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Abstract

Data traffic demand has been increasing exponentially and this trend will continue over the

foreseeable future. This has forced operators to upgrade and densify their mobile networks to

enhance their capacity. Future networks will be characterized by a dense deployment of different

kinds of base stations (BSs) in a hierarchical cellular structure. However network densification

requires extensive capital and operational investment which limits operator revenues and raises

ecological concerns over greenhouse gas emissions. Although networks are planned to support

peak traffic, traffic demand is actually highly variable in both space and time which makes it

necessary to adapt network energy consumption to inevitable variations in traffic demand.

In this thesis, stochastic geometry tools are used to perform simple and tractable analysis of the

coverage, rate and energy performance of homogeneous networks and heterogeneous networks

(HetNets). BSs in each tier are located according to independent Poisson Point Processes

(PPPs) to generate irregular topologies that fairly resemble practical deployment topologies.

The homogeneous network is optimized to determine the optimal BS density and transmit power

configuration that minimizes its area power consumption (APC) subject to both coverage and

average rate constraints. Results show that optimal transmit power only depends on the BS

power consumption parameters and can be predetermined. Furthermore, various sleep mode

mechanisms are applied to the homogeneous network to adapt its APC to changes in user

density. A centralized strategic scheme which prioritize BSs with the least number of users

enhances energy efficiency (EE) of the network. Due to the complexity of such a centralized

scheme, a distributed scheme which implements the strategic algorithm within clusters of BSs

is proposed and its performance closely matches that of its centralized counterpart.

It is more challenging to model the optimal deployment configuration per tier in a multi-

tier HetNet. Appropriate assumptions are used to determine tight approximations of these

deployment configurations that minimize the APC of biased and unbiased HetNets subject to

coverage and rate constraints. The optimization is performed for three different user association

schemes. Similar to the homogeneous network, optimal transmit power per tier also depends on

BS power consumption parameters only and can also be predetermined. Analysis of the effect of

biasing on HetNet performance shows appropriate biasing can further reduce the deployment

configuration (and consequently the APC) compared to an unbiased HetNet. In addition,

biasing can be used to offload traffic from congesting and high-power macro BSs to low-power

small BSs. If idle BSs are put into sleep mode, more energy is saved and HetNet EE improves.

Moreover, appropriate biasing also enhances the EE of the HetNet.
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Chapter 1

Introduction

1.1 Background

Mobile network operators are faced with exponentially increasing data traffic demand which has

placed extreme demands on existing networks. A forecast of the global mobile data traffic for

the period 2015-2020 confirms that this trend will continue over the foreseeable future [1], [2].

In 2015, global mobile data traffic grew by 74%, from 2.1 exabytes (EB) per month at the end

of 2014 to 3.7 EB per month at the end of 2015. The report also shows that mobile data traffic

will grow to 30.6 EB per month by the end of 2020, a 53% compound annual growth rate. New

access technologies such as third-generation (3G) and fourth-generation (4G) systems coupled

with advanced end user devices such as smart phones and tablets are responsible for this rapid

traffic increase. For example in 2015, a 4G connection generated six times more traffic on

average than a non-4G connection. Moreover, 4G traffic exceeded 3G traffic in 2015 for the

first time. This is telling especially since 4G connections represented only 14% of total mobile

connections in 2015 [1].

The popularity and rapid uptake of advanced terminals such as smart phones and tablets and

their associated data-hungry applications has also fueled this data explosion. According to [1],

smart phones and tablets will increasingly be the source of most of the year-on-year growth of

data traffic up to 2020. For example in 2015, smartphones generated 97% of all global handset

traffic although they represented only 43% of global handsets. A smart device generated 14

times more traffic than a non-smart device in 2015. Mobile video, a service that requires high

bandwidth, has the highest growth rate of any other mobile traffic category. It accounted for

55% of all mobile traffic in 2015 and will grow 11-fold to account for 75% of all data traffic by

the end of 2020 [1]. However, research shows that operator revenues are growing by a mere

23% per annum [3]. In addition, Cisco reports in [4] that operator revenues will begin to shrink

from 2018 onwards to the high cost of investment and operation. Compared to the exponential

growth of mobile traffic and the inevitable investment in modern networks infrastructure, it

will become increasingly difficult for operators to finance these network upgrades and still be

able to make profit.

Over time, network capacity has been increased using techniques such as increasing link capacity
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or bandwidth. However, radio links are fast approaching their theoretical capacity limits and

the usable mobile spectrum is very congested and expensive. The most effective technique of

increasing network capacity has been to reduce the size of cells and increase the spatial reuse of

frequency bands. By reducing the cell size, the number of subscribers sharing the bandwidth of

each base station (BS) reduces which avails more bandwidth to each user [5], [6], [7]. In areas

with a sparse deployment of BSs such as rural areas, it is possible to add more BSs and enhance

network capacity by effectively managing inter-cell interference. However, this cell splitting

strategy may cause significant inter-cell interference in dense urban, urban and sub-urban areas

which already have a significantly dense deployment of macro BSs. Besides, acquiring site leases

is a very expensive venture especially in urban areas [5], [6]. Other techniques being considered

to enhance capacity of future networks include multiple-input and multiple-output (MIMO)

and massive MIMO systems [8], [9], cognitive radio (CR) [10], [11], [12], sophisticated user

association algorithms [13], [14], etc. Furthermore, future 5G systems are expected to provide

up to 1000 times more area spectral efficiency (SE) than current 4G technologies [14], [15], [16].

Mobile networks consume a lot of power which has made the cost of energy one of the major

operational expenditures (OPEX) incurred by operators. This problem becomes worse if BSs

have to run on diesel generators due to a lack of the electricity grid especially in remote/rural

areas. The associated greenhouse gas (CO2) emissions into the atmosphere have caused ecolog-

ical concerns in a world grappling with the effects of global warming [17]. A report published

in 2008 by the Climate Change Group estimated that the ICT industry is currently responsible

for 3% of global energy consumption, generating 2% of the total CO2 emissions [18]. In the

telecommunications sector alone, mobile networks are predicted to contribute 51% of the total

CO2 emissions, up from 43% in 2002. Given the increasing traffic demand, energy consumption

and the associated CO2 emissions will continue to increase unless measures are taken to design

more energy efficient networks.

Operators are therefore looking for economical, sustainable and environmentally friendly so-

lutions to not only reduce their OPEX such as energy consumption but to also enhance the

capacity of networks to handle even larger volumes of data traffic. Various techniques may be

used to reduce energy consumption: improved network deployment techniques [3], designing

energy efficient network equipment and cooling systems [19], avoiding cooling altogether by

using remote radio heads (RRHs) [20], and implementing sleep mode schemes [21]. In RRHs,

radio equipment is installed in the tower next to the antennas to avoid feeder losses and take

advantage of natural air saturation for its cooling.

Heterogeneous networks (HetNets) are a promising solution towards energy efficient and capacity-

enhanced mobile networks compared to traditional homogeneous macrocell networks. A HetNet

is a mobile network that combines various types of BSs to provide mobile services to end users

[5]. Therefore, HetNets combine macro BSs with small BSs such as microcells, picocells, femto-

cells and relay nodes. Small BSs transmit low power and therefore cover a relatively small area

compared to the high-power macro BSs. They typically transmit 250 mW to 2 W in outdoor

environments compared to macro BSs which typically transmit between 5-40W. Femtocells are

indoor BSs that can transmit up to 100 mW of power [5], [7], [22], [23].
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Small BSs may be deployed over the existing macrocell network to provide targeted coverage and

capacity in different locations: in coverage gaps such as indoor environments and underground

parking lots, traffic hotspots such as shopping malls and busy streets and in the cell edge

region where they boost signal-to-interference-plus-noise ratio (SINR). In the presence of cell-

edge small BSs, cell-edge users can connect to nearby BSs which reduces their uplink (UL)

transmit power and improves battery life [24]. Small BSs are cheap, easy to install and have

much lower energy consumption. They also do not require cooling which gives further energy

savings. Therefore, HetNets provide a cost-effective way for operators to improve network

capacity and coverage without incurring significant CAPEX and OPEX. However, HetNets

generate new research challenges which must be tackled to improve their performance [5].

Some works have also studied the potential for using renewable energy sources such as solar and

wind to save grid power and reduce energy bills [25], [26]. This concept called energy harvesting

can be used on its own or as part of a hybrid system where it is combined with grid power

to guarantee the availability of mobile services. On its own, it enables the real possibility of

deploying drop and play small BSs as opposed to plug and play small BSs which rely on a grid

power source. However, the main challenge facing stand-alone energy harvesting systems is

the random spatial and temporal availability of renewable energy. This makes a hybrid system

perhaps more attractive to provide uninterrupted mobile services [14], [27].

Other interesting technologies that can provide energy savings and generally reduce capital

expenditures (CAPEX) and OPEX include [14]: (i) self-organizing networks (SONs) which

reduce operational costs since they are self-optimizing and self-healing [28]-[29]; (ii) device-to-

device (D2D) communications which allow any two devices in close proximity to communicate

directly without BS or core network assistance – this improves SE and energy efficiency (EE)

of the network [30]; and (iii) Cloud radio access network (C-RAN) which is a new architectural

paradigm where all base band (BB) processing is centralized in the cloud and simple, low-cost

and low-energy consuming RRHs provide radio access [20].

1.2 Aims and Objectives

The main aim of the research project was to investigate and design energy efficient HetNets

consisting of a joint deployment of macro BSs and different kinds of small BSs. The research

covered different performance aspects of HetNets such as coverage and rate, energy consump-

tion, network deployment strategies, mechanisms of interference management, etc.

The objectives of the research are:

• To perform a comprehensive literature review and understand several complementary

technologies to be applied in the research such as small cell technologies, HetNets, de-

ployment strategies, load balancing strategies, etc.

• To analyze the performance aspects of HetNets and propose mechanisms to improve per-

formance in terms of its capacity, energy consumption, deployment strategies, interference

management, etc.
23



• To study the performance aspects of dense small cell networks and propose novel tech-

niques of improving EE and network capacity.

1.3 List of Publications

The following papers have already been published or submitted.

P.1 Edwin Mugume and Daniel K. C. So, “Optimal Deployment Configuration of Energy-

Aware Dense HetNets,” IEEE Transactions on Wireless Communications (submitted in

March 2016).

P.2 Edwin Mugume and Daniel K. C. So, “Energy-Aware Optimization of Small Cell Networks

with Sleep Mode,” IEEE Journal on Selected Areas in Communications (under second

review).

P.3 Edwin Mugume, Daniel K. C. So and E. Alsusa, “Energy Efficient Deployment of Dense

Heterogeneous Cellular Networks,” 2015 IEEE Global Communications Conference (GLOBE-

COM), pp. 1-6, San Diego, CA, 6-10 December 2015.

P.4 Edwin Mugume and Daniel K. C. So, “Capacity and Energy Efficiency Analysis of Dense

HetNets with Biasing,” IEEE 26th Annual International Symposium on Personal, Indoor,

and Mobile Radio Communications (PIMRC), pp. 1553-1557, Hong Kong, 30 August - 2

September 2015.

P.5 Edwin Mugume and Daniel K. C. So, “Sleep Mode Mechanisms in Dense Small Cell Net-

works,” IEEE International Conference on Communications (ICC), pp. 192-197, London

UK, 8-12 June 2015.

P.6 Edwin Mugume and Daniel K. C. So, “Spectral and Energy Efficiency Analysis of Dense

Small Cell Networks,” IEEE 81st Vehicular Technology Conference (VTC Spring), pp.

1-5, Glasgow, Scotland, 11-14 May 2015.

P.7 Edwin Mugume, Warit Prawatmuang, and Daniel K. C. So, “Cooperative Spectrum Sens-

ing for Green Cognitive Femtocell Network,” IEEE 24th International Symposium on

Personal Indoor and Mobile Radio Communications (PIMRC), pp. 2368-2372, London

UK, 8-11 September 2013.

1.4 Contributions of the Thesis

The following major contributions have been accomplished during the course of this research:

1. Developed user connectivity models for both Poisson Point Process (PPP)-based homo-

geneous networks and HetNets. These connectivity models determine the ability of the

network to connect the prevailing user density and avoid congestion or blocking. This
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work was published in P.5 and also forms the basis for P.2. In this thesis, user connectivity

analysis in a homogeneous network is discussed in Chapter 4.

2. Performed an area power consumption (APC)-minimization framework on a homogeneous

network to determine its optimal BS density and associated transmit power configuration

subject to both coverage and average rate constraints. This framework captures the effect

of the prevailing user density on optimal deployment configuration. In some special cases,

the deployment configuration is expressed in closed form. This optimization analysis is

published in P.2 and is discussed in Chapter 4 of this thesis.

3. Proposed a novel sleep mode scheme for homogeneous networks called centralized strategic

sleep mode which prioritizes BSs with the least number of users. The strategic algorithm

searches over the entire network which makes implementation and management poten-

tially challenging especially in large dense networks. To ease complexity, a distributed

strategic sleep mode scheme is proposed in which the strategic algorithm is implemented

within clusters of BSs all over the network. Centralized strategic sleep mode was pub-

lished in P.5. More detailed analysis of both centralized and distributed strategic sleep

mode is presented in P.2. This work is discussed in Chapter 5 of this thesis.

4. Used appropriate approximations to simplify and understand the analytical relationships

between the prevailing user density and various performance measures of the homogeneous

network such as coverage probability and average rate. For instance when user and BS

densities are comparable, average user rate approximately varies linearly with user density.

This work was published in P.6 and is presented in Chapter 5 of this thesis.

5. Performed coverage probability and average rate analysis of a PPP-based HetNet using

minimum biased transmission distance (BTD) association scheme (where a user strictly

connects to the nearest BS from any tier). Coverage and rate performance of this scheme

is compared with two other existing schemes (maximum average biased received power

(ABRP) and maximum instantaneous SINR (i-SINR) schemes). The analysis of minimum

BTD scheme is published in P.1 and can be found in Chapter 6 of this thesis.

6. The APC-minimization framework is extended to a generalK-tier biased HetNet to deter-

mine its optimal configuration per tier subject to coverage and average rate constraints.

In some cases, the deployment configuration is expressed in closed form. For biased Het-

Nets, a two-tier scenario is assumed to further analysis and draw insights into the effect

of biasing on the APC performance of the HetNet. Detailed analysis of this HetNet

deployment optimization is published in P.1 and can be found in Chapter 6.

7. Extended the existing cell size distribution analysis of a two-tier PPP-based unbiased

HetNet to a general two-tier biased HetNet. Using these cell distributions, idle BS prob-

ability per tier is determined to facilitate an investigation of the effect of the prevailing

user density on HetNet performance. In addition, user connectivity models are developed

for this two-tier biased HetNet to determine its ability to avoid blocking at peak times.

This user connectivity analysis in a two-tier biased HetNet is published in P.4 and can

be found in Chapter 7 of this thesis.
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1.5 Organization of the Thesis

This thesis has eight chapters. Chapter 1 introduces the opportunities and challenges facing

the mobile communications industry such as increasing traffic demand and the rising cost of

energy. It also discusses the aims and objectives and the main contributions of the thesis.

Chapter 2 discusses the energy consumption challenges facing mobile networks and the green

potential of HetNets. The energy consumption model of different types of BSs is discussed

and the energy performance metrics of cellular networks are introduced. Existing works on

green HetNets such as energy saving approaches are reviewed with particular emphasis on

sleep mode mechanisms. HetNet deployment approaches are discussed in contrast to traditional

homogeneous networks. Other fundamental theories on wireless communication and Long Term

Evolution (LTE) technology are provided in Appendices A and B respectively.

Chapter 3 introduces the stochastic geometry approach to network analysis and makes a com-

plete review of all mathematical preliminaries. It then discusses all existing analytical results of

PPP-based homogeneous networks and HetNets that are relevant to the analysis in this thesis.

Presentation of the main contributions of this thesis begins in Chapter 4 which discusses user

connectivity in a PPP-based homogeneous network by utilizing existing cell size distributions.

Where idle BSs exist, aggregate interference reduces which consequently affects the coverage,

rate and energy performance. The network is then optimized to determine the optimal deploy-

ment configuration that minimizes its APC subject to coverage and rate constraints.

Chapter 5 discusses sleep mode approaches in a homogeneous network to adapt its energy

consumption to changes in user density. Two novel schemes called centralized and distributed

strategic schemes are then proposed and compared with existing conventional and random

schemes. In addition, appropriate approximations are utilized to simplify the analytical rela-

tionship between the prevailing BS-user density ratio and various major performance measures.

Chapter 6 analyzes the coverage probability and average rate performance of a general multi-tier

PPP-based HetNet implementing minimum BTD association scheme. It then presents an APC

minimization framework to determine the optimal HetNet deployment configuration subject to

appropriate coverage probability and average rate constraints. Optimization is performed on a

HetNet using minimum BTD and two other existing user association schemes.

Chapter 7 extends existing cell size distributions of an unbiased two-tier HetNet to a biased

two-tier HetNet. The distributions are then used to investigate user occupancy of cells as the

user density varies spatiotemporally. Presence of idle BSs has an effect on aggregate interference

which impacts coverage, average rate and energy performance of the HetNet.

Finally, Chapter 8 provides a general conclusion of the results and discussions in this thesis. It

also discusses some ideas for future work. References and appendices follow this chapter.
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Chapter 2

Fundamentals of Green HetNets

2.1 Introduction

The power consumption of cellular networks has generated economic and ecological concerns

because of the rising cost of energy and associated greenhouse gas emissions which cause global

warming. This has necessitated the research community to seek cellular network solutions that

can reduce energy bills and CO2 emissions but this task is very challenging. A comprehensive

energy consumption analysis of the network should consider all stages of the process such as

manufacture and production, distribution, operation and possible waste treatment. Each stage

is considered in isolation to identify the worst offenders [31], [32], [33].

2.2 HetNet Deployment

Traditionally, cellular networks have always consisted of a homogeneous deployment of macro

BSs in a planned fashion to provide the required network coverage and capacity per unit

area. However due to the explosion of data traffic demand and the high energy consumption

associated with installing more macro BSs, such networks are no longer feasible economically

and ecologically [18]. Future networks require a strategic combination of different types of

BSs to enhance coverage and provide targeted capacity enhancements. A HetNet architecture

provides operators with opportunities to manage their network CAPEX and OPEX. The BS

types in a typical HetNet deployment include macro BSs, micro BSs, pico BSs and femtocell

access points (APs) [5], [22], [23], [34].

Macro BSs transmit the highest power which gives them the widest coverage, typically on

the order of 1 km or more. They are normally installed in outdoor locations to provide wide

coverage. However they also have the highest power consumption of all BSs, transmitting

power in the order of 5-40 W. Micro BSs and pico BSs are similar to regular macro BSs only

that they cover relatively smaller coverage areas. They are installed by the operator in planned

locations, mostly in traffic hotspots and coverage holes. By design, micro BSs transmit relatively

higher power than pico BSs. Pico BSs use omnidirectional antennas and typically transmit
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approximately 0.25-2 W in outdoor deployments and 100mW or less in indoor deployments.

Their backhaul connection may be via microwave links or fiber optic [5].

Femtocell APs are low-power, low-cost and small coverage data APs that are installed in indoor

locations to enhance indoor coverage and capacity. They are typically plug-and-play devices

that are installed by the subscriber and the operator has no control over their location in

the network. Femtocells use existing digital subscriber line (DSL) or cable modem for their

backhaul connection to the parent network. They use omnidirectional antennas and transmit

a power of 100 mW or less. Compared to other BSs, femtocell APs require very low initial

investment in hardware and have very low energy consumption [5], [35], [36], [37], [38], [39].

Femtocells are classified according to their user association mechanisms into closed, open and

hybrid access [35]. A closed access femtocell restricts access to only registered terminals while

an open access FAP connects any terminal of the same operator if it is within range. A femtocell

can also be hybrid where any terminal can access it but registered terminals have priority. In

the DL, a closed access femtocell appears as a coverage hole and can be a source of significant

interference to restricted terminals located nearby [5]. It is estimated that at least 50% of

all voice connections and 70% of all data traffic will originate from indoor locations [35], [36].

Therefore femtocells are potentially an effective solution to enhance indoor user experience and

boost overall network capacity. It was estimated that nearly 50 million femtocell APs would

have been deployed in networks all over the world by the end of 2014 [37], [40].

Relay nodes are installed mainly to extend coverage to an uncovered area or to boost coverage

around the cell edge region [41]. A relay receives a signal from the BS and retransmits it over

the surrounding area. Thus it appears as a BS to the mobile terminals that it serves while it

appears as a mobile terminal to its parent BS. Each relay is equipped with an omnidirectional

antenna on the access part and a directional antenna pointing towards the parent BS for the

backhaul connection. Relays also transmit approximately 0.25-2 W in outdoor deployments

and 100 mW or less in indoor deployments [5], [24]. Relay nodes use the same air interface

resources to connect back to the parent BS. If the backhaul frequency band is the same as

that used by the relay node to communicate to/from the user on the DL/UL, the relay node is

referred to as ‘in-band’. Otherwise, the relay node is referred to as ‘out-of-band’. Out-of-band

relays require dedicated spectrum which reduces overall network SE. In-band relays are more

attractive to operators although they present more challenges in the physical layer [5].

2.2.1 BS Power Consumption

Fig. 2.1 (a) shows a breakdown of the percentage contribution of various network elements

to the total energy consumption [31], [42]. The result shows that BSs are responsible for

about 57% of total consumption which is by far the highest. Therefore efforts to save energy

should concentrate on the access part of cellular networks as this is clearly where the biggest

energy-saving opportunities lie.

Fig. 2.1 (b) shows the embodied and operational energy consumption of both the BS and

mobile handset [31]. It is clear that the cost of operating BSs is much higher than that of
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handsets. However, the mobile handset has a much higher manufacturing/embodied energy

because they have a very short life time of about 2 years compared to BSs whose operational

lifetime reaches 10-15 years. In addition, much fewer pieces of BSs are manufactured compared

to the number of handsets. Significant progress has been made in the manufacture of more

energy efficient mobile handsets. For instance, carbon footprint per subscriber reduced from a

high of 100 kg of CO2 emission per year in the early 1990s to about 25kg in mid-2000s. However,

the overall carbon footprint of mobile handsets continues to increase as their volume continues

to increase dramatically [43]. To further reduce the embodied energy of mobile handsets, the

manufacturing process needs to be more energy efficient and their lifetime needs to be improved,

for example by recycling them [31], [42].

To identify where the opportunities for energy saving lie in a BS, it is necessary to breakdown

its total consumption into contributions of its constituent elements namely the power amplifier

(PA), a radio-frequency (RF) TRX module, a BB unit, a DC-DC power supply, a cooling

system, antenna interface and an AC-DC mains supply [19]. Fig. 2.2 shows a simple block

diagram of a BS architecture which can be generalized for all types of BSs (only one transmit

chain is shown). Each BS consists of at least one transceiver (TRX) where one TRX serves one

transmit antenna in the DL. The components that consume the most power are the BB unit,

the RF TRX and PA unit, antenna system and the cooling system [19].

The antenna system loss can be modeled using the losses caused by the feeder, antenna bandpass

filters, duplexers and matching components [19]. In cases where the BS is physically separated

from the antenna, a feeder loss of about lfeed = 3dB should be added. Using a RRH in a

macrocell removes the need for a feeder because the PA is located at the same location as the

antennas (in the tower). Smaller BS types also have negligible feeder losses [19].

The best operating point of the PA is near the saturation point. In LTE however, the PA is

forced to operate way below this point in a more linear region (6-12 dB below saturation) due

to non-linear effects [19]. Non-linear effects cause signal distortions which result into adjacent

channel interference (ACI) and performance degradation at the receiver. Unfortunately, this

high operating back-off translates into a poor PA efficiency ηpa, increasing its power consump-

tion according to Ppa = Pout/ηpa(1− lfeed) [19].

The RF TRX consists of components for transmission on the DL and reception on the UL. The

BB unit is responsible for carrying out digital operations such as digital up/down conversion,

filtering, modulation and demodulation, signal detection, channel coding and decoding etc [19].

The DC-DC power supply, mains supply and cooling introduce further power losses in the BS.

However, RRHs and small BSs use natural air circulation for cooling and therefore do not incur

cooling losses [19].

2.2.2 BS Linear Power Model

The total amount of power consumed by a BS depends on its type and operating mode [19].

Macro BSs generally consume more power than smaller coverage BSs such as micro and pico
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Figure 2.1: (a) Typical energy consumption of a cellular network; (b) CO2 emissions per subscriber
per year for the BS and user.
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Figure 2.2: Architecture of a general BS showing one transceiver chain.

Table 2.1: Power Parameters for Different BS Types

BS Type N Pmax [W] P0 [W] ∆p Psleep
Macro 6 20.0 130.0 4.7 75.0
Micro 2 6.3 56.0 2.6 39.0
Pico 2 0.13 6.8 4.0 4.3
Femto 2 0.05 4.8 8.0 2.9

BSs. Power consumption is highest when the BS is in active mode (denote as Pact) but consid-

erably reduces in sleep mode (denote as Psleep). When a BS is in idle mode, it still consumes a

significant but fixed amount of power. Simulations in [19] show that the input power of a BS

varies linearly with its output power. For a K-tier HetNet, the power consumption of a k-th

tier BS in active and sleep modes is expressed as

Pcons,k =




Pact,k = NkP0,k +∆kPk, 0 < Pk < P k

Psleep,k = NkPslk , P k = 0
(2.1)

where Nk is the number of transceiver chains, P0,k is the fixed power consumption at zero

load, ∆k is the slope of the load-dependent power consumption and Pk ∈ [0, P k] where P k is

the maximum transmit power. These parameters are defined in [19] for different BS types as

shown in Table 2.1 [19]. This power model also verifies Fig. 2.2 which shows that BS power

consumption increases proportionally with the number of transceiver chains.
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2.3 Energy-Aware Cellular Deployment

The biggest challenges currently facing mobile cellular network operators are two fold; on one

hand, data traffic demand is increasing exponentially which calls for network upgrades and

expansion together with BS densification to improve capacity significantly. On the other hand,

the associated CAPEX and OPEX have affected operator revenues which are expected to begin

shrinking from 2018 onwards [4]. The cost of energy constitutes a large and rising proportion of

total OPEX which is a direct consequence of the required BS densification. This has motivated

researchers in both industry and academia to seek network solutions that can enhance network

capacity and minimize energy consumption of current and future networks.

Furthermore, ecological concerns about greenhouse gas emissions associated with network op-

eration has also led to calls for more energy efficient cellular networks. It was estimated in 2013

that the ICT industry was responsible for about 10% of global electricity consumption and

about 4% of CO2 emissions (which is expected to double by 2020) [21], [44]. The increasing

prevalence of smartphones and tablets has increased data demand; for example, the year 2012

saw data consumption of 10 GB per subscriber and it is estimated to increase to 82 GB by 2020

[45]. These smart devices and their associated data-hungry applications, which often require

latest cellular technologies, have directly increased energy consumption; for instance, an LTE

network consumes 60 times more energy than a 2G network to provide the same coverage [46].

2.3.1 Traffic Profile vs Power Consumption

Since mobile cellular networks are traditionally planned to meet peak traffic during the busy

hour, their utilization drops during off-peak periods. However, a typical cellular traffic profile

shows very deep variations between peak and off-peak traffic levels [21], [47], [48]. Generally

on a typical day, these two main factors influence the traffic profile [49]-[50]:

1. The daily traffic profile varies in time, from very low levels (early morning hours) to high

peaks (lunch time or evening hours).

2. The daily spatial movement of a large number of mobile subscribers from residential areas

to the office and commercial districts in the morning and their return in the evening hours.

These two factors require that network capacity is provided to meet the peak traffic demand

at all times and in all geographical locations. However in more than half of observed areas,

the maximum-to-minimum traffic ratio is larger than five and it is more than ten in 30% of

these areas [51]. Therefore there is a need to closely adapt network energy consumption to the

spatiotemporal variations in the traffic profile.

Furthermore, traffic load at a BS is a major determinant of its power consumption [21], [52],

[53], [54]. Whereas an idle BS consumes a fixed amount of power [19], its the load-proportional

power consumption constitutes more than half of overall consumption at peak load; for instance

in LTE, about 60% of power consumption is load-proportional [55]. The rationale of a load-

proportional energy profile is that at high load, more transmission resources are required.
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Ideally, the fixed power consumption of a BS should be close to zero when it is idle; in other

words, all energy consumption should be perfectly load proportional [56].

2.3.2 Energy Saving Approaches

Researchers are considering the following categorical approaches to minimize the energy con-

sumption of future high capacity networks without affecting their QoS [21]:

• Using energy efficient hardware

• Using renewable energy sources

• Strategically deploying HetNets

• Optimizing radio transmission techniques

• Sleep mode techniques

Energy efficient hardware: Since BSs are responsible for about 57% of the total network

power consumption, energy efficient BS hardware can potentially result in huge savings [57].

For instance the PA, which consumes the most power in a BS, is hugely inefficient, dissipating

over 80% of its input power as heat. Whereas the PA power efficiency can potentially be

improved to 70%, giving huge energy savings, the implementation cost is very high [57].

Renewable energy sources: renewable sources of energy such as wind and solar do not emit

any greenhouse gases and are abundantly available in some areas [49], [50]. In under-developed

areas with no grid power, off-grid BSs which use hydrocarbon fuels are ten times more costly to

operate [33], [58]. In such scenarios, renewable energy powered BSs would be ideal. However,

renewable energy can be intermittent which might affect continuous reliable service provision.

Therefore hybrid systems, which combine both renewable sources and fuel-powered generators

(or grid power), are perhaps a more desirable solution [59].

HetNet Deployment: Small BSs can be located strategically to reduce the propagation

distance of users and potentially reduce energy consumption. The benefits are maximized when

small BSs are deployed to boost coverage in the edge region or to boost capacity in hotspots.

Small BSs can also benefit the network by reducing the required density of macro BSs which

consume significantly more energy. However, deploying too many small BSs may reverse this

benefit. Significant energy savings can be achieved by applying sleep mode techniques in such

dense HetNets [54], [60], [61], [62]. For instance, closed access femtocell APs should switch off

automatically until a registered user needs to use them. Therefore their sleep mode algorithm

may be controlled via user activity detection [63]. This algorithm may also be extended to

open access femto APs if they are not a major contributor to the overall outdoor coverage.

Radio transmission techniques: This involves techniques such as MIMO, cognitive radio,

cooperative transmission, resource allocation and channel coding which can all improve EE of

cellular networks [31], [64], [65], [66], [67], [68]. Normally there is a tradeoff between EE and
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other performance measures since they are often contradictory. The following four tradeoffs

related to EE have been identified in [52], [53] to guide the design of green networks:

1. Deployment efficiency-EE: Deployment efficiency (DE) is essentially the throughput per

unit deployment cost where the total cost includes both OPEX and CAPEX. DE and EE

are sometimes contradictory; for instance if few BSs are deployed (low deployment cost),

the cells are larger which requires high transmit power and can worsen EE [52].

2. SE-EE: SE defines the throughput per unit bandwidth and is a common criterion used to

study the performance of cellular networks. In some cases, EE and SE are contradictory;

for example if transmit power is increased to enhance SE, EE may worsen as a result.

Consider an AWGN channel in which SE is expressed as

ηSE = log2(1 + SNR) [b/s/Hz] (2.2)

where SNR = Pt

NoB , Pt is the transmit power, No is the AWGN power spectral density

and B is the system bandwidth. Hence, EE is expressed as

ηEE =
BηSE
Pcons

=
BηSE

(2ηSE − 1)NoB + Pc
[b/J] (2.3)

where Pcons = Pc + Pt and Pc is the fixed zero-load (or circuit) power consumption. In

an ideal system where Pc = 0, EE is bounded as follows: (i) as ηSE → ∞, ηEE → 0;

(ii) as ηSE → 0, then ηEE converges to the constant 1/(Noln2) [52], [53]. However, when

Pc > 0, the EE-SE relationship is defined by a bell-shaped curve as shown in Fig. 2.3.

Moreover, EE reduces when Pc increases which is intuitive.

3. Bandwidth-power: Using the Shannon capacity equation, the relationship between trans-

mit power and bandwidth expressed as

Pt = NoB(2R/W − 1) (2.4)

where R is the capacity in b/s. This shows that if bandwidth is increased, transmit power

can be reduced to maintain the same target rate. In practice however, besides the fact

that bandwidth is limited, other energy costs related to the circuit power consumption

actually increase with bandwidth. Analysis in [52] shows that for a target EE in a practical

system, the power-bandwidth relationship is non-monotonic.

4. Delay-power: Delay or latency is a QoS measure that measures the composite signal

processing and propagation time. In an AWGN channel, a bit of information takes tb =

1/R seconds to be transmitted. Therefore, the relationship between delay and power is

Pt = NoB(21/tbW − 1) (2.5)

which shows that Pt decreases monotonically with tb. However in a practical network,

the also delay includes queuing time. According to [52], the delay-power relationship

is no longer simply monotonic. In addition, various services especially in HetNets have

different delay tolerances and this can impact the optimal power usage.
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Figure 2.3: Tradeoff between EE and SE in an AWGN channel (σ2 = 1).

Sleep mode techniques: This involves switching off or putting some components or the

entire BS or network into sleep mode during off-peak hours [21]. Sleep mode algorithms may

be centralized at the switching centre, distributed in the BSs or instigated by user activity [60].

Existing works on sleep mode techniques are discussed in the next section.

2.4 Sleep Mode Techniques

Generally as the traffic demand varies in space and time, the network can selectively switch

off entire BSs or put them into sleep mode to save energy. Local sleep mode approaches

may include switching off individual components such as the PA, base band unit and cooling

system to save the bulk of energy consumed by the BS [19]. For instance in [69], the authors

investigate an energy saving technique where a 3-sectored macrocell autonomously varies its

number of sectors based on the prevailing traffic conditions. At low traffic, omnidirectional

operation of the macrocell site can give energy savings of 30%. This dynamic desectorization of

the macrocell can be achieved by connecting the three sector antennas through one transmission

chain via a 3-way power splitter; the other two transmissions chains are shut down.

However, global (or network-wide) approaches to the analysis of network energy consumption

are potentially more beneficial and can give better energy savings. Global techniques involve

analyzing the whole traffic profile over a number of sectors or the entire network and switching

off an appropriate number of BSs such that the remaining BSs provide the service. Authors in

[70] argue that sleep mode decisions should consider the load profile in the wider geographical

coverage area of the network as opposed to localized decisions although this makes its manage-

ment more difficult. Authors in [71] show that coverage and energy performance of the network

are improved when cells are switched off based on their levels of activity.

Furthermore, authors in [72] study an energy minimization problem subject to DL coverage and

UL power constraints. Some macrocells are switched off and replaced by microcells coupled
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with power adjustment techniques to maintain acceptable QoS. In [73], a joint optimization of

the BS sleeping control and power matching schemes is performed to achieve flexible tradeoffs

between power consumption and QoS. In [74], authors study the effect of sleep mode on average

user capacity and optimize the transmit power of remaining BSs to maintain the outage target.

In [75], authors proposed a technique of managing power consumption by switching off some

BSs and balancing the prevailing traffic load between the remaining active BSs. In [76], author

proposed a technique that prioritizes cells with the fewest users for sleep mode and this enhances

coverage probability, average rate and EE of the network.

2.4.1 Sleep Mode Enablers

The implementation of sleep mode is not trivial because there are many dynamic parameters

that have to be considered. Therefore, sleep mode algorithms have got to rely on several

techniques to minimize their disruption of the network. Most of these techniques depend and

require cooperation between BSs to maximize their energy saving potential.

Perhaps the biggest challenge to the implementation of sleep mode is the risk of emergence of

coverage holes and overall drop in QoS once some BSs are put into sleep mode or switched off.

An obvious solution is for the remaining BSs to zoom out and cover any coverage gaps. Zooming

out requires BSs to increase their transmit power but this increase in transmit power may not

significantly increase the total BS input power [19]. In [77], two algorithms are proposed to

control the cell zooming process. In the centralized algorithm, a separate server controls the

process; the server transmits appropriate messages to BSs that should go into sleep mode and

to those that should zoom out. In the distributed algorithm, BSs in a cluster collaborate to

switch off/zoom out appropriately so as to save energy while maintaining the QoS. Cell zooming

can also be used to offload traffic from congesting cells (which zoom in or shrink their coverage)

to cells with excess capacity (which zoom out to enhance their coverage area) [21].

User association is an important function in cellular network because it determines which BS

each user connects to. It can also be used to enhance the performance of sleep modes. For

example if a BS is put into sleep mode, its affected users connect to any of the other remaining

BSs. However, user and BS locations and the prevailing load of all neighboring BSs has to be

considered before users are assigned. In other words, an affected user should not necessarily

connect to its nearest or ‘best-SINR’ BS if it receives better capacity (or more bandwidth)

from a more distance or ‘lower-SINR’ BS [13], [21], [78], [79]. Therefore, an optimal user

association scheme that utilizes BS cooperation is required to maximize energy savings and

maintain acceptable QoS.

2.4.2 Implementation Approaches

The approaches to implementing sleep algorithms differ in two main ways [21]: (i) whether

algorithms are dynamic (dynamic switch schemes) or run periodically at a fixed frequency

(fixed switch schemes), and (ii) whether the algorithms are centralized or distributed. These
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four approaches have implications on the complexity of implementation of sleep mode and the

realizable energy savings.

In fixed switch schemes, the sleep mode algorithms runs a fixed number of times in a given

period while in dynamic switch schemes, the algorithms runs dynamically in response to any

changes in the network. Generally dynamic schemes have a better performance than fixed

schemes [77]. Moreover, high-frequency fixed switch schemes also give more energy saving than

their low-frequency counterparts [80]. Dynamic schemes are even more superior in medium-to-

high capacity environments where they respond and adapt to the dynamic traffic profile [81].

It is argued in [81] that in coverage-limited environments (low traffic), fixed switch schemes are

more beneficial because the coverage constraint prevails over sleep mode objectives.

However, dynamic schemes generally require more switching operations especially if the traffic

is highly fluctuating which can impact energy savings. The costs of switching involve overheads,

transient time, power for monitoring and switching, switching delays, and possible impact on

the lifetime of BSs [21], [80]. This presents an interesting tradeoff between the cost of frequent

switching and the absolute energy savings. Authors in [49] studied the cost of transient periods

on overall energy savings and found that transient periods are very short (order of 1 minute)

and therefore have no significant effect on the energy savings of sleep mode. However, since

most legacy BSs are not designed for frequency switching (on and off), future designs should

consider this requirement to further minimize transient period and its energy cost.

On the other hand, both centralized and distributed sleep mode schemes are dynamic in na-

ture [21]. In centralized schemes, the algorithm is controlled by a central server all over the

network or within a cluster of BSs [62]. BSs which have more information about the network

environment cooperate to maximize energy saving while preventing coverage gaps. Where the

algorithm is centralized in clusters, cluster-based controllers should cooperate to further en-

hance performance. In distributed algorithms, the user initiates sleep mode by deciding which

BS it connects to. Then each BS can make an independent decision on whether to remain

active or go to sleep depending on its level of association. This scheme has the advantage of

having no coordination overheads between BSs. However, centralized schemes generally give

better energy performance because they have more information to work with. To get a fair

comparison of both approaches, the associated coordination overheads of centralized schemes

should be considered [21], [82].

2.5 Energy Performance Metrics

The energy performance of a system can be quantified using a number of metrics. A com-

parison of the energy performance of different network designs is necessary to allow operators

to incorporate such information into their long-term plans as they seek to reduce energy bills.

Energy metrics can either be measured at the system level or node level [21]. Node level metrics

provide useful insights into the energy savings possible at a single node such as a BS. However

it is almost always the case that energy saving in one node is made possible by increased con-

sumption in another node; for instance, if one node goes to sleep mode, another node zooms
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out and takes on extra load. Therefore, system level metrics are simulations generally provide

a more balanced and accurate performance indicator [83]. There are many metrics in existing

works; the main ones are discussed in this thesis.

Among the classical metrics is a common metric called energy efficiency (EE), which quantifies

the number of bits transmitted per unit amount of power consumption [84], [85] i.e.

EE =
M

E
[bits/Joule] (2.6)

where M is the network sum rate in bps and E is the energy consumption in Joules. Its recip-

rocal, called energy consumption ratio (ECR), measures the power consumption per delivered

bit of information [86], [87]. Two other metrics, energy consumption gain (ECG) and energy

reduction gain, use the ECR metric to compare two systems as follows [88], [89]

ECG =
ECR1

ECR2

and ERG =
ECR1 − ECR2

ECR2

× 100% (2.7)

where ECR1 and ECR2 are the ECRs of any two systems.

In networks with sleep mode schemes, energy savings at node level can be quantified by the

fraction of time that a given node spends in sleep mode [21] i.e.

Energy saving =
Tsleep
Ttotal

(2.8)

where Tsleep is the time spent in sleep mode and Ttotal is the total measurement time. However,

this metric depends assumptions such as (i) fixed power consumption in active and sleep modes,

and (ii) instantaneous switching with no power consumption.

At system level, a common metric is area power consumption (APC) which quantifies the

absolute amount of power consumed by a network per unit area. For instance in a general

K-tier HetNet, the APC in (Watts/m2) is calculated as

APC =
K∑

k=1

λkPcons,k (2.9)

where λk is the BS density and Pcons,k is shown in (2.1) as either Pact,k or Psleep,k.

Another common metric called performance indicator (PI) was proposed by ETSI as [21], [90]

PIrural =
Total coverage area

Power consumption
and PIurban =

Number of users in peak hour

Power consumption
. (2.10)

In rural areas where user density is low and sparsely distributed, PIrural uses total coverage

area. In an urban area, energy consumption per user is a more appropriate metric.

This thesis variously applies EE and APC to quantify the energy performance of homogeneous

networks and HetNets.
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2.6 HetNets as a Paradigm Shift

Multi-tier HetNets are different from traditional homogeneous cellular networks and their archi-

tecture raises important challenges in deployment, mobility support, interference management,

load balancing and bandwidth allocation. Finding suitable solutions to these challenges requires

a paradigm shift from the homogeneous network in the following ways.

2.6.1 Network Topology

In traditional macrocell networks, cells are commonly represented as hexagons on a grid with a

macro BS located at the centre of each cell. The boundaries between neighboring hexagons rep-

resent the cell edge regions where handovers are initiated. However, small BSs which typically

use omnidirectional antennas cannot be represented by a similar structure. They transmit

much lower power and their DL coverage areas are relatively small. Femtocells for example

may be scattered over the network area depending on where subscribers install them. Even

operator-planned pico BSs that are strategically located in the cell edge or hotspot areas cannot

conform to the regular lattice structure [6], [7], [24]. Therefore system models for analyzing

HetNets must simulate this non-regular topology to enhance accuracy of predicted results.

2.6.2 User Association

Traditionally users connect to a BS which provides them with the best SINR. Under the as-

sumption that all BSs are fully loaded, such a strategy maximizes network throughput [6].

However, the transmit power of a pico BS may be up to 20 dB lower than that of the macro

BS. This causes a large disparity between the DL coverage areas of the macro BS and overlaid

pico BSs which pushes the handover boundary on the DL very close to the pico BSs. How-

ever, the power disparity on the UL is different since users in all cells have the same power

configuration. This creates a mismatch between the UL and DL handover boundaries, making

user association more challenging in HetNets. If user association is based on the DL received

signal, macro BSs are likely to remain heavily loaded due to their high transmit power and

antenna gain while small BSs are likely to remain lightly loaded due to their small coverage

areas. This is undesirable because users in the macrocell tier are likely to have much lower

bandwidth compared to users in the small cell tier which is unfair and can potentially affect

the sum rate. Besides, many small BSs may remain idle which reduces the SE of the network

[91]. In HetNets, user association is a major design feature that affects many other performance

indicators such as mobility support, interference management, load balancing, etc [14].

2.6.3 Cell Range Extension

Network capacity can be enhanced by harnessing the potential of small BSs to offload traffic

from the congesting macrocell tier to the small cell tier. This offloading potentially enhances
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the average bandwidth per user in the HetNet and it can be used to implement fairness in the

sharing of network resources between users [91]. To ensure traffic offloading to the small cell

tier, the coverage of small BSs needs to extend outwards so as to encompass more users from

the underlaid macrocell tier. This concept is known as cell range extension [5], [91], [92], [93].

Cell range extension can easily be achieved by a simple technique called association biasing

where a user is biased by some degree to favor small BSs over macro BSs [6], [92].

For instance, assume a general K-tier HetNet and consider an association scheme where a user

connects to the BS from any tier that provides the best instantaneous SINR. Different bias

values are applied to different tiers; for example, all BSs in the k-th tier have a bias value

βk ≥ 1. Before cell association, this bias value is multiplied with the SINR received from all

k-th tier BSs i.e. βkSINRk,i where SINRk,i is the SINR received from the i-th BS in the k-th

tier. Therefore if βk ≥ βj, then cell association is biased to the k-th tier. The biased SINR

considered by the user for cell association purposes is expressed as [93]

SINRb
k,i = βkSINRk,i =

βkPk,iGk,i∑
j∈Bj/{bo} PjGj + σ2

(2.11)

where Bj is the set of BSs in the j-th tier, bo represents the parent BS, Pk,i is the transmit

power of the parent BS, Gk,i is the pathloss of the channel between the parent BS and the

user, Pj and Gj are the transmit powers and pathloss of all other interfering BSs respectively

and σ2 is the additive noise power. The user associates with the i-th BS in the k-th tier if

βkSINRk,i ≥ max
j,j 6=k

βjSINRj,i. Therefore biasing can easily be used to achieve load balancing.

The premise of biasing is that although a user might receive better SINR from a macro BS,

a small BS might avail the user with more bandwidth to maximize the rate [92]. To enhance

load balancing in such a case, user association is biased towards the small cell tier by assigning

small BSs with a larger bias value relative to macro BSs. For instance, simulations in [94]

showed that average user rate increases with the bias value up to a certain point and starts to

reduce. This presents an optimization problem of choosing a biasing factor that maximizes user

throughput. In general, the biasing factor should depend on the prevailing load conditions to

keep both macro BSs and small BSs sufficiently loaded so as to maximize the average user rate

[6]. In other words, user association should not only consider the received signal or SINR but

it should also consider the amount of accessible bandwidth at the BS it connects to. Although

biasing is difficult to optimize, it can be used to achieve this objective to some extent [6].

Fig. 2.4a shows user association between a macro BS and three pico BSs based on the “best

received SINR” criterion. Without biasing, the macro BS dominates and most users are con-

nected to it. Fig. 2.4b shows more balanced user association when pico BSs are associated with

a bias value which is 15 dB greater than that of the macro BS.

Biasing also has significant implications on the energy performance of the HetNet. While

biasing is useful, inappropriate biasing is counterproductive and can worsen both the SE and

EE performance of the HetNet [95], [96]. These works show that as biasing is increased, the

EE also increases up to a certain point beyond which it begins to reduce. Therefore, there is

an optimal bias value at which EE is maximized. In addition, analysis on a biased two-tier
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Figure 2.4: Impact of cell biasing on cell association.

HetNet in [97] showed that there is an optimal biasing value at which the APC of the HetNet

is minimized. Besides the load profile in the network, appropriate biasing should also consider

the number of tiers in the HetNet, its deployment configuration in terms of BS densities and

transmit powers, and the user association scheme.

2.6.4 Mobility Support

Cellular networks must support mobility by handing over terminals in on-going sessions from

one cell to another along their path. HetNets provide a new challenge to mobility support

mainly because some BSs have very small coverage areas. For a slow-moving user such as a

pedestrian, it may be beneficial to hand it over to a small BS along its path to assist in traffic

offloading and also to give a better quality link. For users moving at vehicular speeds, any

handovers to small BSs may last a few seconds at most. Thus it may be beneficial to avoid

such handovers to minimize costly signaling overheads and potential handover delays and call

drops. However a user that does not handover may generate strong interference to the small BS

on the UL or suffer strong interference from the small BS on the DL. In OFDMA, intelligent

and mobility-aware resource allocation can mitigate this interference. Studies by 3GPP have

shown that the average handover failure rate of a macro-pico HetNet may reach as high as

60% which is twice as high as in macrocell only networks [6], [7], [98]. Since biasing is used to

artificially increase the small cell coverage area, [99] shows that an optimal speed-dependent bias

value exists at which the speed-dependent coverage probability of the HetNet is maximized.

2.6.5 Interference Management

Interference is a big challenge that can greatly limit user throughput in HetNets. Due to the

high transmit power of macro BSs, the handover boundary between macro BSs and overlaid

small BSs is pushed close to the small BSs. As a consequence, small BS users are likely to

suffer very high interference from the macro BS on the DL. Similarly, small BSs can cause

high interference to nearby macro BS users [87]. On the UL, nearby macro BS users can cause

significant interference at the small BS. Similarly, small BS users can cause UL interference at

the macro BS [5], [6]. To illustrate, consider the following interference scenarios in a two-tier
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HetNet of macro BSs and small BSs:

• Cross-tier interference involves any two BSs in different tiers (either a macro BS caus-

ing interference to a small BS or vice versa). Fig. 2.5 shows an example of cross-tier

interference suffered by a femtocell user from a nearby macro BS.

• Co-tier interference exists between any two BSs in the same tier such as small BS to a

small BS. Fig. 2.5 shows an example of co-tier interference at the user in Picocell 2 caused

by the DL transmission of the BS of Picocell 1.

Biasing association to favor small BSs worsens the interference problem since the high-power

macro BSs become interferers instead [6], [98]. As Fig. 2.4b showed, a pico user may receive up

to 15 dB more interference from a nearby macro BS. This interference, coupled with the low

transmit power of small BSs, can easily wipe out the intended gains of cell range extension. It

is therefore essential to design robust techniques that can manage or control this interference

[91]. Two of such techniques use coordination of resource usage by BSs to manage interference

and maximize average capacity of the HetNet.

Inter-Cell Interference Coordination (ICIC): In ICIC, a small BS interacts with a high-

power macro BS to coordinate their transmission activities and avoid interference in both

control and data channels. Using resource partitioning, the interfering macro BS can use part

of the resources and leave the other part to be used by the small BS. For example, the macro

BS may reserve subframes within a radio frame for pico BSs, the number of which depends on

the loading and bandwidth requests on each BS [7], [91], [100]. In general, this coordination

could involve transmission power control to facilitate spatial reuse of resources, beam forming

to reduce interference in specific directions, etc.

Slowly-Adaptive Interference Management: In this approach, the coordination of re-

sources takes a long-term view compared to ICIC. The transmit powers of BSs and UEs are

negotiated and allocated longer time scales than the radio frame. The negotiation is premised

on the objective of maximizing a given network metric such as network capacity, average user

rate, fairness, etc. The algorithm to control this negotiation may be centralized or distributed.

In the centralized case, the central server must have access to all inputs needed for the optimiza-

tion algorithm. In case centralized control is not possible or feasible, distributed algorithms

can be used where BSs negotiate via the X2 interface and/or over-the-air (OTA) messages. For

example, small BSs can send their load and bandwidth requests via the X2 interface and the

macro BSs can reply via the same interface. The OTA messages can be used where the X2

interface is not available or does not meet the delay and/or bandwidth requirements [91].

2.6.6 Backhaul Challenge

Dense HetNets are expected to be a major composition of the evolution towards high capacity

5G networks. However high capacity in the access layer must be matched by sufficient capacity

in the backhaul to support end-to-end QoS. Most works assume the existence of a perfect
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Figure 2.5: HetNet layout showing co-tier and cross-tier interference

backhaul but potential bottlenecks need to be considered in dense and high-capacity HetNets

[6]. In addition, current backhaul technologies based on DSL and NLOS microwave links have

limited capacities and may be unsuitable [101]. Some works have proposed backhaul-aware user

association algorithms to efficiently utilize the available backhaul resources [102], [103].

2.7 Deployment Scenarios of HetNets

In a multi-tier HetNet, bandwidth allocation is a challenging task that may result into increased

cross-tier interference and lower network SE. Several techniques can be used to allocate the

available frequency band among the tiers with varying consequences on the network coverage

and rate performance as discussed next.

2.7.1 Co-channel Deployment

In co-channel deployment, small BSs and macro BSs are deployed to use the same frequency

carrier for their transmissions. This technique avoids carrier segmentation and is scalable to

all LTE system bandwidths and does not require carrier-aggregation-capable mobile terminals.

However, the high potential for cross-tier interference can greatly limit the throughput of end

users. Resource partitioning is an effective technique to manage interference in a co-channel

deployment by ensuring that different channels are allocated to the macro BSs and overlaid

small BSs at any given time [5]. The principles of resource partitioning can be applied to

both the DL and UL. In LTE Rel-10, adaptive resource partitioning is enabled by allowing BSs

to exchange resource scheduling information via the X2 backhaul [5]. High-power macro BSs

avail small BSs with information about their scheduled resources for DL transmissions. This
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information also identifies subframes which are to be left unutilized (almost blank subframes

(ABS)) so that small BSs can use them during this period.

2.7.2 Multi-carrier Deployment

In multi-carrier deployment, macro BSs and small BSs are deployed on different frequency

carriers F1 and F2. For example, in a two-tier macro-femto HetNet, macro BSs use carrier F1

while closed-access femtocells use carrier F2. Carrier F2 is necessary to ensure that closed-access

femto APs do not cause a lot of interference to nearby co-channel macrocell users on carrier F1.

This technique can also be used with other small BSs (open-access femto APs, pico BSs, micro

BSs, etc). Multi-carrier deployment has poor temporal and spatial SE because it restricts each

carrier to a single tier of the network [5].

2.7.3 Carrier Aggregation

An improved technique is carrier aggregation where the macrocell tier can access both carriers

while the closed-access femto BSs use only one carrier F2. In this arrangement, macro BSs have

complete coverage on carrier F1 and partial coverage on carrier F2 (due to closed-access femto

BSs appearing as coverage holes to restricted users). However, only carrier-aggregation-capable

mobile terminals can exploit both carriers. This technique also requires a lot of spectrum and

does not scale down to smaller bandwidths like a single carrier LTE system is capable of doing.

This is due to the inefficiencies associated with smaller bandwidths and the limitation of peak

throughput for users that are not carrier-aggregation-capable [5].

Carrier aggregation is also applicable to open small BSs. In this case, it is more beneficial that

both macro BSs and small BSs have access to both carriers. Macro BSs overwhelm small BSs

in terms of coverage area due to their high transmit power and antenna gain. To counter this

and improve performance, the macro BS transmits nominal power on carrier F1 to maintain

normal macrocell coverage while open small BSs use carrier F2. Macro BSs also access carrier

F2 but transmit less power than the nominal value they transmit on carrier F1. Small BSs are

also allowed to access carrier F1 to enhance their capacity around the small cell BS [5].

2.8 Summary

Energy consumption is a major contributor towards overall OPEX incurred by operators. In

remote areas with no grid power, BS equipment is powered by diesel generators which worsens

both OPEX and greenhouse gas emissions into the atmosphere. This chapter identified the

BS as the highest contributor to overall network energy consumption. Within the BS, the PA

contributes about 60% of the total consumption. A linear power model is used to calculate

the input power consumption of various BS types. Metrics such as EE and APC facilitate

comparison of the energy performance of different mobile network systems.
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Due to exponentially increasing traffic demand, operators must continue to expand the capacity

and improve the quality of their networks. With falling revenues due to increased competition,

a cheaper and energy efficient solution is required to improve network capacities and overall

QoS. The HetNet is a new kind of deployment that combines the traditional macrocell layer

with low-power and small-coverage BSs to provide targeted capacity and coverage enhance-

ments. However, the HetNet paradigm introduces different engineering challenges that must be

overcome to achieve these objectives. Such dense HetNets can become underutilized as traffic

demand inevitably varies spatiotemporally. During low traffic conditions, sleep mode schemes

can be used to switch off some BSs and adapt energy consumption to changes in traffic demand.
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Chapter 3

Stochastic Geometry Approach to

Network Analysis

3.1 Introduction

Traditionally, mobile cellular networks have been analyzed by assuming regular topologies where

cells are represented as hexagonal, square or circular shapes with a BS node located at the center

of each cell. Mobile users are either placed in the cell according to some defined distribution

model, or they are also located deterministically [104]. Therefore, grid topologies assume that

all cells have the same coverage area, a scenario that is very unlikely especially in urban and

suburban areas due to the random clutter. With such topologies, it is very difficult to obtain

tractable analytical models to quantify the SINR performance of randomly located users. Monte

Carlo simulations are usually performed using software to investigate coverage, capacity and

other performance measures. However, Monte Carlo simulations are very intensive and time

consuming and the results are always difficult to verify and may not always be reliable due to

human error in the coding [105].

Furthermore, due to the densification of current and future networks to support the expo-

nentially increasing data traffic demand, grid topologies will become even more unreliable to

predict the performance of real mobile networks. Moreover, HetNets combine several tiers of

different BS types which have different transmit powers and deployment strategies. In cases

where small BSs (such as femtocells) are deployed by subscribers, grid-based topologies cannot

capture the reasonably high probability that interfering BSs may be located relatively close to

each other. Hence, grid-based analysis is rather optimistic and usually gives results that are an

upper bound on actual performance [106].

Recently, a new tractable approach to network analysis called stochastic geometry has become

popular. In the stochastic geometry approach, mobile cellular networks are assumed to be

completely random such that both BSs and users are independently located according to ap-

propriate spatial point processes of defined intensity in the Euclidean plane [105], [106], [107],

[108]. This analytical approach ensures the lack of edge effects since the network extends in-

definitely and therefore considers all possible interference. In addition, it simulates cells with
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varying shapes and sizes. Although this approach facilitates very useful network analysis, it

also has a few obvious weaknesses: (i) due to the independent distribution of BSs, interfering

BSs may be deployed too close to each other which may generate higher aggregate interference

than likely in a planned real network; (ii) in reality, BS deployment is not independent due to

site planning, places where BSs cannot be deployed such as water bodies, difficulties with site

acquisition, etc; (iii) even in customer-driven deployment (such as femtocells), deployment is

unlikely to be uniform over the entire plane since deployment decisions are influenced by many

other factors such as real-world spatial traffic intensity which is not uniform, distance from

the nearest macro BS, etc. As a consequence of these weaknesses, this approach to network

modeling and analysis defines a lower bound on the performance of a practical network [106].

This chapter presents a discussion of the mathematical preliminaries required to analyze cellular

networks using the stochastic geometry approach. This is followed by a discussion of important

and existing analytical results, particularly those describing coverage probability and average

rate performance of both homogeneous networks and HetNets.

3.2 Mathematical Preliminaries

Stochastic geometry is simply the study of random spatial processes and is applied in a wide

range of fields including communications, astronomy, forestry, medicine, etc. In communication

engineering, stochastic geometry has found particular application in the modeling and analysis

of spatially-located mobile cellular networks to derive simple and tractable expressions for

coverage, capacity and other performance measures [106], [107], [109].

3.2.1 Spatial Point Processes

Consider N to be the set of all sequences φ ⊂ R
2 which satisfy the two conditions [107], [110]:

• Finite: Any bounded set A ⊂ R
2 contains a finite number of points.

• Simple: No two or more points are in the same location i.e. xi 6= xj for i 6= j.

If these two characteristics are satisfied, then the point process in R
2 is defined by a random

variable taking on the values in the space N. The point process is denoted by Φ, and its

instance is denoted by φ. Given a point process Φ, the number of points of the point process

within a bounded set A ⊂ R
2 is denoted Φ(A). By definition, a stationary point process is one

whose distribution is invariant to any translation. In other words, if Φ = xn is stationary, then

Φx = xn + x has the same distribution for all x ∈ R
2. Therefore, statistically the point process

is similar regardless of where it is viewed from within the space. The density of a stationary

point process Φ is obtained as [107], [109], [110]:

λ =
E [Φ(A)]

|A| , A ⊂ R
2. (3.1)
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3.2.2 Stationary PPPs

The stationary Poisson Point Process (PPP) is widely used in literature and is very popular

due to its independence property which eases and simplifies network analysis. In addition to

being stationary and simple, a PPP is also isotropic. Isotropy defines its invariance to rotation

i.e. if Φ = xn, then rΦx = rxn where r is the rotation around the origin [107], [109], [110]. For

a stationary PPP Φ of density λ, the number of points in a bounded set A ⊂ R
2 has a Poisson

distribution with mean λ|A| i.e.

P(Φ(A) = n) =
(λ|A|)n
n!

e−λ|A|. (3.2)

The single value λ completely characterizes a stationary PPP. In addition, the number of points

in disjoint sets A ⊂ R
2, B ⊂ R

2, ... are independent. Furthermore, the points within a set

A ⊂ R
2 are independent and uniformly distributed [107], [109]. Therefore, the following steps

can be followed to simulate a PPP of density λ over the region A = [−d, d ]2:

• Generate a Poisson distributed number N which represents the number of points. In

MATLAB, this is written as N=poissrnd(λ|A|).

• Generate N independent points that are uniformly distributed over the whole area. In the

R
2 plane for example, these points may be generated as xi and yi which are both uniformly

distributed. In MATLAB, the code may be written as (x,y) = unifrnd(-d,d,N,2) or

(x,y) = 2d[rand(N,2)-0.5].

• For any two points x, y ⊂ R
2 where x = (x1, x2) and y = (y1, y2), the Euclidean distance

is measured as ‖ x− y ‖=
√
(x1 − y1)2 + (x2 − y2)2.

3.2.3 The Thinning Property of PPPs

Consider a PPP Φ(λ) and assume that a node stays with a probability of p or is removed

from the process with a probability of 1 − p, independently of other nodes. If Φp denotes the

remaining nodes and Φq denotes those that are removed, then Φ = Φp ∪ Φq. This gives rise to

the following three thinning properties [107], [109], [110]: (i) Φp has the density pλ, (ii) Φq has

the density (1− p)λ, and (iii) Φp is independent of Φq.

3.2.4 Poisson-Voronoi Tessellation

Stochastic geometric analysis of cellular networks is very suitable particularly where the network

density is very high and the locations of BS nodes are highly randomized. Therefore, it is a very

useful tool for the analysis of future networks which are likely to comprise a dense deployment

of different types of BSs. A homogeneous PPP is one in which the density of the point process is

constant over the whole plane. In homogeneous networks, all BSs are assumed to transmit the

same amount of power. Therefore, ignoring shadowing and other channel effects, a user always
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Figure 3.1: Layout of a PPP-based homogeneous network where macro BSs (represented as •) and
users (represented as ×) have the same density i.e. λb = λu.

connects to its closest BS node [106], [109], [111], [112]. With added complexity, some works

consider shadowing by introducing random displacement in BS locations [105], [113], [114].

When shadowing is ignored in a homogeneous network, all users connected to a given BS are

located in a polygonal cell such that the distance to their parent BS is always less than the

distance to all other BSs. This polygonal cell, called a Voronoi cell Vb ⊂ R
2, is such that

Vb = {x ∈ X : d(x, Sb) ≤ d(x, Sk), ∀ k 6= b} (3.3)

where d(a, b) computes the distance between point a and site b. The set Vb consists of all points

which are associated to site Sb and whose distances to site Sb are always less than or equal to

their distances to all other sites in the set Sk. When the users and BSs are distributed according

to a PPP, the resulting Voronoi tessellation is called a Poisson Voronoi (PV) tessellation and

is illustrated in Fig. 3.1. A PV tessellation results when points generated according to a PPP

grow at the same isotropic rate until their boundaries get into contact [107]. In the context of

homogeneous cellular networks, a PV tessellation is a special case of a weighted PV tessellation

in which all BSs transmit the same power [106], [115]. Therefore, a weighted PV tessellation

defines a typical HetNet in which BSs in different tiers transmit at different power levels and

is illustrated in Fig. 3.2 [116].

3.3 Assumptions of the PPP-based Model

The analysis in this thesis is based on several network assumptions that are aimed at either

easing network analysis or providing simple and tractable results. The main mathematical

assumptions are presented in this section. These assumptions will be justified and any existing
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Figure 3.2: Layout of a PPP-based 3-tier HetNet of macrocells (large circles), picocells (triangle
shpwing s) and femtocells (squares) where Pb = 100Ps = 1000Pf and λf = 4λb = 8λb.

works that make similar assumptions will be referenced. After discussing all major assumptions,

a HetNet system model will be presented. Since a homogeneous network is a special case of a

HetNet with only one tier, the system model can be specialized accordingly.

3.3.1 Rayleigh Fading

This thesis considers Rayleigh fading to model the small scale fading effects of the wireless

channel on signal propagation. Rayleigh fading offers significant simplicity and tractability in

the analysis of PPP-based networks. However, Rayleigh fading may not always work especially

in small cells where the chance of a direct LOS link is high. Some works have applied more

generic fading models at the cost of decreased tractability, for instance in [105] and [106]. In

[105], Nakagami-m fading is applied in a general K-tier load-aware HetNet while [106] considers

a generalized fading phenomena in a homogenous network.

3.3.2 No Shadowing

Another major assumption made in this thesis is that long term shadowing is ignored. This

allows the topology of homogeneous networks and HetNets to resemble a PV and weighted PV

tessellation respectively which improves the tractability and simplicity of the analysis. Long

term shadowing is often ignored in many existing works; for example [71], [94], [106], [108],

[117]. Since shadowing affects cell selection, it potentially has an effect on the coverage, rate

and energy performance of a cellular network. However in order to verify the accuracy of

this assumption, Monte Carlo simulations in [106] showed that long term shadowing does not

significantly alter the analytical results.

Some works consider long-term shadowing in their analysis of PPP-based networks such as
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[105], [113], [114], [118]. In general, consider a K-tier HetNet whose k-th tier BSs are located

according to a PPP Φk ⊂ R
2 of intensity λk. If the serving k-th tier BS is located at xk, then the

power received is expressed as Pr(xk) = PkhkXk‖xk‖−α where Xk models long-term shadowing.

Long-term shadowing is simulated by introducing random displacement in the original BS

locations such that the received power becomes Pr(xk) = Pkhk‖X−1/α
k xk‖−α . Therefore, points

xk ∈ Φk are transformed to yk ∈ R
2 where yk = X−1/α

k xk. The new point process defined by

yk, denoted as Φ̂k ⊂ R
2, is also homogeneous with intensity λ̂k = λkE[X 2/α

k ] [105], [113], [114].

3.3.3 Full Buffers

Our analysis of sleep mode assumes that each active BS has a full buffer i.e. all its subchannels

are fully loaded. This assumption is commonly used in many works because it offers analytical

simplicity and tractability and is generally realistic in highly dense environments. This means

that a typical user on a given subchannel receives interference on that subchannel from all

active BSs. However it is rather pessimistic and generally defines a lower bound on network

performance. Some works attempt to study more realistic traffic models; for example, authors

in [119] consider spatial-time PPP-based user arrivals (bursty space-time traffic) and different

user-BS assignment schemes in a random PPP-based homogeneous network. In [105], the

aggregate interference is computed by considering some notion of network load as opposed to a

fully-loaded network. It would interesting to understand how results improve when a practical

traffic profile is considered.

In addition, some works assume that interference is independently thinned by switching off

BSs randomly (for example random sleep mode) but this ignores possible correlation between

BSs to determine which BSs go to sleep mode. The analysis in this thesis uses the interaction

between cell sizes and user distribution to determine the number of users in each cell and this

is sometimes used to decide which BSs go to sleep mode. For example, idle BSs are put to sleep

in the conventional scheme. Even centralized and distributed strategic sleep mode schemes

consider the distribution of users in cells. However a more realistic analysis of the effect of

possible BS correlation and real traffic demand is necessary to enhance the results.

3.3.4 Universal Frequency Reuse

Universal frequency reuse, where each BS can access the entire available bandwidth, is consid-

ered to investigate the worst case scenario in terms of aggregate interference. For instance, if all

active BSs are always transmitting over all channels in the DL, then a typical user receives inter-

ference from all BSs except its parent BS (it is assumed that there is no intra-cell interference).

However, universal frequency reuse is desirable because it maximizes spectrum utilization in

both space and time domains. Many existing works perform analysis using universal frequency

reuse such as [71], [94], [105], [106], [108].

In the PPP-based approach to network analysis, it is not straightforward to implement any

frequency reuse scheme because of the random nature and irregularity of the cellular layout.
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In [106], an idea of frequency reuse is implemented by assuming that each user accesses 1/f -th

of the available system bandwidth where f is the number of available bands. However, since

allocation of the bands to cells is random, some neighboring cells end up using the same band

which is not the design objective of frequency reuse. Therefore, this defines a lower bound on

actual frequency reuse where neighboring cells are always allocated different frequency bands.

3.3.5 No MIMO

The system model used in this thesis only considers a single antenna at both transmit and

receive ends of the link. A lot of existing works do not consider MIMO to simplify analysis

and enhance tractability of results [71], [94], [105], [106], [108]. Although MIMO techniques

enhance network capacity, they also consume more energy [16]. However some of the works

that analyze MIMO networks using stochastic geometry techniques include [120], [121], [122].

3.4 System Model

The following system model incorporates all the stated assumptions. Consider a general K-tier

HetNet consisting of a tier of macro BSs and (K − 1) tiers of small BSs, all independently

located on the 2-D Euclidean plane. BS locations in the k-th tier are modeled according to a

homogeneous PPP Φk of density λk. In addition, each k-th tier BS transmits the same power

Pk and is assigned a bias value of βk. The pathloss exponent of the k-th tier is αk where all

pathloss exponents {αj} > 2, ∀j ∈ K. Hence, each tier is uniquely described by the tuple

(λk, Pk, βk, αk). Users are also distributed independently according to a homogeneous PPP Φu

of intensity λu in the same Euclidean plane. Universal frequency reuse is considered such that

a typical user receives interference from every active BS other than its parent BS. Long term

shadowing is ignored so that the cellular layout resembles a weighted PV tessellation [115].

A homogeneous network is a special case of the HetNet when K = 1. Therefore, there is no

biasing and the network is described by the tuple (λb, Pt, α) where λb and Pt are the macro BS

density and transmit power respectively. Without shadowing, each user therefore connects to

its nearest BS which makes the layout resemble the PV tessellation shown in Fig. 3.1.

Without loss of generality, assume that a typical user is located at the origin and at a distance

rk from its serving k-th tier BS. The pathloss model considered is l(rk) = L‖rk‖−αk where L

is a pathloss constant. The fading loss is assumed to be i.i.d exponential i.e. hrk ∼ exp(1).

Therefore the power received by the typical user from its serving BS, denoted as bo, is expressed

as Pr,k = PkLhrk‖rk‖−αk . The resulting SINR is expressed as

SINR(rk) =
Pkhrk‖rk‖−αk

σ2

L
+ Ij

(3.4)

where Ij =
∑K

j=1

∑
rj∈Φj\rk Pjhrj‖rj‖−αj is the aggregate interference received by the typical
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user and σ2 is the additive noise power. Noise power is expressed as [123]

N0 = FkTaBch (3.5)

where F is the receiver noise figure, k is the Boltzmann constant, Ta is the ambient temperature

and Bch is the channel bandwidth. In the homogeneous network, (3.4) is simplified as

SINR =
hr−α

σ2

PtL
+
∑

i∈Φb\{bo} hiR
−α
i

. (3.6)

Therefore when K > 1, the SINR experienced by a typical user depends on the deployment

configuration (λk, Pk, βk) of the tier it is associated to relative to the other K − 1 tiers. For

a user connected to the k-th tier, denote the k-th tier coverage probability and average user

rate as Pc,k and Ru,k respectively. These values are used to obtain the overall average HetNet

performance using the law of total probability as [94]

Pc =
K∑

k=1

Pc,kAk and Ru =
K∑

k=1

Ru,kAk (3.7)

where Ak is the k-th tier association probability. The association probability of a given tier

can also be described as the fraction of the network area covered BSs belonging to this tier

or the fraction of all users covered by BSs belonging to the tier. Therefore, it depends on

HetNet deployment parameters such as the number of tiers and their respective BS densities

and transmit powers. Intuitively, the higher the BS density and transmit power of a tier, the

better its association probability. However, the tier association probability also depends on the

user association scheme implemented in the HetNet. Note that the concept of tier association

does not arise in a homogeneous network and the steps in (3.7) are not applicable.

3.5 Homogeneous Networks

The homogeneous network is comparatively easier to analyse than a HetNet because it has only

one tier of BSs. This thesis concentrates on analyzing DL performance because the network

consumes the bulk of its power during DL transmission. Consider a homogeneous network in

which BSs are deployed according to an independent homogeneous PPP Φb of intensity λb in the

Euclidean plane R2. Ignoring shadowing effects, the SINR received by a typical user located at

the origin is shown in (3.6). Coverage probability and average user rate analysis follows [106].

3.5.1 Probability of Coverage

Coverage probability, denoted as Pc, is defined as the probability that a typical user receives

SINR greater than a predefined threshold value T . In other words, Pc is the CCDF of SINR
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while the probability of outage, denoted as Po, is its CDF. Hence,

Pc = P[SINR > T ] and Po = P[SINR ≤ T ]. (3.8)

Coverage probability (or outage) may be interpreted as the fraction of network area that is in

coverage (or outage) or the fraction of all users that are in coverage (or outage) [106].

The statistical distance between the typical user and its serving BS is derived from the null

probability of a 2D PPP in an area A which is expressed as e−λbA [106]. In other words,

P[r > R] = P[No other BS closer than R] = e−λbπR
2

. (3.9)

However, the CDF is Fr(r) = P[r ≤ R] = 1− e−λbπR
2
. Hence, the PDF is expressed as

fr(r) =
dFr(r)

d r
= 2πλb e

−λbπr2 . (3.10)

Theorem 3.1. The coverage probability of a typical user in a homogeneous PPP-based mobile

cellular network is expressed as [106]

Pc(λb, T, α) = πλb

∫

x>0

e
−Tσ2

PtL
xα/2

e−πλb(1+ρ(T,α))xdx (3.11)

where ρ(T, α) = T 2/α
∫∞
T−2/α

1
1+uα/2du. When α = 4, ρ(T, 4) =

√
T atan

√
T .

Proof. See the proof in [106, Theorem 2].

Corollary 3.1. When the network is interference-limited, coverage probability becomes [106]

Pc(T, α) =
1

1 + ρ(T, α)
. (3.12)

Proof. In the interference-limited network, the effect of noise is negligible. Therefore, substi-

tuting σ2 = 0 into (3.11) and solving the resulting integral gives the result.

The coverage probability in (3.12) is essentially in closed form as it requires the evaluation of

one very simple integral in ρ(T, α). When α = 4, the result is fully in closed form. Coverage

probability has an inverse relationship with the target threshold T due to the fact that a higher

coverage threshold is more difficult to achieve. Remarkably, coverage probability in (3.12) is

independent of the BS density which means that both sparse and dense networks provide the

same coverage performance. The intuitive explanation is that when the BS density is increased,

the gain in received power is counterbalanced by the additional interference power which main-

tains the average SINR level. In practical networks, interference management schemes such as

frequency reuse are used to enhance coverage and capacity performance. Denser networks are

generally more desirable to reduce the risk of congestion and enhance average sum rate.
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3.5.2 Average User Rate

For the typical user located at the origin and receiving the SINR shown in (3.6), the average

user rate in the DL is expressed as [106]

Ru = E[log2(1 + SINR)] [in bps/Hz]. (3.13)

Since rate R = log2(1 + SINR) is a non-negative random variable, its expected value can be

computed as E[R] =
∫
t>0

P[R > t] dt. Hence the average user rate becomes

Ru =

∫

r>0

E[log2(1 + SINR)] fr(r) dr

=

∫

t>0

∫

r>0

P[log2(1 + SINR) > t] fr(r) dr dt. (3.14)

Theorem 3.2. The average rate of a typical user in a PPP-based homogeneous network is

expressed as [106]

Ru(λb, α) = Ξ

[
πλbe

− σ2

PtL
(2t−1)xα/2

e−πλb(1+ζ(t,α))x
]

(3.15)

where Ξ[f(x, t)] =
∫
t>0

∫
x>0

f(x, t)dxdt and ζ(t, α) = (2t − 1)2/α
∫∞
(2t−1)−2/α

1
1+uα/2 du. When

α = 4, ζ(t, 4) =
√
2t − 1 atan(

√
2t − 1).

Proof. See the proof in [106, Theorem 3].

Corollary 3.2. In the interference-limited network, average user rate becomes [106]

Ru(α) =

∫

t>0

1

1 + ζ(t, α)
dt. (3.16)

Proof. Substitute σ2 = 0 into (3.15) and evaluate the integral.

Similar to coverage probability and for the same reason, average user rate in an interference-

limited homogeneous network is also independent of the BS density. However, network den-

sification is still preferred since it reduces the risk of congestion and enhances the average

bandwidth per user which improves the average network sum rate.

3.6 HetNet Analysis

HetNets typically combine several tiers of different types of BSs which transmit at different

power levels and cover cells of highly varying shapes and sizes. The network design of HetNets

is a more challenging task than the design of homogeneous networks. The criteria with which

a typical user chooses its parent BS has a huge impact on the overall HetNet performance. For

example, a user may connect to any BSs from which it receives the strongest signal, or it may

connect to the nearest BS from any tier. Since macro BSs transmit the highest power level, they

tend to overwhelm small BSs by covering most of the network area. This may leave most small
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BSs idle which is undesirable since their main deployment objective is to offload traffic from

congesting macro BSs. This load balancing problem can generally be solved by using biasing,

in which users are ‘artificially’ biased to favour small BSs over macro BSs by some degree. If a

user is biased to connect to a small BS over a more favorable macro BS, the received power from

the macro BS then becomes interference. This increases the aggregate interference suffered by

this particular user which generally affects coverage and rate performance. Therefore, although

biasing has crucial load balancing benefits, its application presents a tradeoff with coverage

probability and average rate performance.

The following investigates existing works on the coverage probability and average rate perfor-

mance of a general K-tier HetNet using different user association schemes. These results will

be used in Chapter 6 to define performance constraints during the optimization of the HetNet

deployment configuration that minimizes its APC.

3.6.1 Coverage Probability

Coverage probability of a typical user located at the origin and connected to a k-th tier BS is

expressed as [94]

Pc,k = Ex [P(SINRk(x) > T )]

=

∫ ∞

0

P(SINRk(x) > T ) fXk
(x) dx (3.17)

where fXk
(x) is the PDF of the distance between the user and serving BS and depends on the

user association scheme. Using SINRk(x) in (3.4),

P(SINRk(x) > T ) = P

[
hxk >

Txαk

PkL

(
Ij +

σ2

L

)]
(3.18)

(a)
= e

−
(

Tσ2

PkL
xαk

) K∏

j=1

LIj(TxαkP−1
k ) (3.19)

where (a) follows since hxk ∼ exp(1) [106] and LIj(sc) is the Laplace transform of the interfer-

ence term evaluated at sc.

3.6.2 Average User Rate

For the typical user, average rate of a user connected to a k-th tier BS is determined as

Ru,k = Ex[ESINRk
[Rk]] where Rk = log2(1 + SINRk(x)). Since Rk is a non-negative random

variable, its expectation is determined as ESINRk
[Rk] =

∫
t>0

P(Rk > t) dt. Hence,

Ru,k =

∫

x>0

∫

t>0

P(log2(1 + SINRk(x)) > t) fXk
(x) dtdx

= Ξ
[
P(SINRk(x) > 2t − 1) fXk

(x)
]

(3.20)
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where Ξ [f(x, t)] =
∫
t>0

∫
x>0

f(x, t) dx dt. The term P(SINRk(x) > 2t − 1) in (3.20) is of the

same form as (3.18)-(3.19) and is therefore solved similarly. Hence,

P(SINRk(x) > 2t − 1) = e
−
(

σ2

PkL
(2t−1)xαk

) K∏

j=1

LIj
(
xαkP−1

k (2t − 1)
)

(3.21)

where LIj(sr) is the Laplace transform of the interference evaluated at sr.

3.7 Flexible Cell Association

In an open access HetNet, users are allowed to connect to any BS in any tier provided some

defined cell association criterion is satisfied. Cell association is an important functionality that

impacts the coverage, rate and energy performance of the HetNet. Artificial biasing can be used

to manipulate cell association and achieve load balancing objectives and other performance

targets. In this thesis, the following three cell association schemes are studied and compared

with each other: (i) Maximum ABRP connectivity [94]; (ii) Minimum BTD connectivity [71];

and (iii) Maximum i-SINR connectivity [108], [116], [124].

In maximum ABRP connectivity, a user connects to the BS that provides the strongest average

biased received power. Hence a user connects to the nearest k-th tier BS if Pr,k > Pr,j, ∀j ∈
K, j 6= k where Pr,k = Pkβkr

−α
k and βk is the bias value associated with k-th tier BSs. In

maximum i-SINR connectivity, a user connects to the BS that provides it with the highest

instantaneous SINR [108], [116], [124].

In minimum BTD connectivity, it is assumed that a user knows its relative distances to each of

its neighboring BSs in all tiers. If the nearest k-th tier BS is located at a distance rk from the

user, then rk is multiplied by its respective bias factor,denoted as νk. Hence the user associates

to the k-th tier if νkrk < νjrj, ∀j ∈ K, j 6= k. Although this scheme is also discussed in [71],

it is analyzed in this thesis (see section 6.2) using an approach that gives results which are

directly comparable to those of maximum ABRP and i-SINR schemes.

3.7.1 Maximum ABRP Connectivity

The following analysis describes the tier association probability and the coverage probability

and average rate of a typical user in a HetNet using maximum ABRP connectivity scheme.

Lemma 3.1. The association probability of the k-th tier is expressed as [94, Lemma 1]

Ak = 2πλk

∫ ∞

0

r e−π
∑K

j=1 λj(P̂j β̂j)
2/αj r2/α̂j

dr (3.22)

where P̂j =
Pj

Pk
, β̂j =

βj
βk
, and α̂j =

αj

αk
. If all tiers have the same pathloss exponent i.e.
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{αj} = α, (3.22) is simplified as

Ak =
λk(Pkβk)

2/α

∑K
j=1 λj(Pjβj)

2/α
. (3.23)

Proof. See the proof of [94, Lemma 1].

The result in (3.23) shows that a user tends to connect to a tier with a relatively larger BS

density, transmit power and bias factor, which agrees with intuition.

Lemma 3.2. The PDF fX(x) of the distance Xk between a typical user and its serving BS is

expressed as [94, Lemma 3]

fXk
(x) =

2πλk
Ak

x e−π
∑K

j=1 λj(P̂j β̂j)
2/αjx2/α̂j

. (3.24)

Proof. See the proof of [94, Lemma 1].

Theorem 3.3. Coverage probability of a typical user in the HetNet is expressed as [94]

PcP =
K∑

k=1

πλk

∫

z>0

e
− Tσ2

PkL
zαk/2

e−π
∑K

j=1 λj P̂
2/αj
j Cj z1/α̂j

dz (3.25)

where Cj = β̂
2/αj

j + Z(T, αj , β̂j) and Z(T, αj, β̂j) = T 2/αj
∫∞
uj

1

1+uαj/2
du where uj =

(
β̂j
T

)2/αj

.

Proof. See the proof of [94, Theorem 1].

Corollary 3.3. If the HetNet is interference-limited and {αj} = α, coverage probability becomes

PcP =
K∑

k=1

λkP
2/α
k∑K

j=1 λjP
2/α
j Cj

. (3.26)

If the HetNet is also unbiased i.e. {βj} = 1, coverage probability becomes

PcP = [1 + Z(T, α, 1)]−1 = C−1. (3.27)

In the special case of α = 4, Z(T, 4, 1) =
√
(T ) · atan

√
T . Hence PcP is in closed form.

Proof. When {αj} = α, α̂j = 1. Substitute σ2 = 0 in (3.25) and solve the integral to get

the result in (3.26). Since Cj depends on the variable set {k, j}, further simplification is only

possible when the HetNet is unbiased i.e. {Cj} = C = 1 + Z(T, α, 1) for all j ∈ K.

According to (3.27), PcP of the unbiased HetNet is independent of the tuple (K, {λj}, {Pj}).
This is an interesting result which means that operators can densify the HetNet with any

number and types of BSs without affecting coverage probability. The intuitive explanation is

that although densification improves the average received signal strength, aggregate interference

also increases in equal measure [94], [106]. However if the HetNet is biased, parameters K, {λj}
and {Pj} influence coverage probability.
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Theorem 3.4. Average user rate in the HetNet is expressed as [94, Theorem 2]

RuP =
K∑

k=1

Ξ

[
πλke

− σ2

PkL
(2t−1)zαk/2

e−π
∑K

j=1 λj P̂
2/αj
j Dj(t) z

1/α̂j

]
(3.28)

where Dj(t) = β̂
2/α
j +Z(t, αk, β̂j), Z(t, αk, β̂j) = (2t− 1)2/αj

∫∞
uj

1

1+uαj/2
du and uj =

(
β̂j

2t−1

)2/αj

.

Proof. See the proof of [94, Theorem 2].

Corollary 3.4. If the HetNet is interference-limited and {αj} = α, average user rate becomes

RuP =
K∑

k=1

∫

t>0

λkP
2/α
k∑K

j=1 λjP
2/α
j Dj(t)

dt. (3.29)

Furthermore, if the HetNet is unbiased i.e. {β̂j} = 1, then average user rate is simplified as

RuP =

∫

t>0

1

D(t)
dt (3.30)

where D(t) = 1 + Z(t, α, 1) is a constant. For α = 4, Z(t, 4, 1) =
√
2t − 1atan

√
2t − 1.

Proof. Since {α̂j} = 1 in (3.28), let σ2 = 0 and solve the resulting integral. If the HetNet

is biased, Dj(t) varies with the set {k, j} and further simplification is not possible. In the

unbiased HetNet, D(t) is a constant which allows the simplification shown in (3.30).

Therefore, similar to PcP in (3.27) and for the same reason, RuP of the unbiased HetNet is

independent of the tuple (K, {λj}, {Pj}).

3.7.2 Maximum i-SINR Connectivity Scheme

In this scheme, a typical user associates with a BS that provides the highest instantaneous

SINR i.e. a user associates with the k-th tier if SINRk(rk) > max
j,j 6=k

SINRj(rj) [108].

Theorem 3.5. Coverage probability in a HetNet is expressed as [108, Theorem 1]

PcS =
K∑

k=1

πλk

∫

z>0

e
− Tσ2

PkL
zα/2

e−T
2/α̺(α)

∑K
j=1 λj P̂

2/α
j z dz (3.31)

where ̺(α) = 2π2csc(2π/α)α−1 is a constant for a given pathloss exponent α.

Proof. See the proof of [108, Theorem 1].

Corollary 3.5. If the HetNet is interference-limited, coverage probability becomes [108]

PcS =
πT−2/α

̺(α)
. (3.32)

In the special case of α = 4, PcS = 2
π
√
T
. These expressions are in closed form.
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Proof. Let σ2 = 0 in (3.31) and evaluate the integral.

According to (3.32), PcS is also independent of the parameter set {K, {λj}, {Pj}}, similar to

PcP of maximum ABRP scheme when the HetNet is unbiased.

Consider a HetNet in which the SINR coverage thresholds are not necessarily similar per tier.

Denote the SINR threshold of the k-th tier as Tk. Then coverage probability of the general

HetNet depends on the set {Tj}, ∀j ∈ K. In this case, (3.31) is expressed as [108], [116], [124]

PcS =
K∑

k=1

πλk

∫

z>0

e
−Tkσ2

PkL
zα/2

e−̺(α)
∑K

j=1 λj P̂
2/α
j T

2/α
j z dz. (3.33)

When σ2 = 0, (3.33) is then expressed as

PcS =
π
∑K

j=1 λjP
2/α
j

̺(α)
∑K

j=1 λjP
2/α
j T

2/α
j

. (3.34)

Consider the special case of a homogeneous network such that K = 1. Assuming that {Tj} = T

(3.34) simplifies to (3.32). This shows that under interference-limited conditions, coverage

probability of the homogeneous network (shown in (3.12)) is equivalent to that of a multi-tier

HetNet with the same SIR thresholds per tier. Fig 3.3 confirms this relationship and shows

that coverage probability increases with the pathloss exponent α due to the higher attenuation

of interference at higher α. The derivation of coverage probability in (3.32) is based on the

assumption that {Tj} > 0 dB, ∀j ∈ K [108]. This explains the deviation from the accurate

result of (3.12) when {Tj} < 0 dB. Generally coverage probability in a homogeneous network

is the same as in a multi-tier unbiased HetNet for all connnectivity schemes [106], [108], [115].

Theorem 3.6. Average user rate in the HetNet is expressed as [108, Theorem 2]

RuS =
K∑

k=1

Ξ

[
πλke

− σ2

PkL
(2t−1)zα/2

e−(2t−1)2/α̺(α)
∑K

j=1 λj P̂
2/α
j z

]
. (3.35)

Proof. See the proof of [108, Theorem 2].

Corollary 3.6. If the HetNet is interference-limited, average user rate becomes

RuS =
π

̺(α)

∫

t>0

(2t − 1)−2/α dt. (3.36)

Proof. Substitute σ2 = 0 in (3.35) and evaluate the resulting integral.

The result in (3.36) is simple and only requires the evaluation of one integral. As with coverage

probability in (3.32), average user rate in an interference-limited HetNet is independent of the

parameter set {K, {λj}, {Pj}} and is constant for a given α.
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Figure 3.3: Coverage probability of a homogeneous network and a HetNet using maximum i-SINR
connectivity, both under interference-limited conditions.

3.8 Summary

This chapter introduced a new analysis approach that uses tools from stochastic geometry to

derive simple and tractable network performance results. Important mathematical preliminaries

of the PPP model were also introduced. All the main assumptions followed in the analysis of

the homogeneous network and HetNet throughout this thesis were discussed. In addition,

their justification was presented and various existing works that used similar assumptions were

referenced. This chapter also presented all relevant and existing analysis (especially coverage

probability and average rate) of homogeneous networks and HetNets.
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Chapter 4

Homogeneous Network Deployment

4.1 Introduction

Due to the highly randomized cell sizes in a PV tessellation, the number of users per cell is

also highly random. In order to enhance the tractability of network analysis, most existing

works make some assumptions: (i) each cell connects at most only one user that is chosen at

random from users within its coverage area [106], [71], and (ii) the user density is large enough

to guarantee at least one user within each cell [106]. However, both assumptions are unrealistic

since BSs have the ability to connect multiple users and the density of users per BS depends

on the prevailing BS and user densities which are finite.

In practical networks, the density of active users highly varies in both space and time domains.

For example, active users are few at night time and peak some time during the day or early

evening. Spatially, user density in cities or business areas peaks during the day and drops off

at night as people return to residential areas. In addition, urban areas generally have a higher

concentration of users than rural areas. Therefore, the prevailing BS-user density ratio of a

practical network changes spatiotemporally throughout the day and this significantly influences

the average number of users per BS in the network [49].

After cell association, any idle BSs do not transmit which thins out the aggregate interference

experienced by the typical user. Denoting the set of idle BSs as {bid}, the received SINR at

the origin is expressed as

SINR =
hr−α

σ2

PtL
+
∑

i∈Φb\{bo∪bid} giR
−α
i

(4.1)

4.2 Cell Size and User Distribution

Consider a homogeneous network in which both BSs and users are spatially located according to

independent homogeneous PPPs Φb and Φu and their respective intensities λb and λu. Each UE

is served by the closest BS and the network layout resembles a PV tessellation. The distribution
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of cell sizes in the R2 plane is approximated using the gamma distribution as [107], [125], [115]

fX(A) =
(Kλb)K
Γ(K)

AK−1e−KλbA (4.2)

where K = 3.575. Since UEs are also located according to a homogeneous PPP, the number

of UEs per cell is proportional to its area A and follows a Poisson distribution. Therefore, the

distribution of the number of users in typical cell of size A has the following probability density

function (see (3.2)):

gA(n) =
(λuA)

n

n!
e−λuA. (4.3)

These distributions can be used to find the probability that a typical cell contains N users. In

general, the probability that a typical cell of area A contains N = n users is given by

P(N = n) =

∫ ∞

0

P[N = n|X = A] fX(A)dA

=
λnu(Kλb)K
Γ(K)n!

∫ ∞

0

An+K−1e−(λu+Kλb)dA

(a)
=

λu
n (Kλb)K Γ(n+K)

Γ(K)n!(λu +Kλb)n+K (4.4)

where the integral (a) is solved using the identity [126, (3.381.4)]. Therefore, the general

probability that a cell has n or less users (i.e. N ≤ n) is given by

P(N ≤ n) =
n∑

m=0

λu
m(Kλb)KΓ(m+K)

Γ(K)m!(λu +Kλb)m+K . (4.5)

In special cases, the probabilities that a cell has no users or has one user are respectively

expressed as

P(N = 0) =

(
1 +

λu/λb
K

)−K
and P(N = 1) =

λu
λb

(
1 +

λu/λb
K

)−(K+1)

. (4.6)

Therefore, the probability of an active BS (a BS with at least one user), denoted as pa, becomes

pa = 1− P(N = 0) = 1−
(
1 +

λu/λb
K

)−K
(4.7)

These probabilities clearly depend on the prevailing BS-user density ratio, denoted as υ =

λb/λu. When λu ≫ λb, then P(N = 0) ≈ 0 and pa ≈ 1. This is the basis of the assumption in

[106] which states that the user density is large enough so that all BSs have at least one user.

4.2.1 Single User Connectivity Model

To ease analysis, some works assume that each cell connects only one user, chosen randomly

from its constituent users [106]. Denote this as the single user connectivity model. If the user

density is large enough to ensure that each cell has at least one user, the average number of

connected users, denoted as Nc, is equivalent to the average number of BSs. However, due to the
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spatiotemporal variability of user density in real networks, there is always a finite probability

of a BS being idle as shown in (4.6). Such idle BSs do not transmit and may be put into sleep

mode to save energy. In reality therefore, the average number of active BSs is equal to the

average number of connected users i.e. Nc = paλb = ACR × λu where ACR is a new measure

defined as the average connectivity ratio. ACR represents the ratio of the average number of

connected users to the average number of all users in the network. Hence,

ACR =
paλb
λu

=
λb
λu

[
1−

(
1 +

λu
Kλb

)−K
]

(4.8)

which is a function of the BS-user density ratio.

Since each BS connects a single user, any extra users in its coverage area will not get a connection

and are therefore in outage due to blocking (or congestion). However, the operator may want

to guarantee a certain probability of connection to keep the congestion below a predefined

threshold denoted as χ. Given the user density, the operator can determine the average number

of BSs required to achieve the blocking constraint. The average number of unconnected (or

blocked) users may be expressed as ABR× λu where ABR is a new measure called the average

blocking ratio and is simply ABR = 1− ACR. Therefore,

ABR =
λu − paλb

λu
≤ χ s.t. paλb ≥ λu(1− χ). (4.9)

In practice, χ is always set very low to ensure a good QoS. Considering that there are always

some idle BSs, the BS density that achieves such a low blocking rate is very high under the

single user connectivity model. It is not possible to determine a closed form expression for the

required BS density λb in (4.9) but it can easily be determined using numerical methods such as

the bisection method [127]. For ease of analysis, consider the first three terms of the binomial

series of pa, expressed as

pa = 1−
(
1 +

λu
Kλb

)−K
≈ λu
λb

[
1− λu

λb

(K + 1

2K

)2
]
. (4.10)

Therefore from (4.9), the required BS density is determined using the simple expression

λb >
(K + 1)

2Kχ λu. (4.11)

Hence the required BS density is proportional to the user density and it reduces when the

blocking constraint is relaxed.

To illustrate, consider a network with χ = 0.1, λu = 10−4 m−2, A = 2.5 km × 2.5 km and

λb ≥ 6.4 × 10−4 m−2. Hence, the average number of users and BSs are λu|A| = 625 and

λb|A| ≥ 4000 respectively. The approximation gives a 9% error margin but allows a closed form

expression. The average number of BSs is much greater than the average number of users which

is very unrealistic in practical terms. Therefore, a multi-user connectivity model is necessary

to facilitate a realistic study of the network EE under blocking constraints.
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4.2.2 Multiple User Connectivity Model

Assume that the bandwidth is divided into a number of channels δ (where δ ≥ 1) such that

each cell can randomly choose and connect up to a maximum of N = δ users while avoiding

intra-cell interference. The average number of connected users can be expressed in terms of the

BS density and the average number of busy channels in the network, i.e.

ACR · λu = λb × E[number of busy channels per BS] = λb × E[Cb] (4.12)

where Cb ∈ {0, δ} is the number of busy channels in a BS under the assumption that all channels

are busy in an active BS. Since Cb is a random variable that takes on only non-negative integer

values, its expectation is expressed as

E[Cb] =
δ∑

n=1

nP(Cb = n) where P(Cb = n) =




P(N = n), n < δ

P(N ≥ δ), n = δ.
(4.13)

Note that when δ = 1, E[Cb] = P(N ≥ 1) = pa and ACR = paλb/λu as shown in (4.8). When

δ = 2, each cell can connect up to 2 users and E[Cb] is expressed as

E[Cb] = P(Cb = 1) + 2P(Cb = 2) = P(N = 1) + 2P(N ≥ 2).

Similarly in the case where each BS can connect up to three users (δ = 3),

E[Cb] = P(Cb = 1) + 2P(Cb = 2) + 3P(Cb = 3)

= P(N = 1) + 2P(N = 2) + 3P(N ≥ 3).

Based on these three cases, the general expression for E[Cb] can be formulated as

E[Cb] =





P(N ≥ δ), δ = 1

δ P(N ≥ δ) +
δ−1∑
k=1

k P(N = k), δ > 1.
(4.14)

Therefore ACR is obtained from (4.12) as ACR = λb
λu
E[Cb].

To illustrate the importance of this model, consider the simple case of δ = 2. The average

number of blocked users is λu(1− ACR). Therefore, ABR = 1− ACR ≤ χ. From (4.12),

ABR = 1− λb
λu

[P(N = 1) + 2P(N ≥ 2)]

= 1− λb
λu

[P(N = 1) + 2(1− P(N = 0)− P(N = 1))]

= 1− λb
λu

[2 pa − P(N = 1)] . (4.15)

where P(N = 1) is shown in (4.6). Using the same parameters χ, λu and A, the required BS

density then reduces to λb ≥ 1.35 × 10−4 m−2 and λb|A| ≥ 844 BSs. This is in contrast to the
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over 4000 BSs required in the single user connectivity model. Therefore, applying the multi-

user connectivity model enables a more realistic analysis of the network’s energy performance.

The multi-user connectivity model allows flexible allocation of resources to users depending on

their capacity or QoS requirements.

The average capacity experienced by a typical user in this multi-channel network depends on

how many subchannels are available to the user. Therefore, it is important to first determine

the average rate supported on a typical subchannel. The average sum rate is then determined

from the average rate per user and the ACR.

4.3 Coverage and Rate Analysis

Existing analysis of coverage probability and average rate discussed in section 3.5 [106] assumes

that all BSs are active and implements the single user connectivity model. This is unrealis-

tic because some BSs are inevitably idle as the user density varies in both space and time.

Moreover, BSs connect multiple users simultaneously. This section presents coverage and rate

analysis of a multi-channel network taking into account the effect of prevailing user density on

its performance.

4.3.1 Probability of Coverage

Theorem 4.1. Coverage probability of a typical user in a homogeneous PPP-based network

with idle BSs is expressed as

Pc(υ, T, α) = πλb

∫

x>0

e
−Tσ2

PtL
xα/2

e−πλb(1+paρ(T,α))xdx. (4.16)

When the network is interference-limited, (4.16) simplifies to

Pc(υ, T, α) =
1

1 + paρ(T, α)
. (4.17)

Proof. The proof is essentially similar to that of [106, Theorem 1] except that the aggregate

interference is thinned by the presence of idle BSs. In this case, the Laplace transform of the

interference is expressed as

LIr(Trα) = exp(−πpaλbr2ρ(T, α)).

When the network is interference-limited, σ2 = 0 and the result follows easily.

The results in (4.16)-(4.17) facilitate an investigation of the effect of idle BSs on coverage prob-

ability. For instance, as user density increases and more BSs remain active (i.e. pa increases),

interference also increases which reduces coverage probability. Therefore, coverage probability

generally increases with BS density and reduces with user density. The results in (3.11)-(3.12)
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assume that λu ≫ λb (i.e. υ → 0) such that pa ≈ 1, which makes them special cases of

(4.16)-(4.17) respectively.

4.3.2 SE and Sum Rate

In a multi-channel network, analysis is performed on a subchannel basis to determine the

spectral efficiency of each subchannel. Consider a multi-channel homogeneous network in which

the available bandwidth, denoted as B Hz, is divided into δ subchannels, each of an equal size

Bδ Hz. The average ergodic rate experienced by a typical user in a typical subchannel, denoted

as Rch, is computed as

Rch =
B
δ
E[log2(1 + SINR)] [in bps]. (4.18)

Therefore the average rate on a typical subchannel (in bps/Hz) becomes

Rch =
1

δ

∫

r>0

E[log2(1 + SINR)] fr(r) dr. (4.19)

Theorem 4.2. The average subchannel rate in a PPP-based homogeneous network with idle

BSs is expressed as

Rch(υ, α) =
1

δ
Ξ

[
πλbe

− σ2

PtL
(2t−1)xα/2

e−πλb(1+paζ(t,α))x
]

(4.20)

When the network is interference-limited, average subchannel rate simplifies to

Rch(υ, α) =
1

δ

∫

t>0

1

1 + paζ(t, α)
dt. (4.21)

Proof. The proof is essentially similar to that of [106, Theorem 2] except that the aggregate

interference is thinned by the presence of idle BSs. In this case, the Laplace transform of the

interference is expressed as

LIr((2t − 1)rα) = exp(−πpaλbr2ζ(t, α)).

When the network is interference-limited, σ2 = 0 and the result follows easily.

Therefore, average rate per subchannel mainly depends on the BS-user density ratio which is

consistent with coverage probability. For example, as the user density increases and more BSs

remain active, interference increases which reduces average subchannel rate.

Under the full buffer assumption, each active BS sequentially allocates all subchannels to its

connected users. This assumption gives the upper bound on bandwidth utilization. Typically,

for a BS with N users and δ subchannels, two subchannel allocation scenarios arise:

• If N < δ, each user is initially allocated δu subchannels where δu = ⌊δ/N⌋. The remaining

subchannels, denoted as δr = δ − δuN , are allocated to any δr users chosen at random

from the N users. For example, if N = 4 and δ = 10, two of the users get 2 subchannels

and the other two users get 3 subchannels.
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• If N ≥ δ, the BS randomly selects δ users and allocates a single subchannel to each (i.e.

δu = 1). The remaining users, equivalent to = N − δ, are blocked.

Lemma 4.1. The average number of subchannels per connected user is expressed as

ω(υ, δ) =
paδ

E[Cb]
. (4.22)

In the single user connectivity model where δ = 1, E[Cb] = pa such that ω = 1.

Proof. Let Ω = paλbδ denote the total number of subchannels in the network. The average

number of connected users Nc = ACR× λu = λbE[Cb]. Hence ω = Ω/Nc gives the result.

Corollary 4.1. Average user rate in a PPP-based multi-channel network is expressed as

Ru(υ, δ, α) = ω(υ, δ)×Rch(υ, α)

=
pa

E[Cb]
Ξ

[
πλbe

− σ2

PtL
(2t−1)xα/2

e−πλb(1+paζ(t,α))x
]
. (4.23)

In the interference-limited network (σ2 = 0), average user rate simplifies to

Ru(υ, δ, α) =
pa

E[Cb]

∫

t>0

1

1 + paζ(t, α)
dt. (4.24)

Corollary 4.2. Average sum rate in a PPP-based multi-channel network is expressed as

T (υ, α) = ACR× λu ×Ru = λbE[Cb]×Ru

= πpaλ
2
bΞ

[
e
− σ2

PtL
(2t−1)xα/2

e−πλb(1+paζ(t,α))x
]
. (4.25)

In the interference-limited network, the average sum rate simplifies to

T (υ, α) = paλb

∫

t>0

1

1 + paζ(t, α)
dt. (4.26)

If the BS density is increased, the average number of users per BS reduces which enhances both

ACR and ω(υ, δ). Hence average sum rate is an increasing function of BS density.

The number of subchannels allocated to a typical user depend on the system bandwidth B
and the prevailing BS-user density ratio υ. If B is fixed, average sum rate is independent of

the number of subchannels δ since all available subchannels are occupied. In practice, the

subchannel size is normally fixed. Therefore if the desired minimum rate Rmin (in bps) of a

typical user is known, it is possible to determine the minimum value of B, denoted as Bmin,
that is required to achieve it. Using (4.23), average user rate is B × Ru bps. Therefore Bmin
must satisfy the inequality

Bmin ≥ Rmin × E[Cb]

paΞ
[
πλbe

− σ2

PtL
(2t−1)xα/2

e−πλb(1+paζ(t,α))x
] . (4.27)

Typical QoS requirements for different applications are shown in [128, Table 1.4].
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4.4 Optimal Deployment of Homogeneous Networks

Several works have tried to predict the BS density of cellular networks to achieve a target

performance. In [129], both coverage and rate constraints are used to determine the optimal

transmit power that minimizes the APC of a homogeneous network. However, this work does

not perform a joint optimization of the BS density and transmit power to quantify the optimal

deployment configuration. In addition, it is assumed that all BSs are always active which ignores

the impact of the variable traffic profile. Authors in [117] first derived an expression called

deployment factor which combines the BS density and transmit power in some mathematical

form. The deployment factor was jointly optimized to determine the specific optimal BS density

and transmit power configuration subject to a coverage constraint only. This work also assumes

that all BSs are always active. Moreover, the deployment factor is not expressed in closed form

and can only be determined numerically.

In this thesis, a joint optimization of the BS density and transmit power is performed to obtain

the optimal deployment configuration subject to both coverage probability and average user

rate constraints. In some special cases, the deployment factor is expressed in closed form.

In addition, the effect of the varying user density on the optimal deployment configuration is

investigated. Coverage probability and average rate constraints are necessary because satisfying

one measure does not automatically satisfy the other. For instance, (i) if SINR is high (good

coverage), average user rate may remain low due to insufficient bandwidth, and (ii) if SINR is

low (poor coverage), average user rate may still be high due to high bandwidth availability.

Intuitively, additive noise reduces the coverage and average rate performance of the network.

Therefore, the interference-limited network defines the upper bound on network performance.

Generally as BS density reduces, aggregate interference also reduces which enhances the nega-

tive effect of noise on network performance. To manage this, coverage probability and average

user rate constraints are expressed in terms of their upper bound values as

Pc ≥ ǫPc and Ru ≥ κRu (4.28)

where ǫ ∈ (0, 1] and κ ∈ (0, 1] are the ratios of the coverage probability and average user rate

to their upper bound values respectively. The optimization framework is expressed as




minimize

λb
APC = paλbPact + (1− pa)λbPsleep

subject to Pc ≥ ǫPc, Ru ≥ κRu, Pt ≤ Pt.
(4.29)

Due to the complementary relationship between coverage and rate measures (optimization

based on one measure improves the other measure as well), this optimization problem can

be separated into two individual problems, one constrained by coverage probability and the

other constrained by average user rate. The final solution is the maximum value from the two

individual optimization problems.

Lemma 4.2. When α > 2 and σ2 > 0 which is true in a mobile environment, coverage

probability and average user rate increase monotonically with BS density and transmit power.
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Proof. To prove the dependence of coverage probability on transmit power, consider two trans-

mit power values such that Pt2 > Pt1 . Coverage probability corresponding to Pt1 is

Pc(Pt1) = πλb

∫

x>0

e
− a1

Pt1
xα/2

e−a2xdx (4.30)

where a1 =
Tσ2

L
and a2 = πλb(1 + paρ(T, α)). For Pt2 , coverage probability becomes

Pc(Pt2) = πλb

∫

x>0

e
− a1

Pt2
xα/2

e−a2xdx. (4.31)

Since a1 > 0 and Pt2 > Pt1 , then e
− a1

Pt2 > e
− a1

Pt1 and hence Pc(Pt2) > Pc(Pt1), which proves that

coverage probability increases monotonically with transmit power. Dependence of average user

rate on transmit power is proved in the same way.

To prove the dependence of average subchannel rate on BS density, consider two BS densities

such that λb2 > λb1 . Average subchannel rate corresponding to λb2 is expressed as

Rch(λb2) =
π

δ
λb2Ξ

[
e−a3(2

t−1)xα/2

e−λb2π(1+ζ(t,α))x
]

(4.32)

where a3 =
σ
PtL

. Now let x = y
λb1
λb2

and substitute into (4.32). Then,

Rch(λb2) =
π

δ
λb1Ξ

[
e
−a3(2t−1)

(
λb1
λb2

)α/2

yα/2

e−λb1π(1+ζ(t,α))y
]

(a)
>
π

δ
λb1Ξ

[
e−a3(2

t−1)yα/2

e−λb1π(1+ζ(t,α))y
]

= Rch(λb1) (4.33)

where (a) follows since a3 > 0, α > 2, and
(
λb1
λb2

)
< 1. Hence, Rch(λb2) > Rch(λb1) as long as

λb2 > λb1 . Dependence of coverage probability on BS density is proved in the same way.

4.4.1 Coverage Probability Constraint

Corollary 4.3. Coverage probability in a PPP-based homogeneous network is approximated as

Pc ≈ Pc

(
1− Tσ2ψ(α)Pα/2

c

λ
α/2
b Pt

)
(4.34)

where ψ(α) =
Γ(α

2
+1)

πα/2L
and Γ(t) =

∫∞
0
xt−1e−x dx is the gamma function.

Proof. Coverage probability in (4.16) can also be written as

Pc(SNR, υ, T, α) = 2πλb

∫

s>0

e−
T

SNR e−πλb(1+paρ(T,α))s
2

sds (4.35)

where SNR = PtLr−α

σ2 and x = s2. In a realistic network scenario, target coverage probability

is set as high as possible so that SINR > T in most cases. Furthermore, due to significant
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aggregate interference in dense cellular networks, SNR is normally much greater than SINR.

Therefore it is reasonable to assume that in a realistic SNR range, SNR ≫ SINR or SNR ≫ T .

Using this assumption, the first exponential term in (4.35) can be approximated as

e−
T

SNR ≈ 1− T

SNR
≡ 1− Tσ2

PtL
xα/2. (4.36)

Substituting this approximation into (4.16) gives the following integrals:

Pc
(a)≈ πλb

∫

x>0

e−πλb(1+paρ(T,α))x dx− πλb
Tσ2

PtL

∫

x>0

xα/2e−πλb(1+paρ(T,α))x dx

= Pc − πλb
Tσ2

PtL

Γ
(
α
2
+ 1
)

[πλb(1 + paρ(T, α))]
α
2
+1
. (4.37)

The second integral in (a) is solved using the identity [126, (3.381.4)]. Further simplification

of (4.37) gives the result. The approximation of coverage probability is verified in Fig. 4.1a

which shows increasing accuracy as BS density increases (note that as BS density increases, the

BS-user separation distance reduces which enhances received power and consequently SNR).

Therefore combining (4.28) and (4.34), the coverage probability constraint can be rewritten as

1− Tσ2ψ(α)Pα/2

c

λ
α/2
b Pt

≥ ǫ. (4.38)

DenoteHc = λ
α/2
b Pt as the deployment factor of the homogeneous network subject to a coverage

probability constraint. Basically, the deployment factor expresses the joint BS density and

transmit power in some mathematical form and can therefore be optimized to determine the

optimal deployment configuration (optimal BS density and associated optimal transmit power).

Since coverage probability and average rate both increase monotonically with the BS density

and transmit power (see Lemma 4.2), the optimal deployment factor, denoted asH⋆
c , is obtained

when (4.38) is satisfied strictly. Therefore, H⋆
c satisfies the expression

λ
α/2
b Pt

Pα/2

c

− Tσ2ψ(α)

1− ǫ
= 0. (4.39)

Generally, it is not possible to find a closed form expression for H⋆
c in (4.39) because Pc is

also a function of λb. To achieve further insight, it is possible to use different values of Pt

and for each value, the corresponding BS density λb that satisfies the constraint strictly is

determined using the bisection method [127]. The optimal deployment configuration (λ⋆b , P
⋆
t )

is then the combination of Pt and λb that minimizes the APC of the network. This assumption

is reasonable since network planning and optimization tasks are generally performed offline.

The deployment factor can be expressed in closed form in the following special case.

Special Case 4.1. When λb ≪ λu, pa ≈ 1 and Pc is independent of λb (see (3.12)). Hence,

the deployment factor in (4.39) can be rewritten in closed form as

H⋆
c =

Tσ2ψ(α)

(1− ǫ)
Pα/2

c . (4.40)
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Figure 4.1: Verification of the approximations of the coverage probability and average user rate with
idle BSs in sleep mode, where λu = 10−2m−2, α = 4, and T = 0dB).

Given the deployment factor, it is optimized as a bivariate problem as follows




minimize

λb, Pt

λb(NtxP0 +∆Pt)

subject to λ
α/2
b Pt = H⋆

c , Pt ≤ Pt.
(4.41)

This problem can easily be converted to a single-variable problem by substituting λb = (H⋆
cP

−1
t )2/α.

The objective is then to determine the value of Pt that minimizes F (Pt) = (H⋆
cP

−1
t )2/α(NtxP0+

∆Pt). Using the differentiation method, the first derivative is

dF (Pt)

dPt
=

−2

α
NtxP0H⋆

c
2/αP

− 2+α
α

t +∆H⋆
c
2/α

(
α− 2

α

)
P

−2/α
t = 0. (4.42)

Simplifying (4.42), the optimal solutions of Pt and λb are expressed as

P ⋆
t = min

{
2NtxP0

∆(α− 2)
, Pt

}
and λ⋆b,c =

(H⋆
c

P ⋆
t

)2/α

. (4.43)

According to (4.43) therefore, the value of P ⋆
t does not depend onH⋆

c and is only a function of the

BS power consumption parameters and the pathloss exponent. Hence it can be predetermined

if the BS type to be deployed is known.

4.4.2 Average User Rate Constraint

Corollary 4.4. Average user rate in a PPP-based homogeneous network is approximated as

Ru ≈ Ru −
paσ

2ψ(α)ψr(t, α)

E[Cb]λ
α/2
b Pt

(4.44)

where ψr(t, α) =
∫
t>0

(2t−1)

[1+paζ(t,α)]
α
2 +1dt.
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Proof. Average user rate in (4.23) can also be written as

Ru(SNR, υ, δ, α) =
pa

E[Cb]
Ξ
[
2πλbse

− 2t−1
SNR e−πλb(1+paζ(t,α))s

2
]
. (4.45)

Using the approach in (4.36), the first exponential term in (4.45) is approximated as

e−
2t−1
SNR ≈ 1− 2t − 1

SNR
≡ 1− σ2

PtL
(2t − 1)xα/2. (4.46)

Substituting (4.46) into (4.23) gives the following integrals:

Ru

(a)≈ pa
E[Cb]

πλbΞ
[
e−πλb(1+paζ(t,α))x

]
− pa

E[Cb]
πλb

σ2

PtL
Ξ
[
(2t − 1)xα/2e−πλb(1+paζ(t,α))x

]

=
pa

E[Cb]

∫

t>0

1

1 + paζ(t, α)
dt − pa

E[Cb]
πλb

∫

t>0

σ2Γ
(
α
2
+ 1
)
(2t − 1)

PtL(πλb)
α
2
+1[1 + paζ(t, α)]

α
2
+1

dt. (4.47)

The second integral in (a) is solved using the identity [126, (3.381.4)]. Further simplification of

(4.47) gives the result. This approximation is verified in Fig. 4.1b which also shows increasing

accuracy with the BS density.

Therefore using the average user rate constraint in (4.28), (4.44) can be rewritten as

1− σ2ψ(α)ψr(t, α)

λ
α/2
b Ptℜ(υ, α)

≥ κ where ℜ(υ, α) =
∫

t>0

1

1 + paζ(t, α)
dt (4.48)

is the SE (in b/s/Hz) in an interference-limited network with δ = 1 [106].

In (4.48), denote Hr = λ
α/2
b Pt as the deployment factor of the network subject to the average

user rate constraint. Since average user rate increases monotonically with both BS density and

transmit power, the optimal deployment configuration, denoted as H⋆
r , is obtained when the

constraint in (4.48) is satisfied tightly. Therefore, H⋆
r satisfies the expression

λ
α/2
b Pt

ψr(t, α)
− σ2ψ(α)

(1− κ)ℜ(υ, α)
≥ 0. (4.49)

However, a closed form expression of H⋆
r is not possible because the terms ℜ(υ, α) and ψr(t, α)

also depend on λb. Similar to the coverage constraint, the BS densities that satisfy (4.49) can be

obtained for various values of Pt using numerical methods. The optimal network configuration

is the (λ⋆b , P
⋆
t ) combination that minimizes the APC of the network. The following special case

gives the deployment factor in closed form.

Special Case 4.2. When λb ≪ λu, pa ≈ 1 and both ψr(t, α) and ℜ(υ, α) are independent of

λb. Hence, the optimal deployment factor in (4.49) is rewritten in closed form as

H⋆
r =

σ2ψ(α)ψr(t, α)

(1− κ)ℜ(υ, α)
. (4.50)

The deployment factor H⋆
r can be optimized as a bivariate problem to determine the optimal
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BS density and transmit power using the following optimization framework:




minimize

λb, Pt

λb(NtxP0 +∆Pt)

subject to λ
α/2
b Pt = H⋆

r , 0 ≤ Pt ≤ P t.
(4.51)

Following the same procedure as (4.41)-(4.43), the optimal solutions are expressed as

P ⋆
t = min

{
2NtxP0

∆(α− 2)
, P t

}
and λ⋆b,r =

(H⋆
r

P ⋆
t

)2/α

. (4.52)

Therefore according to (4.43) and (4.52), the optimal transmit power is independent of both

the coverage probability and average user rate constraints and only depends on the BS power

consumption parameters and the pathloss exponent. Therefore, the optimal transmit power

can be predetermined if the deployed BS type is known. According to power parameters of

different BSs in [19, Table 2], it is optimal to transmit at maximum power which correspondingly

minimizes the BS density.

4.4.3 Overall Solution

The coverage and average user rate constraints are complementary to each other because opti-

mization based on one measure also improves the other measure. Therefore, the overall optimal

BS density, denoted as λ⋆b , is one that satisfies both constraints simultaneously, i.e.

λ⋆b = max{λ⋆b,c, λ⋆b,r}. (4.53)

4.5 Numerical Results

This section presents the performance results of a PPP-based dense homogeneous network with

the default parameters shown in Table 4.1, unless otherwise stated.

Table 4.1: Simulation Parameters

Parameters Values

Network area A = 5km× 5 km

System bandwidth B = 20MHz

BS transmit power Pt = 21 dBm

Pathloss parameters L = −33 dB, α = 4

Noise parameters F = 10, Ta = 300K

BS power parameters Nb = 2, P0 = 6.8, ∆ = 4, Psl = 4.3

Optimization constraints ǫ = κ = 0.9

Fig. 4.2 shows the coverage probability for various SIR threshold values and pathloss exponents.

Coverage probability is a reducing function of coverage threshold T because a higher coverage

level is more difficult to achieve. In addition as α increases, the interference power, most
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Figure 4.2: Probability of coverage for λb = 4× 10−6m−2.

of which comes from distant sources, decays very fast and the SIR generally increases which

consequently improves the coverage probability. The analytical results assume that the network

extends indefinitely and therefore consider all possible sources of interference. However, Monte

Carlo simulations consider a defined section of the network area which includes only a finite

number of BSs. Therefore, the simulation results tend to be better than the analytical results.

However, the disparity between both results can be minimized by considering a sufficiently

large network area for Monte Carlo simulations. In practical deployments, interference from

distant sources is often considered negligible so as to facilitate frequency reuse.

Average subchannel rate only depends on the subchannel size and does not vary with system

bandwidth since all subchannels are occupied as shown in Fig. 4.3. However, average user rate

increases with system bandwidth because the average number of subchannels per user increases.

Coverage probability and average rate are highly influenced by the BS-user density ratio υ as

shown in Figs. 4.4-4.5. To explain, consider two distinct υ-regimes:

1. When λb ≪ λu (low-υ), the coverage probability and average subchannel rate of the

interference-limited network are invariant with the BS density since all BSs remain active.

In addition, both measures increase with the pathloss exponent α because at higher α,

the interference (which originates further away) is attenuated more than the received

signal thus increasing the average SNR. However in the presence of noise, the aggregate

interference is very small (or negligible) in comparison and the network is essentially noise-

limited which makes the coverage probability and average subchannel rate considerably

lower than their corresponding upper bound levels in the interference-limited network.

In contrast however, both coverage probability and average subchannel rate are now

decreasing functions of α because the received signal reduces with α which lowers the

average SNR in the noise-limited network.
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Figure 4.4: Variation of coverage probability with υ for λu = 10−3m−2 and T = 0dB.

2. As the BS density increases (υ increases), the gradual increase in the aggregate inter-

ference eventually makes the network interference-limited. As a result, both measures

approach their corresponding upper bound levels as the effect of noise becomes evermore

negligible. In this regime, both coverage probability and average subchannel rate are

now increasing functions of α because of the more significant attenuation of interference

(which originates far) compared to the received signal. In the very high-υ regime, the

density of idle BSs increases and their thinning effect on the aggregate interference begins

to enhance coverage probability and average subchannel rate.

Using (4.43) and (4.52), the optimal combination of BS density and transmit power that

achieves both coverage probability and average rate targets can be determined. Fig. 4.6
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Figure 4.5: Variation of average subchannel rate with υ for λu = 10−3m−2.
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Figure 4.6: Optimal BS density versus optimization constraints where λu = 10−3m−2.

shows that the optimal BS density subject to both constraints increases with the target ratios

ǫ and κ because the network requires more BSs to approach its interference-limited scenario.

The optimal BS density based on the coverage constraint increases with the SINR coverage

threshold T since more BSs are required to enhance SINR level. When T = 0dB, the optimal

BS densities based on both constraints are approximately equal. However when T > 0 dB,

the coverage constraint requires more BSs (i.e. λ⋆b,c > λ⋆b,r) and therefore it dominates the

optimization process. Conversely when T < 0 dB, λ⋆b,c < λ⋆b,r and the average rate constraint

becomes decisive. This justifies why both coverage and rate constraints are required.

Optimal BS density also depends on the cellular network environment as shown in Fig. 4.7.

In general, optimal BS density based on both constraints increases with the pathloss exponent

α since wireless signals degrade more rapidly at high α. To further investigate the effect of α,
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Figure 4.7: Effect of the pathloss exponent α on the optimal BS density subject to coverage and rate
constraints (λu = 10−3m−2, T = 0dB, α = 4).
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Figure 4.8: Optimal APC versus optimization constraints where λu = 10−3m−2.

assume that ǫ = κ and consider the case of T = 0dB where λ⋆b,c and λ
⋆
b,r are within the same

range. When α < 4, λ⋆b,c > λ⋆b,r but when α > 4, λ⋆b,c < λ⋆b,r. This further emphasizes the

necessity of considering both coverage and rate constraints.

The APC, shown in Fig. 4.8, follows a similar trend to the optimal BS density as the optimiza-

tion constraints change since power consumption per active BS is a constant. The benchmark

result considers the approach in [117] which considered only a coverage constraint. When α = 4,

optimal BS density is similar for either constraint; therefore either constraint is satisfactory in

such an environment. However when α < 4, considering only a coverage constraint gives a

higher APC than when both coverage and rate constraints are used. On the other hand, when

α > 4, considering only the coverage constraint gives a lower APC but the network will not
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achieve the rate target. Hence considering both constraints not only minimizes the APC but

also allows the network to achieve all coverage and rate performance targets in all network

environments.

4.6 Summary

This chapter presented some of the contributions of this thesis on the performance analysis

of PPP-based homogeneous cellular networks. User connectivity models were developed to

investigate physical channel allocation and identify idle BSs which impact network performance.

Furthermore, an APC-minimization framework was presented to determine the optimal BS

density and associated transmit power configuration of the network subject to appropriate

coverage and rate constraints. Analysis shows that optimal transmit power is only a function

of the BS power consumption parameters. On the other hand, optimal BS density is easily

determined using numerical methods. In some special cases, it is expressed in close form.
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Chapter 5

Sleep Mode Mechanisms

5.1 Introduction

Future networks will be characterized by a dense deployment of BSs to provide seamless coverage

and required capacity enhancements [130]. However, user density is known to vary significantly

in space and time and therefore it might be necessary to vary the BS density accordingly to

manage the energy performance of the network. A popular technique to adapt the BS density

to changes in the user density is to implement sleep mode mechanisms where some BSs are put

to sleep mode or completely switched off. In this thesis, two states of sleep mode are considered

namely; (i) sleep mode where a BS consumes a small amount of power, and (ii) deep sleep mode

in which a BS is completely switched off and consumes no power. Sleep modes depend on the

prevailing BS-UE density ratio and their performance is highly influenced by the criteria used

to choose BSs to put into sleep mode.

Several works have studied this idea of managing energy consumption using sleep mode mech-

anisms [71], [72], [73], [74], [75], [76], [131]. Sleep mode should prioritize BSs with the least

activity in the network [71]. In addition, it is beneficial to consider the load profile of the wider

geographical coverage area of the network although this makes the implementation of sleep

mode more challenging [131]. Energy savings can also be achieved by carefully replacing some

macro BSs with micro BSs coupled with appropriate power adjustment [72]. The authors in

[73] performed a joint optimization of the BS sleeping control and power matching schemes to

achieve flexible tradeoffs between power consumption and user QoS. In [74], the authors inves-

tigated the effect of sleep mode on the average user capacity and optimized the transmit power

of the remaining BSs to maintain the outage target. The authors in [75] propose a technique

of managing power consumption by switching off some BSs and balancing the prevailing traffic

load between the remaining active BSs. In [76], the authors proposed a sleep mode algorithm

that prioritizes BSs with the least perceived importance to the network as candidates for sleep

mode. However, the power consumed by BSs in sleep mode needs to be managed carefully to

enhance the benefits of sleep mode. Authors in [132] clearly demonstrated the need for sleep

mode power consumption of BSs to be minimized since it can negatively affect the realizable

EE especially in dense networks where numerous BSs may be in sleep mode simultaneously.
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In this chapter, our contributions include the proposed centralized and distributed strategic

sleep mode schemes which enhance both average rate per active BS and network EE compared to

existing conventional and random sleep mode schemes. It also investigates the effect of varying

user density on network performance. As the user density changes between two extremes,

the network is studied over three distinct BS-user density ratios (very low, comparable, and

very large). Using appropriate approximations, simpler and tractable analytical expressions of

coverage probability, average rate, ACR, etc are derived for each of these classes which allows

interesting insights to be made into the performance of the network.

5.2 Conventional Sleep Mode

In this scheme, all idle BSs are put into sleep mode to save energy and no BSs are in deep sleep

mode. Idleness refers to a complete lack of users within its coverage area. Hence a typical BS

remains active with probability pa and goes to sleep with probability 1− pa, where

pa = 1− P(N = 0) = 1−
(
1 +

λu/λb
K

)−K
. (5.1)

Since all users are already connected to their respective parent BSs, conventional sleep mode

does not affect the received power of any user. However, the aggregate interference reduces

which enhances the SINR level in the network. Therefore, conventional sleep mode maximizes

the network sum rate since it guarantees the maximum possible active BS density. All the

previous coverage and average rate analysis of the homogeneous network is based on this scheme.

The APC of the network with conventional sleep mode is expressed as

APC = λbA[pa(Pact − Psleep) + Psleep] (5.2)

where A is the network area, and Pact and Psleep are the powers consumed by a BS in active

and sleep modes respectively. Using average sum rate in (4.25), EE is expressed as

EEc =
B paΞ[πλbe−

σ2

PtL
(2t−1)xα/2

e−πλb(1+paζ(t,α))x]

A[pa(Pact − Psleep) + Psleep]
[bits/Joule]. (5.3)

The performance tradeoff between EE and SE can therefore be evaluated using (5.3). However,

it is not possible to express EE in (5.3) in closed form.

The amount of power consumed by sleep mode BSs impacts and can severely limit EE especially

if many BSs are in sleep mode simultaneously [76]. For a given BS type, the maximum sleep

mode power consumption that guarantees a target EE, denoted as EET , is expressed as

Psleep =


B paΞ[πλbe

− σ2

PtL
(2t−1)xα/2

e−πλb(1+paζ(t,α))x]

EETA(1− pa)
− paPact

1− pa




+

(5.4)

where [·]+ guarantees that EET is chosen such that Psleep ≥ 0.
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5.3 Random Sleep Mode

Although conventional sleep mode puts all idle BSs in sleep mode, it may be necessary to put

extra BSs to sleep so as to further reduce energy consumption. In random sleep mode, the BS

density is independently thinned before any cell association and the users are served by the

remaining BSs. Therefore, some users may be forced to connect to more distant BSs if their

nearest (original or parent) BSs have been selected for deep sleep mode. It is assumed that BSs

in deep sleep mode remain in this state for a relatively extended time period (for example, a

network may operate with an independently thinned BS density during the low traffic period

at night). The multi-user connectivity model facilitates the thinned BS density to take on more

users and maintain acceptable blocking rates. This scheme is discussed in [71], [133] and will

only be used in this thesis for comparison purposes.

If pr is the target proportion of active BSs, then the density of BSs in deep sleep mode is

(1 − pr)λb. When pr = 1, random sleep mode is equivalent to conventional sleep mode. The

analysis of random sleep mode is essentially similar to that of conventional sleep mode, the only

difference being that the available BS density is prλb instead of λb in the conventional scenario.

After cell association, there is a finite probability that some BSs may still remain idle and can

also be put to sleep mode. Using analysis similar to the conventional scheme, the probability

of an active BS in a network with random sleep mode is expressed as

par = 1− P(Nr = 0) = 1−
(
1 +

λu/prλb
K

)−K
(5.5)

where Nr is the number of users in a cell in a network with random sleep mode. Therefore, the

respective densities of BSs in active and sleep modes are parprλb and (1− par)prλb.

Compared to conventional sleep mode in (4.20), average subchannel rate is now expressed as

Rchr(υ, α) =
1

δ
Ξ

[
πprλbe

− σ2

PtL
(2t−1)xα/2

e−πprλb(1+par ζ(t,α))x
]

(5.6)

where parλb = parλb\{bo} and bo is the serving BS.

ACR, denoted as ACRr, is ACRr × λu = prλb E[Cbr] where Cbr ∈ {0, δ} is derived similar to

(4.14). The average number of subchannels per user is expressed as

ωr(υ, δ) =
Ωr(υ, δ)

ACRr × λu
=

parδ

prE[Cbr]
(5.7)

where Ωr(υ, δ) = parλbδ represents the average number of channels available in the network.

The average user rate is expressed as Rur(υ, δ, α) = ωr(υ, δ) × Rchr(υ, α). The average sum

rate is then determined as Tr(υ, δ, α) = ACRr × λu ×Rur(υ, δ, α).

Since any idle BSs after cell association are also put to sleep mode to save energy, the APC of

a network with random sleep mode is expressed as

APC = prλbA[par(Pact − Psleep) + Psleep]. (5.8)
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Random sleep mode thins the BS density independently without considering user occupancy of

affected BSs. However, practical sleep mode schemes are most likely to consider the dynamic

spatiotemporal distribution and variation of users in the network. In the following, we propose

two strategic sleep mode schemes which exploit this spatiotemporal variation and distribution

of users to enhance network energy performance. These schemes may be applied periodically

to respond and adapt network energy consumption to variations in user density.

5.4 Centralized Strategic Sleep Mode

In random sleep mode, sleep mode BSs are chosen randomly and hence some BSs with many

users may be affected. In centralized strategic sleep mode, a BS remains active or not depending

on its perceived degree of importance to the network. The centralized strategic approach

considers the whole network and prioritizes BSs with the least number of users for sleep mode

[76]. Assuming that the network is initially thinned to psλb where ps is the probability that a

BS remains available for cell association, the density of BSs in deep sleep mode is (1 − ps)λb.

The value of ps may be set based on some criteria similar to pr in random sleep mode. For

example, all BSs with N < n users may be put to sleep such that ps becomes

ps = 1− P(N < n) =
n−1∑

m=0

λmu (Kλb)KΓ(m+K)

Γ(K)m!(λu +Kλb)m+K . (5.9)

In general, any given percentage of BSs may be switched off strategically by prioritizing BSs

with the fewest users. If any two BSs have the same number of users but only one is to be

switched off, the choice is made randomly in this thesis. Since idle BSs are prioritized for sleep

mode, the centralized strategic scheme is similar to the conventional scheme over some range

of ps, which creates two regions of interest:

(i) If ps ≥ pa, both centralized strategic and conventional sleep mode schemes are identical

since only idle BSs are put to sleep. However, in centralized strategic sleep mode, some

BSs are put into deep sleep mode except when ps = 1. The respective density of BSs in

active, sleep and deep sleep modes are paλb, (ps − pa)λb and (1− ps)λb.

(ii) If ps < pa, all available BSs of density psλb remain active. The density of BSs in deep

sleep mode is (1−ps)λb, which consists of all idle BSs of density (1−pa)λb and extra BSs

of density (pa − ps)λb which contain the fewest users. Hence in this range of ps, a BS is

either in active mode or deep sleep mode only.

Therefore, centralized strategic sleep mode provides two opportunities: (i) it maximizes the

number of users that remain connected to their parent BSs, and (ii) it minimizes the total

number of affected users which enhances their chance of getting a connection from a neighboring

active BS. The network APC with centralized strategic sleep mode is expressed as

APC =




psλbAPact, ps < pa

λbA [paPact + (ps − pa)Psl], ps ≥ pa.
(5.10)
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5.5 Distributed Strategic Sleep Mode

Although the centralized strategic scheme is optimal, it is difficult to implement in very large

networks. In the distributed strategic scheme, the strategic algorithm is implemented in smaller

clusters all over the network. The network is subdivided into a grid of Nc equal-sized squares

where each square represents a cluster area. Cluster boundaries only determine which cluster

each BS belongs to for sleep mode optimization and do not affect cell association since users

still connect to their nearest parent BSs. Therefore, BSs within each square form a cluster and

together with their associated users define the clusters BS-user density ratio. Although this

makes it easier and more manageable to implement, it trades off some of the performance of the

centralized strategic scheme. If Nc = 1, the centralized and distributed strategic sleep mode

schemes are identical. If the i-th cluster has a BS density λbi and a user density λui , then the

probability of a BS in the cluster being active is expressed as

pai = 1−
(
1 +

λui/λbi
K

)−K
. (5.11)

In each cluster, a fraction 1 − ps of all BSs are put into deep sleep mode, prioritizing those

with the least number of users. As in the centralized strategic scheme, the distributed strategic

scheme in each cluster also gives two regions of interest:

(i) When ps ≥ pai , the active BS density is paiλbi . Only idle BSs are affected and the densities

of BSs in sleep and deep sleep modes are (ps−pai)λbi and (1−ps)λbi respectively. Denote
the number of clusters in this category as N c.

(ii) When ps < pai , psλbi < paiλbi which means that the active BS density is exactly psλbi .

All remaining BSs of density (1− ps)λbi are in deep sleep mode. They consist of all idle

BSs of density (1− pai)λbi and extra BSs of density (pai − ps)λbi which contain the least

number of users. The number of clusters in this category is Nc −N c.

It is important to investigate how the active BS density of a network with distributed strategic

scheme compares to that of the centralized strategic scheme. For example, consider the point

ps = pa in centralized strategic scheme where active BS density, denoted as B̃c, is paλb and all

idle BSs are prioritized for deep sleep mode. In the distributed strategic scheme, ps = pai for

the i-th cluster which means that ps varies in each cluster depending on its BS-user density

ratio. Therefore, in clusters where ps < pai , some extra BSs with users are also put in deep

sleep mode alongside idle BSs (see (ii) above). Denote the sum of all active BSs in all clusters

of the network with distributed strategic scheme as B̃d. Then, it is clear that B̃c ≥ B̃d i.e.

psλb ≥
Nc∑

i=1

paiλbi |ps≥pai
+

Nc∑

i=Nc+1

psλbi |ps<pai
. (5.12)

This difference in active BS density partly explains the sub-optimal performance of distributed

strategic scheme compared to its centralized counterpart. Using (5.12), the APC of the network
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with distributed strategic scheme is expressed as

APC =
Nc∑

i=1

λbi [pai(Pact − Psleep) + psPsleep]|ps≥pai
+

Nc∑

i=Nc+1

psλbiPact|ps<pai . (5.13)

5.6 Effect of Varying User Density

Future networks will consist of a high density deployment of BSs to provide ubiquitous coverage

and rate to subscribers. The aggregate power consumption of all BSs is likely to raise energy

costs and limit subscriber revenues and profits. Traditionally, cellular networks are planned

to support peak traffic but traffic demand is known to vary highly in both space and time

domains [49]. Therefore, a large density of BSs may remain idle especially when traffic demand

is low. The prevailing user density in the network highly impacts the coverage, average rate,

ACR and energy performance of the network. In highly dense networks, extreme variations of

the user density may force the network to go through various BS-UE density ratio (υ) regimes.

Consider the following three υ regimes [132]: (i) mid-level υ-regime, (ii) very low υ-regime, and

(iii) very high υ-regime. The analysis in this section assumes that noise is negligible and that

the network has one channel (i.e. δ = 1). Note that in this single-channel network, the average

channel and average user rates are equal i.e. Rch = Ru.

5.6.1 Mid-Level BS-UE Density Ratio

In this regime, λb ∼ λu and therefore small changes in υ cause significant changes in the active

BS probability shown in (4.7). For example when υ = 1, pa = 0.59 and when υ = 2, pa = 0.37.

This makes the analytical approximation of pa very challenging. In other words, it is difficult

to define a scaling function of the average rate or coverage probability with υ. Equally, ACR

performance also shows significant variation with υ.

Conventional Sleep Mode: An inspection of the average user rate of the interference-

limited network (shown in (4.21)) shows that it scales approximately linearly with υ when

λb ∼ λu. Therefore, the average user rate can be approximated as the line [132]

Ru(υ) ≈ c1
λb
λu

+ c2 = c1υ + c2 (5.14)

where c1 and c2 are constants that depend on the υ-range considered. For example, considering

the range 0.25 ≤ υ ≤ 4.0 which dimensions a network in which the BS density is up to four times

smaller or bigger than the user density, the line of best fit1 gives the constants as c1 = 0.6274

and c2 = 2.2293 as shown in Fig. 5.11.

According to (5.14), average subchannel rate is directly proportional to the BS density but

inversely proportional to the user density. This is intuitive because a higher BS density improves

the received signal power but reduces pa (the consequence is lower aggregate interference) which

1It is obtained using the MATLAB functions polyfit(x,y,n) and polyval(p,x).

84



enhances SINR. In contrast, a higher user density increases the density of active BSs which

increases aggregate interference and lowers SINR. Average network sum rate becomes

Tc(υ) ≈ paλbRu(υ) = paλb(c1υ + c2). (5.15)

Therefore, the average sum rate highly depends on the BS density and significant improvements

can be derived from deploying more BSs. Due to this dependence on the BS density, EE

performance is also very sensitive to the υ ratio. The EE is expressed as

EEc =
Tc
Ec

=
pa(c1υ + c2)

paPact + (1− pa)Psleep
. (5.16)

Therefore, the power consumed by BSs in sleep mode has a big impact on network EE. If

Psleep is low, the operator can deploy a dense network with sleep mode to enhance average

sum rate without worsening network EE. In general for a given υ-range, EE is maximized at

a given optimal υ which can be obtained using the differentiation method. Using the original

expression of Tc, the first derivative of EE, denoted as Dc, is determined as

Dc =
dEEc
dpa

=
EEcT̃c − TcẼEc

EE2
c

(5.17)

where ẼEc = λb(Pact − Psleep) and T̃c =
∫
t>0

[1 + paζ(t, α)]
−2dt are the derivatives of EEc and

Tc respectively. The derivative T̃c of Tc is derived using the product rule as follows

T̃c = λb

∫

t>0

[1 + paζ(t, α)]
−1dt− paλb

∫

t>0

[1 + paζ(t, α)]
−2ζ(t, α)dt

= λb

∫

t>0

1

[1 + paζ(t, α)]2
dt.

To determine the optimal pa, denoted as p⋆a, then Dc = 0. Hence

Dc =

∫

t>0

[
paPact + (1− pa)Psleep

[1 + paζ(t, α)]2
− pa(Pact − Psleep)

[1 + paζ(t, α)]

]
dt = 0

⇒
∫

t>0

Psleep + p2a(Pact + Psleep)

[1 + paζ(t, α)]2
dt = 0. (5.18)

Using (5.18), p⋆a can be determined numerically. Then υ⋆ is obtained at the point where

Dc(p
⋆
a) = 0. According to (4.7), υ⋆ is obtained from p⋆a in closed form as

υ⋆ =
1

K
[
(1− p⋆a)

−1/K − 1
]−1

. (5.19)

Random Sleep Mode: In this regime, the node densities are such that prλb ∼ λu. In a

network with random sleep mode, the BS-UE density ratio is expressed as υr = prλb/λu = prυ.

Similar to the conventional scheme, average user rate can be approximated using the line [132]

Rur(υ) = r1
prλb
λu

+ r2 = r1prυ + r2 (5.20)
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where constants r1 and r2 are determined from the line of best fit and depend on the considered

range of υr. For the υr-range 0.25 ≤ υ ≤ 4.0 in Fig. 5.11, the line constants are determined

as r1 = 0.5470 and r2 = 2.1541. Therefore, the average channel rate is directly proportional to

the probability pr. The average network sum rate is approximated as

Tr(υ) ≈ parλb(r1prυ + r2). (5.21)

Similar to conventional sleep mode, there is an optimal υ-ratio at which network EE is maxi-

mized. Using the same differentiation method, the optimal point can also be obtained.

5.6.2 Very High BS-UE Density Ratio

In this regime, λb ≫ λu such that υ → ∞. Due to the relatively few users, most BSs are likely

to remain idle. Furthermore, active BSs are likely to individually have very few users due to

their relatively small coverage areas. This υ-regime is also studied in [134] which only analyzes

the outage performance of the homogeneous network with conventional sleep mode.

Conventional Sleep Mode: When υ → ∞, the probability of an active BS shown in (5.1)

can be approximated using the first two terms of its binomial series as

pa ≈ 1−
(
1−K λu

Kλb

)
=
λu
λb

=
1

υ
. (5.22)

In other words, most BSs will be idle as υ → ∞. Using (5.22), average user rate becomes

Ru(υ, α) ≈
∫

t>0

1

1 + (λu/λb)ζ(t, α)
dt. (5.23)

Similarly, the average sum rate of the network is simplified as

T (υ, α) ≈ λu

∫

t>0

1

1 + (λu/λb)ζ(t, α)
dt = λuRu(υ, α). (5.24)

Therefore, as λb increases (or λu reduces), λu/λb reduces and Ru(υ, α) increases further. In

addition, the average sum rate is directly proportional to the user density i.e. T (υ, α) =

λuRu(υ, α). To explain the direct proportionality, consider the ACR performance of the network

in this regime which is approximated as

ACR = pa
λb
λu

≈ 1. (5.25)

In other words, each added user is highly likely to activate a previously idle BS because the

coverage cells are very small. Therefore any increase in user density is matched by a comparable

increase in active BS density which gives the linear relationship in average sum rate. Fig. 5.16

verifies that the approximation of T (υ, α) is very accurate and becomes tighter as υ → ∞.
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Coverage probability of an interference-limited network with conventional sleep mode becomes

Pc(υ, T, α) ≈
1

1 + (λu/λb)ρ(T, α)

(a)≈ 1− λu
λb
ρ(T, α), (5.26)

where (a) uses the first two terms of its binomial series. Hence as υ → ∞, Pc → 1.

Random Sleep Mode: In the very high υ-regime (when λb ≫ λu), an operator may decide

to initially reduce the available user density by some degree. Active BS probability in a network

with random sleep mode, shown in (5.5), is approximated using its binomial series as

par ≈
λu
prλb

. (5.27)

Hence, the average user rate and average sum rate of the network are approximated as

Rur(υ, α) =

∫

t>0

1

1 + (λu/prλb)ζ(t, α)
dt, (5.28a)

T (υ, α) = λu

∫

t>0

1

1 + (λu/prλb)ζ(t, α)
dt. (5.28b)

The average user rate with random sleep mode also increases as the υ-ratio increases and it also

an increasing function of probability pr. Similar to the conventional sleep mode scheme and for

the same reason, the average sum rate also has a linear relationship with the user density.

Centralized and Distributed Strategic Sleep Mode: Since most BSs are idle, the strate-

gic sleep mode algorithm prioritizes them for sleep mode. Therefore, unless ps is very small,

the performance of both strategic schemes resembles that of conventional sleep mode since

they both prioritize idle BSs for sleep mode. Hence, both strategic schemes have no particular

advantage over conventional and random sleep modes.

5.6.3 Very Low BS-UE Density Ratio

When λb ≪ λu (or υ ≪ 1) in a network with conventional sleep mode, the active BS probability

shown in (5.1) is approximated as pa ≈ 1 i.e. every BS is likely to have at least one user. The

ACR is approximated as

ACR =
paλb
λu

≈ λb
λu

= υ ≪ 1. (5.29)

Hence most users remain unconnected since ACR is very low. Average user rate becomes

Ru(α) ≈
∫

t>0

1

1 + ζ(t, α)
dt (5.30)

which gives a unique value that is independent of υ. For example, Ru(α = 4) = 2.15 b/s/Hz.

The average sum rate of the network is approximated as

T (λb, α) ≈ λb

∫

t>0

1

1 + ζ(t, α)
dt. (5.31)
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Therefore the average sum rate is directly proportional to the BS density. For example,

T (λb, α = 4) = 2.15λb b/s/Hz. This direct proportionality is a consequence of the fact that

each additional BS is likely to associate with at least one user since cell sizes are relatively

large. Hence, significant gains in average sum rate are possible by further densification of the

network with more BSs. Furthermore, increasing the user density has no effect on average sum

rate since all the BSs are already active.

Similarly, coverage probability does not depend on υ and is therefore a constant value for a

given α. Coverage probability in this regime is shown in (3.12); for example Pc(T = 0dB, α =

4) = 0.56. This special network regime is studied in [106] which also assumes a single user

connectivity model. Since λb ≪ λu, random and strategic schemes are ignored because it is

very unrealistic to further reduce the available BS density under such low ACR conditions.

5.7 Numerical Results

To investigate the performance of different sleep mode mechanisms, consider a PPP-based dense

homogeneous network with the default parameters shown in Table 5.1, unless otherwise stated.

Table 5.1: Simulation Parameters

Parameters Values

Network size A = 5km× 5 km

Total BS bandwidth B = 20MHz

BS and user densities λb = 1.6× 10−5 m2, λu = 2λb

Transmit power Pt = 21 dBm

Pathloss parameters L = −33 dB, α = 4

Power parameters Nb = 2, P0 = 6.8W, ∆ = 4, Psl = 4.3

Additive noise parameters F = 10, Ta = 300K

Coverage probability, average rate and energy consumption of the network depend on the sleep

mode scheme implemented. Fig. 5.1 shows the density of BSs that remain active in the

considered network area for each sleep mode scheme. The active BS density partly explains the

performance capabilities of different sleep mode schemes. When pr = ps = 1, all schemes are

identical and active BS density is maximized as paλb. In random sleep mode, active BS density

varies proportionally with pr. In contrast, centralized strategic sleep mode improves active

BS density which approaches its upper bound (paλb) much faster. The active BS density of

distributed strategic sleep mode is slightly lower than that of its centralized counterpart, which

verifies the analysis in (5.12). The difference in active BS density between the two schemes

increases with the cluster density but in a concave manner. To illustrate, consider the point

ps = pa ≈ 0.8 where the differences in active BS density with Nc = 8 and Nc = 16 are 3.5% and

5% respectively. This reducing effect of the cluster density on active BS density is important

where operators prefer smaller and more manageable cluster sizes.

The performance of a sleep mode scheme can also be traced in the way it distributes users
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Figure 5.1: Density of active BSs for the various sleep mode schemes.
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Figure 5.2: The total number of BSs with corresponding number of users, where λu = 4λb and
pr = ps = 0.6.

between remaining BSs. To illustrate, consider a network in which ps < pa. Fig. 5.2 shows the

sum total of BSs with a corresponding number of users after cell association. Although the BS

density is significantly lower than user density (λu = 4λb), many BSs still remain idle (about

35 BSs in this case) and the majority of active BSs generally have very few users. Conventional

sleep mode may lead to underutilization of bandwidth resources in these cells especially where

users have low traffic requirements. Both random and the strategic schemes reduce the available

BS density and redistribute users among remaining BSs. After user re-association, random sleep

mode still has some idle BSs (about six BSs) but the strategic schemes ensure that all available

BSs remain active which enhances average sum rate. To understand the advantage of the

strategic schemes, note that on the left hand side of Fig. 5.2, both conventional and random
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Figure 5.3: Coverage probability of the interference-limited homogeneous network under the various
sleep mode schemes.

sleep modes are more likely to have idle BSs which consume some energy even in sleep mode.

Furthermore on the right hand side, random sleep mode is more likely to cause congestion than

the strategic schemes. Hence the strategic schemes ensure a fairer distribution of bandwidth

resources among users compared to conventional and random schemes.

Sleep mode mechanisms generally improve the SINR coverage probability of a typical user as

shown in Fig. 5.3. The ‘no sleep’ scenario is a special case which assumes that λu ≫ λb such

that pa ≈ 1 i.e. all BSs always transmit which maximizes the aggregate interference and gives

the lower bound on coverage probability [106]. Centralized strategic sleep mode guarantees

the best coverage probability because of two reasons: (i) it minimizes aggregate interference

compared to conventional sleep mode; and (ii) it minimizes the effect of sleep mode on average

received signal strength compared to random sleep mode. Note however that its performance

generally depends on the choice of ps. For example it has the same performance as conventional

sleep mode when ps ≥ pa. Coverage probability with distributed strategic scheme is very close

to that of its centralized counterpart due to their comparable active BS densities. Although

conventional sleep mode puts all idle BSs to sleep and maintains the received signal of every

connected user, its aggregate interference is still higher compared to the strategic schemes. This

reduces the average SINR and consequently gives a lower coverage probability in comparison.

Although random sleep mode has the lowest aggregate interference, it has the worst SINR

coverage because of its significant negative effect on the average received signal of users.

The benefit of sleep mode is to enhance network EE but this is normally achieved at the expense

of other performance measures. The EE of a given scheme depends on its ability to maximize

average sum rate from the remaining active BSs. In this regard, the strategic schemes maximize

average rate per active BS compared to conventional and random schemes as shown in Fig. 5.4.

Hence the strategic schemes give a better network EE compared to conventional and random

sleep modes as shown in Fig. 5.5. In the range ps ≥ pa where conventional and both strategic
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Figure 5.4: Average rate per active BS for different sleep mode schemes.
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Figure 5.5: Network EE performance of different sleep mode schemes.

schemes are identical, the strategic schemes still have better EE because they put some BSs in

deep sleep mode (compare (5.2) and (5.10)). Random sleep mode has the worst EE performance

due to its significant effect on SINR which results in low average sum rate.

Sleep mode schemes have a big impact on the realizable average rate performance of the network

as shown in Figs. 5.6-5.7. Conventional sleep mode has constant average user rate and average

sum rate because it maintains the same average active BS density of paλb. In addition, it defines

the upper bound on both measures because of its superior active BS density that maximizes

both the connected users and the bandwidth per connected user (see Fig. 5.1). With random

sleep mode however, both average user and average sum rate increase proportionally with pr

until they reach their respective upper bound levels at pr = 1. In general, random sleep mode
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Figure 5.6: Average user rates for the different sleep mode schemes.
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Figure 5.7: Average sum rates with the different sleep mode schemes.

has the worst average rate performance because of its random selection of sleep mode BSs. In

contrast, centralized strategic sleep mode optimizes the selection process of sleep mode BSs to

enhance average rate performance and as a result, both average user and sum rate performances

approach their upper bounds much faster than random sleep mode. In the ps ≥ pa range,

average user and sum rates of centralized strategic scheme are equivalent to their respective

upper bound levels because the scheme is identical to the conventional scheme in this range.

Furthermore, centralized strategic scheme gives slightly better average user rate and average

sum rate performances than its distributed counterpart due to its superior active BS density.

Hence although conventional sleep mode maximizes average sum rate, it does so at the expense

of significantly more energy consumption which affects EE as shown in Fig. 5.5.
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Figure 5.8: Average sum rate versus SNR for the sleep mode schemes (ps = pr = 0.6 and
σ2 = 0.01W).
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Figure 5.9: EE versus average sum rate for the sleep mode schemes (ps = pr = 0.6).

Fig. 5.8 illustrates the variation of sum SE of the network with SNR for different sleep mode

schemes. At very low SNR where the network is noise-limited, sum SE is very low and compara-

ble for all sleep mode schemes. As SNR increases, sum SE increases accordingly and differences

in sleep mode performance become more apparent. In general, conventional sleep mode has the

best sum SE performance over the whole SNR range due it its superior active BS density. The

strategic schemes also outperform random sleep mode due to their ability to maintain a consid-

erably better active BS density. At very high SNR where the network is interference-limited,

sum SE saturates at different levels for each sleep mode scheme.

The tradeoff analysis of network EE and sum SE, illustrated in Fig. 5.9, shows that EE gener-

ally increases and then drops as sum SE increases towards its saturation level. Maximum EE
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Figure 5.10: ACR verses BS density for the sleep mode schemes, where pr = ps = 0.6, B = 10MHz,
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occurs at different sum SE values for different sleep mode schemes. With random sleep mode,

maximum EE is achieved at the lowest sum SE in comparison to the other schemes. In contrast,

conventional sleep mode achieves maximum EE at the highest sum SE of all the schemes. The

improved EE-SE tradeoff performance of random sleep mode over conventional sleep mode is

a consequence of the significantly more aggregate fixed (or circuit) power consumption in a

network with conventional sleep mode. In comparison, both strategic schemes guarantee the

highest maximum EE performance although this is achieved at a lower sum SE than conven-

tional scheme. Distributed strategic scheme fairly matches its centralized counterpart. Hence

the strategic schemes give useful flexibility between conventional and random schemes towards

achieving a very high EE at a relatively good sum SE.

Another consequence of sleep mode is how it affects user connectivity in the network. ACR

mainly depends on the prevailing BS-user density ratio υ but it is also influenced by sleep

mode schemes as shown in Fig. 5.10. Generally for a given BS density, ACR reduces as the

user density increases since a typical user is more likely to remain unconnected. For a given

user density λu, ACR increases with the BS density since the average number of users per cell

reduces. Conventional sleep mode defines the upper bound of ACR performance because it

guarantees the highest density of active BSs. At very low BS density where λb ≪ λu, most BSs

cover many more users than they can provide a connection, resulting into a low ACR for all

sleep mode schemes. In this range, both strategic schemes have no tangible gain over random

scheme because BSs with many associated users are forced to sleep which affects many users.

In general, sleep mode should not be implemented in this υ-regime because although energy

saving can be achieved, congestion is too severe to achieve good QoS. However as BS density

increases and average cell size reduces, the average number of users per cell reduces and ACR

generally increases in all schemes. In addition, some cells become idle or cover very few users

and the strategic schemes begin to outperform the random scheme by prioritizing such BSs for

sleep mode. As the BS density increases further, eventually all BSs contain few users who all get

connected irrespective of the sleep mode scheme. Beyond this point, additional BS deployment

does not yield any ACR gain although it may improve other measures.
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To investigate the effect of varying user density, consider a dense PPP-based homogeneous

network of small BSs with the default parameters shown in Table 5.2, unless otherwise stated.

Table 5.2: Parameters used to obtain results

Parameter Value Parameter Value

Very low υ: λu/m
2 4× 10−4 Ntx, P0,b, Psl, ∆b 1, 6.8 W, 1.5 W, 4.0

Mid-level υ: λu/m
2 4× 10−4 Network area A 2.5 km× 2.5 km

Mid-level υ: λb/m
2 {1, 16} × 10−4 Pt 0.13W

Very high υ: λu/m
2 {4, 40} × 10−6 α 4

Very high υ: λb/m
2 {4, 5} × 10−4 σ2 0

In the mid-level υ-regime, consider a network in which the BS density is up to four times less

than or greater than the user density i.e. 0.25 ≤ υ ≤ 4.0. Fig. 5.11 verifies the accuracy of

the approximation of the average user rate as a linear function of υ. It also shows the exact

analytical results verified by Monte Carlo simulation. For conventional sleep mode, the line

constants are c1 = 0.6274 and c2 = 2.2243 over this υ-range. Similarly, the constants in the

random sleep mode case are r1 = 0.7445 and r2 = 2.0912.

The difference in average user rate performance between conventional and random sleep modes

increases with υ (or as the user density reduces). When the υ-ratio is sufficiently small, all

BSs remain active and the average user rate is the same with both schemes. As υ increases,

the average number of idle BSs increases which thins out the aggregate interference. On one

hand, conventional sleep mode ensures that users remain connected to their parent BSs which

maintains their received signal and enhances their SINR level. On the other hand, random

sleep mode increases the average transmitter-receiver separation distance which reduces the

average received signal strength and gives a lower SINR level compared to conventional sleep

mode scheme. This difference in SINR level between conventional and random sleep modes

increases with the υ-ratio.

Fig. 5.12 shows the approximated average network sum rate, verified by both its exact analytical

and Monte Carlo simulation over the mid-level υ-range. Conventional sleep mode gives a higher

average sum rate since it connects more users and has a better average rate per user. In the

PPP model, it is assumed that each active BS randomly selects and connects a single user from

all the users within its coverage area. If each BS were to prioritize its highest SINR user, the

average sum rate would be enhanced as shown in the special case characteristic. Generally for a

given user density, network densification enhances the average sum rate since the average user

rate increases and more users get connected to the network.

The mid-level regime shows an optimal υ-ratio, denoted as υ⋆, at which network EE is maxi-

mized as shown in Fig. 5.13. Even though random sleep mode reduces the APC of the network,

this is achieved by significantly sacrificing the average sum rate. Therefore, conventional sleep

mode always gives a better average EE than random sleep mode. Prioritizing channel allocation

to the highest SINR users significantly enhances the average EE performance as shown in the

special case characteristic.

95



0 0.5 1 1.5 2 2.5 3 3.5 4
2

2.5

3

3.5

4

4.5

5

BS−UE density ratio υ

A
ve

ra
ge

 u
se

r 
ra

te
 [b

ps
/H

z]

 

 
Approx: conventional
Exact: conventional
Simul: conventional
Approx: random
Exact: Random
Simul: random

Figure 5.11: Average user rate in the mid-level υ-regime (for pr = 0.6).
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Figure 5.12: Variation of average network sum rate with υ in the ‘λb ∼ λu’ regime.

The power consumption of BSs in sleep mode has a significant impact on the average EE espe-

cially in dense networks where numerous BSs may be in sleep mode simultaneously. When Psl

is very small or negligible, average EE increases monotonically over this υ-regime. Conversely,

average EE decreases monotonically when Psl is higher than a certain level. Therefore, two

Psl threshold values exist between which average EE has a maximum value at a given υ value.

Denote the lower and upper thresholds as Psl1 and Psl2 respectively. If P ⋆
sl is the actual value

at which average EE is maximized, denoted as EEmax, then Psl1 ≤ P ⋆
sl ≤ Psl2 . EEmax occurs

at different υ-ratios (denoted ξ⋆) as Psl varies. The EEmax values and the corresponding ξ⋆ are

determined by analyzing the derivatives of average EE, as shown in (5.16)-(5.19).

Fig. 5.14 shows EEmax and the corresponding optimal υ-ratios (ξ⋆) at which it occurs for both
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Figure 5.13: Variation of average EE with υ in the ‘λb ∼ λu’ regime.
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Figure 5.14: Variation of EEmax and υ⋆ with sleep mode power consumption in the ‘λb ∼ λu’ regime
(pr = 0.6). Dashed lines represent EEmax (left y-axis) and solid lines represent ξ⋆ (right y-axis).

conventional and random sleep modes. As expected, a lower Psl guarantees a higher EEmax in

both sleep mode schemes. With conventional sleep mode, average EE increases monotonically

when Psl < 1.0W such that EEmax always occurs at υ = 4.0 (hence, the curve is flat in this

range). Similarly, average EE decreases monotonically when Psl > 3.8W such that EEmax

always occurs when υ = 0.25 (the curve is flat in this range as well). With random sleep mode,

these thresholds are 1.0 W and 3.5 W respectively but the general behavior is consistent.

Furthermore, a lower Psl value ensures that the average EE is maximized at a higher υ-ratio

with both sleep modes. This is desirable because it allows more BSs to remain active which

increases the average bandwidth per user, reduces the probability of congestion, reduces the

risk of coverage holes and improves the average sum rate of the network. Therefore it is

possible to know the optimal υ⋆-ratio at which average EE is maximized if the sleep mode
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Figure 5.15: Average user rate in ‘very high υ-regime’

power consumption of deployed BSs is known. To maintain a desired EEmax, the BS density

can be varied as the user density changes.

In the ‘very high υ-regime’, consider a network with a very small user density (or very large BS

density) such that 10 ≤ υ ≤ 100. As a result, many BSs are idle which thins the interference

and gives a large average user rate. Fig. 5.15 shows the variation of the average user rate

with user density for two different BS densities. The approximation of the average user rate is

verified by both its exact and Monte Carlo simulations. As user density increases, more BSs

become active which increases the interference and reduces average user rate.

Fig. 5.16 shows that average network sum rate increases almost linearly with user density which

verifies the analysis shown in (5.24). Although the average user rate reduces with increasing

user density λu|A|, more users actually get connected which increases the average sum rate.

In this regime, large gains in the sum rate are possible even when the user density increases

marginally. However, further BS densification of the network only gives marginal gains in the

average sum rate since most of them remain idle. Note that due to the large number of idle

BSs, the sleep mode power consumption Psl severely impacts average network EE performance.

Therefore, deep sleep strategies to completely switch off BSs should be devised.

In the ‘very low υ-regime, consider the υ-range 0.02 ≤ υ ≤ 0.2. Since all BSs remain active,

average user rate is approximately equal to 2.15 b/s/Hz. Fig. 5.17 verifies the approximation

of average sum rate using both its exact and simulation results. The average network sum

rate varies linearly with υ-ratio which verifies the analysis shown in (5.31). Therefore, further

BS densification of the network results into a linear increase in the average sum rate. In this

regime, sleep mode power consumption is not of major concern since the number of BSs in sleep

mode is negligible. However, such a network is characterized by low user connectivity (high

congestion) and low average sum rate.
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Figure 5.16: Average network sum rate in the ‘very high υ-regime’.
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Figure 5.17: Average network sum rate in the ‘very low υ-regime’.

5.8 Discussion Points

The approximations of coverage probability and average rate under different υ-ratios have al-

lowed interesting insights to be made on how variable user density affects network performance.

In some cases, the performance measures are expressed in closed-form while others only require

the evaluation of a simple integral. The following key insights can be drawn from the analysis.

(i) In the mid-level υ-regime where λb ∼ λu, there is an optimal υ-ratio at which the average

EE performance is maximized. Therefore, if changes in user density are known, the BS

density can dynamically change to maintain the optimal υ-ratio.

(ii) The power consumption of BSs in sleep mode has a major impact on the average EE

especially in dense networks where numerous BSs may be in sleep mode during low traffic
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periods. If the sleep mode power consumption of BSs is low, more BSs can be deployed to

enhance connectivity, coverage probability and average rate performance without worsen-

ing average EE. Therefore, it is imperative that equipment manufacturers design equip-

ment that consume minimal power in sleep mode. In addition, deep sleep mechanisms

which completely switch off BSs are beneficial.

(iii) Conventional sleep mode maximizes the density of active BSs and consequently the av-

erage sum rate of the network. Random sleep mode has no advantage over conventional

sleep mode in all three υ-regimes. However, strategic selection of candidate BSs for sleep

mode enhances the probability of coverage and average network EE. Distributing the

strategic algorithm in clusters across the network gives a good fit of the performance of

its optimal centralized counterpart.

5.9 Summary

This chapter presented sleep mode mechanisms that can help to adapt the energy consump-

tion of homogeneous networks to the prevailing traffic or user intensity. Both centralized and

distributed strategic algorithms improve the coverage, rate and energy performance of the net-

work. If the prevailing user density is low compared to the BS density, most BSs remain idle

and the network only needs to retain only enough active BSs to provide seamless coverage.

However, if the user density is much larger than the BS density, all BSs remain active to meet

the high traffic demand.
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Chapter 6

HetNet Deployment Optimization

6.1 Introduction

In the deployment of multi-tier HetNets, the choice of BS densities and transmit powers per

tier is an interesting problem that affects the SE and EE performance of the HetNet. Some

researchers have attempted to predict the optimal deployment configuration of HetNets subject

to appropriate performance measures. In [135], a two-tier unbiased HetNet is investigated to

determine the optimal densities of macro BSs and small BSs that maximize its EE subject to a

blocking probability constraint. In [115], an energy cost minimization framework is formulated

to determine the optimal combination of BS densities in a two-tier unbiased HetNet subject to

a service outage constraint. This work defines the circumstances under which it is preferable to

densify the existing HetNet with either a macro BS or a micro BS. However this work does not

optimize the associated transmit power in each tier. In addition, it assumes that the HetNet is

unbiased yet biasing is very important for load balancing in HetNets.

The authors in [117] implement an APC minimization framework to determine the optimal

BS densities and their associated transmit powers in a two-tier unbiased HetNet subject to a

coverage probability constraint. The authors define an optimal network deployment factor H⋆

which is expressed as H⋆ = λMP
2/α
M + λmP

2/α
m where λM and λm are the macro BS and micro

BS densities while PM and Pm are the respective macro BS and micro BS transmit powers.

Using H⋆, they analyze the performance scenarios under which the network maybe densified

using either a macro BS or micro BS. However, this work also ignores biasing and considers a

single performance constraint. Moreover, the deployment factor is not expressed in closed form

and must be determined numerically, for example using the bisection method [127].

In this chapter, a closed form expression for the deployment factor of a general K-tier unbiased

HetNet using different user association mechanisms is derived. In addition, the deployment

factor of a two-tier biased HetNet is determined to investigate the effect of biasing on coverage

probability, average rate and energy performance of HetNets. Both coverage probability and

average user rate constraints are applied in the optimization of the HetNet to ensure that both

performance targets are achieved in all network environments.
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It is important to investigate how coverage probability and average user rate vary with changes

in BS density and transmit power per tier. This behaviour will be used later to optimize the

HetNet deployment configuration subject to both performance measures.

Lemma 6.1. In a mobile environment where α > 2 and σ2 > 0, both coverage probability and

average user rate increase monotonically with the BS density per tier.

Proof. This is proved using the maximum ABRP connectivity-based expression of the coverage

probability. The proof can easily be extended to the other association schemes.

Assume that a typical user is associated with the k-th tier and consider two k-th tier BS

densities λk1 and λk2 , where λk2 > λk1 . Using (3.25), coverage probability corresponding to the

BS density λk2 is expressed as

PcP (λk2) =
K∑

k=1

πλk2

∫ ∞

0

e−a1z
α/2

e−π(λk2C+a2)z dz (6.1)

where a1 =
Tσ2

PkL
and a2 = C∑K

j=1,j 6=k λjP̂
2/α
j where C = 1+Z(T, α, 1) is a constant. Substituting

z = (λk1/λk2)x into (6.1) gives

PcP (λk2) =
K∑

k=1

πλk1

∫ ∞

0

e
−a1

(
λk1
λk2

)α/2

xα/2

× e
−π

(
λk1C+a2

λk1
λk2

)
x
dx

(a)
>

K∑

k=1

πλk1

∫ ∞

0

e−a1x
α/2

e−π(λk1C+a2)xdx

= PcP (λk1)

where (a) follows because a1 > 0, a2 > 0, C > 0, α > 2 and (λk1/λk2) < 1. Therefore, coverage

probability always increases if the BS density is increased from λk1 to λk2 . Note that a2 > 0

in biased HetNets and therefore the proof holds. Monotonicity of average user rate with BS

density is also proved in the same way.

Lemma 6.2. In a mobile environment where α > 2 and σ2 > 0, both coverage probability and

average user rate increase monotonically with the BS transmit power per tier.

Proof. This is proved using the maximum ABRP connectivity-based expression of the average

user rate. The proof can easily be extended to the other association schemes.

Consider two transmit power values Pk1 and Pk2 , where Pk2 > Pk1 . Using (3.28), the average

user rate corresponding to Pk2 is expressed as

RuP (Pk2) =
K∑

k=1

Ξ
[
πλk e

−(b1/Pk2
)zα/2

e−(b2/P
2/α
k2

)z
]

(6.2)

where b1 =
σ2

L
(2t − 1) and b2 = π

∑K
j=1 λjP

2/α
j Dj(t). Using Pk1 , the average user rate becomes

RuP (Pk1) =
K∑

k=1

Ξ
[
πλk e

−(b1/Pk1
)zα/2

e−(b2/P
2/α
k1

)z
]

(6.3)
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Since b1 > 0, b2 > 0, α > 2 and Pk2 > Pk1 , both respective exponential terms in (6.2) are larger

than those in (6.3). Hence RuP (Pk2) > RuP (Pk1) which proves Lemma 6.2. The monotonicity

of coverage probability with transmit power is proved in the same way.

Lemmas 6.1-6.2 are used later to determine the optimal BS density and transmit power per tier

that minimize the APC of the HetNet subject to coverage and average user rate constraints.

6.2 Minimum BTD Connectivity

Without loss of generality, assume that a typical user is located at the origin and associates

with a k-th tier BS located a distance rk away.

Lemma 6.3. The probability that the typical user in a HetNet with minimum BTD connectivity

is associated to the k-th tier is expressed as

Ak =
λk

∑K
j=1 λj

(
νk
νj

)2 . (6.4)

Proof. Denote the tier of association as tier m such that Ak = P[m = k]. Then,

Ak = P[m = k] = Erk [P [νkrk < νjrj, ∀j ∈ K, j 6= k]]

= Erk

[
K∏

j=1,j 6=k
P

[
rj >

νk
νj
rk

]]

=

∫ ∞

0

K∏

j=1,j 6=k
P

[
rj >

νk
νj
r

]
frk(r) dr. (6.5)

Similar to (3.10), frk(r) is expressed as

frk(r) = 2πλkr e
−πλkr2 . (6.6)

In addition, the product term in (6.5) is evaluated as

K∏

j=1,j 6=k
P

[
rj >

νk
νj
r

]
= P

[
No j-th tier BS closer than

νk
νj
r

]

=
K∏

j=1,j 6=k
e
−πλj

(
νk
νj
r

)2

= e
−π

K∑
j=1,j 6=k

λj

(
νk
νj
r

)2

. (6.7)

Substituting (6.6) and (6.7) into (6.5) gives

Ak = 2πλk

∫ ∞

0

r e−πλkr
2

e−π
∑K

j=1,j 6=k λj(νk/νj)
2r2 dr

= 2πλk

∫ ∞

0

r e−π
∑K

j=1 λj(νk/νj)
2r2 dr. (6.8)

Evaluating the integral in (6.8) by substituting y = r2 gives the result.
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According to Lemma 6.3, more users connect to a tier with a higher BS density and a smaller

bias value. This is intuitive because a smaller bias value makes BSs of that tier appear to be

closer than those of a tier with a larger bias value.

Lemma 6.4. The distance between a typical user and its serving k-th tier BS, denoted as Xk,

is a random variable whose pdf fXk
(x) is expressed as

fXk
(x) =

2πλk
Ak

x e
−π

∑K
j=1 λj

(
νk
νj

)2

x2

. (6.9)

Proof. The probability that Xk > x is expressed as

P[Xk > x] = P[rk > x|m = k] =
P[rk > x,m = k]

P[m = k]
. (6.10)

In this case, P[m = k] = Ak. In addition, P[rk > x,m = k] is evaluated as

P[rk > x,m = k] = P[rk > x, νkrk < νjrj, ∀j ∈ K, j 6= k]

=

∫ ∞

x

K∏

j=1,j 6=k
P

[
rj >

νk
νj
r

]
frk(r) dr

(a)
= 2πλk

∫ ∞

x

r e
−π∑K

j=1 λj

(
νk
νj

)2

r2

dr (6.11)

where (a) follows from (6.6) and (6.7). Substituting (6.4) and (6.11) into (6.10) gives

P[Xk > x] =
2πλk
Ak

∫ ∞

x

r e
−π∑K

j=1 λj

(
νk
νj

)2

r2

dr. (6.12)

However, the CDF FXk
(x) = 1− P[Xk > x]. Therefore, the PDF fXk

(x) =
dFXk

(x)

dx
.

6.2.1 Coverage Probability

Theorem 6.1. Coverage probability of a typical user in the HetNet is expressed as

PcD =
K∑

k=1

πλk

∫

z>0

e
− Tσ2

PkL
zα/2

e−π
∑K

j=1 λj P̂
2/α
j Ejzdz (6.13)

where Ej =
[
Sj + P̂

−2/α
j ν̂−2

j

]
, Sj = T 2/α

∫∞
uj

1
1+uα/2du, uj = (P̂jT )

−2/αν̂−2
j and ν̂j =

νj
νk
. In the

special case of α = 4, Sj =
√
T

[
π
2
− arctan

(
ν̂−2
j√
P̂jT

)]
.

Proof. The Laplace transform of the aggregate interference is expressed as

LIj(sc) = E[e−scIj ] = EΦj

[
e
−TxαkP−1

k

∑
j∈Φj

Pjhxjx
−αj
j

]

= EΦj

[
e
−Txαk

∑
j∈Φj

P̂jhxjx
−αj
j

]
. (6.14)
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Using the probability generating functional (PGFL) of the PPP [106], [107], and the fact that

channel gain is i.i.d exponential with h ∼ exp(1), (6.14) is simplified as

LIj(sc) = exp

{
−2πλj

∫ ∞

qj

(
1− 1

1 + TxαkP̂jq−αj

)
q dq

}

= exp

{
−2πλj

∫ ∞

qj

q

1 + (TxαkP̂j)−1qαj

dq

}
. (6.15)

The limit qj, which refers to the distance to the nearest interferer, is given as qj = (νk/νj) x.

Let u = (TxαkP̂j)
−2/αjq2 such that qdq = (TxαkP̂j)

2/αjdu/2. The lower limit uj becomes uj =

(TxαkP̂j)
−2/αj(νk/νj)

2x2 = (T P̂j)
−2/αj ν̂−2

j x−2/α̂jx2. At this point, the only way to eliminate the

term x−2/α̂jx2 is by assuming that {αj} = α s.t. α̂j = 1. Then uj = (T P̂j)
−2/αν̂−2

j and hence,

LIj(sc) = exp

{
−πλjP̂ 2/α

j x2T2/α

∫ ∞

uj

1

1 + uα/2
du

}

= exp{−πλjP̂ 2/α
j Sj x2}. (6.16)

Coverage probability of the k-th tier is then determined according to (3.17) as

Pc,k =
∫

x>0

e
− Tσ2

PkL
xα

K∏

j=1

LIj(sc) fXk
(x) dx

=
2πλk
Ak

∫

x>0

e
− Tσ2

PkL
xα
e−π

∑K
j=1,j 6=k λj P̂

2/α
j Sj x

2 · x e−π
∑K

j=1 λj

(
νk
νj

)2

x2

dx

=
2πλk
Ak

∫

x>0

e
− Tσ2

PkL
xα
e
−π∑K

j=1 λj P̂
2/α
j

[
Sj+P̂

−2/α
j ν̂−2

j

]
x2
dx. (6.17)

Combining (3.7) and (6.17) and substituting z = x2 gives overall coverage probability.

Corollary 6.1. Coverage probability of a user in an interference-limited HetNet with minimum

BTD connectivity is expressed as

PcD =
K∑

k=1

λkP
2/α
k∑K

j=1 λjP
2/α
j Ej

. (6.18)

Proof. Let σ2 = 0 in (6.13) and solve the integral.

In the unbiased HetNet (i.e. {ν̂j} = 1, ∀j ∈ K), the term Ej is still not a constant since it also

depends on {Pj}. Note that in a typical HetNet, {P̂j} 6= 1. Therefore, PcD of the unbiased

interference-limited HetNet always depends on the parameter set {K, {λj}, {Pj}} which is in

contrast to maximum ABPR connectivity in (3.26). This dependence is a consequence of forcing

users to associate with their closest BSs instead of BSs that provide the highest received signal

strength. Hence, even without artificial biasing, user association in an interference-limited

HetNet with minimum BTD connectivity is already biased by separation distances.
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6.2.2 Average User Rate

Theorem 6.2. Average user rate in a HetNet with minimum BTD connectivity is expressed as

RuD =
K∑

k=1

Ξ

[
πλk e

σ2

PkL
(2t−1)zα/2

e−π
∑K

j=1 λj P̂
2/α
j Gj(t)z

]
(6.19)

where Gj(t) = Uj(t) + 1

P̂
2/α
j ν̂2j

, Uj(t) = (2t − 1)2/α
∫∞
̺j(t)

1
1+uα/2du and ̺j(t) = 1

ν̂2j (P̂j(2t−1))2/α
. In

the special case of α = 4, Uj =
√
2t − 1

[
π
2
− atan

(
1

ν̂2j

√
P̂j(2t−1)

)]
.

Proof. Assuming {αj} = α and using (3.20)-(3.21), average user rate of the k-th tier becomes

Ru,k

∫

t>0

∫

x>0

e
− σ2

PkL
(2t−1)xα

K∏

j=1

LIj(sr) fXk
(x) dx dt (6.20)

where sr = (2t − 1)xαP−1
k . Following the proof of Theorem 6.1, LIj(sr) is expressed as

LIj(sr) = exp
{
−πλjP̂ 2/α

j Uj(t)x2
}
. (6.21)

Ru,k is then obtained by substituting (6.9) and (6.21) into (6.20). Combining the resulting

expression with (3.7) and (6.4) and substituting z = x2 gives the result in (6.19).

Corollary 6.2. Average user rate in an interference-limited HetNet with minimum BTD con-

nectivity is expressed as

RuD =
K∑

k=1

∫

t>0

λkP
2/α
k∑K

j=1 λjP
2/α
j Gj(t)

dt. (6.22)

Proof. Let σ2 = 0 in (6.19) and solve the integral.

Similar to PcD , when {ν̂j} = 1, Gj(t) is not a constant since it depends on {Pj} where {P̂j} 6= 1.

As a result, RuD is dependent on the parameter set {K, {λj}, {Pj}}. Again, this is contrary to

maximum ABRP connectivity which gives a constant RuP when the HetNet is unbiased.

6.3 Optimization Constraints

Intuitively, noise reduces the coverage probability and average user rate in the HetNet and

therefore the interference-limited HetNet defines the upper bounds of both measures. Biasing

generally reduces the coverage probability and average rate performance compared to an unbi-

ased HetNet [94]. However, biasing is an important operational technique that enhances load

balancing and average sum rate in HetNets [93], [96], [97]. Therefore to facilitate its implemen-

tation while managing its negative effect on coverage probability and average rate, the coverage

probability and average user rate constraints are defined as [97]

Pc ≥ ǫPc and Ru ≥ κRu (6.23)
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respectively, where ǫ ∈ (0, 1] and κ ∈ (0, 1] are ratios of the coverage probability and average

user rate to their respective upper bound values.

In this chapter, the deployment configuration of the HetNet is optimized to minimize its APC

subject to coverage probability and average user rate constraints. Since coverage probability

and average user rate are complementary performance measures (i.e. optimization based on

one measure improves the other measure as well), the optimal solution is one that satisfies

both measures. Therefore the optimization problem is divided into two separate problems,

one subject to a coverage probability constraint and the other subject to an average user rate

constraint. The final solution is the maximum of the two individual solutions.

The purpose of HetNet optimization is to devise an optimal deployment strategy in terms of

its deployment factor. The deployment factor, expressed as H =
∑K

j=1 λjP
2/α
j , is essentially a

combination of BS densities and their associated transmit powers per tier that jointly achieve

a given performance constraint. It can easily be optimized to determine the specific optimal

BS densities and associated transmit powers per tier that minimize the APC of the HetNet.

6.4 Maximum ABRP Connectivity

In this user association, a typical user connects to the BS from any tier that provides the

best long-term average biased received power. The coverage probability and average user rate

analysis of a HetNet using this association scheme is discussed in subsection 3.7.1.

6.4.1 Coverage Probability Constraint

Theorem 6.3. The coverage probability of a typical user in the HetNet is approximated as

PcP ≈ PcP − Tσ2ψ(α)
K∑

k=1

λkP
2/α
k[∑K

j=1 λjP
2/α
j Cj

]α
2
+1

(6.24)

where PcP is shown in (3.26)-(3.27) and ψ(α) =
Γ(α

2
+1)

πα/2L
. If the HetNet is unbiased, {Cj} = C

which is a constant. Hence (6.24) can be simplified as

PcP ≈ PcP − Tσ2ψ(α)

C α
2
+1
[∑K

j=1 λjP
2/α
j

]α/2 . (6.25)

Proof. Similar to (4.36), consider the following approximation based on SNR ≫ T :

e
− T

SNRk ≡ e
− Tσ2

PkL
zα/2

≈ 1− Tσ2

PkL
zα/2. (6.26)
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Substituting (6.26) into (3.25) gives the following two integrals:

PcP ≈
K∑

k=1

πλk

[∫

z>0

e−π
∑K

j=1 λj P̂
2/α
j Cjzdz − Tσ2

PkL

∫

z>0

zα/2e−π
∑K

j=1 λj P̂
2/α
j Cjzdz

]

(a)
=

K∑

k=1

λk∑K
j=1 λjP̂

2/α
j Cj

−
K∑

k=1

πλk
Tσ2 Γ

(
α
2
+ 1
)

PkL
[
π
∑K

j=1 λjP̂
2/α
j Cj

]α
2
+1

= PcP − Tσ2 Γ
(
α
2
+ 1
)

πα/2L

K∑

k=1

λkP
2/α
k[∑K

j=1 λjP
2/α
j Cj

]α
2
+1

(6.27)

where (a) follows using the identity in [126, (3.381.4)].

The approximated coverage probability in (6.24) and (6.25) can be used to determine the

required deployment factor of the HetNet subject to this measure. However, the analysis is

different for biased and unbiased HetNets as discussed next.

Unbiased HetNet: Combining the coverage probability constraint PcP ≥ ǫPcP in (6.23)

with (3.27), (6.25) can be rewritten as

Hc ≡
K∑

j=1

λjP
2/α
j ≥ 1

C

(
Tσ2ψ(α)

1− ǫ

)2/α

(6.28)

where Hc is defined as the deployment factor of a general K-tier HetNet that satisfies the

coverage probability constraint. Hence, the deployment factor of the K-tier unbiased HetNet

is expressed in closed form. According to Lemmas 6.1-6.2, the optimal deployment factor is

expressed as H⋆
c =

1
C

(
Tσ2ψ(α)

1−ǫ

)2/α
and it is an increasing function of both σ2 and ǫ.

Consider a typical K-tier unbiased HetNet defined by the parameters K = 2, λj ∈ {λb, λs}
and Pj ∈ {Pb, Ps}. The optimal deployment factor is expressed as λbP

2/α
b +λsP

2/α
s = H⋆

c . This

special case of the two-tier unbiased HetNet using maximum ABRP connectivity is considered

in [117] but a closed form expression for the deployment factor is not provided. A network APC

minimization framework is formulated to determine the optimal macro and micro BS densities

and their optimal transmit powers subject to a coverage probability constraint.

Biased HetNet: In this case, {Cj} 6= C and further simplification of (6.24) is not possible.

Using PcP ≥ ǫPcP , (6.24) is instead rewritten as

(1− ǫ)PcP − Tσ2ψ(α)
K∑

k=1

λkP
2/α
k

Q
α
2
+1

c

≥ 0 (6.29)

where Qc =
∑K

j=1 λjP
2/α
j Cj . Due to the variation of Cj with the {k, j} pair, the deployment

factor cannot be isolated and expressed in closed form. In order to investigate the impact of

biasing on the deployment factor and energy performance of the HetNet, consider a conventional

two-tier biased HetNet of macro BSs and small BSs in which the macrocell tier deployment

factor Hb = λbP
2/α
b is known. This is often the case where an operator has a macrocell network
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providing outdoor coverage and wishes to densify it with small BSs for targeted coverage and

capacity enhancements in indoor and other environments. For such a HetNet, Qc = HbCb +
Hs,cCs where Hs,c = λs,cP

2/α
s is the required deployment factor of the small cell tier that jointly

satisfies the coverage probability constraint.

The optimal value of Hs,c, denoted as H⋆
s,c, is easily determined using numerical methods such

as the bisection method [127]. To determine the optimal deployment configuration of the

small cell tier, consider the following APC minimization framework that defines this bivariate

optimization problem:




minimize
λs,c, Ps

λs,c(NsP0,s +∆sPs)

subject to λs,cP
2/α
s = H⋆

s,c, 0 ≤ Ps ≤ P s

(6.30)

where P s is the maximum small BS transmit power. This problem can easily be converted

into a single variable problem by using the substitution λs,c = H⋆
s,cP

−2/α
s . The optimization

framework of the univariate problem is




minimize

Ps

H⋆
s,cP

−2/α
s (NsP0,s +∆sPs)

subject to 0 ≤ Ps ≤ P s.
(6.31)

Therefore, F (Ps) = H⋆
s,cP

−2/α
s (NsP0,s+∆sPs). Using differentiation to determine its minimum,

dF (Ps)

dPs
=
α− 2

α
P−2/α
s ∆sH⋆

s,c −
2

α
P

−2−α
α

s NsP0,sH⋆
s,c = 0.

⇒ P ⋆
s =

2NsP0,s

∆s(α− 2)
.

Hence, the resulting optimal solutions, denoted as P ⋆
s and λ⋆s,c, are expressed as

P ⋆
s = min

{
2NsP0,s

∆s(α− 2)
, P s

}
and λ⋆s,c = H⋆

s,cP
⋆
s
−2/α. (6.32)

Hence P ⋆
s only depends on the small BS power consumption parameters. Furthermore, the

value of H⋆
s,c depends on the bias ratio, denoted as β = βs/βb. Therefore β can be varied to

determine the optimal set {H⋆
s,c, β

⋆} that minimizes the APC.

6.4.2 Average User Rate Constraint

Theorem 6.4. The average rate of a typical user in a K-tier HetNet is approximated as

RuP ≈ RuP − σ2ψ(α)
K∑

k=1

∫

t>0

λkP
2/α
k (2t − 1)

[∑K
j=1 λjP

2/α
j Dj(t)

]α
2
+1

dt (6.33)
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where RuP is shown in (3.29)-(3.30). If the HetNet is unbiased, {Dj(t)} = D(t) = 1+Z(t, α, 1)

which is a constant. Hence, (6.33) can be simplified to

RuP ≈ RuP − σ2ψ(α)
[∑K

j=1 λjP
2/α
j

]α/2
∫

t>0

(2t − 1)

D(t)
α
2
+1

dt. (6.34)

Proof. Over a realistic SNR range, the first exponential term in (3.28) is approximated as

e
−σ2

PkL
(2t−1)zα/2

≈ 1− σ2

PkL
(2t − 1)zα/2. (6.35)

Substituting (6.35) into (3.28) gives the following integrals:

RuP ≈
K∑

k=1

πλk

{
Ξ
[
e−π

∑K
j=1 λj P̂

2/α
j Dj(t)z

]
− Ξ

[
σ2

PkL
(2t − 1)zα/2 e−π

∑K
j=1 λj P̂

2/α
j Dj(t)z

]}

= RuP −
K∑

k=1

σ2

PkL
πλk

∫

t>0

Γ
(
α
2
+ 1
)
(2t − 1)

[
π
∑K

j=1 λjP̂
2/α
j Dj(t)

]α
2
+1

dt. (6.36)

Simplifying (6.36) gives the result in (6.33).

Unbiased HetNet: Combining the average user rate constraint RuP ≥ κRuP in (6.23) and

(3.30), (6.34) can be rewritten in terms of the deployment factor as

Hr ≡
K∑

j=1

λjP
2/α
j ≥

(
σ2ψ(α)g(t, α)

1− κ

)2/α

(6.37)

where Hr is the deployment factor and g(t, α) =
∫
t>0

(2t−1)

D(t)
α
2 +1 dt ×

(∫
t>0

1
D(t)

)−1

is a constant

for a given α. Hence, the deployment factor of a general K-tier unbiased HetNet that satisfies

the average user rate constraint is also expressed in closed form. According to Lemmas 6.1-6.2,

the optimal deployment factor is expressed as H⋆
r =

(
σ2ψ(α)g(t,α)

1−κ

)2/α
and it is an increasing

function of σ2 and κ.

Biased HetNet: In this case, {Dj(t)} 6= D(t) and further simplification of (6.33) is not

possible. Using RuP ≥ κRuP , (6.33) is instead rewritten as

(1− κ)RuP − σ2ψ(α)
K∑

k=1

∫

t>0

λkP
2/α
k (2t − 1)

Q
α
2
+1

r

dt ≥ 0 (6.38)

where Qr =
∑K

j=1 λjP
2/α
j Dj(t). Due to the dependence of Dj(t) on the {k, j} pair, it is not

possible to isolate and express the deployment factor Hs,r =
∑K

j=1 λjP
2/α
j in closed form.

Similar to the coverage probability constraint scenario, assume a conventional two tier HetNet

with the same macrocell tier deployment factor Hb = λbP
2/α
b . Then, Qr = HbDb(t)+Hs,rDs(t)

where Hs,r = λsP
2/α
s is the required small cell tier deployment factor that jointly satisfies the

average user rate constraint. Using numerical methods, the optimal value of Hs,r, denoted as

H⋆
s,r, can easily be determined.
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The optimization of H⋆
s,r to determine the values of λ⋆s,r and P

⋆
s that minimize the APC of the

HetNet follows the same procedure shown in (6.30)-(6.32). The solutions are

P ⋆
s = min

{
2NsP0,s

∆s(α− 2)
, P s

}
and λ⋆s,r = H⋆

s,rP
⋆
s
−2/α. (6.39)

The optimal transmit power P ⋆
s subject to both coverage probability and average user rate

constraints is similar as shown in (6.32) and (6.39). Therefore, if the type of deployed small

BSs is known, the optimal transmit power can be predetermined. Since β also influences H⋆
s,r,

it can be varied to determine the optimal set {H⋆
s,r, β

⋆} at which APC is minimized.

6.4.3 Overall Solution

Since coverage probability and average rate constraints are complementary to each other (i.e.

optimization based on one measure also improves the other), the optimal solution is one that

satisfies both constraints. The overall optimal solution will be the maximum of the two solutions

i.e. the optimal small BS density is λ⋆s = max{λ⋆s,c, λ⋆s,r} and the optimal transmit power is P ⋆
s .

In addition, both λ⋆s,c and λ
⋆
s,r are influenced by the bias ratio in the HetNet. The optimal bias

ratio at which λ⋆s (or, max{H⋆
s,c,H⋆

s,r}) is minimized is determined as




minimize

β
max{λ⋆s,c, λ⋆s,r}

subject to β > 0, λ⋆s,c ≥ 0, λ⋆s,r ≥ 0, P ⋆
s > 0.

(6.40)

The resulting APC obtained by operating the HetNet at its optimal bias value β⋆ becomes

APC = λb(NbP0,b +∆bPb) + λ⋆s(NsP0,s +∆sP
⋆
s ). (6.41)

6.5 Minimum BTD Connectivity

6.5.1 Coverage Probability Constraint

Theorem 6.5. Coverage probability of a typical user can be approximated as

PcD ≈ PcD − Tσ2ψ(α)
K∑

k=1

λkP
2/α
k[∑K

j=1 λjP
2/α
j Ej

]α
2
+1
. (6.42)

Proof. Substituting (6.26) into (6.13) gives the following integrals:

Pc ≈
K∑

k=1

πλk

{∫ ∞

0

e−π
∑K

j=1 λj P̂
2/α
j Ejz dz − Tσ2

PkL

∫ ∞

0

zα/2e−π
∑K

j=1 λj P̂
2/α
j Ejz dz

}
. (6.43)

Solving both integrals gives the result.
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In this scheme, Ej is a function of {ν̂j} and {P̂j} both of which vary with the {k, j} pair. As

a result, even when the HetNet is unbiased (i.e. ν̂j = 1), the term Ej is still not a constant

since {P̂j} 6= 1 in a typical HetNet. Therefore, the deployment factor cannot be isolated and

expressed in closed form. Instead, (6.42) is rewritten using PcD ≥ ǫPcD as

(1− ǫ)PcD − Tσ2ψ(α)
K∑

k=1

λkP
2/α
k

Q
α
2
+1

c

≥ 0 (6.44)

where Qc =
∑K

j=1 λjP
2/α
j Ej. Similar to the case of the biased HetNet using maximum ABRP

connectivity, it is still possible to investigate the optimal performance of the HetNet by assuming

a conventional two-tier HetNet whose macrocell tier deployment factor Hb = λbP
2/α
b is known.

Then, Qc = HbEb + Hs,cEs where Hs,c = λsP
2/α
s is the small cell tier deployment factor.

The optimal value H⋆
s,c can be determined using numerical methods. The optimization to

determine P ⋆
s and λ⋆s,c follows the procedure shown in (6.30)-(6.32). The expressions of the

optimal solutions (transmit power and BS density) are otherwise similar to those shown in

(6.32) except that the deployment factor H⋆
s,c is determined from (6.44).

6.5.2 Average User Rate Constraint

Theorem 6.6. Average user rate in the HetNet can be approximated as

RuD ≈ RuD − σ2ψ(α)
K∑

k=1

∫

t>0

λkP
2/α
k (2t − 1)

[∑K
j=1 λjP

2/α
j Gj(t)

]α
2
+1

dt. (6.45)

Proof. Substituting (6.35) into (6.19) gives the following integrals:

RuD ≈
K∑

k=1

πλk

{
Ξ
[
e−π

∑K
j=1 λj P̂

2/α
j Gj(t)z

]
− Ξ

[
σ2

PkL
(2t − 1)zα/2e−π

∑K
j=1 λj P̂

2/α
j Gj(t)z

]}
. (6.46)

Evaluating both integrals and simplifying gives the result.

Similar to the coverage probability constraint scenario, the term Gj(t) also depends on both

{ν̂j} and {P̂j} and therefore continues to vary with the {k, j} pair even when {ν̂j} = 1. Hence,

further simplification of (6.45) using the constraint term RuD ≥ κRuD is not possible and the

deployment factor cannot be expressed in closed form. Instead, (6.45) is rewritten as

(1− κ)RuD − σ2ψ(α)
K∑

k=1

∫

t>0

λkP
2/α
k (2t − 1)

Q
α
2
+1

r

dt ≥ 0 (6.47)

where Qr =
∑K

j=1 λjP
2/α
j Gj(t). Assuming a two-tier HetNet with the same Hb, then Qr =

HbGb(t) + Hs,rGs(t) where Hs,r = λsP
2/α
s is the required small cell tier deployment factor

subject to the average user rate constraint. The optimal value H⋆
s,r can easily be determined

using numerical methods. The optimization to determine P ⋆
s and λ⋆s,c follows the procedure

shown in (6.30)-(6.32), with similar solutions.
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The overall optimal BS density is determined as λ⋆s = max{λ⋆s,c, λ⋆s,r} and the optimal transmit

power P ⋆
s . The optimal bias factor, denoted as υ⋆, at which the APC is minimized can also be

obtained using the same procedure shown in (6.40).

6.6 Maximum i-SINR Connectivity

In this scheme, a typical user connects to the BS from any tier that provides the best instan-

taneous received SINR. This scheme has been discussed in subsection 3.7.2 [108].

6.6.1 Coverage Probability Constraint

Theorem 6.7. Coverage probability of a typical user can be approximated as

PcS ≈ PcS − πσ2ξ(α)T−2/α

̺(α)
[∑K

j=1 λjP
2/α
j

]α/2 (6.48)

where ξ(α) =
Γ(α

2
+1)

L̺(α)α/2 is a constant for a given α.

Proof. Substituting (6.26) into (3.31) gives the following integrals:

PcS ≈
K∑

k=1

πλk

[∫

z>0

e−T
2/α̺(α)

∑K
j=1 λj P̂

2/α
j z dz − Tσ2

PkL

∫

z>0

zα/2e−T
2/α̺(α)

∑K
j=1 λj P̂

2/α
j z dz

]

(a)
= PcS −

K∑

k=1

πλkP
α+2
α

k Tσ2 Γ
(
α
2
+ 1
)

PkL
[
T 2/α̺(α)

∑K
j=1 λjP

2/α
j

]α
2
+1

(6.49)

where (a) follows using [126, (3.381.4)]. Simplification of (6.49) gives the result.

Using Pc ≥ ǫPc, (6.48) can be rewritten in terms of deployment factor Hc as

Hc ≡
K∑

j=1

λjP
2/α
j ≥

(
σ2ξ(α)

1− ǫ

)2/α

. (6.50)

Hence the deployment factor is expressed in closed form. According to Lemmas 6.1-6.2, the

optimal deployment factor is H⋆
c =

(
σ2ξ(α)
1−ǫ

)2/α
and it is an increasing function of σ2 and ǫ.

6.6.2 Average User Rate Constraint

Theorem 6.8. Average user rate in the HetNet can be approximated as

RuS ≈ RuS − πσ2ξ(α)

̺(α)
[∑K

j=1 λjP
2/α
j

]α/2
∫

t>0

(2t − 1)−2/α dt. (6.51)
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Proof. Substituting (6.35) into (3.35) gives the following integrals

RuS ≈
K∑

k=1

πλkΞ

[
e−(2t−1)2/α̺(α)

∑K
j=1 λj P̂

2/α
j z − σ2

PkL
(2t − 1)zα/2e−(2t−1)2/α̺(α)

∑K
j=1 λj P̂

2/α
j z

]

= RuS − π
K∑

k=1

λk

∫

t>0

σ2(2t − 1)

PkL

Γ
(
α
2
+ 1
)
P

α+2
α

k

[(2t − 1)2/α̺(α)]
α
2
+1
[∑K

j=1 λjP
2/α
j

]α
2
+1

dt. (6.52)

Further simplification of (6.52) gives the result.

Using Ru ≥ κRu, (6.51) can be rewritten in terms of its deployment factor Hr as

Hr ≡
K∑

j=1

λjP
2/α
j ≥

(
σ2ξ(α)

1− κ

)2/α

. (6.53)

Therefore according to Lemmas 6.1-6.2, the optimal deployment factor is H⋆
r =

(
σ2ξ(α)
1−ǫ

)2/α
and

it is an increasing function of the parameters σ2 and κ.

Hence according to (6.50) and (6.53), the individual optimal deployment factors of the HetNet

based on coverage probability and average user rate constraints are similar when ǫ = κ.

6.7 Numerical Results

Consider a HetNet with the default parameters shown in Table 6.1, unless otherwise stated.

Table 6.1: Parameters used to obtain results

Parameters Value

Network size A = 10 km× 10 km

System bandwidth B = 20MHz

Pathloss parameters L = −33 dB, α = 4

Additive noise parameters F = 10, Ta = 300K

Coverage threshold T = 0dB

Macrocell tier parameters Hb = 4× 10−5 m2, βb = 0dB

User density λu = 10−3 m2

Optimization constraints ǫ = 0.9, κ = 0.9

Macro BS power parameters Nb = 6, P0,b = 130, ∆b = 4.7, P b = 20W

Small BS power parameters Ns = 2, P0,s = 6.8, ∆s = 4.0, P s = 0.13W

Intuitively, additive noise reduces the coverage probability and average rate of a typical user

in the HetNet. However, the amount of this reduction depends on the prevailing aggregate

interference in the HetNet which varies with the BS density and transmit power. As Figs.

6.1-6.6 show, when the small BS density increases, both coverage probability and average user

rate approach their respective upper bound values Pc and Ru. This is because the HetNet

gradually becomes interference-limited and the effect of noise becomes ever more negligible.
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Figure 6.1: Verification of coverage probability approximation in the biased and unbiased HetNet
using maximum ABRP connectivity, where β = 10dB.
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Figure 6.2: Verification of average user rate approximation in the biased and unbiased HetNet using
maximum ABRP connectivity, where β = 10dB.

Beyond this point, deploying extra small BSs does not give any gain in terms of coverage

probability or average user rate although they consume energy. Note however that network

densification enhances the average network sum rate if these added small BSs cover users.

Figs. 6.1-6.6 also verify the approximations of coverage probability and average user rate for

maximum ABRP, maximum i-SINR and minimum BTD connectivity schemes. In all cases, the

approximations are very tight and the accuracy increases as the BS density increases since the

effect of noise on network performance becomes ever more negligible. Therefore, the approach in

this thesis can be used to determine very accurate deployment configurations in dense HetNets.
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Figure 6.3: Verification of coverage probability approximation in a HetNet using maximum i-SINR
connectivity, where (T = 0dB).
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Figure 6.4: Verification of average user rate approximation in a HetNet using maximum i-SINR
connectivity.

Consider a HetNet using maximum ABRP connectivity and illustrated by Figs. 6.1-6.2. In

both biased and unbiased scenarios, coverage probability and average rate approach their upper

bounds Pc and Ru respectively as the HetNet becomes more interference-limited. In the biased

HetNet, both coverage probability and average user rate are lower than in the unbiased HetNet

because some users are forced to associate with less favorable small BSs which provide lower

signal strength than the nearest macro BSs. When the small BS density λs is low, increasing

λs allows more users to be offloaded to the small cell tier. However, since λs is still low, the

aggregate interference increases while the received signal strength is still weak due to large

distances between users and their serving small BSs. Hence, depending on the bias ratio, both
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Figure 6.5: Verification of coverage probability approximation in the biased and unbiased HetNet
using minimum BTD connectivity.
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Figure 6.6: Verification of average user rate approximation in the biased and unbiased HetNet using
minimum BTD connectivity.

coverage probability and average rate may initially drop. When the small BS density is further

increased however, the separation distances between small cell users and their serving BSs

reduces to a point where there is a performance gain.

Furthermore, when λs ≫ λb, both coverage probability and average user rate in the biased

HetNet approach their respective counterparts in the unbiased HetNet because the small cell

tier dominates the macrocell tier so much that it effectively covers most of the network area (i.e.

from (3.23), As ≈ 1). As a result, the network essentially resembles a ‘homogenous’ network of

small BSs and therefore biasing has no effect on its performance.
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Figure 6.7: Cell association probability in a two-tier biased HetNet using maximum BTD
connectivity, where λb = λs.

Consider a two-tier HetNet using minimum BTD connectivity and whose performance is il-

lustrated by Figs. 6.5-6.6. As opposed to maximum ABRP, both coverage probability and

average user rate of the unbiased interference-limited HetNet vary with the number of tiers

K, BS densities {λj} and their associated transmit powers {Pj}. In general, both measures

are lower than in maximum ABRP connectivity as a consequence of forcing some users to

associate with less favorable small BSs. In other words, even in the absence of biasing, an

interference-limited HetNet with minimum BTD connectivity is already biased by separation

distance. This can further be illustrated by the association probability in Fig. 6.7 which shows

that when λb = λs in the unbiased scenario, both tiers have equal association probability even

though the macrocell tier surely dominates the small cell tier in terms of SINR coverage.

When ν > 1 in Figs. 6.5-6.6, it means that the HetNet is actually biased to favour macro BSs

instead of small BSs which explains the performance gain over the unbiased HetNet. However,

biasing should always favour small BSs over macro BSs to improve load balancing and enhance

the average sum rate of the HetNet. Hence, biasing in the practical range of ν < 1 reduces

the coverage probability and average rate of a typical user in the HetNet. However, similar

to maximum ABRP connectivity in the range λs ≫ λb, the performance of the biased HetNet

approaches that of the unbiased HetNet due to the overwhelming dominance of the small cell

tier over the macro tier which nullifies biasing.

Another important aspect of HetNet analysis is its performance in different cellular environ-

ments. Although this behavior is the same with all schemes, it is illustrated here using maximum

i-SINR connectivity as shown in Figs. 6.8-6.9. In the low λs-regime, the aggregate interference

is generally low and additive noise has a significant impact on performance. When α = 4.5,

the aggregate interference is less than when α = 4 due to the greater attenuation rate. Hence,

compared to the interference-limited HetNet, additive noise has a larger impact on the HetNet

performance at α = 4.5 than at α = 4. Therefore when λs is sufficiently low, the HetNet
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Figure 6.8: Coverage probability at various {λs, α} combinations in a HetNet using maximum
i-SINR connectivity, where T = 5dB.
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Figure 6.9: Variation of average user rate with small BS density in a HetNet using maximum i-SINR
connectivity.

performance is worse off at α = 4.5 than at α = 4. This basically means that both perfor-

mance measures reduce as α increases, which is not intuitive. However as λs increases, the

additive noise gradually loses its impact on SINR and eventually the HetNet performance be-

gins to increase with α. This is an interesting result that further emphasizes the importance of

network densification to combat the effect of noise and enhance performance in high pathloss

environments such as urban areas.

Average sum rate is highly influenced by the prevailing user density in the HetNet. Fig. 6.10

shows the variation of average sum rate with small BS density at different small BS-user density

ratios in a HetNet using maximum ABRP connectivity. Generally for a given user density λu,
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Figure 6.10: Average sum rate of the unbiased HetNet using maximum ABRP scheme.
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Figure 6.11: Deployment factors of the unbiased HetNet using maximum i-SINR and ABRP
connectivity schemes.

average sum rate increases with the small BS density because as more small BSs are deployed,

the average number of users per BS in both tiers reduces which enhances the average bandwidth

per user. In the low λs-regime (where λu ≫ λs), all BSs are likely to contain users and the

average sum rate increases almost linearly with the small BS density λs. Increasing the user

density does not improve the average sum rate in this regime since additional users simply

share the same bandwidth with existing users. As λs increases further, the average bandwidth

per user continues to increase which enhances the average sum rate. In addition, idle BSs

begin to emerge as more small BSs are deployed. Increasing the user density reduces the

density of these idle BSs which further enhances the average sum rate. However, the increasing

interference begins to limit the average sum rate which eventually saturates when λs ≫ λu.
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Figure 6.12: Deployment factors Hc and Hr of the unbiased K-tier HetNet using maximum ABRP
connectivity, for T = 0dB.

In general, the HetNet deployment factors Hc and Hr increase with their respective constraints

ǫ and κ as shown in Fig. 6.11 which considers maximum ABRP and maximum i-SINR schemes.

This is intuitive because as ǫ and κ increase, the HetNet is basically required to approach its

interference-limited state which requires a higher deployment factor. For maximum i-SINR

connectivity, the deployment factors Hc and Hr are both independent of T , and are equal for

ǫ = κ (see (6.50) and (6.53)). For maximum ABRP connectivity however, Hc depends on T

but Hr is independent of T . Specifically, Hc reduces with T since a lower SINR target can be

achieved with a lower combination of BS densities and transmit powers. When T = 0dB and

α = 4, Hc and Hr are approximately equal. However, when T > 0 dB, Hc > Hr and when

T < 0 dB, Hc < Hr. Furthermore, Fig. 6.12 shows that when α < 4, Hc > Hr and when α > 4,

Hr > Hc. This dependence of max{Hc,Hr} on the set {T, α} also justifies the necessity of

using both coverage and average rate constraints during HetNet optimization.

In addition, maximum ABRP connectivity requires a lower deployment factor than maximum

i-SINR connectivity at reasonably low of T . For example, the deployment factors Hc of both

schemes are approximately equal when T = 10 dB as shown in Fig. 6.11. However, typical

values of T are normally set much lower than 10 dB since reliable QoS can be provided at lower

SINR levels. Therefore at practical values of T , maximum ABRP connectivity is the better

user association strategy since it minimizes the required deployment factor. In other words, a

HetNet with maximum ABRP connectivity requires a lower combination of optimal BS density

and transmit power which minimizes the resulting APC.

For minimum BTD connectivity, the range of bias ratio is different and for this reason, its

results are presented separately and comparisons are made where possible. Consider a two-tier

HetNet with a known macrocell tier deployment factor Hb. Fig. 6.13 shows the variation of

the required Hs,c and Hs,r with their respective constraint ratios ǫ and κ. In general, both Hs,c

and Hs,r also increase with their respective constraints. When T = 0dB and ǫ = κ, Hs,c and
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Figure 6.13: Variation of the deployment factors Hs,c and Hs,r with ratios ǫ and κ in the unbiased
HetNet using minimum BTD connectivity (Hb = 10−6m−2 and α = 4).

Hs,r are equal. However when T < 0 dB, Hs,r > Hs,c and when T > 0 dB, Hs,c > Hs,r. This

response is similar to the case of maximum ABRP connectivity in Fig. 6.11, and also justifies

why both constraints are necessary in the optimization.

Given Hb, the effect of biasing on the required small cell tier deployment factor Hs can be

investigated. Fig. 6.14 shows the variation of Hs,c and Hs,r with the bias ratio in a HetNet

using maximum ABRP connectivity, where ǫ = κ and T = {−3, 0, 5} dB. Whereas Hs,r is

independent of T , Hs,c is an increasing function of T . It is clear that if T is very large, the

overall deployment factor Hs = Hs,c over the β-range shown in Fig. 6.14. Conversely, if T is

small enough, the deployment factorHs = Hs,r over the same β-range. In general, Hs,c andHs,r

vary differently with the bias ratio but both show a minimum point over the β-range considered.

Their exact minima are influenced by the value of Hb and the ratios ǫ and κ. As the bias ratio

increases, both Pc and Ru reduce accordingly as shown in Fig. 6.15. This initially makes it

easier to achieve the performance constraints and both Hs,c and Hs,r reduce as shown in Fig.

6.14. As the bias ratio increases further, the small cell tier begins to dominate the macrocell tier.

Eventually a point is reached beyond which both Pc and Ru become approximately invariant

with β. Since the HetNet now resembles and behaves like a homogeneous network of small

BSs, it requires even more densification to achieve both performance targets. This explains

why both deployment factors Hs,c and Hs,r increase in this high β-regime.

For minimum BTD connectivity, Fig. 6.16 shows the variation of Hs,c and Hs,r with the bias

ratio ν = νs/νb. Although Hs,c has an increasing relationship with T , Hs,r is independent of

T . Therefore, there is a range of T values at which Hs,c and Hs,r are comparable, for instance

T = 0dB. In general, both Hs,c and Hs,r are minimized at some optimal bias ratios ν⋆c and

ν⋆r respectively. However both ν⋆c and ν⋆r correspond to the range νs > 0 dB which basically

means that user association is biased towards the macrocell tier. In the practical biasing range

of ν < 0 dB, both deployment factors Hs,c and Hs,r generally increase as ν reduces.
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Figure 6.14: Variation of small cell deployment factor Hs in a biased HetNet (for Hb = 2× 10−5m−2

and ǫ = κ = 0.9).
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Figure 6.15: Pc and Ru versus bias ratio in a HetNet using maximum ABRP connectivity (for
Hb = 2× 10−5m−2 and λs = 10−4m−2).

If β⋆ is the optimal bias ratio at which the overall deployment factor Hs = max{Hs,c,Hs,r} is

minimized, then the APC of the HetNet is also minimized at β⋆. Fig. 6.17 shows the APC of

the HetNet with maximum ABRP connectivity, clearly demonstrating that significant energy

savings are possible if the HetNet is operated at its optimal bias point. For instance, at the

optimal bias factor β⋆ = 20 dB, a power saving of approximately 8.4 kW is realized in the

simulation area compared to the unbiased HetNet. Therefore, in addition to its load balancing

potential, biasing can potentially enhance the energy performance of the HetNet by minimizing

its required BS density and transmit power configuration per tier.

For minimum BTD connectivity, Fig. 6.18 shows that the optimal bias ratio ν⋆ at which the
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Figure 6.16: Variation of Hs,c and Hs,r with bias ratio in a HetNet using minimum BTD
connectivity (for Hb = 10−6m−2, ǫ = κ = 0.9 and α = 4).
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Figure 6.17: Variation of the APC of the biased HetNet with the bias factor (for Hb = 2× 10−5m−2,
ǫ = κ = 0.9 and T = 0dB).

APC is minimized is ν⋆ = 1.5 dB. Considering the practical range of bias values ν < 0 dB, the

APC of the biased HetNet will generally increase compared to the unbiased HetNet. Therefore,

any biasing for load balancing and other purposes has to be traded off for energy consumption.

This makes the maximum ABRP connectivity scheme more desirable for biased HetNets.
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Figure 6.18: APC versus bias factor in a HetNet using minimum BTD connectivity.

6.8 Summary

This chapter analysed the minimum BTD connectivity scheme for general K-tier HetNets. The

effect of biasing on the coverage probability and average rate performance of the HetNet using

maximum ABRP, maximum i-SINR and minimum BTD connectivity schemes is analyzed and

illustrated. This analysis is followed by optimization of the general biased and unbiased HetNet

using all three schemes to determine its optimal deployment configuration of BS density and

transmit power that minimizes its APC subject to both coverage and average rate constraints.

The optimization results show that optimal transmit power is the same irrespective of the

constraint applied and can be predetermined if the type of deployed BSs per tier is known.

In unbiased HetNets using maximum ABRP and maximum i-SINR connectivity schemes, the

deployment factor is expressed in closed form but in biased HetNets, the deployment factor is

determined using numerical methods. For minimum BTD connectivity, the HetNet is biased

even in the absence of artificial biasing and as a result, its deployment factor is also determined

using numerical methods. Although biasing reduces the coverage probability and average rate

of users, it can potentially enhance coverage, rate and energy performance if applied appro-

priately.For instance in a HetNet using maximum ABRP connectivity, analysis shows that

appropriate biasing can enable the operator to make significant energy savings by minimizing

the deployment factor required to achieve performance targets in all cellular environments. For

a HetNet using minimum BTD connectivity scheme however, biasing in the practical range

deteriorates energy consumption performance compared to the unbiased HetNet.
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Chapter 7

Biased HetNets with Sleep Mode

7.1 Introduction

In a typical HetNet, BSs in different tiers transmit at different power levels and may have

different bias values. The average cell size in the k-th tier is influenced by its BS density

λk, transmit power Pk, and associated bias value βk relative to other tiers. If the statistical

distributions of cell sizes in each tier are known, it is possible to analyze the probabilities of

active and idle BSs. This facilitates an investigation of the coverage probability, average rate

and EE performance of the HetNet which considers thinned interference due to idle BSs. If idle

BSs are put into sleep mode, this conventional scheme ensures that all users remain connected

to their parent BSs but the aggregate interference reduces. The application of conventional

scheme in homogeneous networks has been discussed in section 5.2.

Cell size distributions in HetNets are more difficult to formulate compared to homogeneous

networks. In [115], the authors approximate cell size distributions of a conventional two-tier

unbiased HetNet of macro and micro BSs using the gamma distribution. Our main contributions

in this chapter are to extend this work and formulate cell size distributions for a general biased

two-tier HetNet of macro BSs and small BSs. These distributions facilitate an investigation of

the effect of biasing on coverage probability, average rate and EE performance of the HetNet

with conventional sleep mode. Furthermore, the multiple user connectivity model is applied to

the HetNet which enables an investigation of the ACR performance of the HetNet. The analysis

of multiple user connectivity in homogeneous networks has been discussed in subsection 4.2.2.

7.2 User Connectivity in HetNets

The cell sizes and shapes vary greatly since different tiers have different BS densities, transmit

powers and bias values. This variability increases with the number of tiers in the HetNet.

In general, user association is biased towards low-power and small-coverage BSs which offload

traffic from larger BSs in order to achieve load balancing and other performance objectives.

Since idle BSs do not transmit, the aggregate interference in the HetNet thins accordingly. For
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example, the density of active BSs in the k-th tier is pkλk where pk is the probability of a

k-th BS being active. Assume that each BS in the HetNet has access to the same frequency

band with a bandwidth of B Hz. Then each BS has the same number of subchannels, denoted

as δ, where each subchannel has a size of Bδ = B/δ. If δ > 1, the HetNet implements the

multiple user connectivity model where its resources are shared between all of its users. The

single user connectivity model is a special case where each active BS chooses and connects only

one user. Therefore, each BS can connect up to a maximum of N = δ users to avoid intra-cell

interference. Denote Nk as the number of users in a typical k-th tier BS. Then, the average

connectivity ratio of the k-th tier, denoted as ACRk, represents the average proportion of all

users that get connected by BSs in the k-th tier.

Theorem 7.1. The overall ACR of the HetNet is expressed as

ACR =
K∑

k=1

ACRk =
K∑

k=1

λk
λu

E[Ck] (7.1)

where Ck ∈ {0, δ} is the number of busy subchannels in a k-th tier BS, and

E[Ck] =





P(Nk ≥ 1), δ = 1

δ P(Nk ≥ δ) +
δ−1∑
k=0

k P(Nk = k), δ > 1.
(7.2)

Proof. The average number of connected users in the k-th tier is equivalent to the number of

busy subchannels in the tier i.e. ACRk × λu = λk × E[Ck]. Since Ck is a non-negative random

variable, its expectation is expressed as

E[Ck] =
δ∑

n=1

nP(Ck = n) where P(Ck = n) =




P(Nk = n), n < δ

P(Nk ≥ δ), n = δ.
(7.3)

Substituting different values of n in (7.3) shows that E[Ck] can generally be expressed as shown

in (7.2). Overall ACR is a linear sum of the ACRs per tier.

Special Case 7.1. If a HetNet uses the single user connectivity model (i.e. δ = 1), then

E[Ck] = P(Nk ≥ 1) = 1− P(Nk = 0) = pk. Hence,

ACRk =
pkλk
λu

. (7.4)

Special Case 7.1 shows that if each k-th tier BS connects a single user, the average number of

users connected to the k-th tier is equivalent to its average number of active BSs.

Special Case 7.2. In a homogeneous network with a BS density of λb, ACR is expressed as

ACR =
λb
λu

E[Cb] (7.5)

where Cb ∈ {0, δ}. If δ = 1, then E[Cb] = pa where pa is the probability of a BS being active.

Connectivity in a homogeneous network was discussed in subsection 4.2.2.
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Intuitively, if a connectivity constraint is imposed on the network, any increase in the user

density triggers an appropriate increase in the BS density per tier to maintain the performance

target. Denoting ξ as the ACR constraint, the required BS density configuration of the HetNet

must satisfy the expression
K∑

k=1

λkE[Ck] ≥ λuξ. (7.6)

Generally, such a connectivity constraint may also be applied per tier to enhance load balancing.

If the ACRk constraint is ξk, the required BS density of the k-th tier must satisfy

λkE[Ck] ≥ λuξk. (7.7)

Since ACR is an increasing function of BS density, optimal BS density satisfies the constraint

tightly. The optimal BS density per tier is easily obtained using numerical methods.

7.3 Effect of User Density on HetNet Performance

Consider a typical user associated to the nearest k-th tier BS which is located a distance of r

away. Considering interference thinning, its received SINR is expressed as

SINRk(r) =
Pkhrr

−α

σ2

L
+
∑K

j=1

∑
rj∈Φj\{Bk,0∪Bid}Pjhrj ‖Rj‖−α

(7.8)

where Bk,0 is the serving BS and {Bid} is the set of idle BSs in all tiers of the HetNet. Assume

that the HetNet uses maximum ABRP cell association scheme discussed in subsection 3.7.1.

7.3.1 Average Rate

Theorem 7.2. The average subchannel rate in a typical k-th tier BS is expressed as

Rch,k =
B
δAk

πλk Ξ

[
e
−σ2(2t−1)

PkL
zα/2

e−π
∑K

j=1 λj P̂
2/α
j Dj(t) z

]
[bits/second] (7.9)

where Dj(t) = β̂
2/α
j + pjZ(t, α, β̂j), Ak is the k-th tier association probability shown in (3.23)

and pj is the probability of a j-th tier BS being active.

The overall average subchannel rate in the HetNet is expressed as

Rch =
K∑

k=1

Rch,k ×Ak =
K∑

k=1

B
δ
πλk Ξ

[
e
−σ2(2t−1)

PkL
zα/2

e−π
∑K

j=1 λj P̂
2/α
j Dj(t) z

]
[bits/second]. (7.10)

In an interference-limited environment, the average subchannel rate simplifies to

Rch =
B
δ

K∑

k=1

∫

t>0

λkP
2/α
k∑K

j=1 λjP
2/α
j Dj(t)

dt. (7.11)
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Proof. Following the analysis of (3.20)-(3.21), the average rate per subchannel is determined as

Rch,k = Bδ Ex[ESINRk
[log2(1 + SINRk(x))]]. (7.12)

Other than incorporating interference thinning, the proof is otherwise similar to the proof of

Theorem 3.4. The Laplace transform of the thinned interference in this case is expressed as

LIj(sr) = exp
(
−πpjλjP̂ 2/α

j Z(t, α, β̂j) r
2
)

(7.13)

For the interference-limited HetNet, substitute σ2 = 0 and solve the resulting integrals.

Assuming full buffer traffic, a typical k-th tier BS with Nk users in its area of coverage will

allocate all the subchannels to all users sequentially until they are finished. Two scenarios arise:

1. If Nk < δ, all users are connected and each user is initially allocated δu = ⌊δ/Nk⌋
subchannels. The remaining subchannels δr = δ − δuNk are allocated to any δr users

chosen randomly from the Nk users.

2. If Nk ≥ δ, the BS randomly selects δ users and allocates a single subchannel to each i.e.

δu = 1. The remaining users, equivalent to Nk − δ, remain unconnected.

Lemma 7.1. The average number of subchannels per user connected to a k-th tier BS is

ωk =
pkδ

E[Ck]
. (7.14)

Proof. The total average number of subchannels in all active k-th tier BSs is Ωk = pkλkδ. The

total number of users connected by k-th tier BSs is ACRk × λu = λkE[Ck].

Corollary 7.1. The average user rate in the HetNet is expressed as

Ru = Bπ
K∑

k=1

pkλk
E[Ck]

Ξ

[
e
−σ2(2t−1)

PkL
zα/2

e−π
∑K

j=1 λj P̂
2/α
j Dj(t) z

]
[bits/second]. (7.15)

In an interference-limited environment, the average user rate therefore simplifies to

Ru = B
K∑

k=1

pk
E[Ck]

∫

t>0

λkP
2/α
k∑K

j=1 λjP
2/α
j Dj(t)

dt. (7.16)

Proof. The average rate of a typical user connected to a k-th tier BS is expressed as Ru,k =

ωk × Rch,k. Using the law of total probability shown in (3.7), average user rate becomes

Ru =
∑K

k=1 Ru,k ×Ak.

Corollary 7.2. The average sum rate of the HetNet is then expressed as

T = Bπ
K∑

k=1

pkλ
2
k Ξ

[
e
−σ2(2t−1)

PkL
zα/2

e−π
∑K

j=1 λj P̂
2/α
j Dj(t) z

]
[bits/sec]. (7.17)
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In the interference-limited environment, the average sum rate therefore simplifies to

T = B
K∑

k=1

∫

t>0

pkλ
2
kP

2/α
k∑K

j=1 λjP
2/α
j Dj(t)

dt. (7.18)

Proof. The average sum rate of the k-th tier only is Tk = Ru,k×ACRk×λu = Ru,k×λk E[Ck].

Then, the overall average sum rate is obtained as T =
∑K

k=1 Tk. The average sum rate can also

be obtained directly from T = ACR× λu ×Ru.

7.3.2 Coverage Probability

Theorem 7.3. Coverage probability of a typical user in the HetNet is expressed as

Pc =
K∑

k=1

πλk

∫

z>0

e
− Tσ2

PkL
zα/2

e−π
∑K

j=1 λj P̂
2/α
j Cj zdz (7.19)

where Cj = β̂
2/α
j + pjZ(T, α, β̂j) and pj is the probability of a j-th tier BS being active.

In the interference-limited environment, the coverage probability simplifies to

Pc =
K∑

k=1

λkP
2/α
k∑K

j=1 λjP
2/α
j Cj

. (7.20)

Proof. Apart from incorporating interference thinning, the proof is otherwise similar to that of

Theorem 3.3. The Laplace transform of the thinned interference in this case is expressed as

LIj(sr) = exp
(
−πpjλjP̂ 2/α

j Z(T, α, β̂j) r
2
)
. (7.21)

7.4 Cell Size Distributions in Biased HetNets

A typical HetNet is characterized by a wide variation of cell sizes and shapes since BSs in

different tiers are independently located and transmit at different power levels. Whereas the

PPP-based homogeneous network resembles a PV tessellation, the HetNet layout is described

by the weighted PV tessellation. The distribution of cell sizes in a HetNet are more difficult

to formulate. The authors in [115] formulate cell size distributions for a conventional two-tier

unbiased HetNet of macro and micro BSs using the gamma function. In this thesis, these

approximated cell size distributions are extended to a conventional two-tier biased HetNet of

macro BSs and small BSs to facilitate an investigation of the effect of conventional sleep mode

on its energy performance.

Consider a PPP-based conventional two-tier HetNet in which the macrocell and small cell tiers

are described by the tuples (Φb, λb, Pb, βb) and (Φs, λs, Ps, βs) respectively, where Φk, λk, Pk and
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βk are the respective PPP, BS density, transmit power and bias value of the k-th tier. Assume

that the origin (0, 0) lies at the cell boundary between the nearest macro BS located at (xb, yb)

and the nearest small BS located at (xs, ys). For a user located at the origin, long-term average

biased received power (ABRP) from both the macro BS and small BS is similar i.e.

Pr = PbβbL‖db‖−α = PsβsL‖ds‖−α (7.22)

where db =
√
x2b + y2b and ds =

√
x2s + y2s . Hence ds = db

(
Psβs
Pbβb

)1/α
. Thus a macro BS located

at (xb, yb) is equivalent to a small BS located at

(
xb

(
Psβs
Pbβb

)1/α
, yb

(
Psβs
Pbβb

)1/α)
.

Based on maximum ABRP connectivity, the PPP Φb of macro BSs can be expressed in terms

of its equivalent PPP of micro BSs, denoted as Φs, as Φs = Φb

(
Psβs
Pbβb

)1/α
. This equivalent PPP

is also homogeneous with the density λs = λb

(
Pbβb
Psβs

)2/α
[115], [136]. Since Φs is independent

of Φs, their superposition Φs +Φs is still a homogeneous PPP according to Slivnyak’s theorem

[107]. To a typical user, the HetNet appears homogeneous with an equivalent small BS density

of Λs, expressed as

Λs = λb

(
Pbβb
Psβs

)2/α

+ λs =
S
β2/α

λb + λs (7.23)

where S =
(
Pb

Ps

)2/α
expresses the power ratio of the respective transmit powers of macro BSs

to micro BSs while β = βs
βb

expresses the ratio of the respective bias values of small BSs to

macro BSs. If the macrocell and small cell tiers cover the fractions Ab and As of the network

area respectively, Ab and As are expressed as

Ab =
Sλb

Sλb + λsβ2/α
and As =

β2/αλs
Sλb + λsβ2/α

. (7.24)

Hence, the respective average sizes of a typical macrocell and small cell are expressed as

Ab =
S

Sλb + λsβ2/α
and As =

β2/α

Sλb + λsβ2/α
. (7.25)

For fixed BS densities λb and λs, (7.24)-(7.25) show that offloading traffic from macro BSs to

small BSs can be enhanced by either increasing the bias ratio β or reducing the power ratio S
(i.e. either increasing the transmit power of small BSs or reducing that of macro BSs).

Lemma 7.2. The cell size distribution of the macrocell tier is expressed as

fb(x) =
MKb

b

Γ(Kb)
xKb−1e−Mbx (7.26)

where Mb =
Kb

Ab
= Sλb+β2/αλs

S Kb, Kb = K · λb+kb1λs
λb+kb2λs

, K = 3.575 and kb1 and kb2 are constants.

Similarly for the small cell tier, the cell size distribution is expressed as

fs(x) =
MKs

s

Γ(Ks)
xKs−1e−Msx (7.27)
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where Ms =
Ks

As
= Sλb+β2/αλs

β2/α Ks, Ks = K · λs+ks1λb
λs+ks2λb

and ks1 and ks2 are constants.

Proof. The proof is generally similar to that in [115, section IV(B)] which considers a conven-

tional two-tier unbiased HetNet. This proof extends it to a two-tier biased HetNet.

Consider the gamma distribution function f(x) = xk−1 e−x/θ

θkΓ(k)
where k and θ are the shape and

scale parameters respectively. Then, E[x] = kθ and Var[x] = kθ2. Denote the parameters (k, θ)

as (Kb, θb) for the macrocell size distribution and (Ks, θs) for the small cell size distribution.

Hence from (7.25), Kbθb = Ab and Ksθs = As. Parameters (Kb, θb) and (Ks, θs) depend on the

BS density, transmit power and bias value of each tier. It is shown in [115, section IV(B)] that

the macrocell and small cell size distributions are respectively expressed as

fb(x) = xKb−1 e−(Kb/Ab)x

(Ab/Kb)KbΓ(Kb)
and fs(x) = xKs−1 e−(Ks/As)x

(As/Ks)KsΓ(Ks)
. (7.28)

For the biased HetNet, Ab and As are shown in (7.25). Substituting them into (7.28) and

simplifying gives the results of fb(x) and fs(x). According to [115], [136], the parameters Kb

and Ks are expressed in terms of K = 3.575 as shown in (7.26) and (7.27) respectively. The

parameters (kb1 , kb2) and (ks1 , ks2), which vary with the {S, β} set, are obtained numerically

using fitting charts. Note the general resemblance between the HetNet distributions fb(x) and

fs(x) and the cell size distribution fA(x) of the homogeneous network shown in (4.2).

Since users are distributed according to the homogeneous PPP Φu of intensity λu, the number of

users in a typical cell follows the Poisson distribution shown in (4.3). Therefore, the probability

that a typical macrocell contains Nb = n users is expressed as

P(Nb = n) =

∫ ∞

0

P[Nb = n|X = x]fb(x)dx

(a)
=

λnuMKb
b

Γ(Kb)n!

∫ ∞

0

xn+Kb−1e(λu+Mb)xdx

=
λnuMKb

b Γ(n+Kb)

Γ(Kb)n!(λu +Mb)n+Kb
(7.29)

where (a) is solved using the identity [126, (3.381.4)]. Therefore, the probability pb that a

typical macro BS remains active is expressed as

pb = 1− P(Nb = 0) = 1−
( Mb

λu +Mb

)Kb

. (7.30)

Similarly, the probability that a typical small cell contains Ns = n users is expressed as

P(Ns = n) =

∫ ∞

0

P[Ns = n|X = x]fs(x)dx

=
λnuMKs

s Γ(n+Ks)

Γ(Ks)n!(λu +Ms)n+Ks
. (7.31)
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Therefore, the probability that a typical small BS remains active is expressed as

ps = 1− P(Ns = 0) = 1−
( Ms

λu +Ms

)Ks

. (7.32)

The probabilities pb and ps thin the aggregate interference suffered by a typical user in the

HetNet. This has an effect on the average rate and coverage probability performances of the

HetNet as shown in (7.9) and (7.19) respectively. These probabilities are used to analyze the

effect of the prevailing user density on the average rate and coverage probability performance

of the biased two-tier HetNet.

7.5 Numerical Results

Consider a conventional two-tier HetNet and assume that the macrocell tier BS density is

known. This is a realistic assumption if an operator wants to densify an existing homogeneous

macrocell network with small BSs for targeted capacity and coverage enhancement. The default

parameters used to simulate the HetNet are shown in Table 7.1, unless otherwise stated. In

addition, the distribution constants (kb1 , kb2) and (ks1 , ks2) of the macrocell and small cell tiers

respectively vary with the bias ratio in the HetNet. Table 7.2 shows the distribution constants

for bias ratios used in this thesis.

Table 7.1: Parameters used to obtain results

Parameters Value

Network area and bandwidth A = 5km× 5 km, B = 20MHz

User density λu = 1× 10−3m−2, σ2 = −110 dBm

Pathloss parameters α = 4, L = −55 dBm

Macro BS density and bias λb = 5× 10−6 m−2, βb = 0dB

Macro BS power parameters Nb = 6, P0,b = 130W, Pb = 20W, Psl,b = 75W

Small BS power parameters Ns = 2, P0,b = 56W, Ps = 2W, Psl,s = 39W

Additive noise parameters F = 10, Ta = 300K

As small BSs are added to the unbiased HetNet, they offload users from the macrocell tier

which lowers the average number of users per macrocell and increases the overall ACR of the

HetNet as shown in Fig. 7.1. When λs ≫ λb, most users will be served by the small cell tier and

the macrocell tier is characterized by very low ACRb. In the biased HetNet where βs > βb, cell

association is biased to favor small BSs. Therefore, the offloading of users from the macrocell

tier is enhanced which improves the overall ACR of the HetNet. This verifies the suitability of

the biasing technique to achieve favorable load balancing in HetNets.

However, improper biasing can have an adverse effect on load balancing and other performance

measures of the HetNet. For example, if cell association is excessively biased in favor of small

BSs, many macro BSs may remain idle yet the small BSs are not able to connect all users

which may negatively impact the ACR performance. Fig. 7.2 shows that there is an optimal
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Table 7.2: Distribution constants in a biased two-tier HetNet

Bias ratio [dB] kb1 kb2 ks1 ks2
0 0.411 0.167 2.533 5.195
2 0.432 0.139 2.931 5.105
4 0.437 0.135 2.941 5.091
6 0.462 0.121 3.104 4.976
8 0.482 0.101 3.334 4.665
10 0.521 0.092 3.506 4.552
12 0.523 0.089 3.594 4.109
14 0.526 0.087 3.701 3.713
16 0.529 0.082 3.839 3.356
18 0.532 0.079 3.947 3.184
20 0.536 0.075 4.181 2.947
22 0.551 0.069 4.202 2.923
24 0.582 0.062 4.233 2.891
26 0.632 0.053 4.381 2.801
28 0.651 0.041 4.462 2.779
30 0.686 0.043 4.583 2.755
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Figure 7.1: Variation of ACR with small BS density (λu = 2× 10−3m−2, β = 10).

bias ratio at which the ACR performance is maximized. This optimal bias ratio and the ACR

value achieved are both influenced by the prevailing user density. In general, if the small BS

density is sufficient to connect all users, then any adverse effects of excessive biasing cannot

be investigated using the ACR measure. Other measures such as average sum rate can also be

used to investigate the effect of excessive biasing.

Intuitively, the effect of noise is to reduce the average subchannel rate in both biased and unbi-

ased HetNets. As the small BS density increases, the network gradually becomes interference-

limited and the effect of noise is negligible. When λu ≫ {λb, λs} (in the low λs range), then

the probability of a macro BS and small BS being active are respectively approximated as

pb ≈ 1 and ps ≈ 1. In this user density regime, the average subchannel rate in the unbiased
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Figure 7.3: Average subchannel rate versus small BS density (λu = 10−3m−2, β = 20dB).

interference-limited HetNet is invariant with the BS densities as shown in Fig. 7.3. As discussed

in [94], this is because any gain in the received signal from additional small BSs is counterbal-

anced by the additional interference. However, as the small BS density is increased further,

the probabilities of idle macro BSs and small BSs eventually become significant which has the

effect of thinning out the aggregate interference suffered by a typical user in the HetNet. Since

the received signal strength increases with the small BS density, reduced interference increases

the SINR and hence the average subchannel rate begins to increase as shown in Fig. 7.3.

In the biased HetNet, the average subchannel rate is lower because some users are forced

to connect to small BSs even when macro BSs provide higher received signal strength. As
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a result, the average subchannel rate is no longer invariant but increases with the small BS

density because as λs increases, distances between users and BSs reduce and the received signal

strength provided by small BSs generally increases. As the small BS density increases further,

the macrocell tier is gradually overwhelmed by the small cell tier which covers most of the

network area. Therefore, the two-tier HetNet essentially resembles a ‘homogeneous’ network

of small BSs. In this regime, biasing has no effect on the average subchannel rate and the

performances of biased and unbiased HetNets merge as shown in Fig. 7.3.

When the user density is low, the density of idle BSs in both tiers is significant which greatly

thins the aggregate interference and makes the effect of noise more pronounced as shown in

Fig. 7.4. In addition, the average number of users per active BS is low which results in a very

high average user rate. However, as the user density λu increases further, more BSs become

active and the average number of users per BS increases. In other words, more users share

the bandwidth which reduces the average rate per user. Since more BSs become active, the

aggregate interference increases which gradually limits the effect of additive noise and eventu-

ally makes the HetNet interference-limited. At very high user density, many small BSs remain

active and eventually overwhelm the remaining macro BSs making the HetNet essentially ‘ho-

mogeneous’. As the effect of biasing becomes negligible, the average user rates of biased and

unbiased HetNets eventually become identical.

Interestingly, although biasing reduces the average subchannel rate, it improves the average

user rate by offloading some users to small BSs to enhance the overall average bandwidth per

user. In addition, the average user rate increases with the small BS density over the whole λu-

range because deploying more small BSs guarantees more bandwidth per connected user. This

means that to maintain a given average user rate, the small BS density should be adaptable to

changes in the user density. For example, the required small BS density can easily be obtained

from (7.15) using numerical methods.
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Figure 7.5: Variation of the average sum rate with user density (λs = 10−4m−2, β = 20dB).

The average sum rate of the HetNet also increases with the user density as shown in Fig.

7.5. This is because more BSs become active which reduces the average number of users per

active BS and increases the average bandwidth per user. Since increasing the small BS density

connects more users (higher ACR) and each user accesses more bandwidth, the overall average

sum rate increases. However when λu ≫ {λb, λs}, all BSs are active and there is no more

gain in the average sum rate since any additional users simply share the same bandwidth with

existing users. This upper bound on the sum rate is higher in the unbiased HetNet because

biasing reduces the average subchannel rate which translates into reduced average sum rate.

In both biased and unbiased HetNets with conventional sleep mode, the EE of the HetNet

increases with the small BS density up to a point beyond which it reduces as shown in Fig. 7.6.

Although the average sum rate increases with the small BS density, the density of idle BSs in

both tiers also increases. Eventually, the aggregate power consumption of BSs in sleep mode

begins to adversely affect the EE of the HetNet. Hence, there is an optimal small BS density,

denoted as λ⋆s, at which the EE is maximized (denote the maximum value of EE as EEmax). If

the user density increases, the HetNet achieves a higher EEmax value and at a higher λ⋆s. This

is desirable because, besides the higher average sum rate and EEmax achieved, a higher λ⋆s also

guarantees a better ACR performance.

Furthermore, biasing enhances the EE in the low-small BS density range because it ensures

that more macro BSs are put into sleep mode by offloading traffic to small BSs. Thus, although

biasing reduces the average sum rate, it has a significant advantage in improving the EE of

the HetNet. At higher λs, the network resembles a ‘homogeneous’ network of small BSs and

biasing has no effect on the average sum rate and EE performance. For comparison purposes,

if idle BSs are not put into sleep mode, the EE of both biased and unbiased HetNets reduces as

λs increases as shown in Fig. 7.6. This is because even though the additional small BSs leave

more macro BSs idle, the idle mode power consumption is still high which worsens the EE.
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This result emphasizes the importance of implementing sleep mode mechanisms to enhance the

EE performance of HetNets.

7.6 Summary

This chapter analyzed user connectivity in HetNets and the effect of the prevailing user density

on the realizable HetNet performance. When the combined BS densities in all tiers are not

sufficient, the HetNet may get congested and some users will be blocked. Given the user

density, the multi-user connectivity model helps to quantify the required BS densities to avoid

congestion in the HetNet. Biasing cell association to the small cell tier reduces the average

subchannel rate, and consequently the average sum rate, but it enhances the overall ACR as

users are offloaded from congesting macro BSs to lightly-loaded small BSs. This offloading

mechanism also has the advantage of enhancing the EE performance of the HetNet since more

high-power macro BSs are put to sleep. Hence, the average rate performance is generally traded

off for improved ACR and EE performance.
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Chapter 8

Conclusions and Future Works

8.1 Conclusions

This thesis discussed various aspects that are involved in the design and deployment of energy

efficient homogeneous networks and HetNets. Various performance measures such as coverage

probability, average rate and energy consumption were investigated using mathematical analysis

and Monte Carlo simulations. The analysis used PPPs to model the deployment of BSs and

locations of users. This approach models irregular cell size and shapes that fairly similar to the

layout of practical deployments. Since cells have highly varied sizes and shapes, the number

of users per BS also highly varies and is generally influenced by the size of each cell and the

prevailing user density. The multi-user connectivity model enables each BS to connect multiple

users within its coverage area which facilitates a realistic study of sleep modes mechanisms by

moving affected users to other neighboring BSs. The homogeneous network is optimized to

determine the optimal combination of BS density and transmit power that minimizes its APC

subject to both coverage and rate constraints. Analysis shows that optimal transmit power

only depends on BS power consumption parameters and can therefore be predetermined.

The analysis in this thesis shows that sleep mode mechanisms are realistic solutions to adapt

energy consumption to changes in user density. This is important because it ensures that energy

is saved when traffic demand is low and significant resources are idle. With conventional sleep

mode, all idle BSs are put to sleep to save energy. To reduce BS density further, the basic

approach is random sleep mode where a given fraction of BSs are chosen randomly and put to

sleep irrespective of their user occupancy. This has the undesired effect of minimizing average

sum rate which consequently minimizes network EE. The proposed centralized strategic sleep

mode prioritizes BSs with the least number of users to minimize the number of affected users

and maximize their chance of getting reconnected in neighboring BSs. This scheme maximizes

network EE performance. However this scheme is complex and difficult to manage due to its

centralized nature. Distributed strategic sleep mode is proposed where the strategic algorithm

is distributed in smaller clusters of BSs. Simulations show that its sub-optimal performance

closely matches that of its optimal centralized counterpart.
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Generally HetNets are more complex to analyze and optimize because of their multi-tier ar-

chitecture. The most important challenge involves determining the best combination of BS

density and transmit power per tier that achieves a given performance target. In the con-

text of green HetNets, optimization involves determining its deployment configuration per tier

that minimizes APC subject to appropriate coverage and rate constraints. Since HetNet per-

formance is highly influenced by the user association scheme, three schemes are studied and

compared with each other namely maximum ABRP scheme, minimum BTD scheme and max-

imum i-SINR scheme. When the HetNet is unbiased, the optimal deployment configuration

is expressed in closed form for maximum ABRP and maximum i-SINR schemes. Generally

however, deployment configuration is determined using numerical methods. Results show that

maximum ABRP scheme has the best APC performance compared to the other schemes.

Biasing in HetNets is an important design technique that enables small BSs to offload traffic

from potentially congesting macro BSs. Although these users may connect to less favorable

small BSs, the overall average sum rate can potentially be enhanced if small BSs provide the

users with more bandwidth. There are potential energy performance benefits as well; for in-

stance, analysis showed that if a HetNet using maximum ABRP scheme is biased appropriately,

it further reduces the APC at optimal deployment configuration compared to the unbiased Het-

Net. However with minimum BTD scheme, biasing in the appropriate range increases the APC

compared to the unbiased HetNet. If idle BSs are identified and put to sleep, there is an optimal

deployment configuration at which EE is maximized. Moreover, biasing enhances EE of the

HetNet for certain combinations of macro BSs and small BSs in a two-tier HetNet.

8.2 Ideas for Future Work

This thesis has extensively studied the coverage probability, average rate and energy perfor-

mance of homogeneous networks and general HetNets. However, there are several aspects and

approaches to cellular network analysis that are not covered by this thesis and can therefore be

considered for future works.

1. The work in this thesis is based on several assumptions that simplify analysis and gener-

ate more tractable results. The first idea for future work is about relaxing some of these

assumptions to understand how they affect the important results on deployment config-

uration and energy performance of both homogeneous networks and HetNets. The first

assumption to be relaxed is considering long-term shadowing in the analysis as explained

in subsection 3.3.2 [105], [113], [114], [118].

Our analysis of sleep mode assumes that each active BS has a full buffer i.e. all its

subchannels are fully loaded. This assumption is commonly used in many works because

it offers analytical simplicity and tractability and is generally realistic in highly dense

environments. However it is rather pessimistic and provides a lower bound on network

performance. Some existing works consider more practical traffic profiles as explained in

subsection 3.3.3. It would interesting to understand how results improve when a practical

traffic profile is considered.
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2. Load balancing in HetNets is usually achieved via biasing users to connect to small BSs

rather than congesting macro BSs. However optimizing the bias value associated with

each tier is a complex problem. Moreover most works assume that the same bias value

is associated to all BSs in a given tier. Such fixed biasing may not always achieve the

intended load balancing objectives due to the rapid variability of traffic in space and time

domains. Moreover the objective of cell association should be to determine an appropriate

tradeoff between sum rate and energy performance of the HetNet. Even if bias values

are varied periodically to respond to spatiotemporal changes in user density, the overall

impact is still difficult to predict.

Instead of relying on biasing which is difficult to optimize, a new cell association scheme

is required where users do not only consider received signal strength (or even SINR)

but also existing bandwidth resources at the candidate BSs. By taking into account the

perceived rate that the user would get given both received signal and available time-

frequency bandwidth resources, the sum rate is maximized which consequently enhances

EE performance. This also avoids the difficult challenge of determining and optimizing a

bias value for each BS to respond to changes in traffic within its local environment.

3. The other proposed research area considers the energy performance of future 5G sys-

tems which are meant to increase area SE 1000-fold compared to current 4G systems.

To achieve this significant improvement, 5G systems will rely on several state-of-the-art

technologies such as massive MIMO and cooperative networking techniques and will most

likely use millimeter wave spectrum. Due to the high operating frequency and the re-

quired high reuse factor, 5G cells will generally be very small. Hence 5G networks will be

characterized by an ultra-dense deployments of small BSs. All the technologies required

to enhance capacity and QoS in 5G systems will consume significantly more energy than

in current networks. As WiFi networks become ever more ubiquitous, they will aid 5G

systems but offloading significant data traffic. Therefore it is necessary to design robust

energy saving approaches and techniques such as sleep mode mechanisms and renewable

energy sources that can reduce the energy costs of these ultra-dense networks without

trading off their capacity provision. In addition, it is important to investigate the effect

of WiFi networks on the energy consumption of 5G systems.
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Appendix A

Wireless Communication

Wireless communication is one of the most vibrant sectors in the communications industry

today. In comparison to wired communication, wireless communication enables operators to

provide reliable and ubiquitous connectivity to subscribers without significant infrastructure

costs. Mobile cellular communication in particular has seen tremendous growth over the last

decade and this trend is expected to continue in the foreseeable future. However, the wireless

channel continues to present a stiff challenge to the reliability of mobile communication.

A.1 The Wireless Channel

The wireless channel between a transmitter and receiver can vary from a line-of-sight (LOS) to

a non-line-of-sight (NLOS) channel obstructed by barriers such as buildings, terrain and foliage.

Modeling such propagation channels is a very complex task since they are very unpredictable.

In most cases, analytical models are rather inaccurate and channel modeling is instead achieved

empirically. However, empirical models require measurements in a specific location and may

not be consistent in a different environment or after a certain period of time. Support for

mobility of users in some mobile wireless systems further complicates the challenge since there

is a need to support the handover of ongoing sessions between different BSs. In addition, the

speed of motion determines how fast the wireless channel changes [104], [137].

Homogeneous cellular networks are mobile networks that consist of only BSs of the same type.

A typical homogeneous cellular network is a deployment of high power macro BSs that are

positioned in planned locations to provide coverage and capacity over a defined geographical

area. The area covered by a single BS is called a cell. For simulation purposes, cells are often

represented as a lattice of hexagonal or square regions with the BS located at the centre of each

region. However in real networks, BSs are not located on a grid but their locations are influenced

by factors such as user density, capacity demand, propagation environment and acquisition of

site leases. Furthermore, BSs may be configured to transmit at different power levels which

further contributes to the irregular shapes and sizes of cells in real networks. Moreover, overlap

between neighboring cells is essential to support the handover of mobile users in ongoing sessions

[104], [137].
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The main advantage of this cellular architecture is to facilitate the spatial reuse of the scarce

frequency resources throughout the network. However, this introduces the potential for signal

interference whose strength is influenced by the frequency reuse factor and network optimization

effort. This interference may be intra-cell (between users in the same cell) or inter-cell (between

users in different cells which use the same frequency band). In practice, interference is managed

by a combination of proper planning of BS locations, signal processing techniques in the receiver,

and continuous optimization of the network through frequency planning, changing transmit

powers, antenna tilts and azimuths, etc [104], [137].

When a transmit antenna broadcasts an electromagnetic wave towards one or more receive

antennas, the wave is likely to suffer any of the three basic mechanisms namely reflection,

diffraction and scattering. Reflection occurs when a signal impinges on an object or surface

whose dimensions are much larger than its wavelength such as walls and buildings, cars, surface

of the earth, etc. At the point of impact between the incident signal and reflecting surface, the

signal may totally be reflected but some of it may be absorbed or transmitted into the reflecting

object (this is considered lost). Therefore, the amount of signal loss due to reflection depends

on the nature of the reflecting surfaces and how often reflection occurs before the signal reaches

the receiver [104], [137].

Scattering is a phenomenon that occurs when a signal wave travels in a medium that consists

of irregular objects whose size is small compared to the signal wavelength. For example, a

rough wall or foliage may cause significant scattering of the signal such that multiple signal

components with reduced signal strength spread out and travel in numerous directions [104].

On the other hand, diffraction may occur when the transmission path is obstructed by a surface

or object with sharp edges. The signal waves bend over the edges and propagate into the space

behind the object even though a LOS path does not exist. However, signal strength deteriorates

significantly as the diffracted signal propagates deeper into the shadowed region [104].

In cellular networks, most transmitter-receiver relationships are NLOS, especially in urban

areas where high-rise buildings cause significant signal reflection and diffraction. In such an

environment, the question of where to locate the BS is very important but difficult to solve.

In general, signal strength deteriorates with the transmission distance and other losses add

onto this distance-dependent loss. Propagation mechanisms tend to force the signal to follow

multiple paths of varying lengths and channel responses. These multipath components reach

the receiver at different times with different amplitudes, phase angles and angles of arrival. The

instantaneous sum of the received multipath components highly varies over short time periods

since they add constructively and destructively. This phenomenon called multipath fading or

small-scale fading causes deep fades over small distances (fraction of a wavelength) and/or time

durations (on the order of milliseconds) [104], [137].

A.2 Modeling Radio Channels

In order to understand the impact of the wireless channel on a transmitted signal, attempts are

made to design analytical or empirical models that can describe this impact [104]. Analytical
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models are developed purely based on mathematical principles that describe the propagation

of the wave. For empirical models, actual field measurements are carried out and curves or

mathematical equations are formulated to recreate the measured results. As a result, empirical

models are more accurate than analytical models because they take into account all factors,

whether known and unknown. However, the application of an empirical model at frequencies

or environments other than those used to formulate it may be invalid unless new supporting

measurements are carried out in the new environment and/or at the new frequency [104].

A.3 Large Scale Modeling

Large scale models try to predict the mean signal strength at a given distance from the transmit-

ter. In general, they express the received power as a function of the transmit power, associated

transmit and receive antenna gains and the pathloss (all values in dB); thus

Pr(d) = Pt +Gt +Gr − PL(d) (A.1)

where Pr(d) is the received power at a propagation distance d in metres, Pt is the transmit

power, Gt is the transmit antenna gain, Gr is the receive antenna gain and PL(d) is the

pathloss over the distance d. Since the other parameters are known, large scale modeling

concentrates on finding the pathloss component [104]-[137]. Empirical and analytical models

both predict that the mean signal strength reduces logarithmically with transmission distance.

For an arbitrary propagation distance d, the mean large scale pathloss can be expressed using

a pathloss exponent n as [104]:

PL(d)[dB] = PL(d0) + 10nlog10

(
d

d0

)
(A.2)

where d0 is a close-in reference distance that is determined from measurements near the trans-

mitter and n indicates the rate of increase of pathloss with distance. The pathloss exponent

varies depending on the propagation environment; for example n = 2 in free space but changes

in other environments. Pathloss over the reference distance can be determined from field mea-

surements at distance d0 [104].

A.4 Log-normal Shadowing

The model in (A.2) predicts that the average pathloss at a distance d from the transmitter is

the same in all directions. In reality however, the received power at any two points located the

same distance from a transmitter may be vastly different from the average value predicted by

(A.2). Measurements have shown that the pathloss PL(d) at a distance d from the transmitter

is random and log-normally (normal in dB) distributed about the average value predicted in
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(A.2). Therefore, the actual pathloss can be expressed as [104]

PL(d)[dB] = PL(d) +Xσ = PL(d0) + 10nlog10

(
d

d0

)
+Xσ (A.3)

where Xσ is a zero-mean Gaussian-distributed random variable (in dB) with a standard devi-

ation of σ (in dB). The log-normal shadowing model uses the random variable Xσ to account

for the random shadowing effects on any particular propagation path.

A.5 Indoor Propagation

Indoor and outdoor propagation differ from each other in several ways. Indoor propagation

distances are likely to be much shorter and the clutter is greater and more unpredictable over

such short distances [104]. Indoor environments vary from large buildings with open interiors

such as auditoriums, to those with more complex structures having numerous interior partitions

and floors. Indoor propagation is mainly influenced by the type and layout of the building,

construction materials, purpose for which the building is used, etc. Although indoor propaga-

tion is also influenced by reflection, diffraction and scattering mechanisms, these mechanisms

vary more aggressively. For example, scenarios which may cause large variations in the received

power include whether the exterior and interior windows and doors are open or shut, height of

the building, location of outdoor or indoor antenna, etc [104].

A.6 Small Scale Modeling

Small scale models characterize the rapid fluctuation (or fading) of the received signal strength

over very short distances and/or time durations. Fading is caused by multipath propagation

where various components of the same signal take different paths and arrive at the receiver at

different times and with different amplitudes and phases [104]. Combining these components

at the receiver results into a signal with a highly fluctuating amplitude due to the fact that the

components add up constructively and destructively depending on their phase angles. Multi-

path propagation is most prevalent in an urban environment due to high-rise buildings which

reduce any chance of LOS propagation while providing many surfaces for signal reflection [104].

In mobile networks, the relative motion between the mobile terminal and the BS causes an

apparent shift in the frequency of each multipath component. This frequency shift, called

Doppler shift, is a function of the speed and direction of motion with respect to the direction of

arrival of each multipath component. Even if the mobile terminal is stationary, other objects in

the channel may be in motion which still induces Doppler shifts. In addition, the components

that reach the receiver at different times cause time dispersion (echos) of the signal since they

suffer different delays [104].

The envelope of the sum of two quadrature Gaussian noise signals forms a Rayleigh distribution.

In small scale fading, the Rayleigh distribution is commonly used to describe the statistical
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time varying nature of the received signal envelope of a flat fading channel. In case there

is a dominant nonfading component (such as a LOS component) in addition to the random

multipath components, the received signal envelope obeys a Rician distribution. At the output

of the envelope detector, this nonfading component can be seen as a DC component in the

random multipath. As the nonfading component becomes weaker, the Rician faded signal

envelope gradually forms a Rayleigh distribution [104].

The multipath power delay profile represents the relative received power as a function of the

delay suffered by the multipath signal components with respect to a reference time delay. Small

scale fading can be categorized depending on how the channel affects the transmitted signal.

This is influenced by signal parameters (e.g. signal bandwidth) and channel parameters (e.g.

delay spread). Multipath time delay dispersion of the channel leads to either flat or frequency

selective fading [104]. In flat fading, the channel has a constant gain and linear phase response

over a bandwidth that is greater than the signal bandwidth. This channel bandwidth, also called

the coherence bandwidth, is a statistical measure of the bandwidth over which the channel is

essentially flat. Therefore, the spectral characteristics of the signal are preserved at the receiver.

Flat fading channels are also referred to as narrowband channels because the signal bandwidth

is narrower than the coherence bandwidth.

In frequency selective fading, the channel has a constant gain and linear phase response over

a bandwidth that is smaller than the signal bandwidth. In other words, coherence bandwidth

is smaller than the signal bandwidth. Frequency selective fading causes time dispersion of the

information symbols within the channel which distorts the received signal and causes inter-

symbol interference (ISI). In the frequency domain, the channel impacts different frequency

components of the same signal with different gains. It is difficult to solve frequency selective

fading and often requires a complex receiver. Frequency selective channels are also called wide-

band channels because the coherence bandwidth is smaller than the signal bandwidth [104].

In orthogonal frequency division multiplexing (OFDM), the wideband channel is divided into

many narrowband subcarriers such that each subcarrier suffers flat fading. Flat fading is easier

to deal with at the receiver using simple error correction and equalization techniques as opposed

to frequency selective fading.
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Appendix B

Long Term Evolution – An Overview

LTE technology was developed by 3GPP and was first released in 2009 as LTE Rel-8. It was

designed to provide much higher capacity compared to 3G and earlier systems [138]. This

is because LTE can use larger frequency bands and higher-order MIMO spatial processing

schemes. In theory, LTE can provide 100 Mbps and 50 Mbps on the DL and UL respectively

over a 20 MHz channel bandwidth [139]. LTE uses OFDMA on the DL and single carrier

frequency division multiple access (SC-FDMA) on the UL.

B.1 Bandwidth Characteristics

In LTE, OFDM splits the bandwidth into many orthogonal subcarriers of 15 kHz each [139].

Each subcarrier is modulated using QPSK, 16-QAM or 64-QAM depending on the SINR re-

ceived on it. To maintain orthogonality, the symbol duration on each subcarrier is 66.7µs

(1/15 kHz). Therefore, each subcarrier can support a symbol rate of 15 ksps (kilo-symbols

per second). Assuming 64-QAM modulation, this gives a maximum data rate of 90 kbps per

subcarrier. OFDMA then assigns each user a number of subcarriers based on their data re-

quirements and switches off any unassigned subcarriers to save energy and reduce interference

[139]. Subcarriers may be grouped in packs of twelve to form one resource block. Assuming

a bandwidth of 20 MHz which contains 100 resource blocks (see Table B.1), the maximum

throughput expected from this bandwidth is 90× 12× 100 kbps = 108Mbps.

SC-FDMA is a pre-coded version of OFDMA which has a lower peak-to-average-power ratio

(PAPR) compared to OFDM [139]. As opposed to OFDMA where each subcarrier carries

unique data, SC-FDMA spreads the data across multiple subcarriers. It is preferred on the UL

because the lower PAPR allows a simpler PA design, reduces UE battery drain and improves

cell edge performance. However, it requires a complex receiver design which is not a problem

on the UL but is impractical on the DL [139].

Table B.1: LTE bandwidths and corresponding number of RBs

Channel BW (MHz) 1.4 3 5 10 15 20

Number of RBs 6 15 25 50 75 100
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B.2 Adaptive Modulation and Coding

LTE implements adaptive modulation and coding (AMC) to take advantage of channel condi-

tions and maximize throughput. AMC, also called link adaptation, is a technique where the

modulation and coding schemes are varied based on the radio link conditions. Via measurement

reports, the UE informs the network of the channel conditions on the DL. As the radio link

improves (high SINR), a higher modulation scheme such as 64-QAM is used to maximize the

data rate. Similarly, a higher code rate is possible since the probability of bit errors is low at

high SINR. If the link is very poor (low SINR), a lower modulation scheme such as QPSK is

used because it can withstand higher levels of interference and noise. This case also requires

more redundant bits to be transmitted with the data, which lowers the code rate. Below a

certain SINR threshold, the user is in outage.

Table B.2: LTE CQI Table

CQI Index Modulation Code rate × 1024 Efficiency

0 out of range

1 QPSK 78 0.1523

2 QPSK 120 0.2344

3 QPSK 193 0.3770

4 QPSK 308 0.6016

5 QPSK 449 0.8770

6 QPSK 602 1.1758

7 16-QAM 378 1.4766

8 16-QAM 490 1.9141

9 16-QAM 616 2.4063

10 64-QAM 466 2.7305

11 64-QAM 567 3.3223

12 64-QAM 666 3.9023

13 64-QAM 772 4.5234

14 64-QAM 873 5.1152

15 64-QAM 948 5.5547

The quality of each radio link is expressed in terms of a Channel Quality Indicator (CQI).

Depending on the CQI, a specific modulation scheme and effective code rate are chosen for

data transmission. In LTE, AMC must ensure a 10% block error rate (BLER) or less [140].

Based on this figure of merit, it is possible to map the CQI values to the SINR range required

to achieve this BLER. LTE defines 15 CQI values. Each CQI is approximately 2 dB from its

neighboring CQIs [140]. Table B.2 shows all the 15 CQIs and their corresponding modulation

scheme, code rate and efficiency.
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