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We propose and investigate several new principles of rational reasoning within the
framework of Pure Inductive Logic, PIL, where probability functions defined on the
sentences of a first-order language are used to model an agent’s beliefs. The Elephant
Principle is concerned with how learning, modelled by conditioning, may be uniquely
‘remembered’. The Perspective Principle requires that, from a given prior, condition-
ing on statistically similar experiences should result in similar assignments, and is
found to be a necessary condition for Reichenbach’s Axiom to hold. The Abductive
Inference Principle and some variations are proposed as possible formulations of a
restriction of C.S. Peirce’s notion of hypothesis in the context of PIL, though charac-
terization results obtained for these principles suggest that they may be too strong.
The Finite Values Property holds when a probability function takes only finitely many
values when restricted to sentences containing only constant symbols from some fixed
finite set. This is shown to entail a certain systematic method of assigning probabilities
in terms of possible worlds, and it is considered in this light as a possible principle of
inductive reasoning. Classification results are given, stating which members of certain
established families of probability functions satisfy each of these new principles.

Additionally, we define the theory of a principle P of PIL to be the set of those sen-
tences which are assigned probability 1 by every probability function which satisfies
P . We investigate the theory of the established principle of Spectrum Exchangeability
by finding separately the theories of heterogeneous and homogeneous functions. The
theory of Spectrum Exchangeability is found to be equal to the theory of finite struc-
tures. The theory of Johnson’s Sufficientness Postulate is also found. Consequently,
we find that Spectrum Exchangeability, Johnson’s Sufficientness Postulate and the Fi-
nite Values Property are all inconsistent with the principle of Super-Regularity: that
any consistent sentence should be assigned non-zero probability.
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Chapter 1

Introduction

Induction, the study of using evidence or observations to reason about uncertain hy-

potheses or events, is an important area in philosophy with a long and controversial

history, and is intimately related with the study of probability. Developing an ap-

proach used by Keynes [31], Carnap [2] describes Inductive Logic as the theory of

degree of confirmation between evidence and hypothesis, expressed as propositions or

as sentences of a formal language. Later [5], he describes it more broadly as “a theory

of logical probability providing rules for inductive thinking”. In [7] Carnap identifies

Pure Inductive Logic, PIL, as a distinct approach within Inductive Logic, whose aim

is to separate the logical or rational considerations of inductive reasoning from any

consideration of the context or interpretation of a particular inductive argument.

More recently, Paris & Vencovská have developed Carnap’s conception of PIL as a

branch of mathematical logic, as presented by Paris in [44] and Paris & Vencovská in

[49]. According to them, PIL is concerned primarily with the mathematical formal-

ization of

“assigning logical, as opposed to statistical, probabilities by attempting to

formulate the underlying notions, such as symmetry, irrelevance, relevance,

on which they appear to depend”.

Within PIL, reasoning is modelled by the choice of a single probability function 1, from

1The Dutch Book argument, originally due to de Finetti [12] and Ramsey [53], and developed by
Kemeny [29] and Lehman [38], provides a justification of this approach in terms of betting behaviour.
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all possible probability functions defined on the sentences of a first-order predicate lan-

guage, so that an agent’s ‘belief’ that a given sentence is true is represented by the

value in the interval [0, 1] assigned to that sentence by its chosen function. Any obser-

vations or other knowledge which the agent considers in assigning such probabilities

are modelled as sentences of the language over which the conditional probability may

be found. A crucial feature of Pure, as opposed to Applied, Inductive Logic is that

the agent is assumed to have no interpretation of the language; so that its choice of

probability function must be based on logical considerations alone.

The approach of PIL has been to consider certain ‘principles of rationality’, and to

investigate how the adoption of these principles, singly and in combination, affects

the choice of probability functions available to the agent. These principles are usually

expressed in terms of desirable behaviour of a probability function used to model ra-

tional belief, for example to prescribe when certain sentences should be assigned equal

probability, or when the probability assigned to one should not exceed that assigned

to another, based solely on the logical form of the sentences.

This study, conducted under the supervision of Professor J.B. Paris, presents the re-

sults of several distinct but related investigations into certain newly proposed principles

of PIL. Each of these new principles is intended to express some facet of rational reason-

ing which has not prevously received attention in the literature on induction, and some

of which are based on other considerations than the usual candidates of symmetry, rel-

evance and irrelevance. The aim of these investigations has been to discover how the

adoption of such principles, in combination with other established principles, affects

the choice of probability functions available, and what the consequences of adopting

certain principles may be beyond what is explicitly stated therein. Such results may

elucidate the different aspects of rationality which these principles attempt to express,

and inform any judgement on how well these principles may be said to represent them.

We also present the results of an enquiry regarding an established, though relatively

young, principle of PIL: Spectrum Exchangeability. This enquiry builds on existing

results of Fagin [11], Landes, Nix, Paris, Rad & Vencovská [33], [35], [40], [42], [45],
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[49], to gain a deeper understanding of what is entailed by adopting Spectrum Ex-

changeability by the identification of its theory: the set of sentences which must be

accepted with certainty by any agent who adopts the principle.

Firstly, though, we set out in detail the framework which will be used.

1.1 Context and notation

This section sets down for reference the terminology and notation which will be used

throughout the thesis, together with definitions of some established principles of induc-

tive reasoning and of certain families of probability functions which will be considered,

and some key results in the field to which we will need to refer.

Throughout, R will denote the set of real numbers and N the set of natural num-

bers, with N+ denoting the positive natural numbers and Nn the set {1, 2, . . . , n}. For

x ∈ R, [x] will denote the integer part of x. The symbol Sn will denote the set of all

permutations of {1, 2, . . . , n}.

The framework for this thesis, based on that considered by Paris & Vencovská in

[49], consists of a first order language L containing finitely many relation symbols

R1, R2, . . . , Rq of arities r1, r2, . . . , rq respectively, and variables xi and constant sym-

bols ai for i ∈ N+, with no equality nor any function symbols. Where convenient,

alternative symbols are used for constants and variables, such as b1, . . . , bm to repre-

sent a sequence of m unspecified constant symbols ai1 , . . . , aim , assumed to be distinct

unless stated otherwise.

Let SL denote the set of first order sentences of L and QFSL denote those sentences

of SL which are quantifier free. Similarly, let (QF )FL denote the (quantifier free) for-

mulae of L. Where a sentence is denoted θ(b1, . . . , bn), this expresses that θ mentions

only constants from among b1, . . . , bn, but not necessarily all (or any) of these. For

n ∈ N, define SL(n) to be the set of those sentences of L which mention only constant

symbols from among a1, . . . , an. A sentence θ belongs to SL(0) if it does not mention
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any constant symbols, and θ ∈ SL(n) =⇒ θ ∈ SL(m) for all m ≥ n.

Let T L denote the set of structures for L with universe {a1, a2, a3, . . .}, where the

symbol ai is interpreted as the individual ai, so that the constants ai name all indi-

viduals in the universe.

The central question of PIL is how a supposedly rational agent inhabiting a structure

M in T L, but having no prior knowledge concerning which such structure, nor any in-

terpretation of the language, should assign probabilities w(θ) to the sentences θ ∈ SL.

Probability functions defined on SL are used to model the agent’s belief 2, so in these

terms the essential question is to what extent the requirement of rationality limits the

agent’s choice of probability function.

A function w : SL → [0, 1] is a probability function on SL just if it satisfies that for

all θ, φ,∃xψ(x) ∈ SL :

(P1) If � θ then w(θ) = 1,

(P2) If � ¬(θ ∧ φ) then w(θ ∨ φ) = w(θ) + w(φ),

(P3) w(∃xψ(x)) = lim
m→∞

w(
m∨
i=1

ψ(ai)), (1.1)

where |= is the logical consequence relation for L. Since any convex sum of functions

satisfying P1-P3 will also satisfy these properties, any convex sum of probability func-

tions is also a probability function.

Conditioning is used to model the process of the agent’s learning, or imagining that

it has learnt, that some sentence is true in M . For a probability function w on SL

and any fixed φ ∈ SL, the conditional probability, w( · | φ), is defined to be a function

satisfying

w(θ | φ) · w(φ) = w(θ ∧ φ)

for θ ∈ SL. Therefore we take, for example

w(θ | φ) = w(θ′ | φ′)
2See for example [13], [29] for a justification of this approach.
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to be equivalent to

w(θ ∧ φ)w(φ′) = w(θ′ ∧ φ′)w(φ) (1.2)

which holds even in case either or both of w(φ), w(φ′) is zero. Where w(φ) > 0,

w(θ | φ) =
w(θ ∧ φ)

w(φ)
,

and w( · | φ) is a probability function. 3

A state description for ai1 , ai2 , . . . , aim is a quantifier free sentence Θ(ai1 , ai2 , . . . , aim)

of the form
q∧

k=1

∧
~b∈{ai1 ,...,aim}

rk

±Rk(b1, b2, . . . , brk)

where rk is the arity of relation symbol Rk and the ~b = 〈b1, b2, . . . , brk〉 range over

all possible tuples from {ai1 , . . . , aim}rk . Here +Rk(~b) stands for Rk(~b) while −Rk(~b)

stands for ¬Rk(~b). Therefore, a state description Θ(ai1 , ai2 , . . . , aim) says all that can

be said in L about how the constants ai1 , ai2 , . . . , aim relate to each other (though,

where L contains polyadic relations, it says nothing about how they relate to other

constants). A formula of the same form

q∧
k=1

∧
~y∈{xi1 ,...,xim}

rk

±Rk(y1, y2, . . . , yrk)

for distinct variables xi1 , . . . , xim is known as a state formula for xi1 , . . . , xim . State

descriptions which are logically equivalent are identified, unless stated otherwise, and

similarly for logically equivalent state formulae. By convention, state descriptions for

zero constants and state formulae for zero variables are taken to be equivalent to some

fixed tautology, denoted >, mentioning no constants. Upper case Greek letters will be

used throughout to denote state descriptions or state formulae.

Where L is unary (consists of purely unary relations), a state description for a single

constant ai is a sentence of the form

±R1(ai) ∧ ±R2(ai) ∧ . . . ∧ ±Rq(ai), (1.3)

3This is shown in [49, Proposition 4.1].
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known as an atom4 (a state formula of the same form (1.3) for a single variable is

also known as an atom). There are 2q such atoms, denoted α1, α2, . . . , α2q according

to some arbitrary fixed enumeration. Therefore, a state description for constants

ai1 , ai2 , . . . , aim may be expressed in the form

m∧
r=1

αhr(air), (1.4)

where hr ∈ {1, 2, . . . , 2q} for r = 1, 2, . . . ,m, and a similar form may be used for state

formulae of a unary language.

A restriction of a state description Θ(ai1 , ai2 , . . . , aim) to a subset {ais1 , . . . , aisu} of

{ai1 , . . . , aim}, i.e. the conjunction of those conjuncts of Θ which refer only to con-

stants from among {ais1 , . . . , aisu}, will be denoted Θ(ai1 , ai2 , . . . , aim)[ais1 , . . . , aisu ],

or just Θ[ais1 , . . . , aisu ] if the tuple 〈ai1 , ai2 , . . . , aim〉 is clear from the context.

For example, if L consists of just a single binary relation symbol R1 and Θ(a1, a2, a3)

is the conjunction of

R1(a1, a1) R1(a1, a2) R1(a1, a3)

¬R1(a2, a1) R1(a2, a2) ¬R1(a2, a3)

¬R1(a3, a1) ¬R1(a3, a2) R1(a3, a3)

then Θ(a1, a2, a3)[a1, a3] is the conjunction of

R1(a1, a1) R1(a1, a3)

¬R1(a3, a1) R1(a3, a3).

A state description Θ+(ai1 , . . . , aim , aim+1) extends Θ(ai1 , ai2 , . . . , aim) if Θ+ |= Θ, that

is if the restriction of Θ+ to ai1 , . . . , aim is logically equivalent to Θ,

Θ+[ai1 , . . . , aim ] ≡ Θ(ai1 , ai2 , . . . , aim).

The same notation is used for restrictions and extensions of state formulae.

4Our ‘atoms’ correspond to what Carnap et al. called ‘molecular Q-predicates’.
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For a fixed language L, any n ≥ m ≥ 0 and any state description Θ(ai1 , . . . , aim) of

L, the number of state descriptions Φ(ai1 , . . . , ain) of L extending Θ (up to logical

equivalence) depends only on m and n (and L, which we leave implicit). This number

will be denoted SD(m,n), while the total number of state descriptions in L for n

constants is denoted SD(n) (= SD(0, n)).

By the Disjunctive Normal Form Theorem, every φ(ai1 , ai2 , . . . , aim) ∈ QFSL is logi-

cally equivalent to a disjunction of distinct (so necessarily pairwise disjoint) state de-

scriptions, from which it follows that the probability of φ is the sum of the probabilities

of these state descriptions. Furthermore, by Gaifman’s Theorem [15], a probability

function is completely determined on the whole of SL, not just on QFSL, by its values

on state descriptions.

Suppose that a state description Θ(b1, b2, . . . , bm) is such that for some bi, bj

Θ |= R(bk1 , . . . , bku , bi, bku+2 , . . . , bkr)↔ R(bk1 , . . . , bku , bj, bku+2 , . . . , bkr)

for any r-ary relation symbol from L, any 1 ≤ u ≤ r and not necessarily distinct

bk1 , . . . , bku , bku+2 , . . . , bkr from {b1, b2, . . . , bm}.5 Then bi is said to be indistinguishable

from bj according to Θ. This may be expressed using an equivalence relation

bi ∼Θ bj

where the equivalence classes of ∼Θ partition b1, . . . , bm so that those in the same

class are all indistinguishable from each other, but distinguishable from any member

of another class, according to Θ. The multiset of the sizes of these equivalence classes

is called the spectrum of Θ, denoted S(Θ). The size of this multiset will be called

the spectrum length and denoted |S(Θ)|. The spectrum length of Θ is therefore the

number of equivalence classes of ∼Θ.

The set of spectra for m distinct constants will be denoted Spec(m). The spectrum

consisting of m ones (corresponding to a state description where each of m constants

is distinguishable from every other) will be denoted 1m. The symbol ∅ will be used to

5Equivalently Θ ∧ bi = bj would be consistent if equality were added to the language.
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denote the spectrum of a state description for zero constants (i.e. a tautology, by the

above convention).

Given spectra m̃, ñ and a state description Θ with spectrum m̃ it can be shown, see

[33], [40], [42], [49], that the number of state descriptions with spectrum ñ extending

Θ depends only on m̃, ñ and not on the particular choice of Θ. We denote this number

by N (m̃, ñ). The total number of state descriptions in L with spectrum ñ is denoted

N (∅, ñ).

1.2 Principles of PIL

The aim of PIL is to investigate how different purported requirements of rationality

restrict an agent’s choice of probability function. The usual approach is to propose

principles of rational reasoning which such a function should satisfy, and investigate

their consequences. Several such principles may be found in the literature and we state

those which will feature in this thesis.

The following principle was proposed by Johnson [28] and adopted by Carnap (from

[2] onwards, under the name Axiom of Symmetry), based on the symmetry between

the constant symbols of L.

Constant Exchangeability, Ex.

For w a probability function on SL, θ(a1, . . . , am) ∈ SL and any permutation σ of N+,

w(θ(aσ(1), . . . , aσ(m))) = w(θ(a1, . . . , am)).

The justification for this as a principle of rationality is that, in the absence of any

interpretation, there is complete symmetry between the constant symbols, and hence

between θ(a1, . . . , am) and θ(aσ(1), . . . , aσ(m)), so that it would be irrational to assign

different probabilities to these two sentences. All probability functions considered in

this thesis are assumed to satisfy Ex, unless stated otherwise.

Where L is unary, it follows from Ex that the probability assigned to a state description

of the form given in (1.4) depends only on its signature: 〈m1, . . . ,m2q〉 where mj =
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|{r | hr = j}|, regardless of which constants instantiate which atoms. Therefore, the

alternative notation
2q∧
j=1

α
mj
j

may be used for state descriptions of a purely unary language where convenient.

The symmetry between the relation symbols of L (without any interpretation of the

language) likewise gives rise to the following principle.

Predicate Exchangeability, Px

If Ri and Rj are distinct relation symbols of L with the same arity, then for θ ∈ SL,

w(θ) = w(θ′)

where θ′ is the result of simultaneously replacing Ri by Rj and Rj by Ri throughout

θ. (Repeated applications ensure that equal probability must be given to any two sen-

tences where one is obtained from the other by some permutation of relation symbols

of the same arities.)

Where L is unary the following principle, proposed by Carnap in [4] 6, is based on the

symmetry between the atoms: 7

Atom Exchangeability, Ax

A probability function w on SL satisfies Atom Exchangeability if, for any permutation

τ of { 1, 2, . . . , 2q },

w

(
m∧
r=1

αhr(air)

)
= w

(
m∧
r=1

ατ(hr)(air)

)
.

This principle, which implies Px, may be justified by the observation that, with no

interpretation of the language or other background knowledge, there is complete sym-

metry between the atoms, and therefore any two enumerations should be treated

6Carnap refers to symmetry ‘with respect to the Q-predicates’.
7It is essentially similar to the attribute symmetry of [8].
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equally.

The following principle, proposed by Nix and Paris in [42] as an extension of Ax to

polyadic languages 8, is based on the symmetry between state descriptions of the same

spectrum:

Spectrum Exchangeability, Sx

A probability function w on SL satisfies Spectrum Exchangeability if, for any state

descriptions Θ(b1, b2, . . . , bm),Φ(b1, b2, . . . , bm) such that S(Θ) = S(Φ)

w(Θ) = w(Φ).

It may be justified on the grounds that, with no interpretation of the language, any

differences between state descriptions beyond their spectra are irrelevant, so there is

no reason to think any one state description more probable than any other of the same

spectrum.

Where a probability function w is assumed to satisfy Sx, we will use the notation w(m̃)

to stand for w(Θ) where Θ is any state description such that S(Θ) = m̃.

The following principles are based on the idea that if zero probability is identified

with impossibility, then any sentence which is consistent, and therefore theoretically

possible, should receive non-zero probability. Regularity applies this argument to

quantifier-free sentences, Super-Regularity extends it to all sentences of L.

Regularity, Reg

A probability function w on SL satisfies Regularity if w(φ) > 0 for all consistent

φ ∈ QFSL.

Carnap adopts the principle of Regularity 9 in early work such as [2] and [3], with

the justification that it is intuitively compelling. Shimony [54] and Kemeny [29] later

8If L is purely unary then Sx is equivalent to Ax.
9In fact, Carnap assumes only that state descriptions should be assigned non-zero probability,

though Regularity follows from this assumption by the Disjunctive Normal Form Theorem.
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develop a justification in terms of betting behaviour, which Carnap adopts in [5], [7].

Hintikka [24] adopts the stronger principle of:

Super-Regularity, SReg

A probability function w on SL satisfies Super-Regularity if w(θ) > 0 for all consistent

θ ∈ SL.

These two properties have the practical advantage of ensuring that conditional prob-

abilities are always well-defined for sentences from QFSL and SL respectively.

The following principle was adopted by Carnap in [6], [8] under the name ‘Axiom of

Convergence’ 10. It refers to probability functions on unary languages, and is based on

the idea that the probability assigned to an event should converge, eventually, with

its observed frequency.

Reichenbach’s Axiom, RA

For w a Regular probability function on a unary language

lim
n→∞

(
w

(
αj |

n∧
i=1

αhi

)
− uj (

∧n
i=1 αhi)

n

)
= 0 (1.5)

where uj (
∧n
i=1 αhi) = |{i | hi = j}|.

The following principle, which applies to purely unary languages, was proposed by

Johnson in [28]. It is based on the idea of irrelevance and plays an important role in

Carnap’s programme, from [4] onwards.

Johnson’s Sufficientness Postulate, JSP

A probability function w on a unary language satisfies Johnson’s Sufficientness Postu-

late if

w

(
αj(an+1)

n∧
i=1

αhi(ai)

)
(1.6)

10It was suggested to Carnap, under the name ‘Reichenbach’s Axiom’, by Hilary Putnam see [8,
p120].



1.3. PARTICULAR PROBABILITY FUNCTIONS 19

depends only on n and mj = |{i | hi = j}|.

This expresses the idea that, in assigning a probability to a particular outcome of an

event, only the number of known instances of this outcome and the number of known

instances of this event are relevant; all else is irrelevant and should be disregarded.

The following property refers to the ability to extend a probability function to a larger

language, containing the one on which it is initially defined. It was proposed (for

unary languages) by Carnap [4] and endorsed by Kemeny [30].

Language Invariance, Li

A probability function w on SL satisfies Language Invariance if there is a family of

probability functions wL, one on each (finite) language L, satisfying Px (and Ex) and

such that wL = w and whenever L ⊆ L′,

wL = wL
′
� SL

(i.e. wL
′

restricted to SL).

Where only unary languages are considered, we refer to Unary Language Invariance,

ULi. We say that ‘w satisfies Language Invariance with P ’, where P is some property,

if the members wL of this family also all satisfy the property P .

Since any sentence θ of SL, is also a member of SL for any L ⊇ L, the justification

for Language Invariance is that it forces the agent to assign the same probability to

a given sentence θ, regardless of which language is under consideration. It therefore

permits the agent to reason simultaneously about sentences of all languages consisting

of finitely many predicates.

1.3 Particular probability functions

We will frequently make reference to certain established families of probability func-

tions, whose definitions are given below.
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The VM functions

For M ∈ T L, the function VM : SL→ [0, 1] defined by

VM(θ) =

1, M |= θ

0, otherwise

(1.7)

is a probability function, see [49, chapter 3]. These functions do not satisfy Ex in

general.

The w~c functions

We introduce an important family of probability functions on unary languages. Let L

be a unary language with q predicates. Let

D2q = {〈x1, x2, . . . , x2q〉 | x1, x2, . . . , x2q ≥ 0 and
2q∑
j=1

xj = 1}

and for ~c ∈ D2q define

w~c

(
m∧
r=1

αhr(air)

)
=

m∏
r=1

chr =
2q∏
j=1

c
mj
j (1.8)

where, as above, mj = |{r | hr = j}|. Then w~c extends to a probability function on

SL 11, and clearly w~c satisfies Ex.

It is an important property of these functions, as noted by Hill et al. in [22], that

where θ, φ ∈ QFSL have no constant symbols in common,

w~c(θ ∧ φ) = w~c(θ) · w~c(φ). (1.9)

The v~c functions

For ~c = 〈c1, c2, . . . , c2q〉 ∈ D2q , the function v~c on a unary language L with q predicates

is defined to be

v~c = |S2q |−1
∑
σ∈S2q

w〈cσ(1),cσ(2),...,cσ(2q)〉, (1.10)

so that v~c is the uniform mixture of the w〈cσ(1),cσ(2),...,cσ(2q)〉 as σ ranges over the set S2q

of permutations of N2q . It follows from this definition 12 that the v~c functions satisfy

Ax.
11See, for example, [49, chapter 8].
12See [49, chapter 14].
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Carnap’s Continuum, cLλ

Where L is unary, the function cLλ is defined 13 for 0 < λ ≤ ∞ by

cLλ

(
αj

n∧
i=1

αhi(ai)

)
=
mj + λ2−q

n+ λ
(1.11)

where mj = {i | hi = j}| and we identify (2−q · ∞)/∞ with 2−q.

cL0 is defined by

cL0

(
m∧
i=1

αhi(ai)

)
=


2−q if h1 = h2 = . . . = hm,

0 otherwise.

(1.12)

cL0 therefore ‘assumes’ that all individuals are indistinguishable, i.e. all satisfy the same

atom.

The Nix-Paris Continuum, wδL

Where L is unary, the function wδL
14 is defined for 0 ≤ δ ≤ 1 by

wδL = 2−q
2q∑
j=1

w~ej(δ) (1.13)

where ~ej(δ) = 〈γ, . . . , γ, γ + δ, γ, . . . , γ〉 ∈ D2q , with γ + δ in the jth position and,

necessarily, γ = 2−q(1− δ).

From this definition it follows that

wδL

(
m∧
i=1

αhi(ai)

)
= 2−q

2q∑
j=1

γm−mj(γ + δ)mj (1.14)

where mj = |{i | hi = j}|. 15

In fact the cLλ and wδL agree at their end points, precisely cL0 = w1
L and cL∞ = w0

L, but

nowhere else. Both satisfy Ex and Ax, though in general they have rather different

13It is straightforward to show that this determines the value of cLλ on every state description,
hence on every quantifier free sentence, and therefore on all of SL by Gaifman’s Theorem [15], see
[49, chapter 16] for details.

14These functions originally appeared, with a characterization, in [41].
15See [49, chapter 19] for details.
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properties. 16

The following two families of probability functions, the up̄,L and vp̄,L functions for

polyadic languages, form the building blocks of all probability functions which satisfy

Spectrum Exchangeability.

The up̄,L functions

Let

B = {〈p0, p1, p2, . . .〉 | p1 ≥ p2 ≥ . . . ≥ 0,
∞∑
i=0

pi = 1}.

For a given state description Φ(ai1 , . . . , aim) and a given vector ~c ∈ Nm, Φ is said to

be consistent with ~c if for 1 ≤ j, k ≤ m, cj = ck 6= 0 =⇒ aij ∼Φ aik . The set of all

state descriptions for ~a which are consistent with ~c is denoted C(~c,~a). For p̄ ∈ B, the

probability function up̄,L is defined on state descriptions Φ(ai1 , . . . , aim) by

up̄,L(Φ(ai1 , . . . , aim)) =
∑
~c∈Nm

Φ∈C(~c,~a)

|C(~c,~a)|−1

m∏
i=1

pci , (1.15)

and this definition extends to a probability function on SL. 17

The vp̄,L functions

For t ∈ N+, let

Bt = {p̄ ∈ B | p0 = 0, pt > 0 = pt+1}.

For p̄ ∈ Bt, the function vp̄,L is defined on state descriptions Φ(ai1 , . . . , aim) in terms

of vectors ~c ∈ (Nt)
m and a function G(~c,Φ). For a fixed ~c, if Φ is not consistent

with ~c, i.e. if for some 1 ≤ j, k ≤ m, cj = ck > 0 but aij 6∼Φ aik , then G(~c,Φ) is

zero. Otherwise let cg1 , . . . , cgr be the first instance of each distinct colour in ~c and let

Φ′ = Φ[aig1 , . . . , aigr ]. Then G(~c,Φ) takes the value

N (S(Φ′),1t)

N (∅,1t)
,

16For a comparison see [47].
17See [34], [35] or [49, chapter 29] for the details.
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i.e. the number of 1t extensions of Φ′ as a proportion of the total number of 1t state

descriptions for L. The value of vp̄,L(Φ(ai1 , . . . , aim)) is defined in these terms to be

vp̄,L(Φ(ai1 , . . . , aim)) =
∑

~c∈(Nt)m
G(~c,Φ)

m∏
i=1

pci , (1.16)

and this definition extends to a probability function on SL. 18

1.4 Key results

The following result states some well-known properties of probability functions which

follow from the definition (1.1). A proof can be found, for example, in [49].

Proposition 1. Let w be a probability function on SL. Then for θ, φ ∈ SL,

1. w(¬θ) = 1− w(θ).

2. |= ¬θ =⇒ w(θ) = 0.

3. θ |= φ =⇒ w(θ) ≤ w(φ).

4. θ ≡ φ =⇒ w(θ) = w(φ).

5. w(θ ∨ φ) = w(θ) + w(φ)− w(θ ∧ φ).

These properties will be used frequently, and usually without explicit mention.

The following well-known result appears, for example, in [23], [49].

Proposition 2. Where L is unary and θ ∈ SL, by the Prenex and Disjunctive Nor-

mal Form Theorems and after rearrangement using logical equivalences, θ is logically

equivalent to some sentence θ′ of the form

l∨
k=1

(
2q∧
j=1

∃εkjxαj(x) ∧
n∧
i=1

αfki (ai)

)
,

where each ~εk ∈ {0, 1}n, ∃1 stands for ∃, ∃0 stands for ¬∃, and the disjuncts are

disjoint and satisfiable.

18See [34], [35] or [49, chapter 29] for the details.
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We reproduce the following well-known result:

Proposition 3. If φ ∈ SL and w is a probability function on SL such that w(φ) = 1,

then

w(θ ∧ φ) = w(θ)

for all θ ∈ SL.

Proof. Let φ and w be as described and let θ ∈ SL. Since

θ ∧ ¬φ |= ¬φ

we have

w(θ ∧ ¬φ) ≤ w(¬φ) = 0

so w(θ ∧ ¬φ) = 0, and

w(θ) = w(θ ∧ φ) + w(θ ∧ ¬φ) = w(θ ∧ φ).

The following representation theorem of Paris & Vencovská [49] is a corollory of Gaif-

man’s Theorem [15]. Here, B is the σ-algebra generated by the algebra of subsets

[θ] = {M ∈ T L |M |= θ} of T L, for each θ ∈ QFSL.

Theorem 4. If w is a probability function on SL, then for some countably additive

measure 19 µ on the algebra B of subsets of T L,

w =

∫
T L
VM dµ(M).

The following Representation Theorem by de Finetti [14] is used extensively when

working with unary languages (recall that we only consider probability functions which

satisfy Ex).

19All measures are taken to be normalized and countably additive.
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Theorem 5. Let L be unary and let w be a probability function on SL satisfying Ex.

Then there is a measure µ on the Borel subsets 20 of D2q such that

w

(
m∧
r=1

αhr(air)

)
=

∫
D2q

w~x

(
m∧
r=1

αhr(air)

)
dµ(~x),

=

∫
D2q

2q∏
j=1

x
mj
j dµ(~x) (1.17)

where mj = |{r | hr = j}|.

Conversely, given a measure µ on the Borel subsets of D2q the function w defined by

(1.17) extends (uniquely) to a probability function on SL satisfying Ex.

This theorem gives rise to some new terminology. The measure µ is known as the de

Finetti prior of the function w, and furthermore when w additionally satisfies Ax, µ

is invariant under permutations of the 2q co-ordinates 21, so that for τ a permutation

of {1, . . . , 2q} and A ⊆ D2q

µ(A) = µ({τ(~x) | ~x ∈ A})

where τ(~x) = 〈xτ(1), xτ(2), . . . , xτ(2q)〉.

For ε > 0 and ~c ∈ D2q , the ε-neighbourhood of ~c is denoted by

Bε(~c) = {~x ∈ D2q | |~x− ~c| < ε}.

For a given µ, any ~x ∈ D2q such that µ(Bε(~x)) > 0 for all ε > 0 is known as a support

point of µ or, sometimes more conveniently, of the corresponding (unique) probabiilty

function w. The set of all such points is called the support of µ (or of w).

The following result of Hill & Paris, relating to conditioning with probability functions

on unary languages, is proved in [20].

Lemma 6. Let ~b = 〈b1, b2, . . . , b2q〉 ∈ D2q be a support point of µ and k1, k2, . . . , k2q ∈

N. Then

lim
n→∞

∫
D2q

∏2q

j=1 x
[nbj ]+kj
j dµ(~x)∫

D2q

∏2q

j=1 x
[nbj ]
j dµ(~x)

=
2q∏
j=1

b
kj
j .

20That is, the closure under complement and countable unions of the open subsets of the relativized
topology on D2q ⊆ R2q

. This ensures that the functions ~x 7→ w~x(θ) are integrable with respect to µ
for θ ∈ SL.

21See [49, chapter 14].



26 CHAPTER 1. INTRODUCTION

The following corollary of Lemma 6 is proved in [49] and states that, if any point

~c ∈ D2q is a member of the support of a probability function, then the function can

eventually approximate w~c arbitrarily closely, given appropriate conditioning informa-

tion.

Corollary 7. Let w be a probability function on SL with de Finetti prior µ and let ~c

be a support point of µ. Then there exist state descriptions Θm(a1, . . . , asm) such that

for any r1, . . . , r2q ∈ N,

lim
m→∞

w

(
2q∧
i=1

αrii | Θm(a1, . . . , asm)

)
=

2q∏
i=1

crii .

The following characterization, by Paris & Vencovská, of functions satisfying Li with

Sx is proved in [49], building on previous results obtained jointly with Landes [35].

Theorem 8. Let wL be a probability function on SL satisfying Li with Sx. Then there

is a measure µ on B such that

wL =

∫
B
up̄,L dµ(p̄). (1.18)

Conversely given such a measure µ, wL defined by (1.18) is a probability function on

SL satisfying Li with Sx.



Chapter 2

Principles of Remembering and

Forgetting

1 There have been several principles proposed in unary Inductive Logic which are in-

tended to capture some aspect of the idea that the probabilities one assigns should

be informed in some particular way by one’s experiences. Examples include Carnap’s

Principle of Instantial Relevance [7], Reichenbach’s Axiom (1.5) and Paris & Ven-

covská’s Unary Principle of Induction [49]. The first and third of these express the

notion that the more times one has seen something in the past, the more likely one

is to see it in the future, while the second asserts more strongly that the probability

one assigns to an event should shadow its observed frequency (whether or not this

converges to a single value). Whichever of these or other formulations 2 is preferred,

it is widely accepted that it is rational to alter the probabilities one assigns in light of

acquired knowledge or observations.

We propose a related principle of a different sort: that a probability function should,

after conditioning on different past observations, result in different predictions for fu-

ture observations. This ensures that all learning is ‘remembered’ by being uniquely

incorporated into the resulting assignment, and for this reason 3 we call it the Elephant

Principle. It could be argued that such perfect recall is ideally rational, based on the

idea that information is valuable and should never be discarded; that you cannot do

1The results from this chapter appeared originally in [25].
2See [49, Chapter 21] for other related principles.
3It is said that ‘an elephant never forgets’ !

27
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better by knowing less.4,5

On the other hand, it would seem unreasonable if two sequences of observations which

are essentially very similar could result in wildly different assignments. It seems ra-

tional to keep our adjustments proportionate somehow, and to expect that assign-

ments formed by conditioning on sufficiently similar sequences of observations should

converge in the long run. We therefore propose a ‘counterbalance’ to the Elephant

Principle, intended to express this notion, which we call the Perspective Principle. In

fact, we claim that the latter may also be considered desirable in its own right without

reference to the former, and by the above arguments, both could be considered as

principles of rationality.

The two main results of this chapter, Theorems 12 and 14, are characterization results

giving conditions under which these principles hold. Since the proofs of these results

rely on de Finetti’s Representation Theorem for probability functions on unary lan-

guages satisfying Ex, we assume throughout this chapter that L is unary. We then

apply these results to two families of probability functions, namely Carnap’s well-

known Continuum of Inductive Methods and the more recent Nix-Paris Continuum.

2.1 The Elephant Principle

The motivation for the Elephant Principle, defined below, is the idea that the proba-

bilities assigned by a rational agent to future events should reflect its observations of

past events. If this notion is taken to its extreme, the resulting principle is that any

difference in observations should result in some difference in assignments. We formal-

ize this idea using conditional probabilities, as follows, identifying (real or imagined)

‘observations’ with state descriptions.

Suppose that an agent, which had initially adopted a probability function w, makes an

4Good [19] gives an interesting justification of this.
5It may appear that this conflicts with those principles of Inductive Logic which prescribe certain

sorts of information ‘irrelevant’, for example JSP (1.6). That Carnap’s Continuum satisfies JSP was
shown originally by Johnson in [28]; that it will be subsequently shown to satisfy EP as well shows
that in this case the two principles relate to differing forms of ‘information’.
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observation Γ about individuals a1, . . . , ag and consequently conditions on this evidence

to form w(· | Γ(a1, . . . , ag)). Because Γ is a state description (and L is unary), the agent

is now in no doubt about the properties of a1, . . . , ag, so we are really only concerned

with how the agent’s updated probability function w(· | Γ) assigns probabilities to

state descriptions involving constants from ag+1, ag+2, ag+3, . . .. For this reason we

define, for a given state description Γ(a1, . . . , ag) and a probability function w on SL

such that w(Γ) > 0, a function w∗Γ on the state descriptions 6 Θ(a1, . . . , an) of L by

w∗Γ(Θ(a1, . . . , an)) = w(Θ(ag+1, . . . , ag+n) | Γ(a1, . . . , ag)).

Because of our standing assumption that w satisfies Ex, w∗Γ also satisfies Ex.

We define the Elephant Principle to formalize the idea that w∗Γ should uniquely ‘re-

member’ the information Γ(a1, . . . , ag).

The Elephant Principle, EP

For Γ =
∧2q

i=1 α
gi
i and Γ′ =

∧2q

i=1 α
hi
i state descriptions of L, a probability function w

on SL satisfies EP if

w∗Γ = w∗Γ′ ⇐⇒ gi = hi for i = 1, 2, . . . , 2q.

Thus EP ensures that w∗Γ = w∗Γ′ just if Γ and Γ′ have the same signature, so that

any acquired information is uniquely reflected in the agent’s assignments regarding

possible future observations (up to the order of the instantiating constants, which is

irrelevant by Ex).

We work towards a characterization result, Theorem 12, for those probability functions

on SL which satisfy Ax + EP, via a sequence of lemmas. Firstly, we introduce some

notation.

For S ⊂ N2q let

NS = {~x ∈ D2q | xi = 0 ⇐⇒ i ∈ S},
6In fact, see [43], w∗Γ extends to a probability function on SL and continues to satisfy the identity

w∗Γ(θ(a1, . . . , an)) = w(θ(ag+1, . . . , ag+n) | Γ(a1, . . . , ag)) for any sentence θ of L. This is not needed
in what follows, however.
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and note that these NS partition D2q . We shall use S ′ to denote N2q −S. For ~x ∈ D2q ,

let S~x denote the unique S such that ~x ∈ NS, so S~x = {i ∈ N2q | xi = 0}.

Let w be a probability function on SL with de Finetti prior µ, so w =
∫
D2q

w~x dµ(~x).

If w does not satisfy EP, there must exist Γ(a1, . . . , ag) =
∧2q

i=1 α
gi
i and Γ′(a1, . . . , ah) =∧2q

i=1 α
hi
i , with different signatures 〈g1, . . . , g2q〉 6= 〈h1, . . . , h2q〉, such that w(Γ), w(Γ′) >

0 (otherwise EP holds trivially by our convention (1.2)) and by de Finetti’s Theorem

5, ∫
D2q

∏2q

i=1 x
gi+ni
i dµ(~x)∫

D2q

∏2q

i=1 x
gi
i dµ(~x)

=

∫
D2q

∏2q

i=1 x
hi+ni
i dµ(~x)∫

D2q

∏2q

i=1 x
hi
i dµ(~x)

(2.1)

for any n1, n2, . . . , n2q ∈ N.

Let G,H be the sets of indices of atoms mentioned in Γ, Γ′ respectively, so G = {i ∈

N2q | gi > 0} and H = {i ∈ N2q | hi > 0} and let G′, H ′ be the complement in N2q of

G,H respectively, so G′ = {i ∈ N2q | gi = 0} etc..

Lemma 9. If w fails EP with Γ =
∧
i∈G α

gi
i , Γ′ =

∧
i∈H α

hi
i , then

µ

( ⋃
S⊆G′∩H′

NS

)
> 0.

Proof. Suppose, on the contrary, that w fails EP with Γ, Γ′ as described and µ(NS) = 0

for each S ⊆ G′ ∩H ′. Then, since
∏

i∈S 0gi+ni = 0 whenever S ∩G 6= ∅ and 0gi+ni = 1

whenever gi = ni = 0,∫
D2q

2q∏
i=1

xgi+nii dµ(~x)

=
∑
S⊂N2q

∫
NS

∏
i∈S∩G

0gi+ni
∏

i∈S∩G′
00+ni

∏
i∈S′∩G

xgi+nii

∏
i∈S′∩G′

x0+ni
i dµ(~x)

=
∑

S∩G=∅

∫
NS

∏
i∈S∩G′

00+ni
∏
i∈S′

xgi+nii dµ(~x)

=
∑

S∩G=∅
S∩H 6=∅

∫
NS

∏
i∈S∩G′

00+ni
∏
i∈S′

xgi+nii dµ(~x),

by our assumption that µ(NS) = 0 for all S ⊆ G′ ∩ H ′. By a similar argument we

obtain ∫
D2q

2q∏
i=1

xhi+nii dµ(~x) =
∑

S∩H=∅
S∩G6=∅

∫
NS

∏
i∈S∩H′

00+ni
∏
i∈S′

xhi+nii dµ(~x),
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and so from (2.1) that

w(Γ′)

 ∑
S∩G=∅
S∩H 6=∅

∫
NS

∏
i∈S∩G′

00+ni
∏
i∈S′

xgi+nii dµ(~x)



= w(Γ)

 ∑
S∩H=∅
S∩G 6=∅

∫
NS

∏
i∈S∩H′

00+ni
∏
i∈S′

xhi+nii dµ(~x)

 . (2.2)

Furthermore, it must be the case that

µ

 ⋃
S∩H=∅
S∩G6=∅

NS

 > 0,

since otherwise

w(Γ′) =
∑
S⊂N2q

∫
NS

∏
i∈S∩H

0hi
∏

i∈S′∩H

xhii dµ(~x)

=
∑

S∩H=∅

∫
NS

∏
i∈S′∩H

xhii dµ(~x)

=
∑

S∩H=∅
S∩G 6=∅

∫
NS

∏
i∈S′∩H

xhii dµ(~x) = 0

(again by the assumption that µ(NS) = 0 for all S ⊆ G′∩H ′), contradicting w(Γ′) > 0.

Therefore, letting ni > 0 for all i ∈ H ∩G′ and ni = 0 for all remaining i ∈ N2q gives

a value of 0 on the left of (2.2) with a positive value on the right, contradicting (2.1).

The result follows.

Let M⊆ D2q be the set of support points of µ.

Lemma 10. If w fails EP with Γ =
∧
i∈G α

gi
i , Γ′ =

∧
i∈H α

hi
i , then for any ~d ∈ M

such that S~d ⊆ G′ ∩H ′, and any ~c ∈M

2q∏
i=1

cgii d
hi
i =

2q∏
i=1

chii d
gi
i . (2.3)
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Proof. Suppose ~d = 〈d1, d2, . . . , d2q〉 ∈ M is such that S~d ⊆ G′ ∩ H ′ and ~c =

〈c1, c2, . . . , c2q〉 ∈ M. Let n ∈ N be large, then letting ni in (2.1) take values [n ci],

[n di] in turn, and dividing the first equation obtained by the second obtained gives∫
D2q

∏2q

i=1 x
gi+[n ci]
i dµ(~x)∫

D2q

∏2q

i=1 x
gi+[ndi]
i dµ(~x)

=

∫
D2q

∏2q

i=1 x
hi+[n ci]
i dµ(~x)∫

D2q

∏2q

i=1 x
hi+[ndi]
i dµ(~x)

. (2.4)

Since ~d ∈ M, µ(Bε(~d)) > 0 for any ε > 0. Let 0 < ε < min{di | di > 0} and let

~x ∈ Bε(~d). Then S~x ⊆ S~d, for otherwise there must exist some i such that xi = 0 < di,

giving |~x− ~d| ≥
√
d2
i > ε, a contradiction. Therefore since ~d ∈M, µ

(⋃
S⊆S~d

NS

)
> 0,

so for T =
⋃
S⊆S~d

NS,

∫
D2q

2q∏
i=1

x
gi+[ndi]
i dµ(~x) ≥

∫
T

∏
i∈S~d

xgi+0
i

∏
i 6∈S~d

x
gi+[ndi]
i dµ(~x) > 0

since di = gi = 0 for all i ∈ S~d. Likewise
∫
D2q

∏2q

i=1 x
hi+[ndi]
i dµ(~x) > 0, so (2.4) is

well-defined.

Dividing both sides of (2.4) by

∫
D2q

2q∏
i=1

x
[ndi]
i dµ(~x) ·

∫
D2q

2q∏
i=1

x
[n ci]
i dµ(~x),

which (by the above argument with all gi = 0) is similarly well-defined, and rearranging

gives

∫
D2q

∏2q

i=1 x
gi+[n ci]
i dµ(~x)∫

D2q

∏2q

i=1 x
[n ci]
i dµ(~x)

·
∫
D2q

∏2q

i=1 x
hi+[ndi]
i dµ(~x)∫

D2q

∏2q

i=1 x
[ndi]
i dµ(~x)

=

∫
D2q

∏2q

i=1 x
gi+[ndi]
i dµ(~x)∫

D2q

∏2q

i=1 x
[ndi]
i dµ(~x)

·
∫
D2q

∏2q

i=1 x
hi+[n ci]
i dµ(~x)∫

D2q

∏2q

i=1 x
[n ci]
i dµ(~x)

.

By Lemma 6, since ~c, ~d ∈M, taking limits as n→∞ then gives

2q∏
i=1

cgii d
hi
i =

2q∏
i=1

chii d
gi
i .
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Furthermore, whenever S~c ⊆ G′ ∩H ′, both sides of (2.3) are positive, and it is equiv-

alent to
2q∏
i=1

ckii =
2q∏
i=1

dkii , (2.5)

where ki = gi − hi. (If S~c 6⊆ G′ ∩H ′ then both sides of (2.3) are zero).

Lemma 11. If w satisfies Ax and fails EP with Γ =
∧
i∈G α

gi
i , Γ′ =

∧
i∈H α

hi
i , then

for any S ⊂ N2q such that |S| ≤ |G′ ∩H ′|, there is some constant XS such that

µ({~x ∈ NS |
∏
i 6∈S

xi = XS}) = µ(NS). (2.6)

Proof. Let w, S be as described and assume that µ(NS) > 0, since otherwise (2.6)

holds trivially. By the remark following Theorem 5 since w satisfies Ax, µ is invariant

under permutations of the 2q co-ordinates, so that for τ ∈ S2q and A a Borel subset of

D2q

µ(A) = µ({τ(~x) | ~x ∈ A})

where τ(~x) = 〈xτ(1), xτ(2), . . . , xτ(2q)〉.

If |S| = 2q − 1, then NS is a singleton and the result follows. Otherwise, since |S| ≤

|G′∩H ′|, there must exist T ⊆ G′∩H ′ with |T | = |S| and µ(NT ) = µ(NS) > 0. Let ~d ∈

M∩NT . Let r, s ∈ T ′ with r 6= s and let σ ∈ S2q be the permutation which exchanges

r and s and leaves all other values unchanged. Then σ(~d) = 〈dσ(1), . . . , dσ(2q)〉 is also

in M∩NT by the symmetry of µ. Since w does not satisfy EP, by (2.5)

dkrr d
ks
s

∏
i 6=r,s

dkii = dkrs d
ks
r

∏
i 6=r,s

dkii ,

and therefore (
dr
ds

)kr
=

(
dr
ds

)ks
giving either dr = ds or kr = ks. For each pair of co-ordinates in T ′, the permutation

exchanging these while leaving all others unchanged may be used similarly to show

that, for all r, s ∈ T ′, either dr = ds (so di = 0 for i ∈ T and di = |T ′|−1 for i ∈ T ′ is

the sole support point of µ in NT ) or kr = ks and hence for all ~c, ~d ∈M∩NT∏
i 6∈T

ci =
∏
i 6∈T

di.
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In either case, (2.6) holds for NT . Let τ ∈ S2q be such that τ(i) ∈ T ⇐⇒ i ∈ S.

Then by Ax

~x ∈M∩NS =⇒ τ(~x) ∈M∩NT =⇒
∏
i 6∈T

xτ(i) = XT =
∏
i 6∈S

xi.

Therefore, since µ(M∩NS) = µ(NS),

µ({~x ∈ NS |
∏
i 6∈S

xi = XT}) = µ(NS).

We are now in a position to give the following characterization theorem.

Theorem 12. Suppose that w is a probability function satisfying Ax with de Finetti

prior µ, and let z = min{ |S| | µ(NS) > 0}. Then w fails EP just if there is some

X ∈ R such that

µ({~x ∈ NS |
∏
i/∈S

xi = X}) = µ(NS),

for every S ⊂ N2q such that |S| = z.

In other words, if z is the size of the smallest S ⊂ N2q such that µ(NS) > 0, then w

fails EP just if for every S ⊂ N2q of size z, all the measure in NS is concentrated on

those ~x for which the product of the positive co-ordinates,
∏

i 6∈S xi, equals some fixed

X. It seems doubtful whether there is any worthwhile intuitive interpretation of this

result, its use is to provide a necessary and sufficient criterion to aid the classification

of which probability functions do and do not satisfy EP with Ax.

Proof. Suppose w, µ and z are as described. Suppose firstly that there is some X ∈ R

such that µ({~x ∈ NS |
∏2q

i=1 xi = X}) = µ(NS) for every S ⊂ N2q such that |S| = z.

Let T ⊂ N2q with |T | = z, so that µ(NT ) > 0 while µ(NS) = 0 whenever |S| < |T |, and

for all ~d ∈ M∩ NT ,
∏

i 6∈T di = X. Let Γ =
∧
i 6∈T α

g
i , Γ′ =

∧
i 6∈T α

h
i for some g, h ∈ N

with g, h > 0, g 6= h, and let n1, . . . , n2q ∈ N. Since for every S ⊂ T , µ(NS) = 0 and

for every S 6⊆ T , each ~x ∈ NS has some zero co-ordinate xi = 0 with i 6∈ T , so that
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∏
i 6∈T x

g
i = 0,∫

D2q

∏2q

i=1 x
gi+ni
i dµ(~x)∫

D2q

∏2q

i=1 x
gi
i dµ(~x)

=

∫
NT

∏
i∈T 00+ni

∏
i 6∈T x

g+ni
i dµ(~x)∫

NT

∏
i∈T 00

∏
i 6∈T x

g
i dµ(~x)

=
Xg
∫
NT

∏2q

i=1 x
ni
i dµ(~x)

Xg
∫
NT

1 dµ(~x)

=
1

µ(NT )

∫
NT

2q∏
i=1

xnii dµ(~x).

Substituting h for g shows that ∫
D2q

∏2q

i=1 x
hi+ni
i dµ(~x)∫

D2q

∏2q

i=1 x
hi
i dµ(~x)

takes the same value, so w fails EP.

For the converse result, suppose w fails EP with Γ =
∧
i∈G α

gi
i , Γ′ =

∧
i∈H α

hi
i . By Ax

(and the associated symmetry of µ), µ(NS) > 0 for every S ⊂ N2q of size z, and by

Lemma 9, z ≤ |G′ ∩H ′| so there is some such S ⊆ G′ ∩H ′. Therefore, by Lemma 11,

the result follows.

We now apply this theorem to two established families of probability functions.

Corollary 13.

• Members of Carnap’s Continuum, cLλ , satisfy EP for 0 < λ < ∞, and fail to

satisfy EP at the endpoints λ ∈ {0,∞}.

• Members of the Nix-Paris continuum, wδL, fail to satisfy EP for 0 ≤ δ ≤ 1.

Proof. It is shown in [49] that, for 0 < λ <∞, cLλ has a representation of the form

cLλ =

∫
D2q

w~x dµ(~x),

where

dµ(~x) = κ

2q∏
i=1

xλ2−q−1
i dρ(~x),

ρ is Lebesgue measure and κ is a normalizing constant. Therefore, every point in D2q

is a support point of cLλ for 0 < λ < ∞. For ~x = 〈2−q, 2−q, . . . , 2−q〉 and ~y ∈ N∅

with ~y 6= ~x, both ~x, ~y ∈ M ∩ N∅ but their co-ordinate products are not equal since
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∏2q

i=1 zi has a strict maximum at ~x for ~z ∈ D2q . Therefore these functions satisfy EP

by Theorem 12.

That EP fails to hold for the wδL for 0 ≤ δ ≤ 1 (which includes cL0 = w1
L and cL∞ = w0

L)

follows from Theorem 12, using the observation that in each case by (1.13), the support

points of the de Finetti prior are all permutations of each other:

M = {~e1(δ), ~e2(δ), . . . , ~e2q(δ)} = {σ(~e1(δ)) | σ ∈ S2q},

so all have the same co-ordinate product.

It is well known that cL∞ fails to learn from experience, so its failure to satisfy EP is

unsurprising. That cL0 fails EP is rather for the opposite reason, it ‘assumes’ that all the

individuals will be the same as the first one observed. In consequence the corresponding

w∗Γ ‘keeps no record’ of the numbers of each atom instantiated by individuals so far

observed, it has no need to since all possible observations are already determined. The

failure of EP for the wδL is also unsurprising given that these probability functions

possess the property of Recovery discussed by Paris and Waterhouse in [50], whereby

new observations can effectively ‘cancel out’ previous observations.

2.2 The Perspective Principle

As remarked above, the Perspective Principle was originally conceived as a counter-

balance to EP, to ensure that where different observations lead to different probability

assignments these differences are somehow ‘proportional’. However, we claim that it

may considered as a principle of rational reasoning in its own right, defined as follows.

The Perspective Principle, PP

A Regular probability function w satisfies PP if, for any state descriptions Θ(a1, . . . , an),

Φ(a1, . . . , an), Ψ(a1, . . . , ar) and any ε > 0, there is some m such that for all state de-

scriptions Ξ(an+1, . . . , ak) with k ≥ n+m,

|w(Ψ(ak+1, . . . , ak+r) | Ξ ∧Θ) − w(Ψ(ak+1, . . . , ak+r) | Ξ ∧ Φ)| < ε. (2.7)
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The assumption that w is Regular, i.e. w(θ) > 0 for all consistent θ ∈ QFSL, is

necessary to ensure that the expression (2.7) is well-defined.

In essence then, the Perspective Principle says that no matter what observations Θ, Φ

we start with, subsequently receiving a sufficiently long stream of common observa-

tions Ξ will almost eradicate the significance of this initial difference, at least as far as

the probability assigned to a state description Ψ involving just unseen individuals is

concerned. In fact the standing assumption of Ex ensures that the order of observa-

tions is irrelevant, the important feature is that where two sequences of observations

eventually contain so many matched pairs of outcomes compared to unmatched ones,

the resulting assignments should, according to PP, become arbitrarily similar.

The argument for the rationality of this principle is based on the idea that predictions

about future events should be continuous functions of past observations; in that agents

who initially adopt the same probability function on the basis of no information should

continue to assign similar probabilities if their subsequent observations are sufficiently

similar. Put another way, it would seem unduly risky (and hence arguably irrational)

to adopt a probability function on the basis of no knowledge which could be critically

dependent for all time on the particular properties of a relatively small number of

previously observed individuals.

The main result of this section shows that Reichenbach’s Axiom (1.5) is a sufficient

condition for PP to hold.

Theorem 14. If w is a probability function satisfying (Reg and) RA then w satisfies

PP.

Proof. Let w be as described. If RA holds then it holds uniformly 7, so that for any

ν > 0 there is some t ∈ N such that for any sequence of atoms αgi for i = 1, . . . ,m

with m ≥ t, ∣∣∣∣∣w
(
αj |

m∧
i=1

αgi

)
− uj (

∧m
i=1 αgi)

m

∣∣∣∣∣ < ν. (2.8)

7This was stated as a corollory of de Finetti’s Theorem by Gaifman in [16], for a proof see [48] or
[49, Chapter 15].



38 CHAPTER 2. PRINCIPLES OF REMEMBERING AND FORGETTING

Let n ∈ N+ and let Θ(a1, . . . , an), Φ(a1, . . . , an) be arbitrary fixed state descriptions

for a1, . . . , an. Let r ∈ N+ and Ψ(a1, . . . , ar) =
∧r
i=1 αsi be an arbitrary fixed state

description for a1, . . . , ar. Let m ∈ N and let k = n+m. Then for any Ξ(an+1, . . . , ak)

|w(Ψ(ak+1, . . . , ak+r) | Ξ ∧Θ) − w(Ψ(ak+1, . . . , ak+r) | Ξ)|

=

∣∣∣∣∣w
(

r∧
i=1

αsi Ξ ∧Θ

)
− w

(
r∧
i=1

αsi Ξ

)∣∣∣∣∣
=

∣∣∣∣∣
r∏
b=1

w

(
αsb

b−1∧
i=1

αsi ∧ Ξ ∧Θ

)
−

r∏
b=1

w

(
αsb

b−1∧
i=1

αsi ∧ Ξ

)∣∣∣∣∣ . (2.9)

For any fixed b ∈ {1, . . . , r},∣∣∣∣∣w
(
αsb

b−1∧
i=1

αsi ∧ Ξ ∧Θ

)
− w

(
αsb

b−1∧
i=1

αsi ∧ Ξ

)∣∣∣∣∣
≤

∣∣∣∣∣∣w
(
αsb

b−1∧
i=1

αsi ∧ Ξ ∧Θ

)
−

usb

(∧b−1
i=1 αsi ∧ Ξ ∧Θ

)
k + b− 1

∣∣∣∣∣∣
+

∣∣∣∣∣∣w
(
αsb

b−1∧
i=1

αsi ∧ Ξ

)
−
usb

(∧b−1
i=1 αsi ∧ Ξ

)
m+ b− 1

∣∣∣∣∣∣
+

∣∣∣∣∣∣
usb

(∧b−1
i=1 αsi ∧ Ξ ∧Θ

)
k + b− 1

−
usb

(∧b−1
i=1 αsi ∧ Ξ

)
m+ b− 1

∣∣∣∣∣∣ . (2.10)

By (2.8) and since

usb

(
b−1∧
i=1

αsi ∧ Ξ ∧Θ

)
= usb

(
b−1∧
i=1

αsi ∧ Ξ

)
+ usb(Θ)

where usb(Θ) ≤ n, (2.10) is smaller than any given δ > 0, provided that m is taken

sufficiently large.

Let Pb = min{w
(
αsb |

∧b−1
i=1 αsi ∧ Ξ

)
, w

(
αsb |

∧b−1
i=1 αsi ∧ Ξ ∧Θ

)
} ≤ 1. Then if δ is

an upper bound for (2.10), the value of (2.9) is less than

r∏
b=1

(Pb + δ)−
r∏
b=1

Pb ≤ δr + δ2

(
r

2

)
+ · · ·+ δr.

Given any ε > 0, δ may be chosen such that the above is less than ε/2. The same
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argument may also be used with Φ in place of Θ to finally obtain

|w(Ψ(ak+1, . . . , ak+r) | Ξ(an+1, . . . , ak) ∧Θ(a1, . . . , an))

− w(Ψ(ak+1, . . . , ak+r) | Ξ(an+1, . . . , ak) ∧ Φ(a1, . . . , an))| < ε

for any Ξ(an+1, . . . , ak) where k is sufficiently large. Therefore, w satisfies PP.

The converse of Theorem 14 fails, a counter-example is cL∞.

It follows from (1.5) and (1.11) that for 0 < λ <∞ the cLλ satisfy Reg and RA, which

leads to the result (with λ =∞ a trivial case) that

Corollary 15. For 0 < λ ≤ ∞, cLλ satisfies PP.

(Since cL0 does not satisfy Reg, it cannot satisfy PP.)

The previous result shows that w0
L (= cL∞) satisfies PP (w1

L can’t, since it doesn’t satisfy

Reg.) We now consider whether the wδL functions satisfy PP for the intermediate values

of δ, and find on the contrary that

Proposition 16. For 0 < δ < 1, wδL fails to satisfy PP.

Proof. Let 0 < δ < 1. From the definitions given above in (1.13) and (1.8), it follows

that

wδL

(
m∧
i=1

αhi

)
= 2−q

2q∑
j=1

γm−mj(γ + δ)mj (2.11)

where mj = |{i | hi = j}|. Let n ∈ N+ and let Θ(a1, . . . , an) =
∧2q

i=1 α
ti
i , and

Φ(a1, . . . , an) =
∧2q

i=1 α
pi
i be state descriptions for a1, . . . , an. For any m ∈ N, choose

h ≥ m such that h = 2qg for some g ∈ N. Let Ξ(an+1, . . . , an+h) =
∧2q

i=1 α
g
i . Let r ∈ N+

and let Ψ(an+h+1, . . . , an+h+r) =
∧2q

i=1 α
ri
i be a state description for an+h+1, . . . , an+h+r.

Then by (2.11),

|wδL(Ψ | Ξ ∧Θ)− wδL(Ψ | Ξ ∧ Φ)|

=

∣∣∣∣∣
∑2q

i=1 γ
r+h+n−(ri+g+ti)(γ + δ)ri+g+ti∑2q

i=1 γ
h+n−(g+ti)(γ + δ)g+ti

−
∑2q

i=1 γ
r+h+n−(ri+g+pi)(γ + δ)ri+g+pi∑2q

i=1 γ
h+n−(g+pi)(γ + δ)g+pi

∣∣∣∣∣
=

∣∣∣∣∣
∑2q

i=1 γ
r+n−(ri+ti)(γ + δ)ri+ti∑2q

i=1 γ
n−ti(γ + δ)ti

−
∑2q

i=1 γ
r+n−(ri+pi)(γ + δ)ri+pi∑2q

i=1 γ
n−pi(γ + δ)pi

∣∣∣∣∣
= |wδL(Ψ | Θ)− wδL(Ψ | Φ)|.
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Since δ > 0, Θ, Φ and Ψ may be chosen such that this last value is greater than

0. Therefore, the value of |wδL(Ψ | Ξ ∧ Θ) − wδL(Ψ | Ξ ∧ Φ)| is fixed, positive and

independent of the value of h, which may be arbitrarily large, and wδL fails PP.

We have produced partial characterization results for EP and PP in unary languages,

and used these to show that, for 0 < λ <∞ the members cLλ of Carnap’s Continuum

satisfy both principles, while all members wδL of the Nix-Paris Continuum for 0 < δ ≤ 1

(including cL0 = w1
L), satisfy neither, and cL∞ = w0

L satisfies PP without EP. Therefore,

if these principles are considered desirable in probability functions used to model ra-

tional belief, these results support the choice of the non-extreme (i.e. 0 < λ < ∞) cLλ

over the possible alternatives wδL for such a model.

We have focused on EP and PP entirely within the context of Unary Inductive Logic in

order to make use of de Finetti’s Theorem, however these principles would seem to be

just as rational (or not) for polyadic languages. One possible direction for future work

would be to investigate whether the generalization of de Finetti’s Theorem to polyadic

languages given by Paris & Vencovská in [49] 8 could be applied in characterizing EP

and PP in non-unary languages. Furthermore, it still remains to examine natural gen-

eralizations of EP and PP to all sentences rather than just state descriptions, and to

find a necessary condition for PP; a plausible candidate seems to be that the support

M is connected.

The ideas which underlie EP and PP are rather different in nature from the symmetry,

relevance, irrelevance and analogy considerations which form the basis of most current

rational principles in Pure Inductive Logic. Whether they have the same force as these

stock notions is open to debate.

8This extends work done by Krauss in [32].



Chapter 3

Principles of Abductive Inference

The following argument is a mode of inference which Peirce [51] calls hypothesis (an

example of what he calls more generally abductive reasoning [52]; a process of forming

explanations to account for observations). We quote from [51, p.140]:

“ [A population] M has, for example, the numerous marks P ′, P ′′, P ′′′, etc.

[A sample] S has the proportion r of the marks P ′, P ′′, P ′′′, etc. :

Hence, probably and approximately, S has an r-likeness to M ”

where the value r may take any value in [0, 1], and an r-likeness is defined, imprecisely,

to be the ‘degree of resemblance’ between the sample S and population M .

Taking ‘marks’ to mean some observable properties and fixing r = 1, the argument

may be interpreted as follows.

All members of some population M have the properties P ′, P ′′, P ′′′, etc.

All members of some sample S have all of the properties P ′, P ′′, P ′′′, etc. :

Hence, probably and approximately, S has a 1-likeness to M .

Peirce is clear that this last statement should be interpreted to mean that every mem-

ber of S is a member of M . Thus, given some observed similarities between a sample

and a population, and no other information (concerning properties not listed among

P ′, P ′′, P ′′′, etc.) we hypothesize that the members of the sample S all or almost all

belong to the population M . 1

1Peirce [51] was of the opinion that this argument (where r may vary) is not an instance of analogy,
though where r = 1 it seems that it could be considered as such.

41
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A probabilistic interpretation of the underlying intuitive reasoning is that, given that

certain individuals have been found to possess certain distinguishing features of some

population, the explanatory hypothesis that these individuals are in fact members

of this population seems more likely than if the observation had not been made. In

our framework, a similar idea may be expressed as follows: that given some observed

similarity ψ between individuals in a sample
m∧
i=1

ψ(bi)

(and no observed differences), it seems more likely that these individuals either all

satisfy, or all fail to satisfy, some further property φ (consistent with membership of

some hypothetical population)

m∧
i=1

φ(bi) ∨
m∧
i=1

¬φ(bi)

than if nothing were known about b1, . . . , bm.

In this chapter we propose and investigate different formulations of Peirce’s argument,

where r is fixed to be 1, and investigate the consequences of adopting these as principles

of rationality in PIL. In the first section we propose the Abductive Inference Principle,

AIP, and proceed to give a characterization of those probability functions satisfying

AIP with Spectrum Exchangeability, Sx (equivalent to Ax for unary languages). We

use this to classify which members of the cLλ , wδL and up̄,L families of functions satisfy

AIP, and then consider how the additional requirement of Language Invariance affects

our classification. The results suggest that, in this setting, AIP may be rather unrea-

sonable after all. The subsequent section presents some results concerning variations

on AIP which allow for background information, involving extra constant symbols, to

be considered. These too suggest that the formulations considered are rather demand-

ing.

3.1 The Abductive Inference Principle

In order to simplify the problem, we take the sample size m to be just 2, and sup-

pose that the observation formula ψ(x) and the hypothetical similarity φ(x) are both
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quantifier-free. These limitations suggest the following formulation of Peirce’s argu-

ment, which we will call the:

Abductive Inference Principle, AIP

For any φ(x), ψ(x) ∈ QFFL

w(φ(a1)↔ φ(a2)) ≤ w(φ(a1)↔ φ(a2) | ψ(a1) ∧ ψ(a2)). (3.1)

By the convention above (1.2), we take this to be equivalent to

w(φ(a1)↔ φ(a2)) · w(ψ(a1) ∧ ψ(a2)) ≤ w((φ(a1)↔ φ(a2)) ∧ ψ(a1) ∧ ψ(a2)). (3.2)

We begin by noting some simple cases where (3.2) holds. 2

Lemma 17. For φ(x), ψ(x) ∈ QFFL and w a probability function on SL, (3.2) holds

1. whenever w(φ(a1)) ∈ {0, 1} or w(ψ(a1)) ∈ {0, 1};

2. whenever w(ψ(a1)→ φ(a1)) = 1 or w(ψ(a1)→ ¬φ(a1)) = 1;

3. when q = 1;

4. when w is such that 3 w
(∨

S(Θ)={2}Θ(a1, a2)
)

= 1.

Proof. 1. If w(φ(a1)) ∈ {0, 1} (and by Ex w(φ(a2)) = w(φ(a1))) then by Propo-

sition 3, w(φ(a1) ↔ φ(a2)) = 1, and therefore both sides of (3.2) are equal to

w(ψ(a1)∧ψ(a2)). Similarly, if w(ψ(a1)) = w(ψ(a2)) = 1 then both sides of (3.2)

are equal to w(φ(a1)↔ φ(a2)), while if w(ψ(a1)) = w(ψ(a2)) = 0, both sides of

(3.2) are zero.

2. If w(ψ(a1)→ φ(a1)) = 1 or w(ψ(a1)→ ¬φ(a1)) = 1 then

w(φ(a1)↔ φ(a2) ∧ ψ(a1) ∧ ψ(a2)) = w(ψ(a1) ∧ ψ(a2)),

so (3.2) holds since w(φ(a1)↔ φ(a2)) ≤ 1.

3. If q = 1 then the above cases include all possibilities.

2Note that we have dropped the assumption from the previous chapter that L is unary.
3Recall the notation relating to spectra from §1.1.
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4. Let φ(x) ∈ QFFL. Since any state description Θ(a1, a2) which logically im-

plies φ(a1) ∧ ¬φ(a2) must have spectrum {1, 1}, if w
(∨

S(Θ)={2}Θ(a1, a2)
)

= 1,

then w(φ(a1) ∧ ¬φ(a2)) = 0 and similarly w(¬φ(a1) ∧ φ(a2)) = 0. There-

fore, w(φ(a1) ↔ φ(a2)) = 1, so by Lemma 3 both sides of (3.2) are equal to

w(ψ(a1) ∧ ψ(a2)).

It follows from the previous result that all probability functions satisfy AIP on lan-

guages where q = 1, so assume for the rest of this chapter that q ≥ 2. Let

r = 2r1 + 2r2 + . . .+ 2rq (3.3)

(where ri is the arity of Ri). Then, using the notation from §1.1,

SD(1) = 2q, SD(2) = 2r, and SD(1, 2) = 2r−q. (3.4)

Note that where w satisfies Sx we have

N ({2})w({2}) +N ({1, 1})w({1, 1}) = 1,

by (3.4) then

2qw({2}) + (2r − 2q)w({1, 1}) = 1,

and so

w({2}) = 2−q − (2r−q − 1)w({1, 1}). (3.5)

For φ(z), ψ(z) ∈ QFFL, let |φ| denote the number of state formulae for z (up to

logical equivalence) which logically imply φ(z):

|φ| = |{Θ(z) | Θ(z) |= φ(z)}|, (3.6)

and similarly for |ψ|, |φ ∧ ψ| etc..

Theorem 18. Let q ≥ 2. If w is a probability function on SL satisfying Sx, then w

satisfies AIP just if

w({1, 1}) ≤ 2q−r(2q − 1)−2.

Proof. Suppose q ≥ 2 and let w be a probability function on SL satisfying Sx, let X de-

note w({2}) and Y denote w({1, 1}). Let φ(z), ψ(z) ∈ QFFL and let n = |φ|, k = |ψ|
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and m = |φ ∧ ψ|.

For each state description Θ(a1) which logically implies ψ(a1), the proportion k/SD(1)

of its extensions of the form Θ+(a1, a2) logically imply ψ(a1) ∧ ψ(a2). Of these just 1

has spectrum {2} while all others have spectrum {1, 1}, so we obtain using (3.4) that

w(ψ(a1) ∧ ψ(a2)) =
∑

Θ|=ψ(a1)∧ψ(a2)

w(Θ(a1, a2))

= kX + k

(
k

2q
SD(1, 2)− 1

)
Y

= kX + k
(
2r−2qk − 1

)
Y. (3.7)

Similar arguments concerning those state descriptions which logically imply φ(a1), ¬φ(a1),

and ψ(a1) ∧ φ(a1) yield

w(φ(a1)↔ φ(a2))

= 2qX +

(
n
( n

2q
SD(1, 2)− 1

)
+ (2q − n)

(
2q − n

2q
SD(1, 2)− 1

))
Y

= 2qX +
(
n
(
2r−2qn− 1

)
+ (2q − n)

(
2r−2q(2q − n)− 1

))
Y,

and

w((φ(a1)↔ φ(a2)) ∧ ψ(a1) ∧ ψ(a2))

= kX +

(
m
(m

2q
SD(1, 2)− 1

)
+ (k −m)

(
k −m

2q
SD(1, 2)− 1

))
Y

= kX +
(
m
(
2r−2qm− 1

)
+ (k −m)

(
2r−2q(k −m)− 1

))
Y.

Condition (3.2)

w(φ(a1)↔ φ(a2)) · w(ψ(a1) ∧ ψ(a2)) ≤ w((φ(a1)↔ φ(a2)) ∧ ψ(a1) ∧ ψ(a2))

(repeated for convenience) becomes

(2qX + (n(2r−2qn− 1) + (2q − n)(2r−2q(2q − n)− 1))Y ) · (kX + k(2r−2qk − 1)Y )

≤ kX + (m(2r−2qm− 1) + (k −m)(2r−2q(k −m)− 1))Y. (3.8)

Since w satisfies Sx, by (3.5) we can substitute

X = 2−q − (2r−q − 1)Y
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for X in (3.8) to give

( 2q(2−q − (2r−q − 1)Y ) + (n(2r−2qn− 1) + (2q − n)(2r−2q(2q − n)− 1))Y )

· (k(2−q − (2r−q − 1)Y ) + k(2r−2qk − 1)Y )

≤ k(2−q − (2r−q − 1)Y ) + (m(2r−2qm− 1) + (k −m)(2r−2q(k −m)− 1))Y.

Collecting terms then gives

(1 + (n(2r−2qn− 1) + (2q − n)(2r−2q(2q − n)− 1)− 2q(2r−q − 1))Y )

· (k2−q + (k(2r−2qk − 1)− k(2r−q − 1))Y )

≤ k2−q + (m(2r−2qm− 1) + (k −m)(2r−2q(k −m)− 1)− k(2r−q − 1))Y,

equivalently

(1− 2r−2q+1n(2q − n)Y ) · (k2−q − 2r−2qk(2q − k)Y )

≤ k2−q + 2r−2q(m2 + (k −m)2 − k2q)Y,

and multiplying out then gives

k2−q − 2r−2qk(2q − k + 21−qn(2q − n))Y + 22r−4q+1kn(2q − k)(2q − n)Y 2

≤ k2−q + 2r−2q(m2 + (k −m)2 − k2q)Y.

If Y = 0 then this is clearly satisfied, otherwise we can eliminate the constant term

k2−q, then divide through by 2r−2q Y and rearrange to obtain

Y ≤ m2 + (k −m)2 − k2q + k(2q − k + 2n(2q − n)2−q)

2r−2q+1kn(2q − k)(2q − n)

=
2(m(m− k) + kn(2q − n)2−q)

2r−2q+1kn(2q − k)(2q − n)

=
2−qkn(2q − n) − m(k −m)

2r−2qkn(2q − k)(2q − n)
. (3.9)

If this bound on the value of Y = w({1, 1}) holds for all possible values of n, k and m,

then w satisfies AIP and conversely. We proceed to identify the values of n, k and m

which give the smallest bound, and to calculate the bound in this case.

Suppose that n and k are fixed. Then the bound (3.9) for Y takes its smallest value

where m(k −m) is as large as possible. Given that 0 ≤ m ≤ min{k, n}, this occurs
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where m is as close as possible to k/2: so where k = 2s we need only consider m = s,

while where k = 2s + 1 letting either m = s or m = s + 1 gives the same least value

for (3.9).

Now, suppose that n is fixed. We will treat n = 2q−1 as a separate case, but otherwise

note that we need only consider 1 ≤ n ≤ 2q−1− 1, since we obtain the same values for

n = 2q − j as for n = j (if we replace φ by its negation). Given the conclusion above,

we compare the value of (3.9) where k = 2s, m = s with its value where k = 2s + 2,

m = s+ 1 for some 1 ≤ s ≤ n− 1, and find that

2−q2sn(2q − n)− s2

2r−2q2sn(2q − 2s)(2q − n)
>

2−q(2s+ 2)n(2q − n)− (s+ 1)2

2r−2q(2s+ 2)n(2q − 2s− 2)(2q − n)
, (3.10)

since this expression may be simplified and rearranged as follows:

(2−q2sn(2q − n)− s2)(2s+ 2)(2q − 2s− 2)

> (2−q(2s+ 2)n(2q − n)− (s+ 1)2)2s(2q − 2s)

⇐⇒ 21−qn(2q − n)(2s+ 2)(2q − 2s− 2)− s(2s+ 2)(2q − 2s− 2)

> 21−q(2s+ 2)n(2q − n)(2q − 2s)− 2(s+ 1)2(2q − 2s)

⇐⇒ 2(s+ 1)2(2q − 2s)− 2s(s+ 1)(2q − 2s) + 4s(s+ 1)

> 22−q(2s+ 2)n(2q − n)

⇐⇒ 2(2q − 2s)(s+ 1) + 4s(s+ 1) > 23−q(s+ 1)n(2q − n)

⇐⇒ 2q+1 > 23−qn(2q − n)

⇐⇒ 22q−2 > n(2q − n).

This holds, since 1 ≤ n ≤ 2q−1 − 1, so that

n(2q − n) ≤ (2q−1 − 1)(2q−1 + 1) = 22q−2 − 1. (3.11)

Therefore (3.10) holds, meaning that, of the values of the bound (3.9) considered so

far, the smallest occurs when k = 2n,m = n.



48 CHAPTER 3. PRINCIPLES OF ABDUCTIVE INFERENCE

Still supposing that 1 ≤ n ≤ 2q−1 − 1 is fixed, a similar comparison of the value of

(3.9) where k = 2s − 1, m = s with its value where k = 2s + 1, m = s for some

1 ≤ s ≤ n yields that

2−q(2s− 1)n(2q − n)− s(s− 1)

2r−2q(2s− 1)n(2q − 2s+ 1)(2q − n)
>

2−q(2s+ 1)n(2q − n)− s(s+ 1)

2r−2q(2s+ 1)n(2q − 2s− 1)(2q − n)
, (3.12)

since this expression simplifies to

2qs(2qs− 1)

4s2 − 1
> n(2q − n).

By (3.11), the right hand side is bounded above by 22q−2 − 1, while the left hand side

is strictly larger than this, since

2qs(2qs− 1)

4s2 − 1
> 22q−2 − 1

⇐⇒ 22qs2 − 2qs > 22qs2 − 4s2 − 22q−2 + 1

⇐⇒ 4s2 − 2qs+ 22q−2 − 1 > 0.

This quadratic expression in s has least value 3 ·22q−4−1 (at s = 2q−3), which is indeed

positive for q ≥ 2. Therefore, of the values of the bound (3.9) so far considered, the

smallest occurs either where k = 2n, m = n or where k = 2n+ 1, m = n.

Now, still supposing that 1 ≤ n ≤ 2q−1 − 1 is fixed, we consider values of k between

2n and 2q− 1, while keeping m = n (as close as possible to k/2). Let 2n ≤ s ≤ 2q− 2.

Then we compare the bound (3.9) for k = s with that for k = s + 1, where m = n in

each case, and find that

2−qsn(2q − n)− n(s− n)

2r−2qsn(2q − s)(2q − n)
>

2−q(s+ 1)n(2q − n)− n(s+ 1− n)

2r−2q(s+ 1)n(2q − s− 1)(2q − n)
(3.13)

by the following rearrangement:

(2−qs(2q − n)− (s− n))(s+ 1)(2q − s− 1) > (2−q(s+ 1)(2q − n)− (s+ 1− n))s(2q − s)

⇐⇒ (n− 2−qsn)(s+ 1)(2q − s− 1) > (n− 2−qn(s+ 1))s(2q − s)

⇐⇒ (1− 2−qs)(s+ 1)(2q − s− 1) > (1− 2−q(s+ 1))s(2q − s)

⇐⇒ (s+ 1)(2q − s− 1− 2−qs(2q − s) + 2−qs) > s(2q − s)− 2−q(s+ 1)s(2q − s)

⇐⇒ (s+ 1)(2q − s− 1 + 2−qs) > s(2q − s)

⇐⇒ 2q − 2s− 1 + 2−qs(s+ 1) > 0

⇐⇒ 2q + 2−qs(s+ 1) > 2s+ 1.
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Now, substituting 2q − j for s (where 2 ≤ j ≤ 2q − 2n) gives that the above holds just

if

2q + 2−q(2q − j)(2q − (j − 1)) > 2(2q − j) + 1

⇐⇒ 2q + 2q − j − (j − 1) + 2−qj(j − 1) > 2q+1 − 2j + 1

⇐⇒ 2−qj(j − 1) > 0.

This holds for all possible values of j, so (3.13) holds. Taken together with (3.10) and

(3.12), this tells us that for a fixed value of n, the smallest value of the bound (3.9) is

obtained where k = 2q − 1 and m = n.

We now use these values for k and m to compare the bound (3.9) with that obtained

where n+ 1 is substituted for n in (3.9), where 1 ≤ n ≤ 2q−1 − 2, and find that

2−q(2q − 1)n(2q − n)− n(2q − 1− n)

2r−2q(2q − 1)n(2q − n)

<
2−q(2q − 1)(n+ 1)(2q − n− 1)− (n+ 1)(2q − 1− n− 1)

2r−2q(2q − 1)(n+ 1)(2q − n− 1)

by the following rearrangement:

(2−q(2q − 1)(2q − n)− (2q − 1− n))(n+ 1)(2q − n− 1)

< (2−q(n+ 1)(2q − 1)(2q − n− 1)− (n+ 1)(2q − n− 2))(2q − n)

⇐⇒ 2−q(2q − 1)(2q − n)(n+ 1)(2q − n− 1)− (2q − 1− n)(n+ 1)(2q − n− 1)

< 2−q(n+ 1)(2q − 1)(2q − n− 1)(2q − n)− (n+ 1)(2q − n− 2)(2q − n)

⇐⇒ (n+ 1)(2q − n− 2)(2q − n) < (2q − 1− n)(n+ 1)(2q − n− 1)

⇐⇒ (2q − n)2 − 2(2q − n) < (2q − n)2 − 2(2q − n) + 1.

It follows from this and previous remarks that for any 1 ≤ n ≤ 2q−1−1 and any possible

values of k and m, the smallest bound (3.9) is obtained where n = 1, k = 2q − 1 and

m = 1. The bound in this case is

w({1, 1}) = Y ≤ 2q−r(2q − 1)−2. (3.14)

In the case where n = 2q−1, we can apply the same arguments as used above for even

and odd values of k up to k = 2n−1 to show that of these, either k = 2n−2 or k = 2n−1

yields the smallest bound. It then remains to compare these, and it is straightforward
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to show that the latter case provides the smaller bound of (2r−q(2q − 1))−1, though

this is no smaller than that found in (3.14).

It has been shown, then, that for a probability function w which satisfies Sx, the

‘toughest test’ required to determine whether w satisfies AIP is whether (3.2) holds

where |φ| = 1, |ψ| = 2q − 1 and |φ ∧ ψ| = 1. Equivalently, whether

w(Θ(a1)↔ Θ(a1)) ≤ w((Θ(a1)↔ Θ(a1)) | ¬Ψ(a1) ∧ ¬Ψ(a2)),

for any two distinct state formulae Θ(z), Ψ(z). This is true regardless of the size

q ≥ 2 of the language (though as q increases, the bound as a proportion of the greatest

possible value of w({1, 1}) decreases). The value of (3.9) in this case is given in (3.14),

and the result follows.

We now examine the cLλ , wδL and up̄,L families of probability functions introduced in

§1.3, using the bound obtained in the previous theorem to classify which members of

these families satisfy AIP. Note that if L is unary, then r = 2q by (3.3), and so by the

previous theorem w satisfies AIP just if

w({1, 1}) ≤ 2−q(2q − 1)−2 (3.15)

(where w({1, 1}) = w(αi(a1) ∧ αj(a2)) for i 6= j).

Corollary 19. cLλ satisfies AIP just if 0 ≤ λ ≤ (2q − 3 + 2−q)−1.

Proof. By the definition of cL0 (1.12),

cL0

 ∨
S(Θ)={2}

Θ(a1, a2)

 = 1

so by part 4 of Lemma 17, (3.2) holds for every φ(x), ψ(x) ∈ QFFL, and so cL0 satisfies

AIP.

For λ > 0, by (1.11),

cLλ({1, 1}) = 2−q
λ2−q

1 + λ
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so by (3.15), cLλ satisfies AIP just if

λ2−2q

1 + λ
≤ 1

2q(2q − 1)2

⇐⇒ λ(2−q(2q − 1)2 − 1) ≤ 1

⇐⇒ λ ≤ 1

2q − 3 + 2−q
.

From this it is clear that for any fixed λ > 0, cLλ will fail to satisfy AIP where L is

sufficiently large. Since, for fixed λ, the functions cLλ form a Language Invariant family

as L varies 4, it follows that cL0 is the only such family to satisfy AIP on every language

simultaneously.

Corollary 20. wδL satisfies AIP just if

δ2 ≥ 1− 2q

(2q − 1)2
.

Proof. For 0 ≤ δ ≤ 1, by (1.14),

wδL({1, 1}) = 2−q(2γ(γ + δ) + (2q − 2)γ2) = 21−qγδ + γ2

and substituting γ = 1−δ
2q

gives

wδL({1, 1}) =
1− δ2

22q
.

By (3.15) then, wδL satisfies AIP just if

1− δ2

22q
≤ 1

2q(2q − 1)2

⇐⇒ 1− 2q

(2q − 1)2
≤ δ2.

Here too it is clear that, for any fixed δ < 1, wδL fails to satisfy AIP where L is suffi-

ciently large. Similarly to the case with the cLλ , where δ is fixed the wδL functions form

a Language Invariant family as L varies 5, and it follows that w1 (= c0) is the only

such family to satisfy AIP on each language simultaneously.

The following corollary refers to the up̄,L functions defined at (1.15) on general (polyadic)

as well as unary languages.

4See [49, chapter 16].
5See [49, chapter 19].
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Corollary 21. For p̄ = 〈p0, p1, p2, . . .〉 ∈ B, up̄,L satisfies AIP just if

∞∑
i=1

p2
i ≥ 1− 2q

(2q − 1)2
.

Proof. By (1.15),

up̄,L({1, 1}) =
1

SD(2)
(p0 + p1(1− p1) + p2(1− p2) + . . .)

= 2−r

(
1−

∞∑
i=1

p2
i

)
(3.16)

since by (3.4), SD(2) = 2r. By Theorem 18 then, up̄,L satisfies AIP just if

2−r

(
1−

∞∑
i=1

p2
i

)
≤ 2q

2r(2q − 1)2

⇐⇒ 1−
∞∑
i=1

p2
i ≤

2q

(2q − 1)2
.

Since r does not appear in this bound, it applies both to unary and to strictly polyadic

languages.

Again it is clear that, for any fixed p̄ 6= 〈0, 1, 0, 0, . . .〉, up̄,L({1, 1}) > 0, so up̄,L fails to

satisfy AIP on sufficiently large languages. 6 The up̄,L are another example of functions

which form Language Invariant families, obtained by fixing p̄ ∈ B as L varies 7. Using

the characterization in Theorem 8 of probability functions which satisfy Li with Sx,

we obtain the following:

Corollary 22. A probability function w on SL satisfies Li with Sx and AIP (that is,

for each language L containing L there is a probability function wL on SL, such that

for θ ∈ SL, wL(θ) = w(θ), and wL satisfies Sx and AIP) just if

w = u〈0,1,0,...〉,L.

Proof. If w = u〈0,1,0,...〉,L then for each L, wL = u〈0,1,0,...〉,L satisfies AIP by Corollary

21, and so w satisfies Li with Sx and AIP by Theorem 8. For the converse result,

suppose w satisfies Li with Sx, so for each L ⊇ L by Theorem 8,

wL =

∫
B
up̄,L dµ(p̄)

6It can be seen from (1.15) that for unary L, u〈0,1,0,...〉,L = w1
L = cL0 .

7See [49, chapter 29].
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for some fixed measure µ on B. Suppose µ({〈0, 1, 0, 0, . . .〉}) < 1. Then there is some

δ > 0 such that

µ({p̄ ∈ B | p1 ≤ 1− δ}) > 0

and

inf
p̄∈B

p1≤1−δ

{1−
∞∑
i=1

p2
i } = (1− (1− δ)2 − δ2) > 0.

Therefore, the product

µ({p̄ ∈ B | p1 ≤ 1− δ}) · inf
p̄∈B

p1≤1−δ

{1−
∞∑
i=1

p2
i }

is a fixed, positive value determined by µ, so by (3.16) for all sufficiently large q we

have

wL({1, 1}) ≥
∫

p̄∈B
p1≤1−δ

up̄,L({1, 1}) dµ(p̄)

≥ µ({p̄ ∈ B | p1 ≤ 1− δ}) · inf
p̄∈B

p1≤1−δ

{1−
∞∑
i=1

p2
i } · 2−r

>
2q

2r(2q − 1)2

so wL does not satisfy AIP where L is sufficiently large. The result follows.

So, the combined requirements of Li, Sx and AIP limit the choice of probability func-

tions to just one candidate! Unfortunately, this unique candidate may be found rather

objectionable on the grounds that

u〈0,1,0,...〉,L(Θ(a1, . . . , an)) = 0

whenever |S(Θ)| > 1, that is, whenever Θ makes any distinction between any of the

constants a1, . . . , an. We would conclude that, however appealing these properties

may be individually, in combination they place too severe a restriction on the choice

of function, and should be rejected.

Even without the requirement of Language Invariance, however, Theorem 18 shows

that AIP is rather a strong requirement of functions satisfying Sx on all but the small-

est languages. Since the only possible spectra of state descriptions for 2 constants are
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{1, 1} and {2}, where AIP forces the value of w({1, 1}) to be small the value of w({2})

must be correspondingly large.

This observation is illustrated for the v~c functions on unary languages, defined at

(1.10), by the following:

Proposition 23. Let q ≥ 2 and ~c ∈ D2q . If the probability function v~c on the unary

language with q predicates satisfies AIP then the largest co-ordinate a in ~c satisfies

2a(1− a) ≤ 1

2q − 1
.

Proof. Let q ≥ 2 and ~c ∈ D2q , and let 0 < a ≤ 1 be the largest value of any co-ordinate

in ~c. Suppose, without loss of generality since vσ(~c) = v~c for any σ ∈ S2q , that c1 = a.

Then by (1.10)

v~c({1, 1}) = v~c(α1(a1) ∧ α2(a2))

=
1

2q(2q − 1)

2q∑
j=1

(cj − c2
j). (3.17)

Note that

2q∑
j=1

(cj − c2
j) = 1− a2 −

2q∑
j=2

c2
j

≥ 1− a2 − (1− a)2

= 2a(1− a),

so that by (3.17),

v~c({1, 1}) ≥
2a(1− a)

2q(2q − 1)
= v~a({1, 1})

where ~a = 〈a, 1− a, 0, . . . , 0〉 ∈ D2q .

Therefore if v~c satisfies AIP, by (3.15),

v~c({1, 1}) ≤ 2−q(2q − 1)−2

and so by the above remark

v~a({1, 1}) =
2a(1− a)

2q(2q − 1)
≤ 2−q(2q − 1)−2,
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giving

2a(1− a) ≤ 1

2q − 1
.

Since for 0 < a ≤ 1, a(1− a) takes its largest value at a = 1/2 and its smallest values

at the endpoints close to 0 or 1 (and since the co-ordinates of ~c must sum to 1 and a is

assumed to be the largest), the significance of this result is that for v~c to satisfy AIP,

its largest co-ordinate must be rather close to 1, while all others must be very small.

This illustrates the remarks above regarding the strength of AIP in the presence of

Sx, even where Li is not assumed. What may seem to be a reasonable requirement

in (3.1) has been shown to be much more demanding, at least in the presence of Sx,

than it may at first appear.

3.2 Generalizations of AIP

We now proceed to investigate how AIP might be modified to take account of back-

ground information, mentioning more than just 2 constants. We limit this investigation

to unary languages for simplicity, so we will assume for the rest of this chapter that L

is unary. However, we no longer need assume that w satisfies Sx, subsequent results

apply to all functions (satisfying our standing assumption of Ex) on unary languages.

We begin with a lemma concerning the w~c functions (1.8), which will be needed sub-

sequently.

Lemma 24. For ~c ∈ D2q , w~c satisfies AIP just if ~c has at most 2 non-zero co-ordinates.

Proof. From right to left, if ~c has a single non-zero co-ordinate then w~c satisfies

AIP by part 4 of Lemma 17. If ~c has exactly 2 non-zero co-ordinates then for any

φ(x), ψ(x) ∈ QFFL either w~c(ψ(a1)) = w~c(ψ(a2)) ∈ {0, 1} and (3.2) holds by part 1

of Lemma 17, or w(ψ(ai) → αj(ai)) = 1 for some unique 1 ≤ j ≤ 2q, and (3.2) holds

by part 2 of the same result. Therefore w~c satisfies AIP.

In the opposite direction, suppose ~c ∈ D2q has at least 3 non-zero co-ordinates. Let

those co-ordinates with positive values be partitioned into 3 parts D1, D2, D3 with the
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sum of the co-ordinate values in each part d1, d2, d3 > 0 respectively. Without loss of

generality, suppose that d3 ≥ d1, d2.

Let

φ(x) =
∨
i∈D1

αi(x), ψ(x) =
∨

i∈D1∪D3

αi(x).

Then by (1.8)

w~c(φ(a1)↔ φ(a2)) = 1 − w~c((φ(a1) ∧ ¬φ(a2)) ∨ (¬φ(a1) ∧ φ(a2)))

= 1− 2d1(1− d1),

while

w~c(ψ(a1) ∧ ψ(a2)) = (d1 + d3)2,

and

w~c((φ(a1)↔ φ(a2)) ∧ ψ(a1) ∧ ψ(a2))

= w~c(φ(a1) ∧ ψ(a1) ∧ φ(a2) ∧ ψ(a2)) + w~c(¬φ(a1) ∧ ψ(a1) ∧ ¬φ(a2) ∧ ψ(a2))

= d2
1 + d2

3.

If w~c satisfies AIP then

w~c(φ(a1)↔ φ(a2)) · w~c(ψ(a1) ∧ ψ(a2)) ≤ w~c((φ(a1)↔ φ(a2)) ∧ ψ(a1) ∧ ψ(a2))

⇐⇒ (1− 2d1(1− d1))(d1 + d3)2 ≤ d2
1 + d2

3

⇐⇒ (d1 + d3)2 − d2
1 − d2

3 ≤ 2d1(1− d1)(d1 + d3)2

⇐⇒ d3 ≤ (1− d1)(d1 + d3)2

⇐⇒ 1− d1 − d2 ≤ (1− d1)(1− d2)2 = 1− 2d2 + d2
2 − d1 + 2d1d2 − d1d

2
2

⇐⇒ d2 ≤ d2(d2 + 2d1 − d1d2)

⇐⇒ 1 + d1d2 ≤ d2 + 2d1,

but this is impossible since d1 ≤ d3 so the right hand side is at most 1 while the left

hand side is greater than 1. The result follows.

We now investigate different formulations of abductive inference in the presence of

some background information. Two approaches are considered, the first is to condition

a probability funcion w on a single sentence θ throughout (3.1), giving the following

formulation:
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Generalized Abductive Inference Principle (a), GAIP(a)

For ~a = 〈a1, . . . , an〉 and any φ(x), ψ(x) ∈ QFFL and θ(~a) ∈ SL,

w(φ(an+1)↔ φ(an+2) | θ(~a)) ≤ w(φ(a1)↔ φ(a2) | ψ(a1) ∧ ψ(a2) ∧ θ(~a)). (3.18)

The following result will show that for all but a very restricted class of functions, there

is some background information θ(a1, . . . , an) ∈ QFSL and some φ(x), ψ(x) ∈ QFFL

such that (3.18) fails to hold, that is, w conditioned on θ fails to satisfy AIP.

Proposition 25. If w is a probability function satisying GAIP(a), then every support

point 8 of w contains at most 2 non-zero co-ordinates.

Proof. Suppose w is a probability function with a support point ~c ∈ D2q which has at

least 3 non-zero co-ordinates. By Lemma 24 (and Ex) there exist φ(x), ψ(x) ∈ QFFL,

with w(ψ(an+1) ∧ ψ(an+2)) > 0, such that

w~c(φ(an+1)↔ φ(an+2)) > w~c(φ(an+1)↔ φ(an+2) | ψ(an+1) ∧ ψ(an+2)) > 0.

Let δ be equal to

w~c(φ(an+1)↔ φ(an+2)) − w~c(φ(an+1)↔ φ(an+2) | ψ(an+1) ∧ ψ(an+2))

so δ > 0, and let ε be small enough that

0 <
w~c(φ(an+1)↔ φ(an+2) ∧ ψ(an+1) ∧ ψ(an+2)) + ε

w~c(ψ(an+1) ∧ ψ(an+2))− ε

− w~c(φ(an+1)↔ φ(an+2) | ψ(an+1) ∧ ψ(an+2)) < δ − ε. (3.19)

By Corollary 7 there exist n and θ(a1, . . . , an) ∈ QFSL such that w(θ) > 0, and for

any η ∈ QFSL

|w(η | θ)− w~c(η)| < ε. (3.20)

8The definition follows Theorem 5.
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Therefore by (3.19), (3.20) and the definition of δ,

w(φ(an+1)↔ φ(an+2) | ψ(an+1) ∧ ψ(an+2) ∧ θ(a1, . . . , an))

=
w(φ(an+1)↔ φ(an+2) ∧ ψ(an+1) ∧ ψ(an+2) | θ(a1, . . . , an))

w(ψ(an+1) ∧ ψ(an+2) | θ(a1, . . . , an))

<
w~c(φ(an+1)↔ φ(an+2) ∧ ψ(an+1) ∧ ψ(an+2)) + ε

w~c(ψ(an+1) ∧ ψ(an+2))− ε

< w~c(φ(an+1)↔ φ(an+2) | ψ(an+1) ∧ ψ(an+2)) + δ − ε

= w~c(φ(an+1)↔ φ(an+2))− ε

< w(φ(an+1)↔ φ(an+2) | θ(a1, . . . , an)).

So even those functions which do satisfy AIP ‘at the outset’, such as those satisfying

Sx and (3.15), may fail to do so after conditioning on certain background information.

Those functions which do satisfy GAIP(a) on languages where q ≥ 2 may be found

objectionable, by the previous result, on the grounds that they will assign zero prob-

ability to any state description containing 3 or more distinct atoms.

A different approach to including background information would be to allow it to be

contained in the ‘observation’ formula ψ in (3.1), as in the following formulation: 9

Generalized Abductive Inference Principle (b), GAIP(b)

For ~a = 〈a1, . . . , an〉 and any φ(x), ψ(x,~a) ∈ QFFL

w(φ(an+1)↔ φ(an+2)) ≤ w(φ(an+1)↔ φ(an+2) | ψ(an+1,~a) ∧ ψ(an+2,~a)). (3.21)

9A similar principle, where φ as well as ψ is permitted to contain information relating to some
additional constants ~a, is considered in [27], known there as the Equivalence Analogy Principle.
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By our convention (1.2) we take this to be equivalent to

w(φ(an+1)↔ φ(an+2)) · w(ψ(an+1,~a) ∧ ψ(an+2,~a))

≤ w((φ(an+1)↔ φ(an+2)) ∧ ψ(an+1,~a) ∧ ψ(an+2,~a)). (3.22)

The following classification result for GAIP(b) shows that this too is a strong condition.

Theorem 26. A probability function w on a unary language L with supportM satisfies

GAIP(b) just if M takes one of the following forms:

1. M = {~c} is a singleton where ~c has exactly 2 non-zero co-ordinates,

2. M is some permutation of {〈c, 1−c, 0, . . . , 0〉, 〈1−c, c, 0, . . . , 0〉} ⊂ D2q for some

unique 0 < c < 1,

3. M⊆ {σ(〈1, 0, . . . , 0〉) | σ ∈ S2q}.

Proof. Let w be a probability function on a unary language L, with de Finetti prior

µ and support M. For 1 ≤ j ≤ 2q, let

γj = min{|dj − 1/2| | ~d ∈M}

(which exists since M is closed), and let

Γj = {~d ∈M | |dj − 1/2| = γj}

(which is non-empty and closed for each j).

Suppose there is some 1 ≤ j ≤ 2q such that µ(Γj) < 1, and let φ(x) = αj(x). Let

m ∈ N+ be large and for some fixed ~c ∈ Γj, let k =
∑2q

i=1[mci]. Let ~a = 〈a1, a2, . . . , ak〉

and let ψ(x,~a) = α
[mc1]
1 ∧ . . . ∧ α[mc2q ]

2q .

For x ∈ D2q − Γj, |xj − 1/2| > γj, and so

xj(1− xj) < cj(1− cj),

giving

1− 2xj(1− xj) > 1− 2cj(1− cj),
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and ∫
D2q−Γj

1− 2xj(1− xj) dµ(~x) > (1− µ(Γj))(1− 2cj(1− cj)).

Therefore

w(φ(am+1,~a)↔ φ(am+2,~a)) =

∫
D2q

1− 2xj(1− xj) dµ(~x)

=

∫
Γj

1− 2xj(1− xj) dµ(~x) +

∫
D2q−Γj

1− 2xj(1− xj) dµ(~x)

= µ(Γj)(1− 2cj(1− cj)) +

∫
D2q−Γj

1− 2xj(1− xj) dµ(~x)

> 1− 2cj(1− cj).

By Lemma 6, w(φ(am+1) ↔ φ(am+2) | ψ(am+1,~a) ∧ ψ(am+2,~a)) becomes arbitrarily

close to

w~c(φ(am+1)↔ φ(am+2)) = 1− 2cj(1− cj)

where m is sufficiently large, and so w fails to satisfy GAIP(b).

Now suppose that w satisfies GAIP(b). By the above argument, there can be no

1 ≤ j ≤ 2q such that µ(Γj) < 1, meaning that µ(Γj) = 1 for each 1 ≤ j ≤ 2q. If ~e ∈M

is not a limit point of Γj then it is possible to find ε > 0 such that Bε(~e) ⊆ M− Γj,

contradicting µ(Γj) = 1. Therefore any ~e ∈M is a limit point of Γj, and so must be a

member of Γj (since Γj is closed). It follows that Γi = Γj =M for any 1 ≤ i, j ≤ 2q.

Suppose that |M| = 1, so that w = w~c for some unique ~c ∈ D2q . If ~c has at least

3 non-zero co-ordinates, we know from Lemma 24 that w fails AIP (and therefore

GAIP(b) with ψ(x,~a) = ψ(x)), contradicting our assumption. Therefore ~c can have

at most 2 non-zero co-ordinates, and M is either of form 1 or form 3.

Now suppose otherwise that |M| ≥ 2, and let ~c, ~d ∈ M be distinct support points.

Let S = {i1, . . . , ig} ⊆ N2q be the set of co-ordinates on which ~c, ~d differ:

cj 6= dj ⇐⇒ j ∈ S.

If ~c = 〈c1, c2, . . . , c2q〉 then

dj =

1− cj j ∈ S

cj j 6∈ S
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since ~c, ~d ∈ Γj for each 1 ≤ j ≤ 2q. The co-ordinates sum to 1 in each case which

gives

1− ci1 + 1− ci2 + . . .+ 1− cig = ci1 + . . .+ cig (3.23)

and so

g = 2(ci1 + . . .+ cig) ≤ 2.

Since it is impossible for ~c, ~d to differ in just 1 co-ordinate, g must be equal to 2, which

substitution in (3.23) yields

ci2 = 1− ci1 .

Where ci1 ∈ {0, 1}, we conclude that ~c, ~d are distinct permutations of 〈1, 0, . . . , 0〉, as

is any ~e ∈ M, so that M is of form 3. Suppose otherwise, that ci1 takes the value

0 < c < 1. Then any ~e ∈ M distinct from ~c is either equal to ~d, or differs from ~c at

exactly 2 co-ordinates {u1, u2} 6= {i1, i2}. But

cu1 + cu2 < 1,

meaning that

eu1 + eu2 = (1− cu1) + (1− cu2) > 1,

which is impossible by the definition of D2q . Therefore M = {~c, ~d} and so is of form

2. The left-to-right direction of the result follows.

In the other direction, we assume that w is a probability function with de Finetti prior

µ, whose support M takes one of the forms in the statement of the result. Suppose

that M is of the third form, so that

M⊆ {σ(〈1, 0, . . . , 0〉) | σ ∈ S2q}

and so

w =
2q∑
j=1

ηj w~bj

where ~bj ∈ D2q has value 1 at co-ordinate j and 0 at all other co-ordinates, each ηj ≥ 0

and
∑

j ηj = 1.
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Let φ(x) ∈ QFFL and let 1 ≤ j ≤ 2q. If αj(x) |= φ(x) then (for any m)

w~bj
(φ(am+1) ∧ φ(am+2)) = 1, w~bj

(¬φ(am+1) ∧ ¬φ(am+2)) = 0,

while if αj(x) |= ¬φ(x) then

w~bj
(φ(am+1) ∧ φ(am+2)) = 0, w~bj

(¬φ(am+1) ∧ ¬φ(am+2)) = 1.

In either case,

w~bj
(φ(am+1)↔ φ(am+2))

= w~bj
(φ(am+1) ∧ φ(am+2)) + w~bj

(¬φ(am+1) ∧ ¬φ(am+2))

= 1,

and so

w(φ(am+1)↔ φ(am+2)) =
2q∑
j=1

ηj w~bj
(φ(am+1)↔ φ(am+2))

=
2q∑
j=1

ηj = 1,

and by Lemma 3, (3.22) holds with equality for any φ(x), ψ(x,~a).

Now suppose that M is of form 1 or 2, so that

w = λw~c + (1− λ)w~d

for some 0 < λ ≤ 1, where for some 0 < c < 1, ~c ∈ D2q has values c, 1 − c at

co-ordinates s1, s2 respectively, and 0 at all other co-ordinates, while ~d ∈ D2q has

value 1− c at co-ordinate s1 and c at s2 etc.. Suppose, without loss of generality, that

s1 = 1, s2 = 2 (the same argument applies for any other pair of distinct co-ordinates).

Let φ(x) ∈ QFFL so that

φ(x) ≡
∨
j∈Pφ

αj(x)
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for some Pφ ⊆ N2q . Let P¬φ denote N2q − Pφ. Then (for any m)

w~c(φ(am+1)↔ φ(am+2))

= w~c(φ(am+1) ∧ φ(am+2)) + w~c(¬φ(am+1) ∧ ¬φ(am+2))

= w~c

∨
j∈Pφ

αj(am+1) ∧
∨
j∈Pφ

αj(am+2)

 + w~c

 ∨
j∈P¬φ

αj(am+1) ∧
∨

j∈P¬φ

αj(am+2)


=

 ∑
j∈Pφ∩{1,2}

cj

2

+

 ∑
j∈P¬φ∩{1,2}

cj

2

=

1 if {1, 2} ⊆ Pφ or {1, 2} ⊆ P¬φ

c2 + (1− c)2 otherwise.

A similar argument shows that likewise

w~d(φ(am+1)↔ φ(am+2)) =

1 if {1, 2} ⊆ Pφ or {1, 2} ⊆ P¬φ

c2 + (1− c)2 otherwise.

If {1, 2} ⊆ Pφ or {1, 2} ⊆ P¬φ then

w(φ(am+1)↔ φ(am+2)) = λ+ (1− λ) = 1,

and by Lemma 3 (3.22) holds with equality for any ψ(x,~a), so suppose otherwise that

{1, 2} ∩ Pφ = {1}, {1, 2} ∩ P¬φ = {2} (3.24)

or vice-versa. Let ψ(x,~a) ∈ QFFL where ~a = 〈a1, a2, . . . , am〉 for some m ≥ 1 (the

same argument may be used, and becomes simpler, for the case where ψ(x) does not

refer to any constant symbols), so that

ψ(x,~a) ≡
∨

Θ∈Tψ

(
Θ(~a) ∧

∨
j∈QΘ

αj(x)

)

for some set Tψ of state descriptions for ~a and subsets QΘ of N2q .

Any disjunct which logically implies αj(x) or αj(ai) for some 1 ≤ i ≤ m and any

j 6∈ {1, 2} will be assigned probability 0 by w, so for each Θ ∈ Tψ, let Q′Θ = QΘ∩{1, 2},

and let

T ′ψ = {Θ ∈ Tψ | Θ |=
m∧
i=1

∨
j∈{1,2}

αj(ai), Q
′
Θ 6= ∅}.
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Then

w(ψ(am+1,~a) ∧ ψ(am+2,~a))

= w

 ∨
Θ∈T ′ψ

Θ(~a) ∧
∨
j∈Q′Θ

αj(am+1)

 ∧ ∨
Θ∈T ′ψ

Θ(~a) ∧
∨
j∈Q′Θ

αj(am+2)


= w

 ∨
Θ∈T ′ψ

Θ(~a) ∧
∨

〈j1,j2〉∈(Q′Θ)2

αj1(am+1) ∧ αj2(am+2)

 . (3.25)

For each Θ ∈ T ′ψ, Q′Θ takes one of the forms: {1}, {2}, or {1, 2}, so partition T ′ψ into

T1 = {Θ ∈ T ′ψ | Q′Θ = {1}},

T2 = {Θ ∈ T ′ψ | Q′Θ = {2}},

T1,2 = {Θ ∈ T ′ψ | Q′Θ = {1, 2}}.

By (3.25), then

w(ψ(am+1,~a) ∧ ψ(am+2,~a))

=
∑
Θ∈T1

w(Θ(~a) ∧ α1(am+1) ∧ α1(am+2)) +
∑
Θ∈T2

w(Θ(~a) ∧ α2(am+1) ∧ α2(am+2))

+
∑

Θ∈T1,2

w(Θ(~a) ∧ ((α1(am+1) ∧ α1(am+2)) ∨ (α2(am+1) ∧ α2(am+2))))

+
∑

Θ∈T1,2

w(Θ(~a) ∧ ((α1(am+1) ∧ α2(am+2)) ∨ (α2(am+1) ∧ α1(am+2)))).

Let β denote the sum of the first three terms above, and let δ denote the fourth term.

By our assumption (3.24), the first three terms make up

w(ψ(am+1) ∧ ψ(am+2) ∧ (φ(am+1)↔ φ(am+2))),

and

w(φ(am+1)↔ φ(am+2)) = c2 + (1− c)2

so that (3.22) holds just if

(c2 + (1− c)2)(β + δ) ≤ β,

equivalently

(c2 + (1− c)2)δ ≤ 2c(1− c)β. (3.26)
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Now, by the definition of β and by (1.9)

β ≥
∑

Θ∈T1,2

w(Θ(~a) ∧ ((α1(am+1) ∧ α1(am+2)) ∨ (α2(am+1) ∧ α2(am+2))))

=
∑

Θ∈T1,2

λw~c(Θ(~a))(c2 + (1− c)2) + (1− λ)w~d(Θ(~a))((1− c)2 + c2)

= (c2 + (1− c)2)
∑

Θ∈T1,2

λw~c(Θ(~a)) + (1− λ)w~d(Θ(~a)) (3.27)

while

δ =
∑

Θ∈T1,2

w(Θ(~a) ∧ ((α1(a1) ∧ α2(a2)) ∨ (α2(a1) ∧ α1(a2))))

=
∑

Θ∈T1,2

λw~c(Θ(~a))2c(1− c) + (1− λ)w~d(Θ(~a))2c(1− c)

= 2c(1− c)
∑

Θ∈T1,2

λw~c(Θ(~a)) + (1− λ)w~d(Θ(~a)). (3.28)

Let κ denote
∑

Θ∈T1,2
λw~c(Θ(~a)) + (1− λ)w~d(Θ(~a)). Then by (3.27) and (3.28)

2c(1− c)β ≥ 2c(1− c)(c2 + (1− c)2)κ

= (c2 + (1− c)2)δ,

and so (3.26) holds and therefore (3.22) holds. The result follows.

None of the three possible forms necessary for w to satisfy GAIP(b) seems very satis-

factory; functions of form 1 or 2 only assign non-zero probability to 2 out of a possible

2q atoms, while functions of form 3 are subject to the same problems already discussed

in regard to cL0 .

To summarize, then, though we have not been able to provide a characterization the-

orem for AIP without additionally assuming Sx, and have only considered GAIP for

unary languages, our limited findings suggest that the formulations (3.1) for AIP and

(3.18) and (3.21) for GAIP are rather too demanding. Large classes of probability

functions have been found not to satisfy these formulations of Peirce’s ‘abductive

inference’, while those which do may be found undesirable on other grounds. We con-

clude that these formulations are unsatisfactory as principles of PIL, in that they do

not correspond to desirable properties of probability functions used to model rational
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belief.

Returning to the motivation discussed in the introduction to this chapter, the aim of

AIP and GAIP was to formalize within PIL a probabilistic interpretation of Peirce’s

hypothesis: that observing certain similarities between individuals makes it seem more

likely (or at least not less likely) that they are also similar in other (unobserved) re-

spects. Expressed in everyday language, this seems to be in accord with our intuitions,

though perhaps, in light of these results, it should be qualified to say ‘in some other

(unobserved) respects’.

Allowing the hypothetical similarity φ(x) (or its negation) to be any formula from

QFFL has the apparent advantage that it makes no reference to any particular un-

derlying population, there may be many candidates (in our framework the exact num-

ber will depend on the size of the language). Peirce [52] held the view that “any

hypothesis may be admissible in the absence of any special contrary reasons”, though

he was referring to real-world applications, where any ‘contrary reasons’ may depend

on the specific context of the application, which information is unavailable to our agent.

Perhaps the requirement of AIP that (3.1) must hold for any quantifier-free observa-

tion ψ and hypothetical property φ may be asking too much. For example, the proof

of Theorem 18 shows that, in the presence of Sx, the ‘toughest test’ set by AIP is

the extreme case where the observation ψ(x) consists of the smallest possible amount

of information expressible in the language: that x does not satisfy 1 particular state

formula, while those state formulae which imply respectively φ(x) and ¬φ(x) are in

the extreme ratio 1 : 2q− 1. If such extreme cases were excluded, AIP would certainly

be less demanding, although it seems unclear how this should be done in a way which

is ‘reasonable’ rather than arbitrary.

One possible reformulation of AIP which avoids this problem would be to replace

φ(a1)↔ φ(a2) in (3.1) by ∨
Θ(x)

(Θ(a1) ∧Θ(a2)), (3.29)

where Θ runs over all state formulae for 1 variable. Note that φ(a1) ↔ φ(a2) is a
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logical consequence of (3.29) for any φ(x) ∈ QFFL. The resulting principle

w

∨
Θ(x)

(Θ(a1) ∧Θ(a2)) ψ(a1) ∧ ψ(a2)

 ≥ w

∨
Θ(x)

(Θ(a1) ∧Θ(a2))

 (3.30)

expresses the idea that observing some similarity between a1 and a2 does not diminish

our belief that they will be found to satisfy the same 1-place state formula (atom

where L is unary). This seems to say something essentially very similar to AIP, and

yet it turns out that this condition is satisfied by every probability function satisfying

Sx! This can be seen since by (3.5), (3.6), (3.7) and our convention (1.2), (3.30) is

equivalent to

w

 ∨
Θ(x)|=ψ(x)

(Θ(a1) ∧Θ(a2))

 ≥ w

∨
Θ(x)

(Θ(a1) ∧Θ(a2))

 · w
 ∨

Φ(a1,a2)|=
ψ(a1)∧ψ(a2)

Φ(a1, a2)


⇐⇒ |ψ|w({2}) ≥ N ({2}) · w({2}) ·

(
|ψ|w({2}) + |ψ| (2r−2q|ψ| − 1)w({1, 1})

)
⇐⇒ 1 ≥ 2q

(
w({2}) + (2r−2q|ψ| − 1)w({1, 1})

)
.

This holds with equality if w({1, 1}) = 0, and otherwise just if

2−q ≥ 2−q − (2r−q − 1)w({1, 1}) + (2r−2q|ψ| − 1)w({1, 1})

⇐⇒ 2r−q − 1 ≥ 2r−2q|ψ| − 1

⇐⇒ 2q ≥ |ψ|,

which always holds. In terms of the requirements placed on probability functions,

then, this formulation could hardly be further removed from AIP, despite apparent

similarity of ‘meaning’.

A similar phenomenon has occurred with other attempts to formalize probabilistic

analogical reasoning within PIL. The Strict Analogy Principle considered by Hill &

Paris in [20] was found to be unsatisfiable by any probability function on a unary lan-

guage where q > 2, while the Counterpart Principle considered by the same authors

in [21] was found to be a consequence of Language Invariance. Similarly, each of the

various formulations of reasoning by analogy considered in [27] is found to be either

‘too strong’, restricting the available choice of probability function to just cL0 , or to be

sufficiently ‘weak’ that it places no further restriction on the choice of function beyond
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those already imposed by the background assumptions.

Perhaps the main conclusion of this chapter, then, is that our intuitions regarding how

to formalize abductive or analogical reasoning within PIL can be rather misleading.

Bartha in [1] takes the view that probabilistic reasoning by analogy is too sensitive to

context to be submitted to any general rule, and the results given in this chapter and

mentioned above do not contradict this view.



Chapter 4

The theory of Spectrum

Exchangeability

1 One approach to the question of how far a principle, or combination of principles,

of inductive reasoning may be said to be ‘rational’ is to examine the resulting theory ;

the set of sentences of L which must be assigned probability 1 by any probability

function which satisfies the chosen principle(s). 2 If this set Th(P) can be identified

for a particular set of principles P , this gives a kind of ‘creed’ according to P , a set of

sentences which must be accepted with certainty by any agent who adopts P . By the

definition of a probability function, Th(P) must contain all tautologies, but where it

additionally contains non-tautologous sentences, this surely says something interesting

about P , which may give a new perspective on the extent to which P is a ‘good’ choice

of rational principles.

Several principles are known to have non-trivial theories, including Paris & Vencovská’s

Invariance Principle [49] and for unary languages Johnson’s Sufficient Postulate, JSP

(see Appendix A for an explicit description of Th(JSP)). The Finite Values Property,

the subject of chapter 5, is shown there to be another example. It seems to be a com-

mon feature of such principles that they are rather powerful in limiting the agent’s

choice of probability function, which may suggest that their power comes at the price

of the agent accepting a non-tautological creed.

1The results from this chapter appeared originally in [26].
2This definition is a natural extension of that used by Gaifman & Snir [17] in their discussion on

classifying probability functions by their theories.

69
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In this chapter we apply this technique to the principle of Spectrum Exchangeability,

Sx. Sx first appeared in [42] and was conceived by Nix and Paris as an extension of Ax

to polyadic languages. Since then, much work has been done by Paris & Vencovská

et al. 3 to determine those probability functions which satisfy this principle, and to

investigate its relationships to other principles of PIL. Compared with those princi-

ples considered in other chapters then, Sx is not so new, and rather a lot is already

known about it, though the approach considered here of identifying its theory has not

previously been taken.

It has been shown 4 that all probability functions which satisfy Sx are comprised of

a mixture of two essential types: heterogeneous and homogeneous functions (defini-

tions are given below). We will identify the theories of these two types, and show

that the theory of heterogeneity is equal to the theory of finite structures for L, i.e.

those sentences true in all finite structures for L, which in turn is equal to the theory

of Sx. It follows as a corollary that the principle of Sx is incompatible with that of

Super-Regularity (that all non-contradictory sentences should be assigned non-zero

probability).

Recall from §1.1 that T L denotes the set of structures for L with universe {a1, a2, a3, . . .},

where the symbol ai is interpreted as the individual ai. Notice that by the Löwenheim-

Skolem Theorems, if Γ ⊆ SL and infinitely many constants are not mentioned by the

sentences of Γ, then Γ has a model just if it has a model in T L. With this limita-

tion on Γ, T L is complete, in the sense that if a sentence ψ is true in all models of

Γ in T L then it is true in all models of Γ, and hence formally provable from Γ (in-

deed from some finite subset of Γ). This property of T L will be needed in what follows.

Recall the notation and terminology from §1.1 concerning extensions and restrictions

of state descriptions, and their spectra. From §1.2 we restate

3See [33], [35], [36], [37], [40], [46], or for an overview [49].
4See [33], [35], [40], [42], [49].
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The Principle of Spectrum Exchangeability, Sx

A probability function w on SL satisfies Spectrum Exchangeability if, for any state

descriptions Θ(b1, b2, . . . , bm),Φ(b1, b2, . . . , bm) such that S(Θ) = S(Φ)

w(Θ) = w(Φ).

The forthcoming Theorem 27 states that any probability function on SL which satisfies

Sx may be expressed as a convex sum of probability functions of two basic types:

heterogeneous and homogeneous functions, defined as follows.

Homogeneity

A probability function w on SL is homogeneous (abbreviated hom) if it satisfies Sx and

for each t ∈ N+

lim
n→∞

w

 ∨
|S(Φ(a1,...,an))|=t

Φ(a1, . . . , an)

 = 0. (4.1)

The disjunction is taken over all state descriptions of L for constants a1, . . . , an with

spectrum length t.

Heterogeneity

For t ∈ N+, a probability function w on SL is t-heterogeneous (abbreviated t-het) if it

satisfies Sx and

lim
n→∞

w

 ∨
|S(Φ(a1,...,an))|=t

Φ(a1, . . . , an)

 = 1. (4.2)

Again, the disjunction is taken over all state descriptions of L for constants a1, . . . , an

with spectrum length t.

The following result, known as The Ladder Theorem, is due to Landes, Nix, Paris &

Vencovská. 5

5See [33], [35], [40], [42], [49].
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Theorem 27. Any probability function w satisfying Sx can be expressed in the form

w = η0w
[0] +

∞∑
t=1

ηtw
[t]

where each ηi ≥ 0,
∑

i ηi = 1, w[0] is homogeneous and w[t] is t-heterogeneous for

t > 0. Furthermore this representation is unique up to a free choice of the w[i] when

ηi = 0.

We proceed to identify the theory of Sx, that is the set

Th(Sx) = {θ ∈ SL | w satisfies Sx =⇒ w(θ) = 1},

by separate investigations into the theory of t-heterogeneity, Th(t-het), and the theory

of homogeneity, Th(hom), defined analogously.

4.1 The theory of t-heterogeneity

We begin by stating some established results concerning t-heterogeneous probability

functions, which will be needed below. The following theorem of Landes et al. [35]

states that any convex mixture of the vp̄,L probability functions (1.16), as p̄ ranges

over Bt, is t-heterogeneous, and conversely.

Theorem 28. Let w be a t-heterogeneous probability function on SL. Then there is

a measure µ on the Borel 6 subsets of Bt such that

w =

∫
Bt
vp̄,L dµ(p̄).

Conversely, given such a measure µ, w defined as above is a t-heterogeneous probability

function on SL.

The next result follows from the above theorem and the definition of the vp̄,L functions

(1.16), using the fact that there will be some ~c ∈ (Nt)
m consistent with Φ(b1, . . . , bm)

just if |S(Φ)| ≤ t.

6That is, the closure under complement and countable unions of the open subsets of Bt. This
ensures that the functions p̄ 7→ vp̄,L(θ) are integrable with respect to µ for θ ∈ SL.
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Lemma 29. If w is a t-heterogeneous probability function on SL then

• w(Φ(b1, . . . , bm)) > 0 for any state description Φ(b1, . . . , bm) with spectrum length

|S(Φ)| ≤ t,

• w(Ψ(b1, . . . , bm)) = 0 for any state description Ψ(b1, . . . , bm) with spectrum length

|S(Ψ)| > t.

It follows immediately that heterogeneous functions do not satisfy Reg.

We now state a technical result proved by Paris & Rad in [45].

Lemma 30. Let t ∈ N+, let g be the largest arity of any relation symbol in L, and

let k be the largest of t + 1 and g. Then for any m ≥ k and any state description

Φ(a1, . . . , am) with spectrum length |S(Φ)| ≥ k ≥ t + 1, there exists some s with

k ≤ s ≤ k + g = max{t+ 1 + g, 2g}, and some distinct 1 ≤ i1, . . . , is ≤ m such that

|S(Φ[ai1 , . . . , ais ])| = s.

The significance of this result is that if we let s(t) = max{t+1+g, 2g}, then any state

description of L with spectrum length greater than t must have a restriction to s(t) or

fewer constants, with spectrum length greater than t. Therefore, the following (finite)

sentence ζt may be used to express the idea that some state formula of spectrum length

t is instantiated, and that any instantiated state formula for any number of variables

must have spectrum length at most t.

Let ζt be the sentence

∨
Θ(z1,...,zt)
S(Θ)=1t

∃x1, . . . , xt Θ(x1, . . . , xt) ∧ ∀y1, . . . , ys(t)
∨

σ:{y1,...,ys(t)}
→{z1,...,zt}

Θσ(y1, . . . , ys(t))


where the outermost disjunction is over all state formulae with spectrum 1t, and for

σ : {y1, . . . , ys(t)} → {z1, . . . , zt} with image {zi1 , . . . , zim}, Θσ(y1, . . . , ys(t)) is the

unique (up to logical equivalence) state formula Ψ(y1, . . . , ys(t)) such that

Ψ(σ(y1), . . . , σ(ys(t))) ≡ Θ[zi1 , . . . , zim ].
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In more detail, ζt firstly says that there are some ai1 , ai2 , . . . , ait satisfying some state

formula Θ of spectrum length t, so the aij are all distinguished from each other by Θ.

Additionally, ζt then says that if we take any b1, b2, . . . , bs(t) then (taken together) they

all look like clones of certain of the ai1 , ai2 , . . . , ait . As a consequence of the choice of

s(t), by Lemma 30, this forces that any number of b1, b2, . . . , bm must look like clones of

certain of the ai1 , ai2 , . . . , ait , in other words the universe has just t distinguishable ele-

ments in it (for example these ai1 , ai2 , . . . , ait) and all other elements are clones of these.

The following result shows that the sentence ζt belongs to Th(t-het).

Lemma 31. If w is a t-heterogeneous probability function, then

w(ζt) = 1.

Proof. Suppose w is a t-heterogeneous probability function on SL and let Φ(a1, . . . , an)

be a state description of L with spectrum length t. Then, by restricting Φ to one rep-

resentative, ag1 , . . . , agt , of each equivalence class of ∼Φ, we obtain a state description

Θ(ag1 , . . . , agt) with spectrum 1t. Furthermore, since the members of each equivalence

class of ∼Φ are indistinguishable from each other according to Φ, there is a unique sur-

jective map σ : {a1, . . . , an} → {z1, . . . , zt} such that Φ(a1, . . . , an) ≡ Θσ(a1, . . . , an).

Therefore

∨
|S(Φ(a1,...,an))|=t

Φ(a1, . . . , an) |=

∨
S(Θ(z1,...,zt))=1t

∃x1, . . . , xt Θ(x1 . . . , xt) ∧
∨

σ:{a1,...,an}
→{z1,...,zt}

Θσ(a1, . . . , an)

 .

In fact, this last point applies not just to 〈a1, . . . , an〉, but to any tuple of constants

of any length taken from {a1, . . . , an}, regardless of ordering or repeats. So for any

tuple 〈ai1 , . . . , ais(t)〉 ∈ {a1, . . . , an}s(t), there is always some mapping σ (not necessarily

surjective) such that

Φ[ai1 , . . . , ais(t) ] ≡ Θσ(ai1 , . . . , ais(t)),
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and so

∨
|S(Φ(a1,...,an))|=t

Φ(a1, . . . , an) |=

∨
S(Θ(z1,...,zt))=1t

∃x1, . . . , xt Θ(x1 . . . , xt) ∧
∧

i1,...,is(t)≤n

∨
σ:{ai1 ,...,ais(t)}
→{z1,...,zt}

Θσ(ai1 , . . . , ais(t))

 .

Therefore, by part 3 of Proposition 1,

w

 ∨
|S(Φ(a1,...,an))|=t

Φ(a1, . . . , an)

 ≤

w

 ∨
S(Θ(z1,...,zt))=1t

(∃x1, . . . , xt Θ(x1 . . . , xt) ∧
∧

i1,...,is(t)≤n

∨
σ:{ai1 ,...,ais(t)}
→{z1,...,zt}

Θσ(ai1 , . . . , ais(t)))

 .

Taking the limit as n→∞ now gives

1 ≤ w(ζt)

by (4.2), since w is t-heterogeneous, and hence w(ζt) = 1 since w(ζt) ∈ [0, 1].

It follows immediately from this that any sentence which is a logical consequence of ζt

is also a member of Th(t-het):

{θ ∈ SL | ζt |= θ} ⊆ Th(t-het).

We proceed to show that the converse also holds, via a sequence of lemmas, after

introducing some notation.

Let T be the set of 1t state formulae of L, i.e. T = {Θ(z1 . . . , zt) | S(Θ) = 1t}, and

define an equivalence relation ≈ on T by

Θ ≈ Φ ⇐⇒ Θ(z1 . . . , zt) ≡ Φ(zτ(1) . . . , zτ(t))

for some permutation τ of Nt. Let T1, . . . , Tu denote the equivalence classes of ≈, and

for 1 ≤ j ≤ u let Θj ∈ Tj be some representative of its equivalence class.
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Let

ηjt = ∃x1, . . . , xt Θj(x1, . . . , xt)

and

ξjt = ∀y1, . . . , ys(t)
∨

σ:{y1,...,ys(t)}
→{z1,...,zt}

(Θj)σ(y1, . . . ys(t))

and let

ζjt = ηjt ∧ ξ
j
t .

Since

∃x1, . . . , xt Θ(x1, . . . , xt) ∧ ∀y1, . . . , ys(t)
∨

σ:{y1,...,ys(t)}
→{z1,...,zt}

Θσ(y1, . . . , ys(t))

is logically equivalent to

∃x1, . . . , xt Φ(x1, . . . , xt) ∧ ∀y1, . . . , ys(t)
∨

σ:{y1,...,ys(t)}
→{z1,...,zt}

Φσ(y1, . . . , ys(t))

whenever Θ, Φ ∈ T and Θ ≈ Φ, it follows that ζt is equivalent to the disjunction of

the pairwise disjoint sentences ζjt

ζt ≡
u∨
j=1

ζjt =
u∨
j=1

(ηjt ∧ ξ
j
t ). (4.3)

Let M j ∈ T L be a model of ζjt . Then M j |= ∃x1, . . . , xt Θj(x1, . . . , xt), so suppose

that M j |= Θj(ag1 , . . . , agt). Since

M j |= ξjt , (4.4)

for any constant symbol ai there exists a unique σ(ai) ∈ {ag1 , . . . , agt} such that

M j |= (Θj)σ(ag1 , . . . , agt , ai).

Note that σ(ak) = ak for ak ∈ {ag1 , . . . , agt}, and so σ2 = σ.

Furthermore, the σ(ai) and ai are indistinguishable in M j, in the sense that for any

state formula Φ(x1, . . . , xv+1) and ak1 , . . . , akv

M j |= Φ(ai, ak1 , . . . , akv) ⇐⇒ M j |= Φ(σ(ai), ak1 , . . . , akv). (4.5)
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For if this were not the case, there must exist some constants ak1 , . . . , akv such that,

for the unique state description Φ+(ai, σ(ai), aki , . . . , akv) such that M j |= Φ+,

ai 6∼Φ+ σ(ai).

This would mean that, for the unique state description Ψ(ag1 , . . . , agt , ai, ak1 , . . . , akv)

such that M j |= Ψ, |S(Ψ)| > t, since ag1 , . . . , agt are all distinguishable in Ψ, and ai

is distinguishable from each of them. This contradicts (4.4) by the above discussion

regarding the choice of s(t).

This discussion now yields:

Lemma 32. For any ψ(a1, . . . , an) ∈ SL

M j |= ψ(a1, . . . , an) ⇐⇒ M j |= ψ(σ(a1), . . . , σ(an)).

Proof. Straightforward by induction on the length of ψ using (4.5).

We now define a new structure Aj for L with universe |Aj| = {ag1 , . . . , agt} by taking

the interpretation of ai in Aj to be σ(ai) and the interpretation of Rk in Aj to be

the interpretation of Rk in M j restricted to |Aj|. Essentially, Aj is M j with all the

indistinguishable elements of M j amalgamated into a single element. From this follows

Lemma 33. For any ψ(a1, . . . , an) ∈ SL

M j |= ψ(a1, . . . , an) ⇐⇒ Aj |= ψ(a1, . . . , an).

Proof. Straightforward by induction on the length of ψ using Lemma 32 .

Since |Aj| is finite with every element named by a constant, when referring to the

truth of sentences in Aj we can replace existential and universal quantifiers by finite

disjunctions and conjunctions respectively. This observation gives us:

Lemma 34. For any n ∈ N and any θ(a1, . . . , an) ∈ SL, there exists a quantifier-free

formula θ′(x1, . . . , xt, a1, . . . , an) such that

M j |= θ′(ag1/x1, . . . , agt/xt, a1, . . . , an) ⇐⇒ M j |= θ(a1, . . . , an).
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Proof. Let θ(a1, . . . , an) ∈ SL for some n ∈ N (possibly zero). Assume, without loss

of generality, that θ is in Prenex Normal Form, so

θ(a1, . . . , an) =

Qp zp,1, . . . , zp,np . . . , zp−1,np−1 , . . . , Q1 z1,1, . . . , z1,n1 φ(z1,1, . . . , zp,np , a1, . . . , an),

where each Qi is either ∀ or ∃ and φ(~z, a1, . . . , an) ∈ QFFL.

Now let θ′ be θ with each occurrence of

∀zk,1, . . . , zk,nk replaced by
∧

〈zk,1,...,zk,nk 〉∈{x1,...,xt}nk

and each occurrence of

∃zk,1, . . . , zk,nk replaced by
∨

〈zk,1,...,zk,nk 〉∈{x1,...,xt}nk

for k = 1, . . . , p, so that θ′(x1, . . . , xt, a1, . . . , an) is a quantifier free formula mentioning

constants from a1, . . . , an and free variables x1, . . . , xt (only).

Then for M j, Aj and σ as above,

M j |= θ′(ag1/x1, . . . , agt/xt, a1, . . . , an) ⇐⇒ Aj |= θ′(ag1/x1, . . . , agt/xt, a1, . . . , an)

⇐⇒ Aj |= θ(a1, . . . , an)

⇐⇒M j |= θ(a1, . . . , an)

where the first and third implications hold by Lemma 33 and the second holds since

|Aj| = {ag1 , . . . , agt}.

Lemma 35. For θ(a1, . . . , an) ∈ SL and some fixed σ : {z1, . . . , zt, a1, . . . , an} →

{z1, . . . , zt}

ζjt ∧ ∃~z (Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an)) |= θ(a1, . . . , an)

or

ζjt ∧ ∃~z (Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an)) |= ¬θ(a1, . . . , an).
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Proof. The result is clear if the left hand side is inconsistent. Assume otherwise, so

by the remark following (4.4), σ must be the identity on the zi. Let M j ∈ T L be a

model of ζjt such that

M j |= ζjt ∧ ∃~z (Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an)).

Then from Lemma 34, since the representatives ag1 , . . . , agt were arbitrary up to sat-

isfying Θj in M j, we have that for θ′ as given there,

M j |= ∀~z (Θj(~z)→ (θ(a1, . . . , an)↔ θ′(~z, a1, . . . , an)))

regardless of the particular map σ. By earlier remarks concerning the completeness of

the structures in T L this gives

ζjt |= ∀~z (Θj(~z)→ (θ(a1, . . . , an)↔ θ′(~z, a1, . . . , an))). (4.6)

Since θ′ is quantifier free and

Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an)

decides all the ±Rk(u1, . . . , urk) for u1, . . . , urk from a1, . . . , an, z1, . . . , zt, it also decides

θ′ so

Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an) |= θ′ or Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an) |= ¬θ′.

Hence by (4.6),

ζjt ∧Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an) |= θ or ζjt ∧Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an) |= ¬θ,

and since ~z does not appear in θ we obtain that

ζjt ∧ ∃~z (Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an)) |= θ(a1, . . . , an)

or ζjt ∧ ∃~z (Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an)) |= ¬θ(a1, . . . , an).

We can now prove the converse to our earlier observation that for any t-heterogeneous

probability function w, if ζt |= θ(~a) then w(θ(~a)) = 1.
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Lemma 36. If w is a t-heterogeneous probability function, θ(a1, . . . , an) ∈ SL and

w(θ(~a)) = 1 then ζt |= θ(~a).

Proof. If ζjt 6|= θ(~a) for some 1 ≤ j ≤ u then, since

ζjt ≡ ζjt ∧ ∃~z (Θj(~z) ∧
∨
σ

(Θj)σ(~z, a1, . . . , an)),

there must be some σ for which

ζjt ∧ ∃~z (Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an)) 6|= θ(~a).

Hence this left hand side must be consistent and by Lemma 35

ζjt ∧ ∃~z (Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an)) |= ¬θ(~a). (4.7)

Any extension, Ψ(a1, . . . , ar), of (Θj)σ(a1, . . . , an) which has spectrum length t and is

consistent with ζjt is inconsistent with each ζkt for k 6= j. Therefore, if

w(ζjt ∧ ∃~z (Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an))) = 0,

then w(Ψ(a1, . . . , ar)) = 0. But since Ψ is a state description with spectrum length t,

this is false by Lemma 29. Therefore by (4.7),

w(¬θ(~a)) ≥ w(ζjt ∧ ∃~z (Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an))) > 0.

The result follows.

Since ζt does not mention any constants we obtain from Lemmas 31 and 36 the fol-

lowing:

Corollary 37. If w is a t-heterogeneous probability function, θ(~a) ∈ SL and w(θ(~a)) =

1 then ζt |= ∀~x θ(~x), and so w(∀~x θ(~x)) = 1.

Also from Lemmas 31 and 36 we now obtain:

Theorem 38.

Th(t-het) = {θ ∈ SL | ζt |= θ}.
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Let Th(Fin) denote the theory of finite structures; the set of sentences of L true in

every finite structure for L. We now show that this set is equal to the intersection

over t of the theories of t-heterogeneity.

Theorem 39.

Th(Fin) =
⋂
t∈N+

Th(t-het).

Proof. Suppose that θ(a1, . . . , an) ∈ Th(Fin). Let M j ∈ T L be an arbitrary model

of ζjt , and let Aj be defined in terms of M j as above (p77). Then |Aj| is finite, so

Aj |= θ(a1, . . . , an). By Lemma 33 then M j |= θ(a1, . . . , an), so since t, j and M j are

arbitrary, by earlier remarks concerning the completeness of T L, ζt |= θ(a1, . . . , an)

for each t ∈ N+. Therefore by Theorem 38, θ(a1, . . . , an) ∈
⋂
t∈N+ Th(t-het).

Conversely, suppose that θ(a1, . . . , an) ∈ Th(t-het) for each t ∈ N+. Let M be a

finite structure for L, say M has exactly t distinguishable elements. Then M must

be a model of ζt, so M |= θ(a1, . . . , an), giving θ(a1, . . . , an) ∈ Th(Fin). The result

follows.

Notice that by Trakhtenbrot’s Theorem [55], Th(Fin) is complete Π0
1, so cannot be

recursively axiomatized.

We now move on to consider the other essential type of probability functions satisfying

Sx, the homogeneous functions.

4.2 The theory of Homogeneity

It is apparent from the definition of homogeneity (4.1) that there can be no homo-

geneous function on a purely unary language, since the spectrum length of any state

description of a unary language can never exceed 2q. Therefore, assume for this section

that the language L contains at least one non-unary relation symbol.

We begin by stating an established result concerning homogeneous probability func-

tions, which will be needed subsequently. Let

B∞ = {〈p0, p1, p2, . . .〉 ∈ B | p0 > 0 or pi > 0 for all i > 0}.
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The following theorem of Landes et al. [35] states that any convex mixture of the up̄,L

probability functions (1.15), as p̄ ranges over B∞, is homogeneous, and conversely.

Theorem 40. Let w be a homogeneous probability function on SL. Then there is a

measure µ on the Borel subsets of B∞ such that

w =

∫
B∞

up̄,L dµ(p̄).

Conversely given such a measure µ, w defined as above is a homogeneous probability

function on SL.

We shall now show that Th(hom) is actually a variation on a theory studied by Fagin

[11], Gaifman [15] and Glebskii et al. [18]. Recall that re denotes the arity of relation

Re and let ρ(z1, z2) be the formula

q∧
e=1

re∧
f=1

∀x1, . . . , xf−1, xf+1, . . . , xre

(Re(x1, . . . , xf−1, z1, xf+1, . . . , xre)↔ Re(x1, . . . , xf−1, z2, xf+1, . . . , xre))

which expresses that z1 and z2 are permanently indistinguishable from one another.

For ~S = S1, . . . , Sh a partition of Nm, let υ
~S(y1, . . . , ym) be the formula

h∧
g=1

∧
i,j∈Sg

ρ(yi, yj) ∧
∧

u∈Nm−Sg

¬ρ(yi, yu)

 , (4.8)

and for Θ(x1, . . . , xm) a state formula let

Θ
~S(x1, . . . , xm) = (Θ(x1, . . . , xm) ∧ υ~S(x1, . . . , xm)). (4.9)

The proof of the following result uses notation introduced with the definition of the

up̄,L functions (1.15).

Lemma 41. Let w be a homogeneous probability function on language L. Then for a

partition ~S = S1, . . . , Sh of Nm, and Θ(x1, . . . , xm), Ψ(x1, . . . , xm, xm+1) state formulae

of L such that Ψ |= Θ and Ψ
~S,{m+1}(x1, . . . , xm+1) is consistent,

w(∀x1, . . . , xm (Θ
~S(x1, . . . , xm)→ ∃xm+1 Ψ

~S,{m+1}(x1, . . . , xm, xm+1))) = 1. (4.10)
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Proof. By Theorem 40 it is sufficient to show the result for w = up̄,L where p̄ ∈ B∞.

Given p̄ ∈ B∞, consider the following process for constructing a sequence of pairs, each

consisting of a state description Φk(a1, . . . , ak) and a sequence of ‘colours’ ~ck ∈ Nk. At

stage k = 0 choose ~c0 = ∅, the empty sequence, and Φ0 = >, a tautology. At stage

k + 1 pick ck+1 from N with probability pck+1
, and then pick Φk+1 from among those

state descriptions consistent with ~ck+1 (i.e. those in C(~ck+1, 〈a1, . . . , ak, ak+1〉)) which

extend Φk, according to the uniform distribution, i.e. with probability

|C(~ck, 〈a1, . . . , ak〉)| · |C(~ck+1, 〈a1, . . . , ak, ak+1〉)|−1.

(Note that, where ck+1 = 0 or is previously unseen in ~ck there is a free choice of all

those extensions Φk+1 of Φk consistent with ~ck, while if ck+1 > 0 has occurred previ-

ously in ~ck, so that ck+1 = cr, say, then Φk+1 must be the unique extension of Φk such

that ak+1 is a clone of ar, meaning that ak+1 ∼Φk+1
ar.)

It is straightforward to show (as for example in [49, chapter 30]) that the probability

that this process results at stage n in a particular pair 〈~cn,Φn〉 is given by

|C(~cn,~a)|−1

n∏
i=1

pci .

Therefore, the value of

up̄,L(Φn(a1, . . . , an)) =
∑
~c∈Nn

Φn∈C(~c,~a)

|C(~c,~a)|−1

n∏
i=1

pci

is the sum, over all ~c ∈ Nn consistent with Φn, of the probability of obtaining the pair

〈~c,Φn〉 by the process described.

Now suppose that ~S and Ψ are as in the statement of the lemma and that this process

has produced the pair 〈~c,Θ(a1, . . . , am)〉 with probability

|C(~c,~a)|−1

m∏
i=1

pci . (4.11)

In the case where ~c ‘matches’ ~S, in the sense that ci = cj 6= 0 just if i, j are in the

same part of ~S, then for any new (previously unseen in ~c) colour cm+1, or 0, there

is a fixed probability 1/C of picking Ψ(a1, . . . , am, am+1) as the next state descrip-

tion, where C ≥ SD(1) > 1 is the number of extensions allowed by the process, i.e.
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those which are consistent with ~c. Similarly there is this same probability at each

further choice where cm+s is new, or 0, that the chosen state description will imply

Ψ(a1, . . . , am, am+s).

Since p̄ ∈ B∞, either p0 > 0 or there are infinitely many non-zero pn, so such a sequence

of choices will, with probability 1, eventually produce a witness to ∃xm+1 Ψ(a1, . . . , am, xm+1)

which is assigned a different colour from those occurring in ~c. Furthermore, with proba-

bility 1, any two constants assigned different colours become distinguishable from each

other eventually by this process, and no extension obtained by this process will ever

witness ¬υ~S(a1, . . . , am), since each is consistent with ~c. Hence the probability (4.11)

will all contribute to

up̄,L(∃xm+1 (Ψ
~S,{m+1}(a1, . . . , am, xm+1))).

Otherwise, if for some i, j in different parts of ~S we have ci = cj 6= 0 then no extension

obtained by this process from 〈~c,Θ(a1, . . . , am)〉 can ever witness (4.8), while if for

some i, j in the same Sg we have ci 6= cj, by this process ai and aj must eventually

become distinguishable. In either case, the probability (4.11) will all contribute to

up̄,L(¬υ~S(a1, . . . , am)).

Combining all of these probabilities now gives

up̄,L(Θ
~S(a1, . . . , am)→ ∃xm+1 Ψ

~S,{m+1}(a1, . . . , am, xm+1)) = 1 (4.12)

and by Ex this also holds for any distinct ai1 , . . . , aim in place of a1, . . . , am. Where

b1, . . . , bm ∈ {a1, a2, . . .}m are not all distinct, we apply the same reasoning to the

restriction of Θ(b1, . . . , bm) to its distinct arguments Θ[bj1 , . . . , bjs ], and find that (4.12)

holds also with b1, . . . , bm in place of a1, . . . , am. The result follows.

Let ∆ be the set of all sentences of the form (4.10) with ~S, Θ etc. as in Lemma 41.

It follows from the previous result that if ∆ |= φ then w(φ) = 1 for any homogeneous

w. We proceed to prove the converse to this using the following result, the first

part of which is shown by Fagin in [11], and the second part of which follows from a
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simple adaptation of his back-and-forth argument. Recall that SL(n) denotes the set

of sentences of L which mention only constant symbols from among a1, . . . , an (so that

SL(0) is the set of sentences containing no constant symbols).

Lemma 42. ∆ is complete for SL(0), and if Φ(a1, . . . , an) is a state description and

~S is a partition of Nn then ∆ ∪ {Φ~S(a1, . . . , an)} is complete for SL(n).

We now apply this to give the following:

Lemma 43. If φ ∈ SL is such that w(φ) = 1 for some homogeneous probability

function w on SL then ∆ |= φ.

Proof. Suppose that w, a homogeneous probability function on SL, and φ ∈ SL are

such that w(φ) = 1. Let m be large enough that φ ∈ SL(m) and let L(m) be L but

with constant symbols ai only for i ≤ m. By Lemma 42, for any state description

Θ(a1, . . . , am) and partition ~S of Nm, ∆ ∪ {Θ~S(a1, . . . , am)} is complete for L(m) (i.e.

decides any sentence of SL(m)). Hence, if for any Θ, ~S

∆, Θ
~S(a1, . . . , am) 6|= φ,

then it must be the case that υ
~S is consistent with Θ and

∆, Θ
~S(a1, . . . , am) |= ¬φ. (4.13)

Let p̄ ∈ B∞. By the account in the proof of Lemma 41, whenever ~c ∈ Nm is such

that ci = cj just if ai, aj are in the same part of ~S, and Ψ(a1, . . . , am, xm+1) is some

extension of Θ, the probability |C(~c,~a)|−1
∏m

i=1 pci > 0 all contributes to

up̄,L(∃xm+1Ψ
~S,{m+1}(a1, . . . , am, xm+1)),

and therefore to up̄,L(Θ
~S(a1, . . . , am)). It follows that up̄,L(Θ

~S(a1, . . . , am)) > 0 when-

ever υ
~S is consistent with Θ. Therefore, from (4.13), up̄,L(¬φ) > 0, so up̄,L(φ) < 1.

Hence by the first part of Theorem 40, w(φ) < 1, a contradiction.

From this it follows that for every state description Θ(a1, . . . , am) and partition ~S of

Nm

∆, Θ
~S(a1, . . . , am) |= φ.
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Hence

∆,
∨
Θ,~S

Θ
~S(a1, . . . , am) |= φ,

giving

∆ |= φ,

since
∨

Θ,~S Θ
~S(a1, . . . , am) is a tautology.

From Lemmas 41 and 43 we now obtain

Theorem 44.

Th(hom) = {θ ∈ SL | ∆ |= θ}.

We now combine results from this and the previous section to identify the theory of

Sx.

4.3 The theory of Sx

By Theorem 27 it is clear that the theory of Sx must be equal to the intersection of

Th(hom) and Th(t-het) for each t ∈ N+. By Theorem 39 this is equal to Th(hom) ∩

Th(Fin), and over the course of the next few lemmas we shall show that in fact this

is equal to Th(Fin).

Lemma 45. When L is not purely unary,

lim
t→∞

N (∅,1t)
SD(t)

= 1.

Proof. Suppose that a state description Φ(a1, . . . , at) is chosen at random from among

all state descriptions for t constants. Then for any distinct 1 ≤ i, j ≤ t, the probability

that ai ∼Φ aj is at most 21−2t (with equality when L consists of a single binary

relation). The number of ways of choosing a distinct pair i, j is t(t− 1)/2, so that the

proportion of all state descriptions for a1, . . . , at where some pair of distinct constants

is indistinguishable is bounded above by

t(t− 1)

22t
.

This value tends to zero as t→∞, and the result follows.



4.3. THE THEORY OF SX 87

The next two lemmas show that as t → ∞, vp̄,L(φ) → 1 for each p̄ ∈ Bt and each

φ ∈ ∆, and so the probability assigned by these functions to the complete set of logical

consequences of ∆ also tends to 1. This fact will then be used to derive the main result

of this chapter, Theorem 48.

Lemma 46. For any δ > 0 there exists N ∈ N such that for any t ≥ N , any p̄ ∈ Bt
and any θ ∈ SL,

|up̄,L(θ)− vp̄,L(θ)| < δ.

Proof. Let δ > 0 be fixed and let θ ∈ SL. By a result of Landes [33], for t ∈ N+ and

any p̄ ∈ Bt

up̄,L(θ) =
N (∅,1t)
SD(t)

vp̄,L(θ) +
∑
G

N (∅, 1|G|)
SD(t)

vG(p̄),L (4.14)

where G = {E1, . . . , E|G|} runs over the set of partitions of Nt with |G| < t and

G(p̄) ∈ B|G| has co-ordinates
∑

s∈Ei ps. Since

N (∅,1t) +
∑
G

N (∅, 1|G|) = SD(t),

by Lemma 45 for t sufficiently large

N (∅,1t)
SD(t)

= 1−
∑
G

N (∅, 1|G|)
SD(t)

> 1− δ,

and the result follows by (4.14).

Lemma 47. Let ~S, Θ, Ψ etc. be as in Lemma 41 and let δ > 0. Then for t sufficiently

large and any p̄ ∈ Bt,

vp̄,L(∀x1, . . . , xm (Θ
~S(x1, . . . , xm)→ ∃xm+1 Ψ

~S,{m+1}(x1, . . . , xm, xm+1))) > 1− δ.

Proof. By Lemma 46 it is enough to prove the result for up̄,L in place of vp̄,L. The

proof given here is a refinement of that used for Lemma 41, the main difference being

that where we had probability 1 in that lemma we will now only have probability close

to 1. We estimate just how close as we proceed.

Let t be fixed and large. We consider the process described in the proof of Lemma

41, used to construct a sequence of state descriptions Φk(a1, . . . , ak) and sequences ~ck,
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this time from (Nt)
k since p̄ ∈ Bt is used. As before, the probability that this process

results at stage r in a particular pair 〈~cr,Φr〉 is given by

|C(~cr,~a)|−1

r∏
i=1

pci , (4.15)

and

up̄,L(Φr(a1, . . . , ar)) =
∑

~c∈(Nt)r
Φr∈C(~c,~a)

|C(~c,~a)|−1

r∏
i=1

pci

is the sum, over each ~c ∈ (Nt)
r consistent with Φr, of the probability of obtaining the

pair 〈~c,Φr〉 by the process described.

Let r be sufficiently large that

∑
~c∈(Nt)r

{c1,...,cr}⊂Nt

r∏
i=1

pci ≤
t∑

j=1

(1− pj)r ≤
δ

2
(4.16)

(note that the subset relation here is strict).

Suppose that this process has produced the pair 〈~c,Φr〉 where ~c = 〈c1, . . . , cr〉 ∈ (Nt)
r

is such that {c1, . . . , cr} = Nt, and Φr(a1, . . . , ar) ∈ C(~c,~a). Notice that since all the

available colours 1, 2, . . . , t occur in ~c, any continuation of this process can only pro-

duce clones of constants previously seen in Φr, so that Φk+1 is uniquely determined by

ck+1 and Φk for k ≥ r. Therefore, there is some state formula Υ(z1, . . . , zt) and some

distinct g1, . . . , gt ≤ r such that cgu = u for 1 ≤ u ≤ t and Φr |= Υ(ag1 , . . . , agt).

Let χ be the sentence

∃z1, . . . , zt Υ(z1, . . . , zt) ∧ ∀y1, . . . , ys(t)
∨

σ:{y1,...,ys(t)}
→{z1,...,zt}

Υσ(y1, . . . , ys(t))

where the notation is as defined above on p73. Then any structure in T L which models

this process for these particular ~c and Φr is a model of χ. (The only difference between

χ and the sentences ζjt considered in §4.1 is that Υ has spectrum length at most t, not

necessarily equal to t). It can be shown, as in Lemma 35 and its antecedents, that the

sentence

χ ∧ Φr(a1, . . . , ar)
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is complete for SL(r). In the case that

χ ∧ Φr(a1, . . . , ar) |= φ(a1, . . . , ar),

we say φ is fixed by Φr, and all of the probability (4.15) will contribute to up̄,L(φ).

We now consider cases. If Φr(a1, . . . , ar) 6|= Θ(a1, . . . , am) or ci = cj for some 1 ≤

i, j ≤ m in different parts of ~S, then ¬Θ
~S(a1, . . . , am) is fixed by Φr.

Otherwise, if ci 6= cj for some 1 ≤ i, j ≤ m in the same Sg, then each time a new

colour ck was chosen for m < k ≤ r, there was a probability at most C−1, where

C = SD(2, 3)/SD(1, 2) > 1 depends only on L, that the choice of Φk(a1, . . . , ak)

would not witness the failure of ρ(ai, aj) (i.e. would not make ai and aj distinguishable).

Hence the probability in this case that such Φr would not fix ¬Θ
~S(a1, . . . , am) is at

most (
m

2

)(
1

C

)t−m
.

Otherwise, if Φr |= Θ(a1, . . . , am) and ci = cj just if i and j are in the same part of ~S

for 1 ≤ i, j ≤ m, then with every choice of a new colour ck for m < k ≤ r, there was

probability at least D−1, where D = SD(m,m + 1) > 1 depends only on m and L,

that

Φk(a1, . . . , ak) |= Ψ(a1, . . . , am, ak),

and a probability of at most E−1, where E = SD(1, 2) > 1, that ak is indistin-

guishable from ai for some 1 ≤ i ≤ m. Therefore, the probability of Φr not fixing

∃xm+1 Ψ
~S,{m+1}(a1, . . . , am, xm+1) in this case is at most(

D − 1

D

)t−m
+m

(
1

E

)t−m
.

These estimates have been obtained for the specific constants a1, . . . , am. However, as

remarked above, according to Φr there are at most t distinguishable constants among

a1, . . . , ar, and for each of the tm choices of these (including those with repeated

parameters) the same estimates may be obtained, using similar arguments, as for

a1, . . . , am. Altogether then, the probability that Φr does not fix

∀x1, . . . , xm (Θ
~S(x1, . . . , xm)→ ∃xm+1 Ψ

~S,{m+1}(x1, . . . , xm, xm+1))
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is at most

tm

((
m

2

)(
1

C

)t−m
+

(
D − 1

D

)t−m
+m

(
1

E

)t−m)
. (4.17)

Hence to within the δ/2, from (4.16), this same upper bound holds for up̄,L, and the

result follows since (4.17) tends to zero as t→∞.

We can now prove the main result of this chapter:

Theorem 48.

Th(Sx) = Th(Fin).

Proof. Since by Theorems 27 and 39

Th(Sx) = Th(hom) ∩
⋂
t∈N+

Th(t-het) = Th(hom) ∩ Th(Fin),

it is enough to show that Th(Fin) ⊆ Th(hom). So suppose η(ai1 , . . . , aim) ∈ Th(Fin).

Then by Theorem 39, w(η(ai1 , . . . , aim)) = 1 for every t-heterogeneous w for each

t ∈ N+. Therefore by Corollary 37, w(∀x1, . . . , xm η(x1, . . . , xm)) = 1 for each such w.

Hence

∀x1, . . . , xm η(x1, . . . , xm) ∈ Th(Fin)

and

η(aj1 , . . . , ajm) ∈ Th(Fin) (4.18)

for any j1, . . . , jm, not necessarily distinct.

By Lemma 42, ∆ is complete for sentences which do not contain constants, so either

∆ |= ∀x1, . . . , xm η(x1, . . . , xm) or ∆ |= ¬∀x1, . . . , xm η(x1, . . . , xm).

Suppose the latter holds. Then by the Compactness Theorem there is a finite subset

{φ1, . . . , φr} of ∆ such that

φ1, . . . , φr |= ¬∀x1, . . . , xm η(x1, . . . , xm). (4.19)

By Lemma 47 for large enough t and p̄ ∈ Bt,

vp̄,L(φi) > 1− (2r)−1
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for each 1 ≤ i ≤ r, so

vp̄,L

(
r∧
i=1

φi

)
= 1− vp̄,L

(
r∨
i=1

¬φi

)

≥ 1−
r∑
i=1

vp̄,L(¬φi)

> 1−
r∑
i=1

(2r)−1

= 1/2.

From (4.19) then

vp̄,L(¬∀x1, . . . , xm η(x1, . . . , xm)) > 1/2,

so

vp̄,L(¬η(aj1 , . . . , ajm)) > 0

for some aj1 , . . . , ajm , which contradicts (4.18) and Theorem 39, since vp̄,L is t-heterogeneous.

Hence it must be that

∆ |= ∀x1, . . . , xm η(x1, . . . , xm),

so

∆ |= η(ai1 , . . . , aim)

and η(ai1 , . . . , aim) ∈ Th(hom) by Theorem 44, as required.

In fact Th(hom) is a strict superset of Th(Fin) since, for example, the sentence

∀x(Θ{1}(x)→ ∃yΨ{1},{2}(x, y)), where Ψ is an extension of Θ with spectrum length 2,

is in Th(hom) but is assigned probability 0 by any 1-heterogeneous probability func-

tion.

By Theorem 48 then, Th(Sx) contains more than just tautologies. For example where

L contains a binary relation Rk (a similar example can be constructed for any polyadic

relation), the conjunction φ of

∀x1¬Rk(x1, x1), ∀x1∃x2Rk(x1, x2),

∀x1, x2, x3((Rk(x1, x2) ∧Rk(x2, x3))→ Rk(x1, x3))
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expresses that Rk is a strict partial ordering of the universe with no top element and

therefore no finite model. Therefore ¬φ ∈ Th(Sx), and so w(φ) = 0 for any w satisfying

Sx. This gives the following:

Corollary 49. For w a probability function on a not purely unary language L, if w

satisfies Sx then w does not satisfy SReg.

The identification of the theory of t-heterogeneity as being equal to the theory of Fi-

nite Structures seems intuitively reasonable, since it is clear from the definition of a

t-heterogeneous function (4.2) that it ‘assumes’ that the universe is of finite size t.

The identification of the theory of homogeneity as the set of logical consequences of

∆ demonstrates that it is part of the creed of every homogeneous function that, con-

cerning the properties of individuals expressible in L, ‘anything that can occur, will

occur’. Both results shed new light on how heterogeneous and homogeneous proba-

bility functions may be said to employ certain implicit assumptions in the ways that

they assign probabilities.

The result that the intersection of these two theories, and therefore the theory of

Sx, is equal to Th(Fin) gives a new perspective on Sx as a principle of reasoning in

PIL. It follows that, by adopting Sx, an agent effectively assigns zero belief to the

notion that the universe is demonstrably infinite. However, this doesn’t necessarily

entail the view that the universe must be finite, since by (4.1), the homogeneous com-

ponent of any Sx function permits belief in infinitely many distinguishable individuals.

As noted above, by Trakhtenbrot’s Theorem [55], Th(Fin) cannot be recursively ax-

iomatized, so there is no decision procedure to determine whether a general given

sentence is a member. However, an example of a non-tautological member has been

given, showing that Sx is incompatible with SReg for not purely unary languages. It is

curious that these two principles, each of which has a certain appeal as a requirement

of rationality, cannot be jointly satisfied. An agent which adopts one must reject the

other, which raises the question of how one should ‘rationally’ choose between them.



Chapter 5

The Finite Values Property

The work presented in this chapter extends observations made by Paris & Vencovská in

[49]. They noted there that the set of sentences of a unary language L which mention

only constants from among a1, . . . , an is finite up to logical equivalence for each n, and

therefore any probability function on a unary language can take only finitely many

values when restricted to such a subset of SL. The same applies to any probability

function on a polyadic language which may be expressed in terms of functions on a

unary language, for example, by a result of the same authors [49], the t-heterogeneous

probability functions introduced in the previous chapter.

The motivation to extend these results arose from the following observation regarding

the consequences of Lemma 35 and other results in chapter 4 (the argument outlined

here will be given in detail in the forthcoming proof of Proposition 55), which seems to

give some insight into why this finiteness property is exhibited by the heterogeneous

functions.

Recall that SL(n) denotes those sentences of L which contain only constant symbols

from among a1, . . . , an. Lemma 35 states that there are certain consistent sentences

ψt,j,σ such that, for any sentence θ(a1, . . . , an) ∈ SL(n), either

ψt,j,σ(a1, . . . , an) |= θ(a1, . . . , an) or ψt,j,σ(a1, . . . , an) |= ¬θ(a1, . . . , an). (5.1)

(The exact definition of these sentences is not needed for the current discussion.)

93
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Where t ∈ N+ and n ∈ N are fixed, the set of sentences ψt,j,σ is finite and pairwise

disjoint, with the property that for any t-heterogeneous probability function w,

w

∨
〈j,σ〉

ψt,j,σ

 = 1. (5.2)

If we consider a particular sentence θ(a1, . . . , an), then by (5.1), we can partition the

ψt,j,σ into those which logically imply θ and those which imply its negation, so that if

Aθ = {ψt,j,σ | ψt,j,σ |= θ},

then any ψt,j,σ not in Aθ must belong to

A¬θ = {ψt,j,σ | ψt,j,σ |= ¬θ}.

Combined with (5.2), this leads to the observation that

w(θ(a1, . . . , an)) =
∑

ψt,j,σ∈Aθ

w(ψt,j,σ(a1, . . . , an)),

that is, the probability assigned by w to θ is determined by the probabilities it assigns

to the ψt,j,σ and the partition Aθ, A¬θ.

Since θ(a1, . . . , an) and w were arbitrary, this yields the conclusion that any t-heterogeneous

probability function takes only finitely many values on sentences of SL(n), since there

are only finitely many ways of partitioning the ψt,j,σ into Aθ and A¬θ. We define this

property for n ∈ N as:

The Finite Values Property for SL(n), FVPn.

A probability function w satisfies FVPn just if the image of w restricted to SL(n) is

finite:

|{w(θ(a1, . . . , an)) | θ ∈ SL(n)}| ≤ Kn

for some Kn ∈ N+.1,2

For the t-heterogeneous functions, the above argument applies to any n ∈ N, resulting

in what we will call:
1Under the standing assumption of Ex, if a function w satisfies FVPn then the image of w restricted

to the set of sentences containing any fixed b1, . . . , bn from a1, a2, . . ., is also finite.
2It is not the case that FVPn implies FVPn+1 in general, though we currently only have counter-

examples for specific values of n. We hope that a general counter-example may be found in due
course.
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The Finite Values Property, FVP.

A probability function w satisfies FVP just if w satisfies FVPn for all n ∈ N.3

This property may seem rather surprising, since although at each ‘level’ n, the number

of constants in each sentence of SL(n) is bounded, no such restriction is placed on the

length or complexity of these sentences. However, we will present several examples

where it has been found to hold. We postpone a discussion of whether this property

could be considered a principle of rationality until after the following result, which will

inform the subject. The following characterization of FVPn shows that the role of the

sentences ψt,j,σ in the example above is essential, and that they have a counterpart

wherever FVPn occurs.

Theorem 50. A probability function w on SL satisfies FVPn just if there is a set of

sentences

B(n) = {φ1, . . . , φg} ⊂ SL(n)

such that

• w(φi ∧ φj) = 0 for any 1 ≤ i < j ≤ g,

•
∑g

i=1w(φi) = 1, and

• for any θ ∈ SL(n) there is a subset B
(n)
θ of B(n) such that

w

θ ↔ ∨
φ∈B(n)

θ

φ

 = 1.

Proof. From left to right, suppose that w satisfies FVPn. Let ψ ∈ SL(n) and let

B′ = {ψ,¬ψ}. If, for any φ ∈ B′ there exists θ ∈ SL(n) such that

0 < w(φ ∧ θ), w(φ ∧ ¬θ) < w(φ),

then replace φ in B′ by φ∧ θ and φ∧¬θ, and repeat this step until no such θ remains.

Note that at each stage of this process

w

( ∨
φ∈B′

φ

)
= 1

3The bound Kn may vary with n; the case where a fixed bound holds for all n is considered below
as the Strong Finite Values Property (5.19).
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and for any distinct φ, η ∈ B′, w(φ ∧ η) = 0.

Note also that since w satisfies FVPn, the values taken by w on SL(n) may be listed

in order 0 = v1 < v2 < . . . < vK = 1. Each time a sentence with probability vi is

removed from B′ it is replaced by two sentences of strictly smaller positive probability

vs, vt with 1 < s, t < i, so that this process must be finite.

Once this process is completed remove any (at most 1) φ ∈ B′ such that w(φ) = 0, to

obtain a finite set of disjoint sentences

B(n) = {φ1, φ2, . . . , φg} ⊂ SL(n)

such that for any θ ∈ SL(n) and any φj ∈ B(n),

w(θ ∧ φj) ∈ {0, w(φj)}.

For θ ∈ SL(n) let B
(n)
θ = {φj ∈ B(n) | w(θ ∧ φj) = w(φj)}. Then

w(θ) = w

θ ∧ ∨
φ∈B(n)

φ

 =
∑
φ∈B(n)

w(θ ∧ φ) =
∑
φ∈B(n)

θ

w(φ)

since w(θ ∧ φ) = 0 for φ ∈ B(n) −B(n)
θ .

Furthermore, since

w(φj) = w(φj ∧ θ) + w(φj ∧ ¬θ)

we have

B
(n)
¬θ = B(n) −B(n)

θ ,

so that

w(¬θ) =
∑

φ∈B(n)−B(n)
θ

w(φ).

Therefore

w

¬θ ∨ ∨
φ∈B(n)

θ

φ


= w

 ∨
φ∈B(n)−B(n)

θ

φ

+ w

 ∨
φ∈B(n)

θ

φ

− w
 ∨
φ∈(B(n)−B(n)

θ )∩B(n)
θ

φ


= 1,
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and similarly

w


¬ ∨

φ∈B(n)
θ

φ

 ∨ θ


= w

 ∨
φ∈B(n)−B(n)

θ

φ

+ w

 ∨
φ∈B(n)

θ

φ

− w
 ∨
φ∈(B(n)−B(n)

θ )∩B(n)
θ

φ


= 1.

The result follows.

In the other direction, it is clear that if B(n) = {φ1, . . . , φg} ⊂ SL(n) is as described in

the statement of the result, then for any θ ∈ SL(n)

w(θ) =
∑
φ∈B(n)

θ

w(φ),

and since the number of possible subsets B
(n)
θ of B(n) is finite, then so is the image of

w � SL(n).

We will call such a set B(n) ⊂ SL(n) with the properties given in Theorem 50 a set of

n-ions for w. Note that from the above result, where φ is an n-ion for w and θ ∈ SL(n),

B
(n)
θ∧φ is either equal to {φ} or to ∅, so that

w(θ ∧ φ) ∈ {0, w(φ)}. (5.3)

Theorem 50 shows that if a function w satisfies FVPn, its n-ions correspond to various

‘possible worlds’, in each of which w is able to ‘decide’ every θ ∈ SL(n), so that the

probability it assigns to any such θ is the sum of the probabilities assigned to those

worlds where θ is decided positively. This demonstrates that there is an underlying

simplicity to those functions which satisfy FVP, beyond the superficial simplicity ev-

ident in its definition, in that it entails a rather ‘neat’, and arguably natural, way of

assigning probabilities.

An agent which employs a probability function satisfying FVP has a fixed, finite set of

possible worlds with which to compare any θ ∈ SL(0), and decides on doing so which of
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either θ or its negation must hold. Each of these ‘worlds’ can then be split into various

further possible worlds according to the number of constants under consideration in

a given sentence φ ∈ SL(n), to obtain similar findings regarding where φ does and

doesn’t hold.

It seems unclear whether FVP, considered as a principle of rationality, can have the

same status as other principles of PIL since it prescribes not how a function should be-

have but, in a sense, how it works. One might object that it is not really a principle to

be adopted, but just a convenient technical feature of certain functions. However, the

same could perhaps be said of the principle of Language Invariance, which nonetheless

holds an established place in PIL.

Simplicity, as a feature of probability functions used to model rational belief, was en-

dorsed by Kemeny in [30], and considered by Paris & Vencovská in [47], but seems

otherwise to have received little attention in Inductive Logic. Kemeny is not explicit

about what constitutes simplicity, and the notion discussed by Paris & Vencovská is

rather different from that considered here in relation to FVP. With these and likely

other different ideas of simplicity available it would be reckless to claim without quali-

fication that simplicity is always a desirable feature of probability functions, in fact in

§5.3 we reach the opposite conclusion in the case of the Strong Finite Values Property.

However, the particular simplicity entailed by FVP and interpreted above in terms of

systematic reasoning about ‘possible worlds’, seems to be an appealing and arguably

a rational feature, which we proceed to investigate.

We begin by proving the results mentioned above, relating to FVP for probability func-

tions on unary languages, and others expressible in terms of these. We subsequently

obtain classification results regarding FVP for heterogeneous and homogeneous proba-

bility functions, and then for general functions satisfying Sx. From these we find that,

like Sx, FVP is inconsistent with the principle of SReg. Finally, we consider the Strong

Finite Values Property, where the same bound on the size of the image of w � SL(n)

holds for all n.
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5.1 FVP for unary languages

The following unsurprising lemma will prove useful in what follows.

Lemma 51. If w is a finite convex sum of probability functions on SL which all satisfy

FVPn (FVP), then w satisfies FVPn (FVP).

Proof. Suppose

w =
k∑
i=1

λiwi

for some λ1, . . . , λk ≥ 0 such that
∑k

i=1 λi = 1, and some probability functions

w1, . . . , wk.

Suppose in the first case that each wi satisfies FVPn, and let Kn be an upper bound

for the image of wi � SL(n) for each i = 1, . . . , k. Then

|{w(θ) | θ ∈ SL(n)}| = |{λ1w1(θ) + . . .+ λkwk(θ) | θ ∈ SL(n)}| ≤ (Kn)k

and so w satisfies FVPn.

Suppose, in the second case, that each wi satisfies FVP. Then each satisfies FVPn

for each n ∈ N+ so by the above argument w satisfies FVPn for each n ∈ N+, and

therefore w satisfies FVP.

We now give a proof of a result mentioned by Paris & Vencovská in [49] (and above):

that SL(n) is finite (up to logical equivalence) for each n. It follows that all probability

functions on unary languages, or expressible in terms of such, must satisfy FVP.

Lemma 52. If L is unary and n ∈ N then SL(n) is finite up to logical equivalence.

Proof. Suppose L is a unary language and θ(a1, . . . , an) ∈ SL(n). Since L is unary, by

Proposition 2, θ is logically equivalent to some sentence θ′ of the form

l∨
k=1

(
2q∧
j=1

∃εkjxαj(x) ∧
n∧
i=1

αfki (ai)

)
,

where each ~εk ∈ {0, 1}n, ∃1 stands for ∃, ∃0 stands for ¬∃, and the disjuncts are dis-

joint and satisfiable.
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Let D be the set of possible disjuncts (up to logical equivalence)
∧2q

j=1 ∃εjxαj(x) ∧∧n
i=1 αfi(ai). Since there are 2 choices for εj for each j = 1, . . . , 2q, and 2q choices for

αfi for each i = 1, . . . , n, this gives

|D| = 22q+qn.

Since θ is logically equivalent to the disjunction of some subset of D, the size of SL(n)

up to logical equivalence is bounded by the number 2|D| of distinct subsets of D.

Therefore the number of logical equivalence classes of SL(n) is finite.

Since n may take any value from N, by replacing a1, . . . , an with any distinct n-tuple

of constant symbols b1, . . . , bn, Lemma 52 tells us that for any finite tuple 〈b1, . . . , bn〉

of constants, despite the fact that the length and complexity of sentences mentioning

these constants is unlimited, there are in fact only finitely many propositions which

may be expressed about these constants in a unary language L. From this follows:

Corollary 53. If L is unary and w is a probability function on SL then w satisfies

FVP.

Furthermore, these results are applicable in certain cases to probability functions on

polyadic languages. As shown by Nix & Paris in [42], some such functions have

a representation in terms of, also called a reduction to, a probability function on

a unary language. Specifically, a probability function w on a polyadic language L

has a reduction to a probability function on a unary language L0 when there are

probability functions v1, . . . , vk on SL0, some ~ρ1, . . . , ~ρk ∈ (FL0)q and λ1, . . . , λk ≥ 0

with
∑

i λi = 1 such that for any ψ(R1, . . . , Rq,~a) ∈ SL,

w(ψ(R1, . . . , Rq,~a)) =
k∑
i=1

λi v
~ρi
i (ψ(R1, . . . , Rq,~a)), (5.4)

where v~ρii is a probability function on SL defined by

v~ρii (ψ(R1, . . . , Rq,~a)) = vi(ψ
′(ρi,1, . . . , ρi,q,~a)) (5.5)

and ψ′(ρi,1, . . . , ρi,q,~a) ∈ SL0 is formed by replacing each occurrence of Rs(t1, . . . , trs)

in ψ by ρi,s(t1, . . . , trs) for s = 1, . . . , q.



5.2. FVP WITH SX 101

Corollary 54. If w has a reduction to a probability function on a unary language then

w satisfies FVP.

Proof. Suppose w is a probability function on SL with a representation as in (5.4),

and let n ∈ N and θ(a1, . . . , an) ∈ SL(n). For each i = 1, . . . , k, by Corollary 53, vi

satisfies FVPn since each is a probability function on a unary language, so that by

(5.5), v~ρii must also satisfy FVPn. Therefore, by Lemma 51, w satisfies FVPn since it

is a finite convex sum of probability functions which do. This holds for each n ∈ N+

and the result follows.

A general classification of those probability functions on polyadic languages which have

a reduction to a unary language has not yet been found, though it seems an interest-

ing question to consider: under what circumstances may polyadic relations between

individuals be ‘translated’ into combinations of unary properties of the individuals?

5.2 FVP with Sx

We now proceed to classify those probability functions (on polyadic languages) sat-

isfying Sx which additionally satisfy FVP, beginning with the result described in the

introduction to this chapter.

Proposition 55. For each t ∈ N+, every t-heterogeneous probability function w sat-

isfies FVP. 4

Proof. Let t ∈ N+ and n ∈ N be fixed, and let F be the (finite) set of maps from

{z1, . . . , zt, a1, . . . , an} to {z1, . . . , zt}, such that zi maps to itself for i = 1, . . . , t. Let

u and, for 1 ≤ j ≤ u, the sentences ζt and ζjt and the state formulae Θj(z1, . . . , zt) be

as defined in §4.1, and similarly for (Θj)σ(~z, a1, . . . , an) where σ ∈ F . Then by (4.3),

ζt ≡
u∨
j=1

ζjt ,

while for 1 ≤ j < k ≤ u, by their definition,

ζjt |= ¬ζkt .
4This result is given in [49] as a consequence of the heterogeneous functions’ having a reduction to

probability functions on a unary language, also shown there. The proof given here originally appeared
in [26], and is somewhat more explanatory, with the advantage that it yields a set of n-ions.
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Therefore by Lemma 31, for any t-heterogeneous probability function w,

w(ζt) =
u∑
j=1

w(ζjt ) = 1. (5.6)

For σ ∈ F let

ψt,j,σ(a1, . . . , an) = ζjt ∧ ∃~z (Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an)).

Then for any j,

ζjt ≡
∨
σ∈F

ψt,j,σ(a1, . . . , an),

while for any fixed j and distinct σ, τ ∈ F ,

ψt,j,σ(a1, . . . , an) |= ¬ψt,j,τ (a1, . . . , an), (5.7)

so that

w(ζjt ) =
∑
σ∈F

w(ψt,j,σ(a1, . . . , an)). (5.8)

From Lemma 35, for any θ(a1, . . . , an) ∈ SL(n) and any fixed σ ∈ F , either

ψt,j,σ(a1, . . . , an) |= θ(a1, . . . , an) or ψt,j,σ(a1, . . . , an) |= ¬θ(a1, . . . , an).

(5.9)

Therefore, the (finite) set of pairs 〈j, σ〉 may be partitioned into two as follows: let Aθ

be the set of pairs 〈j, σ〉 such that

ψt,j,σ(a1, . . . , an) |= θ(a1, . . . , an).

Then by (5.9), any pair 〈j, σ〉 not in Aθ must be in A¬θ.

Since by (5.6) and (5.8),

∑
〈j,σ〉∈Aθ∪A¬θ

w(ψt,j,σ(a1, . . . , an)) = 1, (5.10)

it follows that

w(θ(a1, . . . , an)) =
∑
〈j,σ〉∈Aθ

w(ψt,j,σ(a1, . . . , an)), (5.11)
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that is, w(θ(a1, . . . , an)) is determined by the probabilities assigned to the sentences

ψt,j,σ(a1, . . . , an) and by the partition Aθ, A¬θ.

Therefore, there can only be finitely many values of w(θ(a1 . . . , an)) as θ ranges over

SL(n), since there are only finitely many possible pairs 〈j, σ〉 and hence only finitely

many possible ways to form the partition Aθ, A¬θ. Therefore, w satisfies FVPn, and

since n was arbitrary, the result follows.

Furthermore, we obtain a set of n-ions for any t-heterogeneous probability function.

Using the notation from the previous proof, by (5.7), (5.10) and (5.9) we have

Corollary 56. For t ∈ N+ and n ∈ N, the set of sentences

{ψt,j,σ(a1, . . . , an) | j = 1, . . . , u, σ ∈ F}

forms a set of n-ions for any t-heterogeneous probability function.

In order to reach a similar result concerning FVP for homogeneous functions, we recall

the following notation from §4.2. As before, where m ∈ N and ~S = S1, . . . , Sh is a

partition of Nm, let ∆ be the set of sentences of the form

∀x1, . . . , xm (Φ
~S(x1, . . . , xm)→ ∃xm+1 Ψ

~S,{m+1}(x1, . . . , xm, xm+1)),

where Φ is a state formula of L and Ψ is an extension of Φ to one extra variable, such

that Ψ
~S,{m+1}(x1, . . . , xm, xm+1), as defined at (4.9), is consistent.

It is shown in [26], using a proof very similar to that of Proposition 55, that any

homogeneous probability function w satisfies FVP by Lemmas 41 and 42. However,

we will instead derive it as a corollory of the following, apparently more general, result.

Proposition 57. If w is a probability function on SL, then w(φ) = 1 for each φ ∈ ∆

just if w satisfies Reg + FVP, with n-ions 5

B(n) = {Φ~S(a1, . . . , an) | Φ a state description, ~S a partition of Nn}

(with logically equivalent members identified) for each n ∈ N.

5If the form of the n-ions were not specified, the converse direction would not hold. For example,
the probability function w = 1

2w〈 12 ,
1
2 〉

+ 1
2w〈1,0〉 on a unary language with 1 predicate satisfies Reg

(by [49, Corollary 10.3]) and FVP (by Corollory 53), but w(∀x (α1(x)→ ∃y α1(x) ∧ α2(y))) = 1
2 .



104 CHAPTER 5. THE FINITE VALUES PROPERTY

Proof. From left to right, suppose that w is a probability function on SL such that

w(φ) = 1 for each φ ∈ ∆. If w does not satisfy Reg then there is some state description

Ψ(a1, . . . , am+1) such that

0 = w(Ψ(a1, . . . , am+1)) < w(Ψ[a1, . . . , am]). (5.12)

Let Φ(~a) denote Ψ[a1, . . . , am] (recall that where m = 0, we take Φ ≡ >).

Since

w(Φ
~S(~a)→ ∃xm+1 Ψ

~S,{m+1}(~a, xm+1)) = 1

for every partition ~S of Nm, and since Ψ
~S,{m+1}(~a, ai) is inconsistent for i ∈ Nm, we

have

w(¬Φ
~S(~a)) + lim

n→∞
w

(
n∨

i=m+1

Ψ
~S,{m+1}(~a, ai)

)
= 1.

It can’t be the case that w(¬Φ
~S(~a)) = 1 for every ~S, since w(Φ(~a)) > 0, so there must

be some partition ~T such that

lim
n→∞

w

(
n∨

i=m+1

Ψ
~T ,{m+1}(~a, ai)

)
> 0,

and so

w
(

Ψ
~T ,{m+1}(~a, am+1)

)
> 0,

by Ex. Since

Ψ
~T ,{m+1}(~a, am+1) |= Ψ(~a, am+1),

this contradicts (5.12), so that w must satisfy Reg.

Suppose n ∈ N and let B(n) be as described in the statement of the result (where B(0)

is taken to be {>} for some fixed tautology > ∈ SL(0)). Then for any Φ
~S,Θ

~T ∈ B(n)

such that 〈Φ, ~S〉 6= 〈Θ, ~T 〉, we have

Φ
~S(a1, . . . , an) |= ¬Θ

~T (a1, . . . , an),

and ∑
Φ~S∈B(n)

w(Φ
~S(a1, . . . , an)) = 1.
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By Lemma 42, for each Φ
~S(a1, . . . , an) ∈ B(n) and any θ ∈ SL(n),

∆, Φ
~S(a1, . . . , an) |= θ ⇐⇒ ∆, Φ

~S(a1, . . . , an) 6|= ¬θ. (5.13)

Let Pθ be the set {Φ~S(a1, . . . , an) ∈ B(n) | ∆,Φ |= θ}. Then

∆,
∨

Φ~S∈Pθ

Φ
~S(a1, . . . , an) |= θ,

(where
∨

Φ~S∈∅Φ
~S(a1, . . . , an) is taken to be a contradiction) and by the Compactness

Theorem there is some finite ∆′ ⊂ ∆ such that

∆′,
∨

Φ~S∈Pθ

Φ
~S(a1, . . . , an) |= θ.

Therefore ∑
Φ~S∈Pθ

w(Φ
~S(a1, . . . , an)) = w(

∨
Φ~S∈Pθ

Φ
~S(a1, . . . , an))

= w(
∧
φ∈∆′

φ ∧
∨

Φ~S∈Pθ

Φ
~S(a1, . . . , an))

≤ w(θ). (5.14)

Furthermore, by (5.13), P¬θ = B(n) − Pθ, and again by the Compactness Theorem

there is some finite ∆′′ ⊂ ∆ such that

∆′′,
∨

Φ~S∈P¬θ

Φ
~S(a1, . . . , an) |= ¬θ,

so that ∑
Φ~S∈P¬θ

w(Φ
~S(a1, . . . , an)) = w(

∨
Φ~S∈P¬θ

Φ
~S(a1, . . . , an))

= w(
∧
φ∈∆′′

φ ∧
∨

Φ~S∈P¬θ

Φ
~S(a1, . . . , an))

≤ w(¬θ). (5.15)

Since ∑
Φ~S∈Pθ

w(Φ
~S(a1, . . . , an)) +

∑
Φ~S∈P¬θ

w(Φ
~S(a1, . . . , an)) = 1 = w(θ) + w(¬θ),
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each of (5.14) and (5.15) must hold with equality. This gives

w

 ∨
Φ~S∈Pθ

Φ
~S(a1, . . . , an)

→ θ

 = 1 = w

θ →
 ∨

Φ~S∈Pθ

Φ
~S(a1, . . . , an)

 ,

and so by Theorem 50, w satisfies FVPn with n-ions B(n). This holds for all n ∈ N.

In the other direction, suppose that w is a probability function on SL which satis-

fies Reg and FVP with n-ions B(n) as defined in the statement of the result for each

n ∈ N. Suppose n ∈ N and let Ψ(x1, . . . , xn, xn+1) be a state formula and ~S a partition

of Nn such that Ψ
~S,{n+1}(x1, . . . , xn+1) is consistent. Let Φ(x1, . . . , xn) ≡ Ψ[x1, . . . , xn].

For any state formula Θ(x1, . . . , xm) and any partition ~T of Nn such that 〈Θ, ~T 〉 6=

〈Φ, ~S〉,

Θ
~T (a1, . . . , an) |= ¬Φ

~S(a1, . . . , an)

so that

w(Θ
~T (a1, . . . , an) ∧ (Φ

~S(a1, . . . , an)→ ∃xn+1 Ψ
~S,{n+1}(a1, . . . , an, xn+1)))

= w(Θ
~T (a1, . . . , an)). (5.16)

Since Φ
~S(a1, . . . , an) is an n-ion for w, by (5.3),

w(Φ
~S(a1, . . . , an) ∧ (Φ

~S(ai1 , . . . , ain)→ ∃xn+1 Ψ
~S,{n+1}(ai1 , . . . , ain , xn+1)))

∈ {0, w(Φ
~S(a1, . . . , an))}. (5.17)

Since

Ψ
~S,{n+1}(a1, . . . , an, an+1) |= ∃xn+1 Ψ

~S,{n+1}(a1, . . . , an, xn+1)

we have

w(Φ
~S(a1, . . . , an) ∧ (Φ

~S(a1, . . . , an)→ ∃xn+1 Ψ
~S,{n+1}(a1, . . . , an, xn+1)))

≥ w(Φ
~S(a1, . . . , an) ∧Ψ

~S,{n+1}(a1, . . . , an, an+1))

> 0
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by Reg since Φ
~S(a1, . . . , an) is consistent. Therefore, by (5.17)

w(Φ
~S(a1, . . . , an) ∧ (Φ

~S(ai1 , . . . , ain)→ ∃xn+1 Ψ
~S,{n+1}(ai1 , . . . , ain , xn+1)))

= w(Φ
~S(a1, . . . , an))

and so by (5.16)

w(Φ
~S(a1, . . . , an)→ ∃xn+1 Ψ

~S,{n+1}(a1, . . . , an, xn+1))

= w(Φ
~S(a1, . . . , an) ∧ (Φ

~S(a1, . . . , an)→ ∃xn+1 Ψ
~S,{n+1}(a1, . . . , an, xn+1)))

+
∑

〈Θ, ~T 〉6=〈Φ,~S〉

w(Θ
~T (a1, . . . , an) ∧ (Φ

~S(a1, . . . , an)→ ∃xn+1 Ψ
~S,{n+1}(a1, . . . , an, xn+1)))

= w(Φ
~S(a1, . . . , an)) +

∑
〈Θ, ~T 〉6=〈Φ,~S〉

w(Θ
~T (a1, . . . , an))

= 1.

It follows by Ex that

w(Φ
~S(b1, . . . , bn)→ ∃xn+1 Ψ

~S,{n+1}(b1, . . . , bn, xn+1)) = 1

for any distinct b1, . . . , bn ⊂ {a1, a2, . . .}.

In the case where {b1, . . . , bn} ⊂ {a1, a2, . . .} contains exactly k < n distinct constants,

we can apply the above argument to a suitable restriction of Φ and ~S. Specifically,

restrict Φ(b1, . . . , bn) to its k distinct arguments bj1 , . . . , bjk , and substitute 〈a1, . . . , ak〉

for 〈bj1 , . . . , bjk〉, giving Φ[a1/bj1 , . . . , ak/bjk ]. Similarly, restrict ~S to give a partition

of {j1, . . . , jk}, then use the corresponding partition of Nk. In this case too, we obtain

w(Φ
~S(b1, . . . , bn)→ ∃xn+1 Ψ

~S,{n+1}(b1, . . . , bn, xn+1)) = 1.

Therefore,

w(∀x1, . . . , xn (Φ
~S(x1, . . . , xn)→ ∃xn+1 Ψ

~S,{n+1}(x1, . . . , xn, xn+1))

= lim
r→∞

w

( ∧
i1,...,in≤r

(Φ
~S(ai1 , . . . , ain)→ ∃xn+1 Ψ

~S,{n+1}(ai1 , . . . , ain , xn+1))

)

= lim
r→∞

1 = 1.

Since n ∈ N, Φ and ~S were arbitrary, the result follows.
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The following result appears in [26] and follows easily from Proposition 57 and Lemma

41.

Corollary 58. If w is a homogeneous probability function on some not purely unary

language L, then w satisfies (Reg and) 6 FVP, with n-ions

B(n) = {Φ~S(a1, . . . , an) | Φ a state description, ~S a partition of Nn}

(where logically equivalent members are identified) for each n ∈ N.

However, although it is the case that all heterogeneous and homogeneous probability

functions satisfy FVP, and by Theorem 27 these are the ‘building blocks’ of all Sx

functions, not every Sx function satisfies FVP. The following classification result for

Sx with FVP uses the fact that, by Theorem 27, any probability function w which

satisfies Sx has a representation of the form

w = η0w
[0] +

∞∑
t=1

ηtw
[t] (5.18)

where w[0] is some homogeneous probability function, each w[t] is a t-heterogeneous

probability function, and η0 +
∑∞

t=1 ηt = 1. Furthermore, this representation is unique

up to a free choice of the w[i] when ηi = 0. We will say that ‘the ladder representation

of w is finite’ (respectively ‘infinite’) to mean that the set

{t ∈ N+ | ηt > 0}

is finite (respectively infinite).

Theorem 59. A probability function satisfying Sx satisfies FVP just if its ladder

representation is finite.

Proof. Suppose w is a probability function satisfying Sx, so by Theorem 27 it has

a ladder representation as in (5.18), which is unique up to a free choice of the w[i]

when ηi = 0 for each i ∈ N. If its ladder representation is finite, then by Lemma 51,

Proposition 55 and Corollary 58, w satisfies FVP.

6Their Regularity is already established by Landes, see [33] for example.
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Otherwise, if its ladder representation is infinite, let W = {t ∈ N+ | ηt > 0}. By

Lemma 31, for each t ∈ W there is a sentence ζt ∈ SL(0) such that w[t](ζt) = 1, and for

any s 6= t, w[s](ζt) = 0 since ζs |= ¬ζt. Furthermore, where Θ(x1, . . . , xt) has spectrum

1t and Φ(x1, . . . , xt+1) is an extension of Θ with spectrum 1t+1 and ~S is the partition

of Nt into t parts with one member each,

∀x1, . . . , xt (Θ
~S(x1, . . . , xt)→ ∃xt+1Φ

~S,{t+1}(x1, . . . , xt+1)) |= ¬ζt,

so that by Lemma 41, w[0](ζt) = 0 for each t ∈ N+.

Therefore, for each t ∈ W , w(ζt) = ηt, so

{ηt | t ∈ W} = {w(ζt) | t ∈ W} ⊂ {w(θ) | θ ∈ SL(0)}.

Since W is infinite and
∑

t∈W ηt ≤ 1, the set {ηt | t ∈ W} must be infinite. Therefore

w does not satisfy FVP0, and so fails to satisfy FVP.

The following result shows that for strictly polyadic languages, the simplicity of FVP

comes (like the principles Sx and JSP) at the expense of SReg. That is, some consistent

sentences must be assigned zero probability by any probability function satisfying FVP

(in fact by any satisfying FVPn for some n).

Corollary 60. If L is strictly polyadic and w is a probability function on SL satisfying

FVPn for some n ∈ N, then w does not satisfy SReg. 7

Proof. Suppose L and w are as described. Then by Proposition 50, there is some set

of n-ions for w

B(n) = {φ1, . . . , φg} ⊂ SL(n)

such that w(φi ∧ φj) = 0 for 1 ≤ i < j ≤ g,

g∑
i=1

w(φi) = 1,

and for every θ ∈ SL(n) there is some B
(n)
θ ⊆ B(n) such that

w

θ ↔ ∨
φi∈B

(n)
θ

φi

 = 1.

7This result would fail to hold with Reg in place of SReg, since any homogenous function satis-
fies both Reg and FVP. The converse does not hold, since by Theorem 59 and Corollory 49, some
probability functions satisfy neither SReg nor FVP.
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Suppose that

|=
g∨
i=1

φi

and for each θ ∈ SL(n)

|= θ ↔
∨

φi∈B
(n)
θ

φi.

Then by Theorem 50, every probability function on SL would satisfy FVPn with n-ions

B(n), contradicting Theorem 59. Therefore, either ¬
∨g
i=1 φi is consistent, but assigned

probability zero by w, or for some θ ∈ SL(n), ¬
(
θ ↔

∨
φi∈B

(n)
θ
φi

)
is consistent, but

assigned probability zero by w. In either case, w fails to satisfy SReg.

5.3 The Strong Finite Values Property

It was noted with the definition of FVP that, although the image of w restricted to

SL(n) must be finite for each n, its size may vary (in general we would expect it to

increase) with n. We now investigate the consequences of imposing a fixed, finite

bound on the image of w � SL(n), which must hold for all n. We will call this:

The Strong Finite Values Property, SFVP

A probability function w on SL satisfies SFVP if there is some constant K ∈ N+ such

that for all n ∈ N

|{w(θ(a1, . . . , an)) | θ ∈ SL(n)}| ≤ K, (5.19)

equivalently, since SL(n) ⊃ SL(m) for all m ≤ n

|{w(θ) | θ ∈ SL}| ≤ K.

One might argue that, if FVP is desirable on the grounds of simplicity, then SFVP

must be even more appealing. However the fact, for example, that the number of state

descriptions for a1, . . . , an increases without limit as n increases seems to warn against

having a minimum positive value for w(θ) for θ from the whole of SL, as implied by

SFVP. The consequences of contravening this warning become clear in Proposition 63.

Firstly, however, we state two results which will be needed subsequently.
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The following lemma is proved by the same argument as used for its counterpart,

Lemma 51.

Lemma 61. If w is a finite convex sum of probability functions on SL which all satisfy

SFVP, then w satisfies SFVP.

The following theorem of Paris & Vencovská [49], extending results of Krauss [32], is

an analogue of de Finetti’s Theorem for unary languages, providing a representation

theorem for probability functions on polyadic languages which satisfy Ex. It shows

that any function satisfying Ex has a representation in terms of some functions ◦ωΨ

(the exact definition is not needed here) which, like the w~c functions of de Finetti’s

Theorem, satisfy Ex and have the property that where θ, φ ∈ QFSL have no constant

symbols in common

◦ωΨ(θ ∧ φ) = ◦ωΨ(θ) · ◦ωΨ(φ). (5.20)

The proof uses methods from Nonstandard Analysis, in particular Loeb Measure The-

ory [39] 8; the set A mentioned in the result is a certain set of state descriptions

Ψ(a1, . . . , aν) for some nonstandard ν, see [49] for the details.

Theorem 62. If the probability function w on SL satisfes Ex then w has a represen-

tation of the form

w =

∫
A

◦ωΨ dµ(Ψ)

for some countably additive measure µ on an algebra of subsets of A, and probability

functions ◦ωΨ on SL satisfying (5.20). Conversely if w has a representation of this

form then it satisfes Ex.

In order to give a classification for SFVP, we introduce the following notation. Let

In be the set of state descriptions of L for a1, . . . , an which are invariant up to logical

equivalence under any permutation of a1, . . . , an

In = {Φ(a1, . . . , an) | Φ(a1, . . . , an) ≡ Φ(aσ(1), . . . , aσ(n)) ∀σ ∈ Sn}, (5.21)

(where logically equivalent members are identified). Let r denote the largest arity of

any relation in L.

8Alternatively see [10].
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For Θ ∈ Ir we define a unique structureMΘ ∈ T L as follows. For Θ(a1, . . . , ar) ∈ Ir, let

MΘ |= Θ(a1, . . . , ar), and note that for 1 ≤ n < r, Θ[a1, . . . , an] ∈ In. For n ≥ r, where

MΘ |= Υn(a1, . . . , an) ∈ In (so Υr ≡ Θ), form an extension Υn+1(a1, . . . , an+1) ∈ In+1

as follows. Where b1, . . . , brk (not necessarily distinct) from {a1, . . . , an+1}rk does not

contain an+1 then set Υn+1 |= Rk(b1, . . . , brk) just if Υn |= Rk(b1, . . . , brk). Other-

wise, where b1, . . . , brk does contain an+1, then it also contains at most r − 1 distinct

members of {a1, . . . , an}, so choose as ∈ {a1, . . . , an} not appearing in b1, . . . , brk , and

set Υn+1 |= Rk(b1, . . . , brk) just if Υn |= Rk(~b
′), where ~b′ is b1, . . . , brk with each in-

stance of an+1 replaced by as. Since Υn ∈ In, the same result is obtained regardless of

the choice of s, so the extension Υn+1 ∈ In+1 obtained by this method is unique, and

any other extension would not be in In+1. Set MΘ |= Υn+1(a1, . . . , an+1) for each n ≥ r.

Note that, by induction on n, each MΘ is a model of

∨
Φ∈In

Φ(a1, . . . , an) (5.22)

for each n ∈ N+, and that any structure which cannot be constructed by this method

must fail to satisfy (5.22) for some n, so that

{M ∈ T L |M |=
∨

Φ∈In

Φ(a1, . . . , an), ∀n ∈ N+} = {MΘ | Θ ∈ Ir}. (5.23)

Recall from (1.7) the definition of the probability function VM for M ∈ T L, and note

that for any MΘ constructed as above, VMΘ
satisfies Ex.

Proposition 63. If w is a probability function on SL then the following statements

are equivalent:

1. w satisfies SFVP.

2. w
(∨

Φ(a1,...,an)∈In Φ(a1, . . . , an)
)

= 1 for each n ∈ N+.

3. w is a convex sum of the functions VMΘ
for Θ ∈ Ir.

4. For every n ∈ N, θ ∈ SL(n) and σ ∈ Sn

w(θ(a1, . . . , an)↔ θ(aσ(1), . . . , aσ(n))) = 1.
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Proof. 1 =⇒ 2.

Suppose w is a probability function on SL (satisfying Ex). By Theorem 62, w has a

representation of the form

w =

∫
A

◦ωΨ dµ(Ψ)

for some countably additive measure µ on an algebra of subsets of A and probability

functions ◦ωΨ on SL satisfying (5.20) and Ex.

Suppose w
(∨

Φ(a1,...,am)∈Im Φ(a1, . . . , am)
)
< 1 for some m. Then there is some state

description Φ(a1, . . . , am) such that w(Φ) > 0 and

Φ(a1, . . . , am) 6≡ Φ(aσ(1), . . . , aσ(m))

for some σ ∈ Sm, so that the conjunction Φ(a1, . . . , am) ∧ Φ(aσ(1), . . . , aσ(m)) is a

contradiction. Since the ◦ωΨ functions satisfy Ex, for any Ψ ∈ A

◦ωΨ(Φ(a1, . . . , am)) = ◦ωΨ(Φ(aσ(1), . . . , aσ(m)))

so that ◦ωΨ(Φ(a1, . . . , am)) ≤ 1
2
.

Let A′ = {Ψ ∈ A | 0 < ◦ωΨ(Φ(a1, . . . , am)) < 1}. Then, since the ◦ωΨ satisfy Ex and

(5.20),

w

(
n−1∧
k=0

Φ(akm+1, . . . , akm+m)

)
=

∫
A

◦ωΨ

(
n−1∧
k=0

Φ(akm+1, . . . , akm+m)

)
dµ(Ψ)

=

∫
A′

◦ωΨ

(
n−1∧
k=0

Φ(akm+1, . . . , akm+m)

)
dµ(Ψ)

=

∫
A′

n−1∏
k=0

◦ωΨ (Φ(a1, . . . , am)) dµ(Ψ)

>

∫
A′

n∏
k=0

◦ωΨ (Φ(a1, . . . , am)) dµ(Ψ)

=w

(
n∧
k=0

Φ(akm+1, . . . , akm+m)

)
>0.

Therefore, w (
∧n
k=0 Φ(akm+1, . . . , akm+m)) forms a strictly decreasing sequence bounded
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below, so that w takes infinitely many values on this sentence as n increases, and there-

fore fails SFVP. The result follows.

2 =⇒ 3.

Let Q denote the set

{M ∈ T L |M |=
∨

Φ∈In

Φ(a1, . . . , an), ∀n ∈ N+}.

Note that all state descriptions Φ(a1) mentioning only a1 belong to I1. For n > 1 let

Pn = {M ∈ T L |M |=
∨

Φ∈In−1

Φ(a1, . . . , an−1) ∧ ¬
∨

Φ∈In

Φ(a1, . . . , an)},

then Q together with these Pn form a partition of T L.

By Theorem 4,

w =

∫
T L
VM dν

for some measure ν on the algebra B of subsets of T L. Suppose ν(Q) < 1, then there

is some least value k such that ν(Pk) > 0. Therefore

w

(∨
Φ∈Ik

Φ(a1, . . . , ak)

)

=

∫
T L
VM

(∨
Φ∈Ik

Φ(a1, . . . , ak)

)
dν

=

∫
T L−Pk

VM

(∨
Φ∈Ik

Φ(a1, . . . , ak)

)
dν +

∫
Pk

VM

(∨
Φ∈Ik

Φ(a1, . . . , ak)

)
dν

≤ 1− ν(Pk)

< 1

since VM
(∨

Φ∈Ik Φ(a1, . . . , ak)
)

= 0 forM ∈ Pk. Therefore, if w
(∨

Φ∈In Φ(a1, . . . , an)
)

=

1 for each n ∈ N+ then ν(Q)=1, so by (5.23) and since Ir is finite, the result follows.

3 =⇒ 1

Any w of the form

w =
∑
Θ∈Ir

λΘVMΘ
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satisfies SFVP by Lemma 51, since each VMΘ
is 2-valued.

3 =⇒ 4

Let Θ ∈ Ir and let MΘ ∈ T L be as defined on p112. Then MΘ |= Θ(ai1 , . . . , air) for

any distinct i1, . . . , ir from N+, and so for every n ∈ N, every θ(a1, . . . , an) ∈ SL(n)

and every σ ∈ Sn, by induction on the quantifier complexity of θ(a1, . . . , an),

MΘ |= θ(a1, . . . , an) ⇐⇒ MΘ |= θ(aσ(1), . . . , aσ(n))

so that

MΘ |= θ(a1, . . . , an)↔ θ(aσ(1), . . . , aσ(n)).

Therefore, if

w =
∑
Θ∈Ir

λΘVMΘ

such that each λΘ ≥ 0 and
∑

Θ λΘ = 1, then

w(θ(a1, . . . , an)↔ θ(aσ(1), . . . , aσ(n)))

=
∑
Θ∈Ir

λΘVMΘ
(θ(a1, . . . , an)↔ θ(aσ(1), . . . , aσ(n)))

=
∑
Θ∈Ir

λΘ = 1.

for any θ(a1, . . . , an) ∈ SL and any σ ∈ Sn.

4 =⇒ 1

Suppose that w does not satisfy SFVP, so that since 2 =⇒ 3 =⇒ 1

w

 ∨
Φ(a1,...,am)∈Im

Φ(a1, . . . , am)

 < 1

for some m ∈ N+. It follows that there must be some state description Ψ(a1, . . . , am) 6∈

Im such that w(Ψ(a1, . . . , am)) > 0. Since Ψ 6∈ Im, by the definition of Im there is

some σ ∈ Sm such that

Ψ(a1, . . . , am) 6≡ Ψ(aσ(1), . . . , aσ(m))

and therefore

w(Ψ(a1, . . . , am)↔ Ψ(aσ(1), . . . , aσ(m))) = 0.
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Therefore, where w does not satisfy SFVP there is some θ(a1, . . . , am) ∈ SL such that

w(θ(a1, . . . , am)↔ θ(aσ(1), . . . , aσ(m))) 6= 1, and the contrapositive gives the result.

Therefore, by the transitivity of =⇒ , a probability function w satisfies any of the 4

properties stated just if it satisfies all of them.

So any probability function satisfying SFVP must assign probability 1 to the notion

that each distinct n-tuple of individuals in the universe is indiscernible from every

other distinct n-tuple of individuals, for every n ∈ N+. On unary languages this is

equivalent to the assumption that all individuals satisfy the same atom and hence are

indistinguishable, as exhibited by, for example, Carnap’s cL0 . On polyadic languages,

the assumption that all individuals are indiscernible is strictly weaker than than the

assumption that all are indistinguishable, but even so it seems hardly more acceptable.

(Indeed it may be thought less acceptable, since indistinguishability may be due to the

same individual having multiple ‘names’ (constant symbols), whereas indiscernibility

without indistinguishability does not admit this explanation.) We therefore conclude

that SFVP is not a desirable feature of probability functions used to model rational

belief.

With regard to FVP, Theorem 50 and the subsequent discussion make a tentative case

for FVP as a principle of rational reasoning. It has been shown that it entails an un-

derlying simplicity in the process of assigning probabilities, explicated in terms of ions

which are used for systematic reasoning in terms of possible worlds. Furthermore, the

classification results presented show that FVP is exhibited by several families of prob-

ability functions already studied in PIL, including all functions on unary languages, so

is not as rare as might have been supposed. Its incompatibility with SReg will count

against it with proponents of that principle, but it is in company with at least the

principles of Sx and JSP in this respect.

While these preliminary results give a ‘flavour’ of the Finite Values Property in the

context of PIL, we have been unable, so far, to discover any representation result for

FVP. It seems that more work is needed before this property, which is rather unlike

many purported principles of rational reasoning, can be better understood and thereby

judged.



Chapter 6

Conclusions

We have presented here the results of several distinct but related investigations con-

cerning certain principles of rationality for inductive reasoning. Of these, the Elephant

Principle, the Perspective Principle, the Abductive Inference Principle and its varia-

tions and the Finite Values Property are newly conceived, while the account of the

theory of Spectrum Exchangeability gives a new perspective on a young, though not

strictly new, principle of Pure Inductive Logic.

Necessarily, those results concerning previously unheard-of principles are preliminary

in nature. We have begun, in each case, to investigate the extent to which this new

principle might be justified as a requirement of rationality, by the attempt to discover

how its adoption along with certain combinations of other more established principles

limits an agent’s choice of probability function.

We have given, for each new principle, a classification of which members of established

families of probability functions studied in inductive logic do and do not satisfy it,

in order to elucidate how each fits in to the landscape of Pure Inductive Logic, as so

far charted. Specific conclusions and discussion relating to each principle have been

included at the end of its own chapter. There remain many questions left unanswered

regarding these new principles, but the results presented here provide a basis for any

future work to address these.

By contrast, the work to identify the theory of Spectrum Exchangeability builds on
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established properties and representation results to contribute to a deeper understand-

ing of what it means to adopt this principle, in terms of the underlying assumptions

concerning the number of distinguishable individuals in the universe.

It has not been our intention to claim that any of the principles considered here

must necessarily be adopted by a rational agent, our aim has been rather to establish

previously unknown facts in order to inform any discussion about the extent to which

these principles may or may not be justified on grounds of rationality, or the extent to

which particular probability functions may be said to provide a good model of rational

reasoning. The reader is left to draw his or her own conclusions regarding how the

results presented here, within the mathematical framework of Pure Inductive Logic,

relate to the wider study of induction and its applications.
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[27] Howarth, E., Paris, J.B. & Vencovská, A., An Examination of the SEP Candidate

Analogical Inference Rule within Pure Inductive Logic, submitted to the Journal

of Applied Logic.

[28] Johnson, W.E., Probability: The Deductive and Inductive Problems, Mind,

1932, 41:409–423.

[29] Kemeny, J., Fair bets and inductive probabilities, Journal of Symbolic Logic,

1955, 20:263–273.

[30] Kemeny, J.G., Carnap’s Theory of Probability and Induction, in The Philosophy

of Rudolf Carnap, ed. P.A.Schilpp, La Salle, Illinois, Open Court, 1963, pp711–

738.

[31] Keynes, J.M., A treatise on probability, Macmillan & Co, 1921.

[32] Krauss, P.H., Representation of Symmetric Probability Models, Journal of Sym-

bolic Logic, 1969, 34(2):183–193.

[33] Landes, J., The Principle of Spectrum Exchangeability within Inductive Logic,

Ph.D. Thesis, University of Manchester, 2009. Available at

http://www.maths.manchester.ac.uk/∼jeff/

[34] Landes, J., Paris, J.B. & Vencovská, A., Some Aspects of Polyadic Inductive
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Appendix A

The theory of Johnson’s

Sufficientness Postulate

Johnson’s Sufficientness Postulate appears originally in [28] and is a principle of ratio-

nality for inductive logic with unary languages, based on the idea of irrelevance. (We

assume throughout this appendix that L is unary). We restate it here for convenience.

Johnson’s Sufficientness Postulate, JSP

A probability function w on a unary language L satisfies Johnson’s Sufficientness Pos-

tulate if

w

(
αj(an+1)

n∧
i=1

αhi(ai)

)
depends only on n and mj = |{i | hi = j}|.

This expresses the idea that, in assigning a probability to a particular outcome of an

event, only the number of known instances of this outcome and the number of known

instances of this event are relevant; all else is irrelevant and should be disregarded.

The following result was proved originally by Johnson in [28] 1.

Theorem 64. If q ≥ 2 and w is a probability function on SL, then w satisfies JSP

just if w = cLλ for some 0 ≤ λ ≤ ∞.

1Proofs have also been given in [9], [30] and [49].
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We use this result to determine the theory of JSP, that is, the set of all sentences of

L which must be assigned probability 1 by every probability function satisfying JSP:

Th(JSP ) = {θ ∈ SL | w satisfies JSP =⇒ w(θ) = 1}.

These results are closesly related to work by Hintikka [23], [24].

We will need the following well-known result.

Lemma 65. For any 0 ≤ a < b,

lim
n→∞

n∏
j=1

j + a

j + b
= 0.

Proof. Let 0 ≤ a < b. Then

ln

(
n∏
j=1

j + a

j + b

)
=

n∑
j=1

ln

(
j + a

j + b

)

=
n∑
j=1

ln

(
1− b− a

j + b

)

where each
∣∣∣ b−aj+b

∣∣∣ < 1. By the power series expansion this is equal to

n∑
j=1

∞∑
p=1

(−1)p−1

p

(
−b− a
j + b

)p
<

n∑
j=1

(
−b− a
j + b

)

since for fixed j, each term in the sum over p is negative. Taking the limit as n→∞

gives

lim
n→∞

ln

(
n∏
j=1

j + a

j + b

)
< lim

n→∞

n∑
j=1

(
−b− a
j + b

)

≤ −(b− a) lim
n→∞

n+1+[b]∑
p=2+[b]

1

p


= −∞.

Therefore

lim
n→∞

n∏
j=1

j + a

j + b
= lim

x→−∞
ex = 0.



126 APPENDIX A. THE THEORY OF JSP

The following result concerns Carnap’s cLλ functions (1.11). A proof is given in [49],

for example.

Proposition 66. Let θ1(x), . . . , θr(x) be disjoint, quantifier-free formulae of L. Then

for 0 < λ,

cLλ

(
θj(an+1)

n∧
i=1

θhi(ai)

)
=
mj + tjλ2−q

n+ λ

where mj = |{i | hi = j}| and tj = |{s | αs(x) |= θj(x)}|.

The previous two results go to prove the following:

Proposition 67. For any 1 ≤ k ≤ 2q and λ > 0,

cLλ(∀x¬αk(x)) = 0.

Proof. For any 1 ≤ k ≤ 2q, by Proposition 66

cLλ

(
n∧
i=1

¬αk(ai)

)
= cLλ(¬αk(a1))

n−1∏
j=1

cLλ

(
¬αk(aj+1) |

j∧
r=1

¬αk(ar)

)

=
2q − 1

2q

n−1∏
j=1

j + (2q − 1)λ2−q

j + λ
.

Therefore by Lemma 65,

cLλ(∀x¬αk(x)) = lim
n→∞

cLλ

(
n∧
i=1

¬αk(ai)

)

=
2q − 1

2q
lim
n→∞

n−1∏
j=1

j + (2q − 1)λ2−q

j + λ

= 0.

Proposition 68. Let ζ be the sentence
∧2q

k=1 ∃xαk(x). Then for λ > 0 and θ ∈ SL,

cLλ(θ) = 1 ⇐⇒ ζ |= θ.

Proof. From right to left, suppose ζ |= θ. Then

1 = cLλ(ζ) ≤ cLλ(θ) ≤ 1
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by Proposition 67.

In the other direction, suppose θ(b1, . . . , bm) ∈ SL. Since L is unary, by Proposition

2, θ is logically equivalent to some sentence θ′ of the form

l∨
k=1

(
2q∧
j=1

∃εkjxαj(x) ∧
m∧
i=1

αfki (bi)

)
, (A.1)

where each ~εk ∈ {0, 1}n and ∃1 stands for ∃, while ∃0 stands for ¬∃, and the disjuncts

are disjoint and satisfiable. By Proposition 67,

cLλ

(
2q∧
j=1

∃εjxαj(x)

)
=

1 εj = 1, j = 1, . . . , 2q

0 otherwise.

Therefore

cLλ(θ) =
l∑

k=1

cLλ

(
2q∧
j=1

∃εkjxαj(x) ∧
m∧
i=1

αfki (bi)

)

=
∑
~εk=12q

cLλ

(
2q∧
j=1

∃εkjxαj(x) ∧
m∧
i=1

αfki (bi)

)

=
∑
~εk=12q

cLλ

(
m∧
i=1

αfki (bi)

)
.

This will be equal to 1 if {~fk | ~εk = 12q} = (N2q)
m, that is, if every possible assign-

ment of atoms to constants a1, . . . , am occurs in some disjunct k such that ~εk = 12q .

Otherwise it will be less than 1, since cLλ satisfies Reg, so assigns non-zero probability

to any such ‘missing’ assignment. The condition for this sum to equal 1 occurs just if

ζ |= θ′, and since θ ≡ θ′ this is equivalent to ζ |= θ.

Proposition 69. Let χ be the sentence
∨2q

k=1 ∀xαk(x). Then for θ ∈ SL,

cL0 (θ) = 1 ⇐⇒ χ |= θ.
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Proof. Firstly note that, by (1.12),

cL0 (χ) =
2q∑
j=1

cL0 (∀xαj(x))

=
2q∑
j=1

lim
n→∞

cL0

(∧
i≤n

αj(ai)

)

=
2q∑
j=1

lim
n→∞

2−q = 1.

Suppose χ |= θ, then

1 = cL0 (χ) ≤ cL0 (θ) ≤ 1.

In the other direction, suppose θ(b1, . . . , bm) ∈ SL. Since L is unary, by Proposition

2, θ is logically equivalent to some sentence θ′ of the form (A.1), where the notation

is as described in the previous proof, and the disjuncts are disjoint and satisfiable.

Therefore,

cL0 (θ′) =
l∑

k=1

cL0

(
2q∧
j=1

∃εkjxαj(x) ∧
m∧
i=1

αfki (bi)

)
.

The kth term of this sum will be non-zero just if ~εk consists of a single ‘1’ in position

gk, say, with all other entries zero, with ~fk = 〈gk, gk, . . . , gk〉. (Any other configuration

means either that the disjunct is inconsistent, or that it logically implies ¬χ and so

receives probability 0 according to cL0 ). In this case, the value of the term is 2−q, so

for the total cL0 (θ′) to be equal to 1, it must be the case that {gk | 1 ≤ k ≤ l} = N2q ,

in which case χ |= θ′. Since θ ≡ θ′, the result follows.

We can now identify the theory of JSP as follows.

Theorem 70. Where q ≥ 2,

Th(JSP ) = {θ ∈ SL |
2q∧
k=1

∃xαk(x) ∨
2q∨
k=1

∀xαk(x) |= θ}.

Proof. By Theorem 64, where q ≥ 2, any probability function which satisfies JSP must

be equal to cLλ for some 0 ≤ λ ≤ ∞. It follows from the definitions (1.11) and (1.12)

that cLλ satisfies Regularity just if 0 < λ. Therefore by Propositions 68 and 69,

Th(JSP +Reg) = {θ |
2q∧
k=1

∃xαk(x) |= θ},
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while

Th(JSP + ¬Reg) = {θ |
2q∨
k=1

∀xαk(x) |= θ}.

The result follows.

By the previous result, the sentence

∀x1 ¬α1(x1) ∨ ∀x2 ¬α2(x2) ∨ ∃x3 α3(x3)

(where q ≥ 2) belongs to Th(JSP), though it is not a tautology. Therefore Th(JSP)

contains more than just tautologies, from which we obtain:

Corollary 71. Where w is a probability function on a unary language L with q ≥ 2,

if w satisfies JSP then w does not satisfy Super-Regularity.

Having identified Th(JSP ), it transpires that the power of JSP in narrowing our

agent’s choice of probability function comes at the price of a non-tautological ‘creed’,

as with the principles of Sx and FVP discussed in earlier chapters. Whether this price

is worth paying, in terms of what is ‘most rational’, is open to debate.


