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Abstract

VERSION ANALYSIS FOR FAULT DETECTION IN OWL ONTOLOGIES

Maria Copeland
A thesis submitted to the University of Manchester

for the degree of Master of Philosophy, 2016

Understanding changes in an ontology is becoming an active topic of interest to
ontology engineers because of the increasing number of requirements to better support
and maintain large collaborative ontologies. Ontology support and debugging mech-
anisms have mainly addressed errors in ontologies derived from reasoning tasks such
as checking concept satisfiability and ontology consistency. Although debugging and
tools to help the understanding of entailments have been introduced in the past decade,
see [1, 2], these do not address the desirability and expectations of the entailments.
Currently, logical faults in ontologies are treated in a vacuum approach that does not
take into consideration the information available regarding the entailment evolution
of the ontology as recorded in ontology versions, the expectation of entailments, and
how the ontology and its logical consequences comply with historical changes. In
this thesis we present a novel approach for detecting logical warnings that are directly
linked to the desirability and expectation of entailments as recorded in the ontology ’s
versions. We first introduce methods for evaluating ontology evolution trends, edit-
ing dynamics, and identify versions that correspond to areas of major change in the
ontology. This lifetime view of the ontology gives background information regarding
the growth and change of the ontology from an axiom centric perspective and their
entailment presence through out the studied versions. We then subject the asserted ax-
ioms from each version to a cross-functional and systematic analyses of changes, the
effectiveness of these changes, and the consistency of these changes in future versions.
From this detailed axiom change record and their entailment profiles, we derived en-
tailment warnings that indicate or suggest domain modelling bugs in terms of content
redundancy, regression, refactoring, and thrashing.

We validate and confirm these methods by analysing a ten year evolution period of
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the National Cancer Research ontology NCIt. We present a detailed entailment report
for each of the problematic axioms that contain domain modelling bugs, and provide
a clear summary of the versions where these axioms introduce logical warnings. This
detailed report of entailment history and the detection of domain modelling bugs is
done without in-depth domain knowledge and purely derived from the publicly avail-
able versions of the ontology. It is through this distinctive usage of ontology versions
that we pioneer the detection of domain modelling bugs as logical warnings based on
the evaluation of expected and wanted entailments.
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Chapter 1

Introduction

Ontologies are important tools for the management of domain knowledge. These logic
driven knowledge-bases allow for the definition of concepts via the creation of ax-

ioms and the linkage of these concepts to explain the relationships between them. De-
pending on the ontology language and its underlying logic formalism, new knowledge
from the asserted content can be inferred when a reasoner is applied ([3]). With the
standardisation of OWL in 2004 as the Web Ontology Language ([4]), OWL ontolo-
gies have grown in popularity and complexity. Large collaborative OWL ontologies
have emerged, specially in the domains of Medical and Bio-Informatics Sciences, such
as: the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT)([5]),
Gene Ontology ([6]), the National Cancer Institute Thesaurus (NCIt) ([7]), and the
Foundational Model of Anatomy (FMA) ([8]).

It is evident from the number of recent publications that initial questions of ‘how to
best model knowledge’ have become less prominent and new questions on ‘how to sup-
port knowledge evolution’ have risen. Tools for version management ([9]), difference
analysis between versions ([10, 9]), and fault detection and explanations ([11, 1, 2])
are now a frequent part of publications, workshops, and special journal editions. The
detection of errors in ontologies is still primarily handled by reasoners, thus making
them the main evaluation tool available for ontologies. The evaluation and result of the
reasoner tasks examine the logical correctness of the modelled knowledge and indicate
problems that causes contradictions in the ontology. Reasoners highlight in their out-
put unsatisfiable concepts in the ontology and render the ontology inconsistent when
no models of the knowledge can be derived. Repair of these errors require the identifi-
cation of ‘broken’ entailments and their removal or repair. Support for understanding
these ‘broken’ representations has emerged in the form of justifications ([11, 1]), and
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CHAPTER 1. INTRODUCTION 12

antipattern detection tools ([12, 13]). Unfortunately, reasoners and these comprehen-
sion aid tools do not take into account the context in which the ontology is authored. A
concept in the ontology may be properly constructed from a logic point of view (thus,
no inconsistencies are present) but, it may not adhere to the expected functionality of
the ontology.

Ontologies are produced in a structured life cycle that is either formalised and part
of an engineering practice, or informal where the creation and deployment of the ontol-
ogy happens organically. In either form, information about the ontology and its repre-
sented knowledge begins before the actual ‘code’ is written. During the pre-modelling
phases (feasibility study, domain analysis, and conceptualisation ([14])), documenta-
tion about the domain, the ontology users and the expected functionality is created. In
some ontology projects these pre-modelling documents become part of the released in-
formation for the ontology. This tends to be the case when an ontology is created under
a formal engineering process. However, when an ontology is developed in an informal
life cycle, these documents are usually not available externally or internally. Even in
the best case scenario where documentation is released with the ontology, this infor-
mation is often unreliable due to problems around the accuracy and completeness of
the documentation. Similar problems with the accuracy of documentation are found in
Software Engineering ([15]). Some of the reasons behind this phenomenon include the
cost and time it takes to produce documentation, the knowledge of the author, and the
evaluation of the final documentation ([15]). The same challenges with documentation
are also found in the post-modelling phases. In these phases (implementation, evalua-
tion, and evolution ([14])), the availability of test plans, test results, maintenance and
release plans, and maturity support is incomplete or non-existent. From these observa-
tions, it is safe to conclude that documentation recording the ontology ’s development
and growth that can be safely relied on is the ontology ’s version files.

It is from these historical version files that information about the ‘expected’ be-
haviour of the ontology can be extrapolated with some level of confidence. Ontology
versions provide a record of changes, change patterns, and the consequences of these
changes in the lifetime of the ontology. Exploiting this rich resource of evolutionary
history not only allows anecdotal accounts of the lifetime of the ontology, but it can
indicate expected and wanted behaviour from the ontology based on the consistent
presence of axioms, their editing patterns, and the effectiveness of their changes. The
research and results presented in this thesis test this hypothesis and provide a unique
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method for expanding the detection of faults in OWL ontologies. We combine tech-
niques to statistically profile the change and growth of the ontology, often used in this
type of research ([16, 10, 17]), and use them to detail interrupted entailment presence
in the ontology that may suggest misalignment with the desirability of these entail-
ments. These anomalous entailments are then subjected to cross-functional analysis
of their editing patterns and the effectiveness of these changes across all versions on
which these axioms appear. The sequences of these editing patterns reveal domain
modelling bugs from which we produce definitions for logical warnings that indicate
or suggest content regression, redundancy, factoring or thrashing.

1.1 Research Contributions

The research contributions in this thesis are detailed in the proceeding chapters. Each
chapter of this thesis contributes to the body of knowledge for fault detection in OWL
ontologies by providing a unique perspective, usage, and the introduction of new meth-
ods for detecting domain modelling errors based on diachronic analysis of OWL on-
tologies. A detailed summary of the contributions found in each chapter are the fol-
lowing:

Chapter 2 We explore ontologies as complex Knowledge Management Systems that
require an engineering approach for their development, deployment, and main-
tenance. This draws significance to the documentation about the ontology ’s
requirements that are of equal importance as the archived versions. These docu-
ments dictate the expectations and services the ontology must provide. We focus
this argument on OWL ontologies and postulate, from a fault detection perspec-
tive, that in order to support faults that are not handled by reasoners, we must
integrate other available information about the ontology to detect and repair un-
wanted and unexpected entailments.

Chapter 3 The underlying statistical techniques, database representation of the on-
tology, and assumptions about ‘normal’ editing behaviour are described in this
chapter. This chapter combines diachronic analysis techniques to produce in-
sights about the ‘hidden’ information regarding entailment consistency and ex-
pectations which have not been discussed in the field of error detection.

Chapter 4 This chapter explores: (i) mechanisms to select test areas for axioms with
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fluctuating entailments; (ii) analysis of their change sequences and the effective-
ness of these changes; (iii) the extracted editing sequences and types; (iv) def-
initions for domain modelling bugs; (v) and the creation of entailment profiles
for problematic axioms. It is here where we explain and provide strong evidence
that ontology versions can provide meaningful information regarding entailment
expectations and desirability. The identification and definition of logical warn-
ings produced in this chapter, show the importance of entailment evaluation from
a functionality and expectation viewpoint.

Chapter 5 A concise evaluation of the experiments, results, key findings, and con-
tributions to the area of ontology evaluation and evolution are discussed in this
chapter. We stress the importance of this research in the area of fault detection
as the first published attempt to evaluate ontologies not only from their logical
construction but from their expected purpose and use. Future research and appli-
cations of this research are detailed in the Future Work Section, which demon-
strates how this is only the beginning of new type of tools and services available
for ontology fault detection and repair.

1.2 Published Work

The contributions of this thesis are supported by the following publications:

• [18] Maria Copeland, Andy Brown, Helen E Parkinson, Robert Stevens, and
James Malone. The SWO project: A Case Study for Applying Agile Ontol-
ogy Engineering Methods for Community Driven Ontologies. In International
Conference on Biomedical Ontology - ICBO, 2012.

• [19] Maria Copeland, Rafael S Gonçalves, Bijan Parsia, Uli Sattler, and Robert
Stevens. Finding fault: Detecting issues in a versioned ontology. In The Seman-
tic Web: ESWC 2013 Satellite Events, pages 113-124. Springer, 2013.



Chapter 2

Preliminaries

This chapter introduces key concepts and a detailed study of Ontology Engineering, in
particular the engineering process of OWL ontologies. This study provides a retrospec-
tive critique of the challenges and opportunities not previously discussed in the areas of
ontology maintenance and evolution. In particular, it focuses on the opportunity to ex-
pand logical axioms support for entailment faults that are not necessarily ‘wrong’ from
a formal logic perspective but may be faulty from a functional perspective. This oppor-
tunity is analysed within the context of Ontology Engineering, its lifecycle, the OWL
language, and the current understanding of faults in OWL ontologies. This chapter
discusses ontologies not only as formal tools for the representation of knowledge, but
as a complex systems where information about its requirements, design approach, and
ontological commitment are integral parts of the engineering process. These under-
utilised ontology resources provide important information about the expectation and
desirability of entailments that can be exploited to aid fault detection and prevention
as part of ontology maintenance and evolution.

2.1 Ontology Engineering

Research evidence suggests that Ontology Engineering is reaching a maturity level
judged by the number of publications on ontology usage surveys, methodologies, eval-
uation tools, languages, and design patterns found in published literature for the past
30 years ([20, 14, 21, 22]). This field began with the need to understand, capture, rep-
resent, and interpret knowledge, which has been an area of philosophical interest since
ancient Greece. It is no surprise that such a complex yet essential concept, knowledge,

15
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has become a key research area in our computerised scientific time. In Artificial In-
telligence, understanding the conceptualisation of knowledge and how it can be best
represented in human and computer formats has driven research since early 1980s es-
pecially in the area of natural language processing. This initial drive began with the
simple question of how to acquire knowledge in a consistent way ([23]) by imple-
menting standard processes and artefacts including ontologies. It is in this early use
that definitions were presented in order to clarify ontologies ’ purpose and scope. The
basic definitions of ontologies that have become part of our current understanding of
ontologies can be traced back to three major fields: Philosophy, Artificial Intelligence,
and Knowledge Representation ([24]). It is in these three fields that the following
definitions for ontologies are commonly presented:

1. Philosophy: ”The branch of metaphysics dealing with the nature of being” ([25]).
An Ontology in this sense deals with existence of knowledge rather than ”how
we know knowledge”.

2. Artificial Intelligence: ”An ontology is an explicit specification of a conceptual-
isation” ([26]).

3. Knowledge Representation: ”A theory of vocabulary/concepts used in building
artificial systems” ([27])

All three definitions deal with the theory of understanding and using a body of
knowledge. This body of knowledge, when presented in a formally represented for-
malism, becomes a conceptualisation that captures the objects, concepts, relationships,
and other entities that are assumed to exist and form an abstract, simplified view of
the world ([28, 26]). A commitment to this abstract view of the world is kept when
agents, humans or computers, act and use this represented knowledge in a consistent
and coherent way. The means of representing this conceptualisation in explicit form
is an ontology. The information or knowledge captured within the conceptualisation
is known as the universe or domain of discourse. The universe of discourse captured
in an ontology has definitions that associate names of entities with human and com-
puter formats, axioms that constrain the interpretation of the universe of discourse, and
well-formed use of these entities and axioms ([26]).

Ontologies are more than hierarchies and conservative definitions; an ontology is
an explicit description of a domain that it is limited in interpretation depending on the
defined axioms about the terms that form part of the universe of discourse. Within the
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fabrics of ontologies, there is engagement with allowable interpretations accessible via
the use of queries and assertions that are exchanged among agents. These agents ’ in-
teractions with ontologies are conducted in an Open World Assumption (OWA) where
the knowledge not represented is neither true or false, it is simply unknown. Commit-
ment to an ontology is a guarantee of consistency of the represented knowledge but
not completeness of the representation. There is also the ‘creation’ or realisation of
new knowledge within the fabrics of ontologies. This new knowledge can be derived
from an ontology through complex calculations based on mathematical logic theory
performed by ontology reasoners. The use of reasoners in ontologies have allowed the
confirmation of experts ’ views of the world represented in a ontology, and to extract
knowledge that was not explicitly stated in the ontology during the design, but emerges
through the inference of knowledge through logical deduction from its asserted axioms.

The use of ontologies, not only a means of knowledge representation but as instru-
ments to understand and discover new knowledge, has created an environment where
questions about the nature of knowledge and how to elicit this knowledge have become
intertwined parts of ontology design. Thomas R. Gruber in ([26]) argues that there
needs to be a disciplined approach when designing ontologies. In this study Gruber
presents ontologies as design decisions ([26]) and in order to properly design, evalu-
ate, and use them there must be a shared understanding of guiding principles for the
creation of the conceptualisation and the engineering of the resulting artefact ([26]).
This argument for an engineering discipline is shared among other researchers at this
period (see [28, 27, 24]) and provides a case for considering Ontology Engineering as
a distinct field.

2.1.1 Building a case for Ontology Engineering

Early literature on Ontology Engineering has shown that ontologies are seen and used
a means to establish agreements about knowledge and to provide consistency when so-
liciting knowledge ([28, 26, 27, 24]). The nature of ontologies requires the knowledge
to be made explicit and to be able to represent this knowledge in formalisms that can
capture an abstract view of the domain. This implies that there is a requirement for
technology, principles, processes, and guidelines that can capture, model, reason, and
communicate this knowledge. Although Ontology Engineering is not formally defined
in the literature that it is now considered agreed as formal definitions for ontology (see
[29, 26]), these papers do provide design criteria that aim to focus and assist with qual-
ity guidance when building ontologies. This criteria can be seen as the early attempts
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to establish a disciplined way of constructing ontologies which later become part of
Ontology Engineering. The following list of guidelines presents the design criteria
proposed in the 1990s and which are still relevant today:

1. Clarity and objectivity. Entities modelled in the ontology should provide objec-
tive definitions and natural language documentation ([26])

2. Completeness. Definitions that are necessary and sufficient are preferred over
partial definitions ([26])

3. Coherence and commitment to the ontology must be kept ([26])

4. Extendibility ([26])

5. Maximise monotonic extendibility. When new terms are included in the ontol-
ogy it must be done in such a way that no or limited revision takes place ([26])

6. Minimal ontological commitments to ensure agents that use the ontology have
freedom to specialise and instantiate the ontology as required ([26])

7. Ontological distinction principle. Classes defined in the ontology must be dis-
jointed ([30])

8. Diversification of hierarchies. This is to allow for multiple inheritances ([31])

9. Minimise the semantic distance between sibling concepts ([31])

10. Standardisation of names ([31])

Ontology Engineering, like Software Engineering, occurs in a life cycle where the
ontology is produced, released, maintained, and finally retired. These phases can be
defined as: Conceptualisation, Design, Implementation, and Deployment phases (see
[32, 33]). Key activities and outcomes are specified for each of the life cycle phases.
These activities give the engineers a design rationale for the ontology, help define the
essential concepts of the universe of discourse, allow for a more disciplined design
methodology that can be replicated and validated, and enables knowledge accumula-
tion not only of the ontology itself but of the processes that lead to the ontology.
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2.1.2 Ontology Engineering Life Cycle

In order to achieve the guidelines presented in the previous section, ontology engineers
have introduced life cycle phases and activities to manage the engineering process.
This section constructs a generalised picture of the recurrent life cycle phases of an
ontology engineering project that can be seen as the core stages applicable to most on-
tologies development efforts. Much discussion has taken place in literature around the
importance of building ontologies in the design phases (see [34, 35, 26, 36, 37, 24, 14]),
ignoring the importance of the latter phases around evaluation, management, and evo-
lution of ontologies. As the field of Ontology Engineering matures and greater empha-
sis is given to the maintenance of ontologies, important questions are being raised
about the desirability and expectation of the ontology ’s services, compliance with
functional and technical requirements in future releases, and the integrity of version
control. It is with this understanding of expected functionality that a clear baseline of
expectations can be agreed for every new version of the ontology. To achieve these
baselines of expectations and desirable functionalities, it is important to use diachronic
analyses of project documentation, log files, and archived versions to see the function-
ality and desired behaviour that has persisted throughout the lifetime of the ontology.

It is with this new emphasis on an integrated approach of using project documenta-
tion and ontology evolution information (log files, version files, release notes) as part
of the evaluation of ontologies that we introduce the life cycle phases and activities.
The following list combines the work of [32, 14, 33] to produce the life cycle phases,
activities, and an assessment on whether or not the corresponding activity documenta-
tion can be used for the evaluation of future versions of the ontology:
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Table 2.1: Ontology Engineering Life Cycle Phases and Activities
Phase Activity Useful for Evaluation

Feasibility Study

Stakeholder analysis No
Purpose and scope Yes
Problems and opportunities No
Economic feasibility No
Potential solutions No
Resource allocation No

Domain Analysis

Requirements specifications Yes
Motivating scenarios No
Competency questions Yes
Knowledge acquisition No
Solutions analysis No

Conceptualisation

Create semi-formal ontology de-
scriptions

Yes

Produce architectural design of
main concepts

Yes

Design integration with existing
solutions

Yes

Evaluate the semi-formal ontol-
ogy

No

Produce a formal model of the
ontology

No

Implementation
Implement the formal model in a
representation language

No

Check representation principles
and reasoning exploitation

Yes

Produce unit tests of the formal
ontology

Yes

Evaluation

Reasoning focused evaluation Yes
Technology focused evaluation Yes
Stakeholder focused evaluation Yes
User focused evaluation Yes

Application and Evolution
Deploy ontology Yes (versions, log files)
Produce evolution strategy Yes
Produce maintenance strategy Yes (release notes)

The identification of phases and activities unfortunately has not guaranteed a stan-
dard approach for documenting the functional requirements of ontologies. The require-
ments, scope, and intended functionality produced in the Feasibility Study, Domain
Analysis, and Conceptualisation phases are usually poorly documented and does not
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reflect the state and purpose of the ontology in later releases. This lack of continuity
of documented requirements and expectations results in informal ad-hoc workarounds
and hacks to the ontology in order to support the ontology in later versions ([14]). It is
in this light, that the latest releases of the ontology can be seen as a proxy of the require-
ments and expectations that the ontology must meet. Taking into account the reality
that functional requirements and official documentation cannot stay up to date as the
ontology evolves, it is pragmatic to suggest that the ‘current’ state of expectations and
functionality of the ontology is best captured in its latest released version. This con-
clusion and assessment of the current state of documentation accuracy not only point
to the need for better documentation management, but also for better version archiv-
ing and management tools to allow for retrospective studies of requirements, desired
functionality, and expected services.

This section has stated the importance of a guided and disciplined approach for the
development, release, and management of ontologies in general. It has drawn atten-
tion to the often ignored documentation in an ontology such as versions, log files, and
release notes which are very important in the evaluation of expectations and function-
ality of the current version of the ontology. In the next sections, the focus shifts to
OWL ontologies, the logic underpinnings, profiles, and common errors found in OWL
ontologies that serve as the foundations for the remaining of this thesis.

2.2 OWL Ontologies

2.2.1 Ontology Languages and Deduction Services

An ontology language is a formally constructed set of language symbols constrained
by specific logic rules that are used to build elements and statements that express a
domain ’s representation ([38]). The statements written by the elements in the ontology
language define concepts, roles, instances, and axioms. The union of these sets of
elements is refered to as the knowledge base or ontology, denoted as O. These sets
of elements expressed in the ontology are commonly refered to as the signature of
the ontology represented by the symbol Õ ([39]). Ontology languages map to a logic
formalism, commonly based on Description Logic DL or First-order Logic FOL, which
supports formal semantics and reasoning services with the help of deduction systems
([38]). Meaning, or interpretation I , is assigned to the sets in O by defining a non-
empty domain ∆I and a function ·I . The interpretation I is a model of O if every
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axiom is consistent in O. When this is the case, the interpretation entails the ontology;
in other words, the ontology is a logical consequence of the interpretation, denoted as
I |= O.

A major strength of ontologies as Knowledge Systems is the ability to provide
deduction services when applying decision procedures via reasoners. These services
extract implicit knowledge from the ontology, inferred axioms, which are not explicitly
stated by the ontology developers, but are useful to developers as means to expand and
discover knowledge.

The types of deductions problems reasoners handle when applied to ontologies are:

• Membership (Realisation): This applies to atomic concept membership and it
infers whether an individual is an instance of the concept. This can only be
achieved if the individual is an instance of all the models of the concept ([38]).
That is, given an atomic concept C in an ontology O and it is an element of Õ,
an instance a is an instantiation of C if and only if O |=C(a).

• Classification: In classification the reasoner infers all the subconcept and super-
concept relationships between asserted and inferred atomic concepts ([40]). This
is achieved by testing entailments of the form O |= Av B, where A,B are atomic
concepts. The resulting classification hierarchy is depicted as the classification
tree.

• Equivalence: It deals with all equal extensions between atomic concepts, O |=
A≡ B, where A,B are atomic concepts ([38]). This reasoner service reduces any
redundancy in O since it discovers equivalent descriptions and reuses concepts.

• Concept Satisfiability: This checks whether there are any empty extensions of a
concept ([38]). That is, a concept A is unsatisfied in O if there are no models of
A in O, denoted as O |= Av⊥. This can result when there is a contradiction in
the use of a concept in the ontology.

• Ontology Consistency: An ontology O is consistent if there is at least one valid
model for the interpretation function I , I |= O ([38]).

• Entailment: Entailment checks whether an axiom α is a logic consequence of O,
denoted as O |= α ([40]).

In addition to these services, some reasoners provide the following non-standard
inference services to aid in the building and presentation of the ontology:
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• Concept approximation. This inference service has mainly been researched for
achieving translation and inference problems in expressive and inexpressive DLs
([40]). This service is useful for approximating reasoning and for presenting
comprehensive presentations of the ontologies to non-expert uses ([38]).

• Justifications or explanations for entailments. A justification J for an entailed
axiom α corresponds to the minimal subset of axioms in an ontology O for α to
hold. This is denoted as J ⊆ O, J |= α [11].

• Ontology modularity. This service assists in identifying parts of an ontology O,
called modules, that capture all that is said in O over a given set of terms Σ,
called a signature ([41]). This allows users and developers to work with smaller
sets of the ontology instead of the dealing with the entire ontology. Commonly
used procedures to identifying modules are based on semantic or syntactic lo-
cality [42]. The Atomic Decomposition (AD) as defined in [43], allows the
representation and visualisation of the modular structure of O by extracting the
basic components, called atoms, of modules and their relationship. This service
is particularly helpful in ontology comprehension and modular reasoning.

The use of the standard and non-standard reasoning services, the choice between
computational versus expressiveness of an ontology, and requirements on formal se-
mantics bring forward the need for a careful selection of DL based ontology languages
when designing ontologies. In the next section, we discuss Ontology Web Language
OWL and the different profiles of OWL.

2.2.2 OWL - Web Ontology Language

In early 2000 ’s The World Wide Web Consortium identified the need for a more ex-
pressive language for web ontologies than RDF. This language requirement built on
the work carried out by research groups in America and Europe, which had previ-
ously identified a powerful ontology modelling language called DAML+OIL ([44]).
In February 2004, the Ontology Web Language (OWL) became the standardised rec-
ommendation for ontology language for the Semantic Web [4]. This version of OWL
extends ALC semantics (atomic negation, concept intersection, universal restrictions,
existential quantification, and complex concept negation) to included transitive role
hierarchies (SH ), nominals (O), inverse roles (I ), and cardinality restrictions (N); re-
sulting in SH OI N DL.



CHAPTER 2. PRELIMINARIES 24

In 2004, the W3C ’s Web Ontology Working Group defined OWL with three sub-
languages that can properly accommodate the different requirements of expressiveness
and automated reasoning: OWL Full, OWL DL, and OWL Lite (see [45, 46]). In a sur-
vey of OWL ontologies in the Web by Matentzoglu in ([47]) the OWL DL profile is
the most widely used as judged by the number of OWL DL ontologies in the publicly
available ontology repositories such as BioPortal and TONES Repository. Standard
reasoning services have been successfully implemented for OWL DL in several rea-
soners such as FaCT++, Pellet, RACER, and KAON2 ([48]).

In 2009, The World Wide Web Consortium introduced a second iteration of OWL
known as OWL 2. OWL 2 ontologies can be stored as Semantic Web documents
with a primary exchange between OWL2 and RDF/XML syntax ([49]). It uses Direct
Semantics and RDF-Based Semantics, which assign meaning directly to the ontology
structures and RDF graphs ([49]). OWL 2 also provides sub-languages, called profiles,
which allow flexibility depending on the modelling and application scenarios ([49]).
These profiles are:

• OWL 2 DL: it is based on SR OI Q DL allowing qualified cardinality restriction
([45]).

• OWL 2 EL: it is based on EL DL which allows concept intersection and exis-
tential restrictions. This enables the execution of reasoning tasks in polynomial
time; suited for large ontologies where expressive power is important to the on-
tology implementation ([45]).

• OWL 2 QL: it is part of the OWL-Lite DL family. It allows for conjunctive
queries using standard relational database technology. This architecture model
allows for ontologies that are very light in expressiveness, store large numbers
of instances, and the ontology purpose is to primarily answer relational/database
type queries ([45]).

• OWL 2 RL: it is an extension of OWL 2 DL with RDFS. It has polynomial
time reasoning and uses rule-extended database models which operates directly
on RDF triples. Like OWL 2 QL, this language is suitable for lightweight on-
tologies with large numbers of instances with the additional benefit of operating
directly on RDF triples data ([45]).

In addition to logical components (axioms, classes, instances, and objects) that
define the domain in OWL ontologies, ontologies can be associated with additional
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information or documentation via the use of annotating axioms ([45]). These non-
logical axioms provide a means to capture information, or meta-data, about the ontol-
ogy, classes, axioms, and instances. Although these axioms do not add logical meaning
to the ontology, they serve an important role by providing human readable information
about the domain, the ontology version, and the evolution process.

2.3 Faults in OWL Ontologies

With the expressiveness advantages with OWL 2 and the increasing use of OWL on-
tologies, it is no surprise that much of OWL ontologies research focuses on preventing
and repairing faults in ontologies ([50, 13, 51, 52, 2]). This thesis defines faults in
ontologies as:

Definition 2.1. A fault is a deviation from required and expected behaviour in ontol-
ogy O, where behaviour is akin to service and the effectiveness in the delivery of this
service ([19]).

In Software Engineering, faults can be divided as functional (service) and non-
functional (delivery of service) faults. The severity of these faults depend on the impact
to the system and the service it is expected to provide. A complete system crash, that is
ceasing to work completely, is considered a high severity fault and its impact is major
due to the complete disruption of service. Equally, a fault that deviates entirely from
the expected behaviour and compromises the validity of the outcome is categorised as
a high severity fault even though the system is available. Arguably, a system crash is an
immediate indication of a severe fault in a system; where as a non-functional fault may
be harder to identify and in some case diagnose. Thus, proper identification, diagnosis
and system repairs rely entirely on technical and domain knowledge of the service in
order to tackle the complex area of faults management.

Similar requirements and challenges in fault identification and repair are found in
Ontology Engineering. In ontologies, faults are related to lack of modelling consis-
tency, insufficient adherence to the ontological commitment of the domain, errors in
the asserted knowledge defined in the ontology, and the wrong or non-logical conse-
quences of the asserted knowledge. Faults may be introduced either by human inter-
vention (e.g. modelling decisions, lack of domain knowledge, etc.) or tools interven-
tion (e.g. automatic content generation tools, ontology merging tools, etc.). Ontology
faults ’ relation to logical formalism, design and implementation strategies make for
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a natural classification of logical and non-logical faults. Logical faults deal directly
with the logic driven aspects of the ontology; specifically the asserted and entailed
knowledge of ontology. In Software Engineering terminology, these faults are primar-
ily functional faults as it deals directly with the logical service the ontology is expected
to provide. On the other hand, non-logical faults deal with the ’how’ the knowledge
is modelled and documented in the ontology. Modelling decisions regarding patterns,
specificity of concept definitions, information about the ontology in annotation axioms,
and ontological commitment are directly related to non-logical, or non-functional, as-
pects of the ontology.

Techniques and tools for detection, diagnosis, and repair of OWL ontologies de-
pend on whether faults are either logical or non-logical in nature. Reasoners such as
FaCT ++ and Pellet ([53, 54]) detect logical errors by applying reasoning tasks that
deal directly with entailments and the consistency check of the ontology. In addition
to reasoners, debugging logical faults can be achieved with justifications where a sub-
set of the ontology is presented showing the explanations why an entailment holds
([10, 50, 13, 11]), ontology completion where inferred axioms are suggested as addi-
tions to the explicit knowledge of the ontology ([3]), and difference analysis between
two OWL files of the same ontology ([55, 56]). Non-logic faults can be detected by
irregularities in modelling patterns ([57]), performance problems ([58]), and any er-
rors dealing with the information recorded in the annotation axioms. Logical faults
are primarily dealt by automatic tools that are add-ons to IDEs that identify and allow
for repairing the logical fault in the ontology authoring environment. In contrast, most
non-logical faults may require a combination of automatic detection tools and human
driven quality assessment process to detect and repair these errors in the ontology.

The remainder of this chapter focuses on the logical aspect of the ontology, that
is, the identification and debugging support of entailment faults, asserted and inferred,
for OWL ontologies. We look directly at problems with entailments and their jus-
tifications, differences that indicate errors throughout the evolution of the ontology,
common entailment faults detectable by reasoners, and entailment faults that require
analysis, understanding, and tools outside the established ontology reasoners.
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2.3.1 Entailment Faults in OWL Ontologies

The scope of this thesis is restricted to the logical behaviour of the ontology; that is, the
set of entailments retrievable by standard reasoners. Debugging tools that apply rea-
soners detect entailment errors when the outcome of reasoner tasks indicate contradic-
tions, incoherence and inconsistency in the declaration of classes and the construction
of axioms.

2.3.1.1 Unsatisfiable Classes

Unsatisfiable classes indicate a contradiction in the definition and use of a class. This
error is most likely a modelling error caused either by misinterpretation of the do-
main from the domain expert, or an implementation error from the ontology developer.
When unsatisfiable classes are instantiated, the ontology becomes inconsistent, thus
indicating a high severity fault due to the ‘uselessness’ of the logical inferences of
the ontology. If an unsatisfiable class is not instantiated, the ontology can still have
valid models making the ontology incoherent. An incoherent ontology maybe harder
to debug if the unsatisfiable classes are not made visible by the debugging tools. For-
tunately, debugging tools usually indicate unsatisfiable classes either by highlighting
them in red or showing them as subclasses of bottom.

2.3.1.2 Tautological Classes

A tautological class is a class entailed as a superclass of all the classes in the ontology,
and where all individuals are instances of the class. In ([1]) the authors explained
that this type of fault is usually an unintended and unnoticed consequence without the
ontology users understanding why it is present in the ontology. Debugging tools may
or may not indicate tautological classes as errors thus making its identification and
diagnosis harder for the ontology developer ([1]).

2.3.1.3 Ontology Inconsistency

An ontology is inconsistent when no models are inferred by the reasoner. The ontology
provides no meaningful knowledge thus disrupting completely the service it is meant
to provide. Inconsistent ontologies are high severity faults akin to a complete system
crash in Software Engineering.
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The identification of these errors is achieved when the reasoner cannot confirm that
the entailments hold in the ontology, thus triggering a signal to the debugging tools of
these entailments as faults. The identification, diagnosis, and debugging of these errors
based on reasoners ’ services depend on the underlying formal semantics, interpreta-
tion function of the underlying logics (OWL profiles), and the ability of reasoners to
indicate faulty entailments.

2.3.2 Domain Modelling Bugs

The next set of logical faults are not necessarily wrong from a formal logic perspec-
tive, but from the understanding and representation of the domain knowledge and the
ontology service it is expected to provide. Specifically, these faults are dependent on
the desirability and intention of the logical consequences. In order to distinguish them
from the logical faults found by debugging tools that apply reasoners, this thesis intro-
duces the notion of domain modelling bug ([19]).

Definition 2.2. Let O be an ontology and α be an axiom in O, α is a domain modelling
bug in O if O |= α and α is not a desired entailment, or O 6|= α and α is a desired
entailment.

The desirability of entailments in an ontology O is determined by the analysis of
the written expectations and intentions of services that the ontology must provide as
defined by the ontology ’s purpose and use. For instance, consider an OWL DL ontol-
ogy O with a TBox T which contains the following asserted axioms with the resulting
entailment (Example 2.3). These asserted axioms are expected to model the specifica-
tions (definitions) for University Student, Post Graduate Student, and Research Student
found in Table 2.2:

Example 2.3. T = {
PostGraduateStudent v Student
ResearchStudent v PostGraduateStudent }

and
O |= { ResearchStudent v Student }
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Table 2.2: Student Types Requirements
Student Type Description
University Student University Student is a specific type of student who is study-

ing at a university
Post Graduate Student Post Graduate Student is a kind of University Student
Research Student Research Student is a kind of Post Graduate Student that is

a University Student

The entailment ResearchStudent v Student is a domain modelling bug in this ex-
ample because it is not a desired modelling consequence of the ontology. Although,
logically the entailment follows from the ontology, the asserted axioms do not model
the expected definitions for student types as expressed in Table 2.2. Since the as-
serted axiom that models Post Graduate Student is not defined in terms of University
Student, and the resulting entailment defines Research Student as a general student,
it is clear to see that the modelled domain and the logical consequences do not meet
the expectations set in the requirements. Similarly, the missing expected entailment
ResearchStudent vUniversityStudent is a domain modelling bug because it is absent
from the TBox and it is not a logical consequence of the modelled knowledge.

The detection of domain logical bugs relies heavily on human expertise of the
domain and modelling conventions defined at the beginning of the engineering process,
and on heuristics that identify possible undesired consequences from the ontology. The
following entailment faults can be categorised as domain modelling bugs:

2.3.2.1 Antipatterns

This type of errors occur when OWL constructors are misused or confused by the
developers. In the studies ([12, 59, 2]), the authors concluded that the most common
antipatterns are: (i) AND for OR, (ii) subsumptions and equivalences, (iii) not obeying
defined data and property restrictions, and (iv) axioms that add no modelling support
or meaningful knowledge (dead axioms).

Consider the following extension to Example 2.3, where an equivalence is wrongly
added to model the intended statement Master Student is a subtype of (or it is subsumed
by) Post Graduate Student (see Example 2.4). The misuse and misunderstanding of
subsumption and equivalence make this domain modelling bug a common error that
results not only in a wrong assertion (MasterStudent ≡ PostGraduateStudent), but
it can also produce unwanted consequences such as Master Student is a subtype of
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Student (MasterStudent v Student). As pointed out in ([12]), this error is sometimes
the result of poor training and understanding of the meaning of OWL constructors.

Example 2.4.
T = {

ResearchStudent v PostGraduateStudent
PostGraduateStudent v Student
MasterStudent ≡ PostGraduateStudent}

and

O |= {
ResearchStudent v Student
MasterStudent v Student
ResearchStudent vMasterStudent}

The detection of antipatterns is not a standard debugging service of OWL ontology
authoring tools. An exception is the ontology editor SWOOP, which uses a heuristic-
based repair tool that identifies antipatterns, and suggests their removal or modification
from the ontology ([2]).

2.3.2.2 Wrong Entailments

Wrong entailments are statements in the ontology that are ‘not valid’ with respect to the
ontological commitment and modelling approach of the ontology. Like antipatterns,
wrong entailments are human errors derived from lack of understanding of the domain
or how ontologies work. These domain modelling bugs can be the result from unre-
solved ambiguities in the ontology left unattended during the developing process. Due
to the ontologies ’ Open World Assumption (OWA) developers and modellers must
assert not only the what is concepts of the domain, but the what is not concepts too.

As seen in Example 2.4, the addition of a misused equivalence results in a new
inferred axiom ResearchStudent vMasterStudent. If the intended service and repre-
sentation is required to make the definition of Research Student and Master Student
different (disjoint) from one another, the omission of an axiom that declares this dis-
jointness results in the wrong entailment, or knowledge, of Research Students being a
kind of Master Student.

The identification of wrong entailments can be carried out if underlying access,
either manual or automatic, to the intention of the ontology is available and if it can be
extrapolated what is desired and expected to declare or omit in the ontology.
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2.3.2.3 Unwanted Entailments

Unwanted entailments are logical consequences that are not desired yet are present in
the ontology. It could be argued that all entailment faults in an ontology can be cat-
egorised as unwanted entailments. To disambiguate from this general use, this thesis
distinguishes unwanted entailments strictly as domain logical bugs because these devi-
ate from the desired expectations of service of the logical consequences. These entail-
ments deal directly with the wrong consequences of erroneously represented content
and not from a faulty modelled domain such as when antipatterns are present. An ex-
ample of an unwanted entailment was found in Example 2.3, where ResearchStudent v
Student is an unwanted consequence of the wrongly modelled knowledge.

2.3.2.4 Missing Entailments

Missing entailments are expected entailments that are not elements or logical conse-
quences of the ontology. These entailments occur when the content of the ontology
does not explicitly declare the intended entailment, nor it is inferred from the knowl-
edge modelled in the ontology. Ontology developers use the ontology to author state-
ments about the domain and also to elicit new knowledge that can be derived from
these statements. When there is an error in the representation, either because of a
logical or modelling fault, an expected entailment may not be a consequence of the
ontology. If we consider again the case of entailment faults due to the wrong under-
standing of Open World Assumption (OWA), we can easily see that axioms that do not
restrict the definition of what a concept is not are missing entailments, and can derive
wrong entailments from this missing information.

The detection of these entailment faults and domain modelling bugs require a for-
mal and practical understanding of ontology building. When and how these faults
should be debugged and repaired depends largely on the impact (high impact faults
may require immediate repair, where as minor faults can be repaired at a later time),
the validity of the service outcome, and the user expectations of service. As seen in
this chapter, it is no longer enough to just rely on reasoners for the identification of
entailment faults. The complex array of logical and modelling faults require tools out-
side reasoning tableaux to address entailment errors. It is equally important to provide
debugging services that can access, navigate, and analyse ontology evolution, expected
functionality, and intended service to tackle entailment faults that result from domain
modelling bugs. This new insight puts ontologies as more than simplistic knowledge
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representation artefacts, where error detection approaches rely only on the ‘technical’
aspects of ontologies. Ontologies need to be seen as knowledge systems that require
proper engineering approaches and a more in-depth understanding of the services on-
tologies provide.

2.4 Discussion

The analysis presented in this chapter shows that ontologies are complex Artificial
Intelligence systems that require systematic approaches for design, management, and
evolution support. The field of Ontology Engineering aims to guide and discipline
the processes and tools used in the design, building, deployment, and management of
ontologies. This research field is moving away from the initial focus of how to build
ontologies, to focus on how to better support ontologies, specially as these become
more mainstream Knowledge Management tools. The logical foundations found in DL
ontologies, and the standardisation of OWL and its profiles, have provided a starting
point from which reasoning services have been developed to support fault detection,
debugging, and correction services. As seen in this chapter, there has been an emphasis
on fault detection in OWL ontologies based on the output of reasoners. Although this
is a vital service that guarantees a correct logical representation, this service is limited
and does not take into account the content and modelled correctness of the representa-
tion. This single-minded approach for repairing ontologies does not consider the whole
ecosystem in which ontologies are produced. If we can integrate information about the
modelling decisions and historical entailment commitment, entailment fluctuations and
editing patterns, and the effectiveness of changes between versions, we should be able
to provide a much more comprehensive approach for repairing ontologies.

The subsequent chapters in this thesis take this conclusion as its main drive to de-
sign a novel method for fault detection of domain modelling bugs. As seen in this
chapter, access and understanding of the intentions and expected service of the on-
tology is imperative in the detection of domain modelling bugs. The remainder of
this thesis proposes a method for determining the desirability of entailments which
form the basis for the identification of domain modelling bugs. This method applies
diachronic studies of editing patterns, entailment presence, and analysis of the effec-
tiveness of changes between versions to support conjectures regarding the desirability
and expectation of entailments. From this analytical based approach, we are able to
identify domain modelling bugs and trigger warnings for these faulty entailments. We
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also provide supporting information about these warnings to indicate when in the on-
tology ’s history these entailments deviated from the expected service and use of the
ontology.



Chapter 3

Methods and Materials

To achieve the expansion of fault detection services for domain modelling bugs in
OWL ontologies, it is important to access and analyse the intentions and desired be-
haviour of the ontology. As seen in the previous discussions, the reliability and avail-
ability of documented requirements and the ontology ’s engineering process is difficult
to acquire due to lack of management, quality, and reliable information. In this chapter,
we propose analytical methods for identifying the desirable entailments in an ontology
based on the historical record of entailment presence, editing actions, and the effec-
tiveness of such actions. We detail the experiment and infrastructure specifications
for conducting this analysis, define key statistical approaches used in the study of the
ontology ’s lifetime record, and identify assumptions about what it is considered ex-
pected development behaviour in a growing ontology. The methods, materials, and
experiment results used in this and the following chapters expand from the work pub-
lished in ([19, 18]) and presented in the International Conference of Bio-Ontologies
(ICBO 2012), European Semantic Web Conference (ESWC 2013), and the Interna-
tional Semantic Web Conference (ISWC 2014) 1 2 3.

3.1 Ontology Corpus Selection

A detailed study of entailment dynamics and the impact of these dynamics in an ontol-
ogy requires a consistently edited and used ontology with an active user community.

1http://kr-med.org/icbofois2012/
2http://2013.eswc-conferences.org
3http://iswc2014.semanticweb.org
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An ontology that is constantly adapting to the needs of a user community, best re-
flects the community ’s current expectations and needs. It is through this source of
recorded activity that observations about the ontology evolution and the service it pro-
vides can be deduced. A ‘live’ ontology should satisfy and comply with user require-
ments, which are usually detailed at the inception of the ontology and have evolved to
meet current needs. This latest version is the most up to date source of information
regarding the expectations of service the ontology must provide; whereas the previous
versions contain information regarding the reliability and longevity of this service and
expectations.

Ontologies that meet this criteria are usually found in large organisations with
highly collaborative environments such as the U.S. National Cancer Institute and its
ontology the National Cancer Institute (t)Thesaurus (NCIt) ([7]) and the Gene On-
tology Consortium with its ontology the Gene Ontology (GO) ([6]). In this thesis
we focus on the NCIt corpus because of its rich historical documented record of au-
thoring and maintenance analyses (see ([60, 61, 62])), its rigorous release cycle (see
([63, 64, 65])), authoring of logical and non-logical axioms ([63, 7, 64]), use of infer-
ence services (reasoners) to entail new knowledge from the asserted axioms ([63, 64]),
and monthly publicly available OWL files.

3.2 The NCIt Case Study

The NCIt ontology supports the authoring and maintenance of cancer research ter-
minology part of the NCI research. The ontology is used a means to standardise
vocabulary across the NCI and provide vocabulary resource services to both public
and private organisations, such as the the Food and Drug Administration (FDA) ([66]).
Documented information about its features and services are publicly available and have
been evaluated internally and externally ([61]). The NCI identifies the following key
features of the NCIt service: ([66]):

• Unique codes for defined concepts

• Identification of terms to include: synonyms, research codes, external codes, and
known names

• Link to metadata resources

• Formal logic-based definitions
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• Integration with other data sources, including the NCIt subsets

Through out its history, the NCIt has been a source of content and ontology en-
gineering studies in the OWL community. Most notably, studies around the activity
and function of the ontology have focused primarily on particular versions or most
current version (see ([63, 7, 64, 62]) providing limited information regarding the gen-
eral lifetime of the ontology. Only recently, studies regarding the overall growth and
decline cycles of the NCIt have emerged. In the work by Gonçalves et al. ([67, 16]),
the authors studied the overall evolution of the NCIt by analysing 86 versions of the
ontology, corresponding to the period from 2003 to 2011, using pair-wise consecutive
versions to calculate the net gain or reduction of asserted and inferred axioms, and the
logical impact of the additions and removal of axioms. Although this study is a first
step in identifying fluctuations in the entailments of the NCIt, its view is restricted to
two consecutive versions analysis without providing insight to the lifetime presence of
the entailments in the ontology. In order to provide this lifetime view of the entail-
ments in the NCIt, it is necessary to broaden the analysis from a pair-wise approach to
an all-versions approach to extract the lifetime profile of the entailments in the NCIt.
This broader view provides a diachronic perspective of the entailments, which identi-
fies entrance, presence, removal, or modification through out all the studied versions.

To achieve this broader view, the NCIt case study in this thesis includes: 112 ver-
sions of OWL files (from release 02.00 through to 13.05d), 88 log files (from monthly
history 06.01c (January 2006) to 13.05d (May 2013)), and monthly released reports
covering nearly a ten year period from September 2003 to May 2013. All records were
obtained from the NCIt ’s public website4 and a mapping of the NCIt version names,
month and year, and the version numbers used in this thesis can be found in Appendix
A.

The evaluation of these 112 versions of the NCIt will produce a diachronic view
of the asserted axioms lifetime in the ontology, entailment profiles for the asserted
axioms that have been retired (removed) from the ontology, and the modified axioms
that remain in the ontology. We can speculate the desirability and expectations of the
entailments from these observations, and identify unwanted or missing entailments
that do not meet the expectations of the behaviour observed in the diachronic analysis.
It is through this insight and novel use of ontology evolution analysis that this thesis
tests the hypothesis raised in the previous sections; namely, the detection of domain
modelling bugs can be achieved by extrapolating desired expected entailments based

4ftp://ftp1.nci.nih.gov/pub/cacore/EVS/NCI_Thesaurus/archive/

ftp://ftp1.nci.nih.gov/pub/cacore/EVS/NCI_Thesaurus/archive/
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on the historical presence of entailments.

3.3 Experimental Plan

The design and execution of the experiments ran against the NCIt case study cover the
following areas:

1. The NCIt ’s asserted axioms lifetime record from 2003 to 2013.

2. Identification of the expected editing events corresponding to the asserted ax-
ioms in a versioned ontology.

3. Identification of the NCIt ’s asserted axioms that conform with the expected edit-
ing events.

4. Identification of the NCIt ’s asserted axioms that deviate from the expected edit-
ing events.

5. Produce an entailment profile, which includes the logical impact to the NCIt
ontology, for the axioms that have pathological editing events.

6. From these entailment profiles, define and categorise the types of domain logical
bugs found.

7. Verify the findings with the NCIt authors and developers.

From this comprehensive analysis of the NCIt, we will produce general conjectures
regarding fault detection methods for domain modelling bugs that rely primarily on the
diachronic axiomatic analysis of the ontology.

3.3.1 Experiment Setup

The experimental setup for diachronic analysis of the NCIt s versions requires the use
of systems and software for the extraction and organisation of data representing the
axioms, inferences, classes, together with the corresponding mappings to the ontology
files (version files). The data extraction required the creation of custom-built JAVA
program that could parse the NCIt OWL version files using the OWL API v3.x ([68]).
The data extracted from the ontology files corresponded to the asserted axioms and
classes from the ontologies ’ TBoxes, and saved as CSV files. These CSV files also
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contained the classification of these extracted axioms, which was achieved by the JAVA
program ’s execution of classification of the extracted axioms using FaCT++ v1.6.2
([53]). No data was extracted for instances found in the ontology ’s ABoxes since
the analysis of the NCIt corpus focuses on axioms and their entailments. In addition
to the extracted data for axioms, inferences and classes, the CVS files also contained
data from the effectuality analysis we conducted for all versions in the NCIt corpus.
Effectuality analysis correspond to the method developed by Gonçalves et al in ([16])
to identify and categorised the logical impact and effectiveness of axioms additions
and removals between two versions of an ontology. This difference analysis (a.k.a
diff analysis) uses the following notions for effectual and ineffectual additions and
removals ([16]):

Definition 3.1. Let Oi and O j be two versions of an ontology O where i < j. An axiom
α is an addition if α ∈ O j\Oi, and a removal if α ∈ Oi\O j. The logical consequences
between Oi and O j are:

• Let α be an effectual addition if Oi 6|= α (denoted α ∈ EffAdd(Oi,O j)), and
ineffectual addition otherwise (denoted α ∈ IneffAdd(Oi,O j)).

• Let α be an effectual removal if O j 6|= α (denoted α ∈ EffRem(Oi,O j)) and
ineffectual removal otherwise (denoted α ∈ IneffRem(Oi,O j)).

The resulting effectual and ineffectual edited axioms, together with the extracted
and classified data stored in the CVS were then migrated to a MySQL v5.1.63 database
via a automatic import. The data in the database was organised with the underlying
schema detailed in Figure 3.1. This schema represents the following mapping between
the NCIt ontology files were each NCIt version is identified as Oi and i indicates the
version number.

1. Ontology Oi: Each ontology ’s file name is stored in the table Ontology with a
integer identifier i.

2. Axioms α j ∈Oi: Each structurally distinct axiom α j is stored in the Axioms table
identified by j. Each axiom tuple ( j, i) is stored in the table Is In to match each
axiom by their j id as asserted in ontology i.

3. Classes C j ∈ Oi: Each class name C j is stored in the table Classes identified by
j. Each class tuple ( j, i) into the table Class In.
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4. Usage of class C j in Oi: Each class C j used in axiom αk ∈ Oi is stored in table
Used In as a triple ( j,k,i).

5. Atomic subsumptions (equivalences) β j such that Oi |= β and β j /∈ Oi: Each
inferred atomic subsumption (equivalence) β j are stored in the table Inferred

Subsumptions (Inferred Equivalences). Their corresponding tuple ( j, i) is stored
in the table Inferred Subsumptions In (Inferred Equivalences In).

6. Effectual changes: Each added (removed) axiom α j ∈ EffAdd(Oi,Oi+1) (α j ∈
EffRem(Oi,Oi+1)), identified by j, is stored in the table Effectual Additions (Ef-

fectual Removals) as a tuple ( j, i+1) ([10]).

7. Ineffectual changes: Each added (removed) axiom α j ∈ IneffAdd(Oi,Oi+1) (α j ∈
IneffRem(Oi,Oi+1)), identified by j, is stored in table Ineffectual Additions (In-

effectual Removals) as a tuple ( j, i) ([10]).
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Figure 3.1: Experiment Database Schema

This experiment data setup allows for data analysis via the execution of SQL
queries that apply statistical methods used for diachronic studies. A detailed descrip-
tion of the methods used for the SQL-query based data analysis, and subsequent differ-
ence analysis between versions of the NCIt ontology is described in the next section.
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3.3.2 Experiment Methods

The experiment methods applied to the set detailed in the previous section include
statistical analysis of the axiomatic lifetime evolution, axiomatic presence, and this
presence ’s distribution across all versions in the NCIt corpus. From here, we will be
able to analyse any possible correlations between the results and our definitions of
expected editing patterns found in a large collaborative ontologies. Any observations
that deviate from this expected editing behaviour, will be analysed in further detail to
produce an entailment profile that indicates all additions and removals, and the logical
impact of these actions to the NCIt.

To begin the statistical lifetime analysis of the NCIt, we used a Time Series analysis
to provide a full view of the NCIt lifetime evolution from 2003 to 2013. Our Time
Series data corresponds to the successive count of the asserted axioms for each version
of the NCIt for the ten year period. The Time Series analysis will be used to identify
growth or declines periods and highlight any patterns to these observations. Once
this overview of the evolution is produced, a Frequency Distribution analysis will be
applied. In this statistical analysis, the frequency, or count, is generated for the number
of versions an axiom is present in the corpus. The resulting frequency distribution
table will show each axiom count as a mutually exclusive data point. To graphically
explain these results, we will use a histogram diagram to graph each data point (axiom
count) and sort them from highest to lowest frequency. This will allow us to identify
the stability of axioms judge by their presence in consecutive versions of the corpus.

In order to judge whether a deviation from the expected service in an ontology has
taken place, it is important to define the expected editing actions and logical conse-
quences of these actions in an active ontology. In an active ontology, it is natural to
assume that axioms are added, edited, and/or retired over the lifetime of the ontology.
These changes occur as the knowledge evolves and modifications, additions, and re-
movals take place on what was previously asserted in the ontology. Each version of
the ontology is a snap shot of the knowledge captured at that point in time, and any
changes to that knowledge is captured in future versions. From this understanding
of knowledge evolution in a versioned ontology, it can be assumed that the following
editing behaviours and logical consequences are standard in an active ontology ([19]):

Definition 3.2. Let Oi be a version of an ontology O and the axiom α be an addition
in Oi (α ∈ Oi\Oi−1), α has consecutive entailment presence in O if Oi..n |= α, where
i < n and i is the first version α is entailed, and n is the last version where α is entailed.
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Definition 3.3. Let O j be a version of an ontology O and the axiom α be a removal
in O j (α ∈ O j−1\O j), α has removed entailment presence in O if Oi.. j−1 |= α and
O j..z 6|= α, where i < j < z and i is the first version α is entailed, j is the last version
where α is entailed, and z is the last version of O.

Definition 3.4. Let Ok be a version of an ontology O and the axiom α be a modification
in Ok, where a modification is a change to α such that α 6∈ Ok and Ok |= α. The axiom
α has consecutive entailment presence following a modification in O if Oi..n |= α,
where i < n and i is the first version α is entailed and n is the last version where α is
entailed.

The Figures 3.2, 3.3, and 3.4 can best illustrate the definitions presented above.
The NCIt versions are visualised as points in a line that represents the lifetime of the
ontology, and the entailment presence for an axiom α in each version is represented as
a full circle for an assertion and a dotted circle for an inference.

Additions 
Axioms with consecutive presence 

Ontology Versions 

O1 Oi 

α � Oi 
Oi � α 

Figure 3.2: Addition - Consecutive Entailment Presence
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Removal/Retirement 
Axioms are removed from the ontology after 

consecutive presence 

Ontology Versions 

O1 Oi Oj+n 

α � Oj, j+n 
Oj, j+n � α 

Oj 

Figure 3.3: Removal - Removed Entailment Presence

Modification 
Axioms are added to the ontology and modified in a 
later version. Entailments are consecutively present 

Ontology Versions 

O1 Oi Ok+n 

α � Ok+n 
Ok+n � α 

Ok 

α � Oi 
Oi � α 

α 
modified 

in Ok 

Figure 3.4: Modification - Consecutive Entailment Presence

From these definitions of entailment presence following editing actions, this thesis
suggests that the expected and desired logical service that the ontology must comply
with can be derived from the axioms ’ consecutive entailment presence in the ontology.
Knowledge, in the form of axioms, when added to the ontology must remain as logical
consequences of the ontology until the entailments are explicitly removed from the
ontology. Modifications to existing axioms should not alter the logical consequences of
the previously asserted knowledge. Any entailment presence that shows fluctuation in
their presence indicates an undesired logical behaviour. That is, interrupted entailment
presence that results from multiple additions, removals, and modifications of axioms
are not in compliance with the expected service of the ontology. This behaviour can be
categorised based on the type of interrupted entailment presence; in other words, the
effectiveness of the changes. The following definitions and figures show the undesired
editing actions and logical consequences of this behaviour.

Definition 3.5. Let Oi and O j be versions of an ontology O and the axiom α be an
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effectual addition to O in version Oi, content regression of the α entailment in O
occurs if α is effectually removed from O in version O j, and re-enters O as an effectual
addition in the later version O j+n where i < j and n ∈ N.

Content Regression 
Axioms are removed from the ontology and re-enter the ontology 

unchanged 

Axioms with interrupted entailment presence 

Ontology Versions 

O1 Oi Oj Oj+n 

Figure 3.5: Content Regression - Interrupted Entailment Presence

Definition 3.6. Let Oi and O j be versions of an ontology O and the axiom α be an
effectual addition to O in version Oi, content refactoring of the α entailment in O oc-
curs if α is ineffectually removed from O in version O j, and re-enters O as an effectual
addition in the later version O j+n where i < j and n ∈ N.

Content Refactoring 
Axioms are modified in the ontology and the modification is 

undone in 

Ontology Versions 

O1 Oi Oj Oj+n 

Axioms with interrupted entailment presence 

Figure 3.6: Content Refactoring - Interrupted Entailment Presence
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Definition 3.7. Let Oi and O j be versions of an ontology O and the axiom α be an
ineffectual addition to O in version Oi, content redundancy of the α entailment in O
occurs if α is ineffectually added to O in version O j where i < j and n ∈ N.

Content Redundancy 
Axioms are logical consequences of the ontology and then are 

explicitly added to the ontology 

Axioms with redundant entailment presence 

Ontology Versions 

O1 Oi Oj Oj+n 

Figure 3.7: Content Redundancy - Interrupted Entailment Presence

These new distinctions of domain modelling bugs for redundancy or regression in
the entailments indicate an unawareness on the ontology developer ’s part. This is be-
cause the effectuality of the editing actions are not in par with the expected logical
behaviour. These pathological editing actions and the unwanted effectuality of these
actions are domain modelling bugs that point to suspected missing entailments or un-
wanted entailments.

3.4 Discussion

This chapter presented the experimental plan, set up and methods that are used for the
remainder of this thesis. The data extractions and the data representation structures de-
tailed in this chapter, will allow us to perform SQL-driven data analysis that will paint
a statistical portrait of the evolution of the NCIt from 2003 to 2013. This evolution will
be analysed with methods that allow for the identification of growth and decline cycles,
patterns to these cycles, and the axioms frequency distribution. To understand the log-
ical consequences and the effects to the expected and desired service of the ontology,
we also defined expected editing actions and their logical consequences, and expanded
the categories of domain modelling bugs to include unwanted and missing entailments
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resulting from content regression, refactoring, and redundancy. The underlying as-
sumptions regarding the expected editing behaviour are possible to deduce because of
the in-depth understanding of the Ontology Life Cycle presented in the preliminar-
ies of this thesis, and are validated against NCIt ’s quality assurance and maintenance
processes ([61, 65]) which shows this understanding in practice. The next chapter ex-
plains in detail the results from these analyses and experiments, and new information
and techniques for validating a versioned ontology are proposed.



Chapter 4

Version Analysis for Fault Detection

In the preceding chapters, we have shown that ontology versions are the factual records
that capture the released product as it is intended for distribution and use. Although
requirements documentation and release reports may be available as part of the ontol-
ogy ’s version release, it is unwise to assume that this documentation is either complete
or represents the ontology accurately. In this thesis we claim that an accurate repre-
sentation of the ontology ’s desired services is captured in the ontology ’s versions. We
have also detailed an experimental plan that will demonstrate this claim by analysing
the entailment presence of the asserted axioms in the ontology ’s versions. We argue
that the persistence of these entailments can point to the desirability of the logical ser-
vices the ontology must provide. Any interruptions to this service that is outside the
‘standard’ maintenance process of the ontology can be seen as being out of compliance
with the intended service. Each version of the ontology provides a view of the state of
the ontology at a point in time, which is the result of the maintenance process that has
been applied to deliver the expected service.

In this chapter we apply the experimental plan to the NCIt corpus and provide
a study of the evolution and the historical logical footprint of the ontology through
out the observed lifetime from 2003 to 2013. Each version is studied on its own and
as part of the whole evolution record to observe (i) logical behaviour in the current
version, (ii) whether or not this behaviour is inherited from previous versions, (ii) the
effectuality of editing actions from version to version (iv) emerging change patterns
that are prevalent through out the evolution of the ontology, and (v) the detection and
classification of asserted axioms that deviate from the observed entailment lifetime and
from the standard editing actions. Verification of the results of this study with the NCIt
developers is not part of the scope of this thesis; however, in the last chapter we detail

46
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how this confirmation can be conducted and future expansions to this work.

4.1 Assert Axioms Lifetime Profile Report

A cross-sectional study of asserted axioms in each version of the NCIt corpus provides
a view of the lifetime record of the ontology. By taking a collective view of the total
number of asserted logical axioms in each version of the corpus, we produce a Time
Series analysis of the ontology. This Time Series analysis not only shows increases and
decreases in the number of asserted axioms in each version of the ontology, but also
how many versions in the corpus are involved in these growth and decline cycles. The
identification of these cycles can guide observations about growth years and stability
periods of the ontology. From this information, we can provide historical context to the
editing actions observed for the asserted axioms in each version. We can also provide
further comment on the entailment ‘stability’ of these asserted axioms. We can safely
postulate that versions and their corresponding asserted axioms and inferences that are
part of these growth cycles may not be as permanent as other axioms that are later
introduced to the ontology.

This focus on the stability of asserted axioms and their entailments is further sup-
ported by analysing the entailment presence and whether this presence was consecu-
tively observed or interrupted between versions. This analysis is conducted with the
methods detailed in the previous chapter, namely, Frequency Distribution analysis. It
is from this foundation that we can later detect domain modelling bugs for the axioms
that deviate from standard editing actions and their entailment presence.

4.1.1 Assert Axioms Time Series Analysis

The lifetime profile of the NCIt begins with a look at the evolution of the ontology as
recorded in each version for the asserted logical axioms. The results from this Time
Series analysis show that the growth of the NCIt ontology from September 2003 to
May 2013 can be characterised by an upward linear trend, where the ontology grows
at a rate of 1.01% per version with a mean difference of 798 added axioms in each
new subsequent version. In the Table 4.1, we show that three major periods of growth
were identified in the NCIt evolution. These observations are: (1) from versions O4 to
O5 with 9.65% growth, (2) from versions O5 to O6 with 23.45% growth, and (3) from
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versions O9 to O10 with 9.83% growth 1. The table also shows two decline periods
where a larger than average number of axioms were removed from the ontology. These
periods correspond to a major decline from versions (4) O16 to O17 with a 28.50%
decline, and a minor decline from versions (5) O26 to O27 with a decline of 1.15%.

When analysing the results from the Time Series analysis as a linear graph, Fig-
ures 4.1 and 4.2, we see that between September 2003 (with version O1 being the first
OWL version released for the NCIt and the first version in our corpus) and March 2006
(version O27) there is an active period of change in terms of additions and removals of
asserted axioms. In these ‘formative years’ of the NCIt ontology, the asserted content
fluctuates greatly from the mean content editing patterns observed in later years. Dur-
ing this period the mean growth rate is of 2.13% with an observed difference of 1125
added axioms per version.

From these results and the identification of the ontology ’s ‘formative’ period, we
can apply historical context to individual asserted axioms that seem to deviate from the
expected entailment pattern. In addition, we can expect that any interruptions to the
asserted axioms ’ entailment presence is more likely to take place during this period of
major rework in the ontology.

Table 4.1: Time Series Analysis for NCIt from Sep 2003 to May 2013

Observation Num. Versions Oi Change Rate
1 O4 to O5 9.65%
2 O5 to O6 23.45%
3 O9 to O10 9.83%
4 O16 to O17 -28.50%
5 O26 to O27 -1.15%

1For a mapping between the version names used in this thesis and the NCIt file names, refer to
Appendix A
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Figure 4.1: Asserted Axioms Count - Time Series (x-axis: NCIt version, y-axis: num-
ber of axioms).

Figure 4.2: Mean Change Rates (x-axis: NCIt version, y-axis: mean change rate).

4.1.2 Asserted Axioms Frequency Distribution Analysis

Frequency Distribution analysis looks at the frequency, or count, of the number of
versions each asserted axiom is present in. This measurement indicates the presence
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consistency, or stability, of each asserted axiom in the ontology. To further explore the
nature of this consistency, we also look at the type of presence for each axiom in the
ontology. That is, whether the axiom is present in consecutive versions or whether it
enters and leaves the ontology to later re-enter in a different version. As seen in Chapter
3, interrupted entailment presence may indicate content regression or refactoring, both
of which are anomalies in the editing cycle of axioms. As such, the identification
of these asserted axioms is an important step in the experimental plan for detecting
domain modelling bugs, and the first step in the detailed study of the entailment profile
for these axioms.

The results of the Frequency Distribution analysis revealed that the highest num-
ber of versions ’ frequency is 11, with 20,619 asserted axioms present in 11 versions
of the NCIt. When looking at the nature of this presence, the analysis revealed that
20,613 axioms are present in consecutive versions, with 6 asserted axioms appearing
in 11 non-consecutive versions. With help from the results of the Time Series analysis,
we can place this observation in the context of the ontology ’s lifetime profile. From
a lifetime perspective, we found the distribution of these axioms is primarily concen-
trated between versions O6 to O16 with 19,384 asserted axioms, between versions O1

to O56 with 607 asserted axioms, and between versions O102 to O112 with 488 asserted
axioms. This observation aligns with our previous assessment about the ‘formative’
period of the NCIt. The majority of asserted axioms with frequency 11 are present in
this period, which indicates fluctuating content between the years 2003 and 2006.



CHAPTER 4. VERSION ANALYSIS FOR FAULT DETECTION 51

Figure 4.3: Distribution of asserted axioms based on the number of versions they are
present in (x-axis: frequency, y-axis: number of asserted axioms).

The next two highest frequencies are 5 and 3 with 13,840 and 13,486 asserted
axioms respectively. For frequency 5, 13,840 asserted axioms appear in consecutive
versions. The concentration of these consecutive appearances is highest from versions
O1 to O5 with 9,567 asserted axioms, and from O12 to O16 with 2,422 asserted ax-
ioms. For the next highest frequency of 3, we found that 13,485 axioms are found in
consecutive versions with the highest concentration distributed between versions O1

to O11 with a total of 9,595 asserted axioms. Only one axiom for each one of these
frequencies has interrupted presence in the NCIt.

Table 4.2: Axioms Count for Frequency Distribution Trends

Frequency Total Asserted Axioms Consecutive Non-Consecutive
11 20,619 20,613 6
5 13,840 13,839 1
3 13,486 13,485 1

96 12,653 12,632 21
1 10,815 - -
2 10,676 10,670 6

88 10,645 10,639 6
8 9,847 9,844 3
7 9,028 9,020 8

112 8,922 8,922 -

As seen in Table 4.2, there is a large number of asserted axioms that appear only
once in the NCIt corpus. These short lived asserted axioms amount to 10,815 total
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axioms that occur in 101 versions out of the 112 studied versions of the NCIt. These
logical axioms with single presence indicate that they were possibly wrongly added to
the ontology and this error was immediately rectified in the next version. Although
these deletions can be seen as a standard editing action, it is important to analyse the
effectiveness of the deletions. An effectual deletion is more likely to indicate a delib-
erate action by the developers to explicitly remove content from the ontology. If the
entailment persists even after the deletion, the deletion was ineffectual, then this in-
effectiveness goes against the desire to remove the knowledge from the ontology, and
against the ontology ’s expected logical service. From the ontology ’s lifetime perspec-
tive, Figure 4.4 shows that axioms with single presence in the corpus mainly occur
from versions O1 to O34 which maps against the 5 periods of major fluctuation identi-
fied in Table 4.1. This is further confirmation that the NCIt evolution between Septem-
ber 2003 to March 2006 points to an active changing period where many changes to
the content do not remain in the ontology as the ontology matures.

Figure 4.4: Asserted Axioms with Single Presence (x-axis: NCIt version, y-axis: total
number of axioms per version).

In contrast to the lowest frequency of 1, we notice that in the top ten frequencies
there are three high frequency distributions observed in the NCIt corpus. These fre-
quencies correspond to: (1) frequency 96 with 12,653 asserted axioms, (2) frequency
88 with 10,645 asserted axioms, and (3) frequency 112 with 8,922 asserted axioms.
The analysis of these findings against the NCIt lifetime shows that generally the first
presence for these axioms occurs between versions O1 and O25. These high frequencies
indicate that out of the total number of 282,152 asserted axioms in the NCIt corpus,
32,220 asserted axioms, or 11.42% of the total number of asserted axioms analysed,
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stay in more than 88 versions with approximately 99% of these axioms having consecu-
tive presence. Furthermore, 8,922 asserted axioms, or 3.16% of the analysed ontology,
entered the ontology in O1 and have never being modified or deleted. Whether this
represents a ‘core’ set of knowledge, or whether these asserted axioms are ‘dead code’
that has been deliberately abandoned or simply forgotten, cannot be confirmed from
the statistical analysis alone. Content and domain analysis, with the collaboration of
the National Cancer Institute, is necessary to establish the nature of these axioms.

The remaining frequencies of 2 with 10,676 asserted axioms, 8 with 9,847 asserted
axioms, and 7 with 9,028 asserted axioms are evenly scattered through the NCIt. This
is especially the case for frequency 2 where axioms appear for two version only from
the first version until the last analysed version. Similarly for frequency 8, we find an
even distribution of these asserted axioms across the corpus until version O103. For
frequency 7, a high concentration of these asserted axioms is observed in the first 10
versions of the corpus.

The information this analysis provides, regarding the nature of the asserted axioms
presence through out the NCIt, allows us to identify those axioms with non-consecutive
presence in the NCIt versions. From this analysis, we identify a set of 52 asserted ax-
ioms (see Table 4.2) that need further analysis of the entailment presence from an
inference record point of view. We can speculate that in addition to the pathologi-
cal editing actions these asserted axioms have, their logical consequences may also
indicate anomalies in their entailment presence. To confirm this claim, we study the
effectuality of the editing actions, and classify any undesired logical behaviour as do-
main modelling bugs based on the definitions presented in Chapter 3.

It is also of interest to this thesis to further analyse the 10,815 asserted axioms
that are present in the ontology for only one version. As previously discussed, the
effectuality of the deletions for these asserted axioms will point to whether there are
desired or undesired logical consequences from the deletions.

4.2 Fault Detection for Domain Modelling Bugs

4.2.1 Defining Domain Modelling Bugs Sequences

When analysing the editing actions of asserted axioms in a versioned ontology, it is
important to look at the action, the effectuality of the action, and whether this action
is part of a larger set of editing actions. This provides a clear editing profile for each
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asserted axiom from which we can further analyse the logical consequences of these
actions. Asserted axioms that deviate from what is considered standard editing se-
quence and behaviour in a versioned ontology, must be identified and studied for the
possibility of logical faults being introduced to the ontology. Ineffectual editing ac-
tions can result in the introduction of undesired or wrong entailments in later versions
of the ontology. Unlike other logical faults in OWL ontologies, wrong entailments
indicate a failure to adhere to the expectation of the desired logical service, see Chap-
ter 2. These logical faults indicate human error with regards to the understanding of
the domain and the logical consequences of the asserted knowledge in the ontology.
Presently, automatic detection of such errors is extremely difficult due to the lack of
quantification techniques that can be applied to test the intentions and consequences
of developers actions. When looking at editing actions in a vacuum, separate from the
lifetime profile of the ontology, there is simply no data that can help judge whether a
set of editing actions and the consequences of these actions comply with the expected
service the ontology must provide. It is with the inclusion of the historical record of the
ontology assertions and entailments, that we can begin to suggest or indicate whether a
particular editing action has the desired effect to the content and logical consequences
of the ontology.

So far we have focused on the lifetime profile of the ontology, the frequency and
type of presence of the asserted axioms. We have also identified asserted axioms that
have non-consecutive presence, which may indicate the introduction of domain mod-
elling bugs to the ontology. We now shift from this ontology ‘as-a-whole’ perspective
to an individual axiom perspective, with the aim of producing an entailment lifetime
profile for each of the 52 asserted axioms identified in the previous section. In order to
produce the entailment profiles, we not only need to look at the frequency of presence
and the effectuality of the editing actions, but also at the combinations, or sequences,
of these actions. This is important because we are looking at the combined historical
record of editing actions for asserted axioms. This historical view of previous editing
events can provide information about the desirability of the action, and suggest why
a future editing action took place in a later version. For instance, the addition of an
asserted axiom to the ontology in version Oi may be after the removal of this axiom in
a previous version. With this information, we can see that this addition may indicate
content regression, or it may be an attempt to ‘fix’ the erroneous deletion. The addition
is no longer a simple addition to the ontology, it now has historical editing context that
indicates the introduction or the attempt to fix a logical fault in the ontology. With this
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in mind, it is important to establish precise definitions for anomalies in editing actions
sequences and the entailment fluctuations we are trying to isolate.

Definition 4.1. Let Oi,O j,Ok,Ol, be versions of an ontology O where i< j < k < l. An
axiom α has a fault indicating set of changes in O for versions Oi,O j,Ok,Ol , denoted
as FiSoC((i, j),(k, l)), if α ∈ FiSoC((i, j),(k, l)) := EffAdd(Oi,O j)∩EffRem(Ok,Ol)

This sequence of changes indicates an explicit removal of content from the ontol-
ogy. That is, the asserted axiom α was effectually added to the ontology in version
O j and removed effectually from the ontology in version Ol . Although this editing
behaviour can be expected in a maintained ontology, we stress that it is important to
document this change as it may indicate the introduction of a domain logical bug. If
the axiom α in a series of versions of ontology O has a FiSoC sequence of editing
actions, either the entailment O j |= α, or the non-entailment Ol 6|= α is a domain mod-
elling bug because it indicates a change in the asserted knowledge of the ontology. It
is very important to note that the identification of the domain modelling bug for α does
not determine which of these two actions (either the addition or the deletion) intro-
duces the domain modelling bug. Instead the fault indicating sequence tells us that one

of the changes introduces a change to the domain. If any subsequent findings of the
same type are found for α in future versions, say for versions Om,On,Oo,Op, in O and
α ∈ FiSoC((m,n),(o, p)), then this set of FiSoCs with its newly introduced effectual
addition in On is evidence of a content regression (refer to Definition 3.5).

The case when a sequence of changes includes an ineffectual removal,
α ∈ Ine f f Rem(Oi,O j), we suggest this editing action should also be identified as a
possible problematic modelling action. Although the logical functionality of the on-
tology does not change by an ineffectual removal, such a sequence of changes (e.g ef-
fectual addition, ineffectual removal) is indicative of refactoring (see Definition 3.6).
Of course, if the effectual addition is a domain modelling bug (this addition was not
intended to take place), then the ineffectual removal from Oi to O j would be a failed
attempt to remove the bug. When examining the possible sequences of changes for
ineffectual additions and removals, we can conclude that an iterated pattern of inef-
fectual changes is problematic, and must be flagged for attention. Specifically, even
when a set of changes of the type α ∈ EffAdd(Oi,O j)∩ IneffRem(Ok,Ol) is identi-
fied as refactoring, a subsequent ineffectual addition in later versions of the ontology,
α ∈ IneffAdd(Om,On) where m < n, would indicate a sort of content thrashing. Mean-
ing, if the original refactoring was correct, then ‘refactoring back’ is a mistake (and if
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the ‘refactoring back’ is correct, then the original refactoring is a mistake).
Based on this insight, we propose the following formal definitions for a sequence

of changes that include ineffectual editing actions.

Definition 4.2. Let Oi,O j,Ok,Ol, be versions of an ontology O where i < j < k < l.
An axiom α has a fault suggesting set of changes in O for versions Oi,O j,Ok,Ol ,
denoted as FSSoC((i, j),(k, l)), if α has sequence of changes such that:

• α ∈ F1SSoC((i, j),(k, l)) := EffAdd(Oi,O j)∩ IneffRem(Ok,Ol)

• α ∈ F2SSoC((i, j),(k, l)) := IneffAdd(Oi,O j)∩ IneffRem(Ok,Ol)

• α ∈ F3SSoC((i, j),(k, l)) := IneffRem(Oi,O j)∩ IneffAdd(Ok,Ol)

When considering the historical record of the editing actions for the asserted axiom
α, we can see that these sequences of changes may appear as a combinations of FSSoC

and FiSoC sets. For instance, consider the case where an ontology O with versions
Oi,O j,Ok,Ol,Om,On, and an asserted axiom α with the following sequence of changes
α ∈ EffAdd(Oi,O j)∩ IneffRem(Ok,Ol)∩ IneffAdd(Om,On)∩EffRem(Oo,Op). From
what follows, we can say that α has an indicative fault in the sequence EffAdd(Oi,O j),
EffRem(Oo,Op) and two suggestive faults in the sequence, EffAdd(Oi,O j), IneffRem(Ok,Ol)

and IneffRem(Ok,Ol), IneffAdd(Om,On), where the latter two are subsumed by the
former. For this reason it is imperative to study the sequence ’s combinations and ar-
ticulate the effects to the content of the ontology and the impact to the expected logical
service.

The analysis of axiomatic editing actions and sequences of these actions, the effec-
tuality of these actions, and context from the entailment presence analysis are key for
fault detection techniques in ontologies. This is not only because these retrospective
analyses aid the understanding of evolution of the NCIt, but because these analyses
and entailment profiles reports allow us to notify and warn the user of possible faulty
axioms in the ontology that deviate from the expected logical service in current and fu-
ture versions. We have demonstrated that this can be completely achieved by applying
this thesis ’s methods and definitions to the ontology ’s versions alone, without requir-
ing documentation about requirements, developers intentions, and any other sources
outside the ontology files.

In the next session, we present the results of the analyses conducted in the NCIt
corpus and evaluate these results to provide a concise report of the logical faults that
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have been introduced to the NCIt during its lifetime. These diachronic results support
the entailment profiles for the 52 asserted axioms with interrupted entailment presence
and indicative of domain modelling bugs through out their presence in the NCIt. It is
important to note at this point, that although we take into account minor corrections
and additions to the ontology, we assume that any major fluctuations in the ontology ’s
content and erratic editing actions to the asserted knowledge (outside the ontology ’s
formative period) may indicate that the ontology is in a pathological state. If this is the
case, it is difficult to speculate on the expected service and function of the ontology
from version analysis alone. As seen in the NCIt ’s lifetime analysis report, this is not
the case for the NCIt ontology. The NCIt ontology is a ‘mature’ ontology that has
shown a steady evolution for the last 7 years of the analysed corpus.

4.2.2 Domain Modelling Bugs Report for the NCIt Ontology

In the Experimental Plan detailed in Section 3.3, we set up to test fault detection of
domain modelling bugs based on the following driving experiments/analyses:

• NCIt ’s Lifetime Profile report from 2003 to 2013 (Section 4.1.1)

• Frequency Distribution Analysis for the NCIt ’s asserted axioms (Section 4.1.2)

• Evaluation of the effectiveness of the editing actions observed for the NCIt ’s
asserted axioms with interrupted entailment presence (Section 4.2.1)

From these analyses, we have identified 52 asserted axioms with interrupted entail-
ment presence in the top ten frequency distribution results that need further inspection
to isolate and categorise the domain modelling bugs introduced to the NCIt by these
axioms. In this last set of results, we present this further effectuality and sequence
of change analysis, domain modelling bugs classification, and entailment profiles for
these 52 troublesome asserted axioms.

We found that 21 out of the 52 asserted axioms have logical bugs of type FiSoC.
Ten of these identified FiSoC domain modelling bugs appear in a sequence of two
FiSoC sets; that is, FiSoC((i, j),(k, l))∩FiSoC((m,n),(o, p)) where Oi,O j,Ok,Ol,Om,

On,Oo,Op are versions of the ontology O and i < j < k < l < m < n < o < p. When
analysing the justifications for these 10 axioms (see Section 2.2.1 for the definition
of justifications), we found that the entailments for 7 axioms are a direct result of
their assertion in the ontology and not through any other distinct asserted axioms ’
logical consequences in that version. The three remaining axioms of type FiSoC have
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justifications that include the axiom assertions and other distinct asserted axioms that
result in their entailment. For the remaining 11 asserted axioms out of the 21 axioms
of type FiSoC, there are 6 axioms that have a single FiSoC sequence followed by an
effectual addition where the added effectual assertion holds until version O112. The
remaining 5 axioms contain two FiSoC sequences followed by an effectual addition
with the assertion holding until version O112.

The sequence of change combinations observed for these FiSoC sets, namely, a
FiSoC set followed by another FiSoC set and/or by additional effectual additions, is
consistent with the definition for content regressions (see Definition 3.5) due to the
presence of one or more effectual additions following the effectual removals. Table
4.3 defines formally the sequences of FiSoC sets that correspond to content regression
domain modelling bugs.

Table 4.3: FiSoC sequence types indicating content regression:

Type Structure
1 FiSoC((Oi,O j),(Ok,Ol))∩FiSoC((Om,On),(Oo,Op)
2 FiSoC((Oi,O j),(Ok,Ol))∩FiSoC((Om,On),(Oo,Op))∩EffAdd(Or,Os)
3 FiSoC((Oi,O j),(Ok,Ol))∩EffAdd(Om,On)

The presence of FiSoC sequences were also found in sequences that either sub-
sumes, or are in combination with other domain modelling bugs. For instance, axiom
Phytotherapy or Herbalismv Complementary and Alternative Medical Therapy

with axiom id α165492, has a sequence of FiSoC (that is, EffAdd(O23,O24)∩
EffRem(O29,O30)), followed by a sequence of the type F2SSoC (sequence,
IneffAdd(O36,O37)∩ IneffRem(O37,O38)). Although this sequence does not indicate
content regression (due to the absence of an effectual removal in the last set of changes),
it does, however, indicate content redundancy introduced in version O37 with the inef-
fectual addition and the ineffectual deletion from O37 to O38. As seen in this example,
editing changes sequences can occur in much more complicated sets than previously
thought, indicating very peculiar editing patterns for axioms identified as domain mod-
elling bugs.

In the case where FiSoC subsumes other logical bugs, we find that 5 axioms with
a FiSoC sequence subsuming a F1SSoC followed by a F3SSoC sequence. These five
axioms (recorded in the corpus as α103206,α105069,α6858,α7229,andα22465) follow the
form of α∈EffAdd(Oi,O j)∩IneffRem(Ok,Ol)∩IneffAdd(Om,On)∩EffRem(Oo,Op),
where α represents each of the 5 identified axioms in O, Oi,O j,Ok,Ol,Om,Oo,Op are
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versions in O, and i < j < k < l < m < n < o < p. The analysis of the justifications
for these five axioms show that for each of these axioms the entailments are a result
of the assertion and the logical consequence of other distinct axioms in those versions.
This resulting entailment profile indicates that the developer may not be aware of the
consistent entailment (outside the entailment from the assertions) of these five axioms.
The suggestiveness of this observation is strongly supported by the evidence of an in-
effectual removal in version Ol , and content redundancy via the ineffectual addition in
On. It could be argued that these axioms are finally ‘fixed’ with the effectual removal
in version Op where the assertion and the justifications for the entailment are removed.

In terms of categorising this newly discovered combination of FiSoC sequence
of changes, we find this sequence is consistent with the definition for content redun-
dancy. This sequence together with the previous three sequences identified in the Table
4.3, show that content redundancy and regression can be introduced to an ontology in
different versions. This again shows the importance of tracking editing actions in a
versioned ontology in order to identify potential domain modelling bugs present in the
current version of the ontology.

Table 4.4: FiSoC sequence types indicating content redundancy:

Type Structure
4 FiSoC((Oi,O j),(Os,Ot))< (F1SSoC((Ok,Ol),(Om,On))∩F3SSoC((Oo,Op),(Oq,Or)))

The next group of logical bugs found in the analysis focuses on unions and sub-
sumptions sequences involving F1SSoC fault. In the first set of results for F1SSoC,
there are 3 axioms of the form EffAdd(Oi,O j)∩IneffRem(Ok,Ol)∩IneffAdd(Om,On),
that is, a F1SSoC sequence followed by a F3SSoC sequence. Axioms identified in the
corpus as α3241,α12085,α42533 enter the ontology as effectual additions and are fol-
lowed by an ineffectual removal and addition. The entailment profile for these axioms
show the entailments are a result of the assertions and the logical consequences of
other distinct axioms. Like in FiSoC sequence Type 4 in Table 4.4, the sequence of
changes indicate a lack of awareness of the asserted axioms ’s entailments in the ontol-
ogy through out all of the versions it is present in. The first F1SSoC sequence indicates
content refactoring where the asserted axiom is modified yet the entailment is kept as
a consequence of the ontology. The last ineffectual addition indicates content redun-
dancy since the axiom is added as an element of the ontology when it is in fact already
entailed by the ontology.
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Another combination of domain modelling bugs found in the study is exempli-
fied by the axiom with id α105423. This axiom presents a F1SSoC Type 1 sequence
followed by an additional ineffectual removal, formally α105423 ∈ (EffAdd(O6,O7)∩
IneffRem(O16,O17)∩ IneffAdd(O23,O24)∩ IneffRem(O109,O110)). This axiom ’s pat-
tern of editing actions show a F1SSoC bug, followed by a F3SSoC sequence, and end-
ing with a F2SSoC bug sequence. This structure indicates that content refactoring was
introduced in version O16, content redundancy in version O24, and finally followed by
another refactoring event in version O109. The entailment profile for α105423 shows the
assertions take place in versions O7..16 and in versions O24..109. There are additional
inferences for this axiom, not resulting from the assertions, from the versions O7..15,
O17..57, and O60..109. The axiom is not entailed by the ontology for two versions, O58

and O59, and from version O109. This shows the justifications for the axiom are re-
moved in these versions. Based on the ineffectual removal and addition in versions
O17 and O24 respectively, it is reasonable to suggest that the developer is not aware
of the entailment of the axiom by the ontology, and of it’s removal from versions 58
to 59. In addition, this editing pattern and the entailment profile also indicate that the
developer may not be aware that final removal is an indirect result of the removal of
its justifications and not of the developer ’s direct action to remove the axiom. The
domain modelling bug sequences that indicate content refactoring and redundancy can
be found in Table 4.5

Table 4.5: F1SSoC sequence types indicating content refactoring and redundancy:

Type Structure
1 F1SSoC((Oi,O j),(Ok,Ol))∩F3SSoC((Om,On),(Oo,Op))
2 F1SSoC((Oi,O j),(Ok,Ol))∩F3SSoC((Om,On),(Oo,Op))∩F2SSoC((Oq,Or),(Os,Ot))

The next set of results indicate refactoring and thrashing of axioms. We found that
9 axioms, represented in the corpus with axiom ids: α106537,α106569,α106878,α107407,
α107860,α107952,α108468,α111380,α114549, have F1SSoC sequence of changes followed
by a sequence of type F2SSoC. The sequences of changes for all 9 axioms have these
editing actions involved in these versions: EffAdd(O8,O9) ∩ IneffRem(O16,O17) ∩
IneffAdd(O24,O25). This set of actions shows that content refactoring takes place in
version O16, where a failed attempt to remove the assertion occurs. There is also pres-
ence of content thrashing, or refactoring-back, taking place with the ineffectual addi-
tion for version O25. The entailment profiles for these axioms indicate the assertions
from versions O9 consecutively to version O16, and from versions O25 consecutively
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to the last version in the corpus O112. The justifications for these 9 axioms show infer-
ences via assertions and logical consequences of ontology for versions O9..15, O17..57,
and O60..112.

A final sequence of faults for the domain modelling bug of type F1SSoC involves a
F1SSoC sequence subsuming another F1SSoC sequence, followed by a F3SSoC and by
F2SSoC sequences. We found 3 axioms, identified as α127241, α9761, α157661, showing
this type of editing pattern. The editing structure corresponds to α ∈ EffAdd(Oi,O j)

∩ IneffRem(Ok,Ol)∩ IneffAdd(Om,On)∩ IneffRem(Oo,Op) where axiom refactoring,
or a possible failed attempt of deletion, takes place in Ok. We also find content thrash-
ing and redundancy for version On, and a final refactoring for version Oo. The entail-
ment profiles show that α127241, α127241 are elements of the ontology for versions O16

and O21. These axioms are logical results of the ontology for versions O17..112. In the
case of the axiom α9761, there are fluctuating inferences, which indicate that the jus-
tifications for α9761 are removed and reintroduced through out the lifetime of axiom.
Finally, the entailment profile for axiom α157661 shows that the assertions and logical
consequences correspond from versions O20 to O23, and in version O45.

Table 4.6: F1SSoC sequence types indicating content refactoring and thrashing:

Type Structure
3 F1SSoC((Oi,O j),(Ok,Ol))∩F2SSoC((Om,On),(Oo,Op))
4 F1SSoC((Oi,O j),(Ok,Ol))< (F1SSoC((Om,On),(Oo,Op))∩F3SSoC((Oq,Or),(Os,Ot))
∩F2SSoC((Ou,Ov),(Ow,Ox)))

For the logical type F2SSoC, we found a single editing sequence pattern where
F2SSoC subsumes a F3SSoC fault. This fault sequence is found for the axiom
Melanocytic Nevus v Melanocytic Neoplasm with axiom id α110594. The edit-
ing pattern for this axiom shows α110594 ∈ IneffAdd(O9,O10)∩ IneffRem(O18,O19)∩
IneffAdd(O30,O31)∩ IneffRem(O30,O31). All of the observed editing actions for this
axiom are ineffectual in their nature (there are other axioms in the ontology that have
α110594 as their logical consequence). Any attempt for explicit addition to the ontology
is redundant and shows a lack of awareness of the inference of this axiom by the ontol-
ogy. Specifically, we find that α110594 is an element from versions O10..19 and versions
O31. This axiom is a logical consequence of the ontology for versions O10..19, O31..57,
and versions O60..112.

As seen in these results, the sequence of editing actions in the NCIt for axioms with
interrupted entailment presence is far more complex than previously predicted. This
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Table 4.7: F2SSoC sequence types indicating content redundancy:

Type Structure
1 F2SSoC((Oi,O j),(Ok,Ol))< F3SSoC((Om,On),(Oo,Op))

observation is strongly correlated with a lack of awareness, on the developers part, of
the logical consequences of the ontology and the previous editing actions on these ax-
ioms. The introduction of repeated content regressions, redundancies, and refactoring
shows that there is wasted effort and lack of understanding of the asserted content.
Although there are possible scenarios where the developer may need to introduce as-
sertions even when the inference for that assertion is already present in the ontology
(e.g. for publishing the classification hierarchy), the repeated additions and deletions
without significant change to the content shows a problematic and faulty editing be-
haviour.

A further analysis of the results is presented in the last section of this chapter. The
following Tables 4.8, 4.9, 4.10, 4.11, and 4.12 help summarise the results presented
here. This consolidated view constitutes the entailment profile report for all 52 anal-
ysed asserted axioms.

Table 4.8: FiSoC Faults with Content Regression - Entailment Profiles
FiSoC Type αid Oid for Axiom Assertions (α ∈ O) Oid for Axiom Inferences (O |= α and α 6∈ O)

1

57506 4, 7 to 16 4, 7 to 16
58364 4, 7 to 16 4, 7 to 16
120551 12, 16 12, 16
172613 25, 62 25, 62
172917 25, 62 25, 62
67505 5, 10 to 16 5, 10 to 16
48564 1 to 5, 15 to 16 1 to 5, 15 to 16
210295 40 to 46, 51 to 54 40 to 46, 51 to 54
50858 2, 18 2, 18
73441 6 to 11, 79 6 to 11, 79

2 30433 1 to 11, 14 to 47, 89 to 112 1 to 15, 17 to 57, 60 to 74, 89 to 112

3

39267 1, 18 to 112 1, 18 to 112
68617 5, 18 to 112 5, 18 to 57, 60 to 112
118516 12 to 73, 79 to 112 12 to 15, 17 to 73, 79 to 112
119326 12 to 73, 79 to 112 12 to 15, 17 to 73, 79 to 112
121919 13 to 46, 51 to 112 13 to 15, 17 to 46, 51 to 112
122832 13 to 46, 51 to 112 13 to 15, 17 to 46, 51 to 112
8905 1 to 5, 30 to 112 1 to 5, 30 to 112

125718 15 to 18, 29 to 112 15 to 18, 29 to 112
125895 15 to 18, 29 to 112 15 to 18, 29 to 112
162304 23 to 33, 36 to 112 23 to 33, 36 to 112
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Table 4.9: FiSoC Faults with Content Redundancy - Entailment Profiles
FiSoC Type αid Oid for Axiom Assertions (α ∈ O) Oid for Axiom Inferences (O |= α and α 6∈ O)

4

103206 7 to 16, 25 7 to 15, 17 to 25
105069 7 to 16, 25 17 to 25
6858 1 to 16, 23 to 112 1 to 15, 17 to 102
7229 1 to 16, 23 to 112 1 to 15, 17 to 102

22465 1, 45 to 51 1, 45 to 51

Table 4.10: F1SSoC Faults with Content Refactoring and Redundancy - Entailment
Profiles
F1SSoC Type αid Oid for Axiom Assertions (α ∈ O) Oid for Axiom Inferences (O |= α and α 6∈ O)

1
3241 1 to 6, 23 to 112 1 to 6, 23 to 113
12085 1 to 16, 33 to 112 1 to 15, 17 to 112
42533 1 to 16, 24 to 95 1 to 15, 17 to 57, 60 to 95

2 105423 7 to 16, 24 to 109 7 to 15, 17 to 57, 60 to 109

Table 4.11: F1SSoC Faults with Content Refactoring and Thrashing - Entailment Pro-
files
FiSoC Type αid Oid for Axiom Assertions (α ∈ O) Oid for Axiom Inferences (O |= α and α 6∈ O)

3

106537 9 to 16, 25 to 112 9 to 15, 17 to 57, 60 to 112
106569 9 to 16, 25 to 112 9 to 15, 17 to 57, 60 to 112
106878 9 to 16, 25 to 112 9 to 15, 17 to 57, 60 to 112
107407 9 to 16, 25 to 112 9 to 15, 17 to 57, 60 to 112
107860 9 to 16, 25 to 112 9 to 15, 17 to 57, 60 to 112
107952 9 to 16, 25 to 112 9 to 15, 17 to 57, 60 to 112
108468 9 to 16, 25 to 112 9 to 15, 17 to 57, 60 to 112
111380 9 to 16, 25 to 112 9 to 15, 17 to 57, 60 to 112
114549 9 to 16, 25 to 112 9 to 15, 17 to 57, 60 to 112

4
127241 16, 21 17 to 112
9761 1 to 16, 24 to 95 1 to 15, 17 to 57, 60 to 95

157661 20 to 23, 45 20 to 23, 45

Table 4.12: F2SSoC Faults with Content Redundancy - Entailment Profiles
FiSoC Type αid Oid for Axiom Assertions (α ∈ O) Oid for Axiom Inferences (O |= α and α 6∈ O)

1 110594 10 to 19, 31 10 to 19, 31 to 57, 60 to 112

4.2.2.1 Missing Records in the Entailment Profiles Analysis

The results presented above exclude the following axioms with ids: α159025, α99659,
α153578, α7384, α23034, α44436, α59751, α158782, where missing entailment history was
found in the database tables. The extraction of the entailment records for these axioms
does not map with the observed effectual and ineffectual editing actions. For instance,
for the axiom α44436 with a sequence of changes of EffAdd(O0,O1)∩IneffRem(O6,O7)∩
IneffAdd(O15,O16)∩EffRem(O16,O17), we find its entailment profile show the asser-
tions for versions O1..6 and version O16 correctly. However, the entailment profile
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only shows the inference for versions O1..5 and not for versions O6..16. The inference
record in these versions was expected because the database tables containing the edit-
ing history (see Schema Representation Figure 3.1) show ineffectual changes for these
versions.

These missing inferences are most likely a consequence of an error in the version of
the OWL API ([68]) used to compute the inferences of axioms prior to the extraction
to the database. We ran the experiment multiple times and every time this problem
was present for these axioms. Testing and tracking debugging tools used against this
thesis ’ JAVA program, and the testing of the execution of the SQL queries gives us
confidence that the error originates at the OWL API level and it is outside the methods
applied in the experiment.

The entailment profiles produced in this thesis rely entirely on the extraction meth-
ods and database representation of these extractions described in Section 3.3.1, and
previously applied in the work by ([16, 19]). Each asserted axiom profile is assembled
by joining together, via SQL queries, the ontology versions for the assertions and in-
ferences present in the ontology versions ’ tables. A confirmation query is ran against
the entailment tables to verify the expected assertions and inferences. Although this
approach proves effective for the construction of entailment profiles, it relies heavily
on data extraction and SQL analysis. In Chapter 5, we provide a logic-based approach
for entailment profile extraction that uses the atomic decomposition of the entire NCIt
corpus (see ([43])). This updated method is a more robust approach for constructing
entailment profiles for axioms, since it allows the extraction of basic logic components,
or atoms, of modules for each axiom based on an axiom ’s signature and the relation-
ships of this atom with other atoms. This is a straight forward method that will not
require external data manipulation in the form of SQL queries for joining the axiom ’s
assertions and inferences.

4.2.2.2 Entailment Profile for Axioms with Single Presence Analysis

In Frequency Distribution analysis, we found that 10,815 asserted axioms are present
in the NCIt corpus only for one version. This introduction of content and immedi-
ate removal of content is an interesting observation in the NCIt. Although the precise
meaning and reason behind these introductions and removals can only be explained
by the NCI developers (since no further editing history can inform the service of this
content), we can comment on the logical impact and possible use of this briefly present
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asserted content. Further analysis of this set shows that 768 axioms were added in ver-
sion 112 and may continue to be in the ontology for future versions. For the remaining
10,047 axioms, we found these are all effectually removed from the ontology in the
next version.

The nature of this single presence is interesting from an diachronic perspective,
since these axioms could indicate a particular editing purpose that is not evident from
the effectuality analysis. It would be interesting to expand the information for these
axioms with context from the domain, log files, and any recorded documentation ex-
plaining the changes to the versions. We speculate that these axioms may serve as
‘scaffolding’, or supporting axioms, that help with the introduction of content to the
ontology, and, once this content is part of the ontology, the ‘scaffolding’ is removed
from the ontology.

4.3 Discussion

In this chapter we presented in detail the results for the identification of domain mod-
elling bugs in OWL ontologies based on version analysis. We have shown that by
analysing the evolution of the NCIt through Time Series analysis and by identifying ax-
ioms that have interrupted entailment presence in the ontology, we can identify axioms
that are problematic due to their shifting presence. We proposed indications and sug-
gestions of domain modelling bugs based on the sequence of editing changes and the
effectuality of these changes. We defined a core set of editing sequences that indicate
content regression for the domain modelling bug of the kind FiSoC, and its combina-
tions patterns (see Tables 4.3, and 4.4). We also defined the editing actions that suggest
domain modelling bugs for the types F1SSoC, F2SSoC, F3SSoC (see Tables 4.5, 4.6,
and 4.7), and how the presence of these editing patterns suggests content redundancy
and refactoring. Each one of these findings is further supported by the entailment
profiles constructed for each one of the analysed axioms by combining the records of
assertions and inferences. This thorough study of entailment history even allowed us
to identify errors in the extraction method for inferences where the extracted inference
misses entailments that are evident from the editing history. The work presented in
this chapter satisfies the experimental plan in Chapter 3, and provides strong evidence
that fault detection is possible through the study of the versions in an ontology. In
the next chapters, we discuss the implications of these findings for ontology evolution
and change management support, the main contributions of this thesis, and for future
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work, where we propose a logic based approach for the analysis and construction of
entailment profiles.



Chapter 5

Conclusion

The work presented in this thesis constitutes a body of evidence that shows that fault
detection for OWL ontologies can be expanded to include logical warnings on logical
bugs that deviate from the expected entailment behaviour. The set of expectations are
grounded in the detailed analysis and inclusion of ontology versions as part of the
body of information that should be used when identifying, debugging and repairing
ontologies. Ontology versions and the entailment history for its logical axioms indicate
the desirability of entailments, the effectiveness of changes, and the sustainability of
the edited content throughout the versions of the ontology. We have demonstrated a
robust understanding of the Ontology Life Cycle Phases and how, by requiring and
using documentation about version releases, design decisions, and building methods,
we can provide a wider range of data that is important when evaluating an ontology.

We presented a novel approach for defining domain modelling bugs based on the
axioms ’ frequency of presence in the ontology, the effectuality of changes, the edit-
ing patterns, and successfulness of these changes from the moment the axiom enters
the ontology until its last presence. This resulted in a comprehensive set of defini-
tions for indications and suggestions of domain modelling bugs, and a description of
the complexity found in the domain modelling bugs ’ sequences. From this investiga-
tion, we defined a new category of logical faults for content regression, redundancy,
and thrashing. These anomalies were confirmed by the analysed axioms ’ entailment
profiles, which indicate the assertions and inferences for each version the axioms are
present. All of these accomplishments have been tested on one of the most collabora-
tive and mature ontologies, the NCIt. The NCIt ontology has been subjected to studies
for content evaluation, evolution, maintenance, and quality assurance since its incep-
tion (see [67, 16, 60, 61, 7, 66, 64, 65]). Although these studies provide great insight
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behind the engineering effort of the NCIt, these fail to unite this knowledge in a prac-
tical approach that helps ontology modellers and developers with their day to day job.
It is in this area of Ontology Maintenance, where this research makes its major con-
tribution. We have argued and confirmed that in addition to external resources to the
ontology (such as documentation about the ontology ’s development, maintenance, and
quality assurance processes) we must include the ontologies ’ versions as part of fault
detection and quality assessment techniques. Ontologies are large complex systems
that need to be supported and repaired within the context of its evolutionary record.
Functional requirements, design patterns, expected services, desired entailments, and
core activity should be included in the range of methods for supporting Ontology Eval-
uation. Although this thesis is the beginning for such an integrated method for fault
detection techniques, we believe we have provided sufficient fact-based evidence of the
efficiency and necessity of such information within IDEs and debugging tools. Once
the ontology ’s change history and entailments profile is created, it can be reused with
every new version to position the changes within the historical context, and help specu-
late on the expected logical services the ontology must provide. Based on the methods
used in this thesis to calculate expected change and growth rate, we argue that the in-
tegration of change and entailment history should not need to be updated in every new
release. An ontology ’s maintenance process can include, as part of their release cycle,
an indication of when the entailment profiles and tracking of previous editing actions
must be updated (for instance, every six months depending on the ontology ’s lifetime
profile). This thesis ’s methods and techniques show that it is possible to quantify an
ontology ’s entailment expectations. We have shown that it is not only possible, but
essential to the day to day activities of content authoring and revision.

A logic-base approach for entailment analysis, integration with IDEs and other de-
bugging tools, and a full analysis of the NCIt ontology are the next steps and direction
of this research. Although the test area selected for this thesis is relatively small in
comparison to the size of the NCIt ontology, this thesis and the NCIt Case Study pro-
vide strong conceptual methods, and robust analysis techniques for fault detection and
warning alerts in OWL ontologies.



CHAPTER 5. CONCLUSION 69

5.1 Future Work

The work presented in this thesis provides the foundational underpinnings for the iden-
tification of domain modelling bugs that are directly linked to the expectations and de-
sirability of entailments. The research direction that this work must follow is around
the area of a logic-based approach for fault detection that can be embedded in exist-
ing ontology authoring tools. Although IDEs provide tools for authoring axioms, these
tools lack bug detection alerts for content redundancy, meaningless refactoring, or rein-
troduction of errors. These types of warnings can only be included if records about the
expected entailments, and the evolution of the ontology is made available as part of
the ontology ’s ‘compiling’ services. Collaboration with the authors and institutions
behind the most popular ontology IDEs is required in order to include the ontology ’s
lifetime report, and asserted axioms ’ entailment profiles as information for detecting
logical bugs. As seen in this thesis, the detection of domain modelling bugs can be
achieved by the methods proposed in this research and should be part of existing fault
detection services found in ontology IDEs.

The first step towards a more logic-based approach for this research is in the re-
moval of the dependency on Databases and SQL queries when building entailment
profiles. The entailment profiles in this thesis were constructed by analysing the pres-
ence of the axioms in the asserted and inferred axioms ’ tables. There are more sophis-
ticated methods for calculating the axioms involved in a particular entailment driven
by the use of axioms ’ signatures. This method, known as the Atomic Decomposition,
will allow us to build a logical grounded approach for entailment profiles for each iden-
tified axiom with an interrupted entailment presence. In the following algorithm we
proposed the use of Atomic Decomposition to create the entailment profile for each
axiom. This is achieved by examining the asserted axiom ’s entailment presence in
each of the versions in the corpus. This robust method will eliminate extraction errors
from the ontology to the database as we found in the this thesis. (Note: The algorithm
refers to the OWL ontology and its versions as the Union Ontology, denoted as Ounion)

Another area of research is in the formal inclusion and representation of functional
requirements of the ontology. For instance, we know from the NCIt ’s literature that
the classification hierarchy is a key requirement and service provided by the ontology.
From the analysis of the subsumption hierarchy and the evolution and maturity of
the hierarchy, we can define a minimal required hierarchy that must be present in all
versions of the ontology. Any axiom that disrupts this expected hierarchy, or set of
Expected Entailments (denoted as EE), can be highlighted by a warning message for
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Figure 5.1: Automation of Entailment Profile Creation Algorithm

that axiom. This warning system will ensure that the developer adheres to the required
classification hierarchy.

In addition to these future methods and tools, we need to provide more evidence of
the methods proposed in this thesis by conducting more in-depth studies in the NCIt
corpus to include all asserted axioms in all versions. We also see the need to extend this
analysis to other large collaborative ontologies such as the Gene Ontology (GO), and
to conduct breath-first studies on ontologies in repositories such as BioPortal1. The
results from these studies must be validated with collaboration from the ontologies ’
owners and authors to further confirm and improve the efficiency of detecting domain
modelling bugs.

Nevertheless, the contributions from this initial research show potential in the area
of Ontology Evaluation. We believe this work makes a strong case for the need of a
disciplined approach for documentation and ontology version management since we
have proven that these are of great value in fault detection. We have demonstrated that
this data does not need to be separated from the ontology building process; it must be
integrated and used to verify the logical functionality of the modelled knowledge and
prevent future errors when authoring the ontology.

1http://bioportal.bioontology.org

http://bioportal.bioontology.org
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[67] R. S. Gonçalves, B. Parsia, and U. Sattler, “Analysing multiple versions of an
ontology: A study of the NCI Thesaurus,” in 24th International Workshop on

Description Logics, p. 147, 2011.

[68] M. Horridge and S. Bechhofer, “The OWL API: A Java API for OWL ontolo-
gies,” Semantic Web, vol. 2, no. 1, pp. 11–21, 2011.



Appendix A

NCIt Files Mapping to NCIt Corpus

In this thesis we used the NCIt Ontology as the case study for evaluating domain
modelling bugs. The NCIt Case Study includes in its corpus 112 versions of OWL
files from version file name 02.00, published on September 2003, to version file name
13.05d, published on May 2013. The data is publicly available from the NCIt ’s web-
site1, which contains the latest releases of the NCIt Ontology.

The following tables show the mapping between the NCIt ’s public file names and
this thesis ’ ontology identifier names. The ontology identifier names are recorded in
the Ontology table part of the MySQL Database set up for the experiments executed in
this thesis (See Chapter 3). The results of the experiments conducted in this thesis will
be made available as part of The University of Manchester ’s OWL Research website2.

1ftp://ftp1.nci.nih.gov/pub/cacore/EVS/NCI_Thesaurus/archive/
2http://owl.cs.manchester.ac.uk/research/ncit/
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NCIt	Corpus	Ont_ID NCIt	Version	File	Name Year Month
1 2 2003 Sep
2 03.10J 2003 Oct
3 03.12A 2003 Dec
4 03.12E 2003 Dec
5 04.02H 2004 Feb
6 04.03N 2004 Mar
7 04.04J 2004 April
8 04.05F 2004 May
9 04.06i 2004 June
10 04.08B 2004 Aug
11 04.09A 2004 Sep
12 04.11A 2004 Nov
13 04.11C 2004 Nov
14 04.12G 2004 Dec
15 05.01D 2005 Jan
16 05.03D 2005 Mar
17 05.05d 2005 May
18 05.06f 2005 June
19 05.07d 2005 July
20 05.09e 2005 Sep
21 05.09g 2005 Sep
22 05.10e 2005 Oct
23 05.11f 2005 Nov
24 05.12f 2005 Dec
25 06.01c 2006 Jan
26 06.02d 2006 Feb
27 06.03d 2006 Mar
28 06.04d 2006 April
29 06.05d 2006 May
30 06.06e 2006 June
31 06.07d 2006 July
32 06.08d 2006 Aug
33 06.09d 2006 Sep
34 06.10d 2006 Oct
35 06.11d 2006 Nov
36 06.12d 2006 Dec
37 07.01d 2007 Jan
38 07.02c 2007 Feb
39 07.03d 2007 Mar
40 07.04e 2007 April
41 07.05e 2007 May
42 07.06d 2007 June
43 07.07c 2007 July
44 07.08d 2007 Aug
45 07.09d 2007 Sep
46 07.10d 2007 Oct
47 07.12a 2007 Dec
48 07.12e 2007 Dec
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NCIt	Corpus	Ont_ID NCIt	Version	File	Name Year Month
49 08.01d 2008 Jan
50 08.02d 2008 Feb
51 08.03d 2008 Mar
52 08.04d 2008 April
53 08.05d 2008 May
54 08.06d 2008 June
55 08.07d 2008 July
56 08.08d 2008 Aug
57 08.09d 2008 Sep
58 08.10e 2008 Oct
59 08.11d 2008 Nov
60 08.12d 2008 Dec
61 09.01d 2009 Jan
62 09.02d 2009 Feb
63 09.03d 2009 Mar
64 09.04d 2009 April
65 09.05d 2009 May
66 09.06e 2009 June
67 09.07e 2009 July
68 09.08e 2009 Aug
69 09.09c 2009 Sep
70 09.10d 2009 Oct
71 09.12d 2009 Dec
72 10.01d 2010 Jan
73 10.02d 2010 Feb
74 10.03h 2010 Mar
75 10.04f 2010 April
76 10.05d 2010 May
77 10.06e 2010 June
78 10.07d 2010 July
79 10.08e 2010 Aug
80 10.10a 2010 Oct
81 10.10d 2010 Oct
82 10.11e 2010 Nov
83 10.12c 2010 Dec
84 11.01e 2011 Jan
85 11.02d 2011 Feb
86 11.03d 2011 Mar
87 11.04d 2011 April
88 11.05e 2011 May
89 11.06d 2011 June
90 11.07d 2011 July
91 11.08e 2011 Aug
92 11.09d 2011 Sep
93 11.10e 2011 Oct
94 11.11d 2011 Nov
95 11.12e 2011 Dec
96 12.01f 2012 Jan
97 12.02d 2012 Feb
98 12.03d 2012 Mar
99 12.04e 2012 April

100 12.05d 2012 May
101 12.06d 2012 June
102 12.07d 2012 July
103 12.08d 2012 Aug
104 12.09d 2012 Sep
105 12.10e 2012 Oct
106 12.11d 2012 Nov
107 12.12d 2012 Dec
108 13.01c 2013 Jan
109 13.02d 2013 Feb
110 13.03d 2013 Mar
111 13.04e 2013 April
112 13.05d 2013 May
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