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Abstract

An Experimental study on the dynamics of a positively buoyant sphere im-

mersed in a rotating viscous flow is presented. For a smooth solid sphere it

was found that the it sits at the centre of the cylinder for high Reynolds num-

ber Re. When decreasing Re the sphere settles at an eccentric equilibrium

position, which existence cannot be explained by Stokesian calculations. The

position of the fixed points is well predicted by a model that assumes small

but finite Re. If Re is further decreased beyond a critical value Rec, the

sphere starts oscillating about the original fixed point, describing periodic

circular orbits. For very small values of the Reynolds number the sphere

settles at a fixed point by the wall of the cylinder, which becomes unstable

to vertical oscillations. A exhaustive study of this dynamic is presented.

For a porous sphere it was found that the aforementioned eccentric fixed

point exist, but in comparison with the solid case, remained much closer to

the central axis of the cylinder. It was found that the stability range of this

fixed point was larger than for the solid case.

Three spheres of different roughness were also studied, no significant effect

on the eccentric fixed point or in the onset of the instability was found,

showing that the fixed point is robust.
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Chapter 1

Introduction

The study of the dynamics of a sphere immersed in a rotating inviscid flow has

been of the interest of scientists since the late XIX century with the seminal

work of Sir William Thomson, titled ”On the Ultramundane Corpuscles of Le

Sage, also on the Motion of Rigid Solids in a Liquid circulating irrationally

through perforations in them or in a Fixed Solid” [1].

In this work Sir Thomson states that ”A properly trained dynamical intel-

ligence would at once perceive that the constancy of moment of momentum

round the axis, requires the globule to move directly towards it”, or in other

words; a solid sphere immersed in a rotating flow should remain at its axis

of rotation.

Here we present the results of an experimental investigation into the mo-

tion of a positively buoyant particle immersed in a rotating viscous flow at

low Reynolds number. As in the inviscid case the heavier fluid is thrown to

the outside and the light sphere sits at an equilibrium position at the centre

of the flow when Re is sufficiently high. Interestingly, there are also a set

of eccentric stable fixed points at lower values of Re and these are found

13



to become unstable to simple oscillatory motion when Re is decreased.The

dependance of the dynamics of the sphere on the size of the particle and the

superficial roughness was investigated. The dynamics of a positively buoyant

porous sphere was also studied.

The aims of this investigation were (a) to characterise the dynamics of

a single positively buoyant sphere immersed in a rotating viscous flow at

low Reynolds number, (b) to investigate the dependance of the different

dynamical regimes to variations of size and roughness of the sphere, and (c)

to inspire future theoretical work on the mentioned flow configuration by

obtaining careful experimental data.

In section §1.1 the experimental parameters used through this investiga-

tion are discussed. The motivation for this experimental study is presented

in section §1.2 with an emphasis on a direct application of this flow configu-

ration, the bioreactor [2]. Previous experimental investigation concerning a

particle immersed in a rotating flow are reviewed in section §1.3 . In section

§1.4 a review on the state of the art of the theoretical literature about a par-

ticle free to move on a rotating viscous flow is presented. Finally, an outline

of this thesis is presented in section §1.5.

1.1 Experimental Parameters

A diagram of the experimental parameters and their meaning is shown in

figure 1.1.

The Reynolds number corresponds to the ratio between the inertial and

the viscous forces in a fluid system. In the experimental realisations presented

in this thesis two different Reynolds number are considered:
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Figure 1.1: Schematics diagram of the experimental parameters considered in

this thesis. Ω is the angular velocity of the rotating fluid, g is the acceleration

of gravity, ρg is the density of the fluid, ν is the kinematic viscosity, a is the

radius of the sphere, ρs is the density of the sphere, Φ is the radius of the

cylinder and ω is the angular velocity of the sphere.

Re =
a2Ω

ν
, (1.1)

with a being the radius of the particle, Ω the angular velocity of the rotating

drum and ν the kinematic viscosity of the fluid.

and

Rep =
aVT
ν
, (1.2)
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where VT corresponds to the terminal velocity of the sphere falling in an

unbounded quiescent fluid.

The experiments presented in this document were performed at low Re,

typically having a value between 0.01 < Re < 2 which means that the viscous

forces dominate the dynamics and the flow is considered to be Stokesian.

Another relevant parameter is the Stokes number, which correspond to

the ratio between the relaxation time, the coefficient in the exponential decay

of the speed of a settling object in a viscous fluid which is calculated as

t0 = 2
9
a2/ν, and the hydrodynamic time, given by the ratio between the size

of the particle 2a and the speed of the fluid aΩ. For a sphere in creeping flow

is defined as

St =
2a2Ω

9ν
, (1.3)

which is proportional to the Reynolds number and had typical values between

0.01 < St < 0.25.

The density ratio between the density of the sphere and the density of

the fluid was defined as

P =
ρs
ρg

(1.4)

and had typical values of 0.7 < P < 0.9.

The other parameters correspond to the geometry of the system.

1.2 Motivation

The understanding of the dynamics of a single particle immersed in a rotating

flow at low Reynolds number has both fundamental and practical importance.
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Firstly, in the textbook of Guazelli and Morris [3] a study of the dynamics

of a single particle is proposed as the simplest relevant case to achieve further

understanding of a suspension of particles in a rotating flow. Secondly, sus-

pension flows have many industrial applications, such as the manufacturing

of precision latex microspheres through the use of a rotating latex reactor

[4], [5] where this flow configuration is used to keep the particles on suspen-

sion without using more expensive devices to simulate microgravity, which is

needed to avoid clustering of the seeded particles, fabricating monodisperse

microspheres by keeping the particles steady during the polymerisation re-

action. In the study by Roberts et al. [4] they use a a horizontally rotating

cylinder, filled by a viscous fluid and place microspheres of about 3 microm-

eters. They found that the particles orbits in circles about a point displaced

from the centre of the cylinder.

The motion of a sphere moving on a rotating flow at low Re is also relevant

for the understanding of bioconvection [6], [7]. Bioconvection corresponds to

the instability that a suspension of swimming algae or bacteria undergo due

to differences in density distribution, if the organisms swim upwards and

accumulate at a layer close to the surface, this region becomes denser. This

unstable density distribution sets up a fluid motion analogous to that of a

shallow fluid heated from the bottom.

A direct application of this flow configuration is the rotating bioreactor

which is explained in detail in the next section.
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Figure 1.2: Bioreactor used by NASA for testing microgravity on earth.

A biological scaffold, the microcarrier containing cells that will develop a

tissue, is placed inside of the bioreactor. The cylinder is filled with water,

and nutrients are infused into the fluid from the inner cylinder. The outer

wall imposes a rotation to the fluid so the tissue inside of the scaffold can

grow in a simulated microgravity environment

1.2.1 The rotating bioreactor

One of the main motivations to reach a better understanding of the dynam-

ics of a sphere immersed in a rotating flow is the application of this flow

configuration to tissue engineering.

Tissue engineering consists on creating functional tissue by using cells,

scaffolds and biologically active molecules [8]. The aim is to restore or im-

prove, from damaged tissue to entire organs. It can also be used to develop

tissue for drug or chemical testing, among others applications.

Cultivating cells in vitro, in a static environment, make the cells to grow
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in flat layers due to the effect of gravity acting constantly on the cells. This

is different to what happens in vivo, inside of the body, where the cells grow

three dimensionally [9]. A bioreactor is a device used in tissue engineering to

grow organic tissue in vitro in a controlled environment develop by Schwarz

and Wolf at NASA [2], [10] designed to neutralise this effect.

The bioreactor consist of a horizontally rotating vessel filled with fluid,

typically water. This tissue culture technique allows tissue to be grown in

a microgravity environment, because the tissue is in a state of constant free

fall in the rotating fluid. Re has typical values of 0.8 < Re < 90 and

0.17 < St < 20 as calculated using the experimental parameters given by

Dalwadi [11].

The specific type of bioreactor that resembles the flow configuration in-

vestigated in this thesis is the rotating wall vessel bioreactor, also know also

as RWV [12]. The RWV bioreactor consists of two concentric cylinders, and

the gap between them is completely filled with water that acts as culture me-

dia. The inner cylinder delivers nutrients and oxygen into the culture media

while removing waste from it.

The cells that will develop to create the tissue of choice are seeded in

a microcarrier that allows the exchange of nutrients with the surroundings.

The scaffold, which is the construct formed by the microcarrier and the cells,

is placed inside of the bioreactor. The external cylinder is rotated, and the

entire fluid is in solid body rotation with the cylinder wall.

The selection of the density of the scaffold is of vital importance for the

viability of the tissue; it has been observed by Gao et al. [13] and in other

various studies [14], [15] and [16] that if the density of the scaffold is bigger

than the density of the fluid (P = 1.05), the scaffold may collide with the
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walls of the bioreactor, which could damage the tissue in the scaffold. In

Gao’s work it was also observed that if the density of the scaffold is smaller

than the density of the fluid, the scaffold has an equilibrium position.

Some of the microcarriers used for tissue engineering are porous. This

is to allow a better exchange of nutrients between the culture media and

the tissue contained by the microcarrier. A complete review on the state of

the art of mathematical modelling of tissue engineering focusing on porous

scaffolds can be seen in the work of O’dea et al. [17] and in the work of

Dalwadi [11].

An interesting experimental example is the study of Yu et al. [18], [19]

on osteoblasts cultivated using a porous microcarrier inside of a high aspect

ratio vessel rotating bioreactor. Scaffolds of different densities are fabricated

by mixing heavier than water and lighter than water polymers. From their

investigation is concluded that using the right kind of scaffold represents a

great advantage against cultivating the tissue in a static environment in terms

of phenotypic expression of the osteoblasts. This is because the nutrients

penetrate better inside of the scaffold in a rotating bioreactor than in a

static one, improving cell differentiation and mineralization.

Porous scaffolds are widely used in tissue engineering due to their mechan-

ical properties [20]. Custom made designed scaffolds can guide cell growth

and improve cell seeding and migration. For a review on porous scaffolds,

read the work of Place et al. [21].

The selection of an scaffold of appropriate density is also stressed by

Lappa [22]. In this work about a disk-like scaffold in a rotating wall perfused

vessel is noted that choosing scaffolds and culture media of similar densities is

needed to minimise shear and disturbances that might affect the development
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of the tissue.

1.3 Experimental studies on a sphere in a ro-

tating flow

AN EXPERIMENTAL STUDY OF FIXED POINTS AND CHAOS 667

The balls are large and heavy and hence Brownian effects, which are important in many sedimentation
processes, are negligible here. The cylinder is rotated at a constant speed such that the Reynolds
number, Re, is typically of order one and hence the flow field is nearly Stokesian. Here Re = ωrcrb

ν
where ω is the angular velocity of the cylinder of radius rc, rb is the radius of the ball and ν is the
kinematic viscosity of the fluid. We have performed other sets of experiments using more viscous fluids
such that the Reynolds number was reduced by a factor of approximately 40 and the results for both
fixed-point and time-dependent motion (including chaos) were qualitatively unchanged, although the
time-scales became proportionally longer. Here we focus on the results obtained with glycerine.

The positions of the balls were monitored as a function of the rotation rate of the cylinder which
was set to prescribed values. Equilibrium points were observed for a wide range of rotation rates with
each ball adopting a fixed location so that it rotated adjacent to the ascending wall. A lubrication layer
existed between the ball and the wall and the gravitational force on the sphere was balanced by viscous
forces in the thin liquid film. A photograph showing a front view of the apparatus, with three balls, is
given in Fig. 1 and an overview of the different states is presented in Fig. 2. Above a critical rotation
rate of the cylinder, the fixed-point behaviour gave way to periodic motion in the Y–Z plane for both a
single and a pair of balls. The onset of time dependence occurred when the cylinder speed just exceeded
the rate required to keep the balls at approximately mid-height of the cylinder and initially took the form
of a small periodic oscillation above and below the mid-plane. At higher speeds, the amplitude of the
oscillation grew and the ball was dragged up past mid-height before falling from the wall, landing further
down and then dragged back up. Eventually, at high cylinder speeds, centrifugal effects dominated and
solid body rotation was achieved so that the balls adhered to the wall at fixed locations.

A more interesting behaviour occurred with three balls where fixed points, periodic motion and
low-dimensional chaos were observed over well-defined ranges of Re. In the time-dependent regime,

FIG. 1. (a) Front view of the apparatus showing the X, Y axes and labels used to identify the spheres S1, S2 and S3 which rotate
at the shown fixed positions. The (b) the fixed-point, (c) cascading and (d) solid body regimes for a single ball are shown in the
schematic below. A lubrication layer exists between the ball and the wall in (b). (Gap not shown.)

Figure 1.3: Different regimes for a heavy sphere in the work by Mullin et

al. [23]. The Reynolds number increases from left to right showing the fixed

point by the wall at the left, assymetrical oscillations at the middle and solid

body motion at the right.

A wide variety of phenomena can be found when studying the dynamics

of a particle inside a rotating drum filled with fluid. An experimental study

conducted in a horizontal rotating cylinder filled with a viscous fluid by

Mullin et al.[23], investigated the motion of a single heavy sphere and the

interaction between two and three spheres. In their work, different dynamical

regimes were identified for a single heavy sphere as the Reynolds number was

increased from rest (Re = 0). The first described regime was a fixed point

next to the wall described by the angle θ the sphere forms with the vertical.

This angle θ increases with the Reynolds number until θ = 90◦, when the

sphere detaches from the wall and starts oscillating, which is the second
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regime described. This happens at Reynolds Re > 1.21. The square of the

amplitude of these oscillations is linear with the Reynolds number, and the

oscillation is periodic, which is consistent with a Hopf bifurcation.

Ashmore et al. [24] studied in detail the fixed point by the wall described

above. When measuring the speed of rotation of the sphere, this differs from

that of the wall such that the ratio between the speed of the sphere and

the speed of the wall is Ωa/(ΦΩ) ≈ 0.3. This implies a lubrication layer

must exist between the sphere and the wall. However, lubrication itself is

not enough to provide the force necessary to keep the sphere away from the

wall. This can be explained by the presence of a cavitation bubble which

forms due to a local pressure drop, below the vapour pressure.

A heavy sphere is also investigated by Tagawa et al. [25]. In this work,

another regime is described. When increasing the Reynolds number, the

sphere goes from the fixed point by the wall, to the cascading regime de-

scribed above, to a suspended regime. In this last regime, the sphere de-

scribes circular orbits.

Yang et al [26] consider the effects of roughness in the interactions of a

heavy sphere with the cylinder wall, considering three roughened spheres and

one smooth sphere. It is found that roughness does not have an effect on the

size of the cavitation bubble that forms between the sphere and the wall or

on the oscillatory regime described above. It was also found that the effect

of roughness is significant only when the cylinder is rotating at speeds lower

than 0.15 m/s. In this regime, the rough spheres suffered constant impacts

with the cylinder wall, while the smooth sphere rotated constantly against

the cylinder wall for all cylinder speeds.

Tooby et al. [27] studied the motion of a sphere immersed in a horizontally
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rotating fluid. In this work, a wide range of density ratios 0.001 < P < 8.7

was covered and the Reynolds number was adjusted to Re = 10−2 to match

that of diatoms in the ocean. Circular orbits were found consistently for all

density ratios.

Studies on the motion of small air bubbles inside a horizontally rotating

cylinder have been performed by Van Nierop et al. [28] and Lohse [29]. In

this investigation, the bubble has an equilibrium position that is far from the

axis of rotation of the cylinder. From this equilibrium position, the lift and

drag coefficients were inferred.

A similar study on drag and lift forces experienced but for a solid sphere

immersed in a horizontally rotating flow can be found in the work of Bluemink

et al [30]. In this work, a wide range of Re is explored by using different

mixtures of glycerol and water, and in all cases the sphere is lighter than the

fluid. The results reported here show that an equilibrium position is found

for the more viscous cases, when the mixture has 60% of glycerol or higher

and 20 < Re < 30.

In another investigation by Bluemink et al. [31] it was found that the

rotation rate of a solid sphere immersed in a horizontally rotating flow can

be higher than the rotation rate of the cylinder itself and the surrounding

fluid for 2 < Re < 50. This may suggest there is an alteration in the vortex

structure of the wake left by the sphere, because it is observed that the effect

increases with the Reynolds number, as the strength of the vortex does.

There are also studies made on heavy cylinders inside of a horizontally

rotating cylindrical drum filled with water with 2500 < Re < 25000 by Sun et

al. [32] and Seddon et al. [33] who found an unexpected phenomena; a heavy

cylinder rotating by the wall of the drum can counter-rotate with respect
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to the wall of the drum. A chain of cavitation bubbles was found in the

lubrication layer between the cylinder and the wall, controlling the direction

of rotation of the cylinder. This shows that the cylinder does not correspond

to a 2 dimensional version of the sphere problem. Moreover, the cavitation

bubble chain is an example of the importance are three-dimensional effects

in this case.

The motion of heavy ellipsoids immersed in a horizontally rotating flow

has been studied by Seddon et al. [34] with focus in the regimes when the

ellipsoid is next to the wall of the drum. The motion of the ellipsoid is highly

dependent on their maximum curvature with respect to the radius curvature

of the cylinder. If the maximum curvature of the ellipsoid is smaller than

the curvature of the cylinder, the motion is consistent, with the axis of the

ellipsoid aligned with the axis of rotation of the drum. No cavitation is

bubble is found in this case. If the curvature of the ellipsoid is the same

as the cylinder, the axis of the ellipsoid is also aligned with the drum for a

wide range of Reynolds numbers. However, if the maximum curvature of the

ellipsoid is larger than the curvature of the wall, the ellipsoid lies tilted by

the wall, which gives rise to a tangential force that causes the ellipsoid to

travel from one end of the drum to the other.

1.4 Theoretical Background

The problem of modelling the dynamics of a sphere immersed in a rotating

viscous flow can be formulated in two different ways. The first one is to

assume the Reynolds is infinitely small and the sphere’s size tends to zero, so

the equations governing the dynamics of the sphere are Stokes equations. The
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second one is to assume that the Reynolds number and the size of the sphere

are small but finite. Under these assumptions, a more complex formulation

arises. Below, these two approaches and the conclusions drawn from them

are reviewed.

1.4.1 A Sphere Immersed in a rotating Stokes Flow

The Stokes approximation corresponds to a reduction of the full Navier-

Stokes equations when considering that the viscous effects are much bigger

than the inertial effects [35]. The homogenous Stokes equations for the ve-

locity of the fluid ~u are:

µ∇2~u−∇p+ = 0, (1.5)

∇ · ~u = 0, (1.6)

where p corresponds to the dynamic pressure field and µ is the dynamic

viscosity which is ρgν. Equation 1.6 is the incompressibility condition

It is relevant to note that the homogenous Stokes equations are: linear,

reversible and time independent (no history forces) [3], which simplifies the

formulation greatly.

In the work of Lee and Ladd [36] a Stokesian calculation of the forces

acting on a point-like particle immersed in a rotating Stokes flow are: the

gravitational forces (weight and buoyancy), the centripetal force and the

viscous forces. The forces acting over a sphere at a distance ~r from the

centre of rotation of the flow that has an angular velocity Ω is given by:
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~F = mB~g +mBΩ2~r = ξ[~u− ~u(~r)], (1.7)

for a sphere at a distance ~r, mB is the buoyancy-corrected mass defined as

mB = 4
3
πa3(ρg − ρs), ξ = 6πνρga is the friction coefficient, ~u is the velocity

of the sphere and ~u(~r) is the velocity of the fluid at distance ~r.

Solving for ~u in polar coordinates it can be found that

ur = us

(
r

D1a
− sin θ

)
(1.8)

and

uθ = us

(
r

D2a
− cos θ

)
, (1.9)

where D1 = g
Ω2a

and D2 = us
Ωa

are dimensionless numbers and us = mBgξ
−1.

An equilibrium position can be found if ur and uθ are equal to zero. Using

Ω = 1 to calculate where this fixed point would be, it was found that the

angle would be θ = 5.7 × 10−4 and r = 20 mm. But this equilibrium was

found to be unstable. A particle placed near it would spiral outwards and

eventually collide with the walls of the container.

1.4.2 Finite Reynolds Calculations

In the work of Magnaudet [37] the forces acting over bubbles and rigid

particles, moving in an unbounded flow, are reviewed for low to moderate

Reynolds numbers. Here is stated that the forces acting on a rigid sphere

are: the buoyancy force, the steady drag, the Basset’s history force [38], [39],

the added mass effect and the lift force by Saffman [40], [41], and extended

by McLaughlin [42].
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However, in the case of a light sphere immersed on a rotating fluid at low

but finite Reynolds, the relevant forces are: a centripetal force, with a cor-

rection due to the added mass effect, the buoyancy force and the drag force,

which is modified. A scheme of all the forces acting on a sphere immersed

in a viscous flow is shown in figure 1.4. Moreover, in the work of Gotoh [43]

the drag force is calculated have two components, an azimuthal component,

as the steady drag and a radial component due to the curvature of the base

flow. The radial component of this force, calculated by Gotoh is a centripetal

force, which is much more significant than the other radial forces that could

be considered in this regime (like the Saffman’s lift force).

FB

FD

FC

⌦

⇢f , µ

(x, y)
er

e✓

g

Figure 1: Schematic of the apparatus, annotated with parameters and with the forces that deter-
mine the equilibrium position of the sphere.

Sa↵man (1965, 1968) for a sphere in a simple shear flow. The lift force on a sphere in a rotating
flow is directed inwards, towards the centre of rotation (Gotoh, 1990). Surprisingly, this is the
opposite direction to the lift force in a simple shear flow of the same vorticity. The physical
explanation for this di↵erence, due to Van Nierop et al. (2007), is that a sphere in a rotating base
flow experiences two lift forces: an outward-directed force similar to the one occurring in simple
shear flows (Sa↵man, 1968), and an inward-directed force, slightly larger in magnitude, resulting
from curvature of the sphere wake.

The force on the sphere due to centrifugal acceleration of the fluid is inward for a buoyant
sphere, and is given by

FC = �3

2
· 4

3
⇡a3⌦2r⇢fer, (7)

where the factor of 3/2 arises from the added mass (Maxey and Riley, 1983). The centrifugal force
occurs at O(Res) (relative to the Stokes drag), and is thus formally a much smaller e↵ect than the
lift force when Res ⌧ 1.

We write the surface integral in the force equilibrium (3) as a sum of these three contributions,

4

3
⇡a3⇢sg + FB + FC + FD = 0. (8)

The azimuthal and radial components of this balance can be written as

cos ✓ = �Res

Rep

⇣
1 + k1Re1/2

s

⌘ r

a
and (9)

sin ✓ =
⌦2r

g
+ k2Re1/2

s

⌦r

VT
=

Re3/2
s

Rep


1

3

p
Res + k2

�
r

a
, (10)

(11)

and, solving for r and ✓, we find the equilibrium position of the sphere to be

x = r cos ✓ = �a
Rep

Res

1 + k1Re1/2
s⇣

1 + k1Re1/2
s

⌘2

+ Res

⇣
k2 + 1

3Re1/2
s

⌘2 , (12)

y = r sin ✓ = a
Rep

Re1/2
s

1
3Re1/2

s + k2⇣
1 + k1Re1/2

s

⌘2

+ Res

⇣
k2 + 1

3Re1/2
s

⌘2 . (13)

2

Figure 1.4: Schematics of the forces that a sphere experiences when immersed

in a rotating fluid by Chris Johnson [44]. FB is the sum of weight and

buoyancy, FC is the centripetal force and FD is the drag force.

In the work of Van Nierop et al. [28] a physical argument is made to

explain this difference. For low-Re the lift force has two components. The
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Drag and lift forces on bubbles in a rotating flow 445

w

Figure 3. Sketch of the lift mechanism in the low-Re regime. There are two opposite
contributions FL1 and FL2 to the lift force. For a detailed description of the mechanism
see the end of § 2.3.
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Figure 4. Theoretical bubble trajectories for different values of Reω and CL: (a) spiral with
Reω = 0.1, (b) spiral with Reω = 1, (c) spiral with Reω = 10, (d) cycloid with Reω = 50 and
(e) non-spiral with Reω = 50. In (a)–(d) CL = 0.5, while in (e) CL = 0.9; Rb = 0.5 mm in all
cases. The bubble was released from (1, 0) each time, both x and y axes are in mm.

rotation flow was achieved by Gotoh (1990) under asymptotic conditions identical to
those considered by Saffman (1965). His result indicates that the centripetal effect is
dominant, which implies that the lift coefficient is negative if the force is expressed
using the inertial scaling of (2.1). The prefactor of this O((ReSr)1/2) centripetal force is
about six times smaller than that of the Saffman shear-induced lift force, a reduction
which may be interpreted as a direct consequence of the competition between the
two opposite contributions FL1 and FL2. The most important conclusion we can
draw from the above considerations is that the mechanisms responsible for the shear-
induced lift force are deeply different in the high- and low-Re regime. In the particular
case of a fixed sphere embedded in a solid-body rotation flow, we expect this force to
change from centrifugal to centripetal as the Reynolds number is decreased.

2.4. Trajectories and equilibrium bubble position

We now show typical bubble trajectories as they follow from the dynamical equ-
ation (2.1) with assumed drag and lift coefficients. Figure 4 shows the trajectory of the
bubble for different values of Reω = (2Rb)2ω/ν and CL. To calculate these theoretical

Figure 1.5: Schematics of the lift force induced by the wake on a sphere

immersed in a rotating flow by Van Nierop et al. [28], FL1 is analogous to

Saffman’s lift and FL2 is the radial component of the force induced by the

wake Fω

centrifugal component FL1, analogous to Saffman’s lift [41] , is due to the

linear increase of the velocity of the base flow with the radius. The velocity

difference between the base flow and the defect speed in the wake, is greater

on the outer side of the wake than in the inner side. The consequence of this

effect is the centrifugal lift force FL1 shown in figure 1.5.

The centripetal component is due to the curvature of the wake, that

follows the base flow. An infinitesimal slice of the wake results in a force δFω,

perpendicular to the plane of the slice and pointing downstream as shown in

figure 1.5. The total force induced by this effect FΩ =
∫
δFω results on a drag

force which azimuthal contribution corresponds to the centripetal force FL2.

The work of Gotoh [43], that consist on a complete theoretical calculation of

the transverse force acting on a sphere fixed in a rotating flow, indicates the

centripetal component of the aforementioned lift is the dominant component.
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It is important to note that up to the development of the theoretical model

utilised in this thesis, no theoretical model was available to compare the

experimental results obtained in this thesis work.

Numerical studies have been done on this flow configuration by Mukun-

dakrishnan et al. [45]. They performed direct numerical simulations (DNS)

for the complete Navier-Stokes equation for an incompressible fluid, consid-

ering a horizontal rotating cylinder which is finite for 1 < Re < 60. They

reported that, when running their simulations for Re = 3, Rep = 56 and

P = 0.8, a light particle has a stable fixed point.

1.5 Thesis Structure

This thesis is structured as follows:

In chapter §2 the experimental apparatus used to investigate the motion

of a positively buoyant sphere immersed in a viscous flow is presented. The

calibration of the motor used to generate the rotation is shown, the spheres

used in the investigation are described and the data acquisition and process-

ing is outlined. The measurements for the terminal velocity of the spheres

are also presented.

The experimental measurements of the equilibrium position of the sphere

and its dependance on the size of the spheres are presented in §3. A theoret-

ical model for the equilibrium position is developed and compared with the

experimental data. The stability of the fixed points and their dependance on

the radius of the sphere is discussed.

The experimental measurements of the limit cycle that arise from the

instability of the equilibrium position are presented in chapter §4. This
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limit cycle has the form of periodic circular orbits, and the dependance of

the orbital radius is studied as a function of the Reynolds number Re. In

this chapter another limit cycle is described: the oscillatory motion that the

sphere undergoes when it is close to the wall of the cylinder.

In chapter §5 the behaviour of a hollow porous sphere, custom made for

this investigation, is presented. The equilibrium position that this sphere

finds and the orbital radius of the oscillations that arise from its instability

are presented as a function of the Reynolds number Re. The instability of a

hollow porous sphere oscillating by the wall of the cylinder is also presented.

In chapter §6 the study on equilibrium positions of spheres of different

roughness is presented. The equilibrium positions of these rough spheres are

compared with the equilibrium position of a smooth control sphere. The

robustness of the fixed points is also discussed in this chapter.

Finally, in chapter §7 a summary of the work presented on this thesis is

shown. Conclusions are drawn from the experimental results presented in

this document and future experimental and theoretical work is suggested.
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Chapter 2

Experimental Apparatus and

Techniques

The experimental apparatus used to obtain a rotating viscous flow is de-

scribed in this chapter. A complete description of the experimental parame-

ters and data acquisition techniques are also outlined in this chapter.

In section §2.1 the experimental apparatus, used to obtain the rotating

fluid, is described. The spheres used for this investigation are presented

in section §2.2. Also, the fabrication process of the 3D printed spheres is

described. In section §2.3 the properties of the working fluid are presented,

and the experimental procedure to get rid of any air trapped in the fluid is

described.

The data acquisition procedure, consisting of image acquisition, is out-

lined in section §2.4. In this section there is also a description of the image

analysis procedure used to obtained the data from the images.

Finally in section §2.5 the measurements of the terminal velocity of the

spheres used in this experiment are presented. The measured values are
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corrected for wall effects and displayed in a table by the end of the chapter.

2.1 Experimental apparatus

The experimental apparatus comprised a precision bored right glass cylinder

of length 225.000±0.005 mm, inner diameter 120.000±0.005 mm and a wall

thickness of 5.200 ± 0.005 mm with ground ends custom made by Schott-

Duram. A machined perspex cap was inserted in each end of the cylinder

which were held by two machined aluminium rings and sealed by two o-

rings. One cap contained a ball race and was positioned such that the surface

cap was perpendicular to the inner wall of the cylinder. The cylinder was

sealed using eight screws which held the aluminium rings together. With the

bottom cap in place, the cylinder was filled with glycerol and a single sphere

was placed inside it. The remaining cap, which had a ball race in its centre,

was then placed at the other end of the cylinder and sealed using further

aluminium rings and screws.

The cylinder was mounted horizontally between two bearings which en-

gaged into the ball races such that the central axis of the cylinder was orthog-

onal to gravity. The apparatus was supported on a machined steel platform

with three adjustable legs which were used to level the system.

The cylinder was rotated using a DC motor with feedback control (EW

4239 Servo Drive) via a 10 : 1 gear box which was connected to the cylin-

der by a smooth belt. The speed of rotation was controlled by an external

power supply which provided a voltage between 0 − 10 Volts connected to

a commercial servo control and the rotation frequency was measured using

an optical shaft encoder. The optical shaft encoder produced 500 pulses per
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Figure 2.1: Experimental setup used to obtain a rotating viscous fluid: a glass

cylinder completely filled with glycerol was placed with its axis perpendicular

to gravity, a positively buoyant sphere was placed inside and the cylinder

was rotated using a motor and a gear box. The frequency of rotation of the

cylinder was measured using an optical shaft encoder.
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revolution and was attached to the bearing shaft of the motor.

The frequency of the motor was measured using the readings of an uni-

versal counter which averaged every 100 measurements of the shaft encoder,

and monitored by an oscilloscope to ensure the output signal corresponded

to a square signal and that the shaft encoder was working correctly. This

method was used to calibrate the rotation speed of the cylinder as a function

of voltage applied to the motor, as shown in figure 2.2. Here, the angular

velocity was proportional to the frequency measured by the universal counter

fs = 500fmotor and given the ratio of the gear box fcylinder = 1
10
fmotor. We

find Ω = 2πfcylinder with an accuracy of ±0.01%.

The Reynolds number considered in this system was defined as:

Re =
aΩ

ν
, (2.1)

where a corresponded to the radius of the sphere, Ω to the angular velocity

of the cylinder, and ν to the viscosity of the fluid.

The maximum angular velocity our motor could attain was Ω ≈ 25 rad/s

meaning the maximum Reynolds number was Re ≈ 2, but typical values

used in the experiment were between 0.05 < Re < 1. A schematic diagram

of the experimental apparatus and the data acquisition instruments can be

seen in figure 2.3.

Accurate levelling was essential, otherwise the effects of buoyancy would

make the sphere slowly drift along the cylinder due to the buoyancy over

long time scales. This typically took periods of hours and hence careful

checks on the levelling were required using a precision engineer ’s level which

minimised this effect and the sphere would remain at a fixed position over

24 hours. Levelling was first performed on the platform and then on the
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Figure 2.2: The angular velocity Ω of the cylinder plotted as a function of the

input voltage, measured by an optical shaft encoder which sent 500 pulses per

rotation to an universal counter. The universal counter measured a frequency

fs = 500fmotor and given the ratio of the gear box fcylinder = 1
10
fmotor finally

Ω = 2πfmotor

cylinder itself. Any small differences between the two sets of readings were

accounted for using the adjustable feet. The cylinder with the sphere inside

of it was next imposed a high acceleration reaching quickly a high rotation

speed which drove the sphere to the centre of the cylinder. A pen mark was

drawn over the central diameter of the cylinder marking its centre in the

horizontal direction so the position of the ball could be checked compared

to the centre of the cylinder. The cylinder was left to rotate for an hour,
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which was enough time to measure small drifts of the sphere indicating an

inclination of the rotational axis of the cylinder and was corrected for by

levelling the cylinder accordingly.

All our experiments were performed in an air-conditioned laboratory in

which the temperature was maintained at 20±0.5◦ C. A mercury thermome-

ter placed next to the experiment monitored the temperature to ensure that

it kept stable through out the entire process of the study which is of vital

importance given that the kinematic viscosity of the glycerol changes approx-

imately 9% within a temperature variation 1circ.

2.2 Spheres

A variety of commercial and custom-made precision spheres were used on

this investigation. Polypropylene spheres of density ρ = 0.87 ± 0.2 g/cm3

and radii a = 3.15 ± 0005 mm, a = 4.76 ± 0.005 mm, a = 6.32 ± 0.005,

a = 7.05 ± 0.005 mm, a = 7.90 ± 0.005 mm and a = 9.50 ± 0.005 mm

were used, all from Dejay distribution Ltd UK. The basic diameter tolerance

given by the manufacturers for this spheres is of 0.02 mm. An image of this

spheres is shown in section a) of figure 2.4. The manufacturing process for

the polypropylene spheres meant that they could contain small air pockets,

to check for the presence of bubbles, we cut open spheres of all the available

sizes and only found bubbles in some of the spheres of radii a > 7 mm, and

the bubbles found were never bigger than the 5% of the total volume.

In addition, several 3D printed spheres were produced. The 3D printing

technique allowed us to create spheres of any size required for the experiment.

This spheres were made of Stratasys ABSplus plastic which has a density of
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Figure 2.3: Schematic diagram of the experimental apparatus, a glass cylin-

der completely filled with glycerol was placed over an adjustable platform.

The cylinder was driven by a motor connected to a gear box and the fre-

quency of the rotation was measured by an optical shaft encoder attached to

the bearing end of the motor. The motor was driven by a feedback controlled

supply which was connected to a power supply. The back lid of the cylinder

was painted black or white and the front lid was transparent. A camera con-

trolled by a computer acquired images from the front of the cylinder. The

acquisition frequency of the camera was set using a wave generator. An os-

cilloscope monitored the output of he shaft encoder and the wave generator.
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a)

b)

c)

Figure 2.4: a) polypropylene spheres of the different sizes using, here, the

radii ranged from 9.50 mm to 3.15 mm . b) Spheres with different roughness

made by the 3D printing technique, the inner radius for the three of them

was 6 mm and the outer radius are 8, 7 and 6.5 mm respectively. c) Hollow

porous sphere made in our 3D printer of 8 mm of radius.

ρplastic = 1.04 g/cm3. A plastic thread of 1.8 mm of diameter was injected

through a heated nozzle of 0.35 mm, the heat partially melts the plastic and it

becomes flexible enough to be deposited in lines creating a layer of material.

When a layer was finished, the 3D printer displaces the printing surface and
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prints another layer on top of the previous one. The displacement between

layers can be adjusted between 0.18− 0.25 mm.

As a consequence of the manufacturing process, very small air bubbles,

with radius of the order of the separation between layers, could be randomly

distributed inside of the 3D printed spheres

To ensure a consistent density through all the experiments performed

with 3D printed spheres, the spheres were saturated with fluid removing all

the air trapped inside of them as a result of their fabrication. To do this,

the sphere was weighed down inside of a beaker filled with glycerol and then

the air trapped was removed with a vacuum pump before placing it inside

the cylinder. The measured density of the spheres when completely satu-

rated with glycerol was ρs = 1.17 g/cm3. This process delivered completely

isotropic spheres.

3D printing also allowed to fabricate spheres specifically designed to study

the effect of roughness in this system. Spheres with 10 uniformly distributed

hemispherical bumps on the surface were produced in this way. The spheres

were characterised by their inner and outer radius; the inner radius was

always amin = 6 mm and the outer radii were amax = 6.5 mm, amax = 7mm

and amax = 8 mm. We also made a sphere of radius a = 7mm as a control

sphere without bumps, to compare against any results obtained with the

rough spheres. This spheres are shown in the section b) of figure 2.4.

Given that one of the motivations of this work was the resemblance of this

geometry to tissue growth engineering, a hollow sphere of a radius of a = 8

mm with holes in its surface was fabricated using the 3D printing technique

as shown in section c) of figure 2.4. This sphere resembles the porosity of

a biological scaffold which interchanges nutrients with the surrounding fluid
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Figure 2.5: Suspended level viscometer used to measured the viscosity of the

glycerol at lab temperature T = 20± 0.5◦ C

[46].

The porous sphere had a typical pore size of 2 mm and a weight of 0.436

g. The density of this sphere when dry was 0.2033 g/cm3, but it needs to be

taken into account that when this sphere is immersed in fluid, there is also

fluid inside.

Light pen marks were applied, marking two perimeters of each sphere

in such a way that the two lines would cross in two diametrically opposed

points. This lines allowed us to follow the rotation of the sphere over time.

This pen marks did not affect the dynamics of the sphere.
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2.3 Working Fluid

The working fluid in the experiment was glycerol supplied by Sigma-Aldrich

chemicals. The density of the fluid was verified using an accurate digital

balance to measure the weight of a known volume and hence confirm the

density of the glycerol. The density obtained from this measurement was

ρg = 1.261 g/cm3 at 20 ◦.

The viscosity of the glycerol was measured using a suspended level (Ubbe-

lohde) viscometer at a temperature of T = 20 ± 0.5◦ C and had a value of

ν = 1100.9 mm/s2 with an accuracy given by the manufacturer of 0.28 %.

The viscometer is shown in figure 2.5. The glycerol was kept in sealed

containers at all times to avoid water absorption from the environment.

A practical difficulty which was encountered in the experiment was that

air bubbles became trapped in the fluid during the filling process. Dissolved

air could also be released by the glycerol. The method we developed to deal

with this issue was to rotate the cylinder at high speeds, this drove the air

bubbles to the central axis of the cylinder where they merged forming bigger

bubbles. These bubbles were then easily removed using two small sealable

holes in one of the lids of the cylinder, through one of the holes we injected

glycerol, using a syringe, that had been previously degassed using a vacuum

pump, in the cylinder which pushed the bubbles out through the other hole.
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2.4 Data Acquisition

2.4.1 Images

To measure the position of the spheres, images were taken from the front of

the cylinder using a high speed camera (pco.1200 hs) with a spatial resolu-

tion of 1280x1024 pixels. To avoid undesired shadowing, the cylinder was

illuminated from both sides using two incandescent light sources.

The back lid of the cylinder was painted white or black, depending on

the colour of the sphere to be investigated. A white screen was preferred

when green and red spheres were used, because it ensured a good contrast

between the background and the sphere, while a black screen was used when

measuring white spheres.

Images were captured with the camera connected to a computer which

has a dedicated software for image acquisition. The shutter of the camera was

controlled using a square wave generator, the width of the generated pulse

determined the shutter speed of the camera while the period of the wave

determined the frame rate of the camera. There was a compromise between

spatial resolution and the range of movement of the sphere that could be

sampled depending on our choice of camera lenses. The chosen resolution

of the camera was approximately 10 pix/mm using lenses of focal length 50

mm.

Matlab scripts were developed to track the centre of the spheres and

determine its position in consecutive images using the greyscale in the images.

In this way the position of the sphere was tracked and it was possible to

reconstruct the movement of the sphere over the time series acquired.

The position of the pen marks over the sphere were tracked along an image
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sequence recorded at a fixed Reynolds number. The difference in position

for a given time step results in a measurement of the angular speed of the

sphere.

2.5 Terminal velocity

The terminal velocity corresponds to the steady velocity that a rising object

reaches when it is released in an infinite container full of fluid and the forces

acting on the object: buoyancy, weight and drag, balance. Leaving the object

to rise with zero acceleration.

The terminal velocity was an important parameter to enable a comparison

between the theory and experiment in this work and it is [47]:

VT =
2ga2(ρg − ρs)

9ρgν
, (2.2)

this expression is valid for rigid ideal spheres in an infinite container. Con-

sidering that this study also comprises not only real spheres, but also rough

spheres and a porous sphere, this parameter needed to be measured experi-

mentally, a comparison with the theoretical value is provided at the end of

this section.

The sphere was placed in a trap at the bottom of a cylindrical beaker of

D = 280 mm of diameter and H = 425 mm of height. The trap consisted of a

small beaker glued to the bottom of the big one using double sided tape and

a sliding aluminium lid which was attached to a piece of string that could

be pulled from the outside to release the sphere. The beaker was filled with

glycerol to a depth of 280 mm. As a consequence of the filling process, air

bubbles became trapped in the fluid. To remove them, the experiment was
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Figure 2.6: Position of a sphere of a = 7.90 mm plotted as a function of time

and a linear fit that allows to estimate the terminal velocity.
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left to rest for 2 days so all the bubbles floated to the surface. A lid was

placed on the beaker during this process to avoid thinning of the fluid due

to water from the atmosphere getting dissolved in the glycerol.

A single sphere was released from the trap and its trajectory was recorded

by the camera at 50 fps. An exception was made for the porous sphere, which

trajectory was recorded at 10 fps because the rising speed was much slower

than in the solid sphere cases. An example of the position of the sphere

plotted as a function of time is shown in figure 2.6. Here the vertical position

is measures from the top of the frames, which is why it decreases with time

when the sphere is rising.

The beaker had a circular cross section, which distorted the images in the

horizontal direction. Therefore, the conversion factor from pixels to mm was

calculated by measuring the diameter of the sphere in the vertical direction

in the recorded images.

The position of the sphere at each time of the image sequence was deter-

mined by a dedicated Matlab script. In figure 2.6 the time evolution of the

vertical coordinate of a sphere of a = 7.9 mm is shown. A linear fit of allows

to estimate the experimental terminal velocity for each sphere and the error

of the measurement was given by the error on the fit.

Because the theoretical terminal velocity VT is calculated for a sphere

moving inside an infinite container and the experiment was performed in a

finite beaker, is necessary to take into account the effect of the walls on this

measurement, the effect of the finite length of the beaker is considered to be

negligible. The aspect ratio between the biggest sphere used in this study and

the beaker was a
D/2

= 0.0679 and the Reynolds number was Rep = aV
ν
< 0.01.

In the work of Fidleris and Whitmore [48], wall effects on the terminal ve-
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locity for falling spheres for an extensive range of aspect ratios and Reynolds

number were studied. They compared the different corrections available on

the literature for the measured velocities, with the velocity of particles falling

in an infinite fluid and conclude that for different aspect ratios and Reynolds

number, different corrections need to be taken into account. Particularly, for

the Stokes’-flow region (Re < 0.2) and small aspect ratio (0 < 2a/D < 0.4)

the best correction factor was the one given by Francis [49]:

v∞ = v

(
1− (2a/D)

1− 0.475(2a/D)

)−4

, (2.3)

where v corresponds to the measured velocity of a container of diameter D

and v∞ corresponds to the terminal velocity, for an infinite container.

In table 2.1 the measured terminal velocities are presented for all the

spheres to be considered in this study. The corrected speeds due to the

effects of the walls using the correction factor of equation 2.3 are displayed

as VTcorrected, the error shown here was propagated from the error in VT ,

which is not displayed. The theoretical values for the terminal velocity are

also shown. Nevertheless, the values to consider in this study are VTcorrected.

The experimental values of the terminal velocity for the rough spheres

show that roughness has an effect on the terminal velocity, decreasing it

when increasing the roughness. This can be explained due to the increase

drag that a rougher sphere experience in comparison with a smoother one.

The theoretical value for the porous sphere was calculated using its weight

when dry Wd = 0.436 g and the known density of the plastic used by the 3D

printer to calculate the volume fraction used by plastic and glycerol, doing

so an effective density was calculated to be ρporous = 1.244 g/cm3.

With this values of the terminal velocity, Rep goes from 0.0512 for the
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Polypropylene spheres radius [mm] VT [m/s] VTcorrected [m/s] VTtheory

4.78 0.0180 0.0187± 0.00005 0.0140

6.33 0.0351 0.0387± 0.00005 0.0246

7.90 0.0446 0.0474± 0.00005 0.0383

9.50 0.0630 0.0678± 0.00005 0.0554

Rough spheres outer radius [mm]

6.5 0.0200 0.0221pm0.00005 0.0055

7.0 0.0189 0.0211± 0.00007 0.0060

8.0 0.0177 0.02006± 0.00001 0.0069

Porous sphere 8 mm

8 0.0055 0.0062± 0.00008 0.0016

Table 2.1: VT correspond to the terminal velocities for all the spheres under

this study, VTcorrected correspond to the corrected terminal velocities consid-

ering wall effects and VTcorrected to the terminal velocity given by the theory.
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porous sphere, to 0.384 for the biggest polypropylene sphere.
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Chapter 3

Fixed points

In this chapter the positions of equilibrium which arise when a positively

buoyant sphere is immersed in a cylinder where the axis of rotation is hori-

zontal are examined.

In section §3.1 a theoretical model is developed. In this model, the forces

acting on the sphere are considered and the positions of equilibrium are

calculated.

The experimental results for the average position of spheres of different

radii as a function of the Reynolds number are reported in section §3.2.

In section §3.3 the theoretical predictions given by the model presented in

section §3.1 are compared with the experimental results presented in section

§3.2.

In section §3.4 the stability of the fixed points and their dependance on

the radius of the spheres is discussed.
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Figure 3.1: Schematic diagram of the forces acting on a light sphere immerse

in a horizontally rotating viscous flow, r̂ and θ̂ depict the radial coordinate

system used to describe the forces, Ω corresponds to the angular velocity of

the fluid, g to the acceleration of gravity, FB corresponds to the sum of the

buoyancy and the weight of the sphere, FC to the centripetal force and FD to

the viscous drag which is decomposed in its radial and azimuthal components

FDr and FDθ
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3.1 Theory

The following theoretical model was developed by Chris Johnson [44]. The

system considered is an infinitely long cylinder of radius R filled with a fluid

of viscosity ν and density ρg, which is rotating with the axis of rotation

orthogonal to gravity. A positively buoyant sphere of radius a and density

ρs is immersed in the fluid. A schematic diagram of all the forces involved is

shown in figure 3.1.

A polar coordinate system is used, which is represented here by the unit

vectors r̂ and θ̂. The angular velocity of the fluid in this coordinate system

is given by ~Ω = Ω θ̂ and the acceleration of gravity is ~g = −g(θ̂ cos θ +

r̂ sin θ). The cartesian coordinates x and y are described in terms of the

radial and azimuthal coordinates are x = r cos θ and y = r sin θ. From

the aforementioned dimensional parameters we define three non dimensional

quantities: the shear Reynolds number Re

Re =
a2Ω

ν
, (3.1)

and the particle Reynolds number

Rep =
aVT
ν
, (3.2)

where

VT =
2ga2(ρg − ρs)

9ρgν
, (3.3)

is the terminal velocity of a positively buoyant sphere rising in a viscous fluid.
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3.1.1 Balance of Forces

The forces acting over the sphere are shown in the schematic diagram pre-

sented in figure 3.1. The vertical forces, buoyancy and weight of the sphere

can be written in the form:

~FB = ~g(ρg − ρs)
4

3
πa3, (3.4)

the centripetal force, which acts on the radial direction, and

~FC = −3

2
· 4

3
πa3Ω2rρgr̂, (3.5)

where the factor 3/2 arises from the added mass of Maxey and Riley [50].

At small Reynolds number (Rep � Re1/2 � 1), the leading contribution

of inertia is an adjustment to the Stokes drag calculated by Gotoh [43] as:

~FD = 6πνρgarΩ[(1− k1Re
1/2)θ̂ − k2Re

1/2r̂] +O(Re), (3.6)

where

k1 = 3

√
2(19 + 9

√
3)

280
' 0.524, (3.7)

and

k2 = 3

√
2(19− 9

√
3)

280
' 0.0517. (3.8)

are the correction factors calculated by Gotoh [43] due to the curvature of

the base flow, such that ~FD also contains azimuthal and radial components,

FDθ and FDr which are drawn in solid lines in figure 3.1. This corrections

result in an increased drag and the radial component corresponds to a lift

force, that points towards the centre of rotation.
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The sphere will be in equilibrium if the balance of the azimuthal and

radial components of the forces is equal to 0. This means that the azimuthal

component of the drag force FDθ must balance the azimuthal component of

the buoyancy force FB ·θ̂ and the radial component of the drag force FDr with

the radial component of the buoyancy FB · êr, must balance the centripetal

force FC This provides the condition for an equilibrium position that can be

written in cartesian coordinates as:

x = r cos θ = −aRep
Re

1 + k1Re
1/2

(1 + k1Re1/2)2 +Re(k2 + 1
3
Re1/2)2

(3.9)

and

y = r sin θ = a
Rep
Re1/2

k2 + 1
3
Re1/2

(1 + k1Re1/2)2 +Re(k2 + 1
3
Re1/2)2

. (3.10)

.

The predictions of the model will be compared with the experimental

results later in this chapter.

3.2 Experimental results

3.2.1 Average position

For spheres of different radii, an image sequence of 120 frames was recorded,

and the position of the centre of the sphere was measured for each image,

then an average of this positions was calculated as a function of the Reynolds

number.

A single sphere was placed inside of the cylinder and the rotation velocity

53



was set to a maximum of approximately 20 rad/s. The speed of rotation was

decreased by small steps (∆Ω ≈ 1 rad/s) and a sequence was recorded.

Two time scales were considered when taking into account how long it

took to the fluid to achieve solid body rotation after the rotational velocity

has been modified. The work of Greenspan and Howard [51], describes that

the viscous diffusion time can be calculated for our system as

T1 =
R2

ν
' 3.2 sec, (3.11)

and the spin up time can be calculated as:

T2 =

√
R2

νΩspin

' 1.8 sec. (3.12)

In both casesR corresponds to the radius of the cylinder, ν to the viscosity

of the glycerol and Ωspin = 1 rad/s to the change in angular velocity which

has been imposed.

To ensure the fluid inside the cylinder was set in solid body rotation, a

time much longer than T1 and T2 was allowed for all perturbations to settle

between the measurements. The time between measurements was monitored

by a stopwatch and the experiment was left for at least 2 minutes between

experiments.

An image sequence was recorded at 20 frames per second with the fast

camera for a fixed rotation velocity to obtain the average position of the

sphere at a given Reynolds number. Then the rotation velocity was reduced

in small steps, by reducing the voltage in the power supply controlling the

motor, until the desired velocity was reached and the system was let to settle

before recording the next image sequence.
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(a) a = 4.75 mm
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(b) a = 6.33 mm
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(c) a = 7.05 mm
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(d) a = 7.90 mm

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Re

X eq
/a

 

 

(e) a = 9.05 mm
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Figure 3.2: Average position of polypropylene spheres of radii a = 9.05, 7.90,

7.05, 6.33, 4.78 mm. The error bars in this plot correspond to the standard

deviation from the average position
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In figure 3.2 the average position Xeq, measured from the central axis of

the cylinder is shown plotted as a function of the Reynolds number for all

the polypropylene spheres under this study.

The average position is normalised by the radius of the corresponding

sphere.The error bars in this plot correspond to the standard deviation from

this average and it can be noticed that the standard deviation grows with

decreasing Reynolds number for all of the studied spheres. This is not due to

a larger experimental error, instead, it indicates where the sphere began to

oscillate such that its centre moved in a circular orbit below a threshold Rec.

Hence the size of the error bar corresponds to the diameter of the circular

orbit.

In figure 3.2 (a) the normalised average position of a sphere of radius

a = 4.75 mm is shown plotted against the Reynolds number in magenta,

This was the smallest sphere considered in this study and as it can be seen

from the size of the error bars, it was also the most unstable.

In figure 3.2 (b) the normalised average position of a sphere of radius

a = 6.33 mm is shown plotted against the Reynolds number in green. In

this case, there is a clearer threshold from where the sphere starts oscillation

when looking at the error bars.

In figure 3.2 (c) the normalised average position of a sphere of radius

a = 7.05 mm is shown plotted against the Reynolds number in black. It

can be observed that the range when the error bars are increases in size

considerably in comparison with the previous cases.

In figure 3.2 (d) the normalised average position of a sphere of radius

a = 7.90 mm is plotted against the Reynolds number shown in red. This case

is very similar to the one in section (c) due to the similarity in the radius of
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the spheres considered.

In figure 3.2 (e) the normalised average position of a sphere of radius

a = 9.05 mm is plotted against the Reynolds number shown in blue. this is

the biggest sphere in this study, it can be observed how the range of small

error bars, indicating that the sphere is on a fixed point, is much larger than

in previous cases.

In figure 3.2 (f) the normalised average position of all spheres is plotted

against the Reynolds number, from this plot it can be seen that the average

position depends on the size of the sphere. This figure also suggest that the

functional dependence of the average position on the Reynolds number has

to be the same for all the spheres under this study.

In the next section a comparison between the model and the experimental

data presented here is discussed.
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3.3 Comparison with the Model
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Figure 3.3: (a) Average position of the spheres Xeq, the solid line shows the

theoretical model for each sphere. (b) Average position of the sphere nor-

malised by aRep , this normalisation produced a collapse of the experimental

data. The black solid line shows the theoretical model

In order to compare the experimental results with the theoretical model for

the equilibrium position Xeq introduced previously in this chapter, the theo-

retical curve given by 3.9 is plotted together with the measured experimental
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data in figure 3.3. In section (a) of figure 3.3 the average position non di-

mensionalized by the radius of the sphere is shown. In section (b) of figure

3.3, the collapse of the data when non dimensionalized by aRep is shown.

The normalisation chosen for section (b) was chosen considering that Rep is

proportional to Xeq as shown in equation 3.9. This normalisations results in

a good collapse of the data.

In both cases the solid lines corresponds to the theoretical curve, illustrat-

ing that the agreement of the model with the data is very good, particularly

for small Reynolds number. For Re > 0.5 the model deviates slightly from

the experimental data, this is because the model was calculated for the limit

of very low Reynolds.

A displacement in the vertical direction, above the horizontal mid-plane

of the cylinder, is also predicted by the model as stated in equation 3.10, but

this displacements were below the experimental resolution of this setup.

Moreover, using the parameters of our experiment in the model, it can be

seen how these displacements are very small compared with the displacements

in the horizontal direction. The model predicts a maximum displacement in

the y direction of Yeq = 0.68 mm for the biggest sphere in this study, of

radius a = 9.50 mm, considering Re = 0.1 while for the same set of values

the theory predicts a displacement in the x direction of Xeq = 36.83 mm.

3.4 Stability Discussion

As mentioned in the previous section, below a certain Re, the spheres devel-

oped a circular orbit about a point which is eccentric to the cylinder axis.

The critical equilibrium position Xc and Re for the onset were measured,
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defining as the critical point the Reynolds number, Rec, where the standard

deviation of the position of the sphere was bigger than 5% the radius of the

sphere and Xc the correspondent equilibrium position. In figure 3.4 a plot

of Xc as a function of the size of the sphere is shown.
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Figure 3.4: Critical equilibrium position plotted against the radius of the

sphere; the stability range of the fixed point behaviour depends on the size

of the sphere

Here it can be seen that the eccentric fixed point range is bigger for larger

spheres and smaller for smaller spheres. This result connects the predictions

of the model presented here with the Stokesian calculations of Lee and Ladd

[36] for a point like particle. In the calculations made by Lee and Ladd the
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only predicted fixed point is in the centre of the cylinder. If the stability

range of the fixed points grows monotonically with the size of the sphere,

then it suggest that for an infinitely small sphere, one could only expect a

single fixed point at the centre of the cylinder.

3.5 Summary

The results in this chapter show that, as predicted by the model, the spheres

have a range of stable fixed points for all the sizes of spheres presented here.

The experimental result also indicate that the fixed points become unstable

below a certain critical Reynolds Rec.

The experimental results show a remarkable agreement with the presented

model, shedding a light in which are the relevant forces that describe this

system; a viscous drag FD ,a centripetal force FC and the buoyancy force FB.

This forces are enough to describe the eccentric equilibrium position and the

centre of the oscillations after the sphere becomes unstable.

It was also found that the stability range of the fixed points depends

on the size of the spheres when its density is kept constant. Our results

suggest that the stability range grows monotonically to the size of the sphere.

Connecting the existent Stokesian calculations, for a point like particle and

infinitely small Reynolds number, where an off centre equilibrium position is

not found.

The next chapter moves on to discuss the circular orbits mentioned in

this chapter in further detail.
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Chapter 4

Orbits

In this chapter, the experimental results regarding the regime in which the

sphere orbits about a fixed point are presented. In section §4.1 the trajecto-

ries of a sphere which describes circular orbits are discussed. Circular orbits

were found when decreasing the Reynolds number below the values at which

the eccentric fixed points presented in chapter 3 were found.

The growth rate of the oscillations and their onset are discussed in section

§4.1.1. In section §4.2 the ratio between the angular velocity of the sphere

and that of the cylinder is shown.

In section §4.3 the results of an investigation into the development of

oscillations from fixed points close to the cylinder walls are presented. These

oscillations appeared when the Reynolds number was increased to Re ≈ 0.01.

Below Re ≈ 0.01 the sphere sat at a stable fixed point adjacent to the

cylinder wall. The fixed point was located at approximately the mid-plane

of the cylinder. The onset of the oscillations by the wall, are compared with

those found for the onset of oscillatory motion in the centre of the cylinder

in section §4.1.
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4.1 Circular Orbits
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Figure 4.1: Schematic diagram of the dynamical regimes under study. Re

decreases from left to right. At the left, the sphere sits in the centre of the

cylinder. In the middle the sphere settles at an off-centre fixed point. At the

right, the sphere describes circular orbits about the original fixed point

As mentioned in the previous chapter, below a critical Reynolds number

Rec the sphere began to move in a limit cycle, with the form of circular orbits

about its eccentric equilibrium position as shown in figure 4.1

To study these orbits, the position of the sphere was measured using the

fast camera. Image sequences were acquired at a rate of 50 fps and each

sequence comprised 500 frames. This was the maximum amount of frames

our camera could record considering the size of the images needed to capture

the entire range of movement.

The position of the centre of the sphere was measured for each image in

the sequence, so the trajectory of the sphere tracked over time. This is shown

in section a) of figure 4.2. Here, it can be seen the orbit described by a sphere

of radius a = 7.9 mm when Re = 0.298. The circles correspond to the the

position of the centre of the sphere, and the centre of the orbit is marked with
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a black x. The solid line represents a circular fit to the experimental data

obtained by least square minimisation. The radius of the orbit was obtained

from the fit.

In section b) of figure 4.2 several orbits are shown. Each orbit was ob-

tained for a different Reynolds number.

Considering that the Reynolds number is such that 0.1 < Re < 2, the

smallest orbits, correspond to the dynamical motion of the sphere at higher

Reynolds numbers. The centre of these orbits is closer to the central axis

of the cylinder. The bigger orbits, on the other hand, correspond to motion

at low Reynolds numbers. The centres of these orbits are further away from

the central axis of the cylinder and closer to the cylinder wall, getting as

close as 2 cm from the wall without losing circularity. In other words, for

decreasing Reynolds number both the orbital radius and the distance between

the central axis of the cylinder and the orbital centre increase.

The average position of the centre of the sphere, presented in the previ-

ous chapter, coincides with the centre of the orbit because this limit cycle is

circular. Looking back to figure 3.3 in the previous chapter, where the aver-

age position of the sphere is plotted as a function of the Reynolds number,

the data points with relatively large error bars, depicting a large standard

deviation from the average position, corresponded to spheres in this oscil-

latory regime. Moreover, the prediction of the equilibrium position, by the

model presented in the previous chapter [44], predicts the position of the

fixed points, and also coincides with the position of the centre of the orbits

after the fixed points have became unstable.

In figure 4.2 it can also be seen that there is a range of Reynolds numbers

where the size of the orbit is very small, less than 5% the radius of the
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Figure 4.2: a) Orbit described by a sphere of radius a = 7.9 mm at Reynolds

number Re = 0.298 b) Orbits for a sphere of a = 7.9 mm of radius. Each

trajectory corresponds to a fixed Reynolds number. The radius of the orbit

grows bigger when decreasing the Reynolds number
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sphere. This is because in this range, Re > 0.2 the sphere is actually in a

fixed point. This can be observed better in figure 4.3. Here, the maximum

vertical displacement of the sphere nondimentionalized by the corresponding

radius of the sphere is plotted as a function of the Reynolds number. It can

be seen that the oscillations occur at smaller Reynolds numbers, for smaller

spheres and at higher Reynolds numbers for bigger spheres.

4.1.1 Growth rate of the orbital radius

The dependence of the radius of the orbit described by the sphere as a func-

tion of the Reynolds number was investigated for all the spheres in this study.

As mentioned in the previous section, a circle was fitted to the trajectory

using a least square method, resulting in the coloured solid lines shown in

figure 4.2. In this way the radius of the orbit was found as a function of

the Reynolds number as shown in figure 4.4, the error bars here indicate the

mean squared error in the fit of the orbit.

An interesting aspect of section (a) of figure 4.4, is that the growth of

the orbital radius seems to grow slowly when Re > 0.2 and very fast at the

when Re < 0.2. and does not seem to saturate for the orbits considered here,

which were away from the walls of the cylinder.

To look in more detail to the growth rate of these orbits in figure 4.5 the

case of the sphere of radius a = 7.9 is looked closely.

Observing section a) of figure 4.5, it can be seen that a linear function

can be adjusted to the radius of the orbit as a function the Reynolds number

in logarithmic scale. When doing so it was found that the slope of this line

was very close to 2.
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Figure 4.4: Radius of the orbits in function of the Reynolds number for

spheres of different radii. The green data corresponds to a sphere of radius

a = 4.78 mm the red data to a = 6.33 mm the blue data to a = 7.05 mm the

black data to a = 7.9 mm and the magenta data to a = 9.5 mm. Section (a)

shows it in linear scale while section (b) in logarithmic scale.
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Furthermore, if looking at the radius of the orbit as a function of the

Reynolds number for a sphere of a = 7.9 mm in section b) of figure 4.5 it

can be observed that the best fit to this data corresponds to:

R(Re) =
c1

Re2
+ c2, (4.1)

where R corresponds to the orbital radius, c1 = 0.01751 ± 0.0008 and c2 =

−0.032 ± 0.0102. The parameter describing this bifurcation is ε = 1
Re

. The

constant c2 was included in the fit to take into account the noise in the

system.

This growth rate does not correspond to a Hopf bifurcation, where the

growth rate is expected to be
√
ε− ε0.

It was also checked, that there was no hysteresis for this transition. To do

so, the orbital radius was measured for a sphere of radius a = 7.05 mm. The

Reynolds number was first decreased from Re ≈ 2 to Re ≈ 0.1 in small steps

and a measurement was taken for each step. Then the Reynolds number was

increased from Re ≈ 0.1 in small steps taking measurements for each steps.

The result of this measurement are shown in figure 4.6, where it can be

seen there is no hysteresis in the system.

4.2 Frequency of rotation

The frequency of rotation of all the spheres used in this study, was measured

as a function of the Reynolds number.

This measurement was obtained by tracking the orientation of markings

on the sphere throughout a complete rotation cycle. For each sphere, 10

cycles were measured for each Reynolds number.
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Figure 4.5: a) Orbital radius as a function of the Reynolds number in loga-

rithmic scale and a linear fit of slope 2 for the sphere of radius a=7.9 mm.

b)Orbital radius for a sphere off a = 7.9 mm of radius and a fit of the form

R(Re) = c1Re
−2 + c2 with c1 = 0.01751± 0.0008 and c2 = −0.032± 0.0102.
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Figure 4.6: Orbital radius for a sphere of radius a = 7.05 mm, the orbital

radius was measured increasing 4 and decreasing O the Reynolds number,

no hysteresis was observed

The results of this measurements are shown in figure 4.7, here the data

points represent the ratio between the rotation speed of the sphere and the

rotation speed of the cylinder, measured for each Reynolds number. The error

bars represent the standard deviation of each measurement. When taking an

average value of the ratio between the angular velocity of the spheres and

the angular velocity of the cylinder for all spheres a value of 0.88 is obtained.

Given that the value of the ratio between the angular velocity of the

spheres and the cylinder is relatively close to 1 (ω/Ω = 0.88), it was necessary

to ensure that the oscillations were not forced by some perturbation in the

apparatus.

Hence, a periodic perturbation was introduced by glueing a small cylinder

of 3 mm of radius and 180 mm of length, lengthwise in the inner wall of the

rotating cylinder, which created a periodic radial disturbance to the flow.
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Figure 4.7: Ratio between the frequency of rotation of the sphere and the

frequency of rotation of the cylinder ω/Ω as a function of the Reynolds

number. The average value of the rotation rate of the spheres over the

rotation rate of the cylinder is 0.88, indicating the oscillations are not an

artefact of the rotation of the cylinder
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Figure 4.8: Ratio between the frequency of rotation of the sphere and the

frequency of rotation of the cylinder ω/Ω when a radial obstacle has been

placed inside of the cylinder, which does not have a significant effect on the

rotation of the sphere of a = 6.33 mm.
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The ratio between the angular velocity of a sphere of radius a = 6.33 mm

and the angular velocity of the cylinder was measured in the same fashion

as it was measured for the experiment without the perturbation. The results

of this measurements are shown in figure 4.8, where the ratio between the

angular velocity of the sphere and the angular velocity of the cylinder is

plotted against the Reynolds number.

The average value of the ratio, in this case was 0.875, from which it can

be concluded that a perturbation of this size does not have a significant effect

on the rotation of the sphere.

4.3 Oscillations from the wall
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Figure 4.9: Schematics of the onset of the oscillation by the wall; when

increasing the Reynolds number, the angle formed between the sphere and

the vertical θ grows until it reaches θ = 90◦. When the Reynolds number is

increased even more, the sphere starts oscillating vertically

As discussed above and in the work of Mullin [23] and in detail in the

thesis of Otto [53], for a negatively buoyant sphere, when the cylinder is
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Figure 4.10: Amplitude of the oscillations from the wall for a sphere of radius

a = 7.9 mm
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Figure 4.11: Square of the amplitude of the oscillations from the wall for

a sphere of radius a = 7.9 mm, a linear fit of the form p1Re + p2, with

p1 = 835.8 and p2 = −8.508, is shown in a solid line.

75



rotating at very low speed, the sphere will stay at a fixed point by the wall.

This fixed point can be described by the angle θ formed between the vertical

and the sphere. The angle θ increases when increasing the Reynolds number

until reaching θ = 90◦ at a critical Rewall, position at which the sphere

detaches from the wall and oscillated vertically as shown in figure 4.9 .

The onset of near wall oscillations was investigated for a sphere of a = 7.9

mm. The amplitude of this oscillations in the vertical direction was measured

and plotted as a function of the Reynolds number, this is shown in figure 4.10

It can be seen in figure 4.11 that the square of the amplitude has a growth

which is linear in the Reynolds number, which means the amplitude of this

oscillations grow as as the square root of the Reynolds number. A linear fit

of the form p1Re + p2, with p1 = 835.8 and p2 = −8.508 is shown in the

figure. The critical Rewall = 0.0102 can be obtained from the fit. The square

root dependance from the bifurcation parameter, plus the periodicity of this

orbits indicates that these near wall oscillations have the shape of a Hopf

bifurcation, which is in agreement with the results obtained by Otto [53] for

a heavy sphere.

This is particularly interesting considering that the onset of the oscilla-

tions that grow from the fixed point have an atypical growth rate of 1
Re2

which these oscillations do not have. This suggests there must be a feedback

mechanism in the oscillations from the fixed point given by the sphere being

free to move and feeling the wake that leaves behind its own orbit.
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4.4 Summary

The experimental results described in this chapter show that the first insta-

bility of the fixed point described in the previous chapter corresponds to a

simple periodic motion, the sphere describes a circular orbit centred at the

original fixed point.

It has also been shown that the growth rate of this limit cycle has an

unusual growth rate that suggests the presence of a feedback mechanism in

the orbits that grow from the fixed points. Considering that the sphere is

free to move, this might be given by a resonance between the sphere and the

wake which is left behind the sphere.

We have shown that the oscillations are not a result of resonances in the

system and that a periodic perturbation does not have a significant effect in

the rotation of the sphere.

It has also been shown that when the Reynolds number is increased from

zero up to Re = 0.01 the sphere stays at a fixed point by the wall of the

cylinder. Over that value of Re, this fixed point became unstable and the

sphere oscillated vertically.

These near wall oscillations, when increasing the Reynolds number, do

grow as a Hopf bifurcation, because there is a square root dependance be-

tween the amplitude of the oscillation and the Reynolds number. This co-

incides with the kind of bifurcation reported previously by Mullin [23] and

Otto [53] for a heavy sphere oscillating near the wall of a rotating cylinder.
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Chapter 5

A Porous Sphere

A porous sphere was fabricated using a 3D printer. The density of the plastic

used by the 3D printer was ρplastic = 1.17 g/cm3 and the sphere had a radius

a = 8 mm. The sphere had a typical pore size of 2 mm of diameter and the

inside of the sphere was hollow, such that it became completely filled with

fluid once the sphere was immersed in glycerol. The effective density of the

porous sphere was calculated using the the mass of the sphere when dry to

calculate the volume fraction filled with plastic and the fraction filled the

glycerol. The effective density was estimated to be ρporous = 1.244

Figure 5.1: A porous sphere fabricated in a 3D printer of radius a = 8
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The properties of this sphere, resemble those of a biological scaffold which

allows the exchange of nutrients from the culture media, so it needs to be

porous. Also, to minimise shear and disturbances, the terminal velocity is

minimised by choosing scaffold and culture media with similar densities [22].

In this case, the density ratio was ρporous/ρglycerol = 0.9873.

In section §5.1 the average position of the porous sphere is presented

as a function of the Reynolds number. This position is compared with the

theoretical predictions for a solid sphere with the terminal velocity of the

porous sphere which was determined experimentally. The average position

of the porous sphere is also compared with the average position obtained

previously for a solid polypropylene sphere of radius a = 7.9 mm, which was

the most similar available sphere in this investigation.

Below a critical Reynolds number, the porous sphere starts describing

circular orbits about the average position presented in section §5.1 In section

§5.2 the radii of this orbits, are presented. This radius is compared with the

previously obtained radius of the orbits described by a solid sphere of radius

a = 7.9 mm.

In section §5.3 the onset of the oscillations by the wall is presented. As

for a solid sphere, this happened when increasing the Reynolds number from

very small values. When Re ≈ 0.005 the sphere remains at a fixed point by

the wall described by the angle θ that the sphere forms with the vertical, θ

increases when increasing the Reynolds number until Re ≈ 0.01 when θ = 90◦

when the sphere became unstable and starting oscillating vertically.
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5.1 Average postion

The averaged position of a porous sphere of a radius of a = 8 mm was

measured as a function of the Reynolds number. The measurements were

made following the procedure outlined in chapter 3 for the solid spheres. In

this case, image sequences of 120 frames were recorded at a frame rate of 20

frames per second. A time of at least 2 minutes was allowed between two

measurements to ensure that the fluid was rotating at solid body rotation

after changing the frequency of rotation. This time is much bigger than the

viscous diffusion time (3.2 sec) and the spin up time (1.8 sec) defined in

chapter 3.

In figure 5.2 the averaged position of the porous sphere is plotted as a

function of the Reynolds number. To compare, the averaged position of a

solid, polypropylene sphere of radius a = 7.9 mm is also shown in this figure.

The error bars in this figure correspond to the standard deviation of the

position of the centre of the sphere over an image sequence, acquired for at

a specific Reynolds number. The most relevant feature that can be seen in

this plot is that the porous sphere remained much closer to the central axis

of the cylinder over the entire range of Reynolds numbers, while the solid

sphere goes to an eccentric equilibrium position. For Re < 0.3 the average

position moved slightly off centre, less than 10% the radius of the sphere. For

Re < 0.2 the error bars, representing the standard deviation on the averaged

position, increased, as the porous sphere prescribed circular orbits.

In figure 5.3, the averaged position of the porous sphere is shown as a

function of the Reynolds number. The solid line represents a theoretical curve

obtained using the model presented in chapter 3 [44]. The model assumes
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Figure 5.2: The equilibrium position of a porous sphere of radii a = 8 mm

plotted as a function of Re is shown in ∗. The red circles correspond to the

equilibrium position of a smooth solid sphere of a=7.9 mm
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Figure 5.3: Equilibrium position of a porous sphere of radii a = 8 mm as a

function of Re, the solid line represents the theoretical equilibrium position

predicted by the model (a) shows it in linear scale and (b) in logarthmic scale

a solid sphere and takes into account that the forces acting on the sphere,

buoyancy, drag and centripetal, are such that the equilibrium position is as

stated in equation 3.9 and it is proportional to Rep, meaning that x is also

proportional to the terminal velocity VT .
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In the case of the porous sphere, the terminal velocity is an order of

magnitude smaller than the terminal velocity for a solid sphere (VTporous =

0.0062 m/s while VTsolid = 0.0505 m/s). This results from the pores in the

sphere surface which allow glycerol to enter and fill the sphere such it becomes

nearly neutrally buoyant, making the terminal velocity much smaller.

It can be seen in figure 5.3 that the agreement between the theoretical

model and the experimental data is very good. This suggests that the inclu-

sion of the experimental value of the terminal velocity in the model averages

the effects of the porosity on the balance of forces.

5.2 Oscillations of the porous sphere

The porous sphere, as the solid spheres presented in the previous chapter,

becomes unstable below a critical Reynolds number and start oscillating. In

this case, this happened for Reynolds numbers Re < 0.25. The centre of this

orbits corresponded to a point which is off centre with respect to the central

axis of the cylinder.

In figure 5.4, the radius of the orbit described by the porous sphere is

shown. In this figure it can be seen that the onset of the oscillations is de-

layed in comparison with the solid sphere, the porous sphere remains without

oscillating for lower Reynolds numbers.

An expanded view of the data is presented in the insert of figure 5.4. Here

it can be observed that the measured radius of the orbit is below 5% of the

radius of the sphere for all data points when Re > 0.25 which is the criteria

used previously to decided that the sphere was on a fixed point.

From this it can be concluded that a porous sphere is more stable than the
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Figure 5.4: Radius of the orbit described by a porous sphere of radii a = 8

mm compared with the radius of the orbit described by a smooth solid sphere

of a=7.9 mm as a function of Re. A zoom to the data set for the porous

sphere is also shown, from here it can be seen that when Re > 0.2, the

measured radius of the orbit, is below 5% the radius of the sphere.
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a solid sphere of similar radius. The porous sphere actually, does not oscillate

for Re > 0.25 while the solid sphere of the same size becomes unstable for

Re < 0.3.

5.3 Oscillations from the wall
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Figure 5.5: Amplitude of the oscillation described by a porous sphere of radii

a = 8 mm by the wall, plotted as a function of Re.

As described in chapter 4, a positively buoyant sphere finds equilibrium

positions by the wall of the rotating cylinder when this is rotating at very low

speeds. This position can be described by the angle θ that the sphere forms

with the vertical. The onset of the oscillations occurred when this angle is

θ = 90◦ and the sphere detached from the wall. The sphere then oscillated

in the vertical direction.

In figure 5.5 the amplitude of this oscillations is shown as a function
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Figure 5.6: Square of the amplitude of the oscillation described by a porous

sphere of radii a = 8 mm by the wall plotted as a function of Re. The red

solid line corresponds to a linear fit of the form p1Re + p2, with p1 = 161.9

and p2 = −2429, is shown in a solid line
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of the Reynolds number. This plot suggest the amplitude goes through an

imperfect pitchfork bifurcation, but the square root dependence on Re needs

to be confirmed. To do so, a plot of the square of the amplitude as a function

of Re is shown in figure 5.6. In this plot, a linear fit of the form p1Re + p2,

with p1 = 161.9 and p2 = −2429 has been added to the data that was away

from zero, confirming that the amplitude have a square root dependance on

the Re. The critical Re at which the oscillation starts is Rewall = 0.0150

which was obtained from the fit.

An interesting aspect is that, as for the solid spheres, the onset of the

oscillations from the wall have a different dynamics than that of the onset of

the circular orbits.

5.4 Summary

From the results presented in this chapter, it is possible to make three major

observations regarding the behaviour of a porous sphere in comparison with

a solid sphere of similar size.

The first one, is that even though an eccentric equilibrium position exists

for a porous sphere, this fixed point is closer to the central axis of the cylinder

and experimentally is much more difficult to detect than for a solid sphere.

Nevertheless, the model [44] still predicts the position of the porous sphere,

if the terminal velocity to be considered for this sphere, is the one that has

been measured experimentally and presented in chapter 2. This is despite

the fact that the model assumes the sphere is solid, because the measurement

of the terminal velocity contains information about the balance between the

drag and the buoyancy forces acting on the sphere.
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The second is that the porous sphere also describes circular orbits about

a point off the central axis of the cylinder, and this point is still predicted

by the model. In comparison with a solid sphere of similar size, the porous

sphere has a larger stability range in terms of Re, meaning it remains without

oscillating for lower Reynolds numbers than the solid sphere.

The third one, is that the behaviour of the porous sphere when oscillating

by the wall is qualitatively similar to the onset of the oscillations for the solid

sphere. The onset of the oscillations occurred at a similar Reynolds number

Re = 0.01 . The difference here, was the coefficient of the amplitude of this

oscillations, that in the case of the porous sphere was much smaller.

Regarding the dynamic of a biological scaffold, this results suggest that a

smaller terminal velocity can have a stabilising effect, increasing the Reynolds

number range at which tissue can be grown inside of a rotating bioreactor,

avoiding the onset of oscillations. It is also important to notice that porosity

is necesary for biological scaffolds, otherwise the exchange of nutrients would

not be possible.
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Chapter 6

Rough Spheres

The results of an investigation into the effects of roughness on the motion of

the spheres are presented in this chapter. Spheres with three different rough-

ness were made in the 3D printer using ABSplus plastic. The roughness was

created by fabricating spheres of 6 mm of radius with 10 small hemispherical

bumps uniformly distributed in the surface such that the resulting roughened

spheres had outer radii amax = 8, 7.5 and 7 mm respectively and inner radius

amin = 6 mm. An average radius was defined for the three spheres calculated

as amean = (amax + amin/2)These spheres can be seen in figure 6.1.

A control sphere of radius a = 7 mm was also made in the 3D printer,

to compare the data obtained for the rough spheres against a sphere equal

same density with a smooth surface. This size of sphere was chosen because

it matched the average radius of a sphere with the largest roughness.

Measurements of the average position for spheres of different roughness

are reported in section §6.1.

Experimental measurements of the orbital radius described by the rough

spheres are shown in section §6.2.
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Figure 6.1: A picture of the three rough spheres used for this investigation.

All the spheres have an inner radius of amin = 6 mm and outer radius of

amax = 8, 7.5 and 7 mm respectively

6.1 Average Position and fixed points

The average position, measured from the central axis of the cylinder, was

obtained for spheres of different roughness by using the same procedure de-

scribed in previous chapters. For the three spheres considered in this study,

image sequences of 500 frames were taken at a frame rate of 20 fps.

The rotational speed of the cylinder was set at a high value (ω ≈ 20

Re ≈ 2) and image sequences were recorded after decreasing the rotational

velocity by small steps . A suitable time was allowed after decreasing the

rotational speed between two measurements, to allow the fluid to settle to

solid body rotation at the new speed. This time was selected using the same

criteria used for the smooth sphere, described in chapter §2.

The measured average position is shown plotted as a function of the

Reynolds number in figure 6.2 for the three spheres with the different rough-

ness under study.
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The prediction of the equilibrium position by the model [44] presented in

chapter 3 en equation (3.9)

and is depicted with a solid line for the three spheres in figure 6.2.

In figure 6.2a, the average position for a sphere of outer radius amax = 6.5

mm is shown in black. For this sphere the terminal velocity was exper-

imentally measured as explained in chapter 2 and had a value of VT =

0.0247 ± 0.00005 m/s. This value and an average radius of a = 6.25 mm

was used in equation 3.9 to obtain the solid black line.

The average position for a sphere of outer radius a = 7.0 mm is shown

in magenta in figure 6.2b. The terminal velocity of this sphere was VT =

0.0237 ± 0.00007 m/s and the averaged radius was amean = 6.5 mm. This

values were used in equation 3.9 to obtain the solid magenta line.

The average position for a sphere of outer radius a = 8.0 mm is shown

in blue in figure 6.2c. For this sphere the terminal velocity was measured to

be VT = 0.0230± 0.00001 m/s and the averaged radius was amean = 7.0 mm.

This values were used in 3.9 to construct the solid blue line.

It can be observed in figure 6.2 that all the spheres settle at an equilibrium

position away from the central axis of the cylinder in a qualitatively similar

manner as a smooth sphere does.

In all three sections of figure 6.2 the error bars correspond to the standard

deviation from the average position. When the size of the error bars increases,

for Re ≤ 0.4, the fixed point becomes unstable and the sphere begins to move

in periodic orbits which are centred on the fixed point. The average position

in this cases corresponds to the centre of the orbits. The orbits will be

described in more detail in the next section.

As expected, the fit of the model [44] is poor for the rough spheres shown
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Figure 6.2: Average position as a function of the Reynolds number for spheres

of inner radius amin = 6 mm and different roughness. In (a) the average

position for a sphere of outer radius amax = 6.5 mm is shown. In (b) the

average position for a sphere of outer radius amax = 7 mm is shown. In (c)

the average position for a sphere of outer radius amax = 8 mm is shown. In

all cases the solid line correspond to the prediction of the model. In each

the terminal velocity measured experimentally was used to determine the

position of the fixed point.
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Figure 6.3: Average position of all the rough spheres in this study as a

function of the Reynolds number with the prediction given by the model to

each one of them, the red circles correspond to the average position of a 3D

printed smooth sphere of radius a = 7 mm.
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in figure 6.3, especially in comparison with how well it fits the data ob-

tained previously for smooth spheres. There are now several important new

factors involved. Firstly, the model was developed for smooth spheres and

the roughness involved in this experiments are 4.%, 7.7% and 14.3% of the

average radius of each sphere. Secondly, the measurement of the terminal

velocity was not sensitive enough to establish a clear difference between the

different spheres. Third and last, the radius considered here to construct

the theoretical curves was the average between amin and amax. This is not

necessarily the best way to take into account the size of a rough particle.

In figure 6.3 the averaged position for all the spheres is plotted together

with the experimental data for a smooth sphere of a = 7 mm is shown in red.

It can be seen that there is no significant difference in the average position

of the rough spheres compared with a smooth sphere of the same density.

These experimental results indicate that the fixed point behaviour is not

affected by the presence of added roughness on the surface of the sphere and

is robust to this kind of deviation from sphericity.

6.2 Orbits of the rough spheres

As mentioned previously, the fixed point of the rough spheres also became

unstable below a critical Reynolds number. The spheres would then go into

a limit cycle, shaped as a periodic circular orbit about a centre displaced

from the central axis of the cylinder.

The radius of the orbit was measured following the same procedure de-

scribed in chapter 4, a circle was fitted to the position of the sphere over a

time sequence, and the radius of the orbit was given by this fit.
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Figure 6.4: Orbital radius described by the rough spheres as a function of

the Reynolds number. Magenta corresponds, to the orbital radius of a sphere

with amax = 6.5, black to amax = 7 and blue to amax = 8. The red circles

correspond to the orbital radius of a smooth sphere of radius a = 7 mm.
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Outer radius amax [mm] Rec

6.5 0.38± 0.025

7 0.48± 0.035

8 0.35± 0.020

7 (smooth) 0.47± 0.04

Table 6.1: Critical Reynolds Rec for the onset of oscillations, defined as the

Re at which the measured orbital radius is greater than 5% the radius of the

sphere.

In figure 6.4 the radius of the orbits of the spheres of different roughness

is shown as a function of the Reynolds number. Here, it can be seen that

the radius of the orbit obtained for the three different roughness studied

here, does not differ in a significant manner over the range of roughness

investigated. Moreover, the orbital radius of the rough spheres does not

differ from the orbital radius of a smooth sphere with the same, in the case

of the sphere with the biggest roughness, or similar, in the case of the other

rough spheres, average radius.

The critical Reynolds number Rec for the spheres of different roughness

and the smooth sphere is shown in table 6.1. This is defined as the Re at

which the measured orbital radius is greater than 5% the radius of the sphere.

It can be observed from this table that the onset of the oscillations occur

at approximately the same Reynolds number for all the spheres, independent

of their roughness. All the spheres start to oscillate at Rec = 0.42± 0.06.
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6.3 Summary

The effect of surface roughness on the stability of the fixed point behaviour

of a positively buoyant sphere inside a rotating cylinder was studied for three

different roughness.

It was observed that the fixed point behaviour found previously for smooth

spheres also exist for rough spheres. Moreover, when the average position of

the three rough spheres is compared with the average position of a smooth

sphere with the same average radius and density, the average position is

the same, within experimental error, in all four cases. This result suggest

that added roughness does not have a significant effect on the fixed point

behaviour of a positively buoyant sphere.

Beyond the critical Reynolds number Rec the fixed point became unstable

and the rough sphere described circular orbits about the original fixed point,

in a similar manner as the smooth sphere does. Furthermore, the orbital

radius have the same functional dependance on the Reynolds number as that

of a smooth sphere of equivalent average radius and equal density. The onset

of the oscillations also occurs approximately at the same critical Reynolds

number than for a smooth sphere.
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Chapter 7

Conclusion

The investigation presented in this thesis concerned an experimental study on

the dynamics of a positively buoyant sphere immersed in a rotating viscous

flow. Careful experiments were conducted using different types of spheres

inside of a horizontally rotating cylinder filled with glycerol. Different dy-

namical regimes were characterised, and the dependance of the dynamics of

the sphere on the Reynolds number was studied for different sizes, roughness

and for a hollow porous sphere that resembles a porous biological scaffold.

This study has shown that a sphere in this flow configuration has a rich

family of dynamical behaviours. When increasing Re from zero, the sphere

lays in a fixed point by the wall. This fixed point becomes unstable and

he sphere starts oscillating vertically for Re ≈ 0.01. When decreasing Re

from Re ≈ 2, the sphere lays at a fixed point at the axis of rotation of the

flow, for 1 > Re > 0.2 approximately, the sphere is at a eccentric fixed point

and below that value of Re, the fixed point became unstable and the sphere

started oscillating periodically, describing circular orbits about the original

fixed point. A summary of the main findings and conclusions drawn for each
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sphere type is provided in this chapter and some ideas for future research are

outlined.

7.1 A Smooth Sphere

The average position of the centre of a smooth sphere, measured from the

central axis of the cylinder, was obtained for spheres of different sizes. It has

been observed that the smooth spheres have a range of eccentric fixed points.

These fixed points become unstable below a critical Reynolds number Rec.

This instability corresponds to a simple periodic motion, the sphere describes

a circular orbit centred at the original fixed point. Because the orbit is

circular, the average position of the sphere when orbiting, corresponds to the

orbital centre.

The theoretical model, developed by Johnson [44] and presented in chap-

ter 3 prognosticated that the sphere should have a range of equilibrium po-

sitions. However, the stability analysis of these equilibrium positions is yet

to be completed.

The agreement between the theoretical model of Johnson [44] and the

position of the fixed points described in chapter 3 is very good. The model

also predicts well the position of the centre of the orbits once the fixed point

has become unstable and the sphere described circular orbits. This agreement

between the discussed theory and the experimental data obtained in this

thesis shed light on which are the relevant forces that describe this system:

a viscous drag FD, the centripetal force FC and the buoyancy force FB.

These forces are enough to describe the eccentric equilibrium position and

the centre of the oscillations after the sphere becomes unstable. The model
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that was developed in the limit of very low Re works best for Re < 0.5 in

this experiment, over this value some differences between the experimental

positions and the theory can be observed.

It was also found that the stability range of the fixed points depends

on the size of the sphere. Our results suggest that the stability range is

proportional to the size of the sphere, meaning that a larger sphere has a

larger stability range. The limit where the size of the sphere tends to zero is

of particular interest, because the stability range of the eccentric fixed point

would tend to zero as well, connecting the existent Stokesian calculations for

a point like particle (that only has one equilibrium position at the central

axis of the cylinder), with the theoretical calculations for finite radius and

Re.

It would be interesting to do a similar study with an air bubble and

compare them with the experimental results presented in this thesis. Some

studies about the lift and the drag have already been made by Van Nieropp

et al. [28] and Lohse et al. [29]. But a full characterisation of the dynamics

of a bubble is still lacking.

It was shown that the orbital radius has an unusual growth rate that

suggests the presence of a feedback mechanism in the orbits that grow from

the fixed points. Considering that the sphere is free to move, this might be

given by a resonance between the sphere and the wake which is left behind the

sphere. Finally, it was shown that the circular orbits described in chapter 4

are not a result of resonances in the system, and that a periodic perturbation

does not have a significant effect in the rotation of the sphere.

It is suggested that flow visualisation is used to observe what happens

with the flow near the onset of the oscillation. This could provide an ex-
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planation for the odd growth rate observed in this thesis, given that near

the onset Re > 0.5 and some inertial effects could be observed. It would be

particularly interesting to observe if there is a wake affecting the growth rate

of the oscillations.

It has been observed that, when the Reynolds number is increased from

zero up to Re = 0.01, the sphere stays at a fixed point by the wall of the

cylinder. Over that value of Re, this fixed point became unstable and the

sphere oscillated vertically. These near wall oscillations are described by a

Hopf bifurcation because the motion is periodic and the amplitude grows as

the square root of the Reynolds number. This coincides with the kind of

bifurcation that was reported previously by Mullin [23] and Otto [53] for a

heavy sphere oscillating near the wall of a rotating cylinder.

7.2 A Porous Sphere

The dynamics of a porous sphere immersed in a rotating viscous flow was

studied experimentally and compared with the dynamics of a smooth solid

sphere of similar size.

An eccentric equilibrium position exists for a porous sphere, but in com-

parison to the solid case, the fixed point is closer to the central axis of the

cylinder and experimentally is much more difficult to detect. Nevertheless,

the model [44] still predicts the equilibrium position of the porous sphere, if

the terminal velocity to be considered in the model, is the one that has been

measured experimentally. This is despite the fact that the model assumes

that the sphere is solid. This is because the measurement of the terminal

velocity contains information of the drag force acting on the sphere.
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The porous sphere, as the solid on, describes circular orbits about a point

off the central axis of the cylinder, and this point is still predicted by the

model. In comparison with a solid sphere of similar size, the porous sphere

has a bigger stability range, meaning it remains without oscillating for lower

Reynolds numbers than the solid sphere.

The porous sphere, when increasing the Re form rest, lays at a fixed point

by the wall. The behaviour of the porous sphere when oscillating by the wall

is qualitatively similar to the onset of the oscillations for the solid sphere.

The onset of the oscillations also occurred to a similar Reynolds number

Re = 0.01.

Regarding the dynamics of a biological scaffold, these results suggest that

the porosity can have a stabilising effect, increasing the Reynolds number

range at which tissue can be grown inside of a rotating bioreactor, avoiding

the onset of oscillations. It is also important to notice that porosity decreases

the shear stress acting on the scaffold, which could have an effect on the

tissue metabolism due to the unknown biological response of the tissue to

shear stress.

7.3 Rough Spheres

The effect of the surface roughness on the stability of the fixed point be-

haviour of a positively buoyant sphere inside a rotating viscous flow was

studied for three different roughness. It was observed that the fixed point

behaviour found previously for smooth spheres also exist for rough spheres.

Moreover, when the average position of the three rough spheres is compared

with the average position of a smooth sphere with the same average radius
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and density, it can be seen that the average position is the same in all four

cases. This result suggests that added roughness does not have an effect on

the fixed point behaviour of a light sphere.

It was also observed that when the fixed point became unstable, the rough

sphere described circular orbits, as the smooth sphere did. Furthermore, the

orbits had the same functional dependance on the Reynolds number as that

of a smooth sphere of equivalent average radius.

The fact that the behaviour of the rough spheres does not seem to have

an effect on the fixed points or the orbits, when compared with a smooth

sphere of equivalent average radius, is a relevant result, it means the fixed

points and orbits are robust to this kind of perturbations on the shape of the

sphere.

It would be interesting to investigate the effect that shape could have on

the eccentric fixed points observed in this thesis. Given that in the case of

a heavy sphere compared to a heavy ellipsoid, quantitative and qualitative

differences were found when comparing their behaviours near the wall.
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