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Abstract

Identifying relevant studies for inclusion in a systematic review (i.e. screening) is a
complex, laborious and expensive task. Recently, a number of studies have shown that
the use of machine learning and text mining methods to automatically identify relevant
studies have the potential to drastically decrease the workload involved in the screen-
ing phase. The vast majority of available machine learning methods exploit the same
underlying principle, i.e. a study is modelled as a bag-of-words (BOW).
This thesis explores the use of topic modelling methods to derive a more informative
representation of studies. Latent Dirichlet Allocation (LDA) is applied, an unsuper-
vised topic-modelling approach, to identify topics from a collection of studies. Then
each study is represented as a distribution of LDA-topics. Additionally, Topics derived
by LDA are enriched with technical multi-word terms identified by an automatic term
recognition (ATR) tool. For experimentation, SVM-based classifiers are applied us-
ing either the topic-based or the BOW representation to automatically identify relevant
studies.
The results obtained show that the SVM classifier is able to identify more relevant stud-
ies when using the LDA representation than the BOW representation. Moreover, this
study demonstrates that kernel functions used in SVM obtain a superior performance
when using LDA feature representations. These observations hold for two systematic
reviews of the clinical domain and three reviews of the social science domain.
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Chapter 1

Introduction

As data grows in volume, systematic review has begun to play an increasingly impor-
tant role in many areas, especially for evidence-based medicine (EBM). Systematic
review can provide researchers with high quality evidence for a pre-defined question.
However, the process of developing a systematic review is traditionally performed
manually, and the need for its automation is increasingly important.
In order to obtain high-quality evidence relevant to a research topic in EBM, hundreds
of documents from the biomedical literature must be manually examined by review-
ers during screening, the most tedious and burdensome phase in systematic reviews.
Recently, a number of studies have shown that the use of machine learning and text
mining to automatically identify relevant studies can drastically reduce the workload
involved in the screening phase.
Automatic or semi-automatic text classification is the most usual means to assist the
screening phase. Researchers have already explored the performance of many clas-
sifiers. However, the majority of available classification methods exploit the same
underlying principle, i.e. a document is modelled as a bag-of-words (BOW).
Topic models, especially Latent Dirichlet Allocation (LDA) [BNJ03], are techniques
which extract the latent information from an observation such as text or image. Apply-
ing topic models to the citations found during systematic reviews enables the automatic
screening phase to achieve a better performance.
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1.1 Systematic Reviews

A systematic review aims to summarise evidence for a pre-defined research question;
it has been widely applied in the biomedical and healthcare contexts. A typical system-
atic review takes the following steps: 1) a thorough search for the relevant literature
in appropriate databases, citation indexes and journals. 2) two independent reviewers
manually assess the titles and abstracts according to a pre-defined protocol for eligi-
bility and relevance. The Cochrane Collaboration provides eight-step guidelines for
building a systematic review [HGA+11]:

1. Defining the review question and developing criteria for including studies.

2. Searching for studies.

3. Selecting studies and collecting data.

4. Assessing risk of bias in included studies.

5. Analysing data and undertaking meta-analyses.

6. Addressing reporting biases.

7. Presenting results and “summary of findings” tables.

8. Interpreting results and drawing conclusions.

Systematic reviews are not only powerful tools for producing medical evidence, but
they are also used in other sciences such as software engineering, social media and so
on.

1.1.1 Screening Phase in Systematic Reviews

A traditional screening phase (namely, Step 5 in the eight-step guidelines) for system-
atic reviews is to manually identify and assess citations relevant to a research topic,
according to a certain pre-defined protocol [BTL09, Cou97, BNB+10, DFL07] known
as the PICO framework, which seeks to identify the Population, the Intervention,
the Comparison and the Outcome. Manual screening means that reviewers need to
read hundreds of citations during the screening phase, due to the exponential growth
of biomedical literature [HC06]. However, manual screening is relatively expensive
and time-consuming. According to [WSBT10], an experienced reviewer is able to
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screen two abstracts per minute on average, with more complex abstracts taking longer.
Moreover, a reviewer needs to identify all eligible studies (i.e. 95%-100% recall)
[Coh11, MTOEA14] in order to minimise publication bias. Another issue is that the
number of relevant citations is usually significantly lower than the number of irrel-
evant ones, which means that reviewers are dealing with an extremely unbalanced
dataset. Thus, researchers are beginnning to apply machine learning, text mining
[ARO+09, OETM+15], text classification [AACZ14], active learning [WTL+10] and
so on, to automate this process and maintain the quality of the review as far as possible.

1.1.2 Automate the Screening Phase in Systematic Reviews

So far, many approaches based on machine learning have been shown to be helpful in
reducing the workload of the screening phase [OETM+15], with impressive results.
The majority of reported methods exploit automatic or semi-automatic text classifica-
tion to assist the screening phase. Text classification is normally performed using the
BOW model where words in documents are regarded as an unordered input.

1.2 Text Classification Basis

A number of synonyms describe the text classification task including document cate-
gorisation, topic identification and document routing [GLWW00]. Manual text clas-
sification is an expensive and time-consuming task. However, automated text classifi-
cation aims to assign a document to one or more known classes by trained machines
(classifiers). Usually, these classifiers can be constructed automatically by machine
learning, statistical pattern recognition, or neural network approaches. A classic ap-
plication of this task is spam filtering which tries to distinguish spam emails from
ordinary messages.
Text classification can be done in two different ways: content-based and request-based
classification [Soe85]. Content-based classification focuses on using the subjects in
documents to determine which classes the document belongs to. These subjects can be
weighted, for example, in automatic text classification high-frequency words in a doc-
ument may have a bigger impact on how this document is classified. Request-based
classification receives the requests from users, and these requests influence the classi-
fication task.
As automatic text classification is regarded as an application of machine learning on
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text, it can be divided into three different processes: Supervised text classification
requires external information (human feedback) to teach the classifiers what kind of
characteristics a class has. Unsupervised text classification (also known as cluster-
ing) can perform the task without external information. For example, uncategorised
documents that have been represented in vector space can be automatically classified
into different groups by knowing the parameter k (how many classes are in these docu-
ments). Semi-supervised text classification is a more intelligent approach than super-
vised text classification as only parts of the documents need to be labelled by humans.
The BOW model is the most popular model in nature language processing, where each
document in the collection can be transformed into a machine readable feature vec-
tor. For example, the short sentence “you know I know you know” will be the same
as “know know know you you I” and {know:3, you:2, I:1} in text classification, be-
cause the order of words is no longer important to machines, even if the latter one has
completely lost the meaning of the original sentence. Classifiers only pay attention to
statistical features which become valuable when there are hundreds of documents.
A typical automatic text classification task is usually constructed by the following
steps:

1. Feature selection: This process determines the candidate features (via tokeniza-
tion) and refines them using statistics or information theory. The result of the
process is a dictionary which covers all useful tokens that appear in a corpus.

2. Document encoding: This process will produce a representation of each docu-
ment, normally in feature vectors; each element in feature vectors denotes how
important a token is to classification (i.e. its weight).

3. Model training: Classifiers receive the documents with labels (the name or
identifier of a class) as input for training. Normally, only supervised learning
needs a training process in order to adapt the model.

4. Evaluation: There is a variety of measures to evaluate the performance of clas-
sifiers. Accuracy is the most common way for text classification. However, the
appropriateness of measures may vary under different circumstances. For exam-
ple, accuracy may not be a suitable indicator of performance when the dataset is
extremely unbalanced.

14



1.2.1 Feature Selection

Feature selection is the most fundamental part of applications for nature language pro-
cessing, determining the features used for representation of text. In most cases, tok-
enization breaks a given sequence of text into pieces using the same standard, which is
the first step to any further operations. A common model for tokenization is n-gram,
where a contiguous sequence of n elements is developed from the given sequence of
text. The elements of n-gram can be many things such as words, letters or syllables
depending on the application. An n-gram model with n = 1 is referred to as a “uni-
gram” or “1-gram”, size 2 is a “bigram” or “2-gram”. Table 1.1 shows an example of
applications of using n-gram models with different n parameter.
Tokens in documents are merged and the redundant tokens should be removed in order
to obtain a candidate feature list [RU12]. The size of the list is defined as dimension-
ality, which refers to the number of features the document has. The candidate feature
list contains a large number of stop words that do not contribute to the classification
performance, such as “is”, “and”, “are” and so on, because words like these appear
abundantly in a corpus, and they do not contribute to the distinctiveness of documents.
Thus, the list must be refined for a better-quality dictionary (vocabulary). Existing
methods to remove stop words include locating these words by using a pre-defined
stop-word list, many statistical approaches are also able to deal with this, for example,
mutual information and information gain. It is worth noting that text classification may
be performed for a specific domain so a customised stop-word list is necessary for that
domain.

1.2.2 Document Encoding

Document encoding makes use of statistical techniques in order to transform a doc-
ument into a feature vector which can define a point in the n-dimensional Euclidean
space, where n denotes the size of the dictionary. An ordinary dictionary would con-
tain more than 1,000 words after pre-processing (stop-word removal, stemming). The
documents represented as points in a vector space are not visible to humans. However,
with such high dimensions, the patterns among these points can be easily discovered
by machines within a reasonable time. The encoding process produces a feature vector
< x(1),x(2), ...,x(n) > for each document, where x(i) stands for the weight of each fea-
ture. There are many ways to calculate the weights for documents with different points
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of focus. The most common schemes include Term Frequency (TF), Term Frequen-
cy/Inverse Document Frequency (TF/IDF) and Binary Code. It is hard to say which
can outperform the others, as it always depends on the practical situation and the ex-
perience of researchers; and sometimes a prior comparison is demanded to determine
the best solution for encoding documents.

1.2.3 Model Training

Training a model is the most important part for supervised learning and semi-supervised
learning. In the field of machine learning, statistical learning is gaining in popular-
ity especially in fields like computer vision, natural language processing and sport
events [SC14]. Statistical learning infers an optimal function from labelled training
data [MRT12] and makes a robust prediction for test data. Three major principles for
statistical learning are: Model, Strategy and Algorithm [Han12].

1. Model

What kind of model will be trained is the first issue the researchers need to consider.
A trained model receives an input X represented in feature space and produces a pre-
diction Y . Let lower-case letters of input and output variables be the values of X and
Y . So an input instance x can be written as in Eq. 1.1

xi = (x(1)i ,x(2)i , ...,x( j)
i , ...,x(n)i ) (1.1)

where x( j)
i denotes the j-th feature in the i-th instance. So the training data is as given

in Eq 1.2
T = {(x1,y1),(x2,y2), ...,(xn,yn)} (1.2)

During supervised learning, the target model may be the potential conditional proba-
bility functions or decision functions. A hypothesis space F can be defined to include
all possible functions. For decision functions:

F = { f |Y = f (X)} (1.3)

Here F is a family of functions determined by a parameter vector θ

F = { f |Y = fθ(X),θ ∈ Rn} (1.4)
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where θ is defined on an n-dimensional Euclidean space Rn.
Similarly, the hypothesis space for conditional probability functions with parameters θ

is
F = {P|Pθ(Y |X),θ ∈ Rn} (1.5)

Inferring the optimal parameters is the purpose of the training.

2. Strategy

Hypothesis space F defines all possible conditional probability functions or decision
functions. Statistical learning aims to identify the optimal model from this space ac-
cording to a certain strategy. Thus, a mechanism needs to be designed to indicate
whether a model produces a good prediction or a bad one.

2.1 Loss Function and Risk Function

Given a sample space X ∈ Rn and a label space Y ∈ R. A random variable X can be
defined as an input taking values in X . The function f (X) yields a random variable
Y as an output taking values in Y . We can define a loss function or cost function
L(Y, f (X)) to measure the errors.
Common loss functions that are widely used in statistical learning include:

1. 0-1 loss function

L(Y, f (X)) =

1, Y 6= f (X)

0, Y = f (X)
(1.6)

2. Quadratic loss function

L(Y, f (X)) = (Y − f (X))2 (1.7)

3. Absolute loss function

L(Y, f (X)) = |Y − f (X)| (1.8)

4. Log-likelihood loss function

L(Y,P(Y |X)) =− logP(Y |X) (1.9)
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The smaller the value of the loss function is, the better will be the model. The input and
output (X ,Y ) are two random variables generated by the joint probability distribution
P(X ,Y ). Thus, the expectation of the loss function is

Rexp( f ) = Ep[L(Y, f (X))] =
∫

X×Y
L(y, f (x))P(x,y)dxdy (1.10)

This is the theoretical loss of model f (X), which is called the risk function or expected
loss [Han12]. The aim is a model with the minimum expected loss. It should be real-
ized that the joint probability distribution P(X ,Y ) is usually unknown. Consequently,
it is necessary to utilize a training set independently and identically distributed samples
drawn from the sample space for minimizing empirical risk.

T = {(x1,y1),(x2,y2), ...,(xn,yn)} (1.11)

Empirical risk Remp is a more realistic measure to indicate the mean loss of a model
trained with the sample of size N (training data set).

Remp( f ) =
1
N

N

∑
i=1

L(yi, f (xi)) (1.12)

The difference between the expected risk Rexp( f ) and the empirical risk Remp( f ) is
that Rexp( f ) indicates the expected loss of a model at the joint probability distribution.
Remp( f ) indicates the mean loss at the sample. Remp will become more and more con-
centrated around Rexp if the sample size is large enough (n→ ∞). Thus, it is intuitive
to use the empirical risk as a proxy to estimate the expected risk. However, the train-
ing sample is finite in the realistic situation, so the estimation of Rexp using Remp is
sometimes not as good as expected unless it is corrected by some means: empirical
risk minimisation or structural risk minimisation.

2.2 Empirical Risk Minimisation and Structural Risk Minimisation

Empirical risk minimisation (ERM) considers a model with the minimum empirical
risk to be the optimal model. According to this strategy, the optimal model can be
identified by

min
f∈F

1
N

N

∑
i=1

L(yi, f (xi)) (1.13)
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where F is the hypothesis space.
ERM works well when the sample size is large. It has been widely used in many
specific situations; maximum likelihood estimation is a good example. However, over-
fitting occurs when the sample size is small, which means the model is too tailored to
the particularities of the training data and generalisation to new data is poor. Structural
risk minimisation (SRM) prevents over-fitting by adding a regulariser or penalty term
that indicates the complexity of the model. SRM is denoted by

Rsrm( f ) =
1
N

N

∑
i=1

L(yi, f (xi))+λJ( f ) (1.14)

where J( f ) is the complexity of the model and a function of hypothesis space F . J( f )

should increase when a model f is more complex and vice versa, which means the
degree of complexity of a model determines the penalty term. λ ≥ 0 is a coefficient
balancing EMP and the penalty term. A model with the minimum structural risk is
usually able to perform well with new data and training data.
Maximum posterior probability (MAP) is a good example of SRM because the model
for MAP is a conditional probability distribution; loss function is a log-likelihood loss
function and the penalty term is a prior probability.
Thus, the optimal model can be identified by

min
f
∈ F

1
N

N

∑
i=1

L(yi, f (xi))+λJ( f ) (1.15)

3. Algorithm

According to the standards described in Strategy, statistical learning could choose the
optimal model from the hypothesis space. The last decision is what kind of algorithm
can be used for the solution. Statistical learning is an optimisation problem. The
problem would be easy if there were an analytic solution. However, analytic solutions
are rare in statistical learning, so numerical analysis is needed to find a solution. How to
make sure that the global optimization can be found effectively becomes an important
problem.
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1.2.4 Evaluation

The most common way to evaluate a classifier is accuracy, which can be defined as:
Given a test data set, accuracy is the ratio between the number of samples correctly
classified and the number of all samples.
As for binary classification, precision and recall are commonly adopted. These two
measures usually consider the class researchers care about as positive class, so there
would be four different cases according to classifiers’ judgement.

• True Positive (TP): A positive sample is classified as positive.

• False Negative (FN): A positive sample is classified as negative.

• False Positive (FP): A negative sample is classified as positive.

• True Negative (TN): A negative sample is classified as negative.

Precision P can be defined as the follows.

P =
T P

T P+FP
(1.16)

Recall R is
R =

T P
T P+FN

(1.17)

F-measure is the harmonic mean of precision and recall. Its parameter β is the weight
assigned to precision over recall.

Fβ = (1+β
2) · P ·R

β2 ·P+R
(1.18)

1.3 Topic Models

Topic analysis is currently gaining popularity and reputation in both machine learning
and its application [LKE08, HER09, MSH08, LLB08]. A topic model is normally de-
fined as a set of approaches for discovering the latent information in a corpus. Ordinar-
ily, the way to model a document is to map this document to a vocabulary, by creating
the matrix of document to word. Each element of the matrix could be weighted by
different schemes. The advantage of this approach is to reduce documents of arbitrary
length to a fixed-length list of numbers. However, these schemes of modelling doc-
uments have the following shortcomings: (i) they can not reveal the inner statistical
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structure of a document and (ii) their potential for reduction for dimensionality of the
matrix is relatively small. Topic models aim to represent documents in a more abstract
way. Imagine the composing process of an article: people can be assumed to have a
few topics in their minds first, then to find the words related to the topics as the second
step. However, the reader will only see the words on the paper rather than the topics
hidden in the author’s mind. Topic models attempt to simulate this process and finally
reveal these hidden topics and their relations to the words.
To the best of our knowledge, the very first topic model presented in [PTRV98], called
Latent Semantic Indexing, makes use of singular value decomposition (SVD) to dis-
cover the semantic information in a corpus. Probabilistic Latent Semantic Indexing
(pLSI) [Hof99] applies probabilistic techniques to analyse co-occurrence data. The
latest refinement is LDA, which is a modification of pLSA.

1.3.1 Mixture Models

In statistics, a mixture model is a probabilistic model for representing the presence
of sub-populations within an overall population, without requiring that an observed
data set should identify the sub-population to which an individual observation belongs
[Din08]. These sub-populations normally refer to the same type of distribution with
different parameters. A multinomial distribution will indicate which sub-population
generates a specific sample. Since the relationship between a sample and its sub-
population is not observable, these indicators are called latent variables.
A straightforward explanation for a mixture model can be tossing coins. Assume that
there are three different coins A, B and C, where the probability of heads p or tails
1− p for each coin is unknown. Our rules for tossing the coins are the following:

1. Toss coin A and observe the result.

2. If the result of coin A is head then toss B, else toss C.

3. Write down the result of B or C and repeat this for a finite number of times.

A sequence of observations like “1101001010...” would be obtained after repeating
this process. Our aim is to identify parameters pA, pB and pC for this model without
knowing everything except for this sequence.
This model can be applied to text modelling as long as the right probability distribution
is chosen for modelling the words. Unlike tossing coins, composing a document using
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a mixture model is more like a process of rolling dice which have hundreds of sides
representing different words and topics. The general idea of this is to replace coins by
the die A, though parameter K, the number of topics, has to be specified initially. The
process of generating a document is the following.

1. Roll A and observe the result (obtain a topic).

2. Roll the corresponding topic die Ti according to the result of step 1.

3. Write down the words generated by the topic dice.

Similarly, our aim is to estimate the probability for each side of the dice.

1.3.2 Parameters Estimation

In statistics, estimation deals with identifying the value of parameters based on empiri-
cal data (observation). For example, an observation of “1110101001” can be generated
by tossing a single coin ten times. The probability of heads p can be estimated by using
Maximum Likelihood Estimators (MLE), which is an easy and common way to iden-
tify parameters without using prior distribution and loss function. MLE chooses as the
estimate of p the value of p that provides the largest value of the likelihood function.
As for this case, suppose that random variables X1, ...,Xn(n = 10) form the observation
from the Bernoulli distribution with parameter p which is unknown (0 ≤ p ≤ 1). For
all observed values x1, ...,xn, where each xi is either 0 or 1, the likelihood function is

fn(x|p) = px1(1− p)1−x2 px2(1− p)1−x2...pxn(1− p)1−xn =
n

∏
i=1

pxi(1− p)1−xi (1.19)

In order to maximise the likelihood function, we need now to solve the derivative
d fn(x|p)/dp equal to zero.
Parameter estimation for mixture models is much more difficult, since mixture models
contain a layer of latent variables which can not be directly observed. Thus, some it-
erative methods such as expectation maximisation (EM), Monte Carlo Markov Chain
(MCMC) and variational inference have been developed to solve this problem. Al-
though these methods are based on different principles, they have a lot in common. In
general, the latent variables will be set to random values initially. Then, an iterative
process will be executed until the latent variables finally converge. However, the final
results are usually not repeatable due to the randomised initial settings. This problem
will be addressed in Section 3.2.2
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1.4 Summary

In this chapter, the need for automating the screening phase in systematic reviews
was discussed. Potential techniques including machine learning and text mining were
introduced. The basic concepts of automatic text classification were presented to show
their potential to reduce the burden to reviewers. However, a few drawbacks of the
BOW model adopted in text classification need to be addressed. The topic model is
believed to solve these problems by generating higher and more abstract features for
documents based on their content.
In the next chapter, more detail about the latest classifiers and topic models will be
introduced.

1.5 Research Aims

The research presented in this thesis aims to explore how topic models could assist the
screening phase powered by automatic text classification in order to construct reviews
of better quality. More specifically, the objectives are:

• To investigate whether topic models can be applied to text classification in sup-
port of the screening phase in systematic reviews;

• To compare the performance of two methods of text classification: one based on
LDA topics and the other employing the BOW model;

• To evaluate the impact of different numbers of topics on topic-based classifica-
tion.
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Chapter 2

Background

Supporting systematic reviews using machine learning and text mining techniques in-
volves two key methods. One is statistical text classification and the other is topic
modelling. As mentioned in the Chapter 1, automatic text classification is able to dra-
matically reduce the burden on reviewers and at the same time maintain high quality
of the reviews. However, the BOW model is usually employed as the representation of
documents and the basis of text classification, which may be problematic. The latest
topic models are an ideal replacement for BOW model since topics are much more
informative for both reviewers and machines.
In Chapter 2, the internal mechanism and theory of these methods will be presented.

2.1 Text Classification

All text classification methods aim at predicting the right label for the documents.
where the labels are a fixed number of pre-defined classes[Joa98]. Classification meth-
ods can be supervised or unsupervised (clustering). This thesis only discusses super-
vised text classification which requires external feedback or labels to accomplish the
training phase of classifiers. In this section, five representative classifiers will be intro-
duced in order to give a comprehensive view of the techniques used in this research.

2.1.1 Perceptron

The perceptron [Ros58] is a linear model for binary classification problems, which
takes the feature space of training instances as input and outputs a binary value (class)
for each instance, namely +1 or -1. The perceptron separates the instances into positive
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and negative by identifying a hyperplane between them. Therefore, a loss function
based on error classification should be minimised by using an optimisation algorithm,
gradient descent in order to identify the hyperplane. The perceptron can be easily
implemented and understood and it is also the basis of neural network and support
vector machines (SVM).

Definition

Assuming the input space (feature space) is X ⊆Rn, the output space is Y = {+1,−1}.
x ∈ X denotes the feature space of instances; correspondingly, y ∈ Y denotes the class
of instances. The input space can be mapped to the output space by the following
function [Han12]

f (x) = sign(w · x+b) (2.1)

where w and b are the parameters of the perceptron, w ∈Rn is weight or weight vector
and b ∈ R is bias. Sign is a signum function which is

sign(x) =

+1, x≥ 0

−1, x < 0
(2.2)

The perceptron has the following geometric meaning: Linear equation 2.3 corresponds
to a hyperplane on the feature space Rn, where w and b denote normal vector and in-
tercept of this hyperplane which separate the feature space into two sub-spaces. Points
(feature vector) within the two sub spaces, therefore, are classified into positive or
negative instances, according to the separating hyperplane, as shown in Figure 2.1.

w · x+b = 0 (2.3)

In using the training data T = {(x1,y1),(x2,y2), ...,(xn,yn)} (feature space and class
of instances), the purpose of the training model is to estimate parameters w and b.

Strategy

A necessary assumption that needs to be made is that the training data set are linearly
separable, which means, given a data set T = {(x1,y1),(x2,y2), ...,(xn,yn)}, a hyper-
plane S, w · xi +b = 0 can completely and correctly separate the positive and negative
instances of T into the two sides of the hyperplane. To be specific, for each instance i

that has yi =+1, w ·x+b > 0 holds. For each instance i that has yi =−1, w ·x+b < 0
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Figure 2.1: Perceptron model

holds.
Assuming that the data set is linearly separable, the hyperplane S is the aim of training
the perceptron. Thus, the training strategy is to identify the loss function and minimise
it. An easy and natural option for loss function is exploiting the number of instances
which are incorrectly classified. However, it is not easy to optimise them since such
a loss function can not be derived on w and b. Another option is employing the dis-
tance from the instances of misclassification to the hyperplane. Thus, the distance from
instance x0 in input space Rn to hyperplane S can be expressed by

1
||w|| |w · x0 +b| (2.4)

where ||w|| is the L2 norm of w. As for the instance (xi,yi) of misclassification,

−yi(w · xi +b)> 0 (2.5)
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holds. Because yi =−1 if w · xi +b > 0, while yi =+1 if w · xi +b < 0. Therefore, the
distance from the instance of misclassification xi to the hyperplane is

− 1
||w||yi(w · xi +b) (2.6)

Suppose that set M is a collection of the instances of misclassification in terms of
hyperplane S, so the aggregate of distances of all instances misclassified is

− 1
||w|| ∑

xi∈M
yi(w · xi +b) (2.7)

Without − 1
||w|| , the loss function Formula 2.8 can be obtained for teaching the percep-

tron, given training data set T .

L(w,b) = ∑
xi∈M

yi(w · xi +b) (2.8)

Obviously, L(w,b) is a non negative function which equals 0 if there is no misclassifi-
cation of instances.

Algorithm

The learning problem of the perceptron has now been transferred to an optimisation
problem in terms of Function 2.8, which can be solved by using stochastic gradient
descent. The problem can be defined by the expression below. Given a training data
set

T = {(x1,y1),(x2,y2), ...,(xn,yn)} (2.9)

where xi ∈ X = Rn, yi ∈ Y = {−1,1}, i = 1,2, ...,n, we aim to estimate the values of
w,b, which, in fact, is the solution of the optimal loss Function 2.10

min
w,b

L(w,b) = ∑
xi∈M

yi(w · xi +b) (2.10)

The process of the perceptron training is driven by misclassification, and uses stochas-
tic gradient descent to minimise target Function 2.10 step by step. The first step is
to randomly choose a hyperplane by initialising the values of w and b randomly. The
minimisation process is choosing one instance in M one time, which enables gradients
of the loss function to drop.
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The gradient is a generalisation of the usual concept of derivative of a function in one
dimension to a function in several dimensions. The gradients of the loss function are
given by ∇wL(w,b) and ∇bL(w,b).

∇wL(w,b) =− ∑
xi∈M

yixi (2.11)

∇bL(w,b) =− ∑
xi∈M

yi (2.12)

Randomly choose an instance (xi,yi) from misclassification set M and update w and b.

w← w+ηyixi (2.13)

b← b+ηyixi (2.14)

where η(0 < η ≤ 1) is step length or learning rate in machine learning, which means
how much the hyperplane would adjust itself in every step. During the iteration, the
value of loss function L(w,b) will become smaller and smaller until it equals zero. The
steps in detail can be given as follows
Input: Training data T = {(x1,y1),(x2,y2), ...,(xn,yn)}; Learning rate η(0 < η≤ 1)
Output: w and b; The perceptron f (x) = sign(w · x+b)

1. Initialise w0 and b0.

2. Choose an instance (xi,yi) from the training data set.

3. If yi(w · xi +b)< 0, update w and b using Formulae 2.13 and 2.14.

4. Start from step 2, until there is no instance that is misclassified.

An intuitive explanation for the perceptron is: the hyperplane would adjust itself more
closely to the instance that is misclassified in order to reduce the distance between
them. After a limited number of iterations, an appropriate position for the hyperplane
will be finally identified if the given training data set is linearly separable. This was
proved by Novikoff in 1963 [Nov63].

2.1.2 K-Nearest Neighbour

K-nearest neighbour (K-NN) [Cov68] is a basic classification and regression model,
but in this thesis we only discuss the classification model. K-NN takes feature vectors
of instances as input, and outputs the classes for instances, which can be considered as
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an instance-based learning algorithm. K-NN classifies a candidate instance according
to the classes of k nearest instances in training data set around this candidate. There-
fore, there is no obvious learning process for K-NN.

Algorithm

The algorithm of K-NN is easy and intuitive. Given training data set T and a candidate
instance i, which class i belongs to depends on the majority of classes of instances
which are the k nearest neighbour to i.
Input: Training data T = {(x1,y1),(x2,y2), ...,(xn,yn)}, where xi ∈ X ⊆ Rn is feature
vector, yi ∈ Y = {c1,c2, ...,cK} is class of instance; Feature vector of candidate in-
stance x

Output: Class of instance x.

1. According to a certain type of measure for distance, identify k nearest training
instances around the candidate x. The neighbourhood for x that covers these
training instances is designated by Nk(x)

2. According to the pre-defined classification rule (for example, majority voting
rule), decide class y for x:

y = argmax
c j

∑
xi∈Nk(x)

I(yi = c j), i = 1,2, ...,N; j = 1,2, ...,K (2.15)

In Formula 2.15, I denotes an indicator function which means if yi = ci, I is 1, other-
wise I is 0. Thus, no training phase is necessary for K-NN since it directly uses the
training data as evidence for classification.

Model

After the training data set, distance measurement (for example, the Euclidean dis-
tance), the value of k and the classification rule (for example, majority voting rule)
are all decided, the class of a new input instance can also be uniquely decided. This
process is actually separating the feature space according to the rules mentioned and
determines which class instances belong to.
This process can be observed more intuitively when k = 1. In feature space, for each
instance xi, the points closer to this instance than others form an area, called cell. Thus,
each training instance would own a cell and each cell is a division of the feature space.
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Figure 2.2: Space division for K-NN (k = 1) using different distance measurements.
Left: Euclidean distance. Right: Manhattan distance.
Source: en.wikipedia.org/wiki/K-nearest neighbors algorithm

When k = 1, the classification rule becomes that using class yi of xi to label the new
instance based in the cell where xi is. Figure 2.2 shows examples of space division in
2-dimensions.

Distance Measurement

The distance between two instances in feature space reflects their similarity. The fea-
ture space for K-NN is normally defined on n-dimensional vector space R, where Eu-
clidean distance is adopted. Besides Euclidean distance, there are other distance mea-
sures which can be used for any specific purpose, such as Lp distance or Minkowski
distance.
Suppose that feature space X ⊆ Rn, xi,x j ∈ X , xi = (x(1)i ,x(2)i , ...,x(n)i ),
x j = (x(1)j ,x(2)j , ...,x(n)j ), the Lp distance between xi and x j is defined as follows:

Lp(xi,x j) =

(
n

∑
l=1
|x(l)i − x(l)j |p

) 1
p

(2.16)

where p≥ 1. If p = 2, it is called Euclidean distance, which is expressed as

L2(xi,x j) =

(
n

∑
l=1
|x(l)i − x(l)j |2

) 1
2

(2.17)
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p = 2
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Figure 2.3: Relationship of Lp distances

If p= 1, it is called Manhattan distance (See the right of Figure 2.2), which is expressed
as

L1(xi,x j) =
n

∑
l=1
|x(l)i − x(l)j | (2.18)

If p = ∞, it is the maximum value of each dimension.

L∞(xi,x j) = max
l
|x(l)i − x(l)j | (2.19)

Figure 2.3 illustrates that, in 2-dimension space, the Lp distance from the origin point
to the points that make Lp = 1

Choosing the value of k

Varying the value of k would have a significant impact on the performance of K-NN.
If a small value is selected for k, the approximation error is reduced. However, a
drawback is that this will make prediction really sensitive to its neighbour instances,
which means the results could be easily influenced by noise. More specifically, a small
k value means the model becomes more complicated and the over-fitting problem is
more likely to occur.
Using a bigger value of k would reduce the estimation error, but it increases the approx-
imation error, which becomes a trade-off problem. Thus, in a particular application, k
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usually starts with a small value and then cross-validation is used for choosing the best
value for k.

Classification Rule

The majority voting rule is the most common classification rule used in K-NN. The
majority of k neighbour instances would determine the class of the candidate instance.
Majority voting can be expressed as follows: if the loss function of classification is 0-1
loss function, the classification function is

f : Rn→{c1,c2, ...,cK} (2.20)

Then, the probability of misclassification is

P(Y 6= f (X)) = 1−P(Y = f (X)) (2.21)

Given an instance x ∈ X , Nk(x) denotes k nearest neighbour instances of x. Thus, the
rate of misclassification is

1
k ∑

xi∈Nk(x)
I(yi 6= c j) = 1− 1

k ∑
xi∈Nk(x)

I(yi = c j) (2.22)

Our aim is to minimise Formula 2.22 (i.e. empirical risk), in other words, maximise
1
k ∑xi∈Nk(x) I(yi = c j). Henceforth, majority voting is the same as the minimisation of
empirical risk.

2.1.3 Naive Bayes

The Naive Bayes classifier (NBC) is based on applying Bayes’ theorem [DS02] with
strong independence assumptions between the features. Given a training data set, NBC
first learns the joint probability of input and output, according to independence as-
sumptions. Then, based on the model, NBC would output class y with the maximum
posterior using Bayes’ theorem. NBC can be easily implemented and maintain high
efficiency of learning and prediction so that it has been widely used in machine learn-
ing.
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Basic Method

Assume that input space X ⊆Rn is a set of n-dimension vector space. The output space
is a set of labels Y = {c1,c2, ...,cK}. An input for NBC is a feature vector x ∈ X and
the corresponding output is a label y ∈ Y . X is a random variable defined at the input
space X , similarly, Y is a random variable defined at the output space X . P(X ,Y ) is the
joint probability of X and Y . Thus, the instances in training data set

T = {(x1,y1),(x2,y2), ...,(xn,yn)} (2.23)

are i.i.d at P(X ,Y ).
NBC learns the joint probability distribution P(X ,Y ), according to the training data.
More specifically, it learns it by first looking at the following prior distribution and the
conditional distribution. The prior distribution is

P(Y = ck), k = 1,2,3, ...,K (2.24)

The conditional distribution is

P(X = x|Y = ck) =P(X (1) = x(1),X (2) = x(2), ...,X (n) = x(n)|Y = ck), k = 1,2,3, ...,K
(2.25)

The quantity of parameters for the conditional distribution can be exponential if each
instance is sampled from different distributions. This is the reason why the independent
assumption is necessary and why this model is naive. Specifically, the assumption can
be expressed as follows

P(X = x|Y = ck) = P(X (1) = x(1), ...,X (n) = x(n)|Y = ck)

=
n

∏
j=1

P(X ( j) = x( j)|Y = ck)
(2.26)

In fact, NBC learns the mechanism of generating samples, which makes it a generative
model. The independence assumption means the features that are used for classifica-
tion are all independent and identically distributed. This would makes NBC easy, but
sometimes accuracy is the cost of this advantage.
Given an input x, NBC would output the posterior probability P(Y = ck|X = x) ac-
cording to the model that it learned before. Then, the class with the highest posterior
probability will be assigned to x as its final prediction. The posterior probability can
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be computed according to Bayes’ theorem.

P(Y = ck|X = x) =
P(X = x|Y = ck)P(Y = ck)

∑k P(X = x|Y = ck)P(Y = ck)
(2.27)

Inserting Formula 2.34 into Formula 2.27, we have

P(Y = ck|X = x) =
P(Y = ck)∏ j P(X ( j) = x( j)|Y = ck)

∑k P(Y = ck)∏ j P(X ( j) = x( j)|Y = ck)
, k = 1,2, ...,K (2.28)

which is the basic formula for NBC. Thus, NBC can be expressed as follows

y = f (x) = argmax
ck

P(Y = ck)∏ j P(X ( j) = x( j)|Y = ck)

∑k P(Y = ck)∏ j P(X ( j) = x( j)|Y = ck)
, k = 1,2, ...,K (2.29)

Notice that in Formula 2.29, the denominators for each ck are the same so that this
formula can be simplified as follows

y = argmax
ck

P(Y = ck)∏
j

P(X ( j) = x( j)|Y = ck) (2.30)

NBC assigns the class with the highest posterior probability to the candidate instance,
which equals the minimisation of expectation risk. Assume the 0-1 loss function is
selected,

L(Y, f (X)) =

1, Y 6= f (X)

0, Y = f (X)
(2.31)

where f (x) is the decision function. The expectation risk function is

Rexp( f ) = E[L(Y, f (x))] (2.32)

where the expectation is for the joint probability distribution P(X ,Y ). Thus, we have

Rexp( f ) = EX

K

∑
k=1

[L(ck, f (X))]P(ck|X) (2.33)
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In order to minimise the expectation risk, all we need to do is minimise X = x one by
one, thus, we have

f (x) = argmin
y∈Y

K

∑
k=1

L(ck,y)P(ck|X = x)

= argmin
y∈Y

K

∑
k=1

P(y 6= ck|X = x)

= argmin
y∈Y

(1−P(y = ck|X = x))

= argmax
y∈Y

P(y = ck|X = x)

(2.34)

By performing the transformation, the minimisation of the expectation risk becomes
the maximisation of posterior probability that is adopted by NBC.

f (x) = argmax
y∈Y

P(y = ck|X = x) (2.35)

Maximum-likelihood Estimation

In NBC, the process of teaching a model means the estimation of P(Y = ck) and
P(X ( j) = x( j)|Y = ck) can be performed by using Maximum-likelihood Estimation
(MLE). The maximum likelihood of prior probability P(Y = ck) is

P(Y = ck) =
∑

N
i=1 I(yi = ck)

N
k = 1,2, ...,K (2.36)

Assume the set a j1,a j2, ...,a jS j is the possible values for the jth feature x( j). The max-
imum likelihood of the conditional probability P(X ( j) = a( jl)|Y = ck) is

P(X ( j) = a( jl)|Y = ck) =
∑

N
i=1 I(x( j)

i = a jl,yi = ck)

∑
N
i=1 I(yi = ck)

j = 1,2, ...,n; l = 1,2, ...,S j; k = 1,2, ...,K

(2.37)

where x( j)
i is the jth feature of the ith instance; a jl is the lth value that can be assigned

to jth feature; I is the indicator function.

36



Algorithm

The learning and classification algorithm of NBC is given below.
Input: Training data T = {(x1,y1),(x2,y2), ...,(xn,yn)}.
Output: The class of instance x

1. Compute the prior probability as well as the conditional probability using For-
mulae 2.36 and 2.37

2. As for the given instance x = (x(1),x(2), ...,x(n)), compute

P(Y = ck)
n

∏
j=1

P(X ( j) = x( j)|Y = ck), k = 1,2, ...,K (2.38)

3. Output the class of instance x,

y = argmax
ck

P(Y = ck)
n

∏
j=1

P(X ( j) = x( j)|Y = ck) (2.39)

2.1.4 Support Vector Machines

Support Vector Machines (SVM) are classifiers that deal with the binary classification
problem [CV95]. The basic model of SVM aims to find the maximum-margin hy-
perplanes, which makes it different from the perceptron. Kernel tricks are also another
important aspect for SVM. Kernels enable SVM to deal with non-linear problems. The
learning strategy of SVM is maximising the margin of hyperplanes.
The algorithms for developing a SVM can be introduced from the simplest to the most
complicated: linear support vector machine in linearly separable case, linear support
vector machine and non-linear support vector machine. The simplest one can be con-
sidered as the basis of the more complex models. If the training data is linearly sepa-
rable, hard margin maximisation can be applied. If the training data is nearly linearly
separable, soft margin maximisation would be applied. If the training data is not lin-
early separable, SVM would employ kernel functions and soft margin maximisation.

Support Vector Machine and Hard Margin Maximisation

We consider that this is a binary classification problem and assume the input space and
the feature space are two different spaces. Input space can be a Euclidean space or a
discrete set while feature space can be a Euclidean space or a Hilbert space. Linear
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SVMs in linearly separable cases assume the elements in these two spaces are one-
to-one corresponded and map the inputs to the feature space. Non-linear SVMs map
these elements from input space to feature space by using a non-linear function.
Given a training data set

T = {(x1,y1),(x2,y2), ...,(xN ,yN)} (2.40)

the linearly separable assumption for the training data set is also required. Our aim is
to identify a hyperplane in the feature space, which is able to separate the instance in
training data correctly. The hyperplane can be defined as w · x+ b = 0, where w is a
normal vector and b is intercept. Normally, if the training data set is linearly separa-
ble, there can be an infinite number of separating hyperplanes. The perceptron utilizes
the minimisation of misclassification to identify the hyperplane that has infinite pos-
sibilities. However, linear SVMs for linear separable data employ different strategies,
maximum margin, which produce a unique separating hyperplane.
Therefore, given a training data set, the model using maximum margin strategy to iden-
tify the unique hyperplane w? · x+ b? = 0 and the decision function f (x) = sign(w? ·
x+b?) is called a linear SVM in linear separable data.
Figure 2.4 demonstrates a binary classification problem in 2-dimension space, where

circles stand for positive instances and crosses are negative instances. The training
data seems to be linearly separable, while there are many possible lines that can cor-
rectly separate the instances. However, SVM would not only identify the separating
hyperplane, but it can also find the unique one with the maximum margin.

Margin and Geometry Margin

In Figure 2.4 points A,B and C stand for three instances and they are all positive.
Notice that point C is much further away from the separating hyperplane than the
points B and A. This is to say, it would have more confidence to predict C as a positive
instance, compared to B and A. As B is located between A and C, the confidence of it
being a positive instance is bigger than A and smaller than C. Generally, the distance
of an instance to the separating hyperplane can be considered as the confidence of
the prediction. Assuming the hyperplane w · x+ b = 0 is known, |w · x+ b| is able to
relatively represent the distance of x from the hyperplane. Whether w ·x+b is positive
or negative can be used for indicating if the prediction is correct. Thus, the quantity
y(w · x+b) means if a prediction is correct and how correct (confident) it is, which, in
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Figure 2.4: Binary classification problem

fact, is the concept of functional margin.
For the training data set T and the separating hyperplane (w,b), the functional margin
in terms of (w,b) and instance (xi,yi) is defined by

γ̂i = yi(w · xi +b) (2.41)

Also, the functional margin can be defined by the distance of the closest instance in the
training data set T to the separating hyperplane (w,b), which is

γ̂ = min
i=1,2,...,N

γ̂i (2.42)

The functional margin is able to indicate correctness and confidence. In contrast, using
only the functional margin is not enough to identify the unique separating hyperplane,
because the proportionate changing of w and b, for example, changing w and b to
2w and 2b, would have no impact on the hyperplane, although the functional margin
becomes twice as big. This fact tells us that it is necessary to apply a constraint to w

such as ||w||= 1, which would identify the margin. This makes the functional margin

39



Figure 2.5: Geometric margin

become geometric margin.
Figure 2.5 demonstrates the norm vector w of (w,b). Point A stands for instance xi and
the class is yi =+1. The distance of A to (w,b) is given by segment AB, noted as γi.

γi =
w
||w|| · xi +

b
||w|| (2.43)

This is the case when point A is located on the positive side of the hyperplane. If A is
located at the other side (yi =−1), the distance is

γi =−
[

w
||w|| · xi +

b
||w||

]
(2.44)

Generally, the distance between an instance and the hyperplane is expressed as fol-
lows:

γi = yi

[
w
||w|| · xi +

b
||w||

]
(2.45)
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Maximising Margin

The basic idea of the SVM is to seek a unique hyperplane that can separate instances
correctly and maximise the margin. For a linearly separable data set, there can be an
infinite number of separating hyperplanes. However, only one hyperplane correctly
separates instances with maximum margin. An intuitive explanation for maximising
margin is: the hyperplane with maximum margin usually has high confidence to clas-
sify instances. This is to say, the hyperplane not only separates instances, but also the
most difficult instances (points close to the hyperplane) are separated with relatively
high confidence. Such a hyperplane should have a strong classification performance
for the unknown instances.
Now, the method of how to identify a hyperplane with maximum geometric margin
will be introduced. More specifically, this problem can be expressed as the following
optimisation issue with constraints.

max
w,b

γ

s.t. yi

[
w
||w|| · xi +

b
||w||

]
≥ γ, i = 1,2, ...,N

(2.46)

The mathematical description above can be interpreted as: we are going to maximise
γ what is the geometric margin in terms of hyperplane (w,b). The constraint is that
the geometric margin of hyperplane (w,b) in terms of each training instance should at
least equal γ. The problem can be modified as follows, according to the relationship
between the geometric and functional margins.

max
w,b

γ̂

||w||γ

s.t. yi(w · xi +b)≥ γ̂, i = 1,2, ...,N
(2.47)

The value of γ̂ does not really affect the solution of the optimisation. In fact, if we
change w and b proportionally as λw and λb, the functional margin would also become
λγ̂ so that we can set γ̂ = 1. Inserting γ̂ = 1 to the optimisation problem above, we have

min
w,b

1
2
||w||2

s.t. yi(w · xi +b)−1≥ 0, i = 1,2, ...,N
(2.48)
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which is a convex quadratic programming problem. Further explanation of how to
solve this problem and the proof of uniqueness and existence of hyperplanes will not be
presented here. Generally, a convex quadratic programming problem can be changed
into a dual problem according to Lagrange duality, then, finding the solution using the
dual algorithm.
The solution w?, b? allows us to identify the separating hyperplane w? · x+b? = 0 and
the decision function f (x) = sign(w? · x+b?), which is the linear SVM in the linearly
separable case.

Algorithm

Input: The linearly separable training data set T = {(x1,y1),(x2,y2), ...,(xN ,yN)}
Output: The separating hyperplane with maximum margin and the decision function.

1. Build the constrained optimisation problem 2.48 and find the optimal solution
w?, b?.

2. Obtain the separating hyperplane w? · x+ b? = 0 and decision function f (x) =

sign(w? · x+b?).

Linear Support Vector Machines and Soft Margin Maximisation

The learning strategy for linear problems is not applicable to a data set which is not
linearly separable. The methods to deal with the non-linear problem include kernel
tricks and soft margin maximisation. The latter will be introduced in this section,
while the kernel tricks will be discussed in the next section.
Assuming there is a given training data set

T = {(x1,y1),(x2,y2), ...,(xN ,yN)} (2.49)

where xi ∈ X = Rn, yi ∈ Y = {+1,−1}, i = 1,2, ...,N, xi stands for the ith feature
vector, yi stands for the class of xi. Another assumption is that our training data set T

is not linearly separable any more, containing some noisy points. This is to say, these
noisy points (xi,yi) can not allow the function margin to equal or be greater than 1. In
order to solve this issue, a slack variable ξi ≥ 0 is introduced for each instance so that
the function margin can be greater than 1 after adding a slack variable. This makes the
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constraint as follows:
yi(w · xi +b)≥ 1−ξi (2.50)

Meanwhile, the original target function 1
2 ||w||2 becomes

1
2
||w||2 +C

N

∑
i=1

ξi (2.51)

where C > 0 is a penalty function determined by particular applications. Formula 2.51
includes two different meanings: (1) Minimise 1

2 ||w||2 as much as possible (maximis-
ing margin), (2) meanwhile, keep the instances that could be misclassified as few as
possible. C is a coefficient.
So the learning process for the data set that is not linearly separable becomes a convex
quadratic programming problem again.

min
w,b

1
2
||w||2 +C

N

∑
i=1

ξi

s.t. yi(w · xi +b)≥ 1−ξi, i = 1,2, ...,N

ξi ≥ 0, i = 1,2, ...,N

(2.52)

By transferring 2.52 to a Lagrangian dual problem, the hyperplane w? · x+b? = 0 and
the decision function f (x) = sign(w? · x+b?) can be identified.

2.1.5 Non-linear Support Vector Machine

Linear classifiers are quite effective for linear classification problems. However, non-
linear problems may need more complicated models which mainly apply kernel tricks.
Non-linear problems can be defined such that the instances will be correctly classified
by using a non-linear model. As shown in Figure 2.6, “·” represents the positive in-
stance and “×” represents the negative. It is obvious that there is no such line which
is able to correctly separate the positive and negative instances. However, they can be
separated by an ellipse (non-linear model).
Generally, given a training dataset T = {(x1,y1),(x2,y2), ...,(xn,yn)}, where xi ∈ X =

Rn, the corresponding label has two classes yi ∈ Y = Rn, i = 1,2, ...,N. If there is a
hypersurface which is able to separate the instances correctly, this kind of problem can
be defined as a non-linearly separable problem.
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It is quite difficult to solve a non-linear problem. However, we can transform a non-
linear problem into a linear problem by applying a non-linear transformation so that
solving the linear problem is equivalent to solving the original non-linear problem.
Assuming that the original space is X ⊂ R2,x = (x(1),x(2)) ∈ X , the new space is
Z ⊂R2,z= (z(1),z(2))∈Z. Define a mapping (transformation) from the original space
to the new space as follows:

z = φ(x) = ((x(1))2,(x(2))2)T (2.53)

The original space X ⊂ R2 is transferred to the new space Z ⊂ R2 as well as the
instances and the ellipse using the mapping (2.53). So the ellipse in the original space

w1(x(1))2 +w2(x(2))2 +b = 0 (2.54)

becomes a line in the new space:

w1z(1)+w2z(2)+b = 0 (2.55)

In the new space, line w1z(1)+w2z(2)+ b = 0 is capable of separating the instances
correctly, which makes a non-linear problem become a linear one.
According to the description above, the kernel trick follows the same principle and
contains two general steps: firstly, a mapping needs to be identified in order to transfer
the data from the original space to the new space; secondly, the classifier can be taught
in the new space using the learning strategy for the linear model.
When kernel tricks are applied to SVMs, the basic idea is to transfer an input space
(Euclidean space Rn) to a corresponding feature space (Hilbert space H ) so that a
hypersurface in the input space Rn will correspond to a hyperplane in the feature space
H . Therefore, the final model can be trained by solving the linear support vector
machine in the feature space.

Kernel Functions

Definition of Kernel Function

Assume that X is the input space and H is the feature space. Suppose there exists a
mapping from X to H

φ(x) : X −→H (2.56)
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Figure 2.6: Non-linear problems

such that for all x,z ∈ X , function K(x,z) satisfies

K(x,z) = φ(x) ·φ(z) (2.57)

K(x,z) is called the kernel function, where φ(x) is the mapping function and φ(x) ·φ(z)
is the inner product of φ(x) and φ(z). The idea of kernel tricks is that, during the
learning process, only K(x,z) will be defined instead of φ since K(x,z) is much easier
to compute than using φ(x) and φ(z).
A linear SVM is usually solved by solving its dual problem. Recalling Formula 2.52
which is the primal problem, the dual problem can be given as follows according to
Lagrange duality.

min
a

1
2

N

∑
i=1

N

∑
j=1

αiα jyiy j(xi · x j)−
N

∑
i=1

αi

s.t.
N

∑
i

αiyi = 0

0≤ αi ≤C, i = 1,2, ...,N

(2.58)

It can be noticed that 2.58 only involves the inner product of the instances so that the
inner production xi · x j in 2.58 can be replaced by K(xi,x j) = φ(xi) ·φ(x j).

W (α) =
1
2

N

∑
i=1

N

∑
j=1

αiα jyiy jK(xi,x j)−
N

∑
i=1

αi (2.59)
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This equals to transferring the inputs to a new feature space using φ. More specifically,
it replaces xi · x j in the input space with φ(xi) ·φ(x j). This guarantees that a non-linear
classification model will be obtained, as long as the mapping function φ is non-linear.

Common Kernel Functions

The kernel functions used in this study will be given as follows:

• Polynomial kernel function

K(x,z) = (x · z+1)p (2.60)

Decision function

f (x) = sign

[
Ns

∑
i=1

α
?
i yi(xi · x+1)p +b?

]
(2.61)

• Gaussian kernel function (Radial basis function)

K(x,z) = exp{−‖x− z‖2

2σ2 } (2.62)

Decision function

f (x) = sign

[
Ns

∑
i=1

a?i yiexp
[
−‖x− z‖2

2σ2

]
+b?

]
(2.63)

Algorithm

Input: The training data T = {(x1,y1),(x2,y2), ...,(xn,yn)}, where xi ∈ X = Rn, yi ∈
Y =−1,+1, i = 1,2, ...,N.
Output:The decision function.

1. Choose the appropriate kernel function K(x,z) and C, create the optimisation
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problem.

min
a

1
2

N

∑
i=1

N

∑
j=1

αiα jyiy j(xi · x j)−
N

∑
i=1

αi

s.t.
N

∑
i

αiyi = 0

0≤ αi ≤C, i = 1,2, ...,N

(2.64)

Find the optimal solution α? = (α?
1,α

?
2, ...,α

?
n)

2. Calculate b? = y j−∑
N
i=1 α?

i yiK(xi · x j)

3. Build the decision function:

f (x) = sign

[
N

∑
i=1

α
?
i yiK(x · xi)+b?

]
(2.65)

2.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) was proposed in 2003 [BNJ03], which was the first
topic model presented in the form of graphic model. LDA considers that a document
or article contains a mixture of various topics. This is similar to probabilistic latent
semantic analysis (pLSA). However, a Dirichlet prior has been used in LDA for topics
which produces a more reasonable mixture of topics in a document. A typical way
to develop a LDA model for a collection of documents is to, firstly, set the number
of topics K. Secondly, as LDA is an unsupervised model, it only requires a collec-
tion of documents without any external labels. By using a complicated process of
estimation, the topic proportion of each document and the topics will be finally pre-
sented. Figure 2.7 demonstrates how a topic model works for a document. LDA would
discover the inner relationship among words and summarise the documents using the
relationship. A topic is actually a cluster of ranked words, where the rank represents
the correlation between a word and a topic. So it is quite common to see words that
have similar meaning appearing in the same topic (See Figure 2.7).
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Figure 2.7: Topic model

2.2.1 Generative Process

LDA as a generative model assumes that a document covers a number of topics, and
each word in a document is sampled from the probability distributions with different
parameters, so each word would be generated with a latent variable to indicate the
distribution it comes from. By computing the extent to which each topic is represented
in a document, the content of the document can be represented at a higher level, i.e. as
a set of topics. The process can be defined by a graphical model (Figure 2.8). Thus,
the following steps of generating a document ~w in a corpus D can be given, according
to Figure 2.8, while Table 2.2.1 lists all the involved notation.

• Choose K topics φ∼ Dir(~β)

• Choose topics proportion~θm ∼ Dir(~α)

• Choose a document length Nm ∼ Poisson(ξ)

• For each word wn in document m:

1. Choose a topic zn,m ∼Multinomial(~θm)

2. Choose a word wn,m from p(wn,m|~φzn,m ,
~θm) , a multinomial probability con-

ditioned on the topic zn.

The hyperparameters ~α and~β are the parameters of the prior probability distributions
which facilitate calculation. The hyperparameters can be initialised as constant values.
They may also be considered as hidden variables which require estimation. The joint
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Figure 2.8: Graphic Model: Latent Dirichlet Allocation

probability, i.e. the complete-data likelihood of a document, can be specified [Hei05].

p(~wm,~zm,~θm,φ;~α,~β) =

one document︷ ︸︸ ︷
Nm

∏
n=1

p(wn,m|~φzn,m)p(zn,m|~θ)︸ ︷︷ ︸
words in document

·p(~θm|~α) · p(φ|~β)︸ ︷︷ ︸
topics

(2.66)

Table 2.1: Notation in LDA
K number of topics
~α hyperparameter on document-topic distribution
~β hyperparameter on topics-word distribution
~θm a set of parameter vectors for generating a specific topic z in document m
φ a set of parameter vectors for generating word w, according to z
wn,m nth word in document m
zn,m topic indicator for nth word in document m

This is the basis of many other derivations. So the likelihood of a document ~wm

is obtained, which is one of its marginal distributions by integrating~θm and φ out and
summing over zm,n

p(~wm|~α,~β) =
∫∫

p(~θm|~α)p(φ|~β) ·
Nm

∏
n=1

∑
zm,n

p(wm,n|~φzn,m)p(zm,n|~θm)dφd~θm(2.67)

=
∫∫

p(~θm|~α)p(φ|~β) ·
Nm

∏
n=1

p(wm,n|~φzn,m)dφd~θm (2.68)
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Finally, the probability of a corpus is the production of the likelihoods of the indepen-
dent documents.

p(D|~α,~β) =
M

∏
m=1

p(~wm|~α,~β) (2.69)

2.2.2 Parameters Estimation

The exact inference for LDA is usually intractable. However, this issue can be solved
by using approxiamte inference algorithms such as mean-field variational expectation
maximisation [BNJ03], expectation propagation [ML02] and Gibbs sampling [Gri02,
GS04, PSD00]. Here we introduce Gibbs sampling which is a special case of Markov-
chain Monte Carlo (MCMC) [KL51] simulation, because it is a relatively simple algo-
rithm for approximate inference in high-dimensional models such as LDA.
Gibbs sampling can be applied when there are at least two dimensions of dataset X , i.e.
each point x is really x = [x1,x2, ...,xk], with k > 1. A Gibbs sampler is able to gener-
ate samples for those unobservable variables, where each sample depends on the other
k−1 dimensions. By repeating the sampling process T times, the accuracy of samples
increases step by step and finally converges to stable state. The general process of a
Gibbs simpler [Hei05] works as follows:

• Randomise values for x(0) = [x(0)1 ,x(0)2 , ...,x(0)k ] as the initial state.

• For t = 1...T

– For i = 1...k, samping x(t+1)
i according to the following distribution:

P(xi|z(t+1)
1 , ...z(t+1)

i−1 ,z(t)i+1, ...,z
(t)
k ) =

P(z(t+1)
1 , ...z(t+1)

i−1 ,z(t)i ,z(t)i+1, ...,z
(t)
k )

P(z(t+1)
1 , ...z(t+1)

i−1 ,z(t)i+1, ...,z
(t)
k )

(2.70)

Using Equation 2.70, the new value for every variable is sampled according to its
distribution based on all the other variables. Take an example of three variables:

• The new value for x1 is sampled conditional on the old values of x2 and x3

• The new value for x2 is sampled conditional on the new value of x1 and the old
value of x3

• The new value for x3 is sampled conditional on the new values of x1 and x2
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The univariate conditionals or full conditionals p(xi|~x¬i) have to be found in order to
build a Gibbs sampler, using:

p(xi|~x¬i) =
p(x)

p(~x¬i)
=

p(~x)∫
p(~x)dxi

(2.71)

where ~x = [xi,~x¬i] and ~x¬i = [x1,x2, ....,xi−1,xi+1,xi+2, ...,xn]. For models like LDA
that contain hidden variables~z, the posterior is the target distribution given evidence
p(~z|~x). With Eq. 2.71, the general formulation of a Gibbs sampler for such latent-
variable models is given as follows

p(zi|~z¬i,~x) =
p(~z,~x)

p(~z¬i|~x)
=

p(~z,~x)∫
Z p(~z,~x)dzi

(2.72)

where the integral changes to a sum for discrete variables.
Building a Gibbs sampler for LDA follows similar methods to those. The hidden vari-
ables in LDA are zm,n, which is the topic indicator for word wm,n. The parameter sets
φ and θ can be integrated out, since the conjugate distinctions are used in LDA. This
technique is called “collapsed” [Nea00],which dramatically facilitates the computing
of Gibbs sampler. The target of inference is the distribution p(~z|~w), which is propor-
tional to the joint distribution

p(~z|~w) = p(~z,~w)
p(~w)

=
∏

W
i=1 p(zi,wi)

∏
W
i=1 ∑

K
k=1 p(zi = k,wi)

(2.73)

The hyperparameters~α and~β are omitted here. Of course, they can still be considered
as hidden variables for the other applications. Notice that the denominator Eq. 2.73
is hard to evaluate, where the Gibbs sampler would play a significant role. In this
case, the desired Gibbs sampler performs a Markov chain that uses the full conditional
p(zi|~z¬i,~w) in order to simulate p(~z|~w). In order to obtain full conditional p(zi|~z¬i,~w),
we need to factorise the following joint distribution in LDA.

p(~w,~z|~α,~β) = p(~w|~z,~β)p(~z|~α) (2.74)

As the first and second terms are independent of each other, both elements of the joint
distribution can be handled separately. By utilising K-dimension Dirichlet-multinomial
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conjugation, the target distribution p(~w|~z,~β) can be simply obtained

p(~w|~z,~β) =
K

∏
z=1

∆(~nz +~β)

∆(~β)
, ~nz = [n(t)z ]Vt=1 (2.75)

where the notation n(t)z denotes the number of times that term t has been observed with
topic z.
A similar principle can be applied to the topic distribution p(~z|~α), so we have

p(~z|~α) =
M

∏
m=1

∆(~nm +~α)

∆(~α)
, ~nm = [n(k)m ]Kk=1 (2.76)

The joint distribution therefore becomes:

p(~z,~w|~α,~β) =
K

∏
z=1

∆(~nz +~β)

∆(~β)
·

M

∏
m=1

∆(~nm +~α)

∆(~α)
(2.77)

The full conditional distribution, i.e. the updating equation from which the Gibbs
sampler generates samples, can now be derived from the joint distribution 2.77 with
index i = (m,n).

p(zi = k|~z¬i,~w) =
p(~w,~z)

p(~w,~z¬i)
(2.78)

=
p(~w|~z)

p(~w¬i|~z¬i)p(wi)
· p(~z)

p(~z¬i)
(2.79)

∝
∆(~nz +~β)

∆(~nz,¬i +~β)
· ∆(~nm +~α)

∆(~nm,¬i +~α)
(2.80)

∝
Γ(n(t)k +βt)Γ(∑

V
t=1 n(t)k,¬i +βt)

Γ(n(t)k,¬i +βt)Γ(∑
V
t=1 n(t)k +βt)

· (2.81)

Γ(n(k)m +αk)Γ(∑
K
k=1 n(k)m,¬i +αk)

Γ(n(k)m,¬i +αk)Γ(∑
K
k=1 n(k)m +αk)

(2.82)

∝
n(t)k,¬i +βt

∑
V
t=1 n(t)k,¬i +βt

·
n(k)m,¬i +αk

∑
K
k=1 n(k)m +αk

(2.83)
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where the count n(·)·,¬i denotes that the word i is excluded from the corresponding doc-
ument m or topic k and the property of Gamma function 1 is used in transformation 2

from Eq. 2.82 to Eq. 2.83.
Finally, applying Bayes’s law to the distributions p(~w|~z,φ) and p(~z|θ), the multinomial
parameter sets θ and φ can be obtained according to their definitions as multinomial
distribution with Dirichlet prior.

p(~θm|~w,~z,~α) =
1

Zθm

Nm

∏
n=1

p(zm,n|~θm)p(~θm|~α) = Dir(~θm|~nm +~α) (2.84)

p(~φk|~w,~z,~β) =
1

Zφk
∏

i:zi=k
p(wi|~φk)p(~φk|~β) = Dir(~φk|~nk +~β) (2.85)

where ~nm = 〈n(1)m ,n(2)m , ...,n(K)
m 〉 and ~nk = 〈n(1)k ,n(2)k , ...,n(V )

k 〉. Using the exception of
the Dirichlet distribution, 〈Dir(~α)〉= ai

∑i ai
in Eq. 2.84 and Eq. 2.85 yields:

φk,t =
n(t)k +βt

∑
V
t=1 n(t)k +βt

(2.86)

θm,k =
n(k)m +αk

∑
K
k=1 n(k)m +αk

(2.87)

2.2.3 Algorithm

So far, three most important equations (Eq. 2.83, Eq. 2.86 and Eq. 2.87) have been ob-
tained for the final algorithm of the Gibbs sampler. The procedure itself only processes
five data structures. The first and second ones are count variables n(z)m and n(t)z which
can be considered as the elements of two matrices. One has M×K dimensions and
the other has K×V dimensions. The third and fourth ones are their row sums nm and
nz with dimensions M and K respectively. The last one is the state variable zm,n with
dimension W . Here the pseudo codes for the Gibbs sampler are given below:
Input: T The number of iterations; K The number of topics; The document collection
D.
Output: Document-topic co-occurrence matrix φ and Topic-word co-occurrence ma-
trix θ.

1Γ(x+1) = xΓ(x)
2The hyperparameters~α and~β are also omitted here.
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1. Zero all count variables, n(k)m , nm, n(t)k and nk.

2. For each document m in corpus D:

(a) For each word in m:

• Assign a random topic to word zm,n = k Mult(1/K).

• n(k)m = n(k)m +1.

• nm = nm +1.

• n(t)k = n(t)k +1.

• nk = nk +1.

3. For i = 0 to T :

(a) For each document m in corpus D:

i. For each word t in m:

• For the current assignment k to a word t. Perform n(k)m = n(k)m −1;
nm = nm−1; n(t)k = n(t)k −1; nk = nk−1.

• sampling ~p using Eq. 2.83. Generate new topic k̂ for current word
t using parameter set ~p.

• Perform n(k̂)m = n(k̂)m +1; nm = nm +1; n(t)
k̂

= n(t)
k̂

+1; nk̂ = nk̂ +1.

4. Computing parameter set φ and θ, according to Eq. 2.86 and Eq. 2.87.

2.3 Related Works

Besides LDA, there are many other approaches for discovering abstract information
from a corpus. Latent Semantic Analysis [BDO95] makes use of singular value decom-
position (SVD) to discover the semantic information in a corpus, SVD is a factorisation
of matrix which has many applications in statistics and signal processing. Unlike other
topic models producing results, an approach [LM14] based on the anchor-word algo-
rithm [AGM12] provides an efficient and visual way for topic discovery. This method
first reduces the dimensions of words co-occurrence matrix to 2 or 3, then identifies the
convex hull of these words, which can be considered as a rubber band holding these
words. The words at anchor points are considered as topics.
Automatic text classification for systematic reviews has been investigated by Bekhuis
et al. [BDF10] who focused on using supervised machine learning to assist with the
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screening phase. Octaviano et al. [OFMF15] combined two different features, i.e. con-
tent and citation relationship between the studies, to automate the selection phase as
much as possible. Their strategy reduced workload by 58.2%. Cohen et al. [Coh08]
compared different feature representations for supervised classifiers. They concluded
that the best feature set used a combination of n-grams and MeSH (Medical Subject
Headings)3 features. Felizardo et al. developed a visual text mining tool that inte-
grated many text mining functions for systematic reviews and evaluated the tool with
15 graduate students [FSM13]. The results showed that the use of the tool is promising
in terms of screening burden reduction. Fiszman et al. [FBS+10] combined symbolic
semantic processing with statistical methods for selecting both relevant and high qual-
ity citations. Frimza et al. [FIM10] introduced a per-question classification method that
uses an ensemble of classifiers that exploit the particular protocol used in creating the
systematic review. Jonnalagadda et al. [JP13] described a semi-automatic system that
requires human intervention. They successfully reduced the number of articles that
needed to be reviewed by 6% to 30% while maintaining a recall performance of 95%.
Matwin et al. [MKI+10] exploited a factorised complement naive Bayes classifier for
reducing the workload of experts reviewing journal articles for building systematic re-
views of drug class efficacy. The minimum and maximum workload reduction was
8.5% and 62.2% respectively, and the average over 15 topics was 33.5%. Wallace et
al. [WTL+10] showed that active learning has the potential to reduce the workload of
the screening phase by 50% on average. Cohen et al. [CWPY06] constructed a voting
perceptron-based automated citation classification system which is able to reduce the
number of articles that need to be reviewed by more than 50%. Bekhuis et al. [BDF12]
investigated the performance of different classifiers and feature sets in terms of their
ability to reduce workload. The reduction was 46% for SVMs and 35% for comple-
ment naive Bayes classifiers with bag of words extracted from full citations.
From a topic modelling perspective, Miwa et al. [MTOEA14] firstly used LDA to
reduce the burden of screening for systematic reviews using an active learning strat-
egy. The strategy utilised the topics as another feature representation of documents
when no manually assigned information such as MeSH terms is available. Moreover,
Miwa et al. used topic-features for training ensemble classifiers. Similarly, Bekhuis
et al. [BTMDF14] investigated how the different feature selections, including topic
features, affect the performance of classification.

3https://www.nlm.nih.gov/pubs/factsheets/mesh.html
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Chapter 3

Topic Modelling for the Screening
Phase of Systematic Reviews

In the previous chapters, the basics of text classification were introduced with empha-
sis on statistical learning. The concept of mixture models was summarised and one of
the most well-known models, Latent Dirichlet Allocation, was discussed in detail. In
this chapter, we generally consider the screening phase in systematic reviews as a clas-
sification problem. We compared two different approaches, the BOW-based approach
and the topic-based approach, based on the problem. The BOW-based approach acts
as a baseline where the classification is performed using the BOW model. The topic-
based approach classifies documents using the topic distribution of each document.
Another important aspect is that systematic reviews are mainly applied to biomedical
documents which contain many technical terms. In order to make the topics more in-
formative and intuitive, an automatic term recognition (ATR) tool was used to identify
these terms in the corpus. The details of these approaches will be presented in the
following sections.

3.1 Experimental Design

The aim of the study is to explore the use of topic modelling methods to derive a more
informative representation of study, and to determine if this approach works better than
traditional BOW representation. The study will be divided into two parts in order to
carry out a systematic comparison of the two different approaches to text classification.
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Figure 3.1: SVMlight Format

• BOW-based Approach The classifiers are trained on the traditional BOW fea-
tures. The classifier producing the best performance and the best documents
encoding method was found in order to act as a baseline.

• Topic-based Approach This involves applying LDA for modelling topic dis-
tribution in the data sets, followed by the training of an SVM-based1 classifier
using the topic distribution as features.

Documents in the data set which will be introduced later are randomly and evenly spilt
into training and test sets, keeping the ratio between relevant and irrelevant documents
in each set the same as the ratio in the entire data set. Henceforth in this thesis, the
documents relevant to a topic (i.e. positively labelled instances) are referred to as
“relevant instances”.

3.1.1 Pre-process

Documents in the data sets were first prepared for automatic classification using a se-
ries of pre-processing steps after tokenization. The pre-process consisted of stop-word
removal, conversion of words to lower case and removal of punctuation, digits and
words that appear only once. Finally, word counts were computed and saved in a
tab-delimited format (SVMlight format)2, for subsequent utilisation by the SVM clas-
sifiers.
Meanwhile, an ATR tool, TerMine3, was used to identify multi-word terms in each
document, as the basis for characterising their content. Preliminary experiments indi-
cated that using only multi-word terms to characterise documents may not be sufficient
since, in certain documents, the number of such terms could be small or zero. Accord-
ingly, words and terms were retained as features for an independent experiment.

1SVM produces better result than others
2A file format representing features and their values. See Figure 3.1.1
3www.nactem.ac.uk/software/termine
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3.1.2 Baseline Approach Design

The basic elements and methods for automatic text classification were introduced in
Chapters 1 and 2. Here, the aim is to identify the best classifier and the relevant set-
tings, including documents encoding methods, kernel functions and so on in order to
create a robust baseline approach. Figure 3.2 demonstrates that the structure of the
target baseline approach contains five crucial modules. Pre-process explained above
forms the basis of the following four modules, dramatically reducing the noise in the
corpus and accelerating the subsequent processes. The second module, Building Dic-
tionary tokenizes each document in the corpus4 and then learns the words (token) and
multi-word terms that appear in the corpus. Each word obtained from documents is
assigned a unique numeric ID for convenience. Module Documents Encoding trans-
fers each document into a vector space which can be easily saved in a SVMlight file,
according to a certain type of encoding scheme5. The final product of this module
can be considered as a matrix with dimension M×W where M and W are the num-
bers of documents in the corpus and words in the dictionary respectively. The encod-
ing schemes including Term Frequency (TF), Term Frequency/Inverse Document Fre-
quency (TF/IDF) and Binary encoding were performed for further evaluation. Module
Training Classifier receives the training data set from the corpus as an input and pro-
duces trained classifiers. The classifiers mentioned in Chapter 2 were trained excluding
the Perceptron (NBC, K-NN and SVM). In module Evaluation, the different settings
are evaluated and the best setting is chosen for the baseline approach. The setting in
this section means which encoding scheme and classifier will be finally adopted.
The combination of TF/IDF encoding scheme and SVM was chosen as the baseline,
since they outperformed all other combinations according to the results. The measures
for evaluation will be discussed in Section 3.1.4.

3.1.3 Topic-based Approach Design

The topic-based approach applies LDA to produce a topic distribution for each docu-
ment instead of the ordinary documents encoding schemes. LDA can be simply con-
sidered as a black box that receives an unlabelled corpus and a parameter K to indicate
the number of topics. This black box outputs two tables, as shown in Figure 3.3, one

4corpus = training data + test data
5See Section 1.2.2
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Figure 3.2: Workflow For The Baseline Approach

indicates the topic proportion for each document, and the other shows the probabil-
ity that a word belongs to a topic (word clusters). The experiment applies LDA for
modelling topic distribution in the data sets, followed by the training of an SVM-based
classifier using the topic distribution as features.
A third-party implementation of LDA in python, Gensim [ŘS10], was used to predict
the topic distribution for each document. This implementation uses a different method
to estimate topics, an online algorithm6. Meanwhile, a Gibbs sampler was developed
in order to compare these two estimators. However, since the results failed to show
any significant difference, further details of comparison are not presented and the re-
sults produced by the Gibbs sampler will be used for the following sections. Finally,
an evaluation will be performed on both the baseline approach and the topic-based
approach in order to obtain a comprehensive conclusion.

3.1.4 Evaluation

To evaluate the classifiers, the standard metrics of precision, recall, F1-measure7, accu-
racy, area under the receiver operating characteristic curve (ROC) and precision-recall
curve (PRC) are used. However, in this study, accuracy was found not to be a suitable
indicator of effective performance, due to the significant imbalance between relevant

6The inference process receiving data piece by piece for saving RAM space
7β choice is subjective
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Figure 3.3: LDA Black Box

and irrelevant instances in the data set; this ratio is approximately 1:9 for each cor-
pus, as shown in Table 3.1. Based on this ratio, weights are added to every training
instance in order to reduce the influence caused by imbalanced data. [SKP06]. In eval-
uating classification performance, a particular emphasis is placed on recall since, as
explained above, high recall is vital to achieve inclusiveness, which is considered to be
an important factor in the perceived validity of a systematic review.

Table 3.1: Corpus information

Positive Insts. Total Insts. Ratio Feature Used Type

Youth Development 1440 14538 0.099 title + abstract social science
Cigarette Packaging 132 3156 0.041 title + abstract social science
COPD 196 1606 0.122 title + abstract clinical trial
Cooking Skill 197 9439 0.021 text social science
Proton Beam 243 4751 0.051 title + abstract clinical trials

3.1.5 Locating Terms

The multi-word terms were located during the pre-processing. In this section, the
reason why this step is important and how it works will be given.
Since most of the corpora are domain-specific, non-compositional multi-word terms
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may lose their original meaning if we split them into constituent words and ignore word
order and grammatical relations. Thus, multi-word terms are automatically extracted
using TerMine, which is a tool designed to discover them by ranking candidate terms
from a part-of-speech (POS) tagged corpus according to C-value [FAM00]. Candidate
terms are identified and scored via POS filters (e.g. adjective*noun+). A sub-set of
these terms is extracted by defining a threshold for the C-value. TerMine makes use of
both linguistic and statistical information in order to identify technical terms in a given
corpus with the maximum accuracy. Other topic models attempt to present multi-word
expressions in topics; for example, the LDA Collocation model [SG05] introduced a
new latent variable to indicate if a word and its immediate neighbour can constitute
a collocation. Unlike other methods, the advantage of TerMine is that it is applied
independently of the topic modelling process. Thus, once it has been used to locate
terms in a corpus, different topic models can be applied, without having to re-extract
the terms each time the parameters of the topic model are changed. It is also important
to note that long terms may have other shorter terms nested within them. Such nested
terms may also be identified by TerMine. For example, “logistic regression model”
contains the terms “logistic regression” and “regression model”. However, there is no
doubt that the original term “logistic regression model” is more informative. Thus,
the strategy to locate the terms is that the longer terms are given higher priority to
be matched and our maximum length for a term is four tokens. The identified terms
will be treated as a single word by adding a special character like a dash between
each token. For example, “computer science” will be changed to “computer science”,
which can be recognised by the tokenization program.

3.1.6 Parameter Settings

As for parameter tuning, all the experiments have been performed with default param-
eters for classifiers and symmetry hyperparameters for LDA, which means that every
topic will be sampled with equal probability.

3.2 Results and Discussion

The experiments were performed using five data sets corresponding to completed re-
views, in domains of social science and clinical trials. These reviews constitute “gold
standard” data, in that for each domain, they include expert judgements about which
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documents are relevant or irrelevant to the study in question. The data sets were used
as the basis for the intrinsic evaluation of the different text classification methods. Our
conclusions are supported by the Friedman test (Table 3.2) which is a non-parametric
test that measures how different the performance of 5 data sets are, based on ranking.
Given that the methods applied produced roughly comparable patterns of performance
across each of the five different data sets, this thesis reports only on the performance
for one of the corpora.

Table 3.2: Friedman Test for 5 data sets on different kernel functions and documents
representation.(BOW: Bag-of-word features, TPC: Topic features, TE: Term-enriched
topic features, RBF: Radial basis function kernel POLY: Polynomial kernel)

Linear RBF POLY
BOW TPC TE BOW TPC TE BOW TPC TE

Precision

Mean Rank 2.90 2.00 1.10 1.00 2.50 2.50 1.2 2.6 2.2
P = 0.0001 0.00196 0.001501

Recall

Mean Rank 1.00 2.60 2.40 1.00 2.40 2.60 1.20 2.40 2.40
P = 0.00332 0.0256 0.008977

F-score

Mean Rank 2.60 2.10 1.30 1.00 2.60 2.40 1.20 2.60 2.20
P = 0.08977 0.00332 0.01501

ROC

Mean Rank 3.00 1.80 1.20 1.00 2.60 2.40 1.00 2.60 2.40
P = 0.00066 0.00332 0.00332

PRC

Mean Rank 2.80 2.00 1.20 1.00 2.70 2.30 1.00 2.60 2.40
P = 0.0168 0.0008 0.84935

3.2.1 Data Set

The models are applied to three data sets provided by the Evidence Policy and Prac-
tice Information and Coordinating Centre (EPPI-center)8 and two data sets previously

8http://eppi.ioe.ac.uk/cms/
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presented in Wallace et al. [WSBT10]. These labelled corpora include reviews ranging
from clinical trials to reviews in the domain of social science. The data sets corre-
spond specifically to Cigarette Packaging, Youth Development, Cooking Skills, COPD
(Chronic obstructive pulmonary disease), Proton Beam and Hygiene Behaviour (Ta-
ble 3.1). Each corpus contains a large number of documents and, as mentioned in
Section 3.1.4, there is an extremely low proportion of relevant documents in each case.
For example, the Youth Development corpus contains a total of 14,538 documents,
only 1,440 of which are relevant to the study. The Cigarette Packaging sub-set con-
tains 3,156 documents in total, with 132 having been marked as relevant.

3.2.2 BOW-based classification

Table 3.3: Evaluation on all corpora of SVM classifiers trained with TF-IDF features

Precision Recall F1-score Accuracy ROC PRC

YOUTH DEVELOPMENT
Linear 0.394 0.686 0.501 0.862 0.891 0.508
RBF1 0.0 0.0 0.0 0.899 0.131 0.055
POLY2 0.0 0.0 0.0 0.899 0.153 0.054

CIGARETTE PACKAGING
Linear 0.367 0.707 0.484 0.937 0.939 0.477
RBF 0.0 0.0 0.0 0.958 0.063 0.021
POLY 0.0 0.0 0.0 0.958 0.082 0.021

COOKING SKILL
Linear 0.366 0.482 0.416 0.967 0.922862 0.328
RBF 0.0 0.0 0.0 0.975 0.079 0.012
POLY 0.0 0.0 0.0 0.975 0.512 0.500

COPD
Linear 0.595 0.773 0.672 0.909 0.927 0.720
RBF 0.0 0.0 0.0 0.879 0.066 0.064
POLY 0.0 0.0 0.0 0.879 0.113 0.067

PROTON BEAM
Linear 0.057 0.078 0.066 0.881 0.562 0.063
RBF 0.0 0.0 0.0 0.9465 0.442 0.048
POLY 0.0 0.0 0.0 0.946 0.482 0.054
1 RBF: Radial basis function kernel.
2 POLY: Polynomial kernel.
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Table 3.3 shows the performance of the SVM classifiers trained with TF-IDF fea-
tures when applied to all corpora. Due to the imbalance between relevant and irrelevant
instances in the data set, each positive instance was assigned a weight, as mentioned
above. Default values for SVM training parameters were used (i.e. no parameter tuning
was carried out), although three different types of kernel functions were investigated,
i.e. linear, radial basis function (RBF) and polynomial (POLY). Unlike the linear ker-
nel that aims to find a unique hyperplane between positive and negative instances,
RBF and POLY can capture more complex distinctions between classes than the lin-
ear kernel. As illustrated in Figure 3.4, the BOW-based classification achieved the
best performance when the linear kernel function is used. However, it is necessary to
recall that the ratio of positively (i.e. relevant) to negatively (i.e. irrelevant) labelled
instances is approximately 1:9 in our corpora. Hence, even if a classifier labels all test
samples as irrelevant instances, a very high accuracy will still be obtained. However,
for systematic reviews, it is important to retrieve the highest possible number of rel-
evant documents, so recall is a much better indicator of performance than accuracy.
Secondly, both the RBF and POLY kernel functions obtained zero for precision, recall
and F1-score. This can be attributed to the imbalanced nature of the corpora [AKJ04].
Additionally, the BOW representation produces a high dimensional space (given the
large number of unique words in the corpora). In this high dimensional space, the two
non-linear kernels (RFB and POLY) yielded a very low performance.

3.2.3 Topic-based Classification

Topic-based classification was undertaken by first analysing and predicting the topic
distribution for each document and then classifying the documents using topics as fea-
tures. During the phase of training the model, the topic assigned to each word in a
document can be considered as a hidden variable, problems that involve hidden vari-
ables can be tackled by using approximation methods such as Monte Carlo Markov
Chain (MCMC) or variational inference. However, these methods are sensitive to ini-
tial parameter settings which are usually set randomly before the first iteration. Conse-
quently the results could fluctuate within a certain range as mentioned in Section 1.3.2.
The results produced by topic-based classification are all average results. However,
our results show that topic distribution is an ideal replacement for the traditional BOW
features. Besides other advantages, the most obvious advantage is to reduce the dimen-
sions of features for representing a document. Experimental settings were identical in
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Table 3.4: Evaluation on the youth development data set of SVM classifiers trained
with topic features

LINEAR

Topic density1 Precision Recall F1-score Accuracy ROC PRC

2 0.156 0.767 0.281 0.552 0.685 0.169
5 0.163 0.769 0.280 0.612 0.7485 0.215
10 0.216 0.775 0.334 0.706 0.782 0.239
20 0.228 0.776 0.316 0.662 0.778 0.276
30 0.235 0.772 0.357 0.732 0.816 0.288
40 0.239 0.773 0.364 0.732 0.820 0.320
50 0.232 0.767 0.356 0.722 0.818 0.371
60 0.249 0.777 0.353 0.717 0.811 0.338
70 0.283 0.771 0.407 0.789 0.841 0.342
80 0.279 0.782 0.354 0.782 0.842 0.359
90 0.280 0.774 0.376 0.748 0.832 0.345
100 0.281 0.786 0.376 0.751 0.831 0.358
150 0.290 0.791 0.379 0.740 0.836 0.367
200 0.294 0.791 0.423 0.770 0.850 0.408
300 0.3222 0.720 0.4558 0.958 0.847 0.389
500 0.305 0.708 0.427 0.80 0.844 0.395

RBF

2 0.151 0.812 0.254 0.522 0.694 0.168
5 0.159 0.8260 0.266 0.544 0.719 0.194
10 0.189 0.802 0.306 0.635 0.775 0.201
20 0.199 0.745 0.314 0.674 0.774 0.253
30 0.257 0.679 0.373 0.770 0.816 0.312
40 0.264 0.620 0.371 0.788 0.7992 0.301
50 0.246 0.641 0.356 0.767 0.779 0.250
60 0.235 0.576 0.334 0.769 0.778 0.250
70 0.255 0.490 0.335 0.805 0.773 0.237
80 0.395 0.390 0.382 0.873 0.806 0.318
90 0.409 0.219 0.285 0.889 0.801 0.312
100 0.368 0.019 0.036 0.898 0.817 0.319
150 0 0 0 0.877 0.812 0.297

POLY

2 0.153 0.826 0.258 0.523 0.702 0.170
5 0.171 0.143 0.156 0.843 0.704 0.166
10 0 0 0 0.899 0.285 0.060
1 Results are reported according to different values of the topic density.
2 Items in bold refer to the highest score obtained in a column.
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Figure 3.4: Linear kernel function. Comparison between the performance of BOW-
based, topic distribution-based and term-enriched topic classifiers trained using a linear
kernel function.

the evaluation of the two sets of classifiers, except for the features being topic distri-
butions in the one case and BOW in the other. The optimal LDA model was derived
through experimentation with differing numbers of topics (which can also be referred
to as “topic density”). In the experiments performed, several values for this parameter
were explored. Table 3.4 shows the results of the evaluation of SVM models trained
with topic distribution features using linear, RBF and POLY kernel functions, respec-
tively. The table also shows how the performance varies according to different topic
density values for the LDA model. These values were varied from 2 to 100 (inclu-
sive), in increments of 10, and from 100 to 500 in increments of 100. Generally, each
topic density would correspond to a certain size of corpus and vocabulary. Empiri-
cally, the larger the size of corpora and vocabulary, the greater the number of topics
that is needed to accurately represent their contents, and vice versa. Tables 3.5 and 3.6
show two samples of sets of words and/or terms that are representative of a topic in
the same corpus (youth development). Term-enriched (TE) topics include multi-word
terms identified by TerMine as well as single words, whilst ordinary topics consist only
of single words. From the tables, it can be clearly seen that TE topics are more dis-
tinctive and readable than single-word topics. As the classification performance was
similar to the single-word topic-based classification, a table like Table 3.4 will not be
presented here. However, a comparison of the classification performance for the three
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approaches i.e. BOW-based, topic-based and TE-topic-based will be presented in the
next section.

3.2.4 Comparison Of Approaches

A comparison of the performance of the BOW-based model (BOW in legend) against
the performance of models trained with topic-based model (TPC) and term enriched-
topic model (TE) is presented in this section. According to the results of using a
linear function for model training (Figure 3.4), models based on topic and TE-topic
distribution features yield lower precision, F-score, ROC and PRC, but obtain higher
recall. The best performing topic-based model (with topic density set to 150 for Youth
Development corpus) was used. For this comparison, the best performing topic-based
model (with topic density set to 150 for Youth Development corpus) was used. It can
be observed from Figure 3.4 that the BOW-based model outperforms the topic and TE-
topic based one in terms of all metrics except for recall. Figures 3.5 and 3.6 illustrate
the results of using RBF and POLY kernel functions, respectively, in training BOW,
topic-based models and TE-topic-based model on the Youth Development Corpus. It
can be observed that employing these kernels, the SVM models trained with topic
and TE-topic distributions outperform those trained with BOW features by a large
margin. Another observation is that training using RBF and POLY kernel functions
significantly degraded the performance of BOW-based models.

Using RBF and POLY kernel functions, the BOW-based classifiers perform poorly,
with zero in precision, recall and F-score. As noted earlier, high accuracy is not a good
basis for judging performance due to the imbalance between positive and negative in-
stances, i.e. even if a classifier labels every document as a negative sample, accuracy
will still be around 90%. Figure 3.7 gives the comparison of different kernel functions
using topic features on the Youth Development corpus, indicating that taking all mea-
sures into account, a linear kernel function gave the best overall performance, achiev-
ing the highest score in every metric other than recall. However, both RBF and POLY
kernel functions outperformed linear, albeit by only 4%, on the recall measure, which
we have identified as highly pertinent to the systematic review use-case. This study
uses a generic list of kernel functions ranked from high to low in terms of recall for
topic-based and TE-topic-based feature: POLY>RBF>LINEAR. For a ranked list of
feature types in terms of recall, it is: TPC>TE>BOW. Additionally, Precision-Recall
and ROC curves achieved by the models are presented in Appendix A.3.
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Table 3.5: Term-enriched topics

topic 1 topic 2 topic 3

school teen birth rates program activity
plains school murders
murders weakly educare
cultural tradition corresponds projected
gang membership ngos multidimensional index
juvenile delinquency
prevention program

chile program activity

immigration latino culture fast track
educare wore socio-economic circum-

stance
recollections nonneglected children nonneglected children
program activity skillful hopkins

Table 3.6: Ordinary topics

topic 1 topic 2 topic 3

forged bosnian horizons
school acculturationrelated pascd
educare revitalization steps
nonconcordant chipce healthier
nonfarmers api wore
eightythree unavailability fibrosis
mdma paradigmatic eurocentric
privatized individualist justified
chile phonics noncollege
discontinue fulfils correspond
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Figure 3.5: RBF Kernel function. Comparison between the performance of BOW-
based, topic distribution-based and term-enriched topic classifiers trained using a RBF
kernel function.

Figure 3.6: POLY kernel function. Comparison between the performance of BOW-
based, topic distribution-based and term-enriched topic classifiers trained using a
POLY kernel function. .
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Figure 3.7: Different kernel functions. Comparison between the performance of
Linear, RBF and POLY kernel functions using topic feature.
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Chapter 4

Conclusion

4.1 Summary

Systematic reviews can produce the most reliable results for research, while automatic
text classification could dramatically reduce the burden of reviewers in the screening
phase which is the most important part in systematic reviews. This has been proved
by the previous studies. However, traditional automatic text classification requires a
BOW model that represents a document as a set of words ignoring grammar and the
order of the words. Documents represented in such form would have many drawbacks.
First of all, documents in such high dimensional space are normally not seen by the
reviewers. Secondly, high-dimensional space would decrease the performance of clas-
sifiers. These two factors would have a significant impact on the screening phase of
systematic reviews.
LDA simulates a much more natural way for composing an article (document). It as-
sumes there are many existing topics before creating any document. Each topic is a
cluster of words. In order to generate a document, a set of topics needs to be decided
first, and then these clusters (topics) will be used for generating words like rolling a
die. This is a generative process for generating a collection of documents. However,
the realistic situation is the reverse, i.e. given a collection of documents, estimate the
topics. By using approximation methods such as Gibbs Sampler for LDA, we are able
to obtain the topics and allowed to represent a document in a more abstract way instead
of BOW.
Our experiments aimed to carry out a systematic comparison between the classifiers
using traditional BOW representation and the LDA representation. In order to achieve
this, the first step was to identify a robust baseline. Many classifiers and encoding
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methods have been tested and finally the combination of TF/IDF + SVM has been de-
cided as the best setting for BOW model which is considered as the baseline method.
The second step was to evaluate the performance of the combination LDA + SVM,
where the topics of each document estimated by LDA would be used as input features
for SVM. Finally, the results produced by using the baseline method and LDA-based
approach were compared under the same measures.
The experiments demonstrated that the performance of BOW SVM with linear kernel
function produced the most robust results achieving the highest values in almost ev-
ery metric, except for recall. However, for any systematic review classification task,
poor performance in recall needs to be addressed. The BOW model yielded a poor
performance with RBF and POLY kernel functions due to the data imbalance and di-
mensionality issue. Topic-based classification significantly addresses this problem by
dramatically reducing the dimensionality of the representation of a document (topic
feature). The topic-based classifier yielded a higher recall, which means more relevant
documents will be identified. Moreover, the topic features enable the classifier to work
with RBF and POLY kernels and produce better recall comparing with a linear kernel.
The same patterns were observed in all corpora, although there is only one example
(Youth Development) presented in this thesis.

4.2 Future Work

This thesis addresses internal validity threats of automatic citation screening methods.
Threats to external validity of our method will be assessed by an extrinsic evaluation
process that will be carried out as part of our future work.
Also, future work will further investigate the generalisability of the model to diverse
domains. Moreover, different machine learning and text mining techniques that can be
used to support systematic reviews such as paragraph vectors, active learning will be
explored.
This work focuses on an intrinsic evaluation of automatic screening methods while
as future work, we will conduct an extrinsic evaluation according to which the model
will be used in live systematic reviews. Further experiments will be performed in a
more realistic situation. For example, whether topics could help reviewers’ decision in
‘live’ systematic review would be an interesting research area in the future. An intuitive
picture of Term-Enriched topics has been made in this article. For public health reviews
where topics are multidimensional, the presence of diverse multi-word terms in a data
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set can be an important element that affects the performance of classifiers. However,
TE-topics have the potential to deal with these difficulties. Further investigation on TE-
topics will be performed, which would benefit reviewers and help them to understand
topics more easily compared to ordinary topics that contain only single words.
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Appendix A

Appendix

A.1 Abbreviations

BOW: Bag-of-words;
LDA: Latent Dirichlet Allocation;
ATR: Automatic Term Recognition;
PICO: the Population, the Intervention, Comparator and the Outcome;
SVM: Support Vector Machine;
SVD: Singular Value Decomposition;
KNN: K-nearest Neighbour;
TF-IDF: Term Frequency/Inverse Document Frequency;
ROC: Receiver Operating Characteristic;
PRC: Precision-recall Curve;
POS: Part-of-speech;
RBF: Radial Basis Function;
POLY: Polynomial;
MCMC: Monte Carlo Markov Chain;
TE: Term-enriched;
NBC: Naive Bayes Classifier;
EM: Expectation Maximisation;
MLE: Maximum Likelihood Estimators.
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A.2 Publication

Part of the work presented in this thesis has been published in the following peer-
reviewed journal article:
Yuanhan Mo, Georgios Kontonatsios and Sophia Ananiadou. Supporting systematic
reviews using LDA-based document representations Systematic Reviews 2015, 4:172
(26 November 2015)

A.3 Supplementary Figures
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Figure A.1: Receiver Operating Characteristic Curve: linear kernel function.

Figure A.2: Receiver Operating Characteristic Curve: RBF kernel function.
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Figure A.3: Receiver Operating Characteristic Curve: Poly kernel function

Figure A.4: Precision-Recall Curve:linear kernel function.
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Figure A.5: Precision-Recall Curve:RBF kernel function.

Figure A.6: Precision-Recall Curve:POLY kernel function.
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