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Abstract

The University of Manchester, September 2015. Abstract of thesis submitted by

Jorge Guevara Escobedo for the Degree of Doctor of Philosophy (PhD) entitled

“Embedded wavelet image reconstruction in parallel computation hardware”.

In this thesis an algorithm is demonstrated for the reconstruction of hard-

field Tomography images through localized block areas, obtained in parallel

and from a multiresolution framework. Block areas are subsequently tiled to

put together the full size image. Given its properties to preserve its compact

support after being ramp filtered, the wavelet transform has received to date

much attention as a promising solution in radiation dose reduction in medical

imaging, through the reconstruction of essentially localised regions. In this work,

this characteristic is exploited with the aim of reducing the time and complexity

of the standard reconstruction algorithm. Independently reconstructing block

images with geometry allowing to cover completely the reconstructed frame as a

single output image, allows the individual blocks to be reconstructed in parallel,

and to experience its performance in a multiprocessor hardware reconfigurable

system (i.e. FPGA). Projection data from simulated Radon Transform (RT) was

obtained at 180 evenly spaced angles. In order to define every relevant block

area within the sinogram, forward RT was performed over template phantoms

representing block frames. Reconstruction was then performed in a domain

beyond the block frame limits, to allow calibration overlaps when fitting of

adjacent block images. The 256 by 256 Shepp-Logan phantom was used to test

the methodology of both parallel multiresolution and parallel block reconstruction

generalisations. It is shown that the reconstruction time of a single block image

in a 3-scale multiresolution framework, compared to the standard methodology,

performs around 48 times faster. By assuming a parallel implementation, it can

implied that the reconstruction time of a single tile, should be very close related

to the reconstruction time of the full size and resolution image.
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Chapter 1

Introduction

1.1 Tomography

Obtaining a visual representation of an object’s inner-structure is a common

problem in a wide range of scientific and industrial processes. The solution to

such a problem was the main motivation that led Tomography to emerge as

promising field of study. In the literature, Tomography imaging tends to refer to

the image formulation of an object, from either emitted or transmitted electro-

magnetic radiation data collected from a certain number of different

directions [1]. As every different direction is specified by an angle, a set of

collected energies within the same direction, constitute an angular projection.

The set of angular projections that map the object in the range between 0◦ to

180◦, is the Radon Transform (RT) of that object [2].

Figure 1.1: Angular Projections.
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In 1917, Johan Radon found the solution to the problem of how to reconstruct

an image from its angular projections [3]; Radon’s work later became the

mathematical foundation for Tomography. In 1964, Allan Cormack employed

Radon’s work in the development of an algorithm, that took into account the

difference between tissue densities, for the assembling of images [4]. A few years

later, Godfrey Hounsfield extended Radon’s work to an experimental

implementation; the first X-ray Computed Tomography (CT) scanner [5].

Hounsfield’s invention supported by Allan Cormack’s mathematical algorithms,

showed together that it is possible to generate high-quality cross-sectional

images from measured line integrals. Such an achievement set the realisation

into practice of an engineered instrument, from the application of several

scientific concepts. Hounsfield-Cormack’s contribution was significant enough,

not only to earn the Nobel prize in 1979, but also to set up a revolutionary

impact in the practice of Medicine [6].

1.1.1 Hard-Field vs. Soft-Field Modalities

According to the propagation of energies across the object being imaged,

Tomography can be classified into two main categories: hard-field and soft-field.

In hard-field Tomography the source energy travels in a constant direction, so

collected values depend only on the interactions along a defined path. Some

examples of hard-field modalities are: X-ray CT, Positron Emission

Tomography (PET) and Magnetic Resonance Imaging (MRI). Figure 1.2 helps

to illustrate the difference between both modalities.

(a) Hard-Field Tomography.

(b) Soft-field Tomography.

Figure 1.2: Tomography categorisation in terms of energies propagation.

Soft-field modalities are more complex than the hard-field counterpart in the

way in which source energy propagates across the whole probed object. In

soft-field modalities, measured values are distributed throughout the entire
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volume, and are dependent on the physical properties of such volume [7].

Electrical Resistance Tomography (ERT), Electrical Capacitance

Tomography (ECT) and Electrical Impedance Tomography (EIT) are some

examples of soft-field modalities.

The algorithm developed and presented throughout this theses, belongs to the

hard-field modalities category.

The pursuit to create a non-invasive alternative to look inside patients’ bodies,

put Tomography on a constant trend toward faster reconstructions associated

with image accuracy enhancement [6]. As a consequence, regardless

Tomography was mainly enforced as a solution in medical imaging, and its

development has been expanded into industrial application areas [8]. Nowadays

a vast variety of modalities can be encountered in a wide range of different

applications.

1.1.2 Tomography Image Reconstruction Algorithms

Classic reconstruction algorithms were mostly developed during the research

boom in the 1970s, soon after Hounsfield-Cormack’s invention. Nowadays, given

the innumerable different algorithms and variations of themselves, that have

appeared, it is impossible to make a concise and reliable classification.

Nonetheless, in a very broad sense, algorithms for image reconstruction from

angular projections, are characterised either as transform methods or as series

expansion methods [9].

1.1.2.1 Transform Methods

Transform reconstruction methods rely on the direct application of formulas

that are derived from the theory foundations and models. This kind of methods

perform reconstruction in a single step. The Filtered Backprojection (FBP),

which is derived from the RT, is a clear example of an analytical method [2].

1.1.2.2 Series Expansion Methods

In series expansion methods, the image to be reconstructed is assumed as a

matrix of unknown values. This matrix is given with an initial estimate of the

object’s attenuation distribution, which is then used to construct a system of

linear equations, in terms of the trajectories followed by projections during data
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acquisition. The system of equations serves to find the contribution of every

matrix value over the reconstruction grid [9].

Unlike the transform methods, series expansion methods perform the

reconstruction in several steps until reaching consistency between calculated

and measured projections [1, 10, p.57].

1.1.3 Incomplete Data Problem in Tomography

The most important reconstruction method in Tomography is the FBP. The

FBP is among the preferred methods in real implementations and has been

proved to deliver accurate images at high computational efficiency [11,12]. Such

method is a generalisation of the inverse RT formula for a practical

implementation and consists of two main elements: a filtering stage (usually

ramp filtering) to amend the negative effects caused by the gathering of values

in the Fourier space dc term (by means of the Fourier Slice Theorem), and the

backprojection stage, which is the reordering of filtered projections back over

the reconstruction grid [1, p. 65].

However, as being an analytical method, the FBP suffers from the drawback,

that in its formulation, noise is not taken into account and measured projection

data is assumed to be continuous and acquired from a certain standard

geometry. In other words, for its proper operation, the FBP is conditioned to

the availability of quality projection data: acquired at sufficient number of

angles and equally spaced between the range from 0◦ to 180◦.

Noise related problems are commonly alleviated through the utilisation of

post-filtering operations, as well as the use of combined projection data

obtained from multiple scans [13]. For the incomplete data problem two

common sources that drive projection data to incompleteness are identified,

both of them originated at the acquisition set-up: limited angle projections and

truncated projections [14].

Because of effort in understanding the nature of projection data incompleteness

date back from as early as the first CT algorithms development era [15],

substantial research has been produced based on two different types of practical

approaches [16–19]. The first approach refers to the estimation and

compensation of the missing data (e.g. [20]). The second approach aims to

reduce the bad effects that result when only available data is considered in the

reconstruction; this approach depends on the generalisation of existing
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algorithms from the underlying theory (e.g. [21–23]).

1.1.3.1 The Interior Problem

The choice of the approach to be employed depends on two different situations:

when data incompleteness is caused by technical restrictions, so it is undesired,

and when data incompleteness is intentionally induced in the pursuit to limit

the reconstruction to a specific area, also known as Region of

Interest (ROI) [24]. The problem of reconstructing a ROI arose in medical

imaging, due to the constant trend on reducing the overall radiation exposure to

patients [25,26]. The reconstruction of a ROI falls in a case where acquisition

from full angle view is achievable, but projections are composed only from rays

passing over an specific area, so projection data is truncated; this case receives

the name of interior problem [19,22]. This is illustrated below in Figure 1.3.

Figure 1.3: Data acquisition over a Region of Interest

Naturally, the FBP in its standard form, is not considered as a valuable method

to be considered in an interior problem reconstruction. The FBP is derived

from the RT, so its global dependency relies in a property of the RT that states:

the inversion formula for the RT is globally dependent upon the projection data

set, so any missing amount of data, will exhibit undesirable effects in the overall

image [23].

The global dependency of the FBP is attributed to the discontinuity in the

Fourier domain that the ramp filter introduces in the filtering stage of the FBP.
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Such discontinuity is the cause of the support spread in space domain, of

projection data after being filtered [27]. Therefore, most of the methods

dedicated to treat the interior problem aim at “reconstructing

discontinuities” [17].

Some examples of approaches to tomographic image reconstruction that belong

to the interior problem case, are: Λ-Tomography [21], Pseudo local

Tomography [28], Two-Step Hilbert Method [29], and Wavelet-based Local

Tomography [23,30–34].

1.2 Wavelet-Based Tomography Image

Reconstruction

1.2.1 The Wavelet Transform

The Wavelet Transform (WT) is a mathematical tool that arose as an extension

of the Fourier Transform (FT) for the analysis of non-stationary signals. The

main characteristic that makes the WT different from the FT, is that WT basis

functions are not only localised in frequency/scale, but also in time/spacial-

location. By definition, a wavelet function is a small oscillation confined into a

finite interval, with zero value integral. Wavelet functions are dilated and

translated to adapt to the different components of a signal; small support

wavelets are good to look at high frequency components, while large support

wavelet are employed to analyse low frequency components. Therefore, the WT

makes it possible to study a signal at different resolutions: a coarse resolution

provides a gross approximation of the signal, whereas higher and higher

resolutions allow to see increasingly fine details of the signal. This process is

called multiresolution.

The optimal choice of wavelet functions is done based on different properties,

which among the most important are: the kind of basis that the chosen wavelet

functions constitute, the regularity which indicates how smooth the wavelet is,

and the number of vanishing moments, which are linked to the number of

oscillations, and hence proportional to the size of the wavelet support [35,36].
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1.2.2 The Fast Wavelet Transform and The

Multiresolution Representation

A different WT scheme, developed by Mallat in the early 1980s [37], is the Fast

Wavelet Transform (FWT). The FWT is a concise and fast method whose

resulting transformed data, has the same number of points as the original

signal, is a linear process and allows perfect reconstruction. In practice, the

procedure consists on convolving the signal with both a high pass and low pass

filter to split the signal into a scaling and a wavelet coefficient, also referred to

as approximations and details. Approximations wavelet coefficient, corresponds

to the low pass filter output, which is a smoothed version of the original signal

seen at half resolution with as half as many samples. Details wavelet coefficient,

contains the higher frequencies that would have to be added to the

approximations to recover the original signal, again with half as many samples.

If the transform procedure is iteratively reproduced, approximations wavelet

coefficient becomes the input to a new decomposition, producing new details

and new approximations, being the latter an even more smoothed signal with a

quarter as many samples than the original signal. By iteratively computing the

FWT, it is possible to obtain a multiresolution representation of the signal,

constituted by wavelet coefficient components that differ in size by a factor of

two, as shown below in Figure 1.4 [38, p. 32].

Figure 1.4: Multiresolution Decomposition
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1.2.3 Wavelet-Based Image Reconstruction of a

Region-of-Interest

According to [27], to overpass the discontinuity of the ramp filter in the FBP

method and being able to accurately reconstruct a ROI, a set of basis functions,

essentially compactly supported and constructed with enough zero moments,

are required. If properly chosen, wavelet functions can fulfil the required

properties, so if employed in the filtering stage of the FBP, projection data can

remain compactly supported.

The FWT, and its extension to two dimensions which is explained in detail in

Chapter 3, has been successfully employed in the FBP method. By generalising

the FBP with the FWT, the method turns from the reconstruction of an image

to the reconstruction of wavelet coefficients at different resolutions. Through

this generalisation of the FBP, the backprojection stage is simplified because

the computation (i.e. smearing) of filtered projections is done over sub-sampled

grids [33, 34,39].

1.3 Fast Tomographic Reconstruction Methods

A different trend in the development of image reconstruction methods, apart

from accuracy and/or resolution quality, is the overall speed-up of the

reconstruction process. As previously mentioned, the FBP is the method of

choice when noiseless and complete projection data is available. However, the

arising of relative technologies to the acquisition of data at faster rates, has

encouraged the development of faster reconstructions aiming at filling the gap

between data acquisition and image reconstruction [40,41]. In [40] S. Basu and

Y. Bresler identify two categories of existing fast algorithms: Fourier-based and

Hierarchical.

Fourier-based algorithms come from the Fourier Slice Theorem (FST). These

kind of algorithms consist on the transformation from polar to Cartesian of

projection data in the Fourier space. Therefore, in Fourier-based methods, the

image is reconstructed directly through the inverse two-dimensional Fast Fourier

Transform (FFT) [42].

Hierarchical algorithms, as opposite to the Fourier- based counterpart, act

directly either over the projection data domain, or image domain. The idea
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behind hierarchical approaches is to split the problem of reconstructing a full

size image into smaller problems; smaller-sized images reconstructed from fewer

projections (i.e. divide and conquer) [43–46].

In [41] T. Rodet mentions a third category concerned to the speed-up of the

backprojection step, which is the most computationally expensive operation

within the FBP reconstruction process. An example of this approach is that all

projections are computed at the same time in a parallel fashion [47–49].

1.4 Hardware Architectures and Tomography

Implementations

Without distinction, for the achievement of requirements in terms of speed

and/or resolution, any of the previously mentioned fast reconstruction

algorithm approaches, is dependent on the computing platform employed in its

practical implementation. From a truly computational point of view, in terms of

flexibility and performance, computer system architectures are categorised in

three main groups: General Purpose Architecturess (GPAs), Domain Specific

Architecturess (DSAs) and Application Specific Architecturess (ASAs) [50, pp.

1-12].

ASAs, commonly in the form of an Application Specific Integrated

Circuit (ASIC) can be encountered since the early days of Tomography

development. ASICs involve dedicated designs through functional units that

can be implemented in parallel, so they provide better performance for a

specific class of application. Although, its high performance is obtained at the

expense of very low flexibility, in as much as ASICs based design can not be

modified after being manufactured. Another inherent drawback is related to the

high costs that involve ASICs production, so they are only affordable by

manufacturers of equipment that target large markets (e.g. [51–53]).

GPAs lie at the opposite side, Central Processing Unit (CPU) based

implementations are the most flexible options, but the ones with the less

performance. In Tomography, GPAs are mostly employed by researchers and/or

common users to experience in new algorithms and acquisition geometries [41].

It is also common to encounter CPUs within the design flow of more specialised

implementations. The low performance of general-purpose architectures is

attributed to the fact that applications are adapted to the hardware, so every
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piece of software run according to an instruction cycle that through a control

unit manages accesses to memory, as well as operations of an arithmetic-logic

unit [50, p. 3]. Nonetheless, CPUs have evolved to processors having several

core units in a single chip device, capable to execute multiple tasks in

parallel [54, 55]. Multi-core clusters are flexible low cost alternatives to high

performance ASIC devices, although they are limited by communication speed

(e.g. [56]).

DSAs have been also widely employed in Tomography with the purpose to

speed-up custom reconstruction algorithms. DSA devices are based on the

general-purpose model, but with elements adapted for a certain class of

algorithms, so they can deliver better performance [50, p. 5]. Among the

preferred DSA devices is the Graphics Processing Unit (GPU), which is a device

created under the stream processing paradigm [54,57]. Stream processors are

the approach created to fill the gap between flexible GPA solutions and high

performance ASA approaches. Stream processors are programmable devices,

they allow high number of computations to occur in parallel, and are optimised

to use minimal global communication and storage [58]. Some examples of

Tomography implementations in DSAs are in [54,59–63].

Nonetheless DSA architectures preserve the flexibility of the GPA model and

can reach better performance, they still being the class of architectures in which

the application is adapted to the hardware. Reconfigurable Hardware (RH) is a

fourth alternative for the acceleration of computationally intensive algorithms.

This kind of architecture is closer to the ASA model in the sense that hardware

is adapted to the application, so the application design can be based on

functional units for specific application tasks running in parallel. Additionally,

RH allows to modify all or part of its structure at compile or execution

time [50, p. 9]. Field Programmable Gate Arrays (FPGAs) and Complex

Programmable Logic Devices (CPLDs) are the most representative [55].

Nonetheless FPGAs cannot deliver the same performance as an ASICs, they

have been increasingly preferred over ASAs given its flexibility, low cost and

profit for rapid prototyping [64,65]. In Tomography, FPGAs have been

employed in the design of custom reconstruction algorithms, through dedicated

hardware elements running in parallel (e.g. [55,66–73])

The algorithm presented in this thesis has been designed to be implemented as

a set of custom functional units performing different tasks in parallel, so the
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reconfigurable hardware approach, has been chosen as the platform to

experience with the designed algorithm parallelism.

1.5 Application Field

From the brief background theory presented in this chapter, as well as the more

detailed concepts covered in Chapter 2, it can be noticed that the fundamentals

of image Tomography reconstruction employed in the development of the

proposed algorithm, belong to X-Ray CT. Nonetheless, it is important to state

that this work has been developed with theoretical purposes and in its current

state, does not have a specific target application. The latter is mentioned with

the aim to specify that the proposed reconstruction algorithm does not depend

upon an acquisition modality, and hence is not particular of any application

field (i.e. medical imaging, industrial process Tomography).

A main topic of study in the development of the work presented in this thesis, is

the work related to the utilisation of the WT to achieve the accurate image

reconstruction of localised areas belonging to a ROI. Such a developed work

was mainly motivated by the need to reduce the radiation dose exposure to

patients in medical imaging, where X-Ray CT was a mainstay [27,32–34,74].

Nonetheless, the same principles have been applied in other application fields;

on one side it is possible to encounter complex X-Ray CT systems in industrial

environments (i.e. for the measurement of gas and liquid hold-up in chemical

vessels and micro structures) [75–79]. On the other side it is possible to

encounter wavelet-based ROI image reconstruction applications using THz as

the Tomography modality [80–82].

1.6 Research Aims and Objectives

This proposed approach is a generalisation of the FBP transform method that

aims to take advantage of the wavelet transform properties, used to perform

reconstruction of ROIs from truncated projection data [27].

The main idea is to intentionally adapt acquired data in the projection domain,

to independently and in parallel, perform reconstruction of several ROIs. The

proposed approach resembles the objective of the hierarchical fast reconstruction

concept, in the sense that wavelet treatment of projection data is used to split
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the inverse problem into a set of smaller and less complex problems.

In order to achieve such a proposed approach, the following objectives were

defined:

• Accomplish a proper implementation of the standard FBP image

reconstruction method, based on the MATLAB iradon function.

• Modify the filtering stage of the standard FBP by substituting the ramp

filter by a WT-based filter, followed by the achievement perfect

reconstruction.

• Perform local reconstruction from truncated data and analyse the results.

• Generalise the WT-based FBP to a multiresolution decomposition

framework.

In addition, as consequence of the multiresolution representation provided by

the WT, the reconstruction process turns from inverting a full-size

full-resolution image, to a set of less-dense partial-resolution wavelet coefficient

images [33].

This reformulation of the reconstruction method accomplishes one of the

proposed algorithm aims, which is to improve the computation efficiency of the

backprojection step in the FBP. The backprojection step is considered to be the

most computationally expensive element within the FBP method, therefore its

efficiency optimisation belongs to the aim for fast reconstruction.

In order to improve the backprojection operator the following objectives were

defined:

• Evaluate the speed gain derived from the multiresolution decomposition of

projection data by using the modified ramp filter.

• Achieve perfect reconstruction of projection data decomposed into several

scales.

• Achieve a parallel implementation of the projection data WT

decomposition and synthesis.

This way, through the combination of both approaches, the parallel

reconstruction of several ROIs in a multiresolution framework was completed.
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Finally, in order to experience with a true parallel implementation, the designed

algorithm was refactored into a set of Hardware Description Language (HDL)

components having the aim to achieve the computation of a projection angle,

which represents the minimum independent processing unit within the parallel

system.

In order to obtain a hardware architecture belonging to the processing of a

single projection angle, intended to be replicated according to a set of input

parameters, three different components were idealised:

• The filtering of projection data.

• The backprojection operator.

• The parallel inverse two-dimensional FWT.

Each of these hardware architecture equivalents were constructed and validated

at input/output level based on the MATLAB algorithm.

1.7 Contributions

The main contribution of the work presented in this thesis is the combined

algorithmic/hardware formulation, of a fast parallel reconstruction method,

designed to be employed with hard-field modalities, and projection data

acquired through a parallel-beam geometry acquisition set-up.

Developing such a fast parallel reconstruction algorithm involved the

achievement of the objectives defined and mentioned in the previous section,

from which the following contributions were identified:

• The complexity reduction in the computer implementation of the standard

FBP derived from the analysis of the Fourier domain data symmetry,

explained in Section 4.2.

• The accurate image reconstruction and speed gain achieved in Section 4.3

from the modified wavelet-based FBP, by exploiting the overlapping

between projection data and wavelet filters within the Fourier space.

• The formulation of a parallel two-dimensional FWT for the analysis of

projection data, as well as synthesis of the reconstructed coefficient

images, at different scales. This approach considerably improved the

31



reconstruction speed as well as increased the parallel granularity of the

algorithm, as shown in Section 4.4.

• The development of a simplified methodology shown in Subsection 4.5.1,

to extract ROIs data in Radon domain from the complete projection data

set.

• The development of a Tomography image reconstruction algorithm

combining both main approaches achieved by employing the FWT: the

accurate reconstruction of ROIs from truncated data, and the parallel

multiresolution framework covered and explained in Section 4.5.

• The implementation in a HDL platform of the minimum replicable

element within the parallel system; the computation of a single projection

data angle. This is covered in Chapter 5.

1.8 Thesis Outline

This thesis presents the design of a fast parallel image reconstruction algorithm,

which formulation relies in the achievements related to the accurate image

reconstruction from truncated data, by using the WT. In this chapter,

Tomography fundamentals are briefly covered, followed by an overview of the

Tomography inverse problem and its most common solution approaches.

Emphasis is put in the FBP reconstruction method, from which the pursuit to

find a solution to weaken its dependence of vast and high quality projection

data, led to the development of fast reconstruction generalisations.

Chapter 2, which is dedicated to the Tomography image reconstruction

problem, goes beyond the brief concepts addressed in the Introduction, and

covers the RT mathematical foundation, that evolved up to the creation of

practical inversion methods.

Chapter 3 presents a review of the origins and efforts that led to the creation of

the WT. The chapter not only explains the WT utilisation, but also the

differences between each of its versions, along with the benefits and

disadvantages found in each of them. The properties that made the WT an

attractive tool, to be employed in Tomography image reconstruction, are as well

exhibited.
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Chapter 4 describes the procedure involved in the design of the image

reconstruction parallel algorithm, which covers the computer implementation of

the standard FBP, its customisation for a better performance, the inclusion of

the WT in its formulation, and two different parallel proposed approaches to

reach fast image reconstruction. Results in terms of quality and reconstruction

time, are presented for each one of the explained parallel approaches.

In Chapter 5, the implementation of the wavelet-based, parallel reconstruction

algorithm, in a parallel computation hardware (i.e. FPGAs), is documented. A

discussion about the experimental results, as well as its feasibility, is included.

Chapter 6 gathers the results and observations, collected along the development

of this research, into final conclusions. Future work is as well discussed within

this chapter.
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Chapter 2

Tomography Image

Reconstruction

The word Tomography is composed by the junction of the Greek words tomos

(i.e. slice or section) and graphein (i.e. drawing); in English it is interpreted as

“draw a section”. Tomography is one of the existing techniques for the

cross-sectional imaging of an object from either emitted or transmitted

electromagnetic radiation [1]. Nowadays, not only the literature related to

Tomography is largely vast, but it is possible to come across Tomography in a

wide range of different applications. Most of the achieved progress in

Tomography has been boosted by demands in medicine and industry, on a

constant trend in obtaining faultless images at high speed rates [6].

2.1 Transmission Data Tomography

The main goal of hard-field Tomography modalities is the reconstruction of

cross-sectional images, representing the inner density distribution of an object,

from projection data acquired at different angles within the range from 0◦ to

180◦.

In hard-field modalities, the imaging system acquisition is determined by the

location of the radiation source. When the radiation source is placed outside the

object, transmission data is acquired as shown in Figure 2.1a. Conversely, when

the radiation source resides within the object, acquisition is done from an

emission source (Figure 2.1b).

This chapter is dedicated to explain the methodology involved in the
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Tomography related acquisition and image reconstruction, for the transmission

data case. The principles here exposed are based on (but not limited to) which

is probably the most common example found in literature to understand the

acquisition set-up of transmission hard-field modalities, the X-ray CT.

(a) Transmission Data Acquisition. (b) Emission Data Acquisition.

Figure 2.1: Imaging System Acquisition.

In CT, the X-ray beam is considered as a set of lines (i.e. rays) arranged in a

regular pattern, commonly referred as the acquisition geometry [11]. In a

primary classification, the acquisition geometry is divided in two categories:

parallel and divergent, as shown in Figure 2.2.

(a) Parallel Beam. (b) Divergent Beam (Fan Beam).

Figure 2.2: Acquisition Geometries.

In a subsequent classification, the divergent geometry is referred as fan beam,

for a two-dimensional data acquisition (Figure 2.2b), and cone beam (Figure

2.3) for three-dimensional data acquisition case.
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Figure 2.3: Cone Beam Acquisition Geometry.

A beam ray with an initial intensity I0 is attenuated while travelling across an

object, and the output intensity I measured by a detector. Measurements taken

from intensity losses of several rays within a beam, acquired at different angles,

are gathered to form a projection data set. The intensity loss of radiated energy

passing through an object, is mathematically modelled by the Beer-Lambert

Law [11].

I = I0 · e
−

∫
L

µ(x)dx

. (2.1)

In (2.1), I refers to the ray intensity recorded at the detector, once the ray has

passed through the object, I0 is the ray intensity at the initial point (i.e.

source), µ(x) is the linear attenuation coefficient of the object at a certain point

x, and L is the path followed by the ray from the source to the detector.

The symbol µ refers to the attenuation coefficient, which is a property of the

material and varies with respect to the incoming radiated energy in the following

manner: µ becomes smaller when the intensity of radiated energy gets higher,

and on the contrary, µ becomes higher when radiated energy suffers attenuation.

It is important to mention that in (2.1) the attenuation due to interference,

scatter, and/or absorption of energy, is not considered. Moreover, Equation 2.1

is only valid for the simplest case, in which the ray is assumed as a

monochromatic continuous straight line as shown below in Figure 2.4.

Figure 2.4: Continuous Attenuation Model.

For a practical implementation, instead, the attenuation coefficient µ is not

constant along the distribution of the object, so it is discretised in a set of
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isometric regions (i.e. pixels), with different attenuation factors. This is

illustrated below in Figure 2.5.

Figure 2.5: Discrete Attenuation Model.

The following expression is the discrete version of 2.1, where µi is represented as

the attenuation coefficient along the distance xi.

I = I0 · e
−
i=N∑
i=1

µi·xi
. (2.2)

Again, from the continuous version in Equation 2.1, it is possible to see that the

intensity loss is modelled by a line integral along the path L. If the problem is

extended to a higher dimension, by considering the energy travelling through L,

but across a two-dimensional plane, with attenuation coefficient µ = µ(x, y), the

intensity loss is then obtained through:

I = I0 · e
−

∫
L

µ(x,y)ds

. (2.3)

If Equation 2.3 is rearranged to form an expression as the logarithm of the

input/output intensity ratio, a line integral of the attenuation coefficient of a

two-dimensional plane, along the path L is obtained.

r = −ln
(
I0

I

)
=

∫
L

µ(x, y)ds. (2.4)

By looking at Figure 2.1a, it is possible to see that displacing the source and

detector in a perpendicular direction to L, a set of parallel line integrals is

generated. Such set of lines constitute a projection at a certain angle. Either by

rotating the source and detector or the object itself, projections at different

angles can be obtained. So by using the expression below, it is possible to

obtain line integrals in terms of ρ displacements, at an specific angle θ by:

r(ρ, θ) =

∫
L

µ(x, y)ds. (2.5)
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The process is illustrated in Figure 2.6, where θ is the rotation angle with

respect to the reference x-axis, ρ is the perpendicular displacement of the ray,

and r(ρ, θ) is the resulting angular projection. The acquisition of projection

data from line integrals in terms of ρ displacements, and ordered by its angular

position θ, is mathematically modelled by the RT, covered in the following

section.

Figure 2.6: Angular Projection.

2.2 The Radon Transform

The RT was developed by the Austrian mathematician Johann Radon in 1917,

who purely driven by theoretical interests, created a mathematical formula for

the representation of a function in terms of its line integrals, so it could be

possible to employ line integrals in the recovering of such function [3]. It was

after fifty years of its creation, when in radio-astronomy, the RT was first

employed as an imaging technique [83,84]. The RT is the mathematical

foundation of CT [85].

This section is dedicated to explain the RT, which in contrast to the

mathematics involved in the acquisition of individual ray data, through the

formulation of the Equation 2.5, the RT is a generalisation for the acquisition of

a complete set of line integrals. A complete set, in a Tomography application,

refers to the acquisition of the overall attenuation of radiation energy travelling
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across an object. Therefore, in this case the object is modelled as a

two-dimensional distribution of the energy attenuation coefficient µ(x, y), and a

line integral refers to the total intensity loss of a beam as it travels the object

across the path L [1].

The starting point is to make acquisition problem treatable by parametrising

the set of line integrals in terms of the Polar coordinate system. This is done

because such coordinate system is the most suitable to describe a problem with

a circular symmetry. Parametrisation is performed by equations that, based on

normal vectors to line integrals, satisfy every point along every ray path.

ρ = x cos θ + y sin θ. (2.6)

Figure 2.7 shows how, by considering a parallel geometry arrangement, θ

represents the angle between the x-axis and the rays’ normal n. The

displacement ρ, which is the normal distance from the origin to each ray, helps

to distinguish each line from another; its sign differentiates rays having the

same distance but in an opposite direction.

Figure 2.7: Parametrisation in Polar Coordinates

An important characteristic of the RT is that, given the mirror symmetry

nature of the Radon space, only projections within the range from 0◦ to nearly

180◦ are necessary. Projection data beyond such range results redundant [86].

So, by leaving the parameter θ fixed and varying the displacements ρ, it is
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possible to obtain a numerical representation of line integrals in the desired

plane. This is formally expressed as the RT of µ(x, y), being R the RT operator.

r(ρ, θ) = R[µ(ρ, θ)] =

∫
L(ρ,θ)

µ(x, y)dxdy. (2.7)

Moreover, if a distribution function δ is used to complement the parametric

Equation 2.6, and obtain an expression indicating the impulse function

concentrated along the path L.

δ(ρ− x cos θ − y sin θ),

where: δ(ρ) =

{
1 x cos θ + y sin θ = ρ

0 x cos θ + y sin θ 6= ρ

(2.8)

Equation 2.7, along with the δ distribution function 2.8, can then be expressed

in the following form:

r(ρ, θ) = R[µ(ρ, θ)] =

∞∫
−∞

∞∫
−∞

µ(x, y)δ(ρ− x cos θ − y sin θ)dxdy. (2.9)

Equation 2.9 represents forward RT, the function that maps a two-dimensional

distribution µ(x, y) to a set of line integrals r(ρ, θ), consecutively recorded

whilst keeping track of angular position θ. The collection of the overall

attenuation coefficients at different angular positions forms a sinogram (i.e.

projection data set). The main objective of CT is to recover the

two-dimensional distribution µ(x, y) from a sinogram r(ρ, θ). Figure 2.8 helps to

illustrate the reconstruction stages.

(a) Projection Data
Acquisition.

(b) Resulting Sinogram. (c) Reconstructed Image.

Figure 2.8: The Computed Tomography Process.
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The term sinogram is attributed to the fact that the RT of a single pixel (e.g. in

the (x0, y0) position within the pixel grid), generates a sinusoid curve as defined

in the parametric Equation 2.6. It is then said that the process equals a point

to curve transformation as shown below in Figure 2.9.

(a) Pixel Phantom. (b) Resulting Sinogram Curve.

Figure 2.9: Point to Curve Transformation.

The set of acquired projection data is therefore interchangeably referred as

sinogram and represented as a two-dimensional function in the (ρ, θ) plane, as

shown in Figure 2.9b.

2.3 The Inverse Radon Transform

From the previous section, it is possible to realise that in CT, the RT is the

equivalent to a forward problem in the sense that it is the tool by which the

acquisition of projection data is mathematically modelled. Although, the main

objective of CT is to recover a visual representation from the object’s projection

data. Calculating the inverse RT is a more complex process, it is a

mathematical problem that falls within the domain of inverse problems, and can

be approached analytically through the FST [87].

The FST (i.e. Central Slice Theorem, Projection Slice Theorem) is the basis for

transformed-based inverse methods. In two dimensions, the FST states that the

one-dimensional FT of an angular projection r(ρ, θ) of a two-dimensional

distribution µ(x, y) is equal to a slice through the origin of the two-dimensional

distribution M(ωx, ωy) within the Fourier space [88, p. 22]. This is illustrated in

the figure below.
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Figure 2.10: The Fourier Slice Theorem

The main idea is to fill the Fourier space M(ωx, ωy) with projection data r(ρ, θ)

acquired from as many as possible angular increments within the 0◦ to 180◦

range. Therefore, once M(ωx, ωy) is ready, the two-dimensional distribution

µ(x, y) of the projected object, is simply recovered by applying the

two-dimensional inverse FT to M(ωx, ωy).

Figure 2.11: Image Recovery by Means of the FST

Mathematically, the FST is proven by first calculating the one-dimensional FT
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of projection data r(ρ, θ) with respect to ρ and for a fixed angle θ.

F1D[r(ρ, θ)] =

∞∫
−∞

r(ρ, θ)e−j2πsρdρ,

=

∞∫
−∞

e−j2πsρ

 ∞∫
−∞

∞∫
−∞

µ(x, y)δ(ρ− x cos θ − y sin θ)dxdy

 dρ.
(2.10)

After rearrange the integration order of terms within Equation 2.10, it follows:

F1D[r(ρ, θ)] =

∞∫
−∞

∞∫
−∞

µ(x, y)

 ∞∫
−∞

e−j2πsρδ(ρ− x cos θ − y sin θ)dρ

 dxdy. (2.11)

Equation 2.12 is the sampling property (i.e. sifting property) of the delta

function, which can be applied to the integral with respect to ρ [89, pp. 74-77].

∞∫
−∞

f(x)δ(x− x0)dx = f(x0). (2.12)

Therefore, Equation 2.11 turns to the following expression:

F1D[r(ρ, θ)] =

∞∫
−∞

∞∫
−∞

µ(x, y)
[
e−j2πs(x cos θ+y sin θ)

]
dxdy,

=

∞∫
−∞

∞∫
−∞

µ(x, y)
[
e−j2π(xs cos θ+ys sin θ)

]
dxdy.

(2.13)

By definition, the two-dimensional FT F (ωx, ωy) of a function f(x, y) is denoted

by:

F2D[f(x, y)] = F (ωx, ωy) =

∞∫
−∞

∞∫
−∞

f(x, y)e−j2π(xωx+yωy)dxdy. (2.14)

which is very similar to Equation 2.13, except for the sum (xs cos θ + ys sin θ) of

the exponential. Although, it can be seen that such term is equivalent to the

dot product between the two-dimensional vector ~x = (x, y) and (cos θ, sin θ). So,

by rearranging the frequency variable s into the term (cos θ, sin θ), the
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two-dimensional frequency vector ~ξ = (s cos θ, s sin θ) is obtained. Equation 2.13

in terms of ~x and ~ξ results as follows:

F1D[r(ρ, θ)] =

∞∫
−∞

∞∫
−∞

µ(x, y)e−j2π~x·
~ξd~x. (2.15)

To match Equation 2.15 with the definition of the two-dimensional FT, shown

through Equation 2.14, the vector ~ξ should represent the two-dimensional

frequency variable (ωx, ωy). If ~ξ is represented in terms of sines and cosines like:

ωx = s cos θ,

ωy = s sin θ.
(2.16)

An expression matching with the definition of the two-dimensional FT

(Equation 2.14) is finally achieved in:

F1D[r(ρ, θ)] = M(ωx, ωy) =

∞∫
−∞

∞∫
−∞

µ(x, y)e−j2π(xωx+yωy)dxdy. (2.17)

Thus, it is mathematically proven that accordingly to the FST, the

one-dimensional FT of the angular projections r(ρ, θ) describing a

two-dimensional distribution µ(x, y), is equivalent to the two-dimensional FT

M(ωx, ωy) of such distribution.

µ(x, y) =

∞∫
−∞

∞∫
−∞

M(ωx, ωy)e
j2π(xωx+yωy)dωxdωy, (2.18)

it is then possible to recover µ(x, y) from the inverse two-dimensional FT of

M(ωx, ωy).

F1D[r(ρ, θ)] = M(ωx, ωy), (2.19)

F−1
2D [M(ωx, ωy)] = µ(x, y). (2.20)

So far, it seems that at least theoretically, the CT inverse problem is solved by

means of the FST. Nonetheless, it is compulsory to highlight that the FST

proof is formulated by assuming an infinite number of angular projections ρ, θ,

that in consequence, can provide a M(ωx, ωy) function known overall the
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Fourier space. In practice, however, there is an implicit limitation in the

acquisition of projection data, as it can only be performed in discrete form, so

M(ωx, ωy) is only known over a finite number of slices [1]. Such limitation is the

cause of degradation in reconstructed images, and becomes more severe as the

acquisition of projection data becomes more restricted. In transmission CT the

quality of a reconstruction image depends on the availability of the sampled

projection data [90].

Whereas the FST represents a conceptual model of CT image reconstruction,

practical implementations require different reconstruction algorithms to address

the undesired effects that result from recovering an image only from available

projection data.

2.4 Image Reconstruction Methods

Since the appearance of CT, related theory, imaging geometries, reconstruction

algorithms, as well as fields of application, have been subjected to a rapid

development [18]. Therefore, track down and/or describe every available CT

reconstruction method, represents an impossible task.

Section 2.3 proved that mathematically inverting the RT is theoretically exact,

but insufficient for a practical implementation, thus different approaches have

been developed. The nature of such approaches depend on the application

requirements (e.g. high-speed reconstruction, high-detailed reconstructed

image) as well as to involved parameters (e.g. acquisition geometry, data

availability and quality, computational resources).

In this section, reconstruction methods are broadly classified in terms of the

modelling of the inversion problem, into series expansion and transform

methods.

2.4.1 Series Expansion Methods

In series expansion methods, the image reconstruction problem is outlined as a

system of linear equations [1]. In doing so, the projected object is first assumed

as a grid formed by N pixels, with every pixel assigned with a sequential label

µj(j = 1, 2, ...). In such grid, the two-dimensional distribution µ(x, y) is

assumed to be constant for every pixel at every j position. In a similar fashion

to the pixel labelling µj, rays belonging to angular projections, are assigned
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with a sequential order identifier ri(i = 1, 2, ...). This is illustrated in Figure

2.12, where the element denoted by the wij literal, is the weight of the

contribution of the jth pixel µj to the ith projection ray ri. For this example,

such contribution refers to the length portion that overlaps a pixel, but other

attributes can be used (e.g. attenuation, point spread function) [88, p. 126].

Figure 2.12: Series Expansion Example

As it was previously mentioned in Section 2.1, for the discrete attenuation

model shown in Figure 2.5, projection measurements and image pixels are

related in terms of ray sums. Therefore, for the example in Figure 2.12, the

system of linear equations is obtained through:

ri =
N∑
j=1

wijµj, i = 1, 2 . . .M (2.21)
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

w11µ1 + w12µ2 + w13µ3 = r1,

w24µ4 + w25µ5 + w26µ6 = r2,

w37µ7 + w38µ8 + w39µ9 = r3,

w43µ3 + w46µ6 + w49µ9 = r4,

w52µ2 + w55µ5 + w58µ8 = r5,

w61µ1 + w64µ4 + w67µ7 = r6,

w78µ8 + w77µ7 + w74µ4 = r7,

w89µ9 + w85µ5 + w81µ1 = r8,

w96µ6 + w93µ3 + w92µ2 = r9.

(2.22)

where M is the total number of rays that take part of the complete projection

data set, and N is the total number of pixels in the image grid. If the system of

equations is re-written in matrix form, the following expression is obtained:

~r = W~µ, (2.23)

with ~r = [r1, r2 · · · r9]T , ~µ = [µ1, µ2 · · ·µ3]T , and W as the weighting matrix (i.e.

system coefficient matrix) with M by N dimension. The expansion series

method expressed by Equation 2.23, looks simpler than transform-based

methods, nonetheless, series expansion methods are known for being limited in

speed and accuracy in a certain kind of applications (i.e. medical imaging). Yet,

they represent an alternative for situations in which acquiring non-uniformly

distributed projections and/or a complete data set, is impossible. Series

expansion methods are also preferred to overcome some undesired effects that

are implicit in the propagation of energy between the source and detector (e.g.

ray bending, attenuation) [1].

From Equation 2.23, it seems that the solution to the inverse problem of finding

the object’s image, given by ~µ, from the angular projection measurements ~r, can

be obtained through:

~µ = W−1~r, (2.24)

however, direct matrix inversion of W is not realisable in practice. In a real

application, W is commonly larger than accepted to employ conventional

matrix methods, and even computationally impractical when both the number

of rays M and pixels N are large [1]. Therefore, in practice, series expansion
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methods are used to obtain an approximate set of solutions, rather than an

exact solution [87].

As consequence, some practical methods have been developed under the

principles of series expansion methods. These methods formulate the

reconstruction problem by considering extra information obtained from the

employed imaging system (e.g. acquisition geometry, modality, data sparsity),

as well as any prior knowledge about the object, to limit solutions to those that

are feasible.

Algebraic Reconstruction, Simultaneous Iterative Reconstruction, and

Simultaneous Algebraic Reconstruction, are among the most employed series

expansion based reconstruction methods [1, 2, 9, 10,88].

2.4.2 Transform Methods

Transform methods are the counterpart in the category reviewed in this section.

For the recovery of the two-dimensional distribution µ(x, y), from acquired

projection data r(ρ, θ), these kind of reconstruction methods demand the direct

utilisation of analytical inversion formulas. Such formulas rely on the theory

foundations and models, commonly derived from the FST [2].

2.4.2.1 Direct Fourier Inversion Method

Derived from the FST, the inverse RT represents the most direct formula to

recover the two-dimensional density µ(x, y), through the calculation of the

inverse two-dimensional FT of Fourier transformed projection data M(ωx, ωy),

previously shown in Equation 2.18. Although, as previously reviewed during the

formulation of the inverse RT in Section 2.3, the application of the inverse RT is

not feasible for practical implementations, as it does not allow exact

reconstruction [1]. Such limitation arises due to the impossibility to account for

the overall Fourier space (ωx, ωy), from discrete sampled data r(ρ, θ). Moreover,

for the proper utilization of Equation 2.18, projection data in Fourier domain

must be interpolated from the polar R(ρ, θ) to the Cartesian M(ωx, ωy), which

involve simultaneous calculations of large sets of data [1].
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Figure 2.13: Direct Fourier Reconstruction

In Figure 2.13 it can be seen that projection slices (R(ρ, θ)) present an

overweight at the origin in the (ωx, ωy) plane, which means that the Fourier

representation of the object’s image M(ωx, ωy) is not uniformly dense. Such

characteristic is a cause of image degradation (i.e. blurring effect) [88].

Nonetheless, depending on the application, if an exact (i.e. closely exact)

reconstruction is not critical, but an admissible approximation fulfil

requirements, the coordinate system interpolation can be substituted by less

demanding alternatives to determine the values on the square grid (e.g. linear

interpolation, nearest neighbor). If proper interpolation techniques are

accompanied with FFT algorithms, fast reconstruction can be performed [42].

For more information about the mathematics and aspects of direct Fourier

methods, [91] is recommended.

2.4.2.2 The Filtered Backprojection Method

In as much as it is proved that the FBP is capable to deliver accurate images at

high computational efficiency, it is among the preferred reconstruction methods

in CT [11,12]. Moreover, the FBP was the most important reference

reconstruction algorithm in Tomography research for several years, and different

generalisations of it, have been developed ever since. The FBP is a transform

reconstruction method that has been derived from the inverse RT formulation,

aiming to obtain a suitable alternative for practical implementations. The
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mathematical explanation about the FBP formula extraction, from the inverse

RT formula previously reviewed in Section 2.3, follow the one given in [1, p.63].

By recalling the formula for the recovering of the internal distribution µ(x, y),

by means of the inverse two-dimensional FT,

µ(x, y) =

∞∫
−∞

∞∫
−∞

M(ωx, ωy)e
j2π(xωx+yωy)dωxdωy, (2.18)

it follows that, in order to avoid the polar to Cartesian interpolation limitation

of direct Fourier inversion, variables ωx and ωy must be translated to an

expression in terms of the polar form variables s and θ, to fit with the format in

which projection data is acquired. Such conversion can be achieved through the

application of the change of variable formula for the double integral case, given

by [92]. The formula for a change of variable from (x, y) to (m,n) is shown

bellow: ∫∫
R

f(x, y)dxdy =

∫∫
R∗

f [x(m,n), y(m,n)]

∣∣∣∣ ∂(x, y)

∂(m,n)

∣∣∣∣ dmdn. (2.25)

In terms of Equation 2.18 variables, it follows:

ωx = s cos θ,

ωy = s sin θ.
(2.16)

And for differentials dωx and dωy:

dωxdωy =

∣∣∣∣∂(ωx, ωy)

∂(s, θ)

∣∣∣∣ dsdθ,
=

∣∣∣∣∣∂ωx∂s ∂ωx
∂θ

∂ωy
∂s

∂ωy
∂θ

∣∣∣∣∣ dsdθ,
=

∣∣∣∣∣∂(s cos θ)
∂s

∂(s cos θ)
∂θ

∂(s sin θ)
∂s

∂(s sin θ)
∂θ

∣∣∣∣∣ dsdθ,
= |scos2θ + ssin2θ|dsdθ,

= |s|dsdθ.

(2.26)
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Therefore, Equation 2.18 in polar form is given by:

µ(x, y) =

2π∫
0

∞∫
0

M(s cos θ, s sin θ)ej2πs(x cos θ+y sin θ)|s|dsdθ. (2.27)

By looking at the integration limits in the outer integral of Equation 2.27, it can

be realized that if periodicity of the parallel acquisition geometry is taken into

account, the following expression is accomplished:

M(s cos(θ + 180◦), s sin(θ + 180◦)) = M(−s cos θ,−s sin θ), (2.28)

therefore, Equation 2.27 can be split into:

µ(x, y) =

π∫
0

∞∫
0

M(s cos θ, s sin θ)ej2πs(x cos θ+y sin θ)|s|dsdθ

+

π∫
0

∞∫
0

M(s cos(θ + 180◦), s sin(θ + 180◦))ej2πs(x cos(θ+180◦)+y sin(θ+180◦))|s|dsdθ,

(2.29)

form which it can be inferred, that the second double integral within the

addition of Equation 2.29 is redundant, so it can be discarded. Equation 2.29

then turns to:

µ(x, y) =

π∫
0

∞∫
−∞

M(s cos θ, s sin θ)|s|ej2πs(x cos θ+y sin θ)dsdθ. (2.30)

By substituting the FT of a projection with respect to s and at a fixed angle θ,

Rθ(s), for the two-dimensional FT M(s cos θ, s sin θ), Equation 2.30 can be

expressed in the following form:

µ(x, y) =

π∫
0

 ∞∫
−∞

Rθ(s)|s|ej2πs(x cos θ+y sin θ)ds

 dθ. (2.31)

Equation 2.31 is the mathematical expression for the FBP, from which the

integral within square brackets is the inverse FT of the product between

between the projection Rθ(s) and the term |s|. Such product is equivalent to
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the filtering, in Fourier domain, between the angular projection Rθ(s) and the

filter frequency response given by |s|. The term |s| is also the resultant of the

Jacobian of change between Cartesian to polar coordinates given by Equation

2.26.

After calculating the inverse FT of the term inside square brackets, with respect

to s, filtered projection at angle θ is written as:

∞∫
−∞

Rθ(s)|s|ej2πs(x cos θ+y sin θ)ds = Qθ(x cos θ + y sin θ), (2.32)

If substituting Qθ(x cos θ + y sin θ) for the integral inside square brackets of

Equation 2.31, the expression is reduced to a single integral with respect to θ.

This integral is responsible for bringing back every line integral value

ρ = x cos θ + y sin θ, to its corresponding position over the (x, y) plane, for the

recovering of the image µ(x, y). Such procedure receives the name of

backprojection [1, p.65].

µ(x, y) =

π∫
0

Qθ(x cos θ + y sin θ)dθ. (2.33)

The following diagram shows, in a sequential fashion, the steps involved in the

computation of the FBP.

Figure 2.14: The Filtered Backprojection Method
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Both elements (Equations 2.32 and 2.33) give the name to the reconstruction

method, filtering and backprojection. These elements have a direct implication

in the advantages over direct Fourier reconstruction methods. Filtering helps in

minimizing the undesired effects caused by the frequency overweight in dc term

of the Fourier space, as shown in Figure 2.13. The backprojection reduces the

strong dependency of complex approaches needed to perform Fourier domain

interpolation, while linear interpolation is commonly enough when carried out

in spatial domain [93]. Not least important, is the advantage of the FBP

method over the direct Fourier methods to independently compute angular

projections, making it possible to initiate that reconstruction process soon after

the first angular projection has been acquired [1].

In a comparison between series expansion methods and transform methods, it

can be deducted that transform methods perform better in terms of speed and

are capable to deliver accurate images, although they are strongly dependent on

the vast availability and good quality of projection data. Conversely, series

expansion methods are slower and require more computation resources, yet they

perform better with limited projection data and are able to incorporate prior

knowledge like noise and other physical properties of the imaging system [2,12].

2.4.2.3 FBP Image Reconstruction from Incomplete Data

Regardless of the disadvantages involved in being a transform method, the FBP

is among the preferred reconstruction methods in Tomography and different

approaches to overcome its strong dependency on the availability quality

projection data, have been proposed.

The effect caused by the non accomplishment to acquire a complete set of

projection data, derives in inaccurate image reconstructions, which can be

something critical in some kind of applications. The most common sources that

drive projection data to incompleteness, are identified to be originated during

the acquisition procedure. Such negative sources are broadly classified into two

sorts [14].

The first one occurs due to the impossibility to acquire line integral values at a

sufficient amount of angle views. Such limitation causes the measured

projection data set to be composed by a limited number of angular projections,

so it can not afford to provide the invertion method, with a sufficient amount of

information, deriving into an inaccurate recontructed image. The following
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figure shows two different cases in which the acquisition set-up limits the

measurement of a complete projection data set.

(a) The rotation circumference
is limited.

(b) Acquisition is limited
to sparse angle views.

Figure 2.15: Limited Angle.

In Figure 2.15a, the angle view is limited at the rotation axis, which can not

afford to move the radiating source over the whole angular range, from 0◦ to

180◦. In Figure 2.15b, the radiating source is free to travel along the rotation,

although measurements are taken only from a few locations within the angular

range, so the projection data set is composed by sparse angular projections.

The second source that drive projection data to incompleteness, is when

regardless the possibility to measure data over the whole angular range, and

from sufficient amount of angular views, some line integrals within the angular

projection can not be measured. In this case it is then said that the projection

data is truncated. To exemplify the projection data truncation, the following

figure is included.
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(a) A high absorbing object
hinders some of the rays

within the projection.

(b) Only few rays within the projection
are measured.

Figure 2.16: Truncated Projections.

Two different ways in which projection data is truncated, can be seen through

Figure 2.16. In the case shown in 2.16a, truncation is caused by a high

absorption object that resides within the Field of View (FOV). Such undesired

object blocks the acquisition of line integrals, driving them to either reach the

detector with a distorted value, or being absorbed. In Figure 2.16b, even

though the FOV is not infringed, some line integrals are not measured. This

latter case is of special interest and will be addressed below.

The incomplete data limitation in the FBP method, has been mainly tackled

through two different practical approaches [16–19]. The first one deals with

estimation of missing data, followed by an appropriate compensation [20]. The

second approach consists in the generalisation of the existing methods, to

overcome the incomplete data inconsistencies, and accurately reconstruct

images from only available data [21–23].

Such second approach inspired the development of reconstruction algorithms,

not only to alleviate the undesired effects in reconstruction images that arise

from the impossibility to measure a complete set of projection data, but also to

achieve the reconstruction of region-specific images by intentionally inducing

projection data to incompleteness. That is to say, if data acquisition is

consciously limited to data that belongs only to a specific subregion of the

entire image (i.e. region of interest), less complex and hence faster, accurate
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localised images can be obtained from reduced exposure projection data [24].

It is through the second practical approach, where the WT has been employed

as an alternative to alleviate the undesired effects that result due to the

incompleteness of projection data. Both the FBP reconstruction method and

the WT, were of significant importance in the development of this research. As

have been mentioned before in the introductory chapter, the main objective of

the inclusion of the WT is to be able to accurately reconstruct localised area

images over a ROI to reduce complexity when considering only line integrals

passing over.

There are different methods that do not employ the WT but also target the

reconstruction of ROIs, some of them being developed at the same time

like [14,21,22]. According to [18], the state-of-the-art in local/interior

Tomography image reconstruction is the Hilbert transform analysis [29, 94,95].

More recently, the accurate reconstruction of ROIs is being actively developed

towards its application in multimodality imaging [19], mainly targeting interior

CT-MRI and CT-Single-photon Emission Computed Tomography (SPECT)

combinations. The integration of multiple tomographic modalities has been

named Omni-Tomography [96], which has been found to have potential in

clinical applications. The Omni-Tomography idea has the aim to fuse multiple

imaging modalities into a single system in order to be able to extract features

that, in many cases, cannot be provided by a single Tomography modality [19].

2.5 Summary

In this research, we deal with transmission tomography, which in its classical

form is described by the RT: the forward RT is implemented by transmission

measurements, while we assign ourselves the task to find efficient solutions for

the implementation of the inverse RT, and reconstruct the imaged object. This

is strictly correct only to the extent in which transmission measurements can

yield correct attenuation line integrals: this is obviously questionable if the

object manifests strong diffuse scattering and the attenuation values are not

possible to be calculated accurately, just from the transmission values.

The RT treatment in this chapter refers to parallel beams, but it is applicable

also to other geometries (e.g. fan beams), by applying a few mathematical

manipulations. It is also worth noting that in Chapter 4 the forward RT model
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will be used independently of the acquisition procedure: it will allow the

calculation of the block-tile supports and optimise the image reconstruction.

The mathematical formalism of the RT and FST is developed in polar

coordinates, which allows to exploit the filtering concept. The Jacobian of

coordinate change appears in the inverse RT integral, which can now be

interpreted as convolution between the object and a filter, since it contains the

product between two Fourier images. This gives rise to the argument that a

variety of filtering options can be deployed to account for constraints and

specific object characteristics. The FST is a popular means to estimate the

inverse RT. However, since in reality all forward RT datasets represent only a

sample of the RT, the FST delivers reconstruction quality which is a function of

the sampling parameters.

We take advantage of an essential aspect of the FST, namely that it can be

applied as a mathematical formalism to a variety of objects, including their

possible partial representations, such as wavelet and scaling coefficients. This

will be exploited in Chapter 4
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Chapter 3

The Wavelet Transform

The WT can be thought as an extension of the FT, which can be employed for

the analysis of non-stationary signals (Figure 3.1). The main characteristic of a

non-stationary signal is the presence of abrupt frequency changes along its

lifespan, feature for which the FT results to be inadequate. Non-stationary

signals demand information not only about the frequency components of a

signal, but also about the time at which these components are emitted. When

applying FT to a signal, time information is not lost, but deeply hidden within

the phases shifts of sines and cosines that represent different moments of the

signal. The phases shifts of sine and cosines cause components to amplify or

cancel each other, making it impossible to extract accurate time information.
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Figure 3.1: The Inefficiency of the FT to represent Non-Stationary Signals.
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3.1 The Short-Time Fourier Transform

A precedent in the realisation of the WT was the practical approach proposed

by Dennis Gabor in 1946 [97]. In the literature, Gabor’s model is given different

names: Short-Time Fourier Transform (STFT), Windowed Fourier

Transform (WFT) and Gabor Transform (GT). In order to review the STFT, it

is important to highlight first the mathematical expression for the FT through

Equation 3.1, in which a signal under analysis f(t), is entirely correlated with

an infinite number of sines and cosines at different frequencies.

F (ω) = F [f(t)] =

∞∫
−∞

f(t)e−iωtdt. (3.1)

Conversely to the FT, in the STFT the signal f(t) is split into segments of time

before being correlated with small oscillating functions, at different

frequencies [98]. The size of the time segments, as well as the support of the

oscillating functions, are defined through a fixed-size window function w(t).

F (ω, τ) = ST F [f(t)] =

∫
t

[f(t) · w(τ − t)]e−iωtdt. (3.2)

The window function w(t) is then shifted to analyse the original signal segment

by segment, and hence keep record of involved frequency components happening

at certain intervals of time.

Figure 3.2: The Short-Time Fourier Transform [99].

Although the STFT is able to provide time-frequency information about a

signal, the fixed size of the w(t) imposes a compromise that makes the method
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suitable only for some cases. If the width of the window w(t) is defined to be

very narrow, high frequency events within the analysed signal will be located;

however, the window function will not be wide enough to register low frequency

portions of the signal. In this case, the analysis data will provide have a good

time resolution, but poor frequency resolution. This is shown below in Figure

3.3.

Figure 3.3: Small w(t), Good Time Resolution [100].

In the opposite case, if the window function w(t) is chosen to be wide, time

resolution will not be sharp enough to locate brief change events, but a wider

frequency spectre will be covered. In this case, analysis data will be able to

provide a good frequency resolution, but will result with a poor time resolution.

This is shown below in Figure 3.4.

Figure 3.4: Wide w(t), Good Frequency Resolution [100].

Therefore, due to the time-frequency resolution compromise shown in the

STFT, the WT arose as the alternative predilection, for the analysis of

non-stationary signals.
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3.2 The Continuous Wavelet Transform

Similar ideas to the WT date back from as early as the beginning of the last

century, when the mathematician Alfréd Haar constructed the Haar

orthonormal basis [101]. Years after, again in the Mathematics field, Littlewood

and Paley developed a wavelet-like framework applied to the study of

trigonometric series [102]. Physics was not an exception and the

re-normalisation work developed by Kenneth Wilson [103] is also considered

part of the WT pecedent. In more recent times, within the field of engineering,

David Marr exposed similar ideas in Robotics [104]; Crosier, Esteban and

Galand, as well as Mintzer, did the same in Digital Signal Processing [105,106].

Despite the previously mentioned pioneering work, the realization of wavelets as

a unified framework is attributed to Jean Morlet and Alex Grossmann [38,107].

Jean Morlet, a geophysicist working in oil industry, informally developed

wavelets while looking for an alternative tool to be applied in oil prospecting. In

the 1960s the standard technique employed in the search of underground oil

consisted in sending vibrations to produce echo from the underground. Such

echo were analysed with the aim of gathering information about the

composition, deepness and thickness of underground layers.

Analysis of the frequency components of seismic reflected signals, were related

to the thickness of the various underground layers; high frequency components

corresponded to thin layers, while lower frequencies corresponded to wider

layers (Figure 3.5) [108].

Figure 3.5: Seismic Reflection Signals “tangle” [109].

According to the description of seismic body waves, a reflected signal is able to

bring together information from as many layers as in the order of hundreds,

where each layer corresponds to a certain frequency component interfering with

each other; this kind of signals can be clearly categorised as non-stationary

(Figure 3.1c).
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In the beginning, the FT was the method used to extract information related to

every underground layer, but later when computers became more accessible, the

STFT started to be employed. In [38, p. 26], Morlet describes that, even when

the computer technology at that time allowed intensive STFT analysis, he never

managed to access information about layers of different thicknesses. The main

cause was the STFT resolution limitation derived from the fixed size of the

window function, but moreover, Morlet also ran into the drawback that the

STFT gave no numerical way to be synthesized. To work out the STFT

resolution limitation, Morlet experimented in stretching and compressing the

width of the window function, while keeping the number of oscillations inside

constant. The experiment proved that, as opposed to the STFT (Figure 3.6),

modifying the width of the window induced a change in the frequency of

oscillations, but not the same for its shape. Because no matter if the window

function was stretched or compressed, the shape of the oscillations inward

remained nearly the same (Figure 3.7), Morlet called such kind of functions

“wavelets of constant shape” [110,111].

Figure 3.6: STFT Windowing.

(a) Stretched Wavelet. (b) Mother Wavelet. (c) Compressed Wavelet.

Figure 3.7: Wavelet Functions.

In the endeavour to convince his colleagues that his newly developed method

was a worthwhile mathematical tool, Morlet teamed up Alex Grossmann, a
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theoretical physicist who was referred from one of his student days’ friends [112].

Together, Morlet and Grossmann, mathematically validated the empirical

results previously obtained. Grossmann then constructed an inversion formula

for Morlet’s method, and for the first time introduced the term wavelet in [113].

In the Continuous Wavelet Transform (CWT), wavelet functions are derived

from a main function called mother wavelet, whose width and position are varied

in order to obtain scaled and translated versions of it. Such mother wavelet act

as a template to obtain wavelet functions, that may fit better in the analysis of

frequency components along the lifespan of a signal. In order to cover different

frequency components, the scale s is assigned with different values; s > 1 results

in the dilation of the wavelet, whilst s < 1 compresses it (e.g. Figure 3.7).

Wavelet functions ψτ,s(t) with translation τ and scale s, are derived from the

mother wavelet ψ through the following expression:

ψτ,s(t) =
1√
|s|
ψ

(
t− τ
s

)
, s, τ ∈ R, s 6= 0. (3.3)

The CWT analysis consists in the convolution between a signal x(t) and the set

of wavelet basis functions ψτ,s, to turn the single variable dependent signal x(t)

into a function Wx;ψ(τ, s) that depend on two variables, scale and translation

(i.e. time location). Therefore, through the CWT analysis, wavelet basis

functions at scales s, are shifted along the signal lifespan whilst varying the

translation parameter τ ; this way the time-frequency representation Wx;ψ(τ, s)

is built. The following expression is the CWT Wx;ψ(τ, s) of the signal x(t).

Wx;ψ(τ, s) =

∞∫
−∞

x(t)
1√
|s|
ψ∗
(
t− τ
s

)
dt. (3.4)

A way to understand the role of scale s, is to imagine it as the inverse of

frequency, thus for a wide scale s, global perception of the signal is obtained

(i.e. low frequencies), and conversely, a narrow scale s is used to get into more

detailed information of the signal (i.e. high frequencies).

In [113], Morlet and Grossmann set a precedent in the field by not only

managing to create a method capable to analyse a signal from its coarse

components to finer and finer details, but also to recover the original signal

back. In effect, the CWT is an invertible transform, which is fulfilled by the
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formula shown below (Equation 3.5). It is important to mention that because of

the high redundancy of the CWT (i.e. a one-dimensional signal is mapped into

a function that depends on two variables), different synthesis formulas are

available. Equation 3.5 is the reconstruction formula for the case in which

wavelet functions ψ are real-valued [114]. In the formula below, it is possible to

see that the integral corresponding to the scaling parameter s, is restricted to

consider only positive values.

x(t) =
2

Cψ

∞∫
0

 ∞∫
−∞

Wx(τ, s)ψτ,s(t)dτ

 ds
s2
. (3.5)

The Cψ term in the inverse CWT is the admissibility constant, which is the

result of an imposed requirement to any ψ ∈ L2(R) function, that if fulfilled can

be considered as a mother wavelet [115]. Such requirement is referred to as the

admissibility condition, shown below:

0 < Cψ =

∞∫
−∞

|Ψ(ω)|
|ω|

dω <∞, (3.6)

where Ψ is the FT of function ψ. The importance of the admissibility condition

rely in that its fulfilment, assure that the energy of the analysed signal x(t) is

preserved by the CWT [115]. However, to achieve perfect reconstruction, the

transform is required to analyse a signal at all possible resolutions and displace

the wavelet functions by all values. Such a characteristic showed that the

method was not yet suitable for practical applications, its computation was slow

and painful, and it was necessary to study the transformed signal at

intermediate resolutions; the process was redundant.

Although, such redundancy can be exploited in certain cases, as it makes a lot

easier to interpret results and outline conclusions from collected data.

Redundant data is useless for applications that require to compress data, but

useful for applications in which the main objective is to find patterns within

hidden information. Redundancy is also known to give more freedom in

choosing the wavelet function to be employed in the CWT analysis [114].
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3.3 The Discrete Wavelet Transform

Yves Meyer, who was a mathematician immersed in the mathematics of

wavelets, had the belief that redundancy was something unavoidable in the task

of obtaining a sufficiently local time-frequency representation of a signal. To

prove his conviction, Meyer worked in demonstrating that orthogonal wavelets

did not exist, but he failed. Contrary to his hypothesis, and for the benefit of

the study field, Meyer ended up constructing the orthogonal wavelet function

that he previously denied [116]. Meyer’s discovery implied that decomposing a

signal in an orthogonal wavelet basis, provided a representation with as many

points as the signal itself, so redundancy could be avoided.

Although orthogonal wavelets are much more difficult to construct, they are

considerable more liable to achieve fast algorithms [38, p. 125]. Orthogonal

wavelets are a special case of discrete wavelet functions, whose scale and

translation parameters s and τ , receive discrete values that differ by a power of

two (i.e. dyadic).

ψi,k(t) =
1√
sk0
ψ

(
t− iτ0

sk0

)
, with i and k dyadic, (3.7)

where s0 and τ0 are initial scale and translation, which give the starting point

for the transform analysis, as well as make it possible to speed up the calculation

of wavelet coefficients W . These kind of wavelet functions turns the CWT to a

different transform framework, the Discrete Wavelet Transform (DWT) [117].

Wx;ψ(τ i0, s
k
0) =

∞∫
−∞

x(t)ψ∗i,k(t)dt. (3.8)

Orthogonal wavelets have also a direct implication in the synthesis of the DWT

when avoiding redundancy in wavelet signal analysis. By employing orthogonal

basis functions, the original signal can be recovered simply by accumulating the

scalar products between wavelet coefficients and wavelet basis functions.

x(t) =
∑
τ i0

∑
sk0

Wx(τ
i
0, s

k
0)ψi,k(t). (3.9)

The work initiated by Morlet, mathematically validated by Grossmann and
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improved by Meyer, turned into an easy to compute discrete orthogonal

transform, considered concise and that allowed perfect reconstruction.

3.4 The Fast Wavelet Transform

As previously reviewed, the pioneering work developed by Morlet and

Grossmann set the precedent in the development of the WT. A few years later,

Meyer improved such foundations by creating an orthogonal wavelet function,

and managed to drive the WT towards a practical implementation. Around the

middle of the 1980s, under a different perspective, Stéphane Mallat proposed a

different framework for the computation of the DWT; the FWT [37].

Mallat envisioned that what mathematicians were doing with wavelets at that

time was the same thing that engineers and researchers in the fields of signal

and image processing were doing, but under different names. The most clear

example was that multiresolution processing of images was already used to

obtain a better representation of information within images [118–121]. More

specifically in pattern recognition, where the analysis of signals was performed

by separating information in a hierarchical way; from a coarse resolution (i.e.

larger structures that define the image context) to gradually finer resolutions

(i.e. containing fine details of the image) [118,122].

The pyramidal hierarchical model of Burt and Adelson, and Crowley, for the

computation of images at different resolutions [123,124], as well as the

Quadrature Mirror Filtering (QMF) of Esteban and Galand, for speech subband

coding [125], attracted Mallat’s interest in the development of the

multiresolution theory presented in [37], and that gave the necessary support for

the creation of the FWT.

In Burt and Adelson’s model, the computation of multiresolution details is

simplified by imposing a dyadic resolution step. At every resolution level 2j,

details are obtained through the filtering of the original image (i.e. base image).

Such filtering consists in the difference of two low-pass filters, which is followed

by a subsampling by a factor of 2j. The filtering and subsampling operations

are dependent on the desired finite resolution. The resulting details, which

represent data at different resolution levels j, are arranged into a pyramid

structure called Laplacian Pyramid (Figure 3.8) [123].
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Figure 3.8: Pyramidal Image Structure.

In [37], Mallat reviewed the pyramidal algorithm and identified two main

difficulties in its implementation: the first one is related to the correlation

between resolution levels in the pyramidal separated data. Such correlation

lacks of a clear model to deal with, so it is difficult to identify if similarities

between image details at different resolution steps, are a consequence of the

image properties or arise from the representation redundancy. The second

difficulty that Mallat found, was that the algorithm does not allow any spatial

orientation selectivity during the decomposition process. This difficulty was

interpreted by Mallat as spatial homogeneity, which is a limitation for pattern

recognition applications.

The QMF model of Esteban and Galand was developed with the aim of

improving the signal to noise ratio of speech signals for digital telephony. More

specifically, in [125], the authors propose a model to avoid the aliasing effects

that derive from the sampling decimation when a signal is divided into

subbands, during speech processing. Such model consists of an arrangement of

mirror half-band low-pass filters, associated with decimation/interpolation

techniques (i.e. subsampling and upsampling).

Figure 3.9 shows the QMF, where H1 is a half-band low-pas filter and H2 its

corresponding half-band mirror filter. Such filters split the sampled input signal

x(n) into low and high half-bands x1(n) and x2(n) respectively. As the new

frequency of each component is half the bandwidth of the original signal, they

can be subsampled by means of the Nyquist theorem, by keeping one sample

out of two. Output signals are denoted by y1(n) and y2(n).
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The inverse process is performed by interpolating zero values in-between

samples of signals y1(n) and y2(n), and filtering by K1 and K2. The resulting

signals t1(n) and t2(n) are finally converged into the output signal s(n).

Figure 3.9: Subband Filter Bank.

In the proposed QMF, Esteban and Galand not only managed to improve the

signal to noise ratio of subband coded images, but also demonstrated that their

model was able to reconstruct quasi-exact signals without using sophisticated

filters [125].

Mallat’s multiresolution theory managed to unify the three reviewed

approaches [126]; the filtering techniques of the QMF applied to speech

processing [125], the pyramidal image processing [123,124], as well as the

orthogonal wavelet basis discovered by Meyer [116].

The FWT resembles to the subband filter bank for QMF shown in Figure 3.9, in

the sense in which, using wavelets to analyse a signal at different resolutions,

can be viewed as a repetitive action of filtering the signal, whilst using wide

wavelets to remove everything, but low frequency components, and using narrow

wavelets to filter out everything, but high frequency components [38, 127].

High-pass filtering is associated with the wavelet function and low-pass filtering

is associated with the scaling function. This is illustrated in Figure 3.10.

68



Figure 3.10: Subband Frequency Decomposition.

The influence of Burt and Adelson’s pyramidal algorithm in the FWT, can be

noticed in the role that the scaling function (low-pass filtering) has for the

analysis of a signal at different resolutions. Although, in the pyramidal model,

the original signal is always the input of the algorithm, no matter what the

desired resolution level is. Conversely, in the FWT analysis, the original signal

is the input only for the initial resolution decomposition step (i.e. finer

resolution), and coarser resolutions are obtained iteratively by taking the

scaling function output (i.e. low-pass filter output), at each level, as the input

for the next iteration. In the FWT, resolution levels are therefore computed

from fine to coarse. As expressed in [38, p. 154], in the language of wavelets,

one can think of the scaling function as the responsible to obtain a version of

the input signal at half resolution; in signal processing language, the input

signal is low-pass filtered and the result subsampled.

The first step in the analysis FWT consists in decomposing an input discrete

signal into two parts: a signal containing the low frequency components

(approximations), and a signal containing high frequency components (details).

Low frequency components are obtained through the convolution between the

input signal x(n) and low-pass filter hs(n), and high frequency components

through the convolution between x(n) and the high-pass filter hψ(n). After

filtering, the bandwidth of the resulting signals, in comparison with the original

signal, is reduced by half. By means of Nyquist theorem, such signals can be

represented without any loss, with as half as many samples. Filtered signals are

therefore subsampled by a factor of two.

Ws(k) = hs(n) ∗ x(n) ↓n=2k, k≥0 . (3.10)
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Wψ(k) = hψ(n) ∗ x(n) ↓n=2k, k≥0 . (3.11)

Filtered and subsampled signals Ws(k) and Wψ(k), are approximations and

details wavelet coefficients. Approximations is the name given to the lower

frequency signal, which is a somewhat smooth version of the original signal.

The high frequency part of the wavelet decomposition is known as details, and

is the signal associated with the finishing touches and/or fluctuations that

would have to be added to the approximations to recover the original signal.

Approximations and details are separated through the analysis filter bank

shown in Figure 3.11.

Figure 3.11: FWT Analysis Filter Bank.

In the second step, wavelet coefficients Wψ1(k) that encode the calculated

details (i.e. high frequencies), are saved and the procedure of filtering and

subsampling is repeated, but with the approximations Ws1(k) as the new input.

Approximations are then divided into two more parts: new approximations

Ws2(k) representing even lower frequencies, and new details Wψ2(k) twice as big

as the previously obtained. Both Ws2(k) and Wψ2(k) are a quarter the resolution

of the original signal x(n). Figure 3.12 shows the filters and subsamplers

arrangement for a two level decomposition analysis.

Figure 3.12: FWT Analysis Filter Bank for a Two-Level Resolution
Decomposition.
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An example showing the decomposition of a real signal is shown below. The top

signal is the original signal x(n), which is the input for a two-level resolution

FWT analysis, as the one shown in Figure 3.12. Signals shown in Figures 3.13b

and 3.13c are the resulting wavelet coefficients (i.e. details). The signal shown

in Figure 3.13d contain all the remaining low frequencies (i.e. approximations).
x
(n

)

n

(a) Input Signal x(n).

W
ψ
1
(k

)

k

(b) Details Wψ1(k) at Resolution Step 1.

W
ψ
2
(k

)

k

(c) Details Wψ2(k) at Resolution Step 2.

W
s
2
(k

)

k

(d) Remaining Approximations Ws2(k).

Figure 3.13: Wavelet Analysis Example for a Two-Level Resolution Decomposi-
tion.
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Analysis iterations are performed based on the required resolution levels, or up

to eventually smooth the original signal out of existence. For the latter case, all

the information will be encoded by the wavelet coefficients (details), which will

be classified in terms of its corresponding resolution step. If analysis is stopped

before the signal dies out, all the remaining information will be encoded by the

scaling coefficient (i.e. approximations). Every iteration involve half as many

signal samples (Figure 3.14), so the FWT analysis computation becomes twice

as fast at every resolution step.

Figure 3.14: FWT Multiresolution Frequency Decomposition.

As it must be expected, the FWT is as well an invertible transform. The

synthesis of signal x(n) from its corresponding details Wψ(k), and

approximations Ws(k) can be formulated as the inverse FWT. In such

formulation, filters are time reversed versions of the analysis counterpart, and

subsamplers turn to upsamplers.

Wsj−1
(k) = hs(−n) ∗Wsj(k) ↑2k . (3.12)

Wψj−1
(k) = hψ(−n) ∗Wψj(k) ↑2k . (3.13)

Equations 3.12 and 3.13 resemble to the synthesis part of the filter bank

previously shown in Figure 3.9, where filtered signals are reverse filtered and

converged to recover the original signal.

x(n) = hs(−n) ∗Wsj(k) ↑2k + hψ(−n) ∗Wψj(k) ↑2k . (3.14)
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The calculation of the inverse FWT begins with the upsampling of the details

and approximations coefficients Wψj(k) and Wsj(k) to yield signals with double

the number of samples as its nearer upper resolution. Upsampled signals are

then convolved with the reverse filters hψ(−n) and hs(−n), and the resulting

signals added to obtain x(n). This is illustrated below in Figure 3.15.

Figure 3.15: FWT Synthesis Filter Bank.

For the inverse FWT computation from multiresolution coefficients, the process

is again forward counterpart to the multiresolution analysis (Figure 3.16).

Approximations and detail coefficients, at a certain resolution, are upsampled

and reverse filtered to yield the approximations coefficient at one step higher in

resolution. Such a procedure is iteratively repeated up to recover the original

signal, which is at the higher resolution.

Figure 3.16: FWT Synthesis Filter Bank for a Two-Level Resolution
Decomposition.

It is important to mention that the existence of the FWT depends on the

availability of a scaling function, as well as the orthogonality of both basis

functions, scaling and wavelets. An alternative case are the biorthogonal basis

functions, which synthesis functions are not time reversed versions of the

analysis filters, but can also provide exact reconstruction, just as the orthogonal

basis functions [127].
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As previously mentioned along this review, Mallat manage to merge concepts

that were typical of a different framework with the Meyer’s DWT scheme. At

that time, Mallat employed filters that belonged to Meyer and Battle-Lemarié

orthogonal basis, which were infinite functions that he truncated to achieve

direct implementation into its FWT scheme [112]. In order to avoid the

undesired effects caused by the function’s truncation, Daubechies proposed a

new form of orthogonal finite wavelet basis functions with compact support, as

the ones previously shown in Figure 3.7 [128]. The addition of Daubechies’

compactly supported wavelets to the FWT made it possible to obtain a

time-frequency representation of a signal with ease and accuracy.

The time and frequency information are usually considered as inverse domains,

when representing signals (i.e. functions). By means of the Uncertainty

Principle [38], it is not possible to simultaneously obtain information about time

and frequencies components of a signal, although compactly supported

(well-localised) functions like the ones proposed by Daubechies, made it possible

to analyse signals at different resolutions, either in frequency or time. Figure

3.17 shows the time-frequency tiles for a delta function for wavelet orthogonal

basis, where each tile represent equally portions of the time-frequency

plane [127].

Figure 3.17: FWT Time-Frequency Plane.

Daubechies wavelet basis adapt automatically to signal components, wide

wavelets perform better in localising frequency and very narrow wavelets

perform better in localising time. Such behaviour of wavelets can be seen by
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looking at the time-frequency plane in Figure 3.17: at high frequencies, the

width of tiles is smaller, which means that the time resolution is better.

Conversely, at low frequencies, the tiles’ width gets bigger, so frequency

resolution is better [127, p.386]. Although the time-frequency resolution

compromise may look as a limitation, the WT has been proved to perform

perfectly for a wide range of applications.

3.5 The 2D Fast Wavelet Transform

The two-dimensional FWT is a direct generalisation of the one-dimensional

scheme, previously reviewed in Section 3.4. In this two-dimensional version,

three wavelet functions and one scaling function are required. Wavelet functions

are obtained through separable products between the scaling and wavelet

functions s and ψ [129, p.244]. Wavelet functions ψ(n,m), are used to measure

high frequency variations along different directions: horizontal, vertical and

diagonal.

ψH(n,m) = s(n)ψ(m) Horizontal.

ψV (n,m) = ψ(n)s(m) Vertical.

ψD(n,m) = ψ(n)ψ(m) Diagonal.

(3.15)

The scaling function s(n,m) is obtained through the separable product between

scaling functions along x and y axis.

s(n,m) = s(n)s(m). (3.16)

In the two-dimensional FWT, the analysis filter bank is built by using three

one-dimensional mirror filters, which configuration match with the separable

products for each of the wavelet and scaling functions, and subsamplers either

relevant across rows or columns. The output of the two-dimensional FWT,

consists of three details and one approximations coefficients. Each one of these

four different output coefficients, present different enhanced characteristics.

Figure 3.18 shows the analysis filter bank for the two-dimensional FWT.

In the two-dimensional FWT filter bank, output wavelet coefficients WH
Ψ (m,n),

W V
Ψ (m,n), and WD

Ψ (m,n), refer to the high frequency components (i.e. details)

along horizontal, vertical and diagonal directions. The scaling output coefficient
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Figure 3.18: Two-Dimensional FWT Analysis Filter Bank.

Ws(m,n) corresponds to the low frequency components (i.e. approximations),

which are present overall the two-dimensional signal.

Ws(k, l) = hs(m) ∗ [x(n,m) ∗ hs(n) ↓n=2k] ↓m=2k,

WH
ψ (k, l) = hψ(m) ∗ [x(n,m) ∗ hs(n) ↓n=2k] ↓m=2k,

W V
ψ (k, l) = hs(m) ∗ [x(n,m) ∗ hψ(n) ↓n=2k] ↓m=2k,

WD
ψ (k, l) = hψ(m) ∗ [x(n,m) ∗ hψ(n) ↓n=2k] ↓m=2k .

(3.17)

An example of a two-dimensional FWT analysis applied to lena, is shown in

Figure 3.19 to visualise the characteristics enhanced by every output coefficient.

The approximations coefficient image displays very similar information to the

input image, which means that the low frequency components of the input

signal, contain most of the information. The detail coefficients, represent the

high frequency components that can be seen as traces in every different

direction. As in the two-dimensional FWT, output coefficients are subsampled

by a factor of 2, so every coefficient is half the size of the input signal.
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(a) Two-Dimensional Input Signal lena.

(b) Approximations. (c) Horizontal Details.

(d) Vertical Details. (e) Diagonal Details.

Figure 3.19: Two-Dimensional FWT Analysis.

Similarly to the one-dimensional case, a multiresolution representation can also

be achieved by iterating the analysis procedure, whilst saving all the detail

coefficients that result at every resolution step, and employing the resulting

approximations coefficient, at the current resolution, as the input for a new

resolution decomposition. The filter bank for a two-step decomposition is shown

in Figure 3.20.

Figure 3.20: Two-Dimensional FWT Synthesis Filter Bank for a Two-Level
Resolution Decomposition.

Figure 3.21 shows the size of the resulting coefficient images for a three-step

decomposition.
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Figure 3.21: Three-Level Decomposition Coefficient Images.

Similarly to the one-dimensional scheme, the two-dimensional FWT is as well

invertible. Synthesis is simply performed by the filter bank arranged in a

backwards form, where the coefficients are now the inputs to a filter bank built

by upsamplers and reverse filters. In the same way as in the one-dimensional

FWT, synthesis from a multiresolution set of coefficient details and

approximations, is performed iteratively. Figure 3.22 shows the filter bank for

the inverse two-dimensional FWT.

Figure 3.22: Two-Dimensional FWT Synthesis Filter Bank.

As mentioned at the beginning of this section, the two-dimensional

implementation of the FWT is simply achieved through the rearrangement of
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the one-dimensional scheme configuration. The two-dimensional case, is

therefore a concise and fast transform, which is as well invertible.

3.6 The Hilbert-Huang Transform

Although the WT as a concise transform for the analysis of non-stationary

signals is somehow new, a new alternative for the analysis of non-linear and

non-stationary signals is available. Such tool is known as the Hilbert-Huang

Transform (HHT) and is an empirical method whose basis claim to be adaptive

so that it can be employed to produce representations not only from

non-stationary signals, but also non-linear. Although the HHT has been

exhaustively validated, its capabilities to analyse non-linear signals arise at the

expense of difficulty in establishing a concise theoretical foundation. Nowadays,

many mathematical problems related to the HHT still need to be resolved. For

more information about the HHT, the reader can refer to [130].

3.7 Summary

The WT analysis of signals, allows to formulate their presentation in a range of

different scales, quantified by the respective wavelet output coefficients. This

allows to introduce the forward and inverse WT, which will be used in Chapter

4 in conjunction with the FBP reconstruction method to allow efficient parallel

block reconstruction of the approximations and details coefficients spatial

distributions. Thus the imaged object is reproduced by taking inverse WT from

the multiresolution image representations.

This scenario is possible by the adoption of the multiresolution theory, whereby

a discrete signal is processed with a QMF, comprised by a range of high/low

pass digital filters and downsamplers. The result is a decomposition of the input

signal into different resolution scale components, differing in size by a factor of

two between two neighbouring scales. Low and high pass filters (i.e. scaling

functions and wavelet functions, respectively) are convolved with the an input

signal to produce a pair of details and approximations coefficients:

approximations composed by lower frequencies, and details composed by higher

frequencies. In the two diensions three details (horizontal,vertical and diagonal)

and one approximations are obtained from separable products between both
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scaling and wavelet functions.

A representation of a certain resolution depth, can be achieved by iterating the

FWT filter bank, whilst saving all the detail coefficients that result at every

resolution step, and employing the resulting approximations coefficient at the

current resolution as the input for a new resolution decomposition.
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Chapter 4

Wavelet-Based, Multiresolution

Block Reconstruction Algorithm

As previously mentioned in this thesis, the FBP is considered as the most

important reconstruction method in Tomography. It can be found in a wide

range of applications, and is known to deliver high resolution images at great

computational efficiency [2, 12]. Although, in order to exploit all the good

characteristics that the FBP can offer, it is necessary to provide enough and

good quality projection data.

The minimisation of errors caused by the incompleteness of projection data, has

been an object of study from as early as the first CT developments, on a

constant trend to produce images with enhanced accuracy [15]. Such

developments had an impact in medical imaging, where intentionally avoiding

the acquisition of large sets of projection data, and restricting the image

reconstruction up to a localised ROI, was introduced in order to reduce radition

dose exposure [25,26].

Along the many different approaches to achieve the reconstruction of accurate

ROIs, the wavelet-based alternative is the one that motivated the development

of this work [33,34,39]. The purpose of this work is not only to accurately

perform reconstruction of a ROI, but also to achieve a fast reconstruction

algorithm while executing concurrent reconstruction of several ROIs to be

merged into a single full resolution image, by using the two-dimensional FWT.
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4.1 Computer Implementation of the Filtered

Backprojection Method

The starting point in the development of the reconstruction algorithm presented

in this thesis was the computer implementation of the FBP method, based on

the formulation given in [1, 131, p. 69].

By recalling the mathematical expression shown through Equation 2.31, from

the FBP review in Section 2.4.2.2, it can be seen that there are two main

components that characterize the method. The first one is the filtering in

Fourier domain, between projection data Rθ(s) and a weighting filter |s| to

produce the angular filtered projection Qθ(x cos θ + y sin θ) (i.e. ramp filtering).

The second one is the translating of such filtered projections to its

corresponding points ρ = (x cos θ + y sin θ), along the line integrals over the

Cartesian plane, which corresponds to the image µ(x, y) (i.e. backprojection).

µ(x, y) =

π∫
0

∞∫
−∞

Rθ(s)|s|ej2πs(x cos θ+y sin θ)dsdθ, (2.31)

Qθ(ρ) =

∞∫
−∞

Rθ(s)|s|ej2πs(x cos θ+y sin θ)ds, (2.32)

µ(x, y) =

π∫
0

Qθ(x cos θ + y sin θ)dθ. (2.33)

So far, in the mathematical formulation of the FBP reviewed in this thesis, the

projection data has been considered to be continuous, however, in order to be

able to achieve a practical implementation of the FBP method, it is required

that projection data be represented in a finite sampled form.

4.1.1 Projection Data Filtering

By looking at Equation 2.32, which refers to the inverse FT of the product

between the Fourier domain projection data R(s, θ), and the ramp filter |s|, it

can be noticed, from the integration limits, that the inverse FT is theoretically

performed over all spatial frequencies. However, for a practical implementation,

projection data must be considered to be bandlimited. If S is a frequency above
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the highest frequency component within projection data, then by the Shannon

theorem, projection data can be sampled at period τ without introducing any

error [1].

τ =
1

2S
. (4.1)

Now, by assuming that for large values of |ρ| (i.e. points along line integrals

ρ = (x cos θ + y sin θ)), projection data equals to zero, for some large value of N ,

projection data in its sampled form is:

rθ(ντ), ν =
−N

2
, · · · , 0, · · · , N

2
− 1. (4.2)

This way, the filtering of projection data expression, given by Equation 2.32,

can be approximated to the following Discrete Fourier Transform (DFT)-based

discrete from:

Qθ(ρ) ≈ 2S

N

N/2∑
ν=−N/2

Rθ

(
ν

2S

N

) ∣∣∣∣ν 2S

N

∣∣∣∣ ej2πν(2S/N)ρ (4.3)

Finally, if it is only required to obtain filtered projections Qθ(ρ) for only those

points ρ, at which projection data r(ρ, θ) is sampled, Equation 4.3 turns to:

Qθ

(
k

2S

)
≈ 2S

N

∑N/2
ν=−N/2Rθ

(
ν 2S
N

) ∣∣ν 2S
N

∣∣ ej2π(νk/N)

k = −N/2, · · · ,−1, 0, 1, · · · , N/2
(4.4)

Equation 4.4 seems suitable to be computationally implemented to calculate

filtered projection data, however according to [1], such expression is only valid

when projection data is of finite order and bandwidth. Because those

characteristics are never strictly satisfied altogether, practical implementation

based on Equation 4.4 is known to be affected by interperiod interference

artifacts [1]. A detailed explanation about such artifacts, as well as graphic

evidence of them, can be consulted in [1, p. 69].

In order to achieve a more accurate computation of the projection data filtering

component, Avinash C. Kak proposed a different approach in [131]. This

alternative implementation consists in designing a bandlimited ramp filter H(s),

whose impulse response is constructed with the same sample interval τ as

projection data rθ(ντ). The bandlimiting of ramp filter |s| to above the highest
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frequency component S, to obtain H(s), is done through:

H(s) = |s|bS(s), (4.5)

where

bS(s) =

{
1 |s| < S

0 otherwise
(4.6)

The FBP is then suggested to be implemented by using bandlimited ramp filter

in Fourier domain (i.e. transfer function) H(s). The ideal response of H(s) is

illustrated in the figure below:

Frequency Samples

511 0 511

—H(s)—

Figure 4.1: Bandlimited Ramp Filter H(s).

In order to proceed with the construction of a ramp filter with the same

sampling interval τ , as the projection data to be filtered, the impulse response

h(ρ), from the bandlimited filter’s trasnfer function H(s), must be obtained.

Consequently, by the inverse FT of H(s):

h(ρ) =

∞∫
−∞

H(s)ej2πsρds, (4.7)

which by means of sampling period τ of Equation 4.1, results in:

h(ρ) =
1

2τ 2

sin 2πρ/2τ

2πρ/2τ
− 1

4τ 2

(
sin πs/2τ

πs/2τ

)2

. (4.8)

From Equation 4.8, the sampled impulse response h(nτ) of h(ρ) is therefore
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given by:

h(nτ) =


1/4τ 2, n = 0

0, n even

− 1
n2π2τ2

, n odd.

(4.9)

The resulting function h(nτ) for −5 ≤ n ≥ 5 samples, constructed from

Equation 4.9, is shown below.

1
4τ2

− 1
π2τ2

−5τ −4τ −3τ −2τ −τ 0 τ 2τ 3τ 4τ 5τ

Figure 4.2: Sampled Ramp Filter Impulse Response h(nτ).

By having both projection data and the ramp filter in sampled form, as well as

bandlimited, a suitable expression for practical implementation of the projection

data filtering Qθ(ρ) is therefore achievable. Equation 2.32 turns to the finite

sampled Qθ(nτ) by:

Qθ(nτ) = τ

∞∑
k=−∞

h(nτ − kτ) ∗ rθ(kτ). (4.10)

The discrete convolution of Equation 4.10 is suitable to be directly implemented

in a computer, nonetheless it may be faster to be implemented in the Fourier

domain through the FFT. Finally, as suggested in [1, p.74], in order to

overcome the interperiod interference artifacts that are inherent to periodic

convolution, projection data should be zero-padded to its nearest power of two.

The Fourier domain implementation of projection data filtering is given by the

following expression, where ZP refers to zero-padding:

Qθ(nτ) = τ ·inverse FFT {[FFT rθ(nτ) with ZP] · [FFT h(nτ) with ZP]} (4.11)

Kak’s approach efficiency has been proved to be reliable while being the
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foundation in the MATLAB’s implementation of the inverse RT function:

iradon [132]. Such function has been therefore very important in the

development of the reconstruction algorithm presented in this work. The ramp

filtering design component within the iradon function code, has been partially

reproduced as shown bellow:

1 %================================================================

2 %---RAMP FILTER DESIGN-------------------------------------------

3 %================================================================

4 % bandlimited ramp filter (Eqn. 61 Chapter 3, Kak and Slaney)

5 len = length(sngrm);

6 order = max(64,2ˆnextpow2(len)); %up to the next highest ...

power of 2

7 n = 0:order; % 'order' is always even.

8 filtImpResp = zeros(1,order+1); %the bandlimited ramp's ...

impulse response vector

9 filtImpResp(1) = 1/4; % Set the DC term

10 filtImpResp(2:2:end) = -1./((pi*n(2:2:end)).ˆ2); % Set the ...

values for odd n (values for even n are 0)

11 filtImpResp = [filtImpResp filtImpResp(end-1:-1:2)];

12 %================================================================

13 %---RAMP FILTER IN THE FOURIER DOMAIN----------------------------

14 %================================================================

15 filt = 2*real(fft(filtImpResp));

16 filt = filt(1:order+1);

17 filt = [filt.' ; filt(end-1:-1:2).']; % Symmetry of the filter

Where len is the length of angular projections, which is also the number of rays

that form the angular projection.

The code that computes the filtering of projection data in Fourier domain, as

well as the inverse FFT of the result, is shown bellow.

1 %================================================================

2 %---FT OF PROJECTION DATA----------------------------------------

3 %================================================================

4 sngrm(length(filt),1) = 0; % Zero pad projections

5 ft sngrm = fft(sngrm); % fft of projections

6 %================================================================

7 %---FILTERING IN FOURIER DOMAIN----------------------------------

8 %================================================================
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9 for i = 1:length(angles)

10 filtrd sngrm(:,i) = ft sngrm(:,i).*filt;

11 end

12 %================================================================

13 %---INVERSE FFT OF FILTERED PROJECTION DATA----------------------

14 %================================================================

15 proj = real(ifft(filtrd sngrm)); % ifft of filtered ...

projections

16 proj(len+1:end,:) = []; % Truncate the filtered projections ...

to initial projection data size

where the variable proj is the output that corresponds to the set of filtered

projection data in Radon domain, that is ready to be backprojected over the

Cartesian plane to form the image. This procedure is explained in Subsection

4.1.2.

To show the accuracy of Kak’s alternative method, a reconstruction of a 256 by

256 pixels Shepp-Logan phantom [133], from 180 equispaced angular

projections, is shown in the Figure 4.3.

(a) Reconstructed Image.
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(b) Greyscale Intesity Comparison Along
Pixel Row 115.

Figure 4.3: FBP Image Reconstruction.

where Figure 4.3b is a plot corresponding to the greyscale intensity denoted by

the dotted grey line in Figure 4.3a. The grey dotted line in the plot corresponds

to the levels of the reconstructed image, whilst the black line in the background

corresponds to the levels of the input phantom. As can be seen from the

reconstruction example, Kak’s approach is able to preserve the same intensity
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levels of the input phantom.

In order to measure the quality of the reconstructed image, five different metrics

have been adopted:

• Average Error (AVERR). This metric consists simply in the difference

between the greyscale intensity value average of both the phantom and

the reconstructed image.

AV ERR =

∑
m,n |phantom(m,n)− image(m,n)|

m ∗ n
. (4.12)

• Normalised Absolute Error (NABS). This second metric is a generalization

of the AVERR, and is used to emphasize the effect of many small errors.

Moreover, this metric is invariant with scaling of the phantom. According

to [134], NABS is one of the most common metrics employed to measure

the perceived image quality. NABS is calculated as follows.

NABS =

∑
m,n |phantom(m,n)− image(m,n)|∑

m,n |phantom(m,n)|
. (4.13)

• Mean Square Error (MSE). This metric is as well very similar to the

AVERR, although in order to measure the amount by which the

reconstructed image differ from the input phantom, the MSE calculates

the difference between the average of the squares of both images. The

MSE is calculated in the following manner.

MSE =

∑
m,n |phantom(m,n)− image(m,n)|2

m ∗ n
. (4.14)

• Peak Signal to Noise Ratio (PSNR). This metric, as well as the MSE, is

commonly used to measure the quality between an original input image

and its compressed version. The PSNR employs the MSE to derive a

measure of the peak error. The lower the value of the MSE, the higher the

PSNR, and hence the better quality of the reconstructed image [135]. The

PSNR is calculated through the following equation.

PSNR = 10 log10

(
peak value2

MSE

)
. (4.15)
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• Structural Similarity Index (SSIM). The calculation of the SSIM is the

most complex among the metrics employed in this thesis. It was designed

as a more consistent metric with the human eye perception, compared

with more common metrics like the MSE and PSNR [136]. The SSIM is a

full reference metric, where the reconstructed image is compared with a

reference original image, being a unity the maximum correspondence

between both images. According to the MATLAB function [137], the

mathematical expression for the SSIM is as follows:

SSIM =
(2µpµi + C1)(2σp− i+ C2)

(µ2
p + µ2

i + C1)(σ2
p + σ2

i + C2)
, (4.16)

where µp and µi are the local mean for both the phantom and the

reconstructed image, σp and σi correspond to the standard deviation, and

σp−i to the cross-covariance for the same images. C1 and C2 are

regularization constants.

The following table show the quality analysis of reconstructed images with both

types of ramp filters: the simple discrete approximation and the one calculated

through Kak’s proposed method. For both type of reconstructed images, the

Shepp-Logan input phantom is used as reference image. Measurements are

calculated according to the previously mentioned metrics.

Type of Ramp Filter AVERR NABS MSE PSN SSIM

Approximated 1.005 8.1881 2.1303 -3.2845 0.0297
Kak’s Method 0.0174 0.1419 0.0018 27.3788 0.8663

Table 4.1: Reconstruction Quality Comparison Between the Approximated
Ramp Filter and the Kak’s Method Ramp Filter.

From the results shown in Table 4.5 it is possible to see that the quality of the

image obtained through Kak’s method is able to deliver a considerably more

accurate approximation to the input phantom image, than a simple discrete

approximation of the FBP. The computer implementation proposed by Kak has

been adopted in the development of our proposed custom algorithm.
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4.1.2 Backprojection

Backprojection is the second component in the FBP, which consists on the

mapping of all the intensity values obtained from the projection data filtering to

its corresponding grid position over the µ(x, y) plane. Backprojection was

previously defined in continuous domain through Equation 2.33 where filtered

projections in Radon domain Q(ρ, θ) are translated to its corresponding points

ρ = (x cos θ + y sin θ) along the integral lines, at different angles within the

range from 0◦ to 180◦. In discrete form, Equation 2.33 can be expressed by:

µ(x, y) =
π

K

K∑
i=1

Qθi(x cos θi + y sin θi), (4.17)

where K refers to the number of angles θi, for which projections r(ρ, θ) are

known.

In practice, more specifically in MATLAB, discrete filtered projection data

Q(ρ, θ) is usually contained within a θ-by-ρ array, which grey scale values have

to be reallocated into the µ(x, y) plane.

Figure 4.4: Projection Data Array Qθ(t).

Thus if every projection angle θi is seen as a vector, containing n ρ elements,

the task then turns to find the t location of every ρ within the θi vector, for the

given x and y. This is done through:

t = (x cos θi + y sin θi), (4.18)

where MATLAB capabilities to perform matrix operations can be exploited by

building matrices X and Y containing all required x and y values, and calculate
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an array T containing all the corresponding t indexes.

T = X · cos θ + Y · sin θ. (4.19)

The resulting array T is of the same size as µ(x, y), and is filled with the t

indexes for the given angle θi, thus T contains all the necessary information for

the mapping of ρ values into µ(x, y).

Figure 4.5: T index matrix calculation.

After calculating the T, µ(x, y) is filled with the ρ values indexed by t, at the

(x, y) location as from where t resides inside T. The procedure is repeated for

every θi and accumulated in µ(x, y) as shown in Figure 4.6.
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Figure 4.6: Backprojection.

MATLAB code for the backprojection computer implementation is shown

below, again partially reproduced from the iradon function [132].

The first section of MATLAB code, corresponds to the X and Y matrices

creation as well as to define the size of the output image.

1 %================================================================

2 %---X AND Y CARTESIAN COORDINATES ARRAYS AND MEMORY ALLOCATION---

3 %================================================================

4 N = size(out image, 1);

5 xleft = -center + 1;

6 X = (1:N) - 1 + xleft; %vector containing -center:center in ...

the x axis

7 X = repmat(X, N, 1); %matrix containing the vectors ...

mentioned above

8 ytop = center - 1;

9 Y = (N:-1:1).' - N + ytop; %vector containing center:-center ...

in the y axis

10 Y = repmat(Y, 1, N); %matrix containing the vectors ...

mentioned above

11 ctrIdx = ceil(len/2); % index of the center of the ...

projections

12 theta = pi*angles/180; %angles in radians

13 % Generate trignometric tables
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14 costheta = cos(theta);

15 sintheta = sin(theta);

16 % Allocate memory for the image

17 img = zeros(N,class(p));

The second section of code shown bellow, performs the calculation of the T

array as well as the mapping of all ρ values into the output image. This section

of code ends by accumulating the mapped image img at every angle θi within

the for loop.

1 %================================================================

2 %---BACKPROJECTION--------------------------------------------

3 %================================================================

4 for i=1:length(angles) %for every angle

5 t proj = proj(:,i);

6 T = X*costheta(i) + X*sintheta(i);

7 A = floor(T); %round t indexes to get integer indexes

8

9 img = img + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx); %fill the (x,y) plane with ...

linear interpolation and accumulate with previous angle

10 image = img*(pi/(2*length(theta))); %Normalisation of ...

intensity leves (K value in Discrete formula given by ...

Kak and Slaney)

11 end

As can be seen from the code above, the calculation of T will never result into

integer values, therefore results are rounded toward negative infinity, through

the floor function. The error added in the rounding of t values, is alleviated

with the linear interpolation as suggested by [1, p.67], done while mapping ρ

values into img (i.e. line 9 in the code above).

Although the computer implementation of the backprojection is not as complex

as the filtering of projection data, it is the most computationally expensive

component within the FBP method, so its simplification has been object of

study in the pursuit to achieve image reconstructions at higher speed rates [138].
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4.2 First Approach to Computation

Complexity Reduction of the FBP

After having achieved a successful implementation of the FBP method, the first

approach to reduce the computation complexity of the method, and hence a

faster reconstruction, was achieved by simply exploiting the symmetry of FFT

calculations in the filtering component. Fourier domain projection data R(s, θ),

as well as the ramp filter H(s) (i.e. |s| from the FBP definition expression),

involve FFT calculations in its computer implementations, therefore truncation

of such Fourier domain data, to the positive frequency spectrum, can be

exploited to reduce the amount operations involved in the filtering component,

without harming the quality of the output image.

An example in which projection data R(s, θ) and the ramp filter H(s) are

truncated for the computation of filtered projection data Q(ρ, θ), is presented

below.

Figure 4.7 shows the absolute values of Fourier domain projection data R(s, θ),

for both the full and only-positive frequency spectrum. Such data was obtained

through the FFT of a 180-angles RT, of a 256x256-pixel Shepp Logan phantom.
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(b) Positive Spectrum (0 ≤ s ≥ 512).

Figure 4.7: Absolute Values of the Fourier Domain Projection Data R(s, θ).

In order to obtain a different perspective of the data truncation, the Figure 4.8

shows the same absolute values, but only for a 90◦ slice, taken from the

previously shown projection data set R(s, θ).
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(a) Full Spectrum (−512 ≤ s ≥ 512)

s
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(b) Positive Spectrum (0 ≤ s ≥ 512).

Figure 4.8: Absolute Values of a Fourier Domain Projection Data Slice at 90◦,
Rθ90(s).

The same operation is therefore applied to the ramp filter H(s), to obtain the

function shown in Figure 4.10b, shown below:
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(a) Full Components (−512 ≤ s ≥ 512)

s

0 100 200 300 400 500

H(s)

(b) Positive Components (0 ≤ s ≥ 512).

Figure 4.9: Absolute Values of the Fourier Domain Ramp Filter H(s).

In order to produce the filtered projection data in Fourier domain Q(s, θ), a

product between Fourier domain projections R(s, θ) and ramp filter H(s) is

accomplished by only employing data in the range 0 ≤ s ≤ 512. Absolute value

plots for the resulting Q(s, θ), as well as for the 90◦ slice, are shown below:
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(a) Filtered Projection Data Q(s, θ).
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(b) Filtered Angular Projection Qθ90(s).

Figure 4.10: Filtered Projection Data from Truncated R(s, θ) and H(s).

After filtering projection data, by working only with samples within the positive

95



frequency spectrum, the negative frequency components must be added in order

to proceed with the inverse FFT calculation to obtain filtered projection data

Q(ρ, θ). The negative frequency spectrum data completion is simple achieved by

adding a reverse order and complex conjugated version of positive frequency

spectrum data. Such operation is shown below, again for the complete

projection data set R(s, θ), and for the 90◦ angular projection Rθ90(s).
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(a) Filtered Projection Data Q(s, θ).

s

500 400 300 200 100 0 100 200 300 400 500

Q90(s)

(b) Filtered Angular Projection Qθ90(s).

Figure 4.11: Complete Fourier Domain Filtered Projection Data.

At this point, the inverse FFT of filtered projection data Q(s, θ) can be carried

on, so the Radon domain projection set Q(ρ, θ) (i.e. filtered sinogram) is finally

obtained to perform backprojection. The following figure shows the filtered

sinograms obtained in both cases, from the processing of half frequency

spectrum data and from full frequency spectrum.
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(a) Filtered Sinogram from Truncated
R(s, θ) and H(s).
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(b) Filtered Sinogram from Complete
R(s, θ) and H(s).

Figure 4.12: Filtered Projection Data Q(ρ, θ).

The obtained filtered sinograms seem to be identical, as no differences are

noticeable between them. Although, to have a better description of the

96



correspondence between both approaches, images are reconstructed from both

sinograms. The following figure shows the input Shepp Logan phantom and

both reconstructed images.

(a) Input Phantom. (b) Image from Full
Spectrum Filtering.

(c) Image from Half
Spectrum Filtering.

Figure 4.13: Input Phantom and Reconstructed Images Comparison.

Again, as in the case of the filtered sinograms, reconstructed images show no

difference either in intensity levels and structure. To have a more certain sense

about the possible differences between both approaches, the intensity levels of

corresponding to the row y = 155 is plotted for both reconstructed images,

compared with the input phantom. In both plots, the black line corresponds to

the phantom pixel row, while the grey dotted lines correspond to the

reconstructed images.
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(a) Pixel Row Plot from Full Spectrum.
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(b) Pixel Row Plot from Half Spectrum.

Figure 4.14: Greyscale Intensity Levels along Row y = 155.

It can be noticed from the comparison between plots, presented in Figure 4.14,

that the reconstructed images obtained from both half and full frequency
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spectrum filtering, behave in identical manner.

The following table show numerical results about the quality of both

reconstructions by taking the input phantom as reference image.

Considered Frequency Spectrum AVERR NABS MSE PSN SSIM

Full 0.0174 0.1419 0.0018 27.3788 0.8663
Half 0.0174 0.1419 0.0018 27.3788 0.8663

Table 4.2: Reconstruction Quality Comparison of the Full and Half Frequency
Spectrum Image Reconstructions.

As it was expected, the error of both approaches against the input phantom is

identical. The next table show the same numerical comparison between both

reconstructed images.

AVERR NABS MSE PSN SSIM

0 0 0 315.9154 0.8663

Table 4.3: Error Metrics Between Both Images Reconstructed by Considering
the Full and Half Frequency Spectrum.

As no error was found that may harm the reconstructed image, the half

frequency spectrum approach has been considered in the development of the

algorithm presented in this thesis. Although the complexity reduction here

explained, does not seem to represent a big saving in the computer

implementation of the FBP, the opposite results for the hardware

implementation, where the reduction in the utilisation of the complex

multipliers that employed in the filtering component, is traduced into the less

storage and reduced logic resources, as presented in Chapter 5.

The customisation of the MATLAB iradon function, to consider only the

positive frequency spectrum in the filtering stage of the FBP is as follows, where

the ramp filter in Fourier domain is truncated.

1 %=================================================================

2 %---RAMP FILTER IN THE FREQUENCY DOMAIN--------------------------

3 %=================================================================

4 filt = (fft(filtImpResp));

5 filt(order+2:end) = []; %Truncation of the Filter Frequency ...

Spectrum
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The same truncation is applied to the projection data in Fourier domain.

1 %=================================================================

2 %---FT OF PROJECTION DATA----------------------------------------

3 %=================================================================

4 sngrm(size(filtImpResp,2),:) = 0; % Zero pad projections

5 sngrm = sngrm';

6 for i = 1:size(sngrm,1)

7 ft sngrm(i,:) = fft(sngrm(i,:)); % fft of projections

8 end

9 ft sngrm = ft sngrm(:,1:order+1); %Truncation of Projection ...

Data Frequency Spectrum

The filtering in Fourier domain is therefore performed through the

point-to-point product between the half frequency spectrum ramp filter and

projection data. After filtering, the full frequency spectrum is completed by

adding a complex conjugated reverse order version of filtering data just

obtained.

1 %=================================================================

2 %---FILTERING IN FOURIER DOMAIN----------------------------------

3 %=================================================================

4 for i = 1:length(angles)

5 f projections(i,:) = filt.*ft sngrm(i,:); % frequency ...

domain filtering

6 end

7 f projections = [f projections ...

conj(f projections(:,end-1:-1:2))];

Finally, the inverse FFT of the full frequency spectrum filtered data is obtained,

so filtered data in Radon domain is ready to be backprojected.

1 %=================================================================

2 %---INVERSE FFT OF FILTERED PROJECTION DATA----------------------

3 %=================================================================

4 for i = 1:size(ft sngrm,1)

5 s projections(i,:) = real(ifft(f projections(i,:))); ...

%ifft of filtered projections

6 end
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7 s projections(:,(len)+1:end) = []; % Truncate the filtered ...

projections to its initial size (size of radon transformed ...

data)

8 s projections = s projections';

The reconstructed images shown in Figure 4.13, as well as the plots in Figure

4.14, were obtained by employing the custom MATLAB code just explained.

The full M-file is included in the Appendix A.2.

4.3 Wavelet-Based FBP

Since its appearance, the WT has received much interest by a wide range of

engineering as well as research communities. In Tomography, the WT has been

employed as an alternative tool to alleviate the problems associated with the

FBP reconstruction from incomplete projection data [139].

As previously discussed in Chapter 2, the sources that drive projection data to

incompleteness, can either be unintended or consciously induced. The first case

is when data incompleteness depend upon the physical set-up and/or other

restrictions in the acquisition environment. In the second case, data

incompleteness is caused with the purpose of limiting the amount of acquired

data, to a specific region. Such action is expected to result in complexity

reduction, and hence make it possible to achieve faster image

reconstructions [21,23,28–34].

Unfortunately, the FBP reconstruction method is known to be globally

dependent upon the complete set of projection data [2, 139], therefore the

limitation of angular projections (i.e. projection data truncation) to consider

only those line integrals passing over a ROI will reflect severe harming effects in

the reconstructed image. In the literature, such globally dependency of the FBP

as the inversion method of the RT is commonly referred to as

non-locality [21, 23,140].

The non-locality of the FBP method is attributed to the filtering component, in

which a ramp filter that possess a discontinuity at the origin is employed. Such

a filter causes projection data to spread its support, thus after being filtered,

projection data is no longer compactly supported (i.e. locally) [139].

According to Tim Olson and Joe DeStefano, who in [27] developed the first

Tomography numerical algorithm that involved wavelet functions, in order to
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avoid the support spread of projection data after being filtered, it is necessary

to employ basis functions whose support is essentially compact and does not

spread after filtering. Wavelets are functions that possess a small support and

can be constructed with as many zero moments as required, so its support is

essentially unchanged after being filtered [27]. For deeper details, as well as a

mathematical prove of such statement, please refer to [23,27,139].

In [27], Olson and DeStefano employed the one-dimensional WT to analyse

projection data and localise the RT, achieving to reduce the radiation exposure

whilst accurately reconstructing only a ROI. Just a few years later in [33],

Alexander H. Delaney and Yoram Bresler generalised Olson and DeStefano’s

work with the inclusion of the two-dimensional FWT. In this extended

approach, Delaney and Bresler realised that the two-dimensional WT, not only

preserves the same localisation properties of Olson-DeStefano’s approach, but

also that it naturally conducts to a multiresolution reconstruction scheme.

Both Olson-DeStefano’s and Delaney-Bresler’s approaches rely on a ROI

reconstruction framework in which the extracted local values from the

projection data set that are directly involved in the desired ROI are

complemented with a few sparse projection data, global values. That is, a

reduced amount of line integrals, that do not pass over the ROI, are required for

the proper reconstruction of such ROI.

A very similar approach that also employs the two-dimensional FWT, was

proposed in [34] by Farrokh Rashid-Farrokhi, et al., based on the attributes that

some wavelet basis functions possess, to preserve its compact support after

being ramp filtered. In contrast to Olson-DeStefano’s and Delaney-Bresler’s

approaches, in [34] the local measurements were not only extracted from the

projection data high resolution components, but also the low resolution

components are truncated. As this approach claimed to achieve higher exposure

reduction than the others. The authors referred to it as essentially local

reconstruction.

For the algorithm presented in this thesis, similarly to Delaney and Bresler’s

approach, the filtering component of the FBP reconstruction method is

generalised with the incorporation of the two-dimensional FWT.
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4.3.1 The Modified Wavelet Ramp Filter

The most noticeable feature of the wavelet-based FBP arises from the

generalisation of the filtering component, which turns the standard

reconstruction procedure from the obtaining of a single full resolution image, to

the obtaining of a set of lower resolution coefficient images. The main

contribution of such a characteristic is that the backprojection of FWT

coefficient images is performed over a reduced pixel grid, which if implemented

in parallel, results into an increase of the overall reconstruction speed. Another

benefit of the two-dimensional FWT is that a multiresolution representation of

projection data can be obtained, so by having approximations and details

images belonging to different scales, the choice to reconstruct images up to a

desired scale is available.

To explain how the FBP filtering component is modified to incorporate the

two-dimensional FWT, the mathematical expression of the FBP in its

continuous form, is once again analysed:

µ(x, y) =

π∫
0

∞∫
−∞

Rθ(s)|s|ej2πs(x cos θ+y sin θ)dsdθ, (2.31)

where the ramp filter |s| is substituted by the product between the same ramp

filter |s|, and the two-dimensional FWT wavelet and scaling functions

W [33, 34]. The wavelet-based filtering turns Equation 2.31 to:

Wcoeff (x, y) =

π∫
0

∞∫
−∞

Rθ(s) [|s| · W(s cos θ, s sin θ)] ej2πsρdsdθ. (4.20)

Equation 4.20 is the mathematical expression for the wavelet-based FBP, where

W refers to each of the two-dimensional FWT filters in Fourier domain and

polar coordinates. According to the definition of the two-dimensional FWT

reviewed in Chapter 3, filters are obtained through the separable product

between wavelet and scaling functions ψ and s, along rows and columns m and
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n.

ψH(n,m) = s(n)ψ(m) Horizontal,

ψV (n,m) = ψ(n)s(m) Vertical,

ψD(n,m) = ψ(n)ψ(m) Diagonal,

(3.15)

s(n,m) = s(n)s(m) Approximations. (3.16)

Both wavelet and scaling functions involved in the separable products shown in

Equations 3.15 and 3.16, and originally expressed in Cartesian coordinate

system, must be translated to the Fourier domain and polar coordinates in

order to match with the format of the FBP filtering component. Wavelet and

scaling functions in Fourier domain and polar coordinates are expressed by:

hs(n)→ Hs(u)→ Hs(s cos θ)

hψ(m)→ Hψ(v)→ Hψ(s sin θ)

hs(m)→ Hs(v)→ Hs(s sin θ)

hψ(n)→ Hψ(u)→ Hψ(s cos θ)

(4.21)

It is important to note that after regridding the wavelet and scaling functions to

polar coordinates, the wavelet modified ramp filters become angle dependent, so

in the wavelet-based FBP every angular projection corresponds to a specific

modified ramp filter at the same angle. The wavelet and scaling functions

separable products, to obtain two-dimensional FWT filters in Fourier domain

and polar coordinates, turns from Equations 3.15 and 3.16 to:

WH
ψ = Hs(s cos θ)Hψ(s sin θ) Horizontal,

WV
ψ = Hψ(s cos θ)Hs(s sin θ) Vertical,

WD
ψ = Hψ(s cos θ)Hψ(s sin θ) Diagonal,

(4.22)

Ws = Hs(s cos θ)Hs(s sin θ) Approximations. (4.23)

Where H,V, and D, refer to the horizontal, vertical, and diagonal directions, at

which every wavelet filter measure high frequency variations. The separable

products from Equations 4.22 and 4.23, can then be included into the filtering

component of Equation 4.20, to formulate the wavelet-based FBP. The

standard FBP image reconstruction expressed by Equation 4.20, turns then to
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the reconstruction of four different coefficient images: approximations Ws(k, l)

and details WH
ψ (k, l), W V

ψ (k, l), and WD
ψ (k, l).

Ws(k, l) =

π∫
0

∞∫
−∞

Rθ(s) [|s| · Ws] e
j2πwρdwdθ (4.24)

WH
ψ (k, l) =

π∫
0

∞∫
−∞

Rθ(s)
[
|s| · WH

ψ

]
ej2πwρdsdθ (4.25)

W V
ψ (k, l) =

π∫
0

∞∫
−∞

Rθ(s)
[
|s| · WV

ψ

]
ej2πwρdsdθ (4.26)

WD
ψ (k, l) =

π∫
0

∞∫
−∞

Rθ(s)
[
|s| · WD

ψ

]
ej2πwρdsdθ (4.27)

In a computer implementation, wavelet and scaling functions are not necessarily

required to be calculated during runtime, so if they are precomputed and stored

in memory, the inclusion of the FWT into the standard FBP, does not represent

an increase in speed and/or algorithm complexity. This is strictly accomplished

when assuming a parallel computation of output coefficient images.

In MATLAB, the computation of the wavelet filter coefficients is similarly

treated as the ramp filter previously reviewed. The first step is to choose the

wavelet basis to be employed and adapt its coefficients to the format required

for a FFT calculation, including zero-padding. In the following MATLAB code

example, the daubechies wavelet with support-5 is chosen and translated to the

Fourier domain through the FFT function.

1 %================================================================

2 %---WAVELET FILTERS----------------------------------------------

3 %=================================================================

4 [lp, hp] = wavefilter('db5', 'd'); %load analysis wavelet and ...

scaling functions

5 %low-pass filters(scaling functions)

6 lp ft1 = lp((length(lp)/2)+1:end);

7 lp ft1(order*2) = 0;

8 lp ft2 = lp(1:(length(lp)/2));

9 lp ft1((end-(length(lp ft2)))+1:end) = lp ft2;
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10 lp = lp ft1; %adjusting of the filters format and zero ...

padding for FFT

11 %high-pass filters(wavelet functions)

12 hp ft1 = hp((length(hp)/2)+1:end);

13 hp ft1(order*2) = 0;

14 hp ft2 = hp(1:(length(hp)/2));

15 hp ft1((end-(length(hp ft2)))+1:end) = hp ft2;

16 hp = hp ft1;

17 %=================================================================

18 %---FT OF WAVELET FILTERS----------------------------------------

19 %=================================================================

20 f lp = fftshift(fft(lp));

21 f hp = fftshift(fft(hp));

The wavefilter function, within the piece of code shown above, is a simple script

to call the low-pas and high-pass filter coefficients that belong to a specific

wavelet basis, and was taken from the FWT computer implementation covered

in [129]. The support-5 daubechies filters, as well as their Fourier domain

representation, calculated by using the MATLAB code example, are shown in

Figure 4.15:
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Figure 4.15: Support 5 daubechies Scaling and Wavelet functions.

The computation of the regridding from the Cartesian to polar coordinate

systems is performed as follows:

1 %=================================================================

2 %---CARTESIAN TO POLAR-------------------------------------------

3 %=================================================================

4 theta = pi*angles/180; %generate trigonometric tables

5 costheta = cos(theta);

6 sintheta = sin(theta);

7 s = -order:order-1;

8 for i=1:length(costheta)

9 uu(i,:) = costheta(i).*s;

10 vv(i,:) = sintheta(i).*s;

11 end

12 u = floor(uu)+order+1;

13 v = floor(vv)+order+1;

14 nl = f lp(u); %low-pas along rows

15 nh = f hp(u); %high-pas along rows
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16 ml = f lp(v); %low-pas along columns

17 mh = f hp(v); %high-pas along columns

18 nh(:,1:order-1) = []; %truncate Fourier domain filters to ...

19 nl(:,1:order-1) = []; %consider only positive frequencies

20 mh(:,1:order-1) = [];

21 ml(:,1:order-1) = [];

22 mh = conj(mh);

23 ml = conj(ml);

From which the Fourier domain low-pass and high-pass filters along rows and

columns, and in polar coordinates are obtained. The next figure shows the

wavelet and scaling filter coefficients in the Fourier space.

(a) Low-Pass Along Columns Hs(s sin θ). (b) High-Pass Along Columns Hψ(s sin θ).

(c) Low-Pass Along Rows Hs(s sin θ). (d) High-Pass Along Rows Hψ(s sin θ).

Figure 4.16: Wavelet and Scaling Functions in Polar Coordinates.

Those filters can then be directly used to create the two-dimensional FWT

filters, through the separable products previously shown in Equations 4.23 and

4.22.
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1 %=================================================================

2 %---2D FWT FILTERS ----------------------------------------------

3 %=================================================================

4 app filt = nl.*ml; %approximations filter

5 hor filt = nl.*mh; %horizontal details filter

6 vert filt = nh.*ml; %vertical details filter

7 diag filt = nh.*mh; %diagonal details filter

From which the following four two-dimensional filters, in Fourier domain and

polar coordinates are obtained:

(a) Approximations. (b) Horizontal Details.

(c) Vertical Details. (d) Diagonal Details.

Figure 4.17: Two Dimensional FWT Filters in Polar Coordinates.

And finally multiplied with the ramp filter to create the modified ramp filters

that are used to separate projection data into approximations and details

coefficients.

1 %=================================================================
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2 %---2D FWT RAMP FILTERS -----------------------------------------

3 %=================================================================

4 app ramp = app filt.*filt; %approximations ramp filter

5 hor filt = hor filt.*filt; %horizontal details ramp filter

6 vert filt = vert filt.*filt; %vertical details ramp filter

7 diag filt = diag filt.*filt; %diagonal details ramp filter

It is possible to see, that as predicted in [27], after being ramp filtered, wavelet

and scaling functions remained essentially unchanged. Modified ramp filters are

shown in the next figure.

(a) Approximations Ramp Filter. (b) Horizontal Details Ramp Filter.

(c) Vertical Details Ramp Filter. (d) Diagonal Details Ramp Filter.

Figure 4.18: Two Dimensional Modified Ramp Filters.

After calculating the modified ramp filter coefficients, the filtering of projection

data is performed in the same way as was described for the standard FBP, with

the difference that in this case, four different sets of filtered projection data will

be obtained. The MATLAB code shown below, demonstrates how every

wavelet-based sinogram is obtained from each of the different modified filters.
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1 %================================================================

2 %---WAVELET RAMP FILTERING IN FOURIER DOMAIN--------------------

3 %================================================================

4 for i = 1:length(angles)

5 hor filt(i,:) = ft sngrm(i,:).*hor ramp(i,:);

6 vert filt(i,:) = ft sngrm(i,:).*vert ramp(i,:);

7 diag filt(i,:) = ft sngrm(i,:).*diag ramp(i,:);

8 app filt(i,:) = ft sngrm(i,:).*app ramp(i,:);

9 end

10 %===========================negative frequencies==============

11 hor filt = [hor filt conj(hor filt(:,end-1:-1:2))];

12 vert filt = [vert filt conj(vert filt(:,end-1:-1:2))];

13 diag filt = [diag filt conj(diag filt(:,end-1:-1:2))];

14 app filt = [app filt conj(app filt(:,end-1:-1:2))];

15 %================================================================

16 %---IFFT OF FILTERED PROJECTION DATA--------------------

17 %================================================================

18 for i = 1:size(ft sngrm,1)

19 w diag(i,:) = real(ifft(diag filt(i,:)));

20 w vert(i,:) = real(ifft(vert filt(i,:)));

21 w hor(i,:) = real(ifft(hor filt(i,:)));

22 w app(i,:) = real(ifft(app filt(i,:)));

23 end

24 %removal of added data for fft

25 w diag(:,(len)+1:end) = []; %diagonal details sinogram

26 w vert(:,(len)+1:end) = []; %vertical details sinogram

27 w hor(:,(len)+1:end) = []; %horizontal details sinogram

28 w app(:,(len)+1:end) = []; %approximations sinogram

Filtered projection data results into the set of approximations and details

sinograms shown in Figure 4.19. Such figure clearly illustrates how

approximations sinogram is the only one that holds data (i.e. low frequencies)

from all of the angular projections. On the contrary, the angular projections

involved in the details sinograms (i.e. high frequencies), are not present within

the overall angular range, so the computation of a certain number of angular

projections can be discarded without affecting the quality of the reconstructed

image. This characteristic has been particularly taken into consideration for the

development of our algorithm, and will be explained in more detail in the

following subsection.
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(d) Diagonal Details Sinogram.

Figure 4.19: Two-Dimensional FWT Domain Sinograms.

The set of wavelet-based FBP filtered sinograms shown in Figure 4.19, are

ready to be used by the backprojection component to obtain the set of FWT

coefficient images.

4.3.2 Two-Dimensional FWT Coefficient Images

Backprojection

In the wavelet-based FBP, the backprojection component is computed under the

same principles as it is done in the standard version, where filtered projection

data Q(ρ, θ) is mapped to its corresponding position within the µ(x, y) plane.

Although, in the wavelet-based FBP, backprojection comprises the mapping of

four different sets of filtered projection data, to create the four two-dimensional

FWT coefficient images Ws(k, l), W
H
ψ (k, l), W V

ψ (k, l), and WD
ψ (k, l).

In the FBP, the backprojection is considered as the most demanding component

within the reconstruction method, which for very large data sets, is even

considered as a bottleneck [40]. In this section, it is once again worth
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mentioning that by definition of the FWT, after a signal is mirror filtered, its

bandwidth is reduced by half, so by means of the Shannon theorem, a FWT

filtered signal can be represented with as half as many samples than the original

signal, without compromising its integrity. For the two-dimensional FWT

analysis it was shown in Chapter 3 that after being filtered the two-dimensional

input signal is therefore subsampled along both rows and columns.

In the wavelet-based FBP, the subsampling operation of filtered data is part of

the backprojection component, which means that instead of backprojecting

filtered data over a full grid plane and subsampling performed to obtain FWT

coefficient images, backprojection is directly executed over a reduced area pixel

grid. Such pixel grid contain as half as many pixels than the input phantom, as

shown below:

Figure 4.20: Pixel Grid Subsampling.

In the computer implementation, which is essentially the same as the one

explained in Subsection 4.1.2, subsampling is accomplished during the creation

of reference X and Y, used to compute the T matrix that contain all

displacement vector indexes. The computation of T that has been defined by

Equation 4.19, is generalised to the following equation, by including subsampled

reference matrices X and Y.

T = X ↓2 · cos θ + Y ↓2 · sin θ. (4.28)

The modified MATLAB code for the creation of subsambled X and Y is simply

achieved by incorporating a subsampling factor, that along with the parameters

already defined in the previous code versions, the backprojection is manipulated

to deliver images at the required resolution. For the example shown below, the

subsampling factor has a value of 2, although for the multiresolution
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representation that follows this section, such factor will be shown to be

increased according the different scales.

1 %=================================================================

2 %---X AND Y CARTESIAN COORDINATES ARRAYS AND MEMORY ALLOCATION---

3 %=================================================================

4 % Define the x & y axes for the reconstructed image so that ...

the origin

5 % (center) is in the spot which RADON would choose.

6 N = size(p,1);

7 center = floor((N+1)/2);

8 resolution = 2; %subsampling factor

9 xleft = -center + 1;

10 x = (1:resolution:N) - 1 + xleft; %vector with -center:center ...

in the x axis

11 x = repmat(x, N/resolution, 1); %subsampled x matrix

12 ytop = center - 1;

13 y = (N:-resolution:1).' - N + ytop;

14 y = repmat(y, 1, N/resolution); %subsampled y matrix

15 ctrIdx = ceil(len/2); % index of the center of projections

16 t proj = zeros(1,size(w app,2));

17 %Memory allocation for coefficient images

18 imgd = zeros((N)/resolution,class(p));

19 imgv = zeros((N)/resolution,class(p));

20 imgh = zeros((N)/resolution,class(p));

21 imga = zeros((N)/resolution,class(p));

Another feature that arises from the inclusion of the two-dimensional FWT into

the FBP method, and briefly mentioned in the previous subsection, is that

according to the Fourier spectrum of high frequency filters (i.e. wavelet

functions), it is possible to disregard the computation of a certain number of

angular projections. This is illustrated in the next figure, where scaling and

wavelet functions are shown in the Fourier space, along with the angular range

in which angular projections is assumed to overlap with filter coefficients. In

Figure 4.21, the support of the filters within the Fourier space is ideal, which

means that high frequency filters are compactly supported and do not overlap

between each other. In a real implementation, in order to achieve a set of

compactly supported filters as the ones shown in Figure 4.21, it is necessary to

employ a high order filter function constructed with a large amount of
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coefficients. The latter can result disadvantageous, as employing a high order

filter might be more demanding than disregarding a fewer amount of angular

projections.

(a) Approximations. (b) Horizontal Details.

(c) Vertical Details. (d) Diagonal Details.

Figure 4.21: Fourier Space Overlapping Between Filter Coefficients and Angular
Projections.

Coming up next, is the MATLAB implementation of the FWT coefficient

images backprojection. Another important feature of the wavelet-based FBP

algorithm, is that the backprojection of every FWT coefficient image is

computationally independent from the others, which means that it is possible to

generalise the wavelet-based FBP to a parallel computation framework.

1 %=================================================================

2 %---BACKPROJECTION----------------------------------------------

3 %=================================================================

4 %---------------approximations-------------

5 for i=1:length(theta) %backprojection involving all angles

6 t proj = w app(i,:);

7 t = x*costheta(i) + y*sintheta(i);

8 a = floor(t);

9 imga = imga + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);
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10 imagea = imga*(pi/(length(theta)));

11 end

12 %------------------horizontal--------------

13 for i=13:169 %backprojection involving angles in the range from

14 t proj = w hor(i,:); %13 to 169, of 180

15 t = x*costheta(i) + y*sintheta(i);

16 a = floor(t);

17 imgh = imgh + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);

18 imageh = imgh*(pi/(length(theta)));

19 end

20 %--------------vertical--------------------

21 for i=1:79 %1 to 9

22 t proj = w vert(i,:);

23 t = x*costheta(i) + y*sintheta(i);

24 a = floor(t);

25 imgv = imgv + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);

26 imagev = imgv*(pi/(length(theta)));

27 end

28 for i=103:180 %103 to 180

29 t proj = w vert(i,:);

30 t = x*costheta(i) + y*sintheta(i);

31 a = floor(t);

32 imgv = imgv + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);

33 imagev = imgv*(pi/(length(theta)));

34 end

35 %--------------diagonal--------------------

36 for i=8:83 %8 to 83

37 t proj = w diag(i,:);

38 t = x*costheta(i) + y*sintheta(i);

39 a = floor(t);

40 imgd = imgd + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);

41 imaged = imgd*(pi/(length(theta)));

42 end

43 for i=99:174 %99 to 174

44 t proj = w diag(i,:);

45 t = x*costheta(i) + y*sintheta(i);

46 a = floor(t);
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47 imgd = imgd + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);

48 imaged = imgd*(pi/(length(theta)));

49 end

Nonetheless, as it has been shown in the MATLAB example, the low order

support-5 daubechies filter has been employed, it could be possible to disregard

a certain amount of angular projections for the backprojection of details

coefficient images. As can be seen in the graph shown in the next figure, the

disregard of angular projections, made it possible to reduce the amount of

operations involved in backprojection, so the execution time could be reduced.

A comparison of the time spent to perform backprojection, between the

standard FBP and the wavelet-based FBP, is presented below in Figure 4.22.

0.6441 sec.

0.0655 sec. 0.0645 sec.0.0742 sec. 0.0648 sec.

Standard Approximations Horizontal Vertical Diagonal

Figure 4.22: Backprojection Execution Time Comparison.

Such time measurements were taken by using the MATLAB 2015a tic - toc

function, by using a computer with a 3.1GHz Intel Quad Core i3 processor and

4GB of RAM memory, running a 64-bit Fedora-17 distribution linux operative

system. To ensure consistency in time measurements, a single processor core

was employed and the average of ten, fifty and one hundred measurements were

taken. This same time acquisition set-up is replicated along this chapter.

The next figure shows the reconstructed FWT coefficient images, that were

obtained from the MATLAB implementation of the wavelet-based FBP

algorithm. Up to this stage of the algorithm, it is not possible to make an

evaluation of the reconstruction accuracy, although it can be seen from the
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reconstructed images, that every coefficient match the expected frequency

components: approximations containing the lower frequency components, and

details containing the high frequency components along horizontal, vertical and

diagonal directions.

(a) Approximations Image. (b) Horizontal Details Image.

(c) Vertical Details Image. (d) Diagonal Details Image.

Figure 4.23: Reconstructed Two-Dimensional FWT Coefficient Images.

As these reconstructed lower resolution images are in the wavelet domain, it is

necessary to calculate the inverse two-dimensional FWT, to obtain the final full

resolution image that would be expected from a standard FBP reconstruction.

4.3.3 Two-Dimensional Inverse FWT of Reconstructed

Coefficient Images

In contrast to the analysis two-dimensional FWT, that has to be modified in

order to match with the format of the FBP framework, the synthesis

counterpart is simply applied as its definition dictates it. That is, the inverse

two-dimensional FWT consists in first upsampling the input coefficient images,

approximations and details, along rows. Upsampled images are then reverse

filtered along columns, and the results converged in the following manner:

approximations are added with horizontal details, and vertical details are added

with diagonal details. At this stage, input coefficient images have converged up

to a couple of images, which now must be upsampled along columns.

Upsampled images are reverse filtered along rows, and the results finally

converged to yield the full resolution output image.

The synthesis process just described, is shown below in Figure 4.24, where every
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applied operation to approximations and details input images, is illustrated

along the computation of the synthesis framework.
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Images illustrating the operations involved in the inverse two-dimensional FWT,

were obtained from the MATLAB implementation presented here:

1 %=================================================================

2 %---WAVELET SYNTHESIS---------------------------------------

3 %=================================================================

4 [lp, hp] = wavefilter('db5', 'r'); %Inverse filters

5 rdiag = upsample(imaged, 2); %coefficient images upsampling

6 rvert = upsample(imagev, 2); %along rows by a factor of two

7 rhor = upsample(imageh, 2);

8 rapp = upsample(imagea, 2);

9 rdiag = conv2(rdiag, hp.', 'same'); %reverse filtering

10 rvert = conv2(rvert, lp.', 'same'); %along columns

11 higher = rdiag + rvert;

12 rhor = conv2(rhor, hp.', 'same');

13 rapp = conv2(rapp, lp.', 'same');

14 lower = rhor + rapp;

15 higher = higher.';

16 lower = lower.';

17 higher = upsample(higher, 2); %upsampling along columns

18 lower = upsample(lower, 2);

19 higher = higher.';

20 lower = lower.';

21 t lower = conv2(lower, lp, 'same'); %reverse filtering along

22 t higher = conv2(higher, hp, 'same'); %rows

23 image = (t higher + t lower); %output full resolution image

After the inverse two-dimensional FWT of the reconstructed coefficient images

has been achieved, it is possible to evaluate the accuracy of the final full

resolution output image, which in the Figure 4.25 is compared with the input

phantom. For the wavelet-based FBP image reconstruction example, the 256 by

256-pixel Shepp Logan phantom, has once again been employed.
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(a) Input Phantom. (b) Reconstructed Image.
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(c) Greyscale Intensity
Level along Row y = 155.

Figure 4.25: Comparison Between the Input Phantom and the Reconstructed
Image.

By analysing the reconstructed image, against the input phantom, it can be

implied that there are no distinctive differences, either in the intensity levels as

well as the images structure. Although, as previously done in Section 4.2, the

intensity levels of the pixel row y = 155, is plotted for both, the input phantom

and the wavelet-based FBP reconstructed image.

In the plot shown in Figure 4.25c, the black line belongs to the input phantom,

while the grey dotted line, correspond to the reconstructed image. From such

comparison, it can be shown that the wavelet-based FBP fairly preserves the

same structure of the input phantom.

Again, as applied to the reconstruction results shown in previous sections,

numerical evaluation of the reconstructed image quality is shown in the next

table by using the same metrics explained in Subsection 4.1.1. The table include

the error calculated for the reconstruction obtained through the standard FBP,

calculated in Section 4.2, and the wavelet-based approach explained in this

Section. Both by taking the input phantom as reference image.
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Method AVERR NABS MSE PSN SSIM

Standard 0.0174 0.1419 0.0018 27.3788 0.8663
Wavelet 0.0288 0.2345 0.0111 19.5354 0.7533

Table 4.4: Reconstruction Quality Comparison of the Full and Half Frequency
Spectrum Image Reconstructions.

From table 4.4, it can be seen that the inclusion of the FWT in the FBP involve

a small degradation of the reconstructed image, compared to the standard FBP.

It is appropriate to remark that, although the backprojection time of the FWT

coefficient images resulted to be considerable smaller than the standard FBP

version, as shown in Figure 4.22, the execution time of the inverse

two-dimensional FWT was not considered. By using the same methodology, the

measured time of the FWT synthesis resulted in an approximate value of 0.0048

seconds, therefore by updating the synthesis time in Figure 4.22, Figure 4.26

displays the overall time needed to backproject each of the two-dimensional

FWT coefficient images, including the synthesis time:

0.6441 sec.

0.079 sec. 0.0696 sec. 0.0703 sec. 0.0693 sec.

Standard Approximations Horizontal Vertical Diagonal

Figure 4.26: Backprojection Execution Time Comparison.

Through this simple example, it was possible to demonstrate that the inclusion

of the two-dimensional FWT into the FBP affect the accuracy of the

reconstructed image, although it is around eight times faster when assuming a

parallel image reconstruction of every FWT coefficient image. Therefore it can

be concluded that the speed gain provided by the FWT comes at the expense of

small degradation of the reconstructed image.
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4.4 Wavelet-based, Parallel Multiresolution

FBP

In the previous section, it has been explained how the inclusion of the

two-dimensional FWT can provide some improvements to the FBP image

reconstruction method. The simplification of the backprojection computation,

covered in Subsection 4.3.2, is considered the most notable. The other

highlighted benefit was the allowance to disregard a certain amount angular

projections to simplify the computation of details coefficient images. Although

the latter mentioned benefit proved to reduce the reconstruction complexity, it

is exclusive to the details coefficients and can not be applied to the

approximations. Such a statement can be verified by looking at the Fourier

space tiling of the scaling function in Figure 4.17a, which shows how it overlaps

all angular projections.

As will be seen in this section, the two-dimensional FWT decomposition of

projection data, not only into frequency components but also at different scales,

can improve the reconstruction of the approximations coefficient image.

Moreover, the multiresolution decomposition is a crucial element for the

achievement of what drove this proposed algorithm to employ the

two-dimensional FWT: the fast and accurate reconstruction of ROIs, from

truncated projection data.

4.4.1 Multiresolution Decomposition of Projection Data

As a reminiscence of what was exposed in Section 3.5, for a multiresolution

representation of an image through the analysis of the two-dimensional FWT, it

is required that such image be iteratively decomposed into a set of

two-dimensional coefficients, having half as many row and column samples than

its nearest higher resolution image coefficient. At each iteration, the output

details coefficients are saved and approximations used as the input for a new

scale decomposition. Each iteration is equivalent to a scale depth, so for a given

number of iterations, details coefficients are obtained; conversely,

approximations coefficient, is only obtained from the latest iteration (i.e. lower

resolution). The analysis the two-dimensional FWT for two scales

decomposition is shown below.
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Figure 4.27: Two-Scale Multiresolution Analysis Through Standard
Two-Dimensional FWT.

Applied to Tomography, the multiresolution two-dimensional FWT can improve

the FBP reconstruction, in the sense that at each decomposition iteration,

coefficient images are subsampled along rows and columns by a factor of two.

This means that, for projection data that has been filtered with a wavelet ramp

filter, backprojection should be performed to reduced area pixel grids, getting

smaller at each scale. The next figure shows the two scale tiling of the Fourier

space, from which it can be seen that although all angular projections must be

considered in the approximations coefficient (denoted by A2) reconstruction,

backprojection must be performed to a pixel area that is one eight of the full

resolution image size.

Figure 4.28: Fourier Space Tiling by the Two-Dimensional FWT.

Although the overall simplification of the FWT coefficient images reconstruction

seems to be achieved by the multiresolution representation, it must be remarked

that for the wavelet-based FBP reconstruction, either for a single or multiple
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resolutions, the complexity reduction is valid only when the reconstruction of

coefficient images is performed in parallel. Unfortunately, such feature do not

match with the scheme of the multiresolution FWT analysis, where details

coefficients at lower scales, are recursively obtained from higher resolution

approximations.

4.4.2 Parallel Multiresolution Decomposition of

Projection Data

In [141] Tay and Havlicek, with the purpose to achieve an orientation selective

two-dimensional FWT analysis filter bank, they experienced with the direct

implementation of the FWT in the Fourier domain. Such implementation

exhibited that subsampling could also be performed in the Fourier domain, so if

applied in the wavelet-based FBP, it could be possible to avoid the need to

perform the backprojection of the coefficient images, before applying

subsampling, in the case of a multiresolution decomposition.

According to [142, p.91], the subsampling of a Fourier domain signal X(ω) by a

factor of two, can be simply performed through:

V (ω) =
1

2

[
X
(ω

2

)
+X

(ω
2

+ π
)]
, (4.29)

which for an computer generated FFT sequence X(k), with length N , it follows:

V (k) =
1

2

[
X(k) +X

(
N

2
+ k

)]
. (4.30)

Equation 4.30 clearly accomplishes to avoid the recursive backprojection of

approximations coefficient, by allowing the subsampling in the same format in

which projection data is filtered, just before being translated back to the Radon

space domain, in order to be backprojected. Nonetheless, generating filtered

projection data at different scales still a recursive operation. Because of that

reason, subsampling in the Fourier domain results insufficiently in the pursuit to

achieve a true parallel implementation of the multiresolution wavelet-based

FBP.

In [142, p.100], it is explained how a multiresolution filter bank analysis, in its

standard form, is somehow inefficient in the sense in that subsampling follows

filtering. In other words, through a cascaded filter bank, a signal is first filtered
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and then many of its calculated components thrown away by the subsampling.

Reversing the order of such operations, either for subsampling (for the analysis)

or upsampling (for the synthesis), can be done according to the Noble

identities [141], for the Fourier implementation of multiresolution filter banks.

For the analysis case, the Noble identities state that subsampling by M and then

filtering by G(z), is equivalent to filtering by G(zM) and subsampling by M .

Figure 4.29: Subsampling Noble Identity.

For the synthesis case, filtering by G(z) and then upsampling by M , is

equivalent to upsampling by M and then filtering by G(zM).

Figure 4.30: Upsampling Noble Identity.

By making use of the Noble identities, it is therefore possible to adapt the

recursive problem to a parallel scheme. This is shown in the next example,

where the analysis filters for a three scale decomposition one dimensional filter

bank, are calculated. By preserving the notation shown in [141], analysis filters

H(z) for scales 1, 2, and 3 are calculated from low pass Fa(z) and high pass

Ga(z) Fourier domain filters.

H3(z) = Fa(z)Fa(z
2)Ga(z

4)

H2(z) = Fa(z)Ga(z
4)

H1(z) = Ga(z)

(4.31)

Synthesis filters H̃(z) for each scale, are similarly calculated from reverse low

pass and high pass filters in Fourier domain, Fs(z) and Gs(z).

H̃3(z) = Gs(z
4)Fs(z

2)Fs(z)

H̃2(z) = Gs(z
2)Fs(z)

H̃1(z) = Gs(z)

(4.32)
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The equivalent one-dimensional filter bank, for both the analysis and synthesis,

is therefore constructed as follows:

Figure 4.31: Three Scale Parallel Filter Bank [141].

By adapting the mathematical expressions, of the filter calculations shown in

Equations 4.31 and 4.32, to the notation used along this thesis, it is then

possible to express the calculation of multiresolution analysis filters Hs(u) at a

specific scale l through:

hsl(n)↔ Hsl(u) =


l−1∏
q=0

Hs(2
qu) l = 1, 2, 3, . . .

1 l = 0

(4.33)

And similarly for the synthesis filters Hψ(u), that yield to:

hψl(n)↔ Hψl(u) =

Hψ(2l−1u)Hsl−1
(u) l = 1, 2, 3, . . .

1 l = 0
(4.34)

Through this set of multiresolution filters, it is then possible to construct the

two-dimensional filters, that would allow to decompose analysis projection data

into different scales, where the backprojection of details and approximations

coefficient images can be performed in parallel. It is important to mention that

Equations 4.33 and 4.34 were taken from [33], where the authors indicate its

utilisation to obtain what they define as the nonpyramidal wavelet

decomposition.

The MATLAB implementation of the multiresolution analysis filters for a three

scale decomposition was done by using the support-5 Biorthogonal 2.4 wavelet

and scaling filters. As can be seen below, the calculation of such filters is very
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simple, and although their coefficients are calculated recursively, they are not

necessarily required to be calculated during runtime. This way, for a parallel

implementation, filter coefficients can be pre-calculated and stored in memory,

avoiding to interfere with the parallel execution of the algorithm. To avoid

redundancy in the MATLAB code implementation shown below, the FFT of the

filter Biorthogonal 2.4, is indicated through the function ft wavefilter, which

correspond also to the scale l = 1 coefficients.

1 [lp hp] = wavefilter('bior2.4', 'd');

2 %=================================================================

3 %l=1 Filters

4 %=================================================================

5 [f lp f hp] = (ft wavefilter(lp, hp, order)); %FFT of lp and hp

6 %=================================================================

7 %l=2 Filters

8 %=================================================================

9 f lp 2 = zeros(1,length(f lp));

10 f hp 2 = zeros(1,length(f lp));

11 f lp m = [f lp f lp];

12 f hp m = [f hp f hp];

13 for i =1:length(f lp)

14 f lp 2(i) = (f lp(i).*f lp m(2*i)); %l=2 scaling function

15 f hp 2(i) = (f hp m(2*i).*f lp(i)); %l=2 wavelet function

16 end

17 %=================================================================

18 %l=3 Filters

19 %=================================================================

20 f lp 3 = zeros(1,size(f lp,2));

21 f hp 3 = zeros(1,size(f lp,2));

22 f lp m 3 = [f lp m f lp m];

23 f hp m 3 = [f hp m f hp m];

24 for i =1:length(f lp)

25 f lp 3(i) = (f lp 2(i).*f lp m 3(4*i)); %l=3 scaling function

26 f hp 3(i) = (f hp m 3(4*i).*f lp 2(i)); %l=3 wavelet function

27 end

The three scale Biorthogonal 2.5 low pass and high pass filters obtained from

the MATLAB implementation are shown in Figure 4.32, where the thick black

dotted curves correspond to scale one filters, which are simply obtained through

the FFT of the impulse responses Biorthogonal 2.5 coefficients. Grey thick and
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thin curves, correspond to scales two and three low pass and high pass filters,

which were calculated according to Equation 4.33.

h
(s
)

s

500 400 300 200 100 0 100 200 300 400 500

l = 1

l = 2

l = 3

Figure 4.32: Multiresolution Low Pass and High Pass Biorthogonal 2.4 Fourier
Domain Filters.

Analogous to what was previously done with low pass and high pass filters, in

the construction of the wavelet-based FBP algorithm, multiresolution filters are

also required to be translated to the polar coordinate system. Similarly, the

separable products to yield the corresponding two-dimensional wavelet and

scaling functions, for the multiresolution scheme, is as well accomplished

through Equations 4.22 and 4.22.

As stated previously, the scaling two-dimensional filter, to yield the

approximations coefficient image, is only required for the lower resolution.

Therefore only scale-1 Biorthogonal 2.5 wavelet two-dimensional filters are

required.

(a) Horizontal. (b) Vertical. (c) Diagonal.

Figure 4.33: Scale-1 Two-dimensional Wavelet Analysis Filters.

The same assumption applies for the scale-2 wavelet two-dimensional filters.
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(a) Horizontal. (b) Vertical. (c) Diagonal.

Figure 4.34: Scale-2 Two-dimensional Wavelet Analysis Filters.

For the lower resolution (scale-3 in this example), the scaling function to obtain

the approximations coefficient image, is also calculated.

(a) Horizontal. (b) Vertical.

(c) Diagonal. (d) Approximations.

Figure 4.35: Scale-3 Two-dimensional Wavelet and Scaling Analysis Filters.

130



Figures 4.33, 4.34 and 4.35, show through a 3-scale decomposition example, how

the Fourier space is tiled by the multiresolution wavelet and scaling filters.

From such Fourier space tiling, it is then possible to realise that a true parallel

multiresolution analysis is achievable. This way, the problem of decomposing

projection data into a set of frequency components, belonging to different

scales, and in parallel, can be achieved through the application of Equations

4.33 and 4.34, derived from the Noble identities.

Applied to the Tomography reconstruction problem, multiresolution analysis

filters are incorporated to the FBP, in a similar way as they were included in the

wavelet-based FBP. The only difference is that, for the multiresolution parallel

scheme, the number of filtering components is increased according to the

number of approximations and details coefficient images, which depends upon

the chosen scale. The MATLAB code shown below, is a 3-scale decomposition

example, where projection data in Fourier domain and denoted by the variable

ft sngrm, is decomposed into nine details coefficients and one approximations.

1 %================================================================

2 %---MULTIRESOLUTION WAVELET RAMP FILTERING IN FOURIER DOMAIN----

3 %================================================================

4 hor filt = ml.*nh.*ramp filt.*ft sngrm; %scale-1 filtered data

5 vert filt = mh.*nl.*ramp filt.*ft sngrm;

6 diag filt = mh.*nh.*ramp filt.*ft sngrm;

7

8 hor filt 2 = ml 2.*nh 2.*ramp filt.*ft sngrm; %scale-2

9 vert filt 2 = mh 2.*nl 2.*ramp filt.*ft sngrm;

10 diag filt 2 = mh 2.*nh 2.*ramp filt.*ft sngrm;

11

12 hor filt 3 = ml 3.*nh 3.*ramp filt.*ft sngrm; %scale-3

13 vert filt 3 = mh 3.*nl 3.*ramp filt.*ft sngrm;

14 diag filt 3 = mh 3.*nh 3.*ramp filt.*ft sngrm;

15 app filt 3 = ml 3.*nl 3.*ramp filt.*ft sngrm;

Such difference is better illustrated in Figure 4.36, through the structure of the

parallel multiresolution FWT analysis filter bank, for the FBP reconstruction of

approximations and details coefficient images, Wsl(k, l) and Wψl(k, l). In such a

filter bank, synthesis filters are as well indicated in terms of the involved

product to create the wavelet modified ramp filters Wψl and Wsl .
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Figure 4.36: Parallel Multiresolution Analysis Filter Bank.

From the same figure, it is possible to see that not only the filtering component

involve some changes, but also the backrpojection. In the parallel

multiresolution analysis, the subsampling is performed according to the scale of

filtered data. For every scale, subsampling increases by a factor of two, so for

the 3-scale example, subsampling keeps one sample out of two in l = 1, one out

of four in l = 2 and one out eight in l = 3. If once again, the 256 by 256-pixel

Shepp Logan phantom is employed, coefficient images at l = 1 will be formed by

128 by 128 pixels, for l = 2 64 by 64-pixel images will be obtained, and 32 by

32-pixel images for l = 3.

To illustrate such differences in the MATLAB computer implementation, the

l = 2 allocation of the arrays that define the Cartesian grid, to which the

backprojection operator maps filtered projection data to form the output

coefficient images, is given by:

1 %=================================================================

2 %---X AND Y CARTESIAN ARRAYS AND MEMORY ALLOCATION FOR l=2---

3 %=================================================================

4 resolution = 4; %scale 2

5 x 2 = (1:resolution:N) - 1 + xleft;

6 x 2 = repmat(x 2, (N/resolution), 1);

7 y 2 = (N:-resolution:1).' - N + ytop;
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8 y 2 = repmat(y 2, 1, (N/resolution));

9 %Memory Allocation

10 imgd 2 = zeros((N/resolution),class(p));

11 imgv 2 = zeros((N/resolution),class(p));

12 imgh 2 = zeros((N/resolution),class(p));

where the variable resolution indicates the interval at which indexes extract the

corresponding Radon domain intensity values to form output images. Arrays

denoted by the variables imgd 2, imgv 2, and imgh 2, are the allocated memory

grids of size 64 by 64, employed to hold the pixels of the output diagonal,

vertical, and horizontal, details coefficients images. The backprojection

component for the multiresolution reconstruction, is implemented under the

same principles of the standard FBP method. For this reason, the

corresponding MATLAB code has not been included here. Although, it is

enough to indicate that the only difference with other explained FBP versions,

is the handling of the allocated memory elements defined according to the size

of each of the output coefficient images. More detail on backprojection

computer implementation has been given in Subsection 4.1.2.

To better illustrate the efficiency of the multiresolution, wavelet-based FBP

reconstruction, approximations, as well as details output coefficient images, are

brought together into Figure 4.37. Such results were obtained through the

MATLAB implementation of the parallel filter bank in Figure 4.36, which

confirms what was discussed at the beginning of this section; a parallel

multiresolution implementation allows to reduce the computation of the

approximations coefficient image, shown at the top left corner of Figure 4.37.
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Figure 4.37: Multiresolution Approximations and Details Coefficient Images.

To achieve the reconstruction of the full resolution output image (i.e. scale

l = 0), a synthesis filter bank is employed. As in the analysis counterpart, the

synthesis can also by adapted to a parallel scheme as is explained in the next

subsection.

4.4.3 Parallel Multiresolution Synthesis of

Reconstructed Coefficient Images

The synthesis counterpart of the parallel FWT analysis is achieved in a very

similar way, where the upsample Noble identities are employed. As it was shown

in Figure 4.31, the synthesis parallel scheme is simply constructed as a reverse

version of the analysis version. In the synthesis, downsamplers are substituted

by upsamplers, and multiresolution filters by reverse multiresolution filters.

Applied to the synthesis of the multiresolution wavelet-based FBP

reconstructed coefficient images, the parallel filter bank of Figure 4.31 is not

applicable. The reason why such an approach does not accomplish the required

inversion of the coefficient images, relies in the domain of the inversion filters,

which as being derived from the Noble identities, are calculated in Fourier

domain [142, p.91]. This feature does not represent a real limitation, and the

appropriate multiresolution synthesis filters can be calculated to be applied in

the required spatial domain.

134



By calculating multiresolution synthesis filters in the appropiate domain, the

parallel filter bank for the two-dimensional FWT synthesis of reconstructed,

approximations and details coefficient images, is presented in the next figure.

Figure 4.38: Parallel Multiresolution Synthesis Filter Bank.

Where WH
ψl

(k, l), W V
ψl

(k, l), and WD
ψl

(k, l), are the horizontal, vertical, and

diagonal details coefficient images. Ws3 is the approximations coefficient image,

at the lower scale 3. Upsamplers ↑ 2, ↑ 4, and ↑ 8, are applied to the rows and

columns of the input coefficients, before being reverse filtered. Reverse filtering

in the spatial domain, is then performed through the convolution between the

pair of low pass hsl and high pass hψl filters, along columns and rows of the

upsampled coefficient images. Finally, all the reverse filtered elements are

merged to yield the full resolution output image.

To explain the MATLAB implementation of the parallel multiresolution,

two-dimensional FWT, the piece of code that belongs to the computation of the

scale-3 details and approximations images synthesis is presented below. In such

code sample, lp and hp are the low and high pass filters, calculated for the scale

3. Such filters were obtained through the application of the Noble identities in

Fourier domain, and brought back to its original domain, to be used as a

sequence of scale-3 Biorthogonal2.4 wavelet and scaling filter coefficients.

1 %=================================================================

2 %---l=3 WAVELET SYNTHESIS----------------------------------------
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3 %=================================================================

4 lp = t ls 3; %Scale 3 low-pass and high-pass filters

5 hp = t hs 3;

6 rdiag 3 = upsample((imgda 3), 8, 3); %upsampling along rows

7 rvert 3 = upsample((imgva 3), 8, 3); %scale 3 equals to 1/8 ...

8 rhor 3 = upsample((imgha 3), 8, 3); %of scale 0

9 rapp 3 = upsample(imgaa 3, 8, 3);

10 rdiag 3 = rdiag 3.';

11 rvert 3 = rvert 3.';

12 rhor 3 = rhor 3.';

13 rapp 3 = rapp 3.';

14 rdiag 3 = upsample(rdiag 3, 8, 3); %upsampling along columns

15 rvert 3 = upsample(rvert 3, 8, 3);

16 rhor 3 = upsample(rhor 3, 8, 3);

17 rapp 3 = upsample(rapp 3, 8, 3);

18 rdiag 3 = rdiag 3.';

19 rvert 3 = rvert 3.';

20 rhor 3 = rhor 3.';

21 rapp 3 = rapp 3.';

22 rdiag 3 = conv2(rdiag 3, hp.', 'same'); %filtering across columns

23 rvert 3 = conv2(rvert 3, lp.', 'same');

24 rhor 3 = conv2(rhor 3, hp.', 'same');

25 rapp 3 = conv2(rapp 3, lp.', 'same');

26 rdiag 3 = conv2(rdiag 3, hp, 'same'); %filtering across rows

27 rvert 3 = conv2(rvert 3, hp, 'same');

28 rhor 3 = conv2(rhor 3, lp, 'same');

29 rapp 3 = conv2(rapp 3, lp, 'same');

30 image 3 = (rapp 3 + rdiag 3 + rvert 3 + rhor 3); %convergence ...

of filtered coefficients

The same code is replicated for scales 1 and 2, except for the synthesis of the

approximations coefficient image, which is exclusive of the lower resolution.

The example to visualise the efficiency of the multiresolution wavelet-based

FBP, started in Subsection 4.4.2, is complemented through the parallel

two-dimensional FWT synthesis of the reconstructed details and

approximations coefficient images of Figure 4.37. The full resolution output and

the input phantom, are shown in Figure 4.39, along with the plot of the pixel

row located in y = 113, to show the correspondence of grey scale intensity

levels, as well as the preservation of the image’s pixel structure.
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(a) Input Phantom. (b) Multiresolution
Reconstructed Image.
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(c) Greyscale Intensity
along Row y = 155.

Figure 4.39: Comparison Between the Input Phantom and the Multiresolution
Reconstructed Image.

Again, as shown in Figure 4.39c, it is possible to see that the reconstructed

image stills fairly preserving the structure of the input phantom, no matter that

it has been obtained from a multiresolution decomposition.

To provide more sense about the quality of the reconstructed image, the

following table shows the error values obtained from the standard, wavelet-based

and the multiresolution versions of the FBP. All of the error metrics have again

been calculated by considering the input phantom as reference image.

Method AVERR NABS MSE PSN SSIM

Standard 0.0174 0.1419 0.0018 27.3788 0.8663
Wavelet 0.0288 0.2345 0.0111 19.5354 0.7533

Multiresolution 0.0287 0.2339 0.0109 19.6235 0.7706

Table 4.5: Reconstruction Quality Comparison of the Full and Half Frequency
Spectrum Image Reconstructions.

Surprisingly, the multiresolution approach performed slightly better than the

single resolution wavelet-based version of the FBP, in terms of quality and with

around the same speed gain.

It was stated at the beginning of this section, that through the parallel

implementation of a multiresolution decomposition, the complexity reduction of

the approximations output coefficient should be achieved as well. The next
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figure shows a graph displaying the reconstruction time that each of the details

and approximations coefficient images, spent along with the parallel

two-dimensional FWT synthesis. As expected, the overall time was considerably

reduced, as compared with the standard FBP reconstruction.

0.6441sec.

0.0797sec. 0.079sec. 0.0755sec.

0.0275sec.0.0272sec.0.0275sec.0.0123sec.0.0126sec.0.0127sec.0.0126sec.

StandardHorizontal Vertical DiagonalHorizontal Vertical DiagonalHorizontal Vertical Diagonal Approximations

l = 2
l = 1

l = 3

Figure 4.40: Wavelet-based, Parallel Multiresolution Reconstruction Times.

A very similar approach, in which tomographic projection data is decomposed

into frequency components prior to perform image reconstruction, has been

proposed by Thomas Rodet and Laurent Desbat in [41]. In Rodet-Desbat’s

approach, functions that tile the Fourier space into a certain number of adjacent

squares, are calculated to be included in the filtering component of the FBP.

Through such functions, they decompose projection data into what they call

frequency channels. From every frequency channel, an image is reconstructed

through the normal backprojection operator, and subsequently merged into the

full size image. The gain in speed of Rodet-Desbat’s approach, resides in the

allowance to discard the angular projections that do not contribute to each of

the frequency-channel images, according to the tiling of the Fourier space.

Differently to the parallel multiresolution decomposition approach presented in

this thesis, Rodet-Desbat’s work does not consider the subsampling of frequency

channels during the backprojection, so no matter into how many frequency

channels projection data is decomposed, the backprojection is always performed

over a full size pixel-grid.

The parallel multiresolution wavelet-based FBP algorithm, not only allowed to

reduce the reconstruction time, but also to achieve the appropriate framework

that led us to achieve the parallel block reconstruction algorithm that is

presented in the next section, and represents the major contribution of this

thesis.
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Before concluding this section, it is appropriate to mention why the support-5

Daubechies filters were substituted by the Biorthogonal2.4, of the same support.

Both of the filters are constructed with the same number of coefficients, but

with the difference that Daubechies basis functions are asymmetric.

The implication of such characteristic relies in the calculation of the synthesis

filters for the multiresolution decomposition, which are first calculated in

Fourier domain according to the Noble identities and then translated to the

space domain to match with the reconstruction algorithm requirements.

Therefore, the appropriate symmetry of synthesis filters in space domain is

determinant in the accuracy of the reconstructed image, and can be easily

achieved by employing wavelet filters that are symmetric in nature as it is the

case for the Biorthogonal basis functions.

For the requirements of this application, symmetry was fulfilled by employing

Biorthogonal basis functions. Figure 4.41 shows the reconstruction results from

three different wavelet basis functions: Daubechies5, Symlets5 and the

Biorthogonal2.4. All of them having the same support.

Table 4.6 show the numerical values of the calculated error from the

reconstruction performed with every of the mentioned different wavelet basis.

Results clearly show that symmetric wavelet perform better.

(a) Asymmetric
Daubechies5.

(b) Near Symmetric
Symlets5.

(c) Symmetric
Biorthogonal2.4.

Figure 4.41: Comparison Between Reconstruction Accuracy by Employing
Different Wavelet Basis with Different Symmetry.
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Wavelet Basis AVERR NABS MSE PSN SSIM

Daubechies 5 0.1325 1.0799 0.0553 12.5711 0.3612
Symlets 5 0.0297 0.2417 0.0106 19.7394 0.6680

Biorthogonal 2.4 0.0287 0.2339 0.0109 19.6235 0.7706

Table 4.6: Reconstruction Quality Comparison of the Full and Half Frequency
Spectrum Image Reconstructions.

4.5 Wavelet-based, Parallel Block

Multiresolution FBP

In this section, the previously explained wavelet-based approaches, for the fast

FBP image reconstruction, are merged into the parallel algorithm that

represents the main contribution of this thesis. This algorithm is based in the

concept of the accurate reconstruction of reduced-size images, from truncated

projection data. From which along different approaches, the ones that involve

the application of WT, resulted to be the most appropriate for the fulfilling of

this work objectives.

Differently to the previously mentioned approaches, the objective of using the

WT in the development of the algorithm presented in this thesis, is not only to

achieve accurate reconstructions from truncated data, but also to exploit the

parallel multiresolution framework that the two-dimensional FWT is able to

provide.

The implementation of the algorithm proposed in this thesis, resembles the

approaches proposed by [27,33,34]. Through Olson-DeStefano’s work in [27], it

was possible to understand the non-locality of the FBP, for which the

utilization of the WT was first proposed in terms of a numerical algorithm.

Delaney and Bresler later proposed a generalised version in [33], where the

application of the WT was substituted by the two-dimensional version.

Delaney-Berler’s approach was crucial in the understanding of the

multiresolution representation of wavelet-based Tomography reconstruction. As

well as Olson-DeStefano’s approach, their work relied in the local properties of

the WT.

Farrokh Rashid-Farrokhi, et al., proposed a slightly different multiresolution

framework for local Tomography reconstruction, that relied as well in the local

properties of the WT [34]. The novelty of such approach was that, for the
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reconstruction of ROIs, truncated data was used for both low and high

resolution components of projection data.

The three different mentioned approaches, were developed by having the same

objective, which consisted in reducing the radiation dose exposure to patients in

medical applications. Therefore, they were in the pursuit of achieving accurate

resolution reconstructed images, from limited projection data. For such reason,

the amount of projection data that could be discarded, led the related research

at that time.

After having experienced with the principles of the just mentioned approaches,

it was found that for the algorithm proposed in this thesis, truncating data for

both high and low resolution components, did not have an important positive

impact in the speed enhancement, but negative in reconstruction resolution

quality. For this reason we opted for a multiresolution framework in which

projection data is decomposed up to a desired scale, being the lower one,

preserved as it is, with global measurements.

4.5.1 Projection Data Truncation

Truncation of projection data is performed with the aim of simplifying the

reconstruction problem. By splitting projection data into smaller sets of

measured values, it is intended to reduce the overall reconstruction time and

complexity, through a parallel image reconstruction implementation. Along this

description, reduced area images are interchangeably denoted as ROIs or blocks.

For the decomposition of Tomography projection data, into a set of n

constituent block areas, a simple methodology was developed. Such

methodology consists in generating synthetic phantom images, that represent an

specific ROI within the acquisition FOV. The RT of the generated image

phantom is then calculated, so the area within the Radon space, that the line

integrals belonging to the specified ROI engage, is obtained. Such area is the

support of the ROI within the Fourier space, which is handled as an image and

converted to binary pixel values. The resulting image is used as a template to

extract the relevant line integrals, needed for the reconstruction of the ROI;

more specifically, an image block. The whole procedure is exemplified in Figure

4.42.
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Figure 4.42: ROI Projection Data Truncation.

This truncation approach has been developed with the purpose of avoiding the

difficulties involved in the extraction of off-centred ROIs related projection data.

In contrast to the methodology briefly mentioned in [27], this alternative

method does not need to zero-pad the projection data set, and therefore avoids

to handle unnecessary extra data.

It is important to remark that the truncation method represents only an

alternative to extract desired data from the projection data set and that it is

implicit that truncating a projection data set will lead it to ill-posedness.

Reconstructing a ROI by considering only line integrals passing over it, is not

well defined, so no matter if data is processed by using the WT, it will always

be necessary to gather extra vicinity data [2, 27]. In the example shown in

Figure 4.43 the Shepp Logan phantom is decomposed into four constituent

blocks, where 4.43a does not gather any extra data from the vicinity, 4.43b

gathers 10%, and 4.43c gathers 20%.

(a) No Extra Data. (b) 10% of Extra Data
from the Vicinity.

(c) 20% of Extra Data
from the Vicinity.

Figure 4.43: Reconstruction from Truncated Projection Data.
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As Figure 4.43 shows, by the gathering of data from the vicinity, it is possible to

alleviate the undesired effects of data truncation, which can be clearly perceived

only by looking at the figure, without the need of any error metric. Applied to

the truncation methodology previously explained, a simple solution was to

extrapolate the block image within the synthetic phantom, so an specific extra

percentage of data could be gathered, beyond the desired ROI area.

Figure 4.44: Gathering of Extra Data Within the Vicinity.

In terms of the reconstruction procedure, gathered extra data does not

represent a considerable increase in the algorithm complexity, as although it

increases the amount of data to be processed, the backprojection component

stills being dedicated only to the area of the ROI.

In MATLAB, generating the projection data for every block, or conversely,

decomposition the projection data set into a collection of block sinograms, was

implemented in the following form for a 3-scale multiresolution example.

1 %=================================================================

2 %---REGIONS OF INTEREST------------------------------------------

3 %=================================================================

4 for i = 1:16 %block sinograms

5 filename = sprintf('templates/template 1 %d.png',i);

6 grid template{i} = (imread(filename));

7 end

8 for i = 1:4 %block sinograms

9 filename = sprintf('templates/template 2 %d.png',i);

10 grid template 2{i} = (imread(filename));

11 end

12 for j = 1:length(grid template) %data truncation for l=1

13 for i=1:size(sngrm,2)

14 sngrm roi{j}(i,:) = sngrm(:,i).*grid template{j}(:,i);
15 end
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16 end

17 for j = 1:length(grid template 2) %data truncation for l=2

18 for i=1:size(sngrm,2)

19 sngrm roi 2{j}(i,:) = ...

sngrm(:,i).*grid template 2{j}(:,i);
20 end

21 end

22 sngrm roi 3 = sngrm; %lower scale, not truncated

Where a collection of block phantoms is stored in memory, from which the RT

is calculated to create the templates that are used to extract the corresponding

data from the input phantom sinogram.

An important parameter in the decision of the number of blocks in which the

projection data set is decomposed, depends upon the number of scales. In this

algorithm, such information determines the area of the ROIs. According to

what was stated at the beginning of this chapter, the lower resolution

components are not truncated, so they determine the smaller size of ROIs

constituting the higher resolution components.

By keeping consistency with the examples shown along this chapter, a 256 by

256-pixel image is used to exemplify the block distribution. Such image is again

decomposed into three scales l = 1, l = 2 and l = 3. The expected size of the

approximations and details images, at scale l = 3, is of one eight the full

resolution image size (i.e. 32x32 pixels), so it is desired that ROIs, at scales

l = 1 and l = 2, be of that size. Scale l = 2 details coefficient images, which

from the ↓ 4 subsampling involved in the multiresolution decomposition, are

expected to be of a size equal to 64 by 64 pixels. Projection data to generate

scale l = 2 images, will therefore truncated to accomplish four 32 by 32-pixel

block images. By applying the same criteria, scale l = 1 details coefficient

images that are expected to be 128 by 128-pixel size, will be obtained from

projection data truncated to sixteen 32 by 32-pixel ROIs. Figure 4.45,

illustrates the distribution of the block images, at each scale.
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Figure 4.45: Block Distribution of Multiresolution Coefficient Images.

4.5.2 Image Reconstruction from the Wavelet-based,

Parallel Block Multiresolution FBP

The final stage in the development of the proposed algorithm is presented in

this subsection, which previously proved to achieve fast accurate reconstructions

from the inclusion of the two-dimensional FWT. Subsequently from the

addition of the parallel multiresolution decomposition features, it was possible

to split the reconstruction problem into even less complex processes. As final

improvement, it was appropriate to have experienced in exploiting the WT

capabilities to perform local reconstruction, so the algorithm was generalised to

the parallel block scheme.

The main differences of this parallel block algorithm, with the latter explained

reconstruction implementation (i.e. wavelet-based, parallel multiresolution

FBP), rely in the handling of the smaller block images, which at the beginning

are obtained through the truncation of projection data.

In order to achieve a parallel description of the algorithm, in contrast to the

previous reconstruction implementations, the sequential MATLAB code was

split into elements, chosen among those that do not rely on values obtained

during runtime, and those that do not change during the execution of the

algorithm, so can be calculated a priori. Figure 4.46 has been included to

illustrate the parallelism that can be achieved through the implementation of

this algorithm.
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Figure 4.46: Wavelet-based, Parallel Block Multiresolution FBP Algorithm.

Another feature that vary this implementation from the previous ones, is the

way in which backprojected block images are merged in the end, to fill the pixel

grid that corresponds to every details coefficient images, at a specific scale. In

MATLAB such operations did not represent any additional computation cost,

given its nature capabilities to handle data arrays, so block images were easily

tiled to form the corresponding scale details coefficient images.

1 %=================================================================

2 %---REGIONS OF INTEREST TILING-----------------------------------

3 %=================================================================

4 for j = 1 : (size(imagend,1)/4) : size(imagend,1)

5 c = 1;

6 for i = 1 : (size(imagend,1)/4) : size(imagend,1)

7 imagend((j:cc*size(imagend,1)/4),(i:c*size(imagend,1)/4)) ...

= imgd nrm{n};
8 imagenv((j:cc*size(imagenv,1)/4),(i:c*size(imagenv,1)/4)) ...

= imgv nrm{n};
9 imagenh((j:cc*size(imagenh,1)/4),(i:c*size(imagenh,1)/4)) ...

= imgh nrm{n};
10 c = c+1;

11 n = n+1;

12 end

13 cc = cc + 1;

14 end

The full MATLAB code of the Wavelet-based, Parallel Block Multiresolution
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FBP Algorithm, has been included in Appendix A.5.

In order to preserve the format shown in the explanation of the previous

reconstruction implementations, an example of the parallel block algorithm

reconstruction has been included to conclude this section. The next Figure

shows the scale l = 3 approximations and details, as well as the tiled details

images for scales l = 2 and l = 3. Scale l = 1 projection data was truncated to

sixteen blocks images, which were obtained from truncated data using block

phantoms with 30% extra data. Scale l = 2 projection data was truncated to

four blocks images, calculated from 20% extra data, block phantoms.

Figure 4.47: Tiled Block Reconstructed Multiresolution Coefficient Images.

The backprojection time of each of the block images showed to be within a very

narrow threshold, just as it was expected, as all of them have the same area.

The time measurements were performed as in the previous cases, once again

taking into account the time spent into the two-dimensional FWT synthesis.

For scales l = 1 and l = 2, the displayed time equals to the processing of a single

block, so in order to achieve such time saving in the overall reconstruction, it is

once again important to mention that a parallel implementation is required.
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0.6441sec.
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Figure 4.48: Wavelet-based, Parallel Block Multiresolution Reconstruction Time
Comparison.

The synthesis of the full size and full resolution image does not suffer any

considerable changes, compared to the parallel multiresolution approach. The

inverse FWT procedure is performed exactly the same way as it is performed

for the parallel block scheme modification. The quality results, as well as the

time results, are satisfactory. It can be seen in Table 4.7 that error is slightly

increased compared to the previous approaches (wavelet-based and

multiresolution), nonetheless reconstruction speed is dramatically improved by

achieving a full size and full resolution image reconstruction in around 48 times

faster than the standard FBP, once again by assuming a parallel computation

of the FWT coefficient images. In terms of quality, even after several

manipulations to reduce to computational load of the reconstruction method, it

was possible to recover an accurate estimation of the Shepp Logan input

phantom.
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(a) Input Phantom. (b) Parallel Block
Reconstructed Image.

G
r
e
y
s
c
a
le

I
n
t
e
n
s
it
y

L
e
v
e
l

0

0.2

0.4

0.6

0.8

1

Pixel Position

0 50 100 150 200 250

(c) Greyscale Intensity
along y = 155.

Figure 4.49: Comparison Between the Input Phantom and the Parallel Block
Reconstructed Image.

Considered Frequency Spectrum AVERR NABS MSE PSN SSIM

Standard 0.0174 0.1419 0.0018 27.3788 0.8663
Parallel Block 0.0302 0.2463 0.0110 19.5928 0.7372

Table 4.7: Reconstruction Quality Comparison of the Full and Half Frequency
Spectrum Image Reconstructions.

4.6 Summary

In this chapter the FST was applied and the inverse RT in the form of the FBP

reconstruction method, along with the two-dimnsional FWT, to achieve

decomposition of the measured projection data. While it is not trivial to

identify the FBP reconstructions as physical objects (i.e. an object density

function), they can be interpreted as a set of characteristics of a single object,

which together manifest the spatial details of the complete physical object.

Thus the spatial characteristics of the said physical object are obtained by an

inverse two-diemnsional FWT. It is worth noting that while the sampling of the

RT is determined by the measurements, the sampling of the FWT is not

experimentally dependent and therefore can be chosen in such a way that it

does not compromise the image resolution defined by the RT framework.
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The main motivation in applying the backprojection operator, not on the

projection but on the FWT transformed data, is to avoid the support spread of

projection data that is caused by the standard ramp filtering. Thus the filtering

stage of the standard FBP is extended by means of compactly supported

wavelet and scaling functions, presenting a certain amount of zero moments to

avoid the support spread of projection data after filtering.

The involvement of two-dimensional FWT into the FBP framework, is

acceptable in terms of affecting the accuracy of reconstruction. The gain in

speed, however, is of around 48 times faster, by assuming a parallel

implementation.
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Chapter 5

Hardware Implementation of the

Wavelet-Based, Multiresolution

Parallel Block Reconstruction

Algorithm

Either in Electronic or Computational Engineering, it is natural within the

design process of a wide range applications, that have the intention of being

implemented in real practice, to face the dilemma of what is the most

appropriate computing platform to be used. Such decision may depend upon

some variables that range from the affordability to employ a determined

technology, to the accomplishment of the application requirements. Through a

broad classification in terms of flexibility and performance, computer

architectures can be categorised in to three different classes: GPAs, DSAs and

ASAs [50, pp. 1-12].

A GPA is a fixed structure formed by three main elements: memory,

arithmetic-logic unit and control unit. The idea is that, through a properly

programmed control unit, any kind of operation may be computed without the

need to modify hardware elements. In GPAs, operations are performed from

instructions contained in a coded program that is loaded into memory. The

execution of every instruction is usually performed in five sequential steps, that

constitute an instruction cycle. The five steps commonly consist in: the

instruction reading from memory, the decoding of the read instruction, the

reading of needed operands to execute the instruction, the instruction execution
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with the read operands, and the storing of the obtained result into memory. In

GPAs, the execution of the coded program is performed in a sequential fashion,

instruction after instruction. GPAs are commonly built based on The Von

Neumann and Harvard architecture models [143]. The clearest example of a

GPA is the CPU.

A DSA is a kind of architecture based on the general purpose model, but with

elements adapted for a certain class of algorithms. In DSAs, the

arithmetic-logic unit is designed to execute a common set of operations

exclusive of the algorithms in the given class. The most common example of a

DSA is the Digital Signal Processor (DSP). DSPs are particularly characterised

for having an arithmetic-logic unit designed to perform floating-point

operations, as well as one or more multiply-accumulates in a single execution

cycle [144]. Because DSAs are based in the general purpose model, instructions

are as well sequentially executed.

ASAs are completely different from the previously mentioned approaches. ASAs

are designed for a defined application, and are not dependent of instruction

cycles, instead the instruction set is directly implemented in hardware in terms

of functional units, specified by the application. ASAs design belong to the

so-called Spatial Computing, in which the necessary functional units for the

application computation are available in the surface of the final device. Because

ASAs are used for dedicated implementations of a specific algorithm, they can

provide higher improvements in performance. Although, high performance is

obtained at the expense of flexibility, in as much as its design can not be

modified after being manufactured. ASAs are widely encountered within

embedded systems, as they are mainly employed in a narrow domain of

applications. ASAs are usually implemented as a single chip device: the

ASIC [50, p. 6], [145].

From the previous categorisation of computer system architectures, it is possible

to identify their importance by means of flexibility and performance. GPAs and

ASAs lie at extreme sides.

Flexibility is dominated by GPAs, because in these kind of architectures, the

application is adapted to the hardware, in order to be implemented. DSAs

share most of the flexibility capabilities, with the difference that their

application field is more specific. Although the lack of performance in GPAs

emerge from the impossibility to execute instructions in parallel, as well as from

152



the disadvantage of instruction cycles in the computation of huge sets of data.

On the opposite side lies ASAs, which high performance is feasible because, in

this kind of architecures, the hardware is designed in terms of the specified

application. ASAs flexibility is very low or even null, because they are designed

to fulfil only a determined application, and the design cannot be modified after

being manufactured [145].

For a wide class of applications, it would be ideal to have a device sharing both

the flexibility of the GPAs, as well as the performance of the ASAs. A device

capable to adapt to the application in terms of its hardware structure, and to

modify all or part of such structure at compile-time or at run-time.

Figure 5.1: Flexibility vs. Performance.

FPGAs are reconfigurable devices that allow the design of functional units that

can be executed in parallel. FPGAs not only provide high performance in an

application execution, but also the flexibility to either modify a design during

development, or upgrade an existing implementation to better match with the

application requirements. Nowadays FPGAs represent an alternative to ASICs

and GPA processors [64].

5.1 The Utilisation of Computer Architectures

in Tomography

Since the early years of Tomography development, ASICs have been developed

by Tomography companies. Although the production of ASICs is efficient, it is

also too specialised and can only be affordable by companies that target
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sufficiently large markets [51, 52].

GPAs, or more specifically Personal Computers (PCs), are commonly used by

researchers in the pursuit to experience on new algorithms and/or acquisition

geometries, as well as a preamble to a further specialised implementation. A PC

cluster is a more scalable approach to experience on parallel processing, it

consists of multiple GPAs connected by a network to work together. PC clusters

offer high performance at low cost, although they are limited by communication

speed [41].

An extension of GPAs platforms are the multicore devices that consists either

on multicore processors or GPUs. GPUs are devices created under the stream

processing paradigm [54,57]. Stream processors are the approach created to fill

the gap between flexible GPA solutions and high performance ASA approaches.

Some examples of Tomography implementations in DSAs are in [54,59–63].

For RH, although the FPGAs can not achieve the performance of ASAs, they

have been proven to be a feasible option in the parallel implementation of large

volume tomographic data image reconstruction applications [67,68,71].

5.2 FPGA Implementation of the

Wavelet-based, Muliresolution Parallel

Block Reconstruction Algorithm

In an ideal scenario, in order to achieve a hardware implementation, that would

exactly accomplish the requirements of the high-level algorithm design, it would

be necessary to employ a hardware design platform that may allow the creation

of components with a high degree of customisation. As previously mentioned,

the computer platform that may perform better in the creation specific

hardware implementations are ASAs, or more specifically, ASICs. Although for

an ASIC-based implementation, it is not only required to have a high degree of

knowledge, but also specialised Computer Aided Design (CAD) software and

production equipment. Such features make ASIC production affordable only for

a narrow field of applications, like big consumer markets, or government-funded

projects.

The closest alternative that follows ASICs, in terms of customisation, are the

FPGAs. Even though FPGAs can not achieve the full custom capability of the
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ASICs, their design cycle is simpler and involve far-less expenses; moreover,

FPGAs are reconfigurable, making them the proper alternative for testing and

prototyping [65].

In order to test with a true parallel implementation of the designed algorithm,

an FPGA-based system approach, has been developed in resemblance with the

designed MATLAB reconstruction algorithm. The objective of such

implementation, is to overcome the MATLAB inherent sequential limitation,

that was present in the high-level design of our reconstruction algorithm.

For this system, the FPGA implementation of the full algorithm has been

limited to what represents the smaller processing unit within the parallel

scheme, the processing of an angular projection. The main purpose is therefore

to carry out the design involved in the essential elements that compose a unit

that can be replicated up to the requirements of a certain application, like: the

characteristics of the input projection data set (i.e. number of angular

projections and the number of line integral per projection), and the desired

multiresolution depth, which also indicates the number of parallel block images

in which the full-resolution reconstruction procedure will be decomposed.

5.2.1 Preliminary Design Specifications

Similarly to the high-level design in MATLAB, the system design was split into

three main components: the filtering of projection data by the multiresolution

wavelet-modified ramp filters, the backprojection of filtered data, and the

inverse two-dimensional parallel FWT of coefficient images.

To make the the hardware implementation system as flexible as possible, it was

designed through a modular scheme system, where VHSIC Hardware

Description Language (VHDL) was used as the hardware description language.

For arithmetic operations, the fixed point representation was used, in order to

save resources and consequently latency.

For data values that do not depend on calculations during runtime (e.g. filter

coefficients), they have been previously calculated and translated to the

fixed-point representation, by using MATLAB. The decimal to fixed-point and

vice-versa operations, were performed through the “two’s complement binary

strings” set of functions, developed by Drew Compson, and available in

MATLAB Central [146].

The VHDL system was designed by using the Xilinx Integrated Synthesis
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Environment (ISE) Design Suite v13.4, for which the available of-the-shelf

development board, the Virtex-6 ML605, has license [147]. To validate results

and behaviour of the system components, the ISE integrated ISim simulator,

was used. The ISE CORE Generator IP, was employed for the instantiation of

pre-designed Semiconductor Intellectual Property Core (IP) modules, and the

Memory Generator to create .coe data files, that considerably ease the

pre-synthesis data loading of Read-only Memorys (ROMs) [148].

5.2.2 Wavelet-based Filtering of Projection Data, VHDL

System

The filtering of projection data component of the VHDL system, was

formulated by having the elements shown Figure 5.2 below.

Figure 5.2: Projection Data Filtering System.

Where projection data to be processed, is stored in a ROM that feeds an

IP-instantiated, FFT module. Such module is able to perform both forward and

inverse FFT, therefore it is used interchangeably for both operations. The

request to either perform a forward or inverse FFT operation is managed by two

interfaces located at the input and output of the module. The filtering

component is formed by an IP-generated complex multiplier module, and two
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ROMs that store the real and complex wavelet-modified, ramp filter coefficients.

The execution sequence of all the modules is managed by a state machine, that

comprises the control module. The output of the system is the filtered angular

projection in Radon domain, and the input to the Backprojection system.

5.2.2.1 Storage and Loading of Angular Projection Data

This component serves to store the angular projection data required to be

filtered by the system. Filtering is performed in the Fourier domain, so this

component is used to send projection data values to the FFT module. In

addition to the ROM, the component comprises an interface entity that manages

the data requests that are received from the FFT module. The RTL elements of

the projection data storage components is shown below in Figure 5.3.

Figure 5.3: Angular Projection Component.

The ROM entity is a single port memory instantiated by the CORE generator,

and filled only with non-zero values of an angular projection through a .coe file

generated by the Memory Generator. Angular projection values are generated

by the RT of the Shepp Logan phantom, in MATLAB. By non-zero values, it

means that in order to reduce storage resources, only values within the support

of the sinogram, are considered as shown in the Figure 5.4.
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Figure 5.4: Non-zero Values.

Figure 5.5 show a plot of projection data at angle θ = 8 obtained from the RT

of the 64 by 64 Shepp Logan phantom, that was employed as example to verify

the correspondence between the MATLAB algorithm and the VHDL system

implementation. Within the plot, MATLAB values are represented through the

dotted line, while the non-zero values that were loaded in the instantiated ROM

are represented through a star symbol.
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Figure 5.5: Projection Data r(ρ, 8).

The description of each of the module’s inputs and outputs is given in Table

5.1.

Port Name Direction Description

CLK Input Clock
RST Input Reset

PROJD INDEX Input Projection data memory index
LOAD PROJD Input Load projection data Enable

RFD Input Ready for data Indicator
PROJD0 RE Output Projection data requested value

PROJD LOADED Output Projection data loaded

Table 5.1: Angular Projection Module Ports Description.

As the index of the angular projection values is important to feed the FFT
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module, no matter if they are zero or not, information about the support width

of the sinogram is introduced in the memory interface, so the index can be

appropriately managed. Moreover, the memory interface also manages the

zero-padding needed by the FFT. The reset signal RST, as well as the read

enable LOAD PROJD, are managed by the state machine in the Control

module.

5.2.2.2 FFT Module

The Xilinx LogicCORE FFT module is based on the Cooley-Tukey algorithm, it

can perform both the forward and the inverse FFT. This module is

customisable to different parameters like transform sizes, and data sample and

phase factor precision. Different arithmetic representations are also available.

The module can also be customised either to maximise the transform speed

performance, or under minimum resources utilisation.

This module allows the processing of twelve independent transform calculations,

a feature that can increase the parallel capabilities of the application with less

resources utilisation. Another important feature of the module is that the

latency between data transfers, is minimised by the fact that the FFT module

employs on-chip memory (i.e. block Random-Access Memory (RAM) or

distributed RAM). For more information about the capabilities and

configuration of the FFT IP core, the reader can refer to [149].

The FFT module considerable eased the design of the proposed system, not

only because it was already available for implementation, but also because it is

designed to maximise the resources utilisation of the FPGA device, and to

deliver accurate results. To meet the minimum resource utilisation requirements

of the proposed system, the FFT was instantiated with the configuration

parameters shown in Table 5.2. Where the input data length is designed for a

256-elements angular projection sequence, obtained from a 64 by 64 Shepp

Logan phantom. In contrast to the examples shown in Chapter 4 for the

high-level computer algorithm, in the hardware system we opted for a reduced

size input phantom. Such decision was made with the objective of simplifying

the design process. Nonetheless, all the parameters that derive from the input

data sizes, can be easily reconfigured before the VHDL synthesis.
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Parameter Assigned Value

Transform Length 256 samples
Target Clock Frequency 200 MHz

Implementation Radix-2 Lite for minimum resources
Data Format Fixed-Point

Input Data Width 17 bits
Input Data Timing 3 clock cycle offset

Data Memory Block RAM
Phase Factors Memory Block RAM

Table 5.2: FFT Module Configuration Parameters.

Figure 5.6 shows the FFT entity that results from the instantiation performed,

by considering the configuration parameters of Table 5.2.

Figure 5.6: FFT Module.

The instantiated FFT module of Figure 5.6, has been configured to process a

single input data angle, which can be either complex or real. In the complex

case, real values are given at port xn re and imaginaries at xn im. The

description of every port is given in Table 5.3.
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Port Name Direction Description

xn im Input Input Data Bus (Imaginary)
xn re Input Input Data Bus (Real)

fwd inv Input Control for Fwd or Inv Transform
fwd inv we Input Write enable for fwd inv

sclr Input Synchronous Reset
start Input FFT Start Signal

unload Input Result Unloading
xk im Output Output Data Bus (Imaginary)

xk index Output Index of Output Data
xk re Output Output Data Bus (Real)

xn index Output Index of Input Data
busy Output Activity Indicator, Transform ongoing
done Output FFT Complete Indicator
dv Output Data Valid Indicator

edone Output Early Done Indicator
rfd Output Ready for Data Indicator

Table 5.3: FFT Module Ports Description.

The FFT module consists of four main phases along its operation: the

setting-up and initialisation, the input data loading, the data processing and

the resulting data unloading. For the setting-up, it is only necessary to provide

the module with a high pulse at the fwd inv en port, combined with the fwd inv

indicator, to let the module know which one is the desired transform (low value

for forward, and high value for inverse) to be executed. The initialisation is

simply performed by a high value given at the start input port.

Once the module has successfully initialised, it will respond with a ready for

data rfd high value, along with the index of the first requested data element.

Both of these events occur at the same clock cycle. This is the event that

indicates that the module can continue with the input data loading stage.

Figure 5.7 shows the behaviour of the signals involved in both phases

setting-up/initialisation and data loading. The sequence is managed by the

control module, which through the states fwd idle, fwd init, fwd start and

fwd loading, can achieve the proper operation of the FFT module initialisation

and data loading. In fwd idle, the system starts with enabled rst and sclr

signals, to avoid any undetermined value during initialisation. In the state

fwd init, the signals fwd inv en and fwd inv are configured. In the state

fwd start the FFT module is indicated to start loading data. Finally, in state
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fwd loading the machine enables the angular projection module to start

receiving xn index addresses to return stored data elements.

Figure 5.7: FFT Module Initialisation.

As it was previously mentioned, the FFT module was configured to receive data

with a 3-clock cycle offset, after the sent xn index. In this example, the angular

projection component has stored data, which sequence has its first non-zero

value in position 25, therefore after receiving the address xn index= 25, the

value will be ready for the FFT module three clock cycles later. This is shown

below in Figure 5.8.

Figure 5.8: FFT Data Loading.

Once that the FFT has reached up to the last input data element, the ready for

data indicator rfd turns to zero and the busy indicator turns to high. Both of

them happen at the same clock cycle and indicate that the loading phase has

finished, and therefore the data processing has started. Figure 5.9 illustrates

such behaviour.
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Figure 5.9: FFT End of Data Loading.

The busy indicator will remain active up to the end of the data processing

stage. After finishing to calculate the transform values the FFT module will

turn on the done indicator to let the system know that the process has finished,

and that is ready to unload the result sequence. This is shown below in Figure

5.10, where the change in the done signal is barely visible, at the same time at

which busy turns to zero.

Figure 5.10: FFT Data Processing.

At this point, the control component requests an unload and changes to a state

that waits for the activation of the data valid dv indicator. The activation of dv

happens at the same time, at which the FFT module starts sending the output

data address xk index and complex values xk re and xk im. Such behaviour is

demonstrated in the Figure 5.11.
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Figure 5.11: FFT Data Unloading.

In the proposed system the FFT module has been implemented to perform both

forward and inverse operations. The forward operation is required for the input

angular projection data, whilst the inverse transform is required to process the

filtered projection data. The finalisation of the unloading phase depends

therefore upon the type of transform that has been carried on. If the result

corresponds to the forward transform, the unloading will last up to reaching the

half+1 value of the resulting sequence, as the filtering will be performed only on

the positive side of the frequency spectrum, as previously explained in Chapter

4.

Figure 5.12 shows the correspondence between the FFT of projection data

output R(s, 8), obtained from both the MATLAB algorithm and the VHDL ISE

ISim simulation. Again, the dotted line represents the MATLAB calculated

values, while the star symbol belong to the VHDL implementation.
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Figure 5.12: FFT of Projection Data Example Result.

On the other side, if the result belongs to an inverse FFT calculation, the
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sequence will be truncated up to the original length of the angular projection,

before being zero-padded. Figure 5.13 is a plot of the obtained filtered

projection data at angle θ = 8 in the Radon domain. By keeping the same

format of the example (i.e. dotted line representing the MATLAB calculated

values, and the star symbols for the VHDL implementation), it can be noticed

that not only the correspondence between both platforms is achieved, but also

how the hardware implementation keep only the number of samples specified by

the size of the input sinogram.

Q
H ψ
(ρ
,
8
)

1

0.5

0

0.5

ρ

Figure 5.13: Horizontal Filtered Projection Data in Radon Domain QH
ψ (ρ, 8).

Either for the forward or inverse FFT, the module follows the same sequence,

with the only difference that the input data port will be connected to the

angular projection module output, in case of a forward transform. For an

inverse transform, the angular projection module output, will be connected to

the filtering component output. At the output data port, if the result belongs to

a forward transform, it will be connected to the filtering component input.

Conversely, if the FFT result belongs to an inverse transform it will be

connected to the system output (backprojection system). Such situations are

controlled by interfaces situated at the input and output data ports of the FFT

module. Figure 5.14 below, shows the RTL blocks of both interfaces.
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(a) Input Interface. (b) Output Interface.

Figure 5.14: FFT Module Data Ports’ Interfaces.

5.2.2.3 Filtering in Fourier Domain

The filtering component is probably the most complex element within the

system, and it comprises four main elements: a complex multiplier, two

memories that store the wavelet modified ramp filter coefficients in Fourier

domain, and a control entity that manages the indexes of filter coefficients. At

the same time, the entity that stores the real filter coefficients is a subsystem

that reuses the RAM to store filtered projection data. The RTL diagram of the

filtering system is shown below in Figure 5.15.

Figure 5.15: Filtering Component system.
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Similarly to the storage of angular projections, the stored filter coefficients

correspond only to non-zero values. Although for the filter coefficients the

manipulation is more complex as the non-zero values are located along sparse

intervals. This is shown in Figure 5.16, through the absolute value of the

horizontal filter support |WH
ψ (s, θ)|.

Figure 5.16: Horizontal Filter Support Along Projection Angles.

To manipulate the indexes of the filter coefficients, the control entity analyses

the address requests and decides between delivering a value from memory,

according to the given interval information, or returning zero values.

The imaginary filter coefficients are stored in a single-port ROM that is

instantiated in a similar manner to the angular projection ROM. For the real

values a two-port RAM memory is employed to be reused as storage for the

resulting filtered values.

The plot in Figure 5.17 show the values that correspond to real and imaginary

parts of the horizontal filter WH
ψ (s, 8). In the plot, the dotted line represents the

filter coefficients calculated in MATLAB, while the star symbol represent the

non-zero filter coefficient values chosen to be stored in VHDL implementation.
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Figure 5.17: Low pass and high pass filters.
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In the VHDL implementation, the RAM loaded with the real valued filter

coefficients is managed through input/output interfaces. The real filter

coefficients RAM-subsystem is shown below in Figure 5.18.

Figure 5.18: Filter Real Value Coefficients Subsystem.

As such subsystems store all the values that result from the angular projection

system, it feeds the required inverse FFT to calculate the Radon domain filtered

angular projection. To feed the FFT module, the system manipulates the order

of the stored filtered projection values to its complex conjugate reverse-order, as

the filtering is only performed on the positive side of the frequency spectrum.

Another important component is the complex multiplier, which is also an

instantiated LogiCORE IP. This complex multiplier can be configured in terms

of the arithmetic representation, as well as the widths of the operands and the

result output. Among several configuration options, the complex multiplier

allows to configure the latency between the multiplication and the result

output. For the implementation in this system, the complex multiplier (Figure

5.19) was chosen to be implemented by using Look-up Tables (LUTs), and with

a latency of zero clock cycles. More detailed information about the complex

multiplier can be found in [150].
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Figure 5.19: Complex Multiplier.

The port description for the complex multiplier, is given in Table 5.4.

Port Name Direction Description

ar Input Real Operand A
ai Input Imaginary Operand A
br Input Real Operand B
bi Input Imaginary Operand B
pr Output Real Product
pi Output Imaginary Product

Table 5.4: Complex Multiplier Ports Description.

The port description for the filtering component system, is given in Table 5.5.

Port Name Direction Description

FLTRD ADDR Input Index for Filtered Data Requests
FLTR INDEX Input Index for Filtering

FLTR IM Input Imaginary Data for Filtering
FLTR RE Input Real Data for Filtering
FLTR EN Input Filtering Enable
IFFT EN Input Release Result for IFFT Enable

FLTRD DATA Output Filtered Data Output

Table 5.5: Filtering Component Ports Description.

The filtering component starts its operation when the unload indicator for the

FFT module is activated. At the same time, the filtering is enabled through the

activation of the FLTR EN enable port. Figure 5.20 below, show the signal

sequence of such an operation.
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Figure 5.20: Filtering Initialisation.

After being activated, the filtering component starts receiving the Fourier

domain angular projection in the FLTR RE and FLTR IM data ports, along

with the FLTR ADDR. For this example, the first interval of non-zero values

starts at FLTR INDEX = 80.

Figure 5.21: Filtering Execution.

Figure 5.21 shows how the complex multiplier operands ar, ai, br and bi

perform the filtering, and how the result is given at the same clock cycle

through pr. In the system, only the real part of the product is saved.

As mentioned before, the filtering is performed over the length+1 elements of

the Fourier domain angular projection, so in this 256-length example, the

filtering will stop its calculations at FLTR INDEX = 129.

Figure 5.22 show the real valued correspondence between the expected product

MATLAB output (dotted line) and the output obtained from the VHDL system

ISE ISim simulation (star symbols). This example belongs to the product

between projection data in Fourier domain R(s, 8) with the horizontal filter

WH
ψ (s, 8), to produce the filtered projection (horizontal details at θ = 8)

QH
ψ (s, 8).
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After filtering the complete 129-length sequence, the control component turns

the FFT module to the setting-up and initialisation phase. After the filtering

process, the FFT is configured with fwd inv en and fwd inv to perform the

inverse transform. The configuration sequence is shown in Figure 5.23.

Figure 5.23: Inverse FFT Initialisation of Filtered Projection.

In order to perform the inverse FFT, the FFT module is fed with the obtained

filtered data. At this stage, data belonging to the negative frequency spectrum

is accomplished by reversing the order of the calculated positive frequency

spectrum data stored values. Figure 5.24 show the full spectrum of horizontal

details Re[QH
ψ (s, 8)].
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Figure 5.24: Real Valued Horizontal Details Re[QH
ψ (s, 8)].

The operation is exemplified in Figure 5.25, that show the symmetry at

fltrd addr= 129 during the data loading of the FFT module to perform the

inverse FFT.

Figure 5.25: Reverse Order Filtered Data Loading.

Once the FFT module has been completely loaded, it will turn to the data

processing phase. The consequent unloading phase must be performed by the

backprojection component, which will require all Radon domain filtered data, to

map the values over the Cartesian image coefficient grid. The resulting filtered

projection data in Radon domain QH
ψ (ρ, 8) was previously shown in Figure 5.13,

to illustrate the output obtained from the inverse FFT module.

5.2.2.4 FPGA Device Utilisation of the Wavelet-based Filtering of

Projection Data

Table 5.6 show the resources utilisation output obtained from the ISE Wbepack

synthesis report. Such a report was formulated when synthesising a system for

the processing of 12 projection angles in parallel, as it is the maximum allowed

by a single FFT module.
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Logic Utilisation Used Available Utilisation

Number of Slice Registers 24213 301440 8%
Number of Slice LUTs 24642 150720 16%

Number of fullt used LUT-FF pairs 16679 56299 51%
Number of bonded IOBs 2 600 0%

Number of Block RAM/FIFO 19 416 4%
Number of BUFG/BUFGCTRLs 1 32 3%

Number of DSP48E1s 24 768 3%

Table 5.6: Filtering of Projection Data Resources Utilisation.

For the implementation of the filtering of projection data, it could be noticed

that the most important hardware resources were the number of slice registers,

slice LUTs, and block RAM/FIFO. Although some considerations were taken to

reduce the number of block RAM, by storing only the necessary data to be

processed, more logic that consumed slice registers had to be instantiated. Slice

LUTs, as well as DSPs were mainly consumed by the FFT module and complex

multipliers.

For the processing of projection data obtained at 45 equispaced angles,

resources would increase in around four times, without considering a

multiresolution decomposition. Such a consideration would consume around

32% of the available slice registers, 64% of available slice LUTs, and around

16% of block RAM. Such percentages would then be applied for a single

resolution wavelet decomposition, and would increase by a factor of four for

deeper resolutions. Therefore, the device resources would be totally consumed if

a further resolution decomposition would be desired. Such statement is deduced

according to the data truncation distribution of the multiresolution coefficient

images, covered in Section 4.5.1 and illustrated in Figure 4.45.

5.2.3 Backprojection

The backprojection is the component that receives the filtered projection data,

and its function is to map evrery value to its corresponding position within the

Cartesian grid. To implement this component, it was opted for the same linear

interpolation by which the MATLAB iradon function performs backprojection.

The piece of code that performs backprojection is shown below.
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1 T = X.*costheta(i) + Y.*sintheta(i);

2 A = floor(T);

3 IMG = IMG + (T-A).*t proj(A+1+ctrIdx) + ...

(A+1-T).*t proj(A+ctrIdx);

where i is the index of the for loop that performs the operation for every

angular projection, X and Y are arrays containing the Cartesian by which T

indexes are calculated. T indexes give information about the position of every

element within the projection data sequence. Array A is a rounded towards

negative infinity, version of T and IMG is the pixel grid, accumulated at every

angle to form the output image. The angular projection sequence is given as

t proj, and ctrIdx is the position weight to obtain the true centre value within

the t proj sequence.

As it can be seen, all the values, except for IMG, are known, so Arrays T, A,

and the weight ctrIdx can be calculated and introduced as numerical values.

Therefore it is possible to split the calculation of IMG into three parts:

IMG1 = (T−A). ∗ t proj(A + ctrIdx+ 1)

IMG2 = (A−T + 1). ∗ t proj(A + ctrIdx)

IMG = IMG1 + IMG2

(5.1)

In MATLAB it is possible to perform array indexing but in this VHDL system,

it is needed to evaluate value by value as they come out from the inverse FFT

calculation. The index with its corresponding data value are the inputs to the

backprojection component shown in Figure 5.26.
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Figure 5.26: Backprojection Component.

The port description for the backprojection is given in Table 5.7

Port Name Direction Description

BCK INDEX Input Filtered Projection Index
BCK RE Input Filtered Projection Value
BCK EN Input Backprojection Enable

IMAGE DATA A Output Calculated Image A
IMAGE DATA B Output Calculated Image B

Table 5.7: Backprojection Ports Description.

This way, according to a comparison between the input BCK INDEX values

and precomputed indexes (A + ctrIdx+ 1) and (A + ctrIdx), the input data

value BCK RE can be multiplied by its corresponding linear interpolation

weights (T−A) for IMG1, and (A−T + 1) for IMG1.

This is easily implemented through a LUT containing both (A + ctrIdx) and

(A + ctrIdx+ 1), with its corresponding weight values to build IMG1 and

IMG2.

In VHDL, the LUT is implemented through two processes, each one containing

case statements to compare the input ( BCK INDEX) along with (A + ctrIdx)

in the first process, and with (A + ctrIdx+ 1) in the second process. A

particular observation is that (A + ctrIdx) is a delayed value of

(A + ctrIdx+ 1), so when BCK INDEX matches with (A + ctrIdx), its

corresponding product with (A−T + 1) is calculated and the result stored. At
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the next iteration BCK INDEX will match with (A + ctrIdx+ 1), the

corresponding product with (T−A) calculated and the result accumulated

with the stored value. The process is repeated until matching all filtered

projection data values.

In the complete system, backprojection output values are sorted into row RAMs

where every value is accumulated at the input, in order to obtain the final

Cartesian pixel values that comprise the coefficient image.

5.2.3.1 FPGA Device Utilisation of the Backprojection

Table 5.8 show the resources utilisation output obtained, again from the ISE

Wbepack synthesis report, for the backprojection component.

Logic Utilisation Used Available Utilisation

Number of Slice Registers 5820 301440 1%
Number of Slice LUTs 20900 150720 13%

Number of fullt used LUT-FF pairs 2125 56299 8%
Number of bonded IOBs 221 600 36%

Number of Block RAM/FIFO 1 416 0%
Number of BUFG/BUFGCTRLs 2 32 6%

Table 5.8: Backprojection Resources Utilisation.

For the implementation of the backprojection, as it is mainly implemented as a

LUT, the main consumed logic belong to the slice LUTs. The resources

utilisation of this component is not as critical as the filtering of projection data,

as it will require around 13% of slice LUTs for every resolution, considering a 64

by 64 pixel input phantom.

5.2.4 Parallel Inverse Two-Dimensional Wavelet

Transform

This component works with the row RAMs generated through the

backprojection component. The inverse FWT is virtually implemented in the

same way as it is defined in the parallel synthesis QMF of Figure 4.38. To do so,

two instantiated IP core Finite Impulse Response (FIR) filters were employed,

each one corresponding to the high pass and low pass reverse filters.

During its configuration of the FIR modules, filter coefficients can either be

loaded through the core instantiation Graphical User Interface (GUI), or
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through a memory generator .coe file. The FIRs were chosen to be instatiated

as single rate filters with the input sample period of the ML605 Virtex board

200MHz clock, and with a simple Multiply-Accumulate (MAC) architecture

optimised for area resources. The FIR modules allow up to 16 parallel input

paths. More information about the configuration and functionality of the FIR

LogiCore IP can be found in [151].

For the created example, a set of 8 by 8-pixel input coefficient images were

employed, which according to the backprojection input format, is arranged into

eight row ROMs, each one containing eight elements. So by exploiting the 16

parallel input paths that the FIR modules allow, filtering can be fully

implemented in parallel for the rows filtering, by interpolating zero values

according to the upsampling factor. Conversely, for the columns filtering, input

data has at least doubled its size. This behaviour limits the parallel

implementation of the inverse FWT, as in order to save resources, filtering must

be partially sequenced.

The functionality of the inverse two-dimensional FWT, consists therefore in the

proper manipulation of the input/output data values of the FIR modules.

The documentation of the inverse FWT is limited to the high amount of data

that is employed, either in the schematics, as in the simulator results. As a last

resource to show evidence of the implementation, the VHDL behavioural

hierarchy is shown in the next figure.

Figure 5.27: Inverse Two-Dimensional FWT Behavioural Hierarchy.
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5.2.4.1 FPGA Device Utilisation of the Parallel Inverse

Two-Dimensional Wavelet Transform

Table 5.9 show the resources utilisation output obtained, once again from the

ISE Wbepack synthesis report, for the Parallel Inverse Two-Dimensional

Wavelet Transform.

Logic Utilisation Used Available Utilisation

Number of Slice Registers 40064 301440 13%
Number of Slice LUTs 19679 150720 13%

Number of fullt used LUT-FF pairs 3444 56299 6%
Number of bonded IOBs 308 600 51%

Number of Block RAM/FIFO 16 416 3%
Number of BUFG/BUFGCTRLs 1 32 3%

Number of DSP48E1s 96 768 12%

Table 5.9: Parallel Inverse Two-Dimensional Wavelet Transform Resources
Utilisation.

The main component of the inverse two-dimensional WT was the FIR module,

whose operation require the utilisation of DSP resources. In contrast to the

filtering of projection data, as well as the backprojection, only one inverse

two-dimensional WT is required in a complete system. The concern with the

integration of the inverse two-dimensional WT into a single system, along with

the filtering of projection data and backprojection, is the utilisation of DSP

resources that should have to be shared with the FFT modules.

5.3 Summary

An FPGA-based system approach was developed with the aim to test with the

parallel functionality of the high-level MATLAB designed algorithm. The

implementation comprises the processing of a single angular projection, which

represents the smaller processing unit that can be replicated to integrate a full

system. Moreover, the system was designed through a modular form to be

easily adapted to the application requirements.

The FPGA system was split into three main components, the filtering of

projection data, the backprojection, and the the inverse two-dimensional FWT.

The filtering of projection data is constituted by a ROM containing projection

data, a FFT LogicCORE IP that performs both forward and inverse transforms,
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a complex multiplier that performs the Fourier domain filtering, a control unit

and input output interfaces.

The backprojection was formulated through a LUT from which filtered data

indexes are analysed in order to locate theme into its correspondent Cartesian

location.

The inverse two-dimensional FWT is essentially implemented as a replica of the

parallel QMF. It performs filtering in the space domain through a pair of

instantiated FIR filters, which perform the filtering along both the rows and

columns of the input image coefficients data. Because of resources limitations,

the inverse two-dimensional FWT can not be totally implemented in parallel, as

the FIR modules are limited to 16 parallel input paths. More than two FIR

modules can be instantiated, but at the high expense of resources.

In this thesis, it was only possible to show results about the formulation and

functionality of the hardware implementation design. Although the off-the-shelf

FPGA evaluation board is one of the high-end Xilinx devices, it resulted

inefficient in terms of on-chip storage and DSP resources for the integration of a

system comprising the parallel block reconstruction of the complete

wavelet-based, parallel block multiresolution algorithm.
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Chapter 6

Conclusions and Future Work

The background theory covered in the introductory chapters of this thesis,

allowed the acquisition of the appropriate knowledge that was used to approach

the main challenge during the development of this research: to converge both

Tomography and the WT, into a fast parallel image reconstruction algorithm.

Since the early years of its creation, the WT has been applied to Tomography

with the aim of reducing the radiation dose exposure to patients, through the

accurate image reconstruction from truncated projection data. Although no

evidence of an application, properly dedicated to the achievement of fast image

reconstructions within a parallel framework, was found in the literature.

The algorithm proposed in this thesis employed the WT as a tool to split the

Tomography inverse problem into smaller and less complex tasks, that when

executed in parallel, could achieve higher speed performance without

compromising the output image quality. In this regard, the WT capabilities

were exploited to deliver a parallel multiresolution representation. The main

contribution in this thesis, is the design of a wavelet-based, parallel block

multiresolution image reconstruction algorithm, from which a hardware

implementation approach was formulated.

Preliminary results of the developed algorithm, allowed for a presentation in the

PHOTON14 Conference, and further results have been prepared and deposited

for submission in IEEE Sensors Journal Manuscript Central portal. The draft

manuscript has been included in Appendix B.

Through this chapter, the most relevant features of the fast parallel

reconstruction design, as well as it hardware implementation approach, are

summarised. The chapter finalises by exposing some suggested future work.
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6.1 Conclusions

The main motivation for the development of this research, was the achievement

of a parallel fast reconstruction algorithm, inspired by the wavelet-based

available research, related to the accurate reconstruction of reduced-area

images, from truncated projection data. This was achieved through the

development of the wavelet-based, parallel block multiresolution algorithm,

which not only exploited the already demonstrated WT capabilities to achieve

accurate images from truncated data, but also generalised them to a parallel

multiresolution framework, that allowed faster image reconstructions.

The proposed algorithm is based on the FBP, whose computer implementation

broadly established the beginning of this research development. Being able to

achieve the computer implementation of the FBP, allowed the better

understanding of its involved fundamental concepts, through a more practical

framework. The computer implementation of the FBP also made it possible to

gain experience with its structure, which triggered the interest in customising

the algorithm according to the project objectives.

By the customisation of the FBP, it was possible to understand the effects

caused by the two-dimensional FWT incorporation, which according to the

reference literature, its repercussion is addressed at the filtering stage of the

FBP. The WT, via its time-frequency localisation properties, allows projection

data to remain compactly supported after being filtered with the ramp

weighting function. The implication of such feature relies in the fact that

projection data becomes globally dependent upon the total line integral

measurements, as its support is spread after being ramp-filtered [27].

Through the addition of the two-dimensional FWT into the filtering stage of the

FBP, it was possible to realize that, according to the way in which the wavelet

and scaling functions tile the Fourier space, the computation load of the FWT

output coefficients, could be reduced by discarding redundant data. This was

partially true, as the computation of the approximations coefficient involves

data from all the angular projections, within the Fourier space. Such a situation,

attracted the interest to analyse Tomography projection data, through the

multiresolution scheme of the two-dimensional FWT. Unfortunately, such

approach had to be discarded almost by default, as the computation of the

FWT output coefficient images is performed through a recursive procedure.

Further research on the topic, drove the attention to a different alternative that
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made it possible to overcome the inherent recursive computation of the

multiresolution FWT. Through the multirate Nobel identities, a parallel

computation framework, in the Fourier domain, could be achieved for the

computation of the multiresolution two-dimensional FWT. Decomposing

projection data into a set of different frequency scale components, considerably

reduced the reconstruction time, by assuming a concurrent computation of

every coefficient image.

For the achievement of the block-decomposition generalisation, the

multiresolution parallel scheme was also determinant in terms of quality, as it

allowed to bypass the need to truncate the approximations coefficient image,

which involves data from all projections at all angles. The initial objective of the

WT utilisation was the accurate reconstruction from truncated data, although,

for the benefit of this work, some other features arose, which made it possible to

extend the development of the algorithm to a higher grade of parallelism.

For the truncation of projection data, a simple methodology was developed,

with the aim to ease the process of extracting the line integral values,

corresponding to block supports within the FOV of the projected object. The

distribution, as well as the size of the block tiles, was determined according to

the multiresolution properties of the FWT analysis of projection data.

The algorithm was tested at every stage of its development, with synthetic data

obtained from the RT of simulated phantoms, mostly by the 256 by 256 Shepp

Logan phantom. Time measurements were performed with the tic/tac

MATLAB function, for which in order to enhance its precision, a single

processor core was employed. Time measurements were focused in measuring

the backprojection for the standard FBP and the wavelet-based algorithms. For

wavelet-based algorithms, the time spent in the WT synthesis was also

considered. To have an estimate of the quality accuracy of the reconstructed

images, the pixel grey-scale intensity values was compared between the input

phantom and the reconstructed image.

Small differences were encountered between the reconstructed image and the

input phantom, so the reconstruction images showed to be an accurate estimate

of the input phantom.

In terms of speed, the parallel block decomposition approach, achieved

backprojection and FWT at around 48 times faster than the backprojection of

the standard FBP.
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In order to test with a lower-level implementation of the MATLAB designed

algorithm, an FPGA-based system approach was developed, with the objective

to overcome the MATLAB inherent sequential limitation and analyse the

functionality of the algorithm, through a true parallel computation platform. As

part of the design process, the implementation was limited to the processing of

a single angular projection, which represents the smaller processing unit within

the algorithm. The system was designed in a modular form, so the single unit

processing can be adapted to the user requirements, as well as replicated up to

the application needs.

The FPGA system was split into three main components, the filtering of

projection data, which comprised the filtering in Fourier domain between

wavelet-modified filters and projection angles. The output of the filtering

component is the filtered data in Radon domain, read to be backprojected. The

second component is the Backprojection, and the third component is the inverse

two-dimensional FWT.

In this thesis, it was only possible to show results about the formulation and

functionality of the hardware implementation design. Although the off-the-shelf

FPGA evaluation board is one of the high-end Xilinx devices, it resulted

inefficient in terms of on-chip storage and DSP resources for the integration of a

system comprising the parallel block reconstruction of the 3-scale decomposition

256 by 256 Shepp Logan phantom. A different integration of the system to

accomplish integration within the same board is achievable, although parallelism

must be limited up to a certain degree, which would not match with the

parallelism degree that we were looking for, in the development of the high-level

MATLAB algorithm. Unfortunately, looking for for a different alternative, that

would be able to accomplish the true parallel system integration, was already

outside the allowed time to accomplish with the stipulated deadline.

6.2 Future Work

The algorithm presented in this thesis has been designed by considering only

projection data acquired from a parallel geometry, therefore future work can be

performed by expanding the algorithm capabilities to the processing of

projection data acquired from a fan-beam geometry. Such framework employed

in wavalet-based FBP algorithms is not new and has been demonstrated to be
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feasible [152,153].

A more challenging approach should be to extend the algorithm capabilities to

three dimensions, either in the parallel or cone-beam geometries. Some

developments of three-dimensional Tomography reconstruction by employing

the WT have been reported in the last decade [80,154–156].

In terms of the hardware implementation, the most evident work to follow-up in

the development of the fast parallel reconstruction method presented in this

thesis is the true parallel implementation of a full integrated system. As

previously mentioned in the conclusions section, the off-the-shelf evaluation

board lacked of the enough on-chip storage and DSP resources, to accomplish

the full system integration. More advanced FPGA devices, belonging to the

Xilink ultrascale virtex range, are already available with the so-called 3D IC

system integration with up to 4.4 million logic cells. This kind of devices are

every time looking forward to achieve the same capabilities of ASICs, and

consequently into higher costs [157].

A different approach could consist in the design of a custom FPGA-based

processing board, comprising several lower-range (i.e. affordable) devices

capable to perform the required amount of parallel computations. A similar

device is the Siemens ImageProX board, which has nine Virtex-4 FPGAs, with

eight of them dedicated to processing and one as the control processing and

interface unit [55].

Through this assumptions, it may be inferred that the Wavelet-Based,

Multiresolution Parallel Block Reconstruction Algorithm can be implemented

with the already available existing technologies. Either by a custom

FPGA-based board at reasonable costs, or with the state-of-the-art single-chip

alternatives, which are too expensive.
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Appendix A

MATLAB M-files

A.1 MATLAB iradon Function

1 %=================================================================

2 %---SINOGRAM CREATION------------------

3 %=================================================================

4 p = phantom(256); %Shepp-Logan phantom 256x256

5 angles = 0:179; %180 angles from 0 to 179

6 [sngrm r] = radon(p,angles); %Sinogram and radial coordinates

7 %=================================================================

8 %---RAMP FILTER DESIGN-----------------

9 %=================================================================

10 %bandlimited ramp filter (Eqn. 61 Chapter 3, Kak and Slaney)

11 len = length(sngrm);

12 order = max(64,2ˆnextpow2(len)); %up to the next highest ...

power of 2

13 n = 0:order; % 'order' is always even.

14 filtImpResp = zeros(1,order+1); %the bandlimited ramp's ...

impulse response vector

15 filtImpResp(1) = 1/4; % Set the DC term

16 filtImpResp(2:2:end) = -1./((pi*n(2:2:end)).ˆ2); % Set the ...

values for odd n (values for even n are 0)

17 filtImpResp = [filtImpResp filtImpResp(end-1:-1:2)];

18 %=================================================================

19 %---RAMP FILTER IN THE FREQUENCY DOMAIN---------------

20 %=================================================================

21 filt = 2*real(fft(filtImpResp));

22 filt = filt(1:order+1);
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23 filt = [filt.' ; filt(end-1:-1:2).']; % Symmetry of the filter

24 %=================================================================

25 %---FT OF PROJECTION DATA---------------------------------------

26 %=================================================================

27 sngrm(length(filt),1) = 0; % Zero pad projections

28 ft sngrm = fft(sngrm); % fft of projections

29 %=================================================================

30 %---FILTERING IN FOURIER DOMAIN---------------------------------

31 %=================================================================

32 for i = 1:size(ft sngrm,2)

33 ft sngrm(:,i) = ft sngrm(:,i).*filt; % frequency domain ...

filtering

34 end

35 %=================================================================

36 %---INVERSE FFT OF FILTERED PROJECTION DATA---------------------

37 %=================================================================

38 proj = real(ifft(ft sngrm)); %ifft of filtered projections

39 proj(len+1:end,:) = []; % Truncate the filtered projections ...

to its initial size (size of radon transformed data)

40 %=================================================================

41 %---X AND Y CARTESIAN COORDINATES ARRAYS AND MEMORY ALLOCATION--

42 %=================================================================

43 % Define the x & y axes for the reconstructed image so that ...

the origin

44 % (center) is in the spot which RADON would choose.

45 N = 2*floor( size(proj,1)/(2*sqrt(2)) ); % output size ...

calculated from the projection size

46 center = floor((N + 1)/2);

47 xleft = -center + 1;

48 x = (1:N) - 1 + xleft; %vector containing -center:center in ...

the x axis

49 x = repmat(x, N, 1); %matrix containing the vectors ...

mentioned above

50 ytop = center - 1;

51 y = (N:-1:1).' - N + ytop; %vector containing center:-center ...

in the y axis

52 y = repmat(y, 1, N); %matrix containing the vectors ...

mentioned above

53 ctrIdx = ceil(len/2); % index of the center of the ...

projections

54 theta = pi*angles/180; %angles in radians

55 % Generate trignometric tables
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56 costheta = cos(theta);

57 sintheta = sin(theta);

58 % Allocate memory for the image

59 img = zeros(N,class(p));

60 image = zeros(N,class(p));

61 %=================================================================

62 %---BACKPROJECTION---------------------------------------

63 %=================================================================

64 %For linear interpolation

65 for i=1:length(theta)

66 t proj = proj(:,i);

67 t = x*costheta(i) + y*sintheta(i);

68 a = floor(t);

69 img = img + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx); %linear interpolation

70 image = img*(pi/(2*length(theta))); %Normalisation

71 end

A.2 Customised half-frequency spectre,

MATLAB iradon Function

1 %=================================================================

2 %---SINOGRAM CREATION--------------------------------------------

3 %=================================================================

4 p = phantom(256);

5 angles = 0:179;

6 [sngrm r] = radon(p,angles); %Sinogram and radial coordinates

7 %=================================================================

8 %---RAMP FILTER DESIGN-------------------------------------------

9 %=================================================================

10 len = size(sngrm,1);

11 order = max(64,2ˆnextpow2(len));

12 n = 0:order; % 'order' is always even.

13 filtImpResp = zeros(1,order+1); %the bandlimited ramp's ...

impulse response

14 filtImpResp(1) = 1/4; % Set the DC term

15 filtImpResp(2:2:end) = -1./((pi*n(2:2:end)).ˆ2); % Set the ...

values for odd n (values for even n are 0)

16 filtImpResp = [filtImpResp filtImpResp(end-1:-1:2)];
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17 %=================================================================

18 %---RAMP FILTER IN THE FREQUENCY DOMAIN--------------------------

19 %=================================================================

20 filt = (fft(filtImpResp));

21 filt(order+2:end) = []; %Truncation of the Filter Frequency ...

Spectre

22 %=================================================================

23 %---FT OF PROJECTION DATA----------------------------------------

24 %=================================================================

25 sngrm(size(filtImpResp,2),:) = 0; % Zero pad projections

26 sngrm = sngrm';

27 for i = 1:size(sngrm,1)

28 ft sngrm(i,:) = fft(sngrm(i,:)); % fft of projections

29 end

30 ft sngrm = ft sngrm(:,1:order+1); %Truncation of Projection ...

Data Frequency Spectre

31 %=================================================================

32 %---FILTERING IN FOURIER DOMAIN----------------------------------

33 %=================================================================

34 for i = 1:length(angles)

35 f projections(i,:) = filt.*ft sngrm(i,:); % frequency ...

domain filtering

36 end

37 f projections = [f projections ...

conj(f projections(:,end-1:-1:2))];

38 %=================================================================

39 %---INVERSE FFT OF FILTERED PROJECTION DATA----------------------

40 %=================================================================

41 for i = 1:size(ft sngrm,1)

42 s projections(i,:) = real(ifft(f projections(i,:))); ...

%ifft of filtered projections

43 end

44 s projections(:,(len)+1:end) = []; % Truncate the filtered ...

projections to its initial size (size of radon transformed ...

data)

45 s projections = s projections';

46 %=================================================================

47 %---X AND Y CARTESIAN COORDINATES ARRAYS AND MEMORY ALLOCATION---

48 %=================================================================

49 % Define the x & y axes for the reconstructed image

50 N = size(p,1);

51 center = floor((N+1)/2);
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52 xleft = -center + 1;

53 x = (1:N) - 1 + xleft; %vector containing -center:center in ...

the x axis

54 x = repmat(x, N, 1); %matrix containing the vectors ...

mentioned above

55 ytop = center - 1;

56 y = (N:-1:1).' - N + ytop; %vector containing center:-center ...

in the y axisimg = img*pi/(2*length(theta));

57 y = repmat(y, 1, N); %matrix containing the vectors ...

mentioned above

58 ctrIdx = ceil(size(s projections,1)/2); % index of the center ...

of the projections abs(r(1))+1

59 theta = pi*angles/180; % Generate trignometric tables

60 costheta = cos(theta);

61 sintheta = sin(theta);

62 img = zeros(N,'like',p);% Allocate memory for the image

63 image = zeros(N,'like',p);

64 %=================================================================

65 %---BACKPROJECTION-----------------------------------------------

66 %=================================================================

67 for i=1:length(theta)

68 t proj = s projections(:,i);

69 t = x*costheta(i) + y*sintheta(i);

70 a = floor(t);

71 img = img + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);%linear interpolation

72 image = img*(pi/(length(theta))); %Normalisation

73 end

A.3 Wavelet-based FBP, MATLAB

Implementation

1 %=================================================================

2 %---SINOGRAM CREATION------------------

3 %=================================================================

4 p = phantom(256);

5 angles = 0:179;

6 [sngrm r] = radon(p,angles);

7 %=================================================================
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8 %---RAMP FILTER DESIGN-------------------------------------------

9 %=================================================================

10 len = size(sngrm,1);

11 order = max(64,2ˆnextpow2(len));

12 n = 0:order; % 'order' is always even.

13 filtImpResp = zeros(1,order+1);

14 filtImpResp(1) = 1/4; % Set the DC term

15 filtImpResp(2:2:end) = -1./((pi*n(2:2:end)).ˆ2);

16 filtImpResp = [filtImpResp filtImpResp(end-1:-1:2)];

17 %=================================================================

18 %---RAMP FILTER IN THE FREQUENCY DOMAIN--------------------------

19 %=================================================================

20 filt = (fft(filtImpResp));

21 filt(order+2:end) = [];

22 %=================================================================

23 %---FT OF PROJECTIONS--------------------------------------------

24 %=================================================================

25 sngrm(size(filtImpResp,2),:) = 0;

26 sngrm = sngrm.';

27 for i = 1:size(sngrm,1)

28 ft sngrm(i,:) = fft(sngrm(i,:));

29 end

30 ft sngrm = ft sngrm(:,1:order+1);

31 %=================================================================

32 %---WAVELET FILTERS----------------------------------------------

33 %=================================================================

34 [lp, hp] = wavefilter('db5', 'd'); %load analysis wavelet and ...

scaling functions

35 %low-pass filters(scaling functions)

36 lp ft1 = lp((length(lp)/2)+1:end);

37 lp ft1(order*2) = 0;

38 lp ft2 = lp(1:(length(lp)/2));

39 lp ft1((end-(length(lp ft2)))+1:end) = lp ft2;

40 lp = lp ft1; %adjusting of the filters format and zero ...

padding for FFT

41 %high-pass filters(wavelet functions)

42 hp ft1 = hp((length(hp)/2)+1:end);

43 hp ft1(order*2) = 0;

44 hp ft2 = hp(1:(length(hp)/2));

45 hp ft1((end-(length(hp ft2)))+1:end) = hp ft2;

46 hp = hp ft1;

47 %=================================================================
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48 %---FT OF WAVELET FILTERS----------------------------------------

49 %=================================================================

50 f lp = fftshift(fft(lp));

51 f hp = fftshift(fft(hp));

52 %=================================================================

53 %---CARTESIAN TO POLAR-------------------------------------------

54 %=================================================================

55 theta = pi*angles/180; %generate trigonometric tables

56 costheta = cos(theta);

57 sintheta = sin(theta);

58 w = -order:order-1;

59 for i=1:length(costheta)

60 uu(i,:) = costheta(i).*w;

61 vv(i,:) = sintheta(i).*w;

62 end

63 u = floor(uu)+order+1;

64 v = floor(vv)+order+1;

65 nl = f lp(u); %low-pas along rows

66 nh = f hp(u); %high-pas along rows

67 ml = f lp(v); %high-pas along columns

68 mh = f hp(v); %high-pas along columns

69 mh(:,1:order-1) = []; %truncate Fourier domain filters to ...

70 ml(:,1:order-1) = []; %consider only positive frequencies

71 nh(:,1:order-1) = [];

72 nl(:,1:order-1) = [];

73 mh = conj(mh);

74 ml = conj(ml);

75 %================================================================

76 %---WAVELET RAMP FILTERING IN FOURIER DOMAIN-------------------

77 %================================================================

78 for i = 1:length(angles)

79 app ramp(i,:) = filt.*ml(i,:).*nl(i,:);

80 hor ramp(i,:) = filt.*ml(i,:).*nh(i,:);

81 vert ramp(i,:) = filt.*mh(i,:).*nl(i,:);

82 diag ramp(i,:) = filt.*mh(i,:).*nh(i,:);

83 end

84 %==========================wavelet filtering=====================

85 for i = 1:length(angles)

86 hor filt(i,:) = ft sngrm(i,:).*hor ramp(i,:);

87 vert filt(i,:) = ft sngrm(i,:).*vert ramp(i,:);

88 diag filt(i,:) = ft sngrm(i,:).*diag ramp(i,:);

89 app filt(i,:) = ft sngrm(i,:).*app ramp(i,:);
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90 end

91 %===========================negative frequencies=================

92 hor filt = [hor filt conj(hor filt(:,end-1:-1:2))];

93 vert filt = [vert filt conj(vert filt(:,end-1:-1:2))];

94 diag filt = [diag filt conj(diag filt(:,end-1:-1:2))];

95 app filt = [app filt conj(app filt(:,end-1:-1:2))];

96 %=====================ifft=======================================

97 for i = 1:size(ft sngrm,1)

98 w diag(i,:) = real(ifft(diag filt(i,:)));

99 w vert(i,:) = real(ifft(vert filt(i,:)));

100 w hor(i,:) = real(ifft(hor filt(i,:)));

101 w app(i,:) = real(ifft(app filt(i,:)));

102 end

103 %==============================removal of added data for fft=====

104 w diag(:,(len)+1:end) = [];

105 w vert(:,(len)+1:end) = [];

106 w hor(:,(len)+1:end) = [];

107 w app(:,(len)+1:end) = [];

108 %================================================================

109 %---X AND Y CARTESIAN COORDINATES ARRAYS AND MEMORY ALLOCATION--

110 %================================================================

111 N = size(p,1);

112 center = floor((N+1)/2);

113 resolution = 2; %subsampling factor

114 xleft = -center + 1;

115 x = (1:resolution:N) - 1 + xleft;

116 x = repmat(x, N/resolution, 1);

117 ytop = center - 1;

118 y = (N:-resolution:1).' - N + ytop;

119 y = repmat(y, 1, N/resolution);

120 ctrIdx = ceil(len/2);

121 t proj = zeros(1,size(w app,2));

122 %Memory allocation for coefficient images

123 imgd = zeros((N)/resolution,class(p));

124 imgv = zeros((N)/resolution,class(p));

125 imgh = zeros((N)/resolution,class(p));

126 imga = zeros((N)/resolution,class(p));

127 %=================================================================

128 %---BACKPROJECTION----------------------------------------------

129 %=================================================================

130 %---------------approximations-------------

131 for i=1:length(theta) %backprojection involving all angles
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132 t proj = w app(i,:);

133 t = x*costheta(i) + y*sintheta(i);

134 a = floor(t);

135 imga = imga + (t-a).* t proj(a+1+ctrIdx) + ...

136 (a+1-t).* t proj(a+ctrIdx);

137 imagea = imga*(pi/(length(theta)));

138 end

139 %------------------horizontal--------------

140 for i=13:169 %backprojection involving angles in the range from

141 t proj = w hor(i,:); %13 to 169, of 180

142 t = x*costheta(i) + y*sintheta(i);

143 a = floor(t);

144 imgh = imgh + (t-a).* t proj(a+1+ctrIdx) + ...

145 (a+1-t).* t proj(a+ctrIdx);

146 imageh = imgh*(pi/(length(theta)));

147 end

148 %--------------vertical--------------------

149 for i=1:79 %1 to 9

150 t proj = w vert(i,:);

151 t = x*costheta(i) + y*sintheta(i);

152 a = floor(t);

153 imgv = imgv + (t-a).* t proj(a+1+ctrIdx)

154 (a+1-t).* t proj(a+ctrIdx);

155 imagev = imgv*(pi/(length(theta)));

156 end

157 for i=103:180 %103 to 180

158 t proj = w vert(i,:);

159 t = x*costheta(i) + y*sintheta(i);

160 a = floor(t);

161 imgv = imgv + (t-a).* t proj(a+1+ctrIdx)

162 (a+1-t).* t proj(a+ctrIdx);

163 imagev = imgv*(pi/(length(theta)));

164 end

165 %--------------diagonal--------------------

166 for i=8:83 %8 to 83

167 t proj = w diag(i,:);

168 t = x*costheta(i) + y*sintheta(i);

169 a = floor(t);

170 imgd = imgd + (t-a).* t proj(a+1+ctrIdx)

171 (a+1-t).* t proj(a+ctrIdx);

172 imaged = imgd*(pi/(length(theta)));

173 end
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174 for i=99:174 %99 to 174

175 t proj = w diag(i,:);

176 t = x*costheta(i) + y*sintheta(i);

177 a = floor(t);

178 imgd = imgd + (t-a).* t proj(a+1+ctrIdx)

179 (a+1-t).* t proj(a+ctrIdx);

180 imaged = imgd*(pi/(length(theta)));

181 end

182 %=================================================================

183 %---WAVELET SYNTHESIS---------------------------------------

184 %=================================================================

185 [lp, hp] = wavefilter('db5', 'r'); %Inverse filters

186 fl = length(lp);

187 rdiag = upsample(imaged, 2); %coefficient images upsampling

188 rvert = upsample(imagev, 2); %along rows by a factor of two

189 rhor = upsample(imageh, 2);

190 rapp = upsample(imagea, 2);

191 rdiag = conv2(rdiag, hp.', 'same'); %reverse filtering

192 rvert = conv2(rvert, lp.', 'same'); %along columns

193 higher = rdiag + rvert;

194 rhor = conv2(rhor, hp.', 'same');

195 rapp = conv2(rapp, lp.', 'same');

196 lower = rhor + rapp;

197 higher = higher.';

198 lower = lower.';

199 higher = upsample(higher, 2); %upsampling along columns

200 lower = upsample(lower, 2);

201 higher = higher.';

202 lower = lower.';

203 t lower = conv2(lower, lp, 'same'); %reverse filtering along

204 t higher = conv2(higher, hp, 'same'); %rows

205 image = (t higher + t lower); %output full resolution image

A.4 Wavelet-based, Parallel Multiresoltuion

FBP, MATLAB Implementation

1 %=================================================================

2 %---SINOGRAM CREATION------------------

3 %=================================================================
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4 p = phantom(256);

5 nrm = norm(p,2);

6 angles = 0:179;

7 sngrm = radon(p,angles); %Sinogram and radial coordinates

8 theta = pi*angles/180;

9 costheta = cos(theta);

10 sintheta = sin(theta);

11 %=================================================================

12 %---RAMP FILTER DESIGN-------------------------------------------

13 %=================================================================

14 len = size(sngrm,1);

15 order = max(64,2ˆnextpow2(len));

16 n = 0:order;

17 filtImpResp = zeros(1,order+1);

18 filtImpResp(1) = 1/4;

19 filtImpResp(2:2:end) = -1./((pi*n(2:2:end)).ˆ2);

20 filtImpResp = [filtImpResp filtImpResp(end-1:-1:2)];

21 %=================================================================

22 %---RAMP FILTER IN THE FREQUENCY DOMAIN--------------------------

23 %=================================================================

24 filt = (fft(filtImpResp));

25 filt(order+2:end) = [];

26 filt = repmat(filt, length(angles), 1);

27 %=================================================================

28 %---FT OF PROJECTION DATA----------------------------------------

29 %=================================================================

30 sngrm(size(filtImpResp,2),:) = 0; % Zero pad projections

31 sngrm = sngrm.';

32 for i = 1:size(sngrm,1)

33 ft sngrm(i,:) = fft(sngrm(i,:)); % fft of projections

34 end

35 ft sngrm = ft sngrm(:,1:order+1);

36 %=================================================================

37 %---WAVELET FILTERS----------------------------------------------

38 %=================================================================

39 [lp, hp] = wavefilter('bior2.4', 'd');

40 lp ft1 = lp((length(lp)/2)+1:end);

41 lp ft1(order*2) = 0;

42 lp ft2 = lp(1:(length(lp)/2));

43 lp ft1((end-(length(lp ft2)))+1:end) = lp ft2;

44 lp = lp ft1;

45 hp ft1 = hp((length(hp)/2)+1:end);
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46 hp ft1(order*2) = 0;

47 hp ft2 = hp(1:(length(hp)/2));

48 hp ft1((end-(length(hp ft2)))+1:end) = hp ft2;

49 hp = hp ft1;

50 f lp = (fft(lp));

51 f hp = (fft(hp));

52 %L2 Filters calculation

53 f lp 2 = zeros(1,length(f lp));

54 f hp 2 = zeros(1,length(f lp));

55 f lp m = [f lp f lp];

56 f hp m = [f hp f hp];

57 for i =1:length(f lp)

58 f lp 2(i) = (f lp(i).*f lp m(2*i));

59 f hp 2(i) = (f hp m(2*i).*f lp(i));

60 end

61 %L3 Filters calculation

62 f lp 3 = zeros(1,size(f lp,2));

63 f hp 3 = zeros(1,size(f lp,2));

64 f lp m 3 = [f lp m f lp m];

65 f hp m 3 = [f hp m f hp m];

66 for i =1:length(f lp)

67 f lp 3(i) = (f lp 2(i).*f lp m 3(4*i));

68 f hp 3(i) = (f hp m 3(4*i).*f lp 2(i));

69 end

70 %=================================================================

71 %Synthesis Filters

72 %=================================================================

73 [ls, hs] = wavefilter('bior2.4', 'r');

74 ln t = length(ls);

75 ls ft1 = ls((length(ls)/2)+1:end);

76 ls ft1(order*2) = 0;

77 ls ft2 = ls(1:(length(ls)/2));

78 ls ft1((end-(length(ls ft2)))+1:end) = ls ft2;

79 ls = ls ft1;

80 hs ft1 = hs((length(hs)/2)+1:end);

81 hs ft1(order*2) = 0;

82 hs ft2 = hs(1:(length(hs)/2));

83 hs ft1((end-(length(hs ft2)))+1:end) = hs ft2;

84 hs = hs ft1;

85 f ls = (fft(ls));

86 f hs = (fft(hs));

87 %L2 iFilters calculation
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88 f ls 2 = zeros(1,length(f ls));

89 f hs 2 = zeros(1,length(f ls));

90 f ls m = [f ls f ls];

91 f hs m = [f hs f hs];

92 for i =1:length(f ls)

93 f ls 2(i) = (f ls(i).*f ls m(2*i));

94 f hs 2(i) = (f hs m(2*i).*f ls(i));

95 end

96 %L3 iFilters calculation

97 f ls 3 = zeros(1,size(f ls,2));

98 f hs 3 = zeros(1,size(f ls,2));

99 f ls m 3 = [f ls m f ls m];

100 f hs m 3 = [f hs m f hs m];

101 for i =1:length(f ls)

102 f ls 3(i) = (f ls 2(i).*f ls m 3(4*i));

103 f hs 3(i) = (f hs m 3(4*i).*f ls 2(i));

104 end

105 t ls = real(ifft(f ls,'symmetric'));

106 t ls 2 = real(ifft(f ls 2, 'symmetric'));

107 t ls 3 = real(ifft(f ls 3, 'symmetric'));

108 t hs = real(ifft(f hs, 'symmetric'));

109 t hs 2 = real(ifft(f hs 2, 'symmetric'));

110 t hs 3 = real(ifft(f hs 3, 'symmetric'));

111 ln = length(t ls);

112 t ls = [t ls((end-ln/2)+1:end) t ls(1:ln/2)];

113 t hs = [t hs((end-ln/2)+1:end) t hs(1:ln/2)];

114 t ls 2 = [t ls 2((end-ln/2):end) t ls 2(1:(ln/2)+1)];

115 t hs 2 = [t hs 2((end-ln/2):end) t hs 2(1:(ln/2)+1)];

116 t ls 3 = [t ls 3((end-ln/2)-2:end) t ls 3(1:(ln/2)+3)];

117 t hs 3 = [t hs 3((end-ln/2)-2:end) t hs 3(1:(ln/2)+3)];

118 t ls = t ls((ln/2-ln t/2)+1:ln/2+ln t/2);

119 t hs = t hs((ln/2-ln t/2)+1:ln/2+ln t/2);

120 t ls 2 = t ls 2((ln/2-ln t)+1:ln/2+ln t);

121 t hs 2 = t hs 2((ln/2-ln t)+1:ln/2+ln t);

122 t ls 3 = t ls 3((ln/2-ln t*2)+1:ln/2+ln t*2);

123 t hs 3 = t hs 3((ln/2-ln t*2)+1:ln/2+ln t*2);

124 f lp = (fftshift(f lp));

125 f hp = (fftshift(f hp));

126 f lp 2 = (fftshift(f lp 2));

127 f hp 2 = (fftshift(f hp 2));

128 f lp 3 = (fftshift(f lp 3));

129 f hp 3 = (fftshift(f hp 3));
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130 %================================================================

131 %---WAVELET RAMP FILTERS-----------------------------------------

132 %================================================================

133 w = -order:order-1;

134 for i=1:length(angles)

135 uu(i,:) = costheta(i).*w;

136 vv(i,:) = sintheta(i).*w;

137 end

138 u = floor(uu)+order+1;

139 v = floor(vv)+order+1;

140 %L1 Filters

141 ml = f lp(u);

142 mh = f hp(u);

143 nl = f lp(v);

144 nh = f hp(v);%

145 ml(:,1:order-1) = [];

146 mh(:,1:order-1) = [];

147 nl(:,1:order-1) = [];

148 nh(:,1:order-1) = [];

149 nl = conj(nl);

150 nh = conj(nh);

151 %L2 Filters

152 ml 2 = f lp 2(u);

153 mh 2 = f hp 2(u);

154 nl 2 = f lp 2(v);

155 nh 2 = f hp 2(v);%

156 ml 2(:,1:order-1) = [];

157 mh 2(:,1:order-1) = [];

158 nl 2(:,1:order-1) = [];

159 nh 2(:,1:order-1) = [];

160 nl 2 = conj(nl 2);

161 nh 2 = conj(nh 2);

162 %L3 Filters

163 ml 3 = f lp 3(u);

164 mh 3 = f hp 3(u);

165 nl 3 = f lp 3(v);

166 nh 3 = f hp 3(v);%

167 ml 3(:,1:order-1) = [];

168 mh 3(:,1:order-1) = [];

169 nl 3(:,1:order-1) = [];

170 nh 3(:,1:order-1) = [];

171 nl 3 = conj(nl 3);
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172 nh 3 = conj(nh 3);

173 hor filt = ml.*nh.*filt;

174 vert filt = mh.*nl.*filt;

175 diag filt = mh.*nh.*filt;

176 hor filt 2 = ml 2.*nh 2.*filt;

177 vert filt 2 = mh 2.*nl 2.*filt;

178 diag filt 2 = mh 2.*nh 2.*filt;

179 hor filt 3 = ml 3.*nh 3.*filt;

180 vert filt 3 = mh 3.*nl 3.*filt;

181 diag filt 3 = mh 3.*nh 3.*filt;

182 app filt 3 = ml 3.*nl 3.*filt;

183 %================================================================

184 %---FILTERING----------------------------------------------------

185 %================================================================

186 hor filt = hor filt.*ft sngrm;

187 vert filt = vert filt.*ft sngrm;

188 diag filt = diag filt.*ft sngrm;

189 hor filt 2 = hor filt 2.*ft sngrm;

190 vert filt 2 = vert filt 2.*ft sngrm;

191 diag filt 2 = diag filt 2.*ft sngrm;

192 app filt 3 = app filt 3.*ft sngrm;

193 hor filt 3 = hor filt 3.*ft sngrm;

194 vert filt 3 = vert filt 3.*ft sngrm;

195 diag filt 3 = diag filt 3.*ft sngrm;

196 %===========================negative frequencies=================

197 hor filt = [hor filt conj(hor filt(:,end-1:-1:2))];

198 vert filt = [vert filt conj(vert filt(:,end-1:-1:2))];

199 diag filt = [diag filt conj(diag filt(:,end-1:-1:2))];

200 hor filt 2 = [hor filt 2 conj(hor filt 2(:,end-1:-1:2))];

201 vert filt 2 = [vert filt 2 conj(vert filt 2(:,end-1:-1:2))];

202 diag filt 2 = [diag filt 2 conj(diag filt 2(:,end-1:-1:2))];

203 hor filt 3 = [hor filt 3 conj(hor filt 3(:,end-1:-1:2))];

204 vert filt 3 = [vert filt 3 conj(vert filt 3(:,end-1:-1:2))];

205 diag filt 3 = [diag filt 3 conj(diag filt 3(:,end-1:-1:2))];

206 app filt 3 = [app filt 3 conj(app filt 3(:,end-1:-1:2))];

207 %=====================ifft=======================================

208 for i = 1:length(angles)

209 w diag(i,:) = real(ifft(diag filt(i,:)));

210 w vert(i,:) = real(ifft(vert filt(i,:)));

211 w hor(i,:) = real(ifft(hor filt(i,:)));

212 w diag 2(i,:) = real(ifft(diag filt 2(i,:)));

213 w vert 2(i,:) = real(ifft(vert filt 2(i,:)));
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214 w hor 2(i,:) = real(ifft(hor filt 2(i,:)));

215 w diag 3(i,:) = real(ifft(diag filt 3(i,:)));

216 w vert 3(i,:) = real(ifft(vert filt 3(i,:)));

217 w hor 3(i,:) = real(ifft(hor filt 3(i,:)));

218 w app 3(i,:) = real(ifft(app filt 3(i,:)));

219 end

220 %==============================removal of added data for fft=====

221 w diag(:,(len)+1:end) = [];

222 w vert(:,(len)+1:end) = [];

223 w hor(:,(len)+1:end) = [];

224 w diag 2(:,(len)+1:end) = [];

225 w vert 2(:,(len)+1:end) = [];

226 w hor 2(:,(len)+1:end) = [];

227 w diag 3(:,(len)+1:end) = [];

228 w vert 3(:,(len)+1:end) = [];

229 w hor 3(:,(len)+1:end) = [];

230 w app 3(:,(len)+1:end) = [];

231 w diag = w diag.';

232 w vert = w vert.';

233 w hor = w hor.';

234 w diag 2 = w diag 2.';

235 w vert 2 = w vert 2.';

236 w hor 2 = w hor 2.';

237 w diag 3 = w diag 3.';

238 w vert 3 = w vert 3.';

239 w hor 3 = w hor 3.';

240 w app 3 = w app 3.';

241 %================================================================

242 %---BACKPROJECTION L1--------------------------------------------

243 %================================================================

244 N = size(p,1);

245 center = floor((N+1)/2);

246 resolution = 2;

247 xleft = -center + 1;

248 x = (1:resolution:N) - 1 + xleft;

249 x = repmat(x, ceil(N/resolution), 1);

250 ytop = center - 1;

251 y = (N:-resolution:1).' - N + ytop;

252 y = repmat(y, 1, ceil(N/resolution));

253

254 ctrIdx = ceil(len/2);

255 imgd = zeros(ceil((N)/resolution),class(p));
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256 imgv = zeros(ceil((N)/resolution),class(p));

257 imgh = zeros(ceil((N)/resolution),class(p));

258 %================================================================

259 %--------------diagonal------------------------

260 for i=7:84%1:length(angles)%26:64

261 t proj = w diag(:,i);

262 t = x*costheta(i) + y*sintheta(i);

263 a = floor(t);

264 imgd = imgd + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);

265 imgda = imgd*(pi/(length(theta)));

266 end

267 for i=98:178%1:length(angles)%26:64

268 t proj = w diag(:,i);

269 t = x*costheta(i) + y*sintheta(i);

270 a = floor(t);

271 imgd = imgd + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);

272 imgda = imgd*(pi/(length(theta)));

273 end

274 %--------------vertical---------------------

275 for i=1:85%1:length(angles)%1:45

276 t proj = w vert(:,i);

277 t = x*costheta(i) + y*sintheta(i);

278 a = floor(t);

279 imgv = imgv + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);

280 imgva = imgv*(pi/(length(theta)));

281 end

282 for i=97:180%1:length(angles)%1:45

283 t proj = w vert(:,i);

284 t = x*costheta(i) + y*sintheta(i);

285 a = floor(t);

286 imgv = imgv + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);

287 imgva = imgv*(pi/(length(theta)));

288 end

289 %------------------horizontal------------------------------------

290 for i=6:176%1:length(angles)%45:135

291 t proj = w hor(:,i);

292 t = x*costheta(i) + y*sintheta(i);

293 a = floor(t);
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294 imgh = imgh + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);

295 imgha = imgh*(pi/(length(theta)));

296 end

297 %================================================================

298 %---BACKPROJECTION L2--------------------------------------------

299 %================================================================

300 resolution = 4;

301 x 2 = (1:resolution:N) - 1 + xleft;

302 x 2 = repmat(x 2, (N/resolution), 1);

303 y 2 = (N:-resolution:1).' - N + ytop;

304 y 2 = repmat(y 2, 1, (N/resolution));

305 t 2 = zeros(size(x 2));

306 a 2 = zeros(size(x 2));

307 imgd 2 = zeros(((N)/resolution),class(p));

308 imgv 2 = zeros(((N)/resolution),class(p));

309 imgh 2 = zeros(((N)/resolution),class(p));

310 %--------------diagonal------------------------

311 for i=4:87%1:length(angles)%26:64%length(theta)

312 t proj = w diag 2(:,i);

313 t 2 = x 2*costheta(i) + y 2*sintheta(i);

314 a 2 = floor(t 2);

315 imgd 2 = imgd 2 + (t 2-a 2).*t proj(a 2+1+ctrIdx) + ...

(a 2+1-t 2).*t proj(a 2+ctrIdx);

316 imgda 2 = imgd 2*((pi/length(theta)));

317 end

318 for i=95:177%1:length(angles)%26:64%length(theta)

319 t proj = w diag 2(:,i);

320 t 2 = x 2*costheta(i) + y 2*sintheta(i);

321 a 2 = floor(t 2);

322 imgd 2 = imgd 2 + (t 2-a 2).*t proj(a 2+1+ctrIdx) + ...

(a 2+1-t 2).*t proj(a 2+ctrIdx);

323 imgda 2 = imgd 2*((pi/length(theta)));

324 end

325 %--------------vertical---------------------

326 for i=1:86%1:length(angles)%1:45

327 t proj = w vert 2(:,i);

328 t 2 = x 2*costheta(i) + y 2*sintheta(i);

329 a 2 = floor(t 2);

330 imgv 2 = imgv 2 + (t 2-a 2).*t proj(a 2+1+ctrIdx) + ...

(a 2+1-t 2).*t proj(a 2+ctrIdx);

331 imgva 2 = imgv 2*((pi/length(theta)));
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332 end

333 for i=96:180%1:length(angles)%1:45

334 t proj = w vert 2(:,i);

335 t 2 = x 2*costheta(i) + y 2*sintheta(i);

336 a 2 = floor(t 2);

337 imgv 2 = imgv 2 + (t 2-a 2).*t proj(a 2+1+ctrIdx) + ...

(a 2+1-t 2).*t proj(a 2+ctrIdx);

338 imgva 2 = imgv 2*((pi/length(theta)));

339 end

340 %------------------horizontal------------------------------------

341 for i=5:175%1:length(angles)%45:135

342 t proj = w hor 2(:,i);

343 t 2 = x 2*costheta(i) + y 2*sintheta(i);

344 a 2 = floor(t 2);

345

346 %imgh 2 = imgh 2 + t proj(a 2+1+ctrIdx);

347 imgh 2 = imgh 2 + (t 2-a 2).*t proj(a 2+1+ctrIdx) + ...

(a 2+1-t 2).*t proj(a 2+ctrIdx);

348 imgha 2 = imgh 2*((pi/length(theta)));

349 end

350 %================================================================

351 %---BACKPROJECTION L3--------------------------------------------

352 %================================================================

353 resolution = 8;

354 x 3 = (1:resolution:N) - 1 + xleft;

355 x 3 = repmat(x 3, (N/resolution), 1);

356 y 3 = (N:-resolution:1).' - N + ytop;

357 y 3 = repmat(y 3, 1, (N/resolution));

358 imgd 3 = zeros(((N)/resolution),class(p));

359 imgv 3 = zeros(((N)/resolution),class(p));

360 imgh 3 = zeros(((N)/resolution),class(p));

361 imga 3 = zeros(((N)/resolution),class(p));

362 %--------------diagonal------------------------

363 for i=3:88%1:length(angles)%26:64

364 t proj = w diag 3(:,i);

365 t 3 = x 3*costheta(i) + y 3*sintheta(i);

366 a 3 = floor(t 3);

367 imgd 3 = imgd 3 + (t 3-a 3).*t proj(a 3+1+ctrIdx) + ...

(a 3+1-t 3).*t proj(a 3+ctrIdx);

368 imgda 3 = imgd 3*(pi/(length(theta)));

369 end

370 for i=94:179%1:length(angles)%26:64

218



371 t proj = w diag 3(:,i);

372 t 3 = x 3*costheta(i) + y 3*sintheta(i);

373 a 3 = floor(t 3);

374 imgd 3 = imgd 3 + (t 3-a 3).*t proj(a 3+1+ctrIdx) + ...

(a 3+1-t 3).*t proj(a 3+ctrIdx);

375 imgda 3 = imgd 3*(pi/(length(theta)));

376 end

377 %--------------vertical---------------------

378 for i=1:87%length(angles)%1:45

379 t proj = w vert 3(:,i);

380 t 3 = x 3*costheta(i) + y 3*sintheta(i);

381 a 3 = floor(t 3);

382 imgv 3 = imgv 3 + (t 3-a 3).*t proj(a 3+1+ctrIdx) + ...

(a 3+1-t 3).*t proj(a 3+ctrIdx);

383 imgva 3 = imgv 3*(pi/(length(theta)));

384 end

385 for i=95:180%length(angles)%1:45

386 t proj = w vert 3(:,i);

387 t 3 = x 3*costheta(i) + y 3*sintheta(i);

388 a 3 = floor(t 3);

389 imgv 3 = imgv 3 + (t 3-a 3).*t proj(a 3+1+ctrIdx) + ...

(a 3+1-t 3).*t proj(a 3+ctrIdx);

390 imgva 3 = imgv 3*(pi/(length(theta)));

391 end

392 %------------------horizontal------------------------------------

393 for i=4:178%length(angles)%45:135

394 t proj = w hor 3(:,i);

395 t 3 = x 3*costheta(i) + y 3*sintheta(i);

396 a 3 = floor(t 3);

397 imgh 3 = imgh 3 + (t 3-a 3).*t proj(a 3+1+ctrIdx) + ...

(a 3+1-t 3).*t proj(a 3+ctrIdx);

398 imgha 3 = imgh 3*(pi/(length(theta)));

399 end

400 %----------------------approximations----------------------------

401 for i=1:length(angles)

402 t proj = w app 3(:,i);

403 t 3 = x 3*costheta(i) + y 3*sintheta(i);

404 a 3 = floor(t 3);

405 imga 3 = imga 3 + (t 3-a 3).*t proj(a 3+1+ctrIdx) + ...

(a 3+1-t 3).*t proj(a 3+ctrIdx);

406 imgaa 3 = imga 3*(pi/(length(theta)));

407 end
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408 %================================================================

409 %---WAVELET RECONSTRUCTION L3------------------------------------

410 %================================================================

411 lp = t ls 3;

412 hp = t hs 3;

413 rdiag 3 = upsample((imgda 3), 8, 3);

414 rvert 3 = upsample((imgva 3), 8, 3);

415 rhor 3 = upsample((imgha 3), 8, 3);

416 rapp 3 = upsample(imgaa 3, 8, 3);

417 rdiag 3 = rdiag 3.';

418 rvert 3 = rvert 3.';

419 rhor 3 = rhor 3.';

420 rapp 3 = rapp 3.';

421 rdiag 3 = upsample(rdiag 3, 8, 3);

422 rvert 3 = upsample(rvert 3, 8, 3);

423 rhor 3 = upsample(rhor 3, 8, 3);

424 rapp 3 = upsample(rapp 3, 8, 3);

425 rdiag 3 = rdiag 3.';

426 rvert 3 = rvert 3.';

427 rhor 3 = rhor 3.';

428 rapp 3 = rapp 3.';

429 rdiag 3 = conv2(rdiag 3, hp.', 'same');

430 rvert 3 = conv2(rvert 3, lp.', 'same');

431 rhor 3 = conv2(rhor 3, hp.', 'same');

432 rapp 3 = conv2(rapp 3, lp.', 'same');

433 rdiag 3 = conv2(rdiag 3, hp, 'same');

434 rvert 3 = conv2(rvert 3, hp, 'same');

435 rhor 3 = conv2(rhor 3, lp, 'same');

436 rapp 3 = conv2(rapp 3, lp, 'same');

437 image 3 = (rapp 3 + rdiag 3 + rvert 3 + rhor 3);

438 %================================================================

439 %---WAVELET RECONSTRUCTION L2------------------------------------

440 %================================================================

441 lp = t ls 2;

442 hp = t hs 2;

443 %Upsampling---------------------------

444 rdiag 2 = upsample((imgda 2), 4, 1);

445 rvert 2 = upsample((imgva 2), 4, 1);

446 rhor 2 = upsample((imgha 2), 4, 1);

447 rdiag 2 = rdiag 2.';

448 rvert 2 = rvert 2.';

449 rhor 2 = rhor 2.';
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450 rdiag 2 = upsample(rdiag 2, 4, 1);

451 rvert 2 = upsample(rvert 2, 4, 1);

452 rhor 2 = upsample(rhor 2, 4, 1);

453 rdiag 2 = rdiag 2.';

454 rvert 2 = rvert 2.';

455 rhor 2 = rhor 2.';

456 rdiag 2 = conv2(rdiag 2, hp.', 'same');

457 rvert 2 = conv2(rvert 2, lp.', 'same');

458 rhor 2 = conv2(rhor 2, hp.', 'same');

459 rdiag 2 = conv2(rdiag 2, hp, 'same');

460 rvert 2 = conv2(rvert 2, hp, 'same');

461 rhor 2 = conv2(rhor 2, lp, 'same');

462 image 2 = (rdiag 2 + rvert 2 + rhor 2);

463 %================================================================

464 %---WAVELET RECONSTRUCTION L1------------------------------------

465 %================================================================

466 lp = t ls;

467 hp = t hs;

468 %Upsampling---------------------------

469 rdiag = upsample((imgda), 2);

470 rvert = upsample((imgva), 2);

471 rhor = upsample((imgha), 2);

472 rdiag = rdiag.';

473 rvert = rvert.';

474 rhor = rhor.';

475 rdiag = upsample(rdiag, 2);

476 rvert = upsample(rvert, 2);

477 rhor = upsample(rhor, 2);

478 rdiag = rdiag.';

479 rvert = rvert.';

480 rhor = rhor.';

481 rdiag = conv2(rdiag, hp.', 'same');

482 rvert = conv2(rvert, lp.', 'same');

483 rhor = conv2(rhor, hp.', 'same');

484 rdiag = conv2(rdiag, hp, 'same');

485 rvert = conv2(rvert, hp, 'same');

486 rhor = conv2(rhor, lp, 'same');

487 image = (rdiag + rvert + rhor);

488 imagen = (image + image 2 + image 3); %output image
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A.5 Wavelet-based, Multiresolution Parallel

Block FBP, MATLAB Implementation

1 %=================================================================

2 %---SINOGRAM CREATION------------------

3 %=================================================================

4 l = 16; %Parametters to define block distribution

5 l 2 = 64; %within coefficient images at scales l

6 p = phantom(256);

7 angles = 0:179;

8 [sngrm r] = radon(p,angles); %Sinogram and radial coordinates

9 theta = pi*angles/180;

10 costheta = cos(theta);

11 sintheta = sin(theta);

12 len sngrm = size(sngrm,1);

13 len = size(sngrm,1);

14 sngrm templates(256); %function to generate templates for ...

block truncation

15 %=================================================================

16 %---REGIONS OF INTEREST------------------------------------------

17 %=================================================================

18 for i = 1:16 %load block sinograms

19 filename = sprintf('templates/template 2 %d.png',i);

20 grid template{i} = (imread(filename));

21 end

22 for i = 1:4 %block sinograms

23 filename = sprintf('templates/template 3 %d.png',i);

24 grid template 2{i} = (imread(filename));

25 end

26 for j = 1:length(grid template) %data truncation for l=1

27 for i=1:size(sngrm,2)

28 sngrm roi{j}(i,:) = sngrm(:,i).*grid template{j}(:,i);
29 end

30 end

31 for j = 1:length(grid template 2) %data truncation for l=2

32 for i=1:size(sngrm,2)

33 sngrm roi 2{j}(i,:) = ...

sngrm(:,i).*grid template 2{j}(:,i);
34 end

35 end
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36 sngrm = sngrm.';

37 sngrm roi 3 = sngrm; %lower resolution scale, not truncated

38 %=================================================================

39 %---RAMP FILTER DESIGN-------------------------------------------

40 %=================================================================

41 order = (max(64,2ˆnextpow2(len)));

42 filt = (ramp filt(order));

43 %=================================================================

44 %---WAVELET FILTERS----------------------------------------------

45 %=================================================================

46 [lp, hp] = wavefilter('bior2.4', 'd');

47 [f lp,f hp] = (ft wavefilter(lp, hp, order));

48 %L2 Filters calculation

49 f lp 2 = zeros(1,length(f lp));

50 f hp 2 = zeros(1,length(f lp));

51 f lp m = [f lp f lp];

52 f hp m = [f hp f hp];

53 for i =1:length(f lp)

54 f lp 2(i) = (f lp(i).*f lp m(2*i));

55 f hp 2(i) = (f hp m(2*i).*f lp(i));

56 end

57 %L3 Filters calculation

58 f lp 3 = zeros(1,size(f lp,2));

59 f hp 3 = zeros(1,size(f lp,2));

60 f lp m 3 = [f lp m f lp m];

61 f hp m 3 = [f hp m f hp m];

62 for i =1:length(f lp)

63 f lp 3(i) = (f lp 2(i).*f lp m 3(4*i));

64 f hp 3(i) = (f hp m 3(4*i).*f lp 2(i));

65 end

66 %=================================================================

67 %Synthesis Filters

68 %=================================================================

69 [ls, hs] = wavefilter('bior2.4', 'r');

70 ln t = length(ls);

71 [f ls, f hs] = ft wavefilter(ls, hs, order);

72 %L2 iFilters calculation

73 f ls 2 = zeros(1,length(f ls));

74 f hs 2 = zeros(1,length(f ls));

75 f ls m = [f ls f ls];

76 f hs m = [f hs f hs];

77 for i =1:length(f ls)
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78 f ls 2(i) = (f ls(i).*f ls m(2*i));

79 f hs 2(i) = (f hs m(2*i).*f ls(i));

80 end

81 %L3 iFilters calculation

82 f ls 3 = zeros(1,size(f ls,2));

83 f hs 3 = zeros(1,size(f ls,2));

84 f ls m 3 = [f ls m f ls m];

85 f hs m 3 = [f hs m f hs m];

86 for i =1:length(f ls)

87 f ls 3(i) = (f ls 2(i).*f ls m 3(4*i));

88 f hs 3(i) = (f hs m 3(4*i).*f ls 2(i));

89 end

90 t ls = real(ifft(f ls,'symmetric'));

91 t ls 2 = real(ifft(f ls 2, 'symmetric'));

92 t ls 3 = real(ifft(f ls 3, 'symmetric'));

93 t hs = real(ifft(f hs, 'symmetric'));

94 t hs 2 = real(ifft(f hs 2, 'symmetric'));

95 t hs 3 = real(ifft(f hs 3, 'symmetric'));

96 ln = length(t ls);

97 t ls = [t ls((end-ln/2)+1:end) t ls(1:ln/2)];

98 t hs = [t hs((end-ln/2)+1:end) t hs(1:ln/2)];

99 t ls 2 = [t ls 2((end-ln/2):end) t ls 2(1:(ln/2)+1)];

100 t hs 2 = [t hs 2((end-ln/2):end) t hs 2(1:(ln/2)+1)];

101 t ls 3 = [t ls 3((end-ln/2)-2:end) t ls 3(1:(ln/2)+3)];

102 t hs 3 = [t hs 3((end-ln/2)-2:end) t hs 3(1:(ln/2)+3)];

103 t ls = t ls((ln/2-ln t/2)+1:ln/2+ln t/2);

104 t hs = t hs((ln/2-ln t/2)+1:ln/2+ln t/2);

105 t ls 2 = t ls 2((ln/2-ln t)+1:ln/2+ln t);

106 t hs 2 = t hs 2((ln/2-ln t)+1:ln/2+ln t);

107 t ls 3 = t ls 3((ln/2-ln t*2)+1:ln/2+ln t*2);

108 t hs 3 = t hs 3((ln/2-ln t*2)+1:ln/2+ln t*2);

109 f lp = (fftshift(f lp)); %scale l=1 synthesis filters

110 f hp = (fftshift(f hp));

111 f lp 2 = (fftshift(f lp 2)); %scale l=2 synthesis filters

112 f hp 2 = (fftshift(f hp 2));

113 f lp 3 = (fftshift(f lp 3)); %scale l=2 synthesis filters

114 f hp 3 = (fftshift(f hp 3));

115 %=================================================================

116 %---WAVELET RAMP FILTERS-----------------------------------------

117 %=================================================================

118 w = -order:order-1;

119 for i=1:(length(angles))
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120 uu(i,:) = costheta(i).*w;

121 vv(i,:) = sintheta(i).*w;

122 end

123 u = floor(uu)+order+1;

124 v = floor(vv)+order+1;

125 %L1 Filters

126 ml = f lp(u);

127 mh = f hp(u);

128 nl = f lp(v);

129 nh = f hp(v);

130 ml(:,1:order-1) = [];

131 mh(:,1:order-1) = [];

132 nl(:,1:order-1) = [];

133 nh(:,1:order-1) = [];

134 nl = conj(nl);

135 nh = conj(nh);

136 %L2 Filters

137 ml 2 = f lp 2(u);

138 mh 2 = f hp 2(u);

139 nl 2 = f lp 2(v);

140 nh 2 = f hp 2(v);

141 ml 2(:,1:order-1) = [];

142 mh 2(:,1:order-1) = [];

143 nl 2(:,1:order-1) = [];

144 nh 2(:,1:order-1) = [];

145 nl 2 = conj(nl 2);

146 nh 2 = conj(nh 2);

147 %L3 Filters

148 ml 3 = f lp 3(u);

149 mh 3 = f hp 3(u);

150 nl 3 = f lp 3(v);

151 nh 3 = f hp 3(v);

152 ml 3(:,1:order-1) = [];

153 mh 3(:,1:order-1) = [];

154 nl 3(:,1:order-1) = [];

155 nh 3(:,1:order-1) = [];

156 nl 3 = conj(nl 3);

157 nh 3 = conj(nh 3);

158 for i = 1:length(angles) %wavelet modified ramp filters

159 hor filt(i,:) = ml(i,:).*nh(i,:).*filt; % for every scale

160 vert filt(i,:) = mh(i,:).*nl(i,:).*filt;

161 diag filt(i,:) = mh(i,:).*nh(i,:).*filt;
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162 hor filt 2(i,:) = ml 2(i,:).*nh 2(i,:).*filt;

163 vert filt 2(i,:) = mh 2(i,:).*nl 2(i,:).*filt;

164 diag filt 2(i,:) = mh 2(i,:).*nh 2(i,:).*filt;

165 app filt 3(i,:) = ml 3(i,:).*nl 3(i,:).*filt;

166 hor filt 3(i,:) = ml 3(i,:).*nh 3(i,:).*filt;

167 vert filt 3(i,:) = mh 3(i,:).*nl 3(i,:).*filt;

168 diag filt 3(i,:) = mh 3(i,:).*nh 3(i,:).*filt;

169 end

170 %=================================================================

171 %---COMPUTATION OF SCALE 1 BLOCK IMAGES--------------------------

172 %=================================================================

173 N = size(p,1);

174 center = floor((N+1)/2);

175 resolution = 2;

176 xleft = -center + 1;

177 xx = (1:resolution:N) - 1 + xleft;

178 xx = repmat(xx, N/resolution, 1);

179 ytop = center - 1;

180 yy = (N:-resolution:1).' - N + ytop;

181 yy = repmat(yy, 1, N/resolution);

182 i=1;

183 m = 1;

184 n = 1; %generate the pixel grids for the

185 while i<(N/l)+1 %appropriate size and scale

186 for j=0:(size(yy,1)/sqrt(N/l)):size(yy,1)-(size(yy,1)/sqrt(N/l))

187 for ...

k=0:(size(xx,1)/sqrt(N/l)):size(xx,1)-(size(xx,1)/sqrt(N/l))

188 x{i} = ...

xx(j+1:(size(xx,1)/sqrt(N/l)*m),k+1:(size(xx,2)/sqrt(N/l)*n));

189 y{i} = ...

yy(j+1:(size(yy,1)/sqrt(N/l)*m),k+1:(size(yy,2)/sqrt(N/l)*n));

190 i = i+1;

191 n = n+1;

192 end

193 m = m+1;

194 n = 1;

195 end

196 m = 1;

197 end

198 ctrIdx = ceil(len/2);

199 %memory allocation

200 for i=1:length(sngrm roi)
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201 sngrm roi{i}(:,order*2) = 0;

202 ft sngrm roi{i} = zeros(size(sngrm roi{i}));
203 ft sngrm roi half{i} = ...

zeros(size(ft sngrm roi{i}(:,1:order+1)));
204 end

205 hor filtered = zeros(size(ft sngrm roi half{1}));
206 vert filtered = zeros(size(ft sngrm roi half{1}));
207 diag filtered = zeros(size(ft sngrm roi half{1}));
208 hor filt all = zeros(size(ft sngrm roi{1}));
209 vert filt all = zeros(size(ft sngrm roi{1}));
210 diag filt all = zeros(size(ft sngrm roi{1}));
211 w hor half = zeros(size(sngrm));

212 w vert half = zeros(size(sngrm));

213 w diag half = zeros(size(sngrm));

214 thor = zeros(1,size(sngrm roi,2));

215 tvert = zeros(1,size(sngrm roi,2));

216 tdiag = zeros(1,size(sngrm roi,2));

217 t proj = zeros(1,size(sngrm roi{n},2));
218 t = zeros(size(x{1}));
219 a = zeros(size(x{1}));
220 for i=1:length(sngrm roi)

221 imgd{i} = zeros((N/sqrt(N/l))/resolution,class(p));

222 imgv{i} = zeros((N/sqrt(N/l))/resolution,class(p));

223 imgh{i} = zeros((N/sqrt(N/l))/resolution,class(p));

224 imgd nrm{i} = zeros((N/sqrt(N/l))/resolution,class(p));

225 imgv nrm{i} = zeros((N/sqrt(N/l))/resolution,class(p));

226 imgh nrm{i} = zeros((N/sqrt(N/l))/resolution,class(p));

227 end

228 for n = 1:length(sngrm roi)

229 w diag = zeros(size(hor filt all)); %clear arrays at ...

every iteration

230 w vert = zeros(size(hor filt all));

231 w hor = zeros(size(hor filt all));

232 %=================================================================

233 %---FT OF PROJECTIONS--------------------------------------------

234 %=================================================================

235 for i =1: length(angles)

236 ft sngrm roi{n}(i,:) = (fft(sngrm roi{n}(i,:)));
237 end

238 ft sngrm roi half{n} = (ft sngrm roi{n}(:,1:order+1));
239 %=================================================================

240 %---FILTERING----------------------------------------------------
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241 %=================================================================

242 for i = 1:length(angles)

243 hor filtered(i,:) = ...

ft sngrm roi half{n}(i,:).*(hor filt(i,:));

244 vert filtered(i,:) = ...

ft sngrm roi half{n}(i,:).*(vert filt(i,:));

245 diag filtered(i,:) = ...

ft sngrm roi half{n}(i,:).*(diag filt(i,:));

246 end

247 hor filt all = ([hor filtered ...

conj(hor filtered(:,end-1:-1:2))]);

248 vert filt all = ([vert filtered ...

conj(vert filtered(:,end-1:-1:2))]);

249 diag filt all = ([diag filtered ...

conj(diag filtered(:,end-1:-1:2))]);

250 for i = 1:length(angles)

251 w diag(i,:) = real(ifft(diag filt all(i,:)));

252 w vert(i,:) = real(ifft(vert filt all(i,:)));

253 w hor(i,:) = real(ifft(hor filt all(i,:)));

254 end

255 w diag(:,(len)+1:end) = [];

256 w vert(:,(len)+1:end) = [];

257 w hor(:,(len)+1:end) = [];

258 %=================================================================

259 %---BACKPROJECTION-----------------------------------------------

260 %=================================================================

261 %diagonal details------

262 for i=7:84 %involved angles

263 t proj = w diag(i,:);

264 t = x{n}.*costheta(i) + y{n}.*sintheta(i);
265 a = floor(t);

266 imgd{n} = imgd{n} + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);

267 imgd nrm{n} = imgd{n}*(pi/(length(theta)));
268 end

269 for i=98:178 %involved angles

270 t proj = w diag(i,:);

271 t = x{n}.*costheta(i) + y{n}.*sintheta(i);
272 a = floor(t);

273 imgd{n} = imgd{n} + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);

274 imgd nrm{n} = imgd{n}*(pi/(length(theta)));
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275 end

276 %vertical details------

277 for i=1:85 %involved angles

278 t proj = w vert(i,:);

279 t = x{n}.*costheta(i) + y{n}.*sintheta(i);
280 a = floor(t);

281 imgv{n} = imgv{n} + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);

282 imgv nrm{n} = imgv{n}*(pi/(length(theta)));
283 end

284 for i=97:180 %involved angles

285 t proj = w vert(i,:);

286 t = x{n}.*costheta(i) + y{n}.*sintheta(i);
287 a = floor(t);

288 imgv{n} = imgv{n} + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);

289 imgv nrm{n} = imgv{n}*(pi/(length(theta)));
290 end

291 %horizontal details------

292 for i=6:176 %involved angles

293 t proj = w hor(i,:);

294 t = x{n}.*costheta(i) + y{n}.*sintheta(i);
295 a = floor(t);

296 imgh{n} = imgh{n} + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);

297 imgh nrm{n} = imgh{n}*(pi/(length(theta)));
298 end

299 end

300 %=================================================================

301 %---COMPUTATION OF SCALE 2 BLOCK IMAGES--------------------------

302 %=================================================================

303 resolution = 4;

304 xleft = -center + 1;

305 xx = (1:resolution:N) - 1 + xleft;

306 xx = repmat(xx, N/resolution, 1);

307 ytop = center - 1;

308 yy = (N:-resolution:1).' - N + ytop;

309 yy = repmat(yy, 1, N/resolution);

310 i=1;

311 m = 1;

312 n = 1;

313 while i<(N/l 2)+1
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314 for ...

j=0:(size(yy,1)/sqrt(N/l 2)):size(yy,1)-(size(yy,1)/sqrt(N/l 2))

315 for ...

k=0:(size(xx,1)/sqrt(N/l 2)):size(xx,1)-(size(xx,1)/sqrt(N/l 2))

316 x{i} = ...

xx(j+1:(size(xx,1)/sqrt(N/l 2)*m),k+1:(size(xx,2)/sqrt(N/l 2)*n));

317 y{i} = ...

yy(j+1:(size(yy,1)/sqrt(N/l 2)*m),k+1:(size(yy,2)/sqrt(N/l 2)*n));

318 i = i+1;

319 n = n+1;

320 end

321 m = m+1;

322 n = 1;

323 end

324 m = 1;

325 end

326 ctrIdx = ceil(len/2);

327 %zero-padding

328 for i=1:length(sngrm roi 2)

329 sngrm roi 2{i}(:,order*2) = 0;

330 ft sngrm roi 2{i} = zeros(size(sngrm roi 2{i}));
331 ft sngrm roi half{i} = ...

zeros(size(ft sngrm roi 2{i}(:,1:order+1)));
332 end

333 hor filtered = zeros(size(ft sngrm roi half{1}));
334 vert filtered = zeros(size(ft sngrm roi half{1}));
335 diag filtered = zeros(size(ft sngrm roi half{1}));
336 hor filt all = zeros(size(ft sngrm roi 2{1}));
337 vert filt all = zeros(size(ft sngrm roi 2{1}));
338 diag filt all = zeros(size(ft sngrm roi 2{1}));
339 w hor half = zeros(size(sngrm));

340 w vert half = zeros(size(sngrm));

341 w diag half = zeros(size(sngrm));

342 thor = zeros(1,size(sngrm roi 2,2));

343 tvert = zeros(1,size(sngrm roi 2,2));

344 tdiag = zeros(1,size(sngrm roi 2,2));

345 t proj = zeros(1,size(sngrm roi 2{n},2));
346 t = zeros(size(x{1}));
347 a = zeros(size(x{1}));
348 for i=1:length(sngrm roi 2)

349 imgd 2{i} = zeros((N/sqrt(N/l 2))/resolution,class(p));

350 imgv 2{i} = zeros((N/sqrt(N/l 2))/resolution,class(p));
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351 imgh 2{i} = zeros((N/sqrt(N/l 2))/resolution,class(p));

352 imgd 2 nrm{i} = zeros((N/sqrt(N/l 2))/resolution,class(p));

353 imgv 2 nrm{i} = zeros((N/sqrt(N/l 2))/resolution,class(p));

354 imgh 2 nrm{i} = zeros((N/sqrt(N/l 2))/resolution,class(p));

355 end

356 for n = 1:length(sngrm roi 2)

357 w diag = zeros(size(hor filt all));

358 w vert = zeros(size(hor filt all));

359 w hor = zeros(size(hor filt all));

360 %=================================================================

361 %---FT OF PROJECTIONS--------------------------------------------

362 %=================================================================

363 for i =1: length(angles)

364 ft sngrm roi 2{n}(i,:) = fft(sngrm roi 2{n}(i,:));
365 end

366 ft sngrm roi half{n} = ft sngrm roi 2{n}(:,1:order+1);
367 %=================================================================

368 %---FILTERING----------------------------------------------------

369 %=================================================================

370 for i = 1:length(angles)

371 hor filtered(i,:) = ...

ft sngrm roi half{n}(i,:).*hor filt 2(i,:);

372 vert filtered(i,:) = ...

ft sngrm roi half{n}(i,:).*vert filt 2(i,:);

373 diag filtered(i,:) = ...

ft sngrm roi half{n}(i,:).*diag filt 2(i,:);

374 end

375 hor filt all = ([hor filtered ...

conj(hor filtered(:,end-1:-1:2))]);

376 vert filt all = ([vert filtered ...

conj(vert filtered(:,end-1:-1:2))]);

377 diag filt all = ([diag filtered ...

conj(diag filtered(:,end-1:-1:2))]);

378 for i = 1:length(angles)

379 w diag(i,:) = real(ifft(diag filt all(i,:)));

380 w vert(i,:) = real(ifft(vert filt all(i,:)));

381 w hor(i,:) = real(ifft(hor filt all(i,:)));

382 end

383 w diag(:,(len)+1:end) = [];

384 w vert(:,(len)+1:end) = [];

385 w hor(:,(len)+1:end) = [];

386
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387 %=================================================================

388 %---BACKPROJECTION-----------------------------------------------

389 %=================================================================

390 %diagonal details------

391 for i=4:87

392 t proj = w diag(i,:);

393 t = x{n}.*costheta(i) + y{n}.*sintheta(i);
394 a = floor(t);

395 imgd 2{n} = imgd 2{n} + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);

396 imgd 2 nrm{n} = imgd 2{n}*(pi/(length(theta)));
397 end

398 for i=95:177

399 t proj = w diag(i,:);

400 t = x{n}.*costheta(i) + y{n}.*sintheta(i);
401 a = floor(t);

402 imgd 2{n} = imgd 2{n} + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);

403 imgd 2 nrm{n} = imgd 2{n}*(pi/(length(theta)));
404 end

405 %vertical details------

406 for i=1:86

407 t proj = w vert(i,:);

408 t = x{n}.*costheta(i) + y{n}.*sintheta(i);
409 a = floor(t);

410 imgv 2{n} = imgv 2{n} + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);

411 imgv 2 nrm{n} = imgv 2{n}*(pi/(length(theta)));
412 end

413 for i=96:180

414 t proj = w vert(i,:);

415 t = x{n}.*costheta(i) + y{n}.*sintheta(i);
416 a = floor(t);

417 imgv 2{n} = imgv 2{n} + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);

418 imgv 2 nrm{n} = imgv 2{n}*(pi/(length(theta)));
419 end

420 %diagonal details------

421 for i=5:175

422 t proj = w hor(i,:);

423 t = x{n}.*costheta(i) + y{n}.*sintheta(i);
424 a = floor(t);
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425 imgh 2{n} = imgh 2{n} + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);

426 imgh 2 nrm{n} = imgh 2{n}*(pi/(length(theta)));
427 end

428 end

429 %================================================================

430 %---COMPUTATION OF SCALE 3 BLOCK IMAGES-------------------------

431 %================================================================

432 resolution = 8;

433 xleft = -center + 1;

434 x = (1:resolution:N) - 1 + xleft;

435 x = repmat(x, N/resolution, 1);

436 ytop = center - 1;

437 y = (N:-resolution:1).' - N + ytop;

438 y = repmat(y, 1, N/resolution);

439 ctrIdx = ceil(len/2);

440 %zero-padding

441 sngrm roi 3(:,order*2) = 0;

442 ft sngrm roi 3 = zeros(size(sngrm roi 3));

443 ft sngrm roi half = zeros(size(ft sngrm roi 3(:,1:order+1)));

444 hor filtered = zeros(size(ft sngrm roi half));

445 vert filtered = zeros(size(ft sngrm roi half));

446 diag filtered = zeros(size(ft sngrm roi half));

447 app filtered = zeros(size(ft sngrm roi half));

448 hor filt all = zeros(size(ft sngrm roi 3));

449 vert filt all = zeros(size(ft sngrm roi 3));

450 diag filt all = zeros(size(ft sngrm roi 3));

451 app filt all = zeros(size(ft sngrm roi 3));

452 w hor half = zeros(size(sngrm));

453 w vert half = zeros(size(sngrm));

454 w diag half = zeros(size(sngrm));

455 w app half = zeros(size(sngrm));

456 thor = zeros(1,size(sngrm roi 3,2));

457 tvert = zeros(1,size(sngrm roi 3,2));

458 tdiag = zeros(1,size(sngrm roi 3,2));

459 tapp = zeros(1,size(sngrm roi 3,2));

460 t proj = zeros(1,size(sngrm roi 3,2));

461 t = zeros(size(x));

462 a = zeros(size(x));

463 imgd 3 = zeros(N/resolution,class(p));

464 imgv 3 = zeros(N/resolution,class(p));

465 imgh 3 = zeros(N/resolution,class(p));
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466 imga 3 = zeros(N/resolution,class(p));

467 imgd 3 nrm = zeros(N/resolution,class(p));

468 imgv 3 nrm = zeros(N/resolution,class(p));

469 imgh 3 nrm = zeros(N/resolution,class(p));

470 imga 3 nrm = zeros(N/resolution,class(p));

471 w diag = zeros(size(hor filt all));

472 w vert = zeros(size(hor filt all));

473 w hor = zeros(size(hor filt all));

474 w app = zeros(size(hor filt all));

475 %===============================================================

476 %---FT OF PROJECTIONS------------------------------------------

477 %===============================================================

478 for i =1: length(angles)

479 ft sngrm roi 3(i,:) = (fft(sngrm roi 3(i,:)));

480 end

481 ft sngrm roi half = ft sngrm roi 3(:,1:order+1);

482 %===============================================================

483 %---FILTERING--------------------------------------------------

484 %===============================================================

485 for i = 1:length(angles)

486 hor filtered(i,:) = ...

ft sngrm roi half(i,:).*(hor filt 3(i,:));

487 vert filtered(i,:) = ...

ft sngrm roi half(i,:).*(vert filt 3(i,:));

488 diag filtered(i,:) = ...

ft sngrm roi half(i,:).*(diag filt 3(i,:));

489 app filtered(i,:) = ...

ft sngrm roi half(i,:).*(app filt 3(i,:));

490 end

491 hor filt all = ([hor filtered conj(hor filtered(:,end-1:-1:2))]);

492 vert filt all = ([vert filtered ...

conj(vert filtered(:,end-1:-1:2))]);

493 diag filt all = ([diag filtered ...

conj(diag filtered(:,end-1:-1:2))]);

494 app filt all = ([app filtered conj(app filtered(:,end-1:-1:2))]);

495 for i = 1:length(angles)

496 w diag(i,:) = real(ifft(diag filt all(i,:)));

497 w vert(i,:) = real(ifft(vert filt all(i,:)));

498 w hor(i,:) = real(ifft(hor filt all(i,:)));

499 w app(i,:) = real(ifft(app filt all(i,:)));

500 end

501 w diag(:,(len)+1:end) = [];
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502 w vert(:,(len)+1:end) = [];

503 w hor(:,(len)+1:end) = [];

504 w app(:,(len)+1:end) = [];

505 %===============================================================

506 %---BACKPROJECTION---------------------------------------------

507 %===============================================================

508 %diagonal details---------

509 for i=3:88

510 t proj = w diag(i,:);

511 t = x.*costheta(i) + y.*sintheta(i);

512 a = floor(t);

513 imgd 3 = imgd 3 + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);

514 imgd 3 nrm = imgd 3*(pi/(length(theta)));

515 end

516 for i=94:179

517 t proj = w diag(i,:);

518 t = x.*costheta(i) + y.*sintheta(i);

519 a = floor(t);

520 imgd 3 = imgd 3 + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);

521 imgd 3 nrm = imgd 3*(pi/(length(theta)));

522 end

523 %vertical details---------

524 for i=1:87

525 t proj = w vert(i,:);

526 t = x.*costheta(i) + y.*sintheta(i);

527 a = floor(t);

528 imgv 3 = imgv 3 + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);

529 imgv 3 nrm = imgv 3*(pi/(length(theta)));

530 end

531 for i=95:180

532 t proj = w vert(i,:);

533 t = x.*costheta(i) + y.*sintheta(i);

534 a = floor(t);

535 imgv 3 = imgv 3 + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);

536 imgv 3 nrm = imgv 3*(pi/(length(theta)));

537 end

538 %horizontal details---------

539 for i=4:187
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540 t proj = w hor(i,:);

541 t = x.*costheta(i) + y.*sintheta(i);

542 a = floor(t);

543 imgh 3 = imgh 3 + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);

544 imgh 3 nrm = imgh 3*(pi/(length(theta)));

545 end

546 %approximations---------

547 for i=1:length(angles)

548 t proj = w app(i,:);

549 t = x.*costheta(i) + y.*sintheta(i);

550 a = floor(t);

551 imga 3 = imga 3 + (t-a).*t proj(a+1+ctrIdx) + ...

(a+1-t).*t proj(a+ctrIdx);

552 imga 3 nrm = imga 3*(pi/(length(theta)));

553 end

554 %==============================================================

555 %---COEFFICIENT IMAGES BLOCK TILING---------------------------

556 %==============================================================

557 imagend = zeros(128); %Scale 1

558 imagenv = zeros(128);

559 imagenh = zeros(128);

560 cc = 1;

561 n = 1;

562 for j = 1 : (size(imagend,1)/4) : size(imagend,1)

563 c = 1;

564 for i = 1 : (size(imagend,1)/4) : size(imagend,1)

565 imagend((j:cc*size(imagend,1)/4),(i:c*size(imagend,1)/4)) = ...

imgd nrm{n};
566 imagenv((j:cc*size(imagenv,1)/4),(i:c*size(imagenv,1)/4)) = ...

imgv nrm{n};
567 imagenh((j:cc*size(imagenh,1)/4),(i:c*size(imagenh,1)/4)) = ...

imgh nrm{n};
568 c = c+1;

569 n = n+1;

570 end

571 cc = cc + 1;

572 end

573 imagend 2 = zeros(64); %Scale 2

574 imagenv 2 = zeros(64);

575 imagenh 2 = zeros(64);

576 cc = 1;
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577 n = 1;

578 for j = 1 : (size(imagend 2,1)/2) : size(imagend 2,1)

579 c = 1;

580 for i = 1 : (size(imagend 2,1)/2) : size(imagend 2,1)

581 imagend 2((j:cc*size(imagend 2,1)/2),(i:c*size(imagend 2,1)/2)) ...

= imgd 2 nrm{n};
582 imagenv 2((j:cc*size(imagenv 2,1)/2),(i:c*size(imagenv 2,1)/2)) ...

= imgv 2 nrm{n};
583 imagenh 2((j:cc*size(imagenh 2,1)/2),(i:c*size(imagenh 2,1)/2)) ...

= imgh 2 nrm{n};
584 c = c+1;

585 n = n+1;

586 end

587 cc = cc + 1;

588 end

589 imagend 3 = imgd 3 nrm; %Scale 3

590 imagenv 3 = imgv 3 nrm;

591 imagenh 3 = imgh 3 nrm;

592 imagena 3 = imga 3 nrm;

593 %=============================================================

594 %---WAVELET RECONSTRUCTION L3--------------------------------

595 %=============================================================

596 lp = t ls 3;

597 hp = t hs 3;

598 %Upsampling---------------------------

599 rdiag 3 = upsample((imagend 3), 8, 3);

600 rvert 3 = upsample((imagenv 3), 8, 3);

601 rhor 3 = upsample((imagenh 3), 8, 3);

602 rapp 3 = upsample((imagena 3), 8, 3);

603 rdiag 3 = rdiag 3.';

604 rvert 3 = rvert 3.';

605 rhor 3 = rhor 3.';

606 rapp 3 = rapp 3.';

607 rdiag 3 = upsample(rdiag 3, 8, 3);

608 rvert 3 = upsample(rvert 3, 8, 3);

609 rhor 3 = upsample(rhor 3, 8, 3);

610 rapp 3 = upsample(rapp 3, 8, 3);

611 rdiag 3 = rdiag 3.';

612 rvert 3 = rvert 3.';

613 rhor 3 = rhor 3.';

614 rapp 3 = rapp 3.';

615 rdiag 3 = conv2(rdiag 3, hp.', 'same');
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616 rvert 3 = conv2(rvert 3, lp.', 'same');

617 rhor 3 = conv2(rhor 3, hp.', 'same');

618 rapp 3 = conv2(rapp 3, lp.', 'same');

619 rdiag 3 = conv2(rdiag 3, hp, 'same');

620 rvert 3 = conv2(rvert 3, hp, 'same');

621 rhor 3 = conv2(rhor 3, lp, 'same');

622 rapp 3 = conv2(rapp 3, lp, 'same');

623 image 3 = (rapp 3 + rdiag 3 + rvert 3 + rhor 3);

624 %=============================================================

625 %---WAVELET RECONSTRUCTION L2--------------------------------

626 %=============================================================

627 lp = t ls 2;

628 hp = t hs 2;

629 %Upsampling---------------------------

630 rdiag 2 = upsample((imagend 2), 4, 1);

631 rvert 2 = upsample((imagenv 2), 4, 1);

632 rhor 2 = upsample((imagenh 2), 4, 1);

633 rdiag 2 = rdiag 2.';

634 rvert 2 = rvert 2.';

635 rhor 2 = rhor 2.';

636 rdiag 2 = upsample(rdiag 2, 4, 1);

637 rvert 2 = upsample(rvert 2, 4, 1);

638 rhor 2 = upsample(rhor 2, 4, 1);

639 rdiag 2 = rdiag 2.';

640 rvert 2 = rvert 2.';

641 rhor 2 = rhor 2.';

642 rdiag 2 = conv2(rdiag 2, hp.', 'same');

643 rvert 2 = conv2(rvert 2, lp.', 'same');

644 rhor 2 = conv2(rhor 2, hp.', 'same');

645 rdiag 2 = conv2(rdiag 2, hp, 'same');

646 rvert 2 = conv2(rvert 2, hp, 'same');

647 rhor 2 = conv2(rhor 2, lp, 'same');

648 image 2 = (rdiag 2 + rvert 2 + rhor 2);

649 %============================================================

650 %---WAVELET RECONSTRUCTION L1-------------------------------

651 %============================================================

652 lp = t ls;

653 hp = t hs;

654 %Upsampling---------------------------

655 rdiag = upsample((imagend), 2);

656 rvert = upsample((imagenv), 2);

657 rhor = upsample((imagenh), 2);
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658 rdiag = rdiag.';

659 rvert = rvert.';

660 rhor = rhor.';

661 rdiag = upsample(rdiag, 2);

662 rvert = upsample(rvert, 2);

663 rhor = upsample(rhor, 2);

664 rdiag = rdiag.';

665 rvert = rvert.';

666 rhor = rhor.';

667 rdiag = conv2(rdiag, hp.', 'same');

668 rvert = conv2(rvert, lp.', 'same');

669 rhor = conv2(rhor, hp.', 'same');

670 rdiag = conv2(rdiag, hp, 'same');

671 rvert = conv2(rvert, hp, 'same');

672 rhor = conv2(rhor, lp, 'same');

673 image = (rdiag + rvert + rhor);

674 imagen = (image + image 2 + image 3); %Output Image

675

676 [global sim local sim] = ssim(imagen,p);

677 figure, imshow(local sim,[])

678

679 PSNR = psnr(imagen, p)

A.5.1 Block Sinogram Templates Function for

Projection Data Truncation

1 function [ ] = sngrm templates(N)

2 %=================================================================

3 %BLOCK IMAGES TEMPLATES FOR TRUNCATION IN RADON DOMAIN-----------

4 %=================================================================

5 p = phantom(N);

6 angles = 0:179;

7 %---load block-support phantom images--------------

8 for i = 1:16 %Scale 1

9 filename = sprintf('templates 32x32 16 20pc/%d.png',i); %path

10 template 1{i} = imread(filename);

11 template 1{i} = logical(template 1{i}(:,:,1)); %RGB to double

12 sngrm template 1{i} = radon(template 1{i}, angles);%blck ...

snrgm

13 end
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14 for i = 1:4 %Scale 2

15 filename = sprintf('templates 8x8 4 30pc/%d.png',i);

16 template 2{i} = imread(filename);

17 template 2{i} = logical(template 2{i}(:,:,1));
18 sngrm template 2{i} = radon(template 2{i}, angles);

19 end

20 %---generate logic-valued sinogram tamplates

21 for i = 1:size(sngrm template 1,2)

22 grid template 1{i} = logical(sngrm template 1{i});
23 filenames = sprintf('sinograms64/template 1 %d.png',i);

24 imwrite(grid template 1{i}, filenames);

25 end

26 for i = 1:size(sngrm template 2,2)

27 grid template 2{i} = logical(sngrm template 2{i});
28 filenames = sprintf('sinograms64/template 2 %d.png',i);

29 imwrite(grid template 2{i}, filenames);

30 end

240
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Abstract— We demonstrate an algorithm, relevant to 

tomography sensor systems, to obtain images from the parallel 

reconstruction of essentially localized elements at different scales. 

This is achieved by combining methodology to reconstruct images 

from limited and/or truncated data, with the time-frequency 

capabilities of the Wavelet Transform. Multiscale, as well as 

time-frequency, localization properties of the separable two-

dimensional wavelet transform are exploited as an approach for 

faster reconstruction.  The speed up is realized not only by 

reducing the computation load on a single processor, but also by 

achieving the parallel reconstruction of several tiled blocks. With 

tiled-block image reconstruction by wavelet-based, parallel 

filtered back-projection we measure more than 36 times gain in 

speed, compared to standard filtered backprojection.  

 
Index Terms— image reconstruction, computed tomography, 

data processing algorithms, parallel processing, discrete wavelet 

transform. 

I. INTRODUCTION 

CROSS many applications, it is common to identify the 

need of information about an object, without altering its 

physical structure. Fortunately, there are numerous methods 

allowing radiation, either emitted or transmitted, to be 

employed to obtain cross-sectional images characterizing the 

inner structure of an object. The mathematical foundation 

behind such an approach was developed by Johann Radon in 

1917 [1] and several decades later, in 1972, experimentally 

implemented by Hounsfield [2] resulting in the demonstration 

of the first Computed Tomography (CT) scanner.  

The main motivation for this work was the existing body of 

knowledge and achievements on the reconstruction of 

reduced-area full-resolution images, originally encouraged by 

the radiation dose exposure reduction in medical imaging, and 

where the Wavelet Transform (WT), along its different 

representations, proved to be an effective tool given its time-

frequency localization capabilities [3]-[4]. Such research has 

been commonly named as Wavelet-based local reconstruction, 

and has been reported to be useful in other application areas 

such as Nano and Micro Tomography [5]-[6]; Terahertz 

Tomography [7], and Dental Radiology [8]. 

Of special interest is the 2D separable representation of the 

WT, employed in [4] and [9]. In addition to achieving local 
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reconstruction, it allows projection data to be processed in a 

multiresolution scheme. Such a feature proves to be of great 

benefit, when realizing its similarities with the parallel 

algorithm proposed in [10]. In that algorithm, a frequential 

decomposition of projection data is performed with the aim to 

back-project every component separately. The subsequent 

merger into a final image notably speeds up the image 

reconstruction process. 

In this work we propose an algorithm combining the 

wavelet-based reconstruction of reduced image areas [9],[4]; 

and the parallel reconstruction from frequential sub-band 

decomposition of projection data [10]. The outline of the 

paper is as follows: Section II covers the background theory 

involved in the algorithm development; tomography image 

reconstruction, the wavelet transform and the multiresolution 

representation. Section III details the implementation of the 

algorithm. The results are shown in section IV and the 

functionality of the approach is discussed in section V.  

II. BACKGROUND 

A.  Image Reconstruction from Projection Data.  

In Tomography, as well as in other imaging techniques, the 

Radon Transform (RT) is the mathematical tool employed to 

map an unknown density distribution (object) (𝑥,𝑦) onto 

attenuation line integrals passing across it. In 2D, the 

analytical expression yielding the set of parallel line integrals 

is given by:  
 

, (1) 
 

where 𝜃 is the angle between the line normal and the x-axis, 

and 𝑟 the distance from the rotation origin. Data collected (e.g. 

by a detector array) at the same angle 𝜃 are grouped in a 

projection and the set of projections taken at all angles 

constitutes the sampled RT of the object. The 2D graphical 

representation of RT (the “sinogram”) is given by a stack of 

all projections ordered by angle, each projection contributing 

with a row of pixel intensities determined by the values of the 

constituent line integrals.  

An important property, utilized to solve the inverse problem 

of recovering 𝑓(𝑥,𝑦) from projection data, is given by the 

Fourier Slice theorem, stating that the values calculated by the 

1D Fourier transform 𝐺(𝜃,𝜔) of a projection at an angle 𝜃:  
 

,                              (2) 
 
populate a “diagonal slice” at the same angle 𝜃 within the 2D 

Fourier image 𝐹(𝑢,𝑣) of the object. Therefore, by taking the  

Fourier transform of the measured projection data at a 

sufficient amount of angles to assemble a well sampled 
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representation of the object’s Fourier space, the solution to the 

inverse Radon problem is reduced to taking the 2D inverse 

transform  
   

 .                              (3) 
 
In a practical implementation, it is not realistic to obtain 

projection data that fully covers the Fourier space. Therefore, 

the Filtered Backprojection (FBP) method is used to account 

for adjustment of the integration limits in the Fourier 

inversion, along with a change from cartesian to polar 

coordinates. The FBP is mathematically defined by  
 

,            (4) 
 
where |𝜔| is the Jacobian of the coordinate system 

transformation and acts as a ramp filter suppressing the low 

frequencies close to the origin. The above formula can be split 

into two steps: the filtering of projection data 
 

                    (5) 
 
and the backprojection 
 

,             (6) 
 
where 𝑥cos𝜃+𝑦 𝑠𝑖𝑛𝜃=𝑟. 

A more detailed explanation and the strict derivation of the 

FBP expression are available in [12]. 

B. Global character (nonlocality) of the standard FBP 

While the FBP attracts interest, due to its high 

computational efficiency [13], its functionality is limited by 

the availability of sufficient projection data, equispaced in 𝜃 

and 𝑟 [14]. In cases when access restrictions prevent the 

collection of complete data or measurements need to be 

limited only to a region of interest, (4) is not the most 

indicated reconstruction strategy. This is due to the non-

locality of the standard FBP caused mainly by the ramp filter 

|𝜔|, and particularly its discontinuity at the origin. The latter 

results in the spread of projection data support in the space 

domain.  

This problem has been addressed under different names: i) 

Reconstruction from truncated projections [14], ii) Incomplete 

data problem [15], iii) Local Tomography [16] and iv) The 

interior Radon Transform [17] and v) Tomography from 

scarce measurements E Constantino, KB Ozanyan Sensors 

Journal, IEEE 9 (4), 399-410. All approaches serve the same 

purpose, to avoid the global dependency of the FBP and 

reconstruct an accurate image from compactly supported data.  

Different approaches to local or limited data reconstruction 

have been reviewed in [18]-[20], where the use of wavelet 

transforms emerges as one with the most promising 

methodology. This is due to the expectation that by employing 

a function having a sufficient amount of zero moments, the 

support will remain essentially unchanged. Wavelet filters are 

functions with compact support and can be constructed with a 

certain amount of zero moments [21]-[23]. 

C. The Wavelet Transform 

The main idea behind the wavelet transform is to obtain 

information not only about the constituent frequencies of a 

signal, but also about the interval of time relevant to these 

frequencies.   

As a cursory explanation, the continuous wavelet transform 

(CTW) is typically based on the complete temporal correlation 

between the input signal and dilated/expanded versions of a 

predefined finite length signal of the mother wavelet. A match 

between a certain frequency in a temporal segment from the 

input signal and the wavelet being shifted along that segment 

is characterized by a high correlation coefficient and the 

contribution of that frequency, along with the temporal 

parameters of the segment, is flagged [24]. However, the 

CWT involves redundant processing of large data sets, not 

suitable for practical implementation. 

A different representation scheme was proposed in [25], 

whereby a discrete signal is processed with a range of 

high/low pass digital filters and down-samplers; the result is a 

decomposition of the input signal into scale components 

differing in size by a factor of two, to its nearest higher scale. 

Low and high pass filters (scaling functions (𝑛)) and wavelet 

function 𝜓(𝑛) are convolved with the input signal 𝑥(𝑛) to 

produce a pair of wavelet coefficients: approximations (lower 

frequencies) and details (higher frequencies). After filtering, 

the output wavelet coefficients’ bandwidth is reduced by half, 

therefore by means of the Shannon theorem, these coefficients 

can be represented with as half as many of the samples 

contained in the original signal, without any loss:  
 
 

                                                        ,                             (7) 
 
 

where * is the convolution symbol. To recover the original 

signal, the wavelet coefficients are up-sampled and reverse-

filtered, resulting in two signals. The merger of these signals 

must be equivalent to the original signal, if the employed 

wavelet functions allow exact reconstruction. This is 

illustrated in Fig. 1. 

In a multiscale representation, the approximation 

coefficients (𝑘) become the input to a new frequency 

decomposition and the output coefficients will again contain 

only half as many samples as before.  

For a 2D input signal, three wavelet functions are obtained 

from separable products between both scaling and wavelet 

functions. They quantify high frequency variations along 

different directions: horizontal, vertical and diagonal.  
 
 

                                  (8) 

                                  
 
And the scaling function is as follows: 
 

 
 

Fig. 1.  Separable wavelet filter bank. 
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  (9)  
 
Performing the 2D separable wavelet transform amounts then 

to the calculation of the 1D version along the rows and 

columns of the 2D input signal.  
 

          (10) 

 
where 𝑊𝜓𝐻(𝑚,𝑛), 𝑊𝜓𝑉(𝑚,𝑛), and 𝑊𝜓𝐷(𝑚,𝑛) are detail 

coefficients along horizontal, vertical and diagonal directions. 

𝑊S(𝑚,𝑛) is the approximations coefficient, 𝑥(𝑚,𝑛) is the input 

signal. Analogous to the 1D case, a multi-scale representation 

is achieved by the approximations wavelet coefficient 

becoming the input for a new wavelet transform iteration, as 

shown in Fig. 2. Thus, 4 coefficients are obtained at each 

scale: three separate detail coefficients and one 

approximations coefficient, corresponding to the lower scale 

component.  

D. Wavelet-based Localized Tomography Reconstruction 

1) Wavelet-modified ramp filtering 

The main motivation in involving the wavelet transform in 

the FBP process is to avoid the support spread of projection 

data that occurs after the ramp filtering, since the latter 

emphasizes the global dependency of the measurements’ 

overall support. As suggested in [21], for the accurate 

reconstruction of a ROI, the filtering stage of the standard FBP 

can be extended with the addition of essentially compactly 

supported functions, presenting a certain amount of zero 

moments. The low/high pass filters that act as wavelet/scaling 

functions in the 2D WT, are functions of that type, and can be 

incorporated in (5) as follows. 
 

 (11)  

 
The above equation is the wavelet-based FBP, where 

|𝜔|(𝜔𝑐𝑜𝑠𝜃,𝜔𝑠𝑖𝑛𝜃) corresponds to the wavelet-modified ramp 

filter. 𝑊 relates to the product between 1D high/low pass 

filters in Fourier domain and polar coordinates, being the last 

mentioned characteristic, necessary to match with the format 

of projection data. Separable products that correspond to each 

of the 2D WT image coefficients are shown below:  
 

 (12) 

 
It can be noticed from (12) that because of the cartesian to 

polar re-gridding of low/high filter coefficients, The wavelet- 

modified ramp filters become angle dependent. Such 

dependency suffers the drawback that filter coefficients must 

be calculated for every projection angle separately. However, 

it also presents with the great advantage that the detail 

frequency components at a number of angles can be discarded 

because of their null effect in the projection data filtering. 

Unfortunately, this is not the case for the approximations 

frequency component, which incorporates all lower 

frequencies in all projection angles. 

2) The backprojection operator and subsampling 

It can be seen from (12) that unlike the standard FBP the 

filtering in the wavelet-based FBP generalization shifts the 

approach, from the frequency weighting of projection data 

within the Fourier space, to the decomposition into frequency 

components, as previously explained in section II C.. This 

implies that backprojection has to be performed to create four 

different wavelet coefficient images, each of them half the size 

of the image yielded by the standard FBP. A remarkable 

consequence of such a characteristic is that the complexity 

involved in this operation is considerably reduced when 

implementing it parallel computation. 

III. THE PARALLEL MULTISCALE WAVELET RECONSTRUCTION 

A. Methodology 

In the approach proposed in [10], projection data is mapped 

onto a Fourier space divided into BxB adjacent squares with 

the objective to parallelize the reconstruction process. These 

squares define certain references to process only projection 

data that concerns them. The result is a set of BxB frequency 

components which can be, independently and in parallel, 

brackprojected onto less dense grids that are finally merged to 

form a single output image. By observing on Fig.3 how the 2D 

WT tiles the Fourier space, it can be concluded that very 

 
Fig. 3.  Wavelet decomposition of the Fourier space. (a) One-step scale 

decomposition. (b) Two-step scale decomposition. 

  

 
Fig. 2.  Two-step separable two-dimensional wavelet transform. 
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similar properties are already implicit in the wavelet-based 

FBP. The main difference lies in the manner with which the 

combination of wavelet and scaling functions tiles the Fourier 

space into a fixed number of regions defining the frequencies 

that constitute each of the wavelet coefficients: three details 

and one approximations, as illustrated in Fig. 3(a). 

If the approximations coefficient is used as the input of a 

new 2D WT iteration, as shown in Fig. 3(b), the Fourier space 

can be tiled into more lower-scale regions, substituting the 

approximations coefficient by a set of new lower-scale 

wavelet coefficients. Although it is expected that a multiscale 

decomposition contributes to the speed-up of the 

reconstruction process, the 2D WT in its standard form, 

suffers from the requirement for the iterative computation of 

approximations at each scale. 

This limitation can be bypassed through the use of Noble 

identities [26], which allow the construction of an equivalent 

parallel multiscale implementation of the 2D WT in Fourier 

domain. The result is the substitution of the pyramidal 

configuration shown in Fig. 2, formed by low/high pass filters 

and downsamplers, into a scale-dependent set of filters and 

downsamplers. According to [9], for a non-pyramidal 

implementation, the low pass filter coefficients in the Fourier 

domain are as follows: 
 

,         (13) 
 

and for high pass filters: 

 

.   (14) 

 

Fig. 4 shows the parallel implementation alternative to the 2D 

WT. 

Apart from preserving the compact support and reducing 

the complexity of the backprojection operation, 2D WT can be 

employed to obtain a multiscale representation of the 

projection data which, if implemented in parallel, can speed up 

the reconstruction process dramatically. 

B. Fast parallel algorithm  

Under the concepts exposed in the previous sections, by 

exploiting the attributes provided by the 2D WT when being 

employed in the image reconstruction process, we formulate a 

fast parallel algorithm. The main motivation in using the 2D 

WT is to take advantage of its time-frequency localization 

properties and be able to reconstruct accurately, independently 

and in parallel, reduced area block components tiling together 

a full-size image. The main objective behind the 

reconstruction of block components is to reduce the overall 

reconstruction time, by considering only projection data 

corresponding to one block at a time. 

A secondary feature, derived from the wavelet filtering of 

projection data and the sampling theorem, allows 

backprojection of wavelet coefficient images to be performed 

without loss of information onto subsampled grids, half the 

size of the complete resolution image obtained through 

standard FBP reconstruction,. This feature has an important 

implication in the speed-up of the reconstruction process, 

given the fact that backprojection is the most computationally 

expensive operation within the FBP [9]. 

Following the same line, by analyzing in Fig. 3 the 

breakdown of projection data within the Fourier space after 

wavelet filtering, it is obvious that certain projection angles 

have a null contribution (see Fig. 5) in the generation of detail 

coefficient images [11] and can be discarded without 

compromising the quality of the wavelet coefficient images. 

Conversely, when it comes to the generation of the 

approximations coefficient image, all projection angles must 

be considered (see top left example in Fig. 5(a)), therefore this 

advantage is only partially usable.  

With the purpose to alleviate the consequences from such a 

restriction, the parallel multiscale decomposition scheme was 

adopted in the development of this algorithm. As explained 

before, this scheme allows a frequential decomposition of 

projection data, in which approximations coefficient is only 

computed for the lower resolution component. This means 

that, in relationship with the sampling theorem, 

approximations coefficient can be backprojected onto a less 

dense grid, which is reduced by a factor of two at every step 

down in resolution.  

The algorithm presented in this work is a generalization of 

the FBP that has been designed by using MATLAB as 

software testing framework, having in mind a parallel 

implementation, either in hardware or in a software platform, 

capable of independently executing every component; e.g. in 

Simulink. 

C. Computer Implementation of the standard FBP algorithm 

In order to be able to adapt the standard FBP to the 

purposes of this work, it was implemented in MATLAB using 

the ‘iradon’ function and also used as a reference benchmark.  

 
Fig. 5.  Tomography projection data wavelet filtering. (a) 2D wavelet filters 

in Fourier domain and polar coordinates (0 to 180o), constructed by using the 

discrete Meyer FIR filter. (b) Wavelet-filtered projection data. 
  

 
Fig. 4.  Parallel two-dimensional separable wavelet transform. 
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The ramp filter design uses a method reported in [27] and 

[28], aiming to suppress the dc shift and inter-period 

interference artifacts. This is achieved by calculating an 

impulse response approximation of the ramp filter and 

matching the sampling interval to the bandwidths of the filter 

and the projection data, which are also zero-padded before the 

FFT is applied. Filtering is performed in the Fourier domain, 

and with the objective of reducing the algorithm complexity 

only “positive” frequencies are processed. The already filtered 

projection data is complemented with its complex conjugate, 

and IFFT is calculated. The backprojection operator, along 

with linear interpolation, is performed as designed in the 

‘iradon’ function. 

D. The multiscale parallel block reconstruction algorithm 

As previously mentioned, the algorithm was formulated for 

a parallel implementation. The latter depends on the isolation 

between certain elements, chosen among those that do not rely 

on values obtained during the execution of the algorithm and 

can be calculated a priori, and those that are totally dependent. 

1) Off-line algorithm elements 

The computation of the off-line elements starts from the 

decision of the scale depth into which the projection data will 

be decomposed. This information is relevant for the 

calculation of wavelet and scaling functions, as well as to 

determine the size of the wavelet coefficient images at each 

scale. In the algorithm, this information also determines the 

area of the blocks in which the full-size image will be 

decomposed, which is the area of the lower scale coefficient 

image, e.g. for a 256×256 pixel image, if decomposed into l = 

3 scales, the lower scale image area is given by 256×2−3, 

which corresponds to a 32×32 pixel image. This means that 

the full-scale 256×256 pixel image will be divided into four 

32×32 pixel coefficient images (one approximations and three 

details) at scale l = 3, three 64×64 pixel detail images at scale l 

= 2, divided into four 32×32 blocks, and three 128×128 pixel 

detail images at scale l = 1 composed by sixteen 32×32 blocks. 

This is illustrated in Fig. 6. 

By having information about the resolution depth and area 

size of each of the wavelet coefficients images, as well as of 

the constituent blocks, it is possible to calculate the filter 

coefficients (scaling/wavelet functions) by which the 

projection data will be decomposed. For this operation, (13) 

and (14) are employed in order to obtain the filter coefficients 

corresponding to each scale. These filter coefficients along 

with the designed ramp filter, are used to create the wavelet 

modified filters, directly employed in the analytical expression 

given by (11). 

In order to decompose the projection data into several 

constituent blocks, a simple procedure was developed. It 

consists of generating synthetic phantoms representing the 

block area, within the field of view, that will be reconstructed 

individually. The RT from the block phantoms is then 

calculated and its support is obtained and converted to binary 

pixel values. The result is an array that is used as a template, 

to extract the projection data relevant for the reconstruction of 

the image  block. This process is illustrated in Fig.7. 

This approach has been developed with the purpose of 

avoiding the difficulties involved in the collection of off- 

centered data without degrading considerably the 

reconstructed image. In contrast to what is proposed in [21], 

this approach does not need extra padding of the projection 

data array, and therefore avoids the extra computational time 

involved when applying the filter. 

2) On-line algorithm elements 

The on-line elements are sequential portions of the 

algorithm that result as consequence of decomposing the 

reconstruction task into smaller ones. Each component task 

incorporates the computation that concerns only to the 

reconstruction of a wavelet coefficient block-tile image, at its 

corresponding scale, and is limited by its minimum data 

calculation dependency. Off-line calculated variables are 

required in the execution of every block. 

Each component task has the same base operators of the 

standard FBP: filtering of the projection data in the Fourier 

domain and its backprojection onto the real space grid. The 

difference lies in that every component task is dedicated to the 

reconstruction of a reduced area, at every scale, which is 

possible because of the 2D WT incorporation. For the effect of 

dividing the full- size image reconstruction into a set of 

constituent block images, be reflected in speed gain, every 

component must deliver accurate images when provided only 

with data corresponding to the block area of interest. 

Fig. 8 illustrates the processing carried out by each 

component task, when 3-level scale decomposition is desired. 

The first stage is the block decomposition of projection data, 

performed with the aid of support templates, for every scale 

except for the lower one, which determines the size and 

number of blocks in which the projection data is decomposed. 

FFT is then individually applied to the decomposed projection 

data and wavelet-based ramp-filtering is performed in the 

Fourier domain, resulting in the frequential decomposition of 

every projection data component. Further, IFFT of the filtered 

projection data components is taken, followed by the 

backprojection onto subsampled grids to create wavelet 

coefficient block-images at each scale. Finally, wavelet 

 
 

Fig. 6.  Multiscale constituent block-breakdown  
  

 
 

Fig. 7.  Procedure of the projection data block-decomposition.  
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Fig. 8.  Multiscale parallel block reconstruction of wavelet coefficient images 

 

 

 
Fig. 10.  Comparison between reconstructed images from different algorithms. 

(a) Standard FBP. (b) Wavelet-based multiscale five-step FBP. (c) Wavelet-

based multiscale five-step parallel block FBP.  
Full-size images of Fig 10 (a) (b) and (c) are provided as separate media. 

  

coefficient images are obtained from the tiling of block-

images. The full-size image at maximum resolution is 

obtained by the merger of all wavelet coefficient images 

through inverse 2D WT in the space domain. 

IV. RESULTS 

Results shown in this section were obtained with synthetic 

forward RT data generated by the MATLAB ‘radon’ function, 

from 180 view angles equispaced within [0,180o] on the 

standard Shepp-Logan test image.  FBP image reconstruction 

was performed on a 512×512 pixel grid, no window function 

was employed in the filtering stage and linear interpolation 

was involved in backprojection operator. For frequential 

decomposition of projection data, a five-step multiscale 

representation was obtained through the parallel separable 2D 

WT. Wavelet coefficient images at each scale, except for scale 

l = 5, are divided into a set of 16×16 pixel constituent blocks; 

4 for l = 4, 16 for l = 3, 64 for l = 2, and 256 for l = 1. The 

mother wavelet used for final results, was the symmetric and 

compactly supported “biorthogonal 2.4”, which is length-10 

and contains five zero moments. The wavelet coefficient 

images, as well as the synthesized full-scale image, are shown 

in Fig.9. Fig. 10 shows the output of the three variants of the 

FBP algorithm: standard FBP, 5-step multiscale FBP and 

parallel multiscale FBP with block tiling.  

With the objective to study the speed gain achieved in the 

parallel implementation compared to the standard FBP image 

reconstruction, time analysis of the algorithm execution was 

carried out. Measurements were taken by using the ‘tic/toc’ 

function in MATLAB 2012b, with a 3.1GHz Intel Quad Core 

i3 processor and 4GB RAM computer system, as well as a 

64bit Linux Fedora 17 operating system. To ensure 

consistency, measurements were repeated until reaching 

uniformity, and a single computer processor core was 

employed. 

In the first instance, time measurements were taken from 

the multiscale wavelet-based FBP, with the objective of 

showing the speed gain from the inclusion of the 2D WT, 

without block decomposition. Fig. 11 shows the execution 

time, at each scale and for every wavelet coefficient image, 

calculated by the multiscale wavelet-based FBP. The time 

performance shown includes up-sampling and reverse-

filtering. All execution times were considerably less than for 

the standard FBP, which under the circumstances was 

measured to be 1.7s.  

For the parallel block decomposition algorithm, time 

performance was measured for each constituent block, for 

every wavelet coefficient, and at each scale. A detailed visual 

representation is impossible for this set of time performance 

measurements, as it would constitute a 512×512 pixel grid 

divided into 1024 16×16 pixel blocks. Therefore Fig. 12 

presents the longest reconstruction time taken for a block 

within a specific scale and wavelet coefficient image. Again, 

up-sampling and reverse-filtering are included. For the 

 
Fig. 9.  Reconstructed image from the wavelet-based multiscale parallel 

block reconstruction algorithm. (a) Wavelet coefficients’ images obtained at 

each scale; detail coefficient images for 𝑙=1,2,3,4,5 and approximations 

coefficient image for 𝑙=5. (b) Reconstructed output image at full scale 𝑙=0.  
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purpose of comparison, the longest time manifested in Fig. 12, 

0.0451 s, is taken as the total time spent on the execution of 

the parallel algorithm. Fig. 13 shows the final time 

performance comparison between the three algorithms. 

V. DISCUSSION 

In this paper, an alternative algorithm to the widely used 

FBP has been presented. Due to its parallel implementation 

and block reconstruction approach, the image reconstruction 

speed is around 36 times faster than its standard counterpart;. 

This gain speed performance it is obtained at the expense of a 

slight image degradation (see Fig. 10), which is acceptable for 

many applications of FBP. 

The work on the algorithm design demonstrated that the 

achievement of gain in speed at minimal image quality 

degradation, strongly depended on the type of wavelet 

transform to be employed and the choice of mother wavelet 

function.  

The preferred choice of transform was the separable 2D 

WT, mainly because it is amenable to a parallel 

implementation in addition to delivering a multiscale 

representation. In the first instance, the importance of 

employing a wavelet filter that allowed an exact 

reconstruction scheme, while selecting the proper wavelet 

basis, was recognized. Attempts using different wavelet basis 

showed that, given the nature of the problem, a basis capable 

of preserving linear phase was required, which resulted in the 

choice of the biorthogonal wavelets [29]. 

The choice in terms of wavelet filters was subject to a more 

complex process. This was driven mainly by a priori 

knowledge, derived from the understanding of the tomography 

problem, as well as from the test results during the algorithm 

design. An indicator of the localization in Fourier domain is 

regularity and is determined by the wavelet filter smoothness. 

Higher regularity allows more accurate frequential 

decomposition, but at the expense of higher amounts of filter 

coefficients, resulting again in speed loss.  

After managing to achieve exact inversion of the 2D WT, 

the major concern was to evaluate biorthogonal wavelet filters 

constructed with a different number of zero moments, supports 

and number of coefficients. The number of zero moments had 

a direct implication in the block-reconstruction accuracy, 

given the fact that it represents an indicator of the localization 

in space and is proportional to the support, which means that 

the higher the space localization, the less compact the support 

and the higher demand on computational resources. In the 

suggested algorithm, this was accounted for when deciding the 

amount of data to be collected for the reconstruction of 

constituent blocks: higher zero moments wavelets delivered 

higher quality reconstructed block images, at the expense of 

more data processing needed, resulting in less speed gain. 

In conclusion, we have shown that tiled-block image 

reconstruction by wavelet-based, parallel filtered back-

projection leads to more than an order of magnitude gain in 

speed, compared to standard FBP. This motivates future work 

in embedding such algorithms in programmable hardware, 

such as FPGAs. 
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