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Abstract

This thesis consists of one hedge fund study and two credit default swap (CDS)
studies. The first study investigates the relationship between mega hedge funds
(the largest 25% of funds) and two bond yields (U.S. Treasury yield and Baa yield).
Using a merged sample of 9,725 hedge funds from 1994 to 2012, I find that hedge
fund outflow produced a more significant relationship than inflow, and the dollar
outflow of large hedge funds can predict the increase in the bond yields. The asso-
ciation is also more pronounced for large funds with a short notice period prior to
redemption. The results suggest that hedge fund flows provide predictive informa-
tion for the movement of bond yields. The second study investigates the systematic
and firm-specific credit and liquidity risks of CDS spreads. Using data on CDS
spreads of 356 U.S. firms from 2002 to 2011, I find that systematic credit and liquid-
ity risks are important in cross-sectional prediction of CDS spreads. In addition, the
importance of systematic liquidity risk becomes substantial since the financial crisis
in 2007. This finding challenges the current Basel III procedures for counterparty
credit risk regulations, in which only pure default should be used. In addition, the
systematic credit and liquidity factors can be used as a proxy for CDS spreads of
firms that do not have traded CDSs. The last study extends Carr and Wu (2010), in
which deep out-of-the-money (DOOM) put options and CDSs are associated as they
both provide credit insurance for credit protection buyers. Using the Nelson-Siegel
(1987) model, I obtain the credit and illiquidity components for DOOMs and CDSs
over the period from May 2002 to May 2012. I show that, after controlling the
factors that explain the difference between the DOOM and CDS markets, the com-
ponents converge over time in these two markets. Thus, I can exploit the observed
convergence pattern by constructing a simple trading strategy, and this benchmark
strategy produces a positive return. I further construct two other strategies based on
the component information, and these two refined strategies outperform the bench-
mark strategy by the Sharpe ratio and Carhart alpha. My three studies contribute
to the literature in hedge fund systemic risk and CDS credit and liquidity risks.
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Chapter 1

Introduction

This thesis, which consists of three studies in two research areas, has a special focus

on liquidity impact. The first area is hedge fund research and the second is credit

default swap (CDS) research. A hedge fund is a private investment instrument that,

fund managers have claimed, earns high absolute returns. The hedge fund industry

has prospered in the last two decades, and its potential impact on financial markets,

due to its sheer size, cannot be overstated. Credit products have also become more

popular and important in the last ten years. Among all the research on CDSs, the

study of liquidity risk is scarce but has been gaining more popularity lately. In

this chapter, I describe recent developments in the literature and explain how these

developments relate to my studies.

1.1 Hedge Fund Return Characteristics, Liquid-

ity Risk, and Interconnectedness

Hedge funds are popular for investors who look for high returns. These private funds

constantly report their success and receive much public attention. The hedge fund

industry keeps prospering, and the total amount invested in the U.S. market is nearly

US$2.8 trillion according to a Hedge Fund Research Inc. report in 2014. Yet the

history of hedge funds is rather short: the first appearance of hedge funds began in
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the mid-20th century (Caldwell 1995). Hedge funds, at that time, were unorganized

and run by a small group of private investors and fund managers. Fund managers,

on behalf of their clients, invest in selected assets based on their analytical skills,

and earn performance-based fees if the performance is good (Fung and Hsieh 1999).

Some banks, restricted by their risk-management policy, are not willing to provide

the capital that fund managers need. Fund managers then turn to wealthy private

clients or institutional investors to support their capital requirements. Hedge funds

sometimes operate as hedge fund families to effectively conduct marketing strategies

and attract new investors (Kolokolova 2011).

Hedge funds are different from other investment organizations such as commodity

trading agents (CTAs) and mutual funds. Fung and Hsieh (1999) provide compre-

hensive analyses of these organizations. CTAs are similar to hedge fund managers.

They provide investment advice for their clients who are registered with a managed

account. Also, CTAs manage clients’ asset portfolios and charge performance-based

fees and management fees in return. CTAs and hedge funds, despite their simi-

larities, have a few differences: CTAs are regulated and supervised by the federal

government and a supervision committee. Hedge funds, on the other hand, were

not required to be registered before the 2007–2009 financial crisis. Before the crisis,

hedge funds were free from supervision by financial authorities such as the Securities

Exchange Commission (SEC), Commodity Futures Trading Commission (CFTC),

Federal Reserve, the Office of the Comptroller of the Currency (OCC), and the

Office of Thrift Supervision (OTS). By and large, they abide by investment laws

designed to protect individual investors. After the 2007–2009 financial crisis, some

financial authorities began to address the issue of lack of supervision and paid more

attention to the previously less regulated industries such as hedge funds and private

equity funds. As a result, hedge funds now have to be registered and supervised if

they operate and market in the U.S. according to the Dodd–Frank Act, or in the

EU according to the Alternative Investment Fund Managers (AIFM) Directive.

Mutual funds are different from hedge funds in a number of aspects (viz. regula-

tions, return characteristics, and investment strategy). Mutual funds need to follow
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strict internal and external regulations that discourage moral hazard. Mutual fund

investors often come from the general public. To protect these investors, mutual

funds are forced to maintain operational transparency by reporting their holding

positions and trading activities frequently. Also, the typical size of mutual funds

is larger than that of hedge funds; mutual funds rely more on administration fees

because they usually perform a buy-and-hold strategy, while hedge funds embrace

risk and adopt a more dynamic strategy in order to earn higher performance fees.

In other words, hedge funds enjoy greater flexibility in trading strategy than mutual

funds.

Hedge fund performance evaluation often includes a high-water mark provision

(HWM). A HWM denies the hedge fund manager his performance fee unless the

end-of-year net asset value (NAV) exceeds some past maximum NAVs. Therefore,

a HWM induces a call option feature into fund managers’ compensation. This may

induce higher risk taking by fund managers (Hodder and Jackwerth 2007). More

recent literature relates a HWM to a short put which could lead to decreased risk

taking, especially for funds with a longer investment horizon and for funds with

brokerage restrictions (Aragon and Nanda (2011), Buraschi, Kosowski, and Sritrakul

(2014), Dai and Sundaresan (2009), Drechsler (2014), Lan, Wang, and Yang (2013),

and Panageas and Westerfield (2009)).

1.1.1 Fund Return Characteristics

To characterize hedge fund performance, Fung and Hsieh (2004) propose a seven-

factor model to explain fund returns, namely: (i) equity market factor proxied by

Standard & Poor’s 500 stock return, (ii) size spread factor proxied by the difference

between Wilshire Small Cap 1750 and Wilshire Large Cap 750 return,1 (iii) bond

market factor proxied by the month-end to month-end change in the U.S. Federal

Reserve 10-year constant-maturity yield, (iv) credit spread factor proxied by the

month-end to month-end change in the difference between the Moody’s Baa yield

1The Wilshire index no longer exists and has been replaced by Russell 2000.
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and the Federal Reserve’s 10-year constant-maturity yield, and (v) three trend fac-

tors proposed in Fung and Hsieh (2001) (return of portfolio of lookback straddles on

bond futures, the return of portfolio of lookback straddles on currency futures, and

the return of portfolio of lookback straddles on commodity futures). These factors

represent the markets in which hedge funds actively participate. The seven-factor

model is widely used in the study of hedge funds.

In order to attract potential investors, hedge funds “voluntarily” report on ven-

dors’ platforms their performance and other factual information. At the time of

writing, five of the most important hedge fund reporting platforms are Barclay-

Hedge, EurekaHedge, Hedge Fund Research (HFR), Morningstar, and TASS Lipper.

The information in these platforms is self-reported. Hedge funds, of course, can stop

reporting their performance at any time. Hedge fund data, therefore, contain several

biases due to this self-reporting mechanism. The biases are:

1. Backfill Bias: A hedge fund can upload its past performance when it starts to

advertise. Naturally, it will report its past returns only if they are good. Therefore,

the early period of fund performance will be upwardly biased.

2. Survivorship Bias: Some vendors delete hedge funds that stop reporting or

are liquidated. Therefore, the information on defunct funds is missing.

3. Selection Bias: Hedge funds might not advertise themselves in all vendor

platforms. As a result, no single vendor platform includes all outstanding hedge

funds. Joenvaara, Kosowski, and Tolonen (2012) analyze the mainstream hedge fund

databases and suggest the use of consolidated hedge fund data to avoid selection

bias.

Given these biases, I choose to use a merged sample, and the procedures of

eliminating the above-mentioned biases are provided in Section 2.3. In addition

to sample bias, Getmansky, Lo, and Makarov (2004) find that hedge fund return

is highly auto-correlated and attribute this to high exposure to illiquid asset and

smoothed performance. Therefore, they use an auto-regression model to recover the

actual return volatility and propose a smoothing-adjusted Sharpe ratio to recover
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the actual performance. Studies such as Miura, Aoki, and Yokouchi (2009) also find

evidence that hedge funds are highly exposed to illiquid assets.

1.1.2 Hedge Fund Liquidity Risk

Brunnermeier and Pedersen (2009) provide a theoretical explanation for the inter-

action between funding illiquidity and market illiquidity. In their theory, funding

illiquidity and market illiquidity might reinforce each other and form a vicious cir-

cle. Liquidity shock increases the asset volatility and margin requirement. If market

speculators have enough capital at hand, there is no shortage of funding liquidity.

However, if the speculators fail to meet the increased margin, they will be forced to

unwind their positions to cover the margin call. This fire sale may further produce

liquidity shocks to the market, triggering a devastating “loss spiral”. Hedge funds

are very likely to be involved in the vicious cycle described in Brunnermeier and

Pedersen (2009) since hedge funds tend to hold a large amount of illiquid assets.

Khandani and Lo (2007) and Khandani and Lo (2011) described the unprecedented

losses in the U.S. stock markets among the long-short equity hedge funds during

the week of August 6, 2007 as a result of sudden liquidation. Several studies show

hedge funds have substantial liquidity risk. Sadka (2010) finds market-wide and

fund-specific liquidity risks explain hedge fund performance. Hu, Pan, and Wang

(2013) support the findings in Sadka (2010); Hu et al. find that their liquidity factor

explains hedge fund returns.

Teo (2011) studies the impact of funding constraints on hedge funds. A longer

redemption period provides fund managers with more time to liquidate positions to

return clients’ money. Therefore, funds with a longer redemption period suffer less

from funding shortage. On the other hand, investors prefer to have a short redemp-

tion period to protect their investment. Teo’s study shows that funds with a short

redemption period and high net inflow outperform funds with a short redemption

period and low net inflow. The results suggest that hedge funds embrace liquidity

risk and earn liquidity premiums.
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1.1.3 Interconnectedness with Other Financial Sectors

The hedge fund industry thrived and peaked just before the credit crash in 2007.2

Hedge funds hold a large amount of assets and may pose systemic risk. Also, large

financial institutions, including hedge funds, have become more interconnected in

recent decades. In order to capture the level of interconnectedness among these large

institutions, Billio, Getmansky, Lo, and Pelizzon (2012) use VAR (vector autoregres-

sion) to study the interconnectedness in institutions’ returns. They investigate large

hedge funds, banks, broker/dealers, and insurance companies, and find evidence that

these hedge funds and financial institutions are more connected now than they were

previously in terms of their returns. The escalating interconnectedness raises con-

cern about the systemic risk of these organizations. They also find that banks seem

to play a more important role in transmitting shocks than other organizations.

1.1.4 Research Motivation and Contribution

Motivated by these studies, I investigate hedge funds’ impact on bond yields in my

first study. I find that the hedge fund industry is growing rapidly and the growth,

interestingly, is rather asymmetric in terms of assets under management (AuM): the

largest 25% of funds account for more than 80% of total AuM. With this asymmetric

capital concentration in hedge funds, I switch my attention to these mega funds.

I choose a relatively illiquid corporate bond market and a highly liquid Treasury

bond market to test whether these bond yields are statistically related to fund flows

among the mega hedge funds. I study two types of fund flows: dollar flows and

percentage flows.

I find that fund flows predict bond yields. Dollar inflow leads to decreases in

Treasury bond prices; dollar outflow, in contrast, predicts increases in both govern-

ment and corporate bond yields. In addition, the predictability is more pronounced

since 2003. I also find that the outflow impact is linked to hedge funds with a short

notice period prior to redemption. The results suggest that hedge fund flows can

2See the general analysis of hedge fund samples in Section 2.3.
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predict bond yields. However, since I do not have bond trading information to show

that it is the hedge fund trading that changes the bond yields, it is possible that

they are both driven by some other common factor(s).

I also observe that a higher percentage outflow is followed by decreasing yields

on Treasury bonds but not the Baa bond yields. This result is stronger for funds

imposing a short notice period prior to redemption.

1.2 CDS Credit and Liquidity Risks

Credit default swaps (CDSs) have become a popular financial tool for hedging a

firm’s default risk. A CDS buyer is protected over a pre-determined period from

making a loss due to credit events. Once the underlying firm encounters the credit

event (usually bankruptcy), the CDS buyer receives a full amount to recover his

loss. The buyer, of course, pays a premium for this protection. A CDS seller, on

the other hand, receives the premium and is obligated to cover the loss incurred by

the CDS buyer. CDSs are often traded over the counter.

Conventionally, the part that the protection buyer pays to the protection seller

is called the “premium leg” whereas the part that the protection seller compensates

the buyer for the loss caused by the credit event is called the “protection leg”. A

CDS is traded fairly if the expected payment from the protection buyer is equal to

the expected amount of recovery from the seller. The pricing of CDSs is standard

and can be found in many textbooks.3

1.2.1 CDS Credit Risk

A firm’s credit risk is related to debt insolvency and is a key determinant in CDS

evaluation. Merton (1974) is among the pioneers to use the Black–Scholes formula to

evaluate a firm’s debt value under uncertainty. There are several strict assumptions

in Merton (1974). One often-criticized assumption is that default happens only

3See, for example, Chaplin (2010), Hull (2014), Lipton and Rennie (2011), and O’Kane (2008).
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on the maturity date. There are also other restrictive assumptions. For example,

a firm can only have one outstanding zero-coupon debt. Nevertheless, based on

these simplified assumptions, the payoff of the debt holder can be viewed as a short

European call; thus the value of the outstanding debt can be modeled by the classical

option pricing theory.

Distance-to-default (DTD) in Merton (1974) is often used to measure a firm’s

default risk. DTD reflects the required change in the firm’s asset value, expressed

as asset standard deviations, in order to trigger a default. DTD is widely used for

default risk measurement such as the KMV model. Although the Merton (1974)

model is easy to implement, the assumptions for default are rather restrictive. Sev-

eral studies have relaxed the assumptions in Merton (1974) and provide reasonable

evaluation for a firm’s credit risk. One study that improves Merton (1974) is Leland

and Toft (1996). First of all, Leland and Toft (1996) allow firms to default at any

time prior to the debt’s maturity date. Also, Leland and Toft (1996) allow firms to

hold multiple coupon bonds. In their model, the value of the defaultable bond is

still option-like, and can be priced as a barrier option. I use the Leland and Toft

(1996) model to form credit components in CDSs. Details are provided in Section

3.3.2.

One particular feature in Leland and Toft (1996) is that a firm can have strategic

default (optimal default threshold) in order to maximize equity holders’ benefits.

They shed light on other studies that consider more complex default procedures.

For example, Ericsson and Renault (2006) include a negotiation process after the

announcement of default. He and Xiong (2012) add a secondary bond market to

explain the possible debt rollover risk.

1.2.2 CDS Liquidity Risk

Recent studies have found that liquidity is substantially priced in CDS spreads.

Tang and Yan (2007) study CDS quotes and CDS bid-ask spreads, and conclude

that short-term changes in CDS spreads are also explained by the CDS illiquid-
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ity. Corò, Dufour, and Varotto (2013) construct two bid-ask-spread-based liquidity

factors: daily time-weighted average bid-ask spread, and industry average bid-ask

spread. They find both liquidity factors dominate CDS spread changes. Credit risk

factors, on the other hand, although still statistically significant, have a weaker ex-

planatory power. Their findings suggest that CDS liquidity risk has become increas-

ingly important. Gennotte and Leland (1990) provide an explanation why liquidity

is priced in assets. In their theory, asset equilibrium price (such as a CDS spread)

is determined by the demand and supply. The supply side, however, is affected by

liquidity shocks according to Gennotte and Leland (1990). Gennotte and Leland

(1990) argue that some traders such as hedgers, rebalancers, and liquidity traders

tend to hold zero net positions, and their participation improves market efficiency

in terms of matching the needs between buyers and sellers. However, they leave

the market during market turbulence, and their exit brings further liquidity shocks

to the market. Gennotte and Leland (1990) provide new insights on how market

liquidity impacts on asset pricing.

Cespa and Foucault (2014) extend Gennotte and Leland (1990) by giving a chan-

nel of illiquidity spillover across markets. They argue that informed traders learn

from other asset prices. Hence, the equilibrium price of one asset should contain

price information of the other assets. Such cross-asset “learning” forms a feedback

loop between assets according to the level of price informativeness and could lead

to illiquidity spillover. The findings in Das and Hanouna (2009) can be seen as

empirical supporting evidence for such cross-asset learning. They find a strong con-

nection between stock liquidity (Amihud stock illiquidity measure) and CDSs. Since

the stock price also reflects the firm’s credit quality, CDS traders could use stock to

hedge credit risk. I follow the argument in Cespa and Foucault (2014) and postulate

that CDS spread is affected by stock illiquidity.
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1.2.3 Research Motivation and Contribution

In my second study, I develop a model relating CDS spread with firm-specific and

market aggregate illiquidities based on Gennotte and Leland (1990) and Cespa and

Foucault (2014). I argue that illiquidity of other assets is also priced in the CDS

spreads. Surprisingly, the current literature focuses only on the asset’s own liquid-

ity. For empirical tests, I examine firm-specific and systematic credit and liquidity

impacts on CDS spreads.

The test results indicate that the systematic credit and illiquidity components

are equally important in explaining changes in individual firms’ CDS spreads. These

findings fill the gap in the CDS studies of systematic risks. Also, the importance of

the systematic liquidity factor has increased since the financial crisis in 2007. These

findings suggest that individual CDS spreads consist of a significant proportion of

the liquidity component. This means that the probability of “pure” default seems

to be lower than the CDS-implied probability of default. The latter, instead of the

“pure” default probability, is used in the assessment of counterparty default risk in

Basel III.

My last study explores the association between put options and CDSs. Carr and

Wu (2010) establish a link between deep out-of-the-money (DOOM) put options and

CDSs, since they both provide credit protection contingent on the firm defaulting.

Both protection buyers have the right to sell back the security, share (in the case of

a put option), or bond (in the case of a CDS). DOOMs and CDSs can be converted

into unit recovery claims (URCs), which Carr and Wu (2010) define as securities

that allow the holder to receive one unit when the firm defaults and zero otherwise.

The payoff of a URC can be related to a fixed-life Arrow and Debreu (1954) security.

Theoretically, a URC on a given firm should have the same price regardless of

the market of origin. However, the actual URCs in DOOMs and CDSs are not

consistent, due to different market conditions. In addition, URCs may be affected

by different factors such as market illiquidity. I use the Nelson and Siegel (1987)

model to separate the hazard rate implied in URC into two components: a credit
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component and an illiquidity component. The former is the “fitted” component

from the credit curve and the latter is the “residual” of the fitted credit curve. Such

a separation enables me to have a closer look at the effects of credit and illiquidity

components separately.

I find evidence that several option-market related factors can explain the differ-

ence between the credit components of DOOMs and CDSs. The explanatory power

for the difference between the corresponding illiquidity components is not as strong.

I also find evidence that these differences diminish over time, which leads to the

convergence of URCs. This finding enables me to construct a simple trading strat-

egy based on the difference in the URC-implied hazard rates. The trading strategy

consists of longing the security (DOOM or CDS) with a lower URC-implied hazard

rate and shorting the other. I use this simple trading strategy as a benchmark to

compare two other improved strategies, which are constructed based on the two

components. I find that my refined strategies outperform the benchmark strategy.

This finding suggests that both credit and illiquidity provide useful information for

predicting DOOM-CDS convergence. My research on DOOMs and CDSs gives new

insight into the credit and illiquidity pricing patterns in these two markets.

The rest of this thesis is organized as follows: Chapter 2 is “Too Big to Ignore?

Hedge Fund Flows and Bond Yields”, Chapter 3 is “Systematic and Firm-specific

Credit and Liquidity Risks of CDS Spreads”, Chapter 4 is “Anatomize DOOM-CDS

Linkage”, and Chapter 5 concludes.
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Chapter 2

Too Big to Ignore? Hedge Fund

Flows and Bond Yields

Abstract

This chapter investigates the predictive power of aggregate hedge fund flows on bond

yields. Using a sample of 9,725 hedge funds from a combined data set of five hedge

fund databases from 1994 to 2012, we find outflow matters more than inflow and

the top 25% largest hedge funds are more important than the smaller funds. Dollar

outflow of big funds is followed by increases in both government and corporate bond

yields. The results for funds with a short notice period prior to redemption are

more pronounced from 2003. Our findings suggest that hedge fund flows can help

to predict the movements of bond yields.
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2.1 Introduction

The first half of the year 2014 saw an inflow of US$59.9 billion into the global hedge

fund industry, leading to its new global record size of US$2.8 trillion according to

Hedge Fund Research, Inc.1 This chapter investigates the extent to which hedge

fund flows predict bond yields. We consider both a relatively illiquid corporate

bond market and a highly liquid Treasury bond market using dollar and percentage

hedge fund flows. We find a total dollar inflow to the largest 25% of hedge funds

can predict decreases in Treasury bond yields in the next month. A dollar outflow

predicts increases in both government and corporate bond yields. This effect is

especially pronounced for the largest 25% of hedge funds. The strongest impact is

observed after 2003 and is linked to outflows from large hedge funds with a short

notice period prior to redemption. Such dollar outflows are followed by substantial

increases in yields for both corporate and Treasury bonds. We also find a higher

percentage outflow is followed by a decrease in Treasury bond yields, but not in Baa

bond yields. This result is partly consistent with the “flight to safety” phenomenon

in which investors relocate capital from risky assets to safer Treasury bonds. This

phenomenon is particularly strong for funds with a short notice period prior to

redemption.

Overall, hedge fund flows help to predict changes in bond yields one month ahead

after controlling for other determinants of bond yields. This chapter is related to

Kruttli, Patton, and Ramadorai (2013), who show that the aggregate liquidity of

hedge funds, proxied by the average hedge fund return serial correlation coefficient,

has predictive power for future returns on stock, bond, and currency indices. Sev-

eral other studies have shown that hedge funds can influence financial markets,

and vice versa. Using an equally weighted hedge fund index and a VAR model,

Wrampelmeyer (2011) finds some evidence that hedge fund returns affect equity

and foreign exchange volatility. Kang, Kondor, and Sadka (2012) link hedge fund

trading and stock-idiosyncratic volatility.

1https://www.hedgefundresearch.com/index.php?fuse=products-irglo

22



Choi, Getmansky, Henderson, and Tookes (2010) investigate convertible bond

issuance and convertible bond arbitrage hedge funds. These arbitrageurs are primary

purchasers on that market and the inflow to funds becomes a funding resource for the

purchase. The authors find that the flow of convertible bond arbitrage hedge funds

explains the number of the convertible bonds issued. Following their analysis, we

investigate on a more general scale whether hedge fund flow has any predictive power

for bond yields. This chapter contributes to the discussion on the potential impact

of hedge funds on financial markets and provides empirical evidence that hedge fund

flow can predict bond yields. The analysis of fund flow and bond yields, however, can

only provide evidence on statistical predictability and indirectly suggest potential

links between hedge fund trading activity and bond markets. Analysis of a direct

impact would require bond holding data, which are not available in this research.

2.2 Other Hedge Fund Literature

Although hedge fund holdings are not available, previous research has analyzed the

impact of hedge fund equity holdings on equity markets. Several studies make use of

13F filings to investigate hedge fund cash management in terms of equity securities.

Large hedge funds are required to report their large stock holdings on a quarterly

basis. Ben-David, Franzoni, and Moussawi (2012) investigate the hedge fund stock

trading during 2007–2009. They consider both long (obtained in the 13F report) and

short (proxied by short interest) equity positions constructed by hedge funds. They

find that there is little overlap between the long and short positions. The correlation

between the positions is rather low. The finding suggests that the hedge fund long

and short positions cannot be canceled out. Therefore, they shift their focus onto

the long positions and investigate what drives the changes in the holdings. They

find that the changes in stock holdings are mainly driven by hedge fund flow. Given

that there was tremendous sell-off in hedge fund equity holdings during the financial

crisis, clients’ redemption is likely to be the main reason why hedge funds sold stocks.

The authors claim that (institutional) clients of hedge funds fear fund managers may
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lock up the money if funds have poor performance; therefore, these clients tend to

be very sensitive to market turbulence and, as a result, money withdrawal becomes

more severe than in other investment vehicles such as mutual funds. In addition,

they find some evidence that hedge funds reallocate their positions from stocks to

government and corporate bonds since they observe the increased correlation of

hedge fund return and the corresponding asset indexes during the financial crisis

period.

Jiao (2013) investigates hedge fund holdings in the 13F report during 2000–2009.

They find hedge fund holdings are positively related to equity returns one quarter

ahead before 2007. Since the boom in the hedge fund industry during 2000–2007,

hedge funds have become more important in the equity market and their trading

has increased the demand in equity. There is also an alternative explanation for

the results: hedge funds have better skill in timing the market. Both explanations,

however, can co-exist in the real world. In addition, Jylha, Rinne, and Suominen

(2014) find that hedge funds provide liquidity to the stock market. Cella, Ellul, and

Giannetti (2013) study the trading behavior of 13F institutional investors, including

mutual funds and hedge funds. They use “churn” ratio (a measure of portfolio

turnover) to proxy the investing horizon and find that institutional investors with

short trading horizons react more strongly to market shocks than investors with long

trading horizons. Upon realization of the market shock, short-horizon investors sell

large amounts of their stock holdings and the fire sales create price pressure in the

stock market. In addition, the fire sales affect the prices of other assets held by the

same institutional investors (Coval and Stafford 2007).

Liquidity risk and its impact on hedge fund performance is addressed in Sadka

(2010) and Teo (2011). Sadka (2010) finds that systematic liquidity risk, measured

by the Sadka illiquidity measure, has a strong explanatory power on hedge fund

returns. He finds that the loadings on liquidity risk for fund styles are different,

suggesting that liquidity risk varies dramatically from one hedge fund strategy to

another. Teo (2011) documents significant illiquidity risk premiums; funds that are

highly exposed to liquidity risk outperform those with low liquidity risk exposure.
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Hu, Pan, and Wang (2013) propose a new liquidity measure based on the noise of

Treasury bond yields. They argue that their noise measure reflects the shortage of

arbitrary capital in the economy, thereby capturing the market-wide liquidity risk.

Since hedge funds often invest in illiquid assets, they are sensitive to liquidity risk.

The authors show that their illiquidity measure can explain hedge funds’ return in

addition to traditional factors that are not related to liquidity.

Chan, Getmansky, Haas, and Lo (2005) show that returns on the S&P 500 index,

a synthetic bank index, a bond index, and several other indices have a significant

impact on hedge funds’ performance. They show that hedge funds are rather ac-

tive participants in these markets; therefore, there is potential systemic risk from

hedge funds. Boyson, Stahel, and Stulz (2010) apply the Co-movement Box pro-

posed by Cappiello, Manganelli, and Gerard (2005) and find contagion risk between

hedge fund returns and market returns in small-cap, mid-cap, and emerging market

equities, as well as high-yield and emerging market bonds. They also show that

market-wide liquidity shocks are strongly linked to hedge fund contagion. Similarly,

Dudley and Nimalendran (2011) find asymmetric correlation between hedge fund

returns and returns on the equity index. Funds with low returns are more likely to

co-move with the equity market, indicating the possibility of contagion risk among

funds that face funding constraints. They also use quantile regression of hedge fund

returns on member margins of the Chicago Mercantile Exchange (CME) and find

that, in the lower quantile, hedge funds are affected by funding liquidity. The stud-

ies of Boyson, Stahel, and Stulz (2010) and Dudley and Nimalendran (2011) suggest

that liquidity shock can spread from hedge funds to other markets via a liquidity

spiral as discussed in Brunnermeier and Pedersen (2009). These studies, put to-

gether, show that hedge funds and the financial markets are linked and affect each

other.

In the aftermath of the subprime crisis, the UK Financial Services Authority

(FSA) commissioned a series of reports in 2009–2010 to assess the systemic risk

posed by hedge funds. The FSA investigation focuses only on defaults of hedge

funds and the resulting counterparty risks that systemically important financial
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institutions (SIFIs) are exposed to. The FSA reports concluded that hedge funds do

not pose any systemic risk to the economy and the financial system. This conclusion

may have underestimated hedge funds’ influence, as it neglected possible contagion

effects. In particular, as of 2012, the largest 1% of hedge funds controlled 38% of the

assets in the hedge fund industry, with 90% of the assets being controlled by only the

top 25% of funds according to the hedge fund database used in this chapter. Large

hedge funds are particularly important as they are the alternative investment outlets

for institutional investors (Joenvaara, Kosowski, and Tolonen 2014), and they are

getting more interwoven with other large financial institutions (Billio, Getmansky,

Lo, and Pelizzon 2012). After the collapse of Long Term Capital Management in

1998, there may not be another single fund whose default can generate the same

level of impact in the global financial market. Nevertheless, hedge funds as a group

can still impact on global financial stability. If a sufficient number of hedge funds

experience extreme losses simultaneously, these losses can spill over to other markets.

For example, Khandani and Lo (2007) and Khandani and Lo (2011) report that

during the week of August 6, 2007, when some multi-strategy funds and proprietary

trading desks started to liquidate their equity portfolios to stop further losses, such

sudden liquidations had a profound impact on price levels, resulting in margin calls

to long-short equity hedge funds. This was then followed by pension funds’ decisions

to withdraw their investments in hedge funds, which put further pressure on the

hedge fund industry and the financial markets. The chain of events finally resulted

in unprecedented losses of several high-profile quantitative long-short equity hedge

funds.

2.3 Hedge Fund Data

In this chapter, we use a merged hedge fund database, which combines five main-

stream hedge fund databases (viz. BarclayHedge, EurekaHedge, Hedge Fund Re-

search (HFR), Morningstar, and TASS Lipper).2 The sample period covers 19 years

2This is an extended database used in Hodder, Jackwerth, and Kolokolova (2013).
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from January 1994 to December 2012. It includes time-series data of monthly net-

of-fees returns and assets under management (AuM), as well as other fund-related

static information (such as fees, notice periods, etc.). For those funds that report

to more than one database, we choose the record with the longest reporting history.

Moreover, we use only hedge funds that report returns in U.S. dollars. In order to

control for a backfill bias,3 we delete the first 12 observations of each hedge fund.

We only use funds with more than 24 remaining observations. We further exclude

21 monthly return data points in our sample that were higher than 200% or less

than -100%. Two hedge funds are removed from our sample because of seemingly

unrealistic AuM.4 The final sample contains 9,725 hedge funds.

Table 2.1 reports the descriptive statistics of the hedge funds in our sample. In

general, hedge funds produce a positive average monthly return of 0.61% with a

standard deviation of 4.29%. The average fund size is around $200 million with a

standard deviation of $70 million. The high standard deviation in fund size indicates

that funds faced substantial in- and outflows over the sample period. Half of the

funds report the usage of leverage. The average management fee is 1.5% and the

performance fee is around 17%. The average lock-up period and notice period are

both around one month.

Each hedge fund database has its own fund style classification. We compare

the definition of the categories across the databases and aggregate hedge funds

into nine broad styles: “Directional Equity”, “Equity Market Neutral”, “Emerging

Market”, “Event-Driven”, “Fixed Income”, “Global Macro”, “Managed Futures”,

“Multi-strategy”, and “Not Defined”. Table 2.2 reports the fund distribution across

the nine categories. “Equity Market Neutral” is the largest group among all fund

styles, accounting for 25% of all funds. The second largest fund style, excluding

“Not Defined”, is “Directional Equity”. These two large equity-related fund styles

3Fund managers can choose to “backfill” their past performance since inception when they join
a database. Such “backfilled” returns are normally reported if they reflect good track record. See,
for example, Fung and Hsieh (2004).

4These two hedge funds are Athena Guaranteed Futures Ltd (TASS number 628) and LG Asian
Smaller Companies (TASS number 57686). The single AuM reported for these funds exceeds $300
billion, whereas the total AuM of the rest of the hedge funds is less than $400 billion over the same
period.
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Table 2.1: Hedge Funds Descriptive Statistics

This table reports the descriptive statistics of hedge funds in our sample
from 1994 to 2012. We include fund return (in percent per month), AuM
(in million USD), percentage flow, usage of a high-water mark (HWM),
usage of leverage (Lev), management fee (MgmtFee in percent), perfor-
mance fee (PerfFee in percent), lock-up period (in months), and notice
period prior to redemption (in months).

Ret AuM Flow HWM Lev MgmtFee PerfFee Lock-up Notice
(%) ($M) (%) (%) (%) (Months) (Months)

Mean 0.61 204 0.64 0.74 0.48 1.49 17.43 0.91 0.60
Median 0.57 25 0.57 1.00 0.00 1.50 20.00 0.00 0.00
Std 4.29 70 7.02 0.44 0.50 0.66 6.76 3.88 1.70
Max 12.04 120,866 39.80 1.00 1.00 20.00 65.00 84.00 18.00
Min -8.76 0 -42.28 0.00 0.00 0.00 0.00 0.00 0.00

Table 2.2: Fund Style Distribution

This table reports the number and the proportion of funds within each
hedge fund style. Fund styles across different databases are merged into
nine general styles according to the nature of the reported style.

Fund Style # Funds Proportion (%)
Directional Equity 1,224 13
Equity Market Neutral 2,479 25
Emerging Market 489 5
Event-Driven 528 5
Fixed Income 732 8
Global Macro 632 6
Managed Futures 641 7
Multi-strategy 910 9
Not Defined 2,090 21
Total 9,725

account for approximately 40% of the hedge fund industry.

Table 2.3 reports the hedge fund return descriptive statistics for the different

fund styles. “Event-Driven” funds exhibit the highest mean return of 0.69% per

month; “Global Macro” funds have the lowest mean return of 0.52%. Unlike a

relatively low dispersion in mean returns across fund styles, the difference in AuMs

is rather pronounced. “Global Macro” funds, on average, are the largest, with an

average fund size of $408 million. “Managed Futures” funds are the smallest, with

an average size of just $49 million. Similarly, there is considerable size variation

for each style. For instance, the mean AuM of “Directional Equity” funds is $119

million with a standard deviation of $57 million.
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To understand the distribution of the total assets managed by the hedge fund

industry, we split funds in quartiles according to their average size. For each year,

we form AuM-sorted portfolios. The fund size statistics for each of the portfolios are

reported in Table 2.4. Q1 is the portfolio that includes the 25% of funds with the

largest AuM, while Q4 includes the smallest 25% funds. The statistics are reported

for each of the 19 years, as well as for the whole sample period.

The first column reports the total number of hedge funds in our sample for each

year. The number of funds increases steadily from 568 in 1994 and peaks at 5,357 in

2007. It drops thereafter to the levels of 2003–2004, with 3,246 funds in our database

in 2012. The decreased number of the funds was due to investors’ withdrawals from

hedge funds after substantial losses experienced in the crisis period, with many

funds being forced to liquidate due to performance deterioration and the difficulty

in maintaining fund operation.

Columns (2) to (5) of Table 2.4 report the mean and standard deviation of the

AuM for the four quartile portfolios, Q1 to Q4. There is a substantial difference

between the largest and the smallest funds in terms of their AuM. The average size

of funds over 1994–2012 is $851 million for the Q1 portfolio while that of the Q4

portfolio is just $0.2 million. It indicates that the top 25% of funds are, on average,

over 4,000 times larger than the bottom 25% of funds. This difference decreases over

time, and this is likely to be driven by the increasing number of funds. Importantly,

the portfolio of the top 25% of funds controls as much as 89% of the total AuM as

of the end of 2012.
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Table 2.3: Hedge Fund Style Descriptive Statistics

This table reports the descriptive statistics for hedge funds by fund style over the period from 1994 to 2012. The fund characteristics
reported include returns (in percent per month), AuM (in million USD), flow (in percent), usage of high-water mark (HWM), usage
of leverage (Lev), management fee (MgmtFee, in percent), performance fee (PerfFee in percent), lock-up period (in months), and
notice period (in months).

EqDir EqMktNeu EmgMkt EvDriv FixedInc GlobMac ManFut Multi NotDef
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Ret (%) 0.67 4.87 0.58 4.54 0.68 6.05 0.69 3.11 0.55 2.55 0.52 4.41 0.67 5.54 0.56 3.26 0.62 4.18
AuM ($M) 119 57 272 82 93 39 161 56 166 62 408 133 49 23 388 100 131 60
Flow(%) 0.83 8.34 0.48 6.01 0.66 7.97 0.63 5.06 0.83 6.33 0.62 6.47 0.86 7.27 0.46 6.10 0.65 8.44
HWM 0.82 0.39 0.78 0.41 0.64 0.48 0.74 0.44 0.74 0.44 0.73 0.44 0.59 0.49 0.78 0.42 0.69 0.46
Lev 0.49 0.50 0.43 0.50 0.45 0.50 0.44 0.50 0.57 0.49 0.52 0.50 0.39 0.49 0.47 0.50 0.53 0.50
MgmtFee (%) 1.42 0.47 1.42 0.53 1.62 0.49 1.44 0.62 1.38 0.54 1.62 0.81 2.01 1.13 1.49 0.58 1.45 0.68
PerfFee (%) 17.50 6.63 17.94 5.80 15.99 7.29 17.68 6.12 17.19 7.22 17.39 7.09 18.95 6.79 16.93 7.51 16.86 7.20
Lock-up (Mth) 0.86 4.61 0.78 3.68 0.64 3.30 0.59 2.95 0.83 4.05 0.87 3.51 0.50 2.95 0.91 4.56 1.41 3.92
Notice (Mth) 0.63 1.55 0.74 1.92 0.81 1.38 0.71 1.37 0.75 1.89 0.76 2.03 0.72 1.86 0.71 2.00 0.17 1.07
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Table 2.4: AuM-sorted Portfolio Fund Size

This table reports the fund sizes of the AuM-sorted portfolios. Each year, we sort the individual hedge funds into four groups
according their average AuM in that year. For each year, we report the number of funds included in each group as well as the mean
and standard deviation of fund size for the four groups. The last line summarizes the mean and standard deviation of fund sizes in
the four groups based on the whole sample period.

(1) (2) (3) (4) (5)
Q1 Portfolio Q2 Portfolio Q3 Portfolio Q4 Portfolio

# HFs Mean Std Mean Std Mean Std Mean Std
1994 568 1,223,513,045 68,990,602 1,977,502 158,878 1,202 24 104 4
1995 926 1,210,217,703 89,396,770 12,424,534 862,444 1,885 78 190 6
1996 1,223 1,170,648,271 53,096,383 14,583,655 974,309 3,072 92 224 11
1997 1,520 1,196,099,710 59,221,206 17,496,468 1,530,296 38,083 6,965 251 27
1998 1,851 984,154,683 69,120,522 20,018,866 775,031 295,381 30,021 294 9
1999 2,141 756,004,039 34,032,180 20,041,094 1,707,955 635,555 128,916 345 27
2000 2,437 745,543,933 36,795,969 24,684,867 701,009 1,058,664 51,684 407 7
2001 2,645 629,319,792 16,479,600 23,505,451 935,740 1,334,493 119,176 411 10
2002 2,988 539,148,163 15,299,916 27,113,238 791,127 1,941,527 94,010 447 6
2003 3,408 562,155,086 20,799,422 33,037,156 3,590,002 2,791,081 401,454 494 25
2004 4,217 591,940,387 24,768,790 43,308,295 1,789,890 5,042,767 404,465 659 11
2005 4,851 591,873,126 11,940,639 48,276,361 1,063,586 6,639,631 222,234 764 12
2006 5,226 652,891,424 23,455,859 53,623,011 1,525,327 8,043,559 301,303 879 18
2007 5,357 764,896,976 26,034,751 69,831,116 3,783,954 11,755,587 373,613 22,024 2,511
2008 5,312 720,124,108 78,358,851 68,544,418 8,746,034 13,750,687 1,325,637 261,605 278,589
2009 3,793 684,638,745 37,373,966 71,383,218 3,282,630 22,227,231 1,168,847 4,970,341 219,424
2010 3,770 768,040,815 24,825,794 79,158,017 2,209,869 24,628,344 1,143,087 5,178,496 132,222
2011 3,667 849,632,928 28,955,985 80,477,280 3,518,060 25,426,187 1,370,989 5,202,161 306,285
2012 3,246 876,056,229 12,581,056 80,097,672 1,644,673 23,588,856 830,827 4,709,889 151,768
1994–2012 9,725 851,115,652 282,150,463 52,385,262 8,841,584 11,131,490 924,529 198,704 348,819
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We next consider monthly rolling windows for constructing the AuM-sorted port-

folios. For each month, we calculate the average AuM over the past 12 months for

each fund, and then sort funds into quartile portfolios according to their average

past size. We plot the total AuM for the four portfolios in Figure 2.1. There is a

substantial difference between the total AuM for all funds and that excluding the

top 25%. The huge gap highlights, again, that a small group of the largest funds

controls the bulk of the assets in the hedge fund industry. Such a high capital

concentration suggests that analyzing a complete sample of hedge funds may be

misleading as it dilutes the impact of the top funds that control 90% of the total

assets. It also suggests that the top 25% of funds should be given special attention,

as they are likely to affect their smaller peers and can potentially drive the global

financial market.5

Different types of investors may target certain types of hedge funds. For example,

large institutional investors are likely to invest only in large or mega funds (Joen-

vaara, Kosowski, and Tolonen 2014) whereas smaller and individual investors access

smaller funds. Flows to individual funds are driven by both macroeconomic condi-

tions and fund-specific characteristics such as past returns, risks, various redemption

restrictions etc.6 At the aggregate level, when the fund-specific components are av-

eraged out, the flow to funds reflects investors’ expectation about the industry’s

future performance and the availability of free capital for investing. Institutional

investors are likely to be better at possessing information about the future prospects

of the industry. Smaller investors are likely to be less tolerant, have a lower buffer

for outside capital, and, thus, react more promptly to poor fund performance or

external liquidity shocks. Based on this conjecture, we test whether there are any

lead-lag relations between the in- and outflows of the top 25% of hedge funds and

the rest of the hedge fund industry. The results of the VAR regression analysis

indicate that, indeed, inflow to the largest funds provides a positive signal and leads

5While the top 25% of funds are more important, the results obtained here are qualitatively
the same when all funds are considered. The regression results are robust when we use total flow
in comparison with the flow to the top 25% funds as shown in Table 2.7 (for total flow) and Table
2.8 (for flow to the top 25% funds).

6See, for example, Agarwal, Daniel, and Naik (2004), Goetzmann, Ingersoll, and Ross (2003),
Ding, Getmansky, Liang, and Wermers (2009), and Ozik and Sadka (2014).

32



Figure 2.1: AuM-sorted Portfolios Total AuM

This figure plots the total AuM for four AuM-sorted portfolios from
1994 to 2012. The top curve is the sum of the total AuM across all four
portfolios. The next one is the total AuM of all portfolios excluding
the top 25% of funds. The third curve represents AuM in the bottom
two quantile portfolios, and the last curve is the AuM of the portfolio
containing the smallest 25% of funds.

to reducing outflows from all funds. The results and detailed discussion are in Ap-

pendix 2.A. In what follows, we will focus on the aggregate flows of the largest 25%

of hedge funds only.

As control variables, mutual fund data are obtained from the CRSP database.

Since mutual funds have restricted investment subjects according to their reported

fund styles, we then narrow our chosen mutual fund styles to fixed income mutual

funds only. In particular, we choose corporate (CRSP Category Code: IC), gov-

ernment (CRSP Category Code: IG), and money market (CRSP Category Code:

IM) mutual funds, since these three types of mutual funds focus only on U.S. bond

markets while the rest focuses on other bond markets such as emerging markets.

The sample period is from January 1994 to December 2012.

Table 2.5 reports the descriptive statistics of the mutual funds’ returns and flows.

The average return is 0.32%, which is smaller than the hedge fund average return of

0.61%. In addition, the average mutual fund flow is 1.98%, which is larger than the
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average hedge fund flow of 0.64%. The larger average mutual fund flow reflects less

restriction of the redemption for investors as well as the overall size of the mutual

funds.

Table 2.5: Mutual Fund Descriptive Statistics

This table reports the descriptive statistics of fixed income mutual funds
in our sample from 1994 to 2012. Mutual fund excess return (in per-
cent per month) and mutual fund percentage flow are used as control
variables.

Return Flow
(%) (%)

Mean 0.32 1.98
Median 0.26 -0.20
Std 1.26 17.73
Max 391.19 260.37
Min -64.25 -62.21

2.4 Research Design and Hypothesis

Hedge funds actively participate in the markets of less liquid assets such as cor-

porate bonds (Choi, Getmansky, Henderson, and Tookes 2010). According to

the Financial Times, hedge funds accounted for one-fifth of all trading volume

in the U.S. Treasury bond market in 2010 (http://www.ft.com/intl/cms/s/0/

d7063d32-a554-11dfb734-00144feabdc0.html#axzz3hFVPTDqH).7 Given such a

large amount of trading volume attributed to hedge funds, the size of mega hedge

funds, and their ability to take leverage, the hedge fund industry has the potential

to impact on financial market prices, driving prices away from their fundamental

values. Such an influence is likely to be more pronounced in smaller and less liquid

markets (e.g., corporate bonds), in which hedge funds are responsible for a bigger

share of the trading volume.8 Hedge funds’ trading activity can also exert an in-

7Financial Times, August 11, 2010, “Hedge funds develop taste for U.S. Treasury bonds”. Most
of the hedge funds involed in bond trading are global macro funds and fixed-income arbitrage funds.
Many long-short equity funds do not have the expertise to trade risky bonds, and are not permitted
to hold bonds by their investor mandate.

8Hedge fund impact might be less visible in large and liquid markets (such as the U.S. equity
market), because the proportion of their trading volume to total market trading volume is relatively
small. The estimated size of the hedge funds industry is about $3 trillion, whereas the total size
of mutual funds was estimated at $24.7 trillion and pension funds at $19.3 trillion as of December
2010.
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direct price impact through herding and liquidity spiral. Herding can cause excess

price movements on both bull and bear markets if other market participants mimic

the trading pattern of hedge funds. A liquidity spiral is likely to cause more dam-

age during a market downturn, especially if market liquidity is low. When hedge

funds are faced with massive losses and clients’ redemption, they will be forced to

sell their holdings quickly, depressing market prices, leading to further losses and

fund outflows. Other financial institutions, such as pension funds who have stop-

loss provisions in their risk-management systems, might join the run, spreading the

fear of possible massive losses and causing a liquidity drain-out. A liquidity spiral

(Brunnermeier and Pedersen 2009) is more likely when hedge funds experience fund

outflows and are forced to liquidate their assets.

The aforementioned conjecture cannot be proven without information on hedge

fund trading activity. Hedge funds’ portfolio holdings, unfortunately, are not observ-

able9 and such a direct inference is not possible. We recognize, however, that upon

large fund in- and outflow, hedge funds are more likely to trade, especially when

they encounter a large amount of withdrawal from investors (Ben-David, Franzoni,

and Moussawi 2012). Moreover, fund outflows may signal a change in the market

conditions in general, or the presence of other more favorable investment opportuni-

ties.10 In this section, we attempt to capture the link between hedge fund flows and

changes in corporate bond yields (measured by the Moody’s Baa yield) and changes

in government bond yields (measured as the 10-year Treasury bond yield). Here, we

use the fund flow information as a signal for bond and general market conditions.

We denote by Flowt the average hedge fund percentage flow at time t based on

9Large hedge fund investment companies are required to disclose parts of their holdings (long
positions in U.S. equities and some option holdings) through SEC 13F filings. Thus, the information
is available only for a smaller number of hedge funds. The 13F reporting frequency is quarterly.
The assets included in these filings cover largely U.S. equity and do not include bond holdings.
Thus, the 13F information is not perfectly suitable for the current analysis.

10See, for example, Zheng (1999) and Keswani and Stolin (2008) for smart money effect. At the
same time withdrawals may also be related to investors’ background risk such as meeting personal
liabilities.
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individual fund i’s flows Flowi,t.

Flowi,t = DollarF lowi,t × (AuMi,t−1)−1

DollarF lowi,t = AuMi,t − (1 +Ri,t)× AuMi,t−1

where Ri,t is the reported return of hedge fund i at time t and AuMi,t is the corre-

sponding assets under management. Flow is a percentage flow, and DollarF low is

a fund flow in trillions of dollars.

We use superscripts O and I to denote outflow and inflow respectively. Super-

script T stands for the top 25% of hedge funds whereas superscript B stands for

the rest of the funds. For example, FlowT,It−1 is the average percentage inflow for the

top 25% of the largest hedge funds at time t− 1. To facilitate interpretation of the

results, we change the signs and represent outflows as positive values. We control

for fund flow outliers and delete 0.5% of the highest and the lowest percentage flows,

as suggested by Chan, Getmansky, Haas, and Lo (2005).

When hedge funds face clients’ demand for redemption, fund managers may have

to sell parts of their portfolios, depressing market prices (and bond price) in the

meantime. A lower bond price is translated into a higher bond yield. The reverse

effect may be observed upon fund inflows.

H1: [Flow Predictability] Hedge fund dollar flow is negatively

related to changes in bond yields.

To test this hypothesis, we regress changes in bond yields on changes in the lagged

dollar fund flow.11 12 13 As additional control variables, we include the average ex-

11A more widely used percentage fund flow cannot capture the magnitude of a trading activity.
Consider a simplified example. One fund has $10 million of assets and the other has $1 million of
assets, and both funds need to sell 1% of their bond positions immediately. The large fund will
sell $1 million worth of bonds, whereas the small one will sell only $0.1 million worth of bonds.
The large fund is more likely to produce a price impact by selling 10 times more than the small
fund, despite the same percentage of outflow.

12Since the dollar flow is highly autoregressive, we use changes in dollar flow and changes in
bond yield in the regression. While the T-bond market trading volume has grown substantially
over time, the use of changes in yield would help to prevent the problem due to the change in the
scale of the T-bond market volume.

13In an earlier version, both contemporaneous and lagged changes in dollar flow were used.
Here, we present the test with only the lagged term to highlight the predictive role of the flow
information. The two sets of results are qualitatively the same.
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cess returns and average percentage flows of bond-oriented mutual funds, as mutual

funds also actively participate in bond markets. We also include CBOE VIX in-

dex and lagged bond yields as macroeconomic controls, following Choi, Getmansky,

Henderson, and Tookes (2010).

Our baseline linear regression is:

∆Y ieldt = β0 + β1 DCrisis + β2 ∆Y ieldt−1 + β3 ∆V IXt

+ β4 MFExRett−1 + β5 MFFlowt + β6 HFExRett−1

+ γ ∆DollarF lowt−1 + εt

(2.1)

where Y ield is the Moody’s Baa yield or U.S. 10-year Treasury bond yield. DCrisis

is a dummy variable capturing the financial crisis. It takes a value of 1 between July

2007 and February 2009. V IX is the value of the CBOE VIX index. MFExRet

is the average excess return of bond-oriented mutual funds over the risk-free rate.

MFFlow is the average percentage flow to bond-oriented mutual funds. HFExRet

is the average excess return of hedge funds over the risk-free rate. DollarF low is

the aggregate hedge fund dollar flow. We use the 10-year U.S. Treasury bond yield

obtained from the H.15 Release as the risk-free rate.14

Ben-David, Franzoni, and Moussawi (2012) claim that (institutional) clients of

hedge funds tend to withdraw their money quickly when the market becomes tur-

bulent, in the fear that fund managers may impose a lock-up whenever they suffer

heavy losses. Hence, we conjecture that outflow and inflow will have asymmetric

impacts on bond yields.

H1 Corollary 1: Bond yield change is more pronounced for fund outflow

than fund inflow.

The corresponding regression is:

∆Y ieldt = β0 + β Ctrls+ γI ∆DollarF lowIt−1 + γO ∆DollarF lowOt−1 + εt (2.2)

14http://www.federalreserve.gov/releases/h15/data.htm
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where Ctrls are all the control variables used in Equation (2.1), DollarF lowI is the

aggregate dollar inflow to hedge funds, and DollarF lowO is the aggregate dollar

outflow.15 We expect γI to be either negative or insignificant, and γO to be positive

and larger in magnitude.

As the top 25% of funds are likely to attract institutional investors, their flows

are expected to be larger in magnitude. Outflows from such funds might signal a

change in market conditions or a shift in investment opportunity set. We use dollar

fund outflows from the top 25% of funds and the rests of the industry separately in

Equation (2.2) and test the following corollary:

H1 Corollary 2: Price prediction is better for the top 25% of funds.

To avoid potential multicollinearity, we include inflow and outflow as separate

variables in the same regression without the (unsigned) flow information as shown

below:

∆Y ieldt = β0 +β Ctrls+γI,T ∆DollarF lowI,Tt−1 +γO,T ∆DollarF lowO,Tt−1 + εt (2.3)

where DollarF lowI,T is the aggregate dollar inflow to the top 25% of hedge funds,

and DollarF lowO,T is the aggregate dollar outflow for these large funds. We repeat

the regression for the rest of the hedge funds.

Last, but not least, we expect funds with a longer notice period to be less prone

to sudden fund outflows. They have more time to raise funds and to offload their

positions if necessary.16 Thus, their outflow should be less informative. We divide

15The aggregate dollar flow is used, instead of the average flow, to capture the magnitude of
fund flow in and out of the hedge fund industry. For example, assuming all hedge funds have an
outflow of $1 million. If there are 10 hedge funds, then the aggregate outflow is $10 million. But
if there are 100 hedge funds, then the aggregate outflow is $100 million, which is ten times larger
than the previous case. However, there is no difference in terms of average dollar flow.

16Discussion with hedge fund practioners indicates that in pursuing and implementing their
investment strategy, hedge funds often hold cash in their portfolio. The use and level of cash
varies with investment style and asset market the funds are invested in e.g. long only funds may
retain cash out of tactical considerations; other styles have more cash as the instruments used
e.g. forwards, contracts for difference (CFD), options, only require partial funding. Any excess
cash in a fund is usually held as free cash or deposited in money market accounts with the fund’s
custodian or prime broker. If cash is invested and not held as free cash, this is usually invested
in U.S. Treasuries or money market funds; the focus then is on safety, not yield. For bridging any
financing needs, acting as a liquidity buffer, or to leverage the fund, some funds negotiate credit
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funds into two groups according to the lengths of their notice periods. A long-notice

group contains funds with notice periods longer than 30 days, and a short-notice

group includes funds with notice periods less than 30 days. We consider outflows

from funds with long and short notice periods in Equation (2.2). This leads to the

corollary below:

H1 Corollary 3: Price prediction is stronger for funds with a short notice

period.

Bernanke, Gertler, and Gilchrist (1994) note that periods of financial turmoil are

often characterized by increasing risk aversion of investors and investors’ relocation

of their capital to safer investments. Such “flight to quality” and related “flight to

liquidity” increase the demand for safe and liquid government bonds and push their

yields down (Beber, Brandt, and Kavajecz 2009).17 The relocation between risky and

risk-free assets can result in outflow from the hedge fund industry. When rebalancing

portfolios, investors often operate in terms of percentages of their portfolio to be

relocated. Thus, high percentage outflow from hedge funds may be an indicator for

such a relocation exercise. It leads to the following hypothesis:

H2: [Flight to Safety] Hedge fund percentage outflow is nega-

tively associated with changes in Treasury bond yield.

To test the Flight to Safety hypothesis, we run a regression similar to Equation

(2.2) but use percentage flow (instead of dollar flow).

lines with their prime broker. We would like to thank Stephan Schwill for his helpful discussion.
17The hypothesis H2 below is only partly consistent with the flight to safety hypothesis. In flight

to safety, investors substitute risky assets with assets that are less risky and more liquid such as
Treasury bonds. The risky assets are not limited to corporate bonds. But we do not test all other
risky assets here.
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2.5 Empirical Results

2.5.1 Aggregate Fund Flows

Table 2.6 reports the correlation coefficients between changes in dollar flow, changes

in bond yields, and other control factors. In general, changes in flows are negatively

correlated with changes in Baa bond yields (-0.22) and positively correlated with

changes in Treasury bond yields (+0.18). We find that VIX is highly correlated with

fund outflows (0.48 with percentage outflow and 0.57 with change in dollar outflow),

suggesting that hedge fund investors are sensitive to market uncertainty. Fund flow

itself is highly correlated with inflow and outflow. The corresponding correlation

coefficients are 0.85 and -0.89 for changes in dollar flow, and 0.85 and -0.88 for

percentage flow. This raises the concern regarding multicollinearity. Therefore,

when we include outflow and inflow in the regression, we do not mix them with flow

itself.

We first test our Hypothesis H1. Table 2.7 reports the estimation results for

Equation (2.1) for changes in the Treasury bond yield (Panel A) and for changes

in the Baa yield (Panel B). The regression coefficients are not standardized. The

change in the dollar flow is used instead of dollar flow itself in order to remove the

trending problem in dollar flow. Model (1) uses only control variables, and Model

(2) includes hedge fund flow in addition. The explanatory power of the regressions

is rather low, and marginally improved after the inclusion of hedge fund flows.

The adjusted R-square for Treasury yields increases from 0.03 to 0.08, whereas the

adjusted R-square for Baa yields increases from 0.06 to 0.08. Changes in hedge fund

flow are negatively related to changes in bond yields. The loadings for Treasury

yields and Baa yields are both -0.03, and statistically significant at the 5% level.18

We do not find statistical evidence that bond-oriented mutual fund percentage flows

are related to the changes in bond yields.

18Note that the change in yield is in decimal, whereas the change in dollar flow is in trillions
of dollars. If β = −0.03, this means that a one standard deviation increase in ∆DollarF low will
reduce ∆yield by β × σ∆DollarF low = 0.03× 0.0189 = 0.006 or 60 basis points. An increase of one
trillion dollars in dollar flow will reduce bond yield by β × 100% or 3%.
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We then test our Corollary 1 in H1, which hypothesizes that outflow has a greater

impact than inflow.19 We now include in- and outflows as separate variables in the

regression. Table 2.8 starts with the base case of fund outflow, then Model (3)

includes total dollar inflow, Model (4) considers inflow to large funds, and Model

(5) uses inflow to small funds. Although the overall impact of fund flow is similar

for Treasury bond yields and Baa yields (as shown in Table 2.7), the results for in-

and outflows are not the same. The changes in Treasury bond yields are negatively

related to fund inflow, especially the inflow to the top 25% of funds. The loading of

-0.05 has a p-value of 0.07. The aggregate outflow is positively related to changes in

Treasury bond yields, but not statistically significant. In contrast, aggregate fund

outflow is positively related to changes in Baa yields, with the loadings varying from

0.03 to 0.04 depending on the specification, and are significant at the 5% level. The

loadings on inflow are not statistically significant but still exhibit negative signs.

These results suggest that at an aggregate level, hedge fund outflow predicts the

increase in corporate bond yields.

We now investigate the impact of fund outflow in more detail to test our Corol-

laries 2 and 3 in H1. We consider outflow from top and bottom funds, as well as

the outflow from the funds with short and long notice periods prior to redemption.

Table 2.9 reports the estimation results. Together with fund inflow, Model (6) and

Model (7) consider outflows for top and bottom funds respectively (tests for Corol-

lary 2 ). Models (8) and (9) use outflows from top funds with long and short notice,

and Models (10) and (11) include outflow from bottom funds with long and short

notice (tests for Corollary 3 ).

19Note that from here onwards, all fund flow regressions are tested using their first difference
because of the trending problem.
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Table 2.6: Factor Correlations

This table reports the correlation coefficients over the sample period from 1994 to 2012 between various variables for explaining bond
yields. ∆ indicates monthly changes. Baa is the Moody’s Baa yield, TB10Y is the U.S. 10-year Treasury yield. V IX is the CBOE
VIX index, MFExRet is the excess return of bond-oriented mutual funds, MFFlow is the percentage fund flow of bond-oriented
mutual funds, HFExRet is the excess return of hedge funds, ∆DollarF low is the change in hedge fund flow in trillions of dollars,
and Flow is percentage fund flow. Superscript I stands for hedge fund inflow, and superscript O stands for hedge fund outflow.

(2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
(1) ∆Baa 0.64 0.24 -0.29 0.11 -0.31 -0.22 -0.13 0.25 -0.18 -0.08 0.22
(2) ∆TB10Y -0.16 -0.26 -0.16 0.06 0.18 0.14 -0.16 0.01 0.06 0.03
(3) ∆V IX -0.10 0.30 -0.46 -0.48 -0.33 0.48 -0.54 -0.35 0.57
(4) MFExRet -0.42 0.56 -0.14 -0.03 0.21 0.08 0.05 -0.09
(5) MFFlow -0.51 -0.26 -0.22 0.23 -0.21 -0.14 0.22
(6) HFExRet 0.63 0.65 -0.45 0.53 0.53 -0.40
(7) Flow 0.85 -0.88 0.44 0.44 -0.33
(8) FlowI -0.49 0.40 0.51 -0.21
(9) FlowO -0.36 -0.26 0.36
(10) ∆DollarF low 0.85 -0.89
(11) ∆DollarF lowI -0.51
(12) ∆DollarF lowO
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Table 2.7: HF Dollar Flow and Bond Yields

This table reports the results based on total hedge fund flow from 1994
to 2012. DCrisis is a dummy variable, taking a value of 1 from July 2007
to February 2009 and 0 for the rest of the sample. Lag1 is the previous
value of the corresponding dependent variable. ∆ indicates monthly
changes in the corresponding variable. Baa is the Moody’s Baa yield,
TB10Y is the U.S. 10-year Treasury yield. V IX is the CBOE VIX index,
MFExRet is the excess return of bond-oriented mutual funds, MFFlow
is the percentage fund flow of bond-oriented mutual funds, HFExRet is
the excess return of hedge funds, and ∆DollarF low is hedge fund flow
in trillions of dollars.

Panel A: Dependent Variable: ∆TB10Y
Model (1) Model (2)

Coef. t-stat p-value Coef. t-stat p-value
Const. 0.00 1.00 0.32 0.00 0.45 0.65
DCrisis -0.00 -1.07 0.28 -0.00 -0.15 0.88
Lag1 0.11 1.59 0.11 0.07 0.92 0.36
∆V IX -0.00 -1.92 0.06 -0.00 -2.69 0.01
MFExRett−1 0.01 0.67 0.50 -0.03 -1.36 0.17
MFFlowt -0.01 -0.94 0.35 -0.00 -0.33 0.75
HFExRett−1 0.04 3.35 0.00
∆DollarF lowt−1 -0.03 -2.29 0.02
R-square 0.06 0.11
R-adjust 0.03 0.08

Panel B: Dependent Variable: ∆Baa
Model (1) Model (2)

Coef. t-stat p-value Coef. t-stat p-value
Const. -0.00 -0.28 0.78 -0.00 -0.24 0.81
DCrisis 0.00 1.09 0.28 0.00 1.25 0.21
Lag1 0.13 1.88 0.06 0.13 1.81 0.07
∆V IX 0.00 3.01 0.00 0.00 2.57 0.01
MFExRett−1 0.00 0.30 0.76 -0.00 -0.20 0.84
MFFlowt 0.01 0.71 0.48 0.01 1.12 0.26
HFExRett−1 0.01 1.21 0.23
∆DollarF lowt−1 -0.03 -2.54 0.01
R-square 0.08 0.11
R-adjust 0.06 0.08
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Table 2.8: HF Dollar Inflow and Bond Yields

This table reports the results based on hedge fund inflow from 1994 to 2012. ∆ indicates monthly changes in the corresponding
variable. Baa is the Moody’s Baa yield, TB10Y is the U.S. 10-year Treasury yield, and ∆DollarF low is the change in hedge fund
flow in trillions of dollars. Superscript I stands for inflow, superscript O stands for outflow. Superscript T stands for the top 25%
of hedge funds, and superscript B stands for the rest of the hedge funds.

Panel A: Dependent Variable: ∆TB10Y
Model (3) Model (4) Model (5)

Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value
∆DollarF lowIt−1 -0.04 -1.65 0.10

∆DollarF lowT,It−1 -0.05 -1.79 0.07

∆DollarF lowB,It−1 -0.33 -0.93 0.35
∆DollarF lowOt−1 0.02 1.07 0.29 0.02 1.11 0.27 0.02 1.28 0.20
Controls Included Included Included
R-square 0.11 0.11 0.10
R-adjust 0.07 0.08 0.07

Panel B: Dependent Variable: ∆Baa
Model (3) Model (4) Model (5)

Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value
∆DollarF lowIt−1 -0.02 -0.72 0.47

∆DollarF lowT,It−1 -0.02 -0.67 0.51

∆DollarF lowB,It−1 -0.08 -0.25 0.80
∆DollarF lowOt−1 0.03 2.11 0.04 0.03 2.18 0.03 0.04 2.26 0.02
Controls Included Included Included
R-square 0.11 0.11 0.11
R-adjust 0.08 0.08 0.08
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Table 2.9 shows that large funds’ outflow is positively related to changes in Trea-

sury yield. The corresponding loading of 0.05 is significant at the 10% level. The

impact is strong for funds with a long notice period, but not those with a short

notice period. It is clear that the top 25% fund flows can help to predict changes in

Treasury bond yields. We do not find any evidence of significant impact of outflows

from small funds, disregarding the length of their notice periods.

The lower panel of Table 2.9 reports the results for changes in Baa yields. Con-

sistent with the results in Table 2.8, outflows from both large and small funds and

with long and short notice periods are positively related to changes in Baa yields.

The loading for large funds is 0.06 which is significant at the 1% level (Model (6)),

and that for small funds is 0.58 which is significant at the 5% level. The loading

on small funds is much larger than that for large funds as the scale of fund flow is

much smaller for the small funds. The only specification in which dollar outflow is

not statistically significant is that of small funds with a long notice period.

Furthermore, we find that the loadings of ∆DollarF lowO on ∆Baa (somewhere

between 0.03 and 0.40) are, in general, slightly higher than those for ∆TB10Y

(somewhere between 0.02 and 0.05). It is generally believed that illiquid assets are

more sensitive to market shocks than liquid assets. Therefore, when the hedge fund

industry experiences a large outflow of funds, it may be a signal of market shock,

with corporate bonds experiencing a larger price drop than the Treasury bonds.

However, since we do not have the actual bond trading data, it is possible that

both hedge fund flow and bond yields are driven by some other common factor(s).
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Table 2.9: HF Dollar Outflow and Bond Yields

This table reports the results based on hedge fund outflow from 1994 to 2012. ∆ indicates monthly changes in the corresponding
variable. Baa is the Moody’s Baa yield, TB10Y is the U.S. 10-year Treasury yield, and ∆DollarF low is the change in hedge fund
flow in trillions of dollars. Superscript I stands for inflow, superscript O stands for outflow. Superscript T stands for the top 25% of
hedge funds, and superscript B stands for the rest of the hedge funds. Superscript S stands for funds with a notice period shorter
than 30 days, and superscript L stands for funds with a longer notice period.

Panel A: Dependent Variable: ∆TB10Y
Model (6) Model (7) Model (8) Model (9) Model (10) Model (11)

Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value
∆DollarF lowIt−1 -0.03 -1.30 0.19 -0.04 -1.76 0.08 -0.03 -1.30 0.20 -0.04 -1.66 0.10 -0.04 -1.69 0.09 -0.04 -1.67 0.10

∆DollarF lowT,Ot−1 0.05 1.87 0.06

∆DollarF lowT,O,Lt−1 0.05 1.87 0.06

∆DollarF lowT,O,St−1 0.29 1.08 0.28

∆DollarF lowB,Ot−1 0.40 1.26 0.21

∆DollarF lowB,O,Lt−1 2.63 1.00 0.32

∆DollarF lowB,O,St−1 0.32 1.07 0.29
Controls Included Included Included Included Included Included
R-square 0.12 0.11 0.12 0.11 0.11 0.11
R-adjust 0.08 0.08 0.08 0.07 0.07 0.07

Panel B: Dependent Variable: ∆Baa
Model (6) Model (7) Model (8) Model (9) Model (10) Model (11)

Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value
∆DollarF lowIt−1 -0.01 -0.44 0.66 -0.02 -0.96 0.34 -0.01 -0.45 0.65 -0.02 -0.90 0.37 -0.02 -1.04 0.30 -0.02 -0.90 0.37

∆DollarF lowT,Ot−1 0.06 2.65 0.01

∆DollarF lowT,O,Lt−1 0.06 2.63 0.01

∆DollarF lowT,O,St−1 0.40 1.64 0.10

∆DollarF lowB,Ot−1 0.58 2.03 0.04

∆DollarF lowB,O,Lt−1 3.02 1.30 0.20

∆DollarF lowB,O,St−1 0.44 1.65 0.10
Controls Included Included Included Included Included Included
R-square 0.12 0.11 0.12 0.10 0.10 0.10
R-adjust 0.09 0.08 0.09 0.07 0.07 0.07
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The loadings on the outflows from top and bottom funds with short notice periods

are positive (0.40 and 0.44 respectively), but only marginally significant. In order to

assess the stability of these results, we repeat the analysis for the two sub-periods.

The size of the hedge fund industry has grown substantially since 2003 (see Figure

2.1), thus we may expect more pronounced results in the later part of our sample

period. Table 2.10 reports the results for fund outflow for two sub-periods: from

January 1994 to June 2003, and from July 2003 to December 2012. The sub-period

is chosen by separating the complete sample period into two sub-sample periods of

equal length. We find that the outflow from large funds with a short notice period is

positively related to changes in the yields of both government and corporate bonds

in the second sub-period. The loadings of 0.09 and 0.07 are significant at the 1% and

5% levels respectively. The outflow from small funds is not statistically significant

in both sub-samples. These findings provide support for Corollaries 2 and 3 from

the Flow Predictability hypothesis and suggest that the bond yields are explained

by top funds with short notice periods.20

20These results suggest that some hedge funds may have sold bonds in response to fund outflows.
We performed a limited check using the reported equity holdings of hedge fund investment com-
panies to the Securities and Exchange Commission (SEC) though 13F filings. We matched 1,050
hedge fund firms from our sample to the ones reporting to the SEC. This sample was previously
used in Mattes (2011). We then compared the net quarterly outflows and the changes in reported
equity holdings. We found that, for a median HF company, its net quarterly outflow is $25 mil-
lion larger than its changes in reported long equity positions. This means that apart from equity
liquidation, hedge funds have to find other channels to fund the cash outflows by selling bonds or
otherwise.
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Table 2.10: Sub-period Analysis for HF Dollar Outflow

This table reports the results based on hedge fund outflow for two sub-periods from January 1994 to June 2003, and from July 2003
to December 2012. ∆ indicates monthly changes in the corresponding variable. Baa is the Moody’s Baa yield, TB10Y is the U.S.
10-year Treasury yield, and ∆DollarF low is the change in hedge fund flow in trillions of dollars. Superscript I stands for inflow,
superscript O stands for outflow, superscript T stands for the top 25% of hedge funds, and superscript B stands for the rest of the
hedge funds. Superscript S stands for funds with a notice period shorter than 30 days, and superscript L stands for funds with a
longer notice period.

Panel A: Dependent Variable: ∆TB10Y
1994.1-2003.6 2003.7-2012.12

Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value
∆DollarF lowIt−1 -0.03 -0.67 0.51 -0.02 -0.55 0.59 -0.03 -1.17 0.24 -0.05 -1.53 0.13

∆DollarF lowT,O,St−1 -0.02 -0.39 0.70 0.09 2.68 0.01

∆DollarF lowB,O,St−1 -0.04 -0.02 0.99 0.47 1.44 0.15
Controls Included Included Included Included
R-square 0.09 0.09 0.20 0.16
R-adjust 0.03 0.03 0.14 0.10

Panel B: Dependent Variable: ∆Baa
1994.1-2003.6 2003.7-2012.12

Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value
∆DollarF lowIt−1 -0.01 -0.41 0.68 -0.03 -1.02 0.31 -0.00 -0.16 0.87 -0.02 -0.52 0.61

∆DollarF lowT,O,St−1 0.04 1.11 0.27 0.07 2.05 0.04

∆DollarF lowB,O,St−1 -0.81 -0.45 0.66 0.31 0.99 0.32
Controls Included Included Included Included
R-square 0.05 0.04 0.24 0.21
R-adjust -0.01 -0.02 0.19 0.16
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2.5.2 Hedge Fund Percentage Flows

Table 2.11 reports the results for ∆TB10Y and ∆Baa when the changes in yields

are related to control variables and the average percentage flow across all funds. At

such an aggregate level, we cannot detect any significant relation between percentage

flow and changes in bond yields.

Table 2.12 disaggregates inflows and outflows and considers inflows to top and

bottom funds separately. We do not find any significant relation between bond yields

and percentage fund inflow. The percentage outflow however is negatively related

to changes in Treasury bond yields with the loading being -0.04 significant at the

10% level, and there is no significant relation to changes in Baa yields.21

In Table 2.13 we take a closer look at different types of fund outflow and confirm

that percentage outflow from all types of hedge funds is negatively related to changes

in Treasury bond yields. In addition, Table 2.14 shows that the negative relationship

between percentage fund outflow and Treasury bond yield is stable across different

sub-periods.22

We also consider the flows to funds with different fund styles. In particular, we

aggregate in- and outflows across top funds following equity-related strategies and

fixed income strategies and include them separately in the regression. Table 2.15

reports the results for the changes in Treasury bond yields and the Baa yields. We

find that significant results are most likely to be associated with Treasury yields.

We find that the loadings for the inflow and outflow of equity-related funds are

significant. A scatter plot (not presented here) of Treasury yields and equity fund

percentage flows reveals that there were some big common movements during the

21Note that the change in yield is in decimal, whereas percentage flow used in the regression is
also in decimal. If β = 0.03, this means that a one standard deviation increase in Flow will increase
∆yield by β × σFlow = 0.03 × 0.0201 = 0.00603 or 60 basis points. From Table 2.1, the mean
Flow(%) is 0.64% or 0.0064. So an average Flow increase will increase yield by 0.03 × 0.0064 =
0.000192 or 0.0192% or 1.92 basis points.

22The examiners pointed out that hedge fund AuM has more than tripled in a decade. If the
price impact hypothesis is correct, then hedge fund flows should have a larger impact in the latter
period. The percentage flow is basically adjusting flows by AuM, and has the effect of keeping the
impact comparable across time. In Table 2.9, the fund’s dollar flow analyses were performed over
two sub-periods from 1994 to 2003 and from 2003 to 2012. The results are indeed significant only
in the second period.
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Table 2.11: HF Percentage Flow and Bond Yields

This table reports the results based on the average percentage hedge
fund flow from 1994 to 2012. DCrisis is a dummy variable, taking a value
of 1 from July 2007 to February 2009 and 0 for the rest of the sample.
Lag1 is the previous value of the corresponding dependent variable. ∆
indicates monthly changes in the corresponding variable. Baa is the
Moody’s Baa yield, TB10Y is the U.S. 10-year Treasury yield. V IX is
the CBOE VIX index, MFExRet is the excess return of bond-oriented
mutual funds, MFFlow is the percentage fund flow of bond-oriented
mutual funds, HFExRet is the excess return of hedge funds, and Flow
is the average percentage hedge fund flow.

Panel A: Dependent Variable: ∆TB10Y
Model (1) Model (2)

Coef. t-stat p-value Coef. t-stat p-value
Const. 0.00 1.00 0.32 0.00 0.64 0.52
DCrisis -0.00 -1.07 0.28 -0.00 -0.04 0.97
Lag1 0.11 1.59 0.11 0.10 1.36 0.18
∆V IX -0.00 -1.92 0.06 -0.00 -2.52 0.01
MFExRett−1 0.01 0.67 0.50 0.01 0.54 0.59
MFFlowt -0.01 -0.94 0.35 -0.01 -0.76 0.45
HFExRett−1 0.00 0.00 1.00
Flowt−1 0.03 1.43 0.15
R-square 0.06 0.09
R-adjust 0.03 0.06

Panel B: Dependent Variable: ∆Baa
Model (1) Model (2)

Coef. t-stat p-value Coef. t-stat p-value
Const. -0.00 -0.28 0.78 -0.00 -0.14 0.89
DCrisis 0.00 1.09 0.28 0.00 1.10 0.27
Lag1 0.13 1.88 0.06 0.14 1.95 0.05
∆V IX 0.00 3.01 0.00 0.00 2.85 0.00
MFExRett−1 0.00 0.30 0.76 0.02 0.81 0.42
MFFlowt 0.01 0.71 0.48 0.01 0.59 0.56
HFExRett−1 -0.01 -0.77 0.44
Flowt−1 0.01 0.64 0.52
R-square 0.08 0.08
R-adjust 0.06 0.05
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Table 2.12: HF Percentage Inflow and Bond Yields

This table reports the results based on hedge fund inflow from 1994 to
2012. ∆ indicates monthly changes in the corresponding variable. Baa
is the Moody’s Baa yield, TB10Y is the U.S. 10-year Treasury yield, and
Flow is the average hedge fund percentage flow. Superscript I stands
for inflow, superscript O stands for outflow. Superscript T stands for
the top 25% of hedge funds, and superscript B stands for the rest of the
hedge funds.

Panel A: Dependent Variable: ∆TB10Y
Model (3) Model (4) Model (5)

Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value
FlowIt−1 0.01 0.31 0.75

FlowT,It−1 -0.07 -0.78 0.43

FlowB,It−1 -0.02 -0.77 0.44
FlowOt−1 -0.04 -1.69 0.09 -0.04 -1.64 0.10 -0.04 -1.56 0.12
Controls Included Included Included
R-square 0.10 0.10 0.10
R-adjust 0.06 0.07 0.07

Panel B: Dependent Variable: ∆Baa
Model (3) Model (4) Model (5)

Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value
FlowIt−1 0.01 0.27 0.79

FlowT,It−1 -0.05 -0.63 0.53

FlowB,It−1 -0.01 -0.48 0.63
FlowOt−1 -0.01 -0.67 0.50 -0.01 -0.62 0.54 -0.01 -0.58 0.56
Controls Included Included Included
R-square 0.08 0.09 0.08
R-adjust 0.05 0.05 0.05
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crisis period. Therefore, the statistically significant results might be driven by these

big common movements. Interestingly, we find negative loadings of fixed income

funds on Treasury and corporate yields. This result suggests possible connection

between bond trading and bond fund percentage inflow, and the possible use of the

latter to help predict movements in Treasury and corporate bond yields.

2.6 Conclusion

The hedge fund industry is characterized by extreme capital concentration, with

the largest 25% of funds controlling some 90% of the total assets in the industry.

Compared with the smaller funds, these mega funds are likely to attract different

types of investors such as large pension funds. Flows into different-sized funds may

thus reflect information, liquidity, and preferences of different types of investors.

We find that fund flow is negatively related to next-period changes in Treasury

bond yields and Moody’s Baa yields. An inflow to the large funds predicts a decrease

in Treasury bond yields, whereas an outflow predicts an increase in corporate bond

yields. Outflow from large funds also has a negative relationship with Treasury bond

yields. The results of outflows are more pronounced after 2003, and are strongest

for large funds with short notice periods.

We also find that an increase in the fund percentage outflow predicts a decline

in Treasury bond yields. This finding is partly consistent with the flight to safety

hypothesis. There is no significant link between percentage outflows and changes in

corporate bond yields.

Since we do not have hedge funds’ bond holding data, it is not possible to conclude

that hedge fund bond trading has an impact on bond yields. We can only conclude

that hedge fund flow, conditional on the flow direction and fund size, indeed can

help to predict bond yield movements. However, it is also possible that both bond

yields and hedge fund flows are driven by other common factor(s).
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Table 2.13: HF Percentage Outflow and Bond Yields

This table reports the results based on hedge fund outflow from 1994 to 2012. ∆ indicates monthly changes in the corresponding
variable. Baa is the Moody’s Baa yield, TB10Y is the U.S. 10-year Treasury yield, and Flow is the average percentage hedge fund
flow. Superscript I stands for inflow, superscript O stands for outflow. Superscript T stands for the top 25% of hedge funds, and
superscript B stands for the rest of the hedge funds. Superscript S stands for funds with a notice period shorter than 30 days, and
superscript L stands for funds with a longer notice period.

Panel A: Dependent Variable: ∆TB10Y
Model (6) Model (7) Model (8) Model (9) Model (10) Model (11)

Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value
FlowIt−1 0.02 0.65 0.52 0.01 0.50 0.62 0.02 0.63 0.53 0.03 1.08 0.28 0.02 0.71 0.48 0.03 1.10 0.27

FlowT,Ot−1 -0.15 -2.16 0.03

FlowT,O,Lt−1 -0.15 -2.08 0.04

FlowT,O,St−1 -0.11 -3.32 0.00

FlowB,Ot−1 -1.82 -2.35 0.02

FlowB,O,Lt−1 -0.44 -2.36 0.02

FlowB,O,St−1 -0.13 -3.41 0.00
Controls Included Included Included Included Included Included
R-square 0.10 0.11 0.10 0.13 0.11 0.13
R-adjust 0.07 0.07 0.07 0.10 0.07 0.10

Panel B: Dependent Variable: ∆Baa
Model (6) Model (7) Model (8) Model (9) Model (10) Model (11)

Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value
FlowIt−1 0.01 0.57 0.57 0.01 0.44 0.66 0.01 0.56 0.58 0.02 0.68 0.50 0.01 0.44 0.66 0.02 0.71 0.48

FlowT,Ot−1 -0.09 -1.45 0.15

FlowT,O,Lt−1 -0.09 -1.41 0.16

FlowT,O,St−1 -0.05 -1.65 0.10

FlowB,Ot−1 -1.04 -1.45 0.15

FlowB,O,Lt−1 -0.16 -0.95 0.34

FlowB,O,St−1 -0.06 -1.74 0.08
Controls Included Included Included Included Included Included
R-square 0.09 0.09 0.09 0.09 0.09 0.09
R-adjust 0.06 0.06 0.06 0.06 0.05 0.06

53



Table 2.14: Sub-period Analysis for HF Percentage Flow

This table reports the results based on hedge fund outflow for two sub-periods, from January 1994 to June 2003, and from July 2003
to December 2012. ∆ indicates monthly changes in the corresponding variable. Baa is the Moody’s Baa yield, TB10Y is the U.S.
10-year Treasury yield, and Flow is hedge fund percentage flow. Superscript I stands for inflow, superscript O stands for outflow,
superscript T stands for the top 25% of hedge funds, and superscript B stands for the rest of the hedge funds. Superscript S stands
for funds with a notice period shorter than 30 days, and superscript L stands for funds with a longer notice period.

Panel A: Dependent Variable: ∆TB10Y
1994.1-2003.6 2003.7-2012.12

Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value
FlowIt−1 0.06 1.51 0.13 0.05 1.26 0.21 0.00 0.07 0.95 0.04 0.70 0.49

FlowT,O,St−1 -0.40 -2.72 0.01 -0.05 -0.67 0.50

FlowB,O,St−1 -0.16 -2.53 0.01 -0.12 -2.30 0.02
Controls Included Included Included Included
R-square 0.15 0.14 0.11 0.15
R-adjust 0.09 0.09 0.05 0.09

Panel B: Dependent Variable: ∆Baa
1994.1-2003.6 2003.7-2012.12

Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value
FlowIt−1 0.05 1.59 0.11 0.04 1.48 0.14 0.01 0.10 0.92 0.02 0.41 0.68

FlowT,O,St−1 -0.21 -1.86 0.07 -0.06 -0.76 0.45

FlowB,O,St−1 -0.09 -1.83 0.07 -0.08 -1.54 0.13
Controls Included Included Included Included
R-square 0.07 0.07 0.20 0.22
R-adjust 0.01 0.01 0.15 0.17
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Table 2.15: HF Percentage Flow: Fund Style

This table reports the results based on in- and outflow to/from hedge
funds following equity-oriented and bond-oriented styles from 1994 to
2012. ∆ indicates monthly changes in the corresponding variable. Baa
is the Moody’s Baa yield, TB10Y is the U.S. 10-year Treasury yield, and
Flow is the average hedge fund percentage flow. Superscript I stands
for inflow, superscript O stands for outflow. Superscript T stands for
the top 25% of hedge funds, and superscript B stands for the rest of
the hedge funds. Subscript Eqty stands for equity-oriented funds and
subscript Bond stands for bond-oriented funds. The control variables
are the CBOE VIX index (V IX), the excess return on the bond-oriented
mutual funds (MFExRet), the fund percentage flow of bond-oriented
mutual funds (MFFlow), and the average excess return on hedge funds
(HFExRet).

Dependent: ∆TB10Y Dependent: ∆Baa
Coef. t-stat p-value Coef. t-stat p-value

Const. 0.00 1.85 0.07 0.00 0.84 0.40
DCrisis 0.00 0.37 0.71 0.00 0.91 0.36
Lag1 -0.11 -1.17 0.24 0.07 0.79 0.43
∆V IX -0.00 -0.28 0.78 0.00 3.27 0.00
MFExRett−1 0.00 0.21 0.84 0.00 0.27 0.79
MFFlowt -0.00 -0.12 0.91 0.00 0.38 0.70
HFExRett−1 0.02 1.55 0.12 -0.00 -0.15 0.88

FlowT,I,Bondt−1 -0.89 -3.28 0.00 -0.78 -3.23 0.00

FlowT,I,Eqtyt−1 0.29 1.89 0.06 0.22 1.58 0.11

FlowT,O,Bondt−1 0.48 1.34 0.18 0.29 0.90 0.37

FlowT,O,Eqtyt−1 -0.48 -2.53 0.01 -0.16 -0.92 0.36
R-square 0.16 0.13
R-adjust 0.12 0.09

Appendix

2.A Lag-Lead Relation in Fund Flows by Fund

Size

In this appendix, we address the possible lead-lag relation between flows to funds

from different size groups. Flows to large funds can reveal the expectations of large

institutional investors and serve as a signal for other smaller investors, inducing

55



herding behavior in the hedge fund industry.23 Furthermore, if the inflow to top

funds reflects a shift in preferences or investor composition, a higher inflow to top

funds may lead to lower inflow to other funds. We estimate the VAR regression

below to capture the interaction between in- and outflows to/from funds of different

sizes:



FlowT,It

FlowB,It

FlowT,Ot

FlowB,Ot


= β0 + β1 · Ctrls+ Γ ·



FlowT,It−1

FlowB,It−1

FlowT,Ot−1

FlowB,Ot−1


+ εt (2.4)

Here Ctrls are the seven hedge fund risk factors from Fung and Hsieh (2004) that

control for the general macroeconomic conditions. β1 and Γ are matrices of factor

loadings, and β0 and εt are vectors of constants and error terms respectively.

The matrix Γ captures flow herding, investment choice, and flow substitutions

effects:

Γ =



γ11 γ12 γ13 γ14

γ21 γ22 γ23 γ24

γ31 γ32 γ33 γ34

γ41 γ42 γ43 γ44


For example, a positive and significant γ34 would indicate that an outflow from

smaller funds precedes one from big funds.

As a preliminary step, we estimate a reduced version of Equation (2.4) including

only average percentage flows to the top 25% of funds and the bottom 75% of funds

(FlowT and FlowB). Table 2.16 shows that the macroeconomic control variables

are significant determinants of the flow patterns, producing a similar impact on

flows to top and bottom funds. The loadings of SNP500 for large fund flow and

small fund flow are 0.27 and 0.29 respectively; both are significant at the 1% level.

Similarly, the corresponding loadings of SML (0.14 and 0.15 respectively) are also

23There is much evidence on herding among both institutional and individual investors. See, for
example, Nofsinger and Sias (1999), and Sias (2004), among others.
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Table 2.16: Hedge Fund Flow Determinants

This table reports the VAR results of hedge fund flow from 1994 to 2012.
Flow is hedge fund flow. The superscript T stands for the top 25% of
funds, and B stands for the rest of the hedge funds. SNP500 is the
return on S&P 500, SML is the difference between the returns on the
Russell 2000 index and the returns on the S&P 500 index. TB10Y is
the U.S. 10-year T-bill yield. CredSpr is credit spread, defined as the
difference between the Moody’s Baa yield and the U.S. 10-year T-bill
yield. PTFSBD is the bond trend-following factor, PTFSFX is the
FX trend-following factor, and PTFSCOM is the commodity trend-
following factor.

Dependent: FlowT Dependent: FlowB

Coef. t-stat p-value Coef. t-stat p-value
FlowT 0.40 3.02 0.00 -0.02 -0.21 0.84
FlowB 0.00 -0.03 0.98 0.34 2.65 0.01
SNP500 0.27 12.89 0.00 0.29 15.10 0.00
SML 0.14 5.35 0.00 0.15 6.70 0.00
TB10Y -0.86 -2.24 0.03 -0.73 -2.13 0.03
CredSpr -1.48 -2.85 0.00 -1.20 -2.60 0.01
PTFSBD -0.01 -1.08 0.28 0.00 -0.73 0.47
PTFSFX 0.00 0.53 0.60 0.01 1.49 0.14
PTFSCOM 0.01 2.14 0.03 0.01 2.43 0.02
Const. 0.00 2.37 0.02 0.00 4.98 0.00
R-square 0.68 0.71
R-adjust 0.67 0.70

highly significant. When stock markets are booming, hedge funds are more likely

to gain new capital from investors. The loadings on TB10Y and CredSpr are also

significant, but negative, suggesting lower flows to hedge funds during the periods

of high bond yields.

The fund flow itself seems to be persistent. Higher flow to top funds in the current

month leads to higher flow to the same group of funds in the following month. The

same holds for bottom funds. The corresponding loadings of 0.40 and 0.34 are highly

significant. We find no evidence, at the aggregate level, of any links between flows

across top and bottom funds. As we expect, the relations between in- and outflows

are not the same. We now turn to the full regression specification in Equation (2.4).

Table 2.17 reports the results for interaction of in- and outflows. The loadings

on the control variables are consistent with those reported in Table 2.16 and are not
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reported here to conserve space.24 Consistent with the previous results, both in-

and outflows are persistent within each group of funds. For example, outflow from

the bottom funds (FlowB,Ot−1 ) leads to future outflows from bottom funds (FlowB,Ot )

with the corresponding coefficient of 0.45 being highly statistically significant.

Higher inflow into top funds reduces the next-period outflows from both top and

bottom funds. The corresponding coefficients of -0.44 and -0.31, respectively, are

highly significant. At the same time, higher inflow to top funds leads to lower inflow

to bottom funds. The loading of -0.23 is significant at the 5% level, reflecting a

substitution effect between the top and bottom funds. Here past outflow is positively

related to future inflow, suggesting that investors relocate capital across different-

sized funds.

In short, we find an asymmetric lead-lag relation between in- and outflows to top

and bottom funds. If top funds attract higher inflow, the ability of smaller funds

to attract new investment is reduced. At the same time, higher inflow to top funds

is a positive signal, which reduces outflow from both top and bottom funds in the

next period.

24The full results are available from the authors on request.
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Table 2.17: Lead-Lag Relation in Fund Flow

This table reports the VAR results for flows to hedge funds with different notice periods from 1994 to 2012. Flow is hedge fund
percentage flow. The superscript T stands for the top 25% of funds, and B stands for the rest of the funds. I stands for inflow and
O stands for outflow.

Dependent: FlowT,I Dependent: FlowB,I Dependent: FlowT,O Dependent: FlowB,O

Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value
FlowT,I 0.20 1.91 0.06 -0.23 -2.29 0.02 -0.44 -3.13 0.00 -0.31 -3.01 0.00
FlowB,I 0.12 1.17 0.24 0.52 5.37 0.00 0.32 2.33 0.02 0.29 2.85 0.00
FlowT,O -0.02 -0.26 0.80 -0.06 -0.71 0.48 0.23 1.97 0.05 -0.04 -0.50 0.62
FlowB,O 0.04 0.43 0.67 0.18 1.79 0.08 0.20 1.44 0.15 0.45 4.32 0.00
Controls Included Included Included Included
R-square 0.30 0.43 0.43 0.56
R-adjust 0.26 0.40 0.40 0.54
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Chapter 3

Systematic and Firm-specific

Credit and Liquidity Risks of CDS

Spreads

Abstract

In this chapter we develop a theoretical model for pricing assets with illiquidity

and test it empirically using the CDS spreads of 356 U.S. non-financial firms from

2002 to 2011. We find that systematic credit risk, systematic illiquidity, individ-

ual firm default risks and stock illiquidity are significant predictors for changes in

CDS spreads. The illiquidity impact is asymmetric and is particularly strong when

stock becomes more illiquid. Our model performs well for cross-sectional predic-

tions and can be used to approximate spreads for firms that do not have CDSs.

Our findings challenge Basel III’s adoption of CDS-implied probability of default in

the assessment of counterparty default risk, because apart from firm default risk,

systematic factors have important impacts on CDS spreads, and the spreads contain

a significant liquidity risk in addition to the firm’s default risk.

60



3.1 Introduction

Basel III stipulates that CDS-implied default probability must be used in the cal-

culation of risk capital attributed to counterparty credit risk.1 In this chapter, we

argue that CDS spread reflects much more than just the credit worthiness of an

underlying entity. It is also driven by CDSs’ illiquidity, as well as market-wide and

industry-based credit and illiquidity factors.

Corò, Dufour, and Varotto (2013) show recently that changes in CDS spreads are

largely explained by the bid-ask spreads of CDSs. The credit risk of the firm, on the

other hand, has little explanatory power. CDS bid-ask spread is a popular measure

for CDS liquidity.2 Nevertheless, Das and Hanouna (2009) show that stock-based

Amihud illiquidity measure (Amihud 2002) can proxy for CDS illiquidity since CDS

traders can also use equity to hedge their risk exposure.3 Their finding provides

evidence for the connection between equity and CDS market liquidity.

A number of studies investigate default risk spill-over across markets. For exam-

ple, Longstaff, Mithal, and Neis (2005) explore the link between a bond’s default

risk and CDS spread, whereas Huang and Huang (2012) consider the relationship

between a bond’s default risk and the firm’s asset value. CDSs have a potential

impact on corporate finance; Saretto and Tookes (2013) find that firms with traded

CDS contracts have higher leverage ratios and longer debt maturities. They argue

that banks hold single-name CDSs to reduce capital requirement, and, as a result,

are able to provide more loans to firms with traded CDS contracts. These studies,

however, have omitted correlated liquidities between markets.

In this chapter, we develop a model relating CDS spread with firm-specific and

systematic aggregate credit and illiquidities. We use an equity-based model to sepa-

1[“When computing CVA (Credit Valuation Adjustment) risk capital charge,] s is the credit
spread of the counterparty [...]. Whenever the CDS spread of the counterparty is available,
this must be used. Whenever such a CDS spread is not available, the bank must use a
proxy spread that is appropriate based on the rating, industry and region of the counterparty.”
Basel III: A global regulatory framework for more resilient banks and banking systems, p.32,
http://www.bis.org/publ/bcbs189.pdf.

2See, e.g., Tang and Yan (2007), Das and Hanouna (2009), and Corò, Dufour, and Varotto
(2013).

3See Cespa and Foucault (2014) for theory of liquidity spillover due to asset informativeness.
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rate the credit and illiquidity components of CDSs and examine their individual and

systematic impacts on individual CDS spreads. As we test the impact of four groups

of factors on individual CDS spreads—firm-specific credit, firm-specific illiquidity,

systematic credit, and systematic illiquidity—it is important that the firm-specific

factors are not obtained from the CDS calibration, to prevent a spurious relationship.

Hence we use equity information to construct firm-specific factors. The decomposed

CDS components are aggregated to produce the systematic factors, each time with

a specific target firm excluded to avoid spurious results. With this procedure, we

find a substantial difference among factors. We study CDS spreads of 356 U.S. non-

financial firms for the period from 2002 to 2011 and find evidence that firm-specific,

industry-related, and market-wide credit and illiquidity risk factors are significant

predictors of changes in individual firms’ CDS spreads.

Following Das and Hanouna (2009), we use Amihud stock illiquidity measure as

a proxy for CDS illiquidity, because CDS bid-ask spreads are not widely available.4

As in Das and Hanouna (2009), we find changes in stock illiquidity are positively

associated with changes in CDS spreads. However, unlike Das and Hanouna (2009),

we find that this impact is asymmetric and is statistically significant only when

stock becomes more illiquid. Our finding is similar to the Brennan, Huh, and Sub-

rahmanyam (2013) finding of asymmetric liquidity impact on stock returns. Our

finding suggests possible liquidity contagion between CDS and stock markets with

stock illiquidity as the common driver.

When the spreads are decomposed into their credit and illiquidity components

following Forte (2011) and Forte and Lovreta (2012), our test results indicate that

the systematic credit and illiquidity components are equally important in explain-

ing changes in individual firms’ CDS spreads. Similar findings are documented in

Longstaff, Pan, Pedersen, and Singleton (2007), where global factors are found to be

more important than individual country measures in explaining changes in sovereign

4We use Markit, one of the largest CDS data vendors, containing thousands of entities world-
wide, as our CDS data source. Our Markit database does not contain bid-ask information because
the CDS spreads are expressed as composite prices. Other mainstream CDS databases—Reuters
EOD, and Credit Market Analysis (CMA)—also provide composite prices for CDSs, and CDS
bid-ask spreads are not available in these databases either. See Mayordomo, Peña, and Schwartz
(2013) for a comprehensive comparison of the five main CDS databases.

62



CDSs. Here, we find that changes in industry and market credit and illiquidity

factors are just as important as firm-specific information in affecting changes in in-

dividual firms’ CDS spreads. Recently, Galil, Shapir, Amiram, and Ben-Zion (2014)

find that the median CDS spreads of mixed credit quality have a cross-sectional

explanatory power for individual firms’ CDS spreads. Their finding suggests the

existence of a systematic risk factor in CDS spreads. Here, we consider both credit

and liquidity systematic risks, and study their separate effects on CDS spreads.

Since our model for corporate CDS spreads does not rely on the firms having

traded CDSs, our model can be used to approximate CDS spreads for regulatory

counterparty risk management. Our model has a good cross-sectional predictive

power with an average out-of-sample R-square of 27%.

3.2 Related Literature

Our study is related to several strands of credit risk literature, the first of which links

the credit and equity markets. Friewald, Wagner, and Zechner (2014), for example,

study credit risk premiums extracted from CDS spread and find that CDS premiums

are strongly and positively related to Merton’s equity risk premiums. Schneider,

Wagner, and Zechner (2014) find CDS spread is related to equity option-implied

volatility, ex ante variance and skewness. Together with option-implied moments,

CDS spread has predictive power for stock returns. Berndt, Douglas, Duffie, Fer-

guson, and Schranz (2008) analyze default intensities derived from Moody’s KMV

Expected Default Frequency (EDF) and CDS spreads in four U.S. industries. They

find a strong relation between physical and risk-neutral probabilities of default (PD)

extracted, respectively, from EDF and CDS spreads. Galil, Shapir, Amiram, and

Ben-Zion (2014) find that stock return, stock return volatility, and the median of

CDS spreads obtained in a mixture of rating classes can explain the cross-sectional

variations in CDS spreads. Their finding concerning median CDS spreads implies

the existence of CDS systematic risk.

The second strand of literature focuses on the liquidity risk of CDSs and finds
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changes in CDS spreads are dominated by changes in liquidity of CDSs rather than

changes in the credit risk of the underlying entity. Corò, Dufour, and Varotto (2013)

construct two bid-ask-spread based liquidity factors: daily time-weighted average

bid-ask spread, and industry average bid-ask spread. They find both liquidity factors

dominate CDS spread changes, while other factors, such as changes in credit rating

and macroeconomic conditions, have a weak (albeit still statistically significant)

explanatory power. Tang and Yan (2007) study CDS quotes and CDS bid-ask

spreads, and conclude that short-term changes in CDS spreads are explained by their

illiquidities. Buhler and Trapp (2010) use CDSs to separate bond spreads into their

credit and liquidity components, and find that the illiquidity component is important

in explaining bond spreads. In addition, they document an illiquidity co-movement

between the bond and CDS markets. Bedendo, Cathcart, and El-Jahel (2011) use

the CreditGrade model to derive model-implied CDS spreads from put options,

and find that the difference between market and option-implied CDS spreads can be

explained by the individual CDS bid-ask spreads and stock-based Amihud illiquidity

measure. They find, however, that some of the difference cannot be explained by the

individual illiquidity, and conclude that the equity and CDS markets have become

less connected. Das and Hanouna (2009), a paper that is closely related to this

chapter, find a strong connection between stock liquidity and the liquidity risk of

CDSs. They compare the Amihud illiquidity measure, the LOT (Lesmond, Ogden,

and Trzcinka 1999) measure, and CDS bid-ask spread, and find that the Amihud

stock illiquidity measure predicts quarterly changes of CDS spreads. (Following

the findings of their paper, we also use the Amihud stock illiquidity measure in

our empirical tests later.) Brunnermeier and Pedersen (2009) argue that liquidity

drain-out is due to a vicious cycle of market and funding liquidity interactions.

Subsequently, Brennan, Chordia, Subrahmanyam, and Tong (2012) show that stock

liquidity premium arises mainly from the sell side. Furthermore, Brennan, Huh,

and Subrahmanyam (2013) condition the Amihud stock illiquidity based on the sign

of stock returns, and find Amihud illiquidity has a stronger explanatory power for

negative stock returns.
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CDSs, on the other hand, also have an impact on stock illiquidity. Boehmer,

Chava, and Tookes (2013) find firms with traded CDSs have less liquid and less

efficient stock prices. They argue that stock liquidity is reduced because speculators

can now use the CDS market to hedge their equity risk, resulting in equity becoming

less liquid. This finding corresponds to the theoretical prediction below, made by

Cespa and Foucault (2014).

The third strand of CDS literature focuses on systematic drivers. Conrad,

Dittmar, and Hameed (2011) calibrate CDS-implied PD to equity option-implied

PD and find the change of CDS spreads of systemically important financial institu-

tions (SIFIs) to be a leading indicator for the changes in other CDS spreads. Their

findings suggest the existence of a systematic risk factor driving all CDS spread

changes. This chapter shows, later, that the systematic drives are just as important

as firm-specific information.

Finally, our theoretical model for CDS spread is based on Gennotte and Leland

(1990) and Cespa and Foucault (2014). Gennotte and Leland (1990) provide a gen-

eral equilibrium asset pricing model that includes illiquidity. In Cespa and Foucault

(2014), illiquidity interacts between assets in the same and different markets. They

argue that informed traders learn from other asset prices. Hence, the equilibrium

price of one asset should contain prices of other assets. Such cross-asset “learning”

forms a feedback loop between assets according to the level of price informativeness

and could lead to illiquidity spillover.
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3.3 Model Specification

3.3.1 Asset Price and Illiquidity

Following Gennotte and Leland (1990) and Cespa and Foucault (2014), we provide,

in this section, a simple economic explanation of how asset price is driven by its

own illiquidity and the illiquidity of other assets. Assume an economy consists of

M assets5 and two types of agents, viz. investors and liquidity providers. Investors

hold (long or short) positions in assets and maximize their expected utility of wealth

according to their individual risk tolerance. These investors are assumed to be

fully informed. Liquidity providers are market makers whose aim is to provide

market liquidity to accelerate investors’ matching process but strive to have zero

net position. Their active participation in the market increases trading volume and

liquidity.

The payoff of asset m, vm, is:

vm = δm + dmδ−m + εm (3.1)

where δm is the expected return of asset m, δ−m is the (average) expected return

of other assets, dm is the loading for δ−m, and εm ∼ N(0, σ2
εm) is the idiosyncratic

noise. The assets are correlated with variance-covariance matrix Ωv.

Investor j has a CRRA (constant relative risk aversion) utility function with risk

aversion parameter γj (γj ≤ 1 and γj 6= 0):

U(Wj) =
W

γj
j

γj
. (3.2)

The optimal investment can be solved through mean-variance optimization. Then,

the demand function for asset m is

5The assets here are not restricted to equities; they may include bonds, CDSs, and other tradable
assets.
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xjm(pm|δm, δ−m, p−m) = (1− γj)−1

M∑
l=1

ηml[E(vl|δl, δ−l, pl, p−l)− pl] (3.3)

where ηml is the m-th row’s elements of the inverse variance-covariance matrix (Ω−1
v )

and pm is today’s asset price for m. Writing E(vl|δl, δ−l, pl, p−l) = δl+dlδ−l, Equation

(3.3) becomes

xjm(pm|δm, δ−m, p−m) = (1− γj)−1

M∑
l=1

ηml[δl + dlδ−l − pl]. (3.4)

Now we turn to the market maker whose supply function for asset m is assumed

to be

um ∼ N(0, σum). (3.5)

Liquidity providers maintain zero net positions on balance. Without the loss of

generality, we assume there is only one liquidity provider for each asset. At any

time, the market clearance price for asset m at equilibrium is

J∑
j=1

xjm(pm|δm, δ−m, p−m) + um = 0 (3.6)

where there are J investors wanting to hold assetm in their portfolios. Now replacing

xjm with Equation (3.4), and separating the summation term for asset m and for

the other assets, we get:

0 =
J∑
j=1

1

1− γj
ηmm[δm + dmδ−m − pm] +

J∑
j=1

1

1− γj

M∑
l=1,l 6=m

ηml[δl + dlδ−l − pl] + um.

(3.7)

After some re-arrangements, we obtain the market equilibrium price for asset m,
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conditional on all the other information:

pm(δm, δ−m, p−m)

= (δm + dmδ−m) + η−1
mm

M∑
l=1,l 6=m

ηml[δl + dlδ−l − pl] + η−1
mm[

J∑
j=1

(1− γj)−1]−1um.

(3.8)

Equation (3.8) implies that, apart from its own fundamental value δm, the equi-

librium price of asset m depends on the fundamental values and prices of other

assets as well as the liquidity of asset m. The illiquidity of asset m can be derived

as the sensitivity of its price to liquidity provision:

Lm ≡
∂pm
∂um

= η−1
mm[

J∑
j=1

(1− γj)−1]−1. (3.9)

The greater the value of Lm, the more illiquid is asset m. Since the price of other

assets p−m is affected by their liquidity, u−m and L−m, the price of asset m will

be affected by the liquidity of other assets through p−m, which we called the peer

liquidity effect. The liquidity of asset m: ∂pm
∂um

; the liquidity due to other assets:

∂pm
∂u−m

. Surprisingly, at the time of writing, the current literature focuses only on the

individual asset’s own liquidity, disregarding the peer liquidity effect altogether.

Here we consider the case of CDSs and include two sources of the cross-

asset/market link. The first source is from the underlying asset of the CDSs. Since

the underlying asset can be used to hedge CDS risks, the liquidity of the underlying

asset can, of course, affect the CDS price. The other source is the peer information.

CDSs are usually traded over the counter and are less liquid. The peer CDS prices

(asset −m) are likely to contain unobservable market information that may also af-

fect the CDS spread (asset m). Therefore, the liquidity of the peer CDSs represents

the level of the price informativeness of the market (Cespa and Foucault 2014).

There are also some examples about the cross-asset link in demand. Bongaerts,

Jong, and Driessen (2011) provide some information about the buyers and sellers

in the CDS market (2006 Survey of the British Bankers’ Association). The survey
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shows that banks are net protection buyers while insurers are net protection sellers.

In addition, hedge funds are active participants, contributing to 28% of the buyers of

the CDS contracts and 32% of the sellers. Therefore, hedge funds have the need to

trade underlying bonds or equities for hedging purposes. Given our model rationale,

the cross-asset linkage in liquidity is likely to happen because hedge funds need to

include information about the underlying asset to hedge their risk. However, we do

not have available hedge fund data in CDS to test whether the cross-asset linkage

in liquidity can be driven by hedge funds.

3.3.2 Separating CDS Spread into Credit and Liquidity

Components

In this section, we describe the procedure for decomposing each CDS spread into its

credit (λt) and liquidity (θt) components as follows:

CDSt = λt × θt. (3.10)

The multiplicative connection of the credit and liquidity components implies that

the determinants of the CDS are in exponential form. Therefore, the credit and

liquidity determinants of the CDS can be expressed as logCDS = log λ+ log θ. We

consider a structural model described by Leland and Toft (1996) to estimate the

credit component λt. Leland and Toft (1996) model firms with debts of different

maturities, which leads more naturally to a complete term structure of CDS spreads.

We adapt the calibration steps described in Forte (2011) to extract the credit and

liquidity components. Forte (2011) uses both CDS and stock information (whereas

the classical Merton (1974) model relies solely on stock information) and, thus,

delivers more robust estimates of CDS spreads.

Forte (2011), however, does not separate the CDS spread into the credit and liq-

uidity components because that would involve a joint estimation of the recovery rate,

and these three pieces of information are generally not jointly identifiable. Here, we
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benefit from having recovery rate information provided in the Markit database, and

this allows us to separate the CDS spread into the credit and liquidity components.

To achieve this separation, first we calibrate the λt parameter to the reported recov-

ery rate. We then derive the θt parameter from the CDS spread conditional on the

estimated value of λt. Note that θt may contain not only the liquidity component

but also all other model mis-specification errors. However, we provide evidence in

Section 3.6.1 that θt is indeed related to liquidity.

Calibration Procedure

First, the firm’s asset dynamics are assumed to follow a geometric Brownian motion.

According to Leland and Toft (1996), the value of debt with maturity τ , given the

firm’s asset value Vt, is

d(Vt, τ) =
c(τ)

r
+

{
e−rτ [k(τ)− c(τ)

r
][1− Ft(τ)]

}
+

{
[R(τ)VB −

c(τ)

r
]Gt(τ)

}
(3.11)

where c(τ) is the bond coupon payment, k(τ) is the bond principle, r is the risk-free

rate, VB is the default barrier, R(τ) is the recovery rate in the case of default, 1−F (τ)

is the probability in the case of the firm’s survival and G(τ) is the probability in

the case of default.6 Intuitively, the debt value in Equation (3.11) consists of three

terms; c(τ)/r is the present coupon value. The term in the first set of curly brackets

expresses the present bond value if default does not occur, and the term in the

second set of curly brackets expresses the present bond value in the case of default.

Since a firm may have bonds with different times to maturity, the total debt value

of the firm is the summation of all outstanding debts:

D(Vt) =
N∑
i=1

d(Vt, τi). (3.12)

6See Leland and Toft (1996) for the detailed discussion. The expressions of F (τ) and G(τ) are
provided in Appendix 3.A.
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In Equation (3.11), R(τ)VB is the residual value of a firm, or default barrier, in

the case of default. We can relate CDS information to the default barrier:

R(τ)VB = (1− α)βk(τ) (3.13)

where α is the bankruptcy cost and β is the default point expressed as a percentage

of the face value of debt, k(τ). We follow the argument in Forte (2011) and set

(1 − α)β as the recovery rate in the case of default. Since the Markit database

provides the market recovery rate, β is calculated as β = R
1−α , with α being set

equal to 0.3 (following the suggestion of Leland (2004)). With the new default

barrier, d(Vt, τ) can be re-expressed as

d(Vt, τ) =
c(τ)

r
+ e−rτ [k(τ)− c(τ)

r
][1− Ft(τ)]

+ [(1− α)βk(τ)− c(τ)

r
]Gt(τ). (3.14)

Therefore, the bond yield for τ -year debt is

y(Vt, τ) =
c(τ)

d(Vt, τ)
(3.15)

and the implied credit spread, λt, is

λt = y(Vt, τ)− rt. (3.16)

Following Forte (2011), we use λt as the credit component of the CDS spread.

We also need asset price Vt to calculate Ft(τ) and Gt(τ) in Equation (3.14).

Unfortunately, Vt is unobservable in practice, and has to be calibrated using equity.

We use the firm’s capital structure to obtain the implicit asset value. We denote

the equity value by S(Vt), and the firm’s capital structure satisfies

Vt = S(Vt) +D(Vt) +BC(Vt) (3.17)

S(Vt) = Vt −D(Vt)−BC(Vt) (3.18)
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where BC(Vt) represents the bankruptcy cost, defined as D(Vt|α = 0) − D(Vt),

according to Forte (2011). Therefore, the firm’s equity value is

S(Vt) = Vt −D(Vt|α = 0) (3.19)

We first use Equation (3.19) to calibrate Vt to the observed stock price St, and

then use the calibrated Vt to calculate the bond yield y(Vt, τ) and credit component

λt.

Given the credit component λt, the liquidity component θt is obtained by mini-

mizing the mean square error using Equation (3.10):

argmin
θ

1

N

N∑
i=1

[logCDSti − log λti − log θ]2. (3.20)

We use a rolling-window estimation for the liquidity component θ in order to reduce

the noise in the market-quoted CDS spreads. Equation (3.20) and θ are estimated

using the past 12-month daily data. We use calibrated θ and the 1-year λ of the

individual firms to compile the systematic credit and illiquidity factors.

3.4 Empirical Framework

Recall in Section 3.3.1, we show that asset price (CDS spread in our case) depends

on its own and peer group fundamental values and illiquidity. In the case of CDS,

we relate fundamental value to credit risk. Moreover, we argue that CDS spread

will be driven by factors that are firm-specific as well as systematic. Next, we

separate the CDS spread into the credit and liquidity components according to

Section 3.3.2. Then we compile the aggregate systematic credit and liquidity risk

factors, each time excluding the referenced firm that is being tested. As a result, four

types of factors are tested in the empirical section: firm-specific credit and liquidity

factors, and systematic credit and liquidity factors. For the systematic factors, we

compile market-wide and industry-based measures and find they are both important
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in driving CDS spreads.

In the empirical test, we examine the extent to which each of these factors affects

CDS spreads by running a panel regression of quarterly changes in CDS spreads of

non-financial firms.7

3.4.1 Firm-specific Credit Risk and Illiquidity

As discussed, to avoid spurious results, CDSs’ calibrated components cannot be

used directly as firm-specific credit and illiquidity factors. Hence, equity market

information is used to form firm-specific factors instead. In particular, the firm’s

distance-to-default (DTD) from Merton (1974) is used to measure individual credit

risk.8 DTD is defined as

DTD =
log(V/D) + (µV − σ2

V /2)T ]

σV
√
T

(3.21)

where V is the firm’s asset value, which follows a geometric Brownian motion, T and

D are, respectively, the time to maturity and value of the outstanding debt, and µV

and σV are, respectively, the mean and volatility of the return on the asset. DTD

reflects the required change in the firm’s asset value, expressed as the number of

standard deviations, in order to trigger a default. In this chapter, a 1-year distance-

to-default is estimated using the past 12 months of daily equity data.9 We expect

DTD to be negatively related to CDS spreads.

The individual illiquidity of a CDS contract will be reflected in its bid-ask spread

7As a robustness check we perform the analysis twice, once based on monthly changes and
once for financial firms (80 financial firms in our sample), and find that the results do not change
qualitatively. We treat financial and non-financial firms differently for two reasons. First, financial
firms have very different debt structures than non-financial firms. Second, the liquidity extraction
procedure discussed later can be used only for non-financial firms’ CDSs. These results are available
on request.

8Despite the presence of many other measures for credit quality, e.g., Moody’s credit rating,
Altman Z-score, physical PDs estimated from a reduced-form model such that in Duan, Sun, and
Wang (2012), DTD remains one of the most widely used measures. We do not use a PD-based
credit quality indicator, such as that in Campbell, Hilscher, and Szilagyi (2008), as we do not
have information on real defaults. We do not feel comfortable in applying Campbell et al.’s results
directly, since their sample ends in 2003, whereas our sample period is from 2002 to 2011, which
includes a crisis-induced structural change in 2007.

9For the steps for estimation please see, for example, (Vassalou and Xing 2004) for the iteration
method and Duan (1994) and Duan (2000) for the likelihood method, among others.
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(Corò, Dufour, and Varotto 2013). Unfortunately, CDS bid-ask spread information

is not available in our database. Das and Hanouna (2009) show that equity market

liquidity (measured by the Amihud (2002) stock illiquidity measure) is linked to

CDS market liquidity. Das and Hanouna (2009) argue that the seller of a CDS

hedges credit risk by taking a short equity position, viz. selling stocks or buying put

options. The implementation of hedging, including changes in the hedge ration and

the closeout of the hedging position, results in hedging cost. As a result, liquidity in

equity markets should have an impact on CDS spreads. Following their argument,

we use the Amihud (2002) stock-based illiquidity measure below, to proxy for CDS

illiquidity:

Amihud =
1

Days

∑
Days

|Returnt|
Pricet × V olumet

× 106 (3.22)

where Return is the daily stock return, Price is the daily closing share price, and

V olume is the number of shares traded on that day. Amihud captures the underlying

stock illiquidity and we calculate the Amihud illiquidity measure for each stock using

the past 5 months of daily data. We expect the illiquidity measure to be positively

related to CDS spreads.

We recognize that the illiquidity’s impact on asset prices may be asymmetric.10

To control for potential asymmetry, we also consider the Amihud measure condi-

tional on the sign of its changes:

∆ logAmihud+
it = ∆ logAmihudit × I{∆ logAmihudit≥0} (3.23)

∆ logAmihud−it = ∆ logAmihudit × I{∆ logAmihudit≤0}.

3.4.2 Systematic Credit and Liquidity Factors

As mentioned in Section 3.3.2, we use a structural model to decompose individual

CDSs into the individual credit (λit) and liquidity (θit) components. To avoid spuri-

ous results in the panel regression, we exclude the referenced firm when calculating

10See Brennan, Huh, and Subrahmanyam (2013).
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the industry average. Similarly, we exclude the referenced industry when calculat-

ing the market average. Therefore, the industry CDS liquidity risk factor at time t,

denoted as log θINDit , is the average of log θit within the same industry. log θMKT
it is

the average of log θit excluding firms from the same industry:

log θINDit ≡ 1

Nk − 1

∑
j 6=i,j∈k,

log θjt (3.24)

log θMKT
it ≡ 1

N −Nk

∑
j 6=i,j 6∈k

log θjt. (3.25)

Similarly, the industry CDS credit risk factor (denoted as log λINDit ), and market

CDS credit risk factor (denoted as log λMKT
it ) are obtained by excluding the corre-

sponding referenced firm(s).

3.4.3 Panel Regression

The final panel regression specification has the following form:

∆ logCDSit = β0 + β+
1 ∆ logAmihud+

it (3.26)

+ β−1 ∆ logAmihud−it

+ β2∆DTDit

+ βL3 ∆ log θINDit + βC3 ∆ log λINDit

+ βL4 ∆ log θMKT
it + βC4 ∆ log λMKT

it + εit.

The changes in variables are used to obtain stationary time-series variables. We

expect both default and liquidity risks to drive the changes in CDS spreads. The

evidence of both liquidity and default risk to drive (quarterly) CDS changes can

also be referred to other literature such as Tang and Yan (2007), Das and Hanouna

(2009), and Corò, Dufour, and Varotto (2013).
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3.5 Data

We obtain daily CDS spreads from the Markit database and the corresponding equity

information from Bloomberg. The Markit database provides daily information of

CDS contracts with maturities from 6 months to 30 years. For 2011, our Markit

database provides global, corporate, municipal, and sovereign single-name CDS data

of approximately 2,650 individual entities and 3,000 entity-tiers. It contains the

average of daily CDS spreads reported by different contributors, underlying debt

seniority and the associated recovery rates. Our sample covers U.S. firms from

January 2001 to May 2012. Further description of the Markit data can be found in

Appendix 3.B.

CDS spreads for the same firm may have different quoted prices due to the con-

tract tier, which is related to the payback priority of the underlying bond. For

example, secured debt has a higher priority in the payback order than subordinate

debt. In our sample, there are in total 2.7 million data points of individual CDS

quotes. Most of these data points belong to Senior Unsecured Debt (SNRFOR),

accounting for 75% of all data points. Subordinated Debt (SUBLT) accounts for

20% of the data points. Junior Subordinated Debt (JRSUBUT2) and Preference

Shares (PREFT1) account for only 0.02% and less than 0.01%, respectively, of total

data points. Table 3.1 reports the proportion of CDS quotes for the different tiers.

We use CDS quotes for senior unsecured debt. If this senior tier is not available for

a given firm, the subordinated debt is chosen instead. The descriptive statistics of

our initial sample are reported in Table 3.2.

Table 3.2 shows that the 10-year CDS spreads have the highest mean of 232.51

basis points (bp), while 6-month CDS spreads have the lowest mean of 163.63 bp.

The average recovery rate is 40% across all maturities. Being particularly interested

in the impact of liquidity risk on prices, we choose to use 1-year CDS contracts in

this chapter instead of the more liquid 5-year CDSs. 21% of the observations for the

1-year contracts are missing in the database.11 For the 1-year CDS contracts, the

11We drop the year 2001 in our sample, as our Markit database covers fewer than 100 companies
in that year.
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mean spread is 176.20 bp, and its standard deviation is 688.62 bp. The maximum

spread is 40,175.46 bp while the minimum spread is 0.81 bp.12

Table 3.3 reports the summary statistics of the daily changes in 1-year CDS

spreads. The average change in CDS spread is rather small (0.21 bp) but the change

is comparatively volatile (the standard deviation is 100.92 bp). Interestingly, we

observe some extreme daily changes in CDS spreads (larger than 10,000 bp). These

extreme changes indicate that these CDS spreads were stale and remained at a low

level, but they were traded again to reflect the possible immediate credit event,

leading to a dramatic jump in CDS spreads. Likewise, the CDS spreads might fall

back to the previous price level if the event is resolved.

The market value of equity and book values of short- and long-term debt for

the firms in our sample are retrieved from Bloomberg. Their descriptive statistics

are reported in Table 3.4. Our sample includes 436 individual firms, for which we

have a complete set of data as required for the analysis. Table 3.5 reports firms’

industry sectors as categorized in Bloomberg. Among the 436 firms in our sample,

“Financial” is the largest group with 80 firms. “Consumer, Cyclical” is the second

largest with 74 firms. The smallest group is “Technology” with 18 firms. We drop

financial firms in our main analyses; therefore, there are 356 firms remaining in our

final sample.

We need the following data to estimate the credit and liquidity components. We

use daily CDS spreads (CDSt) and their corresponding recovery rates (Rt) from

the Markit database and daily stock information obtained from Bloomberg. We use

stock market capitalization as each firm’s equity value. Short-term liability (STLt)

and long-term liability (LTLt) are used to decide the firm’s solvency ability.13 The

firm’s interest expenses (IEt) and cash dividend (CDt) are used to calculate the

payout rate. We choose the daily 12-month cumulated values for interest expenses

12The maximum spread was reached just before Smurfit-Stone Container defaulted. The com-
pany was ranked as one of the largest forest, paper, and packaging companies in the world. Its
CDS spread was highest on January 22, 2009, and the company filed for bankruptcy on January
27, 2009. The large value of CDSs is due to the procedure used to annualize CDS spreads.

13The corresponding field names in Bloomberg are “BS CUR LIAB” (short-term liability) and
“BS LT BORROW”(long-term liability).
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Table 3.1: CDS Tier Ratio

This table reports the percentages of CDS quotes in different tier con-
tracts in our Markit database. SNRFOR is Senior Unsecured Debt,
SUBLT is Subordinated Debt, JRSUBUT2 is Junior Subordinated Debt,
and PREFT1 denotes Preference Shares. The sample period is from Jan-
uary 2001 to May 2012.

Tier SNRFOR SUBLT2 SECDOM JRSUBUT2 PREFT1
Ratio 74.61% 20.01% 5.35% 0.02% ≤ 0.01%

and cash dividends.14

14The corresponding field names are “Trail 12M INT EXP” for interest expenses and
“Trail 12M COM DVD” for cash dividends.
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Table 3.2: CDS Spreads Descriptive Statistics

This table reports the descriptive statistics of daily CDS spreads (in basis points) from our sample of 436 firms (356 non-financial
and 80 financial firms) over the period from January 2002 to December 2011. It contains sample averages, standard deviations (Std),
and maximum and minimum values. “Missing Rate (%)” indicates the percentage of missing data points. The last row reports the
total number of observations for a given maturity. “R. Rate” stands for reported recovery rate.

CDS spread (bp) R. Rate
6m 1y 2y 3y 4y 5y 7y 10y (in %)

Mean 163.63 176.20 186.53 204.15 227.01 233.08 230.93 232.51 40.02
Median 30.50 40.88 55.15 72.59 92.73 103.48 107.27 115.89 40.00
Std 762.28 688.62 597.33 564.91 546.86 510.48 499.83 477.80 5.91
Max 48,355.65 40,175.46 29,701.04 33,899.01 21,782.97 25,340.71 24,222.70 23,791.63 80.75
Min 0.58 0.81 0.79 1.28 1.45 1.00 3.27 4.34 0.50
Missing Rate (%) 42.41 21.00 22.90 16.21 42.99 9.52 17.87 19.60 1.31
# of Obs 617,562 847,133 826,767 898,531 611,363 970,260 880,696 862,142 1,058,357
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Table 3.3: Descriptive Statistics for Daily Changes of 1-year CDS Spreads

This table reports the descriptive statistics of daily changes of 1-year
CDS spreads (in basis points) from our sample over the period from
January 2002 to December 2011. It contains sample average, standard
deviations (Std), maximum and minimum values. “Missing Rate (%)”
indicates the percentage of missing data points.

∆ Spread (bp)
Mean 0.21
Median 0.00
Std 100.92
Max 21,955.91
Min -29,294.46
Missing Rate (%) 22
# of Obs 838,874

To implement Equation (3.14), we assume that all firms have 10 different matu-

rities of bonds, ranging from 1 to 10 years (following Forte (2011)). The nominal

value of total debt is equal to STLt + LTLt. For the individual nominal value

of debt (kt(τ)), the short-term debt (ie. kt(1)) is set equal to STLt, while the

long-term debts (i.e. kt(τ), τ = 2, ..., 10) are equal to 1
9
× LTLt. Coupon (ct(τ))

of the different bonds is set equal to the proportion of kt(τ) to total debt, that is

ct(τ) = kt(τ)
STLt+LTLt

× IEt.

The payout rate (δt in Equation (3.30)) is calculated as IEt+CDt

Vt
. The firm’s asset

value (Vt) is needed to determine the payout rate. We apply an iterative procedure

to Equation (3.19) to calibrate the firm’s asset value as well as its asset volatility in

the spirit of Vassalou and Xing (2004).

3.6 Empirical Results

In Section 3.6.1, we analyze the market liquidity component extracted from the

CDS spreads. Next, we examine the impact of systematic and firm-specific credit

and liquidity factors on CDS spreads in a panel regression. We then report the main

results for the changes in CDS spreads without separating the systematic credit and

liquidity factors for comparison. Finally, we perform an out-of-sample test of the

cross-sectional prediction power of our model. All the analyses reported here are
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Table 3.4: Firm Equity and Debt Values Descriptive Statistics

This table reports the descriptive statistics of firms’ daily data retrieved
from Bloomberg for our sample of 436 firms (356 non-financial and 80
financial firms) over the period from 2002 to 2011. It includes total
market equity value, short-term debt (S-T Debt) and long-term debt (L-
T Debt). “Missing Rate (%)” indicates the percentage of missing daily
observations.

Values in $Mn
Equity Value S-T Debt L-T Debt

Mean 8,945.77 4,503.06 5,300.48
Median 3,026.38 97.25 1,142.89
Std 22,232.12 35,418.49 20,529.26
Max 527,172.20 831,211.00 439,274.00
Min 0.00 0.00 0.00
Missing Rate (%) 19 6 6
# of Obs 2,838,420 3,314,565 3,320,307

Table 3.5: Firm Sector Distribution

This table reports the number of firms in our sample categorized in each
of the nine sectors as reported in Bloomberg.

Firm Sector # of Firms
Basic Materials 31
Communications 32
Consumer, Cyclical 74
Consumer, Non-cyclical 68
Energy 45
Financial 80
Industrial 58
Technology 18
Utilities 30
Total 436
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based on quarterly changes. In addition, the results for monthly changes in variables

are consistent with the results for quarterly changes. Quarterly results are reported

because they have higher goodness-to-fit.

3.6.1 CDS Market Illiquidity

In this section, we examine the extent to which the liquidity component θ extracted

from the CDS spread is indeed associated with liquidity. We obtain individual CDS

liquidity parameters (θit) as discussed in Section 3.3.2, and then average log θit to

obtain an overall market liquidity measure of log θMKT
t .

Figure 3.1i plots the time series of quarterly changes of CDS market illiquidity

θMKT
t . Higher θ indicates less liquidity. In the year 2002, ∆ log θMKT

t fluctuates

considerably. This may be partially due to the small sample size in the early years.

From 2003 to 2007, ∆ log θMKT
t is quite stable and, most of the time, negative as CDS

liquidity improves steadily over time. However, in 2007–2009, ∆ log θMKT
t increases

substantially, reflecting the deterioration of the liquidity during the financial crisis.

After the financial crisis, ∆ log θMKT
t recovers but remains more volatile than in the

pre-crisis period.

Figure 3.1ii plots the ratio, log θMKT
t / logCDSMKT

t . It indicates that the relative

importance of the liquidity factor generally increases over time until before the start

of financial crisis in 2007. During the crisis, the credit component dominates and

the ratio drops from 35% to below zero in 2009. The ratio becomes negative due

to several CDSs with spreads of over 10,000 bps. The liquidity component gains

relative importance again after the crisis.

Figure 3.1iii plots the time series of quarterly changes in CDS market credit

component λMKT
t . We find the change in the credit component is more random

than the change in the CDS liquidity component, and it may have become slightly

more volatile after the financial crisis. But the CDS credit component does not

appear to have experienced structural change over time.
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We want to show that the decomposition is meaningful and that the liquidity

factor, log θt =
∑N

i=1 log θit/N , does contain liquidity information, and is not merely

a collection of random errors. To perform this sanity check, we choose the determi-

nants of liquidity (viz. V IX, 30DHistV ol, logAmihud, andBaaMinusAaa) as sug-

gested in Bedendo, Cathcart, and El-Jahel (2011). In addition, as the liquidity com-

ponent of CDS spreads may be related to equity correlation risk (StockPairCorr),

we include the average pairwise correlation of the underlying stock returns as well.

The difference between Baa and Aaa yields provides information regarding overall

CDS market illiquidity. Hu, Pan, and Wang (2013) argue that market illiquidity

can be of two kinds—‘local’ market illiquidity and ‘overall’ market illiquidity. Local

illiquidity, which may be proxied by individual asset bid-ask spread, is related to

the trading constraints of market makers; overall illiquidity, which may be proxied

by the spread of Baa and Aaa bond yields, reflects the general level of arbitrage

capital. Ideally, we should include CDS bid-ask spreads; however, this information

is not available in our CDS sample. Instead we use the Amihud (2002) measure

to proxy for individual CDS illiquidity, and use the average of individual stock log-

Amihud as a global illiquidity systematic factor. VIX is known as the investors’ “fear

gauge” in the stock market. High volatility and high uncertainty are associated with

illiquidity. Correlation of stock returns is proxy for the correlation risk. Contagion

and correlation risk tend to increase when the market is on the downside and highly

illiquid.
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Figure 3.1: Changes in Market CDS Credit and Liquidity Components, and Ratio of Illiquidity to Spread

Note: log θMKT
t =

∑
i log θit/N ; logCDSMKT

t =
∑

i logCDSit/N ; log λMKT
t =

∑
i log λit/N ; and N is the total number of firms in

our CDS sample at time t.

(i) Changes in CDS Market Illiquidity, ∆ log θMKT
t

(ii) Ratio of log θMKT
t to logCDSMKT

t

(iii) Changes in CDS Market Credit Component, ∆ log λMKT
t
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Figure 3.2 provides time-series plots for the liquidity determinants used in the

sanity test. We find all determinants share a similar trend. In particular, all variables

responded to the financial crisis from 2007 to 2009.

Figure 3.3 provides the scatter plots for all liquidity determinants against our

market liquidity component ∆ log θMKT
t . The strongest association is noted with

the cross-sectional average Amihud stock illiquidity measure. Interestingly, we ob-

serve a non-linear relationship between ∆ log θMKT
t and the other four liquidity de-

terminants in the plots. A positive association is observed only when ∆ log θMKT
t is

positive, implying an asymmetric association.

Finally, we estimate the following regression specification based on quarterly

changes:

∆ log θMKT
t =β0 + β1∆ logAmihudt + β2∆V IXt + β3∆BaaMinusAaa

+ β4∆30DHistV olt + β5∆StockPairCorrt + εt (3.27)

where logAmihudt is the average of individual stock log-Amihud (2002) measures,

V IXt is the CBOE VIX spot index, BaaMinusAaat is the difference between

Moody’s Baa and Aaa yields, 30DHistV olt is the average of individual firms’ 30-day

historical stock volatility, and StockPairCorrt is the average of pairwise correlation

on stock returns for all firms in our sample.

Panel A of Table 3.6 reports the correlation among ∆ log θMKT
t and the five

illiquidity determinants. Consistent with the previous analysis, ∆ log θMKT
t has a

positive correlation with all the illiquidity determinants. The highest correlation

appears in logAmihud, the aggregate stock illiquidity, with a correlation coeffi-

cient of 0.52. In addition, ∆ log θMKT
t is also correlated with BaaMinusAaa and

30DHistV ol (0.34 and 0.36, respectively) whereas ∆ log θMKT
t is least correlated

with StockPairCorr (0.18).

Panel B reports the estimation results. In Column (1), only the loading of Ami-

hud measure is significant at the 1% level. The adjusted R-square is 25%. The
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Figure 3.2: Time Series Plots of Sanity Test Variables

This figure presents the time series of the CDS illiquidity θ and five mar-
ket stress variables used in Equation (3.27). The sample period is from
2002 to 2011. ∆ represents the quarterly changes in the variables. log θ
is the market average of individual log-liquidity components obtained by
our CDS credit and liquidity decomposition. logAmihud is the aver-
age of individual stock log-Amihud measures, V IX is the CBOE VIX
spot index, BaaMinusAaa is the difference between the Moody’s Baa
and Aaa yields, 30DHistV ol is the average of individual firms’ 30-day
historical stock volatility, and StockPairCorr is the average of pairwise
correlation on stock returns for all firms in our sample.

(i) ∆ log θ (ii) ∆ logAmihud

(iii) ∆V IX (iv) ∆BaaNinusAaa

(v) ∆30DHistV ol (vi) ∆StockPairCorr
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Figure 3.3: Scatter Plots of Liquidity Determinants

This figure presents the scatter plots of five market stress variables used
in Equation (3.27) to regress against CDS market liquidity components.
The sample period is from 2002 to 2011. ∆ represents the quarterly
changes in the variables. log θ is the market average of individual log-
liquidity components obtained by our CDS credit and liquidity decom-
position. logAmihud is the average of individual stock log-Amihud
measures, V IX is the CBOE VIX spot index, BaaMinusAaa is the
difference between the Moody’s Baa and Aaa yields, 30DHistV ol is
the average of individual firms’ 30-day historical stock volatility, and
StockPairCorr is the average of pairwise correlation on stock returns
for all firms in our sample.
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Table 3.6: CDS Market Illiquidity Component

This table reports the regression results for the determinants of the quar-
terly changes in the logarithm of the average liquidity component ∆ log θ
over a period from 2002 to 2011. logAmihud is the log-Amihud illiquid-
ity measure; V IX is VIX index; BaaMinusAaa is the difference between
the Moody’s Baa and Moody’s Aaa bond yields; 30DHistV ol is 30-day
historical stock volatility; StockPairCorr is the pairwise stock correla-
tion over the 12-month horizon; D2007−2011 is dummy variable taking a
value of 1 between 2007 and 2011. In the asymmetric analysis, we flip
the sign of negative ∆ log θMKT to be positive in order to interpret the
results. when Panel A reports correlation and Panels B and C report
regression results.

Panel A: Correlation

(1) (2) (3) (4) (5)
(1) ∆ log θMKT

(2) ∆ logAmihud 0.52
(3) ∆V IX 0.23 0.40
(4) ∆BaaMinusAaa 0.34 0.64 0.61
(5) ∆30DHistV ol 0.36 0.62 0.67 0.87
(6) ∆StockPairCorr 0.18 0.16 0.14 0.34 0.29

Panel B: Regression Results

(1) (2)
Coef. t-stat p-value Coef. t-stat p-value

Const -0.02 -1.21 0.23 -0.07 -3.30 0.00
∆ logAmihud 0.50 4.68 0.00 0.49 4.76 0.00
∆V IX 0.00 0.03 0.98 0.00 -0.16 0.87
∆BaaMinusAaa -0.06 -0.64 0.52 -0.06 -0.68 0.50
∆30DHistV ol 0.15 0.64 0.52 0.17 0.74 0.46
∆StockPairCorr 0.18 1.25 0.22 0.16 1.18 0.24
D2007−2011 0.11 3.37 0.00
R-square 0.28 0.35
R-adjust 0.25 0.31

Panel C: Asymmetric Effect

∆ log θMKT ≥ 0 ∆ log θMTK < 0
Coef. t-stat p-value Coef. t-stat p-value

Const. 0.27 10.72 0.00 0.12 11.34 0.00
∆ logAmihud -0.42 -3.09 0.00 -0.13 -1.59 0.12
∆V IX 0.00 1.88 0.07 -0.00 -0.31 0.76
∆BaaMinusAaa 0.18 2.26 0.03 0.09 0.92 0.36
∆30DHistV ol -0.11 -0.64 0.53 -0.15 -0.66 0.51
∆StockPairCorr 0.68 3.16 0.00 0.11 1.22 0.23
R-square 0.61 0.09
R-adjust 0.54 0.03
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result does not change when an additional dummy variable for the post-crisis pe-

riod is included (Column 2). The loading on the dummy variable is positive and

significant, supporting potential structural break after the financial crisis, but the

Amihud measure remains significant at the 1% level.

Since we observe non-linear association in our previous scatter plot, we separate

the CDS market illiquidity into positive and negative changes and repeat the same

regression in Equation (3.27). Panel C reports the regression results. Interestingly,

we find that all the liquidity determinants, except for 30DHistV ol, become signifi-

cant at least at the 10% level when we include only the positive changes in log θMKT .

This indicates that CDS market illiquidity is related to the liquidity determinants

when the CDS market becomes more illiquid. And the R-square improves dramat-

ically to 54%. On the contrary, we do not find significance in the case of negative

changes in log θMKT
t . This finding provides evidence of asymmetric association be-

tween CDS market illiquidity and liquidity determinants. Since we choose liquidity

determinants from the bond and equity markets, the results suggest a possible liq-

uidity contagion among these and CDS markets.

The observed association in Panel C also signals the asymmetric impact on in-

vestors’ risk aversion. As one market becomes more illiquid, investors becomes more

cautious regarding the risks in other related markets, and are more likely to respond

to the uncertainty. The same does not apply when the market becomes more liquid.

Since we observe a sign flip in the loading of Amihud measure due to multi-

collinearity in our chosen factors, we rerun the regression by using principal com-

ponent analysis (PCA) and choose only the first principal component (PC) to

check our results. We include all determinants (logAmihud, V IX, BaaMinusAaa,

30DHistV ol, and StockPairCorr) to construct our PC, since all factors are directly

or indirectly linked to liquidity shocks. The first PC can be still considered as a

liquidity component. Table 3.7 reports the PCA results. The results show an asym-

metric effect on CDS market liquidity components. Consistent with our previous

results, the R-square improves substantially when the CDS market becomes illiquid

whereas the explanatory power is rather marginal when the CDS market becomes

89



liquid. In addition, there is a positive association between CDS market liquidity

components and the first principal component for the set of liquidity determinants.
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Table 3.7: CDS Market Illiquidity Component (PCA)

This table reports the principal component analysis (PCA) results for the determinants of the quarterly changes in the logarithm
of the average liquidity component ∆ log θ over a period from 2002 to 2011. “Explain” reports the level of the explained variation
by the first component. In the asymmetric analysis, we flip the sign of negative ∆ log θMKT to be positive in order to interpret the
results.

All Sample ∆ log θMKT ≥ 0 ∆ log θMKT < 0
Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value

Const. -0.03 -1.55 0.12 0.23 9.67 0.00 0.13 14.17 0.00
1st Comp. 0.05 5.06 0.00 0.05 4.24 0.00 0.01 1.90 0.06
R-square 0.18 0.36 0.04
R-adjust 0.18 0.34 0.03
Explain 0.61 0.73 0.54
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3.6.2 Panel Regression

In this section, we examine the impact of industry- and market-wide credit and

liquidity systematic factors. Table 3.8 reports the correlation coefficients for all the

variables in Panel A and the panel regression (Equation (3.26)) results in Panel B.

From Panel A, it is clear that industry illiquidity and market illiquidity are highly

correlated. Similarly, industry credit and market credit are also highly correlated. So

for the interpretation of results, we will treat industry and market factors as almost

identical. Next, we note that credit and liquidity are negatively correlated, and

such a negative correlation is slightly stronger at the firm-specific level. With these

relationships in the background, it is clear from Panel A that the factors that drive

firms’ CDS spreads are, in the decreasing order of explanatory power, systematic

credit risk (measured by λMKT or λIND), firm-specific credit risk (measured by

DTD), and increase in firm-specific illiquidity (measured by Amihud+).15

The full and sub-sample panel regression results in Panel B support the above

findings. The overall R2 of 40% is largely due to the second sub-period, which

includes the financial crisis. All the factors except for ∆ logAmihud− are highly

significant. The loadings on ∆ log θIND and ∆ log λIND are 0.31 and 0.36 respec-

tively; the loadings on ∆ log θMKT and ∆ log λMKT are 0.58 and 0.51 respectively.

These results indicate that indeed both systematic credit and liquidity risks are

priced in CDS spreads, and they have comparable impacts on quarterly changes in

CDS spreads. Similarly, firm-specific credit and liquidity affect CDS spreads. How-

ever, the firm-specific liquidity results are driven by an increase in illiquidity, but

not when the liquidity improves.

15We also test whether there is any asymmetry in our CDS-based liquidity component, θ. We
test ∆ log θIND and ∆ log θMKT separated by their signs. We do not find any asymmetry in this
case as the loadings for the sign-separated factors are all significant. The results are available on
request.
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Table 3.8: Systematic and Firm-specific Credit and Illiquidity Impact on CDS Spreads

This table reports correlation coefficients across and regression results for quarterly changes in individual log-CDS spreads
(∆ logCDS) for different sample periods. ∆ logAmihud+ is a quarterly change in the log-Amihud illiquidity measure, if positive;
∆ logAmihud− is a quarterly change in the log-Amihud illiquidity measure, if negative; DTD is the individual firm’s distance-to-
default calibrated using the Merton (1974) model; log θ is the logarithm of a CDS liquidity component; and log λ is the logarithm of
a CDS credit component. IND stands for the industry-wide average and MKT stands for market-wide average. Panel A reports
correlations and Panel B reports panel regression results.

Panel A: Correlation

2002–2011 2002–2006 2007–2011
(1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7)

(1) ∆ logCDS (1) (1)
(2) ∆ logAmihud+ 0.32 (2) 0.13 (2) 0.35
(3) ∆ logAmihud− 0.20 0.35 (3) 0.09 0.34 (3) 0.26 0.37
(4) ∆DTD -0.35 -0.35 -0.27 (4) -0.21 -0.15 -0.17 (4) -0.40 -0.40 -0.31
(5) ∆ log θIND 0.27 0.39 0.19 -0.35 (5) 0.05 0.08 0.11 -0.13 (5) 0.29 0.41 0.22 -0.41
(6) ∆ log λIND 0.42 0.13 0.12 -0.16 -0.25 (6) 0.36 -0.01 -0.02 -0.05 -0.22 (6) 0.45 0.15 0.19 -0.20 -0.30
(7) ∆ log θMKT 0.30 0.42 0.21 -0.38 0.80 -0.18 (7) 0.05 0.18 0.17 -0.18 -0.01 -0.09 (7) 0.31 0.41 0.24 -0.44 0.91 -0.24
(8) ∆ log λMKT 0.44 0.15 0.14 -0.18 -0.17 0.81 -0.21 (8) 0.40 -0.02 -0.02 -0.08 -0.05 0.68 -0.17 (8) 0.45 0.18 0.21 -0.21 -0.24 0.86 -0.27

Panel B: Panel Regression

2002–2011 2002–2006 2007–2011
Coef. t-stat p-value Coef. t-stat p-value Coef. t-stat p-value

Const -0.02 -4.41 0.00 -0.08 -8.97 0.00 0.00 -0.18 0.86
∆ logAmihud+ 0.17 8.95 0.00 0.36 8.11 0.00 0.11 5.33 0.00
∆ logAmihud− 0.03 1.74 0.08 0.05 1.84 0.07 0.02 0.68 0.50
∆DTD -0.03 -15.47 0.00 -0.04 -12.73 0.00 -0.03 -10.03 0.00
∆ log θIND 0.31 13.84 0.00 0.21 6.87 0.00 0.34 8.93 0.00
∆ log λIND 0.36 23.03 0.00 0.27 12.85 0.00 0.42 18.96 0.00
∆ log θMKT 0.58 22.51 0.00 0.36 6.75 0.00 0.58 13.98 0.00
∆ log λMKT 0.51 28.89 0.00 0.51 19.24 0.00 0.47 19.23 0.00
R-square 0.40 0.23 0.44
R-adjust 0.40 0.23 0.44
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3.6.3 Out-of-Sample Prediction

One potential application of our model is to approximate (changes in) CDS spreads

for firms that do not have (actively) traded CDSs. One can choose, for example, the

last CDS quote available or the industry/rating average CDS as the initial value as

suggested by Basel III, and then apply our model to refine the spread estimate.

We use an out-of-sample test for cross-sectional predictions and consider two

benchmark cases: (i) a simple average CDS spread, where ȳi = 1
T

∑
t yit is the

average of past CDS changes, and (ii) CDS spread predicted using Merton’s DTD,

where ȳ now is the fitted value of the regression below when only the firm’s DTD is

used as a factor:

∆ logCDSit = β0 + β1∆DTDit + εit. (3.28)

The out-of-sample performance of the two benchmark cases is compared with the

complete model specification in Equation (3.21).

Following Welch and Goyal (2008), our adjusted out-of-sample R-square is defined

as:

R
2

OOS = 1−
∑

i

∑
t(yit − ŷit)2 / DFA∑

i

∑
t(yit − ȳi)2 / DFN

(3.29)

where yit is the actual change in log-CDS spreads, ŷit is the predicted change based

on our model with parameters estimated using a training sub-sample, and DF is

the degree of freedom for the corresponding hypothesis. The null hypothesis here is

that our proposed model (ŷ) does not perform better than that benchmark (ȳ).

In addition, we consider the rolling-window analysis. The initial sample period

is from January 2002 to January 2005, and then we roll the whole sample period

forward to the next month. Here, we consider two out-of-sample analyses. In the

first analysis, we consider a general time-series out-of-sample prediction. We use

the entire cross-sectional sample as the training sample and test their time-series

predictability in one quarter. In the second analysis, we turn our interest to the
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cross-sectional prediction. We randomly choose 100 firms as a test sample with the

remaining firms constituting a training sample, and perform the procedure 1,000

times. The purpose is to understand whether the traded CDSs can provide contem-

poraneous information for firms that do not have traded CDSs.

The average R
2

OOS and the descriptive statistics are reported in Table 3.9. The

results show that our model provides only good cross-sectional prediction. In the

time-series out-of-sample analysis, the average R
2

OOS is negative in both cases. It

indicates that our model cannot be used for predicting future changes in CDSs. In

the cross-sectional out-of-sample analysis, our model, however, improves the mean

square error by 27% compared with a simple average (Case 1) and by 26% when

compared with the prediction based on DTD only. It indicates that although DTD

is an important factor in explaining the changes in CDS spreads, individual stock

liquidity and systematic factors substantially improve the forecasting performance.

Overall, the out-of-sample results suggest that cross-sectionally our model produces

good predictability and stable outcomes across time, with systematic credit and

liquidity factors being especially important since the financial crisis.

3.7 Conclusion

In this chapter, we develop a simple model to explain how systematic and firm-

specific credit and liquidity factors affect asset prices. When applied to CDS spreads,

the model consists of four groups of factors: individual firms’ credit and liquidity

factors, and systematic credit and liquidity factors. We use CDSs’ calibrated com-

ponents to compile the systematic factors. But the firm-specific factors are not ob-

tained from calibration in order to avoid spurious results. They are obtained using

equity information instead. This application can resolve the potential endogeneity,

as there are substantial differences among factors. We empirically investigate the

extent to which these factors explain the quarterly changes in 1-year CDS spreads

for 356 U.S. non-financial firms over the sample period from 2002 to 2011.

Our results show that CDS spreads are driven by individual firms’ credit risk
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Table 3.9: Out-of-sample Predictability

This table reports the descriptive statistics of the adjusted out-of-sample

R-squared (R
2

OOS) for quarterly changes in CDS spreads for non-financial
firms. The initial sample period is from January 2002 to January 2005,
and then we roll the sample period forward to the next month to con-
struct a rolling-window analysis. We consider both time series and cross-
sectional predictability. In the time-series analysis, we use the entire
cross-sectional sample as the training sample and test their time-series
predictability in one quarter. In the cross-sectional analysis, we ran-
domly choose 100 firms as a testing sample and use the remaining firms
as a training sample. The procedure is performed 1,000 times. Case
1 is based on the null hypothesis that our model does not outperform
simple average prediction. Case 2 is based on the null hypothesis that
our model does not outperform the predictions based on the firm’s DTD.
The results are reported for the complete sample period from 2002 to
2011.

Time Series Cross-Sectional
Case 1 Case 2 Case 1 Case 2

Mean -56.49 -17.45 0.27 0.26
Std 21.12 2.64 0.12 0.07
Max -17.39 -12.94 0.58 0.45
Min -99.04 -42.17 -0.05 0.03

(measured by Merton’s distance-to-default), and the Amihud stock illiquidity mea-

sure. Unlike Das and Hanouna (2009), who find a monotonic relation between

changes in stock illiquidity and changes in CDS spreads, we find this happens only

when stock becomes more illiquid, and there is no significant relation if the stock

becomes more liquid. We argue that hedging demand across equity and CDS mar-

kets increases when the stock market experiences liquidity shocks, and this further

increases illiquidity premium.

Following Forte (2011) and Forte and Lovreta (2012), we split CDS spread into

its credit and liquidity components and use them to construct market and industry

credit and liquidity factors. We also find changes in the industry- and market-wide

credit and liquidity factors strongly influence the changes in CDS spreads. The

market factors, however, have a slightly stronger impact than industry factors for

non-financial CDSs. The impact is especially pronounced after the start of the

financial crisis in 2007, but is less strong in the pre-crisis period.

In our sanity test, we choose well-known liquidity determinants from bond and
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equity markets to compare with our market CDS illiquidity. We find there is a non-

linear association between our CDS illiquidity and other liquidity determinants.

Only increases in the CDS market illiquidity have a positive relationship with the

determinants whereas the negative changes in the CDS market illiquidity do not.

This finding suggests a possible liquidity contagion among these markets. As one

market becomes more illiquid, investors tend to respond to the uncertainty quickly.

But this is not the case when one market becomes more liquid.

As our model does not use individual firms’ CDS information, such as CDS bid-

ask spread, it can be used for cross-sectional prediction of CDS spreads for firms

that do not have (actively traded) CDSs. Our model reduces the mean squared error

of the out-of-sample predictions by 27% when compared with the simple average

prediction, and by 26% when compared with predictions based on firms’ distance-

to-default only.

Financial regulations, such as Basel III, stipulate that CDS spreads must be

used to produce a market estimate of the default probability of a counterparty. Our

findings challenge this approach as individual firms’ CDS spreads are driven by many

factors other than the firm’s default risk. They are significantly influenced by the

overall market credit and liquidity conditions as well as the firm’s stock illiquidity.

Appendix

3.A The Expression of Ft(τ ) and Gt(τ )

Leland and Toft (1996) assume the asset dynamics follows a geometric Brownian

Motion:

dVt = (µ− δ)Vtdt+ σVtdWt (3.30)
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where µ is the asset’s expected growth, δ is the payout rate, and σ2 is the asset

volatility. The value of debt is shown in Equation (3.11) with

Ft(τ) = N [h1,t(τ)] +

(
Vt
VB

)−2a

N [h2,t(τ)] (3.31)

Gt(τ) =

(
Vt
VB

)−a+z

N [q1,t(τ)] +

(
Vt
VB

)−a−z
N [q2,t(τ)] (3.32)

where

q1,t(τ) =
−bt − zσ2τ

σ
√
τ

, q2,t(τ) =
−bt + zσ2τ

σ
√
τ

h1,t(τ) =
−bt − aσ2τ

σ
√
τ

, h2,t(τ) =
−bt + aσ2τ

σ
√
τ

a =
r − δ − σ2/2

σ2
, bt = ln (Vt/VB), z =

√
(aσ2)2 + 2rσ2

σ2
.

3.B Markit Database

Markit was founded in 2001. It has been collecting and compiling CDS spreads

worldwide since 2001 and also constructs CDS indices such as the Markit iTraxx

index. The database contains the legal entity of the underlying bonds, seniority tier,

documentation clause (DocClause), CDS recovery rate, and CDS tenors. In what

follows, we briefly summarize the database based on the Markit user guides of 2011

and 2012 and its descriptive statistics.

DocClause

The type of credit event trigger determines the payment of CDS contracts. Most

CDS contracts follow the definition set by the ISDA (International Swaps and

Derivatives Association). The ISDA defines six broad types of credit events:

bankruptcy, failure to pay, repudiation/moratorium, obligation acceleration, obli-

gation default, and restructuring. However, of these events, restructuring is the

most complex credit event, and there is a potential arbitrage opportunity for CDS
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buyers. When a firm is under a restructuring process, restructuring may not lead to

an obvious or immediate loss to the debt owner; however, there is a chance for CDS

buyers to create a profit opportunity unrelated to changes in credit quality, because

protection buyers may exploit the cheapest-to-delivery rule and deliver the most

illiquid bond (see, for example, Packer and Zhu (2005), Collender (2008)). There

are four types of restructuring defined by the ISDA:

1. Full restructuring (CR): This clause is the most favorable for CDS buyers. It

classifies any form of restructuring as a credit event and a bond of any maturity can

be used as a deliverable bond.

2. Modified restructuring (MR): Modified restructuring classifies restructuring as

a credit event, but limits deliverable bonds to those that mature within 30 months

of the termination date of the CDS contract.

3. Modified-modified restructuring (MM): The modified-modified restructuring

clause is less strict than modified restructuring. It classifies deliverable bonds as

those within 60 months of the termination date of the CDS contract.

4. No restructuring (XR): The no restructuring clause does not consider restruc-

turing as a credit event in a CDS contract. This is the most favorable term for CDS

sellers.

Tier

Payback seniority is another important attribute of the CDS contracts, which has

an impact on CDS spreads. CDS spreads are lower for secured debt but higher for

subordinate debt. CDSs could be traded on debts with different debt seniorities of

the same entity at any time. In Markit, there are four debt seniority levels: Junior,

Subordinate, Senior, and Preferred.
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Markit Data Screening Procedure

The Markit database provides corporate, municipal, and sovereign single-name CDS

data of approximately 2,650 individual entities and 3,000 entity-tiers. The data

source is from multiple market makers (primary banks). As for data input, each

contributor is required to upload their CDS spreads16 and the recovery rate of the

trade. Then Markit will check the data’s credibility. The average CDS spread

(entity-tier-tenor) is calculated only if there are at least three distinct quote con-

tributors and at least two of these contributors pass the data credibility tests. The

tests consist of a Curve Buildability Test, a Backwardation Test, a Stale Data Test,

and an Outlier Test. The first two tests ensure that data follow standard pricing

mechanisms and the last two tests ensure data are not outdated.

1. Curve Buildability Test : Markit uses the ISDA’s CDS standard model to cal-

culate the survival probability for each contributor’s credit curve. The contributor’s

curve is rejected if unreasonable values appear.

2. Backwardation Test : A different DocClause allows a different quality of bond

to be included as a deliverable. The reasonable relationship of CDS spread according

to its DocClause is

CDSCR ≥ CDSMM ≥ CDSMR ≥ CDSXR.

If the contributor’s credit curve fails to conform to this rule, the curve is rejected.

3. Stale Data Test : The 5-year CDS contracts are the most liquid contracts.

Markit makes use of the liquid contract to adjust the potential stale data problem.

For each contributed curve, Markit calculates the number of days the 5-year CDS

spread has remained unchanged. Curves from all dealers are ranked in terms of their

number of days of no change and Markit generally uses the top 50% of curves for

16CDS spreads can be of two types: a par spread and an up-front spread. In the case of a par
spread, CDS buyers do not need to pay up-front, while in the case of an up-front spread they do.
The quoted premiums are different for these two types of spreads. Markit uses the ISDA’s CDS
standard model to convert up-front spread to par spread. The CDS spreads in Markit are all par
spread.
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illiquid entities and top 67% of curves for liquid entities. An entity is defined to be

illiquid if it receives contributions from 13 or fewer contributing banks; otherwise it

is defined to be liquid. The curves that fail the stale data test are not used in the

composite calculation.

4. Outlier Test : The outlier test works by first calculating a provisional median

curve based on all contributions that passed the previous three tests. The test then

computes a weighted sum of squared deviations across tenors and the recovery rate

of each contributed curve from the provisional median curve. It then ranks the

curves and rejects the ones with the highest deviations.

Markit only includes CDS spreads that pass the above-mentioned tests, and re-

ports the average of the spreads by entity, tier, and tenor.
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Chapter 4

Anatomize DOOM-CDS Linkage

Abstract

In this chapter, we exploit the divergence of the implied hazard rates derived from

deep out-of-the-money put options (DOOMs) and credit default swaps (CDSs) to

produce profitable trading strategies. We extend Carr and Wu (2010) by decompos-

ing the implied hazard rates into credit and illiquidity components. We find that the

information about the components refines the prediction of the convergence and bet-

ter trading performance. We show that, after controlling for factors explaining the

structural difference between the markets, both components converge over time in

these two markets. While the Carr-Wu “Benchmark” strategy produces the largest

total returns due to the large amount of trades, our component-refined strategies

lead to greater mean return (by 1.81%) and beat the “Benchmark” strategy by the

Sharpe ratio and Carhart alpha.
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4.1 Introduction

Both deep out-of-the-money (DOOM) put options and credit default swaps (CDSs)

provide protection against firms’ defaults. Protection buyers have the right to sell

the security (a share or a bond) at a pre-specified price if the specific default event

occurs. DOOMs and CDSs can be converted into a unit recovery claim (URC) that

pays one unit if the firm defaults and zero otherwise (Carr and Wu 2010).

Theoretically, a URC on a given firm should have the same price regardless of

the market of origin. However, URCs may be affected by different factors such

as market illiquidity. In this chapter, we use the Nelson and Siegel (1987) model

to separate the URC into two components: a credit component “fitted” from the

credit curve and an illiquidity component as the “residual” from the fitted credit

curve. We extend Carr and Wu (2010) by examining the difference in the credit

and illiquidity components between DOOMs and CDSs, explicitly accounting for

factors that drive illiquidity, firms’ characteristics, and market conditions. The

component separation in this chapter follows Hu, Pan, and Wang (2013), who use

the difference between the theoretical and actual Treasury yield curves to capture the

overall market illiquidity. There are several studies relating residual components to

illiquidity. For example, Bedendo, Cathcart, and El-Jahel (2011) study the difference

between actual CDS spreads and theoretical CDS spreads derived from CreditGrade

model and find that the difference contains illiquidity. In the same spirit, Hu,

Pan, and Wang (2013) use the Nelson-Siegel-Svosson model to extract liquidity

information. Therefore, we expect the residual term from our decomposition should

contain illiquidity information for DOOMs and CDSs, in addition to firm-specific

credit risk.

In this chapter, we find evidence that some option-market related factors, includ-

ing option moneyness, option-implied volatility, and open interest, can explain the

difference in the credit components between DOOMs and CDSs. However, their ex-

planatory power for the difference in the illiquidity components is not as strong. We

also find evidence that the deviations in the credit components and the illiquidity
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components both diminish over time, and this convergence leads to the convergence

of the URCs. Using VAR regressions on the two components, we find evidence

that the DOOM market leads the CDS market in the valuation of the credit com-

ponents; however, the opposite lead-lag relationship is observed for the illiquidity

components.

Finally, we exploit the observed URC convergence pattern by constructing a

simple trading strategy that consists of longing the security (DOOM or CDS) that

has a lower URC-implied hazard rate and shorting the other. We use this simple

trading strategy as a benchmark to compare two other more refined strategies, based

on more information about the two components. Using the sample from May 2002

to May 2012, we find our benchmark strategy produced the highest total return due

to the much larger number of trades. Our refined strategies, however, outperform

the benchmark strategy by 1.81% on average, and beat the benchmark strategy by

the Sharpe ratio and Carhart alpha. Given the round-trip transaction costs for puts

and CDSs, it is most likely that our trading strategies will remain profitable.

4.2 Relative Literature

This chapter builds upon several strands of literature. The first one relates to the

credit and equity markets. There are several studies that explore the cross-market

association. For example, Berndt, Douglas, Duffie, Ferguson, and Schranz (2008) an-

alyze hazard rates based on the Moody’s KMV Expected Default Frequency (EDF)

and CDS spreads in four industries in the U.S. They find a strong relation be-

tween real and risk-neutral probabilities of default.Friewald, Wagner, and Zechner

(2014) study credit risk premiums extracted from CDS spreads and find that excess

CDS premiums are strongly positively related to Merton’s equity risk premiums.

Schneider, Wagner, and Zechner (2014) estimated the credit risk premiums follow-

ing Friewald, Wagner, and Zechner (2014) and show that they are related to higher

moments of equity returns such as volatility and skewness. Bedendo, Cathcart, and

El-Jahel (2011) compare the option-implied CDS spread and actual CDS spread and
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find that there exists a persistent difference between these two spreads that could

be due to illiquidity. These studies motivate us to separate the credit and illiquidity

components in DOOMs and CDSs, so that we can test whether the interactions of

the two components between the two markets are different.

Carr and Wu (2010) build a theoretical model to explain the connection between

deep out-of-the-money put options (DOOMs) and CDSs. 1 This chapter is closely

related to Carr and Wu (2010). The authors argue that both DOOMs and CDSs

contain the firm’s default information, and both types of instruments can hedge

default risk. Using a sample of 121 companies and weekly data from January 2005 to

August 2008, the authors find that the unit recovery claims (URCs) estimated from

put options and CDSs are of similar magnitudes, and any deviations will converge

and can be used to predict future market movements. This chapter enriches the

literature on DOOMs and CDSs. Kim, Park, and Noh (2013) study DOOMs and

CDSs around the subprime mortgage crisis period, and find that the association is

not as tight in that period. They thus propose a modified URC to provide a tighter

linkage. Fonseca and Gottschalk (2014) study the term structure of CDSs and the

implied volatility surface for five European countries from 2007 to 2012. They find

that, during that period, the cross-hedging strategy between credit risk and equity

volatility may be jeopardized as there is a significant deviation between credit risk

and equity volatility. Angelopoulos, Giamouridis, and Nikolakakis (2013) study the

market integration among stock, DOOMs and CDSs. They find that the magnitude

of deviation between DOOMs and CDSs can predict the future stock movement;

1Merton (1974), among other literature, shows how the possibility of default is related to the
pricing of equity options. Therefore, equity options can be used to hedge default risk. But, such
implementation of hedging default risk by normal options can be less effective since the option
price is not driven merely by the default risk. Carr and Wu (2010) provide a theory that if a
put option is extremely out-of-the-money, the underlying stock process becomes irrelevant for the
pricing of the put and the put reflects only the possibility of default. Such deep out-of-the-money
put options (DOOMs) provide credit protection because protection buyers have the right to sell a
share at a pre-specified price. Of course, a DOOM put as credit protection depends on the level
of the option moneyness and the option expiry. Carr and Wu (2010) assume that there exists a
default corridor that the underlying stock should not enter. Once the underlying price has entered
the default corridor, it will never recover. The specification of the default corridor is to mimic
a credit event. In reality, the evidence of the existence of default corridor can be found in some
credit events such as the bankruptcy of Lehman Brothers, when the asset value jumped before the
default occurred and fell to a much lower value afterward. Therefore, if the strike prices of the
DOOM put options are located within the default corridor, these DOOM puts, similar to CDSs,
become a credit insurance.
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larger deviation is positively associated with the stock return. This chapter has

two contributions. We separate DOOMs and CDSs into their credit and illiquidity

components, and study their deviation and reversion. Such separation is not done in

these studies. We also provide profitable trading strategies based on the information

about the components.

Several recent papers have established connections between CDSs and various

other non-equity markets. Della Corte, Sarno, Schmeling, and Wagner (2014), for

example, find that sovereign CDSs explain the performance of currency options

better than traditional factors such as the Treasury rates. Subrahmanyam, Tang,

and Wang (2014) find that the existence of CDSs affects corporate decisions such as

the level of cash holdings. Firms tend to increase cash holdings after the introduction

of the traded CDSs on their bonds. They argue that some firms become more

cautious because CDS-protected creditors can be tougher in debt renegotiations

and less willing to support distressed borrowers. Consequently, firms hold more

cash after the inception of CDS trading on their debt.

The second strand of literature investigates the impact of liquidity (and liquidity

risk) on CDS spreads. They find that CDS liquidity risk seems to matter more than

pure credit risk in explaining the changes in CDS spreads. Corò, Dufour, and Varotto

(2013) construct two bid-ask-spread based liquidity factors: daily time-weighted

average bid-ask spread, and industry average bid-ask spread. Both liquidity factors

dominate CDS changes, while other factors, such as changes in credit rating and

macroeconomic conditions, have a significant but much weaker explanatory power.

Tang and Yan (2007) study a range of liquidity factors related to trading quotes and

bid-ask spread, and conclude that the short-term changes in CDS spread are driven

by the trading illiquidity. Buhler and Trapp (2010) develop a reduced-form model

for pure credit risk and pure liquidity risk by calibrating CDS and bond data. They

find that the illiquidity component is important in explaining bond spreads. They

also find an illiquidity co-movement between the bond and CDS markets.

CDS liquidity risk can spill over across markets. Das and Hanouna (2009) find

that underlying equity liquidity is related to the liquidity risk of CDS. The au-
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thors compare the Amihud (2002) illiquidity measure, the LOT (Lesmond-Ogden-

Trzcinka) measure of Lesmond, Ogden, and Trzcinka (1999), and the CDS bid-ask

spread, and conclude that the Amihud stock illiquidity measure is important in

explaining the quarterly change in CDS spreads.

Liquidity risk is asymmetric and exhibits a stronger market impact during liquid-

ity drain-out. Brunnermeier and Pedersen (2009) describe a liquidity drain-out as a

vicious circle of market and funding liquidity interactions. This is supported by sev-

eral recent empirical studies. Brennan, Chordia, Subrahmanyam, and Tong (2012)

analyze the impact of sell-side liquidity on stock returns, and show that liquidity pre-

mium arises mainly from the sell order. Brennan, Huh, and Subrahmanyam (2013)

decompose the Amihud (2002) illiquidity measure into two half-Amihud measures,

and find negative Amihud illiquidity (with negative stock returns) has a higher

explanatory power for stock returns. Kolokolova, Lin, and Poon (2014) find that

Amihud stock illiquidity widens CDS spreads, but this impact is asymmetric and is

observed only when stock becomes more illiquid.

4.3 Research Design

In this section, we first describe the procedure for extracting risk-neutral hazard

rates from put option prices and CDS spreads. Next, we describe the separation of

the implied hazard rate into credit and illiquidity components, and investigate the

information spillover between the DOOM and CDS markets.

4.3.1 URC-implied Hazard Rate

Carr and Wu (2010) define a unit recovery claim (URC) as a security that pays one

unit if a firm defaults before time T . In other words, a URC represents a risk-neutral

default probability as follows:

URC(t, T ) = EQ
[
e−rτI{τ<T}

]
(4.1)
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where r is the risk-free interest rate, τ is the default time, and I is an indicator

function taking the value of 1 if default happens before T and zero otherwise.

If default events follow a Poisson distribution with constant hazard rate λ, then

URC(t, T ) = λ
1− e−(r+λ)(T−t)

r + λ
. (4.2)

Given the default arrival rate has a flat term structure with λ = k/(1−Rb), where

k is the CDS spread and Rb is the bond recovery rate, Carr and Wu (2010) show

that the CDS-implied URC can be written as

URCC(t, T ) = ζk
1− e−(r+ζk)(T−t)

r + ζk
(4.3)

where ζ is the inverse of loss-given-default.

Next consider the put-implied URC. An American put option allows investors

to sell the underlying stock at the pre-determined strike price. In terms of credit

protection, the protection buyer will exercise the put option when a certain threshold

value, Rτ , is reached:

P (K,T ) = EQ
[
e−rτ (K −Rτ )I{τ<T}

]
(4.4)

where K is the strike price and Rτ is the asset value at the time when the firm

defaults.

Carr and Wu (2010) claim that, apart from firms that are “too big to fail”, the

price of a DOOM put is entirely driven by the default probability and not by the

stock price or the stock volatility. The authors prove that as long as the stock price

is bounded below by a strictly positive barrier B > 0 before default, but drops

below a lower barrier A < B at default, and stays below A thereafter, then any two

co-terminal American puts struck within the default corridor [A,B] replicate a pure

credit insurance that pays off if and only if the company defaults prior to the option
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expiry. In particular, the DOOM put option has analytical value

P (t, T ) = K

[
λ

1− e−(r+λ)(T−t)

r + λ

]
− Ae−rT

[
1− e−λ(T−t)] . (4.5)

Combining Equations (4.2) and (4.5), the put-implied URC can be valued as a

scaled difference between two put option prices:

URCP =
P (K2, T )− P (K1, T )

K2 −K1

. (4.6)

For the special case in which stock price falls to zero at default time (i.e. A = 0),

K1 = 0, Equation (4.6) can be rewritten as

URCP = P (K,T )/K. (4.7)

Based on the aforementioned specification, we obtain the URC-implied hazard

rates for put options and CDS spreads. We extract the put-implied hazard rate

(denoted as λP ) based on Equations (4.2) and (4.7). The CDS-implied hazard rate

(denoted as λC) is computed as λC = k/(1−Rb).

4.3.2 Credit Curve Fitting

When there are shortages of arbitrage capital, assets may keep being traded at prices

significantly different from their fundamental values (Hu, Pan, and Wang 2013). The

authors measure the “noise” in U.S. Treasury bonds as the difference between the

fitted and the observed yields, and use it as a measure for the shortage of arbitrage

capital in the economy. Following the same spirit, we estimate the residual term in

the URC-implied hazard rates as the difference between the observed hazard rates

and their fitted values as follows:

λ(τ) = y(τ) + θ(τ) (4.8)
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where λ is the URC-implied hazard rate obtained from a DOOM/CDS with maturity

τ , y is the fitted value specific to the credit rating class, and θ is the residual.2

Following Hu et al., we obtain the daily fitted values y(τ) for each rating class

based on the Nelson-Siegel model below, which allows for a hump-shaped term

structure:

y(τ |β0, β1, β2,m) = β0 + β1

(
1− e−τ/m

τ/m

)
+ β2

(
1− e−τ/m

τ/m
− e−τ/m

)
(4.9)

where β0 and β1 are the long-term and short-term hazard rates, β2 captures a hump

at the medium term, and m determines the shape and the position of the hump.

Equation (4.9) is estimated separately for DOOMs and CDSs. Following Hu et al.,

we set β0 > 0, β0 + β1 > 0, β0 + β1 + β2 > 0 and m > 0 to avoid negative hazard

rates. Since y(τ) is fitted to a group of put options (or CDSs) with the same rating,

y(τ) will be the same if these put options (or CDSs) have the same maturity and

belong to the same rating class.

4.3.3 Information Spillover

There exists abundant evidence that information is impounded into asset prices in

different markets at different speeds. Using a general VECM (vector error correction

model) approach, Forte and Pena (2009) show that stock market often leads the CDS

and bond markets. In this section, we investigate the information spillover between

the option and CDS markets. We perform a VAR analysis of the changes in λ, y

and θ.

For example, for the changes in λ, the VAR regression specification has the

2There may be other factors in addition to the shortage of arbitrage capital that affect the sign
and/or the magnitude of θ. Some of the factors are market-specific (since bonds are the underlying
assets for CDSs and stocks are the underlying assets for put options); others are firm-specific or
are related to the general market conditions. Carr and Wu (2010) find, for example, that URCP is
greater than URCC . Empirically, URCP increases as stock price moves closer to the strike price
and as stock volatility increases, but it decreases as put open interest increases.
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following form:

∆λPt

∆λCt

 =

αP0
αC0

+

βPP βPC

βCP βCC

 ·
∆λPt−1

∆λCt−1

+

εPt
εCt

 (4.10)

Positive and significant βPC would imply that past changes of CDS-implied haz-

ard rate predict future changes of put-implied hazard rate. Similar regressions are

run separately for y and θ.

4.4 Cross-Market Divergence and Reversion

In this section, we examine the divergence between DOOMs and CDSs implied URC

documented in Carr and Wu (2010). We calculate the implied hazard rates λ from

DOOMs and CDSs. Equation (4.8) suggests that the discrepancy between λP and

λC could be due to the divergence between the two credit components yP and yC or

between the two residual components θP and θC . Thus, we consider three divergence

measures, Dλ, Dy, and Dθ, as defined below:

Dλ = λP − λC (4.11)

Dy = yP − yC (4.12)

Dθ = θP − θC (4.13)

Unlike Hu et al., we keep the sign of the residual (θ) in this chapter, as the sign

provides location information (above or below the fitted values). The additional

information can prevent erroneous comparison in cross-market analysis.3

3For example, a firm has the following information: λP = 0.05, yP = 0.03, and θP = 0.02, while
λC = 0.01, yC = 0.03, and θC = −0.02. Then Dθ = 0.04 if their signs of residuals are included,
but Dθ = 0 if the signs are dropped, which is wrong.
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4.4.1 Divergence Determinants

In theory, DOOMs should reflect only pure default risk and the pricing of DOOMs is

irrelevant to the underlying stock process. In practice, DOOMs, however, might still

contain information about option pricing. Therefore, we choose several candidate

factors that are related to option pricing to explain why the pricing of DOOMs is

different from the pricing of CDSs. Specifically, the average URC-implied hazard

rate ((λP +λC)/2) reflects the average credit quality in the option and CDS markets;

option moneyness (|Delta| and ln(K/S)) is also likely to explain why DOOMs are

different from CDSs; option-implied volatility (IVP ) reflects investors’ expectation

regarding underlying stock process; and option open interest (OI) reflects the de-

mand in the option market. Significant results suggest that the pricing of DOOMs

contains other information as well as default risk. We test for any systematic dis-

crepancies between the two markets by estimating the following contemporaneous

pooled panel regressions:

Dit = β0 + β1Xit + eit (4.14)

where Dit is one of the three divergence measures (Dλ
it, D

y
it, or Dθ

it) for firm i at

time t, and Xit are the corresponding explanatory factors. As some of the factors

mentioned above capture similar information, we include one factor at a time as

suggested by Carr and Wu (2010).

4.4.2 Reversion Tests

In theory, λP and λC should be the same, and any discrepancies between them

should vanish eventually. However, since market-specific factors might have caused

the deviation between λP and λC , Dλ might be persistent and the theoretical con-

vergence might never occur. Similarly, the convergence between yP and yC , and

between θP and θC , might be prevented by the structural difference between the

two markets. To empirically test whether the convergence in y and θ does occur, we
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include the estimated residuals (eit) from Equation (4.14) as explanatory variables

for future changes in y and θ.

For the credit components, a pooled panel regression specification is

∆yPit+∆t = βP0 + βP1 e
y
t + ηt (4.15)

∆yCit+∆t = βC0 + βC1 e
y
t + ζt (4.16)

and a similar regression is run for the illiquidity component, θ. A negative βP1 and a

positive βC1 would suggest a reduction in differences between components over time,

after controlling the market-specific factors in Equation (4.14).

Finally, we relate the potential convergence in the implied hazard rates to the

residuals from the regressions of the credit and illiquidity components:

∆λPit+∆t = βP0 + βP1 e
y
t + βP2 e

θ
t + ηt (4.17)

∆λCit+∆t = βC0 + βC1 e
y
t + βC2 e

θ
t + ζt (4.18)

Again, a negative βP1 (βP2 ) and a positive βC1 (βC2 ) would suggest a convergence in

λ over time.4

4.4.3 Long-Short Portfolio Performance

If λP and λC converge over time, the prices of DOOMs and CDSs should move

conversely. Then one could trade at time t on the signal of the λs, taking a long

position in the security with a lower λ and a short position in the security (written

on the same firm) with a higher λ. The positions are to be unwound after the two

λs have converged at time T . The return on this strategy is given as

r = µLong − µShort, (4.19)

µ =
logPriceT − logPricet

T − t
(4.20)

4See Carr and Wu (2010) for details of convergence in λ.
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where Price is the traded price of the instrument of interest. Here, we simplify the

strategy by fixing (T − t) to be 7 and 30 days.

We construct three strategies based on our previous discussions and compare

their performance. The first strategy (Benchmark strategy, hereafter) is to trade

according to Dλ. If Dλ is positive, we long CDSs and short puts as we expect Dλ → 0

over time. Since Dλ = Dy + Dθ, the strength of the convergence in λ is weakened

if Dy and Dθ have different signs and move in different directions. Therefore, we

construct a stricter strategy (Decomposition strategy, hereafter) to include both y

and θ information. We trade on the Dλ only when Dy and Dθ have the same sign.

We expect the additional information to enhance the prediction in the convergence

in λ. The last, and the most stringent, strategy (Past Change strategy, hereafter)

is constructed based on the past changes in yt and θt. We make use of the loadings

in the VAR regression to predict the time-series innovation in y and θ in (4.10). For

example, if βCC (ie. the loading on ∆yC) is negative, and ∆yCt is positive, we expect

yCt+1 to decrease since ∆yCt+1 is expected to be negative. We therefore check the past

change of the components in addition to the contemporaneous information regarding

Dλ, Dy, and Dθ. The “Past Change” strategy, again, is expected to enhance the

precision of the λ convergence prediction.

Here we provide a “Benchmark” example to present how our proposed trading

strategies are carried out. If one observes positive Dλ, he should expect the DOOM

put price will decrease and the CDS price will increase in the future, given the

expectation that λP and λC will converge to the same value. Therefore, he should

short the put and buy the CDS at the same time and unwind the positions when

the convergence happens. Since we do not know exactly when the convergence

will happen, we simply fix the trading period for 7 or 30 days as we expect the

convergence will happen in a short time. The convergence can disappear if market

conditions change during the proposed trading period, and the portfolio may start

to lose money if the positions are not unwound. Advanced methodology such as a

dynamic trading strategy may be used in order to achieve a higher return; however,

such implementation makes it difficult to compare the performance among trading
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strategies if the holding periods are different for every trade.

Since put option and CDS prices are not in a linear relation, we compute the

hedge ratio for put options and CDSs for the long-short strategy. From Equations

(4.3) and (4.6) (i.e. URCC = URCP ), the price of a put option and the CDS spread

for the same underlying firm are linked by the following relation:

P = Kζk
1− e−(r+ζk)τC

r + ζk
(4.21)

where P is the put option price, k is the CDS spread, and τC is the time to maturity

of the CDS. Differentiating the put option price with respect to the CDS spread, we

obtain the following hedge ratio:

dP

dk
=Kζ

1− e−(r+ζk)τC

r + ζk

+Kζ2τCk
1− e−(r+ζk)τC

r + ζk

−Kζ2k
1− e−(r+ζk)τC

(r + ζk)2

=K [k−1 + ζτC − ζ(r + ζk)−1] URCC . (4.22)

In constructing the portfolio, we long (short) a CDS, while we simultaneously short

(long) dP/dk units of put options.

In implementing this trading strategy, we make several additional assumptions.

We assume put options and CDSs are traded at the quoted prices with zero trans-

action cost. The securities are perfectly divisible and there are no trading limits.

Since we consider short trading periods ((T − t) are 7 and 30 days), we exclude CDS

accruals, and assume that the premium needs to be paid in full, not in quarterly

installments. That is, CDS buyers (sellers) pay (receive) the annual CDS spread at

the time of a transaction.
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4.5 Data

We use CDS information from the Markit database, and put option information

from OptionMetrices. We describe in detail these two sources of data below.

4.5.1 Markit Sample

The Markit database provides daily information on CDS quotes with maturities from

6 months to 30 years. For each CDS contract, our Markit database contains the

daily truncated mean of CDS spreads reported by various contributors, underlying

debt seniority and the associated recovery rates. Because there are insufficient CDS

quotes for earlier years, we select CDS data points from May 2002 to May 2012.

CDS spreads for the same firm may have different quoted prices due to the con-

tract tier and the payback priority of the underlying bond. For example, secured

debt has a higher priority in the payback order than subordinate debt. Table 4.1

summarizes the CDS tier distribution in our Markit database. Our sample consists

of 1.4 million CDS tier-entity contracts, 89% of which are associated with senior

unsecured debt (SNRFOR). Hence, we choose only the CDS quotes with SNRFOR

in our sample. In addition, since long-maturity CDSs are very illiquid, we do not

use CDSs with a maturity longer than 10 years.

Figure 4.1 plots the number of CDS contracts for firms with different ratings.

BBB-rated firms are the most popular, whereas AAA-rated firms are the least pop-

ular. AA-rated firms are also under-represented in the sample, which is consistent

with lower demand for credit protection for high-quality firms. Interestingly, CDSs

on CCC-rated firms are also rarely traded. Such a result is rather expected because

firms that are very likely to default would require nearly 100% of the principal to

protect the default risk.

Table 4.2 reports the summary statistics for our sample. From Table 4.2, a 5-year

CDS contract, which are the most liquid in the CDS market, has 1.1 million data

points whereas a 4-year CDS contract has just 0.74 million data points. The largest
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Table 4.1: Summary of CDS Tiers

This table reports the number of CDS contracts according to tiers in
our Markit database over the period from January 2001 to May 2012.
We count only once if CDS quotes with different maturities belong to
the same entity and tier each day. The contract tiers are presented
in the order of seniority. JRSUBUT2 stands for junior subordinated
debt, SUBLT2 stands for subordinated debt, SNRFOR stands for senior
unsecured debt, SECDOM stands for secured debt, and PREFT1 stands
for preference shares.

Tier Count %
JRSUBUT2 150 0.01%
SUBLT2 93,851 6.79%
SNRFOR 1,232,356 89.13%
SECDOM 56,229 4.07%
PREFT1 4 < 0.01%
Total 1,382,590

Figure 4.1: Distribution of CDS Quotes

This figure plots the number of CDS quotes in our Markit database based
on the credit ratings of the underlying. The sample period is from May
2002 to May 2012.

CDS spread of 47,216 bp belongs to a particular 6-month contract.5 A 6-month

CDS contract has the smallest average spread of 181.12 bp, whereas a 10-year CDS

has the largest average spread of 249.83 bp. The average recovery rate is 39.22%.

5If a company is almost certain to default immediately, the CDS spreads may be more than
10,000 bp due to the annualization of the CDS spreads. For more details see Hull, Predescu, and
White (2004), footnote 11, p. 2794.
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Table 4.2: Summary Statistics for CDSs and DOOMs

This table reports the descriptive statistics for CDS spread and DOOM put option prices in our sample. The sample period is from
May 2002 to May 2012. The statistics reported are sample mean, standard deviation (Std), and maximum and minimum values.
The table also reports the data missing rate and the number of observations (#Obs). “Recovery” stands for recovery rate.

CDS Spread (in Basis Point) Put
6m 1y 2y 3y 4y 5y 7y 10y Recovery (%) Bid ($) Ask ($)

Mean 181.12 189.91 203.53 216.49 250.28 243.97 245.60 249.83 39.22 0.28 0.43
Std 862.31 770.14 674.46 621.83 632.27 559.85 553.08 528.97 4.02 0.31 0.36
Max 47,216.26 40,175.46 38,116.27 36,934.43 33,497.83 27,913.98 24,503.77 23,791.63 75.50 3.40 5.00
Min 0.58 0.81 0.79 1.28 1.45 1.00 3.27 4.34 1.25 0.01 0.05
Miss Rate 0.39 0.18 0.20 0.14 0.39 0.09 0.15 0.16 0.01 0.92 0.92
#Obs 743,961 989,061 969,224 1,037,031 739,021 1,106,054 1,022,364 1,013,555 1,202,489 98,250 98,250
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4.5.2 OptionMetrics Sample

OptionMetrics provides historical prices and implied volatility for U.S. equity and

index options markets. It contains bid and ask prices as well as implied volatilities

and option Greeks. We follow Carr and Wu (2010) to filter the put option data.

To be included in the sample, the put options must satisfy the following conditions:

(i) the bid price is greater than zero, (ii) the open interest is greater than zero, (iii)

the time to maturity is greater than 6 months and less than 10 years, (iv) the strike

price is $5 or less, (v) the absolute value of the put’s delta is not larger than 15%,

(vi) the open interest is the highest if multiple put options on the same underlying

are available. 6

Figure 4.2 plots the histogram for put maturities. The near-month contracts are

rather popular in the option market. The 6-month contract is the most common,

whereas there are very few options with maturities that are longer than two years.

There are no put options with maturity longer than three years, but the most popular

CDS contract is one with a 5-year tenor.

We use the aforementioned steps to select out-of-money (-15% delta and below)

put options from OptionMetrics and match them to CDS contracts from Markit. For

each firm-date we pick a single-pair put-CDS with the nearest matching maturity.

Figure 4.3 reports the difference in time to maturity. The majority of the mismatches

in time to maturity are less than a year.

The last two columns of Table 4.2 report the descriptive statistics of DOOM put

options in our sample. The average bid and ask prices are 0.28 and 0.43 respectively

with standard deviations of 0.31 and 0.36 respectively.

6Theoretically, if the strike prices of the put options are located within the default corridor,
the put prices are linear in the strike price, viz. P (K1)/K1 = P (K2)/K2 = ...P (Kn)/Kn, if
K1,K2, ...,KN ∈ [A,B]. Otherwise, the put will act like a general option. However, we do not
have sufficient information about the exact range of the default corridor because the number of
DOOM put strikes is finite and few. Therefore, the combined criteria of low delta and low strike
are to help to identify the DOOMs that act like a CDS. Carr and Wu (2010) show that put options
with delta between -15% and 0% is a reasonable guess. However, these DOOMs still contain other
information as well as default risk.
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Figure 4.2: DOOM Time-to-maturity Histogram

This figure plots the histogram of times to maturity for DOOM (deep
out-of-money) put options in our sample. The sample period is from
May 2002 to May 2012.

Figure 4.3: DOOM-CDS Mismatches in Time to Maturity

This figure plots the histogram of mismatches in times to maturity be-
tween DOOM put options and CDS spreads. The sample period is from
May 2002 to May 2012.
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4.6 Empirical Results

In this section, we first provide general analysis on the decomposed components

obtained from fitting the Nelson-Siegel model, then report the test results for their

divergence, reversion, and information spillover. Finally, we discuss the performance

of the long-short trading strategies.

4.6.1 Credit Curves Analysis

Figure 4.4 presents the examples of credit curves for CDSs and DOOMs on May 17,

2004 and December 12, 2008. The implied hazard rates are also plotted in the same

graph. First of all, we note that the CDS credit curves, in general, show apparent

“layers”. In addition, the term structures of the CDS credit curves are rather flat.

The hazard rate for DOOMs (λP ) is calculated by using the put option mid-prices.

The credit curves for DOOMs are rather different from those for CDSs. Although

DOOM credit curves also have “layers”, they have more complicated term structures.

During the calm period in May 2004, the short maturity credit component is higher

than that for the long maturity. This pattern is the same for all rating classes

and the difference (or term spread) is larger for the lower-quality rating classes. In

December 2008, the term structures of the credit components have very different

shapes for the different rating classes: for CCC it is steeply upward sloping, for B

it is hump-shaped, and for BBB it is downward sloping. This suggests the credit

component of a put option can be very volatile and possibly has more scope for

arbitrage if any deviation will converge over time. In short, the term structures of

the DOOM-implied hazard rates seem to reflect investors’ expectations in different

times to maturity. But their expectations also vary over time, according to the

corresponding put market conditions.
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Figure 4.4: Credit Curve Examples

This figure presents examples of the credit curves for CDSs and put options.
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Table 4.3: Descriptive Statistics of λ, y, and θ

This table reports the descriptive statistics for default intensity, λ, credit
curve fitted component, y, and residual noise, θ. The superscript indi-
cates whether the value is extracted from CDSs, C, or put options, P .
The credit curve fit is performed using the Nelson-Siegel model. The
sample period is from May 2002 to May 2012. The statistics reported
are sample mean, standard deviation (Std), and maximum and minimum
values.

λC yC θC λP yP θP

Mean .0720 .0576 .0144 .0945 .0952 -.0007
Std .0964 .0581 .0919 .0978 .0703 .0670
Max 1.4905 .5982 1.3148 1.8973 1.6667 .9923
Min .0002 .0011 -.4069 .0043 .0046 -.6508

Table 4.3 reports the descriptive statistics for λ, y, and θ, implied by CDS and

DOOM respectively. The credit component yC reflects the majority part of λC .

However, yC has less variation (with a standard deviation of 0.06) than θC (with a

standard deviation of 0.09), suggesting that yC is slightly more stable than θC . We

observe a similar relationship for λP , yP , and θP .

Christoffersen, Goyenko, Jacobs, and Karoui (2014) study the illiquidity premi-

ums in put options. They argue that some liquidity indicators, such as dollar-quoted

bid-ask spreads, are not a good alternative, since they are mainly driven by the ma-

turity and the level of the moneyness. Here, we test whether the information content

of the liquidity component (θP ) is driven by time to maturity.

Figure 4.5 plots the scatter plot for the θP and its corresponding time to ma-

turity. The figure shows that there is a random relationship between the level of

illiquidity and time to maturity. In addition, the correlation coefficient between

θP and maturity is just 1.95%. The general analysis suggests that our put-implied

illiquidity component is irrelevant to time to maturity.

4.6.2 Determinants for Divergence

Table 4.4 reports the regression results for the DOOM-CDS divergence measures

(Equation (4.14)). The results reported here refer to univariate regressions. Panels

A, B and C report the results for Dλ, Dy, and Dθ, respectively, where the decompo-
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Figure 4.5: DOOM Illiquidity and Maturity

This figure presents the scatter plot for the put-implied illiquidity com-
ponents (θP ) and their corresponding time to maturity.

sition, λ = y + θ, is based on the Nelson-Siegel model. The results reported in the

three panels show consistently that Dλ, Dy, and Dθ are all significantly related to

the factors suggested in Carr and Wu (2010). The R-squares for Dλ (in Panel A) are

similar to those reported in Carr and Wu (2010). Furthermore, we find that these

factors capture better divergence in Dy compared with Dθ, since the R-squares in

general are higher for Dy (in Panel B) than for Dθ (in Panel C).

In three cases, the Carr-Wu factors have a different impact on Dy compared with

Dθ. The average hazard rate (λP +λC)/2, option-implied volatility, IVP , and option

open interest, OI, have a positive impact on Dy but a negative impact on Dθ. The

average hazard rate is a measure of credit quality. As the credit quality worsens, the

credit component of a put option is higher than that of a CDS. But the CDS has

a greater illiquidity component than the put option. As CDSs are often traded on

the Over-the-Counter market and put options are traded on the exchange market,

one would expect CDS illiquidity might be more sensitive to credit quality. On the

other hand, being exchange traded, put options might reflect the credit quality more

accurately. The implied volatility of the put options is derived directly from the put

option prices and it indirectly reflects firm risk. If we equate firm risk with credit
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quality then the aforementioned explanations continue to apply here. The negative

impact of OI on Dθ is to be expected since a greater open interest reflects a greater

trading activity and that would bring down the put option illiquidity component.

One possible explanation for the positive impact on Dy is the increase in hedge

demand for put options. In such a scenario, the put option OI rises, and the put

option price increases due to the stronger demand. At the same time, if the put is

used to hedge CDS credit risk, the credit risk of the CDS drops due to the hedging

effect. As a result, yP increases and yC decreases, leading to larger Dy. Despite the

different signs for β in Panel B and Panel C, the net impact on Dλ and the signs

for βλ are the same as those reported in Carr and Wu (2010). As Carr and Wu

concluded, put options might have more credit information than CDS spreads.

4.6.3 Reversion Tests

In this section, we analyze whether the divergence between the DOOMs and CDSs

will be reversed eventually. First, we examine the credit and illiquidity components

individually. Then, we look at how the implied hazard rates (and hence the prices

of the securities) of the two markets converge.

Table 4.5 and 4.6 report the results for the reversion tests in Equations (4.15) and

(4.16) for the credit and illiquidity components separately using 7-day and 30-day

horizons. Table 4.7 reports the results for the reversion tests in Equations (4.17)

and (4.18) for the implied hazard rates for the 7-day and 30-day horizons. In all

three tables, all the βP,y and βP,θ coefficients are negative, and all the βC,y and βC,θ

coefficients are positive. All the regression coefficients are statistically significant

for both time horizons. Given the definitions of divergence in Equations (4.11),

(4.12), and (4.13), this means that, after controlling for the permanent difference

due to the factors identified in (4.14), a positive error will decrease future values

derived from puts and increase future values derived from CDSs, and vice versa for a

negative error term. In other words, we expect reversion in the credit and illiquidity

components as well as the implied hazard rates. Carr and Wu (2010) show that
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Table 4.4: Factor Analysis of DOOM and CDS Divergence

This table reports the estimation results for the determinants of DOOM-
CDS divergence. The sample period is from May 2002 to May 2012. λ is
the URC-implied hazard rate, which is decomposed into credit (y) and
illiquidity (θ) components based on the Nelson-Siegel model. Superscript
C stands for CDS and P stands for DOOM put. |Delta|, K, IVP , and OI
are, respectively, moneyness, strike, implied volatility, and open interest
of the DOOM put.

Panel A: Hazard Rate
Dλ = λP − λC

βλ t-stat p-value R-sqr R-adj
(λP + λC)/2 -.1131 -34.8646 .0000 .1828 .1544
|Delta| .4923 74.3910 .0000 .2282 .2013
ln(K/S) .0430 70.0431 .0000 .2219 .1948
IVP .0206 15.6724 .0000 .1719 .1431
OI .0000 2.0310 .0423 .1691 .1402

Panel B: Credit Component
Dy = yP − yC

βy t-stat p-value R-sqr R-adj
(λP + λC)/2 .1296 63.3848 .0000 .3968 .3758
|Delta| .1458 33.3057 .0000 .3729 .3511
ln(K/S) .0121 29.9219 .0000 .3711 .3492
IVP .0558 68.1547 .0000 .4017 .3809
OI .0000 18.2496 .0000 .3662 .3441

Panel C: Illiquidity Component
Dθ = θP − θC

βθ t-stat p-value R-sqr R-adj
(λP + λC)/2 -.2430 -70.7898 .0000 .1453 .1155
|Delta| .3428 46.6631 .0000 .1127 .0819
ln(K/S) .0304 44.7285 .0000 .1106 .0797
IVP -.0357 -25.0966 .0000 .0939 .0624
OI -.0000 -9.2535 .0000 .0871 .0553

126



the URC-implied hazard rates in the DOOM and CDS markets converge in sample

period from February 2, 2005 to August 27, 2008. Our findings confirm this result

using data from May 2002 to May 2012. Furthermore, we provide evidence that

convergence happens in both credit and illiquidity components of the two markets as

well. The magnitudes of the regression coefficients and R-square are all very similar,

suggesting that both credit and illiquidity components play an equally important

role in the convergence of λP and λC , and hence URCP and URCC .

127



Table 4.5: Reversion of the Credit Components (y)

This table reports the reversion results for the credit component of URCs (unit recover claims) implied by CDS spreads and DOOM
put option prices, after controlling for the permanent difference due to option-related factors. The sample period is from May 2002
to May 2012. λ is the URC-implied hazard rate, y and θ are the credit and residual components of the URC-implied hazard rate.
The components are extracted by the Nelson-Siegel model. Superscript C stands for CDS and P stands for DOOM put. |Delta|,
K, IVP , and OI are, respectively, moneyness, strike, implied volatility, and open interest of the DOOM put.

Panel A: 7-day Prediction
Put CDS

βP,y t-stat p-value R-sqr R-adj βC,y t-stat p-value R-sqr R-adj
e(λP +λC)/2 -.3043 -35.5295 .0000 .0638 .0638 .0588 14.4389 .0000 .0111 .0111
e|Delta| -.2882 -37.1056 .0000 .0692 .0691 .0566 15.2991 .0000 .0125 .0124
eln(K/S) -.2924 -36.6997 .0000 .0678 .0677 .0579 15.2581 .0000 .0124 .0124
eIVP -.3038 -35.5497 .0000 .0639 .0638 .0623 15.3437 .0000 .0126 .0125
eOI -.2660 -32.3435 .0000 .0535 .0534 .0531 13.6326 .0000 .0099 .0099

Panel B: 30-day Prediction
Put CDS

βP,y t-stat p-value R-sqr R-adj βC,y t-stat p-value R-sqr R-adj
e(λP +λC)/2 -.4412 -30.6525 .0000 .0483 .0482 .0923 12.1097 .0000 .0079 .0078
e|Delta| -.4452 -34.2152 .0000 .0595 .0594 .0706 10.1775 .0000 .0056 .0055
eln(K/S) -.4534 -33.9781 .0000 .0587 .0586 .0616 8.6597 .0000 .0040 .0040
eIVP -.4614 -32.2043 .0000 .0530 .0530 .0853 11.2116 .0000 .0067 .0067
eOI -.4005 -29.0679 .0000 .0436 .0436 .0635 8.7129 .0000 .0041 .0040
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Table 4.6: Reversion of the Illiquidity Components (θ)

This table reports the reversion results for the illiquidity component of URCs (unit recover claims) implied by CDS spreads and
DOOM put option prices, after controlling for the permanent difference due to option-related factors. The sample period is from
May 2002 to May 2012. λ is the URC-implied hazard rate, y and θ are the credit and residual components of the URC-implied
hazard rate. The components are extracted by the Nelson-Siegel model. Superscript C stands for CDS and P stands for DOOM
put. |Delta|, K, IVP , and OI are, respectively, moneyness, strike, implied volatility, and open interest of the DOOM put.

Panel A: 7-day Prediction
Put CDS

βP,θ t-stat p-value R-sqr R-adj βC,θ t-stat p-value R-sqr R-adj
e(λP +λC)/2 -.2892 -36.1622 .0000 .0660 .0659 .0463 7.2510 .0000 .0028 .0028
e|Delta| -.2309 -31.1654 .0000 .0498 .0498 .1104 18.9850 .0000 .0191 .0190
eln(K/S) -.2368 -32.3141 .0000 .0534 .0533 .0946 16.3774 .0000 .0143 .0142
eIVP -.2246 -31.1936 .0000 .0499 .0499 .0901 15.8982 .0000 .0135 .0134
eOI -.2446 -33.2378 .0000 .0563 .0562 .0753 12.9394 .0000 .0090 .0089

Panel B: 30-day Prediction
Put CDS

βP,θ t-stat p-value R-sqr R-adj βC,θ t-stat p-value R-sqr R-adj
e(λP +λC)/2 -.4134 -32.8699 .0000 .0551 .0551 .1374 11.6701 .0000 .0073 .0072
e|Delta| -.3363 -28.9361 .0000 .0433 .0432 .2075 19.3126 .0000 .0197 .0197
eln(K/S) -.3480 -30.2719 .0000 .0471 .0471 .1940 18.2033 .0000 .0176 .0175
eIVP -.3313 -29.3458 .0000 .0444 .0444 .1851 17.6928 .0000 .0166 .0166
eOI -.3633 -31.4907 .0000 .0508 .0508 .1494 13.8834 .0000 .0103 .0102
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Table 4.7: Reversion of the Hazard Rates (λ)

This table reports the reversion results for the hazard rates implied by CDS spreads and DOOM put option prices, after controlling
for the permanent difference due to option-related factors. The sample period is from May 2002 to May 2012. λ is the URC-implied
hazard rate, y and θ are the credit and residual components of the URC-implied hazard rate. The components are extracted by
the Nelson-Siegel model. Superscript C stands for CDS and P stands for DOOM put. |Delta|, K, IVP , and OI are, respectively,
moneyness, strike, implied volatility, and open interest of the DOOM put.

Panel A: 7-day Prediction
Put CDS

βP,y p-value βP,θ p-value R-sqr R-adj βC,y p-value βP,θ p-value R-sqr R-adj
e(λP +λC)/2 -.2341 .0000 -.2708 .0000 .0377 .0376 .0710 .0000 .0558 .0000 .0034 .0033
e|Delta| -.2090 .0000 -.2178 .0000 .0345 .0343 .1168 .0000 .1385 .0000 .0244 .0243
eln(K/S) -.2048 .0000 -.2146 .0000 .0337 .0336 .1045 .0000 .1189 .0000 .0184 .0183
eIVP -.1375 .0000 -.1707 .0000 .0219 .0218 .0929 .0000 .1123 .0000 .0171 .0170
eOI -.2106 .0000 -.2135 .0000 .0392 .0391 .0737 .0000 .0911 .0000 .0122 .0121

Panel B: 30-day Prediction
Put CDS

βP,y p-value βP,θ p-value R-sqr R-adj βC,y p-value βP,θ p-value R-sqr R-adj
e(λP +λC)/2 -.3449 .0000 -.3805 .0000 .0239 .0238 .1933 .0000 .1811 .0000 .0087 .0086
e|Delta| -.3285 .0000 -.2859 .0000 .0207 .0206 .1757 .0000 .2370 .0000 .0194 .0193
eln(K/S) -.3252 .0000 -.2815 .0000 .0202 .0201 .1778 .0000 .2361 .0000 .0196 .0195
eIVP -.2266 .0000 -.2210 .0000 .0121 .0120 .1829 .0000 .2367 .0000 .0209 .0208
eOI -.3046 .0000 -.2899 .0000 .0238 .0237 .1542 .0000 .1971 .0000 .0156 .0155
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4.6.4 Information Spillover Tests

In this section, we report the results for the VAR regressions in Equation (4.10) on

the information spillover between the put option and CDS markets. We use the first

differences of the variables to prevent serial correlation from influencing the results.

We include firm and time dummies to control for cross-sectional and time effects.

Table 4.8 reports the VAR result for the 7-day change whereas Table 4.9 reports the

VAR result for the 30-day change. Panel A reports the result for the URC-implied

hazard rates (λ), panel B reports the result for the credit component (y), and panel

C reports the result for the illiquidity component (θ).

First note that for both Tables 4.8 and 4.9 and all the panels in the tables,

the regression coefficients for the lagged values of the dependent variables are all

negative and strongly statistically significant at 7-day and 30-day intervals. This

suggests that all variables are stationary and mean reverting. A first difference

might have been over differencing, resulting in a negative coefficient with the lagged

value.

In contrast, the coefficients for the lagged value of the complimentary variables

(e.g. ∆λCt−1 for ∆λPt and ∆yPt−1 for ∆yCt ) are much smaller and positive (with

the exception of ∆yP and ∆yC in the 7-day horizon tests). Overall, there is weak

evidence that there is information spillover between the two markets, with the put

option market marginally leading the CDS market on credit changes, while the CDS

market marginally leads the put option market on changes in illiquidity.

4.6.5 Long-Short Portfolio Performance

Based on the DOOM and CDS divergence and convergence behavior observed in the

previous sections, here we test the profitability of three long-short portfolio trading

strategies with a 7-day holding period. The three strategies are named “Bench-

mark”, “Decomposition”, and “Past Change”, in increasing order of stringency of

trading signals. For the “Benchmark” strategy, each day we simply long the security
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Table 4.8: 7-day Information Spillover Test

This table reports the VAR results for the information spillover between
the CDS and put option markets over a 7-day horizon. The sample
period is from May 2002 to May 2012. λ is the URC-implied hazard
rate. y and θ are, respectively, the credit and illiquidity components
using the Nelson-Siegel model. Superscript C stands for CDS, and P
stands for DOOM put.

Panel A: Hazard Rate
∆λC ∆λP

Coef. t-stat p-value Coef. t-stat p-value
Const. 0.00 0.16 0.88 -0.01 -0.21 0.83
∆λC (Lag1) -0.16 -26.20 0.00 0.08 8.13 0.00
∆λP (Lag1) 0.01 2.82 0.00 -0.31 -55.01 0.00
Firm Dummy Yes Yes
Time Dummy Yes Yes
R-square 0.15 0.30
R-adjust 0.10 0.26

Panel B: Credit Component
∆yC ∆yP

Coef. t-stat p-value Coef. t-stat p-value
Const. 0.00 0.14 0.89 -0.01 -0.85 0.40
∆yC (Lag1) -0.15 -25.68 0.00 -0.01 -0.63 0.53
∆yP (Lag1) -0.01 -3.76 0.00 -0.34 -59.11 0.00
Firm Dummy Yes Yes
Time Dummy Yes Yes
R-square 0.33 0.38
R-adjust 0.29 0.35

Panel C: Liquidity Component
∆θC ∆θP

Coef. t-stat p-value Coef. t-stat p-value
Const. 0.00 0.06 0.95 0.01 0.33 0.74
∆θC (Lag1) -0.15 -25.06 0.00 0.03 3.07 0.00
∆θP (Lag1) 0.00 0.77 0.44 -0.32 -58.48 0.00
Firm Dummy Yes Yes
Time Dummy Yes Yes
R-square 0.10 0.17
R-adjust 0.05 0.12
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Table 4.9: 30-day Information Spillover Test

This table reports the VAR results for the information spillover between
the CDS and put option markets over a 30-day horizon. The sample
period is from May 2002 to May 2012. λ is the URC-implied hazard
rate. y and θ are, respectively, the credit and illiquidity components
using the Nelson-Siegel model. Superscript C stands for CDS, and P
stands for DOOM put.

Panel A: Hazard Rate
∆λC ∆λP

Coef. t-stat p-value Coef. t-stat p-value
Const. -0.01 -0.28 0.78 0.00 0.00 1.00
∆λC (Lag1) -0.20 -12.24 0.00 0.10 4.92 0.00
∆λP (Lag1) 0.04 3.03 0.00 -0.27 -16.19 0.00
Firm Dummy Yes Yes
Time Dummy Yes Yes
R-square 0.22 0.39
R-adjust 0.13 0.32

Panel B: Credit Component
∆yC ∆yP

Coef. t-stat p-value Coef. t-stat p-value
Const. 0.01 0.73 0.47 0.00 0.19 0.85
∆yC (Lag1) -0.15 -8.74 0.00 0.00 0.09 0.93
∆yP (Lag1) 0.04 5.32 0.00 -0.35 -22.88 0.00
Firm Dummy Yes Yes
Time Dummy Yes Yes
R-square 0.46 0.53
R-adjust 0.39 0.48

Panel C: Liquidity Component
∆θC ∆θP

Coef. t-stat p-value Coef. t-stat p-value
Const. -0.02 -0.52 0.61 -0.01 -0.22 0.82
∆θC (Lag1) -0.20 -12.51 0.00 0.06 3.51 0.00
∆θP (Lag1) 0.04 2.71 0.01 -0.29 -18.68 0.00
Firm Dummy Yes Yes
Time Dummy Yes Yes
R-square 0.15 0.21
R-adjust 0.05 0.12
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(one CDS or delta amount of put) with the lower implied λ and short the match-

ing security with the higher implied λ. The long-short portfolio is automatically

unwound after 7 days.

For the “Decomposition” strategy, we perform the same trade as for “Bench-

mark”, but only if Dy and Dθ have the same sign. The argument is that if Dy

and Dθ are of different signs, there is a conflict in the prediction of price movement

direction. The “Past Change” strategy is even more stringent than the “Decompo-

sition” strategy. Since we notice a weak evidence of information spillover between

the two markets, we would long the CDS and short the put option if and only if

∆yCt < 0 and ∆θCt < 0, and ∆yPt and ∆θPt > 0; vice versa for the portfolio with a

short position in the CDS and a long position in the put option.7

For each trading strategy, we report the performance in Table 4.10 for the full

and two sub-sample periods. We also report the full period results separately for

junk-grade and investment-grade underlying. Although the long-short position is

supposed to be delta neutral, the portfolio returns still have large standard devia-

tions. To account for the portfolio risks, we also report the Sharpe ratio (i.e. return

in excess of the risk-free interest rate and divided by the standard deviation of the

trades,
r−rf
σ

) in Table 4.11 and the Carhart four-factor alpha in Table 4.12. The

reported mean return is calculated based on a 7-day trading period. Although the

horizon for convergence may be different, all trades are performed within a fixed

holding period. Therefore we can compare the returns for these trades. The re-

ported mean returns are on a daily basis. Since the convergence between DOOMs

and CDSs is likely to occur within a short time (Angelopoulos, Giamouridis, and

Nikolakakis 2013), the actual return may be much deteriorated for a longer holding

period. In addition, in the 30-day holding period, the reported daily returns are

smaller than in the 7-day holding period. (The outperformance drops from 1.81%

to 0.08% for the 30-day holding period.) Given that the average daily return is

decreased dramatically for the longer holding period, the actual outperformance for

the 1-year holding period will be much smaller than 200%. Therefore, in order not

7The results for the 30-day holding period are qualitatively the same. Details are available on
request.
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Figure 4.6: Number of Trades

This figure plots the daily number of trades for the three trading strate-
gies (“Benchmark”, “Decomposition”, and “Past Change”). The sample
period is from May 2002 to May 2012.

to exaggerate the outperformance, it is reasonable to report the returns on a daily

basis.

The total numbers of trades are 35,984 for “Benchmark”, 10,125 for “Decom-

position”, and 327 for “Past Change” over 1,434 available days from May 2002 to

May 2012. Figure 4.6 provides the daily number of trades for the three strategies.

There was a significant increase in the number of trades since 2008, and the number

of trades peaked in 2009, highlighting the impact of the financial crisis on these

two markets and the divergence between DOOM put and CDS prices. Overall, the

number of trades for the “Benchmark” strategy is a lot of higher than for the other

two strategies, with an average of 25 trades per day. In contrast, the number of

trades for “Past Change” is the fewest, with an average of just 0.7 trades per day.

Figure 4.7 plots the cumulative total return for the three strategies over time.

All three cumulative total returns increase steadily over time and experience a steep

increase in 2009, reflecting the increase in the number of trades noted above. The

cumulative profit of the three strategies generally reflects the number of trades under

each strategy. The “Benchmark” strategy is the most profitable, possibly due to the

sheer volume of trades.

Tables 4.10, 4.11, and 4.12 show generally that all three strategies are profitable

but most of the profit and trades were derived in the second half of the sample

period after 2007. There are more trades associated with the junk grade, but the
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Figure 4.7: Cumulative Total Return

This figure plots the cumulative returns for the three trading strategies
(“Benchmark”, “Decomposition”, and “Past Change”). The sample pe-
riod is from May 2002 to May 2012.

trades associated with the investment grade are generally more profitable. While

the “Benchmark” strategy produced the largest amount of total profit due to a much

larger amount of transactions, it is not as good as the other strategies in terms of

the Sharpe ratio (reported in Table 4.11) and Carhart four-factor alpha (reported in

Table 4.12). The “Decomposition” strategy beats the “Past Change” strategy based

on the Sharpe ratio and Carhart alpha, but with the exception of investment-grade

trading. For investment-grade trading, “Past Change” outperformed the other two

strategies. Assuming that the round-trip transaction costs are 17 bp and 12 bp for

put options and CDSs respectively, it is most likely that our trading strategies will

remain profitable after taking the transaction costs into consideration. The mid-

price is used in the three implemented strategies. The round-trip transaction cost of

17 bp is estimated according to general option trading. The cost is underestimated

for the DOOM case. 8

4.7 Conclusion

In this chapter, we study the divergence and reversion of the hazard rates implied

from DOOM (deep out-of-the-money) put prices and CDS (credit default swap)

spreads. Using the Nelson-Siegel model, we decompose the implied hazard rate into

8The transaction cost information for put options and CDSs can be referred to Li and Abdullah
(2012) and Biswas, Nikolova, and Stahel (2015).
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Table 4.10: Long-Short Portfolio Return

This table reports the sample statistics for the returns (in percent) on
the three long-short portfolios. In our trading strategies, all trades are
performed within a fixed holding period. The mean return is reported
for a 7-day trading period. The sample period is from May 2002 to
May 2012. The three portfolio strategies are [1] Benchmark strategy, [2]
Decomposition strategy, and [3] Past Change strategy.

Panel A: All Samples
t-test F-test

[1] [2] [3] [1]-[2] [1]-[3] [1]-[2] [1]-[3]
Mean 2.01 3.83 4.99 -1.81 -2.98 1.74 -13.34
Std 25.63 23.89 38.97
t-stat/F-stat 14.88 16.11 2.32 -6.38 -2.08 1.15 0.43
p-val 0.00 0.00 0.02 0.00 0.04 0.00 0.00
# of Trades 35,984 10,125 327

Panel B: Before 2006
t-test F-test

[1] [2] [3] [1]-[2] [1]-[3] [1]-[2] [1]-[3]
Mean 1.37 4.68 2.06 -3.30 -0.69 -1.72 -0.03
Std 27.24 28.96 27.27
t-stat/F-stat 4.48 6.21 0.66 -4.24 -0.22 0.88 1.00
p-val 0.00 0.00 0.51 0.00 0.82 0.00 0.95
# of Trades 7,915 1,478 77

Panel C: After 2007
t-test F-test

[1] [2] [3] [1]-[2] [1]-[3] [1]-[2] [1]-[3]
Mean 2.19 3.68 5.89 -1.49 -3.70 2.25 -16.77
Std 25.16 22.91 41.93
t-stat/F-stat 14.59 14.94 2.22 -4.91 -2.30 1.21 0.36
p-val 0.00 0.00 0.03 0.00 0.02 0.00 0.00
# of Trades 28,069 8,647 250

Panel D: Junk Grade
t-test F-test

[1] [2] [3] [1]-[2] [1]-[3] [1]-[2] [1]-[3]
Mean 1.89 2.94 5.11 -1.06 -3.22 3.34 -18.88
Std 27.46 24.12 46.34
t-stat/F-stat 10.36 10.07 1.63 -2.86 -1.71 1.30 0.35
p-val 0.00 0.00 0.11 0.00 0.09 0.00 0.00
# of Trades 22,724 6,804 218

Panel E: Investment Grade
t-test F-test

[1] [2] [3] [1]-[2] [1]-[3] [1]-[2] [1]-[3]
Mean 2.22 5.63 4.75 -3.41 -2.53 -1.17 5.76
Std 22.14 23.30 16.38
t-stat/F-stat 11.56 13.93 3.03 -7.85 -1.19 0.90 1.83
p-val 0.00 0.00 0.00 0.00 0.23 0.00 0.00
# of Trades 13,260 3,321 109
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Table 4.11: Long-Short Portfolio Sharpe Ratio

This table reports the sample statistics for the Sharpe ratio on the three
long-short portfolios. In our trading strategies, all trades are performed
with fixed holding period. The mean return is reported for a 7-day
trading period. The sample period is from May 2002 to May 2012. The
three portfolio strategies are [1] Benchmark strategy, [2] Decomposition
strategy, and [3] Past Change strategy.

Panel A: All Samples
[1] [2] [3] [1]-[2] [1]-[3]

Mean 0.08 0.16 0.13 -0.08 -0.05
t-stat 14.88 16.11 2.32 -7.26 -0.89
p-val 0.00 0.00 0.02 0.00 0.37

Panel B: Before 2006
[1] [2] [3] [1]-[2] [1]-[3]

Mean 0.05 0.16 0.08 -0.11 -0.03
t-stat 4.48 6.21 0.66 -3.92 -0.22
p-val 0.00 0.00 0.51 0.00 0.82

Panel C: After 2007
[1] [2] [3] [1]-[2] [1]-[3]

Mean 0.09 0.16 0.14 -0.07 -0.05
t-stat 14.59 14.94 2.22 -5.98 -0.84
p-val 0.00 0.00 0.03 0.00 0.40

Panel D: Junk Grade
[1] [2] [3] [1]-[2] [1]-[3]

Mean 0.07 0.12 0.11 -0.05 -0.04
t-stat 10.36 10.07 1.63 -3.85 -0.61
p-val 0.00 0.00 0.11 0.00 0.54

Panel E: Investment Grade
[1] [2] [3] [1]-[2] [1]-[3]

Mean 0.10 0.24 0.29 -0.14 -0.19
t-stat 11.56 13.93 3.03 -7.28 -1.97
p-val 0.00 0.00 0.00 0.00 0.05
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Table 4.12: Long-Short Portfolio Carhart Four-Factor Alpha

This table reports the Carhart four-factor alpha (in percent) for the three
long-short portfolios. The sample period is from May 2002 to May 2012.
We use the Carhart four-factor model to control the market conditions,
and then report the constant term. The three portfolio strategies are [1]
Benchmark strategy, [2] Decomposition strategy, and [3] Past Change
strategy.

Panel A: All Samples
α t-stat p-value

[1] 1.47 4.32 0.00
[2] 3.59 4.58 0.00
[3] 3.75 1.63 0.10

Panel B: Before 2006
α t-stat p-value

[1] 0.69 0.86 0.39
[2] 2.23 1.21 0.23
[3] -8.08 -1.36 0.18

Panel C: After 2007
α t-stat p-value

[1] 1.79 5.54 0.00
[2] 3.81 4.86 0.00
[3] 5.21 2.04 0.04

Panel D: Junk Grade
α t-stat p-value

[1] 1.47 3.48 0.00
[2] 2.58 2.61 0.01
[3] 5.07 1.14 0.26

Panel E: Investment Grade
α t-stat p-value

[1] 2.04 3.90 0.00
[2] 7.15 6.35 0.00
[3] 4.79 2.05 0.04

139



the rating-class related fitted credit component and the residual illiquidity compo-

nent.

The results of the VAR (vector autoregression) tests indicate that the hazard

rates and all sub components are stationary over time, with the same spillover

relationship in both markets. However, there is weak evidence to indicate that the

DOOM put option market seems to react faster to credit deterioration whereas the

CDS market is quicker in reacting to liquidity deterioration.

Similar to Carr and Wu (2010), we find the average hazard rate, option money-

ness, delta, implied volatility, and option open interest drive the difference between

the price structures of the two markets. In addition, we find the same set of factors

can also explain the difference in the illiquidity components and the difference in

the credit components of the two markets. Carr and Wu (2010) show that, after

controlling for these structural factors, the residual is related to the future implied

hazard rate and hence can be used to predict future price changes. Again, we find

the residual can also be used to predict how the subcomponents will move.

To exploit the divergence and reversion behavior in the two markets, we test three

trading strategies with increasingly stringent trading conditions. The first strategy,

“Benchmark”, simply trades on the divergence of implied hazard rates. The second

strategy, “Decomposition”, adds an extra condition, by requiring both subcompo-

nents to be over- or under-valued in the same direction. The third strategy, “Past

Change”, which is also the toughest, takes the previous values and spillover pattern

into consideration. We find all three strategies produce positive returns. While

the Carr-Wu hazard rate-driven “Benchmark” strategy produced the highest total

return due to the much larger number of trades, our more refined strategies out-

performed “Benchmark” when evaluated based on the Sharpe ratio and Carhart

four-factor alpha. In terms of mean return, the “Decomposition” strategy out-

performed “Benchmark” by 1.06–3.41%, while the “Past Change” strategy outper-

formed “Benchmark” by 0.69–3.70%. Given that the round-trip transactions are 17

bp and 12 bp for put options and CDSs respectively, it is most likely that our trading

strategies will remain profitable after taking transaction costs into consideration.

140



Chapter 5

Conclusion

In this thesis, I conducted three studies in hedge fund and CDS research. The first

study investigates the predictability of hedge fund flow on bond yields. I find fund

flows predict the movement of bond yields in the next month. In addition, the

outflow prediction is rather pronounced for large funds with a short notice period

prior to redemption.

The second study investigates the systematic and firm-specific credit and liquidity

risks in CDS spreads. I find that the systematic risks are as important as the firm-

specific risks. In particular, I documented a pronounced systematic liquidity risk

impact in CDS spreads since 2007. This finding supports several previous studies, in

which the authors find individual liquidity risk has a (greater) explanatory power for

the changes in CDS spreads. In addition, I find an asymmetric association between

stock-based Amihud illiquidity and CDS spread: CDS spread increases when the

underlying stock becomes illiquid but not vice versa. This new evidence extends the

findings in Das and Hanouna (2009). Overall, the evidence of systematic liquidity

risks in CDS spreads challenges the current Basel III procedures for counterparty

credit risk regulations. Since there is a significant proportion of liquidity risk in the

individual CDS spreads on top of the credit risk, the capital charge for counterparty

credit risk that is based on CDS spread will be overestimated. More importantly,

my proposed model can be used to provide CDS proxy for firms that do not have

traded CDSs.
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The last study extends Carr and Wu (2010), who establish a theoretical linkage

between DOOM (deep out-of-the-money) put options and CDSs. I use the Nelson

and Siegel (1987) model to obtain the credit and illiquidity components for DOOMs

and CDSs, and investigate the association between these four components (credit

and illiquidity components for DOOMs and for CDSs). I find that the difference

between DOOM and CDS credit components can be explained by option-related

factors, but the difference vanishes over time, after controlling for these factors. I

find similar results for the DOOM and CDS illiquidity components as well, but the

explanatory power is weak.

To exploit the convergence pattern, I test a trading strategy by longing a security

(DOOM or CDS) with a low hazard rate and, at the same time, shorting the other. I

find such a simple trading strategy generates a positive average return. I then further

consider two other more stringent strategies based on component information. The

two refined strategies outperform the benchmark strategies by the Sharpe ratio and

Carhart alpha.

My three studies enrich the relevant literature on hedge funds and on CDSs. As

a suggestion for future research, one may explore the flow impact on other financial

markets, such as commodity or emerging markets. Hedge funds have started to hold

large positions in these markets and their holdings might have an impact on these

markets. Another suggestion is that one may study the deviation between DOOMs

and CDSs due to CDS-related factors.
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