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Since the inverse problem in Diffusive Optical Tomography (DOT) is nonlinear and
severely ill-posed, only low resolution reconstructions are feasible when noise is added to
the data nowadays. The purpose of this thesis is to improve image reconstruction in DOT
of the main optical properties of tissues with some novel mathematical methods. We have
used the Landweber (L) method, the Landweber-Kaczmarz (LK) method and its improved
Loping-Landweber-Kaczmarz (L-LK) method combined with sparsity or with total vari-
ation regularizations for single and simultaneous image reconstructions of the absorption
and scattering coefficients. The sparsity method assumes the existence of a sparse solution
which has a simple description and is superposed onto a known background. The sparsity
method is solved using a smooth gradient and a soft thresholding operator. Moreover, we
have proposed an improved sparsity method. For the total variation reconstruction imag-
ing, we have used the split Bregman method and the lagged diffusivity method. For the
total variation method, we also have implemented a memory-efficient method to minimise
the storage of large Hessian matrices. In addition, an individual and simultaneous contrast
value reconstructions are presented using the level set (LS) method. Besides, the shape
derivative of DOT based on the RTE is derived using shape sensitivity analysis, and some
reconstructions for the absorption coefficient are presented using this shape derivative via
the LS method.
Whereas most of the approaches for solving the nonlinear problem of DOT make use of
the diffusion approximation (DA) to the radiative transfer equation (RTE) to model the
propagation of the light in tissue, the accuracy of the DA is not satisfactory in situations
where the medium is not scattering dominant, in particular close to the light sources and
to the boundary, as well as inside low-scattering or non-scattering regions. Therefore, we
have solved the inverse problem in DOT by the more accurate time-dependant RTE in two
dimensions.
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Chapter 1

Introduction

1.1 Motivation

In many imaging scenarios it is important to noninvasively obtain some relevant infor-

mation of the interior of an object, without cutting or taking sections of an object or

organism, which represents a potentially dangerous process or comes with an increased

cost, we want to obtain important information of interior anatomical or physiological

values. There are many applications in image reconstruction, such as detection of anti-

personal land mines in post-war remediation areas, the monitoring of industrial processes,

the localization and characterisation of oil reservoirs, satellite recognition of objects in the

space, the detection and reconstruction of images of objects in luggage at airports, or in

noninvasive biomedical imaging techniques [122]. In biomedical imaging, in particular

breast cancer and brain imaging studies have seen increased growth in the last decades.

Breast cancer has one of the highest mortality rate at present, and is the most frequent

womens cancer. More than one million people in the world were diagnosed with breast

cancer in 2000. Estimates show that every 2.5 minutes a woman is diagnosed with breast

cancer and every 7.5 minutes a woman dies from this illness within the European Union

[96, 173]. Breast cancer had the second highest mortality rate in United States, and every

year more than 200,000 American women are diagnosed with breast cancer [140]. Benign

lesions (cysts and fibroadenomas) and mastalgia are non-mortal breast diseases. Male

breast cancer is much less common but is more mortal than female cases [131]. Therefore,

improved methods for early detection for preventing the metastasis of the tumour and for

obtaining accurate diagnosis of cancer treatment, visualization of small breast tumours,
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CHAPTER 1. INTRODUCTION

classification of breast illness and distinction between benign and malign lesions at low

cost are essential to decrease unnecessary biopsies and mortality rates [104, 122].

Brain diseases or disorders are of high interest in Health institutions worldwide. In

Europe alone it has been estimated that 165 million people were affected by mental dis-

orders in 2011. In fact, 37 percent of the European population suffer from some form of

brain disorder. In Europe those disorders cost 800 billion Euros each year [123, 124, 170].

The story in United States is quite similar, one in out of 76 of American adults were qual-

ified for Security Disability insurance or Supplemental security Income in 2007, while

in 1987 the rate was two and a half times less. The rate increased 30 times for children

in the same period. For children, mental illness is the leading cause of disability. The

National Institute of Mental Health (NIMH) conducted a survey for adult people between

2001-2003, which indicated that 46% had at least one mental illness within four different

types of them at some point in their lives [4].

Mental disorders include anxiety disorder, obsessive-compulsive disorder, panic disor-

der, phobias, addictions, post-traumatic stress disorder, schizophrenia,“mood disorders”

like bipolar disorder and depression, deficit/hyperactivity disorder, dementia, insomnia

and new disorders. Neurological disorders include dementia, epilepsy and multiple scle-

rosis. Anxiety disorder and dementia are the most common disorders in Europe. In

fact, mental disorders are the main contributor to the morbidities burden in Europe, it

has been announced that disorders of the brain as the core health challenge of the 21st

century [123]. In order to contribute to work on this challenge, health research must be

carried out in many levels. One of these levels correspond to obtain contrast images of

high resolution of the interior of the head and the technique should be portable, relatively

nonexpensive and safe. Other brain problems include head injuries (traumatic injuries),

strokes, multiple sclerosis, epilepsy, Alzheimer’s disease, disorders of consciousness after

a brain injury and brain tumours [80].

1.2 State-of-the-art

X-ray mammography, magnetic resonance imaging (MRI) and ultrasound (US) are the

main imaging techniques presently used for breast cancer detection and for brain imag-

ing respectively. Also, MRI, electrical impedance tomography (EIT), positron emission
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tomography (PET) techniques and more recently microwave imaging are used for this

propose nowadays [20]. We now introduce rather briefly the main traditional imaging

techniques used nowadays.

X-Ray Mammography

Roentgen discovered X-rays in 1895, and since the early 1970’s, they were used in

biomedical imaging [14]. High energy X-rays are used for probing mediums in X-ray

Mammography. X-rays are directed to biological tissue and the X-rays are absorbed or

scattered in the tissue. The energy of X-rays used to examine breast for early tumour

detection varies from 15 Kev-20 Kev [22, 65, 118]. The accuracy of biomedical imaging

techniques is measured by the sensitivity. Sensitivity in biomedical imaging is calculated

by dividing the number of positive breast cancer cases detected by the total sum of those

that were detected plus those that were missed and then multiplied by 100 [134]. Another

important measure in biomedical imaging techniques is the specificity. The specificity

is given by dividing the number of negative breast cancer cases detected by the total

sum of those that were truly negative and were detected as negative breast cancer cases

plus those that were incorrectly detected to be positive and then multiplied by 100 [134].

Whereas X-ray mammography is the current biomedical imaging technique preferred for

detecting breast cancer tumours, its use has been questioned since specificity in mam-

mography varies from 90-98% [22, 65, 118]; 70-90 % of biopsies performed, based on

suspicious mammograms were negative [41, 96, 105, 117, 132], which is an expensive

procedure. Moreover, 30% or 15% of tumours may not be detected by the X-ray scan

[66, 104, 105, 117, 132]; the sensitivity of mammography has been reported in the range

of 80-95% [22, 65, 118]. Hence, its use results in false negative and positive diagnoses.

The reason for this incorrect diagnoses is the relative poor contrast between diseased and

healthy tissues in mammographies. Another drawback of mammography is its use of ion-

ising radiation as well as being uncomfortable and painful for patients. X-ray computed

tomography (CT) is another imaging technique used to detect breast tumours and although

the accuracy of X-ray CT is better than mammography, it leads to incorrect early-stage

breast tumour detections and high radiation dose has to be used [105, 117, 132]. In addi-

tion, mammography is not suitable for male breast cancer detection at present [173].

Magnetic Resonance Imaging (MRI)

In MRI, permanent magnets in the range of .25-3.9 Tesla are used in MR scans. Hy-
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drogen atoms H+, which constitute the majority of atoms in livings tissue, absorb the

wave energy at resonance frequency of 60 MHz when they are placed in a 1.5 Tesla mag-

netic field [28]. These Hydrogen atoms re-emit the energy absorbed after a period of time

depending on the magnetic properties of the tissue. This signal is captured and converted

point by point in a k-space data of a plane, making this procedure slow. Finally, a Fourier

transform is applied to the k-space date to obtain the reconstruction of the magnetic prop-

erties of tissue [28]. Deficiencies of MRI are that it is a slow procedure, has high cost

and importable [145]. In addition, patients with metallic pieces inserted in past surgical

interventions are unable to be imaged by using MRI. Another disadvantage of MRI is its

low specificity (64 %). Some advantages of MRI are that it is nonionising and its accurate

sensitivity (98%) [89, 95]. Another benefit is its high predictability of residual disease

(88%) and multicentricity (90%) [94].

Ultrasound (US)

Sound waves of frequency in the range of 1 to 10 MHz are used in ultrasound modality

imaging techniques. Sound waves are guided through the tissue, and the reflected sound

waves, called echoes, are collected using ultrasound transducers. There exists a trade-

off between resolution and the imaging depth, which depends on the frequency of the

sound waves used [28]. US, which is nonionising, is used to scan pregnant women. The

sensitivity and specificity values of US are 97% and 85% respectively [89, 134], some

studies report that US provides relatively poor information to classify certain solid breast

masses. US and mammography are relatively poor at identifying the presence or extent

of residual disease [94]. One of the main drawbacks of US is its relatively poor resolution

for imaging deep-tissues and other disadvantage of US is that it is operator dependent. In

addition, US is not suitable for male breast cancer detection because of the close proximity

of the ribs and lungs [173]. There has been an increase in hybrid imaging modalities in

the last decades such as photoacoustic tomography (PAT) or ultrasound modulated optical

tomography (UMOT).

Finally, we show a comparison of resolution performance with respect to intrinsic

contrast characteristics of traditional biomedical imaging techniques with biomedical op-

tical imaging with respect to spatial resolution in figure 1.1, where NIR stands for Near-

infrared light.
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Figure 1.1: Comparison of resolution with respect to intrinsic contrast characteristics of traditional biomed-
ical imaging techniques with biomedical optical imaging with respect to spatial resolution [133].

1.3 Diffuse Optical Tomography

DOT is a noninvasive imaging modality that uses near-infrared light to interrogate optical

properties of biological tissue. DOT is an imaging technique which provides information

about the spatial distribution of the optical properties within a tissue based on noninvasive

exitance or the outward directed photon flux (or transmitted/or reflected light) measure-

ments on the periphery. Light from a near-infrared laser source located on the surface of

the object is guided into the medium and the amount of transmitted/reflected light is mea-

sured using light sensitive detectors (fibre bundles) located on the boundary of the object

and this measurement process is repeated for all laser sources. Figure 1.2 illustrates the

possibilities of the propagation of a photon through the medium.

19



CHAPTER 1. INTRODUCTION

Figure 1.2: Visualization of possible paths of photons through the medium: purple, green, blue and brown
colours, as opposed to X-ray tomography in which there is direct transmission: red colour.

Water, oxy-haemoglobin and desoxy-haemoglobin are the main absorbers of the in-

terior of tissues such as brain and breast [14, 21, 115, 159]. Collagen, which is found

in the skin and bone, is a relevant absorber in this near-infrared frequency range [159].

Information of the oxygen and blood volume content of the absorbers and scatterers have

application in diagnosis of brain and breast cancer and cerebral activity monitoring. The

simultaneous relative weak absorption of the oxy-haemoglobin, deoxy-haemoglobin and

water in the near-infrared region spectrum 600-1000 nm allows imaging tissues at cen-

timetre depths in DOT, also the absorption of water increases fast at frequencies higher

than 1000 nm, interfering with the identification of the haemoglobin [14, 20, 21, 115], as

it can be seen in figure 1.3. The range of frequency of the infrared light is called the “NIR

window”. Also, note in figure 1.3 that the spectrum of the oxy-haemoglobin and deoxy-

haemoglobin differ in the near-infrared region spectrum (600-1000 nm), then DOT can

be used to distinguish between deoxy-haemoglobin from oxy-haemoglobin, this is used

to discriminate among tumours with different degrees of malignancy [20]. Note in fig-

ure 1.3 that the absorption spectrum of water is not higher than absorption spectrum of

HbO2 or Hb in the interval of 600-1000 nm, allowing to measure the oxygen content in

patient’s blood. There are applications of this in functional brain monitoring and neonatal

research [81, 161]. Similar experimental results of the absorbers of these quantities (wa-

ter, haemoglobin and oxy-haemoglobin) are found in [14, 20, 173, 177]. A review of the

optical properties of different kind of tissues such as liver, aorta and muscle and for some

living organisms can be found in [37, 177] and the references therein.
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Figure 1.3: Absorption spectrum of oxy-haemoglobin HbO2, deoxy-haemoglobin Hb, Water, Lipid, Cy-
tochrome C aa3 oxidized and reduced and Melanin. Oxi/deoxy-haemoglobin, water and lipids from Data
stored by Oregon Medical Laser Centre and [14, 20, 159, 177]. Melanin and Cytochrome C aa3 oxi-
dized/reduced absorption spectras from [115, 173].

The most relevant applications of DOT are the detection of breast cancer, and the study

of the brain, including stroke, haemorrhage, and brain function. DOT may enable one to

recognise ischemic from haemorrhagic stroke, which is very important since neuroprotec-

tive drugs for treating ischematic stroke given to patients with haemorrhagic stroke yields

to expeditious death [18, 42, 81]. It is more complicated to image the brain than the breast

in DOT because of the head structure, that is, the photons must pass through the skin and

skull and the cerebrospinal fluid [145].

The interest for using DOT for imaging the living brain has increased in recent decades

[18] since brain activity and haematoma are associated with increased volume of blood

called vascularization and tumours are strongly linked with haemoglobin concentration

via angiogenesis. The localization of those places which have an increased concentration

of haemoglobin is possible because they have different absorption optical values from the
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surrounding healthy tissue [20, 82]. For instance, DOT has been used to localize blood

flow increase during epileptic episodes and imaging arterial pulsation [18].

(a)

(b)

Figure 1.4: DOT applications. Top row: DOT apparatus for screening the breast. Bottom row: DOT
instrumentation and arrangement for brain imaging [115].

Advantages and disadvantages of DOT

Some benefits of using DOT include:

• DOT is noninvasive, nonionising, relatively inexpensive, unobtrusive, low-power

and portable making possible use for ambulatory and continuous bedside monitor-

ing, and produce valuable information about detection and classification of breast

cancer, functional brain studies and imaging newborn infant head [20, 82, 111, 150,

153].

• DOT provides very high intrinsic contrast for discriminating benign and malign

tumour in comparison with some traditional imaging modalities as can be seen in

fig. 1.1.

• DOT can provide functional information, whereas functional information is not pro-

vided by some traditional modalities like mammography and US.
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• DOT is a relatively cheap imaging technique with faster data collection than MRI.

• DOT does not pose a radiation risk since it is nonionising and it is not uncomfortable

nor painful, and has potential to be used as a bedside monitoring [93].

• DOT has been widely applied to scan functional brain activities with adults and

neonates [100, 161].

• Imaging reconstruction of functional haemodynamics is based on the fact that DOT

provides information of variations of blood and oxygen content of a tissue due to

cerebral activity of heads of living organisms [21, 42, 160]. Successful 3D meth-

ods have been used in bedside monitor systems for reconstructing the functional

haemodynamics of the human brain and the activation of the motor and sensory

cortex [18, 82, 93].

• DOT has been applied to scan pre-term and term infants with brain injuries. A brain

injury is caused by the interruption of blood or oxygen which may lead to permanent

disability or death. The scattering coefficient has also shown to be linked with brain

activity [85].

• Compared with alternative imaging modalities such as fMRI, DOT has several

advantages, including simplicity, portability, reduced cost, and faster acquisition

speeds. It is also possible to simultaneously obtain both oxy- and deoxy-haemoglobin

and blood volume with satisfactory temporal resolution [20].

• DOT may detect male breast cancer [173].

Tissue is a turbid media with strong scattering coefficient, thus light follows an ex-

tremely complicated path 1.2 and the signal strength attenuates rapidly according to the

Beer-Lambert law [115].

Some disadvantages of using DOT include:

• Due to the physics of light propagation, the inverse problem is ill-posed; this means

that small errors in the measured data may cause arbitrarily large error in the quan-

tity of interest of the medium, causing inverse solutions to be wildly erratic and

nonphysical unless additional a priori knowledge is assumed [107].
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• The inverse problem in general is underdetermined; the number of voxels of the

mesh of unknown of absorption and scattering coefficients may be one or two orders

of magnitude greater than the number of measurements [20].

• The spatial resolution of DOT is relatively poor (around 4mm to 7mm) compared

with traditional biomedical imaging techniques [134].

Finally, we mention that interest of DOT has been raising in the industry process be-

cause of the radiation emission of light is safe, nonintrusive and has fast response time

[169]. Some nonbiomedical applications include nonintrusive measurements flow con-

centration profiles and velocity profiles, in multiphase flows or complex mixtures of dif-

fusive fluids such as fibre suspensions or the monitoring of pulp flows in pipelines in paper

industry [103] or more recently the measurements of mass flow rate, velocity of beads in

flow rig, flame imaging for combustion rate estimation and bubbles flow [106].

1.4 Aims and structure of the thesis

Aims

It was around the 1990s that the reconstruction of optical properties of biological tis-

sues with data from the external boundary was first formulated as an inverse problem [14].

Although the development of theory, application of regularization methods have made

rapid progress since then [8], including the development of hybrid imaging methods in

DOT [142, 155], a huge improvement of existent methods and the development of new

methods still need to be done in order to address significant practical difficulties of this

modality. This is, amongst others, due to the nonlinearity of the inverse problem in DOT,

its ill-posedness and the fact that it is highly undetermined. This dissertation aims at com-

bining some modern regularization techniques (such as level set shape evolution, sparsity

and total variation) with advanced and accurate forward modelling techniques (here the

RTE) in order to verify the inherent potential of DOT as a future imaging modality in

several of the above listed applications. It mainly aims at performing proof-of-concept

(and therefore is kept at a manageable two-dimensional setup) of a variety of advanced

techniques rather than providing off-the-shelf industrial 3D imaging codes. However, all

the algorithms and ideas provided in these techniques are kept at a very general level using

formulations involving PDE’s rather than specific discretizations, such that we are very
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confident that all our techniques and numerical simulations generalize with the appropri-

ate modifications to real-world 3D situations [6, 8, 20]. Such generalizations have been

beyond the scope of this thesis.

Tikhonov regularization so far is the method of choice for performing the image re-

construction in DOT. Inverting a large ill-conditioned Hessian matrix for solving the cor-

responding inverse problem is usually achieved by adding a suitable (tuning) value to the

diagonal of the Hessian matrix, which makes it a regularization parameter. Large regular-

ization parameters result in over-smoothing (blurring, or a lack of sharp features) of the

image, while a small regularization parameters results in an image with increased noise

(artifacts).

Recent work has shown that applying TV or sparsity regularization in DOT based on

the diffusion equation shows a promising improvement on denoising and helps to address

the lack of sharp features (increasing the spatial resolution). Therefore, we have imple-

mented TV and Sparsity regularization methods with different modalities to overcome

this problem. In contrast to most approaches taken so far, our work is directly based on

the RTE, which is the most complete model for the propagation of light in tissue.

Notice that the radiative transfer equation (RTE) provides a reasonable model in med-

ical imaging not only for Diffuse optical tomography (DOT), but also for fluorescence

diffuse tomography (FDOT), photoacoustic imaging and bioluminiscence. Therefore,

the results of this thesis should also be of interest to those communities and applica-

tions. For more information about FDOT we refer to [14, 17, 59], photoacoustics see

[134, 142, 153, 154, 164], bioluminiscence tomography see [76, 77] and the references

therein. Some applications of inverse transport theory outside of medical imaging include

astrophysics, neutron physics, atmospheric physics and geophysics.

In biomedical imaging, whereas most of the approaches for solving the nonlinear prob-

lem of DOT (and so far many of the above mentioned related modalities) make use of the

diffusion approximation (DA) to the RTE to model the propagation of the light in tis-

sue [7, 70, 91, 99, 144], it is argued that the accuracy of the DA is not satisfactory in

situations where the medium is not scattering dominant. This is in particular a prob-

lem close to the light sources and to the boundary, as well as inside low-scattering or

non-scattering regions such as the cerebrospinal fluid which wraps the brain and fills the

ventricles [9, 139, 145, 154]. Therefore, we have solved the inverse problem in DOT
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by the more accurate RTE (as mentioned, so far in 2D) in time domain. Since there are

only few analytical results for the solution of the RTE assuming very specific geometrical

configurations, numerical methods need to be applied for solving the RTE. Statistical ap-

proaches such as the Monte Carlo method are as well used for solving the RTE in practice.

However, Monte Carlo methods are commonly computationally intensive, such that they

are usually only employed for checking the accuracy of faster numerical methods [115].

Level set methods provide another tool which has been applied successfully in many

fields including DOT, usually based on the diffusive approximation. In this thesis we

have implemented two types of level set approaches, combined with contrast value re-

construction, for DOT based on the RTE. In connection to implementing novel level set

techniques, we have calculated the shape derivative of DOT based on the RTE, which

provides us with an alternative model for shape evolutions in the level set approach.

As already mentioned above, we want to emphasise once again that all techniques

proposed and tested in this dissertation can be applied with only few changes to other

imaging modalities such as photoacoustic tomography (PAT), fluorescence tomography

(FDOT) and bioluminiscence.

Structure of thesis

The thesis contains seven chapters whose content is outlined in the following.

Chapter 1 outlines general approaches to the imaging of breast and brain diseases and

gives an introduction into the current state of art of the traditional biomedical imaging

tools highlighting some of their benefits and drawbacks. Then a more in-depth introduc-

tion into DOT is given with its advantages and limitations.

Chapter 2 presents and summarizes some mathematical background which is needed in

later chapters of this dissertation. It covers the basics of the Radiative Transfer Equation,

followed by a brief proof of the well-posedness of the forward problem in DOT. A sum-

mary of the Tikhonov regularization scheme, and the more recent Landweber-Kaczmarz

regularization methods together with some of its variants is given.

In chapter 3, the inverse and shape reconstruction problems in DOT are formulated.

A regularized gradient of the residual operator, needed later, is defined, and an algorithm

for computing it is provided. An individual/simultaneous shape and contrast value recon-

struction technique for the optical properties of tissue in DOT by using the Landweber-

Kaczmarz (LK) method and a Level set approach introduced by Santosa [141] and its
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variants are presented. Also, the Finite Differences method implemented in this thesis is

described. Finally, numerical results are presented using these methods.

In chapter 4, the concept of a shape derivative is introduced and expressions for a

shape derivative in DOT based on the RTE are derived. These are then tested via the level

set method. For this purpose, the level set evolution scheme using a Hamilton-Jacobi-type

equation is formulated. Two different variants of the numerical shape evolution in DOT

are presented, which correspond to using a narrowband on the one hand and an extended

velocity field in the whole domain on the other hand. In addition, one of these variants is

compared with the shape reconstruction method presented in chapter 3.

In chapter 5, we again consider situations where inclusions have sharp boundaries

or are highly localized. Here, sparsity regularization with `1 penalty terms instead of

the standard `2 terms present an interesting alternative to the standard tools. The basics

of sparsity regularization, compressed sensing and Bregman distances are reviewed. In

addition, a linearised Bregman iteration is presented for the `1-minimisation for a linear

problem. Moreover, a sparsity regularization scheme for DOT and some variants are

described in detail. Some numerical results using sparsity regularization are compared

with the LK method.

In chapter 6, the concept of total variation regularization is reviewed and the split

Bregman and lagged diffusivity methods are presented in details. For the case of the

lagged diffusivity method, some novel discretization schemes are presented and tested.

The limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is introduced,

which is then integrated into the TV regularization technique for DOT.

Finally, in chapter 7, some conclusion and directions for future work are given.
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Mathematical background

In this chapter, we collect some mathematical background which is relevant to this thesis

and which is not easy to find currently in a single reference. This chapter also intents

to fix notation and to introduce some concepts and abbreviations used further on in the

thesis. To start with, some basic mathematical properties of the Radiative Transfer Equa-

tion (RTE) are briefly reviewed since we have modelled the forward problem in DOT

using this model. In section 2.1, the general RTE is described in details. In particular,

subsection 2.1.2 discusses the purely absorbing RTE demonstrating an exponential be-

haviour of the general RTE. The derivation of the diffusion equation is then sketched in

subsection 2.1.1. Then we move on to discussing some relevant regularization theory

background. Here, in subsections 2.2.1 and 2.2.3, the basics of the conventional truncated

Singular Value Decomposition regularization approach and the Tikhonov regularization

approach are reviewed, respectively, which are important to understand before discussing

other types of regularization techniques. Then, in subsection 2.3.1 the Kaczmarz method

and related techniques are briefly discussed. Finally, in subsection 2.3.2 the Landweber

(L), Landweber-Kaczmarz (LK) and the loping-Landweber-Kaczmarz (L-LK) methods

are presented together with some of their properties.

2.1 The Radiative Transport Equation

The mathematical description of the propagation of light travelling in random media is

classified according to the spatial length scales. Usually, Maxwell Equations or geometric

optics are used at the microscale, the Radiative Transfer Equation (RTE) or transport
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equation at the mesoscale, and the Diffusion theory at the macroscale. We will focus on

this thesis mainly on the mesoscale model which deals with turbid media such as tissue,

a cloud or milk, that is, light propagation bahaves like photons following meandering

trajectories through the media, rather than a propagating ray or a wave. A derivation of the

transport equation from scalar wave models is presented in [9, 20]. The transition from the

transport equation to the diffusive regime is presented below in subsection 2.1.1. One can

roughly distinguish three regimes of the propagation of particles in the Radiative Transfer

model according to the strength and frequency of interaction between the particles and

the material in which they propagate. When there is no interaction between particles and

background material, one talks about the ballistic regime. When there exists moderate

interaction, it is called transport regime, and finally when there exists strong interaction

(i.e. a large number of scattering events on a typical particle trajectory) it is called the

diffusive regime [13]. The RTE can be applied to all of these regimes, and we will be

interested in particular in this thesis to situations where mixed environments are present

which contain diffusive areas as well as ballistic or transport dominated areas.

There exist three kind of systems of data acquisition in typical optical and fluores-

cence tomography setups, the first one is the continuous wave system, the second one is

the frequency domain system, and the third one is the time domain system [107]. The

continuous wave system measures the transmitted intensity at the detectors, while the

frequency domain system measures the modulation amplitude and the phase shift of the

light sources [107]. In this thesis we will focus in particular on the time domain system

for acquiring the data. Here, the time-dependent RTE is the model we use.

The RTE is a linearised form of the more general Boltzmann equation [33], which

can be derived from kinetic theory [153]. Diffuse Optical Tomography (DOT) treats light

propagation in tissue as a transport of photons. DOT is a non-invasive technique for prob-

ing heterogeneous turbid media. The aim is to obtain images of their optical properties

in the near-infrared (NIR) regime 600 − 1000nm [107]. NIR light from laser sources is

guided to the body and the amount of transmitted light is measured at detector locations

along the boundary of the body. It is assumed that the photons are travelling with con-

stant speed c through the medium, that is, one assumes a constant refractive index. To

deal with the RTE with nonconstant refractive index, or variable speed of the photons, see

for example [9].
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Next we consider the mathematical formulation of the RTE in order to fix notation. In

this thesis, the one-speed time-dependent RTE is used with c being normalized to 1 (in

appropriate physical units). Let the space X be defined by

X := Ω× Sn−1 × [0, T ],

where Ω is the domain of interest which is assumed to be a compact, convex subset of

Rn with boundary ∂X := ∂Ω× Sn−1 × [0, T ]. The boundary ∂X can be decomposed as

∂X = ∂X+

⋃
∂X−, where

∂X± := {(x, θ, t) ∈ ∂X, ±θ · ν̄ > 0},

is assumed to be Lipschitz, which implies that the outward normal vector ν̄ exists almost

everywhere on ∂X . Thus, the boundary of ∂X is decomposed into the inflow part ∂X+

and the outflow part ∂X−. The function u(x, θ, t) ∈ X is physically considered to de-

scribe the density of the photons travelling in the region Ω at position x with velocity

direction θ at time t. The density of the photons u and the source term q are scalar quan-

tities and are assumed nonnegative functions in L1(X). The following equation is called

the one-speed time-dependent RTE

∂u

∂t
+ θ · ∇u+ (µ(x) + b(x))u− b(x)

ˆ
Sn−1

η(θ · θ′)u(x, θ′, t)dθ′ = q(x, θ, t) in X,

(2.1a)

with initial condition

u(x, θ, 0) = 0 in Ω× Sn−1, (2.1b)

and boundary condition

u(x, θ, t) = 0 on ∂X−. (2.1c)
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Here, q is the source term given by

q(x, θ, t) =

qj(x, θ, t) x ∈
⋃M
j pj,

0 x ∈ ∂Ω\
⋃
j pj,

(2.2)

with pj being source positions along ∂Ω. In time domain techniques, these sources qj are

often picosecond laser pulses which can be described mathematically by the expressions

qj(x, θ, t) = δx(pj)δθ(θj)δt(0),

where δx, δθ, and δt are Dirac delta distributions corresponding to the position, angular

and time variables, respectively; the coefficients µ and b in (2.1a) are the absorption and

scattering coefficients of the medium, respectively, and θ is a unit direction vector pointing

into the direction of velocity of the photons.

In this thesis, where we are aiming mainly at proof of concept, we restrict ourselves to

the RTE in 2D, Since numerical solutions to the RTE are computationally intensive due

to the dependence on space, angle, and time [6, 8, 20], we restrict ourselves to the RTE

in 2D in this thesis, that is, we have tested our regularization, level set methods and the

shape derivative (simulations) in a two-dimensional setting, where the domain Ω ⊂ R2

and the direction vectors θ are in S1. Moreover, we are only aiming at ’proof of concept’,

and did not use any real data. Physically the 2D and 3D versions are not that different

from each other. All observed phenomena in 2D should scale up to 3D. Certainly, it

would be more desirable to work in 3D, but using the time-dependent RTE in 3D simply

takes quite long to run in 3D and we would have less time for investigating interesting

mathematical concepts this way.

The scattering function η(θ · θ′), also known as the scattering kernel [33], is assumed

to be independent of the position of the scattering event and to depend on the cosine of

the angle denoted by υ, which is the angle between the initial direction θ and the deviated

direction θ′ (after the scattering event has occurred), that is, cos υ = θ · θ′. Particle

conservation in pure scattering events is expressed by the additional requirement

ˆ
Sn−1

η(θ · θ′)dθ′ = 1. (2.3)
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Often the Henyey-Greenstein phase function is used in DOT as a convenient model for

the scattering function. In 2D it has the form

η(cos υ) =
1− g2

2π(1 + g2 − 2g cos υ)
, (2.4)

whereas in 3D it reads

η(cos υ) =
1− g2

4π(1 + g2 − 2g cos υ)
3
2

, (2.5)

where g is the mean cosine of the scattering function η with values between −1 < g < 1.

In this model, values of g close to 1 indicate that the scattering is primarily forward

directed, values close to zero indicate that the scattering is almost isotropic, whereas

values near to −1 indicate that the scattering is primarily backward directed. Typical

values for g based on animal tissue in Diffuse Optical Tomography are 0.9 ≤ g ≤ 0.99

[11]. The mean free path is the mean distance travelled by a photon before changing its

velocity direction, and is given in the Henyey-Greenstein model by

l =
1

(1− g)(µ+ b)
.

The total attenuation coefficient a is a(x) := µ(x) + b(x). Using the total attenuation

coefficient, the mean free path is then l =
(
(1− g)a

)−1.

The RTE is a conservation law for the number of photons. The following brief deriva-

tion can be found in [14, 20, 33]. Firstly, we define the vector quantity Φ(x, θ, t) :=

u(x, θ, t)θ called the angular photon current density. Using this quantity, the number of

photons flowing out of ∂Ω with velocity direction θ per time unit [second] and for a dif-

ferential surface element dS is given by Φ(x, θ, t) · νdS. The RTE describes a balance of

the variation of the photon density inside a small but otherwise arbitrary region Υ ⊆ Rn

around position x and time t which originally travel with velocity direction θ. In more

details, the time variation of the flux, i.e. the quantity

∂

∂t

ˆ
Υ

u(x, θ, t) dx, (2.6)
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is balanced by two loss terms, one being due to absorption and scattering events,

−
ˆ

Υ

(µ(x) + b(x))u dx, (2.7a)

and one due to the photons flowing out the region Υ through the boundary

ˆ
∂Υ

Φ(x, θ, t) · ν dS, (2.7b)

and two gain terms, namely one describing those photons which were travelling with

velocity direction θ′ and now being scattered in direction θ

b(x)

ˆ
Υ

ˆ
S1

η(θ · θ′)u(x, θ′, t) dθ′dx, (2.7c)

and the other one being due to an applied source term

ˆ
Υ

q(x, θ, t) dx. (2.7d)

Applying the Stokes’ theorem to the above boundary flow term results in

ˆ
∂Υ

Φ(x, θ, t) · ν dS =

ˆ
Υ

∇ · (uθ) dx =

ˆ
Υ

θ · ∇u dx.

The last identity ∇ · (uθ) = θ · ∇u holds because θ is considered as an independent

variable in u(x, θ, t). Since the region Υ is arbitrary and small, the terms (2.6) and (2.7)

produce in the limit of infinitesimal domains the RTE (2.1a).

Notice that an alternative way of describing laser sources at the boundary is to use an

inhomogeneous boundary condition instead of (2.1c) and a zero source q = 0 term on

the right side of equation (2.1a). Both expressions are equivalent [45, 53]. We will use

the homogeneous RTE in chapter 3 with laser sources at the boundary. For more detailed

reviews of the RTE in various settings, see e.g. [8, 11, 33, 45, 60], and for more details

of the time-dependent RTE and its stability in particular, see [12, 13]. A deterministic

method has been chosen in this thesis to solve the RTE (2.1). For statistical methods like

Monte Carlo methods for solving the time-dependent forward and backward propagation

problems in DOT, see [8, 9, 20, 107] and for statistical methods for inverse problems

in general [101, 152]. In the following two subsections we will demonstrate ideas by
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considering in more details two specific cases of the radiative transport equation [107],

namely the situations of diffusive and ballistic behaviour of light propagation.

We conclude this section by formulating our direct or forward problem in the time

domain technique for DOT. Given a pair of absorption and scattering coefficients, µ and

b, a scattering function η with the property (2.3), and sources q (2.2), the goal of the

forward or direct problem is to find the density of photons u(x, θ, t) such that equation

(2.1) holds.

2.1.1 Diffusive Approximation

We present a summary of a derivation of the diffusive approximation of the RTE given in

[6, 8, 19, 41, 87, 97, 115]. Firstly, we define the photon radiance Φ(x, t) as

Φ(x, t) =

ˆ
Sn−1

u(x, θ, t) dθ,

and the energy density current J(x, t) by

J(x, t) =

ˆ
Sn−1

θu(x, θ, t) dθ.

One way to derive the diffusive approximation of the RTE is to expand the angular part of

the density of photons, phase, and source functions in spherical harmonics [6] as follows

u(x, θ, t) =
∞∑
l=N

l∑
n=−l

√
2l + 1

4π
ψlm(x, t)Ylm(θ), (2.8)

η(θ · θ′) =
∞∑
l=N

l∑
n=−l

√
2l + 1

4π
ηlm(θ · θ′)Y ∗lm(θ′)Ylm(θ), (2.9)

q(x, θ, t) =
∞∑
l=N

l∑
n=−l

√
2l + 1

4π
qlm(x, t)Ylm(θ). (2.10)

A PN approximation of the RTE is obtained if the first N terms are taken into account

of the above expressions, in particular the P1 approximation is obtained after substituting
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(2.8) into (2.1a) and truncating the series of (2.8) after the l = 1 terms, resulting in

∂Φ(x, t)

∂t
+ µΦ(x, t) +∇J(x, t) = q0(x, t), (2.11a)

∂J(x, t)

∂t
+
J(x, t)

3D(x)
+

1

3
∇Φ(x, t) = q1(x, t). (2.11b)

Here D(x) is known as the diffusion coefficient given by

D(x) =
1

3(µ+ b′)
, b′ := (1− η)b,

where b′ is known as the reduced scattering coefficient. The diffusive approximation

follows now by assuming that
∂J

∂t
= 0, q1 = 0.

The first assumption is equivalent to requesting that the medium is scattering dominant,

that is, µ << b′. After these assumptions, equation (2.11b) converts into Fick’s law

J(x, t) = −κ0∇Φ(x, t). (2.12)

Finally, substituting Fick’s law (2.12) into equation (2.11a), one obtains the diffusion

approximation

∂Φ(x, t)

∂t
−∇ · κ0∇Φ(r, t) + µΦ(x, t) = q0(x, t).

Therefore, the diffusion approximation is a special case of the P1 approximation of the

RTE where the radiance function Φ(x, t) does not depend on the direction velocity vector

θ as opposed to the density of photons u(x, θ, t) in the RTE. Another derivation of the

diffusive approximation of the RTE is found in [14, 41].

2.1.2 Purely absorbing medium

Now we consider the Radiative Transfer Equation with constant refractive index (2.1a) in

a purely absorbing medium, i.e., b = 0. It is written as

∂u(x, θ, t)

∂t
+ θ · ∇u(x, θ, t) + µ(x)u(x, θ, t) = q(x, θ, t). (2.13)
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Let the variables x′ and t′ be given by

x′ = x− θt, t′ = t. (2.14)

Since, (using the variables (2.14))

∂u(x, θ, t)

∂t′
=
∂u

∂x

∂x

∂t′
+
∂u

∂t

∂t

∂t′
,

= ∇u · θ +
∂u

∂t
,

Equation (2.13) can be written as

∂u(x′, θ, t′)

∂t′
+ µ(x′ + θt′)u(x′, θ, t′) = q(x′ + θt′, θ, t′). (2.15)

The integrating factor of equation (2.15) is

exp

[ˆ t′

t0

µ(x′ + θt) dt

]
.

Using the above integrating factor, equation (2.15) may now be written as

∂

∂t′

{
exp

[ˆ t′

t0

µ(x′ + θt) dt

]
u(x′, θ, t′)

}
= exp

[ˆ t′

t0

µ(x′ + θt) dt

]
q(x′ + θt′, θ, t′).

(2.16)

Integrating equation (2.16) over t′ from 0 to t yields

ˆ t

0

{
∂

∂t′
exp

[ˆ t′

0

µ(x′ + θt) dt

]
u(x′, θ, t′)

}
dt′ =

ˆ t

0

exp

[ˆ t′

0

µ(x′ + θt) dt

]
× q(x′ + θt′, θ, t′) dt′,

and we obtain

u(x, θ, t) = exp

[
−
ˆ t

0

µ(x+ θ(τ − t))dτ
]{

u(x− θt, θ, 0)

+

ˆ t

0

exp

[ˆ τ ′

0

µ(x+ θ(τ − t))dτ

]
q(x+ θ(τ ′ − t), θ, τ ′) dτ ′

}
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or equivalently

u(x, θ, t) = exp

[
−
ˆ t

0

µ(x+ θ(τ − t))dτ
]
u(x− θt, θ, 0)

+

ˆ t

0

exp

[
−
ˆ t

τ ′
µ(x+ θ(τ − t))dτ

]
q(x+ θ(τ ′ − t), θ, τ ′) dτ ′.

(2.17)

The first term on the right hand side of (2.17) physically corresponds to those photons

which were at the position x− θt with velocity direction θ at time t = 0 and have escaped

absorption (the exponential attenuation term) while propagating along straight lines (or

’rays’) I = p+ lθ for a time t in the direction θ, with l ∈ R and p is position of the source

q. The second term represents the density of photos created by the source q [33].

Using the initial condition (2.1b), the solution u(x, θ, t) (2.17) reduces to

u(x, θ, t) =

ˆ t

0

exp

[
−
ˆ t

τ ′
µ(x+ θ(τ − t))dτ

]
q(x+ θ(τ ′ − t), θ, τ ′) dτ ′.

2.1.3 Well-posedness of the forward problem in DOT

Similar to the derivation of the solution of the RTE in pure absorbing media, a description

of the solution of the general RTE can be found. Thus, formally replacing the source term

q(x, θ, t) and the absorption coefficient µ in (2.13) by

q(x, θ, t)→ q(x, θ, t) + b(x)

ˆ
Sn−1

η(θ · θ′)u(x, θ, t) dθ′,

µ(x)→ a(x) := µ(x) + b(x),

the implicit solution of the general RTE (2.1a) with initial condition (2.1b) is

u(x, θ, t) = Q(x, θ, t) +

ˆ t

0

exp

[
−
ˆ t

τ ′
a(x+ θ(τ − t))dτ

]
b(x+ θ(τ − t))

×
ˆ
Sn−1

η(θ · θ′)u(x+ θ(τ ′ − t), θ′, τ ′) dθ′dτ ′,
(2.18)

with

Q(x, θ, t) =

ˆ t

0

exp

[
−
ˆ t

τ ′
a(x+ θ(τ − t))dτ

]
q(x+ θ(τ ′ − t), θ, τ ′) dτ ′. (2.19)
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This is the integral formulation of the transport equation [45] which is a Volterra equation

of the second kind [33]. The form (2.18) can be used to prove the existence and unique-

ness of solution of the RTE [33, 50]. Similar to the proof of the existence and uniqueness

for the solution of the RTE, the existence and uniqueness of the solution of an adjoint of

the RTE can be shown, which will be presented in chapter 3.

The following definition will be used in the next theorem addressing well-posedness

of the RTE.

Definition 1 The coefficients µ and b are called admissible if µ, b are positive and µ, b ∈

L∞(Ω).

The next theorem is proved in [33, 45, 50, 60]. It states that for admissible coefficients

µ, b, and q ∈ L1(X), the solution u of (2.1) exists and is unique in L1(X). In other words,

the theorem states that the forward problem in DOT is well-posed. We will give a brief

proof of this important Theorem.

Theorem 2 Let η be the positive scattering function, and let the pair of coefficients µ, b

be admissible. Furthermore, assume that q ∈ L1(X), with

Q̂ =

ˆ
X

q(x, θ, t) dxdθdt <∞. (2.20)

Then, the solution u of (2.1) exists and is unique in L1(X) and satisfies the inequality

ˆ
Sn−1

ˆ
Ω

u(x, θ, t)dxdθ ≤ Q̂ exp(βt) (2.21)

for any t > 0 and β := sup
x∈Ω

b(x).

Proof. Equation (2.18) may be rewritten as

u(x, θ, t) = Q(x, θ, t) +Ku(x, θ, t), (2.22)

where

Ku(x, θ, t) =

ˆ t

0

ˆ
Ω

ˆ
Sn−1

δ(x′ − x+ θ(t− τ ′)) (2.23)

× exp

[
−
ˆ t

τ ′
a(x+ θ(τ − t)dτ

]
b(x′)η(θ · θ′)u(x′, θ′, τ ′) dθ′dx′dτ ′. (2.24)
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Here δ(·) is the Dirac delta distribution, a = µ + b is the attenuation as defined in the

previous section, and Q(x, θ, t) is as in (2.19). The functions µ, b, q are considered to be

equal to zero outside of X . Equation (2.22) can also be written as

u(x, θ, t) = (I −K)−1Q(x, θ, t),

where I is the identity operator. Making use of the power series expansion of the function

(I −K)−1, we have

(I −K)−1 = I +K +K2 + . . . =
∞∑
n=0

Kn, ‖K‖L1(X) < 1.

Therefore, we obtain the following Neumann series representation of the solution

u(x, θ, t) =
∞∑
n=0

KnQ(x, θ, t). (2.25)

We need to investigate convergence of this series. To see if ‖K‖L1(X) < 1 holds, we can
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examine the first few terms of the Neumann series (2.25)

u(x, θ, t) =

ˆ t

0

exp

[
−
ˆ t

τ ′
a(x+ θ(τ − t))dτ

]
q(x+ θ(τ ′ − t), θ, τ ′) dτ ′,

+

ˆ t

0

ˆ
Ω

ˆ
Sn−1

δ(x′ − x+ θ(t− τ ′)) exp

[
−
ˆ t

τ ′
a(x+ θ(τ − t))dτ

]
× b(x′)η(θ · θ′)

{ˆ τ

0

exp

[
−
ˆ τ

τ ′′
a(x′ + θ′(τ ′ − τ))dτ ′

]

× q(x′ + θ′(τ ′ − τ), θ′, τ ′) dτ ′′

}
dθ′dx′dτ ′ + ...,

(2.26)

The first term of (2.25) physically represents photons arriving at x directly (without scat-

tering) from the source term q(x′, θ, τ ′), i.e., those photos are virgin source photons; the

second term corresponds to the second generation photons that have scattered once at

x′ before arriving at x. Therefore, the Neumann series is an expansion in the number

of times that the photons have been scattered before arriving at a given point at a given

time with a certain direction. Then, from physical reasoning we would expect that in an

absorbing medium the Neumann series (2.25) will converge.

Now let us check mathematically that the Neumann series (2.25) will converge. To do

this, we will use the following equivalent formulation of the Neumann series

u(x, θ, t) =
∞∑
n=0

un(x, θ, t), (2.27)
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with

u0(x, θ, t) = Q(x, θ, t) (2.28a)

un(x, θ, t) = Kun−1(x, θ, t), (2.28b)

and Q as in (2.19). Integrating equation (2.28a) over the spatial and angular variables x

and θ and taking into account (2.20), we have

ˆ
Sn−1

ˆ
Ω

u0(x, θ, t) dxdθ =

ˆ
Sn−1

ˆ
Ω

Q(x, θ, t) dxdθ

=

ˆ
Sn−1

ˆ
Ω

ˆ t

0

exp

[
−
ˆ t

τ ′
a(x+ θ(τ − t))dτ

]
× q(x+ θ(τ ′ − t), θ, τ ′) dτ ′ dxdθ

≤
ˆ
Sn−1

ˆ
Ω

ˆ t

0

q(x+ θ(τ ′ − t), θ, τ ′) dτ ′ dxdθ

= Q̂.

(2.29)

Using the iteration formula (2.28), we have

ˆ
Sn−1

ˆ
Ω

u1(x, θ, t) dxdθ =

ˆ
Sn−1

ˆ
Ω

Ku0(x, θ, t) dxdθ

=

ˆ
Sn−1

ˆ
Ω

KQ(x, θ, t) dxdθ,

and using equations (2.23), (2.3) and the inequality (2.29), the right hand side of the above
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expression is equal to

=

ˆ
Sn−1

ˆ
Ω

{ˆ t

0

ˆ
Ω

ˆ
Sn−1

δ(x′ − x− θ(τ ′ − t)) exp

[
−
ˆ t

τ ′
a(x+ θ(τ − t))dτ

]
× b(x′)η(θ · θ′)Q(x′, θ′, τ ′)dθ′dx′dτ ′

}
dxdθ

≤
ˆ
Sn−1

ˆ
Ω

{ˆ t

0

ˆ
Ω

ˆ
Sn−1

δ(x′ − x− θ(τ ′ − t))βη(θ · θ′)

×Q(x′, θ′, τ ′)dθ′dx′dτ ′
}
dxdθ

=

ˆ t

0

ˆ
Ω

ˆ
Sn−1

βQ(x′, θ′, τ ′)

{ˆ
Sn−1

ˆ
Ω

δ(x′ − x− θ(τ ′ − t))η(θ · θ′)

× dxdθ

}
dθ′dx′dτ ′

=

ˆ t

0

ˆ
Ω

ˆ
Sn−1

βQ(x′, θ′, τ ′)

{ˆ
Sn−1

η(θ · θ′)
ˆ

Ω

δ(x′ − x− θ(τ ′ − t))

× dxdθ

}
dθ′dx′dτ ′

=

ˆ t

0

ˆ
Ω

ˆ
Sn−1

βQ(x′, θ′, τ ′)

{ˆ
Sn−1

η(θ · θ′)dθ
}
dθ′dx′dτ ′

=

ˆ t

0

ˆ
Ω

ˆ
Sn−1

βQ(x′, θ′, τ ′) dθ′dx′dτ ′

= β

ˆ t

0

(ˆ
Ω

ˆ
Sn−1

Q(x′, θ′, τ ′) dθ′dx′
)
dτ ′

≤ β

ˆ t

0

Q̂ dτ ′ = βQ̂

ˆ t

0

dτ ′

= Q̂βt.

Continuing the iterations (by induction), one obtains

ˆ
Sn−1

ˆ
Ω

uj(x, θ, t) dxdθ ≤ Q̂
βjtj

j!
, ∀ j ≥ 0,

which implies

ˆ
Sn−1

ˆ
Ω

u(x, θ, t) dxdθ =

ˆ
Sn−1

ˆ
Ω

∞∑
j=0

uj(x, θ, t) dxdθ =
∞∑
j=0

ˆ
Sn−1

ˆ
Ω

uj(x, θ, t) dxdθ

≤
∞∑
j=0

Q̂
βjtj

j!
= Q̂ exp(βt).

The above inequality proves (2.21), which means that the Neumann series converges.
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For more details on the proof of the existence and uniqueness of the solution of the RTE

we refer to [33, 50].

2.2 Regularization

In this section we summarize a few results from regularization theory which are of impor-

tance to later sections.

2.2.1 Truncated Singular Value Decomposition

Let H1 and H2 be separable Hilbert spaces of finite or infinite dimensions, A : H1 → H2

a compact operator. An operator A : H1 → H2 is called linear compact if A is linear and

if for every bounded subset D ⊂ X , the closure A(D) is compact in H2, in other words

if the image A(D) is relatively compact. Any compact operator A : H1 → H2 can be

written in the form

A : x 7→
∞∑
j=1

1

λj
〈x, uj〉vj,

where λj → 0 as j →∞, then ‖A −AN‖ → 0 as N →∞, where

AN : x 7→
N∑
j=1

1

λj
〈x, uj〉vj.

Let H1 and H2 be separable Hilbert spaces of finite or infinite dimension and A : H1 →

H2 a linear operator. Given b ∈ H2, one can consider the problem of finding x ∈ H1 such

that

Ax = b. (2.30)

Equation (2.30) is called a Fredholm equation of the first kind when the operator A in

(2.30) is compact. A solution x of (2.30) for a linear or a compact operatorA exists if and

only if b ∈ Ran(A), and this solution x is unique if and only if ker(A) = 0 [101, 162].

The definition of well-posedness in the sense of Hadamard is given in [14, 51, 63, 96,

167] as follows

Definition 3 A problem (2.30) is called well-posed if all the following properties are

satisfied
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i A solution of (2.30) exists for all admissible data b.

ii The solution is unique for all admissible data b.

iii The solution of (2.30) depends continuously on the data b.

A problem which does not satisfy one of the properties of definition 3 is called ill-posed

problem. Inverse problems typically do not satisfy all of the Hadamard’s conditions.

Sometimes, condition (i) can be re-established by relaxing the notion of an exact solution,

while if condition (ii) is not satisfied, one must determine which solution is of interest

[63].

Hadamard’s conditions in Definition 3 will fail for example in the following situations

1. If Ran(A) 6= H2, that is, if A is not surjective, then the problem (2.30) might not

have a solution.

2. If ker(A) 6= ∅, that is, if A is not injective, then the problem (2.30) does not have

an unique solution.

3. If the inverse of A exists but is not continuous, then the solution of (2.30) does not

depend continuously on the data b.

The failure of condition (iii) will produce instability in the inversion process. This condi-

tion states that small perturbations in the data b correspond to small perturbations on the

solution x, in other words the solution is stable with respect to small changes in data b:

• If b→ b′,Ax′ = b′ andAx = b, then x→ x′, that is, the solution of (2.30) is stable

with respect small changes in the data b [162].

For a general operator A and infinite-dimensional H1, H2, the inverse of A can exist but

might not be continuous. Even if H1, H2 are finite-dimensional, the solution of (2.30)

might not depend continuously on the data b in practical situations. In these situations,

when the problem (2.30) is discretized, the operator A is represented by a matrix with a

large condition number, such that condition (iii) is not satisfied [96, 101]. In practice the

data b are always corrupted by some noise δ, so instead of equation (2.30) we have to

consider

Ax = b+ δ.
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Regularization methods are applied to overcome the difficulties that ill-posed problems

present. Regularization methods solve uniquely a nearby problem instead of (2.30) and

ensure stability of the inversion scheme. Therefore, we present a generalized notion of

the solution of the problem (2.30) as follows:

Definition 4 Let H1, H2 be Hilbert spaces and A : H1 → H2 a bounded linear operator.

xls ∈ H1 is called a least-squares solution of 2.30 if

‖Axls − b‖ ≤ ‖Ax− b‖ for each x ∈ H1.

Also, x ∈ H1 is called best-approximate solution of (2.30) if x is a least-squares solution

of (2.30) with minimal norm, i.e.,

‖x‖ = arg min
z∈H1

{‖z‖
∣∣z solves Ax = b},

which is also known as the least-squares minimum norm solution xlsmn ∈ H1 of (2.30)

defined by

xlsmn = arg min
z
‖z‖,

where z ∈ xls + ker(A) and ‖·‖ denotes the standard Euclidean norm.

Definition 5 Let A : H1 → H2 be a compact operator with adjoint A∗ : H2 → H1. The

square roots λj =
√
σj of the eigenvalues σj of the self-adjoint operatorA∗A : H1 → H1

are called singular values of A.

All the eigenvalues σ of A∗A are nonnegative. The following theorem addresses the

Singular Value Decomposition (SVD) of a compact operator A [14, 101, 162].

Theorem 6 Let A : H1 → H2 be a compact operator and A∗ its adjoint operator. Then

1. The spaces H1, H2 allow orthogonal decompositions.

H1 = ker(A)⊕ (ker(A))⊥ = ker(A)⊕ Ran(A∗),

H2 = Ran(A)⊕ (Ran(A))⊥ = Ran(A)⊕ ker(A∗).

2. There exist orthonormal bases (vj) ∈ H1 and (uj) ∈ H2 for ker(A)⊥ and Ran(A),

respectively, and a strictly positive non-increasing sequence of numbers λj , (λ1 ≥
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λ2 ≥ . . . > 0), and if Ran(A) is infinite-dimensional then one has λj → 0 as

j →∞, such that the operator A acting on x can be represented as

Ax =
∞∑
j=1

λj〈x, vj〉uj. (2.31)

Moreover, the following equations hold

Avj = λjuj and A∗uj = λjvj.

3. Furthermore, the problem (2.30) has a solution represented by

x =
∞∑
j=1

1

λj
〈b, uj〉vj, (2.32)

if and only if

b =
∞∑
j=1

〈b, uj〉uj,

and
∞∑
j=1

1

λ2
j

|〈b, uj〉|2 <∞. (2.33)

4. If b ∈ Ran(A)⊕ (Ran(A))⊥, we have

A†b =
∞∑
j=1

1

λj
〈b, uj〉vj, (2.34)

where X⊥ denotes the ortho-complement of the subspace X ⊂ H . The triplet (λj, vj, uj)

is called the singular system of the operator A and the representation of A in terms of

this singular system is called the singular value decomposition (SVD) of A. The lin-

ear operator A† defined in (2.34) is called the Moore-Penrose generalized inverse or the

pseudo-inverse of A.

Note that Ran(A) is not necessarily equal to Ran(A). Also, we have the following

theorem

Theorem 7 If b ∈ Ran(A)⊕ (Ran(A))⊥, then the least squares minimum norm solution
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(or the best-approximate solution) of (2.30) satisfies

xlsmn = A†b,

and A† is bounded if and only if Ran(A) is closed.

In the finite-dimensional setting, we have the following SVD of a matrix A.

Theorem 8 Every matrix A ∈ RM×N allows a decomposition

A = UΛV T , (2.35)

where the matrices U and V are constructed by the vectors uj and vj respectively, as

follows

U = [u1, ..., uM ] V = [v1, ..., vN ],

and Λ ∈ RM×N is diagonal with nonnegative elements such that λ1 ≥ λ2 ≥ . . . ≥

λmin(M,N) ≥ 0. The matrix λ is described as follows

• if M < N ,

Λ = [diag(λ1, ..., λM), 0],

where 0 of the last expression denotes a zero matrix of size M × (N −M).

• if M > N

Λ =

diag(λ1, ..., λN)

0

 .
where 0 of the last expression denotes a zero matrix of size (M −N)×N .

• if M = N

Λ = [diag(λ1, ..., λM)].

Note that the vectors (uj)
M
j=1 and (vj)

N
j=1 are eigenvectors of AA∗ and A∗A, respectively.

Another difficulty when attempting to solve (2.30) arises when b has a nonzero com-

ponents in the subspace orthogonal to Ran(A) as it can be seen as follows.
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Let A be a compact operator (where H1, H2 can be infinite or finite dimensional) and

P : H2 → Ran(A) be the orthogonal projection on Ran(A) which is defined by

b 7→
∑
j

〈b, uj〉uj. (2.36)

Then, for any x ∈ H1, it holds

‖Ax− b‖2 = ‖Ax− Pb‖2 + ‖(1− P )b‖2 ≥ ‖(1− P )b‖2.

Therefore, when b has a nonzero component in the subspace orthogonal to Ran(A), then

the equation (2.30) does not have an exact solution [101]. In such cases, instead of solving

the equation (2.30), we can try to solve the projected equation

Ax = PAx = Pb. (2.37)

However, for corrupted data b, the convergence condition in (2.33) may not hold since

the components 〈b, uj〉 may not decrease towards zero sufficently fast. In this case, the

solution of (2.30) would not exist.

To avoid the above mentioned difficulty, we can make use of the following projection

operators. Let Pk : H2 → span{u1, ..., uk} denote the finite-dimensional orthogonal

projection, i.e.,

b 7→
k∑
j=1

〈b, uj〉uj.

We have Pkb ∈ Ran(A) for all k ∈ N since Pk is finite dimensional, and Pkb → Pb

in H2 when k → ∞. Now one can consider to solving instead of (2.37) the following

finite-dimensional projected equation

Ax = Pkb, (2.38)

which is solvable with solution given below.

Definition 9 LetA : H1 → H2 be a compact operator with the singular triplet (λj, vj, uj).

The problem of finding x ∈ H1 and x⊥ ker(A) such that equation (2.38) holds for some

k ∈ N is called the truncated SVD solution of the problem (2.30).
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If one takes the inner product with uj on both sides of eq. (2.38), we obtain

λj〈x, uj〉 =

〈b, uj〉 1 ≤ j ≤ k,

0 j > k.

(2.39)

Therefore, the solution of the problem given in Definition 9 has a solution xk given by

xk = x0 +
k∑
j=1

1

λj
〈b, uj〉, (2.40)

where x0 ∈ ker(A). In the finite-dimensional setting [51, 101, 162], the solution of the

projected equation Ax = Pb is given by

x = x0 + A†b,

where x0 is an arbitrary vector in ker(A) and A† is the pseudo-inverse of A defined in

(2.34), which in the finite-dimensional case has the following explicit expression

A† = V Λ†U, (2.41)

where the matrix Λ† ∈ RN×M is given by



1/λ1 0 · · · 0

0 1/λ2

. . .
... 1/λp

...

0
. . .

0 · · · 0


.

with p := min(M,N). The condition number of a matrix A is defined by

cond(A) = ‖A‖‖A†‖.

It provides an approximate measure to classify well and ill-posed (finite-dimensional)
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problems. Ill-posed problems are characterized by a large condition number cond(A).

2.2.2 Filters

When singular values λj in (2.32) become too small, this will lead to an unstable solution

x. In order to avoid this numerical instability, a filter function w(λ2
j) can be incorporated

such that the product wα(λ2
j)(λj)

−1 → 0 as λj → 0 and wα(λ2
j) ≈ 1 for large values

of λ2
j . Here α refers to the regularized parameter. Regularizing an ill-posed problem in

this way can be interpreted as ’filtering’ the SVD components of the solution x [51, 107].

When incorporating this filter into (2.32) we obtain

x =
∞∑
j=1

wα(λ2
j)

1

λj
〈b, uj〉vj, (2.42)

In the infinite case, the filter of the TSVD for a compact operator A is given by

wα(λ2
j) =

1 if j ≤ k,

0 if j > k.

(2.43)

Equation (2.43) resembles (and is analogous to) equation (2.39) which describes the

infinite-dimensional projected property presented in the TSVD discussion. Usually, filter

(2.43) removes ’high frequency’ components which often correspond to small singular

values λj . In the finite-dimensional case, where A ∈ RM×N , the following formula for

the truncated SVD can be used [107, 162]

wα(λ2
j) =

1 if λ2
j > α,

0 if λ2
j ≤ α.

(2.44)

By incorporating the filter function (2.44) into the approximate solution representation

(2.32) we are removing those singular values λj which produce instabilities. Thus, the

approximate solution is given by

x =
M∑
j=1

wα(λ2
j)〈b, uj〉vj =

M∑
j=1
λ2j>α

λ−1
j 〈b, uj〉vj. (2.45)

50



CHAPTER 2. MATHEMATICAL BACKGROUND

The expression (2.45) is called truncated singular value decomposition [63, 162]. As

mentioned, the parameter α plays the role of a ’regularization parameter’, which corre-

sponds here to the threshold of the filtering process. The target in regularization tech-

niques is to find an optimal value for α in an appropriate sense. Clearly, when α is chosen

too small, the noise still may produce an unstable solution x, while if α is chosen too

large, most of the main components 〈b, uj〉vj are removed, giving an inadequate or incor-

rect solution [162].

Another filter is the Landweber filter given by

wα(s2) = 1− (1− βs2)α, (2.46)

where β ∈ R+. If one substitutes the Landweber filter (2.46) into eq. (2.42) for a lin-

ear bounded operator A, and truncates the sum until k terms, we obtain the following

Landweber regularized solution

xk =
∞∑
j=1

wk(λ
2
j)

1

λj
〈b, uj〉vj =

∞∑
j=1

1

λj
(1− (1− βλ2

j)
k)〈b, uj〉vj,

=
k−1∑
i=0

∞∑
j=1

βλj(1− βλ2
j)
i〈b, uj〉vj =

k−1∑
i=0

∞∑
j=1

βλj(1− βλ2
j)
i〈b, uj〉vj,

=
k−1∑
i=0

RiβA∗b,

where the equality in the second row holds due the geometric sum formula. Here

R = I − βA∗A.

Inductively, the last expression yields

xk =
k−1∑
i=0

RiβA∗b, (2.47)

which, for x0 = 0, is equivalent to the following iteration

xk+1 = xk − βA∗(Axk − b), k = 0, 1, . . . . (2.48)
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In effect, for k = 1, eq. (2.47) is given by

x1 = βA∗b.

Therefore, eq. (2.48) for k = 1 is equal to x1 = βA∗b. Assuming that eq. (2.47) holds,

one obtains

xk+1 = xk − βA∗(Axk − b) = Rxk + βA∗b = R

k−1∑
i=0

RiβA∗b =
k∑
i=0

RiβA∗b.

Equation (2.48) is known as the Landweber iteration which converges for 0 < β <
2

‖A‖2
.

Therefore, the regularization parameter α for the Landweber scheme is an index α = k

which indicates the iteration count where the scheme (2.48) is terminated.

Another typical and stable choice for a regularization filter is the Tikhonov regulariza-

tion filter. It is given by

wα(s2) =
s2

s2 + α
.

In the finite-dimensional case, the Tikhonov regularized solution is expressed by

x =
N∑
j=1

wα(λ2
j)

1

λj
〈b, uj〉vj = (ATA+ α)−1AT b. (2.49)

We will discuss Tikhonov regularization in more details in the following section.

2.2.3 Tikhonov regularization of linear operator equations

In the linear case, i.e., whenA is a linear operator, Tikhonov regularization is best known

as the minimization of the following “Tikhonov functional”

Fα(x) = ‖Ax− b‖2 + α‖x‖2, (2.50)

where α > 0 is the regularizer parameter. In the framework of Variational Calculus the

parameter α is related to a Lagrange multiplier. Here one is looking for the minimum

of ‖Ax − b‖2 subject to the restriction ‖x‖2 = R for some R > 0. Let A : H1 → H2

be a compact operator. Then, the Tikhonov regularized solution xα exists, is unique and
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furthermore can be expressed by the formula

xα = (A∗A+ αI)−1A∗b =
∞∑
j=1

λj
λ2
j + α

〈b, uj〉vj.

As generalized Tikhonov regularization we understand the minimization of the more

general functional

Fα(x) = ‖Ax− b‖2 + αD(x), (2.51)

where D(x) is a nonnegative functional and α > 0. The standard version of this penalty

functional is

D(x) = ‖L(x− x0)‖2, (2.52)

where L is a linear operator and x0 ∈ H1 is the available a priori information on x. The

operator L may for example be the identity operator or a differential operator. In discrete

or finite-dimensional cases, typically the operatorL is chosen as either the identity matrix,

or an approximation for a differential operator, or a diagonal weighting matrix [51, 107].

In the finite-dimensional setting, the minimiser of the Tikhonov functional (2.51),

(2.52) is given by

xα = (ATA+ αLTL)−1(AT b+ αLTLx0).

This minimiser is unique if ker(A)∩ ker(L) = ∅ or, which is equivalent to ask, if ATA+

αLTL is positive definite. The minimizer of the Tikhonov functional (2.51), (2.52) can

be obtained by minimizing

Fα(x) =

∥∥∥∥∥
 A
√
αL

x−
 b
√
αLx0

∥∥∥∥∥
2

,

for which the minimizer is

xα = K†

 b
√
αLx0

 with K =

 A
αL

 .
Wang et. al. [167] have suggested some extrapolated methods to accelerate the stan-

dard Tikhonov regularization method if the true solution x is assumed to be smooth and

the ’extrapolated’ parameters are selected properly.
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2.2.4 Tikhonov regularization of nonlinear operator equations

The imaging modalities discussed in the thesis involve nonlinear forward operators which

require some slight generalizations of the above discussed theory on Tikhonov regular-

ization. Some of these are outlined in the following for future reference.

Let now G : H1 → H2 be a nonlinear operator. One can consider the problem of

finding x ∈ H1 such that

G(x) = g, (2.53)

where g ∈ H2 represents the exact data. In practice, certainly, we measure perturbed

(noisy) data gδ, and assume that the following inequality holds

‖gδ − g‖ ≤ δ, (2.54)

with δ indicating the level of noise.

Typically the ill-posed problem (2.53)is written as the following least-square func-

tional

F(x) = ‖G(x)− g‖2. (2.55)

The problems (2.53) we are interested are ill-posed in the sense that even small changes in

the measured data gδ may cause large errors in the solution vector x. A standard Tikhonov

regularization can be formulated for such ill-posed nonlinear problems, which amounts to

finding the minimiser of the functional

Fα(x) = ‖G(x)− g‖2 + α‖x‖2. (2.56)

For practically finding minimizers of Tikhonov functional involving nonlinear operators,

the following concept of a Fréchet derivative is of importance.

Definition 10 Let z, x0 ∈ H1. The operator G : H1 → H2 is Fréchet differentiable at a

point x0 if it allows an expansion

G(x0 + z) = G(x0) + G ′x0(z) +W(x0, z),
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here G ′x0 : H1 → H2 is a continuous linear operator and

‖W(x0, z)‖ ≤ ‖z‖ε(x0, z),

where the functional ε(x0, z) tends to zero when z → 0.

Assuming that G is Fréchet differentiable, the functional (2.56) can be approximated as

Fα(x) ≈ F̃α(x;x0) = ‖G(x0) + G ′x0(x− x0)− g‖2 + α‖x‖2

= ‖G ′x0x− g(y, x0)‖2
(2.57)

where

g(y, z) = g − G(z) + G ′zz. (2.58)

Applying now Tikhonov regularization for the linearised operator G ′x0 , the minimizer of

the functional (2.57) is given by

x = ((G ′x0)∗G ′x0 + αI)
−1

(Gx0)∗g(g, x0). (2.59)

A discrete version of the Tikhonov regularization method (2.59) is given next in form of

a pseudo-code [101]:

1. Select an initial guess x0 and set k = 0.

2. Calculate

x = ((G ′xk)
∗G ′xk + αI)

−1
(Gxk)∗g(g, xk),

with g(g, xk) as defined in (2.58), and define δx = x− xk.

3. Calculate the minimiser s > 0 of the function

f(s) = ‖G(xk + sδx)− g‖2 + ‖xk + sδx‖2.

4. Set xk+1 = xk + sδx and k ← k + 1.

5. Repeat steps (2-4) until convergence.
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A different derivation of the expression (2.59) for finite-dimensional nonlinear opera-

tor G is as follows. Let G : RN → RM be a nonlinear operator, g = (g1, ..., gM) ∈ RM

the data vector and x ∈ RN a vector variable. The nonlinear problem is to find x ∈ RN

such that

G(x) = g. (2.60)

In order to solve the ill-posed problem (2.60), one can attempt to solve the following

least-square functional

F(x) = ‖G(x)− g‖2. (2.61)

Using now the following Taylor expansion of second order for F(x) around the present

estimate xk, given by

F(x) ≈ F(xk) +

(
∂F(xk)

∂x
+

1

2
(x− xk)T ∂

2F(xk)

∂x2

)
(x− xk), (2.62)

a quadratic approximation for F(x) is obtained and equated to zero for finding its min-

imiser
∂F(x)

∂x
=
∂F(xk)

∂x
+ (x− xk)T ∂

2F(xk)

∂x2
= 0.

Assuming that the Hessian matrix ∂F2/∂x2 is invertible we obtain the Newton-Raphson

iteration

xk+1 = xk −
(
∂2F(xk)

∂x2

)−1
∂F(xk)

∂x
. (2.63)

Let us use the notation C(k) (the Jacobian matrix of G) andD(k) for the following quantities

C(k) =
∂G(xk)

∂x
,

D(k) = −
( M∑
j=1

(gj − Fj(xk)
∂2Fj
∂x2

)

)
.

Then the gradient ∂F/∂x ∈ RN is given by

∂F(xk)

∂x
= −2CT(k)(g − G(xk)), (2.64)

and the Hessian matrix ∂F2/∂x2 ∈ RN×N by

∂2F(xk)

∂x2
= 2CT(k)C(k) + 2D(k), (2.65)
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Using now Equations (2.64) and (2.65), the iteration formula (2.63) gets the form

xk+1 = xk +

(
CT(k)C(k) +D(k)

)−1

CT(k)(g − G(xk)), (2.66)

For more details about this derivation see [107].

Notice that different approximations of the term CT(k)C(k)+D(k) in (2.66) lead to a range

of popular iterative approximation methods. The simplest one is the steepest descent

method which approximates CT(k)C(k) + D(k) with the identity matrix. The Gauss-Newton

method approximates this term by CT(k)C(k) +D(k) ≈ CT(k)C(k), that is, when ∂2Fj/∂x
2 ≈ 0

or the residual ‖G(x) − g‖ ≈ 0. Levenberg-Marquardt method approximates CT(k)C(k) +

D(k) ≈ CT(k)C(k) + αI , where α is a positive regularizer parameter.

Convergence properties of the above schemes have been intensively investigated in

the literature, see for example [102]. Let us assume that the nonlinear problem (2.53) is

solvable and that the regularizer parameter α := α(δ), where δ is the noise level, δ2/α→

0, when both α and δ tends to zero. Then the minimizer of the Tikhonov functional (2.56)

converges to a solution of the nonlinear problem (2.53). One important convergence result

is the following [102]. Let x† be the minimal norm solution of (2.53) and assume that the

following equation holds

x† − x0 =
(
(G ′x†)

∗G ′x†
)ν
u,

where 1/2 ≤ ν ≤ 1 and ‖u‖ sufficiently small. Then, the rate of convergence of a

Tikhonov regularization is given by

‖xα − x†‖ = O(δ
2ν

2ν+1 ).

As for linear discrete operators, one can consider the generalized Tikhonov regulariza-

tion for the discrete nonlinear problem. It is given by the minimization of the following

functional

Fα(x) = ‖G(x)− g‖2 + αG(x), (2.67)

where G is a nonnegative functional and α > 0 is the regularization parameter. To obtain

the iteration formula for the approximation of the minimizer of (2.67), we proceed in a
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similar manner as in the derivation of (2.66). Firstly, the gradient

∂F(xk)

∂x
= −2CT(k)(g − G(xk)) + αgGk , (2.68)

and the Hessian matrix

∂2F(xk)

∂x2
= 2CT(k)C(k) + 2D(k) + αHG

k , (2.69)

are calculated where

gGk =
∂G(xk)

∂x
,

HG
k = −∂

2G(xk)

∂x2
.

Then, using eq. (2.68) and (2.69), we obtain the iteration rule

xk+1 = xk +

(
CT(k)C(k) +D(k) +

1

2
αHG

k

)−1(
CT(k)(g − G(xk))− 1

2
αgGk

)
. (2.70)

The Gauss-Newton regularized method assumes Dk ≈ 0, resulting in the modified itera-

tion rule

xk+1 = xk +

(
CT(k)C(k) +

1

2
αHG

k

)−1(
CT(k)(g − G(xk))− 1

2
αgGk

)
. (2.71)

2.3 Iterative reconstruction techniques

Since optical or fluorescence tomography mathematically represent nonlinear imaging

modalities, iterative reconstruction or regularization techniques are of special importance.

We have discussed above already the well-known Newton-Raphson technique and some

of its variants. In this section, we will outline a few additional iterative techniques which

are of particular importance in this thesis. These are the Kaczmarz (K) technique, the

Landweber (L), Landweber-Kaczmarz (LK) and Loping-Landweber-Kaczmarz (L-LK)

methods.
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2.3.1 Kaczmarz method

Let Aj : H → H be linear bounded operators where H and Hj , j = 1, . . . ,M denote

separable Hilbert spaces, and let bj ∈ Ran(Aj) be given. Then we consider the following

problems

Ajx = bj, 1 ≤ j ≤M. (2.72)

Let furthermore Xj be affine subspaces of H defined by

Xj = {x ∈ H1 | Ajx = bj} , (2.73)

and Pj : H1 → Xj orthogonal projectors onto these subspaces Xj . The sequential pro-

jections are defined as P := PMPM−1 · · · P2P1. For an initial guess x0, the Kaczmarz

sequence {xk} ⊂ H is defined recursively as

xk+1 = Pxk. (2.74)

The following theorem gives sufficient conditions of convergence for solution of equation

(2.30) using the Kaczmarz sequence as an iteration approximation method.

Theorem 11 If X =
⋂M
j=1Xj is not empty. Then the Kaczmarz sequence {xk} converges

to the least-squares minimum norm solution of the equation (2.30), i.e.,

lim
k→∞

xk = x, Ax = b, x⊥ ker(A).

When applied in the X-ray tomography’s context, The Kaczmarz method is also known

as Algebraic Reconstruction Technique (ART). For a finite-dimensional linear problem it

can be formulated as follows. Let A : RN → RM be a linear mapping, then A ∈ RM×N

can be decomposed in mappings Aj : RN → Rlj which are assumed to be surjective for

the following exposition, i.e., the blocks Aj have full row rank. Then A has the following

form

A =


A1

...

Al

 ∈ RM×N Aj ∈ Rlj×N ,
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where l1 + l2 + ... + ls = M . Furthermore, the linear problem (2.30) can be written as a

system of equations

Ajx = bj, Aj ∈ Rlj×N , bj ∈ Rlj . (2.75)

Therefore, the orthogonal projection Pj to the hyperplanes Xj defined in (2.73) is explic-

itly given by

Pjx = x+ ATj
(
AjA

T
j

)−1
(bj − Ajx). (2.76)

The general Kaczmarz method allows for a more general form of projections Pj given in

(2.76) by

Pjωx = x+ ωATj
(
AjA

T
j

)−1
(bj − Ajx).

where 0 < ω < 2 is a relaxation parameter [64, 101]. In practice, a priori information

is used to select the initial element x0 of the sequence (2.74). In the most popular form

of of the Kaczmarz method found in the literature the blocks Aj are considered as Aj :

RN → R1 and y ∈ R1, that is, lj = 1. In this case, the blocks Aj are reduced to rows of

the matrix A ∈ RM×N . A cycle in this method consists of M consecutive steps, that is,

the subindex k of xk in the following algorithm can be substituted by [k], where [k] := (k

mod M). Figure 2.1 depicts a sequence of steps of this algorithm for two lines r1 and r2

in 2D, that is, for a matrix A ∈ R2×2.

r1

r2

Figure 2.1: Kaczmarz method in two dimensions.

The explicit algorithm for the Kaczmarz method can be formulated as follows.
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Algorithm
Initialization
Set k = 0, x0 = 0;
Repeat until convergence
z0 = xk

for j = 1 : M
zj = zj−1 + ATj (AjA

T
j )−1(bj − ATj zj−1)

end
xk+1 = zM ; k ← k + 1

end

Table 2.1: Kaczmarz method.

2.3.2 Landweber, Landweber-Kaczmarz and Loping-LK methods

Let S ⊂ H , where H is a Hilbert space. A set S is called an invariant set for an operator

T : H → H if T (S) ⊂ S. A vector x ∈ H is called a fixed point of T if the image T (x)

is equal to x, that is, T (x) = x. The operator T is called a contraction on S if there exists

a positive real number κ < 1 such that for all x, z ∈ S,

‖T (x)− T (z)‖ < κ‖x− z‖. (2.77)

Furthermore, T is called a nonexpansive mapping if there exists a positive real number

κ ≤ 1 such that for all x, z ∈ S eq. (2.77) is satisfied. The Landweber method is based

on the following fixed point theorem.

Theorem 12 LetH be a Hilbert space and S ⊂ H a closed invariant set for a contraction

operator T : H → H in S. Then there exists an unique fixed point x ∈ S, that is,

T (x) = x. This fixed point x can be calculated as the limit of the sequence (xk) using the

iteration

xk+1 = T (xk),

for a given but arbitrary value x0.

The data vector b in equation (2.30) can be written as

b = Pb+ (1− P )b,
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where

Pb ∈ Ran(A), (1− P )b ∈ (RanA)⊥,

where P denotes the projection operator defined in (2.36). Since (RanA)⊥ = ker(A∗) as

stated in the SVD Theorem 6, applying the adjoint operator A∗ to eq. (2.30) yields

A∗Ax = A∗Pb+A∗(1− P )b = A∗b,

that is, one obtains the normal equation

A∗Ax = A∗b. (2.78)

Therefore, after applying A∗ to eq. (2.30), one has filtered out the component vector

(1 − P )b ∈ (RanA)⊥ of b which is not in the range of A. Now, we can see that if the

normal equation (2.78) holds, we obtain

x = x+ βA∗(b−Ax),

for all β ∈ R. Defining the operator T as the right part of the above equation

T (x) := x+ βA∗(b−Ax), (2.79)

we obtain

x = T (x).

Therefore, the solution of the normal equation (2.78) is a fixed point for the operator T

defined as above. If we assume now that T is a contraction, we can apply an iteration

procedure xk+1 = T (xk) to approximate the solution of (2.78), that is,

xk+1 = xk + βA∗(b−Axk), k ∈ N, (2.80)

with β > 0 as a relaxation parameter. Equation (2.80) is known as the Landweber itera-

tion, also often called Landweber method . Some a priori information is used to initialize

this iteration. The Landweber method is very closely related to other methods such as the
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van Cittert method, Cimmino’s method, the simultaneous iterative reconstruction tech-

nique SIRT, and Gerchberg-Papoulis method [63]. Kaczmarz method is also often used

in the “source-type adjoint field” technique known in the engineering community where

it is required to calculate the adjoint operator of A [58, 102].

For example in a finite-dimensional case, Cimmino’s iteration is written as

xk+1 = xk + τDAT (b− Axk), k ∈ N,

where D = diag(di). The individual elements are defined as

di =


1

M

1

‖Ai|2
Ai 6= 0,

0 Ai = 0,

where ATi are the rows of the matrix A ∈ RM×N .

In general, the Landweber, Cimmino and van Cittert methods belong to a more general

class of Landweber-type methods of the form

xk+1 = xk + τA∗D(b−Axk), k ∈ N,

where D is a symmetric positive definite operator.

In the finite-dimensional setting, the matrix T is a contraction if 0 < β < 2/λ2
1, in

which case the iteration sequence {xk} converges to the solution x ∈ (ker(A))⊥ of the

normal equation (2.78). In the more general infinite-dimensional setting, ifA is compact,

there is no guarantee that the Landweber iteration converges since the normal equation

(2.78) may not be solvable and the operator T in (2.79) may not be a contraction for ill-

posed problems. In these cases, if 0 < β < 2/‖A∗A‖, then the operator I − βA∗A is

nonexpansive and one can still apply the Landweber iteration (2.48) and truncate this se-

quence using a convenient stopping criterion. For ill-posed problems usually the operator

I − βA∗A is not a contraction because the eigenvalues of A∗A accumulate at the origin

[63]. If T is compact and b ∈ Ran(A)⊕ (Ran(A))⊥, then the Landweber iteration (2.48)

converges uniformly [110].

The Landweber and the steepest descent iteration methods (in their standard form)

are generally known to be slow in convergence. For this reason, modified versions have
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been proposed as for example to use a non-monotone gradient method with the Barzilai-

Borwein (BB) step size criterion. The difference between the three techniques (i) a non-

monotone gradient method, (ii) the steepest descent and (iii) the Landweber method is

essentially the selection of step size τ k in each iteration when calculating

xk+1 = xk − τ k∇F(xk) (2.81)

for the nonlinear problem (2.55). In fact, the Landweber method is a particular case of the

steepest descent method with fixed τ k = τ for the entire iteration scheme. In the steepest

descent method, τ k is usually determined in each step using a line search, i.e.,

τ k = arg min
τ>0
F(xk − τ∇Fk),

where∇Fk = ∇F(xk). In the BB method [15, 43, 71, 167, 171], the Hessian is emulated

by τI , that is

τI ≈ ∇F
k −∇Fk−1

xk − xk−1
,

where I is the identity. The last expression is solved in a least squares sense since it may

not have a solution. Then one obtains

τ k = arg min
τ
‖τ(xk − xk−1)−∇Fk −∇Fk−1‖2, (2.82)

which gives rise to the first choice of the step size τ k for the BB method, namely

τ kBB1 =
sTk−1rk−1

sTk−1sk−1

, k = 2, 3, .... (2.83)

Here

sk = xk+1 − xk,

rk : = ∇Fk+1 −∇Fk,

where τ1 > 0 is an arbitrary starting value. If the symmetric form of (2.82) is used, that

is,

τ k = arg min
τ
‖(xk − xk−1)− τ(∇Fk −∇Fk−1)‖2,
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one obtains the second choice of the step size τ k for the BB method, namely

τ kBB2 =
sTk−1rk−1

rTk−1rk−1

, k = 2, 3.... (2.84)

Assuming that G is Fréchet differentiable in the problem (2.53), the nonlinear Landwe-

ber iteration for it is defined by

xk+1 = xk − τ(G ′(xk))∗(G(xk)− g), k ∈ N, (2.85)

where τ > 0 is a relaxation parameter. The discrepancy principle can be used as a stop-

ping rule for this method, that is, the scheme is stopped after k∗ iterations until the fol-

lowing inequality holds

‖gδ − G(xk∗δ )‖ ≤ κδ < ‖gδ − G(xkδ )‖, 0 ≤ k < k∗, (2.86)

where δ is the level noise of (2.54), and κ > 0 is chosen conveniently. For regularized

linear problems using the Landweber iteration, the Morozov’s discrepancy principle has

been used successfully with κ > 1 [102].

If we assume that the nonlinear problem (2.53) has a solution locally, i.e., in a closed

ball with centre at x0 and radius 2ρ denoted byB2ρ(x
0) ⊂ H1, local convergence of (2.85)

is achieved if the following two conditions are satisfied. Firstly, the Fréchet derivative G ′

must be satisfied

‖G ′(x)‖ ≤ 1, x ∈ B2ρ(x
0). (2.87)

Condition (2.87) can be achieved scaling eq. (2.53) appropriately with a relaxation param-

eter τ . Alternatively, instead of scaling eq. (2.53), one can add the relaxation parameter

τ in the iteration scheme, as in iteration (2.85). Secondly, the following local tangential

cone condition must be satisfied

‖G(x)− G(x̃)− G ′(x)(x− x̃)‖ ≤ η‖G(x)− G(x̃)‖, (2.88)

with η < 1/2 and x, x̃ ∈ B2ρ(x
0), assuming that the nonlinear problem (2.53) has a

solution x∗ ∈ Bρ(x
0) and the conditions (2.87) and (2.88) hold. Let now be xkδ ∈ Bρ(x∗).
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Then, if the following condition holds

‖gδ − G(xkδ )‖ > 2
1 + η

1− 2η
δ, (2.89)

xk+1
δ is a better approximation of x∗ than xkδ , where both xkδ , x

k+1
δ ∈ Bρ(x∗) ⊂ Bρ(x

0).

This also implies that xk∗δ converges to a solution of the problem (2.53), where k∗ is

selected according to the stopping rule (2.86). If moreover ker(G ′(x†)) ⊂ ker(G ′(x)) for

all x ∈ Bρ(x
†), then xk∗ converges to x† when δ → 0.

In view of condition (2.89) and the stopping rule (2.86), the parameter κ must be

chosen such that

κ > 2
1 + η

1− 2η
> 2 (2.90)

for obtaining local convergence of the Landweber iteration.

Similar to linear problems, the convergence rate for nonlinear problems using Landwe-

ber regularization is quite slow. For a discussion of convergence rates and more details of

the nonlinear Landweber iteration and its modified versions, we refer to [102].

Given a set of M data, equation (2.53) can be written as a set of M equations of the

form

Gi(x) = gi, i = 0, . . . ,M − 1, (2.91)

where Gi : Di ⊂ H1 → H2, and Di being the corresponding domains of the functions

Gi. Furthermore, gi ∈ H2,i, where the H2,i are (possibly different) spaces such that H2 =⋃M
i=0H2,i.

Standard methods for the solution of (2.91) are based on rewriting (2.91) as a single

equation G(x) = y, where the operator G is defined by G := 1
√
M(G0, . . . ,GM−1) and

the data vector g by g = 1/
√
M(g0, . . . , gM−1). In practice, we have measurements yi,δ

which are typically corrupted with some noise, and satisfying

‖gi,δ − gi‖ ≤ δi, i = 0, ...,M − 1, (2.92)

where δi is the noise level of each measurement. We denote δ by δ := (δ0, ..., δM−1).

Applying the nonlinear Landweber iteration (2.85), one obtains

xk+1
δ = xkδ −

M−1∑
i=0

τi(G ′i(xk))∗(Gi(xk)− gi,δ), k ∈ N, (2.93)
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Adding a Kaczmarz cycle into the nonlinear Landweber iteration (2.85), we obtain

xk+1
δ = xkδ − τ(G ′[k](x

k))∗(G[k](x
k)− g[k],δ), k ∈ N, (2.94)

where [k] := (k mod M). Iteration (2.94) is known as the Landweber-Kaczmarz method

(LK) which is a convergent regularization technique as proved in [27]. The loping-

Landweber-Kaczmarz method (L-LK) is a combination of the Landweber iteration with

a variant of a cycle of the Kaczmarz method given by

xk+1
δ = xkδ − ωkτ(G ′[k](x

k))∗(G[k](x
k)− g[k],δ), k ∈ N. (2.95)

Here, ωk is a bang-bang relaxation parameter defined as

ωk :=

1 if ‖G[k](x
k
δ − g[k],δ)‖ ≥ κδ[k],

0 otherwise,
(2.96)

where δ[k] is given as in (2.92), and the parameter κ > 0 satisfies (2.90), i.e, κ > 2, with

η < 1/2. We mention that the Kaczmarz method has been combined with other methods

such as the Steepest Descent and Levenberg-Marquardt methods [16, 47].

If it is assumed that the nonlinear problem (2.53) has a solution in a closed ball

B2ρ(x
0), the operators Gi are Fréchet differentiable in B2ρ(x

0) such that conditions (2.87)

and the local tangential cone condition (2.88) are satisfied for every operator Gi, i.e.,

‖G ′i(x)‖H2,i
≤ 1, x ∈ B2ρ(x

0), x ∈ B2ρ(x
0) ⊂

M−1⋂
i=0

Di,

and

‖Gi(z)− Gi(x)− G ′i(x)(z − x)‖H2,i
≤ η‖Gi(z)− Gi(x)‖H2,i

, ∀x, z ∈ Bρ(x
0), (2.97)

respectively, with η < 1/2.

The stopping criterion for this method is as follows. The iteration should be stopped

when for the first time all xkδ are the same within a cycle, that is, when the relaxation
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parameters ωk are equal to zero within a cycle. In other words, when

‖Gi(xkδ )− gi,δ‖ ≤ κδi i = 0, ...,M − 1, (2.98)

the iteration is stopped at

k∗ := arg min
{
lM ∈ N : xlMδ = xlM+1

δ = ... = xlM+M−1
δ

}
, (2.99)

or

k∗ := arg min
{
lM ∈ N : ωlM = ωlM+1 = ... = ωlM+M−1 = 0

}
.

Condition (2.98) is satisfied if (2.90) holds. In addition, let k∗ be determined according

to (2.99). Then the element xk∗δ of the L-LK iteration converges to a solution of (2.85).

Moreover, if

ker(G ′(x†)) ⊂ ker(G ′(x)) for allx ∈ Bρ(x
†), i = 0, ...,M − 1,

then xk∗δ converges to the minimal norm solution x† when δ → 0 [86, 102].

It is noted that the L-LK method reduces to the LK method for noise-free data (δ = 0),

that is, ωk = 1 for each k. The L-LK method is a locally convergent regularization

technique if it is assumed that (2.53) has a solution, that is if the Fréchet derivative is

bounded (2.87), and the local tangential cone condition given by (2.97) holds, as it is

proved in [16, 27]. Another way to speed up the convergence of Kaczmarz method or

in particular the LK or L-LK methods is to iterate formulas (2.74),(2.94) or (2.95) in a

random fashion. We also mention that more variants of the Kaczmarz method can be

found in [64].
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Chapter 3

Imaging reconstructions using the

Landweber-Kaczmarz and level set

methods

In this chapter, we discuss in more depth the inverse problem of Diffuse Optical Tomogra-

phy (DOT), together with some solution techniques developed for this application. First,

in section 3.1 the inverse problem in DOT is outlined and discussed. In particular, in

section 3.3 the shape reconstruction problem in DOT is formulated in preparation for a

later chapter where the level set (LS) method for shape reconstruction is applied to DOT.

In section 3.2, we give a short review of the level set method using calculus of variations

as in [141]. A formula and algorithm are presented in section 3.4 to obtain the so-called

smooth gradient of the misfit data functional. In section 3.5, we briefly review a method

suggested in [144] for solving the simultaneous shape and contrast value inverse problem

in DOT, by using the RTE instead of its diffusive approximation. In section 3.6, we de-

scribe in detail the discretization of the forward and inverse problem based on the RTE as

used in this thesis. Finally, in the last section, results of our numerical experiments aim-

ing at single and simultaneous reconstructions of absorption and scattering coefficients in

DOT are presented.
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3.1 Inverse problem in DOT

We define the space U of states u, the space P of coefficients µ, b, and the space Z of data

as follows

U = L2
(
Ω× Sn−1 × [0, T ]

)
P = L2(Ω) Z = L2

(
Ω× [0, T ]

)
, (3.1)

with the standard inner products in L2. Note that the adjoint space of U is U itself. The

natural spaces in the framework of the RTE are Banach L1-spaces for the states u and

sources q and Banach L∞-spaces for the coefficients µ and b because of their physical

significance. The following L1-norm of the function of u(x, θ; t0) corresponds to the total

number of photons inside Ω at a given time t0

N(t0) =

ˆ
Ω

ˆ
Sn−1

u(x, θ; t0) dθdx.

Nevertheless, we have chosen to work with the above Hilbert spaces instead of the Banach

spaces because the regularization formulas are simpler in this setting [112, 143]. Also,

deriving the adjoint operator and the smooth scheme of the gradient of the cost functional

defined further below is more straightforward using Hilbert spaces. We mention that for

L2-spaces in the framework of the RTE there is no physical interpretation of the L2-norm

of u. Because of this physical significance of the L1-norm, many authors have decided to

choose the states of the density of photons u in L1, whereas for L2 there is no physical

interpretation of the L2-norm of u. Nevertheless, some authors have chosen the space L2

since some calculations are simplified in that setup. For further details about the RTE

and transport equations see [33, 45, 50, 62, 75, 109]. For a deeper discussion of function

spaces for the RTE see [45].

Detectors are positioned in DOT along the boundary ∂Ω. These record measurements

for each source qi, i = 0, . . . ,M − 1. The measurement operators Gi : P × P → Z in

this technique quantify the outgoing flux across the boundary ∂Ω known as the exitance

and defined by

Gi[µ, b](xr, tr) :=

ˆ
Sn−1
+

ui(xr, θ, tr)ν(x) · θ dθ on ∂Ω× [0, T ], (3.2)

where xr and tr denote the receiver position and receiving time, respectively, and ui is the
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solution of the RTE (2.1) for each source qi, i = 0, . . . ,M − 1. Here Sn−1
+ denotes the

subset of direction vectors θ ∈ Sn−1 for which ν(x) · θ > 0. The emitters of light of DOT

in general can be light emitting diodes, halogen bulbs, lasers while the detectors can be

photodiodes, photomultipliers and phototransistors [106].

It can be stated the inverse problem in DOT as follows: Given the scattering function η

and the recorded data (3.2) for sources qi, i = 0, . . . ,M − 1, find the location-dependent

absorption coefficients µ and the scattering coefficients b inside the domain Ω. We men-

tion that the reconstruction of the absorption coefficient µ is often considered more im-

portant than the reconstruction of the scattering coefficient b in medical diagnosis, since

the content of the oxi-haemoglobin is linked with tumours detection [69]. However, in

order to correctly determine µ we need to know b as well.

We define the following residual operatorsRi : P × P → Z for given sources qi as

Ri[µ, b](xr, tr) = Gi[µ, b](xr, tr)− G̃i(xr, tr), (3.3)

where G̃i are some given “physical true” measurements which correspond to the “true”

absorption and scattering coefficients µ̃ and b̃ respectively. Then, the residual operator is

zero for the “true” coefficients µ̃, b̃, that is, Ri[µ̃, b̃](xr, tr) = 0 for each i-th source if the

uncertainty of the measurements is equal to zero. Another way to formulate the inverse

problem in DOT is to determine a pair of coefficients (µ̄, b̄) such that the residual operator

Ri vanishes at (µ̄, b̄) for each i, i.e.,

Ri[µ̄, b̄] = 0, i = 0, . . . ,M − 1. (3.4)

Standard methods for the solution of (3.4) are based on rewriting (3.4) as a single equation

R[µ̄, b̄] = 0. (3.5)

where the operatorR is defined byR := 1
√
M(R0, . . . ,RM−1)T , that is, the i-th row of

R is Ri. Typically the nonlinear problem (3.4) is written as the following least squares

form

J (µ, b) :=
1

2

M−1∑
i=0

‖Ji(µ, b)‖2
Z ; Ji(µ, b) := Ri[µ, b], (3.6)
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Then, the inverse optical problem is to find µ, b which minimise the misfit functional J

min
(µ,b)∈P×P

J (µ, b). (3.7)

Since problem (3.7) is ill-posed, it requires regularization. A Tikhonov regularization

scheme is typically implemented here, but we will discuss alternative options below.

The residual operator defined in (3.3) is Fréchet differentiable and its explicit expres-

sion is stated in the next theorem which is proved in [50].

Theorem 13 Let δµ, δb be perturbations of µ, b respectively. Assuming that the pair (µ, b)

is admissible, then the mapping (3.3) is Fréchet-differentiable, and its Fréchet derivative

R′i[µ, b] : P × P → Z at [µ, b] is given by

R′i[µ, b]
(
δµ

δb

)
=

ˆ
Sn−1

ν(x) · wi(xr, θ, tr) dθ

where wi solves the following transport equation

∂wi
∂t

+ θ · ∇wi(x, θ, t) + (µ(x) + b(x))wi(x, θ, t)− b(x)

ˆ
Sn−1

η(θ · θ′)wi(x, θ, t)dθ′

= Qδµ(x, θ, t) +Qδb(x, θ, t) in X,

with initial condition

wi(x, θ, 0) = 0 in Ω× S1,

and boundary condition

wi(x, θ, t) = 0 on ∂X−,

where the “scattering sources” are defined by

Qδµ(x, θ, t) = −ui(x, θ, t)δµ,

Qδb(x, θ, t) = −ui(x, θ, t)δb+ δb

ˆ
Sn−1

η(θ · θ′)ui(x, θ′, t) dθ′,

where ui is the solution of (2.1) for a source qi.
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Notice that, strictly speaking, the proof of this theorem makes use of the natural Banach

spaces, but that the explicit expressions for calculating derivatives (if they exist) given

above are independent of this choice. The physical interpretation of the above theorem

is that the perturbations of the coefficients δµ and δb create a virtual scattering source

Qδµ + Qδb which gives rise to a density of virtual (“marked”) photons wi named “sec-

ondary particles” which travel to the receivers through the unperturbed medium. Then,

the Fréchet derivativeR′ quantifies the exitance of wi at detector positions xr.

Let ξ be a vector in the data space Z. Then the adjoint linearized residual operator

R′i[µ, b]
∗ : Z → P × P is defined by

〈
R′i[µ, b]

(
δµ

δb

)
, ξ

〉
Z

=

〈(
δµ

δb

)
,R′i[µ, b]∗ξ

〉
P×P

. (3.9)

An analytical expression of the adjoint of the linearized residual operator applied to the

vector ξ denoted byR′[µ, b]∗ξ and defined in (3.9) is given in the next theorem [9, 53].

Theorem 14 Let z ∈ U∗ and ξ ∈ Z, the adjoint equation of the RTE is given by

−∂z
∂t
− θ · ∇z + (µ(x) + b(x))z(x, θ, t)− b(x)

ˆ
Sn−1

η(θ · θ′)z(x, θ′, t) dθ′ = 0 in X,

(3.10a)

with initial condition

z(x, θ, T ) = 0 on Ω× Sn−1, (3.10b)

and boundary condition

z(x, θ, t) = ξ on ∂X+. (3.10c)

Then, the adjoint operatorR′i[µ, b]∗ is linear and given by

R′i[µ, b]∗ξ =

L1(ui, zi)

L2(ui, zi)

 (3.11)
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L1(ui, zi) := −
ˆ T

0

ˆ
Sn−1

ui(x, θ, t)zi(x, θ, t) dθdt, (3.12a)

L2(ui, zi) :=

ˆ T

0

ˆ
Sn−1

(ˆ
Sn−1

η(θ · θ′)ui(x, θ′, t) dθ′ − ui(x, θ, t)
)
zi(x, θ, t) dθdt,

(3.12b)

where ξ is applied uniformly in all θ directions with θ · ν > 0 and ui, zi solves eq. (2.1)

and eq. (3.10) with sources qi and ξ respectively. The term ξ is considered physically as

the “adjoint” source on the boundary. It produces ’adjoint particles’ that travel backwards

in time into Ω according to equation (3.10), which is the reason why the adjoint equation

(3.10) is often called “backtransport” equation. The expressions L1(ui, zi) and L2(ui, zi)

are known as the sensitivity functions of DOT based on the RTE for a source-receiver

pair corresponding to a source qi and given receiver postion xr and time tr with ξ(x, t) =

δ(x−xr)δ(t− tr), where δ is the Dirac delta distribution [54]. In DOT, it has been shown

in [54] that sensitivity functions disperse over a big region and have large values near to

the source and receiver positions. For more information about sensitivity analysis in DOT,

see [57].

Since the nonlinear problem (3.7) is ill-posed and highly underdetermined [8, 30, 53],

regularization techniques are typically applied to solve it. Considering firstly the Landwe-

ber (L) method to solve the minimization problem (3.7), we obtain

(
µk+1

bk+1

)
=

(
µk

bk

)
− τ∇J (µk, bk), (3.13)

where τ is a relaxation parameter defined by

τ :=

τµ 0

0 τb

 , τµ, τb > 0, (3.14)

and ∇J denotes the gradient of the cost functional J defined in (3.6), which is given by

∇J (µk, bk) =
M−1∑
i=0

∇Ji(µk, bk). (3.15)

Furthermore,∇Ji denotes the gradient of the cost functional Ji defined in (3.6), which is
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given by

∇Ji(µk, bk) = R′i[µk, bk]∗
(
Ri[µ

k, bk]
)
, (3.16)

where i denotes the number of the source qi. Now, we define the i-th adjoint source as

ξi := Ri[µ, b]. (3.17)

We have made a step further in our algorithms to approximate the adjoint source ξi in

equation (3.17) as follows

ξi =

Ri[µ, b], |x0 − pi| > MF ,

0, otherwise,
(3.18)

whereMF ∈ R and pi is the position of the source qi. Using this approximation, we do not

take into account information near to the source pj , which does not contain information

about the inclusions deeply embedded inside the region Ω. Using the adjoint operator

(3.11) and setting ξ = ξi with ξi as in (3.17),∇Ji is given by

∇Ji(µk, bk) =

(
L1(ui, zi)

L2(ui, zi)

)
, (3.19)

where ui solves (2.1) with source qi and zi solves (3.10) with adjoint source ξ = ξi.

Therefore, the updates for the absorption and scattering coefficients using the Landweber

iteration (3.13) are given by

(
µk+1

bk+1

)
=

(
µk

bk

)
− τ

M−1∑
i=0

(
L1(ui, zi)

L2(ui, zi)

)
. (3.20)

Adding a Kaczmarz cycle to the Landweber method results in the Landweber-Kaczmarz

(LK) formula to solve the problem (3.7). We obtain

(
µk+1

bk+1

)
=

(
µk

bk

)
− τ∇J[k](µ

k, bk), (3.21)

with ∇J[k](µ
k, bk) as given in (3.16) and [k] := (k mod M) ∈ {0, . . . ,M − 1}. Using

the definition (3.17) for a source q[k] and the residual operator equation (3.3), the adjoint
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boundary source ξ[k] is given by

ξ[k] := R[k][µ
k, bk]. (3.22)

Then,∇J[k] is

∇J[k](µ
k, bk) =

(
L1(u[k], z[k])

L2(u[k], z[k])

)
, (3.23)

where u[k] is the solution of (2.1) for the source q[k] and z[k] is the solution of (3.10) for the

adjoint source ξ[k] given by (3.22). Using equation (3.22) and the adjoint operator (3.11),

the update formulas of the optical coefficients using the LK iteration formula (3.21) are

(
µk+1

bk+1

)
=

(
µk

bk

)
− τ
(
L1(u[k], z[k])

L2(u[k], z[k])

)
. (3.24)

On the other hand, if the loping-Landweber-Kaczmarz (L-LK) method is chosen to solve

the problem (3.7), we obtain

(
µk+1

bk+1

)
=

(
µk

bk

)
− ωkτ∇J[k](µ

k, bk), (3.25)

where ωk are the relaxation parameters introduced in (2.96), i.e.,

ωk :=

1 if ‖R[k](µ
k, bk)‖Z ≥ κδ[k],

0 otherwise,
(3.26)

where ∇J[k] as defined in (3.16) with [k] := (k mod M). Here, δi denotes the noise

level defined by

‖Gδi − G̃i‖Z ≤ δi i = 0, . . . ,M − 1, (3.27)

where G̃i are the exact data and Gδi the noisy data, and κ > 0. Finally, using equation

(3.22) and the adjoint operator (3.11), the update formulas for the optical coefficients

using the L-LK iteration formula (3.25) are given by

(
µk+1

bk+1

)
=

(
µk

bk

)
− ωkτ

(
L1(u[k], z[k])

L2(u[k], z[k])

)
, (3.28)

where u[k] is the solution of (2.1) with the source q[k] and z[k] is the solution of (3.10) with

the adjoint source ξ[k].
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We have reviewed the convergence of the LK and L-LK methods above in subsection

2.3.2. Now we formulate the conditions which we assume to hold in order to achieve the

convergence of the LK and L-LK methods applied to the DOT problem.

Let σ = [µ, b], then the LK method is locally convergent if the following assump-

tions are satisfied. We will assume that the nonlinear problem (3.4) has a solution in a

closed ball B2ρ(σ
0) with radius 2ρ and centred at σ0, that the operators Ri are Fréchet

differentiable in B2ρ(σ
0), and that the following property holds

‖R′i(σ)‖Z ≤ 1, σ ∈ B2ρ(σ
0) ⊂

M−1⋂
i=0

Di, (3.29)

and property (2.87) is satisfied using a relaxation parameter τ in the LK iteration (3.13).

In addition, we assume that the following “local tangential cone condition” holds

‖Ri(ς)−Ri(ϑ)−R′i(σ)(ς − σ)‖Z ≤ λ‖Ri(ς)−Ri(ϑ)‖Z , ∀ϑ, ς ∈ Bρ(σ
0), (3.30)

where λ < 1/2.

As stopping criterion for the LK method we apply the following rule. The iteration

should be stopped when for the first time, all σδk are the same within a cycle, that is, when

the relaxation parameters ωk are equal to zero within a cycle, that is, if

‖Gi[σ]− Gδi ‖ ≤ κδi, i = 0, . . . ,M − 1, (3.31)

the iteration is stopped at

k∗ := arg min
{
lM ∈ N : σlMδ = σlM+1

δ = · · · = σlM+M−1
δ

}
, (3.32)

that is, k∗ is the smallest multiple of M such that

ωk∗ = ωk∗+1 = · · · = ωk∗+M−1 = 0.

Condition (2.98) is satisfied if

κ > 2
1 + λ

1− 2λ
> 2. (3.33)

In addition, let k∗ be determined according to (2.99). Then the element σδk∗ of the L-LK
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iteration converges to a solution of (3.13). Moreover, if

ker(R′(σ†)) ⊂ ker(R′(σ)) ∀ σ ∈ Bρ(σ
†), i = 0, . . . ,M − 1,

then σδk∗ converges to the minimal norm solution σ† when δ → 0 [86, 102].

First, we describe the Landweber iteration scheme in form of a Pseudo-Code below.

Algorithm 1: Landweber
Input: σ0

Output: σI

for k := 1, . . . , I do

for i := 0, . . . ,M − 1 do

Compute the gradient∇Ji(σk) given by (3.19) ;

end

Update inhomogeneity by σk+1 using (3.13) ;

end

Here, ui solves (2.1) with σk and with source qi, and zi solves (3.10) with σk and with

adjoint source ξi given by (3.17).

Next, we describe the LK reconstruction scheme for the reconstruction of absorption

and scattering coefficients µ, b in form of a Pseudo-code.

Algorithm 2: LK
Input: σ0

Output: σI(M−1)

for k := 0, . . . , I(M − 1) do

Compute the gradient∇J[k](σ
k) given by (3.23);

Update σk+1 using (3.21) ;

end

Here u[k] solves (2.1) with σk and source q[i], and z[k] solves (3.10) with σk and adjoint
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source ξ[k] given by (3.17).

This form of the LK algorithm is used in our numerical experiments, for which the re-

sults are shown further below. In order to obtain updates for the absorption and scattering

coefficients µk and bk, we have to solve a forward problem given by the RTE (2.1) and a

backward equation (3.10) with the corresponding sources q[k] and ξ[k] respectively. This

is done in a cyclic way until the algorithm terminates in a similar way as in the Kaczmarz

method.

Finally, the l-LK algorithm reads in form of a Pseudo-Code.

Algorithm 3: l-LK
Input: σ0

Output: σI(M−1)

for k := 0, . . . , I(M − 1) do

Compute the gradient∇J[k](σ
k) given by (3.23) ;

Update σk+1 using (3.25) ;

end

3.2 Level set method: calculus of variations approach

Level set methods, also known as the method of geodesic active contours or interfaces,

are suitable for modelling the propagation of contours as first shown in 1988 in the paper

of Osher and Sethian [128]. These and related techniques have been applied success-

fully in many areas such as: shape recovery, grid generation, geometry, fluid mechanics,

combustion, solidification, device fabrication or shape design, morphing, object track-

ing/image sequence analysis in images, stereo vision, shape from shading, mathematical

morphology, free boundary value problems, colour image segmentation, medical image

segmentation, and others. For an overview see for example [151]. The success of the level

set methods is mainly due to their ability to capture topological changes in an automatic

fashion and due to their flexibility during the propagation of the contours using implicit

representations. In our situation of DOT, the level set method provides an efficient and

accurate mean for the recovery of the geometry of hidden obstacles.
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It is assumed that the coefficient distribution for the sought physical quantity is de-

scribed by

σ(x) =

σi x ∈ Υ,

σe x ∈ Ω\Υ,
(3.34)

where Υ ⊂ Ω is a unknown region which might have complicated geometry. Notice

that usually discontinuities occur at the interfaces ∂Υ. The functions σi are arbitrary

functions which depend only on the spatial variable x. For simplicity we will assume that

the function value σi inside the region Υ is a constant known values, and σe correspond

to background values. We assume that the region Υ can be written as

Υ =
N⋃
j=1

Υj, Υj ∩Υj′ = ∅ for j 6= j′,

where the number of components N are finite and not known a-priori, so their topologies

are quite arbitrary. Topological changes of the components of Υ need to be handled during

the reconstruction process since we do not know a-priori the true number of components,

that is, those components may merge or split, such that the number of components N of

Υ will change during the shape evolution. In such situations, parameterized models for

the shape Υ are cumbersome since re-parameterizations are needed in order to correctly

track these topological changes. Level set methods offer a suitable alternative to handle

this kind of scenario since it is not necessary to re-parameterize the shapes Υ.

Given a piecewise constant or Lipschitz-continuous function ϕ : Υ → R, we call ϕ a

level set representation of the region Υ ifϕ(x) ≤ 0 x ∈ Υ,

ϕ(x) > 0 x ∈ Ω\Υ,
(3.35)

Then, the distributions of absorption and scattering coefficients are represented by the

level set function ϕ, according to

σ(x) =

σi ϕ(x) ≤ 0,

σe ϕ(x) > 0,

(3.36)
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Let Bε(x0) be the ball of radius ε with centre at x0;

Bε(x0) = {x ∈ Ω : |x− x0| < ε}.

The boundary of Υ is denoted by ∂Υ, and is described by

∂Υ = {x ∈ Υ : ∀ε > 0 ∃x1, x2 ∈ Bε(x), ϕ(x1) > 0 and ϕ(x2) < 0} ,

Assuming that∇ϕ is well defined and positive along the boundary ∂Υ, the boundary ∂Υ

can also be represented as

∂Υ = {x ∈ Ω, ϕ(x) = 0}.

Assuming that the boundary at point x moves outwards by δx, this movement will

change the points x ∈ ∂Υ to the new positions x′ = x+ δx, that is, the boundary ∂Υ will

be deformed into the new boundary ∂Υ′, see fig. 3.1.

Figure 3.1: Geometry of the region Ω.

We can see in fig. 3.1 that the outward normal at x is

n̄(x) =
∇φ(x)

|∇φ(x)|
.
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If one takes the variation of the equation φ(x) = 0, one obtains

δφ+∇φ · δx = 0. (3.37)

We will compute the variation of the coefficient distribution σ(x) due to an infinitesimal

deformation in the following. Consider the inner product of δσ with a test function ς

〈δσ, ς〉Υ =

ˆ
Υ

δσ(x)ς(x) dx =

ˆ
Υ∩Υ′

δσ(x)ς(x) dx, (3.38)

Since Υ is infinitesimal, we can reduce the area integral to the following line integral

〈δσ, ς〉Υ =

ˆ
δΥ

(σe − σi)δx · n̄ς(x) ds(x), (3.39)

From eq. (3.38) and (3.2), we get that the distribution δσ(x) defined on the entire domain

and concentrated on δΥ is given by

δσ(x) = (σe − σi)δx · n̄δ̂∂Υ(x), (3.40)

where δ̂∂Υ(x) is the Dirac delta distribution concentrated on the boundary ∂Υ. Then,

δσ(x) is interpreted as a surface measure on δΥ. From eq.(3.37) δφ = −∇φ · δx , then

eq. (3.40) can be written as

δσ(x) = (σi − σe)
δφ(x)

|∇φ(x)|
δ̂∂Υ(x). (3.41)

We will use the analytical expression of the distribution of the absorption coefficient δµ

given in (3.41) resulted from the Santosa’s level set approach the next section, and analo-

gous expression for the distribution of the scattering coefficient δb.

3.3 Shape reconstruction problem in DOT

A combination of the level set technique and the L, LK and L-LK methods will be de-

scribed in this section. The shape reconstruction problem in DOT can be formulated as

follows. Also here it is more convenient to work with L2-spaces for the density of photons

u and its adjoint density z, and for the absorption and scattering coefficients µ, b rather
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than L1-spaces for the same reasons as outlined in the last section. U, P, Z will denote

the spaces of states u, of coefficients µ, b, and of the data, respectively, as defined in the

last section with the same standard inner products in L2. We add the space of level set

functions which is Φ := L2(Ω).

The goal of the shape inverse problem is to find the spatial distribution Υ of some

coefficients inside a region Ω. In the shape reconstruction approach, we assume that the

distributions of the absorption and scattering coefficients are described by (similarly as in

the last section 3.2)

µ(x) =

µi x ∈ Υ1,

µe x ∈ Ω\Υ1,

b(x) =

bi x ∈ Υ2,

be x ∈ Ω\Υ2,

(3.42)

where Υ1,Υ2 ⊂ Ω are unknown regions which might have complicated geometry. Notice

that usually discontinuities occur at the interfaces ∂Υ1, ∂Υ2. The functions µi are arbi-

trary functions which depend only on the spatial variable x. For simplicity we will assume

that the function values µi inside the regions Υ1,Υ2 are constant known values, and µe

correspond to background values. We assume that the regions Υ1,Υ2 can be written as

Υ1 =

N1⋃
j=1

Υ1,j, Υ1,j ∩Υ1,j′ = ∅ for j 6= j′,

Υ2 =

N2⋃
j=1

Υ2,j, Υ2,j ∩Υ2,j′ = ∅ for j 6= j′,

where the number of componentsN1, N2 are finite and not known a-priori, so their topolo-

gies are quite arbitrary. Topological changes of the components of Υ1,Υ2 need to be

handled during the reconstruction process since we do not know a-priori the true num-

ber of components, that is, those components may merge or split, such that the number

of components N1, N2 of Υ1,Υ2 will change during the shape evolution. In such situa-

tions, parameterized models for the shape Υ are cumbersome since re-parameterizations

are needed in order to correctly track these topological changes. Level set methods of-

fer a suitable alternative to handle this kind of scenario since it is not necessary to re-

parameterize the shapes Υ1,Υ2. The distributions of absorption and scattering coeffi-
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cients are represented by the level set functions φ and ψ, respectively, according to

µ(x) =

µi φ(x) ≤ 0,

µe φ(x) > 0,

b(x) =

bi ψ(x) ≤ 0,

be ψ(x) > 0.

(3.43)

Here the indices i and e stand for the interior and the exterior of domains of interest Υ1

and Υ2, respectively. We define the characteristic function χD : Ω → {0, 1} as usual for

a given shape D ⊂ Ω as

χD(x) =

1, x ∈ D,

0, x ∈ Ω\D.

We will assume that ∂D ⊂ Ω for simplicity. The level set representation of a shape is

defined as follows.

Definition 15 Let be Υ ⊂ Ω a domain. A function φ : Υ1 → R, φ ∈ Φ is called a level

set representation of Υ1 if it holds

ϕφ(x) = χΥ1(x),

where ϕ : Ω→ {0, 1} is defined as

ϕφ(x) =

1, φ(x) ≤ 0,

0, φ(x) > 0.

In the same way, a function ψ : Υ2 → R, ψ ∈ Φ is called a level set representation of Υ2

if

ϕψ(x) = χΥ2(x).

Each of the level set functions φ and ψ determine a unique regions which we denote by

Υ1[φ] and Υ2[ψ] respectively. Let Bε1(x0) be the ball of radius ε1 with centre at x0;

Bε1(x0) = {x ∈ Ω : |x− x0| < ε}.

The boundaries of Υ1 and Υ2 are denoted by ∂Υ1 and ∂Υ2, respectively, and are described
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by

∂Υ1 = {x ∈ Υ1 : ∀ε1 > 0 ∃x1, x2 ∈ Bε1(x), φ(x1) > 0 and φ(x2) < 0} ,

∂Υ2 = {x ∈ Υ2 : ∀ε2 > 0 ∃x1, x2 ∈ Bε2(x), ψ(x1) > 0 and ψ(x2) < 0} ,

Assuming that ∇φ and ∇ψ are well defined and positive along the boundaries ∂Υ1 and

∂Υ2 respectively, the boundaries ∂Υ1 and ∂Υ2 can also be represented as

∂Υ1 = {x ∈ Ω, φ(x) = 0}, ∂Υ2 = {x ∈ Ω, ψ(x) = 0}.

We define now the following operators Λ1,Λ2 which map level set functions to coefficient

distributions.

Λ1(φ)(x) =

µi, φ(x) ≤ 0,

µe, φ(x) > 0,

Λ2(ψ)(x) =

bi, ψ(x) ≤ 0,

be, ψ(x) > 0.

(3.44)

Using the above definition, we obtain

µ(x) = Λ1(φ)(x) = µiφφ(x),

b(x) = Λ2(ψ)(x) = biφψ(x).

Using the residual operators defined in (3.3), the forward operator Ti : Φ→ Z is defined

for each source qi as the composition of Λ andRi,

Ti(φ, ψ) = Ri(Λ1(φ),Λ2(ψ)), i = 0, . . . ,M − 1. (3.45)

The aim of the shape reconstruction problem is to find a pair of level set functions φ̃, ψ̃

such that

Ti(φ̃, ψ̃) = 0, i = 0, . . . ,M − 1. (3.46)

Typically, the above problem is rewritten in the following least-squares form

J (φ) :=
1

2

M−1∑
i=0

‖Ji(φ, ψ)‖2
Z ; Ji(φ, ψ) := Ti(φ, ψ),
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where J is the misfit of the data functional. Applying the LK formula (2.94) to the shape

problem in DOT (3.46), we obtain

(
φk+1

ψk+1

)
=

(
φk

ψk

)
− τ∇J[k](φ

k, ψk). (3.47)

In (3.47), τ is a relaxation parameter defined by

τ :=

τφ 0

0 τψ

 , τφ, τψ > 0, (3.48)

and ∇Ji(φk, ψk) is given by

∇Ji(φk, ψk) = T ′[k](φ
k, ψk)∗(T[k](φ

k, ψk)), (3.49)

where i denotes the number of the source qi.

We will need an expression for the adjoint of the linearised forward operator T ′i in

order to calculate (φk+1, ψk+1) given in (3.47). We mention that, in the following, we have

used the Level Set approach as suggested by Santosa [141] combined with the analytical

expressions for the inverse problem in DOT as provided in section 3.2.

To start with, the linearised forward operator T ′i [φ, ψ] : Φ → Z, for an infinitesimal

change (δφ, δψ), is given by

T ′i [φ, ψ]

(
δφ

δψ

)
= R′i[Λ1(φ),Λ2(ψ)]

(
Λ′1[φ]δφ

Λ′2[ψ]δψ

)
, (3.50)

where (
Λ′1[φ]δφ(x)

Λ′2[ψ]δψ(x)

)
= −

(
[µi − µe]δφ|∇φ|−1δ̂∂Υ1(x)

[bi − be]δψ|∇ψ|−1δ̂∂Υ2(x)

)
.

Here, δ̂∂Υ1(x) and δ̂∂Υ2(x) are the Dirac delta distribution on ∂Υ1 and ∂Υ2 respectively

[52]. These Dirac delta distributions are approximated using “narrowbands” or “narrow-

tubes” denoted by χφ,d1(x), χψ,d2(x) as follows

δ̂∂Υ1(x) ≈ χφ,d1(x), δ̂∂Υ2(x) ≈ χψ,d2(x),
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where χφ,d1(x) is defined as [96]

χφ,d1(x) =

1 ∀x ∈ Ω s.t. |x0 − x| < d1 and φ(x0) = 0,

0 otherwise.
(3.51)

In the latter expression, d1 ∈ R indicates the width of the narrowband. The narrowband

χψ,d2(x) is defined analogously. A different choice for approximating the Dirac delta

functions δ̂∂Υ1(x), δ̂∂Υ2(x) is presented in [40, 129], or the narrowtube proposed in [130].

Let now ξ ∈ Z be the adjoint operator of T ′ given by

T ′i [φ, ψ]∗ξ = (Λ′1[φ],Λ′2[ψ])∗R′i[Λ1(φ),Λ2(ψ)]∗ξ,

where Λ′1[φ]∗ : P → Φ, Λ′2[ψ]∗ : P → Φ are the adjoint operators of Λ′1[φ] and Λ′2[ψ].

These are given by

(
(Λ′1[φ]∗δφ) (x)

(Λ′2[ψ]∗δψ) (x)

)
= −

(
[µi − µe]|∇φ|−1δφδ̂Γ(x)

[bi − be]|∇ψ|−1δψδ̂Γ(x)

)
.

Using the approximation of the Dirac delta distribution δ̂Γ(x) (3.51) to the above equation,

we obtain (
(Λ′1[φ]∗δφ) (x)

(Λ′2[ψ]∗δψ) (x)

)
= −

(
[µi − µe]|∇φ|−1χφ,d(x)

[bi − be]|∇ψ|−1χψ,d(x)

)
.

Now, we define the adjoint source as

ξ[k] := T[k](φ
k, ψk). (3.52)

We have made a similar approximation to the adjoint source ξ in equation (3.17)

ξi = Ti(φ
k, ψk) =

Ti(φ
k, ψk), |x− pi| > MF ,

0, otherwise,
(3.53)

where MF ∈ R. Using equation (3.52) and setting ξ = ξi, and the adjoint operator

equation (3.11), we obtain

∇J[k](φ
k, ψk) =

(
(µi − µe)|∇φk|−1χφ,d(x)L1(u[k], z[k])

(bi − be)|∇ψk|−1χψ,d(x)L2(u[k], z[k])

)
, (3.54)
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where u[k] solves (2.1) with source q[k] and z[k] solves (3.10) with adjoint source ξ = ξ[k]

defined in (3.52). Since the values |∇φ(x)| and |∇ψ(x)| may be small in (3.54), the level

set functions φ and ψ are scaled by factors such that their extreme values stay fixed in

order to gain stability in our formula (3.54). Doing this obviously does not change the

domains Υ1 and Υ2 represented by the level set function φ and ψ, respectively. We go

one step further and assume that the norms |∇φ(x)| and |∇ψ(x)| can be approximated

along the boundary by a constant ρ1 and ρ2 respectively. Doing this improves stability in

(3.54), even though the updates are not marching in the ’optimal’ direction. With these

modifications, equation (3.49) is now written as

∇J[k](φ
k, ψk) =

(
(µi − µe)ρ−1

1 χφ,d(x)L1(u[k], z[k])

(bi − be)ρ−1
2 χψ,d(x)L2(u[k], z[k])

)
, (3.55)

We have scaled the level set functions at each iteration using scaling factors ckφ, c
k
ψ ∈ R to

keep the extreme values of the level set functions bounded, thus equation (3.47) becomes

now (
φk+1

ψk+1

)
= C

((
φk

ψk

)
−∇J[k](φ

k, ψk)

)
, (3.56)

where C :=
( ckφ 0

0 ckψ

)
. As already mentioned, by doing this rescaling procedure the do-

mains Υ1,k,Υ2,k remain unchanged. Finally, the absorption and scattering coefficient

distributions are obtained using (3.44)

(
µk+1

bk+1

)
=

(
Λ1(φk+1)

Λ2(ψk+1)

)
. (3.57)

Instead of using arbitrary initial guesses for (Υ1,0, φ
0) and (Υ2,0, ψ

0) in the iteration

formula of the combination of the LK and LS methods in algorithm 4, the LK method

(explained in the subsection 2.3.2) can be used during the first few (here 9) sweeps of the

routine to provide such an initial guess which helps accelerate the reconstruction process

as proposed in the two-step method [55]. Therefore, instead of using the LK-LS method

during the whole reconstruction iteration, we apply the LK method in the first stage of the

algorithm 4. The LK method yields satisfactory results for the positions of the obstacles

during the early sweeps, but neither satisfactory shapes nor good approximations for their

values. Therefore, we implemented the LK-LS method for the rest of the iteration process

to obtain better approximations for the shapes of the obstacles. The incorporation of this
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step in algorithm 4 accelerates the convergence of the reconstruction process by avoiding

long-range shape evolutions. In the simulations presented further below, the convergence

is more than ten times faster compared to using arbitrary initial guesses (certainly, this

factor depends on the choice of these alternative guesses) as shown in figure 3.10.

We will now describe the reconstruction scheme which uses in the first stage the algo-

rithm 4 for obtaining the initial regions together with their corresponding level set func-

tions (Υ1,0, φ
0) and (Υ2,0, ψ

0). These will be used as the initial guess of the second stage

of this algorithm. Let γLS be a threshold value 0 < γls < 1 (in our numerical experiment

we have used γLS) = 0.9. We define the parameter

µLS : = γLS max
x∈Ω

µLK(x), bLS : = γLS max
x∈Ω

bLK(x),

where µLK(x) and bLK(x) are given by the LK method. For the level sets zero L0
φ, L

0
ψ of

the level set functions φ0, ψ0 we require

H0
φ =

{
x ∈ Ω| µLK(x) = µLS

}
, H0

ψ =
{
x ∈ Ω| bLK(x) = bLS

}
.

The level set functions are now defined as

φ0(x) = µLS − µLK(x), ψ0(x) = bLS − bLK(x).

Hence, using (3.44), the domains µ0 and b0 are given by

(
µ0

b0

)
=

(
Λ1(φ0)

Λ2(ψ0)

)
.

A Pseudo-code for this combination of the LK and a LS methods for shape reconstruc-

tion is described in the algorithm 4.
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Algorithm 4: LK and LS methods
Input: (Υ1,0, µ

0, φ0), (Υ2,0, b
0, ψ0) Initial Guess provided by algorithm 2 (LK)

Output: Υ1,I(M−1) = Υ1[φI(M−1)], Υ2,I(M−1) = Υ2[ψI(M−1)]

for k := 0, . . . , I(M − 1) do

Compute the gradient∇J[k](φ
k, ψk) given by (3.55) ;

Update (φk+1, ψk+1) using (3.56); % update of the level set functions φ, ψ;

Update (µk+1, bk+1) using (3.57); % update of the coefficient µ and b;

end

In the above algorithm, u[k] solves (2.1) with µk, bk and source q[k], and z[k] solves

(3.10) with µk, bk and source ξ[k] given by (3.52).

3.4 Smooth gradient

In the case of noisy data, we will apply an additional regularizer to gradient of the misfit

functional Ji. Doing this the boundaries of the obstacles will be smoothed but stability

will be gained and artefacts will tend to disappear. This smoothing application will also

be used in Sparsity reconstructions obtained in chapter 5 as suggested in [41, 79, 96, 98]

for obtaining more accurate results.

We will derive a formula for calculating the smooth gradient of Ji which will be used

in our main algorithm of this chapter as well as the algorithms presented in chapter 5.

Based on this formula, we will present an algorithm to compute the smooth gradient as

presented in [84]. The distribution of the coefficient σ = (µ, b) will be in H1(Ω) instead

of L2(Ω), where H1 stands for the Sobolev space defined by

H1(Ω) = {σ ∈ L2(Ω), ∂xσ, ∂yσ ∈ L2(Ω)}.

Here, ∂xσ, ∂yσ are weak partial derivatives. Therefore, we restrict the absorption and

scattering coefficients to a subset of L2(Ω). Instead of using the standard inner product of

H1(Ω), i.e.,

〈σ1, σ2〉H1 = 〈σ1, σ2〉L2 + 〈∇σ1,∇σ2〉L2 ,
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with its induced norm

‖σ‖2
H1 = ‖σ‖2

L2 + ‖∇σ‖2
L2 .

we use the inner product

〈σ1, σ2〉H1 = 〈σ1, σ2〉L2 + γ 〈∇σ1,∇σ2〉L2 . (3.58)

The norm of the space H1(Ω) is the one induced by its inner product (3.58). If we denote

the space H1(Ω) by P̂ , and letting ξ ∈ Z and δσ the perturbation of σ, we have

〈R′i[σ]δσ, ξ〉Z = 〈δσ,R′i[σ]∗ξ〉P = 〈δσ,R′i[σ]sξ〉P̂ , (3.59)

where P and Z are the spaces of coefficients and data defined in (3.1), respectively, and

R′i[σ]sξ denotes the image of ξ under application of the adjoint residual operator with

respect to the recently defined weighted inner product (3.58), mapping into the smaller

space P̂ than P . Then, the smooth gradient∇J s
i is defined by

〈δσ,∇J s
i (σ)〉P̂ = 〈δσ,∇Ji(σ)〉P . (3.60)

Integrating by parts on the left-hand side of (3.60), we have

(I − γ∆)∇J s
i (σ) = ∇Ji(σ), (3.61a)

∇J s
i (σ) · ν = 0, (3.61b)

where I and ∆ are the Identity and the Laplacian operator, respectively, in (3.61a), and

(3.61b) is the homogeneous Neumann boundary condition on ∂Ω. An approximative

scheme for solving the differential equation given by (3.61) is derived next.

Let $ = ∇Ji(σ) and let F be the functional

F(ϑ) =
1

2

(
γ‖∇ϑ‖2

L2 + ‖ϑ−$‖2
L2

)
. (3.62)

The first term of (3.62) penalises the roughness of ϑ, while the second term penalises the

misfit between the gradient direction∇Ji and the “smooth” proposed term ϑ. Calculating
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the gradient direction of F results in

∇F = (I − γ∆)ϑ−$,

with the Neumann boundary condition ∇ϑ = 0 on ∂Ω. If ϑ is a minimum of (3.62), then

∇F = 0, that is

(I − γ∆)ϑ = $, (3.63)

which is equivalent to (3.61a). Applying a descent direction method in [119, 162] to

(3.62) with ϑ0 = $, results in the iteration

ϑn+1 = ϑn + s[γ∆ϑn + ($ − ϑn)], (3.64)

where s as the step-size parameter. The above iteration can be re-written as

ϑn+1 − ϑn

s
= γ∆ϑn + ($ − ϑn), (3.65)

which is equivalent to the discretization of the following heat equation with time-dependent

heating source $ − v and δt = s

vt = γ∆v + ($ − v), (3.66)

v(0) = $. (3.67)

We mention that an alternative to the above smoothing regularization is to convolve the

gradient $ = ∇Ji(σ) with a Gaussian kernel of variance % > 0

f%(x) =
1

4π%
exp
(
−|x|

2

4%

)
which produces the smoothed update

ϑ = f% ∗$ =

ˆ
f%(x− y)$(y)dy

Again, the smoothed update ϑ is computed by solving the heat equation (3.66).

Next we provide a Pseudo-Code of a practical algorithm which solves (3.61a)-(3.61b).
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Algorithm 5: Smooth Gradient
Input: $ = ∇Ji[σ],where∇Ji given in (3.19), γ > 0

Output: ∇J s
i [σ] = ϑI

Initialisation ϑ0 = $;

for n := 1, . . . , I − 1 do

ϑn+1 = ϑn + s[γ∆ϑn + ($ − ϑn)] Solve (3.64) with∇ϑn+1 = 0 on ∂Ω;

end

Define ϑI = α−1ϑN with α = ‖ϑN‖/‖$‖;

3.5 Shape and contrast value reconstructions in DOT

In order to reconstruct the values and shapes for both scattering and absorption coef-

ficients individually or simultaneously for the inverse problem in DOT, we proceeded

analogously as suggested in [7, 144]. This method is described now. Using the level set

technique presented in section 4.2, the absorption and scattering coefficients µ and b are

distributed in a domain Ω as in expressions (3.42) with their associated level set functions

given in (3.43). Its last equations are mathematically equivalent to

µ(φ) = µi (1−H(φ)) + µeH(φ) b(ψ) = bi (1−H(ψ)) + beH(ψ), (3.68)

where H is the Heaviside function in 1D. It has been suggested in [40, 129] to approx-

imate the Heaviside function with some suitable smooth function since the Heaviside

function itself is not differentiable. Given the residual operator defined in (3.3), the in-

verse problem is to find the level set functions φ and ψ and the interior coefficient values

µi and bi for which the following cost functional Jj is minimal

Jj(φ, ψ, µi, bi) = Rj(φ, ψ, µi, bi) for j = 0, . . . ,M − 1.

We mention that we have used the index j in this section in order to denote the j-th

number of the source qj instead of the index i to avoid confusion with the subindex i,

which denotes the interior of the distribution of the coefficients µ, b. The descent direction

for the functional Jj is obtained by taking the total derivative of the functional Jj with
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respect to the time t. By using the chain rule we obtain

dJj
dt

=
∂J
∂µ

∂µ

∂φ

dφ

dt
+
∂Jj
∂b

∂b

∂ψ

dψ

dt

+
∂Jj
∂µ

∂µ

∂µi

dµi
dt

+
∂Jj
∂b

∂b

∂bi

dbi
dt
.

(3.69)

DenotingRj(φ, ψ, µi, bi) byRj(µ(φ, µi), b(ψ, bi)) gives

∂Jj
∂µ

δµ = Re

(ˆ
Ω

R′j,µ[µ, b]∗Rj(µ, b)δµ dx

)
, (3.70)

where R′j,µ[µ, b]∗ is the adjoint of the Fréchet derivative of Rj(µ, b) with respect the co-

efficient µ given by (3.11). Using equation (3.68), one obtains

∂µ

∂φ
= (µe − µi)H ′(φ)

∂µ

∂µi
= 1−H(φ), (3.71a)

∂b

∂ψ
= (be − bi)H ′(ψ)

∂b

∂bi
= 1−H(ψ), (3.71b)

where H ′(φ) and H ′(ψ) are the 1D Dirac delta distributions. Defining the following

forcing terms

fφ(x, t) =
dφ

dt
, fψ(x, t) =

dψ

dt
, gµ(t) =

dµi
dt
, gb(t) =

dbi
dt
, (3.72)

and using (3.70) and (3.71), equation (3.69) results in

dJj
dt

= Re

[ˆ
Ω

[
(µe − µi)H ′(φ)R′j,µ[µ, b]∗Rj(µ, b)

]
fµ dx

+

ˆ
Ω

[
(be − bi)H ′(ψ)R′j,b[µ, b]∗Rj(µ, b)

]
fb dx

gµ

ˆ
Ω

(1−H(φ))R′j,µ[µ, b]∗Rj(µ, b) dx

+gb

ˆ
Ω

(1−H(ψ))R′j,b[µ, b]∗Rj(µ, b) dx

]
,

(3.73)

since the terms gµ and gb only depend on t. Using the fact that H ′(φ) and H ′(ψ) are

positive, the steepest descent direction terms f and g of equation (3.72) are now given as

fφ,[k] = −(µe − µi)R′j[µ, b]∗Rj(µ, b), (3.74a)

fψ,[k] = −(be − bi)R′j[µ, b]∗Rj(µ, b), (3.74b)
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and

gµ = −
ˆ

Υ1

R′j,µ[µ, b]∗Rj(µ, b) dx, (3.75a)

gb = −
ˆ

Υ2

R′j,b[µ, b]∗Rj(µ, b) dx. (3.75b)

Applying the LK formula (2.94) into the forcing terms (3.74) and into forcing parameters

(3.75), one obtains φk+1

ψk+1

 =

φk + τφfφ,[k]

ψk + τψfψ,[k]

 , (3.76)

where

fφ,[k] = −∇J[k](µ, b), (3.77a)

fψ,[k] = −∇J[k](µ, b), (3.77b)

with initial values µ̂0 := µb + ε1 and b̂0 := bb + ε2. Here µb and bb are the values of the

background for µ and b in Ω respectively, and ε1, ε2 ≥ 0, andµk+1

bk+1

 =

µk + τµ(gµ)[k]

bk + τb(gb)[k]

 , (3.78)

where

(gµ)[k] = −
ˆ

Υ1

∇J[k](µ, b) dx, (3.79a)

(gb)[k] = −
ˆ

Υ2

∇J[k](µ, b) dx. (3.79b)

Furthermore, ∇J[k](φ),∇J[k](ψ) are given by (3.49) with µ̂ = µi, b̂ = bi and µb = µe,

bb = be and τφ, τψ defined in (3.48); Also ∇J[k](µ),∇J[k](b) are given by (3.23) and

τµ, τb defined in (3.14) for the absorption and scattering coefficient respectively.

For noisy data we have used the smooth gradient ∇J s
[k](µ, b) (as explained in the pre-

vious section) instead of the gradients∇J[k](µ), ∇J[k](b) in equations (3.76) and (3.78).

The just described shape and contrast value reconstruction algorithm for the absorp-

tion and scattering coefficients µ, b now reads in Pseudo-code form as follows.
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Algorithm 6: LK and LS methods with contrast value.
Input: (Υ1,[0], µ[0], φ[0]), (Υ2,[0], b[0], ψ[0]) Initial guess

Output: Υ1,I(M−1) = Υ1[φI(M−1)], Υ2,I(M−1) = Υ1[ψI(M−1)] and bI(M−1),

for k := 0, . . . , I(M − 1) do

Compute the gradient∇J[k](µk, bk) given by (3.55) ;

Compute the smooth gradient∇J s
[k](µ

k, bk) given by algorithm 5 ;

Update φk+1 and ψk+1 using (3.76);

Update µk+1 and bk+1 using (3.78);

end

Here u[k] solves (2.1) with µk and source q[k], and z[k] solves (3.10) with µk and source

ξ[k] given by (3.52), respectively. As shown in the Pseudo-code, we have set an initial level

set function as our initial guess in order to start the shape and contrast value reconstruction

process. For this we have chosen a “signed distance function” for some simple initial

shape.

3.6 Discretization of the forward and inverse problems

Below we will consider in more details the following evolution equation

ϕt + V · ∇ϕ(x(t), t) = 0. (3.80)

where the quantity V needs to be determined from techniques discussed above using the

RTE. Here we will start deriving some general discretization schemes which can be used

as well in the discretization of the RTE.

To start with, the spatial derivatives of the above equation can be approximated using

finite differences techniques [146]. We obtain a first-order accurate forward difference

scheme
∂ϕ

∂x
≈ ϕn+1 − ϕn

∆x
,
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denoted as D+xφ, or alternatively a first-order accurate backward differences scheme

∂ϕ

∂x
≈ ϕn − ϕn−1

∆x
,

denoted asD−xϕ,. We also can derive a second-order accurate central differences scheme

∂ϕ

∂x
≈ ϕn+1 − ϕn−1

2∆x
,

denoted as D0xφ [146]. Considering the vector field V in 2D, i.e., V = (v, w) and

denoting tn+1 = tn + ∆t, ϕn = ϕ(tn), ϕn+1 = ϕ(tn+1), vn = v(tn), wn = w(tn), after

applying the forward Euler method for the time variable discretization of (4.33) in 2D,

one obtains
ϕn+1 − ϕn

∆t
+ vnϕnx + wnϕny = 0. (3.81)

Approximating the spatial derivativesϕx andϕy by using forward or backward differences

in eq. (3.81) is not suitable [126]. Firstly, we start by addressing the computation of the

term vnϕnx. The technique used to evaluate this term can be applied independently to the

term wnϕny . For this purpose, we firstly treat the one-dimensional version of (3.81) where

we obtain
ϕn+1 − ϕn

∆t
+ vnϕnx = 0. (3.82)

Since ϕ also depends on x, and v can depend on x, at a specific point xi, the above eq. is

rewritten as
ϕn+1
i − ϕni

∆t
+ vni (ϕx)

n
i = 0, (3.83)

where ϕni := ϕ(xi, tn), (ϕx)
n
i := ϕx(xi, t

n) and vni := v(xi, t
n). In the upwinding or

upwind differencing scheme one decides on the choice of a discretization of the spatial

derivative of (3.82) depending on the sign of v. Upwind methods approximate deriva-

tives by taking into account the directions into which the characteristic information is

marching [146]. If vi > 0, using the method of characteristics, ϕx is approximated with

D−x, and ϕx is approximated with D+x if vi < 0 . A finite difference approximation to

a linear partial differential equation is consistent if the approximation error converges to

zero as ∆t → 0, ∆x → 0. “A finite difference approximation to a linear partial differ-

ential equation is convergent if and only if it is both consistent and stable” according to

Lax-Richtmyer [126]. The combination of the forward Euler time discretization with the
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upwind differencing is a consistent finite difference approximation to the equation (3.82),

see [126], and stability is obtained if the following Courant-Friedrichs-Levy condition

(CFL) holds [146],

∆t <
∆x

max{|v|}
. (3.84)

Here the maximum value max{|v|} is taken over the entire grid. In practice, the CFL

condition (3.84) is satisfied by a CFL number 0 < α < 1 such that

∆t

(
max{|v|}

∆x

)
= α. (3.85)

In 2D, the CFL condition is written as

∆t <
min{∆x,∆y}

max{|v|+ |w|}
.

In practice, the above inequality is enforced by choosing a CFL number 0 < α < 1 such

that

∆t

(
max{‖V‖}

min{∆x,∆y}

)
= α.

We used a finite differences discretization of the RTE in 2D in our numerical simula-

tions. For treating the RTE numerically in 3D, see [45, 56, 60, 75]. We discretized the

angular variable θ ∈ S1 using a variant of the discrete ordinates method, that is, using I

equidistant directions

θi = (cosϑi, sinϑi), ϑi = i
2π

I
, i = 1, . . . , I.

The time variable t is treated as follows

tl = l∆t, l = 0, 1, . . . , L,

where ∆t is some suitably chosen positive time-step. We denote the density of photons

u
(l)
i and the source q(l)

i corresponding to each direction θi at time tl by

u
(l)
i (x, y) = u(x, y, θi, tl), q

(l)
i (x, y) = q(x, y, θi, tl),

where x, y are the spatial variables. Let θk := (cosϑk, sinϑk), ϑk = k2π/I , k = 1, . . . , I
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and Sk be the sectors of the unit circle defined by

Sk =

{
θ′ = (cosϑ′, sinϑ′) ∈ S1| −π

I
< ϑk − ϑ′ ≤

π

I

}
,

and let ηk,i be the integration weights corresponding to the scattering phase function η

defined by

ηk,i :=

ˆ
Sk

η(θi · θ′) dθ′.

Then the conservation condition (2.3) is satisfied. We approximate the scattering integral

of equation (2.5) by

ˆ
S1

η(θi · θ)u(θ′)dθ′ =
I∑

k=1

ˆ
Sk

η(θi · θ′)u(θ′) dθ′

≈
I∑

k=1

u(θk)

ˆ
Sk

η(θi · θ′) dθ′ =
I∑

k=1

u(θk)ηk,i.

An alternative method for discretizing the angular variable is the Pn method [33], or using

Legendre polynomials or wavelets as a basis to calculate the integral term in the RTE (2.1)

[75]. Owing to the lack of a naturally occurring scattering function in 2D DOT, we have

used for convenience a 2D-adaptation of the 3D H-G function (2.5) as the scattering phase

function η, which has been designed to share important features of the 3D counterpart

(e.g. the presence of a parameter between 0 and 1 steering the directional distribution of

the scattering) [56]. We mention that we also have experimented with a H-G function in

2D given by (2.4) in a specific numerical experiment using the combination of the LK

and LS methods with no significant discrepancy in the results of the shape reconstruction

compared with using this 2D adaptation of the 3D H-G scattering function. Notice also

that even the 3D H-G function is just one (arbitrary but convenient) synthetic model to be

used in DOT, which might have to be adjusted to real data once they become available.

Using now the first-accurate forward differences scheme in time at tl in (2.1) we obtain

the discretized time-marching rule

u
(l+1)
i − u(l)

i

∆t
+cosϑi

∂u
(l)
i

∂x
+sinϑi

∂u
(l)
i

∂y
+[µ(x, y)+b(x, y)]u

(l)
i −b(x, y)

I∑
k=1

ηk,iu
(l)
k = q

(l)
i .
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The following part of the above equation

u
(l+1)
i − u(l)

i

∆t
+ cosϑi

∂u
(l)
i

∂x
+ sinϑi

∂u
(l)
i

∂y
= 0,

is equal to the discretization of eq. (3.80) if one corresponds ui → φ, cosϑi → v, sinϑi →

w; V = (v, w), therefore this part of the above eq. is discretized by the upwinding dif-

ferences scheme explained at the beginning of this section. We discretize the spatial

derivatives of u(l)
i using the upwinding scheme in a uniform grid with step length ∆x as

explained in subsection 4.2.2. Hence, one obtains

∂u
(l)
i (x, y)

∂x
=


u
(l)
i (x,y)−u(l)i (x−∆x,y)

∆x
cosϕi ≥ 0,

u
(l)
i (x+∆x,y)−u(l)i (x,y)

∆x
cosϕi < 0.

(3.86)

The derivative of u(l)
i with respect to y is discretized in an analogous fashion. In order to

achieve a stable and physically valid numerical scheme, the CFL condition (3.85) must

hold with regards to stability, and the following condition must hold

∆t <
1

max {µ(x, y) + b(x, y)}
,

which also takes into account the physical values of µ and b in the tissue. Otherwise,

the density u(l+1)
i in (3.86) can become negative resulting in destabilizing oscillations. In

general, this physical CFL condition for ∆t is stricter than the above mentioned numerical

CFL condition. Considering both conditions results in choosing a very small value for

∆t which is very expensive for our actual numerical scheme, since in order to compute

the update for the absorption and scattering coefficients in either the Landweber method

(3.13), the Landweber-Kaczmarz method (3.21), or the Loping-LK method (3.25), or

updating their correspondent level set functions using (3.47), it is needed to calculate

integrals over time in (3.12). This needs to be done after the forward and adjoint transport

solutions have been obtained, which would require us to store a large amount of time-

steps (predicted by the CFL condition) of these solutions in memory. For this reason, even

though observing the physical CFL condition for the numerical propagation of photons,

for the independent integration part calculating Frechet derivatives we have just stored

every multiple of twelve of ∆t for calculating these integrals. The backtransport problem
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(3.10) is discretized analogously to the forward problem (2.1), with the difference that

the signal now travels backwards in time and space, which needs to be taken into account

in the upwind scheme for the spatial derivatives. We mention that an alternative spatial

discretization for structured grids is the diamond scheme and its variants, see [13, 60,

75] and the finite element, finite volume and the discontinuous Galerkin methods for

unstructured grids, see [1, 62, 75, 153]. For a numerical scheme for a transport regime

using the RTE to model the propagation of the photons instead of a diffusive transport

regime as considered in this dissertation, see [13].

3.7 Numerical Results

In all the numerical simulations presented in this dissertation, the data are synthetically

generated, that is, they were not collected from real experimental data. We used the

same discretization for both the forward model to create the synthetic data and for the

reconstruction process. Doing this is considering as an “inverse crime”. Therefore, we

have added pointwise noise to the synthetic data. We mention that we have used the code

of [52, 53] for the forward problem, which has been validated against Monte Carlo solver

simulation.

Computational setup of our numerical experiments.

Our domain Ω is a square of 5× 5 cm2 divided into 2500 pixels which each having a

width of 1 × 1 mm2. We have embedded a so-called “clear layer” close to the boundary

which simulates the cerebrospinal fluid (CFL) region of a head. The location and the

value of the absorption and scattering coefficients of this clear layer are assumed to be

known a priori. The total time T of the numerical photon flow considered in the forward

or inverse problem using the RTE is 100 s, that is, our data are recorded in the interval

of time [0, 20s]. As mentioned in section 2.1, the speed of the light in the medium was

normalized to c = 1 cm/s, thus, a photon can propagate 20 cm in this interval of time.

A time step is equal to 0.2 s when considering 20 discrete time steps of the propagation

of the photons. As we mentioned in chapter 2, we have used a 2D adaptation of the

3D Henyey-Greenstein function (2.5) as the scattering function [56] with g = 0.9 for

single and simultaneous reconstructions of absorption and scattering coefficients. The

RTE of the forward and inverse problems were discretized using the finite differences
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method discussed in section 3.6. The angular directional variable θ was discretized into

12 direction vectors which are equidistantly distributed over the unit circle S1. We use 16

smeared-out (instead of delta-like) sources with width 3 mm or 3 pixels. These sources

are emitting an ultra-short laser pulse at time t = 0 into the medium, in the direction

perpendicular to the boundary. These sources are located at the boundary of the medium,

four sources equidistantly 1 cm at each side of the boundary of Ω between 1-4 cm, such

that on the corners there are not sources. The reason of this arrangement is because our

domain is square and we have embedded a clear layer near to the boundary. Thus, the

photons from the sources on the corners would be almost completely channelled through

the clear layer. Detectors are positioned along the boundary ∂Ω which record the outgoing

flux given by (3.2), and measurements are taken at receiver positions of length 1 cm along

the boundary apart from the source position. The parameter values used in the different

experiments are listed in the following tables.

µ[cm−1] b[cm−1]
Background 0.1 100

Inclusion 0.5 100
Clear layer 0.01 0.1

Table 3.1: Experimental set-up of the absorption coefficient reconstruction.

µ[cm−1] b[cm−1]
Background 0.1 100

Inclusion 0.1 150
Clear layer 0.01 0.1

Table 3.2: Experimental set-up of the scattering coefficient reconstruction.

µ[cm−1] b[cm−1]
Background 0.1 100

Inclusion 0.5 150
Clear layer 0.01 0.1

Table 3.3: Experimental set-up of the simultaneous reconstruction of the absorption and scattering coeffi-
cients.
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Further discussion of details of our numerical setup.

The choice of the receiver positions is done keeping in mind that receivers close to

the source do not have important information of the inside of the medium. Moreover, if

a clear layer is added to our reconstruction problem, early photons that arrive at receiver

position xr are channelled through this layer. Therefore, both sensitivity functions L1

and L2 have huge values inside the clear layer and small values outside the clear layer.

For this reason, only late photons who arrive at the receiver position xr are considered in

our numerical experiment design. Notice that by taking into account only late photons,

the resolution of the reconstruction decreases. Only photons which arrive at the detectors

between 15 − 20s are considered as part of the data, because only late photons provide

important information of the inside of the region Ω. Early photons are likely to have

channelled through the clear layer as pointed out in section 3.1.

The relaxation parameters τµ, τb for the Landweber, LK and L-LK methods without

sparsity regularization were manually selected to retrieve a feasible reconstruction. De-

tectors are located along all the boundary ∂Ω which record the outgoing flux given by

(3.2). The results of shape and contrast value reconstruction presented in this section are

similar with those obtained in [7, 144], where the authors used the diffusive approxima-

tion equation. Table 3.1 lists the physical values used in the simulation for the contrast

value µ reconstruction. Figures 3.2-3.6 were obtained using algorithm 6.

Details of the different numerical experiments.

We have made the following shape and contrast value reconstructions of the absorption

and scattering coefficients in DOT using the combination of the LK and LS methods with

the algorithms presented in this chapter. Firstly, we present some reconstructions of the

µ absorption coefficient, then for the b scattering coefficient, and finally the simultaneous

reconstruction for µ and b. Two absorption obstacles of different size are reconstructed

in the first experiment which simulates haematoma, and two scattering obstacles of the

same size are reconstructed in the second experiment. Finally, two absorption and one

scattering inclusion are reconstructed simultaneously in the last experiment.
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Discussion of the individual numerical experiments.

Figure 3.2 shows the simultaneous reconstruction of contrast and shape for the ab-

sorption coefficient µ only when adding 5% Gaussian noise to the data. Figure 3.3 shows

the simultaneous reconstruction of shape and contrast for the scattering parameter b only

when adding 5% Gaussian noise to the data.

Figures 3.4-3.6 show the simultaneous reconstruction of shape and contrast value for

both parameters µ and b from the same data set. Figure 3.4 shows the corresponding

evolution for the µ coefficient. Figure 3.5 shows the evolution for the b coefficient. Figure

3.6 shows the evolution of the contrast values and the residual norm.

Figures 3.7-3.8 show the simultaneous reconstruction of shapes and contrast values

of both the absorption parameter µ and scattering parameter b using the two-step shape

reconstruction method described in algorithm 4, with the LK method used in the first

stage and the combination of the LK and the Level Set method in the second stage.

Figure 3.9 shows the simultaneous shape reconstruction for µ and b coefficients using

the algorithm 4. Figure 3.10 shows the comparison of the norm of the residuals using the

two-step method using in the first stage only the LK method and in the second stage the

LK-LS method on the one hand, and only using the LK-LS method on the other hand. As

it can be seen in figure 3.10, the use of the two-step method is much more efficient than

using only the LK-LS method. We mention that for single or individual reconstructions,

one of the coefficients of µ, b is assumed to be known, in which case it does not vary over

the iterations during the whole reconstruction process.

We want to comment further on the reconstructions shown in figure 3.5. During the

simultaneous reconstruction of two different physical parameters, the so-called cross-talk

is an undesirable side-effect where scattering (absorption) distributions of inclusions are

obtained at positions where absorption (scattering) inclusions are located, respectively.

Much more substantial cross-talk is obtained for the scattering inclusion reconstructions

in these simultaneous reconstructions as it can be seen in figure 3.5. This phenomenon

is due to the ill-posedness of the inverse problem, that is, distinct scattering and absorp-

tion spatial distributions can give almost the same measurement’s values on the boundary

of the tissue. Although there has been a huge effort to overcome this phenomenon in

frequency-domain systems, time-resolved systems still present a substantial cross-talk

[138, 145].
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Figure 3.2: Contrast value reconstruction of µ. Top row from left to right: initial guess; reconstruction
after 10 sweeps; final reconstruction after 20 sweeps. Middle row from left to right: reconstruction after 40
sweeps; final reconstruction; true objects. Bottom left: contrast value of µ; bottom right: norm of residuals
of the cost.
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Figure 3.3: Contrast value reconstruction of b. Top row from left to right: initial guess; reconstruction after
200 sweeps; final reconstruction after 400 sweeps. Middle row from left to right: reconstruction after 450
sweeps; final reconstruction after 5800 sweeps; true objects. Bottom left: contrast value of b; bottom right:
norm of residuals of the cost.
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Figure 3.4: Simultaneous contrast value reconstruction of µ. Top row from left to right: initial guess;
reconstruction after 140 sweeps; final reconstruction after 160 sweeps. Bottom row from left to right:
reconstruction after 400 sweeps; final reconstruction; true objects.
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Figure 3.5: Simultaneous contrast value reconstruction of b. Top row from left to right: initial guess;
reconstruction after 120 sweeps; final reconstruction after 200 sweeps. Bottom row from left to right:
reconstruction after 300 sweeps; final reconstruction; true objects.
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Figure 3.6: Simultaneous contrast value reconstruction of µ and b. From left to right: the contrast value of
µ; the contrast value of b; norm of residuals of the cost.
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Figure 3.7: Simultaneous shape reconstruction of µ. Top row from left to right: reconstruction after 1
sweep using only the LK method; reconstruction after 9 sweeps using only the LK method; initial shape of
the LK-LS reconstruction. Bottom row from left to right: reconstruction after 20 sweeps using the LK-LS
method; final reconstruction after 100 sweeps using the LK-LS method; true objects.
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Figure 3.8: Simultaneous shape reconstruction of b. Top row from left to right: reconstruction after 1 sweep
using only the LK method; reconstruction after 9 sweeps using only the LK method; initial shape of the
LK-LS reconstruction. Bottom row from left to right: reconstruction after 50 sweeps using the LK-LS
method; final reconstruction after 100 sweeps using the LK-LS method; true objects.
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Figure 3.9: Simultaneous shape reconstruction of µ and b. Top row, absorption coefficient, from left to
right: true object; final reconstruction; initial guess. Bottom row, scattering coefficient, from left to right:
true object; final reconstruction; initial guess.
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Figure 3.10: Figure 3.10a shows the norm of residuals of the cost functional using the combination of the
LK and LS methods during all the reconstruction process, figure 3.10b shows the norm of residuals of the
cost functional using the LK method in the first stage and then using the combination of the LK and LS
methods.
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Chapter 4

Level set evolution by shape derivative

for RTE

In section 4.1, the basic concept of the Shape Derivative is briefly reviewed. Then, we

present a mathematical formulation for the specific shape derivative of the misfit func-

tional J which appears in the diffuse optical tomography problem based on the RTE.

Then we move on to more algorithmic issues. First, in section 4.2 the concept of a

Hamilton-Jacobi equation is reviewed, which is closely related to the level set technique

for shape reconstruction. Here we describe in particular the cases where the motion of the

interfaces is driven by an external vector velocity field and by its mean curvature. Also,

the level set evolution equation corresponding to a general motion is presented. In section

4.3 we then provide an algorithm for the shape reconstruction where only the absorption

coefficient is assumed to be unknown. In contrast to earlier published work, we apply her

the level set technique using directly the shape derivative of DOT computed for the RTE

when calculating velocity functions for the interfaces. Finally, in the last section if this

chapter, we present the results of some numerical experiments where we reconstruct the

absorption coefficient using this new form of the shape derivative in the level set method.

4.1 Shape Derivative

In this section, it is assumed that the absorption coefficient is piecewise constant which

takes two distinct values µe, µi and the scattering coefficient is constant in the whole

domain Ω. Then, the domain Ω is split into two disjoint domains Υi and Υe := Ω\Υi,
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and it is assumed that ∂Υi ∩ Γ = ∅. The domains Υi :=
⋃
j=1 Υi,j given as a guess

of the locations of the true inclusions and Υe = Ω\Υi are depicted in figure 4.1. The

background values of the absorption and scattering coefficients are denoted by µe, be.

ν

n

Υe
Υi,1

Υi, 2

Figure 4.1: Geometry of the region Ω.

Sensitivity Analysis is applied to measure the changes of a certain region Υi ⊂ Ω ⊂

R2 with boundary ∂Υ under a vector velocity field V . We assume that the background

value of the absorption coefficient µe is known a priori. In this case, the inverse problem

in DOT can be written as: minimise

Jj(Ω\Υi) = Rj[Υe] =

ˆ
Sn−1

(uj(Υe)− ũj)θ · ν̄ dθ, j = 0, . . . ,M − 1, (4.1)

where uj is the solution of the RTE (2.1) with source qj and ũj denotes the physical true

density for the same source qj .

In order to calculate the shape derivative for diffusive optical tomography based on the

RTE, the variational formulation of the RTE is given as follows. This misfit functional

was defined in (3.6). As in section 2.1, it is assumed the following. Let be the space

Ω × Sn−1 × [0, T ] denoted by X and the boundary ∂X := Γ × Sn−1 × [0, T ], where

Γ is the boundary of Ω, this boundary is assumed to be Lipchitz, which implies that the

outward normal vector ν̄ exists almost everywhere on ∂Ω. The boundary ∂X can be

decomposed into an inflow part ∂X− := {(x, θ, t) ∈ ∂X, θ · ν̄ < 0} and an outflow part
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∂X+ where θ · ν̄ > 0. Since the domain Ω is in two dimensions, i.e., N = 2, the direction

vectors θ are in S1. We have used the notation S1 instead of Sn−1 in order the expressions

to be more compact. The function u(x, θ, t) ∈ X will be physically considered as the

density of the photons travelling in the region X . In this chapter, it is considered the

homogeneous RTE with inhomogeneous boundary conditions:

∂u

∂t
+ θ · ∇u+ (µ(x) + b(x))u− b(x)

ˆ
S1

η(θ · θ′)u(x, θ′, t) dθ′ = 0 in X (4.2a)

with initial condition

u(x, θ, 0) = 0 in Ω× S1, (4.2b)

with boundary condition

u(x, θ, t) = q(x, θ, t) on ∂X−, (4.2c)

with boundary conditions on ∂Υi

u− = u+, (4.2d)

µe
∂u−

∂n̄
= µi

∂u+

∂n̄
, (4.2e)

where q is the source term given by 2.2, u− (u+) denotes the limit values of u on ∂Υi

from the exterior (interior) of the region Υi and µ is defined as follows

µ(x) =

µi(x) if x ∈ Υi,

µe(x) if x ∈ Υe.

(4.3)

The boundary conditions given in (4.2d) are known as the continuity boundary conditions.

An alternative way of describing laser sources at the boundary is to use an homogeneous

boundary condition instead of (4.2c) and inhomogeneous source q term on the right side

of equation (4.2a). Both expressions are equivalent [45, 53, 153]. In this chapter, we have

opted to use L1 spaces, instead of L2 spaces, because we will use some theoretical results

of the following map traces (defined below) to obtain a formula for the shape derivative

of a functional J when the shape derivative of J depends on the tangential divergence of

113



CHAPTER 4. LEVEL SET EVOLUTION BY SHAPE DERIVATIVE FOR RTE

a vector field (divΓ V) defined later. To the best of our knowledge, only these map traces

theorems exist for L1 for the RTE. Then, we define the following space

U = {u|u ∈ L1(X), (∂tu+ θ · ∇u) ∈ L1(X), u|∂X− ∈ L1(∂X−),

u(x, θ, 0) = 0 on Ω× S1, u(x, θ, t) = q on ∂X−},

with the norm defined as

‖u‖U := ‖u‖L1(X) + ‖∂tu+ θ · ∇u‖L1(X).

Now function spaces L1(∂X±, |θ·ν̄|dθdtdΩ) on ∂X± are defined to be spaces of functions

v on ∂X± such that the norm |v|L1(∂X) is finite with respect to the measure |θ · ν̄| dθdtdΩ.

Defining the space W as

W =
{
w|w ∈ L∞(X), (∂tw + θ · ∇w) ∈ L∞(X), w|∂X+ ∈ L∞(∂X+, θ · ν̄ dθdtdΩ),

w(x, θ, T ) = 0 on Ω× S1
}
.

As stated in [5, 35, 36, 39, 45], if v ∈ U , the map traces γ± : U → L1(∂X±, |θ·ν̄| dθdtdΩ)

defined by γ±(v) := v|∂X± , are continuous and subjective. It is also assumed that q ∈

L1(∂X±, |θ · ν̄| dθdtdΩ) for the inhomogeneous boundary condition given in (4.2c). Once

the trace map has been stated, we can apply the Green’s formula. In addition, we will use

these results for the traces to obtain a formula for the shape derivative of a functional J

when the shape derivative of J depends on the tangential divergence of a vector field

(divΓ V) defined later. We start multiplying the equation (4.2a) by a function w ∈ W .

Then, this equation is integrated over the angular directions θ ∈ S1, time and spatial

domain Ω, that is, on the set X . Then, one obtains

ˆ
Ω

ˆ T

0

ˆ
S1

[
∂u

∂t
w + θ · ∇u+ (µ+ b)uw − b

ˆ
S61

η(θ · θ′)uw
]
dθdtdΩ = 0. (4.4)

Integrating by parts over time variable, the first term in equation (4.4), one obtains

ˆ
Ω

ˆ T

0

ˆ
S1

∂u

∂t
wdθdΩdt =

ˆ
Ω

ˆ
S1

[u(x, θ, T )w(x, θ, T )− u(x, θ, 0)w(x, θ, 0)] dθdΩ

−
ˆ

Ω

ˆ T

0

ˆ
S1

∂w

∂t
u dθdtdΩ.
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Using the initial condition of the RTE (4.2b), and since w ∈ W , it holds w(x, θ, T ) = 0,

therefore ˆ
Ω

ˆ T

0

ˆ
S1

∂u

∂t
wdθdtdΩ =

ˆ
Ω

ˆ T

0

ˆ
S1

−∂w
∂t
udθdtdΩ. (4.5)

Applying Green’s formula on the second term of (4.4) over the spatial domain Ω, one

obtains

ˆ
Ω

ˆ T

0

ˆ
S1

w(θ · ∇u)dθdtdΩ = −
ˆ

Ω

ˆ T

0

ˆ
S1

(θ · ∇w)u dθdtdΩ

+

ˆ
Γ

ˆ T

0

ˆ
S1

wu(θ · ν̄) dθdtdΓ.

(4.6)

To complete the derivation of the variational formulation of the RTE, it is typical to define

the even-odd parity functions and decompose uniquely the function u in terms of these

even-odd parts as in [61] and [1]. Instead of doing this, one can continue following the

next split as in [153], that is, it can be defined the positive (θ · ν̄)+ and negative (θ · ν̄)−

parts of (θ · ν̄) as follows

(θ · ν̄)+ =

(θ · ν̄), (θ · ν̄) ≥ 0,

0, (θ · ν̄) < 0.

(4.7)

(θ · ν̄)− =

0 (θ · ν̄) ≥ 0,

−(θ · ν̄), (θ · ν̄) < 0.

(4.8)

Substituting θ · ν̄ by (4.7) and (4.8), the second term on the right hand side of equation

(4.6) can be written as

ˆ
Γ

ˆ T

0

ˆ
S1

wu(θ · ν̄) dθdtdΩ =

ˆ
Γ

ˆ T

0

ˆ
S1

wu
(
(θ · ν̄)+ − (θ · ν̄)−

)
dθdtdΓ.

Using the boundary condition of the RTE (4.2c) and equation (2.2), the above term can

be written as

ˆ
Γ

ˆ T

0

ˆ
S1

wu
(
(θ · ν̄)+ − (θ · ν̄)−

)
dθdtdΓ =

ˆ
Γ

ˆ T

0

ˆ
S1

wu(θ · ν̄)+ dθdtdΓ

−
ˆ

Γ

ˆ T

0

ˆ
S1

wq(θ · ν̄)− dθdΓdt.

115



CHAPTER 4. LEVEL SET EVOLUTION BY SHAPE DERIVATIVE FOR RTE

Finally, using Equations (4.5)-(4.9), equation (4.4) can be written as

ˆ
Ω

ˆ T

0

ˆ
S1

[
−∂w
∂t
− θ · ∇w + (µ+ b)w − b

ˆ
S1

η(θ · θ′)w
]
u dθdtdΩ

+

ˆ
Γ

ˆ T

0

ˆ
S1

wu(θ · ν̄)+ dθdtdΓ

=

ˆ
Γ

ˆ T

0

ˆ
S1

wq(θ · ν̄)− dθdtdΓ.

In order to present the weak formulation of the RTE in DOT, the following definitions are

given. Let a(Υi;u,w) be the bilinear form defined by

a(Υi;u,w) =

ˆ
Υe

ˆ T

0

ˆ
S1

[
−∂u
∂t
w − (θ · ∇u)w + (µe + b)uw

− b
ˆ
S1

η(θ · θ′)uw
]
dθdtdΥ +

ˆ
∂Υe

ˆ T

0

ˆ
S1

wu(θ · ν̄)+ dθdtds

+

ˆ
Υi

ˆ T

0

ˆ
S1

[
−∂u
∂t
w − (θ · ∇u)w + (µi + b)uw

− b
ˆ
S1

η(θ · θ′)uw
]
dθdtdΥ +

ˆ
∂Υi

ˆ T

0

ˆ
S1

wu(θ · ν̄)+ dθdtds.

(4.9)

Note that a(Υi;u,w) is symmetric. Let be l(w) the linear form given by

l(w) =

ˆ
Γ

ˆ T

0

ˆ
S1

wq(θ · ν̄)− dθdtds. (4.10)

Thus, the variational problem of the RTE is to find u ∈ U , such that

a(Υi;u,w) = l(w) ∀w ∈ W. (4.11)

The shape derivative is defined as in [31, 32, 34, 49, 67, 68, 88, 92, 120, 121, 147]; let be

a domain Υ ⊂ R2 under a vector velocity field V : R2 → R2 which in Mechanics is the

Spatial Velocity or Eulerian velocity [148]. The relation between the positions x of the

particles of Υ at time ε with their positions (“particles”) X at time ε = 0 is given by

x = x(X, ε),

then the velocity V generates a motion described by ẋ(ε,X) = V(X) with initial condi-

tion x(X, 0) = X . The description above can be characterised as follows, let Pε : Υ →
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R2 be a perturbation function of the identity function given by Pε = I + εV , where I is

the identity map. Then the perturbed domain denoted by Υε is given by Υε = Pε(Υ), i.e.,

Υε = Υ + εV .

The shape derivative of a functional J (Ω\Υ) with respect to the ε perturbation caused by

the velocity V denoted by DJ (Ω\Υ) · V is defined as

DJ (Ω\Υ) · V = lim
ε→0

J (Ω\Υε)− J (Ω\Υ)

ε
=

d

dε
J (Pε(Υ))

∣∣∣∣
ε=0

. (4.12)

Using the variational formulation of the RTE (4.11), the calculation of the shape derivative

(4.12) can be written as [120]Calculate, d
dε
J (Pε(Υ))|ε=0,

Subject to, a(Υ;u,w) = l(w) ∀w ∈ W.

This derivative corresponds to the spatial or Eulerian description of the displacement of

the position x. Using the chain rule, the shape derivative results

DJ (Ω\Υ) · V =
dJ(u(Υε))

du
· du(Υε)

dε

∣∣∣∣
ε=0

.

The derivative of u with respect to ε denoted by u̇ = duε
dε
|ε=0 is difficult to calculate in

general because there exists a problem for each direction of change of Υ. There exists a

technique which is used to avoid calculating u̇. Considering the domain Υi as previously

defined. Let be the Lagrangian functional given by

L(Υi,ε;λ, vε) = J (vε) +Re [a(Υi,ε;λ, vε)− l(λ)] ,

where Re[z] denotes the real part of a complex number z and λ ∈ W is a Lagrange

multiplier. Note that the functionalJ of uε is equal to the Lagrangian evaluated in vε = uε

, i.e.,

J (ui,ε) = L(Υi,ε;λ, uε) ∀λ.
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Thus, using the above observation, the Shape Derivative can be calculated as follows [34]

DJ (Ω\Υi) · V =
d

dε
L(Υi,ε;λ, uε)

∣∣∣∣
ε=0

∀λ.

Since the bilinear form a(Υi,ε;λ, uε) is linear on u and d
dε

Re[f(ε)] = d
dε
f(ε) for real

value functions f , using the chain rule the derivative of the Lagrangian with respect ε is

as follows

d

dε
L(Υi,ε;λ, uε)

∣∣∣∣
ε=0

=
dJ (u(Υi,ε))

du
· du(Υi,ε)

dε

∣∣∣∣
ε=0

+
d

dε
(a(Υi,ε;λ, u)− l(λ))

∣∣∣∣
ε=0

+ a

(
Υi,ε;λ,

du(Υi,ε)

dε

∣∣∣∣
ε=0

)
.

(4.13)

Let w be

w =
du(Υi,ε)

dε

∣∣∣∣
ε=0

,

the Lagrange multiplier λ ∈ U is chosen such that the addition of the first and third terms

on the right side of (4.13) is equal to zero

a∗(Υi,ε;w, λ) +
dJ(u(Υi,ε))

du
· w = 0 ∀w ∈ W,

where a∗(Υi,ε;w, λ) = a(Υi,ε;λ,w) ∀w ∈ W . Doing this, u̇ does not need to be cal-

culated. The last equation is the adjoint equation. Thus, it is needed to obtain the solu-

tions of the forward and adjoint problem to compute the shape derivative. Assuming that

Υ ∩ Γ = ∅, it holds
d

dε
l(λ)

∣∣∣∣
ε=0

= 0,

since the linear form a(λ) does not depend on the region Υi,ε, actually q = 0 on ∂Υi,ε,

which will be denoted by ∂Υi,ε, therefore l(w) = 0. Besides, it is needed to compute the

second term of the right hand of (4.13). Let λ be the solution of the following adjoint

equation of the RTE (3.10) denoted as z. Let z ∈ W and ξ ∈ Z, the adjoint equation of
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the RTE is given by

∂z

∂t
− θ · ∇z + (µ(x) + b(x))z(x, θ, t)− b(x)

ˆ
S1

η(θ · θ′)z(x, θ′, t) dθ′ = 0 in X

(4.14a)

with initial condition

z(x, θ, T ) = 0 on Ω× S1, (4.14b)

and boundary condition

z(x, θ, t) = ξ(x, t) on ∂X+, (4.14c)

and boundary conditions on ∂Υi

z− = z+, (4.14d)

µe
∂z−

∂n̄
= µi

∂z+

∂n̄
, (4.14e)

Where ξ(x, t) as in (3.17) is applied uniformly in all θ directions with θ · ν > 0, and

z− (z+) denotes the limit of u from the interior (exterior) of the regionD, and µ is defined

as in (4.3). Thus, the shape derivative for diffusive optical tomography based on the RTE

is given by

DJ (Ω\Υi,ε) · V =
d

dε
(a(Υi,ε; z, u))

∣∣∣∣
ε=0

. (4.15)

Using the bilinear form ((4.9), for z ∈ W , one obtains

a(Υi,ε, u, z) =

ˆ
Υe,ε

ˆ T

0

ˆ
S1

[
−∂z
∂t
− θ · ∇z + (µe + b)w − b

ˆ
S1

η(θ · θ′)z
]
u dθdtds

+

ˆ
∂Υi,ε

ˆ T

0

ˆ
S1

z+u+(θ · ν̄)+dθdtd(∂Υi,ε)

+

ˆ
Υi,ε

ˆ T

0

ˆ
S1

[
−∂z
∂t
− θ · ∇w + (µi + b)z − b

ˆ
S1

η(θ · θ′)z
]
u dθdtds

+

ˆ
∂Υi,ε

ˆ T

0

ˆ
S1

z−u−(θ · ν̄)+ dθdtd(∂Υi,ε).
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Since z solves the equation (4.14), the integrals of the first and third terms of the above

expression are equal to zero. Finally, since u+(u−) and z+(z−) satisfy the expressions

(4.2d) and (4.14d) on the boundary ∂Υi,ε respectively, the resultant expression of the

bilinear form is given by

a(Υi,ε, u, z) = (µi − µe)
ˆ
∂Υi,ε

ˆ T

0

ˆ
S1

zu(θ · ν̄)+ dθdtd(∂Υi,ε). (4.16)

As in [3, 26, 90], substituting the bilinear and linear form for the RTE (4.9) and (4.10)

respectively, the shape derivative simplifies to

DJ (Ω\Υi) · V =
d

dε

(ˆ
∂Υi,ε

(ˆ T

0

ˆ
Sn−1

(µi − µe) zu(θ · n̄)+ dθdt

)
d(∂Υi,ε)

)∣∣∣∣∣
ε→0

,

(4.17)

In order to calculate the derivative of this term, some equalities are given, which are basi-

cally relations between the surface, volume and gradient elements of the configuration Υε

and the corresponding elements in the original configuration Υ. The following relations

hold [68]

∂

∂ε
u = (∇Pε)

−T ∇u,

dΩε = det dΩ,

dΓε = det∇Pε

∥∥∇P−Tε n̄
∥∥ dΓ.

Using the relations above, the following equalities hold which their proofs can be found

in [49, 88, 147].

d

dε
∇Pε

∣∣∣∣
ε=0

= ∇V , (4.18)

d

dε
(∂xεu)

∣∣∣∣
ε=0

= −∇VT∇u, (4.19)

d

dε
(dΩε)

∣∣∣∣
ε=0

= div dΩ, (4.20)

d

dε
(dΓε)

∣∣∣∣
ε=0

= divΓ VdΓ, (4.21)

where

divΓ V = divV − n̄ · (∇V)n̄. (4.22)
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This last operator is called the tangential divergence of the vector field V . Using the last

relation in (4.18) in equation (4.17), it is obtained

DJ (Ω\Υi) · V =

ˆ
∂Υi

(ˆ T

0

ˆ
Sn−1

(µi − µe) zu(θ · n̄)+ dθdt

)
div∂Υi V ds,

Given a general functional F defined by

F(Ω) =

ˆ
Γ

fdΓ,

where Γ is the boundary of Ω as before. There is a general result which states that if f is

a sufficiently smooth function defined on X such that the traces exist and are integrable

on Γ, then, the Shape Derivative of the functional J caused by a perturbation velocity V

is given by [49, 147]

DF(Ω) · V =

ˆ
∂Υ

(
∂f

∂n̄
· V + f div∂Υ n̄

)
ds. (4.23)

As stated in the section 4.1, if v ∈ U , the map traces γ± : U → L1(∂X±, |θ · ν̄| dθdtdΩ)

defined by γ±(v) := v|∂X± exist, and are continuous and subjective. [5, 35, 36, 39, 45].

Therefore, applying the above theorem, we obtain eq. (4.23). Moreover, expression (4.23)

is equivalent to

DF(Ω) · V =

ˆ
∂Υ

(
∂f

∂n̄
+ κf

)
V · n̄ds, (4.24)

where κ is the mean curvature of Γ defined by κ = div(N̄) and N̄ is the unitary extension

of the normal vector n̄. The equivalence of eq. (4.23) and eq. (4.24) is proved in [49, 147]

and given in [90]. Taking into account the expression in (4.17), let be the functional J

given by

J (Ω\Υi) =

ˆ
∂Υ

(ˆ T

0

ˆ
Sn−1

zu(θ · n̄)+ dθdt

)
d(∂Υi), (4.25)

the trace map of the function f given by

f =

ˆ T

0

ˆ
Sn−1

(µi − µe) zu(θ · n̄)+ dθdt,

exists and is integrable since u ∈ U and z ∈ W , therefore using formula (4.24) for the

expression found for the shape derivative in (4.15), with f given as above, and using the

Lebesgue’s Dominated Convergence Theorem, it is obtained that the Shape Derivative is

121



CHAPTER 4. LEVEL SET EVOLUTION BY SHAPE DERIVATIVE FOR RTE

given by

DJ (Ω\Υi) · V =

ˆ
∂Υ

ˆ T

0

ˆ
Sn−1

(
∂f

∂n̄
+ κf

)
V · n̄ dθdtd(∂Υi), (4.26)

where

f := (µi − µe) zu(θ · n̄)+. (4.27)

4.2 Level set method: Front tracking by a Hamilton-Jacobi

type equation

The material presented in this section is standard and can be found in [126, 146]. We will

need these concepts in the following section where we incorporate shape derivatives in

the level set evolution for shape reconstruction.

4.2.1 Eulerian and Lagrange formulations

In this subsection, the “Eulerian” and “Lagrange” formulations of the motion of a hy-

persurface Γ(t) along its normal vector with speed V are described. In the Eulerian for-

mulation the underlying coordinate system remains fixed. Consider an N dimensional

function φ(x, t) : RN → R and let Γ(t) be the zero level set of φ, that is Γ(t = 0) =

{x | φ(x, t = 0) = 0}. Then the hypersurface Γ(t) is an n − 1 dimensional function, in

other words, it has co-dimension one. This hypersurface is known as the interface of φ,

which is a closed curve or surface which separates domains of R2,3 with nonzero areas or

volumes in R2,3, respectively [146]. Let φ(x, t = 0) = ±d where d is the distance from

x ∈ RN to Γ(t = 0), and the plus (minus) sign is chosen if the point x is outside (in-

side) the hypersurface Γ(t = 0). Then, the zero level set function is obtained for d = 0.

Let |∇φ| :=
√
φ2
x + φ2

y be the norm of the gradient of φ. The normal vector n̄ to the

hypersurface Γ(t = 0) is defined as n̄ := ∇φ/|∇φ| such that |∇φ| 6= 0. We have

xt · n̂ = V, (4.28)

122



CHAPTER 4. LEVEL SET EVOLUTION BY SHAPE DERIVATIVE FOR RTE

since the function Γ(t) moves along its normal direction with speed V . Given φ(x, t = 0),

the function φ(x, t) satisfies

φ(x(t), t) = 0 (4.29)

along its zero level set, that is, the zero level set of the function φ(x, t) coincides with

the interface Γ(t) at an arbitrary time t. For illustrating this situation, figure 4.2 shows

a cartoon with the following scenarios. Top left: an initial circle is shown at time zero,

together with the circle at a later time in bottom left. The top right shows the associated

initial level set function φ at time zero. The bottom images show the associated level set

function at two different times. At any arbitrary time, the actual interface is given by the

zero level set of the level set function φ.

Figure 4.2: Level set function.

After applying the chain rule to (4.29), we get

φt +∇φ(x(t), t) · xt(t) = 0. (4.30)

Using (4.28), we obtain the initial value evolution equation for φ, namely

φt + V |∇φ| = 0. (4.31a)

given φ(x, t = 0), (4.31b)
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This is known as the level set equation of φ or the Eulerian representation of the level set

[126]. This equation is also called a convection (or advection) equation or the G-equation

in the framework of combustion processes [146]. For certain forms of the speed func-

tion V , a standard Hamilton-Jacobi equation is obtained. The hypersurface Γ can change

topology, break and merge. Since n̄ and ∇φ point into the same direction, ∇φ · t̄ = 0 for

any vector t̄ which is tangent to the curve Γ(t), implying that the tangential velocity com-

ponents vanish when they are substituted into the level set equation (4.31). The Eulerian

formulation corresponds to the level set method which is used in this dissertation.

The Lagrangian formulation of the propagation of the front Γ is as follows [126, 146].

Let Γ(t) be a smooth, closed curve in R2,3 which moves under a vector field V , and let x

be a point which belongs to the curve Γ as it is shown in the figure 4.3. Then, the motion

of the curve Γ is described by the following ordinary differential equation

dx

dt
= V , (4.32)

which is known as the Lagrangian formulation of the interface motion Γ(t). Therefore,

equation (4.30) can be written as

φt +∇φ(x(t), t) · V = 0. (4.33)

If V := V n̄ + Wt̄ is plugged into the above equation, where t̄ is a tangential vector of

φ and W is the tangential component, one obtains eq. (4.31), since ∇φ · t̄ = 0 for any

tangential vector t̄.
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n

x

Xt n = V

n

Figure 4.3: Lagrange formulation of the level set equation.

In the Lagrangian formulation, the interface evolution is described explicitly by the

points x, whereas in the Eulerian formulation the evolution of the interface is described

implicitly by the evolution of a function φ.

4.2.2 Motion under an external velocity field

Central differences can also be used for spatial derivatives in (3.82) instead of the upwind

differencing. This scheme is not stable if one uses the forward Euler time discretization

and the standard CFL condition with ∆t ≈ ∆x. However, it can achieve stability by using

a smaller time step ∆t ≈ (∆x)2 or by using the third-order accurate Runge-Kutta method

or by adding a fictitious dissipation to the level set equation (4.31) [126]. Upwinding with

the forward Euler time discretization is typically used instead of using central differences

with these three options mentioned above.

Since the level set equation (4.31) belongs to the following general type of Hamilton-

Jacobi equations,

φt +H(∇φ) = 0, (4.34)

where H is a function known as the Hamiltonian, H(∇φ) = V |∇φ|, which in general

depends on φx, φy in 2D, numerical schemes such as Lax-Friedrichs, Roe-Fix, Godunov,

Hamilton-Jacobi ENO and WENO can be applied to solve (4.31). For more details of

these schemes, see [126, 146].
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The upwind difference scheme for (4.31) in 2D discussed in section 3.6 is the fol-

lowing. If the speed function V is convex, the level set equation (4.31) in 2D can be

approximated by the following first order convex scheme

φn+1
ij = φnij −∆t[max(Vij, 0)∇+ + min(Vij, 0)∇−], (4.35)

where

∇+ = max(D−xij , 0)2 + min(D+x
ij , 0)2 + max(D−yij , 0)2 + min(D+y

ij , 0)2, (4.36a)

∇− = max(D+x
ij , 0)2 + min(D−xij , 0)2 + max(D+y

ij , 0)2 + min(D−yij , 0)2, (4.36b)

and the subindices (i, j) ∈ Z2 in φnij stand for the spatial coordinates (i∆x, j∆y), and n

stands for the time variable tn = n∆t, that is

φnij = φ(i∆x, j∆y, n∆t).

Here the notation D+x
ij := D+xφni,j (and so forth) has been used, and D+x (and so forth)

as introduced in section 3.6. If the speed function V is nonconvex, the Lax-Friedrichs’

scheme can be used

φn+1
ij = φnij −∆t

[
H

(
D−xij +D+x

ij

2
,
D−yij +D+y

ij

2

)

− 1

2
αv(D

+x
ij −D−xij )− 1

2
αw(D+y

ij −D
−y
ij )

]
,

(4.37)

where αφx , αφy are bounds on the partial derivative of the HamiltonianH = V |∇φ|, i.e.,

αφx := max|Hφx| = max

∣∣∣∣ V φx|∇φ|

∣∣∣∣ αφy = max|Hφy | = max

∣∣∣∣ V φy|∇φ|

∣∣∣∣ .
The maximum values are taken here on the Cartesian mesh. If φ is a distance function

(|∇φ| = 1), αφx = V φx, αφy = V φy.

Instead of using the first or second order finite differences directly to approximate the
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normal vector n̂, we can instead use the more accurate approximation given by

n∗ij =
(φx, φy)

(φ2
x + φ2

y)
1/2

=
(D+x

ij , D
+y
ij )

((D+x
ij )2 + (D+y

ij )2)1/2
+

(D−xij , D
+y
ij )

((D−xij )2 + (D+y
ij )2)1/2

+
(D+x

ij , D
−y
ij )

((D+x
ij )2 + (D−yij )2)1/2

+
(D−xij , D

−y
ij )

((D−xij )2 + (D−yij )2)1/2
,

(4.38)

which averages these forward and backward finite differences in both directions x, y to

avoid sudden changes on the direction of the normal vector n̂ at the corners. The expres-

sion (4.38) is normalised to obtain the normal vector, that is, nij = n∗ij/|n∗ij|. It is noted

that if one of the denominators of (4.38) is zero, this term is not taken into account in the

calculation of the normal vector n∗ij .

4.2.3 Motion Involving Mean Curvature

This brief subsection is included since the analytical expression of the shape derivative of

DOT based on the RTE found in chapter 4 depends on the Mean Curvature of the interface

Γ. In this subsection, the motion of the interface Γ(t) under a scalar diffusive field B is

described that depends on the curvature of the interface Γ. In other words, B = −Bκ,

where B ∈ R and κ is the curvature of the interface Γ(t) defined by

κ := ∇ · ∇φ
|∇φ|

=
φxxφ

2
y − 2φxφyφxy + φyyφ

2
x(

φ2
x + φ2

y

)3/2
. (4.39)

Substituting B = −Bκ instead of the vector field V into eq. (4.31), we have

φt = Bκ|∇φ|, (4.40)

If B > 0, the interface moves in the direction of concavity, so that circles decrease. On

the other hand, if B < 0, the interface moves in the direction of convexity, so that the

circles increase [126]. Upwind discretization can not be applied to the level set equation

when it is under the motion of the curvature of the interface since Bκ |∇φ| is a parabolic

term. If φ is a signed distance function, that is, if |∇φ| = 1, equation (4.30) becomes the
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heat equation

φt = B∆φ, (4.41)

which is a parabolic equation. In this case, difference schemes for the heat equation can be

applied to (4.41). In general, parabolic equations are discretized using central differencing

since where the domain of dependence includes information from all spatial directions.

Therefore the discretization of eq. (4.41) is as follows

φn+1
ij = φnij −∆tBκnij((D

0x
ij )2 + (D0y

ij )2)1/2, (4.42)

where D0x
ij , D

0y
ij are defined as D0x

ij := D0xφni,j, D
0y
ij := D0yφni,j and κnij is the central

difference approximation to the curvature definition given in (4.41). The CFL condition

of (4.41) in 2D using central differencing for the spatial term ∆φ combined with the

forward Euler time discretization is

∆t

(
2B

(∆x)2 +
2B

(∆y)2

)
< 1.

4.2.4 General Motion

A motion of the region Ω can be mathematically governed by an advective term V which

corresponds to the movement in the normal direction to the front, and a diffusive term Bκ

which corresponds to a decreasing or increasing behaviour of the front. Thus, considering

both, the advective and the diffusive terms, the level set equation is given by

φt + V |∇φ| −Bκ|∇φ| = 0. (4.43)

The equation (4.43) is discretized considering firstly the advective part, which is dis-

cretized using the first order convex scheme given in (4.35), and secondly the diffusive

part, which is discretized using the central differencing scheme (4.42). Thus, the first

order numerical scheme in 2D for eq. (4.43) is written as

φk+1
ij = φkij + ∆t

 −{max(V k
ij , 0)∇+ + min(V k

ij , 0)∇−}

+Bκki,j((D
0x
ij )2 + (D0y

ij )2)1/2

 . (4.44)
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Equation (4.53) must satisfy the following combined CFL condition

∆t

(
|V |
∆x

+
|V |
∆y

+
2B

(∆x)2
+

2B

(∆y)2

)
< 1.

In our simulation we have used a variant of the above CFL condition given in [26, 73,

90]. The interval ∆t must satisfy the following two inequalities. The first one is needed

because of the advective part of the Hamilton-Jacobi-type equation, and the second one

because of the diffusive part of the Hamilton-Jacobi-type equation. These inequalities are

∆t

 max
(x,y)∈Ω

|V |

min(∆x,∆y)

 <
1

2
√

2
, (4.45a)

∆t

(
|B|

min((∆x)2, (∆y)2)

)
< 1. (4.45b)

A narrowband technique that was explained in section 3.3 and used already in chapter 3,

will be used in this chapter again. In addition to the narrowband technique we also use

the velocity extension technique, which is described as follows. The advective term V

in (4.43) of equation (4.31) is extended off the boundary Γ to the value Vext in the whole

domain Ω such that the extended value Vext satisfies

Vext

∣∣∣
Γ

= V
∣∣∣
Γ

and ∇Vext · ∇φ = 0,

that is, Vext is constant along the normal curves to Γ. To achieve this, the following

differential equation is solved for the function q until a stationary state is reached [38, 73,

114, 129]

qτ + S(φ)
∇φ
|∇φ|

· ∇q = 0 in Ω× R+, (4.46a)

q(x, y, 0) = p(x, y, t), (x, y) ∈ Ω. (4.46b)

Here S is the approximate sign function defined by

S(w) =
w√

w2 + (|∇w|∆x)2
, (4.47)
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and p(x, y, t) is the initial condition defined by

p(x, y, t) =

V if (x, y) ∈ Γ,

0 if (x, y) /∈ Γ.

Then, the extended velocity Vext is defined by the stationary state of q

Vext = lim
τ→∞

q(x, y, τ).

Equation (4.46) is solved using the following upwind scheme at each iteration n as given

in (4.44)

qm+1
ij = qmij −∆τ [max(Sij(n

x
ij), 0)D−xqmij + min(Sij(n

x
ij, 0))D+xqmij

+ max(Sij(n
y
ij), 0)D−yqmij + min(Sij(n

y
ij, 0))D−yqmij ],

(4.48)

where Sij = S(φmij ) and ∆τ is a time step such that tm = m∆τ . The initial value q0 is

equal to V on the grid points with a distance to Γ less than or equal to min(∆x,∆y) and

equal to zero elsewhere [74, 130].

The solution of the level set equation (4.43) must be reinitialised at periodical intervals

of time t for numerical stability and accuracy because the level set function should not be

too flat or too steep at any time. Here we enforce that the level set function φ remains a

distance function [74, 114, 129, 146]. To achieve this, the following differential equation

is solved at some intervals of time t until to a stationary state is reached

ϕτ + S(φ)(|∇ϕ| − 1) = 0 in Ω× R+, (4.49a)

ϕ(x, y, 0) = φ(x, y, t), (x, y) ∈ Ω, (4.49b)

where S is the signed function given in (4.47), such that φ(x, y, t) = limτ→∞ ϕ(x, y, τ).

The reinitialisation equation (4.49) is solved using the following upwind scheme (see

[130])

ϕk+1
ij = ϕkij −

∆τ

∆x
S+
ij

(√
(a+)2 + (b−)2 + (c+)2 + (d−)2 − 1

)
− ∆τ

∆x
S−ij

(√
(a−)2 + (b+)2 + (c−)2 + (d+)2 − 1

)
,
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where a, b, b, d are defined as follows

a = D−xϕkij b = D+xϕkij (4.50)

c = D−yϕkij d = D+yϕkij (4.51)

and Sij stands for S(φkij) and (x)+ = max(x, 0), (x)− = min(x, 0). Alternatively, we

can also use the Godunov scheme given by

ϕk+1
ij = ϕkij −

∆τ

∆x
S+
ij

(√
max[(a+)2, (b−)2] + min[c+)2, (d−)2]− 1

)
− ∆τ

∆x
S−ij

(√
max[(a−)2, (b+)2] + min[c−)2, (d+)2]− 1

)
.

(4.52)

where a, b, c, d as defined in (4.50). We have used the Godunov scheme (4.52) for re-

initializing the level set function φ in our numerical experiments.

We summarize by providing the outline of the algorithm to solving eq. (4.43) in

Pseudo Code form.

• Initialise the level set function φ to be a signed distance function on Γ.

• Reinitialise φ using (4.52) at some specific intervals of time t.

• Compute the extension velocity Vext from V using (4.48).

• Advance φ in time t using (4.44).

We point out that we have only reinitialised the level set function φ in situations where

we have extended the velocity V to the whole region Ω. We have used a narrowband

technique described in section 3.3 in our simulations.

4.3 Incorporating the shape derivative into the level set

method

In practical implementations, the interface ∂Υi is replaced by a narrow transition zone

with smoothly varying parameters. We will use the mathematical expression of the gen-

eral motion of a region described in subsection 4.2.4. The motion of the domain Υi under

131



CHAPTER 4. LEVEL SET EVOLUTION BY SHAPE DERIVATIVE FOR RTE

a normal velocity speed V and a mean curvature term Bκ is considered, which mathe-

matically is expressed by the evolution of the level set equation

φt + V |∇φ| −Bκ|∇φ| = 0, (4.53)

where

V = −
ˆ T

0

ˆ
Sn−1

∂f

∂n̄
dθdt, (4.54)

and

B =

ˆ T

0

ˆ
Sn−1

f dθdt. (4.55)

Here f is defined as in (4.27). Equation (4.53) is known as the advection-diffusion equa-

tion, where the advective part is linked with the hyperbolic equation

φt + V |∇φ| = 0, (4.56)

and the diffusive part is linked with the parabolic equation

φt = Bκ∆φ, (4.57)

where it has been assumed that the level set function φ is a signed distance function, i.e.,

|∇φ| = 1. We keep this assumption in the following (which is justified as long as we

re-initialize sufficiently often).

In chapter 3 we used the level set method following Santosa’s approach, which is

deduced from calculus of variations. In contrast to that, in this chapter we have considered

the level set approach where the evolution follows a Hamilton-Jacobi-type equation (4.31)

driven by shape derivatives. In particular, in this chapter the advective part V of the level

set evolution equation (4.31) is based on our results of section 3, that is,

V =
∂

∂n̄

(
−(µi − µe)(θ · ν)−∇Jj(µ)

)
.

In contrast to that, in chapter 3 the “advective” part was given as

V = −(µi − µe)∇Jj(µ).
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Thirdly, the level set eq. (4.53) now contains a curvature termBκ, whereas when using the

level set approach in chapter 3 we did not use such a curvature term. We have compared

both Level Set approaches in our numerical results further below.

Some further numerical details.

Equation (4.53) is solved numerically by using the first order convex speed method

given in (4.44), or the combination of the nonconvex method given in (4.37) and the

numerical method for the evolution of φ involving a mean curvature as given in (4.42).

The term ∂nf in (4.54) is calculated as follows.

∂f

∂n̄
= ∇f · n̄ = [∇uz(θ · n̄)+ + u∇z(θ · n̄)+ + uz∇ ((θ · n̄)+)] · n̄.

All the derivatives for the gradient terms of the above expression are calculated using

central differences. The normal vector is calculated using (4.38).

We again have combined the Landweber-Kaczmarz technique with the level set evo-

lution presented in this chapter for the reconstruction of the absorption coefficient.
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The following Pseudo-Code outlines the basic algorithm for shape reconstruction of

the absorption coefficient in DOT using the results of this section.

Algorithm 7: Shape reconstruction using the LS method with shape derivative
Input: Υ0, µ

0, φ0 Initial guess

Output: ΥI(M−1), µ
I(M−1), φI(M−1)

for k := 0, . . . , I(M − 1) do

Compute V and B given by (4.54) and (4.55) respectively;

Compute φk+1 given by (4.44);

Update µk+1 using (3.57);

end

Here u[k] solves (2.1) with µk and source q[k], and z[k] solves (3.10) with µk and adjoint

source ξ[k] given by (3.52) and κ given by (4.39).

Next, we provide a Pseudo-Code of the algorithm that corresponds to the same situa-

tion as above but with an extension of the velocity V and corresponding re-initialisation

of the level set function φ to remain a distance function.

Algorithm 8: Shape reconstruction using the LS method with shape derivative and

extended V .
Input: Υ0, µ

0, ϕ0

Output: ΥI(M−1), µ
I(M−1), φI(M−1)

for k := 0, . . . , I(M − 1) do

Compute V and B given by (4.54) and (4.55) respectively;

Compute the extension Vext in Ω, using the scheme (4.48);

Reinitialisation of φk+1 at periodical intervals of time using the scheme (4.52);

Compute φk+1 given by (4.44);

Update µk+1 using (3.57);

end
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4.4 Numerical Results

We have performed shape reconstructions regarding the absorption coefficient using the

shape derivative presented in section 4.1 via the level set technique. Here we have used

the same numerical experimental setup as in section 3.7, using the values of the Table 3.1,

except that we have suppressed the clear layer near to the boundary only in this section for

the purpose of checking our new shape reconstruction technique. The following figures

show the results of our numerical experiments.

To start with, Figures 4.4 and 4.5 show the shape reconstruction for the coefficient µ

in DOT using algorithm 7 for one inclusion and two inclusions, respectively.
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Figure 4.4: Shape reconstruction for µ using algorithm 7 for one obstacle. Top left: true object; top right:
final reconstruction. Bottom left: initial guess; bottom right: norm of residuals of the cost.
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Figure 4.5: Shape reconstruction for µ using algorithm 7 for two obstacles. Top left: true object; top right:
final reconstruction. Bottom left: initial guess; bottom right: norm of residuals of the cost.

Figures 4.6 and 4.7, on the other hand, show the shape reconstruction for the coef-

ficient µ in DOT using algorithm 8 for one inclusion and two inclusions, respectively.

This means, in these reconstructions we have used the extension velocity and a repeated

re-initialization technique.

In both Algorithms 7 and 8, we have used a “signed distance function” as our initial

guess for the level set function to start the shape reconstruction process. We observe

that the results of the shape reconstruction schemes for the absorption coefficient in DOT

based on the RTE using the shape derivative compare favourably with those obtained in

[55, 56], where the authors used the Landweber-Kaczmarz method as it can be seen in

figure 4.8.
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Figure 4.6: Shape reconstruction for µ using algorithm 8 with Vext for one obstacle. Top left: true object;
top right: final reconstruction. Bottom left: initial guess; bottom right: norm of residuals of the cost.
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Figure 4.7: Shape reconstruction for µ using algorithm 8 with Vext for two obstacles. Top left: true object;
top right: final reconstruction. Bottom left: initial guess; bottom right: norm of residuals of the cost.

Figure 4.8 shows the comparison between the reconstruction using the shape deriva-

tive derived in this chapter versus the technique discussed in the previous chapter 3 with

algorithm 4 using an optimization based scheme for calculating shape sensitivities. More

specifically, figure 4.8 shows the evolution of the residual norm over iteration index for

both of these different algorithms.
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Figure 4.8: Norm of residuals of the misfit functional of the µ absorption reconstruction using the shape
derivative and the LK method.
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Chapter 5

Sparsity regularization

In this chapter we will apply the concept of sparsity regularization to the DOT problem.

First, the basic concept of sparsity regularization is briefly discussed. In particular, we de-

fine and discuss compressibility and the so-called Bregman distance. Then the linearised

Bregman iteration method is presented. In section 5.3, expressions for the sparsity recon-

struction in a linear inverse problem are discussed. Our DOT inverse problem is nonlinear,

so in section 5.4, the corresponding newly developed algorithms of sparsity reconstruction

as used in this thesis are presented. Finally, in the last section the results of numerical ex-

periments are discussed which illustrate the performance of these new numerical schemes

in some situations.

5.1 Basic concepts of sparsity and compressive sensing

The inverse problem in DOT is underdetermined. The main difficulty in the inverse prob-

lem in DOT is its instability which requires some form of regularization. In this chapter

we present a novel method for recovering the shape and texture of µ using Sparsity Reg-

ularization. To start with, we will give some definitions and notations. We will first focus

on sparsity in linear problems, which is closely related to Compressive Sensing. Later on

we will also discuss some concepts for nonlinear problems. For more details we refer to

[46, 72] and the references therein.

We define the `p-norm of a vector x ∈ RN for 0 < p ≤ ∞ as
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Definition 16

‖x‖p =


(

N∑
j=1

|xj|p
)1/p

if 0 ≤ p <∞,

max
j∈1,...,N

|xj| if p =∞.

Then the standard inner product in RN can be defined by

〈x, z〉 = zTx =
N∑
j=1

xjzj,

which induces the `2-norm, ‖x‖2 =
√
〈x, x〉. The `p-norm is indeed a norm for 1 ≤ p ≤

∞, while for 0 < p < 1 it is a ’quasi-norm’. For p = 0 the often called ’l0-norm’ is

defined by

‖x‖0 = |supp(x)|,

where supp(x) := {j : xj 6= 0} is the support of a vector x, and |supp(x)| denotes the

cardinality of supp(x).

Notice that the `0-norm is in fact

lim
p→0
‖x‖pp = |supp(x)|,

and is not even a quasinorm. Fig. shows the unit sphere, i.e., {x ∈ R2 : ‖x‖p = 1} for

different values of p.

We will now provide the definition of k-sparse which plays a central role in sparsity

or compressive sensing.

Definition 17 A vector x ∈ RN is called k-sparse if ‖x‖0 ≤ k. The set of k-sparse

vectors is denoted by Σk for k ∈ {1, 2, ...N}.

Next we define the concept of compressibility.

Definition 18 A vector x is called compressible if the best k-term approximation of a

vector x decreases fast in k, where the best k-term approximation error of a vector x ∈ RN

in `p is given by

σk(x)p = inf
z∈Σk
‖x− z‖p.

The key idea in sparsity reconstruction is to reconstruct directly a compressed vector x,

which (roughly) can be achieved by keeping only the k largest entries of that vector and
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setting to zero the rest of its entries. This approximation problem is nonlinear because

picking the largest entries depends of the vector itself. Image and signal compression

techniques such as MP3, MPEG and JPEG are based on this process of keeping only the

largest entries of a signal.

Another important feature to keep in mind when choosing the `p norm for reconstruc-

tion is illustrated in fig. 5.1. Suppose that we want to approximate a point x ∈ R2 by using

a point in a 1D affine space A (representing a general linear relationship) by solving the

following `p-minimisation problem

x̂ = arg min‖x− z‖p s.t. Az = y. (5.1)

Firstly, in order to obtain a sparse representation, scientists tried to solve problem (5.1)

directly for the sparsest vector x, which corresponds to solving the l0-optimisation prob-

lem

min‖x‖0 subject to Ax = y.

However, this leads to an NP-hard problem in general. Thus, the next option was to try to

solve the convex l1-optimisation problem

min‖x‖1 subject to Ax = y (5.2)

instead. Different choices of p for the lp-norm of the problem (5.1) will lead to different

scenarios for obtaining the solution x̂ of this problem. Fig. (5.1) shows a few different

scenarios for p = 1, 2,∞, 1/2. The closest point x̂ ∈ A is found ’geometrically’ by

growing an `p sphere centred on x = 0 until it meets with the affine space (line) A.

For small values of p, the closest point x̂ ∈ A has sparse components, i.e., one of its

coordinates is approximately zero; for the cases 0 < p ≤ 1 one of its coordinates of x̂ is

equal to zero, i.e., for those values of p, x̂ practically is a sparse solution, while for large

values of p the solution x̂ tends to have more evenly distributed coordinate contributions;

for the case p =∞ its coordinates of x̂ tend to be equally distributed.
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Figure 5.1: Spheres in Lp.

Next we present the following definition of the Null Space Property of order k which is

of importance in the convex `1-minimisation problem as stated in the following Theorem.

For a subset T ⊂ {1, ..., N}, we denote by xT ∈ RN the vector which coincides with

x ∈ RN on the entries in T and is zero outside T . Also, T c := {1, ..., N}\T denotes the

complement of T .

Definition 19 A matrix A ∈ RM×N is said to satisfy the Null Space Property (NSP) of

order k with some constant γ ∈ (0, 1) if

‖xT‖1 ≤ γ‖xT c‖1

for all sets T ⊂ {1, ..., N}, |T‖ ≤ k and for all x ∈ kerA.

Theorem 20 Let x ∈ Rn and x∗ be a solution of the `1-optimisation problem (5.2), and

assume that A satisfies the Null Space Property of order k with some constant γ ∈ (0, 1).
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Then

‖x− x∗‖1 ≤
2(1 + γ)

1− γ
σk(x)1.

In particular, if x is k-sparse then x∗ = x.

It can also be proven that if all k-sparse x can be recovered from Ax = y using the

`1-minimisation approach, then the matrix A satisfies the null space property of order k

with some constant γ ∈ (0, 1). Since the NSP is difficult to verify in practice, the follow-

ing equivalent ’restricted isometry property’ is often tested instead, which also implies

stability under some noise δk.

Definition 21 A matrix A is said to satisfy the restricted isometry property (RIP) of order

k if there exists a constant δk ∈ (0, 1) such that

(1− δk)‖z‖2
2 ≤ ‖Az‖2

2 ≤ (1 + δk)‖z‖2
2,

for all z ∈ Σk.

Theorem 22 Assume that A ∈ RM×N satisfies the RIP of order K = k+h with constant

δK ∈ (0, 1). ThenA satisfies the NSP of order k with constant γ =
√
k(1 + δK)/h(1− δK).

If the vectors in the set {ϕj}Nj=1 in RN are linearly independent and span RN , then this

set is called a basis for RN , i.e., for any x ∈ RN there exists an unique sequence of

coefficients {cj}Nj=1 such that

x =
n∑
j=1

cjϕj.

The above equation can be written in matrix form such that x = Φc, where the columns

of Φ are given by the vectors ϕj and the components of c are given by the coefficients

cj which are the coordinates of x. The definition of a frame (also called overcomplete

dictionary) generalises the concept of a basis for a finite-dimensional spaces [46, 72] and

is given next.

Definition 23 Let D < N , then a set {ϕj}Nj=1 in RD is called a frame if the matrix

Φ ∈ RD×N with columns given by ϕj holds the following equation

A‖x‖2
2 ≤ ‖ΦTx‖2

2 ≤ B‖x‖2
2,

144



CHAPTER 5. SPARSITY REGULARIZATION

for all vectors x ∈ RD, with 0 < A ≤ B <∞.

Notice that in the above definition it is allowed to have a set {ϕj}Nj=1 of possible linearly

dependent vectors. Thus, the sequence of coefficients ci is not unique for the represen-

tation x = Φc for x ∈ Rn as a linear combination of vectors ϕj of a frame. When

A = B = 1, then Φ is called a Parseval frame. A frame is called equal-norm, if there ex-

ists some positive λ such that ‖ϕj‖2 = λ for all j = 1, ..., N , and it is unit-norm if λ = 1.

In the finite-dimensional case, A,B correspond to the smallest and largest eigenvalues

of ΦΦT , respectively. The implied redundancy is an important component for providing

a representation of data x, because there are infinitely many coefficients which satisfy

x = Φc. The above frame condition leads to a dual frame Φ̃ defined by

ΦΦ̃T = Φ̃ΦT = I.

The particular selection Φ̃ = (ΦΦT )−1Φ is known as the Moore-Penrose pseudoinverse

or canonical dual frame. This dual frame is well-defined since A > 0 implies Φ to have

linearly independent rows, which ensures that ΦΦT is invertible. Then, the coefficients

cD may be given by

cD = (ΦΦT )−1Φx,

which are the smallest coefficients, that is, ‖cD‖2 ≤ ‖c‖2 for all c such that x = Φc.

Next we will present the property of a matrix A which is quite easy to verify in or-

der that the `1-minimisation problem (5.2) has a solution. For doing this, we give the

following definition.

Definition 24 The coherence ϑ(A) of a matrix A, is the largest absolute inner product

between any two columns aj, al of A:

ϑ(A) = max
1≤j≤l≤n

|〈aj, al〉|
‖aj‖2‖al‖2

.

If a matrix A has unit-norm columns and coherence ϑ(A), then A satisfies the RIP of

order k with some consonant δ = (k − 1)ϑ(A) for all k < 1/ϑ(A) [46, 72].

In a Hilbert space H a frame {ϕj} is a set of vectors for which there exist positive
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constants A,B such that

A
∑
j∈N

|〈x, ϕj〉|2 ≤ ‖x‖2 ≤ B
∑
j∈N

|〈x, ϕj〉|2 , ∀x ∈ H. (5.3)

The infimum of all B and the supremum of all A that satisfy condition (5.3) are called the

frame bounds. The frame operator Φ : H → `2 is defined by

(Φx)j = 〈ϕj, x〉.

By definition, the frame operator satisfies

A‖x‖2 ≤ ‖Φx‖2 ≤ B‖x‖2.

When A = B, then {ϕj} is called a tight frame. This is the case when for all x ∈ H ,

x = A
∑
j∈N

〈x, ϕj〉ϕj.

Frames span the whole Hilbert space H , otherwise, ker(Φ) 6= {0}, therefore there would

be some x 6= 0 such that ‖Φx‖2 = 0 < A‖x‖2. Also, frames commonly are not linearly

independent, and in particular do not have to be orthogonal, since an orthogonal frame

satisfies by definition ∑
j∈N

|〈x, ϕj〉|2 = ‖x‖2 ∀x ∈ H.

Frames are typically “overcomplete” since they still span the whole space H even after

some frame elements of {ϕj} are removed. This is one of the reasons why a frame is

considered a generalization of a basis. In the finite-dimensional case, a frame is a basis if

and only if it is linearly independent [44]. In our application of DOT the perturbations of

the absorption and scattering coefficients δµ, δb we will aim at identifying the expansion

coefficients of these functions with respect to the basis {ϕk}, which is formed by the

characteristic functions of ’pixels’.

We say that a signal x is k-sparse in the basis Φ if there exists a vector c ∈ RN with

only k << N nonzero entries such that x = cΦ. We call the set of indices corresponding

to the nonzero entries the support of c and denote it by supp(c).
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5.2 Linearised Bregman iteration

In this section we consider the following nonlinear minimisation problem

min
σ
J (σ) + αK(σ), (5.4)

whereJ andKmight be non-differentiable convex functionals defined on a Hilbert space.

We mention that problem (5.4) with J (σ) = ‖Aσ − d‖2
2 corresponds to a quadratic min-

imisation problem (’linear’ regression) which is treated in many areas like Image Process-

ing, Restoration and Denoising [29, 79, 125, 127, 166]. In order to obtain the linearised

Bregmann iteration for solving the minimisation problem (5.4), both terms J (σ) and

K(σ) are replaced by the following approximations as proposed in [113, 174]. Firstly, the

penalty term K(σ) is substituted by its Bregman distance Dpk

K (σ, σk) which is defined in

[10, 79, 83, 125, 127, 174, 175] as follows

Dp
K(σ, υ) = K(σ)−K(υ)− 〈p, σ − υ〉, p ∈ ∂K(υ). (5.5)

Here ∂K(υ) is called the subdifferential of J at υ, and is defined as

∂K(υ) = {p ∈ P ∗ : K(σ) ≥ K(υ)− 〈p, σ − υ〉, ∀σ ∈ P} ,

where P ∗ is the adjoint of P , with P being the space of coefficients σ defined in (3.1),

and 〈·, ·〉 stands for the standard duality product. The elements p of ∂K(υ) are called

subgradients. K is subdifferentiable at υ if K(υ) is finite and the subdifferential ∂K(υ) is

nonempty [10]. The Bregman distance does not satisfy all the properties of a proper dis-

tance function, but it satisfies the non-negativity and identity properties, i.e.,Dp
K(σ, υ) ≥ 0

for all σ 6= υ and Dp
K(σ, υ) = 0 if and only if σ = υ, respectively. It does not satisfy the

symmetry property, i.e., Dp
K(σ, υ) 6= Dp

K(υ, σ), nor the triangle inequality. However, the

Bregman distance measures how close two elements σ̃ and υ are to each other. Assuming

that w belongs to the segment which joins σ̃ and υ, we have Dp
K(σ̃, υ) ≥ Dp

K(w, υ). In

more details, the Bregman distance estimates how far the point K(σ̃) is to the tangent

plane K(υ)− 〈p, σ − υ〉. This concept is illustrated in figure (5.2).
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Figure 5.2: The Bregman distance Dp
K(σ̃, υ).

Now, instead of solving the problem (5.4) directly, it is solved the following iterative

scheme

σk+1 = min
σ

{
J (σ) + αDpk

K (σ, σk)
}
, pk ∈ ∂K(σk), (5.6)

which is called the Bregman iteration. This method minimises the Bregman distance

Dpk

K (σ, σk) instead of the function K. It was noted in [29, 79] that J (σk) decreases

monotonically. Since σk+1 is the minimiser of (5.6), we have

J (σk+1) + αDpk

K (σk+1, σk) ≤ J (σk+1) + αDpk

K (σk, σk).

Then,

J (σk+1) ≤ J (σk+1) + αDpk

K (σk+1, σk) ≤ J (σk+1) + αDpk

K (σk, σk) = J (σk).

Notice that if the term J (σ) is assumed to be differentiable, then its subdifferential

∂J (σ) = {∇J (σ)}, i.e., the gradient of J is the only subgradient of J . In other words,

if J is differentiable at σ there exists one and only one subgradient of J at σ, which is

the gradient of J at σ. In this case the subdifferential of the right expression of (5.6) is
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given by

∂σ

(
J (σ) + αDpk

K (σ, σk)
)

= ∂σ
(
J (σ) + α(K(σ)−K(σk)− 〈pk, σ − σk〉)

)
= {∇J (σ)}+ α∂K(σ)− {pk}.

Since σk+1 is a minimiser of (5.6), we have

0 ∈ {∇J (σk+1)}+ α∂K(σk+1)− {pk},

where 0 is the zero element of P ∗. This implies

pk −∇J (σk+1) ∈ ∂K(σk+1).

Let pk+1 = pk − ∇J (σk+1), then pk+1 ∈ ∂K(σk+1). Thus, the Bregman iteration (5.6)

becomes

σk+1 = min
σ

{
J (σ) + αDpk

K (σ, σk)
}
, (5.7a)

pk+1 = pk −∇J (σk+1). (5.7b)

Now, the residuum J (σ) is substituted by its first-order Taylor approximation at σk and

an `2-penalty term
∥∥σ − σk∥∥2

2
/2τ , i.e.,

J (σ) = J (σk) + 〈∇J (σk), σ − σk〉+
1

2τ

∥∥σ − σk∥∥2

2
,

where τ ≥ 0 denotes the step size which can be updated by a line search criterion in

each iteration. The constant term J (σk) is subtracted from J (σ) and the constant term

〈∇J (σk),∇J (σk)〉 to J (σ) is added to obtain

J (σ) =
1

2τ

∥∥σ − (σk − τ∇J (σk)
)∥∥2

2
.

Therefore, the minimisation problem (5.4) is solved as

σk+1 = min
σ

1

2τ

∥∥σ − (σk − τ∇J (σk)
)∥∥2

2
+ αK(σ). (5.8)
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Finally, the problem (5.4) is solved with the following Bregman iteration which is a com-

bination of the Bregman iteration (5.7) and the fixed-point iteration scheme (5.8)

σk+1 = min
σ

1

2τ

∥∥σ − (σk − τ∇J (σk)
)∥∥2

2
+ αDpk

K (σ, σk), (5.9a)

pk+1 = pk − 1

τ

(
σ − (σk − τ∇J (σk))

)
. (5.9b)

5.3 Linearised Bregman Iteration for the `1-minimisation:

linear case

We turn our attention now to the problem (5.4) with J (σ) = ‖Aσ− d‖2
2 and penalty term

K(σ) = ‖σ‖1. Here the Bregman iteration (5.9) takes a specific expression as derived in

[29, 174] and explained as follows. Since the function K(σ) = ‖σ‖1 is not differentiable

at the origin, it is replaced by the following continuously differentiable function Kε

Kε(σ) =
N∑
j=1

ϑε (σ(j)) , (5.10)

where σ ∈ RN and N denotes the number of disjoint pixels which form the domain

Ω. The function Kε is the Moreau-Yosida C1 regularisation for ‖σ‖1, also known as the

Huber-norm. This function Kε is also Lipchitz differentiable, i.e.,

‖∇K(σ)−∇K(υ)‖2 ≤ γ〈∇K(σ)−∇K(υ), σ − υ〉, ∀σ, υ ∈ RN ,

where γ is a positive constant, see figure 5.3. The function ϑε(ζ) is the Huber function

defined by

ϑε(ζ) =


ζ2

2ε
, if |ζ| ≤ ε,

|ζ| − ε

2
, if |ζ| > ε.

(5.11)
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Figure 5.3: The approximation of ϑε to the absolute value function.

Let now ωk = σk − τAT (Aσk − d) and K = Kε(σ) as defined in (5.10). Then the

problem (5.9a) can be decoupled into the following N one-variable minimisation prob-

lems (j = 1, . . . , N ):

σk+1(j) = min
ζ

{
α
(
ϑε(ζ)−ϑε

(
ζk(j)

)
−pk(j)

(
ζ−σk(j)

))
+

1

2τ

(
ζ−ωk(j)

)2
}
. (5.12)

After minimising the equation (5.12) with respect to ζ and equating to zero, the solution

becomes

ταϑ′ε(ζ) + ζ = ωk + ταpk(j), (5.13)

where the derivative of ϑε is given by

ϑ′ε(ζ) =


ζ

ε
if |ζ| ≤ ε

sign(ζ) if |ζ| > ε.

(5.14)

See figure 5.4.
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Figure 5.4: The approximation of ϑ′ε to the subdifferential of the absolute value function.

The solution of the differential equation (5.13) is given by

ζ = sτα,ε
(
ωk + ταpk(j)

)
, (5.15)

where sλ,ε(κ) is defined as

sλ,ε(κ) =


ε

λ+ε
κ, if |κ| ≤ λ+ ε

sign(κ) (|κ| − λ) , if |κ| > λ+ ε.

(5.16)

This solution is unique because the problem (5.12) is strongly convex [29]. Let Sλ,ε be

defined by

Sλ,ε(σ) :=
[
sλ,ε
(
σ(1)

)
, sλ,ε

(
σ(2)

)
, · · · , sλ,ε

(
σ(N)

)]T
, (5.17)

with sλ,ε(κ) as defined in (5.16). Then, using the function given in (5.17), the linearised

Bregman iteration (5.9) is formulated as

σk+1 = Sτα,ε
(
σk + ταpk − τAT (Aσk − d)

)
, (5.18a)

pk+1 = pk − 1

τα

(
σk+1 −

(
σk − τAT (Aσk − d)

))
, (5.18b)
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where σ0 = 0, p0 = 0. Let further υk = σpk+ 1
τ
σk. Then the linearised Bregman iteration

(5.18) becomes

σk+1 = Sτα,ε(αυk+1), (5.19a)

υk+1 = υk − AT (Aσk − d), (5.19b)

where σ0 = 0, υ0 = 0. When ε tends to zero (see figure 5.5 for illustration), the function

Sλ,ε(ζ) defined in (5.17) tends to the soft-thresholding function Sλ(ζ). This function is

defined by

Sλ(w) :=
[
sλ
(
w(1)

)
, sλ
(
w(2)

)
, · · · , sλ

(
w(N)

)]T
, (5.20)

where

sλ(κ) =

0, if |κ| ≤ λ,

sign(κ) (|κ| − λ) , if |κ| > λ.

(5.21)

Figure 5.5: The approximation of sλ,ε to the soft-thresholding function sλ.
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Therefore, when ε→ 0, the iteration (5.19) becomes [29, 174]

σk+1 = Sτα(αυk+1), (5.22a)

υk+1 = υk − AT (Aσk − d). (5.22b)

A different and more general approach for obtaining equation (5.22) for a convex or non-

convex functional J (instead of the matrix A) and a convex and non-differentiable func-

tionK, together with a convergence analysis, is presented in [25]. The linearised Bregman

iteration for the nonlinear problem (5.4) with the same penalty term K(σ) = ‖σ‖1 analo-

gous to (5.22) is obtained and explained in more details in the next section. A convergence

analysis for the Bregman iteration for a nonlinear problem with a total variation penalty

term K(σ) is found in [10].

5.4 Sparsity method

We are interested in “simple” geometries or descriptions of the absorption and scattering

coefficients. Let δµ := µ − µ0 and δb := b − b0 be the inhomogeneities of the unknown

physical absorption and scattering distributions µ and b, respectively, where µ0, b0 are the

background values which in DOT correspond to those of healthy tissue based on standard

values for the types of tissue being tested. The “simple” geometries correspond to the fact

that δµ, δb have sparse representation with respect to a specific basis or frame. Such a

prior knowledge is reasonable and justifiable in cases where one looks for some “simple”

inclusions (tumours, haematomas, etc) embedded in an uninteresting background. Let A

be the admissible set of absorption and scattering coefficients given by

A = {(µ, b) ∈ H1(Ω)×H1(Ω) : c0 ≤ µ ≤ c1, c2 ≤ b ≤ c3 a.e. Ω},

where c0, c1, c2, c3 are known positive constants. Let σ = (µ, b) be as described in previ-

ous chapters. We consider the minimisation of the following functional

F(σ) = J (σ) + αΨ(δσ), (5.23)
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over the set A , with J (σ) as in (3.6). The vector regularization parameter is α :=

(αµ, αb), one parameter for µ and one for b as in the coefficient vector σ. The l1 penalty

term Ψ(δσ) = ‖δσ‖1 is then defined by

Ψ(δσ) = ‖δµ‖1 + ‖δb‖1, (5.24)

where the `1 norms of the coefficients µ, b are given as

‖δµ‖1 : =
∑
j∈N

∣∣〈δµ, ϕj〉H1(Ω)

∣∣ ‖δb‖1 : =
∑
j∈N

∣∣〈δb, ϕj〉H1(Ω)

∣∣ . (5.25)

Here {ϕj} is an orthonormal basis or frame which can be a Fourier basis, wavelets or

formed by the characteristic functions of pixels or voxels of the domain Ω. We mention

that a novel method to approximate the solution of (5.23) when `p-norm of Ψ has been

introduced for 0 < p ≤ 1 and for a smooth version of `0 [135].

Notice that the penalty term Ψ(σ) is convex but not differentiable. We have used the

latter one in our numerical simulations. Then, the term αΨ(δσ) is given by

αΨ(δσ) = α
∑
j∈N

∣∣〈δσ, ϕj〉H1(Ω)×H1(Ω)

∣∣
= αµ

∑
j∈N

∣∣〈δµ, ϕj〉H1(Ω)

∣∣+ αb
∑
j∈N

∣∣〈δb, ϕj〉H1(Ω)

∣∣ .
We identify 〈δµ, ϕj〉H1 , 〈δb, ϕj〉H1 with the sequence of expansion coefficients with re-

spect to the basis {ϕj}. We can see from the above expression that we impose a penal-

isation on sequences of “small” expansion coefficients, those with |〈δµ, ϕj〉| < 1 and

|〈δb, ϕj〉| < 1, while imposing lesser penalty on sequences of “large” expansion coeffi-

cients for which |〈δµ, ϕj〉| ≥ 1 and |〈δb, ϕj〉| ≥ 1.

Next we will outline the existence proof of the minimiser of (5.23). Also here we will

work with the Hilbert spaces (3.1). We then apply the following Theorem.

Theorem 25 LetH1, H2, H be Hilbert spaces. IfR : H1 → H2 is continuous and weakly

sequentially closed and Ψ : H → R is proper, positive, weakly lower semicontinuous with

bounded level sets, and α is positive. Then there exists a minimiser of F .

The operator Ψ(σ) satisfies all the properties of the above Theorem, i.e., Ψ is weakly

lower semicontinuous, proper, positive and has bounded sets as it has been proved in
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[41]. The operator Ri is called weakly sequentially closed if for σk ⇀ σ, then σ ∈ A

and Ri(σ
k) ⇀ Ri(σ). We will assume that the residual operator Ri(σ) defined in (3.3)

for i = 0, . . . ,M − 1, is continuous and weakly sequentially closed. Then, we can assure

that there exists a minimiser of F . The formal proof of Theorem 25 is beyond the scope

of this dissertation.

We anticipate that we will use the Landweber-Kaczmarz method for solving the prob-

lem (5.23). There we will aim at minimizing

Fi(σ) = Ji(σ) + αΨ(δσ), (5.26)

over the same set A , where i correspond to the ith source qi. Let∇Ji be as in (3.19). We

will use the notation∇Ji = (∇Ji,µ,∇Ji,b), i.e.,

∇Ji =

(
∇Ji,µ
∇Ji,b

)
=

(
L1(ui, zi)

L2(ui, zi)

)
.

Using the smooth gradient ∇J s
i described in section 3.4, the functional Fi(σ) =

Fi(σ0 + δσ) can be locally approximated by the following surrogate functional

Fi(σ0+δσ) ≈ Fi(σ0+δσk)+
〈
δσ−δσk,∇J s

i (σk)
〉
L2(Ω)

+(τ)−1 1

2
‖δσ−δσk‖2

L2(Ω)+α‖δσ‖1,

(5.27)

where τ is some step size to be discussed later. This surrogate functional is convex and

separable in δσ, as in the proxy function approach [25, 44, 98]. The minimisation of this

proxy problem is (up to an unimportant constant) equivalent to

δσk+1 = arg min
δσ

(τ)−1 1

2
‖δσ −

(
δσk − τ∇J s

i (σk)
)
‖2
L2(Ω) + α‖δσ‖1. (5.28)

The following soft-thresholding approach was proposed for minimizing this surrogate

functional Fi by [25, 44, 137]

δσk+1 = Sτα

(
δσk − τ∇Ji(σk)

)
,

= Sτα

(
δµ− τµJi,µ(µk, bk), δb− τbJi,b(µk, bk)

)
,

(5.29)
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where Sτα is the soft-thresholding function defined by

Sτα(κ,κ) =
((
Sαµτµ(κ)

)
j
,
(
Sαbτb(κ)

)
j

)
. (5.30)

Here Sλ is the soft-thresholding function as defined in (5.20), which can also be written

component-wise in the form

(
Sλ(κ)

)
j

=

0, if |κj| ≤ λ,

sign(κj) (|κj| − λ) , if |κj| > λ,

(5.31)

or, in a more compact way, as

(
Sλ(κ)

)
j

= sign(κj) max{|κj| − λ, 0}, (5.32)

which is also called a shrinkage function. This operator is typically used for promoting

sparsity on δσ. The update of δσ (5.29) is composed of two stages. The first stage cor-

responds to the Landweber-Kaczmarz method with step size τ , whereas the second stage

takes care of the promotion of sparsity using the shrinkage operator. A direct application

of the gradient ∇Ji in this context does not retrieve accurate reconstructions because of

its insufficient regularity properties [78, 98]. Therefore, we have used the smooth gra-

dient J s
i as discussed in section 3.4. This is why we have agreed on H1(Ω) being the

space of coefficients µ, b. The convergence of the Landweber method with constant fixed

step size is slow. In order to alleviate this drawback, Maass and Jin [78, 98] implemented

the Barzilai-Borwein (BB) step size criterion instead, which reads τ k :=
(
τkµ 0

0 τkb

)
and is

discussed in section 2.3.2; this yields formula (2.83), with τ kµ , τ
k
b given by

τ kµ =

〈
δµk − δµk−1,∇J s(σk)−∇J s(σk−1)

〉
H1(Ω)

‖δµk − δµk−1‖2
H1(Ω)

, (5.33a)

τ kb =

〈
δbk − δbk−1,∇J s(σk)−∇J s(σk−1)

〉
H1(Ω)

‖δbk − δbk−1‖2
H1(Ω)

. (5.33b)

Since with the Barzalai-Borwein criterion the functional Fi does not automatically

decrease monotonically, the following condition was implemented on the step size τ k

to assure monotonous decrease of F [78, 98]. We use the step size given by the BB

rule given by (5.33) as initial guess, and reduce it until the following weak monotonicity
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condition on the functional Fi(σ) is achieved

Fi
(
σ0 + Sτkα

(
δσk − τ k∇J s

i (σk)
))
≤ max

k−m+1≤l≤k
Fi(σl)

− τ k ε
2
‖Sτkα

(
δσk − τ k∇J s

i (σk)
)
− δσk‖2

H1 .

(5.34)

where m ∈ N and ε = (εµ, εb)
T , with εµ, εb ∈ R. We mention that the first τ k on the right

hand side of the above inequality is considered as τ k = (τ kµ , τ
k
b ) in order that the product

τε is well defined. A strict monotonicity condition holds for m = 1. We have fixed the

value m = 2 in our reconstructions. In our implementation, we use the step length given

by the BB rule as the initial guess at each iteration and decrease it geometrically by a factor

r until condition (5.34) holds. Also, the initial step length is constrained to (τmin, τmax)

and the iteration is terminated when τ k falls below τmin and when the iteration is deemed

to stagnate. Therefore, we calculate δσk+1 using equation (5.33) with the smooth gradient

∇J s
i instead of ∇Ji. Moreover, the step size τ k given by (5.33) until the monotonicity

condition (5.34) is satisfied, i.e.,

δσk+1 = Sταk(δσ
k − τ k∇J s

i (σk)). (5.35)

Basically, this method is composed of two parts, the first one is the application of the

Landweber-Kaczmarz method given by τ k∇J s
i (σk), and the second part is the sparsity

promotion by the shrinkage operator Sτkα. One can use the Landweber and the L-LK

methods instead of the LK method for this update.

A Pseudo code for the reconstruction scheme using the Landweber method and spar-

sity regularization is described in algorithm 9.
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Algorithm 9: Landweber using sparsity regularization
Input: σ0, δσ0 = 0, α, τmin, τmax,m

Output: σI(M−1)

for k := 0, . . . , I do

for i := 0, . . . ,M − 1 do

Compute the gradient∇Ji(σk) given by (3.16);

Compute the smooth gradient∇J s
i (σk) using algorithm 5 ;

end

Compute∇J s(σk) =
M−1∑
i=0

∇J s
i (σk);

Calculate τ k given by BB criterion (5.33) holding (5.34);

Update inhomogeneity δσk+1 using (5.35);

Calculate σk+1 = σ0 + δσk+1;

end

Here ui solves (2.1) with σk and source qi, and zi solves (3.10) with σk and adjoint

source ξi given by (3.17) for the computation of∇Ji(σk).

A Pseudo Code for the reconstruction scheme using the LK method and sparsity reg-

ularization is described in algorithm 10.

Algorithm 10: LK using sparsity regularization
Input: σ0, δσ0 = 0, α, τmin, τmax,m

Output: σI(M−1)

for k := 0, . . . , I(M − 1) do

Compute the gradient∇J[k](σ
k) given by (3.19);

Compute the smooth gradient∇J s
[k](µ

k) using algorithm 5 ;

Calculate the step size τ k given by BB criterion (5.33) holding condition (5.34);

Update inhomogeneity δσk+1 = Sταk(δσ
k − τ k∇J s

[k](σ
k)) ;

Calculate σk+1 = µ0 + δσk+1;

end

Here uk solves (2.1) with σk and source qi, and zi solves (3.10) with σi and adjoint

source ξi given by (3.17) for the computation of∇J[k](σ
k).
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Our suggested alternative way for minimising the functional (5.23) over the set A is

explained next. Instead of updating the inhomogeneity δσk using the soft-thresholding

function defined in (5.21) in our sparsity method, we update firstly the value of the coef-

ficient σk using the gradient descent direction of J and the soft-thresholding operator as

indicated in the following

σk+1 = Sα1τk(σ
k − τ k∇J s(σk)), (5.36)

where S as defined in (5.30), with the following “semi-shrinkage” function

Sλ(κ) =

σ
0, |κ| ≤ λ,

|κ| − λ, |κ| > λ.

(5.37)

Here Sλ is the soft-thresholding function as defined in (5.20), which, as before, can be

written component-wise as

(
Sλ(κ)

)
j

= sign(κj) max{|κj| − λ, 0}. (5.38)

Moreover, α1 := σ0 + α, with α << α1. The parameter α is used in the monotonicity

condition (5.34) for calculating τ k.

A Pseudo Code for this alternative algorithm is given below.

Algorithm 11: LK using our sparsity method
Input: σ0, α, (α1 = σ0 + α), τmin, τmax,m

Output: σI(M−1)

for k := 0, . . . , I(M − 1) do

Compute the gradient∇J[k](σ
k) given by (3.19);

Compute the smooth gradient∇J s
[k](σ

k) using algorithm 5 ;

Calculate τ k using the BB criterion (5.33) holding condition (5.34) using α;

Update the coefficient by σk+1 and using (5.36);

end

For completeness we mention that a sparse finite element method, based however on

the pure absorption RTE presented in Subsection 2.1.2, was studied in [168].
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5.5 Numerical Results

We have carried out the following numerical experiments targeting image reconstructions

of the absorption and scattering coefficients in DOT with sparsity regularization. We have

been using the algorithms 9,10, and 11 as presented in this chapter. In the following, we

explain in more details what has been done and how the algorithms performed in different

situations.

To start with, we present some reconstructions of the absorption coefficient µ. After-

wards we will also consider reconstructions of the scattering coefficient b. Finally, the

simultaneous reconstruction of µ and b is attempted. In the first numerical experiment,

two obstacles in the absorption coefficient, both having the same size, are reconstructed

from the data. These can for example represent haematomas. In the second experiment,

two scattering obstacles with different sizes are reconstructed from the gathered data. Fi-

nally, two absorption and two scattering inclusions are reconstructed simultaneously in

the last experiment using the LK technique with and without sparsity regularization.

The maximum number of iterations I was taken to be 400, the reduction factor for

the step size τ k was 0.6, and the fixed number m to preserve the monotonicity in (5.34)

was 2. The parameter s used in (5.34) was 1.0× 10−5, the regularization parameters α =

(αµ, αb) of expression (5.23) (as defined at the beginning on section 5.4) of the shrinkage

thresholding function Sταk for all reconstructions was manually selected to give feasible

reconstructions. For the purpose of comparison, we present also the reconstructions of the

absorption coefficient µ and the scattering coefficient b individually, and simultaneously,

using the Landweber and Landweber-Kaczmarz techniques as a benchmark to compare

our current sparsity imaging reconstructions with. We have used the same numerical

experimental setting as in section 3.7. We model an ’idealized’ human head by a domain

of size 5× 5 cm2. It is composed by a homogeneous background and an embedded clear

layer, which simulates the cerebrospinal fluid of the head. As we mentioned in chapter

2, we have used a 2D-adapted version of the 3D Henyey-Greenstein function (2.5) as

the scattering function with g = 0.9 for the individual reconstructions, and g = 0.6 for

the simultaneous reconstruction of absorption and scattering coefficients values given in

Table 5.1. These values are in the range of biomedical applications [142]. Saratoon et

al. [142] have pointed out recently that for those values of the absorption and scattering

coefficients, it is needed to use at least 16 vector velocity directions in the discretization
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of the angular variable θ in order to obtain accurate results. We opted to use only 12

directions because in many results as in [52, 53, 54, 144] we have seen that we are able

to retrieve acceptable reconstructions from simulated (noisy) data. Certainly, when real

data are used, possibly a more refined discretization of the directional variable will be

necessary, in particular in regions close to the boundary and inside the clear layers. On

the other hand, we do not expect that the fundamental behaviour of our algorithm will

depend on the exact number of directions chosen in the angular discretization. In our

proof-of-concept experiments we put therefore more emphasis on numerical efficiency

and simplicity.

µ[cm−1] b[cm−1]
Background 1.0 10

Inclusion 3.0 30
Clear layer 0.1 0.1

Table 5.1: Experimental set-up for simultaneous absorption and scattering reconstruction using sparsity
regularization

We observed in our numerical experiments that the evolution of the functional F

presents a similar behaviour as the evolution of the cost J or the norm of residuals,

such that we have only presented the graphs of the latter ones in our figures. A similar

observation is reported in [41, 78, 98].
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Figure 5.6: Figures 5.6a and 5.6b shows the reconstruction images using the algorithm 10 with Weak
Monotonicity and without Weak Monotonicity condition respectively. Figure 5.6c and figure 5.6d show
the cross sections and the norm of the residuals of the imaging reconstruction using the LK method with
sparsity regularization with Weak Monotonicity and without the Weak Monotonicity condition respectively.

The noisy data are generated by adding pointwise Gaussian noise to the absorption

and scattering exact data according to µkδ = µk + ε%|µk|, and bkδ = bk + ε%|bk|, where

% is the standard normal random variable, δ refers to the level of noise, ε is the relative

noise level, and |µk|, |bk| denotes the absolute value of µk and bk respectively. To measure

the accuracy of an approximation µδ of the absorption coefficient, we compute the L2-

norm error e = ‖µδ − µ̄‖L2 , where µ̄ is the true physical coefficient. In an analogous

way, we compute the L2-norm error for the scattering coefficient b. Figure 5.6 shows the

comparison of the image reconstruction of the absorption coefficient µ using the algorithm
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10 with the Monotonicity condition given in (5.34) on the one hand, and without using

the Monotonicity condition on the other hand. A qualitative and quantitative difference

of using the weak monotonicity condition (5.34) with the BB step size criterion is shown

in this figure. As it can be observed, the convergence indicated by the red line is faster

than the blue one. One needs to keep in mind in this comparison that the execution

time of the program is increased using the monotonicity condition. Also, we see that the

reconstruction using the weak monotonicity condition is more accurate with respect to the

true one. These results indicate that the application of the combined BB step size criterion

with the weak monotonicity condition provides quite accurate reconstructions.
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Figure 5.7: Figures 5.7a and 5.7b shows the reconstruction images using using the algorithm 10 with the L-
LK variant without the Weak Monotonicity in both cases. Figure 5.7c and figure 5.7d show the cross section
and the residuals of the LK with sparsity regularization without versus L-LK and sparsity regularization
respectively without the Weak Monotonicity condition for both cases.

Figure 5.7 shows the comparison of the reconstruction of the absorption coefficient µ

using algorithm 10 (the LK method and sparsity regularization) with the reconstruction

obtained using the same algorithm 10, but instead of computing ∇J[k](σ
k) using the LK

method, we use now the L-LK method, and without the Monotonicity in the BB step size

criterion condition in both cases.

Figure 5.8 shows the comparison of the reconstruction of the absorption coefficient µ

using the algorithm 10 versus using the L-LK method for the computation of ∇J[k](σ
k)

(and the Monotonicity condition in both cases). A significant difference of using the LK
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versus the L-LK method is seen in figure 5.7, while no significant difference of using one

instead of the other method is seen when the weak monotonicity condition is used as step

size criterion in each method as it can be seen in figure 5.8.

We have also tested the sparsity regularization algorithms 9 and 10 with the variant

of the L-LK method, and 11 described in this chapter. As a benchmark we have used

algorithm 2 (i.e., without sparsity regularization) . All these reconstructions are compared

in figure 5.9. In practice, one would choose the algorithm 10 without using the weak

monotonicity condition, since it retrieves acceptable reconstructions and is the fastest of

those compared in this chapter.
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Figure 5.8: Figures 5.8a and 5.8b shows the reconstruction image using algorithm 10 (with the L-LK
variant) and with the Weak Monotonicity in both cases. Figure 5.8c and figure 5.8d show the cross section
and the residuals of the LK with sparsity regularization versus L-LK and sparsity regularization respectively
with the Weak Monotonicity condition respectively for both cases.

Profiles in the x-direction are displayed in figure 5.10. Shown are the norm of the

residuals, and the L2-norm errors of the image reconstruction using the L, LK, L-LK

method with sparsity regularization, the LK method with the own sparsity regularization

and with only LK method without sparsity regularization, respectively. Figure 5.12 shows

the robustness of the sparsity regularization without the weak monotonicity condition. As

it can be seen in these last two figures, our proposed sparsity method behaves well for a

large range of values of the regularization parameter α.
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Figure 5.9: Figure 5.9a shows the true object, fig. 5.9b shows the reconstruction using algorithm 9, fig.
5.9c shows the reconstruction using algorithm 10, fig. 5.9d shows the reconstruction using the algorithm 10
with the L-LK variant. Figure 5.9e shows the reconstruction using the algorithm 11. Figure 5.9f shows the
reconstruction using the algorithm 2 (only the LK method without sparsity regularization.

Figure 5.13 compares the reconstruction of the scattering coefficient using the algo-

rithm 10, i.e., the LK method with sparsity regularisation, with our sparsity regularization

proposed here using algorithm 11 versus using algorithm 2, i.e., only the LK method with-

out sparsity regularisation. It also shows the profiles in the y-direction and the norm of

the residuals of the reconstruction using the LK method with sparsity regularization, the

LK method with our sparsity regularization, and with only LK method without sparsity

regularization.

A simultaneous reconstruction of absorption and scattering coefficients using the al-

gorithm 10 and 2 are presented in Figures 5.14 and 5.15, respectively. An accurate local-

ization and estimate of the inclusions of the absorption and scattering coefficients using

sparsity regularization are observed here compared to the exact ones, and compared to

the smooth reconstruction using only the LK method without sparsity regularisation, see

Figures 5.9, 5.10 and 5.13, respectively.
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Figure 5.10: Figure 5.10a shows the cross section of the final reconstructions using the methods of figure
5.9. Figure 5.10b shows their correspondent residuums. Figure 5.10c shows their correspondent L2-errors
using the methods of figure 5.9.

The location and estimate of the inclusion is well achieved using sparsity regulariza-

tion for the simultaneous reconstruction of the absorption and scattering coefficients in

comparison with using only the LK method, see figure 5.14 and 5.15. Tables 3.1 and

3.2 list the physical values used in the reconstruction of the absorption coefficient µ and
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scattering coefficient b only. Table 5.1 lists the physical values of µ and b used in the si-

multaneous reconstruction of absorption and scattering coefficients as suggested in [142],

using the LK method with sparsity regularization as shown in figure 5.14. Table 3.3 lists

the physical values of µ and b used in the simultaneous reconstruction of absorption and

scattering coefficients using only the LK method without sparsity regularization as shown

in figure 5.15.
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Figure 5.11: Figure 5.11a shows the true object, then reconstruction : 5.11b using algorithm 11, 5.11c using
algorithm 2. Figure 5.11d shows the cross section of the final reconstructions using algorithms 10 and 2.
Figure 5.11e shows their correspondent costs using LK method and LK method with sparsity regularization.
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Figure 5.12: Reconstruction of absorption coefficient using algorithm 10 with various regularizer α values.
Top row from left to right: α = 2× 10−4, α = 8× 10−5 and α = 1× 10−5. Bottom left: α = 5× 10−6,
bottom right: α = 1× 10−6.

171



CHAPTER 5. SPARSITY REGULARIZATION

 

 

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

20

40

60

80

100

120

140

(a)

 

 

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

20

40

60

80

100

120

140

160

180

(b)

 

 

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

20

40

60

80

100

120

140

160

(c)

0 10 20 30 40 50
100

110

120

130

140

150

160

170

180

190

x−position [cm]

b
 [
cm

−
1
]

 

 

 LK

 LK & Sparsity

Own

(d)

0 50 100 150 200 250 300 350 400 450
0

0.005

0.01

0.015

0.02

0.025

Sweep

N
o

rm
 o

f 
re

si
d

u
a

ls

 

 

 LK & Sparsity

 Own

(e)

Figure 5.13: Figure 5.13a shows the true object, then figure 5.13b shows the reconstruction using using the
algorithm 10, figure 5.13c shows the reconstruction using the algorithm 11. Figure 5.13d shows the cross
section of the final reconstructions using only LK method, using LK with sparsity regularization and the LK
with the own sparsity method. Figure 5.13e shows their correspondent residuums using LK method with
the sparsity regularization and LK method with the own sparsity regularization.
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Figure 5.14: Figure 5.14a shows the µ true object, figure 5.14b shows the µ reconstruction using the algo-
rithm 10, figure 5.14c shows the b true object, figure 5.14d shows the b reconstruction using LK method and
sparsity regularization. Figure 5.14e shows the cross section of µ using the LK with sparsity regularization.
Figure 5.14f shows the cross section of b using the LK with sparsity regularization. Figure 5.14g shows the
residual of the simultaneous reconstruction of µ and b using the LK method and sparsity regularization.
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Figure 5.15: Figure 5.15a shows the µ true object, figure 5.15b shows the µ reconstruction using only the
LK method, figure 5.15c shows the b true object, figure 5.15d shows the b reconstruction using only the LK
method. Figure 5.15e shows the cross section of µ using only the LK. Figure 5.15f shows the cross section
of b using only the LK method. Figure 5.15g shows the residual of the simultaneous reconstruction of µ
and b reconstruction using only the LK method.
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Chapter 6

Total variation regularization

In this chapter, first some basic concepts of the already classical total variation regular-

ization are briefly reviewed. In section 6.1, the definition of total variation of a function

is presented and discussed. Numerical algorithms for practically minimizing total varia-

tion functionals, however, are still object of active research. Therefore, in section 6.2 a

more recent approach based on the Split Bregman Iteration is presented, which was also

adopted for our numerical experiments applied in this thesis to the special case of DOT.

Then, in section 6.5 some details of the corresponding discretization in one and two space

dimensions is briefly presented. Afterwards, the lagged diffusivity algorithm is described

in section 6.4 which was as well implemented in this thesis for the special case of DOT. In

section 6.3 the limited-memory BFGS with line search technique is formulated which is

used in our numerical experiments. Finally, some computational results of our numerical

experiments are discussed in the last section.

6.1 Introduction

In this chapter we will consider the following Tikhonov-type functional

F(σ) = min
σ
J (σ) + βK(σ), (6.1)

where J (σ) is as defined in (3.6) andK(σ) is the penalty term which can be a convex and

differentiable function and α is the regularizer parameter [162]. Let Ω ∈ R2 and σ ∈ L1,
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then the total variational of σ is defined by

K(σ) = sup
ϕ∈B

{ˆ
Ω

σ divϕ dx

}
, (6.2)

where the space of test functions is given by

B =
{
ϕ ∈ C1

0(Ω,R2) | |ϕ(x)|L∞ ≤ 1 ∀x ∈ Ω
}
,

and C1
0(Ω,R2) denotes the space of vector-valued functions ϕ = (ϕ1, ϕ2) whose compo-

nents ϕj are continuously differentiable and having compact support on Ω.

The Sobolev space W 1,1 denotes the closure of C1
0(Ω) with respect to the norm

‖υ‖1,1 =

ˆ
Ω

[
|υ|+

2∑
j=1

∣∣∣ ∂υ
∂xj

∣∣∣].
If we have σ ∈ W 1,1, then the total variation can be written as

K(σ) =

ˆ
Ω

|∇σ|. (6.3)

where |∇σ| is the Euclidean norm of the weak gradient ∇σ ∈ R2 of the distributional

derivative of σ. The expression (6.3) is also known as the total variation semi-norm of

σ, denoted by ‖σ‖TV . Also, the bounded variation (BV) semi-norm is endowed with

‖σ‖BV = ‖σ‖1 + ‖σ‖TV [172]. Since the total variation regularization K(σ) is the sur-

face integral over the scalar field |∇σ|, Vogel gave an interpretation of the total variation

regularization as measuring the changes or jumps on the lateral surfaces of the function

σ on the domain Ω [162]. Thus, the total variations penalise the oscillations of σ(x).

Blocky reconstructions are obtained in many linear problems such as image denoising

and deblurring after total variation regularization is applied. The classical Tikhonov regu-

larization smooths out blocky structures, whereas total variation regularization is used to

obtain satisfactory reconstructions of obstacles which have sharp features.
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6.2 Split Bregman method

Osher and Goldstein consider in [83] the `1 regularization problem (6.1) with K(σ) =

‖Φ(σ)‖1, i.e.,

min
σ
J (σ) + ‖Φ(σ)‖1, (6.4)

where ‖Φ(σ)‖1 is considered as a penalty term, and J(σ) is assumed to be a convex

function. Also, they assume that Φ is differentiable. The key idea of the Split Bregman

method is to de-couple the `1 (‖Φ(σ)‖1) and `2 (J (σ)) terms of equation (6.4). Letting

w = Φ(σ), the minimisation problem (6.4) is equivalent to the constrained problem

min
σ
J (σ) + ‖w‖1 s.t. w = Φ(σ). (6.5)

Notice that the two terms in (6.5) do not depend directly on each other any longer, that

is, these two terms have been split, which is the basic idea of the Split Bregman method.

The unconstrained version of (6.5) with the substitution w = ∇σ is

min
σ,w
J (σ) + ‖w‖1 +

β

2
‖w −∇σ‖2

2 (6.6)

If the Bregman iteration (5.7) is applied to (6.6) with K(σ) = ‖w‖1, one obtains

(σk+1, wk+1) = min
σ,w

D
pkσ
J (σ, σk) +D

pkw
K (w,wk) +

β

2
‖w −∇σ‖2

2 , (6.7a)

pkσ = pkσ − β∇T (wk+1 −∇σk+1), (6.7b)

pkw = pkw − β(wk+1 −∇σk+1), (6.7c)

where Dpkσ
J (σ, σk), D

pkw
K (w,wk) denotes the Bregman distances as defined in eq. (5.5),

∇T := − div denotes the adjoint of ∇ and the Laplacian is defined by ∆ = −∇T∇.

The minimisation problem (6.7) can be solved alternating the variable σ and w separately

while keeping the other variable fixed, which results in a scheme presented in [17, 79, 83,

163, 165, 166, 172, 175, 176], namely

σk+1 = min
σ

D
pkσ
J (σ, σk) +

β

2

∥∥wk −∇σ∥∥2

2
, (6.8a)

pkσ = pkσ − β∇T (wk+1 −∇σk+1), (6.8b)
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wk+1 = min
w

D
pkw
K (w,wk) +

β

2

∥∥w −∇σk+1
∥∥2

2
, (6.9a)

pkw = pkw − β(wk+1 −∇σk+1), (6.9b)

Then, equation (6.8) and (6.9) address the `2 term J (σ) and `1 term K(σ) of the problem

(6.4), respectively. Finally, the Split Bregman iteration is obtained by writing Equations

(6.8) and (6.9) in the following form as shown in [83]

σk+1 = min
σ
J (σ) +

β

2

∥∥wk −∇σ∥∥2

2
, (6.10a)

wk+1 = min
w
‖w‖1 +

β

2

∥∥w −∇σk+1
∥∥2

2
. (6.10b)

We mention that some authors have used an auxiliary variable v to enforce the constraint

equality w = ∇σ, which has the effect that the split Bregman formula (6.10) consists of

three equations; however, the resulting expression with this auxiliary variable is equivalent

to (6.10). The solution of the w-subproblem (6.10b) for fixed σ is given by

wk+1 = S̄1/β

(
∇σk+1

)
, (6.11)

where S̄1/β is the vectorial soft-thresholding function defined for κ ∈ R2 as

S̄γ(κ) =


max (‖κ‖2 − γ, 0)

κ
‖κ‖2

, if κ 6= 0,

0, if κ = 0.

Let T (σ) be equal to the right hand side of (6.10a), i.e.,

T (σ) = J (σ) +
β

2

∥∥wk −∇σ∥∥2

2
. (6.12)

Then the solution of the σ-subproblem (6.10a) for fixed w can be found by calculating the

gradient of (6.10a) with respect to σ, which results in

∇T (σ) = ∇J (σ) + β∇T
(
wk −∇σ

)
. (6.13)
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Hence, the steepest descent and LK methods without inexact line search can be imple-

mented in order to solve the σ-minimisation subproblem (6.10a). This results in

σk+1 = σk − τ
(
∇J[k](σ

k) + β∇T
(
wk −∇σk

))
, (6.14a)

∇σk · ν̄ = 0 on Γ, (6.14b)

where ∇J[k](σ
k) is given by (3.19) with [k] := (k mod M) and M is the number of

sources qj .

A suitable selection of the regularizer parameter β is essential in order the Split Breg-

man iteration (6.10) numerically converges rapidly. For large values of β, the effect of the

σ-subproblem (6.14) increases because the Laplacian term ∆σ generates heavy spatial

interaction, and w has more influence on the solution σ because the w solution of (6.11)

(∇σ) is shrank by small number 1/β. While for small values of β, the behaviour of both

σ\w-subproblems is opposed. Therefore, β should be neither small nor rather large for

rapid convergence.

We have worked with the following functional equivalent to (6.6) as suggested in [149]

min
σ,w

1

α
J (σ) + ‖w‖1 + β‖∇σ − w‖2

2,

which makes is easier to find the proper choice of values of the parameters α and β. Then,

the expression for T (σ) is

T (σ) =
1

α
J (σ) +

β

2

∥∥wk −∇σ∥∥2

2
, (6.15)

and the σ-subproblem to be solved becomes

σk+1 = σk − τ
(

1

α
∇J[k](σ

k) + β∇T
(
wk −∇σk

))
, (6.16a)

∇σk · ν̄ = 0 on Γ, (6.16b)

where ∇J[k](σ
k) is given by (3.19) with [k] := (k mod M) and M is the number of

sources qj .

To accelerate the rate of convergence of the solution of (6.16), we start with small

values of α and increase them until some acceptable convergence criterion is satisfied, as
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described in the algorithm 13. Then, we use the continuation scheme on the parameter β

in algorithm 13 to increase the rate of convergence of the algorithm 12 as tested in [149].

We start with small values of β at the beginning of the algorithm, and then increase them

by a fixed number after a fixed number of iterations until a stopping criterion regarding

the L2 error norm of the residuum J (σ) is satisfied. This Split Bregman Iteration (6.10)

without continuation has been used in [79, 113, 176]. Both schemes have been used in the

numerical experiments presented further below in this chapter. Finally, we mention that

a convergence analysis of the Split Bregman iteration for the nonlinear problem of DOT

would be necessary, but it is out of the scope of this dissertation.

A Pseudo Code of the algorithm of the split Bregman iteration for total variation reg-

ularization reads as follows.

Algorithm 12: Split Bregman iteration for total variation regularization
Input: α, β, initial guess: σ0, w0 = 0

Output: σI(M−1)

for k := 0, . . . , I(M − 1) do

Solve the w-subproblem (6.11);

Solve the σ-subproblem (6.16) ;

end

A Pseudo Code for the Split Bregman iteration using a continuation scheme for the

total variation is given next.

180



CHAPTER 6. TOTAL VARIATION REGULARIZATION

Algorithm 13: Split Bregman iteration with continuation scheme for TV
Input: α, β, initial guess: σ0, w0 = 0 and βmax, ε, l

Output: σI(M−1)

while β ≤ βmax do

σ̂ ← σ + 2ε;

while ‖σ − σ̂‖ > ε or after l iterations do

Solve the w-subproblem (6.11);

Solve the σ-subproblem (6.16);

end

σ̂ ← σ;

β = 2 · β;

end

6.3 Limited-memory BFGS algorithm

We present in this section the Limited-memory-BFGS formula which is used in the next

section when employing a quasi-Newton step in the algorithm of the Lagged Diffusivity

Method.

To start with, we state the Taylor theorem in the form of [119] which says that a

function f can be approximated up to some degree of accuracy under some conditions on

the function f

Theorem 26 Assuming that f : RN → R is twice continuously differentiable, then

f(σ + p) ≈ f(σ) + pT∇f(σ) +
1

2
pT∇2f(σ + tp)p, (6.17)

for some t ∈ (0, 1). Moreover, the following equation holds

∇f(σ + p) = ∇f(σ) +

ˆ 1

0

∇2f(σ + tp)p dt (6.18)

for some t ∈ (0, 1).
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Let Mk(p) be the Taylor series expansion of f(σk + p) up to second order,

Mk(p) := f(σk) + pT∇f(σk) +
1

2
pT∇2f(σk)p.

Then, the Newton direction is the vector p which minimises the function Mk(p) with

respect to p, i.e.,

pk = −
(
∇2fk

)−1∇fk, (6.19)

where the notation fk = f(σk) has been used. An approximation Bk can be used instead

of the true Hessian ∇2fk which is derived using (6.18). After adding the term ∇2f(σ)p

to (6.18), one obtains

∇f(σ + p) = ∇f(σ) +∇2f(σ)p+

ˆ 1

0

[
∇2f(σ + tp)−∇2f(σ)

]
p dt. (6.20)

The order of the second term on the right hand side of (6.20) is o
(
‖σk+1 − σk‖

)
since f

is assumed twice continuously differentiable. Thus, letting σ = σk and p = σk+1 − σk,

we obtain

∇fk+1 = ∇fk +∇2fk+1(σk+1 − σk) + o
(
‖σk+1 − σk‖

)
.

Then it follows

∇2fk+1(σk+1 − σk) ≈ ∇fk+1 −∇fk, (6.21)

provided σk+1 is sufficiently close to σk. By setting

Bk+1 : = ∇2fk+1,

sk : = σk+1 − σk,

rk : = ∇fk+1 −∇fk,

the equation (6.21) can be written as

Bk+1sk = rk. (6.22)

Therefore, using the approximation Bk of the true Hessian, equation (6.19) is written as

pk = −B−1
k ∇f

k, (6.23)
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with the update iteration rule

σk+1 = σk + τ kpk. (6.24)

The step size τ k is chosen to be the step size of the inexact line search of the Newton

method. In our numerical experiments, we have used Brent’s Method given in [136] to

perform the inexact line search. As stated in [119], equation (6.22) holds only if the

following so-called curvature condition is satisfied

sTk r
k > 0. (6.25)

This curvature condition holds when the following Wolfe conditions are satisfied

f(σk + τ kpk) ≤ f(σk) + c1τ
k(∇fk)Tpk, (6.26a)(

∇f(σk + τ kpk)
)T
pk ≥ c2τ

k(∇fk)Tpk, (6.26b)

with 0 < c1 < c2 < 1. Both Wolfe conditions (6.26) are satisfied if the first Wolfe

condition (6.26a) holds and using the below backtracking scheme [119], which is given

by the below stated algorithm. We mention that, in practice, we have added a counter in

the statement of the “while” cycle of the backtracking scheme such that this cycle ends

with no more than 6 iterations.

We state now the Pseudo-code of the Backtracking Line-Search.

Algorithm 14: Backtracking Line Search
Input: τ̄ > 0 given by the inexact line search using Brent’s method and

0 < ι, c1 < 1
Output: τ k := τ
Set τ = τ̄ ;
while f(σk + τpk) > f(σk) + c1τ(∇fk)Tpk do

τ = ιτ ;
end

Putting Hk := B−1
k , equation (6.24) becomes

σk+1 = σk − τ kHk∇fk,
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where we are using the Sherman-Morrison-Woodbury (SMW) update formula for Hk

Hk+1 = V T
k HkVk + γksks

T
k , (6.27)

with

γk =
1

rTk sk
, Vk = I − γkrksTk . (6.28)

We assume that σ = σi,j is defined on an equispaced mesh in two dimensions, {(xi, yi) |

xi = i∆x, yj = j∆y, i = 1, . . . , Nx, j = 1, . . . , Ny}. However, the last expression is not

convenient to use because Hk ∈ RNx×Ny is generally very large. Thus, a modified ver-

sion of the SMW formula is often used to overcome this inconvenience which uses only

a number of m vectors sk and rk at each iteration. The optimal choice of m is problem-

dependent, however, selecting m between 5 and 10 has given satisfactory convergence

results as reported in [119, 149]. The approximation to the inverse of the Hessian Hk is

updated by (6.27), using m pairs si, yi, starting from an initial inverse Hessian approxi-

mation H0
k which we assume to be in iteration k

H0
k = ρkI, (6.29)

where

ρk =
sTk−1rk−1

rTk−1rk−1

.

Then, at each iteration k > m, the oldest pair of si, ri,i.e., sk−m, rk−m is discarded from

storage.

A Pseudo Code of this process is explained in the following algorithm given by Broy-

den, Fletcher, Goldfarb, and Shanno.
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Algorithm 15: L-BFGS
Input: ∇f(σk), H0

k and m ∈ Z+

Output: Hk∇f(σk)

q = ∇f(σk) ;

for i = k − 1, k − 2, . . . , k −m do

λi = γis
T
i q ;

q = q − λiri ;

end

ζ = H0
kq ;

for i = k −m, k −m+ 1, . . . , k −m do

$ = γir
T
i ζ ;

ζ = ζ + si(λi −$) ;

end

Hk∇f(σk) = ζ

Finally, a Pseudo Code of the Limited-memory BFGS Method with inexact line search

is given in the next algorithm.

Algorithm 16: L-BFGS Method with inexact line search
Input: σk and integer m ∈ Z+

Output: σk+1

repeat

H0
k given by (6.29) ;

pk = −Hk∇f(σk) using algorithm 15 ;

Compute τk+1 using algorithm 14 ;

σk+1 = σk + τ kpk ;

until Convergence;
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6.4 Lagged Diffusivity

We will used the lagged diffusivity approach presented in [79, 162] to solve the minimi-

sation problem (6.1). After taking minus times the gradient of (6.1), one obtains

−∇F(σ) = −∇J (σ) + α∇ · ∇σ
|∇σ|

.

The descent direction method for solving (6.1) can be viewed as the solution of the fol-

lowing diffusive equation with homogeneous Neumann boundary conditions

∂σ

∂t
= −∇J (σ) + α∇ · ∇σ

|∇σ|

∇σ · ν̄ = 0 on Γ,

(6.30)

where ν̄ is the normal vector on Γ and | · | stands for the Euclidean norm. The discretized

time step ∆t can be set to a fixed number for this method or equal to the variable step size

τ if a line search is computed.

The following scheme for solving the diffusion equation (6.30) numerically is pre-

sented in [79].

σn+1
i,j = σn+1

i,j + ∆t

−∇J + α∇−x

 ∇+
x σ

n
i,j√

(∇+
x σ

n
i,j)

2 + (m(∇+
x σ

n
i,j,∇−x σni,j)2


+α∇−y

 ∇+
y σ

n
i,j√

(∇+
y σ

n
i,j)

2 + (m(∇+
y σ

n
i,j,∇−y σni,j)2

 , i, j = 1, ..., N − 1,

σn0,j = σn1,j, σnN,j = σnN−1,j, σni,0 = σni,1, σni,N = σni,N−1, i, j = 0, ..., N,

(6.31)

where the third row in (6.31) represents the homogeneous Neumann boundary condition,

and ∇+
x ,∇−x ,∇+

y ,∇−y denote the forward and backward differences in the x and y direc-

tions, respectively. Moreover, m(a, b) denotes the minmod function defined by

m(a, b) =

(
sign(a) + sign(b)

2

)
min (|a|, |b|).

In case that σ is locally constant, the quotients of the first line in (6.31) are computed as

equal to 0, therefore σn+1
i,j = σni,j .
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The second term of the right hand side of (6.30), which is minus times the gradient of

the regularizing term

−∇K(σ) = ∇ · ∇σ
|∇σ|

, (6.32)

can be interpreted as the curvature of the level curve of the function σ(x) at the point x as

pointed it out by Osher and Tsai [129]. If equation (6.30) is multiplied by |∇σ| as Osher

and Tsai suggest in [129], the behaviour of the diffusion equation (6.30) is equivalent to

the behaviour of the evolution of the following level set equation in the variable σ

∂tσ =

(
∇ · ∇σ
|∇σ|

)
|∇σ|, (6.33)

which evolves under a mean curvature term for the level set function σ. The solution of

equation (6.33) approaches the solution of (6.32) as long as the gradient of σ is nonzero.

Then, it an interpretation can be given of the removal of noise after applying a total vari-

ation regularization method as follows; the level curves around noise artefacts have high

curvatures which shrink at speed of the mean curvature and eventually disappear. Osher

and Tsai in [129] also proposed a scheme for discretizing the curvature term

κ = ∇ · ∇σ
|∇σ|

. (6.34)

as follows. Firstly, the norm of the gradient |∇σ| is in the denominator of the mean

curvature, which can be approximately zero when the function σ is nearly constant. Hence

it is approximated by

|∇σ|ε = (|∇σ|2 + ε2)1/2. (6.35)

Doing this replacement, the total variation defined in (6.3) is differentiable at the origin.

The curvature κi,j is discretized by

κi,j =
nxi+1/2,j − nxi−1/2,j

∆x
+
nyi,j+1/2 − n

y
i,j−1/2

∆y
, (6.36)
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where the components nx, ny of the normal vector n̄ of the domain Ω are given by

nxi±1/2,j : =
∇±x σi,j√

(∇±x σi,j)2 +∇0
y(B

±
x σi,j)

2 + ε2
,

nyi,j±1/2 : =
∇±y σi,j√

∇0
x(B

±
y σi,j)

2 + (∇±y σi,j)2 + ε2
,

where

B±x σi,j =
σi±,j + σi,j

2
, and B±y σi,j =

σi,j±1 + σi,j
2

,

are the arithmetic averaging differences in the x and y direction, respectively, and∇0
x, ∇0

y

denote the central differences in the x and y direction, respectively. We have also used

the definition of the curvature as given in [146], which is

κ =
σxxσ

2
y − 2σxyσxσy + σyyσ

2
x(

σ2
x + σ2

y

)3/2
. (6.37)

We have discretized the curvature given above using central finite differences in both

directions x and y. Other approaches for solving the problem (6.1) are suggested in

[2, 17, 70, 162, 174], as follows. Since |∇σ| is not differentiable at the origin as it was

mentioned before, the total variation term K(σ) is replaced by

K(σ) =

ˆ
Ω

|∇σ|ε ds, (6.38)

where |∇σ|ε is given in (6.35). Also, the above total variation term can be approximated

by

K(σ) =

ˆ
Ω

ϑ(∇σ) ds, (6.39)

where ϑ(ζ) is a smooth and convex function which may be given by

ϑ(ζ) =
√
ζ2 + ε2,

or by the Huber function given in (5.11), see figure (5.3), both with the property

ϑ′(ζ) > 0 whenever ζ > 0. (6.40)

We now calculate the gradient of the approximation of the total variation given in
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(6.39) as follows. We assume that the function ϑ in (6.39) can be written as

ϑ(ζ) = ϑ̂(|ζ|2),

where ϑ̂ : R → R is an increasing and differentiable function. Note that both possible

candidates, the Huber function and ϑ =
√
ζ2 + β, can be written in the above represen-

tation.

For a smooth function υ and τ ∈ R, we have

d

dτ
K(σ + τυ)

∣∣∣
τ=0

=

ˆ
Ω

ϑ′
(
|∇σ|2

)
(∇σ)T∇υ. (6.41)

Integrating by parts, one obtains

∇K = L(σ)σ, (6.42)

where L(σ) is a diffusion operator with Neumman boundary condition given by

L(σ)ς = div
(
ϑ′
(
|∇σ|2

)
∇ς
)
, x ∈ Ω, (6.43a)

(∇ς)T ν̄ = 0, x ∈ Γ. (6.43b)

Note that the diffusion coefficient ϑ′
(
|∇σ|2

)
is positive since ϑ is an increasing function.

For a smooth function υ, w and τ, ε ∈ R, the Hessian of the approximation of the total

variation given in (6.39) is

∂2

∂τ + ∂ε
K(σ + τυεw)

∣∣∣
τ,ε=0

=

ˆ
Ω

ϑ′
(
|∇σ|2

)
(∇υ)T∇w + 2ϑ′′

(
|∇σ|2

)(
(∇υ)T∇σ

)
(
(∇σ)T∇υ

)
,

= (∇υ)T
[
ϑ′
(
|∇σ|2

)
I + 2ϑ′′

(
|∇σ|2

)
∇σ(∇σ)T

]
∇w,

(6.44)

where I denotes the identity map. Integration by parts yields

HessK(σ)ς = − div
{[
ϑ′
(
|∇σ|2

)
I + 2ϑ′′

(
|∇σ|2

)
∇σ(∇σ)T

]
∇ς
}
, x ∈ Ω, (6.45a)

(∇ς)T ν̄ = 0, x ∈ Γ. (6.45b)
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Using (6.42) and (6.45), the gradient and the Hessian of F(σ) are given by

∇F(σ) = ∇J(σ) + αL(σ)σ, (6.46)

and

HessF(σ) = HessJ (σ) + αL(σ) + αL′(σ)σ, (6.47)

respectively, where∇J(σ) is given in (3.15).

To start our description of the technique, the gradient of the approximation of the

total variation given in (6.39) is discretized in one dimension as shown in [162] in order

to understand better the discretization of it in two dimensions. Let σ(x) be a function

defined on R1 and given by σ = (σ1, . . . , σN) with σi = σ(xi), xi = i∆x. Let the

approximation D of the derivative be defined by

Dσ =
1

∆x


D1σ

...

DN−1σ

 , (6.48)

where

Dif = fi+1 − fi ∀i = 1, . . . , N − 1, (6.49)

has the N × 1 matrix representation, Di = [0, . . . , 0,−1, 1, 0, . . . , 0], and D is the (N −

1)×N matrix whose ith row is Di.

The discretization of the total variation K : RN → R given in (6.39) is

K(σ) =
N−1∑
i=1

ϑ
(
(Dσ)2

)
(6.50)

Then, for any υ ∈ RN and τ ∈ R, the gradient of K(σ) is given by

d

dτ
K(σ + τυ)

∣∣∣∣
τ=0

=
N−1∑
i=1

ϑ′
(
(Dσ)2

)
(Diσ)(Diυ)

= (Dυ)T diag (ϑ′(σ))Dσ

=
〈
DT diag (D′(σ))Dσ, υ

〉
,

(6.51)

where diag (ϑ′(σ)) denotes the (N−1)×(N−1) diagonal matrix with elements ϑ′(Diσ)2
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in its diagonal, and 〈·, ·〉 denotes the Euclidean inner product on RN−1. The gradient of K

can be written as

∇K(σ) = L(σ)σ, (6.52)

where L(σ) is a symmetric (N − 1)× (N − 1) matrix defined by

L(σ) = DT diag(ϑ′(σ))D. (6.53)

L(σ), which is positive semidefinite if condition (6.40) is satisfied.

Then, for υ, w ∈ RN and τ, ε ∈ R, the Hessian of K is calculated as follows

∂2

∂τ∂ε
K(σ + τυ + εw)

∣∣∣∣
τ,ε=0

=
N−1∑
i=1

ϑ′
(
(Diσ)2

)
(Diυ)(Diw)

+
N−1∑
i=1

ϑ′′
(
(Diσ)2

)
(Diσ)(Diυ)(Diw)(2Diσ)

=
〈[

DTdiag (ϑ′(σ)) + diag(2(Dσ)2ϑ′′(σ))
]
Dυ,Dw

〉
,

where diag(2(Dσ)2ϑ′′(σ)) denotes the (N − 1)× (N − 1) diagonal matrix with elements

2(Diσ)2ϑ′′((Diσ)2) in its diagonal. Hence, the Hessian is given by

HessK(σ) = L(σ) + L′(σ)σ, (6.54)

where L(σ) as in (6.53) and

L′(σ)σ = DT diag(2(Df)2ϑ′′(σ))D.

Now we proceed to the description in two space dimensions, which is similar to the

procedure described above for one dimension. We want to obtain the gradient and the

Hessian of K(σ) in two dimensions. Assuming σ = σi,j is defined on an equi-spaced

mesh in two dimensions, {(xi, yi) | xi = i∆x, yj = j∆y, i = 1, . . . , Nx, j = 1, . . . , Ny}.

Then, the total variation term K : RNx×Ny → R in two dimensions is given by

K(σ) =
Nx−1∑
i=1

Ny−1∑
j=1

ϑ
(

([Dxσ]ij)
2 + ([Dyσ]ij)

2
)
,
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where

[Dxσ]ij = σi,j − σi−1,j, 1 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny, (6.55a)

[Dyσ]ij = σi,j − σi,j−1, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny − 1. (6.55b)

Let D be the discrete derivative

D =

Dx

Dy

 : RNx×Ny → R(Nx−1)×(Ny−1) × R(Nx−1)×(Ny−1) (6.56)

where the components Dx and Dy denote the (Nx − 1)(Ny − 1)×NxNy matrices corre-

sponding to the discrete gradients given in (6.55) on directions x and y, respectively. Let

〈〈f, g〉〉 be the Frobenius inner product in R(Nx−1)×(Ny−1) which is defined by

〈〈f, g〉〉 =
Nx−1∑
i=1

Ny−1∑
j=1

fi,jgi,j.

The adjoint of D, D∗ : R(Nx−1)×(Ny−1) × R(Nx−1)×(Ny−1) → RNx×Ny is minus times the

discrete divergence operator

{
D∗

υ
w

}
ij

= υi−1,j−υi,j +wi,j−1−wi,j, 2 ≤ i ≤ Nx, 2 ≤ j ≤ Ny−1. (6.57)

Here we define υ1,j = υNx,j = υi,Ny = 0 and wi,1 = wi,Ny = wNx,j = 0. From the above

definition of D∗, we have

D∗ =
[
DT
x DT

y

]
.

Thus, the gradient of K is given by

d

dτ
K(σ + τυ)

∣∣∣∣
τ=0

=
Nx−1∑
i=1

Ny−1∑
j=1

ϑ′
[
([Dxσ]ij)([Dxυ]ij) + ([Dyσ]ij)([Dyυ]ij)

]
,

=
〈〈

diag
(
ϑ′(|Dσ|)2

)
Dxσ,Dxυ

〉〉
+
〈〈

diag
(
ϑ′(|Dσ|)2

)
Dyσ,Dyυ

〉〉
,

=
〈〈

D∗ϑ′(|Dσ|2)Dσ, υ
〉〉
,

where ϑ′(|Dσ|2) denotes the (Nx − 1)(Ny − 1) × NxNy diagonal matrix with elements
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ϑ′
(∣∣[Dxσ]ij

∣∣2 +
∣∣[Dyσ]ij

∣∣2) in its diagonal given by

ϑ′(|Dσ|2) =

diag (ϑ′(σ)) 0

0 diag (ϑ′(σ))

 .
Analogous to the case in one dimension we denote L(σ) by

L(σ) = D∗ϑ′
(
|Dσ|2

)
D,

=
[
DT
x DT

y

] diag (ϑ′(σ)) 0

0 diag (ϑ′(σ))

Dx

Dy

 . (6.58)

Then, the gradient of K can be written as

∇K(σ) = L(σ)σ, (6.59)

where L(σ) is the diffusion operator with Neumann boundary condition

L(σ)σ = −∇ ·
(
ϑ′(|∇σ|2)∇σ

)
= − ∂

∂x

(
ϑ′(|∇σ|2)

∂σ

∂x

)
− ∂

∂y

(
ψ′(|∇σ|2)

∂σ

∂y

)
,

(6.60)

with the diffusion coefficient

ϑ′(|∇σ|2) = ψ′

((
∂σ

∂x

)2

+

(
∂σ

∂y

)2
)
.

Since ϑ is convex, the diffusion coefficient ϑ′(|Dσ|2) is positive. Therefore the matrix

L(σ) in (6.58) is symmetric and positive semi-definite. The Hessian is computed analo-

gously as in the one dimensional case

HessK(σ) = LTψ′(|Lσ|2)L+ LTϑ′′(2|Dσ|2)(Dσ)(Dσ)TD, (6.61)

which can be written as in (6.61), with L(σ) defined in (6.58).

Finally, in two dimensions, using (6.59) and (6.61), the gradient and the Hessian of

F(σ) are given by

∇F(σ) = ∇J(σ) + αL(σ)σ, (6.62)
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and

HessF(σ) = HessJ (σ) + αL(σ) + αL′(σ)σ, (6.63)

respectively, where∇J(σ) is given in (3.15).

An application of the Newton method for the the minimisation problem (6.1) results

in

σk+1 = σk −
(
HessLF(σk)

)−1∇F(σk), (6.64)

where HessLF(uk) is given by (6.63).

Next we provide the Pseudo Code for the Lagged Diffusivity Fixed Point Method for

total variation regularization as presented in [162].

Algorithm 17: Lagged diffusivity method for total variation regularization
Input: α, σ0

Output: σI

for k := 1, . . . , I do

Compute the gradient∇F(σk) given in (6.62);

Update σk+1 = σk + τ kpk using algorithm 16;

end

Here ui solves (2.1) with source qi, and zi solves (3.10) with adjoint source ξi given

by (3.17), and pk := −
(
HessLF(σk)

)−1∇F(σk).

For using the limited-memory L-BFGS algorithm 16 in the algorithm 17, we identify

the gradient ∇F(σk) with ∇f(σk) and
(
HessLF(σk)

)−1∇F(σk) with Hk∇f(σk), as

given in section 6.3.

6.5 Discrete Derivatives

Let σi,j be defined on a uniformly-spaced grid in two dimensions{(xi, yi) | xi = i∆x, yj =

j∆y, i = 1, . . . , Nx, j = 1, . . . , Ny}. Then the discrete gradient of σi,j is given by

∇σ := Dσ where Dσ is defined in (6.56).

The discrete divergence denoted by div or ∇· is defined as div := −D∗. Then, using
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the definition (6.57) of the adjoint D∗ for υij and wij , we obtain

{
div

υ
w

}
ij

= υi,j−υi−1,j +wi,j−wi,j−1, 2 ≤ i ≤ Nx, 2 ≤ j ≤ Ny−1. (6.65)

The discrete Laplacian is defined as usual as ∆ = div∇ = ∇ · ∇. Then the Laplacian of

σ is

∆σ =

{
div

[Dxσ]ij

[Dyσ]ij

}
ij

= −D∗x
(
[Dxσ]ij

)
−D∗x

(
[Dyσ]ij

)
= σi+1,j − 2σi,j + σi−1,j + σi,j+1 − 2σi,j + σi,j−1

= σi+1,j + σi−1,j − 4σi,j + σi,j+1 + σi,j−1.

We consider the following two types of boundary conditions for the discrete differences.

Firstly, we consider the symmetric boundary condition given by

[Dxσ]ij =

σi+1,j − σi,j if 1 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny,

0 if i = Nx,

(6.66)

and

[Dyσ]ij =

σi,j+1 − σi,j if 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny − 1,

0 if j = Ny,

(6.67)

Secondly, we consider the periodic boundary condition given by

[Dxσ]ij =

σi+1,j − σi,j if 1 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny,

σ1,j − σNx,j if i = Nx,

(6.68)

and

[Dyσ]ij =

σi,j+1 − σi,j if 1 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny,

σi,1 − σi,Ny if j = Ny.

(6.69)

Using the symmetric boundary conditions defined in (6.66), the discrete gradient Dxσ
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is represented by the following matrix



[Dxσ]1j

[Dxσ]2j
...

[Dxσ](Nx−1)j

[Dxσ]Nxj


=



−1 1

−1 1
. . . . . .

−1 1

0





σ1,j

σ2,j

...

σNx−1,j

σNx,j


, (6.70)

and similarly for Dxσ.

Using the symmetric boundary conditions (6.66), the discretization of −D∗x for the

extreme points is

−D∗xσ1,j = σ1,j

−D∗xσNx,j = σNx,j − σNx−1,j = σNx−1,j,

since σNx,j is equal to zero by the boundary conditions (6.66). Then, the negative adjoint

−D∗xσ is given by



−[Dxσ]1j

−[Dxσ]2j
...

−[Dxσ](Nx−1)j

−[Dxσ]Nxj


=



1

−1 1
. . . . . .

−1 1

−1 0





σ1,j

σ2,j

...

σNx−1,j

σNx,j


, (6.71)

which is minus times the transpose of the matrix of equation (6.70). We proceed in a

similar fashion for −D∗xσ.

Finally, the discretization of the Laplacian −D∗x
(
[Dxσ]ij

)
is

−D∗x
(
[Dxσ]ij

)
=


σ2,j − σ1,j if i = 1,

σi+1,j − 2σi,j + σi−1,j if i = 2, . . . , Nx − 1,

σNx−1,j − σNx,jfN−1 − fN if i = Nx,
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−D∗x
(
[Dxσ]1j

)
−D∗x

(
[Dxσ]2j

)
...

−D∗x
(
[Dxσ](Nx−1)j

)
−D∗x

(
[Dxσ]Nxj

)


=



−1 1

1 −2 1
. . . . . . . . .

1 −2 1

1 −1





σ1,j

σ2,j

...

σNx−1,j

σNx,j


, (6.72)

and similarly for −D∗y
(
[Dyσ]ij

)
. Therefore, the discretization of the Laplacian of σ is

−D∗x
(
[Dxσ]ij

)
− D∗x

(
[Dyσ]ij

)
. In the interior of the domain, this coincides with the

5-point stencil of the Laplacian σi+1,j + σi−1,j − 4σi,j + σi,j+1 + σi,j−1.

6.6 Numerical Results

We have performed the following numerical experiments for testing our algorithms as

derived above. They are aiming at reconstructing the absorption coefficient of the RTE

in the application of DOT. We have used the same (simulated) experimental setting as in

section 3.7.
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Figure 6.1: Figure 6.1c shows the true object, then figure 6.3b shows the imaging reconstruction of µ
using the split Bregman method without continuation scheme; algorithm 12, figure 6.1a shows the imaging
reconstruction of µ using the split Bregman method with continuation scheme; algorithm 13.
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Figure 6.1 shows the reconstruction of the absorption coefficient µ using the the Split

Bregman method. In particular, figure 6.1a shows the reconstruction of µ using algorithm

12, and figure 6.1b shows the reconstruction of µ using algorithm 13.

The evolution of the norm of the misfit functional during the iterations is shown in

figure 6.2.
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Figure 6.2: Norm of residuals of the misfit functional of the µ absorption reconstruction using the SB and
the SB with continuation scheme.

Next we have tested the total variation regularization described in this chapter for

blocky inclusions with different reconstruction methods such as split Bregman and lagged

diffusivity with different modalities. The results are compared in figure 6.3. Figure 6.3f

shows our benchmark using only the algorithm 2

Figure 6.3b shows the reconstruction of µ using the algorithm 12. The modalities

of lagged diffusivity denoted by LD-1, LD-2 and LD-3 make use of the algorithm 17

according to the following descriptions. Figure 6.3c shows the LD-1 reconstruction which

was obtained using algorithm 17 (lagged diffusivity method) without using the limited-

memory BFGS scheme, that is, approximating the Hessian as a multiple of the Identity.

Figure 6.3d LD-2 was obtained using algorithm 17 without using the limited-memory

BFGS scheme, that is, approximating the Hessian by a multiple of the Identity, and instead

of using the discretization of the total variation penalty term by (6.59), here we used the

discretization of the total variation penalty term by (6.36). Finally, figure 6.3e shows the
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LD-3 reconstruction which was made using the lagged diffusivity algorithm 17.
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Figure 6.3: Figure 6.3a shows the true object, figure 6.3b shows the imaging reconstruction of µ using the
split Bregman method with continuation scheme; algorithm 13, figure 6.3c shows the imaging reconstruc-
tion using the lagged diffusivity (LD-1); algorithm 17 without using the limited-memory BFGS scheme,
figure 6.3d shows the imaging reconstruction of µ using the lagged diffusivity with the scheme discretiza-
tion (6.36); (LD-2); figure 6.3e shows the imaging reconstruction of µ using the lagged diffusivity with
L-BFGS scheme (LD-3); algorithm 17, figure 6.3f shows the imaging reconstruction of µ using the LK
method; algorithm 2.

Profiles in the x-direction, the norm of the residuals, and the L2-norm errors of the

imaging reconstruction using the split Bregman, the Lagged Diffusivity with different

modalities, and with only the LK method without total variation regularization, are shown

in figure 6.4. Note that the reconstructions for the Lagged Diffusivity LD-3 and using the

L-BFGS formula for the Hessian correspond to the 100-th sweep of the algorithm 17.

The values used for the reconstruction of the absorption coefficient in this chapter are

displayed in Table 3.1.

Finally, figure 6.5 shows our numerical results which were obtained by using the

Landweber method with the L-BFGS scheme but without total variation regularization,

algorithm 16.
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Figure 6.4: Figure 6.4a shows the cross section of the final reconstructions using the methods presented in
this section(SB,LD-1, LD-2 and LD-3 and the benchmark LK). Figure 6.4b and 6.4c shows their correspon-
dent residuums and L2-norm errors respectively.
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Figure 6.5: Shape reconstruction for σ using the Landweber method; algorithm 1 with the L-BFGS formula.
Top left: true object; top right: final reconstruction. Bottom left: profile taken in the x-direction; bottom
right: norm of residuals of the cost.
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Chapter 7

Conclusions and Future Work

In this chapter we provide some conclusions and outline some possible directions for

future work.

In this thesis, some novel non-standard image reconstruction techniques for Diffuse

Optical Tomography were introduced and discussed. The main novelty in this thesis lies

in the combination of quite recent mathematical regularization schemes (in particular the

level set shape formulation, the sparsity regularization and the total variation regulariza-

tion) with the still difficult to handle radiative transfer equation for the application to

DOT.

The goal of this thesis was proof-of-concept (rather than dealing with real data), which

means we wanted to show that these advanced techniques can indeed be combined, and

wanted to provide strategies on how to deal with several practical complications which

occur in this specific combination of advanced regularization schemes with a demanding

and expensive discretizations of the RTE forward model. In order to be able to deal

with this combination and test a significant amount of different algorithms, we restricted

ourselves to a two-dimension physical setup. However, we believe that all techniques and

results presented in this thesis generalize in a straightforward way to the more realistic

three-dimensional setup, except of the fact that computation time might still be high with

current computing systems.

In chapter 3 of this thesis, the inverse and shape reconstruction problems in DOT

were formulated. We presented an individual and simultaneous shape and contrast value

reconstruction scheme for the optical properties of tissue in DOT by using the Landweber-

Kaczmarz (LK) method and the level set approach following the pioneering idea of San-
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tosa in [141]. The reconstruction of the shape and the contrast value of the absorption and

scattering coefficients have been achieved quite successfully with this still very competi-

tive technique. The results are similar to those that were obtained in [7, 144] .

Then, in chapter 4, we tried to apply a slightly different approach to shape reconstruc-

tion by making use of expressions for shape sensitivities. For this purpose, analytical

expressions for the shape derivative in DOT based on the RTE were obtained, and their

implementation as part of the level set method were tested by using a Hamilton-Jacobi-

type shape evolution approach. Several variants of the shape reconstruction problem in

DOT were discussed here, using a narrowband technique and an extended velocity field

in the whole domain. In addition, one of these variants is compared with our implemen-

tation of the shape reconstruction using algorithm 4. Successful reconstructions of the

absorption coefficient in DOT using this technique based on shape sensitivities were ob-

tained, and compare favourably to the shape reconstructions using the more traditional

technique from chapter 3. Indeed, in some experiments, the shape of the inclusions were

retrieved even faster using the shape derivative method with extended velocity field than

using algorithm 4.

In chapter 5 we have then continued by introducing a novel reconstruction technique

based on sparsity regularization. We have shown that the location and an estimate of the

contrast value of the absorption and scattering coefficients can be obtained reliably with

such a method. In addition, we have observed that in many situations sparsity regular-

ization reconstructions converge faster and provide better resolution than Tikhonov-type

(L/LK) reconstructions. Also, often sparsity reconstructions provide a more accurate res-

olution for two closely-spaced inclusions than Tikhonov-type reconstructions.

On the more technical side, the combination of the Barzilai-Borwein step size criterion

with the monotonicity condition (5.34) works quite efficiently as step size criterion. Here,

our results indicate that the loping-Landweber-Kaczmarz method can be more efficient

than the classical Landweber-Kaczmarz method if the weak monotonicity condition is

not included in the sparsity Algorithms. However, the reconstructions are not significantly

different if the weak monotonicity condition holds when using sparsity regularization.

Then, in chapter 6 we were addressing image reconstruction from Total Variation func-

tionals. In particular, the Lagged Diffusivity method in combination with the L-BFGS

formula for the absorption coefficient reconstruction was shown to be a quickly converg-
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ing method in terms of number of iterations, even though it consumes more time than the

other total variation regularization methods used in this thesis. We observed in our numer-

ical experiments that total variation regularization reconstructions are able to successfully

retrieve the location and an estimate of the contrast value of the absorption and scatter-

ing coefficients of two-dimensional experiments. Total variation regularization schemes

also often converge faster and provide better resolution than Tikhonov-type (L/LK) recon-

structions. Our implementation of the split Bregman method yielded acceptable denoised

reconstructions in terms of the location and estimate of the shape of the inclusions, and in

those experiments performed in this thesis it provided a more satisfactory reconstruction

than those obtained with only using the LK method.

Overall we observed that sparsity and total variation regularization schemes do re-

trieve successfully the location and an estimate of the contrast value of the absorption and

scattering coefficients of two-dimensional experiments. Moreover, sparsity and total vari-

ation regularization reconstructions have been shown to often converge faster and provide

better resolution than Tikhonov-type (L/LK) reconstructions.

The cross talk phenomenon, which was mentioned at the beginning of this thesis and

usually occurs in the simultaneous reconstructions for time-systems in DOT, is still an

open problem. In addition, as we have pointed out in chapter 5, the reconstructions of µ

and b are considered accurate if we use at least 16 discrete directions for the angular vari-

able θ, as pointed out in [142]. We did not notice this effect in our numerical experiments

since we were not dealing with real data. However, we are aware of this limitation and

advise readers who want to apply our techniques to real data to use a well-designed nu-

merical setup for their practical situations. On the other hand, we believe that our results

are overall quite insensitive to the particular choice of forward modelling simulator, since

all the formulation are based on the continuous description of the inverse problems using

PDEs instead of matrix algebra. Only at the last stage we have discretized the reconstruc-

tion techniques, such that the optimization schemes discussed here will still be valid when

other techniques are used for discretizing the forward and adjoint RTE.

We also want to mention that, although the results presented in this thesis using mini-

mization in `1 seem more satisfactory than those using minimization in `2 in many cases,

one should not generalize this without precaution. We refer for a nice discussion of such

a comparison to [158].
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Finally, we want to list some suggestions for potential future research, in a rather

bullet-point fashion. The application of novel regularization techniques to inverse prob-

lems governed by the RTE is still quite unexplored, such that this research field is still

wide open for research. The following list is only intended to give some rough guide-

lines, and is not at all exhaustive.

• Our implementation of the LS method can be extended using multiple level set

functions and the Tikhonov functional proposed in [48]. Moreover, instead of the

classical LS method presented and used in this dissertation, the generalized level set

method introduced in [108] can be used. Also, the ENO or WENO and the Runge

Kutta schemes [38, 114, 146] for the spatial and time variables respectively may be

incorporated for solving the level set equation (4.31).

• The topological derivative can be calculated using the relationship between the

shape derivative and the topological derivative given in [26, 32, 90].

• Instead of our finite differences discretization of the radiative transfer equation in

2D, Born or Rytov approximation techniques for approximating the RTE can be

used, or a finite element discretization of the RTE, and extended to 3D [1, 30, 75,

153, 156]. The latter is a more accurate discretization than the finite differences

scheme. Also, a more efficient scheme for discretizing the RTE as suggested in

[75] can be used.

• Instead of using the Landweber-Kaczmarz method, the Steepest-Descent-Kaczmarz

scheme [47] can be used, or a Gauss-Newton method [156] or the Newton-type

Levenberg-Marquardt-Kaczmarz [16, 27] methods for obtaining a better conver-

gence rate, since the LK method usually shows quite a slow convergence, and the

LMK method has shown faster convergence than the LK method [16].

• Instead of using a soft-thresholding operator in the sparsity algorithms presented in

chapter 5, the novel accelerated projected steepest descent method as presented in

[157] can be used, or alternatively the hard-thresholding operator as defined in [24].

• An analytical convergence analysis for the sparsity algorithms presented in chapter

5 may be performed.
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• Instead of using the total variation regularization as presented in chapter 6, the

second order total generalized variation method as proposed in [23] may be used.

• The reconstruction of the scattering coefficient and the simultaneous reconstruction

of the absorption and scattering coefficients using the total variation regularization

can be carried out. Furthermore, the L-curve method can be used for choosing

the best regularization parameter in the sparsity and total variation regularization

schemes.

• A stopping criterion for the contrast value reconstructions may be implemented.

• It seems possible to recover the clear layer, which simulates the cerebrospinal fluid

in our experiments, by using the data of early photons which arrive at the detectors.

• A variable refractive index of the media can be incorporated in our model of the

propagation of the photons. Furthermore, the polarization state of the light used to

irradiate the examined tissue can be taken into account as suggested in [116].

206



Bibliography

[1] Ackroyd, R. (1997). Finite Element Methods for Particle Transport. John Wiley &

Sons Inc.

[2] Agarwal, V. (2003). Total Variation Regularization and L-curve method for the selec-

tion of regularization parameter. ECE, 599.

[3] Allaire, G., de Gournay, F., Jouve, F., and Toader, A.-M. (2005). Structural opti-

mization using topological and shape sensitivity via a level set method. Control and

Cybernetics, 34.

[4] Angell, M. (2011). The Epidemic of Mental Illness: Why? The New York Review of

Books.

[5] Arlotti, L., Banasiak, J., and Lods, B. (2009). A new approach to transport equations

associated to a regular field: trace results and well-posedness. Mediterr. J. Math.,

6:367–402.

[6] Arridge, S. (1999). Optical tomography in medical imaging. Inverse Problems,

15:R41–R93.

[7] Arridge, S., Dorn, O., Kolehmainen, V., Schweiger, M., and Zacharopoulos, A.

(2008). Parameter and structure reconstruction in optical tomography. Journal of

Physics: Conference Series, 135:012001.

[8] Arridge, S., J., K., Kolehmainen, V., and Tarvainen, T. (2011). Handbook of Math-

ematical Methods in Medical Imaging, chapter Optical Imaging, pages 735–780.

Springer (New York).

[9] Arridge, S. and Schotland, J. (2009). Optical tomography: forward and inverse prob-

lems. Inverse Problems, 25(12):59.

207



BIBLIOGRAPHY

[10] Bachmayr, M. (2007). Iterative Total Variation Methods for Nonlinear Inverse Prob-

lems. Master’s thesis, Johannes Kepler Universität.

[11] Bal, G. (2009). Inverse transport theory and applications. Inverse Problems,

25(5):48.

[12] Bal, G. and Jollivet, A. (2010). Stability for time dependent inverse transport. SIAM

Journal on Mathematical Analysis, 42(2):679–700.

[13] Bal, G. and Monard, F. (2010). An accurate solver for forward and inverse transport.

Journal of Computational Physics, 229:4952–4979.

[14] Baritaux, J.-C. (2012). Sparsity-Inducing Reconstruction Methods for Fluorescence
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