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Abstract 

The University of Manchester 

Carlos Alberto Duran Villalobos 

Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 

December 2015 

 

This thesis presents an innovative batch-to-batch optimisation technique that 

was able to improve the productivity of two benchmark fed-batch fermentation 

simulators: Saccharomyces cerevisiae and Penicillin production. In developing the 

proposed technique, several important challenges needed to be addressed: 

For example, the technique relied on the use of a linear Multiway Partial 

Least Squares (MPLS) model to adapt from one operating region to another as 

productivity increased to estimate the end-point quality of each batch accurately. The 

proposed optimisation technique utilises a Quadratic Programming (QP) formulation 

to calculate the Manipulated Variable Trajectory (MVT) from one batch to the next. 

The main advantage of the proposed optimisation technique compared with other 

approaches that have been published was the increase of yield and the reduction of 

convergence speed to obtain an optimal MVT.  

Validity Constraints were also included into the batch-to-batch optimisation 

to restrict the QP calculations to the space only described by useful predictions of the 

MPLS model. The results from experiments over the two simulators showed that the 

validity constraints slowed the rate of convergence of the optimisation technique and 

in some cases resulted in a slight reduction in final yield. However, the introduction 

of the validity constraints did improve the consistency of the batch optimisation.  

Another important contribution of this thesis were a series of experiments 

that were implemented utilising a variety of smoothing techniques used in MPLS 

modelling combined with the proposed batch-to-batch optimisation technique. From 

the results of these experiments, it was clear that the MPLS model prediction 

accuracy did not significantly improve using these smoothing techniques. However, 

the batch-to-batch optimisation technique did show improvements when filtering 

was implemented.



 

 

16 

 

  

 

 

 

Declaration 

 

 

 

 

 

 

No portion of the work referred to in this Thesis has been submitted in support of an 

application for another degree or qualification of this or any other university or other 

institute of learning. 



 

 

17 

 

  

 

 

 

 

Copyright statement 

 

The author of this thesis (including appendices and/or schedules to this 

thesis) owns certain copyright or related rights in it (the “Copyright”) and s/he has 

given The University of Manchester certain rights to use such Copyright, including 

for administrative purposes. 

Copies of this thesis, either in full or in extracts and whether in hard or 

electronic copy, may be made only in accordance with the Copyright, Designs and 

Patents Act 1988 (as amended) and regulations issued under it or, where appropriate, 

in accordance with licensing agreements which the University has from time to time.  

This page must form part of any such copies made. 

The ownership of certain Copyright, patents, designs, trade marks and other 

intellectual property (the “Intellectual Property”) and any reproductions of copyright 

works in the thesis, for example graphs and tables (“Reproductions”), which may be 

described in this thesis, may not be owned by the author and may be owned by third 

parties.  Such Intellectual Property and Reproductions cannot and must not be made 

available for use without the prior written permission of the owner(s) of the relevant 

Intellectual Property and/or Reproductions. 

Further information on the conditions under which disclosure, publication 

and commercialisation of this thesis, the Copyright and any Intellectual Property 

and/or Reproductions described in it may take place is available in the University IP 

Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487), in any 

relevant Thesis restriction declarations deposited in the University Library, The 

University Library’s regulations (see http://www.manchester.ac.uk/library/aboutus 

/regulations) and in The University’s policy on Presentation of Theses. 

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://www.manchester.ac.uk/library/aboutus%20/regulations
http://www.manchester.ac.uk/library/aboutus%20/regulations


 

 

18 

 

  

 

 

 

Dedicatory 

 

 

 

 

Dedicated to my parents, Rafael and Bertha, my brother Rafael, my sister Deni, and 

all my friends, who have supported, inspired and encouraged me throughout my life. 

“Experientia docet” - Tacitus 

 



 

 

19 

 

  

 

 

 

Acknowledgements 

First, my sincere gratitude to my supervisor, Professor Barry Lennox, for his 

guidance, support and insightful advice given throughout the development of this 

research project.  Also, I would like to thank him for the time he dedicated to provide 

invaluable suggestions during the writing stage of this Thesis. 

 

I am also grateful to the National Council of Science and Technology of 

Mexico (CONACyT) for providing the scholarship number 214965, the National 

Polytechnic Institute of Mexico (IPN), and the Public Ministry of Education of 

Mexico (SEP), for their financial support to pursue my PhD degree with the 

scholarship number 43901. 

 

Special thanks to PhD David Lauri Pla and PhD Qiaolin Yuan for their 

experience and useful discussions for the development of the methodologies 

implemented in this thesis.   

 

I am very grateful with my family for the support they provided me from 

overseas and with my friends Alejandro Villaruel, Jana Kefurtova, Luiza Lense and 

Kinga Smolenska for their invaluable support and the great moments we lived 

together in the UK. 

 



 

 

20 

 

  

 

 

 

Publications 

[102]: C. Duran-Villalobos, B. Lennox, Iterative Learning Modelling and 

Control of Batch Fermentation Processes, Proceedings of the 10th IFAC 

International Symposium on Dynamics and Control of Process Systems, 2013: pp. 

511–516. 

 

[Under review]: C. Duran-Villalobos, B. Lennox, D. Lauri Multivariate 

Batch to Batch Optimisation of Fermentation Processes Incorporating Validity 

Constraints, Journal of Process Control. 

 



 

 

21 

 

  

 

 

 

Chapter 1: Introduction 

The purpose of this chapter is to present a brief summary of the content of the  

thesis including: the motivation for the research in Section 1.1, the objectives for the 

research in Section 1.2, a list of the main contributions in Section 1.3 and the outline 

of the following chapters in Section 1.4. 

 

1.1 MOTIVATION 

Typically in industry, batch processes are considered superior alternatives to 

continuous operations when a high standard of product quality is required, when 

there is variability in the production rate and when the cost of building a new 

processing plant is too high to make a significant profit from the production. Fed-

batch (or semi-batch) processing is a type of operation that is similar to batch 

processing, but involves the addition of feed or other materials over time based on a 

profile or a recipe [1]. Generally, in the work presented in this thesis, the term batch 

will be used in a wide sense for both fed-batch and batch processing. 

 

Batch processing consists of iterative operations that perform a sequence of 

one or more steps to obtain a high value quantity of a specialty product (such as 

pharmaceutical products, high purity chemicals, cosmetics, etc.). Generally speaking, 

one batch is ‘run’ by introducing raw materials into a vessel and processing them 

through several stages that each follow predefined instructions until the desired end-

product is obtained. Within batch processing, productivity, product quality and 

safety requirements are operational issues of great concern due to the economic 
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industry objectives. Therefore, it is an engineering requirement to develop an 

optimal control strategy to address these issues if the benefit-cost relationship is to 

be maximized.  

 

According to [2], batch processes have 3 important defining characteristics 

which must be considered when designing a control system: absence of a steady-

state, limited corrective action and repetitive nature. 

 

The first characteristic does not allow the use of a single operation point 

since the batch is usually divided into several stages. The second characteristic 

implies that if the batch presents an abnormal behaviour and if no corrective action is 

taken in time, the batch will be lost. The third characteristic is related to an iterative 

run of batches, which makes it possible to use information from previous batches to 

improve the behaviour in future batches. As a result of these characteristics, and 

others, such as highly non-linear dynamics and unmeasured disturbances [3], batch 

operations are especially difficult to control and often impossible to improve using 

traditional Proportional-Integrative-Derivative (PID) type control systems. This is 

because PID assumes that the process is linear and is insufficient to characterise the 

plant under a wide range of operating conditions [4]. 

 

Batch processes are regularly controlled using recipes based on specific 

process knowledge [2]. However, in practice the knowledge of the process is 

incomplete and the presence of unknown disturbances, which were not considered 

explicitly in the design, may significantly affect the output quality. To effectively 

implement the control of the product quality these recipes would need to be adjusted 

to the changing conditions from one batch to the next which would be impractical 

using a single recipe approach.  
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A potential solution to the operational issues of batch processes is to utilise a 

dynamic modelling approaches based on multivariate statistics, such as Partial Least 

Squares (PLS). Multivariate statistical models are relatively simple mathematical 

representations that describe the dynamics of a batch using empirical data; these 

models allow us to use the data from previous batches to make future predictions 

during future batch runs. Until recently, Multivariate Statistical Process Control 

(MSPC) techniques have been used to monitor and optimise batch processes in an 

attempt to improve the quality of the final product [5]. However, the statistical 

models can be used to solve a cost function whose objective is to increase the 

profit/cost relationship for example. 

 

 If batch quality optimisation is to be performed within a batch, then Model 

Predictive Control (MPC) is usually employed. In MPC, the actuator sequence is 

calculated every time that the process reaches an operational point. On the other 

hand, if the optimisation is performed from one batch to the next, Iterative Learning 

Control (ILC) is usually applied; ILC iteratively computes the trajectory of the 

actuator for the full batch offline.  

 

Using ILC or MPC techniques raises several issues that need to be addressed 

in the control strategy. For example, one common problem encountered, when 

building a model, is to make sure that the accuracy of the model is adequate to 

guarantee an acceptable prediction. Similarly, the degree of freedom in the 

optimisation constraints must be high enough to allow the search for new ways to 

solve a problem but not so high that the model of previous batches is no longer valid. 

If such techniques are to be applied in a control strategy, issues relating to the 

accuracy of prediction should be addressed properly. 
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The main challenges in designing batch to batch, and particularly iterative 

learning optimisation techniques lies in choosing and integrating suitable control 

systems in to the process. Such control should take into consideration the natural 

characteristics of a batch and the issues commonly encountered within the industry. 

Moreover, the objective of batch optimisation, which is focused on increasing the 

productivity within the limits of the plant, must also be included in the control 

strategy. Thus, there is a powerful incentive in batch optimisation to search for 

innovative and better ways to integrate iterative and model-based control techniques. 

 

1.2 AIMS AND OBJECTIVES 

The primary aim of this thesis is to develop an innovative batch-to-batch 

optimisation scheme, using multivariate statistical models, that has the ability to 

adapt the inputs of a certain batch process to reject undesired disturbances, and to 

optimize the final quality from one batch run to the next.  

 

Although recently published articles have shown impressive advances in 

batch to batch control, a secondary objective of this thesis is to improve the results 

obtained in similar approaches by comparing this thesis approach with different 

benchmark software simulations used in relevant literature.  

 

The work presented in this thesis fulfils other secondary objectives which 

must be taken in consideration to demonstrate the completion of the main objectives: 

 

 To understand the mathematical and practical limitations of diverse 

techniques used in batch process control, such as those found in the 

relevant literature regarding MPC, ILC and adaptive control. 
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 To develop an optimisation routine that solves a performance criteria 

problem for various batch conditions. Such a mathematical problem 

must include the physical constraints of the system. 

 

 To design a recursive identification algorithm that considers the effect 

of incremental changes in the process variables to optimise the output 

from one batch to the next. 

 

 To include model validity constraints in the optimisation routine to 

ensure that the predictions of the process model remain valid under 

different operating conditions. 

 

 To compare and analyse the results of different smoothing techniques 

in combination with PLS models for the proposed batch to batch 

optimisation.   

 

 To simulate and objectively compare the proposed batch-to-batch 

optimisation technique with analogous approaches. 

 

1.3 CONTRIBUTIONS AND SIGNIFICANCE 

The major contribution of this research is the design of an innovative batch to 

batch optimisation technique, which provides a way to respond to changes in initial 

conditions and react to disturbances that affect the process from one batch to the 

next. The main advantage of this design was the increase of yield in a number of 

simulations that were selected to test the system when applied to realistic and generic 
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batch processes. In industry, this improvement would likely lead to the possibility of 

significant competitive advantages in batch production. 

 

Other contributions of this work are: 

 

 The formulation and analysis of a Quadratic Programming (QP) problem to 

find an optimal Manipulated Variable Trajectory (MVT). The proposed 

formulation presents a QP problem that is solved in the MVT space. This is 

in contrast to alternative formulations found in the literature which solve the 

QP problem in the Latent Variable (LV) space [6]–[9].The drawback of the 

LV approach is that once the optimized points are found, it is necessary to 

compute the real MVT by inverting the PLS model, which can cause 

actuation changes that are detrimental to the yield if the PLS model is not 

sufficiently constrained. In most of the work presented in this thesis, the QP 

problem was solved in the MVT space.  

 

 The inclusion and analysis of validity restrictions in the QP problem in 

Chapter 6. The proposed design use validity restrictions inside the MVT 

optimization to limit the solution of the QP problem to the region within 

which there is confidence in the predictions made by the PLS model. Similar 

validity restrictions used have been used before for MPC in the literature 

[10], [11]. However, in this thesis, validity restrictions are fitted to the 

proposed methodology for batch to batch optimization. 
 

 The results and analysis of the smoothing techniques applied to the proposed 

batch to batch optimisation in Chapter 7. During this research, it was found 

that the correlation in time that low filtered signals have, provides 
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improvements in the predictions made by PLS models. This thesis provides a 

performance evaluation of smoothing techniques when used within the 

proposed batch to batch optimisation. 

 

1.4 OUTLINE OF THE THESIS 

This chapter has introduced the key aspects of this thesis, its motivations, 

objectives and contributions. The chapter that follows, Chapter 2, moves on to 

presenting an overview of the literature review of the fields of study related to this 

research. 

 

Chapter 3 describes the materials and methods used to obtain the results 

presented in this thesis; this description includes the case studies used to test the 

different proposed algorithms. 

 

Chapter 4 provides the main theoretical framework used for the batch-to-

batch optimisation proposed in this thesis, and used in Chapters 5, 6 and 7.  

 

The following three chapters are the core of this thesis, where a theoretical 

framework is introduced for each chapter, followed by the case study results and 

discussion: 

 

In Chapter 5, an innovative batch to batch optimisation scheme is proposed. 

This chapter starts with mathematical definitions of previous studies and proposes a 

batch to batch optimisation strategy. This strategy is then analysed and the results are 

compared with those in previous studies.  
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Chapter 6 provides an extension for the strategy formulated in Chapter 5, 

which includes validity constraints in the optimisation problem. This change in the 

formulation ensures that the optimisation is performed in the region of validity of the 

model. Moreover, the results are compared and discussed using different constraint 

specifications. 

 

Chapter 7 presents a study of smoothing techniques applied to the strategy 

formulated in Chapter 5. This study compares the results of three smoothing 

techniques, one of which is a post-processing filtering algorithm; another is based in 

functional analysis, while the third one smooths the factors within the PLS model 

itself. 

  

Finally, Chapter 8 presents conclusions of this thesis and guidelines for future 

work. 
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Chapter 2: Recent Advances in Batch Process Control 

This chapter summarizes the literature review relevant to the work in this 

thesis. Firstly, Section 2.1 introduces the main control techniques employed in batch 

processes and provides an overview of the different published modelling approaches 

used for the control of batch processes. Secondly, Section 2.2 provides examples and 

improvements in multivariate statistical control of batch processes. Thirdly, section 

2.3 presents some of the advances that have been made with regard of the extensions 

formulated in Chapters 6 and 7. Finally, Section 2.4 provides a brief summary of this 

chapter. 

 

2.1 BATCH PROCESS MODELLING 

The characteristics of batch processes that were discussed in Chapter 1 

present problems that require a control system that differs from continuous processes 

in two ways [2]: The first difference is that control signals in batch processes are 

typically set in accordance to time varying profiles, as steady-state operating points 

do not exist. The second difference is an additional type of output (usually named 

product quality, output quality or end-point quality), which needs to be controlled 

and, that often is only available at the end of the batch. 

 

These differences impose a type of control that needs to allocate a sequence 

of discrete time varying variables in pre-set trajectories [5], often called recipe. 

Usually, process variable trajectories, for those variables which are measured, are 

driven to their pre-defined set-points using Proportional-Integral-Derivative (PID) 



 

 

Chapter 2: Recent advances in Batch Process Control  30 

 

 

 

control to keep them under Normal Operation Conditions (NOC) [12]. However, this 

type of control can only exploit completely the characteristics of batch processes if it 

is supported by mathematical modelling and optimization techniques [5]. 

 

Published studies have already shown the benefit of applying modelling and 

optimization techniques to industrial batch processes. For example, in case studies 

undertaken by Li et al. [13] and Abel et al. [14] significant savings in operational 

times were reported following the application of modelling and optimisation 

techniques to an industrial batch process.  

 

With respect to modelling, which is typically the first stage in the 

development of any monitoring, control or optimisation system, three model-based 

approaches have been proposed in the literature: knowledge-based (or white-box or 

fundamental), data-based (or black-box or empirical) and hybrid models. Such 

approaches are discussed respectively in Sections 2.1.1, 2.1.2 and 2.1.3.  

 

2.1.1 Knowledge-based approach 

Modelling techniques establish mathematical relationships between 

parameters and the dynamical behaviour of a physical process. In the knowledge-

based approach, such relationships are based on simplified mathematical theories or 

laws such as the conservation of energy or mass. This enables engineers to evaluate 

potential changes in control operations over a specific process. 

 

In the batch control area, several studies have applied this type of approach 

with beneficial results. For example, the authors of the already mentioned studies 

presented in [13] and [14], used dynamic models of a distillation process and an 
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exothermic polymerization respectively, combined with optimization algorithms to 

reduce operational times. 

 

Other authors have used knowledge-based models for optimization 

monitoring and control of batch processes, such as in [3], [15]–[17]. For instance in 

[15], the authors combined a fundamental model of batch nylon 6,6 autoclave with 

inferential control strategies to reduce the effect of typical disturbances, Their results 

showed the usefulness of this control strategy, however, the authors also 

acknowledged that developing accurate first principle models could be prohibitive 

under certain circumstances. 

 

One important reason to use knowledge-based modelling is that it has the 

potential to allow the extrapolation of the applicability of such models beyond the 

regions of empirical models. Therefore, knowledge-based models are usually used as 

benchmark simulations to assess robust control techniques. For example, the two 

case studies used in the work presented in this thesis are based on this type of 

modelling technique. 

 

The first case study used in this thesis was the Saccharomyces cerevisiae (S. 

cerevisiae) production simulation, which utilises a fundamental model proposed in 

[4]. This model describes the aerobic growth of S. cerevisiae and focuses on the 

overflow metabolism at pyruvate and acetaldehyde branch points. Similarly, Pham 

and Larsson [18] proposed a different model based on the overflow metabolism of S. 

cerevisiae including an inhibitory effect of ethanol. Jobé et al [19] developed this 

modelling work further and proposed a S. cerevisiae production model which 

focused on the oxidative and oxidoreductive growth. 
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The second case study used in this thesis was the penicillin production 

simulation presented in [20]. The author of this article developed a detailed simulator 

that extends a model reported earlier [21] with additional input variables such as pH 

and Temperature. A related simulation, which was industrially validated was 

presented in [22], where the authors extended the model reported by [23] to include 

the main environmental effects in penicillin production. Further details of the two 

simulations used in the work described in this thesis can be found in Chapter 3. 

 

As can be observed from the examples given above, the development of 

knowledge based models requires a new problem formulation for each case study; 

hence the control technique based solely in this type of modelling may be time 

consuming and challenging. A further drawback with knowledge-based models is 

that they can deliver inaccurate predictions if the complex dynamics involved in the 

process are not considered because of the prohibitive time it may require to develop 

them.  

 

2.1.2 Data-based approach 

Data-based modelling approaches rely on the use of empirical data in order to 

identify process models. Data-based models are obtained by designing experiments, 

during which a process is perturbed to generate data. This data is then used to 

calculate the model parameters; this procedure is usually called empirical 

identification or, simply, identification. As a result, the identified-process model can 

provide a dynamic relationship between previously selected input and output 

variables [24]. 

 

One of the most commonly used methods for identifying data-based models 

of continuous processes uses process reaction curves. The process reaction curve 
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method involves the analysis of response curves to determine control parameters, 

such as those used within Proportional-Integral-Derivative (PID) controllers. The 

problem with this approach in batch control is that the process needs to reach a 

steady-state in order to collect the response data and the dynamics of the process 

may change throughout the batch. Nevertheless, some process reaction curve 

techniques have been published to overcome this problem, such as the one proposed 

in [25]. In this article, the author assumed that the information obtained from 

referential evolution was correspondent to the information contained within process 

reaction curves for stationary process. However, he discussed only the main concept 

from a practical point of view, not taking into account the effects of possible 

disturbances. 

 

Multivariate Statistical (MS) modelling has been shown to provide an 

accurate and flexible approach to batch process control. This type of method uses 

multivariate analysis to represent observed data via a model. To create these models, 

many authors have proposed and applied different methods, such as Principal 

Component Analysis (PCA) [26], Partial Least Squares (PLS) [27], [28], 

Independent Component Analysis (ICA) [29], Artificial Neural Networks (ANN) 

[30], Support Vector Machines(SVM) [31], Hidden Markov Models (HMM) [32],  

among others.  

 

One of the most commonly used MS methods in batch process monitoring   

is Principal Component Analysis (PCA). This technique was first described in [33], 

as a method for reducing a high-dimension dataset into lower-dimensional dataset by 

“finding the closest fit to systems of points in space”. This idea was further 

developed in [34], naming this lower dimensional dataset as Principal Components 

(PC) and providing an extensive derivation of this method. Principal Components 
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Analysis (PCA) has been used in many applications such as psychology, numerical 

analysis, electrical engineering, image analysis, chemistry, among others [35].  

 

For application to batch processing,  Nomikos and MacGregor [26] were the 

first to publish the use of PCA as a monitoring tool; they used a technique referred to 

as Multiway PCA (MPCA), developed by Wold and Geladi [36], to extract the 

information from the trajectories of process variables to create simple monitoring 

PC-based charts.  With these charts, they were able to track the progress of 

successive batch runs and find possible “upsets” in a simulation study of a batch 

reactor for the production of styrene-butadiene latex. Since then, several studies have 

used MPCA models for monitoring and fault detention in batch processes. 

MacGregor and Cinar [37] provide a thorough review of this field of applied 

research. 

 

MPCA modelling is a very useful technique in monitoring and fault-tolerant 

control of batch process. In optimisation, however, the MPCA model itself does not 

provide the relationship between the explanatory (measured and manipulated) 

variables and the dependent (quality) variable that are necessary to solve an 

optimization problem. One way to deal with this problem still using PCA, is to 

perform a regression of the dependant variable onto the PCs of the quality variables. 

This technique is known as PCR (Principal components regression)  [38]. An 

important use of PCR, is when techniques such as MLR (Multiple Linear 

Regression) suffers from multicollinearity (as PCs are orthogonal to one another they 

are unaffected by collinearity) or when the computing power is not sufficient to deal 

with the problem and it is necessary to reduce the model complexity.  
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A similar MS technique employed widely in applications of batch monitoring 

and more recently control is known as Partial Least Squares (PLS) regression [39]. 

PLS regression seeks to find lower-dimensional factors, known as Latent Variables 

(LV), which capture both the greatest amount of variation in the explanatory 

variables (similar to PCR),but which also are relevant for predicting the dependant 

variables [40]. PLS has been demonstrated in several studies to be a good alternative 

to MLR. Research has shown that when the calibration data set is changed, the 

model parameters in a PLS model do not vary as much as when MLR is used [39], 

[41], suggesting that PLS is a more robust algorithm. 

 

Traditionally the most popular method for calculating a PLS model is known 

as Nonlinear Iterative Partial Least Squares (NIPALS) [42]. This iterative method, 

first calculates one LV from the explanatory variables, then a residual matrix is 

obtained by subtracting the outer product of the vectors that compose the first LV 

from the explanatory variables, this residual matrix is then used to calculate the 

subsequent LV. More details of this algorithm and others related to PCA and PLS 

are provided in Chapter 4.  

 

Analogous to NIPALS, the Simple Implementation of Modified Partial Least 

Squares (SIMPLS) [43] algorithm has been widely employed as a way to calculate a 

PLS model. SIMPLS obtains the vectors that compose the LV by deflating the 

covariance matrix of the explanatory and dependant variables instead of deflating the 

variables themselves (as NIPALS does). The resulting algorithm is not as intuitive as 

NIPALS but is considerably faster to implement [44]. 

 

Many authors have published other improvements and modifications to the 

PLS modelling technique, such as Multiway PLS(MPLS) [28], [36], nonlinear PLS 
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modelling [45], [46], recursive algorithms to include new objects [47]–[50], 

clustering [51], [52], model validation [10], [53], [54], among others [27], [44], 

[55]–[63] . 

 

PLS models have been widely used for batch process monitoring and control  

[64]. For example Nomikos and MacGregor [28] proposed a generic procedure for 

batch monitoring using a MPLS model using a similar methodology they employed 

for MPCA [26]. They extracted the information from the measured variable 

trajectories that were relevant to the final quality variables using MPLS over a 

historical database of successful past batches, in a simulation study of a styrene-

butadiene batch reactor. Then, they used this MPLS model to create monitoring 

charts that could provide on-line predictions of the final product quality. The 

techniques were able to quickly detect faults in the score space that occurred during 

the progress of a batch in the simulation study. 

 

Data-based models and MS models in particular have been shown to be a 

very effective approach when dealing with different types of batch processes. 

However, a major limitation with the approach is that the development of an accurate 

empirical model requires a high number of observations, which for many batch 

processes is simply not possible. In comparison, fundamental models do not require 

such a high number of observations. Consequently, data-based models do not 

provide enough information to satisfy all process design and analysis requirement 

and cannot replace fundamental models for all applications.  

 

2.1.3 Hybrid approach 

As discussed above, both knowledge and data based approaches have 

advantages and disadvantages on their own. To overcome these disadvantages, 
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hybrid models that combine these two modelling approaches have been proposed. In 

hybrid models, knowledge based models are used to provide the information and 

analysis of the process variables interactions, whereas data based model are used to 

capture the unknown process characteristics, plant-model mismatches that result 

from the knowledge based model. 

 

Several authors have successfully applied this methodology to batch 

processes, such as [3], [65]–[68]. For example, in [3], the authors proposed a 

practical hybrid approach that combined a knowledge based model to predict the 

final particle size with a linear regression model to predict the final product quality 

of a polymer, which they applied to an industrial emulsion polymerization process.  

The authors claimed that the knowledge based model reduced significantly the 

variability in the final product quality, while the regression model compensated for 

the unknown disturbances that appeared from one batch to the next. 

 

The findings of this and other studies suggest that the combination of both 

methodologies in the hybrid approach offers advantages when solving engineering 

problems. However, it also requires the most engineering effort to build as the 

infrastructure, computing power and human knowledge of both approaches is 

needed. 

 

To further illustrate the use of modelling in industrial batch processing, 

different control approaches utilised by several pharmaceutical companies are 

discussed in [69]. In this article, the authors presented an industrial survey that 

covered several aspects of process control. The results of that survey show that 

fundamental models are applied sparingly and only when their development is 

technically feasible, yet the pharmaceutical industry has widely adopted the use of 
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Process Analytical Technology (PAT) measurement systems, such as Near Infrared 

Spectroscopy (NIR), biosensors and Raman spectroscopy, combined with MS 

models. The survey results also show that the pharmaceutical industry has a very 

keen interest in the application of advanced process control approaches to reduce the 

variability observed during batch process operations.   

 

The next section provides further examples of hybrid, data-based and 

knowledge-based modelling approaches that are used in batch control. On this 

occasion they are organized not by their modelling characteristics but by their 

problem formulation. 

 

2.2 MONITORING AND CONTROL OF BATCH PROCESSES 

Batch process management includes four layers of plant operation: planning, 

scheduling, monitoring, and control [5]. As discussed in the previous sections if a 

model of a batch process can be developed then it can be used to carry out planning 

and scheduling of plant operations. Furthermore, an accurate model of a batch 

process can also be used for monitoring and control applications.  

 

One of the most commonly available measures of quality in industrial batch-

processes is the end-point quality (also called final or end-product quality). End 

point quality is the value of a desired batch product, such as biomass or penicillin 

concentration, measured at the end of the batch. 

 

As explained in the introduction, it is desirable to obtain reproducibility in the end-

point quality from one batch to the next. However, batches are sensitive to variations 

in raw material properties and other disturbances. The purpose of monitoring is to 

detect abnormalities during process operation; therefore, having a reliable model 
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from a batch process enables batch process operations to be monitored. Once such a 

model has been identified and its accuracy verified, then it is reasonable to proceed 

to the further implementation of this model within an optimal control system. 

Although, it must be recognised that in doing this considerably more effort is 

required in ensuring that the model remains accurate during control action. 

 

Batch control has the problem of dealing with two types of variation: intra-

batch (such as the deviation in concentration of a feed supply) and inter-batch 

disturbances (such as the variation in the initial conditions, resulting from changes in 

raw material for example). To solve this problem, a number of control strategies 

have been proposed. These control strategies fall in to two categories depending on 

whether the control is performed during the batch (referred to as within-batch 

control) or only at the start of the batch (referred to as batch-to-batch control).  

 

2.2.1 Within-batch control (online) 

This type of batch control obtains parameters measurements, performs 

calculations using these measurements and then applies control action during the 

batch. When using within-batch control in the presence of disturbances, the main 

task of the control system is to adjust the manipulated variables at single or multiple 

points during the batch, to minimise any undesired variation in the final output 

quality (end-point quality).  

 

Many authors have proposed the use of knowledge-based models for within-

batch control systems, such as [70]. This strategy uses knowledge from a process 

model to estimate certain batch parameters, such as the end-point output quality. 

Changes to the operation of the batch, such as an increase or decrease of a 
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manipulated variable can then be applied to ensure that the end point matches the 

target.  

 

An example of within-batch control using knowledge models was carried out 

by Kozub and MacGregor [71]. In their work they proposed an optimal feedback 

controller, which successfully used knowledge-based models to infer several 

copolymer properties from measurements taken from an industrial emulsion 

copolymerization reactor. However, many of these knowledge–based strategies are 

difficult to implement on industrial processes because they need a precise theoretical 

model for each application  [70]. Data-based approaches overcome this limitation 

because they use information gathered iteratively and because data-based models are 

comparably easier to build and modify than knowledge-based models.  

 

A widely used data-based approach that has been used extensively to regulate 

continuous processes and more recently to control the end-point quality of a batch is 

Model Predictive Control (MPC) [72]. The MPC algorithm collects the 

measurements available from the batch at each ‘decision’ or ‘control’ point and then 

uses this data and a model of the process to optimise the process over a finite time 

horizon. This series of actions is repeated until the end of the process to calculate all 

the optimum control moves through the entire duration of the process. MPC doesn’t 

specify a single, definitive control strategy but includes a range of methods that use 

model predictions to solve an objective function over a receding horizon [72]. Some 

examples of MPC techniques have been published in [7], [9], [73]–[76]. 

 

In within-batch control it is frequent to use MPC in conjunction with MS 

modelling techniques, such as MPCA and MPLS. MPCA and MPLS models can be 

derived by reducing the dimensionality of the variables involved in a process during 
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past batch operation runs and then these models are used to solve on-line 

optimisation problems in future batches [77]. Flores-Cerrillo and MacGregor 

illustrated this method in two publications [6], [7]. In both articles the authors used 

dimensionally-reduced models in an innovative way to calculate the best 

Manipulated Variable Trajectory (MVT) of batch processes in a within-batch 

optimisation scheme. MPCA models were used in the within-batch control, proposed 

in Flores and Macgregor (2005) for tracking and correcting the trajectory of different 

explanatory variables in an attempt to maintain end-point quality. However, in [6], 

MPLS models were used to solve an optimisation problem which explicitly included 

the quality variables within the cost function.  

 

Many studies have used the work of Flores-Cerrillo and MacGregor as a 

guideline for dealing with problems in process monitoring and control [64]. This is 

exemplified in the work published in [9], which aimed to control  the end-product 

quality using MPLS in a similar way to Flores-Cerrillo and MacGregor. However, in 

their work they included soft and hard constraints and also extended the technique to 

reject disturbances. Another example where MPLS models were used for within-

batch control is the study carried out in [78]. This study formulated an on-line 

monitoring and feedback control, which regulated the end-product quality of a 

crystallization process (crystal mean size). In this article the authors used image 

texture analysis (Fractal-wavelet) and PLS modelling to control the final product 

quality and claimed to have attained satisfactory predictions and control of the 

crystal mean size.  

 

In all the approaches mentioned in this section, the control system was 

designed to operate within the batch. This type of control design does not exploit the 

iterative nature of batch processes and it also suffers from significant problems if 
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measurements are not available for all variables throughout the batch. The next 

section discusses the development and application of batch-to-batch control systems, 

which analyse the behaviour of one batch and make changes to the subsequent batch 

in an attempt to improve product quality.  

 

2.2.2 Batch-to-batch control (offline) 

Batch-to-batch control (also called Run-to-run control) differs from within 

batch control in that it uses an offline control strategy between batches. This strategy 

consists of using the data collected from previous batches to adjust all or some of the 

MVTs for the next batch. This adjustment has the objective of bringing the end-point 

quality closer to the desired operation in the presence of disturbances and/or to 

optimise some economic cost function. The main task in batch–to-batch control is to 

complete the control objectives in the face of disturbances and potentially to changes 

in the dynamics of the process: If any disturbances are highly correlated from batch 

to batch, then the information from previous batches can be useful to determine how 

the next batch should operate to mitigate any similar disturbance. However, if the 

disturbances behaviour changes from batch to batch, within-batch control is a more 

sensible option [70]. 

  

Iterative Learning Control (ILC) is a widely used techniques in batch-to-

batch control [79]–[84]. ILC deals with the control of repetitive actions by using the 

information in previous iterations to obtain the best inputs for the next iteration. 

These inputs are determined such that they minimise a function of the error [85]. ILC 

was first introduced by Arimoto et al. [86] as a specific technique in robotics which 

was based on the ability of humans to learn from repetitive tasks. The term ILC in 

batch-to-batch control, however, is usually used in different control methods that 
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work in a repetitive mode and that have a control law based in the tracking error of 

previous measurements. 

A classic example of ILC in batch-to-batch control is the study presented in 

[81]. In this study, the authors proposed an ILC strategy for a fed-batch fermentation 

process. The strategy used iteratively-updated linearized models to calculate the 

MVTs necessary to eliminate undesired variations and disturbances from one batch 

to the next. The main objective with this strategy was to enhance the end-point 

quality, thus, they proposed and solved an optimisation to minimize the tracking 

error. 

 

Strategies that solve a cost function to optimise the operation from batch-to-

batch, such as the example presented above [81], are usually referred as batch-to-

batch optimisation. This term applies to those approaches that search for an unknown 

optimal operating MVT that will minimise a predefined cost function. In other 

words, batch-to-batch optimization is defined in [5] as ‘the procedure to calculate an 

optimal trajectory in a feed forward sense after a model update which exploits the 

repetitive nature of batch processes’. 

 

Another batch-to-batch optimisation strategy was proposed in [68]. The 

authors of this article used a hybrid control scheme for a cobalt oxalate synthesis, 

which combined a first principle model and a MPLS model to predict the end-point 

particle size distribution. This control scheme also proposed an optimization of a 

cost function which considered the tracking error of the end-point quality. The 

resulting controller was claimed to have improved the performance of the production 

from one batch to the next in the presence of disturbances.  
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Turning now to the modelling techniques employed in batch-to-batch control, 

it has been observed that batch processes have a tendency in nature to exhibit 

strongly nonlinear behaviour, which means that the model identification using linear 

modelling can produce inaccurate or unreliable predictions [87]. Some authors have 

proposed the use of nonlinear modelling techniques to deal with this problem, such 

as in [84], [87], [88]. The work published in [84] describes the application of a 

MPLS Non-Linear Regression technique using a moving window strategy for 

modelling. The result presented in this publication showed that the ILC control 

strategy using PLS regression and a moving window exceeded those using a linear 

regression technique. 

 

Some authors have claimed that nonlinear modelling techniques are often so 

time consuming and expensive that they have failed to impress the batch processes 

industries [70], and that it is better to apply a combination of alternative control 

techniques for such processes [89].For example, the  batch-to-batch optimization 

presented in [70] included a quadratic term in the manipulated variables in the MPLS 

model to regulate nonlinear effects in the process. This study also included a 

combination of within-batch and batch-to-batch control strategy, which used a 

MPLS model and an objective function based on the quadratic error of the final 

quality to control the particle-size distribution in an emulsion polymerization. 

  

Another batch-to-batch optimisation technique proposed in [90] was reported 

to have low-sensitivity to nonlinearities and uncontrolled variability. The authors of 

this publication developed a control methodology based on the gradient estimation 

for a batch-to-batch evolutionary optimization using MPLS models. Their results 

showed a significant increase in the end-point quality of a fermentation process 

compared with knowledge based approaches.  
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The work in this thesis formulates an alternative batch-to batch optimisation 

approach that uses a straightforward Quadratic Programming (QP) optimization. The 

objective of the QP formulation was to find an optimal MVT that minimised the 

predicted error in the end-point quality from batch to batch. This formulation also 

used a MPLS modelling technique similar to that previously formulated in [6], [9], 

[80]. Although these articles work in a within-batch control scheme, they also used 

PLS models that contained batch-to-batch information. This thesis formulates an 

adaptive batch-to-batch optimization that combines the MPLS modelling technique 

with an adaptive scheme.  

 

2.3 BATCH-TO-BATCH OPTIMISATION EXTENSIONS  

Section 2.2 described the relevant literature advances related to batch-to-

batch control, the main topic of this thesis. However, this thesis also proposes the 

inclusion of validity constraints within the QP formulation and the addition of a 

smoothing technique within the PLS modelling. The next section describes some of 

the recent published advances in these areas.  

 

2.3.1 Validity constraints 

An important aspect of the research presented in this thesis is the accuracy of 

the end-point quality prediction. To ensure good accuracy when estimating end-point 

quality there is a need to validate the model and restrict it into a region described by 

previous batches. In other words, the model should not be allowed to extrapolate in 

to regions that it was not calibrated for. This key element of the optimization scheme 

has been investigated in several publications using different approaches. For 

example, Nomikos and MacGregor [28] proposed an expression for confidence 

intervals when using MPLS models, which are now commonly used in the 
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monitoring of dynamical processes [91]. In their work, they claimed that it was 

reasonable enough to use a simple approximation based in the confidence intervals 

calculation to indicate how valid the model was. 

 

Similar work was published in [92]. The authors of this article used Squared 

Prediction Error (SPE) charts and the confidence intervals proposed by [28],  for 

online batch monitoring, quality prediction and fault diagnosis. Their scheme used 

the confidence intervals as a tool to detect faults and disturbances in the plant, with 

the SPE charts being used for online monitoring of batch evolution.  

 

Another interesting modification to the confidence interval used by Nomikos 

and MacGregor [28] was proposed in  [93]. This modification considered the period 

at which the prediction was made and the amount of information available to 

estimate the confidence intervals. Their proposed approach was shown to provide a 

more accurate prediction, with smaller confidence limits towards the end of the batch 

as more information was available than at the start of the batch and hence the 

accuracy of the model was improved. Their approach was validated using data from 

a real chemical reactor. 

 

There have been other approaches in addition to the technique proposed by 

Nomikos and Macgregor for calculating confidence intervals in MPLS models, such 

as the work published in [94]. The authors of this publication modelled the operation 

of a pharmaceutical process using data obtained from NIR spectroscopy. They used a 

MPLS residual bootstrap calculation to estimate the confidence intervals in the 

prediction of the tablet potency in this pharmaceutical product. Although 

considerably more complicated than the Nomikos and MacGregor approach, the 
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authors of this article claimed that their technique ensured that the value obtained by 

a classical chemical analysis was close to the model calculation.  

 

A method for restricting the control movements to ensure that the process 

remained within a region covered by the MPLS models was proposed by Flores-

Cerrillo and MacGregor [6]. In this work, the authors controlled the batch end-

product quality of two different case studies by using the Hotelling’s statistic within 

the cost function. This allowed the control system to restrict the optimization space 

to the region of the score space that was consistent with past batches. This restriction 

however, had a weighting factor that needed to be tuned from batch-to-batch, 

increasing the productions costs by requiring more sub-optimal batches.  

 

A notable modification of this approach was published in [10]. This 

modification included the use of  normalized restrictions in the cost function to avoid 

having to tune the weighting factor used by Flores-Cerrillo and Macgregor  [6]. In 

addition, they added a quadratic error term in the residuals, usually employed in 

monitoring and faults diagnosis [95], to the cost function as part of the strategy to 

ensure the validity of their MPLS model in an innovative Latent Variable MPC 

strategy for continuous processes. The same research was later improved in [8] by 

using the validity restrictions, not as soft constraints but as hard constraints in the 

cost function, ensuring that the validity restrictions were  not disregarded in their 

within-batch control technique.    

 

This thesis proposes the inclusion of two model validation techniques within 

a batch-to-batch control system. These were included as validity constraints similarly 

to the work in [8], [63] and are integrated in to the cost function in the QP problem 

formulation to ensure the validity of the MPLS model is respected. The addition of 
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these terms in the control strategy aims to improve its performance by increasing the 

robustness of the control methodology under different scenarios.  

 

2.3.2 Smoothing techniques 

In control system design, smoothing techniques are usually used prior to the 

identification stage to handle noisy data.  Noise in the raw calibration data can create 

errors in the estimated calibration parameters and hence systematic errors in the 

prediction of the output [96]. Therefore, by smoothing process measurements, the 

signal-noise ratio of input data can in theory reduce the noise in the calibration data.  

 

While many industrial applications use pre-processing filtering techniques 

such as moving average filters and Fourier analysis-based filters prior to 

identification [96], most of these techniques are disconnected from the modelling 

algorithm formulation. One approach that is used in this work as a method for 

introducing this concept in to PLS regression is known as Functional PLS (FPLS) 

[97]. This algorithm is based on functional analysis [98] and it applies PLS 

regression over a linear combination of smoothed functions that represent the output 

variables. Other publications [99], [100] have evaluated the performance of FPLS 

and found that the FPLS models provided better estimations than classical PLS 

models  

 

Although FPLS considers the smoothing of the explanatory variables inside 

the modelling technique, the smoothing operation can be classified as a pre-

processing technique as the PLS regression itself does not change. Another approach 

that has tackled the smoothing problem within the PLS regression was formulated in 

[101]. This smoothed-model regression technique is known as Penalized PLS 

(PPLS) and it includes a penalty term in to the NIPALS regression to smooth the 
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PLS loading coefficients, which according to the authors should, in theory lead to 

improved prediction performance. 

 

For batch-to-batch optimisation, several publications have reported that the 

performance of the control system was improved when filtering techniques were 

applied prior and/or after the optimisation was performed [90], [102]. Camacho et al. 

[103] suggested two hypothesis for this phenomena. One hypothesis was that 

smoothing over a specific dataset could improve the PLS modelling performance, 

thus improving the accuracy of the model estimations. The second hypothesis was 

that smooth inputs in the minimization problem could reduce the search space in the 

optimisation sequence, hence improving the problem solution. According to their 

results using a number of simulations, they observed that the second case was more 

likely to be the correct hypothesis. They also evaluated PPLS, FPLS and the filtering 

approach employed in [90] over two batch process simulations and concluded that 

the filtering approach outperformed the other smoothing techniques . 

 

Chapter 7 of this thesis presents a similar analysis to that published by 

Camacho et al. [103]. The objective of this analysis was to corroborate the findings 

of Camacho et al. regarding the possible hypothesis for the filtering problem. The 

results of this analysis are obtained comparing the filtering approach used in [102], 

the FPLS, and the PPLS algorithms over 2 batch-process simulations. 

 

2.4 SUMMARY 

This chapter has provided the relevant literature review for the application of 

batch-to-batch optimisation using MS models. The most relevant points presented in 

this chapter are listed next: 
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 Section 2.1 provides the main modelling techniques used in batch 

processes divided in three categories: knowledge-based, data-based or 

hybrid models. Examples of these strategies are also provided in this 

section.   

 

 Section 2.2 presents the main techniques employed in monitoring and 

control of batch process. Some examples are provided divided in two 

categories: within-batch and batch-to-batch. 
 

 

 Section 2.3 present some relevant advances published with regard to 

the subject matter of Chapters 6 and 7. These advances include the 

addition of smoothing techniques and validity constraints in batch-to-

batch optimisation. 
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Chapter 3: Preliminary Methodology  

This chapter outlines the design and overall structure of the experiments 

presented in this thesis. These experiments are designed to test the control systems 

that are developed and presented in this thesis. Section 3.1 begins by listing the 

hardware and software used to obtain the results presented in the following chapters. 

Then, Section 3.2 describes the case studies used to simulate batch production. 

Section 3.3 provides the data structure that was used for the experiments described in 

this thesis. Finally, Section 3.4 presents a brief summary of this chapter. 

 

3.1 HARDWARE AND SOFTWARE 

The hardware used for the computations consisted of: 

DELL Optiplex 790 

 Processor: Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz  

 RAM: 8.00 GB. 

 System type: 64-bit. 

 

The software used for the computations consisted of: 

 Microsoft Windows 7 Enterprise 2009 Service Pack 1. 

 MATLAB (The MathWorks, Inc.) 64 bit R2012a and R2013a.  

 MATLAB Statistics and Machine Learning Toolbox 

 MATLAB Optimization Toolbox 
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The PLS regression and the Principal Component Analysis (PCA) coefficients were 

obtained using, respectively, plsregress and pca functions from MATLAB.  

Similarly, the QP problems solutions were found using quadprog and fmincon 

functions from MATLAB. Finally, filtering to smooth the MVT was done using the 

function filtfilt and the coefficients were obtained using fdatool. 

3.2 CASE STUDIES  

One of the most common industrial sectors that uses batch processing is the 

pharmaceutical industry, which uses this approach in the production of high value 

added pharmaceutical and biochemical products. The particular type of batch process 

that is used in this industry is fermentation processing [69]. This type of process was 

therefore used as a simulation to evaluate the performance of the different control 

algorithms developed in this thesis. One of the simulations used in this work was a 

yeast production process, which consisted of  simplistic models based on kinetic 

expressions that was published in [4]; the other simulation was a more complex 

penicillin production published in [20], which included built-in PID controllers. 

 

The first simulation, named Saccha through this thesis, was programmed 

using a MATLAB ODE (Ordinary Differential Equations) solver based in the work 

described in [4]. The second simulation known as Pensim was provided by the 

Illinois Institute of Technology and modified to obtain the final penicillin 

concentration as the quality variable instead of the biomass concentration.  

3.2.1 Saccharomyces cerevisiae production 

The first case study that was used in this work was the simulation of 

Saccharomyces cerevisiae (Saccha). This is one of the most useful species of yeast 

as it has been used for centuries in the production of food and alcoholic drinks. The 

Saccha simulation used in this thesis was presented in [4] and has been used as a 
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benchmark simulation in several studies [11], [18], [84], [90], [103]. Its knowledge 

model includes 11 reactions and 9 mass balance dynamic equations. The simulation 

is able to operate in both batch and fed-batch modes, however, in this work the focus 

was on fed-batch. 

The variables used in Saccha simulation are shown in Figure 3.1. The terms 

that follow the variables are the notation that will be used throughout this chapter for 

describing the measured variables v, manipulated variables u and output variables y. 

Similarly, the sub index of the input variables will be useful to describe the 

allocation of variables for identification, which will be described in the model 

building section in Chapter 4. 

 

 

Figure 3.1: Variables in the Saccha simulation. 

 

Table 3.1 lists the initial conditions of the input and output variables shown 

in Figure 3.1. These initial conditions are the same as those used in [18],  [4] and 

[90] . 

 

The objective when operating the Saccha simulation is to maximize the 

output quality (biomass concentration) by manipulating a highly concentrated 

Measured Variables  
Manipulated Variable 

Output Variable 

Glucose concentration (v
1
)   

Pyruvate concentration (v
2
) 

Acetaldehyde concentration (v
3
) 

Acetate concentration (v
4
) 

Ethanol concentration (v
5
) 

Active cell material (v
6
) 

Acetaldehyde dehydrogenase (v
7
) 

Volume (v
8
) 

  

Glucose feed rate (u) 

Biomass concentration (y) 
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glucose feed (100g/l) throughout a 10-hour batch process. The sample time for the 

simulation was 0.1 hours. In addition, 1% Gaussian noise was added to the end-point 

quality and 5% to the initial conditions to investigate the behaviour of the control 

systems to sensor noise and unmeasured disturbances respectively.  

Table 3.1: Saccha initial conditions. 

Variable Initial 

condition 

Glucose concentration  0 (g/l) 

Pyruvate concentration 0 (g/l) 

Acetaldehyde concentration 0 (g/l) 

Acetate concentration 0 (g/l) 

Ethanol concentration 0 (g/l) 

Biomass concentration 1 (g/l) 

Active cell material  0.3 

Acetaldehyde dehydrogenase  0.0075  

Volume 7 (l) 

 

Figure 3.2 shows the trajectories of the process variables in the Saccha 

simulation when a feeding law similar to the optimal MVT that was used in [90] was 

applied. 

 

More detailed information regarding the Saccha parameters is available in [4] 

and [90] .  
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Figure 3.2: Variables trajectories in a Saccha simulation. 

 

3.2.2 Penicillin fed-batch fermentation production 

The second case study was a benchmark simulation developed for penicillin 

production (Pensim) that was presented in [20]. A major reason for selecting this 
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simulation was that penicillin is one of the most useful groups of antibiotics used in 

modern medicine. Furthermore, the Pensim simulation has been used as a 

benchmarking tool in a range of publications describing new batch monitoring and 

control designs [9], [104]–[108]. 

 

The knowledge model of the Pensim simulation is an extension of the work 

of Bajpai and Reuß [21] and considers a process with 5 input variables, 8 measured 

variables, 1 manipulated variable, and 2 output variables (from which one was 

selected to be controlled). These variables are shown in Figure 3.3 with their 

respective notation.  

 

 

Figure 3.3: Variables in the Pensim simulation. 

Measured Variables  
Manipulated Variable 

Output Variable 

Glucose concentration (v
4
)   

Dissolved Oxygen conc. (v
5
) 

Volume (v
6
) 

C0
2 
concentration (v

7
) 

pH (v
8
) 

Culture temperature (v
9
) 

Generated heat (v
10

)  

  

Glucose feed rate (u) 

Penicillin concentration (y
1
) 

or 

Biomass concentration (y
2
) 

Aeration rate (v
1
)   

Agitator power (v
2
) 

Glucose feed temperature (v
3
) 

pH set-points  

Temperature set-points  

  

Input variables 
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This simulation includes a PID controller that manipulated the acid/base 

feed-rate to regulate the pH, and a second PID controller that manipulated the 

heating/cooling water flow rate to regulate the temperature of the culture. The set-

points of these controllers, along with nominal values of the input and manipulated 

variables were excited with filtered Pseudo Random Binary Sequence (PRBS) for 

model identification.  

 

The primary objective when operating this case study was to maximize either 

the final penicillin concentration or the final biomass concentration by manipulating 

the MVT of the glucose feed rate in the least number of batches. Each batch in the 

simulation consisted of 200 hours divided in to 200 discrete intervals of 1 hour. For 

the first 45 hours, the process operated in batch mode and after this time, operation 

was switched to fed-batch. In the control studies described in this thesis, the process 

was only manipulated after this 45 hour point. The simulation therefore consisted of 

two stages: a biomass growth-phase with pre-set values and a penicillin production 

phase which required glucose feed [20], which could be manipulated to maximise 

penicillin or biomass production.  

 

Table 3.2 shows the initial conditions of the Pensim variables with the 

standard configuration described in [9]. 

 

The quality measure that was used for this case study throughout the work 

described in this thesis was chosen to be final penicillin concentration. Although 

several studies have tried to maximise biomass concentration, the desire in any 

manufacturing process will be to maximise the production of penicillin. Penicillin is 

much more complicated to control than biomass because it’s relationship to glucose 

addition is highly non-linear, whereas biomass has a linear relationship with glucose 
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feed [107]. Applying control and optimisation techniques to penicillin production 

therefore provides a much more realistic evaluation of the capabilities of any 

developed technique. In addition, Gaussian noise with 1% amplitude was added to 

the end-point quality to investigate the behaviour of the control systems to sensor 

noise as in the Saccha simulation.  

 

Table 3.2 Pensim initial conditions. 

Variable Initial condition 

Aeration rate 8 (h-1) 

Agitator power 30 (W) 

Glucose feed rate 0.045 (l/h) 

Glucose feed temperature 296 K 

pH set-points  0 (ml/h) 

Temperature set-points 298 K 

Volume 100  l 

Culture temperature 297 K 

Generated heat 0 cal 

pH 5 

Glucose concentration 15 (g/l) 

Biomass concentration 0.1 (g/l) 

Penicillin concentration 0 (g/l) 

Dissolved oxygen concentration 1.16 (g/l) 

CO2 concentration 0.5 (mmol/l)  

 

Figure 4 shows the trajectories of the major variables within the pensim 

simulation when a feeding law, similar to the optimal MVT obtained in [104] was 

applied. 
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Figure 3.4: Variables trajectories in a Pensim simulation. 
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3.3 DATA STRUCTURE 

In batch-to-batch operation, the measurements from consecutive batches are 

obtained over a two dimensional space: time within batch and batch number. Within-

batch-time measurements are obtained similar to that of periodic operation, by 

dividing the operation time into K  discrete time data-points. The number of batches 

is also by definition discrete so the variables measurements are regularly distributed 

into batch number data-points I. This means that the data of each variable for each 

experiment in this thesis, from batch-to-batch operation had two time dimensions 

(I×K). 

 

Figure 3.5 illustrates the data structure for one process variable over the 2-

dimensional space (I×K). This figure shows sample-data (100 samples for 10 hours) 

from a 100 batches of the Saccha simulator. 

 

 

Figure 3.5: Glucose concentration measurements (100 over 10 hours) from a batch-

to-batch optimisation of Saccha over 100 batches. 
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Simulation data such as that observed in Figure 5 was stored in a predictor 

matrix X along with the other variables. This matrix was then used as an input for the 

PLS modelling algorithm. This resulted in X having an extra dimension J for the 

different process variables.  As a result of this, the predictor matrix X was defined as 

a 3-dimensional space (I×J×K). This matrix was then transformed using an 

unfolding technique within the MPLS algorithm to have two dimensions (I×JK). A 

more detailed explanation of this process is provided in Chapter 4.   

 

The data structure for the response variables was obtained from the end-point 

quality of each batch, resulting in a response vector y (I). However, if multi-output 

optimisation were to be used in future work (i.e. penicillin and biomass 

concentration), then the response matrix Y would become 2-dimensional (number of 

quality variables ×J). 

 

3.4 SUMMARY 

This chapter described the experiment design and case studies for the 

experiments presented in this thesis. The chapter was divided as follows: 

 

 Section 3.1 describes the hardware and software used to obtain the 

calculations. 

 

 Section 3.2 described two fermentation-based case studies for the 

experiments: a yeast production named Saccha and penicillin 

production known as Pensim. 

 

 Section 3.3 provided the data structure use as input and outputs in the 

numerical experiments.
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Chapter 4: Optimisation and Modelling of Batch Processes  

This chapter presents the main theoretical framework used for the batch-to-

batch optimisation proposed in this thesis. Firstly, Section 4.1 states the type of 

methodologies used to solve the control problem in batch-to-batch optimisation. 

Secondly, Section 4.2 describes the optimisation theory used to calculate the optimal 

MVT. Finally, Section 4.3 provides a brief explanation of the LV statistical 

modelling techniques, necessary for the MVT optimisation proposed in Chapter 5.  

 

4.1 INTRODUCTION  

As was mentioned in the literature review in Chapter 2, it is clear that the 

main objective of batch-to-batch optimisation (also referred to as run-to-run 

optimisation or simply batch optimisation) is to fully exploit the repetitive nature of 

batch processes to find the optimal operating conditions of a batch under the effect of 

disturbances in the fewest number of batch runs. This is achieved by using the 

measurements of past batch operations to improve subsequent runs. 

 

To achieve this objective, Srinivasan et al. [109] suggest three types of 

methodologies: 

 

1. “Model-free evolutionary optimisation”: Instead of using a model, the 

process performance, based on the trajectory of the input or 

manipulated variables, is evaluated from experiment to experiment. 
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The process inputs are re-calculated for each batch by calculating the 

gradient and running an optimisation algorithm. 

 

2. “Evolutionary optimisation with model-based gradient”: This type of 

optimisation uses a dynamic model instead of the process itself to 

calculate the gradient and find optimal inputs. 

 

3. “Optimisation via model refinement”: A process model is ‘refined’ 

using the information from previous experiments. Then, this model is 

used to solve an optimisation problem. 

 

Each of these three methodologies has advantages and disadvantages over the 

others. The advantage of the first methodology is that, unlike the second 

methodology, it does not require an accurate model to successfully optimise. The 

disadvantage is that it requires numerous batch runs before finding the gradient and, 

thus, returning an optimal response. In light of this, the third methodology seems a 

natural choice for the proposed design as it improves the accuracy of the model 

without incurring the costs resulting from numerous sub-optimal batch runs. 

 

Srinivasan et al. [109] also describe a common procedure for optimisation via 

model refinement, where θ represents the parameters of the model and π represents 

the decision variables:   

 

1. “Choose initial guesses for parameters θ.” 

2. “Use the model and an optimisation algorithm to obtain the optimal π.” 

3. “Run the batch with the optimal π.” 
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4. “Use an identification algorithm and all the variable measurements to 

obtain a new estimate for θ.” 

5. “Repeat steps 2-4 until convergence.” 

 

These steps serve as the basis for developing the batch-to-batch optimisation 

procedure proposed in this thesis. Following the steps clearly necessitates two basic 

components: 

 

 An optimisation algorithm to obtain the optimal MVT defined for 

each case study, from one batch to the next. The type of algorithm 

used for this purpose is defined in Section 4.2. 

 

 A process model to estimate the dynamic behaviour of the process. 

The type of modelling technique is provided in Section 4.3 

 

4.2 OPTIMISATION 

In the mathematical sense, optimisation deals with problems of minimising or 

maximising a function that is usually subject to constraints. Applying this 

description to engineering problems gives rise to the objective of finding the values 

of the variables that yield the best value of a performance criterion in a process. This 

criterion, which uses a process model is referred to as the optimisation problem 

[110]. 

 

The general notation of an optimisation problem can be described as in 

Equation 4.1. 
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min
𝛑
𝑓(𝛑) 

                                    Subject to: 𝒉(𝛑) = 0 

𝒈(𝛑) ≥ 0 

(4.1) 

 

where 𝑓(𝛑) is the objective function to be optimised, also known as cost 

function, 𝒉(𝛑) = 0 is an equality constraint and 𝒈(𝛑) ≥ 0 an inequality constraint. 

 

In optimisation problems over a real plant operation, the minimisation 

depicted in Equation 4.1 has many solutions that satisfy the quality and inequality 

constraints. Hence, the optimisation algorithm selects the ‘best’ solution among the 

entire set of solutions. The ‘best’ solution is called the ‘optimal solution’ whereas all 

possible solutions in the set are known as ‘feasible solutions’. 

 

Many formulations have been proposed to solve optimisation problems 

depending mainly on the characteristics of the process model and its constraints. 

Some examples of such are as linear programming, nonlinear programming, robust 

programming, and integer programing, etc. This thesis proposes the use of Quadratic 

Programming (QP) as the optimisation algorithm to obtain the optimal MVT. This is 

because such a formulation would be relatively simple to formulate and solve. 

Additionally, if the QP is convex, then any local solution could be considered the 

optimal solution for the problem. 

 

4.2.1 Quadratic Programming (QP) 

In this optimisation problem, the objective function to be minimised is 

quadratic and is subject to linear equality or inequality constraints. The general QP 

problem formulation is shown in Equation 4.2. 
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𝑚𝑖𝑛
𝝅
𝒄𝑻𝝅 +

1

2
𝝅𝑻𝐌𝝅  

                                    Subject to: 𝑨𝛑 ≤ 𝒃 

(4.2) 

 

where c is a (n) vector of constant coefficients, A is an (n×m) matrix, b is a 

(m) vector and 𝐌 is a (n×n) symmetric matrix. This symmetric matrix is usually 

defined as Q, however, this thesis reserves the letter Q for the loadings of the PLS 

model. 

 

An important characteristic of Equation 4.2 is that if the 𝑴 matrix is positive-

semidefinite, then the QP objective function is convex. This means that the local 

solution of the minimisation problem would also be an optimal solution, hence a 

‘global solution’ [111].  

 

This section has defined the optimisation algorithm used to calculate the 

optimal MVT in the main batch-to-batch optimisation methodology. This section 

also clarified that this methodology is classified as an optimisation via model 

refinement, which therefore requires a suitable modelling technique. Such a 

technique will be the focus of the next section. 

 

4.3 LATENT-VARIABLES MODELS 

The design of the control scheme proposed in this chapter utilises some well-

known theoretical concepts in MS modelling and the optimisation of batch 

processes. As previously mentioned in Chapter 2, MS modelling methodologies such 

as the PCA or PLS algorithms are extremely useful in batch control. This section 

describes these and other algorithms that naturally derive from the PLS regression. 



 

 

Chapter 4: Optimisation and Modelling of Batch Processes 67 

 

 

 

For example, this section considers MPLS, which explains how to deal with 3-

dimensional data; and adaptive PLS, which is used to update PLS models from one 

batch to the next. This section also describes another concept that is related to the 

mathematical optimisation used in this methodology: QP algorithms for the solution 

of constrained problems. 

  

4.3.1 System identification 

Chapter 2 described the importance of MS statistical methods in modelling 

and optimization of batch processes. In brief, MS compression techniques (or lower 

dimensional modelling techniques) are especially useful in collinearity situations. 

This is due to the redundancy necessary between predictor variables to ensure that 

MS models do not leave out important information. Therefore, it is inconvenient to 

use identification methods such as MLR that assumes that each variable in X has 

unique information about the responses variables in Y. In other words, to find the 

relationship between the variables in X and Y (calibration), some rank reduction is 

necessary if collinearity exists among the predictors variables in X.  

 

In the case of batch processes, it is common for collinearity to exist between 

the variables in X as many of the mathematical relationships between variables are 

dependant among themselves. For example, Figure 4.1 shows the Pearson’s linear 

correlation coefficient that one sample demonstrates relative to the other samples in 

X in a Saccha simulation process. If this coefficient is close to 1 or -1, the variables 

have a positive or negative correlation, respectively. On the other hand, if the 

coefficient is close to zero, then the variables are not correlated. 

 

The main idea of rank-reduction methods is that the relevant information in 

the variables in X is condensed into A number of ‘latent’ factors. These factors are 



 

 

Chapter 4: Optimisation and Modelling of Batch Processes 68 

 

 

 

then used as a regressor to find a model. To illustrate this, Equations 4.3 and 4.4 

formulate the compressed-data linear regression model; this is common practice to 

approximate the relationships of the data [96]. 

 
𝑻 = 𝑿𝑽 (4.3) 

𝒀 = 𝑻𝑸𝑻 + 𝑭 (4.4) 

where T comprises the scores of the ‘latent’ factors, V  is a matrix of weights 

necessary to find T, Q is a matrix of loadings necessary to regress T into Y ; and F 

represents those contributions to Y which cannot be explained by the ’latent’ factors. 

 

 

Figure 4.1: Pearson’s linear correlation coefficient for the predictor matrix in a 

Saccha simulation process. 

It should be noted that in this model, for each variable to have the same 

importance than the others, the information in X and Y should be ’normalized’ by 

dividing each column by subtracting the mean and dividing by its standard deviation. 

This pre-processing adjustment is known as auto-scaling and normalising and it is 

illustrated in Equations 4.5 and 4.6. 
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𝒙𝒊𝒋𝒌 = (
𝒙𝒊𝒋𝒌…− �̅�𝒋𝒌

𝒔𝒕𝒅𝒋𝒌…
) (4.5) 

𝒚𝒊𝒋𝒌 = (
𝒚𝒊𝒋𝒌…− �̅�𝒋𝒌

𝒔𝒕𝒅𝒋𝒌…
) (4.6) 

 

The effect of mean-centring can be observed in Figure 4.2. This figure shows 

the data contained in one vector (or batch) of the X(I×JK) matrix before and after 

auto-scaling, for a Saccha data-set of 3 batches.   

 

 

Figure 4.2: Effect of auto-scaling of 1 batch over a data-set of 3 batches of a 

Saccha simulation 

Returning to the subject of data-compressed identification techniques, 

Martens and Naes [96] divided several compression methods into four areas:  

 

 “Stepwise multiple linear regression”: each vector of V consists of all 

zeroes except for one selected element with the value 1 for X 
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variables. Various strategies are used to select which X-variables to 

include’ 

 

 “Hruschka regression”: Each vector of V represents the unique 

information in the spectrum of a certain object (a row in X)’ 

 

 “Fourier regression”: Each vector of V consists of smooth, 

mathematically pre-defined spectra consisting of low and medium 

frequency sine and/or cosine functions’ 

 

 “Bilinear modelling”: each vector of V consists of coefficients 

estimated from the calibration data themselves according to some 

optimization criterion’.  

 

However, this thesis only addresses bilinear modelling, which is a method 

that does not require substantial prior knowledge about the causal relationships 

among the variables in X and Y (which is generally true when building a black-box 

model) as it estimates the matrix of weights V from the identification data-set.  

 

4.3.2 Bilinear Modelling 

In bilinear modelling, the coefficients of the weights matrix V are estimated 

according to an optimisation function, such as an optimisation based in the least 

squares criterion. The term ‘bilinear’ is given to this type of method because the 

resulting model approximates X as the product of two sets of linear parameters to be 

estimated: scores T and loadings P are illustrated by Equations 4.3 and 4.7. These 

equations, in addition to Equation 4.8, describe a full bilinear model. 
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𝑿 = 𝑻𝑷𝑻 + 𝑬 (4.7) 

𝒀 = 𝑻𝑸𝑻 + 𝑭 (4.8) 

 where P is a matrix of loadings necessary to regress T into X; and E 

represents those contributions to X which cannot be explained by the ’latent’ factors. 

Matrices E and F are usually called residuals and they can be explained by the 

presence of noise or nonlinearities in the process. 

 

The general methodology employed to model a process using bilinear 

regression techniques is divided into four steps [96] : 

 

1. The estimated matrix of weights V is obtained from the identification 

data-set using an optimisation function. 

2. The matrix of scores 𝑻 are calculated using 𝑽 as in Equation 4.3. 

3. The matrices of loadings P and Q are calculated by the linear 

regression of X and Y on T, as can be observed in Equations 4.9 and 

4.10. 

 

𝑷′ = (𝑻′𝑻)−𝟏𝑻𝑿 (4.9) 

𝑸′ = (𝑻′𝑻)−𝟏𝑻𝒀 (4.10) 

 

4. The matrices of residuals E and F are obtained using Equations 4.11 

and 4.12. 

 

𝑬 = 𝑿 − 𝑻𝑷𝑻 (4.11) 

𝑭 = 𝒀 − 𝑻𝑸𝑻 (4.12) 



 

 

Chapter 4: Optimisation and Modelling of Batch Processes 72 

 

 

 

Once the model has been calculated, it is possible to predict a quality variable 

𝒚�̂� (such as the end-point quality of a batch) from new measurements 𝒙𝒊 (such as 

measurements from a new batch) by using an estimation of the new scores 𝒕�̂�, as 

shown in Equations 4.13 and 4.14.  

  

𝒕�̂� = 𝒙𝒊𝑽 (4.13) 

𝒚�̂� = 𝒕�̂�𝑸
𝑻 (4.14) 

 

Bilinear models, such as PCR and PLS models, can be described using the 

notation defined by Equations 4.7 to 4.12. The difference between the models is each 

model’s conceptual objectives for its optimisation criterion. For instance, PCR 

attempts to find the factors in T that best describe the variation in X. It then obtains 

the linear predictor model by regressing Y on T. In contrast, PLS uses the variables 

in Y actively in the optimisation criterion to find T.  This difference causes the PLS 

model to reduce the impact of irrelevant variations in X; however, it is more complex 

than PCR as it requires either two sets of loading vectors for the X matrix, or that the 

vector scores in T are inter-correlated [112]. 

 

That PLS models can reduce the impact of irrelevant factors in the prediction of Y is 

of great use where performance in the prediction of end-point quality is the focus. 

For this reason, PLS regression is employed in this thesis as the identification 

algorithm for the batch-to-batch optimisation methodology. 

 

4.3.3 Partial Least Squares Regression  

PLS regression is a Latent Variable (LV) regression technique which finds 

both the maximum variance in the involved variables, and the correlation between 
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the quality variables Y and the predictor variables X.  The name originates from work 

originally developed as a sequence of simple, partial models fitted by least squares 

[39]. 

 

 In its original form, the PLS regression method was applied for one single y 

variable and was developed simultaneously (orthogonalised PLS and non-

orthogonalised PLS)  by Wold [39] and Martens [96]. Wold’s approach attempted to 

find orthogonal scores T by using an additional set of orthogonal loadings weights 

W. On the other hand, Martens’ algorithm had fewer parameters, but the scores T 

were not orthogonal. Over time, the algorithm proposed by Wold, known as PLS-

NIPALS [36], has become the standard method to express the PLS regression. 

However, Jong [43] introduced a faster version of the algorithm, known as SIMPLS, 

which is now commonly used when computing speed is a relevant factor. 

 

The mathematical model of the PLS regression can be described by 

Equations 4.7, 4.8, 4.11 and 4.12 of the Bilinear Model and the prediction of the end-

point quality as in Equations 4.13 and 4.14. The matrix of orthogonal weights W 

from the NIPALS algorithm can be defined in terms of the weights matrix V from 

the bilinear model as shown in Equation 4.15. 

  

𝑽 = 𝑾(𝑷𝑻𝑾)−𝟏 (4.15) 

 

For multivariate Y Equation 8 can also be described as in Equations 4.16 and 

4.17.  

 

𝒀 = 𝑼𝑸𝑻 + 𝑮 (4.16) 
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𝑼 = 𝑻𝑩 (4.17) 

where U are the scores for the qualities in Y and B is the inner relationship 

between the scores T and U. Although this thesis only tackles the problem of 

univariate quality more information about notation can be found in [112]. 

 

4.3.4 Multiway PLS (MPLS) 

A complication introduced with batch processes is that the measurements are 

typically stored in a 3-dimensional data array, with dimensions corresponding to 

measured variables (J), time intervals (K) and batch number (I). Before PLS can be 

applied to such data it is necessary to transform the data into a 2-dimensional matrix. 

There are two main approaches used in MPCA and MPLS to achieve this unfolding 

according to [113]: The first approach is known as batch-wise. In this approach the 

variables and time are unfolded for each-batch. This allows the variability among the 

batches to be observed by analysing the measured variables and their time variation. 

In contrast the second approach, known as variable-wise, unfolds the batches and 

time for each variable and can be used to obtain information on the variability among 

the variables.  

 

From the previous paragraph, it is clear that batch-to-batch optimisation is 

interested in batch-wise unfolding. In [28], [36] a batch-wise unfolding technique 

referred to as MPLS, was proposed and is now used routinely for modelling batch 

processes. The result of the MPLS transformation is shown in Equation 4.18 and 

Figure 4.3. 

 

𝑿 ∈ ℝ𝐼 ×𝐽×𝐾 → 𝑿 ∈ ℝ𝐼 ×𝐽𝐾 (4.18) 
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Figure 4.3: MPLS unfolding of 3D data into 2D data sets 

This method, presents the variability of each process variable J about the 

mean trajectory at each time interval K along the batches I. This means that the data 

matrix X was arranged to have the structure shown in Equation 4.19, where t stands 

for the data sample time during a batch run and i stands for the iteration from one 

batch to the next.  

 

𝑿 =

[
 
 
 
𝑣1(𝑡1, 𝑖1) 𝑣2(𝑡1, 𝑖1) … 𝑣𝐽(𝑡1, 𝑖1) … 𝑣𝐽(𝑡2, 𝑖1) … 𝑣𝐽(𝑡𝐾, 𝑖1)

𝑣1(𝑡1, 𝑖2) 𝑣2(𝑡1, 𝑖2) … 𝑣𝐽(𝑡1, 𝑖2) ⋯ 𝑣𝐽(𝑡2, 𝑖2) … 𝑣𝐽(𝑡𝐾, 𝑖2)

⋮ ⋮  ⋱  ⋮ ⋱ ⋮ ⋱ ⋮
𝑣1(𝑡1, 𝑖𝐼) 𝑣2(𝑡1, 𝑖𝐼) … 𝑣𝐽(𝑡1, 𝑖𝐼) ⋯ 𝑣𝐽(𝑡2, 𝑖𝐼)  … 𝑣𝐽(𝑡𝐾, 𝑖𝐼)]

 
 
 

 (4.19) 

 

4.3.5 Adaptive PLS 

Since MPLS is a linear modelling technique it is be unable to accurately 

represent the dynamics of the process over different operating conditions. It is 

therefore necessary for the model to adapt to the localised batch conditions. The 

purpose of MPLS models in this thesis is to track a number of batch process with 
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certain operating conditions and then adapt the model from one batch to the next to 

keep a record of the changes in the dynamics of the batch from one region to 

another. The adaptive mechanism proposed in [49] was thus used to update the 

MPLS model at the end of each batch. This technique utilises a ‘forgetting factor’, 𝜆, 

to ensure that the model forgets the behaviour of historical batches but remembers 

the most recent batches. The inclusion of the forgetting factor is essential as, without 

it, linear MPLS would not be able to track the changing characteristics from one 

batch to the next.  

 

To adapt the MPLS model using this technique, the 𝑿 and 𝒀 matrices are 

appended with data from the previous batch, as shown in Equation 4.20, where 𝒙𝑘 

and 𝒚𝑘 are vectors containing the trajectories of the predictor and response variables 

for batch k. A new model is then identified by applying MPLS to these matrices. It 

should be noted that to forget past batches, 𝜆 needs to be positive and smaller than 1. 

In this thesis,  𝜆 is defined as a scalar, but it could be defined as a weighting vector 

where smaller values are associated with the oldest batches, and increasing values 

are assigned for the more recent batches. 

 

𝑿𝒌+𝟏 = [
𝜆𝑿𝒌
𝒙𝑘
]   𝑎𝑛𝑑   𝒀𝒌+𝟏 = [

𝜆𝒀𝒌
𝒚𝑘
] (4.20) 

 

This method’s drawback is that the size of the 𝑿 and 𝒀 matrices increases 

with each batch, consequently increasing computational and storage requirements. 

To overcome this, [50] showed that the same results can be obtained if PLS is 

applied to the matrices defined in Equation 4.21. Applying PLS to these matrices has 

the advantage that the size of 𝑿 and 𝒀 remains unchanged and hence the 

computational and storage requirements are not as demanding. 
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𝑿𝒌+𝟏 = [
𝜆𝑷𝑇

𝒙𝑘
]   𝑎𝑛𝑑 𝒀𝒌+𝟏 = [

𝜆𝑸𝑇

𝒚𝑘
] (4.21) 

 

When selecting a suitable value for 𝜆, it is necessary to consider the number 

of batches of data, N, that is to be remembered by the model. The approximate 

relationship between 𝜆 and N is given by Equation 4.22 [49]. The forgetting factor 𝜆 

must be chosen such that the number of batches N is relevant to the conditions 

around which the process is currently operating.  

 

𝑁 =
1

1 − 𝜆
 

Where          0 < 𝜆 ≤ 1 

(4.22) 

 

If N is chosen to be too large, then the model will not adapt quickly enough 

to follow substantial changes in process dynamics. In contrast, if N is chosen to be 

too small, then the model will not consider enough past batches to obtain a useful 

model. In the work presented in this thesis, values of N between 5 to 10 were found 

to yield acceptable results, although this is likely to be problem dependent. 

 

4.3.6 Missing data Algorithms  

The objective of the optimisation design proposed in this thesis is to increase 

the yield from one batch to the next despite variation in the initial conditions. For 

this reason, some of the values in the predictor vector 𝒙 in the optimization routine 

need to be estimated. A way to estimate these values is using missing data 

algorithms [6].   
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A variety of missing data algorithms have been proposed and compared in  

[114]. The authors of this article found the KDR (Known Data regression) method 

outperformed other algorithms over 3 case studies. According to this article, the 

advantages of Trimmed Score Regression (TSR) and Projection to the Modal Plane  

(PMP) is that they require less calculations but have the disadvantage that some 

matrices may be ill-conditioned which could lead to large score errors. 

 

In the research developed for this thesis, in results obtained over the Pensim 

simulation, the TSR and the PMP algorithms outperformed other algorithms; the 

relevant results of these experiments are shown in Figure 4.4. In this figure, each 

graph presents the Mean Square Error (MSE) of the estimation of future values using 

each algorithm. The PMP method was thus chosen because of its satisfactory results 

in the case studies used in this thesis and its simplicity. The problem of the ill-

conditioned matrices was solved by proposing limits in the minimum value of the 

variance in the variables among different batches. 

 

Figure 4.4: Estimation MSE for unknown variables using missing data algorithms 

for PLS prediction over Pensim 
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The PMP method for PCA estimates the score vector by regressing the 

known variables on the plane defined by the loading matrix 𝑷. In this case, the score 

can then be estimated by regressing the known vector of input variables 𝒙𝒑 to the 

plane defined by the loading matrix 𝑷, as shown in Equation 4.23. 

 

 

𝒕𝒌
�̂� = (𝑷𝒑

𝑻𝑷𝒑)
−𝟏
𝑷𝒑
𝑻(𝒙𝒑)

𝑻
 (4.23) 

where the matrix of known loadings 𝑷𝒑
𝑻 contains the rows of 𝑷𝑻 that account 

for the known vectors of predictors 𝒙𝒑. 

 

Similarly, the score vector can be estimated for PLS by regressing the known 

variables on the plane defined by the weight vector 𝑽 as equation 4.15. However, the 

bi-diagonal model proposed by Martens [112] used in this thesis has only one set of 

loadings (𝑽 = 𝑾 = 𝑷), this means that score can be estimated as in equation 4.24. 

 

𝒕𝒌
�̂� = (𝑷𝒑

𝑻𝑾𝒑)
−𝟏
𝑾𝒑
𝑻(𝒙𝒑)

𝑻
= (𝑷𝒑

𝑻𝑷𝒑)
−𝟏
𝑷𝒑
𝑻(𝒙𝒑)

𝑻
= 𝑽𝒑(𝒙𝒑)

𝑻
 (4.24) 

 

The estimated score 𝒕�̂�, can then be used to obtain an estimate of the future 

measurements as shown in Equation 4.25, where the matrix of future loadings 𝑷𝒇 
𝑻  

contains the rows which are related to the unknown variables 𝒙𝒇. 

 

𝒙𝒇 = 𝒕�̂�𝑷𝒇 
𝑻  (4.25) 
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4.4 SUMMARY  

This chapter described the main theory of optimisation and modelling used 

for the proposed batch-to-batch optimisation described in Chapter 5. In conclusion, 

the main methodology that is employed can be described as follows: 

 

 From Section 4.1, an optimisation via model refinement which is 

composed of several sequential steps and two main components: an 

optimisation algorithm and a process model.   

 

 From Section 4.2, the optimisation algorithm has the structure 

described in Equation 4.2, which is used to calculate the optimal 

MVT from one batch to the next. 

 

 From Section 4.3, the process model consists of a bilinear modelling 

technique expressed in Equations 4.7 to 4.14. This model calculates 

its parameters by utilising an adaptive MPLS regression, described in 

Equations 4.15 and 4.20 to 4.24. 
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Chapter 5: Batch-to-batch Optimisation  

This chapter proposes an innovative design of a batch-to-batch optimisation 

and discusses its results. Section 5.1 describes the utilisation of an adaptive MPLS 

model to solve a QP cost function that provides an optimised MVT from one batch 

to the next. Next, Section 5.2 presents some preliminary experimentation with the 

case studies described in Chapter 3. The main results of the proposed optimisation 

follow in Section 5.3, along with its relevant discussion. Finally, Section 5.4 

provides a summary of relevant findings in this chapter. 

 

5.1 BATCH-TO-BATCH OPTIMISATION DESIGN   

The main purpose of this design is to gradually increase the yield from one 

batch to the next while there is variation in the initial conditions. Moreover, this 

design can be classified as an ‘optimisation via model refinement’ approach and, as 

such, it requires the MPLS model to adapt to the most recent batch conditions. This 

section describes the model’s adaptation and the process optimisation. 

 

To approach these objectives, this thesis utilises QP optimisation to identify 

the MVT from one batch to the next. This optimisation looks for the changes ∆𝒖 of 

a nominal MVT 𝒖𝒏 which minimised the error between a reference 𝑦𝑠𝑝 and the 

predicted end-point quality �̂�. Equally important in the proposed design was the 

adaptive PLS model used within the QP optimisation. This model was updated 

using the theory described in Section 4.3.5 to track the change in the dynamics from 

batch to batch. 
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These two elements are the basic elements required for an optimisation via 

model refinement as described in Section 4.1. This design also contains two more 

elements: a decision maker algorithm to select the nominal MVT for the next batch 

optimisation and a historical database of the past end-point qualities and MVT. 

  

The main flow diagram considering these elements in the optimisation design 

is shown in Figure 5.1. 

 

 

Figure 5.1: Flow diagram of the proposed batch-to-batch optimisation 

These two extra elements were used together to improve even further the 

yield according to Equation 5.1.  

 

𝒖𝒏(𝑘 + 1) = {
 𝐮(max (𝒚))         y(k) ≤ max(𝒚) − 𝐸(𝜖)

𝐮(k)                                            otherwise
 (5.1) 
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where max(𝒚) is a function that searches the maximum end-point quality 

value in the historical database, and 𝐸(𝜖) is the expected value of the sensor noise in 

the end-point quality. The historical database in this equation was updated as well 

with the values the N batches considered in the adaptive MPLS model.  

 

The design proposed in Figure 5.1 deals with the objective of Iterative 

Learning Control (ILC)  in that it improves the input of the system by using the 

repetitive nature of most manufacturing processes to minimise the error between the 

reference and the output quality [85]. However, the design can also work towards the 

objective of Modal Predictive Control (MPC), or predicting the response and 

adjusting the input to disturbances [80]. This can be achieved by passing on-line 

measurements of the plant into the MVT optimisation algorithm instead of using the 

batch initial conditions. The disturbance rejection study is not included in this thesis 

and will be considered for future work. 

 

To complete these objectives, the proposed design can also be divided into 

sequential stages as shown in Figure 5.2.  Sections 5.1.1 to 5.1.6 describe each of the 

stages in detail. 
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Figure 5.2: Diagram of the stages in the proposed batch-to-batch optimisation. 

 

5.1.1 Stage 1: Run Pre-set batches 

In this stage, the data from z batches were collected with the batch process 

operating in open-loop and a filtered Pseudo-Random Binary Sequence (PRBS) 

added to the nominal MVT. The reason to filter the PRBS is that in [90], [102], [103] 

it was suggested that the MVT be passed through a low-pass filter before being 

applied to the process. Filtering the MVT proved to be beneficial in the context of 

Stage 1: Collect data from z initial batches 

operating in open-loop with excitation applied to 

the MVT. 

Stage 2: Identify an MPLS model from z batches 

Stage 3: Measure the initial conditions from the 

kth batch and generate the necessary matrices for 

the MVT optimisation 

Stage 4: Identify the optimal MVT for the kth 

batch using QP.  

Stage 5: Add a small amount of excitation to the 

MVT and run the kth batch. 

Stage 6: Collect data from the kth batch and 

update the MPLS model. 
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this paper, hence MVT was passed through a zero-phase, low pass Finite Impulse 

Response (FIR) filter with a cut- off frequency of 10% of the maximum frequency 

(Nyquist frequency) in each case study. Experimental results demonstrated little 

difference when the maximum frequency was varied between 3% and 10%. 

 

The filtered PRBS was required to excite the process and allowed 

identification of a MPLS model. The PRBS can be added to a nominal MVT that 

was based on a previously identified trajectory, the trajectory of a ‘golden batch’, or 

if necessary a vector of zeros. The specified amplitude of the PRBS was low enough 

not to significantly alter the behaviour of the process, but high enough for the 

characteristics of the process remain distinct from background noise. 

 

5.1.2 Stage 2: PLS Model Identification of the initial data-set 

 Once the data was collected in stage 1, an MPLS model was identified as 

described in Section 4.3.4. When modelling industrial applications, the number of 

batches of data required to identify the model should be minimised to reduce costs. 

In experiments performed with 5, 20, 50 and 100 batches, it was observed that the 

end-point qualities reached their optimal values faster when data from more batches 

where used. However, running these sub-optimal batches is undesired in industrial 

production. Therefore, this thesis started the batch-to-batch optimisation with the 

minimal amount of batches necessary to build a PLS model. In this work it was 

found that good results were obtained when data from as few as three batches were 

used to identify the initial MPLS model.  
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5.1.3 Stage 3: Initialization for the MVT optimisation  

The initial conditions for the current kth-batch were collected and the 

matrices required to define the optimisation function were arranged. This meant that 

the matrices P and V were arranged according to the predictors vector 𝒙𝒌 for the kth-

batch as shown in Equations 5.2, 5.3 and 5.4. 

 

𝒙𝒌 = [𝒙𝒑 𝒖𝒏 + ∆𝒖 𝒙𝒇] (5.2) 

𝑷𝑻 = [𝑷𝒑 𝑷𝒖 𝑷𝒇] (5.3) 

𝑽𝑻 = [𝑽𝒑 𝑽𝒖 𝑽𝒇] (5.4) 

 

Where the sub index p represents the part of the vector or matrix that 

accounts for the known measurements (initial conditions) in the batch, the sub index 

u represents the part of the vector or matrix that accounts for the MVT, and the sub 

index f represents the part of the vector or matrix that accounts for the variables to be 

estimated by the PMP technique shown in Section 4.3.6. 

 

5.1.4 Stage 4: MVT Optimisation 

This MVT was determined using a similar approach to that proposed in [6]. 

However, in this thesis, the cost function was formulated in the real MVT space, 

rather than in the latent variable (LV) space. The reason for this is that it is more 

meaningful to constraint the change in the real MVT. This avoids large variations 

caused by the change in the score that might lead to erratic control behaviour [115]. 

 

The cost function used to optimise the MVT is shown in Equation 5.5. 
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min
∆𝒖
(�̂� − 𝒚𝑠𝑝)

𝑇
(�̂� − 𝒚𝑠𝑝) + ∆𝒖

𝑇𝑴∆𝒖 

𝑠. 𝑡. { 
�̂� = 𝒕�̂�𝑸

𝑇

𝒍𝒃 ≤ 𝒖𝒏 + ∆𝒖 ≤ 𝒖𝒃
 

(5.5) 

where ∆𝒖 is the vector of adjustments that is to be made to the MVT from the 

previous batch to minimise the error between the desired and predicted end-point 

quality, �̂� and 𝒚𝑠𝑝 respectively; and where the diagonal matrix of weights 𝑴 is used 

to moderate the change in the manipulated variable throughout the batch.  The 

desired end-point quality 𝒚𝑠𝑝 can be provided by a production standard in real 

manufacturing applications. Another option for 𝒚𝑠𝑝 is to remove it from the equation 

and to change the sign of the first part of the equation to maximize the end-point 

quality.  

 

Also in Equation 5.5, the optimised MVT is equal to the sum of the nominal 

value, 𝒖𝒏, and the change in the MVT, ∆𝒖. The minimisation problem is formulated 

to be constrained by physical limitations (such as the maximum flow allowed by a 

valve). These constraints are represented by the lower and upper bound vectors, 𝒍𝒃 

and 𝒖𝒃 respectively.  

 

Finally, the estimated score vector 𝒕�̂� for the new batch, 𝑘, in Equation 5.5 

was obtained, accordingly to Equation 4.13, using the vector of measurements 𝒙𝒌 

into the weight matrix 𝑽 as shown in Equation 5.6.  

 

𝒕�̂� = 𝒙𝒌𝑽 (5.6) 
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The effect that the change ∆𝒖 has on the future estimates within 𝒙𝒇 was also 

considered in the score that accounts for the unknown measurements, described in 

Equation 5.7 as 𝒕�̂�. 

 

𝒕�̂� = [𝒙𝒑 𝒖𝒏 + ∆𝒖](𝑷𝒑
𝑻𝑷𝒑)

−𝟏
𝑷𝒑
𝑻 (5.7) 

 

Introducing this term to Equation 5.6 and substituting in Equation 5.5, the 

full effect of the PMP estimation was included in the QP formulation as in Equation 

5.8. 

 

�̂� = [𝒙𝒑 𝒖𝒏 + ∆𝒖 𝒕�̂�𝑷𝒇 
𝑻 ]𝑽𝑸𝑇 (5.8) 

 

The variables that are dependent on ∆𝒖 from Equation 5.8 were then 

separated as shown in Equation 5.9.  

 

�̂� =
[𝒙𝒑 𝒖𝒏 [𝒙𝒑 𝒖𝒏](𝑷𝒑

𝑻𝑷𝒑)
−𝟏
𝑷𝒑
𝑻𝑷𝒇 

𝑻 ]⏟                        

𝜼
𝑽𝑸𝑇  + 

∆𝒖
((𝑷𝒑

𝑻𝑷𝒑)
−𝟏
𝑷𝒖
𝑻𝑷𝒇 

𝑻𝑽𝒇 + 𝑽𝒖)⏟                

𝑽𝒖𝒇

𝑸𝑇 

(5.9) 

 

Equation 5.9 was then used to reformulate the cost function of Equation 5.5 

as shown in Equation 5.10. 

 

min
∆𝒖
(�̂� − 𝒚𝑠𝑝)

𝑇
(�̂� − 𝒚𝑠𝑝) + ∆𝒖

𝑇𝑴∆𝒖 
(5.10) 
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𝑠. 𝑡. {
 �̂� = (𝜼𝑽 + ∆𝒖𝑽𝒖𝒇)𝑸

𝑇

𝒍𝒃 ≤ 𝒖𝒏 + ∆𝒖 ≤ 𝒖𝒃
  

 

Finally, the previous equation can be expressed as a QP problem shown in 

Equation 5.11, which is the final mathematical expression used to optimise the 

MVT. For a detailed explanation, appendix 1 contains the complete mathematical 

formulation of the MVT optimisation. 

 

 

min
∆𝒖
   
1

2
∆𝒖𝑇𝑯∆𝒖 + 𝒇𝑇∆𝒖 

𝑠. 𝑡. { 

𝑯 = 𝑽𝒖𝒇𝑸
𝑻𝑸𝑽𝒖𝒇

𝑻 +𝑴

𝒇𝑇 = (𝜼𝑽𝑸𝑇 − 𝒚𝒔𝒑)𝑸𝑽𝒖𝒇
𝑻

𝒍𝒃 ≤ 𝒖𝒏 + ∆𝒖 ≤ 𝒖𝒃

 

(5.11) 

 

5.1.5 Stage 5: Batch run  

This stage consisted of running the kth batch with the optimised MVT 

obtained in the previous stage. As the data collected from the kth batch was used to 

adapt the model in the subsequent stage, it was necessary to introduce further 

excitation into the process. This was achieved by adding a low-amplitude PRBS to 

the optimised MVT. However, the amplitude of the PRBS should not be large 

enough to significantly change the end-point. The amplitude of` the PRBS was 

specified to be equal to 3% of the mean of the amplitude of the MVT measured from 

one batch to the next. It was found, however, that there was not a significant 

difference in the results if the amplitude of the PRBS was varied between 1% and 

5% of this amplitude. As an example, Figure 5.3 shows the MVT that resulted from 
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solving Equation 5.11 compared to the MVT once it had been filtered and the PRBS 

had been added. 

 

Figure 5.3: Optimised MVT filtered and PRBS-added for a Saccha simulation 

 

5.1.6 Stage 6: Data collection and MPLS model updating 

In this stage, data was collected at the end of the batch, and the MPLS model 

was updated, as described in Section 4.3.5. In general, the maximum number of LVs 

that could be utilised in the initial model was insufficient to enable the MPLS model 

to fully describe the process (2 latent variables for 3 batches). This was because the 

number of batches used to identify the initial model was limited [63]. Consequently, 

the model was updated using Equation 4.20 to increase the size of the 𝑿 and 𝒚 

matrices by adding more batches. If the number of LVs was not limited, Equation 

4.21 was then used, and the number of LVs remained constant. The number of LVs 

that produced the smallest mean squared error of cross validation (MSECV) also 

known as Mean Square Estimation Error of Cross Validation (MSEECV) is the point 

at which the remaining LVs were still relatively small. This was used as an estimator 

in leave-one-out cross validation to determine the number of LVs for the model. This 

process is explained in Section 5.2. 
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5.2 PRELIMINARY MODELLING 

The proposed design predicts y from X within the MVT optimisation using an 

MPLS model. It is, therefore, necessary to consider several types of statistical 

information within the model. It is especially important to consider the average 

precision to be expected from the model, as there are many sources of variability that 

can affect the predictive capability of the model. The causes of such variability 

includes inherent model errors, random noise in the data sensors and lack of 

representation of variability in the process that describes future batches in the data 

used for identification [96]. 

 

The first and second causes of variability cannot be tackled directly in the 

identification stage. However, they must be considered to reach a solution within the 

control scheme, such as measurements smoothing to reduce noise error. The third 

cause of variability can be mitigated by considering the optimal number of LVs in 

the MPLS model. If there are not enough LVs to represent the general dynamic 

relationships of the process, then the model is underfitted.  In contrast, the model is 

overfitted if there are too many LVs, such that the model describes noise or another 

external disturbance instead of the batch process. 

 

There two types of techniques to decide the number of LVs to be used: The 

first type relies on sets of batches external from the calibration data to obtain indexes 

that measure the error between the predicted and real quality such as Root Mean 

Square of Prediction (RMSEP). The second type relies in Cross Validation (CV) 

[116], [117] of the calibration data set to obtain indexes such as the Prediction Error 

Sum of Squares (PRESS) and Root Mean Square Error of cross validation 

(RMSECV).  
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To obtain the number of LVs to be used for the MPLS model in the batch-to-

batch optimisation a numerical calculation of the RMSEP with confidence limits can 

be used to obtain the number of LVs needed from batch to batch. To observe the 

effect of the number of LVs in the prediction of the MPLS model, 50 batches for 

calibration and 50 batches of test sets were used for each case study described in 

Chapter 3. Filtered PRBS was added to the MVT of each case study, as described in 

Section 5.1.1, and pseudorandom values of 5% and 3% amplitude were respectively 

added to the initial conditions to simulate uncertainties for the Saccha and Pensim 

simulations. The results of this experimentation are described in Sections 5.2.1 and 

5.2.2.  

 

5.2.1 Modelling of the case study: Saccha 

The first method of assessing the quality of predictions of the model in this 

thesis was to obtain the RMSECV of the MPLS model for predicting the end-point 

quality using only the 50 batches in the calibration data set. Assuming that the test 

objects were representative of unknown future batches, this should illustrate the 

importance of finding the correct model complexity. The square root of the MSE 

may be preferable to the MSE because it is measured in the same units as y itself. 

 

Figure 5.4 shows the RMSECV of the MPLS model and the Saccha 

simulation using CV in 10 groups of objects for 10 LVs. This figure illustrates how 

MSECV develops as a function of the number of LVs. 
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Figure 5.4: Validation using RMSECV for prediction of the Saccha simulation 

 

It is clear from Figure 5.4 that the model experiences a marked decrease of 

the RMSECV for the first 4 LVs, and gradually drops with the addition of more LVs. 

This could indicate that all LVs have at least some degree of relevant information 

regarding the internal dynamics of the batch process. A good indicator of the correct 

number of latent variables to use is the point at which RMSECV has the smallest 

values or does not drop further [96]. From this figure we can conclude that 3 to 5 

should be a reasonable number LVs to choose. 

 

It is important to notice that in real manufacturing situations this analysis 

would require costly sub-optimal batches.  If previous data from past process runs is 

available, this could be used to determine the number of LVs to use at the beginning 

of the batch-to-batch optimisation. On the other hand, if no previous data is 

available, it is possible to evaluate the numerical values of the RMSECV over a 

threshold to obtain the optimal number of LV to be used for each batch optimisation. 
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As an example, the RMSECV obtained in the cross-validation of 4, 5, 10 and 20 

batches in the calibration data-set can be observed in Figure 5.5.  

 

 

Figure 5.5: Validation using RMSECV for prediction of the Saccha simulation using 

4, 5, 10 and 20 batches in the calibration data-set. 

 

As can be observed in Figure 5.5, it is difficult to analyse the results of the 

RMSECV using just 2 or 3 LV, however, as the number of batches increases, it is 

possible to evaluate the numerical values for successive batch optimisations. This 

suggests that cross validation is not sensible when very few batches are used in the 

calibration data-set at the beginning of the batch-to-batch optimisation. However, 

this topic was left for future research. Instead, in this thesis, the initial calibration 

data-set to build the MPLS model uses the maximum number of LVs until 5 LVs 

have been reached; then, the RMSECV is obtained iteratively to determine the 

number of LVs to be used in the MPLS model.  
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The test data set was used to test the model accuracy with the selected 

number of LVs by observing the correlation between the fitted (predicted) and the 

observed responses. This is illustrated in Figures 5.6, 5.7 and 5.8: The first figure 

shows the overfitting sample using a 10-LVs MPLS model. The second figure shows 

the optimal fitting case using a 4-LVs MPLS model; although the test set response is 

close to the overfitting case. Finally, the third figure shows the underfitting case 

using a 2-LVs MPLS model where it is clear that the predicting ability of the MPLS 

over the test and calibration sets decreases drastically. 

 

Figure 5.6: Overfitting illustrated by the correlation between the fitted and observed 

responses using 10 LVs 

 

 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
-3

-2

-1

0

1

2

3

F
it
te

d
 R

e
s
p
o
n
s
e

Observed Response

 

 

Calibration set

Test set



 

 

Chapter 5: Batch-to-batch Optimisation 96 

 

 

 

 

Figure 5.7: Optimal fitting illustrated by the correlation between the fitted and 

observed responses using 4 LVs 

 

 

Figure 5.8: Underfitting illustrated by the correlation between the fitted and observed 

responses using 2 LVs 
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The findings of these experiments suggest that it is not necessary to use more 

than 3 or 4 LVs, as the model prediction did not show improvement in the RMSECV 

or the responses correlation if more LVs were used. However, the proposed 

optimisation in Section 5.1 also needs to predict future measurements using the 

MPLS model. For this reason it was necessary to observe the percent of variance 

explained by the MPLS model over the calibration set, as illustrated in Figure 5.9. 

 

 

Figure 5.9: Percent of variance explained in X and y by the MPLS model 

 

The first graph in Figure 5.9 shows the sharp increase in percent of variance 

explained in X from 1 to 4 LVs, this could also be a good indicator of the number of 

LVs to be used for the model.  

 

5.2.2 Modelling of the case study: Pensim 

The same assessment used for the MPLS model of the Saccha simulation was 

also used for the Pensim simulation. Figure 5.10 shows the RMSECV of the MPLS 

model using CV in 10 groups of objects for 10 LVs.  
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Figure 5.10: Validation using RMSECV for prediction of the Saccha simulation 

 

This figure reveals that the model has a marked decrease of the RMSECV for 

the first 2-4 LV and gradually drops with the addition of more LV, similar to the 

Saccha case study.  

 

Figure 5.11 shows the RMSECV obtained in the cross-validation of 4, 5, 10 

and 20 batches in the calibration data-set, observing similar complications when the 

number of batches is relatively small in the calibration data-set. 
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Figure 5.11: Validation using RMSECV for prediction of the Pensim simulation 

using 4, 5, 10 and 20 batches in the calibration data-set. 

 

Figure 5.12 shows the correlation between the fitted and the observed 

responses for the optimal fitting case using a 4-LVs MPLS model, which shows 

similar predictive capability than with the Saccha simulation for the test set, although 

some extrapolation in the magnitude exists.  

 

Finally, Figure 5.13 illustrates the percent of variance explained by the 

MPLS model over the calibration set. 
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Figure 5.12: Optimal fitting illustrated by the correlation between the fitted and 

observed responses using 4 LVs 

 

 

 

Figure 5.13: Percent of variance explained in X and y by the MPLS model 
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adaptive MPLS model built up from the initial data-set was expanded using Equation 

4.20 up to 4 LVs. After this, the number of LVs was kept under 6 LVs obtaining the 

RMSECV to calculate the LVs for the remaining batches using 4.21 when new 

batches measurements were added to the model. 

 

5.3 RESULTS AND DISCUSSION 

Turning now to the analysis of the results, the output data used to evaluate 

the batch-to-batch control performance was analysed from several experiments to 

confirm reproducibility. In accordance with this data structure and to compare the 

experimental results generated in this work with those obtained from Camacho et.al 

[90], each output data-set from Saccha in this thesis consisted of 100 discrete points 

of final biomass concentration from 100 experiments over 100 batches.  

 

Figure 5.14 illustrates the output distribution of results from 100 Saccha 

batch-to-batch experiments.   

 

Figure 5.14: Example of Saccha end-point quality optimisation from 100 

experiments over 100 batches. 
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Likewise, the results of this thesis were compared with those obtained in [9]. 

Each output data-set for Pensim consisted of 100 discrete points of final penicillin 

concentration from 30 experiments over 100 batches. Figure 5.15 shows the output 

distribution of results from 100 Pensim batch-to-batch experiments.   

 

 

 

Figure 5.15: Example of Pensim end-point quality optimisation from 30 experiments 

over 100 batches. 

Figures 5.14 and Figure 5.15 display the end-point quality variability for all 

the experiments in one output data-set. In spite of this, the visual analysis of results 

in these figures is not ideal as there is an excess of information to be comprehended. 

This thesis conveniently presents the end-point quality results using the average 

value of all the experiments along with information about statistics of the 

optimisation.  

 

The vector of initial conditions 𝒙𝒑 was obtained from the initial states of the 

process variables for the Saccha simulation, and during the initial batch phase of the 

Pensim simulation, where no glucose was fed into the reactor. 
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5.3.1 Results of case study: Saccha 

The initial PLS model used for this case study was identified using a training 

dataset containing 3 batches with 5% variability in the manipulated variable and in 

the initial conditions of  the biomass concentration, active cell material and the 

acetaldehyde dehydrogenase. In addition 1% Gaussian noise was added to the end-

point quality to simulate sensor noise. 

 

The optimization problem included constraints of 0.0 (l/h) and 0.6 (l/h) in the 

magnitude of ∆𝒖 at each time interval, simulating actuator constraints. In addition, a 

volume constraint (9 litres) was added to match the parameters that were used to 

those used in [90].  

 

This constraint was included in the cost function by considering the mean, 

𝒎𝒆𝒂𝒏𝑢, and standard deviation, 𝒔𝒕𝒅𝑢, of the manipulated variable as shown in 

Equation 5.12. 

 

𝑠[1  1 … 1]𝑢�̅� ≤ 𝑉𝑚𝑎𝑥 − 𝑉𝑖𝑛𝑖 

Where             �̅� = 𝒅𝒊𝒂𝒈(𝒔𝒕𝒅𝑢)(𝒖𝒏 + ∆𝒖) +𝒎𝒆𝒂𝒏𝑢 

 

(5.12) 

 

Where the terms 𝑠 is the sample interval, 𝑉𝑚𝑎𝑥 is the final accepted volume 

and 𝑉𝑖𝑛𝑖 is the initial volume. Equation 5.12 can be redefined by the inequality 

constraint shown in Equation 5.13. 
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𝑨∆𝒖 ≤ 𝒃 

Where   𝑨 = 𝑠[1  1 … 1]𝑢𝒅𝒊𝒂𝒈(𝒔𝒕𝒅𝑢) 

𝒃 = 𝑉𝑚𝑎𝑥 − 𝑉𝑖𝑛𝑖 −  𝑡𝑖[1  1 … 1]𝑢(𝒎𝒆𝒂𝒏𝑢
𝑇 + 𝒅𝒊𝒂𝒈(𝒔𝒕𝒅𝑢)𝒖𝒏) 

(5.13) 

 

Figure 5.16 shows the final volume that was measured from 100 batches 

when the volume constraint was imposed within the cost function. This figure shows 

that the 9 (l) volume constraint is occasionally exceeded. The reason for this is that 

the constraint does not consider the small PRBS that is added at the end of the MVT 

optimisation. This should not be a problem in real applications, as long as there is 

some minor overcapacity allowed in the vessel. 

 

 

Figure 5.16: Saccha final volume constraint over 100 batches 

 

Figure 5.17 shows the results obtained when the proposed batch-to-batch 

optimisation technique was applied to the Saccha simulation. This figure shows that 

the final biomass concentration increased steadily from about 2 (g/l) to 11.3 (g/l) and 

after approximately 15 batches levels off at this output concentration. This figure 
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shows that the final biomass concentration increased consistently to approximately 

11.3 (g/l) in each experiment. The standard deviation for the end-point biomass 

concentration, measured over the 100 experiments was 0.2 g/l. Figure 5.14 also 

shows the consistency of the proposed approach when it was applied to 100 

experiments on the Saccha simulator.  

 

 

Figure 5.17: Saccha final biomass concentration mean over 100 experiments of 100 

batches each. 

The resulting end-point biomass concentration compares very favourably 

with other results applied to this simulator. In [90] for example, their batch-to-batch 

optimisation technique increased biomass concentration to 10.74 g/l, with a standard 

deviation of 0.16 (g/l), after approximately 60 batches. Although the work was not 

specifically attempting to maximise batch yield, [4] and [18] recorded end-point 

biomass concentrations of approximately 10 (g/l). A recent publication [103] 

reported final biomass concentrations of around 10.66 (g/l) at the end of 100 batches 

run, which is still lower that that reported in this thesis. 
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Figure 5.18 shows how the trajectory of the substrate feed changes during a 

typical experiment after the initial-data-set (3 batches). This figure shows that the 

trajectory changes considerably from the first through to the final batch. The feeding 

law presented in this graph does not include the additional PRBS that was applied to 

these trajectories. 

 

 

Figure 5.18: Saccha MVT evolution from batch to batch for a single experiment of 

100 batches after the initial data-set  

The prediction accuracy of the adaptive MPLS model throughout the batch to 

batch optimisation can be assessed from the Root Mean Squared Error of Prediction 

(RMSEP) after the MVT optimisation shown in Figure 5.19.  

 

This figure illustrates not only the quality of predictions of the MPLS model, 

but also the QP solution performance. As expected, the RMSEP dropped as soon as 

more batches were added to the model. When the 100th-batch RMSEP of 0.26 g/l 

was compared to the 100th-batch end-point quality of 11.3 g/l, it was found that the 

Error/Output relationship of 2.3% was not far from the added 1% output noise. 
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These findings suggest that the predictive capability of the optimisation was constant 

through the whole 100 batches, as long as the number of LVs was kept high. 

 

 

Figure 5.19: Saccha Root Mean Squared Error of Prediction after the MVT 

optimisation over 100 experiments of 100 batches each. 

 

5.3.2 Results of case study: Pensim 

The initial PLS model used for this case study was identified using a training 

dataset containing 3 batches with 3% variability in the manipulated variable and in 

the initial conditions of  the biomass concentration, glucose concentration and 

temperature. The only additions for this work was that hard constraints where 

imposed on the glucose feed rate magnitude, which was restricted to between 0.0 

(l/h) and 0.2 (l/h) and, and the addition of 1% Gaussian noise to the end-point quality 

to simulate sensor noise. 

 

Figures 5.20 shows how the end-point penicillin concentration increases over 

100 batches for the Pensim simulator following the introduction of the proposed 
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batch-to-batch optimisation system. In this figure the presented results are the 

average taken over 30 experiments. These results show that the end-point penicillin 

concentration increases to approximately 2.11 g/l.  

 

 

Figure 5.20: Pensim final penicillin concentration mean over 100 experiments of 100 

batches each. 

The average value of the culture volume obtained at the end of the batch was 

approximately 120 l, which means that the average quantity of penicillin produced 

from each batch was approximately 253 g. This result compares favourably to [20], 

where the final penicillin production was 106 g, and the results of the evolutionary 

optimisation technique presented in [104], which produced 160 g of penicillin. 

 

Figure 5.21 shows how the MVT evolves over 100 batches for a single 

experiment. This figure shows that the MVT for the first batch switches to fed-batch 

mode after approximately 45 hours.  
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Figure 5.21: Pensim MVT evolution from batch to batch for a single experiment of 

100 batches 

Figure 5.22 shows the RMSEP after the MVT optimisation from 100 

experiments of 100 batches each. 

 

 

Figure 5.22: Pensim Root Mean Squared Error of Prediction after the MVT 

optimisation over 100 experiments of 100 batches each. 
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The RMSEP shown in Figure 5.22 did not decrease as much as in the Saccha 

simulation as soon as new batch were added into the MPLS model. However, the 

accuracy gradually improved from initial RMSEP values near 0.2 (g/l), to values of 

0.1 (g/l) at the 100th batch. This may be because the MPLS model could not 

accurately predict the batch dynamics from batch to batch. The Error/Output 

relationship was 4.7%, which is higher than the added output noise. However, the 

overall control methodology showed improvements in the end-point quality.  

 

5.4 SUMMARY 

This chapter proposed an innovative batch-to-batch optimisation technique 

that can be used to improve the productivity of batch processes. The technique 

initially identifies an MPLS model of a batch process. This model is used with an 

optimisation function to identify the trajectory of any manipulated variables in the 

process, such as the target end-point quality. By constraining the changes allowed in 

the identified trajectories of the manipulated variables and by updating the PLS 

model at the end of each batch, the productivity of the batch was gradually increased 

from one batch to the next. 

 

The predictive capabilities and optimisation convergence of the proposed 

technique were demonstrated through their application to two benchmark fed-batch 

fermentation simulators: Saccharomyces cerevisiae and Pensim. For both simulators, 

the proposed batch-to-batch optimisation technique was found to increase 

productivity considerably over a limited number of batches.  
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Chapter 6: Validity Constraints in Batch-to-batch Optimisation   

This chapter proposes and implements the addition of Validity Constraints 

(VC) in the batch-to-batch optimisation scheme. The objective of this extension is to 

restrict the QP optimisation to the space only described by useful predictions of the 

MPLS model. This chapter is divided as follows:  First, Section 6.1 presents a brief 

theoretical framework. Then, Section 6.2 formulates the extension to the main batch-

to-batch optimisation to consider validity constraints. In Section 6.3, this formulation 

is implemented for 2 case studies and their results are discussed. Finally, Section 6.4 

provides a summary of the relevant points in this chapter.  

 

6.1 VALIDITY OF PREDICTIONS  

The optimisation proposed in Chapter 5 increased the yield from one batch to 

the next. As this happens the MPLS model moves from one region of operation to 

another.  Since the MPLS algorithm represents a local linear approximation of the 

process, it is necessary to know the region over which the model will produce 

sensible predictions. Once this is achieved then the control action could use this 

information to restrict the MVT that are calculated to regions where the accuracy for 

the model should be good.  In this thesis, this is achieved by introducing constraints 

in the QP optimisation, which restricts the solution space to a region spanned by the 

operating conditions experienced in previous batches used to identify the MPLS 

model. This should ensure that the model provides reliable estimates of the end-point 

quality prediction within the MVT optimisation. 
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Some statistical parameters have already been proposed for measuring the 

quality of predictions of the MPLS model in Chapter 6, such as RMSEP and 

RMSECV. These parameters use the mean prediction error (MSE) between the 

predicted end-point quality and the measured one from a whole population of 

batches. However, these parameters alone cannot asses the quality of the prediction 

for a single new batch using on-line measurements within the batch. The quality of 

predictions can be assessed using confidence intervals similar to those used in 

multivariate control charts [8]. The next section describes some commonly used 

multivariate control charts along with their statistical indicators. These indicators are 

used later in the methodology proposed in this chapter. 

 

6.1.2 Multivariate control charts 

Multivariate control charts can be used to detect shifts in the mean or the 

covariance between variables within a process. In PCA and PLS, these charts are 

used to detect outliers from the normal behaviour of a process. Statistical indicators 

are used to determine if the PC or LV of a certain batch lies within the limits of those 

considered as NOC. 

 

 Two widely used multivariate control charts for monitoring and diagnosis in 

batch processes [64] are the T2 and the Square Prediction Error (SPE), described in 

the next paragraphs:   

 

1. The T2 control chart is based on multivariate, normal distribution theory. This 

chart, also called Hotelling’s statistic chart, is used to detect shifts in the 

Latent Variables or Principal Components from what is considered the norm 

relative to the identification dataset. This statistic can give an indication as to 
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whether the process variables are within the region of NOC. The T2 index 

using PCA for the kth batch is given in Equation 6.1 [26] . 

 

𝑇2𝑘 = 𝒕𝒌𝑺
−1𝒕𝒌

𝑻 (6.1) 

where 𝑆 is the estimated covariance matrix of the scores from the batches in 

NOC. This is a diagonal matrix such that each element is the variance of the 

score of each batch in the identification dataset. 

 

The confidence limit at significance level 𝛼 for the T2 index can be calculated 

using the Snedecor F-distribution as shown in Equation 6.2. 

 

𝑇2𝛼 =
𝑚(𝑚 − 𝐴)

𝐴(𝑚2 − 1)
~𝐹𝑘,𝑚−𝑘,𝛼 (6.2) 

where 𝑚 is the number of batches used in the identification data-set under 

NOC and  𝐴 is the number of principal components retained in the model. 

 

2. The SPE chart is particularly useful in PCA to determine the process variable 

that is responsible for a certain shift in the chart. It utilises an index, also 

known as Q index, which contains information about the predictor residual of 

a given batch. The SPE statistic for the kth batch is given in Equation 6.3 

[118]. 

 

𝑆𝑃𝐸𝑘 = 𝒆𝒌𝒆𝒌
𝑻 =∑ (𝑥(𝑖)𝑗 − �̂�(𝑖)𝑗)

2𝐽𝐾

𝑖=1
= 𝒙𝒌(𝑰 − 𝑷𝑷

𝑻)𝒙𝒌
𝑻 (6.3) 

 



 

 

Chapter 6: Validity Constraints in Batch-to-batch Optimisation 114 

 

 

 

The confidence limit for the SPE index level 𝛼 can be obtained using 

Equation 6.4. 

 

𝑆𝑃𝐸2𝛼 = (
𝜐

2𝜇
) 𝜒

𝜒
2𝜇2/𝑣,𝛼
2  
2  (6.4) 

where 𝜒2𝜇2/𝑣,𝛼
2  is the critical value of the chi-squared variable with 2𝑚2/𝑣 

degrees of freedom, 𝑣 is the variance and  𝜇 the mean of the SPE identification 

dataset.  

 

The same approach adopted for multivariate charts constructed from MPCA 

can be extended directly to MPLS for monitoring, according to Nomikos and 

MacGregor [28]. However, the batch-to-batch optimisation proposed in Chapter 5 

changes continuously the number of batches and the number of LVs used for the 

identification. In addition, the forgetting factor λ in the MPLS update from one batch 

to the next presents a complication to obtain the confidence limits. This optimisation 

thus required another strategy to calculate confidence limits in the predictions. 

 

6.1.3 Validity Restrictions 

A simple method to constrain the solution of an optimisation problem to the 

region of score space defined by previous operations is to add model validity 

constraints. Constraints of this type were first proposed by Russel et al. [119]. In 

their article, the T2 index shown in Equation 6.1 was used as a soft constraint for an 

MPC optimisation problem. This methodology was later employed in the work 

published in  [6] to restrict the changes in the score ∆𝒕  over a MPC optimisation as 

shown in Equation 6.5. 

 

 



 

 

Chapter 6: Validity Constraints in Batch-to-batch Optimisation 115 

 

 

 

𝐦𝐢𝐧
∆𝒕
  
1

2
∆𝒕𝑻𝑴∆𝒕 + 𝒇𝑻∆𝒕 + 𝛾𝑇𝟐 

where       𝑇𝟐 = ∑
(∆𝒕+�̂�)𝑖

2

𝑆𝑖
2

𝐴
𝑖  

(6.5) 

 where 𝛾 is a weighting factor which determines how tightly the solution is to 

be constrained to the region of the score space defined by previous batches, 𝑴 is the 

Hessian matrix of their QP formulation and 𝒇 is a function related to the end-point 

quality in the score space.  

 

A similar approach was used in the work published in [10] to optimise the 

estimated score. In addition, a quadratic error relating to the residual, based in the 

SPE index from Equation 6.3 was used as a validity indicator in the form of Equation 

6.6. 

 

𝐦𝐢𝐧
𝒕
  
1

2
∆𝒕𝑻𝑴∆𝒕 + 𝒇𝑻∆𝒕 + 𝜆𝑡𝐽𝑡 + 𝜆𝑒𝐽𝑒 

where                               𝐽𝑡 = 𝒕(𝑺𝜶
𝟐)−𝟏𝒕′ 

𝐽𝑒 = 𝒆𝒆
𝑻 

(6.6) 

 where the validity indicators 𝐽𝑡 and 𝐽𝑒  are two indices that determine the 

validity of the model, and are functions of the score 𝒕 and the residuals 𝒆. To provide 

confidence limits to these indicators, the authors proposed the normalization shown 

in Equation 6.7. 

 

𝜆𝑡 =
1

𝐽𝑡𝑚𝑎𝑥
 

𝜆𝑒 =
1

𝐽𝑒𝑚𝑎𝑥
 

(6.7) 

where 𝐽𝑡𝑚𝑎𝑥is the value of the 𝑇𝟐 index and 𝐽𝑒𝑚𝑎𝑥 is the value of SPE index 

that includes 95% of the previous batches in the identification dataset. This is 
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analogue to the use of distributions to calculate the confidence intervals in the 

previous section.  

 

This approach, although useful, does not ensure that the constraint will be 

respected. To address this, hard constraints were applied to the cost function in the 

approach adopted in [8]. This optimisation function used in this approach is shown in 

Equation 6.8. 

 

𝐦𝐢𝐧
𝒕
  
1

2
𝒕𝑇𝑯𝒕 + 𝒇𝑇𝒕 

𝒔. 𝒕. {
𝐽𝑡 ≤ 𝟏
𝐽𝑒 ≤ 𝟏

 

   

(6.8) 

 

The advantage of using validity indicators as hard constraints is that it 

ensures the validity of predictions by avoiding extrapolation of the QP solution into a 

region where the model has not been identified. However, it may also lead to 

infeasibility in the minimisation if the process moves away from the region where 

the past batches were identified. This is certainly the case for the proposed batch-to-

batch optimisation in Chapter 5, as the yield increases iteratively from one batch to 

the next. This problem can be solved by allowing extrapolation and choosing a value 

greater than 1.0 for the limit of the validity indicators. 

 

6.2 VALIDITY CONSTRAINS IN THE MVT OPTIMISATION 

In the previous section, validity measures have been used as a weighting or as 

constraints within the cost function to prevent erratic changes in the score vector [6], 

[10]. However, in this thesis, rather than applying the constraints in the LV space, 
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they were applied in the real space. Equation 6.9 shows the addition of the hard 

validity constraints in the MVT optimisation proposed in Chapter 5. 

 

min
∆𝒖
   
1

2
∆𝒖𝑻𝑯∆𝒖 + 𝒇𝑻∆𝒖 

𝑠. 𝑡.

{
  
 

  
 

 
𝑯 = 𝑽𝒖𝒇𝑸

𝑻𝑸𝑽𝒖𝒇
𝑻 +𝑴

𝒇𝑇 = (𝜼𝑽𝑸𝑻 − 𝒚𝒔𝒑)𝑸𝑽𝒖𝒇
𝑻

𝒍𝒃 ≤ 𝒖𝒏 + ∆𝒖 ≤ 𝒖𝒃

𝐽𝑡(∆𝒖) ≤ 𝐿𝑡
𝐽𝑒(∆𝒖) ≤ 𝐿𝑒

 

 

(6.9) 

 where the score validity indicator 𝐽𝑡 and the residuals validity indicator 𝐽𝑒 for 

𝑘𝑡ℎ batch must be less than their pre-defined limits 𝐿𝑡 and 𝐿𝑒. These limits define 

how far the scores of the batch can move away from the scores of the calibration 

data. The limits are chosen to have a value of 1 if the scores are to be constrained 

within the calibration range or greater than 1 if some extrapolation is to be allowed.  

The validity indicator 𝐽𝑡 is based on the Hotelling’s statistic 𝑇2 and provides a 

measure of the deviation of the score 𝒕𝒌 from the region covered by the identification 

dataset. Equations 6.10 and 6.11 provide the mathematical definition of 𝐽𝑡. 

 

𝐽𝑡 =
𝒕𝒌(𝑺𝜶

𝟐)−𝟏𝒕𝒌
𝑻

𝐽𝑡𝑚𝑎𝑥
 (6.10) 

𝒕𝒌 = 𝜼𝑽 + ∆𝒖𝑽𝒖𝒇 (6.11) 

 where the diagonal matrix of covariance 𝑺𝜶
𝟐  contains the covariance of each 

LV in the identification dataset and the normalization variable 𝐽𝑡𝑚𝑎𝑥 is the value of 

the 𝑇2 statistic taken at a 95% confidence limit [8]. The validity indicator 𝐽𝑒 provides 

a quadratic measure of the error between the predictor vector, 𝒙𝒌 for the current 
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batch and its value when reconstructed from the scores in the LV space. Equations 

6.12 and 6.13 show the definition of the validity indicator 𝐽𝑒. 

 

𝐽𝑒 =
𝒆𝒌𝒆𝒌

𝑻

𝐽𝑒𝑚𝑎𝑥
 (6.12) 

𝒆𝒌 = 𝜼(𝑰 − 𝑽𝑷
𝑻) + ∆𝒖(𝑰 − 𝑽𝒖𝒇𝑷

𝑻) (6.13) 

where the normalization variable 𝐽𝑒𝑚𝑎𝑥 is equal to the value of the square of 

the error, 𝒆𝒆𝑻 at the 95% confidence limit [8]. 

 

This section has formulated the extension to the MVT optimisation 

considering validity constraints in Equations 6.9 to 6.13. This extension proposes to 

replace Equation 5.11 with Equation 6.9 in the batch-to-batch optimisation scheme 

presented in Chapter 5. The results from this methodology over two case studies will 

be discussed in the next section. 

 

6.3 RESULTS AND DISCUSSION 

The output data used to evaluate the batch-to-batch control performance was 

analysed from several experiments to confirm reproducibility using the same policy 

as Chapter 5. Table 6.1 summarizes the experiment design. 

 

In addition, this chapter will include different limits in the validity constraints 

to observe the response of the batch-to-batch optimisation scheme to different 

degrees of restriction in the MVT optimisation. Table 6.2 describes the labels used 

in the graphs shown in this section. 
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Table 6.1: Experiment design for this section 

Simulation Data structure 
Additional 

Constraints 

Initial 

variability 

Output 

noise 

Saccha 

100 experiments 

each consisting of 

100 batches 

0 (l/h) ≤ 𝒖
≤ 0.6 (l/h) 

 

𝑉𝑚𝑎𝑥 ≤ 9 (l) 

3% in the biomass 

concentration, 

active cell material 

and acetaldehyde 

dehydrogenase 

 

1% of the 

amplitude 

Pensim 

30 experiments 

each consisting of 

100 batches 

0 (l/h) ≤ 𝒖
≤ 0.2 (l/h) 

 

3% in the biomass 

concentration, 

glucose 

concentration and 

temperature 

 

 

1% of the 

amplitude 

 

Table 6.2: Label notation 

Abbreviation Description 

No V. C. No Validity Constraints were used for these experiments; the 

results are the same as those in Chapter 5.  

Je<1 Jt<1 The limits for 𝐽𝑒 and 𝐽𝑡were defined to be less than or equal 

to 1, exactly as those spanned by the identification data set. 

Je<4 Jt<4 The limits for 𝐽𝑒 and 𝐽𝑡were defined to be less than or equal 

to 4, to allow extrapolation from the identification data set. 

Je<4 The limit for   𝐽𝑒 was defined to be less than or equal to 4, to 

observe the effects of 𝐽𝑒 alone. 

Jt<4 The limit for   𝐽𝑡 was defined to be less than or equal to 4, to 

observe the effects of 𝐽𝑡 alone. 

 

6.3.1 Results of case study: Saccha 

The results presented in this section provide a comparison of the results 

obtained when the Validity Constraints (VC) introduced in Section 2.3 were 

introduced. Figure 6.1 shows the final biomass concentration obtained for the Saccha 

simulation when various limits were placed on the values of 𝐽𝑒 and 𝐽𝑡. 
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Figure 6.1: Final biomass concentrations mean under varying validity constraints for 

the Saccha simulator. 

Table 6.3 displays the average of the mean and the standard deviation of the 

last 5 batches of the graphs shown in Figure 6.1. These statistics provide an 

indication of the mean and the standard deviation after the process has converged. 

Additionally, the worst and best values are marked for each study case, with red and 

green colours respectively. It can be observed that the end-point variation when 

constraints were introduced on to 𝐽𝑡 alone was the highest, whilst the variation was 

lowest when constraints on  𝐽𝑒 alone were introduced. 

 

Table 6.3: Saccha standard deviations and means average of the final biomass 

concentration for the 5 last batches of Figure 6.1. 

 No VC 
Je<1 

Jt<1 

Je<4 

Jt<4 
Je<4 Jt<4 

Standard 

deviation 
0.194 0.541 0.742 0.125 0.817 

Mean 11.30 10.93 11.01 11.32 10.88 
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The results presented in Figure 6.1 show that the effect of introducing the 

validity constraints is to reduce the rate at which biomass increases during the first 

20 batches. This is to be expected as the constraints will have the effect of limiting 

the allowable change in MVT from one batch to the next, which will slow the rate of 

convergence of the optimisation strategy. It can also be observed that in most cases, 

the introduction of validity constraints results in a slight reduction in the final 

biomass concentration. This is because the introduction of the validity constraints 

has the effect of limiting the solution space over which the optimisation algorithm 

searches over and hence it may not identify the same solution as was obtained with 

no validity constraints. 
 

A possible reason for the increase in the standard deviation when validity 

constraints were introduced is that the solution of the QP program is more 

constrained in the optimization search when using few LVs at the beginning of the 

100 batch optimisation. This may prevent the optimisation algorithm from reaching 

the optimal solution as fast as without it. The exception lies with the use of 𝐽𝑒 where 

the standard deviation decreases. The reason for this decrease may be that the model 

achieves better predictions and hence the performance of the controller is improved. 

 

Figure 6.2 shows how the trajectory of the substrate feed changes during a 

typical experiment over 100 batches with the validity constraints of Je<4 Jt<4 after 

the initial data-set (3 batches). This figure was included to observe the constraining 

effect of the validity constraints over the batch-to-batch evolution. This figure shows 

that the trajectory changes considerably from the first through to the final batch. 

However, when compared with Figure 5.16 it is clear that the constraints in the score 

space also constrained the MVT evolution, particularly during the first few batches.  
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Figure 6.2: Saccha MVT evolution from batch to batch for a single experiment of 

100 batches after the initial data-set with the validity constrains Je<4 

Jt<4 shown in Figure 6.1. 

 

Figure 6.3 shows the RMSEP of the MPLS model during the 100 batch test. 

This figure shows that the introduction of the validity constraints did not improve 

significantly the accuracy of the model. The RMSEP for the three cases shown in 

Figure 6.3 gradually decreases to values close to 0.2 g/l at the 100th batch. The most 

constrained case (Je<1 Jt<1) shows the lowest overall prediction error through the 

100 batches run, while the unconstrained case showed the highest error. 

 

A likely explanation for the results observed in Figure 6.3 is that the 

prediction accuracy of the MPLS model for the two constrained cases is superior to 

the non-constrained case, as the model is kept within the region in the score space 

spanned by previous batches. 
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Figure 6.3: Saccha Root Mean Squared Error of Prediction after the MVT 

optimisation. 

Figure 6.3 also reveals a gradual decrease in the RMSEP at the start of the 

batch-to-batch run when not using validity constraints. However there is an increase 

of the error after a few batches in the constrained cases. This may be caused by the 

Validity Constraints, which are mainly working at the start of the batch-to-batch run 

when few batches are used to build a MPLS model and the new batch trajectory 

cannot be accurately optimised quality too far from that used in the initial dataset. 

This knowledge could be used to design a multi-stage optimisation which could 

switch off the validity constraints until the model has enough information. However, 

this work was not included in this thesis and will be considered for future work. 

 

6.3.2 Results of case study: Pensim 

Figure 6.4 shows the final penicillin concentration when varying validity 

constraints were applied to the Pensim simulator. As with the Saccha simulator, this 

figure shows that the batch-to-batch optimisation strategy converges at a slower rate 

when the constraints are introduced.  
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Figure 6.4 Final biomass concentrations mean under varying validity constraints for 

the Saccha simulator. 

Table 6.4 displays the mean of the standard deviation of the last 5 batches of 

the graphs shown in Figure 6.4, where similarly to the Saccha simulator, it can be 

observed that the values when just 𝐽𝑡 was present had the highest value while the 

ones where just 𝐽𝑒 was included had the lowest value. 

 

Table 6.4: Pensim standard deviations and means average of the final biomass 

concentration for the 5 last batches of Figure 6.4. 

 No VC 
Je<1 

Jt<1 

Je<4 

Jt<4 
Je<4 Jt<4 

Standard 

deviation 
0.203 0.237 0.299 0.141 0.321 

Mean 2.11 1.86 1.93 1.42 1.97 
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Although the introduction of the validity constraints has the effect of slowing 

convergence and reducing the end-point yield slightly, they have the positive benefit 

of reducing variation in the results. For example, variation was minimised when the 

constraint that 𝐽𝑒 < 4 was introduced; the standard deviation when this constraint 

was implemented was 0.125 g/l for Saccha and 0.141 g/l for Pensim, which 

compares with 0.19 g/l and 0.20 g/l when no validity constraints were considered. It 

is anticipated that the validity constraints would be of significant benefit with any 

real application where the plant operator would only be willing to see slight 

variations made to operating conditions from one batch to the next. 

 

Figure 6.5 shows the trajectory of the substrate feed changes during a typical 

experiment over 100 batches with the validity constrains Je<4 Jt<4 from Figure 6.4. 

When compared with Figure 5.19 it is clear, as with the Saccha simulator, that the 

constraints in the score space also constrained the MVT evolution, especially during 

the first few batches.  

 

 

Figure 6.5: Pensim MVT evolution from batch to batch for a single experiment of 

100 batches with the validity constrains Je<4 Jt<4 shown in Figure 6.4. 
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Figure 6.6 shows the RMSEP after the MVT optimisation for 3 validity 

constraints limits cases shown in Figure 6.4. The RMSEP for the two constrained 

cases in this figure show a very different trajectory to the non-constrained case. 

 

The data for the experiments in Figure 6.6 was later analysed and it was 

found that the error in the SPE in the adaptive identification set was very small 

compared to that in the batches near the end of the 100 batches run; therefore, the 

optimisation was substantially constrained by the validity constraint 𝐽𝑒. The reason 

for this could be that the model was overfitted as the information of new batches was 

added and the number of LVs increased. 

 

Figure 6.6: Pensim Root Mean Squared Error of Prediction after the MVT 

optimisation. 
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methodology employed to estimate the future values in the QP optimisation, as it 

needs a significant number of LVs to have good predictions. A possible way to solve 

this problem is to consider the QP formulation using 2 models: one developed using 

PCA for the PMP estimation and a second developed using PLS for quality 

prediction. This was not investigated in this thesis and would be considered as an 

option for future developments.    

 

6.4 SUMMARY 

In this chapter, validity constraints were introduced in to the batch-to-batch 

optimisation technique to ensure that the optimisation algorithm restricted its search 

space to the region where the MPLS was valid. 

 

 

The relevant points from this chapter are listed next: 

 

 In Section 6.1 the essential theory required to formulate the validity 

constraints extension in the QP formulation was described, such 

theory included: Statistical index, such as T2 and SPE, confidence 

limits and validity constraints. 

 

 In Section 6.2, validity constraints in the MVT optimisation from 

Chapter 5 were formulated based in the work published in [11]. This 

formulation included validity indicators as hard constraints in the QP 

problem.  

 

 In Section 6.3, the introduction of validity constraints resulted in a 

slower rate of convergence and in some case a slight reduction in final 
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yield. However, the constraints did improve consistency, which 

would be a major requirement for any industrial application. 
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Chapter 7: Smoothing in Batch-to-batch Optimisation  

During the development of the main batch-to-batch optimisation approach, 

the performance was improved when PLS was combined with filtering techniques in 

the MVT. Therefore, this chapter details the investigation of a variety of smoothing 

techniques used in MPLS modelling. Firstly, section 7.1 introduces smoothing in MS 

and provides a brief explanation of the smoothing techniques used in this chapter. 

Section 7.2 then presents the predicted performance results for the two case studies 

formulated in this thesis using the different smoothing techniques. In section 7.3, 

results of the optimisation performance are presented. Finally, section 7.4 provides a 

brief summary of the relevant findings of this chapter. 

  

7.1 INTRODUCTION 

In MS process control, smoothing is often used to solve problems caused by 

the effect of random non-systematic noise within a process [24]. This can be 

achieved to a certain degree through the use of smoothing techniques, such as 

moving average filters, spline filters and Fourier analysis, among others. The main 

objective of smoothing in dynamic processes is to reduce the high frequency noise 

caused by external sources. In contrast, the low frequency noise often represents 

information from the process itself and is therefore more difficult to tackle. 

Moreover, Flores-Cerrillo and Macgregor [6] stated that the operation of batches 

may require smooth MVTs in order to reduce physical constraints in the actuator’s 

MVT. 
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Identification methods, such as PLS or PCA, can reduce the noise effect by 

averaging the noise over several identification objects (batches). However, noise 

within the calibration data can create estimation errors in the regression vector 

defined by the model, and can therefore cause systematic errors in future predictions 

[96]. This can be negated by considering the addition of further smoothing 

techniques in the model identification. 

  

Evidence of improvement in batch optimisation using smoothing techniques 

combined with MPLS models has previously been published [90], [102]. Filtering 

the process variables can significantly improve the yield obtained at the end of the 

batch; however, these results have yet to be sufficiently explained. In a recent article 

by Camacho et al. [103], a number of smoothing techniques were evaluated. These 

included post-filtering, Penalized Partial Least Squares (PPLS) and Functional 

Partial Least Squares (FPLS). These techniques were evaluated over a gradient 

batch-to-batch optimisation technique that was proposed in the same article. The 

findings indicated that improvements in batch optimisation were likely caused by a 

reduction in the algorithm search space rather than in the model prediction accuracy.  

 

Using a similar analysis approach to that used by Camacho et al. [103], the 

investigation detailed in this chapter aimed to corroborate the findings of Camacho et 

al. through the use of the batch-to-batch optimisation technique formulated in this 

thesis. Sections 7.1.1 to 7.1.3 briefly describe the smoothing techniques evaluated. 

 

7.1.1 Filtering 

Many techniques exist to filter undesired information from a signal. Among 

these are the following [96]: 
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 Moving average filter: This is the simplest type of smoothing. This is 

achieved by replacing each variable sample with a weighted average 

of itself and its nearest neighbours. 

 

 Spline filters: This is based on spline functions. This type of filter is 

built under the assumption that at small intervals most functions can 

be fitted by low degree polynomials. Therefore, they achieve 

smoothing by dividing the spectrum into sections and fitting 

polynomials to each section, under the condition that the resulting 

composite polynomial is a continuous function. 

 

 Fourier analysis filters: The input signals are first transformed to the 

frequency space. The undesired frequencies are then weighted down 

and the inverse Fourier transform is used to regenerate the data in the 

input signals. Smoothing is achieved by multiplying each frequency 

factor by a weight, determining the frequency to which this should 

count.  

 

The filter used for the experiments in this thesis consisted of a Finite Impulse 

Response (FIR) filter. This type of filter is based on the principles of the moving 

average and Fourier analysis filters. Equation 7.1 shows the output in discrete 

samples of a FIR filter. 

 

𝒇𝒊𝒍𝒕(𝑛) =∑ 𝒄𝒊
𝐶

𝑖=𝑜
∙ 𝒙(𝑛 − 𝑖) (7.1) 
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where 𝒙(𝑛) is the input signal, C is the filter order and 𝒄𝒊 is the value of the 

filter coefficient at each discrete time i. The finite impulse response for this filter 

using Equation 7.1 can be thus defined in the frequency domain, as seen in Equation 

7.2. 

 

𝑯(𝜔) =∑ 𝒄𝒊
𝐶

𝑖=𝑜
∙ (𝑒𝑗𝜔)

−𝑖
 (7.2) 

where 𝜔 is the frequency in (radians/sample) and 𝑒𝑗𝜔is Euler’s formula for 

a complex number.  

 

Smoothing is performed by choosing values from 𝒄𝒊 in Equation 7.2 to obtain 

a response that achieves the desired frequency response. This can be achieved using 

numerical optimisation. In this thesis, the coefficients of 𝒄𝒊 were identified using the 

FDA tool from Matlab to create a zero-phase low-pass FIR filter. Therefore, there 

was no filter delay. The cut-off frequency was chosen to be 10% of the maximum 

frequency (Nyquist frequency) of the input signal. Experimental results showed that 

there was little difference when the maximum frequency was varied between 3% and 

10%.  

 

7.1.2 Functional PLS 

Functional PLS (FPLS) is based on the principles of spline filters. The main 

objective of FPLS is to alleviate the ill-posed nature of ordinary PLS, which often 

consists of non-smooth linear regression coefficients 𝜷, due to the Wiener-Hopf 

equation. This is achieved by projecting the PLS model onto a set of B-spline basis 

functions [54]. B-splines are piecewise polynomial functions which can be expressed 

as a linear combination of other B-splines.  
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The estimation procedure for functional linear regression coefficients using 

PLS consists of two steps [100]: 

 

1. The spline coefficients 𝛼 are estimated from discrete observations 

such that the basis functions are appropriate to Equation 7.3.  

 

𝑿(𝑡) ≈∑ 𝛼𝑏
𝐵

𝑏=1
∙ 𝝓𝒃(𝑡) (7.3) 

 

Where B is the number of nodes in the B-splines and 𝝓𝒃(𝑡) are the 

basis functions. Using Equation 7.3, the linear regression can then be 

described by Equation 7.4. 

 

𝒀 = (𝜱𝜶)𝑻𝜷 + 𝒆 (7.4) 

 

Where for all the B knots, 𝜶 is a vector containing the basis 

coefficients 𝛼𝑏 of 𝑿(𝒕), 𝜱 is the symmetric matrix of the inner products of 

the spline functions, and 𝜷 is the vector containing the spline coefficients 𝛽𝑏 

for the linear regression, as shown in Equation 7.5.  

 

𝜷(𝑡) ≈∑ 𝛽𝑏
𝐵

𝑏=1
∙ 𝝓𝒃(𝑡) (7.5) 

 

2. The PLS regression of 𝒀 over 𝑿 can then be reduced to the functional 

regression of 𝒀 over the matrix, as shown in Equation 7.6. 
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𝚲 = 𝚽𝟏/𝟐𝜶 (7.6) 

 

This approach was used in each object (row or batches) of the matrix of 

predictors 𝑿 to obtain the results here marked as FPLS. This approach is consistent 

with that used to obtain the results presented in Camacho et al. [103].  

 

7.1.3 Penalized PLS 

PPLS smooths the linear regression coefficients by incorporating a 

multiplicative penalty term 𝑳 to the optimisation criterion of the NIPALS algorithm 

for an univariate response vector 𝒚 [101]. This is achieved by identifying the 

solution to the problem in Equation 7.7. 

 

arg max
𝒘

𝒘𝑻𝑿𝑻𝒚𝒚𝑻𝑿𝒘

𝒘𝑻𝒘+𝒘𝑻𝑳𝒘
 (7.7) 

 

Using Lagrange multipliers, the penalty term was obtained (which was then 

applied to the iterative calculation of weights of each latent variable), by adding a 

matrix 𝑪 into the NIPALS algorithm. This can be observed in Equation 7.8. 

 

𝐰𝒂 =
𝑪𝑿𝒂

𝑻 ∙ 𝒚

‖𝑪𝑿𝒂
𝑻 ∙ 𝒚‖

 (7.8) 

where 𝑎 is the index corresponding to the 𝑎-𝑡ℎ latent variable and the matrix 

𝑪 is defined as in Equation 7.9. 

 

𝐂 = (𝐈 + 𝐋)−𝟏 (7.9) 
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In Equation 7.9, 𝐈 is the identity matrix of size (𝐽𝐾 × 𝐽𝐾) and 𝐋 is the penalty 

matrix expressed in Equation 7.10. 

 

𝐋 = ξ(𝑫𝒉−𝟐 ∙ 𝑫𝒉−𝟏)
𝑻 ∙ 𝑫𝒉−𝟐 ∙ 𝑫𝒉−𝟏 (7.10) 

 

Where ξ is the penalty coefficient, and the matrices 𝑫𝒉−𝟐 of size (𝐽𝐾 − 2) ×

(𝐽𝐾 − 1) and 𝑫𝒉−𝟏 of size (𝐽𝐾 − 1) × (𝐽𝐾) each correspond to the first order 

difference operator, as given by Equation 7.11. 

 

𝐃𝒉 = [

1 −1 ∙ ∙
∙ 1 −1 ∙
∙ ∙ ⋱ ⋮
∙ … 1 −1

] (7.11) 

 

In order to implement this approach, instead of the SIMPLS algorithm 

provided by Matlab, it was necessary to build and modify a kernel NIPALS 

algorithm as shown in Equations 7.8 to 7.11. This approach was used in order to 

obtain the results marked as PPLS in this thesis, and was also used to obtain the 

results presented by Camacho et al. [103].  

 

7.2 PREDICTION PERFORMANCE FROM BATCH-TO-BATCH  

This section presents the results and analysis of the prediction performance of 

several smoothing techniques applied in the batch-to-batch optimisation scheme 

proposed in Chapter 5. The results were obtained from several experiments, which 

were performed in order to confirm reproducibility, using the same policy as that 
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used in previous chapters. This policy is presented in Table 6.1. In addition, Table 

7.1 describes the labels used in the graphs presented in this section.  

 

Table 7.1: Label notation 

Abbreviation Description 

PLS These experiments performed the batch-to-batch optimisation 

without filtering the optimised MVT prior to the batch run. 

PLS+F These experiments performed the batch-to-batch optimisation 

filtering the optimised MVT prior to the batch run. 

FPLS These experiments performed the batch-to-batch optimisation 

using a Functional PLS model. 

PPLS These experiments performed the batch-to-batch optimisation 

using a Penalized PLS model. 

 

The experiments described in this chapter used the same smoothing 

parameters as those described in Camacho et al. [103], using the penalty coefficient 

for the PPLS algorithm, namely ξ =1000, and a number of nodes equal to B = 20. 

Although these values were used for the purpose of comparison, they were able to be 

identified at the beginning of each 100 batches run.  

 

The objective of the experiments described in this section was to determine 

whether the accuracy of the predictions made from one batch to the next was 

affected by the smoothing of the inputs of the MPLS model.  

 

7.2.1 Prediction of case study: Saccha 

The prediction accuracy of the adaptive MPLS model through batch-to-batch 

optimisation was assessed from the Root Mean Squared Error of Prediction 



 

 

Chapter 7: Smoothing in Batch-to-batch Optimisation 137 

 

 

 

(RMSEP), as explained in Chapter 5. Therefore, the RMSEP of 100 experiments in 

100 batches were obtained to observe the prediction response through the batch-to-

batch run. 

 

Figure 7.1 shows the RMSEP after the MVT optimisation for the three 

smoothing techniques (PLS+F, FPLS, PPLS) explained in section 7.1. This figure 

shows the RMSEP without the application of any filtering technique (PLS) to the 

optimisation. 

 

 

Figure 7.1: Saccha RMSEP after the MVT optimisation using different smoothing 

techniques 

This figure illustrates the prediction accuracy of the MPLS model for each 

technique after the performance of MVT optimisation. As expected, the RMSEP fell 

as more batches were added to the model. The RMSEP for the four cases gradually 

decreased to values close to 0.2 g/l at the 100th batch, with a similar speed observed 

in all smoothing techniques.  
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An easier method with which to observe statistical differences in the RMSEP 

for each approach is that of using boxplots. This is a convenient way to observe the 

statistics of a collection of numerical data, as the spacing between the boxes 

indicates the degree of data dispersion. 

 

 Figure 7.2 shows the boxplot of the data from the RMSEP used in Figure 

7.1. The central mark on each boxplot represents the median, and the edges of the 

box represent the 25
th

 and 75
th

 percentiles. The lines projecting out of the boxes, also 

known as whiskers, indicate the direction of the most extreme data points that were 

not considered to be outliers. Finally, the crosses represent the outliers not 

considered in the range bordered by the box edges. 

 

 

Figure 7.2 Boxplot of Saccha RMSEP after MVT optimisation using different 

smoothing techniques 

 

The boxplot for each approach presented in Figure 7.2 shows a minor 

difference in the median of all smoothing techniques; however, the number of 
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outliers using either the PLS or PLS+F techniques were much larger than observed 

in the FPLS and PPLS cases. A possible explanation for this is that the smoothed 

approaches within the PLS model (FPLS and PPLS) improved the accuracy of the 

prediction when the LV number was small. However, in the following section, it is 

observed that this was not always the case. In conclusion, there did not appear to be a 

significant difference in the prediction accuracy from one batch to the next using 

smoothing techniques alone in the Saccha simulator. 

 

7.2.2 Prediction of case study: Pensim 

Figure 7.3 shows the RMSEP after MVT optimisation in the three smoothing 

techniques and the non-smoothed approach for the Pensim simulator.  

 

 

Figure 7.3: Pensim RMSEP after the MVT optimisation using different smoothing 

techniques 

 

The RMSEP for the techniques under investigation (Figure 7.3) showed a 

similar response to the Saccha case. The accuracy gradually improved for each of the 
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techniques, from RMSEP values close to 0.2 g/l in the commencing batch, to 0.1 g/l 

in the 100th batch. The PLS+F technique showed the greatest variation in response, 

yet also showed the lowest RMSEP at the end of the batch run. 

 

Figure 7.4 shows a boxplot of the data from the RMSEP (Figure 7.3) for the 

different smoothing techniques. 

 

Figure 7.4 Boxplot of Pensim RMSEP after MVT optimisation using different 

smoothing techniques 

 

Figure 7.4 shows little difference in the median of all smoothing techniques, 

as with the Saccha case; in contrast, the FPLS and PPLS techniques in the Pensim 

simulator had a significantly larger number of outliers than the PLS and PLS+F 

cases. Therefore, the accuracy of prediction in the initial batches likely depended to a 

greater extent on the case study than on the smoothing technique used in the batch-

to-batch optimisation. Therefore, there did not appear to be a significant difference in 

the prediction accuracy from one batch to the next using smoothing techniques alone 

for the Pensim simulator. 
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7.3 OPTIMISATION PERFORMANCE FROM BATCH-TO-BATCH 

This section presents the results of the batch-to-batch optimisation 

performance of several smoothing techniques. Relevant findings will also be 

discussed. The objective of these experiments was to observe how the numerical 

optimisation is affected by smoothing the inputs of the MPLS model. As in the 

previous chapter, this section is divided into two parts: the Saccha simulator results 

and the Pensim simulator results, presented in sections 7.3.1 and 7.3.2, respectively.  

 

7.3.1 Optimisation of case study: Saccha 

Figure 7.5 illustrates how the end-point penicillin concentration increased 

over 100 batches for the smoothing techniques and the non-smoothing approach used 

in the Pensim simulator.  

 

 

Figure 7.5 Final biomass concentration means using smoothing techniques in the 

Saccha simulator 
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The results in the figure above (Figure 7.5) show significant differences 

between the results of batch-to-batch optimisation and different smoothing 

techniques. The PLS+F technique obtained the highest yield, of approximately 2.0 

g/l to 11.3 g/l. After approximately 15 batches, the yield stabilised at this output 

concentration. Subsequently, the FPLS and PPLS techniques obtained similar end-

point concentrations, of approximately 10.8 g/l after approximately 60 batches. 

Finally, the non-smoothing PLS approach reached approximately 10.4 g/l by the 15
th 

batch. 

 

Table 7.2 provides the standard deviation means of the final five batches of 

the graphs shown in Figure 6.1. In addition, the smallest and largest values are 

indicated for each study case in green and red, respectively. 

 

Table 7.2: Saccha standard deviations and means average of the final biomass 

concentration for the 5 last batches of Figure 7.5. 

 PLS PLS+F FPLS PPLS 

Standard 

deviation 
0.201 0.194 0.194 0.192 

Mean 9.96 11.30 10.43 10.41 

 

The results presented in Figure 7.5 and Table 7.2 show that the optimisation 

performances from batch-to-batch were likely influenced by the smoothness of the 

input MVT, and that the deviations were similar in all the smoothed cases. The slow 

convergence observed in the FPLS and PPLS smoothing techniques may have been 

caused by the penalty functions in the PPLS and the smoothing of all the predictor 
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variables in the FPLS technique. The reason for this may be that the batch-to-batch 

optimisation scheme proposed in this thesis is highly dependent not only on the 

prediction accuracy of the quality but also on the predicted future values of the 

predictors. As the FPLS smooths these predictors, and as the penalty function of the 

PPLS techniques directly affects the weights of the predictors, the model is expected 

to predict the smoothed versions of the variables and not the variables themselves. 

However, it also appeared that having at least this degree of smoothness improved 

the optimisation more than the non-smoothing case overall.  

 

7.3.2 Optimisation of case study: Pensim 

The final penicillin concentration (when varying validity constraints) was 

applied to the Pensim simulator (Figure 7.6). This figure shows that the batch-to-

batch optimisation strategy converged at similar speeds for each of the proposed 

approaches. 

 

 

Figure 7.6 Final penicillin concentration means using smoothing techniques in the 

Pensim simulator 
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Figure 7.6 shows small differences in the results from the various smoothing 

techniques used in the Pensim simulator. As with the Saccha case, the PLS exhibited 

the slowest convergence rate and performance in general. However, in the Pensim 

simulations, the yield obtained at the end of the batch-to-batch run was 

approximately equal for each technique used. The FPLS and PPLS produced a 

slightly reduced yield of 2.08 g/l, compared to the 2.11 g/l produced by the PLS and 

PLS+F. The smoothing techniques (PLS+F, FPLS and PPLS) in general converged 

faster than the non-smoothing PLS technique used in this case study. 

  

The standard deviations observed in the final five batches, as presented in the 

graphs in Figure 7.6, can be found in Table 7.3. In this figure, the deviations of the 

smoothing and non-smoothing techniques revealed a slight difference between all the 

smoothing approaches. 

 

Table 7.3: Pensim standard deviations and means average of the final biomass 

concentration for the 5 last batches of Figure 7.6. 

 PLS PLS+F FPLS PPLS 

Standard 

deviation 
0.199 0.203 0.212 0.198 

Mean 2.12 2.11 2.06 2.08 

 

From the results presented in Figure 7.6 and Table 7.3, it can be concluded 

that the smoothing optimisation for both the Saccha and the Pensim cases appeared 

to have favourably affected, to some degree, the batch-to-batch optimisation 
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methodology proposed in this thesis. A possible cause of this may have been the 

simplification in the search space for the QP optimisation function after smoothing. 

The final yield at the end of the 100 batches run was similar for all smoothing 

techniques used in the Pensim simulation, and significantly better in the Saccha 

simulation employing the PLS+F technique. The standard deviation did not appear to 

be affected by this improvement. This may indicate that the prediction accuracy of 

the model did not change considerably due to the smoothing techniques. 

 

7.4 SUMMARY 

This chapter presented an investigation into the possible causes of the 

improvement observed after the introduction of MVT smoothing. This chapter also 

provided results and discussed several smoothing techniques as applied to the batch-

to-batch optimisation proposed in Chapter 5.  

 

The findings of this chapter are summarised as follows: 

 

 The main theoretical framework for smoothing in batch optimisation 

was described in section 7.1. This included techniques such as FPLS, 

PPLS and FIR filtering of the MVT.  

 

 Section 7.2 detailed several experiments performed to observe the 

effect of smoothing techniques on prediction accuracy in batch-to-

batch optimisation. From the results of these experiments, it was clear 

that the MPLS model prediction accuracy did not significantly 

improve with the use of smoothing techniques. 
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 Similarly, section 7.3 presented results of the batch-to-batch 

optimisation of two case studies using smoothing techniques. 

However, in this section, the objective of these experiments was to 

examine the effect of different smoothing techniques in the batch-to-

batch optimisation scheme. The results of this section exhibited 

significant improvements using smoothing techniques, especially in 

the Saccha simulator. 

 

The case of the exceptional improvement in yield in the Saccha simulator 

during the initial batches using the PLS+F technique may have been due to the 

smoothness in the optimal feeding profiles leading to an improved numerical 

optimisation from the start of the batch-to-batch optimisation, as stated in Camacho 

et al. [103]. 
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Chapter 8:  Conclusions and Future Work   

This chapter provides conclusions of the work presented in this thesis, 

organized according to the main subjects of research: 

 

 Section 8.1 presents conclusions about the batch-to-batch 

optimisation scheme proposed in Chapter 5. 

 

 Section 8.2 presents conclusions about the validity constraints 

included in the QP optimisation in Chapter 6. 

 

 Section 8.3 presents conclusions about the smoothing techniques 

implemented in Chapter 7.  

 

Finally, Section 8.4 suggests possible lines of research related to this work.  

  

8.1 CONCLUSIONS OF BATCH-TO-BATCH OPTIMISATION  

A novel batch-to batch optimization technique was proposed and 

implemented to two benchmark fed-batch fermentation simulators: Saccha and 

Pensim. Its performance, compared with other published work, showed that this 

methodology produced results with slightly higher end-point quality and the speed of 

convergence was considerably faster than alternative techniques  

 



 

 

Chapter 8: Conclusions and Future Work 148 

 

 

 

The technique consists of several stages developed for real manufacturing 

conditions: 

 

 First, the process is identified, using MPLS, from a set of open-loop 

batch runs containing some form of excitation, a golden batch 

trajectory or even an initial guess at the optimal MVT; For the 

proposed technique to be applied to the simulated process 

investigated in this study, only 3 initial batches of data were required.  

 

 This identified MPLS model is then used within a QP optimisation to 

calculate the trajectory of the MVT for the next batch. The objective 

function for this optimisation includes end-point quality as the target 

to minimise. 

 

 The next batch is then run with the optimised MVT and the output 

data used to update the MPLS model. This allowed the productivity of 

the batch to be gradually increased from one batch to the next. 

 

By using this strategy, approximately 15 further batches were required before 

the algorithm converged to an optimal MVT for the Saccha simulator and 40 batches 

for the Pensim simulator. The most important objective achieved in this design, was 

the improvement of the benefit/cost relationship of simulations that were designed to 

test the system under varying initial conditions. On the whole, this method is likely 

to be well suited for high cost and/or low quantity batch processes. 
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8.2 CONCLUSIONS OF VALIDITY CONSTRAINTS 

Validity constraints were introduced in to the batch-to-batch optimisation 

technique to ensure the validity of predictions made by the MPLS model in the MVT 

optimisation. The introduction of these constraints resulted in general to a slower 

rate of convergence for the two case studies and in a considerable reduction of the 

yield in some cases for the Pensim simulation. However, the constraints slightly 

improved the consistency of predictions for some cases. 

 

Mathematically the validity constraints were successfully included in the QP 

optimization; however, in numeric calculations, the use of the SPE index in the 

Pensim simulation constrained the QP optimization excessively and slowed 

considerably the convergence rate of the end-point quality. In summary, the 

constraints did reduce the standard deviation of the end-point quality measure and 

also reduced the prediction error under certain circumstances; however, the limits for 

the validity constraints would need to be adaptively tuned for each application in real 

manufacturing conditions. 

 

8.3 CONCLUSIONS OF SMOOTHING TECHNIQUES  

A selection of smoothing techniques (FPLS, PPLS and FIR filtering of the 

MVT) were successfully included in the batch-to-batch optimisation scheme and 

multiple experiments were carried out to observe the effect of smoothing techniques 

on the prediction accuracy and numerical optimisation from one batch to the next 

over two case studies. 

 

 From the results of these experiments, it was clear that the MPLS model 

prediction accuracy did not significantly improve with the use of smoothing 

techniques. However the batch-to-batch end-pint quality exhibited slight 
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improvements using smoothing techniques, especially in the Saccha simulator. In 

general the results and conclusions presented in this thesis are consistent to those in 

[103]. Both investigations found the use of filtering techniques in the predictor 

variables to be beneficial in applications to general batch processes. 

 

8.4 RECOMMENDATIONS FOR FUTURE WORK 

The most promising directions of research are listed as follows: 

 

 In this thesis, we choose PRBS as the input signal for system 

identification because it contains many distinct frequencies, in an 

attempt to make the input data informative of the dynamics relevant 

to the batch process. However, other alternatives should be analysed 

in future work to include methodologies such as the design of 

preconditioning data proposed in [120], [121]. The main reason for 

this recommendation is that it was observed that the initial data-set 

used for the calibration of the MPLS model considerably affected the 

yield for the batch-to-batch optimisation technique. 

 

 Analyse the feasibility of the proposed optimisation technique for 

multiple quality outputs and inputs, in theory the algorithm still works 

for these systems, but some research must be done to assign the 

constraints and importance of each variable. 
 

 

 Consider a numerical iterative scheme to calculate the optimal 

number of LVs to be used for model identification, when having a 
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small number of batches in the initial calibration set, for the batch-to-

batch optimisation methodology proposed in this thesis. 

 

 Consider disturbance rejection applying the proposed scheme not at 

the beginning but at some intermediate time-point in the batch. 

Promising results were observed during some experiments done in the 

research used to write this thesis.   

 

 Develop a multi-block model for the QP optimisation using PCA 

model for the estimation of future predictor values and a PLS model 

for quality prediction.  

 

 Fit the designed adaptive methods to biomedical systems; the author 

in [82] suggest that the techniques of adaptive learning control could 

be highly exploitable in this field considering the repetitive nature of 

biological organisms. Some research has been presented in [122] and 

[123]. 
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Appendix 1: Complete QP Formulation 

The cost function used to optimise the MVT is formulated as: 

 

min
∆𝒖
(�̂� − 𝒚𝑠𝑝)

𝑇
(�̂� − 𝒚𝑠𝑝) + ∆𝒖

𝑇𝑴∆𝒖 

𝑠. 𝑡. {
 �̂� = (𝜼𝑽 + ∆𝒖𝑽𝒖𝒇)𝑸

𝑇

𝒍𝒃 ≤ 𝒖𝒏 + ∆𝒖 ≤ 𝒖𝒃
  

 

Substituting in the main cost function: 

 

min
∆𝒖
((𝜼𝑽 + ∆𝒖𝑽𝒖𝒇)𝑸

𝑇 − 𝒚𝑠𝑝)
𝑇
((𝜼𝑽 + ∆𝒖𝑽𝒖𝒇)𝑸

𝑇 − 𝒚𝑠𝑝) + ∆𝒖
𝑇𝑴∆𝒖 

𝑠. 𝑡. { 𝒍𝒃 ≤ 𝒖𝒏 + ∆𝒖 ≤ 𝒖𝒃 

 

 

Expanding the previous equations yields to: 

 

min
∆𝒖
(𝜼𝑽𝑸𝑇 + ∆𝒖𝑽𝒖𝒇𝑸

𝑇 − 𝒚𝑠𝑝)
𝑇
(𝜼𝑽𝑸𝑇 + ∆𝒖𝑽𝒖𝒇𝑸

𝑇 − 𝒚𝑠𝑝) + ∆𝒖
𝑇𝑴∆𝒖 

𝑠. 𝑡. { 𝒍𝒃 ≤ 𝒖𝒏 + ∆𝒖 ≤ 𝒖𝒃 

 

 

This is equal to: 

 

min
∆𝒖
(𝜼𝑽𝑸𝑇 + ∆𝒖𝑽𝒖𝒇𝑸

𝑇 − 𝒚𝑠𝑝)
𝑇
(𝜼𝑽𝑸𝑇 + ∆𝒖𝑽𝒖𝒇𝑸

𝑇 − 𝒚𝑠𝑝) + ∆𝒖
𝑇𝑴∆𝒖 

𝑠. 𝑡. { 𝒍𝒃 ≤ 𝒖𝒏 + ∆𝒖 ≤ 𝒖𝒃 
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Expanding again: 

 

min
∆𝒖
 (𝜼𝑽𝑸𝑇)𝑻𝜼𝑽𝑸𝑇 +  (𝜼𝑽𝑸𝑇)𝑻∆𝒖𝑽𝒖𝒇𝑸

𝑇 −  (𝜼𝑽𝑸𝑇)𝑻𝒚𝑠𝑝

+  (∆𝒖𝑽𝒖𝒇𝑸
𝑇)
𝑻
𝜼𝑽𝑸𝑇

+  (∆𝒖𝑽𝒖𝒇𝑸
𝑇)
𝑻
∆𝒖𝑽𝒖𝒇𝑸

𝑇 −  (∆𝒖𝑽𝒖𝒇𝑸
𝑇)
𝑻
𝒚𝑠𝑝 −  (𝒚𝑠𝑝)

𝑻
𝜼𝑽𝑸𝑇

−  (𝒚𝑠𝑝)
𝑻
∆𝒖𝑽𝒖𝒇𝑸

𝑇 +  (𝒚𝑠𝑝)
𝑻
𝒚𝑠𝑝 + ∆𝒖

𝑇𝑴∆𝒖 

 

𝑠. 𝑡. { 𝒍𝒃 ≤ 𝒖𝒏 + ∆𝒖 ≤ 𝒖𝒃 

 

 

 Keeping the terms only relevant to ∆𝒖: 

 

min 
∆𝒖

                             (𝜼𝑽𝑸𝑇)𝑻∆𝒖𝑽𝒖𝒇𝑸
𝑇 +  (∆𝒖𝑽𝒖𝒇𝑸

𝑇)
𝑻
𝜼𝑽𝑸𝑇

+  (∆𝒖𝑽𝒖𝒇𝑸
𝑇)
𝑻
∆𝒖𝑽𝒖𝒇𝑸

𝑇 −  (∆𝒖𝑽𝒖𝒇𝑸
𝑇)
𝑻
𝒚𝑠𝑝

−  (𝒚𝑠𝑝)
𝑻
∆𝒖𝑽𝒖𝒇𝑸

𝑇 + ∆𝒖𝑇𝑴∆𝒖 

 

𝑠. 𝑡. { 𝒍𝒃 ≤ 𝒖𝒏 + ∆𝒖 ≤ 𝒖𝒃 

   

 

Grouping similar terms: 

 

min 
∆𝒖
(∆𝒖𝑇𝑽𝒖𝒇𝑸

𝑻𝑸𝑽𝒖𝒇
𝑻 ∆𝒖) + 2 ((𝜼𝑽𝑸𝑇 − 𝒚𝒔𝒑)𝑸𝑽𝒖𝒇

𝑻 ) +∆𝒖𝑇𝑴∆𝒖 

 

𝑠. 𝑡. { 𝒍𝒃 ≤ 𝒖𝒏 + ∆𝒖 ≤ 𝒖𝒃 
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Multiplying for ½: 

 

min 
∆𝒖

1

2
(∆𝒖𝑇𝑽𝒖𝒇𝑸

𝑻𝑸𝑽𝒖𝒇
𝑻 ∆𝒖) + ((𝜼𝑽𝑸𝑇 − 𝒚𝒔𝒑)𝑸𝑽𝒖𝒇

𝑻 )∆𝒖 +
1

2
∆𝒖𝑇𝑴∆𝒖 

 

𝑠. 𝑡. { 𝒍𝒃 ≤ 𝒖𝒏 + ∆𝒖 ≤ 𝒖𝒃 

   

 

This gives the complete the QP formulation: 

 

min
∆𝒖
   
1

2
∆𝒖𝑇𝑯∆𝒖 + 𝒇𝑇∆𝒖 

𝑠. 𝑡. { 

𝑯 = 𝑽𝒖𝒇𝑸
𝑻𝑸𝑽𝒖𝒇

𝑻 +𝑴

𝒇𝑇 = (𝜼𝑽𝑸𝑇 − 𝒚𝒔𝒑)𝑸𝑽𝒖𝒇
𝑻

𝒍𝒃 ≤ 𝒖𝒏 + ∆𝒖 ≤ 𝒖𝒃
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