛2. This model can be fitted using the 

MIXED command in Stata which allows for complex level 1 variation, resulting in separate 

estimates for the residual errors of the initial and full models.  

MIXED does not currently have the capability to estimate factor loadings for random 

effects, so estimating 𝜆𝑢 and 𝜆𝑣 is not possible in this package. As an alternative, the 

models can be jointly estimated as structural equation models, where the random effects 

are specified as latent variables (Steele 2014). Multilevel models can be estimated in this 

manner in Stata using the GSEM (Generalized structural equation model estimation) 
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command. When constraining both 𝜆 = 1, MIXED and GSEM will provide identical results 

under their default estimation methods as both use maximum likelihood estimation. 

Estimation using GSEM additionally allows for the estimation random effects loadings for 

the initial condition model, thus 𝜆𝑢 and 𝜆𝑣 can be estimated. Restrictions to the syntax of 

the GSEM command, however, impose that while these weights can be estimated, 𝜆̂𝑢 =

𝜆̂𝑣. To estimate these weights independently, the joint models can be specified in a 

Bayesian framework and fit using STAN (Carpenter, Gelman et al. 2016).  

6.2.3.2 JOINT ESTIMATION ISSUES – LAGGED COVARIATES 

The joint model described in equation (22) is a simplified lagged outcome model with no 

covariates other than the outcome 𝑦 at time point 𝑖 − 1. Inference from this model 

provides understanding on the association between consecutive measurements. A more 

common research question in ESM asks “What predicts change?”.  To answer this question 

moment-level, day-level or subject-level explanatory variables can be included into the 

model. Level 1 predictors, however, prove to be problematic. 

As discussed at the beginning of this chapter, the time point at which level 1 predictors are 

entered into a change model results in subtly different research questions. Including a 

predictor measured at moment 𝑖 as in equation (6) results in a joint model 

𝑦𝑖𝑗𝑘 = 𝛼0𝑇1 + 𝛼1𝑇1 ∗ 𝑥𝑖𝑗𝑘 + 𝛽0𝑇𝐺1 + 𝛽1𝑇𝐺1 ∗ 𝑥𝑖𝑗𝑘 + 𝛽2𝑇𝐺1 ∗ 𝑦𝑖−1,𝑗𝑘 

+𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒11𝑘𝑇1 + 𝑒𝑖𝑗𝑘𝑇𝐺1 

where 𝛽1 can be interpreted as the concurrent effect of 𝑥 on 𝑦, controlling for the value of 

𝑦 at the previous moment. Alternatively, including a lagged predictor  

𝑦𝑖𝑗𝑘 = 𝛼0𝑇1 + 𝛼1𝑇1 ∗ 𝑥𝑖−1,𝑗𝑘 + 𝛽0𝑇𝐺1 + 𝛽1𝑇𝐺1 ∗ 𝑥𝑖−𝑗𝑘 + 𝛽2𝑇𝐺1 ∗ 𝑦𝑖−1,𝑗𝑘 

+𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒11𝑘𝑇1 + 𝑒𝑖𝑗𝑘𝑇𝐺1 

𝛽1 can be interpreted as the effect of 𝑥 on a change in 𝑦 from moment 𝑖 − 1 to 𝑖.  

While the concurrent association is straightforward to fit, the formulation of the initial 

conditions model prevents the inclusion of lagged covariates: for the initial model 𝑖 = 1, so 

for a lagged covariate 𝑥𝑖−1,𝑗𝑘 = 𝑥0𝑗𝑘, for which there is no observed value. With no 

substitute value the initial model  

𝑦11𝑘 = 𝛼0 + 𝛼1𝑥𝑖−1,𝑗𝑘 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒11𝑘 

becomes just a random intercept model 
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𝑦11𝑘 = 𝛼0 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒11𝑘.  

Although the initial value of 𝑥 is no longer present as a predictor of the initial value of 𝑦,  

the original purpose of specifying this model was to allow 𝑦11𝑘 to depend on the 

unmeasured heterogeneity represented by random effects 𝑢𝑘 and 𝑣𝑗𝑘 that would 

otherwise be ignored. As such, not modelling the initial relationship of 𝑦 and 𝑥 does not 

detract from the objective of this method; if the initial value of 𝑦 is allowed to be 

influenced by the unobserved heterogeneity prior to the start of the measurement period 

the problem of endogeneity should still be resolved. However, the examples in the 

reviewed literature only included contemporaneous or higher level covariates and as such 

did not encounter this problem . Though the initial conditions problem thus far has only 

specified the initial observation’s lack of dependence on the random effects, the argument 

can be extended to the fixed effects: if valid parameter estimates require 𝑦1 to depend on 

unmeasured heterogeneity, then should it not also depend on measured covariates 𝑥? In 

ignoring the 𝑥 𝑦 relationship in the initial observation of each day the estimation of 

covariate effects in the main equation are likely to be underestimated, with too much 

variation in 𝑦 attributed to unmeasured heterogeneity.  

An alternative solution to omitting 𝑥 in the initial model to ensure 𝑦1 depends on this 

covariate is to use the concurrent value 𝑥1𝑗𝑘  as a proxy for the unmeasured lagged value 

𝑥0𝑗𝑘. While this proposed solution preserves the relationship of interest in the initial 

moments, it has been observed that concurrent relationship between 𝑥 and 𝑦 may be 

stronger than lagged relationships. As a consequence, the effect of 𝑥 in the change in 𝑦 

may be overestimated. 

The following section will apply the proposed three-level extensions of the first-difference 

and initial conditions methods to the recovery data set. Here the two-equation and three-

equation specifications of the initial conditions models will be investigated and the extent 

to which misspecification of the initial model due to the unobserved lagged covariate 

affects model estimates. The results of both methods will be compared to the naïve 

approach to quantify the inconsistencies in parameter estimates obtained when ignoring 

the endogeneity problem. 

6.3 RECOVERY DATA ANALYSIS 

Bentall and colleagues’ primary research question concerned whether any moment-to-

moment changes in recovery could be predicted by ESM measured variables. These 
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variables included measures of self-esteem, hopelessness, visual and auditory 

hallucinations, paranoia and a measure of how deserving of these paranoid beliefs the 

participants felt. For details on how these scales were calculated from the original ESM 

items please refer to Chapter 1.3.  

 Fixed Effects Random Effects  

Lagged Variable Coeff. SE P value Level Variance SE N 

Self Esteem 0.103 0.026 <0.001 Person 0.687 0.145 1910 

Recovery 0.295 0.023 <0.001 Day 0.065 0.018  

    Beep 0.477 0.018  

Hopelessness -0.081 0.023 <0.001 Person 0.684 0.144 1879 

Recovery 0.299 0.023 <0.001 Day 0.061 0.017  

    Beep 0.477 0.018  

Visual Hallucination  -0.020 0.027 0.469 Person 0.7560 0.157 1834 

Recovery 0.310 0.022 <0.001 Day 0.051 0.016  

    Beep 0.482 0.019  

Auditory Hallucination 0.048 0.021 0.021 Person 0.785 0.165 1805 

Recovery 0.284 0.022 <0.001 Day 0.064 0.017  

    Beep 0.467 0.018  

Paranoia -0.137 0.026 <0.001 Person 0.785 0.165 1912 

Recovery 0.292 0.023 <0.001 Day 0.064 0.017  

    Beep 0.467 0.018  

Deservedness 0.033 0.032 0.303 Person 0.389 0.135 715 

Recovery 0.534 0.033 <0.001 Day 0.011 0.029  

    Beep 0.591 0.041  

Table 6:2 Naïve lagged outcome models for recovery data  

The original analysis, presented in Chapter 1.3, was repeated with the lagged outcome as a 

predictor rather than using a change score as the response. Each predictor was entered 

into separate three-level random intercept models with the lagged outcome as the only 

other covariate. The results of these analyses are presented in Table 6:2. 

In contrast to the models using a change score as the outcome, the results of Table 6:2 

show directions of association more as would be expected: positively oriented scales (e.g. 

self-esteem) having positive associations with recovery, and negatively oriented scales (e.g. 

hopelessness, hallucinations) being negatively associated with recovery. Comparing the 
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number of observations used in each of the analyses with the number used in the 

concurrent associations (Table 2:3) it is clear that using lagged predictors significantly 

reduces the number of observations available for analysis, with most analyses dropping 

around 550 observations. Note that the deservedness model has far fewer observations 

than the other measures as this scale was created as a combination of items that branched 

from a previous item; the items were only to be completed if the participant scored higher 

than 1 on the paranoia symptom items, thus were coded as missing for occasions where 

the participant was not currently experiencing paranoia. In addition to the differences in 

the fixed effects, the results of Table 6:2 also demonstrate marked differences in the 

variance of the random intercepts compared to the change outcome models. In each of the 

lagged outcome models there is substantial variation in the subject-specific intercepts, and 

though comparatively much smaller, still non-zero estimates of between-day variance, 

confirming what has been shown throughout this thesis.  

As has been argued in this chapter, including the lagged outcome as a covariate in these 

models has violated the exogeneity assumption of random effects models. The first-

difference and initial conditions methods will be demonstrated on this data to both identify 

the extent of the bias produced in the fixed and random effects and attempt to rectify this 

problem. The results of the two methods will be presented below in Sections 6.3.1 and 

6.3.2, followed by a discussion of the benefits and drawbacks of the methodologies.  

6.3.1 FIRST-DIFFERENCE APPROACH 

Several new variables were required to implement the first difference approach. For the 

first-difference, lagged variables were created (restricting each lag to be within-day) which 

were then subtracted from the original variable. Holding the lags within-day ensured that 

the first-difference of the day was between moments 𝑦1𝑗𝑘 and 𝑦2𝑗𝑘 rather than overnight 

between moments 𝑦10,𝑗−1,𝑘 and 𝑦1𝑗𝑘. The lagged difference then was created by 

computing the second lag (i.e. 𝑦𝑖−2) and subtracting it from the first lag. See Table 6:3 for 

details. 

# Lag # Difference 

0 𝑦𝑖𝑗𝑘  : lag 0 𝑦𝑖𝑗𝑘 − 𝑦𝑖−1,𝑗𝑘:  First-difference (D) 

1 𝑦𝑖−1,𝑗𝑘 : 1st lag (L) 𝑦𝑖−1,𝑗𝑘 − 𝑦𝑖−2,𝑗𝑘:  Lagged difference (LD) 

2 𝑦𝑖−2,𝑗𝑘: 2nd lag (L2) 𝑦𝑖−2,𝑗𝑘 − 𝑦𝑖−3,𝑗𝑘:  Second lagged difference (LD2) 

Table 6:3 First-difference notation 
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Working from the lagged outcome model of the original analysis, for example for self-

esteem  

𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑠𝑒𝑙𝑓-𝑒𝑠𝑡𝑒𝑒𝑚𝑖−1,𝑗𝑘 + 𝛽2𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑖−1,𝑗𝑘 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒𝑖𝑗𝑘 (23) 

 

to implement the first-difference method the Rabe-Hesketh and Skrondal rationale was 

then followed: the first lag of equation (23) was taken 

𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑖−1,𝑗𝑘 = 𝛽0 + 𝛽1𝑠𝑒𝑙𝑓-𝑒𝑠𝑡𝑒𝑒𝑚𝑖−2,𝑗𝑘 + 𝛽2𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑖−2,𝑗𝑘 

+𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒𝑖−1,𝑗𝑘 

(24) 

 

followed by taking difference of equations (23) and (24)  

𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑖𝑗𝑘 − 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑖−1,𝑗𝑘 = 𝛽1(𝑠𝑒𝑙𝑓𝑒𝑠𝑡𝑒𝑒𝑚𝑖−1,𝑗𝑘 − 𝑠𝑒𝑙𝑓𝑒𝑠𝑡𝑒𝑒𝑚𝑖−2,𝑗𝑘) 

+𝛽2(𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑖−1,𝑗𝑘 − 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑖−2,𝑗𝑘) + 𝑒𝑖𝑗𝑘 − 𝑒𝑖−1,𝑗𝑘. 

(25) 

 

Equation (25) represents the first-difference model. As discussed, the lagged difference of 

recovery in the right hand side of this model (𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑖−1,𝑗𝑘 − 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑖−2,𝑗𝑘) is 

correlated with the error term (𝑒𝑖𝑗𝑘 − 𝑒𝑖−1,𝑗𝑘) and so an instrumental variable will be used 

in its place: 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑖−2,𝑗𝑘, the second lag of the  outcome. We then have the model  

𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑖−1,𝑗𝑘 − 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑖−2,𝑗𝑘 = 𝛾1(𝑠𝑒𝑙𝑓𝑒𝑠𝑡𝑒𝑒𝑚𝑖−1,𝑗𝑘 − 𝑠𝑒𝑙𝑓𝑒𝑠𝑡𝑒𝑒𝑚𝑖−2,𝑗𝑘)

+ 𝛾2𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑖−2,𝑗𝑘 + 𝜖𝑖𝑗𝑘 − 𝜖𝑖−1,𝑗𝑘 

(26) 

𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑖𝑗𝑘 − 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑖−1,𝑗𝑘

= 𝛽1(𝑠𝑒𝑙𝑓𝑒𝑠𝑡𝑒𝑒𝑚𝑖−1,𝑗𝑘 − 𝑠𝑒𝑙𝑓𝑒𝑠𝑡𝑒𝑒𝑚𝑖−2,𝑗𝑘)

+ 𝛽2(𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑖−1,𝑗𝑘 − 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑖−2,𝑗𝑘)
̂  + 𝑒𝑖𝑗𝑘 − 𝑒𝑖−1,𝑗𝑘 

 

(27) 

analogous to the model displayed in equations (11) and (12), where the predicted values of 

equation (26) are used in place of the observed values of 

(𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑖−1,𝑗𝑘 − 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑖−2,𝑗𝑘) in equation (27). 

When fitting these models using two-step procedure the standard errors for 𝛽1 and 𝛽2 are 

likely to be inflated, so the process will be bootstrapped and robust standard errors will be 

presented. 

Table 6:4 presents the results of the first-difference models with separate models fit for 

each of the measures.   
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Lagged difference 

Predictor  

Coefficient Bootstrapped 

SE 

P value Bootstrapped 

95% CI 

N 

LD2.Self-Esteem -0.131 1.203 0.913 (-0.249, 2.227) 1493 

LD2.Recovery 0.303 4.815 0.950 (-9.135, 9.741)  

LD2.Hopelessness 0.090 0.541 0.868 (-0.971, 1.151) 1447 

LD2.Recovery 0.172 2.368 0.942 (-4.469, 4.813)  

LD2.Visual Hallucination  0.053 2.105 0.980 (-4.072,4.179) 1427 

LD2.Recovery 0.318 16.588 0.985 (-32.194, 32.830)  

LD2.Auditory 

Hallucinations 

0.040 1.101 0.971 (-2.117, 2.198) 1404 

LD2.Recovery 0.479 13.675 0.972 (-26.324, 27.281)  

LD2.Paranoia 0.194 5.675 0.973 (-10.930, 11.317) 2000 

LD2.Recovery  0.288 22.342 0.990 (-43.501, 44.077)  

LD2.Deservedness 0.090 7.168 0.990 (-13.959, 14.139) 502 

LD2.Recovery -0.110 29.868 0.997 (-58.649, 58.430)  

Table 6:4 Change model results - first-difference method 

 

For each model the fixed effect estimates for the second lagged difference in the predictor 

(𝑥𝑖−1 − 𝑥𝑖−2) are given alongside the estimates for the second lagged difference in the 

outcome (𝑦𝑖−1 − 𝑦𝑖−2), i.e. parameters 𝛽1 and 𝛽2 in equation (27). The predictor estimates 

should be interpreted as the effect of a change in predictor at one time interval on the 

change in recovery at the following interval, for example the effect of a change in self-

esteem from beep 1 to beep 2 on the change in recovery from beep 2 to beep 3.  

In contrast to the original analysis, none of the covariates were significantly associated with 

a change in recovery. The trends appeared to be in the same direction for example, a 

change in self-esteem at one interval predicts a fall in recovery at the following interval, a 

change in hopelessness predicting a subsequent increase in the feeling of recovery, but 

none were significant at the 5% level.  

6.3.1.1 ONGOING SIGN PROBLEM WITHIN FIRST-DIFFERENCE METHOD 

As discussed, the first-difference method reduces the bias caused by the violation of the 

endogeneity assumption. However, it is not clear whether the method succumbs to the 

sign problem observed when fitting a change score as the outcome, as presented in Section 

6.2. Table 6:4 displays the fixed effects estimates relating to the second lagged difference 
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in the predictor, e.g. 𝛽1 of 𝛽1(𝑠𝑒𝑙𝑓𝑒𝑠𝑡𝑒𝑒𝑚𝑖−2,𝑗𝑘 − 𝑠𝑒𝑙𝑓𝑒𝑠𝑡𝑒𝑒𝑚𝑖−1,𝑗𝑘) from equation (27). 

Although the estimates appear to follow the same trends as the naïve lagged outcome 

models of Table 6:2, the confidence intervals around the non-significant estimates suggest 

that the inverse trend might instead be true.  

Theoretically the issue with the sign of 𝛽 is still present in the first difference method. For 

the change score model it was shown that the correlation between a lagged covariate and 

a change score was dependent on the comparative strength of the concurrent relationship 

between 𝑋 and 𝑌 and the lagged relationship. Considering the current problem as the 

correlation between the lagged difference of 𝑋 and the first-difference of 𝑌, 𝑐𝑜𝑟𝑟(𝑋𝑖−1 −

𝑋𝑖−2, 𝑌𝑖 − 𝑌𝑖−1), it follows as before that  

𝑐𝑜𝑟𝑟(𝑋𝑖−1 − 𝑋𝑖−2, 𝑌𝑖 − 𝑌𝑖−1) =
𝑐𝑜𝑣(𝑋𝑖−1 − 𝑋𝑖−2, 𝑌𝑖 − 𝑌𝑖−1)

𝜎Δ𝑋𝜎Δ𝑌 
 

=
𝑐𝑜𝑣(𝑋𝑖−1 − 𝑋𝑖−2, 𝑌𝑖) − 𝑐𝑜𝑣(𝑋𝑖−1 − 𝑋𝑖−2, 𝑌𝑖−1)

𝜎Δ𝑋𝜎Δ𝑌 
 

=
𝑐𝑜𝑣(𝑋𝑖−1, 𝑌𝑖) − 𝑐𝑜𝑣(𝑋𝑖−2, 𝑌𝑖) − 𝑐𝑜𝑣(𝑋𝑖−1, 𝑌𝑖−1) + 𝑐𝑜𝑣(𝑋𝑖−2, 𝑌𝑖−1)

𝜎Δ𝑋𝜎Δ𝑌 
 

=
𝑐𝑜𝑟𝑟(𝑋𝑖−1, 𝑌𝑖)𝜎𝑋𝑖−1

𝜎𝑌𝑖
− 𝑐𝑜𝑟𝑟(𝑋𝑖−2, 𝑌𝑖)𝜎𝑋𝑖−2

𝜎𝑌𝑖
− 𝑐𝑜𝑟𝑟(𝑋𝑖−1, 𝑌𝑖−1)𝜎𝑋𝑖−1

𝜎𝑌𝑖−1
+ 𝑐𝑜𝑟𝑟(𝑋𝑖−2, 𝑌𝑖−1)𝜎𝑋𝑖−2

𝜎𝑌𝑖−1

𝜎Δ𝑋𝜎Δ𝑌

 

which, if it is assumed again that the standard deviations of the current and lagged 

variables are approximately equal, i.e. 𝜎𝑋𝑖
≈ 𝜎𝑋𝑖−1

≈ 𝜎𝑋𝑖−2
  and 𝜎𝑌𝑖

≈ 𝜎𝑌𝑖−1
,  

= [(𝑐𝑜𝑟𝑟(𝑋𝑖−1, 𝑌𝑖) + 𝑐𝑜𝑟𝑟(𝑋𝑖−2, 𝑌𝑖−1))

− (𝑐𝑜𝑟𝑟(𝑋𝑖−2, 𝑌𝑖) + 𝑐𝑜𝑟𝑟(𝑋𝑖−1, 𝑌𝑖−1))] 
𝜎𝑋𝜎𝑌

𝜎Δ𝑋𝜎Δ𝑌
  

(28) 

 

where Δ𝑌 = 𝑌𝑖 − 𝑌𝑖−1 and now Δ𝑋 = 𝑋𝑖−1 − 𝑋𝑖−2. The sign of the lagged difference 

correlation 𝑐𝑜𝑟𝑟(𝑋𝑖−1 − 𝑋𝑖−2, 𝑌𝑖 − 𝑌𝑖−1) is thus dependent on the strength of the 

correlations 𝑐𝑜𝑟𝑟(𝑋𝑖−1, 𝑌𝑖) + 𝑐𝑜𝑟𝑟(𝑋𝑖−2, 𝑌𝑖−1) versus 𝑐𝑜𝑟𝑟(𝑋𝑖−2, 𝑌𝑖) + 𝑐𝑜𝑟𝑟(𝑋𝑖−1, 𝑌𝑖−1).  

This relationship will depend heavily on the rate of decline in correlations between lagged 

observations. The greater the reduction in rate, the faster 𝑐𝑜𝑟𝑟(𝑋𝑖−2, 𝑌𝑖) will tend to zero 

and the smaller its contribution will be to the second phrase of the equation. With a large 

enough decay in the lagged relationship between 𝑋 and 𝑌 this will reduce the problem to 

one between the sum of two lagged correlations versus a concurrent correlation. If it is 

assumed that the lagged correlation between 𝑋 and 𝑌 at any two successive time points is 
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approximately equal (i.e. that 𝑐𝑜𝑟𝑟(𝑋𝑖−2, 𝑌𝑖−1) ≈ 𝑐𝑜𝑟𝑟(𝑋𝑖−1, 𝑌𝑖)) then in this case the 

original relationship 𝑐𝑜𝑟𝑟(𝑋𝑖−1 − 𝑋𝑖−2, 𝑌𝑖 − 𝑌𝑖−1) will be zero when  

(𝑐𝑜𝑟𝑟(𝑋𝑖−1, 𝑌𝑖) + 𝑐𝑜𝑟𝑟(𝑋𝑖−2, 𝑌𝑖−1)) − 𝑐𝑜𝑟𝑟(𝑋𝑖−1, 𝑌𝑖−1) = 0 

i.e. when 

2 ∗ 𝑐𝑜𝑟𝑟(𝑋𝑖−1, 𝑌𝑖) − 𝑐𝑜𝑟𝑟(𝑋𝑖−1, 𝑌𝑖−1) = 0 

𝑐𝑜𝑟𝑟(𝑋𝑖−1, 𝑌𝑖) =
1

2
𝑐𝑜𝑟𝑟(𝑋𝑖−1, 𝑌𝑖−1) 

If the lagged relationship between 𝑋 and 𝑌 is less than half the concurrent relationship 

then this method exhibits the same problem as described in Section 6.2.3.2.  

Such a strong reduction in association by only the second lag may not occur in ESM data, 

however. The intensive sampling scheme of many ESM studies results in observations 

taken relatively close together, which may preserve relationships over several lags. 

Correlation between subsequent measures in the recovery data, for example, is relatively 

stable with only a small decline at each lag (see Table 6:1), so for this example the full 

expression of equation (28) should be considered.  

6.3.2 INITIAL CONDITIONS MODEL 

As an alternative to the first-difference method, the initial conditions approach, whereby 

equations for the first measurement and subsequent observations are jointly modelled, will 

also be applied to study predictors of change in the recovery data.  

Recall the initial conditions models presented in Section 6.2.3, with the addition of a lagged 

predictor 𝑥𝑖−1,𝑗𝑘. Model 1 specifies three equations, the first containing observation 1 on 

day 1 only, the second containing the first observations on each subsequent day and the 

third containing all remaining observations: 

𝑦11𝑘 = 𝛼00 + 𝛼01𝑥01𝑘 + 𝜆𝑢𝑢𝑘 + 𝜆𝑣𝑣1𝑘 + 𝑒11𝑘 (19) 

𝑦1𝑗𝑘 = 𝛼10 + 𝛼11𝑥0𝑗𝑘 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒1𝑗𝑘  (20) 

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑦𝑖−1,𝑗𝑘+𝛽2𝑥𝑖−1,𝑗𝑘 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒𝑖𝑗𝑘 . (21) 

 

Model 2 specifies an initial equation containing the first observation on each day and a 

main equation containing all subsequent observations: 

𝑦1𝑗𝑘 = 𝛼0 + 𝛼1𝑥0𝑗𝑘 + 𝜆𝑢𝑢𝑘 + 𝜆𝑣𝑣𝑗𝑘 + 𝑒1𝑗𝑘 (17) 

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑦𝑖−1,𝑗𝑘 + 𝛽2𝑥𝑖−1,𝑗𝑘 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒𝑖𝑗𝑘. (18) 
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Each model has the option to constrain the random effect loadings 𝜆𝑢 = 𝜆𝑣 = 1 or to 

estimate them from the data. It was argued that the rationale for weighting the random 

effects in the initial equation in a two-level model does not extend to the three-level 

specification of Model 2. As such, results will be presented for the three-equation 

specification of Model 1. Finally, two options were presented for the unmeasured 𝑥0𝑗𝑘  in 

the initial equations: this term can either be set to 𝑥0𝑗𝑘 = 1 and a variance components 

model is fitted to the first observations of each day, or the first observed measurement 

𝑥1𝑗𝑘 can be used as a proxy for 𝑥0𝑗𝑘. 

The aim of this section was to compare the parameter estimates of the naïve approach 

with the joint modelling approach and examine how estimates vary under different 

conditions for 𝑥0𝑗𝑘. Comparisons will be presented on one variable, self-esteem, for clarity, 

to demonstrate differences in estimates.  
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 Fixed effects  

𝒙𝟎𝒋𝒌 = 𝟏   𝜆𝑢 = 𝜆𝑣 = 1 𝜆𝑢 = 𝜆̂𝑢; 𝜆𝑣 = 𝜆̂𝑣 

 Naive model IC Model IC Model* 

𝒊 = 𝟏,𝑫𝒂𝒚 = 𝟏 Coeff. SE N Coeff. SE Coeff. SE N 

𝛼00 Intercept   1910 4.501 0.201 4.577 0.228 2105 

𝒊 = 𝟏,𝑫𝒂𝒚 > 𝟏          

𝛼10 Intercept    4.943 0.140 4.950 0.147  

Lagged variable at 𝒕 > 𝟏         

𝛽0 Intercept 3.525 0.156  3.920 0.163 3.899 0.183  

𝛽2 Self-esteem 0.103 0.026  0.074 0.025 0.075 0.025  

𝛽1 Recovery 0.295 0.023  0.214 0.021 0.219 0.026  

   

 Random effects  

Level Variance SE  Variance SE Variance SE  

Person  0.687 0.145  0.925 0.181 0.983 0.215  

Day  0.065 0.018  0.102 0.019 0.102 0.019  

Residuals  0.477 0.018       

 (𝑖 = 1, 𝐷𝑎𝑦 = 1)    0.930 0.226 0.463 0.016  

 (𝑖 = 1, 𝐷𝑎𝑦 > 1)    0.690 0.088 0.917 0.095  

 (𝑖 > 1)    0.460 0.017 0.463 0.311  

       Coeff. SE  

 𝜆𝑢      1.020 0.189  

 𝜆𝑣      -0.026 1.182  

Table 6:5 Comparison of naive model estimates with initial conditions method. Three equation 

specification joint modelled with 𝑥0 = 1 in initial equations.  

* Free estimation of 𝜆𝑢 and 𝜆𝑣 required the models to be fitted using STAN. As such, mean and 

standard errors for the parameter distributions are presented rather than point estimates and 

associated standard errors.   

When fitting a random components model for the initial equations (i.e. 𝑥0𝑗𝑘 = 1) the 

change in results from the naïve model are as expected: estimates for lagged recovery 𝛽1 

are reduced, with greater variation in the random effects. Interestingly, estimates of lagged 

self-esteem 𝛽2 are also reduced, reflecting the lack of dependence in this covariate for the 

first observations as anticipated.  
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Wald tests of the random effect loadings suggest that there is more subject-level random 

variation at time point 1 (𝑧 = 5.40, 𝑝 < 0.001), while 𝜆𝑣 is not significantly different than 

zero at the 5% level (𝑧 = −0.022, 𝑝 = 0.982) 

 Fixed effects  

𝒙𝟎𝒋𝒌 = 𝒙𝟏𝒋𝒌   𝜆𝑢 = 𝜆𝑣 = 1 𝜆𝑢 = 𝜆̂𝑢; 𝜆𝑣 = 𝜆̂𝑣 

 Naive model IC Model IC Model* 

𝒊 = 𝟏,𝑫𝒂𝒚 = 𝟏 Coeff. SE N Coeff. SE Coeff. SE N 

𝛼00 Intercept   1910 4.508 0.120 4.573 0.235 2099 

𝛼01 Self-esteem    0.239 0.136 0.231 0.162  

𝒊 = 𝟏,𝑫𝒂𝒚 > 𝟏          

𝛼10 Intercept    4.968 0.30 4.960 0.129  

𝛼11 Self-esteem    0.292 0.048 0.293 0.050  

Lagged variable at 𝒕 > 𝟏         

𝛽0 Intercept 3.525 0.156  3.812 0.156 3.779 0.180  

𝛽2 Self-esteem 0.103 0.026  0.126 0.026 0.125 0.026  

𝛽1 Recovery 0.295 0.023  0.236 0.021 0.241 0.027  

   

 Random effects  

Level Variance SE  Variance SE Variance SE  

Person  0.687 0.145  0.790 0.157 0.836 0.179  

Day  0.065 0.018  0.088 0.018 0.088 0.018  

Residuals  0.477 0.018       

 (𝑖 = 1, 𝐷𝑎𝑦 = 1)    0.927 0.232 0.469 0.017  

 (𝑖 = 1, 𝐷𝑎𝑦 = 1)    0.258 0.073 0.602 0.076  

 (𝑖 > 1)    0.467 0.017 0.469 0.325  

       Coeff. SE  

 𝜆𝑢      0.981 0.225  

 𝜆𝑣      -0.083 1.256  

Table 6:6 Comparison of naive model estimates with initial conditions method. Three equation 

specification joint modelled with 𝑥0 = 𝑥1 in initial equations. 

* Free estimation of 𝜆𝑢 and 𝜆𝑣 required the models to be fitted using STAN. As such mean and 

standard errors for the parameter distributions are presented rather than point estimates and 

associated standard errors.   
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When substituting 𝑥1 for 𝑥0 in the initial equations the effect of self-esteem on change in 

recovery is increased in the main equation, with again more variation in the random 

effects.  

As with the models for 𝑥0 = 1, Wald tests suggest that only the subject-level random effect 

loading is significant, in this parameterisation of 𝑥0 the initial equation estimating less 

subject-level variation than the main equation.  

The models with 𝑥0𝑗𝑘 = 1 and 𝑥0𝑗𝑘 = 𝑥1𝑗𝑘 both perform as expected. Comparing the 

corresponding models’ AIC suggests that using 𝑥1𝑗𝑘 as a substitute results in better model 

fit (e.g. comparing models where 𝜆𝑢 = 𝜆𝑣 = 1: For 𝑥0𝑗𝑘 = 1 AIC = 4919.89, while for 

𝑥0𝑗𝑘 = 𝑥1𝑗𝑘 AIC = 4878.25). However, as neither method correctly specifies this initial 

equation, the extent to which the fixed and random effect estimates may still be biased 

remains unclear. 

6.4 SUMMARY 

Studying predictors of change in ESM requires careful consideration. While the data 

structure allows for the exploration of momentary patterns due to the intensive sampling 

and range of data collected at each time point, many straightforward analyses are not 

appropriate. Using a change score as the dependent variable can result in the reversal of 

fixed effect directions depending on the strength of concurrent and lagged relationships. 

Using dynamic, or lagged outcome, models as an alternative violates assumptions of 

multilevel models, resulting in biased estimates of both the fixed and random effects. The 

first-difference method and initial conditions method for overcoming this bias were 

presented, with extensions to a three-level data structure. Consideration of these methods 

in the context of ESM concluded that neither provide a definitive resolution to the 

problems encountered: the first-difference method may still succumb to the sign problem 

as in its solution to endogeneity it computes a change score in the outcome; and including 

time lagged variables as predictors of change when joint modelling the initial condition may 

induce further bias due to misspecification in the initial equation. As such, ESM research 

into predictors of change should be carefully considered to ensure that this is the most 

appropriate question. If pursued, the limitations of each method should be clearly stated.  

 



 

141 
 

7 POWER AND SAMPLE SIZE 

One of the most important questions when conducting any study is that of power and 

sample size: how many participants are required to detect a clinically significant effect in 

the data. For ESM studies where multiple observations can be taken across several days or 

weeks for each subject, the total sample size 𝑁 is no longer just the number of participants. 

Instead this  𝑁 is partitioned into three: the number of subjects 𝑛3, the number of days 𝑛2 

and the number of measurements within days 𝑛1, resulting in a total 𝑁 = 𝑛1 × 𝑛2 × 𝑛3. 

Throughout, this total sample size will be referred to in terms of the number of subject and 

the sampling scheme, which consists of the choice of number of measurements per day 

and the number of days of observation. As each component of 𝑁 can be varied to 

contribute to the overall sample size, defining the optimum combination to detect a 

meaningful difference at the design stage of the study is a complex problem. 

The following chapter will outline power and sample size calculations for ESM studies. 

Firstly the extent to which sample size is considered in current practice will be presented 

using the papers identified in the systematic review. This will be followed by an 

introduction to the concept of statistical power and a presentation of closed form sample 

size formulae available for two- and three-level data. Empirical power calculation using 

Monte Carlo simulation will then be discussed. The final section of this chapter will present 

the results of using Monte Carlo simulation to estimate power in an ESM context for 

different research questions. Code developed for the implementation of such simulations 

in Stata will also be presented. 

7.1 POWER IN CURRENT ESM RESEARCH 

In addition to research questions and statistical models, the systematic review described in 

Chapter 3 recorded whether power was considered a priori. Only one study of the 74 

reviewed provided justification of their sampling scheme. Meyers et al. (2012) stated that 

for their hierarchical linear model an a priori power calculation was carried out using 

Gpower (Faul, Erdfelder et al. 2007), which for a multiple regression with two predictors 

required a sample size of 89 participants. They further referenced an unpublished report by 

Kreft (1996), in which the author finds that 25 repeated observations provide sufficient  

power for 60 subjects, as justification for their sampling scheme of five observations a day 

over five days for their 99 participants. In addition, the authors report that a post-hoc 

power calculation was carried out which found their design had 31% power to detect a 
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small effect size, 77% power to detect a medium effect size and 95% power to detect a 

large effect size.  

While it is promising that at least one study considered power while designing their ESM 

study, the justifications made by Meyers et al are weak. Firstly, their a priori power 

calculation to decide on the number of subjects required was based on a single level rather 

than multilevel model, ignoring any correlation between observations within subjects. 

Moreover, the description of this calculation stated that a maximum of two predictors 

were used in their data analysis, however their most complex, moderation model involves 

an interaction which appears to be unaccounted for.  

The post hoc power analysis is also problematic. Power was given for three effect sizes, 

‘small’, ‘medium’ and ‘large’, however no explanation was given as to what the values of 

these effect might be. It is presumed these are reference to Cohen (1988)’s small, medium 

and large criteria, but no reference is given. Furthermore, it was unclear which model 

motivated this post-hoc power calculation and for which parameter power was estimated. 

Two two-level random intercept models were used for the most complex analysis, 

investigating whether “thin ideal internalization” or feminist beliefs, both subject-level 

variables, moderated the relationship between social comparisons and “body image 

disturbance” (a composite score of State Self-Esteem Scale (SSES; Heatherton & Polivy, 

1991) and the Body Checking Questionnaire (BCQ; Reas et al., 2002)) which were 

repeatedly measured in the ESM diary. The hypotheses suggest the two cross-level 

interactions were of main interest, with estimates of 𝛽 = 0.025 and 𝛽 = 0.00 given for 

thin-ideal internalization and feminist beliefs respectively, however it is unclear whether 

these regression coefficients were standardised or not and no standard errors were 

provided.  The conclusions of their post-hoc power calculation therefore remain unclear.  

The authors briefly comment on the “relatively small” sample size in the limitations of the 

study, but do not expand on whether it was sufficiently powered to detect the effects of 

the moderators.  

7.2 CONSIDERATIONS FOR POWER AND SAMPLE SIZE CALCULATIONS 

Studies are powered a-priori so as to be able to detect some pre-specified effect. This 

effect size should correspond to a clinically meaningful value the researchers hypothesise 

exists in this population. Defining a null hypothesis of no effect and an alternative 

hypothesis of some effect 𝛽 ≠ 0, four scenarios are possible, listed in Table 7:1. Two 
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scenarios describe the ideal results that can occur: either this difference exists in the 

population and it is detected in the sample, in which the null hypothesis is correctly 

rejected, or the difference does not exist and it is not found. The remaining two scenarios 

are less desirable: false negative and false positive results. A false negative result occurs 

when the expected difference exists in the population but it is not detected in the sample, 

the hypothesis test thus returning a negative result where a positive should be found. This 

is also known as a type II error and is denoted by 𝛾. A false positive result is obtained when 

the difference does not exist in the population but it is detected in the sample. This is 

referred to as a type I error, or significance level, and is denoted by 𝛼. Ideally when 

designing a study researchers should aim to minimise the probability of both types of 

errors. More often than referring to the type II error, researchers are interested in 1 − 𝛾, or 

the probability of detecting an effect where one exists. This is known as the power of a 

study and in aiming to minimise 𝛾, 1 − 𝛾 is maximised. Convention typically dictates a 

significance level of 𝛼 = 0.05 and power of 1 − 𝛾 = 0.8 or 0.9 corresponding to a 5% 

probability of failing to observe a true effect and an 80% or 90% probability of detecting an 

effect when one is present. While these values are somewhat arbitrary, they reflect the 

trade-off between feasibility and ideal circumstances.  

 Null hypothesis true Null hypothesis false 

Reject the null 
Type I error 

False positive 
True positive 

Do not reject the null True negative 
Type II error 

False negative 

Table 7:1 Possible scenarios of statistical hypothesis tests 

Power is related to sample size through the test statistic of the parameter of interest. In a 

regression model the fixed effect parameters are subject to a Wald test in which the test 

statistic  

𝑍 =
𝛽̂

𝑆𝐸(𝛽̂)
 

is used to test the null hypothesis 𝛽 = 0 versus the alternative 𝛽 ≠ 0. The test statistic is 

larger for larger effect sizes and for smaller 𝑆𝐸(𝛽̂), that is more precise estimates of 𝛽̂. As 

Cohen (1988) describes, the reliability of the estimate may depend on factors such as 

measurement error, however it will always depend on sample size: the larger the sample 
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size, the smaller the standard error and the more precise the estimate. Thus power, effect 

size and sample size are inherently related. 

When designing a study the relationship between power and sample size can be used to 

ensure that enough participants are sought to enable an effect to be detected in the 

sample. Collecting data on too few subjects may result in an imprecise estimate, whereas 

collecting data on too many subjects would waste both time and resources. To decide on 

an 𝑁 a priori, power formulae or sample size calculations can be used. A general form for 

power for which sample sizes can be derived is 

1 − 𝛾 = Φ(
𝛿

𝑠𝑒(𝛿)
− 𝑧𝛼/2)  

where (1 − 𝛾) is the power, 𝛿 is the difference between two groups, 𝑠𝑒(𝛿) its standard 

error and 𝑧𝛼/2 = Φ−1(1 − 𝛼/2) for significance level 𝛼. 

7.3 POWER FOR LONGITUDINAL DATA 

When data are longitudinal and multiple observations are taken for each subject, sample 

size 𝑁 contains both the number of subjects 𝑛2 and the number of observations per subject 

𝑛1. Power calculations for specific tests need to reflect the correlation now present time 

point to time point. For two levels, this within-subject correlation is defined as 𝜌 =

𝑐𝑜𝑟𝑟(𝑦𝑖𝑘 , 𝑦𝑖′𝑘) for observations 𝑖 ≠ 𝑖′.  Variation in 𝑦 is also now partitioned into between-

subject variation 𝜎𝑢
2 and residual variation 𝜎𝑒

2.  

Diggle (2002) provides basic sample size calculations for comparing two independent 

groups A and B for measurements on a continuous, time varying covariate 𝑥𝑖𝑘 within 

cluster. He assumes the same number of observations are taken for each subject 𝑘, 

simplifying 𝑥𝑖𝑘 = 𝑥𝑖. For comparing two groups with a continuous response he states that 

the number of subjects needed per group (𝑛2/2), with 𝑛1 observations per person, for a 

type 1 error = 𝛼 and power 1 − 𝛾 is  

𝑛2

2
=

2(𝑧𝛼/2 + 𝑧𝛾)
2
𝜎𝑒

2(1 − 𝜌)

𝑛1 𝑠𝑥
2𝛿2

 (29) 

 

where 𝜎𝑒
2 = 𝑣𝑎𝑟(𝑒𝑖𝑗), 𝜌 = 𝑐𝑜𝑟𝑟(𝑦𝑖𝑗 , 𝑦𝑖′𝑗) for 𝑖 ≠ 𝑖′, 𝛿 = 𝛽1𝐵 − 𝛽1𝐴 when 𝛽1𝐴 and 𝛽1𝐵 are 

the effect of 𝑥 on 𝑦 for groups A and B, and 𝑧𝑝 is the 𝑝th quantile of the standard Gaussian 

distribution. Here 𝑠𝑥
2 = Σ𝑖(𝑥𝑖 − 𝑥̅)2/𝑛1, the within-subject variance of 𝑥𝑖.  
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This formula shows that the number of subjects increases with larger residual variation 𝜎𝑒
2 

but decreases with within-subject variation in 𝑥, group difference and  within-subject 

correlation in 𝑦. 

Fitzmaurice, Laird et al. (2012) expands on this simple scenario, presenting a sample size 

formula for a random slope model comparing group differences in time trends. Here the 

random slope is included to allow the time trends to vary between subjects. The notation 

for these equations switches to covariate 𝑡𝑖𝑘 to represent time, rather than Diggle’s time-

varying covariate 𝑥𝑖𝑘 .  The total number of subjects can be calculated  

𝑛2 =
{𝑧𝛼/2 + 𝑧(1−𝛾)}

2
𝜎𝛽

2

𝜋(1 − 𝜋)𝛿2
 (30) 

 where  

𝜎𝛽
2 = 𝜎𝑒

2 {∑(𝑡𝑖 − 𝑡̅)2

𝑛1

𝑖=1

}

−1

+ 𝜎𝑢1
2   

 

(31) 

 

denotes the within- and between-subject variation in slopes, 𝛿 the treatment effect of 

interest and 𝜋 the proportion of subjects in group 1.  

Snijders (2005) posits that sample sizes for multilevel designs can be calculated by the 

“sample size for a simple random design, multiplied by the design effect”, defining this 

design effect (DE) as  

𝐷𝐸 =
SE2 under this design

SE2 under standard design
 

If DE < 1 he states the multilevel design is more efficient than the simple design, if DE > 1 

the multilevel design is less efficient. For two-level designs he defines the DE when 

estimating different parameters. These formulae are presented in Table 7:2. The notation is 

as before, with the extension to random slope models requiring the between-subject 

random variance 𝜎𝑢
2 to be expressed in terms of variation in random intercepts 𝜎𝑢0

2  and 

variation in random slopes 𝜎𝑢1
2 .   
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Estimating parameter Design Effect 

Population mean 𝛽0, Random intercept model 1 + (𝑛1 − 1)𝜌 ≥ 1 

Level 1 coefficient 𝛽1, Random intercept model 1 − 𝜌 ≤ 1 

Level 1 coefficient 𝛽1, Random slope model 
𝑛1𝜎𝑢1

2 𝑠𝑥1
2 + 𝜎𝑒

2

𝜎𝑢1
2 𝑠𝑥1

2 + 𝜎𝑢0
2 + 𝜎𝑒

2 

Level 2 coefficient 𝛽2, Random intercept model 1 + (𝑛1 − 1)𝜌 ≥ 1 

Table 7:2 Design effects for estimating fixed effects  

Using this reasoning, Snijders (2005) suggests that if the parameters of interest are the 

population mean or level 2 coefficients then using a sample size derived from a simple 

random design would yield more efficient estimates then a multilevel design. For level 1 

coefficients in a random intercept model a multilevel design is more efficient, while in a 

random coefficient model the design effect will depend on the variance of the random 

effects. Finally, Snijders states that while power will depend on sample size at each level, a 

greater number of higher-level units are preferable to more observations within units, and 

although small level 1 units will not be problematic for estimating fixed, this will result in 

low power for testing random slope variances. 

7.3.1 POWER FOR THREE-LEVEL DATA 

For three-level data the sample 𝑁 can now be partitioned into three, with 𝑖 = 1,… , 𝑛1 

nested within 𝑗 = 1,… , 𝑛2 nested within 𝑘 = 1,… , 𝑛3. Similarly, the total model variance 

𝜎2 can be partitioned into 𝜎𝑢
2 at level 3, 𝜎𝑣

2 at level 2 and 𝜎𝑒
2 at level 1.  

Heo and Leon (2008) provide formulae for power and sample size calculations for three-

level models to detect a level 3 treatment effect 𝛿 = 𝑦̅(1) − 𝑦̅(0), where for group 

𝑔 = 0, 1, 

𝑦̅(𝑔) =
1

𝑛3𝑛2𝑛1
∑ ∑ ∑ 𝑦𝑖𝑗𝑘

𝑛1

𝑖=1 

𝑛2

𝑗=1 

𝑛3

𝑘=1 
 

for a balanced design. They define the variance of the group mean as  

𝑉𝑎𝑟(𝑦̅(𝑔)) =
𝑓𝜎2

𝑛3𝑛2𝑛1
 

where 𝜎2 = 𝜎𝑢
2 + 𝜎𝑣

2 + 𝜎𝑒
2 and 𝑓 is design effect or variance inflation factor,  

𝑓 = 1 + 𝑛1(𝑛2 − 1)𝜌2 + (𝑛1 − 1)𝜌1. 



 

147 
 

The 𝜌 are defined as the ICC for level 2 and level 1, 

𝜌2 =
𝜎𝑢

2

𝜎𝑢
2 + 𝜎𝑣

2 + 𝜎𝑒
2 

𝜌1 =
𝜎𝑢

2 + 𝜎𝑣
2

 𝜎𝑢
2 + 𝜎𝑣

2 + 𝜎𝑒
2. 

Finally, the power calculation for test statistic 𝑇 =
𝛿̂

𝑠𝑒(𝛿̂)
 is given as 

1 − 𝛾 = Φ{∆√
𝑛3𝑛2𝑛1

2𝑓
− 𝑧𝛼/2} (32) 

 

 

where ∆= 𝛿/𝜎 is the standardised effect size, 𝛼 is the two-sided significant level, 𝛾 the 

probability of a type II error and Φ the cumulative distribution function of a standard 

normal distribution.  

Rearranging (32), the sample size for level 3, level 2 and level 1 are given by 

 𝑛3 =  
2𝑓{𝑧𝛼/2 + 𝑧(1−𝛾)}

2

𝑛2𝑛1∆
2

  

𝑛2 =
2{1 + (𝜌1 − 𝜌2)𝑛1 − 𝜌1}{𝑧𝛼/2 + 𝑧(1−𝛾)}2

𝑛1𝑛3∆
2 − 2𝜌2𝑛1{𝑧𝛼/2 + 𝑧(1−𝛾)}

2  

and 

𝑛1 =
2(1 − 𝜌1){𝑧𝛼/2 + 𝑧(1−𝛾)}

2

𝑛2𝑛3∆
2 − 2{(𝑛2 − 1)𝜌2 + 𝜌1}{𝑧𝛼/2 + 𝑧(1−𝛾)}2

 .   

 

A closed form power function to detect a time varying treatment effect for a three-level 

random slope model has been derived by Heo, Xue et al. (2013). Their paper outlined the 

sample size calculation for a longitudinal cluster randomized trial for a balanced design. For 

occasions 𝑖 = 1,… , 𝑛1 nested within individuals 𝑗 = 1,… , 𝑛2 within cluster 𝑘 = 1,… , 2𝑛3 

they present the model   

𝑦𝑖𝑗𝑘 =  𝛽0 + 𝛽1𝑥𝑘 + 𝛽2𝑡𝑖𝑗𝑘 + 𝛽3𝑥𝑘𝑡𝑖𝑗𝑘 + 𝑢𝑘 + 𝑣0𝑗𝑘 + 𝑣1𝑗𝑘𝑡𝑖𝑗𝑘 + 𝑒𝑖𝑗𝑘 
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where the level 3 intervention indicator 𝑥𝑘 takes the value 0 or 1 representing a control or 

intervention cluster respectively, 𝑡𝑖𝑗𝑘  is a level 1 time variable with equal unit spacing, and 

the random slope 𝑣1𝑘 allows for subject-specific time trends. All random terms are 

assumed to be normally distributed with cluster-level random intercept 𝑢𝑘~𝑁(0, 𝜎𝑢
2), 

subject-level random intercept 𝑣0𝑗𝑘~𝑁(0, 𝜎𝑣0
2 ) and random slope 𝑣1𝑗𝑘~𝑁(0, 𝜎𝑣1

2 ), and 

residual error 𝑒𝑖𝑗𝑘~𝑁(0, 𝜎𝑒
2). It is assumed that all four random effects are independent. 

The parameter of interest is 𝛽3, representing the difference in mean slopes between the 

two intervention groups.  

The OLS estimate of 𝛽3 is given by 𝛽̂3 = 𝜂̂1 − 𝜂̂0 where 𝜂̂𝑔 is the OLS estimate of the slope 

for intervention group 𝑔 = 0, 1. They derive the test statistic 𝑇 to test 𝛽3 = 0 

𝑇 =
𝛽̂3

𝑠𝑒(𝛽̂3)
=

(𝜂̂1 − 𝜂̂0)√𝑛3𝑛2𝑛1𝑠𝑡
2

√2{(1 − 𝜌1)𝜎
2 + 𝑛1𝑠𝑡

2𝜎𝑣1
2 }

 (33) 

 

 

where 𝑠𝑡
2 = ∑ (𝑡𝑖𝑗𝑘 − 𝑡̅)

2𝑛1
𝑖=1 / 𝑛1 is “the population variance of time variable 𝑡” and 𝜌1is 

the ICC under the fixed slope model. The power function is then expressed as 

 

1 − 𝛾 = Φ{Δ√
𝑛3𝑛2𝑛1𝑠𝑡

2

2{(1 − 𝜌1) + 𝜌𝑣1
𝑛1𝑠𝑡

2}
− 𝑧𝛼/2} (34) 

 

 

where Δ = 𝛽3/𝜎 is the effect size and 𝜌𝑣1
= 𝜎𝑣1

2 / (𝜎𝑢
2 + 𝜎𝑣

2 + 𝜎𝑒
2) = 𝜎𝑣1

2 /𝜎2 is the ratio of 

the random slope variance to the sum of the other variances.  This power function 

increases with larger effect sizes and correlation between level 1 units, but decreases with 

the random slope variance.  

The sample sizes at level 3 and level 2 can then be calculated as 

 𝑛3 = 
2{(1 − 𝜌1) + 𝜌𝑣1

𝑛1𝑠𝑡
2}{𝑧𝛼/2 + 𝑧(1−𝛾)}

2

𝑛2𝑛1𝑠𝑡
2Δ2

 

𝑛2 =
2{(1 − 𝜌1) + 𝜌𝑣1

𝑛1𝑠𝑡
2}{𝑧𝛼/2 + 𝑧(1−𝛾)}

2

𝑛3𝑛1𝑠𝑡
2Δ2

. 

As 𝑠𝑡
2 is a function of 𝑛1, the sample size for level 1 must be determined iteratively, with  
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𝑛1 = 
(1 − 𝜌1)

𝑠𝑡
2 [𝑛3𝑛2Δ

2 {2(𝑧𝛼/2 + 𝑧(1−𝛾))
2
}⁄ − 𝜌𝑣1

] 
. 

The formulation of these equations is such that power and the level 1 sample size are only 

determined from the product of the level 2 and level 3 sample size, 𝑛3𝑛2, rather than their 

individual terms. Consequently, desired power for level 1 sample size can be based on 

various combinations of cluster size and units within clusters, thus allowing for greater 

flexibility in design.  

The authors compared these formulae to empirical MLE based estimates of sample size 

using simulation and found the results to be almost identical. Furthermore, they 

investigated the fallout from designing a study powered for a more simple model than used 

in the analysis. This was determined by evaluating the effect of random slope variance on 

level 3 sample size. They found that even for small variance 𝜎𝑣1
2 the ratio of this to the total 

variance 𝜌𝑣1
 can be large and have a considerable effect on sample size. As such, studies 

designed under a fixed slope model can be dramatically underpowered when there is 

between-subject variation in slopes.  

While useful for the design of cluster randomised trials, the power formula derived by Heo 

and Leon (2008) and Heo, Xue et al. (2013) correspond to detecting an effect at level 3. In 

ESM research momentary level effects are typically of interest, that is differences at level 1. 

Cunningham and Johnson (2012) consider designs where treatment or intervention is 

randomised at either level 3, level 2 or level 1. For the simple scenario testing a treatment 

effect at level 1 with no covariates they derive the variance estimator 𝑣𝑎𝑟(𝛽̂) required for 

a Wald test of treatment effect 𝛽 ≠ 0 when randomisation occur at each of the three 

levels. The design effects are then presented as  

Randomisation at level 3: 𝐷𝐸 = 1 + (𝑛1 − 1)𝜌1 + 𝑛1(𝑛2 − 1)𝜌2  (35) 

Randomisation at level 2: 𝐷𝐸 = 1 + (𝑛1 − 1)𝜌1 − 𝑛1𝜌2   

Randomisation at level 1: 𝐷𝐸 = 1 − 𝜌1  (36) 

 

7.3.2 EMPIRICAL POWER  

Power formulae for three-level models are at present quite limited, and although the 

formulae presented thus far are by no means exhaustive, demonstrate how closed form 

expressions are limited to certain designs. Indeed, while ESM may be used to deliver an 

intervention many studies are observational and do not depend on randomisation. The 



 

150 
 

power formulae described for three-level models thus far would not be appropriate in this 

case. Literature for power calculations in three-level models is limited and very much 

lacking in a non-RCT framework; an alternative approach to investigate power and sample 

size is to use Monte Carlo simulation.  

Instead of being reliant on designs where power formulae are derived or for scenarios 

where when no closed form exists, empirical power estimates can be obtained via 

simulation (Landau and Stahl 2013). Here data are generated under a set of conditions and 

empirical power is estimated in terms of the proportion of samples for which a pre-

specified null hypothesis is rejected. Heo and Leon verified the accuracy of their formulae 

(presented above, based on power function (32)) using this type of simulation. The level 3 

sample size was simulated for increasing levels of 𝑛2, 𝑛1,  𝜌2,  𝜌1 and standardised effect 

size ∆. The tabulated results allow the choice of a level 3 sample size based on the other 

sample size values, ICCs and for a particular effect size.  

Maas and Hox (2005) use simulation to investigate bias in fixed and random effects 

estimates with different level 1 and 2 sample sizes. They corroborate the findings of 

Snijders (2005) that a larger number of groups is preferable to a large group size but found 

that parameter estimates and level 1 variance estimates are generally unbiased with a 

smaller sample size. Problems are instead observed in the estimates of the random effects 

where the level 2 variance may be underestimated and the standard error of variance 

components will be too small. Maas and Hox also considered the effect of small sample 

sizes, simulating data with 10 level 2 units with a cluster size of 5, equivalent to an ESM 

study with 10 participants and 5 diaries per person, with varying levels of intraclass 

correlation. They found that regression coefficients and level 1 variance components 

exhibited negligible bias, but the level 2 variance was estimated as much too large with bias 

up to 25%, and the standard errors for both the regression coefficients and variance 

components were too small, particularly at Level 2.  

7.3.3 AVAILABLE SOFTWARE 

There are several software packages available to compute power in two level models such 

as PinT (Power analysis IN Two-level designs) (Snijders and Bosker 1993), and Bolger and 

Laurenceau (2013) give details for simulation using MPlus. For three level models Browne, 

Golalizadeh Lahi et al. (2009) have developed MLPowSim which generates either R or 

MLWiN code for up to three level models and can accommodate both balanced and non-

balanced data sets. Though the code is comparatively fast to run in R, the program requires 
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estimates of model and covariate variance at each of the different levels, information 

which may be unavailable in ESM research. There are currently no commands for three 

level power calculations in Stata. 

7.4 DETERMINING SAMPLE SIZE FOR ESM STUDIES 

Due to the multilevel nature of ESM data, sample size can be thought of as being 

partitioned into three levels: level 1 – the number of moments to take measurements on 

each day; level 2 – the number of days to be observed over; and level 3 – the number of 

participants to be recruited. Powering an ESM study thus requires a balance of sample sizes 

at all levels. Literature suggests that increasing the highest number of units has a greater 

effect on power (Maas and Hox 2005; Snijders 2005), implying that for ESM studies 

recruiting more participants is the most efficient way to increase power. However, in 

practice constrains to sample size may be unavoidable at each level when designing an ESM 

study, which limit the flexibility of simply increasing level 3 units. The number of 

participants may have an upper limit prior to starting study for several reasons. Firstly, 

study size may be dependent on resources and time available for recruitment, with smaller 

scale studies struggling to recruit large numbers of participants, for example. Alternatively, 

the proportion of eligible participants may be low for rare conditions or diseases, or when 

researching a combination of behaviours and health status, such as drug use and bipolar 

disorder for example. Moreover, recruitment for certain populations, such as those 

exhibiting ‘risky behaviours’, may limit the number of available participants. Equally at level 

1, the number of observations per day may be capped as researchers may wish to follow a 

pre-specified sampling regime, either designed to lessen the burden of this intensive 

sampling methodology or on advice from a research group (Delespaul 1995). At level 2, a 

pre specified study period may be required on the basis of restricted time or funding, or to 

limit drop out or missing data due to participant fatigue. Conversely, a set time period may 

be required in order to capture a minimum number of events or phenomena. Each of these 

factors contribute to the overall sample size of an ESM style study and will restrict how the 

three components combine to produce a study design with sufficient power.  

This simulation study aimed to determine sufficient power for varying sample sizes at levels 

1, 2, and 3 to reflect the possibility of at least one element of the sample size will be fixed 

by design. The results can then be interpreted by holding sample size at one level fixed and 

varying the remaining two to compare power with different combinations of 𝑛 contributing 

to the full sample size. For example, for a sampling scheme of 10 prompts per day the 
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effect of varying the number of days and participants could be compared. Alternatively, if 

recruitment was expected to be limited to 30 subjects the simulation results could be used 

to inform whether more measurements per day or additional study days would provide 

greater power. 

Power graphs will be presented for two scenarios: a simple association model and a group 

difference model. The simple association model will investigate power for varying sample 

sizes when estimating the association between two moment-level variables 

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑥𝑖𝑗𝑘 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒𝑖𝑗𝑘 . (37) 

 

A group difference model will compare the means of two groups, where groups 𝐺𝑘 = 0, 1 

are defined at level 3 

𝑦𝑖𝑗𝑘 = 𝜁0 + 𝜁1𝐺𝑘 + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒𝑖𝑗𝑘  (38) 

 

This could be used to explore how a momentary level measure differs between two 

treatment groups, for example. Although many more scenarios are possible and more 

complex models can be accommodated using this procedure, these two simple examples 

were chosen to demonstrate the method and to highlight the difference in sample sizes 

required when the parameter of interest is measured at different levels.  

7.4.1 SIMULATION PROTOCOL 

As the primary purpose of the simulation procedure is to investigate power due to sample 

size rather than test for the consequences of model misspecification, the data generating 

model for the outcome will match the estimation model for each scenario, i.e. the data 

generating model for 𝑦 in the association example uses equation (37) and the data 

generating model for 𝑦 in the group difference example will use equation (38). For the 

association example the covariate 𝑥 will be created using a three-level variance 

components model to allow for the subject-level, day-level and residual variation in this 

level 1 predictor 

𝑥𝑖𝑗𝑘 = 𝛼0 + 𝑢𝑥,𝑘 + 𝑣𝑥,𝑗𝑘 + 𝑒𝑥,𝑖𝑗𝑘 

where 𝑢𝑥,𝑘~𝑁(0, 𝜎𝑥𝐿3
2 ), 𝑣𝑥,𝑗𝑘~𝑁(0, 𝜎𝑥𝐿2

2 ) and 𝑒𝑥,𝑖𝑗𝑘~𝑁(𝑥̅, 𝜎𝑥𝐿1
2 ), and 𝑥̅ is the expected 

mean of 𝑥 at level 1. 
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Sample size for each simulation will vary by number of participants 𝑛3 from 10 to 60 in 

intervals of 10, number of days 𝑛2 from 6 to 10 in intervals of 1 and number of 

observations 𝑛1 from 4 to 10 in intervals of 2.  

Level of sample size Number of units within each level 

Number of participants (𝑛3) 10, 20, 30, 40, 50, 60     

Number of days (𝑛2) 6, 7, 8, 9, 10    

Number of observations (𝑛1) 4, 6, 8, 10   

Table 7:3 Sample sizes for simulation procedure 

These sample sizes were chosen to investigate power in smaller ESM sized studies 

representative of those within mental health research where recruitment is often an issue. 

The number of days was varied between six and 10 on the advice of the Maastricht group 

(Delespaul 1995) that a week is adequate to observe sufficient variation in mood and 

symptoms. The group also suggest sampling 10 semi-random beeps per day in order to 

capture events of interest. Across a week, however, this is quite an intensive sampling 

procedure and has been criticized as potentially effecting responses (Robins, Fraley et al. 

2009). The number of measurement moments was therefore varied between four and 10 

per day to investigate whether sufficient power is possible with a less burdensome 

sampling scheme.  

A priori parameter estimates are also required for the simulation procedure. Typically these 

estimates are informed by published studies, prior data or expert knowledge. In ESM 

research, however, many of the required values will be unavailable: although there is a 

growing literature of ESM studies in various fields, reporting of model parameters is still 

widely varied with model variance estimates, for example, often underreported. Therefore, 

in addition to varying the sample size at each level, the extent to which uncertainty in a 

priori estimates effect power will also be investigated: for each parameter, small, medium 

and large values will be defined and varied within each sample.     

Fixed effect estimates will be varied based on advice of Cohen (1988) for effect sizes. Effect 

sizes for the association model will be set at 𝑟 = 0 for the null case, 𝑟 = 0.1 (small effect), 

𝑟 = 0.3 (medium effect), and 𝑟 = 0.5 (large effect). These effect sizes are then scaled by 

the standard deviation of the predictor and outcome to create the regression coefficient 𝛽1 

to be used in the data generating model (37) such that 
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𝛽1 = 𝑟
𝜎𝑦

𝜎𝑥
 (39) 

where 𝜎𝑦 = √𝜎𝑢
2 + 𝜎𝑣

2 + 𝜎𝑒
2  and 𝜎𝑥 = √𝜎𝑥𝐿3

2 + 𝜎𝑥𝐿2
2 + 𝜎𝑥𝐿1

2 , with 𝜎𝑥𝐿#
2  denoting the 

variance in 𝑥 at level # = 1, 2, 3.  

For the group difference model (38), Cohen’s d was used   

𝑑 =
𝑦̅1 − 𝑦̅0

𝜎𝑦
 

where 𝑦̅0 denotes the mean for group 0, 𝑦̅1 the mean of group 1 and 𝜎𝑦 the standard 

deviation of either group (as they are assumed to be equal). The effect size 𝑑 can be 

transformed into a regression coefficient to be used in the data generating model using  

𝜁 =
𝑑

√𝑑2 + (1/𝜋(1 − 𝜋))
 

where 𝜋 is the proportion of subjects in group 1 and 1 − 𝜋 the proportion of subjects in 

group 0 (Cohen 1988). This effect size will be varied based on Cohen’s small, medium and 

large criteria, where a small effect size 𝑑 = 0.2, a medium effect size 𝑑 = 0.5 and a large 

effect size 𝑑 = 0.8.  

Although widely used as definitive measures of effect sizes, Cohen warns the 

small/medium/large criteria are to be evaluated in context, and only used as convention 

when no other definitions are available. As effect sizes are depending on population and 

ESM can be applied in a wide range of areas these categorisations are considered 

appropriate. However, in practice effect sizes for power calculations should be based on 

clinically meaningful values.  

Estimates for both the model variances and predictor variances will be varied based on unit 

spread in the common 7 point Likert scale. Values will be chosen such that 95% of points 

will lie 1 scale unit either side of the mean, 1.5 units either side of the mean and 3 units 

either side of the mean. This ‘small’, ‘medium’ and ‘large’ categorisation correspond to 

variance estimates of 𝜎2 = 0.26, 0.59 and 2.34 respectively.  The model variance, 

predictor variance and effect size estimates to be used for simulation are summarized in 

Table 7:4. 



 

155 
 

 Effect size 

 𝑟 

Effect size 

𝑑 

Model variances 

𝜎𝑢
2, 𝜎𝑣

2, 𝜎𝑒
2 

Predictor variances 

𝜎𝑥𝐿3
2 , 𝜎𝑥𝐿2

2 , 𝜎𝑥𝐿1
2  

Small 0.1 0.2 0.26 0.26 

Medium 0.3 0.5 0.59 0.59 

Large 0.5 0.8 2.34 2.34 

Table 7:4 Effect sizes and variance estimates for simulation procedure 

First, power will be estimated for complete data. This assumes in an ESM context that all 

diaries are returned completed. However, evidence suggests that missing data is prevalent 

in ESM studies and can occur at the item, moment or day level. A detailed account of 

missing data in current research as well as the recovery data example can be found in 

Chapter 4. Following the main simulations in this section, the effect of missing data on 

power will be explored. The systematic review of Chapter 3 found that missing data rates 

varied widely in practice from less than 1% up to 70%, with a median of 20% moment 

nonresponse. Examining missing data in the recovery study data uncovered trends in the 

pattern of missing diaries, with a greater proportion uncompleted at the start and end of 

the day as well as towards the end of the week. Using the recovery data to motivate 

parameter estimates, this missing data process will also be modelled in the power 

simulations where data are deleted using the logistic process 

log (
𝜋𝑖𝑗𝑘

1 − 𝜋𝑖𝑗𝑘
) =  𝛽0 + 𝛽1𝑡𝑖 + 𝛽2𝑡𝑖

2 + 𝛽3𝑠𝑗 (40) 

where 𝜋𝑖𝑗𝑘 is the probability that observation 𝑖 is missing. 

Three missing data scenarios will therefore be explored: a randomly drawn 20% missing 

and 70% missing, and missing based on time trends of the logistic process of equation (40) 

with coefficients 𝛽0 = −0.78, 𝛽1 = −0.56, 𝛽2 = 0.05 and 𝛽3 = 0.28.  

The number of simulations for each combination of 𝑛 and parameter estimates was based 

on a power calculation for the precision of the proportion of samples for which the null 

hypothesis is rejected. Each set of simulations will be carried out to determine the sample 

size necessary at each level to achieve a minimum of 80% power. The confidence interval 

for the proportion 𝑝 of significant estimates is defined as  

𝑝 ± 𝑧 𝑠𝑒(𝑝) 
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or confidence width 𝑤 = 2 ∗ 𝑧 𝑠𝑒(𝑝) where 𝑠𝑒(𝑝) = √(𝑝(1 − 𝑝)/𝑆), with 𝑆 the number of 

simulations and 𝑧 = 1.96 for a 95% confidence interval. To restrict the confidence interval 

to be no wider than 1% (𝑤 = 0.01) when estimating 𝑝 > 0.8,  

𝑆 ≥
4𝑧2(𝑝(1 − 𝑝))

𝑤2
 

 ≥ 24586.24 

To allow for a slightly wider confidence interval, letting 𝑤 = 0.05, the number of 

simulations required is far less, with 𝑆 ≥ 983.4496. Due to the speed of the simulation 

procedure in Stata the latter option was used. 

Each simulation will proceed through the following steps.  

1. Three-level data will be generated under the assumption that the estimated 

parameter values represent the true population estimates, with the response 

variable generated as per the analysis model 

2. The appropriate analysis model (equation (37) for level 1 associations and equation 

(38) for group differences)  will be fitted to this generated data with fixed and 

random effect estimates stored and statistical test of an appropriate null 

hypothesis computed.  

3. For the total number of simulations 𝑆, the proportion of samples which reject the 

null hypothesis will provide an empirical estimate of power.   

 

This process will be repeated for each combination of 𝑛3, 𝑛2 and 𝑛1 given in Table 7:3 for 

varying effect sizes, model variances and predictor variances to provide an estimate of 

power under each condition. The code for each of the two scenarios (level 1 association 

and level 3 group difference) is provided in Appendix 5: Power and sample size. The results 

will then be presented in graphically to allow for easy comparison of varying each 𝑛. 

Note that the data generating model and analysis model will be identical within each 

example, as the purpose of this simulation study is to estimate empirical power based on 

various sample sizes rather than evaluating the performance of the analysis model through 

precision of parameter estimates.   

Finally, to examine the effect of missing data, a missing value generating model will follow 

the data generating model to eliminate a proportion of diaries based on the missing data 
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levels of 20% and 70%, corresponding to the median and maximum levels of missing diary 

data observed in the systematic review.  

7.4.2 RESULTS OF SIMULATIONS 

The results of the power simulations for each research question will be presented in this 

section. For each question, the empirical power estimates will be presented for each 

combination of sample size when varying effect sizes and variance estimates. Results will 

be presented using power graphs with corresponding power tables filed in Appendix 5: 

Power and sample size. In order to isolate the effect of each element on power, when 

varying each component all others will remain fixed. For example, the degree to which 

effect size influences power will be presented first, holding both predictor and model 

variances constant. The variances will then be examined in turn, for a fixed effect size. For 

each example, optimum sample sizes will be considered the smallest combination of 𝑛 for 

which 80% power is achieved.  

7.4.2.1 SIMPLE ASSOCIATION MODEL 

Simulations for an effect size of zero were first run to compare the empirical type I error 

rate to the specified significance level of 𝛼 = 0.05. Over all sample sizes the proportion 

rejected ranged between 0.037 and 0.072. This is considered within an acceptable range, 

indicating little bias in the small samples. 

7.4.2.1.1 RESULTS OF VARYING EFFECT SIZES 

Figure 7:1 depicts the varying levels of power achieved by Monte Carlo simulation for the 

association example with the smallest effect size (𝑟 = 0.1) and the smallest predictor and 

model variances (𝜎𝑥𝐿3
2 = 𝜎𝑥𝐿2

2 = 𝜎𝑥𝐿1
2 = 0.26 and 𝜎𝑢

2 = 𝜎𝑣
2 = 𝜎𝑒

2 = 0.26). The five graphs 

correspond to the five levels of 𝑛2 (6, 7, 8, 9 and 10 days). The lines on each graph reflect 

the change in power for increasing 𝑛1 (4, 6, 8 and 10 moments per day) for the different 

levels of 𝑛3 (10, 20, 30, 40, 50 and 60 subjects). The most apparent feature of the graphs is 

the high level of power for larger levels of 𝑛3; even at the lowest combination of number of 

days and moments, 40 participants provide sufficient power to detect an effect size of 0.1 

(1 − 𝛾 = 0.86), and increasing the number of moments to 6 per day or increasing the 

number of days from 6 to 7 provides adequate power for as few as 30 participants, 

(1 − 𝛾 = 0.93) and (1 − 𝛾 = 0.80) respectively.  
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Figure 7:1 Power for association with effect size 0.1 and small predictor and model variances – 

Association model. 

Also clearly depicted are the similar profiles across the graphs, indicating that varying the 

number of days is of little consequence when powering for a level 1 association. The only 

significant change here is four moments per day can provide adequate power with only 20 

participants when increasing the number of days to nine (1 − 𝛾 = 0.79) or 10 (1 − 𝛾 = 0.82). 

The simulations demonstrate that increasing the number of participants or the number of 

measurements within days is more influential on power than increasing the number of 

days.  
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Figure 7:2 Power for association with effect size 0.3 with small predictor and model variances – 

Association model 

Figure 7:2 presents the power graphs for a ‘medium’ effect size of 0.3 where both the 

model variances and predictor variances are fixed at the lowest level of 0.26.  High power is 

demonstrated for all sample sizes in this example, even the smallest combination of 𝑛 

having near 100% power (1 − 𝛾 = 0.999).  

As such high power was achieved with a medium effect size, to efficiently utilize time 

simulations with a ‘large’ effect size of 0.5 were not carried out.   

7.4.2.1.2 RESULTS OF VARYING MODEL VARIANCES 

To investigate how power changes when variances estimates are unknown a priori, model 

variances were varied from ‘small’ to ‘medium’ and ‘large’ as defined above in Section 

7.4.1. Firstly, the level 3 variance 𝜎𝑢
2 was increased to 2.34, the largest variance estimate, 

for a small effect size and holding the remaining variance estimates ‘small’. The results of 

this increase can be seen in Figure 7:3. 
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Figure 7:3 Power for effect size 0.1, large level 3 model variance, all remaining variances small – 

Association model 

Comparing the power graphs of Figure 7:3 to Figure 7:1, increasing level 3 variance to 

𝜎𝑢
2 = 2.34 while holding all other model and predictor variances equal to 0.26 dramatically 

increases power for all levels of 𝑛. Power is now over 80% for all combinations of sample 

size.  

Increasing level 2 variation to 2.34 while holding the other parameter estimates ‘small’ 

resulted in the power estimates depicted in Figure 7:4. 
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Figure 7:4 Power for effect size 0.1, large level 2 model variance, all remaining variances small – 

Association model 

As with the level 3 variance, increasing model variation at level 2 resulted in an increase of 

power for all sample sizes. With even the very lowest combination of 𝑛 (4 measurements a 

day for 6 days for 10 people) providing sufficient power to detect a small effect size 

(1 − 𝛾 =  0.798). Although their formula were derived for a binary predictor, the design 

effect given by Cunningham and Johnson (2012) for level 1 randomisation supports these 

results: in equation (36) if either the level 3 variance or level 2 variance contributing to the 

numerator of 𝜌1increases, the design effect reduces and so power increases.    

Finally, level 1 variance was increased. Figure 7:5 illustrates the power for varying sample 

sizes when the residual variance was increased to the highest variance estimate of 2.34. For 

each graph, power has decreased compared to Figure 7:1; a similar profile observed for six 

days originally is only achieved with nine days of observation in this scenario. Adequate 

power is achievable with as few as 30 participants but requires either a greater number of 

measurements per day over a shorter study period or with more days of observation when 

sampling fewer times a day. With large level 1 variation 80% power is only reached with 20 

participants when taking 10 measurements a day for seven days or eight measurements a 

day for eight days. 
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A summary of the effect of varying model variances at each level are presented in Table 

7:5. 

 

 

Figure 7:5 Power for effect size 0.1, large residual variance, all remaining variances small – 

Association model 

Similar patterns in power were observed with the medium variance estimates, suggesting it 

is the proportion of variance at each level, rather than the magnitude, which influences 

power.  

7.4.2.1.3 RESULTS OF VARYING PREDICTOR VARIANCES 

Predictor variances at levels 3, 2 and 1 were also varied between high (𝜎𝑥𝐿#
2 = 2.34), 

medium (𝜎𝑥𝐿#
2 = 0.56) and low (𝜎𝑥𝐿# 

2 = 0.26) while holding all other variances estimates 

constant at 0.26. The results are presented in Figure 7:6.  
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Figure 7:6 Power for effect size 0.1, large level 3 predictor variance, all remaining variances small – 

Association model 

For an effect size of 0.1, increasing the level 3 predictor variance to 2.34 resulted in the 

power estimates shown in Figure 7:6. Comparing these graphs to Figure 7:1, power has 

been reduced for all 𝑛; with the maximum number of measurement per day, 80% power is 

only achievable with a week of observation for 40 participants or more. Unlike with low 

predictor variances, adequate power is unobtainable with 20 participants and only possible 

for 30 participants with more intensive sampling for longer study periods (10 

measurements a day for nine days (1 − 𝛾 = 0.82).  
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Figure 7:7 Power for effect size 0.1, large level 2 predictor variance, all remaining variances small – 

Association model 

When the level 2 predictor variance is increased to 2.34 power is again reduced, although 

to a lesser extent. For a week of observation, eight measurements a day provide 82% 

power for detecting an effect size of 0.1 with 30 participants, or with 10 measurements a 

day only six days are required for approximately 80% power (1 − 𝛾 = 0.797).  

Finally, the level 1 predictor variance was increased to 2.34. The results of these 

simulations are presented in Figure 7:8. These graphs show markedly different results to 

the previous two scenarios, with power significantly increased for all level of 𝑛. Under 

these conditions only a minimum sample size of six measurements a day is required for 10 

subjects at any sampling length for adequate power. For 20 participants or more any 

sampling scheme or length of study will result in sufficient power to detect a small effect 

size.  

As with the model variances, medium predictor variances had similar effects on power to 

the large variances, again indicating the proportion of variance at each level influences 

power more than the amount of variation.  

.2
.4

.6
.8

1
.2

.4
.6

.8
1

4 6 8 10

4 6 8 10 4 6 8 10

6 7 8

9 10

n3 = 10 n3 = 20 n3 = 30

n3 = 40 n3 = 50 n3 = 60

Number of subjects

P
o

w
e

r

Number of beeps (n1)

Graphs by number of days (n2)

Power for sample sizes n3 n2 n1, Effect size=0.1
High level 2 predictor variance



 

165 
 

 

Figure 7:8 Power for effect size 0.1, large level 1 predictor variance, all remaining variances small – 

Association model 

The results of varying model and predictor variances are summarized in Table 7:5. 

Effect size Predictor variance Model variances  

𝑟 𝜎𝑥𝐿3  
2  𝜎𝑥𝐿2  

2  𝜎𝑥𝐿1  
2  𝜎𝑢

2 𝜎𝑣
2 𝜎𝑒

2 Summary 

0.1 Equal variance Highest proportion at level 3 Greatly increases power 

  Highest proportion at level 2 Greatly increases power 

  Highest proportion at level 1 Slightly reduces power 

0.1 Highest proportion at level 3 Equal variance Reduces power 

 Highest proportion at level 2  Reduces power 

 Highest proportion at level 1  Increases power 

Table 7:5 Results of varying model and predictor variances for simple association model with fixed 

effect size 
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7.4.2.1.4 MISSING DATA 

The simulations thus far have assumed fully observed data. As this may not be the case, the 

results of this section describe how power varies under different combinations of sample 

sizes for varying amounts of missing data.  

  

  

Figure 7:9 Power for varying levels of missing data. Effect size 0.1, small model and predictor 

variances – Association model 

The graphs for 20% missing data and missing data patterns over time based on the 

recovery data show very similar results. Overall, the proportion of missing data was similar 

in the two samples, with time varying nonresponse resulting in an average of 34% missing 

data. In both of these scenarios power is reduced slightly compared to the complete 

sample for lower numbers of level 3 units, while in samples with 50 or 60 participants 

power remains high with six or more observations a day. In both scenarios approximately 

80% power is achieved with 30 participants when sampling at least six times a day over six 

days. Similar levels of power are only possible with fewer participants when sampling eight 

times a day for six days under 20% missing data (20 participants) and ten times a day for 

ten days with ten subjects. Adequate power is not achieved for any combination of 𝑛1 and 

𝑛2 for ten subjects under the missing data pattern observed in the recovery study data, but 
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is possible with 20 participants when sampling ten times a day for six days or eight times a 

day for seven days.  

A much more marked difference in power occurs in the extreme case of 70% missing data. 

Power is dramatically reduced to detect an effect size of 0.1 across all combinations of 𝑛. In 

this scenario a minimum of 80% power is first achieved sampling eight times a day for six 

days with 60 participants. Adequate power with fewer participants is only possible during a 

week of observation when sampling ten times a day, though a minimum of 40 subjects are 

required.  

7.4.2.2 GROUP DIFFERENCE MODEL 

This section presents the results of the power simulations for a model investigating a level 

3, or subject level, group difference in means. Power graphs will again display the results of 

varying the effect size and the changes to power when varying the model variances 𝜎𝑢
2, 𝜎𝑣

2 

and 𝜎𝑒
2. 

7.4.2.2.1 RESULTS OF VARYING EFFECT SIZES 

Figure 7:10 illustrates the first scenario where variance estimates are set to low (𝜎𝑢
2 =

 𝜎𝑣
2 = 𝜎𝑒

2 = 0.26) and power is estimated for Cohen’s smallest effect size of 0.2. The 

probability of being in group 1 was fixed as 0.33. 
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Figure 7:10 Power for effect size 0.2, small model variances – Group difference model 

For all 𝑛 power is very low, fluctuating between 8% (𝑛3 = 30, 𝑛2 = 6, 𝑛1 = 6) and never 

exceeding 15%  (𝑛3 = 10, 𝑛2 = 9, 𝑛1 = 8).  
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Figure 7:11 Power for effect size 0.5, small model variances - Group difference model 

 

Figure 7:12 Power for effect size 0.8, small model variances - Group difference model 
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Sufficient power is not achieved for any of the three effect sizes for any combination of 𝑛. 

In all three scenarios a similar power profile is observed: flat within-day lines with very little 

variation between days, indicating neither the number of measurements a day nor the 

duration of the study influences the power to detect a subject-level effect. Only the 

number of participants seemingly effects power, with power increasing for a higher 

number of participants for larger effect sizes.  

The number of subjects was increased above the originally specified maximum of 60 to 

establish how many subjects would be required to detect a large effect size with the 

current sampling schemes. Figure 7:13 displays the power graphs for 𝑛3 = 70, 80, 90 and 

100. With these sample sizes the smallest combination for which 80% power is achievable 

is with 90 participants, sampled eight times a day for six days (1 − 𝛾 = 0.803). For a week 

of observation any sampling scheme produces approximately 80% power for 90 subjects 

and is only possible with 80 subjects when monitoring for 10 days.    

 

Figure 7:13 Power for effect size 0.8, small model variances, larger n3 - Group difference model 
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7.4.2.2.2 RESULTS OF VARYING MODEL VARIANCES 

  

  

Figure 7:14 Varying model variances for effect size 0.8 – Group difference model 

The previous simulations were based on small model variances with equal variation at each 

level. Varying the model variances 𝜎𝑢
2, 𝜎𝑣

2 and 𝜎𝑒
2 in the group difference model resulted in 

the power graphs of Figure 7:14. Each graph demonstrates the effect of increasing the 

model variance from small (𝜎2 = 0.26) to large (𝜎2 = 2.34) at each level while holding the 

other two constant. The first graph, for reference, depicts the power for a model with 

effect size 0.8 where all variances are set to the lowest variance.  

Increasing between-subject model variance has the greatest effect on power, reducing 

estimates to less than 20% for all 𝑛. Increasing level 2 model variation also reduces power, 

though to a lesser extent. Little change is witnessed after increasing residual variation. 

These results are supported by the design effect given by Cunningham and Johnson (2012) 

for randomisation at level 3 (equation (35)): increasing the level 3 or level 2 model variance 

in this formula gives a larger design effect and thus results in less power. 

7.4.2.2.3 MISSING DATA 

The power graphs of Figure 7:15 demonstrate the change in power for each level of 𝑛 when 

diary data is not complete. As with the association model, the proportion of missing diaries 

was varied between 20%, 70% and under the missing data pattern observed in the recovery 

data. The top left panel illustrates power for complete data under the same fata generating 
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model, for reference. Comparing this to the remaining three, the introduction of moment 

nonresponse results in little change to the empirical power estimates.  

 

 

 

  

Figure 7:15 Power under difference proportions of missing diary data - Group difference model 

Power was also simulated when the predictor 𝑥 is subject to missing data. The graphs of 

Figure 7:16 show the effect of 10%, 30% and 50% missing data in the level 3 grouping 

variable in addition to 20% missing diary data. The graphs demonstrate the greater effect 

of missing data at level 3 has on power than moment nonresponse.  
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Figure 7:16 Power with missing data in both predictor and outcome - Group difference model  

 

7.5 SUMMARY  

This chapter has presented closed form equations for power calculations in one-, two- and 

three-level models as well as code for empirical power using Monte Carlo simulation. The 

methodological literature for power in three-level models is growing, however, the closed 

form power calculations and design effects, though developed for three-level random 

intercept and some random slope models, are unsuitable for many ESM studies as they 

have been derived in a trials framework and require randomisation at one of the three 

levels. As much of the ESM literature is observational, power calculations by simulation is 

more appropriate.  

For a simple association model the simulations demonstrated that even for Cohen’s small 

effect size 80% power is achievable with as few as 20 subjects under certain designs. 

Increasing model variances at level 3 or level 2 dramatically increases power to detect this 

effect. Similarly, increasing the level 1 variance of the predictor increases power, while 

increasing variation at level 3 or 2 of the predictor reduces power. Rather than the size of 

the variance effecting power it is the proportion of total variation which commands the 

change; ‘medium’ levels of variance producing similar patterns.  These results suggest that 
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if parameter estimates are unavailable a priori, conservative power estimates can be 

achieved by specifying the majority of model variance at level 1 while minimising 

momentary level variation in the predictor in the data generating model.  

For group differences, the power simulations showed that when examining effects 

measured at higher levels many more subjects are required for adequate power. In 

addition, power reduces dramatically when the largest proportion of variance is between-

subjects. When subject level differences are of interest and a priori estimates are unknown, 

conservative power calculations should be based on smaller effect sizes and larger level 3 

variance estimates.  

Finally, in both cases missing data was seen to influence power. While nonresponse is more 

often published than variance estimates, the reporting is often unclear and the proportion 

of missing data varies greatly from one study to another (see Chapter 4). Furthermore, the 

reported figures often only pertain to the diary data and not the amount of completed 

baseline data, for example. As such, basing missing data levels on previous research may 

not adequately reflect the amount of missing data that will arise in the proposed study. 

Care should be taken to both estimate the likely proportion of nonresponse in the 

particular study population and reduce missing data as part of the study design, particularly 

with respect to subject-level data. 
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8 DISCUSSION  

This thesis aimed to develop methods to improve the design, reporting, analysis and 

exploration of ESM studies, building on areas identified as weak following a methodological 

review of current ESM literature.  Improvements to design were pursued through the 

exploration of power for three-level data, where optimal combinations of sample sizes at 

each level were investigated for varying effect sizes, and the impact of uncertain a priori 

estimates on power was tested. Improved methods of reporting were considered for 

missing data to highlight how nonresponse in ESM is a more complex issue than simple 

adherence to protocol, and in understanding the missing data mechanisms, model 

assumptions can be satisfied.  Extensions to current analysis practices in ESM were 

developed to answer questions relating to change and variability at level 1, identifying 

methodological weaknesses and proposing solutions. Finally, models for exploring patterns 

in ESM data were developed to allow for a detailed examination of the variation in 

momentary measures both with-day and across all days of observation.  

The methods identified and developed for these areas will be discussed in detail and novel 

contributions of this thesis will be highlighted. The strengths and limitations of the 

methods will be examined in terms of their application to ESM data.  

8.1 DESIGN - POWER AND SAMPLE SIZE  

Two options for calculating sample sizes for ESM studies were presented in Chapter 7: 

sample size formula and empirical power using Monte Carlo simulation. Although closed 

form solutions are available for some three-level designs, many ESM research questions 

require models more complicated than the current literature provides for. The chapter 

aimed to develop code for simulating power in Stata for application in an ESM setting.  

As sample size for ESM studies constitutes three levels: the number of subjects, the 

number of days observed and the number of measurements per day, power will depend on 

the combination of all three 𝑛. As such, simply increasing the number of participants is not 

the only way to increase power. An optimal balance between number of subjects and 

sampling scheme will ensure that there is sufficient power to detect an effect whilst 

minimising any stress due to the intensive nature of the methodology and ensuring cost 

effectiveness of the study. The power simulations can thus be used to find such a 

combination, specific to each ESM study, the resulting graphs allowing for an easy 

comparison of power for all combinations of 𝑛. The simulations for the two example 
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research questions reinforced the results of other multilevel simulation studies that 

additional units at the highest level have the greatest influence on power. For ESM studies 

however, the number of subjects may be limited; these graphs demonstrate the benefits of 

using Monte Carlo simulation to calculate power, where increasing either the number of 

days of observation or the number of measurements each day can be compared to achieve 

sufficient power. For example, if ESM is being used to study a specific small population and 

is only likely to recruit 20 participants, the power graphs can be used, fixing 𝑛3 = 20, to aid 

in the choice of the sampling scheme. Alternatively, for larger available populations, if 

participant burden needs to be minimised, the number of days and the number of subjects 

can be compared for 𝑛1 = 4.  Participant burden and reactivity bias as a result is a serious 

concern of ESM ((Larson R and Csikszentmihalyi 1983; Delespaul 1995)). Designs that aim to 

minimise this should clearly be sought when possible. 

The main barrier to powering ESM studies is the lack of available a priori information 

required for computations. Estimates of expected effect sizes as well as predictor variances 

and model variances for all three levels of the data are necessary for empirical power 

calculations. However, it is unlikely that researchers will have prior knowledge of how 

predictor and response variables will vary between- and within-subjects before collecting 

their data. ESM is implemented expecting moment to moment variability in measures but 

quantifying this a priori may be unachievable, even with expert opinion, as published 

studies often lack this information. If prior data are available, estimates may vary by 

population (for example treatment effects of depression in clinical and non-clinical 

populations) and so may not be transferable for the purpose of sample size calculations for 

future studies. The Monte Carlo simulation results presented how sensitive power is to 

these estimates and how estimates can be chosen prospectively to obtain conservative 

power for optimal sample size combinations. For both the research questions of 

momentary-level association and subject-level group differences, power estimates were 

found to be heavily reliant on effect estimates and so in both cases a priori effect sizes 

should not be over-estimated. When variance estimates are unknown, conservative power 

estimates for momentary associations can be obtained by specifying the highest proportion 

of model variance at level 1, while minimising the variance of the predictor at this level. For 

subject-level group differences many more subjects are required for acceptable power than 

for level 1 associations, with power highly dependent on model variances. Conservative 

power estimates should be based on a higher proportion of variance at level 3.   
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Varying the effect size demonstrated how influential this parameter is on power for level 1 

associations: the power to detect a ‘medium’ effect size of 0.3, as suggested by (Cohen 

1988), was achievable with even the lowest combination of sample sizes; greater variation 

in power was found with a ‘small’ effect size of 0.1. Cohen proposed these categorisations 

with the caveat that they are by no means definitive or applicable to all scenarios. It 

remains unclear whether these effect sizes are appropriate references for ESM data. 

Unfortunately, collecting effect sizes was out of the scope of the systematic review 

discussed in Chapter 3 and there is currently very little literature reviewing ESM studies to 

which effect sizes can be compared for this population.  In the recovery study results 

presented in Chapter 1.3, rescaling the regression coefficients as effect sizes, absolute 

concurrent effect sizes ranged between 0.10 and 0.48. In contrast, the second motivating 

example (Tyler, Jones et al. 2015) much smaller level associations were found between 

mood and symptoms scores, with effect sizes ranging from 0.06 to 0.14. Care should be 

taken when considering clinically relevant effect sizes for powering ESM studies, resisting 

the urge to simply use Cohen’s standardized effect sizes, as powering for too high a value 

may result in insufficient power to detect the true effect size. Moreover, any statistically 

significant estimates found as a result might overestimate the effect size or show it to be in 

the wrong direction (Gelman and Carlin 2014). 

The simulation results of varying model variances for both scenarios were compared to 

how power would change using the design effect equations of Cunningham and Johnson 

(2012). Though these formulae corroborated the findings of the simulations, the 

comparison is perhaps not appropriate for the level 1 association example. Cunningham’s 

design effect was developed for randomisation at level 1, thus a binary predictor with no 

higher levels of variation. Though the formula might make an adequate comparison for the 

continuous predictor of the simulation scenario, this momentary ESM measure has 

variation at all three levels of the data which is not accounted for when deriving the design 

effect. An alternative explanation of the influence of the model and predictor variance 

estimates on power can be considered by how the regression coefficient 𝛽, and in turn 

dependent variable 𝑦, was calculated. The effect size was transformed into a regression 

coefficient used to generate 𝑦 through scaling by the ratio of the model and predictor 

variances. Increasing any part of the model variance (that is, between-subject variance, 

between-day variance or residual variance) will thus increase 𝛽 if the components of the 
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predictor variance are held constant. As such, increasing model variances will lead to 

greater power for smaller sample sizes as sufficient power to detect a large effect is 

achieved with smaller 𝑛. Conversely, increasing any of the predictor variances while holding 

variance components of the model constant will decrease the size of the regression 

coefficient 𝛽. In these circumstances a greater sample size will be required to detect 𝛽 and 

thus the power graphs will show a reduction in power.  

Based on this rationale, an increase in any component of model variance should increase 

power. However, this was not found to be the case: increasing residual model variance 

resulted in a reduction in power. In addition to the effect residual variance has on 𝛽, 

increasing the residual variance results in greater variation in 𝑦 at level 1, and thus the 

standard errors for level 1 predictors will be larger. Larger standard errors lead to smaller 

test statistics which means the null hypothesis is less likely to be rejected and thus power 

decreases.  

8.1.1 IMPLICATIONS OF MISSING DATA 

The power simulations demonstrated how varying levels of missing data can affect the 

power to detect a momentary effect, and how sample sizes chosen on the basis of 

complete data may be underpowered in the presence of moment nonresponse. The extent 

to which this will influence power depends on the quantity of missing data and so alongside 

realistic estimates of momentary nonresponse when calculating prospective power, every 

effort should be taken to limit the amount of uncompleted diaries during the study.  

Fitting a model with a subject-level predictor and a moment-level outcome, there are two 

potential sources of missing data: missing observations in 𝑥 or 𝑦. In the association 

example both variables were measured in an ESM diary, so when defining missing data at 

the moment level, when 𝑥 was missing so too was 𝑦. A level 3 variable, however, is only 

measured once per subject and thus if missing, no data from that participant can be used in 

the model. Missing data in the predictor of the group difference model, therefore, can 

result in a much larger reduction in overall sample size. One might assume baseline data to 

be complete in ESM studies as it would typically be completed with a researcher rather 

than independently as a self-completed form. However, in the recovery data example three 

subjects who went on to complete the ESM did not have baseline recovery scores. 

Underestimating the amount of subject-level missing data could result in significant loss in 

power and so if powering for complete baseline data it is imperative that this information is 

gathered for all participants.  
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The level 1 association analysis demonstrated that power to detect an association between 

two momentary-level measures is typically high, even in small sample sizes. The presence 

of missing data naturally reduces power and the impact of this loss of power is dependent 

on the proportion of uncompleted diaries. Although measures can be taken to prevent 

missing data during the study, it is important to note that it may also be introduced by 

design. The simple association example presented investigated power for a concurrent 

association where both predictor and outcome are measured at the same time point. If a 

diary is uncompleted then both variables are missing. If instead a lagged association is of 

interest, the predictor is entered into the model at moment 𝑖 − 1. In this scenario the 

number of usable measurements per day automatically reduces: the first observation each 

day is dropped as there is no lag covariate measured. When taking 10 measurements a day, 

the effective sample size is reduced by 10% using a lagged analysis, with the proportion 

increasing, naturally, for less intensive sampling. Thus the impact of additional missing data 

may result in a substantial loss of power. This is compounded by the fact that momentary 

nonresponse effects the model twice in a lagged analysis as two time points are modelled 

simultaneously, thus an observed response for the predictor will be dropped when the 

outcome is missing and vice versa.       

8.1.2 ADAPTATION TO MORE COMPLEX SCENARIOS 

The simple association model was given as an example of how to use Monte Carlo 

simulation to inform sample sizes at levels 1, 2 and 3 for a prospective ESM study. 

However, this method is not limited to such simple models and can be adapted to 

accommodate any model of interest. The drawback of more complex models, however, is 

more a priori parameter estimates are required. For example, to estimate empirical power 

for varying sample sizes for time trend models, estimates of the random slope variances 

and covariances at each level will be required, in addition to the estimates required of the 

simple model. As an example, recall the across-day random slope model used to examine 

whether daily trends vary one day to the next (Model 2b of Table 5:3). The data generating 

model for this question requires five variance and two covariance estimates for the random 

effects, where random slopes are applied to daily trends at both the subject-level and day-

level. If nonlinear terms are added, even more estimates will be required. The scarcity of 

published random effect variance estimates in the ESM literature in general, but 

particularly with more complex statistical models, will make estimating these parameters 

incredibly difficult. Of the papers reviewed in Chapter 3 for example, 14 applied multilevel 

random slope models to their data but only four presented the resulting variance 
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estimates. These studies were based in completely different areas, with the random slopes 

used to test between-subject differences in smoking (Shadel, Martino et al. 2012), exercise 

(LePage, Price et al. 2012) (studies 1 and 2) and headaches (Kikuchi, Yoshiuchi et al. 2012). 

Whilst just a sample of published studies, this demonstrates that gathering conclusive 

evidence of random effect variances may prove difficult. The multilevel modelling literature 

suggests that, for randomised designs at least, power for a three-level design will decrease 

with increasing between-subject variation in slopes (Heo, Xue et al. 2013). Thus for 

conservative power estimates, prospective Monte Carlo power simulations should be 

based on larger variance estimates of random coefficients. The extent to which these 

estimates influence sample sizes can then be investigated as for the simple association 

model.  

The simulations for the group difference model demonstrated that when the parameter of 

interest is measured at level 3 many more subjects are required to achieve 80% power 

compared to a level 1 association model, particularly for small effect sizes. While these 

simulations were based on a simple model, this result has implications for more complex 

research questions. A documented question of interest in ESM studies as found in Chapter 

3 was that of moderation. This involves investigating how the relationship between two 

variables differs by a third. For example, the relationship between self-esteem and ESM 

recorded recovery may by moderated by whether the subjects reported feeling recovered 

at the start of the study. The analysis model now contains a cross-level interaction, with 

self-esteem measured at level 1 and the moderator measured at level 3. The results of the 

group difference model suggest that many more subjects will be required to detect the 

interaction than data may have been collected on if the study was only powered to detect 

the level 1 association. This reinforces the necessity of defining research questions during 

the design process rather than after data collection.  

8.1.3 LIMITATIONS OF WORK ON SAMPLE SIZE AND POWER 

Many sample size formula and simulation studies for multilevel data use the ICC, or 

proportion of variance at each level, rather than the individual variance terms in their 

power estimates. A decision was made to compare the magnitude of the variance at each 

level rather than specifying an ICC as the code created for simulation procedure required 

individual variance terms for each level to simulate the random effects. Varying the 

magnitude of variation is equivalent to an increase/decrease in the proportion of variance 

at each level; however, in retrospect it may have been more logical to choose variance 
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estimates that summed to 1 to reflect the proportion of variance as to equate to ICCs from 

the literature. An argument against this parameterisation was in the choice of proportion 

to vary for the simulations: the proportion of variance at each level of the model differed 

greatly in the recovery data set to the bipolar data set, for example. As such a pragmatic 

choice of proportions could not be determined and the small/medium/large variance 

estimates based on the measurement scale were used instead, and while not derived from 

the data these values were similar in magnitude to the variance components of the 

recovery data (𝜎𝑢
2 = 1.627, 𝜎𝑣

2 = 0.217, 𝜎𝑒
2 = 0.496, Table 5:2). 

  A limitation of Monte Carlo simulation over closed form expressions is the time required 

to calculate power. While the association models were quicker to run than the group 

difference models, both took several hours to complete the 984 simulations on each 

permutation of 𝑛. More complex models require even longer, some time trend models 

taking days to complete. This may be in part due to the computational capabilities of the 

software chosen. Simulations were conducted in Stata as there are currently no programs 

written in this software for three-level power calculations. One of the aims of this piece of 

work was to write such a program that easily executed in this common statistical software. 

Although computationally more intensive, empirical power estimates via simulation 

provides a much more flexible framework for power in a ESM setting.  

8.2 REPORTING - MISSING DATA 

Missing data in ESM research can be defined in greater detail than just a single proportion 

relating to number of diaries completed. Nonresponse was found to occur at the item-

level, moment-level and day-level, and summarising this information requires detailed 

consideration. Participant fatigue is a concern with this methodology, both in terms of 

individual diary completion and the repeated sampling method; graphs and tables were 

presented to demonstrate how missing data can be described at each level of the data, 

these simple summaries providing insight into patterns of nonresponse within a diary in 

addition to patterns both within-day and across the sampling period.  

Item nonresponse is rarely mentioned in the literature, with the papers from the 

systematic review as well as the papers by Silvia, Kwapil et al. (2013) and Messiah, Grondin 

et al. (2011) referring only to moment nonresponse. Unlike with PDAs and mobile phone 

applications where programming can ensure questions cannot be skipped, paper diary 

methods are susceptible to item nonresponse where selective completion of items is 
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possible. Though perhaps an antiquated issue with the recent developments in mobile 

technology, paper diaries were used in approximately 30% of the 74 reviewed papers of 

Chapter 3 which suggests it is still a popular data collection method. Indeed, there are 

certain scenarios where it is necessary to use paper diaries, such as in prisons or inpatient 

wards. Although electronic data collection is becoming more accessible, it can be an 

expensive option where smartphones need to be provided or custom software is 

developed. As such, paper diaries are a convenient option for studies with a more limited 

budget such as student-led projects. Furthermore, while digital data collection methods 

may eliminate sporadic item completion, they can still be left unfinished partway through 

the questionnaire resulting in missing data for the remaining items. 

Data collection methods that restrict the ability to skip items, however, are not a faultless 

solution to item nonresponse. Requiring all items to be completed may lead to non-

informative responses; mindlessly completing items without regard to the question. This 

may present in uniform completion of scale extremes, consistently scoring 7, for example, 

on 7 point Likert scales.  This problem is not limited to smartphone collection, as it is easily 

possible with the traditional paper diary method. The interpretation of such flat response 

data will be reliant on the researcher examining variation in measures, either graphically or 

model based, and working with the participant after the diaries are returned to assess 

whether these values were truly representative of their experience. One benefit of the 

smartphone technology is that data are uploaded to external servers either in real time or 

at the end of each day and researchers can potentially review participants’ data during the 

data collection period for excessive missing data or for responses flattening out. This would 

enable intervention to occur during the study to assess whether the data are 

representative of the respondent’s current state or if they are finding the sampling 

procedure too intensive, potentially reducing the amount of missing data. The practicalities 

of this, however, are questionable for large scale studies.  

Moment nonresponse was found to be the typically reported figure in current ESM 

literature, where studies described the proportion of completed prompts as a measure of 

adherence to protocol. The definition of a ‘completed’ prompt however, is rarely discussed. 

As described, selective item completion is possible in many ESM data collection methods, 

and so the interpretation of these adherence figures is questionable. Possible options for 

moment nonresponse were thus proposed as either missing all items in an ESM diary for 

one sampling moment or having missing data on the outcome measure at one sampling 
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moment, thus rendering all items for that time point unusable. The latter argument holds 

for concurrent analysis, where outcome and covariates are measured at the same time 

point, however, a lagged analysis would still be able to include covariates at moment 𝑖 − 1 

when the outcome is missing in this diary. As such, it may be more useful to present only 

completely missing diary data when summarising moment nonresponse. In either case, a 

clear description of what is considered a ‘complete’ diary should be provided when 

summarizing adherence to protocol or nonresponse rates to enable the reader to 

understand the assumptions being made.  

In many of the papers reviewed, a largely uncited cut-off of approximately 33% complete 

data was required to be considered a valid response, with those individuals completing less 

than a third of signalled prompts excluded from the analysis. Delespaul (1995) is most often 

attributed to this cut-off, however the book provides no justification for this value.  Using 

maximum likelihood estimation of multilevel modelling there is no minimum requirement 

for completed observations as all available information will contribute to analysis. 

Consequently, this seemingly arbitrary figure of 33% is not enforced from any statistical 

necessity, instead it is likely that this is used as an indicator of validity of response where 

completing fewer than a third of responses suggests the items that have been completed 

are unlikely to be a true representation of a subject’s current state. With this in mind, a 

minimum number of completed items per booklet might be a consideration when defining 

moment nonresponse, with sporadic completion treated as missing in order to avoid 

unrepresentative results. Discretion on the part of the researcher is required as to where to 

place the cut off to ensure responses are valid and representative of the true sample.  

8.2.1 PREDICTORS OF NONRESPONSE AND MISSING DATA MECHANISMS 

Further to the summarization of missing data, predictors of missing data were also 

explored in the recovery data. Although routinely conducted in other contexts such as 

randomised controlled trials, investigation of missing data mechanisms in ESM data 

appears to be lacking in practice. It was demonstrated how observed items can be used to 

predict missing items within an ESM questionnaire as well as how items from previous 

diaries can predict subsequent moment nonresponse. Predictors of nonresponse are not 

limited to previous time points though, forward lagged covariates could also easily be 

modelled, predicting missing data at the previous time point. Time trends in momentary 

nonresponse were explored following the suggestion of time dependent missingness from 

the descriptive statistics. Quadratic trends were observed within-day, where diaries were 
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more likely to be missing both at the start and end of the day, and weekly trends indicate 

that there is a decline in response as the week progresses. This pattern was in contrast to 

what has been found in the limited literature investigating ESM nonresponse (Silvia, Kwapil 

et al. 2013), where missing diaries were less likely at the start and end of the day. 

Identifying these patterns can aid in the design of future studies, either through the choice 

of more appropriate sampling hours for certain populations or planning for researchers to 

check in with participants as the week progresses to prevent too much missing data.  

In addition to the benefits for future studies, identifying predictors of nonresponse is key to 

satisfying the missing at random assumption made by maximum likelihood estimation. 

However, a drawback of satisfying this MAR assumption is that the interpretation of the 

coefficient of interest is now necessarily changed. In the example of the recovery data, 

both the linear and quadratic terms for beep number were found to predict missingness 

and so any subsequent analysis model should include these terms. Regressing recovery on 

self-esteem, for example, should now control for this quadratic time trend, altering the 

interpretation of the original research question as a proportion of the variation in the 

outcome can now be explained by the additional covariates. This can be avoided when 

using multiple imputation as the imputation model and analysis models can be separately 

specified, and thus the estimation and interpretation of the coefficients of the analysis 

model are unaffected by the variables in the imputation model.    

In addition to maximum likelihood, multiple imputation was discussed as a method for 

addressing missing data in ESM studies. The dangers of misspecification in the imputation 

model were presented with reference to Black, Harel et al. (2011) who demonstrated how 

variance estimates can be biased when single level rather than multilevel imputation 

models are used. As software is currently unavailable for three-level multiple imputation, 

attempts to use two-level imputation on ESM data may result in biased estimates. 

Furthermore, maximum likelihood estimates were found to be unbiased for fixed effects 

even with large amounts of missing data (Black, Harel et al. 2011). Another scenario in 

which multiple imputation might be valuable is when there is missing data in baseline, 

rather than ESM, measured variables. If baseline variables such as age or gender are to be 

included as model covariates or as predictors of missing ESM data, any missing data will 

result in all ESM data being lost from the analysis model. Imputing these values will be 

much more straightforward as they come from level 3 variables and so a multilevel multiple 

imputation model is not required.  An alternative method to multiple imputation in this 
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case is to use a full information maximum likelihood approach in order to use all available 

data.  

A potential limitation of maximum likelihood is the assumption that the missing data are 

missing at random. In ESM data it is not unreasonable to assume that a diary may be 

missing due to heightened symptoms, for example, and thus the missing data would be 

classed as MNAR. As non-ignorable missingness in empirically untestable, the argument in 

favour of more complex missing data methods must rest on how plausible it is that the 

probability the data are missing depends on the unobserved values. For ESM, diaries might 

be ignored during a hallucinatory event or those feeling depressed may be less inclined to 

complete a questionnaire. However, given the intensive sampling of the procedure and the 

expected correlation between items at different time points, ESM provides a lot of 

information which can be used to explain this missing data. It might be possible to predict 

this missingness from scores from the previous diary, for example, where rising symptom 

scores are followed by an uncompleted diary. However, if symptoms arise suddenly and are 

not captured by previous questionnaires then data will not be available to predict 

nonresponse. Low level symptoms resulting in nonresponse would also eliminate any 

chance of predicting missing data, resulting in non-ignorable missingness.  

ESM benefits from typically having a debriefing session with participants at the end of the 

sampling period. During this session the researcher can discuss any sections of 

nonresponse and gain information as to why the diaries were left unanswered. This 

information can then be included in any statistical models to satisfy the MAR assumptions 

of maximum likelihood methods. The only data that would be unexplained would be from 

subjects who dropped out mid study or refused to meet with a researcher following their 

participation in the study.  To capitalise on this post-data collection session researchers 

must be made aware of the assumptions being made regarding missing data, and the 

importance of gathering all potential information relating to nonresponse. Where follow up 

sessions are not possible and non-ignorable missingness likely, serious consideration is 

required to determine if ESM is the most appropriate data collection method for the study: 

a data collection method that is expected to consistently underreport symptoms is flawed 

and more appropriate alternatives should be adopted.  
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8.3 ANALYSIS - CHANGE MODELS 

An in depth examination of the analysis of change was prompted by the unusual effect 

estimates obtained after fitting a change score model to the recovery data. This highlighted 

an important problem which can occur when using a change score as the dependent 

variable in a multilevel model: the strength of the concurrent versus lagged association of 

𝑋 on 𝑌 will influence the direction of association between the lagged 𝑋 and a change in 𝑌. 

This issue does not arise in concurrent change models, such as described in Mata, 

Thompson et al. (2012) where 𝑋 is measured at moment 𝑖, but affects models interested in 

the change in 𝑌 following 𝑋 where the lagged 𝑋 is used as a covariate. To resolve this 

problem, a multilevel model with 𝑦𝑖𝑗𝑘  as the dependent variable and the time lagged 

outcome 𝑦𝑖−1,𝑗𝑘 as a covariate was presented as an alternative to using a change score. 

Two methods were then discussed for overcoming the methodological issues arising from 

this model formulation: the joint modelling of the initial condition and subsequent 

outcomes and the first-difference procedure using instrumental variables. Both methods 

overcome the problem of endogeneity, the first-difference method removing the random 

effects from the model whilst preserving the within-subject interpretation of the fixed 

effects, while the alternative solved the problem by appropriately modelling the initial 

condition, allowing it to depend on unobserved heterogeneity. Both methods contain 

strengths and weaknesses in their approaches and while the techniques do not allow for a 

direct comparison of results, this section will aim to discuss the two methods in terms of 

their application to change models for intense longitudinal data.   

Though rectifying the complication arising from including the lagged outcome as a 

covariate, it remains unclear whether the first-difference method, with its creation of a 

change score in the response, succumbs to the sign issue originally encountered. The 

results of the recovery data analysis using this method suggest the problem still exists as 

coefficients were in the direction originally observed using the change score model. The 

standard errors for the first-difference method coefficients were much larger, however, 

indicating effects in either direction were plausible.  It was shown algebraically that the 

direction of the coefficient using the first difference method will depend on the strength of 

the lagged relationship between 𝑋 and 𝑌 and the concurrent relationship. Though 

discussing the method in detail, Rabe-Hesketh and Skrondal (2012) do not comment on the 

possibility of this problem, nor does Steele (2014) in her application of the method.  
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Although the method requires the specification of an additional model for the initial 

outcome, the joint modelling the initial conditions results in easy to interpret model 

coefficients. The inference is directly comparable to that of the naïve lagged outcome 

model and standard random effects models: 𝛽1 representing the effect of a unit increase of 

𝑋 in a change in 𝑌, the sign of 𝛽1 indicating the direction of the change in 𝑌 and its 

magnitude the strength of the relationship with 𝑋. The first-difference method, on the 

other hand, results in a change score in the fixed effects predicting a change score in the 

outcome. The interpretation of this coefficient is less straightforward as the change in 𝑋 

may be in either direction. However, the direction of the coefficient indicates the direction 

of the resulting change in 𝑌: if 𝛽 > 0 the change in 𝑌 is in the same direction as the change 

in 𝑋; conversely, if 𝛽 < 0 the change in 𝑌 is in the opposite direction to the change in 𝑋.  A 

benefit of the initial conditions method over the first-difference method is the between-

subject and between-day variance estimates are still calculated. As the first-difference 

method removes the random effects, 𝜎𝑢
2 and 𝜎𝑣

2 are not estimated in the model for 

change. Although in many cases the fixed effect estimates are of primary importance, 

removal of the random effects eliminates the possibility of comparing predictors of change 

between participants and between days as random slopes are also removed.  

8.3.1 LIMITATIONS OF THE INITIAL CONDITIONS METHOD  

Kazemi and Crouchley (2006) state that when joint modelling to avoid endogeneity, the 

initial model needs to be correctly specified in order to produce valid estimates. One 

concern for using this method to analyse change in ESM data comes with the inability to 

include the lagged predictor in the initial model. To consider the effect of 𝑥 on a 

subsequent change in 𝑦, 𝑥𝑖−1 is included as a covariate. However, for the initial model 

where 𝑖 = 1, 𝑥𝑖−1 = 𝑥0 is not observed. Two options were presented to overcome this 

issue: one can omit 𝑥 as a covariate in the initial model or use 𝑥 at moment 𝑖 rather than 

𝑖 − 1. Omitting 𝑥 when it is expected to predict the outcome will result in the initial model 

being misspecified. The argument made by Steele for using the initial model is to allow 𝑦 to 

depend on the unobserved heterogeneity it would otherwise miss due to 𝑦1only being 

used as a covariate in the model. In this regard, omitting 𝑥 in the initial model does not 

detract from the purpose of using this method. However, Steele’s example did not consider 

a lagged covariate and as such did not encounter this issue. In the extension of the method 

proposed for ESM data, in addition to 𝑦1in the naïve model lacking influence from 

unobserved heterogeneity, it also lacks influence from 𝑥. Thus, Steele’s argument requires 

𝑥 to be included in the initial model. Not including 𝑥 would mean that any variation in 𝑦1 
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due to this covariate would be falsely attributed to between-subject or between-day 

variation, and could lead to over inflated variance estimates of the random effects.  

The alternative option presented was to include the concurrent predictor 𝑥𝑖 in the initial 

model. Although this is obviously not the relationship the main model intends to examine, 

this may be a valid substitution for 𝑥𝑖−1 when the two are expected to be substantially 

correlated. When this is the case, the lagged relationship is preserved in the concurrent 

relationship. As demonstrated in Chapter 6 however, the concurrent relationship between 

two variables is often stronger than the lagged relationship, and so using 𝑥1 in place of 𝑥0 

in the initial equation may result in a stronger association estimated in the main equation 

with less variation in the random effects.     

The basis for the initial conditions method is that the relationship between the current 

outcome and the lagged outcome can be expressed through that of the initial outcome 

with coefficient 𝛽1
𝑖−1, and that without this initial outcome being influenced by the 

unobserved heterogeneity that effects all other responses, this coefficient as well as the 

random effect variances will be biased. The extent of this bias, however, will depend on 

two things: the magnitude to which the correlation between observations diminishes with 

increasing lags (in effect the size of 𝛽1) and the number of lags being calculated (i.e. 𝑛1 for 

𝑖 = 1,… , 𝑛1). For  |𝛽1| < 1 increasing values of 𝑖 will cause 𝛽1
𝑖−1 to tend to zero, reducing 

the influence of the initial condition on 𝑦𝑖𝑗𝑘. Thus for larger 𝑛1, the extent to which 

including a lagged outcome as a covariate biases the model decreases (Bhargava and 

Sargan 1983; Kazemi and Davies 2002). This asymptotic bias means that for short studies or 

for few repeated measures, endogeneity is of particular concern as the effect of the initial 

outcome will be strong when 𝑖 is small. However, for ESM studies when 𝑛1 can be large 

should the lagged outcome still be considered a problem? The results of the recovery data 

analysis unfortunately cannot be used to comment on this as it has been argued that these 

models may have biased estimates due to initial model misspecification. However, in 

Appendix 4: Predicting the analysis of this change model has been reproduced examining 

the effect of a concurrent predictor on outcome, controlling for previous outcome (as 

described by equation (22), Chapter 6). For this specification, 𝑥𝑖 in the initial equation is 

observed and so the effect of number of measurements 𝑛1 on bias can be isolated. These 

results suggest that bias from the initial condition does exist with 10 measurements a day 

(Naïve model: 𝛽1 =  0.283 (0.021), 𝜎𝑢
2 = 0.510 (0.108), 𝜎𝑣

2 = 0.058(0.015); IC model: 

𝛽1 = 0.224 (0.020), 𝜎𝑢
2 = 0.631 (0.127), 𝜎𝑣

2 = 0.080 (0.016)), though the effect of self-
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esteem does not appear affected (Naïve model: 𝛽2 = 0.323 (0.024); IC model: 𝛽2 =

0.333 (0.024)). 

Finally, one should consider whether the question of change is even appropriate for ESM 

research due to unequally spaced measurements and the resulting interpretation of the 

fixed effects. Some sampling schemes, such as interval sampling, will produce equally 

spaces time points. However, Delespaul (1995) advises against such a regimented scheme 

as interval designs may result in participants becoming aware of the routine and thus 

changing their behaviour in anticipation of the alarm. This anticipation can potentially also 

affect mood and symptoms, increasing feelings of anxiety or stress for example, biasing the 

results of the study. The alternative signal based designs are either truly random prompts 

or pseudo random prompts where the alarm is emitted randomly within a fixed time 

interval. The latter is suggested as optimal – capturing moments across the whole sampling 

period while remaining unpredictable. Change models in a truly random design, where the 

length of time between prompts varies, are likely to produce meaningless results: the 

gradient on a linear trend varies between time points when intervals differ, resulting in 

large standard errors and uninterpretable effect sizes. This is compounded when different 

random patterns are generated for each participant. Pseudo random prompts, on the other 

hand, vary randomly within some fixed interval. So whilst the time between alerts does 

vary, it can be argued that for small enough fixed intervals this difference is negligible and 

one can assume the time between measurements is equal. This approximation is employed 

in regular longitudinal studies; six month follow-ups, for example, are rarely ever taken 

exactly six months from the start of the study.  

8.3.2 FUTURE WORK ON CHANGE MODELS 

This work has highlighted some interesting aspects of change models in an ESM setting. 

The initial conditions problem, particularly, could be pursued further in an attempt to 

quantify the bias introduced by including the lagged outcome as a covariate. Simulation 

could be used to investigate how the number of time points per day impacts on the bias of 

this variable to determine whether the joint modelling process if necessary for larger 𝑛1.  

Similarly, the extent of model misspecification for the initial equation could be investigated 

via simulation when using a lagged predictor. The bias introduced when either omitting 𝑥 

from this initial equation or using 𝑥1 as a proxy for the unmeasured 𝑥0 could be compared 

to that of simply fitting the naïve model, to ascertain whether joint modelling with a 
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misspecified initial model actually induces more bias than simply ignoring the initial 

conditions problem altogether.  

8.4 INVESTIGATION – TIME TRENDS USING RANDOM SLOPE MODELS 

The momentary variation in ESM measures is a potentially rich data source that can be 

investigated. Current methods for examining variation identified in the review underutilize 

intensively collected data, using methods that require aggregation to a higher level. These 

methods reduce moment to moment variation to one measure, ignoring potential trends at 

the momentary level. The random slope models presented aimed to investigate this 

momentary level variation more fully and tease out inference of time trends and variation 

where ‘time’ is measured at more than one level.  

ESM presents an interesting area for the development of standard growth models; with 

three levels of variation and two distinct measures of time, this data structure requires care 

with regards to the choice of random effects and interpretation of random slopes. The 

explorations of random slope specifications yielded a total of 32 base models that can be 

extended to accommodate more complex trends in the fixed effects, through cross-level 

interactions and non-linear time trends, as well as complex random variation to study 

group differences. In practice not all of these models will be useful and model specification 

should be driven by the research question. However, the benefits of outlining all 

permutations of random effects allows for a greater understanding of how time trends can 

be studied at the momentary- and day-level, and how variation in these trend can differ 

both between- and within-subjects.  

The random slope models presented in this chapter focused on explaining level 1 variation 

in terms of trends; the correlation between successive observations expressed through a 

fixed effect of time with random effects in place to measure between- and within-subject 

heterogeneity. An alternative approach is to allow this momentary level correlation to be 

absorbed in the residual variance. Multilevel models assume the residuals to be 

independent and identically distributed, conditional on the random effects, however, this 

assumption may be relaxed to allow for the correlation between successive time points to 

instead be expressed through an appropriate residual covariance structure. Autoregressive 

covariance structure can be implemented without the inclusion of random slopes to 

capture the correlation between observations, replacing a random slope model with a 

random intercept model with AR(1) residuals, for example. Used in conjunction with the 
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random slope models, a non-independent covariance structure can be used to explain any 

additional correlation not accounted for by the time trends. 

There is a trade-off between using a more complex random slope model to account for the 

momentary correlation and a comparatively simpler model where the variation is absorbed 

into the level 1 covariance matrix. Although the latter seemingly represents a more 

straightforward option, there are two serious points to consider. Firstly, as discussed in 

Chapter 2, many autoregressive covariance structures require equally spaced time points, 

which although applicable when beep number is used as a proxy for time, does not hold in 

many ESM settings where measurements are collected pseudo-randomly and thus will be 

unequally spaced. Moreover, commonly used structures such as AR(1) can impose strict 

conditions on the correlation between time points, and although more relaxed options are 

available, misspecification of covariance structure can lead to over-estimated random 

effect variances, leading to inaccurate inference (Ferron, Dailey et al. 2002; Sivo, Fan et al. 

2005; Kwok, West et al. 2007). Secondly, expressing the level 1 correlation in terms of an 

autoregression parameter such as 𝜌 from an AR(1) covariance structure, while providing a 

measure of variation, limits the discussion of variation to one question: how are successive 

observations related? Random slope models allow for a more detailed investigation of this 

at all three levels of data through linear and nonlinear trends, and with the addition of 

complex variation at level 1, can be an effective method for comparing group differences 

while addressing the popular question of ‘fluctuation’ of outcome.    

Though providing a more informative picture of variation than autoregressive covariance 

structures, a limitation of the models presented was the relative simplicity of the nonlinear 

time function adopted. The intention of these models was not to perfectly describe 

underlying trends, but to instead offer options for investigation. More forms of describing 

nonlinear trends are applicable in this framework, for example higher order polynomials or 

exponential functions of time. Alternatively when greater flexibility is desired, piecewise 

linear functions (Bryk and Raudenbush 1992; Snijders and Bosker 1999) or spline functions 

can be adopted in which separate polynomials are fitted to time intervals (Pan and 

Goldstein 1998).  Though the detail to which trends are studied is a personal choice, it is 

important to model nonlinear trends when they occur in the data. Bauer and Cai (2009) 

demonstrate how spurious random slopes and cross-level interactions can be observed 

when nonlinear trends at level 1 are ignored.  



 

192 
 

The time trend models described in this thesis aimed to explore variation in ESM measures 

in greater depth than currently seen in practice. This goal has certainly been achieved; 

however, the selection of models presented is by no means exhaustive and the method 

applied can be adapted to different scenarios. The time trend models presented have 

mainly focused on how one measure varies over the observation period, however, 

identifying how one measure varies in terms of another may also be of interest. For 

subject-level grouping variables this was explored using the complex variation models of 

Section 5.3.2.3 where variation or fluctuation in ESM measures were estimated for each 

group in the level 1 residuals. Not investigated was the scenario of comparing variation in 

two or more level 1 variables. For example, one may wish to examine how ESM measured 

self-esteem and recovery covary over the sampling period. For this question a new set of 

methods is not required, instead the models developed can simply be further extended. 

MacCallum, Kim et al. (1997) describe how trends on different measures can be compared 

using multivariate multilevel models. Here a new dependent variable is defined containing 

both outcomes, and dummy variables are used to indicate to which outcome each part of 

the model corresponds to. This formulation is equivalent to the process described for the 

joint modelling approach for the initial conditions problem in Chapter 6, where instead of 

different outcomes variables, the same response variable at different time points was joint 

modelled. As an example, to compare the weekly trends of two variables, self-esteem and 

recovery, the multivariate model specifies the random slopes (day number) for both 

outcome variables as multivariate normal, thus allowing for the estimation of the 

covariance of the intercepts and slopes for each outcome. Covariances are estimated for all 

pairs of random effects, i.e. the intercept and slope covariance 𝑐𝑜𝑣(𝑢0𝑘𝑙, 𝑢1𝑘𝑙) for each 

outcome 𝑙 as well as the covariances between outcome intercepts 𝑐𝑜𝑣(𝑢0𝑘1, 𝑢0𝑘2), 

outcome slopes 𝑐𝑜𝑣(𝑢1𝑘1𝑚, 𝑢1𝑘2) and outcome intercept/slope covariances 

𝑐𝑜𝑣(𝑢0𝑘1, 𝑢1𝑘2) and 𝑐𝑜𝑣(𝑢0𝑘2, 𝑢1𝑘1). Inference would be drawn from the fixed effects of 

the model, describing the weekly trends of self-esteem and recovery separately, and the 

random effect covariance of the two slopes 𝑐𝑜𝑣(𝑢1𝑘1, 𝑢1𝑘2), describing the level of 

association between the trends of both variables. 

This multivariate parameterisation can accommodate the variety of models presented to 

investigate complex time trends and allows for different time trend models for each 

outcome through alternative model expressions for each indicator.  
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The practicalities of fitting such complex models in practice, however, may be 

questionable. The simple weekly trends model comparing the trends of two variables 

requires four variance and six covariance parameters to be estimated at level 3 in addition 

to the level 2 and level 1 variance estimates. More complex models with a greater number 

of random slopes will require many more random effect variance and covariance estimates 

and estimating the covariance matrix when comparing multiple outcomes under these 

conditions may require very large sample sizes.   

8.5 APPLICATIONS OUTSIDE OF ESM 

Although the methods described in this thesis have been developed with ESM as the focus, 

the applications of this work are not limited to just this area. Intensive longitudinal data can 

arise in a variety of settings, with real-time data collection becoming much more feasible 

thanks to developments in mobile phone technology. An ongoing study, Cloudy with a 

chance of pain (uMotif 2016), is currently in progress, for example, using a mobile phone 

application to investigate how arthritic pain varies with weather conditions. Unlike the ESM 

studies presented previously, this study is open to anyone in the UK with arthritic pain who 

has a smartphone. Current location is continuously recorded to link to weather services and 

a daily questionnaire relating to symptoms is administered each evening, monitoring each 

participant for six months. The exploration of trends in this data can apply the models 

developed for time trends in this thesis; instead of daily and weekly trends, variation can be 

assessed over much longer periods. The challenge of linking the pain data to weather 

conditions will be an extension of these methods, in particular the multivariate trend 

models discussed above for assessing the covariance of two continuous measures.  Such 

unregulated data collection, however, will inevitably pose new problems. Missing data will 

likely be a much greater issue: six months of daily monitoring will almost certainly be 

limited by participant fatigue with additional intermittent data collection within that 

period. Establishing trends with such sporadic data will likely present many new challenges, 

but the ideas established in this thesis can be used as a starting point for new 

methodological development.  

8.6 SUMMARY 

ESM can be a useful tool for examining real-time variation in symptoms and behaviours. 

Whether applied in observational research or in an experimental design, this thesis has 

developed methodology that can be used in future ESM studies to ensure the best use of 
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resources through efficient design and full utilization of this three-level data structure 

through appropriate analysis methods. To summarize, the novel contributions of this work 

to the field of ESM have been: 

 A review of current practice  

Though this is not the first review of ESM studies, to the author’s knowledge no other 

published work evaluates the statistical methods chosen to answer specific research 

questions. 

 An exploration of missing data 

Nonresponse has been defined at the item level, moment level and day level, in 

contrast to the standard practice of a single figure for adherence. Through these 

definitions missing data can be thoroughly explored, and suggestions for efficient 

summaries of missing data have been presented. 

 Optimal use of multilevel models  

This has been demonstrated in the extension of two-level models to three-level data. 

This has included three-level time trend models for examining momentary variation 

both within-, between- and across-days through careful consideration of random slope 

placement, and three-level extensions to first-difference and joint modelling methods 

for studying predictors of change. Moreover, it has been established that change 

scores are not suitable for the analysis of ESM data and that the joint modelling and 

first-difference methods for the alternative lagged outcome model may not be 

applicable in an ESM context. 

 Stata code for three-level power calculations 

Stata programs were written for the Monte Carlo simulation of power for three-level 

data. These programs calculate power for varying sample sizes at the moment-, day- 

and subject-level and resulted in graphs which can be used to choose an appropriate 

combination of 𝑛 to adequately power specific research questions.  

 

  



 

195 
 

9 REFERENCES  

 

Anderson, T. W. and C. Hsiao (1981). "ESTIMATION OF DYNAMIC-MODELS WITH ERROR-
COMPONENTS." Journal of the American Statistical Association 76(375): 598-606. 

Anderson, T. W. and C. Hsiao (1982). "Formulation and estimation of dynamic models using 
panel data." Journal of Econometrics 18(1): 47-82. 

Andriod, S. A.    Retrieved 12/8/13, from 
https://sites.google.com/site/sleepasandroid/home. 

Bauer, D. J. and L. Cai (2009). "Consequences of unmodeled nonlinear effects in multilevel 
models." Journal of Educational and Behavioral Statistics 34(1): 97-114. 

Ben-Zeev, D., M. A. Young, et al. (2012). "Real-time predictors of suicidal ideation: mobile 
assessment of hospitalized depressed patients." Psychiatry Research 197(1-2): 55-
59. 

Bhargava, A. and J. D. Sargan (1983). "Estimating Dynamic Random Effects Models from 
Panel Data Covering Short Time Periods." Econometrica 51(6): 1635-1659. 

Black, A. C., O. Harel, et al. (2011). "Missing data techniques for multilevel data: 
implications of model misspecification." Journal of Applied Statistics 38(9): 1845-
1865. 

Bolger, N., A. Davis, et al. (2003). "Diary methods: Capturing life as it is lived." Annual 
Review of Psychology 54: 579-616. 

Bolger, N. and J. Laurenceau (2013). Intensive Longitudinal Methods: An Introduction to 
Diary and Experience Sampling Research, Guilford Publication. 

Bolt, D. M., M. E. Piper, et al. (2012). "Why two smoking cessation agents work better than 
one: role of craving suppression." Journal of Consulting & Clinical Psychology 80(1): 
54-65. 

Bradburn, N. M., L. J. Rips, et al. (1987). "Answering autobiographical questions: The impact 
of memory and inference on surveys." Science 236(4798): 157-161. 

Browne, W. J., M. Golalizadeh Lahi, et al. (2009). "A guide to sample size calculations for 
random effect models via simulation and the MLPowSim software package." 
University of Bristol, UK. Retrieved October 29: 2010. 

Bruehl, S., X. Liu, et al. (2012). "Associations between daily chronic pain intensity, daily 
anger expression, and trait anger expressiveness: an ecological momentary 
assessment study." Pain 153(12): 2352-2358. 

Bryk, A. S. and S. W. Raudenbush (1992). Hierarchical linear models: applications and data 
analysis methods, Sage Publications. 

Buckner, J. D., R. D. Crosby, et al. (2012). "Immediate antecedents of marijuana use: an 
analysis from ecological momentary assessment." Journal of Behavior Therapy & 
Experimental Psychiatry 43(1): 647-655. 

Carpenter, B., A. Gelman, et al. (2016). "Stan: A probabilistic programming language." J Stat 
Softw. 

Carpenter, J. and M. Kenward (2007). "Guidelines for handling missing data in Social 
Science Research." 

Carpenter, J. and M. Kenward (2012). Multiple Imputation and its Application, Wiley. 
Carpenter, J. R., H. Goldstein, et al. (2011). "REALCOM-IMPUTE Software for Multilevel 

Multiple Imputation with Mixed Response Types." Journal of Statistical Software 
45(5). 

Carpenter, J. R., M. G. Kenward, et al. (2007). "Sensitivity analysis after multiple imputation 
under missing at random: a weighting approach." Statistical Methods in Medical 
Research 16(3): 259-275. 



 

196 
 

ClinTouch. from http://www.clintouch.com/. 
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences, L. Erlbaum 

Associates. 
Collins, L. M., J. L. Schafer, et al. (2001). "A comparison of inclusive and restrictive strategies 

in modern missing data procedures." Psychological Methods 6(4): 330. 
Cook, J. E., J. E. Calcagno, et al. (2012). "Friendship trumps ethnicity (but not sexual 

orientation): comfort and discomfort in inter-group interactions." British Journal of 
Social Psychology 51(2): 273-289. 

Crouchley, R., D. Stott, et al. (2009). "Multivariate Generalised Linear Mixed Models via 
sabreStata (Sabre in Stata) Version 1 (Draft)." Centre for e-Science, Lancaster 
University. 

Csikszentmihalyi, M. (2014). Flow and the Foundations of Positive Psychology: The 
Collected Works of Mihaly Csikszentmihalyi, Springer Netherlands. 

Cunningham, T. D. and R. E. Johnson (2012). "Design effects for sample size computation in 
three-level designs." Statistical Methods in Medical Research: 0962280212460443. 

Delespaul, P. A. E. G. (1995). Assessing Schizophrenia in Daily Life: The Experience Sampling 
Method, UPM, Universitaire Pers Maastricht. 

Demiralp, E., R. J. Thompson, et al. (2012). "Feeling blue or turquoise? Emotional 
differentiation in major depressive disorder." Psychol Sci 23(11): 1410-1416. 

Diggle, P. (2002). Analysis of Longitudinal Data, Oxford University Press. 
Diggle, P. J. (1988). "An approach to the analysis of repeated measurements." Biometrics 

44(4): 959-971. 
Donders, A. R. T., G. J. M. G. van der Heijden, et al. (2006). "Review: a gentle introduction to 

imputation of missing values." Journal of clinical epidemiology 59(10): 1087-1091. 
Ebbes, P., U. Böckenholt, et al. (2004). "Regressor and random-effects dependencies in 

multilevel models." Statistica Neerlandica 58(2): 161-178. 
Elavsky, S., P. C. M. Molenaar, et al. (2012). "Daily physical activity and menopausal hot 

flashes: applying a novel within-person approach to demonstrate individual 
differences." Maturitas 71(3): 287-293. 

Faul, F., E. Erdfelder, et al. (2007). "G* Power 3: A flexible statistical power analysis 
program for the social, behavioral, and biomedical sciences." Behavior research 
methods 39(2): 175-191. 

Ferron, J., R. Dailey, et al. (2002). "Effects of misspecifying the first-level error structure in 
two-level models of change." Multivariate Behavioral Research 37(3): 379-403. 

Fitzmaurice, G. M., N. M. Laird, et al. (2012). Applied Longitudinal Analysis, Wiley. 
Forbes, E. E., S. D. Stepp, et al. (2012). "Real-world affect and social context as predictors of 

treatment response in child and adolescent depression and anxiety: an ecological 
momentary assessment study." Journal of Child & Adolescent Psychopharmacology 
22(1): 37-47. 

Gardiner, J. C., Z. Luo, et al. (2009). "Fixed effects, random effects and GEE: What are the 
differences?" Statistics in Medicine 28(2): 221-239. 

Gelman, A. and J. Carlin (2014). "Beyond Power Calculations: Assessing Type S (Sign) and 
Type M (Magnitude) Errors." Perspectives on Psychological Science 9(6): 641-651. 

Giesbrecht, G. F., T. Campbell, et al. (2012). "Psychological distress and salivary cortisol 
covary within persons during pregnancy." Psychoneuroendocrinology 37(2): 270-
279. 

Giesbrecht, G. F., N. Letourneau, et al. (2012). "Affective experience in ecologically relevant 
contexts is dynamic and not progressively attenuated during pregnancy." Arch 
Womens Ment Health 15(6): 481-485. 

http://www.clintouch.com/


 

197 
 

Goldschmidt, A. B., S. G. Engel, et al. (2012). "Momentary affect surrounding loss of control 
and overeating in obese adults with and without binge eating disorder." Obesity 
20(6): 1206-1211. 

Goldstein, H. (2009). REALCOM-Impute: Multiple Imputation using MLwiN, User Guide 
http://www.bristol.ac.uk/cmm/software/realcom/imputation.html, University of 
Bristol  

Goldstein, H., M. J. R. Healy, et al. (1994). "MULTILEVEL TIME-SERIES MODELS WITH 
APPLICATIONS TO REPEATED-MEASURES DATA." Statistics in Medicine 13(16): 
1643-1655. 

Gottman, J. M. (1990). "Time-series analysis applied to physiological data." 
Granger, C. W. (1969). "Investigating causal relations by econometric models and cross-

spectral methods." Econometrica: Journal of the Econometric Society: 424-438. 
Heckman, J. J. (1976). The common structure of statistical models of truncation, sample 

selection and limited dependent variables and a simple estimator for such models. 
Annals of Economic and Social Measurement, Volume 5, number 4, NBER: 475-492. 

Hedeker, D., R. J. Mermelstein, et al. (2009). "Modeling mood variation associated with 
smoking: an application of a heterogeneous mixed-effects model for analysis of 
ecological momentary assessment (EMA) data." Addiction 104(2): 297-307. 

Henquet, C., J. van Os, et al. (2010). "Psychosis reactivity to cannabis use in daily life: an 
experience sampling study." The British Journal of Psychiatry 196(6): 447-453. 

Heo, M. and A. C. Leon (2008). "Statistical power and sample size requirements for three 
level hierarchical cluster randomized trials." Biometrics 64(4): 1256-1262. 

Heo, M., X. N. Xue, et al. (2013). "Sample size requirements to detect an intervention by 
time interaction in longitudinal cluster randomized clinical trials with random 
slopes." Computational Statistics & Data Analysis 60: 169-178. 

Hox, J. J. (2002). Multilevel Analysis: Techniques and Applications, Lawrence Erlbaum 
Associates. 

Hsiao, C. (2003). Analysis of Panel Data, Cambridge University Press. 
Ilies, R. and T. A. Judge (2002). "Understanding the dynamic relationships among 

personality, mood, and job satisfaction: A field experience sampling study." 
Organizational behavior and human decision processes 89(2): 1119-1139. 

Jackson, J., P. Kuppens, et al. (2011). "Expression of anger in depressed adolescents: The 
role of the family environment." Journal of abnormal child psychology 39(3): 463-
474. 

Kazemi, I. and R. Crouchley (2006). Modelling the initial conditions in dynamic regression 
models of panel data with random effects. Panel Data Econometrics: Theoretical 
Contributions and Empirical Applications. B. H. Baltagi. 274: 91-117. 

Kazemi, I. and R. Davies (2002). "The asymptotic bias of MLEs for dynamic panel data 
models." Statistical modelling in society, Proceedings of the 17th IWSM, Chania, 
Greece: 391-395. 

Kikuchi, H., K. Yoshiuchi, et al. (2012). "Diurnal variation of tension-type headache intensity 
and exacerbation: An investigation using computerized ecological momentary 
assessment." Biopsychosoc Med 6(1): 18. 

Koval, P. and P. Kuppens (2012). "Changing emotion dynamics: individual differences in the 
effect of anticipatory social stress on emotional inertia." Emotion 12(2): 256-267. 

Kramer, I., C. J. P. Simons, et al. (2014). "A therapeutic application of the experience 
sampling method in the treatment of depression: a randomized controlled trial." 
World Psychiatry 13(1): 68-77. 

Kreft, I. G. (1996). Are multilevel techniques necessary? An overview, including simulation 
studies, California State University Press, Los Angeles. 

http://www.bristol.ac.uk/cmm/software/realcom/imputation.html


 

198 
 

Kuppens, P., D. Champagne, et al. (2012). "The Dynamic Interplay between Appraisal and 
Core Affect in Daily Life." Front Psychol 3: 380. 

Kwok, O., S. G. West, et al. (2007). "The impact of misspecifying the within-subject 
covariance structure in multiwave longitudinal multilevel models: A Monte Carlo 
study." Multivariate Behavioral Research 42(3): 557-592. 

Landau, S. and D. Stahl (2013). "Sample size and power calculations for medical studies by 
simulation when closed form expressions are not available." Statistical Methods in 
Medical Research 22(3): 324-345. 

Larson R and M. Csikszentmihalyi (1983). The Experience Sampling Method. Directions for 
Methodology of Social and Behavioral Science. 15: 41-56. 

LePage, M. L., M. Price, et al. (2012). "The effect of exercise absence on affect and body 
dissatisfaction as moderated by obligatory exercise beliefs and eating disordered 
beliefs and behaviors." Psychol Sport Exerc 13(4): 500-508. 

Litt, M. D., N. L. Cooney, et al. (1998). "Ecological momentary assessment (EMA) with 
treated alcoholics: methodological problems and potential solutions." Health 
Psychology 17(1): 48. 

Little, R. J. (1993). "Pattern-mixture models for multivariate incomplete data." Journal of 
the American Statistical Association 88(421): 125-134. 

Little, R. J. (1995). "Modeling the drop-out mechanism in repeated-measures studies." 
Journal of the American Statistical Association 90(431): 1112-1121. 

Little, R. J. A. and D. B. Rubin (1987). Statistical analysis with missing data, Wiley. 
Maas, C. J. M. and J. J. Hox (2005). "Sufficient Sample Sizes for Multilevel Modeling." 

Methodology: European Journal of Research Methods for the Behavioral and Social 
Sciences 1(3): 86-92. 

MacCallum, R. C., C. Kim, et al. (1997). "Studying multivariate change using multilevel 
models and latent curve models." Multivariate Behavioral Research 32(3): 215-253. 

Mak, T. N., C. J. Prynne, et al. (2012). "Assessing eating context and fruit and vegetable 
consumption in children: new methods using food diaries in the UK National Diet 
and Nutrition Survey Rolling Programme." Int J Behav Nutr Phys Act 9: 126. 

Mata, J., R. J. Thompson, et al. (2012). "Walk on the bright side: physical activity and affect 
in major depressive disorder." Journal of Abnormal Psychology 121(2): 297-308. 

McCabe, K. O. and W. Fleeson (2012). "What is extraversion for? Integrating trait and 
motivational perspectives and identifying the purpose of extraversion." Psychol Sci 
23(12): 1498-1505. 

Menne-Lothmann, C., N. Jacobs, et al. (2012). "Genetic and environmental causes of 
individual differences in daily life positive affect and reward experience and its 
overlap with stress-sensitivity." Behav Genet 42(5): 778-786. 

Messiah, A., O. Grondin, et al. (2011). "Factors associated with missing data in an 
experience sampling investigation of substance use determinants." Drug Alcohol 
Depend 114(2): 153-158. 

Molenberghs, G., H. Thijs, et al. (2004). "Analyzing incomplete longitudinal clinical trial 
data." Biostatistics 5(3): 445-464. 

Morren, M., S. van Dulmen, et al. (2009). "Compliance with momentary pain measurement 
using electronic diaries: A systematic review." European Journal of Pain 13(4): 354-
365. 

Muller, A., J. E. Mitchell, et al. (2012). "Mood states preceding and following compulsive 
buying episodes: an ecological momentary assessment study." Psychiatry Res 
200(2-3): 575-580. 

Munsch, S., A. H. Meyer, et al. (2012). "Binge eating in binge eating disorder: a breakdown 
of emotion regulatory process?" Psychiatry Research 195(3): 118-124. 



 

199 
 

Myers, T. A., D. R. Ridolfi, et al. (2012). "The impact of appearance-focused social 
comparisons on body image disturbance in the naturalistic environment: the roles 
of thin-ideal internalization and feminist beliefs." Body Image 9(3): 342-351. 

Myin-Germeys, I., A. Klippel, et al. (2016). "Ecological momentary interventions in 
psychiatry." Current opinion in psychiatry 29(4): 258-263. 

Oorschot, M., T. Lataster, et al. (2012). "Temporal dynamics of visual and auditory 
hallucinations in psychosis." Schizophr Res 140(1): 77-82. 

Oorschot, M., T. Lataster, et al. (2012). "Mobile assessment in schizophrenia: a data-driven 
momentary approach." Schizophrenia Bulletin 38(3): 405-413. 

Palmier-Claus, J., J. Ainsworth, et al. (2012). "The feasibility and validity of ambulatory self-
report of psychotic symptoms using a smartphone software application." BMC 
psychiatry 12(1): 172. 

Palmier-Claus, J. E., I. Myin-Germeys, et al. (2011). "Experience sampling research in 
individuals with mental illness: reflections and guidance." Acta Psychiatrica 
Scandinavica 123(1): 12-20. 

Palmier-Claus, J. E., P. J. Taylor, et al. (2012). "Affective variability predicts suicidal ideation 
in individuals at ultra-high risk of developing psychosis: an experience sampling 
study." British Journal of Clinical Psychology 51(1): 72-83. 

Pan, H. and H. Goldstein (1998). "Multi‐level repeated measures growth modelling using 
extended spline functions." Statistics in Medicine 17(23): 2755-2770. 

Peters, E., T. Lataster, et al. (2012). "Appraisals, psychotic symptoms and affect in daily 
life." Psychological Medicine 42(5): 1013-1023. 

Rabe-Hesketh, S. and A. Skrondal (2012). Multilevel and Longitudinal Modeling Using Stata, 
Volumes I and II, Third Edition, Taylor & Francis. 

Raudenbush, S. W., A. S. Bryk, et al. (2004). "HLM 6 for Windows [Computer software]." 
Lincolnwood, IL: Scientific Software International. 

Robins, R. W., R. C. Fraley, et al. (2009). Handbook of Research Methods in Personality 
Psychology, Guilford Publications. 

Rubin, D. B. (1978). Multiple imputations in sample surveys-a phenomenological Bayesian 
approach to nonresponse. Proceedings of the Section on Survey Research 
Methods, American Statistical Association. 

Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys, Wiley. 
Rubin, D. B. (1996). "Multiple imputation after 18+ years." Journal of the American 

Statistical Association 91(434): 473-489. 
Russell, J. A., A. Weiss, et al. (1989). "Affect grid: a single-item scale of pleasure and 

arousal." Journal of personality and social psychology 57(3): 493. 
Schafer, J. L. (1999). "Multiple imputation: a primer." Statistical Methods in Medical 

Research 8(1): 3-15. 
Schafer, J. L. and M. K. Olsen (1998). "Multiple imputation for multivariate missing-data 

problems: A data analyst's perspective." Multivariate Behavioral Research 33(4): 
545-571. 

Schwartz, J. E. and A. A. Stone (1998). "Strategies for analyzing ecological momentary 
assessment data." Health Psychology 17(1). 

Schwerdtfeger, A. R. and S.-M. Scheel (2012). "Self-esteem fluctuations and cardiac vagal 
control in everyday life." International Journal of Psychophysiology 83(3): 328-335. 

Selby, E. A., P. Doyle, et al. (2012). "Momentary emotion surrounding bulimic behaviors in 
women with bulimia nervosa and borderline personality disorder." J Psychiatr Res 
46(11): 1492-1500. 

Shadel, W. G., S. C. Martino, et al. (2012). "Momentary effects of exposure to prosmoking 
media on college students' future smoking risk." Health Psychology 31(4): 460-466. 



 

200 
 

Shiffman, S., M. Hufford, et al. (1997). "Remember that? A comparison of real-time versus 
retrospective recall of smoking lapses." Journal of consulting and clinical 
psychology 65(2): 292. 

Shiffman, S. and A. A. Stone (1998). "Introduction to the special section: Ecological 
momentary assessment in health psychology." Health Psychology 17(1). 

Shiffman, S., A. A. Stone, et al. (2008). "Ecological momentary assessment." Annual Review 
of Clinical Psychology 4. 

Shiyko, M. P., S. T. Lanza, et al. (2012). "Using the time-varying effect model (TVEM) to 
examine dynamic associations between negative affect and self confidence on 
smoking urges: differences between successful quitters and relapsers." Prevention 
Science 13(3): 288-299. 

Siddiqui, O., H. M. J. Hung, et al. (2009). "MMRM vs. LOCF: A Comprehensive Comparison 
Based on Simulation Study and 25 NDA Datasets." Journal of Biopharmaceutical 
Statistics 19(2): 227-246. 

Silvia, P. J., T. R. Kwapil, et al. (2013). "Missed Beeps and Missing Data: Dispositional and 
Situational Predictors of Nonresponse in Experience Sampling Research." Social 
Science Computer Review: 0894439313479902. 

Sivo, S., X. Fan, et al. (2005). "The biasing effects of unmodeled ARMA time series processes 
on latent growth curve model estimates." Structural Equation Modeling 12(2): 215-
231. 

Skrondal, A. and S. Rabe-Hesketh (2007). Multilevel and related models for longitudinal 
data. Handbook of multilevel analysis. J. Leeuw and E. Meijer. New York, Springer: 
(277-301). 

SleepCycle. from https://itunes.apple.com/gb/app/sleep-cycle-alarm-
clock/id320606217?mt=8. 

Snijders, T. A. (2005). "Power and sample size in multilevel linear models." Encyclopedia of 
statistics in behavioral science. 

Snijders, T. A. and R. J. Bosker (1993). "Standard errors and sample sizes for two-level 
research." Journal of Educational and Behavioral Statistics 18(3): 237-259. 

Snijders, T. A. B. and R. J. Bosker (1999). Multilevel Analysis: An Introduction to Basic and 
Advanced Multilevel Modeling, Sage Publications. 

Solhan, M. B., T. J. Trull, et al. (2009). "Clinical assessment of affective instability: 
comparing EMA indices, questionnaire reports, and retrospective recall." 
Psychological Assessment 21(3): 425-436. 

StataCorp (2013). Stata 13 Base Reference Manual. College Station, TX, Stata Press. 
Steele, F. (2008). Module 5: Introduction to Multilevel Modelling Concepts LEMMA VLE  
Steele, F. (2014). Multilevel Modelling of Repeated Measures Data. LEMMA VLE Module 15: 

1-62. 
Steele, F., J. Rasbash, et al. (2013). "A multilevel simultaneous equations model for within-

cluster dynamic effects, with an application to reciprocal parent–child and sibling 
effects." Psychological Methods 18(1): 87. 

Sterne, J. A. C., I. R. White, et al. (2009). "Multiple imputation for missing data in 
epidemiological and clinical research: potential and pitfalls." British Medical Journal 
339. 

Stone, A. A. and S. Shiffman (1994). "Ecological momentary assessment (EMA) in behavorial 
medicine." Annals of Behavioral Medicine. 

Stone, A. A. and S. Shiffman (2002). "Capturing momentary, self-report data: A proposal for 
reporting guidelines." Annals of Behavioral Medicine 24(3): 236-243. 

Thewissen, V., R. P. Bentall, et al. (2008). "Fluctuations in self-esteem and paranoia in the 
context of daily life." Journal of Abnormal Psychology 117(1): 143. 



 

201 
 

To, M. L., C. D. Fisher, et al. (2012). "Within-person relationships between mood and 
creativity." Journal of Applied Psychology 97(3): 599-612. 

Tyler, E., S. Jones, et al. (2015). "The Relationship between Bipolar Disorder and Cannabis 
Use in Daily Life: An Experience Sampling Study." PLoS One 10(3): e0118916. 

Udachina, A., F. Varese, et al. (2012). "Dynamics of self-esteem in "poor-me" and "bad-me" 
paranoia." Journal of Nervous & Mental Disease 200(9): 777-783. 

uMotif. (2016). "Cloudy with a chance of pain." from 
https://www.cloudywithachanceofpain.com/. 

van Knippenberg, R. J. M., M. E. de Vugt, et al. (2016). "Dealing with daily challenges in 
dementia (deal-id study): effectiveness of the experience sampling method 
intervention ’Partner in Sight’ for spousal caregivers of people with dementia: 
design of a randomized controlled trial." BMC psychiatry 16(1): 1-14. 

Verdoux, H., C. Gindre, et al. (2003). "Effects of cannabis and psychosis vulnerability in daily 
life: an experience sampling test study." Psychological Medicine 33(01): 23-32. 

Wichers, M., C. Lothmann, et al. (2012). "The dynamic interplay between negative and 
positive emotions in daily life predicts response to treatment in depression: a 
momentary assessment study." British Journal of Clinical Psychology 51(2): 206-
222. 

Wichers, M., F. Peeters, et al. (2012). "A time-lagged momentary assessment study on daily 
life physical activity and affect." Health Psychology 31(2): 135-144. 

Wilhelm, F. H. and P. Grossman (2010). "Emotions beyond the laboratory: Theoretical 
fundaments, study design, and analytic strategies for advanced ambulatory 
assessment." Biological Psychology 84(3). 

Yeh, V. M., D. E. McCarthy, et al. (2012). "An ecological momentary assessment analysis of 
prequit markers for smoking-cessation failure." Exp Clin Psychopharmacol 20(6): 
479-488. 

 

 

  

http://www.cloudywithachanceofpain.com/


 

202 
 

 

 

 

 

 

 

 

 

APPENDIX 

  



 

203 
 

 

APPENDIX 1: MOTIVATING EXAMPLES 

A 1. RECOVERY STUDY ESM DIARY SAMPLE 
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APPENDIX 2: SYSTEMATIC REVIEW 

A 2.1:  DATA EXTRACTION FORM  

Author  

Title  
 

Year  

 

Study Eligibility Notes 

Is it a study using 
ESM? 

Yes Unclear No 
Exclude 

 

Pilot study? No Unclear Yes 
Exclude 

 

ESM used to validate 
measure? 

No Unclear Yes 
Exclude 

 

Used to assess 
feasibility for future 
study 

No Unclear Yes 
Exclude 

 

Used to assess recall No Unclear Yes 
Exclude 

 

Included 1 X “Exclude” = Exclude 
1 X “Unclear” = Unclear”   

 Yes  No  Unclear 

 

Background  Notes 

Research Area   Unclear  

Research Area 2   Unclear  

Research Question  Association 
 Response to treatment 
 Mediation 
 Moderation 
 Other ……………………………………… 

 

Randomised Trial   Yes  No  Unclear  

Control Group   Yes  No  Unclear  

 

ESM  Notes 

ESM or EMA  ESM  EMA  Unclear  

Method  1 – Paper 
 3 – Text 
 5 – internet  
 999 - unclear 

 2 – PDA 
 4 – call 
 6 – app  

 

ESM design  1 – Event 
 3 – Random 
 5 – I&R  

 2 – Interval  
 4 – E&R 
 6 – E&I 

 

Ambulatory assessment  Yes  No  Unclear  

AA Method  
 

 N/A  Unclear  
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Compensation given?  Yes  No  Unclear  

 

Data Number Notes 

Participants (total)   Unclear  

# in control group   N/A  Unclear  

Measurement Overall   Unclear  

 Days   Unclear  

 Beeps   Unclear  

Min # to be completed   Unclear  

Missing data  Yes  No  Unclear  

Adherence  (%)    Unclear  

MD technique   Unclear  

 

Analysis  Notes 

Analysis   Unclear  

Reference   Unclear  

Analysis 2   Unclear  

Reference   Unclear  

 

If Multilevel…  Notes 

Lagged covariates  Yes  No  Not 
ML 

 Unclear  

Lagged outcome as 
covariate 

 Yes  No  Not 
ML 

 Unclear  

Continuous covariates 
centred 

 Yes  No  Not 
ML 

 Unclear  

Levels   Not 
ML 

 Unclear  

Autocorrelation?  Yes  No  Not 
ML 

 Unclear  

Covariance structure 
specified? 

  Not 
ML 

 Unclear  

 

Further Notes 

 
 
 
 
 
 
 
 
 
 
 

 



 

207 
 

A 2.2: FULL LIST OF RESEARCH AREAS 

Area N Area N Area N 

Affect 10 Enjoyment 1 Physical activity 5 

Alcohol use 3 Exercise 2 Pregnancy 2 

Anger 1 Eye tracking 1 Productivity 1 

Anxiety 5 Flow 3 Psychological demands 1 

Appraisal 1 Genotype 1 Psychosis 8 

Bipolar disorder 1 Hangovers 1 Rehabilitation 1 

Body image 1 Menopause 1 Relapse 1 

Borderline 

personality disorder 
2 Mind wandering 1 Self-harm 1 

Cardiac vagal control 1 Mindfulness 1 Self-esteem 2 

Carotid artery 

atherosclerosis 
1 Mood 2 Smoking 10 

Challenge 1 Motivation 1 Social conflict 1 

Compulsive buying 

behaviour 
1 Motor control 1 Social functioning 1 

Coping 1 Nutrition 1 Social interaction 2 

Craving 1 Occupational health 1 Statistical theory 1 

Creativity 1 Pain 3 Stress 5 

Depression 6 Panic disorder 1 Suicide ideation 2 

Desire 2 Paranoia 2 Virtual reality 1 

Drug use 4 Parental communication 1 Wellbeing 2 

Eating disorder 5 Perfectionist concerns 1   

Emotion 3 Personality 1   

* Two areas of research were allowed for each study so percentages are not given. 74 

studies. 
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APPENDIX 3: MISSING DATA 

A 3. FULL TABLE OF ITEM NONRESPONSE  

Item 1 2 3 4 5 6 7 8 9 10 Total 

cheerful  4% 6% 4% 4% 5% 4% 3% 3% 2% 2% 4% 

excited  6% 7% 6% 7% 7% 5% 4% 5% 4% 3% 5% 

lonely  4% 5% 3% 4% 4% 1% 2% 1% 0% 1% 2% 

relaxed  4% 6% 4% 5% 3% 3% 4% 2% 2% 1% 3% 

anxious  4% 4% 4% 4% 3% 2% 4% 3% 3% 2% 3% 

satisfied  7% 8% 6% 8% 5% 5% 5% 6% 2% 4% 6% 

irritated  6% 8% 6% 6% 6% 4% 5% 4% 3% 4% 5% 

sad  8% 8% 6% 7% 7% 4% 5% 4% 3% 3% 6% 

guilty  6% 9% 6% 7% 5% 3% 5% 4% 3% 3% 5% 

Self-esteem 1 4% 4% 3% 3% 2% 2% 1% 1% 2% 1% 2% 

Self-esteem 2 4% 6% 4% 5% 4% 2% 2% 3% 1% 1% 3% 

Self-esteem 3 4% 5% 4% 4% 3% 3% 4% 3% 3% 2% 3% 

Self-esteem 4 4% 6% 5% 5% 4% 3% 4% 5% 2% 3% 4% 

belonging  6% 7% 7% 6% 6% 5% 4% 5% 6% 3% 5% 

warmth  9% 13% 11% 12% 8% 8% 8% 7% 7% 8% 9% 

Future 1  7% 5% 4% 5% 4% 5% 3% 3% 3% 1% 4% 

Future 2  8% 6% 5% 5% 4% 6% 3% 3% 4% 1% 4% 

Future 3  7% 6% 5% 5% 4% 5% 4% 3% 3% 0% 4% 

Hallucination 1  7% 8% 8% 7% 8% 5% 6% 5% 4% 2% 6% 

Hallucination 2 86% 85% 87% 85% 86% 85% 85% 84% 86% 87% 86% 

Hallucination 3 7% 9% 9% 8% 9% 7% 6% 8% 7% 8% 8% 

Hallucination 4 75% 75% 74% 70% 75% 71% 68% 73% 70% 73% 72% 

Paranoia 1 4% 3% 3% 3% 1% 2% 1% 1% 1% 1% 2% 
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Paranoia 2 59% 61% 64% 62% 64% 59% 59% 62% 63% 61% 62% 

Paranoia 3 5% 6% 4% 4% 2% 2% 1% 1% 3% 1% 3% 

Paranoia4 54% 57% 60% 57% 59% 55% 58% 58% 59% 55% 57% 

Paranoia 5 3% 5% 3% 4% 3% 2% 1% 1% 1% 1% 2% 

Paranoia 6 64% 60% 62% 62% 61% 58% 60% 61% 63% 60% 61% 

Current location 6% 6% 4% 5% 4% 3% 2% 4% 2% 1% 4% 

Alone  5% 6% 5% 4% 5% 3% 3% 4% 2% 2% 4% 

Company 1 49% 42% 40% 36% 38% 37% 38% 43% 40% 39% 40% 

Company 2 34% 39% 45% 42% 42% 45% 44% 42% 44% 45% 42% 

Like company 35% 29% 25% 21% 22% 24% 22% 27% 23% 26% 25% 

Prefer alone 28% 25% 21% 18% 19% 20% 18% 23% 20% 20% 21% 

Enjoying self 24% 21% 20% 16% 18% 19% 19% 23% 21% 20% 20% 

Activity 1 7% 8% 9% 6% 8% 7% 4% 7% 4% 5% 6% 

Activity 2 6% 6% 5% 4% 4% 3% 4% 4% 2% 2% 4% 

Activity 3 8% 5% 5% 6% 5% 4% 3% 4% 3% 2% 4% 

Activity 4 8% 6% 6% 6% 6% 4% 4% 6% 3% 3% 5% 

Important event 1 22% 18% 17% 17% 17% 16% 18% 15% 11% 11% 16% 

Important event 2 27% 27% 25% 27% 25% 22% 24% 23% 19% 23% 24% 

Worry 1  7% 4% 3% 3% 1% 2% 1% 0% 0% 0% 2% 

Worry 2  8% 3% 4% 5% 2% 3% 2% 2% 1% 1% 3% 

Worry 3  8% 5% 5% 4% 2% 4% 2% 3% 1% 2% 4% 

Positive 1  8% 3% 3% 4% 1% 2% 1% 1% 0% 0% 2% 

Positive 2  8% 4% 5% 4% 3% 3% 2% 3% 1% 2% 3% 

Positive 3  9% 4% 5% 5% 3% 3% 4% 4% 2% 2% 4% 

Recovery 1  7% 3% 3% 3% 1% 2% 1% 1% 0% 2% 2% 

Recovery 2  8% 4% 5% 5% 3% 4% 2% 4% 2% 2% 4% 

Recovery 3  9% 5% 5% 6% 3% 4% 3% 4% 2% 2% 4% 
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APPENDIX 4: PREDICTING MOMENTARY CHANGE  

A 4.1 CHANGE MODEL USING CONCURRENT PREDICTOR  

 Fixed effects  

   𝜆𝑢 = 𝜆𝑣 = 1  

 Naive model  IC Model S2  

𝑖 = 1 All days Coeff. SE N Coeff. SE N 

𝛼0 Intercept   1910 4.886 0.117 2102 

𝛼1Self-esteem (𝑥1)    0.435 0.047  

𝑖 > 1  All days       

𝛽0 Intercept 3.587 0.139  3.865 0.142  

𝛽2 Self-esteem (𝑥𝑖) 0.323 0.024  0.333 0.024  

𝛽1 Lag Recovery (𝑦𝑖−1) 0.283 0.021  0.224 0.020  

   

 Random effects  

Level Variance SE  Variance SE  

Person  0.510 0.108  0.631 0.127  

Day  0.058 0.015  0.080 0.016  

Residuals  0.444 0.017     

 (𝑖 = 1)    0.433 0.016  

 (𝑖 > 1)    0.645 0.073  
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APPENDIX 5: POWER AND SAMPLE SIZE 

A 5.1 SIMULATION CODE FOR ASSOCIATION EXAMPLE 

The program was used for all effect size and variance scenarios. The program was adapted slightly 

for the examples with missing data. The simulation command relates to the example where effect 

size 𝑟 = 0.1, small model variances 𝜎𝑢
2 = 𝜎𝑣

2 = 𝜎𝑒
2 = 0.26 and small predictor variances 

𝜎𝑥𝐿3
2 = 𝜎𝑥𝐿2

2 = 𝜎𝑥𝐿1
2 = 0.26. 

 
// Simulation program R = 0.1 - MINIMUM VARIANCES // 

       

program define assrec, rclass  

 syntax [, n3(integer 1) n2(integer 1) n1(integer 1) /// 

 b_0(real 0) r_x(real 0)     /// 

 sigu(real 0) sigv(real 0) sige(real 0)   /// 

 x_m(real 0) x_l3v(real 0) x_l2v(real 0) x_l1v(real 0)] 

  

 version 13 

 drop _all 

 

 set obs `n3' 

 gen id = _n 

  

 * Random intercept for id level 

 gen u1=rnormal() 

 gen u = u1 * sqrt(`sigu') 

  

 * Level 3 part of predictor 

 gen x_3 = rnormal(0, sqrt(`x_l3v')) 

   

 * Expand to level 2 units 

 expand `n2' 

 bysort id: gen day = _n 

 sort id day 

  

 * Random intercept for day 

 gen v1 = rnormal() 

 gen v = v1 * sqrt(`sigv') 

  

 * Generate day level predictor 

 gen x_2 = rnormal(0, sqrt(`x_l2v')) 

  

 

 * Expand for level 1 units 

 expand `n1' 

 bysort id day: gen beep = _n 

 sort id day beep 

  

 * Residual variance 

 gen e1 = rnormal() 

 gen e = e1 * sqrt(`sige') 

  

 *Generate total SD for effect size transformation 

 gen sigy = sqrt(`sigu' +`sigv' +`sige') 
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 * Level 1 part of predictor  

 gen x_1 = rnormal(`x_m', sqrt(`x_l1v')) 

  

 * Combine parts to make predictor x 

 egen x_total = rowtotal(x_1 x_2 x_3) 

 * Centre predictor 

 sum x_total 

 gen x = x_total - r(mean) 

 * Define sd x for effect size transformation 

 sum x  

 * gen beta from r 

 gen beta_x = `r_x'*(sigy/r(sd)) 

  

 * Generate y - recovery 

 gen y = `b_0' + beta_x*x + u + v + e 

  

  

 * Fit model 

 mixed y x || id:, || day:, mle var iterate(1000)    

 

 * Pull out coeffs  

 capture local b_x = _b[x] 

 return scalar b_x = _b[x] 

 capture local se_x = _se[x] 

 return scalar se_x = _se[x] 

  

 * Return Logliklihood 

 capture local ll = e(ll) 

 return scalar ll = e(ll) 

end 

 

  // Simulation commands // 

 

   

* Create empty data set to append to    

drop _all 

gen n3 =. 

gen n2 = .  

gen n1 = . 

gen rx = . 

gen siguve = . 

gen x_l321v = . 

gen sim = . 

 

gen x_reject = . 

 

save "C:\Users\mbbxjlc2\Y2 simulations\mood\x_empty.dta", replace 

 

 

* Set drive and loop over l3 and l1 values 

local drive = "C:\Users\mbbxjlc2\Y2 

simulations\mood\b0.1_suve0.26_x321.26"   

 

local i = 0 

local sim =  984   // from power calc for simulation 

 

forvalues n3 = 10 (10) 60 { 

forvalues n2 = 6 (1) 10 { 

forvalues n1 = 4 (2) 10 { 
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 local sigu = 0.26 // lowest level variance 

 local sigv = 0.26 

 local sige = 0.26 

 local b_0 = 3.5  // average (of 7 point scale) for when 

centred x = 0 (so average x) 

 local r_x = 0.1  // small effect size 

 local x_m = 0.4 

 local x_l3v = 0.26 // lowest level variance 

 local x_l2v = 0.26 

 local x_l1v = 0.26  

  

 local i = `i' + 1 

  

 display `i', c(current_time) 

 

simulate b_x = r(b_x) se_x = r(se_x) ll = r(ll), reps(`sim') seed(112)  

/// 

: assrec, n3(`n3') n2(`n2') n1(`n1') b_0(`b_0') r_x(`r_x') sigu(`sigu') 

sigv(`sigv') sige(`sige') x_m(`x_m') x_l3v(`x_l3v') x_l2v(`x_l2v') 

x_l1v(`x_l1v') 

 

// Record sample size 

gen n3 = `n3' 

gen n2 = `n2' 

gen n1 = `n1' 

gen rx = `r_x' 

gen siguve = `sigu' 

gen x_l321v = `x_l3v' 

gen sim= `sim' 

 

 

// Create z statistic  

gen z_x = b_x/se_x 

 

// Create p values 

gen pval_x = 2*normal(-abs(z_x)) 

 

// Find the proportion who reject the null 

gen x_reject = 0 

replace x_reject = 1 if pval_x<0.05   

save "`drive'\Full\Full_`n3'_`n2'_`n1'_sim`sim'.dta", replace 

 

collapse (mean) x_reject 

gen n3 = `n3'  

gen n2 = `n2' 

gen n1 = `n1' 

gen rx = `r_x' 

gen siguve = `sigu' 

gen x_l321v = `x_l3v' 

gen sim = `sim' 

 

order x_reject, after(n1) 

 

save "`drive'\Collapsed\Collapse_`n3'_`n2'_`n1'_sim`sim'.dta", replace 

 

 

} // End of n1 loop 

} // End of n2 loop 

} // End of n3 loop 
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* Collect all files together 

// Full simulations 

use "C:\Users\mbbxjlc2\Y2 simulations\mood\x_empty.dta", clear 

forvalues n3 = 10 (10) 60 { 

forvalues n2 = 6 (1) 10 { 

forvalues n1 = 4 (2) 10 { 

append using "`drive'\Full\Full_`n3'_`n2'_`n1'_sim`sim'.dta" 

 

} 

} 

} 

save "`drive'\allFull_sim`sim'.dta", replace 

 

 

// Collapsed results 

use "C:\Users\mbbxjlc2\Y2 simulations\mood\x_empty.dta", clear 

forvalues n3 = 10 (10) 60 { 

forvalues n2 = 6 (1) 10 { 

forvalues n1 = 4 (2) 10 { 

append using "`drive'\Collapsed\Collapse_`n3'_`n2'_`n1'_sim`sim'.dta" 

 

} 

} 

} 

save "`drive'\allCollapse_sim`sim'.dta", replace 
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A 5.2 SIMULATION CODE FOR GROUP DIFFERENCE EXAMPLE 

The program was used for all effect sizes and variances. It was slightly adapted to examine 

different levels of missing data. The simulation commands relate to the example with effect size 

0.8 and small model variances.  

// Simulation program - Group differences - random intercept model // 

       

program define groupdiff, rclass  

 syntax [, n3(integer 1) n2(integer 1) n1(integer 1) /// 

 b0(real 0) b_rec_b(real 0)         /// 

  prob_x(real 0)      /// 

 sigu(real 0) sigv(real 0) sige(real 0)]    

  

 version 13 

 drop _all 

 

 set obs `n3' 

 gen id = _n 

  

 * Random intercept for id level  

 gen u1 = rnormal() 

 gen u = u1 * sqrt(`sigu') 

  

 * Generate binary baseline recovery 

 gen rec_b = rbinomial(1, `prob_x') 

  

  

 * Expand to level 2 units 

 expand `n2' 

 bysort id: gen day = _n 

 sort id day 

  

 * Random intercept for day 

 gen v1 = rnormal() 

 gen v = v1 * sqrt(`sigv') 

  

 

 * Expand for level 1 units 

 expand `n1' 

 bysort id day: gen beep = _n 

 sort id day beep 

  

 * Residual variance 

 gen e1 = rnormal() 

 gen e = e1 * sqrt(`sige') 

  

 * Gen coeff based off cohens d 

 gen r = `b_rec_b'/(sqrt(`b_rec_b'^2 + (1/(`prob_x'*(1-`prob_x'))))) 

  

 * Generate y - recovery 

 gen y = `b0' + r*rec_b + u + v + e 

  

   

 * Fit random intercept model  

 mixed y rec_b || id:  || day:, mle var iterate(1000)   

  

 * Pull out coeffs  



 

216 
 

 ** Group difference 

 

 capture local b_rec_b = _b[rec_b] 

 return scalar b_rec_b = _b[rec_b] 

 capture local se_rec_b = _se[rec_b] 

 return  scalar se_rec_b = _se[rec_b] 

  

  

end 

 

  // Simulation commands // 

 

   

* Create empty data set to append to    

drop _all 

gen n3 =. 

gen n2 = .  

gen n1 = . 

gen rec_b_reject = . 

 

save "C:\Users\mbbxjlc2\Y2 simulations\group diff\empty.dta", replace 

 

 

* Set drive and loop 

local drive = "C:\Users\mbbxjlc2\Y2 simulations\group 

diff\b0.8_px0.33_suve0.26"   

 

local i = 0 

local sim = 984 // based on power calc 

 

forvalues n3 = 10 (10) 60 {   

forvalues n2 = 6 (1) 10 { 

forvalues n1 = 4 (2) 10 { 

 

 local prob_x = 0.33 // From recovery data, prob of recovered 

 local b0 =  3.5 // midway on 1-7 scale 

 local b_rec_b =  0.8 // Large cohen's d 

 local sigu =  0.26 

 local sigv =   0.26 

 local sige =   0.26 

 

 local i = `i' + 1 

  

 display `i', c(current_time) 

 

simulate b_rec_b = r(b_rec_b) se_rec_b = r(se_rec_b) , reps(`sim') 

seed(112)    /// 

: groupdiff, n3(`n3') n2(`n2') n1(`n1') prob_x(`prob_x') b0(`b0') 

b_rec_b(`b_rec_b') sigu(`sigu') sigv(`sigv') sige(`sige')  

 

// Record sample size 

gen n3 = `n3' 

gen n2 = `n2' 

gen n1 = `n1' 

 

gen sim= `sim' 

 

// Create z statistic  

 

gen z_rec_b = b_rec_b/se_rec_b 
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// Create p values 

gen pval_rec_b = 2*normal(-abs(z_rec_b)) 

 

// Find the proportion who reject the null 

gen rec_b_reject = 0 

replace rec_b_reject = 1 if pval_rec_b<0.05  

 

save "`drive'\Full\gdFull_`n3'_`n2'_`n1'_sim`sim'.dta", replace 

 

collapse (mean) rec_b_reject 

gen n3 = `n3'  

gen n2 = `n2' 

gen n1 = `n1' 

gen sim = `sim' 

 

order rec_b_reject, after(n1) 

 

* Need something that counts # of simulations 

 

save "`drive'\Collapsed\gdCollapse_`n3'_`n2'_`n1'_sim`sim'.dta", replace 

 

 

} 

} 

} 

 

*save "`drive'\gd_all.dta", replace 

 

 

* Collect all files together 

// Full simulations 

use "C:\Users\mbbxjlc2\Y2 simulations\group diff\empty.dta", clear 

forvalues n3 = 10 (10) 60 { 

forvalues n2 = 6 (1) 10 { 

forvalues n1 = 4 (2) 10 { 

append using "`drive'\Full\gdFull_`n3'_`n2'_`n1'_sim`sim'.dta" 

 

} 

} 

} 

save "`drive'\gd_allFull_sim`sim'.dta", replace 

 

 

// Collapsed results 

use "C:\Users\mbbxjlc2\Y2 simulations\group diff\empty.dta", clear 

forvalues n3 = 10 (10) 60 { 

forvalues n2 = 6 (1) 10 { 

forvalues n1 = 4 (2) 10 { 

append using "`drive'\Collapsed\gdCollapse_`n3'_`n2'_`n1'_sim`sim'.dta" 

 

} 

} 

} 

save "`drive'\gd_allCollapse_sim`sim'.dta", replace 
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A 5.3 SIMULATED POWER TABLE FOR ASSOCIATION EXAMPLE: EFFECT SIZE 0.1 AND 0.3, 

SMALL VARIANCE ESTIMATES 

Effect size 𝑟 = 0.1, 𝜎𝑢
2 = 𝜎𝑣

2 = 𝜎𝑒
2 = 0.26 

𝜎𝑥𝐿3
2 = 𝜎𝑥𝐿2

2 = 𝜎𝑥𝐿1
2 = 0.26 

Effect size 𝑟 = 0.3, 𝜎𝑢
2 = 𝜎𝑣

2 = 𝜎𝑒
2 = 0.26 

𝜎𝑥𝐿3
2 = 𝜎𝑥𝐿2

2 = 𝜎𝑥𝐿1
2 = 0.26 

n3 n2 n1 
Proportion 

rejected n3 n2 n1 
Proportion 

rejected 

10 6 4 0.362805 10 6 4 0.998984 

10 6 6 0.501016 10 6 6 1 

10 6 8 0.614837 10 6 8 1 

10 6 10 0.72561 10 6 10 1 

10 7 4 0.422764 10 7 4 0.997968 

10 7 6 0.548781 10 7 6 1 

10 7 8 0.689024 10 7 8 1 

10 7 10 0.772358 10 7 10 1 

10 8 4 0.469512 10 8 4 1 

10 8 6 0.629065 10 8 6 1 

10 8 8 0.730691 10 8 8 1 

10 8 10 0.804878 10 8 10 1 

10 9 4 0.515244 10 9 4 1 

10 9 6 0.678862 10 9 6 1 

10 9 8 0.796748 10 9 8 1 

10 9 10 0.884146 10 9 10 1 

10 10 4 0.534553 10 10 4 1 

10 10 6 0.691057 10 10 6 1 

10 10 8 0.830285 10 10 8 1 

10 10 10 0.894309 10 10 10 1 

20 6 4 0.597561 20 6 4 1 

20 6 6 0.776423 20 6 6 1 

20 6 8 0.877033 20 6 8 1 

20 6 10 0.945122 20 6 10 1 

20 7 4 0.652439 20 7 4 1 

20 7 6 0.817073 20 7 6 1 

20 7 8 0.933943 20 7 8 1 

20 7 10 0.969512 20 7 10 1 

20 8 4 0.712398 20 8 4 1 

20 8 6 0.857724 20 8 6 1 

20 8 8 0.953252 20 8 8 1 

20 8 10 0.980691 20 8 10 1 

20 9 4 0.793699 20 9 4 1 

20 9 6 0.916667 20 9 6 1 

20 9 8 0.961382 20 9 8 1 

20 9 10 0.986789 20 9 10 1 

20 10 4 0.816057 20 10 4 1 

20 10 6 0.923781 20 10 6 1 

20 10 8 0.972561 20 10 8 1 

20 10 10 0.997968 20 10 10 1 

30 6 4 0.779472 30 6 4 1 
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30 6 6 0.925813 30 6 6 1 

30 6 8 0.962398 30 6 8 1 

30 6 10 0.982724 30 6 10 1 

30 7 4 0.802846 30 7 4 1 

30 7 6 0.957317 30 7 6 1 

30 7 8 0.981707 30 7 8 1 

30 7 10 0.993902 30 7 10 1 

30 8 4 0.865854 30 8 4 1 

30 8 6 0.971545 30 8 6 1 

30 8 8 0.992886 30 8 8 1 

30 8 10 0.998984 30 8 10 1 

30 9 4 0.906504 30 9 4 1 

30 9 6 0.984756 30 9 6 1 

30 9 8 0.993902 30 9 8 1 

30 9 10 0.997968 30 9 10 1 

30 10 4 0.938008 30 10 4 1 

30 10 6 0.982724 30 10 6 1 

30 10 8 0.998984 30 10 8 1 

30 10 10 1 30 10 10 1 

40 6 4 0.85874 40 6 4 1 

40 6 6 0.962398 40 6 6 1 

40 6 8 0.993902 40 6 8 1 

40 6 10 1 40 6 10 1 

40 7 4 0.908537 40 7 4 1 

40 7 6 0.978659 40 7 6 1 

40 7 8 0.993902 40 7 8 1 

40 7 10 0.998984 40 7 10 1 

40 8 4 0.946138 40 8 4 1 

40 8 6 0.994919 40 8 6 1 

40 8 8 0.998984 40 8 8 1 

40 8 10 1 40 8 10 1 

40 9 4 0.973577 40 9 4 1 

40 9 6 0.995935 40 9 6 1 

40 9 8 0.998984 40 9 8 1 

40 9 10 1 40 9 10 1 

40 10 4 0.976626 40 10 4 1 

40 10 6 0.996951 40 10 6 1 

40 10 8 1 40 10 8 1 

40 10 10 1 40 10 10 1 

50 6 4 0.928862 50 6 4 1 

50 6 6 0.986789 50 6 6 1 

50 6 8 0.995935 50 6 8 1 

50 6 10 1 50 6 10 1 

50 7 4 0.962398 50 7 4 1 

50 7 6 0.992886 50 7 6 1 

50 7 8 0.998984 50 7 8 1 

50 7 10 1 50 7 10 1 

50 8 4 0.981707 50 8 4 1 

50 8 6 0.998984 50 8 6 1 

50 8 8 1 50 8 8 1 
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50 8 10 1 50 8 10 1 

50 9 4 0.98374 50 9 4 1 

50 9 6 1 50 9 6 1 

50 9 8 1 50 9 8 1 

50 9 10 1 50 9 10 1 

50 10 4 0.992886 50 10 4 1 

50 10 6 0.998984 50 10 6 1 

50 10 8 1 50 10 8 1 

50 10 10 1 50 10 10 1 

60 6 4 0.976626 60 6 4 1 

60 6 6 0.996951 60 6 6 1 

60 6 8 0.998984 60 6 8 1 

60 6 10 1 60 6 10 1 

60 7 4 0.979675 60 7 4 1 

60 7 6 0.997968 60 7 6 1 

60 7 8 1 60 7 8 1 

60 7 10 1 60 7 10 1 

60 8 4 0.993902 60 8 4 1 

60 8 6 1 60 8 6 1 

60 8 8 1 60 8 8 1 

60 8 10 1 60 8 10 1 

60 9 4 0.997968 60 9 4 1 

60 9 6 1 60 9 6 1 

60 9 8 1 60 9 8 1 

60 9 10 1 60 9 10 1 

60 10 4 0.996951 60 10 4 1 

60 10 6 1 60 10 6 1 

60 10 8 1 60 10 8 1 

60 10 10 1 60 10 10 1 
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A 5.4 SIMULATED POWER TABLE FOR ASSOCIATION EXAMPLE: EFFECT SIZE 0.1; VARYING MODEL VARIANCES; SMALL PREDICTOR VARIANCES 

Effect size 𝑟 = 0.1 

𝝈𝒖
𝟐 = 𝟐. 𝟑𝟒, 𝜎𝑣

2 = 𝜎𝑒
2 = 0.26 

𝜎𝑥𝐿3
2 = 𝜎𝑥𝐿2

2 = 𝜎𝑥𝐿1
2 = 0.26 

Effect size 𝑟 = 0.1 

𝜎𝑢
2 = 0.26, 𝝈𝒖

𝟐 = 𝟐. 𝟑𝟒; 𝜎𝑒
2 = 0.26 

𝜎𝑥𝐿3
2 = 𝜎𝑥𝐿2

2 = 𝜎𝑥𝐿1
2 = 0.26 

Effect size 𝑟 = 0.1 

𝜎𝑢
2 = 𝜎𝑣

2 = 0.26; 𝝈𝒆
𝟐 = 𝟐. 𝟑𝟒 

𝜎𝑥𝐿3
2 = 𝜎𝑥𝐿2

2 = 𝜎𝑥𝐿1
2 = 0.26 

n3 n2 n1 x_reject n3 n2 n1 x_reject n3 n2 n1 x_reject 

10 6 4 0.863821 10 6 4 0.797764 10 6 4 0.293699 

10 6 6 0.955285 10 6 6 0.928862 10 6 6 0.369919 

10 6 8 0.988821 10 6 8 0.982724 10 6 8 0.435976 

10 6 10 0.997968 10 6 10 0.994919 10 6 10 0.511179 

10 7 4 0.88313 10 7 4 0.816057 10 7 4 0.325203 

10 7 6 0.968496 10 7 6 0.950203 10 7 6 0.403455 

10 7 8 0.995935 10 7 8 0.988821 10 7 8 0.5 

10 7 10 0.998984 10 7 10 0.998984 10 7 10 0.560976 

10 8 4 0.919716 10 8 4 0.86687 10 8 4 0.368902 

10 8 6 0.981707 10 8 6 0.97561 10 8 6 0.454268 

10 8 8 0.998984 10 8 8 0.994919 10 8 8 0.531504 

10 8 10 0.997968 10 8 10 0.997968 10 8 10 0.612805 

10 9 4 0.957317 10 9 4 0.909553 10 9 4 0.406504 

10 9 6 0.994919 10 9 6 0.987805 10 9 6 0.519309 

10 9 8 0.998984 10 9 8 0.998984 10 9 8 0.585366 

10 9 10 1 10 9 10 1 10 9 10 0.673781 

10 10 4 0.953252 10 10 4 0.922764 10 10 4 0.423781 

10 10 6 0.996951 10 10 6 0.990854 10 10 6 0.51626 

10 10 8 1 10 10 8 0.998984 10 10 8 0.639228 

10 10 10 1 10 10 10 1 10 10 10 0.699187 

20 6 4 0.988821 20 6 4 0.965447 20 6 4 0.492886 

20 6 6 0.998984 20 6 6 0.997968 20 6 6 0.609756 

20 6 8 1 20 6 8 1 20 6 8 0.700203 
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20 6 10 1 20 6 10 1 20 6 10 0.788618 

20 7 4 0.993902 20 7 4 0.986789 20 7 4 0.54065 

20 7 6 1 20 7 6 1 20 7 6 0.65752 

20 7 8 1 20 7 8 1 20 7 8 0.781504 

20 7 10 1 20 7 10 1 20 7 10 0.828252 

20 8 4 0.995935 20 8 4 0.990854 20 8 4 0.575203 

20 8 6 1 20 8 6 1 20 8 6 0.685976 

20 8 8 1 20 8 8 1 20 8 8 0.803862 

20 8 10 1 20 8 10 1 20 8 10 0.880081 

20 9 4 1 20 9 4 0.993902 20 9 4 0.640244 

20 9 6 1 20 9 6 1 20 9 6 0.75813 

20 9 8 1 20 9 8 1 20 9 8 0.84248 

20 9 10 1 20 9 10 1 20 9 10 0.893293 

20 10 4 0.997968 20 10 4 0.995935 20 10 4 0.688008 

20 10 6 1 20 10 6 1 20 10 6 0.789634 

20 10 8 1 20 10 8 1 20 10 8 0.887195 

20 10 10 1 20 10 10 1 20 10 10 0.949187 

30 6 4 0.998984 30 6 4 0.99187 30 6 4 0.652439 

30 6 6 1 30 6 6 1 30 6 6 0.78252 

30 6 8 1 30 6 8 1 30 6 8 0.846545 

30 6 10 1 30 6 10 1 30 6 10 0.903455 

30 7 4 0.998984 30 7 4 0.994919 30 7 4 0.662602 

30 7 6 1 30 7 6 1 30 7 6 0.832317 

30 7 8 1 30 7 8 0.998984 30 7 8 0.896341 

30 7 10 1 30 7 10 1 30 7 10 0.934959 

30 8 4 1 30 8 4 0.998984 30 8 4 0.730691 

30 8 6 1 30 8 6 1 30 8 6 0.864837 

30 8 8 1 30 8 8 1 30 8 8 0.933943 

30 8 10 1 30 8 10 1 30 8 10 0.972561 

30 9 4 1 30 9 4 0.998984 30 9 4 0.786585 
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30 9 6 1 30 9 6 1 30 9 6 0.919716 

30 9 8 1 30 9 8 1 30 9 8 0.955285 

30 9 10 1 30 9 10 1 30 9 10 0.979675 

30 10 4 1 30 10 4 1 30 10 4 0.839431 

30 10 6 1 30 10 6 1 30 10 6 0.924797 

30 10 8 1 30 10 8 1 30 10 8 0.974594 

30 10 10 1 30 10 10 1 30 10 10 0.990854 

40 6 4 1 40 6 4 1 40 6 4 0.757114 

40 6 6 1 40 6 6 1 40 6 6 0.855691 

40 6 8 1 40 6 8 1 40 6 8 0.932927 

40 6 10 1 40 6 10 1 40 6 10 0.97561 

40 7 4 1 40 7 4 1 40 7 4 0.798781 

40 7 6 1 40 7 6 1 40 7 6 0.918699 

40 7 8 1 40 7 8 1 40 7 8 0.960366 

40 7 10 1 40 7 10 1 40 7 10 0.976626 

40 8 4 1 40 8 4 1 40 8 4 0.857724 

40 8 6 1 40 8 6 1 40 8 6 0.95122 

40 8 8 1 40 8 8 1 40 8 8 0.981707 

40 8 10 1 40 8 10 1 40 8 10 0.990854 

40 9 4 1 40 9 4 1 40 9 4 0.898374 

40 9 6 1 40 9 6 1 40 9 6 0.958333 

40 9 8 1 40 9 8 1 40 9 8 0.984756 

40 9 10 1 40 9 10 1 40 9 10 0.994919 

40 10 4 1 40 10 4 1 40 10 4 0.912602 

40 10 6 1 40 10 6 1 40 10 6 0.969512 

40 10 8 1 40 10 8 1 40 10 8 0.993902 

40 10 10 1 40 10 10 1 40 10 10 0.997968 

50 6 4 1 50 6 4 1 50 6 4 0.824187 

50 6 6 1 50 6 6 1 50 6 6 0.946138 

50 6 8 1 50 6 8 1 50 6 8 0.97561 
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50 6 10 1 50 6 10 1 50 6 10 0.990854 

50 7 4 1 50 7 4 1 50 7 4 0.892276 

50 7 6 1 50 7 6 1 50 7 6 0.965447 

50 7 8 1 50 7 8 1 50 7 8 0.985772 

50 7 10 1 50 7 10 1 50 7 10 0.996951 

50 8 4 1 50 8 4 1 50 8 4 0.933943 

50 8 6 1 50 8 6 1 50 8 6 0.979675 

50 8 8 1 50 8 8 1 50 8 8 0.990854 

50 8 10 1 50 8 10 1 50 8 10 0.997968 

50 9 4 1 50 9 4 1 50 9 4 0.943089 

50 9 6 1 50 9 6 1 50 9 6 0.988821 

50 9 8 1 50 9 8 1 50 9 8 0.997968 

50 9 10 1 50 9 10 1 50 9 10 1 

50 10 4 1 50 10 4 1 50 10 4 0.95935 

50 10 6 1 50 10 6 1 50 10 6 0.994919 

50 10 8 1 50 10 8 1 50 10 8 0.995935 

50 10 10 1 50 10 10 1 50 10 10 1 

60 6 4 1 60 6 4 1 60 6 4 0.89126 

60 6 6 1 60 6 6 1 60 6 6 0.958333 

60 6 8 1 60 6 8 1 60 6 8 0.987805 

60 6 10 1 60 6 10 1 60 6 10 0.997968 

60 7 4 1 60 7 4 1 60 7 4 0.917683 

60 7 6 1 60 7 6 1 60 7 6 0.97561 

60 7 8 1 60 7 8 1 60 7 8 0.992886 

60 7 10 1 60 7 10 1 60 7 10 0.998984 

60 8 4 1 60 8 4 1 60 8 4 0.956301 

60 8 6 1 60 8 6 1 60 8 6 0.989837 

60 8 8 1 60 8 8 1 60 8 8 0.998984 

60 8 10 1 60 8 10 1 60 8 10 1 

60 9 4 1 60 9 4 1 60 9 4 0.970529 
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60 9 6 1 60 9 6 1 60 9 6 0.997968 

60 9 8 1 60 9 8 1 60 9 8 1 

60 9 10 1 60 9 10 1 60 9 10 1 

60 10 4 1 60 10 4 1 60 10 4 0.988821 

60 10 6 1 60 10 6 1 60 10 6 0.998984 

60 10 8 1 60 10 8 1 60 10 8 1 

60 10 10 1 60 10 10 1 60 10 10 1 
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A 5.5 SIMULATED POWER TABLE FOR ASSOCIATION EXAMPLE: EFFECT SIZE 0.1; SMALL MODEL VARIANCES; VARY PREDICTOR VARIANCES 

Effect size 𝑟 = 0.1, 𝜎𝑢
2 = σv

2 = 𝜎𝑒
2 = 0.26 

𝝈𝒙𝑳𝟑
𝟐 = 𝟐. 𝟑𝟒; 𝜎𝑥𝐿2

2 = 𝜎𝑥𝐿1
2 = 0.26 

Effect size 𝑟 = 0.1,  𝜎𝑢
2 = σv

2 = 𝜎𝑒
2 = 0.26 

𝜎𝑥𝐿3
2 = 0.26; 𝝈𝒙𝑳𝟐

𝟐 = 𝟐. 𝟑𝟒; 𝜎𝑥𝐿1
2 = 0.26 

Effect size 𝑟 = 0.1, 𝜎𝑢
2 = σv

2 = 𝜎𝑒
2 = 0.26 

𝜎𝑥𝐿3
2 = 𝜎𝑥𝐿2

2 = 0.26; 𝝈𝒙𝑳𝟏
𝟐 = 𝟐. 𝟑𝟒 

n3 n2 n1 x_reject n3 n2 n1 x_reject n3 n2 n1 x_reject 

10 6 4 0.211382 10 6 4 0.25813 10 6 4 0.585366 

10 6 6 0.259146 10 6 6 0.296748 10 6 6 0.815041 

10 6 8 0.284553 10 6 8 0.335366 10 6 8 0.919716 

10 6 10 0.314024 10 6 10 0.384146 10 6 10 0.955285 

10 7 4 0.218496 10 7 4 0.295732 10 7 4 0.651423 

10 7 6 0.263211 10 7 6 0.35874 10 7 6 0.843496 

10 7 8 0.32622 10 7 8 0.405488 10 7 8 0.935976 

10 7 10 0.360772 10 7 10 0.441057 10 7 10 0.980691 

10 8 4 0.25 10 8 4 0.332317 10 8 4 0.723577 

10 8 6 0.286585 10 8 6 0.395325 10 8 6 0.903455 

10 8 8 0.335366 10 8 8 0.440041 10 8 8 0.964431 

10 8 10 0.381098 10 8 10 0.490854 10 8 10 0.981707 

10 9 4 0.238821 10 9 4 0.355691 10 9 4 0.793699 

10 9 6 0.337398 10 9 6 0.443089 10 9 6 0.935976 

10 9 8 0.382114 10 9 8 0.470529 10 9 8 0.978659 

10 9 10 0.450203 10 9 10 0.54065 10 9 10 0.996951 

10 10 4 0.25813 10 10 4 0.39126 10 10 4 0.798781 

10 10 6 0.316057 10 10 6 0.448171 10 10 6 0.936992 

10 10 8 0.417683 10 10 8 0.517276 10 10 8 0.990854 

10 10 10 0.462398 10 10 10 0.566057 10 10 10 1 

20 6 4 0.286585 20 6 4 0.442073 20 6 4 0.880081 

20 6 6 0.365854 20 6 6 0.49187 20 6 6 0.973577 

20 6 8 0.448171 20 6 8 0.580285 20 6 8 0.996951 

20 6 10 0.531504 20 6 10 0.646341 20 6 10 1 
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20 7 4 0.309959 20 7 4 0.492886 20 7 4 0.920732 

20 7 6 0.403455 20 7 6 0.575203 20 7 6 0.990854 

20 7 8 0.5 20 7 8 0.64939 20 7 8 1 

20 7 10 0.574187 20 7 10 0.713415 20 7 10 1 

20 8 4 0.35874 20 8 4 0.544716 20 8 4 0.949187 

20 8 6 0.440041 20 8 6 0.618902 20 8 6 0.994919 

20 8 8 0.548781 20 8 8 0.716463 20 8 8 0.998984 

20 8 10 0.611789 20 8 10 0.762195 20 8 10 1 

20 9 4 0.365854 20 9 4 0.610772 20 9 4 0.96748 

20 9 6 0.489837 20 9 6 0.70122 20 9 6 0.998984 

20 9 8 0.57622 20 9 8 0.748984 20 9 8 1 

20 9 10 0.658537 20 9 10 0.819106 20 9 10 1 

20 10 4 0.401423 20 10 4 0.655488 20 10 4 0.973577 

20 10 6 0.513211 20 10 6 0.720529 20 10 6 1 

20 10 8 0.639228 20 10 8 0.792683 20 10 8 1 

20 10 10 0.713415 20 10 10 0.877033 20 10 10 1 

30 6 4 0.385163 30 6 4 0.58435 30 6 4 0.964431 

30 6 6 0.498984 30 6 6 0.694106 30 6 6 0.998984 

30 6 8 0.569106 30 6 8 0.726626 30 6 8 1 

30 6 10 0.658537 30 6 10 0.796748 30 6 10 1 

30 7 4 0.417683 30 7 4 0.613821 30 7 4 0.979675 

30 7 6 0.533537 30 7 6 0.765244 30 7 6 0.998984 

30 7 8 0.64939 30 7 8 0.821138 30 7 8 0.998984 

30 7 10 0.707317 30 7 10 0.848577 30 7 10 1 

30 8 4 0.442073 30 8 4 0.726626 30 8 4 0.990854 

30 8 6 0.571138 30 8 6 0.802846 30 8 6 1 

30 8 8 0.713415 30 8 8 0.865854 30 8 8 1 

30 8 10 0.799797 30 8 10 0.914634 30 8 10 1 

30 9 4 0.497968 30 9 4 0.762195 30 9 4 0.99187 

30 9 6 0.593496 30 9 6 0.853659 30 9 6 1 



 

228 
 

30 9 8 0.713415 30 9 8 0.897358 30 9 8 1 

30 9 10 0.822155 30 9 10 0.943089 30 9 10 1 

30 10 4 0.530488 30 10 4 0.819106 30 10 4 0.998984 

30 10 6 0.668699 30 10 6 0.886179 30 10 6 1 

30 10 8 0.791667 30 10 8 0.927846 30 10 8 1 

30 10 10 0.85061 30 10 10 0.966463 30 10 10 1 

40 6 4 0.454268 40 6 4 0.707317 40 6 4 0.989837 

40 6 6 0.580285 40 6 6 0.787602 40 6 6 1 

40 6 8 0.705285 40 6 8 0.847561 40 6 8 1 

40 6 10 0.798781 40 6 10 0.90752 40 6 10 1 

40 7 4 0.512195 40 7 4 0.765244 40 7 4 0.998984 

40 7 6 0.670732 40 7 6 0.86687 40 7 6 1 

40 7 8 0.744919 40 7 8 0.902439 40 7 8 1 

40 7 10 0.818089 40 7 10 0.943089 40 7 10 1 

40 8 4 0.555894 40 8 4 0.833333 40 8 4 1 

40 8 6 0.727642 40 8 6 0.920732 40 8 6 1 

40 8 8 0.809959 40 8 8 0.952236 40 8 8 1 

40 8 10 0.877033 40 8 10 0.966463 40 8 10 1 

40 9 4 0.601626 40 9 4 0.876016 40 9 4 1 

40 9 6 0.724594 40 9 6 0.924797 40 9 6 1 

40 9 8 0.83435 40 9 8 0.954268 40 9 8 1 

40 9 10 0.906504 40 9 10 0.978659 40 9 10 1 

40 10 4 0.634146 40 10 4 0.906504 40 10 4 1 

40 10 6 0.781504 40 10 6 0.952236 40 10 6 1 

40 10 8 0.868902 40 10 8 0.974594 40 10 8 1 

40 10 10 0.940041 40 10 10 0.987805 40 10 10 1 

50 6 4 0.535569 50 6 4 0.784553 50 6 4 1 

50 6 6 0.705285 50 6 6 0.889228 50 6 6 1 

50 6 8 0.802846 50 6 8 0.931911 50 6 8 1 

50 6 10 0.859756 50 6 10 0.957317 50 6 10 1 



 

229 
 

50 7 4 0.606707 50 7 4 0.868902 50 7 4 1 

50 7 6 0.74187 50 7 6 0.923781 50 7 6 1 

50 7 8 0.851626 50 7 8 0.958333 50 7 8 1 

50 7 10 0.91565 50 7 10 0.980691 50 7 10 1 

50 8 4 0.640244 50 8 4 0.920732 50 8 4 1 

50 8 6 0.778455 50 8 6 0.946138 50 8 6 1 

50 8 8 0.896341 50 8 8 0.973577 50 8 8 1 

50 8 10 0.930894 50 8 10 0.985772 50 8 10 1 

50 9 4 0.684959 50 9 4 0.926829 50 9 4 1 

50 9 6 0.830285 50 9 6 0.97561 50 9 6 1 

50 9 8 0.911585 50 9 8 0.985772 50 9 8 1 

50 9 10 0.955285 50 9 10 0.993902 50 9 10 1 

50 10 4 0.730691 50 10 4 0.947155 50 10 4 1 

50 10 6 0.860772 50 10 6 0.984756 50 10 6 1 

50 10 8 0.945122 50 10 8 0.988821 50 10 8 1 

50 10 10 0.964431 50 10 10 0.998984 50 10 10 1 

60 6 4 0.601626 60 6 4 0.859756 60 6 4 1 

60 6 6 0.740854 60 6 6 0.924797 60 6 6 1 

60 6 8 0.862805 60 6 8 0.971545 60 6 8 1 

60 6 10 0.909553 60 6 10 0.974594 60 6 10 1 

60 7 4 0.652439 60 7 4 0.909553 60 7 4 0.998984 

60 7 6 0.829268 60 7 6 0.95935 60 7 6 1 

60 7 8 0.896341 60 7 8 0.978659 60 7 8 1 

60 7 10 0.942073 60 7 10 0.995935 60 7 10 1 

60 8 4 0.724594 60 8 4 0.930894 60 8 4 1 

60 8 6 0.864837 60 8 6 0.976626 60 8 6 1 

60 8 8 0.931911 60 8 8 0.988821 60 8 8 1 

60 8 10 0.969512 60 8 10 0.998984 60 8 10 1 

60 9 4 0.778455 60 9 4 0.965447 60 9 4 1 

60 9 6 0.897358 60 9 6 0.989837 60 9 6 1 
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60 9 8 0.930894 60 9 8 0.996951 60 9 8 1 

60 9 10 0.977642 60 9 10 0.996951 60 9 10 1 

60 10 4 0.786585 60 10 4 0.980691 60 10 4 1 

60 10 6 0.906504 60 10 6 0.995935 60 10 6 1 

60 10 8 0.972561 60 10 8 0.995935 60 10 8 1 

60 10 10 0.986789 60 10 10 0.998984 60 10 10 1 

 

  



 

231 
 

A 5.6 SIMULATED POWER TABLE FOR ASSOCIATION EXAMPLE: MISSING DATA; EFFECT SIZE 0.1; SMALL MODEL VARIANCES; SMALL PREDICTOR 

VARIANCES 

20 % Missing data 
Effect size 𝑟 = 0.1, 𝜎𝑢

2 = σv
2 = 𝜎𝑒

2 = 0.26 

𝜎𝑥𝐿3
2 = 𝜎𝑥𝐿2

2 = 𝜎𝑥𝐿1
2 = 0.26 

70 % Missing data 
Effect size 𝑟 = 0.1,  𝜎𝑢

2 = σv
2 = 𝜎𝑒

2 = 0.26 

𝜎𝑥𝐿3
2 = 𝜎𝑥𝐿2

2 = 𝜎𝑥𝐿1
2 = 0.26 

Missing data according to time trend 𝒕 + 𝒕𝟐 + 𝑠 
Effect size 𝑟 = 0.1, 𝜎𝑢

2 = σv
2 = 𝜎𝑒

2 = 0.26 

𝜎𝑥𝐿3
2 = 𝜎𝑥𝐿2

2 = 𝜎𝑥𝐿1
2 = 0.26 

n3 n2 n1 x_reject n3 n2 n1 x_reject n3 n2 n1 x_reject 

10 6 4 0.333333 10 6 4 0.183943 10 6 4 0.279472 

10 6 6 0.405488 10 6 6 0.229675 10 6 6 0.384146 

10 6 8 0.527439 10 6 8 0.27439 10 6 8 0.493902 

10 6 10 0.631098 10 6 10 0.328252 10 6 10 0.605691 

10 7 4 0.327236 10 7 4 0.160569 10 7 4 0.272358 

10 7 6 0.461382 10 7 6 0.235772 10 7 6 0.403455 

10 7 8 0.575203 10 7 8 0.316057 10 7 8 0.546748 

10 7 10 0.684959 10 7 10 0.367886 10 7 10 0.662602 

10 8 4 0.388211 10 8 4 0.191057 10 8 4 0.313008 

10 8 6 0.526423 10 8 6 0.255081 10 8 6 0.465447 

10 8 8 0.632114 10 8 8 0.302846 10 8 8 0.58435 

10 8 10 0.698171 10 8 10 0.368902 10 8 10 0.653455 

10 9 4 0.408537 10 9 4 0.210366 10 9 4 0.295732 

10 9 6 0.546748 10 9 6 0.275407 10 9 6 0.497968 

10 9 8 0.700203 10 9 8 0.310976 10 9 8 0.596545 

10 9 10 0.771341 10 9 10 0.39126 10 9 10 0.689024 

10 10 4 0.469512 10 10 4 0.246951 10 10 4 0.344512 

10 10 6 0.59248 10 10 6 0.269309 10 10 6 0.450203 

10 10 8 0.738821 10 10 8 0.367886 10 10 8 0.610772 

10 10 10 0.804878 10 10 10 0.445122 10 10 10 0.728659 

20 6 4 0.488821 20 6 4 0.260163 20 6 4 0.440041 
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20 6 6 0.684959 20 6 6 0.300813 20 6 6 0.655488 

20 6 8 0.808943 20 6 8 0.404472 20 6 8 0.75813 

20 6 10 0.881098 20 6 10 0.506098 20 6 10 0.864837 

20 7 4 0.578252 20 7 4 0.286585 20 7 4 0.509146 

20 7 6 0.75813 20 7 6 0.373984 20 7 6 0.698171 

20 7 8 0.85874 20 7 8 0.473577 20 7 8 0.827236 

20 7 10 0.917683 20 7 10 0.531504 20 7 10 0.878049 

20 8 4 0.619919 20 8 4 0.314024 20 8 4 0.528455 

20 8 6 0.789634 20 8 6 0.420732 20 8 6 0.727642 

20 8 8 0.910569 20 8 8 0.536585 20 8 8 0.857724 

20 8 10 0.944106 20 8 10 0.594512 20 8 10 0.927846 

20 9 4 0.688008 20 9 4 0.346545 20 9 4 0.544716 

20 9 6 0.851626 20 9 6 0.452236 20 9 6 0.747968 

20 9 8 0.924797 20 9 8 0.572155 20 9 8 0.864837 

20 9 10 0.962398 20 9 10 0.63313 20 9 10 0.912602 

20 10 4 0.74187 20 10 4 0.363821 20 10 4 0.579268 

20 10 6 0.873984 20 10 6 0.50813 20 10 6 0.757114 

20 10 8 0.955285 20 10 8 0.610772 20 10 8 0.876016 

20 10 10 0.981707 20 10 10 0.710366 20 10 10 0.955285 

30 6 4 0.695122 30 6 4 0.35061 30 6 4 0.610772 

30 6 6 0.828252 30 6 6 0.438008 30 6 6 0.793699 

30 6 8 0.917683 30 6 8 0.549797 30 6 8 0.904472 

30 6 10 0.966463 30 6 10 0.654472 30 6 10 0.956301 

30 7 4 0.727642 30 7 4 0.329268 30 7 4 0.642276 

30 7 6 0.894309 30 7 6 0.492886 30 7 6 0.852642 

30 7 8 0.960366 30 7 8 0.613821 30 7 8 0.939024 

30 7 10 0.980691 30 7 10 0.737805 30 7 10 0.96748 

30 8 4 0.828252 30 8 4 0.416667 30 8 4 0.70935 

30 8 6 0.925813 30 8 6 0.543699 30 8 6 0.865854 

30 8 8 0.969512 30 8 8 0.667683 30 8 8 0.950203 
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30 8 10 0.995935 30 8 10 0.775407 30 8 10 0.985772 

30 9 4 0.843496 30 9 4 0.460366 30 9 4 0.699187 

30 9 6 0.958333 30 9 6 0.596545 30 9 6 0.909553 

30 9 8 0.985772 30 9 8 0.74187 30 9 8 0.965447 

30 9 10 0.995935 30 9 10 0.794716 30 9 10 0.985772 

30 10 4 0.869919 30 10 4 0.495935 30 10 4 0.718496 

30 10 6 0.969512 30 10 6 0.652439 30 10 6 0.901423 

30 10 8 0.995935 30 10 8 0.789634 30 10 8 0.969512 

30 10 10 0.997968 30 10 10 0.832317 30 10 10 0.989837 

40 6 4 0.817073 40 6 4 0.406504 40 6 4 0.718496 

40 6 6 0.918699 40 6 6 0.553862 40 6 6 0.886179 

40 6 8 0.974594 40 6 8 0.650407 40 6 8 0.973577 

40 6 10 0.994919 40 6 10 0.768293 40 6 10 0.993902 

40 7 4 0.844512 40 7 4 0.449187 40 7 4 0.752033 

40 7 6 0.954268 40 7 6 0.615854 40 7 6 0.929878 

40 7 8 0.984756 40 7 8 0.769309 40 7 8 0.985772 

40 7 10 0.993902 40 7 10 0.830285 40 7 10 0.993902 

40 8 4 0.895325 40 8 4 0.510163 40 8 4 0.797764 

40 8 6 0.974594 40 8 6 0.676829 40 8 6 0.936992 

40 8 8 0.992886 40 8 8 0.797764 40 8 8 0.99187 

40 8 10 1 40 8 10 0.881098 40 8 10 0.995935 

40 9 4 0.922764 40 9 4 0.544716 40 9 4 0.818089 

40 9 6 0.986789 40 9 6 0.726626 40 9 6 0.95935 

40 9 8 0.998984 40 9 8 0.838415 40 9 8 0.989837 

40 9 10 1 40 9 10 0.917683 40 9 10 0.998984 

40 10 4 0.948171 40 10 4 0.593496 40 10 4 0.82622 

40 10 6 0.993902 40 10 6 0.765244 40 10 6 0.974594 

40 10 8 0.998984 40 10 8 0.85874 40 10 8 0.99187 

40 10 10 1 40 10 10 0.921748 40 10 10 1 

50 6 4 0.869919 50 6 4 0.48374 50 6 4 0.807927 
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50 6 6 0.95935 50 6 6 0.645325 50 6 6 0.952236 

50 6 8 0.990854 50 6 8 0.752033 50 6 8 0.990854 

50 6 10 1 50 6 10 0.871951 50 6 10 0.992886 

50 7 4 0.918699 50 7 4 0.558943 50 7 4 0.847561 

50 7 6 0.98374 50 7 6 0.736789 50 7 6 0.96748 

50 7 8 0.998984 50 7 8 0.832317 50 7 8 0.997968 

50 7 10 1 50 7 10 0.91565 50 7 10 0.996951 

50 8 4 0.954268 50 8 4 0.596545 50 8 4 0.86687 

50 8 6 0.996951 50 8 6 0.768293 50 8 6 0.987805 

50 8 8 0.998984 50 8 8 0.86687 50 8 8 0.998984 

50 8 10 1 50 8 10 0.916667 50 8 10 1 

50 9 4 0.969512 50 9 4 0.66565 50 9 4 0.892276 

50 9 6 0.992886 50 9 6 0.819106 50 9 6 0.98374 

50 9 8 1 50 9 8 0.91565 50 9 8 1 

50 9 10 1 50 9 10 0.953252 50 9 10 1 

50 10 4 0.980691 50 10 4 0.692073 50 10 4 0.91565 

50 10 6 0.997968 50 10 6 0.871951 50 10 6 0.987805 

50 10 8 1 50 10 8 0.935976 50 10 8 0.996951 

50 10 10 1 50 10 10 0.977642 50 10 10 1 

60 6 4 0.922764 60 6 4 0.586382 60 6 4 0.88313 

60 6 6 0.987805 60 6 6 0.734756 60 6 6 0.973577 

60 6 8 0.994919 60 6 8 0.85061 60 6 8 0.996951 

60 6 10 1 60 6 10 0.910569 60 6 10 1 

60 7 4 0.966463 60 7 4 0.607724 60 7 4 0.914634 

60 7 6 0.994919 60 7 6 0.792683 60 7 6 0.989837 

60 7 8 1 60 7 8 0.890244 60 7 8 1 

60 7 10 1 60 7 10 0.947155 60 7 10 1 

60 8 4 0.976626 60 8 4 0.690041 60 8 4 0.933943 

60 8 6 0.997968 60 8 6 0.83435 60 8 6 0.992886 

60 8 8 1 60 8 8 0.914634 60 8 8 1 
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60 8 10 1 60 8 10 0.963415 60 8 10 1 

60 9 4 0.990854 60 9 4 0.716463 60 9 4 0.941057 

60 9 6 1 60 9 6 0.882114 60 9 6 0.993902 

60 9 8 1 60 9 8 0.943089 60 9 8 0.997968 

60 9 10 1 60 9 10 0.980691 60 9 10 1 

60 10 4 0.995935 60 10 4 0.772358 60 10 4 0.952236 

60 10 6 0.998984 60 10 6 0.911585 60 10 6 0.994919 

60 10 8 1 60 10 8 0.972561 60 10 8 1 

60 10 10 1 60 10 10 0.992886 60 10 10 1 
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A 5.7 SIMULATED POWER TABLE FOR GROUP DIFFERENCE EXAMPLE: EFFECT SIZES 0.2, 0.5, 0.8; SMALL MODEL VARIANCES 

Effect size 𝒅 = 𝟎. 𝟐 
𝜎𝑢

2 = σv
2 = 𝜎𝑒

2 = 0.26 
Effect size 𝒅 = 𝟎. 𝟓 

𝜎𝑢
2 = σv

2 = 𝜎𝑒
2 = 0.26 

Effect size 𝒅 = 𝟎. 𝟖 
𝜎𝑢

2 = σv
2 = 𝜎𝑒

2 = 0.26 
n3 n2 n1 x_reject n3 n2 n1 x_reject n3 n2 n1 x_reject n3 n2 n1 x_reject 

10 6 4 0.103659 10 6 4 0.140244 10 6 4 0.210366 70 6 4 0.719512 

10 6 6 0.137195 10 6 6 0.167683 10 6 6 0.248984 70 6 6 0.70935 

10 6 8 0.117886 10 6 8 0.15752 10 6 8 0.23374 70 6 8 0.719512 

10 6 10 0.112805 10 6 10 0.164634 10 6 10 0.248984 70 6 10 0.680894 

10 7 4 0.117886 10 7 4 0.152439 10 7 4 0.228659 70 7 4 0.723577 

10 7 6 0.135163 10 7 6 0.158537 10 7 6 0.214431 70 7 6 0.724594 

10 7 8 0.118902 10 7 8 0.16565 10 7 8 0.246951 70 7 8 0.734756 

10 7 10 0.126016 10 7 10 0.161585 10 7 10 0.230691 70 7 10 0.726626 

10 8 4 0.114837 10 8 4 0.152439 10 8 4 0.205285 70 8 4 0.728659 

10 8 6 0.117886 10 8 6 0.167683 10 8 6 0.252033 70 8 6 0.705285 

10 8 8 0.127033 10 8 8 0.189024 10 8 8 0.269309 70 8 8 0.713415 

10 8 10 0.123984 10 8 10 0.189024 10 8 10 0.243902 70 8 10 0.730691 

10 9 4 0.125 10 9 4 0.162602 10 9 4 0.231707 70 9 4 0.70122 

10 9 6 0.118902 10 9 6 0.162602 10 9 6 0.235772 70 9 6 0.720529 

10 9 8 0.150407 10 9 8 0.20122 10 9 8 0.261179 70 9 8 0.718496 

10 9 10 0.113821 10 9 10 0.172764 10 9 10 0.259146 70 9 10 0.743902 

10 10 4 0.112805 10 10 4 0.160569 10 10 4 0.234756 70 10 4 0.731707 

10 10 6 0.113821 10 10 6 0.161585 10 10 6 0.238821 70 10 6 0.724594 

10 10 8 0.121951 10 10 8 0.169715 10 10 8 0.25813 70 10 8 0.753049 

10 10 10 0.125 10 10 10 0.181911 10 10 10 0.255081 70 10 10 0.723577 

20 6 4 0.098577 20 6 4 0.182927 20 6 4 0.302846 80 6 4 0.751016 

20 6 6 0.09248 20 6 6 0.195122 20 6 6 0.331301 80 6 6 0.754065 

20 6 8 0.09248 20 6 8 0.162602 20 6 8 0.297764 80 6 8 0.771341 

20 6 10 0.104675 20 6 10 0.182927 20 6 10 0.319106 80 6 10 0.779472 
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20 7 4 0.09248 20 7 4 0.178862 20 7 4 0.315041 80 7 4 0.781504 

20 7 6 0.106707 20 7 6 0.175813 20 7 6 0.323171 80 7 6 0.778455 

20 7 8 0.098577 20 7 8 0.203252 20 7 8 0.331301 80 7 8 0.762195 

20 7 10 0.111789 20 7 10 0.188008 20 7 10 0.317073 80 7 10 0.753049 

20 8 4 0.105691 20 8 4 0.189024 20 8 4 0.309959 80 8 4 0.754065 

20 8 6 0.093496 20 8 6 0.177846 20 8 6 0.318089 80 8 6 0.770325 

20 8 8 0.094512 20 8 8 0.184959 20 8 8 0.294715 80 8 8 0.779472 

20 8 10 0.096545 20 8 10 0.194106 20 8 10 0.34248 80 8 10 0.781504 

20 9 4 0.096545 20 9 4 0.191057 20 9 4 0.347561 80 9 4 0.775407 

20 9 6 0.099594 20 9 6 0.199187 20 9 6 0.340447 80 9 6 0.768293 

20 9 8 0.077236 20 9 8 0.155488 20 9 8 0.292683 80 9 8 0.788618 

20 9 10 0.090447 20 9 10 0.158537 20 9 10 0.286585 80 9 10 0.745935 

20 10 4 0.077236 20 10 4 0.169715 20 10 4 0.298781 80 10 4 0.793699 

20 10 6 0.093496 20 10 6 0.183943 20 10 6 0.317073 80 10 6 0.776423 

20 10 8 0.106707 20 10 8 0.20935 20 10 8 0.327236 80 10 8 0.799797 

20 10 10 0.09248 20 10 10 0.185976 20 10 10 0.329268 80 10 10 0.756098 

30 6 4 0.079268 30 6 4 0.20935 30 6 4 0.398374 90 6 4 0.788618 

30 6 6 0.075203 30 6 6 0.191057 30 6 6 0.387195 90 6 6 0.776423 

30 6 8 0.088415 30 6 8 0.223577 30 6 8 0.393293 90 6 8 0.802846 

30 6 10 0.083333 30 6 10 0.224594 30 6 10 0.403455 90 6 10 0.765244 

30 7 4 0.08435 30 7 4 0.204268 30 7 4 0.390244 90 7 4 0.804878 

30 7 6 0.082317 30 7 6 0.192073 30 7 6 0.392276 90 7 6 0.818089 

30 7 8 0.09248 30 7 8 0.224594 30 7 8 0.419715 90 7 8 0.798781 

30 7 10 0.10061 30 7 10 0.219512 30 7 10 0.409553 90 7 10 0.828252 

30 8 4 0.085366 30 8 4 0.212398 30 8 4 0.418699 90 8 4 0.813008 

30 8 6 0.091463 30 8 6 0.22561 30 8 6 0.427846 90 8 6 0.837398 

30 8 8 0.090447 30 8 8 0.211382 30 8 8 0.405488 90 8 8 0.827236 

30 8 10 0.095529 30 8 10 0.213415 30 8 10 0.404472 90 8 10 0.832317 

30 9 4 0.096545 30 9 4 0.206301 30 9 4 0.405488 90 9 4 0.804878 

30 9 6 0.087398 30 9 6 0.238821 30 9 6 0.405488 90 9 6 0.813008 
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30 9 8 0.094512 30 9 8 0.22561 30 9 8 0.445122 90 9 8 0.819106 

30 9 10 0.080285 30 9 10 0.228659 30 9 10 0.419715 90 9 10 0.837398 

30 10 4 0.096545 30 10 4 0.232724 30 10 4 0.422764 90 10 4 0.821138 

30 10 6 0.099594 30 10 6 0.242886 30 10 6 0.41565 90 10 6 0.802846 

30 10 8 0.090447 30 10 8 0.210366 30 10 8 0.395325 90 10 8 0.836382 

30 10 10 0.08435 30 10 10 0.223577 30 10 10 0.402439 90 10 10 0.804878 

40 6 4 0.085366 40 6 4 0.221545 40 6 4 0.463415 100 6 4 0.83435 

40 6 6 0.105691 40 6 6 0.239837 40 6 6 0.462398 100 6 6 0.853659 

40 6 8 0.10061 40 6 8 0.268293 40 6 8 0.474594 100 6 8 0.833333 

40 6 10 0.095529 40 6 10 0.252033 40 6 10 0.47561 100 6 10 0.818089 

40 7 4 0.114837 40 7 4 0.270325 40 7 4 0.480691 100 7 4 0.848577 

40 7 6 0.10061 40 7 6 0.259146 40 7 6 0.511179 100 7 6 0.853659 

40 7 8 0.095529 40 7 8 0.260163 40 7 8 0.493902 100 7 8 0.84248 

40 7 10 0.087398 40 7 10 0.246951 40 7 10 0.497968 100 7 10 0.85874 

40 8 4 0.091463 40 8 4 0.248984 40 8 4 0.492886 100 8 4 0.839431 

40 8 6 0.102642 40 8 6 0.255081 40 8 6 0.517276 100 8 6 0.856707 

40 8 8 0.083333 40 8 8 0.240854 40 8 8 0.496951 100 8 8 0.872968 

40 8 10 0.088415 40 8 10 0.28252 40 8 10 0.506098 100 8 10 0.861789 

40 9 4 0.090447 40 9 4 0.260163 40 9 4 0.489837 100 9 4 0.855691 

40 9 6 0.086382 40 9 6 0.25 40 9 6 0.505081 100 9 6 0.847561 

40 9 8 0.094512 40 9 8 0.25813 40 9 8 0.501016 100 9 8 0.873984 

40 9 10 0.107724 40 9 10 0.264228 40 9 10 0.503049 100 9 10 0.873984 

40 10 4 0.093496 40 10 4 0.25813 40 10 4 0.51626 100 10 4 0.846545 

40 10 6 0.083333 40 10 6 0.245935 40 10 6 0.477642 100 10 6 0.863821 

40 10 8 0.086382 40 10 8 0.264228 40 10 8 0.525407 100 10 8 0.85874 

40 10 10 0.089431 40 10 10 0.26626 40 10 10 0.505081 100 10 10 0.869919 

50 6 4 0.104675 50 6 4 0.300813 50 6 4 0.557927     

50 6 6 0.106707 50 6 6 0.284553 50 6 6 0.571138     

50 6 8 0.10874 50 6 8 0.284553 50 6 8 0.574187     

50 6 10 0.109756 50 6 10 0.303862 50 6 10 0.560976     
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50 7 4 0.098577 50 7 4 0.310976 50 7 4 0.570122     

50 7 6 0.111789 50 7 6 0.329268 50 7 6 0.596545     

50 7 8 0.093496 50 7 8 0.294715 50 7 8 0.591463     

50 7 10 0.106707 50 7 10 0.303862 50 7 10 0.601626     

50 8 4 0.10061 50 8 4 0.33435 50 8 4 0.60061     

50 8 6 0.09248 50 8 6 0.292683 50 8 6 0.590447     

50 8 8 0.107724 50 8 8 0.304878 50 8 8 0.57622     

50 8 10 0.106707 50 8 10 0.317073 50 8 10 0.597561     

50 9 4 0.103659 50 9 4 0.300813 50 9 4 0.564024     

50 9 6 0.091463 50 9 6 0.310976 50 9 6 0.613821     

50 9 8 0.113821 50 9 8 0.308943 50 9 8 0.602642     

50 9 10 0.095529 50 9 10 0.279472 50 9 10 0.561992     

50 10 4 0.086382 50 10 4 0.294715 50 10 4 0.581301     

50 10 6 0.109756 50 10 6 0.300813 50 10 6 0.59248     

50 10 8 0.102642 50 10 8 0.304878 50 10 8 0.579268     

50 10 10 0.106707 50 10 10 0.305894 50 10 10 0.559959     

60 6 4 0.10061 60 6 4 0.325203 60 6 4 0.625     

60 6 6 0.106707 60 6 6 0.347561 60 6 6 0.645325     

60 6 8 0.105691 60 6 8 0.346545 60 6 8 0.663618     

60 6 10 0.089431 60 6 10 0.332317 60 6 10 0.651423     

60 7 4 0.121951 60 7 4 0.388211 60 7 4 0.662602     

60 7 6 0.10874 60 7 6 0.359756 60 7 6 0.674797     

60 7 8 0.097561 60 7 8 0.35061 60 7 8 0.654472     

60 7 10 0.107724 60 7 10 0.359756 60 7 10 0.647358     

60 8 4 0.096545 60 8 4 0.339431 60 8 4 0.646341     

60 8 6 0.103659 60 8 6 0.352642 60 8 6 0.655488     

60 8 8 0.121951 60 8 8 0.35874 60 8 8 0.65752     

60 8 10 0.112805 60 8 10 0.367886 60 8 10 0.664634     

60 9 4 0.105691 60 9 4 0.339431 60 9 4 0.645325     

60 9 6 0.107724 60 9 6 0.343496 60 9 6 0.652439     
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60 9 8 0.119919 60 9 8 0.367886 60 9 8 0.674797     

60 9 10 0.110772 60 9 10 0.344512 60 9 10 0.669716     

60 10 4 0.113821 60 10 4 0.377033 60 10 4 0.671748     

60 10 6 0.105691 60 10 6 0.365854 60 10 6 0.658537     

60 10 8 0.109756 60 10 8 0.368902 60 10 8 0.672764     

60 10 10 0.105691 60 10 10 0.353659 60 10 10 0.700203     
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A 5.8 SIMULATED POWER TABLE FOR GROUP DIFFERENCE EXAMPLE: EFFECT SIZE 0.8; VARYING MODEL VARIANCES 

Effect size 𝑑 = 0.8 

𝝈𝒖
𝟐 = 𝟐. 𝟑𝟒, 𝜎𝑣

2 = 𝜎𝑒
2 = 0.26 

Effect size 𝑑 = 0.8 

𝜎𝑢
2 = 0.26, 𝝈𝒖

𝟐 = 𝟐. 𝟑𝟒; 𝜎𝑒
2 = 0.26 

Effect size 𝑑 = 0.8 

𝜎𝑢
2 = 𝜎𝑣

2 = 0.26; 𝝈𝒆
𝟐 = 𝟐. 𝟑𝟒 

n3 n2 n1 x_reject n3 n2 n1 x_reject n3 n2 n1 x_reject 

10 6 4 0.118902 10 6 4 0.121951 10 6 4 0.190041 

10 6 6 0.151423 10 6 6 0.138211 10 6 6 0.226626 

10 6 8 0.120935 10 6 8 0.130081 10 6 8 0.207317 

10 6 10 0.123984 10 6 10 0.154472 10 6 10 0.219512 

10 7 4 0.118902 10 7 4 0.143293 10 7 4 0.190041 

10 7 6 0.138211 10 7 6 0.163618 10 7 6 0.191057 

10 7 8 0.135163 10 7 8 0.143293 10 7 8 0.227642 

10 7 10 0.137195 10 7 10 0.142276 10 7 10 0.21748 

10 8 4 0.136179 10 8 4 0.146342 10 8 4 0.196138 

10 8 6 0.131098 10 8 6 0.160569 10 8 6 0.230691 

10 8 8 0.147358 10 8 8 0.167683 10 8 8 0.253049 

10 8 10 0.154472 10 8 10 0.167683 10 8 10 0.232724 

10 9 4 0.128049 10 9 4 0.159553 10 9 4 0.212398 

10 9 6 0.127033 10 9 6 0.145325 10 9 6 0.223577 

10 9 8 0.15752 10 9 8 0.188008 10 9 8 0.254065 

10 9 10 0.127033 10 9 10 0.163618 10 9 10 0.253049 

10 10 4 0.115854 10 10 4 0.174797 10 10 4 0.204268 

10 10 6 0.112805 10 10 6 0.183943 10 10 6 0.220529 

10 10 8 0.128049 10 10 8 0.170732 10 10 8 0.247968 

10 10 10 0.138211 10 10 10 0.192073 10 10 10 0.25 

20 6 4 0.122968 20 6 4 0.170732 20 6 4 0.251016 

20 6 6 0.114837 20 6 6 0.186992 20 6 6 0.293699 

20 6 8 0.094512 20 6 8 0.179878 20 6 8 0.26626 

20 6 10 0.121951 20 6 10 0.179878 20 6 10 0.298781 
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20 7 4 0.105691 20 7 4 0.190041 20 7 4 0.269309 

20 7 6 0.103659 20 7 6 0.203252 20 7 6 0.307927 

20 7 8 0.118902 20 7 8 0.199187 20 7 8 0.307927 

20 7 10 0.120935 20 7 10 0.194106 20 7 10 0.298781 

20 8 4 0.122968 20 8 4 0.199187 20 8 4 0.27439 

20 8 6 0.106707 20 8 6 0.200203 20 8 6 0.281504 

20 8 8 0.10874 20 8 8 0.185976 20 8 8 0.273374 

20 8 10 0.120935 20 8 10 0.211382 20 8 10 0.32622 

20 9 4 0.118902 20 9 4 0.226626 20 9 4 0.307927 

20 9 6 0.10874 20 9 6 0.221545 20 9 6 0.302846 

20 9 8 0.091463 20 9 8 0.191057 20 9 8 0.268293 

20 9 10 0.102642 20 9 10 0.189024 20 9 10 0.283537 

20 10 4 0.093496 20 10 4 0.193089 20 10 4 0.268293 

20 10 6 0.114837 20 10 6 0.222561 20 10 6 0.291667 

20 10 8 0.125 20 10 8 0.24187 20 10 8 0.298781 

20 10 10 0.119919 20 10 10 0.221545 20 10 10 0.317073 

30 6 4 0.10874 30 6 4 0.20935 30 6 4 0.333333 

30 6 6 0.095529 30 6 6 0.215447 30 6 6 0.321138 

30 6 8 0.104675 30 6 8 0.245935 30 6 8 0.361789 

30 6 10 0.10061 30 6 10 0.218496 30 6 10 0.377033 

30 7 4 0.112805 30 7 4 0.229675 30 7 4 0.327236 

30 7 6 0.110772 30 7 6 0.216463 30 7 6 0.367886 

30 7 8 0.106707 30 7 8 0.259146 30 7 8 0.380081 

30 7 10 0.11687 30 7 10 0.24187 30 7 10 0.384146 

30 8 4 0.105691 30 8 4 0.25813 30 8 4 0.368902 

30 8 6 0.123984 30 8 6 0.260163 30 8 6 0.387195 

30 8 8 0.10874 30 8 8 0.257114 30 8 8 0.363821 

30 8 10 0.115854 30 8 10 0.239837 30 8 10 0.364837 

30 9 4 0.10874 30 9 4 0.260163 30 9 4 0.352642 

30 9 6 0.102642 30 9 6 0.288618 30 9 6 0.38313 
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30 9 8 0.11687 30 9 8 0.288618 30 9 8 0.395325 

30 9 10 0.105691 30 9 10 0.244919 30 9 10 0.400407 

30 10 4 0.11687 30 10 4 0.284553 30 10 4 0.368902 

30 10 6 0.115854 30 10 6 0.28252 30 10 6 0.382114 

30 10 8 0.115854 30 10 8 0.243902 30 10 8 0.378049 

30 10 10 0.094512 30 10 10 0.281504 30 10 10 0.368902 

40 6 4 0.109756 40 6 4 0.267276 40 6 4 0.371951 

40 6 6 0.11687 40 6 6 0.260163 40 6 6 0.401423 

40 6 8 0.130081 40 6 8 0.277439 40 6 8 0.446138 

40 6 10 0.120935 40 6 10 0.298781 40 6 10 0.452236 

40 7 4 0.132114 40 7 4 0.304878 40 7 4 0.417683 

40 7 6 0.129065 40 7 6 0.294715 40 7 6 0.450203 

40 7 8 0.117886 40 7 8 0.288618 40 7 8 0.443089 

40 7 10 0.117886 40 7 10 0.29065 40 7 10 0.463415 

40 8 4 0.118902 40 8 4 0.325203 40 8 4 0.423781 

40 8 6 0.125 40 8 6 0.307927 40 8 6 0.453252 

40 8 8 0.121951 40 8 8 0.279472 40 8 8 0.460366 

40 8 10 0.115854 40 8 10 0.330285 40 8 10 0.481707 

40 9 4 0.113821 40 9 4 0.332317 40 9 4 0.441057 

40 9 6 0.111789 40 9 6 0.304878 40 9 6 0.449187 

40 9 8 0.134146 40 9 8 0.313008 40 9 8 0.460366 

40 9 10 0.119919 40 9 10 0.328252 40 9 10 0.477642 

40 10 4 0.111789 40 10 4 0.327236 40 10 4 0.460366 

40 10 6 0.101626 40 10 6 0.306911 40 10 6 0.441057 

40 10 8 0.109756 40 10 8 0.324187 40 10 8 0.504065 

40 10 10 0.10874 40 10 10 0.328252 40 10 10 0.482724 

50 6 4 0.142276 50 6 4 0.323171 50 6 4 0.478659 

50 6 6 0.126016 50 6 6 0.319106 50 6 6 0.47561 

50 6 8 0.13313 50 6 8 0.317073 50 6 8 0.519309 

50 6 10 0.140244 50 6 10 0.321138 50 6 10 0.520325 
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50 7 4 0.13313 50 7 4 0.329268 50 7 4 0.490854 

50 7 6 0.136179 50 7 6 0.347561 50 7 6 0.531504 

50 7 8 0.127033 50 7 8 0.336382 50 7 8 0.544716 

50 7 10 0.132114 50 7 10 0.33435 50 7 10 0.563008 

50 8 4 0.147358 50 8 4 0.388211 50 8 4 0.52439 

50 8 6 0.119919 50 8 6 0.361789 50 8 6 0.529472 

50 8 8 0.13313 50 8 8 0.372968 50 8 8 0.544716 

50 8 10 0.139228 50 8 10 0.376016 50 8 10 0.571138 

50 9 4 0.131098 50 9 4 0.371951 50 9 4 0.501016 

50 9 6 0.122968 50 9 6 0.398374 50 9 6 0.563008 

50 9 8 0.136179 50 9 8 0.412602 50 9 8 0.561992 

50 9 10 0.10874 50 9 10 0.375 50 9 10 0.544716 

50 10 4 0.125 50 10 4 0.394309 50 10 4 0.521341 

50 10 6 0.13313 50 10 6 0.390244 50 10 6 0.52439 

50 10 8 0.130081 50 10 8 0.373984 50 10 8 0.537602 

50 10 10 0.126016 50 10 10 0.364837 50 10 10 0.528455 

60 6 4 0.144309 60 6 4 0.347561 60 6 4 0.520325 

60 6 6 0.152439 60 6 6 0.389228 60 6 6 0.593496 

60 6 8 0.143293 60 6 8 0.373984 60 6 8 0.60874 

60 6 10 0.136179 60 6 10 0.361789 60 6 10 0.60061 

60 7 4 0.168699 60 7 4 0.421748 60 7 4 0.583333 

60 7 6 0.151423 60 7 6 0.412602 60 7 6 0.611789 

60 7 8 0.132114 60 7 8 0.39939 60 7 8 0.595529 

60 7 10 0.146342 60 7 10 0.394309 60 7 10 0.593496 

60 8 4 0.136179 60 8 4 0.406504 60 8 4 0.561992 

60 8 6 0.151423 60 8 6 0.420732 60 8 6 0.605691 

60 8 8 0.163618 60 8 8 0.427846 60 8 8 0.603659 

60 8 10 0.160569 60 8 10 0.438008 60 8 10 0.635163 

60 9 4 0.144309 60 9 4 0.427846 60 9 4 0.572155 

60 9 6 0.137195 60 9 6 0.416667 60 9 6 0.595529 
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60 9 8 0.151423 60 9 8 0.429878 60 9 8 0.637195 

60 9 10 0.14939 60 9 10 0.433943 60 9 10 0.629065 

60 10 4 0.15752 60 10 4 0.470529 60 10 4 0.605691 

60 10 6 0.150407 60 10 6 0.460366 60 10 6 0.607724 

60 10 8 0.156504 60 10 8 0.461382 60 10 8 0.645325 

60 10 10 0.137195 60 10 10 0.480691 60 10 10 0.66565 
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A 5.9 SIMULATED POWER TABLE FOR GROUP DIFFERENCE EXAMPLE: MISSING OUTCOME DATA; EFFECT SIZE 0.8; VARYING MODEL VARIANCES 

20% missing data in 𝒚 
Effect size 𝑑 = 0.8 

𝜎𝑢
2 = 𝜎𝑣

2 = 𝜎𝑒
2 = 0.26 

70% missing data in 𝒚 
Effect size 𝑑 = 0.8 

𝜎𝑢
2 = 𝜎𝑣

2 = 𝜎𝑒
2 = 0.26 

Missing data in 𝒚 according to time trend 

𝒕 + 𝒕𝟐 + 𝑠 
Effect size 𝑑 = 0.8 

𝜎𝑢
2 = 𝜎𝑣

2 = 𝜎𝑒
2 = 0.26 

n3 n2 n1 x_reject n3 n2 n1 x_reject n3 n2 n1 x_reject 

70 6 4 0.710366 70 6 4 0.650407 70 6 4 0.699187 

70 6 6 0.691057 70 6 6 0.66565 70 6 6 0.692073 

70 6 8 0.703252 70 6 8 0.682927 70 6 8 0.707317 

70 6 10 0.721545 70 6 10 0.712398 70 6 10 0.728659 

70 7 4 0.694106 70 7 4 0.643293 70 7 4 0.690041 

70 7 6 0.751016 70 7 6 0.707317 70 7 6 0.736789 

70 7 8 0.689024 70 7 8 0.672764 70 7 8 0.685976 

70 7 10 0.735772 70 7 10 0.732724 70 7 10 0.744919 

70 8 4 0.730691 70 8 4 0.666667 70 8 4 0.71748 

70 8 6 0.756098 70 8 6 0.723577 70 8 6 0.738821 

70 8 8 0.730691 70 8 8 0.720529 70 8 8 0.731707 

70 8 10 0.716463 70 8 10 0.711382 70 8 10 0.714431 

70 9 4 0.745935 70 9 4 0.702236 70 9 4 0.734756 

70 9 6 0.710366 70 9 6 0.702236 70 9 6 0.716463 

70 9 8 0.760163 70 9 8 0.735772 70 9 8 0.742886 

70 9 10 0.743902 70 9 10 0.720529 70 9 10 0.748984 

70 10 4 0.716463 70 10 4 0.662602 70 10 4 0.689024 

70 10 6 0.710366 70 10 6 0.685976 70 10 6 0.702236 

70 10 8 0.73374 70 10 8 0.724594 70 10 8 0.730691 

70 10 10 0.707317 70 10 10 0.704268 70 10 10 0.70935 

80 6 4 0.745935 80 6 4 0.690041 80 6 4 0.739837 

80 6 6 0.756098 80 6 6 0.71748 80 6 6 0.740854 
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80 6 8 0.770325 80 6 8 0.742886 80 6 8 0.769309 

80 6 10 0.744919 80 6 10 0.731707 80 6 10 0.746951 

80 7 4 0.755081 80 7 4 0.708333 80 7 4 0.751016 

80 7 6 0.763211 80 7 6 0.721545 80 7 6 0.76626 

80 7 8 0.760163 80 7 8 0.720529 80 7 8 0.740854 

80 7 10 0.767276 80 7 10 0.754065 80 7 10 0.770325 

80 8 4 0.746951 80 8 4 0.705285 80 8 4 0.745935 

80 8 6 0.772358 80 8 6 0.728659 80 8 6 0.762195 

80 8 8 0.775407 80 8 8 0.759146 80 8 8 0.768293 

80 8 10 0.778455 80 8 10 0.770325 80 8 10 0.777439 

80 9 4 0.783537 80 9 4 0.740854 80 9 4 0.777439 

80 9 6 0.776423 80 9 6 0.742886 80 9 6 0.773374 

80 9 8 0.763211 80 9 8 0.751016 80 9 8 0.764228 

80 9 10 0.795732 80 9 10 0.791667 80 9 10 0.79065 

80 10 4 0.775407 80 10 4 0.745935 80 10 4 0.765244 

80 10 6 0.772358 80 10 6 0.768293 80 10 6 0.765244 

80 10 8 0.791667 80 10 8 0.770325 80 10 8 0.789634 

80 10 10 0.805894 80 10 10 0.793699 80 10 10 0.805894 

90 6 4 0.786585 90 6 4 0.736789 90 6 4 0.770325 

90 6 6 0.779472 90 6 6 0.745935 90 6 6 0.786585 

90 6 8 0.800813 90 6 8 0.784553 90 6 8 0.805894 

90 6 10 0.800813 90 6 10 0.778455 90 6 10 0.788618 

90 7 4 0.804878 90 7 4 0.759146 90 7 4 0.799797 

90 7 6 0.796748 90 7 6 0.773374 90 7 6 0.803862 

90 7 8 0.815041 90 7 8 0.786585 90 7 8 0.802846 

90 7 10 0.811992 90 7 10 0.794716 90 7 10 0.802846 

90 8 4 0.807927 90 8 4 0.764228 90 8 4 0.794716 

90 8 6 0.843496 90 8 6 0.82622 90 8 6 0.844512 

90 8 8 0.817073 90 8 8 0.793699 90 8 8 0.818089 

90 8 10 0.822155 90 8 10 0.806911 90 8 10 0.813008 
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90 9 4 0.831301 90 9 4 0.786585 90 9 4 0.816057 

90 9 6 0.803862 90 9 6 0.781504 90 9 6 0.803862 

90 9 8 0.819106 90 9 8 0.795732 90 9 8 0.811992 

90 9 10 0.838415 90 9 10 0.82622 90 9 10 0.840447 

90 10 4 0.810976 90 10 4 0.797764 90 10 4 0.806911 

90 10 6 0.851626 90 10 6 0.827236 90 10 6 0.841463 

90 10 8 0.829268 90 10 8 0.813008 90 10 8 0.821138 

90 10 10 0.831301 90 10 10 0.815041 90 10 10 0.828252 

100 6 4 0.796748 100 6 4 0.765244 100 6 4 0.795732 

100 6 6 0.849594 100 6 6 0.815041 100 6 6 0.844512 

100 6 8 0.853659 100 6 8 0.828252 100 6 8 0.849594 

100 6 10 0.849594 100 6 10 0.837398 100 6 10 0.848577 

100 7 4 0.816057 100 7 4 0.76626 100 7 4 0.799797 

100 7 6 0.839431 100 7 6 0.818089 100 7 6 0.833333 

100 7 8 0.84248 100 7 8 0.828252 100 7 8 0.840447 

100 7 10 0.864837 100 7 10 0.848577 100 7 10 0.856707 

100 8 4 0.837398 100 8 4 0.811992 100 8 4 0.833333 

100 8 6 0.869919 100 8 6 0.844512 100 8 6 0.871951 

100 8 8 0.847561 100 8 8 0.838415 100 8 8 0.846545 

100 8 10 0.853659 100 8 10 0.832317 100 8 10 0.85061 

100 9 4 0.849594 100 9 4 0.821138 100 9 4 0.85061 

100 9 6 0.867886 100 9 6 0.853659 100 9 6 0.86687 

100 9 8 0.84248 100 9 8 0.827236 100 9 8 0.838415 

100 9 10 0.879065 100 9 10 0.868902 100 9 10 0.878049 

100 10 4 0.861789 100 10 4 0.829268 100 10 4 0.847561 

100 10 6 0.853659 100 10 6 0.835366 100 10 6 0.843496 

100 10 8 0.869919 100 10 8 0.860772 100 10 8 0.881098 

100 10 10 0.881098 100 10 10 0.867886 100 10 10 0.879065 
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A 5.10 SIMULATED POWER TABLE FOR GROUP DIFFERENCE EXAMPLE: MISSING OUTCOME AND COVARIATE DATA; EFFECT SIZE 0.8; VARYING MODEL 

VARIANCES 

10% missing data in 𝒙; 20% missing data in 𝑦 
Effect size 𝑑 = 0.8 

𝜎𝑢
2 = 𝜎𝑣

2 = 𝜎𝑒
2 = 0.26 

30% missing data in 𝒙; 20% missing data in 𝑦 
Effect size 𝑑 = 0.8 

𝜎𝑢
2 = 𝜎𝑣

2 = 𝜎𝑒
2 = 0.26 

50% missing data in 𝒙; 20% missing data in 𝑦 
Effect size 𝑑 = 0.8 

𝜎𝑢
2 = 𝜎𝑣

2 = 𝜎𝑒
2 = 0.26 

n3 n2 n1 x_reject n3 n2 n1 x_reject n3 n2 n1 x_reject 

70 6 4 0.664634 70 6 4 0.561992 70 6 4 0.439024 

70 6 6 0.630081 70 6 6 0.530488 70 6 6 0.428862 

70 6 8 0.64126 70 6 8 0.547764 70 6 8 0.418699 

70 6 10 0.697155 70 6 10 0.571138 70 6 10 0.444106 

70 7 4 0.664634 70 7 4 0.529472 70 7 4 0.413618 

70 7 6 0.652439 70 7 6 0.543699 70 7 6 0.419715 

70 7 8 0.666667 70 7 8 0.544716 70 7 8 0.429878 

70 7 10 0.680894 70 7 10 0.571138 70 7 10 0.439024 

70 8 4 0.683943 70 8 4 0.58435 70 8 4 0.458333 

70 8 6 0.653455 70 8 6 0.551829 70 8 6 0.432927 

70 8 8 0.676829 70 8 8 0.560976 70 8 8 0.448171 

70 8 10 0.694106 70 8 10 0.580285 70 8 10 0.452236 

70 9 4 0.682927 70 9 4 0.568089 70 9 4 0.452236 

70 9 6 0.692073 70 9 6 0.577236 70 9 6 0.446138 

70 9 8 0.652439 70 9 8 0.556911 70 9 8 0.448171 

70 9 10 0.697155 70 9 10 0.582317 70 9 10 0.465447 

70 10 4 0.660569 70 10 4 0.554878 70 10 4 0.428862 

70 10 6 0.730691 70 10 6 0.587398 70 10 6 0.464431 

70 10 8 0.688008 70 10 8 0.589431 70 10 8 0.464431 

70 10 10 0.702236 70 10 10 0.596545 70 10 10 0.477642 

80 6 4 0.716463 80 6 4 0.612805 80 6 4 0.474594 
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80 6 6 0.700203 80 6 6 0.604675 80 6 6 0.498984 

80 6 8 0.721545 80 6 8 0.593496 80 6 8 0.466463 

80 6 10 0.683943 80 6 10 0.57622 80 6 10 0.454268 

80 7 4 0.716463 80 7 4 0.621951 80 7 4 0.492886 

80 7 6 0.743902 80 7 6 0.622968 80 7 6 0.502033 

80 7 8 0.72561 80 7 8 0.618902 80 7 8 0.480691 

80 7 10 0.714431 80 7 10 0.61687 80 7 10 0.487805 

80 8 4 0.703252 80 8 4 0.619919 80 8 4 0.501016 

80 8 6 0.724594 80 8 6 0.621951 80 8 6 0.50813 

80 8 8 0.732724 80 8 8 0.618902 80 8 8 0.485772 

80 8 10 0.705285 80 8 10 0.607724 80 8 10 0.494919 

80 9 4 0.712398 80 9 4 0.617886 80 9 4 0.461382 

80 9 6 0.723577 80 9 6 0.628049 80 9 6 0.503049 

80 9 8 0.746951 80 9 8 0.642276 80 9 8 0.497968 

80 9 10 0.720529 80 9 10 0.614837 80 9 10 0.481707 

80 10 4 0.753049 80 10 4 0.644309 80 10 4 0.498984 

80 10 6 0.752033 80 10 6 0.637195 80 10 6 0.501016 

80 10 8 0.748984 80 10 8 0.647358 80 10 8 0.520325 

80 10 10 0.754065 80 10 10 0.661585 80 10 10 0.518293 

90 6 4 0.773374 90 6 4 0.660569 90 6 4 0.506098 

90 6 6 0.794716 90 6 6 0.676829 90 6 6 0.549797 

90 6 8 0.76626 90 6 8 0.654472 90 6 8 0.519309 

90 6 10 0.753049 90 6 10 0.646341 90 6 10 0.498984 

90 7 4 0.767276 90 7 4 0.663618 90 7 4 0.533537 

90 7 6 0.775407 90 7 6 0.664634 90 7 6 0.531504 

90 7 8 0.775407 90 7 8 0.661585 90 7 8 0.517276 

90 7 10 0.769309 90 7 10 0.659553 90 7 10 0.533537 

90 8 4 0.76626 90 8 4 0.668699 90 8 4 0.534553 

90 8 6 0.781504 90 8 6 0.666667 90 8 6 0.517276 

90 8 8 0.818089 90 8 8 0.722561 90 8 8 0.588415 
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90 8 10 0.796748 90 8 10 0.691057 90 8 10 0.545732 

90 9 4 0.784553 90 9 4 0.671748 90 9 4 0.560976 

90 9 6 0.78252 90 9 6 0.678862 90 9 6 0.541667 

90 9 8 0.775407 90 9 8 0.684959 90 9 8 0.579268 

90 9 10 0.784553 90 9 10 0.677846 90 9 10 0.546748 

90 10 4 0.773374 90 10 4 0.677846 90 10 4 0.544716 

90 10 6 0.795732 90 10 6 0.677846 90 10 6 0.551829 

90 10 8 0.789634 90 10 8 0.686992 90 10 8 0.565041 

90 10 10 0.787602 90 10 10 0.697155 90 10 10 0.565041 

100 6 4 0.78252 100 6 4 0.676829 100 6 4 0.531504 

100 6 6 0.815041 100 6 6 0.715447 100 6 6 0.574187 

100 6 8 0.798781 100 6 8 0.690041 100 6 8 0.534553 

100 6 10 0.805894 100 6 10 0.720529 100 6 10 0.587398 

100 7 4 0.804878 100 7 4 0.730691 100 7 4 0.547764 

100 7 6 0.804878 100 7 6 0.71748 100 7 6 0.566057 

100 7 8 0.828252 100 7 8 0.719512 100 7 8 0.589431 

100 7 10 0.817073 100 7 10 0.711382 100 7 10 0.577236 

100 8 4 0.797764 100 8 4 0.714431 100 8 4 0.572155 

100 8 6 0.821138 100 8 6 0.727642 100 8 6 0.579268 

100 8 8 0.803862 100 8 8 0.718496 100 8 8 0.569106 

100 8 10 0.833333 100 8 10 0.724594 100 8 10 0.593496 

100 9 4 0.803862 100 9 4 0.706301 100 9 4 0.561992 

100 9 6 0.827236 100 9 6 0.715447 100 9 6 0.574187 

100 9 8 0.833333 100 9 8 0.713415 100 9 8 0.595529 

100 9 10 0.816057 100 9 10 0.724594 100 9 10 0.597561 

100 10 4 0.827236 100 10 4 0.719512 100 10 4 0.585366 

100 10 6 0.852642 100 10 6 0.736789 100 10 6 0.605691 

100 10 8 0.833333 100 10 8 0.740854 100 10 8 0.603659 

100 10 10 0.819106 100 10 10 0.720529 100 10 10 0.581301 

 


