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Foundations of a Bicoprime Factorisation Theory:
A Robust Control Perspective

A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy
in the Faculty of Engineering and Physical Sciences.

Mihalis Tsiakkas
25th April 2016

Abstract

This thesis investigates Bicoprime Factorisations (BCFs) and their possible uses in robust
control theory. BCFs are a generalisation of coprime factorisations, which have been well
known and widely used by the control community over the last few decades. Though they
were introduced at roughly the same time as coprime factorisations, they have been largely
ignored, with only a very small number of results derived in the literature.

BCFs are first introduced and the fundamental theory behind them is developed. This
includes results such as internal stability in terms of BCFs, parametrisation of the BCFs
of a plant and state space constructions of BCFs. Subsequently, a BCF uncertainty
structure is proposed, that encompasses both left and right coprime factor uncertainty. A
robust control synthesis procedure is then developed with respect to this BCF uncertainty
structure. The proposed synthesis method is shown to be advantageous in the following two
aspects: (1) the standard assumptions associated with H∞ control synthesis are directly
fulfilled without the need of loop shifting or normalisation of the generalised plant and
(2) any or all of the plant’s unstable dynamics can be ignored, thus leading to a reduction
in the dimensions of the Algebraic Riccati Equations (AREs) that need to be solved to
achieve robust stabilisation.

Normalised BCFs are then defined, which are shown to provide many advantages,
especially in the context of robust control synthesis. When using a normalised BCF of
the plant, lower bounds on the achievable BCF robust stability margin can be easily
and directly computed a priori, as is the case for normalised coprime factors. Although
the need for an iterative procedure is not completely avoided when designing an optimal
controller, it is greatly simplified with the iteration variable being scalar. Unlike coprime
factorisations where a single ARE needs to be solved to achieve normalisation, two coupled
AREs must be satisfied for a BCF to be normalised. Two recursive methods are proposed
to solve this problem.

Lastly, an example is presented where the theory developed is used in a practical
scenario. A quadrotor Unmanned Aerial Vehicle (UAV) is considered and a normalised
BCF controller is designed which in combination with feedback linearisation is used to
control both the attitude and position of the vehicle.
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Chapter 1

Introduction

1.1 Background & Motivation

Many areas of control theory make extensive use of coprime factorisations. This is es-

pecially true for fields of robust control theory such as H∞ loopshaping (Glover and

McFarlane, 1989; McFarlane and Glover, 1992) and distance measures (Vidyasagar, 1984;

Georgiou and Smith, 1990; Vinnicombe, 1993; Lanzon and Papageorgiou, 2009). Integer

coprimeness is a property studied since ancient times. Two integers are said to be coprime

if their greatest common divisor is 1. This notion can be extended to many types of math-

ematical objects including polynomials and matrices. The case of polynomial coprimeness

was studied by the French mathematician Étienne Bézout in the 18th century, who showed

that if two polynomials a and b have greatest common divisor d then there exist polyno-

mials x and y such that the linear Diophantine equation ax+ by = d is satisfied. Such an

equation is now commonly referred to as Bézout’s identity, a version of which is used as a

coprimeness test for polynomial matrices.

A coprime factorisation is one where a rational object is decomposed into two factors

satisfying the coprimeness condition over some set, which in the context of control theory

is usually RH∞. One of the most important aspects of coprime factorisations is the fact

that every object in R admits a coprime factorisation over RH∞, which can be easily

constructed from state space data using the methods of Nett et al. (1984). This allows for

the development of theories that can be applied to a large class of systems.

One of the most prevalent uses of coprime factorisations in control theory is found in

the H∞ loop shaping design procedure proposed by McFarlane and Glover (1988) and

McFarlane and Glover (1992). In this situation, normalised coprime factors are used to

derive a robustly stabilising controller for a plant, which has been shaped using the classical

loop shaping procedure. Using coprime factors for robust control synthesis, as outlined by

Doyle et al. (1989), leads to significant simplifications and advantages. The need to solve

one of the standard Algebraic Riccati Equations (AREs) is removed as it admits the trivial

solution, which also guarantees that the spectral radius condition is automatically satisfied
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(Zhou et al., 1996). Furthermore, when using normalised coprime factors for synthesis, an

infimum for the achievable norm can be explicitly calculated (Glover and McFarlane, 1988,

1989). This removes the need for iterative procedures to obtain the optimal controller.

Hence, synthesis of an optimal robust controller that stabilises perturbations on normalised

coprime factors of the plant can be achieved via the solution of a single ARE.

The main focus of this thesis is the investigation of Bicoprime Factorisations (BCFs)

and their uses in robust control theory. BCFs are a generalisation of the aforementioned

coprime factorisations. They were briefly introduced by Vidyasagar (2011)a with only a

small number of results given. Two motivating points given therein for the study of BCFs

are that they naturally arise in closed loop transfer matrices (when starting with coprime

factorisations of the plant and controller) and the fact that a state space representation of

a plant is itself a BCF over R(s). Both of these claims will be proven in this thesis. Such

factorisations appear in many areas of interest such as J-spectral factorisations (Green

et al., 1990) or chain scattering theory (Lanzon et al., 2004) – both of which can be used

to solve the standard H∞ control problem. Unfortunately, the study of BCFs was largely

abandoned when their Left Coprime (LC) and Right Coprime (RC) counterparts started

to yield some powerful results, however they were recently reintroduced by Tsiakkas and

Lanzon (2015).

Past studies of BCFs commonly assumed a special structure. The relation between

such BCFs and classical coprime factorisations was studied by Desoer and Gündeş (1988)

(though the assumption was lifted for some cases). A set of simple preliminary results was

derived, including internal stability for the feedback interconnection of a plant, given as a

BCF, and a controller expressed as a Right Coprime Factorisation (RCF) or Left Coprime

Factorisation (LCF). Another interesting result involved a transformation mapping a spe-

cial BCF set into the classical RCF and LCF, making use of the Bézout factors associated

with the BCF. Those results were extended by Gündeş and Desoer (1990) and given a

decentralised control context.

It has also been shown that BCFs can be useful in the study of decentralised or

distributed control problems. For example, Ünyelioğlu et al. (2000) showed that BCFs

can be used to characterise the location of decentralised fixed zeros of a plant, and thus

deduce the existence of a decentralised controller. Furthermore, BCFs were used in the

design of a decentralised stabilising controller for a plant by Baski et al. (1999).

Another interesting result from BCFs relates to internal stability tests. It will be

shown herein that using BCF representations of a plant and controller can, in certain

cases, result in reduced dimension tests for internal stability. Standard coprime factor

results provide stability tests that require the inversion of a matrix with dimension p or q

where p and q are the number of outputs and inputs of the plant respectively. Using BCFs,

a test is obtained requiring the inversion of a matrix with dimensions equal to the internal

dimension of the BCF, which can always be chosen to be no greater than min{p, q}. Such

aThis is a reprint of the 1985 original.
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cases are likely to occur for rank deficient plants, for example in redundant control systems

where, for fault tolerance purposes, more actuators and sensors are used than necessary.

Unlike the case of LCFs or RCFs, where robust control synthesis involves the solution

of only one ARE, BCFs require the solution of two. However, the structure of the BCF

generalised plant allows the designer to selectively ignore some (or all) of the C− poles of

the plant under consideration, resulting in reduced dimension AREs in H∞ robust control

synthesis. This can be useful for high order systems with many well-damped poles in

C−, where solving the AREs associated with H∞ synthesis can become computationally

expensive and at times numerically intractable. Through the use of BCF uncertainty, the

computational burden of robust stabilisation can therefore be drastically reduced.

Similarly to classical coprime factorisations, a normalisation property can be imposed

on to the Bicoprime (BC) factors of a plant. Methods for obtaining normalised coprime

factorisations of a plant where first presented by Meyer and Franklin (1987) for strictly

proper systems and later extended by Vidyasagar (1988) to the non-strictly proper case.

In the classical case, normalisation is achieved via the solution of an ARE with a sign-

definite quadratic term. In a similar manner, a normalised BCF can be obtained via the

solution of two coupled AREs, leading to the need for an iterative procedure.

As previously mentioned, normalisation leads to significant advantages in coprime

factor synthesis, namely the explicit computation of the lowest achievable robust stability

margin. A parallel result is obtained given a normalised BCF of a plant, where lower

bounds on the achievable robust stability margin with respect to BCF uncertainty can be

easily computed. These bounds however, are not guaranteed to produce the infimum as in

the classical case, since an additional condition must also be satisfied. Solving this issue is

simple and can be achieved with techniques as trivial as a line search, though root finding

methods such as the Newton-Raphson or bisection algorithms would be a more suitable

choice.

This thesis begins by providing the foundations to the general study of BCF theory

and its applicability to control related problems. The results presented herein cover a

range of topics including internal stability in terms of BCFs of the plant and controller,

state space parametrisations of BCFs for a given plant, BCF uncertainty characterisation

and BCF robust control synthesis. It will be shown in multiple instances how results that

have been known to the control community for a long time are actually founded on BCFs.

This helps in gaining some intuitive understanding of these results. The aim of this thesis

is to establish BCFs as an integral part of control theory. It will become apparent through

this body of work that there is a considerable amount of mathematical richness associated

with BCFs that so far remains unexplored. Though the more abstract nature of BCFs

leads to an increase in complexity (in comparison to LCFs and RCFs), this should not

serve as a deterrent to the study of BCFs as the potential advantages to control theory

necessitate further exploration of the subject.
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1.2 Thesis Organisation

This thesis is organised as follows:

Chapter 2: Preliminaries

In this chapter, some preliminary mathematical tools are presented. First, useful concepts

from linear algebra are given including a brief treatment of AREs, followed by the defi-

nition of function spaces, which will be used throughout this thesis. Results pertaining

to linear systems theory are then presented including operations on state space systems,

Lyapunov theory and internal stability. Following this, classical coprime factorisations are

introduced, with the associated sets defined and some basic results are presented. Finally,

the standard 2-ARE solution to the H∞ problem of Doyle et al. (1989) is reiterated for

reference.

Chapter 3: Foundations of Bicoprime Factorisations

Here, BCFs of a plant and associated sets are defined. Some basic properties are discussed,

such as system stability and zero characterisation using BCFs. The notion of BCF internal

dimension is then introduced and a lower bound on the achievable dimension is given.

Furthermore, internal stability tests using BCFs of the plant and controller are outlined.

Numerous results are presented, each with different levels of constraints, ranging from no

assumptions (the plant and controller are allowed to have arbitrary BCFs), to much more

specific cases such as a stable plant or controller. It is shown how classical coprime factor

internal stability results found in the literature are based on BCFs.

Chapter 4: State Space Formulations of BCFs

In this chapter, methods of constructing BCFs based on state space data of the plant

are presented. The first approach is related to observer form controllers, mirroring the

full state feedback and estimation interpretations of LCFs and RCFs. Subsequently, a

more abstract method, the QR-BCF parametrisation, is given and shown to cover the

coprime factor parametrisations found in the literature. Finally, bounds on the minimum

internal dimension BCF achievable using the QR-BCF parametrisation are derived and a

procedure is proposed that can be used to construct a BCF that achieves this minimum.

Chapter 5: BCF Uncertainty and Robust Stabilisation

The uncertainty structure corresponding to BCFs is presented in this chapter. Similarly

to coprime factor uncertainty, stable additive perturbations on the BC factors of the plant

are considered. The associated generalised plant and uncertainty matrix are derived. The

robust stability margin corresponding to this uncertainty structure is then defined. Again,

it is shown how classical results can be obtained via simplifications of the more general

BCF results. Robust control synthesis theorems are given based on BCFs of the plant.
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Special cases are also considered including symmetric systems and the case where robust

stabilisation is achieved via the solution of reduced dimension AREs.

Chapter 6: Normalised BCFs

The notion of normalised BCFs is introduced in this chapter. Iterative methods for ob-

taining such BCFs are outlined. It is shown how using normalised BCFs allows for an

easily computable lower bound on the achievable robust stability margins. Special cases

are investigated including unilaterally normalised BCFs (which form a superset for nor-

malised LCFs and RCFs) and a set of symmetric systems for which robust control synthesis

reduces down to the solution of a single Lyapunov equation.

Chapter 7: Application: Control of a Quadrotor UAV

A practical example is presented in this chapter. The BCF theory previously developed

is used in the design of a robustly stabilising controller for a quadrotor Unmanned Aerial

Vehicle (UAV). It is shown by way of simulations how the proposed control strategy

robustly stabilises the nonlinear plant.

Chapter 8: Conclusion

In the final chapter the contributions of this thesis are summarised and possible directions

of future research are discussed.
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Chapter 2

Preliminaries

In this chapter the mathematical results needed to develop the main ideas of this thesis

are presented. The results are mostly standard and can be found in most relevant books

such as Laub (2005) or Horn and Johnson (2012) for the first section and Zhou et al.

(1996) for the rest.

The following topics are covered herein. First some results from linear algebra are

presented including a brief study of AREs. Function spaces frequently used in this thesis

are then defined, followed by some linear systems theory. Subsequently, classical coprime

factorisations are formally defined and some well known internal stability results are given.

Finally, the 2-ARE solution to the standard H∞ control problem is presented.

2.1 Linear Algebra

Definition 2.1 A matrix A ∈ Rn×n is said to be Hurwitz if all its eigenvalues have a

strictly negative real part, or equivalently if Λ(A) ⊆ C−.

Every square matrix has a Jordan Canonical Form, given by the following theorem.

Theorem 2.1 (Horn and Johnson (2012) Theorem 3.1.15) Let A ∈ Cn×n have m distinct

eigenvalues. Then there exists a nonsingular T ∈ Cn×n such that

TAT−1 = diag (J1, . . . , Jm) ,

Ji = diag
(
Ji1, . . . , JiγiA

)
∈ Cµ

i
A×µ

i
A ∀i ∈ {1, . . . ,m},

Jij =


λiA 1 · · · 0
...

. . .
. . .

...
...

. . . 1

0 · · · · · · λiA

 ∈ Cµ
ij
A×µ

ij
A ∀j ∈ {1, . . . , γiA},

where γiA is the geometric multiplicity of λiA, µiA =
∑γiA

j=1 µ
ij
A is the algebraic multiplicity

of λiA and n =
∑m

i=1 µ
i
A.
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Remark 2.1 For any A ∈ Rn×n, a real Jordan canonical for can be obtained where

Jij ∈ Rµ
ij
A×µ

ij
A and T ∈ Rn×n. See Laub (2005, Theorem 9.22) for details. �

Linear Fractional Transformations (LFTs) are mathematical tools that allow for seem-

ingly different problems to be formulated in to the same framework. LFTs enable any

feedback interconnection to be analysed using the same methods. Figure 2.1 shows upper

and lower LFTs in block diagram form.

[
H11 H12

H21 H22

]

∆l

w

uy

z

[
H11 H12

H21 H22

]
∆u

y u

z w

Figure 2.1: Lower (left) and upper (right) linear fractional transformations.

Definition 2.2 (Doyle et al. (1991)) Let H =
[
H11 H12
H21 H22

]
∈ S(p1+p2)×(q1+q2), ∆l ∈ Sp1×q1

and ∆u ∈ Sp2×q2. Then

• the lower LFT of H with respect to ∆l represents the transfer matrix from w to z

and is given by

Fl(H,∆l) = H11 +H12∆l(I −H22∆l)
−1H21;

• the upper LFT of H with respect to ∆u represents the transfer matrix from u to y

and is given by

Fu(H,∆u) = H22 +H21∆u(I −H11∆u)−1H12.

2.1.1 Algebraic Riccati Equations

Algebraic Riccati Equations (AREs) of the form

A∗X +XA+XRX +Q = 0 (2.1)

where Q and R are Hermitian matrices, are commonly encountered in robust and optimal

control theory. For every ARE such as (2.1), a Hamiltonian matrix can be defined as

H =

[
A R

−Q −A∗

]
. (2.2)

Let X−(H) denote a conjugate symmetrica, stable, H-invariant spectral subspace of H,

that is, X−(H) is the eigenspace of H that corresponds to its C− eigenvalues. Furthermore,

aA vector space V is said to be conjugate symmetric if v ∈ V implies that v̄ ∈ V.
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suppose that H has no eigenvalues on jR and that X−(H) is complementaryb to Im

[
0

I

]
.

These are called the stability and complementarity properties respectively. Finally, let

X−(H) be given by X−(H) = Im

[
X1

X2

]
. Then the stabilising solution to (2.1) is uniquely

determined by H and is given by X = X2X
−1
1 . The operator mapping H to X is denoted

by Ric. Additionally, the set of all Hamiltonian matrices for which the stability and

complementarity properties hold is defined as dom(Ric).

Theorem 2.2 (Zhou et al. (1996) Theorem 13.5) Suppose that H ∈ dom(Ric) and X =

Ric(H). Then

(a) X is real symmetric;

(b) X is a solution to the ARE (2.1);

(c) A+RX is Hurwitz.

The following theorem considers the case where Q and R are sign-definite.

Theorem 2.3 (Zhou et al. (1996) Theorem 13.7) Suppose that a Hamiltonian matrix H

has the form

H =

[
A −BB∗

−C∗C −A∗

]
.

Then H ∈ dom(Ric) if and only if (A,B) is stabilisable and (C,A) has no unobservable

modes on jR. Furthermore, Ric(H) > 0 if and only if (C,A) is observable.

The following lemma will be used in several instances to derive conditions that guar-

antee that the stabilising solution of an ARE is positive semidefinite.

Lemma 2.4 Let X ≥ 0, Y ≥ 0 and α ∈ R+. Then I − αXY is nonsingular and (I −
αXY )−1X ≥ 0 if and only if

αρ(XY ) < 1.

Proof. First note that I−αXY is invertible if and only if α−1 /∈ Λ(XY ). Thus αρ(XY ) < 1

implies that I − αXY is invertible. Then, since I − αXY is nonsingular,

(I − αXY )−1X ≥ 0⇔ X
1
2 (I − αX

1
2Y X

1
2 )−1X

1
2 ≥ 0

⇔ I − αX
1
2Y X

1
2 > 0

⇔ αρ(X
1
2Y X

1
2 ) < 1

⇔ αρ(XY ) < 1.
bTwo n-dimensional vector spaces are said to be complementary if their direct sum gives Rn. In other

words, X ⊆ Rn and Y ⊆ Rn are complementary if X ∩ Y = ∅ and ∃x ∈ X , y ∈ Y : v = x+ y ∀v ∈ Rn.
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2.2 Function Spaces

Some function spaces often utilised in robust control theory, and in this thesis, are defined

in this section. For further information see (Francis, 1987).

Definition 2.3 L∞ is a Banach space of complex matrix valued functions that are essen-

tially bounded on the jR axis. The L∞ norm is defined as

‖P‖∞ = ess sup
ω∈R

σ̄ [P (jω)] .

Definition 2.4 H∞ ⊆ L∞ is the subset of L∞ with functions that are analytic and

bounded in C+. The H∞ norm is defined as

‖P‖H∞ = sup
s∈C+

σ̄ [P (s)] .

Remark 2.2 By the maximum modulus theorem ‖P‖∞ = ‖P‖H∞. �

Definition 2.5 R is the space of complex matrix valued functions defined on C and it

consists of all real, rational, proper functions. When used as a prefix, R denotes subspace

of real, rational, proper functions.

Definition 2.6 GH∞ is the subspace of RH∞ with transfer matrices invertible in RH∞.

GH∞ = {P ∈ RH∞ : detP (∞) 6= 0, P−1 ∈ RH∞}.

2.3 Linear Systems Theory

In this section some fundamental results from linear systems theory are presented. Further

details can be found in books such as Zhou et al. (1996) or Ogata (2010).

2.3.1 State Space Systems

Throughout this section it is assumed that P =

[
A B

C D

]
∈ Rp×q unless otherwise

stated. Furthermore, for the entirety this thesis, the state space matrices A, B, C and D

(also referred to as state space data) are assumed to be real valued.

Operations on Systems

Definition 2.7 (Zhou et al. (1996) Definition 3.7) The transpose of P (s) is given by

P T (s) =

[
A∗ C∗

B∗ D∗

]
.
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Definition 2.8 (Zhou et al. (1996) Definition 3.8) The conjugate system of P (s) is given

by P∼(s) = P T (−s), or in state space

P∼(s) =

[
−A∗ −C∗

B∗ D∗

]
.

Lemma 2.5 Suppose the D has full column (resp. row) rank and let D† be its left (resp.

right) inverse. Then

P † =

[
A−BD†C −BD†

D†C D†

]

is a left (resp. right) inverse of P satisfying P †P = I (resp. PP † = I).

Definition 2.9 Every plant P ∈ R has the Gilbert realisation

P =

 A+ B+

A− B−

C+ C− D


where A− is Hurwitz and Λ(A+) ∪ Λ(A−) = Λ(A).

Controllability & Observability

Controllability is a fundamental concept of state space realisations. A pair (A,B) is said

to be controllable if there exists an unconstrained control signal u that can transfer any

initial state x(0) of ẋ = Ax+Bu to any desired location x(t) (Dorf and Bishop, 1998).

Theorem 2.6 (Zhou et al. (1996) Theorem 3.1) Let A ∈ Rn×n and B ∈ Rn×q, then the

following statements are equivalent:

(i) (A,B) is controllable;

(ii)
[
A− λI B

]
has full row rank for all λ ∈ Λ(A);

(iii) For all λ ∈ Λ(A) and x ∈ Cn such that x∗A = λx∗, x∗B 6= 0;

(iv) The eigenvalues of A+BF can be freely assigned by a suitable choice of F ∈ Rq×n.

Corollary 2.7 (Zhou et al. (1996) Theorem 3.2) Let A ∈ Rn×n and B ∈ Rn×q, then the

following statements are equivalent:

(i) (A,B) is stabilisable;

(ii)
[
A− λI B

]
has full row rank for all λ ∈ Λ(A) ∩ C̄+;

(iii) For all λ ∈ Λ(A) ∩ C̄+ and x ∈ Cn such that x∗A = λx∗, x∗B 6= 0;
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(iv) There exists a matrix F ∈ Rq×n such that A+BF is Hurwitz.

A notion dual to controllability is observability, which relates to determining the initial

state of a system given only input and output data.

Theorem 2.8 (Zhou et al. (1996) Theorem 3.3) Let A ∈ Rn×n and C ∈ Rp×n, then (C,A)

is observable if and only if (A∗, C∗) is controllable.

Corollary 2.9 (Zhou et al. (1996) Theorem 3.4) Let A ∈ Rn×n and C ∈ Rp×n, then

(C,A) is detectable if and only if (A∗, C∗) is stabilisable.

Conditions (ii) and (iii) of Theorem 2.6 and Corollary 2.7 along with their observability

duals, are often collectively referred to as the Popov-Belevitch-Hautus (PBH) tests.

Definition 2.10 A state space realisation P is said to be minimal if (A,B) is controllable

and (C,A) is observable.

Definition 2.11 The treble (C,A,B) is said to have no modes that are both controllable

and observable when all controllable modes in (A,B) are unobservable in (C,A) and all

observable modes in (C,A) are uncontrollable in (A,B).

Normal Rank & System Zeros

The normal rank and zeros of a plant are now characterised based on its state space data.

Definition 2.12 The normal rank of P is defined as

nrank (P ) = max
s∈C∪{∞}

rank (P (s)) .

Lemma 2.10 (Zhou et al. (1996) Lemma 3.29) Suppose that z0 ∈ C is not a pole of P .

Then z0 is a transmission zero of P if and only if rank (P (z0)) < nrank (P ).

Definition 2.13 (Zhou et al. (1996) Definition 3.16) A complex number z0 ∈ C is an

invariant zero of P if

rank

([
A− z0I B

C D

])
< nrank

([
A− sI B

C D

])
.

Theorem 2.11 (Zhou et al. (1996) Theorem 3.34) A complex number z0 ∈ C is a trans-

mission zero of P if and only if it is an invariant zero of a minimal realisation.

It can be shown that for any given plant P ,

nrank

([
A− sI B

C D

])
= n+ nrank (P ) ,

which leads to the following lemma.
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Lemma 2.12 (Zhou et al. (1996) Lemma 3.33) P has full column (resp. row) normal

rank if and only if [
A− sI B

C D

]

full column (resp. row) normal rank.

2.3.2 Lyapunov Theory

Lyapunov equations of the form

A∗X +XA+Q = 0 (2.3)

have many applications in control theory. The two following lemmas relate Lyapunov

equations to stability and observability (or by duality to controllability).

Lemma 2.13 (Zhou et al. (1996) Lemma 3.18) Consider the Lyapunov equation (2.3) and

suppose that A is Hurwitz, then

(a) X > 0 if Q > 0 and X ≥ 0 if Q ≥ 0.

(b) If Q ≥ 0, then (Q,A) is observable if and only if X > 0.

Lemma 2.14 (Zhou et al. (1996) Lemma 3.19) Suppose that X is the solution to (2.3),

then

(a) Λ(A) ⊆ C̄− if X > 0 and Q ≥ 0.

(b) A is Hurwitz if X > 0 and Q > 0.

(c) A is Hurwitz if X ≥ 0, Q ≥ 0 and (Q,A) is detectable.

Definition 2.14 Let P ∈ RH∞, which implies that A is Hurwitz. Then the controllability

and observability Gramians of P are given by the solutions X ≥ 0 and Y ≥ 0 to the

Lyapunov equations

AX +XA∗ +BB∗ = 0 and Y A+A∗Y + C∗C = 0

respectively. Furthermore, the Hankel norm of P is given by

‖P‖H = ρ(XY )
1
2 .

2.3.3 Internal Stability

Let P ∈ R and C ∈ R, then the standard positive feedback interconnection of the two

is denoted by [P,C] and is shown in Figure 2.2. Internal stability is a core concept of
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P

C

r1 e1 y1

e2y2 r2

Figure 2.2: Standard feedback interconnection.

control theory and is concerned with the boundedness of all signals from (r1, r2) to (e1, e2)

in Figure 2.2.

Definition 2.15 (Zhou et al. (1996) Definition 5.1) Consider the standard positive feedback

interconnection of a plant P ∈ R and controller C ∈ R depicted in Figure 2.2. Then

[P,C] is said to be well-posed if all closed-loop transfer matrices from (r1, r2) to (e1, e2)

are well-defined and proper.

Definition 2.16 Consider the standard positive feedback interconnection of a plant P ∈ R

and controller C ∈ R depicted in Figure 2.2. Then the transfer function matrix from

(−r2, r1) to (y1, e1) is denoted by H(P,C). Furthermore, H(P,C) is given by

H(P,C) =

[
P

I

]
(I − CP )−1

[
−C I

]
.

The following lemma gives necessary and sufficient conditions for well-posedness and

internal stability of a standard positive feedback interconnection.

Lemma 2.15 (Zhou et al. (1996) Lemma 5.3) Consider the standard positive feedback

interconnection of a plant P ∈ R and controller C ∈ R depicted in Figure 2.2. Then [P,C]

is well-posed if and only if det (I − C(∞)P (∞)) 6= 0. Furthermore, [P,C] is internally

stable if and only if it is well-posed and[
I −C
−P I

]−1

∈ RH∞,

or equivalently H(P,C) ∈ RH∞.

The small gain theorem provides a robust stability criterion based only on the size

of the systems being considered. This was first proposed by Zames (1966a) and Zames

(1966b) and forms a central part of robust control theory.

Theorem 2.16 (Zhou et al. (1996) Theorem 9.1) Suppose that H1 ∈ RH∞ and H2 ∈
RH∞. Then the standard feedback interconnection of H1 and H2 as shown in Figure 2.2

is well-posed and internally stable for all H2 such that

(a) ‖H2‖∞ < 1/γ if and only if ‖H1‖∞ ≤ γ;

(b) ‖H2‖∞ ≤ 1/γ if and only if ‖H1‖∞ < γ.
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2.4 Coprime Factorisations

As mentioned earlier, coprime factorisations are an important part of control theory. The

following definitions introduce, in a formal way, left and right coprimeness over RH∞ as

well as RCFs and LCFs of a plant over RH∞.

Definition 2.17 (Green and Limebeer (2012) Definition A.2.2) The ordered pair {N,M}
is RC in RH∞ if N,M ∈ RH∞ and there exist Yr, Zr ∈ RH∞ such that ZrM +YrN = I.

Furthermore, the pair is a RCF of a plant P ∈ R over RH∞ if M is square, detM(∞) 6= 0

and P = NM−1.

Definition 2.18 (Green and Limebeer (2012) Definition A.2.3) The ordered pair {L,M}
is LC in RH∞ if L,M ∈ RH∞ and there exist Yl, Zl ∈ RH∞ such that MZl + LYl = I.

Furthermore, the pair is a LCF of a plant P ∈ R over RH∞ if M is square, detM(∞) 6= 0

and P = M−1L.

The matrices Yr, Zr, Yl and Zl in the above definitions are known as the Bézout factors

(or coefficients) of their respective coprime pairs.

It is convenient to define sets of coprime pairs as well as coprime factorisations of a

plant and associated Bézout factor pairs, as in the following definitions.

Definition 2.19 The set of all RC (resp. LC) pairs in RH∞ is defined as Cr (resp. Cl).

Similarly, the set of all RCFs (resp. LCFs) of a plant P ∈ R over RH∞ is defined as

Cr(P ) (resp. Cl(P )).

Definition 2.20 Let {N,M} ∈ Cr and {L, M̃} ∈ Cl. The associated Bézout factor sets

are defined as

C †
[
M
N

]
= {{Yr, Zr} : Yr, Zr ∈ RH∞, ZrM + YrN = I},

C † [ M̃ L ] = {{Yl, Zl} : Yl, Zl ∈ RH∞, M̃Zl + LYl = I}.

The graph of a plant in P ∈ R is defined as the set of all possible bounded input-output

pairs corresponding to P . As shown by Vidyasagar (2011, Lemma 7.2.1), the graph of a

plant can be generated using its coprime factors. This gives rise to the following definition.

Definition 2.21 (Vinnicombe (2001)) Let P ∈ R and suppose that {N,M} ∈ Cr(P ) and

{L, M̃} ∈ Cl(P ). Then the right and inverse left graph symbols of P are given by

G =

[
M

N

]
and G̃ =

[
M̃ −L

]
respectively.

Some well known coprime factor stability results are listed in following lemma.

30



Lemma 2.17 (Zhou et al. (1996) Lemma 5.2) Let P ∈ R and C ∈ R and suppose that

{N,M} ∈ Cr(P ), {L, M̃} ∈ Cl(P ), {U, V } ∈ Cr(C) and {W, Ṽ } ∈ Cl(C). Then the

following statements are equivalent:

(a) [P,C] is internally stable;

(b) M̃V − LU ∈ GH∞;

(c) Ṽ M −WN ∈ GH∞;

(d)

[
M U

N V

]
∈ GH∞;

(e)

[
M̃ −L
−W Ṽ

]
∈ GH∞.

Before defining normalised coprime factorisations, the following definition of inner and

co-inner systems is needed.

Definition 2.22 A system P ∈ RH∞ is said to be inner (resp. co-inner) if P∼P = I

(resp. PP∼ = I). If P is square and inner (or equivalently co-inner), then it is said to

be all-pass.

Definition 2.23 (Vinnicombe (2001) Definition 1.7) The coprime pairs {N,M} ∈ Cr and

{L, M̃} ∈ Cl are said to be normalised if they satisfy

M∼M +N∼N = I and M̃M̃∼ + LL∼ = I,

or equivalently if the associated right and inverse left graph symbols are respectively inner

and co-inner.

2.5 H∞ Control Synthesis

In this section the 2-ARE based approach of Glover and Doyle (1988) and Doyle et al.

(1989) to solving the standard H∞ control problem is presented. This will form a basis for

developing robust stabilisation results pertaining to BCF uncertainty in the later chapters.

Theorem 2.18 (Zhou et al. (1996) Theorem 17.1) Consider the generalised plant

G =

[
A B

C D

]
=

 A B1 B2

C1 D11 D12

C2 D21 D22

 ∈ R,

where A ∈ Rn×n, B1 ∈ Rn×q1, B2 ∈ Rn×q2, C1 ∈ Rp1×n and C2 ∈ Rp2×n, and assume that

(A1) (A,B2) is stabilisable and (C2, A) is detectable;
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(A2) D12 =

[
0

I

]
, D21 =

[
0 I

]
and D22 = 0;

(A3)

[
A− jωI B2

C1 D12

]
has full column rank for all ω ∈ R;

(A4)

[
A− jωI B1

C2 D21

]
has full row rank for all ω ∈ R.

Let D1• =
[
D11 D12

]
, D•1 =

[
D11

D21

]
, γ ∈ R+ and define

R = D∗1•D1• −

[
γ2Iq1

0

]
, R̃ = D•1D

∗
•1 −

[
γ2Ip1

0

]
,

H∞ =

[
A

−C∗1C1 −A∗

]
−

[
B

−C∗1D1•

]
R−1

[
D∗1•C1 B∗

]
,

J∞ =

[
A∗

−B1B
∗
1 −A

]
−

[
C∗

−B1D
∗
•1

]
R̃−1

[
D•1B

∗
1 C

]
,

X∞ = Ric(H∞), Y∞ = Ric(J∞),

F =

[
F1∞

F2∞

]
= −R−1(D∗1•C1 +B∗X∞),

L =
[
L1∞ L2∞

]
= −(B1D

∗
•1 + Y∞C

∗)R̃−1

and partition D, F and L as
F ∗11∞ F ∗12∞ F ∗2∞

L∗11∞ D1111 D1112 0

L∗12∞ D1121 D1122 I

L∗2∞ 0 I 0

 .

Then there exists a controller C∞ ∈ Rq×p satisfying ‖Fl(G,C∞)‖∞ < γ if and only if

(a) γ > max
{
σ̄
([
D1111 D1112

])
, σ̄
([
D∗1111 D∗1121

])}
;

(b) H∞ ∈ dom(Ric) and X∞ = Ric(H∞) ≥ 0;

(c) J∞ ∈ dom(Ric) and Y∞ = Ric(J∞) ≥ 0;

(d) ρ(X∞Y∞) < γ2.
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If the above conditions hold, the set of all controllers that satisfy ‖Fl(G,C∞)‖∞ < γ is

given by C∞ = Fl(M∞,Φ) where Φ ∈ {Φ ∈ RH∞, ‖Φ‖∞ < γ},

M∞ =

 Â B̂1 B̂2

Ĉ1 D̂11 D̂12

Ĉ2 D̂21 0

 ,
D̂11 = −D1121D

∗
1111

(
γ2I −D1111D

∗
1111

)−1
D1112 −D1122,

D̂12 ∈ Rq1×q1 and D̂21 ∈ Rp1×p1 satisfy

D̂12D̂
∗
12 = I −D1121

(
γ2I −D1111D

∗
1111

)−1
D∗1121,

D̂21D̂
∗
21 = I −D1112

(
γ2I −D1111D

∗
1111

)−1
D∗1112,

and

B̂2 = Z∞(B2 + L12∞)D̂12,

Ĉ2 = −D̂21(C2 + F12∞),

B̂1 = −Z∞L2∞ + B̂2D̂
−1
12 D̂11,

Ĉ1 = F2∞ + D̂11D̂
−1
21 Ĉ2,

Â = A+BF + B̂1D̂
−1
21 Ĉ2

where

Z∞ =
(
I − γ−2Y∞X∞

)−1
.

Remark 2.3 Assumption (A2) of the above theorem can be relaxed. Safonov et al. (1989)

suggest various loop-shifting transformations that can be performed to normalise D12 or

D21 and enforce D22 = 0. �
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Chapter 3

Foundations of Bicoprime

Factorisations

3.1 Introduction

In this chapter the concept of bicoprimeness is introduced. Necessary definitions are

outlined, followed by the basic properties of the BCFs of a plant; including pole and zero

characterisations, parametrisation of a BCF set for a plant and the notion of internal

dimension. A series of internal stability tests are then presented based on BCFs of the

plant and controller. The material presented in this chapter forms the foundations of

BCFs upon which many of the results developed in the subsequent chapters are based.

Polynomial methods received considerable attention by the control community in the

1960’s and 1970’s, with the Polynomial Matrx Description (PMD) results of Rosenbrock

(see Rosenbrock (1970) for a comprehensive study of the field) being a driving force behind

this movement. This seminal work then gave rise to state space methods and coprime

factor theory, both of which are widely used in many areas of control theory. The BCF

theory developed herein can be viewed as a merging of these two fields, dealing with the

aspects of PMD theory that were sidelined over the past few decades.

In the early 1980’s, Vidyasagar (2011) proposed a functional analysis approach to the

study of control theory, introducing coprime factorisations as they are known today. Many

of the results developed therein make use of PMDs, often restricting the structure of the

PMD (to obtain a factorisation satisfying a coprimeness condition) and the set over which

the plant is factorised. Since coprimeness requires the satisfaction of a Bézout identity,

it follows that coprime factorisations are only possible over Bézout domains (Vidyasagar,

2011, Lemma 8.1.4), thus necessitating the set restriction.

BCFs over RH∞ first appeared in the literature in Vidyasagar (2011) where their

existence was acknowledged, though no significant results were given. BCFs, being a gen-

eralisation of standard LCFs and RCFs, can act as a link between the two factorisations,
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explaining their duality (see Vidyasagar (2011, Corollay 4.3.10) for one such case). In the

original definition, BCFs of a plant were presented as a quad of objects in RH∞.

Definition 3.1 (Vidyasagar (2011) Definition 4.3.1) The ordered quad {N,M,L,K} is

BC in RH∞ if {L,M} ∈ Cl, {N,M} ∈ Cr and K ∈ RH∞. Furthermore, the quad is a

BCF of a plant P ∈ R over RH∞ if M is square, detM(∞) 6= 0 and P = NM−1L+K.

From this definition, the claim that LCFs and RCFs of a plant are just special cases

of the more abstract BCFs is substantiated. In fact, it is clear that any BCF of a plant

P ∈ R with L = I (resp. N = I) and K = 0 defines a RCF (resp. LCF) of P . This now

implies that most results derived for BCFs can be easily extended to LCFs and RCFs; a

fact demonstrated by many of the results in this section.

As was the case for LC and RC pairs and factorisations, the following definition presents

the notation used for the sets of all BC quads and BCFs of a plant.

Definition 3.2 The set of all BC quads in RH∞ is defined as B. The set of all BCFs of

a plant P ∈ R over RH∞ is defined as B(P ).

Many coprime factor results use graph symbols of the plant (Vidyasagar, 1984; Vinni-

combe, 1993; Lanzon and Papageorgiou, 2009; Dehghani et al., 2009) as defined in Defi-

nition 2.21, usually for notational brevity. Similarly, packing a BC quad into a matrix, as

in the following definition, is often convenient.

Definition 3.3 The set B̃ is defined as

B̃ =

{[
M −L
N K

]
: {N,M,L,K} ∈ B

}
.

The set of all objects in B̃ that define a BCF of a plant P ∈ R is denoted by B̃(P ).

Objects in B̃(P ) will henceforth be referred to as the BCF symbols of P . This naming

is chosen to parallel that of graph symbols. It is important to note however that such

objects are not graph symbols of P . That is, they cannot be used to generate the set of

all possible bounded input-output pairs of P . It should be noted that any BCF symbol

G ∈ B̃(P ) of a plant P ∈ R is also a system matrix of P (often referred to as a Rosenbrock

matrix) as defined by Rosenbrock (1967).

As mentioned previously, Vidyasagar (2011) suggests that there are two good reasons

to study BCFs, the first of which is that state space realisations are in fact BCFs over

R[s], where R[s] denotes the ring of polynomials. Though this fact is not of any direct

importance to the results presented in this thesis, it is proven next as a matter of general

interest.

Suppose that a plant P ∈ R has a minimal state space realisation P =

[
A B

C D

]
where A ∈ Rn×n. Then the quad {C, sI − A,B,D} defines a BCF of P over R[s]. This
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fact follows directly from the PBH tests for controllability and observability. To prove this

first note that since all factors belong to R[s], each pair is coprime in R[s] if and only if

it satisfies the Bézout identity over R[s], or equivalently if the matrix formed by packing

the factors is invertible in R[s]. Therefore,

{C, sI −A} is RC over R[s]⇔

[
sI −A
C

]
is invertible in R[s]

⇔ nrank

([
sI −A
C

])
= n

⇐ (C,A) is observable,

which is true by the minimality assumption. The fact that {B, sI − A} is LC over R(s)

can be proven similarly using the controllability of (A,B).

By some minor alterations one could generate P from its BCF symbols using a LFT.

Suppose for example that {N,M,L,K} ∈ B(P ) then it is easy to show that

P = Fu

([
M − I −L
N K

]
,−I

)

= Fu

([
M L

N K

]
,
1

2
M−1

)
.

This could be put forth as an argument for redefining BCF symbols. However as will

be shown in the next chapter, this arrangement is more convenient in giving state space

characterisations of BCFs. Furthermore, this structure mirrors that of standard coprime

factor graph symbols given in Definition 2.21.

An alternative method of reconstructing a plant from its BCF symbols as defined

in Definition 3.3 is as follows. Let

[
M −L
N K

]
∈ B̃(P ), then P is given by the Schur

complement around K.
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3.2 Basic Properties of BCFs

Some fundamental features of BCFs are presented in this section; including pole/zero

characterisations and the introduction a BCF’s internal dimension.

3.2.1 Poles & Zeros

It is a well known result that any plant P ∈ R with a RCF {N,M} ∈ Cr(P ) is stable if

and only if M ∈ GH∞a (Green and Limebeer, 2012, Lemma A.2.1). The following lemma

presents an equivalent result for BCFs.

Lemma 3.1 Let P ∈ R have a BCF {N,M,L,K} ∈ B(P ). Then

P ∈ RH∞ ⇔M ∈ GH∞.

Proof. This follows from Vidyasagar (2011, Theorem 4.3.12) which states that p0 ∈ C̄+ is

a pole of P if and only if it is a transmission zero of M .

Ünyelioğlu et al. (2000) show that given a BCF of a plant with no additive term, then

the plant and its BCF symbol share C̄+ blocking zeros. The following lemma relates the

invariant zeros of a plant to those of its BCF symbols.

Lemma 3.2 Let P ∈ R and G ∈ B̃(P ). Then a complex number z0 ∈ C is an invariant

zero of P if and only if it is an invariant zero of G.

Proof. Let G be given by

G =

[
M −L
N K

]

=

 A B1 B2

C1 D11 D12

C2 D21 D22

 ∈ B̃(P )

and note that detD11 6= 0 since by definition detM(∞) 6= 0. Then using simple linear

algebra it can be shown that

P = NM−1L+K

=

[
A−B1D

−1
11 C1 B2 −B1D

−1
11 D12

C2 −D21D
−1
11 C1 D22 −D21D

−1
11 D12

]
.

aSufficiency is obvious. To prove necessity, suppose that z0 ∈ C̄+ is a transmission zero of M but not

a pole of P . Then z0 must also be a transmission zero of N , but that implies that

[
M
N

]
is not invertible

in RH∞ and therefore {N,M} /∈ Cr, which is a contradiction
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Now define Â = A− B1D
−1
11 C1, B̂ = B2 − B1D

−1
11 D12, Ĉ = C2 −D21D

−1
11 C1, D̂ = D22 −

D21D
−1
11 D12,

T1 =

I −B1D
−1
11 0

0 −D21D
−1
11 I

0 I 0

 and T2 =

 I 0 0

−D−1
11 C1 −D−1

11 D12 D−1
11

0 I 0


and note that T1 and T2 have full rank. Then for all s ∈ C

rank


A− sI B1 B2

C1 D11 D12

C2 D21 D22


 = rank

T1

A− sI B1 B2

C1 D11 D12

C2 D21 D22

T2



= rank


Â− sI B̂

Ĉ D̂

I


 .

The conclusion then follows by the definition of invariant zeros (Definition 2.13).

Another interesting property of BCF symbols, relating their normal rank to that of

their associated plant, is outlined in the following lemma.

Lemma 3.3 Let P ∈ R and G =

[
M −L
N K

]
∈ B̃(P ). Then

nrank (G) = r + nrank (P ) ,

where r = nrank (M).

Proof. A Schur decomposition of G gives

nrank (G) = nrank

([
I 0

NM I−1

][
M −L
0 P

])

= nrank

([
M −L
0 P

])
= nrank (M) + nrank (P )

= r + nrank (P ) .

Both Lemma 3.2 and Lemma 3.3 are expected properties of BCF symbols, since as

mentioned earlier they are Rosenbrock matrices of their associated plants (see Rosenbrock

(1970, Thoerem 5.2) in combination with Definition 2.13 and Theorem 2.11).

Corollary 3.4 Let P ∈ R and G ∈ B̃(P ). Then P is invertible in R if and only if G is

invertible in R.
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Corollary 3.5 Let P ∈ RH∞ and G ∈ B̃(P ). Then P is invertible in RH∞ if and only

if G is invertible in RH∞.

3.2.2 Internal Dimension

It is simple to show that the dimensions of the coprime factors of a plant are fixed and

dictated by the number of inputs and outputs of the plant. Suppose that {N,M} ∈ Cr(P )

where P ∈ Rp×q, then it follows trivially from the definition of RCFs that N ∈ RH p×q
∞

and M ∈ RH q×q
∞ . An equivalent fact holds for LCFs of the plant.

Such a restriction does not apply to BCFs (with the exception of the additive term

which always has the same dimensions as the plant). Let P ∈ R and suppose that

{N,M,L,K} ∈ B(P ). Furthermore, let {Yr, Zr} ∈ C †
[
M
N

]
, {Yl, Zl} ∈ C † [M L ] and

define

Ñ =
[
N 0

]
, M̃ =

[
M

I

]
, L̃ =

[
L

0

]
.

Then

[
Yr 0 Zr

0 I 0

][
M̃

Ñ

]
= I and

[
M̃ L̃

]Yl 0

0 I

Zl 0

 = I.

Therefore {Ñ , M̃ , L̃,K} ∈ B(P ) is also a BCF of P with arbitrarily inflated factor dimen-

sions. This fact gives rise to the following definition.

Definition 3.4 The internal dimension of a BC quad {N,M,L,K} ∈ B is defined as the

number of rows/columns of M . The set of all BC quads (resp. BCFs of a plant P ∈ R)

of internal dimension r is defined as Br (resp. Br(P )).

Clearly, the internal dimension of a BCF is given by rank (M(∞)) = nrank (M) since

by definition det (M(∞)) 6= 0.

An interesting case arises when considering BCFs whose additive term is restricted to

be zero. This is outlined in the following lemma.

Lemma 3.6 Let P ∈ R and suppose that it has a BCF {N,M,L, 0} ∈ Br(P ). Then

nrank (P ) ≤ r.

Before proving Lemma 3.6 the following result is needed.

Lemma 3.7 Let A ∈ Rp×n and B ∈ Rn×q with n ≤ min{p, q}. Then

nrank (AB) = n⇔ nrank (A) = nrank (B) = n.
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Proof.

(⇒) Suppose that nrank (AB) = n, then for some s0 ∈ C rank (A(s0)B(s0)) = n and the

result follows from Sylvester’s rank inequality (Laub, 2005, Theorem 3.19).

(⇐) Suppose that nrank (AB) < n while nrank (A) = nrank (B) = n, then for all

s ∈ C rank (A(s)B(s)) < n. This implies that for all s0 ∈ C where rank (A(s0)) = n,

rank (B(s0)) < n and vice versa. By noting that a system can only have a finite number

of transmission zeros a contradiction arises which concludes the proof.

Proof of Lemma 3.6. Suppose that contrary to the lemma statement r < nrank (P ). Then

using Lemma 3.7 nrank
(
NM−1L

)
≤ r < nrank (P ) which is a contradiction since P =

NM−1L and the proof is complete.

The following theorem utilises Lemma 3.6 to establish a lower bound on the internal

dimension of the BCFs of a plant.

Theorem 3.8 Let P ∈ R and suppose that it has a BCF {N,M,L,K} ∈ Br(P ). Then

inf
P̃∈RH∞

nrank
(
P − P̃

)
≤ r.

Proof. Since {N,M,L, 0} ∈ Br(P −K) it follows from Lemma 3.6 that

nrank (P −K) ≤ r.

Now suppose that

r < inf
P̃∈RH∞

nrank
(
P − P̃

)
.

Then

nrank (P −K) < inf
P̃∈RH∞

nrank
(
P − P̃

)
which is a contradiction since K ∈ RH∞ and the proof is complete.

3.2.3 Parametrisation of BCFs

As shown by Green and Limebeer (2012, Lemma A.2.1) and Vidyasagar (2011, Theo-

rem 4.1.13) LCFs or RCFs of a plant are unique up to pre- or post-multiplication of the

factors by an object in GH∞. For example, let P ∈ R and suppose that {N,M} ∈ Cr(P ),

then {NQ,MQ} ∈ Cr(P ) for any Q ∈ GH∞ of compatible dimensions. On the other

hand, parametrising BCFs of a plant is not as simple. A set of BCFs of a given plant will

be parametrised in this section.

The following lemma gives sufficient conditions for a BC quad to retain its bicoprime-

ness under predefined stable perturbations of the factors.
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Lemma 3.9 Consider the BC quad {N,M,L,K} ∈ B and let Q,R, S, T ∈ RH∞ and

U, V ∈ GH∞. Then [
V (M − LSN)U −V (L−MR)

(N −QM)U K + T

]
∈ Bm

if [Q,LS] and [SN,R] are internally stable.

Proof. Since U, V ∈ GH∞, it follows that they can always be absorbed into the Bézout

factorsb, hence

{(N −QM)U, V (M − LSN)U} ∈ Cr

⇔ {N −QM,M − LSN} ∈ Cr

⇔ ∃Ỹr, Z̃r ∈ RH∞ : Z̃r(M − LSN) + Ỹr(N −QM) = I

⇔ ∃Ỹr, Z̃r ∈ RH∞ :
[
Z̃r Ỹr

] [ I −LS
−Q I

][
M

N

]
= I

⇔ ∃Ỹr, Z̃r ∈ RH∞ :
[
Z̃r Ỹr

] [ I −LS
−Q I

]
∈ C †

[
M
N

]
⇐

[
I −LS
−Q I

]
∈ GH∞

⇔ [Q,LS] is internally stable.

An alternative proof is provided for the LC pair.

{V (L−MR), V (M − LSN)U} ∈ Cl ⇔ {L−MR,M − LSN} ∈ Cl

⇔ C † [M−LSN L−MR ] 6= ∅

⇔ C †
(
[M L ]

[
I −R
−SN I

])
6= ∅

⇐

[
I −R
−SN I

]
∈ GH∞

⇔ [R,SN ] is internally stable.

Finally, since K + T ∈ RH∞ the conclusion follows.

Lemma 3.9 in combination with an initial BCF of a plant P ∈ R enables the parametri-

sation of a set of BCFs of P as given in the following lemma.

bLet {N,M} ∈ Cr, U, V ∈ GH∞, suppose that {Yr, Zr} ∈ C † [MN ] and define Ỹr = U−1Y and Z̃r =
U−1ZrV

−1. Then Z̃rVMU + ỸrNU = I, hence {NU, VMU} ∈ Cr.
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Lemma 3.10 Let P ∈ R have the BCF {N,M,L,K} ∈ Br(P ), then[
M̃ −L̃
Ñ K̃

]
=

[
QlMQr −Ql(L+MRr)

(N +RlM)Qr K −NRr −RlL−RlMRr

]

=

[
Ql 0

Rl I

][
M −L
N K

][
Qr −Rr
0 I

]
∈ B̃r(P )

for all Ql, Qr ∈ GH∞ and Rl, Rr ∈ RH∞ with compatible dimensions.

Proof. That {Ñ , M̃ , L̃, K̃} ∈ Br follows from Lemma 3.9 with S = 0, V = Ql, U = Qr,

Q = −Rl, R = −Rr and T = −NRr − RlL − RlMRr. Then P = ÑM̃−1L̃ + K̃ can be

shown by direct calculation.

Observe that the above parametrisation does not allow for a variation of the internal

dimension of the BCFs; it is therefore immediate that it does not cover the entire set of

BCFs for a given plant. It is interesting however that[
Ql 0

Rl I

]
,

[
Qr −Rr
0 I

]
∈ GH∞

which parallels the fact that coprime factorisations can by parametrised be pre- or post-

multiplication of the graph symbols by objects in GH∞. It is also notable that the above

proposed parametrisation covers all RCFs and LCFs of a plant by an appropriate selection

of Ql, Qr and Rl, Rr. This can be seen by considering the BCF {N,M, I, 0} ∈ B(P ) (which

gives {N,M} ∈ Cr(P )) and setting Rl = Rr = 0 and Ql = I.

Note that the parametrisation of Lemma 3.10 is a strict system equivalence as defined

by Rosenbrock (1977) and Fuhrmann (1977). Furthermore, Rosenbrock (1970, Theo-

rem 3.5) suggests that two system matrices are equivalent if and only if they give rise to

the same transfer function matrix, which seems to contradict the claim that Lemma 3.10

does not parametrise all BCFs of a plant. This problem can be circumvented by padding

one of the BCF symbols with an identity matrix such that the internal dimensions of the

two factorisations match (see for example Rosenbrock (1970, Theorem 3.2)). Finally, the

works of Coppel (1974) and Smith (1986) (which extend the PMD results of Rosenbrock

to factorisations over Bézout domains) suggest that Lemma 3.10 can in fact be used to

parametrise all BCFs of a plant.

3.3 Internal Stability

As is the case for RCFs and LCFs in Lemma 2.17, BCFs can be used to establish the

internal stability of a feedback interconnection. This proves to be an important use of

coprime factorisations, giving rise to many powerful results including the well known Youla

parametrisation (Youla et al., 1976) of all stabilising controllers. This parametrisation
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can be used to solve a number of problems in control theory including the H∞ robust

stabilisation problem (Zhou et al., 1996, Section 17.6).

When starting with coprime factorisations of the plant and controller, a BCF of the

closed loop transfer matrix is naturally obtained. This was the second point given by

Vidyasagar (2011) in an attempt to motivate the study of BCFs. This was partly proven

by Gündeş (1996), where it was shown that given a plant P ∈ R and controller C ∈ R with

{N,M} ∈ Cr(P ) and {W,V } ∈ Cl(C), then {N,VM −WN,W, 0} ∈ B(P (I − CP )−1).

The following lemma provides a more comprehensive proof giving a BCF of H(P,C) in

terms of the right and inverse left graph symbols of P and C respectively.

Lemma 3.11 Let G ∈ RH∞ be a right graph symbol of a plant P ∈ R and K̃ ∈ RH∞

an inverse left graph symbol of a controller C ∈ R. Then {G, K̃G, K̃, 0} ∈ B(H(P,C)).

Proof. The fact that H(P,C) = G(K̃G)−1K̃ is shown by Vinnicombe (2001, p. 18). Since

both G and K̃ are graph symbols associated with a RCF and LCF respectively, they are

by definition left and right invertible in RH∞ respectively. Therefore {G, K̃G} ∈ Cr and

{K̃, K̃G} ∈ Cl which concludes the proof.

Remark 3.1 It is important to note that Lemma 3.11 is compatible with previous coprime

factor results. In fact, the standard coprime factor result given by Lemma 2.17(c) (resp.

Lemma 2.17(b)) is just a straight forward combination of Lemma 3.1 and Lemma 3.11

(resp. the dual to Lemma 3.11) (Vidyasagar, 2011, Theorem 5.1.6 and Lemma 5.1.7).

This further demonstrates how existing coprime factor results are rooted in BCFs. �

A number of internal stability results making use of BCFs of the plant were derived

by Desoer and Gündeş (1988). The results presented therein considered the feedback

interconnection of a plant P ∈ R and controller C ∈ R in terms of a BCF of P and

LCF or RCF of C. Initially, the restriction that the additive term of the BCF is zero

was imposed but later lifted. The approach taken by Desoer and Gündeş (1988) to prove

internal stability was via a transformation from BCF to a LCF or RCF of the plant, which

as a mathematical result is interesting in its own right.

Internal stability results based on BCFs of the plant and controller will now be pre-

sented. The first considers the case where the additive terms of the BCFs of both the

plant and controller are restricted to zero. This is then used to derive a more generalised

condition where the restriction is removed.

Theorem 3.12 Consider the standard positive feedback interconnection of a plant P ∈ R

and controller C ∈ R depicted in Figure 2.2 and suppose that {N,M,L, 0} ∈ B(P ) and

{U, V,W, 0} ∈ B(C). Then

[P,C] is internally stable⇔

[
M −LU
−WN V

]
∈ GH∞. (3.1)
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Proof. For simplicity, define

M̃ =

[
M

V

]
, Ñ =

[
U

N

]
and L̃ =

[
L

W

]

and note that {Ñ , M̃ , L̃, 0} ∈ B. Then[
I −C
−P I

]−1

= (I − ÑM̃−1L̃)−1

= I + Ñ(M̃ − L̃Ñ)−1L̃.

Now, {Ñ , M̃ , L̃, 0} ∈ B and Lemma 3.9 imply that {Ñ , M̃ − L̃Ñ , L̃, I} ∈ B and hence

that [
M̃ − L̃Ñ −L̃

Ñ I

]
∈ Bm

[ I −C
−P I

]−1
 .

Then from Lemma 3.1 it follows that [P,C] is internally stable if and only if M̃ − L̃Ñ ∈
GH∞. The proof is then concluded by a simple column exchange.

It is simple to see that in the special cases where L = I and W = I (resp. N = I and

U = I), (3.1) reduces to the standard coprime factor result given by Lemma 2.17(d) (resp.

Lemma 2.17(e)). Furthermore, the main stability results of Desoer and Gündeş (1988)

follow via trivial simplifications of Theorem 3.12.

The following theorem presents the most abstract stability test attainable using BCFs.

Both the plant and controller are given full BCFs and no restrictions are imposed on any

of the factors.

Theorem 3.13 Consider the standard positive feedback interconnection of a plant P ∈ R

and controller C ∈ R depicted in Figure 2.2 and suppose that {N,M,L,K} ∈ B(P ) and

{U, V,W,X} ∈ B(C). Then

[P,C] is internally stable⇔


0 M L 0

V 0 0 W

U 0 I −X
0 N −K I

 ∈ GH∞. (3.2)

Proof. First define

Ñ =
[
−N K

]
, M̃ =

[
M

I

]
, L̃ =

[
−L
I

]
,

Ũ =
[
−U X

]
, Ṽ =

[
V

I

]
, W̃ =

[
−W
I

]
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and note that {Ñ , M̃ , L̃, 0} ∈ B(P ) and {Ũ , Ṽ , W̃ , 0} ∈ B(C). Then using Theorem 3.12,

[P,C] is internally stable if and only if

[
M̃ −L̃Ũ
−W̃ Ñ Ṽ

]
∈ GH∞ ⇔


M 0 −LU LX

0 I U −X
−WN WK V 0

N −K 0 I

 ∈ GH∞

⇔


−LU M 0 LX

V −WN WK 0

U 0 I −X
0 N −K I

 ∈ GH∞

⇔


0 M L 0

V 0 0 W

U 0 I −X
0 N −K I

 ∈ GH∞.

The last equivalence follows by pre-multiplying with[
I diag (L,W )

0 I

]
∈ GH∞,

which concludes the proof.

A series of results will now be presented each considering a special case. First however,

the following lemma is given as it is useful in proving many of the subsequent results.

Lemma 3.14 Suppose that

S =

[
S11 S12

S21 S22

]
∈ RH∞

where S22 ∈ GH∞. Then

S−1 ∈ GH∞ ⇔ S11 − S12S
−1
22 S21 ∈ GH∞.

Proof. From Schur complement decomposition

S =

[
I S12S

−1
22

0 I

][
S11 − S12S

−1
22 S21 0

0 S22

][
I 0

S−1
22 S21 I

]
.

The supposition S−1
22 ∈ GH∞ implies that[

I S12S
−1
22

0 I

]
,

[
I 0

S−1
22 S21 I

]
∈ GH∞
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and the result follows.

Case 1: P ∈ RH∞ or C ∈ RH∞

In the first case, a necessary and sufficient internal stability condition is presented for

when the plant or controller is stable.

Lemma 3.15 Consider the standard positive feedback interconnection of a plant P ∈ R

and controller C ∈ RH∞ depicted in Figure 2.2 and suppose that {N,M,L, 0} ∈ B(P ).

Then

[P,C] is internally stable⇔M − LCN ∈ GH∞. (3.3)

Proof. Let {U, V,W, 0} ∈ B(C). The proof follows by noting that C ∈ RH∞ ⇔ V ∈ GH∞

by Lemma 3.1 and then applying Lemma 3.14 to (3.1).

Lemma 3.16 (Dual to Lemma 3.15) Consider the standard positive feedback interconnec-

tion of a plant P ∈ RH∞ and controller C ∈ R depicted in Figure 2.2 and suppose that

{U, V,W, 0} ∈ B(C). Then

[P,C] is internally stable⇔ V −WPU ∈ GH∞. (3.4)

Proof. The proof follows by duality to Lemma 3.15.

Case 2: [K,X] internally stable

The following lemma considers the special case where the additive terms of the plant and

controller BCFs satisfy an internal stability condition.

Lemma 3.17 Consider the standard positive feedback interconnection of a plant P ∈ R

and controller C ∈ R depicted in Figure 2.2. Furthermore, let {N,M,L,K} ∈ B(P )

and {U, V,W,X} ∈ B(C) and suppose that [K,X] is internally stable. Then [P,C] is

internally stable if and only if[
M − LX (I −KX)−1N −L (I −XK)−1 U

−W (I −KX)−1N V −WK (I −XK)−1 U

]
∈ GH∞. (3.5)

Proof. Since [K,X] is assumed to be internally stable and K,X ∈ RH∞ we have[
I −X
−K I

]
∈ GH∞

from Lemma 2.15. The result then follows by applying Lemma 3.14 to (3.2).

The result of Lemma 3.17 can be restated more succinctly using the Redheffer star product

and BCF symbols of the plant and controller. This is given in the following corollary.
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Corollary 3.18 Consider the standard positive feedback interconnection of a plant P ∈ R

and controller C ∈ R depicted in Figure 2.2. Furthermore, let GP ∈ B̃(P ) and GC ∈
B̃(C) and suppose that the standard positive feedback interconnection of the additive terms

of the two BCFs is internally stable. Then

[P,C] is internally stable⇔ GP ?
([

I
I

]
GC

[
I

I

])
∈ GH∞. (3.6)

Proof. The proof follows trivially by calculation of (3.6) which gives (3.5).

Case 3: X = 0 or K = 0

The following lemma considers the case where only the plant BCF is allowed to have an

additive component.

Lemma 3.19 Consider the standard positive feedback interconnection of a plant P ∈ R

and controller C ∈ R depicted in Figure 2.2 and suppose that {N,M,L,K} ∈ B(P ) and

{U, V,W, 0} ∈ B(C). Then

[P,C] is internally stable⇔

[
M −LU
−WN V −WKU

]
∈ GH∞. (3.7)

Proof. The proof follows by noting that [K, 0] is internally stable since K ∈ RH∞ and

then using Lemma 3.17 with X = 0.

NM−1L

K

C

P

(a) [P,C].

NM−1L

C

K

C ′

(b) [P −K,C ′]

Figure 3.1: Linear loop shifting transformation.

It is worth noting that the above is equivalent to applying Theorem 3.12 after a loop

shifting operation absorbing K into the controller. A pictorial representation of this

transformation is shown in Figure 3.1. To observe this first consider C ′ = C (I −KC)−1

which is a standard linear shift loop transformation as described by Green and Limebeer
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(2012, Lemma 3.5.3). Then

C ′ = C (I −KC)−1

= UV −1W
(
I −KUV −1W

)−1

= UV −1
(
I −WKUV −1

)−1
W

= U (V −WKU)−1W.

Then by applying Lemma 3.9 it follows that {U, V − WKU,W, 0} ∈ B(C ′). Finally,

as mentioned above, the result follows via Theorem 3.12 with the BCFs {N,M,L, 0} ∈
B(P −K) and {U, V −WKU,W, 0} ∈ B(C ′).

Lemma 3.20 (Dual to Lemma 3.19) Consider the standard positive feedback intercon-

nection of a plant P ∈ R and controller C ∈ R depicted in Figure 2.2 and suppose that

{N,M,L, 0} ∈ B(P ) and {U, V,W,X} ∈ B(C). Then

[P,C] is internally stable⇔

[
M − LXN −LU
−WN V

]
∈ GH∞. (3.8)

Proof. The proof follows by duality to Lemma 3.19.

Case 4: [K,C] or [P,X] internally stable

Lemma 3.21 Consider the standard positive feedback interconnection of a plant P ∈ R

and controller C ∈ R depicted in Figure 2.2. Furthermore, let {N,M,L,K} ∈ B(P )

and suppose that [K,C] is internally stable. Finally, define C ′ = C (I −KC)−1 ∈ RH∞.

Then

[P,C] is internally stable⇔M − LC ′N ∈ GH∞. (3.9)

Proof. First let {U, V,W, 0} ∈ B(C) and note that since K ∈ RH∞, [K,C] is internally

stable if and only if V −WKU ∈ GH∞ by Lemma 3.16. Then applying Lemma 3.14 to

(3.7), [P,C] is internally stable if and only if

M − LU (V −WKU)−1WN ∈ GH∞ ⇔M − LC (I −KC)−1N ∈ GH∞

⇔M − LC ′N ∈ GH∞

which concludes the proof.

Lemma 3.22 (Dual to Lemma 3.21) Consider the standard positive feedback intercon-

nection of a plant P ∈ R and controller C ∈ R depicted in Figure 2.2. Furthermore,

let {U, V,W,X} ∈ B(C) and suppose that [P,X] is internally stable. Finally, define
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P ′ = P (I −XP )−1 ∈ RH∞. Then

[P,C] is internally stable⇔ V −WP ′U ∈ GH∞. (3.10)

Proof. The proof follows by duality to Lemma 3.21.

3.4 Numerical Examples

Example 1

A simple numerical example is presented below to demonstrate how the results of this

chapter can be applied in a practical situation.

Consider the plant

P =

[
3(s+1)

(s+2)(s−1)
4
s−1

2s+1
(s+2)(s−1)

2
s−1

]
∈ R,

a BCF of which is given by

G =

[
M −L
N K

]
=


s−1
s+1 − 2

s+1 − 4
s+1

3
s+2

3
s+2

4
s+2

2s+1
(s+2)(s+1)

2s+1
(s+1)(s+2)

2s
(s+2)(s+1)

 ∈ B̃1(P ).

Clearly, the above BCF of P has internal dimension 1. Hence this BCF of the plant cannot

be obtained by applying Lemma 3.10 to a LCF or RCF of P , which would give an internal

dimension of 2.

Furthermore, note that in accordance to Lemma 3.3 both the plant and its BCF symbol

have full normal rank. However, neither is invertible in R since det(P (∞)) = det(G(∞)) =

0, a fact also implied by Corollary 3.4.

Now let a candidate controller for P be given by

C = −

[
(s+1)2

s(2s+1)
s+1

s(2s+1)
1
4s

s+1
4s

]
∈ R

and consider the standard positive feedback interconnection of P and C.

The internal stability of [P,C] can be established using most of the results presented in

the preceding section. However, an interesting case arises when using Lemma 3.21. First

note that the supposition that [K,C] is internally stable is satisfied since

C ′ = C (I −KC)−1 = −

[
0.5

s+1
2(2s+1)

]
∈ RH∞.
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Then (3.9) can be evaluated as

M − LC ′N =
s2 + s+ 3

(s+ 1)(s+ 2)
∈ GH∞.

It can be therefore concluded that C is an internally stabilising controller for P . The

internal stability of [P,C] has been established by a scalar test, despite the fact that both

P and C are Multiple Input-Multiple Output (MIMO) objects.

Example 2

One could argue that the claim in example 1 (that internal stability of a MIMO object

was established via a Single Input-Single Output (SISO) test) is not completely accurate

since the stability of C ′ had also to be tested. However, it is assumed that this is known

a priori. There are cases where using BCFs gives a truly SISO test for internal stability.

Consider for example the standard feedback interconnection of a plant given as a BCF

with internal dimension 1 and zero additive termc and a controller in RH∞, then using

Lemma 3.15 the internal stability of the feedback interconnection can be established by a

SISO test.

Suppose that the transfer matrix of a plant is given by

P =

[
2(s+1)

(s−1)(s+2)
s+1
s+2

2(2s+1)
(s−1)(s+2)

2s+1
s+2

]
∈ R

and note that

[
M −L
N K

]
=


s−1
s+1 − 2

s+1
1−s
s+1

s+1
s+2 0 0
2s+1
s+2 0 0

 ∈ B̃1(P ).

Now consider the standard positive feedback interconnection of P and a controller C ∈
RH∞ given by

C =

[
3(2s+1)
s+1 −2s+1

s+1
3(2s+1)
s+1 −2s+1

s+1

]
.

Since C ∈ RH∞, Lemma 3.15 can be used to test the internal stability of [P,C]. Using

the above BCF of P , (3.3) can be evaluated as

M − LCN = −s+ 2

s+ 1
∈ GH∞,

which shows that [P,C] is internally stable.

cUsing Lemma 3.6 this implies that the plant has normal rank 1. Such cases could be encountered when
multiple sensors or actuators are attached to a SISO system for redundancy.
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3.5 Summary & Conclusion

The foundations of BCF theory were developed in this chapter. Bicoprimeness over RH∞

was first introduced followed by the definition of BCFs of a plant. The basic properties

of such factorisations were presented; including a characterisation of plant poles and zeros

based on a given BCF and the parametrisation of a fixed internal dimension BCF set. The

concept of internal dimension was also introduced and lower bounds for it were derived.

A series of internal stability tests of increasing specificity were then presented based on

BCFs of the plant, controller or both.

It was shown in numerous instances how BCFs generalise existing results in the litera-

ture utilising LCFs and RCFs of the plant. Finally, it was shown via numerical examples

that in some cases using a BCF of the plant can lead to advantages such as a reduced

dimension stability test.
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Chapter 4

State Space Formulations of BCFs

4.1 Introduction

An important and useful aspect of coprime factorisations is that every plant in R admits

both a LCF and RCF over RH∞. In fact, such factorisations can be easily obtained from

state space data of the plant, subject to a stabilisability and detectability assumption.

This allows results derived based on coprime factorisations to be systematically applied

to any plant in R. In this chapter state space methods for constructing BCFs of a plant

will be presented.

Formulae for generating LCFs and RCFs of a plant were first given by Nett et al.

(1984) and were quickly established in the literature as the standard method of obtaining

such factorisations. The LCF construction presented therein is now restated for reference.

Lemma 4.1 (Nett et al. (1984)) Let P ∈ Rp×q have a stabilisable and detectable state

space realisation P =

[
A B

C D

]
where A ∈ Rn×n. Furthermore, suppose that H ∈ Rn×p

is such that A+HC is Hurwitz and define

[
M −L

]
=

[
A+HC H −(B +HD)

C I −D

]
. (4.1)

Then, M ∈ RH p×p
∞ , L ∈ RH p×q

∞ and {L,M} ∈ Cl(P ).

One of many methods of acquiring a BCF of a plant is by trivially extending one of

its LCFs or RCFs. Consider again the LCF of P given by (4.1) and define

[
M −L
N K

]
=

 A+HC H −(B +HD)

C I −D
0 I 0

 (4.2)

=

[
M −L
I 0

]
.
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Since {L,M} ∈ Cl(P ), it follows that {I,M,L, 0} ∈ Bp(P ).

An alternative state space realisation of a BCF symbol of P is given by

[
M −L
N K

]
=

 A+BF BF −B
I I 0

0 C D

 ∈ B̃(P ), (4.3)

where A+BF is Hurwitz. Note that unlike (4.2), the above has no trivial factors.

To see that {L,M} ∈ Cl, first note that

(sI − (A+BF ))−1BF + I = (sI − (A+BF ))−1(sI −A).

Then, [
M −L

]
= −(sI − (A+BF ))−1

[
A− sI B

]
.

Since A+BF is Hurwitz it follows that sI − (A+BF ) has full rank for all s ∈ C̄+. Then,

using Sylvester’s rank inequality gives

rank
([
M −L

])
= rank

([
A− sI B

])
∀s ∈ C̄+,

which has full row rank since (A,B) is stabilisable. Furthermore,

lim
s→∞

[
M −L

]
=
[
I 0

]
,

which also has full row rank. Therefore,
[
M −L

]
has full row rank for all s ∈ C̄+ ∪{∞}

which implies that it has an inverse in RH∞, and hence leads to the conclusion that

{L,M} ∈ Cl. The fact that {N,M} ∈ Cr can be proven by construction of the associated

Bézout pair. Let H be a stabilising state estimation gain matrix (i.e. H is such that

A+HC is Hurwitz), then[
A+HC BF −HC H

−I I 0

][
M

N

]
= I.

Finally, P = NM−1L+K can be trivially shown via simple algebra.

Duals to both (4.2) and (4.3) can be easily derived based on an LCF of the plant and

full state estimation respectively.

Although the BCF given by (4.3) is simple to construct and is non-trivial, it still

suffers from the drawback that two of its factors are constant (N and K). Additionally,

as with BCFs obtained from a RCF, the internal dimension is fixed. In fact, the internal

dimension of the BCF given by (4.2) is dictated by the number of outputs of the plant,

whereas in the case of (4.3) it is increased to match the number of states of the plant.
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B
∫
D

C

AF

v
u

x y

Figure 4.1: Full state feedback controller.

The state space BCF parametrisations given in the subsequent sections of this chapter

will in general not suffer from these issues (if the parameters are reasonably chosen),

leading to more “balanced” BCFs of the plant.

4.2 An Observer Form BCF

In addition to their simple nature, the coprime factor constructions of Nett et al. (1984)

have an appealing control theoretic interpretation, which is outlined by Zhou et al. (1996,

Remark 5.3). Figure 4.1 depicts the block diagram of a plant P ∈ R with a stabilisable

state space realisation P =

[
A B

C D

]
under full state feedback. Let {N,M} ∈ Cr(P )

be given by the RCF dual to (4.2), then from Figure 4.1 it becomes apparent that M

corresponds to the transfer matrix from v to u, while N corresponds to that from v to y,

giving RCFs of this structure a full state feedback interpretation. The LCF construction

of (4.2) can be given a dual full state estimation interpretation.

In this section a BCF parametrisation based on state space data is presented. This con-

struction is shown to have a similar, yet generalised, interpretation; being representative

of an observer form controller.

Theorem 4.2 Let P ∈ Rp×q have a stabilisable and detectable state space realisation

P =

[
A B

C D

]
where A ∈ Rn×n. Furthermore, suppose that F ∈ Rq×n and H ∈ Rn×p

are such that Â = A+BF +HC +HDF is Hurwitz. Then,

[
M −L
N K

]
=


Â B +HD H B +HD

F I 0 0

C +DF D I D

C +DF D 0 D

 ∈ B̃p+q(P ). (4.4)
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Proof. Let H̃ ∈ Rn×p and F̃ ∈ Rq×n be such that A+BF̃ and A+H̃C are Hurwitz. Then

it can be shown that the Bézout factors associated with (4.4) are given by A+ H̃C −(B + H̃C) −H H̃

F I 0 0

0 0 I −I

[M
N

]
= I

and

[
M −L

]


A+BF̃ 0 H

−F I 0

−(C +DF̃ ) 0 I

F̃ −I 0

 = I.

Hence, {N,M} ∈ Cr and {L,M} ∈ Cl. The fact that P = NM−1L + K is easy to show

and thus omitted.

Remark 4.1 The BCF presented in Theorem 4.2 does not directly reduce to the LCF

construction given in (4.2) or its RCF dual by any selection of F and H. Although by

selecting F = 0 (resp. H = 0) the LC (resp. RC) factors of the plant given by (4.2) appear

as part of the resulting BCF. �

As previously mentioned, an attractive feature of the parametrisation given in The-

orem 4.2 is its practical interpretation. Consider the block diagram of an observer form

controller as shown in Figure 4.2. Then it is simple to show that

[
M −L
N K

]
=

 T( vy )7→(ue ) Tv 7→(u−ve )

T( vy )7→ŷ Tv 7→ŷ

 ,
where Tα 7→β denotes the transfer function matrix mapping signal α to signal β.

B
∫
H

A

C

D

F

v u ˙̂x x̂

e

y

ŷ

Figure 4.2: Observer form controller.
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Remark 4.2 A deviation of the BCF presented in Theorem 4.2 from its observer form

controller interpretation is that F and H must be chosen such that Â is Hurwitz instead

of A+BF and A+HC. This is equivalent to the resulting controller being stable instead

of the closed loop transfer matrix. Clearly, if the plant is strongly stabilisablea, F and H

can be chosen such that all three are Hurwitz. �

A slightly simplified version of this parametrisation is given by
A+BF +HC B H B

F I 0 0

C 0 I 0

C 0 0 D

 ∈ B̃p+q(P ).

However, the relation to Figure 4.2 is no longer valid. In this case the equivalent block

diagram is similar to Figure 4.2 but with D connecting v instead of u to ŷ. Clearly, if the

plant is strictly proper the interpretation still holds.

Even though the BCF parametrisation presented by Theorem 4.2 is appealing due

to its practical interpretation, it is rather restrictive as it still results in a fixed internal

dimension. Additionally, the fact that A+BF and A+HC are not required to be Hurwitz

can be counter-intuitive to a control engineer.

4.3 The QR-BCF Parametrisation

All the state space BCFs presented so far in this chapter suffer from the same restriction,

which is the fact that their internal dimension is fixed. A final state space parametrisation

for the BCFs of a plant which is even more versatile and useful is given in the following

theorem.

Theorem 4.3 Let P ∈ Rp×q have a stabilisable and detectable state space realisation

P =

[
A B

C D

]
. Furthermore, suppose that Q ∈ Rn×r and R ∈ Rr×n are such that

A+QR is Hurwitz. Finally, let DN ∈ Rp×r and DL ∈ Rr×q be arbitrary matrices. Then

[
M −L
N K

]
=

 A+QR Q B +QDL

R I DL

C +DNR DN D +DNDL

 ∈ B̃r(P ). (4.5)

Proof. First, it is easy to show that P = NM−1L + K. The fact that the factors are

indeed coprime can be proven by construction of the associated Bézout pairs as follows.

Let F ∈ Rq×n and H ∈ Rn×p be such that A+BF and A+HC are Hurwitz. Then, after

aA plant P ∈ R is said to be strongly stabilisable if there exists a controller C ∈ RH∞ such that [P,C]
is internally stable.
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some linear algebra it can be shown that[
A+HC −(Q+HDN ) H

R I 0

][
M

N

]
= I

and

[
M −L

] A+BF Q

−(R+DLF ) I

F 0

 = I.

Hence, {N,M} ∈ Cr and {L,M} ∈ Cl which completes the proof.

The BCF construction given by (4.5) will henceforth be referred to as the QR-BCF

parametrisation. The naming is chosen to reflect that it is parametrised by the matrices

Q and R.

Remark 4.3 The QR-BCF parametrisation given in Theorem 4.3 reduces to the standard

LCF and RCF constructions given by Nett et al. (1984) by an appropriate selection of Q,

R, DN and DL. For example, let P ∈ R and {N,M,L,K} ∈ B(P ) given by (4.5) with

Q = −H, R = −C, DN = I and DL = −D. Then N = I, K = 0 and {L,M} ∈ Cl(P )

where M and L coincide with those given in (4.2). �

The QR-BCF parametrisation can be extended to include (4.4), however this intro-

duces an unnecessary level of complexity. One such extension is given by the following

corollary to Theorem 4.3.

Corollary 4.4 Let P ∈ Rp×q have a stabilisable and detectable state space realisation

P =

[
A B

C D

]
. Furthermore, suppose that Q ∈ Rn×r, S ∈ Rr×r and R ∈ Rr×n are such

that A + QSR is Hurwitz, where detS 6= 0. Finally, let DN ∈ Rp×r and DL ∈ Rr×q be

arbitrarily chosen matrices. Then

[
M −L
N K

]
=

 A+QSR QS B +QSDL

SR S SDL

C +DNSR DNS D +DNSDL

 ∈ B̃r(P ). (4.6)

Proof. Let R̂ = SR, D̂L = SDL and suppose that {N,M,L,K} ∈ B(P ) is a QR-BCF of

P induced by Q and R̂ with DN and D̂L. The conclusion then follows from Lemma 3.10

with Rl = 0, Rr = 0, Ql = I and Qr = S.

Note that with the selection Q =
[
B H

]
, R =

[
F

C

]
, S =

[
I 0

D I

]
, DN =

[
D 0

]
and

DL =

[
0

D

]
, (4.6) is transformed to (4.4).
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Remark 4.4 For any A ∈ Rn×n there always exist matrices Q ∈ Rn×r and R ∈ Rr×n such

that A+QR is Hurwitz. This would seem to imply that the stabilisability and detectability

assumptions in Theorem 4.3 are not necessary and included simply for ease of proof. This

however is not true. Consider again the RC pair given by (4.5), then

{N,M} ∈ Cr ⇔

[
M

N

]
has no C̄+ transmission zeros

⇔ rank


A+QR− sI Q

R I

C +DNR DN


 = n+ r ∀s ∈ C̄+

⇔ rank


A− sI Q

0 I

C DN


 = n+ r ∀s ∈ C̄+

⇔ rank

([
A− sI
C

])
= n ∀s ∈ C̄+

⇔ (C,A) is detectable.

Hence, if (C,A) is not detectable then {N,M} /∈ Cr even if A + QR is Hurwitz. It can

similarly be shown that (A,B) must be stabilisable for {L,M} ∈ Cl. �

By setting DN = 0 and DL = 0, the BCF obtained by the QR-BCF parametrisation is

greatly simplified. This selection will be imposed for the rest of this thesis unless otherwise

indicated. Any results presented can be generalised to the case where these terms are non-

zero after some basic, albeit lengthy and tedious, linear algebra.

4.3.1 Minimal Internal Dimension

Given a stabilisable and detectable state space realisation of P ∈ Rp×q, using the QR-

BCF parametrisation it is always possible to obtain a BCF with internal dimension r ≤
min{p, q}b with one example achieving r = p given by (4.2). It was shown in the previous

chapter that reducing the internal dimension of a BCF can be advantageous in deducing

the internal stability of a feedback interconnection.

The question that now arises is “what is the minimum internal dimension achiev-

able via a QR-BCF of a plant?”. This question of internal dimensional minimality is

tantamount to finding the smallest dimension Q and R such that A + QR is Hurwitz;

or equivalently, finding the smallest dimension Q such that (A,Q) is stabilisablec. This

question is answered by a corollary to the following lemma.

bSince if Q = B then r = q while if R = C then r = p.
cOr by duality the smallest dimension R such that (R,A) is detectable.
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Lemma 4.5 Let A ∈ Rn×n, then there exists a matrix B ∈ Rn×q such that (A,B) is

controllable if and only if

max
λiA

γiA ≤ q.

Before proving Lemma 4.5, a few preliminary results are required.

Lemma 4.6 Let A ∈ Rn×n and suppose that rank (A) = r < n or equivalently that

dim ker(A) = n− r. Then there exists a matrix B ∈ Rn×q such that rank
([
A B

])
= n

if and only if q ≥ dim kerA.

Proof. Without loss of generality, via a Jordan form decomposition, suppose that A has

the form A =

[
J

0

]
with J ∈ Rr×r having full rank. Then

∃B ∈ Rn×q : rank
([
A B

])
= n

⇔ ∃B1 ∈ Rr×q, B2 ∈ R(n−r)×q : rank

([
J 0 B1

0 0 B2

])
= n

⇔ ∃B2 ∈ R(n−r)×q : rank (B2) = n− r

⇔ q ≥ n− r,

which concludes the proof.

As a consequence of the above lemma, if q = dim kerA then B must have full column

rank.

Lemma 4.7 Let A ∈ Rn×n have the block diagonal form A = diag (A1, . . . , Am) with

B ∈ Rn×q partitioned compatibly and suppose that Λ(Ai) ∩ Λ(Aj) = ∅ for all i 6= j. Then

(A,B) is controllable if and only if (Ak, Bk) is controllable for all k ∈ {1, . . . ,m}.

Proof. The proof follows trivially using PBH tests.

Lemma 4.8 Suppose that a matrix A ∈ Rn×n has only one distinct eigenvalue λ, with

algebraic multiplicity n and geometric multiplicity γ. Then there exists a matrix B ∈ Rn×q

such that (A,B) is controllable if and only if γ ≤ q.

Proof. By definition, γ = dim ker(A − λI) and r = rank (A− λI) = n − γ. Then as a

consequence of Lemma 4.6

∃B ∈ Rn×q : rank
([
A− λI B

])
= n⇔ q ≥ n− r = γ

which concludes the proof.

We are now adequately equipped to prove the result of Lemma 4.5.
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Proof of Lemma 4.5. Without loss of generality, suppose that A has the Jordan canonical

form A = diag (J1, . . . , Jm) and that B is compatibly partitioned. Then

∃B ∈ Rn×q : (A,B) is controllable⇔∃Bi ∈ Rµ
i
A×q : (Ji, Bi) is controllable

∀i ∈ {1, . . . ,m} by Lemma 4.7

⇔ γiA ≤ q ∀λiA by Lemma 4.8

and the result follows by induction.

The following corollary reduces the result of Lemma 4.5 to stabilisability by only

considering the eigenvalues of A that belong to C̄+.

Corollary 4.9 Let A ∈ Rn×n, then there exists a matrix B ∈ Rn×q such that (A,B) is

stabilisable if and only if

max
λiA∈C̄+

γiA ≤ q.

Proof. Without loss of generality, suppose that A has the form A =

[
A+

A−

]
where

Λ(A+) ⊆ C̄+ and A− is Hurwitz and let B be compatibly partitioned as B =

[
B+

B−

]
. Then

it is obvious that

(A,B) is stabilisable⇔ (A+, B+) is controllable.

The conclusion then follows from Lemma 4.5 upon noting that Λ(A+) = Λ(A) ∩ C̄+.

Returning to the QR-BCF state space characterisation of Theorem 4.3, by a direct

application of Corollary 4.9, it becomes apparent that the minimum internal dimension

achievable by a QR-BCF of the plant is given by r = maxλiA∈C̄+
γiA. One such QR-BCF

will now be constructed based on a Gilbert realisation of the plant.

Let a plant P ∈ R have a stabilisable and detectable state space realisation in Gilbert

form given by

P =

 A+ B+

A− B−

C+ C− D


where A+ ∈ Rn+×n+ and A− is Hurwitz. From Corollary 4.9 it now follows that a BCF

can be obtained with internal dimension given by r = maxλiA+

γiA+
. Let Q+ ∈ Rn+×r and

R+ ∈ Rr×n+ be such that A+ + Q+R+ is Hurwitz. Then Q =

[
Q+

0

]
and R =

[
R+ 0

]
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induce the QR-BCF

[
M −L
N K

]
=


A+ +Q+R+ 0 Q+ B+ +Q+DL

0 A− 0 B−

R+ 0 I DL

C+ +DNR+ C− DN D +DNDL

 ∈ B̃r(P ). (4.7)

Clearly, it is not necessary for the parts of Q and R corresponding to A− to be selected

as zero in (4.7) to achieve the minimal internal dimension. Nonetheless, this choice was

made for clarity as it simplifies the resulting BCF.

Since both Q and R are free parameters (subject to the restriction that A + QR is

Hurwitz) there are countless ways of selecting them. For example, substituting Q+ =

A+ + εI where ε ∈ R+ and R+ = −I in (4.7) yields a valid BCF. Another simple choice

is given by R+ = I and Q+ = −kI with k ∈ R+ such that ρ(A+) < k. It will be shown

in Chapter 6 that by selecting Q and R in more strategic ways significant advantages can

be obtained, especially in the context of robust control synthesis.

A great advantage of the QR-BCF parametrisation is the fact that the parameters can

always be chosen such that the right factor N is tall and the left factor L is wide, since r

can always be chosen to satisfy r ≤ min{p, q}. Additionally, they can always be made to

have full column and row normal rank respectively. A simple way of achieving this is by

selecting DN and DL to have full column and row rank respectively. This then results in

a BCF where the factors are invertible in R.

The following lemma gives a result seemingly similar to that of Lemma 4.5. However,

its objective is to provide a method of constructing a matrix B ∈ Rn×q such that the pair

(A,B) is controllable for some A ∈ Rn×n. This can then be used in the selection of Q

when constructing a QR-BCF.

Lemma 4.10 Let A ∈ Rn×n have m distinct eigenvalues and suppose that, without loss

of generality, it has a real Jordan canonical form A = diag (J1, . . . , Jm). Furthermore, let

B ∈ Rn×q be compatibly partitioned and given by

B =


B1

...

Bm

 , Bi =


Bi1

...

BiγiA

 ∈ Rµ
i
A×q, Bij =

[
?

β∗ij

]
∈ Rµ

ij
A×q,

where βij ∈ Rq and ? denotes a ‘don’t care’ element.

Then (A,B) is controllable if and only if

rank
([
βi1 · · · βiγiA

])
≥ γiA ∀i ∈ {1, . . . ,m}.
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Proof. First defined

eij =


0∑j

h=1{µihA }−1

1

0∑γi
A
h=(j+1){µihA }

 ∀j ∈ {1, . . . , γiA}

and note that e∗ijBi = β∗ij . Then it is easy to see that the left eigenspace of Ji is given by

El(Ji) = span{eij}.
Since Λ(Jp) ∩ Λ(Jq) = ∅ for all p 6= q, it follows from Lemma 4.7 that

(A,B) is controllable⇔ (Ji, Bi) is controllable ∀i ∈ {1, . . . ,m}

⇔ @y ∈ El(Ji) : y∗Bi = 0 ∀i ∈ {1, . . . ,m}

⇔ @α ∈ Rγ
i
A :
([
ei1 · · · eiγiA

]
α
)∗
Bi = 0 ∀i ∈ {1, . . . ,m}

⇔ @α ∈ Rγ
i
A : α∗

[
βi1 · · · βiγiA

]∗
= 0 ∀i ∈ {1, . . . ,m}

⇔ rank
([
βi1 · · · βiγiA

])
≥ γiA ∀i ∈ {1, . . . ,m},

which concludes the proof.

4.4 Numerical Example

A numerical example will now be presented where Theorems 4.2 and 4.3 are used to

construct BCFs of a plant. Via this example it will become apparent that a reduction in

internal dimension can make a problem much more tractable, reinforcing the conclusion of

the previous chapter. On the other hand, a potential flaw of using a QR-BCF will emerge

when Q is chosen such that where (A,Q) is only stabilisable (not completely controllable).

Consider the plant

P =


2s−1

(s+1)(s−2)
s−1
s−2

s+2
s+1 1

1 1
s+1

 ∈ R3×2,

which has the stabilisable and detectable state space realisation

P =



2 0 0 1 1

0 −1 0 1 0

0 0 −1 0 1

1 1 0 0 1

0 1 0 1 1

0 0 1 1 0


.

dFor notational simplicity, µijA = 0 for all j /∈ {1, . . . , γiA}.
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By inspection of the above state space realisation it can be seen that the plant has poles at

s = 2 and s = −1 both of which are semi-simplee with multiplicities 1 and 2 respectively.

A BCF of P will first be constructed using Theorem 4.2. Let

F =

[
1 1 1

0 1 2

]
and H =

−6.5 4 −1

−3 1 1

3 −2 −1

 ,
then (4.4) yields the BCF

−0.5 0 0 4 −1.5 −6.5 4 −1 4 −1.5

0 −2 0 3 −2 −3 1 1 3 −2

0 0 −1 −3 2 3 −2 −1 −3 2

1 1 1 1 0 0 0 0 0 0

0 1 2 0 1 0 0 0 0 0

1 2 2 0 1 1 0 0 0 1

1 3 3 1 1 0 1 0 1 1

1 1 2 1 0 0 0 1 1 0

1 2 2 0 1 0 0 0 0 1

1 3 3 1 1 0 0 0 1 1

1 1 2 1 0 0 0 0 1 0



∈ B̃5(P ). (4.8)

The QR-BCF will now be used to obtain a BCF of P . From Lemma 4.5 it follows

that any matrix Q must have at least 2 columns for (A,Q) to be controllable. However,

since the geometric multiplicity of the C̄+ pole is 1, it follows from Corollary 4.9 that A

can be stabilised via a single column Q. One such Q is given by Q =
[
1 1 1

]∗
which in

combination with R =
[
−4 0 0

]
induces the QR-BCF



−2 0 0 1 1 1

−4 −1 0 1 1 0

−4 0 −1 1 0 1

−4 0 0 1 0 0

1 1 0 0 0 1

0 1 0 0 1 1

0 0 1 0 1 0


∈ B̃1(P ). (4.9)

Comparing the two BCFs of P constructed, it can be seen that using the QR-BCF to

reduce the internal dimension leads to a much more manageable BCF of the plant.

Although the reduced internal dimensions can be beneficial in certain situations, the

fact that (A,Q) is only stabilisable implies that the modes of the factorisation cannot be

eAn eigenvalue is said to be semi-simple if its geometric and algebraic multiplicities are equal.
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assigned freely. It will be shown in the next chapter that this might have some adverse

effects in the context of control synthesis.

4.5 Summary & Conclusion

State space methods for generating BCFs of a plant were presented in this chapter. First,

it was shown how the formulae of Nett et al. (1984), commonly used to obtain RCFs

and LCFs, can be extended to generate BCFs of the plant. Similar to the classical case,

where the factorisations can be related to full state feedback and estimation, the pre-

sented state space parametrisation was demonstrated to have an observer form controller

interpretation.

The QR-BCF parametrisation was then introduced, also based on the state space data

of the plant. This parametrisation is more abstract than those previously presented, al-

lowing greater flexibility and even variable internal dimension. A lower bound on the

minimum internal dimension achievable using this method was derived. It was also shown

how the formulae of Nett et al. (1984) can be reconstructed using the QR-BCF parametri-

sation by an appropriate selection of the parameters.
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Chapter 5

BCF Uncertainty and Robust

Stabilisation

5.1 Introduction

Stable perturbations on the coprime factor of a plant as a method to model uncertainty was

first proposed by Vidyasagar and Kimura (1986). It was argued therein and corroborated

by many other authors that coprime factor uncertainty is superior to other structures such

as additive or multiplicative (Green and Limebeer, 2012; Vinnicombe, 2001). Suppose

that a plant P ∈ R has a LCF {L,M} ∈ Cl(P ), then a perturbed plant P∆ can be

defined as P∆ = (M + ∆M )−1 (L+ ∆L) where ∆M ,∆L ∈ RH∞. RCF uncertainty can be

similarly defined. Block diagram representations of both cases are shown in Figure 5.1.

Unlike additive or multiplicative uncertainty, the perturbations mapping P to P∆ are not

unique in the coprime factor case. That is, there are many ∆M , ∆L satisfying P∆ =

(M + ∆M )−1 (L+ ∆L) for a given pair {L,M} ∈ Cl(P ) (Vinnicombe, 2001).

LM−1

∆L∆M

uy

(a) LCF uncertainty

M−1N

∆N ∆M

uy

(b) RCF uncertainty

Figure 5.1: Block diagram representations of coprime factor uncertainty.

It is important that {L + ∆L,M + ∆M} ∈ Cl(P∆) since if this is not true there is a

C̄+ pole/zero cancellation and the resulting perturbed plant is not robustly stabilisablea

(Glover and McFarlane, 1989, Remark 4.4).

aThe notion of robust stabilisability is distinct from that of state space stabilisability and refers to the
existance of a controller stabilising both the nominal and perturbed plants.
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In general, coprime factor uncertainty is well suited to capture low frequency parameter

errors, neglected high frequency dynamics and uncertain C̄+ poles and zeros (Zhou et al.,

1996, Table 9.1).

In this chapter uncertainty in terms of a plant’s BC factors is defined, followed by

associated robust stability conditions. Robust stabilisation results are then presented

with respect to the defined uncertainty structure. Finally a practical example is provided

to demonstrate the application of the methods developed.

5.2 Uncertainty Characterisation & Robust Stability

In this section, stable perturbations on the BC factors of a plant are examined. Similarly

to RCFs and LCFs, a BCF of a plant can be used to define an uncertainty structure and

by extent, a robust stability condition.

5.2.1 BCF Uncertainty

Let a plant P ∈ R have the BCF {N,M,L,K} ∈ B(P ). Then a perturbed plant P∆ can

be defined by stable additive perturbations on the BC factors of the plant (same as LCF

or RCF uncertainty) which yields

P∆ = (N + ∆N ) (M + ∆M )−1 (L+ ∆L) + (K + ∆K). (5.1)

As is the case for LCF and RCF uncertainty, we will impose that the bicoprimeness of

the factors is preserved under these perturbations; or equivalently that {N + ∆N ,M +

∆M , L+ ∆L,K + ∆K} ∈ B(P∆). Figure 5.2 shows a block diagram representation of the

proposed BCF uncertainty structure. By comparing Figures 5.1 and 5.2, it is easy to see

that the uncertainty structure induced by a BCF of the plant contains elements from both

its LCF and RCF counterparts. It can therefore be argued that (5.1) is similarly suited

to capturing the same types of modelling errors as those listed in the previous section for

L

∆L

M−1

∆M

∆K

K

N

∆N

u

w2

y

z1
-z2

w1

Figure 5.2: Perturbed plant block diagram with BC factor uncertainty.
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coprime factor uncertainty. Additionally, additive plant errors are also represented by the

∆K term. It is interesting to point out that this structure closely resembles the standard

four-block problemb, commonly studied by the robust control community, as is evident

from Figure 5.2.

As as a motivation for the study of the BCF uncertainty structure the following example

is provided. Suppose a plant P ∈ R has a LCF {L,M} ∈ Cl(P ) being perturbed to

PLCF∆ = (M+∆M )−1(L+∆L). By perturbing the induced BCF {I,M,L, 0} ∈ B(P ), the

resulting perturbed plant would be given by PBCF∆ = (I + ∆N )(M + ∆M )−1(L + ∆L) +

∆K which allows for capturing output multiplicative and additive modelling errors (Zhou

et al., 1996, Table 9.1) in addition to the coprime factor errors normally represented by

LCF uncertainty. Thus it becomes apparent that LCF and RCF uncertainty is a special

structured case of BCF uncertainty. Furthermore, using the distance definition of Lanzon

and Papageorgiou (2009)c, it follows from the above discussion that two plants are always

“closer” in terms of BCF distance in comparison to LCF or RCF distance (which in the

normalised case corresponds to the ν-gap metric).

A central part in the study of any uncertainty structure is the construction of a gen-

eralised plant. In the case of BCF uncertainty this can be achieved as follows. For

notational brevity, first define z =

(
z2

z1

)
and w =

(
w1

w2

)
. Let P ∈ Rp×q and suppose that

{N,M,L,K} ∈ Br(P ). Then from Figure 5.2 a generalised plant Π :

(
w

u

)
7→

(
z

y

)
and

uncertainty matrix ∆ : z 7→ w can be obtained as

Π =

 M−1 0 M−1L

0 0 I

NM−1 I P

 ∈ R(p+q+r)×(p+q+r) (5.2)

and

∆ =

[
−∆M ∆L

∆N ∆K

]
∈ RH (p+r)×(q+r)

∞ . (5.3)

Finally, it is simple to confirm via routine calculations that the perturbed plant as defined

by (5.1) is given by P∆ = Fu(Π,∆).

5.2.2 Robust Stability in Terms of BC Factors

For a given plant P ∈ R and stabilising controller C ∈ R, the robust stability margin with

respect to an uncertainty structure represented by an LFT interconnection is obtained by

computing ‖Fl(Σ, C)‖−1
∞ when [P,C] is internally stable, where Σ denotes the associated

generalised plant (see Lanzon and Papageorgiou (2009) for details). When considering

bSee Lanzon et al. (2012) for a block diagram representation of the four-block interconnection.
cDefined as the smallest size uncertainty matrix mapping the nominal to the perturbed plant.
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BCF uncertainty, applying the above procedure with Σ = Π where Π is defined as (5.2),

yields the following theorem.

Theorem 5.1 Consider the standard positive feedback interconnection of a plant P ∈ R

and stabilising controller C ∈ R depicted in Figure 2.2 and suppose that {N,M,L,K} ∈
B(P ). Furthermore, define ∆ ∈ RH∞ as in (5.3), P∆ = Fu(Π,∆) with Π as in (5.2).

Finally, suppose that {N + ∆N ,M + ∆M , L+ ∆L,K + ∆K} ∈ B(P∆).

Then [P∆, C] is internally stable for all ‖∆‖∞ < γ (resp. ≤ γ) if and only if∥∥∥∥∥
[
M−1L

I

]
C (I − PC)−1

[
NM−1 I

]
+

[
M−1

0

]∥∥∥∥∥
∞

≤ 1

γ

(
resp. <

1

γ

)
. (5.4)

Proof. It follows by direct calculation that

Fl(Π, C) =

[
M−1L

I

]
C (I − PC)−1

[
NM−1 I

]
+

[
M−1

0

]
.

The conclusion then follows by an application of the small gain theorem.

When a BCF of the controller is available the following theorem can be used to obtain

a robust stability margin.

Theorem 5.2 Consider the standard positive feedback interconnection of a plant P ∈ R

and stabilising controller C ∈ R depicted in Figure 2.2 and suppose that {N,M,L,K} ∈
B(P ) and {U, V,W, 0} ∈ B(C). Furthermore, define ∆ ∈ RH∞ as in (5.3), P∆ =

Fu(Π,∆) with Π as in (5.2). Finally, suppose that {N + ∆N ,M + ∆M , L + ∆L,K +

∆K} ∈ B(P∆).

Then [P∆, C] is internally stable for all ‖∆‖∞ < γ (resp. ≤ γ) if and only if∥∥∥∥∥∥
[
I

U

][
M −LU
−WN V −WKU

]−1 [
I

W

]∥∥∥∥∥∥
∞

≤ 1

γ

(
resp. <

1

γ

)
.

Proof. Since [P,C] is internally stable it follows from Lemma 3.19 that[
M −LU
−WN V −WKU

]
∈ GH∞.
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Then, using Lemma 3.19 again, [P∆, C] is internally stable if and only if[
M + ∆M −(L+ ∆L)U

−W (N + ∆N ) V −W (K + ∆K)U

]
∈ GH∞

⇔

([
M −LU
−WN V −WKU

]
−

[
I

W

][
−∆M ∆L

∆N ∆K

][
I

U

])−1

∈ RH∞

⇔

I − [ M −LU
−WN V −WKU

]−1 [
I

W

]
∆

[
I

U

]−1

∈ RH∞

⇔

I − [I
U

][
M −LU
−WN V −WKU

]−1 [
I

W

]
∆

−1

∈ RH∞.

The conclusion then follows by an application of the small gain theorem.

Note that the controller in the above theorem is restricted to having no additive term.

This can be justified in two ways. First, since it is up to the designer to construct the

controller, it can always be chosen such that this supposition is satisfied. Secondly, if

the controller is given with a non-zero additive term, the factors can be inflated to ac-

commodate this term. An example of this procedure will be presented in the proof of

Lemma 5.5.

As expected, the results of Theorems 5.1 and 5.2 reduce to the standard LCF result

(and its RCF dual) given by Zhou et al. (1996, Theorem 9.6) when the appropriate factor

and uncertainty assumptions are made. For example, let K = 0, N = I and W = I which

gives {L,M} ∈ Cl(P ) and {U, V } ∈ Cr(C), and ∆N = 0 and ∆K = 0 which corresponds

to LCF uncertainty. Then under these restrictions[
I

U

][
M −LU
−WN V −WKU

]−1 [
I

W

]

=

[
I

U

][
M −LU
−I V

]−1

=

[
I

U

][
V (MV − LU)−1 V (MV − LU)−1M − I
(MV − LU)−1 (MV − LU)−1M

]

=

[
I

C

]
(I − PC)−1

[
M−1 I

]
+

[
−I

0

]
.

The second column is irrelevant due to the structure imposed on the uncertainty matrix

and hence the required LCF result is obtained. The RCF dual can be similarly obtained.
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5.3 Robust Control Synthesis

Control synthesis is a key aspect of any control theory and one to which coprime factori-

sations play a pivotal role. As an example, one could consider the Youla parametrisation

which uses the coprime factors of a plant to parametrise all stabilising controllers (Youla

et al., 1976).

As shown in the previous section, BCF uncertainty has an appealing structure that

encompasses both LCF and RCF uncertainty, while closely resembling the standard four-

block structure commonly studied by the robust control community. It is therefore rea-

sonable to develop new and alternative control synthesis procedures with respect to this

structure; which is the aim of this section.

In the first subsection, a new controller parametrisation method, based on BCFs, is

presented for systems without any transmission zeros in C̄+∪{∞}. A robust stability result

is given for controllers obtained in this manner, while some special cases of structured

uncertainty are also examined.

Then, in the following subsections, the well known H∞ synthesis results of Doyle et al.

(1989) are adapted to BCF uncertainty. The structure resulting from the use of a BCF is

shown to be very appealing as all of the standard assumptionsd are directly and trivially

satisfied when using the QR-BCF parametrisation.

5.3.1 Controller Parametrisation for Systems Without RHP Zeros

A controller parametrisation for systems without any transmission zeros in C̄+∪{∞} will

now be presented along with some associated robust stability conditions. Note that this

class contains all minimum phase systems.

Theorem 5.3 Let P ∈ Rp×q have no transmission zeros in C̄+ ∪ {∞} and suppose that

{N,M,L, 0} ∈ Br(P ) where r = nrank (P ). Furthermore, define the set

C(P ) =
{
L†(Q−1 +M)N † : Q ∈ RH∞,detQ(∞) 6= 0

}
⊆ Rq×p,

where L† ∈ RH q×r
∞ and N † ∈ RH r×q

∞ satisfy LL† = I and N †N = I.

Then [P,C] is internally stable for all C ∈ C(P ).

Before proving the above, the following lemma is needed.

Lemma 5.4 Let P ∈ Rp×q have no transmission zeros in C̄+ ∪ {∞} and suppose that

{N,M,L, 0} ∈ Br(P ) where r = nrank (P ). Then N and L are invertible in RH∞

Proof. First note that the assumption that P has no transmission zeros in C̄+ ∪ {∞}
implies that the plant achieves its normal rank at infinity; or equivalently rank (P (∞)) = r.

Suppose on the contrary that rank (P (∞)) < r, then by definition P has a transmission

dSee Glover and Doyle (1988) for a list of these assumptions.
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zero at infinity which contradicts the lemma assumption. This further implies that L

and N have full row and column rank respectively at infinity, and therefore have proper

rational inverses. Furthermore, since the P has no C̄+ transmission zeros neither do L

and N e; or equivalently L and N are minimum phase. Finally, from Zhou et al. (1996,

Lemma 3.38), it follows that both L and N are invertible in RH∞.

Theorem 5.3 can now be proven as follows.

Proof of Theorem 5.3. First, note that {L†, Q,N †, L†MN †} ∈ Br(C) is a valid BCF for

any C ∈ C(P ). Then using Lemma 3.20

[P,C] is internally stable⇔

[
M − LL†MN †N −LL†

−N †N Q

]
∈ GH∞

⇔

[
0 I

I −Q

]
∈ GH∞

which completes the proof.

The following lemma provides a robust stability condition for any feedback intercon-

nection where the plant and controller satisfy the suppositions of Theorem 5.3.

Lemma 5.5 Consider the standard positive feedback interconnection of a plant P ∈ R

that has no transmission zeros in C̄+∪{∞} and a stabilising controller C ∈ C(P ) depicted

in Figure 2.2 and suppose that {N,M,L, 0} ∈ Br(P ) where r = nrank (P ). Furthermore,

define ∆ ∈ RH∞ as in (5.3) and P∆ = Fu(Π,∆) with Π as in (5.2). Finally, suppose

that {N + ∆N ,M + ∆M , L+ ∆L,K + ∆K} ∈ B(P∆).

Then [P∆, C] is internally stable for all ‖∆‖∞ < γ (resp. ≤ γ) if and only if∥∥∥∥∥
[
I

L†

]([
0 I

I M

]
+

[
I

M

]
Q
[
I M

])[I
N †

]∥∥∥∥∥
∞

≤ 1

γ

(
resp. <

1

γ

)
. (5.5)

Proof. Again we begin by noting that {L†, Q,N †, L†MN †} ∈ Br(C). Since the additive

term of this BCF is non-zero, the robust stability result of Theorem 5.2 cannot be applied

directly. This problem is circumvented by noting that

[
V −W
U 0

]
=

 Q 0 −N †

0 I −N †

L† L†M 0

 ∈ B̃2r(C)

eLet p ≥ q. Suppose that ∃z0 ∈ C̄+, y0 ∈ Rr : N(z0)y0 = 0 and rank (L(z0)) = r. Since {N,M} ∈ Cr,
z0 is not a transmission zero of M and hence rank

(
M(z0)−1L(z0)

)
= r. Now let x0 = L(z0)†M(z0)y0.

Then P (z0)x0 = N(z0)M(z0)−1L(z0)(L(z0)†M(z0))y0 = N(z0)y0 = 0. Therefore z0 is also a transmission
zero of P . Obviously if ∃z̃0 ∈ C̄+, ỹ0 ∈ Rq : L(z̃0)ỹ0 = 0 then P (z̃0)ỹ0 = 0. Therefore, if z0 ∈ C̄+

is a transmission of N or L, then it is also a transmission zero of P . The claim then follows from the
contrapositive.
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is also a valid BCFf for any C ∈ C(P ). Then[
I

U

][
M −LU
−WN V −WKU

]−1 [
I

W

]

=

[
I

L†
[
I M

]]
M −I −M
−I Q 0

−I 0 I


−1 I [

I

I

]
N †



= −

[
I

L†
[
I M

]]
Q I QM

I 0 M

Q I −(I −QM)


I [

I

I

]
N †


= −

[
I

L†

][
Q I +QM

I +MQ M +MQM

][
I

N †

]

= −

[
I

L†

]([
0 I

I M

]
+

[
I

M

]
Q
[
I M

])[I
N †

]

and the conclusion follows from Theorem 5.2.

Remark 5.1 When posed as an optimisation problem, the above can be solved for an

optimal Q using the methods presented by Green et al. (1990, Theorem 2.6) or Glover

et al. (1991). Note that this is in fact a special case of the bilateral model matching

problem since the objects multiplying the argument are both in RH∞ as are their inverses,

which slightly simplifies the problem. On the other hand, a complication does arise since

Q must be invertible. �

When the uncertainty matrix ∆ is structured to mirror LCF or RCF uncertainty, that

is when ∆K = 0, and ∆N = 0 or ∆L = 0, the result of Lemma 5.5 can be considerably

simplified. The former case is given in the following lemma.

Lemma 5.6 Consider the standard positive feedback interconnection of a plant P ∈ R that

has no transmission zeros in C̄+ ∪ {∞} and a controller C ∈ C(P ) depicted in Figure 2.2

and suppose that {N,M,L, 0} ∈ B(P ). Furthermore, define a structured uncertainty

matrix

∆ =

[
−∆M ∆L

0 0

]
∈ RH∞

and a perturbed plant P∆ = Fu(Π,∆) where Π is given by (5.2). Finally, suppose that

{N,M + ∆M , L+ ∆L, 0} ∈ B(P∆).

fSince

[
0 −M L
0 I 0

]Q 0
0 I

L† L†M

 = I and

[
Q 0 −N†
0 I N†

] 0 0
I I
−N 0

 = I.
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Then [P∆, C] is internally stable for all ‖∆‖∞ < γ (resp. ≤ γ) if and only if∥∥∥∥∥
[

I 0

L†M L†

][
Q

I

]∥∥∥∥∥
∞

≤ 1

γ

(
resp. <

1

γ

)
. (5.6)

Proof. Using Lemma 3.17, [P∆, C] is internally stable if and only if[
M + ∆M − (L+ ∆L)L†MN †N −(L+ ∆L)L†

−N †N Q

]
∈ GH∞

⇔

[
∆M −∆LL

†M −(I + ∆LL
†)

−I Q

]
∈ GH∞

⇔

([
∆M −∆LL

†M −∆LL
†

0 0

]
−

[
0 I

I −Q

])−1

∈ RH∞

⇔

(
I +

[
−∆M ∆L

0 0

][
I 0

L†M L†

][
Q I

I 0

])−1

∈ RH∞

⇔

(
I +

[
−∆M ∆L

] [ I 0

L†M L†

][
Q

I

])−1

∈ RH∞.

The conclusion then follows from the small gain theorem and by noting that

‖∆‖∞ =
∥∥∥[−∆M ∆L

]∥∥∥
∞
.

An alternative proof would be to use (5.5) and ignore the right column, since it cor-

responds to the second row of the uncertainty matrix which in this case is zero and thus

does not affect the norm.

A dual result can be derived for the case where ∆ is structured to mirror RCF uncer-

tainty. This is given in the following lemma.

Lemma 5.7 Consider the standard positive feedback interconnection of a plant P ∈ R that

has no transmission zeros in C̄+ ∪ {∞} and a controller C ∈ C(P ) depicted in Figure 2.2

and suppose that {N,M,L, 0} ∈ B(P ). Furthermore, define an uncertainty matrix

∆ =

[
−∆M 0

∆N 0

]
∈ RH∞

and a perturbed plant P∆ = Fu(Π,∆) where Π is given by (5.2). Finally, suppose that

{N + ∆N ,M + ∆M , L, 0} ∈ B(P∆).

Then [P∆, C] is internally stable for all ‖∆‖∞ < γ (resp. ≤ γ) if and only if∥∥∥∥∥[Q I
] [I MN †

0 N †

]∥∥∥∥∥
∞

≤ 1

γ

(
resp. <

1

γ

)
. (5.7)
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Proof. The proof follows by duality to Lemma 5.6.

Remark 5.2 Via trivial manipulations (5.6) and (5.7) can be restated as∥∥∥∥∥
[

I

L†M

]
Q+

[
0

L†

]∥∥∥∥∥
∞

and
∥∥∥Q [I MN †

]
+
[
0 N †

]∥∥∥
∞

respectively. Hence finding an optimal (with respect to (5.6) or (5.7)) Q involves solving

a unilateral model matching problem, again however the required invertibility of Q poses a

complication in using the standard methods of solving such problems. �

Remark 5.3 It is important to note that the controller set C(P ) defined in Theorem 5.3

does not parametrise all stabilising controllers. Therefore, a controller achieving the infi-

mum of (5.5) is not guaranteed to be optimal with respect to (5.4), as the truly optimal

controller might not belong to C(P ). �

5.3.2 BCF H∞ Control Synthesis

Here, the H∞ controller synthesis procedure outlined in Doyle et al. (1989) will be adapted

to the context of BCF theory via the QR-BCF parametrisation.

As a first step, a generalised plant needs to be obtained in state space form. Let

P ∈ Rp×q have a stabilisable and detectable state space realisation P =

[
A B

C D

]
where

A ∈ Rn×n and D = 0g. Let a QR-BCF of P induced by Q ∈ Rn×r and R ∈ Rr×n be given

by (4.5). Now combining this QR-BCF of P with the generalised plant Π in (5.2), a BCF

generalised plant can be expressed in state space form as

Π =

[
Π11 Π12

Π21 Π22

]

=


A Q 0 B

−R I 0 −DL

0 0 0 I

C DN I 0

 . (5.8)

Before adapting Theorem 2.18 to develop a BCF H∞ control synthesis theorem, it is

necessary to show that the generalised plant Π satisfies the standard assumptions given

by Glover and Doyle (1988), which can be restated as:

1. (A,B) is stabilisable and (C,A) is detectable;

2. Π12(∞) =

[
0

I

]
and Π21(∞) =

[
0 I

]
;

3. Π12 and Π21 have full column and row rank on jR respectively.

gSee Remark 2.3 for a justification as to why there is no loss of generality in assuming D = 0.
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The assumption that (A,B) and (C,A) are stabilisable and detectable respectively is

directly satisfied by the suppositions of the QR-BCF parametrisation which requires these

properties for the state space realisation of the plant.

From the generalised plant given in (5.8), it is clear that the selection DN = 0 and

DL = 0 simplifies the exposition of the results, since in so doing there is no need to

normalise the D12 and D21 terms of the generalised plant; hence the second assumption

is satisfied. This selection is subsequently assumed in the development of a BCF robust

synthesis theorem. A procedure that can be followed if such a simplification is not desirable

is well documented in the literatureh.

The fact that Π12 has full column rank on jR follows by noting that

rank (Π12(jω)) = q ∀ω ∈ R⇔ rank


A− jωI B

−R −DL

0 I


 = n+ q ∀ω ∈ R

⇔ rank

([
A− jωI

R

])
= n ∀ω ∈ R

⇔ (R,A) has no undetectable modes on jR

⇐ (R,A) is detectable,

which is true since A+QR being Hurwitz implies that (R,A) is detectable. The fact that

Π21(jω) has full row rank for all ω ∈ R can be proven similarly using the stabilisability of

(A,Q). Hence, the final assumption is also satisfied.

A BCF H∞ control synthesis theorem can now be stated as follows.

Theorem 5.8 Let P ∈ Rp×q have a stabilisable and detectable state space realisation

P =

[
A B

C D

]
where A ∈ Rn×n and D = 0. Furthermore, let a QR-BCF of P induced

by Q ∈ Rn×r and R ∈ Rr×n be given by (4.5) with DL = 0 and DN = 0. Finally, let

γ ∈ R+ and define the Hamiltonian matrices

H∞ =

A− 1
γ2−1

QR 1
γ2−1

QQ∗ −BB∗

− γ2

γ2−1
R∗R −

(
A− 1

γ2−1
QR
)∗
 (5.9)

and

J∞ =

(A− 1
γ2−1

QR
)∗

1
γ2−1

R∗R− C∗C

− γ2

γ2−1
QQ∗ −

(
A− 1

γ2−1
QR
) , (5.10)

and the generalised plant Π as in (5.8).

hSee Remark 2.3 for further details.
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Then there exists a controller C∞ ∈ Rq×p satisfying ‖Fl(Π, C∞)‖∞ < γ if and only if

(a) γ > 1; (5.11)

(b) H∞ ∈ dom(Ric) with X∞ = Ric(H∞) ≥ 0; (5.12)

(c) J∞ ∈ dom(Ric) with Y∞ = Ric(J∞) ≥ 0; (5.13)

(d) ρ(X∞Y∞) < γ2. (5.14)

If the above conditions hold, the set of all controllers that satisfy ‖Fl(Π, C∞)‖∞ < γ

is given by C∞ = Fl(Π∞,Φ) where Φ ∈ {Φ ∈ RH∞, ‖Φ‖∞ < γ},

Π∞ =

 A∞ −Z∞Y∞C∗ Z∞B

B∗X∞ 0 I

−C I 0

 ,
A∞ = A− 1

γ2−1
QR+

(
1

γ2−1
QQ∗ −BB∗

)
X∞ − Z∞Y∞C∗C

and Z∞ =
(
I − γ−2Y∞X∞

)−1
.

Proof. The proof follows by direct application of Theorem 2.18 with the generalised plant

Π as defined in (5.8).

One of the most appealing advantages of using coprime factors for robust control

synthesis is the fact that the stabilising solution to one of the AREs is always zero (Glover

and McFarlane, 1989). This guarantees that the spectral radius condition in Doyle et al.

(1989) (condition (d) in Theorem 5.8) is satisfied and thus Z∞ = I. Hence the procedure

is greatly simplified both algebraically and computationally. This unfortunately is not the

case for BCF robust control synthesis as is evident from Theorem 5.8.

An alternative approach to obtaining a robustly stabilising BCF controller would be

via the Linear Matrix Inequality (LMI) formulations developed by Gahinet and Apkarian

(1994) and Gahinet (1996). Applying the theory developed therein to the BCF case is

possible as the assumptions outlined above are relaxed in the LMI case.

5.3.3 BCF H∞ Synthesis With Reduced Dimension AREs

Due to the structure of the QR-BCF parametrisation and by extent that which it imparts

on the generalised plant Π given in (5.8) and the Hamiltonian matrices H∞ and J∞ given

in (5.9) and (5.10) respectively, it is possible to synthesise a robustly stabilising controller

by solving reduced dimension AREs. This property does not hold when coprime factors

of the plant are used.

Suppose that a plant P ∈ R has n+ poles in C̄+ and let it be given a QR-BCF of the

form outlined in (4.7) with DN = 0 and DL = 0. Then the design of a robustly stabilising

controller would only require the solution of two n+ dimensional AREs. To prove this fact

the following lemma is first required.
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Lemma 5.9 Consider the continuous time ARE

A∗X +XA+XSX + C∗C = 0 (5.15)

where A =

[
A+

A−

]
with A− Hurwitz, S =

[
S11 S12

S∗12 S22

]
and C =

[
C1 0

]
. Then the

stabilising solution to (5.15) is given by X =

[
X ′

0

]
where X ′ is the stabilising solution

to

A∗+X
′ +X ′A+ +X ′S11X

′ + C∗1C1 = 0. (5.16)

Proof. By definition X is a stabilising solution if and only if A+ SX is Hurwitz. Let X ′

satisfy (5.16) which implies that A+ + S11X
′ is Hurwitz. Then

A+ SX =

[
A+

A−

]
+

[
S11 S12

S∗12 S22

][
X ′

0

]

=

[
A+ + S11X

′ 0

S∗12X
′ A−

]
.

Hence, A+ SX is Hurwitz since both A− and A+ + S11X
′ are Hurwitz. Proving that X

also satisfies (5.15) is trivial and thus omitted. The result then follows from the uniqueness

of the stabilising solution.

Remark 5.4 It is easy to show that the result of Lemma 5.9 holds for both control and

filtering AREs via duality. �

Given a BCF of the form defined in (4.7), a new generalised plant can be constructed

in state space form as

Π′ =


A+ 0 Q+ 0 B+

0 A− 0 0 B−

−R+ 0 I 0 0

0 0 0 0 I

C+ C− 0 I D

 , (5.17)

where A+ ∈ Rn+×n+ and A− is Hurwitz.

Now using Π′ in Theorem 5.8 results in Hamiltonians where the associated AREs have

the structure assumed in Lemma 5.9 and its dual. Therefore, it is only necessary to solve

AREs corresponding to A+, whose dimension is given by n+. This fact is formally stated

in the following corollary to Theorem 5.8.
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Corollary 5.10 Let P ∈ Rp×q have a stabilisable and detectable state space realisation in

Gilbert form given by

P =

 A+ B+

A− B−

C+ C− D

 ,
where A ∈ Rn×n, A+ ∈ Rn+×n+, A− is Hurwitz and D=0. Furthermore, let a QR-BCF

of P induced by Q =

[
Q+

0(n−n+)×r

]
∈ Rn×r and R =

[
R+ 0r×(n−n+)

]
∈ Rr×n be given by

(4.7) with DN = 0 and DL = 0. Finally, let γ ∈ R+ and define the Hamiltonian matrices

H ′∞ =

A+ − 1
γ2−1

Q+R+
1

γ2−1
Q+Q

∗
+ −B+B

∗
+

− γ2

γ2−1
R∗+R+ −

(
A+ − 1

γ2−1
Q+R+

)∗


and

J ′∞ =

(A+ − 1
γ2−1

Q+R+

)∗
1

γ2−1
R∗+R+ − C∗+C+

− γ2

γ2−1
Q+Q

∗
+ −

(
A+ − 1

γ2−1
Q+R+

) ,
and the generalised plant Π′ as in (5.17).

Then there exists a controller C ′∞ ∈ Rq×p satisfying ‖Fl(Π′, C ′∞)‖∞ < γ if and only if

(a) γ > 1; (5.18)

(b) H ′∞ ∈ dom(Ric) with X ′∞ = Ric(H ′∞) ≥ 0; (5.19)

(c) J ′∞ ∈ dom(Ric) with Y ′∞ = Ric(J ′∞) ≥ 0; (5.20)

(d) ρ(X ′∞Y
′
∞) < γ2. (5.21)

If the above conditions hold, the set of all controllers that satisfy ‖Fl(Π′, C ′∞)‖∞ < γ

is given by C ′∞ = Fl(Π′∞,Φ) where Φ ∈ {Φ ∈ RH∞, ‖Φ‖∞ < γ},

Π′∞=


A′∞ −Z ′∞Y ′∞C∗+C− −Z ′∞Y ′∞C∗+ Z ′∞B+

−B−B∗+X ′∞ A− 0 B−

B∗+X
′
∞ 0 0 I

−C+ −C− I 0

 ,
A′∞ = A+ − 1

γ2−1
Q+R+ +

(
1

γ2−1
Q+Q

∗
+ −B+B

∗
+

)
X ′∞ − Z ′∞Y ′∞C∗+C+

and Z ′∞ =
(
I − γ−2Y ′∞X

′
∞
)−1

.
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Proof. Note that

A− 1
γ2−1

QR =

[
A+ − 1

γ2−1
Q+R+

A−

]
,

R∗R =

[
R∗+R+

0

]
and QQ∗ =

[
Q+Q

∗
+

0

]
.

Therefore, the AREs associated with the Hamiltonians H∞ in (5.9) and J∞ in (5.10)

have the structure necessary to apply Lemma 5.9. The proof then follows by applying

Theorem 5.8 to Π′.

It should be noted that it is up to the designer to choose which eigenvalues of the

system to include in A+. Therefore giving the freedom to “ignore” any stable modes

which are not expected to have a significant bearing on the system dynamics.

Although the procedure presented in Corollary 5.10 gives a significant computational

advantage, the resulting controller still has the same order as the plant. One disadvantage

of “ignoring” any stable dynamics, is their effect on closed loop performance. In fact, the

“ignored” modes will also appear in the closed loop transfer matrix, which can be shown

by direct calculation. Suppose that a plant P ∈ R has a BCF given by (5.17) and that a

controller C ′∞ ∈ R is synthesised as instructed by Corollary 5.10i.

It can be shown via routine calculations and a simple similarity transform that

P
(
I − C ′∞P

)−1
=


A+ 0 B+B

∗
+X

′
∞ 0 B+

0 A− B−B
∗
+X

′
∞ 0 B−

−Z ′∞Y ′∞C∗+C+ 0 A′∞ −Z ′∞Y ′∞C∗+C− 0

0 0 0 A− B−

C+ C− 0 0 0

 .

It is then apparent that, since the “A”-matrix has a block triangular structure, the eigen-

values of A− are also poles of P (I − C ′∞P )−1.

As is often the case in control engineering, a trade-off now arises. In this instance, it

is between the dimension of the AREs to be solved and the closed loop performance.

One method of deciding which modes to “ignore” is to simply find a state space reali-

sation of the plant with the form given by Definition 2.9, where all the plant eigenvalues

in the shaded C− sector shown in Figure 5.3 are placed in A−, while the rest are placed in

A+. This would ensure that plant eigenvalues in A+ are moved to appropriate locations

via control action while those in A− that are carried through to the input-output transfer

matrix are sufficiently fast and well damped to be relatively irrelevant in the closed loop

dynamics.

iIt is assumed that the central controller is used.
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Figure 5.3: Well-damped sector in C−.

5.3.4 BCF H∞ Synthesis For Symmetric Systems

A square system P ∈ Rp×p is said to be symmetric if it satisfies P = P T . These form an

interesting class containing all SISO systems. In this subsection we consider BCFs of such

systems and provide an associated robust control synthesis result.

Control synthesis for symmetric systems was studied in the past with many results

available in the literature. Tan and Grigoriadis (2001) present an LMI approach to H∞

synthesis while Mahony and Helmke (1995) deal with a more general pole placement

problem; it must be noted however that both consider a special class of symmetric systems

allowing stabilisation via static output feedback.

For any state space realisation of a symmetric system, a mode is detectable if and only

if it is stabilisable. This can be easily seen as follows. Let P ∈ R be symmetric and have

the state space realisation P =

[
A B

C D

]
. Since P = P T , it follows that

[
A B

C D

]
=

[
A∗ C∗

B∗ D∗

]
.

Then λiA is detectable if and only if[
A− λiAI

C

]
has full column rank⇔

[
(A− λiAI)∗

B∗

]
has full column rank

⇔
[
A− λiAI B

]
has full row rank

⇔ λiA is stabilisable.

The contrapositive statement now suggests that any unobservable modes will also be

uncontrollable (and vice versa) and therefore will not have any effect on the input-output

dynamics even with non-zero initial conditions. Due to this fact only minimal state space

realisations are considered in this subsection.

80



The following lemma gives necessary and sufficient conditions for a system to be sym-

metric based on its state space data.

Lemma 5.11 (Ionescu et al. (2011)) Let P ∈ R have a minimal state space realisation

P =

[
A B

C D

]
. Then P is symmetric (i.e. P = P T ) if and only if D = D∗ and there

exists a nonsingular Hermitian matrix S such that SA = A∗S and SB = C∗.

Remark 5.5 For any minimal state space realisation of a symmetric system, the matrix

S = S∗ satisfying the conditions of Lemma 5.11 is given by S = O∗C† where C and O are

the controllability and observability matrices of the realisationj (Sorensen and Antoulas,

2002, Lemma 2.3). �

By strategically choosing Q and R, a QR-BCF can be obtained for a symmetric system

that provides various advantages. One such QR-BCF is given in the following lemma,

which is utilised in Theorem 5.13 to simplify the robust control synthesis procedure of

Theorem 5.8.

Lemma 5.12 Let P ∈ R be symmetric and have a minimal state space realisation

P =

[
A B

C D

]
where A ∈ Rn×n and suppose that S = S∗ satisfies the conditions of

Lemma 5.11. Then there exist matrices Q ∈ Rn×r and R ∈ Rr×n such that

(a) A+QR is Hurwitz; (5.22)

(b) SQR = (QR)∗S; (5.23)

(c) ∃U : U∗U = I, UQ∗S = R. (5.24)

Furthermore, let {N,M,L,K} ∈ B(P ) be the QR-BCF induced by such Q and R, then[
U

I

][
M −L
N K

][
U

I

]
=

[
M −L
N K

]T
.

Proof. Proof of (5.22), (5.23) and (5.24) will be achieved constructively. First note that

combining (5.23) and (5.24) implies that SQUQ∗S must be Hermitian. A sufficient

(though not necessary) condition for this to hold, is that U is also Hermitian. Hence

the problem can be restated as follows. Find a pair of matrices Q and R such that A+QR

is Hurwitz and there exists a unitary Hermitian matrix U such that UQ∗S = R.

Let Z = Z∗ be such that A + ZS is Hurwitz and suppose that Z has the eigen-

decomposition Q̂ΛQ̂∗ where Q̂ is unitary and Λ is real and diagonal (Laub, 2005, Theo-

rem 10.2). Define U = sgn(Λ) and note that U = U∗, U2 = I and UΛ = ΛU ≥ 0. Finally

define Q = Q̂(UΛ)
1
2 and R = UQ∗S = U(UΛ)

1
2 Q̂∗S. Then the constructed Q and R

satisfy all suppositions of Lemma 5.12. It is obvious that (5.24) holds, then by noting that

QR = ZS, both (5.22) and (5.23) follow.

jSee Ogata (2010) for definitions.
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Finally, define Ũ =

[
U

I

]
, then

Ũ

 A+QR Q B

R I

C D

 Ũ∗ = Ũ

 S(A+QR)S−1 SQ SB

RS−1 I

CS−1 D

 Ũ∗

=

 (A+QR)∗ R∗ C∗

Q∗ I

B∗ D∗



=

 A+QR Q B

R I

C D


T

and the proof is complete.

The above proof assumes the existence of a Hermitian matrix Z such that A + ZS

is Hurwitz. Since S is Hermitian and nonsingular, a trivial choice for Z is given by

Z = −kS−1 where k > ρ(A). With this, the resulting BCF will have internal dimension

equal to the number of states of the plant. If a reduced internal dimension is desired, Z

can be chosen to be singular and then any columns of Q̂ corresponding to eigenvalues of

Z at the origin can be ignored.

It should be noted that the above selection is not unique. An alternative method of

finding a suitable Z would be to find a matrix T = T ∗ such that Z =

[
A∗ −S
−T −A

]
∈

dom(Ric) and then set Z = Ric (Z). In fact, by selecting T = k(2A + kI)S−1 yields

Z = −kS−1 giving the trivial choice mentioned above.

The following theorem provides a robust control synthesis result for symmetric systems

using a QR-BCF satisfying the structure defined by Lemma 5.12.

Theorem 5.13 Suppose that P = P T ∈ Rp×p has a minimal state space realisation P =[
A B

C D

]
where A ∈ Rn×n, D = 0 and S = S∗ satisfies the conditions of Lemma 5.11.

Let Q ∈ Rn×r and R ∈ Rr×n satisfy the conditions (a)–(c) of Lemma 5.12. Furthermore,

let a QR-BCF of P induced by Q and R be given by (4.5) with DL = 0 and DN = 0.

Finally, let γ ∈ R+ and define H∞ as in (5.9) and Π as in (5.2).

Then there exists a controller C∞ ∈ Rp×p satisfying ‖Fl(Π, C∞)‖∞ < γ if and only if

(a) γ > 1; (5.25)

(b) H∞ ∈ dom(Ric) and X∞ = Ric(H∞) ≥ 0; (5.26)

(c) ρ(S−1X∞) < γ. (5.27)
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Proof. Define J∞ as in (5.10) and S̃ =

[
S

S−1

]
. Then

S̃H∞S̃
−1 =

SAS−1 − 1
γ2−1

SQRS−1 1
γ2−1

SQQ∗S − SBB∗S

− γ2

γ2−1
S−1R∗RS−1 −

(
SAS−1 − 1

γ2−1
SQRS−1

)∗


=

A∗ − 1
γ2−1

(QR)∗ 1
γ2−1

R∗R− C∗C

− γ2

γ2−1
QQ∗ −

(
A∗ − 1

γ2−1
(QR)∗

)∗


= J∞.

Hence a conjugate symmetric, stable, invariant spectral subspace of J∞ is given by

X−(J∞) = S̃X−(H∞)

= Im

{
S̃

[
I

X∞

]}

= Im

[
S

S−1X∞

]
,

which implies that Y∞ = Ric(J∞) = S−1X∞S
−1, hence (5.12) and (5.13) are equivalent

under the suppositions of the theorem. Furthermore,

ρ(Y∞X∞) = ρ(S−1X∞S
−1X∞)

= ρ
{

(S−1X∞)2
}

= ρ(S−1X∞)2.

Thus (5.14) is satisfied if and only if ρ(S−1X∞) < γ which concludes the proof.

Remark 5.6 Suppose that a plant P ∈ R can be decomposed as P = Ps +K, where Ps is

symmetric and K ∈ RH∞. Then Corollary 5.10 can be used to apply Theorem 5.13 even

if P itself is not symmetric. �

Remark 5.7 If S > 0, (5.27) can be simplified to X∞ < γS. Systems that satisfy this

condition include state-space-symmetric systems such as those considered by Liu et al.

(1998) and Tan and Grigoriadis (2001) where S = I. �

5.4 Numerical Example

To exemplify the theory developed in this chapter, the classical control experiment of an

inverted pendulum pivoting on a moving cart will now be considered. Figure 5.4 depicts

one version of this system as given by Ogata (2010, Figure 3-6).
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Figure 5.4: Inverted pendulum on a moving cart schematic.

The system consists of a ball attached to the end of a rod which in turn pivots on a

cart that is allowed to move horizontally. The pendulum rod is assumed to be massless

and have length l, the mass of the ball is denoted by m, while the mass of the cart

is given by M . Finally, the surface upon which the cart is moving is assumed to be

frictionless. The input to the system is the force u acting on the cart while the outputs

are the angle θ and the position of the cart x. After some simplifications via small angle

approximations, a linearised model for the plant is given by the differential equations

(Ogata, 2010, Example 3-6)

Mlθ̈ = (M +m)gθ − u and (5.28)

Mẍ = u−mgθ (5.29)

which can be expressed in state space form as

P =



0 0 1 0 0

0 0 0 1 0
(M+m)g

Ml 0 0 0 − 1
Ml

−mg
M 0 0 0 1

M

1 0 0 0 0

0 1 0 0 0


∈ R2×1,

where g = 9.81 ms−2 is the acceleration due to gravity.

Parameter Variable Value Units

Mass of cart M 0.5 kg
Mass of ball m 0.2 kg
Length of rod l 0.2 m

Table 5.1: Parameter values for inverted pendulum on a cart system.
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Numerical values for the physical parameters of the system are given in Table 5.1.

Using these values, the plant can now be expressed numerically as

P =



0 0 1 0 0

0 0 0 1 0

68.67 0 0 0 −10

−3.92 0 0 0 2

1 0 0 0 0

0 1 0 0 0


.

Then via a similarity transform a state space realisation of P can be obtained in Gilbert

form as

P =

 A+ B+

A− B−

C+ C− D



=



0 1 0

0 1.43

8.29 −0.57

−8.29 −0.57

0 0 1.06 −1.06 0

1 0 −0.06 0.06 0


.

Now define

Q =

[
Q+

0

]
=


1

−2

5

0

 and R =
[
R+ 0

]
= −

[
2.1 3.3 4.7 0

]
.

Then the QR-BCF induced by Q and R is in the form of (4.7) with DL = 0 and DN = 0,

hence the associated generalized plant is given by (5.17). Thus Corollary 5.10 can be used

to construct a robustly stabilising controller.

First, the stabilising solutions to the AREs associated with the Hamiltonians H ′∞ and

J ′∞ were obtained as

X ′∞ =

1.669 2.932 11.51

2.932 5.324 21.36

11.51 21.36 142.226

 and Y ′∞ =

2.09 1.75 0.55

1.75 5.08 −0.87

0.55 −0.87 16.38


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respectively. The central controller was then constructed as

C ′∞ =


−825.407 −214.391 0.112

−33.175 −57.141 0.51

−1.569 1.646 −0.477

1.224 6.849 0.479

−193.429 21.05 −2.671 4.274 0 0

 ∈ R1×2,

which achieves γ = ‖Fl(Π′, C ′∞)‖∞ = 48.78. Though this value for γ may seem high in

comparison to what is suggested in the literature (usually γ ≈ 3 is considered to achieve a

good balance between robustness and performance in the context of H∞ loopshaping, see

Vinnicombe (2001, Remark 2.11) for details), it must be noted that this was obtained by

directly applying the methods developed in this chapter to the plant without any design

input (i.e. weighting functions) as would be the case in a practical setting.

0 5 10 15

0

0.05

Time (s)

(a) Pendulum Arm Angle θ (rads)

0 5 10 15

0

0.2

0.4

0.6

Time (s)

(b) Cart Position x (m)

Figure 5.5: Inverted pendulum system with BCF controller simulation results.

Figure 5.5 shows the simulation results of the inverted pendulum system with the

designed BCF controller. The reference signal was given as θ = 0 rad for the rod angle

while a step input of magnitude x = 0.5 m at t = 1 s was given to the position channel.

It can be seen that the plant is stabilised by the designed controller and that θ remains

sufficiently small so as no to invalidate the small angle assumption.

Remark 5.8 By restricting the output of the system to being just the position of the cart,

a SISO system can be obtained allowing the application of Theorem 5.13. �

5.5 Summary & Conclusion

In this chapter, uncertainty in terms of the BC factors of a plant was presented followed by

the associated robust stability tests. The uncertainty structure proposed generalises LCF

and RCF uncertainty where the coprime factors of the plant are additively perturbed by
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stable objects. By the very definition of this type of uncertainty representation, it becomes

apparent that it encompasses both its LCF and RCF counterparts and thus inherits many

of their features. Hence, BCF uncertainty can accommodate low frequency parameter

errors, neglected high frequency dynamics and uncertain C̄+ poles and zeros, making it

an appealing candidate for representing modelling errors.

Robust stabilisation results were then presented for plants with BCF uncertainty. It

was shown that via a QR-BCF of the plant, the standard assumptions related to H∞

control can be trivially satisfied. Furthermore, the robust stabilisation methods presented

afford the designer the freedom to ignore some or all of the stable modes of the plant. As

a consequence of this, the dimensions of the AREs that need to be solved can be reduced.

Finally, via an appropriate selection of Q and R it was shown that robust control synthesis

for symmetric systems can be greatly simplified, eliminating the need to solve one of the

two AREs usually associated with the standard H∞ robust stabilisation problem.
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Chapter 6

Normalised BCFs

6.1 Introduction

Normalised coprime factorisations play an important role in control theory. They are

an indispensable part of many powerful results such as H∞ loopshaping (McFarlane and

Glover, 1992), various distance measures including the gap (Georgiou and Smith, 1990),

graph (Vidyasagar, 1984) and ν-gap (Vinnicombe, 2001) metrics, as well as controller

validation methods (Dehghani et al., 2009). Another appealing feature of normalised

coprime factorisations is the relationship between the robust stability margin they induce

and the standard four-block problem (Zhou et al., 1996, Lemma 18.4).

As stated in Definition 2.23, a RCF (resp. LCF) of a plant is said to be normalised if

the associated graph symbol is inner (resp. co-inner). Equivalently, let the pair {N,M}
be a right coprime factorisation of P = NM−1 ∈ R over RH∞, then the factorisation

is normalised if M∼M + N∼N = I. The notion of a normalised BCF of a plant is

defined in a similar manner with the left and right coprime pairs of the factorisation being

independently normalised.

Definition 6.1 Let P ∈ R and suppose that {N,M,L,K} ∈ B(P ). The BCF is said to

be normalised if the factors satisfy

M∼M +N∼N = I and (6.1)

MM∼ + LL∼ = I. (6.2)

With the above definition, a BCF symbol associated with a normalised BCF is neither

inner (if P is tall) nor co-inner (if P is wide) in general. It might seem reasonable to redefine

normalised BCFs such that this property holds, similar to LCFs and RCFs. However, a

BCF satisfying this cannot be constructed for all plants in R. Consider the P ∈ Rp×q

where rank (P (∞)) < min{p, q}. Then, it follows directly from Corollary 3.4 that its BCF

symbols are not invertible and hence cannot be inner or co-inner.
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In this chapter, state space conditions for normalisation are presented based on the

QR-BCF parametrisation, followed by recursive methods of obtaining a normalised BCF

of a plant. The use of normalised BCFs as defined above is then examined in the context

of robust control synthesis and shown to yield parallel results to those obtained using

normalised coprime factorisations (McFarlane and Glover, 1990). Some special cases are

also investigated including unilaterally normalised BCFs and symmetric systems. Finally,

numerical examples are provided to illustrate the applicability of the theory developed

herein.

6.2 State Space Properties of Normalised BCFs

The following theorem gives conditions that are both necessary and sufficient for a QR-

BCF of a plant to be normalised.

Theorem 6.1 Let P ∈ R have a stabilisable and detectable state space realisation P =[
A B

C D

]
where A ∈ Rn×n. Let {N,M,L,K} ∈ B(P ) be a QR-BCF of P induced by

Q ∈ Rn×r and R ∈ Rr×n given by (4.5) with DL = 0 and DN = 0. Furthermore, let

G ∈ B̃(P ) denote the associated BCF symbol.

Then the QR-BCF is normalised if and only if each of the trebles (R,A+QR,Q+XR∗)

and (R+Q∗Y,A+QR,Q) has no modes that are both controllable and observable, where

X ≥ 0 and Y ≥ 0 are the controllability and observability Gramians of G respectively.

Proof. By direct calculation and some linear algebra it can be shown that[
M

N

]∼[
M

N

]
= I +

[
A+QR Q

R+Q∗Y 0

]
+

[
A+QR Q

R+Q∗Y 0

]∼
. (6.3)

Given that for any strictly proper S ∈ RH∞, S + S∼ = 0 if and only if S = 0, it

follows that (6.3) reduces to the identity matrix if and only if

[
A+QR Q

R+Q∗Y 0

]
= 0 or

equivalently, using Zhou et al. (1996, Theorem 3.10), the treble (R + Q∗Y,A + QR,Q)

has no modes that are both controllable and observable. It can similarly be proven that

{L,M} is normalised if and only if (R,A + QR,Q + XR∗) has no modes that are both

controllable and observable.

When the treble (R,A,Q) is minimal, Theorem 6.1 can be simplified as follows.

Corollary 6.2 Let P ∈ R have a stabilisable and detectable state space realisation P =[
A B

C D

]
where A ∈ Rn×n. Let {N,M,L,K} ∈ B(P ) be a QR-BCF of P induced by

Q ∈ Rn×r and R ∈ Rr×n given by (4.5) with DL = 0 and DN = 0 and suppose that

the treble (R,A,Q) is minimal. Furthermore, let G ∈ B̃(P ) denote the associated BCF

symbol.
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Then the QR-BCF is normalised if and only if Q+XR∗ = 0 and R+Q∗Y = 0, where

X ≥ 0 and Y ≥ 0 are the controllability and observability Gramians of G respectively.

Proof. First note that

[
M

N

]
=

 A+QR Q

R I

C 0


is minimal and that its observability Gramian is given by Y .

Then by definition, the pair {N,M} ∈ Cr is normalised if and only if[
M

N

]∼ [
M

N

]
= I ⇔

[
M

N

]
is inner

⇔ R+Q∗Y = 0

where the last equivalence follows from Zhou et al. (1996, Corollary 13.30). The fact that

{L,M} ∈ Cl is normalised if and only if Q+XR∗ = 0 can be similarly proven.

Remark 6.1 It is easy to see that Q+XR∗ = 0 and R +Q∗Y = 0 are sufficient for the

induced QR-BCF to be normalised regardless of the minimality of (R,A,Q). �

The following theorem gives a sufficient condition for a QR-BCF to be normalised

based on two AREs with sign-definite quadratic terms. The resulting condition, although

not necessary, is much easier to evaluate than that of Theorem 6.1, making it more useful

in constructing normalised BCFs. It is interesting to note the similarity of this condi-

tion to those employed by Meyer and Franklin (1987) to construct normalised coprime

factorisations.

Theorem 6.3 Let P ∈ R have a stabilisable and detectable state space realisation P =[
A B

C D

]
where A ∈ Rn×n. Let X ≥ 0 and Y ≥ 0 be the stabilising solutions to

XA∗ +AX −XR∗RX +BB∗ = 0, (6.4)

Y A+A∗Y − Y QQ∗Y + C∗C = 0, (6.5)

and suppose that Q ∈ Rn×r and R ∈ Rr×n satisfy Q+XR∗ = 0 and R+Q∗Y = 0. Then

the QR-BCF induced by Q and R given by (4.5) with DL = 0 and DN = 0 is normalised.

Proof. First note that A+QR is Hurwitz since X and Y are stabilising solutions, hence

Q and R induce a valid BCF.

Then by substituting R = −Q∗Y and Q = −XR∗ into (6.4) and (6.5) respectively,

it can be seen that X and Y are the controllability and observability Gramians of the

associated BCF symbol respectively. The conclusion then follows from Theorem 6.1.
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Remark 6.2 Selecting DL = 0 and DN = 0 greatly simplifies the above result. If this

selection is not imposed then the AREs (6.4) and (6.5) would have a structure similar to

those used by Vidyasagar (1988). �

The following two lemmas relate the normalising Q and R to the Gramians of the asso-

ciated BCF symbol. The results prove useful in defining initial conditions and terminating

criteria for the iterative algorithms developed in the next section, that aim to generate

such a Q and R for a given system. Both conditions are necessary but not sufficient for a

QR-BCF to be normalised.

Lemma 6.4 Let P ∈ R have a stabilisable and detectable state space realisation P =[
A B

C D

]
and a normalised QR-BCF constructed to satisfy the suppositions of Theo-

rem 6.3. Then [
Q

R∗

]
∈ Ker

[
I X

Y I

]
. (6.6)

Furthermore,

Q ∈ Ker(I −XY ) and R∗ ∈ Ker(I − Y X).

Proof. The proof follows trivially from Q+XR∗ = 0 and R+Q∗Y = 0.

Lemma 6.5 Let P ∈ Rp×q have a stabilisable and detectable state space realisation

P =

[
A B

C D

]
and a normalised QR-BCF constructed to satisfy the suppositions of

Theorem 6.3. Then there exists a unitary matrix U ∈ Rq×q such that

CQ = (RBU)∗. (6.7)

Proof. Using Q = −XR∗, (6.4) can be rearranged into QQ∗ = XA∗ + AX + BB∗. Sub-

stituting into (6.5) yields

Y (XA∗ +AX +BB∗)Y = A∗Y + Y A+ C∗C

Y BB∗Y = (I − Y X)A∗Y + Y A(I −XY ) + C∗C.

Then pre- and post-multiplying by Q∗ and Q respectively, gives

Q∗Y BB∗Y Q = Q∗C∗CQ

upon using Lemma 6.4, or equivalently

RB(RB)∗ = (CQ)∗CQ.
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The conclusion then follows from Horn and Johnson (2012, Theorem 7.3.11).

6.3 Obtaining a Normalised BCF

Obtaining a normalised LCF or RCF of a plant is simple and can be achieved via the

solution of a single ARE with a sign-definite quadratic term as demonstrated by Meyer

and Franklin (1987) and Vidyasagar (1988). On the contrary, the equivalent BCF result

given by Theorem 6.3 requires the solution of two coupled AREs, again with sign-definite

quadratic terms. This is a considerably harder problem, a direct solution to which does

not exist in general.

In this section, two iterative algorithms are presented that generate a Q and R sat-

isfying the conditions set forth in Theorem 6.3 and can therefore be used to construct a

normalised BCF of a plant.

Algorithm 6.1 Let P ∈ R have a stabilisable and detectable state space realisation P =[
A B

C D

]
where A ∈ Rn×n and specify a tolerance µ ∈ R+.

1. Select R0 ∈ Rr×n such that (R0, A) is detectable and set i = 0.

2. Solve the ARE

XiA
∗ +AXi −XiR

∗
iRiXi +BB∗ = 0 (6.8)

for the stabilising solution Xi ≥ 0 and set Qi+1 = −XiR
∗
i .

3. Solve the ARE

YiA+A∗Yi − YiQi+1Q
∗
i+1Yi + C∗C = 0 (6.9)

for the stabilising solution Yi ≥ 0 and set Ri+1 = −Q∗i+1Yi.

4. If i ≥ 1 and max {‖Ri(I −XiYi)‖, ‖(I −XiYi−1)Qi‖} < µ, then set Q = Qi, R = Ri

and stop. Otherwise increment i and go to (2).

The following algorithm is inspired by the Kleinman approach to solving AREs (Klein-

man, 1968), where the solution is obtained via the recursive solution of Lyapunov equa-

tions. Unlike the one presented above, this algorithm requires initial selections for both

Q and R.

Algorithm 6.2 Let P ∈ R have a stabilisable and detectable state space realisation P =[
A B

C D

]
where A ∈ Rn×n and specify a tolerance µ ∈ R+.

1. Select Q0 ∈ Rn×r and R0 ∈ Rr×n such that A+Q0R0 is Hurwitza and set i = 0.

aThis implies that (A,Q0) is stabilisable and (R0, A) is detectable.
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2. Solve the Lyapunov equation

Xi(A+QiRi)
∗ + (A+QiRi)Xi +QiQ

∗
i +BB∗ = 0 (6.10)

for the solution Xi ≥ 0 and set Qi+1 = −XiR
∗
i .

3. Solve the Lyapunov equation

Yi(A+Qi+1Ri) + (A+Qi+1Ri)
∗Yi +R∗iRi + C∗C = 0 (6.11)

for the solution Yi ≥ 0 and set Ri+1 = −Q∗i+1Yi.

4. If i ≥ 1 and max {‖Ri(I −XiYi)‖, ‖(I −XiYi−1)Qi‖} < µ, then set Q = Qi, R = Ri

and stop. Otherwise increment i and go to (2).

The suitability of the stopping conditions of Algorithms 6.1 and 6.2 could be attributed

to Lemma 6.4. However, a more intuitive explanation can be derived as follows. Consider

Algorithm 6.1, then

Ri+1 −Ri = −Q∗i+1Yi −Ri
= RiXiYi −Ri
= −Ri(I −XiYi). (6.12)

It can similarly be shown that

Qi+1 −Qi = −(I −XiYi−1)Qi. (6.13)

Hence, taking the norm of (6.12) or (6.13) gives a measure of the change imparted on Qi

and Ri at the ith iteration. Therefore as (6.12) and (6.13) tend to 0, Qi and Ri converge

to constant values. It can be shown that the same arguments hold for Algorithm 6.2 for

all i ≥ 1. A seemingly reasonable change to Algorithm 6.2 would be to replace (6.11) with

Yi(A+QiRi) + (A+QiRi)
∗Yi +R∗iRi + C∗C = 0

and then update Ri+1 = −Q∗iYi. However by doing this, (6.12) and (6.13) no longer hold.

This means that Qi+1 and Ri+1 are not related to their previous values in a simple way.

Though extensive numerical testing indicates that the resulting algorithm also converges

to the normalising Q and R, it generally takes longer to converge than the proposed two

algorithms and is not as numerically reliable.

An important point to make about the above two algorithms is that a solution always

exists at every iteration. For Algorithm 6.1 this is immediately evident by noting that

(A,Qi) is stabilisable for all i ≥ 1 and (Ri+1, A) is respectively detectable for all i ≥ 0, and

then using Theorem 2.3. The same holds for Algorithm 6.2, as suggested by the following

lemma.
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Lemma 6.6 Let P ∈ R have a stabilisable and detectable state space realisation P =[
A B

C D

]
. Now consider Algorithm 6.2 applied to this state space realisation of P . Then

there exists a Xi ≥ 0 and Yi ≥ 0 satisfying (6.10) and (6.11) respectively for all i ≥ 0.

Before providing a proof for the above, the following result is needed.

Lemma 6.7 Let P ∈ Rp×q have a stabilisable state space realisation P =

[
A B

C D

]
where A ∈ Rn×nand suppose that F ∈ Rq×n is such that A+BF is Hurwitz. Furthermore,

let Y ≥ 0 be the solution to the Lyapunov equation

(A+BF )∗Y + Y (A+BF ) + F ∗F + C∗C = 0. (6.14)

Then A−BB∗Y is also Hurwitz.

Proof. By rearranging (6.14) it can be shown that Y is also a solution to

(A−BB∗Y )∗Y + Y (A−BB∗Y ) + S∗S = 0

where

S =
1√
2

2B∗Y + F√
2C

F

 .
The conclusion then follows from Lemma 2.14 since (S,A−BB∗Y ) is detectableb, Y ≥ 0

and S∗S ≥ 0.

Proof of Lemma 6.6. First note that R∗iRi +C∗C ≥ 0 and QiQ
∗
i +BB∗ ≥ 0 for all i ≥ 0.

Then using Lemma 6.7 note that (A+QiRi) and (A+Qi+1Ri) are Hurwitz for all i ≥ 0.

This guarantees via Lemma 2.13 that there exist Xi ≥ 0 and Yi ≥ 0 satisfying (6.10) and

(6.11) for all i ≥ 0, which concludes the proof.

Due to the computational issues related to solving AREs (Kleinman, 1968; Lanzon

et al., 2008), Algorithm 6.2 tends to be numerically more reliable. Hence it is a better

choice for obtaining a normalised BCF of a plant.

Algorithms used to iteratively solve single AREs typically exhibit monotonicity in the

iteration variables (Banks and Ito, 1991; Kleinman, 1968; Lanzon et al., 2008), a fact

bThe claim follows from the fact that A+BF is Hurwitz, which implies that (F,A) is detectable, and
I

√
2

2
B 0 −

√
2

2
B

0
√

2I 0 0
0 0 I 0

0 0 0
√

2I



A−BB∗Y − λI

1√
2
(2B∗Y + F )

C
1√
2
F

 =


A− λI

2B∗Y + F
C
F

 .
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commonly exploited in proving convergence. Unfortunately, this is not the case for either

of the proposed algorithms, thus a simple proof of convergence is not available.

The selection of initial conditions for Algorithms 6.1 and 6.2 is important and can

affect both the rate of convergence as well as the solution to which the algorithms converge.

Suppose that for a plant P ∈ R, Q and R induce a normalised QR-BCF. If R0 is chosen

to be exactly R, then Algorithm 6.1 would converge after just one iteration. On the other

hand, Algorithm 6.2 would need a few iterations depending on how close Q0 is to the actual

solution Q. It is also possible that Ri is changed before re-converging to the solution. If

also Q0 is chosen as Q, then Algorithm 6.2 would also converge after just one iteration.

Lemma 6.5 can be used to assist in the selection of Q0 and R0 in Algorithm 6.2.

Remark 6.3 Though the normalisation condition set forth by Theorem 6.3 appears to

be simple, it must be noted that it is in fact hard to solve as the coupling between the

two AREs leads to a nonlinear problem. This can be observed by substituting for, and

eliminating Q and R from (6.4) and (6.5) yielding

XA∗R +ARX −XC∗CX +BB∗ = 0,

A∗QY + Y AQ − Y BB∗Y + C∗C = 0

where AR = (I −XY )A and AQ = A(I −XY ), which must be solved for X and Y . No

explicit mathematical method exists in the literature to solve such coupled AREs. �

An important point to note about the results presented in this section is that none

prove the existence of a normalised BCF for a given plant. A possible approach might be

via a convergence proof for Algorithms 6.1 or 6.2. Experimental evidence suggests that

both algorithms converge to a normalising solution with no counterexamples found. As

stated above however, such a proof is not currently available.

6.4 Robust Control Synthesis

Introducing the normalisation property to a coprime factorisation of a plant offers many

advantages, with a prominent one being the ability to directly calculate a lower bound

on the achievable robust stability margin as shown by Glover and McFarlane (1989) and

McFarlane and Glover (1990). This then allows for the synthesis of a robustly stabilising

controller without the need of an iterative procedure.

In this section, normalised BCFs will be used to simplify the result of Theorem 5.8.

Theorem 6.8 shows that when using a normalised BCF of the plant, the Hamiltonians

associated with BCF H∞ synthesis given by (5.9) and (5.10) are guaranteed to belong

to dom(Ric) and have a positive semidefinite stabilising solution if γ is chosen to satisfy

some simple inequalities. This gives a lower bound on the achievable robust stability

margin that, similar to the normalised LCF and RCF case, can be calculated a priori

using the Hankel norm of the graph symbols associated with the LC and RC pairs of
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the factorisation. Unlike the classical normalised coprime factor case however, this lower

bound is not guaranteed to be the infimum as the spectral radius condition (5.14) still

needs to be satisfied.

Theorem 6.8 Let P ∈ Rp×q have a stabilisable and detectable state space realisation

P =

[
A B

C D

]
where A ∈ Rn×n and D = 0. Suppose that {N,M,L,K} ∈ B(P ) is a

normalised QR-BCF of P constructed to satisfy the suppositions of Theorem 6.3. Finally,

let γ ∈ R+ and define Π as in (5.8).

Then there exists a controller C∞ ∈ Rq×p satisfying ‖Fl(Π, C∞)‖∞ < γ if and only if

(a)

(
1−

∥∥∥[M −L
]∥∥∥2

H

)− 1
2

< γ (6.15)

(b)

1−

∥∥∥∥∥
[
M

N

]∥∥∥∥∥
2

H

− 1
2

< γ (6.16)

(c) ρ {Φ(γ)} < γ2 (6.17)

where Φ(γ) is defined by

Φ(γ) =
(

γ2

γ2−1

)2 (
I − γ2

γ2−1
Ŷ X

)−1
Ŷ X̂

(
I − γ2

γ2−1
Y X̂

)−1

and X̂ ≥ 0 and Ŷ ≥ 0 are the controllability and observability Gramians of M respectively.

Furthermore, the solutions X∞ and Y∞ of the AREs associated with the Hamiltonian

matrices H∞ in (5.9) and J∞ in (5.10) are given by

X∞ = Ric(H∞) = γ2

γ2−1
Ŷ
(
I − γ2

γ2−1
XŶ

)−1
and (6.18)

Y∞ = Ric(J∞) = γ2

γ2−1
X̂
(
I − γ2

γ2−1
Y X̂

)−1
(6.19)

respectively.

Proof. First note that

H∞ =

[
I − γ2

γ2−1
X

0 γ2

γ2−1
I

]
Ĥ∞

[
I − γ2

γ2−1
X

0 γ2

γ2−1
I

]−1

where

Ĥ∞ =

[
A+QR 0

−R∗R −(A+QR)∗

]
.
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A conjugate symmetric, stable, invariant spectral subspace of Ĥ∞ is given by

X−(Ĥ∞) = Im

[
I

Ŷ

]

and thus

X−(H∞) =

[
I − γ2

γ2−1
X

0 γ2

γ2−1
I

]
X−(Ĥ∞)

= Im

[
I − γ2

γ2−1
XŶ

γ2

γ2−1
Ŷ

]
. (6.20)

Since A + QR has no jR eigenvalues, it follows that H∞ ∈ dom(Ric) if and only if

I− γ2

γ2−1
XŶ is nonsingular. Furthermore, when I− γ2

γ2−1
XŶ is invertible, X∞ = Ric(H∞)

exists and is given by

X∞ = γ2

γ2−1
Ŷ
(
I − γ2

γ2−1
XŶ

)−1
.

Then using Lemma 2.4 when γ > 1,

det
(
I − γ2

γ2−1
XŶ

)
6= 0 and X∞ ≥ 0⇔ γ2

γ2−1
ρ(XŶ ) < 1

⇔ γ >
(

1− ρ(XŶ )
)− 1

2

⇔ γ >

(
1−

∥∥∥[M −L
]∥∥∥2

H

)− 1
2

.

The last equivalence follows by noting that X is the controllability Gramian of
[
M −L

]
and therefore its Hankel norm is given by ρ(XŶ )

1
2 since the observability Gramian Ŷ of

M is also the observability Gramian of
[
M −L

]
.

It can similarly be shown that γ must also satisfy (6.16) and that the solution Y∞ to

the ARE associated with J∞, if it exists (i.e. if J∞ ∈ dom(Ric)), is given by

Y∞ = Ric(J∞) = γ2

γ2−1
X̂
(
I − γ2

γ2−1
Y X̂

)−1
≥ 0.

Using the expressions derived above for X∞ and Y∞, the spectral radius condition

(d) in Theorem 5.8 is transformed to (6.17). Finally, since {L,M} is normalised, it

follows that
∥∥∥[M −L

]∥∥∥
H

< 1 (Glover and McFarlane, 1989, Lemma 4.2) therefore(
1−

∥∥∥[M −L
]∥∥∥2

H

)− 1
2

> 1 and γ > 1, which concludes the proof.
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It is simple to show that there always exists a γ satisfying the spectral radius condition

(6.17) of the above theorem. Define ρ̂ = limγ→∞ ρ{Φ(γ)} and note that

ρ∞ = ρ

{(
I − Ŷ X

)−1
Ŷ X̂

(
I − Y X̂

)−1
}
. (6.21)

Then, since ρ{Φ(γ)} → ρ∞ < ∞ as γ → ∞ it follows that there exists a γ such that

ρ{Φ(γ)} < γ2.

Finding the smallest γ that satisfies the conditions of Theorem 6.8 is a simple task. A

trivial approach is via a line search, with the initial value of γ set to max{√ρ∞, γ0} where

γ0 = max


(

1−
∥∥∥[M −L

]∥∥∥2

H

)− 1
2

,

1−

∥∥∥∥∥
[
M

N

]∥∥∥∥∥
2

H

− 1
2

 (6.22)

and then slowly incremented until the required condition is satisfied. For clarity, Figure

6.1 is provided which depicts a sketch of ρ{Φ(γ)} and γ2 against γ, with some important

points marked. This should provide some insight to the line search approach proposed

above. The point ρ0 corresponds to ρ{Φ(γ0)} while γ? is the smallest value of γ for which

the aforementioned conditions are satisfied.

γ0 γ?
√
ρ∞

ρ∞

ρ0

valid γ

Figure 6.1: Sketch of ρ{Φ(γ)} ( ) and γ2 ( ) against γ.

Alternatively and more efficiently, root finding methods such as the bisection algorithm

or Newton-Raphson iterations can be used to arrive at suitable value for γ.

6.5 Interesting Special Cases

In this section some special cases are considered. As an example of such a special case

consider the stable plant P ∈ RH∞. Then it is easy to see that {0, U, 0, P} ∈ Br(P ) is

normalised for any unitary matrix U ∈ Rr×r. It is important to note however that this is

not unique, which is confirmed via the following example. Consider the simple first order
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system P =

[
−1 4

2 0

]
∈ RH∞. Then, in addition to the trivial choice Q = R = 0, it is

easy to show that Q = 2
√

3 and R = −
√

3 also induce a normalised QR-BCF.

6.5.1 Unilaterally Normalised BCF

Suppose that P ∈ R has a BCF given by {N,M,L,K} ∈ B(P ). The BCF is said to

be unilaterally normalised if {N,M} ∈ Cr or {L,M} ∈ Cl is normalised, but not both.

Obviously, standard normalised LCFs or RCFs of a system fall into this category. It

should be noted that such BCFs are incompatible with Definition 6.1 and thus are not

normalised. Obtaining such a BCF of a plant amounts to selecting a Q and then using

the methods of Meyer and Franklin (1987) to generate a R that normalises the RC pair

of the factorisations and vice versa.

The following theorem makes use of the partial normalisation property to simplify the

result of Theorem 5.8 by providing a direct solution to one of the AREs.

Theorem 6.9 Let P ∈ Rp×q have a stabilisable and detectable state space realisation

P =

[
A B

C D

]
where A ∈ Rn×n and D = 0. Let Q ∈ Rn×r be such that (A,Q) is

stabilisable and R = −Q∗Y where Y ≥ 0 is the stabilising solution to the ARE (6.5). Let

{N,M,L,K} ∈ B(P ) be a QR-BCF induced by Q and R given by (4.5) with DL = 0 and

DN = 0. Furthermore, let γ ∈ R+, define Π as in (5.8) and H∞ as in (5.9).

Then there exists a controller C∞ ∈ Rq×p such that ‖Fl(Π, C∞)‖∞ < γ if and only if

(a)

1−

∥∥∥∥∥
[
M

N

]∥∥∥∥∥
2

H

− 1
2

< γ;

(b) H∞ ∈ dom(Ric) and X∞ = Ric(H∞) ≥ 0;

(c) ρ

{
I +X∞X̂

(
I − γ2

γ2−1
Y X̂

)−1
}
< γ2;

where X̂ ≥ 0 is the controllability Gramian of M .

Proof. Define J∞ as in (5.10) and note that similarly to Theorem 6.8,

X−(J∞) = Im

[
I − γ2

γ2−1
Y X̂

γ2

γ2−1
X̂

]
.

Since A + QR has no jR eigenvalues, it follows that J∞ ∈ dom(Ric) if and only if I −
γ2

γ2−1
Y X̂ is nonsingular. Hence, when I − γ2

γ2−1
Y X̂ is nonsingular, Y∞ = Ric(J∞) exists

and is given by

Y∞ = γ2

γ2−1
X̂
(
I − γ2

γ2−1
Y X̂

)−1
.
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Then γ > 1, J∞ ∈ dom(Ric) and Y∞ ≥ 0 if and only if condition (a) is satisfied.

The rest of the proof then follows by noting that

1−

∥∥∥∥∥
[
M

N

]∥∥∥∥∥
2

H

− 1
2

> 1 and substi-

tuting the above expression for Y∞ in Theorem 5.8.

A dual to Theorem 6.9 can be trivially derived for the case where LC pair of the

factorisation is normalised instead of RC pair, simply by considering P T . Nevertheless

the result is given in the following theorem.

Theorem 6.10 Let P ∈ Rp×q have a stabilisable and detectable state space realisation

P =

[
A B

C D

]
where A ∈ Rn×n and D = 0. Let R ∈ Rr×n be such that (R,A) is

detectable and Q = −XR∗ where X ≥ 0 is the stabilising solution to the ARE (6.4). Let

{N,M,L,K} ∈ B(P ) be a QR-BCF induced by Q and R given by (4.5) with DL = 0 and

DN = 0. Furthermore, let γ ∈ R+, define Π as in (5.8) and J∞ as in (5.10).

Then there exists a controller C∞ ∈ Rq×p such that ‖Fl(Π, C∞)‖∞ < γ if and only if

(a)

(
1−

∥∥∥[M −L
]∥∥∥2

H

)− 1
2

< γ;

(b) J∞ ∈ dom(Ric) and Y∞ = Ric(J∞) ≥ 0;

(c) ρ

{
I + Y∞Ŷ

(
I − γ2

γ2−1
XŶ

)−1
}
< γ2;

where Ŷ ≥ 0 is the observability Gramian of M .

Proof. The proof follows by duality to Theorem 6.9.

6.5.2 Symmetric Systems

It was shown by Theorem 5.13 that BCF robust control synthesis for symmetric systems

can be simplified by a strategic selection of Q and R.

We will now restrict out attention to symmetric systems satisfying some additional

conditions so as to derive a stronger result. These restrictions ensure that a normalised

QR-BCF of the plant satisfying Lemma 5.12 can be trivially constructed. This is then

used to deduce the existence of a robustly stabilising controller via the solution of a single

Lyapunov equation.

Theorem 6.11 Suppose that P = P T ∈ Rp×p has a minimal state space realisation

P =

[
A B

C D

]
where A ∈ Rn×n, D = 0, S > 0 satisfies the conditions of Lemma 5.11

and

2SA+ C∗C ≥ 0. (6.23)
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Let R ∈ Rr×n be such that R∗R = 2SA + C∗C, Q = −S−1R∗ and suppose that X̃ > 0 is

the solution to the Lyapunov equation

X̃Ã+ Ã∗X̃ + C∗C = 0 (6.24)

where Ã = −(A+BC). Finally, let γ ∈ R+ and define Π as in (5.8).

Then the QR-BCF induced by Q and R given by (4.5) with DL = 0 and DN = 0 is

normalised. Furthermore, there exists a controller C∞ ∈ Rp×p satisfying ‖Fl(Π, C∞)‖∞ <

γ if and only if S < γX̃.

Proof. First note that (6.23) guarantees the existence of a matrix R such that R∗R =

2SA+C∗C. Furthermore, from Lemma 2.14, Ã = A+QR = −(A+BC) is Hurwitz since([
R

C

]
, Ã

)
is observable and S > 0 is a solution to the Lyapunov equation

SÃ+ Ã∗S +R∗R+ C∗C = 0.

Therefore a valid QR-BCF is induced by R and Q = −S−1R∗, which also satisfy (5.22),

(5.23) and (5.24). It is trivial to show that the BCF is normalised and thus that part of

the proof is omitted.

Since X̃ is the solution to (6.24), Ã is Hurwitz and (C,A) is observable, it follows from

Lemma 2.13 that X̃ > 0. Now consider the Lyapunov equation

(S − X̃)Ã+ Ã∗(S − X̃) +R∗R = 0.

Since Ã is Hurwitz and R∗R ≥ 0 it follows, again from Lemma 2.13, that S − X̃ ≥ 0 and

hence X̃ ≤ S.

Before proving the main result of the theorem, the assumption that γ > 1 will be

imposed temporarily, which from Theorem 5.13 is a necessary condition for the existence

of a robustly stabilising controller. It will be shown that this is guaranteed by the other

conditions set forth by this theorem.

Define H∞ as in (5.9) and H̃∞ as

H̃∞ =

[
I −γ2S−1

−γ2S γ2I

]−1

H∞

[
I −γ2S−1

−γ2S γ2I

]

=

[
Ã 0

−C∗C −Ã∗

]
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and note that a conjugate symmetric, stable, invariant spectral subspace of H̃∞ is given

by

X−(H̃∞) = Im

[
I

X̃

]

where X̃ > 0 is the solution to (6.24). Then

X−(H∞) =

[
I −γ2S−1

−γ2S γ2I

]
X−(H̃∞)

= Im

{[
I −γ2S−1

−γ2S γ2I

][
I

X̃

]}

= Im

[
I − γ2S−1X̃

−γ2(S − X̃)

]
.

It now follows that H∞ ∈ dom(Ric) if and only if it has no jR eigenvaluesc and I−γ2S−1X̃

is invertible. Furthermore, when I − γ2S−1X̃ is nonsingular, X∞ = Ric(H∞) exists and

is given by

X∞ = −γ2(S − X̃)(I − γ2S−1X̃)−1

= γ2

γ2−1
(S − X̃)

(
I − γ2

γ2−1
S−1(S − X̃)

)−1
.

From Lemma 2.4 and under the assumption that γ > 1, we have

det
(
I − γ2

γ2−1
S−1(S − X̃)

)
6= 0 and X∞ ≥ 0⇔ γ2

γ2−1
ρ
{
S−1(S − X̃)

}
< 1

⇔ γ2

γ2−1
(S − X̃) < S

⇔ S < γ2X̃. (6.25)

Suppose that (6.25) is satisfied, then

X∞ < γS ⇔ ρ(S−1X∞) < γ

⇔ ρ

{
γ2S−1(S − X̃)

(
γ2S−1X̃ − I

)−1
}
< γ

⇔ ρ

{
γS−1(S − X̃)

(
γ2X̃ − S

)−1
S

}
< 1

⇔ ρ

{
γ(S − X̃)

(
γ2X̃ − S

)−1
}
< 1

⇔ γ(S − X̃) < γ2X̃ − S

⇔ S < γX̃. (6.26)

cWhich is always true since Ã is Hurwitz.
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Combining the fact that X̃ ≤ S with (6.26) implies that S < γS and therefore γ > 1

is implicitly guaranteed. It then becomes apparent that (6.26) also implies (6.25). Thus

conditions (5.25), (5.26) and (5.27) are all satisfied if and only if (6.26) holds, which

concludes the proof.

It is simple yet important to show that (6.23) is invariant under a similarity transform.

Let a symmetric plant P ∈ R have the minimal state space realisations

P =

[
A B

C D

]
=

[
Ã B̃

C̃ D

]

and suppose that T is nonsingular and satisfies TAT−1 = Ã, C̃ = CT−1. Furthermore,

let S > 0 and define S̃ = T−∗ST−1 > 0. Then it is trivial to confirm that S satisfies the

conditions of Lemma 5.11 for the first realisation if and only if S̃ does so for the second

realisation. Finally,

2SA+ C∗C ≥ 0⇔ T−∗(2ST−1TA+ C∗C)T−1 ≥ 0

⇔ 2S̃Ã+ C̃∗C̃ ≥ 0

and the claim follows. This now implies that it is sufficient to check a single state space

realisation of a plant for (6.23) to conclude whether or not Theorem 6.11 can be applied.

Remark 6.4 Any symmetric system that is analytic in C− (i.e. all of its poles lie in C̄+)

with S > 0 satisfies (6.23). To see this first define Ã = S
1
2AS

1
2 ; then using Sylvester’s

law of inertia (Laub, 2005, Theorem 10.31) In(Ã) = In(A). Furthermore, Λ(Ã) = Λ(SA)

since the two matrices are similar. Then Λ(SA) ⊆ C̄+ ⇔ Λ(Ã) ⊆ C̄+ ⇔ Λ(A) ⊆ C̄+.

Finally, since SA is Hermitian and Λ(SA) ⊆ C̄+ it follows that SA ≥ 0 which then implies

that 2SA+ C∗C ≥ 0. �

6.6 Numerical Examples

Two numerical examples will be presented in this section to demonstrate the theory de-

veloped in this chapter. The first deals with a practical case of a mechanical system while

the second is purely mathematical in nature.

Example 1

For this example we consider a mass-spring-damper system extensively studied as a bench-

mark in many areas of control theory (see for example Vinnicombe (2001) or Lanzon and

Petersen (2008)).

A schematic representation of the system under consideration is shown in Figure 6.2.

Two masses are attached to the walls and coupled together via springs and dampers.

It is assumed that the masses are constrained to slide only in the horizontal direction

103



while the surface upon which they do so is frictionless. The inputs to the system are the

forces u1 and u2 applied to m1 and m2 respectively while the outputs are their respective

displacements x1 and x2.

m1 m2

k2

c2

k1

c1

k3

c3

x1

u1

x2

u2

Figure 6.2: Mass-spring-damper system schematic.

Using standard Newtonian mechanics, a model of the above system can be expressed

in state space as

P =



0 0 1 0 0 0

0 0 0 1 0 0

−k1+k2
m1

k2
m1

− c1+c2
m1

c2
m1

1
m1

0
k2
m2

−k2+k3
m2

c2
m2

− c2+c3
m2

0 1
m2

1 0 0 0 0 0

0 1 0 0 0 0


∈ R2×2.

Parameter Variable Value Units

Spring
Constants

k1 0.5 N/m
k2 1.75 N/m
k3 1.5 N/m

Damping
Coefficients

c1 0.1 Ns/m
c2 0.3 Ns/m
c3 0.5 Ns/m

Masses
m1 1.25 kg
m2 1 kg

Table 6.1: Numerical parameter values for the mass-spring-damper system.

Numerical values for the parameters of the system are given in Table 6.1, with which the

transfer matrix can be expressed as

P =



0 0 1 0 0 0

0 0 0 1 0 0

−1.8 1.4 −0.32 0.24 0.8 0

1.75 −3.25 0.3 −0.8 0 1

1 0 0 0 0 0

0 1 0 0 0 0


.
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Algorithm # of iterations ‖Ri(I −XiYi)‖ ‖(I −XiYi−1)Qi‖
6.1 16 7.248× 10−4 6.291× 10−4

6.2 7 2.175× 10−4 3.646× 10−4

Table 6.2: Execution data for Algorithms 6.1 and 6.2.

Algorithms 6.1 and 6.2 were executed for the above state space realisation of P with

the tolerance set to µ = 10−3 and using as initial conditions

Q0 =
[
0 0 1 1

]∗
and R0 = −

[
0.15 0.1 0 0

]
.

It can be easily shown that Q0 and R0 satisfy the necessary condition given by Lemma 6.5.

Table 6.2 provides some important data obtained from the execution of the two al-

gorithms including the number of iterations it took for them to converge to their final

values. Additionally, the trajectories of ‖Ri(I −XiYi)‖ and ‖(I −XiYi−1)Qi‖ are shown

in Figure 6.3 and Figure 6.4 for Algorithm 6.1 and Algorithm 6.2 respectively. The results

are plotted on both linear and logarithmic scales to aid analysis.

5 10 15

0

0.1

0.2

0.3

(a) Algorithm 6.1 - Linear scale

5 10 15

10−3

10−2

10−1

100

(b) Algorithm 6.1 - Logarithmic scale

Figure 6.3: Evolution of ‖Ri(I − XiYi)‖ ( ) and ‖(I − XiYi−1)Qi‖ ( ) using Algo-
rithm 6.1 including exponential upper bounds ( ).

The first thing to note from the above results is that in both cases the plots are

exponentially bounded from aboved. Additionally, Algorithm 6.2 exhibits monotonicity

which is clearly not true for Algorithm 6.1. Finally, both from Table 6.2 and by visual

comparison of Figures 6.3 and 6.4 it can be seen that Algorithm 6.2 is more efficient

and more than twice as fast to converge. From these observations, the argument that

Algorithm 6.2 is a better choice for obtaining a normalised BCF of a plant is further

validated.

dThere exists α, β ∈ R+ such that max{‖Ri(I −XiYi)‖, ‖(I −XiYi−1)Qi‖} ≤ αe−βi for all i ≥ 1.
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2 4 6

0

0.2

0.4
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0.8

(a) Algorithm 6.2 - Linear scale

2 4 6
10−4

10−3

10−2

10−1

100

(b) Algorithm 6.2 - Logarithmic scale

Figure 6.4: Evolution of ‖Ri(I − XiYi)‖ ( ) and ‖(I − XiYi−1)Qi‖ ( ) using Algo-
rithm 6.2 including exponential upper bounds ( ).

The resulting matrices, denoted by Qric and Rric for those obtained via Algorithm 6.1

and Qklein and Rklein for Algorithm 6.2, were given by

Qric =
[
0.717 0.035 −0.617 0.373

]∗
, Rric =

[
−0.607 0.116 0.458 −0.115

]
and

Qklein =
[
0.39 0.273 0.398 0.281

]∗
, Rklein = −

[
0.572 0.383 0.487 0.273

]
.

It is easy to confirm that both pairs induce a normalised BCF of P .

A robustly stabilising controller was then synthesised using the pair generated by

Algorithm 6.2. The Gramians of the BCF symbol associated with the normalised QR-

BCF {N,M,L,K} ∈ B(P ) induced by Qklein and Rklein were given by

X =


0.432 0.232 0.076 0.062

0.232 0.284 0.044 0.037

0.076 0.044 0.618 0.134

0.062 0.037 0.134 0.61

 and Y =


1.048 0.171 0.248 0.063

0.171 0.742 0.147 0.195

0.248 0.147 0.675 0.29

0.063 0.195 0.29 0.284

 .

Furthermore, the Gramians of M were given by

X̂ =


0.237 0.167 0.003 0.007

0.167 0.118 −0.004 0.001

0.003 −0.004 0.16 0.11

0.007 0.001 0.11 0.076

 and Ŷ =


0.265 0.147 0.061 0.026

0.147 0.09 0.087 0.045

0.061 0.087 0.37 0.209

0.026 0.045 0.209 0.118

 .

Using (6.21) and (6.22), ρ∞ and γ0 were evaluated as ρ∞ = 0.437 and γ0 = 1.33.

Newton-Raphson iterationse were then used to calculate the smallest value of γ satisfying

the spectral radius condition of Theorem 6.8. With the initial condition set to γ0, the

eThe step size and tolerance were both set to 10−3.
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solution (the smallest valid value of γ) was obtained as γ? = 1.685. Convergence was

reached within 17 iterationsf. Figure 6.5 shows the trajectory of γ over the iterations of

the algorithm.

0 5 10 15
1.3

1.4

1.5

1.6

1.7

γ0

γ?

Figure 6.5: Newton-Raphson iterations to find the smallest valid value of γ.

To avoid computational issuesg, the value of γ used for synthesising the controller was

chosen to be 1% higher than γ? giving γ = 1.702. X∞ and Y∞ were constructed via (6.18)

and (6.19) using the values for X, Y , X̂ and Ŷ given above. Finally, using Theorem 5.8,

the central controller was obtained as

Cbcf =



−12.79 3.695 2.532

−0.448 2.011 −0.016 −0.011

−2.011 −0.448 0.004 0.003

−2.261 −0.657 −0.457

−5.132 0.197 0.575 −5.848 0 0

−3.517 0.127 0.399 −4.069 0 0


∈ R2×2,

achieving a robust stability margin of γ−1 = 0.587.

A second controller was synthesised based on a normalised LCF of the plant using the

work of Glover and McFarlane (1989) via Zhou et al. (1996, Corollary 18.2); achieving a

robust stability margin of blcf = 0.631. This controller was given by

Clcf =



−24.72 3.35 2.34

−1.77 5.35 3.8

−0.59 2.04 0.46 −0.31

−2.04 −0.59 0.74 −0.53

−5.9 0.29 0.02 −0.07 0 0

−3.88 0.19 −0.02 0 0 0


∈ R2×2.

fGiven the same initial value and step size, it would take 355 iterations for a line search algorithm to
arrive at γ?.

gGiven X ≥ 0 and α > ρ(X), as α → ρ(X), λ(I − αX) → 0 which can lead to numerical problems
when attempting to obtain the inverse of I − αX.
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Figure 6.6 shows the simulated response of the system under the constructed con-

trollers. The initial conditions for the simulation were set to x1 = 0.5 m and x2 = 0.3 m.

The controller was then left to stabilise the feedback interconnection and return the posi-

tions of both masses to the origin.

In addition to the nominal plant, a perturbed plant was also constructed as P∆ =

Fu(Π,∆) with Π as defined in (5.2) and ∆ ∈ RH∞ given by

∆ =
0.1

s2 + 8s+ 17

 5(s2 + 8s+ 17) 0 −(s2 + 9s+ 22)

s+ 4 1 −1

−(s2 + 10s+ 30) −(2s+ 7) 2s+ 8


which satisfies ‖∆‖∞ = 0.549. Note that with this uncertainty matrix, an unstable com-

plex conjugate pair of poles is introduced at 0.191±0.755j. Furthermore, the gap between

P and P∆ as defined by El-Sakkary (1985), is given by δ(P, P∆) = 0.626. The simulation

results obtained using the perturbed plant are also shown in Figure 6.6.

0 5 10 15

−0.5

0

0.5

Time (s)

(a) Position of mass m1, x1 (m).

0 5 10 15

−0.2

0

0.2

Time (s)

(b) Position of mass m2, x2 (m)

Figure 6.6: Simulation results of mass-spring-damper systems with Cbcf ( ) and Clcf
( ). The continuous and dashed lines correspond to the nominal plant perturbed plants
respectively.

As expected, the designed controllers successfully stabilise both the nominal and per-

turbed plants. This should be no surprise since γ‖∆‖∞ = 0.934 < 1 and δ(P, P∆) < blcf

(see Georgiou and Smith (1990, Theorem 4) for details). Although the performance of

the two controllers is rather similar for the nominal plant, this is not true in the case

of the perturbed plant. It can be seen from the simulation results that even though ∆

is not enough to destabilise the feedback interconnection when using Cbcf , performance

is considerably affected with increased oscillations and approximately double the settling

timeh. Performance deterioration for the normalised LCF controller is much worse, as is

hSince the response is decaying to zero, the classical measure of settling time cannot be applied. Hence
settling time is defined here as ts ∈ R+ : max{|x1(t)|, |x2(t)|} ≤ 0.01 m ∀t ≥ ts.
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evident from the simulation results. A very oscillatory and slow response was obtained

with the settling time being more than 8 times longer.

Example 2

A simple example will now be presented to demonstrate an application of Theorem 6.11.

Consider the state-space-symmetric system

P =

 −1 2

2 −2

2 −2 0

 ∈ R1×1,

where S = I satisfies the conditions on Lemma 5.11. Note that (6.23) is satisfied with

a valid R given by R =
√

2
[
1 −2

]
. Furthermore, the solution to (6.24) is given by

X̃ =

[
2
3

1
3

]
> 0. It can therefore be concluded from Theorem 6.11 that there exists a

robustly stabilising controller achieving a robust stability margin γ if and only if I < γX̃

or equivalently γ > 3. Then, following the procedure of Theorem 5.8 yields the controller

C∞ =

 −1.081 −0.08

2.335 0.17

0.08 −0.17 0

 ∈ R1×1,

achieving γ = 3.0455.

6.7 Summary & Conclusion

In this chapter the concept of normalisation was extended to BCFs of the plant. A number

of state space conditions and properties were presented based on normalised QR-BCFs.

Unlike LCFs or RCFs where a single ARE (with sign-definite quadratic term) needs to be

solved to achieve normalisation, two such AREs must be solved to obtain a normalised QR-

BCF of the plant. It was shown that the resulting problem is nonlinear, an explicit solution

to which does not exist in the literature. Thus, two iterative procedures to construct a

normalised BCF of a plant were proposed, one based on AREs while the second following

the Kleinman approach based on Lyapunov equations which are computationally easier to

handle.

Robust control synthesis results using normalised BCFs were presented. It was shown

that similarly to normalised LCFs or RCFs a lower bound on the achievable robust stability

margin can be calculated a priori. However, this is not guaranteed to be achievable as

an additional spectral radius condition must also be satisfied. These results were then

restricted to a special set of symmetric systems where robust stabilisation can be achieved

via the solution of a single Lyapunov equation.
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Chapter 7

Application: Control of a

Quadrotor UAV

7.1 Introduction

Unmanned Aerial Vehicles (UAVs) have many real-world uses in both civilian and military

situations. Some example applications include reconnaissance, surveillance, search and

rescue or as a simple pass-time for hobbyists. As a result, there is considerable interest in

developing new and novel vehicles (Crowther et al., 2011). Control of UAVs has attracted

much attention from the control community in recent years. This is in part due to the

multitude of uses mentioned above, but also because of their interesting dynamics.

In this chapter, a quadrotora UAV is considered such as the one described by Pounds

et al. (2010). See Lanzon et al. (2014) for a schematic representation of such a vehicle, as

well as some of the formalisms adopted herein. After mathematically modelling the system,

a controller is designed for the attitude of the system using feedback linearisation and the

normalised BCF procedure described in Theorem 6.8. This is followed by a simple state

feedback controller for the position of the vehicle in Euclidean 3D space. Though many

strategies have been successfully employed in the past to tackle this problem (Mokhtari

et al., 2005; Raffo et al., 2010; Tzes et al., 2012), the goal here is to demonstrate how BCF

theory, as developed in this thesis, can be applied to a practical control situation.

7.2 System Modelling

An important part of controlling a UAV is understanding how it is actuated, in other

words, how it generates the necessary forces and torques. This is crucial in developing a

successful control strategy. Let the force generated by the ith rotor be given by fi ∈ R,

then the reaction torque generated by that rotor is assumed to be given by τi = kτ,ifi

for some kτ,i ∈ R+. A further simplifying assumption commonly made in this context, is

aHaving four rotors arranged in a planar fashion.
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that kτ,1 = kτ for all i, implying that all rotors are identical. Now, define τb ∈ R3 as the

torque vector in the body axes and let uf ∈ R denote the total force generated by the four

rotors, that is uf =
∑4

i=1 fi. Then for a quadrotor UAV, the torques and total force can

be related to the forces generated by the rotors as

[
τb

uf

]
=


0 −l 0 l

−l 0 l 0

kτ −kτ kτ −kτ
1 1 1 1



f1

f2

f3

f4

 . (7.1)

Modelling the attitude of a rigid body in 3D space is a problem studied extensively in

the past. Many methods are available to achieve this; including Euler angles, directional

cosine matrices, angle-axis notation and quaternions. Each of these methods has its own

advantages and disadvantages. For example, using quaternion notation (Kuipers, 2002)

gives a singularity and ambiguity free model, but one that is more mathematically complex.

On the other hand, using Euler angles leads to a much simpler and easier to visualise model

but prone to problems such as gimbal lock (the loss of a degree of freedom) (Grassia, 1998)

and singularities (relies on the trigonometric tangent function).

The Euler angles approach will be used to model the attitude of a UAV for its simplicity.

Let the attitude of the UAV be given by the angles roll φ, pitch θ and yaw ψ and define

η =
[
φ θ ψ

]∗
∈ R3. Then η is related to the angular rate vector ωb ∈ R3 (the rate of

change of each angle) by

η̇ = Φωb, (7.2)

where

Φ =

 1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ

 .
Note that the singularities mentioned before are obvious here as Φ depends on tan θ and

sec θ which tend to ∞ as θ tends to π/2 rad.

Finally, using standard Newtonian mechanics the dynamics of ωb can be expressed as

Jω̇b = −ωb × Jωb − krωb + τb, (7.3)

where 0 < J ∈ R3×3 is the inertia matrix and kr ∈ R+ is the rotational drag coefficient.

The UAV in question is assumed to be symmetric about the x and y axes, with J being

diagonal. Furthermore, it is also assumed that the rotational drag is equal in all directions.
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Parameter Variable Value Units

Total mass of UAV m 0.5 kg
Inertia about x-axis Jxx 5.9× 10−3 kg m2

Inertia about y-axis Jyy 5.9× 10−3 kg m2

Inertia about z-axis Jzz 1.16× 10−3 kg m2

Rotor arm length l 0.255 m
Rotational drag coefficient kr 0.01 N m s rad−1

Translational drag coefficient kt 0.05 N s m−1

Torque-to-thrust ratio kτ 0.24 m

Table 7.1: Numerical parameter values for quadrotor UAV system.

Modelling the position of a UAV is considerably simpler. Suppose that the position of

the UAV in 3D space is given by the vector λ ∈ R3. Then

mλ̈ = −ktλ̇+RB 7→Euf~nz −mg~nz, (7.4)

where m ∈ R+ is the mass of the UAV, kt ∈ R+ is the translational drag coefficient,

RB 7→E ∈ R3×3 is the rotation matrix mapping the body to the earth axes (Salazar-Cruz

et al., 2009), g is the acceleration due to gravity and finally, ~nz =
[
0 0 1

]∗
. As was

the case for the rotational drag, it is assumed that the translational drag is equal in all

directions. Numerical values for the parameters of the system are given in Table 7.1.

7.3 Control Synthesis

In this section a two stage controller is designed for controlling the UAV system given by

(7.1), (7.2), (7.3) and (7.4). In the inner loop, the attitude of the UAV will be stabilised

via feedback linearisation and a normalised BCF controller synthesised using Theorem 6.8.

In the outer loop, the position will be forced to track a reference signal using a simpler

state feedback approach while ignoring the attitude dynamics. For this approach to work,

the dynamics of closed loop attitude subsystem must be considerably faster than those of

the position subsystem. A high level block diagram of the proposed control structure is

shown in Figure 7.1.

Pos.
Con.

Ψ
Att.
Con. T−1

UAV
System

λd fe ηd τb fi λ

(η, ωb)
ψd

uf

Figure 7.1: UAV control strategy. Ψ denotes the mapping from the desired forces in the
earth axes and yaw angle to the attitude and total force required to achieve them.
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7.3.1 Attitude Control

As mentioned above, the attitude of the UAV will be controlled via feedback linearisation

and a normalised BCF controller. By differentiating (7.2) we have

η̈ = Φ̇ωb + Φω̇b

= Φ̇ωb + ΦJ−1(−ωb × Jωb − krωb + τb). (7.5)

Before proceeding, it must noted that from the above it follows that the relative degree of

of the attitude system is 6, which implies that there are no zero dynamics (Khalil, 2000),

hence there are no complicating factors in applying feedback linearisation. It is now easy

to see that by setting

τb = ωb × Jωb + krωb + JΦ−1(uη − Φ̇ωb)

where uη ∈ R3 is an artificial input, the attitude dynamics are linearised to η̈ = uη. By

strategically designing uη various objectives can be achieved, for example robust feedback

linearisation as described by Franco et al. (2006). A different approach will be taken here

and this opportunity will be used to “shape” the linearised plant. By setting uη = Â2η̇ +

Â1η + kB̂τ̂b where Â2, Â1, B̂ ∈ R3×3 and k ∈ R+, the linearised plant is transformed tob

P =

 0 I3 0

Â1 Â2 B̂

kI3 0 0

 ∈ R3×3.

Now by an appropriate selection of these parameters, the open loop transfer function of

the linearised plant can be given some desirable features that will help to improve the

closed loop performance. For example, high gain at low frequencies to reduce steady state

error and higher bandwidth for a faster response.

The above matrices were selected as Â1 = 0

Â2 =

[
−2I2

−1

]
and B̂ =

[
40I2

16

]
,

with k = 8. The choice to set Â1 = 0 was made so that an integrator is retained in each

channel to guarantee reference tracking. The singular value plot of the resulting linearised

plant is shown in Figure 7.2a.

bNote that with the selection Â1 = 0, Â2 = −krJ−1, B̂ = J−1 and k = 1 the aforementioned robust
feedback linearisation control law is obtained.
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Using Lemma 4.10, Q0 and R0 were constructed as

Q0 =



0 0.5 0

1 0 0

0 0 1

0 0 1

0 1 0

0 0 0


and R0 =

 0.53 −7.98 −0.09 0.12 −0.8 −0.03

−7.93 −0.53 0.9 −1.33 −0.07 0.27

−0.9 0.03 −7.95 −0.12 0.01 −0.91



to be used as initial conditionsc for Algorithm 6.2. The algorithm was then executed,

converging to the normalising pair

Q =



−0.35 1.68 0.45

1.73 0.36 −0.01

0.06 −0.28 1.09

−7.14 34.52 9.33

35.69 7.44 −0.21

0.86 −3.71 14.38


and R =

 1.57 −7.83 −0.46 0.07 −0.35 −0.03

−7.57 −1.63 1.99 −0.34 −0.07 0.14

−2.05 0.05 −7.73 −0.09 0 −0.54



within 12 iterations with ‖R12(I−X12Y12)‖ = 2.47×10−5 and ‖(I−X12Y11)Q12‖ = 4.31×
10−4. The Gramians X, Y , X̂ and Ŷ are omitted for brevity but can be easily obtained

by solving the associated Lyapunov equations.

From (6.21) and (6.22), it was calculated that
√
ρ∞ = 2.001 and γ0 = 1.797. Then,

following the same procedure as in the previous chapter, the smallest value satisfying the

conditions of Theorem 6.8 was obtained as γ? = 3.054. With γ set to 3.084 (as before 1%

higher than γ?), a robustly stabilising controller was synthesised as

Cη =



−612.5 0 −80.9

−415.7 −55.2 25.0 0

−415.5 25.0 55.2 0

−33.0 0 0 1.8

−53.7 −4.5 2.0 0

−53.7 −2.0 −4.5 0

0 21.9 −9.9 0 −30.5 −13.8 0 0 0

0 −9.9 −21.9 0 13.8 −30.5 0 0 0

24.5 0 0 53.1 0 0 0 0 0


.

The loop shape obtained using the linearised plant and Cη is shown in Figure 7.2b. By

comparing this to Figure 7.2a it can be seen that as expected, the controller imparts some

minor changes around the crossover frequency to improve robustness while the rest of the

loop shape remains largely unchanged.

cNote that these do not satisfy condition of Lemma 6.5.
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Figure 7.2: Singular value plots of linearised plant and forward loop transfer function.

7.3.2 Position Control

Due to the simpler nature of the translational dynamics, a more heuristic approach will be

taken to control the position of the UAV. Consider again (7.4) and define fe = RB 7→E~nzuf

which will temporarily be considered the input to the system. Furthermore, let the desired

position be given by λd ∈ R3 and define an error term as λ̃ = λd − λ. Then, by setting

fe = mg~nz + (ktI +mΛ2)λ̇+mΛ1λ+m
(
λ̈d − Λ2λ̇

d − Λ1λ
d
)

(7.6)

where Λ1, Λ2 ∈ R3×3, the translational error dynamics are linearised to[
˙̃
λ
¨̃
λ

]
=

[
0 I

Λ1 Λ2

][
λ̃
˙̃
λ

]
.

By choosing Λ1 and Λ2 such that the above is stable, the position error dynamics will

asymptotically converge to the origin and thus closed loop tracking will be achieved. In

this case, these parameters were chosen as

Λ1 =

[
−6I2

−12

]
and Λ2 =

[
−5I2

−7

]
,

with the reason being the fact that the closed loop position dynamics must be considerably

slower that the attitude dynamics such that the latter has little impact and can thus be

ignored. With the above selections, the bandwidthd of the system is around 1.53 rad s−1

for the x and y channels while for z this is increased to about 2.19 rad s−1, which is

substantially lower (approximately by an order of magnitude) than that achieved by the

attitude control system as seen in Figure 7.2b.

The final step in deriving a control law is to find the attitude and total force that map

to the value of fe as generated by (7.6). This is represented by the block Ψ in Figure 7.1.

dFrequency at which the gain is at −3 dB of its DC value.
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First, set the total force to uf = ‖fe‖ and define ue =
[
ux uy uz

]∗
= ‖fe‖−1fe. Then,

let ψd ∈ R represent an exogenous desired value for the yaw angle and define

φd = sin−1(ux sinψd − uy cosψd) and

θd = sin−1

(
ux cosψd + uy sinψd√

1− (ux sinψd − uy cosψd)2

)
.

Finally, combining η =
[
φd θd ψd

]∗
and uf = ‖fe‖ as defined above, the desired fe

is obtained. This can be validated by back substitution. A similar approach is used by

many authors, however it is common to use small angle approximations for simplification,

resulting in substantially different equations for φd and θd.

7.4 Simulation Results

The feedback interconnection of the UAV system and designed controller was simulated,

with the results shown in Figure 7.3. For the simulation, the position reference was given

as step signals to all channels at t = 1 s, with the magnitude being 2.5 m for x, 2 m for

y and 3 m for z, thus λd =
[
2.5 2 3

]∗
m. The yaw reference was given as a sinusoidal

signal of amplitude π/16 rad and frequency 0.7 rad s−1, that is ψd = (π/16) sin(0.7t) rad.

Finally, the initial conditions were set to η =
[
π/12 −π/8 0

]∗
rads for the attitude and

ωb =
[
−0.1 0.3 0

]∗
rad s−1 for the angular rates, while the position and velocity were

set to zero.

To avoid excessive control action, a prefilter was used to smooth out the position

reference signal. This was achieved by setting tdλ̇
d = λ̂d−λd where λ̂d is the new reference

input and td ∈ R+ is the filtering time constant which was set to 0.2.

0 2 4 6 8 10

−0.4
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0

0.2

0.4

Time (s)

(a)
Attitude η (rad)

φ ( ), θ ( ), ψ ( ).

0 2 4 6 8 10

0

1

2

3

Time (s)

(b)
Position λ (m)

x ( ), y ( ), z ( ).

Figure 7.3: Closed loop simulation results of quadrotor UAV. The dashed lines represent
the reference signal/desired value.
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It can be seen that the UAV is successfully stabilised and that reference tracking is

achieved. The attitude subsystem is considerably faster than the position control outer

loop and evidently does not negatively impact its performance.

A second simulation was performed with a more complex elliptical desired trajectory.

The yaw reference was again a sinusoid given by ψd = (π/8) sin(0.6t). In this case, some

white noise was added in the feedback path to simulate sensor inaccuracies. Additionally,

the input to the system was set to zero at t = 4 s for a duration of 0.2 s to simulate

temporary, complete actuator failure. The initial conditions were assumed to be zero for

all states. A reference prefilter was not used for this simulation. Figure 7.4 shows the

results of this simulation.
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(b)
Position λ (m)

x ( ), y ( ), z ( ).
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(c) Position 3D (m).

Figure 7.4: Closed loop simulation results of quadrotor UAV with elliptical reference
trajectory. The dashed lines represent the reference signal/desired value.

From the results of the simulation, it becomes apparent that the designed control

strategy is able to cope with both the actuator failure and sensor noise. When the actuators

are disabled, the altitude starts dropping almost immediately, however the horizontal

trajectory is mostly maintained due to the momentum of the vehicle. For this reason the
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attitude is not significantly affected, since the horizontal direction in which the UAV is

travelling does not change. The controller attempts to correct the sudden loss of altitude

by increasing the total force generated by the rotors but not changing the attitude of

the vehicle. Shortly after the actuators are enabled, the system resumes to tracking the

reference signal.

Additional simulation results are shown in Figure 7.5; these are provided purely as a

matter of interest with only the 3D position of the vehicle plotted. In the first simulation,

the desired trajectory was given by an ascending spiral, where the UAV is commanded to

follow a circular trajectory in the xy-plane while ascending at a constant rate. For the

second simulation, the UAV takes off vertically and follows a horizontal square trajectory

before returning to its origin. No reference prefiltering was used for these simulations.
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2 −2

0
2

0

1

2
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z

(a) Ascending spiral trajectory (m).

−1 0 1 −1
0

1
0

1

x
y

z

(b) Square trajectory (m).

Figure 7.5: Additional closed loop simulation results of quadrotor UAV. The dashed lines
represent the desired trajectories.

7.5 Summary & Conclusion

In this chapter a control strategy for a quadrotor UAV was proposed based on feedback

linearisation and normalised BCF theory. It was shown to be an effective approach to-

wards controlling such systems. By way of this example the argument that BCFs deserve

additional attention from the control community is further validated.

Though the results obtained exhibit sufficiently good performance with reference track-

ing and disturbance rejection properties, not much effort was put into selecting the various

control parameters. For example trivial choices were made for Λ1 and Λ2. It is possible to

considerably improve the closed loop properties of the interconnection by more carefully

selecting the values of these parameters.
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Chapter 8

Conclusion

In this chapter the main contributions of this thesis are summarised and possible directions

of future research are explored. The aim of this thesis is to lay the foundations of a BCF

theory upon which further results can be based and to examine their possible uses in

robust control theory. This is achieved, firstly, by the introduction of systematic methods

for obtaining BCFs of a plant, and secondly, by adapting well established robust control

synthesis and analysis tool to make use of such factorisations. Several numerical examples

are used to demonstrate how BCFs can be used to tackle control problems and in certain

situations provide various advantages; demonstrating that BCF theory is viable in a control

theoretic environment.

8.1 Contributions

The main contributions of this thesis are summarised below. Square brackets are used to

denote novel results.

• The concept of BCFs, largely ignored by the control community, is presented in a

comprehensive manner and the notion of internal dimension [Definition 3.4] of a BCF is

introduced with lower bounds for it derived [Lemma 3.6 and Theorem 3.8]. Numerous

internal stability conditions for a standard positive feedback interconnection are derived

[Theorems 3.12 and 3.13, Lemmas 3.15 to 3.17 and 3.19 to 3.22, and Corollary 3.18];

extending the limited number of results already found in the literature. It is shown that

through the use of BCFs of the plant, reduced dimension internal stability conditions

can be obtained; with an extreme case presented where the internal stability of a MIMO

feedback interconnection is established via a scalar test.

• Methods are formulated that can be used to generate a BCF of a plant based on a stabil-

isable and detectable state space realisation [Theorems 4.2 and 4.3, and Corollary 4.4],

which are shown to capture the well known formulae of Nett et al. (1984) [Remark 4.3].

With the introduction of the QR-BCF parametrisation, it is shown that a non-trivial
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BCF over RH∞ can be constructed for every plant in R; thus any subsequent state

space results can be applied without loss of generality.

• BCF uncertainty is introduced [Equation 5.1], proving to have an appealing structure

that combines LC, RC and additive uncertainties. Subsequently, robust analysis [The-

orems 5.1 and 5.2] and stabilisation results [Theorem 5.8 and Corollary 5.10] are de-

veloped for this type of uncertainty. Robust control for special classes of systems is

examined based on BCFs including minimum phase [Theorem 5.3 and Lemma 5.5] and

symmetric [Theorem 5.13] systems. It is shown that the standard assumptions asso-

ciated with the 2-ARE solution to the H∞ robust stabilisation problem can be easily

satisfied using a QR-BCF of the plant.

• A definition of normalised BCFs is proposed [Definition 6.1]. Tests based on state space

data that can be used to establish whether a BCF is normalised are presented [The-

orem 6.1, Corollary 6.2 and Theorem 6.3] and iterative methods of constructing such

factorisations are developed based on two coupled AREs with sign-definite quadratic

terms [Algorithms 6.1 and 6.2]. Such factorisations are shown to produce advantages

similar to those that arise from classical normalised coprime factorisations, in that a

lower bound for the achievable robust stability margin can be calculated a priori [The-

orem 6.8]. Unilaterally normalised BCFs are also introduced with an associated robust

stabilisation result presented [Theorem 6.9]. The special case of symmetric systems is

further examined in the context of normalised BCFs [Theorem 6.11].

8.2 Direction of Future Research

Although a substantial number of results pertaining to BCFs were presented in this thesis,

the theory developed herein is far from complete. Possible areas of future research are

briefly discussed below.

• Distance measures form an area of control theory where coprime factorisations find

extensive use. A method for developing a distance measure based on any uncertainty

structure was presented by Lanzon and Papageorgiou (2009). Given a nominal and per-

turbed plant, the set of BCF uncertainty matrices that map the former to the latter can

be easily parametrised. However, finding an admissible uncertainty matrix whose norm

is the infimum in that set is not trivial. Furthermore, the properties of BCF uncer-

tainty claimed herein are based solely on those derived from coprime factor uncertainty.

Further investigation of both issues is needed.

• The choice of coprime factorisation of the plant affects the closed loop properties of

a feedback interconnection. For example, if the factorisation has lightly damped poles

then the achievable robust stability margin is reduced, as shown by Engelken and Lanzon

(2012). It is reasonable to assume (though this must be examined as well) that a similar
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fact is true for QR-BCFs of the plant. Hence, the potential benefits of using systematic

methods such as the one described by Sivashankar et al. (1994) to construct a QR-BCF

also need to be explored.

• Further investigation is needed into the problem posed by Theorem 6.3 to establish if a

solution always exists. One approach to achieve this would be via a convergence proof

for Algorithms 6.1 and 6.2.

• It was alluded to in many instances that loop shaping weights could be used with the

robust control synthesis result of Theorem 5.8 to improve the closed loop characteristics

of the system. It would be interesting and useful to know what performance/robustness

guarantees can be obtained from such a procedure and how they relate to those that

emerge from using standard coprime factors derived by McFarlane and Glover (1992).
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