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Abstract

COMPUTERISED GRBAS ASSESSEMENT OF VOICE QUALITY

Farideh Jalalinajafabadi
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2016

Vocal cord vibration is the source of voiced phonemes in speech. Voice quality
depends on the nature of this vibration. Vocal cords can be damaged by infection, neck
or chest injury, tumours and more serious diseases such as laryngeal cancer. This kind
of physical damage can cause loss of voice quality. To support the diagnosis of such
conditions and also to monitor the effect of any treatment, voice quality assessment is
required. Traditionally, this is done ‘subjectively’ by Speech and Language Therapists
(SLTs) who, in Europe, use a well-known assessment approach called ‘GRBAS’.

GRBAS is an acronym for a five dimensional scale of measurements of voice prop-
erties. The scale was originally devised and recommended by the Japanese Society of
Logopeadics and Phoniatrics and several European research publications. The proper-
ties are ‘Grade’, ‘Roughness’, ‘Breathiness’, ‘Asthenia’ and ‘Strain’. An SLT listens to
and assesses a person’s voice while the person performs specific vocal maneuvers. The
SLT is then required to record a discrete score for the voice quality in range of 0 to 3
for each GRBAS component. In requiring the services of trained SLTs, this subjective
assessment makes the traditional GRBAS procedure expensive and time-consuming to
administer.

This thesis considers the possibility of using computer programs to perform objec-
tive assessments of voice quality conforming to the GRBAS scale. To do this, Digi-
tal Signal Processing (DSP) algorithms are required for measuring voice features that
may indicate voice abnormality. The computer must be trained to convert DSP mea-
surements to GRBAS scores and a ‘machine learning’ approach has been adopted to
achieve this. This research was made possible by the development, by Manchester
Royal Infirmary (MRI) Hospital Trust, of a ‘speech database’ with the participation of
clinicians, SLT’s, patients and controls. The participation of five SLTs scorers allowed
norms to be established for GRBAS scoring which provided ‘reference’ data for the
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machine learning approach.
To support the scoring procedure carried out at MRI, a software package, referred

to as GRBAS Presentation and Scoring Package (GPSP), was developed for presenting
voice recordings to each of the SLTs and recording their GRBAS scores. A means of
assessing intra-scorer consistency was devised and built into this system. Also, the
assessment of inter-scorer consistency was advanced by the invention of a new form
of the ‘Fleiss Kappa’ which is applicable to ordinal as well as categorical scoring. The
means of taking these assessments of scorer consistency into account when produc-
ing ‘reference’ GRBAS scores are presented in this thesis. Such reference scores are
required for training the machine learning algorithms.

The DSP algorithms required for feature measurements are generally well known
and available as published or commercial software packages. However, an appraisal of
these algorithms and the development of some DSP ‘thesis software’ was found to be
necessary. Two ‘machine learning’ regression models have been developed for map-
ping the measured voice features to GRBAS scores. These are K Nearest Neighbor
Regression (KNNR) and Multiple Linear Regression (MLR). Our research is based
on sets of features, sets of data and prediction models that are different from the ap-
proaches in the current literature.

The performance of the computerised system is evaluated against reference scores
using a Normalised Root Mean Squared Error (NRMSE) measure. The performances
of MLR and KNNR for objective prediction of GRBAS scores are compared and anal-
ysed ‘with feature selection’ and ‘without feature selection’. It was found that MLR
with feature selection was better than MLR without feature selection and KNNR with
and without feature selection, for all five GRBAS components.

It was also found that MLR with feature selection gives scores for ‘Asthenia’ and
‘Strain’ which are closer to the reference scores than the scores given by all five indi-
vidual SLT scorers. The best objective score for ‘Roughness’ was closer than the scores
given by two SLTs, roughly equal to the score of one SLT and worse than the other
two SLT scores. The best objective scores for ‘Breathiness’ and ‘Grade’ were further
from the reference scores than the scores produced by all five SLT scorers. However,
the worst ‘MLR with feature selection’ result has normalised RMS error which is only
about 3% worse than the worst SLT scoring.

The results obtained indicate that objective GRBAS measurements have the poten-
tial for further development towards a commercial product that may at least be useful
in augmenting the subjective assessments of SLT scorers.
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Chapter 1

Introduction

Vocal cords are the source of pressure variation for voiced speech (vowels) when the
Bernouli effect [VdBZDJ57] causes them to periodically interrupt air-flow from the
lungs. This pressure variation originates in the glottis, excites the vocal tract and prop-
agates as voiced sound. Unvoiced speech (consonants) does not require vocal cord
activity, though combinations of voiced and unvoiced speech occur frequently. Abnor-
malities in vocal cord tissue, for example due to inflammation, cause symptoms such
as short term aperiodicity, breathy or hoarse voice and an inability to speak loudly.

The resulting loss of voice quality can be assessed objectively. Subjective or
perceptual assessments of voice quality are commonly made according to a well-
known standard referred to as ‘GRBAS’ [Hir81]. The GRBAS approach is widely
used by Speech and Language Therapists (SLTs) in European hospitals and clinics.
It was originally recommended by the Japanese Society of Logopeadics and Phonet-
ics and a European Research Group [Hir81]. GRBAS is an acronym for five dimen-
sions of voice quality referred to as ‘Grade’,’Roughness’, ‘Breathiness’, ‘Asthenia’
and ‘Strain’. SLTs score their patients by giving a numerical value, i.e. an integer in
the range 0 to 3, to each of these five dimensions of GRBAS. The approach is widely
recognized and understood, but it is subjective, time-consuming and relies on highly
trained human experts. Training SLTs in the GRBAS approach is expensive and time-
consuming.

There are many algorithms in the digital signal processing (DSP) research liter-
ature for objectively measuring characteristics of voice from acoustical recordings.
Such algorithms can distinguish voiced from unvoiced speech, measure the funda-
mental frequency of voiced speech, detect frequency or amplitude variation (jitter and
shimmer), characterise the frequency spectrum in various ways and measure the extent
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to which voiced sound is affected by aperiodicity due to turbulent air-flow. Some of
these algorithms are accessible as commercial or non-commercial software packages.
Well known commercial packages are the Multi-Dimensional-Voice-Program (MDVP)
[Kay96] and the Analysis of Dysphonia in Speech and Voice (ADSV) package [AR06].
A widely used non-commercial package is called ‘Praat’ (the Dutch word for ‘talk’)
[ Pa07]. The voice features measured objectively by these packages may be used to de-
tect voice abnormality and may represent the characteristics of voice that SLTs listen
for as indications of abnormality. However these DSP measurements are not GRBAS
components and will not be familiar to non-DSP specialists who have wide experience
with the GRBAS approach.

It is necessary to find a convergence between DSP based analysis and the perceptual
evaluation of voice according to GRBAS. The aim will be design computerised systems
able to make GRBAS voice quality assessments automatically [SLORGL+08].

This thesis investigates the possibility of performing objective voice quality as-
sessment conforming to the GRBAS scale. It considers how to make measurements,
which voice features to measure and how to select features that produce the best pos-
sible predictors of GRBAS dimensions. A computerised objective version of GRBAS
scoring could become a future standard for clinical use and research. There is currently
no consensus for objective voice quality assessment according to GRBAS though there
are many objective voice assessment schemes which have not been widely taken up for
routine assessment. It is likely that the non-conformance of objective voice assessment
systems to GRBAS is the main reason why they have not been widely adopted.

Figure 1.1 illustrates methodology of the project. A recorded voice signal will be
fed into a digital system consisting of digital signal processing and mapping techniques
based on machine learning. For each recorded voice sample, measurements of n voice
features are made. In this work, 20 different features will be measured. Ten features
will be measured using the commercial software package ‘ADSV’ and a different ten
features will be measured by DSP algorithms developed specifically for this project.
The 20 measurements, or specially selected subsets of them, will be supplied as input
parameters, or ‘features’, to the mapping techniques.

To undertake this project, it was necessary to have access to a database of suitable
voice recordings and to obtain GRBAS scores for each recording. Fortunately such
a database, with scoring by five expert GRBAS scorers, was made available by MRI
hospital. There are four main challenges. Firstly we must derive ‘reference’ GRBAS
scores for each recording from the available data, and these must be made as reliable
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Figure 1.1: the goal of the project.

as possible. Secondly, we must discover which objective measurement features are
associated with each of the GRBAS dimensions. Thirdly, we must find out which DSP
techniques are appropriate for the feature measurement. Finally, we must decide which
machine-learning algorithm can make the best prediction of GRBAS scores. A proto-
type objective system must be produced and evaluated by comparing its assessments
against the reference GRBAS scores obtained from the trained SLTs.

1.1 Research Hypothesis

The research hypothesis is that computerised measurements of voice features pro-
cessed using digital signal processing can be used, with machine learning, to produce
GRBAS scores that are as useful and reliable as traditionally assessed subjective GR-
BAS scores

1.2 Aim and Objectives

The aim of this project is to design and evaluate methods for the objective measurement
of voice quality conforming to the GRBAS standard with accuracy that matches that
of trained SLTs.

The objectives are as follows:

1. To provide the means of obtaining GRBAS scores from trained SLT scorers for
the database of voice recordings obtained at Manchester Royal Infirmary Hospi-
tal (MRI). This objective requires a scoring package (termed GPSP) which has
features for archiving, checking and measuring the consistency of the scoring.
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2. To devise a way of taking scoring consistency into account when producing the
‘reference’ GRBAS scores for training purposes.

3. To decide which voice features are most appropriate and how measurements of
these features can be obtained reliably.

4. To determine how best to produce the necessary voice feature measurements
using commercial and non-commercial DSP software and specially programmed
DSP algorithms.

5. To verify the performance of the DSP algorithms being used by applying them
to voice recordings with known characteristics and also by comparing the mea-
surements they produce with similar measurements made by other software.

6. To discover a means of converting the DSP measurements to GRBAS scores
using machine learning.

7. To investigate ‘feature selection’ techniques for finding the best subset of fea-
tures for predicting the score for each GRBAS dimension.

8. To use the voice database, GRBAS scorings and statistical analysis to evaluate
the results obtained by implementing a prototype objective GRBAS scoring sys-
tem.

1.3 Research Contributions

In spite of some published research towards objective voice quality assessment ac-
cording to the GRBAS scale, until now no definitive solution has been obtained. Some
of the published approaches establish reasonable correlation between GRBAS com-
ponents and voice feature measurements but do not progress to prototype objective
systems that can do the GRBAS scoring automatically [BPG04]. Other approaches
propose objective systems while not having the services of qualified GRBAS SLTs
for producing the GRBAS scores needed for training their systems [VCOAAL+13].
Published work does not address the issues of what is the appropriate number of fea-
tures and what evaluation methods should be used [VCOAAL+13]. The areas outlined
below are the focus of this research contribution.
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1. A major source of originality in this thesis is the use of the voice assessment
database and the GRBAS scoring data established by MRI. The credit for this
lies mainly with MRI.

2. The ‘GPSP’ software, and its graphical user interface, have novel features that,
for example, allow scorer consistency and self-consistency to be assessed and
taken into account when producing the reference GRBAS scores needed for
training the prototype objective system. The intra-scorer consistency of each
scorer which is assessed by requiring the scorer to repeat his/her assessment of a
randomly selected subset of the subjects. The measurement of consistency and
self-consistency using various forms of ‘Kappa’ is addressed, and a new form of
the ‘Fleiss Kappa’, allowing it to be used for ordinal as well as categorical data,
is proposed and investigated.

3. Although the DSP algorithms developed specifically for this project may not
be fundamentally original, there is original insight in the decisions as to which
methods to use for specific voice feature measurements, and the evaluation and
comparisons with other published algorithms. In particular, the strong depen-
dence of measurements harmonic-to-noise ratio on jitter and shimmer as ob-
tained using the Praat software, and the fact that this dependence is greatly re-
duced by the software developed in this project, is an issue worth reporting.

4. The approach developed for objectively scoring Asthenia is original and has al-
ready been published. This is interesting because, although G, R, B and S prop-
erties have been well researched already, the assessment of Asthenia has been
less extensively researched in the current literature.

5. The ‘feature selection’ methodology which finds the most appropriate feature
subset for predicting each of the GRBAS components is original in its detail.

6. The idea of converting DSP measurements to GRBAS scores using K-Nearest
Neighbor Regression (KNNR) and Multiple Linear Regression (MLR) is origi-
nal.
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1.5 Thesis Structure

There are seven chapters including this introductory chapter.

Chapter 2 explains the physiology of voice production and the approaches that may
be used for voice quality assessment. It gives a description of perceptual subjective
and computerised objective analysis. It also discusses the most important and recent
techniques that have been published in the research literature for these two methods.

Chapter 3 describes our methodology in voice data collection and the application
of GRBAS scoring by five SLTs to this database. Four different statistical methods,
i.e. Pearson Correlation, Cohen’s Kappa, Weighted Kappa and Fleiss’ kappa are inves-
tigated for analysing the inter-scorer consistency and intra-consistency of the GRBAS
scoring. A new approach for obtaining reliable ‘reference’ GRBAS scores is discussed
in this chapter.

Chapter 4 discusses the DSP algorithms and commercial DSP tools that may be
used for measuring the required acoustic features of speech. It surveys and examines
the features that may be usefully measured and investigates the DSP mechanisms that
are or may be employed to detect and quantify these features. Apart from ADSV, many
published or commercialised techniques are applicable only to ‘sustained’ vowels, but
it is explained how voiced speech may be extracted, for analysis, from ‘connected’
speech using the voiced/unvoiced decision provided by the ‘thesis’ software. The per-
formances of these DSP algorithms are evaluated with reference to the MDVP and
Praat software packages.

Chapter 5 explains the concept of machine learning and two approaches that may
be applied to achieve objective GRBAS scoring. These approaches are Multiple Lin-
ear Regression (MLR) and K-Nearest-Neighbour-Regression (KNNR) . The objec-
tive scoring of each GRBAS component is based on measurements of twenty chosen
acoustic features as identified in Chapter 4. Chapter 5 explores different methods for
dimensionality reduction which may be expected to improve the performance of the
objective scoring. Two different ‘feature selection’ method are focused on. These are
‘filter methods’ and ‘wrapper methods’. These methods aim to identify the best fea-
ture subset for each GRBAS component. The performance of the objective scoring
is evaluated in terms of Normalised Root Mean Square Error (NRMSE) and Pearson
correlation.

Chapter 6 evaluates the results obtained for the objective scoring of each GRBAS
component. A prototype objective scoring system is evaluated against the ‘reference’
GRBAS scores. Results are presented showing the performance of prediction models
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‘with feature selection’ and ‘without feature selection’. All twenty features are first
used for each GRBAS component and then the best subset of features obtained using
feature selection is used.

Chapter 7 gives conclusions and suggestions for further work on this research topic.



Chapter 2

Background and Related Work

2.1 Introduction

This chapter gives background details about speech, the human speech production
mechanism and related work in voice quality analysis. The causes and common man-
ifestations of voice impairment are discussed. The chapter then surveys how voice
problems can be investigated by the perceptual evaluation of voice features performed
by the person himself and/or by a clinician. Two standardized ways of performing
and recording the results of clinical evaluations are reviewed; these are the GRBAS
approach as widely used in Europe and the CAPE-V approach developed in the USA.
Self-assessment using a standardised questionnaire known as VHI-10 (Voice Handi-
cap Index) is discussed as a useful adjunct to clinical assessment. Then the chapter
discusses the objective analysis of speech and the possibility of augmenting or replac-
ing subjective clinical analysis by objective computerised methods. Much has been
done already in this field, but up to now the results of objective analysis have not been
presented in a form that is recognizable to clinicians. The aim of producing assess-
ments conforming to the GRBAS scale is now discussed in more detail. The literature
on this topic is surveyed. Digital signal processing techniques that are available for
measuring certain parameters of speech are introduced and analysed. The need for
further refinement to published and commercialised algorithms is discussed, and the
ideal of analysing connected speech as well as sustained vowels is explained. Since the
objective assessment techniques to be developed will be based on a number of machine
learning techniques, some background on these techniques will be presented.

36
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2.2 Speech and human speech production

Speech is sound which is a variation in air pressure. It is conveyed as a wave which
travels through air at about 34320 cm/s. Human speech production requires a flow of
air forced out from the lungs by the breathing mechanism. Without any subsequent
modulation, this air-flow would produce only sound due to turbulence which would
sound like a ‘random signal’ without any information. Random signals are created
by waterfalls, the sea, badly tuned AM radios, cars traveling at speed and many other
every-day effects, The sound produced is often described loosely as ‘random noise’ and
assumed to be ‘white’ which means evenly spread over a wide spectrum of frequen-
cies. In speech, the turbulence can be modified in volume and frequency spectrum by
creating a constriction at the back of the throat Arabic /h/, at the centre or front of the
mouth (/sh/ and /s/), at the teeth and lips /f/, explosively at the lips /p/ and elsewhere.
Such sounds are termed ‘unvoiced’ and created consonants which tend to be transient
but actually carry most of the information within speech.

Vowel sounds require an extra mechanism which modulates the air-flow from the
lungs in a different way. This mechanism is performed by the ‘vocal folds’ which are
also called ‘vocal cords’ and reside in the larynx sometimes known as ‘Adams apple’.
The vocal folds are highly elastic muscular tissue which in normal people can close
completely (or almost completely) to momentarily interrupt the air supply from the
lungs. This closure builds up pressure behind the vocal cords that eventually forces
them open. The pressure then reduces again and the vocal cords can close once more.
This mechanism creates a pressure variation which is close to being periodic. Most
energy is created when the vocal cords ‘snap’ closed, and this happens between about
80 and 160 times per second in adult talkers. The almost periodic pressure variation
created by the closing vocal cords determines the pitch of the voice in speaking. The
frequency of the vocal cord variation is termed the ‘fundamental frequency’ F0 of
voiced speech. Children have much higher values of F0 than adults, and singers use
the same mechanism as talkers but over a wider F0 frequency range.

The sound produced by the vibrating vocal cords is often modeled as a periodic se-
ries of impulses doubly integrated (approximately) by a low-pass ‘glottal filter’ whose
gain response resembles that of a digital filter with two poles. The spectrum of a pe-
riodic series of impulses, expressed as a Fourier series, has a fundamental sinusoid at
the fundamental frequency of the vibrations, plus a series of harmonics at twice, three
times, four times the fundamental frequency and so on extending to infinity in theory.
In practice, the harmonics become very small beyond about 4 kHz, but there may be as
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many as 50 harmonics that affect the sound significantly. Without the glottal filter, the
amplitudes of the harmonics would in principle be all equal. The glottal filter imposes
a loss which increases with frequency at about 12 dB per octave above about 100 Hz.
This is the signal that would be detected at the site of the vocal cords by an ‘electro-
glottogram’(EEG) [CHMA86, Nat14]. It does not sound like a vowel. However it
serves as an excitation signal to the vocal tract which comprises the mouth and nasal
cavities.

The excitation signal is now modulated spectrally and in amplitude by the reso-
nances of the vocal tract and the effects of the nasal cavities and the teeth and lips.
The true vowel sound is thus produced and is affected by the shape of the mouth as
controlled by the jaw, tongue, teeth, lips and velum (which connects or disconnects the
nasal passage). Figure 2.1 shows a DSP model of the process described above, often
referred to as the ‘source-filter’ model of speech production. In this model, the vocal
tract is represented by a time varying digital filter whose frequency response deter-
mines the phonetic content of the sound. For voiced sounds, H(z) is often a tenth order
all-pole filter whose poles produce the required vocal tract resonances. For unvoiced
sounds, H(z) also controls the amplitude of the output including the rapid transitions
that occur with consonants in speech. The ‘gain’ constants Av and Auv control the over-
all amplitudes of the voiced and unvoiced components (respectively) of the speech. A
more detailed description of the vocal folds, glottal area and vocal tract is given in the
next section.
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Model G(z)
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Figure 2.1: Speech Production Model
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2.2.1 Vocal folds

The vocal folds are an essential part of the human anatomy for voiced speech pro-
duction. They are located in the larynx and also serve to protect the air-ways from
choking on material in the throat. During respiration, the vocal folds are abducted and
they allow airflow from the lungs to move freely in and out of the body. Forming con-
strictions in the airway is a critical part of phonation and, in fact, the vocal cords can
intrude dynamically on the air-stream due to the Bernouli Effect [VdBZDJ57]. This
effect occurs when passing a gas or fluid with constant flow through a tube when a
section of the tube is constricted. At the point of constriction the flow will speed up
and there will be a drop in pressure against the walls of the constricted part of the tube.
Where the constriction is caused by the vocal cords, their mechanical properties, the
length, the thickness, the tension and the vibrating mass of the vocal folds determine
how they react to the fall in pressure. The properties of the vocal cords are controlled
by the larynx which contains cartilages and muscles whose properties may be varied
by the human talker.

The vocal cords are composed of layers of soft tissue where each layer has different
properties. Each layer has a degree of elasticity and is capable of some independent
movement. The air-stream is interrupted by the vocal folds, when they are adducted
during phonation. At this point, sub-glottic pressure begins to build up below the vocal
cords. The pressure eventually forces the soft tissue to separate and the air-stream
is then allowed to flow through the vocal cords again. According to the Bernouli
Effect, when the air-stream through the vocal folds accelerates, a drop in pressure
occurs which causes the vocal cords to come back together. Sub-glottic pressure then
builds up again and the process continues. This process of vocal fold motion creates the
air-pressure compressions and rarefactions from which all the vowels can be generated.

2.2.1.1 Vocal fold vibration measurement

Vocal folds vibrate at a frequency which becomes the fundamental (pitch) frequency
of voiced sound. The length, tension and mass of the vocal cords, and the sub-glottal
pressure created are four factors which determine the frequency and nature of the vi-
bration. Irregular cycle-to-cycle variation in the vibration can be a natural charac-
teristic of some people’s voices, though it may also be caused by different kinds of
voice disorder. Observing the vocal fold vibration can be very useful for recognizing
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voice disorders. Invasive methods involve the insertion of tools like catheters and bal-
loons into the body for the treatment and diagnosis while non-invasive methods involve
imaging by ultrasound and nuclear tracer imaging. Measuring the vocal fold vibration
directly must use a non-invasive method because the larynx is clearly not easily acces-
sible during the phonation. Researchers have produced several non-invasive methods
for directly monitoring vocal folds vibration. Electro-glottograph (EGG) and acoustic
measurement are two non-invasive methods that do not require surgery or internal ex-
amination. They can obtain measurements of vocal fold vibration in real time while a
person is speaking.

An EGG monitors the variations of electrical impedance across the larynx. It mea-
sures variations in electrical conductance by applying a small potential difference be-
tween two electrodes placed on the throat and measuring the variation of current that
occurs. When the vocal folds are closed, the impedance decreases and more current
flows than does when they are open. However it is not always desirable or convenient
to connect electrodes to a patient. The EGG device is not very comfortable and is often
not very reliable. It requires training for an investigator to be able place the electrodes
correctly, and the change of impedance may be reduced and difficult to detect in pa-
tients with excessive neck fat. Figure 2.2 shows an EGG device applied to a patient’s
larynx. EGG waveforms were obtained as part of the procedure used by Gallepalli
[C.G13a] to establish the data-base used in this thesis. This is not intended to be part
of the standard procedure to be adopted for examining patients in future. It was done
as a research tool for verifying the results obtained from the DSP analysis of purely
acoustic signals. Figure 2.3 shown the EGG waveform obtained from a patient for the
short 45.35 ms segment of the sustained vowel /a/ shown in Figure 2.4.

Figure 2.2: EGG device applied to a patient’s larynx

The sampling frequency is 44100 Hz. It may be noted that the impedance re-
duces relatively slowly during the vocal cord opening phase of each pitch cycle, and
then increases sharply as the vocal cords ‘snap’ together to initiate the closed phase.
This waveform was obtained using an EGG with the commercial DSP tools supplied
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by Kay-Pentax [Kay96]. These tools apply unspecified processing to obtain ‘clean’
waveforms and it can be seen that this processing introduces some delay.

Figure 2.3: EGG waveform produced by short 45.35 ms segment of the sustained
vowel /a/. The sampling frequency is 44100 Hz

Figure 2.4: Speech waveform produced by short 45.35 ms segment of the sustained
vowel /a/. The sampling frequency is 44100 Hz

2.2.2 Vocal tract

The vocal tract provides the airway used in the production of speech. It includes the
throat, mouth, palate, tongue, teeth and lips. The nasal passage provides a coupled
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airway which contributes marginally to the production of many sounds and is used
exclusively or largely for some voiced ‘nasal’ phonemes such as /m/ and /n/. For voiced
speech, the vocal tract is responsible for changing the spectral balance of the glottal
source signal and modulating its amplitude, for example by closing the airway using
the lips or tongue. Formants are peaks in the spectral envelope of voiced speech. They
are superimposed on the flat spectrum of the glottal excitation signal by resonances of
the vocal tract. The frequencies and Q-factors of these resonances change according
to the shape of the vocal tract during speaking. Talkers can make a wide variety of
voiced sounds by changing the vocal tract shape. The resonances (and anti-resonances)
also affect unvoiced speech and the vocal tract is responsible for the constrictions that
produce the turbulence responsible for the unvoiced sound. For example the position
of the constriction created by the tongue and the roof of the mouth, and the resonance
created by the vocal tract shape thus formed are responsible for the consonants /sh/
and /s/ and the difference between them. On average, the total length of the vocal tract
from the larynx to the lips/nostrils is about 17-18cm (in men) [Fit97]. If the tube were
open and straight, its length and the speed of sound c = 34320 cm/s would determine
the frequency of the lowest resonance at around c/(2× 18) = 953 rad/s or 152 Hz
because the maximum wavelength of a pitch-cycle would be about 2×18 = 36 cm. A
closed tube can resonate at the same frequencies as an open tube of twice its length.
The more complex shape of the vocal tract can create a range of formants which can
be varied by moving tongue and lips, and even stretching the length of the vocal tract,
and this variation make different speech sounds. There are normally about three to
five observable formants in voiced sounds depending on the phoneme sound and the
speaker characteristics.

2.2.3 Speech phonemes

A phoneme is the smallest acoustic element of a spoken word that can change its mean-
ing; for example /c/ , /b/ and /e/ which can change ‘cat’ to ‘bat’ or ‘bet’. Phonemes can
be classified in many ways, but is it useful to have three categories

1. Voiced phonemes which are approximately periodic over short time periods and
can have a fundamental frequency in the range 80 to 600 Hz. Fundamental
frequencies at the extremes of this range are rare but possible. During normal
speech, the fundamental frequency depends on different factors such the sex
of the speaker, age, intonation and emotional context. Voiced phonemes are
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produced from quasi-periodic pulses of breath which excite the vocal and they
include phonemes which are labeled /U/,/d/,/w/,/i/ and /e/.

2. Unvoiced sounds or fricatives are produced by forming a constriction in the vo-
cal tract. The air-flow forces breathe through the constriction at high velocity
to generate turbulence which produces ‘noise-like’ sound that excites the vocal
tract. These sounds include phonemes which are labeled [s], [z], [S].

3. Plosive phonemes are voiced or unvoiced sounds produced during the explosive
release of air-pressure following a complete closure formed by the tongue or
lips. Examples are labeled as t, k, and p (voiceless) and d, g, and b (voiced).

2.3 Voice disorder

Deciding what characterises an abnormal voice is difficult and beyond the aims of
this thesis. A normal person’s voice is individual and often immediately recognisable,
sometimes with characteristic breathiness, roughness, frequency and amplitude varia-
tions and other features that are also of interest in studying pathological voices. It must
be assumed that decisions about which voices are disordered have already been taken
by clinicians and this thesis is concerned only with investigating and quantifying the
effects of the disorder, assuming it exists. The voice of an individual will change from
day to day depending on many factors such how it has been used recently, fatigue,
illness and the person’s emotional state. The voice may change from morning to night
without obvious reason. It is generally a severe change beyond these normal variations
that triggers an investigation.

Two temporary causes of voice disorder are vocal cord misuse and inflammation
associated with common colds and referred to as laryngitis. More serious and longer
term causes include vocal fold paralysis, polyps, nodules and cancer. Signs of voice
disorder are usually observed and first mentioned by the patients [CL06]. These signs
include pain in the throat or larynx due to inflammation, abnormal pitch, breathiness,
uncontrolled variation in amplitude and fundamental frequency, insufficient loudness
and other unwanted changes in the quality of the sound produced by the larynx. Voice
problems can have a negative effect on the quality of life of those who suffer from them
[MY01, Yiu02, RMT+04]. Careers as well as day to day activities can be adversely
affected. Our experience of working with Dr. Gadepalli at MRI Hospital has confirmed
this beyond doubt. Hoarseness is a commonly used term for people who have voice
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disorder. If somebody has a hoarse voice the sound is breathy, irregular, constantly
changing, sometimes absent altogether, and often softer in volume and/or lower in
pitch. Hoarseness is often a symptom of problems in the vocal folds of the larynx,
though a degree of roughness (like ‘gravel’), which may be described as hoarseness, is
a natural and cherished feature of some voices.

Laryngitis, often associated with the ‘common cold’ and flu, causes hoarseness,
roughness, and pain making it difficult or impossible to speak. A person ‘loses his/her
voice’. The nature of the problem seems to change from moment to moment. This is
because of a constantly changing accumulation of mucous around the vocal folds. This
mucous is a colourless viscous fluid secreted by certain cells in the larynx. It is oily
and sticky and serves to lubricate the vocal folds when they are working normally. It is
produced in excess when the vocal cords are inflamed, and similar mucous produced
by the lungs may be deposited on the vocal cords when the chest is inflamed during a
cold or flu. The consistency of the mucus on the vocal cords may also change, making
it less effective as a lubricant.

The inflammation and excessive build up of mucous make the vocal folds heav-
ier and less elastic. They are no longer able to ‘snap’ closed quickly with the energy
needed to produce a vigorous periodic excitation with strong harmonic content. They
may fail to close completely either consistently or sporadically. The vibration may
reduce in frequency resulting in a deeper voice, and the lack of harmonic content may
produce dull or muffled sounding vowels. The mucous no longer forms an even film
over both of the vocal cords as required to cause them to come together evenly and se-
curely. Consequently, air escapes through partially closed vocal cords in a random and
unpredictable manner and even ‘bubbles through the mucus’. The result is aperiodic,
breathy, uneven and unpredictable voiced sound associated with hoarseness.

The absence of mucus can also be a problem since it helps the vocal cords to close
evenly and completely. A dry throat can produce aperiodic, breathy speech which can
often be alleviated by a drink of water.

Vocal cord misuse occurs when a child in the playground or an adult at a football
match shouts too loudly and for a long time. Football managers frequently bear the
consequences of such misuse. A similar problem occurs with amateur choral singers
who sing too loud and enthusiastically and lack the skill of professional singers to
protect their voices. During shouting or loud singing the vocal folds come together
with much greater force than is required for normal speaking. This irritates the vocal
folds and interferes with the normal function of the lubricating mucous. The vocal
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cords can become dry and inflamed, and further speaking can become very painful and
sometimes impossible for a while.

Fortunately, the difficulties mentioned above are usually temporary, though there is
evidence that frequent and prolonged misuse of the voice by some professionals, such
as teachers [C.G13b], can have long term and even permanent effects. There is also
evidence that changes in voice characteristics may be the first sign of a serious voice
disorder[CL06, SGG00].

More serious voice disorders with longer term causes include vocal fold paralysis,
polyps, nodules and cancer. These can be very serious.

2.4 Voice quality analysis

The term ‘voice quality’ often refers to the perceptual characteristics of a voice as
heard by another human being. This may not be an ideal notion since humans may not
be as sensitive to certain abnormalities as an objective analysis. It is argued by Jody et
al. [KG03] that although jitter and shimmer analysis are ‘the cornerstone of acoustic
voice measurement’, they are not very noticeable to humans. The use of perceptually-
biased parameters, such as mel-scale Mel Frequency Cepstral Coefficients (MFCCs)
as in reference [MBE10], must be questioned since they exploit human perception to
reduce the information content of the signals they represent. What a human being will
not notice is not recorded. However, it is possible that the missing information is, after
all, significant. Maybe not, but it is best not to take the risk.

This thesis is primarily interested in analysing phenomena arising from the phona-
tory action of the laryngeal system [LKB00]. The perceived grade or quality of hoarse
pathological voice is often described in terms of roughness, breathiness, weakness and
the apparent strain involved in producing the sound. These properties are the basis of
the ‘GRBAS’ method of perceptual grading which is so well known in Europe that it
is desirable to base any computerised objective method on GRBAS. There are some
different methods used for voice quality assessment, both subjective and objective,
and these will be surveyed later. The extent to which computerised objective methods
can reproduce perceptual grading will be investigated, but it must be remembered that
a computer method can notice aspects of speech that a person may miss. It is also
probably true that visual cues may be helpful to the clinician and not available to the
computer program. For example, visual cues may be especially helpful in assessing
the strain needed to produce a sound. The next section is concerned with the GRBAS
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assessment method [Hir81].

2.4.1 Voice Handicap Index

Voice Handicap Index (VHI) was introduced by Jacobson et al. [JJG+97]. It is a
self-assessment of voice quality by participants who attend voice clinics. They fill out
30 items in a questionnaire and describe their voice and its effect in their life. The
questionnaire covers different aspect of voice disorder such as functional, physical and
emotional aspects. VHI-10 requires little time to administer and is easy to score. The
VHI with 30 items is evaluated with the following range of responses: ‘never’, ‘almost
never’, ‘sometimes’, ‘almost always’, and ‘always’. In analysing the questionnaire,
each response was scored from 0 to 4. The, total score could range from 0 to 120
points. Figure 2.5 is an VHI-10 form.

2.4.2 GRBAS

GRBAS is a scheme for voice quality assessment based on a multidimensional anal-
ysis of perceived voice qualities. It evolved from the work of several researchers and
was popularised after being described by Hirano in 1981[Hir81]. GRBAS stands for
the five assessments required, which are Grade, Roughness, Breathiness, Asthenia,
and Strain. The GRBAS scale is considered to be the major and most reliable tool
[WCD+04] in perceptual speech quality evaluation. Physicians and ‘Speech and Lan-
guage therapists’ use it routinely to assess patients and monitor their progress before
and after therapy. The five ‘components’ or attributes of GRBAS are the descriptors
of perceived voice quality. For each attribute a four-point scale is used to specify the
severity of any perceived abnormality: ‘0’ indicates none, ‘1’ signifies slight abnormal-
ity, ‘2’ signifies moderate abnormality and ‘3’ signifies severe abnormality. The scale
may be considered ordinal, with magnitudes ordered in terms of increasing severity.

Grade (G), represents the overall degree of hoarseness or voice abnormality.

Roughness (R) quantifies the degree to which the listener detects the effect of ir-
regular fluctuations in pitch-frequency and amplitude either cycle to cycle or in the
short term energy of the vocal tract excitation [Hir81]. Roughness is also affected by
perceived randomness or ‘noisiness’ of the spectrum [HMWM66]. Any perception of
roughness might take into account the possibility of severe irregularity due to vocal fry
[Hir81, HMWM66] and double excitation (diplophonia) [Sch95].

Breathiness (B) arises from non-periodic sound generated by a turbulent flow of
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Figure 2.5: VHI-10 voice is a self-assessment of voice quality by participants who
attend voice clinics. The VHI with 30 items is evaluated with the range of responses:
‘never’, ‘almost never’, ‘sometimes’, ‘almost always’, and ‘always’. In analysing the
questionnaire, each response was scored from 0 to 4. The, total score could range from
0 to 120 points.

air which leaks through the glottis when it is supposed to be closed [Hir81]. The
turbulence is created by the constriction of a partially closed glottis. Its energy will
be correlated to the vocal cord activity; i.e. its energy will decrease as the glottis
becomes fully open and increase again as the vocal cords try to close. At its source,
the turbulence will be spectrally flat (white) but it will spectrally coloured by the vocal
tract resonances and maneuvers (e.g. opening/closing at the lips) as it contributes to
perceived speech. As the sound heard from normal breath or unvoiced speech is due
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to turbulent air-flow caused by some constriction in its passage, the sound created
by imperfectly closing vocal cords will sound like breath or unvoiced speech. The
perceived quality of breathy voice quality is related to the amount of air-flow. Breathy
voice lacks clarity of tone and is reduced in loudness. Most voices have a degree of
breathiness which contributes to their individuality and natural characteristics.

Asthenia (A) is weakness or lack of energy in the voice. The asthenic variety of
hoarse voice is mostly characterised by weak intensity [Hir81]. It can be because of an
impaired energy distribution in the glottal excitation with a spectral damping which is
a sign of a lack of elasticity in the vocal cords. The higher harmonics in the perceived
sound will then have a lack of brightness and richness.

Strain(S) is indicative of undue effort needed to produce voiced sound due to an
inability to employ the normal functionality of vibrating vocal cords [Hir81]. There
is often psychological stress involved in trying to overcome the disability and this is
perceivable by the trained listener. The abnormally functioning vocal cords and the
stress in trying to control them can produce sound with abnormally high fundamental
frequency, with unnatural and constantly changing periodicity and roughness in the
higher frequency range of the speech. Strain due to speaking with abnormality func-
tioning vocal cords is perhaps the most subjective GRBAS measurement and the most
variable effect. Strain is associated with increased and poorly regulated laryngeal mus-
cle tension [Hir81, CL06]. When speech is being produced, there is the perception of
an inability to control it as it fades in and out. Difficulty in initiating phonation and
a struggle to maintain phonation takes place due to strain. Furthermore, constantly
changing periodicity in the higher frequency harmonics is indicative of strain, giving
the perception of noise or roughness in the higher frequency range of the speech.

2.4.3 Consensus Auditory-Perceptual Evaluation of Voice (CAPE-
V)

The Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V) was developed as
a clinical tool for perceptual assessment of voice by the American Speech-Language-
Hearing Association’s (ASHA) Division 3 [KGA+09]. They developed standardised
guidelines for the perceptual assessment of voice based on voice perception, psycho-
metric scaling and data in psychoacoustics. CAPE-V is an initial product that, it is
hoped by some, will soon be in widespread use by clinicians, SLTs and researchers.
The CAPE-V standard measures important perceptual vocal attributes and is intended
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to be easily understood and used by many professionals. The properties it measures are
overall severity, roughness, breathiness, strain, pitch, and loudness. It is therefore an
alternative to GRBAS, but includes two additional measurements and does not reflect
the perception of asthenia in the way GRBAS defines it.

Overall severity arises from integrated voice deviance. Roughness is described as
perceived irregularity in the voicing source. Strain is described as perception of ex-
cessive vocal effort. Pitch is a perceptual correlate of pitch-frequency (fundamental
frequency) which is scored by clinicians according to how they consider the funda-
mental frequency of the subject to deviate from what may be expected for the subject’s
age, relevant culture and gender.

Loudness is a perceptual correlate of sound intensity which is intended to reflect
the deviation of the subject’s voice from normal for a person of his/her age, referent
culture and gender.

A graphical user interface (GUI) in Figure 2.6 supplied by Kay-Pentax [Kay96]
represents CAPE-V attributes by a 100-millimeter line forming a visual analog scale
(VAS).

Entering scores may be assisted by referring to general regions indicated below
each scale. ‘MI’ refers to ‘mildly deviant’, ‘MO’ refers to ‘moderately deviant’ and
‘SE’ refers to ‘severely deviant’. Clinicians tend to use these regions to indicate the
severity of any degradation, rather than the numerical scale. Scorings are based on
direct assessment, by a trained clinician, of the subject’s performance with vocal ma-
neuvers. Figure 2.7 is an illustration of CAPE-V form. CAPE-V assessments are
sometimes augmented by self-assessments as provided by a completed Voice Handi-
cap Index (VHI) questionnaire or a similar self-assessment [JJG+97].

The CAPE-V assessment requires each attribute to be classed as either ‘consistent’
(C) or ‘intermittent’ (I). A ‘consistent’ classification means that the attribute was con-
tinuously observed throughout the assessment. An ‘intermittent’ classification means
that the attribute occurred inconsistently within or across the assessment. For instance,
a subject may consistently exhibit a breathy voice quality across all the assessment,
which includes sustained vowels and speech. On other hand, the subject might exhibit
consistent breathiness during vowel production, but intermittent breathiness during one
or more connected speech phonation. The scorer would then classify the breathiness as
intermittent. CAPE-V is a widely used technique in the USA while GRBAS is mostly
used in Europe and other continents.
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Figure 2.6: A graphical user interface (GUI) in supplied by Kay-Pentax [Kay96] repre-
sents CAPE-V attributes (Overall severity, Roughness, Breathiness, Strain) by a 100-
millimeter line forming a visual analog scale (VAS).‘MI’ refers to ‘mildly deviant’,
‘MO’ refers to ‘moderately deviant’ and ‘SE’ refers to ‘severely deviant’.

2.5 Objective voice measurement

The purpose of objective measurement is to use computerised measurement techniques
to analyse the quality of a person’s voice. Objective voice measurement can be per-
formed on acoustic recordings of vocal maneuvers consisting, typically, of sustained
vowels and passages of connected speech captured by a suitable microphone. Acous-
tic recording of connected speech are preferred for diagnostic purposes, although they
can be more complex to analyse. The analysis of connected speech normally requires
voiced/unvoiced decisions to identify voiced and unvoiced sections of the speech. Sub-
sequent analysis is then applied, normally, to just the voiced sections.

Voiced speech produces the vowels in continuous speech, whereas unvoiced speech
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Figure 2.7: This is the CAPE-V form. Clinicians measures overall severity, roughness,
breathiness, strain, pitch, and loudness out of 100.‘MI’ refers to ‘mildly deviant’, ‘MO’
refers to ‘moderately deviant’ and ‘SE’ refers to ‘severely deviant’.

produces the consonants. Voiced speech sections are identifiable as having quasi-
periodic pressure waveforms whereas unvoiced sections do not have this quasi-periodicity.
Quasi-periodic means that a fundamental cycle can be identified, within the speech
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waveform, which is repeated approximately for several consecutive cycles. Within
these repeated cycles, there may also be non-periodic components such as additive
noise. The approximate nature of the periodicity means that the fundamental frequency,
the amplitude, and the characteristic shape of the voiced speech can change over time.

The fundamental frequency (referred to as F0) determines the ‘pitch’ of the voice
which is typically around 80 Hz to 180 Hz for male speech and around 165 Hz to
255 Hz for female speech. In normal voiced speech, there should be strong localised
periodicity, relatively little uncontrolled amplitude or fundamental frequency variation
from cycle to cycle, and there should also be a relatively little random ‘noise-like’
component due to turbulent air-flow. Abnormal voiced speech, produced by damaged
vocal cords, is characterised by much higher uncontrolled cycle-to-cycle amplitude
and frequency variation with more and rapidly varying turbulent air-flow. There is less
discernible periodicity because of these effects and also the loss of elasticity in the
vocal cords.

Where the objective voice analysis requires a voiced/unvoiced decision, this is
achieved by measuring the ‘degree of periodicity’ as will be discussed later. The dis-
tinction is sometimes not easy to make especially for pathological voices for which
the degree of periodicity is not very high. However many assessments of voice quality
are made by analysing sustained vowels only and therefore do not require a voiced/un-
voiced decision.

The requirement now is to extract and measure characteristic features of voiced
sections of speech that may be indicative of abnormality, if it exists, in the operation
of the vocal cords. The following features of voiced speech are commonly measured
for this purpose, though there are other features that may also be of interest:

1. Fundamental frequency: This is constantly changing and characterises only pseudo-
periodicity. Sometimes an average value over a period of time is sufficient, but it
is sometimes necessary to have an instantaneous value of fundamental frequency
which applies at a particular instant of time.

2. Shimmer: This is uncontrolled amplitude perturbation of the vocal emission.
There are various different definitions of shimmer in the research literature. ‘Un-
controlled’ distinguishes the amplitude modulation from the much slower ampli-
tude modulation that occurs naturally, for example at the beginnings and ends of
words and sentences [BO00].

3. Jitter: This is uncontrolled fundamental frequency perturbation which also has
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various different definitions in the literature. ‘Uncontrolled’ distinguishes the
frequency-modulation from the much slower frequency modulation that occurs
in natural intonation, for example in questions and tonal languages [VS09].

4. Noise-based features: These features give the perception that a random signal,
often referred to as ‘noise’ or a ‘noise-like’ signal, has been added to a pseudo-
periodic signal which may be already affected by shimmer and/or jitter. Such
random signals can be created by turbulent air-flow via the vocal cords or else-
where within the vocal tract. Such noise based features may be measured and
quantified by the following parameters, and others:

(a) Harmonic to Noise Ratio (HNR)

(b) Glottal Excitation to Noise Ratio (GENR)

(c) Normalised Noise Energy (NNE)

These parameters measure the useful (harmonic) proportion of voiced speech
(HNR) or vocal cord activity (GENR) when either or both are affected by noise
due to turbulent air-flow within the larynx or elsewhere. Turbulent flow within
the larynx will be amplitude modulated by the vibrations of the vocal cords.

5. Spectral features: These are features that reflect the distribution of speech en-
ergy in the frequency-domain as may be measured by a ‘short-term’ Fourier
transform. Such features may be measures and quantified by:

(a) spectral tilt

(b) ‘low to high spectral ratio’.

Software tools for measuring features such as those mentioned above from digi-
tised acoustic speech waveforms are available in published and commercial form for
objective voice quality assessment [Kay96, Pa07, Dr99]. We now described some of
these software tools. The most well known are known as ‘Praat’ [ Pa07] , ‘MDVP’
[Kay96] and ‘ADSV’ [Kay96, AR06] though there are very many others which claim
to do similar things and have been compared [MGS+12, ULTC12, GLORSL+08] with
the three tools just mentioned.
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2.6 ‘Praat’ software package

Praat (the Dutch word for ‘talk’) is a free software package, developed by Paul Boerma
and David Wenink in the institute of phonetic science, University of Amsterdam [ Pa07].
It performs speech analysis covering a wide range of standard and non-standard proce-
dures. The package contains a number of useful measurement tools for objective voice
quality evaluation. For instance, features such voiced/unvoiced decision, fundamental
frequency, jitter, shimmer and HNR can be measured in a number of different ways.
These effects are normally accompanied by breathiness and the perception of an addi-
tive noise-like signal within the speech. Praat measures fundamental frequency in the
range of 75-600 Hz but for pathological voices the range can be extended to lower and
higher values. There are various jitter and shimmer measurements provided by Praat
that will now be described.

2.6.1 ‘Praat’ measurement of fundamental frequency

Praat measures the fundamental frequency (F0) by time-locating the autocorrelation
function peak that most likely corresponds to F0. Only positive peaks are considered.
The normalised autocorrelation function may be computed over a fixed time-frame,
or by a normalised ‘cross-correlation’ technique as will be described in Chapter 4.
Locating the correct peak can be difficult for impaired speech and errors lead to pitch
doubling or halving. The Praat software goes to great trouble to try to eliminate such
errors in the widest range of circumstances. Once the time-location of the correct peak
has been found, its height gives an indication of the ‘degree of aperiodicity’. A height
very close to 1 indicates very low aperiodicity (strong periodicity) whereas a peak
height close to zero indicates the absence of periodicity. If this algorithm is applied to
connected speech rather than purely voiced speech, the height, between 0 and +1, can
be compared to a ‘voicing threshold’ of say 0.5, to decide whether the speech is likely
to be voiced or unvoiced. This provides a voiced/unvoiced decision as referred to in
Section 2.5.

2.6.2 ‘Praat’ measurements of Jitter

Equation (2.1) defines ‘absolute local jitter’ over a number, N, of pitch-cycles. It is the
average absolute difference, in seconds, between consecutive pitch-periods that occurs
over those N pitch-cycles. In this definition, Ti denotes the ith pitch-period, in seconds,
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and N is the number of pitch-cycles over which jitter is to be measured.

Absolute local jitter(seconds) =

N
∑

i=2
|T i−T i-1|

N−1
(2.1)

The MDVP software package (see later) calls this parameter Jita, and gives 83.200 µs
as a threshold for pathology.

Equation (2.2) which we may call ‘relative local jitter’ over N pitch cycles. It is
the average absolute difference between consecutive periods, divided by the average
period. It is expressed as a percentage which is zero when all pitch periods are equal
and 100% when the differences are all of the order of one pitch-period. The MDVP
package calls this parameter Jitt, and gives 1.040% as a threshold for pathology.

Relative local jitter(%) =

100×N
N
∑

i=2
|T i−T i-1|

(N−1)
N
∑

i=1
|T i|

(2.2)

Both these measurements of jitter require reliable estimates of the fundamental
periods of a succession of pitch-cycles which may not be easy to obtain for pathological
voices. Relative local jitter is less sensitive than absolute local jitter to fundamental
frequency estimation errors such as pitch doubling or halving as can easily occur with
not very well defined periodicity. Replacing Ti in Equation (2.2) consistently by 2×Ti

or Ti/2 does not change the relative local jitter provided it may be assumed to remain
constant over the duration of the analysis. Jitter affects the frequency of the vocal tract
excitation but not the resonances of the vocal tract. Therefore, looking for similarities
in the shapes of consecutive cycles is a good way of detecting consecutive pitch-period
differences. The Praat software gives us four other definitions of relative jitter, all of
which are based on the computation of consecutive pitch-periods by this waveform-
matching procedure.

A difficulty lies with the precise definition of jitter, and it is clear that any frequency-
modulation will affect Equations (2.1) and (2.2) regardless of whether it is slow or
rapid. A monotonic increase in pitch-period from say from 446 to 491 samples over
N=10 cycles (fundamental frequency falls from 99Hz to 90 Hz over about 100 ms with
Fs=44100 Hz) will produce a relative local jitter value of around 1% which is close to
MDVP’s threshold for pathology. A random variation of pitch-period (or an alternat-
ing sign variation) producing roughly the same magnitude cycle-to-cycle differences
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produces a very similar value of relative local jitter. The relatively slow monotonic
increase could occur in normal speech, for example at the end of a statement or during
a Chinese word. A corresponding increase in frequency might occur at the end of a
question. Hence these definitions of jitter may classify natural intonation patterns as
jitter and indicative of pathology. The random or alternating variations in pitch-period
are much faster and are more likely to be indicative of abnormal voice, and therefore
classifiable as jitter. Although no precise definition of jitter, in terms of the nature
and speed of the frequency modulation, have been found in the literature, the problem
referred to here has been noticed and remedied to a degree.

Equation (2.3) defines a variation of relative local jitter which is known as Relative
Average Perturbation (RAP). It is the average absolute difference between a period and
the average of it and its two neighbours divided by the average period. The result is
normally represented as a percentage which is zero when all pitch-periods are equal
and 100% when differences are of the order of the pitch-periods.

Jitter(RAP) =

N−1
∑

i=2
|T i− (T i-1 +T i +T i+1)/3|/(N−2)

∑
N
i=1 T i/N

(2.3)

A further variation of relative local jitter is called Five-Point Period Perturbation Quo-
tient (PPQ5) which is defined by Equation (2.4). The absolute differences between a
period and the average of it and its four closest neighbours is computed and divided by
the average period. The result is normally expressed as a percentage.

Jitter(PPQ5) =

N−2
∑

i=3
|T i− (T i-2 +T i-1 +T i +T i+1 +T i+2)/5|/(N−4)

N
∑

i=1
T i/N

(2.4)

The jitter measurements analysed above are well known as a sort of standard and for
this reason they will be adopted in this thesis.

DDP is the average absolute differences between consecutive periods. Equation
(2.5) the definition of DDP which is normally expressed as a percentage.

Jitter(DDP) =

N−1
∑

i=2
|(T i+1−T i)− (T i−T i-1)|/(N−2)

N
∑

i=1
T i/N

(2.5)
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Clearly larger values on N may be used when analysing sustained vowels than
would be appropriate for connected speech. Although much of the work in this basis
is based on the analysis of sustained vowels, we wish to make the methods devised
also appropriate for analysing the voiced sections of connected speech that can be
identified by voiced/unvoiced detection methods. The reduced sensitivity of the RAP
and PPQ5 estimates to slow pitch changes that occur in natural intonation is clearly
more important for connected speech than for sustained vowels. However fundamental
frequency changes do occur in sustained vowels as well. It is very hard to maintain a
fixed frequency for any length of time, and there is likely to be ‘wavering’, ‘tremor’ or
‘vibrato’ in the voice which is natural and not indicative of any voice problem. Tremor
is defined as non-monotonic fundamental frequency modulation which is slower than
jitter and does not create roughness. Vibrato is similar, but perhaps more controlled.
RAP and PPQ5 estimates should successfully de-emphasize the effect of tremor and
vibrato on their estimates of jitter in favour of uncontrolled higher frequency and more
random changes.

2.6.2.1 ‘Praat’ measurements of shimmer

Relative local shimmer, as defined by Equation (2.6) over N pitch-cycles, is the average
absolute difference between the amplitudes Ai of consecutive pitch-cycles divided by
the average pitch-cycle amplitude [ Pa07]. The amplitudes are the maximum values
within the cycle and assumed to be proportional to the root mean square value of the
corresponding vocal tract excitation cycles.

Shim =

1
N−1

N−1
∑

i=1
|Ai−Ai+1|

1
N

N
∑

i=1
Ai

(2.6)

Absolute local shimmer is generally defined in terms of a decibel representation of the
amplitudes rather than absolute amplitudes. Equation (2.7) defines ShdB (a decibel
form of shimmer) as the variability of the amplitudes in dBs averaged over N pitch-
cycles [ Pa07].

ShdB =
1

N−1

N−1

∑
i=1
|20× log

Ai+1

Ai
| (2.7)

The Three-Point Amplitude Perturbation Quotient (APQ3) defined by Equation (2.8)
is the average absolute difference between the amplitude of a period and the average
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of the amplitudes of it and its neighbour divided by the average amplitude.

Shimmer(apq3) =
( 1

N−2)
N−1
∑

i=2
|Ai− (Ai +Ai-1 +Ai+1/3)|

1
N

N
∑

i=1
Ai

(2.8)

The Five-Point Amplitude Perturbation Quotient (APQ5) given by Equation (2.9) de-
scribes average absolute difference between the amplitude of a period and the average
of the amplitudes of and its neighbour divided by the average amplitude

Shimmer(apq5) =
( 1

N−4)
N−2
∑

i=3
|Ai− (Ai +Ai-2 +Ai-1 +Ai+1 +Ai+2/5)|

1
N

N
∑

i=1
Ai

(2.9)

The Equations used for shimmer use essentially the same smoothing techniques as
were used for jitter, and for the same reason. Slow changes in amplitude as occur natu-
rally, for example at the beginnings and ends of words and sentences are de-emphasised
in favour of less controlled rapid changes of amplitude.

2.6.3 Praat measurements of noise-based features

Praat defines the ‘harmonicity’ as a degree of acoustic periodicity and noise-based
features. This also called Harmonics-to-Noise Ratio (HNR) and it is expressed in dB.
For examples if 98% of the energy of the signal is in the periodic part, and 2% is
noise, the HNR is 10× log10(98/2) = 17dB. The equal energy in the harmonics and
in the noise makes HNR equla to ‘0’. Praat Uses Autocorrelation [ Pa07] and Cross
correlation method for measuring the ‘harmonicity’.

2.7 Multi-Dimensional Voice Program (MDVP)

A software package known as the ‘multi-dimensional voice program’ (MDVP) has
been developed and commercialised [Kay96] for the analysis of both digitised acous-
tic voice and EGG waveforms. This software is commercially available from two
main sources: Laryngograph and KayPentax [Kay96] and provides many measures of
different aspects of voice quality. Some measurements are presented in the form of
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numerical data, but many are produced in graphical form. MDVP calculates measure-
ments of more than 25 voice features for each single vocalisation. The large number
of features is provided on the grounds that no single feature can be universally appro-
priate. Unfortunately, the multiplicity of features does not provide an obvious way
of determining an overall equivalent to the GRBAS assessment. Each of the multiple
features represent a very specific facet of voice quality with no overall universally ac-
cepted measurements as is provided by GRBAS. Some of the features measured by
MDVP are in the following sections.

2.7.1 ‘MDVP’ measurements of fundamental frequency

Although the precise details are not published, MDVP computes F0 by much the same
procedure as the Praat software. Values of F0 obtained are reported to be compara-
ble over a wide range of voices, though voiced/unvoiced decisions are reported to be
significantly different [MGS+12] because of different voicing thresholds.

2.7.2 ‘MDVP’ measurements of jitter

Absolute jitter (jita) is an evaluation of the cycle-to-cycle variability of the pitch-period
within the analysed voice sample. The MDVP definition of jita is widely in the liter-
ature [SOA09, CTPB+00], and is the same as the Praat definition of ‘absolute local
jitter’ given in Equation (2.1). Its units are in seconds. Relative jitter (Jitt) is the same
as relative local jitter defined by Praat and given in equation (2.2). Relative Aver-
age Perturbation (RAP) is the same as the RAP version of jitter defined by Praat and
presented in Equation (2.3). The ‘Pitch Period Perturbation Quotient’ (PPQ) quanti-
fies period-to-period variability with a smoothing factor of 5 periods as with the Praat
PPQ5 measure defined by Equation (2.4). The higher smoothing factor leaves PPQ
less sensitive to natural period-to-period variations [MDV]. The Smoothed Pitch Pe-
riod Perturbation Quotient (SPPQ) defined by Equation (2.10) is a generalisation of
RAP and PPQ5 where the order of the smoothing process may be defined by the user.
The factory setup for the smoothing process is 55 periods but this may be changed.
Voice break areas are automatically excluded.

SPPQ =

1
N−s f+1

N−s f+1
∑

i=1
| 1

s f

s f−1
∑

r=0
T O

(i+r)−T O
(i+m)|

1
N

N
∑

i=1
T O

(i)
(2.10)



60 CHAPTER 2. BACKGROUND AND RELATED WORK

The PPQ measurement of jitter is considered to describe well the cycle-to-cycle ir-
regularity associated with the inability of the vocal folds to support a periodic vibra-
tion with a defined period. Hoarse and/or breathy voices will have an increased PPQ.
MDVP provides the jitter estimates ‘jita’, ‘jitt’ and ‘Jita’ in addition to PPQ because
the research literature contains normative data for these measurements.

Both MDVP and Praat software packages are capable of producing estimates of the
amount of jitter in a sustained vowel. Some of the MDVP algorithms have a tendency
higher values of jitter than the Praat algorithms. When applied to the same speech
segment they provide different estimates [MGS+12, MCDB+09, HKŞ11, BKG+96].
Apart from the methods in these two software packages there are other methods for
estimating jitter [KK90, VMJ96]. The question is how to compare them.

2.7.3 ‘MDVP’ measurements of shimmer

The MDVP software package also provides measurements of shimmer which corre-
spond broadly to the methodology used in Praat and outlined earlier, but with higher
degrees of smoothing recommended. The Amplitude Perturbation Quotient (APQ) is
a relative evaluation of the cycle-to-cycle variability of the peak amplitude within each
cycle. It is defined by equation (2.11) where Ai, for i=1,2,...N are the extracted ampli-
tudes and N is the number of pitch-cycles. It uses 11-cycle smoothing expressed in a
slightly different way.

APQ =

1
N−10

N−10
∑

i=1
| 1

11

10
∑

r=0
A(i+r)−A(i+5)|

1
N

N
∑

i=1
A(i)

(2.11)

The Smoothed Amplitude Perturbation Quotient (SAPQ) is similar to equation (2.11)
but with a degree of smoothing that may be defined by the MDVP user. Using SAPQ
the MDVP user can compare his amplitude perturbation results with other results in
the literature such as are obtained using different Praat measurement. The smoothing
factor determines the number of cycles used for the smoothing and may be selected in
the range from 1 to 199 A general formula for SAPQ is given in Equation (2.12) where
sf is the smoothing factor.
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SAPQ =

1
N−s f+1

N−s f+1
∑

i=1
| 1

s f

s f−1
∑

r=0
A(i+r)−A(i+m)|

1
N

N
∑

i=1
A(i)

(2.12)

Instability of the fundamental frequency F0 and amplitude instability tend to in-
crease with age voice, resulting in greater jitter and shimmer values, tremor and in-
creased hoarseness [LCB82]. Few studies have investigated F0 effects, Baken and
Orlikoff [OB90] concluded that the influence of F0 on jitter and shimmer has not been
fully understood to date.

2.7.4 ‘MDVP’ measurements of noise-based features

MDVP defines two features for measuring noise in voice signals. These are Voice
Turbulence Index (VTI) and Noise-to-Harmonic Ratio (NHR). They may be described
as follows.

2.7.4.1 MDVP measurements of Voice Turbulence Index

Voice Turbulence Index measures noise turbulence caused by incomplete closure of the
vocal folds. Pitch synchronous frequency-domain methods are used for the extraction
of VTI.

1. MDVP computes an unwindowed 1024-point Fast Fourier Transform (FFT) for
the data. This is converted to a power spectrum.

2. The fundamental pitch-frequency is calculated using a synchronous pitch extrac-
tion method.

3. MDVP separates the spectrum into the harmonic and inharmonic components
synchronously using the average fundamental frequency. This is computed for
1024 sample segments of speech.

4. The VTI a speech segment is the ratio of the inharmonic spectral energy in the
range 1800-5800 Hz to the harmonic energy in the frequency range 70-4200 Hz.
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2.7.4.2 ‘MDVP’ measurements of noise-to-harmonic ratio (HNR)

MDVP defines the Noise-to-Harmonic Ratio (NHR) of a section of voiced speech as
the average ratio of the non-harmonic spectral energy to the harmonic spectral en-
ergy in the frequency range 70 Hz to 4200 Hz. In other words, NHR measures the
relative contributions of aperiodic and periodic components of the voice signal. Nor-
mal periodic voiced signals have a small NHR whereas severely dysphonic voiced
signals that have high components of breathiness and roughness tend to have higher
values of NHR. Harmonic-to-noise ratio (HNR) is the reciprocal of NHR. It is claimed
[MDV] that a pitch-synchronous frequency-domain method is used by MDVP for NHR
computation, though precise details are not published. The use of pitch-synchronous
Fourier analysis eliminates the spectral spreading that normally occurs with fixed anal-
ysis block-lengths. A viable pitch-synchronous procedure that is likely to be similar,
in principle, to that used by MDVP proceeds as follows:

Firstly, the voiced speech segment is divided into frames each containing approxi-
mately 20 ms of speech. Then the fundamental pitch-frequency is calculated for each
frame using a highly reliable F0 extraction method. An FFT with rectangular window
is then applied to an integer number of complete pitch-cycles. The number of com-
plete cycles could be as low as two, but there may be advantages in taking a few more
when the pitch-frequency is not changing rapidly. The more pitch-cycles taken, the
more accurate the result, potentially, but the more susceptible will be the analysis to
the effects of aperiodicity and non-stationarity. The FFT bock-length must therefore
vary as the pitch-frequency changes, and an accurate estimate of the pitch-frequency
is essential to make this approach work. The pitch-synchronous block-length must be
chosen such that the characteristics of the speech within it remain close to stationary.
When this is the case, the FFT magnitude spectrum will have lines at the fundamental
frequency and its harmonics, with no spectral spreading in-between. There will be
nothing in-between the spectral lines when there is no noise and the speech is purely
periodic. When there is noise, its power may be estimated from the magnitude spectral
samples between the harmonics assuming the noise is spectrally white or of another
spectral shape. Once the power of the noise has been estimated as from a standard pe-
riodogram, it may be subtracted from the overall spectral power to obtain the harmonic
power and hence the noise-to-harmonic ratio or its inverse. The harmonic power, thus
calculated, should be close to the sum of the harmonic powers, but not exactly equal to
it because of noise added to the harmonics.

Clearly, the NHR estimate will be affected by any degree of aperiodicity, including
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shimmer, and jitter. There are various tricks that may be applied. For example, the
number of pitch-cycles can be chosen dynamically; small during periods of transition
and larger when the speech is highly stationary. Also, dynamic cycle-stretching (not
‘time-warping’) and amplitude scaling may be employed to reduce the effects of jitter
and shimmer and make the pitch cycles appear more periodic. It is not known how
many of these tricks are employed by MDVP and it what way. In principle, pitch-
synchronous frequency domain techniques can be made exactly equivalent to any time-
domain or autocorrelation-domain technique. Anything done in the time-domain can
also be done in the frequency-domain, and any difficulties encountered in one domain
will also manifest themselves, in some different form, in the other domain. It has
been reported [MGS+11] that the values of HNR obtained from Praat and MDVP are
usually significantly different. Comparisons with other voice analysis programs have
also revealed similar differences [MGS+12]. A possible reason for such differences is
that MDVP calculates the NHR in the frequency range 70-4200 Hz.

2.8 Analysis of Dysphonia in Speech and Voice (ADSV)

‘Analysis of Dysphonia in Speech and Voice’ (ADSV) is a commercial software pack-
age for objective voice analysis [AR06]. It can perform objective voice assessment
on recordings of sustained vowels and continuous speech within normal and mild-to-
severely dysphonic voices. ADSV uses spectral and cepstral based analyses, which
overcome some problems of traditional acoustic assessment methods in Praat and
MDVP that are dependent on identifying individual pitch cycles. ADSV can pro-
vide valid and reliable voice quality assessments of non-periodic voice segments as
they occur in samples of continuous speech (sentences) and severely dysphonic speech
[AR09, AR06, AR05]. Graphical displays showing how spectral and cepstral values
change over time are provided.

ADSV provides protocols for measuring samples of speech with particular char-
acteristics. The protocols in ADSV require samples of sustained vowels, ‘easy onset’
sentences, ‘all voiced’ sentences, ‘hard glottal attack’ sentences, ‘voiceless plosive’
sentences and a ‘rainbow passage’ consisting of a standard piece of text. Figure 2.8
shows a screen-shot of part of the ADSV graphical user interface and it lists the six
protocols that can be used in ADSV [ADS]. The protocols are as follows.

1. Sustained vowel: The aim of this protocol is to assess the ability of the partici-
pants to produce sustained and effective voicing in a steady pitch and loudness
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Figure 2.8: This is a windowing containing ADSV data. The green data mark at the
start of the data. The red data cursor has been moved to the instance of L/H Ratio
and CPP data located. This is reported in the x-axis box located on the status line.
The waveform, L/H Ratio contour, and CPP contour are displayed. ADSV Results are
calculated from the blue highlighted data located between the selection cursors.

context. (e.g. /a/ or /e/)

2. Easy Onset Sentence: The aim of this protocol is to elicit voice characteristics
such as soft glottal attacks and voiceless to voiced transitions. (e.g.‘How hard
did he hit him?’)

3. All Voiced Sentence: The aim of this protocol assess the presence of possible
spasms or voiced stoppages and the ability to maintain consistent voicing during
connected speech. (e.g.‘We were away a year ago’).

4. Hard Glottal Attack Sentence: The purpose of this protocol is to assess the pres-
ence of hard glottal attacks. (e.g.‘We eat eggs every Easter’)

5. Voiceless Plosives Sentence: The aim of this protocol is to assess the ability to
transition easily between vowel production and voiceless stop-plosive produc-
tion. (e.g. ‘Peter will keep at the peak’).

6. Rainbow Passage: The purpose of this protocol is to evaluate the voicing capa-
bility in a obtained from a traditionally used phonetically-balanced passage.
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2.9 Discussion

The three software packages mentioned in this Chapter, i.e. Praat, MDVP and ADSV,
use various methods for measuring voice features. Both Praat and MDVP use an auto-
correlation method for pitch analysis, Praat uses the original amplitude for pitch analy-
sis whereas MDVP quantities the amplitude into the values -1, 0, +1 before computing
the autocorrelation [ Pa07]. Therefore, voice features analysis can produce different
results when using these programs. Eventually, they do not provide an obvious way of
determining an overall equivalent to the GRBAS scale because of the multiplicity of
the features.

2.10 Other software packages for speech analysis

WPCVox is a commercial tool for recording and analysing speech and electroglotto-
graphic(EGG) signals [GLORSL+08]. WPCVox permits the synchronous recording
of speech and EGG signals using an active connector . It also mixes both signals to-
gether. This represents graphically the features for voice quality assessment. A Paper
by [GLORSL+08] concluded that the results obtained for WPCVox very similar to
those obtained with MDVP.

Dr.Speech (DRS) [ Dr99] is a commercial tool for analysing speech. Dr. Speech is
rarely used in the literature but smaller voice clinics and students often use it [SCDB05].
A paper by [SCDB05] conclude that both Dr.Speech and MDVP generate comparable
results for F0, shimmer, and HNR for normal adult. For normal adult voices, F0SD,
absolute, and relative jitter, the results of both programs are not comparable [SCDB05].

2.11 Comparisons between Praat, MDVP and other pack-
ages

Paper [HKŞ11] compares the acoustic analysis results obtained by the Praat and MDVP
software suites for a selection of 47 voice samples consisting of both normal and patho-
logical voices. Each of the two software suites was used to obtain mean fundamental
frequency, jitter, shimmer, and harmonics to noise ratio. The measurements obtained
for mean fundamental frequency and shimmer were not significantly different. How-
ever, measurements for jitter and noise-to-harmonics ratio were significantly different.
The paper reports strong correlation between the Praat and MDVP measurements of
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jitter (according to all four definitions: (abs, local, RAP, PPQ) despite the numeri-
cal differences. MDVP seems to consistently give higher values of jitter than Praat.
The agreement and correlations for shimmer values (dB, local and apq) were found
to be moderate. Although the Praat and MDVP measurements of harmonics-to-noise
ratio (HNR) are very different, the correlation was moderate. It is presumed, though
not stated in the paper, that the measure of correlation is Pearsons which, as will be
discussed in Chapter 3, reflects trends from the individual means rather than absolute
differences. These findings, and similar results from other authors, present difficulties
for the work in this thesis if it is to make use of measurements obtained by published
and commercially available software suites such as Praat and MDVP.

The findings for jitter are surprising in view of the fact that both programs use
the same definitions for the four versions (abs, local, RAP, PPQ). The paper [HKŞ11]
believes that the reason for the different results may be the different voiced cycle de-
tection algorithms used by Praat and MDVP [BW04, MDV]. Even this comment is
surprising since the measurements of fundamental frequency are comparable. Never-
theless, the moderate correlation between the numerically different parameters appears
to indicate that both computer programs use similar strategies for normal and patho-
logic voices. Unfortunately, it is difficult to analyse these differences further since
the details of the algorithms used are not published or clearly documented for either
software suite.

The differences between the Praat and MDVP measurements of jitter are also high-
lighted in a paper by Maryn et al [MCDB+09] which concludes that the two programs
give different results for both jitter and shimmer. It is reported that MDVP gave con-
sistently higher measures than Praat for the four different measures of jitter (absolute
relative, RAP and PPQ) and three measures of shimmer (dB, relative and apq) for 50
subjects with various voice disorders.

In the same journal issue, a paper by Paul Boersma [Boe09] attempts to explain
which of the two software suites, Praat or MDVP, gives the best result. Paul Boersma
is one of the inventors of Praat [BW04]. However, the paper [Boe09] sets out to justify
its claim that Praat is more reliable than MDVP for computing jitter by explaining why
the suspicions of Maryn et al [MCDB+09] are justified. These suspicions were that the
methods used for locating the time-locations of the vocal tract excitation pulses were
the source of the differences.

The standard method used by Praat is referred to as ‘wave-form matching’ whereas
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the MDVP method is ‘peak picking’. Waveform matching identifies complete individ-
ual pitch-cycles by their entire shapes between the time-locations of successive exci-
tations. There is similarity between the shapes of complete pitch-cycles because of
the resonances of the vocal tract. These resonances, being controlled by the physical
shape of the human vocal tract, can only change relatively slowly in comparison to the
waveform changes that occur due to noise, jitter and shimmer. Therefore the similarity
of successive pitch cycles can be exploited to accurately determine the duration and
amplitude of each pitch-cycle which is required for calculating jitter and shimmer.

Peak picking is rather simpler than waveform matching and simply looks for the
time-locations where the speech waveform has its local maxima. The time-location
of each maximum is assumed to correspond exactly with the snapping closed of the
vocal cords. The amplitudes of successive maxima are used to calculate shimmer. The
inevitable slight delay between the ‘snapping closed’ and the peak is not important.

The shape of each pitch-cycle, and also the sharpness of the peaks, will change
marginally with the effect of jitter and shimmer, because of the slightly different inter-
action of each new pitch-cycle with the still decaying resonances of previous cycles.
Pitch-cycles do not die away completely at the end of the cycle and ‘ring on’ into subse-
quent cycles. But this effect is usually not significant. Therefore average pitch-period
estimates and values of jitter and shimmer are usually comparable between Praat and
MDVP when the degree of jitter or shimmer is not excessive, i.e. less than about 10%,
and when there is no noise-like’ signal added at the vocal cords or further along the
vocal tract. This result also requires that there is no background noise in the recording.

However, according to Paul Boersma [Boe09], the presence of even small amounts
of noise, (e.g. 1%) due to turbulence at the vocal cords (breathiness) or elsewhere
creates problems for the peak-picking approach which are much less serious for the
waveform matching approach. Essentially the noise creates uncertainty in the exact
time-locations and amplitudes of the peaks which are critical for peak picking ap-
proaches. In contrast, because the time-duration and amplitude of each pitch-cycle
is estimated from the whole cycle and not just one peak value within it, the effect of
the added uncertainty tends to be averaged out. This averaging out is effective when
using the difference between successive pitch cycles to estimate the pitch-period and
amplitude of each cycle. Note that only the pitch-period is important for estimating
shimmer and jitter; the exact time-locations of the starts and ends of each pitch-cycle
are not important.

Paul Boersma [Boe09] presents results which show that for speech sounds with
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moderate jitter and turbulence or other random effects adding 1% to the overall power,
the differences in jitter estimates are significant between waveform matching and peak
picking. For example, simulated jitter at 0.09 % is estimated as 0.076 % jitter by
waveform matching (Praat) and 0.518 % by peak-picking (MDVP).

2.12 Use of existing software packages in this thesis

The findings of paper [HKŞ11] and others highlight a difficulty of using published or
commercial voice analysis suites such as Praat and MDVP for deriving the measure-
ments of features required for the objective analysis of voice. Although, this software
is highly sophisticated and, doubtless, endlessly evaluated and optimised, it is not pos-
sible to use this software in this thesis without an understanding of the underlying DSP
algorithms they employ. Indeed, the Praat software suite offers choices between dif-
ferent techniques for the same measurements, with only a cursory explanation of the
essential differences. The elaborate nature of the software also makes it very difficult
to examine minimally documented source code to extract and examine the required
techniques. The fact that the software suites produce different results makes the choice
between them a difficult decision.

Further practical difficulties also emerge with the desire to produce, in this thesis,
the prototype of an integrated software package for objective voice quality analysis.
If such a package were to obtain its feature measurements from Praat or MDVP it
would need a convenient interface which is not currently available. Both suites are
driven from graphical user interfaces which require user intervention. Praat does have
a scripting option which, in principle, allows data from a different software package
to be analysed. But current versions (e.g. Praat version 5.4.19) does not allow all the
necessary operations to be controlled from a script. There are other voice analysis
suites such as Dr. Speech or Vox, but they have been reported as suffering from the
same problems as the Praat and MDVP software.

The techniques required for extracting and measuring features that are likely to
reflect speech quality are generally well known. They employ basic DSP operations
such as digital filtering, Fourier analysis and forms of autocorrelation analysis. The
cepstrum, which is derived from Fourier analysis, is widely used. Details of these
approaches will be given in Chapter 4, along with a description of prototype software
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that has been developed to implement viable versions of the feature measurement tech-
niques needed in this thesis. This prototype software uses, we believe, the best avail-
able approaches. However, a full optimisation up to the level of commercial software
has not been done.

Most sensible speech feature measurement techniques, even simple ones, will work
for most normal voices and some moderately pathological voices. Even very sophis-
ticated techniques will fail for very severely damaged or abnormal voices. The chal-
lenge is to devise techniques that work well for the widest possible range of voices.
Selecting and implementing the best DSP approach is only the first step in meeting
this challenge. The next stage is painstaking optimisation over the very wide range of
possible voice impairments, finding the causes of failure and trying to eliminate these
causes.

2.13 Machine learning algorithms

2.13.1 Type of learning

Objective voice quality analysis would be useful in many clinical applications. Such
methods are already available in the form of Praat, MDVP and ADSV software pack-
ages, but the results they produce are not easily understood by clinicians. Therefore a
technique that can map the results of objective analysis techniques to the classifications
produced by more familiar subjective methods, such as GRBAS, is needed. Looking
at the machine learning area for such mapping techniques should be useful.

In machine learning, supervised and unsupervised learning methods distinguish
the two major learning models. Supervised learning methods attempt to discover the
relationships between input features and target attributes [KZP07]. For each observa-
tion of the predictor measurements, for example the voice measurements made by the
Praat, MDVP and ADSV software, there are associated response measurements, such
as GRBAS scores. The aim is to fit a model that relates the responses to the predictors,
with the aim of accurately predicting the responses for future observations (predic-
tion) or better understanding the relationship between the responses and the predictors
(inference). Unsupervised learning methods are methods for which for every obser-
vation produces a vector of measurements but without labeled responses for the target
[HTF09]. In this thesis, we focus on supervised learning methods.

The two main models used for mapping the observations to the target outputs (such
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as GRBAS scores) by supervised learning methods are ‘Classification’ and ‘Regres-
sion’. Classification maps the observed ‘features’ into pre-defined classes whereas
regression models map the features on to a real-valued numerical domain. There are
many classification and regression models such as K-Nearest-Neighbor (KNN), deci-
sion trees, neural networks and support vector machines for representing classifiers.
Multiple linear regression and logistic regression are commonly used regression mod-
els, and KNN can be used for either classification or regression.

2.13.2 How supervised learning algorithms work

A supervised learning algorithm receives a set of examples of pre-analysed data for
which the required target properties are known, and then tries to learn how predict the
corresponding target properties of other data, which are unknown. The original set of
examples provides training data. Once the learning algorithm has been trained using
all or some of this data, if the same data is re-used to compute the error of the model
fit, an overly optimistic estimate of the error of the model will be obtained. This is
because the training or model fitting process tries to ensure that the error of the model
for the training data is as low as possible.

Therefore, the model will be specifically suited to the training data. To get a more
realistic estimate of how the model will perform with unseen data, some unseen data
which is not used for the training process must be available along with its known
properties for checking. It is therefore common practice to set aside part of the original
data for checking and not to use it in the training process. This data-set is may be
called the validation data-set. After training the model using the remaining data-set,
now known as the training data-set, the performance may tested or ‘validated’ on the
validation data-set [VV98, KZP07].

The validation data-set is often used to fine-tune models. For example, we may try
out various sets of coefficients for a regression model by finding the error produced
by each set of coefficients for the validation data-set. This would allow us to choose
among the competing sets of coefficients. In such a case, the error with the validation
data-set will be an optimistic estimate of how the fine-tuned model would perform
with unseen data. This is because the final coefficients will have been chosen such that
the error with the validation data-set is the lowest possible. Thus, we may need to set
aside yet another portion of the original data which is used neither in training nor in
validation. This set may be called the test data-set to distinguish it from the validation
data-set. The error produced by the fine-tuned model applied to the test data then gives
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a realistic estimate of the performance of the model on completely unseen data.

2.13.3 Cross-Validation

There are many ways of choosing the preferred sizes of training, validation and testing
data-sets. A well accepted method is N-Fold cross-validation, in which the order of
the original data is randomised and then N equal size partitions are made [K+95]. The
data is split into several parts which are called folds. For example, for 5-fold cross-
validation, in the first step, a model may be trained and possibly fine-tuned on folds
1-4 and then tested on fold 5. To improve the model without the requirement of further
data-sets, a second step may be performed whereby the model is retrained and tuned
on folds 1, 2 and 3 and 5, and then retested on fold 4. This process may continue by re-
training and tuning is on folds 1, 2, 4, 5, then testing on fold 3 and so on. In each step,
the fold that is left out is not seen by the model until the testing phase. In each fold,
the error will be averaged and called the cross-validation error. This cross validation
error will be an optimistic estimate of what may be expected with truly unknown data
because the parameters will implicitly be fitted to the training data by iterating the
training process over the same folds. A better solution may be obtainable by separating
the data into three different parts as outlined earlier: a training set, a validation set and
test set. Therefore, the recommended procedure for training a GRBAS predictor from
a data-set containing 102 previously scored examples is as follows.

1. The 102 examples are expressed as a matrix where the rows correspond to the
subjects or patients and the columns contain the measurements of voice features
(the observations) and the GRBAS scores produced by trained scorers.

2. If there is more than one scorer (actually we had five scorers) a consensus or
‘gold standard’ (see Chapter 3) score must be agreed for each GRBAS compo-
nent for each subject by some form of averaging.

3. After randomising their order, the rows are split into N folds where N, for exam-
ple, may be equal to 10.

4. The last fold is kept as a ‘hold out’ test set.

5. The cross-validation is performed with the remaining 9 folds.

6. The model that performs best on average over those 9 folds is selected.
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7. The model is then applied to the ‘hold-out’ test set for evaluation. The error on
the hold-out data is an unbiased estimate for the future generalisation-error.

We can repeat the procedure several times to remove the variance of the whole the
procedure. In Chapter 5, the experiment for training and testing will be repeated for 20
times (trials).

2.14 Objective voice quality analysis conforming to the
GRBAS scale

The accurate assessment of pathological voice quality is a major research problem
that has attracted attention in the field of voice disorder and biomedical engineering
for many years. Voice quality assessment using subjective methods are based on a
trained listener’s opinion of the quality of an utterance. There will normally be just one
listener for a patient, and the patient must rely on the professionalism and expertise of
the listener for an appropriate assessment or score. It must be assumed that listeners
are self-consistent in their assessments and also that different trained listeners around
the country, by virtue of their training, will give similar scores for similar degrees of
voice degradation. The extent to which these assumptions may be reliable is tested in
this thesis since five scorers were available as part of the research effort and they were
required to score a small proportion of the subjects twice.

It is possible that objective computerised assessment could replace or augment the
expensive and time-consuming manual procedures currently required, and that com-
puters could produce similar results with similar or perhaps even better consistency.
Although it is not suggested that objective methods should completely replace sub-
jective ones, the objective quality evaluations may be very useful, and there is some
evidence already that the results can be made to correlate well with subjective quality
assessments. There are few studies about objective voice quality assessment conform-
ing to the GRBAS scale.

A recent paper [VCOAAL+13] uses a K Nearest Neighbour classifier to predict
all parameters using spectral energy measurements, cepstral coefficients, a glottal-to-
noise excitation ratio and other features. The objective scores were compared with per-
ceptual evaluations by a single expert at the University Poletecnicaof Madrid. Good
correspondence was obtained, the best efficiency being obtained for Asthenia was
89.3% [VCOAAL+13].
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The work by [GHSS05] used three features to classify speech signals into a three-
point rating scale by considering only the G component from GRBAS scale. The
10 patients with Parkinsons disease and four healthy speakers make the database. A
measure called ‘Itakura-Satio distortion’ provides good correlation with the perceptual
evaluation and could be used to predict it. No classification results were presented and
the number of participants in the database was very small.

Nicolas Saenz et al [SLGLORGV06] used Learning Vector Quantization (LVQ)
and a KNN classifier for predicting all GRBAS component. MFCC were extracted
as features. The voice examples were scored by three ENT clinicians and they anal-
ysed a short-time EGG signal. The most accurate results were obtained for ‘control’
participant with 65% accuracy and for class ‘0’ and class ‘1’.

Other researches in the literature use different classification techniques for the de-
tection of pathological voices. These are as follows.

The classification of normal and pathological voices was carried out with a Multi-
Layer Perceptron (MLP) neural network by [FSLGL+09]. The experiments were per-
formed using a subset of the MEEI [EI94] database with 53 normal and 173 patholog-
ical speakers and the participants were differentiated by sex. A classification accuracy
of 88.3% was obtained. The feature set used to train the ANN(artificial neural network)
based detector was based on MFCC measurements.

A modification of the standard KNN classifier was proposed by [SC+07] to classify
a set of 163 pathological and 53 normal speakers extracted from MEEI [EI94] database.
The best accuracy obtained was 94.28% by using HNR in four frequency bands.

A classifier based on a least square Support Vector Machine (SVM) with three dif-
ferent kernel functions was used to identify laryngeal pathologies by [FGS+07]. The
features used to train the classifier are statistics estimated from linear prediction coef-
ficients and time-frequency representations using wavelet decompositions. The exper-
iments were carried out using a data set composed of 30 normal and 30 pathological
participants. Classification accuracy up to 91.67% was obtained

To differentiate between normal and pathological voices a probabilistic model,
called Gaussian Mixture Model (GMM) was applied by [GLGVBV06]. The obtaining
an efficiency around 94% with the same data set (MEEI) used in [FSLGL+09] and the
features used to train the classifier were MFCC along with their first derivative.

A work by [DNB+02] propose an automatic detection of ‘normal’ and ‘pathlog-
ical’ speech from sustained vowels. MFFCC and pitch dynamic were useed as the
features. GMM and Hidden Markov Model (HMM) classify speech into ‘normal’ and
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‘pathlogical’ categories . The experiment was applied to the MEEI data-base. The best
obtained accuracy was about 99.4% with extracted features

Gelzinis et al [GVB08] used 11 different sets of features, including noise measures,
energy perturbation measures estimated from different frequency bands and linear pre-
dictive coefficients. They extracted 23 measures using a commercial software called
‘Dr. Speech’. The experiments were carried out using 79 pathological and 69 healthy
speakers. They combine six SVM trained with different sets of features. The best
achieved classification rate was about 95.5%.

An approach for the objective voice quality assessment was presented by [RMM02].
This work is based on a seven-point ranking scheme and Artificial Neural Network
(ANN). From EGG signals different combinations of short-term and long-term time-
domain and frequency-domain features were extracted. A database was composed of
77 pathological speech signals . The best result was obtained using 21 input features.
An average accuracy of 92% was obtained.

Despite all approaches for the objective voice quality assessment found in the liter-
ature, their results can not be easily compared. Our work aims to use a different data-
base, five experienced SLT scorers, analysing acoustic signal and a different feature
set. Also, we aim to use regression models rather than classification, and to compare
two regression models. Regression is sensitive to the degree of disagreement between
scores where classification is concerned only with agreement or disagreement.

Tarika et al [BPG04] determine if there is a correlation between GRBAS scores
and MDVP (noise-related feature ). They used thirty-seven patients who are scored by
an SLT. A multivariate regression model was used for determining the correlation of
these features with GRBAS components. NHR , Voice Turbulance Index (VTI) and
Soft Phonation Index (SPI) were reported as the features that have correlation with
GRBAS. This can be used for the computerised measurement of GRBAS scores.

2.15 Conclusions

This chapter surveys background knowledge, research literature and software support
that is relevant to the work in this thesis. It discusses the nature of speech and the com-
mon causes and manifestations of voice impairment. Voice problems are traditionally
assessed by the perceptual evaluation of voice features by clinicians. The GRBAS and
the CAPE-V approaches standardise these assessments, but they are time-consuming
and expensive. Self-assessment has a useful role.
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The objective analysis of speech quality has been addressed in the literature and
the possibility of producing objective assessments conforming to the GRBAS scale has
been realised and investigated to a degree. However the problem has not been solved.
There is a wide range of published and commercialised feature measurement software
but many authors have reported inconsistencies in the measurements obtained from
different software suites. Particular difficulties arise when the aim is to apply them to
connected speech as well as sustained vowels. Many different views about which voice
features should be measured to detect voice abnormality have been presented in the lit-
erature. A wide range of techniques and algorithms for feature measurement have been
published or commercialised over the passing years. The nature, inconsistencies, and
possible advantages and disadvantages of some of these have been discussed in this
Chapter. It is concluded that, based on the knowledge gained from studying this pub-
lished and commercial software, the means of measuring most of the feature parame-
ters required for predicting GRBAS scores should be developed as part of this thesis.
The algorithms developed may be compared and tested against the Praat, MDVP and
ADSV software.

We aim to investigate which features are most likely to be indicative of GRBAS
scores and which algorithms best serve to measure these features from speech. It may
be possible to improve on existing algorithms by tailoring them to the application.
There are a number of machine learning techniques available for training classifiers
and regression based techniques. Methods of training, validating and testing these are
recommended in the machine learning literature. The next chapter is about our data-
base creation and GRBAS scoring by five speech and language therapists (SLTs) and
statistical analysis of the GRBAS scores. Chapter 4 will describe new methods for
feature measurement.



Chapter 3

Data-base Creation and GRBAS
Scoring

3.1 Introduction

This chapter describes the methodology that was used by Gadepalli [C.G13a] for es-
tablishing a data-base of voice recordings from ‘patients’ and ‘control’ participants. It
then explains how the data-base was used for gaining familiarity with traditional sub-
jective GRBAS scoring techniques and for experimental purposes for GRBAS scoring
both subjective and objective. Methods of evaluating the ‘intra’ scorer subjective con-
sistency of individual scorers and ‘inter’ scorer consistency between different scorers
are explored and applied to the data-base. The evaluations have many uses, for example
in giving feedback to the SLT scorers. In this thesis, the data-base, the scorings and the
scorer evaluations are also used as a means of developing objective GRBAS scoring by
computer and assessing the effectiveness of the computerized objective software. The
machine learning techniques used to make the objective assessment will be trained us-
ing ‘training data’ consisting of examples extracted from the data-base with GRBAS
scores which can be considered ‘reliable’. The deviation of the ‘reliable’ scores from
a number of trained subjective scorers will be considered in this Chapter. We refer to
these ‘reliable’ scores as our ‘gold standard’ GRBAS scores. In this chapter ‘N’ will
consistently denote the number of subject and ‘i’ will be used to index these subjects.
The number of scores will be denoted by small ‘n’.

76
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3.2 Data-base creation

Voice data has been collected by Gadepalli [C.G13a] at the Manchester Royal infir-
mary (MRI) from a random selection of 46 patients and 56 controls [C.G13a]. Ethical
approval in the appendix A was obtained by MRI for the data-base and the mode of
collecting the voice samples. Only participants that can read English fluently were in-
cluded in this study. All participants were adults between 18 and 70 years of age, and
they were in different stages of their treatment. Information about the participants was
stored in secure files. The acoustic signal was captured by a high quality Shure SM48
microphone that was held a constant distance of 20cm from the lips and digitised using
the KayPentax 4500 CSL Computerised Speech Laboratory [Kay96]. Each participant
was required to sign a consent form after being given an explanation of the nature and
purpose of the research. Each recording consists of :

1. Sustained vowel /a/ spoken for about 5 seconds recorded in Mono and Stereo
without EGG (Electroglottogram).

2. Sustained vowel /i/ spoken for about 5 seconds recorded in Mono and Stereo
without EGG

3. Sustained vowel /a/ spoken for about 5 seconds recorded in Mono and Stereo
with EGG

4. Sustained vowel /i/ spoken for about 5 seconds recorded in Mono and Stereo
with EGG

5. A set of six standard sentences as specified by CAPE-V (Consensus for auditory
perception and evaluation) from a flash card which takes about 12 seconds.

(a) ‘ The blue spot is on the key again’

(b) ‘ How hard did he hit him?’

(c) ‘ We were away a year ago’

(d) ‘We eat eggs every Easter’

(e) ‘ My mamma makes lemon jam ‘

(f) ‘Peter will keep at the peak ‘

6. About 15 seconds of free unscripted speech. Participants speak about something
that they like to say for example their daily routines.
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3.3 GRBAS scoring

3.3.1 Introduction and motivation

Traditionally, GRBAS scoring is carried out by speech and language therapists (SLTs)
interviewing patients, requesting various standard vocal manoeuvres and recording the
GRBAS scores in written form. The assessment session may be recorded for future ref-
erence. The GRBAS scores may be stored in patient’s records in paper or computerised
form. This face-to-face form of GRBAS scoring, as widely practised currently, has its
advantages resulting from the interaction between patients and SLTs. However, it is
time consuming and administratively demanding on staff and patients. An alternative
computerised approach, where the patient makes recordings which are to be assessed
at a later stage has many advantages over the face-to-face approach though there may
be disadvantages due to the loss of face-to-face contact. The computerised recording
session can be controlled by a computer program, thus allowing the recording ses-
sion to be supervised by less highly qualified staff. In some cases, even in clinics, the
recording session may not need supervision at all, save to start and stop the session
and be on hand in case any failure or misunderstandings occur. In further develop-
ments, such recording session could even be carried out by the patient himself/herself
at home, after which the recording would be sent electronically to the voice clinic.
These developments divide the GRBAS assessment procedure into two parts:

1. Recording session

2. GRBAS assessment session

In building up the database, Gadepalli [C.G13a] has developed and exercised a pro-
totype of the style of recording session that will be recommended in future. The record-
ing sessions carried out by Gadepalli were very carefully standardised and chore-
ographed, following guidelines that are suitable to be adopted in automated recording
sessions. The GRBAS assessment session can now be arranged as a private listening
session, organised at the convenience of the expert GRBAS assessors. A GRBAS as-
sessor can listen to the recordings of many patients in a single listening session. The
possible disadvantages of such listening sessions are that they may prove tiring and
they may give different results from what would have obtained in face-to-face ses-
sions. The difference must be borne in mind. But there are clear advantages to be
gained in terms of convenience and in other aspects also.
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For example, the performance and consistency of scorers may be monitored by
the computer software during these listening sessions. The SLTs will enter the scores
directly into a computer. This eliminates the pen and paper approach, adds to security
and allows assessment to be checked with repeated listening where necessary. It may
be questioned whether the result of a live session may be expected to be different from
the recorded session in GRBAS scoring. This question has not been addressed in the
thesis but would be a useful topic for further research. ‘Intra-scorer consistency’ can be
assessed even when there is just one scorer and this can be useful in providing feedback
to the scorer. Where an experiment has the luxury of more than one scorer, ‘inter-scorer
consistency’ can also be assessed and can provide valuable evidence about the likely
consistency in GRBAS scoring in general.

3.3.2 Automated GRBAS scoring

To facilitate the scoring process, we developed a ‘GRBAS Presentation and Scoring
Package (GPSP)’ for collecting GRBAS scores. A graphical user interface (GUI) was
created in MATLAB. This interface helps SLTs to store the GRBAS scores in the data-
base, avoids the traditional methods of writing the scores on paper and greatly reduces
the risk of losing data. The user interface (GUI) is a graphical display within a window
containing control inputs. Each control, and the GUI itself, has call-backs to service
the requirements. MATLAB GUIs can be created in two ways: programmatically and
using MATLAB’s GUIDE software [MAT12]. We used the GUIDE approach which
starts with a figure that the programmer populates with components selected using a
graphic layout editor. GUIDE creates an associated code file containing callbacks for
the GUI and its components. GUIDE saves both the figure (as a FIG-file) and the code
file. The application can be launched from either file. The graphical user interface
presented by this package is shown in Figure 3.1 [JGA+13]. The GUI is designed to
play out in random order and with appropriate repetition, the voice samples from the
data-base of recordings. The GUI requires each SLT to follow three instructions to
start the GRBAS scoring. The three instructions are as follows.

1. ‘Enter the scorer name in the provided text box’.

2. ‘Open a voice data-base using the ‘Open data-base’ button’.

3. Click to the ‘Listen/Next’ button.
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Figure 3.1: This is a Screen shot of the GPSP. SLT scores the GRBAS attributes from
0 to 3. The scorer name in is provided in the text box. Each SLT can observe firstly, the
total number recordings that should be scored, secondly, the recordings that have been
scored and thirdly the remaining recordings that have not been scored. Five buttons
for ‘open Datbase’, Listen/Next, Listen again, submits scores, and save and exist are
provided.

Step 3 causes the GPSP system to select, at random, one of the recordings in the
data-base and to play this out to be listened to and scored. The system has a record of
which recordings the particular scorer has already completed, though it may choose to
repeat one of these to allow the consistency of the scorer to be assessed. The GPSP
enables GRBAS scores to be conveniently entered by the SLT and edited if necessary
to correct mistakes. The scores are then conveniently recorded in the data-base and
may be exported to an excel spread-sheet. By clicking on the ‘save and exit’ button,
the SLT can save his or her GRBAS scores in the data-base along with the name of
SLT, and other data. The SLTs are given the option of listening to any samples again
by selecting a ‘listen again button’, and the GUI can be paused at any point, without
loss of data. The user may therefore take breaks to prevent tiredness which may affect
the scoring.

Each SLT can observe firstly, the total number recordings that should be scored,
secondly, the recordings that have been scored and thirdly the remaining recordings
that have not been scored. The scoring of the 102 voice examples referred to in this
thesis was completed by each SLT in two sessions.

The GUI is user-friendly and is designed be suitable for use in the NHS, Speech-
Language-Hearing Association, private hospitals, university hospitals and medical train-
ing school for GRBAS scoring.
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The 102 recording samples were assessed by five speech and language therapists
(SLT) using Sennheiser HD205 head-phones. All the SLTs had been professionally
trained for GRBAS scoring and had gained much clinical experience over many years.
The 102 voice recording examples were played out in random order with 21 randomly
chosen samples repeated as a test for consistency within scorers. In total, 123 voice
samples were played out to each SLT. Each voice was scored by each SLT according
to the five parameters of the GRBAS scale. For each GRBAS attribute, the possible
scores are ‘0’, ‘1’, ‘2’ and ‘3’.

3.4 Reliability testing of GRBAS scoring

Assessing the quality of the GRBAS scoring by health professionals is fundamental
not only for clinical care but also for this research. If two SLTs score the same patient
under the same circumstances, the two scores can be different for many possible rea-
sons. The SLTs participating in our work were all professionally trained clinicians with
experience in the use of GRBAS. In principle, all scorers should give the same scores,
but in practice this will not be the case. It may be possible to reduce scorer variability
for example by designing the listening conditions and support software (GPSP) well.
But it is impossible to eliminate variability. The assessment of scoring agreement is
an important issue in this research. It is important to assess how much scores agree
when the same SLT repeats the same measurement for a participant (intra-scorer con-
sistency). It is also important to assess how much different SLTs agree when they score
the same participants (inter-scorer consistency). If the intra or inter scorers agreement
is poor, then the usefulness of the scoring will be limited and may not be considered
valid [FLP13].

Bland [Bla, B+00] claimed that the assessment of observer agreement is one of
the most difficult areas in the study of clinical measurement. He suggested assess-
ing whether measurements taken on the same subject by different observers may be
expected to vary more than measurements taken by the same observer making assess-
ment on different occasions. Pearson correlation, Root Mean Square Error (RMSE),
Cohen’s Kappa, Weighted Kappa, Fleiss’ Kappa and Intra-class correlation (ICC)
[FLP81] are six different measurements that may be considered for reliability testing
[She03, Coh68].
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3.4.1 Pearson correlation

The Pearson correlation coefficient is a measure of the strength of the linear relation-
ship between pairs of variables. It is referred to as Pearson’s correlation or simply as
the correlation coefficient. If the relationship between the two variables is not linear,
then the correlation coefficient does not adequately represent the strength and nature
of the relationship between the variables.

The symbol for Pearson’s correlation is ‘ρ’ (rho) when it is measured in the pop-
ulation and ‘r’ when it is measured in a sample or subset of the population. We will
be dealing almost exclusively with samples, and will use r to represent Pearson’s cor-
relation. Pearson’s r can range from -1 to 1. An r of -1 indicates a perfect negative
linear relationship (i.e. a linear relationship with negative slope) between variables, an
r of 0 indicates no linear relationship between variables, and an r of 1 indicates a per-
fect positive linear relationship (i.e. a linear relationship with positive slope) between
variables [She03]. Table 3.1 depicts an interpretation of the significance of Pearson
correlation [Deb].

Value of the Correlation Coefficient (r) Significance
1 Perfect positive linear correlation

0.8 to 1 Very Strong positive linear correlation
0.5 to 0.8 Strong positive linear correlation
0.3 to 0.5 Moderate positive linear correlation
0.1 to 0.3 Weak positive linear correlation

0 No linear correlation
-0.1 to -0.3 Weak negative linear correlation
-0.3 to -0.5 Moderate negative linear correlation
-0.5 to -0.8 Strong negative linear correlation
-0.8 to -1 Very Strong negative linear correlation

-1 Perfect negative linear correlation

Table 3.1: Significance of Pearson Correlation Coeffs according to [Deb]

Equation (3.1) defines the Pearson correlation [She03] between the two dimensions
of a sample {(xi,yi)} containing n pairs of random variables (xi, yi); x̄ and ȳ are the
sample means of {xi} and {yi} respectively. Then, a formula for r is:

r =

n
∑

i=1
(xi− x̄)(yi− ȳ)√

n
∑

i=1
(xi− x̄)2

√
n
∑

i=1
(yi− ȳ)2

(3.1)
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Table 3.2 illustrates a fictitious example of possible scores that two scorers may
have given for 10 participants. In this example, Scorer 2 consistently scores each
participant higher than Scorer 1. In fact, the score given by Scorer 2 is always one
division greater than that given by Scorer 1. This means maximum positive (perfect)
correlation. The Pearson correlation between scores given by Scorer 1 and the scores
given by Scorer 2 is ‘1’. However, it is clear that there is not a perfect agreement
between them. This is because, in Pearson correlation, each variable is centered and
scaled by its own mean and standard deviation. If the means for all scorers are the
same, Pearson correlation can be a good indicator of absolute agreement. If the means
are not the same, it can be misleading if incorrectly interpreted. This illustrates that
Pearson Correlation is not necessarily a good way of comparing the consistency of
scores.

Participant Scorer1 Scorer2
1 0 1
2 0 1
3 0 1
4 1 2
5 1 2
6 2 3
7 1 2
8 1 2
9 0 1

10 2 3

Table 3.2: Illustration of possible scores for Scorer 1 and Scorer 2

3.4.2 Root Mean Square Error

The Root Mean Square Error (RMSE) can measure the difference between two sets
of scores. In our application, RMSE is used for measuring the difference between
the scores of two scorers. Equation (3.2) defines the RMSE [CD14] between the two
dimensions of a sample {(xi,yi)} containing n pairs of variables (xi,yi).

RMSE =

√
1
n

n

∑
i=1

(xi− yi)2 (3.2)

For table 3.2, the value of RMSE is non-zero despite the fact that the Pearson correla-
tion is 1. If the means of two sets of measurements are not equal, Intraclass Correlation
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(ICC), Cohen’s kappa, Weighted Kappa and Fleiss’ Kappa may be preferred to Pearson
correlation for comparing the consistency of scorers.

3.4.3 Intra-Class Correlation (ICC)

ICC assesses the reliability of scorings by comparing the variability of different scor-
ings of the same subject to the total variation across all scorings and all subjects [SF79].
Despite its name, ICC can be used for assessing inter-rater and also intra-rater reliabil-
ity. A key difference between Pearson Correlation and ICC is that ICC uses a pooled
mean and standard deviation, whereas in the Pearson Correlation, each variable is cen-
tred and scaled by its own mean and standard deviation. The Intra-class Correlation
Coefficient (ICC) is suitable for ordinal continuous or discrete data. Comparing with
equation (3.1) the ICC coefficient r for two sets of data {xi}1,N and {yi}1,N as may have
been generated by scorers is given by:

r =

N
∑

i=1
(xi−m)(yi−m)

0.5

(
N
∑

i=1
(xi−m)2 +

N
∑

i=1
(yi−m)2

) (3.3)

where m is the arithmetic average of the sample-means of {xi} and {yi}. Therefore
ICC measures variation in both xi and yi about the same mean m, whereas Pearson’s
correlation compares variation in {xi} about x̄ and {yi} about ȳ. Another difference
lies in the denominator which is the geometric mean of the two variances for Pearson,
and is the arithmetic mean for ICC. The significance of the denominator difference
is subtle and not likely to be important for reliability measurement. Applying this
formula to the data shown in Table (3.2) produces a much lower value of correlation r
than was obtained using Pearson Correlation. The value of ICC obtained for Table (3.2)
is 0.38. The ICC formula above may be generalised to three or more scorers to obtain
a parameter that indicates the degree of consistency among a group of scorers. To do
this, m becomes the arithmetic average of the sample-means obtained for the multiple
scorers. To illustrate the generalisation by quoting the formula for three scorers with
data {xi} and {yi} and {zi} we obtain:
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r =

N
∑

i=1
(xi−m)(yi−m)+

N
∑

i=1
(xi−m)(zi−m)+

N
∑

i=1
(yi−m)(zi−m)(

N
∑

i=1
(xi−m)2 +

N
∑

i=1
(yi−m)2 +

N
∑

i=1
(zi−m)2

) (3.4)

Note that the numerator is built up from pair-wise comparisons of scoring vectors.
Three scorers give three pairs, four scorers give 6 pairs, five scorers give ten pairs and
so on. Both numerator and denominator must be made arithmetic means of the indi-
vidual terms. Like Pearson correlation, ICC can only be applied to ordered numerical
data which may be continuous or discrete. Therefore ICC can be applied to GRBAS
scoring for quantifying both intra-scorer and inter-scorer consistency. For Table 3.2,
the value of ICC is ‘0.38’ despite the fact that the Pearson correlation is 1. Both Pear-
son correlation and ICC are applicable only to ordinal numeric data and automatically
weight the contribution of each data item according to its difference from the mean.
Table 3.3 shows the significance of ICC values.

ICC Strength of Agreement
> 0.75 Excellent

0.75-0.40
Agreement between Fair and

Good
<0.4 Poor

Table 3.3: Significance of ICC values

Different versions of ICC have been proposed, and there has been much discussion
about which version is appropriate for a given application. They may produce signif-
icantly different results for the same data [MB94, MW96]. The version quoted above
is the original pair-wise version which is restricted to applications where the identities
and characteristics of all scorers remain constant and all scorers score all subjects.

3.5 Kappa measurements

Kappa statistics was introduced by Cohen to provide a coefficient of agreement be-
tween the categorical scores produced by two scorers [C+60]. Categorical or ‘nominal’
scores are scores which are non-numeric (e.g. good, bad, etc.) or where any numeric
notation is used just as labels. The significance of categorical scores is only whether
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they are the same or different [C+60]. There is no concept of ‘greater than’ and ‘mag-
nitude of difference’ with categorical scoring. Where scores are actually numerical,
with grades of difference as with GRBAS, they can be considered as categorical by
simply considering the numerical scores as labels. But there is loss of possibly useful
information in doing this.

The original definition of Kappa presented by Cohen in 1960 [C+60] is suitable for
comparing just two raters where there are two or more nominal response categories.
Cohen later introduced the ‘weighted Kappa’ [Coh68] which is applicable to ordered
numeric data rather than categorical data. Weighted Kappa allows any disagreement
between two scorers to be weighted according to the degree of the disagreement. There
are now ordinal categories which may or may not be numerical. For example, in
medical terminology, a disagreement ‘suspicious’ and ‘normal’ may be considered
to represent a less strong disagreement than a disagreement between ‘pathological’
and ‘normal’. The equivalence of Cohen’s weighted Kappa to ICC (discussed in the
previous section) under some circumstances was shown by Fleiss [Fle71]. Fleiss also
proposed an extension to Cohen’s original Kappa allowing the assessment of agree-
ment between several scorers that score all or some of the subjects and classify them
into two or more categories [Fle71]. So far, the Fleiss Kappa has been applicable only
to categorical data, but in this thesis we propose a ‘weighted Fleiss Kappa’ which is
applicable to ordinal data.

3.5.1 Cohen’s Kappa

Given two sets of scores for the same set of N patients, a Score-Distribution matrix as
in Table 3.4, may be constructed to show the number of patients which scorer A scores
as category i and scorer B scores as category j. There can of course be more than four
categories. From this, a simple measure of the consistency of scoring may be readily
deduced as the proportion of subjects for which the two scorers agree. It is termed ‘po’
and is the sum of the diagonal terms of the matrix divided by N which is 27 in this
example. Therefore po = 16/27.

However there is a difficulty with this simple measure since there will always be
a probability of agreement by chance even if the scoring has been done arbitrarily
without reference to the subjects. Cohen’s Kappa estimates the probability of agree-
ment by chance given the distribution of scores produced by Scorers A and B. This
is easily done from Table 3.4 by estimating the probability of scorers A and B both
producing category 0 given only their observed distributions of scores. Since Scorer
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Scorer B
Cat 0 Cat 1 Cat 2 Cat 3

Scorer A

Cat 0 5 1 1 0
Cat 1 3 6 2 1
Cat 2 1 1 2 0
Cat 3 0 0 1 3

Table 3.4: Score-distribution table

A produces category 0 seven times out of 27 and Scorer B produces category 0 nine
times out of 27, the probability of both producing category 0 at the same time, by
chance, is (7/27)× (9/27). This is repeated for categories 1, 2 and 3, and then all four
joint probabilities are summed to obtain an estimate of the probability of agreement by
chance.

The Cohen Kappa coefficient is defined by equation (3.5) where po is the proportion
(between 0 and 1) of subjects for which the two SLTs agree (exactly) on the scoring,
and pe is the probability of agreement ‘by chance’.

κ =
po− pe

1− pe
(3.5)

Kappa is widely used for comparing raters or scorers, and reflects any consistent
bias in the average scores for each scorer [VG+05]. Table 3.5 shows how K values
in different ranges may be interpreted, according to [LK77]. Cohen’s Kappa takes the
scores to be ‘categories’ rather than ordinal numerical data. Only ‘agreement’ and
‘disagreement’ is taken into account. The degree of disagreement in ordinal numerical
scoring is disregarded. Applying this to GRBAS scoring with categories 0, 1, 2 and
3, if Scorer A scores 1, the effect of scorer B scoring 0, 2 or 3 will be essentially the
same. The fact that 3 is a worse discrepancy than 2 is disregarded. Cohen’s Kappa is
applicable when each rater completes the task of scoring all the subjects. The scoring
characteristics of each rater determine the probability of agreement by chance. Some
measurements of reliability allow the identity of raters to change during the scoring
process and do not need each patient to be scored by each scorer. Cohen’s Kappa
requires all patients to be rated by each scorer and assumes that the characteristics of
each scorer do not change during the scoring process.
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K Agreement
6 0 Poor

0.01-0.20 Slight
0.21-0.40 Fair
0.41-0.60 Moderate
0.61-0.80 Substantial

0.81-1 Almost Perfect

Table 3.5: Significance of Kappa values

3.5.2 Weighted Kappa

Weighted Kappa is often more appropriate when there are more than two possible
‘ordinal’ numerical scores with a sense of distance between the scores [Coh68]. With
possible scores 0, 1, 2, 3, Kappa only considers agreement or disagreement between
scorers, whereas weighted Kappa takes into account the degree of disagreement. In
this application, discrepancy between scores 0 and 2, for example, is more serious than
the difference between 0 and 1 or between 1 and 2, and weighted Kappa takes this into
account. With linearly weighted Kappa, the disagreement between 0 and 2 may be
weighted twice that between 0 and 1, 1 and 2, or 2 and 3. The discrepancy between 0
and 3 may be weighted three times that between 0 and 1. When there are c = 4 scoring
categories, this linear weighting of discrepancy is conveniently expressed by a c by c

‘weighting matrix’ W L as follows:

W L =


0 1 2 3
1 0 1 2
2 1 0 1
3 2 1 0

 (3.6)

It is useful to define a ‘proportion distribution’ (PD) matrix PD as follows:

PD = (1/N)SD (3.7)

where SD is the k by k ‘scoring distribution’ matrix with entries as illustrated by Table
(3.4) and scalar constant N is the total number of subjects. Element (i, j) of PD is the
proportion (between 0 and 1) of N subjects which were scored i by scorer A and scored
j by Scorer B. For GRBAS scoring, 0 6 i 6 3 and 0 6 j 6 3. The entries of PD are
termed ‘proportions’ rather than ‘probabilities’ because they reflect actual results from
the scoring rather than expectations of likely scorings.
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We also define a k× k ‘expectation matrix’ E as follows:

E =


pA0 pB0 pA0 pB1 pA0 pB2 pA0 pB3

pA1 pB0 pA1 pB1 pA1 pB2 pA1 pB3

pA2 pB0 pA2 pB1 pA2 pB2 pA2 pB3

pA3 pB0 pA3 pB1 pA3 pB2 pA3 pB3

 (3.8)

where pAi is the probability of scorer A scoring ‘i’ by chance as estimated from the
distributions of scores from scorer A. Similarly pBj is the estimated probability of
scorer B scoring ‘j’ by chance as estimated from B’s distribution of scores.

PAi =
c−1

∑
j=0

PD(i, j) PBj =
c−1

∑
i=0

PD(i, j) (3.9)

Summing the off-diagonal elements of E gives the probability of disagreement by
chance. This may be considered as a cost arising from this probability of disagreement
by chance. We call this scalar De. Similarly, summing the off-diagonal elements of
PD gives the cost of disagreement in the actual scorings. Call this scalar Do. It follows
that the probability of agreement by chance pe is given by:

pe = 1−De (3.10)

Similarly, the proportion of agreement in the actual scorings is:

po = 1−Do (3.11)

Finally, the weighted Cohen Kappa can be expressed as:

κ =
po− pe

1− pe
=

De−Do

De
= 1− Do

De
(3.12)

This is essentially the Cohen’s Kappa but now expressed in terms of disagreement
rather than agreement. Expressing the Cohen Kappa in this way is very convenient
because it will allow the actual disagreements and probabilities of disagreements by
chance to be weighted according to numerical differences.

Performing element by element multiplication between the ‘PD matrix’ and the
‘Expectation matrix’ E, by element of WL, changes the cost of disagreement depending
on how different the scores are. If WL were replaced by WU or WS as defined below
different weighting would be obtained. If the weighting is by WU (U for unweighted),
the weighting would be exactly as in the original Cohen Kappa with any discrepancy
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equally weighted. If the weighting is by WS this is non-linear ‘squared’ weighting
where discrepancies of 2 and 3 in scores would cost, respectively, four and nine times
a discrepancy of one.

W U =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 W S =


0 1 4 9
1 0 1 4
4 1 0 1
9 4 1 0

 (3.13)

From Equation (3.12), it can be seen that this weighting approach leads to Equation
(3.14) for linearly weighted Kappa, where PD(i,j) denote the elements of matrix PD.
Therefore, PD(i,j) is the proportion of subjects that are scored i by scorer 1 and j by
scorer 2. Element E(i,j) of matrix E is the ‘by chance’ probability of scorer 1 scoring
i while scorer 2 scores j. Matrix E was estimated from the observed distribution of
scores by each scorer, but with no correlation between scorers. The number of scoring
categories is c.

κw = 1−

c−1
∑

i=0

c−1
∑
j=0

W L(i, j)PD(i, j)

c−1
∑

i=0

c−1
∑
j=0

W L(i, j)E(i, j)
(3.14)

Table 3.5 is commonly assumed [LK77] as the significance of Weighted Kappa as
well as the un-weighted form. Replacing WL in Equation (3.14) by WU gives ordinary
Cohen’s Kappa and other weighting matrices, such as WS in Equation 3.13 could be
used instead.

3.5.3 Fleiss’ Kappa

Cohen’s Kappa is applicable only when there are just two scorers and where the same
two scorers score every subject. Fleiss’s Kappa [Fle71, FLP81] measures agreement
among any number of scorers. It also caters for case where the scorers for each subject
may be different, although this case is not of interest in this thesis. Like Cohen’s
original un-weighted Kappa, Fleiss Kappa considers only agreement or disagreement,
and treats scores as categories rather than ordinals. To explain Fleiss Kappa, it is
convenient to concentrate initially on just one of the GRBAS properties; we chose
‘Grade’. If N is the number of subjects, n is the number of scorers and the possible
‘Grade’ categories are indexed 0, 1, 2 and 3, Fleiss [FLP81] would define nij as the
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number of scorers who give subject i a ‘Grade’ score of j. Clearly, for each subject i,

3

∑
j=0

nij = n (3.15)

because each subject is scored by n scorers. To illustrate this point, if patient 1 is
scored 0, 0, 0, 1, 2 by 5 scorers, then n10 = 3, n11 = 1, n12 = 1 and n13 = 0. Now
define pj to be the proportion of all assignments, across all subjects and all scorers, to
GRBAS score j. Then:

pj =
1

nN

N

∑
i=1

nij and
3

∑
j=0

pj = 1 (3.16)

Fleiss Kappa quantifies the extent of agreement among the n scorers for subject i as
the proportion of pairs of scorers that agree for that subject. This proportion is:

Pi =
1

n(n−1)/2

3

∑
j=0

nij(nij−1)/2 (3.17)

since the number of non-ordered pairs of objects out of a total of n is n(n-1)/2. The
overall agreement across all subjects may now be measured by the average of the Pi

values, i.e.

P̄ =
1
N

N

∑
i=1

Pi (3.18)

Fleiss explains that the significance of P̄ is that if subject ‘i’ is scored by two scorers
chosen at random from the n available scorers, the probability that the scores will
agree is P̄ . This may be taken as an estimate of inter-scorer consistency. However,
some degree of agreement will always occur by chance and Fleiss Kappa, like Cohen’s
Kappa, tries to factor this chance agreement out of the estimate. It is argued that if
all scorers made their assignments purely at random with respect to the subjects, but
with the same distribution of scores as observed in the actual scoring exercise, the
probability of agreement between pairs may be estimated as:

Pe =
3

∑
j=0

pj
2 (3.19)

This is the probability of getting score j twice, by chance, summed over the 4 possible
GRBAS scores. The maximum probability of agreement among pairs which is not by
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chance is therefore 1−Pe. It is less than 1 because of the ‘by chance’ element. The
degree of agreement actually achieved in the scoring procedure which is not due to
pure chance is estimated as P̄−Pe. Therefore the normalised measure of agreement
among the n scorers which constitutes the Fleiss Kappa is as follows:

κ =
P̄−Pe
1−Pe

(3.20)

The Fleiss’ Kappa coefficient was used to measure the level of agreement and inter-
scorer consistency between five SLT scorers [FLP81] for Grade and subsequently for
the other GRBAS parameters. The results will be presented later.

3.5.4 Fleiss Kappa demystified

Fleiss Kappa is not easy to understand. It may be shown to be a generalisation of
the Cohen’s Kappa, in that calculation of Fleiss Kappa for two scorers does give the
Cohen’s Kappa. It is similar to ICC in considering all possible pairs of scorers, but
is currently applicable only to data that is considered categorical (rather than ordinal).
There is no published form of weighted Fleiss Kappa.

It may be considered that a reasonable alternative to the Fleiss Kappa for n scorers
would be the average of n(n− 1)/2 unweighted Cohen Kappa scores covering every
possible pair of scorers. When there are n=5 scorers for ‘Grade’, this would be the
average of ten unweighted Cohen Kappas. The average value of Po obtained from
the ten unweighted Cohen Kappa calculations is always identical to P̄ in Equation
3.18 regardless of how the scores are distributed. Also, where all four ‘Grade’ scores
are equally probable (with p1 = p2 = p3 = p0 = 0.25 for Grade), the Fleiss Kappa is
identical to the average of the ten Cohen Kappas for Grade. Similarly for R, A, B and
S. Where the distribution of scores is not evenly spread, the values of Pe will vary for
Cohen Kappa from pair to pair, and ultimately there will be small difference between
the average Cohen Kappa and the Fleiss Kappa. In practice the differences are rarely
large, and it may be argued that calculating the probability of agreement/disagreement
by chance is better done on a pair by pair basis than on the basis of all scorers at once.
It is possible that the average Cohen Kappa is equally acceptable or even preferable to
the unweighted Fleiss version.

Even more significantly, this argument can lead us to a definition of a form of
weighted Fleiss Kappa, simply by averaging weighted Cohen Kappa values between
all possible pairs of scorers. This was not the approach taken in this thesis to develop



3.5. KAPPA MEASUREMENTS 93

a weighted Fleiss Kappa, though it was later realised that the approach actually taken
(described below) is identical to the average of weighted Cohen Kappas when distri-
butions of scorings are even (p0 = p1 = p2 = p3 = 0.25). In practice, differences remain
small for uneven distributions, and the same arguments for averaged weighted Cohen
Kappas against the new weighted form of Fleiss Kappa (to be presented next) can be
made as for the non-weighted case.

It is useful to consider the possible values Pi for traditional Fleiss for each subject
i when there are five scorers and four Grade categories: 0, 1, 2 and 3. The same argu-
ments apply to the other GRBAS parameters and we single out Grade just to simplify
the explanation.

Agreement Examples Pi
All 5 0,0,0,0,0 10/10=1
4 out of 5 0,0,0,0,1 or 0,3,3,3,3 6/10=0.6
3 and 2 out of 5 0,0,0,1,1 or 0,0,0,3,3 (3+1)/10=0.4
3 out of 5 only 0,0,0 ,1,2 or 0,0,0,2,3 3/10=0.3
2 out of 5 only (twice) 0,0,1,1,2 or 0,0,2,3,3 (1+1)/10
2 out of 5 only 0,0,1,2,3 or 0,1,2,3,3 1/10
none impossible n/a

Table 3.6: Examples of Fleiss Kappa.

Fleiss Kappa works by taking (1−Pi) as a cost for each subject and averaging this
cost over all N subjects. This clearly has validity, but also a degree of arbitrariness
in the cost that becomes associated with each type of disagreement. For example the
cost of the disagreement when the five scorers score 0, 0, 0, 0, 1 is 1 - 0.6 = 0.4 which
is exactly the same as for 0, 3, 3, 3, 3. Ideally, the measure of consistency should be
higher for the first of these two examples than for the second. In other words, the cost
of inconsistency for the first of these two examples should be lower than that for the
second. It also clear from the examples in the Table 3.6 that scoring we may consider
to have quite different significance, such as 0, 0, 0, 1, 1 and 0, 0, 0, 3, 3 are given the
same measure of consistency which is derived directly from the number of matching
pairs of scores.

This table makes it clear that different cost weightings are perfectly possible and
do not have to be derived purely from the proportions of scorings. In the next section
we propose a new form of Fleiss Kappa which may be weighted according to the
application. The designer can define his/her own weighting either ad-hoc or according
to some algorithm like linear or squared weighting. This has obvious advantages, but
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also the disadvantage of being new and non-standard. The Fleiss Kappa, ideal or not,
is well known and well used throughout the literature, whereas a new weighted Fleiss
Kappa would have to be justified and argued for. The new approach may be applied
to other applications with any number of scorers and possible scores. In this Chapter,
we restrict it to the current application of GRBAS scoring, concentrating initially on
‘Grade’.

3.5.5 Weighted Fleiss Kapppa and Farideh’s Kappa

A new weighted form of Fleiss Kappa may be devised simply by replacing the Pi

column in Table (3.7) by some other parameter Qi which is no longer the proportion
of matching pairs of scores. In fact Qi may be chosen by the designer arbitrarily in
the range 0 to 1 to reflect the degree of agreement considered to exist among the five
scorers. Define the Fleiss ‘linear weighting vector’ as:

W L =
[
0 1 2 3

]
(3.21)

and the Fleiss ‘unweighting vector’ as:

W U =
[
0 1 1 1

]
(3.22)

Let Dij denote the number of scorers pair that differ by j (for j=0,1,.., 3) for subject
i. For example, if the scores for subject 1 are 0 0 0 0 0, then D10 =10, D11=0 D12=0
D13=0. If the scores for subject 2 are 0 0 0 1 1 then D20 =4, D21 =6, D22=0 & D23=0.
If the scores for subject 3 are 0 1 2 3 3 then D30 = 1, D31= 4, D32=3, D33=2. An
algorithm for calculating the D matrix is easily derived. Let Np equal the number of
pairs which for 5 scorers is 5×4/2 = 10. If, for each subject i, we define the ‘degree
of (actual) agreement’ Qi as:

Qi = 1− (1/Np)
3

∑
j=0

W ( j)Dij (3.23)

with W = WU, then Qi= Pi as calculated for traditional Fleiss Kappa by equation (3.17).
Similarly, defining pj as in Equation (3.16) for traditional Fleiss Kappa, we can obtain
the ‘degree of (probable) pair agreement’ by chance as:

Qe = 1−
3

∑
j=0

3

∑
c=0

W (| j− c|)pj pc (3.24)
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With W=WU, this Equation gives Qe which is exactly equal to Pe as given for tradi-
tional Fleiss Kappa by Equation (3.19). Therefore we can calculate traditional Fleiss
Kappa in this revised way, with the ‘unweighted’ weighting matrix given by Equation
(3.22). Replacing W in Equations (3.23) and (3.24) by WL as given by Equation (3.21)
gives a new unpublished linearly weighted form of Fleiss Kappa which reflects the
differences between different pairs of scores. Its Equation is:

κ =
Q̄−Qe
1−Qe

(3.25)

where Q̄ is the average of Qi over all subjects and Qe is defined by equation (3.24) with
weighting vector W=WL. It follows that the new Fleiss Kappa is given by

κ = 1−

((1/(N×Np))
N
∑

i=1

3
∑
j=0

W ( j)Dij

3
∑
j=0

3
∑

c=0
W (| j− c|)pj pc

)
(3.26)

where N is the number of subjects and pj denotes the proportion of all assignments,
across all subjects and all scorers, to Grade score j. The original and new linear weight-
ings given by the new Fleiss Kappa, adapted to the GRBAS application, are illustrated
by the values of Pi and Qi in the table given below.

Agreement Examples Pi Qi
All 5 0,0,0,0,0 1 1
4 out of 5 0,0,0,0,1 0.6 0.6

0,3,3,3,3 0.6 -0.2
3 and 2 out of 5 0,0,0,1,1 0.4 0.4

0,0,0,3,3 0.4 -0.8
3 out of 5 only 0,0,0,1,2 0.3 0

0,0,0,2,3 0.3 -0.6
2 out of 5 (twice) 0,0,1,1,2 0.2 0

0,0,1,3,3 0.2 -0.8
2 out of 5 only 0,0,1,2,3 0.1 -0.6

0,1,2,3,3 0.1 -0.6
none impossible n/a

Table 3.7: The example of original and new linear weightings given by the new Fleiss
Kappa.

The negative values of Qi occur in the original weighted Cohen’s Kappa and also
in the new weighted Fleiss Kappa. They highlight the fact that the weighted cost is no
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longer a probability, and it need not be.

The linear weighting and the table it produces may be considered somewhat arbi-
trary. The values of Qi are intended to reflect both the number of scorers in agreement
and the severity of any disagreement. Clearly costings different from those implicit in
traditional Fleiss Kappa have been used. But there are many other costing formulae
that could have been applied. In practice, especially with only 5 scorers, a table of cost-
ings may be derived for all possible combinations of scores. Such a table would only
have 1024 rows if expressed in its most inefficient (and non-scalable) form. In such
a form yet more advantages emerge, such as the possibility of considering agreement
for higher scores (2 and 3 say) as more valuable than agreement for score 0. Hence the
disagreement in 2, 3, 3, 3, 3 could be defined as costing less than that in 0, 0, 0, 0, 1. A
table defined in this way has been termed the ‘Farideh Kappa’ which then defines Q̄ as
the average of Qi over all subjects instead of the average of Pi. We may present more
on this later.

3.5.6 Intra-Scorer Consistency

‘Intra-Scorer Consistency’ is the agreement between the scores given by a single scorer
when he or she has been required to score some of the samples twice, ideally without
realising. About 20% of the recordings were played out twice to each SLT. These were
chosen at random independently for each scorer, which meant that each scorer repeated
a different set of recordings. The GPSP GUI was programmed to play out the required
small number of repeated examples interspersed with non-repeated samples to try to
divert attention from the fact that some samples are being repeated. Repeated samples
were required to be re-graded in all five GRBAS categories and without reference to
the previous gradings. Therefore, ‘intra-scorer consistency’ was investigated for each
scorer using GRBAS re-scoring for about 20 participants.

Pearson correlation, Cohen’s Kappa, Weighted Cohen Kappa and RMSE were con-
sidered for testing ‘intra-scorer consistency’ for each of the five SLT scorers. Firstly,
the means of the repeated scores were computed along with the means of the origi-
nal versions of these scores. Table 3.8 presents the mean of each GRBAS component
for the first 20 of the randomly chosen repeated samples before and after they were
re-scored.

For the GRBAS attributes that do not have equal means for the first and second
times of scoring, the Pearson correlation is not a good measurement for testing the
consistency. Kappa and Weighted Kappa are preferable to the Pearson Correlation in
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G R B A S
SLT Orig Rep Orig Rep Orig Rep Orig Rep Orig Rep

1 0.85 0.85 0.75 0.70 0.50 0.50 0.55 0.55 0.45 0.40
2 1.05 1.2 0.90 1.1 0.60 0.70 0.20 0.30 0.45 0.35
3 0.95 1.05 0.40 0.50 0.30 0.75 0.60 0.60 0.75 0.70
4 1 1.20 0.65 0.75 0.55 0.80 0.65 0.45 0.25 0.20
5 1.30 1.26 0.95 0.60 0.43 0.65 0.52 0.43 0.73 0.34

Table 3.8: Mean of GRBAS scores for 20 random examples scored twice

these cases. To investigate the Kappa and Weighted Kappa measurements, the number
of differences between the original and repeated scores was computed for each scorer.
It was found that, among all SLT scorers, SLT1 had the lowest number of different
scores in Grade and Breathiness. SLT2 and SLT4 had a better confidence than others
in Asthenia and Strain scoring. A maximum scoring difference of one was observed
for the majority of the SLTs for each GRBAS component. An occasional difference of
two occurred, but there were no differences of 3.

Tables 3.9, 3.10, 3.11, 3.12 and 3.13 compare the number of differences in scoring,
Pearson Correlation, ICC, Cohen’s Kappa, Weighted Kappa and RMSE values as in-
dicators of intra-scorer agreement or consistency. The Pearson correlation values can
be considered reliable as indicators of consistency in Grade, Breathiness and Asthenia
for SLT scorer 1 since the means of the original and repeated scoring were found to
be very close. The Pearson correlation values for Grade, Breathiness and Asthenia are
0.92, 0.88 and 0.77 respectively. SLT3 has the same mean in Asthenia scoring and
the Pearson correlation between the original and repeated Asthenia scores is 0.85. For
the other SLT scorers and GRBAS components, the Pearson Correlation cannot be a
reliable measurement of consistency due to the mean being different in the first and
second time of the scoring.

SLT Different scores
Pearson

Corr
ICC Kappa Weighted Kappa RMSE

1 2 0.92 0.92 0.84 0.88 0.31
2 5 0.90 0.89 0.65 0.78 0.50
3 6 0.84 0.84 0.56 0.71 0.54
4 4 0.93 0.90 0.71 0.82 0.44
5 10 0.75 0.73 0.41 0.62 0.82

Table 3.9: Intra-Scorer Consistency in Grade

According to Tables 3.9, 3.10 and 3.11, SLT1 has ‘almost perfect agreement’ for
‘Grade’, ‘Roughness’ and ‘Breathiness’ according to Weighted Kappa and almost the
same agreement for ‘Grade’ and ‘Breathiness’ as measured by Cohen’s Kappa. All
SLT scorers have obtained ‘substantial agreement’ in ‘Asthenia’ scoring by Weighted
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SLT Different scores
Pearson

Corr
ICC Kappa Weighted Kappa RMSE

1 3 0.89 0.88 0.76 0.82 0.38
2 6 0.88 0.86 0.57 0.73 0.54
3 6 0.51 0.49 0.41 0.44 0.54
4 4 0.86 0.83 0.67 0.75 0.42
5 9 0.72 0.64 0.34 0.50 0.77

Table 3.10: Intra-Scorer Consistency in Roughness

SLT Different scores
Pearson

Corr
ICC Kappa Weighted Kappa RMSE

1 2 0.88 0.88 0.81 0.84 0.31
2 4 0.88 0.87 0.65 0.77 0.44
3 9 0.86 0.62 0.19 0.42 0.67
4 6 0.77 0.72 0.50 0.61 0.67
5 4 0.87 0.83 0.58 0.74 0.59

Table 3.11: Intra-Scorer Consistency in Breathiness

SLT Different scores
Pearson

Corr
ICC Kappa Weighted Kappa RMSE

1 4 0.77 0.77 0.64 0.70 0.44
2 2 0.85 0.78 0.72 0.75 0.31
3 4 0.85 0.85 0.65 0.75 0.44
4 3 0.90 0.82 0.68 0.76 0.54
5 4 0.82 0.83 0.64 0.72 0.44

Table 3.12: Intra-Scorer Consistency in Asthenia

SLT Different scores
Pearson

Corr
ICC Kappa Weighted Kappa RMSE

1 5 0.69 0.68 0.49 0.57 0.44
2 2 0.91 0.90 0.75 0.84 0.31
3 3 0.91 0.91 0.75 0.84 0.38
4 1 0.91 0.90 0.83 0.87 0.22
5 9 0.59 0.45 0.25 0.36 0.86

Table 3.13: Intra-Scorer Consistency in Strain

and Cohen’s Kappa. SLTs may therefore have more confidence in ‘Asthenia’ scoring
and detecting this aspect of voice disorder than in scoring the other GRBAS com-
ponents. SLT2 has ‘almost perfect agreement’ in ‘Strain’ by Cohen’s Kappa and
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Weighted Kappa. SLT3 and SLT4 approach ‘almost perfect agreement’ in ‘Strain’
by Cohen’s Kappa and Weighted Kappa. SLT3 and SLT4 approach ‘almost perfect
agreement’ in ‘Strain’ according to Weighted Kappa.

To further investigate the variation between the scores between the first and sec-
ond time of scoring for each SLT the RMSE was computed. The lowest RMSE was
obtained for SLT4 in ‘Strain’ scoring.

3.6 Conclusions so far

The tables appear to demonstrate that all five measurements, including Pearson Cor-
relation have value as indicators of intra-scorer agreement though some interesting
differences emerge. The fact that weighted Kappa is less affected by minor incon-
sistencies than is Cohen’s Kappa probably makes it preferable. In deciding which
measurement of consistency to take, the choice is probably between ICC and weighted
Kappa.

It is clear that some of the scoring is rather inconsistent according to all measures.
Table 3.14 presents an aggregate of the measurements of consistency over all scorers
for each GRBAS component. It appears that Asthenia produces the most consistent
scores whereas Roughness seems to be the most difficult component to score. Table
3.15 presents an aggregate of measurements of consistency for each scorer over all
5 GRBAS components. According to Table 3.15, Scorer 5 has the lowest level of
consistency over all five GRBAS components whereas scorers 1, 2 and 4 have much
higher levels of consistency. One purpose in producing these measures of consistency
is to take them into account when producing a ‘gold standard’ for the GRBAS scoring
of all the 102 subjects. This will be the subject of a later section.

Comp Differences
Pearson

Corr
ICC Kappa Weighted Kappa RMSE

G 27 0.87 0.86 0.63 0.76 0.52
R 28 0.77 0.74 0.55 0.65 0.53
B 25 0.85 0.78 0.55 0.68 0.54
A 17 0.84 0.81 0.67 0.74 0.43
S 20 0.80 0.77 0.61 0.70 0.44

Table 3.14: Aggregate of measurement of consistency for each GRBAS component
over all scorers
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SLT Differences
Pearson

Corr
ICC Kappa Weighted Kappa RMSE

1 16 0.83 0.88 0.71 0.76 0.38
2 19 0.88 0.87 0.67 0.77 0.42
3 28 0.79 0.62 0.51 0.63 0.51
4 18 0.87 0.72 0.68 0.76 0.49
5 36 0.75 0.83 0.44 0.59 0.70

Table 3.15: Aggregate of measurement of consistency for each scorer over all 5 GR-
BAS components

3.6.1 Inter-Scorer Consistency

‘Inter-scorer consistency’ is the agreement between different scorers when they score
the same list of subjects. For ordinal numeric data the consistency between two scor-
ers can be measured by Pearson correlation when the means are the same. Otherwise,
ICC, Cohen’s Kappa and Weighted Kappa may be employed as they were for measur-
ing intra-scorer consistency. Cohen’s Kappa treats the scores as categorical, whereas
Weighted Kappa can be applied to discrete ordinal data to reflect degrees of differences
between scores. Where there are more than two scorers, it is useful to have an overall
measure of consistency across all scorers, and ICC readily generalises to this appli-
cation. Cohen’s Kappa generalises to the Fleiss Kappa which is currently applicable
only to data considered categorical. A weighted Fleiss Kappa has been devised in this
thesis for ordinal data such as GRBAS scoring by more than two scorers.

Table 3.16 shows the means of the GRBAS scores produced by five scorers over
102 voice samples. It may be seen that the mean is different for each GRBAS com-
ponent which means that Pearson Correlation may prove unreliable as a measure of
inter-scorer consistency between pairs of scorers.

SLTs Mean G Mean R Mean B Mean A Mean S
SLT 1 0.93 0.69 0.55 0.63 0.56
SLT 2 1.2 1 0.52 0.3 0.35
SLT 3 1.14 0.57 0.68 0.76 0.84
SLT 4 1.03 0.77 0.62 0.48 0.47
SLT 5 0.94 0.61 0.33 0.38 0.51

Table 3.16: Means of GRBAS Scores

Table 3.17 presents the Cohen’s Kappa and Weighted Kappa measurements ob-
tained for each possible pair of SLT GRBAS scorers and all 102 subjects. It may be
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seen that there is very good agreement for ‘Grade’ between scorers 4 and 5 according
to both Cohen’s Kappa and Weighted Kappa. This is interesting in view of the apparent
intra-scorer inconsistency of scorer 5 in scoring Grade (see Table 3.9).

G R B A S
SLTs Kappa w-K Kappa w-K Kappa w-K Kappa w-K Kappa w-K
1,2 0.51 0.67 0.45 0.58 0.49 0.63 0.29 0.30 0.35 0.49
1,3 0.54 0.70 0.41 0.56 0.55 0.67 0.49 0.61 0.40 0.52
1,4 0.35 0.47 0.21 0.39 0.26 0.36 0.25 0.36 0.19 0.23
1,5 0.41 0.50 0.33 0.42 0.33 0.43 0.19 0.34 0.34 0.35
2,3 0.52 0.69 0.32 0.45 0.42 0.58 0.32 0.30 0.27 0.38
2,4 0.27 0.40 0.20 0.33 0.33 0.34 0.09 0.10 0.24 0.28
2,5 0.33 0.44 0.31 0.42 0.25 0.36 0.221 0.225 0.381 0.380
3,4 0.35 0.53 0.38 0.48 0.42 0.46 0.26 0.34 0.27 0.37
3,5 0.38 0.55 0.45 0.53 0.25 0.36 0.30 0.35 0.25 0.35
4,5 0.74 0.84 0.53 0.63 0.31 0.54 0.46 0.56 0.55 0.64

Table 3.17: Inter-Scorer Agreement in GRBAS scoring

According to weighted Kappa, there is substantial agreement between scorers 1 and
2 and also between scorers 1 and 3 in respect to ‘Grade’ and ‘Breathiness’. Cohen’s
Kappa only considers this agreement to be moderate. Also according to weighted
Kappa, scorer pairs have agreement considered less than substantial in ‘Roughness’,
‘Asthenia’ and ‘Strain’, except scorers 4 and 5 in ‘Roughness’ and ‘Strain’ and scorers
1 and 3 in ‘Asthenia’.

Table 3.18 computes the averages of the ten measurements in each column of Table
3.17 to illustrate the potential of these averages as possible alternatives to Fleiss Kappa
and the newly proposed weighted Fleiss Kappa for assessing overall agreement over
many scorers.

G G R R B B A A S S
Kappa w-K Kappa w-K Kappa w-K Kappa w-k Kappa w-k
0.44 0.57 0.35 0.47 0.36 0.47 0.28 0.34 0.32 0.39

Table 3.18: Kappa & weighted Kappa averaged over all SLT pairs in GRBAS scoring

Table 3.19 presents the values of traditional Fleiss Kappa and the new weighted
Fleiss Kappa obtained for each GRBAS component over all 102 subjects. There is
substantial difference between the two forms of Fleiss Kappa, which indicates that
weighting small differences, possibly arising from marginal decisions, less than more
major discrepancies in scoring may give significant improvements in the scoring.

Table 3.20 presents the ICC scoring obtained for each GRBAS component across
all 5 scorers and all 102 subjects. Comparing Tables 3.19 and 3.20 it may be seen that
ICC measurements are closer to the new weighted Fleiss measurements than they are
to traditional Fleiss.
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Fleiss Kappa Weighted Fleiss Kappa
Component P Pe K P Pe K

G 0.6 0.28 0.44 0.63 0.13 0.57
R 0.59 0.37 0.35 0.37 0.08 0.31
B 0.64 0.43 0.37 0.52 0.006 0.51
A 0.60 0.43 0.29 0.53 0.05 0.50
S 0.61 0.43 0.31 0.52 0.02 0.51

Table 3.19: Fleiss Kappa linearly weighted Fleiss Kappa for 5 GRBAS

GRBAS ICC Agreement
G 0.70 Between Fair and Good
R 0.56 Between Fair and Good
B 0.57 Between Fair and Good
A 0.43 Between Fair and Good
S 0.48 Between Fair and Good

Table 3.20: ICC between the five SLTs for GRBAS

3.7 Reference GRBAS scores

The deviation of ‘reliable’ scores from a given number of trained subjective scorers
taking into account inter-rater and intra-rater agreement has been considered. As men-
tioned earlier, we refer to these ‘reliable’ score as our ‘gold standard’ GRBAS scores.
To achieve the ‘gold standard’ GRBAS scores, the following methodologies have been
investigated.

3.7.1 Averages

The most obvious way of obtaining a reliable GRBAS score for subject i from n raters
is to take an average. The simplest average is the arithmetic sample mean. For GR-
BAS scores 0,1,2,3, this gives a non-integer average score, but such scores should not
cause a problem when applying machine learning. Of course, averaged scores could be
rounded to the nearest integer score, but this incurs some loss of information. There are
many other types of averages such as the median, mode and geometric mean. Also the
arithmetic mean (and others) can be weighted to give more credibility to some scorers
than others.
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3.7.1.1 Median and Mode

The ‘median’ is the ‘middle’ value in a list values. Given N values, the list should first
be arranged in ascending order. The median is then element (N +1)/2 in this ordered
list if N is odd and the average of elements N/2 and 1+N/2 if N is even.

The ‘mode’ of a list of values is the value that occurs most often amongst this list.
Where there are two or more values that occur most and equally often, as in 0, 0, 1,
1, 2 for example, one of these values may be chosen arbitrarily, or an average may be
taken.

3.7.1.2 Geometric Mean

The Geometric Mean (GM) of a list of N numbers is the Nth root of the product of the
N numbers. It is often used as an alternative to the arithmetic mean and is often quite
close to it especially for normal distributions. The Geometric mean can be weighted in
a similar way to the arithmetic mean.

3.7.1.3 Weighted arithmetic means

Given the scores s1, s2, s3, s4, s5 from five scorers, a weighted arithmetic mean is:

W m =
w1s1 +w2s2 +w3s3 +w4s4 +w5s5

w1 +w2 +w3 +w4 +w5
(3.27)

where the w values are the weighting factors. Choosing w1=3 with all others equal
to 1 would weight the contribution of scorer 1 as three times that of the other scorers.
Scorer 1 would be considered more reliable (for some reason) than the others.

The weighted average is actually the normal average obtained from a supposed
larger group of scorers than we actually have, where the results of each scorer is repli-
cated a number of times. In the example above with w1=3 and w2 = w3 = w4 = w5 =
1, it is considered that there are 8 scorers with the score from scorer1 repeated three
times.

The number of times a scorer is replicated may be done according to the assumed
‘reliability’ of the scorer. Scorers with high reliability are replicated more times than
those with lower reliability. The weights are measures of reliability or ‘beliefs’ about
the reliability based on some evidence. Each weight could be interpreted as the prob-
ability that the scorer would be correct. They may be also considered as measure of
confidence. So if a scorer has a reliability weight 1, we have total confidence in his
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scoring. If he has weight of zero we have no confidence in his scoring. We can think of
these weights as Bayesian measures of the probability of being correct, or ‘confidence’.

Define an n by n ‘Reliability Matrix’ (RM) for each GRBAS component where n is
the number of scorers. In our application n is equal to 5. There are five such matrices,
RG, RR, RB, RA and RS each with non-diagonal entries derived from the ‘weighted
Kappa’ columns of Table 3.17. The diagonal entries reflect intra-scorer agreement
for each scorer and are derived for ‘Grade’ from the ‘weighted Kappa’ columns of
Table 3.9. The diagonal entries for RR, RB, RA and RS are similarly derived from
Tables 3.10, 3.11, 3.12 and 3.13. We have therefore decided to adopt weighted Kappa
as our measure of both intra-scorer and inter-scorer consistency, bearing in mind that
the average of all pair-wise weighted Kappa measurements is very close to the new
weighted Fleiss Kappa proposed in this thesis. The RM matrix obtained for ‘Grade’
is shown in Equation (3.28). Equation (3.28) shows the ‘RM’ for Grade where the
entries on the main diagonal were obtained by intra-scorer consistency computations
and the entries outside of the main diagonal were obtained by inter-scorer consistency
computations.

RG =


0.88 0.67 0.7 0.47 0.5
0.67 0.78 0.69 0.4 0.44
0.7 0.69 0.71 0.53 0.55

0.47 0.4 0.53 0.82 0.84
0.5 0.44 0.55 0.84 0.62

 (3.28)

To make use of this matrix to obtain a ‘gold standard’ score for grade for subject i,
we proceed as follows: First we express the ‘pair-wise’ weighted average between the
grade scores given to patient i by scorers L and M as follows where sL(i) and sM(i)
are the Grade scores and wL and wM are weights read from the diagonal entries of the
reliability matrix RG.

PLM(i) =
wL× sL(i)+wM× sM(i)

wM +wL
(3.29)

Therefore, for Grade :

PLM(i) =
RG(L,L)× sL(i)+RG(M,M)× sM(i)

RG(L,L)+RG(M,M)
(3.30)

The gold standard score,GGS(i), for Grade for patient i is then expressed as the weighted
average of PLM(i) over all possible scorer pairs L,M where the weighting for each pair
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is read from the appropriate non-diagonal entry of RG. Therefore:

GGS(i) =

c−1
∑

L=1

c
∑

M=2
RG(L,M)PLM(i)

c−1
∑

L=1

c
∑

M=2
RG(L,M)

(3.31)

The first step weights each score by the ‘consistency’ of the scorer and the second
step weights each paired component of the average by the inter-scorer consistency of
the pair of scorers. The procedure is repeated for R, B, A and S to obtain a ‘gold
standard score’ for each GRBAS component for each subject.

3.8 ‘Gold standard’ GRBAS reference scores

Appendix B presents a table of the reference scores obtained by applying equations
(3.28) to (3.31) for ‘Grade’, for each subject i in the range 1 to 102. The corresponding
reference scores for ‘R’, ‘B’, ‘A’, and ‘S’ were similarly calculated for this table. The
table also presents the unweighted averages of the scores for each subject (avG, avR,
avB, avA, avS). Figures 3.2, 3.3 3.4, 3.5 and 3.6 show a ‘histogram’ frequency dis-
tribution of the differences between the unweighted averages of the scorers and gold
standard for ‘Grade’, ‘Roughness’, ‘Breathiness, ‘Asthenia and ‘Strain’ respectively.

0	 0	 1	

74	

19	

4	
0	

0	

10	

20	

30	

40	

50	

60	

70	

80	

-0.3	 -0.2	 -0.1	 0	 0.1	 0.2	 0.3	

Fr
eq

ue
nc
y	

Difference	between	gold-standard	&	unweighted	arithmeEc	mean	

Figure 3.2: Histogram of differences between gold-standard and unweighted arith-
metic mean for Grade as listed in Appendix B. Both rounded to one decimal place.
The frequency is the number of subject out of the total of 102

The maximum difference is 0.3 that is obtained for Grade and Roughness with
frequency 74. The minimum difference is -0.3 is achieved for strain with frequency
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Figure 3.3: Histogram of differences between gold-standard and unweighted arith-
metic mean for Roughness as listed in Appendix B. Both rounded to one decimal
place. The frequency is the number of subject out of the total of 102
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Figure 3.4: Histogram of differences between gold-standard and unweighted arith-
metic mean for Breathiness as listed in Appendix B. Both rounded to one decimal
place. The frequency is the number of subject out of the total of 102

1. The RMSE values between the unweighted averages of the scorers and gold stan-
dard for Grade, Roughness, Breathinees, Asthenia and Strain are 0.06, 0.08, 0.06,
0.07 and 0.07 respectively. The variation between the unweighted averages and gold
standard are small. With less reliable scorers, the differences may have been greater.
The‘reliable’ scores for training the machine learning algorithm in Chapter 5 is com-
puted with straightforward average of all five scorers, since the final results of Chapter
3 were not available when these tests were run. For most of this work, only 3 scorers
were available, though we were able to update the averages when the extra two scorers
became available.
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Figure 3.5: Histogram of Differences between gold-standard and unweighted arith-
metic mean for Asthenia as listed in Appendix B. Both rounded to one decimal place.
The frequency is the number of subject out of the total of 102
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Figure 3.6: Histogram of Differences between gold-standard and unweighted arith-
metic mean for Strain as listed in Appendix B both rounded to one decimal place. The
frequency is the number of subject out of the total of 102

3.9 Conclusions

A data-base of voice recordings from ‘patients’ and ‘control’ participants has been pro-
vided by MRI Hospital, and a mechanism for providing clinicians with a convenient
means of applying traditional subjective GRBAS scoring techniques to these record-
ings has been described in this Chapter. Methods of evaluating the ‘intra’ scorer consis-
tency of individual scorers and ‘inter’ scorer consistency between different scorers are
explored and have been applied to the data-base. The data-base, the scorings and the
scorer evaluations are to be used as the means of developing objective GRBAS scoring
by computer. In order to do this, we need to determine a ‘reliable’ (‘gold standard’)
set of GRBAS scores using the scores obtained from five scorers and measurements of
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the intra-scorer and inter-scorer consistency of the scores. There was found to be con-
siderable inconsistency in some of the scoring and also considerable variability from
scorer to scorer. Subjective ratings can be confounded by factors such as the listener’s
experience, the listeners perceptual bias, the type of rating scale used, the listener’s
fatigue, the perceptual sensitivity of the listener to particular voice features and to the
voice sample being evaluated, and many other factors. Investigating existing and new
ways of measuring consistency, for example using correlation and various forms of
Cohen Kappa including a new weighted Fleiss Kappa has led us to address the prob-
lem of how to make the best of the data provided, with its inherent inconsistencies. An
approach to this problem has been presented using averaging weighted by measures of
consistency. Whether this is the best possible approach has not been established, and
there are clearly many possible solutions to the problem.

It was found that SLT scorers showed better consistency in scoring some aspects
of GRBAS than others. They seemed more confident in scoring Asthenia than the
others GRBAS components, and this finding was confirmed when either the Cohen’s
Kappa or the weighted Cohen Kappa was used as the measure of intra-scorer con-
sistency. For GRBAS, there are good reasons for preferring the weighted version of
Cohen’s Kappa since it reflects the magnitudes of scoring differences. Minor differ-
ences perhaps resulting from marginal decisions are de-emphasized which seems a
good thing to do. The weighted Kappa showed intra-scorer consistency to be ‘almost
perfect’ and ‘substantial’ in the Grade and Asthenia components respectively. On the
other hand, Kappa, Weighted Kappa and Fleiss’ Kappa measurements indicate the
inter-scorer agreement between SLT scorers is mostly moderate. ‘Gold standard’ ref-
erence scores, taking into account intra-scorer and inter-scorer consistency, have been
produced and may be compared with unweighted average scores. Both sets of scores
are available for use with subsequent model training. The differences between these
two sets of scores are small but significant. It has been claimed [Bla] that the assess-
ment of observer agreement is one of the most difficult areas in the study of clinical
measurement. There is much further work that could be usefully done in this field.



Chapter 4

Feature Measurement

4.1 Introduction

This chapter is concerned with the digital signal processing (DSP) techniques that are
used to measure characteristic features of voice recordings. There are many reasons
for wishing to measure such features. Speech processing is a very mature topic which
has been developed over many years for speech recognition and synthesis, coding and
compression for mobile telephony, speaker recognition, noise elimination and many
other applications. It has also been widely applied in the medical field for assessing
voice problems, detecting emotional states, teaching deaf children to speak and many
other activities.

This thesis is concerned with voice quality assessment; in particular the objective
measurement of GRBAS scores. There are many characteristic features of voice that
may be observed from the acoustic waveform that reaches the ear of a listener. Pub-
lished and commercialised DSP software already exists for measuring voice features.
Available software uses a variety of different methods. Even when measuring the same
phenomena, these methods often produce different results. It is therefore necessary to
understand the DSP techniques that are traditionally used for feature measurement in
order to decide which techniques are appropriate and likely to be reliable. In some
cases it is instructive to reproduce and evaluate well known techniques which are often
very simple, such as the formulae for jitter and shimmer mentioned in Chapter 2. In
other cases, techniques whose precise details are not disclosed may be considered. For
example the Cepstral/Spectral Index of Dysphonia (CSID) in the ADSV software suite
(see Chapter 2) may provide useful measurements even though its algorithm is a com-
mercial product and not fully disclosed. In either case, it is important to understand
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the reliability and limitations of the results produced. With this knowledge, it is often
possible to improve the performance of well known DSP techniques by adapting them
to the application in question. At least it may be possible to understand why they fail
when they do fail. Apart from CSID, many published or commercialised techniques
are applicable only to ‘sustained’ vowels whereas one of the aims of this thesis is to
measure features also from ‘connected’ or natural spoken sentences. The purpose of
this chapter is to survey and examine the features that may be usefully measured and
to investigate the DSP mechanisms that are or may be employed to do the measure-
ment. In this chapter large N will be used to denote the length of analysis frame in
sample. L will be used by the cross correlation method to denote the length of abutting
sub-frames within each frame of N-samples. As will be seen in section 4.3.5 the ba-
sis of the cross correlation technique is to search for the value of L that optimises the
similarity between the abutting segments.

4.2 Some Background

4.2.1 Recording and digitising Speech

Capturing segments of speech via a microphone converts the variation in air-pressure
that constitutes sound into the variation of a voltage. This voltage may be sampled
and then digitised so that segments of voice may be stored in a computer. Engineering
constraints must be imposed on the sampling rate and the number of bits used to rep-
resent each sample to make sure that the sound is represented with appropriate fidelity.
But these constraints are easily satisfied by modern equipment. Once correctly digi-
tised and stored in computer files, the speech can be played out repetitively and also
displayed visually as a graph of air-pressure against time. Such a graph is referred to
as a waveform.

There is much to be learned simply by observing speech waveforms. Since speech
and music may be perceived by humans over a bandwidth from about 50 Hz to 20
kHz, a standard for ‘high fidelity’ sound was proposed long ago. With the advent of
compact disk (CD) recording, this led to a very widely used digitisation standard often
referred to as ‘CD quality’ sound. This standard requires speech to be band-limited to
the frequency range 0 to 20000 Hz and sampled at 44100 Hz with 16 bits allocated to
represent each sample. Stereo sound requires two simultaneous samples of sound to
be captured at 44,100 Hz. This sampling frequency is widely used for music, but is at
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variance with current practice in voice telephony where speech is restricted in band-
width to the frequency range 300 to 3400 Hz and sampled at 8 kHz. Speech is largely
intelligible at this lower bandwidth and sampling rate, and is even amenable to further
compression of the required bit-rate without severe loss of quality or intelligibility.
However, telephone quality speech is not well suited to the application we are con-
cerned with because there is a quality loss that may not be noticed by telephone users,
but which may be very important in assessing true voice quality. Therefore standard
‘CD quality’ sound will be used throughout this thesis meaning that the bit-rate will be
44100×16 = 705600 bits per second. Uniform quantisation without compression will
be used, and steps will be taken to ensure that a reasonable signal-to-quantisation-noise
ratio is achieved. Speech segments can thus be conveniently stored in ‘wav’ files which
are an industry standard and well supported by commercial and academic software.

4.2.2 Voiced and unvoiced speech

There are characteristic features of speech that can be seen immediately in waveforms
displayed on a computer screen. For example one can observe the difference between
‘voiced’ speech which is pseudo-periodic and ‘unvoiced’ speech which has no pe-
riodicity. The cause of this difference is the human speech production mechanism
which can produce sound from the vocal cords or from turbulent flow created at some
constriction within the vocal tract. Voiced speech, created by pseudo-periodically vi-
brating vocal cords, produces vowels while unvoiced speech created by turbulent flow
produces the sound heard within consonants. Voiced speech can remain approximately
stationary (non-changing) for periods of time approaching or exceeding one tenth of
a second, whereas unvoiced speech tends to be transitory and fast changing, maybe
lasting only 0.01 seconds or less. Distinguishing voiced from unvoiced speech is a sig-
nificant and important challenge, and not always easy to do reliably even for normal
talkers. Doing this for quality impaired voices is even more difficult. The challenge
with voiced/unvoiced detection is detecting periodicity as will be discussed later.

4.2.3 Analysing voiced speech

For regions of the speech waveform identified as voiced, the next challenge is to mea-
sure the periodicity and the nature of this periodicity. The voice will have a funda-
mental frequency which is determined by the rate of vibration of the vocal cords. This
determines the pitch of the voice which is normally constantly changing. Measuring
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the fundamental frequency can sometimes be difficult for normal talkers though it is
required for many speech bit-rate compression techniques used in mobile telephony
and Voice over IP (VoIP). Doing this for quality impaired voiced can be very diffi-
cult. Therefore voice quality assessment techniques employed in the medical field try
not to be too critically dependent on estimations of fundamental frequency. Where a
fundamental frequency is discernible, it will normally be changing with time. Some
of this variation will be due to natural intonation; a gradual lowering or raising of the
pitch of the voice when answering or asking questions, for example. But there may
also be a much more rapid variation in fundamental frequency which is referred to as
‘jitter’. Jitter is a form of frequency modulation that is so rapid that it is perceived as
roughness in the sound of voiced speech. A related parameter is ‘shimmer’ which is
the effect of rapid pitch-cycle to pitch-cycle variation in the amplitude of the speech
signal. Shimmer is a form of rapid amplitude variation which is again perceived as
roughness. Jitter and shimmer are often an indication of abnormality in the way the
vocal cords are vibrating during voiced speech.

4.2.4 Sound due to turbulent air-flow

Most sound energy during voiced speech is produced by the vocal cords ‘snapping’
closed after opening more slowly. This mechanism relies on a natural elasticity and
uniformity of the tissue which may be affected by infection, inflammation or other
damage. Turbulent air-flow which is responsible for unvoiced speech creates a non-
periodic waveform of wide bandwidth which can extend to the upper limit of the 20
kHz bandwidth of ‘CD quality’ speech. In contrast, the energy of voiced speech tends
to fall off rapidly beyond about 4 kHz.

Because turbulent air-flow is a chaotic process causing random collisions among
molecules of air, it is well modeled as a random process. Using a random number
generator to create voltage samples can produce waveforms that resemble and sound
like unvoiced speech. Such waveforms are sometimes referred to as ‘noise-like’ wave-
forms because certain types of unwanted noise, for example wind noise in a car, the
background sound from a badly tuned radio or television and quantisation noise, tend
to sound like this. The frequency spectrum of such ‘noise’ is wide and is often close to
being flat or ‘white’ meaning that all frequencies within the audible range are equally
present.

Turbulent air-flow can be present within voiced speech. It is a characteristic of
the way some people, especially females, speak naturally, and is often referred to as



4.2. SOME BACKGROUND 113

‘breathy’ speech. But it can also be an indication of voice pathology where, for some
reason, the vocal cords are not closing completely during their so called ‘closed glot-
tis’ phase. In such cases, the voiced speech may not be strongly periodic because
of the presence of some turbulent air-flow causing the introduction of a ‘noise-like’
supplement. The ‘noise-like’ random signal is often considered to be added to the
pseudo-periodic voiced component. Aperiodicity during voiced speech is possibly the
strongest indication of voice pathology and it is often caused by ‘breathinesss’ as just
described. When it is, the situation can be quantified by a ‘harmonic-to-noise’ ratio
where the harmonic part of the speech is that part considered to be pseudo-periodic.
Even when the causes of aperiodicy are more complex than the addition of sound due to
turbulent flow, the degree of aperiodicity may still be well represented by a ‘harmonic
to noise ratio’, considering the source of aperiodicity to be modeled by an additive ran-
dom component. Detecting the presence of noise-like features has proven to be reliable
for detecting voice disorders, since most pathological voices present some degree of
aperiodicity. Such aperiodicity may be quantified by measurements of ‘harmonic to
noise ratio’ (HNR) [YGB82], jitter, and shimmer [WFC95]. However, these mea-
surements have been shown to be unreliable predictors of dysphonia in many studies
[HH96, HAMB+03].

One reason for this unreliability may be that what one perceives as dysphonia may
not be logically associated with any one perturbation measure. Another possibility is
that some of these measurements have relied on the ability to determine the funda-
mental frequency F0. Small errors in determining F0 can lead to significant errors in
measuring perturbations. Because of the difficulty in determining F0, accurate mea-
surements of periodicity in dysphonic voice samples that are marginally aperiodic are
often difficult to obtain. Measures of cross-correlation and Cepstral Peak Prominence
(CPP) attempt to solve this problem [HH96, HAMB+03]. As the degree of voice ab-
normality increases more noise-like characteristics appear and replace the harmonic
structure. Therefore the degree of voice abnormality can be evaluated by judging
the extent to which noise-like features replace the harmonic structure in the sustained
vowel. HNR, Jitter and Shimmer attempt to quantify features that destroy the harmonic
structure of voiced speech.

The ADSV approach uses Cepstral Coefficients to characterize the aperiodicity of
pathological voices in a different way [AR06, ARJ+10]. In this thesis, some algo-
rithms have been developed in MATLAB for quantifying voice characteristics, and
other algorithms within the research literature and within the Kay-Pentax commercial
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software tools have been adopted. The commercial ADSV (Analysis of Dysphonia in
Speech and Voice) tool provided by Kay-Pentax has been researched for this purpose.

4.3 DSP techniques for measuring voice features

Important aspects of speech processing in many applications are detecting periodic-
ity, distinguishing voiced from unvoiced speech and measuring the fundamental fre-
quency of voiced speech. These aspects are used in speech coding for mobile tele-
phony and voice over IP and a great deal of work has been invested in them over the
years [RS11]. They are also important for other speech processing applications, espe-
cially in the medical field, and are a vital ingredient of the subject area of this thesis.
We have investigated DSP algorithms for measuring ‘pitch frequency’, ‘rapid pitch
frequency variation (jitter)’, ‘rapid amplitude variation (shimmer)’, ‘energy’, ‘low to
high spectral energy’, ‘degree of periodicity’ and ‘harmonic to noise ratio’. Leaving
aside some very rudimentary time-domain approaches such as zero-crossing counting,
filtering and phase-locked loops, the most common approaches can be divided into
three classes: FFT frequency-domain methods, cepstral methods and autocorrelation
function methods. The cross-correlation method presented later, may be considered
a special case of autocorrelation function methods, though with subtle and important
differences.

4.3.1 Fast Fourier Transform (FFT) methods

Discrete Fourier Transform (DFT) of a segment {x[n]} 0,N-1 of a real or complex-
valued digital signal is given by equation (4.1) where x[n] is the nth sample of the
time-domain segment. The result is a frequency-domain representation of the original
segment in the form of a complex-valued segment {X[k]}0,N-1 where X[k] is the kth
frequency domain coefficient representing DFT spectral content at frequency F = k×
(FS/N) Hz where FS is the assumed sampling frequency in Hz. Equation (4.2) is
the ‘inverse DFT’ which reverses the effect of the DFT to generate the time-domain
sequence {x[n]} 0,N-1 from the frequency-domain sequence {X[k]} 0,N-1.

X [k] =
N−1

∑
k=0

x[n]e−i 2π

N kn k = 0,1,2, ....,N−1 (4.1)
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x[n] =
1
N

N−1

∑
k=0

X [k]ei 2π

N kn n = 0,1,2, ....,N−1 (4.2)

The FFT is a computationally efficient method for computing the DFT of a segment
of a digitized signal. It produces exactly the same result as evaluating the DFT formula
directly, but much faster. The number of arithmetic operations, multiplications and
additions, for the direct computation of the DFT is approximately proportional to N2

and N(N− 1) respectively, but for the FFT algorithm this reduces to approximately
(N/2)× log2N and N× log2N. This difference becomes dramatic when N has a large
value. An ‘inverse FFT’ exists as a similarly fast and efficient way of implementing an
inverse-DFT.

4.3.2 Short term Fourier transform (STFT)

The Short-Time Fourier Transform (STFT), is a way of analysing non-stationary sig-
nals, whose statistical characteristics vary with time. Speech is dynamic in that it is
time-varying. Although the characteristics of voiced speech within a spoken sentence
may stay fairly constant for many pitch-periods during a ‘sustained vowel’, maybe up
to 200 ms, they will not stay exactly the same. Unvoiced segments of speech tend to
be more short-lived and change more rapidly.

The STFT is normally applied pitch-asynchronously with fixed-length analysis
segments. However, it can be applied pitch-synchronously using variable length seg-
ments with the length chosen to contain an exact number of pitch-cycles. Clearly, the
pitch-period must be computed before applying pitch-synchronous Fourier analysis,
and this can be difficult with pathological voices. Variations in the fundamental fre-
quency and amplitude make this even more difficult and can negate the advantages of
pitch-synchronous analysis. Despite these difficulties, this is how the MDVP software
appears to calculate ‘harmonics to noise ratio’ (HNR or NHR).

Pitch-asynchronous STFTs analyse segments that are short enough to be consid-
ered approximately stationary. Speech segments of length typically around 20 ms are
often considered short enough for approximate stationarity, though segments as short
as 10 ms and as long as 50 ms are sometimes used. The terms ‘window’ and ‘window-
ing’ are commonly used to describe the extraction of a speech segment by multiplying
by a time-domain ‘window’ function {w[n]} which becomes non-zero only for the
short time-span of the STFT. A succession of STFT computations may be performed
with windows that move forward in time. The result is a series of STFT spectra that
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constitutes a ‘spectrogram’. If the time-span of the window is sufficiently narrow, each
frame extracted can be viewed as approximately stationary so that the DFT can be
used. If each segment extracted is of length N samples and its samples are re-indexed
to start at zero, the STFT may be defined as in Equation (4.3).

X [k] =
N−1

∑
n=0

w[n]× x[n]× e
−2πikn

N k = 0,1, ...,N−1 (4.3)

The windowing function {w[n]} is described as rectangular if its value is constant
within its non-zero region. However, non-rectangular windows which emphasize the
central part of the extracted segment, at the expense of samples close to the edges, are
more commonly used. The Hamming window is perhaps the most widely used form of
non-rectangular window. It may be shown that the Hamming window reduces spectral
spreading [OSB+89] caused by a pitch-asynchronous fixed-length segment extraction
process. Two other devices are commonly used when applying the STFT: zero-padding
and decimation. Zero-padding increases the number of frequency-domain samples by
simply inserting extra zero valued time-domain samples. The FFT gives N samples in
the frequency-domain when there are N time-domain samples, and increasing N often
makes the FFT spectrum easier to visualize and process.

Decimation reduces the bandwidth and sampling rate of a signal which is useful
when the STFT analysis is to be focused at the lower frequency end of the spectrum.
In this work, real speech is sampled at 44100 Hz which means that the STFT will
produce spectra over the frequency range 0 to 22050 Hz. However the energy in voiced
speech tends to be concentrated below about 4 kHz, so it is often useful to decimate
the signal to a sampling rate of about 8 kHz before performing the STFT, when we
are concentrating on voiced speech only. Such decimation involves digital filtering
to reduce the bandwidth to around 0 to 4 kHz, and then re-sampling at about 8 kHz.
A common approach down-samples the speech by a factor 5.5, which is achieved by
up-sampling to a sampling rate of 2× 44100 = 88200 Hz before down-sampling by
a factor 11. The resulting sampling rate of 8018 Hz is close enough to 8 kHz for the
work in this thesis.

To convert a recording of speech to the frequency-domain for subsequent analysis,
the following steps may be carried out:

1. Apply decimation to achieve the required band-width and sampling rate

2. Divide the decimated audio signal into segments of suitable length.
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3. With pitch-asynchronous methods, multiply each segment with a Hamming win-
dow to reduce spectral spreading.

4. Apply zero-padding to each segment to achieve the required spectral resolution.

5. Compute the FFT of each modified segment.

It is common to examine the magnitudes of the complex-valued spectra thus produced.
From this, the ‘spectral envelope’ is discernible as a smoothed curve joining all the
magnitude spectral samples.

Any periodicity in the time-domain signal may now be discernible as spectral
‘lines’ or peaks in the frequency-domain at samples corresponding to the fundamental
frequency and its harmonics. Such peaks will usually be clear and obvious for nor-
mal voices and the fundamental frequency of a frame of voiced speech can therefore
be measured from such a magnitude spectrum. There will usually be some spectral
spreading which increases around the higher order harmonics due to the segment be-
ing not precisely stationary. There may also be some spectral content around the har-
monics due to ‘noise-like’ effects including ‘breathiness’, and the effects of jitter and
shimmer.

For dysphonic voice samples, finding the fundamental frequency from the STFT
magnitude spectrum may not be an easy task to perform, because the amount of ‘noise’
might be much greater and the effects of ‘jitter’ and ‘shimmer’ may be much greater
than with normal voices. Distinguishing voiced from unvoiced speech is possible in the
pitch-asynchronous STFT frequency-domain, but not so easy, even for normal voices,
when there are significant changes within the frame, as occur at transitions between
vowels and consonants. Measuring the ‘degree of periodicity’ is also not very easy
in this domain and producing a ‘harmonic to noise’ ratio can be very difficult during
transitions.

The FFT is essentially an averaging process over the period of time defined by
the duration of the window. Each FFT frequency-domain sample is an average of the
instantaneous spectral energy over the whole frame of typically 20 ms. The pitch-
asynchronous FFT is useful for measuring average spectral characteristics, such as
‘spectral tilt’ or the ratio of energy in different spectral bands. Spectral tilt measures
the degree to which the short-term spectrum is biased towards the low frequency or
high frequency extremes of the frequency band being analysed. However, significant
changes can occur even over a time-window as short as 20 ms and it is often just at
times when such changes occur that we most need an estimation of the voicing and
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periodicity. Therefore, the pitch-asynchronous FFT has limited use in high accuracy
voice parameter estimation, and most modern techniques tend to operate in the time-
domain using autocorrelation and cross-correlation based techniques. Some parameter
estimation techniques use the pitch-asynchronous FFT, because of its computational
efficiency, to obtain initial rough estimates of parameters which are later refined by
autocorrelation domain techniques [Rab77]. As mentioned earlier, some techniques
use pitch-synchronous FFT techniques, but these rely on accurate estimations of fun-
damental frequency which may be difficult to obtain.

4.3.3 Cepstrum methods

The cepstrum is the inverse Fourier transform of the logarithm of the Fourier transform
of a speech segment. In digital signal processing, the Fourier transform and its inverse
are invariably implemented by the FFT and its inverse. Typically the FFT is applied to
fixed-length speech frames of duration about 20 to 50 ms with windowing, decimation
and zero-padding applied to achieve the required resolution and to reduce artifacts
such as spectral spreading. Considering the speech spectrum to be the convolution of
a periodic excitation e(t) of fundamental frequency less than about 200 Hz, and the
impulse-response h(t) of a filter modeling the resonances of the vocal tract, as seen
in the frequency-domain this becomes the product of two spectra E( f ) and H( f ).
Applying the logarithm to this product produces: log(E( f ))+ log(H( f )) which can
be computed in complex logarithms, or purely in magnitude spectral terms. In practice,
we usually convert the spectrum to un-normalized deciBels (dBs) by taking 20× log10
of the FFT magnitude spectrum. The effect of E( f ) for voiced speech is a series of
spectral lines or peaks at the fundamental frequency and its harmonics. The effect of
H( f ) is to create the ‘spectral envelope’ of the magnitude spectrum determining the
heights of the peaks. These effects are illustrated in Figure 4.1b for the 64 ms segment
of synthesised voiced speech shown in Figure 4.1a.

The synthetic speech was generated by exciting a ninth order all-pole digital filter
by a periodic series of discrete time impulses. The sampling frequency, FS, is 8 kHz
and the duration is 64 ms which is a little longer than we normally use with real con-
nected speech. The pole pairs were at 480 Hz, 1400 Hz, 2400 Hz and 3520 Hz with
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0 50 100 150 200 250
0

5

10

15

20

25

30

35

FFT frequency index

FF
T 

am
pl

itu
de

s 
co

nv
er

te
d 

to
 d

B

FFT spectrum of 512 samples of voiced speech sampled at 8kHz

(b) Frequency domain.

Figure 4.1: Synthetic vowel in time domain (a) and frequency domain (b). The time-
domain sample index refers to the speech sampled at 8 kHz. The FFT frequency index
refers to the 512 point FFT of the synthetic vowel. The frequency represented by k is
Fs× k/512 where Fs= 8kHz. The red graph is the impulse-response.

amplitudes 0.97, 0.93, 0.85 and 0.8 respectively. There is a fifth pole which is real with
amplitude 0.9 to model the combined effect of lip-radiation and the assumed shape of
the glottal excitation pulse produced by the vocal cords. This hypothetical example of
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speech is highly resonant at the first pole and corresponds (roughly) with the vowel /a/.
The impulse-response of the all-pole digital filter is shown in red superimposed on the
speech in Figure 4.1a.

The real cepstrum is obtained by computing the inverse FFT of the log spectrum
shown in Figure 4.1b. The IFFT is linear, therefore the result is the sum of the inverse
FFT of 20× log10(E( f )) and the inverse FFT of 20× log10(H( f )). These two terms
are now separable because of their frequency content. The cepstrum thus obtained is
shown in Figure 4.2. As seen in Figure 4.1a, the impulse-response of the all-pole filter,
which is the IFFT of H( f ), decays to very low values within about 50 samples. The
IFFT of log(E( f )) will die away even faster as can be seen as the red graph superim-
posed on the cepstrum shown in Figure 4.2. The remaining part of the cepstrum is due
to E( f ) which corresponds to the vocal tract excitation signal e(t). The periodicity
of e(t) is now easily seen in the cepstrum, especially for the artificial speech example
where it remains exactly constant and there is no additive noise.
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Figure 4.2: Real cepstrum for artificial speech. The Cepstrum index k represents time
in units of 512/ Fs= 64 ms. Therefore k represents (64k) ms in time ( or quefrequency).
The red graph is the impulse-response.

The fundamental frequency of e(t) and its harmonics create the cepstral lines or
peaks seen in Figure 4.2. In this case the fundamental frequency is unmistakable as
Fs/56 where 56 is the cepstrum index (or ‘quefrency’) of the first cepstral peak and
FS = 8 kHz. This peak is very ‘prominent’. The fundamental period is 56 samples, as
we know already. The cepstrum is therefore useful for determining the fundamental
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frequency of speech, but it is also widely used for estimating the ‘degree of periodicity’
when the speech is not exactly periodic, perhaps because of additive noise, jitter, shim-
mer or other effects. Figure 4.3a shows the same 20ms segment of synthetic speech as
in Figure 4.1a, but now with additive white Gaussian noise of zero mean, variance 0.2
and band-limited to 4 kHz.
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(a) With added noise.

(b) Cepstrum for figure 4.3a.

Figure 4.3: Synthetic vowel with noise time domain (a) and cepstrum (b). The time-
domain sample index refers to the speech sampled at 8 kHz. The Cepstrum index k
represents time in units of 512/ Fs= 64 ms. Therefore k represents (64k) ms in time (or
quefrequency). The red graph is the impulse-response.
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The fundamental frequency is still easily discernible as the noise is not very severe.
However in Figure 4.3b, the cepstral peak corresponding to the fundamental frequency
is not so ‘prominent’.

The effect of the added noise is seen in the cepstrum, and the ‘cepstral peak promi-
nence’ (CPP) is, loosely speaking, the degree to which the peak is prominent above
the contribution of the noise. It is intuitive that a highly periodic signal should have a
more prominent cepstral peak than a less periodic signal. However, while the meaning
of periodic is clear, the concept of ‘degrees of periodicity’ is not often discussed in the
literature and has not been addressed so far in this thesis. It will be later. Disregarding
this issue for the moment, it is considered [HH96] that what is needed is a measure
of the prominence of the peak rather than its absolute amplitude. Several methods of
quantifying CPP have been proposed in the literature [HH96, AR06, ARJ+10]. The
method adopted by many researchers [HH96, AR06, ARJ+10] is to fit a linear regres-
sion line to the samples of the cepstrum. This is a line for which the sum of the squared
distances to the straight line from all points in the graph is minimised. There is an ar-
gument for leaving out the cepstral peaks from this calculation so that only the effects
of the noise or other causes of aperiodicity are taken into account. Also, the first 1 ms
or so are omitted as they contain the majority of the effect of the spectral envelope due
to H( f ).

The CPP is now defined as the difference in amplitude between the cepstral peak
and the regression line at the same cepstral time (quefrency) [HH96, ARJ+10]. Al-
gorithms have been published for computing CPP, and others, including that by Kay-
Pentax [Kay96] have been made available. It is a widely used measure and will be
used in this thesis in the form defined by KayPentax within ADSV. The code for this
implementation has not been published.

Awan et al [ARJ+10] found strong correlation between cepstral and spectral mea-
sure with perceptual severity rating (overall severity). They found CPP, CPP sd, L/H
spectral ratio, L/H spectral ratio sd accounted for 90% of the variability for sustained
vowels in study by [ARJ+10] while CPP, L/H spectral ratio sd and L/H spectral account
for 73% of the variability for connected speech [AR09].

It is interesting to consider how CPP is likely to be affected by other forms of ape-
riodicity, such as jitter and shimmer. Figure 4.4a shows the same synthetic speech as
in Figure 4.1a with the same amount of noise as in Figure 4.3a, but with the funda-
mental frequency increasing from 143 Hz to 167 Hz. It is clear that there is loss of
CPP prominence both due to the additive noise and the spectral spreading arising from
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the frequency modulation. Clearly a precise measurement of fundamental frequency
is now more difficult, and with a little more noise it may become impossible to locate
the cepstral peak.
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(b) Cepstrum for figure 4.4a

Figure 4.4: Synthetic vowel with noise and jitter Time domain (a) and Cepstrum (b).
The time-domain sample index refers to the speech sampled at 8 kHz. The Cepstrum
index k represents time in units of 512/ Fs= 64 ms. Therefore k represents (64k) ms in
time (or quefrequency). The red graph is the impulse-response

Concerns about the effects of non-stationarity with the CPP method are similar
to those discussed earlier with the FFT. These will be borne in mind in future work.
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Finally, for completeness, we investigate the effect of amplitude variation on CPP.
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Figure 4.5: Synthetic vowel with amplitude modulation. The time-domain sample
index refers to the speech sampled at 8 kHz. The red graph is the impulse-response.

Figure 4.5 shows the original synthetic speech with amplitude modulation applied
to the vocal tract excitation. There is no frequency modulation. Figure 4.6a shows
the amplitude modulated speech with noise added as in the earlier experiments. The
cepstrum obtained is shown in Figure 4.6b. It may be seen that although the noise
is more prominent in comparison with the overall speech energy (because the speech
amplitude is reducing) the cepstral peak is still quite prominent, the CPP will be quite
high and the fundamental frequency can still be accurately determined. These exam-
ples illustrate that the effects of frequency modulation (jitter) on measurements of CPP
are likely to be more serious than the effects of amplitude modulation.

4.3.4 Autocorrelation based methods

The autocorrelation function of a speech frame {s[n]}1,N is a function of delay d mea-
sured in samples. Assuming that the mean value of {s[n]}1,N is zero, it may be esti-
mated as:

auto(d) =
N

N−d
∑

n=1
s[n]s[n+d]

(N−d)
N
∑

n=1
(s[n])2

(4.4)
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Figure 4.6: Synthetic vowel with amplitude and noise time domain (a) and cepstrum
(b). The time-domain sample index refers to the speech sampled at 8 kHz. The Cep-
strum index k represents time in units of 512/ Fs= 64 ms. Therefore k represents (64k)
ms in time (or quefrequency). The red graph is the impulse-response.

It may be shown that -1 6 auto(d) 6 1 and that auto(d) = 1 if s[n] is periodic with
period d samples, where d>0. Therefore a valid way of estimating the fundamental
frequency of a purely periodic segment of speech is to evaluate auto(d) over a suitable
range of values for d and to search for the value of d that makes auto(d) =1. If auto (d)
= 1, then it follows that auto (2d)=1 also. Therefore we must take the minimum value
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of d that makes auto(d)=1. If there is no such value, it may be deduced that {s[n]}1,N

is not periodic. However, if we search for the minimum value of d that maximizes
auto(d), with d>0, and we find that auto(d) is close to 1, we may deduce that {s[n]}1,Nis
approximately periodic and affected by some small degree of aperiodicity due to added
noise, frequency or amplitude modulation, or some other reason. If the maximum
value of auto(d) is not close to 1, this may indicate that the signal is not close to being
periodic and most likely corresponds to unvoiced speech.

The autocorrelation function can therefore be used to detect periodicity or the ab-
sence of periodicity (voiced/unvoiced detection). It can also be used to estimate the
fundamental frequency of voiced speech. It is a good method, but it has disadvan-
tages largely due to the range over which it is calculated. The fundamental frequency
and amplitude of speech cannot be expected to remain exactly the same even over a
frame-length of 20 ms or more. The effect of these variations on the shape of the au-
tocorrelation function is difficult to predict and can make voiced/unvoiced decisions
and fundamental frequency detection quite difficult. An alternative approach, some-
times referred to as the cross-correlation method, was commonly used in speech coding
[KKK90] and is preferred in this thesis for reasons that will be explained.

4.3.5 Cross-correlation methods

Given a speech segment of length N : {s[n]}1,N, the basic idea is to extract abutting
sub-segments {s[n]}1,L and {s[n]}L+1,2L for various values of L. Let {x[n]}1,L denote
{s[n]}1,L and let {y[n]}1,L denote {s[n]}L+1,2L. The cross-correlation method searches
for the value of L for which x[n]1,L and {A× y[n]}1,L are most similar when A is a
scaling factor for the second sub-segment. In one version of this method, the constant
A is chosen to maximize the similarity between {x[n]}1,L and {y[n]}1,L for any given
value of L. A simpler version fixes A to be equal to one.

The reason we introduce A is to try reduce the effect of increasing or decreasing
amplitude on our measure of periodicity. The amplitude envelope of voiced speech
will be constantly changing especially at the on-set of words and at their ends. Let
e[n] = x[n]− Ay[n] for n = 1,2,..., L. Then we must search for the value of L that
minimises:

E(L) =
1
L

L

∑
n=1

e[n]2 =
1
L

L

∑
n=1

(x[n]−Ay[n])2 (4.5)

For any given value of L, we can find the best value of A by differentiating:
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dE(L)
dA

=
1
L

L

∑
n=1
−2(x[n]−Ay[n])y[n] (4.6)

Setting this to zero to minimise E(L), we get:

A =

L
∑

n=1
x[n]y[n]

L
∑

n=1
(y[n])2

(4.7)

It follows that for any value of L:

E(L) =
1
L

L

∑
n=1

(x[n])2− 2A
L

L

∑
n=1

x[n]y[n]+
A2

L

L

∑
n=1

(y[n])2

=
1
L

L

∑
n=1

(x[n])2−
2(

L
∑

n=1
x[n]y[n])2

L
L
∑

n=1
(y[n])2

+
(∑L

n=1 x[n]y[n])2

L(
L
∑

n=1
(y[n])2)2

L

∑
n=1

(y[n])2

=
1
L

L

∑
n=1

(x[n])2−
(

L
∑

n=1
x[n]y[n])2

L
L
∑

n=1
(y[n])2

=
1
L

L

∑
n=1

(x[n])2

[
1−

(
L
∑

n=1
x[n]y[n])2

L
∑

n=1
(x[n])2

L
∑

n=1
(y[n])2

]
=

1
L

L

∑
n=1

(x[n])2(1−C(L)2)

where C(L) =

L
∑

n=1
(x[n]y[n])√

L
∑

n=1
(x[n])2

L
∑

n=1
(y[n])2

(4.8)

We search for the best value of L to minimise E(L) with positive C(L). If {x[n]}1,L is
identical to {y[n]}1,L for some value of L, the signal will be purely periodic, at least
over the first 2L samples of the speech frame, and the minimum value of E(L) will
be zero. In this case, the maximum value of C(L) over all L, call this Cmax will be
equal to 1. If {x[n]}1,L is identtical to {−y[n]}1,L for some value of L, the signal is
not necessarily purely periodic, though the minmum value of E(L) will be zero with
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C(L) equal to -1. In speech processing, such negative correlation is disregarded as
it does not indicate periodicity. If a value of L cannot be found such that C(L) is
exactly equal to 1, strictly speaking s[n] is not periodic. In strict terms, a signal is
either periodic or not periodic. But if the maximum positive value of C(L) is close to
1, it may be argued that there is ‘a degree of periodicity’ in {s[n]}. Trying to quantify
this ‘degree of periodicity’ is quite difficult. We have found it useful and justifiable
to define the maximum obtainable value of C(L) as the ‘degree of periodicity’ and
the corresponding value of L the ‘period’. This extends the strict normal definition of
‘period’. We avoid terms like ‘pseudo-period’ and ‘pseudo-periodicity’ since they have
come to be associated with concepts of short-term stationarity which are too specific.

4.3.6 Measuring degrees of periodicity using the cross-correlation

If Cmaxis defined as the degree of periodicity, we can define (1−Cmax ) as the degree of
non-periodicity, or ‘aperiodicity index’. Speech is rarely exactly periodic even when
amplitude variations are disregarded. But it can be very close to periodic during voiced
speech and highly aperiodic during unvoiced speech. Assuming unvoiced speech to be
sourced by a spectrally white turbulent excitation (often loosely termed ‘white noise’)
the maximum value of C(L) can be quite low, typically around 0.2. One may expect
Cmax to approach zero, but the finiteness of the sample means that we cannot expect
to obtain zero exactly. However, even strongly aperiodic consonants can be spectrally
‘coloured’ to some extent by vocal tract resonance and hence have some small degree
of periodicity. Strongly periodic voiced sounds may have an element of turbulent flow,
or breathiness, causing a small degree of aperiodicity. Such aperidiocity may have
different causes all of which are of great interest to speech analysis. It may be caused
by turbulent flow when the vocal cords do not close completely within each pitch-
cycle. Or it may be caused by frequency modulation (Jitter or vibrato) or amplitude
(shimmer).

Aperiodicity within voiced speech may be considered to be caused by the addition
of zero mean white noise {N[n]} of variance σ2. In some cases this may be the true
cause, but in other cases it may be a convenient assumption for modeling the true
situation. In either case, we can find the value of L which maximises C(L) and then
express:
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x[n] = p[n]+Nx[n]

y[n] = p[n]+Ny[n]
(4.9)

for n=1,2,....,L where p[n] is one cycle of some periodic signal of period L samples,
and Nx[n] and Ny[n] are zero mean white noise signals, extracted from {N[n]} and
therefore of equal power with zero correlation between them. Thus, Cmax now be-
comes:

Cmax =

1
L

L
∑

n=1
(p[n]+Nx[n])(p[n]+Ny[n])√

1
L∑

L
n=1(p[n]+Nx[n])2 1

L

L
∑

n=1
(p[n]+Ny[n])2

≈

1
L

L
∑

n=1
(p[n])2√

1
L

L
∑

n=1
(p[n]2 +Nx[n]2) 1

L

L
∑

n=1
(p[n]2 +Ny[n]2)

since N x[n] and N y[n] are uncorrelated with each other and with p[n]. Therefore

Cmax ≈

1
L

L
∑

n=1
(p[n])2√

( 1
L

L
∑

n=1
(p[n])2)2 +2 1

L

L
∑

n=1
(Nx[n])2 1

L

L
∑

n=1
(p[n])2 + 1

L

L
∑

n=1
(Nx[n])2 1

L

L
∑

n=1
(Ny[n])2

=

(
L
∑

n=1
p[n])2√

L
∑

n=1
(p[n]2)2 +2

L
∑

n=1
Nx[n]2

L
∑

n=1
(p[n])2 +(

L
∑

n=1
Nx[n]2)2

=
1√

1+2
L
∑

n=1
Nx[n]2/

L
∑

n=1
p[n]2 +(

L
∑

n=1
Nx[n]2/

L
∑

n=1
p[n]2)2

=
1√

(1+
L
∑

n=1
(Nx[n])2/

L
∑

n=1
(p[n])2)2

=
1

1+
L
∑

n=1
(Nx[n])2/

L
∑

n=1
(p[n])2

=
1

1+1/HNR

(4.10)
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where HNR is the ‘harmonic-to-noise ratio’ defined as:

HNR =
L

∑
n=1

(p[n])2/
L

∑
n=1

(Nx[n])2 (4.11)

Therefore,

1/HNR≈ 1/Cmax−1

≈ (1−Cmax)/Cmax
(4.12)

which means that

HNR≈Cmax/(1−Cmax) (4.13)

This estimation formula for HNR has been tested for additive white noise by means
of a MATLAB simulation program. This program adds zero mean uniformly dis-
tributed white noise to a periodic signal of fundamental frequency 200 Hz sampled
at 40 kHz. The period is therefore 200 samples. The program was run for a fixed
periodic signal power, and increasing levels of additive noise giving a signal to noise
ratio ranging from about 6 dB to 30 dB. It may be seen from the graph below that the
supposed HNR formula predicts the true Signal to Noise Ratio (SNR) level quite accu-
rately when the aperiodicity is really due to additive white noise. The maximum error
that occurred was less than 1 dB and the variance of the difference between predicted
and true value of SNR was 0.004.
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Figure 4.7: HNR measurements for a periodic signal of fundamental frequency 200
Hz sampled at 40 kHz waveform with added noise compared with SNR
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The cross-correlation technique as used above is different from the more conven-
tional ‘autocorrelation’ technique. It looks for the cross-correlation between consec-
utive pitch-cycles rather than peaks in an autocorrelation function calculated across a
fixed duration speech frame containing many cycles. It behaves better than the autocor-
relation method when the frame is in transition, i.e. when characteristics are changing
rapidly. In optimising the value of the scaling factor A, it tries to cancel out the effect
of amplitude changes which include shimmer and also the changing envelope at the on-
set or endings of phonemes. Optimising A has advantages for estimating HNR, jitter
and voicing decisions. However, it was discovered that difficulties are created by opti-
mising A when the aim is to estimate the fundamental frequency. A difficulty that can
arise is the mistaking of short term periodicity due to vocal tract resonances (formants)
for the longer term pitch-cycle periodicity due to vocal cord vibration. The short term
periodicity creates peaks in the cross-correlation function which are enhanced by the
optimisation of A. Essentially, the optimisation of A can cancel out the decay in am-
plitude of a resonance due to a formant (usually the first formant) and can thus make
a decaying sinusoid look like a constant sinusoid. The constant sinusoid then gives a
higher measure of cross-correlation than is appropriate.

Fortunately, the solution to this problem is straightforward. For fundamental fre-
quency detection we use the simpler ‘constant A’ version of the cross-correlation
method for fundamental frequency detection, while retaining the use of the ‘optimised
A’ version for all other measurements. It is easily shown, by manipulating equation
(4.8), that fixing A to be equal to one gives the following formula for mean-squared
error E(L) and cross-correlation value C(L):

E(L) =
1
L

L

∑
n=1

(x[n])2− 2
L

L

∑
n=1

x[n]y[n]+
1
L

L

∑
n=1

(y[n])2

=
1
L

L

∑
n=1

((x[n])2 +(y[n])2)

(
1−

L
∑

n=1
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(4.14)
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It was found that this simplification to the cross-correlation technique as originally
defined greatly reduces the occurrences of fundamental frequency estimation errors for
the reason explained above. It is only used for fundamental frequency estimation.

The accuracy of the cross-correlation technique for estimating the fundamental fre-
quency of voiced speech waveforms was verified by applying to it synthesised vowel
sounds with known fundamental frequency and simulated formant characteristic of
known vowel sounds. Table D.1 in appendix D shows estimate of fundamental fre-
quency for synthesised vowels, i.e. /a/, /o/ and /e/ over the range 120 Hz to 200 Hz
as estimated by the thesis software. The thesis measurements for three synthesised
vowels is close to the nominal values of fundamental frequency. The maximum dis-
crepancy is between the fundamental frequency 200 Hz with vowel /o/ with frequency
199.53 Hz that is about 0.23%.

4.3.7 Aperiodicity Index (API) and harmonic to noise ratio (HNR)

The purpose of this chapter is to consider how best to measure and quantify features
which characterise speech in the five GRBAS dimensions. The degree to which a
speech segment is periodic or aperiodic is a clear predictor of ‘grade’ (G) and ‘rough-
ness’ (R), and the harmonic-to-noise ratio (HNR) as defined in the previous section
is clearly relevant to ‘breathiness’ (B). The Aperiodicity Index (API) is defined as 1 -
Cmax as calculated for the value of L that maximizes C as defined above. The corre-
sponding value of L is referred to as the ‘period’ even though the speech segment may
not be purely periodic. The HNR is intended to indicate the degree to which a purely
periodic waveform may have been affected by additive white noise. If the signal really
is a periodic signal affected by additive white noise, HNR gives a reliable estimate
of the signal-to noise ratio. Otherwise, HNR may be considered a model of the true
situation. We have shown that a reliable estimate of HNR is given by the Equation
(4.13).

4.3.8 Enhanced cross-correlation method

An improvement of the cross-correlation function replaces the constant A which mul-
tiplies the second abutting segment {y[n]} by the time varying function An+B. Instead
of choosing just A, we now try to choose both A and B to maximise the similarity
between {x[n]}0,L and {(A+nB)y[n]}0,L. Clearly this allows {y[n]} to be scaled up or
down by a sequence of values that decrease linearly with time at the onset of vowels
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and increase linearly with time as the envelope decays at the ends of vowels. Defining:

E(L) =
1
L

L

∑
n=1

e[n]2 =
1
L

L

∑
n=1

(x[n]− (A+nB)y[n])2 (4.15)

for any given value of L, we can find the best value of A and B by differentiating to
obtain:

dE(L)
dA

=
1
L

L

∑
n=1
−2(x[n]− (A+nB)y[n])y[n] (4.16)

dE(L)
dB

=
1
L

L

∑
n=1
−2n(x[n]− (A+nB)y[n])y[n] (4.17)

Setting both these expressions to zero to minimise E(L), we get the matrix equation:


L
∑

n=1
(y[n])2
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∑
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n2(y[n])2

×
[

A

B

]
=


L
∑

n=1
x[n]y[n]

L
∑

n=1
nx[n]y[n]


This second order matrix equation is easily set up and solved, for example in MAT-
LAB, to obtain the best values of A and B for any given L. A maximum value of C
can then be obtained and used as above. This value of Cmax will be even closer to
1 at onsets and endings of vowels if the further reduction of the effect of amplitude
modulation has been successful.

4.3.9 Advantages of the cross-correlation method

As defined above, the cross-correlation method is really a modified form of the autocor-
relation method since the two segments compared are extracted from the same speech
segment. However the modification is beneficial in giving an instantaneous measure-
ment of periodicity that is unaffected by amplitude and fundamental frequency varia-
tion that occur within the complete frame as analysed by the autocorrelation method.
Hence it may be expected to give a good estimate of the effect of added noise on
periodicity. The effects of frequency and amplitude modulation are better estimated
separately using standard definitions of jitter, vibrato and shimmer.
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4.4 Measuring fundamental frequency, voicing, jitter
and shimmer

The cross-correlation technique relies on the correlation between successive wave-
form segments to determine the most likely value of fundamental frequency (F0). This
is essentially ‘waveform matching’ as discussed in Chapter 2. The wave-shapes of
successive pitch-cycle candidates must be maximally similar, i.e. the mean square
difference between them must to minimised, for the candidates to be taken seriously.
There are many finer points to be considered before a definite decision about F0 can
be taken. This is because shorter term periodicity due to vocal tract resonance may
be mistaken for F0, and also longer term periodicity at sub-multiples of F0, especially
half and one third of F0, will always exist when there is periodicity at F0. It is quite
common for a cross-correlation peak at 0.5×F0 to be higher than that at F0, especially
with speech affected by additive random components. The logic of deciding which
cross-correlation peak belongs to F0 can be quite complicated.

Detecting F0 is a necessary precursor to calculating many other speech parameters,
including jitter, shimmer and harmonic to noise ratio. The same process allows the
voiced/unvoiced decision required for analysing connected speech. Pitch doubling
is a common error, though fortunately, as will be argued later, the effect of this on
measurements of relative shimmer and jitter, and also harmonic-to-noise ratio, may
not be too serious.

Jitter and shimmer were introduced as features of voiced speech in Chapter 2. Both
features have been widely used in clinical and scientific settings for detecting voice
pathologies, and there are strong reasons for believing that they may help to char-
acterize speech in the five GRBAS dimensions [Wag13, KG05]. Breathy and rough
voices will have measurable degrees of jitter and shimmer during voiced speech. Jitter
and shimmer are often measured for sustained vowels, though the analysis of voiced
parts of connected speech is possible with a reliable voiced/unvoiced detection mecha-
nism. According to MDVP [MDV], values of jitter and shimmer above certain thresh-
olds, which MDVP specifies, are considered to be indicative of pathological voices.
However, even normal voices exhibit cycle-to-cycle pitch and amplitude perturbations
[Dav79, IVL70]

Different formulae have been proposed for measuring jitter and shimmer as dis-
cussed in Chapter 2. Five well known formulae are presented for jitter (2.1) to (2.5),
four for shimmer (2.6) to (2.9) and also there is a range of user-adaptable versions
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in MDVP, suitable for sustained vowels (2.10) to (2.12). Jitter and shimmer must
be distinguished from the frequency and amplitude modulation that is due to natural
intonation and this consideration has led to the range of different formulae. When
measuring jitter and shimmer care has to be taken that the resolution in amplitude and
frequency is sufficiently fine, and this can require the up-sampling of the waveform.
In this work, all recordings use a sampling rate of 44.1 kHz, with 16 bits/sample uni-
form quantisation. We believe that this digitisation process offers sufficient accuracy
without up-sampling.

The formulae for jitter and shimmer require cycle-to-cycle measurements of F0.
Perturbation features may be strongly affected by the difficulty of determining a pitch-
frequency in significantly dysphonic voices. As discussed in Chapter 2, differences
between the Praat and MDVP software suites in the way F0 are derived is responsible
for significant differences in the values of jitter and shimmer obtained, even when
the essential formulae are identical. After studying the differences it was concluded
that the ‘waveform matching’ approach [Boe09] used by Praat is likely to be the most
reliable. This has been adopted by the software produced in this thesis.

With severe damage, there may indeed be little or no periodicity with the voice
becoming hoarse, or whispered, due to the excitation being entirely produced by tur-
bulent air-flow. Such cases must be catered in the DSP analysis. We cannot allow the
feature detection process for voiced speech to simply fail when periodicity cannot be
detected. Where the analysis is done both on sustained vowels and connected speech,
the latter is likely to be both more difficult to process and less discriminating when
comparing normal and pathological voice [ZJ08].

4.5 Measuring jitter for artificial voiced speech

To evaluate the ‘thesis software’ for jitter estimation and compare it with the well
known Praat and MDVP software suites, samples of artificial voiced speech were pro-
duced by exciting an all-pole vocal tract model, with glottal pulse shaping and lip-
radiation filtering, by a periodic series of discrete time impulses. The poles were given
radii of 0.992, 0.99, 0.988, and 0.986 with frequencies ±610, ±1300, ±2450 and
±3600 Hz respectively to emulate the phoneme /a/. The sampling rate was 44.1 kHz.
The required pole radii are about 5.5 times closer to 1 than would be the case with an 8
kHz sampling rate. Jitter was synthesised by introducing Pitch- Period Variation (PPV)
into the time locations of the excitation impulses. There was no simulated shimmer or
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PPV% th-RL% th-RAP% th-PP5% Pra-RL% Pra-RAP% Pra-PPQ5
0.0 0.00 0.00 0.00 0.00 0.00 0.00
0.2 0.20 0.13 0.16 0.19 0.11 0.14
0.4 0.50 0.30 0.34 0.45 0.26 0.30
0.6 0.63 0.37 0.38 0.55 0.32 0.33
0.8 1.03 0.59 0.68 0.90 0.52 0.59
1.0 1.13 0.65 0.68 1.00 0.57 0.56
1.2 1.48 0.94 0.91 1.31 0.82 0.81
1.4 1.59 0.98 0.92 1.44 0.87 0.83
1.6 1.71 1.07 1.00 1.50 0.93 0.93
1.8 2.11 1.25 1.26 1.92 1.15 1.16
2.0 1.94 1.15 1.27 1.80 1.08 1.25
2.2 2.06 1.19 1.45 1.92 1.12 1.33
2.4 2.83 1.61 1.98 2.71 1.57 1.93
2.6 2.94 1.75 1.79 2.89 1.55 1.55
2.8 3.23 1.77 2.12 3.09 1.66 2.04
3.0 2.80 1.62 1.69 2.65 1.50 1.59
3.2 3.11 1.87 1.85 2.86 1.73 1.79
3.4 3.84 2.18 2.59 3.73 2.14 2.56
3.6 4.20 2.51 2.92 3.98 2.36 2.83
3.8 4.82 2.92 3.10 4.51 2.66 2.95
4.0 4.70 2.70 3.11 4.52 2.60 3.00
4.2 4.48 2.63 3.29 4.34 2.47 3.09
4.4 4.71 2.59 3.49 3.81 2.10 2.97
4.6 5.41 3.20 3.80 3.85 2.07 2.91
4.8 4.53 2.82 2.98 3.44 2.21 2.61
5.0 4.96 2.85 3.41 4.07 2.29 2.93
5.2 5.04 2.81 3.69 3.98 2.13 3.33
5.4 5.45 3.13 3.73 5.32 2.97 3.57
5.6 6.17 3.65 3.68 4.94 3.06 3.07
5.8 6.49 3.84 4.19 4.29 2.52 3.23
6.0 7.84 4.82 4.86 4.97 3.30 4.25
6.2 6.16 3.60 3.74 5.60 3.27 3.69
6.4 7.18 4.44 4.61 5.62 3.39 4.41
6.6 7.53 4.37 4.70 4.48 2.47 3.45
6.8 8.25 4.75 5.76 6.56 3.78 5.05
7.0 9.04 5.43 5.38 6.01 2.59 3.08
7.2 8.20 5.18 4.58 5.32 3.07 3.02
7.4 8.72 4.98 5.99 6.30 3.50 4.52
7.6 7.26 4.09 5.26 5.81 3.42 4.15
7.8 7.83 4.64 5.37 5.79 3.27 4.12
8.0 9.34 5.56 6.01 5.83 3.84 6.32

Table 4.1: Comparison of RL Jitter measurements for artificial voiced speech
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added noise in this experiment. Table 4.1 shows three commonly used estimates of
jitter, i.e. Relative-Local (RL), RAP and PPQ5 as estimated by the thesis software and
also Praat. These estimates are defined by Equations 2.2 to 2.4. The results for RL-
jitter as estimated by thesis and Praat software are presented graphically in Figure 4.8.
The ‘thesis’ and Praat measurements are both close to each other and to the nominal
values of RL jitter up to about 4%. For nominal values of jitter greater than about
4% the ‘thesis’ and Praat estimates of RL jitter diverge, though the thesis estimates
remain closer to the nominal values than the Praat estimates. Similar comparisons are
observed for the other estimates of jitter (RAP and PPQ5). MDVP was unable to give
reasonable estimates of jitter for these artificial speech files.

Figure 4.8: Comparison of RL Jitter measurements for artificial voiced speech for
thesis software and Praat software

4.6 Measuring shimmer for artificial voiced speech

To evaluate the ‘thesis software’ for shimmer estimation and to compare it with the
Praat and MDVP software suites, samples of artificial voiced speech were produced
by exciting the same all-pole vocal tract model, with glottal pulse shaping and lip-
radiation filtering, as was used in the previous section. Shimmer was synthesised by
introducing variation (Shimmer Variation (SHV)) into the amplitudes of the excitation
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impulses. There was no simulated jitter or added noise in this experiment. Table 4.2
shows three commonly used estimates of shimmer, i.e. relative-local (RL), APQ3 and
APQ5 as estimated by the thesis software and also by Praat.

These estimates are defined by Equations (2.6), (2.9) and (2.8). The results for
RL-shimmer (Equation 2.6) as estimated by ‘thesis’ and Praat software are presented
graphically in Figure 4.9. The ‘thesis’ and Praat measurements are both close to each
other and to the nominal values of RL shimmer. Similar comparisons are observed
for the other estimates of shimmer (APQ3 and APQ5). MDVP was unable to give
reasonable estimates of shimmer for these artificial speech files.

Figure 4.9: Comparison of RL Shimmer measurements for artificial voiced speech for
thesis software and Praat software

4.7 Measuring artificial voiced speech with jitter and
shimmer

So far the ‘thesis software’ has been evaluated and compared with the Praat software
suites for jitter and shimmer when they occur independently, and when there is no
noise due to turbulent air-flow. In this section we investigate to what extent jitter,
shimmer and HNR can be measured when they occur simultaneously. Samples of
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SHV% th-RL%
th-

APQ3%
th-

APQ5%
Pra-RL%

Pra-
APQ3%

Pra-
APQ5%

0.0 0.00 0.00 0.00 0.00 0.00 0.00
0.2 0.22 0.13 0.16 0.22 0.12 0.15
0.4 0.45 0.26 0.29 0.44 0.25 0.28
0.6 0.80 0.47 0.53 0.76 0.44 0.52
0.8 0.87 0.53 0.54 0.84 0.51 0.53
1.0 1.06 0.59 0.71 1.03 0.58 0.69
1.2 1.40 0.84 0.88 1.38 0.82 0.87
1.4 1.65 0.96 1.06 1.61 0.92 1.05
1.6 1.46 0.77 0.95 1.42 0.75 0.93
1.8 2.23 1.30 1.42 2.20 1.26 1.37
2.0 1.97 1.11 1.19 1.88 1.05 1.17
2.2 2.34 1.27 1.38 2.26 1.24 1.36
2.4 2.86 1.66 1.77 2.76 1.59 1.74
2.6 2.93 1.62 1.86 2.80 1.55 1.83
2.8 3.48 2.01 2.15 3.41 1.98 2.11
3.0 3.58 2.12 2.19 3.52 2.05 2.17
3.2 3.61 2.12 2.25 3.47 2.03 2.19
3.4 3.95 2.28 2.75 3.88 2.24 2.69
3.6 4.78 2.79 3.06 4.63 2.70 3.03
3.8 4.11 2.37 2.58 4.01 2.29 2.51
4.0 5.06 2.99 3.58 4.99 2.94 3.55
4.2 4.87 2.89 3.00 4.79 2.82 2.88
4.4 4.70 2.83 3.08 4.65 2.76 3.01
4.6 5.00 2.78 3.35 4.76 2.63 3.28
4.8 6.40 3.71 4.39 6.36 3.62 4.26
5.0 7.14 4.31 4.28 7.01 4.24 4.15
5.2 6.19 3.68 3.97 6.00 3.58 3.92
5.4 6.25 3.63 4.79 6.01 3.48 4.73
5.6 6.45 3.64 3.99 6.41 3.53 3.87
5.8 6.81 4.03 4.43 6.59 3.86 4.35
6.0 6.70 3.95 4.54 6.41 3.81 4.48
6.2 7.05 4.12 4.74 6.66 3.81 4.42
6.4 7.78 4.70 5.24 8.02 4.74 5.13
6.6 7.23 4.22 4.44 7.17 4.20 4.25
6.8 8.00 4.80 5.55 7.62 4.57 5.53
7.0 8.41 4.84 5.00 8.21 4.62 4.89
7.2 8.04 4.33 5.41 7.33 3.78 5.33
7.4 8.14 4.65 4.97 8.10 4.64 4.98
7.6 8.36 4.62 5.75 8.20 4.60 5.85
7.8 8.49 5.01 5.35 8.11 4.79 5.41

Table 4.2: Comparison of Shimmer measurements for artificial voiced speech
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artificial voiced speech were produced by introducing both jitter (PPV) and shimmer
(SHV) into the frequency and amplitudes of the excitation impulses. Firstly no added
noise was introduced to produce the results in Table 4.3 for RL jitter and RL shimmer
only. Secondly the whole experiment was repeated with additive noise to achieve a
nominal signal to noise ratio of 10 dB.

It may be observed that estimates of jitter are largely independent of shimmer and
HNR. Similarly, thesis-HNR is largely independent of jitter and only slightly affected
by shimmer. The ‘thesis’ measurements of shimmer, on the other hand, are strongly
affected by both Jitter and HNR.

The effect of jitter on shimmer is easily explained. It is due to the interaction
between consecutive pitch-periods when the resonance due to one excitation pulse has
not died away before the next excitation pulse arrives. The continued oscillation will
be added to the next excitation pulse. Without jitter, the added component will tend to
be the same for all excitation pulses. But when there is jitter, it will change as the time
location of the excitation pulse changes with respect to the previous excitation. Despite
much effort, this dependency of shimmer on jitter has not been eliminated in the thesis
software as may be observed in Table 4.3. To see the effect clearly, observe the values
of ‘thesis’ shimmer obtained when the nominal shimmer is zero and the nominal jitter
increases from 0 to 6%. It may be observed also that the same effect occurs with
the Praat estimate of RL shimmer. The dependencies of ‘thesis’ and ‘Praat’ shimmer
estimates on jitter and HNR are clearly non-linear and are unlikely to be successfully
eliminated by Principal Components Analysis (PCA) or more sophisticated versions
of PCA. Reducing this dependency would be a useful topic for further research.

Finally, it may be observed in Tables 4.3 and 4.4 that whereas the ‘thesis’ measure-
ments of HNR remain largely independent of synthesized jitter and shimmer, the Praat
measurement of HNR is highly dependent on the levels of both jitter and shimmer.
The Praat measurements of HNR reduce remarkably from the known value as levels
of jitter and shimmer increase. This is a big surprise and a strong reason for preferring
the thesis software despite the constant 1 dB bias in HNR that is discussed in the next
section.

4.8 Measuring Harmonic-to-Noise Ratio (HNR)

Many papers have been published on the derivation of HNR by different methods
[YGB82, Boe93, AF94, DW03, SBD05, FGHD+09]. The authors of ‘Praat’ [ Pa07]
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PPV SHV th-jit% th-shim% th-HNR Pra-jit% Pra-shim % Pra-HNR
0 0 0.00 0.00 29.98 0.00 0.00 31.82
0 1 0.00 1.09 28.91 0.00 1.05 31.44
0 2 0.00 2.27 28.25 0.00 2.17 29.43
0 3 0.00 2.81 25.49 0.00 2.75 28.51
0 4 0.00 4.07 26.82 0.01 3.91 25.38
0 5 0.00 5.86 24.09 0.01 5.72 24.50
0 6 0.00 6.37 23.84 0.01 6.28 23.38
1 0 1.21 0.51 35.72 1.02 0.90 17.94
1 1 1.35 1.23 39.23 1.19 1.42 16.08
1 2 1.22 2.31 31.31 1.09 2.36 16.74
1 3 1.23 2.98 35.69 1.06 3.00 17.04
1 4 1.07 5.32 26.86 0.94 5.25 17.87
1 5 1.02 6.04 30.98 0.94 6.05 17.25
1 6 1.13 6.89 23.45 0.97 6.92 17.51
2 0 2.21 1.01 31.73 2.06 1.62 11.42
2 1 2.61 1.42 29.68 1.86 2.02 11.63
2 2 2.31 2.45 35.22 2.23 2.74 10.17
2 3 2.15 3.77 33.77 2.02 3.95 11.94
2 4 2.33 3.66 29.26 2.23 3.54 10.99
2 5 2.13 6.02 31.26 1.98 6.10 11.37
2 6 2.31 6.77 36.91 2.09 6.68 11.18
3 0 3.73 1.85 26.88 3.46 2.67 7.69
3 1 3.14 1.99 27.80 2.79 2.80 8.10
3 2 3.17 3.06 29.74 3.04 3.71 7.49
3 3 3.23 3.82 28.26 3.10 4.45 8.46
3 4 3.03 4.97 34.00 2.89 5.25 8.32
3 5 3.40 6.66 27.62 3.21 6.96 7.62
3 6 3.96 7.05 35.77 3.89 7.15 5.97
4 0 3.93 2.76 26.21 3.87 3.74 5.75
4 1 4.35 3.12 28.69 4.20 4.13 5.03
4 2 4.92 3.62 27.72 4.74 4.56 4.27
4 3 5.21 4.53 27.21 4.18 4.98 4.09
4 4 4.52 5.19 27.98 4.18 5.86 4.91
4 5 4.80 6.70 27.17 4.49 7.53 4.33
4 6 4.51 6.27 27.36 4.37 6.45 4.76
5 0 6.57 4.45 26.24 4.69 4.31 4.01
5 1 6.23 4.35 27.71 4.55 6.44 4.80
5 2 5.07 4.11 30.90 3.64 4.60 5.69
5 3 4.98 4.80 44.32 4.87 5.62 3.96
5 4 5.05 5.44 35.73 4.66 6.25 4.58
5 5 5.72 6.95 37.24 5.12 7.91 3.04
5 6 5.12 7.17 34.36 3.96 7.20 5.21
6 0 6.79 4.52 29.27 4.70 4.44 4.71
6 1 6.09 4.58 26.94 5.74 5.42 2.76
6 2 7.22 4.93 30.37 4.11 7.06 5.12
6 3 5.50 5.92 31.68 4.72 6.75 4.49
6 4 6.37 6.53 26.18 4.09 7.14 4.29
6 5 6.98 6.22 26.98 5.02 5.62 3.81
6 6 7.11 8.52 30.52 5.18 7.86 3.16

Table 4.3: Jitter & Shimmer for artificial voiced speech with SNR = infinity
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PPV SHV th-RLjit% th-
RLshim% th-HNR dB Pra-RLjitt% Pra-

RLshim%
Pra-HNR

dB
0 0 0.27 5.98 11.24 0.22 2.70 10.26
0 1 0.30 5.57 11.29 0.23 2.59 10.23
0 2 0.21 6.17 11.19 0.23 4.26 10.11
0 3 0.26 7.16 11.30 0.28 4.95 10.16
0 4 0.28 7.62 11.29 0.23 4.96 10.15
0 5 0.28 6.22 11.23 0.24 5.17 10.11
0 6 0.25 7.44 11.40 0.26 6.75 10.09
1 0 0.94 4.77 11.21 0.88 2.32 9.44
1 1 1.09 6.09 11.25 1.03 2.47 9.24
1 2 1.11 6.74 11.29 0.99 2.96 9.44
1 3 1.28 6.52 11.41 1.18 4.02 9.03
1 4 1.03 6.55 11.28 0.97 4.98 9.19
1 5 1.33 8.00 11.28 1.27 5.60 8.73
1 6 1.08 9.83 11.34 1.03 7.17 9.15
2 0 2.18 6.10 11.19 2.05 3.96 7.17
2 1 2.19 5.67 11.02 2.01 2.91 7.21
2 2 2.37 6.42 11.18 2.30 3.20 6.67
2 3 2.21 5.92 11.29 2.17 4.29 7.33
2 4 1.76 6.86 11.18 1.57 5.73 7.86
2 5 2.18 6.86 11.16 2.05 5.84 6.98
2 6 2.20 8.92 11.34 1.99 6.89 7.37
3 0 3.25 6.08 11.04 3.27 4.32 4.93
3 1 3.03 6.27 11.01 2.87 3.79 5.71
3 2 3.31 5.53 11.05 3.16 3.85 4.95
3 3 2.56 8.27 11.07 2.52 5.17 6.16
3 4 3.98 6.05 10.95 3.79 5.15 4.48
3 5 3.98 8.45 11.13 3.69 7.75 4.49
3 6 2.83 7.71 11.28 2.81 6.80 5.60
4 0 4.27 7.12 10.96 3.82 3.85 3.89
4 1 3.81 8.20 11.11 3.79 5.50 4.13
4 2 4.65 7.85 11.08 4.37 5.46 3.04
4 3 3.92 6.66 10.97 3.50 5.05 4.04
4 4 4.38 6.66 10.93 3.91 7.43 4.03
4 5 4.89 7.86 11.03 3.90 6.44 3.27
4 6 4.97 8.24 11.17 4.69 8.37 2.81
5 0 5.72 8.29 11.06 4.49 6.39 2.64
5 1 5.31 6.93 11.14 2.71 3.97 4.69
5 2 5.74 7.31 11.00 4.70 5.76 2.53
5 3 5.13 8.22 10.91 4.61 6.26 2.95
5 4 5.92 8.25 11.05 5.01 8.65 2.25
5 5 5.81 7.88 11.12 3.45 7.76 3.80
5 6 5.52 8.50 11.03 4.11 7.30 3.36
6 0 7.09 7.99 11.04 5.47 7.13 2.19
6 1 6.56 6.57 10.95 4.27 6.16 3.69
6 2 6.25 7.39 11.05 3.33 7.25 3.51
6 3 6.29 8.26 11.01 4.43 6.65 2.27
6 4 8.32 8.29 11.08 4.69 9.05 3.11
6 5 7.04 10.94 11.13 4.40 6.98 3.35
6 6 6.60 6.61 11.04 4.18 6.84 3.26

Table 4.4: Jitter & Shimmer for artificial voiced speech with SNR = 10dB
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believe that the best method is ‘waveform matching’ which is used by the Praat soft-
ware suite and is essentially the basis of the ‘cross-correlation approach’. The cross-
correlation technique is implemented in the software developed in this thesis and the
values of HNR obtained have been compared, for artificial speech, with the values ob-
tained from the Praat and MDVP software. The Table 4.5 summarises the comparison
where thesis-HNR denote the cross-correlation method. There is no simulated shim-
mer or jitter, and the SNR is achieved by adding a zero-mean pseudo-random Gaussian
sequence of appropriate variance to the purely periodic waveform.

s(n) = 8sin(2π(200/Fs)n)+6cos(2π(400/Fs)n) (4.18)

where the sampling rate Fs = 40000 Hz. This was an early experiment and all subse-
quent experiments use Fs= 44100 Hz. It should also be reported that the 32-bit Win-
dows version 5.4.19 of the Praat software was used to produce Table 4.5, whereas all
later experiments with ‘Praat’ use the 64-bit Windows version 6.0.04. Unfortunately
these two versions of Praat give different results for exactly the same data files.

The ‘actual’ SNR in Table 4.5 is calculated from the actual noisy signal and differs
slightly from the nominal SNR because of the limited number of samples. The Praat
software is unable to calculate the HNR for SNR values much less that 0 dB, and
though thesis-HNR continues to deliver values for this range, they are clearly not as
accurate as those for higher values of SNR.

The results in Table 4.5 indicate that the thesis software produces HNR measure-
ments close to the nominal values of SNR and those of Praat for a periodic test signal
with varying degrees of added noise. The standard deviation of the difference between
thesis-HNR and Praat-HNR over the SNR range -1 dB to 20 dB is 0.24 dB and the
maximum difference is 0.53 dB in a measurement of 11 dB. The standard deviation of
differences of thesis-HNR and Praat-HNR from the nominal values of SNR is 0.4086
and 0.3435 respectively.

Figure 4.10 represents Table 4.5 in graphical form. The occurrence of fundamental
frequency halving (period doubling) is a strong possibility when estimating the funda-
mental frequency of noise affected signals.

This occurred in the Thesis software several times during the generation of Table
4.5. It could not be ascertained whether it also occurred with the Praat software. It
may be inferred from the derivation of Equation (4.13) for HNR that for a strongly
periodic signal, fundamental period doubling should have little effect on thesis-HNR
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SNRdB actual thesis-HNR-dB Praat-HNR-dB
20.00 20.01 20.25 20.38
19.00 19.01 19.07 18.95
18.00 17.95 18.36 18.07
17.00 17.04 17.75 17.59
16.00 16.21 16.12 15.97
15.00 14.91 14.72 14.77
14.00 14.15 14.35 14.41
13.00 13.18 13.75 13.24
12.00 11.97 11.77 11.95
11.00 11.34 12.09 11.56
10.00 10.42 10.13 10.27
9.00 9.26 9.51 9.35
8.00 8.07 7.75 8.02
7.00 7.31 7.85 7.87
6.00 5.79 6.96 6.49
5.00 4.83 5.46 5.18
4.00 4.42 4.72 4.51
3.00 2.90 3.22 3.43
2.00 1.74 2.35 2.54
1.00 1.24 1.80 1.89
0.00 -0.44 0.52 0.33
-1.00 -1.04 0.03 0.18
-2.00 -2.00 -1.45 undef
-3.00 -2.94 -1.75 unde

Table 4.5: Comparison of HNR measurements for periodic waveform (4.18) with
added noise

since the signal will remain strongly periodic at twice its fundamental period. How-
ever, the noise averaging will now take place over twice as many samples, and thus be a
little more accurate. Underestimating the period, for example by mistaking vocal tract
resonance for the effect of vocal cords will affect the thesis-HNR though not catas-
trophically. A mistaken resonance must have a cross-correlation coefficient higher
than that produced by the vocal cord periodicity and taking this as the fundamental
periodicity will simply raise the estimated harmonic component slightly and produce
a slightly less accurate noise estimate.
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Figure 4.10: thesis-HNR & Praat-HNR compared with SNR for periodic waveform for
thesis software and Praat software

4.9 Measuring HNR for artificial voiced speech

To further evaluate the ‘thesis software’ for HNR estimation and to compare it with the
well known Praat and MDVP software suites, samples of artificial voiced speech were
produced by exciting an all-pole vocal tract model, with glottal pulse shaping and lip-
radiation filtering, by a periodic series of discrete time impulses. Again, the poles were
given radii of 0.992, 0.99, 0.988, and 0.986 with frequencies ±610, ±1300, ±2450
and ±3600 Hz respectively to emulate the phoneme /a/. The sampling rate was 44.1
kHz. Pseudo-random Gaussian white noise of zero mean and appropriate variance was
added to achieve signal-to- noise ratios ranging from -4 dB to 20 dB. In this experiment
there was no simulated jitter or shimmer. Table 4.6, as presented graphically in Figure
4.11, indicates that there is a constant 1 dB discrepancy between the ‘thesis’ and Praat
measurements of HNR for synthesised SNR values over the range -2 dB to 20 dB.

The Praat measurements are remarkably close to the nominal values of ‘signal-to-
noise’ ratio (SNR) until it approaches 0 dB. If the constant 1 dB discrepancy is disre-
garded, the thesis software is also strongly indicative of the SNR value. The MDVP
software gives ‘noise to harmonic ratio’ rather than HNR, but this was converted to
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Synth-SNR thesis-HNR Praat MDVP
20 21.74 20.15 9.20
19 20.35 19.03 9.20
18 19.38 18.09 9.20
17 18.32 17.20 9.20
16 17.38 16.19 8.86
15 16.29 15.15 8.86
14 15.11 14.04 8.53
13 14.20 13.17 8.23
12 13.22 12.17 8.23
11 12.21 11.19 7.95
10 11.32 10.23 7.95
9 10.15 9.09 7.21
8 9.18 8.19 7.21
7 8.31 7.19 6.77
6 7.22 6.20 6.38
5 6.33 5.24 6.19
4 5.46 4.40 5.68
3 4.42 3.36 5.37
2 3.39 2.29 4.94
1 2.58 1.47 4.55
0 1.71 0.50 4.08
-1 0.75 -0.43 3.90
-2 -0.27 undef 3.46
-3 -1.16 undef 3.01
-4 -1.63 undef 2.75

Table 4.6: Comparison of HNR measurements for artificial voiced speech with added
noise

HNR by taking the reciprocal and then expressing the result in dB. The MDVP mea-
surements are very different from the thesis-HNR and Praat-HNR measurements.

Although these results indicate that the Praat-HNR measurements should be pre-
ferred to the thesis-HNR measurements, we need to invoke the DSP software from the
voice assessment software which is difficult with the scripting facilities provided by
current versions (e,g. 6.0.04) of Praat. Clearly the constant 1 dB discrepancy needs in-
vestigation, but indications are that adopting the thesis software for HNR measurement
appears reasonable.

4.10 Measuring other features

The software developed by this thesis derives the measurements listed in Table 4.7
from recordings of sustained vowels. The beginning and end of each sustained vowel
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Figure 4.11: Comparison of HNR measurements for artificial voiced speech with
added noise for thesis software, Praat and MDVP

are trimmed to remove silence and each sustained vowel is divided into a series of non-
overlapping 22.676 ms (1000 sample) frames sampled at 44.1 kHz. The software also
measures a fundamental frequency F0 and a voiced/unvoiced decision for each frame.
Where the thesis software is applied to connected speech, some features, such as HNR,
jitter, shimmer, will be appropriate only for frames with pseudo-periodicity

The mean energy per frame (MEPF), the ratio of minimum to maximum energy
per frame energy (RMMEPF) and the standard deviation of the frame-by-frame energy
(STD-EPF) are easily computed for sustained vowels, and for vowels within connected
speech. The MEPF of each vowel is normalized by dividing by the average of the
MEPF values obtained for all ‘normal’ voices out of the 102 examples.

The mean ‘low-to-high spectral (L/H)’ ratio over the bandwidth 0 to 3 kHz with
cut-off frequency 1.5 kHz is calculated for just voiced frames by two methods: digital
filtering and frame-to-frame FFT spectral analysis with averaging. In principle both
methods should give the same result. The standard deviation of the frame-to-frame
measurements of this parameter are is also a measurement provided by the thesis soft-
ware. The bandwidth (3 kHz) and the cut-off frequency (1.5 kHz) were chosen to
highlight the damping of higher frequency energy in vowels that helps to characterize
asthenia and other GRBAS components.
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Feature Label Feature Definition
F1 API Aperiodicity Index
F2 HNR Harmonic to Noise Ratio
F3 Jitter RAP jitter
F4 Shimmer RAP shimmer
F5 MEPF Mean Energy per frame

F6 RMMEPF
Ratio of minimum to maximum energy per

frame energy

F7 STD EPF
Standard deviation of the frame-by-frame

energy

F8 M-L/H
Mean ratio of low to high freq energy with c/o

1.5 kHz

F9 STD-L/H
Standard deviation of L/H spectral ratio with

c/o 1.5 kHz

F10
Min

/Max-L/H
Ratio of Max L/H-SR to min L/H SR (c/o 1.5

kHz)

Table 4.7: Features measured by thesis software

4.11 Feature measurement by ADSV

No single feature can completely characterise any of the GRBAS parameters for all
voice disorders. Most published work uses a combination of different measures. In
addition to the features listed in Table 4.8, there are others that the thesis software
does not derive currently, but may also be useful. KayPentx [Kay96] have produced a
multi-parameter measurement tool, the ‘Analysis of Dysphonia in Speech and Voice’
(ADSV) which was described in Chapter 2 Section 2.8. It is claimed that ADSV
is not as dependent on pitch-cycle determination [AR09, ARJ+10] as the Praat and
MDVP software, though the exact details of the ADSV algorithms are not available.
It produces measurements not provided by other packages that are applicable to both
sustained vowels and connected speech. It was decided to augment the measurements
obtained from the thesis software by some of the ADSV measurements in order to
assess whether they are worth including in further developments of the thesis software.
Table (4.8) lists some of the features that are measured by ADSV.

Feature measurement by ADSV proceeds as follows:

1. The beginnings and ends of sustained vowels and connected speech are trimmed
to remove unwanted periods of silence.
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Feature Label Feature Definition
F11 CPP Cepstral Peak Prominence
F12 CPP STD Std dev of CPP
F13 CPP Max Max CPP for voiced frames
F14 CPP Min Min CPP for voiced frames

F15 ML/H
Mean ratio of signal energy below 4 kHz to

that above 4 kHz
F16 STD L/H Std-dev of ML/H

F17 Max L/H
Max L/H spectral ratio (c/o 4 kHz) for voiced

frames

F18 Min L/H
Min L/H spectral ratio (c/o 4 kHz) for voiced

frames

F19
Mean CPP

f0 STD
Std-dev of the freqs of the cepstral peaks (60

Hz to 300 Hz) for voiced frames
F20 CSID Cepstral/Spectral Index of Dysphonia

Table 4.8: Features measured by ADSV.

2. The speech, sampled at Fs = 44.1 kHz, is divided into a series of 1024 point
overlapping frames with 75% overlap [AR09, ARJ+10].

3. Voiced frames are detected by a voiced/unvoiced decision

4. For each analysis frame, the discrete Fourier transformation (DFT) is applied to
a Hamming windowed version of the signal to obtain a power spectrum. The
logarithm of this power spectrum, symmetrical about Fs/2, is then inverse-DFT
transformed to obtain a real valued cepstrum as described by Baken [BO00].
From such a cepstrum, the cepstral peak prominence (CPP) may be derived as
described earlier in this Chapter and recommended by [HCE94, HH96].

5. A combination of time and ‘cepstral time’ (quefrency) averaging is used to
smooth the cepstrum prior to identification of the CPP [HH96]. A 7-frame cep-
stral averaging is carried out, with each smoothed cepstrum being calculated
from the average of the current cepstrum, those from the three previous frames
and those from the three subsequent frames. Cepstral averaging across time is
followed by 11-bin quefrency averaging, in which each cepstral coefficient is
replaced by the average of the current coefficient with the corresponding five
previous and five subsequent cepstral coefficients.

6. ADSV measures several voice features from each frame. A ratio of low/high
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frequency (L/H) spectral energy is calculated as a measure of ‘spectral tilt’
from the original unsmoothed window, (referred to as the DFT Ratio (DFTR)
in [AR05, AR06]. This low/high spectral ratio has a cut-off frequency of 4 kHz
rather than the 1.5 kHz used by the thesis software, and it takes the whole speech
band-width into account. It is a different measurement.

7. The means and standard deviations of the L/H spectral ratio (c/o 4 kHz) and
CPP are calculated for the entire signal. Standard deviations are collected be-
cause the various spectral/cepstral measures may be averaged across relatively
long duration samples of non-stationary connected speech with vowel-consonant
transitions and intonation. Previous studies have indicated that measures of
variability may be effective in characterizing the severity of voice degradation
[AR06, AR09, CKRT99, WS87].

8. The ADSV program defines a measure the Cepstral/Spectral Index of Dysphonia
(CSID), which provides an assessment of dysphonic severity that can be used to
measure a patients voice quality over time and before and after therapy or other
intervention [ADS]. The CSID is calculated from a multiple regression formula
derived from the correlation of results from the ADSV analysis with perceptual
analysis of of trained scorers. The CSID provides an estimation of dysphonia
severity which approximates a 100-pt. visual analog scale similar to the CAPE-
V tool. Perceptual ratings of dysphonia severity were compared to acoustically-
derived severity estimates using a multiple linear regression model. For esti-
mating the severity in connected speech the model consisting of the cepstral
peak prominence (CPP), CPP STD, the ratio of low-to-high spectral energy, and
its standard deviation are the strongest contributors. A five factor CSID model
incorporating all mentioned 4 acoustic features as well as gender was used to es-
timate severity in sustained vowel samples. Results showed strong relationships
between perceptual and acoustic estimates in dysphonia severity in connected
speech (r =0.81) and sustained vowels (r = 0.96). These correlation values were
obtained for overall severity [ARJ+10].

The CSID formulas were calculated based on the default settings, and from data
sampled at 25,000 Hz. The CSID has not been validated with alternative sam-
pling rates; however, results from 22,050 Hz will likely be very similar to those
obtained using the 25,000 Hz sampling rate. In addition, if any of the settings in
the Advanced Options dialog are changed, the CSID is no longer applicable.
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4.12 Identifying features likely to be indicative of GR-
BAS components.

4.12.1 Grade

‘Grade’ is the perceived degree of hoarseness or abnormality. All features mentioned
above are capable of detect voice abnormality and therefore are likely to be relevant to
Grade prediction.

4.12.2 Roughness

Roughness results from aperiodic vocal fold vibration which generates random noise-
like energy in the voice and thus changes the perceived vocal quality [CL06]. Wolfe
[WFC95] found fundamental frequency variation (jitter), peak amplitude variation
(shimmer) and fundamental frequency tremor to be the best predictors of roughness.
In research conducted by [MFW95] roughness was found to be best predicted by mea-
surements of harmonic-to-noise ratio (HNR).

4.12.3 Breathiness

Breathiness is often due to incomplete glottal closure during the ‘closed’ phases of
the phonatory cycles [HH96]. It may be associated with inflammation, vocal misuse
[Aro90] or more serious and long-term conditions (see Chapter 2). It is normally de-
tected by the harmonic-to-noise ratio (HNR) though there are other measurements such
as ‘glottal excitation to noise ratio’ (GENR) which may give more indication of how
the breathy sound is generated. GENR looks for correlation between the instantaneous
energy of the breathiness and the different phases of vocal cord activity within each
cycle.

There is evidence that the physiological effects of aging may include breathy voice
[Hol87, RB74]. Klatt [KK90] have suggested that the presence of aspiration noise is
the primary sign of breathiness. There are also conflicting findings on the relationship
between spectral tilt and breathiness, with some researchers [Hil88, KK90] proposing
that spectral tilt plays little or no role in the perception of breathy voice and other re-
searchers [FJP76, Kli82] proposing that breathiness is associated with greater amounts
of higher frequency energy. Other studies in this research area have aimed to measure
the relationship between breathiness, GRBAS scoring and measurements [BPG04] of
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a relatively large set of acoustic features. The measurements fall into two categories:

1. Measures of signal periodicity such as HNR, CPP and API

2. Measures of spectral tilt such as ‘low to high spectral ratio’

4.12.4 Asthenia

With Asthenia, the overall speech energy, and, especially, the higher frequency har-
monics of F0 are attenuated causing a lack of volume, ‘richness’ and brightness in
the perceived sound. The lack of volume and the spectral damping may be detected
from the ‘energy’ and low to high spectral ratio measurements included in Tables (4.7)
(thesis software) and (4.8) (ADSV). Other measurements such as CPP, API, and HNR
may also detect the change in harmonic structure that occurs due to asthenia.

4.12.5 Strain

Strain due to speaking, or trying to speak with abnormality functioning vocal cords is
perhaps most subjective GRBAS component and the most variable in its effect. Fea-
tures we have associated with strain are:

1. An abnormality high fundamental frequency (F0)

2. Unnatural and constantly changing periodicity

3. Roughness in the higher frequency range of the speech

These features are measured by F0, by detecting changes in F0 which are much
slower than those detected by jitter and by HNR or CPP (or both).

4.13 Conclusions

Features that affect voice quality and may indicate the presence of voice disorder are
described in this Chapter. ‘Thesis software’ written to measure and quantify some of
these features is described. The use of commercial software (ADSV) for measuring
some other features is also described. The ‘thesis software’ is evaluated against corre-
sponding algorithms in the Praat software package. The Praat software package was
chosen for this validation exercise since its techniques are reasonably well published
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and have been evaluated by many authors. Published comparisons with other packages
such as MDVP have revealed significant differences which, to a degree, have been ex-
plained by the authors of Praat. The Praat software has scripting, but, with the current
version (5.4.19), it could not be used without some user interaction. Hence the need for
the ‘thesis software’. This software uses what we believe to be the best available tech-
niques, though its optimization to commercial levels of reliability, a great art in speech
processing, is beyond the scope of this thesis. Voice has multidimensional properties
and measurements of a single feature, we believe, can not quantity even one of the GR-
BAS components over a wide variety of voice conditions. Our aim in next chapter is
to determine to what extent the features identified in this chapter as likely to be useful
for predicting GRBAS components are actually useful. Some measurements, such as
Jitter and Shimmer are made only for vowels but others will be made from voiced and
unvoiced sections of connected speech.

There is clearly overlap in the information given by each measurement, and two or
more measurements could be affected by the same voice feature. The measurements
are not expected to be orthogonal, and, indeed, there is much to be said for having
as many measurements as possible. Some measurements may concur for some voice
conditions and diverge for others. Two measurements may diverge only for special
conditions they are tuned to detect. These issues will also be considered in the next
Chapter.



Chapter 5

Objective Prediction of GRBAS Scores

This chapter discusses the methodology and machine learning techniques that are used
in this thesis for the objective prediction of GRBAS scores. The machine learning tech-
niques will be trained using ‘training data’ consisting of examples of measured ‘voice
features’, together with ‘reference’ GRBAS scores which can be considered ‘reliable’.
We investigate the use of machine learning algorithms with the measurements of voice
features that were discussed in Chapter 4.

The work in this chapter also considers feature dimensionality and its effect on the
performance of the machine learning algorithms. A large set of voice measurements
may be used to provide data for the machine learning and prediction algorithms. How-
ever, it may be feasible and preferred to take a smaller number of voice features for
predicting the GRBAS scores. The literature for feature dimensionality reduction by
introducing ‘feature extraction’ and ‘feature selection’ methods is reviewed and the
two main methods for feature selection, ‘filters’ and ‘wrappers’ are explored. How
the most relevant set of features for GRBAS prediction can be identified using feature
selection methods is explained. With feature selection, the methods that appear likely
to give the lowest prediction error are considered as appropriate methods. The results
obtained from different models for the objective prediction of GRBAS scores are com-
pared and analysed ‘with feature selection’ and ‘without feature selection’. The best
feature subset for predicting each GRBAS component objectively is identified amongst
different subsets. In this chapter L will denote the number of sample in the training set
and is normally equall to 80.

154
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5.1 Supervised learning prediction models

As mentioned in earlier chapters, regression models are preferred to classification mod-
els for GRBAS prediction. GRBAS scores can be considered as either ‘quantitative’ or
‘categorical data’. Quantitative data have numerical values. Categorical data consist
of elements which are non-numerical and members of different classes, or categories.
When considered as categorical data, GRBAS scores are ‘normal’, ‘mild impairment’,
‘moderate impairment’ and ‘severe impairment’. Dealing with categorical data is of-
ten referred to as a classification problem. Assigning the number ‘0’ to ‘normal’, ‘1’
to ‘mild impairment’, ‘2’ to ‘moderate impairment’ and ‘3’ to ‘severe impairment’
allows the GRBAS scores to be considered as quantitative data. In this thesis, ‘GR-
BAS scores’ are considered quantitative so regression models can be used. Regression
problems take into account the numerical differences between the scores. Two su-
pervised learning models are used for predicting the GRBAS scores. These models
are multiple linear regression (MLR) and ‘K-nearest-neighbour- regression’ (KNNR)
[BF85, Jia02]. A description of each prediction algorithm is given in the following
sections. The term ‘supervised’ was explained in Section 2.13.2.

5.1.1 ‘Multiple Linear Regression’ (MLR)

MLR is an approach for supervised learning problems. Equation (5.1) represents a lin-
ear regression model for predicting a variable Y with a dependency on the k predictor
features X1, X2, . . . , Xk. In our application, Y is the ‘reference’ or ‘gold standard’
obtained from the five scores and X1, X2, . . . , Xk are the voice feature measurements
discussed in Chapter 4. The constants β0,β1,β2, . . . ,βk are the regression coefficients
and ε is the prediction error which must be small in magnitude if the model is to be
considered accurate. When k = 1 the model is simple linear regression and when k>1,
it is multiple linear regression (MLR). The relationship between each individual pre-
dictor feature and the response Y may be estimated and modeled by a one-dimensional
linear regression equation. This pre-supposes that the relationship is really linear or
approximately so. However, instead of producing a separate simple linear regression
model for each voice feature, a better approach is to extend the simple linear regression
model to Equation (5.1) so that it can directly accommodate multiple predictors.

Y = β0 +β1X1 +β2X2 + .....+βkXk + ε (5.1)
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Assume that Y represents the ‘grade’ dimension of GRBAS and that we are given
values of ‘grade’ with corresponding measurements of voice features such as HNR,
API, Jitter, shimmer, etc for a large number (N) of subjects. Multiple linear regression
can be applied to model the relationship between the ‘grade’ scores and these voice
features. Having calculated the beta parameters for this relationship, the grade score
for a new subject can then be predicted from measurements of the specified voice
features in the new subject.

When there are N subjects, we have N values of Y, called Y1,Y2, .....YN. For each
Y i, we have corresponding values of the k voice features which we call Xi1, Xi2,.....Xik.
If the MLR model represented by equation (5.1) is likely to be useful, the following
set of N equations should apply with suitably small values of ε1,ε2,ε3, .....εN

Y 1 = β0 +β1X11 +β2X12 + .....+βkX1k + ε1 (5.2)

Y 2 = β0 +β1X21 +β2X22 + .....+βkX2k + ε2 (5.3)

Y n = β0 +β1Xn1 +β2Xn2 + .....+βkXnk + ε3 (5.4)

These N equations can be represented in matrix form as

Y = X .β+ ε (5.5)

The accuracy of the model is determined by the magnitudes of ε1,ε2, ....εN . A measure
of this accuracy is the sum of squares:

E = ε1
2 + ε2

2 + ....+ εN
2 = ε

T
ε (5.6)

The smaller the value of E, the more accurate is the MLR model in representing the
known data. It is pre-supposed that the more accurate the model is for known data,
the more accurate it is likely to be for unknown data (new subjects). The next section
considers how the parameters β0,β1,β2, . . . ,βk, i.e. the elements of vector β, may be
calculated such that E is minimised for the known data.

5.1.1.1 Estimating the regression coefficients

The N by (k+1) matrix X in equation (5.5), whose first column contains just ones
is referred to as the design matrix. Vector β contains all the regression coefficients
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β0,β1,β2, . . . ,βk. It may be shown [ Re92] that the vector of regression coefficients, β,
that minimises E = εT ε is:

β̂ = X#.Y (5.7)

where X# is the ‘pseudo-inverse’ of the non-square matrix X and is equal to:

X# = (XT X)−1XT (5.8)

and where ‘T’ denote ‘matrix- transpose’. This assumes that, there are enough values
of Y to make XT X non-singular. In fact, the MATLAB function ‘pinv’ was used to
produce pseudo-inverse’ X#. Having obtained values of β0,β1,β2, . . . ,βk in vector β̂,
the multiple linear regression model:

Ŷ = β0 + β̂1X1 + β̂2X2 + .....+ β̂kXk (5.9)

produces, for a set of feature measurements X1,X2, ....Xk from a given subject, an
estimate Ŷ . If the MLR model is successful, Ŷ will be close to Y for all the subjects
in our data-base, and may then be expected to be close to a GRBAS score for an
unknown subject for which feature measurements X1,X2, ....Xk have been made. The
calculation of β0,β1,β2, . . . ,βk as outlined above is one form of ‘machine learning’.
The information that has been learned is held in these k (small k) coefficients.

5.1.2 ‘K Nearest Neighbour’ (KNN) Regression

KNN is a non-parametric method for classification and regression [Jia02]. It does not
make any assumption about the distribution of the data or whether the relationship
between the feature measurements and the target scores is likely to be linear or non-
linear. With KNN, the ‘machine learning’ information is held in the data-base itself,
so just giving the machine a data-base is all that is required of the learning process.

The data-base should consist of the k (small k) feature measurements and the ‘re-
liable’ reference scores for each of the N subjects. K (large K) is an integer parameter
that defines the way the KNN approach predicts a score for a new subject from mea-
surements of its k parameters. The prediction is based on the known scores for K mem-
bers of the database which are chosen according to the distance of their measured fea-
tures from the measured features of the new subject. The concept of ‘distance’ can be
defined in various ways: for example, Manhatten distance (sum of moduli [RMR07])
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or Euclidian distance. We have taken the Euclidean distance which means the square-
root of the sum of the squared differences between the k feature measurements of the
new subject and the corresponding feature measurements of the data-base subject.

When KNN is used for classification or regression, the ‘distance’ between the new
subject and each of the N data-base subjects is calculated. Then K data-base subjects
are selected as being those that are nearest to the ‘new subject’ according to their
feature measurements and the Euclidean distance measure. This is out of all possible
choices of K data-base subjects. To take an example, assume that K= 5, and that the 5
nearest neighbours to a new subject are as shown in Table 5.1.

subject distance classification label
7 0.1 ‘moderate’ 2

15 0.4 ‘normal’ 0
22 0.2 ‘severe’ 3
25 0.8 ‘normal’ 0
27 0.1 ‘mild’ 1

Table 5.1: Illustration of five nearest neighbours

If KNN is used for ‘classification’, majority voting could be used to select ‘normal’
as the classification result in this illustration, since ‘normal’ occurs more often than
the other classifications of ‘grade’. Using ‘0’ as a label for ‘normal’, ‘1’ for ‘mild
impairment’, and so on does not change this classification process if we continue to
regard 0, 1, 2 and 3 as classification labels and not numbers. The classification result
would still be ‘0. However, KNN regression (KNNR) would give a different result by
considering the magnitudes of the numbers to be measures of the degree of impairment.

A simple form of KNN regression takes the arithmetic mean (average) of the scores
of the K nearest neighbours as the result. In the example, this would be the average of 0,
0, 1, 2, 3 which is 1.25. A preferred form of KNN regression takes a weighted average
of the scores of the K nearest neighbours where each score is weighted according to
the ‘near-ness’ of the data-base subject to the new subject. Defining nearness as the
reciprocal of the Euclidean distance with provision for accommodating a distance of
zero, allows a weighted arithmetic mean, defined as follows, to be used to predict the
required new score.

prediction =
n1× s1 +n2× s2 +n3× s3 +n4× s4 +n5× s5

n1 +n2 +n3 +n4 +n5
(5.10)

where n1, n2, n3, n4, and n5 are the ‘nearness’ factors and s1, s2, s3, s4, s5 are the
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reference scores. For the illustration in Table (5.1), the weighted prediction would be:
(2×10+0+5×3+1.25×0+10×1)/(10+2.5+5+1.25+10) = 45/28.25 = 1.59
This may subsequently be rounded to 2.

If all neighbours are equidistant from the new subject, the weighted average be-
comes the normal average. If the new subject happens to coincide with a data-base
subject, having identical feature measurements and therefore a distance of zero, a large
nearness factor would be generated probably ensuring that the score of the new sub-
ject would be identical to the coinciding data-base subject. Taking a non-weighted
average would not necessarily ensure this. However, it is not always desirable espe-
cially if there is some unreliability in the feature measurements or the reference scores.
Weighted KNN is regression, well researched [LC11, PIGP+93] though it has issues
that would be suitable topics for further research. A clear advantage over the simple
approach is that the value of K becomes less critical.

Regression takes into account that there is a stronger difference in severity between
scores 1 and 3 than between 1 and 2. Majority voting classification would not take this
difference into account.

5.1.2.1 Feature scaling with KNNR

The numerical values of the feature measurements for each subject in the data-base
can have widely different dynamic ranges. The ranges can differ by many orders of
magnitude such as 0 to about 5% for jitter and 0-100 for CSID. This dynamic range
feature variability can adversely affect the result of KNN classification or regression
since large numerical differences in feature measurements with large dynamic ranges
may dominate into insignificance small numerical differences in feature measurements
with small dynamic ranges. To improve the performance of KNN regression, all feature
measurements are scaled as in Equation (5.11) to make the mean of each feature equal
to zero and the standard deviation equal to 1.

f m scaled(n,i) = ( f m (n,i)−M(i))/σ(i) f or i = 1,2, ....,k (5.11)

where f m(n,i) is the ith feature-measurements and f m scaled (n,i) is the scaled version of
f m(n, i) for each subject n = 1,2, . . . ,N. For each feature measurement i, M(i) and
σ(i) are the mean and standard deviation of the unscaled measurements f m(n,i) over all
subjects n = 1,2, . . . ,N.

Feature scaling is not necessary for MLR because the beta coefficients in Equation
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(5.1) effectively weight the contribution of each measured feature. Small values of
beta are normally obtained for feature measurements with large dynamic range, and
vice-versa.

5.1.3 Performance of prediction models

An important task is to decide for the collected data-base which prediction model
(KNNR or MLR) can produce the best results when the parameters, such as K, have
been chosen optimally. Ultimately, it must be decided whether either of these models
can be the basis of a useful voice quality assessment system. To compare the models,
we need have some way to measure the extent to which predictions to GRBAS scores
obtained from the models actually match the scores obtained from our five SLT scor-
ers. In applications of regression, a commonly used measure of prediction accuracy is
the root-mean-squared-error (RMSE). The RMSE between ‘predicted’ and ‘reference’
values of GRBAS parameters computed over all subjects in the data-base as some in-
dication of whether the objective scoring technique is likely to work with unseen data
that was not used to fit the model. This value of RMSE is referred to as the ‘training-
RMSE’ Although the ‘training-RMSE’ can give us some confidence in our training
methodology, this may be false confidence as we cannot be certain that it will accu-
rately predict the performance of the system for future subjects not in the data-base. If
the training-RMSE is poor meaning that the system is not working well for the data it
was trained on, this strongly suggests that something is wrong with the system. We are
not primarily interested in the performance of the system for subjects used to train the
model, since we already know the GRBAS scores for these subjects.

We may set out to produce a model that gives the lowest possible ‘training-RMSE’
over the whole database of N subjects. However, we would like to be able to test the
performance of the model afterwards using unseen data not in the data-base. But we
may not have any more data. Therefore, it is necessary to set aside some of the subjects
in our data-base for testing. Assume we use a sub-set of L subjects for training. The
‘training-RMSE’ between the predicted ˆ(Y i) and the observed (or reference) values
(Y i) of some GRBAS parameter, for L subjects, is:

TrainingRMSE =

√
(1/L)

L

∑
i=1

(Ŷ i−Y i)2 (5.12)

The training-RMSE will be small if the predicted GRBAS scores are very close to the
reference GRBAS scores for these L training subjects and will be larger if some of them
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differ substantially. The ‘training Normalised Root-Mean-Square-Error’ (training-
NRMSE) is defined as the following percentage:

TrainingRMSE(%) = (TrainingRMSE/(GRBASmax−GRBASmin))×100

= (TrainingRMSE/3)×100
(5.13)

This is a percentage of the maximum GRBAS score of ‘3’.

5.2 Training and testing

In our experiments, there were k =20 voice feature measurements per subject. Ten of
these were produced by the ‘thesis software’ described in Chapter 4, and the other ten
were obtained using the Kay-Pentax ADSV software. The features and their acronyms
are presented in Tables (4.7) and (4.8). To test the capabilities of the MLR and KNNR
methods for predicting each GRBAS component [WF05], L= 80 subjects were chosen
for training purposes from the data-base of N = 102 subject. The remaining (N-L) =
22 subjects were set aside for testing purposes.

The 80 subjects selected for the training process were divided into a number of
‘folds’ to allow ‘cross-validation’ [K+95]. With ten folds, each containing 8 randomly
chosen subjects, this meant that the model was trained using the 72 subjects contained
in nine folds chosen at random out of the ten folds. The remaining one fold, containing
8 subjects, was then available to be used for a validation test (see later). This pro-
cess, referred to as a ‘trial’, was repeated 19 times; each time with a different random
choice of L subjects for the training subset and therefore a different testing sub-set. We
therefore performed 20 trials, for each trial, there was a training phase and a testing
phase.

The training phase for MLR calculates a set of beta coefficients from the L se-
lected training subjects as outlined in Section 5.1.1. The training phase for KNNR
just requires a database to be populated with the L selected training subjects, and an
appropriate value of K to be selected as indicated in Section 5.2.1.

The testing phase was the same for both MLR and KNNR. The trained models
were applied to the 22 testing subjects and the results obtained for each GRBAS com-
ponent were compared with the known reference value for that component. A value of
the ‘testing-RMSE’ and the ‘testing Pearson’s correlation coefficient’ testing-corr was
obtained over the 22 testing subjects where:
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TestingRMSE =

√
(1/(N−L))

N−L

∑
i=1

(Ŷ ′i−Y ′i)2 (5.14)

Ŷ ′i are the predicted values of a GRBAS component and Y ′i are the reference values
of that component for the N-L members of the testing subset. The testing RMSE is
normalised as for the training RMSE in Equation (5.13) to produce a testing NRMSE
expressed as a percentage. The coefficient ‘testing-corr’ for each trial is simply the
Pearson correlation between the 22 values of Ŷ ′i and the corresponding reference val-
ues Y ′i. After conducting 20 trials, we have 20 values of testing-RMSE and 20 values
of testing-corr for each GRBAS component. These are averaged over the 20 trials to
obtain overall values of these parameters referred to as ‘NRMSE’ and ‘Corr’. Figure
5.1 shows a full cross-validation procedure.

Data 
(102)

Train (80)

Test (22)

Fold10:validation

Fold2: train

Fold1: train

Test

} Cross  
Validation

} Final Test

Figure 5.1: Full cross-validation procedure, with train, validation and test sets.

5.2.1 Optimum K for the GRBAS prediction by KNNR

With KNNR, the accuracy of the prediction will be affected by the value of K, which
is the number of nearest neighbours chosen from the data-base. To determine an ap-
propriate value of K for each ‘trial’, the 10 fold cross-validation approach mentioned
above was used as now described.

Setting aside ‘fold 1’ for ‘validation’, the remaining 72 subjects, from the other
nine folds, were used to populate the KNNR data-base. The KNNR procedure was
then applied repeatedly to each of the 8 subjects in ‘fold 1’, firstly with K=1, then
with K=2, K=3, and so on up to K=10. The normalised RMSE between predicted and
reference GRBAS scores was computed over the 8 subjects for each value of K.

This procedure was repeated with ‘fold 2’ set aside and the remaining 72 subjects
used to populate the KNNR database. The KNNR procedure was applied repeatedly to
each subject in ‘fold 2’ to obtain a second normalised RMSE for each value of K. After
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repeating the procedure for ‘fold3’, ‘fold4 and so on up to ‘fold 8’ the eight values of
normalised RMSE obtained were squared, averaged and square-rooted to obtain an
overall ‘validation-NRMSE’ for each value of K for one trial.

This whole sequence of calculations was carried out 20 times, each time with a
different random choice of L = 80 training subjects, to complete a series of 20 trials.
This resulted in 20 sets of values of overall validation-NRMSE, one set for each trial.
Each set contained a prediction error for each GRBAS component for each value of
K in the range 1 to 10, i.e. 50 values. For each GRBAS component, for each value
of K, the 20 values of validation-NRMSE, one for each trial, were squared, averaged
and square-rooted, to obtain an trial-averaged validation-NRMSE, referred to as the
‘average NRMSE over 20 trials’. The term ‘validation’ is perhaps a misnomer since
the aim of the sequence of calculations just described is to find a suitable value of
K rather than to validate anything. The sequence of calculations produces the five
graphs shown in Figure (5.2) for ‘grade’, Figure (5.3a) for ‘roughness’, Figure (5.3b)
for ‘breathiness’, Figure (5.3c) for ‘asthenia’ and Figure(5.3d) for ‘Strain’. Each of
these graphs shows the value of trial-averaged NRMSE for each value of K in the
range 1 to 10.
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Figure 5.2: Average of Trial-Averaged-Validation-NRMSE for K=1 to K=10 (Grade)

As well as producing the averaged results in Figures (5.2) to (5.3d), the optimum
value of K for each trial was obtained by observing the value of K that gives the lowest
value of validation-NRMSE for each trial. The optimum value of K for ‘grade’ in each
trial is shown in the histogram in (5.4). Similar histograms are produced for the other
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Figure 5.3: Average of Trial-Averaged-Validation-NRMSE for K=1 to K=10 (RBAS)

GRBAS components in Figures (5.5a) to (5.5d). The histograms show that the best
value of K is not necessarily the largest. Figures (5.2) to (5.5d) were all produced for
the case where all available 20 features are used for the predicting the GRBAS scores.
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Figure 5.4: Optimum K for 20 features in each Trial (Grade)

Although there is clearly some variability in the optimal value of K for different
training and validation data-sets, and for different GRBAS components, in practice, a
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fixed value of K must be adopted for a practical system. Figures (5.2) to (5.3d) show
that the trial-averaged value of NRMSE does not change significantly for K greater
than about 5 for any of the GRBAS components. Therefore, in subsequent experiments
with KNNR, K=5 will be adopted. Finding an appropriate value of K completes the
training phase for KNNR.
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Figure 5.5: Optimum K for 20 features in each Trial (RBAS).

5.3 Prediction by all features

The procedure for training and testing outlined in Section 5.2 was carried out for both
the MLR and KNNR models applied to each of the five GRBAS components. For
the KNNR testing, an appropriate value of K had to be chosen as addressed in the
previous section. In each case, the training was repeated for 20 ‘trials’ where, for each
trial, a new randomly selected subset of 80 subjects was used for training the model
with the remaining 22 subjects used for testing it. Initially all 20 feature measurements
were used. Table 5.2 compares the averaged testing-NRMSE and testing-corr values
obtained for each GRBAS component using MLR and KNNR with all 20 features
taken into account. The averaging is over all 20 trials.

It may be seen in Table 5.2 that the performances of these two techniques appears
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MLR KNNR
GRBAS NRMSE% Corr NRMSE% Corr

G 21.44 0.71 23.93 0.65
R 19.76 0.60 19.92 0.59
B 21.27 0.52 21.72 0.48
A 15.93 0.63 15.83 0.66
S 16.97 0.65 17.52 0.63

Table 5.2: Prediction results using all 20 features.

quite similar according to the ‘NRMSE’ and ‘Corr’ measurements and the testing pro-
cedure outlined earlier. The NRMSE measure for MLR is slightly lower (better) than
that for KNNR for ‘G’, ‘R’, ‘B’ and ‘S’ and only very slightly higher for ‘A’. This is
consistent with the ‘Corr’ measure for MLR which is higher for ‘G, ‘R’, ‘B’ and ‘S’
and lower for A. The significance of the values obtained as an indication of the practi-
cality of an objective voice assessment system based on MLR or KNNR will be more
fully addressed in the next Chapter. NRMSE percentages around 17% represent about
half an increment in GRBAS scoring and, according to Table 3.1 in Chapter 3, Pear-
son correlation between 0.5 and 0.8 represents ‘strong linear correlation’. Therefore,
although our hope for NMRSE = 0 and corr = 1 have not been realised, the values in
Table 5.2 do not appear totally discouraging. However it would be good to find ways
of improving these values and the following sections address this issue.

5.3.1 Discussion

The 20 features cannot be expected to produce measurements which are statistically
independent of each other. Some will be strongly correlated. Also the usefulness of
each of these features as a predictor to a GRBAS score will be far from uniform. Some
features may be strongly indicative and others may be less so. An indication of the
usefulness of each measured feature for predicting a given GRBAS component can be
obtained by computing the Pearson correlation between the reference scores and the
corresponding measurements of that single feature. There is an assumption here that
a linear approximation to the relationship between the feature and the GRBAS score
gives a reasonable indication of the strength of the relationship, if there is one.

Where there are feature measurements which are strongly correlated with each
other, the use of ‘Principle Component Analysis’ (PCA) or a related technique can
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clearly reduce the dimensionality of the prediction procedure and thus save much com-
putation. However, such a reduction in dimensionality would not, in itself, improve the
prediction results except as a means of identifying and eliminating linear combinations
of features that are considered adequately represented by other linear combinations of
features. The correlation of features or linear combinations of features with the predic-
tion error is not taken into account with this process, though it can be in enhanced forms
of PCA such as Principal Component Regression (PCR) and Partial Least Squares Re-
gression (PLSR). We found that including the same strongly indicative feature twice
does not affect the accuracy of the prediction, only the computation required. There-
fore, we have not employed PCA in this thesis since we prefer to eliminate features
individually on the basis of their direct effect on the output. In future work, it may be
useful to investigate PCR, rather than PCA, for the feature selection procedures.

There is a reason to believe that including features that are not indicative of the
GRBAS component being predicted may degrade the prediction, essentially by intro-
ducing noise or confusion. Therefore, we performed some experiments with feature
reduction to try to improve our results by eliminating some features. Applying the
feature selection procedures that will be introduced later in this section becomes com-
putationally intensive when there are 20 features. With 20 features there are 220 pos-
sible combinations of features. Therefore we started with a simple feature selection
procedure for eliminating up to ten of the twenty features. We investigated the extent
to which the prediction could be improved or degraded by discarding up to ten features
from the original set of 20.

5.4 Progressively discarding features

The number of features was reduced to 19 by discarding the feature whose measure-
ments had the lowest value of Pearson Correlation with the GRBAS component over
102 examples. The Pearson correlation values for ‘G’,’R’,’B’,‘A’ and ‘S’ are given in
Tables (5.8) to (5.12) respectively. This procedure was repeated by discarding the fea-
ture with the next lowest correlation, and so on until only ten features remained. Tables
(5.3), (5.4), (5.5), (5.6) and (5.7) show the values of NRMSE and Corr for the different
numbers of features. As for table 5.2, these tables were computed for 22 randomly
selected testing subjects and averaged over 20 trials.

These tables show that reducing the number of features from 20 to 10 does not
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MLR KNNR
Number of Features NRMSE Corr NRMSE Corr

20 21.44 0.71 23.93 0.65
19 21.12 0.72 23.46 0.67
18 21.65 0.71 23.50 0.66
17 21.72 0.70 23.69 0.66
16 22.04 0.70 23.73 0.66
15 21.63 0.70 23.88 0.66
14 21.83 0.70 23.93 0.65
13 21.65 0.70 24.17 0.65
12 22.06 0.69 24.06 0.65
11 22.15 0.69 24.01 0.65
10 21.82 0.70 24.14 0.65

Table 5.3: Prediction Results for Grade by MLR and KNNR

MLR KNNR
Number of Features NRMSE Corr NRMSE Corr

20 19.76 0.60 19.92 0.59
19 19.58 0.60 19.77 0.60
18 19.34 0.62 19.61 0.61
17 19.60 0.61 19.77 0.60
16 19.55 0.61 19.35 0.61
15 19.04 0.62 19.46 0.61
14 18.78 0.63 19.41 0.61
13 18.57 0.63 19.40 0.61
12 18.23 0.65 19.70 0.60
11 18.11 0.65 19.66 0.59
10 17.97 0.66 20.12 0.58

Table 5.4: Prediction Results for Roughness by MLR and KNNR

significantly affect the accuracy of the KNNR prediction for any of the GRBAS com-
ponents, though there is an improvement for MLR predicting ‘Roughness’, ‘Breathi-
ness’ (small) and ‘Asthenia’. Both Pearson Correlation and NRMSE are consistent in
their indications of the changing accuracy for each GRBAS component. For predicting
‘Grade’ by MLR, the NRMSE and correlation remain about 21.44% and 0.71. When
applying KNNR for Grade prediction, the NRMSE remained about 2% higher and the
correlation about 6% lower than MLR as the number of features were reduced. For ‘R’
the MLR and KNNR assessments of NRMSE and Corr started off similar, but MLR
improved significantly (according to both assessments) as the number of features was
reduced; KNNR did not change much. For ‘B’ and ‘S’, there was little change, though
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MLR KNNR
Number of Features NRMSE Corr NRMSE Corr

20 21.27 0.52 21.72 0.48
19 21.01 0.53 21.37 0.50
18 20.88 0.54 21.67 0.48
17 21.52 0.51 21.85 0.47
16 21.75 0.51 21.77 0.49
15 21.78 0.51 21.87 0.50
14 21.60 0.52 22.22 0.48
13 21.10 0.53 21.85 0.50
12 21.02 0.52 21.70 0.50
11 20.72 0.53 21.90 0.50
10 20.60 0.54 21.71 0.51

Table 5.5: Prediction Results for Breathiness by MLR and KNNR

MLR KNNR
Number of Features NRMSE Corr NRMSE Corr

20 15.93 0.63 15.83 0.66
19 15.75 0.64 15.75 0.66
18 15.67 0.65 15.66 0.67
17 15.64 0.65 15.85 0.67
16 15.26 0.67 16.20 0.66
15 15.07 0.68 16.07 0.66
14 14.87 0.69 15.74 0.67
13 14.80 0.69 15.89 0.67
12 14.63 0.70 15.87 0.67
11 14.48 0.70 15.55 0.67
10 14.26 0.71 15.79 0.67

Table 5.6: Prediction Results for Asthenia by MLR and KNNR

for ‘A’ there was significant improvement in MLR (not KNNR) as the number of fea-
tures were reduced. Overall, the highest correlation (0.72) was obtained for Grade with
19 features and Asthenia (0.71) with 10 features. The lowest NRMSE values (around
14%) were obtained for Asthenia prediction.

These tables appear to indicate that there may be some advantage, with respect to
MLR only, in reducing the number of features by discarding those with lowest Pearson
correlation to some of the GRBAS components. There is no evidence that any accuracy
is lost by this action applied to either MLR or KNNR.

Tables 5.3 to 5.7 showed the ‘Pearson correlation coefficient’ and ‘testing-NRMSE’
between predicted and reference GRBAS scores, for testing examples of 22 subjects,
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MLR KNNR
Number of Features NRMSE Corr NRMSE Corr

20 16.97 0.65 17.52 0.63
19 16.56 0.66 17.40 0.64
18 16.83 0.65 17.48 0.63
17 16.80 0.65 17.51 0.62
16 16.89 0.64 17.37 0.63
15 17.28 0.63 17.46 0.63
14 17.45 0.62 17.56 0.63
13 17.12 0.64 17.66 0.62
12 16.92 0.65 17.38 0.64
11 16.78 0.65 17.70 0.63
10 16.68 0.66 17.76 0.62

Table 5.7: Prediction Results for Strain by MLR and KNNR

averaged over 20 trials. This was done for between 20 and 10 features selected accord-
ing to the correlation values in Tables 5.8 to 5.12.

Grade
Feature Label Corr P-Value

F4 0.70 4.44E-16
F14 -0.64 6.79E-13
F20 0.62 4.50E-12
F11 -0.61 1.40E-11
F13 -0.48 5.20E-07
F1 0.47 9.48E-07
F5 -0.46 1.02E-06
F2 0.46 1.08E-06

F19 0.43 6.19E-06
F6 -0.43 7.78E-06

F12 0.42 1.33E-05
F18 -0.41 2.43E-05
F16 0.40 2.98E-05
F10 -0.39 5.63E-05
F7 -0.37 1.42E-04

F15 -0.31 1.38E-03
F3 0.23 2.10E-02
F9 0.21 3.09E-02

F17 -0.16 1.04E-01
F8 0.12 2.45E-01

Table 5.8: Correlation of individual feature measurements with Grade score.
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Roughness
Feature Label Corr P-Value

F4 0.68 4.48E-15
F14 -0.59 8.69E-11
F20 0.57 4.82E-10
F12 0.52 2.89E-08
F11 -0.51 5.92E-08
F19 0.44 4.14E-06
F5 -0.43 7.28E-06
F1 0.38 1.11E-04
F7 -0.37 1.38E-04
F2 0.36 1.78E-04
F18 -0.36 2.33E-04
F16 0.34 5.74E-04
F6 -0.32 9.62E-04
F13 -0.30 2.27E-03
F10 -0.26 8.61E-03
F15 -0.25 1.06E-02
F3 0.23 2.07E-02
F9 0.17 9.91E-02
F17 -0.14 1.51E-01
F8 0.10 3.35E-01

Table 5.9: Correlation of individual feature measurements with Roughness score.

Breathiness
Feature Label Corr P-Value

F13 -0.54 3.93E-09
F11 -0.54 6.00E-09
F4 0.50 8.23E-08
F20 0.48 3.58E-07
F14 -0.47 5.32E-07
F5 -0.46 1.50E-06
F2 0.43 8.95E-06
F1 0.42 1.23E-05
F7 -0.37 1.21E-04
F10 -0.36 1.77E-04
F18 -0.36 1.89E-04
F19 0.32 1.00E-03
F15 -0.32 1.19E-03
F16 0.31 1.40E-03
F6 -0.28 4.50E-03
F17 -0.20 5.04E-02
F3 0.16 9.98E-02
F12 0.14 1.75E-01
F9 0.06 5.58E-01
F8 -0.04 7.06E-01

Table 5.10: Correlation of individual feature measurements with Breathiness score.
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Asthenia
Feature Label Corr P-Value

F4 0.66 3.67E-14
F11 -0.64 6.30E-13
F20 0.63 1.09E-12
F14 -0.63 1.14E-12
F13 -0.56 8.08E-10
F19 0.48 4.40E-07
F5 -0.47 5.31E-07

F16 0.46 1.59E-06
F18 -0.45 1.85E-06
F1 0.45 1.89E-06

F10 -0.45 2.20E-06
F2 0.45 2.50E-06
F6 -0.45 3.08E-06
F7 -0.35 2.96E-04

F15 -0.35 3.25E-04
F12 0.33 6.49E-04
F9 0.23 2.12E-02

F17 -0.18 7.89E-02
F3 0.15 1.23E-01
F8 0.12 2.15E-01

Table 5.11: Correlation of individual feature measurements with Asthenia score.

Strain
Feature Label Corr P-Value

F4 0.69 1.82E-15
F14 -0.61 9.30E-12
F20 0.59 6.02E-11
F11 -0.58 3.02E-10
F6 -0.47 5.82E-07

F13 -0.45 2.47E-06
F18 -0.42 1.04E-05
F5 -0.42 1.46E-05

F19 0.41 1.77E-05
F1 0.41 2.18E-05

F16 0.40 3.13E-05
F12 0.38 7.61E-05
F2 0.38 1.00E-04

F15 -0.33 6.65E-04
F7 -0.32 1.14E-03

F10 -0.31 1.41E-03
F17 -0.19 5.12E-02
F3 0.17 9.76E-02
F9 0.16 1.06E-01
F8 0.08 4.08E-01

Table 5.12: Correlation of individual feature measurements with Strain score.
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The effectiveness of this feature selection procedure is likely to be affected by the
following considerations:

1. There is likely to be some non-linearity in the relationship between feature mea-
surements and GRBAS scores. Pearson Correlation is linear and may not accu-
rately reflect this non-linearity. The Pearson correlation coefficient is a measure
of the strength of a linear model of this relationship. An alternative measure
may be more appropriate and will be investigated in further analysis as a wrap-
per method based on NRMSE.

2. Removing a feature may improve the score prediction made according to the
remaining features. This can observed in Table 5.3 where, in Grade prediction,
using 18 features gives a better prediction than using 20 features

5.4.1 Improvement in performance of the prediction models

The following five different approaches may be considered for improving the perfor-
mance of the prediction models:

1. Reducing the complexity of the prediction models by reducing their dimension-
ality, on the grounds that extra dimensions may confuse the learning algorithms
and may cause it to have high variance. Dimensionality reduction will also re-
duce the computational complexity of the models.

2. Improving the MLR or KNNR algorithms.

3. Improving the accuracy of the feature measurements.

4. Including more or different features such as average jitter and average shimmer.

5. Increasing the data-base size or introducing extra scorers.

Item 5 is not feasible for this project in view of the resources and time that would be
involved. Item 2 to 4 are ongoing topics. Item 1 is the subject of the next section.

5.5 Dimensionality reduction

Dimensionality reduction is the process of reducing the number of features that need
to taken into account when making predictions. Dimensionality reduction methods
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can be classified as ‘feature extraction’ or ‘feature selection’ methods. Feature extrac-
tion methods transform a high-dimensional space of feature measurements to a space
of fewer dimensions. Principal Component Analysis (PCA) can achieve such a trans-
formation without reference to the output scores by exploiting dependencies between
feature measurements, that may be assumed to be linear. Many other transformations
exist which can exploit nonlinear dependencies and the statistics of the output scores
[Sam06, DHZS02]. Feature extraction has advantages, such as computational com-
plexity reduction, which have not been exploited in this thesis.

‘Feature selection’ approaches try to find a subset of the original variables that
enable more accurate prediction by the elimination of irrelevant and confusing infor-
mation. Direct feature selection searches to identify, individually, the relevant features
and discard the irrelevant ones. Feature selection may be carried out in combination
with feature extraction as mentioned earlier. Such methods are instances of a wide
range of general strategies for dimensionality reduction, which seek to map the input
variables into a lower dimensional space prior to running the supervised learning al-
gorithm. In this thesis, the main goal of direct feature selection is obtaining a subset
of features that produces lowest error on the regression models. A learning algorithm
is faced with the problem of selecting a relevant subset of features which makes the
best prediction while ignoring the rest in the features. To achieve the best possible
performance with MLR and KNNR on a particular training set, a feature subset se-
lection method should consider how the algorithm and the training set interact. Since
the usual goal of supervised learning algorithms is to minimise regression error on an
unseen test set, we have adopted this as our goal in guiding the feature subset selection.
There are three approaches; filter, wrappers and embedded methods [YTGF99]. Filter
and wrappers are used in the experimental methodology in this thesis.

5.5.1 Filter methods

Filter methods are generally applied as pre-processing steps, with subset selection pro-
cedures that are independent of the learning algorithm. Filter methods apply ranking
to the features. The ranking denotes how useful each feature is likely to be for the
regression models. Once this ranking has been computed, a feature sub-set composed
of the best features is created. Although this leads to a faster learning process, it is
possible for the criterion used in the pre-processing step to result in a subset that may
not work very well downstream in the learning algorithm. However, filter methods
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are fast to compute, and can be successful in capturing useful information in the fea-
ture set and eliminating the rest [YTGF99]. Filter method can be classified as being
based on ‘distance or separability’ measures, or ‘correlation and information theoretic’
measures.

5.5.2 Feature ranking

One of the simplest ranking methods is to use the Pearson correlation coefficient be-
tween each feature and the reference GRBAS scores in data-base. Tables (5.8) to(5.12)
show the 20 available features with their Pearson correlation coefficients with respect
to ‘G’, ‘R’, ‘B’, ‘A’ and ‘S’ respectively. In each table, the features are re-ordered ac-
cording to their values of correlation, and the P-values are shown. A P-Value less than
0.05 means that the probability of obtaining the correlation results by chance is low.

5.5.3 Feature reduction

Feature reduction may be carried out with respect to the Pearson correlation of each
feature with a GRBAS component. As seen in Table (5.8), F8 has the lowest correlation
with Grade, therefore this is ignored when 19 features are used for the prediction.

5.5.4 Wrapper methods

Wrapper methods train a new model for each possible combination of features. With
such methods, the performances of different combinations of features for GRBAS pre-
diction may be investigated [KJ97]. They are computationally intensive, but usually
provide the best performing feature subset. In these methods, the subset selection takes
place based as part of the learning algorithm (in our case MLR or KNNR) used to train
the model itself. The subset that is selected decided in the context of the learning algo-
rithm. The main idea of feature subset selection is to exclude redundant or irrelevant
features that can lead to an increase of the regression error and increase the com-
putational cost. ‘Greedy Search’ and ‘Exhaustive Search’ are two common wrapper
methods. They are described in the following sections.

5.5.4.1 ‘Greedy search’ selection

There are two different types of ‘greedy search’ wrapper methods for feature selection:
‘forward selection’ and ‘backward elimination’. Backward elimination starts off using



176 CHAPTER 5. OBJECTIVE PREDICTION OF GRBAS SCORES

all feature variables and progressively eliminates the least promising ones. Forward
selection progressively incorporates feature variables into larger and larger subsets.
When used with training by cross-validation, at each validation stage, greedy search
methods work by proposing changes to a current subset of features and accepting these
changes only if they result in a reduction in the validation prediction error, i.e. the error
averaged over the ‘set aside’ fold [GE03].

Greedy forward selection was investigated as a method of finding the best feature-
subset as part of the model training procedure for GRBAS prediction. The procedure
started with an empty subset and incrementally introduced features one by one. Each
new feature was included on a ‘probationary’ basis and the resulting regression model
was evaluated as now described.

The evaluation required the model to be trained for all stages of a cross-validation
process. At each stage, all training subjects were used apart from those in the in the ‘set
aside’ validation fold. At each stage, the NRMSE over the ‘set-aside’ validation fold
was calculated and after completing all cross-validation stages an averaged validation
NRMSE was calculated for the probationary feature set.

A probationary feature is kept only if there is a significant reduction in the vali-
dation NRMSE values averaged over all stages. Where several probationary features
achieve a significant NRMSE reduction, the feature which achieves the greatest re-
duction is chosen. If all possible probationary features fail to achieve a significant
reduction, the search terminates and the subset is considered complete. This process is
continued by selecting and evaluation the effect of further probationary features until
either a complete subset is found of the subset contains a maximum of ten features.
This process produces a feature-subset with up to ten features.

To test the effectiveness of this approach, it is repeated for 20 trials with different
random choices of 80 training subjects and 22 ‘set aside’ testing subjects. Figure 5.6
shows the performed process for doing the ‘Greedy Search’.

This ‘greedy’ approach does not consider all possible subsets and therefore may
not find the optimum feature subset. However, by identifying which features cause a
decrease in prediction error when augmenting certain subsets, it can make useful se-
lections of feature subsets. Greedy search approaches have advantages over exhaustive
search methods considered next in that they are computationally less intensive. When
used with MLR model training, repeated MLR calculations have to be carried out using
the pseudo-inverse Equation (5.7). When used with KNNR, the optimum K calculation
procedure outlined in Section 5.2.1 must be carried out along-side the greedy search



5.5. DIMENSIONALITY REDUCTION 177

1 Feature 
per subset

C
al

cu
la

te
 a

ve
ra

ge
 v

al
id

at
io

n 
Er

ro
r P

er
 S

ub
se

t a
nd

 c
ho

os
e 

be
st

 S
ub

se
t

Find the best subset in each stage and finally choose the best subset with minimum validation error 

Greedy Forward Selection

feature 1
feature 2

feature 3
feature 4

feature 5

feature 6

feature 7

feature 8

feature 9
feature 10

2 Features 
per subset

feature 4 & 1
feature 4 & 2

feature 4 & 3

feature 4 & 5

feature 4 & 6

feature 4 & 7

feature 4 & 8
feature 4 & 9
feature 4 & 10

feature 4 & 7 & 1

feature 4 & 7 & 2

feature 4 & 7 & 3

feature 4 & 7 & 5

feature 4 & 7 & 6

feature 4 & 7 & 8

feature 4 & 7 & 9
feature 4 & 7 & 10

3 Features 
per subset

feature 4 & 7 & 3 & …

10 Features 
per subset

best subset will be used to calculate the Test error

TR
IA

L 
1

Stage 1 Stage 2 Stage 3 Stage 10

Figure 5.6: Greedy forward selection by 10-fold cross validation. The procedure
started with an empty subset and incrementally introduced features one by one.

procedure.

5.5.4.2 ‘Exhaustive search’ selection

Exhaustive search methods aim to consider every possible subset of features to find
which one gives the best result prediction. This ‘brute force’ approach is possible
with a small number of features, but can require massive amounts of computation for
larger numbers of features. In this work, the computation time was made manageable
by pre-selecting, for each GRBAS component, ten out of the 20 available features as
described in Section 5.4. This was done by discarding the features with lowest Pearson
correlation to the GRBAS scores to produce Tables 5.3 to 5.7. It could have been
done using the ‘backward elimination’ approach to ‘greedy selection’ as described
above, though with greater computational cost. Experiment results by [BS92] show
the K-fold-cross-validation has better performance than leave-one-out-cross validation
(LOOCV) for feature selection in linear regression. After the pre-selection, the cross-
validation methodology described below may be followed to train the predictor by
exhaustive search feature selection.



178 CHAPTER 5. OBJECTIVE PREDICTION OF GRBAS SCORES

1. With ten pre-selected features there are 210− 1 = 1023 different subsets of fea-
tures. Each of these subsets must be used to train an MLR model and populate
a KNNR model with a sub-set of training subjects chosen for cross-validation as
described in Section 5.2. The sub-set of training subject omits one fold’ set aside
for validation. Once trained, the models must be ‘validated’ for subjects in the
‘set aside’ fold to obtain a value of NRMSE for each model. This procedure is
repeated for each of the ‘set aside’ folds, for each model. The values of NRMSE
for each model are then averaged to obtain a validation-averaged NRMSE for
each model, for each feature-subset. For each model and for each GRBAS com-
ponent, the 1023 feature-subset are used to train and then test a predictor for
the’set-aside’ testing subjects to obtain a testing-NRMSE for trial 1.

2. Steps 1 and 2 as outlined above are repeated for a second trial with a different
random choice of training subjects and ‘set aside’ testing subjects. A testing-
NRMSE for this second trial is thus obtained.

3. In total, sufficient trials must be carried out to obtain an average of trial-averaged-
validation-NRMSE and an average of trial- testing-NRMSE for each model and
for each GRBAS component. This gives a measure of the effectiveness of the
training procedure which includes the selection of the best feature-subset.

4. The feature selection was made for the subset with the lowest the average of
trial-averaged-validation-NRMSE.

5. The average of trial-testing-NRMSE was obtained for those selection of features.

6. Figure 5.7 shows the performed process for doing the ‘exhaustive search’. In
each trial 10-Fold cross validation was carried out.

5.5.4.3 Parallel computing in exhaustive search

Fortunately, the exhaustive search procedure is well suited to parallel computation be-
cause several independent searches can be carried out at the same time. To reduce com-
putation time for the ‘Exhaustive Search’ method, parallel computing was performed in
MATLAB.‘Parfor’ function was used in MATLAB to apply parallel computing. Nor-
mal computation for the ‘exhaustive search’ for each GRBAS component takes about
7-8 hours, doing ‘parallel computing’ with 8 CPU cores reduced the computation time
to about 1-2 hours.
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Figure 5.7: Feature Selection by exhaustive search. In each trial 10-Fold cross valida-
tion was carried out for 1023 different subsets of features.

5.6 Grade Prediction

This section presents results obtained by applying ‘greedy forward selection’ and ‘ex-
haustive search selection’ for ‘Grade’ training and testing the models.

5.6.1 Greedy forward selection for ‘Grade’

The greedy forward selection process that may be used to augment the training of
MLR and KNNR regression models was explained in Section 5.5.4.1. For each model,
for each GRBAS component, we first train the model using each of the 10 features
in turn as a single feature. The model is then evaluated for each choice of feature
over all ten cross-validation stages to obtain ten values of validation-NRMSE, which
are averaged. The best single feature in terms of the lowest averaged validation error
is thus identified and constitutes the starting subset for each model. We now try to
increase the feature subset size by adding another feature. This is done by introducing
each of the remaining features in turn on a probationary basis. The feature which
gives the largest significant reduction in the averaged validation-NRMSE becomes a
permanent member of the feature subset. If a significant reduction is not achieved by
adding any of the remaining features to the subset, the subset is considered complete.
If a significant reduction is achieved, the process continues to try to find a third feature
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for the subset, and so on up to a maximum subset size of ten features. This cross-
validation procedure produces a feature-subset with up to ten features.

To test the effectiveness of this approach, it is repeated for 20 trials, each with a
different random choice of 80 training subjects and 22 ‘set aside’ testing subjects. For
each trial, the ‘greedy forward selection’ cross-validation process described above is
carried out to find a suitable feature subset, and then the model with this feature subset
is tested for the 22 ‘set aside’ subjects.

Figure 5.8 and 5.9 depict the trial-testing-NRMSE obtained for the best feature-
subset for each of the 20 trials, for MLR and KNNR respectively.
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Figure 5.8: Trial-Testing-NRMSE for the best selected feature subset (MLR-Grade-
Greedy). S labels are features subsets in Table E.1

Table E.1 in the Appendix defines the feature subsets S1, S2, etc. referred to in
these graphs. Each trial uses the best feature-subset found (by greedy forward selec-
tion) for that trial, and it may be different for each trial. The success of the training
method (which includes the method of choosing a feature-subset) may be judged from
the results of the 20 trials.

It may be seen in 5.8 and 5.9 that for each trial, a feature sub-set has been selected,
giving a NRMSE value around 21% which means an average grade score error of
about 0.63 (over the scale 0 to 3). It is interesting that the performances of MLR and
KNNR are so close. If this indication of the accuracy of greedy forward selection is
considered acceptable, or the best we can get, the final choice of feature-subset is made
by repeating the ‘greedy forward selection’ training process but this time using all 102
subjects for ‘cross-validation’ training. We do this to try to get the best possible result
from the method we have just tested.
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Figure 5.9: Trial-Testing-NRMSE for the best selected feature subset (KNNR-Grade-
Greedy). S labels are features subsets in Table E.1

The final result was not tested as we have no further subjects. But the choice has
been made by a method that has been validated and tested so we may have confidence
in its suitability. Greedy forward selection is not the best possible method for feature-
subset selection because it does not examine all possibilities. The test results in Figures
5.8 and 5.9 give the best obtainable feature subset for each trial, but they do not tell
us how the best one for each trial performs in the other trials. This omission could be
remedied by recording how all subsets perform in each trial. Also, the final system
could be tested with the optimal final choice of feature-set (now fixed) in a further
series of 20 trials. However this would be slightly suspect as the test data would include
that used to derive the best feature sub-set. Instead of doing this, we preferred to
concentrate on the exhaustive search method which promises better results.

5.6.2 Exhaustive search for ‘Grade’

The Exhaustive Search procedure was explained in Section 5.5.4.2. After discarding
the 10 features with lowest Pearson correlation with Grade as described in Section
5.4, the rest of the features were pre-selected for an ‘exhaustive search’. The ten pre-
selected features are the first ten as presented in Table (5.8), i.e. F4, F14, F20, F11,
F13, F1, F5, F2, F19 and F6. With ten features there are 1+10 + 10×9/2! +. . . +10=
210− 1 = 1023 different subsets of features (excluding the empty subset). For each
subset, the MLR and KNNR models were trained using (or populated by) 72 subjects
in nine cross-validation folds and evaluated (validated) by the tenth fold, this process
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being repeated for all ten permutations of folds. The validation-NRMSE was then
computed between the predicted Grade scores and the corresponding reference scores
for the cross-validation samples and averaged across the ten cross-validation steps to
obtain an validation-averaged-NRMSE. Then all 1023 subset tested using the ‘set-
aside’ testing sample of 22 subjects; this procedure being repeated for 20 trials. Then
the average of trial- averaged-validation-NRMSE was obtained for all 1023 subset. A
selection of feature subset was made, and then then averaged of trial-tesing-NRMSE
was obtained for the selected feature subset.

For ‘Grade’, box-plots for the 20 best performing feature-subsets, as selected from
the 1023 possible feature-subsets, are presented in 5.10 (for MLR) and 5.11 (for KNNR).
The ‘top twenty’ best performing subsets are those with the lowest average of trial-
averaged-validation-NRMSE. The labels S1, S2, etc. refer to feature subsets as defined
in Table E.2 in the appendix. The range of average of trial testing-NRMSE values for
the best twenty subsets are indicated. The box-plots show how each ‘top-20’ subset
behaves over the whole trial.
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Figure 5.10: Average of Trial-Testing-NRMSE for the best 20 selected feature (MLR-
Grade-EXHAUSTIVE). S labels are feature subsets in Table E.2. (‘o’:average, ‘-
’:median, ‘+’:outliers)

‘Box plots’ are useful for identifying outliers as well as for comparing distributions
of average of trial-testing-NRMSE values. A median, maximum and minimum for
each of these ‘top 20’ subsets is indicated. It is interesting that the variation in the
median, and even the range is quite small for MLR, and a little larger for KNNR.
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Figure 5.11: Average of Trial-Testing-NRMSE for the best 20 selected feature
subset (KNNR-Grade-EXHAUSTIVE). S labels are feature subsets in Table E.2.
(‘o’:average, ‘-’:median, ‘+’:outliers)

The lowest value of average of trial testing NRMSE is 20% as obtained for feature-
set S14 (for MLR) and 23% with feature-set S27 for KNNR. The ‘o’ in the boxes
indicates the average of trial-testing-NRMSE for the ‘top 20’ subsets. Each subset has
a different average, median, max and min NRMSE over 20 trials. The feature subset
with the lowest average of trial-averaged testing-NRMSE is feature-subset ‘S14’ for
MLR and ‘S27’ for KNNR . According to Table E.2, these subsets contain six features,
i.e. F4, F14, F20, F1, F5 and F19 (MLR) and five features, i.e. F4, F14, F1, F5, F2
and F6 (KNNR). MLR has a lower minimum-NRMSE than KNNR. The ‘+’ show
the obtained outlier in the NRMSE. Outliers are observed in subset S20, S27, S28,
S33, S35, and S37 for (KNNR). These outliers increase error variance and reduce the
power of statistical tests. If NRMSE is non-randomly distributed they can decrease
normality. They can seriously bias or influence estimates that may be of substantive
interest [Ras88, SM82, Zim94]. The linear and non-linear relation between the features
may cause the detection of these outliers. As well as doing this, all 1023 feature-subsets
were tested in 20 testing trials to obtain Figures (5.12) (for MLR) and (5.13).

Each figure shows the value of average of trial-testing-NRMSE that was obtained
for each of the 1023 different feature-subsets. The indices of these subsets were re-
ordered to achieve an increasing magnitude of the average of trial NRMSE. The red
circle shows the obtained average NRMSE over 20 trials when all ten pre-selected
features were used for the prediction and the green circle depict the testing error for
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Figure 5.12: Average of Trial-Testing-NRMSE for all subset of features (MLR-Grade-
EXHAUSTIVE). (green circle : best subset and red circle: 10 features)
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Figure 5.13: Average of Trial-Testing-NRMSE for all subset of features (KNNR-
Grade-EXHAUSTIVE). (green circle : best subset and red circle: 10 features)

the best selected subset. These curves demonstrate that improvement and deterioration
in the prediction accuracy of either method, compared with what is achieved using all
ten features, can be achieved by feature selection. While significant deterioration can
occur, it seems that the scope for improvement is rather small, i.e. about 2%.
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5.6.3 Optimum K for Grade prediction by KNNR

As mentioned earlier, with KNNR, the NRMSE of the regression will be affected by
the feature subset and value of K, which is the number of nearest neighbours chosen.
For each subset the validation-NRMSE was averaged over 10 folds for K, 1 to 10 in
Trial 1. The tesing-NRMSE was obtained for each subset for K, 1 to 10. This is
repeated for a second trial with a different random choice of training subjects and set
aside testing subjects. A testing-NRMSE for this second trial is thus obtained. This
process was repeated over 20 trials.
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Figure 5.14: Average of Trial-Averaged-Val-NRMSE Per K Best Subset (Grade)

The average of trial-averaged-validation-NRMSE and average of trial-testing-NRMSE
were obtained for each subset of features for K, 1 to 10. A grid search [BB12] was
used to find out the best feature subset and K with the lowest average of trial-averaged-
validation-NRMSE amongst 1023 different subsets. K and the choice feature subset
are therefore jointly selected to find the average of trial-testing-NRMSE.

Figure 5.14 shows the average of trial-averaged-validation-NRMSE for K 1 to 10
when the best subset (S27) was used for ‘Grade’ prediction. The best subset with the
lowest average of trial-averaged-validation-NRMSE has K=6.
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5.7 Roughness prediction

5.7.1 Greedy forward selection for ‘Roughness’

The Greedy Forward Selection was described in Sections 5.5.4.1 and 5.6.1. The same
procedure was used for ‘Roughness’ prediction.

Figures 5.15, 5.16 depict the trial- testing-NRMSE error obtained for MLR and
KNNR. Table E.3 in the Appendix defines the feature subsets S1, S2, etc. referred to
in these graphs. Each trial uses the best feature-subset found for that trial, and it may
be different for each trial.
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Figure 5.15: Trial-Testing-NRMSE for the best selected feature subset (MLR-
Roughness-Greedy). S labels are features subsets in Table E.3

5.7.2 Exhaustive search for ‘Roughness’

The Exhaustive Search procedure was explained in Section 5.5.4.2 and 5.6.2. After
discarding the 10 features with lowest Pearson correlation with Roughness as described
in Section 5.4 the rest of the features were pre-selected for an ‘exhaustive search’. The
ten selected features are the first ten as presented in Table (5.9), i.e. F4, F14, F20, F12,
F11, F19, F5, F1, F7 and F2.

Figures 5.17 (for MLR) and 5.18 (for KNNR with optimum K) show the aver-
age of trial-testing-NRMSE that was obtained for ‘top twenty’. The ‘top twenty’
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Figure 5.16: Trial-Testing-NRMSE for the best selected feature subset (KNNR-
Roughness-Greedy). S labels are features subsets in Table E.3

best performing subsets are those with the lowest average of trial-averaged-validation-
NRMSE. The labels S1, S2, etc. refer to feature subsets as defined in Table E.4 in the
appendix.
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Figure 5.17: Average of Trial-Testing-NRMSE for the best 20 selected feature sub-
set (MLR-Roughness-EXHAUSTIVE). S labels are feature subsets in Table E.4.
(‘o’:average, ‘-’:median, ‘+’:outliers)

The lowest value of average of trial-testing NRMSE is 17% as obtained for feature-
set S12 (for MLR) and 18% with feature-set S38 for KNNR. According to Table E.2,
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Figure 5.18: Average of Trial-Testing-NRMSE for the best 20 selected feature sub-
set (KNNR-Roughness-EXHAUSTIVE). S labels are feature subsets in Table E.4.
(‘o’:average, ‘-’:median, ‘+’:outliers)

these subsets contains five F4, F12, F5, F1 and F7 (MLR) and two features F4, F7
(KNNR). MLR has a lower minimum-NRMSE than KNNR. An outlier was observed
in subset S30 (MLR). As well as doing this, all 1023 feature-subsets were tested in 20
testing trials to obtain Figures (5.19) (for MLR) and (5.20).
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Figure 5.19: Average of Trial-Testing-NRMSE for all subset of features (MLR-
Roughness-EXHAUSTIVE). (green circle: best subset and red circle: 10 features)

Each figure shows the value of average of trial testing-NRMSE that was obtained
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Figure 5.20: Average of Trial-Testing-NRMSE for all subset of features (KNNR-
Roughness-Exhaustive). (green circle: best subset and red circle: 10 features)

for each of the 1023 different feature-subsets. These curves demonstrate that improve-
ment and deterioration in the prediction accuracy of either method, compared with
what is achieved using all ten features, can be achieved by feature selection. While
significant deterioration can occur, it seems that the scope for improvement is rather
small, i.e. of the order of about 2%.

5.7.3 Optimum K for Roughness prediction by KNNR

The K selection procedure was described in Section 5.6.3. Figure 5.21 shows the
average of trial-averaged-validation-NRMSE in each trial for K, 1 to 10 when the best
subset (S38) was used for ‘Roughness’ prediction. The best subset with the lowest
average of trial-averaged-validation-NRMSE has K=10.

5.8 Breathiness prediction

5.8.1 Greedy forward selection for ‘Breathiness’

The Greedy Forward Selection was described in Sections 5.5.4.1 and 5.6.1. The same
procedure is used for ‘Breathiness’ prediction. Figures 5.22, 5.23 depict the average
of trial-testing-NRMSE obtained for the best selected feature subset using MLR and
KNNR.
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Figure 5.21: Average of Trial-Averaged-Val-NRMSE Per K for Best Subset (Rough-
ness)
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Figure 5.22: Trial-Testing NRMSE for the best selected feature subset (MLR-
Breathiness-Greedy). S labels are features subsets in Table E.5

Table E.5 in the Appendix defines the feature subsets S1, S2, etc. referred to in
these graphs. Each trial uses the best feature-subset found for that trial, and it may be
different for each trial.
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Figure 5.23: Trial-Testing NRMSE for the best selected feature subset (KNNR-
Breathiness-Greedy). S labels are features subsets in Table E.5

5.8.2 Exhaustive search for ‘Breathiness’

The Exhaustive Search procedure was explained in Section 5.5.4.2 and 5.6.2. After dis-
carding the 10 features with lowest Pearson correlation with Breathiness as described
in Section 5.4 the rest of the features were pre-selected for an ‘exhaustive search’.
The ten selected features are the first ten as presented in Table (5.10), i.e. F13, F11,
F4, F20, F14, F5, F2, F1, F7 and F10. Box-plots for the 20 best performing feature-
subsets, as selected from the 1023 possible feature-subsets, are presented in Figure
5.24 (for MLR) and 5.25 (for KNNR).

The labels S1, S2, etc. refer to feature subsets as defined in Table E.6 in the ap-
pendix. The ‘top twenty’ best performing subsets are those with the lowest average of
trial-averaged-validation-NRMSE. Figure 5.26 and 5.27 show the value of average of
trial-testing-NRMSE that was obtained for each of the 1023 different feature-subsets.

These curves demonstrate that improvement and deterioration in the prediction ac-
curacy of either method, compared with what is achieved using all ten features, can be
achieved by feature selection. While significant deterioration can occur, it seems that
the scope for improvement is rather small, i.e. of the order of about 1%.

5.8.3 Optimum K for Breathiness prediction by KNNR

The K selection for ‘Breathiness’ prediction was described in Section 5.6.3. Figure
5.28 shows the average of trial-averaged validation-NRMSE in each trial for K, 1 to
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Figure 5.24: Average of Trial-Testing-NRMSE for the best 20 selected feature subset
in each trial (MLR-Breathniess-EXHAUSTIVE). S labels are feature subsets in Table
E.6. (‘o’:average, ‘-’:median, ‘+’:outliers)
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Figure 5.25: Average of Trial-Testing-NRMSE for the best 20 selected feature subset
in each trial (KNNR-Breathniess-EXHAUSTIVE). S labels are feature subsets inTable
E.6. (‘o’:average, ‘-’:median, ‘+’:outliers)

10 when the best subset (S25) was used for ‘Breathiness’ prediction. The best subset
with the lowest average of trial-averaged- validation-NRMSE has K=5.

Average of Trial-Averaged-Val-NRMSE Per K Best Subset (Grade)
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Figure 5.26: Average of Trial-Testing-NRMSE for all subset of features (MLR-
Breathiness-EXHAUSTIVE). (green circle : best subset and red circle: 10 features)
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Figure 5.27: Average of Trial-Testing-NRMSE for all subset of features (KNNR-
Breathiness-EXHAUSTIVE). (green circle : best subset and red circle: 10 features)

5.9 Asthenia Prediction

5.9.1 Greedy forward selection for ‘Asthenia’

The Greedy Forward Selection was described in Sections 5.5.4.1 and 5.6.1. The same
procedure is applied for ‘Asthenia’ prediction.

Figures 5.29 and 5.30 depict the trial-testing-NRMSE obtained for MLR and KNNR.
Table E.7 in the Appendix defines the feature subsets S1, S2, etc. referred to in these
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Figure 5.28: Average of Trial-Averaged-Val-NRMSE Per K for Best Subset (Breathi-
ness)

graphs. Each trial uses the best feature-subset found for that trial, and it may be differ-
ent for each trial.
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Figure 5.29: Trial-Testing-NRMSE for the best selected feature subset (MLR-
Asthenia-Greedy). S labels are features subsets in Table E.7
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Figure 5.30: Trial-Testing-NRMSE for the best selected feature subset (KNNR-
Asthenia-Greedy). S labels are features subsets in Table E.7

5.9.2 Exhaustive search for ‘Asthenia’

The Exhaustive Search procedure was explained in Section 5.5.4.2 and 5.6.2.
After discarding the 10 features with lowest Pearson correlation with Asthenia as

described in Section 5.4 the rest of the features were pre-selected for an ‘exhaustive
search’. The ten selected features are the first ten as presented in Table 5.11, i.e. F4,
F11, F20, F14, F13, F19, F5, F16, F18 and F1.

Box-plots for the 20 best performing feature-subsets, as selected from the 1023
possible feature-subsets, are presented in Figure 5.31 (for MLR) and 5.32 (for KNNR).

The labels S1, S2, etc. refer to feature subsets as defined in Table E.8 in the ap-
pendix. The ‘top twenty’ best performing subsets are those with the lowest average of
trial-averaged-validation-NRMSE. The feature subset with the lowest average of trial-
averaged-validation-NRMSE is feature-subset ‘S21’ for MLR and ‘S8’ for KNNR.

According to Table E.8, these subsets contains seven F4, F11, F14, F13, F5, F18
and F1 (MLR) and five F4, F14, F13, F16, F1 (KNNR) features. Figures 5.33 (for
MLR) and 5.34 (for KNNR with optimum K) show the value of average of trial-testing-
NRMSE that was obtained for each of the 1023 different feature-subsets.

These curves demonstrate that improvement and deterioration in the prediction ac-
curacy of either method, compared with what is achieved using all ten features, can
be achieved by feature selection. While significant deterioration can occur, it seems
that the scope for improvement is rather small, i.e. of the order of about 0.5%. The
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Figure 5.31: Average of Trial-Tesing-NRMSE for the best 20 selected feature
subset (MLR-Asthenia-EXHAUSTIVE). S labels are feature subsets in Table E.8.
(‘o’:average, ‘-’:median, ‘+’:outliers)
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Figure 5.32: Average of Trial-Tesing-NRMSE for the best 20 selected feature sub-
set (KNNR-Asthenia-EXHAUSTIVE). S labels are feature subsets in Table E.8.
(‘o’:average, ‘-’:median, ‘+’:outliers)

observed outliers are subsets S7, S8, S13, S14 and S37 (KNNR).
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Figure 5.33: Average-Trial-Testing-NRMSE for all subset of features (MLR-Asthenia-
EXHAUSTIVE). (green circle: best subset and red circle: 10 features)

Figure 5.34: Average of Trial-Testing-NRMSE for all subset of features (KNNR-
Asthenia-EXHAUSTIVE). (green circle : best subset and red circle: 10 features)

5.9.3 Optimum K for Asthenia prediction by KNNR

The K selection procedure was described in Section 5.6.3. Figure 5.35 shows the
average of trial-averaged-validation-NRMSE in each trial for K, 1 to 10 when the best
subset (S8) was used for ‘Asthenia’ prediction. The best subset with the lowest average
of trial-averaged-validation-NRMSE has K=8.
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Figure 5.35: Average of Trial-Averaged-Val-NRMSE Per K for Best Subset (Asthenia)

5.10 Strain Prediction

5.10.1 Greedy forward selection for ‘Strain’

The Greedy Forward Selection was described in Sections 5.5.4.1 and 5.6.1. The same
procedure is used applied for ‘Strain’ prediction. Figures 5.36, 5.37 depict the average
of trial-testing-NRMSE obtained for MLR and KNNR.
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Figure 5.36: Trial-Testing-NRMSE for the best selected feature subset (MLR-Strain-
Greedy). S labels are features subsets in Table E.9
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Figure 5.37: Trial-Testing-NRMSE for the best selected feature subset (KNNR-Strain-
Greedy). S labels are features subsets in Table E.9

Table E.9 in the Appendix defines the feature subsets S1, S2, etc. referred to in
these graphs. Each trial uses the best feature-subset found for that trial, and it may be
different for each trial.

5.10.2 Exhaustive search for ‘Strain’

The Exhaustive Search procedure was explained in Section 5.5.4.2 and 5.6.2. After
discarding the 10 features with lowest Pearson correlation with Strain as described in
Section 5.4, the rest of the features were pre-selected for an ‘exhaustive search’. The
ten selected features are the first ten as presented in Table (5.12), i.e. F4, F14, F20, F11,
F6, F13, F18, F5 ,F19 and F1. Box-plots for the 20 best performing feature-subsets,
as selected from the 1023 possible feature-subsets, are presented in Figure 5.38 (for
MLR) and 5.39 (for KNNR).

The labels S1, S2, etc. refer to feature subsets as defined in Table E.10 in the ap-
pendix. The ‘top twenty’ best performing subsets are those with the lowest average of
trial-averaged validation-NRMSE. The feature subset with the lowest average of trial-
averaged validation-NRMSE is feature-subset ‘S11’ for MLR and ‘S28’ for KNNR.
According to Table E.10 , these subsets contain features, i.e. F4, F14, F20, F5 and
F19 and F1 (MLR) and F4, F14, F6, F5 and F1 (KNNR). Figure 5.40 and 5.41 show
the value of average of trial-testing-NRMSE that was obtained for each of the 1023
different feature-subsets.
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Figure 5.38: Average of Trial-Testing-NRMSE for the best 20 selected feature subset
(MLR-Strain-EXHAUSTIVE). S labels are feature subsets in Table E.10. (‘o’:average,
‘-’:median, ‘+’:outliers)
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Figure 5.39: Average of Trial-Testing-NRMSE for the best 20 selected feature
subset (KNNR-Strain-EXHAUSTIVE). S labels are feature subsets in Table E.10.
(‘o’:average, ‘-’:median, ‘+’:outliers)

These curves demonstrate that improvement and deterioration in the prediction ac-
curacy of either method, compared with what is achieved using all ten features, can be
achieved by feature selection. The scope for improvement is rather small, i.e. of the
order of about 2% like ‘G’, ‘R’, ‘B’ and ‘A’.
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Figure 5.40: Average of Trial-Testing-NRMSE for all subset of features. green circle
best subset (KNNR-Strain-EXHAUSTIVE). (green circle: best subset and red circle:
10 features)
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Figure 5.41: Average of Trial-Testing-NRMSE for all subset of features (KNNR-
Strain-EXHAUSTIVE). (green circle: best subset and red circle: 10 features)

5.10.3 Optimum K for Strain prediction by KNNR

The K selection for procedure was described in Section 5.6.3. Figure 5.42 shows the
trial-averaged validation-NRMSE in each trial for K, 1 to 10 when the best subset (S28)
was found for ‘Strain’ prediction. The best subset with the lowest averaged-averaged
validation-NRMSE has K=8.
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Figure 5.42: Average of Trial-Averaged-Val-NRMSE Per K for Best Subset (Strain)

5.11 Exhaustive search compared with greedy forward
selection

‘Exhaustive search’ is computationally much more expensive than ‘Greedy Forward
Selection’ but it explores the effect of all subsets on the prediction models and is there-
fore more likely to find the best subset. With greedy forward selection, not all possible
subsets are considered, and the best subset may be different in each trial because of
differences in the randomized choices of training and testing subjects. Greedy search
can be an appropriate low-complexity method for finding out the best subset, but the
best approach is likely to be exhaustive search if the computation can be afforded.

5.12 Comparison between MLR and KNNR

The performance of the MLR and KNN techniques, both with and without feature
selection, are now compared for predicting GRBAS scores objectively. The standard
deviation of the error may be investigated to estimate the stability of the MLR and
KNNR models. In table 5.13 for ‘all features’ the average of trial-averaged-testing-
NRNSE and the standard deviation of trial-testing-NRNSE and the confidence interval
and the confidence level are presented. With confidence interval, we can say about the
confidence of the results for the the true percentage of the population. For example,
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for MLR the average of trial-testing-NRNSE and the standard deviation of trial-testing-
NRNSE is about 21.44% and 3.55 respectively with 95% confidence limits at 19.88%
and 22.99%. For KNNR, the corresponding average of trial-testing-NRNSE and the
standard deviation of trial-testing-NRNSE is about 23.93% and 4.10% respectively
with 95% confidence limits at 22.0% and 25.59% . The same applied to ‘R’, ‘B’, ‘A’
and ‘S’.

Mean-Test-Error % STD-Test-Error % Lower-Bound % Upper-Bound %
GRBAS MLR KNNR MLR KNNR MLR KNNR MLR KNNR

G 21.44 23.93 3.55 4.10 19.88 22.02 22.99 25.59
R 19.76 19.92 3.94 4.74 18.03 18.03 21.49 22.18
B 21.27 21.72 3.19 2.87 19.87 20.70 22.67 23.23
A 15.93 15.83 2.32 2.44 14.90 14.76 16.94 16.90
S 16.97 17.52 3.11 3.37 15.60 16.10 18.33 19.06

Table 5.13: Comparison Between MLR And KNNR for All twenty Features

Table 5.14 depicts the comparison between MLR and KNNR when the best ob-
tained subset by ‘exhaustive search’ was used for the GRBASE prediction.

Mean-Test-Error % STD-Test-Error % Lower-Bound % Upper-Bound %
GRBAS MLR KNNR MLR KNNR MLR KNNR MLR KNNR

G 20.94 23.30 3.79 3.47 19.28 21.78 22.61 24.83
R 17.02 18.96 3.33 4.21 15.56 16.84 18.49 20.54
B 19.34 20.19 2.69 2.50 18.16 19.09 20.52 21.28
A 13.75 15.68 2.70 2.99 12.56 14.37 14.93 16.99
S 15.84 16.21 3.18 2.88 14.45 14.94 17.24 17.47

Table 5.14: Comparison Between MLR And KNNR for the Best Subset

For all GRBAS component with ‘all-features’ and the ‘best-subset’ the confidence
limits overlap, is concluded that no statistically significant difference between the mod-
els is observed at the 95% confidence level.

5.13 Conclusions

This chapter has introduced two machine learning methods for objectively predicting
GRBAS scores, together with feature selection methods that may be used to improve
the resulting prediction models. The machine learning models were first implemented
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without feature selection. Then, after surveying feature selection in general, two fea-
ture selection methods were implemented and studied in detail to determine their ef-
fectiveness for reducing the number of dimensions in the feature measurements and for
reducing the prediction error of regression models which use selected feature subsets.

The two main types of feature selection methods, i.e. ‘filter’ and ‘wrapper’ meth-
ods were investigated. A filter method which selects features based upon Pearson
correlation was investigated. Wrapper methods which select features based upon the
performance of a regression algorithm were also investigated. ‘Exhaustive search’ and
‘greedy forward selection’ wrapper methods were implemented and compared. Results
show that feature selection can improve the prediction results, but not dramatically.
There is not statistically significant difference between the two prediction models. No
single feature can completely characterise any of the GRBAS parameters for all voice
disorders. The best subset for predicting each GRBAS component using MLR and
KNNR (‘exhaustive search’) was found to be as

1. Grade:

• MLR: Shimmer, CPP Min, CSID, API, MEPF, Mean CPP F0 STD

• KNNR: Shimmer, CPP Min, API, MEPF, HNR, RMMEPF

2. Roughness

• MLR: Shimmer, CPP STD, MEPF, API, STD EPF

• KNNR: Shimmer, STD EPF

3. Breathiness

• MLR: CPP Max, MEPF, API

• KNNR: CPP Max, MEPF, API, STD EPF

4. Asthenia

• MLR: Shimmer, CPP, CPP Min, CPP Max, MEPF, Min L/H, API

• KNNR: Shimmer, CPP Min, CPP Max, STD L/H, API

5. Strain

• MLR: Shimmer, CPP Min, CSID, MEPF, Mean CPP F0 STD, API (MLR)

• KNNR: Shimmer, CPP Min, RMMEPF, MEPF, API
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The feature selection was made for the subset with the lowest the average of trial-
averaged-validation-NRMSE. The next chapter evaluates the performance of objective
methods (MLR and KNNR with and without feature selection) and perceptual analysis
against the ‘reference GRBAS scores’.



Chapter 6

Results and Evaluation

6.1 Introduction

The focus of this chapter is to evaluate the objective GRBAS scoring system, devel-
oped using the techniques investigated in this thesis, by comparing the scores it pro-
duces with those produced by the trained SLTs. Ideally a comparison with the scores
produced by different SLTs would be preferred, but this was not possible. The philos-
ophy of this evaluation is to assume that some average of the available scores is the
‘gold standard’ reference score for each GRBAS component, for each subject. The
performance of the objective system is judged against these reference scores. Further
evaluation is clearly necessary and is discussed as a proposal for further work.

The observed GRBAS scores of individual SLT and the predicted GRBAS scores
of objective systems (MLR and KNNR) have been compared against the ‘reference’
GRBAS scores for the same number of subjects in each trial. Various approaches were
discussed in Chapter 3 for trying to obtain the most reliable ‘reference’ GRBAS scores.
We used the term ‘gold standard’ colloquially for these reference scores, though per-
haps the term is a little misleading as there could never be an absolute undisputed
standard set of scores. A method of deriving ‘gold standard’ reference scores tak-
ing into account the reliability and consistency of scorers was proposed in Chapter 3,
though Chapter 5 is based on unweighted averages from five scorers being considered
as the ‘reliable’ GRBAS scores. Further work will be based on the reference scores
produced by Chapter 3.

Evaluation of the objective systems (MLR and KNNR) has been performed in two
cases. Firstly, we considered the case where measurements of all 20 features, as dis-
cussed in Chapter 4, are used to make predictions objectively. Secondly, we considered
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the case where feature selection is applied to identify the best subset of these twenty
features, and this best subset is used for the prediction. The evaluations were based
on the average of‘trial testing-NRMSE’ (normalized RMS) error between objectively
predicted scores and ‘reference’ scores. This error is obtained from 20 trials, each
with a different randomised selection of 80 training subjects and 22 ‘set-aside’ testing
subjects. Based on the reference scores, SLTs can find out how their own scores com-
pare with the average and the researcher may gain some idea of whether the objective
scoring system is getting similar scores by objective means.

The objective scoring system is critically dependent on the ‘digital signal process-
ing’ (DSP) algorithms used to measure the features considered indicative of voice
quality. The study of such algorithms is a mature research topic, and there is much
published and commercial software available. However, it became clear in Chapter 4
that strong discrepancies exist between the algorithms as provided by the best known
published and commercial software packages. The ‘thesis software’ produced in this
work attempts to improve this situation, but it cannot be concluded that the feature
measurements used in Chapter 5 are totally reliable or fully indicative of voice quality
as perceived by SLT scorers. Evaluation of some of the DSP discrepancies was given
in Chapter 4, and these must be borne in mind when considering the evaluations in this
chapter.

6.2 Objective scoring compared with SLT scores

6.2.1 MLR and KNNR for ‘Grade’ scoring

The observed GRBAS scores of individual SLT and the predicted GRBAS scores of
objective systems (MLR and KNNR) have been compared against the ‘reference’ GR-
BAS scores (average of scores of five scorers) for the 22 ‘set-aside’ testing subjects
in each trial. The evaluations were based on the average of‘trial testing-NRMSE’
(normalized RMS) error between objectively predicted scores and ‘reference’ scores.
NRMSE is a percentage of the maximum GRBAS score of ‘3’. In Figure 6.1, zero
represents the situation where the GRBAS score is equal to the reference score. For
‘Grade’ prediction using all 20 features, the average of trial-testing NRMSE was 21.44%
for MLR and 23.93% for KNNR. Using the best obtained subset of features, the av-
erage of trial-testing NRMSE was around 20% for MLR and 23% for KNNR. Figure
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6.1 shows the average of trial-testing NRMSE obtained for each of the five SLT scor-
ers and the two objective (KNNR and MLR) voice quality assessment methods. The
objective methods are plotted for the cases where all 20 features are used and where
the best feature-subset (exhaustive search) is used. It may be seen that, for ‘Grade’,
the objective methods deliver a higher error than is obtained for each of the SLT scor-
ers. MLR seems to have performed better than KNNR, and MLR with the best subset
performs marginally better than MLR with all 20 features. The discrepancy between
the best performing objective method, i.e. ‘MLR’ with ‘best feature subset’ and the
best scorer (SLT3) is about 8% which represents about one quarter of a GRBAS score
in the range 0 to 3. The discrepancy between the best objective result (20.5%) and the
worst SLT scorer result (19%) is about 1.5%.
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Figure 6.1: Average of Trial-Testing-NRMSE for subjective and objective ‘Grade’
scoring. The observed Grade scores of individual SLT and the predicted Grade scores
of objective systems (MLR and KNNR) have been compared against the average of
scores of five scorers for the 22 ‘set-aside’ testing subjects in each trial

6.2.2 MLR and KNNR for ‘Roughness’ scoring

Figure 6.2 plots the average of trial-testing NRMSE obtained for ‘Roughness’ for each
of the five SLT scorers and the two objective (KNNR and MLR) methods without and
with feature selection. The best objective result is again obtained using MLR with
feature-selection. The error (17%) for this best objective result is roughly equal to
the error for SLT5, significantly lower than the errors obtained for two of the scorers
(SL2 and SLT4) , though it is significantly higher (by about 4%) than the errors for the
remaining two SLT scores (SLT1 and SLT3).
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Figure 6.2: Average of Trial-Testing-NRMSE for subjective and objective ‘Roughness’
scoring. The observed ‘Roughness’ scores of individual SLT and the predicted Rough-
ness scores of objective systems (MLR and KNNR) have been compared against the
average of scores of five scorers for the 22 ‘set-aside’ testing subjects in each trial

6.2.3 MLR and KNNR for ‘Breathiness’ scoring

Figure 6.3 plots the average of trial-testing NRMSE obtained for ‘Breathiness’ for each
of the five SLT scorers and the two objective (KNNR and MLR) methods without and
with feature selection. Once again, MLR with feature selection gives the best objective
result though the error is higher than for all the five SLT scorers. This error is very close
to that produced by one scorer (SLT4) but about 6% higher than the error for the best
Breathiness SLT scorer.

6.2.4 MLR and KNNR for ‘Asthenia’ scoring

Figure 6.4 plots the average of trial-testing NRMSE obtained for ‘Asthenia’ for each
of the five SLT scorers and the two objective (KNNR and MLR) methods without
and with feature selection. The errors observed for both objective models (with and
without feature selection) are lower than the errors for all five SLT scorers. MLR with
feature selection works best and its error is about 2% lower than that obtained for the
best performing SLT score (SLT3). It is about 8% better than the worst performing
SLT(SLTs) for asthenia.
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Figure 6.3: Average of Trial-Testing-NRMSE for subjective and objective ‘Breath-
iness’ scoring. The observed ‘Breathiness’ scores of individual SLT and the pre-
dicted Breathiness scores of objective systems (MLR and KNNR) have been com-
pared against the average of scores of five scorers for the 22 ‘set-aside’ testing subjects
in each trial
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Figure 6.4: Average of Trial-Testing-NRMSE for subjective and objective ‘Asthenia’
scoring. The observed ‘Asthenia’ scores of individual SLT and the predicted Asthenia
scores of objective systems (MLR and KNNR) have been compared against the average
of scores of five scorers for the 22 ‘set-aside’ testing subjects in each trial

6.2.5 MLR and KNN for ‘Strain’ scoring

Figure 6.5 plots the average of trial-testing NRMSE obtained for ‘Strain’ for each of
the five SLT scorers and the two objective (KNNR and MLR) methods without and
with feature selection.

MLR with feature selection is again the best objective method and, as with asthenia,
it outperforms all five SLT scorers. The error is at least 1.5% lower than the lowest
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Figure 6.5: Average of Trial-Testing-NRMSE for subjective and objective ‘Strain’
scoring. The observed ‘Strain’ scores of individual SLT and the predicted Strain scores
of objective systems (MLR and KNNR) have been compared against the average of
scores of five scorers for the 22 ‘set-aside’ testing subjects in each trial

SLT error (SLT1), and is 4% better than the worst performing SLT (SLT4). KNNR
has slightly higher error than MLR. The errors for both objective models (MLR and
KNNR), with feature selection, are lower than those for all five SLTs by MLR.

6.3 Conclusions

The performances of MLR and KNNR have been evaluated for predicting each GR-
BAS component with and without feature selection. The scores produced by these
objective methods are compared with the individual scoring of the five SLTs whose
averaged scores were used as the reference scores for training the prediction models.
Although the argument may seem somewhat circular, we believe that comparing the
objective predictions with the scores produced by each individual scorer gives some
idea of how well the objective prediction is working.

It was found that MLR with feature selection was better than MLR without feature
selection and KNNR with and without feature selection, for all five GRBAS compo-
nents. It was also found that MLR with feature selection gives scores for ‘Asthenia’
and ‘Strain’ which are closer to the reference scores than the scores given by all five
individual SLT scorers. The best objective score for ‘Roughness’ was closer than the
scores given by two SLTs, roughly equal to the score of one SLT and worse than the
other two SLT scores. The best objective scores for ‘Breathiness’ and ‘Grade’ were
further from the reference scores than the scores produced by all five SLT scorers.
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The worst ‘MLR with feature selection’ result has normalised RMS error which
is only about 3% worse than the worst SLT scoring. We may conclude that results
from objective scoring are encouraging and by no means completely at variance with
the scoring that may be anticipated from traditional GRBAS scoring. It has been sug-
gested [BPG04]that a combination of perceptual and objective scoring may have useful
clinical applications and save some SLT time and effort.

It is relevant to point out that when this work started, there were only three scorers,
and the additional scorings became available at quite a late stage when the approach
to this work had already been formulated. Had five scorers been available from the
beginning, we may have devised a different training and evaluation approach that,
perhaps, reserved one set of scores for evaluation.



Chapter 7

Conclusions and Suggestions for
Further Work

GRBAS scoring is universally used in Europe for voice quality assessment by sub-
jective means in voice clinics. But there is not yet a universally accepted objective
method for voice quality assessment where the outcome is expressed in terms of the
well known and well understood GRBAS components. Research carried out to de-
cide whether such a method is feasible has revealed many issues which led to several
conclusions and some original insight.

Firstly, it was found that although much research has been carried out over many
decades to find reliable digital signal processing (DSP) algorithms for measuring fea-
tures considered indicative of voice quality, current algorithms cannot be considered
reliable. There is much published and commercial software available for voice feature
measurement. The most commonly referenced software packages are ‘Praat’ [ Pa07],
‘MDVP’ [Kay96] and ‘ADSV’ [Kay96, AR05]. It became clear in Chapter 4, and it
is widely reported in the literature [MCDB+09, HKŞ11, ARJ+10, AR09], that dis-
crepancies exist between these software packages. Investigating these discrepancies is
difficult even for the published algorithms in the ‘Praat’ package and is not possible for
the commercial packages MDVP and ADSV. Also, these packages are designed as self-
contained applications for users and currently do not make it possible for researchers
to incorporate calls to their algorithms from ‘voice analysis’ software. The ‘thesis
software’ produced in Chapter 4 attempts to improve this situation by implementing
well known DSP techniques in an accessible form. Despite much effort, it cannot be
concluded that the feature measurements developed in Chapter 4 are totally reliable or
fully indicative of voice quality as perceived by SLT scorers. There is originality in
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the choice of techniques, for example choosing the ‘cross-correlation’ technique (see
Section 4.3.5 over alternatives such as ‘autocorrelation’, frequency-domain and cep-
stral approaches for pitch-frequency detection and harmonic-to-noise measurements.
All the ‘thesis software’ code is original. However the basic techniques used have been
known for many years. The DSP development in this thesis was necessary to allow the
‘research hypothesis’ i.e. that computerized voice measurements can produce GRBAS
scores comparable to subjectively assessed GRBAS scores, to be tested. We believe
that the DSP development and the study of published and commercial packages have
proved adequate for this purpose.

A second issue, considered in Chapter 3, emerged from an examination of the
scoring produced by the five trained SLT scorers employed by Manchester Royal Infir-
mary. To facilitate the scoring process, a ‘GRBAS presentation and scoring package’
(GPSP) had to be developed. It was clear that some way of establishing a consensus
between the five scorers and measuring the reliability and self-consistency of the scor-
ers was needed before these scores were used for training machine learning techniques.
A burning question was how to take measures of reliability and self-consistency into
account when forming the consensus. It was concluded that this could be achieved,
and the means of doing this are presented in Chapter 3. To allow self-consistency to be
assessed the GPSP was adapted to request repeat scores for a number of randomly cho-
sen subjects. The consistency of the scoring was analysed using correlation techniques
and other more reliable techniques such as the ‘Cohen Kappa, ‘Fleiss Kappa’ and the
‘ICC’ measure. All these techniques are known, but a novel form of the Fleiss Kappa
was presented in this chapter. The Cohen Kappa measures consistency between two
scorers, whereas Fleiss Kappa measures consistency across many scorers, for example
five scorers. Cohen Kappa is applicable to both categorical and ordinal data. However
Fleiss Kappa, as published, is applicable only for categorical data. Chapter 3 pro-
poses and evaluates a new form of Fleiss Kappa that is applicable to ordinal data such
as GRBAS scores as well as categorical data. The insight gained in developing this
new form of Fleiss Kappa also leads to further generalisations referred to as ‘Farideh
Kappa’. Chapter 3 contains several original ideas including the design features of
GPSP, the means of assessing self-consistency, the new form of Fleiss Kappa and the
method of establishing a consensus across five scorers taking into account measures of
self-consistency and inter-scorer consistency. It is concluded that these methods make
better use of the scoring data than is achieved by straightforward averaging.

Further issues arose with the use, in Chapter 5, of machine learning to produce
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the objective predictions of GRBAS scores. The approach taken was regression rather
than classification, and two simple approaches, i.e. ‘multiple linear regression’ (MLR)
and ‘K nearest neighbours regression’ KNNR were investigated. More complex meth-
ods could have been chosen, but we believed that results obtained using the simpler
approaches first would be indicative of what might be achieved by further research. As
well as devising the means of training the chosen machine learning models, the means
of testing the model had to be considered and implemented. The standard approach of
setting aside randomly chosen subjects for testing, and conducting trials with different
randomisations was adopted to try to make best use of the limited database with 102
scored subjects. Using this approach it was straightforward to train and test MLR and
KNNR models using DSP measurements of twenty ‘voice quality’ features as listed
in Chapter 4. A small complication was the need to find, using cross-validation, an
appropriate value of K for KNNR as part of the training. Ten of the voice quality
features were measured by the thesis software and the other ten were obtained from
the commercial software package ‘ADSV’. The testing results obtained using all 20
features allowed us to conclude that GRBAS scores were being predicted reasonably,
with a mean square error, over all trials, equivalent to about half of a GRBAS score on
the scale 0 to 3. The error was computed with reference to a straightforward average
of all five scorers, since the final results of Chapter 3 were not available when these
tests were run. For most of this work, only 3 scorers were available, though we were
able to update the averages when the extra two scorers became available.

To try to improve the results summarised above, feature selection was investigated.
It was found that the number of features could be reduced from twenty to ten without
significant loss of accuracy. This may be done either by ‘filtering’ according to Pear-
son correlation measures between individual features and the GRBAS scores, or using
‘greedy backward selection’ as a ‘wrapper’ method around the chosen MLR or KNNR
prediction model. In fact, the simpler filtering approach was found to be satisfactory.
Finally, both ‘greedy forward selection’ and an ‘exhaustive search’ procedure were
implemented with the aim of improving the prediction accuracy by eliminating the
chances of over-fitting and confusing the model with extraneous information. It was
concluded that the improved performance of ‘exhaustive search’ over ‘greedy forward
selection’ merited its selection for the final investigations. A ten-fold cross validation
approach must be used to implement both ‘greedy forward selection’ and ‘exhaustive
search’ before they are tested.

Results obtained using MLR and KNNR both with and without feature selection
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are presented in Chapter 6 together with a summary of the scores obtained by each of
the five individual scorers. It was found that MLR with feature selection was better
than MLR without feature selection and KNNR with and without feature selection, for
all five GRBAS components. It was also found that MLR with feature selection gives
scores for Asthenia and Strain which are closer to the reference scores than the scores
given by all five individual SLT scorers. The best objective score for ‘Roughness’ was
closer than the scores given by two SLTs, roughly equal to the score of one SLT and
worse than the other two SLT scores. The best objective scores for breathiness and
grade were further from the reference scores than the scores produced by all five SLT
scorers.

The worst ‘MLR with feature selection’ result has normalized RMS error which is
only about 3% worse than the worst SLT scoring. We may conclude that results from
objective scoring are encouraging and by no means completely at variance with the
scoring that may be anticipated from traditional GRBAS scoring. It has been suggested
[HKŞ11] that a combination of perceptual and objective scoring may have useful clin-
ical applications and save some SLT time and effort.

It was concluded that the proposed scheme based on measuring acoustic features
and training prediction models can be helpful in assisting clinicians in their tasks of
detecting voice abnormality. Two helpful aspects are:

1. Having the means of identifying the voice features that may be best for GRBAS
prediction.

2. Having a method for obtaining a consensus of ‘reliable GBBAS scores’.

It is useful for SLTs to be able to evaluate their scoring performance and compare
it with the outputs of objective prediction models. Although, the objective system
produced in this investigation may not be considered as accurate as it could be made
given further research, it has the considerable advantage of being reproducible. Given
the same data it will always produce the same result.

We believe that enhancements may be achieved by optimising the DSP algorithms,
employing more SLTs for the GRBAS scoring and creating a larger database of scored
subjects for training and evaluation. It may be observed that the objective results ob-
tained are worse for the attributes ‘G’ and ‘B’ and better for the attributes ‘R’ ,’A’ and
‘S’. It would be useful to investigate why this is the case.

This thesis has considered whether and how voice quality can be objectively as-
sessed according to the GRBAS scale. It does not aim to replace perceptual analysis
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but the methodolgy can be useful method in giving feedback to the clinicians and par-
ticipants in clinics. In order to validate these results, further experiments with different
databases must be carried out.

One highly original aspect of the work in this thesis is the use of the voice quality
database set up at the Manchester Royal Infirmary by Chai G. Although we believe
the GPSP scoring system was helpful in the scoring of this database, the credit for
establishing it is due to Chai himself.

7.1 Suggestions for further Work

In addition to various suggestions for further research made in the previous chapters of
this thesis, the following topics are highlighted as useful investigations:

1. MDVP, ADSV and ‘thesis software’ DSP algorithms have be used in this thesis
for measuring features that are believed to be indicative of voiced quality. The
Praat software package has been investigated and used to compare the measure-
ments obtained. Clearly the success of an objective voice assessment package
will be dependent on the choice of features, the definition of the parameters
extracted from them, and the accuracy with which the features are measured.
Despite the maturity of this research field, fundamental DSP research papers are
still being published about feature measurement [FH09, MA07, FGHD+09] and
other recent papers [AWA09, HKŞ11] have compared the accuracy and results
obtained. We believe there is still much fundamental work to do in this area,
and that the thesis software presented can be improved, extended and further
evaluated.

2. We have taken the Euclidean distance between the k feature measurements of the
new subject and the corresponding feature measurements of the data-base subject
in KNNR. It is even possible to vary the definition of ‘distance’ dynamically
according to the data and the confidence in the scores.

3. It would be useful to apply the proposed methodology to a different database
such as that referred to in the publication by [VCOAAL+13]. Unfortunately, this
database has not been scored by trained SLT therapists, only by one untrained
voice researcher. It would be useful to employ our SLT scorers to score the voice
recordings in this database and then use it to further train our system. This would
allow a direct comparison with the results published in [VCOAAL+13].
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4. The evaluations in Chapter 6 were carried out with reference to averaged scores
rather than the reliability weighted average (Gold standard) scores developed in
Chapter 3. The reasons for this were explained in the Page 215. The evalua-
tions should now be repeated using the ‘gold-standard’ scores. This point is also
mentioned in the conclusions of chapter 6 (last paragraph).

5. The measurements used for the system investigated were mostly extracted from
sustained vowels, though the ‘thesis software’ allows connected speech, i.e. spo-
ken sentences, to be used also. More work can now be carried out using feature
measurements made from the voiced components of connected speech as identi-
fied by voiced/unvoiced detection.

6. Other features of speech, for example rate of change of jitter and shimmer,
should be investigated enhancing GRBAS score prediction.

7. The effects of the age, sex, regional or international accent and state of mind
of patients being assessed should be considered especially if connected speech
is to be used for GRBAS prediction. The voice quality assessment of children
presents formidable difficulty which has already been identified and needs to be
addressed in further research. Questions arise, such

(a) Which acoustic features are most indicative of voice abnormality in chil-
dren?

(b) How can voice recordings best be obtained from children?

8. One application of GRBAS measurement is the ‘longitiudal study’ of patients
over periods of time. This raises interesting problems and opportunities such as
how to maintain the consistency of repeated measurements, and whether mobile
technology, perhaps mobile phones even, could be used for such monitoring.

9. Some very difficult questions remain, which have not been addressed in this
thesis. For example, from the outset we decided to use objective measurements
to emulate the assessment by SLT scorers. This will give a different emphasis to
features that may not even be noticeable to human listeners. Therefore, it may
be asked whether perceptual models should be built into the computer software.
Also, SLT therapists have the advantage of seeing their patients, experiencing
their discomfort and basing their diagnoses on subtle and perhaps indefinable
cues that the software defined in this thesis would not even know how to look for.



7.1. SUGGESTIONS FOR FURTHER WORK 219

This highlights again the need to make better use of connected speech for voice
assessment. As well as the voiced segments of connected speech, the voiced-
unvoiced transitions, and other characteristics are certain to contain diagnostic
information. The use of connected speech for voice quality assessment is an
issue that has been raised by many researchers, but, until now, remains relatively
unexplored.
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Appendix B

Data-base Definition

There were originally 105 voice examples provided by MRI. Three of these following
examples were eliminated because of recording problems in the sustained vowel /a/.

1. Example: 20120501-1 (recording problem)

2. Example: 20110930-1 (recording problem)

3. Example: 20110831-1 ( high amplitude)

The number of recording examples that was played out to the each of the SLTs for
GRBAS scoring was different. As mentioned in Chapter 3, ‘intra-scorer consistency’
was investigated for each scorer using GRBAS re-scoring for about randomly selected
20 participants. The following examples were eliminated for the SLT specified to make
the number of repeated examples to each SLT equal.

1. SLT1: 20111004-2

2. SLT2: 20111004-3

3. SLT4: 20110912-1, 20110913-1

4. SLT5: 20110913-1, 20110919-1, 20111006-2
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Appendix C

‘Gold-standard’ Reference Scores

This Appendix presents a table of the ‘gold-standard’ reference scores obtained in
Chapter 3 by applying equations (3.28) to (3.31) for ‘Grade’, and corresponding equa-
tions for ‘R’, ‘B’, ‘A’ and ‘S’. The table also presents the unweighted averages of the
scores for each subject (avG, avR, avB, avA, avS). The scores are for subjects n in the
range 1 to 102.

n G R B A S avG avR avB avA avS
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.5 0.4 0.0 0.0 0.0 0.4 0.4 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
9 1.0 0.8 0.2 0.0 0.0 1.0 0.8 0.2 0.0 0.0

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
12 0.2 0.2 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0
13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16 1.5 1.6 0.8 0.4 1.0 1.4 1.4 0.6 0.4 1.0
17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
18 0.6 0.4 0.6 0.5 0.4 0.6 0.4 0.6 0.4 0.4

Table C.1: ‘Gold-standard’ ref scores compared with unweighted averages (PART 1).
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n G R B A S avG avR avB avA avS
19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 0.4 0.4 0.0 0.1 0.0 0.4 0.4 0.0 0.2 0.0
21 0.3 0.3 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0
22 0.3 0.3 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0
23 0.6 0.6 0.0 0.0 0.0 0.6 0.6 0.0 0.0 0.0
24 1.2 0.8 0.0 0.3 1.3 1.2 0.8 0.0 0.2 1.2
25 0.2 0.2 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0
26 1.9 1.7 1.7 1.5 0.0 1.8 1.6 1.6 1.4 0.0
27 2.8 0.8 2.7 1.9 1.7 2.8 0.6 2.8 2.0 1.8
28 0.4 0.2 0.2 0.1 0.0 0.4 0.2 0.2 0.2 0.0
29 2.5 1.8 0.9 1.3 0.7 2.4 1.8 1.0 1.2 1.0
30 1.0 1.0 0.0 0.3 0.4 1.0 1.0 0.0 0.4 0.4
31 1.9 1.8 1.4 0.9 1.0 1.8 1.8 1.4 0.8 1.0
32 1.2 1.2 0.0 0.0 0.1 1.2 1.2 0.0 0.0 0.2
33 0.3 0.0 0.0 0.3 0.0 0.2 0.0 0.0 0.2 0.0
34 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
36 0.8 0.8 0.2 0.3 0.3 0.8 0.8 0.2 0.2 0.2
37 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
38 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
39 0.2 0.2 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0
40 2.2 2.2 0.0 0.3 1.4 2.2 2.2 0.0 0.2 1.4
41 1.0 0.5 0.6 0.0 0.4 1.0 0.6 0.6 0.0 0.4
42 2.0 0.6 1.7 1.4 0.9 2.0 0.6 1.8 1.4 0.8
43 2.2 0.0 2.3 1.8 0.5 2.2 0.0 2.2 1.8 0.6
44 0.2 0.2 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0
45 0.5 0.4 0.2 0.0 0.3 0.4 0.4 0.2 0.0 0.2
46 2.9 2.2 0.5 1.3 2.9 2.8 2.2 0.4 1.2 2.8
47 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
48 1.2 1.1 0.4 0.7 1.0 1.2 1.0 0.4 0.6 1.0
49 2.0 2.0 0.6 0.9 0.7 2.0 2.0 0.6 0.8 0.6
50 2.9 2.9 0.6 1.3 1.7 2.8 2.8 0.6 1.2 1.8
51 2.4 1.3 2.0 1.7 1.3 2.4 1.2 2.0 1.8 1.2
52 1.6 1.1 0.8 1.7 0.7 1.6 1.0 0.8 1.6 0.6
53 1.2 0.4 0.7 0.5 1.0 1.2 0.6 0.6 0.4 1.0
54 1.6 0.6 0.6 0.7 1.6 1.6 0.6 0.6 0.6 1.6
55 1.4 1.0 0.9 0.7 1.0 1.4 1.0 1.0 0.6 1.0
56 1.0 0.1 0.4 0.1 0.3 1.0 0.2 0.4 0.2 0.2
57 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
58 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
59 1.4 1.4 0.6 0.6 0.6 1.4 1.4 0.6 0.6 0.6
60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table C.2: ‘Gold-standard’ ref scores compared with unweighted averages (PART 2).
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n G R B A S avG avR avB avA avS
61 0.5 0.2 0.2 0.3 0.0 0.4 0.2 0.2 0.2 0.0
62 1.8 1.4 0.7 1.8 0.7 1.6 1.2 0.6 1.6 0.6
63 1.8 1.1 1.7 0.0 0.9 1.6 1.0 1.6 0.0 0.8
64 0.6 0.0 0.3 0.6 0.0 0.6 0.0 0.4 0.6 0.0
65 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
66 0.2 0.0 0.2 0.3 0.0 0.2 0.0 0.2 0.2 0.0
67 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
68 1.5 1.4 0.4 0.6 0.3 1.4 1.4 0.4 0.6 0.2
69 2.9 2.1 2.2 1.7 2.6 2.8 2.0 2.2 1.6 2.6
70 1.6 1.4 0.0 0.7 0.9 1.6 1.4 0.0 0.8 1.0
71 1.0 1.0 0.2 0.3 0.6 1.0 1.0 0.2 0.2 0.6
72 2.6 1.1 2.2 2.0 1.4 2.6 1.0 2.2 2.0 1.4
73 2.0 1.2 1.9 1.1 1.1 2.0 1.2 1.8 1.2 1.2
74 1.0 0.1 0.7 1.0 0.3 1.0 0.2 0.6 1.0 0.2
75 3.0 1.5 2.7 1.8 2.4 3.0 1.2 2.8 2.0 2.4
76 2.1 0.8 1.8 1.9 0.3 2.0 0.8 1.8 1.8 0.2
77 3.0 3.0 2.2 1.3 1.5 3.0 3.0 2.0 1.2 1.4
78 2.8 2.7 0.9 0.8 1.5 2.6 2.6 0.8 0.8 1.4
79 2.3 2.4 0.5 0.8 1.1 2.4 2.4 0.4 1.0 1.0
80 1.2 1.0 0.9 0.7 0.8 1.2 1.0 0.8 0.8 0.6
81 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
82 2.2 0.8 2.0 1.2 1.0 2.2 0.8 2.0 1.2 1.0
83 1.6 0.5 1.7 1.4 0.3 1.6 0.4 1.6 1.4 0.2
84 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
85 2.2 2.1 1.8 1.3 1.2 2.2 2.0 1.6 1.2 1.4
86 0.9 0.4 0.7 0.0 0.0 0.8 0.4 0.6 0.0 0.0
87 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
88 2.0 0.6 2.0 1.7 0.3 2.0 0.4 2.0 1.6 0.2
89 2.5 0.8 0.2 0.8 2.5 2.4 0.6 0.2 0.8 2.4
90 0.2 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.2 0.0
91 2.5 2.2 0.5 0.3 1.9 2.4 2.0 0.4 0.2 1.8
92 0.9 0.9 0.0 0.1 0.4 0.8 0.8 0.0 0.2 0.4
93 2.6 2.6 0.8 0.5 0.8 2.6 2.6 0.8 0.4 0.8
94 1.4 1.4 0.4 0.3 0.2 1.4 1.4 0.4 0.4 0.4
95 0.2 0.2 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0
96 0.5 0.0 0.5 0.0 0.0 0.4 0.0 0.4 0.0 0.0
97 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
98 1.4 1.5 0.0 0.4 1.3 1.2 1.4 0.0 0.4 1.2
99 1.9 1.7 0.9 1.2 1.5 1.8 1.6 0.8 1.0 1.4
100 2.3 1.9 1.5 1.3 1.9 2.2 1.6 1.4 1.2 1.8
101 2.0 1.8 0.5 1.2 1.5 2.0 1.8 0.4 1.0 1.6
102 1.1 1.2 0.8 0.0 0.5 1.0 1.0 0.6 0.0 0.4

Table C.3: ‘Gold-standard’ ref scores compared with unweighted averages (PART 3).



Appendix D

Measuring Fundamental Frequency
(FF) for artificial voiced speech

The purpose of this appendix is evaluating the ‘thesis software’ for fundamental fre-
quency estimation using cross-correlation method for three sustained vowels (samples
of artificial voiced speech) with known fundamental that were produced. These were
produced by exciting an all-pole vocal tract model, with glottal pulse shaping and lip-
radiation filtering, by a periodic series of discrete time impulses. Table D.1 in appendix
D shows estimate of fundamental frequency for synthesised vowels, i.e. /a/, /o/ and /e/
over the range 120 Hz to 200 Hz as estimated by the thesis software.

Nominal-FF (Hz) th-FF-Vowel /a/ th-FF-Vowel /o/ th-FF-Vowel /e/
120 119.84 119.83 119.84
130 130.08 130.08 130.09
140 140 139.99 140
150 149.98 149.99 150
160 159.77 159.77 159.78
170. 170.24 170.26 170.27
180 180 179.99 179.99
190 190.06 190.08 190.09
200 199.55 199.54 199.55

Table D.1: Comparison of Fundamental Frequency (FF) measurements for artificial
voiced speech

The thesis measurements for three synthesised vowels is close to the nominal val-
ues of fundamental frequency. The maximum discrepancy is between the nominal
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fundamental frequency 200 Hz with thesis measurement for vowel /o/ with frequency
199.53 Hz that is about 0.23%. The small differences between the nominal and es-
timated values for three sustained vowels can arise is the mistaking of short term
periodicity due to vocal tract resonances (formants) for the longer term pitch-cycle
periodicity due to vocal cord vibration. The short term periodicity creates peaks in the
cross-correlation function.

1. Poles were given radii of 0.987, 0.985, 0.919, and 0.929 with frequencies ±500,
±1200, ±2800 and ±3600 Hz respectively to emulate the phoneme /a/ [Sam,
vHP93].

2. Poles were given radii of 0.985, 0.972, 0.919, and 0.909 with frequencies ±500,
±900, ±2250 and ±3200 Hz respectively to emulate the phoneme /o/ [Sam,
vHP93].

3. Poles were given radii of 0.992, 0.99, 0.988, and 0.986 with frequencies ±500,
±1900, ±2100 and ±3400 Hz respectively to emulate the phoneme /e/ [Sam,
vHP93].



Appendix E

Definitions of Feature Subsets used in
Chapter 5
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Subset Feature Label
S1 F14-F2-F4-F5
S2 F14-F4-F5-F1-F20-F13
S3 F14-F4-F2-F20
S4 F20-F4-F1-F14-F19
S5 F4-F13
S6 F4-F13-F2-F19-F14
S7 F4-F13-F6-F2-F14
S8 F4-F14-F13-F1-F6-F2-F19
S9 F4-F14-F11-F13-F1-F19

S10 F4-F14-F1-F13-F20-F2
S11 F4-F14-F1-F2
S12 F4-F14-F6-F2-F5-F1-F20
S13 F4-F14-F6-F1-F5
S14 F4-F5-F6-F2-F1
S15 F4-F2-F13
S16 F4-F2-F14-F13-F20-F11-F5
S17 F4-F2-F14-F20
S18 F4-F2-F14-F19-F1-F5
S19 F4-F2-F14-F6
S20 F4-F2-F14-F6-F1
S21 F4-F2-F20-F14
S22 F4-F2-F20-F14-F19
S23 F4-F2-F5
S24 F4-F2-F5-F14-F19-F20-F11-F6-F13
S25 F4-F2-F5-F14-F1-F20
S26 F4-F2-F5-F11
S27 F4-F2-F1-F5-F14-F20
S28 F4-F2-F6
S29 F4-F2-F6-F13-F5-F14-F19-F1
S30 F4-F2-F6-F5-F1
S31 F4-F2-F6-F1
S32 F4-F2-F6-F1-F14-F11
S33 F4-F1-F14-F11-F2-F6-F19-F20
S34 F4-F1-F11
S35 F4-F1-F5-F19-F20-F14
S36 F4-F1-F6-F11
S37 F4-F1-F6-F11-F5-F14

Table E.1: Forward Selection subsets referred to in Figures 5.8 and 5.9 (Grade)
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Subset Feature Label
S1 F4-F14-F13-F1-F6
S2 F4-F14-F11-F1
S3 F4-F14-F11-F1-F5-F19
S4 F4-F14-F11-F1-F5-F2-F19
S5 F4-F14-F11-F1-F6
S6 F4-F14-F20-F13-F1-F5
S7 F4-F14-F20-F13-F1-F5-F19
S8 F4-F14-F20-F11-F1-F5
S9 F4-F14-F20-F11-F1-F5-F19

S10 F4-F14-F20-F5-F2
S11 F4-F14-F20-F5-F2-F19
S12 F4-F14-F20-F2
S13 F4-F14-F20-F1-F5
S14 F4-F14-F20-F1-F5-F19
S15 F4-F14-F20-F1-F5-F2
S16 F4-F14-F20-F1-F5-F6
S17 F4-F14-F20-F1-F2-F6
S18 F4-F14-F5-F2
S19 F4-F14-F5-F2-F19
S20 F4-F14-F5-F2-F6
S21 F4-F14-F2
S22 F4-F14-F2-F19
S23 F4-F14-F2-F6
S24 F4-F14-F1-F5
S25 F4-F14-F1-F5-F19
S26 F4-F14-F1-F5-F2
S27 F4-F14-F1-F5-F2-F6
S28 F4-F14-F1-F5-F6
S29 F4-F14-F1-F2-F6
S30 F4-F14-F1-F6
S31 F4-F11-F13-F1
S32 F4-F11-F2-F6
S33 F4-F11-F1
S34 F4-F11-F1-F6
S35 F4-F5-F2-F6
S36 F4-F2-F6
S37 F4-F1-F5-F2-F6
S38 F4-F1-F2-F6
S39 F4-F1-F6

Table E.2: Exhaustive search subsets referred to in Figures 5.10 and 5.11 (Grade)
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Subset Feature Label
S1 F14-F4-F12-F19-F7
S2 F20-F4
S3 F4
S4 F4-F14
S5 F4-F14-F12
S6 F4-F14-F20
S7 F4-F14-F1
S8 F4-F14-F1-F7-F12-F19
S9 F4-F12-F14

S10 F4-F12-F2-F7-F5
S11 F4-F12-F1-F5-F7
S12 F4-F12-F1-F2
S13 F4-F12-F7-F20-F1
S14 F4-F12-F7-F19-F1-F20-F14
S15 F4-F12-F7-F2
S16 F4-F20-F14-F12
S17 F4-F20-F5-F2-F14
S18 F4-F5
S19 F4-F5-F12
S20 F4-F5-F2-F14-F1
S21 F4-F5-F2-F12-F19
S22 F4-F5-F2-F12-F1
S23 F4-F5-F2-F7-F11-F14-F12
S24 F4-F5-F2-F7-F20-F12-F1-F14
S25 F4-F2
S26 F4-F2-F11
S27 F4-F2-F1-F11
S28 F4-F1-F11
S29 F4-F1-F7
S30 F4-F7-F14-F11-F1
S31 F4-F7-F14-F5
S32 F4-F7-F12-F19-F1
S33 F4-F7-F12-F2
S34 F4-F7-F12-F1
S35 F4-F7-F5-F1-F12
S36 F4-F7-F2
S37 F4-F7-F1
S38 F4-F7-F1-F12-F5
S39 F4-F7-F1-F5

Table E.3: Forward Selection subsets referred to in Figures 5.15 and 5.16 (Roughness)
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Subset Feature Label
S1 F4-F14
S2 F4-F14-F12-F5-F1-F7
S3 F4-F14-F11-F1-F7
S4 F4-F14-F20-F12-F5-F1-F7
S5 F4-F14-F20-F12-F5-F7
S6 F4-F14-F20-F12-F19-F1-F7
S7 F4-F14-F20-F12-F1-F7
S8 F4-F14-F20-F12-F7
S9 F4-F14-F20-F12-F7-F2

S10 F4-F12-F11-F19
S11 F4-F12-F5-F2
S12 F4-F12-F5-F1-F7
S13 F4-F12-F5-F1-F7-F2
S14 F4-F12-F5-F7
S15 F4-F12-F5-F7-F2
S16 F4-F12-F19
S17 F4-F12-F19-F5-F2
S18 F4-F12-F19-F1-F7
S19 F4-F12-F19-F1-F7-F2
S20 F4-F12-F19-F7
S21 F4-F12-F19-F7-F2
S22 F4-F12-F2
S23 F4-F12-F1-F7
S24 F4-F12-F7
S25 F4-F12-F7-F2
S26 F4-F11-F1
S27 F4-F11-F1-F2
S28 F4-F20
S29 F4-F20-F12-F5-F1-F7
S30 F4-F20-F12-F5-F1-F7-F2
S31 F4-F20-F12-F19
S32 F4-F20-F12-F1
S33 F4-F20-F12-F1-F7
S34 F4-F5
S35 F4-F5-F2
S36 F4-F5-F7
S37 F4-F2
S38 F4-F7

Table E.4: Exhaustive search subsets referred to in Figures 5.18 and 5.17 (Roughness)
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Subset Feature Label
S1 F13-F14-F2-F7-F5
S2 F13-F5
S3 F13-F5-F2
S4 F13-F5-F2-F10-F14-F4-F11-F7
S5 F13-F2-F5-F1
S6 F13-F2-F5-F1-F14
S7 F13-F1-F5-F7
S8 F13-F7-F4
S9 F14-F11-F2-F10-F5-F7-F13-F1

S10 F14-F4-F2-F11
S11 F11
S12 F11-F5-F13-F1-F7
S13 F11-F2
S14 F11-F2-F5-F13-F7
S15 F11-F2-F5-F1-F13-F10-F7-F14
S16 F11-F2-F1-F14-F5-F13-F4-F7
S17 F11-F2-F1-F5-F7-F13-F10
S18 F11-F2-F7-F14-F13
S19 F11-F2-F4-F13
S20 F11-F2-F4-F5-F14-F13
S21 F11-F1-F5-F13
S22 F11-F1-F7-F13
S23 F11-F1-F7-F13-F5
S24 F11-F1-F7-F13-F5-F2
S25 F11-F7-F1-F13-F5
S26 F11-F4-F13
S27 F5-F2-F14
S28 F5-F2-F11
S29 F1-F13-F7-F14-F11-F5-F2
S30 F1-F13-F7-F5-F2
S31 F1-F11-F7-F13-F5
S32 F4-F13-F11
S33 F4-F13-F5
S34 F4-F13-F5-F7
S35 F4-F13-F7-F5-F2-F20-F1-F14
S36 F4-F2-F13
S37 F4-F2-F5-F1-F13-F14-F20-F10

Table E.5: Forward Selection subsets referred to in Figures 5.22 and 5.23 (Breathiness)
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Subset Feature Label
S1 F13-F14-F5-F1
S2 F13-F14-F1-F7
S3 F13-F11-F5-F2-F1-F7
S4 F13-F11-F5-F2-F7
S5 F13-F11-F5-F1
S6 F13-F11-F5-F1-F7
S7 F13-F11-F2-F1-F7
S8 F13-F11-F2-F7
S9 F13-F11-F7

S10 F13-F11-F4-F5
S11 F13-F11-F4-F5-F2
S12 F13-F11-F4-F5-F1
S13 F13-F11-F4-F1-F7
S14 F13-F11-F4-F7
S15 F13-F20-F5-F1
S16 F13-F20-F5-F1-F10
S17 F13-F20-F5-F1-F7
S18 F13-F5-F2
S19 F13-F5-F2-F1
S20 F13-F5-F2-F1-F10
S21 F13-F5-F2-F1-F7
S22 F13-F5-F2-F10
S23 F13-F5-F2-F7
S24 F13-F5-F1
S25 F13-F5-F1-F7
S26 F13-F2-F7
S27 F13-F1-F7
S28 F13-F4
S29 F13-F4-F5
S30 F13-F4-F5-F2
S31 F13-F4-F5-F2-F1
S32 F13-F4-F5-F2-F1-F7
S33 F13-F4-F5-F1
S34 F13-F4-F5-F1-F7
S35 F13-F4-F1-F7

Table E.6: Exhaustive search subsets referred to in Figures 5.24,5.25 (Breathiness)
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Subset Feature Label
S1 F14-F13-F1-F5-F4-F16-F18-F11
S2 F14-F16-F1-F5-F4
S3 F14-F5-F13-F1-F4-F18-F16-F11-F20
S4 F14-F1-F5-F13
S5 F14-F1-F4-F11-F18-F5-F13-F20
S6 F14-F4-F11-F16
S7 F14-F4-F16-F11-F1-F13
S8 F14-F4-F16-F5-F1-F18
S9 F14-F4-F16-F1-F5

S10 F11-F13-F5
S11 F11-F14-F1-F4-F5-F13-F16-F18-F19-F20
S12 F11-F1-F5-F13-F4-F14-F18
S13 F11-F1-F4-F5-F20
S14 F11-F4-F1-F5-F14-F13-F19
S15 F20-F1-F5-F4-F11-F16-F13-F18-F14
S16 F4-F13-F11-F18-F5-F16-F1-F20
S17 F4-F13-F16-F1-F11
S18 F4-F13-F5
S19 F4-F13-F5-F20-F1-F14-F18
S20 F4-F13-F5-F18-F1-F16-F11-F20
S21 F4-F13-F19-F5-F14-F1-F18
S22 F4-F13-F19-F1-F16-F11
S23 F4-F13-F1-F14-F16
S24 F4-F14
S25 F4-F14-F5
S26 F4-F14-F5-F1-F19-F16-F13-F20
S27 F4-F14-F1
S28 F4-F14-F1-F13-F16
S29 F4-F11-F14-F1-F5-F16-F20-F13
S30 F4-F11-F5-F1-F19
S31 F4-F16-F20-F14-F1-F19-F13
S32 F4-F16-F5
S33 F4-F5-F1-F13-F16
S34 F4-F19-F13-F1-F14-F16
S35 F4-F1-F14-F13-F20-F11-F16-F5
S36 F4-F1-F14-F5-F20-F11
S37 F4-F1-F5-F13
S38 F4-F1-F5-F13-F18
S39 F4-F1-F5-F14-F13-F11-F18
S40 F4-F1-F5-F20

Table E.7: Forward Selection subsets referred to in Forward Selection subsets referred
to in Figures 5.29 and 5.30 (Asthenia)
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Subset Feature Label
S1 F14-F5-F16-F1
S2 F4-F13-F5-F18-F1
S3 F4-F13-F5-F16-F1
S4 F4-F13-F5-F1
S5 F4-F13-F19-F16-F1
S6 F4-F13-F19-F5-F16-F1
S7 F4-F13-F19-F1
S8 F4-F14-F13-F16-F1
S9 F4-F14-F13-F5-F18-F1

S10 F4-F14-F13-F5-F16-F1
S11 F4-F14-F13-F5-F1
S12 F4-F14-F13-F19-F16-F1
S13 F4-F14-F13-F19-F1
S14 F4-F14-F13-F1
S15 F4-F14-F5-F18-F1
S16 F4-F14-F5-F16-F1
S17 F4-F14-F5-F1
S18 F4-F11-F13-F5-F16-F1
S19 F4-F11-F13-F5-F1
S20 F4-F11-F14-F13-F16-F1
S21 F4-F11-F14-F13-F5-F18-F1
S22 F4-F11-F14-F13-F5-F16-F18-F1
S23 F4-F11-F14-F13-F5-F16-F1
S24 F4-F11-F14-F13-F5-F1
S25 F4-F11-F14-F13-F19-F5-F1
S26 F4-F11-F14-F16-F1
S27 F4-F11-F20-F13-F5-F16-F18-F1
S28 F4-F11-F20-F14-F13-F16-F1
S29 F4-F11-F20-F14-F13-F5-F18-F1
S30 F4-F11-F20-F14-F13-F5-F1
S31 F4-F11-F5-F1
S32 F4-F20-F13-F16-F1
S33 F4-F20-F13-F5-F1
S34 F4-F20-F14-F13-F16-F1
S35 F4-F20-F14-F13-F5-F16-F1
S36 F4-F20-F14-F13-F5-F1
S37 F4-F19-F5-F16-F1

Table E.8: Exhaustive search subsets referred to in Figures 5.31 and 5.32 (Asthenia)
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Subset Feature Label
S1 F14-F4-F19
S2 F14-F4-F1-F18-F20-F6
S3 F4
S4 F4-F13
S5 F4-F13-F14-F19-F6-F5-F20
S6 F4-F13-F1-F5
S7 F4-F14
S8 F4-F14-F13
S9 F4-F14-F13-F11-F19

S10 F4-F14-F20
S11 F4-F14-F20-F19
S12 F4-F14-F20-F19-F11
S13 F4-F14-F20-F1-F11
S14 F4-F14-F5
S15 F4-F14-F19-F1
S16 F4-F14-F1-F13-F5
S17 F4-F14-F1-F11
S18 F4-F14-F1-F18-F11
S19 F4-F14-F1-F5
S20 F4-F11-F18-F14-F19-F5
S21 F4-F20
S22 F4-F20-F11-F14-F19
S23 F4-F20-F5-F6
S24 F4-F20-F1-F5-F14-F6
S25 F4-F18-F14-F19
S26 F4-F5-F14-F11
S27 F4-F5-F14-F1
S28 F4-F1
S29 F4-F1-F20
S30 F4-F1-F5-F14-F19-F20-F6
S31 F4-F1-F5-F19-F11-F14
S32 F4-F1-F19-F14-F20-F5

Table E.9: Forward Selection subsets referred to in Figures 5.36 and 5.37 (Strain)
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Subset Feature Label
S1 F4
S2 F4-F13
S3 F4-F14
S4 F4-F14-F11
S5 F4-F14-F11-F5-F19-F1
S6 F4-F14-F20-F11-F13-F5-F1
S7 F4-F14-F20-F11-F5-F19-F1
S8 F4-F14-F20-F11-F5-F1
S9 F4-F14-F20-F5

S10 F4-F14-F20-F5-F19
S11 F4-F14-F20-F5-F19-F1
S12 F4-F14-F20-F5-F1
S13 F4-F14-F20-F19
S14 F4-F14-F20-F19-F1
S15 F4-F14-F20-F1
S16 F4-F14-F20-F6-F5-F1
S17 F4-F14-F20-F6-F1
S18 F4-F14-F5
S19 F4-F14-F5-F19
S20 F4-F14-F5-F19-F1
S21 F4-F14-F5-F1
S22 F4-F14-F19
S23 F4-F14-F19-F1
S24 F4-F14-F1
S25 F4-F14-F6-F13-F5-F1
S26 F4-F14-F6-F18-F5-F1
S27 F4-F14-F6-F5
S28 F4-F14-F6-F5-F1
S29 F4-F14-F6-F1
S30 F4-F11-F1
S31 F4-F20-F1
S32 F4-F20-F6-F5
S33 F4-F20-F6-F5-F1
S34 F4-F1
S35 F4-F6-F18-F1
S36 F4-F6-F5
S37 F4-F6-F5-F1

Table E.10: Exhaustive search subsets referred to in Figures 5.38 and 5.39 (Strain)


