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This thesis is concerned with the modelling of integer-valued time series. The
data naturally occurs in various areas whenever a number of events are observed
over time. The model considered in this study consists of a Gaussian copula with
autoregressive-moving average (ARMA) dependence and discrete margins that can
be specified, unspecified, with or without covariates. It can be interpreted as a
‘digitised’ ARMA model. An ARMA model is used for the latent process so that
well-established methods in time series analysis can be used.

Still the computation of the log-likelihood poses many problems because it is the
sum of 2n terms involving the Gaussian cumulative distribution function when n is
the length of the time series. We consider an Monte Carlo Expectation-Maximisation
(MCEM) algorithm for the maximum likelihood estimation of the model which works
well for small to moderate n. Then an Approximate Bayesian Computation (ABC)
method is developed to take advantage of the fact that data can be simulated easily
from an ARMA model and digitised. A spectral comparison method is used in the
rejection-acceptance step. This is shown to work well for large n. Finally we write
the model in an R-vine copula representation and use a sequential algorithm for
the computation of the log-likelihood. We evaluate the score and Hessian of the
log-likelihood and give analytic solutions for the standard errors. The proposed
methodologies are illustrated using simulation studies and highlight the advantages
of incorporating classic ideas from time series analysis into modern methods of model
fitting. For illustration we compare the three methods on US polio incidence data
(Zeger, 1988) and we discuss their relative merits.
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Chapter 1

Introduction

Dependence modelling of non-normal multivariate data is essential for many ap-

plications such as longitudinal studies, spatial statistics and time series analysis.

Models are required with unknown parameters of a probability distribution to de-

scribe the data for the purpose of prediction and forecasting. The focus of this

thesis is the modelling of temporal dependence for integer-valued time series data.

Integer-valued time series appear naturally in various areas whenever a number of

events are observed over time. Observed values tend to be low, highly-skewed and

zero values not being uncommon because typically the data of interest occurs as the

number of failures or uncommon events. Examples of such data are the number of:

a) hospital admissions each day (Herwartz et al., 2015);

b) insurance claims each year (Shi and Valdez, 2014);

c) away goals scored per match (Karlis and Ntzoufras, 2003), and

d) radiation detection alarms per security session.

Despite integer-valued time series being common in practice, methods for statisti-

cal analysis are not well known (McKenzie, 2003; Fokianos, 2009). Interesting and

complex models have been proposed (Jacobs and Lewis, 1978a; Lewis, 1980; Al-Osh

and Alzaid, 1987), yet currently there is not a dominant or well established model

for discrete-valued time series. This may be due to the computational cost of fitting

complex models to data or may be that the available models are too restrictive or

16



CHAPTER 1. INTRODUCTION 17

fail to capture the true data generating process. The assumption of independence is

commonly used by necessity yet it is not appropriate in many modelling scenarios.

Creating the dependence component of a model is a di�cult task even when neglect-

ing the marginal specification. If the marginal distributions are specified correctly

then desired dependence may be impossible to achieve. Models which incorporate

both marginal and dependence structures are typically computationally intensive.

The advancement of computing architecture in the last few decades has impacted on

the kind of models that can be considered for applications. The increase in collecting

and accessing discrete data sets are driving the desire to analyse and the need for

suitable forecast and prediction models.

Copula Modelling

Copulas have been used in univariate continuous-valued time series analysis to char-

acterise the dependence in a sequence of observations (Joe, 1997). The advantage

of the copula approach is that we are able to specify the marginal distributions of

random variables separately from the temporal dependence. Copulas can be used

to construct multivariate models for dependent responses of any type; continuous,

discrete or mixed. This thesis uses the copula of a Gaussian autoregressive-moving

average (ARMA) model with discrete margins to construct a model for integer-

valued time series. The model can be seen as a ‘digitised’ ARMA model. We

explore the challenges of modelling integer-valued time series using this Gaussian

copula model.

In copula modelling, high-dimensional discrete distributions pose challenges for

maximum likelihood estimation (Genest and Nešlehová, 2007; Nikoloulopoulos and

Karlis, 2009; Danaher and Smith, 2011; Smith and Khaled, 2012; Panagiotelis et al.,

2012; Joe, 2015). The major challenges in copula modelling, as summarised by

Mikosch (2006), Embrechts (2009) and Erhardt (2010), are:
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a) copulas with discrete margins;

b) the di�culties arising in high dimensions;

c) the choice of suitable copula class, and

d) the di�culties in applying copulas in time series analysis.

The Gaussian copula is natural choice for dimensions greater than d = 2 with sev-

eral desirable properties while providing an interpretation of the model parameters.

Other high dimensional copulas do not facilitate complex dependence structures;

specifically they do not lend easily to the classical time series dependence.

The likelihood for a copula model with n discrete margins is a sum of 2n copula

evaluations. The Gaussian copula does not have a closed analytical form and requires

n-dimensional integration to evaluate. In high-dimensions, typical of time series, this

has a large computational cost and likelihood inference is di�cult. To simplify the

estimation we incorporate ideas from time series analysis.

We develop three methods for fitting the Gaussian copula model to integer-valued

time series data. The selection of approaches have developed naturally to overcome

the computational aspects of parameter inference and their merits are showcased

for di�erent lengths of time series. First, we consider a Monte Carlo Expectation-

Maximisation (MCEM) algorithm (Dempster et al., 1977; Wei and Tanner, 1990)

for maximum likelihood estimation of the model where we take advantage of the

‘digitised’ interpretation and consider the latent ARMA as missing data to use an

EM algorithm. The idea is to iteratively estimate an underlying ARMA parameters

by conditioning on the observed integer-valued time series using current parameter

estimates, then maximise the log-likelihood of the estimated ARMA time series to

update the parameter estimates.

A second approach for estimation involves Approximate Bayesian Computation

(ABC), which is a likelihood-free simulation approach based on a rejection algorithm
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(Tavaré et al., 1997; Beaumont et al., 2002). Data are simulated from the copula

model using many di�erent parameter values. We accept these parameters if the

simulated data are ‘similar’, in some sense, to the observed data and the set of

accepted parameters are then used for the basis of Monte Carlo inference. The key

to this approach is quantifying the similarity of the observed and simulated integer-

valued data. A method for comparing two integer-valued time series using summary

statistics is introduced and an ABC algorithm is derived for parameter estimation.

The final estimation method uses vine copula methods (Bedford and Cooke,

2001; Panagiotelis et al., 2012) to write the intractable likelihood in terms of bivari-

ate Gaussian copulas to reduce the computational burden. The Gaussian copula

model fits neatly into this methodology and this approach facilitates joint maxi-

mum likelihood estimation as well as analytic solutions to the standard errors.

1.1 Thesis Structure

This thesis addresses the deficiencies in the theory and estimation methods for the

class of Gaussian copula models with discrete margins for modelling integer-valued

time series data. Chapter 2 reviews the background material and literature for time

series analysis in the continuous and discrete case. In Chapter 3, copula theory

is introduced and the probability mass function for the copula model is given. We

extend the theory concerning a conditional distribution of the underlying process and

the computational di�culties of the Gaussian copula model for integer-valued time

series data are posed alongside a literature review of current methods. Chapters 4 to

6 develop three independent estimation techniques, namely MCEM, ABC and vine

copula methods, to enable copula modelling for discrete time series data. Simulated

series will be used within in these chapters to demonstrate how the methodology

and estimation applies in situations where the model is known before dealing with

real world data in Chapter 7. We finish with an empirical comparison between our

three techniques as well as current methods.



Chapter 2

Time Series

The necessary preliminary material for time series analysis is introduced in this

chapter. For continuous-valued variables, the standard models are well established

and a review of linear time series models is given in Section 2.1. This material

is necessary to subsequent chapters because the Gaussian copula model for integer-

valued time series uses the copula of the continuous ARMA time series. For discrete-

valued variables, models and methods are not as well established and we give a

summary of existing models in Section 2.2.

2.1 Time series analysis

A time series is a series of observations {x
t

} observed over a period of time. The term

‘time series’ could sensibly be applied to a record of any time-varying process, either

deterministic or random. When we observe a time series {x
t

}, usually we assume

that {x
t

} is a realisation of a random process {X
t

}. Formally, a random process

{X
t

, t œ T} is a family of random variables indexed by t belonging to some set T .

Accordingly, for each t the random variable X
t

has properties that will be described

by some probability distribution, F (x
t

), later known as the marginal distribution or

margin. We observe a time series only at discrete time points t = 1, . . . , n.

20
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Let us first introduce the simplest statistical time series, a purely random process

which corresponds to a ‘no-memory’ process.

Definition 1 (White noise). A sequence {X
t

, t œ Z} of uncorrelated random vari-

ables with zero mean and constant variance is called a white noise.

These are building blocks for time series models with dependence.

2.1.1 Stationary time series

A fundamental task in time series analysis is to find out from the data how x
t

depends

on past values x
t≠1

, x
t≠2

, . . . and use this information for the purpose of prediction

or forecasting. We consider stationary processes whose statistical properties do not

change over time.

Definition 2 (Stationary Process). A process {X
t

} is said to be stationary if for any

admissible t
1

, . . . , tn and any k, the joint distribution of (X
t1 , . . . , X

tn) is identical

with that of (X
t1+k

, . . . , X
tn+k

). This is called strict stationarity.

We use a less severe requirement that only the moments up to order 2 are identical

and this is called weakly stationarity. The process {X
t

} is weak stationary if for all

t œ Z, E(X
t

)2 < Œ,

a) the mean E(X
t

) = µ is constant;

b) the variance var(X
t

) is constant, and

c) the covariance cov(X
t

, X
t≠k

) is a function of k only, for all k œ Z.

The covariance matrix can provide insight into the dependence between the finite

number of random variables (X
1

, . . . , Xn). For a time series the concept of the

covariance matrix is extended to deal with an infinite collection of random variables.

Definition 3 (Autocovariance Function). For stationary process {X
t

} with var(X
t

) <

Œ, the autocovariance function is

R(k) = E [(X
t

≠ µ) (X
t≠k

≠ µ)] , for k = 0, ±1, ±2, . . . ,

where k is the lag.
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The autocorrelation function can be defined as a function of the lag k.

Definition 4 (Autocorrelation Function). The autocorrelation function r(k) of {X
t

}
defined for k = 0, ±1, ±2, . . . is given by

r(k) = R(k)/R(0).

Linear time series models are designed to model the covariance structure.

Definition 5 (General linear process). A time series {X
t

} is said to be a linear

process if it can be expressed in the form

X
t

=
Œÿ

i=0

Â
i

Á
t≠i

, (2.1)

where {Á
t

} is white noise and {Â
i

} is a given sequence of constants satisfying
qŒ

i=0

Â2

i

< Œ. This condition is required so that X
t

has a finite variance (Priestley,

1981).

The most popular general linear process is the ARMA(p, q) process.

Definition 6 (Autoregressive-Moving Average Process of order (p,q)). The process

{X
t

} is a mixed autoregressive-moving average process, denoted ARMA(p, q) , if it

is a stationary process satisfying

X
t

≠ a
1

X
t≠1

≠ · · · ≠ a
p

X
t≠p

= Á
t

+ b
1

Á
t≠1

+ · · · + b
q

Á
t≠q

, (2.2)

where a
1

, . . . , a
p

, b
1

, . . . , b
q

are constants and {Á
t

} is white noise.

The AR(p) and MA(q) processes are special cases of an ARMA(p, q) process

when q = 0 or p = 0 respectively.

ARMA(p,q) models are typically used to capture the serial linear dependence.

It is convenient to write the ARMA model in terms of the backward shift operator

B, which is defined for any time series {X
t

} as BX
t

= X
t≠1

. It has the following

properties: B2X
t

= B(BX
t

) = BX
t≠1

= X
t≠2

and B0X
t

= X
t

. Thus

BkX
t

= X
t≠k

, k = 0, ±1, ±2, . . . .
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Letting

–(z) = 1 ≠ a
1

z ≠ · · · ≠ a
p

zp and —(z) = 1 + b
1

z + · · · + b
q

zq,

the ARMA(p, q) model (2.2) can be expressed as

(1 ≠ a
1

B ≠ · · · ≠ a
p

Bp)X
t

= (1 + b
1

B + · · · + b
q

Bq)Á
t

.

or

–(B)X
t

= —(B)Á
t

.

The class of autoregressive-moving average processes are linear processes since the

polynomial –(B) can be inverted to give the coe�cients {Â
i

} in (2.1) as [–(B)]≠1 —(B)Á
t

.

A process is said to be causal if it can be written as a MA(Œ) model, in the

form

X
t

=
Œÿ

i=0

Â
i

Á
t≠i

, (2.3)

where Á
t

is white noise. An ARMA process is causal if the roots of –(B) lie outside

the unit circle.

An ARMA model is said to be invertible if it can be written as an AR(Œ) model,

in the form

X
t

=
Œÿ

j=1

„
j

X
t≠j

+ Á
t

.

This is true if the roots of —(B) lie outside the unit circle.

Typically with time series data only a single realisation of the stochastic process

is available. Without further conditions the ARMA process (2.2) is not identifiable

since there are many sets of coe�cients (a
1

, . . . , a
p

, b
1

, . . . , b
q

) all of which give rise

to the same autocovariance function for {X
t

}. The representation of an ARMA

process is unique if:

a) all the roots of –(B) and —(B) lie outside the unit circle, and

b) the characteristic polynomials –(B) and —(B) have no common factors.
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The reciprocal polynomials as defined as

–ú(B) = Bp–(1/B), and —ú(B) = Bq—(1/B). (2.4)

For example if f(B) = 1 ≠ a
1

B ≠ a
2

B2 ≠ a
3

B3 then f ú(B) = B3 ≠ a
1

B2 ≠ a
2

B ≠ a
3

with coe�cients written in reverse order. If B
1

is a root of f(B) then 1/B
1

is a

root of f ú(B) (Pless, 2011, p. 59). Satisfying the condition a) above is equivalent

to satisfying the condition that the roots of the reciprocal polynomials –ú(B) and

—ú(B) lie inside the unit circle. This is the approach we take, as does Yao and

Brockwell (2006). We can test directly and indirectly that these conditions are

satisfied.

Direct: This involves computing the roots by solving the p-degree polynomial

and directly checking the absolute values do not exceed one.

For example for AR(1), The root of the polynomial 1 ≠ a
1

B = 0 is 1/a
1

which

lies outside the unit circle when ≠1 < a
1

< 1. For example for an AR(2)

model, the stationarity conditions are

a
1

+ a
2

< 1, a
2

≠ a
1

< 1, |a
2

| < 2,

while the stationarity conditions of an MA(2) process are

b
1

+ b
2

> ≠1, b
1

≠ b
2

< 1, |b
2

| < 2.

Indirect: Farebrother (1973) gives the sets of inequalities, which can check are

satisfied, for the roots of polynomials of up to order 4 to have absolute value

less than one as

a
4

> 1,

3 ≠ 3a
4

> ≠a
2

,

1 ≠ a
2

≠ a
4

> |a
1

+ a
3

|.
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For a more general approach Shor’s algorithm can be used.

By transforming parameters Alternatively, the parameters can be transformed

in such a way that the conditions are automatically satisfied as suggested by

Jones (1980). That is, by re-parameterising in terms of the partial autore-

gressive and moving average regression coe�cients that are constrained to the

open interval (≠1, 1) and we can use the transformations

–
i

= 1 ≠ exp(≠u
i

)
1 + exp(≠u

i

) ,

—
j

= 1 ≠ exp(≠w
j

)
1 + exp(≠w

j

) .

For maximum likelihood estimation, a nonlinear optimisation can then be

carried out with respect to u
i

and w
j

, i = 1, . . . , p, j = 1, . . . , q. This is the

procedure used by the R function arima() to fit an ARMA(p, q) model in R.

Computing the autocovariances of an ARMA model

The theoretical autocovariances R(k) of an ARMA(p, q) model can be obtained by

solving the first p equations of (2.5) which are found by taking covariances with X
t≠k

on both sides of (2.2), then recursively solving for k > p + 1. This is the standard

method in Brockwell and Davis (1987).

For k = 0, 1, . . . , p

R(0) ≠ a
1

R(1) ≠ a
2

R(2) ≠ · · · ≠ a
p

R(p) = ‡2

Á

(1 + b
1

Â
1

+ b
2

Â
2

+ · · · + b
q

Â
q

),

R(1) ≠ a
1

R(0) ≠ a
2

R(1) ≠ · · · ≠ a
p

R(p ≠ 1) = ‡2

Á

(b
1

+ b
2

Â
1

+ b
3

Â
2

+ · · · + b
q

Â
q≠1

),

R(2) ≠ a
1

R(1) ≠ a
2

R(0) ≠ · · · ≠ a
p

R(p ≠ 2) = ‡2

Á

(b
2

+ b
3

Â
1

+ b
4

Â
2

+ · · · + b
q

Â
q≠2

),
...

...

R(p) ≠ a
1

R(p ≠ 1) ≠ · · · ≠ a
p

R(0) = ‡2

Á

(b
p

+ b
p+1

Â
1

+ b
p+2

Â
2

+ . . . . . . ).

For k > p

R(k) ≠ a
1

R(k ≠ 1) ≠ · · · ≠ a
p

R(k ≠ p) = ‡2

Á

(b
k

+ b
k+1

Â
1

+ b
k+2

Â
2

+ . . . . . . ).

(2.5)
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where the coe�cients Â
k

are found recursively using

Â
k

= b
k

+ a
k

+ a
k≠1

Â
1

+ a
k≠1

Â
2

+ · · · + a
1

Â
k≠1

.

We let a
k

= 0 for k > p and b
k

= 0 for k > q.

The partial autocorrelations

For any k Ø 1 let

„X(k)

t

= fl
k1

X
t≠1

+ fl
k2

X
t≠2

+ fl
k3

X
t≠3

+ · · · + fl
kk

X
t≠k

be the best linear predictor of X
t

in terms of X
t≠1

, . . . , X
t≠k

, i.e., it has the smallest

mean square error. Then fl
kk

is the partial autocorrelation at lag k. It can be

interpreted as the correlation of X
t≠k

on X
t

after removing the influence of the

intermediate variables, X
t≠1

, . . . , X
t≠k+1

. The variance of the prediction error (X
t

≠
„X(k)

t

) is denoted by · 2

k

.

The partial autocorrelations fl
kk

of an ARMA model satisfy the Yule-Walker

equations (Brockwell and Davis, 1987, pg. 239)
S

WWWWWWWWWWWWWU

1 r (1) r (2) . . . r (k ≠ 1)

r (1) 1 r (1)
...

r (2) r (1) 1 . . .
...

...
...

... r (1)

r (k ≠ 1) r (k ≠ 2) . . . r (1) 1

T

XXXXXXXXXXXXXV

S

WWWWWWWWWWWWWU

fl
k1

fl
k2

...

...

fl
kk

T

XXXXXXXXXXXXXV

=

S

WWWWWWWWWWWWWU

r (1)

r (2)
...
...

r (k)

T

XXXXXXXXXXXXXV

. (2.6)

These equations can be solved recursively for k = 1, 2, . . . , n using the Levinson-

Durbin algorithm (Brockwell and Davis, 1987, pg. 169) without inverting the auto-

correlation matrix R
k◊k

= (r (i ≠ j))
i,j=1,...,k

.
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The Levinson Durbin algorithm is recursively given for k = 1, 2, . . . ,

For k = 1 fl
11

= R(1)/R(0) = r(1), · 2

1

= R(0)(1 ≠ r(1)2),

For k > 1 fl
kk

=
R(k) ≠ q

k≠1

j=1

fl
k≠1,j

R(k ≠ j)
· 2

k≠1

, · 2

k

= · 2

k≠1

(1 ≠ fl2

kk

),

and
S

WWWWWWWWWU

fl
k1

fl
k2

...

fl
k,k≠1

T

XXXXXXXXXV

=

S

WWWWWWWWWU

fl
k≠1,1

fl
k≠1,2

...

fl
k≠1,k≠1

T

XXXXXXXXXV

≠ fl
kk

S

WWWWWWWWWU

fl
k≠1,k≠1

fl
k≠1,k≠2

...

fl
k≠1,1

T

XXXXXXXXXV

, (2.7)

where · 2

k

= E[(X
t

≠ „X(k)

t

)2] is the mean square prediction error. The output of the

algorithm consists of fl
kk

and · 2

k

for k = 1, . . . , n.

2.1.2 Gaussian time series

The ARMA model is very generally specified as the linear, additive structure deter-

mining the correlation structure of the stationary sequence {X
t

}, under well-known

restrictions on the parameters and a linear combination of random variables {Á
t

} of

unspecified distribution. If we require {X
t

} to be Gaussian, we take the Á
t

’s to be

normally distributed as N(0, ‡2

Á

), i.e. Gaussian white noise. Then {X
t

, t = 1, . . . , n}
has an n-dimensional Gaussian distribution Nn(0, �) and for any r Ø 1 and any ad-

missible subset t
1

, t
2

, . . . , tn, the joint probability distribution of (X
t1 , X

t2 , . . . , X
tr)

is multivariate Gaussian.

Thus for a Gaussian ARMA model, the joint density of X = (X
1

, . . . , Xn) can

be written as

f(x
1

, . . . , xn) = (2fi)≠n/2|�|≠1/2 exp
3

≠1
2(X ≠ µ)€�≠1(X ≠ µ)

4
,

where � is an n◊n Toeplitz matrix of the autocovariances of {X
t

} i.e., �(i, j) =

‡
i≠j

= E [X
t+i≠j

X
t

], 0 Æ i, j Æ n ≠ 1. The elements of �≠1 are the partial autoco-

variances so that the Levinson recursions provide an e�cient way of evaluating the

likelihood for a continuous time series.
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2.2 Discrete-valued time series analysis

The ARMA model is well developed, flexible and easy to implement. The model is

completely specified and fully described by the parameters (a
1

, . . . , a
p

, b
1

, . . . , b
q

) and

‡2

Á

. However, it does not guarantee X
t

to be integer valued. The integer nature of

our data means the assumptions above are not met. When considering linear models

such as (2.2) the white noise terms {Á
t

} cannot follow a Gaussian distribution, if

{X
t

} must take integer values. In practical applications when discrete data is high-

valued, the Gaussian ARMA model can be used and can work well. However, it is not

uncommon for integer-valued data to have low mean values, appear highly skewed

and have a peak around zero so overall the standard ARMA model has limited

usefulness for low-valued integer times series. Lewis (1980) stress the importance

of developing a class of useful time series models for non-Gaussian data. McKenzie

(2003) describes modelling of discrete variate as the most challenging.

Discrete-valued time series occur naturally as counting processes. In this section

we discuss the existing literature of discrete-valued time series models, in particular

integer-valued time series models. There are various ways of addressing dependency

over time between discrete random variables. Natural approaches are

a) to allow for some type of autocorrelation in the error (extending the Gaussian

ARMA models to discrete random variables), or

b) to introduce lagged dependent variables and trend terms to regression models

(extending discrete models for i.i.d. random variables to include time depen-

dency).

Diverse models for discrete variate time series have been developed along these

lines including Markov chain models, models based on linear models with recognised

correlation structures, models based on the notion of thinning operators, models

based on state-space models, and regression models to name a few. McKenzie (2003)

gives a detailed overview of many of these models and a short summary is presented

here.
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There have been several attempts to propose models that resemble the structure

and properties of the ARMA models. The most popular class of models are Markov

chain models, Discrete ARMA (DARMA), and INteger-valued ARMA (INARMA)

models (Raftery, 1985; Jacobs and Lewis, 1978a; McKenzie, 1985).

Markov chains are very similar to AR(p) processes, but they can have discrete

values. A discrete time series {X
t

} is called a Markov chain of order-p if the Markov

dependence property is satisfied, that is

Pr(X
t

= x
t

|X
t≠1

= x
t≠1

, X
t≠2

= x
t≠2

, . . . )

= Pr(X
t

= x
t

|X
t≠1

= x
t≠1

, . . . , X
t≠p

= x
t≠p

).

The AR(p) process has the order-p Markov property that given all the past values,

X
t

only depends on the last p values. However they tend to be over-parameterised

and their correlation structure is often too limited for application (MacDonald and

Zucchini, 1997, p. 13). Further, the data to be modelled can often be shown to

be non-Markovian, or at least not first-order Markovian (Jacobs and Lewis, 1983).

Higher order Markov chains can be used but this only increases the problem of

over-parameterisation. Raftery (1985) deals with the over-parameterisation by in-

troducing Mixture Transition Models (MTD) to model discrete time series with

particular marginal distributions if necessary.

A series of papers by Jacobs and Lewis (1978a,b,c, 1983) are considered the first

attempt at a general class of simple models for discrete time series. The Discrete

AutoRegressive Moving Average (DARMA) class of models is very general and can

support any desired marginal distribution, say fi. Table 2.1 gives examples from

the class of DARMA models where {X
t

} is stationary with any particular distri-

bution fi. The DARMA models are formed by taking mixtures of i.i.d. discrete

random variables Z
t

. The {Z
t

} can be considered as the discrete analogue to {Á
t

}
in the ARMA model and the correlation structure of the processes mimic that of

the ARMA(p, q) processes.
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The class of DARMA models have been used in a range of applications: hydrol-

ogy, biomedical engineering and broadcast video tra�c (Chang et al., 1984; Bernotas

et al., 1986; Heyman et al., 1992; Heyman and Lakshman, 1996). They seem to work

better in theory than in applications. Limitations of the use of DARMA models for

discrete variate time series include the following:

a) DARMA models only allow for positive correlations,

b) DARMA processes are extremely general, and derive no benefits from the

structure of particular distributions,

c) McKenzie (1985, 2003) noted that these series tend to have sample paths that

are constant for long runs which is a trait which is not generally seen in data,

d) Finally, dependence is created by means of having runs of specific values. This

is unlikely to be a reasonable assumption, except perhaps in the case of binary

variates (Azzalini, 1994).



Table 2.1: The DARMA time series models. Let {Z
t

} be a sequence of i.i.d. random variables with desired distribution given by fi. If

X
0

is sampled from the desired distribution fi then the model generates a stationary process {X
t

} whose marginal distribution is fi.

Name Model Comments

DAR(1)

X
t

= V
t

X
t≠1

+ (1 ≠ V
t

) Z
t

,

{V
t

} are i.i.d. Bernoulli variables with Pr(V
t

= 1) = –,

0 Æ – Æ 1.

· The model defines the current observation to be

the last observation with probability – or another

independent random variate from the same distri-

bution fi.

· The autocorrelation function is r(k) = –k.

DAR(p)

X
t

= V
t

X
t≠At + (1 ≠ V

t

) Z
t

,

{A
t

} are i.i.d. random variables with Pr(A
t

= i) = a
i

,

for i = 1, . . . , p.

· With probability –
i

, the current observation is

one of the past values, X
t≠1

, . . . , X
t≠p

, (chosen

stochastically), or another random variable Z
t

from

the same distribution fi.

· The model has the same autocorrelation function

as an AR(p) model, r(k) = –
q

p

i=1

a
i

r(k ≠ i).

DMA(q)

X
t

= Z
t≠St ,

{S
t

} are i.i.d. random variables with Pr(S
t

= j) = b
j

,

for j = 0, 1, . . . , q.

· The moving average behaviour of an ARMA pro-

cess can be produced for discrete random variables

by a random index model.

· The autocorrelation function is r(k) =
q≠kq
j=0

b
j

b
j≠k

for k = 1, . . . , q.

31



Name Model Comments

DARMA(p, q + 1)

X
t

= U
t

Y
t≠St + (1 ≠ U

t

) Z
t≠q≠1

,

Z
t

= V
t

Z
t≠At + (1 ≠ V

t

) Y
t

,

{U
t

} are i.i.d. Bernoulli variables with

Pr(U
t

= 1) = —, 0 Æ — Æ 1

To summarise

· {Z
t

} are i.i.d. with distribution fi.

· {A
t

} are i.i.d. with Pr(A
t

= i) = a
i

· {S
t

} are i.i.d. random variables defined on the set

{0, 1, . . . q} with Pr(S
t

= j) = b
j

· {V
t

} are i.i.d. Bernoulli variables with Pr(V
t

= 1) = –,

0 Æ – Æ 1,

NDARMA(p, q) X
t

= V
t

X
t≠At + (1 ≠ V

t

) Z
t≠St .

· Jacobs and Lewis (1983) later simplified the two equa-

tions in one and named it the New DARMA model.

· The model is a mixture of dependent variables with

distribution fi; Z
t≠St ≥ fi and X

t≠At ≥ fi therefore

a mixture of these X
t

≥ fi .

· Weiß (2011) further extend this class to generalised

choice models, for modelling categorical process

with serial dependence similar to an ARMA pro-

cess, using a backshift mechanism.

32
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Another class of general models that have been proposed for stationary discrete

variate time series arises from the notion of a thinning operator by Steutel and

Van Harn (1979). These are the most innovative time series models in the sense

that they adapt the standard ARMA model to the count data by using the proba-

bilistic operation of binomial thinning as an alternative to multiplication.

Definition 7 (Binomial Thinning Operator). Suppose X is a non-negative discrete

random variable and consider – œ [0, 1]. Then the binomial thinning operator ¶ is

defined by

– ¶ X =
Xÿ

i=1

Y
i

,

where Y
i

are i.i.d. Bernoulli random variables, independent of X, with Pr(Y
i

= 1) =

– and Pr(Y
i

= 0) = 1 ≠ –.

In other words, – ¶ X is the realised value of a binomial random variable with

X trials and probability – of a success in each trial.

Stationary integer-valued series that imitate autoregressive moving-average meth-

ods and a variety of marginal distributions can be generated using the binomial thin-

ning operation; binomial, Poisson, geometric, negative binomial, etc., (McKenzie,

1985, 1986, 1988; Al-Osh and Alzaid, 1987). Table 2.2 details the class of INARMA

models where X
t

in each of these models is the sum of a count random variable

whose value depends on past outcomes and the realisation of an i.i.d. count random

variable Á
t

whose value does not depend on past outcomes.

Given a specified distribution for {Á
t

}, the unconditional stationary distribution for

{X
t

} can be found by probability generating function techniques, for example an

INAR(1) model is found if

{Á
t

} ≥ Poisson
A

⁄

1 ≠ –

B

then {X
t

} ≥ Poisson (⁄) . (2.8)

Higher-order integer-valued autoregressive processes of order-p, INAR(p), were

proposed by Alzaid and Al-Osh (1990) and Jin-Guan and Yuan (1991) and they
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Table 2.2: The INARMA time series models, where ¶ and ú denote the binomial
and generalised thinning operator. Let {Á

t

} be a sequence of i.i.d. random variables
with any arbitrary distribution given by fi, then the distribution of {X

t

} can be
found using probability generating function techniques. However they are not as
simple as one would hope.

Name Model
INAR(1) X

t

= a
1

¶ X
t≠1

+ Á
t

,
INAR(p) X

t

= a
1

¶ X
t≠1

+ · · · + a
p

¶ X
t≠p

+ Á
t

,
INMA(q) X

t

= Á
t

+ b
1

¶ Á
t≠1

+ · · · + b
q

¶ Á
t≠q

,

INARMA(p, q) X
t

= a
1

¶ X
t≠1

+ · · · + a
p

¶ X
t≠p

+ Á
t

+b
1

¶ Á
t≠1

+ · · · + b
q

¶ Á
t≠q

,

Generalised INAR(p) X
t

= a
1

¶ X
t≠1

ú · · · + a
p

ú X
t≠p

+ Á
t

.

have been extended to generalised-INAR(p) (GINAR(p)) models using a generalised

thinning operation (Latour, 1997, 1998). The realisations of thinned models seem to

be more realistic than those of the DARMA models, however unlike DARMA models,

thinning techniques cannot produce arbitrary unconditional marginal distributions.

2.2.1 Inference for discrete-valued time series

The class of integer-valued autoregressive-moving average, INARMA, processes can

presently be considered as the major model for discrete valued time series, particu-

larly INAR models. However, estimation of INARMA models is di�cult due to the

contribution of the thinning operator and the innovation sequence. The important

distinction for INARMA models is that both parts of the model are stochastic. This

results in complicated forms of likelihood functions involving convolutions even for

the relatively simple INAR(1) process.

Al-Osh and Alzaid (1987) addressed the problem of estimating the parameter

– and the mean parameter ⁄ of a Poisson INAR(1) (2.8) process using three dif-

ferent types of estimators. Two of these methods use moment based methods and

are asymptotically equivalent whilst the third method uses a maximum likelihood
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approach. Karlis and Xekalaki (2001) proposes an EM algorithm for maximum like-

lihood estimation for INAR models where the random components are unobserved

and considered as missing data. Neal and Subba Rao (2007) outline an e�cient

MCMC algorithm for fitting INARMA processes. Drost et al. (2009) consider a

semi-parametric maximum likelihood estimation for INAR(p) models and McCabe

et al. (2011) present a non-parametric maximum likelihood estimation for INAR

models for e�cient probabilistic forecasts.

Zeger (1988), Zeger and Qaqish (1988), Brännäs and Johansson (1994), Davis

et al. (2000) and Davis and Wu (2009) proposed regression models for time series

count data based on the concepts of generalized linear models (Nelder and Wedder-

burn, 1972; McCullagh and Nelder, 1989) and attempted to incorporate both trend

and serial correlation, by incorporating into the conditional mean function a latent

autoregressive process which evolves independently of the past observed counts.

This process introduces autocorrelation as well as over-dispersion into the model.

Zeger (1988) gave an illustration for US Polio incidences, which has subsequently

become a well known dataset and we will use for illustration in Chapter 7. Brännäs

and Johansson (1994) extended Zeger’s model to panel data. Closely related to re-

gression models are the autoregressive conditional Poisson models of Heinen (2003).

Kedem and Fokianos (2005), Fokianos (2009) and Cameron and Trivedi (2013, Ch.

7) review recent developments for regression models for time series of counts.

Models for multivariate count data, although not time series, have been consid-

ered in the literature. Chib and Winkelmann (2001) introduced a set of correlated

latent e�ects to model the correlation among count data. Conditional on these la-

tent e�ects, the counts are assumed independent Poisson, with a conditional mean

function that depends on the latent e�ect. The result is a Poisson log-normal model

and is a multivariate mixing model which can be fit by a MCMC algorithm.
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The focus of the time series models described above and in the previous section

has been modelling the dependence as the primary interest. The marginal distribu-

tion of a stationary time series contains interesting information. It is regarded to be

of primary interest with the dependence as second interest by some authors (Francq

and Zaköıan, 2013; Masarotto et al., 2012). For example, Francq and Zaköıan (2013)

estimate the parameterised marginal distribution of a stationary time series with-

out specifying the dependence structure which is treated as a nuisance. Masarotto

et al. (2012) consider a Gaussian copula marginal regression model for modelling

marginal distributions with covariates where dependence is significant but treated

as secondary interest. There is a lack of models with equal interest and importance

on marginal and dependence modelling due to the absence of high-dimensional dis-

tributions available to researchers to model random vectors.1 Copulas have been

shown to be useful for high-dimensional modelling and also successful in applica-

tions of continuous time series data (Chen and Fan, 2006). As we will go on to show,

copulas have the ability to create high-dimensional distributions which model the

dependence and the marginal distributions with equal importance, thus increasing

the range of models available for integer-valued time series. The copula model does

not lead to simple expressions of conditional expectation.

1Each random variable {Xt} follows some probability distribution where the random vector
X = (X1, . . . Xn) follows an n-dimensional probability distribution, i.e., a time series can be
viewed as a single drawing from a multivariate distribution.



Chapter 3

Copulas

The central mathematical objects studied in this thesis are copulas and the necessary

preliminary material for the Gaussian copula model is introduced in this chapter.

Copulas and Sklar’s Theorem are established in Section 3.1 and Section 3.2 intro-

duced on copula modelling. The Gaussian copula model is introduced in Section 3.3

and its ‘digitised’ interpretation. Section 3.4 looks at the uniqueness of the Gaus-

sian copula for discrete data. Inference is discussed in Section 3.5 and the likelihood

given in Section 3.6. We finish this chapter with a discussion on the computational

aspects of fitting the Gaussian copula model to discrete data in Section 3.7.

Definition 8 (Copula). An n-dimensional copula is a cumulative distribution func-

tion C of n variables such that the marginal distributions are uniform on [0, 1]. Thus

C(u
1

, . . . , un) = Pr(U
1

Æ u
1

, . . . , Un Æ un), 0 Æ u
1

, . . . , un Æ 1,

where each U
i

is uniformly distributed on [0, 1].

The dependence information for the random variables (U
1

, . . . , Un) is contained

in C. When C is parametrised by a parameter vector ◊, we call ◊ the dependence

parameter. We write ◊
copula

to distinguish from the parameters of the marginal

distributions.

For example the Clayton copula (Kimeldorf and Sampson, 1975) which is an

37
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asymmetric two-dimensional copula that allows for fat tails and exhibits greater

dependence in the negative tail than in the positive is given by

C(u
1

, u
2

; ”) =
1
u≠”

1

+ u≠”

2

≠ 1
2≠(

1
” )

,

where 0 < ” < Œ is a parameter controlling the dependence. Perfect dependence is

obtained when ” æ Œ while ” æ 0 implies independence.

There are many other parametric families of copulas such as the Gaussian, Stu-

dents t, Plackett, Frank, Gumbel etc, see Nelsen (1999) for a comprehensive list.

Much of the work on copulas is for the purpose of modelling extreme events and

long tails.

The condition that C is a distribution function with uniform marginals leads to

the following properties (Nelsen, 1999):

a) C : [0, 1]n æ [0, 1];

b) C(u
1

, . . . , un) is increasing in each component u
i

;

c) C(1, . . . , 1, u
i

, 1, . . . , 1) = u
i

for all i = 1, . . . , n, u
i

œ [0, 1], and

d) For any (a
1

, . . . , an), (b
1

, . . . , bn) œ [0, 1]n with a
i

Æ b
i

we have
1ÿ

i1=0

· · ·
1ÿ

in=0

(≠1)i1+···+in C(u
1i1 , . . . , un in) Ø 0

where u
i0

= a
i

and u
i1

= b
i

, i = 1, . . . , n. The reason is that the left hand side

is the probability that (U
1

, . . . , Un) falls in (a
1

, b
1

] ◊ · · · ◊ (an, bn].

Conversely every function C with these properties is a copula.

The copula density allows maximum likelihood estimation in the continuous

case and will be looked at in Chapter 6. It can be interpreted as the strength of

dependence between its uniform marginals.

Definition 9 (Copula density). A copula density is a multivariate probability density

on [0, 1]n having uniform marginals. The copula density is given by

c(u
1

, u
2

, . . . , un) = ˆnC(u
1

, u
2

, . . . , un)
ˆu

1

. . . ˆun
, 0 < u

1

, . . . , un < 1, (3.1)
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when the copula C is absolutely continuous.

For example, the copula density for the Clayton copula is (Venter, 2001)

c(u
1

, u
2

; ”) = (1 + ”)(u
1

u
2

)≠”≠1(u≠”

1

+ u≠”

2

≠ 1)≠2≠1/”.

3.1 Sklar’s Theorem

The importance of copulas is rooted in Sklar’s Theorem which states that any mul-

tivariate distribution can be represented as a copula function of its marginals.

Theorem 1 (Sklar’s Theorem). Let F be a joint distribution function with marginals

F
1

, . . . , Fn. Then there exists a copula C : [0, 1]n æ [0, 1] such that

F (y
1

, . . . , yn) = C(F
1

(y
1

), . . . , Fn(yn)), y
1

, . . . , yn œ R. (3.2)

If each F
i

is continuous for i = 1, . . . , n then C is unique; otherwise C is uniquely

determined only on Range (F
1

) ◊ · · · ◊ Range (Fn), where Range (F
i

) denotes

{u
i

: u
i

= F (y), y œ Z}.

Sklar’s Theorem gives the existence of a copula C but it does not tell us how to

find it. When the marginals F
i

, i = 1, . . . , n are continuous F
i

(Y ) ≥ U(0, 1).

If F ≠1

i

is the inverse of F
i

and U ≥ U(0, 1) then F ≠1

i

(U) ≥ F
i

by the quantile

transform (Joe, 2015, p. 8). Letting u
i

= F (y
i

) in (3.2) we can write

C(u
1

, . . . , un) = F (F ≠1

1

(u
1

), . . . , F ≠1

n (un)), 0 Æ u
1

, . . . , un Æ 1. (3.3)

This is the unique copula of F .

The Gaussian copula is the copula associated with the Gaussian distribution

according to Sklar’s Theorem. Let Y ≥ Nn(0, �) with zero mean, unit variance and

cdf

F (y
1

, . . . , yn) = �
�

(y
1

, y
2

, . . . , yn),
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where � is the correlation/covariance matrix. The marginals F
i

(y
i

) are standard

normal so F
i

= �. Since the inverse of � exists we can write y
i

= �≠1(�(y
i

)) and

F (y
1

, . . . , yn) = �
�

(�≠1(�(y
1

)), �≠1(�(y
2

)), . . . , �≠1(�(yn))). (3.4)

Let U
i

= �(Y
i

), i = 1, . . . , n then U
i

≥ U [0, 1]. Therefore we can write Y
i

= �≠1(U
i

)

and the cdf of (U
1

, . . . , Un) is

Pr(U
1

Æ u
1

, . . . , Un Æ un)

= Pr(Y
1

Æ �≠1(u
1

), . . . , Yn Æ �≠1(un)),

=�
�

(�≠1(u
1

), . . . , �≠1(un)),

where 0 Æ u
1

, . . . , un Æ 1. Thus

C(u
1

, . . . , un) = �
�

(�≠1(u
1

), . . . , �≠1(un)), (3.5)

with 0 Æ u
1

, . . . , un Æ 1 is a cdf with uniform marginals. From (3.4) we can see that

it is the Gaussian copula corresponding to Nn(0, �). Then by Sklar’s Theorem, the

Gaussian copula is (3.5). The density of the Gaussian copula is

c(u
1

, . . . , un) = 1
|�|1/2

exp
;

≠1
2(u

1

, . . . , un)€
1
�≠1 ≠ In

2
(u

1

, . . . , un)
<

, (3.6)

where 0 Æ u
1

, . . . , un Æ 1 (Song, 2000).

We use the Gaussian copula because of its special properties that it inherits

from the Gaussian distribution such as the ability to accommodate complicated

dependence structures (Embrechts, 2009, p. 191). The Gaussian copula has a very

nice property that the form of a conditional Gaussian copula is una�ected by the

value of the conditioning variable. Stöber (2013) calls this ‘a copula of the simplified

form’. This is an important property in vine copulas methodology as we will see in

Chapter 6.
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3.2 Copula models

Each marginal distribution F
i

contains all the information on the individual variable

Y
i

, while the joint distribution F contains all the joint as well as marginal informa-

tion. By Sklar’s Theorem, the multivariate distribution function can be decomposed

into two parts: a set of marginal distribution functions and the dependence struc-

ture which is specified in terms of its copula. This is instructive from a modelling

perspective as it suggests a natural way to model multivariate data, in particular we

can construct multivariate discrete models based on copulas with discrete margins;

an area which currently presents challenges, as discussed in Section 2.2.

Copulas are flexible in use and have been applied in many subject areas. Fang

et al. (2002) discuss the class of continuous copulas models and their properties which

can be constructed using elliptical copulas with continuous marginals. In practice

choosing and estimating a useful form of the marginal distribution of each variable

is often a straightforward task because there is an extensive library of univariate

distributions to choose from and the marginal distribution can be estimated non-

parametrically to get an idea of what the true distribution might be. Then copulas

can be used for dependence modelling between the variables.
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The parameters in a copula reflect the degree of dependence among variables; for

example, the dependence for the multivariate Gaussian distribution is summarised

in the correlation matrix � of which the elements are the pairwise correlation co-

e�cients, with large correlation coe�cients indicating strong dependence among

variables.

The Gaussian copula is parameterised by its variance/ correlation matrix �.

An unstructured correlation matrix can become unmanageable for estimation and

common choices for a structured parametrisation of � include compound symme-

try, Toeplitz, autoregressive of order one and autoregressive-moving average, two of

which are shown in (3.7) in dimension n=5,

�CS =

Q

cccccccccccca

1 a a a a

a 1 a a a

a a 1 a a

a a a 1 a

a a a a 1

R

ddddddddddddb

, �AR(1) =

Q

cccccccccccca

1 a a2 a3 a4

a 1 a a2 a3

a2 a 1 a a2

a3 a2 a 1 a

a4 a3 a2 a 1

R

ddddddddddddb

. (3.7)

3.3 The Gaussian copula model

Let Y = (Y
1

, . . . , Yn) be a random vector with a Gaussian copula (3.5) and discrete

marginal distribution functions F
i

, i = 1, . . . , n. The joint distribution F of Y is

F (y
1

, . . . , yn) = �
�

1
�≠1(F

1

(y
1

)), . . . , �≠1(Fn(yn))
2

, (3.8)

where � is the correlation matrix associated with the Gaussian copula. This is the

Gaussian copula model and the main subject of this study. We are interested in this

model for a single time series of counts.
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Gaussian copulas are a natural choice when moving beyond the bivariate case of

copula modelling because they correspond to classical multivariate normal methods

after variables have been transformed to N(0, 1) and therefore the methodology has

developed faster than other copula models.

The model has been used by many authors including Song (2000), Frey et al.

(2001), Renard and Lang (2007) for continuous data to name a few. It has been

applied to discrete data by Pitt et al. (2006), Ho� (2007), Song et al. (2009), Danaher

and Smith (2011), Smith and Khaled (2012), Panagiotelis et al. (2012), Masarotto

et al. (2012), Nikoloulopoulos (2013) and Shi and Valdez (2014).

The Gaussian copula model (3.8) will be satisfied if Y = (Y
1

, . . . , Yn) can be

written as

Y
i

= F ≠1

i

(�(X
i

)) i = 1, . . . , n, (3.9)

where {X
i

} are standard normal with variance/correlation matrix � and F ≠1

i

de-

notes the generalised inverse of the cdf F
i

of Y
i

. The generalised inverse F ≠1 of F ,

F ≠1 : [0, 1] æ R, is defined by

F ≠1(p) = inf{z œ R : F (z) Ø p}, p œ (0, 1), (3.10)

where we use the convention inf ÿ = Œ.
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Proof of (3.9) =∆ (3.8).

Under (3.9), the cdf of (Y
1

, . . . , Yn) is given by

Pr(Y
1

Æ y
1

, . . . , Yn Æ yn)

= Pr(F ≠1(�(X
1

)) Æ y
1

, . . . , F ≠1(�(Xn)) Æ yn),

= Pr(�(X
1

) Æ F (y
1

), . . . , �(Xn) Æ F (yn)),

= Pr(X
1

Æ �≠1(F (y
1

)), . . . , Xn Æ �≠1(F (yn))),

=�
�

(�≠1(F (y
1

)), . . . , �≠1(F (yn))).

Therefore the cdf of (Y
1

, . . . , Yn) is (3.8).

Thus is X has a multivariate normal distribution and Y
i

is defined via (3.9) then

Y has joint distribution given by (3.8). Therefore the Gaussian copula model is a

latent Gaussian model where the dependence in Y is specified indirectly through X.

3.3.1 Conditional distribution of the latent Gaussian

For discrete marginals, the unobserved latent X
i

cannot be directly recovered from

the observed Y
i

by inverting (3.9) because F
i

is a step function with generalised

inverse defined in (3.10). In this section, we prove a key result from a modelling

perspective; that the observed discrete data translates to intervals for the latent

Gaussian variables, consequently facilitating maximum likelihood estimation using

an EM algorithm in Chapter 4.

Proposition 1. Let X be a continuous random variable, � the standard normal cdf

and let F be a cdf on Z. Suppose Y = F ≠1(�(X)) then

F (Y ≠ 1) < �(X) Æ F (Y ).
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Proof.

Consider the set A = {y œ R : F (y) Ø p} for some 0 < p < 1. For any n > 1,

F ≠1(p) + 1

n

is not a lower bound of A. Thus there exists y
n

œ A such that

y
n

< F ≠1(p) + 1
n

,

which implies

F
3

F ≠1(p) + 1
n

4
Ø F (y

n

) Ø p.

Let n æ Œ, then F (F ≠1(p)) Ø p by the right continuity of F . Let p = �(X) then

F (F ≠1(�(X))) Ø �(X).

Thus

F (Y ) Ø �(X).

If, for contradiction, F (Y ≠1) Ø �(X) then Y ≠1 belongs to the set A. But Y is the

infimum of the set A, it follows that Y ≠1 is not in A. Therefore F (Y ≠1) < �(X).

Hence

F (Y ≠ 1) < �(X) Æ F (Y ).

Because F (Y ≠ a), a > 0 only changes at integer-valued a, we take a = 1 so

that Y ≠ a is closest to Y .

Lemma 1. Let Y = F ≠1(�(X)), where X is a continuous random variable and F

is the distribution function of an integer-valued random variable. Then

Y = y ≈∆ F (y ≠ 1) < �(X) Æ F (y),

≈∆ �≠1(F (y ≠ 1)) < X Æ �≠1(F (y)).

This lemma follows immediately from Proposition 1 by the definition of the

infimum and since �≠1 is a continuous, monotonically increasing function.

We have shown that Y
i

= F ≠1(�(X
i

)) (3.9) is proportional to

�≠1(F (Y
i

≠ 1)) < X
i

Æ �≠1(F (Y
i

)), i = 1, . . . , n,
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and hence when Y
i

takes the value y
i

we have an interval for the unobserved X
i

given by

�≠1(F (y
i

≠ 1)) < X
i

Æ �≠1(F (y
i

)). (3.11)

Essentially by conditioning on the given data, the range of values that X can take is

truncated. A truncated distribution is a conditional distribution when the domain

of a parent distribution is restricted to a smaller region. For example, a truncated

normal distribution is a normal distribution that is restricted to lie within a finite

range (Tallis, 1961). If X is N(µ, ‡2) truncated on (k, l], X ≥ TN(µ, ‡2, k, l), then

X has pdf

f(x) =

Y
___]

___[

„(x≠µ

‡

)
�( l≠µ

‡

) ≠ �(k≠µ

‡

)
k < x Æ l,

0 otherwise,

where the denominator is the scaling factor to account for the probability of falling

in the region (k, l] and � and „ are the standard normal cdf and pdf respectively.

Therefore when X has a Gaussian distribution X | Y = y has a truncated normal

distribution on the interval

�≠1(F (y ≠ 1)) < X Æ �≠1(F (y)). (3.12)

Therefore for our model (3.9) and observed y = (y
1

, . . . , yn) then X | Y = y has

a truncated normal distribution on the interval (�≠1(F (y ≠ 1)), �≠1(F (y))]. The

pdf of the multivariate truncated normal distribution TNn(µ, �, k, l) is given by

f(x) =

Y
___]

___[

exp{≠1

2

(x ≠ µ)€�≠1(x ≠ µ)}
s l

k exp{≠1

2

(x ≠ µ)€�≠1(x ≠ µ)} dx
k < x Æ l,

0 otherwise,

where

k = (k
1

, . . . , kn) =
1
�≠1(F (y

1

≠ 1)), . . . , �≠1(F (yn ≠ 1))
2

,

l = (l
1

, . . . , ln) =
1
�≠1(F (y

1

)), . . . , �≠1(F (yn))
2

.

are vectors of truncation points for X.
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The most instructive amount of information we can infer about the random

variables X is that they are within the interval specified by
1
�≠1(F (y ≠ 1)), �≠1(F (y))

È
.

This is relevant for the E-step of the EM algorithm of Chapter 4 since the conditional

distribution of X given our observed discrete data y, that is X | Y = y, has a

truncated normal distribution on the interval
1
�≠1(F (y ≠ 1)), �≠1(F (y))

È
œ Rn. (3.13)

The truncated multivariate distribution can be sampled from directly, as we will

describe in Section 4.3.1 and has been well studied.

As a side note, the result is similar when we consider the conditional distribution

of �(X) given the observed data y, �(X) | Y = y. The variable �(X) is uniformly

distributed on [0, 1] and �(X) | Y = y ≥ U [F (y ≠ 1), F (y)], i.e, by conditioning we

truncate the range of values that �(X) can take to [F (y ≠ 1), F (y)].

3.3.2 The Gaussian copula model for time series

By specifying an ARMA(p, q) process for {X
i

}, the correlation matrix � is com-

pletely determined by the parameters a
1

, . . . , a
p

, b
1

, . . . , b
q

. We interpret the Gaus-

sian copula model as a transformation such that (X
1

, . . . , Xn) is a latent ARMA

process, X ≥ Nn(0, �) where � is an n◊n Toeplitz matrix of autocorrelations, that

is with (i, j) elements r(i≠j) (Definition 4). Thus the model (3.8) can be considered

as a ‘digitised’ ARMA(p, q) model.

Copulas have been used in univariate continuous time series analysis to model

the serial dependence with AR(1) and AR(2) models (Joe, 1997, Ch. 8). We take

the dependence structure of the well-established ARMA model and we apply it to

discrete marginals to glue them together creating a discrete model with time series

dependence, for modelling integer-valued time series data. This is the rationale for
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the Gaussian copula with time series dependence and discrete margins studied in

this thesis. We make use of the underlying ARMA structure for interpretablity and

to develop methods for parameter estimation.

3.3.3 Examples of models

Any discrete univariate distribution can be specified for F
i

, including univariate

distributions with explanatory variables, making the model highly flexible. An ex-

ample with explanatory variables is given in Chapter 7 on a well known polio data

set (Zeger, 1988). The marginal distributions of integer-valued time series are often

highly skewed with low means and zeros are not uncommon. Common choices for

count data are the Poisson, geometric, negative binomial, zero-inflated Poisson and

the zero-inflated negative binomial (Johnson et al., 2005; Mullahy, 1986; Greene,

1994).

In this thesis, we use the negative binomial distribution throughout to account

for over/under-dispersion within the time series. Due to the many di�erent models

that give rise to the negative binomial distribution, there are a variety of definitions

in the literature. We use the following definition which allows for s œ Rú
+

.

Negative Binomial Family A random variable Y is said to have a negative

binomial distribution with parameters 0 < fi < 1 and s œ Rú
+

if

Pr(Y = y) = �(s + y)
y! �(s) fis(1 ≠ fi)y, y = 0, 1, 2, . . . .

To avoid misspecification of the marginal distributions, the semi-parametric

Gaussian copula model can be used. A semi-parametric copula model can be created

by estimating either the dependence structure or the marginals non-parametrically.

That is, without placing any assumptions on their parametric form. An example is

provided for the polio data set in Sections 7.1.2 and 7.3.
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3.4 Uniqueness of copula representation

There is a general lack of uniqueness of a copula representation (3.3) for discrete

distributions. In the discrete case, Sklar’s Theorem guarantees that there exists

a copula for F in (3.3) but there are several functions that satisfy (3.3). These

functions are not all guaranteed to be a copula, or even a distribution and an identi-

fiability issue arises. For discrete F
i

, the distribution of U
i

= F
i

(y
i

) does not follow

a uniform distribution on (0, 1). The identifiability a�ects the inference because of

the ties introduced from the discrete cdfs.

We still have the same equation given in (3.3) but it is only for {u
i

: u
i

= F (y), y œ Z}
and other copulas exist for the same distribution. The copula C is not unique outside

the set

Range(F
1

) ◊ · · · ◊ Range(Fn). (3.14)

To assess the extent of unidentifiability, Carley (2002) derived sharp bounds that

can be applied to any copula compatible with F . In the continuous case the cop-

ula C characterises the dependence structure but in the discrete case this cannot

be said. However, F often inherits dependence properties from C and Genest &

Nesklova state copulas are still valid and the copula parameters continues to gov-

ern association between discrete margins. Trivedi and Zimmer (2007) suggests that

non-uniqueness is a theoretical issue to be confronted in analytical proofs but it does

not inhibit empirical applications. Copulas are still used for discrete distributions

(Nikoloulopoulos and Karlis, 2009). We discuss the use of continuous copulas for

discrete distributions in the context of vine copulas in Section 6.4.1 where we choose

an interpolated version of the Gaussian copula.

Due to the inferential issues of applying copulas to discrete data, methods for

indirect applications of copula models to discrete data have been proposed. Denuit

and Lambert (2005) suggest a ‘continuising’ technique to make the data appear

continuous. The discrete variable Y is ‘extended’ to a continuous variable X defined
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by

X = Y + (U ≠ 1), (3.15)

where U is a continuous random variable in (0, 1) independent of Y . Shi and Valdez

(2014) adopt this method to apply the Gaussian copula model with negative bi-

nomial margins to insurance claims data in a longitudinal context with the name

‘jittering’. Wu (2013) also follows this continuising approach when modelling binary

data. Wu proposes a joint model for the mixed outcomes (that is discrete Y and

the continuised X in (3.15)) using a Gaussian copula. We do not take the indirect

approach. We apply the Gaussian copula model directly to the integer-valued time

series as do many others including Danaher and Smith (2011), Panagiotelis et al.

(2012) and Masarotto et al. (2012).

3.5 Inference from copula models

Maximum likelihood is the preferred method of estimation so that the standard

tools for hypothesis testing and model selection can be used, such as likelihood ra-

tio statistics and information criteria. The MLE is generally found by numerical

maximisation of the log-likelihood since analytical solutions are rare for complex

likelihood functions. However, typically copula models are high-dimensional and re-

quire integration when the copula does not have a closed form making MLE di�cult

if not impossible.

Two-Stage Estimation

To construct a multivariate model, the copula C and the marginal distributions F
i

can be separately chosen. The separation of the dependence and marginal part of

the model is a very useful consequence because di�erent estimation methods can be

used for the components.
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A common approach to estimating copula models is to perform a two stage pro-

cedure named inference functions for margins (IFM) (Xu, 1996). First the marginal

parameters are separately estimated. Then the dependence structure is estimated

by optimising the likelihood, with the marginal estimates plugged in, as a function

of dependence parameters only.

This inference method is known more generally as multi-stage maximum likeli-

hood estimation. The two-stage estimation is used only for computation and not

for theoretical analysis. There is a trade-o� between the e�ciency of the IFM esti-

mates and the numerical instabilities encountered in maximum likelihood (Min and

Czado, 2010). The asymptotic e�ciency of IFM has been studied by Joe (2005)

and comparisons suggest that the IFM method is highly e�cient when compared to

standard MLE. However, this two-stage estimation method remains di�cult for the

Gaussian copula model because the dependence structure is still high dimensional

and the estimates remain hard to compute. Zhao and Joe (2005) suggest composite

likelihood methods of which IFM is a special case. Method of moment estimators in

low dimensions have also been proposed (Genest and Rivest, 1993), however for di-

mensions typical of time series we require other estimation methods to be developed.

Semi-parametric Estimation

Continuing along similar lines using two stage estimation, a semi-parametric model

can be created by estimating either the dependence structure or the marginals non-

parametrically. That is, without placing any assumptions on their parametric form.

To estimate the copula C non-parametrically, Deheuvels (1979) introduced the em-

pirical copula and Chen and Huang (2007) proposed kernel based estimators. How-

ever, in this work we estimate the Gaussian copula parametrically since the interest

is in the dependence structure of the Gaussian copula and characterising the depen-

dence of the integer values over time.
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To estimate the marginal distributions F
i

non-parametrically, the empirical dis-

tribution function can be used

‚F
i

(y) = 1
n

nÿ

i=1

(y
i

Æ y). (3.16)

When non-parametric estimates of the distributions are used then the IFM method

is known as canonical maximum likelihood or pseudo-maximum likelihood (Genest

et al., 1995; Tsukahara, 2005).

3.6 The likelihood function for discrete data

Zimmer and Trivedi (2006) highlight that the challenges that high-dimensional dis-

crete distributions pose in copula modelling are because the likelihood function

di�ers substantially from that in the continuous case.

Consider discrete random variables Y
i

, i = 1, 2, . . . , n, with cdfs F
1

, . . . , Fn. In

the case of variables with integer values the left-hand limit of F at y
i

is F (y
i

≠ 1).

The joint distribution of the n-dimensional random vector Y = (Y
1

, Y
2

, . . . , Y
N

)

completely defines the dependence and marginal properties of Y
i

. The joint distri-

bution can be written as F = C(F
1

, . . . , Fn) by Sklar’s Theorem and the multivari-

ate probability mass function (pmf) is obtained from rectangle probabilities. For

example, in the bivariate case the joint distribution of Y
1

and Y
2

where F
1

, F
2

have

support on the integers can be expressed as F (y
1

, y
2

) = C
12

(F
1

(y
1

), F
2

(y
2

)). Writing

C(F (y
i

≠ ¸
1

), F (y
j

≠ ¸
2

)) as C¸1¸2
ij

, the probability mass function is

Pr(Y
1

= y
1

, Y
2

= y
2

)

= Pr(y
1

≠ 1 < Y
1

Æ y
1

, y
2

≠ 1 < Y
2

Æ y
2

),

=F (y
1

, y
2

) ≠ F (y
1

, y
2

≠ 1) ≠ F (y
1

≠ 1, y
2

) + F (y
1

≠ 1, y
2

≠ 1),

=C(F (y
1

), F (y
2

)) ≠ C(F (y
1

), F (y
2

≠ 1)) ≠ C(F (y
1

≠ 1), F (y
2

)) + C(F (y
1

≠ 1), F (y
2

≠ 1)),

=C00

12

≠ C01

12

≠ C10

12

+ C11

12

.
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By induction, the joint probability mass function for n variables consists of 2n

finite di�erences of the copula (Nelsen, 1999),

Pr(Y
1

= y
1

, . . . , Yn = yn)

=
1ÿ

¸1=0

1ÿ

¸2=0

· · ·
1ÿ

¸n=0

(≠1)¸1+···+¸n Pr(Y
1

Æ y
1

≠ ¸
1

, . . . , Yn Æ yn ≠ ¸n),

=
1ÿ

¸1=0

1ÿ

¸2=0

. . .
1ÿ

¸n=0

(≠1)¸1+···+¸n C(F
1

(y
1

≠ ¸
1

), . . . , Fn(yn ≠ ¸n)). (3.17)

This becomes costly for large n, especially when the n-dimensional copula is

di�cult to compute. For example in n=3 dimensions, the Gaussian copula pmf is

Pr(Y
1

= y
1

, . . . , Yn = yn) =�
�

(�≠1(F
1

(y≠
1

)), �≠1(F
2

(y≠
2

)), �≠1(F
3

(y≠
3

)))

+ �
�

(�≠1(F
1

(y≠
1

)), �≠1(F
2

(y≠
2

)), �≠1(F
3

(y
3

)))

+ �
�

(�≠1(F
1

(y≠
1

)), �≠1(F
2

(y
2

)), �≠1(F
3

(y≠
3

)))

≠ �
�

(�≠1(F
1

(y≠
1

)), �≠1(F
2

(y
2

)), �≠1(F
3

(y
3

)))

+ �
�

(�≠1(F
1

(y
1

)), �≠1(F
2

(y≠
2

)), �≠1(F
3

(y≠
3

)))

≠ �
�

(�≠1(F
1

(y
1

)), �≠1(F
2

(y≠
2

)), �≠1(F
3

(y
3

)))

≠ �
�

(�≠1(F
1

(y
1

)), �≠1(F
2

(y
2

)), �≠1(F
3

(y≠
3

)))

+ �
�

(�≠1(F
1

(y
1

)), �≠1(F
2

(y
2

)), �≠1(F
3

(y
3

))).

3.7 Computational aspects of the Gaussian cop-

ula

The Gaussian copula lacks a closed form cdf which means that high-dimensional

integration is required to evaluate multivariate probabilities. Likelihood based es-

timation evaluates the integral either numerically or by simulation techniques, as

we will discuss further in Section 6.4.2, resulting in significant computational de-

mand. One likelihood evaluation for the model (3.8) requires finite di�erencing of

2n evaluations of the n-dimensional multivariate Gaussian cdf meaning maximum

likelihood estimation is not feasible for large n. Direct evaluation of the model for
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integer-valued time series data of length n=20 on a 1.4 GHz Intel Core i5 CPU takes

over 6 days for one evaluation. Even so, there have been significant e�orts to apply

elliptical copulas and in particular the Gaussian copula to discrete data (Pitt et al.,

2006; Ho�, 2007; Song et al., 2009; Danaher and Smith, 2011; Smith and Khaled,

2012; Panagiotelis et al., 2012; Masarotto et al., 2012; Nikoloulopoulos, 2013; Shi

and Valdez, 2014).

In the longitudinal setting, with short time series, the Gaussian copula has been

successfully fitted using maximum likelihood to count data to model the number of

insurance claims over 8 years (Shi and Valdez, 2014).

Using an importance sampling approach, Masarotto et al. (2012) approximate

the likelihood of the Gaussian copula model in a simulation based approach. The

Gaussian copula model can be seen as a multivariate probit (Ashford and Sowden,

1970), which has been known for some time with estimation methods developed.

The authors generalise methods for probit regression models to the Gaussian copula

model where they consider the discrete and continuous cases separately. For dis-

crete margins, the authors approximate the likelihood using a sequential sampling

algorithm resulting in a fast computational algorithm, typically in the seconds and

they give examples of applications for time series, spatial data and survival analy-

sis. Masarotto et al.’s method uses the truncated normal as the importance density,

which we discussed in Section 3.3.1.

The conditional distribution of X
t

given X
t≠1

e.t.c depends on both the discrete

marginals and the dependence between the random variables. The copula approach

is to separate these two things so that they can be specified separately but the

copula model does not lead to simple expressions of conditional expectation.

From a Bayesian modelling approach, the latent Gaussian representation (3.12)

lends easily to Bayesian data augmentation and MCMC methods are widely used for

latent variable/missing data problems. In a semi-parametric approach, Ho� (2007)
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uses a MCMC algorithm based on Gibbs sampling to fit a Gaussian copula model

using an extended rank likelihood, where there are no parametric assumptions made

on the marginal distribution and their focus is only on the dependence structure.

Pitt et al. (2006) introduce a general Bayesian Markov chain Monte Carlo (MCMC)

estimation of a Gaussian copula model for continuous, discrete and mixed mar-

gins. The latent variable approach (Section 3.3) is used with the likelihood for the

augmented observed and unobserved variables written as

L(◊; y, X) = f(y, X|◊),

=
nŸ

i=1

(�≠1(F
i

(y
i

≠ 1)) < X
i

Æ �≠1(F
i

(y
i

))„
�

(X
1

, . . . , Xn|◊),

where is the indicator function. The latent variables are integrated out using

Monte Carlo. The realisations x
i

of the latent variables are generated explicitly in

a Bayesian MCMC simulation algorithm. The priors for the correlation matrix of

the Gaussian copula, and also the Bayesian selection framework, are una�ected by

whether the data is discrete or continuous (Smith, 2011). The Bayesian MCMC pro-

posed by Pitt et al. (2006) involves a complex prior for the correlation matrix which

is not easily applied to high-dimensions. Danaher and Smith (2011) extend the

algorithm to allow higher dimensions using a cholesky decomposition of the correla-

tion matrix in which they demonstrate with n=45 in an example of joint modelling

of website views. Smith and Khaled (2012) extend further outside the elliptical

family of copula models. Smith (2011) bridge the gap between the Bayesian and

copula communities by providing a detailed review of Bayesian methods for copula

modelling, with a focus on the Gaussian and D-vine copulas. We do not pursue

MCMC methods as our primary interest in this work is maximum likelihood esti-

mation. However, we undertook preliminary work which suggested MCMC methods

were computationally intensive for large nand indicated the estimates were poor.

Panagiotelis et al. (2012) support this attitude saying that these methods are still

computationally intensive and may not scale easily to higher dimensions.
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3.7.1 Summary

As seen in Section 2, models for integer-valued time series have so far failed to achieve

equal importance for the marginal and dependence structure. The key advantage

of copula modelling for discrete data is the ability to combine completely di�erent

univariate distributions into a well-defined multivariate model where no approxima-

tions are required in high dimensions. The Gaussian copula model lends easily as

a ‘digitised’ ARMA model with flexible marginal specification and interpretable

parameters.

The high-dimensionality of time series are not typically seen in the multivariate

models and by incorporating classical time series ideas into modern copula estima-

tion we open up the avenues for methods of parameter estimation that cannot be

achieved through direct maximum likelihood. The subsequent three chapter aims to

simplify the computation by using copula theory combined with well-studied time

series analysis. Each approach proposed has its own merits, which can be seen when

using integer-valued time series of di�erent lengths.



Chapter 4

Estimation I: A Monte Carlo EM

Algorithm

In this chapter a Monte Carlo Expectation Maximisation (MCEM) algorithm is

considered for parameter estimation of the Gaussian copula model considered in

Chapter 3.

The Gaussian copula model for discrete margins has the ability to accommodate

complicated correlation structures. However, the log-likelihood

¸(◊; y) =
1ÿ

¸1=0

· · ·
1ÿ

¸n=0

(≠1)¸1+···+¸n �
�

(�≠1(F
1

(y
1

≠ ¸
1

)), . . . , �≠1(Fn(yn ≠ ¸n))), (4.1)

is di�cult to maximise when n is moderately large because one evaluation of the

function involves 2n evaluations of the n-dimensional Gaussian distribution function

�
�

, where � is the n ◊ n correlation matrix of the Gaussian copula and n is the

length of the observed time series y = (y
1

, . . . , yn)€. We seek a computationally

e�cient method for finding the maximum likelihood estimates. The Expectation

Maximisation (EM) algorithm can be used for this purpose because {y
t

} can be

thought of as a digitised version of a real-valued time series {x
t

}, the missing data

as discussed in Section 3.3.

57
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4.1 The EM algorithm

The EM algorithm (Dempster et al., 1977) is an iterative algorithm designed to

compute maximum likelihood estimates, for situations where the observed data can

be augmented to create a simpler likelihood function to maximise. McLachlan and

Krishnan (2007) summarise the large variety of uses and applications since the first

1700 publications involving the EM algorithm.

Let the incomplete data log-likelihood be denoted as ¸(◊; y) and the complete

data log-likelihood as ¸(◊; y, x). The EM algorithm works on the complete data

log-likelihood ¸(◊; y, x), yet it can be shown (Dempster et al., 1977 and Mclachlan

and Krishnan, 2007, p. 78) that the log-likelihood of the incomplete data (observed

data) improves through the iterations, i.e.,

¸(◊(i); y) Ø ¸(◊(i≠1); y).

Furthermore, if these iterations converge then they converge to a local stationary

point of the log-likelihood function ¸(◊; y) (Wu, 1983).

The algorithm alternates between two stages, the E-step (Expectation) and the

M-step (Maximisation), where the parameter values are updated repeatedly until a

convergence criterion is met. More specifically, the E-step estimates the complete

data log-likelihood by taking its conditional expectation given y and evaluating

it using the current parameter values ◊(i≠1). Therefore the E-step evaluates the

objective function

Q
1
◊, ◊(i≠1)

2
= E◊(i≠1) [¸ (◊; y, X) | Y = y] , (4.2)

whilst the M-step maximises the objective function with respect to ◊ to obtain an

updated ◊(i). The M-step is therefore finding

◊(i) = arg max
◊

Q
1
◊, ◊(i≠1)

2
.
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We have seen in Chapter 3 that the Gaussian copula model with specified

marginals F
t

is equivalent to

Y
t

= F ≠1

t

(�(X
t

)), t = 1, . . . , n, (4.3)

where {X
t

} is an unobserved latent process, having the same Gaussian copula as

{Y
t

}. This latent variable perspective of the copula model facilitates maximum

likelihood estimation via an EM algorithm. If the latent process {X
t

} is observed

the complete data log-likelihood ¸ (◊; y, x) is easier to compute. We consider the

latent process as missing data, and augment the observed data y with the missing

data x, to apply the EM algorithm.

In the following sections we derive the E and M-steps of the EM algorithm for the

Gaussian copula model and calculate the standard errors of the parameter estimates.

The expectation of the latent process X given the observed count data, Y = y, is

not easy to evaluate, even though we know the conditional distribution is truncated

normal. A Monte Carlo E-step is therefore used resulting in a Monte Carlo EM

algorithm (Wei and Tanner, 1990), where a Monte Carlo estimate of the Q function

(4.2) is used in the M-step. We implement a Geweke-Hajivassilou-Keane (GHK)

simulator (Geweke, 1989. Hajivassiliou and McFadden, 1998, and Keane, 1994) to

sample directly from the conditional distribution of X | Y = y (Section 3.3.1).

4.2 The E-step

The latent process {X
t

} has a Gaussian structure and completely determines the ob-

served data y
t

. Therefore the log-likelihood of X is the complete data log-likelihood

¸(◊; y, x) = ≠n
2 log (2fi) ≠ 1

2 log |�| ≠ 1
2x€�≠1 x. (4.4)

This log-likelihood involves a large variance-covariance matrix that becomes di�cult

to invert for large dimensions. To overcome this, we use the time series approach

(Brockwell and Davis, 1987, Ch. 5) to simplify the log-likelihood. Consider the
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prediction error decomposition of � and write the log-likelihood (4.4) in terms of

e
1

= x
1

,

e
2

= x
2

≠ „
1,1

x
1

,

e
3

= x
3

≠ („
2,1

x
2

+ „
2,2

x
1

),
...

en = xn ≠ („n≠1,1

xn≠1

+ · · · + „n≠1,n≠1

x
1

),

where „
t1

, . . . , „
tt

are coe�cients of the best linear predictor of x
t+1

at time t using

all previous values x
t

, . . . , x
1

:

‚x
t+1

= „
t1

x
t

+ „
t2

x
t≠2

+ · · · + „
tt

x
1

.

This one-to-one transformation between e and x in matrix form is

e = �x or �e = x,

where the transformation matrix � and inverse transformation matrix � = �≠1 are

lower triangular with ones on its diagonal giving the determinant of the Jacobian=1.

Thus e
t

is the error from predicting x
t

(the prediction error), on the basis of

the information available at time t ≠ 1. The prediction errors e = (e
1

, . . . , en)€ are

uncorrelated and it follows that

� = var (x) = var (�e) = �var (e) �€ = ���€,

where � = diag (· 2

1

, . . . , · 2

n) is the variance-covariance matrix of e. The Levinson-

Durbin algorithm given in (2.7) provides the elements of the matrices � and �.

We achieve this computational advantage via the Levinson-Durbin recursions or the

innovations algorithm (Brockwell and Davis, 1987, p. 71) due to the ARMA form

of the underlying model. Therefore the complete data log-likelihood is given by

¸(◊; x, y) = ≠ n
2 log (2fi) ≠ 1

2 log |�| ≠ 1
2x€�€ �≠1 � x.
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The objective function in the E-step is

Q(◊,◊(i≠1))

= E◊(i≠1) [¸(◊; X, y) | Y = y] ,

= ≠ n
2 log(2fi) ≠ 1

2 log |�| ≠ 1
2E◊(i≠1)

Ë
X€�€ �≠1 � X | Y = y

È
,

where each term in the expression is a scalar and thus the matrix expression is equal

to its trace and tr(X€�≠1X) = tr(�≠1XX€). Thus

Q(◊,◊(i≠1)) = ≠n
2 log(2fi) ≠ 1

2

nÿ

t=1

log(· 2

t

) ≠ 1
2

nÿ

i=1

nÿ

j=1

c
ij

E◊(i≠1) [X
i

X
j

| Y = y] ,

where c
ij

is the (i, j)th element of �≠1 = �€ �≠1 � used as the coe�cient of the

expectation of X
i

X
j

given Y = y.

It was proved in Section 3.3.1 that for each t = 1, . . . , n , the given information

Y
t

= y
t

translates into an interval for the unobserved/missing X
t

:

�≠1 (F
t

(y
t

≠ 1)) < X
t

Æ �≠1 (F
t

(y
t

)). (4.5)

Here X
t

cannot be directly uncovered for a discrete distribution function F . Con-

ditioning on the observed data y
1

, . . . , yn, the n-dimensional multivariate normal

distribution Nn(0, �) of X
1

, . . . , Xn becomes an n-dimesnional truncated Normal

distribution, with truncation points determined by the marginal distributions F
t

,

for t = 1, . . . , n. Denote the upper and lower truncation points respectively by

a = (a
1

, . . . , an) and b = (b
1

, . . . , bn), where

a
t

= �≠1 (F
t

(y
t

≠ 1)) and b
t

= �≠1 (F
t

(y
t

)),

for t = 1, . . . , n. Note that this a and b are not the ARMA parameters but we

use this notation to be consistent with the truncated multivariate normal and GHK

(Section 4.3.1) literature. Hence X | Y = y follows an n-dimensional truncated

normal distribution, TNn(0, �, a, b). Thus using the interval of X
t

given in (4.5),
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the E-step is to evaluate

Q(◊, ◊(i≠1)) =

≠ n
2 log(2fi) ≠ 1

2

nÿ

t=1

log(· 2

t

) ≠ 1
2

nÿ

i=1

nÿ

j=1

c
ij

E◊(i≠1)

5
X

i

X
j

----a < X Æ b
6

. (4.6)

An important point to make here is that the · 2

t

and the c
ij

terms are functions of

◊. The vector ◊(i≠1) is used only in the expectation term.

4.3 The Monte Carlo E-step

Direct evaluation of the Q(◊, ◊(i≠1)) function is di�cult because

E◊(i≠1)

5
X

i

X
j

----a < X Æ b
6

=
⁄

bn

an
. . .

⁄
b1

a1
x

i

x
j

„
�

(x
1

, . . . , xn)d x
1

. . . d xn, (4.7)

does not have a closed solution for n greater than 1 and numerical techniques must

be employed to calculate the expectation for the truncated multivariate normal

distribution. We approximate the n-dimensional integration (4.7) using Monte Carlo

estimation.

Wei and Tanner (1990) first proposed a Monte Carlo method to estimate the

E-step resulting in the MCEM algorithm. Chan and Ledolter (1995) showed that

with suitable initial parameters, an MCEM sequence will converge with high prob-

ability to the set of parameter values at which the maximum of the likelihood occurs.

We utilise Monte Carlo estimation to obtain an approximation of the objective

function by taking the following steps:

1. Generate m samples x(1), x(2), . . . , x(m), from the conditional distribution of

X given Y = y which is truncated normal TNn(0, �, a, b) using the current

parameters ◊(i≠1) to evaluate �, a and b.
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2. Set up

‚Q
1
◊, ◊(i≠1)

2
= ≠n

2 log(2fi) ≠ 1
2

nÿ

t=1

log(· 2

t

) ≠ 1
2

nÿ

i=1

nÿ

j=1

c
ij

A
1
m

mÿ

k=1

x
(k)

i

x
(k)

j

B

.

(4.8)

4.3.1 Sampling from TN(0, �, a, b)

We implement a GHK (Geweke-Hajivassilou-Keane) simulator to sample directly

from the conditional distribution of X | Y = y. This conditional distribution is the

multivariate truncated normal distribution TNn(0, �, a, b).

The distribution arises from restricting the multivariate normal Nn(0, �) to the

region (a, b] as shown in (4.5). Hence

X ≥ TNn(0, �, a, b) ≈∆ X ≥ Nn(0, �) s.t a < X Æ b.

To obtain exact draws, rejection sampling is the simplest method however it is

highly ine�cient when the truncation region is small and high dimensional. Approx-

imate methods such as Markov Chain Monte Carlo methods have been proposed to

overcome ine�ciency (Geweke, 1991), but they can su�er from poor mixing, con-

vergence problems and correlation among samples (Wilhelm and Manjunath, 2010).

The GHK simulator allows direct sampling from the multivariate truncated nor-

mal distribution. The GHK method reduces the problem of sampling from an n-

dimensional Gaussian with bounds in each dimension to recursively sampling n
univariate truncated normals. It exploits the fact that a multivariate normal

distribution function can be expressed as the product of sequentially conditioned

univariate normal distribution functions, which can be easily and accurately evalu-

ated. Therefore a sample from a truncated multivariate normal distribution can be
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derived from a recursive procedure using draws from a univariate truncated normal

distribution which itself can be drawn smoothly from a uniform distribution.

To illustrate this idea we provide the details for simulating from TNn(µ, �, a, b)

with non-zero mean µ (Greene, 2003). For any symmetric positive definite matrix �,

we can write � = LL€, where L is a lower triangular matrix with real and positive

diagonal elements,

L =

Q

ccccccccca

l
11

0 · · · 0

l
21

l
l2

· · · 0
...

. . .
. . . 0

ln1

ln2

· · · lnn

R

dddddddddb

.

This decomposition is called the Cholesky decomposition and is commonly used in

the Monte Carlo method for simulating systems with multiple correlated variables.

Note, for our implementation in (4.5), L€ = � 1
2 � and µ = 0. The key point is that

through the simulation of independent standard normal variates, we can simulate

multivariate normal variables by X = µ + LZ where Z = (Z
1

, . . . , Zn) ≥ Nn(0, In)

denotes a vector of independent multivariate standard normal random variables.

Then a < µ + LZ < b so that L≠1(a ≠ µ) < Z Æ L≠1(b ≠ µ) because L has

positive diagonal elements and is triangular. Hence

Q

ccccccccccca

a1≠µ1
l11

a2≠µ2≠l21x1
l22
...

an≠µn≠
n≠1q
i=1

lnixi

lnn

R

dddddddddddb

<

Q

ccccccccccccca

Z
1

Z
2

...

...

Zn

R

dddddddddddddb

Æ

Q

ccccccccccca

b1≠µ1
l11

b2≠µ2≠l21x1
l22
...

bn≠µn≠
n≠1q
i=1

lnixi

lnn

R

dddddddddddb

.

Simulating variates from a univariate normal distribution can be done by the

Marsaglia polar method (G. Marsaglia, 1964) or the Box-Muller transform method

(Box and Muller, 1958). We use standard method in R provided by the qnorm
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function which uses the C (Ritchie et al., 1975) translation of Wichura (1988).

We simulate z
1

truncated to the region
1

a1≠µ1
l11

, b1≠µ1
l11

2
, then z

2

truncated on the

region (a2≠µ2≠l21z1
l22

, b2≠µ2≠l21z1
l22

) which is conditional on the simulated z
1

. This recur-

sion continues until zn is simulated resulting in a sample z from the distribution

TNn(0, In, a, b). The transformation x = µ + Lz gives a draw from the desired

distribution TNn(µ, �, a, b).

Algorithm 1 The GHK Simulator to generate samples from a truncated multivari-
ate normal distribution.
Input: Truncated multivariate Normal distribution parameters, µ, �, a, b.
Output: m samples of length n from TNn(µ, �, a, b).

1: L = chol(�), Û Cholesky decomposition
2: Generate m random values u Ω (u

1

, . . . , u
m

) where u
i

≥ U [0, 1],
3: Set x

1

Ω �≠1

1
u (�( b1≠µ1

l11
) ≠ �(a1≠µ1

l11
)) + �(a1≠µ1

l11
)
2
,

4: for i = 2, . . . , n
5: Compute lower bound c Ω �

1
(a

i

≠ q
i≠1

k=1

l
ik

z
k

)/l
ii

2
,

6: Compute upper bound d Ω �
1
(b

i

≠ q
i≠1

k=1

l
ik

z
k

)/l
ii

2
,

7: Generate u Ω (u
1

, . . . , u
m

) where u
i

≥ U [0, 1].
8: Set x

i

= �≠1(u (d ≠ c) + c),
9: end

10: Set z Ω µ + Lx,
11: Return z = (z(1), z(2), . . . , z(m)).

Using the GHK for large sample sizes has been viewed as di�cult (Wang et al.,

2012) and there are surprisingly not many examples of its use in the literature despite

the simplicity of the idea. For this work we have vectorised the implementation

across m columns rather than directly using m loops to increase e�ciency resulting

in a fast algorithm which is provided in pseudo-code in Algorithm 1. The R code is

provided in Appendix C.1.

This method samples directly from the target distribution and therefore is exact

resulting in a better estimator of the conditional expectation for the E-step than
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other Monte Carlo Markov Chain methods currently available (Wilhelm and Man-

junath, 2014). Details of the properties of the simulator are given in Börsch-Supan

and Hajivassilou (1990).

4.4 The M-step

Whilst an explicit solution to the M-step would be ideal and achieve convergence of

the parameter values faster, there is no closed form solution available. Numerical

optimisation routines should be used. For consistent results, a modified Nelder-Mead

optimisation, the Nelder-Mead-Kelley approach of Kelley (1999) is used from the

dfoptim package in R to complete the M-step (Varadhan et al., 2011). Care should

be taken to consider the parameter constraints of the Gaussian copula model due to

the ARMA(p, q) dependence structure, see Section 2.4. The full MCEM algorithm

is given succinctly in pseudo-code in Algorithm 2 where we denote the log-likelihood

¸(◊; y) as ¸Y(◊).
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Algorithm 2 A MCEM algorithm for the Gaussian copula model for discrete data.
Input:

Observed data y,
Estimated marginal distributions ‚F = ‚F(y) and ‚F≠ = ‚F(y ≠ 1),
Initial parameter values ◊(0)

copula

,
Number of Monte Carlo samples m,
A precision value for the stopping criteria prec.

Output:
Maximum likelihood estimates ‚◊

copula

of ◊
copula

.

1: Estimated marginals parametrically or non-parametrically,
2: Set lower truncation values a Ω �≠1(‚F≠),
3: Set upper truncation values b Ω �≠1(‚F),
4: i Ω 1,
5: while Â� ¸Y < prec

6: ÂQ(◊) Ω Q(◊, ◊(i≠1)) using current parameter values ◊(i≠1),
Û E-step

7: ◊(i) Ω arg max
◊

ÂQ(◊),
Û M-step

8: Â� ¸Y Ω |¸(◊(i); y) ≠ ¸(◊(i≠1); y)|,
9: i Ω i + 1,

10: end
11: ‚◊

copula

Ω ◊(i),
12: Return ‚◊

copula

.
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4.5 Practical considerations

As demonstrated by Wei and Tanner (1990), the number of Monte Carlo simulations

m should begin with a small value and increase as the MCEM algorithm runs to

allow the estimates to explore the parameter space; it should be large in the final

few iterations to reduce the Monte Carlo error in the E-step. The approximate value

of a local maximum is often easy to discern and further analysis with larger m can

then be carried out, if necessary, to refine the approximation.

The choice of the initial parameter values for the EM algorithm and MCEM

algorithm have the same concerns because every limit of an EM sequence ◊(i) is a

stationary point of ¸(◊; y). However it may be a local maximum rather than a global

maximum, i.e. the maximum likelihood estimate. The goal is to find the parameters

values which globally maximise the likelihood function. So in practice, we run the

algorithm several times with di�erent starting points. Increased confidence in an

MCEM procedure can be achieved by running the procedure with di�erent starting

values representative of the parameter space to allow for easy searching for multiple

modes and helps discover the landscape of the likelihood function. Also to note, the

starting values ◊(0) do not need to be close to the true ◊; but the EM algorithm

will converge very slowly if a poor choice of initial values ◊(0) is used. Indeed, in

some cases where the likelihood is unbounded on the edge of the parameter space,

the sequence of estimates {◊(i)} generated by the EM algorithm may diverge if ◊(0)

is chosen too close to the boundary.

Due to the simulation variability introduced in the E-step, the parameter updates

can still fluctuate after ‘convergence’ so it becomes di�cult to certify convergence of

{◊(i)} (Moller and Waagepetersen, 2003). The issue is expanded when the number of

parameters is impractical to monitor. Chan and Ledolter (1995) suggest monitoring

the change in likelihood along the sequence from ◊(i≠1) to ◊(i). Define the log-

likelihood of Y and X, log LY = ¸(◊; y) and log LX = ¸(◊; y) as ¸Y(◊) and ¸X(◊)
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respectively then

�¸Y(◊(i), ◊(i≠1)) = ¸Y(◊(i)) ≠ ¸Y(◊(i≠1)),

which can be estimated by

Â� ¸Y(◊(i), ◊(i≠1)) = ≠ log
A

1
m

mÿ

k=1

LX(x(k); ◊(i≠1))/LX(x(k); ◊(i))
B

, (4.9)

where
Ó
x(1), . . . , x(m)

Ô
is the sample from the conditional distribution of X | Y = y

using the current parameters ◊(i). When the estimated change in log-likelihood value

(4.9) is plotted against the number of iterations, convergence can be claimed when

the plot appears to fluctuate randomly about the abscissa, for example when the

absolute value of (4.9) is less than a precision value for the last 5 values.

4.6 Standard errors of estimates

The standard errors are required to assess the accuracy of the parameter estimates.

The variance of the maximum likelihood estimates can be derived from the inverse

of the negative Hessian matrix evaluated at the maximum likelihood estimates.

The Hessian is a dim(◊) ◊ dim(◊) matrix of second derivatives of the log-likelihood

function,

H(◊) = ˆ2

ˆ◊ˆ◊€ ¸Y(◊).

The negative of the Hessian is called the observed information matrix which we will

denote by I
Y

(◊). The standard errors are the square roots of the diagonal elements

of the inverse observed information matrix.

The EM algorithm and its variant, the MCEM algorithm, do not provide stan-

dard errors automatically for the estimates. The second derivative of the observed

log-likelihood ¸Y(◊) is too intensive to be computed directly since even the log-

likelihood evaluation contains 2n evaluations of the n-dimensional Gaussian distri-

bution function and so we must seek another approach using the complete data

log-likelihood ¸X(◊). Louis (1982) presented a formula for calculating standard
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errors using this approach. It was shown that the observed information matrix,

I
Y

(◊) = ≠ ˆ2

ˆ◊ˆ◊€ ¸Y(◊), when using the EM algorithm can be calculated through

¸X(◊) using

ˆ

ˆ◊
¸Y(◊) = E◊

C
ˆ

ˆ◊
¸X(◊) | y

D

,

≠ ˆ2

ˆ◊ˆ◊€ ¸Y(◊) = E◊

C

≠ ˆ2

ˆ◊ˆ◊€ ¸X(◊) | y
D

≠ E◊

C
ˆ

ˆ◊
¸X(◊) ˆ

ˆ◊€ ¸X(◊) | y
D

+ ˆ

ˆ◊
¸Y(◊) ˆ

ˆ◊€ ¸Y(◊). (4.10)

The last term in (4.10) is di�cult to evaluate because it involves the derivative of the

incomplete data log-likelihood. However the standard errors are required only for the

MLE ‚◊ and it can be taken as approximately zero when the MCEM algorithm stops.

To obtain the observed information matrix Chan and Ledolter (1995) approxi-

mate Louis’ formula (4.10) by Monte Carlo. The derivative of the complete data

log-likelihood is averaged over the Monte Carlo samples, to estimate the score and

observed Fisher information of the incomplete data in a similar way to (4.9).

Hence

ÊI
Y

(◊) = ≠ 1
m

mÿ

j=1

ˆ2¸X(◊; x(j))
ˆ◊ˆ◊€ ≠ 1

m

mÿ

j=1

A
ˆ¸X(◊; x(j))

ˆ◊

B A
ˆ¸X(◊; x(j))

ˆ◊€

B

+
Q

a 1
m

mÿ

j=1

ˆ¸X(◊; x(j))
ˆ◊

R

b
2

. (4.11)

so that the partial derivatives of the log-likelihood of an ARMA(p, q) model is re-

quired. As long as we can calculate ˆ

ˆ◊ ¸(◊; x) and ˆ

2

ˆ◊ˆ◊€ ¸(◊; x), the observed Fisher

information can be calculated and the standard errors subsequently.

The expressions of (4.11) can be evaluated numerically as in this work. Analytic

expressions for these terms can be found which would require the second derivatives

of the ARMA log-likelihood. Burshtein (1993) gives exact analytical expressions for

the likelihood and likelihood gradient of stationary ARMA(p, q) models, where the
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computational cost of the likelihood gradient requires (2p+6q+2)n+o(n) operations.

Burshtein’s method reduces the inverse and determinant of the n ◊ n covariance

matrix to those of smaller matrices of dimension m ◊ m, where m = max(p, q).

Other methods of calculating the analytic gradient of the ARMA(p, q) likelihood

involve the Kalman filter (Chevassu and Ortega, 2013) and similar to our approach,

although in a multivariate time series setting with missing values, Jonasson and

Ferrando (2008) uses the Cholesky decomposition.

However, these methods cannot be immediately applied as they assume that ‡2

Á

is a constant. For the Gaussian copula model, the Gaussian correlation matrix has

unit diagonals and therefore ‡2

Á

is a function of ◊. Hence one has to modify the

current methods with the complexity of considering the derivative of ‡2

Á

(◊), which

we discuss later in Section 6.6.2 and further in Appendix A.

4.7 Simulation under model conditions

In this section we present the results of a simulation study to illustrate the perfor-

mance of the theory in practice when applied to a Gaussian copula model with four

parameters. For the continuous ARMA model, the parameter accuracy improves as

the length of the time series n increases. To examine the accuracy as n increases

for our discretised ARMA model, we present 3 simulation studies with time series of

lengths n=250, n=500 and n=1000. We present the parameter estimates, bias, and

relative mean squared error for the fully parametric Gaussian copula model. We are

particularly interested in assessing the accuracy of the standard errors. The para-

metric model is used rather than the semi-parametric model to allow comparison

with the subsequent model fitting methods described in Chapters 5 and 6.

The Gaussian copula model used is specified by an ARMA(1,1) dependence

structure with parameters ◊
copula

= (a
1

, b
1

) = (0.7, ≠0.5) and negative binomial

marginals NB(s, fi) with parameters ◊
marg

= (s, fi) = (5, 0.5). We generate S =

1000 data sets from this model for each n.
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The computations are all carried out in the R environment and the first of

the two-stage estimation (Section 3.5) estimates the marginal parameters from the

independence likelihood and is carried out using the fitdistr function in the MASS

R package (Venables and Ripley, 2002). The upper and lower truncation points

required for the E-step of the MCEM algorithm are computed for each t = 1, . . . , n
as

‚k
t

= F
t

(y
t

≠ 1; ‚fi, ‚s) and ‚l
t

= F
t

(y
t

; ‚fi, ‚s).

The MCEM algorithm (Algorithm 2) is employed on the simulated data using

initial values (a
1

= 0, b
1

= 0) for ten iterations. The maximisation in the M-step

is carried out in the dfoptim package of the R software developed by Varadhan

et al. (2011). The estimated change in likelihood (4.9) is computed at each step

to monitor convergence. To aid convergence, the number of Monte Carlo samples

begins with m = 100 for the first five iterations and is increased to m = 500 for the

final five iterations. The mean and variance of the parameter estimates as well as

the bias, mean squared error and root mean squared error are calculated (Walther

and Moore, 2005). The MCEM estimation is run in parallel on a computer server

on each dataset and we record the computational time taken to run ten iterations.

The distribution of the timing taken for the S = 1000 simulations is displayed

using a violin plot in Fig. 4.1. The time scale is of the units hours. As expected we

see the computational time increasing with the length of the integer-valued data,

with average times of approximately 1.5, 3 and 5 hours respectively. The bottleneck

of the algorithm occurs at the high-dimensional matrix multiplication required for

(4.8). There is much variability in the timings for the time series of lengths n=250

and n=500. During sensitivity testing, the algorithm was very slow to run for longer

time series of greater than length n=1000 and also for larger values of m, however,

in this study we fixed m and selected moderate lengths of time series.

The distribution of the errors of the estimates ( ‚◊ ≠◊
true

) are shown in Fig. 4.2

for each parameter in ◊ = (a
1

, b
1

, s, fi). By investigating the spread of the errors

of MLEs in Fig. 4.2 we see that the estimates become closer to the true values as
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Figure 4.1: The computational time taken for the S = 1000 MCEM chains for
integer-valued time series of lengths n=250, n=500 and n=1000.

N=250

N=500

N=1000

0 5 10 15 20
Time (hours)

n increases. Fig. 4.2 shows that overall the parameters fi and s are consistently

accurately estimated for each of the sample sizes using the independence likelihood.

This is important because when fi and s are not estimated accurately, the estimation

of the dependence parameters in the MCEM algorithm will be a�ected consequently

(3.11). The whiskers of the distributions are slightly skewed for n=250 but become

more symmetric as the length of the time series increases.

Table 4.1 gives the mean maximum likelihood estimates and their associated

values of interest. As n increases, the mean values of the estimates become closer

to their true values. The variance of the sample estimates decreases two-fold as n
increases from n=250 to n=1000 and the bias is close to zero. Hence the MSE and

RMSE also decrease as n increases. Table 4.1 shows that for moderate to large time

series, the method works well and is reasonable for n=250.

The Gaussian copula model can be interpreted as borrowing the dependence of

the underlying time series for the observed integer-valued time series, see Section
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Figure 4.2: The distributions of error estimates for MCEM for S = 1000 simulated
series each of length n=250, n=500 and n=1000.
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True n=250 n=500 n=1000
a

1

=0.7 mean 0.676 0.677 0.685
var 0.022 0.017 0.010
bias -0.024 -0.023 -0.015
MSE 0.022 0.018 0.011
RMSE 0.149 0.133 0.103

b
1

=-0.5 mean -0.481 -0.482 -0.489
var 0.033 0.023 0.013
bias 0.019 0.018 0.011
MSE 0.033 0.023 0.013
RMSE 0.183 0.152 0.115

s=5 mean 5.280 5.140 5.068
var 1.405 0.676 0.269
bias 0.280 0.140 0.068
MSE 1.483 0.696 0.274
RMSE 1.218 0.834 0.524

fi=0.5 mean 0.508 0.504 0.503
var 0.003 0.001 0.001
bias 0.008 0.004 0.003
MSE 0.003 0.001 0.001
RMSE 0.054 0.038 0.025

Table 4.1: The MCEM simulation results for ARMA(1,1) dependence parameters
of the Gaussian copula model with negative binomial marginals (standard errors in
parentheses) applied to S = 1000 data sets.
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3.3. In a simulation study the underlying latent time series X is known. The exact

likelihood can be computed via a state-space representation of the ARMA process,

and the innovations and their variance found by a Kalman filter therefore standard

maximum likelihood estimation can be used for the dependence parameters. These

maximum likelihood estimates and their corresponding standard errors give an idea

of how close to the well-established ‘gold standard’ ARMA methods we can get

using the Gaussian copula model, allowing insight into the realistic accuracy of the

parameter estimates that can be achieved.

Fig. 4.3 shows the distribution of the standard error estimates of a
1

and b
1

of the

discretised ARMA (Gaussian copula model) applied to S = 1000 integer-valued data

sets compared to the standard errors of the continuous underlying ARMA model.

Let MY denote the estimates from the Gaussian copula model and MX denote the

estimates from the ARMA model. The navy, yellow and green represent the length

of time series as n = 250, 500, 1000 respectively.

Fig. 4.3 demonstrates that the standard error estimates of the discretised model

are favourably close to the estimates achieved if the underlying time series was

known. The standard errors of the continuous ARMA are slightly smaller with

fewer outliers but overall the di�erence in standard error distribution is negligible,

demonstrating the strength and robustness of the MCEM algorithm derived in this

chapter for this four parameter model of moderate length. Each MCEM algorithm

was started at a
1

= b
1

= 0 and ran for ten iterations only, with five using m = 100

and five using m = 500 and each chain wasn’t ran using di�erent starting values or

to ensure convergence was reached. This may explain the number of outliers in the

distribution of estimates. However we see that when the ARMA model is fit using

the R arima function that the outliers are not uncommon for time series of lengths

n=250 and n=500. The number of outliers for MY : MX for n = (250, 500, 1000)

are (3, 21, 13) : (5, 3, 3) for ‚a
1

and (8, 24, 10) : (5, 3, 3) for ‚b
1

.
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Figure 4.3: The distributions of the estimated standard errors of a
1

and b
1

from the
discrete data compared with the estimated continuous ARMA(1,1) standard errors
when the underlying continuous time series is known.
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4.8 Discussion

In this chapter, we have derived an MCEM algorithm to allow maximum likelihood

estimation of the Gaussian copula model dependence parameters. As common in

copula estimation, a two-stage approach has been implemented allowing practition-

ers to incorporate dependence into modelling discrete values over time.

We have also demonstrated the robustness of the MCEM method for estimation

by considering scenarios of di�erent length time series. In the four parameter model

used here, the MCEM chains converged to global maxima using initial values a
1

=

b
1

= 0 and ten iterations with m = 100, 500. However, a common criticism of

the EM algorithm is that convergence can be relatively slow. We note that the

computational time increases significantly for longer time series woth large m and

we have shown that for large n=1000, the timings can come close to 18 hours. This

may be due to memory allocation when parallelising the simulations. The minimum

time for convergence of a length n=1000 time series was 4.2 hours and for shorter

time series, the timings are much faster. Methods to accelerate the algorithm can

be used but they may sacrifice the stability of the EM algorithm (Lange, 1995).

Limitations of this method include the failure to fully account for dependence

when estimating the marginal parameters. However this is the ideal scenario and

the two-stage estimation presented here is widely accepted in copula estimation

(Xu, 1996; Joe, 2005). The independence likelihood allows inference to be made

about the marginal parameters (Varin et al., 2011). We conducted a round of

simulations which are not presented here for models using nonparametric marginals

and we obtained maximum likelihood estimates closer to the true values for the

dependence structure when a semi-parametric model was specified. An example

with non-parametric marginals is given in Chapter 7.

Table 4.2 shows the results when the importance sampling approach of Masarotto

et. al., (2012) is implemented using the R gcmr package (Masarotto and Varin,
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Table 4.2: Parameter estimates from the importance sampling approach of
Masarotto et al. for the S=1000 simulated data sets used for the MCEM algorithm
study.

True n=250 n=500 n=1000
a

1

=0.7 mean 0.632 0.660 0.677
var 0.053 0.013 0.004
bias -0.068 -0.040 -0.023
MSE 0.058 0.014 0.005
RMSE 0.241 0.119 0.071

b
1

=-0.5 mean -0.428 -0.458 -0.476
var 0.056 0.017 0.007
bias 0.072 0.042 0.024
MSE 0.062 0.018 0.008
RMSE 0.248 0.136 0.087

s = 5 mean 1.605 1.609 1.608
var 0.004 0.002 0.001
bias -3.395 -3.391 -3.392
MSE 11.531 11.498 11.505
RMSE 3.396 3.391 3.392

fi = 0.5 mean 0.196 0.198 0.202
var 0.002 0.001 0.000
bias -0.304 -0.302 -0.298
MSE 0.094 0.092 0.089
RMSE 0.307 0.303 0.299

2012). The timing of their algorithm which simulates the likelihood is much faster

than the MCEM algorithm we have presented, taking only a few minutes for a time

series of length n=1000. Although we cannot compete with the computational time,

the results from Table 4.1 are better in terms of mean, variance, bias, RMSE for

the S = 1000 simulated data sets used for the MCEM algorithm study. The mean

values of the estimates are closer to the true values while there is less bias in the

estimators and the RMSE is smaller in all cases compared with Table 4.1. Overall,

we achieve a higher level of accuracy at a computational cost.



Chapter 5

Estimation II: Approximate

Bayesian Computation

The computational complexity when estimating the Gaussian copula model has been

discussed in Chapter 3 and a MCEM algorithm derived in Chapter 4 to overcome the

di�culties of maximum likelihood estimation. The algorithm works well and allows

the model to be used in practice, however the running time becomes burdensome for

longer length time series and a large number of Monte Carlo samples. A likelihood-

free method for statistical inference of complex models is a natural step, which gives

a simulation-based solution.

Given the parameters, the model (3.8) is not di�cult to simulate from. It is

given by

Y
t

= F ≠1(�(X
t

)), t = 1, . . . , n, (5.1)

where F is the marginal distribution of Y
t

, t = 1, . . . , n and {X
t

} is a Gaussian

time series with variance/correlation matrix � (Section 3.3). By specifying an

ARMA(p, q) model for {X
t

}, the correlation matrix � is completely determined

by the parameters a
1

, . . . , a
p

, b
1

, . . . , b
q

. Denote the marginal parameters of F as

◊
marginal

then the model parameters are ◊ = (a
1

, . . . , a
p

, b
1

, . . . , b
q

, ◊
marginal

).

Approximate Bayesian Computation (ABC) is based on an acceptance-rejection

80
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algorithm. ABC methods simulate a large number of data sets using di�erent pa-

rameter values. The parameter values whose simulated data sets are similar, in

some sense, to the observed data set are saved and used as the basis of Monte Carlo

inference. ABC has two main applications: parameter estimation and model choice.

We use the former.

In this chapter we present an ABC algorithm for parameter estimation of the

Gaussian copula model. In Section 5.1 we give the main ideas of ABC. In Section

5.2 and 5.3 we describe a novel method to compare the similarity of integer-valued

time series in two stages. Section 5.4 presents the ABC algorithm and in Section

5.5, post-sampling techniques which have achieved great improvements elsewhere

are considered. Simulation studies are presented in Section 5.6 and we finalise this

chapter with a discussion in Section 5.7.

5.1 Introduction

The Bayesian approach to likelihood inference is based on the posterior distribu-

tion, that is the conditional distribution of the parameters given the observed data,

fi(◊|y). Using a prior density fi(◊) for the parameters ◊ and the likelihood fi(y|◊),

the posterior distribution of ◊ can be written using the Bayes Theorem as

fi(◊|y) Ã fi(y|◊)fi(◊),

up to a proportionality constant. The likelihood fi(y|◊) is intractable for the Gaus-

sian copula model in high-dimensions and MCMC methods don’t scale easily to

high-dimensions typical of time series (Panagiotelis et al., 2012).

Approximate Bayesian Computation is a Bayesian approach to likelihood-free

inference which generates samples from what is not necessarily the posterior dis-

tribution, but something close to it, i.e., sampling from an approximate posterior

distribution and hence its name. The simplest ABC algorithm simulates data are
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rejects those not similar enough to the observed data. Such rejection sampling

methods su�er from the ‘curse of dimensionality’, with the probability of rejection

increasing exponentially with the dimension. Therefore to increase the e�ciency of

the algorithm, the data are compared using summary statistics and the similarity is

quantified using a distance metric such as the Euclidean norm on the set of summary

statistics.

The initial ABC algorithm was proposed by Tavaré et al. (1997) and has the

following steps: Given observed data y from a multivariate distribution with prior

density fi(◊) for the parameters ◊, calculate a summary statistic S(y) of the data.

Then at each iteration,

a) sample a parameter vector ◊ú from the prior fi(◊);

b) simulate data yú from the model with parameters ◊ú;

c) calculate S(yú) and a distance measure d(S(y), S(yú)), and

d) accept ◊ú when the distance is less than a pre-determined value Á > 0.

The above is repeated until the desired number of ◊ú values have been collected.

The collection of accepted parameter values ◊ú can be taken as a random sample

of ◊ from an approximation to the true posterior distribution, that is sampled from

fi(◊|y).

The accepted parameter values ◊ú have a posterior density proportional to

fi(◊)
⁄

fi(yú|◊) (d(S(y), S(yú)) Æ Á) d yú, (5.2)

which (when a su�cient statistic S(y) is used) converges point-wise to the true

posterior fi(◊|y) as Á æ 0 (Prangle, 2011). We obtain the true posterior when

S(y) is a su�cient statistic because S(y) contains all the information about ◊ that

y does. Thus the ABC rejection algorithm produces approximately i.i.d. samples

from fi(◊|y) without the need to evaluate the likelihood fi(y|◊).
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If the threshold Á, when S(y) is a su�cient statistic, is zero then the ABC is exact

and we draw from the true posterior which would result in a very high rejection rate.

Alternatively, if Á is chosen to be large, such as infinity then the algorithm accepts

every proposed set of parameters and we simply sample from the prior distribution.

Decreasing Á would lead to a better concentration of the posterior density but the

choice of the threshold is mostly a matter of computational power with the expenses

being the size of the output or at a higher computing cost.

The choice of summary statistic S(y), the distance metric d as well as the thresh-

old Á a�ect the accuracy of the ABC estimates. There is a trade o� between these to

ensure a good selection of accepted values are accepted su�ciently often. There is

little guidance on how to choose summary statistics and distance measures for com-

plex models, despite a large amount of attention in the literature (Park et al., 2015;

Stoehr et al., 2014; Marin et al., 2014; Fearnhead and Prangle, 2012; Aeschbacher

et al., 2012; Prangle, 2011; Blum, 2010; Nunes and Balding, 2010).

The lack of guidance is due to the choice of summary statistics being specific to

each application. Su�cient statistics for the model are ideal but typically a vector

of informative statistics is used. For example the sample mean might be informative

about a location parameter. We aim to balance capturing the information of the data

against having low dimension to ensure a large enough acceptance rate. The choice is

crucial to the e�ciency and accuracy of the output (Prangle, 2011). Fearnhead and

Prangle (2012) suggested a semi-automatic approach to choosing summary statistics

and Park et al. (2015) proposed a non-parametric ABC paradigm using maximum

mean discrepancy to quantify the similarity without using summary statistics.

For the Gaussian copula model applied to integer-valued time series data, we

take an approach of summarising both marginal and dependence properties in a two

part test; one test to compare the marginal distributions and one test to compare

the dependence structures. The tests are independent and we accept ◊ú only if

both tests are satisfied. In Section 5.2 we propose a method of comparing the
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marginal distributions taking advantage of the integer-valued nature of the data,

whilst in Section 5.3 we describe the approach we take to comparing two dependence

structures through their second order structure.

5.2 Comparing marginal distribuitons

For integer-valued data, we can detect a discrepancy between two time series marginal

distributions of time series by counting the number of occurrences of each outcome.

Thus the marginal distribution for y
1

, . . . , yn can be estimated by the sample pro-

portions

‚p
j

= 1
n

nÿ

j=1

(y
j

= j), j = 0, 1, 2, . . . . (5.3)

These sample proportions are used as the summary statistics S(y) in the first part

of the test in the ABC algorithm.

To accept the set of parameter values ◊ú, the distance between the set of summary

statistics S(y) and S(yú) must be less than a pre-specified threshold. Any distance

metric or function which quantifies the discrepancy numerically can be used and

many applications use the Euclidean norm,

d
E

(‚p, ‚pú) =
Q

a
ÿ

j

(‚p
j

≠ ‚pú
j

)2

R

b
1/2

. (5.4)

However, the Kullback-Leibler statistic is a commonly used statistic to measure the

dissimilarity between two probability distributions and this is the approach we take.

The Kullback-Leibler statistic is given by

d
KL

(‚p, ‚pú) =
ÿ

j

log
A

‚p
j

‚pú
j

B
‚p

j

. (5.5)

The statistic is defined only if ‚pú
j

= 0 implies ‚p
j

= 0, for all j (absolute continuity).

Whenever ‚p
j

is zero the contribution of the j
th term is interpreted as zero because

lim‚pjæ0

‚p
j

log(‚p
j

) = 0.
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This method of comparing marginal distributions of time series through sam-

ple proportions allows for the dependence between observations. Furthermore, the

asymptotic distributions of the sample proportions ‚p
0

, ‚p
1

, . . . , can be used to derive

a formal hypothesis test to test the equality of sample proportions, however this is

unnecessary for the ABC algorithm.

5.3 Spectral comparison of two stationary time

series

For the second part of the rejection test to compare two integer-valued times series,

we propose a comparison of the second order properties and we take a spectral

domain approach. That is, we work with the Fourier transform of the data, rather

than the time series data to compare their dependence structures. The observed

integer valued time series can be converted to the frequency domain by the discrete

Fourier transform (DFT) which can be calculated using the e�cient fast Fourier

transform (FFT).

The spectrum of a stationary time series is the distribution of variance of the

series, as a function of frequency. It contains all the information about its second

order properties including linear dependence. The classification of time series using

spectral analysis approaches have been considered by Coates and Diggle (1986),

Diggle and Fisher (1991), Dargahi-Noubary (1992), Chandler (1997), Diggle and al

Wasel (1997), Kakizawa, Shumway and Taniguchi (1998), Maharaj (2002), Caiado,

Crato and Peña (2006), among others.

The spectrum is a non-negative and integratable function f(Ê) on [≠fi, fi) such

that the autocovariance function R(r) can be written as

R(r) =
⁄

fi

≠fi

eirÊ f(Ê) d Ê, r œ Z. (5.6)
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If qŒ
r=≠Œ |R(r)| < Œ, then f(Ê) can be written in terms of its autocovariances as

f(Ê) = 1
2fi

Œÿ

r=≠Œ
R(r)e≠iÊr, for ≠ fi Æ Ê < fi.

Therefore the linear dependence structures i.e., second-order properties of the time

series can be compared through comparing spectra. Let f(Ê) and f ú(Ê) denote

the spectrum of the observed and simulated time series respectively. We will now

describe how we obtain estimates of the spectra at a fixed set of frequencies,

Ê
j

= 2fij

n , j = 0, 1, . . . , n ≠ 1,

before we derive a test to compare the set of estimated frequencies in Section 5.3.1.

The vector of spectral estimates f(Ê
j

) will be considered as one set of summary

statistics S(y) in the ABC algorithm and the test derived in Section 5.3.1 will be

considered as the distance metric for this set.

Various methods have been developed to estimate the spectrum from an observed

time series (Chatfield, 2013, Ch. 7). The simplest estimator of the spectral density

is the periodogram, given by

In(Ê) = 1
2fin

-----

nÿ

t=1

y
t

e≠iÊt

-----

2

.

The periodogram is an asymptotically unbiased estimator, however it is not a con-

sistent estimator of the spectral density (Priestley, 1981). We can obtain consistent

estimator in one of two ways:

1) by smoothing the periodogram using a spectral window W (◊)

‚f(Ê) =
⁄

fi

≠fi

In(Ê)W (Ê ≠ ◊) d ◊,

or equivalently

2) by using weighted sample autocovariances ‚R(r) as follows:

‚f(Ê) = 1
2fi

n≠1ÿ

r=≠(n≠1)

⁄(r) ‚R(r)e≠irÊ, (5.7)
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where ⁄(r) = k(⁄/M) is a lag window with scale parameter M and ‚R(r) is the

sample autocovariance at lag r. The scale parameter M controls the bandwidth of

the spectral window given by

W (◊) = 1
2fi

n≠1ÿ

r=≠(n≠1)

⁄(r)e≠ir◊, (5.8)

and thus M controls the degree of smoothing. There are many di�erent forms of

⁄(r) which lead to consistent estimates of ‚f(Ê) .

The Bartlett-Priestley spectral window (Priestley, 1981, p. 444) has been shown

to be optimal among a class of windows, in the sense of the smallest mean square

error of the estimated spectral density function. Properties of the window include:

it is non-negative valued; it integrates to one; it has a peak at ◊ = 0, and has support

on (≠fi/M, fi/M ]. The Bartlett-Priestley lag window generator is given by

k(r) = 3
(fir)2

A
sin (fir)

fir
≠ cos (fir)

B

, r = 0, 1, . . . , n ≠ 1,

with corresponding spectral window (5.8) given by

W (◊) =

Y
____]

____[

3M

4fi

Q

a1 ≠
A

M◊

fi

B
2

R

b if | fi

M
| Æ ◊,

0 if |◊| >
fi

M
.

(5.9)

In theory we require N/M æ Œ as N æ Œ for ‚f(Ê) to be consistent.

The asymptotic variance of the spectral estimates using a Bartlett-Priestley win-

dow (5.9) (Priestley, 1981, p. 463) is

Var
1

‚f(Ê)
2

¥ 6M

5n f 2(Ê)(1 + ”(Ê)),

where

”(Ê) =

Y
__]

__[

1 Ê = 0, fi,

0 Ê ”= 0, fi,

(5.10)
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With regard to deciding the degree of smoothing, the optimal choice of bandwidth

M in the sense of the relative mean square error is

M =
A

8fi4n
15B4

B 1
5

,

(Priestley, 1981, p. 515) where the bandwidth

B = 2
3

inf
Ê

|f(Ê)/f ÕÕ(Ê)|1/2

4
,

is roughly the width of the narrowest peak. However, we do not have prior knowledge

of the spectral bandwidth and therefore we take an empirical approach to selecting

M ; beginning with large M and decreasing until a suitable degree of smoothing is

observed. Typically around M =
Ô

n works well.

In the next section, we derive a test to reject simulated parameter values ◊ú in

the ABC algorithm if the spectrum of the simulated time series f ú(Ê) is su�ciently

di�erent to the spectrum f(Ê) of the observed integer-valued time series. For the

application of the ABC algorithm, this is the same as defining the summary statistics

as the set of estimated spectral estimates at the fixed set of frequencies S(y) = ‚f(Ê
j

),

j = 0, . . . , L ≠ 1. Let Ê
j

be the set of fixed frequencies of the form Ê
j

= 2fij

L

where L

is a fixed positive and even integer and suitably smaller than n. The test derived in

Section 5.3.1 is based on an ANOVA test and makes the implicit assumption that

the frequencies are independent.

That is we require the spectral estimates at fixed frequencies, say Ê
1

and Ê
2

for

Ê
1

”= ±Ê
2

, to be asymptotically uncorrelated (Priestley, 1981, p. 455),

lim
næŒ

cov( ‚f(Ê
1

), ‚f(Ê
2

)) = 0.

Smoothing introduces correlation between neighbouring ordinates and by consider-

ing the covariance when n is large but finite,

cov( ‚f(Ê
1

), ‚f(Ê
2

)) ¥ 2fi

n

⁄
fi

≠fi

f 2(◊)Wn(Ê
1

≠ ◊)Wn(Ê
2

≠ ◊) d◊, (5.11)
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we can see that when two frequencies are su�ciently close, |Ê
1

≠ Ê
2

| is the same

order of magnitude as the width of spectral window. In this case the integral is not

small and the spectral estimates will be correlated.

The spectral estimates corresponding to this window will be e�ectively uncor-

related if the separation between frequencies is greater than the bandwidth of the

window 2fi/M . The distance between two fixed frequencies is 2fi/L and therefore

for uncorrelated spectral estimates we require 2fi/M Æ 2fi/L, i.e.,

L Æ M.

5.3.1 A spectral comparison test

In this section, under the assumption of stationarity, we test the equality of two

spectra at a fixed set of frequency points Ê
j

and the null hypothesis is that the two

time series have identical spectra f(Ê) = f ú(Ê) for all Ê œ [≠fi, fi). Priestley and

Rao (1969) give a test for stationarity which uses estimated evolutionary spectra and

tests the dependence on time and frequency using a two-way analysis of variance

procedure when the variance is known. We simplify the test by omitting the time-

dependence part to compare the spectral estimates of two time series at a fixed

set of frequency points. Here we give the steps of the test before we describe the

derivation in Section 5.3.2.

The procedure we take for comparing two spectra of integer-valued time series

y and yú is as follows:

1. Estimate the spectra f(Ê) and f ú(Ê) at a set of L fixed frequencies Ê
j

for

j = 0, 1, . . . , L ≠ 1.

2. Take a log transform of the estimates.

3. Calculate the asymptotic variance of the log spectral estimates.

4. Taking the frequency and the series ID as factors, compute a ‰2-statistic T and

compare it with a critical value.
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The test statistic for testing the null hypothesis that two time series have identical

spectra is

T = 1
4‡2

L≠1ÿ

j=0

3
log ‚f

32fij

L

4
≠ log ‚f ú

32fij

L

44
2

, (5.12)

where ‚f is the smoothed periodogram (5.7) evaluated at Ê
j

and ‡2 is the variance

of log ‚f(Ê) (5.13) which is not dependent on Ê (Priestley, 1981). The distribution

of T under the null hypothesis is ‰2

L/2+1

and L is the number of fixed frequencies

Ê
j

.

5.3.2 Derivation of test statistic T

The test is based on the likelihood ratio principle. The probability distribution of

the log-likelihood ratio test statistic, assuming that the null hypothesis is true, can

be approximated using a ‰2 distribution.

Jenkins (1961) suggested that a logarithmic transform would bring the distri-

bution of the spectral estimates ‚f(Ê
j

) closer to normality and Priestley and Rao

(1969) state that although this statement was not substantiated its validity is ren-

dered highly plausible due to analogous result by Kendall and Stuart (1966). The

logarithmic transform ensures the asymptotic variance (5.10) of the log spectral

estimate is

Var
1
log ‚f(Ê)

2
¥ 6M

5n (1 + ”(Ê)), (5.13)

which is constant except at Ê = 0, fi. Following Priestley and Rao (1969), let

Y
ij

= log ‚f(Ê
ij

) + Á
ij

,

where i denotes the spectrum of time series with i = 1 for the observed y and i = 2

for the simulated time series yú at Ê
j

= 2fij

L

, j = 0, . . . , L/2 with E(Á
ij

) = 0 and

var(Á
ij

) = ‡2(1 + ”(Ê)). The model can be written as

Y
ij

= –
i

+ —
j

+ “
ij

+ Á
ij

,
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for i = 1, 2 and j = 0, 1, . . . , L/2, where –
i

, —
j

and “
ij

are the main e�ects for factor

i and j and the interaction term respectively. We test the null hypothesis

H
0

: –
i

= “
ij

= 0, i = 1, 2, j = 0, 1, . . . , L/2,

against the alternative

H
1

: –
i

”= 0 or “
ij

”= 0, for some i and j.

Under the null hypothesis the model becomes

y
ij

= —
j

+ Á
ij

, i = 1, 2, j = 0, 1, . . . , L/2.

Denote the model under the null and alternate hypothesis as M
0

as M
1

respectively.

Due to the periodicity ‚f(Ê
j

) = ‚f(Ê
L≠j

) for Ê
j

= 2fij

L

, j = 0, . . . , L/2, the spectral

estimates for j and L ≠ j have the same value and so we include all the frequency

points j = 0, . . . , L ≠ 1. The maximised log-likelihood values are

¸
1

= ≠L

2 log(2fi‡2) ≠ log 2,

¸
0

= ≠ 1
2‡2

2ÿ

i=1

L≠1ÿ

j=0

1
y

ij

≠ ‚—
j

2
2 ≠ L

2 log(2fi‡2) ≠ log 2,

where
‚—

j

= y
1j

+ y
2j

2 .

The likelihood ratio statistic is

T = ≠2 (¸
1

≠ ¸
0

),

= 1
2‡2

2ÿ

i=1

L≠1ÿ

j=0

3
y

ij

≠ y
1j

+ y
2j

2

4
2

,

= 1
2‡2

L≠1ÿ

j=0

I3
y

1j

≠ y
2j

2

4
2

+
3

y
2j

≠ y
1j

2

4
2

J

,

= 1
8‡2

L≠1ÿ

j=0

Ó
(y

1j

≠ y
2j

)2 + (y
2j

≠ y
1j

)2

Ô
,

= 1
4‡2

L≠1ÿ

j=0

1
log ‚f

1

(Ê
j

) ≠ log ‚f
2

(Ê
j

)
2

2

.
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The asymptotic variance of log ‚f
1

(Ê
j

) ≠ log ‚f
2

(Ê
j

) is 2‡2 or 4‡2 as appropriate

and therefore the test statistic T is a weighted sum of squares of the di�erences

log ‚f
1

(Ê
j

) ≠ log ‚f
2

(Ê
j

), j = 0, . . . , L/2 with weights equal to the reciprocals of their

asymptotic variances.

Therefore the test statistic T has a ‰2 distribution with L/2 + 1 degrees of

freedom under the null hypothesis of identical spectra,

T = 1
4‡2

L≠1ÿ

j=0

3
log ‚f

1

32fij

L

4
≠ log ‚f

2

32fij

L

44
2 .

≥. ‰2

L
2 +1

if f
1

© f
2

.

The distribution of the test statistic T (5.12) under the null hypothesis is known

and therefore a formal threshold value can be determined by the critical value of

‰2

L/2+1,–

where – is the acceptable level of significance. However, it is not necessary

for the ABC framework.

Standard practice is to pre-determine the number of simulated datasets and run

the ABC algorithm, accepting each proposed parameter sets and computing the

distance metric. Then post-sampling we select Á as a small percentile of the simu-

lated distances d(S(y), S(yú)) < Á. This can then be followed by some adjustments

discussed in the Section 5.5 which have achieved major improvements. We modify

this approach by setting a moderate threshold in the algorithm to ensure we don’t

save parameters far away so that a su�cient number of ‘good ’ estimates are in

the sample. This is equivalent to assigning zero weight to these parameter values

and will not change the weighted posterior estimates except near values of Á where

parameter values would be in the tails of the posterior density but our interest is in

the weighted means (5.14).

5.4 ABC for parameter estimation

In summary, the previous sections have proposed a two-stage test to compare two

integer valued time series. The first test of Section 5.2 proposes using sample pro-

portions as summary statistics with any distance metric d and the second test of
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Section 5.3 proposes using spectral estimates as summary statistics and derived a

specific metric T to compare the second order properties of the time series in a more

formal manner. Denote the summary statistics of sample proportions as S
1

(y) and

the summary statistics of spectral estimates as S
2

(y).

The algorithm to implement the approximate Bayesian computation for the

Gaussian copula model (5.1) is given in Algorithm 3.

Algorithm 3 An approximate Bayesian computation (ABC) algorithm for the

Gaussian copula model for discrete data.
Input: Observed integer-valued time series data y of length n,

Prior density distributions for parameters ◊ = (a
1

, . . . , a
p

, b
1

, . . . , b
q

, ◊
marginal

),

Number of desired iterations, n œ Z,

Pre-determined moderate thresholds Á
1

, Á
2

.

Output: An i.i.d. sample of ◊ú with corresponding d(S(y), S(yú)) and S(yú) values.

1: while i < n,

2: Sample parameter vector ◊ú from prior fi(◊),

3: Simulate data yú from the model, conditional on ◊ú,

4: Set D
1

æ d(S
1

(y), S
1

(yú)) where S
1

as (5.3) and d as (5.5),

5: Set D
2

æ T (S
2

(y), S
2

(yú)) where S
2

as (5.7) and T as (5.12),

6: If both D
1

< Á
1

and D
2

< Á
2

then save (◊ú, S(yú), D
1

, D
2

).

7: end

8: Return (◊ú, S(yú), d(S
1

(y), S
1

(yú)), T (S
2

(y), S
2

(yú))) such that D
1

< Á
1

and

D
2

< Á
2

.

Choice of priors in step 2

The parameter values are sampled from probability distributions. We assume sta-

tionarity and invertibility for the Gaussian copula model with time dependence.

Therefore for the ARMA dependence parameters, a simple prior distribution for
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a = (a
1

, . . . , a
p

) and b = (b
1

, . . . , b
q

) would be a uniform prior over the area of the

stationarity constraints (2.3). For example for AR(2) or MA(2), simple priors would

be a uniform prior over the triangles,

≠ 2 < a
2

< 2, a
1

+ a
2

< 1, a
2

≠ a
1

< 1.

and ≠ 2 < b
1

< 2, b
1

+ b
2

< 1, b
2

≠ b
1

> ≠1.

The naive approach to sampling would be to sample from uniform priors and reject

samples outside of the stationarity regions. However, sampling using a rejection

approach is ine�cient and more computationally e�cient methods should be used.

A standard method for simulation ARMA(p,q) parameters based on the beta distri-

bution for partial autocorrelations can be used (Jones, 1987).

The Gaussian copula model lends itself naturally to ABC methods because for

random variables Y
t

in the Gaussian copula it can be shown (Section 3.3) that

Y
t

= F ≠1(�(X
t

)),

where {X
t

} follows an ARMA model. For simulation, we use the recursive formula

of the ARMA model because of its easiness and simplicity but without the ARMA

assumption, simulation is not as e�cient. We could simulate from a Gaussian copula

model by the following steps (Embrechts et al., 2005, p. 193):

1. Perform a Cholesky-decomposition � = L€L.

2. Simulate i.i.d. standard normal pseudo random variables X Õ
1

, X Õ
2

, . . . , X Õ
n.

3. Compute (X
1

, X
2

, . . . , Xn) = X = LXÕ from XÕ = (X Õ
1

, X Õ
2

, . . . , X Õ
n).

4. Set U
t

= �(X
t

), t = 1, . . . n where � is the standard normal cumulative

distribution function.

5. Return Y
t

= F ≠1(U
t

), t = 1, . . . n where F is the marginal cumulative distri-

bution function of Y
t

.

Using the ARMA model, the steps 1-3 are avoided.
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It should be noted that in general, copula models lend naturally to ABC methods

and are not restricted to the Gaussian model. This natural idea is gaining traction

for other copula models and a recent paper (Grazian and Liseo, 2015) uses the

ABC theory with an empirical likelihood to estimate copulas non-parametrically.

However, our interest is in parameter estimation for the fully parametric Gaussian

copula model.

5.5 Post-sampling adjustment methods

Estimation of the posterior distribution can be improved by the use of regression

techniques. Introduced by Beaumont et al. (2002) the idea is to give accepted values

with smaller distances a larger weighting and reduce the approximation error due

to choosing non-zero threshold value Á. The practice is as follows:

1. weight the parameters according to the value of d(S(y), S(yú)); and

2. adjust the parameters by using

A) local-linear regression,

B) local nonlinear regression or,

C) local-generalised linear regression,

as appropriate, to weaken the e�ect of the discrepancy between S(y) and S(yú) or

to correct for heteroskedasticity.

Simulations that closely match S(y) can be given more weight by assigning

K
Á

(d(S(y), S(yú))) to each simulation (◊ú, S(yú)). The ABC posterior density in

(5.2) is the simplest case of an ABC algorithm in which equal weight is given for

each accepted value i.e., a uniform kernel on U(≠Á, Á) is specified. For the general

class of ABC algorithms the posterior density is

fi
ABC

(◊|y) Ã fi(◊)
⁄

fi(yú|◊)K
Á

(d(S(y), S(yú))) dyú,

where K
Á

is a density kernel with bandwidth Á for any Á > 0. The kernel K
Á

(u) for

d-dimensional vector u such that d is the dimension of S(y), integrates to 1 and can
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be written as K
Á

(u) = Á≠dK(u/Á) where for simplicity, it is assumed max K(u) = 1.

The uniform, Epanechnikov and Gaussian kernel are most common but any can be

used. The weighted mean ◊̄ú
w

for each parameter in ◊ú is

◊̄ú
w

=
q

n

i=1

◊ú
i

K
Á

(d(S(y)S(yú
i

)))
q

n

i=1

K
Á

(d(S(y), S(yú
i

))) . (5.14)

Let W be a diagonal matrix with ith element given by K
Á

(d(S(y), S(yú)) giving

more weight to the parameters with d(S(y), S(yú)) small. There is no analytical

equivalent to the standard error of the mean in weighted statistics and therefore

numerical approximations must be used to compute an estimate of the standard

error of the weighted dataset. A simple approximation using the weighted mean

(5.14) can be found using

Var
w

(◊ú) =
nÿ

i=1

A

w
i

(◊ú ≠ ◊̄ú
w

)2 ◊
A q

n

i=1

w
i

(q
n

i=1

w
i

)2 ≠ q
n

i=1

w2

i

)

BB

. (5.15)

However, Cochran and Horne (1977) compares three methods from the literature

with a standard method based on bootstrapping and gave results that were not

statistically di�erent from those of bootstrapping. The analytic formula that is

closest to bootstrapping is

Var
w

(◊ú) = n

(n ≠ 1)(q
n

i=1

w
i

)2

◊
A

nÿ

i=1

(w
i

◊ú
i

≠ w̄◊̄ú
w

)2 ≠ 2◊̄ú
w

nÿ

i=1

(w
i

≠ w̄)(w
i

◊ú
i

≠ w̄◊̄ú
w

) + ◊̄ú2

w

nÿ

i=1

(w
i

≠ w̄)2

B

,

(5.16)

and is suggested to be the method of choice for routine computing of the standard

error of the weighted mean (Gatz and Smith, 1995). This is the method we follow

to compute the standard errors of a weighted dataset.

An alternative to a local mean adjustment is to do a local linear-regression of ◊ú
i

on S(yú
i

)≠S(y). The posterior density is a conditional density and can be described

for some intercept – and vector of regression coe�cients —,

◊ú
i

= – + —(S(yú
i

) ≠ S(y))€ + ‘
i

, i = 1, . . . , n,
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where the ‘
i

are uncorrelated with mean zero and common variance. The least

squares estimates of – and — are found by minimising
nÿ

i=i

1
◊ú

i

≠ – ≠ —((S(yú
i

) ≠ S(y))€)
2

2

K
Á

(d(S(yú
i

), S(y))).

Then the regression-adjusted sample can be taken as a draw from fi(◊|S(y)) (Nott

et al., 2014) as

◊ú
i,A

= ◊ú
i

+ (S(y) ≠ S(yú
i

)) ‚— ¥ ‚– + ‚‘
i

,

where the local-constant regression case (with — = 0) corresponds to the local

mean adjustment. In local linear approach, the choice of Á involves a bias-variance

tradeo� since increasing Á reduces variance due to a larger sample size for fitting

the regression, but also increases bias arising from departures from linearity and

homoscedasticity (Beaumont et al., 2002).

Further variations of regression corrections have been proposed when the linear-

ity and constant variance assumption are not appropriate. Blum (2010) proposes

to model both the location and the scale of the ◊
i

using a nonlinear conditional

heteroscedastic model. The details are given in Blum (2010) and the adjusted pa-

rameters are given by

◊ú
i,B

= „m(S(y)) + (◊ú
i

≠ „m(S(yú
i

))
‚‡(S(y))
‚‡(S(yú

i

)) , i = 1, . . . , n,

where „m(S(yú
i

)) is the estimated conditional expectation E[◊ú|S(y) = S(yú
i

)] and
‚‡2(S(yú

i

)) denotes the estimated conditional variance Var[◊ú|S(y) = S(yú
i

)]. Blum

(2010) investigates the asymptotic properties of regression correction and the method

is provided in the R software package nnet. Extending this, Leuenberger and Weg-

mann (2010) use generalised linear models and weight all the accepted parameters

similar to a Gaussian linear approximation in an inverse type regression. The details

are given in Leuenberger and Wegmann (2010) with accompanying software named

the ABCtoolbox written by Wegmann et al. (2010).
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Example

To illustrate the theory we have presented and demonstrate the improvements that

can be gained from post-sampling adjustments, we give an example using a simulated

dataset. A Gaussian copula model with negative binomial marginals (fi = 0.3, s = 3)

and ARMA(1, 1) dependence (a
1

= 0.7, b
1

= ≠0.5) is used to simulate a dataset

of length n=2000. We compute the sample proportions S
1

(y) and the spectral

estimates S
2

(y) using the Bartlett-Priestley window with a bandwidth parameter of

M = 10 and to ensure the covariance of the spectral estimates are close to zero we

require L Æ M (5.11) where L sets the spacing of the fixed frequencies Ê
j

= 2fij/L.

We let L = 10 resulting in L/2 + 1 = 6 dependence summary statistics in S
2

(y)

(Section 5.3).

The ABC algorithm (Algorithm 3) is employed taking simple prior distributions,

fi(a
1

) = U [≠1, 1], fi(b
1

) = U [≠1, 1], fi(s) = U(0, 50], fi(fi) = U [0, 1].

We compute the metric T (5.12) on the spectral estimates and a Kullback-Leibler

statistic (5.5) on the sample proportions. We run the algorithm until n = 1000

samples have been obtained and to save memory and ensure we do not save un-

necessary simulated values far from the observed data, a moderate threshold of

Á
d

= 0.2 and Á
T

= 10 is chosen (by preliminary testing) i.e., d(S
1

(y), S
1

(yú)) Æ 10

and T (S
2

(y), S
2

(yú)) Æ 0.2. Parallel computing is implemented for the algorithm

which vastly decreases the computational time. For a time series of length n=2000,

the time taken to obtain 10 samples is approximately two hours.

Fig. 5.1 shows the joint posterior densities for the accepted pair of copula and

marginal parameter respectively. The range of axis represents the priors and we see

they perform well, in particular the parameter s.
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Figure 5.1: Plots of the joint posterior densities (a
1

,b
1

) and (s,fi) for the ABC
algorithm with Á

d

= 10 and Á
T

= 0.2. The true values are indicated by a
circle.

Fig. 5.2 shows the accepted parameter values in grey plotted against

their associated distance values (T for the copula parameters and d for the

marginal parameters). The 0.1 quantile of the distance metrics are plotted in

blue where the narrowing of the blue points around the troughs indicate the

summary statistics are informative for the parameters. Fig. 5.2 suggests that

perhaps a threshold of lower than 10 could have been used for T to tighten

the range of a
1

and b
1

values accepted. However the trough is centred at the

true value suggesting the regression adjustments will work well.
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Figure 5.2: Output of n = 1000 parameter values of the ABC algorithm for the four

parameter Gaussian copula model with true values (a
1

= 0.7, b
1

= ≠0.5, s = 3, fi =

0.3). The 0.1 quantile values are shown in navy blue.
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Figure 5.3: The posterior densities for the ABC output with the coloured lines

corresponding to the 0.01, 0.05, 0.10 and 0.25 quantiles of the distances T for the

parameters a
1

and b
1

.
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The posterior densities for the ABC output for a
1

and b
1

are given in Fig. 5.3

corresponding to 0.01, 0.05, 0.10 and 0.25 quantiles of the distance statistic T . There
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is a clear improvement as the distance metric decrease suggesting that weighting

the smaller distances with larger weights will improve the posterior mean estimates

further.

The regression adjustments of Section 5.5 are applied to the output of the

n = 1, 000 samples. Table 5.1 gives the mean of the raw ABC output and the

weighted means of the regression adjusted values (5.14) and standard errors (5.16).

All adjustments use the Epanechnikov kernel for weighting and the upper panel in-

cludes all n = 1000 samples and the lower panel includes the 0.1 quantile of values,

i.e. n = 100. We see the algorithm performs well in all cases and there is a clear

improvement with values getting closer to their true values after the post sampling

adjustments. We see a reduction in the standard errors compared with the unad-

justed estimates. We acknowledge that the reduction in standard errors could be

sensitive to the choice of smoothing parameters in the regression adjustment and

further work would assess the e�ect of this.

Table 5.1: The parameter estimates using the ABC algorithm and their standard
errors for the Gaussian copula model with ARMA(1,1) dependence and negative
binomial marginal distributions with true values are a

1

= 0.7, b
1

= ≠0.5, fi = 0.3
and s = 3.

Method a
1

= 0.7 b
1

= ≠0.5 fi = 0.3 s = 3
mean sd mean sd mean sd mean sd

n = 1000
Unadjusted 0.674 (0.14) -0.484 (0.17) 0.319 (0.06) 3.868 (1.46)
Linear adjust 0.706 (0.08) -0.519 (0.10) 0.297 (0.01) 3.033 (0.01)
Nonlinear adjust 0.723 (0.07) -0.524 (0.08) 0.288 (0.01) 2.797 (0.01)

0.1 quantile
Unadjusted 0.691 (0.11) -0.493 (0.13) 0.288 (0.02) 2.782 (0.36)
Linear adjust 0.715 (0.05) -0.516 (0.08) 0.283 (0.01) 2.774 (0.01)
Nonlinear adjust 0.695 (0.03) -0.481 (0.05) 0.290 (0.01) 2.831 (0.01)
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5.6 Simulation under model conditions

To investigate the robustness of the model and to examine the e�ect on n on the

application, we carry out a simulation study using S = 100 time series of lengths n =

100, 250, 500, 1000, 2000 from the Gaussian copula model of the previous example

with negative binomial marginals (fi = 0.3, s = 3) and ARMA(1, 1) dependence

(a
1

= 0.7, b
1

= ≠0.5). We also compare our ABC method for parameter estimation

against Masarotto et al. (2012)’s importance sampling method from the gcmr R
package (Masarotto and Varin, 2012). The mean, standard error, bias and RMSE

are presented in Table 5.2.

Table 5.2 shows as n increase the estimates improve for each method. The

regression adjustments improve the mean values and reduce the variance values sig-

nificantly. Although the ABC algorithm does not compare to the gcmr for compu-

tational time, by comparing the ABC output with the importance sampling output

we see that the ABC algorithm with the local nonlinear regression adjustment of

(Blum, 2010) outperforms the gcmr in each scenario for n Ø 250 in terms of the

mean estimates are closer to the true values and smaller regression adjusted sample

variances.



Table 5.2: ABC Simulation Study of copula parameters for di↵erent length n.
a1 = 0.7 b1 = �0.5

Length Method mean var bias MSE RMSE var(ba1) mean var bias MSE RMSE var(

bb1)

n=100 ABC 0.121 0.004 -0.579 0.340 0.583 0.23609 0.069 0.004 0.569 0.328 0.573 0.23084

+ linear 0.245 0.012 -0.455 0.219 0.468 0.00018 -0.019 0.015 0.481 0.246 0.496 0.00018

+ nonlinear 0.421 0.029 -0.279 0.107 0.327 0.00015 -0.172 0.026 0.328 0.134 0.366 0.00015

gcmr 0.481 0.142 -0.219 0.190 0.436 0.32062 -0.270 0.139 0.230 0.192 0.438 0.34158

n=250 ABC 0.265 0.011 -0.435 0.200 0.447 0.20342 -0.077 0.008 0.423 0.187 0.432 0.18953

+ linear 0.428 0.011 -0.272 0.085 0.292 0.00013 -0.221 0.012 0.279 0.089 0.299 0.00013

+ nonlinear 0.618 0.013 -0.082 0.020 0.142 0.00011 -0.387 0.019 0.113 0.032 0.178 0.00011

gcmr 0.618 0.066 -0.082 0.073 0.270 0.16218 -0.415 0.067 0.085 0.074 0.272 0.18628

n=500 ABC 0.427 0.011 -0.273 0.086 0.292 0.12308 -0.223 0.013 0.277 0.089 0.299 0.12439

+ linear 0.428 0.011 -0.272 0.085 0.292 0.00013 -0.221 0.012 0.279 0.089 0.299 0.00013

+ nonlinear 0.669 0.008 -0.031 0.009 0.094 0.00006 -0.460 0.014 0.040 0.016 0.125 0.00006

gcmr 0.646 0.014 -0.054 0.017 0.129 0.11779 -0.438 0.018 0.062 0.022 0.150 0.13695

n=1000 ABC 0.511 0.016 -0.189 0.051 0.227 0.07224 -0.320 0.014 0.180 0.047 0.217 0.07993

+ linear 0.593 0.013 -0.107 0.025 0.157 0.00003 -0.401 0.016 0.099 0.026 0.160 0.00004

+ nonlinear 0.645 0.010 -0.055 0.014 0.116 0.00003 -0.448 0.014 0.052 0.017 0.130 0.00003

gcmr 0.676 0.005 -0.024 0.005 0.071 0.08031 -0.475 0.007 0.025 0.008 0.089 0.09558

n=2000 ABC 0.647 0.003 -0.053 0.006 0.077 0.02156 -0.452 0.004 0.048 0.006 0.080 0.02954

+ linear 0.681 0.002 -0.019 0.003 0.053 0.00001 -0.489 0.004 0.011 0.004 0.061 0.00002

+ nonlinear 0.697 0.002 -0.003 0.002 0.045 0.00001 -0.500 0.004 0.00* 0.004 0.060 0.00001

gcmr 0.681 0.002 -0.019 0.003 0.051 0.05639 -0.483 0.003 0.017 0.004 0.059 0.06747
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Table 5.3: ABC Simulation Study of marginal parameters for di↵erent length n (* denotes < 1⇥ 10

�5
).

⇡ = 0.3 s = 3

Length Method mean var bias MSE RMSE var(b⇡) mean var bias MSE RMSE var(bs)

n=100 ABC 0.436 0.005 0.136 0.024 0.154 0.01969 8.266 8.913 5.266 36.639 6.053 48.39249

+ linear 0.406 0.005 0.106 0.016 0.126 0.00001 6.488 8.018 3.488 20.183 4.493 0.01925

+ nonlinear 0.345 0.003 0.045 0.005 0.073 0.0000* 3.783 1.371 0.783 1.985 1.409 0.00972

gcmr 0.325 0.006 0.025 0.006 0.079 0.07935 1.947 0.010 -1.053 1.119 1.058 0.10444

n=250 ABC 0.421 0.002 0.121 0.017 0.129 0.01228 7.539 2.901 4.539 23.503 4.848 22.54218

+ linear 0.352 0.002 0.052 0.005 0.069 0.0000* 4.429 2.999 1.429 5.041 2.245 0.00597

+ nonlinear 0.320 0.001 0.020 0.001 0.038 0.0000* 3.263 0.323 0.263 0.392 0.626 0.00237

gcmr 0.329 0.002 0.029 0.003 0.057 0.04986 1.941 0.005 -1.059 1.126 1.061 0.06729

n=500 ABC 0.407 0.001 0.107 0.012 0.111 0.00901 7.080 0.810 4.080 17.459 4.178 13.31925

+ linear 0.352 0.002 0.052 0.005 0.069 0.0000* 4.429 2.999 1.429 5.041 2.245 0.00597

+ nonlinear 0.309 0.001 0.009 0.001 0.025 0.0000* 3.100 0.117 0.100 0.127 0.357 0.00088

gcmr 0.336 0.001 0.036 0.002 0.050 0.03547 1.941 0.002 -1.059 1.124 1.060 0.04748

n=1000 ABC 0.407 0.001 0.107 0.012 0.110 0.00765 7.045 0.492 4.045 16.851 4.105 11.31999

+ linear 0.309 0.001 0.009 0.001 0.026 0.0000* 3.068 0.453 0.068 0.458 0.677 0.00109

+ nonlinear 0.307 0.00* 0.007 0.00* 0.020 0.0000* 3.098 0.069 0.098 0.078 0.280 0.00040

gcmr 0.334 0.001 0.034 0.002 0.043 0.02486 1.945 0.001 -1.055 1.115 1.056 0.03372

n=2000 ABC 0.340 0.000* 0.040 0.002 0.042 0.00341 4.278 0.078 1.278 1.710 1.308 2.60583

+ linear 0.304 0.000* 0.004 0.00* 0.015 0.0000* 3.050 0.073 0.050 0.075 0.274 0.00019

+ nonlinear 0.307 0.000* 0.007 0.00* 0.015 0.0000* 3.086 0.037 0.086 0.044 0.210 0.00005

gcmr 0.331 0.000* 0.031 0.001 0.036 0.01742 1.945 0.001 -1.055 1.113 1.055 0.02377
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5.7 Discussion

We have demonstrate that by taking advantage of the fact we can generate data un-

der the model conditional on the parameters, good estimates of the both the copula

and the marginal model parameters can be found. We have improved the simple

ABC estimation further by using local linear and nonlinear regression techniques

allowing less samples to be required.

ABC can be limited by the availability of informative statistics but the simulation

study has shown that the parameters with the lowest distances are closest to the true

values confirming that the choice of summary statistics for integer-valued time series

are informative about the dependence structure as well as the marginal structure.

A major advantage of the ABC rejection algorithm is the output are independent

samples allowing parallel computation to be used. Besides decreasing computation

time, an advantage of this is that the error from the approximation Á, decreases

when the as computational e�ort increases and so we can computationally reduce

this error by increasing the number of samples.

The ine�ciency of the computation can also be improved by ensuring simulated

parameters have a high probability of being accepted. Prangle (2014) proposes a

method to stop the checking process early if data set is clearly di�erent by using

an initial checking system. This approach is termed ‘lazy ABC’ and uses a random

stopping rule and appropriate re-weighting step so not to change the target distri-

bution of standard ABC. For our model this approach is not necessary however it

is worth noting for more complex models.

Other methods such as Monte Carlo Markov Chain (MCMC) and Sequential

Monte Carlo (SMC) methods can be incorporated into ABC to help sample values

in areas of high ABC-posterior probability. Incorporating MCMC methods into the

ABC algorithm will make the algorithm more e�cient by drawing parameter values
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from a proposal distribution which only depends on the previous iteration. ABC-

MCMC was introduced by Marjoram et al. (2003) to explore the parameter space

iteratively using the distance between the observed and simulated summary statis-

tics to update the current parameter values. This ensures that parameter values

which produce similar simulations close to the observed data are visited regularly.

Simulated parameter values that fall within the threshold are not immediately in-

cluded in the posterior sample and can still be rejected with a certain probability

through the acceptance probability –. Csilléry et al. (2010) showed in the ABC-

MCMC algorithm will converge to the target approximate distribution with absolute

certainty.



Chapter 6

Estimation III: A Discrete Vine

Pair-Copula Construction

The Gaussian copula model (3.8) at the core of this thesis has the ability to allow

any desired discrete marginal distributions as well as the acclaimed ARMA structure

to account for temporal dependence between observations.

The likelihood of the Gaussian copula model poses computational problems for

maximum likelihood estimation (MLE) as discussed in Section 3.7 because it is the

sum of 2n terms. We have tried to overcome these using an MCEM algorithm in

Chapter 4 and approximate Bayesian computation in Chapter 5. Each of these

methods have their own merits and limitations: the MCEM approach works well for

time series of length over 100 but becomes slow for lengths greater than 500, whilst

our ABC approach works well for lengths greater than 1000 and above but fails to

achieve accurate estimates for shorter time series as we will illustrate in Chapter 7.

The details have been discussed in their chapter conclusions and will be elucidated

further in the thesis discussion in Chapter 8. In this chapter we aim to speed up

the direct computation of the log-likelihood using a vine pair-copula construction

(PCC). The algorithm is so e�cient that the marginal parameters as well as the

dependence parameters can be estimated at the same time. Before proceeding to

108



CHAPTER 6. PCC 109

describe the decomposition of the log-likelihood, it is necessary to introduce the key

ideas of vine pair-copula constructions also known simply as vine copulas.

6.1 Vine Pair-Copula Constructions (PCCs)

A vine pair-copula construction is a structure that represents an n-dimensional

joint probability mass/density function in terms of bivariate copulas, called pair-

copulas. Vines give a simple way of specifying conditionally dependent random

variables (Bedford and Cooke, 2002) allowing the joint density to be decomposed

into bivariate copula densities. The graphical representation resembles grape vines,

lending its name to the class of models. It has been a significant advance in modelling

high-dimensional data (Kurowicka and Cooke, 2002, 2006b; Brechmann et al., 2012;

Stöber and Czado, 2012; Brechmann and Czado, 2013).

6.1.1 Literature on vines

The evolving literature on vine copulas contains seminal contributions from Aas et al.

(2009), Cooke (1997), Kurowicka and Cooke (2006a), Bedford and Cooke (2001),

Bedford and Cooke (2002) and Joe (1996) to name a few. Vine constructions are

highly flexible due to the number of admissible R-vine structures in n-dimensions

and the freedom to select arbitrary bivariate copulas for which there is a large library

to choose from, many of which are listed in Joe (1997). The basic ideas have been

refined and developed into strong mathematical objects that are highly practical in

nature. Joint modelling using vines can be viewed in two ways:

· the first based on building high dimensional distributions from a collection

of bivariate ‘blocks’ to give the overall joint distribution; and

· the second based on decomposing a multivariate density into a cascade of

bivariate copulas.
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The majority of the literature and applications of vines has focused on the former

whilst our work focuses on the latter. The necessary information on vine copulas

is included in this chapter. More details are provided in Czado (2010), Kurowicka

and Cooke (2006b), Kurowicka and Joe (2010), Mai and Scherer (2012), and Joe

(2015). Inference and estimation techniques for PCCs include sequential estimation

(Ha� et al., 2013; Dißmann et al., 2013), maximum likelihood (Czado, 2010) and

Bayesian techniques (Min and Czado, 2010). Vine copulas have been used in a

variety of applications from finance to medical disciplines requiring the need for

e�cient estimation methods.

Vine copulas allows us to factorise a joint density by successive conditioning

and there are many options available for choosing the order in which you consider

the variables. In the Gaussian time series context it makes sense to start at both

ends of the series X
1

and Xn and work inwards because the required conditional

distributions can then be calculated via the partial correlations. Before we present

the general case, we will illustrate the decomposition of a joint density into pair-

copula densities in two, three and then four dimensions. The method is recursive

in nature and this is instructive because it allows very high-dimensional densities

to be decomposed. We generalise to n dimensions and further to the discrete case

(Section 6.3).

6.1.2 Motivating examples

The case in two dimensions

For the case of two dimensions, by Sklar’s Theorem, the joint cdf F of X
1

and X
2

with marginals F
1

and F
2

can be written in terms of its copula C as

F (x
1

, x
2

) = C
12

(F
1

(x
1

), F
2

(x
2

)),
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where C is written with indices as C
12

to identify the random variables in the

distribution that it corresponds to. The joint density f(x
1

, x
2

) can be found by

taking partial derivatives wrt x
1

and x
2

,

f(x
1

, x
2

) = c
12

(F
1

(x
1

), F
2

(x
2

))f
1

(x
1

)f
2

(x
2

), (6.1)

where c
12

is the copula density C
12

(Definition 9). Note that for symmetric copulas,

such as the Gaussian copula, the arguments of C can be permuted so that C
12

= C
21

.

The case in three dimensions

For the case in three dimensions, the joint density can be factorised first into a

product of univariate conditional densities, say

f(x
1

, x
2

, x
3

) = f
3|21

(x
3

|x
2

, x
1

) f
2|1(x2

|x
1

) f
1

(x
1

). (6.2)

From (6.1) we can write the conditional density of X
2

given X
1

= x
1

as

f(x
2

|x
1

) = f
12

(x
1

, x
2

)
f

1

(x
1

) ,

= c
12

(F
1

(x
1

), F
2

(x
2

))f
2

(x
2

). (6.3)

The conditional density f(x
3

|x
2

, x
1

) can be written in terms of a bivariate density

by bringing x
1

to the front and then using a conditioned version of (6.1) in terms of

its associated copula density,

f(x
3

|x
2

, x
1

) = f(x
3

, x
1

|x
2

)
f(x

1

|x
2

) ,

= c
13|2(F3|2(x3

|x
2

), F
1|2(x1

|x
2

))f
1|2(x1

|x
2

)f
3|2(x3

|x
2

)
f

1|2(x1

|x
2

) ,

= c
13|2(F3|2(x3

|x
2

), F
1|2(x1

|x
2

))f
1|2(x1

|x
2

).

The copula density c
13|2(·, ·) corresponds to the bivariate distribution F

13|2 of

(X
1

, X
3

)|X
2

. This is instructive because by putting x
1

together with x
3

in c
13|2 the
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conditioning set is reduced by one variable. The use of the univariate conditional

densities is key to extending recursively to higher dimensions as demonstrated in

(6.2).

The general form is

f
i|jk

(x
i

|x
j

, x
k

) = c
ij|k(F

i|k(x
i

|x
k

), F
j|k(x

j

|x
k

))f
i|k(x

i

|x
k

), (6.4)

where k can be a single index or multiple indices. When k is empty (6.4) reduces

to (6.3). Hence the joint density (6.2) can be written as

f(x
1

, x
2

, x
3

) = f
3|21

(x
3

|x
2

, x
1

) f
2|1(x2

|x
1

) f
1

(x
1

),

= c
13|2(F3|2(x3

|x
2

), F
1|2(x1

|x
2

)) f
3|2(x3

|x
2

)

◊ c
12

(F
1

(x
1

), F
2

(x
2

)) f
1

(x
1

) f
2

(x
2

),

= c
13|2(F1|2(x1

|x
2

), F
3|2(x3

|x
2

)) c
23

(F
2

(x
2

), F
3

(x
3

)) f
3

(x
3

)

◊ c
12

(F
1

(x
1

), F
2

(x
2

)) f
1

(x
1

) f
2

(x
2

). (6.5)

Thus the 3-variate density can be written in terms of 3 pair-copula densities and 3

marginal densities.

The case in four dimensions

For notational simplicity we omit the arguments F
1|2 and F

4|2 of c
14|2(F1|2(x1

|x
2

), F
4|2(x4

|x
2

))

and simply write c
14|2.

Consider the case of a 4-variate density decomposed using (6.4) as

f(x
1

, x
2

, x
3

, x
4

) = f
4|321

(x
4

|x
3

, x
2

, x
1

)f
3|21

(x
3

|x
2

, x
1

)f
2|1(x2

|x
1

)f
1

(x
1

),

= c
14|23

f
4|23

(x
4

|x
2

, x
3

) · c
13|2f3|2(x3

|x
2

) · c
12

f
2

(x
2

) · f
1

(x
1

),

= c
14|23

c
24|3 f

4|2(x4

|x
2

) c
13|2 c

23

f
3

(x
3

) c
12

f
2

(x
2

) f
1

(x
1

),

= c
14|23

c
24|3 c

24

f
4

(x
4

) c
13|2 c

23

f
3

(x
3

)c
12

f
2

(x
2

)f
1

(x
1

),

= c
14|23

c
13|2 c

24|3 c
34

c
23

c
12

f
1

(x
1

) f
2

(x
2

) f
3

(x
3

) f
4

(x
4

), (6.6)
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Thus the 4-variate joint density can be written in terms of six pair-copula densities:

c
12

(F
1

(x
1

), F
2

(x
2

)), c
13|2(F1|2(x1

|x
2

), F
3|2(x3

|x
2

)),

c
23

(F
2

(x
2

), F
3

(x
3

)), c
14|2(F1|2(x1

|x
2

), F
4|2(x4

|x
2

)),

c
34

(F
3

(x
3

), F
4

(x
4

)), c
14|23

(F
1|23

(x
1

|x
2

, x
3

), F
4|23

(x
4

|x
2

, x
3

)),

and 4 marginal densities:

f
1

(x
1

), f
2

(x
2

), f
3

(x
3

), f
4

(x
4

).

This is a vine copula construction: the resulting copula is built from bivariate and

conditional bivariate copulas. Essentially, by recursively applying (6.4) we can write

high-dimensional densities as a product of bivariate copula and marginal densities.

For continuous random variables, the joint density expressed using a vine copula

construction with n continuous margins F
1

, . . . , Fn is a product of n(n ≠ 1)/2

bivariate copula densities and n marginal densities. Bivariate copula are much

lower-dimensional than n and thus computational demand in maximum likelihood

estimation can be substantially reduced.

6.1.3 Regular Vines and graphical models

To keep the decompositions manageable and to ensure the decomposition chosen

corresponds to a true joint density, each vine is graphically represented as a nested

set of trees (Bedford and Cooke, 2001). The term vine arises because the hierar-

chical graphical structure commonly resembles a grape vine. Bedford and Cooke

(2001) introduced the representation where the indices of the edges correspond to

the bivariate conditional specifications. The nodes in tree one represent random

variables. Tree one reflects the conditioning of the variables. The edges of tree one

become the nodes of tree two and each edge of subsequent trees are the nodes of

the current tree. The edges of the trees are associated with pair-copula densities
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because they identify the variable decomposition i.e., they describe which condi-

tional specifications are being made on the joint distribution. By the formation of

subsequent trees, the vine is unique to each factorisation up to relabelling.

1 2 3

T
1

12 23
12 23

T
2

13|2

Figure 6.1: A vine structure on three elements.

The vine copula in Fig. 6.1 represents the three variable decomposition of (6.5),

f(x
1

, x
2

, x
3

) = c
12

(F
1

(x
1

), F
2

(x
2

)) c
23

(F
2

(x
2

), F
3

(x
3

))

◊ c
13|2(F1|2(x1

|x
2

), F
3|2(x3

|x
2

)) f
1

(x
1

) f
2

(x
2

) f
3

(x
3

),

where the edges of vine correspond to the pair-copula indices. Each pair of variables

occurs once on the left hand side of the copula density index. Another example with

four variables is given in Fig. 6.2. This vine structure represents the decomposition

f(x
1

, x
2

, x
3

, x
4

) = c
12

(F
1

(x
1

), F
2

(x
2

)) c
23

(F
2

(x
2

), F
3

(x
3

)) c
24

(F
4

(x
4

), F
4

(x
4

))

◊ c
13|2(F1|2(x1

|x
2

), F
3|2(x3

|x
2

)) c
14|2(F1|2(x1

|x
2

), F
4|2(x4

|x
2

))

◊ c
34|12

(F
3|12

(x
3

|x
1

, x
2

), F
4|12

(x
4

|x
1

, x
2

))f
1

(x
1

)f
2

(x
2

)f
3

(x
3

)f
4

(x
4

),

where the edges of the trees are the copula density indices. Each subsequent tree

corresponds to a higher order conditioning.

1 2 3

4

T
1

12 23

24

12 23

24

T
2

13|2
14|2

13|2

14|2

T
3

34|12

Figure 6.2: A vine structure on four elements.
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6.1.4 R-vines

In graph theory, a tree is defined as a simple undirected connected graph. A vine

structure on n elements is a nested set of trees {T
j

; j = 1, . . . , n ≠ 1}, where the

edges of tree j are the nodes of the following tree j + 1, as shown in Fig.’s 6.1 and

6.2. Each tree has the maximum number of edges and letting V denote the vine,

we write V = (T
1

, . . . , Tn≠1

). A regular vine (R-vine) on n elements is a vine which

satisfies the proximity condition.

Definition 10 (Regular Vine, R-vine). Let N
j

denote the set of nodes of tree j and

E
j

denote the set of edges. A Regular vine (R-vine) V on n elements is a nested

set of trees, T
j

= (N
j

, E
j

), j = 1, . . . , n ≠ 1 satisfying the following conditions:

1. V = {T
1

, . . . , Tn≠1

} ;

2. T
1

is a connected tree with nodes N
1

= {1, . . . , n} and edges E
1

,

T
j

has nodes N
j

= E
j≠1

, j = 2, . . . , n ≠ 1,

3. (Proximity Condition) Two nodes are joined by an edge in T
j

if their corre-

sponding edges in T
j≠1

share a common node, for j = 2, . . . , n ≠ 1.

Each edge of T
j

corresponds to a bivariate copula density. Combining these bi-

variate copula densities with marginal densities gives an n-dimesnional joint density,

as shown in (6.5) and (6.6). The combination for discrete variables is considered in

the Section 6.3. The proximity condition of a vine ensures that the n-dimesnional

vine copula construction is a true distribution function in the sense that the decom-

position into bivariate copulas is well-defined (Czado et al., 2013). Graphically, if

tree one of a vine is a connected tree, then the complete vine structure is classified

as an R-vine. In summary, the graphical representation of a vine is simply a way of

displaying the unique vine copula.

6.1.5 Special cases: the D-vine and the C-vine

Each factorisation of the joint density into bivariate copulas and marginal densities

is unique, up to relabelling. Thus each vine represents a unique decomposition. For
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the case of three random variables there are three decompositions of f(x
1

, x
2

, x
3

)

corresponding to three possible vines,

c
12|3 c

13

c
23

f
1

f
2

f
3

, c
13|2 c

12

c
23

f
1

f
2

f
3

, c
23|1 c

12

c
13

f
1

f
2

f
3

.

The decomposition in (6.5) puts x
3

with x
1

, rather than x
2

, resulting in the

second decomposition here. Each of these vines correspond to choosing a di�erent

decomposition or a di�erent variable to put together in the factorisation.

Two common factorisations are the C-vine and the D-vine (Aas et al., 2009).

These are special cases of R-vines.

A D-vine factorisation chooses the variable from the conditioning set such that

the pairs of the random variables have the largest di�erence, i.e. for n variables

f(x
1

, xn|x
2

, . . . , xn≠1

), then f(x
2

, xn≠1

|x
3

, . . . , xn≠2

) etc. These structures are most

e�ective in situations when all the variables are of equal importance. A D-vine

corresponds to each node having no more than 2 edges attached with each node

present. Hence the trees of a D-vine are simply strings of nodes.

Definition 11 (Drawable Vine, D-vine). A D-vine is an R-vine such that no node

in any tree T
j

is connected to more than two edges.

An example of a D-vine on 4 elements is given in Fig. 6.3.

1 2 3 4 T
1

T
2

T
3

12 23 34

13|2 24|3

Figure 6.3: An example of a 4-dimensional D-vine.
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The decomposition of f(x
1

, . . . , xn) according to a D-vine can be written as

f(x
1

, . . . , xn) =
nŸ

k=1

f
k

(x
k

)

◊
n≠1Ÿ

i=1

n≠iŸ

j=1

c
j,j+i|(j+1):(j+i≠1)

1
F (x

j

|x
j+1:j+i≠1

), F (x
j+i

|x
(j+1):(j+i≠1)

)
2

,

(6.7)

where c
j,j+i|(j+1):(j+i≠1)

is the density of Y
j

and Y
j+i

conditioned on Y
j+1

, dots, Y
j+i≠1

.

The index i represents the tree while j runs over the edges of the trees. For example,

f = f
1

f
2

f
3

f
4

c
12

c
23

c
34

c
13|2 c

24|3 c
14|23

, for n = 4.

A C-vine factorisation chooses the variable which is considered to have most

dependence and the variable that has the smallest di�erence e.g. f(x
1

, x
2

|x
3

, . . . , xn).

A C-vine corresponds to setting a node in the first tree as a pivot node to which every

other node is attached. The dependence with respect to that pivot node is modelled

for each pair and the resulting trees of a C-vine have a star-like tree structure.

Definition 12 (Canonical Vine, C-vine). A C-vine is an R-vine such that each tree

T
j

has a unique node that is connected to n ≠ j edges.

An example of a C-vine on 4 elements is given in Fig. 6.4 where X
1

is assumed

to be of most importance in the dependence structure.

1

2

3

4

T
1

T
2

T
3

12

13

14

23|1 24|1

Figure 6.4: An example of a 4-dimensional C-vine.
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The decomposition of f(x
1

, . . . , xn) according to a C-vine can be written as

f(x
1

, . . . , xn) =
nŸ

k=1

f
k

(x
k

) ◊
n≠1Ÿ

i=1

n≠iŸ

j=1

c
i,i+j|1,...,i≠1

(F (x
i

|x
1:i≠1

), F (x
i+j

|x
1:i≠1

)) . (6.8)

For example,

f = f
1

f
2

f
3

f
4

c
12

c
13

c
14

c
23|1 c

24|1 c
34|12

, for n = 4.

We take the approach of the D-vine because for the Gaussian time series context,

the required conditional densities can be calculated via the partial correlations.

6.2 Evaluation of an R-vine copula density

The D-vine and C-vine are special cases of the R-vine. In this section we outline an

algorithm for evaluating an continuous R-vine density (6.12) proposed by Dißmann

et al. (2013). In Section 6.5 we modify the algorithm of Dißmann et al. (2013,

Algorithm 2.1, p. 58) to evaluate a D-vine with discrete margins for maximum

likelihood estimation. Before we introduce the algorithm for the continuous R-vine

in Section 6.2.3, we address the issue of evaluating the arguments of the copula

densities. We then describe the discrete analogue for our model in Section 6.3.

6.2.1 Evaluation of the copula arguments

The joint density (6.12) involves the evaluation of copula densities. The copula

density (Section 3.1)

c
ij|k

1
F

i|k (x
i

|x
k

) , F
j|k (x

j

|x
k

)
2

is applied to the arguments F
i|k (x

i

|x
k

) and F
j|k (x

j

|x
k

). The evaluation of the joint

density is sequential in that it builds up the conditional distributions in a hierarchical

manner from those with a lower-dimensional conditioning set. For example, in the

three dimensional case of (6.5)
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1. first C
12

can be applied to the marginal cdfs F
1

and F
2

allowing F
1|2 and

F
2|1 to be found via (6.9), similarly for C

13

.

2. then C
13

can be applied to the marginal cdfs F
1

and F
3

allowing F
1|3 and

F
3|1 to be found

3. Then C
23|1 can be applied to F

2|1 and F
3|1 (allowing F

2|31

and F
3|21

to be

obtained if desired).

Formally, this idea to evaluate the arguments F
i|k (x

i

|x
k

) and F
j|k (x

j

|x
k

), a key

result of pair-copula constructions given by Joe (1996). Consider for conditional

distributions F
ij|k of (X

i

, X
j

) | X
k

= x
k

,

F
ij|k (x

i

, x
j

|x
k

) = C
ij|k

1
F

i|k (x
i

|x
k

) , F
j|k (x

j

|x
k

)
2

,

where C
i,j|k is the corresponding copula (by Sklar’s Theorem), assuming its func-

tional form does not depend on x
k

. For continuous random variables the conditional

distribution function of X
i

given X
j

= x
j

and X
k

= x
k

is equal to the partial deriva-

tive of the copula C
ij|k with respect to its second argument F

j|k(x
j

|x
k

). It is written

as

F
i|jk

(x
i

|x
j

, x
k

) =
ˆ C

i,j|k
1
F

i|k (x
i

|x
k

) , F
j|k (x

j

|x
k

)
2

ˆF
j|k (x

j

|x
k

) . (6.9)

To see how 6.9 is useful and provide introductory details for Section 6.4, consider

the distribution function F (x
1

, x
2

) for 2 continuous random variables (X
1

, X
2

) then

by Sklar’s Theorem we have

F (x
1

, x
2

) = C(u
1

, u
2

) where u
i

= F (x
i

), i = 1, 2.

For illustrative purposes consider di�erentiating with respect to F
2

(x
2

). We have

the partial derivative of the copula C with respect to one of its arguments, say u
2

,

equal to the conditional distribution of X
1

at x
1

given X
2

= x
2

i.e.,

ˆ

ˆF
2

(x
2

)C(F
1

(x
1

), F
2

(x
2

)) = F
1|2(x1

|x
2

).
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This is because

ˆ

ˆF (x
2

)C(F (x
1

), F (x
2

)) = ˆ

ˆF (x
2

)F (x
1

, x
2

),

= ˆ

ˆx
2

(F (x
1

, x
2

)) dx
2

dF (x
2

) ,

= ˆ

ˆx
2

(F (x
1

, x
2

)) 1
f(x

2

) ,

= 1
f(x

2

)
ˆ

ˆx
2

⁄
x1

≠Œ

⁄
x2

≠Œ
f(xÕ

1

, xÕ
2

) dxÕ
1

dxÕ
2

,

= 1
f(x

2

)

⁄
x1

≠Œ
f(xÕ

1

, x
2

) dxÕ
1

,

=
⁄

x1

≠Œ
f(xÕ

1

|x
2

) dxÕ
1

,

= F (x
1

|x
2

).

The n-dimensional Gaussian copula model (3.8) can be decomposed into n(n ≠
1)/2 bivariate Gaussian copulas as we go on to show. For the Gaussian pair-copula

of F
ij|k(x

i

, x
j

|x
k

),

C(u
1

, u
2

; fl) = �
fl

(�≠1(u
1

), �≠1(u
2

)), (6.10)

with u
1

= F
i|k(x

i

|x
k

) and u
2

= F
j|k(x

j

|x
k

), (6.9) becomes

F
i|jk

(x
i

|x
j

, x
k

) = ˆ

ˆu
2

C(u
1

, u
2

)
---
u1=F (x1),u2=F (x2)

,

= �
A

�≠1(F
j|k(x

j

|x
k

)) ≠ fl�≠1(F
i|k(x

i

|x
k

))Ô
1 ≠ fl2

B

. (6.11)

Therefore (6.11) is a key part of the computation.

6.2.2 R-vine density and R-vine matrices

The R-vine distribution density is

f(x
1

, . . . , xn)

=
nŸ

j=1

f
j

(x
j

) ◊
1Ÿ

k=n≠1

k+iŸ

i=n
c

mk,k,mi,k|mi+1,k,...,mn,k

1
F

mk,k|mi+1,k,...,mn,k
, F

mi,k|mi+1,k,...,mn,k

2
,

(6.12)
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where M = (m
i,j

)
i,j=1,...,n is an R-vine matrix. The densities according to the D-

(6.7) and C-vine (6.8) are special cases of (6.12).

Each vine structure can be stored in a lower triangular n by n matrix called an

R-vine matrix which is used to select copula indices (vine edges) to aid computational

inference of the models. Dißmann et al. (2013) introduced the R-vine matrix for

e�cient storage of the R-vine tree structure in an algorithm to compute the log-

likelihood of any R-vine. A description and example of constructing an R-vine

matrix and reconstructing the corresponding tree sequence from an R-vine matrix

is given in Stöber (2013, p. 13). There is a one-to-one correspondence for each

R-vine matrix and there is a general form for the special cases of the D- and C-vine

structures. The general form of a D-vine matrix is the lower triangular elements of

a Toeplitz matrix with elements 0 to n≠1 and then with a diagonal of n to 1 added:

M
D

=

Q

ccccccccccccca

n 0 . . . . . . 0

1 n ≠ 1 . . .
... 0

2 1 . . . 0 0
...

. . . 1 2 0

n ≠ 1 n ≠ 2 . . . 1 1

R

dddddddddddddb

, e.g. for n = 4 M
D

=

Q

cccccccca

4 0 0 0

1 3 0 0

2 1 2 0

3 2 1 1

R

ddddddddb

.

(6.13)

The general form of a C-vine matrix is a lower triangular matrix with rows

elements equal to diagonal elements such that the diagonal is n to 1:

M
C

=

Q

ccccccccccccca

n 0 . . . . . . 0

n ≠ 1 n ≠ 1 . . .
... 0

n ≠ 2 n ≠ 2 . . . 0 0
... . . . 2 2 0

1 1 . . . 1 1

R

dddddddddddddb

, e.g. for n = 4 M
C

=

Q

cccccccca

4 0 0 0

3 3 0 0

2 2 2 0

1 1 1 1

R

ddddddddb

.
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6.2.3 Evaluation of an R-vine copula density

In addition to storing the R-vine structure, the algorithm of Dißmann et al. (2013,

Algorithm 2.1, p 58) stores the associated copula parameters in a strictly lower

triangular n ◊ n matrix, denoted P ú. For the Gaussian copula model with all

Gaussian bivariate copulas all elements of P ú are the conditional correlations. The

matrix P ú is defined as follows and for illustrative purposes the special case for the

D-vine matrix in (6.13) is given, (the vine is shown in Fig. 6.3):

P ú =

Q

cccccccca

0 0 0 0

p
4m2,1|m3,1m4,1 0 0 0

p
4m3,1|m4,1 p

3m3,2|m4,2 0 0

p
4|m4,1 p

3|m4,2 p
4|m4,3 0

R

ddddddddb

=

Q

cccccccca

0 0 0 0

p
14|23

0 0 0

p
24|3 p

13|2 0 0

p
34

p
23

p
12

0

R

ddddddddb

,

The algorithm stores the evaluations of the conditional distribution functions in

two lower triangular n ◊ n matrices denoted vdirect and vindirect where the subscripts

are used to represent the di�erent index set. The general form and corresponding

matrices for our example (6.13) are

vdirect =

Q

cccccccca

F
4|m2,1,m3,1,m4,1 0 0 0

F
4|m3,1,m4,1 F

3|m3,2,m4,2 0 0

F
4|m4,1 F

3|m4,2 F
2|m4,3 0

F
4

F
3

F
2

F
1

R

ddddddddb

=

Q

cccccccca

F
4|321

0 0 0

F
4|32

F
3|21

0 0

F
4|3 F

3|2 F
2|1 0

F
4

F
3

F
2

F
1

R

ddddddddb

,

vindirect =

Q

cccccccca

F
m2,1|m3,1m4,14

0 0 0

F
m3,1|m4,1,4

F
m3,2|m4,23

0 0

F
m4,1|4 F

m4,2|3 F
m4,3|2 0

0 0 0 0

R

ddddddddb

=

Q

cccccccca

F
1|234

0 0 0

F
2|34

F
1|23

0 0

F
3|4 F

2|3 F
1|2 0

0 0 0 0

R

ddddddddb

.

(6.14)

We now describe the algorithm to compute an R-vine density (6.12), and hence

the log-likelihood, in Algorithm 4. The algorithm consists of two loops; one loop
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iterates over the column entries and one iterates over the rows. Essentially this

equates to filling in the elements of (6.14) column by column; beginning in the final

column, from bottom to the top, until the top left corner is reached. This allows

higher order conditional distributions to be calculated from the elements of the row

below as in (6.9). In each loop, there are three steps:

1. The copula arguments are selected and saved as z
1

and z
2

(lines 7 through to

9) then,

2. the copula density function is applied to the arguments and R-vine density

updated (line 10) and finally,

3. the higher-order conditional distributions are computed via (6.9) (line 11).

The n ◊ n lower triangular matrix ÊM is introduced to work with the R-vine ma-

trix M to select the pair-copula indices. The matrix ÊM has elements Êm
i,k

=

max {m
i,k

, . . . , mn,k

}, k = 1, . . . , n and i = k, . . . , n. That is ÊM is the maximum

array of M . For example continuing with our D-vine example (6.13),

ÊM =

Q

cccccccca

4 0 0 0

3 3 0 0

3 2 2 0

3 2 1 1

R

ddddddddb

.
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Algorithm 4 Evaluation of an R-vine density for continuous variables (Dißmann
et al., 2013).
Input: R-vine matrix M with associated matrix P ú and a dataset x.
Output: Density of an R-vine PCC at P ú.

1: Set f = 1
2: Allocate n◊n matrices, vdirect , vindirect as in (6.14).
3: Set ÊM such that Êm

i,k

= max {m
i,k

, . . . , mn,k

} , k = 1, . . . , n and i = k, . . . , n
œ Rn◊n.

4: Set (vdirect

n,1

, . . . , vdirect

n,n ) = (Fn(xn), . . . , F
1

(x
1

)) .

5: for k = n ≠ 1, . . . 1
6: for i = n, . . . k + 1
7: Set z

1

= vdirect

i,k

. Û Select copula arguments
8: if Êm

i,k

= m
i,k

then set z
2

= vdirect

k,(n+1≠Âmi,k)

,

9: else set z
2

= vindirect

k,(n+1≠Âmi,k)

.

10: f = f · c(z
1

, z
2

; p
i,k

). Û Evaluate copula density

11: vdirect

i≠1,k

= ˆ

ˆz
1

C(z
1

, z
2

; p
i,k

) and Û Conditional distributions

vindirect

i≠1,k

= ˆ

ˆz
2

C(z
2

, z
1

; p
i,k

). Û as in (6.9)

12: end
13: end
14: Return f Û For the log-likelihood replace with ¸ = log f .
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6.3 Pair-copula constructions for discrete data

Earlier research has largely focused on the case of purely continuous random vari-

ables (Aas et al., 2009). Panagiotelis et al. (2012) extended the principles of PCC

to discrete variables. Their discrete analogue to vine PCCs, which we provide the

details of in this section, requires only 2n(n ≠ 1) pair-copula evaluations. This is

significantly less demanding than the 2n evaluations of an n-dimensional copula re-

quired to evaluate the pmf of a copula model. Hence it is a substantial step towards

simplifying the evaluation of multivariate discrete probabilities and consequently in

fitting the models.

Stöber (2013) adapted the systematic approach of evaluating continuous R-vine

densities of Dißmann et al. (2013) (Section 6.2.3), to the cases of both continuous,

discrete and mixed margins by building on Panagiotelis et al. (2012)’s discussion

of discrete PCCs. Stöber et al. (2015) illustrates this by implementing a mixed

continuous and discrete R-vine PCC for modelling the co-morbidity on a longitudinal

study of ageing (LSOAII) dataset with 6 variables.

At the time of writing, no R code is publicly available and software is not cur-

rently available for statisticians to apply the methods. For the case of integer-valued

time series, typically the sample size or dimension n is very large. The increase in

computational complexity is tackled by making use of existing methods in time se-

ries analysis. We apply the ideas of Panagiotelis et al. (2012) and Stöber (2013)

to extend to the integer-valued time series model with discrete margins and an

ARMA(p, q) dependence structure of the Gaussian copula. Therefore our contribu-

tion allows joint maximum likelihood estimation of the Gaussian copula model (3.8)

for length n integer-valued time series with p + q + dim(◊
marginal

) parameters.

The joint probability mass function can be recursively factorised similar to the
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continuous case described in Section 6.1.2. Before we describe the method to decom-

pose a multivariate probability mass function into a function of bivariate copulas,

we introduce the notation that will be used. The standard notation for a cumulative

distribution function is

F
Yi,Yj |Yk

(y
i

, y
j

|y
k

) = Pr(Y
i

Æ y
i

, Y
j

Æ y
j

|Y
k

= y
k

).

However we will drop the variables and retain the indices only, e.g., F
i,j|k(y

i

, y
j

|y
k

).

For the unconditional and conditional distribution functions evaluated at the two

integer-values y
i

and y≠
i

= y
i

≠ 1, we use

F
i

= F
i

(y
i

) , F ≠
i

= F
i

(y
i

≠ 1),

F
i|k = F

i|k(y
i

| Y
k

= y
k

), F ≠
i|k = F

i|k(y
i

≠ 1 | Y
k

= y
k

).

By Sklar’s Theorem, the bivariate distribution function of (Y
i

, Y
j

) | Y
k

= y
k

can be

expressed in terms of a copula. For example,

F
ij|k(y

i

, y
j

|y
k

) = C
ij|k(F

i|k(y
i

|y
k

), F
j|k(y

j

|y
k

)).

For the copula evaluated at four di�erent pairs of values, let

C00

ij|k = C
ij|k(F

i|k, F
j|k), C01

ij|k = C
ij|k(F

i|k, F ≠
j|k),

C10

ij|k = C
ij|k(F ≠

i|k, F
j|k), C11

ij|k = C
ij|k(F ≠

i|k, F ≠
j|k).

Therefore the conditional probability

Pr(Y
i

= y
i

, Y
j

= y
j

|Y
k

= y
k

) = C00

ij|k ≠ C01

ij|k ≠ C10

ij|k + C11

ij|k.

For simplification of notation to make equations shorter we write

ÒC
ij|k = C00

ij|k ≠ C01

ij|k ≠ C10

ij|k + C11

ij|k.

It is clear from this definition that

Pr(Y
i

= y
i

|Y
j

= y
j

, Y
k

= y
k

) =
C00

ij|k ≠ C01

ij|k ≠ C10

ij|k + C11

ij|k

F
j|k(y

j

|y
k

) ≠ F
j|k(y

j

≠ 1|y
k

) ,

= ÒC
ij|k

ÒF
j|k(y

j

|y
k

) . (6.15)
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We use the backward di�erence notation Ò to denote the finite di�erence of step

length one. Thus the expression consists of two terms for a univariate function e.g.

a distribution function F
j|k and four terms for a bivariate function e.g. a copula

C
ij|k.

In a hierarchical manner we can build up the conditional distributions from those

with a lower-dimensional conditioning set by writing the conditional distribution

function in terms of a bivariate copula,

F
i|j,k

(y
i

|y
j

, y
k

) =
C

i,j|k (F (y
i

|y
k

) , F (y
j

|y
k

)) ≠ C
i,j|k

1
F (y

i

|y
k

) , F (y≠
j

|y
k

)
2

Pr (Y
j

= y
j

|Y
k

= y
k

) ,

=
C00

ij|k ≠ C01

ij|k

ÒF
j|k

. (6.16)

This can be considered the discrete analogue of (6.9) for computing the argu-

ments of the pair-copulas.

For the bivariate Gaussian copula, (6.16) is

F
i|jk

(y
i

|y
j

, y
k

) =
�

fl

(�≠1(F
i|k(y

i

|y
k

)), �≠1(F
j|k(y

j

|y
k

))) ≠ �
fl

(�≠1(F
i|k(y

i

|y
k

)), �≠1(F
j|k(y≠

j

|y
k

)))
F

j|k(y
j

|y
k

) ≠ F
j|k(y≠

j

|y
k

) .

6.3.1 Motivating examples in the discrete case

Let (y
1

, y
2

, . . . , yn) be an integer-valued time series of length n. The joint probability

expressed in terms of its copula C is

Pr(Y
1

= y
1

, . . . , Yn = yn) =
1ÿ

¸1=0

· · ·
1ÿ

¸n=0

(≠1)¸1+···+¸n C(F
1

(y
1

≠ ¸
1

), . . . , Fn(yn ≠ ¸n)),

(6.17)
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where F
i

is the discrete marginal distribution function of Y
i

, i = 1, . . . , n, (Section

3.6). The computation of the joint pmf requires 2n n-dimensional copula evaluations.

The n-dimensional Gaussian copula does not have a closed form and is defined by an

n-dimensional integral requiring numerical methods for evaluation. We decompose

the joint pmf (6.17) into many bivariate copulas to facilitate maximum likelihood

estimation.

The case in two dimensions

Sklar’s Theorem on two variables Y
1

, Y
2

gives us

F (y
1

, y
2

) = C
12

(F
1

(y
1

), F
2

(y
2

)).

Thus the joint probability is

Pr(Y
1

= y
1

, Y
2

= y
2

) = F (y
1

, y
2

) ≠ F (y≠
1

, y
2

) ≠ F (y
1

, y≠
2

) + F (y≠
1

, y≠
2

),

= C
12

(F (y
1

), F (y
2

)) ≠ C
12

1
F (y

1

), F (y≠
2

)
2

≠ C
12

1
F (y≠

1

), F (y
2

)
2

+ C
12

1
F (y≠

1

), F (y≠
2

)
2

,

= C00

12

≠ C01

12

≠ C10

12

+ C11

12

,

= ÒC
12

ÒF
1

ÒF
2

ÒF
1

ÒF
2

,

which is the analogue of (6.1).

The analogue to (6.3) is

Pr(Y
1

= y
1

| Y
2

= y
2

) = Pr(Y
1

= y
1

, Y
2

= y
2

)
Pr(Y

2

= y
2

) ,

=
1
C

12

(F (y
1

), F (y
2

)) ≠ C
12

1
F (y

1

), F (y≠
2

)
2

≠C
12

1
F (y≠

1

), F (y
2

)
2

+ C
12

1
F (y≠

1

), F (y≠
2

)
24

,

F (y
2

) ≠ F (y≠
2

)

= C00

12

≠ C01

12

≠ C10

12

+ C11

12

F
2

≠ F ≠
2

,

= ÒC
12

ÒF
1

ÒF
2

ÒF
1

.
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The case in three dimensions

Similarly, the joint probability of (Y
1

, Y
2

, Y
3

) can be decomposed as

Pr(Y
1

= y
1

, Y
2

= y
2

, Y
3

= y
3

)

= Pr(Y
3

= y
3

|Y
2

= y
2

, Y
1

= y
1

) Pr(Y
2

= y
2

|Y
1

= y
1

) Pr(Y
1

= y
1

),

= Pr(Y
3

= y
3

, Y
1

= y
1

|Y
2

= y
2

)
Pr(Y

1

= y
1

|Y
2

= y
2

)
Pr(Y

2

= y
2

, Y
1

= y
1

)
Pr(Y

1

= y
1

) Pr(Y
1

= y
1

),

= Pr(Y
3

= y
3

, Y
1

= y
1

|Y
2

= y
2

)
Pr(Y

1

= y
1

, Y
2

= y
2

) Pr(Y
2

= y
2

) Pr(Y
1

= y
1

, Y
2

= y
2

),

= Pr(Y
1

= y
1

, Y
3

= y
3

|Y
2

= y
2

) Pr(Y
2

= y
2

),

= (C00

13|2 ≠ C01

13|2 ≠ C10

13|2 + C11

13|2) Pr(Y
2

= y
2

),

= ÒC
13|2ÒF

2

, (6.18)

where ÒC
13|2 has arguments F

1|2 and F
3|2 which are separately computed using

(6.16) and the copulas C
12

and C
23

. This can be considered the discrete analogue

to the continuous C-vine presented in the three dimensional case (6.5). Although

(6.18) is not directly comparable, through the cancellation of terms, all of the pair-

copulas of (6.5) are involved indirectly through the copula arguments and thus must

be computed.

6.3.2 D-vine PCC for discrete data

As in the continuous case there are a number of ways to decompose the joint prob-

ability. In this section, we factorise the joint pmf (6.17) so that the pair-copula

correlations are the partial autocorrelations in time series analysis (Section 6.4).

The resulting vine PCC turns out to be a discrete D-vine PCC.
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For (y
1

, . . . , yn), a time series of length n, we order the indices by pairing the

first and last time points and conditioning on the intermediate time points, subse-

quently moving inwards from both sides. This leads to the following factorisation

into bivariate probabilities of the joint pmf,

Pr (Y
1

= y
1

, . . . , Yn = yn)

=
nŸ

i=1

Pr (Y
i

= y
i

, Yn≠i+1

= yn≠i+1

| Y
i+1

= y
i+1

, . . . , Yn≠i

= yn≠i

) , (6.19)

where n = n
2

if n is even, or n = n+1

2

if n is odd.

The random variables Y
i+1

, . . . , Yn≠i

are sandwiched between Y
i

and Yn≠i+1

.

For example for n = 3,

Pr (Y
1

= y
1

, Y
2

= y
2

, Y
3

= y
3

)

= Pr (Y
1

= y
1

, Y
3

= y
3

| Y
2

= y
2

) Pr (Y
2

= y
2

, Y
2

= y
2

) ,

and for n = 4,

Pr (Y
1

= y
1

, Y
2

= y
2

, Y
3

= y
3

, Y
4

= y
4

)

= Pr (Y
1

= y
1

, Y
4

= y
4

| Y
2

= y
2

, Y
3

= y
3

) Pr (Y
2

= y
2

, Y
3

= y
3

) .

The pair-copula decomposition is

Pr (Y
1

= y
1

, Y
4

= y
4

| Y
2

= y
2

, Y
3

= y
3

) Pr (Y
2

= y
2

, Y
3

= y
3

)

= ÒC
14|23

1
F

1|23

(y
1

| y
2

, y
3

), F
4|23

(y
4

| y
2

, y
3

)
2

ÒC
23

(F
2

(y
2

), F
3

(y
3

)) .

This pairwise decomposition is recognised as a D-vine, in particular as the D-vine

shown in Fig. 6.5. We can see the copula C
14|23

and C
23

are explicit in the decom-

position. All of the pair-copulas of the continuous D-vine are involved and hence

must be computed. However only a subset of size n are expressed directly in the

likelihood (6.21). Working hierarchically from tree T
1

, the terms C
12

, C
23

and C
34

are required to compute the marginal terms F
1|2, F

3|2, F
2|3 and F

3|4. These terms are

needed for the arguments for the pair-copulas in T
2

and the copulas C
13|2 gives F

1|23
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and C
24|3 gives F

4|23

which are the marginal cdfs of the highest order copula C
14|23

.

Equation (6.19) encompasses the example of three-dimensional given in Panagiotelis

et al. (2012).

T
1

12 23 34

T
2

13|2 24|3

T
3

14|23

Figure 6.5: A D-vine with four variables.

6.3.3 The discrete D-vine log-likelihood

Let V be an n-dimensional D-vine on the variables Y = (Y
1

, . . . Yn). In this section

we contribute to the literature by providing a general form for the pmf and the log-

likelihood of a discrete D-vine To the best of our knowledge, a general formula has

not been given in the literature. Let us define n = n
2

if n is even, or n = n+1

2

if n is

odd, then the joint pmf corresponding to the factorisation (6.19), can be written as

Pr (Y
1

= y
1

, . . . , Yn = yn)

=
nŸ

i=1

Pr
1
Y

i

= y
i

, Yn≠i+1

= yn≠i+1

| Y
(i+1):(n≠i)

= y
(i+1):(n≠i)

2
,

=
nŸ

i=1

ÒC
i, (n≠i+1)|(i+1):(n≠i≠1)

,

=

Y
__]

__[

ÒC
1,N |2:(N≠1)

ÒC
2,N≠1|3:(N≠2)

ÒC
3,N≠2|4:(N≠3)

· · · , ÒC
n,n+1

, if n is even,

ÒC
1,N |2:(N≠1)

ÒC
2,N≠1|3:(N≠2)

ÒC
3,N≠2|4:(N≠3)

· · · , ÒC
n

, if n is odd,

(6.20)

where we write C
n

for the univariate probability Pr(Y
n

Æ y
n

). For example with

n=15,

Pr (Y
1

= y
1

, . . . , Yn = yn) = ÒC
1, 15|2:14

ÒC
2, 14|3:13

· · · ÒC
7, 9|8 ÒC

8

.
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Therefore the general form of the log-likelihood for the discrete D-vine PCC with

n margins is given by

¸ (◊; y) =
nÿ

i=1

log ÒC
i, n≠i+1|i+1:n≠i

. (6.21)

For example with n=15 we have

¸ (◊; y) = log ÒC
1, 15|2:14

+ log ÒC
2, 14|3:13

+ · · · + log ÒC
7, 9|8 + log ÒC

8

.

The general form (6.21) is simple and has repetition for generalise to large n
easily. The importance of this form for the time series context is that the correlations

of the Gaussian conditional correlations are the partial autocorrelations of time

series. Therefore the Levinson Durbin algorithm (Section 2.1.1) can be used to

compute these e�ciently, removing the need to compute the conditional distribution

correlations. Therefore by choosing successive conditioning in this way we facilitate

computationally e�cient joint maximum likelihood. We modify the algorithm of

(Dißmann et al., 2013) to compute (6.21) and also use (6.21) to obtain analytic

standard errors of the parameter estimates.

6.4 The Gaussian copula model as a discrete D-

vine PCC

Now we consider the details of the decomposition of the Gaussian copula pmf (3.8)

into a combination of pair-copulas. In this section we justify the D-vine decompo-

sition of the Gausian copula by showing that

1. the Gaussian copula model for discrete data can be represented as an R-vine

construction where all the pair-copula are bivariate Gaussian copulas;

2. Gaussian pair-copulas parameters are identical to the partial correlations; and

3. these partial autocorrelations are the same as those from time series analysis.
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Gaussian pair-copulas are the natural choice of family for the vine structure for

the Gaussian copula model (3.8) because it is well known that conditional distribu-

tions of the multivariate Gaussian are themselves Gaussian. Write Y = (Y
1

, Y
2

)€

where Y
1

is n
1

◊ 1 and Y
2

is n
2

◊ 1 with n = n
1

+ n
2

. If Y ≥ Nn(µ, �) with

µ = (µ€
1

, µ€
2

)€ and � =

Q

ca
�

11

�
12

�
21

�
22

R

db, then

Y
2

|Y
1

= y
1

≥ Nn2(µ
2

+ �
21

�≠1

11

(y
1

≠ µ
1

), �
22

≠ �
21

�≠1

22

�
12

), (6.22)

where the conditional mean vector µ
2|1 = µ

2

+ �
21

�≠1

11

(y
1

≠ µ
1

) is linear in y
1

. The

conditioned variable y
1

a�ects the mean of the conditional distribution but not its

variance. The correlation matrix � is given by

� =

Q

ccccccccccccca

1 r(1) r(2) · · · r(n ≠ 1)

r(1) 1 r(1) . . .
...

r(2) r(1) 1 . . . r(2)
...

. . .
. . . 1 r(1)

r(n ≠ 1) · · · r(2) r(1) 1

R

dddddddddddddb

œ Rn◊n,

where r(i), i = 1, . . . , n is the autocorrelation at lag i, (Definition 4). For the

Gaussian copula model (3.8), we allow all n(n ≠ 1)/2 pair-copulas of an R-vine to

be bivariate Gaussian copulas (Joe, 1996). A pair-copula construction consists of

n(n ≠ 1)/2 pair-copulas each with its own parameter set. A Gaussian pair-copula

has only one correlation parameter resulting in a total of n(n ≠ 1)/2 pair-copula

parameters in an all Gaussian R-vine structure.

Kurowicka and Cooke (2003) discuss a general correspondence between the pa-

rameters on a vine with all Gaussian copulas and the correlation matrix � of a

multivariate Gaussian via the partial correlations. For the multivariate Gaussian

distribution, the bivariate conditional distribution correlations coincide with the
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partial correlations (Baba et al., 2004). Partial correlations can be computed from

the correlations r(i), i = 1, . . . , n ≠ 1, using the formula (Yule and Kendall, 1965)

fl
i,j|k,l

= fl
ij|k ≠ fl

il|kfl
jl|kÒ

1 ≠ fl2

il|k

Ò
1 ≠ fl2

jl|k
. (6.23)

For time series the partial correlations are the partial autocorrelations which have

been discussed in Chapter 2. The decomposition of the pmf (6.20), with the con-

ditioning indices i + 1, . . . , n ≠ i sandwiched between i and n ≠ i + 1, for i =

1, . . . , Â(n + 1)/2Ê, gives the partial correlations to be the partial autocorrelations,

allowing e�cient methods of time series to be used. The computationally e�cient

Levinson-Durbin algorithm given in (2.7) can then be used instead of using (6.23).

As Daniels and Pourahmadi (2009) point out, the reparameterisation of the corre-

lation matrices involving partial autocorrelations is not a recent result. They state

‘the notion of PACF is known to be indispensable and’ . . . . . . ‘be can be traced

to a notable and somewhat neglected paper of Yule (1907)’. The one-to-one corre-

spondence between Gaussian pair-copula correlations and the Gaussian correlation

matrix is key to the D-vine representation of the Gaussian copula model.

6.4.1 Conditional distributions and conditional copulas

In a hierarchical manner we can build up the conditional distributions from those

with a lower-dimensional conditioning set, as shown and described in Section 6.2.1,

by

F
i|j,k

(y
i

|y
j

, y
k

) =
C

i,j|k (F (y
i

|y
k

) , F (y
j

|y
k

)) ≠ C
i,j|k

1
F (y

i

|y
k

) , F (y≠
j

|y
k

)
2

Pr (Y
j

= y
j

|Y
k

= y
k

) ,

=
C00

ij|k ≠ C01

ij|k

ÒF
j|k

(6.24)

where k can be a scalar or multiple indices. By assuming the latent variables X

(Section 3.3) follow a multivariate normal distribution, the dependence structure

between the original variables is created. We borrow the dependence from the

Gaussian copula for the discrete dependent random variables Y. The justification of
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(6.24) and the use of the Gaussian copula model for discrete random variables stems

from using the conditional copula of the Gaussian ARMA(p, q) for the conditional

copula of the discrete random variables Y.

Consider the case n=3, we have Y
1

, Y
2

, Y
3

with distribution function given by

F
123

(y
1

, y
2

, y
3

) and the conditional distribution function of Y
1

, Y
3

|Y
2

= y
2

given by

F
13|2(y1

, y
3

|y
2

). By Sklar’s Theorem, the appropriate bivariate copula of the dis-

tribution of Y
1

, Y
3

|Y
2

= y
2

is C
13|2. Let C

13|2 be the copula corresponding to F
13|2

according to Sklar’s Theorem. Then

F
13|2(y1

, y
3

|y
2

) = Pr(Y
1

Æ y
1

, Y
3

Æ y
3

|Y
2

= y
2

),

= Pr(Y
1

Æ y
1

, Y
3

Æ y
3

, Y
2

= y
2

)
Pr(Y

2

= y
2

) ,

= Pr(Y
1

Æ y
1

, Y
2

Æ y
2

, Y
3

Æ y
3

) ≠ Pr(Y
1

Æ y
1

, Y
2

Æ y
2

≠ 1, Y
3

Æ y
3

)
Pr(Y

2

Æ y
2

) ≠ Pr(Y
2

Æ y
2

≠ 1) ,

= F
123

(y
1

, y
2

, y
3

) ≠ F
123

(y
1

, y
2

≠ 1, y
3

)
F

2

(y
2

) ≠ F
2

(y
2

≠ 1) ,

= C(F
1

(y
1

), F
2

(y
2

), F
3

(y
3

)) ≠ C(F
1

(y
1

), F
2

(y
2

≠ 1), F
3

(y
3

))
F

2

(y
2

) ≠ F
2

(y
2

≠ 1) .

Let u
i

= F
i

(y
i

) and u≠
i

= F
i

(y
i

≠ 1) for i = 1, 2, 3. Then

F
13|2(y1

, y
3

|y
2

) = C(u
1

, u
2

, u
3

) ≠ C(u
1

, u≠
2

, u
3

)
u

2

≠ u≠
2

,

= 1
u

2

≠ u≠
2

⁄
u2

u

≠
2

ˆ

ˆuÕ
2

C(u
1

, uÕ
2

, u
3

) duÕ
2

.

The partial derivative of a copula with respect to one of its arguments is equal to the

conditional distribution function given the random variable that the argument cor-

responds to (Section 6.2.1). Patton (2006) extends Sklar’s Theorem to conditional

distributions.

ˆ

ˆu
2

C(u
1

, u
2

, u
3

) = C
13|2(u1

, u
3

|u
2

) = C
13|2(C1|2(u1

|u
2

), C
3|2(u3

|u
2

)).
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Therefore

F
13|2(y1

, y
3

|y
2

) = 1
u

2

≠ u≠
2

⁄
u2

u

≠
2

C
13|2

1
C

1|2(u1

|uÕ
2

), C
3|2(u3

|uÕ
2

)
2

duÕ
2

.

The conditional distribution function C
13|2(C1|2, C

3|2) can be written as a pair-

copula with arguments C
1|2 and C

3|2 (Patton, 2006) such that C
1|2 = ˆ

ˆu2
C(u

1

, u
2

, 1)

and C
3|2 = ˆ

ˆu2
C(1, u

2

, u
3

) since copulas are distribution functions by definition.

Thus the copula C(u
1

, u
2

, u
3

) is a cdf on [0, 1]3 and C(u
1

, u
2

, 1) = C
12

(u
1

, u
2

),

C(1, u
2

, u
3

) = C
32

(u
3

, u
2

) and ˆ

ˆu2
C(u

1

, u
2

, 1) = C
1|2(u1

, u
2

), ˆ

ˆu2
C(1, u

2

, u
3

) = C
3|2(u3

, u
2

).

F
13|2(y1

, y
3

|y
2

) = 1
u

2

≠ u≠
2

⁄
u2

u

≠
2

C
13|2

3
ˆ

ˆuÕ
2

C(u
1

, uÕ
2

, 1), ˆ

ˆuÕ
2

C(1, uÕ
2

, u
3

)
4

duÕ
2

.

The copula C is uniquely defined at u
i

= F
i

(0), F
i

(1), . . . ,. We can linearly interpo-

late the values of C (Genest and Nešlehová, 2007) so that it is piecewise linear over

[0, 1]3. Then C is a constant and

F
13|2(y1

, y
3

|y
2

)

=C
13|2

3
C(u

1

, u
2

, 1) ≠ C(u
1

, u≠
2

, 1)
u

2

≠ u≠
2

,
C(1, u

2

, u
3

) ≠ C(1, u≠
2

, u
3

)
u

2

≠ u≠
2

4
,

=C
13|2

3
F

12

(y
1

, y
2

) ≠ F
12

(y
1

, y
2

≠ 1)
F

2

(y
2

) ≠ F
2

(y
2

≠ 1) ,
F

23

(y
2

, y
3

) ≠ F
23

(y
2

≠ 1, y
3

)
F

2

(y
2

) ≠ F
2

(y
2

≠ 1)

4
,

=C
13|2

3Pr(Y
1

Æ y
1

, Y
2

= y
2

)
Pr(Y

2

= y
2

) ,
Pr(Y

2

= y
2

, Y
3

Æ y
3

)
Pr(Y

2

= y
2

)

4
,

=C
13|2

3
F

1|2(y1

|y
2

), F
3|2(y3

|y
2

)
4

.

Therefore the conditional copula is the conditional cdf for the discrete distribution.

6.4.2 Equivalence of the vine copula and Gaussian copula

model

In this section we compare the evaluation of the joint probabilities computed via

the discrete D-vine PCC and the Gaussian copula model directly.
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We numerically verify the equivalence of the Gaussian copula model and the

discrete D-vine copula model in dimensions n=4. For n=4,

Pr(Y
1

= y
1

, Y
2

= y
2

, Y
3

= y
3

, Y
4

= y
4

) =
1ÿ

¸1=0

1ÿ

¸1=2=0

1ÿ

¸3=0

1ÿ

¸4=0

(≠1)¸1+¸2+¸3+¸4�
�

(�≠1(F
1

(y
1

)), �≠1(F
2

(y
2

)), �≠1(F
3

(y
3

)), �≠1(F
4

(y
4

))),

and

Pr(Y
1

= y
1

, Y
2

= y
2

, Y
3

= y
3

, Y
4

= y
4

) =

ÒC
14|23

(F
1|23

(y
1

|y
2

, y
3

), F
4|23

(y
4

|y
2

, y
3

)) ÒC
23

(F
2

(y
2

), F
3

(y
3

)),

where ÒC = C00 ≠ C01 ≠ C10 + C11.

Direct evaluation of the Gaussian copula model probability mass function is

computationally expensive and one evaluation for a time series of length n=20

takes longer than six days. However it can be evaluated directly for low-dimensions

and hence it can be used to compare the accuracy of the D-vine PCC. The n-

dimensional Gaussian copula is a cumulative distribution function which does not

have a closed form. The evaluation of multivariate Gaussian probability require

numerical methods due to the multivariate integrals. In low dimensions numerical

integration techniques can be used, but as the dimension increases other numeri-

cal approximation methods must be used. Tong (1990, pg 186) gives an overview

of some numerical methods that have been proposed such as Monte Carlo simula-

tions (Abbe 1964; Deak 1978; Moran 1984), dimensional reductions in numerical

integration (Steck 1962; Bacon 1963), change-of-variables, infinite series expansions

and quadrature methods to name a few. For the direct evaluation, the multivariate

Gaussian cdf is required. We use a built-in function of R for evaluating the multi-

variate Gaussian cdf in high-dimensions, namely pmnorm() in mnormt (Azzalini and

Genz, 2015) which works via a non Monte Carlo method using the sadvm function

(Genz, 1992).
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The evaluation of the discrete D-vine PCC using Algorithm 5 involves bivariate

Gaussian copulas which require the bivariate Gaussian distribution function. These

can be computed using the R function pbivnorm() in the pbivnorm package (Genz,

2015). This is Fortran code written by Alan Genz, translated into R code by Brenton

Kenkel, based on the mnormt package. Alternatively the pCopula() function in the

copula package (Hofert et al., 2015) can be used.

Numercal Verification

The Gaussian copula model with negative binomial margins (fi = 0.3, s = 3) and

ARMA(1, 1) dependence (a
1

= 0.6, b
1

= 0.8) is fit to 160 000 datasets of length n=4,

in both ways; directly using the pmnorm() and via the D-vine PCC. The datasets of

length n=4 consist of all the combinations of the integers from one to twenty, e.g.

(1, 7, 3, 8), (2, 4, 8, 1), (12, 3, 1, 19) e.t.c. There are 204 = 160 000 datasets in

total.

Fig. 6.6 shows the pmf of both methods plotted against each other. Perfect

agreement corresponds to all points lying on the line y = x and we can there is very

good agreement between the methods for the case of n=4.
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Figure 6.6: Comparing D-vine PCC and direct Gaussian copula pmf evaluations on

datasets of length n=4.

6.4.3 Discussion

We make use of the vine methodology and computational techniques and adapt

them for an e�cient algorithm for maximum likelihood estimation of the Gaussian

copula model (3.8).

It happens that the vine methodology corresponding to the Gaussian copula

model which is built with Gaussian pair-copulas is not a complex vine and has

many simplifications over other vine models. Firstly, the bivariate Gaussian copula

has only one parameter and has established e�cient computation procedures. Sec-

ondly, inference for many vine models require a simplifying assumption (Ha� et al.,

2013) being that the the pair-copula corresponding to the conditional cumulative

distribution function F
ij|k of Y

i

, Y
j

|Y
k

is una�ected by the value of the conditioning
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variable Y
k

. That is

C
ij|k(F

i|k(y
i

|y
k

), F
i|k(y

i

|y
k

); y
k

) = C
ij|k(F

i|k(y
i

|y
k

), F
i|k(y

i

|y
k

)).

From (6.22) we can see that the conditional Gaussian distribution depends on the

conditioned variable only through its mean value. Hence the Gaussian copula is a

‘copula of the simplified form’ (Stöber, 2013) and therefore the condition is satisfied.

Finally, vines with all Gaussian pair-copulas have been viewed as simplified vines

and they have been compared with more complex vine structures to investigate

whether the results of the simplified vine varies significantly with more complex

models (Valdesgo, 2009; Brechmann, 2010).

The evaluation of the discrete D-vine PCC representation (6.21) of the Gaussian

copula pmf with n discrete margins involves at most 2n (n ≠ 1) bivariate Gaussian

distribution functions which is much simpler to evaluate than the 2n finite di�erences

of n-dimesional Gaussian copula required for the Gaussian copula pmf (3.8). In the

next section we provide an algorithm to evaluate the discrete D-vine PCC log-

likelihood discussed in Chapter 6 and present analytic forms of the score and the

Hessian of the log-likelihood for maximum likelihood estimation.

6.5 Evaluation of the discrete D-vine log-likelihood

Panagiotelis et al. (2012) give an algorithm for computing a discrete D-vine density.

The algorithm is specific to the graphical tree structure of the D-vine where the con-

ditional copula distributions corresponding to each edge are evaluated by beginning

at tree one, working downwards to finish at tree n≠1. Dißmann et al. (2013) pro-

vides a more general approach for evaluating any R-vine continuous density which

was described in Section 6.2.3 and has led to analytic forms of the score and Hessian

(Stöber and Schepsmeier, 2013) in the continuous case.

We combine the ideas of the discrete D-vine of Panagiotelis et al. with the
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general and e�cient computation of Dißmann et al. (2013, Algorithm 2.1, p. 58) as

does Stöber (2013) to evaluate a discrete D-vine log-likelihood in Algorithm 4. We

also provide the novel details of an analytic form of the score and Hessian in the

discrete case which has not been done before in the literature. 1 Panagiotelis et al.

suggest the bootstrap method to compute the standard errors in the discrete case.

To evaluate the discrete D-vine, let the matrices in (6.14) be reformed to vdirect =

(vdirect+, vdirect≠) and vindirect = (vindirect+, vindirect≠) where v+

i

is evaluated at y
i

and

v≠
i

is evaluated at y
i

≠ 1. Introduce lower triangular n ◊ n matrices, fdirect and

f indirect where

f
k

= Pr(Y
k

= y
k

) = F
k

(y
k

) ≠ F
k

(y
k

≠ 1) = F
k

≠ F ≠
k

, (6.25)

where k can be multiple indices or a single index. Continuing with the example of

a D-vine on 4 elements (6.13), the form of vdirect+, vdirect≠, fdirect and f indirect are

vdirect+ =

Q

cccccccca

F
4|321

0 0 0

F
4|23

F
3|21

0 0

F
4|3 F

3|2 F
2|1 0

F
4

F
3

F
2

F
1

R

ddddddddb

, vdirect≠ =

Q

cccccccca

F ≠
4|321

0 0 0

F ≠
4|23

F ≠
3|21

0 0

F ≠
4|3 F ≠

3|2 F ≠
2|1 0

F ≠
4

F ≠
3

F ≠
2

F ≠
1

R

ddddddddb

,

fdirect =

Q

cccccccca

f
4|321

0 0 0

f
4|23

f
3|21

0 0

f
4|3 f

3|2 f
2|1 0

f
4

f
3

f
2

f
1

R

ddddddddb

, f indirect =

Q

cccccccca

f
1|234

0 0 0

f
2|34

f
1|23

0 0

f
3|4 f

2|3 f
1|2 0

0 0 0 0

R

ddddddddb

. (6.26)

Therefore the log-likelihood (6.21) can be alternatively computed using the diagonals

of the matrix fdirect as

¸(◊; y) =
nÿ

j=1

log fdirect

j,j

.

1At the time of writing, Harry Joe released an excellent resource (Joe, 2015). The book surveys
a significant proportion of the copula literature which will no doubt become core reading for the
advancement of copula modelling. Section 6.12 includes a discussion on the derivatives of the the
discrete R-vine density of which encompasses much of this work.
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The matrix P ú stores the pair-copula parameters which coincide with the partial

correlations for the Gaussian distribution. For a D-vine the partial correlations are

the partial autocorrelations (Section 6.4). For a stationary time series, the partial

autocorrelations fl
kk

depends on the time points only through its lag k, therefore

all the pair-copulas have the same correlations when assigned in the same tree as

illustrated in Fig. 6.7.

fl
11

fl
11

fl
11

fl
22

fl
22

fl
33

Figure 6.7: The conditional distribution correlation parameters of a D-vine for a
stationary time series in four dimensions.

There are n ≠ 1 trees and hence there are at most n ≠ 1 distinct values. The

matrix P ú for a D-vine for time series data is

P ú =

Q

ccccccccca

0 0 0 0

fln≠1 n≠1

0 0 0
...

. . . 0 0

fl
11

fl
11

fl
11

0

R

dddddddddb

, (6.27)

where fl
kk

are the partial autocorrelations at lag k, k = 1, . . . , n ≠ 1. The Levinson-

Durbin algorithm provides a computationally e�cient method of computing the

partial autocorrelations by solving the Yule-Walker equations recursively (Chapter

2).

The algorithm to compute the log-likelihood function of a discrete D-vine (6.21)

is given in Algorithm 5. It takes the same form as the continuous R-vine given in

Algorithm 4 in that it consists of two loops which iterate over the columns of (6.26)

with index k and row index i. Each loop has the same three main steps;
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1. Select the copula arguments F +

i|k, F ≠
i|k, F +

j|k, F ≠
j|k

as z+

1

, z≠
1

and z+

2

, z≠
2

(lines 8-10)

2. Evaluate the pair-copula C++

ij|k , C+≠
ij|k , C≠+

ij|k , C≠≠
ij|k

at each pair of arguments (lines 11)

3. Compute the conditional F +

i|jk

, F ≠
i|jk

, F +

j|ik, F ≠
j|ik

distribution and densities f+

i|jk

, f≠
i|jk

, f+

j|ik, f≠
j|ik

(lines 12-13)

These are looped over for i = n, . . . , k + 1 and k = n ≠ 1, . . . , 1 and then the

likelihood returned (line 17). The order of these steps are shown in Table 6.1. The

di�erence between Dißmann et al. (2013) and Panagiotelis et al. (2012)’s evaluation

of the algorithm is simply the order in which the pair-copulas are applied to the

arguments. The algorithm provided in Panagiotelis et al. (2012) corresponds to

the order C
12

, C
23

, C
34

, C
13|2, C

24|3 then C
14|23

rather than as shown in Table 6.1 and

therefore would correspond to iterating over rows then columns, rather than columns

then rows and the indices are fixed as a special case with no R-vine matrices, M

and ÊM .

Table 6.1: The order of copula evaluations in for a D-vine in n=4 dimension for
Algorithm 5.

Loop Copula Entries of
(i, k) C

jk|l vdirect vindirect

4 3 C
12

F
2|1 F

1|2
4 2 C

23

F
3|2 F

2|3
3 2 C

13|2 F
3|21

F
1|23

4 1 C
34

F
4|3 F

3|4
3 1 C

24|3 F
4|32

F
2|34

2 1 C
14|23

F
4|321

F
1|234

The di�erences between the continuous R-vine (Section 6.2.3)and the discrete

given above are in the details of these steps
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a) Each step requires an extra evaluation at y
i

≠ 1;

b) The copula distribution function rather than the copula density is applied (line

11);

c) The conditional distributions are updated using (6.16) rather than (6.9) (line

12);

d) the corresponding conditional densities are computed f
k

= F
k

≠ F ≠
k

(line 13);

e) the log-likelihood has a di�erent expression in the final step: If the copula is

directly expressed in the likelihood then we save the value as c
j

= ÒC
j

. The

algorithm returns then returns a combination of c
j

as in (6.21) or alternatively

¸(◊; y) =
nq

j=1

log fdirect

j,j

.

For our case of all Gaussian pair-copula, line 11 becomes

14 : (C00, C01, C10, C11) = �
pi,k

1
�≠1 (za

1

) , �≠1(zb

2

)
2

,

where �
pi,k

is a bivariate Gaussian distribution function with correlation p
i,k

and

�≠1 is the inverse of the univariate standard normal cdf.

Maximum likelihood estimation is an optimisation procedure and good optimi-

sation methods should be adhered to.
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Algorithm 5 Log-likelihood for the D-vine density for discrete variables.
Input: Model parameters ◊ = (a

1

, . . . , a
p

, b
1

, . . . , b
q

, ◊
marginal

) and an integer-valued
time series (y

1

, . . . , yn) of length n.
Output: Log-likelihood of a discrete R-vine Gaussian PCC at ◊.
Required: Roots of –(z) = 1 ≠ a

1

z ≠ · · · ≠ a
p

zp and —(z) = 1 + b
1

z + · · · + b
q

zq to
lie outside the unit circle.

1: Create n ◊ n matrices vdirect+, vdirect≠, vindirect+, vindirect≠, fdirect, f indirect as in
(6.26).

2: Set M and ÊM n ◊ n matrices as in (6.13).
3: fl

kk

= Levinson-Durbin(a, b) into P ú matrix as in (6.27). Û Copula parameters

4: Set (u+

1

, . . . , u+

n ) = (F (y
1

) , . . . , F (yn)) , Û Compute marginals
and (u≠

1

, . . . , u≠
n ) = (F (y

1

≠ 1) , . . . , F (yn ≠ 1)) .
5: Store (vdirect+

n,1

, . . . , vdirect+

n,n ) = (u+

n , . . . , u+

1

),
and (vdirect≠

n,1

, . . . , vdirect≠
n,n ) = (u≠

n , . . . , u≠
1

),
and (fdirect≠

n,1

, . . . , fdirect≠
n,n ) = (u+

n , . . . , u+

1

) ≠ (u≠
n , . . . , u≠

1

) as (6.25).

6: for k = n ≠ 1, . . . 1
7: for i = n, . . . k + 1

8: (z+

1

, z≠
1

) = (vdirect+

i,k

, vdirect≠
i,k

). Û Select copula arguments
9: if Êm

i,k

= m
i,k

then (z+

2

, z≠
2

) = (vdirect+

k,(n+1≠Âmi,k)

, vdirect≠
k,(n+1≠Âmi,k)

),
10: else (z+

2

, z≠
2

) = (vindirect+

k,(n+1≠Âmi,k)

, vindirect≠
k,(n+1≠Âmi,k)

).

11: (C00, C01, C10, C11) = Û Evaluate copulas
C

1
za

1

, zb

2

; t
i,k

, p
i,k

2
where ab = {+, ≠} .

Û Conditional distributions
12: vdirect+≠

i≠1,k

= C(z
1

, z
2

; p
i,k

) ≠ C(z
1

, z≠
2

; p
i,k

)
f(z

2

) and

vindirect+≠
i≠1,k

= C(z
1

, z
2

; p
i,k

) ≠ C(z≠
1

, z
2

; p
i,k

)
f(z

1

) as in (6.16).

13: Set fdirect

i≠1,k

= vdirect+

i≠1,k

≠ vdirect≠
i≠1,k

,
and f indirect

i≠1,k

= vindirect+

i≠1,k

≠ vindirect≠
i≠1,k

.

14: If C expressed in log-likelihood
then save c

j

= ÒC = C00 ≠ C01 ≠ C10 + C11.
15: end
16: end

17: Return ¸ =
Â(n+1)/2Êq

j=1

c
j

as (6.21) or ¸ =
nq

j=1

log fdirect

j,j

as (6.25).
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6.5.1 Model selection using AIC and BIC

In classical time series the order of a suitable ARMA(p, q) model is identified by

looking at the acf and pacf plots or by some criteria, such as the Akaike’s and

Bayesian Information Criteria. We follow the latter approach to select an appropri-

ate ARMA(p, q) dependence structure in the Gaussian copula model.

Let ‚̧ = ¸( ‚◊; y) be the maximum likelihood value evaluated at the MLE ‚◊ of ◊

and let k = dim(◊) which in this case is p + q. The AIC and BIC are given in terms

of ‚̧ and k .

Definition 13. Akaike Information Criterion (AIC, Akaike 1974)

The Akaike Information criterion is

AIC (p, q) = ≠2 ‚̧+2k.

Definition 14. Bayesian Information Criterion (BIC)

The Bayesian Information criterion is

BIC (p, q) = ≠2 ‚̧+k log n.

Both of these take the form of a penalised maximised likelihood but with di�erent

penalties. The BIC typically selects a more parsimonious model.

6.5.2 Assumption of the underlying ARMA process

Masarotto et al. (2012) consider the Gaussian copula model as a marginal regression

model with serially correlated errors. They check the model adequacy by residual

analysis. We use this idea to check the assumption of the underlying ARMA process.

If the marginals of the Gaussian copula model are continuous, the model ade-

quacy can be checked by confirming that

r
i

= �≠1

1
F

i

(Y
i

| Y
i≠1

, Y
i≠2

, . . . , Y
1

; ‚◊)
2

i = 1, . . . , n,
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behave like realisations of n uncorrelated standard normal variables. This is because

in the continuous case Rosenblatt (1952) showed that

M
i

= F
i

(Y
i

| Y
i≠1

, Y
i≠2

, . . . , Y
1

; ◊),

are uniformly and independently distributed in the unit interval.

In the discrete case, Dunn and Smyth (1996) introduced randomised quantile resid-

uals, for discrete dependent y
i

where m
i

= F (y
i

| y
i≠1

, . . . , y
1

‚◊) and m≠
i

= F (y≠
i

|
y

i≠1

, . . . , y
1

‚◊) where ‚◊ is the MLE of ◊. These are given by

rú
i

= �≠1

1
m≠

i

+ u
i

(m
i

≠ m≠
i

)
2

,

where the u
i

is a draw from a (0, 1) uniform variate. If the model assumptions are

satisfied, then the values rú
i

for i = 1, . . . , n are n independent standard normal

variables and normality of the r
i

’s can be checked using the usual residual checks

for example acf and qq-plots.
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6.6 The analytic score and Hessian

The Hessian of the log-likelihood is required to study the covariance structure of

maximum likelihood estimators, specifically in computation of the standard errors.

An analytic form allows estimation of parameter uncertainty and may avoid numer-

ical issues which arise from numerical di�erentiation, whilst the score function can

be used to speed up the optimisation of ML estimation.

Panagiotelis et al. (2012) suggested to use a bootstrap method to obtain stan-

dard errors for the discrete D-vine PCC. Stöber and Schepsmeier (2013) provided

algorithms for computing the first and second derivatives of the continuous R-vine

log-likelihood. The possible direct and indirect dependences through the arguments

(the conditional cdfs) of the copula terms on the pair-copula parameters are dis-

cussed in their appendix and they are with respect to the pair-copula parameters

only. At the time of writing, there is no publicly available software for computing

the score or Hessian for a discrete D-vine or more general R-vine in the literature2.

In this section we present general form of the score and Hessian of a discrete D-

vine PCC and we present the algorithms to compute the score function and the Hes-

sian of a discrete D-vine PCC. We extend the methodology to include the marginal

derivatives as well as the cross derivatives. This is a novel extension of Schepsmeier

and Stöber (2014) to include the marginal model parameters, yet also a special

case with all Gaussian pair-copulas and an ARMA(p, q) dependence structure. We

provide pseudo-code in Algorithms 6 and 7 given in Appendix B.

The simplification of the vine having only p+ q +dim(◊
marginal

) parameters leads

to all of the conditional copulas and conditional arguments in the likelihood function

to be directly or indirectly functions of these p+ q +dim(◊
marginal

) parameters. This
2At the time of writing, Joe (2015)[Section 6.12] discusses the derivatives for factor copula

models
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is in contrast to the n(n ≠ 1)/2 partial derivatives of an R-vine Schepsmeier and

Stöber (2014).

The log-likelihood (6.21) is

¸(◊; y) =
nÿ

k=1

log ÒC
k, n≠k+1|k+1:n≠k

,

where ÒC = C00 ≠ C01 ≠ C10 + C11 (Section 6.3). We will use partial notation for

the partial derivatives but will use Lagrangian notation when necessary for simpli-

fication. The score of the log-likelihood of the discrete D-vine is given by

¸Õ
◊i

(◊; y) =
Â(N+1)/2Êÿ

i=1

ÒC Õ
k, n≠k+1|k+1:n≠k

ÒC
k, n≠k+1|k+1:n≠k

,

=

Y
____]

____[

ÒC Õ
1N |2:N≠1, ◊i

ÒC
1N |2:N≠1

+ · · · +
ÒC Õ

n,n+1, ◊i

ÒC
n,n+1

if n = 2n i.e. n is even,

ÒC Õ
1N |2:N≠1, ◊i

ÒC
1N |2:N≠1

+ · · · +
ÒC Õ

n, ◊i

ÒC
n

if n = 2n ≠ 1 i.e. n is odd.

=

Y
____]

____[

nq

k=1

ÒC Õ
k n≠k+1|k+1:n≠k≠1, ◊i

ÒC
k n≠k+1|k+1:n≠k≠1

if n = 2n i.e. n is even,

nq

k=1

ÒC Õ
k n≠k+1|k+1:n≠k≠1, ◊i

ÒC
k n≠k+1|k+1:n≠k≠1

+
f Õ

◊i
(y

n

)
f (y

n

) if n = 2n ≠ 1 i.e. n is odd.

(6.28)

where f = F + ≠ F ≠ = F (y) ≠ F (y ≠ 1). For example for n=5,

¸Õ
◊i

(◊; y) =
ÒC Õ

15|234;◊i

ÒC
15|234

+
ÒC Õ

24|3;◊i

ÒC
24|3

+
f Õ

3,◊i
(y

3

)
f

3

(y
3

) .

For notational simplicity, denote the copula indices by l = {k, n ≠ k + 1 | k + 1 : n ≠ k}
for k = 1, . . . , n.
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The Hessian of the log-likelihood is

¸ÕÕ
◊i◊j

(◊; y) =

Y
_____________]

_____________[

nq

l=1

ÒC ÕÕ
l, ◊i◊j

ÒC
l

≠ ÒC Õ
l, ◊i

ÒC Õ
l, ◊j

ÒC2

l

if n is even,

nq

l=1

ÒC ÕÕ
l, ◊i◊j

ÒC
l

≠ ÒC Õ
l, ◊i

ÒC Õ
l, ◊j

ÒC2

l

+
f ÕÕ

n,◊i◊j
(y

n

)
f

n

(y
n

) ≠ f Õ
n,◊i

(y
n

) f Õ
n,◊j

(y
n

)
f

n

(y
n

)2

if n is odd.

(6.29)

For example with n=3

¸ÕÕ
◊i◊j

=
ÒC ÕÕ

13|2, ◊i◊j

ÒC
13|2

≠ ÒC Õ
13|2, ◊i

ÒC Õ
13|2, ◊j

ÒC2

13|2
+

f ÕÕ
2,◊i◊j

(y
2

)
f

2

(y
2

) ≠ f Õ
2,◊i

(y
2

) f Õ
2,◊j

(y
2

)
f

2

(y
2

)2

.

The term ÒC involves the copula cdf evaluated at four pairs of points. The

partial derivatives of the copula cdfs C¸1,¸2 are required for the calculations of the

gradient (6.28) and the Hessian (6.29) of (6.21) with respect to the marginal and

ARMA(p, q) dependence parameters,

◊ = (◊
copula

, ◊
marginal

) = (a
1

, . . . , a
p

, b
1

, . . . , b
q

, ◊
marginal

) .

These can be analytically found using the chain rule. The partial derivatives of the

copula distribution functions with respect to ◊ are

ˆC

ˆ◊
i

= ˆC

ˆfl
· ˆfl

ˆ◊
i

+ ˆC

ˆu
1

· ˆu
1

ˆ◊
i

+ ˆC

ˆu
2

· ˆu
2

ˆ◊
i

,

and

ˆ2C

ˆ◊
i

ˆ◊
j

= ˆ

ˆ◊
j

A
ˆC

ˆfl

B

· ˆfl

ˆ◊
i

+ ˆC

ˆfl
· ˆ2fl

ˆ◊
i

ˆ◊
j

+ ˆ

ˆ◊
j

A
ˆC

ˆu
1

B

· ˆu
1

ˆ◊
i

+ ˆC

ˆu
1

· ˆ2u
1

ˆ◊
i

ˆ◊
j

+ ˆ

ˆ◊
j

A
ˆC

ˆu
2

B

· ˆu
2

ˆ◊
i

+ ˆC

ˆu
2

· ˆ2u
2

ˆ◊
i

ˆ◊
j

.

(6.30)

We compute the derivatives of the conditional distribution functions, u = F
j|kl

,

by di�erentiation of (6.16), that is F
j|kl

= (C00

jk|l ≠ C01

jk|l)/f
k|l, using the quotient rule
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resulting in

ˆu

ˆ◊
i

= ˆF
j|kl

ˆ◊
i

= F Õ
j|kl,◊i

=

1
C00

Õ
jk|l,◊i

≠ C01

Õ
jk|l,◊i

2
· f

k|l ≠
1
C00

jk|l ≠ C01

jk|l

2
· f Õ

k|l,◊i

f 2

k|l
, (6.31)

where C Õ
◊i

and f Õ
◊i

is Langrangian notation for the derivatives wrt ◊
i

.

The second derivative is given by applying the quotient rule a second time as

ˆ2u

ˆ◊
i

ˆ◊
j

= F ÕÕ
j|kl,◊i◊j

=

1
C00

ÕÕ
jk|l,◊i◊j

≠ C01

ÕÕ
jk|l,◊i◊j

2
· f

k|l +
1
C00

Õ
jk|l,◊i

≠ C01

Õ
jk|l,◊i

2
· f Õ

k,◊j

≠
1
C00

Õ
jk|l◊j

≠ C01

Õ
jk|l,◊j

2
· f Õ

k|l,◊i
+

1
C00

jk|l ≠ C01

jk|l

2
· f ÕÕ

k|l,◊i◊j

f 4

k|l
. (6.32)

The derivatives f Õ
◊i

and f ÕÕ
◊i◊j

are simple to compute due to the simple form of

f
jk|l = F

jk|l ≠ F ≠
jk|l.

When the marginals are assumed to be negative binomial NB (fi, s) and the pair-

copulas are Gaussian copulas C(u
1

, u
2

; fl) with correlations that are the ARMA(p,q)

partial autocorrelations, the following are required,

ˆC

ˆu
1

, ˆC

ˆu
2

, ˆC

ˆfl
, ˆu

ˆa
i

, ˆu

ˆb
j

, ˆu

ˆfi
, ˆu

ˆs
, ˆfl

ˆa
i

, ˆfl

ˆb
j

,

where a
i

and b
j

are the ith autoregressive and jth moving average parameters

respectively, 0 Æ i Æ p or 0 Æ j Æ q. Note that ˆfl

ˆfi
= ˆfl

ˆs
= 0.

For the second and cross partial derivatives, the terms required are
ˆ2C

ˆu
1

2

, ˆ2C

ˆu
1

ˆu
2

, ˆ2C

ˆu
2

2

, ˆc

ˆu
1

, ˆc

ˆu
2

, ˆc

ˆfl
,

ˆ2u

ˆa
i

2

, ˆ2u

ˆa
i

ˆb
j

, ˆ2u

ˆa
i

ˆfi
, ˆ2u

ˆa
i

ˆs
, ˆ2u

ˆb
j

2

, ˆ2u

ˆb
j

ˆfi
, ˆ2u

ˆb
j

ˆs
, ˆ2u

ˆfi2

, ˆ2u

ˆfiˆs
, ˆ2u

ˆs2

,

ˆ2fl

ˆa
i

2

, ˆ2fl

ˆa
i

ˆb
j

and ˆ2fl

ˆb
j

2

,

where C and c are the Gaussian pair-copula distribution (6.10) and density (3.6)

functions respectively. We provide the details in Sections 6.6.1 through 6.6.3. The

algorithms to compute the score (6.28) and Hessian (6.29) using these terms are

given in Section 6.6.4.
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6.6.1 The derivatives of the bivariate Gaussian copula cdf

We compute the first and second derivatives of the bivariate Gaussian copula dis-

tribution function wrt ◊. These include the bivariate Gaussian cdf �(x, y; fl) wrt its

arguments, x and y and correlation parameter fl.

The partial derivative of the Gaussian copula C with respect to its first and

second arguments respectively (Aas et al., 2009),

ˆ�
ˆu

1

(u
1

, u
2

; fl) = �
A

�≠1 (u
2

) ≠ fl�≠1 (u
1

)Ô
1 ≠ fl2

B

,

ˆ�
ˆu

2

(u
1

, u
2

; fl) = �
A

�≠1 (u
1

) ≠ fl�≠1 (u
2

)Ô
1 ≠ fl2

B

.

Plackett (1954) states that the derivative of the bivariate Gaussian cdf wrt its

correlation parameter is equivalent to the mixed partial derivative of its arguments,

d�
dfl

(x, y; fl) = ˆ2�
ˆxˆy

(x, y; fl) .

Therefore the derivative of the bivariate Gaussian copula cdf wrt its correlation

parameter is the Gaussian copula density e.g.,

d�
dfl

(x, y; fl) = ˆ2�
ˆxˆy

(x, y; fl) = „ (x, y; fl) ,

and let x = �≠1 (u
1

) and y = �≠1 (u
2

) .

When C is the bivariate Gaussian copula with correlation parameter fl, the terms

in (6.30) are

ˆ

ˆ◊
j

A
ˆC

ˆfl

B

= ˆ

ˆ◊
j

„
1
�≠1 (u

1

) , �≠1 (u
2

) ; fl
2

,

ˆ

ˆ◊
j

A
ˆC

ˆu
1

B

= ˆ

ˆ◊
j

�
A

�≠1 (u
2

) ≠ fl�≠1 (u
1

)Ô
1 ≠ fl2

B

,

ˆ

ˆ◊
j

A
ˆC

ˆu
2

B

= ˆ

ˆ◊
j

�
A

�≠1 (u
1

) ≠ fl�≠1 (u
2

)Ô
1 ≠ fl2

B

.

A key result for the di�erentiation is

ˆ�≠1 (u)
ˆu

= 1
„ (�≠1 (u)) .
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We present the second derivatives of the bivariate Gaussian distribution:

�ÕÕ
fl

2 (x, y; fl) = „Õ
fl

(x, y; fl) ,

= ≠(flx2 ≠ (fl2 + 1) xy + fl (fl2 + y2 ≠ 1))
2fi (1 ≠ fl2)5/2

exp
I

x2 ≠ 2flxy + y2

≠2 (1 ≠ fl2)

J

,

�ÕÕ
flx

(x, y; fl) = „Õ
x

(x, y; fl) = „

A
y ≠ fl xÔ

1 ≠ fl2

B

· yfl ≠ x

1 ≠ fl2

,

�ÕÕ
fly

(x, y; fl) = „Õ
y

(x, y; fl) = „

A
x ≠ fl yÔ

1 ≠ fl2

B

· xfl ≠ y

1 ≠ fl2

,

�ÕÕ
x

2 (x, y; fl) = „

A
y ≠ fl xÔ

1 ≠ fl2

B

· ≠flÔ
1 ≠ fl2

,

�ÕÕ
y

2 (x, y; fl) = „

A
x ≠ flyÔ
1 ≠ fl2

B

· ≠flÔ
1 ≠ fl2

,

�ÕÕ
xy

(x, y; fl) = „ (x, y; fl) . (6.33)

6.6.2 The derivatives of the partial autocorrelations

The partial autocorrelations, fl
kk

, satisfy the Yule-Walker equations given in (2.6).

In this section, we directly di�erentiate the partial autocorrelations from the Yule-

Walker equations and compute them using an intuitive way of computing the inverse

of the leading sub-matrices of the autocorrelation matrix.

However, it has since been acknowledged that the derivatives of the partial auto-

correlations (and autocorrelations) with respect to ARMA parameters were derived

in the signal processing literature in the 1980’s and which also implement these

steps more e�ciently (Porat (1983, p. 346);Friedlander and Porat (1984);Kohn and

Ansley (1985);Porat and Friedlander (1986);Stoica and Moses (1997)).
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The derivatives of fl
kk

wrt ◊
copula

can be found by solving the di�erentiated Yule-

Walker equations for ˆfl
kk

ˆ◊
i

given by
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1 r(1) r(2) . . . r(k ≠ 1)
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XXXXXXXXXXXXXV
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k1

≠ fl
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0 0
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. .
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ˆr(1)
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ˆr(2)
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i

...

...

ˆr(k)
ˆ◊

i

T

XXXXXXXXXXXXXXXV

. (6.34)

where r(k), k = 1, 2, . . . , n ≠ 1 are the autocorrelations of the ARMA(p, q) model

which are functions of ◊
copula

. To solve (6.34) for ˆfl
kk

ˆ◊
i

we need to compute R≠1

k◊k

for k = 1, 2, . . . , n ≠ 1. The Levinson Durbin algorithm (see 2.7) has been used

in an earlier step of the algorithm to compute the partial autocorrelations for the

pair-copula parameters. The Levinson Durbin algorithm computes the terms fl
i,k

,

i = 1, . . . , k and k = 1, . . . , n in the triangular � matrix and the · 2

k

terms in a

diagonal � matrix and so �≠1 can be considered as a by-product,

R≠1

n◊n = �≠1 = �€�≠1�.

However, this only gives R≠1

k◊k

for k = n. We can sequentially compute the

inverse of the leading (k ≠ 1) ◊ (k ≠ 1) sub-matrices (6.34) k = n ≠ 1, . . . , 2 from

R≠1

k◊k

by the following result.
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Consider the inverse of the n ◊ n matrix to be written in the form
Q

ca
R

k◊k

b

c€ d

R

db

≠1

=

Q

ca
E f

g€ h

R

db ,

where b and c are vectors of length k ≠ 1 and d is a scalar. Then the inverse of the

leading sub-matrix R
k◊k

with dimension reduced by one is

R≠1

k◊k

= E ≠ fg€

h
.

We apply this result sequentially for k = n ≠ 1, . . . , 1.

The derivatives with respect to the marginal parameters ◊
marginal

are zero since

the partial autocorrelations are functions of the ARMA(p, q) parameters only. For

the remainder of this chapter we write ◊ instead of ◊
copula

or ◊
marginal

.

Now we obtain the derivatives of the autocorrelations, ˆr(k)
ˆ◊

i

for k = 1, . . . , n≠1,

wrt the ARMA(p, q) parameters which can be done by solving the di�erentiated

system of equations of (2.5) for ˆr(k)
ˆ◊

i

. The system of equations (2.5) are simplified

in our model because the Gaussian copula restricts the covariance matrix to have

unit diagonals so r(0) = 1.

For simplicity of notation, an example with ARMA(p = 5,q) is shown below but

can be easily extended for general p,
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(6.35)

where ˆC
ˆ◊

i

is the derivative of the matrix C element-wise wrt ◊
i

and is a vector

of length p. The final two matrices in (6.35) become zero for the AR(p) model,

simplifying the computation greatly. Computationally, we exploit the form of C in

(6.35) and (similarly in 6.34) by considering matrix C as the sum of two triangular

matrices and and identity matrix.

The Gaussian copula restricts the covariance matrix � to be a correlation ma-

trix, i.e. have unit diagonals, that is r(0) is one and r(i) œ [≠1, 1]. Hence the

ARMA(p, q) dependence structure is such that the covariance R(0) is restricted to

be one. Therefore the term ‡2

Á

is not a constant and the term ‡2

Á

is a function of

the ARMA parameters a and b and so the derivative with respect to ◊ must be

accounted for.

For example, if the dependence structure is specified as an AR(2) process then

R(0) = 1 ≠ a
2

1 + a
2

‡2

Á

(1 ≠ a
2

)2 ≠ a2

1

.
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and setting R(0) = 1 and rearranging for ‡2

Á

we have

‡2

Á

(◊) = 1 + a
2

1 ≠ a
2

((1 ≠ a
2

)2 ≠ a2

1

).

For a MA(q) dependence structure
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(◊) = 1
1 + b2

1

+ · · · + b2

q

,

and the derivatives are given by
Y
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.

Similarly for an ARMA(1,1) dependence structure,
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1

and the derivatives are given by
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Note that the derivatives for AR(p) are not required in the score and Hessian

of the discrete D-vine PCC. The form of the derivative of ‡2

Á

(◊) quickly becomes

complicated for ARMA(p, q) when p ”= 0, q > 2. See Appendix A for the example of

the partial derivatives for ARMA(2,2). The second derivatives are found by solving

the second derivatives of the system of equations in (6.35).
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6.6.3 The derivatives of the negative binomial distribution

functions

Any arbitrary discrete marginal can be assumed (Section 3.3.3) such as Poisson,

zero-inflated Poisson, zero-inflated negative binomial and can include covariates.

The negative binomial is one of the most frequently and widely applied discrete

distributions along with the Poisson distribution (Johnson and Kotz, 1969). For

illustration we consider the case of the negative binomial margins with parameters

fi, s for analytic di�erentiation. The partial derivatives of the univariate negative

binomial distribution function F (y; fi, s) wrt fi and s are sought. For the uncondi-

tional univariate distributions, the first and second and any mixed partial derivatives

wrt the ARMA(p, q) parameters are zero. The negative binomial distribution func-

tion can be expressed in terms of an incomplete beta function ratio which is the

commonly recognised form given by (Rider, 1962),

F
Y

(k; fi, s) = Pr(Y Æ k) =
kÿ

y=≠Œ
Pr(Y = k) = B(fi; s, 1 + k)

B(s, 1 + k) , (6.36)

where B(–, —), B(z; –, —) are the complete and incomplete beta functions respectively.

We di�erentiate the negative binomial distribution function F (k; fi, s) with pa-

rameters fi and s to give the first partial derivatives as

ˆ

ˆfi
F (k) = fis≠1(1 ≠ fi)k

B(s, 1 + k) ,

ˆ

ˆs
F (k) = B(fi; s, 1 + k)

B(s, 1 + k)

A

log fi ≠ �Õ(s)
�(s) + �Õ(1 + s + k)

�(1 + s + k)

B

≠ fis

�(s)2

B(s, 1 + k)
1

�(s + 1)2

3

F
2

C
s, s, ≠k

s + 1, s + 1

D

,

(6.37)

where
3

F
2

Ë
a1,a2,a3

b1,b2

È
is a generalised hypergeometric function (Abramowitz and Stegun,

1964) and �(x) is the gamma function.
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The second and mixed partial derivatives are

ˆ2

ˆfi2

F (k) = fis≠2(1 ≠ fi)k≠1

B(s, k + 1) ((1 ≠ fi)(s ≠ 1) ≠ fi k),

ˆ2

ˆfiˆs
F (k) = fis≠1(1 ≠ fi)k

B(s, k + 1) (Â(s + k + 1) + log(fi) ≠ Â(s)),

ˆ2

ˆs2

F (k) = B
p

(s, k + 1)
B(s, k + 1) ◊

1
≠Â1(s) + Â1(1 + s + k)

2

+
1
log fi ≠ Â0(s) + Â0(1 + s + k)

2
◊ F Õ

s

(k)
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�(s)2

B(s, 1 + k)
1

�(s + 1)2
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3
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+
3
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2

C
s, s, ≠k
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B(s, k + 1)
1
log fi ≠ Â0(s) + Â0(1 + s + k)

2
,

(6.38)

where the digamma function Â(x) is defined by Â(x) = �Õ(x)/�(x) and Ân(x) is the

nth derivative of the digamma function.

The second derivative wrt s can also be expressed as

ˆ2s

ˆF 2

(k) = B
p

(s, k + 1)
B(s, k + 1) ((Â(s) ≠ Â(s + k + 1)) · (“ ≠ H

s+k

≠ 2 log(fi) + Â(s))

+Â1(s + k + 1) + log2(fi) ≠ Â1(s)
2

≠ fis�(s)2

1
2(Â0(s + k + 1) + log(fi))

3

ÂF
2

(s, s, ≠k; s + 1, s + 1; fi)

+ ˆ
({0,0,0},{0,1},0) 3

F
2

({s,s,≠k},{s+1,s+1},fi) + ˆ
({0,0,0},{1,0},0) 3

F
2

({s,s,≠k},{s+1,s+1},fi)

+ ˆ
({0,1,0},{0,0},0) 3

F
2

({s,s,≠k},{s+1,s+1},fi) + ˆ
({1,0,0},{0,0},0) 3

F
2

({s,s,≠k},{s+1,s+1},fi)
2

,

where H
n

is the nth harmonic number such that H
n

:=
nq

k=1

1

k

, and “ is the Euler-

Mascheroni constant, “ ¥ 0.57721566 . . . . The ˆ
({i,0,0},{0,0},0)

notation is used to give

the argument of the function the derivative is with respect to.
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6.6.4 Evaluation of the score function and Hessian

The algorithm to compute the score function of the log-likelihood (6.21) is given

in Algorithm 6, and the algorithm to the compute the Hessian function is given in

Algorithm 7 both in Appendix B. Both these algorithms extend the algorithm to

compute the log-likelihood function of a discrete D-vine (6.21). In this section we

provide commentary for the two algorithms to explain how they di�er.

The main steps of the likelihood evaluation are:

· select the arguments;

· evaluate the copula functions, and

· compute the conditional distributions.

At each of these steps, the computation of the derivatives are added into the

algorithm. The details of these extra steps have been discussed in Sections 6.6.1,

6.6.2 and 6.6.3. The extra steps are summarised in Table 6.2.

Let T be the number of parameters in the log-likelihood so T = p + q +

dim(◊
marginal

). Define an array of dimension (2, T ) of n ◊ n matrices for S1direct and

S1indirect to store the derivatives relating to the matrices vdirect +,vdirect ≠, vindirect +

and indirect ≠.

First, we compute the copula arguments and marginal cdfs. We now also com-

pute the derivative of the marginal cdfs. The algorithm consists of two loops which

iterate over the columns of (6.26) with index k and row index i. Note: The loops

are indexed as (i, k) to select the matrix positions. The notation ◊
i

has been used

to denote the ith element of ◊ ; and these are not the same i.

Benchmark Study

The availability of an analytic gradient evaluation allows numerical maximisation of

the log-likelihood to be based on the analytic gradient, rather than finite-di�erence
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Table 6.2: A comparison of the steps for the three computational algorithms.

Task Line of algorithm
Log-likelihood Score Hessian

Compute copula arguments 3 3-4 3-5
Compute marginals 4-5 5-10 6-11
Begin loops
Select the copula arguments 8-10 13-16 13-19
F +

i|k, F ≠
i|k, F +

j|k, F ≠
j|k

as z+

1

, z≠
1

and z+

2

, z≠
2

Evaluate the pair-copulas 11 17-24 22-32
C++

ij|k , C+≠
ij|k , C≠+

ij|k , C≠≠
ij|k

Compute the conditional distributions 12 26-29 34-37
F +

i|jk

, F ≠
i|jk

, F +

j|ik, F ≠
j|ik

and densities 13 30-31 38-42
f+

i|jk

, f≠
i|jk

, f+

j|ik, f≠
j|ik

End loops
Calculate log-likelihood 17 34 43

approximations of the gradient. This decreases the computation time and becomes

increasingly important when the n is large. These algorithms allow the Gaussian

copula model to be applied to large discrete-valued datasets, which is considered

infeasible due to the vast computation of the evaluation and hence the optimisation

of the likelihood of the Gaussian copula model (4.1).

A benchmark study is carried out in order to compare the decrease in computa-

tion time using the analytic score function from numerical approximation by finite-

di�erencing (Newtons quotient). Both the numerical and analytical score functions

are computed for 100 simulated datasets of length n=100. Fig. 6.8 shows violin

plots of the resulting times to see the distribution of computational time of each

method. As expected, we can see that there is a clear improvement when gradient

is computed analytically. There is no overlap in the results and the speed up is

approximately by a factor of 4. There is a smaller range of computation time for the

analytic evaluation and overall a clear advantage to the analytic method. We also

carried out a sensitivity analysis and repeated the numerical di�erentiation using
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the R package numDeriv using the grad functions (Gilbert and Varadhan, 2015)

which uses the Richardson extrapolation approach (Fornberg and Sloan, 1994) and

the results are similar.

50

100

150

Numeric Analytic
Method

T
im

e
(s

ec
on

ds
)

Figure 6.8: A comparison study of the time to compute the score function of the
discrete D-vine log-likelihood numerically and analytically for 100 simulated integer-
valued time series datasets of length n = 100.

A second study is carried out to investigate the time requirement of the algo-

rithms as the length of the time series increases. This was carried out by repeating

the first simulation study, i.e. recording the time taken for 100 evaluations, on data

sets of di�ering lengths n = 10, 20, . . . , 160. We record the computational time

for the evaluations of both the score function and Hessian. The numerical Hessian

calculations are carried out using the hessian function in the numDeriv package

which uses the Richardson extrapolation approach (Fornberg and Sloan, 1994). We

could potentially speed up the numerical approximations by taking advantage of the

known zeros in the Hessian matrix. However, the hessian function is commonly

used in R and this is beyond the scope of this exercise. Fig. 6.9 shows a signifi-

cant decrease in time required for the analytic evaluation of the Hessian over the
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numerical evaluation. We can see the di�erence in time between both numerical and

analytical methods increases non linearly as n increases.

Figure 6.9: Average time in seconds to compute the Hessian of the discrete D-vine
log-likelihood numerically and analytically for 100 simulated integer-valued time
series of length n = 10, 20, . . . , 160.
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Fig. 6.10 plots the log transform of the length n against log time and we obtain

a straight line. This suggests we have a power law of the form T = O(N b), specified

by T = aN b + lower order terms

T = ≠3.596 N2.007 (analytic Hessian),

T = ≠5.896 N2.146 (numeric Hessian),

which are approximately N2 laws. It would be of interest to obtain an analytic

result.
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Figure 6.10: Numerical analysis for the time complexity of the analytic and numer-
ical Hessian evaluations.

6.7 Simulations under model conditions

Two simulation studies are presented to demonstrate the methodology and estima-

tion methods in situations where the process is accurately known before undertaking

a real world data set in Chapter 7. The first study aims to illustrate that the the-

ory works and this is demonstrated on 6 time series with underlying AR(1) and

ARMA(1,1) structures for lengths n=100, n=250 and n=500. We investigate the

sensitivity of the estimates and compare the method to the best possible estimates

if the underlying time series is known. The final simulation study looks at di�erent

numerical optimisation methods for maximum likelihood estimation of the discrete

D-vine and the e�ect of providing the analytic score function when optimising.
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Simulation Study I

We consider time series of di�erent lengths n=100, n=250 and n=500. We generate

S = 100 realisations from two Gaussian copula models: with AR(1) and ARMA(1,1)

dependence structure with parameters a
1

= 0.7 and (a
1

= 0.8, b
1

= ≠0.4) respec-

tively and negative binomial parameters (fi = 0.5, s = 3). The Gaussian copula

model is fitted to the data using joint maximum likelihood using the numerical op-

timisation routine constrOptim.nl in R (Varadhan, 2014) and the standard errors

are computed both analytically (Section 6.6.4) and numerically using numDeriv for

comparison.

The computational times elapsed to optimise the likelihood (perform maximum

likelihood estimation) for the S = 100 simulations are recorded and shown using a

violin plot in Fig. 6.11. The average time is 0.5, 5 and 8 hours respectively for the

lengths n when performing parallel computing.

n=500

n=250

n=100

0 5 10
Time (hours)

Figure 6.11: A violin plot of the computational time to perform maximum likelihood
estimation to fit a Gaussian copula model with AR(1) dependence to integer-valued
time series of lengths n = 100, n = 250 and n = 500.
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The joint maximum likelihood estimates of S = 100 simulations for the AR(1)

model are given in Fig. 6.12. The plots suggest that the method performs well

for the AR(1) model and the sample variance decreases as n increases. The mean

values, sample variance, bias, RMSE of the estimates and mean of the analytical

standard errors are calculated and given in Table 6.3. The bias gets closer to zero

as n increases, while the variance decreases also.

Figure 6.12: Boxplots of maximum likelihood estimates for the Gaussian copula
model with negative binomial margins from S = 100 simulated data of length n =
100, n = 250 and n = 500, with true values a

1

= 0.7, s = 3, fi = 0.5 represented by
a red dashed line.
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Table 6.3: The mean and standards deviation of maximum likelihood estimates
and the mean of the analytic standard errors for simulation results using S = 100
realisations of the model with AR(1) dependence structure and negative binomial
margins for lengths n = 100, n = 250 and n = 500. True parameters are a

1

= 0.7,
fi = 0.5 and s = 3.

Parameter n=100 n=250 n=500
a

1

mean 0.679 0.689 0.692
var 0.005 0.002 0.002
bias -0.021 -0.011 -0.090
RMSE 0.075 0.003 0.003

fi mean 0.541 0.519 0.510
var 0.015 0.005 0.040
bias 0.041 0.019 0.011
RMSE 0.128 0.006 0.004

s mean 4.320 3.311 3.055
var 24.942 1.036 0.981
bias 1.320 0.311 0.221
RMSE 5.166 1.132 0.890

Table 6.5 displays the results of our method on the ARMA(1,1) model. All the

numerical standard errors are within 3 decimal places of the analytical presented. To

investigate further, we compare our results with two other methods. Let us denote

our joint MLE method as MY since we apply the model directly to the integer-valued

time series Y. The two other scenarios which we consider as a ‘best ’ case and a

‘computationally fast but an approximation’ case;

i. through a simulation study, we can directly estimate the dependence pa-

rameters and corresponding standard errors from the underlying continuous

time series X and estimate the marginal parameters under the independence

likelihood, denoting this method MX.

ii. we compare with the importance sampling approach of Masarotto et al.

(2012) using the gcmr R function and denote this simply as MZ.

Boxplots of the distribution of the errors of the estimates of our method and MX
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and MZ on the ARMA(1,1) model are given in Fig. 6.13. In all cases, the discrete D-

vine fit outperforms the other two methods in terms of narrowest range of errors and

consistently centred symmetrically at zero. Joint maximisation under the discrete

D-vine estimates the dependence parameters comparably well to the case when the

underlying time series is known, in particular for the marginal parameter estimates.

The estimates under the marginal assumption gives better estimates. We can get

an idea of how close to the well-established gold standard ARMA methods we can

achieve by comparing the estimates through MY to MX. Fig. 6.13 show that the

discrete D-vine compares favourably to knowing the underlying time series, which

is impossible in practice. The negative binomial parameters fi, s are estimated well

under the assumption there is no dependence structure (MX) and the estimates of

the marginal parameters under the independence likelihood are given in Table 6.5.

It should be noted that the standard errors of the marginal parameters estimated

using MX presented here are not accurate because they have not been adjusted for

dependence (Chandler and Bate, 2007). The importance sampling approach of MZ

performs overall the worst for this model.
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Figure 6.13: The distribution of errors of estimates for S = 100 simulated data
of length n = 100 and n = 250 with true values a

1

= 0.8, b
1

= ≠0.4, s = 3,
fi = 0.5. The navy colour corresponds to the joint maximum likelihood estimates
from the discrete D-vine MY, the yellow corresponds to the continuous ARMA and
independent marginal likelihood, MX, and the green corresponds to the estimates
using the gcmr R package, MZ.
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Simulation Study II

A number of numerical optimisation methods can be used to optimise the likelihood

function. Available algorithms for optimising smooth nonlinear objective functions

with constraint in R include augmented Lagrangian without and with adaptive

barriers (auglag, constOpt.nl respectively), Nelder-mead derivative-free (nmkb)

and box-constrained minisisers (nlminb). Table 6.6 compares the optimal value of

the likelihood values when an AR(3) Gaussian copula model is fitted to simulated

data. The estimates and the time taken is recorded. The preferred optimisation

in R for our Gaussian D-vine PCC is the constOpt.nl function in the R package

alabama (Varadhan, 2014).

There is a significant decrease in time taken for all functions when the analytic

gradient is supplied. However the nmkb method, which is a derivative free method,

performs consistently well for shorter lengths of n Æ 200. Other methods such as

bobyqa, Rcgmin, Rvmmin, spg, hjkb were also tested but did not compare as well as

the methods shown in Table 6.6 and encountered issues such as of non-convergence.

It should be noted that the objective function (the log-likelihood function) should

be defined outside of constrained region so that when the optimiser requires an

evaluation outside the constrained region close to the boundary, the function is

directed back inside the constrained region.
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Table 6.6: Comparing di�erent numerical optimisation methods on an AR(3) Gaus-
sian copula model with negative binomial margins. True parameters are a

1

= ≠0.8,
a

2

= 0.6, a
3

= 0.7, s = 2, fi = 0.5. The methods denoted with a + included the
analytic gradient of Algorithm 6.

Length Optimisation Parameters Time Time
n method ‚a

1

‚a
2

‚a
3

‚s ‚fi (min) Rank

20 auglag + -0.7637 0.5492 0.6096 4.3241 0.6864 1.4851 -
30 auglag + -0.7726 0.5690 0.7209 3.0833 0.6113 3.2002 -
40 auglag + -0.7734 0.6231 0.6607 2.4434 0.5338 5.2868 -
50 auglag + -0.8060 0.5834 0.6359 2.6956 0.5615 7.3724 -

nmkb -0.7787 0.5716 0.6022 2.6105 0.5692 26.8857 2
constOpt -0.7795 0.5709 0.6021 2.5964 0.5677 53.2930 5

100 constOpt + -0.7787 0.5716 0.6022 2.6108 0.5693 25.4747 1
auglag -0.7794 0.5712 0.6024 2.5910 0.5672 60.6307 6
auglag + -0.7787 0.5716 0.6023 2.6102 0.5692 40.1581 4
nlminb -0.7787 0.5716 0.6023 2.6102 0.5692 39.1909 3
nmkb -0.7571 0.5936 0.5856 2.6466 0.5765 109.0634 2

constOpt -0.7572 0.5933 0.5852 2.6457 0.5764 190.9778 5
200 constOpt + -0.7571 0.5937 0.5856 2.6464 0.5764 115.6024 3

auglag -0.7578 0.5934 0.5859 2.6264 0.5744 223.5922 6
auglag + -0.7571 0.5937 0.5857 2.6460 0.5764 90.9063 1
nlminb -0.7571 0.5937 0.5857 2.6459 0.5764 164.6186 4
nmkb -0.7456 0.5851 0.5889 3.2141 0.6310 320.1936 3

constOpt -0.7461 0.5849 0.5891 3.1923 0.6292 472.9344 4
300 constOpt + -0.7456 0.5850 0.5889 3.2136 0.6309 243.1077 1

auglag -0.7463 0.5848 0.5893 3.1921 0.6292 673.7797 5
auglag + -0.7456 0.5850 0.5889 3.2160 0.6311 263.9167 2
nlminb 0.1821 0.4125 0.4699 4.8365 0.6686 41.4495 -
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6.8 Discussion

Dependence modelling using vines can done in two ways: the first is to build from a

collection of bivariate ‘blocks’ to give the overall joint distribution, and the second

is to decompose a multivariate density into a cascade of bivariate copulas. Our work

follows the latter.

We have shown that the Gaussian copula model (3.9) is equivalent to a discrete

D-vine PCC and we have verified this with numerical results. The likelihood has a

computationally tractable form compared with the likelihood of a Gaussian copula

model with discrete margins. The vine methodology allows the likelihood to be

written in a computationally tractable form and facilitates maximum likelihood

estimation. This has also led to analytic solutions for the standard errors of the

estimates. Simulation studies have confirmed the accuracy that can be achieved by

using vine copula methods and the method compares favourably to estimating the

copula parameters in the best case scenario of knowing the underlying time series.



Chapter 7

Empirical Results and

Comparisons

In this chapter we analyse Zeger’s (1988) US polio data, a well known integer-valued

time series from the literature, to compare the Gaussian copula model estimation

methods developed in Chapters 4, 5 and 6 in real life scenarios. This data set has

been extensively discussed by many authors allowing us to draw comparisons to

the integer-valued time series literature reviewed in Chapter 2 (Zeger, 1988; Zeger

and Qaqish, 1988; Li, 1994; Jørgensen et al., 1999; Davis et al., 2000; Heinen, 2003;

Neal and Subba Rao, 2007; Davis and Wu, 2009; Masarotto et al., 2012; Neal and

Kypraios, 2015).

Time series of the number of polio incidences in the US between 1978-1983 are

reported monthly (n= 168) by the Center for Disease Control. The original interest

was to detect a decreasing trend in the number of cases of the infectious disease

since the introduction of the polio injection vaccine in 1955 and the oral vaccine in

1962. The data reveal some seasonality and the possibility of a slight decreasing

trend.

174



CHAPTER 7. EMPIRICAL RESULTS 175

Figure 7.1: Monthly number of US cases of poliomyelitis from 1970 to 1983.
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Zeger (1988) proposed a Poisson regression model with explanatory variables to

model the trend and seasonality. These include an intercept term, a linear trend

and harmonics at periods of 6 and 12 months. Zeger (1988) models the trend and

seasonality explicitly conditional on a latent weakly stationary AR(1) process (a

parameter-driven model). Zeger adopts an estimating equation approach for this

model and concludes that the decrease in trend becomes less significant once the

correlation structure of the time series is taken into account. Chan and Ledolter

(1995) apply a MCEM algorithm for Zeger’s model, modified to have a Gaussian

distribution assumption on a latent stationary AR(1) process. Benjamin et al. (2003)

fit a Generalised ARMA model which can be implemented in the gamlss.util. The

data are taken from the R package gamlss.data (Stasinopoulos and Rigby, 2015)

because the GARMA is a GAM with an exponential family. Masarotto et al. (2012)

fit the Gaussian copula model with discrete marginal regression using a simulated

likelihood approach as discussed in Section 3.7 to the data.

We fit the model of Masorotto & Varin using the estimation methods described

in Chapters 4, 5 and 7 and later we fit similar models to compare. The MCEM

algorithm is applied in Section 7.1, the ABC algorithm in Section 7.2 and joint

maximum likelihood estimation using the D-vine representation in Section 7.3. We
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investigate other models for the data in Section 7.4. At the end of this chapter

in Table 7.9 we give a full comparison of all of the estimates obtained using the

di�erent methods, as well as the those reported by Masarotto are displayed.

Serial correlation is accommodated by assuming an ARMA(2,1) model for the

underlying time series. The negative binomial distribution is considered for the

marginal distribution of Y
i

with parameterisation

Pr(Y
i

= y) =
�(y + 1

Ÿ

)
y!�( 1

Ÿ

)

A
1

1 + Ÿµ
i

B 1
Ÿ

A
Ÿµ

i

1 + Ÿµ
i

B
y

,

where µ
i

= E(Y
i

| x
i

) and variance var(Y
i

| x
i

) = µ
i

+ Ÿµ2

i

where Ÿ is the overdis-

persion parameter. The log-linear model with covariates (Masarotto et al., 2012)

is

log (µ
i

) = —
0

+ —
1

t
i

+ —
2

cos
32fit

i

12

4
+ —

3

sin
32fit

i

12

4

+ —
4

cos
32fit

i

6

4
+ —

5

sin
32fit

i

6

4
.

(7.1)

The linear trend is rescaled and centred at January 1976, by t
i

= (tÕ
i

≠ 73)/1000.

The parameter vector for this model is ◊ = (a
1

, a
2

, b
1

, —
0

, . . . , —
5

, Ÿ). This parame-

terisation corresponds to the negative binomial distribution with parameters (s, fi)

previously used in the simulation studies with

µ = s(1 ≠ fi)
fi

and Ÿ = 1
s

.

7.1 MCEM algorithm

In this section, the MCEM algorithm described in Chapter 4 is applied to fit the

model (7.1). Estimation of the parameters ◊ is carried out in two-stages (Section

3.5); first we estimate the marginal structure and then the dependence structure.

Section 7.1.1 considers parametric estimates of the marginals and Section 7.1.2 con-

siders a nonparametric estimation.
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7.1.1 Parametric marginals

At the first stage, the marginal parameters are estimated under the assumption Y
i

are i.i.d. via the method of iteratively re-weighted least squares. The estimates of

the the regression coe�cients and the size parameter Ÿ of the negative binomial are

(„—
0

, „—
1

, „—
2

, „—
3

, „—
4

, „—
5

, ‚Ÿ) = (0.209, ≠4.332, ≠0.143, ≠0.503, 0.168, ≠0.421, 0.567).

At the second stage the MCEM algorithm (Algorithm 2) is implemented using

the estimated marginal parameters. The initial values for the copula parameters are

a
1

= a
2

= b
1

= 0 and the number of Monte Carlo samples begins small with m = 10

and increases at every tenth iteration as m = 50, 100, 500, 1000, 5000, 10000, 50000,

100000.

The MCEM parameter chains are plotted in Fig. 7.2. Fig. 7.3 shows the esti-

mated change in log-likelihood (4.9). The parameter iterations suggest convergence

after around iteration 50 and the change in likelihood confirms this; we see the chain

begins to stabilise after 50 iterations for the Polio dataset of length n=168. This

which corresponds to the number of Monte Carlo samples of m > 5000. After we

establish convergence, the parameters and the estimated change in likelihood con-

tinues to fluctuate randomly around zero, even for large m due to the Monte Carlo

E-step.
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Figure 7.2: MCEM iterations for each ARMA(2,1) parameter for parametric model.
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Figure 7.3: Estimated change in log-likelihood over the iterations 1 to 90 for the

polio dataset, where m increases every 10 iterations.
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The maximum likelihood estimates of the copula parameters ◊
copula

are to 3

decimal places

‚a
1

= ≠0.566, ‚a
2

= 0.270 and ‚b
1

= 0.721.

The observed information matrix (4.10) is calculated at ‚◊ as

IY( ‚◊) =

Q

ccccca

310.9 ≠230.9 246.9

≠230.9 295.6 ≠169.3

246.9 ≠169.3 206.6

R

dddddb
,

giving the standard errors (Section 4.6) as

s.d(a
1

) = 0.260, s.d(a
2

) = 0.099, s.d(b
1

) = 0.272.

We acknowledge that the length of the time series n = 168 may be too small for

asymptotic results of the inference function for margins (IFM) to hold (Joe, 1996).

7.1.2 Non-parametric marginals

For comparison, we repeat the MCEM algorithm with non-parametric estimates of

the marginal distribution in the first stage of the estimation, and run the MCEM
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algorithm as before. The MCEM parameter values are plotted in Fig. 7.4 with the

MCEM chains of the parametric model displayed by dashed lines for comparison.
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Figure 7.4: MCEM iterations for a semi-parametric Gaussian copula model with

ARMA(2,1) parameters where m increases every 10 iterations. The fully parametric

MCEM chains of Fig. 7.2 are shown by dashed lines.

The parameter chains are similar to the fully parametric model and the esti-

mated change in log-likelihood, not presented here, was similar also, suggesting

convergence after 50 iterations (m > 5000). The updated parameter values for the

semi-parametric model are slightly higher in the semi-parametric model and agree

closer with the results presented by Masarotto et al. (2012). The parameter esti-

mates and standard errors of both the paramertic and semiparametric models are

given in Table 7.1.
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Table 7.1: The parameter estimates of the Gaussian copula model with negative

binomial regression margins (7.1) for the Polio data set.

MCEM Masarotto

Semi-parametric Parametric
‚◊ s.e ‚◊ s.e ‚◊ s.e

a
1

-0.5054 (0.209) -0.5664 (0.260) -0.5229 (0.220)

a
2

0.3192 (0.089) 0.2701 (0.099) 0.3046 (0.090)

b
1

0.7186 (0.217) 0.7214 (0.272) 0.6959 (0.229)

—
0

- - 0.2093 (0.096) 0.2095 (0.121)

—
1

- - -4.3318 (1.895) -4.3151 (2.284)

—
2

- - -0.1430 (0.129) 0.1215 (0.147)

—
3

- - -0.5025 (0.138) -0.4967 (0.157)

—
4

- - 0.1682 (0.131) 0.1903 (0.129)

—
5

- - -0.4214 (0.132) -0.4030 (0.128)

Ÿ - - 0.5671 (0.484) 0.5700 (0.170)

7.2 Parameter estimation via ABC

To apply the ABC algorithm we compute the observed summary statistics for the

Polio data set y following Chapter 5. These are the spectral estimates at a fixed set

of frequencies and sample proportions of Chapter 5. Fig. 7.5 shows the periodogram

using the discrete Fourier transforms in the left panel and the spectral estimate in the

right panel smoothed using the Bartlett-Priestley window (5.9) where a bandwidth

of M = 10 is found suitable giving ‚‡2 = 0.0714 (5.13).
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Figure 7.5: Periodogram and estimated spectrum for the Polio data set.
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We let L = 10 resulting in L/2 + 1 = 6 summary statistics (Section 5.3). The

observed summary statistics are given in Table 7.2.

Table 7.2: Observed summary statistics of the Polio data.

Frequency Ê
0

Ê
1

Ê
2

Ê
3

Ê
4

Ê
5

Spectral estimate 1.3394 0.7024 0.6546 0.2459 0.3635 0.3959
(a) Summary statistics for the dependence structure.

Integer-value 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Sample 55 22 12 6 3 2 1 1 1 0 0 0 0 1

(b) Summary statistics for the dependence structure.

Data are simulated from the model, given parameters (◊
copula

, ◊
marginal

) = (a, b, —, Ÿ)

by

1. Simulate Z ≥ARMA(2,1) such that var(Z) = 1 using a, b.

2. Transform to y = F ≠1(�(Z)) where � is the standard normal cdf and F ≠1 is

the inverse cdf of F with mean µ
i

= exp(x€
i

—) and overdispersion parameter

Ÿ.

The ABC algorithm (Algorithm 3) is implemented using the statistic T (5.12)

and the Euclidean distance metric for the dependence and marginal distance metrics
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respectively. For the priors of the marginal parameters, we used normal distribu-

tions centred around the estimates under found from the independence likelihood

with variance 1 and for the copula parameters we simulated uniformly over the

stationarity constraints,

≠1 < b
1

< 1, ≠ 2 < a
2

< 2,

a
1

+ a
2

< 1, a
2

≠ a
1

< 1.

The ABC output consists of n = 42, 000 parameter sets with their correspond-

ing distances and summary statistics using Á
T

= Á
d

= 20. We use local linear

and local nonlinear regression giving most weight to parameter values with smaller

distances. We compare simulated datasets in two parts and thus we use two dis-

tance measures. Therefore there are two sets of summary statistics to regress onto;

◊
copula

= (a
1

, a
2

, b
2

) are regressed on Sú
1

using T and ◊
marginal

=(—
0

, —
1

, —
2

, —
3

, —
4

, —
5

,

Ÿ) are regressed on Sú
2

using d. The parameter estimates are given in Table 7.3.
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ABC MCEM Masarotto

Á
T

= 5 Adjusted nonlinear (2012)

a
1

0.160 (0.49) 0.075 (0.50) 0.057 (0.51) -0.566 (0.26) -0.523 (0.22)

a
2

0.160 (0.32) 0.119 (0.34) 0.107 (0.32) 0.270 (0.10) 0.305 (0.09)

b
1

-0.067 (0.48) -0.142 (0.47) -0.128 (0.47) 0.721 (0.27) 0.696 (0.23)

—
0

0.048 (0.30) 0.018 (0.26) 0.028 (0.25) 0.209 (0.10) 0.210 (0.12)

—
1

-4.522 (1.02) -4.767 (1.01) -4.719 (0.97) -4.330 (1.89) -4.320 (2.28)

—
2

-0.023 (0.49) -0.011 (0.52) -0.021 (0.51) -0.143 (0.13) 0.120 (0.15)

—
3

-0.119 (0.50) -0.041 (0.53) 0.010 (0.51) -0.503 (0.14) -0.497 (0.16)

—
4

0.061 (0.56) 0.185 (0.55) 0.183 (0.54) 0.168 (0.13) 0.190 (0.13)

—
5

-0.131 (0.56) -0.165 (0.56) -0.193 (0.54) -0.421 (0.13) -0.403 (0.13)

Ÿ 0.642 (0.89) 0.577 (0.82) 0.608 (0.81) 0.567 (0.48) 0.570 (0.17)

Table 7.3: The ABC estimates and standard errors given in parentheses for the polio

data compared with our MCEM and importance sampling estimates of Masarotto

et al. (2012).
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The marginal parameter —
1

, —
4

, —
5

and Ÿ compare reasonably well with the results from

the previous analysis and Masarotto et al. (2012). However, the dependence parameters

are far from the MLEs from the MCEM algorithm. Fig. 7.6 plots the joint densities for

each of the pairs of parameters. The regression adjusted output is shown in blue with the

unadjusted ABC output in grey. The peaks of the contours are far from the MLEs found

using the MCEM algorithm. The adjustment brings them slightly closer to the values,

suggesting the estimates may improve with more samples and lower thresholds.

a
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Figure 7.6: The joint posteriors for the three weighted regression adjusted dependence

parameters are shown in blue, and the unadjusted joint posterior are shown in grey for

comparison for quantiles The MLEs from the MCEM algorithm are indicated by the black

dot.
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The copula parameters are not close to what we expected and the standard errors

are relatively large. Initially we think this maybe because using the threshold value

Á
T

= 20 is too high and more computational e�ort (collecting more samples) would

improve the results. But the regression adjustments (Section 5.5) can deal well with

improving the results so we have a closer inspection of the accepted values. Fig. 7.7

shows the distance values for each of the parameters and we can see for the copula

parameters are not well captured because it is not similar to the example of Fig.

5.2, i.e., the trough is not as sharp and peaked or close to the red line.

We suspect the di�erence in parameter estimates between the ABC, MCEM and

Masorotto is because the ABC algorithm may perform poorly for shorter time series

since maybe there is not enough dependence information in shorter time series. The

polio data is quite short n = 168 and the simulation study in Chapter 5 performed

better for longer time series. Table 5.2 shows that the ARMA(1,1) parameters

performed poorly for n < 250. The test statistic T uses only the second order

structure of the series to estimate the dependence parameters and we suspect these

are not captured well for n < 250. The MCEM algorithm may be picking up

information from elsewhere in the data that the ABC algorithm doesn’t pick up.
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Figure 7.7: ABC distance measures for ARMA(2,1) parameters. The MLEs from

the MCEM analysis are shown by the red line.
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7.3 MLE estimation via the discrete D-vine PCC

Full joint maximum likelihood estimation is carried out using numerical optimisation

of nmkb() from the R package dfoptim(). The maximum likelihood estimates are

given in Table 7.4

D-vine PCC Masarotto

Parameters ‚◊ s.e ‚◊ s.e

a
1

-0.5769 (0.20) -0.5229 (0.22)

a
2

0.2932 (0.09) 0.3046 (0.09)

b
1

0.7585 (0.20) 0.6959 (0.23)

—
0

0.2100 (0.12) 0.2095 (0.12)

—
1

-4.3866 (2.25) -4.3151 (2.28)

—
2

-0.1207 (0.15) -0.1215 (0.15)

—
3

-0.4938 (0.16) -0.4967 (0.16)

—
4

0.1917 (0.13) 0.1903 (0.13)

—
5

-0.4084 (0.13) -0.4030 (0.12)

1/Ÿ 1.7701 (0.51) 1.7543 -

Table 7.4: Maximum likelihood estimates for the discrete D-vine PCC compared

with the MCEM mles and Masarotto’s results.

Randomised quantile residuals (Section 6.5.2) are computed several times for the

results of Table 7.4. and the distributional assumptions are checked. The results

are shown in Fig. 7.8. Fig. 7.8 shows normal probability and autocorrelation plots

for a set of residuals. The left plot alludes that the model is a good fit and the right

plot suggests that no residual serial correlation is present in the data.
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Figure 7.8: Polio data. Normal probability (left panel) and autocorrelation plots

(right panel) for a set of randomised residuals.

For a further comparison with the semiparametric model in Section 7.1.2, we es-

timate the marginals nonparametrically. We take a grid of points for the parameters

a
1

, a
2

and b
1

and evaluate the likelihood at each triplet of values. The negative log-

likelihood surface is uni-modal and is plotted in Fig. 7.9 for each pair of parameters

around the maximum values. The red dots represent the lower parts of the surfaces

where the maximum likelihood estimates are achieved. The log-likelihood surface

is maximised at ‚̧ = 252.363. The maximum likelihood estimates for the Gaussian

discrete D-vine with non-parametric marginals are

‚a
1

= ≠0.485, ‚a
2

= 0.350, and ‚b
1

= 0.720.
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7.4 Model Selection

Following Masarotto et al. (2012) we have fitted the ARMA(2,1) dependence struc-

ture but due to the ease of fitting the discrete D-vine to an integer-valued time

series of length n=168 we carry out a model fitting exercise with di�ering depen-

dence structure to the polio data using full maximum likelihood (in contrast to the

simulated likelihood approach of Masarotto).

The results and corresponding AIC and BIC values are given in Table 7.5. The

model selected according to the AIC is the ARMA(2,1) , however the BIC selects the

AR(1) model. Of these models, the model with lowest AIC is the model fitted above

suggested by Masarotto et al. (2012). As expected the time taken for the numerical

optimisation increases as the number of parameters increase. These timings are

much faster than the MCEM algorithm which is of the order hours.

Table 7.5: The maximised log-likelihood values, AIC, BIC and computational times

for the discrete D-vine copula model with covariates (7.1) for the polio data.

ARMA(p,q)

p q a
1

a
2

a
3

b
1

b
2

b
3

- ‚̧ AIC BIC Time

(m)

1 0 0.162 252.3 520.6 545.6 29

2 0 0.123 0.213 249.8 517.5 545.6 42

3 0 0.146 0.222 -0.100 249.2 518.4 549.7 46

0 1 0.112 252.8 521.6 546.5 29

0 2 0.163 0.208 249.8 517.7 545.8 28

0 3 0.169 0.196 -0.067 249.6 519.1 550.4 43

1 1 0.896 -0.779 249.9 517.9 546.0 57

1 2 -0.826 0.979 0.261 248.7 517.3 548.6 74

2 1 -0.577 0.293 0.759 248.0 516.0 547.2 48

3 1 -0.660 0.321 0.064 0.830 247.9 517.7 552.1 71

3 2 0.135 0.843 -0.134 0.003 -0.665 246.7 517.5 555.0 110
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We further fitted a number of models to the polio data with di�erent marginal

structures. These include the geometric, Poisson and negative binomial with no

covariates and the results are given in Tables 7.6, 7.7 and 7.8. Of the range of

models compared, the model with the lowest AIC is the copula model with Poisson

marginals and ARMA(2,1) dependence ( ‚̧ = 259.2, AIC=526.4). Comparing the

AIC values with Table 7.5, it is clear that the model with covariates included are

much more suitable.
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Table 7.9 summarises the estimates from this chapter. Both the D-vine and

MCEM show similar estimates and standard errors to that of Masarotto et al. (2012)

using the sequential importance sampling. The ABC algorithm performs poorly for

the copula parameters and we elude that this is due to the length of the time series.

The simulation study in Chapter 5 suggests this is reasonable. Masarotto et al.

(2012)’s method is faster than any of our three discussed here but it uses only an

approximation to the likelihood. Our contribution allows exact maximum likelihood

estimation for the Gaussian copula and discrete marginals.

The standard errors in Table 7.9 for the MCEM marginal estimates are the

smallest standard errors but they are underestimated because they have not been

adjusted for dependence. By assuming i.i.d. data in the first of the two stage

estimation approach, IFM (Section 3.5) and therefore have not been adjusted for

dependence and are underestimated. Masarotto et al. (2012) compute the standard

errors of the independence likelihood estimates using the heteroskedasticity and

autocorrelation consistent (HAC) sandwich estimator for time series of Andrews

(1991). In further work, we could take this approach to take into account of the two

stage estimation of the MCEM algorithm.
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Table 7.9: Parameter estimates of the Gaussian copula model with negative binomial

regression marginals (7.1) and ARMA(2,1) dependence for the Polio data set.

Panel I: Parametric Gaussian copula model

◊ ‚◊
MCEM

‚◊
ABC

‚◊
PCC

‚◊
Masarotto

a
1

-0.566 (0.260) 0.057 (0.508) -0.577 (0.199) -0.5229 (0.220)

a
2

0.270 (0.099) 0.107 (0.321) 0.293 (0.091) 0.3046 (0.090)

b
1

0.721 (0.272) -0.128 (0.470) 0.759 (0.203) 0.696 (0.229)

—
0

0.209 (0.096) 0.028 (0.250) 0.210 (0.119) 0.210 (0.121)

—
1

-4.332 (1.895) -4.719 (0.969) -4.387 (2.252) -4.315 (2.284)

—
2

-0.143 (0.129) -0.021 (0.506) -0.121 (0.147) 0.122 (0.147)

—
3

-0.503 (0.138) 0.506 (0.505) -0.494 (0.157) -0.497 (0.157)

—
4

0.168 (0.131) 0.010 (0.539) 0.192 (0.132) 0.190 (0.129)

—
5

-0.421 (0.132) -0.193 (0.542) -0.408 (0.131) -0.403 (0.128)

Ÿ 0.567 (0.484) 0.608 (0.810) (Ÿ≠1=) 1.770 (0.513) -0.570 (0.170)
‚̧ - - 247.988 247.906

Panel II: Semi-parametric Gaussian copula model

◊ ‚◊
MCEM

‚◊
PCC

a
1

-0.505 (0.209) -0.45

a
2

0.319 (0.089) 0.350

b
1

0.719 (0.217) 0.720
‚̧ 252.642 252.363



Chapter 8

Summary

Copulas allow complex relationships between variables to be specified in a sim-

ple manner. Gaussian copula models are a natural choice for integer-valued time

series with interpretable parameters. We have tackled a number of challenges in the

application of the Gaussian copula model. Under the assumption of an underlying

ARMA process we have dealt with maximum likelihood estimation problems, by

incorporating classic ideas from time series analysis into modern methods of model

fitting, namely EM, ABC and vine copula construction.

A review of current models for integer-valued time series is given in Chapter 2.

These models (Markov Chain, MTD, DARMA, INARMA) do not generalise easily

for a desired marginal distribution or adapt to inclusion of explanatory variables.

The Gaussian copula model with discrete margins is extremely flexible allowing the

marginal distributions to be specified, unspecified and with or without explanatory

variables.
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Chapter 3

In Chapter 3, the Gaussian copula model and the interpretation of the underlying

ARMA process is discussed. The conditional distribution of the underlying time

series given the observed data was shown to be multivariate truncated normal and

the proof is given. The computational cost of likelihood evaluation was discussed

and a literature review of current methods for estimation given.

The main focus of this thesis has been on the three methods for parameter

inference in Chapters 4, 5 and 6 developed from a range of di�erent areas.

Chapter 4

In Chapter 4, an EM algorithm was considered where the ARMA time series is

treated as missing data. A GHK simulator was used to sample directly from the

multivariate truncated normal. The R code for a vectorised implementation is given

in Appendix C.1. Numerical studies showed this works well for small to moderate

n and becomes slow for n> 1000. Standard errors are found, and compared with

those for ARMA estimation and found to be as nearly good as.

Chapter 5

In Chapter 5 we gave a likelihood-free simulation approach based on a rejection-

acceptance algorithm. A spectral comparison of two integer-valued time series was

used for the rejection criterion. The test was based on Priestley and Rao (1969)’s

test for non-stationarity and consisted of comparing two spectral density estimates

at a fixed set of frequencies with an ANOVA test. The ABC algorithm samples

from an approximation to the true posterior and Monte Carlo inference can be

used. Simulation studies show the algorithm performs well for large n and post-

sampling adjustments improved the estimates further whilst reducing the standard

errors.
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Chapter 6

In Chapter 6, we write the Gaussian copula model in an R-vine copula representa-

tion and use a sequential algorithm for the computation of the log-likelihood. We

evaluate the score and Hessian and give analytic solutions for the standard errors.

The proposed methodology is illustrated using simulation studies and highlight the

numerous advantages of the vine copula approach. The derivatives of the autocor-

relations and partial autocorrelations are given and implemented using a modified

version of the Levinson Durbin algorithm. Additionally, we report the first and

second partial derivatives for the negative binomial cdf. Analytic and numerical

evaluations of the score and Hessian are compared and a simulation study is carried

out to suggest optimisation routines for joint maximum likelihood.

Chapter 7

In Chapter 7, an empirical study was conducted using Zeger’s (1988) polio data

set. A selection of models were compared using criteria such as AIC and BIC

and the underlying assumption of Gaussian ARMA model checked. The methods

were compared with the INAR(p) models. The R-vine representation was shown to

outperform in terms of computational time, simplicity for likelihood based model

section and the availability of an analytic score function.

The full set of R code related to the topics used in Chapters 4, 5, 6 and 7 can

be developed into an R package. A selection of code is given in Appendix C.
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8.1 Limitations and Future work

The Gaussian copula model we have studied allows covariates to be specified in the

marginal distributions allowing us to study the e�ects of covariates on the marginal

structure. However, the model does not allow us to study the e�ect of covariates

on the dependence structure. This is not an issue for integer-valued time series

but for other applications such as spatial statistics or longitudinal data it may be a

limitation because other copulas are suitable, such as vine copulas of Archimedean

copulas, where covariate functions for the dependence structure can be used.

We have improved on the quality of the parameter estimation of Masarotto et al.

(2012) by using the exact likelihood. The methods presented here have performed

well in simulation studies and each have their merits and together provide options

for parameter estimation. Investigation of the robustness of these methods to real

world data is perhaps the most interesting direction for future research.

Further developments of this work could include

· an analytic form of the M-step in the EM algorithm to increase e�ciency.

It is an open problem as to whether an analytic solution exists. We envisage

a state space approach to this.

· We assume stationarity for the latent ARMA model, but a test for station-

arity of integer-valued data would be interesting.

· We model the dependence in the observed time series Y
t

indirectly through

the unobserved Gaussian ARMA series X
t

. The autocorrelation of Y
t

is not

available and this could be part of future work.
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Derivatives of ‡2
Á in the

ARMA(2,2) case
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Score and Hessian of Discrete

D-vine Log-likelihood

Algorithm 6 Score function for the D-vine log-likelihood for discrete variables.
Input: Model Parameters ◊ = (a

1

, . . . , a
p

, b
1

, . . . , b
q

, ◊
marginal

) and integer-valued
time series of length n
Output: The first derivative of the discrete D-vine Gaussian PCC log-likelihood
with respect to ◊.
Require: Roots of –(z) = 1 ≠ a

1

z ≠ · · · ≠ a
p

zp and —(z) = 1 + b
1

z + · · · + b
q

zq to
lie outside the unit circle.

1: Create n◊n matrices vdirect+, vdirect≠, vindirect+, vindirect≠, fdirect, f indirect, S1direct+,
S1direct≠, S1indirect+ and S1indirect≠ as in (6.26).

2: Set M and ÊM n ◊ n matrices as in (6.13).
3: fl

kk

= Levinson-Durbin(a, b) into P ú matrix as in (6.27) Û Copula parameters
4: ˆ

◊iflkk

into P
Õú vector of length T and k = 1, . . . , n ≠ 1.

5: Set (u+

1

, . . . , u+

n ) = (F (y
1

) , . . . , F (yn)) ,
and (u≠
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, . . . , u≠
n ) = (F (y

1

≠ 1) , . . . , F (yn ≠ 1)) .
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) as (6.25)
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7: Using (6.37), (s1direct
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i≠1,k,1:2,1:T

= H Õ
◊i

(zÕ
2

, zÕ
1

| C, CÕ)
30: fdirect

i≠1,k

= vdirect+

i≠1,k,1:2,1:T

≠ vdirect≠
i≠1,k

and f indirect

i≠1,k

= vindirect+

i≠1,k

≠ vindirect≠
i≠1,k

31: fdirect

i≠1,k,◊i

Õ = s1direct+

i≠1,k

≠ s1direct≠
i≠1,k

and f indirect

i≠1,k,◊i

Õ = s1indirect+

i≠1,k

≠ s1indirect≠
i≠1,k

32: if ÒC expressed in log-likelihood then save c
j

= ÒC, and cÕ
j

= ÒC Õ.

33: end end

34: Set ¸Õ
◊i

=

Y
____]

____[

nq

k=1

ÒC Õ
k n≠k+1|k+1:n≠k≠1, ◊i

ÒC
k n≠k+1|k+1:n≠k≠1

if n = 2n i.e. n is even,

nq

k=1

ÒC Õ
k n≠k+1|k+1:n≠k≠1, ◊i

ÒC
k n≠k+1|k+1:n≠k≠1

+
f Õ

n,◊i
(y

n

)
f

n

(y
n

) if n = 2n ≠ 1 i.e. n is odd.

.

35: Return ¸Õ
◊i



APPENDIX B. SCORE AND HESSIAN 224

Algorithm 7 Hessian for the D-vine log-likelihood for discrete variables.
Input: Model Parameters ◊ = (a

1

, . . . , a
p

, b
1

, . . . , b
q

, ◊
marginal

) and integer-valued
time series of length n
Output: The Hessian of the discrete D-vine Gaussian PCC log-likelihood with
respect to the parameters ◊ = (a

1

, . . . , a
p

, b
1

, . . . , ◊
marginal

).

There are p + q + dim(◊
marginal

) := T parameters in the log-likelihood and therefore
there are T (T + 1)/2 := T ú second mixed derivatives. We define an array of dimen-
sion (2, T ) of n ◊ n matrices each for S1direct and S1indirect, and an array of (2, T ú)
of n ◊ n matrices each for S2direct and S2indirect, to store the derivatives relating to
the matrices vdirect +,vdirect ≠, vindirect + and vindirect ≠.

1: Create n◊n matrices vdirect+, vdirect≠, vindirect+, vindirect≠, fdirect, f indirect, S1direct+,
S1direct≠, S1indirect+ and S1indirect≠ as in (6.26).

2: Set M and ÊM n ◊ n matrices as in (6.13).
3: fl

kk

= Levinson-Durbin(a, b) into P ú matrix as in (6.27) Û Copula parameters
4: ˆ

◊iflkk

into P
Õú vector of length T and k = 1, . . . , n ≠ 1.

5: ˆ2

◊i◊j
fl

kk

into P úú i, j = 1, . . . , T , i < j, and k = 1, . . . , n ≠ 1.

6: Set (u+

1

, . . . , u+

n ) = (F (y
1

) , . . . , F (yn)) ,
and (u≠

1

, . . . , u≠
n ) = (F (y

1

≠ 1) , . . . , F (yn ≠ 1)) .
7: Store (vdirect+

n,1

, . . . , vdirect+

n,n ) = (u+

n , . . . , u+

1

),
and (vdirect≠

n,1

, . . . , vdirect≠
n,n ) = (u≠

n , . . . , u≠
1

),
and (fdirect≠

n,1

, . . . , fdirect≠
n,n ) = (u+

n , . . . , u+

1

) ≠ (u≠
n , . . . , u≠

1

) as (6.25)

8: Using (6.37), (s1direct

n,1,1,◊i
, . . . , s1direct

n,n,1,◊i
) = (F Õ

◊i
(yn), . . . , F Õ

◊i
(y

1

)),
and (s1direct

n,1,2,◊i
, . . . , s1direct

n,n,2,◊i
) = (F Õ

◊i
(yn ≠ 1), . . . , F Õ

◊i
(y

1

≠ 1)),
9: Using (6.38), Set (s2direct

n,1,1,◊i◊j
, . . . , s2direct

n,n,1,◊i◊j
) = (ˆ2

◊i◊j
u+

n , . . . , ˆ2

◊i◊j
u+

1

),
and (s2direct

n,1,2,◊i◊j
, . . . , s2direct

n,n,2,◊i◊j
) = (ˆ2

◊i◊j
u≠

n , . . . , ˆ2

◊i◊j
u≠

1

).
10: (f Õ

direct

n,1,◊i
, . . . , f

Õ
direct

n,n,◊i
) = (F Õ

◊i
(yn), . . . , F Õ

◊i
(y

1

)) ≠ (F Õ
◊i

(yn ≠ 1), . . . , F Õ
◊i

(y
1

≠ 1)).
11: (f ÕÕ

direct

n,1,◊i◊j
, . . . , f

ÕÕ
direct

n,n,◊i◊j
) = (F ÕÕ

◊i◊j
(yn), . . . , F ÕÕ

◊i◊j
(y

1

)), ≠(F ÕÕ
◊i◊j

(y≠
n ), . . . , F ÕÕ

◊i◊j
(y≠

1

)).

12: for k = n ≠ 1, . . . 1
13: for i = n, . . . k + 1

14: (z+

1

, z≠
1

) = (vdirect+

i,k

, vdirect≠
i,k

). Û Select copula arguments
15: (z+

Õ

1,◊i
, z≠Õ

1,◊i
) = (s1direct

i,k,◊i

+, s1direct

i,k,◊i

≠) for i =1, . . . ,T .
16: (z+

ÕÕ

1,◊i◊j
, z≠ÕÕ

1,◊i◊j
) = (s2direct

i,k,◊i◊j

+, s2direct

i,k,◊i◊j

≠) for i, j =1, . . . ,T .
17: if Êm

i,k

= m
i,k

then (z+

2

, z≠
2

) = (vdirect+

k,(n+1≠Âmi,k)

, vdirect≠
k,(n+1≠Âmi,k)

).
18: (z+

Õ

2,◊i
, z≠Õ

2,◊i
) = (s1indirect

k,(n+1≠Âmi,k)

+, s1indirect

k,(n+1≠Âmi,k)

≠)
19: else (z+

2

, z≠
2

) = (vindirect+

k,(n+1≠Âmi,k)

, vindirect≠
k,(n+1≠Âmi,k)

).
20: (z+

Õ

2,◊i
, z≠Õ

2,◊i
) = (s1indirect

k,(n+1≠Âmi,k),◊i

+, s1indirect

k,(n+1≠Âmi,k),◊i

≠)
21: (z+

ÕÕ

2,◊i◊j
, z≠ÕÕ

2,◊i◊j
) = (s2indirect+

k,(n+1≠Âmi,k),◊i◊j
, s2indirect≠

k,(n+1≠Âmi,k),◊i◊j
).
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22: for ab = {+, ≠} do Û Evaluate copulas
23: Set (C00, C01, C10, C11) = �

1
�≠1 (za

1

) , �≠1(zb

2

); p
i,k

2
.

24: Set ÒC
i,k

= C00 ≠ C01 ≠ C10 + C11.
25: Set d 00,01,10,11

1

= „
1
�≠1 (za

1

) , �≠1(zb

2

); p
i,k

2
.

26: Set d 00,01,10,11

2

= �
Q

a�≠1 (za

2

) ≠ ◊
i,k

�≠1 (za

1

)
Ò

1 ≠ p2

i,k

R

b .

27: Set d 00,01,10,11

3

= �
Q

a�≠1 (za

1

) ≠ ◊
i,k

�≠1 (za

2

)
Ò

1 ≠ p2

i,k

R

b .

28: Set CÕ = d
1

· flÕ
n≠i+1,n≠i+1,◊i

+ d
2

· z
Õ
a

1,◊i
+ d

3

· z
Õ
b

2,◊i
.

29: Set ÒC Õ
i,k,◊i

= C00

Õ
◊i

≠ C01

Õ
◊i

≠ C10

Õ
◊i

+ C11

Õ
◊i

.
30: Set CÕÕ as in (6.30) using d

4:10

terms.

31: Set ÒC Õ
i,k

= C00

Õ ≠ C01

Õ ≠ C10

Õ + C11

Õ .
32: Set ÒC ÕÕ

i,k

= C00

ÕÕ ≠ C01

ÕÕ ≠ C10

ÕÕ + C11

ÕÕ .
33: end

Û Conditional distributions
34: vdirect+≠

i≠1,k

= C(z
1

, z
2

; t
i,k

, p
i,k

) ≠ C(z
1

, z≠
2

; t
i,k

, p
i,k

)
f(z

2

) and

vindirect+≠
i≠1,k

= C(z
1

, z
2

; t
i,k

, p
i,k

) ≠ C(z≠
1

, z
2

; t
i,k

, p
i,k

)
f(z

1

) as in (6.16).

35: Set vdirect+≠
i≠1,k

= H (z
1

, z
2

| C)
and vindirect+≠

i≠1,k

= H
◊i (z

1

, z
2

| C)
36: Set s1direct+≠

i≠1,k,1:T

= H Õ
◊i

(z
1

, z
2

, zÕ
1

, zÕ
2

| C, CÕ)
and s1indirect+≠

i≠1,k,1:2,1:T

= H Õ
◊i

(z
2

, z
1

, zÕ
2

, zÕ
1

| C, CÕ) , using (6.31).
37: Set s2direct+≠

i≠1,k,1:T ú = H ÕÕ
◊i◊j

(z
1

, z
2

, zÕ
1

, zÕ
2

, zÕÕ
1

, zÕÕ
2

| C, CÕ, CÕÕ)
and s2indirect+≠

i≠1,k,1:2,1:T ú = H ÕÕ
◊i◊j

(z
2

, z
1

, zÕ
2

, zÕ
1

, zÕÕ
2

, zÕÕ
1

| C, CÕ, CÕÕ) , using (6.32).

38: Set fdirect

i≠1,k

= vdirect+

i≠1,k,1:2,1:T

≠ vdirect≠
i≠1,k

,
and f indirect

i≠1,k

= vindirect+

i≠1,k

≠ vindirect≠
i≠1,k

.
39: Set fdirect

i≠1,k,◊i

Õ = s1direct+

i≠1,k

≠ s1direct≠
i≠1,k

,
and f indirect

i≠1,k,◊i

Õ = s1indirect+

i≠1,k

≠ s1indirect≠
i≠1,k

.
40: Set fdirect

i≠1,k,◊i

ÕÕ = s2direct+

i≠1,k

≠ s2direct≠
i≠1,k

,
and f indirect

i≠1,k,◊i

ÕÕ = s2indirect+

i≠1,k

≠ s2indirect≠
i≠1,k

.

41: if ÒC expressed in log-likelihood then save c
j

= ÒC, and cÕ
j

= ÒC Õ.

42: end end
43: Set

¸ÕÕ
◊i◊j

=

Y
_______]

_______[

Â(N+1)/2Êq
j=1

ÒC ÕÕ
k, ◊i◊j

ÒC
k

≠ ÒC Õ
k, ◊i◊j

ÒC Õ
k, ◊j

ÒC2

k

, if n is even,
Â(N+1)/2Êq

j=1

ÒC ÕÕ
k, ◊i◊j

ÒC
k

≠ ÒC Õ
k, ◊i◊j

ÒC Õ
k, ◊j

ÒC2

k

+
f

ÕÕ
◊i◊j

(yn)

f(yn)

≠ f

Õ
◊i

(yn)f

Õ
◊j

(yn)

f

2
(yn)

if n is odd.

44: Return ¸Õ
◊i



Appendix C

All computations in thesis are written and implemented in the R statistical software

environment (R Core Team, 2013). A selection of R code is given in this section.

C.1 GHK Simulator
The Geweke-Hajivassilou-Keane (GHK) importance sampler discussed in section
4.3.1 is implemented in R using the vectorised code. The GHK function returns m

samples from the truncated multivariate normal distribution TNn(0, �, a, b).

GHK <- function (m, Sigma, a, b){

N <- length(a) # dimension of distribution

xt <- x <- matrix(0, N, m) # allocate space

pc <- pnorm(a[1]) # compute initial values

pd <- pnorm(b[1])

xt[1, ] <- runif(m) * (pd - pc) + pc

x[1, ] <- qnorm(ut[1, ])

L <- t(chol(Sigma)) # compute Cholesky decomposition of Sigma

for (i in 2:N) {

dummy <- L[i, ] %*% x

pc <- pnorm((a[i] - dummy)/L[i, i])

pd <- pnorm((b[i] - dummy)/L[i, i])

xt[i, ] <- runif(m) * (pd - pc) + pc

x[i, ] <- qnorm(xt[i, ])

}

return(L %*% x) } # transform values to TN(0,Sigma,a,b)

226
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C.2 MCEM Algorithm
The MCEM algorithm of Chapter 4 is implemented in R code with the following code. The MCEM

function returns the maximum likelihood estimates of the dependences parameters (a1, . . . , ap, b1, . . . , bq)

of the Gaussian copula model (3.8) with discrete margins. The input arguments are:

obs.data: Observed integer-valued time series with no missing values.

Monte_Carlo_samples : The number of Monte Carlo samples to be used in E-Step.

p, q: The order of the underlying ARMA model.

initial: The initial values to begin the MCEM algorithm.

num_iterations: The length of the output of the MCEM sequence.

prec: The numeric value to determine the stopping criteria, default to 0.01.

marginal_dist: The specification of the marginal distribution, default=”negbin”.

optim_method: The numerical optimisation procedure to be used, default=”nmkb” in Varadhan

et al. (2011) package.

compute_stderrors: Option for the output to include the standard errors of the MLEs, de-

fault=TRUE.

MCEM <- function(obs.data, Monte_Carlo_samples=mm, p, q, initial, num_iterations,

prec=0.01, marginal_dist="non-parametric", optim_method="nmkb"){

# Allocate space/Initial setup

n <- length(obs.data)

t <- 1

para.star <- initial

# Specify estimation methods for distribution functions, e.g.

if(marginal_dist=="non-parametric"){

Fn <- ecdf(obs.data)

up <- qnorm(Fn(obs.data))

low <- qnorm(Fn(obs.data-1))

}

for(k in 1:ml){ # loop to increase the number of Monte Carlo samples

m <- mm[k] # Set number of samples for Monte Carlo

# Begin MCEM algorithm iterations where each loop is one iteration

for(j in 1:num_iterations){
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current <- para.star

# The E and the M-step

para <- optim(current, Q_function, para.star=para.star, m=m, low=low,

up=up,p=p, q=q, method="L-BFGS-B", control=list(maxit=3000))$par

# Different numerical optimisers can be chosen

# Save the samples from the Monte Carlo Step

xdata <- xxx

# Check: Ensure the stationarity of the updated parameters

para[1:p] <- ensure_causality_invertibility(para[1:p])

para[(p+1):(p+q)]<- -ensure_causality_invertibility(-para[(p+1):(p+q)])

# Estimate the change in log-likelihood

ll[t] <- Delta_l_x(xdata, para.star, para, c(p,q))

diff[t] <- ll[t]

# Check: Has the stopping criteria been satisfied?

finish <- all(diff[t:(t-5)]<prec)

# Save and print updated parameter values

t <- t + 1

save[t, ] <- para.star <- para

}}

se <- compute_std_errors(para, obs.data, m, p, q, low, up) # Computing the Std errs

return(list(MCEM_Iterations=save[1:t,], diff=diff[1:t], dall=dall[1:t],

Monte_Carlo_samples=Monte_Carlo_samples, t=t, MLEs=MLEs))

}
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