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Abstract

Two precision measurements have been performed using the large number of dilep-

ton and diphoton events produced in pp̄ and pp collisions. A measurement of the

distribution of the kinematic variable φ∗η in the Drell-Yan process is performed in

bins of boson rapidity and invariant mass using 10.4 fb−1 data collected by the D0

experiment with a centre-of-mass energy of 1.96 TeV in pp̄ collisions. φ∗η, defined

in terms of lepton track directions, is well-measured and is sensitive to higher order

effects in Quantum chromodynamics (QCD). Data are compared to predictions from

state-of-the-art QCD Monte Carlo programs and are in good agreement. Measure-

ments of the production of prompt photon pairs are performed using 20.24 fb−1 data

collected by the ATLAS experiment at 8 TeV in pp collisions. QCD Monte Carlo

programs including higher order effects are found to describe the data. In addition,

a luminosity algorithm that renders its susceptibility to noise and inefficiency of cer-

tain modules in the diamond beam monitor has been proposed and validated using

ATLAS simulations.
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Chapter 1

Introduction

This thesis describes two precision measurements using the large number of dilep-

ton and diphoton events produced in the pp̄ and pp collisions respectively. The first

precision measurement is the study of the distribution of the dilepton transverse

momentum in the Drell-Yan process with a novel approach in pp̄ collisions, which

is sensitive to higher order effects in Quantum chromodynamics. The second mea-

surement is to measure both the inclusive and differential cross sections of prompt

photon pairs in pp collisions.

Chapter 2 documents the theoretical background and the physics motivations

for performing these two measurements. The introduction to the D0 experiment

at the Tevatron and the ATLAS experiment at the Large Hadron Collider is de-

scribed in Chapter 3. This is followed by Chapter 4 describing the experimental

techniques to reconstruct the physics objects. A variable called φ∗η is used to probe

the dilepton transverse momentum in the Drell-Yan process and Chapter 5 details

the measurement of the normalised differential cross-section of this variable at the

D0 experiment. Chapter 6 studies the performance of a luminosity detector named

diamond beam monitor and proposes an algorithm to measure the luminosity with

this detector using simulations at the ATLAS experiment. Chapter 7 presents the

measurements of the inclusive and differential cross sections of prompt photon pairs

in pp collisions at the ATLAS experiment.
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Chapter 2

Theoretical Background

2.1 The Standard Model of Particle Physics

The Standard Model (SM) of particle physics is a theory to describe the funda-

mental constituents of matter in the universe and the interactions between them.

The Standard Model has demonstrated extraordinary successes in predicting the

interactions of high-energy particles as probed by a variety of experiments up to the

13 TeV scale. Interactions between particles are assumed to be mediated by force-

carrying spin-1 bosons, namely, the photon (γ) for the electromagnetic interaction,

W± and Z bosons for the weak interaction and the gluon (g) for the strong interac-

tion. Certain interactions among these force-carriers themselves such as triple gauge

couplings are also possible. Gravitational forces as described by general relativity

are not considered in the current Standard Model.

Matter is understood in terms of twelve point-like spin-half fermions as presented

in Table 2.1, which can be divided into two sets, leptons and quarks, with each

having an anti-matter counterpart except possibly neutrinos1. All of the fermions

can interact via electromagnetic and weak interactions. Quarks, but not leptons,

are also involved in the strong interaction. Each set contains three generations, with

each generation consisting of a pair of leptons and a pair of quarks. All generations of

leptons have the same properties such as charge and spin, where the only difference

between generations is mass. The same is also true for the quark generations. Quarks

may carry one of three colours, and colour serves as the source of strong interaction.

Anti-quarks carry the equivalent anti-colour. Quarks and gluons are collectively

referred to as partons. The weak bosons and fermions obtain masses via interaction

with a spin-0 Higgs field, the excitation of which is manifested as the Higgs boson

(H).

1The question of whether a neutrino is its own antiparticle or not is still under investigation [1].
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Gauge Bosons
Electromagnetic Weak Strong Scalar

γ W±, Z g H
Fermions

Quarks
(
u
d

) (
c
s

) (
t
b

)
Leptons

(
e
νe

) (
µ
νµ

) (
τ
ντ

)
Table 2.1: A summary of elementary particles in the Standard Model.

The theoretical framework of the SM is based on quantum field theory (QFT),

in which particles are regarded as excited states of an underlying physical field.

The three fundamental interactions in the SM are made possible by introducing a

set of symmetries onto the quantum field of particles. The SM Lagrangian, which

controls the dynamics and kinematics of the theory, needs to be invariant under a

local phase transformation, ψ → ψ′ = eiφ(x)ψ. The term local implies that the phase

change φ varies as a function of the space-time coordinate of the field x. These

transformations are often referred to as gauge transformations. In order to preserve

the invariance of the theory under gauge transformations, it requires the presence

of additional gauge fields that interact with fermions and the existence of gauge

bosons that arise from these additional gauge fields. The fundamental interactions

of SM particles can be described by a combination of local gauge symmetry groups

SU(3)C ⊗ SU(2)L ⊗ U(1)Y , where SU(3)C , SU(2)L and U(1)Y denotes the gauge

group of colour, weak isospin and weak hypercharge respectively. More details on

each of these gauge symmetry groups will be provided in the later text.

Despite the triumph of the Standard Model in providing numerous predictions

that have been established by the experiments, there are a few known problems with

the current model which are listed and discussed as follows.

• The gravitational interactions as described by general relativity are not ex-

plained by the model in terms of QFT.

• The model is inconsistent with observations from cosmology over large length

scales. Firstly, it is unable to give a natural candidate for dark matter. Sec-

ondly, the model cannot explain the predominance of matter over anti-matter

in the universe.

• It is known that the quantum loop corrections to the Higgs mass diverge

quadratically. At the Planck scale (1019 GeV) where quantum effects of gravity

become significant, the Higgs mass would be forced to be around the Planck

13



scale. However, the current measurement of the Higgs mass is ∼125 GeV [2].

This is called the hierarchy problem [3].

New models beyond the Standard Model, such as Supersymmetry (SUSY), were

proposed to resolve the hierarchy problem and to constitute natural candidates for

dark matter. However, no direct experimental evidence for SUSY has been observed

so far [4].

2.2 Electroweak interactions

A unified description of electromagnetism and weak interaction, known as the elec-

troweak interaction, was proposed by Weinberg [5], Salam [6] and Glashow [7] in the

1960s. The group structure of the electroweak (EW) theory is composed of SU(2)L

representing weak isospin and U(1)Y representing weak hyperchage. The subscript

L on SU(2)L implies that only left-handed2 fermions couple to the weak isospin. The

third component of weak isospin, denoted by I3, is a conserved quantum number in

the SM interactions. The electric charge, Qf , is related to I3 and the weak hyper-

charge YW , where Qf = YW/2 + I3. The values of I3 and Qf for the generation of

fermions with the lightest masses are shown in Table 2.2.

The theory of electroweak forces is required to be invariant under SU(2)L ⊗U(1)Y

gauge transformations, generating three gauge bosons (W± and W 0) from SU(2)L

and one gauge boson (B) from U(1)Y . All these bosons are massless at this stage.

W±, Z bosons and the photons are then produced via a process known as spon-

taneous symmetry breaking. Spontaneous symmetry breaking is accomplished by

introducing the Higgs scalar field into the theory, which can spontaneously break the

SU(2)L ⊗ U(1)Y gauge symmetry at the electroweak scale. Spontaneous symmetry

breaking is used to generate mass terms for W± and Z bosons and the fermions

whilst keeping photons massless. This process is referred to as the Brout-Englert-

Higgs (BEH) mechanism [8, 9]. A striking feature of the BEH mechanism is the

prediction of a scalar boson, H, which was discovered in 2012 by the ATLAS [10]

and CMS [11] experiments at the Large Hadron Collider (LHC).

2The helicity of a particle is the projection of the angular momentum onto the momentum
direction, which can be positive or negative. Left- or right-handedness refers to chirality. A particle
is left-handed (right-handed) given that the particle has its spin pointing along the opposite (same)
direction with respect to its momentum. For massless particles, chirality equals helicity because
a given massless particle travelling at the speed of light spins in the same direction along its axis
of motion irrespective of the reference frame. However, they must be distinguished for massive
particles where a change of the reference frame can lead to changing the momentum direction and
thus reversing helicity.
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Fermions Antifermions

If3 Qf I f̄3 Qf̄(
u
d

)
L

+1
2

+2
3

0 −2
3

−1
2
−1

3
0 +1

3

uR 0 +2
3
−1

2
−2

3

dR 0 −1
3

1
2

+1
3(

e
νe

)
L

0 −1 −1
2

+1
+1

2
0 - -

eR 0 −1 +1
2

+1
vR - - −1

2
0

Table 2.2: The third component of weak isospin and the electric charge for the left-
handed and right-handed fermions (anti-fermions) respectively. Only the generation
of leptons or quarks with the lightest masses is shown and the other generations
obey the same pattern. The subscripts L and R represents the left-handed and
right-handed fermions. Only left-handed neutrino and right-handed anti-neutrino
are physically observed.

Spontaneous symmetry breaking causes the mixing between B and W 0 in the

(B,W 0) plane to form the physically observed γ and Z bosons:(
γ

Z

)
=

(
cos θW sin θW

− sin θW cos θW

)
×

(
B

W 0

)
, (2.1)

where θW denotes the weak mixing angle. Such a procedure also introduces the

following relations:

cos θW =
mW

mZ

=
g√

g2 + g′2
, (2.2)

where g and g′ represent the coupling constant of the SU(2)L and U(1)Y gauge

groups respectively. It suggests that the weak mixing angle also describes the relative

strength between the electromagnetic and weak interactions.

Figure 2.1: A tree level Feynman diagram at the lowest order for annihilation of
quark and anti-quark to form a virtual photon or a Z boson which then decays into
a pair of leptons.

In particle physics, a Feynman diagram is a graphical representation of quantum
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field theory processes from some initial quantum state to some final quantum state.

One can calculate perturbative3 contributions to the quantum transition amplitude

by assigning the proper mathematical expression to each line and vertex in the

Feynman diagram. Figure 2.1 shows the lowest order Feynman diagram for the

annihilation of a quark-antiquark pair to produce a lepton-antilepton pair via a Z

boson or a virtual4 photon γ∗. It belongs to a category of processes called neutral

current interactions, in which the propagator of the interaction is a neutral boson

Z/γ∗. The photon couples to fermions irrespective of the handedness and its coupling

strength to fermions is directly proportional to the electric charge eQf . The coupling

strengths of the Z boson to the left-handed and right-handed fermions, represented

by gfL and gfR respectively, are characterized by the following functions:

gfL = If3 −Qf sin2 θW , gfR = −Qf sin2 θW . (2.3)

As the values of g are distinct for left-handed and right-handed fermions, they

couple to the Z boson with different coupling strengths. Conventionally, the cou-

plings of the Z boson to fermions were written in terms of the vector coupling

constant cv = gfL − g
f
R and the axial vector coupling constant cA = gfL + gfR.

The charged current interactions, mediated by W± gauge bosons, only couple

to left-handed fermions and right-handed antifermions. For leptons, the conversion

can only occur in the same generation. The decay of W± to muons can take place

via the following processes: W+ → µ+vµ and W− → µ−v̄µ. The conversion of an

up-type quark to a down-type quark, not necessarily in the same generation, can

take place in a charged current interaction given that it is kinematically allowed. An

example is the c quark decay via the following processes: c→ sW+ and c→ dW+.

The strength of the flavour-changing weak decay is determined by a 3×3 unitary

matrix called the Cabibbo-Kobayashi-Maskawa (CKM) matrix [12, 13]. Similarly,

neutrino oscillations have been observed experimentally and the probability for neu-

trino flavour oscillations is described by a 3×3 Pontecorvo-Maki-Nakagawa-Sakata

(PMNS) matrix [14,15].

Given the mathematical structure of the Standard Model, the couplings of all

particles can be predicted by a limited number of free input parameters that must

be determined by experiments. The consistency of the Standard Model can be

examined by performing a global fit to the precision electroweak data. Figure 2.2

shows the overall result of such a fit [16]. The indirect determination of an observable

is obtained from the fit without considering the corresponding direct measurement

3The perturbative regime requires the coupling constant to be small.
4For a virtual particle, the energy-momentum relation could break down: E2 6= m2 + p2.
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of that observable. All indirect measurements are consistent with the corresponding

direct precision measurement, providing a powerful self-consistency check of the SM.
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Figure 2.2: Overall result of the global fit to the precision electroweak data [16].
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obtained by repeating the electroweak fit without considering the corresponding
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of standard deviations for the global fit and the point with error bars shows the
indirect determination.
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2.3 Strong interactions

The strong interaction is described by the SU(3)C gauge group of quantum chro-

modynamics (QCD), where C represents the colour charge that is the source of the

strong interaction. The strength of the strong interaction is determined by a single

coupling constant, αs, which varies as a function of the momentum transfer Q (at

one-loop precision):

αS(Q2) =
αS(µ2

R)

1 + αS(µ2
R)β0 ln Q2

µ2R

, (2.4)

where µR is the renormalisation scale introduced as an approach of truncating cal-

culations of αS at a finite scale, β0 =
33−2nf

12π
and nf denotes the number of quark

flavours that is allowed in the loop. Figure 2.3 presents the comparison of αs over

a broad range of energy scale between precision measurements and QCD predic-

tions [4]. The predictions from QCD are consistent with various measurements for

up to ∼1000 GeV.

Figure 2.3: Comparison of αs over a broad range of energy scale between theoretical
predictions and a number of precision measurements [4]. The band represented
by three bold lines is the theoretical prediction with the corresponding theoretical
uncertainties.

Using Equation 2.4 and Figure 2.3, one can easily see αS decreases at large ener-

gies, which correspond to short distances, giving rise to asymptotic freedom where

quarks behave as if they were free particles. Also, αS increases rapidly at small

energies, which correspond to long distances, giving rise to the colour confinement
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of quarks. This property explains the reason why individual quarks are never ob-

served physically and what we observe in the detector is a collection of collimated

hadrons called “jets”. Hadrons are colourless and can be divided into baryons and

mesons. Baryons are composed of three quarks and an arbitrary number of pairs of

a quark and an antiquark and mesons consist of one or more pairs of a quark and

an antiquark. High-energy quarks or gluons produced in hadron-hadron collisions

will continue radiating partons until the energies reach the typical scale of QCD,

ΛQCD ∼ 100 MeV, at which this “parton showering” stops and these partons are

confined to form hadrons.

2.4 The Drell-Yan process

The Drell-Yan process is the production of a pair of leptons in hadron-hadron colli-

sions via the exchange of a virtual photon γ∗, a Z boson or a W boson [17].

2.4.1 Overview

The partonic cross-section at high-collision energies can be calculated using per-

turbation theory, where the strong coupling constant becomes small (αs ∼ 0.1 for

Q ∼100 GeV) due to asymptotic freedom. However, partons are confined to the

structure of the hadrons as a result of colour confinement, which cannot be treated

perturbatively due to the presence of the relatively large coupling constant at the

QCD scale (αS ∼ 1 for Q ∼200 MeV). The factorization theorem allows us to cal-

culate the cross-section of hadron-hadron collisions by separating the perturbative

part and the non-perturbative part in a systematic fashion:

σ =
∑

a,b=q,q̄,g

∫ 1

0

dxa

∫ 1

0

dxbfa(xa, µ
2
F )fb(xb, µ

2
F )︸ ︷︷ ︸

non-perturbative part

σhard(µR, µF )︸ ︷︷ ︸
perturbative part

, (2.5)

where

• The sum is over all possible combinations of the incoming parton species.

• xa and xb represent the fractions of the hadron parent momenta carried by the

colliding partons.

• The factorization scale µF is an arbitrary scale to distinguish between the long-

distance and the short-distance physics, which is usually set to the momentum

transfer Q.
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• The probability for a hadron to contain a parton of flavour a at factorization

scale µF is given by the Parton Distribution Functions (PDFs) denoted by

fa(xa, µ
2
F ).

• The cross section of the hard process σhard(µR, µF ) can be calculated using

perturbation theory.

It should be noted that the Drell-Yan process is the only hadron-hadron process in

which the factorization theorem has been demonstrated analytically [18].

It is impossible to derive PDFs from first-principles in QCD because they are

non-perturbative, and so PDFs must be determined experimentally. A number

of collider experiments have provided constraints on the PDFs. The most recent

PDFs including data from the Tevatron and the LHC are produced by the CTEQ

collaboration [19] and the NNPDF collaboration [20]. The DGLAP equations [21–23]

are employed to extrapolate PDFs determined at a certain Q2 to other values of Q2.

2.4.2 Z/γ∗ transverse momentum distribution in Drell-Yan

process

(a) (b)

Figure 2.4: Feynman diagrams of the Drell-Yan sub-process. Figure 2.4a shows
an example of higher order virtual corrections with a gluon exchange between the
incoming quark and anti-quark. Figure 2.4b shows a real gluon emission off the
quark.

The dilepton transverse momentum in Z/γ∗ → l+l− production is defined as

pllT = | ~pT 1 + ~pT
2|, where ~pT

1 and ~pT
2 refer to the vector of the momentum of the

two leptons in the plane transverse to the beam direction. Assuming no intrinsic

transverse motion of the colliding partons in the head-on hadron-hadron collisions,

the dilepton should be produced with zero pllT at the lowest order tree-level Feynman

diagram (Figure 2.1) according to momentum conservation. This Feynman diagram

is called a leading-order (LO) diagram. Figure 2.4a shows an example of a higher

order virtual correction with a gluon exchange between the incoming quark and

anti-quark, where the dilepton transverse momentum is zero. Figure 2.4b presents
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the first non-zero contribution to the dilepton transverse momentum in which a real

gluon is radiated off the quark. The diagrams shown in Figure 2.4 are included in

the next-to-leading-order (NLO) calculations of the inclusive Drell-Yan process.

At finite order of αS in the perturbative series, the leading logarithmic term takes

the form 1/pllT
2
αns ln

2n−1(Q2/pllT
2
) [18] with n being an integer. When the gluon is

soft (low energy) or radiated collinear to the parent parton direction (pllT → 0),

the logarithmic terms in the perturbative calculations will become important due

to incomplete cancellations between divergent virtual and real diagrams. These

large logarithmic divergences can be “resummed” to all orders in αS in perturba-

tion theory using resummation schemes [18]. The obtained low pllT spectrums are

then matched to the fixed-order perturbative QCD (pQCD) predictions to remove

the overlap that has been double counted between resummation and pQCD cal-

culations. Resummation including only the leading logs is called leading-log (LL)

accuracy. The state-of-art resummation is often at next-to-next-to LL (NNLL) ac-

curacy which includes the sub-leading logs. The resummation technique introduces

another theoretical uncertainty arising from the choice of the resummation scale,

µQ, which is usually set to the momentum transfer Q.

For 0 ≤ pllT < ΛQCD, pQCD calculations are not valid any more and non-

perturbative form factors have to be introduced to give a sensible cross section

at low pllT . The following GNW [24] non-perturbative parametrizations have been

found to describe the experimental data:

W̃NP (b, a) = exp [−b2a(Q,
√
s)] (2.6)

with

a(Q,
√
s) = aZ(1.96 TeV) + a2 ln (

Q

MZ

) + a3 ln(
Q2

M2
Z

s

(1.96 TeV)2
), (2.7)

where b corresponds to the impact parameter (b ∼ 1/pllT ), aZ is determined in [24]

by fitting measurements sensitive to the small-pllT region in the Drell-Yan process at

around Z-mass region from the D0 experiment [25], a2 and a3 are determined in [26]

by a global fit of Drell-Yan precision data at various values of Q and
√
s denotes

the centre of mass energy at hadron colliders.

At a fixed value of Q, the non-perturbative parameter dependence on the parton

momentum fraction x at small pllT can be probed by looking at different boson

rapidity y regions, which is defined as:

y =
1

2
ln
E − pz
E + pz

, (2.8)
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where E is the dilepton energy and pz is the dilepton momentum along the beam

axis. The parton momentum fraction xa,b is related to the boson rapidity:

xa,b =
Q√
s
e±y. (2.9)

For Z/γ∗ production at the Tevatron, the range of x probed by the experiment

is typically between 0.001 and 0.1. In the region |y| > 2 at the D0 experiment,

x corresponds to ∼0.001. Therefore, the x dependence of the non-perturbative

functions can be verified by precise measurements of pllT distribution of the Drell-

Yan process, at various values of momentum transfer Q and a number of rapidity

regions.

2.5 Monte-Carlo event generators

Monte-Carlo (MC) event generators are used extensively in particle physics experi-

ments to predict production rates and kinematic distributions of physical processes.

MC samples are produced via several stages.

At the first stage, the hard process in a single pp (pp̄) collision is generated

according to the probability distribution predicted by the SM, where the cross-

section can be factorized into the non-perturbative part and the perturbative part as

shown in Equation 2.5. Other processes including the hadron remnants or multiple

parton scatterings in the single pp (pp̄) collision produced at the same time as the

hard process (underlying event) and additional pp (pp̄) collisions (pile-up) are also

produced.

The initial (final) state radiations from incoming (outgoing) partons are simu-

lated using a technique called “parton showers” [27]. High-energy partons evolve

down in scale by emitting additional partons until a point where αS becomes large

and the fixed-order pQCD calculations are invalid. The probability for no emission

of partons in a parton shower is given by Sudakov form factors [28]. Matching be-

tween the fixed-order pQCD calculations (matrix elements) and parton showers has

to be performed to avoid a double counting. The Pythia MC program [29] matches

the LO matrix element to the LL parton shower. There are a few “free” parame-

ters in the modeling of the parton shower that are sensitive to initial state parton

emissions, which must be determined by experiments. The hadronization model

needs to be incorporated within the parton shower model, which has additional free

parameters that must be tuned using experimental data.

These events produced by event generators are then passed through a detector
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simulation using the Geant4 program [30] and reconstructed using the same al-

gorithm implemented in the reconstruction of collision data. For some of the fixed

order calculations like ResBos [31] and Diphox [32], predictions are only available

for hard processes without modelling of the underlying event or hadronization.

2.6 The φ∗η distributions in the Drell-Yan process

2.6.1 Physics motivation

Precise study of the Drell-Yan pllT spectrum provides an ideal ground for testing

and improving initial state QCD radiation models because of the relatively low

background and the absence of colour flow between the initial state and the final

state. Understanding the performance of such models is important in the precision

determination of the W -mass and Higgs properties as well as searching for new

physics beyond the SM.

As already explained in Section 2.4.2, the low pllT region is sensitive to non-

perturbative effects due to initial state radiations from partons. The precision of

the pllT spectrum is limited by the lepton momentum resolution, which is around a

few percent at the D0 experiment. An alternative observable, denoted as φ∗η, has

been developed in [33] to probe the low pllT region. A schematic diagram of the

relevant variables for the definition of φ∗η is illustrated in Figure 2.5. φ∗η is defined

in terms of track directions (η, φ)5:

φ∗η = tan (φacop/2) sin (θ∗η), (2.10)

where the acoplanarity angle φacop can be expressed as a function of the opening

angle of the final state dilepton φacop = π − ∆φ. θ∗η is the scattering angle of the

lepton with respect to the beam axis in the rest frame of the dilepton system, which

is given by

cos θ∗η = tanh (
η− − η+

2
). (2.11)

η− and η+ represent pseudorapidities of the negatively charged and positively charged

lepton respectively. The rest frame of the dilepton system refers to a frame where

a Lorentz boost β = tanh ((η− + η+)/2) is applied along the beam axis. It is such

that the two leptons have equal and opposite rapidity, i.e., the two leptons are back-

to-back in the r− θ plane. Since φ∗η is exclusively dependent on the track directions

5The pseudorapidity η is defined as η = − ln (tan(θ/2)), where θ is the scattering angle of the
outgoing particle relative to the beam direction
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of the leptons, which are well measured with a precision of around miliradians, it

can be determined more precisely than pllT , which depends on the momenta of the

two leptons. It is shown in [33] that φ∗η is highly correlated with aT/M``, where aT

is the transverse component of pllT with respect to the thrust axis as illustrated in

Figure 2.5. The thrust axis is defined as t̂ = ( ~pT
1 − ~pT

2)/| ~pT 1 − ~pT
2| and aT can be

written as aT = |t̂× pllT |.
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Figure 2.5: A schematic diagram of the relevant variables in the transverse plane
relative to the beam direction [33]. pllT can be decomposed into two orthogonal
components, aT and aL with respect to the thrust axis t̂.

2.6.2 Previous measurements

The normalised differential cross section of φ∗η, (1/dσ)(dσ/dφ∗η), was first measured

by the D0 experiment [25], in which the measurement was performed close to the Z-

mass peak region in the Drell-Yan process in bins of rapidity |y| for the dimuon and

dielectron channels separately. Figure 2.6 presents the ratio of D0 data distributions

of (1/dσ)(dσ/dφ∗η) to NNLL+NLO predictions from ResBos. The ResBos predic-

tion is in reasonable agreement with data but cannot describe the detailed shape

of φ∗η. In particular, the “small-x” broadening model, which predicts a broadening

of the pllT shape at small parton momentum fraction, is strongly disfavoured by the

D0 data. Perturbative QCD predictions [34,35] including resummation calculations

at NNLL accuracy matched to the NLO QCD calculations from MCFM [36] were

found to describe the D0 data within the assigned theoretical uncertainties. The D0

measurement also made it possible to determine the non-perturbative parameter aZ

implemented in ResBos [24] with unprecedented precision.

Experimental measurements of the φ∗η distribution were subsequently followed by

the ATLAS collaboration [37] at
√
s =7 TeV. These measurements have been used

to tune the free parameters in parton showers of MC programs such as PYTHIA
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Figure 2.6: The ratio of the corrected data distributions of (1/dσ)(dσ/dφ∗η) in the
dimuon and dielectron channels to the ResBos prediction for 70 < Mll < 110 GeV
in bins of rapidity from the 2011 D0 publication [25]. The ratio to the nominal
ResBos prediction (red line) of alternative ResBos predictions with tuned g2 value
(blue) and the small-x broadening effect (solid black line) are also shown. χ2

(ee,µµ)

is calculated assuming the uncertainties are uncorrelated between the dimuon and
dielectron channels. The yellow band represents the theoretical uncertainties. g2

in the legend represents the non-perturbative parameter in the non-perturbative
formalism of Brock, Landry, Nadolsky and Yuan (BLNY) in [26].

and POWHEG+PYTHIA [38]. The LHCb collaboration measured the absolute

differential cross section of φ∗η [39], with precision limited by the available statistics.

As only bosons that are produced highly boosted relative to the beam direction can

be detected at LHCb, the LHCb φ∗η measurements allow stringent tests of QCD

predictions at very small parton momentum fraction, thus are complementary to

the D0 and ATLAS results. Chapter 5 will describe an update of the D0 φ∗η mea-

surements for 70 < M`` < 110 GeV in the dimuon channel and for M`` away from

the Z-mass peak region, and these results have been published in [40].

2.7 Isolated diphoton production at LHC

The dominant processes that contribute to photon production in hadron-hadron col-

lisions are: direct photons, photon Bremsstrahlung and fragmentation. A fragmen-

tation photon corresponds to a photon that carries a large fraction of the energy of a

jet arising from a fragmented quark. The bremsstrahlung or fragmentation emission

of photons are collectively referred to as fragmentation photons in the later text.

Direct diphoton production is dominated by quark-antiquark annihilation. The
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LO Feynman diagram of direct diphoton production at Born level is illustrated

in Figure 2.7a. Figure 2.7b presents the NLO virtual correction with a virtual

gluon exchange between the incoming quarks. Figure 2.7c shows the direct diphoton

production via gluon-gluon scattering, which is known as the box diagram. Although

the box diagram in Figure 2.7c is suppressed byO(α2
s) compared to Figure 2.7a, these

two contributions are comparable due to the large gluon densities in pp collisions.

Feynman diagrams of one-photon fragmentation, corresponding to the produc-

tion of one direct photon and one photon from bremsstrahlung or fragmentation of a

parton, are presented in Figure 2.8. Divergences appear in the collinear limit when

the photon is emitted in the same direction to the parton. One way of resolving such

divergences is to introduce the quark (gluon) fragmentation function Dγ/q (Dγ/g),

which describes the showering of a parton in the collinear limit. Experimentally, the

fragmentation photon is usually less well isolated than the direct photon. Figure 2.9

shows Feynman diagrams of two-photon fragmentation process at LO (Figure 2.9a)

and NLO (Figure 2.9b and Figure 2.9c), respectively.

Figure 2.7: Feynman diagrams of direct diphoton production in [41] at (a) Born
level, (b) NLO with a virtual gluon exchange between the incoming quarks, and (c)
Box level with gluon-gluon scattering to produce two photons.
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Figure 2.8: Feynman diagram of diphoton production in [41] with one photon pro-
duced via fragmentation including (a) one photon Bremsstrahlung, (b) one photon
fragmentation, and (c) NLO diagram with a virtual gluon exchange.

Figure 2.9: Feynman diagram of diphoton production in [41] with both photons
produced via fragmentation at (a) LO, (b) NLO with a virtual gluon exchange
between the outgoing quarks, and (c) NLO with a real gluon emission.

The production of isolated photon pairs, pp → γγ + X, can be used to verify

the perturbative QCD calculations and resummation techniques of multiple soft

gluons. Specific regions in kinematic distributions are sensitive to different aspects

of QCD. An example is the difference in the azimuthal angle, which is susceptible

to the fragmentation contributions, particularly when the two photons emitted are

collinear (∆φγγ ∼ 0). For two photons which are back-to-back in the transverse

plane (∆φγγ ∼ π and pT,γγ ∼ 0), the kinematic region is sensitive to emission of

multiple soft gluons, where resummation schemes can be tested.

In addition, the isolated diphoton process is a major irreducible background for

the Higgs searches and new physics searches beyond the SM. Precise measurement

of the kinematic distributions of isolated photon pairs is critical for these searches

and the study of Higgs properties. For instance, the distribution of the diphoton

invariant mass (mγγ) is important for resonance searches and the extraction of the
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H → γγ signal. Another example is the cosine of the scattering angle calculated in

the Collin-Soper frame (cos θ∗CS) [42], which is sensitive to the spin of the diphoton

system.

2.7.1 Previous measurements

Previous measurements of the diphoton cross section both inclusively and as a func-

tion of various observables have been conducted by the D0 [43] and CDF [44] exper-

iments in pp̄ collisions at
√
s = 1.96 TeV. These measurements were also performed

by the ATLAS [45,46] and CMS [47,48] experiments in pp collisions at
√
s = 7 TeV.

The large amount of data at the LHC allows precision tests of diphoton production.

The ATLAS data have been compared to the following predictions: Pythia [29]

and Sherpa [49] MC in which LL parton showers are matched to LO matrix ele-

ments, fixed order calculations at NLO from DIPHOX+2GammaMC [32,50] and

with resummation of soft gluons from ResBos [51–53] at NLO+NNLL accuracy

and 2γNNLO [54] calculations at NNLL+NNLO accuracy. For the inclusive dipho-

ton cross section, Pythia and Sherpa predictions disagree with data due to a lack

of higher-order contributions whereas the fixed order calculations were consistent

with data within the assigned theoretical uncertainties. Concerning the differential

cross section, none of the event generators can describe the detailed shape of the

kinematic distributions accurately. Figure 2.10 shows the comparison of various

kinematic distributions between ATLAS data and fixed order calculations. It can

be observed that 2γNNLO predictions give a much better description of data than

DIPHOX+2GammaMC. Chapter 7 will describe the diphoton cross section mea-

surements using the full data set collected by the ATLAS experiment at
√
s = 8 TeV.
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Figure 2.10: Comparison of the differential cross section between experimental data
and theoretical predictions from DIPHOX+2GammaMC and 2γNNLO as a func-
tion of mγγ (top left), pT,γγ (top right), ∆φγγ (bottom left) and cos θ∗CS (bottom
right) from [46]. Black dots represent data with error bars denoting total uncertain-
ties. Theoretical predictions with their uncertainties are shown as green bands for
DIPHOX+2GammaMC and yellow bands for 2γNNLO.
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Chapter 3

Experimental Apparatus

Over the last few decades, the high-energy frontier of particle physics has been

dominated by collider experiments. The Tevatron, which was a circular collider

with a circumference of 6 km, collided protons and anti-protons with a centre of

mass energy
√
s = 1.96 TeV. This pp̄ collider was situated in the Fermi National

Accelerator Laboratory and was shut down in 2011. The current largest and highest-

energy collider, the LHC, is a pp circular collider with a circumference of 27 km at

CERN. The LHC was operated at
√
s =7 TeV from 2010 to 2011 and at

√
s =8 TeV

in 2012. After a long shutdown, the LHC is currently running at
√
s =13 TeV. The

design central mass energy for the LHC is 14 TeV.

A brief view of the accelerator complex at the Tevatron and the LHC is given in

Section 3.1. Section 3.2 describes the coordinate system used in the detectors. This

is followed by Section 3.3 explaining the different sub-systems of the D0 experiment

at the Tevatron and the ATLAS experiment at the LHC.

3.1 Accelerator chain

3.1.1 Introduction to luminosity

In a particle collider, the interaction rate R for a given process A + B → X, is

related to the instantaneous luminosity L via the following equation:

RA+B→X = σA+B→X ×L , (3.1)

where σA+B→X denotes the cross-section for A+B → X. The cross section implies an

intrinsic probability for an interaction to take place and includes no ingredients that

can be controlled experimentally. However, the instantaneous luminosity involves

ingredients that can be adjusted experimentally to enhance the interaction rate,
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thus making observations and precision measurements possible. The instantaneous

luminosity L can be written as:

L =
µvisnbfr
σvis

, (3.2)

where µvis is the observed, or visible, average number of inelastic interactions per

bunch crossing (BC), σvis is the visible inelastic cross section seen by a particular

detector (set of detectors) with a given trigger condition, fr represents the revolution

frequency and nb denotes the number of bunches.

3.1.2 The Tevatron

The high energies of protons and anti-protons at the Tevatron are achieved by

accelerating the proton and anti-proton beams in electromagnetic fields through a

series of accelerators and storage rings. Figure 3.1 shows the schematic layout of the

Tevatron and the accelerator complex. The production of high-energy protons starts

by ionizing hydrogen gases into H− ions in the Cockroft-Walton pre-accelerator

which subsequently accelerates these ions to 750 keV. The beam of H− ions is then

accelerated through a linear accelerator (Linac) to an energy of 400 MeV. These

H− ions are transformed to protons by passing them through a thin carbon foil

that removes electrons from the H− ions. The protons then proceed to a circular

synchrotron called the booster ring and are accelerated up to 8 GeV before being

transferred into the main injector. The main injector accelerates protons to 150 GeV,

and the protons that are grouped into bunches are ready for injection into the

Tevatron. The Tevatron ramps their energy up to 980 GeV.

The anti-protons are produced by smashing a beam of 120 GeV protons from

the main injector into a nickel (Ni) target. Around 5 × 1012 protons hit the target

every 1.47 seconds, and a range of particles is produced in the p−Ni collisions,

among which approximately 5 × 107 anti-protons are collected using a mass-charge

spectrometer. These collected anti-protons are cooled and accelerated to 8 GeV

in the debuncher before moving to the accumulator to be ready for the next p-

Ni collision. The accumulator stores anti-protons over a few hours in which the

spread in energy of anti-protons and beam transverse size is decreased using the

stochastic cooling method [55]. The anti-protons are periodically moved to the

recycler, situated in the same tunnel of the main injector, which performs electron

cooling and stochastic cooling of the anti-proton beam. They then enter the main

injector and are accelerated to 150 GeV and grouped into bunches before they are

injected into the Tevatron, which increases the energy of the anti-proton beam up
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to 980 GeV.

There are 36 bunches in the proton (anti-proton) beam at the Tevatron, in

which the time separation between each bunch in the proton (anti-proton) beam is

396 ns. The maximum instantaneous luminosity recorded at the Tevatron is over

4 × 1032 cm−2s−1. The proton and anti-proton beams are kept apart everywhere

except at two interaction points, where they are brought into collisions at the CDF

and the D0 interaction points.

Figure 3.1: A schematic layout of the Tevatron and the accelerator complex [56].

3.1.3 The LHC

A schematic view of the LHC and the accelerator supply chain is presented in Fig-

ure 3.2. At the LHC, protons are produced by stripping electrons from hydro-

gen gases via acceleration through electric fields. These protons are accelerated to

500 MeV in the linear accelerator called Linac2. They are then injected into the

Proton Synchrotron (PS) Booster, which ramps the energy of protons to 1.4 GeV

before transfer to the PS to be accelerated to 26 GeV. These protons subsequently

move to the Super Proton Synchrotron (SPS), which accelerates them to 450 GeV
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ready for injection into the LHC. There were 1400 bunches in a proton beam in 2012

and each bunch was separated by 50 ns. In 2012, the LHC increased the energy of

the proton beams to 4 TeV before collisions and the maximum instantaneous lumi-

nosity recorded was 7.7 × 1033 cm−2s−1. In comparison to the Tevatron, the LHC

has already delivered 2.5 times of the integrated luminosity of the entire Tevatron

lifespan within the first three years of its running at unprecedented collision energies

in 2012. In 2015, the LHC was operating at
√
s = 13 TeV with a target instanta-

neous luminosity of 1034 cm−2s−1. The maximum instantaneous luminosity in 2016

has increased to 1.2 × 1034 cm−2s−1.

The collider tunnel consists of two parallel beam pipes that intersect at four

interaction points, and each interaction point is surrounded by a particle detector.

Two of these interaction points are surrounded by two general purpose particle de-

tectors, ATLAS and CMS. The LHCb experiment is designed to study heavy flavour

physics and to measure the parameters related to the asymmetry between matter

and antimatter. The ALICE experiment primarily focuses on the measurements of

heavy-ion collisions, in which the quark-gluon plasma produced at extreme energy

densities is of great interest.

3.2 Coordinate system

Both the ATLAS and the D0 detectors employ a right-handed cylindrical coordi-

nate system with the z-axis aligned along the beam direction1, the y axis pointing

upward2 and the x axis pointing away from (towards) the centre of the synchrotron

accelerator at the Tevatron (LHC). The geometrical centre of the detector is de-

fined as the origin of the coordinate. Most of the components in these detectors are

geometrically symmetric relative to the azimuthal angle φ in the transverse plane

and the polar angle θ. φ is measured around the beam axis and defined to be zero

along the x axis. The pseudorapidity, η, is defined as η = − ln (tan(θ/2)). η is

favoured over θ because differences in pseudorapidity are invariant under a Lorentz

boost along the beam direction.

1At the Tevatron (LHC), the positive z direction is in the same direction as the protons travelling
clockwise (anticlockwise) if one looks from above the ring.

2The positive y axis at the LHC is not exactly pointing upward with respect to the ground due
to the inclination of the accelerator.
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Figure 3.2: A schematic layout of the accelerator complex at the LHC [57].

3.3 The D0 and ATLAS detectors

General-purpose particle detectors such as the D0 detector (Figure 3.3) and the

ATLAS detector (Figure 3.4), are typically composed of four major parts. The part

closest to the interaction point is the central tracking system, which is used to mea-

sure the momentum of charged particles precisely and to reconstruct the vertices

accurately in the pp (pp̄) collisions. It is surrounded by the electromagnetic (EM)

and the hadronic (HAD) calorimeters that enable measurements of the energy of

both neutral and charged particles. The outermost part of the detector is the muon

system, which identifies and determines the momentum of muons with high preci-

sion. The last main part is the trigger system, which selects events of interest in real

time. Each part of the detector mentioned above will be discussed in the following

sections. Since the work in the thesis involves both the D0 and the ATLAS detec-

tors, only the detector parts that are relevant to the specific analysis are explained

in more detail. A more complete description of the D0 and the ATLAS detectors
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can be found in [58] and [59], respectively. The detector performance relevant to

the analysis presented in the thesis is briefly discussed in Chapter 4.

Figure 3.3: A diagram of the D0 Run II detector viewed from the centre of the
collider. The main detector components are labeled [58].

36



Figure 3.4: A diagram of the ATLAS experiment with major detector sub-systems
labeled [59].

3.3.1 Central tracking system

Inside the D0 and the ATLAS detectors, the beam pipe is made of a thin layer of

beryllium to reduce scatterings of particles produced in the collisions. The whole

central tracking system is immersed in a 2 T solenoidal magnetic field, which is

aligned along the beam direction. The magnetic field causes the trajectory of charged

particles to bend in the φ direction. The momentum of these charged particles can

be determined by measuring the curvature of the trajectory.

D0 experiment

The D0 central tracking detector shown in Figure 3.5 is made up of two key

components. Closest to the beam pipe is the Silicon Microstrip Tracker (SMT),

which is surrounded by the Central Fibre Tracker (CFT).

The SMT is composed of six barrel modules interspersed with six disks (F disks),

covering the central region in z. There are three additional F disks followed by two

large diameter disks (H disks) on each side of the end-cap. The outer radius of the

F disks and H disks is approximately 10 cm and 26 cm. Such a layout of barrel

modules and disks allows a wide coverage of measurement for tracks that can travel

either perpendicular to or in the direction of the beam direction. An additional

radiation-hard silicon layer, layer-0, was inserted close to the beam pipe to improve

tracking and vertex reconstruction in 2006.
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The CFT consists of scintillating fibres on eight cylinders. Each of the eight

cylinders contains two doublet layers. One doublet layer is along the beam direction

and the other doublet layer is at a stereo angle of either plus or minus three degrees

with respect to the beam axis. The CFT can measure trajectories of charged parti-

cles up to |η| ∼ 1.7. The passage of a charged particle in the CFT causes emission

of photons which are transported by fibres and subsequently detected in the Visible

Light Photon Counters (VLPCs).

The preshower detectors are split into two components, the Central Preshower

Detector (CPS) covering the region |η| < 1.3 and the Forward Preshower Detector

(FPS) covering the region 1.5 < |η| < 2.5. The CPS and the FPS are located

between the central tracking detector and the calorimeters.

Figure 3.5: A diagram of the D0 central tracking system [58].

ATLAS experiment

The ATLAS Inner detector (ID) contains three main sub-detectors, as presented

in Figure 3.6. The innermost sub-detector is the pixel detector, followed by the

Semi-Conductor Tracker (SCT) and the Transition Radiation Tracker (TRT).

The pixel detector is comprised of three concentric barrel layers and two sets

of three end-cap disks with 1744 silicon modules. Each module is made up of
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Figure 3.6: A diagram of the ATLAS inner tracker [59].

47232 pixels, each of which measures 50×400 µm2. Such a high granularity ensures

an excellent spatial resolution that is required to reconstruct the large number of

vertices in pp collisions. The barrel layers cover the region up to |η| ∼ 1.7 and

provide full coverage in φ. The endcap disks cover the pseudorapidity range of

1.7 < |η| < 2.5. The layer closest to the beam line in the pixel detector is the so-

called b-layer, which provides important information on identification of long-lived

particles such as b-hadrons (b-tagging). A fourth layer, the insertable b layer [60],

was installed in 2015 to improve the reconstruction of vertices and b-tagging.

Surrounding the pixel detector is the SCT detector, with four layers of silicon

microstrip modules in the barrel and nine disk layers in each of the endcaps. There

are 2112 SCT modules in the barrel and 1976 SCT modules in the endcap, each

of which contains two pairs of sensors arranged back-to-back with each sensor con-

taining 768 strips. The strips in the barrel layer lie along the beam axis whereas

the strips of endcap disks are aligned radially. This arrangement allows a precise

determination of the φ coordinate of the produced charged particles.

The outermost part of the ID, the TRT, is made up of drift tubes of diame-

ter 4 mm which are filled with a gas mixture containing mainly Xenon. There are

approximately 52500 straws in the barrel, arranged in 73 layers, which are aligned

parallel to the beam direction. The endcap contains 160 planes of straws, which are

arranged radially. The drift tubes are interspersed with radiator materials. When a

charged particle traverses the TRT, in addition to the ionization of the gas mixture,
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which provides tracking information, ultra-relativistic particles passing through the

boundary between radiator material and the drift tubes radiate photons that inten-

sify the signal. The strength of the transition radiation is inversely proportional to

the mass of the charged particle, thus a measurement of transition radiation can be

used to distinguish electrons from pions.

3.3.2 Calorimeter system

Calorimeters are built to measure the energy of particles that interact with the

calorimeter medium through absorption. The calorimeter system is comprised of

the electromagnetic calorimeters (ECAL) and the hadronic calorimeters (HCAL),

each of which is contained within its own cryostat that maintains the operating

temperature at around 90 K. It should be noted the tile calorimeter is not housed

inside its own cryostat at the ATLAS experiment. The calorimeter cells, arranged

in modules, contain alternating layers of absorbing material and sampling material

(e.g. liquid argon). Absorbing materials are used to induce showers into secondary

particles, the energy of which can be collected and measured via ionisation of the

sampling materials. The ECAL are used to measure the energy of particles (elec-

trons and photons) that interact with the calorimeter material via electromagnetic

interactions. When electrons or photons traverse the ECAL, which are made of

heavy-nuclei (e.g. lead), electromagnetic showers of electrons and photons via pho-

ton Bremsstrahlung and pair production are induced. Similarly to the ECAL, the

HCAL measure the energy of hadrons that interact with the calorimeter material

via the strong interaction. Ultra-relativistic hadrons interact with the heavy nuclei

material, which subsequently produces hadronic showers. These secondary particles

produced in the EM or HAD showers ionize the active medium (e.g. liquid argon),

in which the charge is collected using copper electrodes. The energy of the passing

particles can be determined by integration over these collected charges. Both liquid

argon (LAr) and scintillation tiles are used as sampling material in the calorimeters

at the D0 and ATLAS experiments.

D0 experiment

The D0 calorimeter system as shown in Figure 3.7 is split into three sections,

the Central Calorimeter (CC), which covers the region |η| < 1 and two Endcap

Calorimeters (ECs), which extend the coverage up to |η| ∼ 4. There is little or

no EM coverage in the pseudorapidity region 1.1 < |η| < 1.5. The region is fur-

ther instrumented with the so-called Inter-Cryostat Detector (ICD) composed of

scintillation tiles.
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Figure 3.7: An isometric view of the D0 calorimeter system [58].

The ECAL is made up of four layers of calorimeter cells in which the absorbing

material is depleted uranium. The total thickness of the absorber is 19.2 X0 in the

CC and 21.7 X0 in the EC, where X0 represents one radiation length. Each layer

has a granularity of 0.1 × 0.1 in η and φ apart from the third layer, which has a

finer granularity of η × φ = 0.05 × 0.05. The third layer was designed to be at

the maximum of the EM shower, an excellent granularity in this layer provides a

high spatial resolution that allows precision measurements for electrons and photons.

However, there are φ gaps in the calorimeters due to poorly instrumented CC module

boundaries that can degrade the EM energy response.

Surrounding the ECAL are three layers that make up the Fine Hadronic Calorime-

ter (FH), where the absorber material in these layers is 6 mm thick uranium-niobium

alloy. The FH is followed by the outermost layer of the calorimeter, the Coarse

Hadronic Calorimeter (CH). The absorbers in the FH layers are 46.5 mm thick cop-

per plates in the CC and brass plates in the EC. The calorimeter cells in the FH

and CH have an angular size of 0.1 × 0.1 in η and φ, which is increased to 0.2 × 0.2

at high |η|.

ATLAS experiment

The ECAL consist of accordion-shaped electrodes and lead absorbers in the

barrel and endcap regions that give full coverage in φ without any cracks or gaps.

The barrel calorimeters cover the pseudorapidity region |η| < 1.475. Two wheels

are arranged at each endcap, in which an inner wheel covers 1.375 < |η| < 2.5 and
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an outer wheel covers 2.5 < |η| < 3.2. The barrel ECAL have a thickness between

22 X0 and 33 X0 whereas the endcap ECAL provide more than 24 X0 thickness of

material. The ECAL contain three active layers in the region |η| < 2.5 and two layers

extending the coverage to |η| ∼ 3.2, which are designed for precision measurements of

electrons and photons. The granularity of the three layers is different as presented in

Figure 3.8. The first layer is finely segmented such that it ensures the determination

of the photon position. The second layer has a granularity of η × φ = 0.025 × 0.025.

The photon cluster in the first and second layers of the ECAL can be used to

determine the η direction of photons. The region 1.37 < |η| < 1.56 gives a poor

momentum resolution due to additional interactions with cables in the transition

region between the barrel and endcap cryostats, thus is excluded in the diphoton

cross section measurement in Chapter 7.

Figure 3.8: A sketch of an ECAL module in the barrel illustrating granularity in η
and φ of the cells in each of the three layers [59].

Outside the ECAL sits the tile hadronic sampling calorimeter (TileCal), con-

structed in a central barrel of 5.8 m in length and two extended barrels of 2.6 m

in length, providing a pseudorapidity coverage of |η| < 1.7. Each of these barrels
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is comprised of 64 wedge-shaped modules, and each module is made up of alter-

nate layers of stainless steel as the absorbing material and scintillating tiles as the

sampling material. The energy of the charged particles produced by hadronic inter-

actions in the absorber is first absorbed by the scintillators, and then ionization of

scintillator produces scintillation light, which after having their wavelength shifted

by optical fibres are converted to electric signals in the photomultiplier tubes. The

TileCal cells have a size of ∆η × ∆φ = 0.1 × 0.1 in the first layer and 0.2 × 0.1

in the second layer. The hadronic end-cap calorimeters (HEC) use copper as the

absorber material and LAr as the sampling material, and cover the pseudorapidity

range of 1.5 < |η| < 3.5. The angular size of the cell varies with |η|, ranging from

0.1 × 0.1 to 0.2 × 0.2 at large |η| in the HEC. The final layer of HCAL is the forward

calorimeters (FCal), which covers the region 3.1 < |η| < 4.9. Each of the FCal is

composed of three modules: one module using copper rods as the absorber material

for electromagnetic measurements and two modules employing tungsten rods for

hadronic measurements. All three modules use LAr as the sampling material and

share the same cryostat systems as the other endcap calorimeters.

3.3.3 Muon detectors

Muons are the only ionizing particles that can penetrate the calorimeter system. The

muon system is the outermost component of the ATLAS and the D0 detectors, and

it consists of three major parts: toroidal magnets providing a non-uniform magnetic

field, muon chambers, which are used to measure tracks of outgoing muons with high

spatial resolution, and muon triggering chambers with excellent time resolution. The

toroidal magnets at the D0 experiment produce an approximate 1.8 T magnetic field

whereas at the ATLAS experiment the average field strength provided by the barrel

and the endcap toroids is 0.5 T and 1 T respectively. The toroidal magnets allow the

measurement of the muon momentum independent of the central tracking system

and bend the muons in the η direction. The muon hits in the η direction are typically

measured by drift tubes filled with a gas mixture, in which the passage of charged

particles through the tubes cause ionisation of the gas and the resultant charge can

be collected.

D0 experiment

The D0 muon system can be divided into two sections: the central (|η| < 1.0)

muon system made up of the Proportional Drift Tubes (PDTs) and scintillation

counters and the forward (1.0< |η| < 2.0) muon system which contains Mini Drift

Tubes (MDTs) and scintillation counters. The PDTs are filled with a gas mixture
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dominated by argon. The drift tubes and scintillation counters are arranged into

three layers, where the A layer sits inside the toroids and the B and C layers are

outside. For the central muon system, the PDTs are instrumented with cosmic cap

and cosmic bottom scintillation counters on the outer layer, as shown in Figure 3.9.

The bottom scintillation counters have reduced coverage to allow for the detector

support structures. The A layer PDTs are covered with Aφ scintillation counters.

These scintillation counters provide input for the trigger system. The trigger scin-

tillation counters are mounted on all three layers in the forward muon system. The

muon system in both the central and forward region is split into eight octants in

φ, which are poorly instrumented in the boundaries between neighbouring octants.

ATLAS experiment

The ATLAS Muon Spectrometer (MS) is composed of Monitored Drift Tubes

(MDTs) in both the barrel and endcap regions, complemented by the Cathode Strip

Chambers (CSCs) in the forward pseudorapidity region (2.0< |η| < 2.7). The MS is

divided into eight octants in φ, each of which is further split into two sections with

slightly different lateral extensions. Such a layout enables minimization of detector

gaps in φ. The trigger chambers, which are located next to the muon tracking

chambers, comprise of the Resistive Plate Chambers (RPCs) in the barrel region

and the Thin Gap Chambers (TCGs) in the endcap regions.
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Figure 3.9: An exploded isometric view of the muon wire (top) and scintillator
(bottom) systems [58].
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3.3.4 Trigger system

With the beam crossing frequency at the Tevatron and the LHC reaching 1.7 MHz

and 40 MHz separately, writing every event to the disk at this rate would not be

possible. Therefore it is important to decide in real time which event is the most

interesting one to keep. A three level-trigger system is employed by the D0 and

the ATLAS experiments to reduce the event rate to around 100 Hz and 200 Hz

respectively. The D0 analysis in the thesis relies on the muon trigger that requires the

presence of two muons with high transverse momenta whereas the ATLAS analysis

utilises the diphoton trigger that requires the presence of two loosely identified

photons with certain transverse energy thresholds.

Level-1 trigger

The level-1 trigger (LVL1) is hardware based, which performs the primary selection

of interesting events using the granularity information from a subset of detectors

within a short time.

D0 experiment

The LVL1 at the D0 experiment reduces the event rate to around 2 kHz. A

decision on whether the event is interesting enough is made within 4.2 µs. This is

achieved via the Level-1 Central Track Trigger (L1CTT), the Level-1 Calorimeter

Trigger (L1Cal) and the Level-1 Muon Trigger (L1Muon). The CTT takes input

from the CFT and preshower detectors to look for predefined patterns consistent

with the passage of a charged particle with transverse momentum above a specified

threshold. The L1Cal, consisting of EM and HAD trigger towers, places require-

ments on the transverse energy in individual towers to select calorimeter objects such

as electrons, photons, jets and hadronically decaying τ leptons. The L1Muon recon-

structs muon objects using information from wire and scintillator muon chambers

as well as inputs from the L1CTT.

ATLAS experiment

At the ATLAS experiment, the event rate is decreased to 75 kHz using the

LVL1. The decision to retain an event is made within 2.5 µs. The LVL1 performs

the event selection using a subset of the ATLAS detectors (e.g. calorimeters and

muon chambers), based on certain requirements of the signatures of physics objects

with a minimum transverse momentum. Further requirements can be made in terms

of the combinations of these signatures of physics objects. Once a physics object is

selected by the L1V1, a region of interest (RoI) around the object defined in η and
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φ is taken as input for further processing.

Level-2 trigger

The Level-2 trigger (LVL2) refines the object reconstruction obtained from the LVL1

and combines L1V1 objects of all sub-detectors to make a global decision.

D0 experiment

The LVL2 is both hardware and software based at the D0 experiment, which

has an accept rate of 1000 Hz that requires a decision time of 100 µs per event.

The silicon track trigger (STT) is included in the LVL2 trigger decisions on physics

objects. The Level-2 Muon Trigger (L2Muon) can classify muons into three qualities

of loose, medium, and tight according to the number of wire chamber and scintillator

hits in the muon system.

ATLAS experiment

Unlike the D0 LVL2, the LVL2 system at the ATLAS experiment is software-

based. The accept rate at LVL2 is around 3500 Hz with an average processing time of

40 ms. The LVL2 algorithms make use of all the available information within the RoI

to improve the reconstruction of physics objects. The Level-2 defines two operation

points (loose, tight) for photon identification qualities based on requirements on the

shower shape variables within the RoIs in the calorimeters.

Level-3 trigger

The Level-3 Trigger (LVL3) is the final tier of the trigger system, which utilises sim-

plified offline algorithms and the complete detector information with full granularity

to reconstruct the selected physics objects. At the D0 experiment, the event rate is

further reduced to 100 Hz with an average event size of 150 KB. The LVL3 system

at the ATLAS experiment, referred to as the Event Filter, records the events at a

rate of 200 Hz with an average event size of 1.5 MB.
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Chapter 4

The Reconstruction of physics

objects

4.1 Charged particle tracks

Charged particle tracks in the ID are reconstructed using the hit information from

the central tracking system. The track of a charged particle can be defined in terms

of the following parameters: its curvature (proportional to q/pT ), the dip angle1

(tanλ) made with a plane perpendicular to the magnetic field and coordinates of

the point of closest approach to the interaction point. The resolution of the curvature

can be written as:

σ(
q

pT
) = a⊕ b

pT
, (4.1)

where the constant term a is related to the intrinsic resolution of the detector2 and

b indicates effects arising from multiple Coulomb scattering. The tracks of charged

particles are used as input for the reconstruction of vertices for an event and the

primary vertex is usually chosen as the vertex with the largest sum of p2
T of all

tracks.

1The sum of the dip angle and θ is π/2.
2The intrinsic resolution of the detector is associated with the number of hits, the length of the

central tracking system, the magnetic field strength and the spatial resolution of individual hits.
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4.2 Muon reconstruction at the D0 experiment

4.2.1 Muon reconstruction

The reconstruction of muons uses a combination of information provided by the

central tracking system and the muon system. It starts with track segments in the

three layers of the muon system, which are combined to give a local muon. The

local muon can be then matched to the tracks in the central tracking system. An

alternative algorithm is to begin with a charged particle track in the ID and to

require its energy deposits in the calorimeter to be consistent with the passage of a

minimum ionizing particle.

4.2.2 Muon identification

At the D0 experiment, nseg represents the type of the local muon track. nseg ≥ 0

represents a local muon matched to the central track while nseg < 0 denotes a muon

without a match to the central track. Different types of muon track qualities are

associated with distinctive values of nseg defined as follows:

• nseg = 0 inner track that is matched to a muon like signature in the calorimeter,

or a few muon hits.

• nseg = 1 muon hits with A layer segment only.

• nseg = 2 muon hits with BC layer segments only.

• nseg = 3 muon hits throughout all three layer segments.

The local muon can be further categorized into loose, medium and tight according

to the number of scintillator and wire chamber hits as well as nseg.

The muons produced in the Drell-Yan process are required to be isolated to

discriminate against background processes such as semi-leptonic decay of heavy

flavour quarks and mesons. The relevant isolation variables used in the selection

of the muons are calorimeter isolation Ical and track isolation Itrk. Ical is defined

as

Ical =

∑
iE

i
T

pµT
, 0.1 < ∆R < 0.4, (4.2)

where Ei
T is the transverse energy of the calorimeter cell i excluding the muon itself

and ∆R =
√

(∆φ)2 + (∆η)2 is the separation between the calorimeter cell i and the

muon direction in η and φ. Itrk is defined as

Itrk =

∑
i p

i
T

pµT
, ∆R < 0.5, (4.3)
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where piT is the transverse momentum of track i excluding the muon itself.

4.3 Photon reconstruction at the ATLAS experi-

ment

4.3.1 Photon reconstruction

Photons and electrons are reconstructed from clusters of energy deposits in the

ECAL. In order to reconstruct clusters, the ECAL can be split into a grid of Nφ × Nη

towers, each of which has an angular size of 0.025 × 0.025 in η and φ. The recon-

struction of clusters is performed using a sliding window algorithm with a fixed

window size that corresponds to 3 × 5 towers in η and φ respectively. A pre-cluster

is formed if the sum of the transverse energy within the 3 × 5 window is above

2.5 GeV, which together with the tracking information provided by the ID gives the

final EM cluster. A seed EM cluster matched to at least one well-reconstructed ID

track is identified as an electron, otherwise it is considered as a photon. Both con-

verted and unconverted photons are retained in the analysis. A converted photon

refers to a seed EM cluster matched with one or two ID tracks that originate from

a conversion vertex. An unconverted photon is defined as a seed EM cluster with

no matched ID tracks.

The electron cluster is subsequently rebuilt with 3 × 7 towers in the barrel region

and 5 × 5 towers in the endcap region. For photon clusters in the barrel region, a

3 × 7 cluster size is associated with converted photons and a 3 × 5 cluster size is

used for unconverted photons. As for the endcap region, EM clusters for converted

and unconverted photons are reconstructed with 5 × 5 towers. The total energy

of reconstructed electrons or photons is determined by the EM cluster energy, the

energy deposited in the dead material in front of the ECAL and the energy leakage

outside the cluster window and beyond the calorimeter.

The energy resolution of a sampling calorimeter can be approximated by

σE
E

= C ⊕ B√
E
⊕ A

E
, (4.4)

where ⊕ corresponds to addition in quadrature and the three terms are dependent

on η. The constant term, C (∼ 0.7%), arises due to residual non-uniformities (e.g.

dead material) in the energy response of the sampling calorimeter. B represents the

sampling term, which takes account of the statistical fluctuations of the observed

number of particles that produce the calorimeter signal used in the energy measure-
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ment. B is around 10% at low |η| but becomes large in the forward |η| region due

to the presence of additional material. A is the noise term to take into account of

the electronic noise in the detector, which is around 0.35 GeV for η ∼ 0. For low-

energy EM clusters the energy resolution is determined by the noise term whereas

the constant term dominates at high energies.

The energy response of electrons and photons is calibrated using a set of tech-

niques described in [61]. A MC-based calibration associates the observed properties

of EM clusters with the true electron or photon energy based on a Multi-Variate

Analysis (MVA) [62]. It requires a reliable description of the detector geometry as

well as interactions between particles and detector materials in the MC simulation.

Prior to the MC-based calibration, corrections are determined and applied to take

into account differences in energy response between data and simulation for specific

regions of the detector [63]. The MC-based calibration is then applied to the recon-

structed EM clusters from both the collision data and the MC, and afterwards the

residual non-uniformities in energy response are corrected in data. The final step of

the calibration procedure involves the absolute energy scale determination, which

is achieved by comparison of the invariant mass distribution in Z → e+e− events

between data and MC.

4.3.2 Photon identification

Two sets of identification criteria with increasing discrimination power against hadronic

background, Loose and Tight (T), are developed based on the energy leakage

into the HCAL and longitudinal and transverse shower profiles in the ECAL. The

Loose requirement mainly uses the information in the middle layer of ECAL and

the hadronic leakage into the HCAL. The Tight selection consists of nine discrim-

inating variables defined as follows:

• Hadronic leakage:

– Rhad: the ratio of ET in the first layer of the hadronic calorimeter to the

ET of the EM cluster. In the pseudorapidity range 0.8 < |η| < 1.37,

which is not covered by the first hadronic layer, the total hadronic ET to

the EM ET ratio is used.

• The middle layer of ECAL:

– Rη: the ratio of the energy in 3× 7 cells to that in 7× 7 cells.

– w2: the lateral width of the shower calculated in a window of 3× 5 cells

using the energy weighted sum over all cells.
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– Rφ: the ratio of the energy deposit in 3 × 3 cells to the one included in

3× 7 cells.

• The first layer of ECAL (“strips”):

– ws 3: the shower width for three strips around the strip with the highest

energy deposited, using the energy weighted sum over the total energy

contained in the three strips.

– ws tot: the total lateral shower width determined with the energy weighted

sum over cells in a window corresponding to the cluster size.

– Fside: the ratio of energy outside a core of 3 central strip cells, but within

7 strip cells, to the energy in the core of 3 central strip cells.

– ∆E: the difference between the energy of the strip with the second largest

energy deposited and the energy of the strip with the smallest energy

deposited between the two leading strip cells.

– Eratio: the ratio of the energy difference between the largest and second

largest energy deposit to the sum over these two.

The selection criteria on the shower-shape variables are developed in seven pseu-

dorapidity bins to account for variations in the distribution of the material before

the ECAL and in the calorimeter geometry. These are optimised separately for

unconverted and converted photons to take into account the different evolutions of

showers between them.

The hadronic background is further reduced by requirements on the following iso-

lation variables. In addition, these isolation requirements suppress the contributions

from fragmentation photons.

Calorimeter isolation

The topological calorimeter isolation energy Eiso
T [64] is determined by summing over

the transverse energy of uncalibrated positive-energy topological clusters within a

cone of ∆R < 0.4 around the candidate photon. The photon energy within a

window size of 5 × 7 towers is excluded from the calculation of Eiso
T . The topological

clustering algorithm serves as a noise suppression algorithm, which keeps only those

cells with a considerable energy deposit and their neighbouring cells. A detailed

description of the topological cluster algorithm is given in [65].

When the photon energy within a window size of 5 × 7 towers is excluded to

calculate the calorimeter isolation energy, an amount of the photon energy, which
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increases with Eγ
T, leaks outside the window. A leakage correction evaluated using

the single photon MC is therefore applied to the calorimeter isolation energy. The

calorimeter isolation energy is also corrected per event for the energy deposits from

the underlying event and pile-up using the techniques developed in [66,67].

Track isolation

The track isolation is defined as the scalar sum of the pT of the tracks with pT

> 1 GeV within a cone of ∆R < 0.2 around the photon candidate. Only tracks

consistent with originating from the diphoton vertex are used and the conversion

tracks associated with a converted photon are subtracted.
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Chapter 5

Drell-Yan φ∗η distribution

measurement with the D0 detector

In this chapter, measurements of the shape of the φ∗η distribution, (1/σ)(dσ/dφ∗η), in

bins of dimuon invariant mass M`` and boson rapidity |y|, are presented. An outline

of the measurement is described as follows:

• Measure the normalised distribution of φ∗η in four dimuon invariant mass re-

gions: 30 < M`` < 60 GeV, 70 < M`` < 110 GeV, 130 < M`` < 300 GeV and

300 < M`` < 500 GeV, where the 30 < M`` < 60 GeV region is referred to as

the low-mass region and the 70 < M`` < 110 GeV region as the peak region

and the remaining as the high-mass region. These are the first measurements

of the φ∗η distribution away from the Z-mass peak region.

• For the low-mass and the peak region, the measurement is made in two dimuon

rapidity bins: |y| < 1 and 1 < |y| < 2. The high-mass region measurement

is performed only in the inclusive rapidity region due to a lack of statistics.

This chapter mainly focuses on the low-mass and the updated peak region

measurement that I have performed.

• After the background subtraction, data are corrected back to the same kine-

matic measurement region at the particle level after final state radiation (FSR).

• The corrected data distributions of φ∗η are compared to two NNLL+NLO pre-

dictions including resummation of multiple soft gluons, one from ResBos

with the QED radiative corrections from PHOTOS [68] and the other using

resummation at NNLL accuracy and the NLO calculation from MCFM [34,35].

• The updated peak region measurements of the normalised φ∗η distributions

using the complete D0 data in the dimuon channel are also compared to the
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previously published D0 measurements [25] using both dielectron and dimuon

channels detailed in Section 2.6.2.

As already mentioned in Section 2.6.2, φ∗η is highly correlated with aT/M``.

The width of the pllT distribution is directly proportional to the logarithm of M``

due to the harder radiations from the initial partons required to produce heavier

dilepton states [18]. Thus the width of φ∗η decreases with increasing M`` and these

measurements of φ∗η in various dimuon mass regions can be used to validate this

particular feature of the predictions. In addition, measuring the φ∗η shape in various

mass and rapidity regions allows the x dependence of the non-perturbative functions

implemented in ResBos to be tested. Particularly, higher order EW corrections and

QCD corrections might become important at large values of φ∗η in the dimuon mass

region away from the Z-mass peak. The low-mass region measurements are sensitive

to the small-x effects. A significant systematic uncertainty in high-mass final states

such as in the tt̄ system arises due to modelling of initial state gluon radiations. A

measurement of φ∗η distributions in the high-mass region can be used to verify the

modeling of gluon radiations in event generators.

There are two main motivations of measuring the shape of φ∗η distributions rather

than absolute differential cross-section measurements. Firstly, the overall scale un-

certainties are cancelled because they are fully correlated between bins of dσ/dφ∗η

and total cross-section σ. For instance, the luminosity systematic uncertainty is can-

celled when performing the shape measurement of φ∗η distributions. Secondly, most

of the information, which can be used to tune the free parameters in non-perturbative

formulations or parton showers, remains in the normalised φ∗η distribution.

The data are corrected to the particle level muon after FSR, known as a “bare”

muon, to mimic the muon track reconstruction in the detector. Apart from the

requirement on the invariant mass and dimuon rapidity, the following common kine-

matic requirements are applied at the particle level: pT > 15 GeV and |η| < 2. In

the low-mass region, the requirement on pT of one of the muons is lowered to 10 GeV

and the maximum allowed transverse energy of any radiated photon Eγ
T is 14 GeV.

The particle level electron in the previously published D0 φ∗η analysis is defined

as the four-vector sum of the EM particles, i.e., photons and electrons, within a cone

of ∆R < 0.2. This is referred to as the “dressed” electrons to mimic the way in which

electrons are reconstructed in the D0 detector. The kinematic requirements in the

previously published dielectron channel are 70 < M`` < 110 GeV, pT > 20 GeV and

|η| < 3 excluding the crack region 1.1< |η| < 1.5. Besides, the measurement was

performed in three rapidity bins with an additional rapidity bin |y| > 2. In addition

to the “bare” and “dressed” particle level definitions, the “Born” level refers to
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leptons before any QED radiation.

5.1 Event selection

5.1.1 Data samples

The analysis includes data recorded throughout the complete Run II period. Events

with their corresponding data-taking periods flagged as bad by the D0 data quality

group are kept to maximise our event yields because the measurement is effectively

a shape measurement, which is essentially insensitive to the operational problems

that can change the absolute efficiency. Events firing calorimeter noise flags are

removed. After these requirements, the data used in this analysis correspond to an

integrated luminosity of 10.4 fb−1.

5.1.2 Common selection criteria

Events must have at least one nseg = 3 muon with scintillator and wire chamber

hits in the A/BC layers (nseg is defined in Section 4.2.2), which must pass the single

muon trigger object at all three levels. The two muon tracks must originate from

the same primary vertex and pass loose selection criteria on χ2/dof. Cosmic ray

muons are rejected by requiring that the muon candidates are produced from the

interaction point using information based on time-of-flight and impact parameters,

and are further excluded by the requirement |η0 + η1| < 0.021. The two muon

candidates must be oppositely charged and meet the requirement that |ηdet| < 22.

5.1.2.1 Peak region selection

For the 70 < M`` < 110 GeV region, both muon candidates are required to be of

nseg ≥ 0 quality with a central track of pT > 15 GeV. Events must contain at most

two of the four isolation variables (Ical and Itrk described in Section 4.2.2) greater

than 0.09 to reject misidentified muons originating from the multijets background.

5.1.2.2 Low-mass region selection

For the low-mass region, 30 <M`` < 60 GeV, events must contain one muon matched

to a central track with pT > 10 GeV and the other muon with pT > 15 GeV. Each

1muon “0” and “1” superscripts are used to distinguish the two muon candidates.
2At the D0 experiment, the detector pseudorapidity, ηdet, is defined by a line connecting the

centre of the detector to the particle tracks in a particular sub-detector.
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muon track must have at least one SMT and one CFT hit and both muon tracks

are required to have χ2/dof< 4.

Events are further classified according to nseg quality of each muon and we use

lepnseg(X,Y ) to denote an event category containing a muon with n0
seg = X and the

other muon with n1
seg = Y (X, Y = 0, 1, 2, 3). The two muon candidates are ordered

such that p0
T > p1

T in all categories apart from the lepnseg(3,0) category, in which

n0
seg > n1

seg. The selected events can be split into five categories based on the nseg

variable of the two muons and wire chamber hits:

• lepnseg(3,0) with wire chamber hits: n0
seg=3, n1

seg=0

• lepnseg(3,0) without wire chamber hits: n0
seg=3, n1

seg=0

• lepnseg(3,1)(3,2): n0
seg=3, n1

seg=1 or 2

• lepnseg(1,3)(2,3): n0
seg=1 or 2, n1

seg=3

• lepnseg(3,3): n0
seg=3, n1

seg=3

Note that the wire chamber hits in the lepnseg(3,0) category refers specifically to the

nseg = 0 muon. Furthermore, the poor-quality muon in the lepnseg(3,0) category

without wire chamber hits must be in the bottom hole region (4.2 < φ < 5.1

and |ηdet| < 1.1) in the detector where the muon coverage is compromised by the

support structures for the experiment. This classification of events were designed for

the optimisation of selection criteria. A set of selection requirements were developed

specifically for the low-mass region, as described in Section 5.4.1.

5.2 Signal and background estimation

MC simulations are employed to estimate the signal and background contributions

in the data sample. The signal Z/γ∗ → µ+µ− MC in this analysis is generated using

PYTHIA [69] at LL+LO accuracy. For cases in which simulations give unreliable

predictions (QCD background), data-driven methods are used. MC predictions

for both signal and background are first normalised relative to each other and then

normalised to data after the multijet (QCD) background subtraction in the analysis.

Figure 5.1 displays the legend used to separate different contributions in the

data-MC comparison plots in the peak region and Figure 5.2 shows the legend in

the low-mass region.
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5.2.1 Peak region backgrounds

The total number of the selected events is 645k, and the background contamination

is almost negligible (∼0.16% mainly from multijet background) around the Z-mass

peak region.

• Z/γ∗ → τ+τ− and WW background

PYTHIA [69] is used to generate the electroweak background including Z/γ∗ →
τ+τ− and WW → µνµν.

• tt̄ backgrounds

For the tt̄ events, ALPGEN [70] is used to generate the hard process with

parton shower and hadronisation simulated by PYTHIA [69].

• Multijets background

Muonic decays of hadrons in multijet events can mimic the signal events. A

data-driven method is used to estimate this background. The multijets sample

is obtained by inverting the requirement on isolation variables with at most

two isolation variables greater than 0.09 and dropping requirement on the

lepton charge.

Data
Signal

WW
­

τ
+

τ →Z

 tt
Multijets

Figure 5.1: Legend for data versus MC comparisons in the peak region.

5.2.2 Low-mass region backgrounds

After the full event selection, a total of 74k events are retained. Backgrounds from

mismeasurement and other physics processes in the low-mass region are as follows:

• QCD background

Decay products of hadrons in QCD multi-jet events can be misidentified as

dimuon signals. Since the opposite sign (OS) events are expected to be bal-

anced by the same sign (SS) events to the first order approximation, the QCD
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background can be evaluated by a data-driven method. A procedure to esti-

mate QCD background is described in Section 5.6.

• Migration background

The “migration” background originates from two sources: mismeasurement in

the transverse momentum and FSR. For the purpose of justifying the event se-

lection cuts we refer to the migration background in this analysis as events with

dimuon invariant mass at generator level in MC satisfying MGen
Z < 30 GeV or

MGen
Z > 70 GeV, where MGen

Z refers to the invariant mass at the Born level.

• Z/γ∗→ τ+τ− background

Z/γ∗ → τ+τ− is the dominant background in the low mass dimuon sample

and its contribution is around 5%.

• W+ jet background

The misidentification of muons in jets in W+ jet events can fake the dimuon

signature. The W+ jet background is simulated by Pythia [69]. The contri-

bution is around 0.4%, which is small relative to the other backgrounds in the

low-mass region.

Data

 Signal­
µ+µDrell Yan 

W+jet

 Migration­
µ

+
µ →*γZ / 

 MC­
τ

+
τ →*γZ / 

QCD

Figure 5.2: Legend for comparison between data and MC in the low-mass region.

5.3 Corrections to the Monte Carlo events

5.3.1 Generator level reweighting

Events are reweighted at the particle level to the predictions of ResBos [24, 31]

in the boson transverse momentum pZT and boson rapidity |y|. A NLO → NNLO
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K-factor3 is implemented in the grid4 files to generate the ResBos events for the Z

boson exchange. Figure 5.3 shows the ratio of normalised ResBos distributions to

PYTHIA in two dimensions (pZT and |y|).
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Figure 5.3: Ratio of the normalised distribution of ResBos to that of PYTHIA in
pZT and |y| at generator level.

5.3.2 Track smearing

The track φ and η resolutions in data are found to be worse than in simulations.

Gaussian smearing parameters in φ and η are evaluated in terms of SMT hits by

comparing the resolutions estimated using cosmic ray muon data to the resolutions

in the simulation. Gaussian smearing parameters for z and the distance of closest

approach to the tracks in the transverse plane with respect to the beam centroid rdca

in terms of SMT hits are adjusted by eye because the cut on these two variables is

loose, and these corrections are applied to simulations to provide a better description

of data. In order to perform the measurement of tracking efficiency in the simulation,

a Gaussian smearing in the local muon transverse momentum 1/plocalT and a scaling

factor are applied to all local muons. A more complete description is given in [71].

5.3.3 Efficiency corrections

The tag and probe method

A “tag and probe” method is used to measure the muon trigger, identification and

tracking efficiencies in data. The principle of the method is illustrated by the mea-

3The K factor is the ratio of NNLO to NLO cross section, which is particularly important at
the large boson transverse momentum region arising from harder initial radiations.

4 The grid refers to a phase space consisting of the boson invariant mass, boson transverse
momentum and boson rapidity.
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surement of the trigger efficiency. The process starts by the selection of a sample

of Z/γ∗ → µ+µ− events, and each event is required to pass the single muon trigger

at all three levels. The dimuon invariant mass is required to be close to the Z-mass

region to ensure the sample is predominantly composed of genuine dimuon events.

Each of the two muons can act as a “tag” and a “probe”. One of the muons must

be matched to the trigger at all three levels, referred to as the “tag” muon. The

other muon, known as the “probe” muon, is used to calculate the trigger efficiency

by counting the fraction of events with the probe matched to the trigger at all three

levels. The trigger efficiency is usually calculated in terms of pT and η, which is

applied to MC on an event-by-event basis.

The muon identification and tracking efficiency can also be measured from MC

such that data-MC correction factors can be evaluated. The tag and probe method

is likely to suffer from biases. For instance, when the tag muon is required to

be matched to an inner detector track, the “tag and probe” sample selected is

more likely to be originated from data-taking periods with higher tracking efficiency.

Potential bias on the selection of the tag is partially cancelled when estimating the

data-MC efficiency correction factors.

The trigger efficiency, tracking efficiency and muon reconstruction efficiency are

measured in the full 10.4 fb−1 data set using the same tag and probe sample defi-

nitions employed in the previously published analysis [25] and a complete record of

the selection criteria is documented in [71].

Figures 5.4–5.5 present the invariant mass distribution of the tag and probe

samples between data and dimuon simulation samples for the measurement of the

tracking efficiency and the muon reconstruction efficiency. An extended invariant

mass range between 65 GeV and 115 GeV is shown whereas the requirement is

70 < Mll < 110 GeV. The disagreement between data and MC at the relatively low

and high mass regions in Figures 5.4–5.5 arises due to the presence of background

and the resolution difference of the invariant mass line shape between data and MC.

• Single muon “OR” Trigger

Figure 5.6 shows the efficiency for the offline muons to fire any of the single

muon triggers for nseg = 3 muons.

• Central track reconstruction

The tracking efficiency for muons is shown in Figure 5.7 in terms of ηdet, φ, plocalT

and zdca
5. Figure 5.8 illustrates the data/MC scale factors in two dimensions.

5zdca is the z position of distance of closest approach to the tracks in the transverse plane with
respect to the beam centroid.
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The tracking efficiency in MC is corrected in ηdet, φ and zdca. The scale factor

is set to be 0.95 in regions where it cannot be determined due to insufficient

numbers of probe muons. This scale factor (0.95) is roughly the tracking

efficiency in the surrounding regions, where we have observed no significant

variations of the electron tracking efficiency in the region of |η| < 1.1 and

4.2 < φ < 5.1 [71].

• Local muon reconstruction efficiency

Figures 5.9, 5.10 and 5.11 show the relevant reconstruction efficiency for nseg =

X (X = 0, 1, 2, 3) muons and wire chamber hits determined with respect

to isolated track muon candidates. nseg = 1 and nseg = 2 muons are not

distinguished in terms of the muon reconstruction efficiency measurement.

The corrections to MC for muon reconstruction efficiency are applied in bins of

ηdet and φ, as presented in Figure 5.12. The muon wire chamber hits efficiency

corrections are not applied to MC in the peak region analysis, but have been

used in the low-mass region analysis.
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Figure 5.4: Comparison of invariant mass distribution of the tag and probe muons for
events that pass or fail the requirement in the tracking efficiency measurement and
nseg = 0 muon reconstruction efficiency between data and MC. The red histograms
represent the Z/γ∗ → µ+µ− MC prediction and the data are indicated by black
points with error bars. Also shown in the plot title are the total number of events
in the tag and probe sample, the χ2 per degree of freedom determined from the
Mll distribution between data and dimuon MC predictions and the corresponding p
value.
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Figure 5.5: Comparison of invariant mass distribution of the tag and probe muons
for events that pass or fail the requirement in the muon reconstruction efficiency
measurement between data and MC. The red histograms represent the Z/γ∗ →
µ+µ− MC prediction and the data are indicated by black points with error bars.
Also shown in the plot title are the total number of events in the tag and probe
sample, the χ2 per degree of freedom determined from the Mll distribution between
data and dimuon MC predictions and the corresponding p value.
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Figure 5.6: Trigger efficiency for nseg = 3 muons determined from data in terms
of φ , ηdet and in 2D. The white space in the plot represents the bottom hole
region (4.2 < φ < 5.1 and |ηdet| < 1.1) in the detector where the muon coverage is
compromised by the support structures for the experiment. The trigger efficiency in
φ around the eight octant gap regions is much lower than the surrounding regions
because the octant gap regions are poorly instrumented.
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Figure 5.7: Muon central track reconstruction efficiency (left) and data/MC scale
factor (right) as a function of plocalT , ηdet, φ

lept and z. The red points represent the
MC prediction and the data are indicated by black points with error bars.
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Figure 5.8: Data/MC scale factors in 2D projections of ηdet, φ and z for the tracking
efficiency measurement.
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Figure 5.9: Muon identification reconstruction efficiency (left) and data/MC scale
factors (right) for nseg ≥ 0 and nseg ≥ 1 muons determined with respect to the
isolated track muon candidates. The red points with error bars represent the MC
prediction and the data are indicated by black points with error bars.
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Figure 5.10: Muon reconstruction efficiency (left) and data/MC scale factors (right)
as a function of φ and ηdet for nseg = 0 muons and wire chamber hits with respect
to nseg ≥ 0 muons. The red points with error bars represent the MC prediction and
the data are indicated by black points with error bars. In Figure (e), the scale factor
has a rather large statistical uncertainty for regions outside the bottom hole region
(|η| < 1.1 and 4.2 < φ < 5.1) because of a lack of probe muons in these regions.
However, only 3% of the total selected events are from lepnseg(3,0) category so such
has a negligible effect on the φ∗η shape combining all the lepnseg categories.
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Figure 5.11: Muon reconstruction efficiency (left) and data/MC scale factor (right)
as a function of φ and ηdet for nseg = 3, nseg = 1 and nseg = 2 muons with respect
to nseg ≥ 1 muons. The red points with error bars represent the MC prediction and
the data are indicated by black points with error bars.
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(c) nseg = 3 muon w.r.t.nseg≥ 1 muon
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(d) nseg < 3 muon w.r.t. nseg≥ 1 muon
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(e) nseg = 0 muon w.r.t. nseg≥ 0 muon
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(f) wire chamber hits w.r.t. nseg≥ 0 muon

Figure 5.12: Data/MC scale factors for muon identification efficiency corrections in
two dimensions of φ and ηdet. “w.r.t.” stands for “with respect to”. The scatter in
Figure (e) arises from a lack of probe muons in these regions, but it is not important
as lepnseg (3,0) without wire chamber hits are a small data sample and required to
be in the bottom hole region (4.2 < φ < 5.1 and |ηdet| < 1.1).
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5.3.4 Ad hoc corrections

The following ad hoc scale factors have been applied to the tracking efficiency in the

MC in order to improve agreement with data in the ηdet or φmod distribution. As

there are 8 octant gap regions in the muon chamber, the variable φmod is defined as

φmod = |mod(8φ/2π, 1) − 0.5|, where the region φmod > 0.45 represents the octant

gap region, which is poorly instrumented between boundaries. These scale factors

were adjusted by eye and their associated systematic uncertainties are evaluated by

switching off the ad hoc scale factors and symmetrised, as described in Section 5.9.

• Scale by a factor of 1.08 for 1.1 < |ηdet| < 1.5

• Scale by a factor of 0.96 for |ηdet| < 0.5

• Scale by a factor of 1.04 for φmod > 0.475 (only for 30 < Mµµ < 60 GeV

region)

5.3.5 Further trigger efficiency corrections in the low-mass

region

In the on-peak φ∗η analysis the trigger efficiency is evaluated as a function of η and

φ (but not pT ) using events in which both muons satisfy pT > 15 GeV. In the

low mass φ∗η analysis a large fraction of muons have pT in the region of 15 GeV,

in which the trigger efficiency shows a strong variation with pT . In addition, for

the low mass analysis we have loosened the cut on the pT of the second muon to

be p1
T >10 GeV. Therefore, a careful treatment of the efficiency dependence on

pT should be considered in the low mass analysis. In order to get the additional

data/MC scale factors to correct the trigger efficiency dependence on pT in the

low mass region, a tag and probe method was used in the peak region in both

data and MC but with the cut on the pT of the second muon to be p1
T >10 GeV.

The motivation for performing the study in the peak region is that it is of low

background and of high statistics. The trigger efficiency evaluated as a function of

η and φ using the tag and probe method in the peak region, in which both muons

satisfy pT > 15 GeV, is used as MC input. The additional scale factor is the ratio

of the data trigger efficiency to the MC trigger efficiency in bins of pT . As shown

in Figure 5.13a, the resulting MC overestimates the trigger efficiency at low pT . An

error function with ε(pT ) = 0.9813× erf(1.0 + (pT − 13.89)/5.989
√

2) is applied to

the nseg = 3 muon with pT < 30 GeV as shown in Figure 5.13b.
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Figure 5.13: Trigger efficiency (left) and its scale factor (right) as a function of pT
in lepnseg(3,3) category in the peak region. The efficiency corrections from the peak
region analysis are used as input in the tag and probe method in MC in the peak
region (70 < Mµµ < 110 GeV).

5.3.6 Data versus MC comparison with all corrections im-

plemented in the low-mass region

φmod, pT and ηdet distributions are presented in Figure 5.14 and Figure 5.15 with all

corrections applied. A significant improvement has been observed for pT distribution

and ηdet distribution after applying the additional corrections. The φ∗η distribution

can be distorted by φmod dependence on the efficiency corrections and so it is im-

portant that the φmod distribution is well described. The disagreement in the ηdet

distribution gives additional systematic uncertainty evaluated in Section 5.9.

73



0

mod
φ

0 0.1 0.2 0.3 0.4 0.5

d
N
/d
X

1

10

210

310

410

510

=38.2/192χ

0

mod
φ

0 0.1 0.2 0.3 0.4 0.5

(D
a
ta
­M

C
)/
D
a
ta

­0.2
­0.15
­0.1

­0.05
0

0.05
0.1

0.15
0.2

(a)

1

mod
φ

0 0.1 0.2 0.3 0.4 0.5

d
N
/d
X

1

10

210

310

410

510

=26.1/192χ

1

mod
φ

0 0.1 0.2 0.3 0.4 0.5

(D
a
ta
­M

C
)/
D
a
ta

­0.2
­0.15
­0.1

­0.05
0

0.05
0.1

0.15
0.2

(b)

(GeV)0

T
p

10 20 30 40 50 60

d
N
/d
X

1

10

210

310

410

=17.8/172χ

(GeV)0

T
p

10 20 30 40 50 60

(D
a
ta
­M

C
)/
D
a
ta

­0.4
­0.3
­0.2
­0.1

0
0.1
0.2
0.3
0.4

(c)

(GeV)1

T
p

10 20 30 40 50 60

d
N
/d
X

1

10

210

310

410

=22.6/192χ

(GeV)1

T
p

10 20 30 40 50 60

(D
a
ta
­M

C
)/
D
a
ta

­0.4
­0.3
­0.2
­0.1

0
0.1
0.2
0.3
0.4

(d)

Figure 5.14: φmod (top) and pT (bottom) distribution for muon 0 (left) and muon
1 (right) with all efficiency corrections applied in the 30 < Mµµ < 60 region. χ2

per degree of freedom calculated using all bins of the spectrum between data and
simululations is also presented.
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Figure 5.15: Distribution of ηdet for muon 0 (left) and muon 1 (right) with all
efficiency corrections applied in the 30 < Mµµ < 60 region. χ2 per degree of freedom
calculated using all bins of the spectrum between data and simululations is also
presented.

5.4 Optimisation of event selection

5.4.1 Justification of new selection requirements in the low-

mass region

The justification of the new selection cut on each variable is performed with cuts

on all the other variables applied. In each figure in this section, the cut indicated

by the dashed line in the relevant cut variable distribution corresponds to the signal

efficiency and background efficiency indicated by an arrow in the corresponding

efficiency curve. In this section only the lepnseg(3,3) category is presented, as it is

the category with the largest statistics. The cut is chosen such that a large fraction

of genuine dimuon signal is retained whilst rejecting a large amount of background,

i.e., the background efficiency is minimised and the signal efficiency is maximised.

5.4.1.1 Isolation requirements

The selection requirement on the isolation quantities Ical[i] and Itrk[i] (i = 0, 1)

can reject a significant amount of the QCD background. The probability for an

event to originate from the QCD background increases with the isolation quantity.

These four isolation quantities are arranged in a descending order and recorded by
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an array IOD[j] (j = 0, 1, 2, 3). The selection requirement is placed on the largest

isolation quantity IOD[0], which was found to provide the best discriminant against

the QCD background (See Figure 5.16).
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in the lepnseg(3,3) category.
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ciency curve for a cut on the largest isolation
quantity.

Figure 5.16: Justification of the largest isolation quantity cut in the lepnseg(3,3)
category in the low-mass region.

5.4.1.2 Pseudo-mass requirements

Events from the Z peak can be misreconstructed to lie in the low mass region due

either to mismeasurement of pT or FSR. This migration background may lead to

an underestimate of the transverse momentum of the lower pT muon and can be

suppressed using a modified mass quantity called pseudo-mass. The pseudo-mass

mass quantity is calculated in which the magnitude of the transverse momentum of

the two leptons are equal, with p1
T increased to be equal to p0

T , the larger of the two

lepton transverse momenta. The pseudo-mass Mpseudo is defined as

Mpseudo =
√

2× p0
T × p0

T × (cosh(η1 − η2)− cos(φ1 − φ2)).

The cut is extremely powerful in rejecting migration background, as is apparent in

Figure 5.17.
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Figure 5.17: Justification of the pseudo-mass cut in the lepnseg(3,3) category in the
low-mass region.

5.4.1.3 Calorimeter energy requirements

The electromagnetic energy and hadronic energy are measured in the ECAL and the

HCAL respectively within a narrow cone of ∆R < 0.1 around the muon. There are

four calorimeter energy quantities in total, which are sorted in a descending order

and stored in EH[j] (j = 0, 1, 2, 3). The selection criteria are imposed on the the

largest calorimeter energy EH[0]. The distribution of EH[0] and the corresponding

efficiency curves are shown in Figure 5.18.
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Figure 5.18: Justification of the largest calorimeter energy quantity cut in the lep-
nseg(3,3) category in the low-mass region.

5.4.1.4 Particle Identification Number (PID) requirements

The subset of dimuon events containing a third potential lepton candidate is exam-

ined. The identification number for the third lepton, represented by lepid[2], is the

absolute value of the flavour of the highest additional lepton candidate. Figure 5.19

shows the distribution of lepid[2]. The value lepid[2] = 11 represents an electron-like

object in the calorimeter without requiring a matched track in the central tracker.

As can be seen in Figure 5.19, the bin lepid[2] = 11 is dominated by migration

background. Figure 5.19b shows the generator-level particle identification informa-

tion for these electron candidates, in which lepid[2] at generator level (denoted by

lepgenid[2]) equal to 22 specifically refers to photons [4]. This supports the idea that

these electron candidates arise from photons (or conversion electrons) from FSR.
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Figure 5.19: Justification of the PID cut in the lepnseg(3,3) category in the low-mass
region.

5.4.2 Summary of cuts in the low-mass region

Table 5.1 illustrates the composition of the data sample passing all the selection

requirements in the low-mass region and Table 5.2 summarises the selection cuts

and the corresponding signal and background efficiency of each cut. Figure 5.20

shows the distribution of dimuon invariant mass (Mµµ) distribution with all cuts

applied except that on the value of Mµµ < 60 GeV. This is presented in order to

check whether the pseudo-mass cuts have distorted the MC description of the data

shape.

Category Entries QCD W + jet Migration Z/γ∗ → τ+τ− Background Signal
All new cuts applied

(3,0) with wire hits 1122 0.004 0.012 0.016 0.105 0.136 0.864
(3,0) without wire hits 1012 0.009 0.009 0.014 0.068 0.100 0.900

(3,1)(3,2) 5939 0.019 0.018 0.014 0.079 0.130 0.870
(1,3)(2,3) 5328 0.021 0.003 0.012 0.080 0.116 0.884

(3,3) 60536 0.012 0.002 0.013 0.045 0.072 0.928
Total 73937 0.013 0.003 0.013 0.052 0.081 0.919

Table 5.1: Composition of the signal region for each category in the low-mass region.
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Figure 5.20: Distribution of dimuon invariant mass with all cuts applied except that
on the value of Mµµ < 60 GeV.

5.4.3 List of changes compared to the previously published

results in the peak region

There are a few changes in both the event selection cuts and the strategy of efficiency

corrections in comparison to the previously published results:

• Selection cuts

The isolation cuts and the cuts on cosmics are tighter and more optimized in

order to obtain an event sample of low background. The background fraction

after using the latest selection cuts is around 0.16%.

• Weight-based efficiency corrections

The event selection requires at least one nseg = 3 muon. The weight-based

corrections of muon reconstruction efficiency that took this selection require-

ment into account in the previously published analysis were slightly incorrect

for events with two nseg = 3 muons in MC. A better approach is to apply the

muon reconstruction efficiency according to the nseg variable of each muon.

As a result, the agreement between data and MC in the φmod distribution is

improved. This is important since the φ∗η distribution can be distorted by the

φmod dependence of the efficiency corrections.
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Category
(with Number of Events) Selection Cuts Signal eff. Background eff.

IOD[0] < 0.22 0.958 0.851
calisol[1] < 0.07 0.794 0.524

(3,0) with wire chamber hits EH[0] <3 GeV 0.994 0.892
Mpseudo< 75 GeV 0.977 0.738

lepid[2] 6= 11 0.997 0.929
IOD[0] < 0.14 0.929 0.742

calisol[1] < 0.04 0.836 0.449
(3,0) without wire chamber hits EH[0] <3 GeV 0.990 0.942

Mpseudo< 75 GeV 0.979 0.716
lepid[2] 6= 11 0.997 0.874
IOD[0] < 0.2 0.937 0.478

(3,1)(3,2) EH[0] < 3 GeV 0.993 0.908
Mpseudo< 75 GeV 0.977 0.702

lepid[2] 6= 11 0.997 0.922
IOD[0] < 0.2 0.936 0.476

(1,3)(2,3) EH[0] < 3 GeV 0.993 0.864
Mpseudo < 75 GeV 0.978 0.734

lepid[2] 6= 11 0.997 0.911
IOD[0]<0.26 0.972 0.702

(3,3) EH[0] <6 GeV 0.998 0.962
Mpseudo<75 GeV 0.977 0.671

lepid[2] 6= 11 0.997 0.850

Table 5.2: A summary of the selection cuts implemented in each lepnseg category
with the corresponding signal and background efficiency (also denoted as “eff.”) at
cut value in the low-mass region.

• Issues in the original analysis

The W + jet background was subtracted twice in the original analysis. This

causes a relatively large change in the shape of the background-subtracted

φ∗η distribution because the W + jet background has a much flatter φ∗η shape

than the signal, leading to around one standard deviation away as shown

in Figure 5.60 in Section 5.11. W + jet is included in the estimate of the

multijets background in the current analysis. The nseg ≥ 0 efficiency has

changed dramatically due to a mistake in the MC simulation for the published

results. The previously published analysis included around 2% duplicated

events. These are removed in the current analysis.

• Improvement in the analysis

There are some other minor corrections, which make very small changes to

the final results. For instance, the kinematic cuts are applied to the final

state leptons when evaluating the scale factors in 2D reweighting to ResBos.

There are a small number of events that have a nseg = 3 muon matched to the
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relevant trigger object, but nevertheless failed to fire the single muon trigger.

These are taken into account by means of an additional systematic uncertainty.

5.5 Background uncertainty evaluation in the low-

mass region

An excellent understanding of the physics background is of great importance in this

analysis because the signal is obtained by subtracting the physics background from

data. Systematic uncertainties due to the subtraction of physics background will be

assessed using control samples predominantly composed of a particular background.

The fractional uncertainty assigned to a given background is evaluated by dividing

the fractional discrepancy between MC and data in the relevant control plots by the

fractional composition of the relevant control sample. The choice of the particular

lepnseg category to be shown in the plots in this section is such that the background

of interest can be distinguished.

Figure 5.21 shows the shapes of the φ∗η distribution predicted by the Pythia

MC at detector level for the genuine Drell Yan muon pairs and the various physics

backgrounds. Both the signal and background φ∗η distributions are normalised to

unity. In particular, the φ∗η distribution of the W+ jet background stays rather flat

over the full φ∗η range. In addition, the Z/γ∗ → τ+τ− background and migration

background have a similar shape to that of genuine muon pairs.
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Figure 5.21: Background and signal shape of the normalised differential cross section
of φ∗η distribution.

All control samples take advantage of the new variables specifically employed for

optimisation of the selection criteria in the low-mass region in Section 5.4.1. The
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definition of control samples of each source of the physics background is described

as follows.

QCD and W+ jet background control sample

The control sample for the QCD background is defined as the event sample re-

jected exclusively by cuts on the isolation variables IOD[0] and/or Ical[i]. (See

Figure 5.22a). The W+ jet control sample has the same selection criteria as the

QCD control sample, except that the variable ∆φ, which is the opening angle of

the final state leptons, is employed to distinguish the W+ jet background from the

QCD background (See Figure 5.22b).

Migration background control sample

The control sample for the migration background corresponds to the event sample

exclusively eliminated by the the pseudo-mass requirement. A ±30% uncertainty is

assigned to the migration background, which is obtained from Figure 5.23.

FSR background control sample

The FSR background control sample (See Figure 5.24 and Figure 5.25 in Sec-

tion 5.5.1) is the event sample rejected by the lepid[2] 6= 11 requirement introduced

in Section 5.4.1.4.

Z/γ∗→ τ+τ− background control sample

The Z/γ∗ → τ+τ− control sample is inspected by studying the following distribu-

tions:

• the sum of track distance of closest approach (represented by
∑

trkdca in the

following) in the control sample excluded by both EH[0] and Ical[1] selection

criteria (see Figure 5.26a);

• the sum of EM and HAD energy (defined in Section 5.4.1.3), represented by

EM + HAD in the plot, for the muon of lower identification quality without

EH[0] selection criteria (see Figure 5.26b).

Both distributions have certain regions dominated by the Z/γ∗ → τ+τ− background.

It should be noted the Z/γ∗ → τ+τ− control sample of the lepnseg(3,0) category is

the event sample rejected by either Ical[1] or EH[0] requirements. (see Section 5.5.2

for more details on the Z/γ∗ → τ+τ− control sample).
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Summary of the background systematic uncertainties

Table 5.3 summarises the uncertainty on each background in different lepnseg cate-

gories.

Category QCD Migration FSR W+ jet Z/γ∗ → τ+τ−

(3,0)(with wire hits) 0.8 0.3 0.5 1 Hadronic(0.4),Muonic(0.1)
(3,0)(without wire hits) 0.4 0.3 0.5 0.4 Hadronic(0.4),Muonic(0.1)

(3,1)(3,2) 0.6 0.3 0.5 0.7 Hadronic(0.4),Muonic(0.1)
(1,3)(2,3) 0.5 0.3 0.5 0.5 Hadronic(0.4),Muonic(0.1)

(3,3) 0.7 0.3 0.5 0.3 Hadronic(0.4),Muonic(0.1)

Table 5.3: Fractional uncertainty of different backgrounds for each lepnseg category.
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Figure 5.22: Estimate of the QCD and W+ jet background uncertainty in the QCD
background control samples.
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Figure 5.23: Migration background control samples with all lepnseg categories com-
bined.

85



5.5.1 Constraint on the FSR background uncertainty

It was found that events with lepid[2] = 11 are predominantly migration background

and the corresponding generator level PID information confirms that these events are

FSR events (See Section 5.4.1.4). It is further confirmed by the scatter plot between

Mµµγ and Mµµ in Figure 5.24, where Mµµγ is the invariant mass of the “three-body”

system. The regions for FSR and initial state radiation (ISR) are indicated by

corresponding arrows. The ISR region is irrelevant because we effectively remove

these events by the requirement 30 < Mµµ < 60 GeV.

In order to increase the sample statistics, requirements on either Mµµ or Mpseudo

are loosened. The fractional uncertainty assigned to FSR is 50%, as estimated

conservatively from Figure 5.25. The fractional uncertainty is estimated by using the

bin with the largest deviation between data and MC (the first bin in Figure 5.25b),

where the discrepancy between data and MC is around 25% and the migration

background composition is around 50%.
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Figure 5.24: Correlation between Mµµγ and Mµµ for events with lepid[2] = 11, no
cuts on pseudo-mass and no cuts on Mµµ in Z/γ∗ → µ+µ− MC.
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Figure 5.25: Control samples for estimate of the FSR background uncertainty.

5.5.2 Constraint on Z/γ∗ → τ+τ− background uncertainty

5.5.2.1 Fraction of genuine muons in the Z/γ∗ → τ+τ− MC

As the Z/γ∗ → τ+τ− background uncertainty arises predominantly from the misiden-

tified hadronic decay products of τ , the uncertainty is evaluated separately for the

hadronic decay and muonic τ decays. It is worth noting that the numbers given

in Table 5.4 in Z/γ∗ → τ+τ− MC are determined after normalisation to the data.

There are two rows of numbers for each lepnseg category, where the first row cor-

responds to muon 0 and the second muon 1. The muon with a low identification

quality tends to arise from the hadronic decay of τ in the signal region after selection

cuts. To sum up, around 1% of total events in the signal region is due to hadronic

decays from the Z/γ∗ → τ+τ− background.

It was decided to vary the hadronic decays in the Z/γ∗ → τ+τ− background

by ±40% and the dimuon decays by ±10% (See Figure 5.26) when evaluating the

systematic uncertainty due to the Z/γ∗ → τ+τ− background. The motivation for

the variations in different decay modes in the Z/γ∗ → τ+τ− background is that it

is known that the muonic decays are rather well described by simulations whereas

the hadronic decays are poorly understood.
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Category Muon Array Pions Kaons Electrons Muons Fraction of genuine muons
Fail EH cuts Z/γ∗ → τ+τ−

(3,0) with wire hits Muon 0 1 1 2 10 0.767
(3,0) with wire hits Muon 1 2 1 11 0 0.002

(3,0) without wire hits Muon 0 0 0 0 3 0.884
(3,0) without wire hits Muon 1 3 0 0 0 0.000

(3,1)(3,2) Muon 0 7 0 2 39 0.808
(3,1)(3,2) Muon 1 25 3 13 7 0.155
(1,3)(2,3) Muon 0 45 3 9 7 0.103
(1,3)(2,3) Muon 1 5 0 2 57 0.892

(3,3) Muon 0 24 1 7 18 0.353
(3,3) Muon 1 12 0 5 35 0.677

Signal Region Z/γ∗ → τ+τ−

(3,0) with wire hits Muon 0 2 0 2 109 0.959
(3,0) with wire hits Muon 1 17 2 50 45 0.399

(3,0) without wire hits Muon 0 1 0 0 60 0.973
(3,0) without wire hits Muon 1 26 1 0 35 0.566

(3,1)(3,2) Muon 0 13 1 5 451 0.960
(3,1)(3,2) Muon 1 139 16 66 247 0.528
(1,3)(2,3) Muon 0 194 17 38 198 0.443
(1,3)(2,3) Muon 1 10 1 5 430 0.963

(3,3) Muon 0 136 6 30 2542 0.937
(3,3) Muon 1 89 3 42 2580 0.951

Table 5.4: Origin of muons in Z/γ∗ → τ+τ− MC for each lepnseg category failing
the EH[0] requirements.
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5.5.3 Cross-checks of background uncertainty estimations

Cross-checks of the estimated background uncertainties are performed by looking at

variations in the data/MC ratios of various distributions after varying background

levels according to the uncertainties shown in Table 5.3.

QCD and W+ jet background

The nominal distributions for the QCD and W+ jet backgrounds are in Figure 5.16

and Figure 5.22b respectively. Figure 5.27 and Figure 5.28 present the data/MC

ratios in IOD[0] (QCD background) and ∆φ (W+ jet background) for the corre-

sponding positive and negative background variations.

Migration background

The nominal distribution for the migration background is in Figure 5.17 and Fig-

ure 5.20. The migration background systematic uncertainty is evaluated by reweight-

ing events with MGen
Z < 30 GeV or MGen

Z > 70 GeV but requiring that the third

lepton is not a photon or an electron at generator level. Figure 5.29a and Fig-

ure 5.29b show the data/MC ratios in terms of Mµµ and Mpseudo for the positive and

negative variations.

FSR background

As for the FSR background, the nominal distribution is presented in Section 5.5.1.

The variation in the FSR background is performed by varying events meeting the

requirements of genuine muon pairs in addition to an identified radiated photon or

electron at generator level with ∆QED > 0.5 GeV by ±50%, where ∆QED represents

the difference of the dimuon invariant mass at Born level and at bare level. The

data/MC ratios in Mµµ and Mpseudo after variations in the FSR background are

illustrated in Figure 5.30.

Z/γ∗ → τ+τ− background

The nominal distribution of EH[0] is shown in Figure 5.18. After variations in the

Z/γ∗ → τ+τ− background, a reasonable change is observed in the EH[0] distribution

as presented in Figure 5.31, where the discrepancy between data and MC in the range

of 2 < EH[0] < 3 GeV is observed due to relatively poor MC simulation and is not

important as the cut is loose at 6 GeV for the lepnseg(3,3) category and at 3 GeV

for all the other categories.
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Figure 5.27: Data/MC ratios in IOD[0] distribution after variation of the QCD
background with all the other cuts applied for each lepnseg category. The yellow
band represents the data statistical uncertainties. The plots are made by dropping
the isolation requirement on IOD[0] in the corresponding lepnseg category.
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Figure 5.28: Data/MC ratios in ∆φ distribution after variations of the W+ jet
background rejected by isolation cuts for each lepnseg category. The yellow band
represents the data statistical uncertainties. The plots are made by reversing the
isolation requirement on IOD[0] in the corresponding lepnseg category.
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Figure 5.29: Data/MC ratios in Mµµ and Mpseudo distribution after variations of the
migration background with all categories combined. The yellow band represents the
data statistical uncertainties.
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Figure 5.30: Data/MC ratios in Mµµ and Mpseudo distribution after variations of the
FSR background with all categories combined. The yellow band represents the data
statistical uncertainties.
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Figure 5.31: Data/MC ratios in the EH[0] distribution after variations of the
Z/γ∗ → τ+τ− background. The yellow band represents the data statistical un-
certainties. The plots are made by dropping the requirement on EH[0] in the cor-
responding lepnseg category.
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5.6 The new scaling factor for the QCD back-

ground and overall normalisation in the low-

mass region

In the QCD background, which is dominated by g → bb̄, the number of opposite

sign (OS) events is expected to be slightly larger than the number of same sign (SS)

events. In contrast, other physics background and signal events produce predom-

inantly OS events, particularly noticeable is the W+ jet background, which has a

strong preference of OS events over SS events. There are two main production mech-

anisms for the W+ jet background, the W boson can be formed via the annihilation

of an up-type quark and a down-type quark with the jet coming from initial gluon

radiations or via a scatter process where a down-type (up-type) quark couples to a

W− (W+) boson and a up-type (down-type) quark. The scatter process tends to

produce a final state of two muons of opposite charges, for instance, s→ uW− with

W− → µ−ν̄µ and subsequently u→ dW+ with W+ → µ+νµ.

The number of QCD background events in the OS signal region is estimated by

scaling up the number of SS events that pass all other signal region cuts by the

OS/SS ratio determined in the QCD control region. The numbers of OS and SS

events in the QCD control sample must be corrected for the expected contributions

from all the non-QCD sources.

The MC predictions for Z/γ∗ → µ+µ−, Z/γ∗ → τ+τ− and W+ jet are first

normalised relative to each other and then they are normalised to data after the QCD

background subtraction. The overall normalisation constant for the MC predictions

S, expressed in terms of the OS/SS ratio R of the QCD background in the signal

region and in the QCD control region, reads

S1 =
Ndata
OS1 −R1 × (Ndata

SS1 − S1 ×NMC
SS1 )

NMC
OS1

(5.1)

and

S2 =
Ndata
OS2 −R2 × (Ndata

SS2 − S2 ×NMC
SS2 )

NMC
OS2

, (5.2)

where the subscript “1” represents the signal region and the subscript “2” the QCD

control region. NMC
OS and NMC

SS are the sum of the MC integral for OS and SS

respectively including Z/γ∗ → µ+µ−, Z/γ∗ → τ+τ− and W+ jet MC without

normalising to data. Ndata
OS and Ndata

SS are the number of OS and SS events in data.
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Rearranging the equations above gives

R1 =
Ndata
OS1 − S1 ×NMC

OS1

Ndata
SS1 − S1 ×NMC

SS1

(5.3)

and

R2 =
Ndata
OS2 − S2 ×NMC

OS2

Ndata
SS2 − S2 ×NMC

SS2

. (5.4)

The normalisation constant S and the OS/SS ratio R are assumed to be identical

in both the signal and control regions and thus R1 = R2 = R and S1 = S2 = S.

As a result, we have a quadratic equation in terms of S. There exist two roots as

the solution to the equation and we choose the root that is physical. Substituting

S back to Equation 5.1 and Equation 5.2 gives the OS/SS ratio R in the QCD

background. Since R in rapidity bins is consistent within the statistical uncertainty

(See Table 5.5), the central value in the y-inclusive sample is taken as the OS/SS ratio

R for all rapidity bins and the corresponding normalisation constant is calculated.

QCDQCD

­µ
+

µ →Z­µ
+

µ →Z

­τ
+

τ →Z­τ
+

τ →Z

W+jetW+jet

OS SS

SS
/(QCD)

OS
R=(QCD)

Figure 5.32: Schematic representations of the analytic method to calculate OS/SS
ratio and normalisation constant.

OS/SS ratio R
Category y inclusive |y| < 1 1 ≤ |y| < 2

(3,0) with wire hits 1.00±0.17 1.00±0.16 1.00±1.48
(3,0) without wire hits 1.15±0.07 1.17±0.08 0.75±0.36

(3,1)(3,2) 1.12±0.10 1.11±0.10 1.17±0.38
(1,3)(2,3) 1.19±0.10 1.27±0.11 0.88±0.20

(3,3) 2.77±0.18 2.55±0.18 3.58±0.51

Table 5.5: OS/SS ratio R using the QCD control region and the signal region for
each lepnseg category. Only statistical uncertainties are shown here.
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5.7 Data-MC comparisons

In this section, data are compared to MC predictions in the signal sample passing

all the selection criteria in the respective invariant mass regions.

5.7.1 Comparison to the detector-level MC in 70 < Mµµ <

110 GeV region

Data are compared to the detector-level MC for a number of variable distributions as

presented in Figures 5.33–5.38. The distributions are shown for two dimuon rapidity

regions 0 ≤ |y| < 1 and 1 ≤ |y| < 2. The MC predictions are in good agreement

with data. However, if the MC predictions for the observable distribution that

could potentially affect the φ∗η distribution deviate from data, additional systematic

uncertainty is assigned to cover data/MC differences, as described in Section 5.9.

The discrepancies between data and MC in the (z0
dca + z1

dca)/2 distribution have no

effect on the measurement of the φ∗η distribution.

5.7.2 Comparison to the detector-level MC in 30 < Mµµ <

60 GeV region

In this section, the data distributions of relevant physics quantities are compared to

the detector-level signal plus background MC predictions as presented in Figure 5.39

and Figure 5.40. In general, we find that the MC describes the data to sufficient

accuracy in the low-mass region.
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Figure 5.33: Data versus MC comparison in the distributions of Mµµ, yll and aT for
70 < Mµµ < 110 GeV.
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Figure 5.34: Data versus MC comparison in the distributions of aL, cos θ∗η and
(z0
dca + z1

dca)/2 for 70 < Mµµ < 110 GeV.
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Figure 5.35: Data versus MC comparison in the distributions of pT for muon 0 and
muon 1 separately and η for muon 0 for 70 < Mµµ < 110 GeV.

99



1η

­2 ­1 0 1 2

d
N

/d
X

1

10

210

3
10

4
10

5
10

=188.0/172χN=494 k, 

1η

­2 ­1 0 1 2

(D
a

ta
­M

C
)/

D
a

ta

­0.2
­0.15
­0.1

­0.05
0

0.05
0.1

0.15
0.2

1η

­2 ­1 0 1 2

d
N

/d
X

1

10

210

3
10

4
10

5
10

=110.9/172χN=150 k, 

1η

­2 ­1 0 1 2

(D
a

ta
­M

C
)/

D
a

ta

­0.2
­0.15
­0.1

­0.05
0

0.05
0.1

0.15
0.2

det

0
η

­2 ­1 0 1 2

d
N

/d
X

1

10

210

3
10

4
10

5
10

=279.0/152χN=494 k, 

det

0
η

­2 ­1 0 1 2

(D
a

ta
­M

C
)/

D
a

ta

­0.2
­0.15
­0.1

­0.05
0

0.05
0.1

0.15
0.2

det

0
η

­2 ­1 0 1 2

d
N

/d
X

1

10

210

3
10

4
10

5
10

=174.6/152χN=150 k, 

det

0
η

­2 ­1 0 1 2

(D
a

ta
­M

C
)/

D
a

ta

­0.2
­0.15
­0.1

­0.05
0

0.05
0.1

0.15
0.2

det

1η
­2 ­1 0 1 2

d
N

/d
X

1

10

210

3
10

4
10

5
10

=276.4/152χN=494 k, 

det

1η
­2 ­1 0 1 2

(D
a

ta
­M

C
)/

D
a

ta

­0.2
­0.15
­0.1

­0.05
0

0.05
0.1

0.15
0.2

(a) 0 ≤ |y| < 1

det

1η
­2 ­1 0 1 2

d
N

/d
X

1

10

210

3
10

4
10

5
10

=184.5/152χN=150 k, 

det

1η
­2 ­1 0 1 2

(D
a

ta
­M

C
)/

D
a

ta

­0.2
­0.15
­0.1

­0.05
0

0.05
0.1

0.15
0.2

(b) 1 ≤ |y| < 2

Figure 5.36: Data versus MC comparison in the distributions of η for muon 1 and
ηdet for muon 0 and muon 1 separately for 70 < Mµµ < 110 GeV.
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Figure 5.37: Data versus MC comparison in the distributions of φ for muon 0 and
muon 1 separately and φmod for muon 0 for 70 < Mµµ < 110 GeV.
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Figure 5.38: Data versus MC comparison in the distributions of φmod for muon 1
(top), low φ∗η region (middle) and the full range in φ∗η (bottom) for 70 < Mµµ <
110 GeV.
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Figure 5.39: Data versus MC comparison for the distributions of aT , yll, (z0
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0 and η1 for 30 < Mµµ < 60 GeV.
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Figure 5.40: Data versus MC comparison for the distributions of φ0 (top left), φ1

(top right), full range in φ∗η (middle and bottom left) and low φ∗η region (middle and
bottom right) in two bins of rapidity for 30 < Mµµ < 60 GeV.
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5.8 Bin-by-bin corrections

5.8.1 Binning in φ∗η

Peak region

The binning in φ∗η is the same as that used in the previously published analysis [25],

where 29 bins are used with the bin width in terms of the bin number i expressed

as: 0.01 + 5× 10−8 × (i− 1)5 (i ≥ 1). The bin width increases with bin number in

order to obtain enough statistics.

Low-mass region

There are 20 bins for the φ∗η distribution, and the bin number i corresponds to a bin

width of 0.01 + 4× 10−7 × (i− 1)5 (i ≥ 1).

5.8.2 Bin-by-bin corrections

Because the resolution in φ∗η is much better than the width of the above-specified

bins leading to high bin purity, a bin-by-bin correction procedure can be applied

to correct data back to the particle level. Bin purity is defined as the fraction of

events in each bin at detector level that originate from the same bin at generator

level determined using Z/γ∗ → µ+µ− Pythia MC.

Peak region

Figure 5.41 demonstrates that the bin purity in φ∗η is adequate to perform such a

procedure. The bin-by-bin correction factors are presented in Figure 5.42 with the

data statistical uncertainties indicated by the yellow band.
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Figure 5.41: Bin purity as a function of φ∗η in two rapidity bins for 70 < Mµµ <
110 GeV.
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Figure 5.42: Correction factor as a function of φ∗η in two rapidity bins for 70 <
Mµµ < 110 GeV. The yellow band represents the data statistical uncertainties.

106



Low-mass region

The QCD, Z/γ∗ → τ+τ− and W+ jet backgrounds are subtracted from the observed

data. The migration background is not subtracted. It is taken into account in

evaluating the correction factor described below.

Figure 5.43 indicates that the experimental resolution in φ∗η is sufficient to employ

bin-by-bin corrections.

The bin-by-bin correction factor within different rapidity ranges is demonstrated

in Figure 5.44. The yellow band represents the data statistical uncertainty.
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Figure 5.43: Bin purity as a function of φ∗η in two rapidity bins for 30 < Mµµ <
60 GeV.

5.9 Systematic uncertainties

Figure 5.45 and Figure 5.46 show the systematic uncertainties in each bin of φ∗η

in comparison to the statistical uncertainty in the peak and low mass regions re-

spectively. The statistical uncertainties are dominant across all bins of φ∗η. Most

of the uncertainties have been evaluated in a fashion consistent with the previously

published analysis [25] and the associated variable distributions for the assigned

systematics can be found in [71].

• Background uncertainty

•WW and tt̄ backgrounds in the peak region

The normalisation for WW and tt̄ backgrounds are varied by ±20%, which

is roughly the fractional theoretical uncertainty on the cross sections of these

backgrounds.
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Figure 5.44: Correction factor as a function of φ∗η in two rapidity bins for 30 <
Mµµ < 60 GeV. The yellow band represents the data statistical uncertainties.
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• Multijet background in the peak region

A ±100% variation in the multijet background is made, which is considered

to be conservative. The multijet background is below 0.1% in the peak region

such that its effect on the final φ∗η shape is considerably small.

• Background uncertainties in the low-mass region

Each source of physics background is varied up or down by the scale factor in

the corresponding lepnseg category as shown in Table 5.3.

• FSR modelling

Events with ∆QED > 0.5 GeV are varied by a factor of two in the peak region,

where ∆QED is the difference of invariant mass between the Born level and the

bare level. As for the low-mass region, events with ∆QED > 0.5 GeV meeting

the requirement of a genuine muon pair in addition to a photon or electron

at generator level are varied by ±50%. The relatively conservative procedure

for evaluating the FSR modelling in the peak region has a negligible effect on

the φ∗η distributions because the φ∗η shape is similar with or without FSR in

the peak region. However, the φ∗η shape in the low mass region is different for

events undergoing FSR and events without FSR as shown in Figure 5.21 in

Section 5.5.

• Momentum resolution and scale

The muon momentum scale is varied by ±0.3%. An additional Gaussian

smearing with width of 0.001 GeV−1 is applied. The systematic variations are

such that the systematic uncertainties can cover any difference in data/MC

ratios in M``.

• Track φ and η resolution

The φ and η resolution parameters are varied by a factor of 1.5, which is a

reasonable estimate of the uncertainties on these parameters.

• Efficiency corrections

The φmod and ηdet distributions are sensitive to efficiency corrections. A ±5%

and ±10% variation in the muon reconstruction efficiency is considered to be

a reasonable evaluation of the systematic uncertainty for (i) the octant gap re-

gion (φmod > 0.45); (ii) the forward region (|ηdet| > 1). Figures 5.47 and 5.48

show the data/MC ratio for φmod and ηdet distributions with these relative

variations applied. An additional ±10% variation in muon reconstruction ef-

ficiency is applied to forward rapidity region (1 < |y| < 2) to compensate for

the data-MC difference.
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• Physics Bias

This uncertainty is estimated by multiplying or dividing the K factor deter-

mined by the ratio of unfolded data to that of ResBos in the corresponding

mass region to examine the sensitivity of the bin-by-bin corrections to the un-

derlying physics distributions. Figure 5.49 shows the K factor as a function

of φ∗η determined in the peak region. The systematic effect on the corrected

φ∗η shape is negligible due to the excellent resolution of this variable.

• Trigger match

Around 1.7% events are with nseg = 3 muon having passed the trigger match

but failed firing the single muon trigger at all three levels. These events were

found to be less isolated and were treated as additional systematic uncertain-

ties. It is estimated by switching on and off the single muon trigger.

• Ad hoc corrections

The difference between switching on and off the ad hoc corrections in Sec-

tion 5.3.4 is treated as an additional source of systematic uncertainty.

• pT turn-on effect in the low-mass region

Events with pT < 15 GeV are scaled up/down by 10% to evaluate the sys-

tematic uncertainty due to additional trigger efficiency corrections. Such a

systematic variation is conservative considering the good agreement between

data and MC in the muon transverse momentum distribution as shown in

Figure 5.14.
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Figure 5.45: Comparison between various experimental systematic uncertainties and
the statistical uncertainty as a function of φ∗η in 70 < M`` < 110 GeV region. The
figure on the left (right) presents the low (full) range of φ∗η.
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Figure 5.46: Comparison between various experimental systematic uncertainties and
the statistical uncertainty as a function of φ∗η in 30 < M`` < 60 GeV region. The
figure on the left (right) presents the low (full) range of φ∗η.
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Figure 5.47: Data/MC ratios in the distribution of φmod arising from the muon ID
efficiency systematic variations in the octant gap region for 70 < M`` < 110 GeV.
The yellow band represents the data statistical uncertainty.
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Figure 5.48: Data/MC ratios in the distribution of ηdet arising from the muon ID
efficiency systematic variations in the forward region for 70 < M`` < 110 GeV. The
yellow band represents the data statistical uncertainty.
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Figure 5.49: Ratio of the unfolded data to the ResBos default prediction for 70 <
M`` < 110 GeV.
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5.10 Comparison to theoretical predictions

5.10.1 Theoretical predictions

The corrected data have been compared to the ResBos [24,31] predictions and the

NNLL+NLO calculations of [34,35].

ResBos

ResBos generates Z boson events at NNLL+NNLO accuracy. Both the γ∗ and Z/γ∗

interference contributions are included at NNLL+NLO accuracy. The GNW non-

perturbative parameterization in the ResBos prediction contains a non-perturbative

parameter aZ that must be determined from experimental data. We choose the cen-

tral values and associated systematic variations for QCD scales and aZ by following

the prescriptions in [24]. The NNLO PDF sets CT10 [72] are implemented in Res-

Bos and PHOTOS [68] is used to simulate the effects of FSR. The PDF uncer-

tainties of the φ∗η distributions are evaluated by varying each of the 26 eigenvectors

in the CT10 PDF sets by 1.6σ corresponding to 90% confidence level.

A NNLL+NLO prediction

The NNLL+NLO predictions of [34, 35] use the CTEQ6m [73] NLO PDFs without

the effects of FSR or non-perturbative contributions. The central prediction is

obtained by setting QCD scales to the dilepton invariant mass at Born level. The

scale uncertainties are estimated by varying the three QCD scales6 between M``/2

and 2M``, and the ratio of any two of the three QCD scales is required to be bound

between 0.5 and 2. The PDF uncertainties are considered negligible in comparison

to the QCD scale uncertainties as explained in [34,35].

5.10.2 Results

Peak region

Figure 5.50 presents the comparison of the corrected distributions of φ∗η with pre-

dictions from ResBos in the dimuon channel for two rapidity bins. Figure 5.51

shows the ratio in (1/σ)× (dσ/dφ∗η) of the measured data to that of ResBos for

70 < M`` < 110 GeV. The ResBos predictions can describe the corrected data dis-

tributions accurately within the assigned theoretical uncertainties. In addition, the

6The three QCD scales refer to the renormalisation, factorization and resummation scales.
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consistency between the updated φ∗η distributions in the dimuon channel and these

published measurements in the dielectron channel provides a powerful cross-check.

Figure 5.52 presents the ratio in (1/σ)× (dσ/dφ∗η) of the measured data to the

NNLL+NLO predictions from [34, 35]. The NNLL+NLO predictions can describe

the detailed φ∗η shape within the assigned QCD scale uncertainties, which are dom-

inated by systematic variations in the resummation scale.

The ratio of the (1/σ)× (dσ/dφ∗η) distribution in the central rapidity region

(|y| < 1) to that in the forward rapidity region (1 < |y| < 2) is illustrated in

Figure 5.53. The theoretical predictions from both ResBos and NNLL+NLO can

describe the ratio as a function of φ∗η. The systematic variations for the theoretical

uncertainties are performed in a correlated way between the two rapidity regions,

and such a procedure leads to a significant reduction in the theoretical uncertainties

because of partial cancellations in the ratio. Therefore this ratio with reduced

theoretical uncertainties provides a more stringent test of the QCD calculations.
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Figure 5.50: Comparison between the measured (1/σ)× (dσ/dφ∗η) and predictions
from ResBos for dimuon events with 70 < Mµµ < 110 GeV in two rapidity bins.

Low-mass region

Figure 5.54 presents the comparison between the measured (1/σ)× (dσ/dφ∗η) with

predictions from ResBos for dimuon events with 30 < M`` < 60 GeV in two rapid-

ity bins. The ratio of the measured φ∗η distribution to the predictions from ResBos

is shown in Figure 5.55. The ResBos predictions can describe the φ∗η shape with

reasonable accuracy. However, there is around 20% deficiency from the ResBos pre-

dictions at φ∗η > 0.5, which may be due to a lack of higher order QCD corrections

for the γ∗ and the Z/γ∗ interference contributions. The NNLL+NLO predictions

can describe the detailed φ∗η shape accurately within the assigned theoretical uncer-

tainties as shown in Figure 5.56.
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yellow band corresponds to the theoretical uncertainty by adding uncertainties for
PDFs, QCD scales and the non-perturbative parameter aZ in quadrature.

High-mass region

A detailed description of the high-mass measurements of φ∗η distributions can be

found in [74] and it is shown here for completeness. The data precision is limited by

the small statistics in the high-mass region. Figure 5.57 compares the measured φ∗η

distributions with the ResBos predictions and Figure 5.58 shows the ratio to the

ResBos predictions. The ResBos predictions can describe data reasonably well in

the high-mass region.

Comparison between the low-mass and the peak region

Figure 5.59 compares the φ∗η distributions between 30 < M`` < 60 GeV and 70 <

M`` < 110 GeV. As discussed at the start of this chapter, the width of the φ∗η

distribution is predicted to increase with decreasing M``. The measurement agrees

with the prediction as shown in Figure 5.59 and ResBos can describe this feature

reasonably well.
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5.11 Cross-check with the previously published

results in the peak region

In addition to an increased data set a number of changes with regard to the previ-

ously published analysis have been introduced for this extended analysis. The dif-

ference between the updated and previously published results is within one standard

deviation for the normalised differential cross section, as illustrated in Figure 5.60.

The systemtic shift in the (1/σ)/(dσ/dφ∗η) distribution in the central rapidity bin

(0 ≤ |y| < 1) arises mainly from that the W+ jet background was subtracted twice

in the orginal analysis, as described in Section 5.4.3.
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Figure 5.60: Comparison of the (1/σ)/(dσ/dφ∗η) distribution between the current
result and the previously published result in bins of rapidity in the dimuon channel
for 70 < M`` < 110 GeV. ∆(φ∗η) denotes the difference with respect to the previously
published result. σtotal is the quadrature sum of the systematic uncertainty and the
statistical uncertainty from the previously published result.

5.12 Conclusion and discussion

A measurement of the transverse momentum of muon pairs for 70 < M`` < 110 GeV

and 30 < M`` < 60 GeV is performed using 10.4 fb−1 data from the D0 experiment

at Fermilab Tevatron. A new set of cuts was developed in the low-mass region to

select a sample of high purity and a systematic study of the background uncertainty

was conducted using control samples. The normalised differential cross section in

φ∗η is measured in two bins of boson rapidity in both mass regions. A state-of-

the-art ResBos prediction is in excellent agreement with data in bins of boson

rapidity for 70 < M`` < 110, and is reasonably consistent with data for 30 < M`` <

60 GeV. The precision of high-mass region measurements (160 < M`` < 300 GeV
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and 300 < M`` < 500 GeV) is limited by the statistics and a reasonable agreement

between data and the ResBos predictions is observed. A NLO+NNLL prediction

can describe data within uncertainties, considering only the perturbative effects with

matched soft gluon resummation. These results including tables for the corrected

φ∗η distributions in bins of M`` and |y| have been published in [40].

The data precision, limited by statistical uncertainties, has already exceeded the

size of the theoretical uncertainties in some regions of the φ∗η distribution at the

D0 experiment. Further measurements of φ∗η distributions in the Drell-Yan process

using 20.3 fb−1 pp collision data at
√
s = 8 TeV were also performed with the ATLAS

detector [75]. With the extremely high precision of φ∗η distributions at the LHC, the

data precision has raised challenges for the current N(N)LO QCD calculations. In

order to pin down the theoretical uncertainties, higher order calculations at next-to-

NNLO (N3LO) are needed to allow for more stringent tests of the Standard Model.
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Chapter 6

Proposed luminosity measurement

using the diamond beam monitor

6.1 Overview

One of the detectors used for the luminosity determination at the ATLAS experiment

is the beam condition monitor (BCM) [59]. The BCM is made up of four modules

on either side of the interaction point at z = ±184 cm, each of which is composed of

two back-to-back diamond sensors and readout chips. The BCM has a geometrical

acceptance of |η| ∼ 4.2 and its main objective is to monitor the beam particle losses

close to the interaction point. In addition, the bunch-by-bunch luminosity can be

determined by the BCM because of its fast response and readout time. One of the

main challenges in the LHC Run 2 is the increase in pile-up, which gives rise to

induced readout inefficiencies due to high occupancies in the detectors. Luminosity

measurements using the BCM will start to saturate due to the large pile-up of

events per bunch crossing as the luminosity reaches 1034 cm−2s−1. The diamond

beam monitor (DBM), which is highly segmented spatially and is not expected to

saturate, will complement the existing BCM for the luminosity measurement in LHC

Run 2.

The use of the diamond detector has a few advantages over the silicon detector.

First, diamond has a larger gap energy (∼ 5.5 eV) between the conduction band

and the valence band than silicon (∼ 1 eV). Therefore, diamond has less free charge

carriers contributing to noise. The large band gap also gives rise to a low leakage

current. In addition, an excellent thermal conductivity reduces the requirement for

an extensive cooling system. Finally, diamond is less sensitive to radiation than

silicon, hence the diamond detector has an extended lifetime in a radiation-hard

environment.
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In this chapter we study the hit efficiency of the DBM in the simulation using

single-muon events and investigate potential luminosity algorithms using minimum

bias1 pp MC samples. It should be noted that we evaluate the use of the DBM

detector for values of the average collisions per bunch crossing (µ) up to 100.

6.2 The DBM detector

The ATLAS pixel detector contains three layers of silicon pixel sensors equipped

with FE-I3 front-end pixel readout chips. A fourth layer, the Insertable B-Layer

(IBL) [60] has been installed utilising FE-I4 chips. The integrated circuit of the

FEI4 chip shown in Figure 6.1 consists of readout for 26880 pixels with 80 columns

and 336 rows, giving an active area of 20 mm × 16.8 mm. The DBM is read out

using the same chip.

The DBM is composed of eight telescopes with four telescopes on each side

relative to the interaction point, as shown in Figure 6.2, and each telescope is made

up of three DBM modules. The distance along the beam direction between two

neighbouring DBM modules is 50 mm. In the later text, layer2 0 denotes the layer

of the DBM modules closest to the interaction point, layer 1 the second closest and

layer 2 the furthest. The DBM has a geometrical acceptance of 3.1 < |η| < 3.4,

and is positioned at around 1 m in the z direction with respect to the interaction

point. In the later text, “A side” refers to the region of z > 0 and “C side” refers to

the region of z < 0 (See Figure 6.2). A schematic diagram of the position and the

alignment of a DBM telescope is given in Figure 6.3. A detailed description of the

DBM can be found in [76].

6.3 Monte Carlo samples

6.3.1 Single muon samples

One million single muon events of constant pT = 100 GeV were generated with full

φ coverage for 3.0 < η < 3.6 and −3.6 < η < −3.0.

1Minimum bias refers to events passing a “loose” trigger which selects most evens from the
inelastic pp collisions.

2“Layer” is just a notation to denote the four DBM modules, the geometrical centre of which
share the same position in z.
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Figure 6.1: Schematic view of the FE-I4 chip, consisting of 336 active rows by 80
columns giving an active area of 20 mm × 16.8 mm [60].

Figure 6.2: A schematic diagram of the DBM geometry [77].

6.3.2 Pile-up pp min-bias samples

The pile-up background components considered in the analysis are described as

follows:

• In-time pile-up: events originating from additional pp collisions present in the

same bunch-crossing as the collision of interest.

• Out-of-time-pile-up: events originating from additional pp collisions in the

successive bunch-crossings before and after the collision of interest. When

the detector is sensitive to several bunch crossings or the electronics has an

integration time of more than 25 ns, the signal for the collision of interest can

be affected by these additional pp collisions.
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Figure 6.3: A schematic diagram of the position and alignment of a DBM telescope
in the ATLAS experiment [76].

The additional pp collisions are generated with Pythia8 [29] and passed through

a Geant4-based ATLAS detector simulation [78], where Pythia8 includes the non-

diffractive inelastic, single-diffractive and double-diffractive components of the cross-

section. The events mentioned above are overlaid at configurable rates as additional

energy deposits in each detector before the energy conversion to the digital signal.

MC samples with a wide range of µ (1 ≤ µ ≤ 100) values are produced. Each

sample contains 2000 events. For the purpose of the study, only the ID simulation

is switched on. These samples use single neutrino events3 as “signal” and multiple

pp collisions as “background”. These events of multiple pp collisions are then super-

imposed on top of the single neutrino events at digitization stage according to the

requested µ values.

6.4 DBM cluster reconstruction efficiency studies

In order to validate the DBM configuration in the simulation, the DBM cluster

reconstruction efficiency is measured using the single-muon samples described in

Section 6.3.1. All plots shown are for the DBM monitor on the C side.

6.4.1 Distribution of the reconstructed DBM clusters

Figure 6.4 shows the number of reconstructed DBM clusters on the C side. It can

be observed that the average number of DBM clusters reconstructed for events with

tracks passing through the DBM is around 2 as the DBM telescope has limited

3Due to the sharply falling distribution of the jet transverse momentum pT , we usually first
produce the single collision samples according to the pT of the hardest jet, i.e., a high-pT sample
(pT > 35 GeV) and a low-pT sample (pT < 35 GeV). In order to produce the sample with the
requested µ value and to preserve the jet cross section, the low and high pT samples have to be
superimposed on each other with the correct relative fractions. The neutrino signal makes such a
procedure convenient because it is invisible to the detector.
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geometrical coverage and is not exactly aligned along the track direction. Figure 6.5

illustrates the number of DBM clusters of each layer of the telescope in x and y.

The number of reconstructed DBM clusters per x-y bin increases near the beam

pipe due to the fact that the density of tracks in η is approximately constant. The

total number of DBM clusters reconstructed decreases with the distance from the

interaction point in z as a result of the DBM acceptance. Similar results could have

been shown from plots of clusters on the A side of the DBM detector.
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Figure 6.4: Distribution of the number of the reconstructed DBM clusters on the C
side.

6.4.2 Algorithm for hit efficiency calculation

Given the production vertex ~v0 and the track direction p̂ of the single muon, the tra-

jectory can be calculated and an extrapolation can be made to each layer in a DBM

telescope. The cluster reconstruction efficiency ε is defined as ε = Nmatched
rec /Ntruth,

where Ntruth is the number of extrapolated DBM clusters using truth level infor-

mation and Nmatched
rec is the number of reconstructed DBM clusters matched to the

extrapolated DBM clusters within a certain distance. In the following extrapolation

methods, no energy loss due to interaction with the material is considered.

• Loop over all truth charged particles and the extrapolated hit position within

the geometrical acceptance of the DBM is stored.

• Loop over the DBM clusters at detector level and record the reconstructed

cluster position.

• For each extrapolated hit, loop over all reconstructed DBM clusters. There

are three cases considered:

128



GlobalX(mm)
­100 ­80 ­60 ­40 ­20 0 20 40 60 80 100

G
lo

b
a
lY

(m
m

)

­100

­80

­60

­40

­20

0

20

40

60

80

100

Entries  59003

0

200

400

600

800

1000

Entries  59003XY layer0

(a) Layer 0

GlobalX(mm)
100− 80− 60− 40− 20− 0 20 40 60 80 100

G
lo

b
a

lY
(m

m
)

100−

80−

60−

40−

20−

0

20

40

60

80

100

Entries  54067

0

200

400

600

800

1000

Entries  54067XY layer1

(b) Layer 1

GlobalX(mm)
100− 80− 60− 40− 20− 0 20 40 60 80 100

G
lo

b
a

lY
(m

m
)

100−

80−

60−

40−

20−

0

20

40

60

80

100

Entries  49104

0

100

200

300

400

500

600

700

800

900

Entries  49104XY layer2

(c) Layer 2

Figure 6.5: Distribution of the number of DBM clusters of each layer of the telescope
in x and y.

– the reconstructed hit and the extrapolated hit end up in the same x-y

bin;

– the extrapolated hit ends up in an adjacent x-y bin to the reconstructed

hit;

– no nearby extrapolated hit is found in the layer.

In the first two cases, the numerator is filled with the position of the re-

constructed hit. Otherwise for this extrapolated hit the DBM detector is

considered to be inefficient.

• Matched hits are found by minimising the distance between the extrapolated

position and the reconstructed cluster position ∆R, which is defined as:

∆R =
√

(Xreco −Xtruth)2 + (Yreco − Ytruth)2. (6.1)

To ensure the hits are found in the same telescope on the same side as the

reconstruction level, further requirements on z and ∆R are imposed.
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6.4.3 Straight line extrapolation

As the transverse momentum of the muon is around 100 GeV, having a curvature

of 1/167 m−1 in a 2 T magnetic field, in the first-considered extrapolation method

it is assumed that the charged particle track is straight.

The extrapolated position at which the muon hits the DBM plane in terms of

the production vertex ~v0 and track direction p̂ can be expressed as

~vx = ~v0 + sp̂, (6.2)

where s is the length of the straight track between the initial position and the DBM

plane.

The distance between the origin and the DBM plane d is a constant:

~vx · n̂ = d, (6.3)

where n̂ is a unit vector normal to the plane of the DBM module.

Substituting Equation 6.2 into Equation 6.3 and re-arranging the equation s =

(d− ~v0 · p̂)/(p̂ · n̂) an expression for ~vx can be obtained.

6.4.4 Helix extrapolation

In the helix extrapolation method, the magnetic field strength B is assumed to be

uniform (2 T) in the ID.

For a helix with initial position ~v0(x0, y0, z0) and momentum ~P (px, py, pz), the

projection onto the x-y plane is a circle with following analytical form:

(x− x0 +R cosφ0)2 + (y − y0 +R sinφ0)2 = R2, (6.4)

R =
pT
qB

, (6.5)

where φ0 is the azimuthal coordinate of the initial position ~v0, q is the charge of the

particle and pT is the transverse momentum. ~R represents the radius of the circular

trajectory in the transverse plane. It is in the same direction as ~F , the force that

acts on the particle.

The parameterization of the helix as a function of z is:

x (z) = x0 +R[cos(φ0 + h(z − z0)/(R tanλ))− cosφ0], (6.6)
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y (z) = y0 +R[sin(φ0 + h(z − z0)/(R tanλ))− sinφ0], (6.7)

where the dip angle λ is defined as the angle between ~pT and ~P . The helicity h of the

helix is -1 for positively charged particles (clockwise) and 1 for negatively charged

particles (anticlockwise). In our extrapolation, z is the position of the DBM module.

The intersection between the helix and the DBM module also satisfies the ana-

lytical equation of the plane:

ax+ by + cz + d = 0, (6.8)

where (a, b, c) is the unit vector normal to the DBM module and d can be deduced be-

cause the centre of the DBM module in the plane is known. As x, y can be expressed

as a function of z, substituting Equation 6.6 and Equation 6.7 into Equation 6.8

gives z and we obtain the position of the intersection point.

6.4.5 Validation of the two extrapolation methods

Both the straight line and the helix extrapolation methods have a small mean ∆R,

as illustrated in Figure 6.6. This provides a cross-check of the validity of both

extrapolation methods.
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Figure 6.6: ∆R distribution for C side of layer 0 for (a) the straight line extrapolation
(b) the helix extrapolation method separately.

6.4.6 Results for the helix extrapolation

The distribution of the extrapolated DBM hit positions in x and y on the C side

using the helix extrapolation is presented in Figure 6.7. Figure 6.8 presents the
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distribution of the reconstructed DBM clusters of each layer of the telescope in x

and y on the C side after the algorithm. Figure 6.9 presents the distribution of the

DBM hit reconstruction efficiency as a function of x and y on the C side using the

helix extrapolation. The overall efficiency is around 77%, which is the same as that

obtained from the straight line extrapolation.
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Figure 6.7: Distribution of the extrapolated DBM hits position in x and y on the C
side using the helix extrapolation using truth information.
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Figure 6.8: Distribution of the reconstructed DBM clusters of each layer of the
telescope in x and y on the C side after the algorithm.
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Figure 6.9: Distribution of the DBM hit reconstruction efficiency in x and y on the
C side using the helix extrapolation.
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6.5 Pile-up response study of the DBM

All pile-up samples used are described in Section 6.3.2. This section mainly concen-

trates on studying how the relationship between the mean number of DBM clusters

changes with µ. All graphs are plotted for the DBM telescopes on the C side only.

Similar results could have been shown for clusters on the A side of the DBM detector.

6.5.1 Validation of the pile-up samples

The number of MC truth produced particles is directly proportional to µ as shown in

Figure 6.10, which is consistent with expectations. There are around 250 additional

particles produced per event per µ. However, the large random deviations of the

predicted number of produced particles in terms of µ from a simple linear fit arise

from the standard ATLAS pile-up events. Similar effects have been observed in

similar studies of other samples; the reason for these fluctuations is not understood.
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Figure 6.10: The mean number of produced particles per event as a function of µ.
The blue point represents µ = 35 sample, which is used below as the test sample for
luminosity algorithm validation.

6.5.2 Study of the DBM clusters under pile-up conditions

The distribution of the number of DBM clusters reconstructed on the C side for

various µ values is shown from Figure 6.11a to Figure 6.11e. The mean number

of DBM clusters reconstructed is directly proportional to µ, as is illustrated in

Figure 6.11f. An average rise of approximately 2.25 DBM clusters per µ per event is

observed. The pattern of residuals in Figure 6.11f shows similarities with Figure 6.10.

In order to check the dependence of the mean number of DBM clusters on the

DBM geometry, we examine the mean number of DBM clusters for each module
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separately. Figure 6.12 shows the mean number of DBM clusters per module on

the layer 0 on the C side as a function of µ. We define Nmodule as the number of

clusters in a given DBM module. An average increase of 0.2 in Nmodule with µ per

event is found. Figure 6.13 depicts the relationship between Nmodule in the same

DBM telescope on the C side as a function of µ. The slope in Nmodule with per unit

µ decreases with distance to the interaction point, ranging from 0.2 on layer 0 to

0.17 on layer 2. This is expected because the DBM module in the outer layer has a

smaller acceptance than that in the inner layer.

We further divide each of the 24 DBM modules into four parts according to

the quadrants in the local coordinate. The centre of the DBM module is defined

as the origin of the local coordinate system. Figure 6.14 shows the mean number

of DBM clusters plotted versus µ for the different quadrants in a particular DBM

module. The slope of the mean number of DBM clusters versus µ increases as the

area covered by the quadrant becomes closer to the beam pipe.
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Figure 6.11: (a)-(e) distribution of the number of DBM clusters reconstructed on
the C side for various µ values; (f) the mean number of the DBM clusters versus µ
on the C side.
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Figure 6.12: The mean number of DBM clusters per module of layer 0 versus µ on
the C side.
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(a) Layer 0
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(b) Layer 1
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(c) Layer 2

Figure 6.13: The mean number of DBM clusters of different layers versus µ in the
φ = 0 telescope on the C side.
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(a) x ≥ 0, y ≥ 0
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(b) x < 0, y ≥ 0
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(c) x < 0, y < 0
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(d) x ≥ 0, y < 0

Figure 6.14: The mean number of DBM clusters versus µ for different quadrants of
the layer 0 module in the φ = 0 telescope on the C side.
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6.5.3 Properties of the DBM clusters under pile-up condi-

tions

Figure 6.15 shows the distribution of the column width (Figure 6.15a), the row

width (Figure 6.15b) and the mean ToT4 (Figure 6.15c) of the DBM clusters at

µ = 30 and µ = 60 on the C side. The properties of the DBM clusters under pile-up

conditions are inspected by looking at the mean cluster row width, the mean column

width and the mean ToT, as illustrated in Figure 6.16. All of the quantities stay flat

with µ indicating there is no evidence of any pile-up effects that might arise from

clusters formed from merging hits produced by particles originating from different

pp collisions.
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(c)

Figure 6.15: The normalised distribution of (a) the column width, (b) the row width
and (c) the ToT of the DBM clusters at µ = 30 and µ = 60 on the C side.

4ToT stands for time over threshold, which is an estimator of collected charge.
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(c)

Figure 6.16: Distribution of (a) the mean column width, (b) the mean row width
and (c) the mean ToT of the DBM clusters versus µ on the C side.

6.6 A proposed algorithm for luminosity measure-

ment

The observed linearity of the mean number of DBM clusters per module as a function

of µ allows us to propose a simple luminosity algorithm. A given observed value of

mean number of clusters in a particular DBM module can be converted to a value

of µ using the linear relationship appropriate to that particular DBM module. In

the real detector the two parameters (offset and slope) would be calibrated in a Van

der Meer (vdM) scan [79]. In the MC we can use the linear relationship of the kind

shown in Figures 6.12 and 6.13 in lieu of the vdM calibration. In order to validate

the method, we employ an independent pile-up sample with µ = 35, which is not

included in the fit for the calibration curve.
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6.6.1 Validation of the proposed luminosity algorithm

An independent sample with µ = 35 of 2000 events is produced to test the pro-

posed algorithm using the previously obtained “calibration” curve of number of

mean DBM clusters versus µ in Section 6.5. The expected mean number of clusters

for µ = 35 is ∼ 159 in the whole DBM detector. Figure 6.17 shows the extraction

of the µ value according to the mean number of DBM clusters of each module in

layer 0 of the C side. The extracted µ values of the 24 independent measurements

are depicted in Figure 6.18. Averaging over the 24 independent values we obtain

µ = 34.794± 0.071. The χ2 value is 45.1/24 with respect to the input µ = 35, thus

validating the proposed algorithm. This is sufficient because the χ2 is calculated

considering the statistical uncertainty only, but the measurement on the luminosity

is typically dominated by systematic effects, where the fractional systematic uncer-

tainty is typically at a few percent level [80].

We can further divide each DBM module into four regions according to the

quadrants in the local coordinate of the DBM module. Such a procedure will provide

96 independent measurements of the luminosity. Figure 6.19 shows the extracted

µ values using the calibration curve of the mean number of DBM clusters in each

quadrant of a particular DBM module. Averaging over the 96 independent values

we obtain µ = 34.799± 0.066. The distribution of extracted µ values, as presented

in Figure 6.20, has χ2 ∼ 163.6/96 with respect to the input µ = 35, thus validating

our proposed algorithm.

142



µ
0 20 40 60 80 100

σ
D

a
ta

­f
it

­5

0

50 20 40 60 80 100

>
p

e
r 

m
o

d
u

le

D
B

M
<

N

10

20

ATLAS Work in progress

 = 14 TeVs

+ (0.016)µ=0.200 hitsN

/NDF= 12.6/ 122χ

 0.321±= 34.694 µExtracted 

(a) φ = 0

µ
0 20 40 60 80 100

σ
D

a
ta

­f
it

­5

0

50 20 40 60 80 100

>
p

e
r 

m
o

d
u

le

D
B

M
<

N

10

20

ATLAS Work in progress

 = 14 TeVs

+ (0.017)µ=0.203 hitsN

/NDF= 23.5/ 122χ

 0.351±= 34.925 µExtracted 

(b) φ = π/2

µ
0 20 40 60 80 100

σ
D

a
ta

­f
it

­5

0

50 20 40 60 80 100

>
p

e
r 

m
o

d
u

le

D
B

M
<

N

5

10

15

20

ATLAS Work in progress

 = 14 TeVs

+ (0.006)µ=0.191 hitsN

/NDF= 24.9/ 122χ

 0.342±= 34.912 µExtracted 

(c) φ = π

µ
0 20 40 60 80 100

σ
D

a
ta

­f
it

­5

0

50 20 40 60 80 100

>
p

e
r 

m
o

d
u

le

D
B

M
<

N

10

20

ATLAS Work in progress

 = 14 TeVs

+ (0.031)µ=0.198 hitsN

/NDF= 12.8/ 122χ

 0.356±= 35.536 µExtracted 

(d) φ = 3π/2

Figure 6.17: Extraction of the µ value using the calibration curve of four DBM
modules in layer 0 on the C side.
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Figure 6.18: The extracted µ from the 24 DBM module measurements.
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Figure 6.19: Extraction of the µ value using the calibration curve in the quadrants
of the DBM module for layer 0 of the DBM telescope at φ = 0 on the C side.
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Figure 6.20: The extracted µ from the 96 DBM quadrant measurements.
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6.6.2 Robustness of the proposed algorithm to detector ef-

fects

This section concentrates on sensitivity studies of the proposed algorithm to noise

and inefficiency of certain DBM modules. The DBM can discriminate against non-

collision background using the hit information on each DBM module in a particular

telescope. If a track leaves two (three) hits on two (three) separate DBM modules

in a telescope, this can be used to reject hits arising from non-collision background.

No dedicated study on this is performed at the moment.

6.6.2.1 Simulation of inefficiency and noise

The test sample µ = 35 was employed for the sensitivity studies of the proposed

algorithm. For the purposes of this study a particular set of DBM modules (or

quadrants) was chosen randomly to suffer from inefficiency (or noise). For these

chosen modules (or quadrants), the inefficiency is approximately 30% per DBM hit

while the probability for counting an extra hit due to noise is 30%. The same set

of modules suffered from inefficiency (or noise) for all of the 2000 events in the test

sample.

The previously obtained calibration curves of mean number of DBM clusters

versus µ, as described in Section 6.5, (i.e., without inefficiency or noise) were used.

Figure 6.21 shows the distribution of number of DBM clusters in a particular module

(quadrant) with noise or inefficiency.
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(b)

Figure 6.21: Distribution of the number of DBM clusters for the µ = 35 test sample
before and after adding noise or inefficiency (a) for a particular DBM module and
(b) for a particular quadrant.
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6.6.2.2 The truncated mean algorithm

An iterative approach was used in the truncated mean algorithm described as follows:

• The extracted µ value is averaged for the 24 (96) measurements.

• The χ2 is calculated for each measurement with respect to the averaged ex-

tracted µ.

• A loose χ2 requirement is applied such that measurements with unreasonable

χ2 are rejected.

• Repeat the above three steps until χ2 per degree of freedom is no more than

2.

Figure 6.22 shows the distribution of the extracted µ values using the 24 DBM

modules for the test sample before and after application of the truncated mean

algorithm. Figure 6.23 shows the distribution of the extracted µ values using the

96 DBM quadrants for the test sample before and after application of the truncated

mean algorithm. The robustness of the algorithm is validated by the fact that after

truncation the mean values of µ, as well as the χ2 values, are comparable with those

obtained in Figures 6.18 and 6.20 without simulation of noise or inefficiency.
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(a) Before algorithm (inefficiency)
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(b) After algorithm (inefficiency)
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(c) Before algorithm (noise)
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(d) After algorithm (noise)

Figure 6.22: Distribution of the extracted µ values for the µ = 35 test sample before
and after application of the truncated mean algorithm where certain DBM modules
suffered from inefficiency or noise. The red line represents µ = 35 in all four plots.
The fit indicated by the black line in the left-hand-side plots shows the actual fit
of the 24 DBM module measurements before application of the truncated mean
algorithm.
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(b) After algorithm (inefficiency)
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(c) Before algorithm (noise)
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(d) After algorithm (noise)

Figure 6.23: Distribution of the extracted µ values for the µ = 35 test sample before
and after application of the truncated mean algorithm where certain DBM quadrants
suffered from inefficiency or noise. The red line represents µ = 35 in all four plots.
The fit indicated by the black line in the left-hand-side plots shows the actual fit
of the 96 DBM quadrant measurements before application of the truncated mean
algorithm..
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6.7 Conclusion

A study of the reconstruction efficiency of the DBM modules using a single-muon

MC was conducted and an overall efficiency of 77% was found. Two extrapolation

methods were used for the efficiency measurements and gave consistent results. The

efficiency was measured as a function of x and y in the global coordinate of the

ATLAS detector.

Using privately-produced pp min-bias MC samples the mean number of DBM

clusters was found to increase linearly with µ, such that a simple counting algorithm

is possible. The mean cluster width, cluster row width and the ToT stays flat with

µ, indicating that there is no evidence of any pile-up effects that might arise from

clusters formed from merging hits produced by particles originating from different

pp collisions. A luminosity algorithm using the mean number of DBM clusters was

proposed and validated. We have shown that for the purposes of cluster counting

it is possible to subdivide the DBM detector into individual modules or module

quadrants, each of which provides an individual luminosity measurement. By com-

bining these individual measurements using a truncated mean we have shown that

the proposed algorithm can be rendered relatively insensitive to certain classes of

noise or inefficiency of the DBM modules.

However, the DBM is not operational or recording any data at the ATLAS

experiment. Only five telescopes are fully operational at the moment, and the

early running period in 2015 led to the bonding wire breakage for the other three

telescopes because no safety procedure was implemented to protect these modules.

The luminosity algorithm presented in this thesis will be tested using data when the

DBM starts running again.
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Chapter 7

Isolated diphoton cross section

measurements in pp collisions at
√
s = 8 TeV with the ATLAS

detector

7.1 Introduction

We now proceed to the diphoton cross-section measurements at
√
s = 8 TeV us-

ing 20.24 fb−1 pp collision data as collected by the ATLAS experiment. Both the

inclusive and the absolute differential cross sections are measured. The selection

criteria for the fiducial cross section at particle level are as follows: ET,1 >40 GeV,

ET,2 >30 GeV, |η| < 2.37 excluding the crack region of 1.37 < |η| < 1.56, ∆Rγγ >

0.4 and Epart.iso.
T < 11 GeV. ET,1 (ET,2) refers to the highest (second highest) trans-

verse energy of the photon, ∆Rγγ is the separation between the two photons ,

Epart.iso.
T denotes the calorimeter isolation energy at particle level and the η require-

ment is placed on each of the two photons. The asymmetric kinematic requirements

on the transverse energy are placed to avoid the instability1 in the fixed order pQCD

calculations such as from DIPHOX. The absolute differential cross section is mea-

sured in terms of six kinematic variables, namely, mγγ, pT,γγ, ∆φγγ, | cos θ∗η|, aT and

φ∗η, in which | cos θ∗η|, aT and φ∗η are the three new variables with respect to the

7 TeV analysis. The definitions of these variables are already given in Section 2.6.1.

1At low diphoton transverse momentum, resummation of soft and collinear gluon is needed to
give a sensible cross section. However, such resummation schemes are not implemented in the
fixed-order pQCD calculations of DIPHOX.
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The inclusive diphoton cross-section can be measured as follows:

σfid. =
N sig
γγ

εtrig.CtotalL
, (7.1)

where N sig
γγ is the extracted diphoton yield from data in the signal region. Ctotal

is a correction factor defined as Ctotal = Ndet
γγ /N

true
γγ , in which Ndet

γγ is the number

of predicted diphoton events in the signal region at detector level in the diphoton

simulation and N true
γγ is the number of the produced diphoton events in the fiducial

volume at truth level. εtrig. represents the trigger efficiency and L is the integrated

luminosity. The analysis strategy is to first subtract the background where one or

two jets (electrons) are misidentified as photons and then to correct for the detector

efficiency and resolution.

7.2 Data and MC samples

The data used in this analysis have been collected by the ATLAS detector in pp

collisions at
√
s = 8 TeV. Events in which the calorimeters or the inner detector are

not fully operational, or show data quality problems, are excluded. The integrated

luminosity after the trigger and the data quality requirements corresponds to 20.24±
0.38 fb−1 [80].

Diphoton events are generated with both Sherpa 1.4.0 [49] and Pythia8 [29].

Sherpa 1.4.0 uses the NLO CT10 [72] PDFs, whereas the LO PDFs CTEQ6L1 [73]

are implemented in Pythia8. The Z → ee events are generated using Sherpa [49]

or POWHEG+PYTHIA [81].

7.3 Resolution studies of the new variables

A comparison of the resolution of pT,γγ, aT and φ∗η using the diphoton Sherpa sample

is presented in Figure 7.1. The resolution of both aT and φ∗η are scaled such that

a comparison can be made. It can be observed that φ∗η has the best resolution and

that the resolution of aT and φ∗η is almost identical when the two photons are back

to back. This analysis represents the first measurements of aT and φ∗η distributions

in the diphoton channel.
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Figure 7.1: The resolution of pT,γγ aT and φ∗η using the diphoton Sherpa sample
for the inclusive case (left) and φacop < π/16 (right). The resolution of aT and φ∗η is
scaled to compare with that of pT,γγ.

7.4 Event selection

The event selection is as follows:

• Trigger requirements: the g35 loose g25 loose trigger chain is used to select

the two photons, which is the unprescaled loose diphoton trigger during the

whole 2012 data taking period. The LVL1 photon trigger in 2012 uses reduced

granularity within a region of 0.1 × 0.1 in ∆η×∆φ to determine the transverse

energy of the electromagnetic clusters. The trigger chain requires at the Level-

3 trigger the presence of two Loose (See Section 4.3.2) photon objects with

ET,1 > 35 GeV and ET,2 > 25 GeV.

• Primary vertex: each event must have at least one reconstructed primary

vertex with at least three charged tracks associated to it.

• Two photons acceptance: each photon candidate must have a pseudorapidity

|ηs2| measured in the second layer of the ECAL in the pseudorapidity region

of |ηs2| < 2.37 excluding the crack region 1.37 < |ηs2| < 1.56. The photons are

arranged in a descending order based on the transverse energy and a pair of

photons with the highest transverse energy is selected as input for the diphoton

vertex reconstruction.

• Diphoton vertex: the diphoton production vertex is determined based on the

photon pointing method [82], where the position along the beam axis is ob-

tained by the trajectories of both photon candidates with constraints from

the average beam spot position. For converted photons, the conversion vertex

position is also used as long as there are hits in the silicon detectors associated
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to the conversion tracks. A Neural Network algorithm (NN) is used to select

the diphoton production vertex according to the photon pointing method with

conversion information, the sum of the squared transverse momentum
∑
p2
T

and the scalar sum of the transverse momentum
∑
pT of all tracks associ-

ated to the reconstructed vertices and the difference in azimuthal angle ∆φ

between the vertex determined by the vector sum of the tracks momenta and

the diphoton system. The pseudorapidity and transverse momentum of each

photon candidate are then recalculated using the z-position of the diphoton

vertex.

• Choice of the photon pair: since the calorimeter isolation energy is measured

within a cone of ∆Rγγ < 0.4, it must be ensured that there is no overlap of

energy between the two photons. This is achieved by a requirement on the

separation of the reconstructed clusters in the ECAL:

∆Rγγ =
√

(ηclus1 − ηclus2 )2 + (φclus1 − φclus2 ) > 0.4, (7.2)

where the superscript “clus” indicates that η and φ are measured using the

cluster information in the ECAL and the subscripts “1” and “2” refer to the

highest Eγ
T (leading) and the second highest Eγ

T (subleading) photon candi-

dates respectively.

Both photons are required to be Tight (T) to reject the potential jet back-

ground, and each event has to fulfill ET,1 >40 GeV and ET,2 >30 GeV.

• Isolation requirement: each photon candidate has to pass the requirements on

the calorimetric isolation Eiso
T < 6 GeV and the track isolation piso

T < 2.6 GeV.

Photon candidates passing the isolation requirement are isolated (I).

The events passing the full event selection make up a tight isolated tight

isolated (TITI) sample, in which the first “tight isolated” (TI) refers to the

leading photon candidate and the second one refers to the subleading candidate in

the selected photon pair candidate.

7.4.1 Corrections to the simulations

A number of corrections have been applied to simulations to improve agreement

with data.
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Photon identification

The values of the shower shape variables in simulations are corrected using photon-

enriched samples to take account of the observed differences of the photon shower

shape distributions between data and simulations. In order to correct the observed

residual differences in the photon identification efficiencies between MC and data,

additional correction factors are applied to simulations. These correction factors

are determined using control samples of photons in radiative Z decays, electrons

selected with a tag and probe method from Z → ee decays and photon enriched

control samples of known signal composition [83].

Photon isolation corrections to Eiso
T

To take into account the observed difference of calorimeter isolation energy distribu-

tions between data and simulations, additional corrections to the photon calorimeter

isolation energies are determined using inclusive photon samples and applied to im-

prove agreement with data [84].

Pile-up corrections

The MC samples are reweighted to match the pileup conditions of the data according

to the distribution of the average number of interactions per bunch crossing µ.

z vertex reweighting

The MC has a slightly wider width of the beam spot along the beam axis (σz)

than data. A reweighting is applied to match the spread (mean) of the beam spot

observed in data (σz = 48 mm).

7.5 Isolation energy distributions for signal and

background

The analysis presented here uses both the calorimeter isolation energy and the track

isolation energy as well as alternative photon identification criteria (Section 7.5.1)

to subtract the hadronic background. This section describes the distribution of the

isolation energy quantities for photons, electrons and jets.
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7.5.1 Control regions for jets

In order to allow for a data-driven background estimation, a further photon iden-

tification selection called the Loose′ identification is introduced. For the Loose′

identification criteria, all tight requirements are imposed on hadronic and middle

layer variables (See Section 4.3.2 for details), whereas for the strip variables only the

requirement on ws tot is placed. The objects passing the Loose′ selection but fail-

ing the Tight selection are called non-Tight (T̃), forming a background control

sample dominated by jets with a small contamination from signal events. Alter-

native definitions, listed in Table 7.1, are implemented to estimate the systematic

uncertainties due to the background control region definition. The nominal Loose′

selection is referred to as Loose′4. Control samples of γj, jγ and jj are formed using

data control regions of TIT̃I, T̃ITI and T̃IT̃I respectively.

Name cuts not applied compared to T

Loose′2 Fside, ws 3

Loose′3 Fside, ws 3, ∆E
Loose′4 Fside, ws 3, ∆E, Eratio

Loose′5 Fside, ws 3, ∆E, Eratio, ws tot

Table 7.1: Definition of the various Loose′ definitions with respect to the Tight
photon identification. The definitions of these variables in the table are introduced
in Section 4.3.2. Loose′4 is taken as the nominal definition of T̃, which is defined
by dropping the requirements on Fside, ws 3, ∆E and Eratio with respect to Tight.
The alternative definitions are used to evaluate the background uncertainty.

7.5.2 Isolation distributions

Figure 7.2 presents the isolation distributions for prompt photons, misidentified

electrons and misidentified jets separately with the preselection of Eiso
T < 10 GeV

and piso
T < 5 GeV. The jet isolation distributions in γ-jet (also denoted γj) and jet-γ

(also denoted jγ)2 are taken from control regions by requiring one candidate to be TI

and the other candidate to be T̃. It can be observed that both calorimeter isolation

and track isolation variables have discriminating power against the jet background.

Furthermore, the track isolation requirement can also reject a large number of fake

photons due to misidentified electrons. The choice of isolation requirements follows

the Higgs mass measurements at
√
s = 8 TeV [85].

2γj corresponds to a candidate in which the leading candidate is a photon and the subleading
candidate is a jet. Similarly in jγ, the leading candidate is a jet and the subleading candidate is a
photon.
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Figure 7.2: Normalized distributions of calorimeter and track isolation profiles for
the leading (left) and subleading (right) candidates. The red histograms represent
the isolation distribution of prompt photons from the Sherpa γγ MC. The bold
histograms represent the isolation distributions of misidentified electrons from the
Z → ee MC and the green histograms are the jet distributions taken from T̃ control
regions in data.

Isolation correlations between the two candidates are also investigated. Fig-

ure 7.3 shows the isolation correlations in Eiso
T between the two candidates separately

for γγ, γj, jγ and jet-jet (jj) components. The isolation correlations are considered

for the jj background whereas they are neglected for the other components in the

matrix method described in Section 7.7. Similar isolation correlations between the

two selected candidates have been checked for piso
T as well and they are usually below

1% and safely ignored. Closure tests using a pseudo data sample composed of γγ,

γj, jγ, jj and ee components show that such a treatment of isolation correlations

gives unbiased results (Section 7.10.2).
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Figure 7.3: 2D distributions of Eiso
T between the leading and subleading candidates

for (a) γγ taken from Sherpa MC, (b) γj taken from the TIT̃I data control samples,
(c) jγ taken from the T̃ITI data control samples and (d) jj taken from the T̃IT̃I
data control samples.

7.6 Diphoton yield extraction

After the full event selection, a total of 312,754 data events are retained in the

analysis. The main background arises from misidentified jets or electrons.

The sections are organized as follows. An event weighting method called the 4×4

matrix method in Section 7.7 is employed to subtract the hadronic background. The

systematic uncertainty due to subtraction of the hadronic background is detailed in

Section 7.8.1. The extracted yield after hadronic background subtraction using the

matrix method is presented in Section 7.8.2. This is followed by another data-driven

method to estimate the electron background of the remaining sample in Section 7.9.

Section 7.10.1 gives a brief review of an alternative method to extract the diphoton

yield. A closure test is performed to study the performance of the proposed methods

in Section 7.10.2.
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7.7 4x4 matrix method

The section mainly focuses on the hadronic background subtraction, where the pho-

ton here means a photon or an electron. That is, for the purpose of this section the

electron background is included in the “signal”. The subtraction of the Drell-Yan

background is described in Section 7.9.

7.7.1 Description of the method

The event selection and the choice of the pair of photon candidates follows the

prescriptions as detailed in Section 7.4, up to the requirement that both photon

candidates be T and Eiso
T < 10 GeV and piso

T < 5 GeV (TT sample). Then the

photon candidate can belong to one of the following classifications according to the

calorimeter isolation energy Eiso
T and the track isolation energy piso

T : if Eiso
T < 6 GeV

and piso
T < 2.6 GeV, the candidate “passes” (P), otherwise “fails” (F). Therefore the

TT sample can be classified into four categories, based on the pass/fail status of

both candidates, thus obtaining NTT
PP , NTT

PF , NTT
FP , NTT

FF .3 These can be transferred

to the number of events for each final state NTT
γγ , NTT

γj , NTT
jγ and NTT

jj by solving

the following system of four linear equations:
NTT

PP

NTT
PF

NTT
FP

NTT
FF

 = E


NTT
γγ

NTT
γj

NTT
jγ

NTT
jj

 . (7.3)

E is a 4×4 matrix, whose coefficients describe the probabilities that a given final

state produces a certain pass/fail status.

If there were no correlation in isolation status between the two candidates, the

matrix E would take the following form:

E =


ε1ε2 ε1f2 f1ε2 f1f2

ε1(1− ε2) ε1(1− f2) f1(1− ε2) f1(1− f2)

(1− ε1)ε2 (1− ε1)f2 (1− f1)ε2 (1− f1)f2

(1− ε1)(1− ε2) (1− ε1)(1− f2) (1− f1)(1− ε2) (1− f1)(1− f2)

 ,

(7.4)

where εi and fi (“efficiency” and “fake rate”) are the probabilities that a signal

photon or a fake candidate respectively, passes the isolation requirement, and i = 1, 2

3 From now on, the first subscript refers to the photon candidate with highest EγT (“leading”),
whereas the second subscript is for the other candidate with the second highest EγT (“sub-leading”)
in the selected photon pair.
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refers to the leading and subleading candidates, respectively. The evaluation of

εi and fi coefficients are explained in Section 7.7.2. Since εi and fi have strong

dependence on |ηs2| and pT , it is necessary to estimate the probability for each final

state on an event basis.

The same equation can be rewritten on an event-by-event basis, by replacing

NTT
PP , NTT

PF , NTT
FP , NTT

FF with boolean status variables BTT
PP , BTT

PF , BTT
FP , BTT

FF and

replacing NTT
γγ , NTT

γj , NTT
jγ and NTT

jj with event weights WTT
γγ , WTT

γj , WTT
jγ , WTT

jj .

For the k-th event in the TT sample, Equation 7.3 takes the following form:
B

TT(k)
PP

B
TT(k)
PF

B
TT(k)
FP

B
TT(k)
FF

 = E(k)


W

TT(k)
γγ

W
TT(k)
γj

W
TT(k)
jγ

W
TT(k)
jj

 . (7.5)

B
TT(k)
XY are boolean status variables for the k-th event. For instance, if the k-th event

has two TI photon candidates, B
TT(k)
PP = 1, B

TT(k)
PF = B

TT(k)
FP = B

TT(k)
FF = 0. The

event weight W
TT(k)
αβ (with αβ any of γγ, γj, jγ, jj) can be obtained by inverting the

4×4 matrix in Equation 7.5:
W

TT(k)
γγ

W
TT(k)
γj

W
TT(k)
jγ

W
TT(k)
jj

 = [E(k)]−1


B

TT(k)
PP

B
TT(k)
PF

B
TT(k)
FP

B
TT(k)
FF

 . (7.6)

W
TT(k)
αβ is not bound between 0 and 1. But its average 〈W TT

αβ 〉 over a large number

of data events tends to the probability that the physical final state be αβ. In

particular, W
TT(k)
γγ describes how signal-like an event is, and summing W

TT(k)
γγ over

all the observed events in the TT region gives an estimator of the γγ yield in the

TT sample:

NTT
γγ =

∑
k∈TT

WTT(k)
γγ . (7.7)

In order to estimate the γγ yield in the TITI sample, the event weight W
TT(k)
γγ must

be refined to take into account the probability (ε
(k)
1 ε

(k)
2 ) that both photons fulfill the

isolation requirement:

NTITI
γγ =

∑
k∈TT

ε
(k)
1 ε

(k)
2 WTT(k)

γγ . (7.8)

Due to the presence of strong statistical correlations between matrix coefficients

and NTT
PP , NTT

PF , NTT
FP , NTT

FF , the bootstrap method is employed to calculate the
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statistical uncertainty for the extracted yield as detailed in Section 7.7.8.

7.7.2 Estimation of ε and f

A tag and probe sample is selected and we use the “probe” candidate to estimate ε

or f , where the “tag” refers to one photon candidate and the “probe” refers to the

other photon candidate. Three control regions are defined for the evaluation of the

matrix coefficients (ε and f) for the “probe” candidate:

• Non-tight region (T̃): as defined in Section 7.5.1. Such a sample is enriched

with fake photons but contains a small fraction of prompt photons.

• Non-isolated region (̃I): 9 < Eiso
T < 24 GeV and 6 < piso

T < 22 GeV. It is

used to ensure the control region is enhanced with fake photons. However, a

non-negligible fraction of photons might still be present as described in Sec-

tion 7.7.5.

• Anti-isolated region ( ˜̃I) : represents a candidate failing the isolation require-

ment, which is equivalent to the definition of “F”. It is used in the fake rate

calculation for the tag failing the isolation requirement.

The photon candidates in the probe sample are counted according to whether

they pass the identification criterion and whether they pass the isolation require-

ment. A few assumptions are given as follows:

(1) the ratio α in number of prompt photons of T̃ to T is independent of the

isolation status. It is estimated from Sherpa MC:

α =
nT̃
γ

nT
γ

=
nT̃I
γ

nTI
γ

=
nT̃Ĩ
γ

nTĨ
γ

. (7.9)

(2) the ratio β of number of fake photons from T to T̃ is independent of the

isolation status. It is data-driven:

β =
nT
j

nT̃
j

=
nTI
j

nT̃I
j

=
nTĨ
j

nT̃Ĩ
j

. (7.10)

(3) the Ĩ is chosen such that it is enriched with jets faking photons in this control

region. However, MC studies show that there is a non-negligible fraction of prompt

photons (∼ 7% in the TITĨ region) for the subleading candidate. The “leakage” of

signal γγ events into the Ĩ region is subtracted using the γγ Pythia sample. Thus
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after subtraction of the diphoton signal in the TĨ region, Equation 7.10 reads:

β =
nT
j

nT̃
j

=
nTĨ − nTĨ

γ,MC

nT̃Ĩ
. (7.11)

From these counts, the prompt and fake photon yields nXγ and nXj can be esti-

mated for any region X. Hence:

nT
γ = nT − nT

j = nT − βnT̃
j = nT − β(nT̃ − nT̃

γ ) = nT − β(nT̃ − αnT
γ ). (7.12)

nT
γ can be solved:

nT
γ =

nT − βnT̃

1− αβ
; nTI

γ =
nTI − βnT̃I

1− αβ
. (7.13)

Similarly for nXj = nX − nXγ , therefore:

nT
j =

β

1− αβ
(nT̃ − αnT); nTI

j =
β

1− αβ
(nT̃I − αnTI). (7.14)

The ε and f can be expressed as:

ε =
nTI
γ

nT
γ

=
nTI − βnT̃I

nT − βnT̃
; f =

nTI
j

nT
j

=
nT̃I − αnTI

nT̃ − αnT
. (7.15)

7.7.3 Requirements on the tag candidate

The following requirements are applied on the tag:

• In order to measure ε and f in the γγ, γj and jγ final states, all tag candidates

are required to be TI. For photon isolation efficiency ε, it is independent of the

isolation status of the other candidate. It was found that forcing non-isolation

on the tag in the calculation of the fake rate for the γj and jγ components

would enhance jj contamination in our “tag and probe” sample.

• In the fourth column (jj components), we explicitly require the tag candidate

to be T̃ such that the tag is enriched with fake photons. Furthermore, to

take into account the isolation correlations in the jj background component,

conditional probabilities are used, requiring the tag candidate to pass the

isolation criteria or not:

f1f2 →
1

2

[
f1f

P̂
2 + f P̂

1 f2

]
, (7.16)
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f1(1− f2)→ 1

2

[
f1

(
1− f P̂

2

)
+ f F̂

1 (1− f2)
]
, (7.17)

where P̂ and F̂ denote the pass/fail status of the tag. The ambiguity in

the choice of tag is solved by taking both choices and averaging them. fi

refers to the fake rate in the di-jet system with only the preselection isolation

requirement on the tag candidate.

Hence the 4x4 matrix E takes the following structure:

E =

 εP̂1 ε
P̂
2 εP̂1 f

P̂
2 f P̂1 ε

P̂
2

1
2

[
f1f

P̂
2 + f P̂1 f2

]
εP̂1

(
1− εP̂2

)
εP̂1

(
1− f P̂2

)
f P̂1

(
1− εP̂2

)
1
2

[
f1

(
1− f P̂2

)
+ f F̂1 (1− f2)

](
1− εP̂1

)
εP̂2

(
1− εP̂1

)
f P̂2

(
1− f P̂1

)
εP̂2

1
2

[
(1− f1) f F̂2 +

(
1− f P̂1

)
f2

](
1− εP̂1

) (
1− εP̂2

) (
1− εP̂1

) (
1− f P̂2

) (
1− f P̂1

) (
1− εP̂2

)
1
2

[
(1− f1)

(
1− f F̂2

)
+
(
1− f F̂1

)
(1− f2)

]

,
(7.18)

where εP̂i refers to the isolation efficiency given that the tag candidate passes the

isolation requirement. f P̂
i in the last three columns refers to the fake rate in the γj,

jγ and jj systems provided the tag candidate passes the isolation requirement.

7.7.4 Dependence of photon isolation efficiencies on kine-

matic variables

The isolation efficiencies vary as a function of pT and |ηs2|4 as well as the variable of

interest in diphoton Sherpa MC, as presented in Figure 7.45. For instance, the low-

mass region (0 < mγγ < 50 GeV) in Figure 7.4b is sensitive to the fragmentation

component, and thus having typically lower photon isolation efficiencies than the

relatively high-mass region (80 < mγγ < 90 GeV) in Figure 7.4c. Similarly, the

difference in photon isolation efficiency between 0 < pT,γγ < 5 GeV and 20 < pT,γγ <

30 GeV is non-negligible. These sub-samples in the specific phase space possess

unique kinematic properties compared to inclusive photon isolation efficiencies as

shown in Figure 7.4a.

When evaluating a differential distribution as a function of a kinematic variable

(e.g. mγγ) the efficiencies are evaluated as a function of pT , η and the relevant

variable.6 This is referred to as the 3D matrix method. A closure test, as depicted

4The nominal pT binning for the leading candidate: [25, 45, 55, 75, 600] GeV; the nominal
pT binning for the subleading candidate is:[25, 45, 55, 75, 600] GeV; the nominal η binning is:
[0, 0.6, 1.37, 1.56, 1.81, 2.37].

5In MC, the isolation efficiency is set to 1 if there are no events in the probed phase space.
6Due to limited statistics, the binning in the 3D isolation efficiency or fake rates for vari-

ables of interest. mγγ : [0, 50, 70, 80, 90, 100, 115, 150, 1800]; pT,γγ :[0, 5, 10, 20, 30, 45, 80, 750];
∆φγγ :[0, 1.5, 2.25, 2.65, 2.9, 3.05, 3.1416]; | cos θ∗η|: [0, 0.16, 0.32, 0.52, 0.8, 1]; aT:
[0, 4, 10, 20, 30, 45, 80, 450]; φ∗η:[0, 0.02, 0.039, 0.072, 0.114, 0.165, 0.312, 0.524, 1.153, 260000].
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in Section 7.10.2, shows that the 3D matrix method does much better than the 2D

matrix method in the differential spectrum.

7.7.5 Studies for tight non-isolated region

The estimation of photon isolation efficiencies assumed the contamination of prompt

photons in the TĨ region is negligible, as was assumed in the previous 7 TeV anal-

ysis [45]. Further studies are performed using γγ Sherpa and Pythia MC after

scaling the cross section to match that of the data 7. Table 7.2 presents the number

of events in the respective control regions for data and MC predictions. For the

leading candidate, the contamination from the diphoton signal in the TĨ region is

almost negligible. As for the subleading candidate, the Pythia MC predicts more

than ten times the diphoton yield in the TĨ region predicted by Sherpa. The

Pythia sample overestimates the ratio of fragmentation photons to direct photons.

However, the isolation tails of Sherpa are underestimated due to the requirement

that the separation ∆R between a parton and a photon is greater than 0.3. This

leakage from fragmentation photons in the TITĨ region cannot be ignored and is

corrected. The Pythia prediction is taken as default for subtracting the diphoton

signal in the TĨ region and the difference between γγ Sherpa and Pythia MC is

taken as a systematic uncertainty which is symmetrized.

Figure 7.5 shows the extracted β2 and ε2 from collision data using scaled γγ

Pythia (left) and Sherpa (right) respectively for subtracting the diphoton signal

leakage in the TITĨ region. β2 derived using Pythia γγ MC (Figure 7.5a) gives a

-10% change in comparison to that derived using Sherpa γγ MC (Figure 7.5b) for

the diphoton signal leakage subtraction in the TITĨ region, giving a -0.5% to -2%

change in ε2 as shown in Figure 7.5c and Figure 7.5d.

Control region data γγ Sherpa γγ Pythia

TĨTI 15732 163 258

TITĨ 31417 257 2852

Table 7.2: The diphoton signal events in the TĨ region as predicted by Sherpa and
Pythia separately. The diphoton signal leakage in the T̃Ĩ region is negligible.

7The Sherpa cross section is scaled by 1.3 and Pythia by 1.39 separately. The scaling factor is
the ratio of the data-driven estimate of the γγ signal over that of the corresponding MC predictions
in the TITI region.
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(d) 0 < pT,γγ < 5 GeV
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(e) 20 < pT,γγ < 30 GeV

Figure 7.4: Extracted photon isolation efficiency of the subleading candidate from
diphoton Sherpa MC in terms of pT and |ηs2| for (a) inclusive case, (b) 0 < mγγ <
50 GeV, (c) 70 < mγγ < 80 GeV, (d) 0 < pT,γγ < 5 GeV and (e) 20 < pT,γγ <
30 GeV.
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(a) β2 derived using Pythia γγ MC
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(b) β2 derived using Sherpa γγ MC
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(c) Data-driven ε2 using Pythia for β2 calcu-
lation
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(d) Data-driven ε2 using Sherpa for β2 calcu-
lation

Figure 7.5: Extracted β2 and ε2 from collision data using the scaled γγ Pythia
(left) and Sherpa (right) predictions for the diphoton signal leakage subtraction in
the TITĨ region.
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7.7.6 Effects of fakes from electrons on data-driven isolation

efficiencies

At around the Z-mass peak region (∼90 GeV), the data-driven isolation efficiencies

in pT and |ηs2| were found to be significantly below the prediction from diphoton

Sherpa MC samples as shown in Figure 7.6. The effect is particularly visible in

the endcap region (1.56 < |ηs2| < 2.37), where the fake rates due to misidentified

electrons can be much larger than in the barrel region. These photon candidates

due to electron mis-identifications are a “special” group of photons, which tends to

possess more EM activities and thus lower photon isolation efficiencies (Figure 7.6a).
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(b) Diphoton Sherpa MC

|
s2

η|

0
­0

.6

0
.6

­1
.3

7

1
.3

7
­1

.5
6

1
.5

6
­1

.8
1

1
.8

1
­2

.3
7

 (
G

e
V

)
T

p

25­35

35­45

45­65

65­600

 0.010±

0.826
 0.009±

0.792
 0.011±

0.821
 0.008±

0.864

 0.006±

0.810
 0.006±

0.802
 0.007±

0.826
 0.005±

0.871

 0.023±

0.761
 0.020±

0.786
 0.028±

0.816
 0.022±

0.845

 0.051±

0.865
 0.052±

0.779
 0.075±

0.788
 0.063±

0.833

(c) Drell-Yan MC

Figure 7.6: Extracted photon isolation efficiency of the subleading candidate as a
function of pT and |ηs2| for 80 < mγγ < 90 GeV for (a) collision data and predictions
from (b) the diphoton Sherpa MC and (c) the Drell-Yan MC.

7.7.7 Extracted isolation efficiency and fake rate

For the inclusive yield, ε and f are evaluated as a function of pT and |ηs2|. As for the

differential spectrum, ε and f are evaluated in pT and |ηs2| as well as the variable of

166



interest for the leading and subleading candidates separately. Neighbouring bins are

grouped together where the number of events is low, particularly at low and high

edges of pT . Since the photon isolation efficiencies or the fake rates might have a

strong dependence on the particular variable bin, bins are only merged along the pT

axis. The statistical correlations between neighbouring bins are taken into account

using the bootstrap technique as illustrated in Section 7.7.8.

Figure 7.7 illustrates the extracted photon isolation efficiency in bins of pT and

|ηs2|. The photon isolation efficiency has a strong dependence on |ηs2|, where the

photon isolation efficiency in the barrel region (|ηs2| < 1.37) is higher than in the

endcap region (1.56 < |ηs2| < 2.37) due to the presence of misidentified electrons.

It is fairly dependent on pT . The isolation fake rate in the γ-jet (jet-γ) system

is presented in Figure 7.8. The isolation fake rate decreases rapidly with pT and

has a fairly strong dependence on |ηs2| . Figure 7.9 shows the fake rate extraction

for the jj background (4th column in equation 7.18), where the tag candidate is

explicitly required to be T̃. The extracted fake rate for the jj background has a

strong dependence on the isolation status of the tag. For instance, the fake rate

with the tag passing the isolation criteria is higher than that with the tag failing

the isolation criteria.
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Figure 7.7: Extracted photon isolation efficiency of the leading (left) and subleading
(right) candidates from collision data as a function of pT and |ηs2| with the tag
candidate passing the TI requirement.
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Figure 7.8: Extracted fake rates of the leading (left) and subleading (right) candi-
dates in the γj and jγ background respectively from collision data as a function of
pT and |ηs2| and with the tag candidate passing the TI requirement.
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Figure 7.9: Extracted fake rate of the di-jet system of the leading (left) and sub-
leading (right) candidates from collision data as a function of pT and |ηs2| with the

tag candidate fulfilling the requirement of T̃ (top), T̃I (middle) and T̃˜̃I (bottom).

169



7.7.8 Bootstrap technique in matrix method

The bootstrap technique [86] is applied manually in the matrix method to estimate

the statistical uncertainty, which takes account of strong statistical correlations be-

tween the data-driven matrix coefficients and NTT
PP , NTT

PF , NTT
FP , NTT

FF . It is described

as follows:

• 1000 toy experiments of data are produced, where each event in data passing

Loose′4 is assigned a weight drawn randomly from a Poisson distribution of

mean 1.

• In the first loop, calculate the matrix coefficients ε and f in Equation 7.5 for

each toy experiment.

• In the second loop, calculate the event weights for each toy experiment.

• The inclusive γγ yield of 1000 toy experiments using the 2D matrix method is

presented in Figure 7.10 and the distribution follows a Gaussian. The extracted

nominal inclusive yield in γγ,γj, jγ, jj and the mean inclusive yield of 1000 toy

experiments are listed in Table 7.3. The mean yield of 1000 toy experiments

is in excellent agreement with the nominal yield within the uncertainty on the

mean value.

• One naively expects the root of mean squared (RMS) of these 1000 toy experi-

ments gives the correct statistical uncertainty, both for the inclusive yield and

for the differential cross-section in variables of interest. However, the large

statistical fluctuations in the 3D efficiencies or fake rates have resulted in a

“non-Gaussian” tail.

• In order to obtain the correct RMS of the distribution, we first apply a very

loose cut for the yield to be within 25 standard deviations of statistical un-

certainty from the nominal mean value and then calculate the RMS of the

distribution, which eliminates the very extreme tail of the distribution. After

which we require the yield to be within three RMS around the mean value.

Then this “truncated” RMS is recalculated and treated as the statistical un-

certainty of the yield. The procedure is applied in the 3D matrix method for

the differential spectrum only. In addition, any difference between the nom-

inal yield and the mean of the 1000 toy experiments is added in quadrature

with the statistical uncertainty returned by the bootstrap method, which is

the final statistical uncertainty.
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Figure 7.10: The γγ inclusive yield distribution of the 1000 toy experiments.

Final state Nominal Toy experiments
γγ 242155 242116±874
γj 45175 45165±529
jγ 17974 17992±425
jj 7450 7461±228

Table 7.3: Signal (γγ) and background (γj, jγ, jj) nominal yields and the mean
inclusive yields with RMS of 1000 toy experiments in the TITI region.

7.7.9 The differential spectrum

The extracted differential spectra in terms of the kinematic variables mγγ, pT,γγ,

∆φγγ, | cos θ∗η|, aT and φ∗η are illustrated in Figures 7.11, for the γγ, γj+jγ and jj

final states. The “Guillet shoulder” [41] can be observed in the pT,γγ and aT spectra

due to an enhancement of the fragmentation component. The diphoton signal purity

as a function of mγγ, pT,γγ, ∆φγγ, | cos θ∗η|, aT and φ∗η is presented in Figure 7.12.

The diphoton signal purity increases with mγγ as expected because the fake rate

decreases rapidly with pT as shown in Figure 7.8 and Figure 7.9.
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Figure 7.11: The extracted differential spectrum in terms of mγγ, pT,γγ, φ
∗
η, aT,

∆φγγ and | cos θ∗η| for the Nγγ (yellow), Nγj + Njγ (orange), and Njj (light red)
contributions. Only the statistical uncertainty (black line) is shown here.
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Figure 7.12: The extracted diphoton signal purity in terms of mγγ, pT,γγ, φ
∗
η, aT,

∆φγγ and | cos θ∗η|. Only the statistical uncertainty (red line) is shown here and is
obtained using the bootstrap method.
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7.8 Final results from the matrix method

7.8.1 Background systematic uncertainties in the matrix

method

The following systematic effects have been considered for the matrix method.

• T̃ definition

The nominal choice of the jet control sample is comprised of events passing the

Loose′4 selection but failing the T criteria. The analysis is repeated using

alternative T̃ definitions in which events fail the T requirement but pass the

Loose′2, Loose′3 or Loose′5 requirements (See Section 7.5.1). The largest

difference is considered as the systematic uncertainty. As the jet properties are

extrapolated from the T̃ region to the T region, such a variation is considered

to cover the systematic effects due to the correlation between tightness and

isolation in jets.

• Photon ID systematics

The photon identification leakage factor α = nγ
T̃
/nγT, defined as the ratio of T̃

photons to T photons in Equation 7.9 in Section 7.7.2, is estimated directly

from γγ MC. It is related to the T photon identification efficiency determined

with respect to the Loose′4 (also denoted as L′ in the following equation)

sample εT |L′ :

α =
nγ
T̃

nγT
=
nγ
T̃

+ nγT
nγT

− 1 =
1
nγT

nγ
T̃

+nγT

− 1 =
1

εT |L′
− 1. (7.19)

Using the photon identification efficiency scale factors and their systematic

uncertainties derived by the e/γ performance group [83], we can calculate the

corresponding change in α using Equation 7.19.

• Ĩ region definition

An additional systematic uncertainty arises due to the choice of non-isolated

region Ĩ (9 < E iso
T < 24 GeV and 6 < piso

T < 22 GeV) to normalise the

T̃ sample before extraction of the photon isolation efficiency. The related

systematic effect is evaluated by changing the Ĩ requirements to one of the

following criteria:

– 7 < Eiso
T < 17 GeV and 6 < piso

T < 22 GeV

– 11 < Eiso
T < 40 GeV and 6 < piso

T < 22 GeV
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– 9 < Eiso
T < 24 GeV and 4 < piso

T < 15 GeV

– 9 < Eiso
T < 24 GeV and 8 < piso

T < 40 GeV

These ranges are chosen such that the control region has similar statistics to

the default choice. The maximum deviation from the nominal result is then

taken as a systematic uncertainty.

• γγ signal leakage in the Ĩ region

Another source of systematic uncertainty arises from the photon signal leak-

age particularly for the subleading candidate in the Ĩ region, as explained in

Section 7.7.5. The systematic uncertainty is taken as the difference between

the Sherpa and Pythia predictions for the TĨ region and the systematic

uncertainty of the final yield is symmetrized.

• Difference between the inclusive yield using the 2D matrix method

and the integrated yield of the differential spectrum

Table 7.4 shows the total signal and background yields returned by the matrix

method if computed in the inclusive case using the 2D matrix method or

by decomposing it with respect to the different diphoton variables and then

integrating over the bins using the 3D matrix method. A maximum of 0.2%

difference is observed in the diphoton signal purity and is considered as an

additional systematic uncertainty in the inclusive case.

Variables Nγγ+DY Nγj Njγ Njj

Inclusive 242155 45175 17974 7450
mγγ 242130 45079 17638 7908
φ∗η 242498 44656 17455 8146

aT 242297 44964 17480 8012
QT 242089 45393 17481 7791
∆φ 242680 44663 17480 7931
cosθ∗η 241978 45020 17999 7757

Shift +525
−177

+218
−519

+25
−519

+696
0

Table 7.4: Total signal and background yields returned by the matrix method if
computed in the inclusive case using the 2D matrix method or by decomposing it
with respect to the different diphoton variables and then integrating over the bins
using the 3D matrix method. The maximum difference is taken as an additional
systematic uncertainty in the inclusive case.
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7.8.2 Matrix method results

Inclusive yields

A summary of the dominant uncertainties is reported in Table 7.5. Most of the

systematic uncertainties are data-driven except for the systematic effects from the

photon ID description defined in Equation 7.9 and the signal leakage in the Ĩ re-

gion as detailed in Section 7.7.5. The dominant systematic uncertainty arises from

the Loose′ variation and the signal leakage in the Ĩ region. Table 7.6 shows the

extracted yield with the statistical uncertainty and the total systematic uncertainty.

Photon ID T̃ definition Ĩ definition Ĩ signal leakage Variable
γγ +2968 -2980 +7664 -5990 +635 -1189 +4721 -4721 +525 -177
γj +1204 -1466 +3634 -5583 +981 -596 +4536 -4536 +218 -519
jγ +1100 -1084 +1243 -1279 +134 -399 +155 -155 +25 -519
jj +676 -418 +1114 -802 +121 -48 +339 -339 +696 0

Table 7.5: List of the main systematic uncertainties considered in the matrix method.
The numbers shown here are the difference with respect to the nominal yield for
each source of systematic uncertainty for both signal and background components.
Central values use the Loose′4 preselection and Sherpa leakage factors in input.
The signal leakage in the Ĩ region is taken from Pythia for the nominal yield. The
signal leakage in the Ĩ region is detailed in Section 7.7.5. The last column termed
“Variable” represents the difference between the integrated yield over bins of the
differential spectra using the 3D matrix method and the inclusive yield estimated
using the 2D matrix method as presented in Table 7.4.

Event yield Fractions in the TITI sample
γγ 242155 ± 874 (stat.) +9514

−8276 (syst.) 77.43% ± 0.28% (stat.) +3.04
−2.65% (syst.)

γj 45175 ± 529 (stat.) +6020
−7384 (syst.) 14.44% ± 0.17% (stat.) +1.92

−2.36% (syst.)
jγ 17974 ± 425 (stat.) +1673

−1807 (syst.) 5.75%± 0.14% (stat.) +0.53
−0.58% (syst.)

jj 7450± 228 (stat.) +1521
−967 (syst.) 2.38% ± 0.07% (stat.) +0.49

−0.31% (syst.)

Table 7.6: Total yields for two candidates passing the TITI criteria. The extracted
event yields for γγ, γj, jγ and jj are shown in the second column with the fraction
of the corresponding component in the TITI sample in the third column. Both the
statistical and total systematic uncertainties are listed. The statistical uncertainty
is estimated using a bootstrap technique as explained in Section 7.7.8.

Differential spectrum

The systematic uncertainties on the differential spectra are evaluated in a consistent

way to the inclusive yield. The relative systematic uncertainties in bins of mγγ, pT,γγ,
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∆φγγ, | cos θ∗η|, aT and φ∗η are illustrated in Figure 7.13. Systematic uncertainties in

the differential spectra are dominated by variations in the T̃ definition in almost all

bins at around the 2% to 4% level. Other main systematic effects include variations

in the signal leakage in the Ĩ region for some particular phase space (e.g. ∼2% for

2.7 < ∆φγγ< 3.15) and variations of the photon ID descriptions by MC, which stays

almost flat (∼ 1.5%). The extracted differential spectrum with statistical and total

error per bin are presented in Figure 7.14.
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Figure 7.13: Relative systematic uncertainties on the diphoton yield as a function
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η, aT, ∆φγγ and | cos θ∗η|.
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Figure 7.14: The extracted differential spectrum in terms of mγγ, pT,γγ, φ
∗
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are represented. Yields and errors are normalised to the bin width.

178



7.9 Background from isolated electrons

The matrix method leaves the final states containing isolated electrons untouched

after hadronic background subtraction. An electron can be wrongly reconstructed

as a converted photon if the tracker fails to associate a B-layer hit to the track or it

associates a spurious conversion track to it. For instance, an excess of eγ two-body

final states with an invariant mass close to that of the Z boson is a clear indication

misidentification of e → γ.

Several physics processes can contribute to such a background:

• final states with both electrons misidentified as photons (Z/γ∗ → ee, WW →
eνeν and WZ → eνee).

• final states with one genuine photon and one electron wrongly reconstructed

as a photon (γZ → γee and γW → γeν).

7.9.1 Objects selection

The photon selection is the same as in Section 7.4. The electron candidates are

required to pass the same isolation requirement and satisfy the tight++ electron

identification criteria [87]. To ensure electrons are not reconstructed at the same

time as photons, the electron is considered as a photon clone if it fulfills:

∆Reγ =
√

(ηcluse − ηclusγ )2 + (φcluse − φclusγ )2 < 0.05, (7.20)

where ∆Reγ is the separation between the reconstructed electron and photon clusters

in the ECAL.

For the two-body final-states, an event can be reconstructed as ee, eγ or γγ.

For the ee and eγ final states, the electron track is required to be associated with

the primary vertex. The γγ event selection in the Z → ee MC strictly follows the

selection requirements detailed in Section 7.4.

7.9.2 Electron background estimation

The e→ γ fake rates can be extracted by examining the number of the reconstructed

ee, eγ and γe events with invariant mass around the Z-boson mass region. For

single electron and photon final states, Nx represents the number of the observed

final states containing an object reconstructed as x (x can be either e or γ) which

satisfies the TI selection criteria, and nx represents the number of reconstructed
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final states containing a true object x. Thus, the observed counts Nγ, Ne can be

expressed in terms of the true counts nγ, ne by the following linear equations:(
Nγ

Ne

)
=

(
εγ ρe→γ

ργ→e εe

)
×

(
nγ

ne

)
, (7.21)

where εγ (εe) corresponds to the probability for a true γ (e) to be identified as

such and fulfill the TI requirement, ρe→γ is the probability for a true electron to be

identified as a TI photon, ργ→e represents the probability for a true photon to be

identified as a TI electron.

Equation 7.21 takes a simpler form once we incorporate the efficiencies into the nx

counts, i.e., N sig
x = εxnx, and then the fake rates can be expressed as fe→γ = ρe→γ/εe

and fγ→e = ργ→e/εγ. Hence Equation 7.21 becomes:(
Nγ

Ne

)
=

(
1 fe→γ

fγ→e 1

)
×

(
N sig
γ

N sig
e

)
, (7.22)

where N sig
γ/e corresponds to the number of true γ/e that are identified as such and

fulfills the TI criteria. fe→γ and fγ→e essentially represent the ratio between the

number of objects that are wrongly identified and those correctly identified:

fe→γ =
Ne→γ

Ne→e
; (7.23)

fγ→e =
Nγ→e

Nγ→γ
. (7.24)

For two-body final states, Nxy denotes the observed number of the two-body final

states which are reconstructed as xy and satisfy the TITI selection criteria, and N sig
xy

denotes the number of true final states xy passing the TITI selection criteria. Since

the fake rates for an electron to be wrongly reconstructed as a photon depend on

particularly the momentum of the initial electrons, the choice of the asymmetric

cuts on momentum of the reconstructed photons leads naturally to the distinction

of the fake rates for the leading and subleading candidates, where the superscript

“1” refers to the leading candidate and the superscript “2” refers to the subleading
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candidate. Thus one can obtain N sig
xy by solving the following linear equations:


Nγγ

Neγ

Nγe

Nee

 =


1 f 1

e→γ f 2
e→γ αee→γγf

1
e→γf

2
e→γ

f 1
γ→e 1 f 1

γ→ef
2
e→γ f 2

e→γ

f 2
γ→e f 2

γ→ef
1
e→γ 1 f 1

e→γ

αγγ→eef
1
γ→ef

2
γ→e f 2

γ→e f 1
γ→e 1



N sig
γγ

N sig
eγ

N sig
γe

N sig
ee

 .

(7.25)

αee→γγ and αγγ→ee are introduced to account for correlations in the e→ γ and γ → e

fake rates in the two-body final states, as detailed in Section 7.9.3.

After the manipulation of the matrix, one can obtain N sig
γγ , N sig

eγ , N sig
γe and N sig

ee .

As for Nγγ, it can be decomposed as a sum of the contributions from the true xy

final states:

Nγγ = N sig
γγ +N∗eγ +N∗γe +N∗ee; (7.26)

N∗eγ = f 1
e→γN

sig
eγ ; N∗γe = f 2

e→γN
sig
γe ; N∗ee = αee→γγf

1
e→γf

2
e→γN

sig
ee . (7.27)

The number of the electron background events Nee+eγ+γe is

Nee+eγ+γe = N∗eγ +N∗γe +N∗ee = Nγγ −N sig
γγ . (7.28)

7.9.3 Extraction of the e→ γ and γ → e fake rates

fe→γ can be extracted from two-body decays in data by looking at the number of the

reconstructed ee, eγ and γe events observed with a pair invariant mass consistent

with that of objects coming from the Z boson decay. The fake rates for the leading

and the subleading electrons, represented by f 1
e→γ and f 2

e→γ respectively, are eval-

uated by counting the observed number of ee (Nee), eγ (Neγ) and γe (Nγe) events

with invariant mass close to the Z-mass region:

f 1
e→γ =

Nγe

Nee

; f 2
e→γ =

Neγ

Nee

(data-driven). (7.29)

The estimations of f 1
e→γ and f 2

e→γ are completely data-driven as explained in Sec-

tion 7.9.4.

The fake rate for both photons to be misidentified electrons can be determined

from the Z → ee MC:

fee→γγ =
Nγγ

Nee

(Z → ee MC). (7.30)
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A correlation factor αee→γγ is introduced to account for the correlation in e→ γ

misidentification fake rates between ee → γγ and ee → eγ (ee → γe) determined

from Z → ee MC:

αee→γγ =
fee→γγ
f 1
e→γf

2
e→γ

=
Nγγ/Nee

Nγe/NeeNeγ/Nee

=
NγγNee

NγeNeγ

(Z → ee MC). (7.31)

The correlation factor is approximately 1 if the photon misidentification fake rate

is independent of the other candidate. However, this is not the case as the track

isolation energy needs the information of the primary vertex from the two candidates.

Similarly, a photon can be mis-reconstructed as an electron. The fake rates for

the leading and subleading photons, denoted as f 1
γ→e and f 2

γ→e respectively, can be

determined from γγ Sherpa MC and are defined as follows:

f 1
γ→e =

Neγ

Nγγ

; f 2
γ→e =

Nγe

Nγγ

(γγ Sherpa MC). (7.32)

The fake rate for both electrons to be misidentified as photons can be obtained from

the γγ Sherpa MC:

fγγ→ee =
Nee

Nγγ

(γγ Sherpa MC). (7.33)

The correlation factor for γγ → ee, determined from the γγ Sherpa MC, is

introduced and defined as:

αγγ→ee =
fγγ→ee
f 1
γ→ef

2
γ→e

=
Nee/Nγγ

Nγe/NγγNeγ/Nγγ

=
NγγNee

NγeNeγ

(γγ Sherpa MC). (7.34)

7.9.4 Extraction of e→ γ fake rates from data

Using Equation 7.29, f 1
e→γ and f 2

e→γ can be measured in a mass window ([80, 100] GeV)

around the Z peak region for ee and eγ (γe) events. The ET cuts are lowered to be

30 GeV for both leading and subleading candidates to avoid the distortion of the Z

mass distribution due to the ET turn-on effects.

The electrons misidentified as photons are reconstructed using the energy cal-

ibration parameters for photons. Therefore, the invariant mass is slightly shifted

by 1 GeV compared to the correct calibration (Figure 7.15a) because the inner

tracker used for the electron reconstruction has a slightly better resolution than the

calorimeter. In order to correctly estimate the electron background in γγ contri-

butions, an energy correction of -1.5% is applied to the electrons to recompute the

variables (Figure 7.15b).
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A convolution of a double-sided Crystal ball function and a Breit-Wigner dis-

tribution with a fixed Z boson width of ΓZ = 2.495 GeV is applied to fit the mass

peak, as presented in Figure 7.16 with a bold line, where the defined mass window

is [80, 100] GeV for the extraction of fake rates. An exponential fit was used to

subtract the hadronic background in eγ (γe) data for the purpose of estimating

e→ γ fake rates in data. The slope of the exponential shape was determined using

120 < MXY < 240 GeV region for the ee and eγ (γe) final states respectively. Ta-

ble 7.7 compares the number of the observed ee, eγ, γe and γγ events between MC

predictions and data. A summary of the e → γ fake rates determined from data

and MC as well as correlation factors are illustrated in Table 7.8.

 (GeV)XYM

60 70 80 90 100 110 120 130

N
o
rm

a
liz

e
d
 E

n
tr

ie
s

­310

­210

­110

ATLAS Work in progress

­1 Ldt = 20.3 fb∫ = 8 TeV, s

ee

 eγ

γe

γγ

(a) Before energy corrections for e

 (GeV)XYM

60 70 80 90 100 110 120 130

N
o
rm

a
liz

e
d
 E

n
tr

ie
s

­310

­210

­110

ATLAS Work in progress

­1 Ldt = 20.3 fb∫ = 8 TeV, s

ee

 eγ

γe

γγ

(b) After energy corrections for e

Figure 7.15: Normalized invariant mass distribution of ee (red histograms), eγ (blue
histograms), γe (green histograms) and γγ (cyan histograms) from Z → ee Sherpa
MC. A 1 GeV shift in the invariant mass peak position between γγ and ee final
states is observed in MC before the energy correction shift for electrons.
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Figure 7.16: Invariant mass distribution of ee, eγ and γe in (a) MC and (b) data.
In Figure 7.16b, the dashed line represents the exponential shape used to subtract
the hadronic background for ee (green dashed), eγ (red dotted) and γe (red dashed)
in data. The γγ invariant mass distribution (left) is also shown as pink dots.

The following systematic uncertainties on e→ γ fake rates are considered.

• ET cuts: the nominal ET cuts used for the estimation of fake rates were chosen

in order not to create a distortion of the mXY shape. It has been checked using

Z → ee MC that changing the ET requirements to the nominal ones has a

small effect on e→ γ fake rates.

• fit region of the invariant mass for the fake rate: the fake rate is estimated in

the Z-mass peak region and applied everywhere. A systematic uncertainty is

obtained by taking the difference between the nominal fake rate determined

from the Z → ee MC and the one recomputed with E1
T < 30 GeV and E2

T <

30 GeV across the whole mass region.

• exponential shape component for the hadronic background for ee and eγ final

states: to take into account the processes with fake electrons or photons due

to hadronic background, an exponential shape component is considered. But

processes with a genuine photon (e.g. Wγ events) could have a component

without resonant events. To account for such systematic effects, the fake rate

is computed without the exponential component in data.

• calibration of the ee and eγ yields: for the nominal yield, an energy correction

of -1.5% is applied to the electrons to recompute the variables in both data and

MC; the energy corrections are turned off to estimate the systematic effects

due to this procedure in data.

184



Table 7.9 summarises the systematic uncertainties on e → γ fake rates. The

dominant systematic uncertainties arise from the use of exponential shape compo-

nent for the hadronic background subtraction in the observed ee, eγ and γe final

states.

Nee Neγ Nγe Nγγ

Z → ee MC 2749103 157664 133847 9474
γγ MC 5 394 406 52535
data 3085285 174017 153207 -

Table 7.7: Events of xy pair reconstructed in MC and data for 80< MXY <100 GeV,
used for extraction of fake rates. MC is normalised to the integrated luminosity of
data.

f 1
e→γ f 2

e→γ αee→γγ
Z → ee MC 0.0487±0.0003 0.0574±0.0003 1.2343±0.0267
Z → ee data 0.0502±0.0001 0.0563±0.0002 -

Table 7.8: Summary of e → γ fake rates measured from data and MC. Only the
statistical uncertainty is given.

f 1
e→γ f 2

e→γ αee→γγ
ET cuts 0.0009 -0.0008 0.0321
Fit region 0.0004 0.0012 0.0004
Exponential shape 0.0011 0.0028 0
Energy calibration -0.0008 -0.0001 -0.0059

Table 7.9: Summary of systematic uncertainties on f 1
γ→e, f

2
γ→e and αee→γγ. The

dominant systematic uncertainty arises due to the use of the exponential shape to
subtract the hadronic background faking electrons or photons.

7.9.5 Extraction of γ → e fake rates from MC

Using Equation 7.32, f 1
γ→e and f 2

γ→e can be determined from the diphoton Sherpa

MC. We use the nominal ET requirements here and the fake rates are computed

across the whole mass spectrum. The γ → e fake rates are below 1% as shown

in Table 7.10. Strictly speaking, one should use three-body decay of Z → eeγ

and Z → eee around the Z-mass peak region in data as done in [46] to determine

γ → e fake rates. However, the data sample only contains hundreds of events for

Z → eeγ and Z → eee even after lowering the requirement on ET of the three

objects to 25 GeV. γ → e fake rate was found to have a small effect on the electron
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background estimation and it is varied by 100% in the inclusive case as a cross-check

in Section 7.9.7.

f 1
γ→e f 2

γ→e αγγ→ee
γγ MC 0.0084±0.0001 0.0086±0.0001 1.3850±0.1434

Table 7.10: Summary of γ → e fake rates measured in the diphoton Sherpa MC.
Only statistical uncertainties are given.

7.9.6 Impurity estimation in differential spectra
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Figure 7.17: Signal purity as a function of mXY for the observed eγ, γe and ee
final states separately determined using Figure 7.16b. The signal purity is defined
as the ratio of genuine eγ (ee) events to genuine eγ (ee) events plus the hadronic
background.

For all kinematic variables of interest, we carry out the following procedures.

• The hadronic background in eγ, γe and ee final states can be subtracted using

an exponential shape as shown in Figure 7.16b; the fraction of genuine eγ, γe

and ee events can be parameterized as a function of mXY (Figure 7.17) and

propagated into the differential spectrum of other kinematic variables. For

signal purities outside the defined mass ranges, we use the signal purity with

a non-zero value closest to that bin.

• The histogram of hγγ, heγ, hγe and hee for the reconstructed (observed) γγ, eγ

γe and ee final states in data, passing the TITI selection, are filled. For each

event in heγ, hγe and hee, instead of filling with the data event weight 1, they

are filled event by event with the signal purity parameterized as a function of

the invariant mass and are shown respectively in Figure 7.17. As a result, we

obtained Nγγ, Neγ, Nγe and Nee after hadronic background subtraction, the

left hand side of Equation 7.25.
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• Using Equation 7.25, one can obtain the number of true final states of γγ, eγ,

γe and ee. With Equation 7.27, one can determine the contribution to the

electron background in the observed γγ state in terms of N sig
eγ , N sig

γe and N sig
ee

respectively. It should be noted here that f 1
e→γ and f 2

e→γ are determined with

hadronic background subtraction using the exponential shape.

• In this step, the γγ histogram with hadronic background subtracted is kept

the same, but we fill heγ, hγe and hee with a normal event weight of 1 for

each event passing the TITI selection, i.e., no background subtraction for eγ,

γe and ee final states. And use e → γ fake rates without hadronic back-

ground subtraction. Thus the electron background can be recomputed using

Equation 7.27.

• Since processes with a genuine photon could have a component without reso-

nant events for the observed eγ and γe final states, the central value is taken

as the average obtained using Equation 7.25 with and without hadronic back-

ground subtraction. The systematic uncertainty is taken as half the difference

between the extracted electron background with and without hadronic back-

ground subtraction in the observed eγ, γe and ee samples.

• For each histogram bin, the impurity Ie can be determined:

Ie[bin] = 1−
hsig
γγ [bin]

hγγ[bin]
, (7.35)

where hsig
γγ is the histogram filled with the extracted γγ yield after the electron

background subtraction.

• The statistical uncertainty is obtained by varying each input parameter in

Equation 7.25 by one standard statistical deviation. Although there is a small

degree of statistical correlations between different input parameters in Equa-

tion 7.25, such correlations are ignored because they have negligible effect

on the extracted diphoton yield considering the impact of the total statistical

uncertainty from the electron background on the diphoton yield is below 0.1%.

• The systematic uncertainty on f 1
e→γ, f

2
e→γ and αee→γγ, except the use of the

exponential shape to subtract hadronic background in the ee, γe and ee final

states, are propagated through the matrix to the inclusive yield as well as

each bin in the differential spectrum. Each systematic variation is performed

separately with and without hadronic background subtraction in the eγ, γe
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and ee final states, which is then averaged. As a result, the difference with

respect to the nominal value is taken as a systematic uncertainty.

7.9.7 Results

The number of events with or without hadronic background subtracted for the ob-

served ee, eγ and γe final states are shown in Table 7.11, in which the number of

observed γγ final state is only shown after background subtraction as estimated

in Section 7.7. The fraction of the hadronic background in the observed ee state

is ∼2% whereas it is ∼10% in the eγ state as returned by the exponential shape.

The number of the electron background events extracted with or without hadronic

background subtracted for the observed ee, eγ and γe final states are shown in

Table 7.12. The nominal value of the electron background contribution in the γγ

final state is taken as the average of the derived electron background events with

or without the hadronic background subtraction in the observed eγ, γe and ee final

states. A summary of the systematic uncertainties on the number of electron back-

ground is illustrated in Table 7.13. The dominant systematic uncertainty is due to

the treatment of the subtraction of the hadronic background. The number of the

estimated electron background is 11,083 ± 221 (stat.) ± 1310 (syst.).

The γ → e fake rates has been varied by ±100% to check its effect, which

gives ±220 on the number of the electron background. Such a variation is quite

conservative and this is only done as a cross-check.

The bin-by-bin impurities with the associated systematic uncertainties and the

effect of subtraction of electron background are shown for mγγ, pT,γγ and φ∗η in

Figure 7.18, and aT, ∆φγγ and | cos θ∗η| in Figure 7.19.

Data (Observed) Nγγ Neγ Nγe Nee

Background subtraction 242129 ± 874 157487 ± 379 144453 ± 367 2782145 ± 1646
No subtraction - 185646 ± 431 163524 ± 404 2847967 ± 1688

Table 7.11: The number of events with or without hadronic background subtraction
in the observed eγ, γe and ee final states in data. The observed number of γγ final
state is with hadronic background subtracted, as explained in Section 7.7.
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Electron background
Background subtraction 9806 ± 211 (stat.)
No subtraction 12360 ± 231 (stat.)
Average 11083 ± 221 (stat.)

Table 7.12: The number of electron background events in the observed γγ state
with or without hadronic background subtraction for the observed eγ, γe and ee
final states.

ET cuts Fit region Calibration Exponential shape
272 74 -88 1276

Table 7.13: Systematic uncertainties on the estimated number of the electron back-
ground events. All systematic uncertainties are symmetrized for the final results.
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Figure 7.18: Bin by bin electron impurity (left) and differential TITI yield before
and after electron background subtraction (right) for mγγ, pT,γγ and φ∗η.
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Figure 7.19: Bin by bin electron impurity (left) and differential TITI yield before
and after electron background subtraction (right) for aT, ∆φγγ and | cos θ∗η|.
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7.10 An alternative method and closure tests

7.10.1 2D fit method

An alternative method to decompose the data sample is the 2D fit method, which

uses a maximum likelihood fit to the two-dimensional distributions of Eiso
T of the two

photon candidates. This method was developed by others and so a brief introduction

to the 2D fit method is given in Appendix A.

The main systematic uncertainties for the 2D fit method arise due to the photon

isolation profile description in the γγ MC, T̃ definition variations and the photon

ID description in the γγ MC.

7.10.2 Closure tests

A pseudo-data sample of known compositions, containing around the same amount

of γγ, γj, jγ, jj and ee as in the real data is produced to validate both methods.

The γγ and ee events are taken from Sherpa and Powheg+Pythia samples

respectively to keep the correlations between the two candidates. The γj, jγ and jj

events are built using TT̃, T̃T and T̃T̃ regions in data. For the T̃ leg (jet control

sample), the ratio from T to T̃ derived in Equation 7.10 is employed to extrapolate

the jet component back to the T region in the pseudo data. This is effectively

ignoring the correlations between tightness and isolation for jets. For the T leg in

the γj and jγ control samples, we replace the T leg by a random photon from the

Sherpa γγ sample with similar Eγ
T and |ηs2|

The electron background remains untouched for the closure test of the matrix

method. No biases can be observed inclusively for the 2D or 3D matrix method

as listed in Table 7.14. However, relatively large discrepancies for the 2D matrix

method in the differential spectrum are found whereas no bias is observed in the

differential spectra using the 3D matrix method as depicted in Figure 7.20. The

closure tests have been performed for the 2D fit method and no bias on the γγ yield

inclusively or in the differential spectrum is observed.

7.11 Comparison between the two methods

The two methods have in common the use of shower shape variables, calorimet-

ric isolation and track isolation energy, to distinguish the photon signal from the

hadronic background, and the data-driven estimation of jet background relying on

the T̃ control region. For these reasons, they cannot be considered as completely
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Figure 7.20: Ratio of the 2D (3D) matrix method signal yield to the actual signal
yield as a function of mγγ, pT,γγ, φ

∗
η, aT, ∆φγγ and | cos θ∗η|. Uncertainties shown

are statistical uncertainties. Biases are observed in certain regions of variables when
using the 2D matrix method while no bias is observed using the 3D matrix method.
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Process Actual yield 2D Matrix Method 3D Matrix Method

γγ + DY 243,584 243,428±899 244,530±1969
γj 45,000 46,389±663 45,396±1407
jγ 18,000 17,608±492 16,802±1220
jj 7000 6167±308 6864±935

Table 7.14: Closure test for the 2D and 3D matrix methods. The ee component is
included in the pseudo-data. The output from both the 2D and 3D matrix methods
gives a consistent γγ yield compared to the actual yield. The statistical fluctua-
tions are slightly larger in the 3D matrix case. The bootstrap method described in
Section 7.7.8 is used to extract the statistical uncertainty.

independent and therefore their outcomes cannot be combined.

7.11.1 Inclusive yield comparison

The inclusive yield of the two data-driven techniques are illustrated in Table 7.15.

The yields obtained from the 4x4 matrix method is compatible with the 2D fit

method within the systematic uncertainty.

Event Entry 2D Fit 4x4 matrix

Nγγ 235,392 ± 1,022 (stat.) +8,070
−8,672 (syst.) 231,072 ± 901 (stat.) +9658

−8437 (syst.)

Nγj 45,465 ± 672 (stat.) +8,470
−8,780 (syst.) 45175 ± 529 (stat.) +6167

−7457 (syst.)

Njγ 18,699 ± 590 (stat.) +4,391
−4,693 (syst.) 17974 ± 425 (stat.) +1728

−1868 (syst.)

Njj 4,873 ± 352 (stat.) +2,096
−1,461 (syst.) 7450 ± 228 (stat.) +1804

−1469 (syst.)

Nee+eγ 8,275 ± 680 (stat.) +2,777
−1,396 (syst.) 11,083 ± 221 (stat.) +1310

−1310 (syst.)

Sum 312704 312754

Table 7.15: Yields for the 2D fit and 4x4 matrix method determined for a sample
of two photon candidates passing TITI criteria. Both signal and background com-
ponents are in agreement between the two methods within the quoted systematic
uncertainties.

7.11.2 Comparison of differential spectra between the two

background decomposition techniques

The γγ differential spectra obtained with the 2D fit method and matrix method are

compared in Figures 7.21, Figure 7.22 and Figure 7.23. The yields from the two

methods are consistent with each other for all variables.

A comparison of the γj + jγ + jj background between the 2D fit and the matrix

method was performed, as illustrated in Figure 7.24. The hadronic background

obtained from the 3D matrix method and 2D fit method is in good agreement.
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Figure 7.21: Comparison of the γγ yield between the matrix method (green points
with error bars) and the 2D fit method (blue points with error bars) in mγγ and
pT,γγ. The green band represents the total uncertainties from the matrix method
and the total uncertainties from the 2D fit method are indicated by the blue band.
The ratio (red dots with error bars) of the diphoton yield of the 2D fit method to
that of the matrix method is calculated assuming no statistical correlations between
the two methods.
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Figure 7.22: Comparison of the γγ yield between the matrix method (green points
with error bars) and the 2D fit method (blue points with error bars) in φ∗η and aT.
The green band represents the total uncertainties from the matrix method and the
total uncertainties from the 2D fit method are indicated by the blue band. The
ratio (red dots with error bars) of the diphoton yield of the 2D fit method to that
of the matrix method is calculated assuming no statistical correlations between the
two methods.
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Figure 7.23: Comparison of the γγ yield between the matrix method (green points
with error bars) and the 2D fit method (blue points with error bars) in ∆φγγ and
| cos θ∗η|. The green band represents the total uncertainties from the matrix method
and the total uncertainties from the 2D fit method are indicated by the blue band.
The ratio (red dots with error bars) of the diphoton yield of the 2D fit method to
that of the matrix method is calculated assuming no statistical correlations between
the two methods.
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Figure 7.24: Comparison of the γj + jγ + jj yield between the matrix method
(triangle) and the 2D fit method (black dots) in terms of mγγ, pT,γγ, φ

∗
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and | cos θ∗η|. Systematic uncertainties are only shown for the matrix method and
the error bars of the 2D fit method represent statistical uncertainties.
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7.11.3 Comparison between the matrix method and the 2D

fit method considering uncertainty correlations

One naively expects there is a strong correlation in the statistic and systematic un-

certainties between the two data-driven techniques due to a common use of shower

shape variables and isolation requirements. Using the measurement in all bins of

the differential spectra, the correlation in statistical uncertainties and relevant sys-

tematic uncertainties between the 2D fit method and the matrix method is shown

in Figure 7.25. Table 7.16 shows the global correlation factors for the relevant cor-

related uncertainties using these measurements in all bins of the six kinematic vari-

ables. These global correlation factors in Table 7.16 were used as input to compute

the uncorrelated systematic uncertainties in the differential spectrum comparison

between the two data-driven methods. The photon ID systematic uncertainty be-

tween the two methods are considered to be 100% correlated and not included in

the following comparisons.

The inclusive yield ratio of the 2D fit method to that of the matrix method

considering uncertainty correlations is 1.0187 ± 0.0014 (stat.) +0.0492
−0.0466 (syst.). Fig-

ure 7.26 shows the ratio in the differential spectra of the 2D fit method to that of

the matrix method considering uncertainty correlations. The agreement between

the matrix method and the 2D fit method in the differential spectra is excellent.

There are some bins in which systematic uncertainties do not cover the residual

differences.

Stat. Loose′2 Loose′5
2D fit 1022 -4011 3587
matrix method 901 -5990 7664
Correlation factor 0.947 0.19 0.27

Table 7.16: Global correlation factors for uncertainties determined from measure-
ments in all bins of γγ differential spectra.
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Figure 7.25: Correlation of statistical (systematic) uncertainties between the 2D fit
method and the 3D matrix method using all bins of γγ differential spectra in the
measurement. The correlations considered between the two methods are (a) Statis-
tical uncertainties, (b) Loose′2 systematic uncertainty and (c) Loose′5 systematic
uncertainty.

200



 (GeV)γγM10 210
3

10

2
D

F
it
/M

a
tr

ix

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Uncorr. stat.

Uncorr. syst.

 (GeV)
γγT,

p1 10 210

2
D

F
it
/M

a
tr

ix

0.7

0.8

0.9

1

1.1

1.2

1.3

Uncorr. stat.

Uncorr. syst.

|
η

*θ|cos
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2
D

F
it
/M

a
tr

ix

0.7

0.8

0.9

1

1.1

1.2

Uncorr. stat.

Uncorr. syst.

γγ
φ∆

0 0.5 1 1.5 2 2.5 3

2
D

F
it
/M

a
tr

ix

0.7

0.8

0.9

1

1.1

1.2

1.3

Uncorr. stat.

Uncorr. syst.

(GeV)
T

a1 10 210

2
D

F
it
/M

a
tr

ix

0.7

0.8

0.9

1

1.1

1.2

1.3

Uncorr. stat.

Uncorr. syst.

*
η

φ
­3

10
­2

10
­1

10 1 10
2

10
3

10
4

10

2
D

F
it
/M

a
tr

ix

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Uncorr. stat.

Uncorr. syst.

Figure 7.26: Ratio of the γγ yield of the differential spectra of the 2D fit method
to that of the matrix method taking into account uncertainty correlations. The red
points with error bars represent the ratio of the diphoton yield of the 2D fit method
to that of the matrix method and uncorrelated statistical uncertainty. The blue band
represents the uncorrelated systematic uncertainties between the two methods.
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7.12 Unsmearing studies

7.12.1 Particle-level isolation

At detector level, calorimeter and track isolation requirements are imposed to reduce

the hadronic background, which produces “fake” photons in the secondary decays

of the boosted mesons (e.g. π0). These fake photons arising from the hadronic

background are not described accurately in the MC because the production processes

are non-perturbative and rely on the hadronization model of the simulation.

At particle level, a requirement on the isolation energy is needed to decrease the

fraction of the fragmentation photons, which are less well understood. In order to

mimic the experimental isolation requirement, two definitions have been proposed.

The nominal definition is called “fixed cone” by summing the hadronic energy in

a fixed cone around the photon. An alternative definition of the isolation energy

is known as “Frixione isolation” [88]. It is such that the theoretical calculations

are independent of the fragmentation photon contributions. This particular feature

makes higher order calculations feasible, and thus the Frixione isolation definition

is often used in fixed order pQCD calculations. However, this definition does not

correspond to the fixed cone definition in the experiment and implementation of the

Frixione isolation in the experiment is not possible.

The general principle of unfolding the detector level distributions to the truth

level distributions is to minimize the model dependence of the measurement and

therefore we define a fiducial volume at particle level that is as close as possible to

detector level requirements. The calorimeter isolation energy correlations between

detector level and particle level are investigated in detail.

Figure 7.27 shows the results of a linear fit of particle-level isolation energy

Epart.iso.
T and calorimeter isolation energy Eiso

T using both Sherpa and Pythia sim-

ulations for the leading and subleading photons separately, where the optimal re-

quirement on Epart.iso.
T to minimize the model dependence is around 11-12 GeV from

both event generators. Since Sherpa is used as default for the unfolding procedure,

we require Epart.iso.
T < 11 GeV.

7.12.2 Track isolation efficiency

The track isolation efficiency εII is defined as follows:

εII =
NTT
calo,trk

NTT
calo

, (7.36)
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Figure 7.27: Relationship between particle-level isolation energy Eiso,γ
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where NTT
calo,trk is the number of the diphoton events passing all selection require-

ments, and NTT
calo is the number of the diphoton events when the track isolation is not

applied. It is difficult to apply the track isolation requirement at particle level due

to the track isolation efficiency dependence on the hadronization model. Therefore,

it is important to check the description of the track isolation efficiency in simulations

using data-driven methods. Previously in the ATLAS H → γγ analysis [89], the

track isolation requirement is also applied and the calorimeter and track isolation

efficiency is examined using radiative decays in Z → eeγ control samples and a tag

and probe technique in Z → ee samples. Scale factors are derived and have a strong

dependence on the transverse energy ET , which range from 0.996 at 40 GeV to 0.989

at 100 GeV per photon. However, these scale factors do not include contributions

from fragmentation photons or converted photons.

Table 7.17 presents the comparison of the inclusive track isolation efficiency

between the data-driven method and predictions from Sherpa and Pythia. Fig-

ure 7.28 shows the comparison between extracted track isolation efficiency using the

matrix method and predictions from Sherpa and Pythia in terms of different kine-

matic observables. The track isolation efficiency is flat from both the data-driven

method and simulations. Further comparisons were made for different background

components, as presented in Figure 7.29. Another cross-check is to look at the

comparison of the track isolation shape between data and simulations. Figure 7.30

compares the normalised track isolation distribution of data to Sherpa and Pythia

predictions. Large discrepancies in the tail of the distributions were observed con-

firming the track isolation efficiency difference between the data-driven method and

the predictions from simulations.

As the amount of background present in the sample is quite different with or

without track isolation, the background systematic uncertainties associated with

track isolation efficiencies are also evaluated and illustrated in Table 7.18. For pho-

ton ID systematics, variations in the diphoton yield have a positive correlation with

variations in the track isolation efficiency. However, for the T̃ definition variations,

an anti-correlation between changes in the diphoton yield and track isolation effi-

ciency was found. In order to take into account these correlations, a data-driven

track isolation efficiency was propagated through the analysis to estimate the cross

section in the defined fiducial region as introduced in Section 7.13.1. A data-driven

photon isolation efficiency using the matrix method as a function of various kine-

matic variables is applied to the MC for the results shown below.
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data γγ Sherpa γγ Pythia
εII 0.926 ± 0.004 0.967 ± 0.000 0.958 ± 0.000

Table 7.17: The diphoton track isolation efficiency comparison between the data
driven method, Sherpa and Pythia. The statistical uncertainty on data is shown.
The statistical uncertainty on the MC predictions is less than 0.001.

Photon ID T̃ definition Ĩ definition Ĩ signal leakage electron background
γγ +2968 -2980 +7664 -5990 +635 -1189 +4721 -4721 +1310 -1310
εII +0.012 -0.013 -0.021 +0.014 -0.002 +0.002 -0.008 +0.008 -0.004 +0.003

Table 7.18: Systematic uncertainties of the diphoton yield and the corresponding
changes in the diphoton track isolation efficiency.
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7.12.3 Bin purity and reconstruction efficiencies

The bin purity is defined as the fraction of events in each bin at detector level that

originate in the same bin at the generator level on an event-by-event basis. The bin

purity is a measure of the migration into and out of the bins at detector level. This

accounts for resolution effects leading to migration between bins and fake events that

are reconstructed in a given distribution at detector level but have no counterpart

at particle level. The reconstruction efficiency is the fraction of events in each bin

at particle level that end up in the same bin at detector level. The reconstruction

efficiency not only takes into account resolution effects that cause bin migrations,

but also is a reflection of efficiency losses arising from object identification and

reconstruction.

The bin purity and the reconstruction efficiency are shown in Figure 7.31 and

Figure 7.32. Figure 7.33 presents the response matrix for each kinematic variable,

which demonstrates the degree of migrations between different bins of the true and

reconstructed diphoton kinematic variables. The bin purity across all the variables

are above 75%. In particular, the bin purity in | cos θ∗η| is around 95%. The re-

construction efficiency in bins of the kinematic variables varies between 40% and

70%.

The bin-by-bin correction factor Ci is defined as follows:

Ci =
Ndet
i

Npart
i

, (7.37)

where Ndet
i is the number of events in bin i for a given distribution passing detector

level requirements (TITI), and Npart
i is the number of the selected events fulfilling

the particle level fiducial cuts. Figure 7.34 shows the bin-by-bin correction factors

in terms of the six variables and the distribution of the correction factors stays flat.
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Figure 7.33: Response matrices as a function of mγγ, pT,γγ, φ
∗
η, aT, ∆φγγ and | cos θ∗η|

after normalisation by row in the Sherpa diphoton samples.
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Figure 7.34: Bin-by-bin correction factor as a function of mγγ, pT,γγ, φ
∗
η, aT, ∆φγγ

and | cos θ∗η| in the Sherpa diphoton samples.
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7.13 Unfolding

7.13.1 Cross section measurement

In order to propagate the data-driven track isolation efficiencies throughout the

analysis, the cross-section introduced in Equation 7.1 can be written in the following

form:

σfid. =
NTITI,trackiso.
γγ

εdataII εtrig.Ccalo
totalL

, (7.38)

where NTITI,trackiso.
γγ is the extracted diphoton yield from data in the TITI region

with both the calorimeter requirement and the track isolation requirement applied

and εdataII represents the data-driven track isolation efficiency. Ccalo
total is defined as

Ccalo
total = NTT,calo

γγ /N true
γγ , in which NTT,calo

γγ is the number of predicted TT diphoton

events with only the calorimeter isolation requirement and N true
γγ is the number of

the produced diphoton events in the fiducial volume at truth level. Because a strong

correlation between the track isolation efficiency and the extracted diphoton yield

exists when varying background-related systematics, NTITI,trackiso.
γγ and εdataII has to

be varied in a correlated way.

One can write εdataII in terms of the diphoton yield:

εdataII =
NTITI,trackiso.
γγ

NTITI,notrackiso.
γγ

, (7.39)

where NTITI,notrackiso.
γγ is the diphoton yield when the track isolation requirement

is not applied. Substituting Equation 7.39 into Equation 7.38, we can obtain the

following form:

σfid. =
NTITI,notrackiso.
γγ

εtrig.Ccalo
totalL

, (7.40)

where the measurement is effectively insensitive to the presence of the track isolation

efficiencies. In the actual analysis, we stick to Equation 7.39, though it is equivalent

to Equation 7.40.

The differential cross section as a function of mγγ, pT,γγ, ∆φγγ, | cos θ∗η|, aT and

φ∗η, generally denoted by X, is calculated for each bin i of X true:

dσi
dX

=
NTITI,trackiso.
γγ,i

εdataII,i εtrig.C
calo
total,iL∆X

, (7.41)

where the trigger efficiency is the same across all bins of the six kinematic variables.
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7.13.2 Bayesian iterative unfolding

The iterative unfolding method [90] is more robust against the underlying generator

distributions than bin-by-bin corrections, and it is based on Bayes’ theorem. True

yields in each bin of the X spectrum are iteratively reproduced starting from a

detector response matrix and a MC truth prior. The conditional probability for an

event in the Ej bin of the reconstructed X spectrum to have originated from an

event generated in the Ci bin of the truth X spectrum is given as follows:

P (Ci|Ej) =
P (Ej|Ci)P0(Ci)

BC∑
l=1

P (Ej|Cl)P0(Cl)

, (7.42)

where P (Ej|Ci) represents the conditional probability for an event generated in

the Ci bin of the true spectrum to be observed in the Ej bin of the reconstructed

spectrum, P0(Ci) is the probability for an event to be generated in the Ci bin at

truth level and BC corresponds to the total number of bins of the true spectrum

that end up in the Ej bin of the reconstructed spectrum. P (Ej|Ci) represents the

detector response matrix obtained from simulation samples (Figure 7.33), which

has no dependence on the true distributions and the dependence is controlled by

the P0(Ci) term. Starting from the prior true distributions P0(Ci) and the response

matrix P (Ej|Ci) from simulation samples, one can calculate P (Ci|Ej) in the first

iteration. This probability can be then used to compute the number of events in the

Ci bin of the true spectrum, n̂(Ci), using the number of observed events in the Ej

bin of the reconstructed spectrum, n̂(Ej):

n̂(Ci) =
1

εtrig.

BE∑
j=1

n(Ej)P (Ci|Ej), (7.43)

where BE corresponds to the number of bins in the reconstructed spectrum that

contain events that originate from the Ci bin of the true spectrum. The probability

distribution P0(Ci) at truth level can be then recalculated by normalizing the sum

of n̂(Ci) to unity, which can be used as input for the next iteration in Equation 7.42.

The procedure described above is iterated until a stable spectrum is obtained. It

can be observed in Figure 7.35 that 5 iterations are sufficient for the analysis.
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Figure 7.35: Unfolded spectra in terms of the number of iterations normalised to the
ones with 5 iterations using the Sherpa diphoton samples for the response matrix
and MC truth prior as a function of mγγ, pT,γγ, φ

∗
η, aT, ∆φγγ and | cos θ∗η|.
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7.14 Summary of uncertainties

The nominal fiducial cross section is obtained by using the Loose′4 definition and

the corresponding response matrix from the γγ Sherpa simulation. The trigger

efficiency was evaluated using a bootstrap method and radiative Z → eeγ decays

using the method described in [91]. The value of the trigger efficiency is 99.47+0.13%
−0.17%,

which is considered to be the same across all bins of the kinematic variables.

The inclusive fiducial cross-section is estimated using Equation 7.38. The itera-

tive Bayesian unfolding is used only for the differential spectra.

A summary of the systematic uncertainty for the inclusive yield is given in Ta-

ble 7.19. Figure 7.39 compares the total systematic uncertainty to the total statis-

tical uncertainty in the differential spectra.

The measured inclusive diphoton cross section using the matrix method is:

16.97 ± 0.09(stat) +1.10
−0.93 (syst) +0.03

−0.02 (trigger) +0.33
−0.32(lumi) pb.

Background uncertainties

For each of the background uncertainties explained in Section 7.8.1 and the elec-

tron background uncertainty, the diphoton track isolation efficiency is evaluated and

the corresponding response matrix is calculated. The difference with respect to the

nominal unfolded cross section is taken as a systematic uncertainty. The system-

atic effect on the diphoton track isolation efficiency due to background variations

is illustrated in Table 7.18. Figure 7.36 shows the background-related systematic

uncertainties as a function of the six kinematic variables. The background uncer-

tainties are dominated by the definition of the background from jets.

Photon energy scale and resolution

There are 65 (7) nuisance parameters for describing the photon energy scale (res-

olution), each of these nuisance parameters used in the photon calibration [61] is

varied by ±1σ to obtain a distorted response matrix and the difference with respect

to the nominal is added in quadrature. Figure 7.37 presents the uncertainties due

to the photon energy scale and resolution in terms of the six kinematic variables.

Calorimeter isolation distribution

The data-driven isolation corrections in [84] have been applied in the nominal case

to improve the MC description of the photon calorimeter isolation profile, which
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is varied by its associated systematic effects on the response matrix. Figure 7.38

presents the systematic uncertainty due to the calorimeter isolation description, the

diphoton vertex reconstruction and underlying physics distributions.

Diphoton vertex reconstruction

The diphoton vertex is reconstructed using a NN algorithm described in Section 7.4.

The corrected z position is used to compute the corrected pseudorapidity and trans-

verse momentum of the candidate. The z position could deviate from the true

position by a significant amount. In order to evaluate the systematic uncertainty

due to diphoton vertex reconstruction, the event weight is varied by ±5% given the

reconstructed diphoton vertex position along the z axis is 0.3 mm away from the

true vertex. These values are chosen by following a Z → ee study of the vertex

reconstruction efficiency in the H → γγ analysis [92]. An additional normalisation

factor is applied to obtain the same number of events as the nominal case. There-

fore this systematic variation has no effect on the inclusive fiducial cross section by

construction but can affect the differential spectrum.

Underlying physics distributions

The underlying physics distributions of the six variables are reweighted to the data

distributions to test the sensitivity of the unfolding procedure to the input physics

distributions. The effect is negligible as the iterative Bayesian unfolding is insensitive

to the underlying physics distributions.

Luminosity and trigger efficiency

The trigger efficiency is taken to be 99.47+0.13%
−0.17% and the luminosity has an uncertainty

of ±1.9%. The uncertainties are propagated throughout the whole analysis for both

the inclusive and differential cross section measurements.

Difference between the integrated yield and the inclusive

yield

A small difference between the integrated yield of the differential spectrum and the

inclusive yield is observed and this systematic uncertainty is only considered for the

inclusive case. The resultant systematic uncertainty is smaller than the statistical

uncertainty of the inclusive yield.
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Cross-section difference (pb) Cross-section difference (%)
Statistics(data) ±0.086 ±0.51
Statistics(MC) ±0.012 ±0.073
Background +1.1/-0.93 6.8/-5.7
Isolation shift 0.0094/-0.0098 0.056/-0.058
Isolation smearing 0.00026/0.00096 0.0015/0.0057
z vertex reweighting 0./0. 0./0.
Photon energy resolution 0.0033/-0.0016 0.02/-0.0095
Photon energy scale 0.13/-0.13 0.79/-0.78
Integrated yield +0.039/-0.013 0.23/-0.077

Table 7.19: Summary of the uncertainties for the inclusive diphoton fiducial cross
section obtained using the matrix method. The last row termed as “Integrated
yield” is the difference between the inclusive yield and the integrated yield over the
bins of the differential spectra.
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Figure 7.36: Systematic uncertainties related to the background estimation in data
as a function of mγγ, pT,γγ, φ

∗
η, aT, ∆φγγ and | cos θ∗η|.
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Figure 7.37: Systematic uncertainties related to the MC description of the photon
energy resolution and scale uncertainties as a function of mγγ, pT,γγ, φ

∗
η, aT, ∆φγγ

and | cos θ∗η|.
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isolation and the diphoton vertex reconstruction as a function of mγγ, pT,γγ, φ
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Figure 7.39: Total systematic uncertainties in comparison to the statistical uncer-
tainties for the differential spectrum as a function of mγγ, pT,γγ, φ

∗
η, aT, ∆φγγ and

| cos θ∗η|.
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7.15 Comparison to theoretical predictions

The unfolded data are compared to a number of theoretical predictions described

as follows. The fixed order predictions at N(N)LO accuracy are produced at parton

level without underlying events or hadronization. The non-perturbative effects are

a few percent and are neglected in the following N(N)LO fixed order calculations.

Sherpa 1.4.0 and Pythia8

Both Sherpa 1.4.0 [49] and Pythia8 [29] predict the diphoton production process

at LL+LO accuracy. The total fiducial cross section predicted by Sherpa 1.4.0

(Pythia8) is 12.53 pb (11.81 pb). For the differential spectrum, an overall scale

factor of 1.44 (1.35) is applied to compare the shape between data and predictions.

Such a large scaling factor arises due to missing higher order contributions to the

diphoton cross section. Figure 7.40 and Figure 7.41 compare data with predictions

from Sherpa 1.4.0 and Pythia8. Pythia8 gives a much better description than

Sherpa 1.4.0 in terms of the mγγ spectrum. Sherpa 1.4.0 generally reproduces

the data shape except the mγγ spectrum with better accuracy than Pythia8.
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Figure 7.40: Comparison between unfolded distributions and the Sherpa and
Pythia MC predictions for mγγ, pT,γγ, φ

∗
η and aT. The Sherpa (Pythia) MC dis-

tributions have been scaled to the total data cross section, by a factor of 1.35 (1.44).
Data are shown as black dots with error bars indicating the total uncertainties. The
Sherpa and Pythia predictions with corresponding statistical uncertainties are
represented by red and blue bands respectively.
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Figure 7.41: Comparison between unfolded distributions obtained and the Sherpa
and Pythia MC predictions for ∆φγγ and | cos θ∗η|. The Sherpa (Pythia) MC dis-
tributions have been scaled to the total data cross section, by a factor of 1.35 (1.44).
Data are shown as black dots with error bars indicating the total uncertainties. The
Sherpa and Pythia predictions with corresponding statistical uncertainties are
represented by red and blue bands respectively.
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DIPHOX and ResBos

The DIPHOX predictions [32] implement an almost NLO pQCD calculation with

the NLO PDF set CT10 in which the box process (gg → γγ) is predicted at LO.

DIPHOX includes contributions from events in which one or both photons orig-

inate from fragmentation. The QCD scale uncertainties are evaluated by vary-

ing the renormalisation, factorization and fragmentation scales between mγγ/2 and

2mγγ, which are the dominant theoretical uncertainties. The predicted fiducial cross-

section is 10.80 ± 0.04 (stat.) +1.50
−1.18 (syst.) pb, where the systematic uncertainty is

the quadrature sum of the scale uncertainty and the PDF uncertainty.

The ResBos predictions [51–53] include all NLO perturbative contributions of

the hard process, i.e., the gluon-gluon scattering box diagram contribution is also at

NLO in contrast to the DIPHOX generator, which only accounts for it at LO. In

addition, ResBos predictions include all-orders resummation of initial state gluon

radiation to NNLL accuracy. These contributions are especially important at low

values of the diphoton transverse momentum or equivalently when the two photons

are back-to-back in the azimuthal plane (∆φγγ∼ π) where fixed order calculations

yield integrable singularities. As for the treatment of the contribution from frag-

mentation photons, ResBos predictions do not introduce fragmentation functions

but adopt a simplified approach as detailed in [52] to include these contributions.

No scale variations for ResBos predictions are provided and hence the fractional

uncertainties are taken from DIPHOX as the theoretical uncertainties. The inclu-

sive diphoton cross-section predicted by ResBos is 12.26 ± 0.05 (stat.) +1.70
−1.34 pb.

A rather large deviation of NLO pQCD calculations from data is observed due to a

lack of higher order contributions.

The comparison between data and the NLO predictions from DIPHOX and

ResBos is shown in Figure 7.42 and Figure 7.43. It can be observed that ResBos

gives a better description of the data shape at high ∆φγγ and low aT where contribu-

tions from resummation of soft gluons are important. However, DIPHOX provides

a slightly better description of the data shape around the Guillet shoulder region

of the pT,γγ and aT spectra and at low mγγ region where there is an enhancement

of fragmentation components. Both NLO predictions give a good description of the

mγγ > 80 GeV region and both predictions fail at | cos θ∗η| > 0.8.
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Figure 7.42: Comparison between unfolded distributions and the NLO predictions
from DIPHOX and ResBos for mγγ, pT,γγ, φ

∗
η and aT. Data are shown as black

dots with error bars indicating the total uncertainties. The DIPHOX and ResBos
predictions with corresponding theoretical uncertainties are represented by pink and
green bands respectively for the ratio plots. Only statistical uncertainties are shown
for the differential spectrum for predictions from DIPHOX and ResBos.
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Figure 7.43: Comparison between unfolded distributions and the NLO predictions
from DIPHOX and ResBos for ∆φγγ and | cos θ∗η|. The DIPHOX and ResBos
predictions with corresponding theoretical uncertainties are represented by pink and
green bands respectively for the ratio plots. Only statistical uncertainties are shown
for the differential spectrum for predictions from DIPHOX and ResBos.
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2γNNLO

2γNNLO provides a NNLO pQCD calculation using a Frixione [88] isolation cri-

terion. Only the central value of the prediction is available at the moment and

the predicted fiducial cross section is 13.94 pb. Figure 7.44 compares data to the

2γNNLO predictions. A slightly better agreement with data than the NLO predic-

tions from DIPHOX and ResBos is observed. Since no theoretical uncertainties

are available, no conclusion can be made here.
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Figure 7.44: Comparison between unfolded distributions and the NNLL+NNLO
predictions for mγγ, pT,γγ, ∆φγγ, | cos θ∗η|, aT and φ∗η. Data are shown as black dots
with error bars indicating the total uncertainties. Only the central value is given for
the NNLO predictions.
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Sherpa 2.2α

Sherpa 2.2α generates the diphoton production process at NLO accuracy. Matrix

elements are generated using Comix [93] and OpenLoops [94] for γγ and γγ + jet

production at NLO accuracy and γγ + 2 jets and γγ + 3 jets at LO accuracy. The

simulation uses the NNLO PDF set NNPDF [20]. The predicted inclusive fiducial

cross section is 16.36 ± 0.08 (stat.) pb. Figure 7.45 shows the comparison of data

distributions to the predictions from Sherpa 2.2α. The predictions from Sherpa

2.2α can describe the data within the data uncertainties except for mγγ > 200 GeV

and | cos θ∗η| > 0.9.
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Figure 7.45: Comparison between unfolded distributions and the NLO Sherpa
predictions mγγ, pT,γγ, ∆φγγ, | cos θ∗η|, aT and φ∗η. Data are shown as black dots
with error bars indicating the total uncertainties.
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7.16 Conclusion

Using 20.24 fb−1 data collected by the ATLAS experiment in 2012, measurements

of cross-section for the diphoton production in pp collisions at
√
s = 8 TeV have

been presented. The data were corrected for background and detector inefficiency

and resolution. The measured inclusive pp → γγ + X cross section in the defined

fiducial phase space is

16.97 ± 0.09 (stat) +1.10
−0.93 (syst) +0.03

−0.02 (trigger) +0.33
−0.32 (lumi) pb.

In addition, six differential cross sections have been measured in the same fiducial

phase space. Both the inclusive and differential cross sections have been compared

to MC event generators and fixed-order pQCD calculations. The inclusive cross

section is underestimated by LO parton shower event generators Sherpa 1.4.0 and

Pythia8 as well as NLO pQCD calculations DIPHOX and ResBos due to missing

higher order contributions. No conclusion can be made for the 2γNNLO predic-

tions due to an absence of theoretical uncertainties. The Sherpa 2.2α predictions

(σSherpafid = 16.36 ± 0.08 (stat.) pb) are consistent with the measured cross section.

Table 7.20 summarises the measured inclusive fiducial cross section and the various

predictions. In terms of the differential cross sections, Sherpa 1.4.0 can give a

better description of data than Pythia8 except at high mγγ. Pythia8 is missing

higher order contributions, but is compensated by the parton shower at low pT,γγ,

aT and φ∗η and for ∆φγγ around π. In these regions, fixed order calculations fail

but the ResBos predictions using resummation techniques of multiple soft gluons

give accurate predictions. Sherpa 2.2α was found to describe data well except for

| cos θ∗η| > 0.9 and in high mγγ regions.

Fiducial cross section (pb)
Data 16.97 +1.15

−0.99 (total)
Sherpa 1.4.0 12.53 ± 0.01 (stat.)
Pythia8 11.81 ± 0.01 (stat.)
DIPHOX 10.80 +1.50

−1.18 (total)
ResBos 12.26 +1.70

−1.34 (total)
2γNNLO 13.94
Sherpa 2.2α 16.36 ± 0.08 (stat.)

Table 7.20: Comparison between the measured fiducial cross section and various
MC predictions. Data are shown with the total uncertainty by adding the statis-
tical uncertainty and systematic uncertainties in quadrature. For predictions from
Sherpa 1.4.0, Pythia8 and Sherpa 2.2α, only statistical uncertainties are given.
The DIPHOX and ResBos predictions are presented with the theoretical uncer-
tainties. Only the central prediction is available for the 2γNNLO prediction.
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Chapter 8

Conclusion

Using 10.4 fb−1 data collected by the D0 experiment, we measure the normalized

differential cross section of φ∗η in the Drell-Yan process in bins of dimuon invari-

ant mass and dimuon rapidity. This represents the first measurement of the φ∗η

distribution away from the Z-mass peak. A prediction from ResBos is found to

describe data within the assigned theoretical uncertainty except at φ∗η > 0.5 in the

mass region 30 < Mll < 60 GeV. A NNLL+NLO prediction is in excellent agree-

ment with data within theoretical uncertainties. Further measurements of the φ∗η

distributions are performed by the ATLAS collaboration at
√
s = 8 TeV [75], which

are still dominated by statistical uncertainties. As more data are recorded at the

ATLAS experiment, the systematic uncertainties will become dominant in the φ∗η

measurements.

Using 20.24 fb−1 data collected by the ATLAS experiment, we present both

the inclusive and differential cross sections of prompt photon pairs. A prediction

from Sherpa including higher-order corrections can describe the data with reason-

able accuracy whereas the other event generators are unable to provide a reasonable

description of data due to a lack of higher-order corrections. This new version

of Sherpa predictions can be used as the background model in the H → γγ anal-

ysis and new physics searches with a pair of photons as the final state. This is also

the first measurement of aT and φ∗η distributions in the diphoton channel. Further

analysis at the LHC with more data can benefit from the improved background de-

composition methods adopted in this thesis. As the measurement precision is limited

by systematic effects, a more careful treatment of the background can potentially

reduce the systematic uncertainty.
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Appendix A

A brief review of the 2D fit

method

The 2D fit method uses a maximum likelihood fit to the two-dimensional distribu-

tions of Eiso
T of the two photon candidates. The fit is performed in the TITI regions

only with the isolation range of Eiso
T between -5.2 GeV and 6 GeV. The 2D fit method

subtracts the Z → ee contribution at the same time as the hadronic background

using a Gaussian constraint from the number of the predicted fake photons from the

Z → ee MC.

The total 2D isolation distributions consist of one signal (γγ) and four back-

ground (γj, jγ, jj and ee) categories, each of which corresponds to a template called

the probability density function (pdf) and is weighted by its corresponding yield:

WTITI
tot FTITI

tot = WTITI
γγ FTITI

γγ +WTITI
γj FTITI

γ,1 FTITI
j,2 +WTITI

jγ FTITI
j,1 FTITI

γ,2 +WTITI
jj FTITI

jj

+WTITI
ee FTITI

e,1 FTITI
e,2 .

(A.1)

FTITI
tot represents the total 2D pdf of the two isolation energies for all the events

passing the TITI criteria. FTITI
γγ , FTITI

γ,1 and FTITI
γ,2 are the two and one-dimensional

pdfs for the diphoton, leading and subleading photons respectively taken from γγ

MC. The background pdfs FTITI
j,1 and FTITI

j,2 are estimated from the T̃ITI and TIT̃I

regions in the data respectively. The di-jet pdf FTITI
jj is two-dimensional and eval-

uated in the T̃IT̃I region in the data sample. The electron background pdfs FTITI
e,1

and FTITI
e,2 are one-dimensional and are taken from eγ and γe data around the Z-

mass peak region (80 < M`` < 100 GeV) as described in Section 7.9. The isolation

correlations for γγ and jj components are kept in the 2D fit method.

243



The difference between the photon isolation pdf and the electron isolation pdf

is not sufficient enough to disentangle their respective yields in the likelihood fit.

Hence we use a Gaussian constraint with a central value from Z → ee MC pre-

dictions and a Gaussian width equal to the quadrature sum of the Z → ee MC

statistical uncertainty and the systematic uncertainty arising from the e → γ fake

scale factors [95] . These e → γ fake scale factors are derived using Z → ee data

and are applied to the Z → ee MC to improve the description of fake photons.

244


	Introduction
	Theoretical Background
	The Standard Model of Particle Physics
	Electroweak interactions
	Strong interactions
	The Drell-Yan process
	Overview
	Z/* transverse momentum distribution in Drell-Yan process

	Monte-Carlo event generators
	The * distributions in the Drell-Yan process
	Physics motivation
	Previous measurements

	Isolated diphoton production at LHC
	Previous measurements


	Experimental Apparatus
	Accelerator chain
	Introduction to luminosity
	The Tevatron
	The LHC

	Coordinate system
	The D0 and ATLAS detectors
	Central tracking system
	Calorimeter system
	Muon detectors
	Trigger system


	The Reconstruction of physics objects
	Charged particle tracks
	Muon reconstruction at the D0 experiment
	Muon reconstruction
	Muon identification

	Photon reconstruction at the ATLAS experiment
	Photon reconstruction
	Photon identification


	Drell-Yan * distribution measurement with the D0 detector
	Event selection
	Data samples
	Common selection criteria

	Signal and background estimation
	Peak region backgrounds
	Low-mass region backgrounds

	Corrections to the Monte Carlo events
	Generator level reweighting
	Track smearing
	Efficiency corrections
	Ad hoc corrections
	Further trigger efficiency corrections in the low-mass region
	Data versus MC comparison with all corrections implemented in the low-mass region

	Optimisation of event selection
	Justification of new selection requirements in the low-mass region
	Summary of cuts in the low-mass region
	List of changes compared to the previously published results in the peak region

	Background uncertainty evaluation in the low-mass region
	Constraint on the FSR background uncertainty
	Constraint on Z/* + - background uncertainty
	Cross-checks of background uncertainty estimations

	The new scaling factor for the QCD background and overall normalisation in the low-mass region
	Data-MC comparisons
	Comparison to the detector-level MC in 70<M<110 GeV region
	Comparison to the detector-level MC in 30<M<60 GeV region

	Bin-by-bin corrections
	Binning in *
	Bin-by-bin corrections

	Systematic uncertainties
	Comparison to theoretical predictions
	Theoretical predictions
	Results

	Cross-check with the previously published results in the peak region
	Conclusion and discussion

	Proposed luminosity measurement using the diamond beam monitor 
	Overview
	The DBM detector
	Monte Carlo samples
	Single muon samples
	Pile-up pp min-bias samples

	DBM cluster reconstruction efficiency studies
	Distribution of the reconstructed DBM clusters
	Algorithm for hit efficiency calculation
	Straight line extrapolation
	Helix extrapolation
	Validation of the two extrapolation methods
	Results for the helix extrapolation

	Pile-up response study of the DBM 
	Validation of the pile-up samples
	Study of the DBM clusters under pile-up conditions
	Properties of the DBM clusters under pile-up conditions

	A proposed algorithm for luminosity measurement
	Validation of the proposed luminosity algorithm
	Robustness of the proposed algorithm to detector effects

	Conclusion

	Isolated diphoton cross section measurements in pp collisions at s = 8 TeV with the ATLAS detector
	Introduction
	Data and MC samples
	Resolution studies of the new variables
	Event selection
	Corrections to the simulations

	Isolation energy distributions for signal and background
	Control regions for jets
	Isolation distributions

	Diphoton yield extraction
	4x4 matrix method
	Description of the method
	Estimation of  and f
	Requirements on the tag candidate
	Dependence of photon isolation efficiencies on kinematic variables
	Studies for tight non-isolated region
	Effects of fakes from electrons on data-driven isolation efficiencies
	Extracted isolation efficiency and fake rate
	Bootstrap technique in matrix method
	The differential spectrum

	Final results from the matrix method
	Background systematic uncertainties in the matrix method
	Matrix method results

	Background from isolated electrons
	Objects selection
	Electron background estimation
	Extraction of the e and e fake rates
	Extraction of e  fake rates from data
	Extraction of e fake rates from MC
	Impurity estimation in differential spectra
	Results

	An alternative method and closure tests
	2D fit method
	Closure tests

	Comparison between the two methods
	Inclusive yield comparison
	Comparison of differential spectra between the two background decomposition techniques
	Comparison between the matrix method and the 2D fit method considering uncertainty correlations

	Unsmearing studies
	Particle-level isolation
	Track isolation efficiency
	Bin purity and reconstruction efficiencies

	Unfolding
	Cross section measurement
	Bayesian iterative unfolding

	Summary of uncertainties
	Comparison to theoretical predictions
	Conclusion

	Conclusion
	Appendices
	A brief review of the 2D fit method

