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Abstract 

Multivariate statistical process control (MSPC) techniques play an important role in 

industrial batch process monitoring and control. This research illustrates the 

capabilities and limitations of existing MSPC technologies, with a particular focus 

on partial least squares (PLS). 

In modern industry, batch processes often operate over relatively large spaces, with 

many chemical and physical systems displaying nonlinear performance. However, 

the linear PLS model cannot predict nonlinear systems, and hence non-linear 

extensions to PLS may be required. The nonlinear PLS model can be divided into 

Type I and Type II nonlinear PLS models. In the Type I Nonlinear PLS method, the 

observed variables are appended with nonlinear transformations. In contrast to the 

Type I nonlinear PLS method, the Type II nonlinear PLS method assumes a 

nonlinear relationship within the latent variable structure of the model. Type I and 

Type II nonlinear multi-way PLS (MPLS) models were applied to predict the 

endpoint value of the product in a benchmark simulation of a penicillin batch 

fermentation process. By analysing and comparing linear MPLS, and Type I and 

Type II nonlinear MPLS models, the advantages and limitations of these methods 

were identified and summarized. Due to the limitations of Type I and II nonlinear 

PLS models, in this study, Neural Network PLS (NNPLS) was proposed and applied 

to predict the final product quality in the batch process. The application of the 

NNPLS method is presented with comparison to the linear PLS method, and to the 

Type I and Type II nonlinear PLS methods. Multi-way NNPLS was found to 

produce the most accurate results, having the added advantage that no a-priori 

information regarding the order of the dynamics was required. The NNPLS model 

was also able to identify nonlinear system dynamics in the batch process. 

Finally, NNPLS was applied to build the controller and the NNPLS method was 

combined with the endpoint control algorithm. The proposed controller was able to 

be used to keep the endpoint value of penicillin and biomass concentration at a set-

point.
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Chapter 1  

Introduction 

1.1 Background 

In industrial processes, to ensure their safe and efficient operation and to improve or 

maintain product quality, these processes need to be continuously monitored 

throughout their operation. The monitoring of process systems has been studied 

extensively over the last few years. 

In an attempt to monitor industrial processes, the chemical industry has seen a rapid 

increase in the number of sensors that have been made commercially available. 

Unfortunately, because of the large amounts of data available and the highly 

correlated nature of these measurements, it can be difficult to interpret the data once 

it has been collected. To help with the interpretation of large quantities of process 

measurements, Statistical Process Control (SPC) is proposed and applied. 

SPC is an approach for process monitoring based on a mathematical statistics 

method (Wetherill & Brown, 1991), and is used for monitoring and controlling a 

process. The SPC method is an effective technique for maintaining product quality at 

a required level and ensuring product consistency. SPC methods have been applied 

in process industries with great success during past decades. Nevertheless, when the 

number of the required process variables increases, the number of monitoring charts 

also needs to be augmented. When the number of required charts becomes too large, 

traditional SPC methods are often unsuitable. 

In industrial process data, the recorded process variables are huge; these variables 

have collinearity and are highly correlated. In practice, the process variables are 

recorded irregularly, such as missing value numbers or, a number of the values may 

be corrupted by process and measurement noise. In these cases, traditional SPC 

methods are not able to adapt to modern industrial processes. MSPC is as an 

alternative approach to traditional SPC in the area of process monitoring, and has 
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overcome the weakness of SPC. MSPC method can reduce some dimensions in the 

process data, meaning that required univariate control charts are obviously reduced. 

The MSPC method collects all process data, including past data, and because MSPC 

explicitly considers the multivariate nature of the data, it identifies the correlations 

that exist. MSPC is thus suitable for dealing with large and highly correlated data 

sets. The primary objective of MSPC is to maintain product quality in a desired 

product specification and to control a process in a desired state. By controlling and 

monitoring a number of key quality variables of a process, product quality can be as 

close as possible to the desired value. 

MSPC covers a wide range of techniques. In these methods, MSPC is based on the 

statistic projection techniques of Principal Component Analysis (PCA) and Partial 

Least Square or Projection to Latent structure (PLS). They are used to analyse 

process data and to develop predictive models in support of process monitoring and 

control in real industrial processes. When PLS is applied to batch processes, a 

technique referred to as Multi-way PLS (MPLS) is frequently used. This technique 

analyses process behaviour relative to the mean trajectories of the process variables. 

In doing so, a major nonlinearity in the data is removed. 

A major limitation of linear PLS is that industrial processes are always nonlinear to 

some extent. This is not always a problem as many processes only operate around 

limited operating regions, where linear PLS techniques tend to provide acceptable 

accuracy. However, batch processes often operate over relatively large spaces, with 

many chemical and physical systems displaying nonlinear performance; hence 

nonlinear extensions to PLS may be required. A number of different methods have 

therefore been proposed to provide a nonlinear PLS algorithm. 

The nonlinear PLS model can be divided into Type I and Type II nonlinear PLS 

models (Wold, 1989).  

In the Type I Nonlinear PLS method, the observed variables are appended with 

nonlinear transformations. Following this, traditional linear PLS is then applied. In 

Type I methods, the inputs into the PLS model are specified to be cross and squared 

terms of the input variables. On the other hand, for Type II methods, nonlinear 

functions are implemented in the PLS model’s inner structure. In contrast to the 
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Type I nonlinear PLS method, the Type II nonlinear PLS method assumes a 

nonlinear relationship within the latent variable structure of the model. Type I and II 

non-linear structures are integrated within MPLS models to enable them to more 

accurately approximate nonlinear batch processes. In reality, the exact order of the 

polynomial of any nonlinear relationship will not be known a-priori; this means that 

Type I and II nonlinear PLS models cannot determine the particular polynomial 

expansion to match the non-linearity inner relation of the process. The accuracy of 

the prediction is hence reduced significantly. 

Neural Network PLS (NNPLS) is an alternative method to Linear PLS. For increased 

functionality, the use of a neural network is proposed in the inner structure of the 

NNPLS model. The advantage of the application of the neural network in the inner 

regressors is based on their nonlinear approximation property. In this study, the 

NNPLS model is used for process monitoring and control. 

In recent years, batch processes have gained ever increasing importance in 

manufacturing industries. In particular, batch processing is frequently used in the 

manufacture of low volume, high value products, such as pharmaceuticals or 

specialty chemicals. Unfortunately, batch processing encounters many challenges in 

continuous production; for instance, there are rarely steady state conditions; process 

dynamics are typically time-varying and non-linear; and quality measurements are 

often only available at the end of the batch. 

Quality control of batch processes is usually implemented by regulating several 

process variables, such as temperature and pH. To ensure consistent endpoint 

product quality, these variables are expected to maintain their set-point value. When 

variation occurs in the raw material properties, the operation process cannot produce 

a consistent product. Consequently a number of advanced control methods have been 

applied to improve product consistency.  

Cerrillo and MacGregor (2003) proposed a strategy for controlling end-point quality 

properties. Endpoint control attempts to optimize the operating conditions during the 

whole batch to ensure that endpoint product quality satisfies the requirements. This 

endpoint controller was successfully applied to regulate a simulated batch process. 
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1.2 Contributions of This Study  

The work described in this research focuses on multivariate statistical analysis of an 

industrial fed-batch fermentation process, used for the production of penicillin and 

quality control in the industrial polymerization batch process. 

Research contributions include: 

1) PLS has been successfully applied in the modelling, estimation and control of 

batch processes. However, the nonlinear nature of many real, complex chemical 

systems means that traditional linear PLS is not always suitable. Therefore, in this 

thesis, the use of a nonlinear multi-way PLS is proposed to address the issues of non-

linearity in batch processes. Type I and Type II nonlinear multi-way PLS models are 

used to predict the endpoint value of the product. In the algorithm for the Type II 

nonlinear PLS model, the inner relation is usually considered to be a quadratic 

polynomial (2
nd

 order) or 3
rd

 order polynomial. A limitation of this approach is that 

by choosing a 2
nd

 order polynomial, the type of relationship that can be modelled is 

restrictive. Therefore, higher order terms for the Type II nonlinear PLS model are 

considered and applied in this study. By analysing and comparing linear multi-way 

PLS and Type I and Type II nonlinear multi-way PLS models, the advantages and 

limitations of these methods are identified and summarized. 

As Type I and Type II nonlinear multi-way PLS models have certain limitations, 

multi-way NNPLS is proposed and applied to predict the quality of the final product 

in the batch process. Its performance is compared with the performance achieved 

using the Type II nonlinear multi-way PLS model. The benefits of the multi-way 

NNPLS is discussed and summarized. 

2) Quality control of batch processes is usually implemented by regulating several 

process variables, such as temperature and pH. Notwithstanding that the process 

variables are well maintained, the quality of the final product cannot be guaranteed, 

due to the effects of disturbances. To address this, the endpoint controller based on 

neural network PLS is proposed and applied to control the endpoint value at a set-

point. The Endpoint controller based on NNPLS can be applied to track a changing 

set-point; the results showed the performance of the NNPLS controller is very 

accurate. And when some process disturbance and some noises are considered, the 
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Endpoint controller based on NNPLS has the ability to reject these disturbances and 

noises. 

 

1.3 Structure of the Thesis 

This thesis consists of 7 chapters. Following this introduction, Chapter 2 presents a 

literature review of the application of multivariate statistical analysis methods, and 

summarizes the previous work on MSPC methods and applications. Chapter 3 

describes some of the basic algorithms of MSPC techniques such as partial least 

squares (PLS) and also discusses several of the extensions of PLS, including MPLS, 

nonlinear PLS and neural network PLS (NNPLS). 

In Chapter 4, the limitations of linear PLS are discussed and summarised; PLS is 

then used to predict a linear and nonlinear system. To overcome this deficiency, 

several nonlinear extensions are proposed to enable it to better handle nonlinear 

systems. Finally, to illustrate the capabilities of the NNPLS method, NNPLS and the 

Type II nonlinear PLS model are applied to predict the same testing system. Some 

conclusions are then provided based on analysis of the results.  

In Chapter 5, NNPLS is used to model a benchmark simulation of a penicillin batch 

fermentation process. The fermentation process is first introduced. The endpoint 

measurement is used because in most fermentation processes, quality measurements 

such as penicillin concentration, will only be available at the end of a batch. For this 

reason, this chapter focuses on the endpoints of the products (Biomass and 

Penicillin). By analysing and comparing linear multi-way PLS, Neural network 

multi-way PLS, and Type I and Type II nonlinear multi-way PLS models, the 

advantages and limitations of these methods are identified and summarized. 

In Chapter 6, NNPLS is applied to control Biomass and Penicillin a penicillin batch 

fermentation process. The basic End-point Control Algorithm is described and 

discussed. A novel endpoint controller based on NNPLS is proposed, and its 

performances are compared against other controllers. The benefits of this controller 

are summarized. 
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Finally, Chapter 7 provides the conclusions of this study. In addition, suggestions for 

further work are also included in this chapter. 
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Chapter 2  

Literature Review 

 

This chapter presents an extended overview of multivariate statistical process control 

(MSPC) methods and techniques. The advantages and disadvantages of some MSPC 

methods are discussed, specifically those relating to Principal Component Analysis 

(PCA) and Partial Least Squares (PLS). 

The chapter is divided into the following sections: 

2.1) presents a background to batch process and process monitoring; 

2.2) provides an overview of Statistical Process Control; 

2.3) introduces the use of control charts; 

2.4) describes MSPC techniques, such as PCA and PLS; 

2.5) discusses the use of Multivariate Statistical Projection methods, and summarizes 

these methods; 

2.6) introduces nonlinear PLS and Neural Network PLS; and 

2.7) provides a summary of this chapter. 

 

2.1 Background to Batch Processes and Process 

Monitoring 

Batch processes are widely used in industry as they outperform continuous 

operations in the manufacturing of certain chemicals and materials (Korovessi & 

Linninger, 2006). The selection of a batch or continuous operation is based on many 
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factors (Yucai, 2001). A brief comparison of Batch and Continuous Operations is 

presented in Table 2.1. Batch processing is frequently used in the manufacture of 

low volume, high value products, such as pharmaceuticals or specialty chemicals. 

The materials are processed over a finite period of time, where the operational 

conditions are typically specified to follow a pre-determined recipe. To ensure safe 

and efficient operation of these processes and to improve or maintain product quality, 

it is important that these processes are continuously monitored during operation. 

However, as a result of disturbances to the process, such as changes in the initial 

conditions of the batch and the frequent absence of on-line quality measurements, 

this can be challenging (Wetherill & Brown, 1991; Martin & Morris, 1996; Yucai, 

2001; Korovessi & Linninger, 2006; Yao & Gao, 2009). 

Table 2.1 Reasons for Batch Operations and Continuous Operations 

Reason for Batch Operation Reason for Continuous Operations 

Small volume of production  

(production typically<500,000kg/yr) 
Large volume of production 

Variability in production rate Steady production rate 

Reuse of equipment (shared equipment) 
Dedicated-use equipment (single 

product use) 

Multi-product operation Single-product operation 

Process variables subject to adjustment 

(uncertainties in the reactivity or potency 

of raw materials) 

Invariable process condition (minor 

uncertainties in the reactivity or 

process are sufficiently robust) 

Many isolation steps Lot integrity arbitrary or not required 

Lot integrity required  

 

The monitoring of process systems has been studied extensively in previous years 

(e.g. Macgregor & Kouriti, 1995; Lennox et al., 2000).  The most important aspect of 

process monitoring is the detection of any abnormal events in the process operation, 

and the identification of any effects of these abnormalities, such as changes in the 

product quality and quantity (Jackson, 1991; MacGregor et al., 1991; Iserman, 1997; 

Camacho et al., 2008). Both industry and academia hope that system performance 
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and product quality can be increased, and the safety of the operation can also be 

improved through process monitoring. 

A number of approaches have been applied to detect such process abnormalities, 

such as signal-, knowledge- and model-based techniques (Willsky, 1976; Iserman, 

1997). In signal-based techniques, the measured signals are directly analyzed. When 

the signal exceeds signal tolerances, process abnormalities can be found (Iserman, 

1993). In knowledge-based techniques, detection is based upon comparing the 

difference between the process measured variable and observed variable value, with 

the heuristic knowledge value and analytical knowledge value (Freyermuth, 1991; 

Venkatasubramanian et al., 2002; MacGregor & Cinar, 2012). In model-based 

techniques however, process analysis is undertaken using mathematical process 

models together with parameter estimation, state estimation and parity equation 

methods. The detection of abnormal operations is based on the analysis of 

parameters, state variables and residuals (Iserman & Balle, 1997). According to 

Frank et al. (2000), the model-based technique is an effective method for detecting 

process abnormalities, therefore the model-based technique will be focused upon in 

this thesis.  

The most basic and common application of the model-based method is based on the 

use of linear time invariant (LTI) models. Early work on the use of LTI models 

examined fault detection in state-space model applications (Beard, 1971; Jones, 

1973). In recent years, decoupling techniques have been applied; this approach can 

make more robust model uncertainties and disturbances, whilst making it easier and 

more effective when detecting  process faults (Frank et al., 2000). 

In an attempt to monitor industrial processes, the chemical industry has seen a rapid 

increase in the number of sensors that have been made commercially available. 

Unfortunately, due to the large amounts of data available and the highly correlated 

nature of these measurements, it can be difficult to interpret the data once collected. 

To help interpret large quantities of process measurements, many researchers have 

successfully applied data analysis tools, such as those available within the field of 

Statistical Process Control (SPC) (Martin et al., 1996).  
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2.2 Statistical Process Control  

In the production process, some variables may be subject to some fluctuations 

caused by, for instance, machine, method, material and environment. These 

fluctuations can be divided into two types: normal fluctuations and abnormal 

fluctuation. Normal fluctuations are caused by inevitable factors, which technically 

are difficult and non-economical to eliminate from the technique. These fluctuations 

have little effect on product quality. On the other hand, abnormal fluctuations are 

caused by system reasons (abnormal factors), which can have a serious influence on 

product quality. These effects however can be avoided and eliminated completely 

through process control (Barlow & Irony, 1992). 

Statistical process control (referred to SPC) is a process monitoring approach based 

upon the mathematical statistics method (Wetherill & Brown, 1991). The SPC 

method is applied to monitor and control a process, and is an effective technique for 

keeping product quality at the required level to ensure product consistency. This 

technique has been widely applied in design, sales, service, and management 

processes, and in past decades has been developed through combining it with 

computer technology.   

When SPC involves plotting measurements on a graph, the variances of 

measurements are plotted on an x/y axis with the x-axis usually representing time. A 

number of additional lines representing the average measurement and control limits 

are drawn across the chart. Control charts compare this variance against upper and 

lower limits to see if it fits within the expected, specific, predictable and normal 

variation levels. If it does, the process is considered in control and the variance 

between measurements is considered normal random variation inherent in the 

process. If, however, the variance falls outside the limits, the process is considered 

out of control and action should be taken (Lu et al., 2008). 

SPC is applied to quality control, which can be traced back to the 1920s. In 1924, 

Walter A. Shewhart of Bell Telephone Laboratories originally proposed the concept 

of the control chart (Shewhart, 1931). A control chart is an important method and 

tool of statistical quality management (see Section 2.3 for overview of control 

charts). Shewhart kept working on and improving this scheme, and in 1931, he 
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published his book ‘Economic Control of Quality of Manufactured Product’. This 

book provided a good benchmark for the subsequent application of statistical 

methods to process control. Two of Shewhart’s co-workers, Dodge and Romig, 

initially applied statistical theory to sampling inspection (Dodge, 1955; Dodge & 

Romig, 1959). 

The applications of statistical quality control and SPC have been further improved 

and developed during the last eighty years. Since SPC was founded, it has been 

promoted and applied in the area of the industry. During World War II, SPC played 

an important role in ensuring the quality and timely delivery of military products; for 

instance, the U.S. Department of Defense decided to use mathematical statistics for 

the quality management of weapons and ammunition. The rule of the mathematical 

statistical methods was developed by the Standards Association, and it was used in 

planning quality management. A special committee was later established, and 

between 1941 and 1942, a number of initial quality management standards of the 

United States wartime were published (e.g. wartime standard Z1.1, Z1.2, Z1.3). 

During 1950-1980, Japan had widely promoted and applied SPC in industry, with 

Japanese companies creating a Total Quality Control (TQC) approach to quality 

management. In the 1970s, TQC greatly improved the competitiveness of enterprises 

in Japan, where cars, household appliances, watches, and electronic products for 

instance were present in a large number of international markets; this developed the 

Japanese economy substantially. Japanese product quality and productivity became a 

world leader, with renowned American management expert Professor Berger also 

commenting that one of the success cornerstones of SPC was in Japan (Barlow & 

Irony, 1992). Given the success of Japanese companies, total quality management 

theory had a huge impact in the world.  Since the 1980s, SPC has been revived 

within industrially developed countries. Many world-class companies have also 

actively promoted and applied the SPC method in their internal operations (Chiu & 

Kuo, 2010). 
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2.3 Control Charts 

A control chart is an important tool of statistical quality management; it is a graph 

whose construction is based on hypothesis testing. Control charts are applied to 

monitor whether the production process is in control (Bersimis et al., 2007). 

In the production process, product quality is affected by random factors and 

system factors; random factors are composed of a large number of small accidental 

factors, whereas system factors are caused by some identifiable and obvious reasons. 

System factors can be found and removed through the appropriate measures. When 

a process is only affected by random factors, the average and variation quality 

characteristics of the product are basically stable, and are deemed in control. At this 

time, product quality characteristics are used to determine the probability distribution 

of the random variable. The distribution (or one of the unknown parameters) can be 

estimated based on observation data collated over a long time in steady-state by 

using statistical method.  

When the distribution is determined, the mathematical model of quality 

characteristics is also determined. For production testing, the quality characteristics 

need to be tested to see whether they are consistent with this mathematical model. 

Therefore, at regular intervals, a fixed sample is extracted in the production line, and 

then a calculation of the quality characteristics is undertaken. If the values match the 

mathematical model, the production process is normal; otherwise, it means that 

system changes in production, or the process is out of control. When this occurs, the 

company needs to consider taking various measures including stopping production 

or carrying out an inspection. The causes will then need to be found and addressed in 

order to restore the system to normal production (Lee et al., 2008). 

As control charts are easy to build and interpret, and in practice are very effective, 

they have been widely applied in process control and monitoring (Lee et al., 2009). 

When a control chart is applied to monitor process performance, it will include a 

number of points. The plotted points are usually averages of sub-groups (the number 

of subgroup is n) or ranges of variation between sub-groups; they can also be 

individual measurements. Control limits are calculated in the control chart, and 

include an upper and lower control limit.  The specification of the control limits is 
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the most critical decision that has to be made at the design stage of a control chart. 

Control limits are usually determined from historical data for the statistic being 

monitored, and they define the boundary between the acceptance and the rejection 

region. The region on the control chart that the control limits mark out is called the 

control region. By comparing current data to these lines, conclusions can be drawn 

as to whether the process variation is consistent (in control) or unpredictable (out of 

control, affected by special causes of variation). When the process is in control, and 

the control limits are ensured, the sample statistics will be almost distributed 

between upper control limits and lower control limit. If some sample statistics 

distributed outside of the control limits; this showed that the process is out of control.  

A typical Shewhart-type control chart showing both upper and lower control limit is 

shown in Figure 2.1; the blue point represents the target value. Almost all target 

values are distributed between both control limit lines with only one point falling 

outside the limit; this point is called the out-of-control point. This event is therefore 

interpreted as the process being out of control. 

 

Figure 2.1 A Shewhart-type Control Chart 
 

The application of control charts has been widely researched in process statistical 

control and statistical quality control. In 1989, Banks published a book ‘Principle of 

Quality Control’ which introduced the application of control charts in statistical 

quality control. In 1991,  control charts were studied as an important part of 
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Wetherill and Brown’s book, ‘Statistical Process Control - Theory and Practice’. 

Lowery and Montgomery (1995) gave a review of literature on control charts for 

multivariate quality control. Control charts as a basic method of statistical process 

control were further explained in ‘Introduction to Statistical Quality Control: Part 3’ 

(Montgomery, 1996).   

Control charts can be divided into three common types, namely, Shewhart-type 

control charts, Cumulative Sum control charts and Exponentially Weighted Moving 

Average control charts. These will be discussed in the following sub-sections.  

 

2.3.1 Shewhart-type Control Charts 

Shewhart created the basis for the control chart and the concept of a state of 

statistical control through carefully designed experiments. All control charts based 

on Shewhart’s theory and philosophy are called Shewhart-type control charts. It is 

the most popular SPC method used to detect whether the observed process is under 

control (Lee et al., 2009). 

However in production processes, consecutive observations have a number of certain 

correlations. In a number of continuous processes, the correlation between the 

consecutive measurements is difficult to determine. When the control chart is 

designed, this problem needs to be addressed; a problem that was deeply considered 

and debated about in the 1980s and 1990s. 

There are several solutions suggested. The first approach, which is historically the 

most classic one, consists of dealing with original data and adjusting the control 

limits of classical control charts (Vasilopoulos & Stamboulis, 1978; Schmid, 1995, 

1997; VanBrackle & Reynolds, 1997; Zhang, 1998; Lu & Reynolds, 1999a, 1999b, 

2001). Other approaches are based on the concept of residuals (Alwan & Roberts, 

1988; Montgomery & Mastrangelo, 1991) or on monitoring statistics related to 

autocorrelations (Yourstone & Montgomery, 1991; Jiang et al., 2000).  

A statistic of interest is calculated for individual groups of samples randomly 

collected from a process. A group of random process samples is called a rational 
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sub-group. The control limits of the Shewhart-type control chart can be expressed 

mathematically as: 

                                                                                                                 (2.1) 

where   and   denote the population mean and the population standard deviation of 

the statistic, and the value of factor L is selected. 

In general, and assuming that the data is normally distributed, then it follows that 

approximately 95% of the sample will fall within the limits and the control limits can 

be calculated as: 

        
     

√ 
                                                                                                  (2.2) 

where n is the sample sub-group. 

In practice, it is common to replace the 1.96 with 3 (in order for the interval to 

include approximately 99% of the sample means), with the control limits being 

defined as: 

        
  

√ 
                                                                                                      (2.3) 

Shewhart control charts have some limitations in the application conditions and 

principles. As they are based on the theory of mathematical statistics, they are 

applied to identify system factors in the production process, and then applied to 

control product quality. There are three application conditions: 

(1)  There are large quantities of quality characteristic data; 

(2) The quality characteristic data are normal distribution, or near normal distribution; 

(3) The quality characteristic variables are independent. 

When the actual situation comes into conflict with one of the three application 

conditions, the limitation of Shewhart control charts will be evident. Kim et al. (2007) 

highlighted the limitation of the principles; that is that Shewhart control charts lack 

accuracy and are not sensitive to small changes in data.  
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2.3.2 Cumulative Sum Control Charts 

Although, Shewhart control charts are applied to detect large process shifts, the 

effect is not obvious in detecting small or slow shifts. An alternative control chart 

was proposed by Page in 1954 called the Cumulative Sum (CUSUM) control chart. 

Since CUSUM control charts involves the calculation of a cumulative sum, if each 

point on the chart is the cumulative history (integral) of the process, systematic shifts 

are easily detected. Large, abrupt shifts are not detected as easily as in a Shewhart 

chart, so they are more effective than Shewhart-type charts.  

CUSUM control charts have been developed and improved upon by many authors. 

In 1959, Barnad described a V-shaped mask which could be superimposed on the 

CUSUM chart. Johnson (1961) gave mathematical procedures for constructing 

CUSUM control charts. Johnson and Leone (1962) constructed CUSUM charts for 

controlling binomial distribution parameters. Ewan (1963) first applied CUSUM 

control charts in practice problems. Hawkins (1993) showed that CUSUM control 

charts were effective in detecting and diagnosing persistent shifts. Woodall and 

Adams (1993) designed a novel CUSUM control chart based on a fast accurate 

approximation of Average Run Lengths. 

Given a CUSUM control chart contains several samples’ information, but a 

Shewhart control chart plots points based on information only from a single 

subgroup sample, the CUSUM control chart is more efficient than the Shewhart-type 

control chart (Kim et al., 2007). When the subgroup of size is n=1, process shifts are 

between 0.5  and 1.5  (  is population standard deviation of the statistic). The 

CUSUM control chart and the Shewhart control chart are applied to detect process 

shifts; however the CUSUM control chart needs only half the time of the Shewhart 

control chart to do this. The CUSUM Control chart is though slower than the 

Shewhart control chart in detecting large shifts (i.e. when the process shift is bigger 

than 3  ). The CUSUM control charts are therefore applied to detect small process 

shifts (Montgomery et al., 1996). 

When the rational subgroups of size    , the Cumulative Sum control chart is 

denoted by plotting the statistic: 
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   ∑   ̅     
 
   ,                                                                                               (2.4) 

where i is the rational subgroup number,    is the target for the process mean, and  ̅  

denotes the average of each rational subgroup.  

The control limits are usually calculated by using the V-mask procedure (Barnard, 

1959; Johnson, 1961). A typical example of a CUSUM control chart is illustrated in 

Figure. 2.2, where the red points represent the Cumulative Sum of target value, and 

the blue line represents the control limit. Only one point is outside the limitation, 

thus this illustrates the process is out of control in this time. 

 

Figure 2.2 A Cumulative Sum Control Chart 

 

2.3.3 Exponentially Weighted Moving Average Control 

Charts 

Exponentially Weighted Moving Average (EWMA) control charts are another 

alternative to  Shewhart control charts. The EWMA is a statistic for monitoring the 

process that averages the data in a way that gives less and less weight to data, as they 

are further removed in time. For the EWMA control technique, the decision depends 

on the EWMA statistic, which is an exponentially weighted average of all prior data, 

including the most recent measurement (Zhang, 1998; Lee et al., 2008). The EWMA 



Chapter 2 Literature Review    

36 

control chart was proposed by Robert in 1959. A number of EWMA methods and 

design strategies have been developed to detect shift. Crowder (1987) studied the 

average run lengths (ARL) properties of the EWMA chart and proposed 4 steps for 

the application of EWMA chart through computer simulation. Saccucci et al. (1992) 

introduced the robust EWMA control chart. Holmes and Mergen (1992) proposed 

the use of parabolic control limits for EWMA control charts; it performs better than 

EWMA with parallel limits in terms of ARL value. Wardell et al. (1994) explored 

the application of EWMA charts in the auto-correlated process. Montgomery and 

Mastrangelo (1995), and Mastrangelo and Brown (2000) researched the application 

of moving centreline EWMA in the model. 

The EWMA statistic is calculated as: 

                                                                                (2.5) 

where   is the weighting factor (     ), and    is the observation at time i. n is 

the number of the observation.       is equal to the population mean of the 

statistic       

The EWMA control chart can be applied to detect a small or gradual drift in the 

process; it is based on the choice of weighting factor λ, but the Shewhart control 

chart can only react when out-of-control point occurs. 

The parameter λ determines the rate at which past data entered into the calculation of 

the EWMA statistic. A value of λ=1 implies that only the most recent measurement 

influences the EWMA. Thus, a large value of λ (closer to 1) gives more weight to 

recent data and less weight to past data; whereas a small value of λ (closer to 0) 

gives more weight to past data. Lucas and Saccucci (1990) provide tables that help 

the user to select λ. 

The EWMA control charts are similar to CUSUM control charts, however by 

comparison,  the EWMA procedure is quite competitive in most practical situations 

(Lucas and Saccucci, 1990) and by the choice of the weighting factor λ, the 

application of the EWMA control charts can control the target value effectively, 

when the data included a number of noises (Montgomery et al., 1996). 
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The estimated variance of the EWMA statistic is:  

     
  

 

   
                                                                                                       (2.6) 

where   is the standard deviation calculated from the historical data. 

The centre line for the control chart is the target value of the quality characteristic. 

The control limit of the EWMA control chart can be calculated as: 

               √
 

   
                                                               (2.7) 

where L is a factor defining the width of the control limits, and       is equal to 

  .   is the standard deviation calculated from the historical data.   

A typical example of the Exponentially Weighted Moving Average control chart is 

illustrated in Figure. 2.3. In the figure, the upper and lower control limits with the 

centre line are drawn; the blue points represent the EWMA target value. 2 points fall 

outside the lower control limit, thus indicating that the process is out of control. 

 

Figure 2.3 An Exponentially Weighted Moving Average Control Chart 
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SPC is the Simple Statistical technique which was applied and developed for 

monitoring some important variables (Wetherill and Brown, 1991). Traditional SPC 

methods are applied to detect and monitor the important quality variable, through the 

monitoring chart of individual process variable and action. There is therefore a 

limitation. When the number of required process variables increase, the number of 

monitoring charts also need to be augmented.  As the number of required charts are 

too large, traditional SPC methods are often unsuitable. Therefore, the limitation of 

SPC is that it does not consider the multivariable nature of a process.  

 

2.4 Multivariate Statistical Process Control 

Multivariate Statistical Process Control (MSPC) comprises a number of modelling 

techniques that may be seen as a response to the issue of dealing with large, highly 

correlated data sets. It uses historical data of processes to develop useful process 

fault diagnosis and control tools. Its name reflects a link with SPC techniques and its 

application shares many similarities. In this thesis, the benefits of MSPC will be 

discussed and the limitations in current technology will be identified.  

In industrial process data, the recorded process variables are huge, and these 

variables are collinear and high correlated. In practice, process variables are recorded 

irregularly, such as missing value numbers, or corrupted value numbers due to 

process and measurement noise. In these cases, traditional SPC methods are unable 

to adapt to modern industrial processes. MSPC is an alternative approach to 

traditional SPC in the area of process monitoring, overcoming SPC’s weakness. The 

advantage of MSPC is that the multivariate method can reduce some dimensions in 

the process data. The required univariate control charts are reduced clearly, and the 

MSPC method collects all process data, including past data. As MSPC explicitly 

considers the multivariate nature of the data, it identifies the correlations that exist; 

thus MSPC is suitable for dealing with large and highly correlated data sets. The 

primary target of MSPC is to maintain product quality in a desired product 

specification and to control a process in a desired state. By controlling and 

monitoring a number of key quality process variables, product quality can be as close 

as possible to the desired value (Doan & Srinivasan, 2008).  
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Hotelling initially proposed Multivariate Statistical Quality Control (MSQC) and 

Multivariate Statistical Process Control (MSPC) in 1947. In the middle of 1980s, 

two researchers, Alt and Jackson, applied and developed Hotelling’s work. Alt (1985) 

studied the application of Hotelling’s   -control chart to monitor the variability of a 

process. Jackson (1985) discussed some techniques, such as the Hotelling   -control 

chart, and the use of principal components for control charts. The control chart limit 

of a multivariate process was discussed and constructed, leading to the theory of a 

multivariate control chart being proposed based on additional information from the 

recent history of the process (Jackson, 1985). In 1994, Adams introduced a 

multivariate control web; a graphical approach that offers the simultaneous display 

of univariate and multivariate summary statistics. In recent years, because the MSPC 

method can provide on-line monitoring and detection of process faults, it plays an 

important role in industry (Golshan et al., 2010).  

A large number of applications of MSPC techniques have been successful in the area 

of process monitoring (MacGregor et al., 1991). MSPC can provide on-line 

monitoring and fault diagnosis of a continuous polymerization process (Nomikos & 

MacGregor, 1994; Camacho & Pico, 2006). MSPC can not only be applied to 

monitor a continuous process, but also can monitor batch processes by using 

monitoring charts (MacGregor & Kourti, 1995; Camacho et al., 2008).  For instance, 

the MSPC technique can be used to predict in Iron Ore for process monitoring (Tano 

et al., 1993); furthermore MSPC can be applied to analyse and monitor the 

manufacture of photo-micrographic paper (Miller et al., 1995) and an industrial 

ceramic melter (Wise et al., 1991a). In relation to its application to general batch 

processes, MSPC techniques have also been proven to be very successful 

(MacGregor & Kourti, 1995; Martin & Morris, 1996). MSPC techniques can be 

extended to monitoring a semi-batch process, such as: a nuclear waste storage tank 

(Gallagher et al., 1996). In this case, the MSPC method is applied to develop a 

statistical model of the process. The model is applied to determine some changes in 

the system, for both on-line and off-line monitoring (Wise & Gallagher, 1996). 
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2.5 The Use of Multivariate Statistical Projection 

Methods 

Every process has a number of process variables that require observation, such as 

temperature, feed rate, concentration, flow rate, PH and a number of final products. 

In a penicillin production process for instance, the final products are Penicillin 

concentration and Biomass concentration (Briol et al., 2002). Process variables are 

typically measured on-line, but quality variables are measured off-line. With 

multivariate data, the major problem that arises is that the measured variables are not 

independent; rather these variables are auto-correlated in time and are highly 

correlated with one another at any given time (collinear). This is due to the 

underlying relationships between the variables, where the measurements were taken 

or due to the nature of the process; given this, it is important to determine the 

relationships between the variables. Furthermore, as all past data have contributed to 

the whole performance of the process, all process data need to be considered. 

Therefore, some MSPC methods are applied to overcome these difficulties (Bersimis 

et al., 2007). 

MSPC covers a wide range of techniques. In these methods, the bases of MSPC are 

the statistic projection techniques of Principal Component analysis (PCA) and Partial 

Least Square or Projection to Latent structure (PLS). They are used to analyse 

process data and to develop predictive models in support of process monitoring and 

control in real industrial processes. A mathematical overview of PCA and PLS is 

described in Chapter 3. 

PCA is a well-known multivariate statistical method (Mardia et al., 1989; Jackson, 

1991). The main areas of PCA application in process analysis are in data reduction 

(the dimensionality of data), abnormal operation detection, variable classification, 

early warning of potential malfunction and fault identification (Martin & Morris, 

1996). 

Although all process variables can be monitored, in practice there are a small number 

of underlying characteristics that drive the process. The aim of statistical projection 

techniques is to create a new set of latent variables, and allow the true dimensionality 
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of the system to be reflected. PCA is applied to reduce the dimensionality of process 

data through defining a series of new latent variables (or principle components), 

which are each linear combinations of the original variables. Within the new latent 

variables (principal components), the first principal component explains the greatest 

amount of variation, i.e. it explains most of the information in the data. The second 

principal component is orthogonal to the first principle component; the information 

maximizes the remaining variance of the data project on second principle component, 

and so on. The components are also orthogonal to each other (Piovoso & 

Kosanovich, 1996), hence the principal components are uncorrelated. The entire sets 

of scores define the process data, and the loadings are the statistical process model. 

The sets of scores and the PCA loadings can be applied to determine if the present 

process operation has changed its behaviour, relative to the data that was used to 

define the scores and loadings. Typically, the first two principal component scores 

contain all the important information for early warning of potential malfunction 

(Martin & Morris, 1996). The number of principle components is a crucial factor in 

PCA model development. Cross validation is a very useful method for estimating the 

optimal number of principal components (Wold, 1978). Further aspects of cross 

validation are explained in Chapter 3. 

The initial PCA idea was proposed by Galton (1889). In 1901, the PCA method was 

introduced as a technique for plane fitting by Pearson (1901). The mathematical 

concept of PCA was completed initially by MacDonell (1902). Pearson and 

MacDonell were co-workers. In the 1930s, PCA was officially independently named 

and developed by Hotelling. Hotelling proposed PCA for analysing the covariance 

and correlation structures between a number of random variables. In 1949, Burt 

published a paper, ‘Alternative Methods of Factor Analysis and their Relations to 

Pearson’s Method of Principle Axes’, which provided some proper attributions in 

the early history of PCA development. Given computational difficulties, the 

development of PCA was not quick in the mid-20th century. In the 1960s, 

accompanied by the Quantitative Revolution of social sciences, the applications of 

computer techniques were extended to data processing and industrial control; 

therefore the applications of PCA have occurred widely. 
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A large number of new ideas were considered, and then the interpretations and 

extensions of PCA were introduced by Rao (1964). Gower (1966) discussed links 

between PCA and various other statistical techniques, whilst Jeffers (1967) gave 

two case studies in which the uses of PCA go beyond that of a simple dimension-

reducing tool. 

Various authors provide a theoretical introduction of PCA (e.g. Mardia et al., 

1974).  PCA as a tool is applied when more than one variable needs observing, and 

where there is an inherent interdependence between the variables. In Kendall’s book 

‘Multivariate Analysis’ (1980), PCA is compared to Factor Analysis.  Muirhead 

(1982) explained principal components and other related topics; Seber (1984) stated 

that the introduction of PCA is based on dimension reduction properties; Krzanowski 

(1988) focussed upon PCA principles and methodology; and lastly, Johnson & 

Wichern (1992) studied some basic PCA applications. 

Overviews of the concepts, properties and applications of PCA were presented by 

Wold et al. (1987), Geladi & Kowaski (1986), Mackiewicz & Ratajczak (1993) and 

Wise &Gallagher (1996). A review of multivariate statistical process control based 

upon PCA’s statistical projection techniques was undertaken by Martin & Morris 

(1996).  

In recent years, some modifications of the PCA technique have been researched. The 

aim of novel PCA techniques is to extend their application and to improve their 

capabilities. Nomikos and MacGregor (1994) proposed multiway PCA (MPCA). 

Typically, batch process is time varying in nature, and all data in the batch will affect 

the final production. Measurement data from a batch process is stored as a 3-

dimensional matrix (X) of size      , where I is the number of batches, J is the 

number of measured observations in a complete batch and K is the number of 

measured variables. The PCA method has been developed for application in a 2-

dimensional matrix; if PCA is to be applied in batch process data, 3-dimensional 

batch process data must be transformed into a 2-dimensional matrix. The PCA can 

then be applied to analyse the process data. There are different approaches for 

rearranging the data sets. The most common approach is batch-wise unfold, which 

unfolds the matrix in accordance to the direction of batches (Nomikos et al., 1994; 

see Chapter 3 for further details). Multi-scale PCA (Bakshi, 1998) is another novel 
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PCA technique, as it combines the ability of PCA with wavelet analysis to extract 

deterministic features. In this method, the relationship between the variables is 

determined by PCA, but the relationship between the measurements is determined 

through wavelet analysis. The benefit of Multi-scale PCA is that this method can 

detect abnormal operation earlier and more clearly than traditional PCA (Facco et al., 

2009).  

Traditional PCA defines a linear projection of the data, thus it is not able to consider 

process dynamics. Dynamic PCA (DPCA), introduced by Ku et al. (1995), tries to 

use a well-known ‘time lag shift’ method to include dynamic behaviour in the PCA 

model. DPCA is applied in the area of statistical process monitoring, by using time-

lagged variables. This method has been applied to process monitoring and fault 

detection in a process simulation of Tennessee Eastman. The Tennessee Eastman 

process model is a realistic simulation program of a chemical plant, consisting of 

five major transformation units (a reactor, a condenser, a compressor, a separator, 

and a stripper), where 41 measurements are generated along with 12 manipulated 

variables. The results demonstrated that DPCA statistics had higher fault detection 

rates, presented lower auto-correlation levels, and were able to sustain the out-of-

control signals during the whole faults duration; PCA statistics, by comparison, often 

return to their in-control regions leading to a false sense of normality. The proposed 

methodology (DPCA) therefore is more effective than the traditional PCA method 

(Shen et al., 2012). 

Although PCA is suitable for process monitoring, some limitations of PCA need to 

be considered (Piovoso & Kosanovich, 1996; Zhang, 2009). Firstly, it only considers 

orthogonal transformations (rotations) of the original variables. Secondly, PCA is 

based only on the mean vector and covariance matrix of the data. Thirdly, dimension 

reductions can only be achieved if the original variables were correlated; if the 

original variables were uncorrelated, PCA does nothing, except for ordering them 

according to their variance. Lastly, PCA method considers all inputs and output at a 

specific sample instant. 

Principal Component Regression (PCR), first proposed by Massy (1965), is an 

extension of PCA; it is applied in the modelling of Y-data from X-data. Linear 

regression is an approach for modelling the relationship between a dependent 
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variable and one or more explanatory variables. The process is called simple linear 

regression, where one explanatory variable needs consideration; if there is more than 

one explanatory variable, the process is called multiple linear regression (Warne, 

2011).   

Linear regression is a classic type of regression analysis. Linear regression has been 

widely applied within industry. With this method, unknown parameters can be easily 

fitted; this is because the model is based on linear relation, and furthermore, the 

statistical properties of the resulting estimators are easier to obtain. But Standard 

regression methods are based on a number of typical assumptions.  In the real world, 

these assumptions are often unrealistic. 

A benefit of PCR is that the multi-collinearity problem can be overcome, when two 

or more of the explanatory variables are close to being collinear. PCR can also deal 

with such situations by excluding some of the low-variance principal components in 

the regression step. In addition, by usually regressing on only a subset of all the 

principal components, PCR can obtain the result of dimension reduction, through 

substantially lowering the effective number of parameters characterizing the 

underlying model. Particularly, PCR is applied in settings with high-dimensional 

covariates. Through the appropriate selection of principal components to be used for 

regression, PCR can lead to an efficient prediction of the outcome, based on the 

assumed model (Dodge, 2003; Bair et al., 2006; Mevik & Wehrens, 2007). 

In the PCR technique, the procedure is divided into two steps. Firstly, PCA is 

applied to the predictor data set (X-data) and then, the response data set (Y-data) is 

regressed on the scores of predictor data set. In the first step, some factors or 

information are ignored, because these data do not significantly contribute to the 

predictor data set; on the other hand, in the second step, these factors or information 

need to be considered because they are highly correlated with the response data set 

(Y-data). The PCR method defines a new set of uncorrelated latent vector in the 

space of X-data; it is applied to minimise the variance covariance matrix     

(Geladi & Kowalski, 1986; Jackson, 1991). 

PCR has other limitations. The PCR method described above is based on classical 

PCA and considers a linear regression model for predicting the outcome based on the 
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covariates. In addition, the principal components are obtained from the Eigen-

decomposition of X, which involves observing the explanatory variables only. The 

resulting PCR estimator obtained from using these principal components as 

covariates therefore, need not necessarily have satisfactorily predicted outcome 

performance.  

PLS can address this issue. Similar to PCR, PLS also uses derived covariates of 

lower dimensions. However unlike PCR, the PLS algorithm used examines both X-

data and Y-data, and extracts factors (called components or latent variables), which 

are directly relevant to both sets of variables (Mevik & Wehrens, 2007). 

PLS, also called Projection to Latent Structures, has become a popular MSPC 

technique. PLS is a projection method that models the relationship between a 

response matrix Y and a predictor matrix X. PLS is able to define independent latent 

variables from the covariance structure of given groups of highly correlated, or 

collinear variables (MacGregor, 1995). Thus, PLS can be used for dimensionality 

reduction and modelling (Wold, 1966; Wold, 1975).   

The basic mathematical and statistical background of PLS can be found in literature 

such as Manne (1987), Lorber et al. (1987) and Helland (1988). PLS was used to 

handle collinearities among independent variables in multiple regressions (Wold et 

al., 1984). In 1986, the Nonlinear Iterative Partial Least Squares (NIPALS) method 

was applied in the development of PLS model. In this method, the predictor matrix 

and the response matrix were decomposed to a sum of rank one component matrices 

(Geladi & Kowaiski, 1986). The detail of the procedure will be introduced in 

Chapter 3. In 1988, the mathematical and statistical structure of PLS regression had 

been discussed and proposed by Hoskuldsson (1988). An alternative method for 

calculating PLS factors was introduced by Jong (1993). In this method, PLS factors 

are derived from the initial data matrix; this is to say, the deflation of the data 

matrices is not required. 

The objective of Projection to Latent Structures is to construct a linear relationship 

between the predictor matrix and the response matrix; the observation of highly 

correlated or collinear variables needs to be included.  However, PLS eliminates 
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redundancies in the original data sets through linear combination and defining a new 

set of variables; the new set of variables is independent. 

PLS is similar to PCR, but it is not the same model as the PCR model.  PLS 

maximizes the covariance of the two data sets (X-data and y-data), whilst PCR only 

maximizes the variance of a single data set (X-data).  

The regression relationship of PLS needs be built in a stepwise manner. There are 

several ways, but the most common approach is the Non-linear Iterative Partial Least 

Squares (NIPALS) algorithm of Wold (1966). It is also the most popular method to 

calculate the principal components from a multivariate data set (Wold, 1987; Geladi 

& Kowalski, 1986; Martens & Naes, 1989). 

The NIPALS algorithm does not calculate all the Principal Components 

simultaneously; rather it calculates the first principal component and then, the 

product of its score and loading is subtracted from the data matrix X. The residual 

matrix is then applied to calculate the second principal component and so on.   

NIPALS is a powerful method to calculate the eigenvectors of a matrix (Goldberg, 

1991). When the NIPALS algorithm is applied, the score and the loading vectors are 

the eigenvectors of the      and      matrices respectively (Geladi & Kowalski, 

1986). In the PLS method,  for each step, the NIPALS algorithm calculates two 

latent vectors, T and U; these are a linear combination of the predictor data set (X-

data) and response data set (Y-data) data sets respectively. 

There are some alternative methods to the NIPALS algorithm, such as the maximum 

eigenvalue of the residual sample covariance matrix, and the successive Singular 

Value Decompositions of the cross-covariance matrix of the residual data sets. These 

methods can also be used to calculate latent dimensions (Hoskuldsson, 1988; Kaspar 

& Ray, 1993; Lindgren, et al., 1993; Wang et al., 1994). 

The number of latent variables is a crucial issue in the application of the PLS model. 

When the optimal number of latent variables is determined, a satisfactory predictive 

relationship between the X-data and Y-data can be obtained. This will avoid over-

fitting and under-fitting. Although there are multiple ways to do this, cross validation 
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is a very useful method to determine the optimal number of latent variables (Stone, 

1974; Wold, 1978).   

There are certain properties of PLS that have made it so popular in process 

monitoring (Ferrer et al., 2008). It is a good alternative to classical multiple linear 

regression and principal component regression methods, as it has been shown to be 

robust for limited sized data sets and highly collinear data. Furthermore, it has 

relatively low computational requirements and is efficient in dealing with situations 

where there are missing measurements. 

Some modifications of the PLS technique have been researched recently. For batch 

process monitoring, MPLS has proven to be useful (Lennox et al., 2001). Traditional 

PLS is applied to monitor the process based on a fixed model of the system. Given 

that most industrial processes are time varying, the fixed model can be unsuitable. 

To address this limitation, a Recursive PLS algorithm was proposed by Helland et al. 

(1991), where the current measurements and parameters of the PLS model were 

applied to update the PLS model. A further development from this work by Qin 

(1998) was applied to a catalytic reformer process. Another Recursive PLS algorithm 

was introduced by Dayal and MacGregor (1997a). In this method, the covariance 

matrices of predictor and response matrices (    ,    ) can be updated. The 

applications of this method were in a mineral flotation circuit (Dayal & MacGregor, 

1997b) and in a fluid catalytic cracking unit (Lennox et al., 2003).        

A typical industrial plant usually includes large-scale processes with many process 

units and measuring devices. For monitoring these processes, a multi-block 

technique is developed to combine with the PLS method. A multi-block algorithm 

was originally introduced by Gerlach et al. (1979). Multi-Block PLS (MBPLS) is an 

extension of PLS, that was originally proposed by Wold et al. (1987b), and further 

developed by Wangen & Kowalski (1988). They proposed a novel multi-block PLS 

algorithm, the Interconnected Multi-Block PLS (IMB-PLS). It is especially suited 

for large complex systems, which consist of many distinct sections that are 

connected by a few variables. Traditional PLS models the predictive relationship 

between two blocks of data, whereas the IMB-PLS models the predictive 

relationship(s) between more than two data blocks (Liu et al., 2011). Wold et al. 

(1996) proposed a general hierarchical PLS algorithm based on hierarchical Multi-
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Block PLS. This method was applied in a residue catalytic cracker unit, where the 

results showed that the blocked models can provide better model prediction than the 

standard method. 

To enable PLS to track the dynamics of batch processes, multi-way PLS (MPLS) 

was proposed (Zhang & Lennox, 2003). First introduced by Wold et al. (1987), it has 

been shown to be particularly useful for monitoring batch processes (Nomikos & 

MacGregor, 1994; 1994b). MPLS is an extension of PLS that enables the handling of 

3-dimensional data arrays (Nomikos & MacGregor, 1994). If MSPC is to be applied, 

3-dimensional data must be transformed to a 2-Dimensional matrix; the approaches 

for rearranging the data sets is the same as for MPCA. PLS is then applied to the 

unfolded matrix, which has the dimension     (Wu & Lennox, 2006).  More 

details of unfolding matrix methods can be found in Chapter 3. 

Some MPLS applications have been reported. In an industrial batch polymerization 

reactor, PLS and MPLS applications are provided by analysing historical data from 

the catalytic cracking section of a large petroleum refinery, when monitoring the 

industrial batch process (MacGregor & Kourti, 1995). In the semi-batch emulsion 

polymerization of styrene−butadiene rubber, MPLS is applied to control final 

product quality, based on using only a few readily available on-line measurements 

and some off-line measurements (Yabuki & MacGregor, 1997).  In a fed-batch 

fermentation system, MPLS is used to provide long-term predictions of product 

concentration at the end of the batch, and to determine suitable substrate feed-rates to 

ensure that batch productivity reaches a required level (Lennox et al., 2001). Lastly, 

in condensation polymerization and emulsion polymerization systems, MPLS is used 

as a well-established method for analysing batch process historical data, and for 

monitoring the progress of new batches (Cerrillo & MacGregor, 2004). 

This technique analyses process behaviour relative to the mean trajectories of the 

process variables. In doing so, a major nonlinearity in the data is removed. However, 

there remain situations when this approach is insufficient to track nonlinear process 

behaviour. 

A major limitation with PLS is that industrial processes are always nonlinear to some 

extent. This is not always a problem as many processes only operate around limited 
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operating regions, where linear PLS techniques tend to provide acceptable accuracy. 

However, batch processes often operate over relatively large spaces, and many 

chemical and physical systems display nonlinear performance; hence nonlinear 

extensions to PLS may be required. Given this, a number of different methods have 

been proposed to provide a nonlinear PLS algorithm. 

 

2.6 Nonlinear PLS  

Given the linear PLS model cannot predict nonlinear systems, several nonlinear PLS 

methods have been proposed and applied. These tend to be divided into Type I and 

Type II methods. A detailed overview of these methods is provided by Wold (1989).   

In the Type I Nonlinear PLS method, the observed variables are appended with 

nonlinear transformations. Following this, traditional linear PLS is then applied; for 

example, the X matrix can be augmented with transformed terms. The addition of 

transformed terms in X within PLS models was first proposed by Wold (1989), 

where he proposed the use of quadratic terms in the PLS model.  In Type I methods, 

the inputs into the PLS model are specified to be cross product and squared terms of 

the input variables. Related works in this area include that of Berglund et al. (1997; 

1999), who utilized quadratic and higher order polynomial terms, while ignoring 

cross-terms.  However, for Type II methods, nonlinear functions are implemented in 

the PLS model’s inner structure; for instance, Wold (1989) used quadratic functions 

of the inner variables. The Type II nonlinear PLS method was extended by Baffi et al. 

(2000). In contrast to the Type I nonlinear PLS method, the Type II nonlinear PLS 

method assumes a nonlinear relationship within the latent variable structure of the 

model. Type I and II non-linear structures are integrated within MPLS models to 

enable them to more accurately approximate nonlinear batch processes. These are 

described in Chapter 5. 

However, Type I and II nonlinear PLS methods have their limitations. When the 

order of the nonlinearity does not match that of the process, problems arise and the 

accuracy of the prediction is reduced significantly. In real studies, the exact order of 

any nonlinear relationship will not be known a-priori, hence the required expansion 
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of X will be difficult to determine. Type I nonlinear MPLS therefore is not 

recommended for the prediction of the nonlinear system. Type II nonlinear PLS 

algorithms rely upon using polynomial nonlinear mapping, based upon the 

assumption that the relationship between the predictor and the response latent 

variables can be modelled by means of that particular polynomial expansion (Baffi et 

al., 2000). When the inner relation of the system is also similar to this particular 

polynomial expansion, this Type II nonlinear PLS model can predict the nonlinear 

system very well, and vice versa. 

For increased functionality, the use of a neural network was proposed in the model’s 

inner structure (Qin et al., 1992).  An alternative to using polynomials in the inner 

relationship of the PLS model is to use a neural network to describe this relationship. 

This method is called Neural Network PLS (NNPLS). The structure of NNPLS will 

be introduced in Chapter 3. The NNPLS method can be divided into 2 parts: (i) the 

PLS outer model (the same as in the linear PLS method), which is used to transform 

the data to score variables; and (ii) inner network train algorithms, which are applied. 

Multilayer neural network was proposed by Werbos (1974). This neural network was 

directly applied to determine the relationship between matrix Y and X by McAvoy et 

al. (1989) and Aguado et al. (2006). The Neural Network model can be represented 

as: 

        ,                                                                                                       (2.8) 

Where E is the residual matrix after regression;      stands for nonlinear map 

performed by the network. 

Although this method performs better than linear techniques in some case, it suffers 

from the same problem as the ordinary least-squares method. For example, the 

number of weights in a multilayer network of m inputs and p outputs could be larger 

than the number of observations. Therefore, a number of the weights cannot be 

uniquely determined from the observed data, leading this method to result in over-

fitting (Piovoso & Owen, 1991). 

The NNPLS approach differs from the direct network method in data application. 

The data is not directly applied to train neural network in the NNPLS method; rather 
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it needs to be transformed into PLS outer models. This transformation decomposed a 

multivariate regression problem into a number of univariate regressors; whilst each 

regressor is run by a neural network. The major benefit of doing this is that a Single-

Input-Single-Output (SISO) network is trained at the same time. The number of 

weights to be determined is much smaller than that in an m-input-p-output problem 

when the direct network method is applied; m is the number of causal variables in 

the X data, p is different quality indices in the Y data (Qin, 1992). When the number 

of weights reduces to a small number, over-parameterization can be circumvented. 

The advantage of applying neural networks in the inner regressor is due to their 

nonlinear approximation property. It has been proven that a network with only one 

hidden layer of sigmoidal units is enough to have universal approximation properties 

(Hornik et al., 1989). Hornik et al. (1990) also proved that its derivative can be 

approximated by an one-hidden-layer network. Huang (1991) later showed that the 

number of hidden units, such as one-hidden-layer network, is bounded.  

The concept of artificial neural network (ANN) is also applied by a number of other 

researchers, such as Kramer (1991), Dong and McAvoy (1994) and Saunder et al. 

(1995). ANN consists of a class of nonlinear models. Back propagation neural 

network (BPNN) is widely used and is capable of complicated multidimensional 

mapping (Werbos, 1988; Hecht-Nielsen, 1989; Heermann & Khazenie, 1992). A 

typical BPNN model is composed of many idealized layers of nodes, specified by 

node characteristics (weights), the learning rules (transfer or ‘sigmoid’ functions), 

network interconnection geometry (different layers), and dimensionality (the number 

of layers and nodes). BPNN resembles the human brain, in that the model learns and 

stores knowledge (Mehra & Wah, 1992; Werbos, 1994). This learning feeds back 

into the model to change the weights of nodes between layers, in order to decrease 

errors between predicted and measured values. Thus, BPNN takes nonlinearity into 

account using the sigmoid functions that connect the BPNN layers of nodes. The 

weights of redundant spectral bands (e.g. adjacent spectral bands) are also 

significantly decreased through the back propagation learning process. After the 

node weights and sigmoid functions have been determined through the training 

process, the BPNN model can be used for predictions with new input data (Li et al., 

2012). 
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NNPLS based on BPNN, and Linear PLS, are both applied to the estimation of soil 

properties (Ramadan et al., 2005). The Back-Propagation Neural Networks method 

combined with PLS was found to have the most predictive power with the 

independent test set. NNPLS based on BPNN is also applied for predicting a wide 

range of soil chemical and physical properties from their mid-infrared (MIR) spectra 

(Janik et al., 2009). The results demonstrate that NNPLS has the advantages of 

robustness, and has the qualitative and quantitative features of PLS and the nonlinear 

capabilities of neural networks. 

Qin and McAvoy (2002) proposed a ‘generic’ nonlinear PLS algorithm; in this 

method, a feed-forward neural network is applied to robust PLS regression. This was 

extended further by Baffi et al. (2000), who utilized Radial Basis Functions. Other 

related works in this area include that of Frank (1990) and Wold (1992), who used 

smoothing splines to provide the non-linear function within the model, and Hiden et 

al. (1998), who proposed the use of genetic programming. 

Wilson et al. (1997) proposed the radial function network PLS algorithm (PLS-RBF). 

RBF network training algorithms can be reduced to linear regression problems; 

though the nonlinear model still can be obtained (Chen et al., 1991; Lennard & 

Kramer, 1991). PLS-RBF has been applied to detect faults in an industrial overheads 

condenser and reflux drum plant configuration.  

Measurements of process variables often contain outliers, which have a large 

negative impact on model accuracy and reliability; detecting outliers in sampling 

data has therefore been given more and more consideration (Chen et al., 1998). The 

radial basis functions-partial least squares (RBF–PLS) approach is applied to detect 

such outliers in complex systems (Munoz & Muruzabal, 1998; Zhao et al., 2006). 

For example, RBF-PLS has been applied in the sulphur recovery process 

contaminated with natural and synthetic outlier (Garces & Sbarbaro, 2011). The 

results show that the proposed method is effective and outperforms conventional 

approaches, by reducing swamping and masking effects. In recent years, RBF-PLS 

has been widely applied to identify face images (Jiang et al., 2012). RBF-PLS has 

also been applied to dynamic system identification (Yin et al., 2006). Simulation 

results of nonlinear dynamic system identification demonstrate the adaptive tracking 

ability and high learning speed of the proposed algorithm. 
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In this thesis, the conjugate gradient learning method has been chosen; the reasons 

behind this decision will be clearly explained in Chapter 3. The Mathematical 

Overview of Neural Network PLS, Type I and II nonlinear PLS are also described in 

Chapter 3. 

 

2.7 Summary 

This chapter has reviewed MSPC techniques and discussed their application in 

process monitoring. Several MSPC methods, such as PCA, PCR and PLS, were 

introduced, and critiqued for advantages and disadvantages. This chapter also 

discussed control chart applications; many enhancements and extensions to control 

charts have been proposed. Lastly, nonlinear PLS and Neural network PLS, 

including their applications, are introduced and described. 
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Chapter 3  

Mathematical Overview 

 

Multivariate statistical process control (MSPC) techniques play an important role in 

industrial batch process monitoring and control. In this chapter, some basic 

algorithms of MSPC techniques such as Multiple Linear Regression (MLR), 

principal component analysis (PCA), principal component regression (PCR) and 

partial least squares (PLS) are described, followed by some related algorithms, such 

as unfolding approaches and cross-validation. Their uses are also presented. In 

addition to outlining the basic PLS algorithm, it also discusses several of its 

extensions; firstly, it introduces Multi-way PLS (MPLS) analysis of batch data 

examining both Batch-wise and Variable-wise unfolding; secondly, it discusses 

Nonlinear PLS and lastly, it provides an overview of Neural Network PLS (NNPLS). 

The chapter is divided into the following sections: 

3.1) describes some basic algorithms of MSPC techniques, such as Multiple Linear 

Regression (MLR), principal component analysis (PCA), principal component 

regression (PCR) and partial least squares (PLS); 

3.2) discusses the use of cross-validation; 

3.3) introduces Multi-way PLS (MPLS) analysis of batch data, and gives the 

introduction of Batch-wise unfolding and Variable-wise unfolding; 

3.4) discusses the nonlinear PLS model; 

3.5) gives an overview of Neural Network PLS; and 

3.6) provides a summary of this chapter. 
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3.1 MSPC Techniques 

Multivariate Statistical Process Control (MSPC) was discussed in Chapter 2. It 

covers a wide range of techniques, but a number of basic MSPC algorithms will be 

described. 

3.1.1 Multiple Linear Regression (MLR)  

Multiple Linear Regression is also called Ordinary Least Squares (OLS). This 

approach is described as follows (Geladi & Kowalski, 1986): 

A variable y is the goal and there are m causal variables,    ,. MLR is applied to 

measurements of the variables to build a linear relationship between    and y.  

This can be represented mathematically as: 

                                                                                               (3.1) 

  ∑        
                                                                                                                  (3.2) 

                                                                                                                              (3.3) 

In Equation 3.2,    are called independent variables and y is a dependent variable, the 

   are sensitivities and e is the error or residual. 

The above formulas describe multi-linear dependencies for only one sample. Then, 

the number of samples can be extended to n.  

                                                                                                                  (3.4) 

Figure 3.1 shows the structure of MLR. Y is changed to a matrix (nx1), X is changed 

to a matrix (nxm), B remains the same. Y is dependent matrix, and X is independent 

matrix.  
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Figure 3.1 The Structure of MLR (Geladi & Kowalski, 1986) 

 

In this case, n is the number of samples and m is the number of independent 

variables. There are three possible relationships between m and n. 

(i)When m > n, there are more variables than samples. In this case, there are an 

infinite number of solutions for b.  

(ii)When m = n, the number of samples is equal to the number of variables. 

There is one unique solution. In this case,         , where E is called the 

residual vector, and it is equal to 0. 

(iii) When m < n, there are more samples than variables. This case does not 

allow an exact solution for b, but a solution can be found by minimizing the 

length of the residual vector E in the following equation:         

The most common method for identifying b is the Least Squares method. The Least 

Squares solution is obtained as follows:       

Where    is the pseudo-inverse of X. In mathematics, the pseudo-inverse    of 

matrix X is a generalization of the inverse matrix. 

Therefore    is obtained from                                                               (3.5) 

Hence                                                                                                    (3.6) 

1 

Y 

n n 

m 

n 

1 1 m 

= X B E + 
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Equation 3.6 relates to the most frequent problem in MLR; that is, the inverse of 

    may not exist. Collinearity, zero determinant and singularity are all names for 

the same problem. At this point, it might appear that there always has to be at least as 

many samples as variables, but there are other ways to formulate this problem; for 

instance, one can delete some variables in the case m > n. Many methods exist for 

choosing which variables to delete, as relevant variables have to be discarded to 

avoid these problems. It requires X to have more rows (samples) than columns 

(variables), hence the MLR method fails to give a model which is robust to noise. 

 

3.1.2 Principal Component Analysis (PCA) 

PCA is a statistical procedure. In this method, a set of data is assembled in a matrix 

X, where the rows are sampled process variables at a fixed sampling time, and a 

column is a uniformly sampled variable. A given matrix X (n rows and m columns) 

can be decomposed to several sub-matrixes. This is represented mathematically in 

Figure 3.2. 

 

Figure 3.2 The Decomposition of X matrix (Wold, 1987) 

 

In Figure 3.2, r is the rank of X matrix.  

   ( 1a r ) can be expressed as the outer products of two vectors; i.e.,       
  

the column vector is score    and the row vector is loading   
 . 

      
      

        
                                                                                 (3.7) 

Or the equivalent formula:  

                                                                                                                      (3.8) 

= + X M1 M2 + … + Mr 
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Figure 3.3 presents the structure of PCA. 

 

Figure 3.3 The Structure of PCA (Geladi & Kowalski, 1986) 

 

When applying PCA to industrial process data, there is an expectation that since the 

original variables are highly correlated, the variance of the lower principal 

components (PCs) or latent variables will be so low as to be negligible. The PCA 

approach therefore can be described as: 

             
                                                                                          (3.9) 

This is equivalent to a reduction of the m-dimensional variable space to A-

dimensional space. (A is the number of Principal Components). The matrix T 

contains orthogonal column vectors, also called score vectors, which represent the 

latent variables. The row of the matrix TP  is the loading of these latent variables and 

can be regarded as the co-variances between the measured variable and a latent 

variable. The matrix E contains the residuals; that is, all the variance in X not 

explained by the retained eigenvectors (Geladi & Kowalski, 1986; Lipp, 1996).   

PCA is used as multivariate statistical technique for dimensionality reduction. There 

are some ways to attain this; the most common approach is the Nonlinear Iterative 

Partial Least Squares (NIPALS) algorithm (Wold, 1987; Martens & Naes, 1989). 

The NIPALS algorithm is a fast and effective algorithm to extract the principal 

components in a sequential manner. 
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The NIPALS algorithm to perform PCA is as follows: 

(1)            
          ;  

(2)      ; 

(3) The column vector    with the maximum variance is selected from the      

matrix and define to be by   ; 

(4)   
    

        
    ⁄ ; 

(5) Normalise   
  to length 1:   

    
 ‖  

 ‖⁄  ;  

(6)                 
    ⁄ ; 

(7) If the score    from step (6) converges, then go to step (8); otherwise return to 

step (4); 

(8)              
 ; 

(9) Go to step (2) until all principal factors are calculated. 

As a convergence criterion, in step (7), the sum of squared differences is frequently 

used: 

∑              
     .  (e is pre-defined threshold, e.g. 10

-8
) 

 

3.1.3 Principal Component Regression  

PCA is suitable for process monitoring, however in Chapter 2, some of its limitations 

were identified. To overcome these limitations, the PCR method is proposed. 

The benefits of PCR is that the multi-collinearity problem can  be overcome,  when 

two or more of the explanatory variables are close to being collinear. PCR can deal 

with such situations by excluding some of the low-variance principal components in 

the regression step. Additionally, by usually regressing on only a subset of all the 
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principal components, PCR can obtain dimension reduction through substantially 

lowering the effective number of parameters characterizing the underlying model. 

PCR is an extension of PCA applied to the modelling of Y data from X data. This 

method is usually divided into two steps. The first step is to perform a PCA on the X-

data which builds a set of scores for each measurement vector. If    is the     vector 

of the K measurements at  time j,    is the corresponding     vector of the A scores. Y 

data are regressed on the matrix of scores by: 

                                                                                                               (3.10) 

Using the orthogonality of matrix of eigenvectors, P and the above equation:  

         (in the PCA parts)                                                                              (3.11) 

T can be associated with the X matrix data through Eqn. 3.10 (Figure 3.4). 

 

Figure 3.4 The Application of X matrix data to Calculate T (Geladi & Kowalski, 

1986) 

 

Equation 3.11 is substituted into Equation 3.10, then   

                                                                                                              (3.12) 

Or                                                                                                                 (3.13) 

The structure of PCR is displayed in the Figure 3.5, where B is the principal 

component regression coefficient of X onto Y, Q is loading matrix,    is residual 

matrix. 
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Figure 3.5 The Structure of PCR (Jackson, 1991) 

 

The limitations of PCR were discussed in Chapter 2. In the PCR method, principal 

components are obtained from the Eigen-decomposition of X that involves the 

observations for the explanatory variables only. The resulting PCR estimator 

obtained from using these principal components as covariates may not therefore 

necessarily have a satisfactory predictive performance of the outcome. 

Partial Least Squares Regression (PLS) can solve PCR’s problem. The algorithm 

used examines both X-data and Y-data, and extracts factors (called components or 

latent variables) which are directly relevant to both sets of variables. 

 

3.1.4 Partial Least Squares Regression 

PLS known as Projections onto Latent Structures or Partial Least Squares, was 

proposed by Wold (Wold et al., 1984) as a regression tool that could be applied to 

ill-conditioned data sets. It can be considered to be a more robust alternative to 

classical multiple linear regression. PLS is a projection method that models the 

relationship between a response matrix, Y and a predictor matrix, X. These matrices 

are decomposed as follows: 

  ∑   
 
     

                                                                                                (3.14) 

  ∑   
 
     

                                                                                                (3.15) 

These equations can also be expressed as: 

     +E                                                                                                           (3.16) 
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                                                                                                              (3.17) 

 

Figure 3.6 The Structure of PLS (Wold, 1987) 

 

In Figure 3.6, the structure of PLS is shown, where X is a data matrix of independent 

variables, Y is a data matrix of dependent variables, T and U are the score matrices, P 

and Q are the loading matrices, and E and F are the residual matrices for X and Y 

respectively. In the PLS model, the original descriptors are transformed to a new 

variable space, based on a small number of orthogonal factors (latent variables). The 

number of latent variables that are retained in the model, A, is determined by cross-

validation (cross validation will be introduced in the next part).  

PCR is performed by first computing a principal component (factor) analysis, 

followed by a linear regression of the target value to the factors. In PLS, an iterative 

approach is used for the determination of as much variance as possible in the target 

variable by each component (factor) computed (Lipp, 1996). 

The x-scores    are linear combinations of the independent variables (in the first PLS 

latent variable) or X-residual matrix ( aX ) (in the tha  latent variable): 

                                                                                                                 (3.18) 

            
                                                                                                 (3.19) 

  being the weight vector for the     latent variable. 
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PLS is performed in a way to maximize the covariance between T and U, both 

related by the inner relationship: 

                                                                                                               (3.20) 

Where B is a diagonal matrix and H is a residual matrix. This allows PLS to be 

expressed as a predictive model: 

                                                                                                             (3.21) 

                                                                                                 (3.22) 

Where F is a residual matrix. 

PLS builds the regression relationship in a step wise and sequential manner. The 

most popular method to calculated the PLS is through the Nonlinear Iterative Partial 

Least Squares (NIPALS) algorithm (Wold, 1966). For each latent variable, the 

NIPALS algorithm calculates two latent vectors;         , which are a linear 

combination of the Predictor (X) and response (Y) data set, respectively. 

The NIPALS algorithm to perform PLS is as following: 

(1) Mean-centre and scale the X and Y data sets;  

(2) Set u equal to any column of Y data set; 

(3) Regress the columns of X on u:            ⁄ ; 

(4) Normalise the w vector to unit length; 

(5) Calculate the score of X:         ⁄ ; 

(6) Regress the columns of Y on t :            ⁄ ; 

(7) Calculate the new score of Y:             ⁄ ; 

(8) If score u in step (7) converges, then go to step (9); otherwise, return to step (3); 

(9) Calculate the loading of X by regressing columns of X on t:            ⁄ ; 

(10) Calculate the residual matrices E and F:                ; 
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(11) To calculate an additional latent dimension, replace X and Y by E and F, and 

repeat steps (2) to (10). 

(12) if                     , the algorithm is stop. 

As a convergence criterion, in step (8), the sum squared differences is frequently 

used: 

∑            
     (e is pre-defined threshold). 

To compare with the capabilities of PCR and PLS, PLS and PCR are applied to one 

sample case. In this case, the data set contains near infrared (NIR) spectra of 60 

samples of gasoline at 40 wavelengths, and their octane rating. Samples were 

measured using diffuse reflectance as log (  ⁄ ) from 900 to 1700nm in 2nm 

intervals. More details regarding these data can be found in Kalivas’ research (1996). 

X data is used as NIR spectra and Y data is used as the octane rating. PCR and PLS 

are applied; the latent variables are selected as 10 in the PLS model, and the PCs are 

selected as 10 in the PCR model. The results are shown in Figure 3.7. 

 

Figure 3.7 The Predicted Value of the Test System by PCR and PLS Model 

 

In Figure 3.7, blue diamonds are the predicted value by PLS, and the red stars are the 

predicted value by PCR. The sum of square error (SSE) is calculated over the testing 
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data sets. The SSE for PCR is 2.8748 and the SSE for PLS is 1.0464. The results 

showed that PLS can provide better accuracy in predictions than PCR and MLR. 

 

3.2 Cross Validation 

If the underlying model for the relationship between X and Y is a linear model, the 

number of components needed to describe this model is equal to the model 

dimensionality. Nonlinear models require extra components to describe 

nonlinearities. The number of components to be used is a very important property of 

a PLS or PCA model (Geladi & Kowalski, 1986). 

Although it is possible to calculate as many PLS components as the rank of the X 

block matrix, not all of them are normally used. The main reasons for this are that 

the measured data are never noise-free, and some of the smaller components will 

only describe noise (Geladi & Kowalski, 1986). 

PLS, like any data modelling paradigm, may under-fit or over-fit the data. By under-

fitting, not enough loadings are used, and the model fails to capture some of the 

information and dynamics. By over-fitting, too many loadings are used, and the 

model tends to fit some of the noise. This would cause a decrease in the precision in 

prediction. Both cases produce sub-optimal models, thus it is necessary to determine 

the number of components which fit the model best (MacGregor et al., 1999). Cross-

validation is an effective and popular approach used to determine the number of 

latent variables or PCs in the PLS or PCA model (Piovoso & Kosanovich, 1996; 

Kjeldahl et al., 2008).  

The basic principal of cross-validation is to leave out part of the data, build a model, 

and then predict the left-out samples. The concept of cross-validation was initially 

proposed by Mosier (1951), as a ‘design’ for assessing the effectiveness of model 

weights. In 1956, Wold laid the foundations for principal component analysis (PCA) 

cross-validation, a method used to identify the dimensions that best describe the 

systematic variations in the data. The cross-validation method for PCA proposed by 

Wold (1978) relies on the special property of the NIPALS algorithm to cope with a 

moderate amount of randomly missing data. Wold’s cross-validation scheme 
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provides both a way to calculate prediction error sum of squares (PRESS), by a 

specific leave-out pattern and a criterion for the selection of a number of components. 

In 1982, Eastment and Krzanowski suggested an alternative approach that could be 

used to choose a feasible number of components in PCA; however their cross-

validation scheme is very complex. In this method, 2 PCA models need to be 

combined. The mean PRESS difference between the actual and the predicted value is 

calculated, and then the number of components is determined by comparing the 

mean PRESS of the 2 PCA models. The Eigenvector approach is another alternative 

method (Wise et al., 1991), where PCA models are calculated with one or several 

samples left out, and then the model is used to predict estimates of the left-out 

samples. In contrast to the other methods, the PRESS values estimated with 

Eigenvector’s method are actually independent from the predicted elements. 

These cross-validation techniques mentioned however have two significant problems; 

either over-fitting is introduced as the model with which left-out elements are 

predicted is not independent of the left-out elements, or an unintended additional 

error is introduced because the rationale behind the method is not correct. 

Given this, an alternative method has been proposed - cross-validation based on an 

improved Wold procedure (Wise et al., 2003). This method can be briefly described 

as follows: when cross-validation is applied to the latent variable of the PLS model, 

X data and Y data are divided into several groups. Using one of the groups, the PLS 

model is generated as the numbers of latent variables varies from 1 to A (A is the 

number of latent variable). Each of these models is used to predict the Y data in the 

group withhold. The prediction error sum of squares (PRESS) is computed for each 

model. This routine is repeated until each group is withheld once and only once. The 

overall PRESS is then generated for a given number of loadings (from 1 to A), by 

summing the prediction errors for all withheld data. A plot of the PRESS vs. loading 

number (latent variables) will typically reach a minimum and then start to increase 

again. The value corresponding to the minimum PRESS is taken as the number of 

loadings required. Having fewer than this number tends to under-fit the data, 

whereas having more, it begins to over-fit the data (Piovoso & Kosanovich, 1996).  
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To demonstrate its capabilities, cross-validation is applied to one sample case. This 

sample case was introduced in Section 3.1.4. The data set contains near infrared 

(NIR) spectra and their octane rating. X data is used as NIR spectra and Y data is 

used as the octane rating. From 1 latent variable to 20 latent variables, the prediction 

error sum of squares (PRESS) are calculated and presented in Figure 3.8. Cross 

validation was used to determine the number of latent variables, which was found to 

be 7 in this example.  

 

Figure 3.8 The Application of Cross-Validation 

 

3.3 Multi-way PLS (MPLS) Analysis of Batch Data 

To enable PLS to track the dynamics of batch processes, multi-way PLS has been 

proposed. MPLS is an extension of PLS that enables it to handle 3-dimensional data 

arrays (Nomikos. & MacGregor, 1994). Measurement data from a batch process is 

typically stored as a 3-dimensional matrix (X) of size I J K, where I is the number 

of batches, J is the number of measured observations in a complete batch, and K is 

the number of measured variables. The structure of the data collected from a batch 

process is a 3-dimensional cube.  If MSPC is to be applied, 3-dimensional data must 

be transformed into a 2-dimensional matrix. There are different approaches for 

rearranging the data sets (Golshan & MacGregor, 2010).  
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The relationship between MPLS and PLS is that MPLS is equivalent to performing 

ordinary PLS on a 2-dimensional matrix X’, formed by unfolding the 3-dimensional 

array X (Nomikos & MacGregor, 1994; Louwerse & Smilde, 2000). MPLS is a 

method successfully applied to batch-process monitoring and endpoint quality 

prediction. 

 

Figure 3.9 The Structure of the Data Collected from a Batch Process (Nomikos 

& Macgregor, 1994) 

 

MSPC algorithms have been developed for application in a 2-dimensional matrix; 

therefore these algorithms want to be applied in the batch data, and the batch data 

needs to be transformed into a 2-dimensional matrix by using some unfolding 

techniques. There are various ways to unfold a 3-dimensional matrix. Batch-wise 

unfolding and variable-wise unfolding are two alternative methods (Nomikos & 

MacGregor, 1994; Wold et al., 1998).  

 

3.3.1. Batch-wise Unfolding 

Batch-wise unfolding, or the B-approach, unfolds the matrix in accordance to the 

direction of the batches. Measurement data from a batch process is usually 3-

dimensional. Assuming this, this 3-dimensional matrix is I J K. 

The batch-wise unfolding method can be divided into two steps. The first step is to 

transform the 3-dimensional matrix (I J K) into a two-dimensional matrix (I JK). 

 Times (K) 
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Each row of the new matrix represents a batch, which is inclusive of all 

measurement data. The second step is to scale this 2-dimensional matrix, with the 

aim being to remove the non-stationary trajectories from the process data. In this 

way, the mean is 0 and the variance is a unit in each column of the matrix. This 

procedure is explained in Figure 3.10. The method of scaling removes the non-

stationary trajectories from the process data. 

 

Figure 3.10 Procedure of B-approach (Wu and Lennox, 2006) 

 

The application of linear MSPC methods to batch processes faces a number of 

problems. The most significant problem is that process data tends to be highly 

nonlinear and non-stationary. By unfolding in the B-approach, the batch data is 

transformed into a 2-dimensional matrix; through scaling in the B-approach, the 

major non-stationary dynamics are removed. Standard linear MSPC methods can be 

applied to this 2-dimensional transformed data. 

 

3.3.2 Variable-wise Unfolding 

Unlike batch-wise unfolding, variable–wise unfolding or the V-approach is a method 

that unfolds the matrix in accordance with the direction of variables. The variable-

wise unfolding method can be divided into four steps; the first two steps are optional, 

and are identical to the batch-wise unfolding method. The third step is to refold the 
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scaled 2-dimensional matrix back into the original 3-dimensional matrix (i.e. the 3-

dimensional matrix of data has become the scaled data). Finally, the 3-dimensional 

matrix (I J K) is unfolded into a 2-dimensional matrix (IJ K) along the direction 

of variables. Figure 3.11 provides a description of variable-wise unfolding method 

(Wu & Lennox, 2006). 

The principal difference between the V-approach and B-approach is in the unfolding 

process of batch data matrix before MSPC algorithms are applied.  

 

Figure 3.11 Procedure of V-approach (Wu & Lennox, 2006) 
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To compare the capabilities of the B-approach and the V-approach, MPLS based on 

these two unfolding methods are applied to detect the abnormal conditions by Wu & 

Lennox (2006). Both MPLS models are able to detect the abnormal condition and 

identify the cause of the abnormality; however the B-approach MPLS model has 

greater sensitivity than the V-approach, when the models are applied to detect small 

deviations (Wu & Lennox, 2006). The B-approach model though can capture more 

of the information in the normal operation data (Westerhuis et al., 1999). 

In recent years, the B-approach MPLS could be integrated within a model predictive 

controller (MPC) and applied to a fed-batch formation process (Zhang & Lennox, 

2003). The B-approach has been widely applied to process monitoring of fed batch 

formation processes, whilst it has been proven to be very successful by Lennox et al. 

(2001).  

When the unfold method is applied to the batchwise unfold method.  Performing 

PLS on the batchwise unfolded data of these two sets also results in a reduced 

dimension latent variable model of the form: 

                                                                                                              (3.16) 

                                                                                                              (3.17) 

where X is the batchwise unfolded matrix of      for cause variables, Y is the 

batchwise unfolded matrix of     for effect variables, P of       and Q of      

are the loading matrices for X and Y, respectively. The scores T and U are related by 

a diagonal matrix B of proper dimensions with          , where W is the 

weight matrix. Finally, E and F are residual matrices. 

 

3.4 Nonlinear PLS model 

To improve the modelling capabilities of PLS, several nonlinear extensions have 

been proposed to enable it to better handle nonlinear systems. These methods can be 

divided into two categories: Type I and Type II Nonlinear PLS methods.  
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3.4.1 Type I Nonlinear PLS  

In the Type I Nonlinear PLS method, the observed variables are appended with 

nonlinear transformations, such as the X matrix is transformed into the    matrix. 

Following this, traditional linear PLS is then applied.  For example, the X matrix can 

be augmented with transformed terms. The addition of transformed terms in X within 

PLS models was firstly proposed by Wold (1989), which proposed the use of 

quadratic terms in the PLS model.  Other studies involving this technique have 

utilised quadratic and higher order polynomial terms, while ignoring cross-terms 

(Berglund et al., 1997; 1999).  

 

3.4.2 Type II Nonlinear PLS  

In contrast to the Type I nonlinear PLS method, the Type II nonlinear PLS method 

assumes a nonlinear relationship within the latent variable structure of the model. 

The Type II Nonlinear PLS model was first proposed by Wold et al. (1989) and has 

been shown to be able to provide an accurate fit to more complex nonlinear 

relationships, in comparison to Type I Nonlinear PLS (Hiden et al., 1998). 

Type II nonlinear PLS models were constructed using the technique proposed by 

Baffi et al. (2000). The principle of this algorithm is as follows:   

In traditional PLS, the inner relation between t and u is defined as follows, where t 

and u are score vectors and h denotes residuals: 

                                                                                                                              (3.23) 

In the algorithm proposed by Baffi et al. (2000), the inner relation is replaced by a 

quadratic polynomial (2
nd

 order): 

            
                                                                                                      (3.24) 

A limitation with this approach is that by choosing a second order polynomial, the 

type of relationship that can be modelled is restrictive; therefore in the applications 

described in Chapter 5 of this thesis, higher order terms are also included. The 
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relationships are provided in Equation 3.25 and Equation 3.26 for 4
th

 order and 6
th

 

order polynomials respectively.  

            
     

     
                                                                              (3.25) 

            
     

     
     

     
                                                      (3.26) 

 

3.5 Neural Network PLS (NNPLS) 

An alternative to using polynomials in the inner relationship of the PLS model is to 

use a neural network to describe this relationship. In this case, the PLS inner model 

can be represented as follows:  

                                                                                                              (3.27) 

Where      denotes the nonlinear relation represented by a neural network, which is 

determined by minimizing the residual     (Qin et al., 1992). 

The structure of the NNPLS method is showed in Figure 3.12. In the NNPLS 

approach, the PLS outer model is used to transform the data to score variable (   

and   ). The neural networks are then applied to learn the score. These networks can 

be recurrent networks (William & Zipser, 1989), Error Back Propagation network 

(Rumelhart et al., 1986), radial basis functions (Poggio & Girosi, 1990a; 1990b) or 

multilayer feed-forward network (Svozil et al., 1997) and so on. 

 

Figure 3.12 The Structure of NNPLS (Qin et al., 1992) 
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The NNPLS approach differs from the direct network method. The differences were 

introduced in Chapter 2.  The advantage of the application of neural network in the 

inner regressors is due to their nonlinear approximation property. As the simplicity 

and universal approximation property of the neural network would be considered, 

when a nonlinear PLS method wants to be applied, a nonlinear inner model needs to 

be built. The type of network has one sigmoidal hidden-layer and one linear output- 

layer. 

The NNPLS method can be implemented based on the structure of the NNPLS 

method (Figure 3.12). It has 2 parts; one is the PLS outer transform model, and the 

other is an inner network training algorithm. The PLS outer transform model is the 

same as the linear PLS method. 

The NNPLS method can be formulated as follows (Qin et al., 1992):   

(1) Scale X and Y data, let                   . 

(2) For each factor a, take       

(3) PLS outer transform model: 

In matrix X: 

  
       

   ‖         
 ‖    

       
   ⁄ , normalized   to norm 1. 

           ‖         
 ‖        ; 

In matrix Y: 

  
       

   ‖         
 ‖    

       
   ⁄ , normalized   to norm 1. 

        
   ‖         

 ‖        . 

Iterate this step until it converges. 

(4)  Calculate the X loading and rescale the variable: 

  
       

   ‖         
 ‖    

       
   ⁄ , 
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Normalized      ‖  ‖⁄ , 

     ‖  ‖, 

     ‖  ‖  

(5) The inner neural network model: 

The rule of training the inner neural network model is that the following error 

function is minimized. 

   ‖        ‖ . 

A conjugate gradient training method is applied in this algorithm. The detail of the 

conjugate gradient training method will be described in section 3.5.2. 

(6) Calculate the residual for factor a: 

            
 , 

         ̂   
 , 

Where  

 ̂       . 

(7) Let      , return to step (2) until all principal factors are calculated. 

 

3.5.1 Choosing Neuron Activation Function 

When the network wants to be a universal approximator, many kinds of nonlinear 

functions can be applied in the hidden layer (Stinchombe & White, 1989). Normally, 

a sigmoidal function valued from 0 to 1 is selected. In this application, the relation 

between    and    is modelled by the neural network (Eqn. 3.26). Both    and    

have the following property (Geladi et al., 1986): 

∑    
 
                                                                                                              (3.28) 

∑    
 
                                                                                                               (3.29) 
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where     and     are the ith elements of    and   . Therefore, the following centred 

sigmoid is chosen to model the inner relation: 

     
     

     
                                                                                                         (3.30) 

Note that the derivative of the centred sigmoid is: 

      
 

 
                                                                                                   (3.31) 

These relations are useful in deriving the learning rules for neural networks with 

centred sigmoidal functions. 

 

3.5.2 Choosing a Learning Algorithm 

The neural network used in the NNPLS method can be trained by the generalized 

delta learning rule (Rumehart et al., 1986). Therefore, if the generalized learning 

method is applied, the learn rate for each network needs to be appointed. In this 

thesis, the conjugate gradient learning method (Lasdon et al., 1967; Leonard & 

Kramer, 1990) is used to train the network. The conjugate gradient method was 

firstly introduced by Fletcher and Powell (1963), and applied to train a feed-forward 

network by Leonard and Kramer (1990).  

There are two reasons for the selection of the conjugate gradient learning method 

(Qin, 1992). Firstly, the learn speed of the conjugate gradient learn method is faster 

than back-propagation. Secondly, the learning rate constants are calculated 

automatically and adaptively in the conjugate gradient learning method, so that they 

do not need to be specified before training. However, the conjugate gradient learning 

method is the most convenient for the NNPLS approach.   

 

3.5.3 Determining the Number of Hidden Neurons 

The number of hidden layers and hidden units are important factors when designing 

a neural network. In general, a more complex input-output relation would require 
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more hidden units, however this is not true. When too many hidden units are used, 

the over-parameterize problem will occur; whilst too few hidden units would result 

in an under-parameterized model. In the NNPLS model, cross-validation was used to 

determine the size of the hidden units of the neural networks.  

The data have been divided into a training set and a testing set (Figure 3.13). The 

number of factors is chosen such that the model gives the minimum prediction error 

for the testing data. It is similar to when cross validation is applied in the linear PLS 

model. 

  
         

                                                                                                           (3.32) 

  
         

                                                                                                            (3.33) 

and  

  
         

       
      

    
                                                                           (3.34) 

  
         

         
       

    
                                                                     (3.35) 

where   ,   and    have been determined in the NNPLS method.  

Training SetTraining Set Testing SetTesting Set

Y

X

ua
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Figure 3.13 The Application of Crossing Validation in the Training Set and 

Testing Set of NNPLS Method (Qin et al., 1992) 

 

The score for the training set ,             has already been generated in the NNPLS 

method. The inner neural network starts to train the testing data from one hidden unit. 
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The optimal number of hidden units can be found, which gives the best prediction 

error for the test pairs:   
          

    . The method used is cross validation. 

3.6 Summary  

This chapter has provided a mathematical overview of some MSPC methods, such as 

MLR, PCA, PCR and PLS. Some related algorithms, such as unfolding approaches 

and cross-validation, have been discussed in this chapter. Additionally, introductions 

to Nonlinear PLS and NNPLS have been given, with the property of NNPLS being 

discussed. In the next chapter, to compare the capabilities and limitations of linear 

PLS, Nonlinear PLS and NNPLS, these methods will be applied to a number of 

sample testing systems. 
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Chapter 4  

Application of Linear and Nonlinear 

PLS Modelling Techniques to 

Numerical System 

A number of MSPC methods were introduced in the previous chapter. In this chapter, 

linear MPLS, Type I and II nonlinear PLS and NNPLS will be applied to a test 

focused upon batch application. Linear MPLS is first applied to predict linear and 

nonlinear systems; the limitations and capabilities of linear MPLS are then discussed, 

based on the analysis of the predicted results. The results show that linear MPLS is 

suitable for modelling linear systems, but it cannot predict nonlinear systems 

accurately. In real industry, the industrial process is almost nonlinear. 

To overcome this deficiency, several nonlinear extensions have been proposed to 

enable it to better handle nonlinear systems. The application of Type I and II 

nonlinear PLS models is discussed with their limitations considered. The inner 

relation of the Type II nonlinear PLS model is commonly a quadratic polynomial 

(2
nd

 order). To highlight the limitation of Type II nonlinear PLS model, the higher 

order terms (4
th

 and 6
th

) of Type II nonlinear PLS model are used in this chapter. 

Finally, to illustrate the capabilities of the NNPLS method, NNPLS and the Type II 

nonlinear PLS model are applied to predict the same testing system. The Chapter 

concludes with a discussion of results analysis.  

The chapter is divided into the following sections: 

4.1) introduces the application of linear MPLS to simple linear and nonlinear 

systems, and the limitations and capabilities of linear MPLS illustrates; 

4.2) describes the application of the nonlinear PLS model, and discusses the benefits 

and limitations of Type I and Type II nonlinear PLS models; 
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4.3) discusses the application of the NNPLS method; and 

4.4) summarizes and concludes this chapter. 

 

4.1 Application of Linear MPLS to Example Systems 

Linear PLS has been widely applied to solve many practical problems. The major 

restriction of linear PLS is that only linear information can be extracted from data; 

however, many industrial data are inherently nonlinear. To discuss the limitations of 

linear PLS, PLS is applied to predict both linear and nonlinear systems. The 

limitation of Linear PLS model is summarized. Then a number of alternative 

methods are applied, such as Type I and II nonlinear PLS and NNPLS. 

In this part, the testing system is composed of 4 simple systems, to which linear 

MPLS was applied to demonstrate its capabilities. These systems were Linear time 

invariant (system 1); Nonlinear time invariant (system 2); Linear time varying 

(system 3); and Nonlinear time varying (system 4).  

The linear time invariant system was defined as:  

                                                                                           (4.1) 

The linear time varying system was defined as:  

                                                                                     (4.2) 

The nonlinear time invariant system was defined as: 

          
                   

                                           (4.3) 

The nonlinear time varying system was defined as: 

            
                            

                             

(4.4) 

In each system,    and   were specified to be equal to a PRBS signal with an 

amplitude between -1 and 1, and switching time of 1 sample. The initial value of y 
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was 0. White noise with a standard deviation of 0.08 and 0.06, was added to the 

measurements of    and    respectively. Each of the systems was considered to 

operate as a batch, with each batch containing 50 samples. For each system, 100 

batches of data were collected for training the models, and 20 batches were collected 

for testing purposes. Cross validation was used to determine the number of latent 

variables, which in each case was found to be 40. The model is applied to predict the 

trajectory values during batch progression. The model input is the entire batch of     

and   . The accuracy of the models was measured using the sum of square error 

(SSE); this was calculated over 20 batches testing data sets. Linear PLS model is 

applied to the linear system and nonlinear system. In Figure 4.1, 4.1(a) is presented 

the linear time invariant system, 4.1(b) is presented linear time varying system. The 

prediction results of one testing data set are displayed in Figures 4.1 and 4.2. In 

Figure 4.1, 4.1(a) is presented that linear PLS model is applied to predict linear time 

invariant system, 4.1(b) is presented that linear PLS model is applied to predict 

linear time varying system. In Figure 4.2, 4.1(a) is presented that linear PLS model is 

applied to predict nonlinear time invariant system, 4.1(b) is presented that linear PLS 

model is applied to predict nonlinear time varying system. In these figures, the red 

line is the predicted value for the output, y, and the blue line is the actual value. 

 

Figure 4.1 Linear MPLS Model Prediction in the Linear System 
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Figure 4.2 Linear MPLS Model Prediction in the Nonlinear System 

In Figure 4.1, the linear MPLS appears able to approximate the output of both the 

linear time invariant and the linear time varying systems with high accuracy. The 

average SSE of 20 batches testing data set for these two systems was 0.8533 and 

0.3221, respectively. However, Figure 4.2 shows that the MPLS model was not as 

accurate when used to predict the output of the nonlinear time invariant and 

nonlinear time varying systems. The average SSE in these two cases was 23.6 and 

31.8, respectively. 

The results show that as might be expected, linear MPLS can predict the linear 

systems very well. However, this algorithm was not able to track the dynamics 

contained in the two non-linear systems.  These systems demonstrate that linear 

MPLS is suitable for modelling linear, time-varying systems.  

 

4.2 Nonlinear Multiway PLS Model  

Linear MPLS can predict linear systems very well; however problems may be 

encountered when this algorithm is used to model non-linear systems. To illustrate 

the capabilities of the non-linear extensions to MPLS, these algorithms were applied 

to the nonlinear systems, defined by Equation 4.5 to Equation 4.9.  
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4.2.1 Application of Type I Nonlinear MPLS to Simulated 

Systems  

Before investigating the simulated systems introduced in Section 4.1, the limitation 

of using Type 1 Nonlinear MPLS is first illustrated through its application to two 

simple non-linear systems. These are defined as follows: 

System 5:                                                                      (4.5) 

System 6:                                                                      (4.6) 

x was specified to be white noise with a mean of 0 and a standard deviation of 1.  For 

each system, 50 batches of data were collected for training the models, and 20 

batches were collected for testing purposes. Each batch contained 20 samples. For 

each system, a Type I Nonlinear MPLS model using second order polynomials only 

was used to predict the endpoint. The latent variable is selected as 20. The model 

input is the entire batch of   . 

The accuracy of the models over the testing data is shown in Figure 4.3(a). The 

predicted endpoint value is seen to be very close to the actual endpoint value 

suggesting high accuracy. However, Figure 4.3(b) shows that in the situation where 

the order of the non-linearity does not match that of the process, problems are 

introduced and the prediction accuracy is reduced significantly. In real studies, the 

exact order of any nonlinear relationship will not be known a-priori, hence the 

required expansion of x will be difficult to determine. Type I MPLS is therefore not 

recommended for the prediction of the nonlinear system. 
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Figure 4.3 The Predicted Endpoint of the Simple Nonlinear System by Type I 

Nonlinear MPLS Model 

 

4.2.2 Application of Type II Nonlinear MPLS Model to 

Simulated Systems 

In this section, 4
th

 order Type II Nonlinear MPLS is used to approximate system 6, as 

defined in Section 4.2.1. To provide a comparison, linear MPLS is also applied. In 

this part, the latent variable is selected as 20 by cross validation. 

 

Figure 4.4 The Predicted Endpoint of the Simple Nonlinear System by Type II 

Nonlinear MPLS Model 
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In Figure 4.4, the red dots are the endpoints predicted by the Type II nonlinear 

MPLS model and the diamonds are endpoints predicted by linear MPLS. The 

accuracy of the Type II model is significantly greater than the accuracy of the linear 

model. In the Type II nonlinear MPLS model, the predicted endpoint value is very 

close to the real endpoint value. This shows that the Type II Model can be used to 

predict this simple nonlinear system.  

To illustrate the capabilities and limitations of Type II nonlinear MPLS, the ability 

of this model to approximate three different modifications to Eqn.4.3 is now 

presented. In this section, 2
nd

, 4
th

 and 6
th

 order Type II nonlinear MPLS models are 

applied. To compare the capabilities and limitations of these models, the testing 

systems selected are 4
th

, 5
th

 and 6
th

 nonlinear systems. The results show the influence 

of the order selection in Type II nonlinear PLS model. The systems used for this test 

are defined as follows: 

4
th

 order nonlinear system:  

          
          

                   
                          

(4.7) 

5
th

 order nonlinear system: 

          
          

          
                   

              

                                                                                                                     (4.8) 

6
th

 order nonlinear system:  

          
          

          
          

                   
     

                                                                                                           (4.9) 

In each system,    and    were specified to be equal to a PRBS signal with 

amplitude between -1 and 1, and switching time of 1 sample. The initial value of y 

was 0. White noise with a standard deviation of 0.4 and 0.2 was added to the 

measurements of    and    respectively. Each of the systems was considered to 

operate as a batch, with each batch containing 50 samples. For each system, 50 

batches of data were collected for training the models, and 20 batches were collected 
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for testing purposes. The model inputs are     and     over the whole batch. The 

Type II nonlinear PLS model was applied to predict the endpoint of these testing 

systems. The results are shown in Figures 4.5, 4.6 and 4.7. 

 

Figure 4.5 The Application of Type II nonlinear PLS Model to Test 4
th

 Order 

Nonlinear System (Equation 4.7) 

 

Figure 4.6 The Application of Type II nonlinear PLS Model to Test 5
th

 Order 

Nonlinear System (Equation 4.8) 
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Figure 4.7 The Application of Type II Nonlinear PLS Model to Test 6
th

 Order 

Nonlinear System (Equation 4.9) 

 

Table 4.1 shows the errors that result when Type II (defined with 2
nd

, 4
th

 and 6
th

 

order polynomials) nonlinear MPLS models are used to approximate each of these 

systems. The sum square error over the testing data sets is provided in Table 4.1. 

Table 4.1 The List of SSE (when Type II nonlinear MPLS is applied in the 

nonlinear testing systems) 

Type II 

nonlinear MPLS 
Testing system 

 
4

th
 order 

nonlinear system 

5
th

 order 

nonlinear system 

6
th

 order nonlinear 

system 

2
nd

 order 254.7 541.3 1.1e+003 

4
th

 order 0.1329 314.5 363.2 

6
th

 order 0.1497 0.1789 0.1826 

 

These results show that when the system is known, the order of the Type II nonlinear 

MPLS model can be precisely determined. For example, when the testing system is a 

4
th

 order nonlinear system, 4
th

 and 6
th

 order Type II nonlinear MPLS can predict the 
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end-point values very well. However, there were large errors when the order of the 

Type II nonlinear MPLS model was less than the order of the nonlinear system in the 

process. Although the Type II nonlinear PLS model can predict some nonlinear 

systems, the model’s limitation is that the testing system needs to be known a-priori. 

However, most industrial systems can be pre-determined, so the NNPLS model is 

applied.   

 

4.3 Application of the NNPLS Model 

To illustrate its capabilities, the NNPLS method is applied to the nonlinear testing 

systems, defined by Equation 4.9 and Equation 4.10.  To provide a comparison, 6
th

 

Type II nonlinear PLS is also applied.  

6
th

 order nonlinear system is defined as Equation 4.9 in section 4.2.2.  

7
th

 order nonlinear system is defined: 

          
          

          
          

          
              

     
                                                                                         

                                                                                                                              (4.10) 

In each system,    and    were specified to be equal to a PRBS signal with an 

amplitude between -1 and 1, and switching time of 1 sample. The initial value of y 

was 0. White noise with a standard deviation of 0.4 and 0.2 was added to the 

measurements of    and    respectively. Each of the systems was considered to 

operate as a batch, with each batch containing 50 samples. For each system, 50 

batches of data were collected for training the models, and 20 batches were collected 

for testing purposes. 6
th

 order Type II nonlinear PLS model and NNPLS model were 

applied to predict the endpoint of these testing systems. In the NNPLS model, the 

number of LVs is selected as 20, the number of hidden layers is selected as 1. Cross 

validation was used to determine the number of hidden units, which in each case was 

found to be 5. See Figures 4.8 and 4.9 for the results.    
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Figure 4.8 The Application of 6
th

 Type II Nonlinear PLS and NNPLS Model to 

Test 6
th

 Order Nonlinear System 

 

The accuracy of the models over the testing data is shown in Figure 4.8; the 

predicted endpoint value is seen to be very close to the actual endpoint value 

suggesting high accuracy. The SSE of the NNPLS model is 0.5678, and the SSE of 

the 6
th

 Type II nonlinear PLS model is 0.5917. The NNPLS model and the 6
th

 order 

Type II nonlinear PLS model can both predict the endpoint of the 6
th

 order testing 

nonlinear system, and the accuracy of the Type II nonlinear PLS model is similar as 

NNPLS in this test system. 

 

Figure 4.9 The Application of 6
th

 Type II Nonlinear PLS and NNPLS Model to 

Test 7
th

 Order Nonlinear System 
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In Figure 4.9 (b), the predicted endpoint value is also very close to the actual 

endpoint value for NNPLS. The SSE is 0.4803. However, Figure 4.9 (a) shows that 

where the order of the nonlinearity does not match that of the process, prediction 

accuracy is reduced significantly in the Type II nonlinear PLS model. The SSE is 

993.6. In general, the exact order of any nonlinear relationship will not be known a-

priori, so the inner relation of the Type II nonlinear PLS model is difficult to 

determine. This is a major limitation of the Type II nonlinear PLS model; the 

NNPLS does not have this limitation. In the NNPLS, the advantage of the 

application of neural network in the inner regressors is due to their nonlinear 

approximation property. So Neural Network-based PLS can immune to polynomial 

order change of the nonlinear model. 

 

4.4 Summary  

In this chapter, the MPLS model was applied to four example systems. The results 

demonstrated that the linear MPLS model was suitable for linear and time varying or 

time-invariant systems. When the system was nonlinear, the MPLS model cannot 

provide the accuracy of the predictive value. To overcome the limitation of linear 

MPLS, Type I and Type II nonlinear PLS model were proposed and applied in this 

chapter.  

In the Type I Nonlinear PLS method, the observed variables were appended with 

nonlinear transformations. As mentioned, in practice it might be very difficult to find 

such a simple nonlinear transformation.  This implies that the exact expansion of the 

X matrix is very important. If the exact expansion of the X matrix cannot be 

determined, the accuracy of the Type I nonlinear PLS model is unsatisfactory. In this 

chapter, the Type II nonlinear PLS model was applied, and it showed that it can 

predict the nonlinear system very accurately. In comparison to the linear PLS model, 

the predicted effect is very obvious in the Type II nonlinear PLS model, because the 

inner relation of this Type II nonlinear PLS model is a quadratic polynomial. The 

application of this Type II nonlinear PLS model has though a certain limitation. The 

inner relation of the system had expended to 4
th

 order and 6
th

 order polynomials.  
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The results showed that when the order of the Type II nonlinear MPLS model could 

be precisely determined, this model can be applied to predict the end-point value.  

In real industry, the exact order of any nonlinear relationship is not easy to determine, 

hence the Type II nonlinear PLS model is not commonly utilised to predict the 

nonlinear system. To overcome this problem, NNPLS is applied to the prediction of 

the nonlinear system. The results showed that NNPLS is a better method to model 

the endpoint value of the nonlinear system, than Type II nonlinear PLS. The results 

in this chapter have been published by Yan and Lennox, (2013). 

To illustrate the capabilities of the nonlinear extensions to MPLS, the Type I and II 

algorithms and NNPLS will be applied to a benchmark simulation of a penicillin 

batch fermentation process. This is discussed in the next chapter. 
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Chapter 5  

Application of Linear and Nonlinear 

PLS Modelling Techniques to 

Fermentation Process Simulator 

 

In Chapter 4, Linear PLS, Type I and II nonlinear PLS, and NNPLS were applied to 

some simple simulations systems. In this chapter, to illustrate NNPLS’ capabilities, 

it is applied to a benchmark simulation of a penicillin batch fermentation process. 

The fermentation process investigated is the Pensim simulator (Birol et al., 2002). To 

provide some comparisons, Linear PLS, the Type I nonlinear model and the Type II 

nonlinear model are also applied to test the Pensim data. There are two primary 

quality output variables in this process, biomass and penicillin; these are each 

affected by the primary manipulated variable, the substrate feed-rate. By analysing 

the response of this system, it can be determined that the relationship between the 

substrate and biomass is linear and time invariant, and for penicillin, the relationship 

is nonlinear and time varying. 

The end-point measurement is used because in most fermentation processes, quality 

measurements such as penicillin concentration will only be available at the end of a 

batch. For this reason, this chapter will focus upon the endpoints of the products 

(Biomass and Penicillin). Linear MPLS has been shown to be able to be applied to 

predict linear systems, particularly linear time varying systems. The Linear MPLS 

model therefore is used to predict the endpoint of Biomass and Penicillin. The results 

show that linear MPLS is not able to accurately predict the endpoint of penicillin, 

hence the nonlinear PLS model is applied. This chapter will also summarise the 

limitations of Type I and II nonlinear models, in addition to analysing the results 

when Multi-way NNPLS is applied to predict the endpoint of penicillin 

concentration. By analysing and comparing linear multi-way PLS, Neural network 

multi-way PLS, and Type I and Type II nonlinear multi-way PLS models, the 
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advantages and limitations of these methods are identified and summarized.The 

chapter is divided into the following sections: 

5.1) introduces the benchmark simulation (Pensim); 

5.2) describes the application of MPLS model, and discusses the predicted endpoint 

value of Biomass and Penicillin; 

5.3) discusses the application of Type I and II Nonlinear MPLS model to the 

Estimation of Penicillin, and identifies the limitations of Type I and II nonlinear 

MPLS; 

5.4) describes the application of the Neural network MPLS model to the Estimation 

of ; Penicillin, and explains the benefits of Neural network MPLS; and 

5.5) summarizes and concludes this chapter. 

 

5.1 Introduction of the Benchmark Simulation 

(Pensim) 

Pensim is a benchmark simulation of a fed-batch fermentation system. The simulator 

is based on a series of detailed mechanistic models that describe an industrial fed-

batch fermentation process, used for the production of penicillin. The original 

models were proposed by the Control Group at Illinois Institute of Technology 

(Briol et al., 2002).  

A basic flow chart of the process is presented in Figure. 5.1. 
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Figure 5.1 The Basic Flow Chart of an Industrial Fed-batch Fermentation 

Process in the Production of Penicillin (Briol et al., 2002) 

 

Initially, a small amount of biomass, substrate and water is loaded into the fermenter. 

The substrate tank provides the reaction material (substrate). In the operation process, 

air and substrate is fed into the fermenter. Hot and cold water are used to heat up and 

cool down the reactor temperature. Acid and Base are applied to regulate the pH 

value. 

The process consists of two phases. During the initial batch phase, no substrate is fed 

and the microorganisms grow on glucose (the main substrate) initially available in 

the broth. The reactor is switched from batch to fed-batch mode, once the glucose 

concentration drops below 0.3 g/L. At this phase, a continuous stream with 

additional substrate is fed. Due to the low substrate concentration in the reactor, the 

microorganisms produce penicillin as a secondary metabolite. Fermentation is 

stopped when a total of 25 L of substrate feed has been added to the reactor.  Process 

input and output variables are listed in Table 5.1. 

ACID 

Fermenter 

Substrate 

Tank 

BASE 

FC 

pH 

T 

Cold 

Water 

Hot 

Water 

FC 

   

Air 
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Table 5.1 Process Input/Output Structure (Briol et al., 2002) 

Input variables Output variables 

Glucose Feed Temperature Culture Volume 

Glucose Feed Flow Rate Fermenter Temperature 

Aeration Rate Generated Heat 

Agitator Power Input pH 

Coolant Flow Rate Concentrations of Glucose 

Acid/ Base Flow Rate Concentrations of Biomass 

 Concentrations of Penicillin 

 Concentrations of Dissolved Oxygen 

 Concentrations of Carbon Dioxide 

 

The initial conditions of the various states in the model are listed in Table 5.2, as 

well as the set points for the process inputs. The initial substrate concentration, 

biomass concentration, and culture volume are subject to random variations for each 

batch to represent changing initial conditions. They are sampled from a normal 

distribution with 95% confidence intervals indicated in Table 5.2. Additionally, 

small low frequency fluctuations are added to several process inputs to represent a 

real process environment. Reactor temperature and pH are controlled at their 

respective set points by standard PID controllers during both phases. The parameter 

of PID controller can be found in the original Pensim paper (Briol et al., 2002). 
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Table 5.2 Initial Conditions of the State Variables and Set Point of the Process 

Inputs in Pensim 

Initial conditions Value 

Substrate concentration [g/L]      

Biomass concentration [g/L] 0.1+0.05 

Culture Volume [L]        

Dissolved oxygen concentration [g/L] 1.16 

Penicillin concentration [g/L] 0 

CO2 concentration [g/L] 0.5 

pH [–] 5 

Reactor temperature [K] 298 

Reaction heat [cal] 0 

Process inputs Set point 

Substrate feed rate [L/h] 0.05 

Aeration rate [L/h] 8 

Agitator power [W] 30 

Feed temperature [K] 296 

Controlled variables Set point 

Reactor temperature [K] 298 

pH [–] 5 

 

Pensim provides measurements of 17 process variables. Table 5.3 provides an 

overview of these measurements. If total production hours to be simulated are 200, 

and the sampling interval used in this work was 1 hour, the data of each batch 

contained 200 observations and 17 variables under normal operation conditions.  

Figure 5.2 provides an example of the Pensim data.  
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Table 5.3 Process Variables in Pensim 

Number Process variables 

1 Aeration Rate (L/h) 

2 Agitator Power (W) 

3 Substrate Feed Rate (L/h) 

4 Substrate Feed Temperature (K) 

5 Substrate Concentration (g/L) 

6 Dissolved Oxygen Concentration (g/L) 

7 Biomass Concentration (g/L) 

8 Penicillin Concentration (g/L) 

9 Culture Volume (L) 

10 Carbon Dioxide Concentration (g/L) 

11 pH 

12 Reactor Temperature (K) 

13 Generated Heat (kcal) 

14 Acid Flow Rate (L/h) 

15 Base Flow Rate (L/h) 

16 Cooling Water Flow Rate (L/h) 

17 Hot Water Flow Rate (L/h) 

 

 

Figure 5.2 Example of the Pensim Data 
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The functional relationships among the process variables are summarized in Table 

5.4. 

Table 5.4 Functional Relationship among the Process Variables (Briol et al., 

2002) 

Model Structure 

                      

                   

                    

                     

                

              

 

In Table 5.4,      is biomass concentration; S is substrate concentration;    is 

dissolved oxygen concentration in the broth; P is penicillin concentration;     is 

carbon dioxide concentration; H is hydrogen ion concentration for pH (    ); and T 

is reactor temperature. 

The model equations are introduced as the following parts (Briol et al., 2002): there 

are a total of 15 differential equations which are solved simultaneously. All the 

parameters are taken from literature or assigned values (Briol et al., 2002). The parts 

of the equations are displayed in the following: 

Biomass Growth: 

     

  
       

    

 

  

  
                                                                                            (5.1) 

where   is specific growth rate.  It contains the effects of environmental variables 

(pH and Temperature). Glucose (S) and oxygen (  ) are considered in its kinetic 

expression.  

It is defined: 
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                                                                                   (5.2) 

   is maximum specific growth rate. 

Penicillin Production: 

  

  
            

 

 

  

  
                                                                                      (5.3) 

where     is the specific penicillin production rate.  It contains biomass(    ), 

glucose(S) and oxygen (  ) in its kinetic expression. 

It is defined: 
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Substrate utilization 

Glucose: 
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Oxygen: 
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where      is taken to be a function of agitator power input    and flow rate of 

oxygen    as suggested by Bailey and Ollis (1986).  

It is defined: 
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                                                                                                 (5.7) 

Carbon dioxide production 

    

  
   

     

  
                                                                                         (5.8) 

here, the values of   ,    and     have been taken from Montague et al. (1986). 
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5.1.1 The Relationship between the Quality Output 

Variables and the Manipulated Variable 

In Pensim data, substrate feed-rate was the primary manipulated variable; it affected 

two primary quality out variables: Biomass and Penicillin. The relationship between 

the quality out variables and the manipulated variable were tested in this section.  

3 batches of Pensim data were collected for testing. Every batch data contains 200 

sample times. One simple time is one hour. In order to better display the results, 

Pseudo-Random Binary Signals (PRBS) and white noise are not added into these 

batches. 

Batch 1 was collected under normal operation condition.  

In Batch 2, a step signal was added in the manipulated variable-substrate feed-rate 

from 100 to 200 sample times (magnitude = 20%).   

In Batch 3, another step signal was added in the substrate feed-rate from 100 to 200 

sample times (magnitude = 40%). 

Afterwards, 3 batches of the response of biomass and penicillin value are presented 

in Figure 5.3 and 5.4. 

 

Figure 5.3 Biomass Response Results 
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In Figure 5.3, the blue dashdot line is Batch 1, the red dashed line is Batch 2, and the 

black line is Batch 3. If the system is linear, the system needs to satisfy the following 

conditions: 

                                                                                               (5.9) 

In this case, x is the substrate feed-rate, and y is the biomass concentration.     is the 

20% and 40% magnitude of step signal.   

The results show that the difference between Batch 1 and Batch 2 is approximately 

equal to the difference between Batch 2 and Batch 3. This demonstrates that the 

relationship between biomass and substrate is linear. 

  

Figure 5.4 Penicillin Response Results 

 

In Figure 5.4, the results show that the relationship between Penicillin and substrate 

does not meet the linear condition, thus it is nonlinear. 

 

5.2 The Application of MPLS Model 

In the Pensim data, there are two primary quality output variables in this process, 

biomass and penicillin. In this section, MPLS is applied to predict the endpoint 
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values of Biomass and Penicillin. In the MPLS model, 20 batches of Pensim data 

were collected for training the models, and 100 batches were collected for testing 

purposes. All batches of Pensim data contain 200 sample times. Pensim provides 

measurment of 17 variables. In this thesis, for building PLS model, Biomass 

Concentration, Penicillin Concentration and Carbon Dioxide Concentration are not 

considered, other rest process variables are the model inputs (the cause variables). 

Firstly, the MPLS model is used to predict the final productivity of the Batch 

(Biomass and Penicillin). In the following data, Pseudo-Random Binary Signals 

(PRBS) with high/low values of -0.008 and 0.008 were applied to the nominal feed-

rate of substrate (0.05 L/h) in order to excite process dynamics. In this thesis, to 

better simulate an industrial fermenter, random disturbance and noise were added in 

the simulation; these disturbances were introduced as white noise sequences, with a 

standard deviation of 0.1, 0.2, 0.05, 0.05, and were applied to the biomass growth 

constant, to the carbon dioxide evolution rate, and to the feed-rates of the base and 

cooling water respectively. 

 

5.2.1. The Application of MPLS to Predict the Final 

Productivity of the Batch (Biomass) 

When MPLS is applied to real batch process, the number of batches used to identify 

the model is important to consider. Therefore, in this section, the training data is 

selected as 5 batches, 10 batches, and 20 batches in the MPLS model. The influence 

of the number of batches used in modelling was then tested. Y-data used the biomass 

value at the end-point of each batch. PRBS and random white noise have been added 

in the process, because they have a certain degree of randomness. When the testing 

data is bigger, the result can be more accurate. In order to ensure the experiments’ 

accuracy, testing data was collected 10 times, and every time, the testing data 

included 100 batches. The average of the 10 times’ predicted results were analysed. 

The number of latent variable was selected by using crossing validation; the results 

of which are presented in Figures 5.5, 5.6 and 5.7.   
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Figure 5.5 Cross-Validation of MPLS Model (5 batches training data) 

 

Figure 5.6 Cross-Validation of MPLS Model (10 batches training data) 
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Figure 5.7 Cross-Validation of MPLS Model (20 batches training data) 

 

In Figures 5.5, 5.6 and 5.7, there are minimum values of the Prediction Error Sum of 

Squares (PRESS) when latent variable is selected as 3 (5 batches training data), 5 (10 

batches training data), and 10 (20 batches training data). Therefore, in the MPLS 

model, the number of latent variables is respectively found to be 3, 5 and 10. 

The predictive data are shown in Figure 5.8 (5 batches training data), in Figure 5.9 

(10 batches training data) and in Figure 5.10 (20 batches training data).  In these 

figures, the Y-axis represents the actual data, and the X-axis represents the predictive 

data. The blue diamond points are training data and the red star points are testing 

data (Note: The predictive data are the same, so one time is displayed in here). 
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Figure 5.8 The End Point Prediction of the Biomass (5 batches training data) 

 

 

Figure 5.9 The End Point Prediction of the Biomass (10 batches training data) 
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Figure 5.10 The End Point Prediction of the Biomass (20 batches training data) 

 

When the PLS model is built, the testing data is used to assess the model’s accuracy. 

The average error of the testing batch and training batch are calculated. The results 

are recorded in Table 5.5. In order to directly compare the data, the results are 

depicted in a bar chart (Figure 5.11). 

Table 5.5 The Average Error of Testing Batch and Training Batch (Biomass) 

 

Time No. 5 training 10 training 20 training 

1
st
 0.3168 0.2217 0.2131 

2
nd

 0.3054 0.2094 0.1989 

3
rd

 0.3249 0.2283 0.2159 

4
th

 0.2942 0.1963 0.1849 

5
th

 0.2896 0.1846 0.1795 

6
th

 0.3369 0.2317 0.2198 

7
th

 0.3146 0.2168 0.2031 

8
th

 0.2848 0.1811 0.1789 

9
th

 0.3165 0.2031 0.1913 

10
th

 0.3067 0.2129 0.2064 
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Figure 5.11 The Average Error of Testing Batch (Biomass) 

 

In order to ensure the experiments’ accuracy, testing data was collected 10 times, 

and every time, the testing data included 100 batches. In Figure 5.11, X-axis is time 

number. Some conclusions can be drawn from Figure 5.11.  When the training batch 

number increases from 5 batches to 10 batches, the average error decreases evidently 

(the same test data); thus when the testing data are the same, with the increase in the 

number of training data, the accuracy of the model would also be improved. 

However the error reduces only very slightly after 10 training batches. This 

demonstrates that when training data is enough to identify the MPLS model, 

providing more training data is not useful for improving the MPLS model’s accuracy. 

 

5.2.2 The Application of MPLS to the Final Productivity of 

the Batch (Penicillin) 

Training data are selected as 5 batches, 10 batches, and 20 batches. Y-data used the 

penicillin value in the endpoint of each batch. The predictive data are shown in 

Figures 5.12, 5.13 and 5.14. In these figures, the Y-axis represents the actual data, 

and the X-axis represents the predictive data. The blue diamond points are training 

data and the red star points are testing data. 
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Figure 5.12 The End Point Prediction of the Penicillin (5 batches training data) 

 

 

Figure 5.13 The End Point Prediction of the Penicillin (10 batches training data) 
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Figure 5.14 The End Point Prediction of the Penicillin (20 batches training data) 

 

In Figures 5.12, 5.13 and 5.14, the results show that the error is very large. This is 

because the relationship between Penicillin and Substrate is nonlinear, therefore the 

linear MPLS model cannot be used to predict the endpoint value of Penicillin.    

The average error of the testing batch and of the training batch are calculated (Table 

5.6).  In order to directly compare data, the results are presented in Figure 5.15. 

Table 5.6 The Average Error of Testing Batch (Penicillin) 

time 5 training 10 training 20 training 

1st 0.039 0.026 0.0198 

2nd 0.0292 0.0214 0.017 

3rd 0.0364 0.0258 0.0182 

4th 0.0383 0.0271 0.0168 

5th 0.0327 0.0263 0.0167 

6th 0.0247 0.0218 0.0161 

7th 0.028 0.022 0.0164 

8th 0.0278 0.0234 0.014 

9th 0.022 0.016 0.0139 

10th 0.027 0.0208 0.0171 
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Figure 5.15 The Average Error of Testing Batch (Penicillin) 

 

When comparing the Biomass and Penicillin results, the accuracy of the PLS model 

is better when it is used to predict biomass in the end point, than when it is used to 

predict penicillin.  

Note: When the training data selected was 10 batches, the Average Error of Testing 

Batch (biomass) is about 0.2. The average error of the penicillin is 0.02. The average 

of biomass’s endpoint value is 12. The average of Penicillin’s endpoint value is 0.65. 

The error rates are 0.0167 (Biomass) and 0.0308 (Penicillin). 

               
                           

                                  
                                              (5.10) 

 

5.2.3 Application of MPLS to Track the Trajectories of the 

Batch  

In order to highlight the capability and limitations of MPLS, the MPLS model was 

applied to estimate the biomass and penicillin trajectories. The predicted error of the 

trajectories is used to analyse the accuracy of the MPLS model. 

In Pensim data, the following process variables were collected hourly from simulated 

runs of 40 batches with a duration time of 200 hours for the fed-batch operation: 

aeration rate, agitator power, substrate feed temperature, substrate concentration, 
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dissolved oxygen concentration, culture volume, pH, fermenter temperature and 

generated heat, substrate feed rate and biomass concentration. The substrate feed rate 

is the manipulated process variable while the biomass concentration and the 

Penicillin concentration are the process variable to be tracked. In the following data, 

Pseudo-Random Binary Signals (PRBS) with high/low values of -0.008 and 0.008 

were applied to the nominal feed-rate of substrate (0.05 L/h), in order to excite 

process dynamics.  

The training data consisted of 20 batches, with 20 batches used for testing each 

model. The number of latent variables, selected using crossing validation, was found 

to be 10. The results are in Figure 5.16 and 5.17. These figures display that MPLS 

was applied in the 4 batches of testing data (penicillin and biomass respectively). 

The predicted curve is red solid line and the actual curve is blue dashed line. 

 

Figure 5.16 The Predicted Trajectory of the Penicillin 
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Figure 5.17 The Predicted Trajectory of the Biomass 

The sum of square error (SSE) was calculated in every testing batch. The results are 

listed in Tables 5.7 and 5.8. 

Table 5.7 The SSE of Penicillin in MPLS Model 

Testing Batch The value of SSE (Penicillin) 

Number 1 0.0926 

Number 2 0.3177 

Number 3 0.1138 

Number 4 0.1415 

 

Table 5.8 The SSE of Biomass in MPLS Model 

Testing Batch The value of SSE (Biomass) 

Number 1 1.0904 

Number 2 1.1567 

Number 3 1.6877 

Number 4 0.9812 

 

The average SSE value of 20 batches testing data are calculated; they are 0.2147 

(Penicillin) and 1.2157 (Biomass). The results show that the predicted error is very 
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bad when MPLS is applied to predict penicillin. The data supports that the PLS 

model is more accurate when it is used to predict biomass within batch, than when it 

is used to predict penicillin within batch.  Penicillin is nonlinear, thus MPLS would 

be unable to model penicillin very well, therefore Type I and Type II nonlinear 

MPLS models were proposed and applied. 

 

5.3 Application of Nonlinear PLS to Pensim 

5.3.1 Application of Type I Nonlinear MPLS Model to 

Estimation of Penicillin 

Linear MPLS can capture the relationship between substrate and biomass. The 

Linear MPLS model can be applied to predict the endpoint value of biomass, but it 

cannot provide the accuracy prediction of penicillin. Type I nonlinear MPLS was 

thus applied. Type I Nonlinear MPLS model using second order polynomials only 

was applied. In the Type I nonlinear MPLS, the expansion of the X matrix was still 

considered with the quadratic term    only. 

The ability of linear MPLS and Type I nonlinear MPLS to predict penicillin for 20 

testing whole batches was applied; one testing whole batch is shown in Figure 5.18. 

The predicted curve is red solid line and the actual curve is blue dashed line. The 

predicted endpoints of Penicillin in 20 batches testing data are presented in Figure 

5.19.  
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Figure 5.18 Penicillin Prediction Using Linear MPLS and Type I Nonlinear 

MPLS 

 

In Figure 5.18, the SSE of the one whole batch is 0.1416 in the linear MPLS model; 

the SSE is 0.1414 in the Type I nonlinear MPLS model. The average SSE value of 

20 batches testing data were calculated; they are 0.2147 (MPLS) and 0.2124 (Type I 

nonlinear PLS). The results illustrate that the Type I nonlinear MPLS model did not 

significantly improve the accuracy of the prediction. 

 

Figure 5.19 The Endpoints of Penicillin Prediction Using Linear MPLS and 

Type I Nonlinear MPLS 
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In Figure 5.19, 20 batches testing data were applied to test the linear MPLS model 

and the Type I nonlinear MPLS model. The predicted endpoints of penicillin were 

saved, and the SSEs were calculated in these two models. Linear MPLS, as shown in 

Figure 5.19(a), produced a SSE of 0.0826. The Type I nonlinear MPLS, shown in 

Figure 5.19(b), produced a SSE of 0.0788. The results illustrate that the Type I 

nonlinear MPLS model has a slightly improved accuracy over the Linear MPLS 

model. The accuracy of the Type I nonlinear MPLS model is though still not enough. 

The reason is that in the Type I nonlinear model, the expansion of the X matrix is 

only considered with the quadratic term   . Therefore, the Type II nonlinear MPLS 

model was applied to Pensim data.  

 

5.3.2 Application of Type II Nonlinear MPLS Model to 

Pensim 

In this section, the ability of Linear MPLS and the 2
nd

, 4
th

 and 6
th

 order Type II 

nonlinear MPLS to estimate the final endpoint concentration of penicillin and 

biomass are illustrated.  

In the following data, Pseudo-Random Binary Signals (PRBS) with high/low values 

of -0.008 and 0.008 were applied to the nominal feed-rate of substrate (0.05 L/h), in 

order to excite process dynamics. The training data consisted of 20 batches, with 20 

batches used for testing each model. Each batch was allowed to run for 200 samples, 

with a sample time of 1 hour. The number of latent variables, selected using crossing 

validation, was found to be 10. The results are shown in Figures 5.20 and 5.21. 
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Figure 5.20 The Application of Type II Nonlinear MPLS (Penicillin) 

 

 

Figure 5.21 The Application of Type II Nonlinear MPLS (Biomass) 

 

The SSE values of these models are calculated, and are listed in Table 5.9. 
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Table 5.9 The SSE of Type II Nonlinear MPLS 

 
The value of 

SSE(Penicillin) 

The value of 

SSE(Biomass) 

Linear MPLS 0.0826 0.1615 

The 2
nd

 order Type II 

nonlinear MPLS 
0.0557 0.1289 

The 4
th

 order Type II 

nonlinear MPLS 
0.0257 0.1246 

The 6
th

 order Type II 

nonlinear MPLS 
0.0072 0.1247 

 

When these models are applied to predict the endpoint concentration of penicillin, 

the result shows that the Type II nonlinear MPLS model can provide a more accurate 

prediction than Linear PLS, and as the order of the model improves, so too does the 

model’s accuracy. 

Because biomass is linear, linear MPLS and Type II nonlinear MPLS therefore can 

predict the endpoint concentration of biomass very accurately.  

 

5.4 Application of Multi-way Neural Network PLS to 

Pensim 

To illustrate the benefit of using multi-way NNPLS, the ability of this model to 

predict the endpoint of penicillin concentration is presented. In the following data, 

Pseudo-Random Binary Signals (PRBS) with high/low values of -0.008 and 0.008 

were applied to the nominal feed-rate of substrate (0.05 L/h), in order to excite 

process dynamics. The training data consisted of 20 batches, with 20 batches used 

for testing each model. Each batch was allowed to run for 200 samples, with a 

sample time of 1 hour. The number of hidden layers was selected as 1. Cross 

validation was used to determine the number of hidden units, which in each case, 

was found to be 8. The number of latent variable is found be 10. Figure 5.22 shows a 
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comparison of the predictions made using Type II non-linear MPLS with that 

obtained using the multi-way NNPLS. In Figure 5.22, the diamonds represent 

predicted endpoint by the multi-way NNPLS; the red dots represent predicted 

endpoint by the 6
th

 order Type II nonlinear MPLS.  

 

Figure 5.22 The 6
th

 Order Type II nonlinear MPLS Model and Multi-way 

NNPLS Used to Predict the Endpoint Value of Penicillin 

 

In Figure 5.22, the SSE of 6
th

 order Type II nonlinear MPLS was calculated to be 

0.0072; this was higher than the SSE for the multi-way NNPLS, which was 2.94e-04. 

The primary advantage of using Multi-way NNPLS is that it provides improved 

accuracy without the need to determine the order for the model, which can be a 

critical parameter with Type II MPLS models.  

 

5.5 Summary 

In this chapter, MPLS was applied to a benchmark simulation: Pensim - a penicillin 

batch fermentation process. There are 17 variables in the Pensim data. Substrate 

feed-rate is the primary manipulated variable, which affected two primary quality out 

variables: Biomass and Penicillin.   
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MPLS was applied to predict the whole batch of product quality (Biomass and 

Penicillin concentration) and the final productivity of the batch. Comparing the 

results of the average error of testing batches and training batches, MPLS can predict 

the biomass very well. The reason is that the relationship between the substrate and 

biomass is linear and time invariant. However, Linear MPLS cannot provide a 

suitable prediction for penicillin. The reason is the relationship between the substrate 

and penicillin is nonlinear and time varying.  

Type I and Type II nonlinear MPLS models were therefore applied in the Pensim. 

The results showed that the Type I nonlinear MPLS model did not significantly 

improve the accuracy of the prediction. The reason is that in the Type I nonlinear 

model, the expansion of the X matrix is only considered with the quadratic term   . 

However, the actual relationship of the Penicillin system is of a higher order. 

Compared to Linear MPLS, the 2
nd

, 4
th

, and 6
th

 order Type II nonlinear MPLS 

models have significant improvements when these methods were applied to predict 

the end value of the penicillin. However, when the Multi-way NNPLS model is used 

to compare with the 6
th

 Type II nonlinear MPLS model, the results showed that 

Multi-way NNPLS can provide a better prediction than Type II nonlinear MPLS. 

The results in this chapter have been published by Yan and Lennox, (2013). 

In the next chapter, NNPLS will be applied to control the end point value of the 

biomass and penicillin concentration. 
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Chapter 6  

Nonlinear PLS Control 
 

NNPLS has been applied to process monitoring.  In this chapter, NNPLS will be 

applied to control the end-point of Biomass and Penicillin. After discussing the end-

point control method, the NNPLS model is used to build the controller, which is 

applied in the Pensim simulation. By analysing the results, the controller’s 

performance is discussed and summarized.  

The chapter is divided into the following sections: 

6.1) describes the End-point Control Algorithm; 

6.2) describes the handling of missing data through single component projection; 

6.3) describes the application of a nonlinear controller to control the end-point value 

of both the biomass and Penicillin concentrations in the Pensim simulation; and 

6.4) summarizes and concludes this chapter. 

 

6.1 End-point Control Algorithm 

Quality control of batch processes is usually implemented by regulating several 

process variables, such as temperature and pH. The process variables are well 

maintained, though the quality of the final product cannot be guaranteed, due to the 

effects of disturbances. To address this, the endpoint controller is proposed and 

applied to control the endpoint value at set-point. Cerrillo and MacGregor (2003) 

proposed a strategy for controlling end-point quality properties. In this controller, the 

quality of the end-product was regulated by adjusting the trajectory of the 

manipulated variables in a reduced space (scores) of a latent variable model. Model 

inversion and trajectory reconstruction is obtained by using the correlation structure 

in the PLS model. This controller was referred to as the end-point control. In this 



Chapter 6 Nonlinear PLS Control    

121 

thesis, the technique is going to replace the PLS model with a NNPLS model in the 

controller. More details on the endpoint control methodology are described in this 

section. 

 

6.1.1 Model building 

In this method, the model used in end-point control is obtained by using PLS, and 

the dataset used to identify the model must contain data that is representative of the 

process being studied. That is to say, the dataset should contain data collected while 

the process is being excited. In this thesis, PRBS was applied and added. The detail 

of the PRBS will be described later. The dataset used for identification should be 

arranged into a 3-dimensional original array X, and a 2-dimensional response matrix 

Y (K N), as shown in Figure 6.1. 
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Figure 6.1 Unfolding of Database for Model Building (Cerrillo & MacGregor, 

2003) 

 

In Figure 6.1, K is the number of batches, and M are quality properties measured at 

the end of each batch. 

Each row vector of X, denoted as   , is composed of: 
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   [        
                

          
 ] ,                                                                   (6.1) 

 

where         
             

               
                     

   is a vector of the 

trajectories of l on-line process variables; 

          
                

                
                    

   is the set of any off-line 

measurements collected occasionally on r variables during the batch, and    
  

      
          

               
   is a vector of the trajectories of n manipulated variables.  

In Figure 6.1,            
                            and 

       
                               represents, respectively, f on-line 

measurements for the j th variable, and g off-line measurements for the s th variable, 

while      
                   denotes that w manipulated variables for the m th 

variable.  

As mentioned in Chapter 3, a number of statistical methods are only suitable for 2-

dimensional datasets, therefore, a 3-dimensional original array X needs to be 

transformed into a 2-dimensional dataset. In this work, the X matrix is unfolded as 

shown in Figure 6.1, where     𝑙         . In the following text, 

        
  and           

  are combined into a new vector: 

     
           

               
   , and then           

        
  . 

 

6.1.2 Control 

Following the development of the model, the control system can be conceived. Full 

manipulated variable trajectories (MVTs) can be divided into a number of intervals 

and control decision points. At each decision point, endpoint quality is predicted. 

When the predicted final quality deviates from the desired value, the remaining 

MVTs (after this decision point) are computed to adjust the predicted endpoint 

quality. In this controller, a number of decision points are applied during the batch, 

with control action being taken at every decision point. The selection of decision 

points is arbitrary. Usually, a low number of decision points are adequate. Cerrillo 

and MacGregor (2003) proposed this form of controller to control product properties 

in the condensation polymerisation process. 
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For on-line end-quality estimation ( ̂), when a new batch k is being processed, every 

decision point (  , i = 1, 2,...)        ,  
  is composed of: 

         
        

   

                  
                

                       
                

                      (6.2) 

   consists of: all measured variables (              ) available up to time    

(       ); unmeasured variables (            ) not available at    , but will be 

available in the future (          ); implemented control actions 

                (         ); and future control actions            (       ) 

which will be determined through the control algorithm.  

The prediction is performed considering                       (i.e. assuming that 

the remaining MVTs will be kept at their nominal conditions) using the PLS model: 

 ̂       
        

        
       

 [                 

                
                       

                 
 ]             (6.3) 

 ̂   ̂       
                                                                                                        (6.4) 

W and Q are projection matrices obtained from the PLS model building stage. The 

vector of scores,  ̂       , for the new batch is the projection of the x vector onto the 

reduced dimension space of the latent variable model at time    ;  ̂  is the vector of 

predicted end-quality properties.          
  is obtained using the PLS model and the 

missing data algorithm available in the paper (Nelson & MacGregor, 1998; Arteaga 

& Ferrer, 2002). In this work, Single Component Projection (SCP) is applied; it is 

the simplest method for missing data prediction. Arteaga suggested using an 

alternative technique, such as the conditional mean replacement method (CMR). 

When the alternative techniques are tested, there is little difference between the 

methods proposed by Arteaga and since SCP is found, therefore in this thesis, the 

simplest method-SCP is applied. The SCP method will be introduced in next part 

(Section 6.2). 

When the quality prediction need to be controlled, model inversion to obtain MVTs 

for the remainder of the batch           
  is needed.  Firstly, to compute the 
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adjustment of the MVTs, the scores (  ) are required. After that, to obtain the real 

MVTs for the remainder of the batch, the inversion of the PLS model needs to be 

considered.  

Following the prediction procedure, necessary changes in the scores (   ) are 

identified, which will ensure that the predicted endpoint measurement will match the 

set-point, (ysp). To identify the value of    which minimizes the following cost 

function:  

   ⏟
      

( ̂     )
 
  ( ̂     )              

st                    ̂  (    ̂       )
 
                                                                   (6.5) 
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(    ̂       ) 

 

  
 

 

   

 

               

where        ̂       
 ,    is a diagonal weighting matrix defining the relative 

importance of the variables y’s;    is a diagonal movement suppression matrix that 

is used as a tuning matrix to moderate the aggressiveness of the control;    is the 

Hotelling’s statistic;   
  is the variance of the score   ; and   is a weighting factor 

which determines how tightly the solution is to be constrained to the region of the 

score space defined by past operation.       and       are the constraints which 

define the minimum and maximum values for   . This final constraint is included to 

limit the action of the control system. 

To identify the value of    which minimizes Eqn. 6.5, the vector X is considered to 

be made up of a series of known trajectories,   , and future trajectories,   . For 

control intervals at times   > 0, the X vector trajectory 

(    

                      
                             

                          
                        

  

) is composed of measured process variables (                     
 ) for the interval 

      , and for the already implemented manipulated variables 

(                      
 ) that must be respected when computing the trajectories for 
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the remainder of the batch (        ).     can be divided to   
  (known 

trajectories) and   
  (future trajectories). 

  
                        

                             
   is the known trajectories over 

time interval       ;    
                       

                         
   is the future 

trajectories over time interval (     ). 

 At times   > 0, if x is directly reconstructed using as         then: 

   
       

        
         

                                                                                     (6.6) 

where   
  and   

  are corresponding loading matrices for   
  and   

  respectively. 

However, the computed     
  will not be equal to the actually observed trajectories 

at time       
                        

                             
   . Therefore, simply 

selecting   
      

  would not be correct, as it does not account for what has 

actually been observed for   
  in the first part of the batch.  

Given this, assume that the remaining trajectories (future manipulated variables and 

measurements) are: 

  
           

                                                                                                (6.7) 

where     
   is an adjustment to   

  that accounts for the effects of discrepancy 

between     
  and   

  during the first part of the batch. Therefore: 

      
       

  [
  

  
]    

      
                                                                  (6.8) 

where     and    are the weight matrices for   
  and   

  respectively. 

Then 

  
         

                                                                                                (6.9) 

Substituting   
           

  in Equation 6.9: 

         
         

                                                                                (6.10) 

Therefore, 
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                                                                    (6.11) 

The change in the future process measurements (                     
 ), and the 

manipulated variables (                  
 ), can be estimated by inverting the PLS 

model. 

  
        

       
    

    
                                                                           (6.12) 

where         ̂       
 , so         ̂       

 . This inferential control 

algorithm is then repeated at every decision point (  ) until completion of the batch. 

 

6.2 Single Component Projection 

There are some methods for dealing with missing data in MSPC, such as: Trimmed 

score method (TRI), Projection to the model plane (PMP), Conditional mean 

replacement method (CMR), and Trimmed score regression method (TSR) (Arteaga 

& Ferrer, 2002). Single Component Projection (SCP) is the simplest method for 

missing data prediction, although Arteaga (2002) suggested using an alternative 

technique, such as the CMR and the PMP methods. When the alternative techniques 

are tested, there is little difference between the methods proposed by Arteaga and  

since SCP is found, this thesis therefore applied the simplest method – SCP.  

The SCP method is proposed by Nelson et al. (1996) and based on the NIPALS 

algorithm. When MSPC models have been built and the loading vectors are fixed, 

the non-iterative approach can be applied to handle missing data in new multivariate 

observation. The score calculation step of the NIPALS missing data model-building 

algorithm is applied to each dimension sequentially.  This method can be briefly 

introduced by the following (Arteaga & Ferrer, 2002): 

If a data matrix X is considered, then the structure can be expressed as  

                                                                                                                     (6.13) 

where T is a     matrix of scores and P is a     matrix of loadings. 
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These matrices have the standard PCA or PLS properties of the model, of which they 

are a part. Since the data may not have full rank, some of the columns of T may be 

composed entirely of zeros. This allows the true dimensionality of the underlying 

system to differ from that of any model of it. The number of dimensions of any PCA 

or PLS model in this work is A. 

The data X can be considered as a collection of row vectors   
  (observation) or 

column vectors    (variables). The K columns of loading matrix P are the loading 

vectors    . The score matrix T can be considered as a collection of row vector   
  

(scores of the ith observation) or column vectors   (latent variables). 

For the new object z, the score vector   can be calculated as  

                                                                                                                 (6.14) 

Then it can be expressed as  

                                                                                                                  (6.15) 

When the new observation z has some unmeasured variables, the vector can be 

partitioned as  

  [ 
 

  ]                                                                                                             (6.16) 

where    denotes the missing measurements and    denotes the observed variables.  

Matrix X can then be partitioned as 

                                                                                                            (6.17) 

where    is the sub-matrix containing the first R columns of X, with     

accommodating the remaining K-R columns. 

Correspondingly, the P matrix can be partitioned as 

  [ 
 

  ]                                                                                                             (6.18) 
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where    is the sub-matrix made up of the first R rows of P, and matrix    contains 

the remaining K-R rows. 

6.2.1 Handling Missing Data through Single Component 

Projection 

The standard procedure for handling missing data in PCA during model-building is 

based on the NIPALS algorithm (Nelson et al., 1996). In PCA model-building, one 

iteration of the NIPALS algorithm consists of a linear regression of the columns of X 

on a score vector t to obtain a loading vector p, followed by a linear regression of the 

rows of X on the loading vector to obtain a new estimate of t. Convergence is 

reached when the mean square change in the scores falls below a threshold. When 

data in any column or row of X are missing, the iterative regressions are performed 

using the data that is present, with the missing points ignored. This procedure can be 

interpreted in different ways. It is equivalent to setting the residuals for all missing 

elements in the least squares objective function to zero, in each iteration. It can also 

be interpreted as replacing the missing values by their minimum distance projections 

onto the current estimate of the loading or score vector at each iteration (Martens & 

Naes, 1989). 

As long as the number of variables present in any row or column is greater than or 

equal to the number of scores to be calculated, then the NIPALS algorithm can 

obtain a solution. However, in practice one should have many more observations 

than the scores or loadings being estimated to obtain reliable results. The NIPALS 

algorithm is usually recommended only when the missing data pattern is random 

rather than structured.  

6.2.2 Single component projection algorithm for missing 

data in PLS 

In the SCP method, let z be a new incomplete individual with only the last K-R 

variables measured,   . Consider z(0)=z and let         be the portion of       not 

explained by the first a-1 larger components. To estimate the a     element of the 
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vector score,    (co-ordinate of the new observation in the a     component), the SCP 

method is based on the simple regression model.     

            
                                                                                          (6.19) 

The SCP algorithm minimizes the sum of the squared prediction errors            , 

which yields 

 ̂  
  

         

  
    

                                                                                                      (6.20) 

 as the least square estimate of     based on the observed variables. The portion of  

        explained by the ath component is then subtracted to yield the deflated 

object,             and the next component  ̂    is then calculated analogously. 

The expression for estimation error in the first score can be written as 

    ̂      
    

      
  ∑   

  
                                                                      (6.21) 

In general, for the i     component (i=2,3…..A) as  

    ̂      
    

      
  (∑   

    
   (    ̂ )  ∑   

  
       )                            (6.22) 

6.2.3 Error analysis for PLS 

The analysis of score estimation error using an existing PLS model can be obtained 

by replacing the loading vector   
 , onto which the data is projected by   

 . The 

structure of the deflated data vector at the i     stage of the single component projection 

algorithm for PLS is: 

                ∑  ̂ 
   
     

                                                                    (6.23) 

since PLS deflates using the   vectors. If there is no score estimation error then 

 ̂     and the first and last terms cancel after all A scores have been used in 

deflation. In this case, the residual data vector is composed of the sum of a vector of 

random error variables    and a deterministic remainder   . The    term arises 

because PLS does not necessarily use all the non-random information in the 
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independent data block that is of greater magnitude than the noise. Substituting this 

expression for       into the expression for  ̂ , results in: 
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                                                                     (6.24) 

When there are no missing measurements, the score estimation error reduces to 

     ̂      
    

    
   ∑    

    
    

        ̂  
   
                      (6.25) 

the PLS score estimation error with no missing data has an error propagation term. 

This means that score estimation errors originating in measurement noise are 

transmitted to later scores. Errors propagate because the loading vector    is not 

required to be orthogonal to   when j is less than   , although deviations from 

orthogonality are penalized (Nelson et al., 1996). 

6.3 Case study 

6.3.1 Control Methodology  

The end point control algorithm proposed by Cerrillo and MacGregor (2003) is an 

effective method for controlling product quality in a batch process, however the 

approach is based on linear PLS. In Chapter 5, the results showed that Linear PLS 

cannot provide a suitable prediction for penicillin. The reason is the relationship 
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between the substrate and penicillin is nonlinear and time varying.  So in this thesis, 

the endpoint controller based on NNPLS is proposed. 

In this chapter, the end-point controller is applied to regulate the biomass and 

penicillin in the Pensim simulation. The data requirements and model-building 

procedure are the same as those described in Section 6.1 for Cerrillo’s end-point 

controller.  The end-point controller based on NNPLS is applied. In order to compare 

the performance of the proposed controller, the endpoint controller based on PLS is 

also applied. 

In proposed Endpoint controller, linear PLS is replaced by NNPLS. Before decision 

points, NNPLS is applied to build model. Because NNPLS is better than linear PLS, 

when the model is applied to predict the endpoint value, therefore the proposed 

Endpoint controller based on NNPLS is used to improve the control effect of the 

Endpoint value.  

Following the development of the NNPLS models, the control methodology was 

considered in two stages. Firstly, the online and offline process measurements and 

MVTs available (before this decision point) are applied to predict the values of the 

future outputs at each decision point. To predict outputs  ̂  
 , the future 

measurements          
  , needed to be estimated.  

The prediction is performed considering                       (i.e. assuming that 

the remaining MVTs will be kept at their nominal conditions) using the NNPLS 

model: 

 ̂  
        

        
         

 [                 

                
                       

                 
 ]       (6.26) 

       ̂  
       

 ̂  
         

                                                                                           (6.27) 

    and    are projection matrices obtained from the NNPLS model building 

stage. The vector of scores,  ̂  , for the new batch is the projection of the x vector 

onto the reduced dimension space of the latent variable model at time    and  ̂  
   is 
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the vector of predicted end-quality properties. N( ) denote the nonlinear relation 

represented by a neural  network, which is determined by minimizing the resideual 

   .     are score variable, they are obtained from the PLS outer model in the 

NNPLS approach. 

The second stage was to regulate the end-point value by determining the necessary 

control action. Following this, the model was inverted to generate the required 

MTVs. The control algorithm was repeated at every decision point until the batch 

terminated. 

Following the prediction procedure, the necessary changes in the scores (    ) were 

identified, that ensured that the predicted endpoint measurement matched the set-

point, (ysp). The value of    which minimized the following cost function was then 

determined:  
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             ̂         

  ̂  
          

                                                       (6.5) 

                     

where         ̂  
 ,      is a diagonal weighting matrix defining the relative 

importance of the variables y’s;     is a diagonal movement suppression matrix that 

is used as a tuning matrix to moderate the aggressiveness of the control.         

and         are the constraints which define the minimum and maximum values 

for     .      is applied to determine the neural network. This final constraint is 

included to limit the action of the control system. 

 

 



Chapter 6 Nonlinear PLS Control    

133 

6.3.2 Application of the End-point Controller in Pensim 

Simulation 

In order to assess and compare the performance of the addressed control approaches, 

the end-point controller is applied in a benchmark (Pensim). More detail can be 

found in Chapter 5. The objective for each of the considered approaches is to control 

the end-point biomass and penicillin concentration through manipulating substrate 

feed rates. The training data consisted of 20 batches, with 20 batches used for testing 

each model. Each batch was allowed to run for 200 samples, with a sample time of 1 

hour. 

For the end-point controller, 20 batches of data were used to build the PLS model 

and NNPLS mode, and another 20 batches were applied to test the model. Cross 

validation method was used to choose the latent variables. The predicted and actual 

outputs (the biomass or Penicillin) are compared in Chapter 5. The results show that 

the NNPLS model and PLS model can be applied to predict the end-point Biomass 

very well. When the end-points of the Penicillin are predicted, the NNPLS model 

can provide more accurate predicted results than the linear PLS model.  

The end-point controller is applied to control the end-point value of the quality 

variables (biomass and penicillin). Three statements were considered to evaluate 

their performance for controlling the value of end-point: control the end-point value 

in nominal target, control the end-point value in modified target, and control the end-

point value under additional disturbance and measurement noises. The ability of 

tracking a changing set-point target at the end-point and rejecting disturbance is 

important for a controller in practice, since changing demands and varying 

disturbances often happen among/within batch runs. The end-point controller is 

firstly applied to control the end-point value of the biomass. 
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6.3.2.1 The End-Point Control of Biomass Concentration to 

the Nominal Target Value 

20 testing batches were collected. Pseudo-Random Binary Signals (PRBS) were 

applied to the nominal feed-rate of substrate, in order to excite process dynamics. 

The more detail of the PRBS can be found in Chapter 5. The biomass trajectories of 

these nominal testing data are presented in Figure 6.2. 

 

Figure 6.2 The Biomass Concentration Trajectories from 20 testing batches 

 

The end-point controllers based on NNPLS and PLS are applied to control the end-

point value of the biomass concentration. In the end-point controller, the control 

decision points are at 70, 100, 130 and 160 sample times. The effect of selecting the 

decision point is discussed in the following part. The purposed value of the end-point 

value of the biomass concentration is set to 12 g/l. For the control results for 

controlling the end-point value of 20 testing batches, see Figure 6.3. In Figure 6.3, 

the red star points represent the Target value (12 g/l). The blue circle points represent 

the end-point value in open loop. The Black diamond points highlight the controlled 

end-point value in the end-point controller based on NNPLS. The magenta plus 

points highlight the controlled end-point value in the end-point controller based on 

PLS. Controllers are applied to control the end-point value of the biomass 

concentration. In order to compare the accuracy of the controllers, the sum squared 

of error in 20 batch end-point value of the biomass (      ) are calculated and listed 

in Table 6.1. 
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Figure 6.3 Controlling the End-point value of Biomass Concentration in 

Nominal Target 

 

 

 

Table 6.1 The SSE of the End-point value of the Biomass Concentration in 

Nominal Target (20 testing batches)  

Controller        

Open Loop 2.1886 

The end-point controller based on PLS 0.0899 

The end-point controller based on NNPLS 0.0263 

 

20 testing batches were applied to calculate the standard deviation of biomass end-

point measurement; the standard deviation is 0.3308 under open-loop control and 
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0.0363 and 0.0670 under the end-point controller based on NNPLS and PLS. The 

results show that both end-point controllers can control the nominal target end-point 

value of the biomass concentration. These results therefore indicate that the NNPLS-

based end-point controller has slightly less variation in the end-point of the biomass, 

than the PLS-based end-point controller. 

To compare with open loop and different controller, the corresponding trajectories 

for the manipulated substrate feed rate are shown in Figure 6.4. In Figure 6.4, one 

testing batch is shown. The open-loop substrate feeding rate is kept constant at 

0.0045. The blue dashed line represents the manipulated substrate feed rate in open 

loop. The Black line highlights the manipulated substrate feed rate value in the end-

point controller based on NNPLS. The green line highlights the manipulated 

substrate feed rate in the PLS-based end-point controller 

 

Figure 6.4 The Corresponding Trajectories for the Manipulated Substrate Feed 

Rate in Nominal Target (Biomass) 

The sum squared of error in substrate trajectory (            ) are calculated. The 

values are 2.7526e-05 in the endpoint controller based on PLS and 8.7448e-06 in the 

endpoint controller based on NNPLS. In this case, the results are shown that the 

endpoint controller based on NNPLS is better than the endpoint controller based on 

PLS.   
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The selection of different decision points is also very important and this too was 

tested. Various decision points were used in the end-point controller and the 

performance compared (Table 6.2). 

Table 6.2 Comparison of Control Performance with Different Decision Points 

(End-point controller based on NNPLS) 

Decision Points 
The sum squared of error in 20 batch 

End-point Value of the biomass 

50 0.0748 

100 0.0679 

150 0.0723 

200 0.1524 

70, 100 0.0598 

100, 130 0.0574 

130, 160 0.0613 

70, 100, 130 0.0394 

100, 130, 160 0.0416 

70, 100, 130, 160 0.0263 

 

Table 6.2 shows that when a simple decision point is applied, the controller 

performances were similar, until the decision point was increased to 200. At this 

point, the consistency and performance of the controller reduced. The reason for this 

is that selecting a decision point too close to the end of the batch will mean there is 

insufficient time for the process variables to adjust. When a simple decision point is 

applied, it is shown that the decision point of 100 samples times provides the most 

accurate results; therefore, a number of decision points are added near this sample’s 

time. There are no general guidelines for the selection procedure of the decision 

point. In this thesis, 4 decision points were applied. The decision points were 

selected at sample number 70, 100, 130 and 160. This is because when selecting 

these decisions points, the controller can provide the most accurate results. 
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6.3.2.2. The End-Point Control of Biomass Concentration to 

the Modified Target Value  

In this part, 20 testing batches were collected and applied to test controller 

performance. The Biomass Concentration Trajectories 20 testing batches are shown 

in Figure 6.5. PRBS were applied to the nominal feed-rate of substrate, in order to 

excite process dynamics. The end-point controllers based on NNPLS and PLS are 

applied to control the end-point value of the biomass concentration. In the end-point 

controller, the control decision points are used in 70, 100, 130 and 160 sample times. 

The target end-point value of the biomass concentration is changed from 12 g/l to 

12.8g/l. The control results for controlling the end-point value of 20 testing batches 

are presented in Figure 6.6. In Figure 6.6, the red star points represent the Target 

value (12.8 g/l). The blue circle points represent the end-point value in open loop. 

The Black diamond points highlight the controlled end-point value in the End-point 

controller based on NNPLS. The magenta plus points highlight the controlled end-

point value in the end-point controller based on PLS. Controllers are applied to 

control the end-point value of the biomass concentration. In order to compare the 

accuracy of the controllers,         are calculated and listed in Table 6.3. 

 

Figure 6.5 The Biomass Concentration Trajectories in Modified target from 20 

testing batches 
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Figure 6.6 Control Results for 20 testing batches end-point value of the Biomass 

Concentration in Modified Target 

Table 6.3 The SSE of the End-point value of the Biomass Concentration in 

Modified Target (20 testing batches) 

Controller        

Open Loop 4.2561 

The end-point controller based on PLS 0.0383 

The end-point controller based on 

NNPLS 

0.0097 

20 testing batches were applied to calculate the standard deviation of biomass end-

point measurement; the standard deviation is 0.4613 under open-loop control and 

0.0220 and 0.0438 under the end-point controller based on NNPLS and PLS. 

These results show that the NNPLS-based end-point controller can be applied to 

track a changing set-point; the NNPLS-based end-point controllers can also provide 

better performance than the PLS-based end-point controller. 
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6.3.2.3. The End-Point Control of Biomass Concentration in 

the Presence of Noise and Disturbance  

In this part, the end-point controller is applied to control the end-point value of the 

biomass concentration under additional disturbance on Substrate Concentration, and 

measurement noises on biomass concentration, Carbon dioxide and Dissolved 

Oxygen concentration. Normally distributed disturbances and noise were added to 

the simulation; these disturbances were introduced as white noise sequences with a 

standard deviation of 0.1, 0.2, 0.05, 0.05, and were applied to the biomass growth 

constant, to the carbon dioxide evolution rate, and to the feed-rates of the base and 

cooling water respectively. 

In the Pensim simulation, the initial value of the substrate concentration is 15g/l. 

However, as the properties of raw materials are not always kept the same, the 

substrate concentration can be different from the nominal value; therefore the initial 

value of substrate concentration is replaced from 15g/l to 13g/l. The biomass 

concentration trajectory will be changed; one batch comparison results are seen in 

Figure 6.7. The end-point value of the biomass changed from 12.3652 to 11.4109. 

 

Figure 6.7 Comparison of The Biomass Concentration Trajectories when the 

Initial Substrate Concentration is Changed 

20 testing batches are collected and applied to test the performance of the controller. 

The biomass trajectories of these testing data are shown in the Figure 6.8. PRBS 
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were applied to the nominal feed-rate of substrate, in order to excite process 

dynamics. 

 

Figure 6.8 The Biomass Concentration Trajectories within Some Disturbances 

and Noises form 20 testing batches 

 

In the end-point controller, the control decision points are at 70, 100, 130 and 160 

sample times. The target end-point value of the biomass concentration is set to 12 g/l. 

The control results for controlling the end-point value of 20 testing batches are 

presented in Figure 6.9. In Figure 6.9, the red star points represent the Target value 

(12 g/l). The blue circle points represent the end-point value in open loop. The Black 

diamond points highlight the controlled end-point value in the end-point controller 

based on NNPLS. The magenta plus points highlight the controlled end-point value 

in the end-point controller based on PLS. Controllers are applied to control the end-

point value of the biomass concentration. In order to compare the accuracy of the 

controllers,         are calculated and listed in Table 6.4. 
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Figure 6.9 Control Results for 20 testing batches end-point value of the Biomass 

Concentration within Some Disturbances and Noises 

Table 6.4 The SSE of the End-point value of the Biomass Concentration within 

some Disturbances and Noises (20 testing batches) 

Controller        

Open Loop 7.4857 

The end-point controller based on PLS 0.5086 

The end-point controller based on 

NNPLS 

0.1265 

 

20 testing batches were applied to calculate the standard deviation of biomass end-

point measurement; the standard deviation is 0.6118 under open-loop control and 

0.0825 and 0.1595 under the end-point controller based on NNPLS and PLS. 

The results show that the NNPLS-based end-point controller has the ability to reject 

these disturbances and noises. Furthermore, the NNPLS-based end-point controller 
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performs slightly better than the PLS-based end-point controller in terms of tracking 

errors. 

In the Pensim simulation, the penicillin is another quality variable. In the following 

part, the end-point controller is applied to control the end-point of the Penicillin. 

Three statements were similar to consider: control the end-point value of the 

penicillin concentration in nominal target, control the end-point value of the 

penicillin concentration in modified target, and control the end-point value of the 

Penicillin concentration under additional disturbance and measurement noises. 

6.3.2.4. The End-Point Control of Penicillin Concentration 

to the Nominal Target Value  

The Penicillin trajectories of 20 testing batches are shown in Figure 6.10. Pseudo-

Random Binary Signals (PRBS) were applied to the nominal feed-rate of substrate, 

in order to excite process dynamics. 

 

Figure 6.10 The Penicillin Concentration Trajectories from 20 testing batches 

Both NNPLS-based and PLS-based end-point controllers were applied to control the 

end-point value of the Penicillin concentration. In the end-point controller, the 

control decision points are at 70, 100, 130 and 160 sample times. The target value of 

the end-point value of the penicillin concentration is set to 0.75 g/l. The control 

results for controlling the end-point value of 20 testing batches are presented in 
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Figure 6.11. In Figure 6.11, the red star points represent the Target value (0.75 g/l). 

The blue circle points represent the end-point value in open loop. The Black 

diamond points highlight the controlled end-point value in the end-point controller 

based on NNPLS. The magenta plus points highlight the controlled end-point value 

in the PLS-based end-point controller. Controllers are applied to control the end-

point value of the penicillin concentration. In order to compare the accuracy of the 

controllers, the sum squared of error in 20 batches end-point value of the Penicillin 

(      ) are calculated and listed in Table 6.5. 

 

Figure 6.4 Controlling the End-point value of Penicillin Concentration in 

Nominal Target 
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Table 6.5 The SSE of the End-point value of the Penicillin Concentration in 

Nominal Target (20 testing batches) 

Controller        

Open Loop 0.0622 

The end-point controller based on PLS 0.0012 

The end-point controller based on 

NNPLS 

1.8753e-04 

20 testing batches were applied to calculate the standard deviation of Penicillin end-

point measurement; the standard deviation is 0.0558 under open-loop control and 

0.0031 and 0.0077 under the end-point controller based on NNPLS and PLS. 

These results therefore indicate that the NNPLS-based end-point controller can  

control the endpoint value of the Penicillin, and that it has slightly less variation in 

the end-point of the Penicillin than the PLS-based end-point controller. 

To compare with open loop and different controller, the corresponding trajectories 

for the manipulated substrate feed rate are shown in Figure 6.12. In Figure 6.12, one 

testing batch is shown.  The open-loop substrate feeding rate is kept constant at 

0.0045. The blue dashed line represents the manipulated substrate feed rate in open 

loop. The Black line highlights the manipulated substrate feed rate value in the end-

point controller based on NNPLS. The green line highlights the manipulated 

substrate feed rate in the PLS-based end-point controller. 
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Figure 6.12 The Corresponding Trajectories for the Manipulated Substrate 

Feed Rate in Nominal Target (Penicillin) 

The              are calculated. The values are 2.9781e-04 in the endpoint 

controller based on PLS and 1.0697e-04 in the endpoint controller based on NNPLS. 

In this case, the results are shown that the endpoint controller based on NNPLS is 

better than the endpoint controller based on PLS.   

 

6.3.2.5. The End-Point Control of Penicillin Concentration 

to the Modified Target Value  

In this part, 20 testing batches were collected and applied to test controller 

performance. The Penicillin Concentration Trajectories 20 testing batches are shown 

in Figure 6.13. PRBS were applied to the nominal feed-rate of substrate, in order to 

excite process dynamics. The end-point controllers based on NNPLS and PLS were 

applied to control the end-point value of the penicillin concentration. In the end-

point controller, the control decision points are at 70, 100, 130 and 160 sample times. 

The target end-point value of the penicillin concentration was changed from 0.75 g/l 

to 0.82 g/l. The control results for controlling the end-point value of 20 testing 

batches are presented in Figure 6.14. In Figure 6.14, the red star points represent the 

Target value (0.82 g/l). The blue circle points represent the end-point value in open 
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loop. The Black diamond points highlight the controlled end-point value in the end-

point controller based on NNPLS. The magenta plus points highlight the controlled 

end-point value in the End-point controller based on PLS. Controllers are applied to 

control the end-point value of the penicillin concentration. In order to compare the 

accuracy of the controllers,         are calculated and listed in Table 6.6. 

 

Figure 6.5 The Penicillin Concentration Trajectories in Modified target from 20 

testing batches 

 

Figure 6.6 Control Results for 20 testing batches end-point value of the 

Penicillin Concentration in Modified Target 
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Table 6.6 The SSE of the End-point value of the Penicillin Concentration in 

Modified Target (20 testing batches) 

Controller        

Open Loop 0.0766 

The end-point controller based on PLS 0.0030 

The end-point controller based on 

NNPLS 

6.1360e-04 

20 testing batches were applied to calculate the standard deviation of Penicillin end-

point measurement; the standard deviation is 0.0619 under open-loop control and 

0.0055 and 0.0122 under the end-point controller based on NNPLS and PLS. The 

results are obvious that the ability to adapt to the modified end-point target of the 

penicillin concentration has changed, where the end-point controller based on 

NNPLS can provides the better control in that case. 

 

6.3.2.6. The End-Point Control of Penicillin Concentration 

in the Presence of Noise and Disturbance  

In this part, the end-point controller is applied to control the end-point value of the 

penicillin concentration under additional disturbance on Substrate Concentration, 

and measurement noises on biomass concentration, Carbon dioxide and Dissolved 

Oxygen concentration. Normally distributed disturbances and noise were added to 

the simulation; these disturbances were introduced as white noise sequences, with a 

standard deviation of 0.1, 0.2, 0.05, 0.05, and were applied to the biomass growth 

constant, to the carbon dioxide evolution rate, and to the feed-rates of the base and 

cooling water respectively. 
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In the Pensim simulation, the initial value of the substrate concentration is 15g/l. 

However, as the properties of raw materials are not always kept the same, the 

substrate concentration can be different from the nominal value; therefore the initial 

value of substrate concentration is replaced from 15g/l to 13g/l. The penicillin 

concentration trajectory was changed; one batch comparison results are shown in 

Figure 6.15. The end-point value of the penicillin concentration changed from 

0.7998 to 0.6858. 

 

Figure 6.7 Comparison of The Penicillin Concentration Trajectories when the 

Initial Substrate Concentration is changed 

20 testing batches were collected and applied to test the performance of the 

controller. PRBS were applied to the nominal feed-rate of substrate, in order to 

excite process dynamics. The penicillin trajectories of these testing data are shown in 

Figure 6.16. 
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Figure 6.8 The Penicillin Concentration Trajectories within Some Disturbances 

and Noises form 20 testing batches 

In the end-point controller, the control decision points are at 70, 100, 130 and 160 

sample times. The target end-point value of the penicillin concentration is set to 0.75 

g/l. The control results for controlling the end-point value of 20 testing batches are 

presented in Figure 6.17. In Figure 6.17, the red star points represent the Target 

value (0.75 g/l). The blue circle points represent the end-point value in open loop. 

The Black diamond points highlight the controlled end-point value in the End-point 

controller based on NNPLS. The magenta plus points highlight the controlled end-

point value in the End-point controller based on PLS. Controllers are applied to 

control the end-point value of the penicillin concentration. In order to compare the 

accuracy of the controllers,          are calculated and listed in Table 6.7. 

 



Chapter 6 Nonlinear PLS Control    

151 

 

Figure 6.9 Control Results for 20 testing batches End-point value of the 

Penicillin Concentration within Some Disturbances and Noises 

 

Table 6.7 The SSE of the End-point value of the Penicillin Concentration within 

Some Disturbances and Noises (20 testing batches) 

Controller        

Open Loop 0.0368 

The end-point controller based on PLS 0.0058 

The end-point controller based on 

NNPLS 

0.0012 

20 testing batches were applied to calculate the standard deviation of Penicillin end-

point measurement; the standard deviation is 0.0429 under open-loop control and 

0.0077 and 0.0172 under the end-point controller based on NNPLS and PLS. 

The results show that the NNPLS-based end-point controller has the ability to reject 

these disturbances and noises in this case. For quality variable (Penicillin 
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concentration), the performance of the NNPLS-based end-point controller is better 

than the PLS-based end-point controller at the end-point sample time. 

 

6.4 Summary  

In this chapter, Nonlinear PLS was applied to a benchmark simulation: Pensim 

simulation. The end-point control algorithm was then introduced. Based on this 

method, PLS and NNPLS were used to build the controller. The controller is applied 

to control the end-point value of the quality variables (Biomass concentration and 

penicillin concentration). The results show that this proposed NNPLS controller is 

able to be applied in the batch process.  

The NNPLS-based end-point controller can be applied to track a changing set-point 

at the end-point; the results showed the performance of the NNPLS controller is very 

accurate. When some process disturbance and some noises are considered, the 

NNPLS-based end-point controller has the ability to reject these disturbances and 

noises. For quality variable (Penicillin or Biomass concentration), the performance 

of the NNPLS-based end-point controller is better than the performance of the PLS-

based end-point controller at the end-point sample time. 
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Chapter 7  

Conclusion and Future Work 

 

This chapter firstly provides conclusions of the work presented in this thesis and then 

suggests lines for future research in this field. 

7.1 Summary and Conclusions 

Chapter 2 presented a literature review on the application of multivariate statistical 

analysis methods, and summarized the previous work on multivariate statistical 

process control (MSPC) methods and applications. Chapter 3 described some basic 

algorithms of MSPC techniques, such as Partial Least Square (PLS) and discussed 

several of PLS’s extensions, including multi-way PLS (MPLS), nonlinear PLS and 

neural network PLS (NNPLS). 

In Chapter 4, the limitations of linear PLS are discussed, with PLS being applied to 

predict linear and nonlinear systems. When PLS is applied to batch processes, a 

technique referred to as multi-way PLS (MPLS) is frequently applied. This technique 

analyses process behaviour relative to the mean trajectories of the process variables. 

In doing so, a major nonlinearity in the data is removed. The results showed, as 

expected, that linear MPLS can predict linear systems very well; however, this 

algorithm was not able to track the dynamics contained in the non-linear systems. To 

overcome this deficiency, several nonlinear extensions were proposed to enable it to 

better handle nonlinear systems. The nonlinear PLS model can be divided into Type 

I and Type II nonlinear PLS model. In the Type I Nonlinear PLS method, the 

observed variables were appended with nonlinear transformations. In contrast to the 

Type I nonlinear PLS method, the Type II nonlinear PLS method assumes a 

nonlinear relationship within the model’s latent variable structure. Type I and II non-

linear structures are integrated within MPLS models to enable them to more 

accurately approximate nonlinear batch processes. In this thesis, higher order terms 

of Type II nonlinear MPLS model were considered and applied. 2
nd

, 4
th

 and 6
th

 order 
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Type II nonlinear MPLS were applied to test the 4
th

, 5
th

 and 6
th

 order nonlinear 

systems. The results showed that, although the Type II nonlinear MPLS model can 

predict some nonlinear systems, the limitation of this model is that the testing system 

needs to be known a-priori. Most industrial system can be pre-determined; therefore 

the NNPLS model is applied. To illustrate the capabilities of NNPLS, multi-way 

NNPLS and 6
th

 Type II nonlinear MPLS were applied to predict the 7
th

 order 

nonlinear testing systems. The results showed that multi-way NNPLS is a better 

method to use to model the endpoint value of the nonlinear system, in comparison to 

the Type II nonlinear MPLS. MPLS do not have a number of limitations. 

In Chapter 5, the linear MPLS model, the Type I and Type II nonlinear MPLS 

models and the multi-way NNPLS model were applied in a benchmark simulation of 

the penicillin batch fermentation process. In this batch process, the substrate feed-

rate was the primary manipulated variable; it affected two primary quality output 

variables: Biomass and Penicillin. The relationships between the quality output 

variables and the manipulated variable were tested. The results showed that the 

relationship between the substrate feed-rate and the Biomass concentration is linear; 

and between the substrate feed-rate and Penicillin concentration, the relationship is 

linear. 

Linear MPLS is firstly applied to predict the endpoint value of the biomass and 

penicillin. Comparing the results of the average error of testing batches and training 

batches, MPLS can predict the biomass very well. It proved that linear MPLS can 

model linear system very well. On the other hand, linear MPLS cannot provide a 

suitable prediction of the endpoint of penicillin, as the relationship between the 

substrate and penicillin is nonlinear. 

To predict the endpoint value of Penicillin, some nonlinear MPLS model were 

proposed and applied. In comparison to linear MPLS, the results illustrated that the 

Type I nonlinear MPLS model did not significantly improve prediction accuracy. 

This is because in the Type I nonlinear model, the expansion of the X matrix is only 

considered with the quadratic term   . Therefore, the Type II nonlinear MPLS 

model was applied to predict the endpoint value of Penicillin. 
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To show the limitations and capabilities of the Type II nonlinear MPLS model, 

linear MPLS and Type II nonlinear MPLS were applied to estimate the final end-

point concentration of penicillin. In this thesis, higher order terms of the Type II 

nonlinear MPLS model were considered and applied. 2
nd

, 4
th 

and 6
th

 order Type II 

nonlinear MPLS were applied to predict the endpoint value of penicillin, respectively. 

This result showed that the Type II nonlinear MPLS model can provide a more 

accurate prediction than linear PLS, and as the order of the model improves, so too 

does the accuracy of the model. 

To illustrate the benefit of using multi-way NNPLS, the multi-way NNPLS model 

was also applied to predict the same testing data. The results showed the Multi-way 

NNPLS model can provide a better prediction than the 6
th

 order Type II nonlinear 

MPLS. The primary advantage in using the multi-way NNPLS is that it provides 

improved accuracy without the need to determine the order for the model; this can be 

a critical parameter with Type II MPLS models.  

In Chapter 6, a novel endpoint control based on the NNPLS method was proposed, 

and applied to batch process. The proposed controller was used to control the 

endpoint biomass and penicillin. The results showed that the proposed controller can 

precisely control the endpoint value at a set-point. And the proposed controller can 

be applied to track a changing set-point value. And when some process disturbance 

and some noises are considered, the Endpoint controller based on NNPLS has the 

ability to reject these disturbances and noises. The proposed NNPLS controller was 

presented in comparison to the endpoint controller based on PLS; the performance of 

the proposed NNPLS controller was better at the endpoint of the batch.  

 

7.2 Recommendations for Future Work 

(1) In the end-point controller, an important aspect is the selection of the 

decision points, as they will directly affect the controller performance. 

Interestingly though, there are no general guidelines for the selection 

procedure; therefore, this issue needs to be further researched. 



Chapter 7 Conclusion and Future Work    

156 

(2) In Chapter 6, the endpoint controller based on NNPLS was applied in the 

Pensim simulation. The major purpose of this proposed controller is to 

maintain the endpoint value at a set-point. This proposed controller probably 

will not regulate the within batch quality variable very well. The next step for 

future study will therefore be to apply NNPLS to design the controller; the 

purpose of a new controller would be applied to control the whole batch of 

quality variables. 
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