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ABSTRACT OF THESIS submitted by Lee Robert Whittaker

for the Degree of Doctor of Philosophy and entitled

“New Approaches to Weak Gravitational Lensing”, September 2015.

This thesis is concerned with developing new methods for performing weak gravita-

tional lensing with the aim of addressing specific systematic effects in weak lensing

surveys.

The first of these effects is the multiplicative biases which arise as a result of

isotropic smearing. This smearing may be due to atmospheric seeing or an instrumental

PSF. Isotropic smearing circularizes a galaxy image and leads to a systematic under-

estimate of the modulus of the observed ellipticity. The orientation of the observed

galaxy is, however, unaffected. We exploit this property by formulating a weak lens-

ing shear estimator that requires measurements of galaxy position angles only, thereby

avoiding the contribution from this systematic. We demonstrate the method on simula-

tions and the CFHTLenS data by reconstructing convergence maps and comparing the

results with the standard full ellipticity based approach. We show that the difference

between the reconstructed maps for the two approaches is consistent with noise in all

of the tests performed. We then apply the technique to the GREAT3 challenge data us-

ing three distinct methods to measure the position angles of the galaxies. For all three

methods, we find that the position angle-only approach yields shear estimates with a

performance comparable with current well established shape based techniques.

The second effect addressed arises from the intrinsic alignment of the source galax-

ies. This alignment mimics a shear signal, and hence biases estimates of the shear. To

mitigate this effect, we develop three shear estimators that include polarization in-

formation from radio observations as a tracer of a galaxy’s intrinsic orientation. In

addition to the shear estimator, we also develop estimators for the intrinsic alignment

signal. We test these estimators by successfully reconstructing the shear and intrinsic

alignment auto and cross-power spectra across three overlapping redshift bins.
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Figure 1: A simulation of the large-scale structure run with GADGET-2 (Springel 2005).
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Chapter 1

Introduction to cosmology

Cosmology is the study of the evolution and large scale dynamics of the Universe.

Modern scientific cosmology is a relatively young branch of astronomy. However, it

can trace its roots to the days when our early ancestors first looked up at the stars and

pondered on such questions as “how did it all begin?” For the majority of our recorded

history, it was believed that humans occupied a special place in the Universe. The

Ptolemaic model consisted of the Universe being centred on the Earth, with all of the

heavenly bodies circling around us. In the 1500s, Copernicus proposed that it was, in

fact, the Sun that was at the centre of the Universe, and that the Earth and other planets

orbited the Sun.

Observations in the years that followed began to provide evidence that the stars

were not uniformly distributed about the skies, as it was previously believed. In the

late 1700s, William Herschel identified a disc like distribution of the stars (Herschel

1786) - the Milky Way - and placed our Solar System at the centre. It was Shapely, in

the early 1900s, that showed the solar system was actually situated about two-thirds of

the way out from the centre of the Milky Way. However, it was then the Milky Way

that was placed at the centre of the Universe. In 1952, Baade finally confirmed that our

place in the Universe is not special (Liddle 2003). Our galaxy is fairly typical - just

one of around 100 billion galaxies in the observable Universe. The idea that our place

in the Universe is not special now lies at the heart of modern cosmology.
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1: INTRODUCTION TO COSMOLOGY

In the wake of Einstein’s general theory of relativity (1916), the assumption that

the Universe is homogeneous and isotropic on large scales was invoked in an attempt

to solve the Einstein field equations for the simplest possible large-scale mass distri-

bution. This assumption of large scale (>100 Mpc) symmetry is known as the cos-

mological principle, and it has been verified by observations of the cosmic microwave

background (CMB) (Penzias & Wilson 1965; Smoot et al. 1992; Wu et al. 1999) and

the distribution of galaxies (Colless et al. 2001; Abazajian et al. 2003). From this

assumption, the Robertson-Walker metric was developed and, from this metric, the

Friedmann equations. These equations describe the expansion of a universe that obeys

the cosmological principle within the framework of general relativity.

Cosmological models that obey the Robertson-Walker metric and the Friedmann

equations are generally described as FRW models. The ΛCDM model is one example

of an FRW model. ΛCDM provides a good description of many cosmological observa-

tions, such as the structure of the CMB and the accelerating expansion of the Universe.

Within this model, the accelerated expansion of the Universe is deemed to be the result

of dark energy. This energy has a constant density and is identified with the cosmo-

logical constant (Λ) that is present in the Einstein field equations. The model is also

structured around the existence of cold dark matter (CDM). The presence of cold dark

matter in the model explains many of the gravitational phenomena that are observed

but cannot be explained by the existence of baryonic matter alone, such as the shape

of the velocity curves of spiral galaxies (Rubin et al. 1980). Cosmological models, of

which the ΛCDM model is but one, are constructed using a set of cosmological param-

eters. The precise determination of the cosmological parameters is one of the primary

goals of modern cosmology.

1.1 Introducing the standard cosmological model

The roots of modern cosmology lie in general relativity. The Einstein field equations

describe the relationship between the content of matter-energy in the Universe and the
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1.1: INTRODUCING THE STANDARD COSMOLOGICAL MODEL

Figure 1.1: The relationship between galaxy recession velocity and distance to the galaxy,
as originally presented by Hubble (1929). The black points and full line represent the linear
relationship when considering galaxies as single objects. The open circles and dashed line
represent the relationship when combining the galaxies into groups according to proximity in
direction and distance. The cross is the mean velocity corresponding to the mean distance of
22 galaxies whose distance could not be measured individually.

curvature of spacetime. The field equations are

Gµν + Λgµν =
8πG

c4
Tµν , (1.1)

where Gµν is the Einstein tensor, which describes the curvature of spacetime, and gµν

is the metric tensor, which captures the geometrical causal structure of spacetime. Tµν

is the energy-momentum tensor and describes the energy density and momentum at a

given point in spacetime. This tensor is the source of the spacetime curvature. The

constant on the right-hand side of the field equations is determined by the requirement

that Newton’s law of gravitation is recovered in the weak field limit. The term gµνΛ

does not effect the energy conservation law (∇νT
µν = 0) and so can be added arbi-

trarily (see Hartle (2003) for a discussion). Historically, this term was originally added

by Einstein to counter the effects of gravity with the aim of explaining a static Uni-

verse. This idea was dismissed when Edwin Hubble (Hubble 1929) discovered that the

Universe is expanding.
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1: INTRODUCTION TO COSMOLOGY

Hubble showed that the recession velocity of a galaxy is approximately propor-

tional to its distance from us, as shown in Figure 1.1. This relation can be expressed in

terms of the recession velocity of a galaxy, v, the Hubble constant, H0, and the proper

distance to the galaxy, D, as

v = H0D. (1.2)

The term H0 has be to be measured by observation, and the first good estimate of

H0 was made by Sandage (1958) using observations of Cepheid variable stars. This

value was found to be ∼75 kms−1Mpc−1. The value of H0 found by the Planck Col-

laboration et al. (2015a) using Planck CMB temperature and lensing data is H0 =

(67.8± 0.9) kms−1Mpc−1. If the expansion of the Universe is assumed to be inde-

pendent of time, then H−1
0 provides an estimate of the age of the Universe. Given the

Planck results, this age is ∼14.4 billion years. This is slightly older than the current

accepted age, which is ∼13.8 billon years, as the expansion of the Universe is now

known to be time-dependent.

From Hubble’s discovery in 1929 until the 1990s, it was assumed that the cos-

mological constant is zero. However, the discovery by two independent groups - the

High-Z Supernova Search Team (Riess et al. 1998) and the Supernova Cosmology

project (Perlmutter et al. 1999) - that the expansion of the Universe is accelerating led

to the current accepted hypothesis that the Universe consists of approximately 70% of

an unknown form of energy - dark energy - which acts to oppose the force of gravity

on large scales. The simplest form of dark energy is one that is constant in both space

and time. This can be modelled by reintroducing the constant Λ to the field equations.

There are other possible cosmological models which can explain the accelerated ex-

pansion, such as that of a dark energy for which the density is not constant but, instead,

evolving with time.
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1.1: INTRODUCING THE STANDARD COSMOLOGICAL MODEL

1.1.1 The Friedmann equations

In order to use the Einstein equations to model the Universe, one must first assume a

form for the metric. The usual assumption is that the Universe obeys the cosmological

principle. In such a universe, the most general form of the spacetime metric, which

is defined in terms of the metric tensor gµν and the infinitesimal comoving coordinate

displacement dxµ (Peacock 1999), is

gµνdx
µdxν = ds2 = − (cdt)2 + a (t)

[
dr2 + f 2

K (χ)
(
dθ2 + sin2 θdφ2

)]
, (1.3)

where χ is the comoving radial coordinate and ds2 is the line element. This is known

as the Robertson-Walker metric. Comoving coordinates factor out the expansion of

the Universe so that the distance between two objects is unaffected by the expansion.

This implies that the metric is free from the cross terms dtdxi, where the postscript i

denotes a spatial coordinate, and that the spatial part of the metric is scaled by a single

function of time, a (t), which is the scale factor and describes the spatial expansion.

To preserve isotropy, this term must be a function of time only. The function fK (χ)

is the comoving angular diameter distance to coordinate χ. This function encapsulates

the geometry of the Universe and is given for three distinct cases of three-dimensional

space with curvature K:

fK (χ) =


K−

1
2 sin

(
K

1
2χ
)

for K > 0 (spherical)

χ for K = 0 (flat)

|K|−
1
2 sinh

(
|K|

1
2 χ
)

for K < 0 (hyperbolic).

(1.4)

The Robertson-Walker metric follows from the assumption of the cosmological

principle. If we also assume that the Universe can be modelled as consisting of an

isotropic and homogeneous fluid with density ρ and pressure p, the energy-momentum
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1: INTRODUCTION TO COSMOLOGY

tensor is a diagonal matrix, and we can write the equation of state as

p = ωρc2, (1.5)

where ω is a dimensionless number which characterizes the relation. Assuming the

perfect fluid model and the Robertson-Walker metric, there are only two independent

solutions to the field equations. They are

(
ȧ

a

)2

=
8πGρ

3
+

Λc2

3
− Kc2

a2
, (1.6)

ä

a
=− 4πG

3

(
ρ+

3p

c2

)
+

Λc2

3
. (1.7)

These are the Friedmann equations. The first equation is given by the 00 component

of the field equations and reveals a connection between the density of the Universe

and its global geometry. The second equation comes from a combination of the trace

of the field equations and the first equation. This is the acceleration equation, which

implies that density and pressure decrease the rate of expansion. However, a posi-

tive cosmological constant can counter this effect and cause the rate of expansion to

increase.

For a given a rate of expansion, ȧ/a, we can define the critical density, ρc, as the

density which yields a flat Universe, K = 0. This is found to be

ρc =
3H2

8πG
, (1.8)

where we have defined the Hubble parameter as H(t) ≡ ȧ/a. From equation (1.8), we

see that the critical density depends on H only. The Hubble constant, H0, is defined as

the value of the Hubble parameter at the present day epoch: H0 ≡ H (t = 0). We also

parameterize the Hubble constant in terms of the dimensionless parameter h, such that

H0 = 100h kms−1Mpc−1. (1.9)
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Figure 1.2: Three different possible evolutions of the Universe corresponding to the three dif-
ferent global geometries and ignoring the effects of dark energy. An open Universe continues
to expand forever, with gravity negligibly reducing the expansion rate. The expansion rate of a
flat Universe asymptotically approaches zero as t→∞. The expansion of a closed Universe is
slowed by gravity and eventually stops. The Universe then contracts and ultimately collapses
to a singularity called the big crunch.

If the Universe has a density greater than ρc, it has a spherical global geometry and is

described as closed. If the density of the Universe is lower than ρc, the structure is hy-

perbolic and described as open. Figure 1.2 shows how the scale of the Universe evolves

as a function of time for the three distinct cases of spatial curvature and assuming zero

contribution from dark energy.

1.1.2 Density parameters

If we take the time derivative of equation (1.6) and substitute it into the acceleration

equation, we can show that

ρ̇ = −3H
(
ρ+

p

c2

)
. (1.10)

This equation expresses the conservation of energy and is independent of the cosmo-

logical constant.
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Using the equation of state (given in equation (1.5)) and the conservation of energy

(equation (1.10)), we can solve the Friedmann equations for three distinct cases. A

matter dominated universe exhibits zero pressure, corresponding to ω = 0. A radiation

dominated universe in thermal equilibrium has ω = 1/3. A dark energy dominated

universe corresponds to ω = −1. For these three cases, the solutions to the Friedmann

equations are

ρm =ρm,0a
−3 a (t) ∝ t

2
3 (matter dominated),

ρr =ρr,0a
−4 a (t) ∝ t

1
2 (radiation dominated),

ρΛ =ρΛ,0 a (t) ∝ exp (H0t) (dark energy dominated), (1.11)

We can define the density parameter at the present epoch, Ω, as

Ω =
ρ0

ρc,0
=

8πGρ0

3H2
0

, (1.12)

If we assume that the Universe consists of matter, radiation, and dark energy with a

constant density, we can define a density parameter for each constituent, x, as

Ωx =
ρx(t = 0)

ρc,0
=

8πGρx(t = 0)

3H2
0

, (1.13)

where the dark energy density is

ρΛ =
Λc2

8πG
. (1.14)

These three components now define the curvature density parameter, ΩK , such that

Ωm + Ωr + ΩΛ + ΩK = 1, (1.15)

with ΩK = − (c/H0)2K, which has the opposite sign to the curvature, K.

Using the results of equation (1.11) and equations (1.13) and (1.15), we can write
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equation (1.6) in terms of the density parameters and the Hubble parameter:

H(a) = H0

√
Ωma−3 + Ωra−4 + ΩΛ + ΩKa−2. (1.16)

Since there is no strong physical motivation for modelling dark energy as a cosmolog-

ical constant, we can assume the equation of state to be a function of the scale factor,

ω = ω(a). With this generalization, equation (1.16) is

H(a) = H0

√
Ωma−3 + Ωra−4 + Ωde exp

(
−3

∫ a

1

da′
1 + ω(a′)

a′

)
+ ΩKa−2, (1.17)

where Ωde is the density of dark energy at the present day epoch. In the absence of a

well motivated model for dark energy, the equation of state is often parameterized by

the first coefficient of a Taylor expansion as w(a) = w0 + w1(1 − a) (Chevallier &

Polarski 2001; Linder 2003).

The simplest model that fits current observations is the six parameter ΛCDM model.

In this model, it is assumed that ΩK = 0, ω = −1, and the contribution of neutrino

masses to the total density of the Universe is negligible. Assuming this model, equation

(1.17) simplifies to

H(a) = H0

√
Ωma−3 + Ωra−4 + ΩΛ. (1.18)

Ignoring neutrino masses, the total matter density has a contribution from baryons,

Ωb, and cold dark matter, Ωc. The ΛCDM model can then be described in terms of

the physical baryon density, Ωbh
2; the physical dark matter density, Ωch

2; the Hubble

constant,H0; the optical depth of reionization, τ ; the power of the primordial curvature

fluctuations at k0 = 0.05 Mpc−1, As; and the scalar spectral index, ns. The current

best-fitting values of these six parameters as measured by the Planck Collaboration

et al. (2015a) are shown in Table 1.1.

One may express the RHS of equations (1.16) - (1.18) in terms of redshift. As

photons travel to us from a distant event at the emitted time temit, the frequency of the

photon, ν, is decreased (or equivalently, the wavelength is increased) by the expansion
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Parameter TT,TE,EE+lowP+lensing+ext
68% limits

Ωbh
2 0.02230± 0.00014

Ωch
2 0.1188± 0.0010

H0 67.74± 0.46

τ 0.066± 0.012

ln (1010As) 3.064± 0.023

ns 0.9667± 0.0040

Table 1.1: The six cosmological parameters of the ΛCDM model measured by the Planck
Collaboration et al. (2015a). These results combine Planck CMB power spectra with lensing
reconstruction and external data (BAO+JLA+H0). The external JLA data is a “joint light curve
analysis” sample constructed using type Ia supernovae data from the Supernova Legacy Survey
(SNLS) and the Sloan Digital Sky Survey SDSS.

of the Universe. This reduction in frequency is described by the redshift, z, and is

given by
νemit

ν0

≡ 1 + z =
a0

a (temit)
, (1.19)

where subscript 0 denotes t = 0. There are a number of methods currently used to

determine an object’s redshift. One method uses photometry, whereby one observes

the object’s brightness through various broad filters and looks for shifts in specific

features, such as spectral breaks (Erben et al. 2013; Sánchez et al. 2014).

1.2 Linear structure formation

On scales <100 Mpc, the Universe is inhomogeneous and anisotropic. This is the

regime of galaxies and galaxy clusters. The evolution of these structures is believed

to have originated with tiny quantum fluctuations in the primordial inflationary cos-

mos. These fluctuations generated small-amplitude density inhomogeneities which

produced the temperature fluctuations observed in the CMB. These inhomogeneities

eventually evolved into the large-scale structure we observe today, such as dark matter

filaments and galaxy halos.
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In the early Universe, the small scale perturbations can be successfully studied

using linear perturbation theory. The underlying theory of cosmological perturbations

can be recovered from a linearized form of general relativity, though the derivation is

somewhat involved. However, assuming a non-relativistic fluid, much of the required

physics can be derived using a Newtonian approach (Peebles 1980; Peacock 1999).

Density fluctuations are parameterized by the density contrast

δ (x, t) =
ρ (x, t)− ρ̄ (t)

ρ̄ (t)
, (1.20)

where ρ̄ (t) is the background density at time t and x is the comoving coordinate. For

an ideal non-relativistic fluid, the fundamental equations governing fluid motion are

the Euler equation, the continuity equation and the Poisson equation. We can linearize

these equations in a comoving coordinate system to yield

δ̇ =− 1

a
∇ · v (continuity equation), (1.21)

v̇ +Hv =− ∇δp

aρ̄
− 1

a
∇Φ (Euler equation), (1.22)

∇2Φ =4πGa2ρ̄δ (Poisson equation), (1.23)

where v is the peculiar velocity of the fluid and δp is a pressure perturbation about

the background value. For the special case of a dark matter dominated universe, it can

be shown that a combination of these three equations leads to the differential equation

which describes the evolution of δ as

δ̈ + 2Hδ̇ = 4πGρ̄δ. (1.24)

Here the Hubble parameter represents the expansion of the universe and opposes grav-

itational collapse. This equation allows for growing modes of the form δ ∝ t2/3 ∝ a,

and hence, in the matter dominated era, the growth of dark matter density fluctua-

tions is proportional to the scale factor. The presence of dark energy in the Universe
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suppresses the growth of structure.

As the density contrast approaches unity, the fluid equations (equations (1.21) -

(1.23)) can no longer be linearized when studying structure formation. In this case,

one can trace the evolution of structure using N-body simulations. These simulations

model the dark matter in a given volume as N point masses which interact through

gravitational attraction. The evolution of structure can then be studied as the simulation

advances through time. One example of such an N-body simulation is the publicly

available GADGET-2 code introduced by Springel (2005).

1.3 Observational probes of cosmology

Cosmological probes provide a way of testing theoretical predictions and constraining

cosmological models through observation. The primary focus of this thesis is weak

gravitational lensing. Weak lensing probes the distribution of matter in the Universe

and provides information about the late time evolution of structure. This probe is

discussed in detail in the next chapter. However, weak lensing is but one of a number

of probes available to present day cosmologists. Here we briefly discuss some of the

alternative probes used in cosmology today.

1.3.1 Cosmic microwave background (CMB)

The early Universe (.380,000 after the big-bang) consisted of a hot plasma. In this pe-

riod, the Universe was opaque as the photons interacted with electrons and baryons. As

the Universe expanded, it cooled. At a temperature of about 3000 K, electrons bound

to protons and formed hydrogen atoms; this is known as recombination. With the elec-

trons and protons bound in hydrogen atoms, the photons decoupled and their mean free

path increased exponentially. These photons have traveled to us since decoupling and

are observed at the present epoch as the CMB.

The CMB provides information about the Universe at a redshift of z ≈ 1100. Due
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Figure 1.3: The top panel shows the Planck 2015 temperature power spectrum (Planck Col-
laboration et al. 2015a). The best-fit six parameter ΛCDM model is shown as the red curve.
Residuals between the model and the data are shown in the bottom panel. The error bars are
the 1σ uncertainties.

to the redshift of the CMB photons, the temperature of the CMB observed today is

around 2.73 K. However, at the time of recombination small density inhomogeneities

produced anisotropies in the temperature. These anisotropies were first observed in

1992 by the COBE satellite (Smoot et al. 1992) and provide a snapshot of the Universe

at the time of recombination.

The density fluctuations in the primordial Universe eventually seeded the growth

of the large scale structure observed in the Universe today. Hence, by measuring the

power spectrum of the temperature fluctuations in the CMB, we can place powerful

constraints on cosmology. This method of constraining cosmology has been the pri-

mary focus of many space based, balloon based and ground based observations, such

as those made by the Atacama Cosmology Telescope (ACT) (Dunkley et al. 2011),

the South Pole Telescope (SPT) (Keisler et al. 2011) and the Wilkinson Microwave
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Anisotropy Probe (WMAP) (Hinshaw et al. 2013). Figure 1.3 shows the temperature

power spectrum measured by the Planck Collaboration et al. (2015a).

In addition to the temperature power spectrum, there is much interest in measur-

ing the polarization properties of the CMB. It is understood that inflation in the early

Universe would have generated gravitational waves which imprinted a characteristic

B-mode signal in the CMB. Measuring this signal would therefore provide a means of

constraining models of inflation. In 2014, BICEP2 claimed a detection of the sought

after B-mode signal (Ade et al. 2014). However, later in 2014, a collaboration between

the BICEP2 team and Planck showed that the B-mode detection made by BICEP2 is

consistent with the signal expected from interstellar dust (Planck Collaboration et al.

2014).

1.3.2 Type Ia supernovae

Type Ia supernovae are thought to occur in binary systems where matter is accreted

onto a white dwarf from a companion star. When the white dwarf reaches a critical

mass of∼1.44 solar masses, it explodes as a type Ia supernova. All type Ia supernovae

exhibit a similar luminosity during their brightest phase and can therefore be used as a

“standard candle” when estimating the relative distances of their host galaxies. As the

light travels to us from the supernovae, it is also redshifted by the cosmic expansion.

These two effects can be combined to provide a physical map of the expansion history

of the Universe.

In 1998, observations of type Ia supernovae by two independent teams, the High-

Z Supernova Search Team (Riess et al. 1998) and the Supernova Cosmology Project

(Perlmutter et al. 1999), provided the unexpected observational evidence that the ex-

pansion of the Universe is accelerating. The Dark Energy Survey (DES) (The Dark

Energy Survey Collaboration 2005) aims to use observations ∼2000 type Ia super-

novae to further constrain the expansion history of the Universe
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1.3.3 Baryonic acoustic oscillations

Baryonic acoustic oscillations (BAOs) provide a “standard ruler” which can also be

used to constrain the expansion history. Overdensities in the primordial plasma of

the early Universe gravitationally attracted matter inwards. As the matter collapsed

towards the overdensity, photon-matter interactions created an outward pressure that

countered the gravitational collapse and produced oscillations that traveled outward

from the centre of the overdensity at just over half of the speed of light. This outward

wave consisted of both baryons and photons. Dark matter interacts only gravitationally

and so remained fixed at the origin of the overdensity. At around the time of recom-

bination, the photons and baryons decoupled leaving the baryons to form a shell at a

fixed radius from the origin of the overdensity. This radius is called the sound horizon.

The original overdensity at the centre of the shell and the baryonic overdensity cre-

ated at sound horizon contributed to the evolution of the large scale structure observed

in the present day Universe. As the Universe expands, so does the sound horizon. This

implies that there should be a greater number of galaxies separated by the distance of

the sound horizon at a given redshift. One can therefore statistically infer the scale of

the sound horizon by looking at the separations of a large number of galaxies. One can

also measure the sound horizon at recombination using the temperature anisotropies

observed in the CMB. Measurements of the sound horizon at different redshifts pro-

vide another method of probing the expansion history of the Universe.

The BAO signal was first detected by the Sloan Digital Sky Survey (SDSS) in 2005

(Eisenstein et al. 2005). SDSS measured the two-point correlation function of∼47000

luminous red galaxies (LRGs) and found a characteristic peak signal corresponding

to a sound horizon at the present day epoch of ∼150 Mpc. The measurement of the

BAO signal is one of the key goals of current cosmological optical surveys, such as

eBOSS (Dawson et al. 2015) and DES (The Dark Energy Survey Collaboration 2005),

and future radio surveys, such as BINGO (Battye et al. 2013) and the SKA (Bull et al.

2015), are also planning to measure the signal.
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1.3.4 Redshift-space distortions

Redshift-space distortions arise from the the peculiar velocities of galaxies within

galaxy clusters. These peculiar velocities are caused by the gravitational attraction of

the cluster and produce an additional redshift to that of the cosmic expansion (Kaiser

1987; Hamilton 1998; Percival & White 2009). This effect distorts the apparent red-

shift distribution of the galaxies and can be used to probe the history of structure for-

mation and the nature of gravity on cosmological scales. The measurement of redshift

space distortions is one of the primary objectives of future surveys such as the SKA

(Raccanelli et al. 2015) and Euclid (Guzzo et al. 2008).

1.3.5 Galaxy clusters

Galaxy clusters are the largest gravitationally bound objects in the Universe. They are

also the latest structures to form in the hierarchical scenario. Originating from high

density fluctuations in the early Universe, the formation history of clusters is depen-

dent on the underlying cosmological model, and hence by studying the properties of

clusters, one can place constraints on cosmology (Allen et al. 2011). In particular, the

number counts and spatial distribution of clusters can be used to place tight constraints

on σ8 and Ωm, and by studying the distribution of clusters at multiple redshifts, one can

also constrain the dark energy equation of state, ω (Wang & Steinhardt 1998; Haiman

et al. 2001; Weller et al. 2002; Battye & Weller 2003; Cunha et al. 2009; Sartoris et al.

2012).

Galaxy cluster surveys have already been used to probe cosmology at various wave-

lengths, such as the X-ray band (e.g. using the ROSAT All-Sky Survey and the Chandra

X-ray Observatory (Rapetti et al. 2013)), the optical band (e.g. using the SDSS (Rozo

et al. 2010)) and using detections of clusters through their Sunyaev-Zeldovich signal

in the radio band (e.g. using Planck (Planck Collaboration et al. 2015b)).

Future surveys, such as those made with Euclid (Sartoris et al. 2015), will detect a

large number of clusters over a wide redshift range and thus provide data that is ideal

36 New Approaches to Weak Gravitational Lensing



1.3: OBSERVATIONAL PROBES OF COSMOLOGY

for performing cosmology using cluster observations.
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Chapter 2

Weak gravitational lensing

Einstein’s general theory of relativity describes gravitation as a consequence of the

curvature of spacetime due to the presence of matter and energy. A number of predic-

tions came from this theory, such as the existence of black holes and the existence of

gravitational waves. Gravitational lensing is the prediction that light rays from distant

background objects are deflected by a massive foreground object, such as a galaxy or

a clump of dark matter. Such a phenomenon had already been predicted by means of

a Newtonian argument. Under the assumption that light consists of particles, a Newto-

nian treatment of the path of a light ray passing a massive object predicts a deflection

angle that is half of the magnitude of the angle predicted by general relativity. This

discrepancy between the Newtonian and Einsteinian theories provided a means of test-

ing general relativity. In 1919 during a total solar eclipse, the deflection of the light

rays from a star close to the Sun’s limb was shown (Dyson et al. (1920)) to follow the

predictions made through general relativity and helped to confirm Einstein’s theory.

Strong gravitational lensing is concerned with the large deflection of light from a

background galaxy by a massive foreground object close to the line of sight, which

leads to multiple images of the source galaxy; a phenomenon first observed by Walsh

et al. (1979). Weak lensing is concerned with observations where the deflections of

the light rays are much smaller, resulting in small distortions in the observed shapes of

background galaxies. Cosmological weak lensing (or cosmic shear) aims to detect the
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coherent shape distortions in the images of background galaxies due to the interven-

ing large scale structure of the Universe. This is achieved by performing a statistical

analysis of the observed shapes of the background galaxies in order to extract noisy

estimates of the weak lensing distortion (or “shear”) field. The effect is difficult to

detect due to the intrinsic randomness of galaxy shapes, and it was only conclusively

detected at the turn of the Millennium (Bacon et al. 2000; Kaiser et al. 2000; Wittman

et al. 2000; Van Waerbeke et al. 2000). Since then, much progress has been made in the

precision of the measurements of galaxy shapes, and weak lensing is now established

as a powerful cosmological tool.

In this chapter, we outline the theoretical framework of weak gravitational lensing

(an in-depth discussion can be found in Bartelmann & Schneider (2001)) and discuss

how the effects of cosmic shear can be measured and used to constrain cosmological

models.

2.1 Lensing deflection angle

We begin by discussing the deflection angle of light passing by a spherically symmet-

ric lens as predicted by general relativity and viewed by a distant observer. Starting

with the Einstein field equations (equation (1.1)), it can be shown that (see D’Inverno

(1992) for an example of the derivation) the deflection angle, α̂, of a light ray due to a

spherically symmetric lens of mass M is given by

α̂ =
4GM

c2ξ
. (2.1)

Equation (2.1) is valid for a spherically symmetric mass with an impact parame-

ter, ξ, (see Figure 2.1) that is much greater than the Schwarzschild radius, rs. The

Schwarzschild radius is defined such that, if an object of a given mass is compressed

into a sphere of radius rs, the escape velocity at the surface of the object is greater

than the speed of light. Given the condition ξ � rs, the deflection angle will be small.
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Figure 2.1: Diagram of a typical lens system (Bartelmann & Schneider (2001)).

If the gravitational field is weak, it is possible to linearize the field equations. This

linearization allows us to express the total deflection angle due to an ensemble of point

masses as the sum of the deflection angles due to each individual point.

Let us now consider a mass distribution with volume density ρ (r) and mass ele-

ment dm = ρ (r) dV . The path of a light ray can be described by a set of cylindrical

coordinates (ξ1(λ), ξ2(λ), r3(λ)), such that at large distances from the mass, the in-

coming light ray propagates along r3. If it is assumed that the light ray moves along

a straight line close to the mass, then the coordinates are independent of the affine pa-

rameter λ, and the total deflection angle is found by vectorially summing the individual

point mass deflections, such that the total deflection angle is the two-dimensional vec-

tor

α̂ =
4G

c2

∑
dm (ξ′1, ξ

′
2, r
′
3)

ξ − ξ′

|ξ − ξ′|2

=
4G

c2

∫
d2ξ′

∫
dr′3ρ (ξ′1, ξ

′
2r
′
3)

ξ − ξ′

|ξ − ξ′|2
. (2.2)
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We can now define the surface mass density to be

Σ (ξ) ≡
∫

dr3ρ (ξ1, ξ2, r3) , (2.3)

so that the mass density is projected onto a 2D plane which lies perpendicular to the

oncoming light ray. Thus, the total deflection angle due to the mass distribution is

α̂ (ξ) =
4G

c2

∫
d2ξ′Σ (ξ′)

ξ − ξ′

|ξ − ξ′|2
. (2.4)

It can be shown, using the diagram in Figure 2.1 and assuming all angles to be small,

that

β = θ − Dds

Ds

α̂ (Ddθ) ≡ θ −α (θ) , (2.5)

where Dd is the angular diameter distance from the observer to the lens, Ds is the

angular diameter distance from the observer to the source, and Dds is the angular di-

ameter distance from the lens to the source. We have defined the angular coordinates

β = η/Ds and θ = ξ/Dd, and the scaled deflection angle α (θ) = Dds

Ds
α̂ has been

introduced. Equation (2.5) implies that given a source with true position β, an image

will be viewed by an observer at angular position θ. If equation (2.5) has more than

one solution, then multiple images of the background object are observed. We now

define the dimensionless surface mass density (or convergence), κ (θ), as

κ (θ) =
Σ (Ddθ)

Σcr

, (2.6)

where Σcr is the critical mass density, and

Σcr =
c2

4πG

Ds

DdDds

. (2.7)

If a mass distribution has a value of κ ≥ 1 (or equivalently Σ ≥ Σcr) at some position

in the distribution, then multiple images will be produced for sources with a particular

position β. Lenses that produce multiple images are termed “strong” lenses. Hence, a
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mass distribution that contains κ ≥ 1 is a strong lens. A mass distribution where κ < 1

everywhere in the distribution is termed a “weak” lens.

Writing the scaled deflection angle in terms of κ, we obtain

α (θ) =
1

π

∫
<2

d2θ′κ (θ′)
θ − θ′

|θ − θ′|2
, (2.8)

which can be written as the gradient of some potential, ψ, such that α = ∇ψ and

ψ (θ) =
1

π

∫
<2

d2θ′κ (θ′) ln |θ − θ′| . (2.9)

This potential is called the deflection potential and satisfies the Poisson equation

∇2ψ (θ) = 2κ (θ) . (2.10)

2.2 Linearized lensing formalism

Assuming the source is much smaller than the scale on which the properties of the lens

change, we can linearly map the unlensed coordinate system to the lensed coordinate

system via the Jacobian matrix

Aij =
∂βi
∂θj

=

(
δij −

∂2ψ (θ)

∂θi∂θj

)
. (2.11)

It is now convenient to define the complex shear γ ≡ γ1 + iγ2, where

γ1 =
1

2

(
∂2ψ (θ)

∂θ2
1

− ∂2ψ (θ)

∂θ2
2

)
, γ2 =

∂2ψ (θ)

∂θ1∂θ2

. (2.12)

With this definition, the Jacobian matrix is

A (θ) =

 1− κ− γ1 −γ2

−γ2 1− κ+ γ1

 . (2.13)
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Liouville’s theorem implies that, as no photons are absorbed or emitted during deflec-

tion, surface brightness must be conserved. Hence, the observed intensity profile of an

object, Iobs, can be expressed in terms of the intrinsic intensity profile, I int, as

Iobs (θ) = I int [β (θ)] , (2.14)

which, when β is linearized and expanded around the point θ0, becomes

Iobs (θ) = I int [β0 + A (θ) · (θ − θ0)] . (2.15)

The effects of the matrix A on an intensity profile with elliptical isophotes is to change

the ellipticity of the isophotes whilst conserving the surface brightness within any given

isophote. Hence, if one knows the intrinsic ellipticity of a galaxy, one could, in princi-

ple, infer the shear by measuring the galaxy’s observed ellipticity. This is not possible

in a real survey as the intrinsic shapes of the galaxies are unknown. Instead, the stan-

dard method of performing weak lensing is to assume that the galaxies are randomly

orientated, such that the average ellipticity of a galaxy is zero. This allows an estimate

of the shear to be recovered from a single galaxy image, but at the cost of an irreducible

contribution from shape noise.

Comparing equations (2.14) and (2.15) and defining the magnification, µ, as the

ratio of the image flux to the source flux, we find

µ =
1

det(A)
=

1

(1− κ)2 − |γ|2
. (2.16)

This means that, as well as the shape distortion described by the shear, there is also

a magnification resulting from focusing by both the local matter density, κ, and the

shear, γ.
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2.3 Cosmic shear

The results in the previous section assume a single thin lens situated along the line

of sight. However, an incoming light ray will be deflected by any density perturba-

tion along the line of sight. Using the geodesic lensing equation and assuming the

gravitational potential, Φ, is slowly varying, the deflection angle can be derived as a

weighted integral of the gradient of the potential perpendicular to the line of sight (see

e.g. Kilbinger (2015) for a detailed discussion)

α (θ, χ) =
2

c2

∫ χ

0

dχ′
fK (χ− χ′)
fK (χ)

∇⊥Φ [fK (χ′)θ, χ′] , (2.17)

where fK (χ− χ′) is the comoving angular diameter distance from the deflecting po-

tential to the source, and fK (χ) is the comoving angular diameter distance from the

observer to the source.

Using a method analogous to that employed for the thin lens approximation, the

effective convergence for a fixed redshift is now defined as

κeff (θ, χ) =
1

2
∇ ·α (θ, χ) . (2.18)

For sources that have a distribution of comoving distances, the effective convergence

must be averaged over the source distribution, n (χ),

κ̄ (θ) =

∫ χlim

0

dχn (χ)κeff (θ, χ) =
3H2

0 Ωm

2c2

∫ χlim

0

dχW̄ (χ) fK (χ)
δ (fK (χ)θ, χ)

a (χ)
,

(2.19)

where the lensing efficiency, W̄ , is

W̄ (χ) =

∫ χlim

χ

dχ′n (χ′)
fK (χ′ − χ)

fK (χ′)
, (2.20)

and χlim is the limiting comoving distance of the galaxy sample. The effective conver-

gence therefore depends on the geometry of the universe through the distance ratios
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and the distribution of galaxies as a function of redshift, with n (χ) dχ = n (z) dz.

2.4 The lensing power spectrum

Assuming that the convergence field is statistically homogeneous and isotropic on large

scales (which is implied by the cosmological principle), we define the convergence

power spectrum in Fourier space in terms of the two-point correlation function

〈κ̃ (l) κ̃∗ (l′)〉 = (2π)2 δD (l− l′)Pκ (l) , (2.21)

where δD is the Dirac delta function. The power spectrum depends only on the modulus

of the 2D wave vector l. This result assumes the flat-sky approximation, and for large

scale lensing, curvature of the sky must also be accounted for (Loverde & Afshordi

2008).

Using equations (2.18) and (2.21), we can express the convergence power spectrum

in terms of the density power spectrum:

Pκ(i,j) (l) =
9H4

0 Ω2
m

4c4

∫ χlim

0

dχ
W̄i (χ) W̄j (χ)

a2 (χ)
Pδ

(
l

fK (χ)
, χ

)
, (2.22)

where the subscripts i, j denote different redshift bins for the source galaxies. To

derive this result, we employ the Limber projection (Limber 1953; Kaiser 1992; Hu

1999; Simon 2007; Giannantonio et al. 2012), which requires redshift bins to be much

larger than the relevant fluctuations, thereby smearing out many features that would be

present in the 3D density power spectrum, such as baryonic acoustic oscillations.

The convergence power spectrum in equation (2.22) is explicitly sensitive to cos-

mology through Ωm in the pre-factor, the dependence of the lensing efficiency on the

geometrical factor fK (χ′ − χ) /fK (χ′), the 3D matter power spectrum, Pδ, and its

evolution with time. Hence, by measuring the matter power spectrum and assuming an

underlying cosmology, one can place constraints on various cosmological parameters.

This approach has already been used to constrain of a number of cosmological param-
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Figure 2.2: Constraints on the amplitude of fluctuations, σ8, and the matter density parameter,
Ωm, from DES SV cosmic shear (The Dark Energy Survey Collaboration et al. 2015) (pur-
ple contours) and assuming a flat ΛCDM model. As a comparison, the constraints from Planck
(Planck Collaboration et al. 2015a) (red contours), and the Canada France Hawaii Lensing Sur-
vey (CFHTLenS) (orange contours) using the correlation functions and covariances presented
in Heymans et al. (2013), are also shown.

eters, such as Ωm, the amplitude of the matter power spectrum, σ8, (e.g. Brown et al.

2003; Hoekstra et al. 2006; Fu et al. 2008) and the dark energy equation of state (e.g.

Schrabback et al. 2010; Kilbinger et al. 2013), while future surveys will provide un-

precedented sensitivity to dark energy parameters (e.g. Albrecht et al. 2006; Peacock

et al. 2006). Figure 2.2 shows recent constraints placed on Ωm and σ8 using the Dark

Energy Survey verification data (DES SV) (The Dark Energy Survey Collaboration

et al. 2015).

In practice, weak lensing is typically concerned with measuring the coherent shape

distortions of galaxies induced by the shear. Observed lensed background galaxies

appear to align tangentially with the large scale structure of the Universe. It is this co-

herence that is exploited when estimating the lensing power spectrum. In analogy with

the effective convergence given in equation (2.18), one can define the effective shear.

Lee Robert Whittaker 47



2: WEAK GRAVITATIONAL LENSING

Figure 2.3: The components of the shear two-point correlation function, ξ+ and ξ−, measured
by CFHTLenS (Kilbinger et al. 2013). The theoretical predictions using the WMAP7 best-fit
cosmology (Komatsu et al. 2011) are shown as the dotted lines.

The definition of the shear in terms of the lensing potential (equation (2.12)) provides

a direct link between the convergence and the shear. Through this relationship, it can

be shown that the shear power spectrum is identical to the convergence power spec-

trum given in equation (2.22). Hence, by measuring the shear power spectrum, one can

place constraints on cosmological models. This is the primary goal of weak lensing.

The most basic non-trivial observable of cosmic shear is the real-space shear two-

point correlation function, which can be measured simply by correlating the observed

galaxy shapes. The shear can be decomposed into a tangential component, γt, and a

cross-component, γ×, with respect to a given angular position θ:

γt =−< (|γ| exp (−2iφ)) ,

γ× =−= (|γ| exp (−2iφ)) , (2.23)

where φ is the polar angle of the vector θ. We can then define the shear two-point
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correlation function in terms of the lensing power spectrum (Kaiser 1992) as

ξ± (θ) = 〈γt (θ′) γt (θ − θ′)〉 ± 〈γ× (θ′) γ× (θ − θ′)〉 =

∫
ldl

2π
PκJ0/4 (lθ) , (2.24)

where J0/4 are the zeroth-order and fourth-order Bessel functions, which correspond

to the ξ+ and ξ− correlation functions respectively. Figure 2.3 shows the correlation

functions measured by CFHTLenS (Kilbinger et al. 2013).

2.5 Principles of galaxy shape estimation

In order to estimate the shear, one must first measure the shape of a galaxy. The effect

of shear changes the ellipticity of an elliptical object. However, galaxy morphologies

are irregular and not generally elliptical in nature. Therefore, one must seek a way of

defining galaxy shapes in a model independent way.

To achieve this, Blandford et al. (1991) defined the quadrupole moments of the

surface brightness as

Qij =

∫
d2θqI [I (θ)]

(
θi − θ̄i

) (
θj − θ̄j

)∫
d2θqI [I (θ)]

, (2.25)

where I (θ) is the surface brightness of the image at position θ and θ̄ is the centre of

the galaxy image, defined as

θ̄ ≡
∫

d2θqI [I (θ)]θ∫
d2θqI [I (θ)]

, (2.26)

with qI(I) chosen as a suitable weighting function which causes the integrals of equa-

tions (2.25) and (2.26) to converge whilst preserving the shape of the galaxy. It is now

possible to define the size of the image as the trace of Q and the shape of the image

as the traceless part of Q which contains the ellipticity information. From this, we can
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obtain different definitions of ellipticity parameters, two of which are given as

χ ≡ Q11 −Q22 + 2iQ12

Q11 +Q22

, (2.27)

ε ≡ Q11 −Q22 + 2iQ12

Q11 +Q22 + 2 (Q11Q22 −Q2
12)

1/2
. (2.28)

For a circular image, Q11 = Q22 and Q12 = Q21 = 0. Hence, as required, both of

the above definitions are zero for a circle. Equations (2.27) and (2.28) can also be

expressed in polar form (and similarly for the shear) as

ε = |ε| exp (2iα) ,

χ = |χ| exp (2iα) , (2.29)

where α is the position angle with respect to a set of principle axes. The factor of two

before α in equation (2.29) ensures that the ellipticity is invariant under a rotation of

180◦. If the object under observation has elliptical isophotes, then α is the position

angle of the major axis and (Miralda-Escude 1991)

|ε| =(1− r)
(1 + r)

,

|χ| =(1− r2)

(1 + r2)
, (2.30)

where r is the ratio of the minor and major axes.

The quadrupole moments of the intrinsic galaxy surface brightness, Qint
ij , are re-

lated to the quadrupole moments of the image, Qobs
ij , via the transformation (Kochanek

1990)

Qint = ATQobsA, (2.31)

where the Jacobian matrix A is evaluated at the image position θ̄. Upon defining the

reduced shear, g, as

g(θ) ≡ γ(θ)

1− κ(θ)
, (2.32)
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it can be shown (Seitz & Schneider 1997) that the intrinsic ellipticity, εint, can be

written in terms of the observed ellipticity, εobs,

εint =


εobs−g

1−g∗εobs for|g| ≤ 1,

1−gεobs∗

εobs∗−g∗ for|g| > 1,

(2.33)

where the asterisk denotes complex conjugation. A similar treatment of the ellipticity

definition χ, given in equation (2.27), yields

χint =
χobs − 2g + g2χobs∗

1 + |g|2 −< (gχobs∗)
. (2.34)

If we assume a value of κ << 1, which is the case when we are working well within

the weak lensing regime, then we have |γ| << 1 and |g| << 1. Hence, from equations

(2.32), (2.33) and (2.34), and provided
∣∣εint

∣∣ . 1/2, it is clear that

εobs ≈εint + γ,

χobs ≈χint + 2γ. (2.35)

If the average intrinsic ellipticity of a galaxy is zero, it can be shown from equation

(2.33) that 〈
εobs
〉

= g. (2.36)

If we now assume that a group of galaxies are observed at a given redshift and that the

average source ellipticity is zero, an unbiased estimator of the average reduced shear

is given by

ĝ =

∑N
i=1 uiεi∑N
i=1 ui

, (2.37)

where ui is a suitably chosen weight function. Assuming a negligible error on the

ellipticity measurements and a uniform weighting, this estimator has a r.m.s error of

σg ≈ σεN
−1/2, where σε is the 1D dispersion of the intrinsic ellipticities of the source

galaxies.
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Figure 2.4: An example of how shear, atmospheric and instrumental PSF, pixelization and
noise modify the image of an observed source galaxy.

For the ellipticity definition χ, assuming that the mean intrinsic ellipticity is zero,

we have 〈
χint

〉
=

〈
χobs − 2g + g2χobs∗

1 + |g|2 −< (gχobs∗)

〉
= 0, (2.38)

which has no analytic solution. Instead, one must either solve for the solution nu-

merically or by performing a Taylor expansion around g = 0. A first-order Taylor

expansion yields the approximate solution

ĝ ≈
〈
χobs

〉
2

(
1

1− σ2
χ

)
, (2.39)

where the term in brackets is the shear responsivity.

2.6 Measuring the shapes of galaxies

In order to perform weak lensing, one requires accurate measurements of the galaxy

shapes. For any realistic weak lensing survey, measurements of galaxy shapes need to

be recovered from noisy, pixelized images. These images are convolved with an in-

strumental and/or atmospheric point spread function (PSF). An example of how these

effects distort a galaxy image can be seen in Figure 2.4. If one is to recover accurate

measurements of galaxy shapes, these effects must be accounted for. There are gen-

erally two classes of shape measurement techniques (Viola et al. 2014); these are the

moments-based and the model-based methods.
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2.6.1 Moments-based methods

Moments-based methods measure the ellipticity of a galaxy by calculating the quadrupole

moments of the light distribution of the pixelized galaxy image. Examples of this ap-

proach include the Kaiser-Squires-Broadhurst (KSB) method (Kaiser et al. 1995) and

the DEIMOS method (Melchior et al. 2011). The moments-based approach provides

a model independent estimate of the galaxy shape. It was first developed for the KSB

method, which estimates the shear using the definition of ellipticity given in equation

(2.27).

The KSB method is built on the assumption that the distortion of the galaxy image

due to convolution with an anisotropic PSF can be described by a small but highly

anisotropic component convolved with a large circularly symmetric disk. With this

assumption, it is possible to define an approximate corrected galaxy ellipticity, χcor, in

terms of the observed ellipticity, χobs, as

χcor
α = χobs

α − P sm
αβ pβ, (2.40)

where P sm
αβ is a tensor describing how easily the galaxy responds to the PSF. The vector

pβ describes the PSF ellipticity and is given as

pβ =
(
P sm∗)−1

βµ
χobs∗

µ . (2.41)

The isotropic smearing due to the atmosphere and a circular weighting function are

accounted for by introducing the pre-seeing shear polarizability tensor, P γ
αβ , (Luppino

& Kaiser 1997) which describes how easily the galaxy responds to the shear. This

allows the shear to be estimated such that

γ̂α = (P γ)−1
αβ

[
χobs
β − P sm

βµ pµ
]
. (2.42)

The KSB method has been widely employed with success in previous weak lensing
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studies (e.g. Romano et al. (2010)). It also has the benefit of being model indepen-

dent. However, to fully exploit future weak lensing surveys, one requires very accurate

estimates of the shear. The assumption of the PSF model in the KSB method is of-

ten insufficient to recover shear estimates with this accuracy (Kuijken 1999). The KSB

method is also found to be more accurate for low elliptical PSFs, low elliptical galaxies

and small shear values (Viola et al. 2011).

2.6.2 Model-based methods

Model-based methods fit a parametrized galaxy model to a pixelized galaxy image by

finding the extremum of a loss function. Examples of this approach include lensfit

(Miller et al. 2007; Kitching et al. 2008), IM3SHAPE (Zuntz et al. 2013) and NGMIX

(Sheldon 2014).

As an example, IM3SHAPE uses a maximum-likelihood technique to fit a galaxy

model consisting of an elliptical bulge component and an elliptical disc component to

the galaxy image. It is assumed that each component can be described by a Sérsic

profile. The likelihood fit incorporates the applied PSF, which must be provided to

IM3SHAPE as either a known function or a high signal-to-noise star field image.

Model-based methods require prior assumptions about the galaxy shapes and mor-

phologies. The shapes of the galaxies are usually assumed to be elliptical. In reality,

galaxies are not elliptical, and this assumption can result in model biases propagating

into the shear estimates (Voigt & Bridle 2010).

The model-based approach has recently been used to analyse galaxy images for a

number of weak lensing surveys. These include the application of an improved ver-

sion of lensfit to the CFHTLenS data (Miller et al. 2013), and the application of

IM3SHAPE and NGMIX to the Dark Energy Survey verification data (Becker et al.

2015; Jarvis et al. 2015).
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2.6.3 Lensing using galaxy orientations

Isotropic PSFs reduce the apparent ellipticity of a galaxy shape. Incorrectly calibrat-

ing for this effect can lead to multiplicative biases in shear estimates recovered using

galaxy ellipticities. Based on an idea originally proposed by Kochanek (1990), Schnei-

der & Seitz (1995) were able to show that, in the limit of γ � 1, galaxy position angle

measurements alone can yield surprisingly accurate shear estimates. This method has

the advantage that the orientation of a galaxy is unaffected by convolution with an

isotropic PSF1. Defining the complex distortion as

δ ≡ 2g

1 + |g|2
, (2.43)

and defining the probability distribution of the modulus of the intrinsic ellipticities as

fint

(∣∣χint
∣∣), Schneider & Seitz (1995) were able to show that, in the full nonlinear

regime, the probability distribution for the angle ψ, fa (ψ), is found to be

fa (ψ) =2

∫ 1

0

d
∣∣χobs

∣∣ ∣∣χobs
∣∣ fint


√√√√

1−

(
1− |δ|2

) (
1− |χobs|2

)
(1− |δ| |χobs| cos (2ψ))2


×

(
1− |δ|2

)3/2

[1− |δ| |χobs| cos (2ψ)]3
. (2.44)

The angle ψ has the range −π/2 < ψ < π/2 and is defined as the angle be-

tween the major axis of the image ellipse and the local direction of δ, such that, if

χobs =
∣∣χobs

∣∣ exp (i2α) and δ = |δ| exp (i2φ), then ψ = α − φ. The different an-

gles are illustrated in Figure 2.5. In their analysis, Schneider and Seitz assume that

fint is a truncated Gaussian distribution with a dispersion of σχ. Given the probability

distribution of equation (2.44), the mean cos (2ψ) is

〈cos (2ψ)〉 =

∫ π/2

−π/2
dψfa (ψ) cos (2ψ) , (2.45)

1The orientation of a galaxy is only unaffected by convolution with an isotropic PSF if the galaxy
has no rotation in its isophotes.
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Figure 2.5: An illustration of the different angles used by Schneider & Seitz (1995). The
elliptical contour represents the observed galaxy in the image plane. The vector a is the semi-
major axis of the observed galaxy. This defines the observed position angle of the galaxy, α.
The local distortion, δ, is the blue vector, which has the position angle φ. The angle ψ is the
difference between these two angles.

Figure 2.6: The mean cosine, 〈cos (2ψ)〉, (solid lines) and the dispersion, σ (cos (2ψ)), (dotted
lines) as a function of |δ|. The curves are labeled by the value of

√
2σχ (Schneider & Seitz

(1995)).

which has the dispersion
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Figure 2.7: A simplified illustration of the dependence of the mean cosine on the shear where,
for simplicity, we assume that χ = χint + 2g. For a small shear in the direction of χ1, g,
and for a fixed value of

∣∣χint
∣∣, the maximum value that the observed position angle can obtain

given a uniformly distributed set of intrinsic position angles is shown as α. For a large shear,
g′, the maximum position angle is α′. It is clear that α′ < α, and that the difference in these
position angles depends on the values of the shears. The mean cosine of the observed position
angles given a constant value of

∣∣εint
∣∣will be greater for the case of the larger shear than for the

case of the smaller shear as the position angles are confined to a tighter region about zero. For
the case of a zero shear, the observed position angles are distributed uniformly, and the mean
cosine is zero. For this simplified model, as the shear approaches infinity, the range of observed
position angles becomes a tighter about zero and the mean cosine asymptotes to one. For the
case of the lensing transformations given in equations (2.33) and (2.34), it can be shown that
〈cos (2α)〉 = 1, when |g| = 1.

σ (cos (2ψ)) =

√
〈cos2 (2ψ)〉 − 〈cos (2ψ)〉2. (2.46)

Looking at Figure 2.6, it clear that 〈cos (2ψ)〉 increases as |δ| increases. The de-

pendence of the mean cosine on the shear is illustrated in Figure 2.7. Therefore, one

can recover an estimate of the distortion by calculating the value of 〈cos (2ψ)〉 from

the observed data and then numerically inverting the function, 〈cos (2ψ)〉 (|δ|).

In Chapter 3, we extend the idea of using only galaxy orientations to recover es-

timates of the shear by constructing a position angle-only shear estimator under the

assumption that we have a knowledge of the intrinsic ellipticity distribution. We apply
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this method to the CFHTLenS data and show that our results are consistent with those

recovered using full ellipticity information. We generalize the approach to incorpo-

rate the effects of an anisotropic PSF in Chapter 4, where we test the method on the

GREAT3 simulations and demonstrate that our approach yields shear estimates with

a performance comparable with existing well established shape measurement tech-

niques.

2.7 Intrinsic alignments

When performing weak lensing, we are usually interested in the shear two-point cor-

relation function. However, we cannot measure this directly. Instead, we measure the

correlations of galaxy ellipticities. If we assume that we are working well in the weak

lensing regime, the observed ellipticity of a galaxy can be written as

εobs = εint + γ. (2.47)

Assuming that εint is drawn from a random distribution, and hence there is zero intrin-

sic shape correlation between galaxy pairs, the two-point correlation function of the

ellipticities is

〈
εobs
i εobs

j

〉
=
〈
εint
i ε

int
j

〉
+ 〈εran

i γj〉+
〈
γiε

ran
j

〉
+ 〈γiγj〉

≈ 〈γiγj〉 . (2.48)

where the subscripts i and j correspond to two galaxies separated by angle θ. This

result relies on the assumption that the source galaxies are randomly orientated, that

is, there is zero intrinsic alignment (IA) of the source galaxies. However, tidal effects

during galaxy formation can cause galaxies to align radially with the large scale struc-

ture of the Universe. Non-zero IA signals were predicted as early as 2000 (Heavens

et al. 2000; Croft & Metzler 2000; Crittenden et al. 2001; Catelan et al. 2001), with a
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subsequent detection being made in low-redshift surveys soon after this (Brown et al.

2002).

If we model the effect of IA, γIA, on a galaxy’s observed ellipticity as (see e.g.

Troxel & Ishak (2015))

εobs = εran + γIA + γ, (2.49)

where the vector εran is the random component of the galaxy’s intrinsic ellipticity, the

correlation function of the ellipticities is

〈
εobs
i εobs

j

〉
=
〈
γIA
i γ

IA
j

〉
+
〈
γIA
i γj

〉
+
〈
γiγ

IA
j

〉
+ 〈γiγj〉 . (2.50)

The first term on the right hand side is the IA two-point correlation function or II

term. The next two terms, the GI terms, are more problematic and correspond to cor-

relations between the IA and shear signals (Hirata & Seljak 2004). The shear tends

to align galaxies tangentially with the large scale structure and the IA tends to align

them radially. This manifests as an anti-correlation between the shear and IA signals.

Therefore, the GI terms contribute a negative signal to the observed correlation func-

tions. The sum of these two effects biases measurements of the shear power spectra

in the standard approach. Although it has not had a significant impact on the present

generation of surveys (e.g. Heymans et al. (2012)), it is likely to be important in

forthcoming surveys such as those performed by, for example, DES (The Dark Energy

Survey Collaboration 2005), Euclid (Cimatti & Scaramella 2012) and the LSST (LSST

Dark Energy Science Collaboration 2012).

A number of methods have already been used to mitigate the impact of intrin-

sic alignments (see Kirk et al. (2015) for an in-depth discussion). These techniques

generally require either downweighting potentially useful information or an accurate

knowledge of the physics behind IA.

One method for removing the effects of IA is to assume a parameterized model

for the contribution of the II and GI signals. However, this method is only reliable if

one has an accurate knowledge of the functional forms of these systematics (Kitching
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et al. 2009). This knowledge is difficult to achieve due to the current uncertainty in the

physics governing galaxy formation and evolution. A linear alignment model which

introduced a single free parameter was used to mitigate intrinsic alignments for the

CFHTLenS analysis (Heymans et al. 2013). Including this free parameter increased

the uncertainty on estimates of σ8 (Ωm/0.27)α by 30%. The models fitted for the

CFHTLenS analysis indicated a positive contribution for the GI terms. As discussed

above, the GI terms are expected to contribute a negative signal, and if confirmed by

future surveys, this contradiction could indicate that a single-parameter linear align-

ment model is too simplistic to be applied to future large-scale lensing surveys (Troxel

& Ishak 2015). Bridle & King (2007) presented a more general technique which in-

troduces a parameterized set of models which differ from a base model through some

well-motivated parameter space. Using a base nonlinear alignment model, a parame-

terization with an arbitrary amplitude and redshift dependence, and allowing for scale

dependence, Bridle & King (2007) demonstrated that increasing the freedom in the

model reduces the figure of merit for constraints. However, one may increase the con-

straining power of this approach by including galaxy position information (Troxel &

Ishak 2015).

Nulling is another approach for removing the GI systematic. This approach in-

volves weighting the shear signal by redshift in such a way as to reduce the contribu-

tion from the GI signal. This is possible as the GI signal exhibits a different geometry

and redshift dependence to the shear (Joachimi & Schneider 2008, 2009). By con-

structing a new measure of the shear signal with a reweighted redshift distribution,

one may downweight the contribution from GI and reduce its effect on cosmological

constraints. However, there is an inevitable decrease in statistical power due to the

downweighting of part of the shear signal.

Morales (2006) proposed a method of estimating the shear using radio HI observa-

tions to construct galaxy velocity maps. Weak lensing changes the rotation axis of the

galaxy such that it appears inconsistent with the observed galaxy shape. This method

is insensitive to the impact of IA as one is concerned only with the difference between
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the expected and observed rotation axis and not the ellipticity of the galaxy. In a sim-

ilar approach, Huff et al. (2013) suggested using the Tully-Fisher relation (Tully &

Fisher 1977) to determine the intrinsic inclination, and thus the intrinsic ellipticity of a

galaxy, from velocity maps constructed using information from spectroscopic surveys.

Both of these methods require well resolved galaxy velocity maps, but with the reduc-

tion in galaxy shape noise, they are promising techniques for estimating the shear in

future weak lensing analyses. By avoiding the effects of IA or directly estimating the

intrinsic ellipticities of the galaxies, we no longer require an accurate knowledge of the

physics behind IA or the downweighting of a potentially useful shear signal.

In Chapter 5, we discuss novel methods which also avoid these requirements by

using information from forthcoming radio observations. In particular, we build upon

the idea first proposed by Brown & Battye (2011b) which suggests using radio polar-

ization information from star forming galaxies as a tracer of their intrinsic orientation.

We show that this information can be effectively incorporated into a variety of shear

estimators and demonstrate that the bias due to IA can be successfully removed from

shear power spectra reconstructions.
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Chapter 3

Weak lensing using only galaxy

position angles

We develop a method for performing a weak lensing analysis using only measure-

ments of galaxy position angles. By analysing the statistical properties of the galaxy

orientations given a known intrinsic ellipticity distribution, we show that it is possible

to obtain estimates of the shear by minimizing a χ2 statistic. The method is demon-

strated using simulations where the components of the intrinsic ellipticity are taken to

be Gaussian distributed. Uncertainties in the position angle measurements introduce

a bias into the shear estimates which can be reduced to negligible levels by introduc-

ing a correction term into the formalism. We generalize our approach by developing

an algorithm to obtain direct shear estimators given any azimuthally symmetric intrin-

sic ellipticity distribution. We introduce a method of measuring the position angles

of the galaxies from noisy pixelized images and propose a method to correct for bi-

ases which arise due to pixelization and correlations between measurement errors and

galaxy ellipticities. We also develop a method to constrain the sample of galaxies used

to obtain an estimate of the intrinsic ellipticity distribution such that fractional biases

in the resulting shear estimates are below a given threshold value. We demonstrate

the angle-only method by applying it to simulations where the ellipticities are taken to
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follow a log-normal distribution. We compare the performance of the position angle

only method with the standard method based on full ellipticity measurements by re-

constructing lensing convergence maps from both numerical simulations and from the

CFHTLenS data. We find that the difference between the convergence maps recon-

structed using the two methods is consistent with noise.

3.1 Introduction

The standard method of performing a weak lensing analysis requires measurements of

the ellipticities of a set of background galaxies. These measurements require the appli-

cation of complex correction and/or fitting algorithms (e.g. Kaiser et al. 1995; Bridle

et al. 2002; Miller et al. 2007; Kitching et al. 2008), which can introduce systematic

biases into the measurements if the point spread function is not accurately accounted

for, or if the prior galaxy model is incorrect. In order to achieve unbiased ellipticity

estimates, these algorithms generally require the application of additive and multiplica-

tive calibration corrections derived from simulations (see e.g. Heymans et al. 2012). If

the multiplicative bias is identical for both components of the ellipticity, then this bias

will be absent from the unit vectors that describe the galaxy orientation. It is therefore

conceivable that measurements of the orientations of galaxies will not be subject to the

multiplicative biases inherent in the full ellipticity analysis and may consequently be

more robust to residual biases resulting from an incorrect calibration.

In this chapter, we describe a method for performing weak lensing using only the

measurements of the position angles of a set of background galaxies. Based on an

original suggestion by Kochanek (1990), this approach was first explored in Schneider

& Seitz (1995), where it was assumed that the modulus of the intrinsic ellipticities

follows a Gaussian distribution. Under this assumption, it was shown that the mean

unit vectors describing the galaxy position angles can be written as a function of the

complex distortion (see Subsection 2.6.3). By inverting this relationship, Schneider &

Seitz (1995) were able to obtain an estimate of both the modulus and the orientation of
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the lensing distortion field.

Working in the regime of weak lensing, this chapter develops the ideas presented

in Schneider & Seitz (1995). Under the assumption of an azimuthally symmetric (in

the {ε1, ε2} plane) intrinsic ellipticity distribution and a prior knowledge of the el-

lipticity dispersion, we develop a χ2 statistic in Section 3.2 which can be minimized

numerically in order to obtain estimates of the shear. It is found that inherent biases

arise from measurement errors on the position angles. However, a method for reducing

these biases to negligible levels is then proposed. In Section 3.3, we develop a method

of measuring the position angles of galaxies from noisy pixelized images. We use the

position angle measurements to recover shear estimates and compare the performance

of this method with the KSB method, where full ellipticity information is used. In Sec-

tion 3.4, we investigate the impact of an imperfect knowledge of the intrinsic ellipticity

distribution. We place constraints on the size of the sample of galaxies and the errors

on the ellipticity measurements used to estimate the distribution necessary to ensure

that biases in the shear estimates resulting from an imperfect distribution are below

a given threshold value. We compare the performance of the position angle-only ap-

proach with the standard (full ellipticity) approach by performing mass reconstructions

using simulated data (Section 3.5) and using the data from the Canada France Hawaii

Lensing Survey (CFHTLenS, Section 3.6). We conclude with a discussion in Section

3.7.

3.2 Constructing angle-only shear estimators

The standard method for performing a weak lensing measurement involves averaging

over the observed ellipticities of a set of galaxies. We begin by pixelizing the sky

such that we concentrate on an area small enough that the shear can be considered

constant. Working within the regime of weak lensing, we can then express the observed

(complex) ellipticity of a galaxy, εobs = εobs
1 + i εobs

2 , in terms of the intrinsic ellipticity
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of the galaxy, εint, and the constant reduced shear signal in a given pixel, g, such that

εobs =
εint + g

1 + g∗εint
, (3.1)

If we now assume that the expectation value of the intrinsic ellipticities,
〈
εint
〉
, is zero,

we can write the standard shear estimator as

ĝ =

∑N
i=1wiε

obs
i∑N

i=1wi
, (3.2)

where wi is a weight, which could, for example, be dependent on the intrinsic dis-

tribution in the ellipticities and ellipticity measurement errors. If we make the fur-

ther assumption that the measurement error on εobs is much smaller than the intrinsic

dispersion in galaxy ellipticities, σε, then uniform weighting (wi = 1) is an optimal

choice. In this case, the error on the standard estimator is a result of the intrinsic shape

dispersion only, i.e.,

σĝ =
σε√
N
. (3.3)

Denoting the observed position angle as α, we can express the observed ellipticity in

polar form, such that

εobs
1 =

∣∣εobs
∣∣ cos (2α) ,

εobs
2 =

∣∣εobs
∣∣ sin (2α) , (3.4)

where the modulus of the observed ellipticity is defined as
∣∣εobs

∣∣ =
√
εobsεobs∗ . Let us

assume that the distribution of the intrinsic ellipticities of the galaxies can be described

by an azimuthally symmetric probability density function, f
(∣∣εint

∣∣). As the shear in a

pixel is constant, this implies that the observed ellipticity can be modelled as

εobs = g + εran, (3.5)
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where εran is a random vector which is dependent on the intrinsic distribution and

with a mean of zero. In this chapter, we are interested in using measurements of the

galaxy position angles (α) alone to estimate the shear. We must therefore consider the

statistics of the sine and cosine functions. Defining the components of the shear as

g1 = |g| cos (2α0) ,

g2 = |g| sin (2α0) , (3.6)

it can be shown that for any distribution of εobs which exhibits reflection symmetry

about the vector g1, the mean of the cosines and sines of the position angles, 〈cos (2α)〉

and 〈sin (2α)〉, can be written as

〈cos (2α)〉 =F1 (|g|) cos (2α0) ,

〈sin (2α)〉 =F1 (|g|) sin (2α0) . (3.7)

Defining
∣∣εint

max

∣∣ as the maximum value of the modulus of the intrinsic ellipticity, the

function F1 (|g|) can be written in terms of the intrinsic ellipticity distribution, such

that

F1 (|g|) =
1

π

∫ |εint
max|

0

∫ π
2

−π
2

dαintd
∣∣εint

∣∣ f (∣∣εint
∣∣)

× h1

(
|g| ,

∣∣εint
∣∣ , αint

)
, (3.8)

where αint is the intrinsic position angle, and the function h1

(
|g| ,

∣∣εint
∣∣ , αint

)
is found

to be

h1

(
|g| ,

∣∣εint
∣∣ , αint

)
=

ε′1√
ε′21 + ε′22

, (3.9)

1εobs is symmetrically distributed about g for any azimuthally symmetric intrinsic ellipticity distri-
bution.
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with

ε′1 = |g|
(

1 +
∣∣εint

∣∣2)+
(
1 + |g|2

) ∣∣εint
∣∣ cos

(
2αint

)
,

ε′2 =
(
1− |g|2

) ∣∣εint
∣∣ sin (2αint

)
. (3.10)

A detailed derivation of the F1 (|g|) function is given in Appendix A.

From equation (3.7), it is clear that we can estimate the orientation of the shear as

α0 =
1

2
tan−1

(
〈sin (2α)〉
〈cos (2α)〉

)
, (3.11)

which is equal to the mean observed position angle, 〈α〉.

Letting 2α = θ and 2α0 = θ0, a more general form of equation (3.7) can be written

as

〈cos (nθ)〉 = Fn (|g|) cos (nθ0) ,

〈sin (nθ)〉 = Fn (|g|) sin (nθ0) , (3.12)

where n is any positive integer.

By considering a general function hn
(
|g| ,

∣∣εint
∣∣ , αint

)
, we can write the general

Fn (|g|) function for any azimuthally symmetric intrinsic probability distribution as

Fn (|g|) =
1

π

∫ |εint
max|

0

∫ π
2

−π
2

dαintd
∣∣εint

∣∣ f (∣∣εint
∣∣)

× hn
(
|g| ,

∣∣εint
∣∣ , αint

)
. (3.13)

The F2 (|g|) function will be useful in later discussions regarding the variance of

cos (2α) and sin (2α). The corresponding h2 ≡ h2

(
|g| ,

∣∣εint
∣∣ , αint

)
function is

h2 =
ε′21 − ε′22
ε′21 + ε′22

(3.14)
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From equation (3.7), it is clear that the mean sine and cosine functions trace the sine

and cosine of the shear orientation subject to a scaling factor which depends on |g|.

3.2.1 Shear estimation using χ2 minimization

It is possible to obtain constraints on the shear parameters from measurements of the

galaxy position angles, α(i), alone using the least-squares method (Press et al. 1992).

For any azimuthally symmetric intrinsic ellipticity distribution, equation (3.7) suggests

the definition of a general χ2 as

χ2 =
N∑

i,j=1

(
n(i) − F1 (|g|) g

|g|

)T

Cij

(
n(j) − F1 (|g|) g

|g|

)
, (3.15)

where we have defined the observed unit vector for the ith galaxy as

n(i) =

 cos(2α(i))

sin(2α(i))

 , (3.16)

and C is the covariance matrix.

For the case when there are no measurement errors on α, it can be shown, using

equation (3.12), that the variance on the unit vector components is

σ2
n1,2

=
1

2

(
1− F 2

1

)
± 1

2

(
F2 − F 2

1

)
cos (4α0) , (3.17)

where we define Fk ≡ Fk (|g|), and the plus and minus signs correspond to the first

and second components of n respectively. In the limit of zero shear, the value of the

variance is 0.5 for both components as there is no preferred observed position angle.

The form of the covariance is found to be

cov (cos (2α) , sin (2α)) =
1

2

(
F2 − F 2

1

)
sin (4α0) , (3.18)

which is zero in the limit of zero shear.
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Figure 3.1: The F1 (|g|) function for case of the Rayleigh distribution given in equation (3.19).

If the components of the intrinsic ellipticity are Gaussian distributed, then
∣∣εint

∣∣ is

Rayleigh distributed (for a discussion on the motivation for this form of distribution

see, for example, Viola et al. 2014):

f
(∣∣εint

∣∣) =

∣∣εint
∣∣

σ2
ε

(
1− exp

(
− |εint

max|
2

2σ2
ε

)) exp

(
−
∣∣εint

∣∣2
2σ2

ε

)
. (3.19)

Using this form for the distribution of
∣∣εint

∣∣, with σε = 0.3/
√

2 and
∣∣εint

max

∣∣ = 1.0, we

constructed F1 (|g|), shown in Figure 3.1, and F2 (|g|). Using these two functions we

found that for shear values in the range |g| ≤ 0.1, equation (3.17) gives a variance

in the range 0.44 . σ2
n ≤ 0.5, while equation (3.18) predicts a covariance in the

range −0.014 . cov (cos (2α) , sin (2α)) . 0.014. For the subsequent numerical

calculations we use σ2 = σ2
n = 0.5 and cov (cos (2α) , sin (2α)) = 0 in every χ2 that

we construct. If we make the further assumption that the measurements of the position

angles of different galaxies are independent, we can simplify the χ2, such that it now
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takes the form

χ2 =
N∑
i=1

∣∣∣n(i) − F1 (|g|) g
|g|

∣∣∣2
σ2

. (3.20)

The minimization of this χ2 gives us an estimate of the shear, ĝ, which satisfies the

equations

1

N

N∑
i=1

cos(2α(i)) = F1 (|ĝ|) ĝ1

|ĝ|
,

1

N

N∑
i=1

sin(2α(i)) = F1 (|ĝ|) ĝ2

|ĝ|
. (3.21)

Taking the ratio of these two equations yields an estimate of the orientation of the

shear:
ĝ2

ĝ1

=

∑N
i=1 sin(2α(i))∑N
i=1 cos(2α(i))

. (3.22)

If, instead, we square and sum them together, we obtain an estimate of the F1 (|g|)

function which, in turn, depends on the modulus of the shear:

F1 (|ĝ|) =

√√√√[ 1

N

N∑
i=1

cos (2α(i))

]2

+

[
1

N

N∑
i=1

sin (2α(i))

]2

. (3.23)

Equation (3.23) can be solved numerically to yield an estimate of the shear modulus

using, for example, the Secant method (Press et al. 1992), or by tabulating F1 (|g|) and

inverting the function to recover |ĝ|. By combining equations (3.22) and (3.23) we can

therefore obtain estimates for both components of the shear. The error on the shear

estimates can then be estimated as

σĝ =
|ĝ|

F1 (|ĝ|)
σ̂n√
N
, (3.24)

where σ̂n is found by substituting the estimated shear values into equation (3.17).

Using a simulation composed of 500 galaxies with input shear values of g1 =

−0.05 and g2 = 0.05, and assuming a Rayleigh distribution for
∣∣εint

∣∣ with σε =
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Figure 3.2: Left panel: The grey-scale shows the χ2 of equation (3.20) recovered from a set
of simulated galaxy position angles with input shear values of g1 = −0.05 and g2 = 0.05
and where we assume a Rayleigh distribution for

∣∣εint
∣∣. The best-fit shear is given by the

minimum value of the χ2, and the contours show the 68.3%, 95.4% and 99.73% confidence
levels plotted under the assumption that the shear estimates are Gaussian distributed. Right
panel: The distribution of the best-fit ĝ1 values obtained from 104 realizations. The red curve
is a Gaussian distribution constructed using the variance and the mean of the best-fit values.
The green curve shows a marginalized plot of the distribution of the left panel, and hence is the
distribution of g1 for one realization. The agreement between the curves demonstrates that the
shear estimates are approximately Gaussian distributed and validates the use of the χ2 contours
plotted in the left panel.

0.3/
√

2, we tested the performance of this method. A zero measurement error on

α was assumed for this initial test. To estimate the shear, we performed a grid-based

search over the shear parameters, calculating the χ2 corresponding to each parameter

value. The best-fit values were those which minimized the χ2 statistic, and these were

found to be consistent with equation (3.21). The results of the test are shown in the left

panel of Fig. 3.2. The best-fit values were found to be ĝ1 = −0.048 and ĝ2 = 0.039,

with χ2 = 964; using 500 galaxies we expect a value of χ2 ≈ 1000, and therefore this

value of χ2 is consistent with our model providing a good fit to the data. The right

hand panel of Fig. 3.2 shows the distribution of the best-fit g1 values obtained over 104

realizations; with each realization consisting of 500 galaxies and where we have used
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Figure 3.3: Residual bias in the shear estimates obtained using equations (3.22) and (3.23) as a
function of the input shear value, g1. For each simulation, the input value of g2 was randomly
selected from a uniform distribution in the range −0.1 ≤ g2 ≤ 0.1. The green-dashed line
shows the line of zero bias and the black-dashed line is the line of best fit for the data. The line
of best fit is consistent with an overall bias of zero.

a bin size of ∆ĝ1 = 0.001.

We also ran simulations for a range of input shear values in order to check for

biases. For each input shear value, we performed 104 simulations with each simulation

composed of 104 galaxies. The result is shown in Fig. 3.3. Note that in order to obtain

the shear estimates for this test, rather than using the grid-based approach, we used

equation (3.22) to estimate the shear orientation and we solved equation (3.23) by

tabulating F1 (|g|) and then inverting the function to find the modulus of the shear.2

3.2.2 Removal of noise bias

Estimators based on equation (3.20) are found to be biased in the presence of measure-

ment errors on α. We can write the measured position angles as α̂ = α + δα, where

δα is a random measurement error on the position angle. It is possible to correct for

2A small bias is expected in this approach due to the numerical integration of the F1 (|g|) function
which is performed during the estimation process. However, this bias was found to be negligible in all
of the tests that we have performed.
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the resulting noise bias by examining the averages of equation (3.21). Allowing for the

measurement error on α, we have

〈cos (2α̂)〉 = 〈cos (2α + 2δα)〉 ,

〈sin (2α̂)〉 = 〈sin (2α + 2δα)〉 . (3.25)

If we take the limit as N → ∞ and assume that δα is independent of α, then we can

expand the trigonometric functions, such that

〈cos (2α̂)〉 = 〈cos (2α)〉 〈cos (2δα)〉 − 〈sin (2α)〉 〈sin (2δα)〉 ,

〈sin (2α̂)〉 = 〈sin (2α)〉 〈cos (2δα)〉+ 〈cos (2α)〉 〈sin (2δα)〉 . (3.26)

If we further assume that the error distribution is symmetric about zero, then

〈cos (2α̂)〉 = 〈cos (2α)〉 〈cos (2δα)〉 ,

〈sin (2α̂)〉 = 〈sin (2α)〉 〈cos (2δα)〉 . (3.27)

Upon defining

βn ≡ 〈cos (nδα)〉 , (3.28)

we can invert equation (3.27) and correct for the bias, so that the corrected mean unit

vector is now given by

〈n〉corrected =
〈n〉
β2

. (3.29)

For the specific case where δα is a Gaussian distributed measurement error with zero

mean and variance σ2
α, it can be shown that

βn = exp

(
−n

2

2
σ2
α

)
. (3.30)
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We can incorporate this correction into the formulation of the χ2 by defining

χ2 =
N∑
i=1

∣∣∣n(i) − F1 (|g|) g
|g|β2

∣∣∣2
σ2

. (3.31)

Equation (3.31) is minimized when

1

N

N∑
i=1

cos
(
2α̂(i)

)
= F1 (|ĝ|) ĝ1

|ĝ|
β2,

1

N

N∑
i=1

sin
(
2α̂(i)

)
= F1 (|ĝ|) ĝ2

|ĝ|
β2. (3.32)

Following the same procedure as for the case of σα = 0 in the previous section, we

can now estimate the orientation of the shear as

ĝ2

ĝ1

=

∑N
i=1 sin(2α̂(i))∑N
i=1 cos(2α̂(i))

, (3.33)

while the estimate of the F1 (|g|) function, which depends on the modulus of the shear,

becomes

F1 (|ĝ|) =
1

β2

√√√√[ 1

N

N∑
i=1

cos (2α̂(i))

]2

+

[
1

N

N∑
i=1

sin (2α̂(i))

]2

. (3.34)

From equations (3.33) and (3.34), we see that the estimator for the shear orientation re-

mains unchanged in the presence of a measurement error on the position angle. How-

ever, the expression for F1 (|g|) is modified; failing to include this noise correction

term will result in an estimate of |g| that is too small.

We can also examine the impact on the variance on the trigonometric functions

when a measurement error on α is included. This variance is found to be

σ2
n1,2

=
1

2

(
1− F 2

1 β
2
2

)
± 1

2

(
F2β4 − F 2

1 β
2
2

)
cos (4α0) , (3.35)
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Estimator σĝ1 σtheory
ĝ1

〈ĝ1〉
original est. 0.0103 0.0102 −0.0436± 0.0001
corrected est 0.0119 0.0117 −0.0502± 0.0001

Table 3.1: The mean and standard deviation of the shear estimates recovered from 104 sim-
ulations. Values are quoted for both the original χ2 (equation (3.20)) and the corrected χ2

(equation (3.31)). The input shear value used was g1 = −0.05.

where the plus and minus signs correspond to the first and second components of n.

By substituting the estimated shear values into equation (3.35), we can estimate the

error on the corrected shear estimator as

σĝ =
|ĝ|

F1 (|ĝ|) β2

σ̂n√
N
. (3.36)

Fig. 3.4 demonstrates the reduction in bias when this correction is applied to simu-

lations that include measurement errors on the galaxy position angles. Table 3.1 shows

the mean estimated value of g1, 〈ĝ1〉, and the standard deviation in the estimated val-

ues, σĝ1 , obtained from the 104 realizations that were used to produce Fig. 3.4. The

right column shows how using the corrected form of the χ2 greatly reduces the bias

introduced by the 15◦ error on the position angle measurements. However, from the

left column, we see that there is a modest increase (∼16%) in the dispersion of the esti-

mates. The middle column shows the theoretical dispersion in the estimators obtained

using the input values with equations (3.24) and (3.36).

We also ran the simulation for a range of input shear values and for a range of Gaus-

sian measurement error values. Fig. 3.5 shows the residual bias in the derived shear

estimates as a function of these two quantities. These results show that the bias in the

uncorrected estimator (equation 3.20) increases approximately linearly with the input

shear and exponentially with the measurement error. The success of the correction

obtained in equation (3.29) is clearly demonstrated in this figure.
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Figure 3.4: The distribution of the best-fit estimates obtained using the original χ2 of equation
(3.20) (left panel) and the corrected form of the χ2 of equation (3.31) (right panel) in the
presence of a Gaussian-distributed measurement error on the galaxy position angles with σα =
15◦. The simulations consisted of 104 realizations with 500 galaxies in each realization and
assumed a Rayleigh distribution for

∣∣εint
∣∣. The vertical black line shows the input shear value

and the red-dashed line shows the mean recovered best-fit value. The red curves are Gaussian
distributions with the mean and variance of the estimators. The green curves are Gaussian
distributions using the input shear value to obtain theoretical predictions for the variance from
equations (3.24) and (3.36) for the left and right panels respectively. This figure demonstrates
that the bias introduced by measurement errors on the position angles is reduced to negligible
levels when the corrected form of the χ2 given in equation (3.31) is used. It also indicates that
equations (3.24) and (3.36) provide good descriptions of the errors in both cases.

3.3 Measuring position angles

In this section, we introduce a method of estimating the position angles directly from

the data. We use this method to recover a constant shear signal from sets of simulated

galaxy images and compare these results with those obtained using the KSB method.

For the simulations in this section, we follow the approach outlined in Viola et al.

(2011) and consider sets of simulated galaxies assuming a Sérsic brightness profile:

I(r) = I0 exp

[
−bns

((
r

Re

) 1
ns

− 1

)]
, (3.37)
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Figure 3.5: The residual bias in the best-fit shear estimates in the presence of a Gaussian
measurement error on α and obtained by minimizing the two forms of the χ2 (equations (3.20)
and (3.31)). For each point plotted, we used 104 realizations, with each realization composed
of 104 galaxies in order to suppress numerical error. The left panel shows the bias as a function
of σα with g1 = 0.05 and with g2 uniformly distributed in the range −0.1 ≤ g2 ≤ 0.1.
The right panel shows the bias as a function of g1 with σα = 15◦, and where g2 is again
uniformly distributed in the range −0.1 ≤ g2 ≤ 0.1. These figures show that the noise bias
due to measurement errors on the position angles is reduced to negligible levels when the bias
correction is used.

Figure 3.6: An example of the simulated galaxy images used in this section. Here we have
displayed the central region of the images, with the scale identical for each image. Left panel:
First we simulated the galaxy using a high resolution grid consisting of 510 × 510 pixels.
Centre panel: The pixelized noise free galaxy image is then produced by averaging over the
pixel values in the high resolution grid to produce a grid of 51 × 51 pixels. Right panel:
Gaussian noise is then added to the galaxy image with SNR = 30, in accordance with equation
(3.38).
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where ns is the Sérsic index and where we assume that ns = 1.5, which is the average

value for bright galaxies in the Cosmic Evolution Survey (COSMOS) field (Sargent

et al. 2007). Re is the half light radius and bns is a constant which depends on ns. A

value of ns = 1.5 gives bns = 2.674. I0 is the surface brightness of the galaxy at the

half light radius. The size of each image is 51 × 51 pixels with each galaxy model

10-fold oversampled, and we set Re = 2 pixels.

When background noise is introduced into the images, we assume a Gaussian noise

and fix the variance of the noise distribution so that the resulting signal to noise ratio

is 30. The signal to noise ratio (SNR) is defined as (Bridle et al. 2010)

SNR =

√∑N
i=1 I

2
i

σb

, (3.38)

where Ii is the intensity in the ith pixel of the low resolution image prior to the addition

of noise and σb is the dispersion in the background noise. An example of the process

used to create the galaxy images in shown in Figure 3.6.

We simulate sets of galaxies using a Rayleigh intrinsic ellipticity distribution and

then apply a constant shear to these galaxies. These sheared galaxies are then pixelized,

and Gaussian noise is added following the above procedure. We ignore the effects of

PSF convolution and when using a Gaussian weighting function to suppress noise at

large scales, we set the width of the weighting function to 2Re. The effects of PSF

convolution are explored in Chapter 4. We recover estimates of the shear using a

common variant of the KSB method and using the angle-only method and compare the

results. In order to use the angle-only method, we introduce a method of measuring

the position angles of the galaxies using the light distribution of the galaxy images.

As discussed in Section 2.5, we can define the ellipticity of the galaxy image in

terms of the second order moments given in equation (2.25). The form of ellipticity

which corresponds to the shear transformation given is equation (3.1) is given in equa-

tion (2.27). The form of ellipticity used for the KSB method is given in equation (2.28)
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and corresponds to a shear transformation such that

χobs =
χint + 2g + g2χint∗

1 + |g|2 + 2< (gχint∗)
. (3.39)

When estimating the shear using the KSB method, we follow the method outlined

in Viola et al. (2011) and first discussed by Kaiser et al. (1995), where the estimator is

found to be

ĝα =
〈(
P sh
αβ

)−1
χobs
β

〉
, (3.40)

such that the tensor, P sh
αβ , is approximated by half its trace

To find the centroid of the galaxy image in the presence of noise, we first apply

the weighting function centred on the brightest pixel. We then recalculate the centroid

using equation (2.26) and re-apply the weighting function centred on this new estimate

of the centroid. We iterate this step until the difference between successive estimates

is less than 10−4 of a pixel.

3.3.1 Using the angle-only method

The F1 (|g|) function corresponding to the definition of ellipticity given in equation

(3.1) is given in equation (3.8). It is also possible to derive the F1 (|g|) function which

corresponds to the χ-ellipticity definition given in equation (3.39), F χ
1 (|g|). The form

of this function is

F χ
1 (|g|) =

1

π

∫ |χint
max|

0

dαintd
∣∣χint

∣∣ f (∣∣χint
∣∣)

× hχ1
(
|g| ,

∣∣χint
∣∣ , αint

)
, (3.41)

where αint is the intrinsic position angle and the function hχ1
(
|g| ,

∣∣χint
∣∣ , αint

)
is

hχ1
(
|g| ,

∣∣χint
∣∣ , αint

)
=

χ′1√
χ′21 + χ′22

, (3.42)
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with

χ′1 =2 |g|+
(
1 + |g|2

) ∣∣χint
∣∣ cos

(
2αint

)
,

χ′2 =
(
1− |g|2

) ∣∣χint
∣∣ sin (2αint

)
. (3.43)

We use this form of the F1 (|g|) function in the following analysis in order to make a

direct comparison of the shear estimates recovered when using an angle-only method

- where we measure the position angles directly from the image data - with those

obtained using the KSB method. For this analysis, we also assume a perfect knowledge

of the intrinsic ellipticity distribution, f
(∣∣χint

∣∣); the effects of an imperfect knowledge

of f
(∣∣χint

∣∣) are discussed in Section 3.4.

An estimate of the shear is obtained such that

F χ
1 (|ĝ|) =

√√√√[ 1

N

N∑
i=1

cos (2α(i))

]2

+

[
1

N

N∑
i=1

sin (2α(i))

]2

,

α̂0 =
1

2
tan−1

(∑N
i=1 sin

(
2α(i)

)∑N
i=1 cos (2α(i))

)
. (3.44)

3.3.2 A method for measuring the position angles

We now consider a method of obtaining an estimate of the position angle by consid-

ering the intensity profile of the galaxy as a function of the assumed position angle,

under the assumption that the galaxy exhibits reflection symmetry about its major axis.

Given a noisy pixelized galaxy image, we begin by obtaining an estimate of the

centroid. To find the centroid of the galaxy image, we follow a similar procedure

to that discussed above. First we multiply by the weighting function centred on the

brightest pixel. However, for the angle-only method, we then convolve the image

with a Gaussian kernel to reduce pixelization effects (the advantage of this step is

discussed shortly) and then recalculate the centroid using equation (2.26). We re-

apply the weighting function to the original image centred on the new estimate of the
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Figure 3.7: The integrated light distribution as a function of the assumed galaxy orientation for
the ideal case of zero noise and with the centroid of the galaxy situated at the centre of a pixel.
The input position angle is 45◦.

centroid and convolve this image with the Gaussian kernel. We iterate this step until

the difference between successive estimates is less than 10−4 of a pixel.

We then integrate the convolved, weighted surface brightness, Iw(r, α), over the

radial direction, such that

I ′(θ) =

∫
drIw(r, θ), (3.45)

where r = 0 corresponds to the centroid of the galaxy image and where θ is the

assumed galaxy orientation. This gives us the integrated light distribution as a function

of θ.

Defining a set of axes which align with the edges of the pixels, we propose a method

of performing this integration by rotating the image about the centroid and integrating

along the x-axis of the image through the centroid, such that

I ′(θ) =

∫ xmax

xmin

dxIθ(x, ŷ), (3.46)

where Iθ is the convolved, weighted surface brightness distribution rotated by−θ about
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Figure 3.8: left panel: The integrated light distribution as a function of the assumed galaxy
orientation for the case of a randomly positioned galaxy. This distribution leads to an incorrect
estimate of the true position angle. Right panel: The integrated light distribution once the
image has been convolved with a Gaussian kernel of width 1 pixel; this reduces the effects of
pixelization

the centroid, and ŷ is the y component of the estimated centroid, (x̂, ŷ). This allows

us to carry out the integration by simply summing the intensity over the row of pixels

with y = ŷ.

If we omit the convolution with a Gaussian kernel, an example of this distribution

is shown in Figure 3.7 where we obtain the integrated light distribution for a galaxy

with ellipticity |χ| = 0.27, position angle α = 45◦ and situated at the centre of the

central pixel with zero noise. Using this distribution, we can recover an estimate of the

position angle of the galaxy such that

α̂ =
1

2
tan−1

(∫
dθI ′ (θ) sin (2θ)∫
dθI ′ (θ) cos (2θ)

)
. (3.47)

Applying this equation to the above distribution leads to the exact estimate of

α̂ = 45◦. However, if we now consider the case where the centroid of the galaxy
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is not positioned at the centre of a pixel, the integrated light distribution is not so well

behaved. The left-hand panel in Figure 3.8 shows one particular distribution using

a randomly centred galaxy. This distribution leads to an estimated position angle of

31.0◦ for an input angle of 45◦. This error in the estimate is due to the pixelization of

the image. One can soften the effect of pixelization by convolving the image with a

Gaussian kernel as described above. After we have done this with a kernel of width one

pixel, we recover the distribution shown in the right-hand panel of Figure 3.8. Using

this distribution, we obtain the estimate of α̂ = 45.1◦. For the remainder of this sec-

tion, we use a Gaussian kernel of width one pixel in every position angle measurement

performed.

3.3.3 Debiasing angle-only shear estimates using simulations

For the analysis in Section 3.2, we assumed that measurement errors on the position

angles were independent of the true position angles. However, for a fixed signal to

noise ratio, we find that there are two sources of non-zero covariance between the

measurement errors and the position angles; these are pixelization and a correlation

between the measurement errors and galaxy ellipticities in the presence of a non-zero

shear. To understand why these covariances present a problem, we begin by writing

the mean estimated cosines and sines of the measured position angles, α̂, in terms of

the true position angles, α, and an error on the measurement, δα, such that

〈cos (2α̂)〉 = 〈cos (2α + 2δα)〉

〈sin (2α̂)〉 = 〈sin (2α + 2δα)〉 . (3.48)

If we now abandon the assumption that the measurement errors are independent of

the position angles of the galaxies and make no assumption about the distribution of

the errors, we can write equation (3.48) in terms of the covariance between the true
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position angles and the measurement errors, such that

C ′ = 〈cos (2α)〉 βc − 〈sin (2α)〉 βs

S ′ = 〈sin (2α)〉 βc + 〈cos (2α)〉 βs, (3.49)

where we define

C ′ = 〈cos (2α̂)〉 − cov (cos (2α) , cos (2δα)) +

cov (sin (2α) , sin (2δα)) ,

S ′ = 〈sin (2α̂)〉 − cov (sin (2α) , cos (2δα))−

cov (cos (2α) , sin (2δα)) ,

βc = 〈cos (2δα)〉 ,

βs = 〈sin (2δα)〉 . (3.50)

We can now use equation (3.49) to write the means of the cosines and sines of the true

position angles as

〈cos (2α)〉 =
1

β2
c + β2

s

(C ′βc + S ′βs) ,

〈sin (2α)〉 =
1

β2
c + β2

s

(S ′βc − C ′βs) . (3.51)

It is these averages which must be used to estimate the shear when using equation

(3.44)3. Incorrectly accounting for the covariance terms in equation (3.51) will intro-

duce a bias into the shear estimates.

To understand how pixelization of the galaxy images introduces non-zero covari-

ance terms into equation (3.51), let us assume that the centre of a galaxy coincides

with the centre of a pixel. In the absence of noise, the central pixel of this image will

be the brightest. If we define the pixel axes as a set of axes with the origin at the centre

3This result is general and is expected to hold for any method used to measure galaxy position
angles.
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of the brightest pixel and with the axes aligned with the edges of the pixel, then the

contribution of light from the central pixel will be greatest in the directions of ±45◦

and least in the directions of 0◦ and 90◦. This effect will bias the angle measurements

towards angles of ±45◦ and away from angles of 0◦ and 90◦. Convolving the galaxy

image with a Gaussian kernel reduces this effect. However, for a randomly positioned

galaxy centroid, with a signal to noise ratio of 30, using a Gaussian kernel with a width

of 1 pixel results in correlations on the order of 1%, which produces significant biases

in the shear estimates. The covariance terms in equation (3.50) due to this effect can

be obtained using a set of simulated galaxy images under the assumption of zero shear.

From these simulations, we can also recover a first estimate of βc and βs. If we align

the shear axes with the pixel axes, then the g1 component of the shear will be aligned

with the pixel axes and the g2 component will align with the directions of ±45◦, this

will lead to a biasing in the direction of g2 and away from the direction of g1. In order

to avoid this effect, we choose to orientate our shear axes, when performing the angle-

only analysis, such that the direction of the g1 component is orientated at−22.5◦ to the

pixel axes.

The second source of bias arises from correlations between measurement errors

and galaxy ellipticities in the presence of a non-zero shear. For a fixed signal to noise

ratio, it is found that the measurement error on the position angle is dependent on the

modulus of the ellipticity - galaxies with high ellipticities have smaller measurement

errors on the position angles than galaxies with low ellipticities. In the absence of a

shear, there will be no correlation between orientation and ellipticity, and hence there

will be no bias contribution due to this effect. However, in the presence of a non-zero

shear, there will be a preference for galaxies with a higher ellipticity to align with the

direction of the shear. This implies that, on average, the measurement errors on galaxy

position angles where the galaxies are aligned with the shear are smaller than those

where the galaxies are anti-aligned with the shear. This effect is also large enough

to produce significant biases in the shear estimates. In the following subsection, we

introduce an iterative method using simulations to significantly reduce this effect.
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Figure 3.9: The distribution of the estimates for the two components of the shear including
correction for pixelization. The black curves show the distributions in shear estimates using
the KSB method, with the vertical black line indicating the mean estimate. The red curves
show the distributions in shear estimates using the angle-only method, where we measure the
position angles of the galaxies using the integrated light distribution and use sets of zero-shear
realizations in order to reduce the bias due to pixelization; the vertical red line indicates the
mean estimate. The green-dashed line indicates the input shear signal. The residual bias in the
angle-only estimates is due to correlations between the measurement errors and the position
angles which result from a non-zero shear signal.

3.3.4 A comparison of angle-only shear estimates with the KSB

method

Using sets of simulated galaxy images with a signal to noise ratio of 30, assuming

a Rayleigh intrinsic ellipticity distribution with a dispersion σχ = 0.3/
√

2, using an

input shear signal of g1 = g2 = 0.05/
√

2 and with 100 galaxies per realization, we

recovered shear estimates from 960 realizations. We compared the estimates recov-

ered using the angle-only estimator, where the angles were measured using the method

described above, with those recovered using the KSB method. For the angle-only

method we also used 960 zero-shear realizations in order to obtain a first estimate of

the covariance terms in equation (3.51); this corrects for the effect of pixelization on

the shear estimates. The results of these simulations are shown in Figure 3.9. The
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Figure 3.10: The distribution in shear estimates for the two components of the shear including
corrections for pixelization and an iterative scheme for removing the bias due to shape depen-
dent noise. The black curves show the distributions in shear estimates using the KSB method.
The red curves show the distributions in shear estimates using the angle-only method, where
we have used the estimated shear values shown in Figure 3.9 as the input shear signal in a set
of simulations which we then use to re-evaluate the covariance terms in equation (3.50). The
bias in the angle-only shear estimates has been greatly reduced.

two panels show the distribution of estimates for the two components of the shear.

The black curves show the distributions of recovered shear estimates using the KSB

method. The red curves show the distributions of recovered shear estimates using the

angle-only method. Here we see that the width of the distribution is slightly larger

for the angle-only method. Also, the bias in the shear estimates using the angle-only

method is clearly visible. As explained above, this bias is due to the correlation be-

tween measurement errors and galaxy ellipticities, which is introduced in the presence

of a non-zero shear. However, one can obtain a better estimate of these covariance

terms by using the estimated shear values as the input shear for a new set of simulated

galaxy images.

Using each of the shear estimates shown in Figure 3.9 as the input shear for a

further 960 realizations, we re-evaluated the covariance and β terms in equation (3.50).

We then used these values of the covariances to obtain new estimates of the shear. The
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Figure 3.11: The recovered shear estimates as a function of the input shear values. The left
panel shows the recovered shear values obtained using the angle-only method and upon using
one iteration in order to calculate the covariance terms in equation (3.50). The right panel
shows the recovered shear values using the KSB method.

distribution in these estimates is shown in Figure 3.10 as the red curve. From these

plots, we see that the bias in the shear estimates has been greatly reduced. We also see

that the width of the distribution of the shear estimates using the angle-only method

has been reduced and is now similar to the width of the distribution of shear estimates

using the KSB method.

Next, we carried out this analysis for a range of input |g| values, keeping the input

shear position angle fixed at α0 = 22.5◦. The results of this test are shown in Figure

3.11. The left panel shows the results of the angle-only method upon carrying out the

iterative procedure described above using just one iteration. The right panel shows the

results of the KSB method. Each point plotted consists of 960 realizations, with each

realization consisting of 100 galaxies. From these plots, we see that the performance

of the angle-only method is comparable with the KSB method, and that the distribution

of the recovered shear values is consistent with noise for the number of galaxies and

realizations used.
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Figure 3.12: left panel: The f
(∣∣εint

∣∣) for the case of 5× 104 galaxies. The red points indicate
the mean of f

(∣∣εint
∣∣
i

)
recovered from 100 realizations. The error bars indicate the standard

deviation of the values of f
(∣∣εint

∣∣
i

)
over 100 realizations (note that only 1 in 10 points have

been plotted for clarity). The black curve shows the true f
(∣∣εint

∣∣). Right panel: The estimated
F1 (|g|) function obtained from the estimated f

(∣∣εint
∣∣). The red points show the mean esti-

mated F1 (|g|i) over 100 realizations. The error bars indicate the standard deviation over 100
realizations (note that only 1 in 20 points have been plotted for clarity). The black curve shows
the true F1 (|g|) function, calculated using the true f

(∣∣εint
∣∣).

3.4 Impact of errors on f
(∣∣εint

∣∣) estimates

All of the work prior to this section has assumed an exact knowledge of f
(∣∣εint

∣∣).
In practice, an estimate of f

(∣∣εint
∣∣) is necessary in order to allow an estimation of

the shear using the angle-only method. Errors on the form of f
(∣∣εint

∣∣) will therefore

propagate as a bias into estimates of |g|. In this section, we examine the effects of the

size of the sample of galaxies and of measurement errors on the ellipticities of galaxies

in the sample on estimates of the shear. For the following analysis, we assumed the

underlying form of f
(∣∣εint

∣∣) to be that given in equation (3.67).

We began by assuming a negligible measurement error on the galaxy ellipticities.

We are thus implicitly assuming that a high signal to noise sample of galaxies are

available from which f
(∣∣εint

∣∣) can be estimated with negligible measurement errors.
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Figure 3.13: The fractional bias in the recovered |g| estimates for the case of 5× 104 galaxies.
The error bars indicate the fractional standard deviation of the estimates over 100 realizations.

In order to explore how the size of the galaxy sample used to estimate f
(∣∣εint

∣∣) affects

the shear estimates, we reconstructed f
(∣∣εint

∣∣) using sample sizes consisting of a var-

ious number of galaxies, N , by producing histograms of
∣∣εint

∣∣ which were randomly

drawn from the underlying distribution. For each sample size, we repeated this process

for 100 realizations.

For each estimate of f
(∣∣εint

∣∣), we calculated the corresponding F1 (|g|) function,

F̂1 (|g|). The results of this analysis are shown for the case of 5 × 104 galaxies in

Figure 3.12. From this plot, we see that the errors on the estimates of F1 (|g|) are

small compared to the errors on the f
(∣∣εint

∣∣). This is because the calculation of the

F1 (|g|) function involves an integral over the estimated values of f
(∣∣εint

∣∣
i

)
which

smooths the f
(∣∣εint

∣∣).
We propagated the errors on F̂1 (|g|) into errors on the estimates of |g|. This pro-

cedure was carried out for a variety of input shear signals, with the results displayed in

Figure 3.13.

In order to quantify the errors introduced due to an imprecise knowledge of f
(∣∣εint

∣∣),
we can, for example, constrain the number of galaxies in the sample used to estimate
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Figure 3.14: The absolute value of the fractional bias plus the fractional error (equation (3.52))
as a function of the number of galaxies in the sample used to estimate f

(∣∣εint
∣∣). The black

curve shows the values obtained from the simulations. Over-plotted in red is a curve of the
form M/

√
N + C.

f
(∣∣εint

∣∣) such that biases in the estimates of |g| are below some threshold value at a

particular confidence level. As an example, let us define

B ≡
|〈|g| − |ĝ|〉|+ σ|ĝ|

|g|
, (3.52)

which is the fractional absolute value of the bias plus the fractional standard deviation

of the recovered estimates of |g|. We can find the number of galaxies required to

estimate f
(∣∣εint

∣∣) such that B is below some value for a specific set of |g| values.

From Figure 3.13, we see that the range of the fractional error bars on the recovered

estimates of |g| decreases as the input |g| increases. Therefore, for the analysis which

follows, we focused our attention on the case when |g| = 0.01.

In Figure 3.14, we have plotted B as a function of the number of galaxies in the

sample (black curve). We see, as expected, that the value of B decreases as the num-

ber of galaxies increases. For a fixed bin size, this is a result of the fractional error

decreasing as the number of galaxies increases. The red curve in Figure 3.14 is a curve
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of the form M/
√
N + C, where M and C are parameters fitted to the data. The form

of this curve requires no assumption about the form of f
(∣∣εint

∣∣). The factor of 1/
√
N

describes how the error on 〈|ĝ|〉 decreases as the number of galaxies in the sample

increases. For this data, we find M ≈ 1.90 and C ≈ 1.13 × 10−3. The additional

constant, C, quantifies the residual bias due to the finite bin width used when recon-

structing f
(∣∣εint

∣∣).
From the fitted curve, we can calculate the number of galaxies that one would re-

quire in order to ensure that B is less than some value. We have verified that the

recovered estimates of |g| are approximately Gaussian distributed about the mean esti-

mate. We can therefore state that the bias in the estimates of |g| arising as a result of a

finite number of galaxies in the sample will be less than or equal to 1.0% for all values

of |g| ≥ 0.01, at a confidence level of 68%, if B = 0.01. We can then invert the fitted

curve in Figure 3.14 to find that for this constraint we need N ∼> 5 × 104. Looking

again at Figure 3.13, which displays the fractional bias for the case when N = 5×104,

we see that the error bars are indeed contained within the range [−0.01, 0.01].

For any true ellipticity measurements, there will of course be measurement errors.

These errors modify the form of the estimated f
(∣∣εint

∣∣) by distributing the measured∣∣εint
∣∣ more evenly between the bins. This is true even if the measurements of

∣∣εint
∣∣ are

unbiased.

Assuming 2×105 galaxies in the sample used to estimate f
(∣∣εint

∣∣), we repeated the

analysis above. This time we added a Gaussian measurement error to the components

of the ellipticity before estimating
∣∣εint

∣∣. To achieve this, we first randomly draw

2×105 samples of
∣∣εint

∣∣
i
from the underlying ellipticity distribution. We then simulated

the measured components of the ellipticity, such that

ε̂int
1 =

∣∣εint
∣∣ cos

(
2αint

)
+ δε1 ,

ε̂int
2 =

∣∣εint
∣∣ sin (2αint

)
+ δε2 , (3.53)

where αint is uniform distributed in the range −π/2 < αint ≤ π/2 and where δε1

Lee Robert Whittaker 93



3: WEAK LENSING USING ONLY GALAXY POSITION ANGLES

Figure 3.15: The absolute value of the fractional bias plus the fractional error for the case of
2× 105 galaxies as a function of the ellipticity measurement error. The black curve shows the
values obtained from the simulations. Over-plotted in red is a curve of the form Mσ2 + C.

and δε2 are Gaussian distributed measurement errors with zero mean and variance σ2.

We used these noisy ellipticity values to calculate the measured
∣∣εint

∣∣ of the galaxies,

such that
∣∣ε̂int

∣∣ =
√
ε̂int2

1 + ε̂int2
2 . The

∣∣ε̂int
∣∣
i

were then binned to give the estimated

f
(∣∣εint

∣∣).
The number of galaxies in the sample was chosen so that the error bars shown in

figure 3.13 were reduced by approximately a factor of two. This reduction in the size

of the error bars resulting from a finite sample size allows a value of B ≤ 0.01 to be

achieved when measurement errors on the ellipticities are included.

Figure 3.15 shows B as a function of σ for the case of 2 × 105 galaxies and for

|g| = 0.01. Over plotted in red is a curve of the form Mσ2 + C and fitted with

M ≈ 189 and C ≈ 5.03 × 10−3. We can now constrain the allowed value of σ such

that B is less than some value. From the curve fitted in Figure 3.15, we find that for

2 × 105 galaxies, B ≤ 0.01 for |g| ≥ 0.01 if σ . 0.005. Therefore, we conclude that

galaxies with a high signal to noise must be used if we are to avoid significant biases

in the shear estimates arising from an imperfect estimate of f
(∣∣εint

∣∣).
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3.5 Tests on simulations

To compare the performance of the position angle-only method with the standard

method based on full ellipticity measurements, we have compared the convergence

fields reconstructed from numerical simulations using both approaches. These tests

were performed following the procedure outlined in Brown & Battye (2011a). Briefly,

we used a single field from the simulated lensing convergence and shear maps of White

(2005), which consist of ≈ 1000 deg2 of simulated sky based on a ΛCDM cosmology

with the parameters: Ωm = 0.28, Ωbh
2 = 0.024, h = 0.7, σ8 = 0.9 and ns = 1. The

input convergence distribution used for the simulation is shown in the upper-left panel

of Fig. 3.16. The upper-right panel shows the input convergence distribution smoothed

on a scale of 1.5 arcmin.

We simulated a population of source galaxies assuming that the intrinsic elliptici-

ties,
∣∣εint

∣∣, follow the log-normal distribution

f
(∣∣εint

∣∣) =
K

|εint|
exp

(
−
(
ln
(∣∣εint

∣∣)− µ)2

2σ2

)
, (3.54)

where the mean and variance are given by

mean = exp

(
µ+

σ2

2

)
,

σ2
ε ≡ variance =

(
exp

(
σ2
)
− 1
)

exp
(
2µ+ σ2

)
, (3.55)

and where the normalization constant, K, was determined numerically.

In anticipation of our tests on the CFHTLenS data (see Section 3.6), we set the

mean value of
∣∣εint

∣∣ to be 0.3370; which we estimated from the CFHTLenS data by

finding the average of the modulus of the observed ellipticity value,
〈∣∣εobs

∣∣〉. The

variance is taken to be σ2
ε = 0.25392, which is the square of the dispersion fitted

to the disc dominated galaxies in the CFHTLenS data. We also applied a maximum

cut-off to the ellipticity of
∣∣εint

max

∣∣ = 0.804 (Miller et al. 2013). It should be noted
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Figure 3.16: Reconstruction of the distribution of dark matter in a 1.75 deg2 region of the
simulations. The upper-left panel shows the input convergence field, with the upper-right panel
showing the input convergence field smoothed on a scale of 1.5 arcmin. The lower left panel
shows the simulated reconstruction using the standard method with full ellipticity information
and with zero measurement errors. The lower right panel shows the reconstruction using the
3rd order estimator of the position angle-only approach in the presence of measurement errors
on the galaxy position angles with σα = 15◦.
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Figure 3.17: The fractional difference between the full F1 (|g|) function and the 3rd order ap-
proximation used to estimate the shear for the simulations. We see that the fractional difference
is less than 5% for the range of |g| considered.

at this point that the ellipticities of the CFHTLenS data are not well described by a

log-normal distribution. However, this distribution is easily simulated and is useful in

demonstrating our method.

The number density of the background galaxies was taken to be n̄ = 17 arcmin−2

in accordance with the number density of resolved galaxy images observed by the

CFHTLenS (Heymans et al. 2012).

When performing the reconstruction using the position angle-only method, we as-

sume that f
(∣∣εint

∣∣) has been estimated from a large sample of high signal to noise

galaxy images (see Section 3.4), such that residual biasing due to an imperfect knowl-

edge of the distribution is negligible. To recover the shear estimates, we used the

corrected form of the 3rd order estimator given in equation (C.12); where the best fit

parameters are found to be u = 2.423, v = 4.557 and w = −17.465. Figure 3.17

shows the fractional difference between the full F1 (|g|) function and the approximate

form used in this analysis. The latter is accurate to within 5% for all values of |g| in

the range considered.
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For this set of simulations, we assume that the measurement errors on the position

angles are independent of the true position angles and are Gaussian distributed with

zero mean and standard deviation σα = 15◦. We are thus ignoring any effects which

may contribute to the covariance terms in equation (3.51) and which would arise as a

result of the method used to measure the position angles. Since it is difficult to identify

a level of ellipticity measurement error that directly corresponds to our choice of σα,

for the purpose of our simulations, we have assumed a zero measurement error on the

ellipticity measurements. This would obviously not be the case in real data and so the

reader should bear in mind that the precision of the ellipticity-based reconstruction rel-

ative to that of the position angle-only reconstruction will be somewhat over-estimated.

If we assume that the shear is small enough so that, for a given ellipticity distri-

bution, we can use a first order approximation of the F1 (|g|) function, then one can

easily obtain a first order approximation to the error on the angle-only estimator. In

such a case, the first order corrected estimator is found to be

ĝ =
1

uβ2N

N∑
i=1

n(i), (3.56)

where u is the first order coefficient of the expansion given in equation (C.3), and

where β2 is the noise bias correction term corresponding to a Gaussian measurement

error on the position angles of 15◦. The first order error is therefore given by

σĝ =
1

uβ2

√
N
σn. (3.57)

If we also assume that the shear is small enough that we can approximate σ2
n ≈ 0.5

(which is the maximum value that σ2
n can take and, from equation (3.24), is correct to

first order in |g|), then equation (3.57) simplifies to

σĝ ≈
1

uβ2

√
2N

. (3.58)

From equation (3.58), we estimate the error on the shear estimates from these simula-
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tions to be σĝ ≈ 0.33/
√
N . The error on the shear estimates when using the standard

method is σst = σε/
√
N , as we have assumed zero measurement error on the ellip-

ticities. Therefore, we can estimate the ratio of the errors using the two methods to

be
σĝ
σst

≈ 1.3. (3.59)

To perform the reconstruction, for each map pixel of side 1 arcmin, the shear is

estimated by assigning a weight to each of the galaxies in the field so that the shear

estimate for each map pixel contains a contribution from all of the galaxies in the field.

For this analysis, we adopted the Gaussian weighting function:

W
(i,j)
k = exp

(
−(θi,j − θk)2

2θ2
0

)
, (3.60)

where θ0 is the smoothing scale, which, in this case, is taken to be 1.5 arcmin.

The shear in each pixel in then estimated using both the standard estimator and

the position angle-only estimator in order to produce two shear maps. When using the

position angle-only approach, the weighting is applied to the observed unit vectors so

that the average unit vector, which describes the average orientation, is given by

〈n〉i,j =

∑N
k=1W

(i,j)
k nk∑

k=1W
(i,j)
k

. (3.61)

In the standard approach, the weighting is applied to the galaxy ellipticities.

The convergence field is estimated separately for the two approaches using the

discrete Kaiser-Squires inversion (Kaiser & Squires 1993), which is given as a convo-

lution of the shear with the kernel

D (θ) = − 1

(θ1 − iθ2)2 , (3.62)
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such that the convergence is estimated as

κ̂ (θ) =
1

π

∑
i,j

= Re [D∗ (θ − θi,j) ĝ (θi,j) (1− κ̂ (θi,j))] , (3.63)

which is solved iteratively.

The reconstructed convergence maps are shown in the lower panels of Fig. 3.16.

We see that the position angle-only approach successfully recovers the major mass

concentrations with a performance that is qualitatively similar to that of the standard

estimator.

In order to quantify the level of agreement between the two reconstructions, we

have compared the residual map obtained from the difference between the two recon-

structions to the residuals one would expect to see solely due to noise. To perform

the comparison, we simulated 100 maps containing only galaxy shape noise (and mea-

surement noise with σα = 15◦ in the case of the position angle analysis). We then

repeated the mass reconstructions for each realization for both the position angle-only

approach and for the standard approach. A set of 100 simulated residual maps was

then constructed by taking the difference between the noise-only maps recovered by

the two approaches.

Fig. 3.18 shows a histogram of the r.m.s. residuals, σres, as measured from the suite

of noise-only difference maps. When calculating the residuals, we ignored all pixels

that lay within 5 arcmin of the edge of the reconstructed maps in order to avoid edge

effects. The vertical red line shows the value of σres obtained from the difference of the

two lower panels shown in Fig. 3.16. Since this is consistent with having been drawn

randomly from the histogram distribution, we conclude that the two convergence re-

constructions are consistent with each other. The simulated noise maps also provide

us with an estimate of the error on both the standard estimator and the position angle-

only estimator for the case of zero shear. The ratio of these errors was found to be

σĝ/σst ≈ 1.3, which agrees with equation (3.59).
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Figure 3.18: The distribution of the r.m.s. residuals, σres, obtained from 100 simulated and
differenced maps containing only noise contributions. The vertical red line shows the r.m.s.
residual obtained from the difference of the reconstructed mass maps shown in Fig. 3.16. This
plot shows that the difference between the two reconstructed mass maps is consistent with
noise.

3.6 Demonstration on the CFHTLenS data

The CFHTLenS (Heymans et al. 2012) has observed four distinct fields, W1 (∼63.8deg2),

W2 (∼22.6 deg2), W3 (∼44.2deg2) and W4 (∼23.3 deg2), providing full ellipticity

measurements for each detected galaxy in addition to weights associated with each

measurement. As a means of comparing our position angle-only approach with the

standard approach using real data, we have reconstructed the mass maps of all four

fields using both techniques.

The weighting provided for each ellipticity measurement has a contribution from

the intrinsic shape dispersion and a measurement error, such that the weighting of the

ith galaxy is given as (Miller et al. 2013)

wi =

[
σ2
i

∣∣εint
max

∣∣2
|εint

max|
2 − 2σ2

i

+ σ2
ε

]−1

, (3.64)
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where σi is the measurement error associated with the ellipticity of the ith galaxy. The

1D dispersion in the intrinsic galaxy shapes is taken to be σε = 0.2539 (Miller et al.

2013). There are also two calibration values for each galaxy: (1 +mi) and c2,i, which

are respectively multiplicative and additive corrections. The c2,i correction is deducted

from the εobs
2 component of the ellipticity and the (1 +mi) correction is applied to the

average ellipticity in a given pixel, such that the standard shear estimator for each pixel

is found to be (Van Waerbeke et al. 2013)

ĝ =

∑N
i=1wi

(
εobs
i − ci

)∑N
i=1 wi (1 +mi)

, (3.65)

where ci = (0, c2,i). Following the same procedure as in Section 5.4, we applied the

Gaussian weight given in equation (3.60) to each galaxy so that the estimated shear in

each pixel contains a contribution from all of the galaxies in a particular field. When

considering the CFHTLenS data, this weighting process allows for a shear to be ob-

tained for the regions that are masked. A cut-off was applied such that if the contri-

bution to a given pixel has a maximum weighting of less than 0.5, then this pixel is

ignored during the reconstruction.

In order to perform the position angle-only analysis, we have chosen to reconstruct

the orientation of each galaxy by using equation (3.4) to obtain the relation

α =
1

2
tan−1

(
εobs

2 − c2

εobs
1

)
. (3.66)

The multiplicative calibration factor is identical for both components of the ellipticity

and so cancels out during the calculation of the position angles. However, the addi-

tive correction must be applied. We note that position angles reconstructed from the

ellipticity measurements in this way would presumably retain many of the systematics

that might already be present in the ellipticity measurements. In Chapter 4, we assess

the potential advantages of a position angle approach to weak lensing in a more com-

prehensive manner by measuring the galaxy position angles directly from the imaging
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data using, for example, the method discussed in Section 3.3. However, our current

goal is to demonstrate the feasibility of our proposed technique for which reconstruct-

ing the position angles from the already carefully measured and calibrated ellipticity

estimates suffices.

To implement the position angle-only approach, we also require an estimate of the

intrinsic ellipticity distribution. To obtain this, we assumed that all of the galaxies in

the CFHTLenS data are disc dominated – Miller et al. (2013) state that this accounts for

approximately 90% of the galaxy population in the survey. In this case, and assuming

that the shear signal is small, the functional form of the intrinsic ellipticity distribution

can be approximated using the prior distribution (Miller et al. 2013)

f
(∣∣εint

∣∣) =

K

(
1− exp

(
|εint|−|εint

max|
σε

))
(1 + |εint|)

(
|εint|2 + ε20

) 1
2

, (3.67)

where K is a constant which was determined numerically to normalize the probabil-

ity. The maximum ellipticity cut-off used was
∣∣εint

max

∣∣ = 0.804, which arises primarily

from the finite thickness of the galaxy discs. The dispersion was σε = 0.2539 and the

“circularity” parameter was ε0 = 0.0256. We tabulated the F1 (|g|) function corre-

sponding to equation (3.67) and inverted the function, using equation (3.34), to obtain

an estimate of |g|.

Finally, to complete the position angle-only estimator, we require a correction term

in order to remove the noise bias associated with the measurement errors on the galaxy

position angles. As described above, the position angle estimates were derived from

the ellipticity measurements. For our current implementation, the position angle errors

will therefore arise due to the propagation of the ellipticity errors through equation

(3.66).

Assuming that the measurement errors are independent of the galaxy orientation,

we obtained the noise bias correction term using the procedure outlined in Appendix

B. We began by assuming that the measurement errors on the ellipticities are Gaus-
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sian distributed (Miller et al. 2013). In this case, the probability distribution for the

estimated ellipticity, ε̂, of the ith galaxy is

f (i) (ε̂) = K exp

(
−|ε̂− ε

true
i |

2

2σ2
i

)
, (3.68)

where εtrue
i is the true ellipticity of the galaxy and the measurement error, σi, can

be calculated using equation (3.64). To arrive at the probability distribution for the

estimated position angle (α̂), we must now marginalize over |ε̂|:

f (i) (α̂) =

∫ 1

0

f (i) (ε̂) |ε̂| d|ε̂|. (3.69)

An exact implementation of equation (3.69) requires knowledge of the true value of

the ellipticity of each galaxy, εtrue
i , which is obviously not known. In order to calcu-

late the noise bias correction term, we have therefore used equation (3.69) with the

approximation that εtrue
i ≈ εobs

i , where εobs
i is the observed ellipticity. While this will

obviously not hold for each individual galaxy, we expect that after averaging over all

of the galaxies in the survey, the derived mean correction term will be approximately

correct.

The marginalized distribution returned by equation (3.69) will be symmetrically

distributed about the observed position angle value. When this distribution is shifted so

that the mean value is at zero, we recover the distribution of the measurement error on

the position angle, δα. For each galaxy, we then found the value of 〈cos (2δα)〉i. Doing

this for all galaxies in a particular field of the CFHTLenS data, the final correction

term is simply the mean of all of the values of 〈cos (2δα)〉i. The bias correction was

found independently for each field. All four corrections were found to be β2 ≈ 0.8

which corresponds to an equivalent Gaussian measurement error of σα ≈ 19◦. It is

conceivable that this error could be reduced if, in future surveys, measurements of the

position angles are obtained directly from the imaging data as discussed in Section 3.3.

Using the angle-only method and following the approach adopted in Section 3.5,
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we constructed mass maps for each of the four fields in the CFHTLenS. The pixel

size used to reconstruct the maps was 4 arcmin, with a smoothing scale of 8.9 arcmin,

which is the same as used in Van Waerbeke et al. (2013). The resulting maps are shown

in Figs. 3.19–3.22, where we also present maps reconstructed using the standard (full

ellipticity) approach for visual comparison. One can immediately see the qualitative

agreement in the maps reconstructed using the two methods – the position angle-only

approach recovers mass concentrations at the same locations as the standard estima-

tor and on a similar scale. However, there appears to be a difference between the

peak values of the mass concentrations when using the two methods. The standard ap-

proach uses a weighting scheme which downweights the contribution from noisy shape

measurements when estimating the shear. However, the angle-only analysis does not

implement such a weighting scheme, and hence the angle-only shear estimates contain

noisier information. This noise propagates into the mass reconstructions and reduces

the apparent peak values. For our purpose, this approach successfully demonstrates the

potential of performing weak lensing using only galaxy position angles, and reliably

recovering weighted averages of the trigonometric functions is left for future work.

Following the approach described in Section 3.5 we have attempted to quantify

the level of agreement between the two sets of mass reconstructions by making use

of simulations including only the effects of shape and measurement noise. For the

case of the CFHTLenS data we created noise realizations by assigning a random ori-

entation to every galaxy in the dataset. We performed two mass reconstructions for

each realization – one using the standard method and one using the position angle-

only method to estimate the shear. We produced a histogram of the r.m.s. residuals as

measured from the difference between the reconstructed maps. The results are shown

in Fig. 3.23 (black curves). When calculating the residuals we ignored all pixels in

the mass maps that lie within ∼30 arcmin of a masked region in order to reduce edge

effects. The vertical red lines show the r.m.s. residuals obtained from difference maps

constructed from the mass reconstructions shown in Figs. 3.19–3.22. For each of the
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Figure 3.19: Mass reconstructions for the W1 field of the CFHTLenS. The top panel shows the
reconstruction obtained using the standard method and the bottom panel is performed using
the position angle-only approach. The smoothing scale for these reconstructions is 8.9 arcmin.
The colour bars indicate the scale of the convergence fields.
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Figure 3.20: Mass reconstructions for the W2 field of the CFHTLenS. The top panel shows the
reconstruction obtained using the standard method and the bottom panel is performed using
the position angle-only approach. The smoothing scale for these reconstructions is 8.9 arcmin.
The colour bars indicate the scale of the convergence fields.

four fields, the residual maps obtained by differencing the mass reconstructions are

shown to be consistent with the corresponding difference maps from the simulations

containing only noise. These results suggest that systematic differences between the

two shear estimation techniques are sub-dominant to the noise in the reconstructions.
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Figure 3.21: Mass reconstructions for the W3 field of the CFHTLenS. The top panel shows the
reconstruction obtained using the standard method and the bottom panel is performed using
the position angle-only approach. The smoothing scale for these reconstructions is 8.9 arcmin.
The colour bars indicate the scale of the convergence fields.
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Figure 3.22: Mass reconstructions for the W4 field of the CFHTLenS. The top panel shows the
reconstruction obtained using the standard method and the bottom panel is performed using
the position angle-only approach. The smoothing scale for these reconstructions is 8.9 arcmin.
The colour bars indicate the scale of the convergence fields.

3.7 Conclusions

Building on the work of Schneider & Seitz (1995), we have demonstrated a method

of performing a weak lensing analysis using only the position angle measurements

for a set of galaxies. By using the probability distribution for the intrinsic ellipticities

of the galaxies, one can express the mean of the trigonometric functions in terms of
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Figure 3.23: The distribution of the r.m.s residuals, σres, obtained from 100 pairs of recon-
structed maps containing only noise for each of the four fields of the CFHTLenS. The vertical
red lines show the values of σres obtained from the difference between the reconstructed maps
shown in Figs. 3.19–3.22. These results indicate that the difference between the two sets of
reconstructed mass maps is consistent with noise.
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the underlying shear unit vector and a function that depends on the modulus of the

shear. Obtaining an estimate of the shear components is then possible by means of

inverting this relationship. It has been shown that the bias introduced by position

angle measurement errors can be reduced to negligible levels by the introduction of a

correction term, which can be calculated numerically for a general error distribution.

The method has been successfully demonstrated using both simulations and us-

ing the data from the CFHTLenS. Upon comparing the residuals of the mass maps

constructed using both the standard method and the position angle-only method, we

have demonstrated that the difference between the two approaches is consistent with

noise. This demonstration was performed using simulations where the intrinsic ellip-

ticity distribution was assumed to be a log-normal distribution and using the data from

the CFHTLenS, where we used the best-fit intrinsic ellipticity distribution for the disc

dominated galaxies (Miller et al. 2013).

For the demonstration of our method on the CFHTLenS data, we derived the posi-

tion angle estimates from the ellipticity measurements provided with the CFHTLenS

data release. In order to fully exploit the potential advantages of position angle based

weak lensing analyses, we have introduced a method of measuring the position an-

gles of the galaxies directly from the imaging data. This method is developed in the

next chapter, where the angle-only approach is applied to the GREAT3 simulations.

It will be further developed in future work with the goal of reducing systematics and

complementing parallel weak lensing analyses based on the full ellipticity information.

In the absence of direct position angle measurements, we find that when we calcu-

late the position angles from the ellipticities provided by CFHTLenS, the multiplicative

bias cancels out. Our position angle-only shear estimates will therefore only be sensi-

tive to additive biases. However, for the position angle-only method to be successful,

it is vital that the correct form of the intrinsic ellipticity distribution is used for any

particular survey. If an incorrect form is used, then the form of the F1 (|g|) function

will be incorrect and this will itself lead to mis-calibrated shear estimates. It has been

shown that a realistic sample size of high resolution galaxy images can be used to ob-
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tain an estimate of the intrinsic ellipticity distribution such that residual biases in the

shear estimates resulting from an incorrect distribution are negligible.
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Chapter 4

Demonstrating position angle-only

shear estimators on the GREAT3

simulations

We develop and apply the position angle-only shear estimator of Chapter 3 to real-

istic galaxy images. This is done by demonstrating the method on the simulations

of the GREAT3 challenge (Mandelbaum et al. 2014b), which include contributions

from anisotropic PSFs. We measure the position angles of the galaxies using three

distinct methods - the integrated light method, quadrupole moments of surface bright-

ness, and using model-based ellipticity measurements provided by IM3SHAPE. A

weighting scheme is adopted to address biases in the position angle measurements

which arise in the presence of an anisotropic PSF. Biases on the shear estimates, due

to measurement errors on the position angles and correlations between the measure-

ment errors and the true position angles, are corrected for using simulated galaxy

images and an iterative procedure. The properties of the simulations are estimated

using the deep field images provided as part of the challenge. A method is devel-

oped to match the distributions of galaxy fluxes and half-light radii from the deep

fields to the corresponding distributions in the field of interest. We recover angle-
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only shear estimates with a performance close to current well-established model and

moments-based methods for all three angle measurement techniques. The Q-values

for all three methods are found to be Q ∼ 400. The code is freely available online at

http://www.jb.man.ac.uk/˜mbrown/angle_only_shear/.

4.1 Introduction

As discussed in Section 2.6, measurements of the galaxy shapes need to be recovered

from noisy, pixelized images. These images are convolved with an instrumental and/or

atmospheric point spread function (PSF), and both moments and model-based meth-

ods must correct for the PSF contribution. Moments-based methods generally also

implement a weighting function to reduce the effects of noise at large scales, and this

function must subsequently be corrected for. For the case of an isotropic PSF, an in-

correct calibration of the required correction will lead to multiplicative biases in the

shear estimates. However, an isotropic PSF does not alter the orientations of the galax-

ies. We note that, for the generic case, regardless of the precise form of the PSF, there

will be a small bias in position angle measurements due to pixelization. The same is

true if one multiplies the galaxy image by a circular weighting function centred on the

centroid of the galaxy. In Chapter 3 (hereafter C3), we proposed a method of perform-

ing weak lensing using only measurements of the galaxy orientations with the aim of

exploiting this property. We demonstrated the method using simple simulations where

we ignored the effects of a PSF and considered a simple Sérsic galaxy model for the

intrinsic galaxy shapes. We found that the position angle-only method has the potential

to yield shear estimates with a performance comparable with the KSB method.

An anisotropic PSF will bias position angle measurements, and therefore estimates

of the shear if not corrected for. This bias is addressed in this chapter where we build

upon the ideas introduced in C3 and apply the angle-only method to the simulations of

the control-ground-constant (cgc) branch of the GREAT3 simulations (Mandelbaum

et al. 2014b). These simulations were designed to test the performance of a shear
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estimator on realistic galaxy images and include the effects of noise, pixelization, an

anisotropic PSF, and realistic distributions of galaxy flux, size and shape.

In Section 4.2, we describe the three methods used to measure the position angles

of the galaxies. The application of the angle-only method to the GREAT3 simulations

is presented in Section 4.3.

From equation (3.49), we see that errors on the position angles of the galaxies and

correlations between the true lensed position angles and the measurement errors bias

our estimates of the mean trigonometric functions. This in turn biases the shear es-

timates. C3 addressed this issue, in the absence of a PSF, by estimating the β and

covariance terms using simulations and applying an iterative procedure. However, we

find that this approach is inadequate for fields which have a large anisotropic PSF. In

Section 4.3, we introduce an alternative iterative procedure. We use an initial estimate

of the shear recovered using weighted averages of the trigonometric functions to sim-

ulate the expected bias in the shear estimates and subsequently correct our estimates.

The results are presented in Section 4.4, where we compare the angle-only method,

using the three angle measurement techniques, with the results of a naive applica-

tion of IM3SHAPE and also with the highest entries to the GREAT3 challenge from

IM3SHAPE and the KSB method. We conclude with a discussion in Section 4.5.

4.2 Measuring the position angles

When analysing the cgc branch of the GREAT3 simulations, we use three distinct

methods to measure the position angles from the simulated galaxy images. The first

is the integrated light method discussed in C3. The second uses the second order

moments of brightness of the galaxy image. The third uses ellipticities measured by

IM3SHAPE to determine the position angles. Here we briefly discuss the three ap-

proaches.
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4.2.1 The integrated light method

The integrated light method for measuring galaxy position angles is discussed in detail

in Section 3.3. Here we briefly explain the application of the method to the images of

the cgc simulations.

We begin by estimating the mean half-light radius of the galaxies in the field of

interest using the relationship between the mean half-light radius and the mean flux of

the galaxies discussed in Section 4.3 and given in equation (4.6). For each galaxy in

the cgc branch, we initially assume the centroid of the galaxy to be the centre of the

image. We apply a circular Gaussian weighting function to the image centred on this

initial estimate of the centroid. The half-light radius of the weighting function is equal

to twice the mean half-light radius of the galaxies in the field. The image is then con-

volved with a circular Gaussian kernel with a width of two pixels to reduce the effects

of pixelization. The centroid is then recalculated using the first-order moments of the

convolved weighted surface brightness distribution, Iw(θ), using equation (2.26). This

step is iterated until the difference between subsequent estimates of the components of

the centroid are less than 10−3 of a pixel.

We then estimate the 1D integrated light distribution, I ′ (θ), of the galaxy as a

function of assumed position angle, θ, using equation (3.46). Finally, the estimated

position angle of the galaxy is given by equation (3.47).

4.2.2 A moments-based method

The moments-based method uses second order moments of the convolved weighted

brightness distribution, Iw(θ), to estimate the position angle (Kaiser et al. 1995). We

follow the approach outlined in the previous subsection to estimate the width of the

weighting function used for each field and the centroid of the individual galaxy images.

The position angles of the galaxies are then calculated using the second-order moments
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of Iw(θ), as defined in equation (2.25), such that

α̂ =
1

2
tan−1

(
2Q12

Q11 −Q22

)
. (4.1)

4.2.3 Using IM3SHAPE

Using IM3SHAPE, we measure the observed ellipticities of the galaxies in each field

and use the ellipticity measurements to determine the galaxy position angles. When

fitting a model of the galaxy shape to the galaxy image, IM3SHAPE takes into account

the contribution of the PSF by convolving the model galaxy with a star field image.

The GREAT3 challenge provides star field images at the same resolution as the galaxy

images for each field of the cgc branch. When using IM3SHAPE to measure the po-

sition angles of the galaxies, we use these star field images directly to calibrate for

the PSF. However, when we require full ellipticity information (i.e. when estimating

f
(∣∣εint

∣∣) in Section 4.3 and when using IM3SHAPE to estimate the shear, as a com-

parison with the angle-only method, in Section 4.4), we use star field images which

are upsampled by a factor of seven. The upsampled star field images were created

by interpolating from the low resolution image using the quintic interpolation scheme

(InterpolatedImage) provided by GalSim (Rowe et al. 2014). We use origi-

nal star field images for the position angle measurements to reduce computation time

when calibrating the angle-only shear estimates using simulations. Since IM3SHAPE

corrects for the PSF when measuring the ellipticities, the angle-only method using

IM3SHAPE differs from the integrated light and moments-based methods which do

not include any PSF correction at this stage. Upon recovering measurements of εobs,

we estimate the position angles of the galaxies as

α̂ =
1

2
tan−1

(
εobs

2

εobs
1

)
. (4.2)
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4.3 Application to the GREAT3 simulations

The cgc branch of the GREAT3 challenge simulates ground-based observations of

200 10 × 10 deg2 fields. Each simulated observation contains 104 resolved galaxy

images. A constant shear is applied to all of the galaxies within a particular field. The

images of the galaxies within each field are convolved with a constant anisotropic PSF,

and a constant level of background Gaussian noise is assumed. The applied PSF and

background noise levels are varied between the different observations, and the applied

shear is different for each field observed. Noiseless star field images are included for

each field providing an image of the PSF. The cgc branch also includes five deep field

observations for use as a training dataset. These observations consist of galaxy images

that are one magnitude deeper than the challenge observations, but the dataset retains

only images of the galaxies which would be present in the rest of the challenge. The

properties of the simulations are discussed in detail in Mandelbaum et al. (2014b).

In this section, we describe the application of the angle-only method to the cgc

branch of the GREAT3 simulations. We measure the position angles of the galaxies

from the simulated images using the three methods discussed in the previous section.

We begin by outlining the steps of the procedure followed in the angle-only analysis.

1. Calculate the F1 (|g|) function using equation (3.8). This requires an estimate

of f
(∣∣εint

∣∣) which we obtain from the GREAT3 deep field calibration sets using

IM3SHAPE.

2. Measure the fluxes of the galaxies in the deep field images by summing over

the pixel values and recover measurements of the half-light radii and the bulge

to total flux ratio of the galaxies from IM3SHAPE, to be used in calibration

simulations.

3. Determine the relationship between the mean fluxes and the mean half-light radii

of the five deep fields.
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4. Measure the mean flux of the galaxies in the field of interest and use this mea-

surement to modify the fluxes and half-light radii of the deep field measurements

output from step 2 above.

5. Use the modified fluxes and half-light radii with the intrinsic ellipticity estimates,

bulge to total flux ratio measurements, and a suite of random uniform distributed

intrinsic position angles to simulate zero shear galaxy images using GalSim.

The noise in the simulated images is estimated from the GREAT3 image being

analysed.

6. Measure the position angles of the galaxies in the zero shear simulations using

one of the three methods discussed in the previous section. These measurements

are used to construct a weighting function the purpose of which is to correct for

PSF anisotropy and pixelization effects.

7. Measure the position angles of the galaxies in the field of interest and estimate

the shear using weighted averages of the trigonometric functions.

8. Use the shear estimates to produce an updated set of simulations which include

information about the shear.

9. Estimate the shear in the updated simulations using the same weighting function

as in step 6. Use these estimates to determine the bias in the estimates recovered

in step 7 and correct for the bias.

10. Repeat steps 7-9 using the corrected shear estimates as the input shear for the

simulations until the estimated bias is below a desired threshold value.

We now discuss our application of this procedure to the cgc branch in detail.

We began by estimating the form of the F1 (|g|) function (step 1) using IM3SHAPE

to measure the observed ellipticities of the galaxies for each of the deep fields of the

cgc branch. When measuring a galaxy’s ellipticity using IM3SHAPE, we used star
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Figure 4.1: Left-hand panel: The reconstructed f
(∣∣εint

∣∣) using IM3SHAPE to recover the
estimates of the intrinsic ellipticities of the galaxies in the deep field images of the cgc branch
and with a binwidth of ∆

∣∣εint
∣∣ = 5×10−3. Right-hand panel: The F1 (|g|) function calculated

using equation (3.8) and the reconstructed f
(∣∣εint

∣∣) shown in the left-hand panel.

images which were upsampled by a factor of seven to correct for the PSF contribution

(as opposed to the original star images used when we were concerned only with a

galaxy’s position angle). For each of the deep fields, we averaged over the observed

ellipticity measurements to estimate the shear for that field. Using the estimated shears

and the measured ellipticities, we recovered estimates of the intrinsic ellipticities of the

galaxies by inverting equation (3.1) and reconstructed f
(∣∣εint

∣∣), shown in Figure 4.1.

From this estimate of the distribution, we calculated the F1 (|g|) function numerically

using equation (3.8); this is shown in the right panel of Figure 4.1. As discussed in

Section 3.4, the integral carried out when calculating the F1 (|g|) function smooths the

f
(∣∣εint

∣∣) distribution. However, if we use a large binsize for the distribution we lose

information. We therefore chose a binsize of 5 × 10−3 in accordance with the binsize

used in Section 3.4.

The effects of the PSF on a galaxy’s observed ellipticity and orientation depend on

the underlying ellipticity of the galaxy. When using the angle-only estimator, we do

not recover information about the ellipticities, and therefore a complete understand-
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Figure 4.2: The distribution of position angles measured from field 2 using the integrated light
method (black curve). The vertical black line shows the position angle of the PSF. Here we see
that the measured position angles are biased in the direction of the PSF. The red dotted curve
shows the distribution of measured position angles recovered from the zero shear simulations.
We see that the distribution from the simulations provides a good description of the distribution
from the image data, with the difference between the two being attributed to the shear signal
for the zeroth-order shear estimate.

ing of the effects of the PSF on an individual galaxy’s orientation cannot be realized.

Instead, we chose to examine the impact of the PSF on the ensemble of galaxies. In

the absence of a PSF (and pixelization), we expect the distribution of position angle

measurements to be approximately uniform, with any deviation from uniformity being

attributed to the underlying shear signal. In Figure 4.2, we show the distribution of

measured position angles from field 2 of the GREAT3 cgc simulation set measured

using the integrated light method. We see the unsurprising result that the position an-

gles are biased in the direction of the PSF. This results in non-zero correlations between

the galaxy position angles and the errors on the measurements which biases the shear

estimates via equation (3.49).

To correct for this effect, we adopt a weighting scheme in which we downweight

the contribution to the mean trigonometric functions (see equations (3.22) and (3.23))

from galaxies which align with the PSF. To understand how the galaxies should be
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weighted, let us assume a large sample of galaxies with a zero shear signal. In the

absence of a PSF, we expect a uniform distribution of measured position angles and

therefore the mean trigonometric functions to be zero. The observed unit vector of the

galaxy is

n (α̂) =

 cos (2α̂)

sin (2α̂)

 . (4.3)

In the presence of a PSF, the angle distribution becomes non-uniform, and the mean

unit vector, 〈n̂〉, will be

〈n̂〉 =

∫ π
2

−π
2

dα̂n (α̂) fPSF (α̂) , (4.4)

where fPSF (α̂) is the distribution of measured position angles given a non-zero PSF.

If we introduce a weighting function, w (α̂), such that

〈n̂〉 =

∫ π
2

−π
2

dα̂ w (α̂)n (α̂) fPSF (α̂) , (4.5)

it is clear that one can correct for the effects of the PSF, such that we recover mean

trigonometric functions equal to zero, if we set w (α̂) = 1/fPSF (α̂). To proceed, we

therefore require an estimate of the distribution of measured position angles when a

PSF is included.

To achieve this, we used GalSim to simulate 105 galaxy images with specific

properties provided by IM3SHAPE and assuming a zero input shear signal. For each

galaxy in the five deep fields, we measured εobs, the bulge to total flux ratio (B/S),

and the half-light radius (Re). For each field, we also estimated the shear by averaging

over εobs allowing us to estimate the εint of each galaxy by inverting equation (3.1).

For each of these galaxies, we simulate a corresponding galaxy using the measured

properties as a template. The intensity profile of each simulated galaxy was assumed

to be a Sérsic profile consisting of a bulge with Sérsic index ns = 4 and a disc with

ns = 1, and with the half-light radii of each of these components being identical. The
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Figure 4.3: The left-hand panel shows the distributions of galaxy fluxes for the five deep fields
of the cgc branch. The right-hand panel shows the distributions of half-light radii for the
galaxies in these fields. The half-light radii have been measured using IM3SHAPE.

Figure 4.4: The mean flux of the galaxies plotted as a function of the mean half-light radius for
each of the five deep fields. Here we see a linear relationship between the two quantities. The
line is the best fit to the data.

simulated galaxy is created with an intrinsic ellipticity of
∣∣εint

∣∣ and with a position

angle drawn randomly from a uniform distribution with the range [−90◦, 90◦).
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For each field in the cgc branch, the galaxy images are convolved with a different

PSF, and only resolved galaxy images are included in the sample. Including only re-

solved galaxy images implies that the distributions of the half-light radii, and therefore

the fluxes of the galaxies, are different for each field. In order to construct accurate cal-

ibration simulations, we require the distributions of these properties in the simulations

to match the distributions in the field being analysed. We used the properties estimated

by IM3SHAPE when analysing the deep field images to investigate how this can be

achieved. First, we measured the flux of each galaxy by summing over the pixel val-

ues in each galaxy image, and we recovered the half-light radii estimates provided by

IM3SHAPE (step 2). Figure 4.3 shows the distributions of galaxy fluxes and half-light

radii for each of the five deep fields. We see the difference between the distributions

for each field. In Figure 4.4, we plot the mean galaxy flux for each field as a func-

tion of the mean half-light radius. This indicates a linear relationship between the two

quantities. We fitted a linear function of the form 〈S〉 = m 〈Re〉+c to this data (step 3)

with the fitted parameters given by m = 162.4 ADU arcsec−1 and c = −14.19 ADU.

This relationship allows for a direct estimate of 〈Re〉 simply by summing over the pixel

values in a particular field, such that

〈Re〉 =
〈S〉 − c
m

. (4.6)

One should not assign significance to the relationship shown in Figure 4.4. The method

for recovering estimates of 〈Re〉 works as long as one can characterize a relation be-

tween 〈Re〉 and 〈S〉. In real data, it is expected that the correlation between these two

quantities would be undetectable due to the randomness in the sizes and morphologies

of the source galaxies. However, we have exploited this characteristic of the GREAT3

simulations to provide us with accurate calibration simulations when constructing the

weighting function. If this correlation cannot be detected in real data, alternative meth-

ods for constructing accurate calibration simulations based the source population must

be used.
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Figure 4.5: The distributions of flux and half-light radii shown in Figure 4.3 modified using
the relationships given by equations (4.7-4.10) so that they match the distributions of field 0.
These plots indicate that the flux and half-light radii distributions in a particular field can be
accurately reproduced using these relationships.

If P n
S (S) is the distribution of the fluxes in field n and 〈S〉n is the mean flux of a

galaxy for that field, we find that we can write an approximate relationship for the flux

distributions of two fields a and b as

P a
S (S) = P b

S(KS), (4.7)

where

K =
〈S〉a
〈S〉b

. (4.8)

We find we can also write a similar relationship for the distributions of half-light radii

of the two fields, P a
Re

(Re) and P b
Re

(Re),

P a
Re

(Re) = P b
Re

(Re +K ′), (4.9)

where

K ′ = 〈Re〉a − 〈Re〉b . (4.10)
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If one measures the means of the fluxes of the galaxies in fields a and b, one can recover

estimates of the means of the half-light radii in these fields using the linear relationship

shown in Figure 4.4 and equation (4.6). It is then possible to modify the distributions

of the fluxes and half-light radii in field b so that they approximately match those in

field a. An example of this procedure is shown in Figure 4.5, where we have modified

the distributions of the deep fields 1-4 (shown in Figure 4.3) to match deep field 0.

We see that the distributions of the fluxes and half-light radii of a particular field can

be accurately reproduced if the mean of the galaxy fluxes can be accurately measured

and, as this requires simply summing over the image pixels within a particular field,

we expect this to be achievable.

When applying this method to the challenge data, we measured the mean flux of

the galaxies in the field of interest. We then modified the fluxes and half-light radii

of all the galaxies in the five deep fields. We combined the modified fluxes and half-

light radii with the estimated values of
∣∣εint

∣∣ and B/S, and a suite of uniform random

intrinsic position angles to provide us with the inputs required for 5 × 104 simulated

galaxies (step 4). The GREAT3 simulations use galaxy pairs whereby for each galaxy

with an intrinsic orientation of αint, there is an identical galaxy with an intrinsic orien-

tation of αint + 90◦. This is done to reduce intrinsic shape noise in the shear estimates,

and hence the number of galaxies needed to average over. For each of our 5 × 104

simulated galaxies, we therefore created an identical galaxy image but rotated by 90◦

with respect to the first, mimicking the procedure implemented by GREAT3. This pro-

vided us with 105 simulated galaxy images. These images were convolved with the

upsampled star field images to simulate the effects of the PSF. The pixel scale of the

simulations was chosen to match the pixel scale used by GREAT3. The noise in the

images was assumed to be Gaussian with the variance estimated from the values of the

outermost pixels of each 48× 48 pixel2 stamp in the field and with all 104 stamps used

in the estimate (step 5).

Once the simulated galaxy images were created, we measured the position angles

of the galaxies using each of the three methods discussed above (step 6). The results

126 New Approaches to Weak Gravitational Lensing



4.3: APPLICATION TO THE GREAT3 SIMULATIONS

of this for field 2 when using the integrated light method are presented as the red curve

in Figure 4.2. This distribution was binned with a bin size of 1◦ to give the distribution

of position angles, P (αi). As described above, the required weighting function is the

reciprocal of this distribution

w (αi) =
1

P (αi)
. (4.11)

We used this weighting function to correct the averages of the observed trigonometric

functions for the PSF and pixelization, such that

〈n̂〉 =

∑N
i=1w (α̂i) n̂i∑N
i=1w (α̂i)

. (4.12)

Ideally, the weighting applied to each galaxy in the image would depend on the po-

sition angle of the galaxy without the effect of lensing (but with the effects of PSF,

pixelization and noise still present). However, this is obviously not possible for real

data. Assuming that the rotation induced by lensing is small, the weighting of the

trigonometric functions will not be significantly affected by lensing and, provided the

simulations are accurate, any resulting bias to the shear estimates should be corrected

for by the iterative procedure discussed below.

Using the weighted averages given by equation (4.12), we recover a zeroth-order

estimate of the input shear signal, ĝ(0), in each field via equations (3.22) and (3.23)

(step 7). Let m′j and c′j respectively denote the multiplicative and additive biases on

the jth component of the zeroth-order shear estimates (Heymans et al. 2006; Huterer

et al. 2006; Massey et al. 2007) in a reference frame aligned with the simulated images.

The estimates can then be written as

ĝ
(0)
j = gj +m′jgj + c′j + δg

(0)
j , (4.13)

where δg(0)
j is an error on the estimate with zero mean. If we assume that the weighting

function successfully mitigates the effects of an additive bias, the zeroth-order estimate

is expected to underestimate the modulus of the true shear signal as there is no correc-
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tion for the measurement error bias arising from βc in equation (3.50). It is possible to

correct for this bias using the zero shear simulations to model the measurement error

for each field as discussed in C3. However, for cases where there are large contribu-

tions from anisotropic PSFs, we find that the errors on the position angle measurements

can be large leading to small values of βc. Hence, attempting to correct for these biases

can lead to substantial outliers in the shear estimates. Also, errors on the estimates of

βc propagate nonlinearly into estimates of the shear. We therefore choose to simulate a

further suite of 105 galaxy images using the procedure described above, and we shear

the galaxies using the estimates ĝ(0) (step 8) for each field. We measure the shear from

these updated simulations and use these estimates to determine and correct for the bias

in the initial estimates recovered for each field (step 9), such that

ĝ(1) = ĝ(0) −
(
ĝ

(1)
sim − ĝ(0)

)
, (4.14)

where the shear estimate recovered from the first-order simulations is

ĝ
(1)
j,sim = ĝ

(0)
j +m′j ĝ

(0)
j + c′j + δg

(1)
j . (4.15)

This method therefore corrects for the bias introduced to the estimates of the shear and

does not correct for the bias on the individual galaxy position angle estimates. We can

iterate this step until estimates of the shear between subsequent iterations are consistent

(step 10).

For a large number of simulated galaxy images, noise in the estimated bias will be

sub-dominant to noise in the zeroth-order shear estimate. However, using this iterative

method, noise in the simulated shear estimates, ĝ(1)
sim, due to a finite number of simu-

lated galaxy images propagates linearly into the final shear estimates. Therefore, if we

assume that the details of the simulations are accurate, there is no additional noise bias

expected from this procedure. For the nth iteration, we can write

ĝ(n) = ĝ(0) −
(
ĝ

(n)
sim − ĝ(n−1)

)
. (4.16)

128 New Approaches to Weak Gravitational Lensing



4.4: RESULTS

Assuming that the simulations provide an accurate description of the true field, we

show in Appendix D that the residual bias for the nth iteration is

〈
ĝ

(n)
j − gj

〉
=
(
−m′j

)n (
m′jgj + c′j)

)
, (4.17)

which converges to zero for
∣∣m′j∣∣ < 1. As explained above, the zeroth-order shear

estimates are expected to underestimate the modulus of the true shear. Hence, we

expect m′j to be confined to the range −1 < m′j < 0, and therefore the shear estimates

to converge for all fields.

4.4 Results

Here we compare the results of the angle-only approach using each of the three meth-

ods to measure the position angles of the galaxies discussed in Section 4.2. We include

the results obtained from a naive application of IM3SHAPE where full ellipticity in-

formation is used (measured using the upsampled star images to correct for the PSF)

with no additional calibration scheme.

The Q-value is the metric used to quantify the performance of the estimators in

the GREAT3 challenge (Mandelbaum et al. 2014b). It is defined as a function of the

multiplicative and additive biases (m and c respectively) where the biases satisfy the

approximation (Heymans et al. 2006; Huterer et al. 2006; Massey et al. 2007)

ĝk = (1 +mk) gk + ck + δgk. (4.18)

The subscript k denotes the components of the shear in a reference frame aligned with

the PSF in the field being analysed. The biases are estimated using a linear regression

over the 200 fields given the known input shears. The Q value is then calculated as

Q =
2000η√

σ2
min +

∑
k=+,×

(
mk
mtarget

)2

+
∑

k=+,×

(
ck
ctarget

)2
, (4.19)
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where the subscript + corresponds to the components of the biases in the direction

aligned with the PSF for each field and the subscript × denotes the direction perpen-

dicular to the PSF. The target values of the biases, mtarget and ctarget, are based on the

requirements of the ESA Euclid space mission (Massey et al. 2013) and are given as

mtarget = 2 × 10−3 and ctarget = 2 × 10−4. The constant η normalizes the metric such

that a value of Q ≈ 1000 is expected for estimates of the shear which achieve the

target values of m and c. The term σ2
min corresponds to the typical dispersion of the

biases due to pixel noise and is determined using trial submissions to the GREAT3

challenge. For the challenge, the values adopted for the cgc branch were η = 1.232

and σ2
min = 4. We estimated the Q-values for our methods using the publicly available

GREAT3 metric evaluation script1. This script also provides the estimates of mk and

ck used to calculate the Q-value and their corresponding error bars.

In the discussion that follows, we include the highest Q-value entry to the cgc

branch of the GREAT3 challenge2 from IM3SHAPE - for a comparison of the per-

formance of the angle-only method with the challenge submission of a model-based

method. This entry implements a multiplicative calibration factor to correct for noise

biases expected to arise in Maximum-Likelihood shape estimation. Additive biases

are expected in the presence of anisotropic PSFs. However, no calibration for this

bias is included. We also include the highest entry submitted to the challenge using

the KSB method - for a comparison with a moments-based method. The details of

the submissions using IM3SHAPE and the KSB method are presented in Mandelbaum

et al. (2014a). For the angle-only analyses, the results presented made use of a single

iteration of the procedure discussed in Section 4.3.

Figure 4.6 shows the difference between the recovered angle-only shear estimates

and the input shear when using the integrated light and moments-based methods to

measure the position angles. These plots display the estimates for the components of

the shear in a reference frame aligned with the simulated images. It should be empha-

1https://github.com/barnabytprowe/great3-public/wiki/
Metric-evaluation-scripts-and-truth-data

2http://great3.jb.man.ac.uk/leaderboard/board/post\_challenge/24
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Figure 4.6: The top panels show the difference between the recovered and input shear values
for each of the 200 fields of the cgc branch plotted against the input shear values and using
the integrated light method to measure the position angles of the galaxies. The bottom panels
show the same when using the moments-based method to measure the position angles. In all
cases, the black line is the line of zero difference and the red-dashed line is the line of best fit
for the data.
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Figure 4.7: The top panels show the difference between the recovered and input shear values
for each of the 200 fields of the cgc branch plotted against the input shear values and using
IM3SHAPE to measure the position angles of the galaxies. The bottom panels show the same
when using the full ellipticity information from IM3SHAPE but with no additional calibration
scheme. In all cases, the black line is the line of zero difference and the red-dashed line is the
line of best fit for the data.
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sized that this is not the reference frame used to measure the Q-value, which employs

a coordinate system that is aligned with the PSF for that field as described above. The

error bars have been estimated using a linear approximation of the F1 (|g|) function

as discussed in Appendix E. Figure 4.7 shows the results of IM3SHAPE using both

the angle-only method and full ellipticity information - where no further calibration

scheme is implemented. We see that the errors are reduced for the angle-only method

when using the ellipticities from IM3SHAPE to measure the position angles as com-

pared with the integrated light and moments-based methods. This reduction is due to

the correction for the PSF when measuring the ellipticities which increases the uni-

formity of the weighting function and reduces the errors on the angle measurements.

Hence, the value of
∑N

i=1w
2
i is lower, and the multiplicative bias for the zeroth-order

estimate is smaller (or equivalently, the βwc term as defined in Appendix E is larger)

reducing the errors on the shear estimates in accordance with equations (E.4) and (E.6).

For all methods using the angle-only estimator, a residual bias is expected when us-

ing a finite number of iterations (for these tests we use a single iteration), as shown

in equation (4.17). However, the limiting factor in this method is expected to be the

accuracy with which we can simulate the galaxies in the branch.

The scatter on the shear estimates recovered using full ellipticity information is

smaller than when using the integrated light and moments-based methods. This is

partly due to form of the F1 (|g|) function, as discussed in C3. However, there is

also an increase in the errors due to the iterative procedure employed to remove the

biases in the angle-only method; this is quantified in equation (E.6). The dispersion

in the estimates is reduced when using only the position angle measurements from

IM3SHAPE as compared with the full ellipticity information. This is likely due to

there being no additional calibration scheme used in the full ellipticity analysis.

The results of our analyses of the cgc branch are presented in Table 4.1. The error

bars on each Q-value were determined by assuming that the estimates of mk and ck are

the true values. We used simulations to confirm that the errors on the mk and ck esti-

mates are approximately Gaussian. We then simulated a suite of 5× 105 uncorrelated
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Method Q m+ (×10−3) m× (×10−3) c+ (×10−4) c× (×10−4)

Int. light 324+115
−110 −11.26± 8.25 −7.34± 6.22 −4.03± 2.08 4.34± 1.58

Moments 403+104
−101 2.44± 7.96 9.38± 4.83 5.32± 2.01 3.32± 1.23

IM3SHAPE: Angle-only 371+96
−98 6.80± 3.88 10.35± 4.05 1.89± 0.98 1.78± 1.03

IM3SHAPE: Full ellip. 117+13
−13 29.47± 5.18 27.35± 4.31 −11.33± 1.31 0.36± 1.10

IM3SHAPE: Highest entry 416+49
−50 0.00± 5.00 −2.09± 4.14 −11.0± 1.26 0.44± 1.05

KSB: Highest entry 122+18
−19 22.7± 7.3 32.5± 5.9 6.19± 1.85 −1.07± 1.51

Table 4.1: The results of the analyses we have performed on the GREAT3 cgc branch. The
first column shows the Q-values achieved for each method. The next two columns are the
multiplicative biases estimated for each method. The final two columns show the estimated
additive biases.

Figure 4.8: The multiplicative and additive biases for each test on the cgc branch. The grey
region indicates the target bias values for future precision cosmic shear experiments, which are
based on the target values evaluated for the Euclid space mission (Massey et al. 2013).

Gaussian random variables distributed about each of the estimated bias parameters

with the dispersions provided by the metric evaluation script. These simulated bias

parameters were used to calculate the 5 × 105 corresponding Q-values using the least

squares method, and then a histogram of these values was constructed. The error bars

were calculated as the 68.3% confidence regions of the simulated Q-values distributed

about the mean recovered value.
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From Table 4.1 we see that the Q-values for the three angle-only analyses are com-

petitive with the highest entry submitted using IM3SHAPE to within one standard

deviation. The Q-values achieved in all of the analyses performed with the angle-only

approach are greater than the highest entry submitted using the KSB method. Figure

4.8 displays the values of mk and ck calculated using the GREAT3 metric evaluation

script. The plus subscript corresponds to the direction parallel with the PSF and the

cross subscript to the direction perpendicular to the PSF. We see that the multiplicative

biases of the integrated light and moments-based angle-only methods lie within two

standard deviations of the target values identified for future “Stage IV” weak lensing

experiments aimed at precision dark energy constraints. There appears to be a greater

residual additive bias when using these methods to measure the position angles than

when using the angles recovered by IM3SHAPE. This is likely to be due to there be-

ing no correction for the PSF during the angle measurement stage, and hence there

is a larger additive bias for the zeroth-order shear estimate. Assuming that this is the

case, the bias should decrease as the number of iterations is increased, as indicated

by equation (4.17), until the threshold enforced by the accuracy of the simulations is

reached. The angle-only method using IM3SHAPE exhibits a reduction in the multi-

plicative bias as compared with that of the naive full ellipticity approach, and we also

see a reduction in the component of the additive bias which aligns with the PSF.

4.5 Discussion

We have demonstrated an algorithm for applying the angle-only weak lensing estimator

of C3 to realistic galaxy images. We find that the performance of this technique is com-

petitive with state-of-the-art shape measurement techniques. To measure the position

angles of the galaxies, we considered three separate approaches: the integrated light

method, a moments-based method, and using ellipticities measured by IM3SHAPE.

All three methods yield Q-values consistent with those of the highest IM3SHAPE sub-

mission and greater than the highest KSB submission.
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The angle-only estimator requires a measurement of the F1 (|g|) function. We have

shown that this function can be successfully recovered from deep field images using

IM3SHAPE. Constraints on the accuracy of the recovered F1 (|g|) function required

to provide reliable shear estimates are discussed in Section 3.4. When measuring the

ellipticities of the galaxies in the deep field images using IM3SHAPE, we necessar-

ily fit for the half-light radii and the bulge to total flux ratios of the galaxies. We

have introduced a method of using this information to construct accurate calibration

simulations. To do this, we modify the distributions of the fluxes and half-light radii

measured from the deep fields to match the distributions in the field being analysed

by simply summing over the pixel values in that field. This approach could be useful

for any analysis which requires calibration simulations. It is, as yet, unclear as to how

general the calibration methods developed in this chapter are with regards to how the

galaxies of a particular survey are selected. A detailed investigation of this issue is left

for future work. However, provided that one can construct accurate zero shear cali-

bration simulations, the multiplicative and additive biases present in the zeroth-order

shear estimates can be corrected for using the iterative approach.

The presence of an anisotropic PSF and pixelization bias position angle estimates.

We have employed a weighting scheme to reduce this effect. The weighting function is

estimated using calibration simulations which assume a zero input shear signal. Using

the iterative method employed for this chapter, we have argued that residual biases

in the shear estimates can be reduced below a threshold which is determined by the

accuracy of the calibration simulations. For a perfect suite of calibration simulations,

the multiplicative bias in the zeroth-order shear estimate is essentially due to noise

in the image, pixelization and the PSF. The magnitude of the multiplicative bias in

the zeroth-order shear estimate determines the rate of convergence for the estimator.

Therefore, correcting for the PSF prior to the zeroth-order estimate should increase the

rate of convergence. However, the effect of the PSF on a galaxy’s orientation is model

dependent and is therefore difficult to correct for when using an angle measurement

method which is independent of the ellipticity.
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The purpose of this chapter is to demonstrate the feasibility of performing an angle-

only shear analysis on realistic galaxy images. To demonstrate this, we have focused

on the simulated images of the cgc branch of the GREAT3 challenge. In future work,

we will look at how the angle-only method can be applied to fields with a variable

shear and a variable PSF. We also aim to reduce the dependence of the method on

simulations and develop a deeper understanding of the level at which the angle-only

method can complement ellipticity based methods and ultimately reduce systematics

in weak lensing surveys.
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Chapter 5

Separating weak lensing and intrinsic

alignments using radio observations

We discuss methods for performing weak lensing using radio observations to recover

information about the intrinsic structural properties of the source galaxies. Radio sur-

veys provide unique information that can benefit weak lensing studies, such as HI emis-

sion, which may be used to construct galaxy velocity maps, and polarized synchrotron

radiation; both of which provide information about the unlensed galaxy and can be

used to reduce galaxy shape noise and the contribution of intrinsic alignments. Using

a proxy for the intrinsic position angle of an observed galaxy, we develop techniques

for cleanly separating weak gravitational lensing signals from intrinsic alignment con-

tamination in forthcoming radio surveys. Random errors on the intrinsic orientation es-

timates introduce biases into the shear and intrinsic alignment estimates. However, we

show that these biases can be corrected for if the error distribution is accurately known.

We demonstrate our methods using simulations, where we reconstruct the shear and in-

trinsic alignment auto and cross-power spectra in three overlapping redshift bins. We

find that the intrinsic position angle information can be used to successfully reconstruct

both the lensing and intrinsic alignment power spectra with negligible residual bias.
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5.1 Introduction

The standard method for performing a cosmic shear measurement requires averaging

over the observed ellipticities of a sufficient number of background galaxies and as-

suming that the average ellipticity is the consequence of cosmic shear. This method

is built on the assumption that there is a zero intrinsic alignment (IA) of the source

galaxies. However, as galaxies evolve, tidal effects can radially align the galaxies with

the large scale structure. As explained in Section 2.7, the presence of IA has the effect

of producing a false shear signal and hence a bias in the standard method.

Most weak lensing surveys so far have been performed in the optical waveband,

but the SKA promises the possibility of performing surveys in the radio waveband

(Brown et al. 2015). Such a survey offers some unique advantages. Firstly, based

on an idea originally proposed by Blain (2002), Morales (2006) introduced a method

for performing weak lensing using resolved galaxy velocity maps. Radio HI emission

is the most promising part of the electromagnetic spectrum to construct the velocity

maps, due to the brightness of the emission lines and the well understood luminos-

ity characteristics. Gravitational lensing leads to a velocity map which is inconsistent

with the observed galaxy image, and Morales (2006) showed that this effect can be

used to recover estimates of the underlying shear signal. In principle, this method

removes the contribution of both galaxy shape noise and the effects of intrinsic align-

ments from weak lensing surveys. It does, however, require velocity maps from well

resolved galaxy images which reduces the number density of available galaxies in the

survey. However, using a toy model, Morales (2006) showed that this method may be

competitive in future radio surveys, such as with the SKA.

Secondly, Brown & Battye (2011b) (hereafter BB11) suggested a new technique

in radio weak lensing which would use the polarization information contained in the

radio emission of a source galaxy as a tracer for the intrinsic position angle (IPA) of

the galaxy. It had previously been shown (Dyer & Shaver 1992) that the net polar-

ization position angle (PPA) is unaffected by a gravitational lens. A gravitational lens
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maps individual photons from the source plane to the image plane; however, the po-

larizations of the photons are not changed. This implies that the integrated Stokes Q

and U , and hence the PPA, are also unaffected by lensing. For future deep radio sur-

veys, the population of observed galaxies is expected to be dominated by star forming

galaxies. The dominant source of radio emission from such a galaxy is expected to

be synchrotron radiation emitted as electrons are accelerated by the large scale mag-

netic fields within that galaxy. This emission gives rise to a PPA which, on average, is

anti-aligned with the plane of the galaxy (Stil et al. 2009), providing information about

the galaxy’s intrinsic orientation. It was shown that such information can be used to

construct a shear estimator which greatly reduces the biases resulting from intrinsic

alignments compared to the standard method and also reduces the errors on the shear

estimates. It was shown (Brown & Battye 2011a) that this new method can be used to

create foreground mass reconstructions with accuracies comparable with the standard

method, subject to specific assumptions on the size of the errors on the estimates of the

intrinsic orientations of the galaxies and the fraction of galaxies with reliable polariza-

tion information. In principle, the method can be applied to estimates of the IPA from

any source, and a similar analysis could also be applied to the technique described by

Morales (2006).

The method displays great promise. However, there is a small residual bias in the

estimator when there is both a non-zero error in the IPA estimates and a non zero IA

signal. In this chapter, we develop improved estimators which remove this bias. In

Section 5.2, we present an overview of the method proposed by BB11. We discuss

the noise properties of the method and the residual bias which is introduced in the

presence of both an IA signal and an error on the intrinsic position angle estimates. We

address this bias by introducing a correction term, which depends on the form of the

error distribution.

In Section 5.3, we extend the angle-only estimator, introduced in Chapter 3, to

include IPA information, and we also introduce a hybrid method that combines an

angle-only estimate of the intrinsic alignment with full ellipticity information. In Sec-
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tion 5.4, we test the methods using simulations by reconstructing the shear and IA auto

and cross-power spectra in three overlapping redshift bins. We conclude in Section

5.5.

Throughout the chapter we assume that we have reliable IPA information for every

galaxy for which we have reliable ellipticity or observed position angle measurements.

For a real radio survey, this would not be the case. However, the purpose of this chapter

is to demonstrate the potential of the methods presented provided that we have a suffi-

cient number of galaxies to recover a reliable shear estimate. A detailed discussion of

the fraction of galaxies expected to have reliable polarization information can be found

in BB11.

5.2 Methods and techniques

Working well within the weak lensing regime, we can express the observed elliptic-

ity of a galaxy, εobs, as the sum of the intrinsic ellipticity, εint, the shear, γ, and a

measurement error, δε, such that

εobs = εint + γ + δε. (5.1)

Considering a small region of the sky, or a cell, such that the shear can be considered

constant within that cell, and assuming that the mean intrinsic ellipticity of the galaxies

in that particular cell is zero, we can recover an unbiased estimate of the shear by

averaging over the observed galaxy ellipticities:

γ̂ =
1

N

N∑
i=1

εobs
i . (5.2)

If the unlensed galaxies within a particular region of sky are randomly orientated,

then the average intrinsic ellipticity is zero. However, there is theoretical motivation

(Catelan et al. 2001; Crittenden et al. 2001; Jing 2002; Mackey et al. 2002; Hirata
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& Seljak 2004) and observational evidence (Brown et al. 2002; Heymans et al. 2004;

Mandelbaum et al. 2006, 2011; Hirata et al. 2007; Brainerd et al. 2009) indicating that

during galaxy formation, correlations between the intrinsic position angles of galaxies,

αint, may arise if those galaxies share an evolutionary history. This is the source of the

IA signal. If we now assume that the mean intrinsic ellipticity (or, equivalently, that

the IA signal) is non-zero, then the standard estimator of equation (5.2) is biased, such

that

〈γ̂ − γ〉 =
〈
εint
〉
. (5.3)

If we assume that the intrinsic ellipticity of a single galaxy can be expressed as the sum

of the intrinsic alignment signal, γIA, and a randomly orientated ellipticity, εran, then

εint = γIA + εran, (5.4)

and the bias in the standard estimator becomes

〈γ̂ − γ〉 = γIA. (5.5)

Hence, an estimate of the shear recovered using the standard method yields a result

which is biased by the IA signal.

5.2.1 The Brown & Battye (BB) estimator

In order to mitigate the effects of the bias introduced by IA, BB11 proposed using

polarization information from radio surveys to recover an estimate of the IPA, α̂int. It

was found that, for the ideal case where there is a zero error on the IPA measurement

and where the PPA is an exact tracer of αint, the shear can be recovered exactly using

only two source galaxies.

Expressing the intrinsic ellipticity in polar coordinates, the components of the ob-
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served ellipticity can be written as

εobs
1 =

∣∣εint
∣∣ cos

(
2αint

)
+ γ1 + δε1,

εobs
2 =

∣∣εint
∣∣ sin (2αint

)
+ γ2 + δε2. (5.6)

If we define the pseudo-vector

n̂i =

 sin
(
2α̂int

i

)
− cos

(
2α̂int

i

)
 , (5.7)

where α̂int is an estimate of the intrinsic position angle provided by a measurement of

the IPA, a new estimator for the shear can be derived, such that

γ̂ = A−1b, (5.8)

where A is a 2× 2 matrix and b is a two-component vector

A =
N∑
i=1

win̂in̂
T
i , (5.9)

b =
N∑
i=1

wi
(
εobs
i · n̂i

)
n̂i, (5.10)

and wi is a normalized arbitrary weight assigned to each galaxy. The form of this

estimator is independent of the intrinsic ellipticity distribution.

In the presence of a non-zero IA signal and a non-zero error on the estimate of

αint, it is found that the estimator given in equation (5.8) is biased, although this bias

is suppressed significantly with respect to that of the standard estimator. If we assume

that the components of the intrinsic ellipticity are isotropically distributed about the IA

vector, γIA, and use a uniform weighting, such that wi = 1, it is possible to gain some

insight into the nature of this bias. If we make the further assumptions that N � 1

and the IA signal is much smaller than the spread in intrinsic ellipticities, σε, that is if
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|γ|IA � σε, we can approximate A to leading order in γIA as

A ≈ N

2
I, (5.11)

and hence the estimator can then be approximated as

γ̂ ≈ 2

N
b. (5.12)

The noise properties inherent in using measurements of the PPA as a tracer of αint are

discussed in BB11. For this discussion, we assume that the measurement error, δαint,

is independent of the true IPA and distributed symmetrically about zero. If we then

make the substitution α̂int = αint + δαint, we can write the expectation value of the

trigonometric functions of the IPA as

〈
cos
(
2α̂int

)〉
=
〈
cos
(
2αint

)〉
βint

2 ,〈
sin
(
2α̂int

)〉
=
〈
sin
(
2αint

)〉
βint

2 , (5.13)

where, in analogy to equation (3.28),

βint
n ≡

〈
cos
(
nδαint

)〉
, (5.14)

which is the mean cosine of the distribution of δαint, and where n is an integer. For a

Gaussian measurement error, this can be simplified to

βint
n = exp

(
−n

2

2
σ2
αint

)
, (5.15)

where σαint is the standard deviation of the measurement error and is expressed in

radians. Taking the limit N → ∞ and using the result of equation (5.13), it can be

shown that equation (5.12) may be expanded to first order in the shear and IA, such
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Figure 5.1: The residual bias in the BB estimator from 104 realizations, with 104 galaxies
in each realization. For each realization γ1, γ2 and γIA

2 are selected randomly with a range
[−0.1, 0.1]. The left panel shows the bias in the BB estimator as a function of σαint with
γIA

1 = 0.05. The right panel shows the bias as a function of γIA
1 with σint = 15◦. In both

cases, the red curve is the linear approximation of the bias, given in equation (5.16).

that the bias in the estimator is

〈γ̂ − γ〉 ≈
(
1− βint

2

)
γIA. (5.16)

The bias in the BB estimator is therefore independent of f (|εran|) to first order in γIA.

For σαint � 1, one finds that 〈γ̂ − γ〉 ≈ 2σ2
αintγIA, and therefore we see that the bias

is suppressed by a factor of 2σ2
αint relative to the standard estimator. The bias in the

BB estimator is illustrated in Figure 5.1, where we assume a Gaussian measurement

error on the estimate of αint and a Rayleigh distribution for the intrinsic ellipticity

distribution (which we define as the distribution of |εran|), such that

f (|εran|) =
|εran|

σ2
ε

(
1− exp

(
− |εranmax|

2

2σ2
ε

)) exp

(
−|ε

ran|2

2σ2
ε

)
, (5.17)

where |εran
max| is the maximum allowed value of the modulus of εran; for all of the
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simulations in this chapter we have assumed a Rayleigh distribution for |εran| with

values of |εran
max| = 1 and σε = 0.3/

√
2. From Figure 5.1, we see that the estimator

successfully reduces the bias introduced by the IA. There is, however, a residual bias

introduced when both the measurement error on αint and the IA signal are non-zero.

In the limit
∣∣γIA

∣∣� σε the standard error for the shear estimator can be written as

σγ̂ ≈

[
2σ2

ε

(
1− βint

4

)
+ 2σ2

N

] 1
2

, (5.18)

where σ is the measurement error on the components of εobs. Assuming this error to

be zero and assuming σαint � 1, the error can be approximated as

σγ̂ ≈
4σαintσε√

N
, (5.19)

and hence we see that σγ̂ is suppressed by a factor of 4σαint relative to the standard

estimator, in agreement with the findings of BB11.

Given an estimate of the shear and assuming that the effects of the intrinsic elliptic-

ity can be modelled using equation (5.4), an estimate of the IA signal can be recovered

trivially, such that

γ̂IA =

(
1

N

N∑
i=1

εobs
i

)
− γ̂. (5.20)

The bias in the estimate of the IA signal arises from the bias in the shear estimator and

hence to first order, has the same magnitude as the bias given in equation (5.16), but

with the opposite sign.

To first order in the shear and intrinsic alignment, the error on the IA estimator is

due to the random shape noise,

σγ̂IA =
σε√
N
. (5.21)

From equation (5.21) we see that the error on the IA estimator is independent of the

error on αint and therefore there is no suppression of this error by σαint .

Battye & Browne (2009) investigated the difference between the structural position
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angles of galaxies measured in the optical with those measured for the same galaxies

in the radio. They found an agreement between the two position angles compatible

with a dispersion of approximately 15◦. For radio and optical surveys which overlap,

this agreement between the optical and radio position angles implies that, if one mea-

sures the shape of a galaxy in the optical, one may combine this measurement with an

estimate of αint recovered from the radio; albeit at the cost of an addition contribution

to the error on αint from the astrophysical dispersion between the optical and radio

structural position angles.

5.2.2 The corrected BB (CBB) estimator

It is possible to construct an unbiased shear estimator in the limitN →∞ by following

the approach outlined in BB11. This corrected form of the BB estimator (hereafter the

CBB estimator) can be written as

γ̂ = D−1h, (5.22)

where D is a 2× 2 matrix

D =
N∑
i=1

Mi, (5.23)

and where h is a 2-component vector

h =
N∑
i=1

Miε
obs
i . (5.24)

In Appendix F, it is shown that the matrix Mi is given by

Mi =

 βint
4 − cos

(
4α̂int

i

)
− sin

(
4α̂int

i

)
− sin

(
4α̂int

i

)
βint

4 + cos
(
4α̂int

i

)
 , (5.25)

where the term βint
4 is defined in equation (5.14) and corrects for the bias on the trigono-

metric functions introduced by a measurement error on αint. As with the BB estimator,
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Estimator (×10−2) σγ̂1 σγ̂2 〈γ̂1〉 〈γ̂2〉 σγ̂IA
1

σγ̂IA
2

〈
γ̂IA

1

〉 〈
γ̂IA

2

〉
Original BB 1.40 1.40 −2.79± 0.01 3.58± 0.01 2.13 2.12 0.71± 0.02 −1.55± 0.02

Corrected BB 1.71 1.70 −3.00± 0.02 4.02± 0.02 2.75 2.73 0.92± 0.03 −1.99± 0.03

Table 5.1: The mean and standard deviation of the shear and IA estimates recovered from
104 simulations. Values are quoted for both the original BB estimator (equations (5.8) and
(5.20)) and the CBB estimator (equations (5.20)) and (5.22). The input shear and IA values are
γ1 = −0.03, γ2 = 0.04, γIA

1 = 0.01 and γIA
2 = −0.02.

the form of the CBB estimator is independent of f (|εran|). Hence, the CBB estima-

tor will be unbiased for any distribution of εran. Once one has an estimate of γ, an

estimate of the IA can be recovered using equation (5.20).

We have tested the performance of the CBB estimator using simulations composed

of 100 galaxies and assuming an input shear signal of γ1 = −0.03 and γ2 = 0.04, and

an input IA signal of γIA
1 = 0.01 and γIA

2 = −0.02. It should be noted that this intrinsic

alignment signal is larger than one would expect in a real survey. By measuring shape

correlations in the blue galaxies of the SDSS and the WiggleZ Dark Energy Survey,

Mandelbaum et al. (2011) measured the amplitude of the projected intrinsic alignment

auto-correlation function and found it to be consistent with zero in all cases. A similar

analysis was carried out by Joachimi et al. (2011) for the MegaZ-LRG sample, with

the results again consistent with zero. More recently, Sifón et al. (2015) measured

the intrinsic alignment signal of satellite galaxies in two large non-overlapping X-ray

selected cluster surveys carried out with the Canada-France-Hawaii Telescope (CFHT)

and the Multi-Epoch Nearby Cluster Survey (MENeaCS). They constrained the radial

alignment signal of satellite galaxies within r200 to be
〈
εobs+

〉
= −0.0037 ± 0.0027.

Singh et al. (2015) measured the intrinsic alignment signal of SDSS-III BOSS low-

redshift (0.16 < z < 0.36) galaxies on scales of 0.1 − 200h−1 Mpc . They measured

the radial alignment of satellite galaxies within a projected radius of 1h−1 Mpc to be〈
εobs+

〉
= 0.005± 0.001.

We recovered shear and IA estimates from 104 realizations using the original form

of the BB estimator (equations (5.8) and (5.20)) and the CBB estimator (equations

(5.20) and (5.22)). Note that the exact numbers of galaxies and realizations used in
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Figure 5.2: The recovered shear and IA estimates from 104 realizations, with each realization
consisting of 100 galaxies and assuming a measurement error on the IPA of σαint = 10◦. The
black curves show the distributions of recovered shear and IA estimates when using the CBB
estimator (equations (5.20) and (5.22)), and the vertical black lines show the mean recovered
shear estimates when using this estimator. The red curves show the distributions of recovered
shear estimates when using the original BB estimator (equations (5.8) and (5.20)), and the
vertical red line shows the mean recovered shear estimates when using this estimator. The
green-dashed lines, which lie on top of the black lines, show the input shear signal. The success
of the correction to the original BB estimator is clearly visible in these plots. There is, however,
a modest increase (∼20%) in the dispersion of the shear estimates and a ∼30% increase in the
dispersion of the IA estimates when using the corrected form of the estimator with this set of
input values; this is quantified in Table 5.1.
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Figure 5.3: Same as for Figure 5.1 but for the CBB shear estimator. We see a residual bias
which is a result of the finite number of source galaxies. However, this residual bias is much
smaller than the residual bias in the original BB estimator, shown in Figure 5.1.

the simulations are not crucial and were chosen to reduce the numerical uncertain-

ties on the derived biases and errors on the estimates whilst maintaining a reasonable

computation time. We assumed a zero error on measurements of εobs and a Gaussian

measurement error with r.m.s. 10◦ on αint. The results of this test are shown in Figure

5.2. Table 5.1 presents the mean recovered shear and IA estimates and the standard

deviation of the estimates.

Figure 5.3 shows the residual bias in the CBB estimator. The bias correction term,

βint
4 , corrects for the bias introduced to the mean trigonometric functions in the BB

estimator when there is an error on the estimates of αint. However, for a finite number

of source galaxies, there will also be noise in the estimates of the mean trigonometric

functions (which enters into the CBB estimator via the inverse of matrix D). This noise

propagates nonlinearly into estimates of the shear resulting in a residual bias which is

not corrected for. In the tests we have conducted, we find that this residual bias is

always much smaller than the dispersion in the shear estimates and contributes to a

negligible residual bias in the power spectra reconstructions discussed in Section 5.4.
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In order to estimate the dispersion in the shear and IA estimates, we can write an

approximate form of the CBB estimator. To leading order in γ and γIA, the CBB

estimator can be written as

γ̂1 =
1

Nβint
4

N∑
i=1

[
βint

4 ε
obs,(i)
1 − εobs,(i)

1 cos
(
4α̂int

i

)
− εobs,(i)

2 sin
(
4α̂int

i

)]
,

γ̂2 =
1

Nβint
4

N∑
i=1

[
βint

4 ε
obs,(i)
2 − εobs,(i)

1 sin
(
4α̂int

i

)
+ ε

obs,(i)
2 cos

(
4α̂int

i

)]
,

γ̂IA
1 =

1

Nβint
4

N∑
i=1

[
ε

obs,(i)
1 cos

(
4α̂int

i

)
+ ε

obs,(i)
2 sin

(
4α̂int

i

)]
,

γ̂IA
2 =

1

Nβint
4

N∑
i=1

[
ε

obs,(i)
1 sin

(
4α̂int

i

)
− εobs,(i)

2 cos
(
4α̂int

i

)]
. (5.26)

The error on the CBB estimator can then be approximated as

σγ̂1 =σγ̂2 =

σ2
ε

(
1− βint2

4

)
+ σ2

(
1 + βint2

4

)
Nβint2

4


1
2

,

σγ̂IA
1

=σγ̂IA
2

=

[
σ2
ε + σ2

Nβint2
4

] 1
2

. (5.27)

There is a contribution to the errors on the CBB estimator from intrinsic shape noise

through the term σε. As with the BB estimator (equation (5.18)), the contribution of

shape noise to the shear estimates is suppressed by a factor which depends upon βint
4 .

Using equation (5.27) with the input values used to produce Figure 5.2, we recov-

ered approximate values for the dispersion in the estimators of σγ̂1 = σγ̂2 = 1.68×10−2

and σγ̂IA
1

= σγ̂IA
2

= 2.71× 10−2, which are in good agreement with the measured val-

ues quoted in Table 5.1. For completeness, we also used equations (5.18) and (5.21)

to recover approximate values for the dispersion in the original BB estimator. These
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values were σγ̂1 = σγ̂2 = 1.40× 10−2 and σγ̂IA
1

= σγ̂IA
2

= 2.12× 10−2, which are also

in agreement with the values in quoted Table 5.1.

5.2.3 Required galaxy numbers for the CBB estimator

The CBB estimator becomes unstable when there is a low number of background

galaxies available in a particular cell. To gain some insight into the source of this issue,

we can examine the behaviour of the determinant of matrix D when a low number of

galaxies is considered. The determinant of matrix D is

det (D) =βint2

4 −

[
1

N

N∑
i=1

cos
(
4α̂i

int
)]2

−

[
1

N

N∑
i=1

sin
(
4α̂i

int
)]2

. (5.28)

As the measurement error on αint is increased, the bias correction, βint
4 , decreases. For

a finite number of background galaxies, chance alignments of the random components

of the intrinsic galaxy orientations can force this determinant to approach zero, with

the effect being more likely when the number of galaxies in a cell is low. This in turn

can produce substantial outliers in the estimated shear values as the modulus of a par-

ticular shear estimate is scaled with the reciprocal of the determinant. It is possible to

place constraints on the number of background galaxies required for a reliable shear

estimate by assuming that there are enough galaxies in the sample such that the cen-

tral limit theorem can be applied to the distributions of the means of the trigonometric

functions in equation (5.28). We can use this assumption to examine the probability

that the sum of the square of the mean trigonometric functions in equation (5.28) will

lie within a given range of βint2

4 . The determinant is independent of the shear and is

only dependent on the IA signal at 4th order, so we can safely assume the IA signal

to be zero. With these assumptions in place, we choose to constrain the number of

galaxies such that we can exclude values of the reciprocal > 2/βint2

4 at a confidence
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Figure 5.4: The number of galaxies in the sample as a function of the error on αint such that
the reciprocal of the determinant < 2/βint2

4 with a confidence level of 5σ.

level of 99.99994%, which is equivalent to a confidence level of 5σ for the Gaussian

distribution. The choice of 5σ is selected to mitigate the issue of outliers when consid-

ering the simulations in Section 5.4, where we reconstruct the shear and IA auto and

cross-power spectra using ∼106 cells per redshift bin and therefore expect typically

one cell per reconstruction to have a reciprocal value > 2/βint2

4 . The constraint on the

values of the reciprocal > 2/βint2

4 is somewhat arbitrary but serves to provide an upper

limit on the dispersion of the shear estimates.

This choice of constraint parameters results in Figure 5.4, where we plot the num-

ber of galaxies required in the sample as a function of σαint . As an example, let us

assume a measurement error on αint of 10◦. Then, from Figure 5.4, we find that we

need ∼46 galaxies in each cell so that values of the reciprocal of the determinant

> 2/βint2

4 are ruled out at a confidence level of 5σ. For Figure 5.2, we considered 100

galaxies per realization, and hence outliers were not an issue for these tests. The num-

ber density of background galaxies will be fixed for any specific set of observations.

However, for a fixed number density of galaxies, the size of the cells may be chosen

so that the number of source galaxies within each cell is greater or equal to the number

154 New Approaches to Weak Gravitational Lensing



5.3: ALTERNATIVE APPROACHES

of galaxies required to recover a reliable shear estimate. For a low number density of

background galaxies, this will of course result in a large cell size and hence the loss of

small scale information.

5.3 Alternative approaches

5.3.1 Full angle-only estimator (FAO)

In this section, we extend the angle-only shear estimator, introduced in Chapter 3, to

include measurements of the IPA. Assuming a prior knowledge of the intrinsic ellip-

ticity distribution, we showed that it is possible to recover an estimate of the shear

using only measurements of galaxy position angles. Using measurements of the IPA,

as opposed to the observed position angles, this method can be used to recover a direct

estimate of the IA signal.

We begin by writing the IA in polar form, such that

γIA
1 =

∣∣γIA
∣∣ cos

(
2αIA

)
,

γIA
2 =

∣∣γIA
∣∣ sin (2αIA

)
. (5.29)

Following the approach outlined in Chapter 3, we can estimate αIA as

α̂IA =
1

2
tan−1

(∑N
i=1 sin

(
2α̂int

i

)∑N
i=1 cos (2α̂int

i )

)
. (5.30)

We can also recover an estimate of
∣∣γIA

∣∣, which satisfies the equation

F1

(∣∣γ̂IA
∣∣) =

1

Nβint
2

√√√√( N∑
i=1

cos (2α̂int
i )

)2

+

(
N∑
i=1

sin (2α̂int
i )

)2

, (5.31)

where the correction term βint
2 follows the definition given in equation (5.14). The

form of the F1

(∣∣γIA
∣∣) function is given in Appendix G.
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If we express the observed ellipticity in polar coordinates,

εobs
1 =

∣∣εobs
∣∣ cos

(
2αobs

)
,

εobs
2 =

∣∣εobs
∣∣ sin (2αobs

)
, (5.32)

we can follow the approach of Chapter 3 to recover estimates of the vector γ + γIA

from the observed galaxy orientations.

Let us define the vector γtot as

γ1 + γIA
1 =

∣∣γtot
∣∣ cos

(
2αtot

)
,

γ2 + γIA
2 =

∣∣γtot
∣∣ sin (2αtot

)
. (5.33)

Assuming that we are working well within the weak lensing regime, with εobs de-

scribed using equation (5.1), we can recover an estimate of αtot as

α̂tot =
1

2
tan−1

(∑N
i=1 sin

(
2α̂obs

i

)∑N
i=1 cos

(
2α̂obs

i

)) , (5.34)

and an estimate of |γtot| which satisfies the equation

F1

(∣∣γ̂tot
∣∣) =

1

Nβobs
2

√√√√( N∑
i=1

cos
(
2α̂obs

i

))2

+

(
N∑
i=1

sin
(
2α̂obs

i

))2

, (5.35)

and which provides us with an estimate of the vector γtot using measurements of the

observed position angles, α̂obs
i , only. A detailed discussion on the form of equation

(5.35) is given in Appendix G. The correction term βobs
2 follows the definition given in

equation (G.10).

Once we have recovered estimates of γIA and γtot, an estimate of the shear can be

recovered trivially, such that

γ̂ = γ̂tot − γ̂IA. (5.36)
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Estimator (×10−2) σγ̂1 σγ̂2 〈γ̂1〉 〈γ̂2〉 σγ̂IA
1

σγ̂IA
2

〈
γ̂IA

1

〉 〈
γ̂IA

2

〉
Full angle-only 1.02 1.07 −3.02± 0.01 4.02± 0.01 2.56 2.57 0.99± 0.03 −1.99± 0.03

Hybrid 1.42 1.42 −3.00± 0.01 4.01± 0.01 2.56 2.57 0.99± 0.03 −1.99± 0.03

Table 5.2: The mean and standard deviation of the shear and IA estimates recovered from 104

simulations. Values are quoted for both the full angle-only estimator (equations (5.30) and
(5.31), and equations (5.34) - (5.36)) and the hybrid estimator (equations (5.30) and (5.31), and
equation (5.41)). The input shear and IA values are γ1 = −0.03, γ2 = 0.04, γIA

1 = 0.01 and
γIA

2 = −0.02.

To summarize, the full angle-only estimator (hereafter the FAO estimator) first requires

an estimate of the intrinsic ellipticity distribution, f (|εran|). We can use this informa-

tion with measurements of the IPA only to recover an estimate of γIA via equations

(5.30) and (5.31). An estimate of the vector γ + γIA can also be obtained using the

same method via equations (5.34) and (5.35). Finally, we use equation (5.36) to re-

cover an estimate of γ.

Assuming the same input values as used in Figure 5.2, we recovered shear and

IA estimates from 104 realizations using the FAO estimator. The error on αint was

assumed to be 10◦ and the error on αobs was assumed to be zero to allow for a direct

comparison of the performance of this estimator with the CBB estimator, where we

assumed zero errors on the ellipticity measurements (εobs). The results of this test

are shown in Figure 5.5. Note that the reduction in the dispersion of the shear and

IA estimates is a result of the fact that we have assumed a perfect knowledge of the

intrinsic ellipticity distribution. Errors on the prior knowledge of the intrinsic ellipticity

distribution introduce multiplicative biases to the estimates of the shear and IA. This

issue is addressed in Section 3.4, where constraints are placed on the size of the errors

on the measurements of the ellipticities and the size of the sample used to estimate

the intrinsic ellipticity distribution such that this multiplicative bias is below a desired

threshold value. Table 5.2 shows the mean recovered shear and IA estimates and the

standard deviation of the estimates.

A linear form of the estimator can be obtained by following the approach outlined

Lee Robert Whittaker 157



5: SEPARATING WEAK LENSING AND INTRINSIC ALIGNMENTS USING RADIO
OBSERVATIONS

Figure 5.5: The recovered shear and IA estimates from 104 realizations, with each realization
consisting of 100 galaxies and assuming a measurement error on αint of σαint = 10◦. The
black curves show the distributions of recovered shear and IA estimates when using the FAO
estimator. The vertical black lines show the mean recovered estimates using this method. The
red curves show the distributed shear estimates when using the hybrid method, with the IA
estimates identical for both methods. The vertical red lines show the mean recovered estimates
using this method. The dashed green lines show the input signal. Here we see that both methods
have successfully recovered shear and IA estimates with negligible bias. The dispersion in the
FAO shear estimates is ∼40% lower than those recovered using the CBB estimator, and the
dispersion in the IA estimates is ∼6% lower for this set of input values. The dispersion in
the hybrid shear estimates is ∼15% lower than those recovered using the CBB estimator. The
results are quantified in Table 5.2.
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in Chapter 3. Assuming that the F1 (|γ|) function can be approximated as

F1 (|γ|) ≈ u |γ| , (5.37)

for a general intrinsic ellipticity distribution we can find the coefficient u numerically.

However, assuming a Rayleigh distribution for |εran| and assuming that σε is small

enough for us to safely allow the limit in the integral,
∣∣εint

max

∣∣, to tend to infinity, it is

possible to obtain u analytically. This is found to be

u =

(
π

8σ2
ε

) 1
2

. (5.38)

The linear approximation of the FAO estimator can then be written as
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. (5.39)

From here, it is possible to recover an approximation for the dispersion in the estimator,

given by
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1

u
√
N
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1

2βobs2

2

+
1

2βint2
2

− 2
〈
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(
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)
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,
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1
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. (5.40)
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The dispersion in the shear estimates depends on the correlations between the cosines

and sines of the true observed and intrinsic position angles. These in turn depend upon

the intrinsic ellipticity distribution, the IA and the shear. In the absence of a shear

signal, these correlation terms will, to first order in the IA signal, equal 1/2. If we

also neglect measurement errors, such that βobs
2 = βint

2 = 1, then the dispersion in

the shear estimates becomes zero. However, the presence of a non-zero shear signal

reduces the correlation between the trigonometric functions and an error is introduced

to the estimates. Hence, in the absence of measurement errors on the position angle

measurements, the leading order term in the dispersion is dependent on the true shear.

Measurement errors on the position angles also increase the dispersion in the estimates,

as expected. Using the input values assumed in Figure 5.5 with equation (5.40), we

recovered approximations for the errors on the shear and IA estimates by calculating

the correlation terms numerically. The errors were found to be σγ1 = 1.06 × 10−2,

σγ2 = 1.13× 10−2 and σγIA
1

= σγIA
2

= 2.54× 10−2, which are in good agreement with

the values quoted in Table 5.2.

Assuming that the shear signal is zero, we can also recover estimates of the disper-

sion in the shear estimates, which are σγ1 = 0.87×10−2 and σγ2 = 0.85×10−2. These

values are approximately 20% lower than the values quoted above where shear was

included. Hence, we can conclude that the dispersion in the shear estimates depends

strongly on the input shear signal even if measurement errors on the position angles are

included. This is an issue when trying to remove noise bias in power spectra estimates

and is discussed in more detail in Section 5.4. The dispersion in the IA estimates are

independent of the true IA signal to first order.

Figure 5.6 shows the residual bias in the FAO estimator. As with the CBB estima-

tor, it is expected that there will be some residual bias from the nonlinear propagation

of noise on the mean trigonometric functions into estimates of the shear. However, in

all of the tests conducted, this residual bias is found to be negligible.
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Figure 5.6: Same as for Figure 5.1 but for the FAO shear estimator. From this plot, we see that
any residual bias in the estimator can be considered negligible.

5.3.2 Hybrid method

In this subsection, we introduce a hybrid method combining the standard method,

which averages over galaxy ellipticity measurements, with the angle-only IA estimator.

Using a knowledge of the intrinsic ellipticity distribution, f (|εran|), with measure-

ments of the IPA only, we first recover an estimate of the IA signal via equations (5.30)

and (5.31). We can then combine this estimate of the IA signal with an estimate of the

vector γ+γIA provided by the mean of the observed ellipticities to recover an estimate

of the shear:

γ̂ =

(
1

N

N∑
i=1

εobs
i

)
− γ̂IA. (5.41)

Using the same set of realizations as used to test the FAO method in Figure 5.5

(black curves), we recovered shear estimates from 104 realizations using the hybrid

shear estimator (equation (5.41)). The error on αint (which can be estimated using a

measurement of the PPA) was assumed to be 10◦ and the error on εobs was assumed

to be zero. The results of this test are shown in Figure 5.5 as the red curves. It should

be noted that, since the same realizations have been used to test the hybrid and FAO
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methods, the IA estimates are identical. As for the FAO estimator discussed in Sub-

section 5.3.1, the reduction in the dispersion of the shear estimates as compared with

the CBB estimator is a result of assuming a prior knowledge of the intrinsic ellipticity

distribution when estimating the IA. Table 5.2 shows the mean recovered shear and IA

estimates and the standard deviation of the estimates.

Upon assuming a linear approximation of the F1

(∣∣γIA
∣∣) function using equation

(5.37), we can write a linear approximation of the hybrid shear estimator as

γ̂1 =
1

N

N∑
i=1

[
εobs

1,i −
cos
(
2α̂int

i

)
uβint

2

]
,

γ̂2 =
1

N

N∑
i=1

[
εobs

2,i −
sin
(
2α̂int

i

)
uβint

2

]
. (5.42)

From here, we can recover an approximation of the dispersion in the shear estimates:

σγ̂1 =
1√
N

[
σ2
ε +

1

2u2βint2
2

− 2

u

〈
εobs

1 cos
(
2αint

)〉] 1
2

,
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σ2
ε +

1

2u2βint2
2

− 2

u

〈
εobs

2 sin
(
2αint

)〉] 1
2

, (5.43)

which depends upon the correlations between the true total ellipticities and the true

intrinsic trigonometric functions. It can be shown that these correlation terms can be

written as

〈
εobs

1 cos
(
2αint

)〉
=
〈
εobs

2 sin
(
2αint

)〉
≈u′ +O

(
|γ|
∣∣γIA

∣∣)+O
(∣∣γIA

∣∣2) , (5.44)

where u′ is a zeroth order term, which is independent of the input shear and IA signals

but is dependent on the form of the intrinsic ellipticity distribution, f (|εran|). Hence,

to first order in the shear and IA, the correlation terms are constant, and therefore we
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can approximate the dispersion in the shear estimates to be

σγ̂1 ≈ σγ̂2 ≈
1√
N

[
σ2
ε +

1

2u2βint2
2

− 2u′

u

] 1
2

. (5.45)

For a Rayleigh distribution it is possible to recover the coefficient u′ analytically if we

adopt the same assumptions used to derive equation (5.38). This is found to be

u′ =

(
πσ2

ε

8

) 1
2

. (5.46)

Therefore, we can conclude that in the absence of shear and IA signals and assuming

zero measurement errors on the estimates of αint, there is a dispersion in the shear es-

timates which arises from random shape noise. With these assumptions, we found in

the previous subsection that the dispersion in the FAO shear estimator was zero. For

the case of the FAO estimator, a knowledge of the intrinsic ellipticity distribution is as-

sumed for the random component of both the observed and intrinsic ellipticities. This

allows us to recover estimates of the vectors
(
γ + γIA

)
and γ using only measure-

ments of α̂obs and α̂int. Using only measurements of the position angles eliminates the

contribution of random shape noise in the FAO shear estimates. However, the hybrid

estimator requires measurements of εobs which contributes random shape noise to the

estimates of the shear. This noise is, to first order, independent of both the shear and

IA signals.

Using equation (5.45) with the input values used in Figure 5.5, we recovered ap-

proximations for the dispersion in the shear estimates using the hybrid method. These

were found to be σγ̂1 = σγ̂2 = 1.40 × 10−2, which are in good agreement with the

values quoted in Table 5.2.

Figure 5.7 shows the residual bias in the hybrid estimator. Here we see a residual

bias which is a result of the nonlinear propagation of noise on the mean trigonometric

functions into estimates of the IA signal and hence into the shear estimates. However,

we find that this bias is much smaller than the dispersion in the estimates in all of
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Figure 5.7: Same as for Figure 5.1 but for the hybrid shear estimator. Here we see a small
residual bias due to the finite number of source galaxies. However, this bias is much smaller
than the bias in the original BB estimator (Figure 5.1).

the tests we have conducted and is negligible when we consider the power spectra

reconstructions in Section 5.4.

5.4 Tests on simulations

In this section, we test the three estimators described in the previous sections by re-

constructing the lensing and IA auto and cross-power spectra following the approach

described in BB11. All of the simulated fields are assumed to be pure Gaussian fields

and, as our aim is to demonstrate the power of the estimators to separate the shear and

IA signals given an unbiased estimate of the intrinsic position angle, we ignore the

effects of observational systematics.

In all simulations, we assume a ΛCDM background cosmology with the matter

density parameter Ωm = 0.262, the amplitude of density fluctuations σ8 = 0.798, the

Hubble constantH0 = 71.4 km s−1 Mpc−1, the baryon density parameter Ωb = 0.0443

and the scalar spectral index ns = 0.962.
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We simulate the weak lensing and IA fields in three different redshift bins and

include all of the possible cross-correlations between the fields in the different bins.

The selected bins are 0.00 < z1 < 1.40, 1.40 < z2 < 2.60 and z3 > 2.60, with

the bin limits selected such that each bin contains approximately the same number

density of sources. It should be noted that the binning of the galaxies by redshift is

no different than for other tomographic studies. Further details on how the binning of

sources impacts estimates of the power-spectra are given in BB11. We simulate the

IA signal using the modified non-linear alignment model introduced by Bridle & King

(2007), and we use a normalization for the IA power spectrum which is five times

the observed SuperCOSMOS level in order to make it easier to see the effects we are

dealing with. We assume a correlation coefficient of ρc = −0.2. A detailed discussion

of the simulated fields is given in BB11. Here we focus on the performance of the

estimators.

We construct our observed galaxy ellipticities (εobs) using the simulated IA and

shear fields with equations (5.1) and (5.4), where we assume that the measurement

errors on the ellipticities are zero and that the εran are drawn from an isotropic Gaussian

distribution, with a 1D dispersion of σε = 0.3/
√

2. The IPAs are calculated from the

εint as

αint =
1

2
tan−1

(
εint

2

εint
1

)
. (5.47)

Similarly, for the case of the FAO estimator, the observed position angles are calculated

using εobs.

In order to demonstrate the methods discussed, we assume that all of the galaxies

have sufficient information to measure the IPA. We assume a measurement error on the

αint (IPA) estimates with r.m.s. 10◦ and a negligible error on the ellipticity and αobs

measurements in order to make a fair comparison between the various methods.

To estimate the power spectra from the simulated observations, we pixelize the

sky into 3.4 × 3.4 arcmin2 cells and assume a background galaxy number density of

4 arcmin−2 for each redshift bin; this number density is chosen to avoid the issue dis-
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cussed at the end of Subsection 5.2.3, though we note that this may be achievable in

future deep surveys with the SKA. We then reconstruct shear and IA maps using each

of the estimators discussed in the previous sections.

We estimate the recovered power spectra from the reconstructed shear and IA maps

using the standard pseudo-Cl approach (Hivon et al. 2002; Brown et al. 2005; Brown

& Battye 2011b).

In the presence of noise in the shear and IA estimates, we can write the general

expectation value of the estimated pseudo-Cl power spectra, C̃XY
l , as

〈
C̃XY
l

〉
= CXsYs

l + CXnYn
l + CXsYn

l + CXnYs
l , (5.48)

where the postscripts X and Y denote the fields being correlated and where the sub-

scripts s and n respectively denote the signal and noise in that field. One can correct

for biases due to noise and correlations between the signal and noise such that an un-

biased estimate of the power spectra can be recovered using a suite of Monte-Carlo

simulations:

ĈXY
l = C̃XY

l −
〈
CXnYn
l

〉
mc
−
〈
CXsYn
l

〉
mc
−
〈
CXnYs
l

〉
mc
, (5.49)

where the angle brackets indicate the mean over the suite of Monte-Carlo simulations.

This is the form of the power spectra estimator used for the remainder of this chapter.

In the presence of model dependent noise and correlations between the signal and

noise, unbiased estimates of the power spectra are only achievable if the Monte-Carlo

simulations include the input power spectra. In a real analysis, this will obviously not

be possible. In order to address this issue, we adopt an iterative approach to estimating

the spectra. To begin with, we construct a suite of 200 Monte-Carlo simulations under

the assumption that the input shear and IA signals are zero. This provides us with

an initial estimate of the power spectra using equation (5.49). As we shall see, this

is sufficient when using the CBB and hybrid methods to recover the shear and IA
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estimates. However, it is insufficient when using the FAO estimator. It does, however,

provide us with initial estimates of the power spectra. These initial estimates can then

be used to construct a suite of improved Monte-Carlo simulations which can be used

to update our estimates of the power spectra.

Figure 5.8 shows the reconstructed shear and IA auto and cross-power spectra for

each of the three overlapping redshift bins recovered using the CBB estimator (black

points) and using a suite of 200 Monte-Carlo simulations under the assumption that

the input shear and IA signal are zero. The blue points show the reconstructed power

spectra using the original BB estimator to estimate the shear and IA. The red curves

show the input power spectra. From this, we clearly see the success of the correction.

Figure 5.9 shows the reconstructed power spectra when using the FAO estimator

(black points). The linear form of the FAO estimator, given in equation (5.39), has

been used to reduce computation time. From this, we see that there is a residual bias in

the shear power spectra which propagates into estimates of the shear-IA cross-power

spectra. This bias is due to a dependence of the errors on the shear estimates on the

input shear signal, as described at the end of Subsection 5.3.1. This bias is not suc-

cessfully corrected for when using noise-only Monte-Carlo simulations. However, if

we use these estimated power spectra as the input power spectra for a further set of

Monte-Carlo simulations, we can construct noise and noise-signal power spectra which

include an estimate of the shear and IA signal. These updated noise and noise-signal

power spectra can then be used to recover an improved estimate of the input power

spectra. This step can be iterated until subsequent estimates of the power spectra are

deemed consistent. The blue points in Figure 5.9 are the result of this procedure using

just one iteration. We see that the iterative step has indeed improved our estimates of

the power spectra.

The green points in Figure 5.9 show the reconstructed power spectra using the hy-

brid estimator. The linear form of the hybrid estimator, given in equation (5.42), has

been used to reduce computation time. This reconstruction did not require the use

of the iterative procedure. It was shown in the discussion which follows from equa-
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Figure 5.8: Reconstructions of the lensing and IA auto and cross-power spectra. In each panel,
the red curve shows the model power spectra. The black points show the reconstructed power
spectra using the CBB estimator to estimate the shear and IA signals. The blue points show the
reconstructions using the original BB estimator, as a comparison. From these reconstructions,
we clearly see that the residual bias has been reduced when using the CBB estimator.
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Figure 5.9: Reconstructions of the lensing and IA auto and cross-power spectra. In each panel,
the red curve shows the model power spectra. The black points show the reconstructed power
spectra using the FAO estimator to estimate the shear and IA signals and with the noise maps
created under the assumption that the input shear and IA signals are zero. The blue points show
the reconstructed power spectra recovered upon using the iterative procedure described in the
main text. From this, we see the success of the iterative procedure. The green points show the
reconstructed power spectra using the hybrid estimator to estimate the shear and IA signals,
with no iterative procedure required.
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Spectrum Original BB Corrected BB FAO Hybrid
G1-G1 (−7.48± 0.02)× 10−2 (7.45± 0.29)× 10−3 (1.45± 0.13)× 10−3 (0.17± 0.21)× 10−3

G2-G2 (−3.99± 0.10)× 10−3 (9.60± 1.14)× 10−4 (3.90± 0.96)× 10−4 (1.77± 1.05)× 10−4

G3-G3 (−1.97± 0.10)× 10−3 (4.02± 1.01)× 10−4 (−6.27± 0.93)× 10−4 (0.69± 0.98)× 10−4

G1-G2 (−3.07± 0.01)× 10−2 (2.44± 0.16)× 10−3 (−0.38± 0.11)× 10−3 (0.26± 0.13)× 10−3

G1-G3 (−3.48± 0.01)× 10−2 (2.68± 0.17)× 10−3 (−0.83± 0.12)× 10−3 (−0.05± 0.15)× 10−3

G2-G3 (−4.73± 0.10)× 10−3 (6.42± 1.03)× 10−4 (−11.72± 0.95)× 10−4 (0.79± 0.99)× 10−4

I1-I1 (−3.85± 0.01)× 10−1 (3.15± 0.17)× 10−2 (0.17± 0.14)× 10−2 (−0.27± 0.14)× 10−2

I2-I2 (−3.85± 0.02)× 10−1 (3.80± 0.38)× 10−2 (−0.12± 0.29)× 10−2 (−0.39± 0.30)× 10−2

I3-I3 (−3.83± 0.09)× 10−1 (−0.66± 1.57)× 10−2 (2.79± 1.33)× 10−2 (2.31± 1.42)× 10−2

I1-I2 (−4.04± 0.19)× 10−1 (1.15± 0.32)× 10−1 (−0.56± 0.27)× 10−1 (0.33± 0.27)× 10−1

I2-I3 (−4.60± 0.30)× 10−1 (1.85± 0.49)× 10−1 (−0.09± 0.42)× 10−1 (−0.23± 0.42)× 10−1

Table 5.3: The mean fractional bias in the power spectra reconstructions across all multipoles.

tion (5.45) that the dispersion in the shear estimates is independent of the input shear

and IA signal to first order. Hence, the zero-signal noise power spectra successfully re-

moves the noise bias from the power spectra without the need of the iterative procedure

described above.

As explained in the discussion following equation (5.40), the error on the estimated

shear has a strong dependence on the true shear signal when using the FAO estimator,

and hence the term
〈
CXnXn
l

〉
mc

in equation (5.49) cannot be sufficiently estimated us-

ing simulations which assume zero input shear and IA signals. The iterative procedure

uses subsequent estimates of the power spectra to improve the estimates of the con-

tribution from noise bias. The errors on the estimated shear using the CBB (equation

(5.27)) and hybrid (equation (5.43)) estimators are independent of the true shear and

IA signals to leading order, and hence an estimate of the noise bias in the power spectra

can be successfully recovered from simulations which assume zero input signals, and

the iterative procedure is not required.

In Figure 5.10, we show the fractional errors on the reconstructed power spectra.

From this, we see, as expected, that the errors are largest for the CBB estimator and

smallest for the FAO estimator. However, we emphasize that we have assumed a per-

fect knowledge of f (|εran|) when using the FAO and hybrid estimators. This would

obviously not be the case in a real analysis where uncertainties on our knowledge of

f (|εran|) would lead to an increase in the errors of the FAO and hybrid approaches.
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Figure 5.10: The fractional error in the power spectra reconstructions shown in Figures 5.8
and 5.9. The curves show the CBB estimator (black), the FAO estimator (blue) and the hybrid
estimator (red). Note, the input I1-I3 cross-power spectrum is zero for all multipoles, and
therefore we show the error as opposed to the fractional error for that panel.
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Table 5.3 shows the mean fractional bias in the shear auto and cross-power spectra

and the IA auto and cross-power spectra reconstructions. From this, we see that there

is approximately an order of magnitude reduction in the fractional bias of the CBB

estimator as compared with the original BB estimator. The reduction in bias is gener-

ally greater when using the FAO and hybrid methods. However, these methods require

an accurate knowledge of f (|εran|) and for the case of the FAO estimator an iterative

method to remove noise bias.

5.5 Conclusions

When we include a correction term into the formalism of the estimator introduced by

BB11, we have demonstrated that the residual bias in the estimator, which emerges

in the presence of measurement errors on the intrinsic position angle estimates and a

non-zero IA signal, can be reliably reduced to negligible levels as compared with the

original BB estimator provided that a sufficient number of resolved background galax-

ies have reliable polarization information. When including the correction term, chance

alignments of the measured IPA may result in substantial outliers in the distribution of

the shear estimates if the number of background galaxies is small. However, we have

introduced a method which may be used to place constraints on the number of back-

ground galaxies required to recover reliable shear estimates when using this estimator.

This restriction may require large cells, such that the number of source galaxies within

each cell is greater than or equal to the minimum number of galaxies required, and

hence small scale information may not be attainable.

Building upon the angle-only estimator introduced in Chapter 3, we have con-

structed an angle-only IA estimator which uses IPA measurements and requires a

knowledge of the intrinsic ellipticity distribution. From here, we can formulate two

distinct shear estimators. The first is the FAO shear estimator, which requires mea-

surements of the observed position angles. The second is the hybrid method, which

combines the angle-only IA estimator with the standard shear estimator and requires
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measurements of the observed ellipticities. We have demonstrated that both of these

methods may be used to recover shear estimates which exhibit negligible residual bias-

ing as compared with the original BB estimator. The FAO method, however, requires

the implementation of an iterative procedure to mitigate the effects of a signal depen-

dent noise bias in the shear and shear-IA power spectra. We further emphasize that

the results presented in this chapter are based on the assumption that the distribution

f (|εran|) is known exactly. An incorrect knowledge of this distribution propagates as

a multiplicative bias into the shear and IA estimates. However, it is expected that this

distribution may be accurately measured using deep calibration observations in future

surveys. Constraints on the accuracies required and the number of galaxies required to

achieve these accuracies are discussed in Section 3.4.

Present radio surveys, such as SuperCLASS which is currently under observation

using the JVLA and e-MERLIN1 arrays, will hopefully provide information about the

fraction of galaxies with reliable polarization information and the expected error on

the intrinsic orientation estimates, σαint , provided by measurements of the PPA. This

information is essential if we are to gain an understanding of the cosmological scales

which may be probed using these techniques. In addition to this, we hope to improve

our understanding of the impact of Faraday rotation on measurements of the PPA.

It is expected that this effect may be corrected for using information from multiple

frequencies to extract the rotation measures of the source galaxies.

We aim to apply these techniques to future radio surveys, such as with the SKA,

where the number density of galaxies will be higher than for current radio surveys

enabling us to probe smaller cosmological scales. The high redshifts achieved by the

SKA will also enable radio weak lensing to probe regions of the Universe which are

inaccessible to other weak lensing surveys (Brown et al. 2015). This high redshift in-

formation will provide powerful constraints on the evolution of large-scale structure

in the Universe. Another exciting prospect for future radio weak lensing is the cross-

correlation of radio and optical weak lensing surveys, such as the correlation of shear

1http://www.e-merlin.ac.uk/legacy/projects/superclass.html
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estimates from Euclid with those from the SKA. This method has the advantage that

the systematics in the two telescopes are expected to be completely uncorrelated al-

lowing the effects of systematics to be removed from shear analyses while avoiding

the residual effects of an incorrect calibration.
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Chapter 6

Conclusion

The theoretical framework of weak gravitational lensing is elegant and well estab-

lished. By measuring the statistical coherence imprinted by the lensing signal into the

distribution of observed galaxy shapes, one can estimate the distribution of matter and

develop a deeper understanding of the nature of the Universe.

With the dawn of precision observational cosmology, this method has emerged as

a powerful cosmological tool. Analyses of weak lensing surveys (e.g. CFHTLenS

(Kilbinger et al. 2013) and DES (The Dark Energy Survey Collaboration et al. 2015))

have been used to place constraints on the normalization of the matter power spectrum,

the matter density parameter and the dark energy equation of state. With the advances

in precision expected in future surveys, such as Euclid and the SKA, weak lensing

has the potential to greatly enhance our understanding of the late time evolution of the

Universe. In order for the full potential of weak lensing to be exploited, it is essential

that the observational and astrophysical systematics are well understood and calibrated

for.

There are various sources of observational systematics which effect measurements

of galaxy shapes, such as convolution with a PSF and the use of a weighting function

to reduce noise at large scales. Incorrectly calibrating for these effects propagates

biases into estimates of the shear. In Chapter 3, we developed a method that can

potentially avoid the isotropic component of these effects by estimating the shear using
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only galaxy orientations, thereby removing the need to calibrate the shapes of galaxies.

The plausibility of this approach was demonstrated using both simulations and

the data from the CFHTLenS. We found that the angle-only method can potentially

yield shear estimates with a performance comparable to the standard full ellipticity

approach.

To recover position angle-only shear estimates, one requires an accurate knowledge

of the intrinsic ellipticity distribution. We placed constraints on the accuracy required

in Chapter 3. In Chapter 4, we used IM3SHAPE to measure the distribution from

the deep calibration images of the GREAT3 simulations. The angle-only estimator

was then successfully applied to the GREAT3 challenge data, and we demonstrated a

performance comparable with current state-of-the-art shape measurement techniques.

Three separate methods were used to measure the position angles of the galaxies

when analyzing the GREAT3 data. The integrated light method was introduced in

Chapter 3. This approach involves integrating over the radial component of the in-

tensity profile and uses this distribution to estimate the position angles. The moments

based method calculates the position angles using the quadrupole moments defined by

Blandford et al. (1991) and discussed in Chapter 2. The third method calculated the

position angles using the ellipticities measured by IM3SHAPE. We found that all three

methods yield results with a similar performance. It is expected that the systematics

from the three approaches, which treat the light profile differently, will not be signifi-

cantly correlated. If this is the case, it could be beneficial to combine two different ap-

proaches to mitigate systematics when using the angle-only method to estimate shear

correlation functions in future surveys. Also, systematics in shear estimates arising

from the modulus component when using full ellipticity information will not correlate

with systematics in angle-only shear estimates. Hence, the angle-only method could

be complimentary to current and future high precision shape based weak lensing anal-

yses. In particular, the integrated light method provides independent measurements of

the position angles. Therefore, it should be advantageous to combine angle-only shear

estimates using the integrated light method with shape based shear estimates using
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either moments or model based approaches.

When applying angle-only estimators to the GREAT3 challenge data, we focused

on the ground based constant shear and constant PSF branch. Naturally, we hope to

extend the angle-only estimator in future work to include variable shear and contribu-

tions from a variable PSF. Calibrating for a variable anisotropic PSF (variable isotropic

PSFs are not a problem for the angle-only method) may be possible by modifying the

weighting scheme adopted for the GREAT3 analysis to include the position of a galaxy

on the sky, in addition to measured orientation. However, the weighting scheme em-

ployed for the GREAT3 challenge relies heavily on calibration simulations and, in

future work, we would also like to reduce this dependence.

Reducing the systematics in estimates of the shear is vital if one is to utilize the pre-

cision of future surveys, such as those conducted with Euclid. Euclid is a space-based

mission which aims to cover 15,000 square degrees and provide shape measurements

of galaxies out to a redshift of z ≈ 2. The goal is to probe the nature of dark energy

and dark matter, and anticipate the future of the local Universe over the next 10 billion

years. For such high precision surveys, the difference between the systematics in shape

and angle-only shear estimates may be exploited to greatly increase the constraining

power of weak lensing analyses.

The Large Synoptic Survey Telescope (LSST) (LSST Dark Energy Science Col-

laboration 2012) is a ground based telescope currently under construction in Chile.

The main planned survey will cover 18,000 square degrees at a depth of r ∼ 27.5,

with the aim of determining the properties of dark energy and dark matter. The survey

is expected to contain a large number of barely resolved galaxy images. Estimating

the shapes of barely resolved galaxies is problematic. However, it is expected that

estimates of the shear using position angles will be less susceptible to the effects of

low resolution, provided that one corrects for PSF anisotropy and pixelization using,

for example, the weighting scheme applied to the GREAT3 simulations in Chapter 4.

One may also apply the angle-only estimator to data from present day surveys such

as the Kilo-Degree Survey (KiDS) (de Jong et al. 2013; Kuijken et al. 2015) and the
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Subaru Hyper Suprime-Cam survey (HSC) (Takada 2010), either as a stand alone es-

timator or as a complimentary approach to shape based methods, so as to mitigate the

multiplicative effects of smearing.

The intrinsic alignment (IA) of the source galaxies is one example of an astrophys-

ical systematic. IA mimics a shear signal and therefore biases the shear correlation

functions. In Chapter 5, we developed three methods to include polarization informa-

tion from radio observations in estimates of the shear. The integrated polarization posi-

tion angle is unaffected by gravitational lensing and can be used to estimate a galaxy’s

intrinsic position angle. We showed that with this information, we can mitigate the

contribution of IA when reconstructing estimates of the shear power spectra. We also

showed that we can successfully recover estimates of the IA auto-power spectra and

the IA-shear cross-power spectra.

The first of the three methods developed was a corrected version of the original es-

timator proposed by Brown & Battye (2011b). This estimator was modified to include

a correction for the noise bias arising from measurement errors on the intrinsic position

angles. The second was an extension of the angle-only estimator, introduced in Chap-

ters 3 and 4, to include the intrinsic orientation information. The third method was

a hybrid of the standard full ellipticity approach and the angle-only estimator; where

the angle-only method was used to recover a direct estimate of the IA signal. All

three methods were successful in removing the IA contaminant from the shear power

spectra reconstructions, and the angle-only IA estimator was shown to provide reliable

estimates of the IA signal using only the radio polarization information.

The work presented in Chapter 5 has the potential to mitigate the effects of intrin-

sic alignments in future high precision radio surveys, such as those conducted by the

SKA. The SKA is a proposed radio interferometer with a collecting area equal to one

square kilometer. The science goals of the SKA include tests of General Relativity,

mapping the large scale structure of the Universe and placing constraints on dark en-

ergy and general cosmology. Weak lensing in the radio is still in its infancy. However,

the extra information that comes from polarization implies that radio weak lensing has
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the potential to increase the constraining power of surveys conducted by the SKA and

other future radio telescopes. With the high number densities of galaxies expected in

future radio surveys, it is hoped that the techniques discussed in Chapter 5 can be used

to probe high redshift regions of the Universe currently inaccessible to weak lensing

(Brown et al. 2015). Information from high redshifts can provide tighter constraints

on the nature of dark energy. However, the unwanted GI terms in the shear correla-

tion functions are expected to be larger when cross-correlating signals separated by

large redshifts. The IA mitigation schemes presented in this thesis provide a way of

removing this effect so that the the full potential of such a survey can be achieved.

The cross-correlation of high precision optical and radio weak lensing surveys, such

as those using Euclid with those using the SKA, also presents an exciting opportunity

as the systematics from the two telescopes are expected to be uncorrelated.

The angle-only IA estimator introduced in Chapter 5 presents another exciting

prospect. The IA signal has a dependency on the formation environment and shared

histories of the galaxies. Measuring the IA signal directly, using radio polarization

observations, for example, can therefore provide information on the physics of galaxy

formation and evolution, and an insight into the evolution of the large scale structure

of the Universe (Joachimi et al. 2013; Kirk et al. 2015).
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Appendix A

Deriving the F1 (|g|) function

Here we derive the F1 (g) function, which is introduced in Chapter 3.

The observed position angle of a galaxy is α, and the shear position angle is α0.

Let us define ψ as the difference between these two angles, such that for the ith galaxy

ψ(i) = α(i) − α0. (A.1)

The angle ψ depends on both the shear and intrinsic ellipticity of the galaxy. Assuming

that the intrinsic orientations of the galaxies in the sample are drawn from a uniform

distribution, the angle ψ is distributed symmetrically about zero. The expectation val-

ues of the sines and cosines of α can therefore be written as

〈cos (2α)〉 = 〈cos (2ψ + 2α0)〉 ,

= 〈cos (2ψ)〉 cos (2α0)− 〈sin (2ψ)〉 sin (2α0) ,

= 〈cos (2ψ)〉 cos (2α0) ,

(A.2)

〈sin (2α)〉 = 〈sin (2ψ + 2α0)〉 ,

= 〈cos (2ψ)〉 sin (2α0) + 〈sin (2ψ)〉 cos (2α0) ,

= 〈cos (2ψ)〉 sin (2α0) , (A.3)
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where the term 〈sin (2ψ)〉 is zero due to the distribution of ψ being symmetric about

zero. Hence, we see that the means of the trigonometric functions trace the shear

trigonometric functions subject to the scale factor 〈cos (2ψ)〉. For an individual galaxy,

ψ is a function of the orientation of the shear, the modulus of the shear and the vector

εint. However, as the intrinsic position angles of the galaxies are drawn randomly

from a uniform distribution, 〈cos (2ψ)〉 is a function of |g| only, with the form of the

function depending on the intrinsic ellipticity distribution, f
(∣∣εint

∣∣). Let us define

F1 (|g|) ≡ 〈cos (2ψ)〉.

The observed ellipticity of a galaxy is

εobs =
εint + g

1 + g∗εint
. (A.4)

As the F1 (|g|) function is independent of the shear position angle, let us focus on the

case where g1 = |g| and g2 = 0. In this case,

〈cos (2α)〉 =F1 (|g|) ,

〈sin (2α)〉 =0, (A.5)

and equation(A.4) can be written in component form as

εobs
1 =

|g|
(

1 +
∣∣εint

∣∣2)+
(
1 + |g|2

) ∣∣εint
∣∣ cos

(
2αint

)
1 + |g|2 |εint|2 + 2 |g| εint

1

,

εobs
2 =

(
1− |g|2

) ∣∣εint
∣∣ sin (2αint

)
1 + |g|2 |εint|2 + 2 |g| εint

1

, (A.6)

where the denominators are identical for both components. We define the numerators

on the RHS of equation (A.6) as

ε′1 = |g|
(

1 +
∣∣εint

∣∣2)+
(
1 + |g|2

) ∣∣εint
∣∣ cos

(
2αint

)
,

ε′2 =
(
1− |g|2

) ∣∣εint
∣∣ sin (2αint

)
. (A.7)
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The cosine of the observed position angle is then

cos (2α) =
ε′1√

ε′21 + ε′22
, (A.8)

which is a function of |g|,
∣∣εint

∣∣ and αint. We define

h1

(
|g| ,

∣∣εint
∣∣ , αint

)
≡ ε′1√

ε′21 + ε′22
. (A.9)

From equation (A.5), the F1 (|g|) function can now be calculated as the mean of

h1

(
|g| ,

∣∣εint
∣∣ , αint

)
over the 2D distribution of the intrinsic ellipticities. Assuming

that the distribution of αint is uniform, the F1 (|g|) function is therefore

F1 (|g|) =
1

π

∫ |εint
max|

0

∫ π
2

−π
2

dαintd
∣∣εint

∣∣ f (∣∣εint
∣∣)

× h1

(
|g| ,

∣∣εint
∣∣ , αint

)
. (A.10)
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Appendix B

Including a variable σα

Assuming that the measurement errors are independent of the position angles and sym-

metrically distributed about zero, we derive the bias correction introduced in Chapter

3 for a general distribution of measurement errors.

We begin by writing the measured position angle as α̂ = α + δα, where δα is a

random measurement error. Assuming that this error is independent of α, we can write

the mean unit vector components as

〈cos (2α̂)〉 = 〈cos (2α)〉 〈cos (2δα)〉 − 〈sin (2α)〉 〈sin (2δα)〉 ,

〈sin (2α̂)〉 = 〈sin (2α)〉 〈cos (2δα)〉+ 〈cos (2α)〉 〈sin (2δα)〉 . (B.1)

Making the further assumption that δα is distributed symmetrically about zero, we

obtain a relation between the mean measured unit vector components and the corrected

unit vector components

〈n〉 = 〈n〉corrected 〈cos (2δα)〉 . (B.2)

In practice the distribution of δα may be different for each galaxy, and therefore one

would need to determine the multiplicative factor for the ith galaxy, 〈cos (2δα)〉i. If
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we define the overall correction term, β2, where

〈n〉corrected =
〈n〉
β2

, (B.3)

we can determine β2 by finding the mean of the individual multiplicative factors,

〈cos (2δα)〉i, such that

β2 =
1

N

N∑
i=1

〈cos (2δ)〉i . (B.4)

As an example, let us assume that the measurement errors are Gaussian distributed

and that the variance on the error distribution for the ith galaxy is σ2
α,i, then the mean

unit vector becomes

〈n〉 = 〈n〉corrected 〈cos (2δα)〉

= 〈n〉corrected

∫
dσαf (σα) exp

(
−2σ2

α

)
, (B.5)

where f (σα) is the probability density function of σα. If we now make the further

assumption that σα is Gaussian distributed about the mean error, σ̄α, with a variance of

σ2
σα , it can be shown that the corrected mean unit vector becomes

〈n〉corrected = 〈n〉 exp

(
2σ̄2

α

1 + 4σ2
σα

)√
1 + 4σ2

σα , (B.6)

such that the correction term is

β2 =
exp

(
−2σ̄2

α

1+4σ2
σα

)
√

1 + 4σ2
σα

. (B.7)

The correction due to a distribution in σα can therefore be attributed to an effective

correction. This indicates that the distribution in errors can be viewed as a single

Gaussian distribution which, for this case, has a variance of

σ2
α =

σ̄2

1 + 4σ2
σα

+
1

4
ln
(
1 + 4σ2

σα

)
. (B.8)
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Appendix C

Deriving the 3rd order estimator

Here we construct a 3rd order angle-only shear estimator for the case of a general in-

trinsic ellipticity distribution. In order to obtain a direct estimator in the general case,

one can numerically obtain the F1 (|g|) function that corresponds to a given intrin-

sic distribution, f
(∣∣εint

∣∣), by using equation (3.8). Assuming that the shear is much

smaller than the dispersion in the intrinsic ellipticities, we can expand the F1 (|g|)

function in powers of |g|. For a zero shear signal there will be no preferred position

angle so that F1 (|g|)→ 0 as |g| → 0. We can therefore write an approximate form of

the F1 (|g|) function as

F1 (|g|) ≈ u |g|+ v |g|2 + w |g|3 , (C.1)

for some u, v, w. We can fit the approximate form of the F1 (|g|) function to a numer-

ically determined function.

From the measured position angles in a given pixel, we can estimate the value of

F1 (|g|) such that

F̂1 =

√√√√[ 1

N

N∑
i=1

cos (2α(i))

]2

+

[
1

N

N∑
i=1

sin (2α(i))

]2

. (C.2)

By equating this expression with the right hand side of equation (C.1), we can obtain
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an estimate of |g| which satisfies the condition

u |ĝ|+ v |ĝ|2 + w |ĝ|3 − F̂1 = 0. (C.3)

Solutions of this equation are obtained from the general solution for the roots of a 3rd

order polynomial, which is

|ĝ| =
{
q +

[
q2 +

(
r − p2

)3
] 1

2

} 1
3

+{
q −

[
q2 +

(
r − p2

)3
] 1

2

} 1
3

+ p, (C.4)

where

p =− v

3w
,

q =
F̂1

2w
+

uv

6w2
− v3

27w3
,

r =
u

3w
. (C.5)

Let us now consider the case where q2 + (r − p2)
3
< 0. In this case, we can rewrite

equation (C.4) as

|ĝ| =
{
q + i

[(
p2 − r

)3 − q2
] 1

2

} 1
3

+{
q − i

[(
p2 − r

)3 − q2
] 1

2

} 1
3

+ p. (C.6)

However, |g|must be a real solution of equation (C.3). Therefore, we can immediately

assume the form of the solution to be

|ĝ| = 2B
1
6
0 cos

[
1

3
tan−1

(√
B1

A

)
+

2nπ

3

]
− v

3w
, (C.7)
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where n = −1, 0, 1 and

A =q,

Bk =
(
p2 − r

)3 − kq2. (C.8)

The specific choice of n is dependent on the form of the F1 (|g|) function, but it will

always be the value of n which minimizes the absolute value of the cosine term in

equation (C.7). In all of the simulations that we have conducted, we find that n = −1.

Let us now examine the case where q2 + (r − p2)
3 ≥ 0. In such a case, |ĝ| can be

obtained directly from equation (C.4), that is

|ĝ| =
(√
−B1 + A

) 1
3 −

(√
−B1 − A

) 1
3 − v

3w
, (C.9)

which can have only one real solution.

An estimate for the orientation of the shear is obtained from equation (3.22), such

that

2α0 = tan−1

(∑N
i=1 sin

(
2α(i)

)∑N
i=1 cos (2α(i))

)
. (C.10)

By taking the cosine and sine of equation (C.10) and dividing through by N , it can be

shown that the estimated shear unit vector n̂0 can be written as

n̂0 =
1

F̂1

 1
N

∑N
i=1 cos

(
2α(i)

)
1
N

∑N
i=1 sin

(
2α(i)

)
 . (C.11)

The full 3rd order estimator is then

ĝ = |ĝ| n̂0. (C.12)

If we assume a measurement error on the position angles which is independent of

the true position angles and drawn from a distribution which is symmetric about zero,

then we can correct for the measurement error bias using equation (3.29). It can be
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shown that to correct the third order estimator we only need to modify the term q in

equation (C.5) such that

q =
F̂1

2wβ2

+
uv

6w2
− v3

27w3
. (C.13)

For a more general error distribution, we must use the form of the cosines and

sines given in equation (3.51) which may be determined using an iterative method as

outlined in Subsections 3.3.3 and 3.3.4.
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Appendix D

Residual bias in the iterative method

For the iterative method used in Chapter 4, we derive the residual bias in the shear

estimates as a function of the number of iterations used.

If we assume the zeroth-order shear estimate can be written as equation (4.13), the

first-order iteration gives the shear estimate as

ĝ
(1)
j =ĝ

(0)
j −

(
ĝ

(1)
j,sim − ĝ

(0)
j

)
,

=ĝ
(0)
j −m′j ĝ

(0)
j − c′j + δg

(1)
j .

(D.1)

We can substitute equation (4.13) into equation (D.1), giving

ĝ
(1)
j = gj −m′j

(
m′jgj + c′j

)
+
(
1−m′j

)
δg

(0)
j + δg

(1)
j . (D.2)

The second iteration yields

ĝ
(2)
j =ĝ

(0)
j −m′j ĝ

(1)
j − c′j + δg

(2)
j ,

=gj +m′2j
(
m′jgj + c′j

)
+
[
1−m′j

(
1−m′j

)]
δg

(0)
j

−m′jδg
(1)
j + δg

(2)
j . (D.3)
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From here, we see that the error terms propagate linearly through the iterations. Hence,

as the mean of these terms is zero, there will be no residual bias contribution from these

terms. If we ignore the noise terms, we see that the shear estimate from the nth iteration

can be written as

ĝ
(n)
j = gj +

(
−m′j

)n (
m′jgj + c′j

)
, (D.4)

and therefore the bias on the nth iteration is

〈
ĝ

(n)
j − gj

〉
=
(
−m′j

)n (
m′jgj + c′j

)
. (D.5)
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Appendix E

Error on the first iteration

We discuss the first-order approximation of the error on the angle-only shear estimates

using one iteration of the weighting procedure discussed in Chapter 4. For each galaxy

in the field, we assume that there is an identical galaxy with the intrinsic ellipticity

rotated by 90◦.

Let us begin by assuming a first-order approximation of the F1 (|g|) function (dis-

cussed in Chapter 3), such that

F1 (|g|) ≈ u |g| , (E.1)

where u is the first-order coefficient. We write the measured position angle of a galaxy

as α̂ = α + δα, where δα is an error on the measurement which we assume to be

distributed symmetrically about zero. The zeroth-order estimate, ĝ(0)
1 (with a similar

analysis also holding for ĝ(0)
2 ), can then be written as an average over the galaxy pairs

ĝ
(0)
1 ≈

1

u

N
2∑
i=1

[
w̄i

(
αi + δα

(1)
i

)
cos
(

2αi + 2δα
(1)
i

)
+ w̄i

(
αi +

π

2
+ δα

(2)
i

)
cos
(

2αi + π + 2δα
(2)
i

)]
, (E.2)

where there are N/2 galaxy pairs, and where δα(1)
i is the error on the position angle
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of the first galaxy in the pair and δα(2)
i is the error on the position angle of the corre-

sponding 90◦ rotated galaxy. The weighting function w̄ (αi) is normalized and given

as

w̄ (αi) =
w (αi)∑N
i=1w (αi)

, (E.3)

where the summation is over all galaxies in the field.

From this form of the estimator, we can write an approximate form for the error on

the zeroth-order estimate in the limit g → 0 as

σ2

ĝ
(0)
1

≈ N

2u2

〈[
w̄(1) cos

(
2α + 2δα(1)

)
+ w̄(2) cos

(
2α + π + 2δα(2)

)]2〉
,

≈ 1

2u2

(
N∑
i=1

(w̄ (αi))
2 − 1

N
β2

wc

)
, (E.4)

where βwc is the weighted mean cosine of the error distribution,

βwc =
N∑
i=1

w̄ (α̂i) cos (2δαi) . (E.5)

We have assumed that the weighting scheme has successfully removed all contribu-

tions from an additive bias. From this approach we find that σ
ĝ
(0)
1
≈ σ

ĝ
(0)
2
≡ σĝ(0) . A

similar approach can be applied to the errors on the shear estimates recovered from the

first iteration simulations but with the number of galaxies being dependent on the num-

ber of galaxies in the simulations; for our analyses we simulated Nsim = 105 galaxies

as discussed in Section 4.3. The error on the first iteration of the shear estimator can

then be found by looking at equation (D.2) where the error on the zeroth-order shear

estimate, ĝ1
(0), is δg(0)

1 (as defined in equation (4.13)), and the error on the estimate

from the first-order simulations, ĝ(1)
1,sim, is δg(1)

1 (as defined in equation (4.15)). Assum-

ing that the errors on the shear estimates are Gaussian (which is expected to be true

to first-order in the shear due to the central limit theorem), the error on the first-order
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shear estimate is

σ2
g ≈ (1−m′)2

σ2
ĝ(0) + σ2

ĝ(1) , (E.6)

where σ2
ĝ(0) ≡

〈
δg

(0)2

1

〉
and σ2

ĝ(1) ≡
〈
δg

(1)2

1

〉
. In the absence of an additive bias, the

multiplicative bias is effectively due to the βc term in equation (3.50). However, when

using weighted trigonometric functions βc = βwc, such that m′ = βwc − 1.
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Appendix F

Correcting the Brown & Battye

estimator

In this section, we discuss the correction to the BB estimator.

We begin by redefining the matrix A as

A =
2βint

4

N

N∑
i=1

win̂in̂
T
i , (F.1)

and the vector b as

b =
2βint

4

N

N∑
i=1

wi
(
εobs
i · n̂i

)
n̂i, (F.2)

where the definition of the vector n̂i is given in equation (5.7) and where wi is a

normalized arbitrary weight assigned to each galaxy. In the limit N → ∞, the matrix

A can be written as

A = βint
4

 1−
〈
cos
(
4α̂int

)〉
−
〈
sin
(
4α̂int

)〉
−
〈
sin
(
4α̂int

)〉
1 +

〈
cos
(
4α̂int

)〉
 , (F.3)
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and the vector b can be written as

b = βint
4

 〈
εobs

1

[
1− cos

(
4α̂int

)]〉
−
〈
εobs

2 sin
(
4α̂int

)〉〈
εobs

2

[
1 + cos

(
4α̂int

)]〉
−
〈
εobs

1 sin
(
4α̂int

)〉
 . (F.4)

In the presence of noise on the estimates of αint, the trigonometric functions above

will be biased. This bias can be corrected for by dividing the functions by the correc-

tion term βint
4 , as defined in equation (5.14), such that the corrected matrix A can be

written as

A =

 βint
4 −

〈
cos
(
4α̂int

)〉
−
〈
sin
(
4α̂int

)〉
−
〈
sin
(
4α̂int

)〉
βint

4 +
〈
cos
(
4α̂int

)〉
 , (F.5)

and the corrected vector b becomes

b =

 〈
εobs

1

[
βint

4 − cos
(
4α̂int

)]〉
−
〈
εobs

2 sin
(
4α̂int

)〉〈
εobs

2

[
βint

4 + cos
(
4α̂int

)]〉
−
〈
εobs

1 sin
(
4α̂int

)〉
 . (F.6)

The CBB estimator can then be written more concisely by defining the matrix Mi,

where

Mi =

 βint
4 − cos

(
4α̂int

i

)
− sin

(
4α̂int

i

)
− sin

(
4α̂int

i

)
βint

4 + cos
(
4α̂int

i

)
 , (F.7)

such that the final form of the estimator can be written as described by equations (5.22)

- (5.24).
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Appendix G

Details of the FAO estimator

Here we present the details of the F1

(∣∣γIA
∣∣) function and the bias corrections βint

2 and

βobs
2 .

Following the approach outlined in Chapter 3, we can recover an estimate of
∣∣γIA

∣∣
using measurements of αint, which satisfies the equation

F1

(∣∣γ̂IA
∣∣) =

1

N

√√√√( N∑
i=1

cos (2α̂int
i )

)2

+

(
N∑
i=1

sin (2α̂int
i )

)2

. (G.1)

The F1 (|γ|) function depends on the distribution f (|εran|) and is found to be

F1

(∣∣γIA
∣∣) =

1

π

∫ |εranmax|

0

∫ π
2

−π
2

dαrand |εran| f (|εran|)

× h1

(∣∣γIA
∣∣ , |εran| , αran

)
, (G.2)

where the function h1

(∣∣γIA
∣∣ , |εran| , αran

)
is given as

h1

(∣∣γIA
∣∣ , |εran| , αran

)
=

ε′21√
ε′21 + ε′22

, (G.3)
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with

ε′1 =
∣∣γIA

∣∣+ |εran| cos (2αran) ,

ε′2 = |εran| sin (2αran) .

(G.4)

The forms of ε′1 and ε′2 depend on the model assumed to describe the transformation

εran → εint. In this paper, the assumed model is given by equation (5.4).

For a non-zero measurement error on αint, such that

α̂int = αint + δαint, (G.5)

where δαint is independent of the true αint, we show in Chapter 3 that estimates of αIA

(equation (5.30)) remain unbiased. However, estimates of
∣∣γIA

∣∣, obtained by invert-

ing the F1

(∣∣γIA
∣∣) function given in equation (G.2), become biased. The bias can be

corrected for by dividing the F1

(∣∣γIA
∣∣) function by the correction term βint

2 , which

follows the definition given in equation (5.14):

F1

(∣∣γ̂IA
∣∣) =

1

Nβint
2

√√√√( N∑
i=1

cos (2α̂int
i )

)2

+

(
N∑
i=1

sin (2α̂int
i )

)2

. (G.6)

Assuming that we are working well within the weak lensing regime, such that εobs

can be described using equation (5.1) and ignoring measurement errors, we can express

the observed ellipticity in terms of the shear and IA as

εobs = γ + γIA + εran. (G.7)
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Expressing the observed ellipticity in polar coordinates:

εobs
1 =

∣∣εobs
∣∣ cos

(
2αobs

)
,

εobs
2 =

∣∣εobs
∣∣ sin (2αobs

)
, (G.8)

we can follow the approach of Chapter 3 to recover estimates of the vector γ + γIA

from the observed position angles. If we assume a measurement error on αobs which

is independent of the true value

α̂obs = αobs + δαobs, (G.9)

we can define the terms βobs
n such that

βobs
n ≡

〈
cos
(
nδαobs

)〉
. (G.10)

Upon expressing the vector γ + γIA as

γ1 + γIA
1 =

∣∣γtot
∣∣ cos

(
2αtot

)
,

γ2 + γIA
2 =

∣∣γtot
∣∣ sin (2αtot

)
, (G.11)

we can recover an estimate of |γtot| which satisfies the equation

F1

(∣∣γ̂tot
∣∣) =

1

Nβobs
2

√√√√( N∑
i=1

cos
(
2α̂obs

i

))2

+

(
N∑
i=1

sin
(
2α̂obs

i

))2

. (G.12)

The vector εran given in equation (G.7) is identical to that given in equation (5.4).

Therefore, the form of the F1 (|γtot|) function given in equation (G.12) is identical to

the form of the F1

(∣∣γIA
∣∣) function in equation (G.2) with the substitution

∣∣γIA
∣∣ →

|γtot|. The term βobs
2 corrects for the bias introduced by the measurement error on

αobs.
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