
 

 

 

 

 

Probabilistic Estimation and Prediction of the Dynamic 

Response of the Demand at Bulk Supply Points 

 

 

 

A thesis submitted to The University of Manchester for the Degree of 

Doctor of Philosophy 

In the Faculty of Engineering and Physical Sciences 

 

 

2015 

 

Ms Yizheng Xu 

 

School of Electrical and Electronic Engineering 

 



 

 

 

 

 

 

 

  



TABLE OF CONTENTS 

3 

 

TABLE OF CONTENTS 

LIST OF FIGURES .................................................................................. 10 

LIST OF TABLES .................................................................................... 16 

NOMENCLATURE .................................................................................. 18 

ABSTRACT ............................................................................................... 25 

DECLARATION ....................................................................................... 26 

COPYRIGHT STATEMENT .................................................................. 27 

ACKNOWLEDGEMENT ........................................................................ 29 

1 Introduction ............................................................................................ 31 

1.1 Load Characteristics ........................................................................................... 31 

1.1.1 Representation of Load Characteristics ......................................................... 31 

1.1.2 Significance of Load Modelling .................................................................... 32 

1.2 Load Modelling Approaches .............................................................................. 34 

1.2.1 Measurement-Based Approach ...................................................................... 34 

1.2.2 Component-based Approach .......................................................................... 39 

1.3 New Challenges and Motivation ........................................................................ 47 

1.4 Review of Past Work ........................................................................................... 48 

1.4.1 Load disaggregation/decomposition .............................................................. 48 

1.4.2 Load Forecasting ............................................................................................ 55 

1.4.3 Load Shifting and Shaping of Load Curves ................................................... 62 

1.4.4 Summary of Past Work .................................................................................. 63 



TABLE OF CONTENTS 

4 

 

1.5 Aims and Objectives of the Thesis ..................................................................... 65 

1.5.1 Aims of the Research ..................................................................................... 65 

1.5.2 The Overview of the Research ....................................................................... 65 

1.5.3 The Scope of the Research ............................................................................. 67 

1.5.4 Objectives of the Research ............................................................................. 68 

1.6 Main Contributions of the Research ................................................................. 69 

1.7 Thesis Overview .................................................................................................. 71 

2 Overview of Power System Load Models ............................................ 74 

2.1 Load Models ........................................................................................................ 74 

2.1.1 Static Load Models ........................................................................................ 75 

2.1.2 Dynamic Load Models ................................................................................... 80 

2.2 Load Models in Industry Practice ..................................................................... 86 

2.3 Voltage-dependent Exponential Model Parameter .......................................... 88 

2.3.1 Derivation of Voltage-dependent Exponential Model Parameter .................. 88 

2.3.2 Voltage-dependent Exponents of Different Categories of Loads .................. 89 

2.4 Summary .............................................................................................................. 91 

3 Framework for Estimation and Prediction of Dynamic Responses of 

Demand ...................................................................................................... 93 

3.1 Dynamic Response of the Demand .................................................................... 94 

3.2 The Framework ................................................................................................... 95 

3.2.1 Decomposed Daily Loading Curves .............................................................. 96 

3.2.2 Approaches to Load Decomposition .............................................................. 97 



TABLE OF CONTENTS 

5 

 

3.3 Estimation of Demand Composition.................................................................. 99 

3.3.1 Deterministic Decomposition of Daily Loading Curves ................................ 99 

3.3.2 Probabilistic Decomposition of Daily Loading Curves ............................... 102 

3.4 Dynamic Load Characteristics of Typical Load Categories ......................... 106 

3.4.1 Energy Efficient Lighting ............................................................................ 106 

3.4.2 Directly-connected Induction Motor Load .................................................. 109 

3.4.3 Resistive Load .............................................................................................. 114 

3.4.4 Power Electronics / Switch Mode Power Supply Load (SMPS) ................. 114 

3.5 Estimation of Dynamic Response of Demand ................................................. 116 

3.5.1 Most Probable Real and Reactive Power Response during the Day ............ 117 

3.5.2 Monte Carlo Case Studies and the Most Probable Dynamic Response of 

Demand ................................................................................................................. 118 

3.5.3 Different Dynamic Responses of the Demand at Different Hours .............. 120 

3.5.4 Illustration of Possible Dynamic Responses of the Demand ....................... 121 

3.6 Summary ............................................................................................................ 122 

4 Artificial-Intelligence-based Load Forecasting ................................. 124 

4.1 Importance of Comparing AI-based Load Forecasting Approaches ........... 125 

4.2 Artificial Neural Network................................................................................. 126 

4.2.1 ANN Type and Structure ............................................................................. 126 

4.2.2 Main Parameters .......................................................................................... 128 

4.3 Adaptive-neuro Fuzzy Inference System ........................................................ 130 

4.3.1 Structure ....................................................................................................... 131 



TABLE OF CONTENTS 

6 

 

4.3.2 Input and Output Membership Functions .................................................... 132 

4.4 General Framework for AI-based Short-term Load Forecasting (STLF) .. 132 

4.4.1 Description of Training and Validation Process .......................................... 133 

4.4.2 Data Collection ............................................................................................ 135 

4.4.3 Parameter Settings for AI Tools ................................................................... 135 

4.4.4 Testing and Validation ................................................................................. 136 

4.5 Results of Comparison of ANN and ANFIS ................................................... 136 

4.5.1 ANN based methodology ............................................................................. 137 

4.5.2 ANFIS based methodology .......................................................................... 138 

4.6 Advantages and Disadvantages of ANN and ANFIS ..................................... 140 

4.7 Upgraded Day-ahead Load Forecasting Approach ....................................... 141 

4.7.1 Base Load Forecasting ................................................................................. 143 

4.7.2 Change Load Forecasting ............................................................................ 144 

4.7.3 Adjuster ........................................................................................................ 145 

4.7.4 Case Study .................................................................................................... 147 

4.8 Probabilistic Characteristics of Absolute Percentage Error for Total Load 

Forecasting ............................................................................................................... 148 

4.8.1 PDF & CDF of APE for either P or Q Prediction ........................................ 148 

4.8.2 PDF & CDF for the Weighted Average of APE for P and Q Prediction ..... 149 

4.9 Summary ............................................................................................................ 150 

5 Load Disaggregation at Bulk Supply Points ...................................... 152 

5.1 Rated Demand ................................................................................................... 153 



TABLE OF CONTENTS 

7 

 

5.1.1 Definition of the Rated Demand .................................................................. 153 

5.1.2 Significance of the Rated Demand ............................................................... 154 

5.1.3 Derivation of Rated Demand ....................................................................... 158 

5.1.4 Results and Discussion ................................................................................. 163 

5.1.5 Summary about Rated Demand ................................................................... 166 

5.2 Load Disaggregation Based on Load Categories and Controllability .......... 167 

5.2.1 Disaggregation Procedure ............................................................................ 167 

5.2.2 Generation of the Training Data for ANN ................................................... 168 

5.2.3 ANN Validation with Generated Data ......................................................... 171 

5.2.4 Illustrative Results of Load Disaggregation ................................................. 175 

5.2.5 Effect of Missing Input Data on the Accuracy of Load Disaggregation ..... 181 

5.2.6 Influence of the Prior Knowledge on the Contribution of the Controllable 

Load ...................................................................................................................... 189 

5.3 Integration with Total Demand Forecasting Tool .......................................... 194 

5.3.1 Joint Probability of Total Demand Forecasting Error and AWFE ............... 194 

5.3.2 Illustrative Results of Load Composition Forecasting ................................. 195 

5.4 Summary ............................................................................................................ 197 

6 Validation of Developed Methodologies and Illustration of Shaping of 

Dynamic Responses of Demand ............................................................. 199 

6.1 Validation Results and Discussion ................................................................... 200 

6.1.1 Load Disaggregation and Validation ........................................................... 200 

6.1.2 Prediction of Load Composition on 25 June, 2014 ...................................... 203 



TABLE OF CONTENTS 

8 

 

6.1.3 Day-ahead Prediction and Validation of DRD ............................................ 204 

6.2 Load Shifting and Shaping of Dynamic Responses of the Demand.............. 206 

6.2.1 Theory of Load Shifting ............................................................................... 207 

6.2.2 Illustration of Load Shifting and Shaping of Dynamic Responses of the 

Demand ................................................................................................................. 208 

6.3 Summary ............................................................................................................ 209 

7 Conclusions and Future Work ............................................................ 211 

7.1 Conclusions ........................................................................................................ 211 

7.1.1 Development of the Probabilistic Framework for Estimation/Prediction of 

Dynamic Responses of Demand ........................................................................... 212 

7.1.2 Comparison of Load Forecasting Approaches and Applications to both Real 

and Reactive Power Forecasting ........................................................................... 213 

7.1.3 Development of ANN-based Load Disaggregation Approach .................... 214 

7.1.4 Integration of Load Forecasting and Load Disaggregation to Enable 

Prediction of Load Compositions ......................................................................... 216 

7.1.5 Calculation of Rated Demand ...................................................................... 216 

7.1.6 Methodology for Prediction and Shaping of Dynamic Responses of Demand217 

7.1.7 Benefits of the Research .............................................................................. 218 

7.2 Future Work ...................................................................................................... 218 

References ................................................................................................ 221 

 

Appendix A Moving Average Filtering ................................................. 233 



TABLE OF CONTENTS 

9 

 

Appendix B Decomposed Daily Loading Curves for Different Load 

Sectors in Different Regions ................................................................... 234 

B.1 Residential Load Sector ................................................................................... 234 

B.2 Commercial Load Sector ................................................................................. 236 

B.3 Industrial Load Sector ..................................................................................... 237 

B.4 Aggregate Load ................................................................................................. 237 

Appendix C Steady-state Load Characteristics of Induction Motors 239 

C.1 Swing Equation of the Rotor of Induction Motor ......................................... 239 

C.2 Electromagnetic Torque and Mechanical Load Torque .............................. 239 

C.3 Steady-state Operation .................................................................................... 240 

Appendix D Typical Values of the Parameters for Load Models ...... 243 

D.1 Exponential Load Model ................................................................................. 243 

D.2 Induction Motor Model ................................................................................... 244 

Appendix E Publications from the Thesis ............................................ 245 

E.1 International Journal Papers .......................................................................... 245 

E.2 International Conference Papers .................................................................... 245 

E.3 Technical Reports ............................................................................................. 246 

E.4 Submitted International Journal Papers........................................................ 246 

E.5 Accepted International Conference Papers ................................................... 246 

 

 Word Count: 56,767±5,000 

 



LIST OF FIGURES 

10 

 

LIST OF FIGURES 

Figure 1.1.  Block diagram for the measurement-based approach (adopted from [1]) ... 35 

Figure 1.2.  Component-based approach (adopted from [1]) .......................................... 43 

Figure 1.3.  WECC composite load model (adopted from [1, 31]) ................................. 46 

Figure 1.4.  An example of decomposed daily loading curves for UK residential load 

sector in winter (adopted from [1, 24, 32]) ..................................................................... 49 

Figure 1.5.  DDLC for commercial load sector in California (plotted using the 

consumption data adopted from [35]) ............................................................................. 51 

Figure 1.6.  Overview block diagram of the research ..................................................... 66 

Figure 2.1.  Load model classification diagram (adopted from [1]) ............................... 75 

Figure 2.2.  Equivalent circuit of an induction motor ..................................................... 79 

Figure 2.3.  Equivalent circuit of a symmetrical three-phase induction motor with d-q 

references (adopted from [1]).......................................................................................... 81 

Figure 2.4.  Single-phase induction motor equivalent circuit with d-q reference (adopted 

from [1]) .......................................................................................................................... 83 

Figure 2.5.  Equivalent circuit of composite load model (adopted from [1]) ................. 86 

Figure 2.6.  P&Q exponent-voltage relationship of different load categories ................ 90 

Figure 3.1.  Framework for estimation and prediction of DRD ...................................... 96 

Figure 3.2.  DDLC for commercial load sector ............................................................ 100 

Figure 3.3.  DDLC based on load categories for commercial load sector .................... 100 

Figure 3.4.  DDLC for general network bus based on: (a) load class mix, and (b) load 

category mix .................................................................................................................. 101 

Figure 3.5.  Probabilistic DDLC based on load categories ........................................... 103 

Figure 3.6.  Graphical representation of “upper limit”, mean value, uncertainty area and 

“lower limit”.................................................................................................................. 104 

Figure 3.7.  (a) Mean, and (b) standard deviation of demand for different load categories 

for probabilistic DDLC shown in Figure 3.5 ................................................................ 105 



LIST OF FIGURES 

11 

 

Figure 3.8.  Real power responses to a step reduction in voltage for EEL: a) responses 

obtained from 500 Monte Carlo simulations; b) probability histogram of steady-state 

power after voltage drop; c) upper and lower limit of the responses and the most 

probable response .......................................................................................................... 108 

Figure 3.9.  Reactive power responses to a step reduction in voltage for EEL: a) 

responses obtained from 500 Monte Carlo simulations; b) probability histogram of 

steady-state power after voltage drop; c) upper and lower limit of the responses and the 

most probable response ................................................................................................. 108 

Figure 3.10.  a) Real power responses, and b) reactive power response for residential 

and commercial motors with most probable and average response specified .............. 109 

Figure 3.11.  a) Small industrial IM P response, and b) large industrial IM P response to 

step down voltage; c) small industrial IM Q response, and d) large industrial IM Q 

response to step down voltage. (The upper and lower limit and the average responses 

are also shown.) ............................................................................................................. 112 

Figure 3.12.  Real power responses to a step reduction in voltage for SMPS: a) 

responses obtained from 500 MC simulations; b) probability histogram of steady-state 

power after voltage drop; c) upper and lower limit of the responses and the most 

probable response .......................................................................................................... 115 

Figure 3.13.  Reactive power responses to a step reduction in voltage for SMPS: a) 

responses obtained from 500 MC simulations; b) probability histogram of steady-state 

power after voltage drop; c) upper and lower limit of the responses and the most 

probable response .......................................................................................................... 116 

Figure 3.14.  The most probable DRD of P and Q to voltage step during the day ....... 117 

Figure 3.15.  The most probable DRD of P and Q to voltage step during the day ....... 117 

Figure 3.16.  Range and most probable DRDs for P and Q at 4:00am ......................... 119 

Figure 3.17.  Comparison of different most probable a) P and b) Q responses at different 

times of day (solid line: 3:00; dashed line: 4:00; dash-dot line: 12:00; dotted line: 18:00)

 ....................................................................................................................................... 120 

Figure 3.18.  Possible difference in a) P and b) Q response at 12:00 (dashed line and 

dashdot-line represents two possible different responses among all possible responses)

 ....................................................................................................................................... 121 

Figure 4.1.  Structure of an FFANN ............................................................................. 127 



LIST OF FIGURES 

12 

 

Figure 4.2.  Structure of a CFANN ............................................................................... 127 

Figure 4.3.  Structure of an ANFIS ............................................................................... 131 

Figure 4.4.  Block diagram for demand forecasting...................................................... 133 

Figure 4.5.  (a) Day-ahead forecasted demand curves against actual demand; (b) APE at 

different sampling times against MAPE ....................................................................... 140 

Figure 4.6.  Total load forecasting framework .............................................................. 142 

Figure 4.7.  Base load forecasting training process ...................................................... 143 

Figure 4.8.  Predicted demand versus actual demand: (a) real power, (b) reactive power

 ....................................................................................................................................... 147 

Figure 4.9.  PDF and CDF of APEs for (a) total P forecasting, and (b) total Q 

forecasting ..................................................................................................................... 149 

Figure 4.10.  PDF and CDF of CAPE for total demand forecasting when the weights of 

APEs for both P and Q forecasting are 50% ................................................................. 150 

Figure 5.1.  Real and reactive power responses to a 10% voltage step-up: (a) simulated 

for winter and summer and (b) simulated and measured real power responses for 

summer (adopted from [18, 133]). ................................................................................ 156 

Figure 5.2.  Framework for transforming actual demand into per unit value ............... 158 

Figure 5.3.  Probability distribution of per-unit total demand when voltage is: (a) 0.97 

p.u, and (b) 1.03 p.u ...................................................................................................... 163 

Figure 5.4.  Fitted mean and deviation for different per unit voltage ........................... 164 

Figure 5.5. (a) The actual voltage verses voltage level, and (b) boxplot of probabilistic 

rated demand against actual demand at a 6.6kV ENW bus from 8:00 to 17:00. .......... 164 

Figure 5.6.  Boxplot of probabilistic RD for Q against actual Q demand at Bus “DKST” 

from 8:00 to 17:00 on 25 June, 2014. ........................................................................... 165 

Figure 5.7.  (a) Actual voltage measurements verses voltage level; (b) rated P demand 

verses actual P demand; (c) Per-unit P at different times of the day; (d) Per-unit Q at 

different times of the day .............................................................................................. 166 

Figure 5.8.  Flowchart of the proposed methodology ................................................... 168 

Figure 5.9.  Flow chart and ANN settings of the training process ................................ 170 

Figure 5.10.  Validation process block diagram ........................................................... 171 



LIST OF FIGURES 

13 

 

Figure 5.11.  (a) PDF, (b) CDF of WFE for individual load categories when all inputs 

are available .................................................................................................................. 176 

Figure 5.12.  (a) PDF, (b) CDF of AWFE for individual load categories when all inputs 

are available .................................................................................................................. 177 

Figure 5.13.  PDF and CDF of AWFEs for the disaggregation approach when all inputs 

are available .................................................................................................................. 178 

Figure 5.14.  (a) PDF and CDF of AWFE of controllable or uncontrollable load, and (b) 

PDF and CDF of WFE of controllable and uncontrollable load, when all inputs are 

available ........................................................................................................................ 179 

Figure 5.15.  (a) PDFs, and (b) CDFs of ALME of P and Q when all inputs are available

 ....................................................................................................................................... 180 

Figure 5.16.  eP-eQ plot against Line eQ=eP .................................................................. 181 

Figure 5.17.  (a) PDF, and (b) CDF of WFE of different load categories when V 

measurement is missing ................................................................................................ 182 

Figure 5.18.  (a) PDF, and (b) CDF of AWFEs of different load categories when V 

measurement is missing ................................................................................................ 182 

Figure 5.19.  PDF and CDF of AWFEs for the disaggregation approach when V 

measurements are unavailable....................................................................................... 183 

Figure 5.20.  (a) PDF and CDF of AWFE of controllable or uncontrollable load, and (b) 

PDF and CDF of WFE of controllable and uncontrollable load in Case 2 ................... 184 

Figure 5.21.  (a) PDFs, and (b) CDFs of WFEs of different load categories when the 

measurements of Q are missing. ................................................................................... 185 

Figure 5.22.  (a) PDFs, and (b) CDFs of AWFEs of different load categories when Q 

measurement is missing. ............................................................................................... 186 

Figure 5.23.  PDF and CDF of AWFEs for the disaggregation approach when Q 

measurements are unavailable....................................................................................... 187 

Figure 5.24. (a) PDF and CDF of AWFE of controllable or uncontrollable load, and (b) 

PDF and CDF of WFE of controllable and uncontrollable load when Q is missing. ... 188 

Figure 5.25.  (a) PDFs, and (b) CDFs of ALMEs for aggregate P when measurements of 

Q are missing. ............................................................................................................... 189 



LIST OF FIGURES 

14 

 

Figure 5.26.  (a) PDF, and (b) CDF of AWFE in Case 1-3 when the share of the 

controllable load is unknown ........................................................................................ 190 

Figure 5.27.  (a) PDF, and (b) CDF of ALME for P in Case 1 and Case 3 when the share 

of the controllable load is unknown .............................................................................. 194 

Figure 5.28.  (a) PDF, and (b) CDF of load composition forecasting error when total 

load forecasting error is less than 100% ....................................................................... 196 

Figure 6.1.  Estimated DDLC of 25 June, 2014 based on measurement of the same day

 ....................................................................................................................................... 202 

Figure 6.2.  (a) Voltage verses voltage level; (b) estimated static P verses measured P; 

(c) estimated static Q verses measured Q; (d) voltage drop at 3:30; (e) estimated 

dynamic response of the demand of P verses measured dynamic response of the demand 

of P at 3:30; (f) estimated dynamic response of the demand of Q verses measured DRD 

of Q at 3:30. .................................................................................................................. 203 

Figure 6.3.  Predicted DDLC of 25 June, 2014 based on measured data of 24 June, 2014

 ....................................................................................................................................... 204 

Figure 6.4. (a) A 0.7% voltage drop; (b) predicted DRD of P verses measured DRD of 

P; (c) predicted DRD of Q verses measured DRD of Q. .............................................. 205 

Figure 6.5.  (a) Load curves before and after load shifting; (b) predicted DRD of P at 

03:30 with different categories allocated but the same total demand shifted ............... 209 

 

Figure B.1.  DDLC of the residential load sector during the winter (left, adopted from 

[1]) and the summer (right, adopted from [38]) in the UK ........................................... 234 

Figure B.2.  DDLC of the residential load sector during the winter (left, adopted from 

[39]) and the summer (right, adopted from [38]) in Germany ...................................... 234 

Figure B.3.  DDLC of the residential load sector during the winter (left, adopted from 

[41]) and the summer (right, adopted from [38]) in Sweden ........................................ 235 

Figure B.4.  DDLC of the residential load sector during the winter (left, adopted from 

[42]) and summer (right, adopted from [38]) in Denmark ............................................ 235 

Figure B.5.  DDLC of the residential load sector during the winter in Greece (adopted 

from [42]) ...................................................................................................................... 235 



LIST OF FIGURES 

15 

 

Figure B.6. DDLC of the residential load sector during the winter in Portugal (adopted 

from [42]) ...................................................................................................................... 236 

Figure B.7.  DDLC of the residential load sector during the summer in California 

(adopted from [40]) ....................................................................................................... 236 

Figure B.8. DDLC of commercial load sector during the summer in California (adopted 

from [40]) ...................................................................................................................... 236 

Figure B.9.  DDLC of commercial load sector during the summer in California (adopted 

from [40]) ...................................................................................................................... 237 

Figure B.10.  DDLC of the aggregate load during the winter (left) and the summer 

(right) in the UK (adopted from [37]) ........................................................................... 237 

Figure B.11.  DDLC of the aggregate load during the summer in California (adopted 

from [40]) ...................................................................................................................... 238 

Figure C.1.  s-V relationship of induction motors with typical parameters .................. 241 

Figure C.2.  (a) P-V, and (b) Q-V relationship of induction motors with typical 

parameters ..................................................................................................................... 241 

Figure C.3.  (a) Exponent α, and (b) Exponent β of induction motors with typical 

parameters ..................................................................................................................... 242 

 



LIST OF TABLES 

16 

 

LIST OF TABLES 

Table 1.1.  Effect of Load Models on Oscillation Frequency and Damping Constants 

(adopted from [3]) ........................................................................................................... 33 

Table 1.2.  Load Categories and Typical End-users in Each Category........................... 41 

Table 2.1.  Questionnaire (adopted from [115]) ............................................................. 86 

Table 2.2.  Participants and Response Rates (adopted from [115]) ................................ 87 

Table 2.3.  Polynomial Load Models of Different Load Categories used in this Research

 ......................................................................................................................................... 89 

Table 3.1.  Model Parameters for EEL (Adopted from [1, 124]).................................. 107 

Table 3.2.  Model Parameters for General Residential-commercial Motors (Derived 

using the Data from [1, 4]) ............................................................................................ 111 

Table 3.3.  Model Parameters for Small and Large Industrial IM (Derived using the 

Data from [1, 4]) ........................................................................................................... 114 

Table 3.4.  Model Parameters for Power Electronics/SMPS (Adopted from [1, 124]) 115 

Table 4.1.  MAPE and Processing Time of FFANN with Different Parameter 

Configuration ................................................................................................................ 137 

Table 4.2.  MAPE and Processing Time of CFANN with Different Parameter 

Configuration ................................................................................................................ 137 

Table 4.3.  Suggestions of Training Algorithm Selection ............................................. 138 

Table 4.4.  MAPE and Processing Time of ANFIS with Different Parameter 

Configuration ................................................................................................................ 138 

Table 4.5.  Suggestions of IMFs Selection with Constant OMF .................................. 139 

Table 4.6.  Suggestions of ANN and ANFIS Selection ................................................ 139 

Table 4.7.  Advantages and Disadvantages of ANN and ANFIS ................................. 141 

Table 5.1.  Voltages and Real Powers of a Bus with Voltage Level V0 at Three Different 

Times ............................................................................................................................. 154 

Table 5.2.  Load Categories and Their Controllability in This Study ........................... 160 



LIST OF TABLES 

17 

 

Table 5.3.  Comparison of the Overall AWFE of the Disaggregation Approach in Case 1 

when the Share of the Controllable Load is 10%-50% and when It is Unknown (MP: 

most probable; CL: confidence level) ........................................................................... 190 

Table 5.4.  Comparison of the Overall AWFE of the Disaggregation Approach in Case 2 

when the Share of the Controllable Load is 10%-50% and when It is Unknown (MP: 

most probable; CL: confidence level) ........................................................................... 191 

Table 5.5.  Comparison of the Overall AWFE of the Disaggregation Approach in Case 3 

when the Share of the Controllable Load is 10%-50% and when It is Unknown (MP: 

most probable; CL: confidence level) ........................................................................... 192 

Table 5.6.  Comparison of the Overall AWFE of the Disaggregation Approach in Case 

1-3 when the Share of the Controllable Load is Unknown (MP: most probable; CL: 

confidence level) ........................................................................................................... 192 

 

Table C.1.  Typical Values of Variables Given in Figure 2.2 ....................................... 240 

Table D.1.  Typical Values of Voltage and Frequency Exponents of the Exponential 

Load Model (adopted from [1]) .................................................................................... 243 

Table D.2.  Parameters for Models of Single-phase and Three-phase Induction Motors 

(adopted from [1]) ......................................................................................................... 244 

 



NOMENCLATURE 

18 

 

NOMENCLATURE 

List of Symbols 

| | Absolute value operator 

a Output of the artificial neural network 

b Bias of the artificial neural network 

c Cost of the electricity 

C Controllable 

d Step change of the voltage 

dp Scaling factor for the real power 

dq Scaling factor for the reactive power 

DT Day type 

eoverall overall error of the disaggregation approach 

eP Load model error for the real power 

ep Voltage exponent of the exponential load model for the real 

power 

eq Voltage exponent of the exponential load model for the reactive 

power 

eQ Load model error for the reactive power 

f Frequency 

f(), F() A function 

H Humidity 

J Inertia 

kpf Frequency exponent of the exponential load model for the real 

power 

kpu Voltage exponent of the exponential load model for the real 

power 



NOMENCLATURE 

19 

 

Kpu Gain 

L Inductance 

LS Load signature 

M Torque 

Obj Objective function 

P Real power 

p Input of the artificial neural network 

Prated Rated demand 

pf Power factor 

Q Reactive power 

R Resistance 

s Slip 

T Temperature 

t Time 

Tp Recovery time constant for the real power 

Tq Recovery time constant for the reactive power 

UC Uncontrollable 

V Voltage 

w Weighting factor 

W Weights of the artificial neural network 

WS Wind speed 

X Reactance 

α Voltage exponent of the exponential load model for the real 

power 

β Voltage exponent of the exponential load model for the reactive 

power 



NOMENCLATURE 

20 

 

Δ Operator representing the variation 

λ Magnetic flux 

μ Mean value 

σ Standard deviation 

ω Angular frequency 

Subscripts 

dsigmf Difference-sigmoid shaped membership function 

gbellmf Bell-shaped membership function 

logsig Log-sigmoid transfer function 

PTRN Input matrix of the training process of the artificial 

neural network 

PTST Input matrix of the testing process of the artificial 

neural network 

purelin Linear transfer function 

tansig Tan-sigmoid transfer function 

trainbr Bayesian Regulation backpropagation 

traingd Gradient descent backpropagation 

trainlm Levenberg-Marquardt backpropagation 

trimf Triangle-shaped membership function 

TTRN Target matrix of the training process of the 

artificial neural network 

TTST Target matrix of the testing process of the artificial 

neural network 

Acronyms  

A/C Air conditioning 

AI Artificial intelligence 



NOMENCLATURE 

21 

 

ALME Absolute load model error 

ANFIS Adaptive neuro-based fuzzy inference system 

ANN Artificial neural network 

APE Absolute percentage error 

AR Autoregression 

ARIMA Autoregression integrated moving average 

ARMA Autoregression moving average 

ASD Adjustable speed drive 

AWFE Absolute weighting factor error 

BLF Base load forecasting 

BLFer Base load forecaster 

BP Backpropagation 

BRBP Bayesian Regulation backpropagation 

BSP Bulk supply point 

CAPE Cumulative absolute percentage error 

CBA Component-based approach 

CDF Cumulative distribution function 

CdL Cold load 

CFANN Cascade-forward artificial neural network 

CFL Compact fluorescent lamps 

CI Confidence interval 

CIGRE Conseil International des Grands Réseaux Électriques 

(International Council on Large Electric Systems) 

CL Confidence level 

CLF Change load forecasting 

CLFer Change load forecaster 



NOMENCLATURE 

22 

 

CT Constant torque 

CTIM1 Single-phase constant torque induction motor 

CTIM3 Three-phase constant torque induction motor 

CW Current waveform 

DADRS Daily aggregate demand response surface  

DDLC Decomposed daily loading curve 

DFR Digital fault recorder 

DFT Discrete Fourier Transform 

DG Distribution generation 

DRD Dynamic response of demand 

DSM Demand side management 

EEL Energy efficient lighting 

EIG Eigenvalues 

EMTP Electromagnetic Transients Program 

EPRI Electric Power Research Institute 

EV Electric vehicle 

FFANN Feed-forward artificial neural network 

FIS Fuzzy inference system 

GDBP Gradient descent backpropagation 

GIL General incandescent lights 

HAR Harmonics 

HID High-intensity discharge lighting 

HV High Voltage 

IAW Instantaneous admittance waveform 

IEEE Institute of Electrical and Electronics Engineers 
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IM Induction motor 

IMF Input membership function 

IPW Instantaneous power waveform 

LED Light-emitting diode 

LMBP Levenberg-Marquardt backpropagation 

MA Moving average 

MAPE Mean absolute percentage error 

MBA Measurement-based approach 

MCS Monte Carlo simulation 

MES Meat emulsion system 

MF Membership function 

MP Most probable 

MPV Most probable value 

MV Medium voltage 

OMF Output membership function 

PDF Probability density function 

PQ Real and reactive power 

QT Quadratic torque 

QTIM1 Single-phase quadratic torque induction motor 

QTIM3 Three-phase quadratic torque induction motor 

RD Rated demand 

REC  Rectifier 

RLR Robust local regression 

RMS Root mean squared 

RMSE Root mean squared error 
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SEA  Smart energy appliances 

SES Smart energy services 

SG Savitzky-Golay 

SMPS Switch-mode power supply 

SNRF Signal-to-noise-ratio figure 

STLF Short-term load forecasting 

STW Switching transient waveform 

TF Transfer function 

TV Television 

WECC Western Electricity Coordinating Council 

WF Weighting factor 

WFE Weighting factor error 

WL Wet load 

WSCC Western Systems Coordinating Council 

ZIP Constant impedance, constant current and constant 

power 
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ABSTRACT 

Probabilistic Estimation and Prediction of the Dynamic Response of the Demand at 

Bulk Supply Points 

Ms Yizheng Xu, The University of Manchester, March 2015 

The dynamic response of the demand is defined as the time-domain real and 

reactive power response to a voltage disturbance, and it represents the dynamic load 

characteristics. This thesis develops a methodology for probabilistic estimation and 

prediction of dynamic responses of the demand at bulk supply points. The main 

outcome of the research is being able to predict the contribution of different categories 

of loads to the total demand mix and their controllability without conducting detailed 

customer surveys or collecting smart meter data, and to predict the dynamic response of 

the demand without performing field tests. 

The prediction of the contributions of different load categories and their 

controllability and load characteristics in the near future (e.g., day ahead) plays an 

important role in system analysis and planning, especially in the short-term dispatch and 

control. However, the research related to this topic is missing in the publically available 

literature, and an approach needs to be developed to enable the prediction of the 

participation of different loads in total load mix, their controllability and the dynamic 

response of the demand. 

This research contributes to a number of areas, such as load forecasting, load 

disaggregation and load modelling. First, two load forecasting methodologies which 

have not been compared before are compared; and based on the results of comparison 

and considering the actual requirements in this research, a methodology is selected and 

used to predict both the real and reactive power. Second, a unique methodology for load 

disaggregation is developed. This methodology enables the estimation of the 

contributions of different load categories to the total demand mix and their 

controllability based on RMS measured voltage and real and reactive power. The 

confidence level of the estimation is also assessed. The methodology for disaggregation 

is integrated with the load forecasting tool to enable prediction of load compositions and 

dynamic responses of the demand. The prediction is validated with data collected from 

real UK power network. Finally, based on the prediction, an example of load shifting is 

used to demonstrate that different dynamic responses can be obtained based on the 

availability and redistribution of controllable devices and that load shifting decisions, 

i.e., demand side management actions, should be made based not only on the amount of 

demand to be shifted, but also on predicted responses before and after load shifting.  
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1 Introduction 

 

 

 

 

 

Load characteristics, if not appropriately accounted for in system studies, can 

result in an inaccurate representation of system behaviour and lead to suboptimal 

system performance or, in the worst case scenario, to system instability and collapse. 

Being able to predict the load characteristics (especially the dynamic characteristics) in 

advance will not only reduce the probability of the potential system stability issues, but 

also facilitate the development of advanced control algorithms for effective demand side 

management.  

1.1  Load Characteristics 

Load characteristics, in the context of this thesis, indicate the relationship between 

the real or reactive power and power system parameters such as voltage and frequency. 

They can be broadly classified into steady-state and dynamic load characteristics.  

1.1.1  Representation of Load Characteristics 

Load characteristics are represented by appropriate mathematical load models. 

Load models can correctly represent the change of the real and reactive power as a 

function of the variation of power system parameters such as time, voltage and 

frequency. Generally at present time, and considering tightly coupled power systems 
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dominated by conventional synchronous generators, the frequency dependence of loads 

can be neglected [1]. Load models can be further classified into static load models and 

dynamic load models. The former can represent the steady-state load characteristic, 

which is usually a relationship between the real or reactive power and the voltage. The 

latter can represent the dynamic load characteristics, which is the time-domain real and 

reactive power response to a voltage disturbance (and frequency disturbance if it is 

concerned). The dynamic load characteristic is also referred to as dynamic response of 

the demand (DRD). There are a variety of load models used in industrial practice, and 

more details will be given in Chapter 2. Mathematical representation or description of 

load characteristics is commonly referred to as load modelling. 

1.1.2  Significance of Load Modelling  

Load characteristics influence both steady-state and dynamic performance of 

power systems significantly. Thus, in order to carry out appropriate power system 

steady-state and dynamic analysis, appropriate representation of load characteristics (i.e. 

load models) is required. Computer simulations of power system using, among the 

others, appropriate load models, is one of the most important (if not the only) approach 

to understand the system dynamic behaviour and provide suggestions on planning and 

operation. 

The importance of accurate load modelling for understanding power system 

behaviour was highlighted in a number of historical events which lead to component 

outages, voltage collapses, and system instability. Some of these are described below. 

1.1.2.1  Outage at Western Systems Coordinating Council 

An outage event took place at Western Systems Coordinating Council (WSCC) on 

10 August, 1996 and resulted in break-up of the integrated system into four islands [2]. 

The event was initially simulated using the standard WSCC dynamic database (i.e. the 

load model parameters which represent the aggregate load characteristics). The 
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simulation results however did not match the recorded response; they were too 

optimistic and failed to predict the system stability status. To match the simulation 

results with the recorded response, it was necessary to make modifications to several 

load models. 

1.1.2.2  Low Frequency Oscillation in Taiwan, China 

A low frequency oscillation event during the trunk line outage was observed in 

Taiwan Power System, China. Different load models such as the composite load model, 

the dynamic model and the exponential load model were used to analyse the dynamic 

process during the outage [3]. The oscillation frequencies and damping constants when 

one line was tripped out and two lines were tripped out are given in Table 1.1 [3]. The 

result shows that different load models can have different effects on system stability 

analysis.  

Table 1.1.  Effect of Load Models on Oscillation Frequency and Damping Constants (adopted from [3]) 

 

1.1.2.3  Voltage Collapse in Argentina 

To analyse the voltage collapse in Argentina [1], a static model and a model with 

50% induction motor and 50% static load are used to simulate the voltage dynamics. By 

analysing the PV curves [4] which indicate the relationship between the voltage and the 

real power, it was found that the static load model was too optimistic to reflect the 

voltage collapse dynamics, and that more detailed load models were needed. 

1.1.2.4  Summary of Past Event Simulations 

From the results of past event simulations using different load models, it is clear 
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that the way of representing load characteristics (i.e. selecting load models) can have a 

significant effect on the analysis result. Therefore, appropriate representation of load 

characteristics plays an important role in power system studies and controls. 

1.2  Load Modelling Approaches 

As mentioned in Section 1.1.1, the process of establishing a load model (i.e. 

representing the load characteristic in a mathematical form) is referred to as “load 

modelling”. Load modelling is not a trivial task. On the one hand, a significant number 

of factors (e.g. the diversity in types and characteristics of the loads, the lack of 

information on the load structure, and the difficulties in accessing data during the 

validation process) need to be considered. On the other hand, temporal and spatial load 

variation also needs to be considered in system behaviour assessment at different times 

of the day as well as in different geographic locations. Furthermore, aggregate load 

models at the medium-voltage (MV) and high-voltage (HV) bulk supply buses adopted 

for power system studies include implicitly the distribution transformers, shunt 

compensation and the distribution network feeders, often without accounting 

appropriately for dynamics of operation of tap changing transformers and other voltage 

regulators that may be deployed at lower voltage levels.  

The two predominantly used load modelling approaches by the majority of 

researchers and utilities are the measurement-based approach and the component-based 

approach. The directions of these two approaches are totally different; the former is top-

down and the latter is bottom-up. Both of the approaches have been illustrated in [1, 5]. 

The selection of the approach depends on the actual load characteristics and load 

modelling requirement in specific cases.  

1.2.1  Measurement-Based Approach 

The measurement-based approach (MBA) is a top-down approach that uses 
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disturbance data collected at substations or feeders to derive load models. In this 

approach, a load model structure is assumed, and an appropriate post-processing 

technique, to screen events suitable for load model parameter identification, is selected. 

1.2.1.1  Approach Overview 

Measurement-based approach is diagrammatically shown as Figure 1.1[1].  

 

Figure 1.1.  Block diagram for the measurement-based approach (adopted from [1]) 

At the beginning, the disturbance data are collected by data acquisition devices such as 

power quality monitors or digital fault recorders (DFR). The sampling rate for data 

acquisition typically ranges from 1Hz to 1kHz, and the selection of the sampling rate 

depends on the purpose of specific power system studies. For example, for steady-state 

power flow study, a 1Hz sampling rate is adequate, while for transient stability study, 

the sampling rate should be at least 100Hz. More details are provided in [1].  

If the collected data contains noise, a filter is needed to remove the noise. 

However, the filtering techniques have to be carefully selected to guarantee that the 

useful transients in the collected data are retained. The most widely used filtering 

techniques include moving average (MA), Savitzky-Golay (SG) and robust local 
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regression (RLR) [6]. In moving average filtering, individual samples are replaced by 

the average of the neighbouring data points. Savitzky-Golay filter is designed based on 

the least-square polynomial approximation, and it can achieve a high level of smoothing 

without significantly distorting the feature of the data. Robust local regression 

calculates the regression weights for each data point in the selected window. As the 

noise in the measured data is Gaussian noise in most cases, moving average is usually 

used for filtering. The mechanism of moving average filtering is provided in Appendix 

A as an example of the filtering technique. More details about filtering can be found in 

[6]. 

After the collected data are filtered, a discrete Fourier Transform (DFT)-based 

signal processing algorithm (sliding window) is used to convert the three-phase voltage 

and current into the positive-sequence, negative-sequence and zero-sequence 

components of the voltage, current, active power and reactive power. After the positive-

sequence components are obtained, according to the shape of the load response, a load 

model structure is selected to postulate the measured data, and an optimisation routine is 

executed, shown as Equation (1.1)  [1] 

 
k

kckm tytyF 2))()(()(
 

(1.1) 

where F(θ) is the objective function to be minimised, θ is the parameter vector to be 

estimated, ym is the vector of the measured values, yc is the vector of the computed 

values, and tk is the time step of the simulation. Optimisation techniques, such as least-

squares method [5, 7], genetic algorithm [8, 9], support vector machine [10], and 

simulated annealing [11], can be used for the optimisation process.  

With selected optimisation techniques, the value of the parameter that minimises 

the error between the measured values and the computed values of the function can be 

obtained by solving Equation (1.1). Then, the derived model is validated using 

commercially available time-domain simulation tools. The computed real and reactive 
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power responses are compared with the actual recorded ones. If they do not match 

reasonably, or the optimised values are not acceptable (i.e. acceptable here means 

“within typically expected ranges based on past experience”), the process will be 

repeated until the computed values match the recorded ones and the optimised values 

are acceptable. After a reasonable set of model parameters is obtained, they are set as 

the load model parameters and can be used in the above mentioned simulation tools.  

The main advantages of the measurement-based approach are as follows:  

 It directly uses recorded load data (after filtering) from the actual system. 

 It can be applied to any type of loads. 

 It can detect temporal changes in connected loads. 

The main disadvantages are as follows: 

 Significant data filtering and data conditioning are required 

 The derived model will be inappropriate if data with large disturbances are 

not available (i.e. large disturbance in the system is generally rare.).  

 It requires detection and removal of natural load changes that are not 

related to the voltage change. 

 Selected optimisation techniques may result in either no solution or more 

than one solution for the estimated parameters.  

 The model obtained at one substation based on particular measurements 

may not be applicable to other substations (unless the load compositions of 

these substations are very similar) or at different times (as the load 

compositions might change at different times). 

1.2.1.2  Existing Developed Load Models using the Measurement-based 

Approach 

The measurement-based approach has been widely used for load modelling in the 

past. EPRI’s report [12] has provided a comprehensive overview of the measurement-
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based approach, including existing monitoring system applied to load modelling, load 

model structure determination, optimisation techniques for model parameter derivation, 

and simulation tools during the validation process. 

Additionally, in [8], this approach together with genetic algorithm and least square 

estimation techniques was applied to build a static load model for IEEE 10-machine 39-

bus standard test system and Hushitai Power Substation. It was found that the genetic 

algorithm and the least square estimation techniques could provide different parameters, 

and that the genetic algorithm was more independent on the initial estimation.  

In [13-17], the measurement-based approach was used to identify the steady-state 

and transient characteristics in the medium-voltage (MV) distribution voltage network. 

Both of the characteristics have been described mathematically by polynomial and 

exponential load models. Parameters of a composite model for residential load sector in 

different day types (weekdays and weekends) of different seasons are given in [18]. In 

this work, with the uncertainty considered, parameters are presented in the form of 

Gaussian-fitted probabilistic distribution function. It was concluded that the parameters 

for different day types and different seasons could be different. Similar to [18], [19] 

(carried out by the same working group) also used the measurement-based approach to 

obtain the parameters for different load components in residential load sector. 

Additionally, [19] extended the work presented in [18] to higher voltage levels based on 

the responses of 41 transmission system operators and utilities in Europe, which 

participated in a survey initiated by CIGRE Working Group C4.605. In [20], dynamic 

load model of some low voltage devices are developed. The results presented in [18-20] 

are summarised in [1].  

The developed load model can be directly applied to power system stability 

analysis. In [21] , the measurement-based approach is used to develop the composite 

load model for a Henan Province in Middle China. The developed models are then used 
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for stability analysis of the area. Similarly, in [9, 14, 22, 23], developed models are 

validated with real data and used in power system stability analysis.  

1.2.2  Component-based Approach 

Apart from the measurement-based approach, the component-based approach 

(CBA) has also been widely used to develop composite load model. The component-

based approach is a bottom-up methodology that aggregates individual loads according 

to load mix/classification contribution and load sector contribution. In the component-

based approach, the model is developed from: (i) the percentage of different load 

categories participating in the total demand (or in a specific load sector/class under 

some circumstances), and (ii) typical characteristics of each load category (usually ZIP 

+ induction motor model).  

1.2.2.1  Definitions of Terms used in Load Modelling and Load 

Classification 

Terms such as load category, load controllability, load class and load sector related 

to component-based load modelling in particular, and to general field of load modelling, 

need to be defined before describing the approach itself. 

1.2.2.1.1  Load Categories 

The majority of the currently available electricity consumption statistics and 

publications usually divide loads into load types based on the specific end-use of 

electricity (e.g. lighting, heating, cooking etc.). However, it is generally not a suitable 

categorisation of loads from the point of view of load modelling [1]. For load modelling 

purposes (especially component-based load modelling purpose), loads are classified into 

different groups based on the similarity of their electrical characteristics rather than on 

specific end-use functionality, and such groups are referred to as load categories. 

Loads that belong to the same category usually have similar load characteristics 
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(i.e. P-V, P-t, Q-V, and Q-t characteristics), even if the functionalities of the loads are 

different (i.e. different end-users). For example, in the residential load sector, the 

residential air conditioner and the refrigerator are different end-users providing different 

functionalities, but both of them belong to the category “single-phase directly-connected 

induction motor” and they have similar load characteristics. All types of electrical 

equipment and devices can be divided into the following general load categories: 

 directly-connected motor loads 

 drive-controlled motors, or adjustable speed drive (ASD) loads 

 resistive loads  

 DC power supplies, or switch-mode power supply (SMPS) loads 

 energy efficient lighting 

 rechargeable/renewable loads (including distribution generators, electric 

vehicles, solar panel etc.) 

It is worth noting that in this context, the distributed generator connected at lower 

voltage levels is considered as a load at bulk supply points rather than a generator due to 

assumed small size of individual units and largely distributed nature of LV connected 

generators [1]. 

1.2.2.1.2  Controllability of Different Load Categories 

In demand side management (DSM), the loads are categorised based not only on 

load characteristics, but also on their controllability. Based on controllability, loads can 

be categorised as controllable loads and uncontrollable loads. Controllable load, also 

referred to as DSM potential load or demand-manageable load, is defined as the load 

suitable for deferral or shifting [24, 25]. Uncontrollable load therefore refers to the load 

unsuitable for deferral or shifting. Demand side management potential of the load 

depends on the load characteristics and the consumer routine. Generally, the 
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controllable load consists of following types of loads:  

 cold loads (e.g. fridge/freezers, air conditioners) 

 wet loads (e.g. wash machines and dryers, dish washers)  

 heating loads (e.g. heat pump, night storage heating) 

 rechargeable/renewable loads (e.g. electric vehicles, solar panel, battery). 

Table 1.2.  Load Categories and Typical End-users in Each Category 

Main Categories 

Sub-categories (if 

needed in some cases 

[26, 27]) 

Typical End-users Controllability 

Directly-connected 

induction motor 

 

Single-phase 

Quadratic Torque 

(QTIM1) 

 Residential/commercial air 

conditioner 

 Residential/commercial 

refrigerator and freezer 

Yes 

Single-phase Constant 

Torque (CTIM1) 

 Wash machine and dryer 

 Dish washer 
Yes 

Three-phase Quadratic 

Torque (QTIM3) 

 Commercial and Industrial 

pumps or fans 
No 

Three-phase Constant 

Torque (CTIM3) 

 Heat pump space heating 

 Heat pump air conditioner 

 Industrial air conditioner, 

refrigerator and freezer 

 Lifts/elevators 

Partly Yes 

Drive-controlled 

induction motor 

Single phase  Motor controller 

 Vector control 
Partly Yes 

Three phase 

Resistive loads N/A 

 Heating (heater /water 

heater) 

 Cooking (oven etc.) 

Partly Yes 

Electronic loads 

Switch-mode power 

supply (SMPS) 

 PCs/TVs 

 CD/DVD 
No 

Rectifier 
 Semi-conductor diodes 

 Thyristor 
No 

Lighting loads 

Interior lighting 

 General incandescent lights 

(GIL) 

 Compact fluorescent lamps 

(CFL) 

 Light-emitting diode (LED) 

No 

Exterior lighting 
 High-intensity discharge 

lighting (HID) 
No 

Rechargeable/Renewable 

loads 
N/A 

 Electric vehicles (EVs) 

 Solar panel 

 Battery 

 Micro-CHP 

Yes 
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According to the categorisation in [1, 26-31], the categorisation of the loads and 

the controllability of different load categories can be summarised as shown in Table 1.2. 

For the column that indicates controllability, “Yes” means that the category is 

controllable, “No” means that the category is uncontrollable, “Partly Yes” means that 

some of the end-users within the category are controllable while some are not.  

If needed, in some cases at higher voltage level, network components (e.g. shunt 

capacitance/reactance, transformer, underground cables or transmission lines) can also 

be regarded as a category of “load”, named “network component”. 

1.2.2.1.3  Load Sectors 

Load sector, also referred to as load class or class of customers, is generally 

defined as an aggregation or collection of loads from different load categories, 

representing the typical structure and composition of electrical devices and equipment 

found in a specific end-use application, where similar activities and tasks are performed. 

This usually results in inherent similarities in characteristics and patterns of active and 

reactive power demands of end-users from the same load sector, allowing the use of the 

same or similar aggregate load models for the representation of their aggregate 

demands. It should be noted that one load sector may be further divided into several 

sub-sectors, and further details are in [1]. 

1.2.2.2  Approach Overview 

The overall approach to the component-based load modelling is described by 

Figure 1.2 [1]. It should start from “load characteristics” in Figure 1.2, where the load 

models for individual load categories are selected and derived according to the 

measurement-based approach from either field tests or laboratory measurements. After 

the models of individual categories are developed, the information of the load mix 

percentage should be collected for specific load sectors or for the overall demand in 

order to aggregate the individual load categories with appropriate weights. This 
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approach can be applied to either different load classes (i.e. residential, commercial, 

industrial etc.) or directly to the aggregate demand at bulk supply point (BSP). 

P+jQ
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Figure 1.2.  Component-based approach (adopted from [1]) 

The aggregate load can be represented by weighed average of individual load, 

shown as 

1

N

Agg i i

i

P w P


   and 
1

N

Agg i i

i

Q w Q


   
(1.2) 

where PAgg and QAgg are aggregate load real and reactive power consumption in per unit, 

Pi and Qi are actual real and reactive power consumption of load category i in per unit, 

wi is the weighting factor for load category i which satisfies 
1

1
N

i

i

w


 , N is the total 

number of load categories. The weighting factors are the percentage of different load 

categories participating in a given load sector or the BSP. In the studies where high 

accuracy is required, the effect of the network components (e.g. the impedance of the 

feeders and the transformers, etc.) on proposed load models should be considered as 

well. 

If the percentage of different load categories and the load characteristics of 

individual load categories are known, the component-based approach can be easily used 
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to develop composite load model. 

The main advantages of the component-based approach are as follows:  

 It can be easily used to develop composite load models with different load 

mix. 

 It does not require field measurements if the percentage of each load 

category in the load mix and the load characteristics of each load category 

are known or could be estimated in advance. 

 It is adaptable to different systems and operating conditions. 

 It allows flexibility for potential demand control and facilitates system 

studies related to establishment of system performance sensitivity to load 

composition changes. 

The main disadvantages are as follows:  

 The percentage of different load categories can change over time. It is a 

challenge to acquire the information on the percentage of different load 

categories at different times of the day as well as different geographical 

locations. 

 Even if the percentage of each load category in load mix is known, the 

parameters of the categories (or the types of end-users in the categories) 

could be different under different operating conditions 

 If a new type of load (which does not belong to any previously defined 

load categories) is connected, errors in load model parameter identification 

could be induced. 

1.2.2.3  Existing Developed Load Models using the Component-based 

Approach 

In [1, 32], the component-based approach is illustrated to develop a static 

aggregated load model for residential load sector in a general UK urban area. Both the 
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exponential model and the ZIP model (more details provided in Chapter 2 and [1]) are 

developed for power and reactive power. The voltage exponents in the exponential 

model and the participation coefficients of constant impedance, constant current and 

constant power load in the ZIP model vary with time, and they are presented by a daily 

parameter curve which indicates the variation of the parameters against time. This 

means that the steady-state load characteristics can vary with time.  

Apart from the residential sector, [33] provides an aggregated model for the 

industrial facilities. It classifies different industrial processes into groups, and then 

represents the industrial processes modelled by different induction motors in each group 

using an equivalent aggregate induction motor, and finally connects each equivalent 

aggregate induction motor to the network in parallel with a static load model that can 

appropriately represent the static part of the aggregate load.  

An aggregated model for mixed residential and commercial load sector under 

severe disturbances (i.e. up to 50% voltage variations) is developed in [34]. Using 

EMTP (Electromagnetic Transients Program) simulations, the resulting composite 

model has been validated with field measurements which were recorded during a single-

line-to-ground fault. 

Western Electricity Coordinating Council (WECC) has also made considerable 

contribution to the component-based approach. In [35], daily demand data for different 

load types on different days during different seasons in Californian commercial sector 

are measured and recorded. An updated composite load model is proposed by WECC in 

[31] for more accurate load modelling, and the corresponding detailed data of the 

classification and the percentage of different types of loads used for modelling are 

provided in [35]. The construction graph is shown in Figure 1.3 [1, 31]. It divides the 

model into parts shown as below: 

 Electronic part 
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 Static part 

 Motor A: three-phase motors driving constant torque loads, such as 

commercial/industrial A/C compressors 

 Motor B: three-phase motors driving speed-squared loads with high inertia, such 

as fans 

 Motor C: three-phase motors driving speed-squared loads with low inertia, such 

as pumps 

 Motor D: single-phase motors driving constant torque loads, such as residential 

A/C compressors, refrigerators, and heat pumps) 

 

Figure 1.3.  WECC composite load model (adopted from [1, 31]) 

For higher voltage level (over 33kV), apart from the parts mentioned above, following 

components should also be included: 

 Feeder (underground cables or overhead lines) 

 Substation shunt 

 Transformers 

(Note: the bulk supply point voltage level in this study is considered to be up to 11kV.) 
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1.3  New Challenges and Motivation 

The past event simulations using different load models have proved that accurate 

load modelling plays an important role in system analysis. Load models, which are used 

to represent load characteristics, can be built from either the measured response to a 

disturbance, or the derived or estimated load composition data from customer surveys 

conducted in the past. However, the role of establishing load models based on historical 

measured data or historical derived load composition data is limited, as the data only 

represent situations in the past. It may provide valuable information for long-term 

planning, but it is not able to appropriately address issues related to short-term 

prediction, dispatch and control.  

One of the most popular activities related to short-term prediction, dispatch and 

control, is load shifting. This is one of the most widely used short-term demand side 

management techniques. Load shifting shifts the demand at peak times to off-peak times 

to reduce the capacity of the traditional generators as well as the expenditure, and it can 

be achieved by regulating the electricity price, incentive system and policies. During the 

process, it is necessary to fulfil the following criteria:  

 The demand at peak times are shifted to off-peak times;  

 The total cost (of energy consumption) after load shifting is lower than or equal 

to that before load shifting; 

 The dynamic load characteristics remain the same (or are satisfactory) before 

and after load shifting so that the whole power system does not suffer from 

stability issues.  

The dynamic load characteristics in the future are indispensable, but they cannot 

be obtained from measurements in the field test. Therefore, for load shifting (and the 

majority of other demand side management schemes), it is necessary to predict not only 

the total demand, but also the possible compositions of the load as well as their potential 



Chapter 1: Introduction 

48 

 

for demand side management (DSM) and dynamic responses of demand before and 

after DSM, in order to determine the amount of different types of customers to be 

shifted to meet all the criteria mentioned above. 

1.4  Review of Past Work 

Although the topic about prediction of load compositions and the dynamic 

response of the demand based only on substation RMS measurements (with 30min 

resolution) has not been discussed straightforwardly in past work, significant 

contributions have been made to load disaggregation/decomposition, load forecasting, 

load shifting and load modelling approaches (i.e. load modelling approaches have been 

reviewed in Section 1.2, and load models will be described in detail in Chapter 2), and 

these contributions significantly facilitate the development of the ideas in this research. 

1.4.1  Load disaggregation/decomposition 

Load disaggregation, alternatively referred to as load decomposition, works out 

the contribution of different end-users or load categories to the total demand. In Chapter 

2 of [1], an example of typical load component in Japan is provided from customer 

surveys. It provides the percentage of motors, lamps, heaters, and other devices in 

residential, commercial and industrial load sectors and the composition rate under the 

overall demand.  

Decomposed daily loading curves (DDLC), defined as “detailed daily loading 

curves indicating participation of different types of loads at different times of day for 

different load sectors during different seasons” [1], is usually used to represent the 

contribution of different end-users or load categories at different times during the day. 

An example of a decomposed daily loading curve which represents the percentage of 

different end-users on a winter’s day in the UK residential sector is given as Figure 1.4. 

It can be clearly seen from the figure that at different times of the day, the contributions 
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of different end-user types are different. For example, the consumer electronics/ICT 

load contributes about 1/3 to the total demand at peak time (i.e. 20:30) but only 

contributes less than 1/10 at 12:00.  

 

Figure 1.4.  An example of decomposed daily loading curves for UK residential load sector in winter 

(adopted from [1, 24, 32]) 

As mentioned in Section 1.2.2, the derivation of the contribution of load 

compositions to the total demand (or decomposed daily loading curve as shown in 

Figure 1.4) is a challenging task, and great attention has been paid to load 

disaggregation over past decades. There are two approaches commonly used for load 

disaggregation: intrusive load monitoring and non-intrusive load monitoring. 

1.4.1.1  Intrusive Load Monitoring 

Currently, intrusive load monitoring is a widely used approach for load 

disaggregation/decomposition. It relies on the customer record about appliance 

operation [36], energy data and billing data [37], and more recently, smart meter data 

[38]. In intrusive load monitoring, an intermediate monitoring device between the 

socket and the appliance is installed to record its operation. The customer is additionally 

required to record the consumption of different appliances at regular time intervals (i.e. 

every 30 min or 60 min). 

Apart from decomposed daily loading curves obtained from intrusive load 



Chapter 1: Introduction 

50 

 

monitoring for different load types during the winter in the UK given in Figure 1.4 [1, 

24, 32], decomposed daily loading curves of different load sectors (i.e. defined in 

Section 1.2.2.1) and overall demand for UK in 2010 are also investigated [37]. In 

addition,  a household electricity consumption survey [36] was conducted from 2011 to 

2012 by Intertek, which provides the daily consumption of different end-users in 

different types of households. Simultaneously, the controllability of different load 

categories in [1, 24, 32, 36] has also been investigated, although the exact percentage of 

the controllable and uncontrollable parts in load categories is not given. This especially 

applies to load categories that may contain both controllable and uncontrollable parts 

(i.e. resistive load includes cooking load which is uncontrollable and heating load which 

is controllable.). 

Furthermore, decomposed daily loading curves are derived for the residential 

sector in Germany during the winter [39], for all different sectors of California during 

the summer [40], for different types of households in the Swedish residential sector 

[41], and for the residential sector in different parts of Europe [38, 42]. Report [42] 

provides the decomposed daily loading curves of residential load sectors in terms of 

household appliances for some European countries located in different areas of Europe, 

such as Denmark, Greece, Italy and Portugal. Report [38] provides decomposed daily 

loading curves in terms of household appliances during the summer for five areas in 

Europe including:  

 Region A: Southern Europe (Spain, Italy etc.) 

 Region B: Scandinavia 

 Region C: New Member States 

 Region D: Germany/Austria 

 Region E: United Kingdom 

Both [42] and [38] prove that for different locations, the load subdivision is probably 
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different due to the variation in climate and lifestyle. Reports [38] and [39] illustrate 

that even for the same load sector of the same country, decomposed daily loading curves 

can be different due to the change of seasons.  

 

Figure 1.5.  DDLC for commercial load sector in California (plotted using the consumption data adopted 

from [35]) 

Alternatively, if the measured consumption data of different end-user types are 

available, decomposed daily loading curves can also be derived directly from those data. 

Figure 1.5 shows the decomposed daily loading curves for the commercial load sector 

in California derived using intrusive load monitoring from the measured consumption 

data [35]. The peak demand is normalised to 100% for ease of comparison. More 

examples of decomposed daily loading curves derived by the intrusive load monitoring 

approach for different regions in the world are provided in Appendix B.  

The intrusive load monitoring approach can work out the consumption of different 

end-user types at different times of a normal day. It may provide valuable information 

for long-term power system planning, but it is inconvenient and expensive for 

widespread deployment to short-term prediction and control due to a variety of factors, 

such as the limitation in accessing all appliances in all types of buildings, the vagueness 

of the customer diary and customer awareness of privacy. And even if the above 

drawbacks are overcome, the load composition can change as customer behaviour 
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changes and the composition derived in the past may not be the same as the composition 

at present or in the future. In other words, to know the load composition at any given 

time, the meter should keep tracking the households at all times.  

1.4.1.2  Non-intrusive Load Monitoring 

Intrusive load monitoring (or customer survey) is straightforward, but it is time-

consuming and expensive to carry out surveys or collect consumption data of different 

end-user types. As a result, an approach named “non-intrusive load monitoring” is 

applied to identify the contribution of different load categories, using high-resolution 

load signature measurement data such as current waveform, dynamic load response to a 

voltage step, instantaneous power or real power change [43]. 

1.4.1.2.1  Load Signature used for Load Disaggregation 

A load signature is defined as the electrical behaviour of an individual appliance 

or a group of appliances when it is under operation [43]. The most typically used load 

signature includes current waveform (CW), real and reactive power (PQ), harmonics 

(HAR), instantaneous admittance waveform (IAW), instantaneous power waveform 

(IPW), eigenvalues (EIG) and switching transient waveform (STW) [43, 44]. 

Additionally, if the disturbance data are available, a dynamic response of the demand 

(DRD) can also be used as a load signature. There are two types of load signatures: 

snapshot form and delta form [43], and both of them can be used for load 

disaggregation. 

1.4.1.2.1.1  Snapshot Form Load Signature 

Snapshot form load signatures are the instantaneous snapshots of the load 

behaviours taken at any fixed time intervals [43]. They are usually micro-level 

signatures (i.e. load signatures collected with sampling rate equal to or faster than 1 

sample per cycle [43]) and can be load signatures of either individual loads or the 

aggregate load. They can be applied to disaggregation not only for households, but also 



Chapter 1: Introduction 

53 

 

for substations, as long as the high-resolution (faster than 1Hz) total load signatures 

such as current waveforms, harmonics or dynamic responses are available.  

Paper [45] derives load compositions for end-users in the residential sector by 

using integer programming as the optimisation technique. Paper [46] derives load 

compositions for a utility side by using the conjugate gradient method and Kalman filter 

as optimisation techniques. Both [45] and [46] adopted current waveforms as snapshot 

form load signatures. In [47-49], a pattern recognition method is used to identify load 

compositions, with harmonics of the current waveform adopted as load signatures. 

Paper [50] uses a quadratic program which has a similar mechanism to the optimisation 

and pattern recognition method, with daily load curves adopted as load signatures. In 

[51], power consumptions at different nodes are used as load signatures, and an iterative 

least square algorithm is used as the optimisation technique to derive the load and 

generation composition on each node of a distribution grid.  

Dynamic responses of the demand have also been used as load signatures for load 

disaggregation in past work. In [52], the dynamic response of the individual loads and 

the aggregate loads are used as the snapshot form load signatures to estimate the 

composition of the loads for the residential and industrial load sector, and fuzzy logic is 

adopted as the optimisation tool. To validate the algorithm in the reality where the load 

composition data are usually not available, the computed compositions are used with the 

dynamic response of the individual loads to calculate the dynamic response of the 

overall demand (i.e. the component-based load modelling approach), and the calculated 

response is compared with the measured one to assess the accuracy of the 

disaggregation. 

1.4.1.2.1.2  Delta Form Load Signature 

A delta form load signature makes use of the difference between two consecutive 

snapshot form signatures [43]. If the difference is small enough, it can be assumed that 
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only one appliance is switched on or switched off within the difference. In other words, 

it behaves more like a single appliance switching on or off rather than a composite load 

variation. Delta form load signatures are usually macro-level signatures (i.e. load 

signatures collected with sampling rate slower than 1 sample per cycle [43]), and they 

are widely used in non-intrusive load monitoring for a single house. It uses the change 

of the power consumption to detect what devices are switched on or switched off (i.e. 

usually the change is in the order of W to kW).  

The research on load disaggregation by non-intrusive load monitoring using delta 

form load signature dates back to Hart’s work [53] published in the early 1990s, where 

the approach was tested on a single household. Similar works have been presented in 

[54-58], where a more advanced computational algorithm is used to optimise the model 

used in the approach and therefore increase the accuracy of the disaggregation. 

1.4.1.2.2  Derivation of Load Composition 

The derivation of load composition is generally an optimisation problem 

formulated as 

Minimising 

2

1

N

Agg i i

i

f LS w LS


 
  

 
   (1.3) 

where f denotes the objective function, LSAgg is the load signature of the total demand, 

LSi is the load signature of individual load categories or end-users with Index i, N is the 

number of load categories, and wi is the contribution of individual load categories or 

end-users with Index i to the total demand. The percentages of main load categories 

available are worked out by using either optimisation (least square method, genetic 

algorithm, fuzzy logics etc.) or pattern recognition (artificial neural networks etc.) [44]. 

The essential mechanism of optimisation and pattern recognition is the same: to 

minimise the difference between the derived quantities and actual (or measured) 

quantities. The derived contributions of different load categories to the total demand are 
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then compared with the corresponding measured consumption data if they are available; 

if not, the computed load characteristic is compared with the measured one (as 

mentioned in Section 1.4.1.2.1.1). 

1.4.1.2.3  Strengths and Drawbacks of Past Approaches 

There is no doubt that non-intrusive load monitoring is more convenient and faster 

than intrusive load monitoring, as long as the measurements of load signatures with the 

required sampling rate are available. However, its application to most cases in reality is 

not wider than intrusive load monitoring.  

One reason is that it is difficult to have access to the measurements with the 

requested sampling rate. Although the non-intrusive load monitoring approach for load 

disaggregation using snapshot form load signature is applicable to both households and 

substations, measurements with a sampling rate higher than 1Hz are generally not 

available under most circumstances, especially in substations. This impedes the frequent 

and widespread application of the approach.  

Another reason is that the approach may only be applicable under limited 

circumstances. For example, the non-intrusive load monitoring approach for load 

disaggregation using delta form load signature is only suitable over a small scale area 

with kW consumption where the W to kW change is detectable. For a large customer or 

a bulk supply point with MW to GW consumption, such a change is unlikely to be 

detected by the substation devices. Even if the power change is detected, it is difficult to 

distinguish the switching of different appliances of the same rating, or to distinguish 

between simultaneous switching of multiple devices and the switching of a single 

device with the equivalent rating. 

1.4.2  Load Forecasting 

Accurate prediction of future loads can provide a great saving potential for power 

system planning and investment activities. Since the 1970s, significant effort has been 
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made in load forecasting. In [59], which is a comprehensive literature review and 

summary of load forecasting methods, all methods for load forecasting reviewed are 

classified into nine approaches, including: (i) multiple regression [60, 61], (ii) 

exponential smoothing [62, 63], (iii) iterative reweighted least squares [64], (iv) 

adaptive load forecasting [65, 66], (v) stochastic time series [67-70], (vi) genetic 

algorithm [71], (vii) fuzzy logic [72-75], (viii) artificial neural network [76-80], and (ix) 

knowledge-based expert systems [81-83]. The strengths and drawbacks of the nine 

approaches are also summarised. The multiple regression approach is the basic 

mathematical model for load forecasting, and the most widely used approaches in 

recently published research include stochastic time series, fuzzy logic and the artificial 

intelligence based approach. Due to the superiority of the fuzzy logic and artificial 

intelligence based approach over other approaches, they have attracted the most 

attention in recent research.  

1.4.2.1  Multiple Regression 

The multiple regression approach uses least square estimation or iterative 

reweighted least square to calculate the statistical relationship between the total demand 

and the weather as well as the stochastic components. At the beginning, an appropriate 

model should be selected, and then large quantities of historical data are needed to 

obtain the statistical relationship. The mathematical theory of multiple regression is 

introduced in [84].  

A multiple regression model for short-term load forecasting is proposed in [60]. 

Using this model, the forecast can be calculated directly from historical data as a local 

average of observed past loads and the specific weights on the loads defined by a 

multivariate product kernel, and the mean absolute percentage error in the case 

presented in [60] is 2.78%. Additionally, a regression based load forecasting method for 

Eastern Saudi Arabia is presented in [61], and in this case, the mean absolute percentage 



Chapter 1: Introduction 

57 

 

error is about 10%.  

Although multiple regression approach is the basic load forecasting approach, it  

is rarely used in current research due to its time-costing characteristics, complexity in 

implementation, weak robustness and relatively low accuracy in most cases [59].  

1.4.2.2  Stochastic Time Series 

The stochastic time series approach is one of the most popular approaches for 

short-term load forecasting, and it has been used for a long time. It is very likely that 

this approach will still be used in future research as it can be applied to all types of load 

forecasting, including load forecasting with wind generators, long-term load forecasting 

which provides information for long-term power system planning, etc. There are three 

main types of stochastic time series model: autoregressive (AR) model, autoregressive 

moving-average (ARMA) model and autoregressive integrated moving-average 

(ARIMA) model. 

1.4.2.2.1  Autoregressive Model 

An autoregressive model is used if the load is assumed to be a linear combination 

of the previous loads [59]. A short-term load forecasting approach using an 

autoregressive model with optimal threshold stratification is presented in [69]. This 

model can derive the minimum number of parameters required for the representation of 

the stochastic components, which removes the subjective judgement and therefore 

improves the accuracy of the prediction.  

1.4.2.2.2  Autoregressive Moving-average Model 

An autoregressive moving-average (ARMA) model is used if the current value of 

the load time series is expressed linearly in terms of its values at previous periods and 

the previous values of a white noise. The non-linear regression approach such as the 

maximum-likelihood approach can be used to identify the parameters of an ARMA 
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model. In [67], a new time-temperature methodology for load forecasting is presented. 

In this methodology, the time series are decomposed into the deterministic component 

and the stochastic component, and the latter is determined by an ARMA model. 

Additionally, an adaptive ARMA model for short-term load forecasting is presented in 

[70], where the available forecasting errors are used to update the model and the 

maximum percentage error is 6.98% in contrast with the traditional ARMA model 

which, in the same operating environment, produces a forecasting error of 13.58%.  

1.4.2.2.3  Autoregressive Integrated Moving-average Model 

An autoregressive integrated moving-average (ARIMA) model is used if the load 

variation process is considered as a non-stationary process. In this model, before the 

forecasting starts, the time series should be transformed into the stationary form [59]. 

An ARIMA short term load forecasting approach is proposed in [85], and the mean 

absolute percentage error ranges from 6% to 9% depending on the season. 

1.4.2.3  Fuzzy Logic 

The fuzzy logic approach is also widely applied to load forecasting, and it works 

in two stages: the training stage and the forecasting stage. In the training stage, large 

quantities of historical load data are used to train a fuzzy logic based forecaster to 

generate the pattern database and the fuzzy rule. After training and once validated, the 

trained forecaster is used for on-line prediction. If the most probable matching pattern 

with the highest possibility can be found, then an output pattern will be generated 

through a centroid defuzzifier. More details about fuzzy logic can be found in [86]. 

A fuzzy logic based model for short-term load forecasting is presented in [74], and 

Tabu search is used to optimise the fuzzy model structure. The mean square error in this 

case ranges from 4% to 7%. Similarly, Paper [75] proposes a fuzzy logic based 

methodology, with a root mean square error of about 4%. 
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1.4.2.4  Artificial Intelligence based Approach 

Due to the complexity and relatively low prediction accuracy of regression 

models and time-series stochastic models, and subjectivity about the selection of the 

membership function of fuzzy logic based models, approaches based on artificial 

intelligence (AI) techniques are gaining more and more attention. They are now rapidly 

developing because of their high accuracy. Some of the AI based methodologies for load 

forecasting have already been adopted and widely used by the industry, and the two 

most widely used AI techniques are the artificial neural network (ANN) and adaptive 

neuro-based fuzzy inference system (ANFIS) [87]. 

1.4.2.4.1  Artificial Neural Network 

An artificial neural network (ANN) is an interconnected assembly of simple 

processing elements, units or nodes, whose functionality is inspired by animal central 

nervous systems. The processing ability of the network is stored in the inter-unit 

connection weights, obtained by a process of adaptation to a set of training patterns. It is 

now widely applied to several areas such as prediction, curve fitting, optimisation and 

clustering etc., because of its capability of learning. Similar to fuzzy logics, it also 

works in the training stage and the on-line prediction stage. 

The practicality of Artificial-Neural-Network-based (ANN-based) methodologies 

for load forecasting has been verified by the fact that some of them have been adopted 

by industry; for example, ANN-based methodology for load forecasting developed in 

EPRI project ANNSTLF (Artificial Neural Network Short-term Load Forecasting, [88-

90]) is one of the most widely used methodologies for load forecasting. The mean 

absolute square error (MAPE) of the prediction ranges from 2% to 5%, depending on 

different locations and utilities. In [79], an ANN approach trained with generalised delta 

rules (DR) is adopted to forecast demand, and the mean absolute percentage errors are 

from 1% to 4%. In [80], a wavelet neural network is adopted for short-term load 
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forecasting of a commercial load, in which different training algorithms are adopted and 

compared by processing time. The mean absolute percentage errors in this case range 

from 0% to 5%. A neural network load forecasting approach with weather ensemble 

predictions for one day to several days ahead of load forecasting is proposed in [91]. 

The distribution of the load scenarios is used as an input for the estimation of the 

uncertainty in the forecasting. The mean absolute percentage error in this case ranges 

from 1.5% to 3%, depending on the number of days in advance that is required to 

forecast the load. 

Apart from short-term load forecasting for real power prediction, the ANN-based 

approach can also be used for the prediction of reactive power (although it has been 

applied to only a few cases). A similar ANN-based approach for reactive power 

prediction is presented in [92, 93], although the reactive power prediction does not 

acquire the same interest as real power prediction. The mean absolute percentage error 

ranges from 8% to 17%, depending on the utilities and how long ahead the prediction is 

(e.g. hours ahead, one day ahead etc.). 

1.4.2.4.2  Adaptive Neuro-based Fuzzy Inference System 

The adaptive neuro-based fuzzy inference system (ANFIS) is a Sugeno fuzzy 

inference system (FIS) [94], whose input membership functions are adjusted by either a 

backpropagation algorithm or hybrid algorithm (a combination of backpropagation and 

least squares) and output membership functions are either the constant or linear 

combination of inputs. It is a hybrid approach that incorporates the artificial neural 

network and fuzzy logic, and is also one of the latest methodologies applied to load 

forecasting. 

Load prediction based on ANFIS with Gaussian-shaped input membership 

function, constant output function and hybrid training algorithm is presented and 

compared with the linear regression approach in [95], and a multi ANFIS for short-term 
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load forecasting for different seasons and different types of days (working days, 

holidays) is presented in [96]. The mean absolute percentage errors in both cases are up 

to 3%, in contrast with those for the linear regression approach which, in the same 

operating environment, are up to 6%. Additionally, in [97], an ANFIS predictor is 

developed for medium term load forecasting, and the mean absolute percentage error in 

this case is lower than 2%.  

1.4.2.5  Comparison of Different Approaches for Load Forecasting 

The comparison of different approaches is as equally important as classifying load 

forecasting approaches. With comparison, appropriate approaches can be selected for 

different load forecasting case studies. In most of the past work, when an approach was 

developed, it was usually compared with other approaches which have been developed 

before. 

One of the most comprehensive and the earliest comparisons is made in [98], 

where fourteen load forecasting methods were uniformly compared. This work was 

upgraded in [99], where five extra methods were added. All nineteen methods belong to 

either the category of regression or the category of time series and have different levels 

of superiority. The comparisons were tested on urban, rural and agrarian areas. The 

result shows that in general, the more advanced techniques are justified in urban areas 

but are usually costly for rural and agrarian areas. Apart from accuracy and cost, growth 

rates, planning difficulty, requirement to detail and other criteria vary from utility to 

utility. Therefore, the selection of the methodologies should be made depending on a 

large number of criteria.  

Additionally, different approaches among the nine mentioned at the beginning of 

Section 1.4.2 were also compared in past work. In [100], three techniques including 

fuzzy logic, artificial neural network and autoregressive models are compared, and it 

concludes that fuzzy logic and artificial neural network perform much better than 
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autoregressive models. In [60], a regression model is compared with the artificial neural 

network approach in the same operating environment, and the mean absolute percentage 

error is about 2.78% for the regression model and 2.64% for the artificial neural 

network, which means that at least in this case, artificial neural network performs 

slightly better than the regression model.  

Based on the comparative result in many publications, paper [59] summarises that 

some traditional approaches such as regression, iterative reweighted least squares and 

adaptive load forecasting, seem to be out of favour due to their limited accuracy, and 

that large amount of research, effort and interest are focussed on fuzzy logic and 

particularly, artificial neural network (ANN). A clear trend can also be seen towards 

hybrid methods, which combine two or more of these techniques (e.g. combination of 

fuzzy logic with ANN [94, 101-105] or a combination of ARIMA with ANFIS [106]) to 

take advantage of their individual best features. A comparison between one of the 

typical approaches and one of the hybrid approaches (e.g. ANN and ANFIS) or between 

different hybrid approaches would be of interest in future studies as it is rare (if not 

missing) in presently available body of publically available literature. 

1.4.3  Load Shifting and Shaping of Load Curves 

Load shifting, as a potential routine for the shaping of dynamic responses of the 

demand as well as an effective way for shaping of load curves, has been studied in the 

past and has become one of the most commonly used techniques for demand side 

management (DSM) [107]. Load shifting brings benefits to both the environment and 

economy. On the one hand, as the demand at peak times is shifted to off-peak times, it 

helps balance the generation and the demand and helps reduce the capacity of the 

traditional generators and the emission of greenhouse gas; on the other hand, as the 

price of the electricity at peak times is generally higher than that at off-peak times, load 

shifting also helps customers and utilities to reduce expenditure on electricity bills.  
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Great contributions have been made to load shifting since the early 1980s. In 

[108], a model predictive control strategy with binary integer programing for load 

shifting is proposed for a water pumping scheme. The results of [108] show that 50%-

60% of the energy cost and 50%-90% of the maximum demand cost can be saved 

depending on different control models. In [107], a day-ahead DSM strategy based on 

load shifting is proposed to reduce the peak load in a smart grid. Heuristic optimisation 

is used to minimise the difference between the shaped load curve and the already 

defined one. The result shows that it achieves up to 10% of cost savings while reducing 

the peak demand by up to 20%. In [24] where the influence of load shifting on overall 

performance is investigated, based on the controllability of different load categories, 

about 40% of the wet loads during the peak time are controlled, and it is concluded that 

even small changes in load mix can have an impact on the steady-state aggregate load 

characteristics,  system performance and quality of supply. 

Similar research that considers smart energy appliances, storage, fuel-cell hybrid 

vehicles or flow batteries is presented in [25, 109-113]. For example, in load shifting 

presented in [109], smart energy appliances (SEA) are shifted from peak times to off-

peak times and intelligent smart energy services (SES) are provided to achieve 

economic power regulation in an area with a high penetration of SEA in the 

Netherlands. It shows that a combination of SEA and SES creates an efficient and 

flexible power regulation with a capacity of 700MW and an equivalent of 5GWh 

storage, and the investment on SES is expected to recover within 7 years.  

1.4.4  Summary of Past Work 

The review of past work has identified several areas that need to be addressed, and 

they are summarised as follows. 

 Although intrusive load monitoring and non-intrusive load monitoring can 

provide a valuable analysis of load compositions, they both have drawbacks 
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which significantly impede the estimation of load compositions in an effective 

and practical way. A new disaggregation approach therefore needs to be 

developed to overcome the drawbacks but simultaneously maintain the 

strengths.  

 Identification of load controllability is usually separated from load 

disaggregation, and the contribution of the controllable and uncontrollable parts 

has not been investigated for categories which contain both. Therefore, the 

developed disaggregation approach should simultaneously address this issue to 

facilitate more effective demand side management. 

 Although comparisons among series of load forecasting algorithms have been 

made, comparative results between the latest adaptive neuro-based fuzzy 

inference system (ANFIS) and artificial neural network (ANN, one of the most 

widely used and the most efficient approach) in load forecasting have not been 

investigated and are of interest.  

 As concluded in [24],  even small changes in the load mix can have an impact on 

the aggregate load characteristics; the effect of load shifting on the dynamic 

response of the demand to a voltage disturbance requires investigation. Previous 

research in this area mainly focuses on minimising the cost and the difference 

between peak and off-peak demand, but the effect on dynamic load 

characteristics has not been studied thoroughly (if at all). 

 To enable demand side management planning in advance, an approach for 

prediction of load compositions and their controllability in future (at least 24h in 

advance) needs to be developed. Previous research mainly used the consumption 

data obtained from either the surveys conducted in the past or the data measured 

in the past, which cannot represent the cases in the future. 

 To exclude potential stability issues in power systems, an approach for 
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prediction of dynamic responses of the demand without deriving it based on the 

field test should be developed. Previous research derived load characteristics 

based on either measured disturbance data, which is difficult to obtain, or the 

load composition consumption data obtained in the past, which is not able to 

properly represent the load participations and load characteristics at present or in 

the future. 

1.5  Aims and Objectives of the Thesis 

1.5.1  Aims of the Research 

The contribution of different load categories to the total demand as well as the 

dynamic load characteristics of the aggregate loads are highly important for power 

system stability studies and demand side management but are also difficult to obtain, 

estimate or predict. Therefore, the main aim of the thesis is to develop a framework for 

day-ahead prediction of the percentage of different load categories in total demand mix 

and the dynamic response of the demand (DRD). (Note: there is no doubt that the same 

approach also applies to prediction with time frame longer than 24h, e.g., 48h or 72h. 

However, with longer prediction horizon, higher prediction errors could be induced. 

This thesis focusses on the one-day-ahead prediction, and the term “day-ahead” refers to 

one-day-ahead.)  

1.5.2  The Overview of the Research 

Based on the aim, an overview of the research presented in this thesis is 

developed and illustrated as a block diagram shown as Figure 1.6. The block diagram 

includes five procedures: (i) total demand forecasting; (ii) actual value to per-unit value 

transformation; (iii) load disaggregation; (iv) prediction and validation of the dynamic 

response of the demand (DRD); (v) demand side management (DSM) planning and 

shaping of the dynamic response of the demand (DRD).  
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(1). Measured P (MW), Q (MVAR), V (kV) on Day N

(2). Weather on Day N and predicted weather for Day N+1

(3). Day type of Day N and Day N+1

Day-ahead Total Demand Forecaster

Forecasted P (MW) and Q (MVAR)

Actual value to per-unit value converter

Forecasted P (p.u) and Q (p.u)

Load Disaggregation Tool

Predicted Load Categories and Controllability

Match Measured 

Demand and DRD?

DSM Planning Tool

NO

YES

Shaped DRD after 

DSM for Day N+1

(i) Total demand 

forecasting

(ii) Actual value to per-

unit value conversion

(iii) Load 

disaggregation

(v) DSM plan and 

shaping of DRD

Component-based Approach

 Calculated Steady-state Demand 

and Predicted DRD
(iv) DRD 

prediction and 

validation

DRD: Dynamic Response of Demand

DSM: Demand Side Management

 

Figure 1.6.  Overview block diagram of the research 

Procedure (i) forecasts day-ahead total P and Q demand. Procedure (ii) transforms 

measured or predicted demand in MW or MVAR into per-unit value so that they can be 

properly used in the disaggregation approach. Procedure (iii) disaggregates the total 

demand into different load categories and predicts the contribution and controllability of 

different load categories participating in the total demand. Procedure (iv) predicts DRD 
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via the component-based load modelling approach [1] and validates the prediction of 

both load compositions and DRDs using field measurement data collected at substations 

in the real distribution network in the UK. Procedure (v) makes plans for load shifting 

according to the output from (iii) and (iv) and changes the shape of DRD to a preferable 

one.  

As can be seen from Figure 1.6, the inputs to the whole developed approach are: 

(1) measured RMS real and reactive powers and voltages on Day N with a resolution of 

30min; (2) weather data (i.e. temperature, humidity and wind speed) on Day N and 

corresponding forecasted weather data for Day N+1 with a resolution of 30min; (3) day 

type (i.e. working days, holidays) of Day N and Day N+1.  

The outputs are the predicted dynamic response of the demand (DRD) at any 

given time of the day to a given voltage drop and shaped DRD after load shifting. The 

actual measurements of DRD are used to validate the prediction. Artificial neural 

network is used to develop the total demand forecasting approach and the load 

disaggregation approach, and Monte Carlo simulation is used to generate the random 

voltages and the weighting factor of different load categories in Procedures (ii) and (iii). 

All simulations are performed in MATLAB 2013a using an Intel(R) Core (TM) i5-2400 

CPU @ 3.10GHz computer equipped with 64-bit Windows 7 system. 

1.5.3  The Scope of the Research 

In Procedure (v), this research only focusses on the amount of different loads that 

should be shifted from the peak period to the off-peak period and how the shifted loads 

are allocated in the off-peak period. It does not provide solutions or justifications on 

what price signals or other DSM planning techniques (i.e. selections of objective 

function or optimisation method) should be used to achieve such load shifting. It is 

worth noting that Procedure (v) in this research is an illustrated process based on the 

results of prediction on load compositions which indicates the possibility of DRD 
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shaping via load shifting; it cannot be validated with field measurements because the 

load shifting action as illustrated here has not been used in real networks yet.  

1.5.4  Objectives of the Research 

The aim and the conceived overview of the research lead to the following 

objectives:  

1. To investigate load controllability and the general contribution of different 

load categories to the total demand mix at different times of the day 

2. To review and summarise load models and load modelling approach 

typically used for different load categories and aggregate loads at bulk 

supply points 

3. To illustrate how dynamic responses of the demand can be estimated or 

predicted without having to perform the field test 

4. To select or develop an appropriate approach for day-ahead real and 

reactive power forecasting 

5. To develop an approach for load disaggregation that works out the 

percentage of different load categories at any given time of the day based 

only on RMS P, Q, V measurements from the bulk supply point 

6. To enable day-ahead prediction of load compositions and their 

controllability and DRD based only on RMS P, Q, V measurements and 

measured or forecasted weather data 

7. To validate the load disaggregation, the prediction of load compositions 

and the prediction of DRD with real power system demand data 

8. To illustrate load shifting action based on the prediction of load 

compositions and their controllability, and assess the DRD after load 

shifting 
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1.6  Main Contributions of the Research 

The research has contributed to several areas in the field of load modelling and 

load forecasting. These contributions are summarised as follows.  

(Note: Paper numbers given in the parentheses indicate that the related results are 

published in international journals, in proceedings of international conferences or in 

technical reports. A full list of thesis-based publications is given in Appendix E.) 

1. Investigations and summaries of hourly consumption patterns and controllable 

load penetration for different load categories at different locations in different 

seasons and years are performed. Based on the investigations, a framework for 

development of probabilistic decomposed daily loading curves (DDLC) is 

established. Different from the traditional DDLC, it takes the uncertainty of 

the demand into consideration in the presentation of the participation of 

different load categories at different times of the day. It is then extended to a 

framework for estimation of the dynamic response of the demand (DRD) at 

different times of the day for different load sectors. The process of DRD 

estimation based on the customer survey data is illustrated and the typical 

shapes of DRD for different load sectors are given. Afterwards, the framework 

is further extended to include probabilistic estimation/prediction of DRD at 

different times of the day for the total demand by taking into account the 

uncertainty of both load participation and individual load signatures of 

different load categories. Development of the probabilistic framework for 

estimation/prediction of DRD is the first original contribution of the thesis. 

[E1, E6, E7, E8] 

2. Comparative analyses of two widely used artificial-intelligence (AI) based 

load forecasting approaches, artificial neural network (ANN) and adaptive 

neuro-based fuzzy inference system (ANFIS), are performed. This work 
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compares a conventional AI-based approach (i.e. ANN) with a hybrid AI-

based approach (i.e. ANFIS) for load forecasting for the first time and 

concludes that both approaches can achieve comparatively high accuracy with 

optimal parameter configuration of prediction algorithms. The selected 

approach is also applied to reactive power prediction. This is the second 

original contribution of the thesis. [E4, E5, E9] 

3. A disaggregation approach that enables the identification of different load 

compositions at the bulk supply point using only RMS measurements of the 

voltage, real and reactive powers is developed, and the confidence levels of 

the disaggregation errors are analysed. This directly facilitates the prediction 

of DRD without having to perform field tests. The approach is then extended 

to identify the controllability of different load categories and the effect of 

missing inputs on the disaggregation errors. This is the third original 

contribution of the thesis. [E2, E3] 

4. Based on the assessment of the effect of missing inputs on the disaggregation 

errors, an approach that enables prediction of load compositions in the future 

is developed. This approach integrates the total load forecasting approach and 

the disaggregation approach, and the confidence levels of the errors on load 

composition forecasting are analysed. It is the fourth original contribution of 

the thesis. [E5] 

5. An approach that derives the rated demands of the bulk supply point under 

different voltages is developed. It can provide an appropriate “base value” to 

transform the predicted or measured demand in MW or MVAR into per-unit 

values so that they could be used in the disaggregation algorithm. It also 

enables more accurate load modelling, especially for load modelling with a 

relatively longer timeframe. This is the fifth original contribution of the thesis. 

[E10] 
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6. The whole approach developed for the prediction of load compositions and the 

dynamic response of the demand (DRD) is validated using real demand data 

collected at substations of the real distribution network. It is shown that the 

predicted DRD matches the DRD derived from the field test well. In addition, 

a load shifting action that shapes the load curves and DRD is also illustrated 

based on the predicted load compositions. This is the sixth original 

contribution of the thesis. [E9] 

1.7  Thesis Overview 

The thesis is organised into seven chapters. This chapter (Chapter 1) is an 

introductory chapter. An overview of each of the remaining chapters is given below. 

Chapter 2-Overview of Power System Load Models 

This chapter reviews typically used load models in research and industrial 

practice. The voltage-dependent parameters of the most widely used load models for 

different load categories are described and analysed. 

Chapter 3-Framework for Estimation and Prediction of Dynamic Responses of 

Demand 

In this chapter, the overall framework for estimation or prediction of the dynamic 

response of the demand at bulk supply buses is demonstrated considering uncertainties 

in both load compositions and dynamic responses of different types of load at different 

times of the day. Load compositions derived based on customer surveys conducted in 

the past and daily loading curves for different load sectors provided in the past literature 

are used to illustrate the framework, and the uncertainties are modelled probabilistically. 

Dynamic responses of the demand of different load categories obtained from field 

measurements or computer simulations are used to build the probabilistic models. 

Monte Carlo simulation and the component-based load modelling approach are adopted 
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for the estimation or prediction of the probabilistic real and reactive power responses as 

well as the ranges of variation in these responses for any given time of the day. 

Chapter 4-Artificial-Intelligence-based Load Forecasting 

In this chapter, two most widely used artificial-intelligence-based load forecasting 

methodologies are compared in the same operating environment for the first time. 

According to the results of the comparison as well as the specific requirements in total 

demand forecasting in this research, a specific forecasting approach is selected, 

implemented and validated using real data for forecasting both, the real and reactive 

power. In the cases involving probabilistic studies or uncertainty analysis, the 

probabilistic characteristics of forecasting errors are analysed. 

Chapter 5-Load Disaggregation at Bulk Supply Points 

In this chapter, an effective (probabilistic) load disaggregation approach for the 

load at the bulk supply point is developed. It is based only on the substation RMS 

measurement. Smart meter data, customer surveys or high-resolution load signatures are 

not needed. Artificial neural network, Monte Carlo simulation and the component-based 

load modelling approach are used, and the approach is described in detail in this 

chapter. It is developed in per-unit as is the case in the vast majority of past studies. 

Thus, a definition of rated demand needed to transform the predicted or measured 

demand in MW or MVAR to per-unit values is also given in this chapter. Finally, the 

effect of the availability of different sets of input data on the accuracy of load 

disaggregation is analysed and discussed. The developed load disaggregation approach 

can be connected to the total demand forecasting approach in order to predict load 

compositions as well as the dynamic response of the demand in the future. 

Chapter 6-Validation of Developed Methodologies and Illustration of Shaping of 

Dynamic Responses of Demand 
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This chapter uses real power system demand data to validate the approach 

developed for day-ahead prediction of the load composition and the dynamic response 

of the demand at bulk supply points without having access to the customer consumption 

data or performing field tests. Based on the results of the prediction of load 

compositions, load shifting and shaping of dynamic responses of demand are also 

demonstrated.  

Chapter 7-Conclusions and Future Work 

In this chapter, major conclusions of the research are presented and discussed, and 

suggestions for further work and development in the area of load modelling and 

forecasting are provided.  
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2 Overview of Power System Load 

Models 

 

 

 

 

 

Load characteristics have significant influence on both steady-state and dynamic 

performance of power systems, and they are represented by load models. Therefore, to 

analyse power system behaviour correctly, accurate load models together with 

appropriate representations of generation, transmission and distribution parts of the 

system are required. There are a variety of load models used by utilities all over the 

world, such as the static load model, the induction motor model, and the composite 

load model. Although the majority of current power system research and industry 

acknowledges the importance of accurate representation of load characteristics for 

power system studies, they still use typical static load models (i.e. with the simplest 

mathematical form) in most cases. For dynamic load models, if used, they are usually 

presented by induction motor models. This chapter gives an overview of the most 

commonly used load models. 

2.1  Load Models 

The term ‘load model’ denotes an analytical, mathematical, equivalent-circuit 

based, physical-component based, or otherwise established or formulated 
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representation of a load, which correctly represents the changes in real and reactive 

power demands of the modelled load as a function of certain power system parameter 

(i.e. voltage, frequency) variations. Load models can be classified into two groups: 

static and dynamic. A classification diagram of load models is given as Figure 2.1.  

Load Models

DynamicStatic

Exponential

Polynomial

Linear

Comprehensive

Induction 

Motor (IM)

Power Electronics 

Interfaced

Exponential 

Dynamic

Dynamic IM

Transfer 

Fuction IM

Composite

Distribution

Bulk Supply 

Point

DESS model

 

Figure 2.1.  Load model classification diagram (adopted from [1]) 

A static load model is a time-independent load model that provides information 

on load characteristics as a function of known or specified system parameters. The 

most widely used static load models include the exponential model, the polynomial 

model and the static induction motor model. A dynamic load model is a time-

dependent load model that provides information on load characteristics as a function 

of known or specified system parameters and time. The most widely used dynamic 

load models include the dynamic induction motor model, transfer function model and 

composite load models.  

This section gives an overview of the most frequently used load models. More 

details on load models are given in CIGRE report [1], one of the most recent and most 

comprehensive references on load modelling. 

2.1.1  Static Load Models 

2.1.1.1  Exponential Load Models 

An exponential load model describing the dependence of real power (P) on 

voltage (V) and frequency (f) is given by (2.1) [1] 
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where kpu and kpf are the voltage and the frequency exponent, respectively. A similar 

relationship applies to the reactive power (Q).  

Generally, during normal operation of power system, the voltage may vary 

within ±10% and the frequency usually vary within ±0.2 Hz (i.e. ±0.4% for a 50Hz 

system, [114]). In some special cases with extremely light load, the tolerance of the 

frequency change might go up to ±1% [114]. According to [1], which is one of the 

most recent and most comprehensive reference on the subject, the values of frequency 

exponents (for both P and Q) for different types of individual loads generally lie 

between -4.5 and 5 (e.g., agriculture pump and TV sets are some of devices with 

extreme values of frequency exponents), and the values of voltage exponents for 

different types of individual loads generally lie within the range [0, 3] for P and within 

[0, 7] for Q [1]. Further details are available in [1], and typical values of the voltage 

and frequency exponents for different end-users are given in Appendix D. Considering 

the weights of different load types in the load mix at the bulk supply point, the average 

value of the frequency exponent of the aggregate load will be closer to 0 than the 

frequency exponents of some of the individual devices.  

Since the frequency variations in the system are much smaller (almost order of 

magnitude) and less frequent than voltage variations, load dependence on frequency is 

generally neglected, except in specific frequency regulation and frequency stability 

studies [1]. The inclusion of load dependence on frequency in load models would 

require more variables to be calculated (i.e. frequency exponents for both real and 

reactive power) which significantly increases memory and processing time 

requirements without bringing sufficient (if any) improvement in accuracy of the 

results in most of the power system studies, such as power system stability studies [1].  
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The recently conducted international survey by CIGRE WG C4.605 on 

industrial practice on load modelling [115] found that 70% of 95 surveyed utilities and 

system operators around the world use only static load model for power system 

stability studies. One of the most commonly used types of static load models is 

voltage dependent exponential load model, shown as (2.2) [1]  

0

0

V
P P

V


 

  
   

(2.2) 

for the real power, where P is the actual real power, V is the actual load supply 

voltage, P0 is the initial real power, V0 is the initial load supply voltage, α is the 

voltage exponent for real power. A similar relationship applies to reactive power Q 

and its voltage exponent β. The voltage exponent for constant impedance loads, 

constant current loads and constant power loads is 2, 1 and 0, respectively.  

Although most utilities and system operators currently use static load models for 

power system stability studies, proliferation of new types of load devices and small 

distributed generators connected at low-voltage (LV) levels require more accurate load 

models for system stability studies and fault analysis. In particular, more accurate load 

models can not only more accurately represent the load characteristics at bulk supply 

points, but also lead to more accurate simulation results and help design more robust 

power system, as explained in Chapter 1.  

2.1.1.2  Polynomial Load Model 

Another commonly used static load model is a polynomial load model. The 

general form of a polynomial load model is shown as (2.3) [1] 

 PP= f V,Para  and  QQ= f V,Para  (2.3) 

where fP and fQ represent polynomial functions of V for P and Q, Para represents 

parameters other than voltages, such as capacitance or inductance for electronic 



Chapter 2: Overview of Power System Load Models 

78 

 

devices or energy efficient lighting [28, 30].  

A typically used special form of a polynomial load model is a combination of 

constant impedance, constant current and constant power load models with different 

weights. It is given as 

2

0

0 0

P P P

V V
P P a b c

V V

    
      
     

, with 1P P Pa b c    (2.4) 

where (aP, bP, cP) are polynomial coefficients for real power. A similar relationship 

applies to reactive power Q and the corresponding polynomial coefficients (aQ, bQ, 

cQ). It is also called ZIP model, because it consists of the constant impedance (Z), 

constant current (I) and constant power (P) components. 

2.1.1.3  Selection on Exponential and Polynomial Model 

It is illustrated in [1] that the voltage exponents are much more sensitive to 

voltage variation than ZIP model or polynomial model coefficients. The load 

modelling result in [30] shows that under most circumstances, an exponential load 

model with constant voltage exponents performs less accurately than a ZIP model or 

polynomial model with constant polynomial coefficients. However, for most case 

studies, exponential load model is much more convenient than the polynomial model 

and the ZIP model because it contains only one term and only one parameter for either 

P or Q.  

2.1.1.4  Static Model of Induction Motors 

Figure 2.2 shows the equivalent circuit of an induction motor. In Figure 2.2, Rs 

is the stator resistance, Rr is the rotor resistance, Xγs is the stator leakage reactance, Xγr 

is the rotor leakage reactance, Xs=Xm+Xγs is the shunt reactance, Xm is the magnetising 

reactance. Typically used parameter values for different induction motor loads are 

given in Appendix D.  
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Figure 2.2.  Equivalent circuit of an induction motor 

The slip, s, can be defined as 
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where ωs is the system angular frequency, ωr is the rotor angular speed, ω is the per-

unit rotor angular speed. The static induction motor model is given by (2.6) and (2.7) 
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(2.7) 

Even if the model contains the term V
2
 which makes the real and reactive power 

look proportional to V
2
, in reality, induction motor is generally considered as constant 

power load. In addition, the simulation results also indicate that in the new steady-

state achieved after an up to 20% voltage drop (i.e. a voltage drop over 20% may stop 

the induction motor from working properly), the real power consumption remains 

fairly the same as it was before the voltage drop occurred. This is because the slip also 

changes with voltage; when the voltage drops, the slip increases, and Rr/s decreases. 

To clarify the issues, the swing equation of the rotor of the induction motor (provided 

in [116-118]) needs to be investigated in more detail. Further details on steady-state 

load characteristics of the induction motor are given in Appendix C. 
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2.1.2  Dynamic Load Models 

For more accurate analysis of power system stability and control issues, 

dynamic load models are needed. The most frequently used dynamic load models 

include first-order exponential recovery model, dynamic induction motor model, 

transfer function model and composite load model. 

2.1.2.1  First-order Exponential Recovery Model 

Based on the general shape of the recorded responses of both individual loads 

and aggregate loads at bulk supply point, the first-order exponential recovery model 

can be used to model the loads with significant portion of different types of induction 

motors or loads composed of static loads and induction motors, or for representation 

of longer-term load dynamics influenced by operation of tap-changers. It can be 

represented by (2.8) and (2.9) [1] 
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where Pr is the real power recovery after the voltage change, P0 is the initial real 

power before the voltage change, Pl is the real power consumption, V0 is the RMS 

value of the initial voltage. Coefficient αs and αt are steady-state and transient real 

power voltage exponent, respectively, and Tp is the real power recovery time constant. 

A similar relationship applies to the reactive power. 

2.1.2.2  Dynamic Induction Motor Model 

Dynamic induction motor model is used when participation of induction motor 

is predominant and the short-term dynamics of loads are needed to be modelled. The 

induction motors considered in system studies include both the three-phase induction 
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motor and the single-phase induction motor. 

2.1.2.2.1  Three-phase Induction Motor 

Dynamic induction motor model of a symmetrical three-phase induction motor 

can be developed based on the equivalent circuit shown as Figure 2.3 [1, 27, 119].  

 

Figure 2.3.  Equivalent circuit of a symmetrical three-phase induction motor with d-q references 

(adopted from [1]) 

In Figure 2.3, sr is the stator resistance, rr is the rotor resistance, Lls is the stator 

leakage inductance, lrL is the rotor leakage inductance, Lm is the magnetizing 

reactance, ω is the synchronous angular speed, ωr is the rotor angular speed. 

According to Figure 2.3, a 5
th

-order dynamic induction motor model for symmetrical 

3-phase induction motor can be represented by (2.10)-(2.18) [1, 119] 
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(2.17) 

 qr m qs lr m qrL i L L i    
 

(2.18) 

Apart from the parameters used in Figure 2.3, in above equations: vds and vqs are d-

axis and q-axis stator voltage components, drv and qrv are d-axis and q-axis rotor 

voltage components, ids and iqs are d-axis and q-axis stator current components, dri and 

qri are d-axis and q-axis rotor current components, λds and λqs are d-axis and q-axis 

stator flux linkages,
dr and

qr are d-axis and q-axis rotor flux linkages, ωb is the base 

angular frequency, M is the mechanical load torque, Tm is the mechanical time 

constant of the motor, Me is the electromagnetic torque and  e m qs dr ds qrM L i i i i   . 

Further details can be found in [119]. 

Since there are five differential equations forming the dynamic model of 

symmetrical three-phase induction motor, the dynamic model is fifth-order. If stator 

transients are neglected (i.e. λds and λqs become constants), then two differential 

equations, (2.10) and (2.11), become algebraic equations and the model thus becomes 

third-order. The fifth-order model should be used for large induction motors [120] as 

their stator resistances are relatively small and result in large stator transients. 

2.1.2.2.2  Single-phase Induction Motor  

Directly connected single-phase induction motors are widely used in low-

voltage appliances, including refrigerators and freezers, washing machines and dryers, 
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dishwashers, fans etc. Single-phase induction motors are often referred to as 

asymmetrical two-phase induction motors, as an auxiliary winding is included and 

used during the start-up process. An equivalent circuit of the single-phase induction 

motor is shown as Figure 2.4 [26, 119]. All variables in the d axis are referred to the 

auxiliary winding with NS effective turns [119], and all variables in the q axis are 

referred to the main winding with Ns effective turns.  

 

Figure 2.4.  Single-phase induction motor equivalent circuit with d-q reference (adopted from [1]) 

According to the equivalent circuit, if the d and q components of the stator and rotor 

currents are taken as the variables, the dynamic induction motor model of a single-

phase induction motor can be represented using (2.19) [119]:  
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(2.19) 

where: ωr denotes the rotor reference frequency, 
d

dt
 represents the derivative 

operator, 
s

S

N

N
n   is the equivalent turn ratio of the auxiliary winding and the main 
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winding, and Lls, rs are the main winding stator leakage inductance and resistance, 

lrL , rr  are the main winding rotor leakage inductance and resistance, LlS, rS are the 

auxiliary winding stator leakage inductance and resistance, lRL , Rr are the auxiliary 

winding rotor leakage inductance and resistance, and Lms and LmS are the magnetising 

inductance of the main winding and auxiliary winding respectively.  

2.1.2.3  Transfer Function Load Model 

Considering the complexity of the dynamic induction motor model, in some of 

the power system studies, the transfer function (TF) load model is used instead of the 

dynamic induction motor model to simplify the modelling while preserving required 

accuracy.  

2.1.2.3.1  First-order Transfer Function load model 

The first-order transfer function (TF) load model can be represented by  

     
1 11 1

pf pf pu puk T s k T s
P s f s V s

T s T s

 
    

 
 

(2.20) 

where kpf is the gain related to frequency change, Tpf is the time constant related to 

frequency change, kpu is the gain related to voltage change, Tpu is the time constant 

related to frequency change, T1 is the overall time constant, Δ represents the change of 

different quantities. A similar relationship applies to the reactive power. The effect of 

frequency sometimes could be neglected when compared with the effect of voltage. 

The first-order TF load model is usually used to model single-phase induction motors 

and heat pumps in the residential and small commercial load sectors. 

2.1.2.3.2  Second-order Transfer Function load model 

The second-order transfer function (TF) load model can be represented as  
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where Kpu is the gain, and T1p, T2p, 1pT  are time constants. A similar relationship 

applies to the reactive power change, ΔQ. It is generally used to model three-phase 

induction motors in commercial and industrial load sectors under most circumstances. 

2.1.2.3.3  Higher-order Transfer Function Load Model 

Sometimes, for higher accuracy of representation of the transient process, 

transfer function (TF) load model with higher order might be needed. It can be 

represented in a general form as  
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(2.22) 

where Kpu is the gain, and Tdp, npT  are time constants, N is the order number of the TF 

load model. It is generally used to model three-phase induction motors in commercial 

and industrial load sectors when accurate transient processes are concerned. 

In load modelling approach, measured responses to system disturbances will be 

compared with these models. Generally, second-order and higher-order load models 

are better in capturing the load behaviour during transients (i.e. during the first few 

hundreds of milliseconds) than the first-order load model, especially for large three-

phase induction motors. 

2.1.2.4  Composite Load Model 

The composite load model is also widely-used in modelling the aggregate loads 

with a mix of static loads and induction motors. The equivalent circuit of a composite 

load model is given as Figure 2.5. It incorporates both the static part, which is 

represented by a ZIP model, and the dynamic part, which is represented by an 

induction motor model. The static load part and the induction motor part are 

connected in parallel. 
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Figure 2.5.  Equivalent circuit of composite load model (adopted from [1]) 

2.2  Load Models in Industry Practice 

In February 2010, CIGRE established a working group C4.605 to conduct a 

survey [121] on load modelling and identify current international industry practice on 

load modelling for steady-state and dynamic power system studies. A questionnaire 

(shown in Table 2.1 [115]) has been developed and distributed to more than 160 

utilities and system operators in over 50 countries in the five continents (shown in 

Table 2.2 [115]).  

 

Table 2.1.  Questionnaire (adopted from [115]) 
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Table 2.2.  Participants and Response Rates (adopted from [115]) 

 

The four question categories shown in Table 2.1 are: (1) types of load models 

used in static and dynamic power system studies; (2) approaches for load model and 

parameters identification; (3) adequacy of load models and the simulation tools used 

in the validation process; (4) approaches to incorporate small distributed generation 

(DG) in load models. Multiple answers were allowed for questions Q1, Q2, Q4, Q5, 

and Q6, as respondents might use more than one load model, or more than one 

approach for load model data collection and parameter identification. Multiple 

answers were not allowed for questions Q3, Q7, Q8, and Q9.Table 2.2 shows the 

number of utilities/operators contacted in different continents and the number of 

responses received. The overall response rate is about 60.6% according to the result of 

the survey.  

From the survey, it can be concluded that:  

 For power system stability studies, about 70% of the utilities/operators 

use only static load models, and around 30% use some form of induction 

motor (IM) model to represent dynamic loads. In US, a combination of 

static load model (ZIP typically) and dynamic load model (IM model 

typically) are in dominant use, which is in consistency with the 

information provided by WECC.  

 In about 40% of the cases, the parameters of the currently used load 

models have been updated within the last five years. If equivalent 
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exponential static load model is used to represent the load characteristics, 

the value of the exponent is 0 for both real and reactive power in steady-

state studies, and is 0.7 and 1.3 for real and reactive power respectively 

in dynamic studies.  

 Most of the utilities and operators use negative load to represent the 

characteristics of DG in system studies, without developing DG models 

explicitly; but some of them have already recognized the importance of 

appropriate models for DG, especially in future power system studies. 

2.3  Voltage-dependent Exponential Model Parameter 

Sometimes, to make the programming process easier, the exponential load 

model is selected instead of other models because it has only one parameter. It has 

been mentioned before in Section 2.1.1.3 that the parameter of the exponential model 

is more dependent on voltage than that of the ZIP model or the polynomial model. As 

a result, the exponent-voltage relationship of both the real and reactive power for each 

typically used load category should be derived before the exponential model is 

applied.  

2.3.1  Derivation of Voltage-dependent Exponential Model Parameter 

Exponents under different voltages can be calculated using Equation (2.2), 

ideally with adequate field measurement data (i.e. P&Q&V sets). If the field 

measurement data are not available, the more accurate models such as the polynomial 

model or the ZIP model can be used alternatively as the ‘filed measurement data’. The 

relationship between the real power exponent α and the supply voltage V (V≠V0) can 

be calculated from 

  0

0
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P
V
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V



 
 
 


 
 
   

(2.23) 

when field measurement data are available, where Pmeasurement is measured load power. 

And when field measurement data are not available, the exponents of P can be 
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calculated from 
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(2.24) 

The definitions of all other variables in (2.23) and (2.24) are the same as those 

introduced for (2.2) and (2.4). It is worth noting that (2.23) and (2.24) are valid only if 

the voltage is not equal to the rated voltage V0. When V=V0, the real power is always 

P=P0=1.0 p.u. regardless of the value of α, therefore α in this case is not discussed. A 

similar relationship applies to the reactive power exponent, β(V).  

2.3.2  Voltage-dependent Exponents of Different Categories of Loads 

According to the categories summarised in Table 1.2, the polynomial load 

models for different load categories used in this research are listed in Table 2.3. In 

Table 2.3, L represents lighting loads, REC represents rectifier, CdL represents cold 

loads, WL represents wet loads, and R represents resistive loads.  

Table 2.3.  Polynomial Load Models of Different Load Categories used in this Research 

Load 

Type 
Mathematical Model 

L 
P 

2 6 20.581 0.371 0.0151 0.037 0.016 2.457 10b b bP V P V VP P        

Q 
2 4 21.193 1.604 0.0108 1.119 0.045 4.441 10b b bV P V VPQ P     

 

SMPS 
P 0P P

 

Q  2 0.033 0.033

0 0.029 0.188 0.272 0.236 0.236Q V V V VQ     
 

REC 
P 

2

04.6902 6.7404 2.3222 0.85852 1.8969 oV V P PVP    
 

Q  2 2.17 2.17

0 0.266 0.1641 0.042 0.243 0.243Q V V V VQ    
 

CdL 
P 20.101 0.099 0.798V VP     

Q 20.905 1.402 0.503V VQ     

WL 
P 20.634 0.268 1.366V VP     

Q 20.905 1.402 0.503V VQ     

R 
P 20.634 0.268 1.366V VP     

Q 0Q   

CTIM3 
P 20.634 0.268 1.366V VP     

Q 22.15 1.751 1.4Q V V     

QTIM3 
P 20.424 0.147 0.724V VP     

Q 22.15 1.751 1.4Q V V     
Pb is the base power 



 

 

 

Figure 2.6.  P&Q exponent-voltage relationship of different load categories 
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These models were originally developed and validated through laboratory 

measurements [26-28, 30]. All values of parameters in Table 2.3 are in per-unit. In the 

model of lighting load, Pb =1 is the base power [28], P0=1 p.u., and Q0 depends on the 

nominal power factor.  

The exponent-voltage relationships for lighting loads, SMPS, rectifier, cold 

loads, wet loads, CTIM3 and QTIM3 are shown in Figure 2.6. For the resistive load, 

the real power exponent is always 2; as the reactive power of the resistive load is 

always 0, its reactive power exponent is not discussed here. It can be seen that apart 

from the β-V curve of the rectifier, all other α-V and β-V curves are monotonic or 

constant. The β-V curve of the rectifier, however, looks parabolic. This is probably 

because of the load characteristics of the rectifier, which has the lowest power factor 

when the voltage is around 0.92p.u [30].  

Once obtained, the relationship is saved for further use. With these relationships, 

actual real and reactive power in p.u. for individual load categories under different 

load supply voltage can be calculated from Equation (2.2).  

2.4  Summary 

The most frequently used static and dynamic load models are introduced and 

analysed in this chapter. From the international survey on load modelling, it is found 

that the majority of the utilities use static load models only. It is also found that for 

different power system studies, different load models are selected. Generally, in 

steady-state analysis of power system, constant power loads are usually used; while in 

power system stability study, static load models (such as exponential load model or 

ZIP load model) or a combination of static load models and induction motor models 

are usually preferred than other models. 

As the exponents in the exponential load models are more sensitive to the 
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change of the voltage than the coefficients of ZIP load models and other models, in 

this chapter, the concept of “voltage-dependent exponential model parameter” is 

proposed, and the voltage-dependent exponents of some typical load categories are 

analysed. The result from this analysis will be used in the development of the load 

disaggregation approach in this thesis.  
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Prediction of Dynamic Responses of 
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The chapter presents the overall framework for estimation/prediction of dynamic 

response of the demand (DRD) at distribution network buses by taking into account 

the daily variation in demand compositions and the generic dynamic responses of 

different types of load. Dynamic load models for different load categories obtained 

from field or laboratory measurements or through appropriate mathematical modelling 

are used in combination with hourly load composition at the given bus. For illustration 

purpose, in this chapter, the load composition is derived based on past demand surveys 

and daily loading curves for different classes of customers. Uncertainties in both, 

dynamic load models/responses of individual loads and load compositions at different 

time of the day, are modelled probabilistically. With established dynamic signatures of 

different load categories and load compositions at different times of the day, Monte 

Carlo simulations are used to estimate/predict probabilistic real and reactive power 

responses, including ranges of variation of these responses, for every hour of the day 

for a given or anticipated mix of demand. 
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3.1  Dynamic Response of the Demand 

As mentioned in Chapter 1, the dynamic response of the demand (DRD) is 

defined as the time-domain (usually 1 sec to several seconds timeframe) real and 

reactive power response to a voltage disturbance. Due to inevitable demand variation 

during the day and season associated with end use customers’ operation cycles and 

habits, the composition of loads forming the total demand at network bulk supply 

point changes. This results in significant uncertainty in the dynamic response of 

demand (DRD) following network disturbances (voltage drops, faults, switching 

operation, load and generation switching, etc.) which could significantly influence the 

overall network performance.  

The proliferation of new types of loads (power electronic interfaced load, 

efficient lighting, electric vehicles, etc.), small distributed generators and to a certain 

extent already modified customer behaviour (i.e., compared with the customer 

behaviour recorded by the surveys conducted in the past) introduces further 

uncertainty in the demand composition. In addition to uncertainties associated with the 

demand composition, there is another layer of uncertainty resulting from insufficiently 

understood responses of these new types of loads to network disturbances, their 

mathematical models and parameters of those models.  

The drive towards reliance on active customer participation in network 

operation (i.e., willingness to get connected or disconnected at certain time of the day 

to facilitate appropriate demand profile) further complicates the issue of demand 

modelling. By shifting certain amount of demand at different time of day (e.g., 

connecting 10,000 washing machines at 11am instead of 1pm) relying on customers’ 

willingness to participate in demand management, price signals or other market 

mechanisms would help balance the generation and the demand in the network but 
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will also change the composition of the demand at those time. (In the example above, 

over 10,000 single-phase small induction motors would be connected at 11am and 

disconnected at 1pm). The change in the composition of the demand would affect its 

dynamic response to network disturbances at those hours, which could significantly 

influence the overall network voltage and angular stability. Being able to predict the 

dynamic response of demand (DRD) following network disturbances at any given 

time of the day would certainly facilitate efficient active demand management and 

ensure stable and secure operation of the power system as a whole.  

In this chapter, the framework based on probabilistic methodology for 

estimation/prediction of the dynamic response of the aggregate demand with limited 

information about the demand composition and knowledge of typical dynamic 

responses of individual load components is introduced. It combines elements of 

measurement-based and component-based approach to load modelling with 

probabilistic modelling of the demand composition at bulk supply buses. The 

framework and underlying methodology does not aim, at this stage, to develop an 

accurate load model for any particular load but rather to lay foundations for: i) 

estimation of the dynamic load response at some given time; ii) prediction of the load 

response at some point in the future based on readily available information without 

having to perform field tests or measurements. The proposed methodology could be 

used as an additional input to demand side management (DSM) decision making to 

ensure desired (or maintain existing) dynamic response of the demand at given hour 

following the shift of the demand to balance the load and the generation. 

3.2  The Framework 

The framework for estimation and prediction of the dynamic response of the 

demand (DRD) is shown as Figure 3.1. It can be seen that the information needed 
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includes demand compositions and individual dynamic load signatures. More details 

about the framework are provided in the following subsections. 

 Metering Data
 Customer Surveys
 General Knowledge of 

Demand Composition

DDLC Based 
on Load Class 
{1}

Participation of Load 
Categories in Different 
Load Classes {2}

DDLC Based on 
Load Categories 
{3}

Data Processing with 
Parameter Uncertainty

Probabilistic 
DDLC {4}

 Field Measurement
 Lab Measurement
 Computer Simulation

Dynamic Signatures/
Responses of Different 
Load Categories {5}

Data Processing with 
Parameter Uncertainty

Probabilistic Dynamic 
Signatures of Different 
Load Categories {6}

Estimation of Dynamic 
Response of Aggregate 
Demand at Given Time

Time Dependant 
Dynamic Response of 
Aggregate Demand {7}

Demand Compositions Individual Dynamic 

Load Signatures

Aggregation
DDLC: Decomposed 

Daily Loading Curve

 

Figure 3.1.  Framework for estimation and prediction of DRD 

3.2.1  Decomposed Daily Loading Curves 

Decomposed daily loading curves (DDLCs) are used to show the share of 

different types or categories of loads at different times of the day. The definition of 

decomposed daily loading curves (DDLCs) is given in Chapter 1 as “detailed daily 

loading curves indicating participation of different types of loads at different times of 

day for different load sectors during different seasons [1]”, and DDLCs in different 

load sectors at different locations during different seasons are reviewed and introduced 

in Chapter 1. 
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3.2.2  Approaches to Load Decomposition 

The participation of different load devices in the overall demand at bulk supply 

point varies with time and it depends on load classes involved, devices constituting the 

demand and nature of processes/pattern of device usage in end user facilities. The 

global participation of different classes of demand (industrial, domestic, commercial, 

etc.) can be established to a certain extent based on metering data, while it is very 

difficult to establish participation of different load categories within each class at any 

given time. In this chapter, whole-house hourly load data and associated survey 

responses for a sample of households given in [39-42] are used for illustration 

purpose. (Note: a new approach for load disaggregation or load decomposition which 

does not need detailed customer surveys is developed in Chapter 5. This is also one of 

the original contributions of the thesis, as introduced in Chapter 1.)  

Once the decomposed daily loading curve (DDLC) based on load classes (box 

labelled {1} in Figure 3.1) is known, the assessment of participation of different load 

categories in each class should be determined. Since there are many devices whose 

individual dynamic signatures (real and reactive power response to voltage change) 

are very similar, e.g., televisions (TV), personal computers (PCs), DVD, radios etc., 

they can be classified into the same category, namely power electronics/switch mode 

power supply (SMPS). Therefore, based on similar reasoning, all devices can be 

classified into several categories based on the type of expected dynamic response [1, 

24, 32]. This classification is discussed in Chapter 1. Participation of each of the main 

load categories in load class (box labelled {2} in Figure 3.1) can be obtained, ideally, 

from customer surveys or via computer simulation by applying appropriate clustering 

and classification algorithms.  

Based on these two sets of information, the decomposed daily loading curve 
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(DDLC) based on load categories can be established (box labelled {3} in Figure 3.1), 

which will give appropriate mix of load categories at each bulk supply bus. The 

largely stochastic characteristics of the load (both, the change of load composition at 

the same time of different days and the variation of parameters of the model of 

individual load component) is the key aspect that needs to be considered in the 

modelling process. This however, has been addressed only to a limited extent in the 

open literature in the past. For examples, the stochastic nature of loads was discussed 

in [16, 17, 122], and the probabilistic approach was used to derive parameters of load 

models in [19, 20]. Further processing of DDLC based on load categories therefore is 

needed to take into account uncertainties involved in establishing exact participation 

of different load categories in load classes. This yields the probabilistic decomposed 

daily loading curve (box labelled {4} in Figure 3.1), which is defined as “the 

decomposed daily loading curve that indicates the customer participation in load mix 

in terms of mean and standard deviation of probability distribution”.  

As an aggregate load at bulk supply point consists of different number and type 

of individual loads, it is necessary to develop a database of appropriate dynamic 

signatures and corresponding mathematical models of individual load categories. This 

can be ideally accomplished either by field or laboratory measurements of real and 

reactive power responses of required load categories or through computer-based 

simulations (box labelled {3} in Figure 3.1).  As it is highly unlikely to have exact 

dynamic signatures or mathematical models of all load categories connected to a given 

bulk supply bus in the network, some computer simulations are inevitable to account 

for numerous uncertainties involved. This post processing (accounting for 

uncertainties in load dynamic response through computer simulations) of load 

dynamic responses yields probabilistic dynamic signatures (calculated using 

probabilistic distribution of parameters and defined in terms of mean and standard 
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deviation of probability distribution) of different load categories (box labelled {6} in 

Figure 3.1) that account for uncertainties involved.  

Finally, having established probabilistic decomposed daily loading curves 

(DDLCs) and probabilistic dynamic signatures of different load categories, the 

dynamic response of aggregate demand at given time (box labelled {7} in Figure 3.1) 

can be established by weighting individual dynamic signatures of different load 

categories by participation of corresponding load category in load mix at given time 

(approach similar to conventional component based approach to load modelling).  

3.3  Estimation of Demand Composition  

The information about the demand composition at bulk supply bus at given time 

is the essential requirement for estimating the dynamic response of the demand (in 

addition to individual load component dynamic signatures) in the absence of the 

measured one. Two approaches that could be used for this purpose are discussed in the 

following section.    

3.3.1  Deterministic Decomposition of Daily Loading Curves 

Figure 3.2 (reproduced from Chapter 1) shows a decomposed daily loading 

curve (DDLC) in terms of different load types for commercial load sector for a 

working day. It is derived from daily demand data for different types of loads provided 

by [35]. For illustration purpose, in this chapter, the peak demand in the load sector is 

normalised to 100 for ease of comparison. The key information required for estimating 

the dynamic response at the bulk supply point however is the type and the percentage 

of different load categories rather than appliance or end-users involved, i.e., devices 

for which the dynamic signatures are available. Therefore, a load-category-based daily 

loading curve is needed instead of that shown in Figure 3.2. Considering demand 

decomposition shown in Figure 3.2 and according to Table 1.2, it can be seen that one 
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load category (e.g., the induction motor) includes multiple load types as identified in 

the figure. Therefore, load types listed in Figure 3.2 are categorised as follows: air 

conditioning load, motors, process, refrigerator, ventilation and cooking load are 

categorised as residential-commercial motor load category; office equipment is 

categorised as power electronics load category; internal and external lightings are 

categorised as lighting load category; cooking, water heating and heating load are 

categorised as resistive load. Due to different definitions of miscellaneous load in 

different areas [39, 123], miscellaneous is classified as a single category. The lines that 

separate any two load types in Figure 3.2 are called separation lines.  

 

Figure 3.2.  DDLC for commercial load sector 

 

 

Figure 3.3.  DDLC based on load categories for commercial load sector 
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Following this categorisation, a new load category based decomposed daily 

loading curve (DDLC) is produced by summing up the consumption of different load 

types within the same load category, as shown in Figure 3.3, and the separation lines 

are redistributed. From this figure, it can be easily determined which types of load 

categories are participating in total demand at the given bus and what shares of total 

demand it constitutes. Assuming that the dynamic signature of each load category is 

known (and not affected by the dynamic response of other load categories, as 

commonly assumed [1]), it will be much easier to estimate dynamic responses of the 

demand (DRDs) at any chosen time by “summing up” participating load category 

dynamic signatures after assigning appropriate weighting factors (based on 

participation in total demand) [1, 5]. Similar to Equation (1.2), this approach is 

illustrated by 

N

Agg i i

i=1

P (t)= w P(t)
 

(3.1) 

where t is the time, PAgg(t) is the aggregate dynamic response of the demand (DRD) in 

the time domain, N is the total number of load categories, wi is the weighting factor of 

category i, and Pi(t) is the DRD of category i in the time domain. A similar formula 

can be used to derive DRD for the reactive power, QAgg(t). 

 

Figure 3.4.  DDLC for general network bus based on: (a) load class mix, and (b) load category mix 
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A similar approach can be used to convert the conventional decomposed daily 

loading curve (DDLC) based on load class (i.e. residential, commercial, industrial), 

shown as Figure 3.4(a), to DDLC based on different load categories (i.e. lighting, 

SMPS etc.) for general network bus, shown as Figure 3.4(b).  

3.3.2  Probabilistic Decomposition of Daily Loading Curves 

Once the decomposed daily loading curve (DDLC) based on load categories, 

shown in Figure 3.4(b), is established, the uncertainty in participation of different load 

categories in different load classes has to be taken into account. These uncertainties 

are the result of not only lack of exact data about participation of particular load 

category in a given class, but also the variation of end user deployment of different 

devices at different time caused by factors such as customer behaviours, weather 

change and special rare events, which is very difficult to establish for a bulk supply 

bus consisting of very large number of different classes of end users. Therefore, the 

load category participation in total demand should be modelled probabilistically.  

To illustrate this concept, the uncertainty in participation of different categories 

in Figure 3.4(b) (taken as an example) is modelled in the following way. Firstly, the 

decomposed daily loading curve (DDLC) of Figure 3.3 is developed for each set of 

data originally used for producing corresponding DDLC of Figure 3.2 (obtained from 

customer surveys) and normalised with respect to the peak demand. Then, according 

to the collected load participation data in different load sectors and the distribution of 

different load sectors at different time during the day (shown in Figure 3.4(a)), load 

category-based DDLCs for the total load at the bus are developed (Figure 3.4(b)). 

Different load category-based DDLCs produced in this way are then overlapped. This 

results in DDLCs where the separation lines, separating different categories at 

different time, do not coincide. Therefore, the uncertainty area, i.e., the separation 
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band (the shaded area in Figure 3.5), replaces the separation line used in deterministic 

DDLC.  

 

Figure 3.5.  Probabilistic DDLC based on load categories 

The separation band is produced by connecting the highest and the lowest points 

of the corresponding separation lines at each given time to produce the upper and 

lower limit, respectively. From the data collected from the conducted customer 

surveys, it is found that for each load category at any given moment, its percentage of 

participation in total demand (weighting factor), can be roughly approximated by a 

Gaussian distribution with the upper and lower limit at that time set to correspond to 

the μ+3σ and μ-3σ, respectively, where μ is the mean value of the distribution and σ is 

the standard deviation. In this way, each uncertainty area contains 99.74% of all 

possible weighting factors. The probabilistic decomposed daily loading curve (DDLC) 

is then drawn by connecting the average values of weighting factors at different time. 

Figure 3.6 shows the probabilistic load curve for Small IM (i.e. small induction motor) 

mentioned in Figure 3.5. In Figure 3.6, terms “upper limit”, “lower limit”, mean value 
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and the uncertainty area are clearly indicated. 

 

Figure 3.6.  Graphical representation of “upper limit”, mean value, uncertainty area and “lower limit” 

Depending on the skewness of Gaussian distributions at different times, the 

most probable value of the weighting factor at that time may not coincide with the 

mean value of the Gaussian distribution, and the resulting line connecting the most 

probable weighting factors at different time may not run exactly through the middle of 

the uncertainty area. In the illustrative case in this chapter, the difference between the 

mean and the most probable value of the distribution at different time is not 

significant, and the mean values can be used as a first approximation instead of the 

most probable values for illustration purpose. Furthermore, in general cases, the mean 

value of the Gaussian distribution may not correspond to the average value of 

participation at given time depending on the skewness of the distribution. The choice 

of which value to use in a particular case (the average value, the mean value of the 

Gaussian distribution or the most probable value) will depend on the actual 

distribution of values within the area of uncertainty at different time. 

An illustrative example of the developed probabilistic decomposed daily loading 
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curve (DDLC) for a bus is shown in Figure 3.5. In this figure, the shaded areas 

represent the areas of uncertainty for different load categories participating in the 

overall demand at different time. The solid lines inside the uncertainty area represent 

the average participation of particular load categories in total demand at given time. It 

can be seen that these lines do not run exactly through the middle of the uncertainty 

area, as discussed above. By comparing calculated hourly average values of 

participation of particular load categories and mean values and standard deviations of 

corresponding Gaussian distributions for different load categories, it was found that 

the average values in this illustrative case can be used as a good approximation of 

mean values of corresponding Gaussian distributions of participation of different load 

category in DDLC. These values are then also used as weighting coefficients for 

weighting and summing up individual load category dynamic signatures to derive the 

dynamic response of the total demand by using Equation (3.1).  

The mean value and the standard deviation of contribution of different load 

categories to overall demand for the probabilistic DDLC shown in Figure 3.5 are 

plotted in Figure 3.7, and it will be used in probabilistic estimation of dynamic 

responses of demand in later sections. 

 

Figure 3.7.  (a) Mean, and (b) standard deviation of demand for different load categories for 

probabilistic DDLC shown in Figure 3.5 
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3.4  Dynamic Load Characteristics of Typical Load 

Categories 

To achieve the objective of estimation and prediction of dynamic responses of 

demand mentioned in Chapter 1, dynamic load characteristics of typical load 

categories should be studied according to the measurement-based load modelling 

approach introduced in Chapter 1. The following sub-sections study the dynamic load 

characteristics of load categories used in this research. As the concept of probabilistic 

load model parameters has been proposed in [18, 19] to deal with the uncertainty, for 

illustration purpose in this chapter, the dynamic load model parameters are also 

presented with probabilistically distributed function, and the dynamic response of 

different load categories to a voltage disturbance is also presented probabilistically.  

3.4.1  Energy Efficient Lighting 

The energy efficient lighting (EEL) is one of the load categories with fastest 

growing rate. It consists of different types of illumination devices including the 

compact fluorescent lamp (CFL), which is expected to replace the general 

incandescent light (GIL) to large extent in many parts of the world in the near future 

[24]. As dynamic processes associated with the operation of the EEL have very short 

time constants (from tens to hundreds milliseconds), i.e., much faster than a general 

electro-mechanical dynamic process, the EEL load can be regarded as a static load. 

Therefore, an exponential load model given by (3.2) and (3.3) [124] 

ep

pP d V
 

(3.2) 

eq

qQ d V
 

(3.3) 

is used to model EEL, where dp (
p ep

P
d

V
  ) and dq (

q eq

Q
d

V
 ) are the scaling 

coefficients for P and Q, and ep and ep are corresponding voltage exponents for P and 
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Q [124]. 

The  mean value and standard deviation of model parameters are provided in 

Table 3.1 based on data reported in [1, 124] and validated via measurement-based 

approach by [28]. It can be seen that the mean value of ep is 1.062. Therefore, to a 

first approximation, the real power response of the EEL can be modelled as constant 

current load. The reactive power has a characteristic between constant power and 

constant current according to the value of eq. (Note: the minus sign in front of reactive 

power coefficient, dq, indicates that the EEL always has leading power factor.)  

Table 3.1.  Model Parameters for EEL (Adopted from [1, 124]) 

 dp ep dq eq 

Mean 0.751 1.062 -0.624 0.653 

Standard Deviation 0.043 0.164 0.042 0.098 

Figure 3.8 shows normalised (the value of power before the disturbance set to 

1p.u.) real power responses of EEL to a 5% voltage step reduction. Figure 3.8a) 

illustrates responses obtained in 500 Monte Carlo simulations (MCS) by varying 

parameters in Table 3.1 based on normally distributed parameter values using 

provided mean value and standard deviation. Other distributions could be also used 

though, if available. (Note: Reference [125] specifies how many Monte Carlo 

simulations are needed to be run to produce statistically relevant samples. According 

to [125], required number of Monte Carlo simulations for different parameters of 

different individual load models in case of studies reported in this research varies from 

30 to 340. Considering the extreme cases and a reasonable processing time, 500 

Monte Carlo simulations are used for deriving the load model responses of each load 

category.) Figure 3.8b), the probability histogram, illustrates the distribution of the 

steady-state real power after voltage drop for all possible responses. The most 

probable steady-state value of the real power response (corresponding to the point 

where the probability reaches its maximum) can be determined from this plot. Figure 
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3.8c) establishes the range of possible real power responses with clearly indicated 

upper and lower limit (derived as described in Section 3.3.2 for the probabilistic 

decomposed daily loading curve) as well as the most probable real power response of 

the EEL (obtained from Figure 3.8a)) to a 5% voltage step reduction.  

 

Figure 3.8.  Real power responses to a step reduction in voltage for EEL: a) responses obtained from 

500 Monte Carlo simulations; b) probability histogram of steady-state power after voltage drop; c) 

upper and lower limit of the responses and the most probable response 

 

 

Figure 3.9.  Reactive power responses to a step reduction in voltage for EEL: a) responses obtained 

from 500 Monte Carlo simulations; b) probability histogram of steady-state power after voltage drop; c) 

upper and lower limit of the responses and the most probable response 
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A similar approach could be used to obtain the responses of Q and they are 

plotted in Figure 3.9.  

The same approach can be used to assess the responses of EEL to larger voltage 

drops assuming that there is no disconnection and automatic restart of parts of EEL. 

The Monte Carlo simulation can be also used to simulate disconnection and 

reconnection of parts of the load and subsequent derivation of relevant parameters 

based on obtained responses. This however, is out of the scope of this research. 

3.4.2  Directly-connected Induction Motor Load 

Directly-connected induction motor (IM) load includes residential-commercial 

induction motors, small industrial induction motors and large industrial induction 

motors. Due to the noticeable differences of dynamic characteristics among them, 

their models should be developed separately.  

3.4.2.1  Residential and Commercial Induction Motors 

Normalised real power responses (to 5% step reduction in voltage) of residential 

and commercial appliances (dish washer, refrigerator, room air conditioner, washing 

machine and dryer) are shown in Figure 3.10.  

 

Figure 3.10.  a) Real power responses, and b) reactive power response for residential and commercial 

motors with most probable and average response specified 
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Responses are generated in DIgSILENT using the ‘Asynchronous Machines’ 

option/tool. Six model parameters including rotor resistance, rotor reactance, stator 

resistance, stator reactance, magnetic reactance and inertia are varied as normally 

distributed random variables (using 500 Monte Carlo simulations) within a range 

according to the parameters provided in [1]. Reference [125] provides mathematical 

deduction for the number of Monte Carlo simulations needed to produce statistically 

relevant samples. According to [125], required number of Monte Carlo simulations for 

different parameters of different individual load models for the case studies used in 

this thesis varies from 30 to 340. Therefore, 500 Monte Carlo simulations are used for 

deriving the load model responses of each load category to ensure required accuracy 

of results within reasonable computation time even in most extreme cases. 

Based on the results obtained, the upper and lower limits are established as well 

as the most probable response for this type of load. It can be seen that the responses 

have relatively similar initial transient power drop and steady-state values, as well as 

comparable recovery time constants. The real power response of this type of load to 

small variation in supply voltage can be therefore represented by a first-order 

exponential recovery model, shown as Equation (2.8) and (2.9). Following the 

application of Laplace Transform to the equations that made up the model, the 

analytical solution can be derived as 

0s t s

p

t tα α α

T

l 0 0

0 0 0

V V V
P = P P e

V V V


      

       
         

(3.4) 

The first term, known as the steady state component, is the power consumption after 

the dynamic response stabilizes. The second term, known as the transient component, 

describes the power drop immediately after the voltage disturbance, which recovers 

with time constant Tp. 
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In this model, P0 and Pl are initial real power before the voltage change and real 

power consumption respectively. V0 is the initial RMS value of voltage. Coefficient αs 

and αt are steady-state and transient real power voltage exponent, respectively and Tp 

is the real power recovery time constant. Time t0 is the moment when the voltage 

disturbance occurs. The reactive power responses of these loads are shown in Figure 

3.10b) and Equation (3.4) is applicable. The mean value and standard deviation of 

model parameters are shown in Table 3.2, where βs and βt are steady-state and 

transient reactive power voltage exponent respectively and Tq is the reactive power 

recovery time constant. The values are obtained by calculating parameters for all 

sampled P and Q responses first, and then finding corresponding mean and standard 

deviation values. After the parameters of the model are calculated for each response, 

the response of the model with estimated parameters is compared with the sampled 

response. It was found that the two responses match very well. The most probable 

values (MPV) of parameters, estimated from probability histograms of the parameters 

(similar to the one shown in Figure 3.8b)), are also included in Table 3.2. 

Table 3.2.  Model Parameters for General Residential-commercial Motors (Derived using the Data from 

[1, 4])  

 αs αt Tp(sec) βs βt Tq(sec) 

Mean 0.1070 1.0411 0.2047 1.4826 1.9916 0.1557 

Standard Deviation 0.0866 0.6064 0.2279 0.2063 0.1189 0.2544 

MPV 0.0823 1.6287 0.2800 1.7016 1.9352 0.2500 

 

3.4.2.2  Industrial Induction Motors 

Real power responses for small and large industrial induction motors (IMs) are 

more oscillatory than those for residential and commercial motors, as shown in Figure 

3.11. The responses are generated in DigSILENT, in a similar way as before, using 

parameter ranges provided in [1] and in DIgSILENT model library.  
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Figure 3.11.  a) Small industrial IM P response, and b) large industrial IM P response to step down 

voltage; c) small industrial IM Q response, and d) large industrial IM Q response to step down voltage. 

(The upper and lower limit and the average responses are also shown.) 

A second-order transfer function model [1] is used to model real power response 

of this type of load. The model is given by Equation (2.21). It can alternatively be 

written as 

 

 
1 0

2

1 0

ΔP s b s+b
=
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(3.5) 

where a0, a1, b0, b1 are coefficients of the model and a1
2
-4a0<0. The analytical 

solution of real power for this type of load depends on the type of voltage change, i.e., 

ΔV(s) in (3.5). For a step up or step down voltage change, applying Laplace Transform 

to (3.5), the analytical solution of real power is derived as  
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ΔV is the change in voltage magnitude; it is positive for a step-up voltage change and 

negative for a step-down voltage change. Other parameters have the same definitions 

as defined in (3.4) and (3.5). All variables are in per unit. Similar to (3.4), (3.6) also 

has the steady-state component and the transient component. The first term is the final 

steady-state P consumption. The second term is the transient component, which 

decays to zero with time. In general, a0>> b0 [22]. Therefore, the new steady-state P 

does not significantly deviate from the initial value. This matches the dynamic 

responses shown in Figure 3.11a) and Figure 3.11b), as well as the discussion of the 

static load model of induction motor mentioned in Section 2.1.1.4, Chapter 2 and 

Appendix C. The range of responses (the upper and lower limit) and the average 

values are also shown in Figure 3.11.  

The average response is calculated in a similar way as before, i.e., based on 

individually determined model parameters. The most probable responses were 

calculated as well and also shown in Figure 3.11. They were determined by detecting 

the most probable value of power at given time and then reconstructing the response. 

Though there is a difference between most probable and average response, the 

responses are qualitatively the same. The range of the parameters, as well as the 

average and the most probable values (MPV) of parameters are given in Table 3.3.  

The reactive power responses for this type of induction motors (IMs) are shown 

in Figure 3.11c) and Figure 3.11d). They are fitted by the first order exponential 

recovery model, given by Equation (3.4).  

The similar ranges of responses (possibly more accurate) for both residential and 

commercial appliances and industrial IMs could be obtained by considering actual 

measured responses of number of these devices in field or laboratory measurements, 

both to small and large voltage disturbances. In spite of available measured responses 
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though, some simulations would need to be carried out using typical parameters due to 

large variety of motors, in which case the approach above would need to be used. 

Table 3.3.  Model Parameters for Small and Large Industrial IM (Derived using the Data from [1, 4]) 

Real power a0 a1 b0 b1 

Small 

Upper 

Lower 

Average 

MPV 

3000 

1600 

2100 

2100 

70 

60 

55 

62 

2.5 

2.5 

2.5 

2.5 

150 

150 

150 

150 

Large 

Upper 

Lower 

Average 

MPV 

1800 

1200 

1500 

1500 

50 

30 

45 

30 

0.1 

0.1 

0.1 

0.1 

110 

80 

100 

85 

Reactive power βs βt Tq(sec) 

Small 

Upper 

Lower 

Average 

MPV 

0.3691 

0.2735 

0.3174 

0.2735 

4.9735 

4.7946 

4.9050 

4.9735 

0.0600 

0.0500 

0.0590 

0.0600 

Large 

Upper 

Lower 

Average 

MPV 

0.2562 

0.1515 

0.2082 

0.2158 

8.1850 

7.8799 

8.0136 

7.9832 

0.0900 

0.0900 

0.0900 

0.0900 

 

3.4.3  Resistive Load 

The category of resistive load typically includes space heaters, water heaters, 

ovens and deep fryers [1]. They are static loads and generally have constant 

impedance characteristic for real power. Therefore, an exponential load model [1] with 

real power voltage exponent np=2 is adopted to represent real power response of 

resistive load. The range of variation in real power responses including the upper and 

lower limit as well as the most probable values for resistive load is established in 

similar way as for efficient lighting loads in previous section. The reactive power of 

resistive load is always zero. 

3.4.4  Power Electronics / Switch Mode Power Supply Load (SMPS) 

The type of load whose participation in the overall demand is increasing at the 

highest rate is the power electronics based load, categorised as the switch mode power 

supply (SMPS) load in this thesis. Similar to lighting load, as the dynamic processes 
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associated with operation of this type of load have time constants much faster than a 

general electro-mechanical dynamic process, power electronics/SMPS load is 

modelled by an exponential model given by (3.2) and (3.3). Following a similar 

procedure as described before, individual responses are generated for randomly 

chosen values of typical parameters and the most probable response is established. All 

relevant model parameters adopted from [1, 124] and validated by measurement data 

provided in [30] are listed in Table 3.4. It was found that this type of load can be 

modelled, in first approximation, as constant power load for both real and reactive 

power. (Note: same as the case for efficient energy lighting, the minus sign in front of 

coefficient dq indicates that this load category always has leading power factor.)  

 

Table 3.4.  Model Parameters for Power Electronics/SMPS (Adopted from [1, 124]) 

 dp ep dq eq 

Mean 0.934 -0.186 -0.26 0.376 

Standard Deviation 0.002 0.124 0.062 0.146 

 

 

 

Figure 3.12.  Real power responses to a step reduction in voltage for SMPS: a) responses obtained from 

500 MC simulations; b) probability histogram of steady-state power after voltage drop; c) upper and 

lower limit of the responses and the most probable response 
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Figure 3.13.  Reactive power responses to a step reduction in voltage for SMPS: a) responses obtained 

from 500 MC simulations; b) probability histogram of steady-state power after voltage drop; c) upper 

and lower limit of the responses and the most probable response 

All possible responses for P and Q are generated using Monte Carlo simulation 

as before and the most probable and the average responses were found to be almost 

identical. Similar to EEL, the corresponding responses for P and Q of SMPS are 

shown in Figure 3.12 and Figure 3.13 respectively. 

It is worth noting that the responses of rectifier are similar to those of SMPS, 

except that the power factor of rectifier is about 0.6 leading [30] whereas the power 

factor of SMPS is about 0.96 leading [1, 30, 124]. 

3.5  Estimation of Dynamic Response of Demand 

Once the individual dynamic load signatures and the load participation in 

decomposed daily loading curves are available, the aggregate load dynamic response 

at any given time at bulk supply bus can be established, as indicated by Figure 3.1, by 

scaling individual load category dynamic responses derived in Section 3.4 by 

corresponding load contributions at given time derived in Section 3.3 using Equation 

(3.1). All the simulations related to the dynamic response of the demand at the bulk 
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supply bus are produced in MATLAB. 

3.5.1  Most Probable Real and Reactive Power Response during the 

Day 

With the most probable dynamic response of demand (DRD) calculated in 

Section 3.4 and the most probable decomposed daily loading curve (DDLC) 

calculated in Section 3.3, using (3.1), the resulting most probable real and reactive 

power responses to 5% drop in supply voltage throughout the day at bulk supply bus 

(DDLC shown in Figure 3.5) are shown in Figure 3.14. Figure 3.14 is named “daily 

aggregate demand response surface (DADRS)”. An alternative view of Figure 3.14 is 

shown in Figure 3.15, where the t-axis and the Hour-axis are swapped. 

 

Figure 3.14.  The most probable DRD of P and Q to voltage step during the day 

 

 

Figure 3.15.  The most probable DRD of P and Q to voltage step during the day 
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Viewed from P-t or Q-t Plane, it gives the shape of dynamic real or reactive 

power responses. While viewed from P-Hour or Q-Hour Plane, it shows the shape of 

daily loading curves. It incorporates the information of dynamic response of the 

demand to a voltage drop and the actual daily demand.  

3.5.2  Monte Carlo Case Studies and the Most Probable Dynamic 

Response of Demand 

With established mean and standard deviation of hourly load category 

participation in the decomposed daily loading curve (DDLC), Monte Carlo simulation 

is applied to generate different load category participations in DDLC at any given 

time. The percentages of load category participation in load mix at given time are 

generated randomly within the μ±3σ interval following corresponding normal 

distributions shown in Figure 3.5 and Figure 3.7 and ensuring that the sum of load 

category participation at any given time is 100%. Similarly, the dynamic responses of 

the demand (DRDs) of individual load categories are generated randomly (according 

to actual probability distributions of parameters of individual load categories 

discussed in Section 3.4). The number of Monte Carlo simulations for both customer 

participation and individual load DRD at each hour was 5000 in accordance to [125]. 

With all generated customer participation data and dynamic responses of the 

demand (DRDs), using (3.1), 5000 aggregate DRDs are produced. Similar to the 

approach described in Section 3.3 and Section 3.4, the “range” and the most probable 

DRD are estimated for every hour of the day to ensure adequate coverage of possible 

responses. (Similar to estimation of the probabilistic decomposed daily loading curve 

and probabilistic individual DRD, this range encompasses the vast majority of all 

possible responses, i.e., the probability of the event that the response will fall outside 

the range is small enough to be neglected.) Only some characteristic hours are 
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discussed here for the illustration of the approach, namely 3:00 (lowest demand), 4:00 

(largest participation of IMs), 12:00 (peak demand) and 18:00 (lowest participation of 

IMs).   

Figure 3.16 shows, as an example, all possible responses (as percentage of peak 

demand) generated for 4:00am.  

 

Figure 3.16.  Range and most probable DRDs for P and Q at 4:00am 

According to a similar approach of deriving the most probable response for the 

dynamic response of the demand (DRD) of individual load categories described in 

Section 3.4, the most probable DRD is established as the most frequent response 

among all obtained responses. This response is obtained by simultaneous variation of 

load category participation in generation mix and the individual load category 

response (i.e., corresponding load model parameters). It is indicated by a dashed line 

in Figure 3.16 and referred to as detected most probable response. Slightly different 

responses were obtained when only the most probable response for each individual 

load category (established in Section 3.4) and the most probably load participation in 

hourly demand mix (obtained in Section 3.3) were used. This response is indicated by 

a dash-dot line in Figure 3.16, and referred to as calculated most probable response. 

The difference between the two responses is generally very small (the selected case is 
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actually the one where the observed difference is the largest) with deviation in steady 

state value up to 1% for P and up to 5% for Q. It is important to note that in a few 

cases, qualitative difference in the nature of response was also observed. For example, 

one curve indicates static response, while the other shows first order exponential 

response. This is discussed further in the following subsection. In this case, the 

dynamic response has time constant typically shorter than 0.1 sec, so it could be 

approximated by static response for most practical power system dynamic studies. 

3.5.3  Different Dynamic Responses of the Demand at Different 

Hours 

In order to highlight observed differences in dynamic responses of the demand 

(DRDs) at different time of the day, the most probable P and Q responses at 

characteristic hours are plotted on the same graph in Figure 3.17. Figure 3.17 shows P 

and Q responses at four specific hours during the day as well as normalised relative 

variation in P and Q. It can be seen that there is a noticeable difference in transient 

drops and steady-state values of responses at different hours as well as moderate 

difference in the recovery time during the transient process. The reason is that the 

most probable load participations at different hours are different. 

 

Figure 3.17.  Comparison of different most probable a) P and b) Q responses at different times of day 

(solid line: 3:00; dashed line: 4:00; dash-dot line: 12:00; dotted line: 18:00) 
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3.5.4  Illustration of Possible Dynamic Responses of the Demand 

Previous analysis illustrated that dynamic responses of the demand (DRDs) 

change during the day. The observed differences, for the considered case study, are not 

significant enough though. Considering all uncertainties involved and identified 

ranges of possible responses at given time and assuming reasonably small overall 

variation in composition and responses of individual loads (as previously discussed), 

two representative DRDs among all possible responses of P and Q at 12:00 hours are 

selected and illustrated in Figure 3.18.  

 

Figure 3.18.  Possible difference in a) P and b) Q response at 12:00 (dashed line and dashdot-line 

represents two possible different responses among all possible responses) 

It can be seen that even at the same time of the day, the dynamic responses of 

the demand (DRD) could be significantly different. The response of P varies from 

almost static (very fast second order initial transient) to clearly first order exponential 

recovery while the response of Q exhibits different transient drops even though the 

shape of the response is similar. It is the uncertainty in demand composition that 

causes the difference in DRD. It is worth noting that the P and Q responses shown in 

Figure 3.18 are not correlated (in spite of using the same line type); they are shown 

here for illustrative purposes only. 
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3.6  Summary 

Due to the uncertainty in demand compositions and individual load type static 

and dynamic characteristics (in particular for new types of device), it is very difficult 

to establish accurate dynamic responses of the demand (DRDs) without continuous or, 

at least initially long term measurements at the bus. Both of these might be 

prohibitively expensive and impractical for real life implementation. Estimation and 

prediction of DRDs without field measurement, on the other hand, could greatly 

facilitate demand contribution to static and dynamic operation of future power 

networks. The methodology presented in this chapter is inspired by conclusions of 

recently completed work of CIGRE WG C4.605 Modelling and aggregation of loads 

in flexible power networks and enables estimation of DRDs at any bulk supply bus in 

the network based on reasonably limited information about actual demand 

composition at the bus and known generic dynamic signatures (i.e. responses) of 

individual load categories. It combines probabilistic demand compositions at different 

times of the day at given buses (obtained by processing and classifying large amount 

of demand data available from previous demand surveys for the bus of interest or for 

buses with similar demand composition) and individual probabilistic dynamic 

responses of different load categories (obtained from field/laboratory measurements or 

computer simulations) to estimate dynamic responses of demand (real and reactive 

power responses) at different times of the day. It can be seen that the variation in the 

participation of different load categories results in the variation in dynamic responses 

of the aggregated demand. Furthermore, the most probable response derived from all 

responses is very close to the one calculated from the most probable dynamic 

responses and participation of individual load categories; this finding will be useful 

for the validation process of the proposed methodology discussed in detail in Chapter 

6. 
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Even though the methodology is illustrated here using only dynamic responses 

of different load categories to small disturbances in supply voltage, a similar approach 

can be equally well applied to analyse the dynamic response of the demand (DRD) of 

the aggregate load to large disturbances if the DRDs of the individual load to large 

disturbances are available since the models and parameters of individual load 

categories are input values to the methodology. 
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4 Artificial-Intelligence-based Load 

Forecasting 

 

 

 

 

 

Accurate prediction (forecasting) of the load plays an indispensable role in 

power system planning and electricity market analysis. Load forecasting based on 

artificial intelligence (AI) techniques received significant attention in the past and it is 

rapidly developing because of its high accuracy. Some of the AI based methodologies 

for load forecasting have already been adopted and widely used by the industry. From 

the literature review, it was found that on the one hand, among the nine most 

frequently used approaches in the past, artificial neural network (ANN) is the most 

efficient one with the highest accuracy. The adaptive neuro-based fuzzy inference 

system (ANFIS), on the other hand, is a new hybrid approach for load forecasting that 

combines techniques of both ANN and fuzzy logic. However, the performance of 

these two methods (when applied to load forecasting in the same operation 

environment) has not been compared in the past to establish whether one of them is 

superior to the other.  

This chapter presents a comparative analysis of the state of the art of ANN and 

ANFIS load forecasting methodologies in the same operating environment. It 

demonstrates that, by the appropriate setting of the relevant parameters, a very high 
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level of accuracy of load forecasting can be achieved by both of them. The mean 

absolute percentage error (MAPE) is adopted as the first performance indicator in this 

study. The second performance indicator used is the processing time. Based on the 

defined performance indicators for different parameter settings, the optimal set of 

parameters is proposed for both algorithms. Finally, based on the conclusion drawn 

from the comparison and considering the load composition forecasting approach (i.e. 

this will be introduced in later chapters), an approach is selected, improved and 

implemented for both one-day-ahead real and reactive power predictions, and actual 

demand data (both in MW and MVAR) is used to validate the predictions. With the 

development of the load disaggregation approach (described in Chapter 5), load 

forecasting discussed in this chapter can be integrated with load disaggregation to 

enable prediction of load composition and its controllability, prediction of dynamic 

responses of demand, load shifting and shaping of dynamic responses of demand 

(described in Chapter 6). 

4.1  Importance of Comparing AI-based Load Forecasting 

Approaches 

As the prediction accuracy and processing time are dependent on a variety of 

factors including the number of inputs, parameter configuration in the artificial 

intelligence (AI) tools, the software package version and the operating system (i.e. 

Mac OS X, Linux, Windows) used, it is difficult to rank different AI tools based on 

just one aspect. In [126], both ANN and ANFIS are applied to predict the effect of 

different parameters to a meat emulsion system (MES), and the performances of both 

with different parameter configurations for all MES parameters are compared. The 

result shows that in MES, sometimes ANN performs better than ANFIS and 

sometimes vice versa. Therefore, it is important to compare the performance of ANN 

and ANFIS on load forecasting with multiple factors considered first and then to 
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choose appropriate parameter settings to enhance the performance accuracy of each of 

them prior to carrying out further comparisons and making any conclusions about 

their performance.  

Apart from the prediction of total demand, the prediction of time-varying load 

compositions is gaining the attention of electricity companies and DNOs because of 

its potential ability to inform demand side management decisions and help with power 

system planning. The time varying load composition data for training and validation 

of forecasting tools however, are rare. As a result, it is necessary to use available 

demand data (much easier to obtain from substation operation data) to train, validate 

and finely tune developed AI tools for load forecasting first, and then further develop 

it to load composition prediction.  

The artificial neural network (ANN) and the adaptive neuro-based fuzzy 

inference system (ANFIS) and their applications to load forecasting are introduced in 

the following sections.  

4.2  Artificial Neural Network 

Two-layer ANNs are adopted in this analysis as they can potentially represent 

almost all input-output relationships with a finite number of discontinuities as long as 

an appropriate number of neurons is assigned to the hidden layer [127].  

4.2.1  ANN Type and Structure 

There are mainly two types of ANN, feed-forward ANN (FFANN) and cascade-

forward ANN (CFANN). 

4.2.1.1  Feed-forward Artificial Neural Network (FFANN) 

The structure of a two-layer feed-forward artificial neural network (FFANN) 

with a hidden layer and an output layer is shown in Figure 4.1.  



Chapter 4: Artificial-Intelligence-based Load Forecasting 

127 

 

+ fp W

b

+ f aW

b

Hidden Layer Output Layer
Input Output

 

Figure 4.1.  Structure of an FFANN 

Either layer contains an input vector, a weight matrix W, a bias vector b, a sum 

operator, a transfer function f and an output vector a. The weighting matrix weighs the 

input elements, the bias vector biases the weighed inputs via the sum operator, the 

sum operator gathers the weighed inputs and the biases to produce an intermediate 

variable for the transfer function, and the transfer function produces the final output of 

the layer. The output of the hidden layer is the input of the output layer. The 

relationship between the input and the output in either layer can be represented by 

 f T
a W p b  (4.1) 

The full description of this type of ANN and its parameter setting rules are given in 

[78, 127, 128].  

4.2.1.2  Cascade-forward Artificial Neural Network (CFANN) 

The structure of a two layer cascade-forward artificial neural network (CFANN) 

is shown in Figure 4.2. Apart from the connections discussed in the case of FFANN, 

CFANN has connections between the input and each layer and connections between 

each layer and its successive layers. Such connections are likely to improve the 

learning speed of ANN [127]. 
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Figure 4.2.  Structure of a CFANN 
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4.2.2  Main Parameters 

The main parameters of an ANN to be configured include the type of ANN, the 

hidden layer size, transfer functions and the training algorithm. 

4.2.2.1  Type of ANN 

Either the feed-forward ANN or the cascade-forward ANN can be selected as 

the tool for load forecasting. In MATLAB ANN Toolbox, feed-forward ANN and 

cascade-forward ANN are created by functions newff() and newcf() respectively.  

4.2.2.2  Hidden Layer Size 

In [129], a novel approach is proposed to optimise the number of neurons in the 

hidden layer to avoid over-fitting, and the mathematical approximation for N/d>>30 

(i.e. N is the number of the training sets, and d is the input dimension) is shown as 

ln

N
n

d N


 
(4.2) 

where n is the number of neurons in the hidden layer. If N/d is smaller than or close to 

30, optimal n most frequently occurs on its maximum value, which has been proved to 

be N/d [129]. In [130] and [131], signal-to-noise-ratio figure (SNRF) and genetic 

algorithm is proposed to optimise the size of hidden layers respectively. It is illustrated 

there that the hidden layer size is always finally determined by trial and error with 

different numbers of neurons around the value estimated from (4.2). In most cases 

however, the nearest integer to the estimation of (4.2) works well. 

4.2.2.3  Transfer Function 

The transfer function can be any differentiable function. The most commonly 

used transfer functions are log-sigmoid (logsig), tan-sigmoid (tansig) and linear 

(purelin) transfer function. The output ranges of the three transfer functions are 

respectively [0,1], [-1,1] and [-∞,+∞] [127].  
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4.2.2.4  Training Algorithm 

Before training, the weights are initialised to small random values. The training 

process needs a set of examples of appropriately selected network behaviours, inputs 

and targets. During the training process, the input progresses as indicated by Figure 

4.1 or/and Figure 4.2, and the outputs are created and compared with the target values. 

The differences between the created outputs and the target values are recorded and 

propagated backwards through the network, and the weights and biases of the network 

are adjusted to minimise the difference. This process is repeated until either the 

difference is within a predefined range or the maximum epoch is reached. As the error 

is propagated backwards, this training process is called the backpropagation training 

algorithm. 

Backpropagation (BP) [128] is widely used in ANN training. The basic 

backpropagation training algorithm, which is also called gradient descent 

backpropagation (GDBP), adjusts the network weights and biases in the direction of 

the negative of gradient, in which the performance function decreases most rapidly. 

The gradient descent backpropagation (GDBP) is illustrated in iteration as Equation 

(4.3) [127] 

 k+1 k k k= - αx x g
 

(4.3) 

where xk is the value of the weight or the bias for the k
th

 iteration, αk is the learning 

rate for the k
th

 iteration and gk is the current gradient for the k
th

 iteration. In MATLAB 

ANN Toolbox, they can be called by setting the training algorithm parameters to 

traingd. 

There are also many variations of backpropagation training algorithm, such as 

resilient backpropagation (RBP), conjugate gradient backpropagation (CGBP), quasi-

Newton backpropagation (QNBP), Levenberg-Marquardt backpropagation (LMBP) 

and Bayesian Regulation backpropagation (BRBP). These variations optimise the 
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basic network and speed up the training process.  

According to the MATLAB Neural Network Toolbox [127], Levenberg-

Marquardt backpropagation (LMBP) is usually preferred and selected as the training 

algorithm in past works due to its high speed and high performance accuracy. The 

weights and biases update for LMBP is given as Equation (4.4) 

 
1

T T

k+1 k= - 


   x x J J I J t a
 

(4.4) 

where J is the Jacobian matrix which contains 1
st
 partial derivatives of the network 

error with respect to the weights and the biases, and t is the target value vector, and a 

is the network output vector. When the Levenberg’s damping factor, μ, is zero, it 

becomes Quasi-Newton algorithm using the approximate Hessian matrix J
T
J, and 

when μ is very large, it becomes gradient descent with a small step size (t-a). The 

drawback is that the fast speed of LMBP induces relatively large uncertainties, 

especially when over-fitting occurs. 

Therefore, in specific cases, Bayesian Regulation backpropagation (BRBP) is 

used to make the network stable and increase the robustness of the ANN. Bayesian 

Regulation Backpropagation (BRBP) updates the weight and bias based on 

Levenberg-Marquardt optimisation. It minimises a combination of squared errors and 

weights and determines the correct combinations in order to produce a network that 

might generalise better [19]. The drawback of this approach is that it is time-

consuming. The results of both algorithms are compared in this chapter. In MATLAB 

ANN Toolbox, Levenberg-Marquardt Backpropagation and Bayesian Regulation 

Backpropagation can be called by setting the training algorithm parameters to trainlm 

and trainbr, respectively. 

4.3  Adaptive-neuro Fuzzy Inference System 

Adaptive-neuro Fuzzy Inference System (ANFIS) is a Sugeno fuzzy inference 
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system (FIS). The input membership functions (IMF) are generally adjusted by hybrid 

algorithms and the output membership functions (OMF) are either a constant or a 

linear combination of the inputs. It allows the fuzzy inference system to decide the 

rules itself by learning from the input and the target. Hybrid learning algorithms 

combine backpropagation and least squares and always perform better than the basic 

backpropagation algorithm on its own [94]. 

4.3.1  Structure 

The structure of an ANFIS with two inputs, two membership functions and one 

output is shown in Figure 4.3 [94].  
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Figure 4.3.  Structure of an ANFIS 

Layer 1 is the fuzzification layer, where the input data are fuzzified using input 

membership functions (IMF). The neuron Ai, Bi are the linguistic labels which 

describe the characters of the input data, such as small and large, low and high etc., 

and are associated with a membership function which specifies the degree to which 

the given input satisfies the description of the neuron.  

Layer 2 executes the fuzzy AND Function of the antecedent part of the fuzzy 

rules. Generally, either soft-min or product [86] is used as the rules in Layer 2. The 

outputs from Layer 2 are referred to as firing strengths [94].  

In Layer 3, each of the firing strengths is normalised and the normalised firing 

strengths are the weights assigned to corresponding rules.  
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In Layer 4, the consequent part is executed by the implication method. A 

consequent is a fuzzy set represented by a membership function [86], referred to as 

output membership function (OMF). It could be a linear combination of inputs or a 

constant function. The form of Sugeno rules can be described as ‘if x is A1 and y is B1, 

then f1=f1(x,y,z,c)’. The input of the implication process is a single number obtained 

from the antecedent (also a single number). This single number is used to reshape the 

corresponding consequent. The output of Layer 4 is the reshaped consequent weighted 

by the corresponding normalised firing rate. 

Layer 5 is a sum operator that superimposes all outputs of Layer 4 and produces 

the final output.  

Adaptive neuro-based Fuzzy Inference System (ANFIS) is a robust AI tool, 

whose output is unique once the number and type of membership functions and the 

training algorithm are defined. 

4.3.2  Input and Output Membership Functions 

The input membership function (IMF) could be any differentiable function or 

piecewise function. The most commonly used IMFs include the triangle-shaped 

transfer function (trimf), the bell-shaped transfer function (gbellmf) and the difference-

sigmoid shaped transfer function (dsigmf) [86]. The output membership function 

(OMF) could be either linear or constant. 

4.4  General Framework for AI-based Short-term Load 

Forecasting (STLF) 

According to past works, a general framework for day-ahead load forecasting 

(i.e. predicting demand on Day N+1 with the data collected on Day N) using the 

artificial intelligence (AI) techniques, is represented by Figure 4.4. The trained AI tool 

will be used for demand forecasting after it is validated. The inputs (also shown in box 
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labelled {3}) are: (i) measured demand in MW or/and MVAR on Day N; (ii) 

forecasted weather data (including temperature, humidity and wind speed) for Day 

N+1; (iii) day type (working days, holidays) of Day N+1. The outputs are the 

forecasted demand in MW or/and MVAR. For comparison purposes, only the 

prediction of real power is implemented. The prediction of reactive power will be 

implemented after a suitable forecasting approach is selected and upgraded. 

Inputs to the Training Process 

 Measured demand from Day 

1 to Day N0

 Forecasted weather from Day 

2 to Day N0+1

 Type of day from Day 2 to 

Day N0+1

{1}

Error Analysis
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Process

Measured demand from 
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{5}
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Training Process
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Figure 4.4.  Block diagram for demand forecasting 

4.4.1  Description of Training and Validation Process 

In the training process, large quantities of demand data, weather data and day 

type data are required. The inputs in the training process (box labelled {1}) include 
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measured demand data from Day 1 to Day N0, forecasted weather data (i.e. 

temperature, humidity and wind speed) from Day 2 to Day N0+1 and day types (i.e. 1 

for working days, 0 for holidays) from Day 2 to Day N0+1. (Note: to distinguish the 

training process and the general forecasting process, N0 is used instead of N to 

describe the training process.) It is denoted by PTRN and if written in the format of 

the input matrix in MATLAB ANN toolbox, it is in the following form: 

0 0 0

0 0 0

0 0 0

0

0

1,0:00 1,0:30 k ,0:00 N ,23:00 N ,23:30

2,0:00 2,0:30 k +1,0:00 N +1,23:00 N +1,23:30

2,0:00 2,0:30 k +1,0:00 N +1,23:00 N +1,23:3

2,0:00 2,0:30 k +1,0:00

2,0:00 2,0:30 k +1,0:00

P P P P P

T T T T T

H H H H H

WS WS WS

DT DT DT

PTRN

0 0

0 0

0

N +1,23:00 N +1,23:30

N +1,23:00 N +1,23:30

WS WS

DT DT

 
 
 
 
 
 
 
  

 (4.5) 

where P, T, H, WS, DT are demand (real power), temperature, humidity, wind speed 

and day type, respectively. N0 represents Day N0, and N0+1 represents Day N0+1. 

Pk0,0:00 represents the demand at 0:00 on Day k0 (1≤k0≤N0), and similar definitions 

apply to other elements. The day type can be obtained based on the date when the 

demand data are collected, represented by 1 for working days and 0 for holidays. The 

targets are the measured demand data from Day 2 to Day N0+1, correspondingly 

denoted as TTRN and written in the form: 

0 0 02,0:00 2,0:30 k +1,0:00 N +1,23:00 N +1,23:30P P … P … P P   TTRN
 

(4.6) 

The inputs and the targets are used to train and create an AI tool (ANN or ANFIS). 

After training, the trained AI tool is validated with another set of data. In the 

testing and validation process, the inputs to the trained AI tool (box labelled {3}) are 

the measured demand of Day N, the forecasted weather of Day N+1 and the day type 

of Day N+1. Based on these inputs, the trained AI tool will create the outputs (box 

labelled [1]), which are the predicted demands on Day N+1. The predicted demands 

on Day N+1 are compared with the measured demand data on Day N+1, which are the 

targets in the testing and validation process (box labelled {4}), and the error between 
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the predicted demand and the measured demand is assessed (box labelled {6}). Once 

validated, the trained AI tool can be used for demand forecasting. The details of 

MATLAB coding for training and validation used in this study can be found in [127] 

for ANN and [86] for ANFIS. 

4.4.2  Data Collection 

Demand data used in this study are collected from the distribution network of a 

local utility. Data are collected every 30 minutes, i.e, 48 samples per day. Measured 

and forecasted weather data for every 30 minutes, including temperature (°C), 

humidity (p.u) and wind speed (km/h), are obtained from the official website of 

Weather Underground [132]. 

4.4.3  Parameter Settings for AI Tools 

The parameter setting and the training algorithm selection for both ANN-based 

and ANFIS-based approach are demonstrated in the following subsections. 

4.4.3.1  ANN based methodology  

Both FFANN and CFANN are implemented and compared. For the case study 

used in the thesis, the number of training sets, the number of testing sets and the input 

dimension are 864 (18 days), 96 (2 days) and 5, respectively. According to (4.2), the 

estimated value of the optimal neuron number is 5.06. Therefore, the neuron number 

in the hidden layer is set to 5 and 6, and the results for both settings are compared.  

Considering the nonlinearity of the prediction [127], a sigmoid function (logsig 

or tansig) rather than purelin is selected as the transfer function of the output layer. As 

logsig is too insensitive to its input, if selected as the transfer function of the output 

layer, it will restrict the final ANN output to a quite small range that may not be able 

to cover the range of the demand. Therefore, tansig is selected as the transfer function 

of the output layer. According to the shape of tansig and considering the ANN output 
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range, logsig is selected as the transfer function of the hidden layer. Default settings 

are assigned to other parameters as they are applicable to most case studies [127].  

Three most commonly used training algorithms discussed in Section 4.2.2.4 are 

used and compared in the study. The results obtained with different numbers of hidden 

layers and different training algorithm settings are compared and discussed in 

subsequent sections. 

4.4.3.2  ANFIS based methodology 

The most commonly used input and output membership functions with different 

parameter settings are compared in the study. The input membership functions 

considered include trimf, gbellmf and dsigmf, and the output membership functions 

include linear and constant functions. According to the number of inputs considered, 

the number of input membership functions [94] is set to 2 to ensure a reasonable 

processing time and to prevent MATLAB toolbox from running out of memory. 

4.4.4  Testing and Validation 

After training, the trained AI tool (ANN or ANFIS) is tested with another set of 

data and the results are validated against the actual measured demand. As the relative 

error between the predicted load and the actual load is of more concern than the root 

mean squared error (RMSE) which is usually used in AI computation, in this study, 

the mean absolute percentage error (MAPE) defined by  

1

1
100%

N
i i

i i

MAPE
N 


 

a t

t
 

(4.7) 

is adopted for error analysis, where ti is the i
th

 measured demand, ai is the i
th

 predicted 

demand, and N is the total number of demands predicted. 

4.5  Results of Comparison of ANN and ANFIS 

In the comparison results, only real power prediction is implemented for 
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illustration. The approach to reactive power prediction is similar. 

4.5.1  ANN based methodology 

Table 4.1 and Table 4.2 show MAPE (%) and processing time (sec) of a feed-

forward ANN (FFANN) and a cascade-forward ANN (CFANN) with different 

combinations of training algorithms and hidden layer size configurations. The result 

shows that in both cases, the best accuracy is achieved by adjusting the number of 

neurons in the hidden layer to 5 and training algorithm to trainbr, and that the fastest 

training algorithm is trainlm. With the same parameter configuration, it could be seen 

that FFANN generally operates slightly faster than CFANN, although the processing 

time in both cases is comparable. This is probably because CFANN has a more 

complex structure. Under the same parameter setting, the CFANN does not necessarily 

improve the prediction accuracy. It can also be seen from Table 4.1 that trainbr 

performs better when the hidden layer size is 5 than when it is 6, while trainlm, on the 

contrary, performs better when the hidden layer size is 6. Therefore, it can be 

concluded that trainbr works more effectively than trainlm.  

Table 4.1.  MAPE and Processing Time of FFANN with Different Parameter Configuration 

 MAPE (%) Processing Time  (sec) 

Hidden 

Layer Size 
traingd trainlm trainbr traingd trainlm trainbr 

5 10.47 6.28 3.49 1.2243 0.4140 1.4127 

6 6.56 5.02 4.80 1.2380 0.7399 1.5526 

 

Table 4.2.  MAPE and Processing Time of CFANN with Different Parameter Configuration 

 MAPE (%) Processing Time  (sec) 

Hidden Layer 

Size 
traingd trainlm trainbr traingd trainlm trainbr 

5 8.19 5.74 4.51 1.3717 0.6334 1.5594 

6  7.55 7.01 5.21 1.2758 0.6520 1.5045 

From the performance of the tested ANN, it can be concluded that CFANN has a 

relatively larger performance error than FFANN. The fastest training algorithm is 

trainlm. The slowest training algorithm is trainbr; however trainbr is typically more 

stable than trainlm and the processing time is acceptable though slightly longer.  
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According to the conclusion drawn from Table 4.1 and Table 4.2, Table 4.3 

provides suggestions (marked with ticks) for selection of training algorithms for ANN 

methodology for load forecasting when factors such as accuracy, processing time, 

robustness and effectiveness are considered.   

Table 4.3.  Suggestions of Training Algorithm Selection 

 traingd trainlm trainbr 

Accuracy     

Processing Time     

Robustness     

Effectiveness     

4.5.2  ANFIS based methodology 

The performance result of ANFIS are summarised in Table 4.4. It shows that 

constant output membership functions (OMFs) always result in lower MAPE and a 

much faster performance than linear OMFs. For constant OMFs, the processing time 

is about 1-2s; while for linear OMFs, the processing time is about 11s, i.e., 

significantly longer. Although linear OMFs with 11s processing time are acceptable in 

situations with only one case or a few cases to be trained, they are not suitable for 

situations with a large number of cases. Besides, with the same IMF setting, constant 

OMFs always perform better than linear OMFs.  

Table 4.4.  MAPE and Processing Time of ANFIS with Different Parameter Configuration 

 MAPE (%) Processing Time  (sec) 

Output 

&Input MF 
trimf gbellmf dsigmf trimf gbellmf dsigmf 

Constant 3.48 4.26 6.67 1.3229 1.4542 1.4049 

Linear 6.68 12.07 9.05 11.2455 11.3320 11.2714 

With the same setting of OMF, trimf always processes the data faster than 

gbellmf and dsigmf, and its MAPE is always the smallest among the three IMFs. 

Therefore, if ANFIS is adopted as the forecasting tool, simpler IMFs such as trimf 

generally perform faster and more accurately than more complicated ones such as 

gbellmf and dsigmf. Furthermore, a simpler OMF (i.e. constant OMF) always 

performs much faster and more accurately than a more complicated OMF (i.e. linear 
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OMF). 

According to the conclusion drawn from Table 4.4, Table 4.5 provides 

recommendations for selection of input membership functions for ANFIS based 

methodology for load forecasting considering key performance indicators, i.e., 

accuracy, processing time, and effectiveness. The recommended options are marked 

with ticks. As the output of ANFIS is unique once the parameter configuration is 

decided, the robustness is not discussed in the table.  

Table 4.5.  Suggestions of IMFs Selection with Constant OMF 

 trimf gbellmf dsigmf 

Accuracy     

Processing Time     

Effectiveness     

The results of the comparative analysis of ANN and ANFIS methodologies for 

efficient and accurate load forecasting based on several performance indicators are 

summarised in Table 4.6. For each performance indicator, better performance is 

marked with a tick. It can be seen that the performances of both methodologies are 

comparable if appropriate parameter configurations are provided. 

Table 4.6.  Suggestions of ANN and ANFIS Selection 

 ANN ANFIS 

Accuracy     

Processing Time   constant OMF comparable 

Robustness trainbr comparable   

The load prediction results obtained by both methodologies using appropriately 

selected parameters as discussed above are plotted against the actual measured 

demand curve in Figure 4.5(a). It can be seen that the predicted demand obtained from 

both ANN and ANFIS matches the measured curves well. The absolute percentage 

error (APE) of the predicted demand defined as 

100%APE


 
a t

t
 (4.8) 

for every sampling point is plotted Figure 4.5(b) in addition to MAPE, where t is the 
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measured demand, a is the predicted demand. Figure 4.5 shows that with appropriate 

parameter configurations, both ANN and ANFIS can perform well in demand 

prediction, and their performances are comparable.  

 

Figure 4.5.  (a) Day-ahead forecasted demand curves against actual demand; (b) APE at different 

sampling times against MAPE 

4.6  Advantages and Disadvantages of ANN and ANFIS 

In spite of the fact that the performances of ANN and ANFIS are comparable, 

both of them have their own advantages and disadvantages. Therefore, the selection of 

the methodology in reality depends not only on the prediction accuracy, but also on 

the specific requirements (e.g. the number of elements in the output and robustness of 

the algorithm) in different case studies.  

The main advantages and disadvantages of both ANN and ANFIS are 

summarised in Table 4.7. In general, ANN has a stronger adaptation (i.e. more 

adaptive to the daily variation of the demand) than ANFIS and it can support multi-

output modules where the number of the elements in the output is more than one. 
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However, as the initial weights of ANN are randomly set by MATLAB, the result 

could be different in different runs, although such a difference is moderate. In ANFIS, 

once the parameters and membership functions are set, the result is unique and 

unchanged. Nevertheless, ANFIS can only support single-output modules, where the 

number of the element in the output is one, and the selection of membership functions 

in the ANFIS approach is experience-dependent. In other words, ANFIS has a higher 

robustness and lower uncertainty than ANN. 

Table 4.7.  Advantages and Disadvantages of ANN and ANFIS 

 ANN ANFIS 

Advantages 
 Strong adaptation 

 Support multi-output module 

 High robustness 

 Low uncertainty 

Disadvantages 
 Low robustness 

 High uncertainty 

 Only supports single output 

 Membership function is experience-dependent 

 

4.7  Upgraded Day-ahead Load Forecasting Approach 

As ANN supports the multi-output modules, it is adopted for load 

disaggregation as well as total demand forecasting in this research.  

The total demand forecasting framework as discussed in Section 4.4 is more 

suitable for forecasting the demand on the target day if there are no significant 

differences between the demand on two adjacent days (i.e. Day N and Day N+1 in 

Figure 4.4). In the case that the demand on the target day significantly differs from the 

demand collected on the day before the target day (e.g. the demand pattern could 

dramatically change when the day transfers from a working day to a holiday or vice 

versa), the framework given as Figure 4.4 could induce errors. As a result, another 

approach should be implemented in parallel to cater for the considerable change in 

demand pattern. Therefore, the upgraded overall methodology for demand forecasting 

is given as Figure 4.6.  
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Base Load 

Forecaster (BLFer)

Change Load 

Forecaster (CLFer)

Adjuster

1. Demand on Day N

2. Weather on Day N

3. Forecasted Weather for Day 

N+1

4. Day Type of Day N 

5. Day Type of Day N+1

Forecasted 

Demand for 

Day N+1

Load Forecasters

 

Figure 4.6.  Total load forecasting framework 

It consists of a base load forecaster (BLFer), a change load forecaster (CLFer) 

and an adjuster. Base load forecaster (BLFer) is trained to forecast the regular load 

pattern for the next day. Change load forecaster (CLFer) is trained to forecast the 

change in hourly demand from Day N to Day N+1 caused by the change of day type or 

the change of weather. The base load forecaster and the change load forecaster 

complement each other. The former emphasises the regular load patterns more and it 

responds slowly to rapid changes in demand, whereas the latter focuses more on the 

demand of the day before the target (or predicted) day and it responds more quickly to 

sudden changes than the former does. Therefore, the combination of the two 

forecasters leads to improved accuracy, especially in cases when sudden load changes 

occur [89]. As a result, an adjuster, which can be either a trained ANN or a least 

square algorithm box, is installed after BLFer and CLFer to take advantage of both. 

More details about the adjuster are given in later subsections. 

This model originated from the 3
rd

 generation of the ANNSTLF tool developed 

by EPRI [89, 90] and has been upgraded to be applied to the study in this thesis. The 

difference between the EPRI’s ANNSTLF tool and the upgraded tool used in this 

research is mainly that: in this research, all weather data including temperature, 

humidity and wind speed are put together in the ANN for training; while in the tool 

developed by EPRI, an effective temperature which combines all weather data into a 

cumulative index is obtained and used as an equivalent temperature. The process of 

derivation for effective temperature is however experience dependent, and it takes 
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longer to process than directly using all the weather data for ANN training.  

As shown in Figure 4.6, the inputs of the upgraded methodology are: (i) 

measured demand on Day N, (ii) weather (temperature, humidity and wind speed) on 

Day N, (iii) forecasted weather for Day N+1, (iv) day type of Day N, and (v) day type 

of Day N+1. When compared with the inputs given in Figure 4.4, there are two more 

sets of inputs here, the weather on Day N and the day type of Day N. They are needed 

because the demand pattern variations from Day N to Day N+1 are considered. The 

output of the upgraded methodology is the forecasted demand for Day N+1. The data 

collection approach is exactly the same as that introduced in Section 4.4. The 

approach is also applicable to the reactive power prediction. 

4.7.1  Base Load Forecasting 

Base load forecasting forecasts the regular demand pattern (or the base load) of 

the next day. 

4.7.1.1  Training Process of Based Load Forecasting 

Figure 4.7 shows the training process of base load forecasting. It is similar to 

the training part as shown in Figure 4.4, except that there are more inputs.  

Inputs of the Training Process 
1. Demand from Day 1 to Day N0

2. Weather from Day 1 to Day N0 

3. Forecasted Weather from Day 2 to Day 

N0+1 

4. Day type of Day 1 to Day N0 

5. Day type of Day 2 to Day N0+1 

Targets of the Training 

Process

Measured Demand on Day N0+1 

Training

Trained ANN

 

Figure 4.7.  Base load forecasting training process 
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If written in the format of the input matrix and the target matrix in MATLAB 

programming [127], the input is written as: 

0
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0

0

0

0

0
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1,0:00 1,0:30 k ,23:00

1,0:00 1,0:30 k ,23:00

1,0:00 1,0:30 k ,23:00

2,0:00 2,0:30 k +1,23:00

2,0:00 2,0:30 k +1,23:00

2,0:00 2,0:30 k +1,23:

BLF

00

1,0:

P P P

T T T

H H H

WS WS WS

T T T

H H H

WS WS WS

DT

PTRN

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

N ,23:00 N ,23:30

N ,23:00 N ,23:30

N ,23:00 N ,23:30

N ,23:00 N ,23:30

N +1,23:00 N +1,23:30

N +1,23:00 N +1,23:30

N +1,23:00 N +1,23:30

00 1,0:30 k ,23:00 N ,2

2,0:00 2,0:30 k +1,23:00

P P

T T

H H

WS WS

T T

H H

WS WS

DT DT DT

DT DT DT

0

0 0

3:00 N ,23:30

N +1,23:00 N +1,23:30

DT

DT DT

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

(4.9) 

where definitions of all variables are the same as those of Equation (4.5). The target in 

the training process is correspondingly written as: 

0 0 0BLF 2,0:00 2,0:30 k +1,0:00 N +1,23:00 N +1,23:30P P … P … P P   TTRN
 

(4.10) 

and the definitions of all variables are exactly the same as those mentioned for 

Equation (4.5).  

4.7.1.2  Testing and Validation Process of Base Load Forecasting 

The testing process is similar to the testing and validation part shown in Figure 

4.4, except that there are more inputs. The format of the inputs for the testing and 

validation process, denoted by PTST, is the same as that represented by Equation 

(4.9). The output of the trained ANN is predicted day-ahead demand for the base load 

with a resolution of 30min, and it will be compared with the measured demand on the 

predicted day. 

4.7.2  Change Load Forecasting 

Change load forecasting (CLF) forecasts the change in hourly demand from Day 

N to Day N+1. 
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4.7.2.1  Training Process of Change Load Forecasting 

The training process of change load forecasting is very similar to that for base 

load forecasting shown in Figure 4.7. The only difference is the target. In change load 

forecasting, the target becomes the demand change (in MW or MVAR) from Day N0 

to Day N0+1. The demand change from Day N0 to Day N0+1 at time T, which is 

denoted by ΔPN0+1,T is represented by: 

0 0 0N +1,T N +1,T N ,TΔP = P P
 

(4.11) 

Thus, the target in the training process of the change load forecasting, which is 

denoted by TTRNCLF is represented by: 

0 0 0CLF 2,0:00 2,0:30 k +1,0:00 N +1,23:00 N +1,23:30ΔP ΔP … ΔP … ΔP ΔP   TTRN
 

(4.12) 

where ΔPk0+1,0:00 is the demand change at 0:00 from Day k0 to Day k0+1 (1≤k0≤N0), 

and similar definitions apply to other variables.  

4.7.2.2  Testing and Validation Process of Change Load Forecasting 

In the testing and validation process of change load forecasting, the inputs are 

exactly the same as those for base load forecasting. The output of change load 

forecasting is the predicted demand change at different times of the day from Day N to 

Day N+1. Using (4.11), this output is superimposed on the measured demand of Day 

N to calculate the predicted demand for Day N+1. Then, the predicted demand is 

compared with the measured demand on Day N+1. 

4.7.3  Adjuster 

An adjuster is installed after BLFer and CLFer to take advantage of both. The 

adjuster takes into account the demand change induced by the change of the day-type 

(e.g. from working days to weekends, or vice versa) [89]. There are generally two 

types of adjusters, a least square algorithm box and a trained ANN.  
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4.7.3.1  Least Square Algorithm Box 

The problem could be formulated as an optimisation problem which derives the 

parameters to make the computed value as close to the measured value as possible, 

shown as: 

Minimise .( ) ( )T

m BC BC m BC BCObj P P w P P w    (4.13) 

where Obj is the objective function. Vector Pm is the measured demand on the 

prediction day and 

 
T

m 1 2 k-1 kP P P … P P
 

(4.14) 

where Pk represents the k
th

 value of measured demand on the prediction day. Matrix 

PBC is the forecasted demand using base load forecasting and change load forecasting 

on the prediction day and 

T

1,BLF 2,BLF k -1,BLF k,BLF

BC

1,CLF 2,CLF k -1,CLF k,CLF

P P … P P
P

P P … P P

 
  

   

(4.15) 

where Pk,BLF represents the k
th

 value of predicted demand from base load forecasting, 

and Pk,CLF represents the k
th

 value of predicted demand from change load forecasting. 

The weighting factor vector, wBC, indicates the contribution of base load forecasting 

and change load forecasting, and it can be represented by: 

 
T

BC B Cw w w
 

(4.16) 

where wB is the weighting factor of base load forecasting and wC is the weighting 

factor of change load forecasting. Taking the derivative of Equation (4.13) and setting 

it to zero, the weighting factor vector is derived as 

 
1

T T

BC BC BC BC mw P P P P



 

(4.17) 

After derivation, the derived weighting factors are saved for further use.  
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4.7.3.2  Trained ANN 

Instead of a least square algorithm box, a trained ANN can also be used as an 

adjuster. In the training process, the inputs of the ANN are forecasted demand using 

base load forecasting and change load forecasting for the prediction day, and the 

target is the measured demand on the prediction day. If written in the format of 

MATLAB code, the input is the transpose of Vector PBC (shown as (4.15)), and the 

target is the transpose of Vector Pm (shown as (4.14)). 

4.7.4  Case Study 

The methodology is applied to both P and Q predictions to predict day-ahead 

demand for “Bus BRW” in a local distribution network. Demand data over a period of 

30 days with 30min resolution are used to illustrate the methodology. Among the 30-

day data, the first third are used for the training of base load forecasting and change 

load forecasting, the second third are used for validation of the two sub-approaches, 

and the last third are used for training and validation of adjustments for base load 

forecasting and change load forecasting.  

The prediction result using the proposed approach for “Bus BRW” is shown in 

Figure 4.8.  

 

Figure 4.8.  Predicted demand versus actual demand: (a) real power, (b) reactive power 

It is shown that the predicted load curves for both real and reactive power are close to 
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the actual curves. The mean absolute percentage errors (MAPEs) of real and reactive 

power are 4.27% and 15.29%, respectively. MAPE of reactive power is higher than 

that of real power as the (absolute) value of reactive power (in MVAR) is much 

smaller than that of real power (in MW). A similar finding regarding MAPE of the 

reactive power prediction is reported in [92]. 

4.8  Probabilistic Characteristics of Absolute Percentage 

Error for Total Load Forecasting 

In some cases involving probabilistic studies, the probabilistic characteristics of 

absolute percentage error (APE) for total load forecasting are of interest. The APE of 

total load forecasting for P or Q at every sampling point is therefore included in a 

sample set, and then the probability density function (PDF) and cumulative 

distribution function (CDF) of APEs are calculated. 

4.8.1  PDF & CDF of APE for either P or Q Prediction 

Following the developed approach and the case study presented in Section 4.7, 

the PDF and CDF of APEs for total P and Q forecasting are plotted and shown in 

Figure 4.9, where |eP| and |eQ| are APEs of P and Q prediction respectively. From 

Figure 4.9(a), it can be seen that the most probable APE for total P prediction is about 

1.95%. Among all the predictions, there are about 65% of predictions with APEs ≤ 

5%, 88% with APEs ≤ 10%, and 100% with APEs ≤ 15%; in 90% of the cases, 

APEs≤10.5%. (Note: The negative values on the horizontal axis in Figure 4.9 are 

induced by MATLAB plotting, but the data used for plotting are all positive. This also 

applies to similar situations in Chapter 5.) The result of Figure 4.9(a) indicates a 

relatively high accuracy and high confidence level of real power forecasting. From 

Figure 4.9(b), it is apparent that the probability density of APEs for Q prediction is 

nearly the same within the interval [8%, 18%], although there are two local peaks at 
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APE=8.1% and APE=17.22%. Among all the predictions, there are about 19% with 

APEs ≤ 5%, 37% with APEs ≤ 10%, 58% with APEs ≤15%, 72% with APEs ≤20%, 

90% with APEs ≤ 30%. The result of Figure 4.9(b) shows that the accuracy and 

confidence level of reactive power forecasting are not as high as those for real power 

forecasting but still reasonable and in line with previously reported results [92, 93]. 

This is predominantly due to much higher variability of the reactive power induced 

among the others by voltage regulating devices (e.g. reactive power compensators).  

 

Figure 4.9.  PDF and CDF of APEs for (a) total P forecasting, and (b) total Q forecasting 

4.8.2  PDF & CDF for the Weighted Average of APE for P and Q 

Prediction 

As real and reactive power are related, |eP| and |eQ| are weighted and combined 

to create a new index, the cumulative absolute percentage error (CAPE), for total 

demand forecasting to describe the total demand forecasting error. In this work, the 

cumulative absolute percentage error (CAPE) is denoted by eF and represented by: 

P Q
F P Qe e

e w e w e 
 

(4.18) 

where w|ep| and w|ep| are the weights of |eP| and |eQ|, respectively. The weights of |eP| 

and |eQ| are dependent on the importance of accuracy of P and Q prediction for 

specific studies. For illustration purposes in this study, the weights of both |eP| and |eQ| 

are set to 50%.  
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With weights of 50% for both |eP| and |eQ|, PDF and CDF curves of the 

cumulative absolute percentage error (CAPE) are obtained and shown in Figure 4.10. 

It can be seen from the CDF that the most probable CAPE is about 9.2%. Among all 

the samples forecasted, there are about 19% with CAPEs ≤5%, 58% with CAPEs 

≤10%, 88% with CAPEs ≤15% and 93% with CAPEs ≤20%; in 90% of the cases, 

CAPEs≤16%. 

 

Figure 4.10.  PDF and CDF of CAPE for total demand forecasting when the weights of APEs for both P 

and Q forecasting are 50% 

4.9  Summary 

The chapter introduced and presented a comparative analysis of two widely used 

artificial-intelligence-based (AI-based) approaches, the artificial neural network 

(ANN) and the adaptive neuro-based fuzzy inference system (ANFIS), for load 

forecasting. It demonstrated that both tools can achieve a high level of accuracy of 

prediction with optimal parameter configurations of prediction algorithms and that 

their performances are comparable when all the parameters are configured properly. 

Recommendations with respect to optimal configuration of parameters for both 

methods are made. 

Additionally, the chapter reported improvements made to the ANN short-term 
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improved forecasting methodology is illustrated using case studies from real UK 

distribution network. Probabilistic characteristics of absolute percentage errors (APEs) 

of total demand forecasting for real power, reactive power and the weighted average 

of APE for total P and Q forecasting are also analysed.  
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5 Load Disaggregation at Bulk Supply 

Points 

 

 

 

 

 

Load disaggregation is a task that estimates the contribution (as well as the 

controllability in some cases) of different categories to the total demand mix at any 

given time of the day. The knowledge of real time load composition will contribute to 

demand side management (DSM). Past work mainly focussed on disaggregating the 

load via either intrusive or non-intrusive load monitoring. However, due to the 

difficulty in accessing all houses via smart meters at all times and the unavailability of 

frequently measured high-resolution load signatures at bulk supply points, neither of 

the two approaches is suitable for frequent or widespread application.  

This chapter employs artificial neural network (ANN) to develop a fast and 

effective load disaggregation approach for bulk supply points (BSP) based on the 

substation RMS measurement without relying on smart meter data, customer surveys 

or high-resolution load signatures. For convenience, the disaggregation approach is 

developed in per-unit. As a result, a rated demand (RD) is needed to convert the 

predicted or measured demand in MW or MVAR to per-unit values. Monte Carlo 

Simulation (MCS) is used to obtain the most probable rated demand and to generate 

the training and validation data in the disaggregation approach. Load compositions 
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obtained using ANN are compared with the validation data and used for load 

characteristics estimation and validation. Probabilistic distributions and confidence 

levels of different confidence intervals for errors of load compositions and load 

characteristics are also derived. In addition, the effect of input absence on load 

disaggregation has also been assessed. The developed disaggregation approach could 

be further extended to an approach that enables the prediction of load compositions as 

well as dynamic responses of the demand (DRD) in the future, if it is integrated with 

the total demand forecasting approach. 

5.1  Rated Demand 

The demand at bulk supply point (BSP) varies continually at different times 

during the day because the customer activities vary continually. At the same time 

under normal operating conditions, system voltage always remains (or is controlled) at 

a relatively stable level (not necessarily at 1.pu. but close to it) to maintain the secure 

and stable operation of the power system. In other words, the rated demand (RD) at 

different times during the day also varies continually as the customer consumption 

behaviour changes.  

5.1.1  Definition of the Rated Demand 

If the actual voltage at a bulk supply point is the same as its rated voltage, the 

demand of the bulk supply point at this moment is referred to as rated demand. For 

example, if the demand at a 6.6kV-level bus is 5MW and the actual voltage (V) of the 

bus is 6.6kV, then the rated demand of the bus at this moment is 5MW.  For the same 

demand but with a 6.5kV voltage, i.e.0.985 p.u. if 6.6kV is taken as the base value, 

rated demand will assume a different value. The rated demand is generally denoted by 

Prated. 

The following case provided by Table 5.1 will be used to describe the rated 
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demand in more detail using the exponential load model. It gives an illustrative 

example with voltages and real power measurement at three different times for a bus 

with voltage level V0.  

Table 5.1.  Voltages and Real Powers of a Bus with Voltage Level V0 at Three Different Times 

t t0 t1 t2 

V V0 V0 0.98V0 

P Pn 1.05Pn 1.05Pn 

At time t0, t1, t2, the voltages are V0, V0, 0.98V0, and the powers are Pn, 1.05Pn, 1.05Pn. 

In the exponential load model shown as Equation (2.2), P0 is the rated demand. 

Therefore, when t=t0, t1 and t2, the exponential load model can be written in the 

formats of (5.1), (5.2) and (5.3) 
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respectively. The corresponding Prated are Pn, 1.05Pn and 
21.05 0.98 nP


 . Thus, it can 

be seen that the rated demand can change at any time of the day, even if the voltage 

remains (or is controlled to be) the same.  

5.1.2  Significance of the Rated Demand  

The phenomenon described above has brought difficulties in a variety of 

research tasks, such as load modelling and load disaggregation.  

5.1.2.1  Rated Demand in Load Modelling 

A typical task that encounters difficulties is measurement-based load modelling, 

especially for load modelling with a relatively long timeframe or natural demand 

change (definition: natural demand change refers to the demand change induced by 

the variation of the customer consumption behaviour), self-disconnection or self-
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recovery.  

Publications studying the measurement-based load modelling approach are 

listed in Chapter 1. In [1], which is the most recent and most comprehensive reference 

on load modelling, the parameters of different types of load models for both individual 

load types and aggregate load at different customer sectors are provided. The result of 

the recovery time constant of dynamic load models of the aggregate load, which is 

shown in Table III-A-5 of Appendix 3-A of [1] and also presented in [133], exceeds 

100s. This indicates that the demand takes about 7-8 min (i.e. 4-5 times the recovery 

time constant, which is about 400-500s) or even longer to achieve a new steady-state 

after the step-down voltage disturbance occurred.  

Papers [4, 134] published almost at the same time as [133] provide the 

parameters of the induction motor model (i.e. resistance/reactance of rotors/stators, 

inertia) for different types of load. If those values are simulated in power system 

analysis software such as DIgSILENT on the “Asynchronous Machine” model with 

the same voltage disturbance (implemented in Chapter 3), it can be found that the 

recovery time constants for all different motors are less than 1 second, and the result 

presented in [1, 5, 20] supports this conclusion.  

A similar diversity in recovery time constants exists between [20] and [18], 

which were created by the same working group and published almost at the same 

time. In [20], the recovery time constant of individual dynamic loads are close to 0s; 

while in [18], the recovery time constants of aggregate demands exceed 100s. As the 

demand is composed of static and dynamic loads, and the recovery time of the static 

load is zero and that of the dynamic load is less than 1s, according to the superposition 

theory, the recovery time constant is technically supposed to be less than 1s and the 

time for recovery should technically be less than 5s, which is much shorter than 7-8 

min.  
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Figure 5.1 (adopted from [18, 133]) shows an example of measurement-based 

load modelling. According to the analysis above, even though the parameters obtained 

in [18, 133] fit the measured dynamic response well (shown as Figure 5.1(b)), they did 

not accurately present the actual load characteristics(e.g. the parameter such as the 

recovery time constants, the steady-state voltage exponents), and the most likely 

reason is that the gradual load change contributed by customer behaviour change 

distorts the already achieved steady-state and makes it look like a recovery behaviour 

with long recovery time (shown as Figure 5.1).  

 

Figure 5.1.  Real and reactive power responses to a 10% voltage step-up: (a) simulated for winter and 

summer and (b) simulated and measured real power responses for summer (adopted from [18, 133]). 

Moreover, it is highly likely that the customer behaviour changes within 7-8min, 

which causes the change of load compositions and eventually the change of the rated 

demand during the period. For example, for a 10kW load which contains 400 efficient 

light bulbs (i.e. 25W each [28]) which can be approximated to constant current load 

[1], when the voltage drops from 1p.u to 0.95p.u, the load immediately drops to 

9.5kW and remains unchanged. If from the moment the voltage drop occurs, other 

bulbs are turned on one after another at one-second intervals, then after 10s, the load 

will gradually increase to 9.7375kW. The load is still made up of light bulbs with the 

same load characteristics, but the change of the bulb number makes the whole process 
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look like a recovery behaviour with a recovery time constant of approximately 2-2.5s, 

and it will mislead the model structure selection from a static model to a first-order 

exponential recovery model.  

Therefore, for load modelling with relatively long timeframe measurement data 

where customer behaviour changes may occur, it is important to decide the load 

changes contributed by both voltage changes and customer behaviour changes 

quantitatively.  

5.1.2.2  Rated Demand in Load Disaggregation 

The rated demand (RD) also plays an indispensable role in load disaggregation 

at the bulk supply point (BSP) with limited data (i.e. RMS measured voltage, real 

power and reactive power). The ANN-based approach for load disaggregation 

developed in later sections of this chapter will enable estimation of load categories 

participating in the total demand at any time. As the approach is developed using load 

models in per unit systems, when applied to the real measurement data in MW and 

MVAR, appropriate ‘base values’ at different times are required to transform the real 

value into the per-unit value so that the approach can be applied.  

In the majority of the literature studying load modelling as those listed above or 

in Chapter 1, the real power (P) and reactive power (Q) are presented with per unit 

value; the process that transforms the real values into per unit values is missing. For 

example, in EPRI’s load modelling report [5], even though the natural load increasing 

at 10:00am at Bus Oakridge 743 is considered and a value is assigned as the rating, it 

is not justified why this value is selected and whether it remains the same at different 

times. Therefore, rated demand plays a significant role as the ‘base value’ to transform 

data given in MW or MVAR into appropriate per-unit values. 

To fill the gap between the past work and ongoing research, this section 

proposes a Monte-Carlo based approach for probabilistic estimation of the rated 
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demand (RD) at the bulk supply point (BSP) at different times during the day. The 

data are collected from real substations in UK distribution networks and include 

measured RMS real power (P), reactive power (Q) and voltage (V) at BSP. The 

voltage level of BSP is selected as the rated voltage V0. Monte-Carlo Simulation 

(MCS) is applied to generate the voltages and the weighting factors (WF) of different 

load categories (i.e. contribution of different load categories to total demand) and 

calculate per-unit total P and Q for all the V and WF. Probability distribution is used to 

present the characteristics of the rated demand.  

5.1.3  Derivation of Rated Demand 

Figure 5.2 shows how the rated demand is derived in this study and how the 

actual demand is transformed into per-unit value.  

Assigned V

{1}

Generated WFs

{2}

Computed P 

in per-unit

{3}

CBA

1.(Most Probable) 

Rated P & Q

2.(Most Probable) 

P&Q in per-unit

{4}

Probabilistic 

Analysis

 

Figure 5.2.  Framework for transforming actual demand into per unit value 

First of all, operating voltages are assigned (box labelled {1} in Figure 5.2) according 

to the actual voltage range in the real UK distribution network. Then, weighting 

factors (WFs) that indicate the contribution of different load categories are generated 

randomly (box labelled {2}). With the assigned voltages and the generated WFs, using 

Equation (2.2), (2.23) or (2.24) and (1.2) and Monte Carlo Simulation, the real powers 

in per-unit for different voltages and different WFs are computed (box labelled {3}). 

These computed real powers (in per-unit) are classified based on corresponding 

voltages. Using probabilistic analysis techniques, for any given voltage, the 

probabilistic characteristics of the computed real powers in per-unit are obtained (box 

labelled {4}). The rated demands for real powers are then calculated by dividing the 
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actual real powers by computed real powers in per-unit (box labelled {4}). According 

to the power factor calculated from the actual real and reactive powers, the rated 

demands for reactive powers and the probabilistic characteristics of reactive powers in 

per-unit for any given voltage are computed (box labelled {4}). More details are 

provided in the following sub-sections. 

5.1.3.1  Voltage Range Selection 

Based on the data obtained from substation in real UK distribution network, the 

voltages of all buses vary between 0.95p.u. and 1.05p.u. (i.e. the voltage level of the 

substation is selected as the rated voltage). To consider any extreme operating 

condition, the voltage range in this study is set to [0.9p.u, 1.1p.u]. Therefore, to 

generate cases for Monte Carlo simulation, voltages within [0.9p.u, 1.1p.u] are 

selected and assigned to an array Va  

1 2 va n NV V V V V     
(5.4) 

with some given step change (e.g., a step change of 0.005p.u) satisfying 

1n nV V d  
 

(5.5) 

where NV is the total number of voltages assigned to Va, Vn is the n
th

 term of Va 

(1≤n≤NV), d is the given step change. The n
th

 term Vn can be further represented by an 

arithmetic sequence shown as 

 0.9 1nV d n  
 

(5.6) 

According to the voltage range selected, 0.9 is the 1
st
 term and 1.1 is the last (i.e. the 

NV
th

) term. Therefore, if 0.005p.u. is selected as the step change of the voltage, NV=41. 

5.1.3.2  Weighting Factor Generation 

For the purpose of the study, according to Table 1.2, the loads are classified into 

ten load categories, shown in Table 5.2. From Table 5.2, it can be seen that the ten 

load categories are grouped into two parts, the controllable part and the uncontrollable 
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part; either of the two parts contains five categories. According to recent UK customer 

surveys from [36, 37], the controllable load varies from 10% to 50%. Therefore, the 

controllable load range in this study is set as [10%, 50%], and the uncontrollable load 

is set as [50%, 90%]. To ensure that all possibilities are considered within the range, 

the controllable load varies gradually from 10% to 50% with a 5% step increase, and 

the uncontrollable part correspondingly varies from 90% to 50% with a 5% step 

decrease. Therefore, there are 9 possibilities of the controllable-uncontrollable 

combinations in total. 

Table 5.2.  Load Categories and Their Controllability in This Study 

Group Category 

Controllable 

 CTIM1 

 QTIM1 

 Controllable CTIM3 

 QTIM3 

 Controllable resistive 

Uncontrollable 

 Uncontrollable CTIM3 

 Uncontrollable resistive 

 Rectifier 

 SMPS 

 Lighting Loads 

For each of the 9 possibilities, the weighting factor (WF) which indicates the 

percentage of each load category participating in the total demand are generated 

randomly for different load categories within corresponding parts using Monte Carlo 

simulation. For example, for a case with a “25% controllable part and 75% 

uncontrollable part” combination, the WFs of different controllable loads are 

generated from 0% to 25%, and the WFs for all the uncontrollable loads are generated 

from 0% to 75%. The sum of WFs for all loads in either of the controllable and 

uncontrollable part remains unchanged, and all generated WFs are ensured positive. 

The number of WFs generated for each controllable-uncontrollable combination is 

recorded as NW. Therefore, there are 9×NW controllable-uncontrollable combinations 
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in total. 

5.1.3.3  Per-unit Total P Calculation 

After V and WF for all possibilities are generated, all possible V-WF 

combinations are obtained to calculate the per-unit aggregate P, via Equation (2.2) and 

(1.2). The exponential load models of individual load categories with voltage-

dependent exponents have been derived in Chapter 2. There are NV×9×NW V-WF 

combinations as well as calculated per-unit P in total. Each calculated per-unit 

aggregate P is one possible rated demand (in p.u.) of real power for the corresponding 

voltage. 

5.1.3.4  Probability Distribution of Per Unit Total Demand 

After the per-unit P is calculated, the probability distribution of the per-unit P 

under each corresponding voltage can be generated, and the value that has the highest 

probability density is defined as the most probable per-unit real power. The rated 

demands of the real power are derived by dividing the actual demand by the calculated 

per-unit real power, and the most probable rated demand of the real power is derived 

by dividing the actual demand by the calculated most probable per-unit real power.  

Measured real power in per-unit can be determined via Monte Carlo simulation 

in the two following ways: (1) divide the measured real power in MW by the 

corresponding rated demand for the real power; (2) directly take the per-unit value of 

the real power calculated for the corresponding voltage at a given time. The two are 

actually equivalent. Similarly, the most probable value of measured/predicted real 

power in p.u. could be determined: (1) divide the measured/predicted real power in 

MW by the most probable rated demand for the real power; (2) directly take the most 

probable per-unit real power calculated for the corresponding voltage at a given time. 

As power factor can be obtained from the measurement, the rated demands for the 

reactive power (in MVAR) and measured reactive power in per-unit can be calculated 
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easily.  

5.1.3.5  Application to Predicted Demand 

It is worth noting that in day-ahead total load forecasting, the quantities to be 

predicted and used for load composition prediction are P and Q, and the voltage 

cannot be predicted in advance. However, when predicting P and Q, voltage is not 

taken as an index in ANN training, either. In other words, day-ahead total demand 

prediction is executed considering that the voltage on Day N+1 at given time remains 

the same as it is on Day N. Therefore, when determining the rated demand or 

predicted per-unit P&Q demands for Day N+1, the voltage of Day N+1 is assumed to 

be the same as that of Day N.  

Using the assumed voltage, the rated demand for P can be determined via 

Monte-Carlo simulation, and the most probable predicted P in per-unit could be 

determined in the similar ways mentioned above. According to the predicted P and Q, 

predicted Q in p.u. could be calculated using the predicted power factor. The predicted 

P and Q in p.u. will be used in the load disaggregation approach to predict day-ahead 

load composition at different times of the day. 

5.1.3.6  Probabilistic Rated Demand Curve 

As per-unit P is probabilistically distributed, RD is also probabilistically 

distributed. To obtain the rated demands at different times of the day as well as 

probabilistic rated demand curve, a general way is using inverse cumulative 

distribution function (ICDF) generation function (in MATLAB or other computation 

software). According to the obtained probability distribution function (PDF), a group 

of per-united P can be generated. Dividing the actual demand by them at different 

times of the day, the probabilistic rated demand curves can be obtained. Sometimes, if 

the derived PDF looks like one of the widely used distributions such as Gaussian 

distribution, it can also be approximated by the corresponding distribution, which will 
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simplify the computational task. 

5.1.4  Results and Discussion 

In this study, 0.005 p.u is selected as the voltage step change, and for each 

voltage assigned to Va, there are 33,600 calculated per-unit values of the real power in 

total.  

5.1.4.1  Probability Distribution of Per Unit Total Demand 

Figure 5.3 shows the probability distribution of per-unit total demand when per-

unit voltage is 0.97 and 1.03p.u respectively as illustrative examples. The result 

indicates that the probability distribution can be very accurately fitted by a Gaussian 

distribution (i.e. red solid line in Figure 5.3). Probability distributions of per-unit real 

power at other voltages are not shown, but they have similar shapes as those shown in 

Figure 5.3.  

 

Figure 5.3.  Probability distribution of per-unit total demand when voltage is: (a) 0.97 p.u, and (b) 1.03 

p.u 

Figure 5.4 shows the fitted mean (μ) and standard deviation (σ) of calculated 

per-unit P for different voltages from 0.9 to 1.1p.u. It can be seen that the mean value 

(also the most probable value, if a Gaussian distribution is used) of calculated per-unit 

total P increases as the voltage increases, while the standard deviation decreases as the 

voltage approaches 1.00 p.u. The means and the deviations are in per-unit. 
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Figure 5.4.  Fitted mean and deviation for different per unit voltage 

5.1.4.2  Daily Probabilistic Rated Demand 

Figure 5.5(a) shows the actual voltages at the selected 6.6kV bus “Bus DKST” 

from 8:00 to 17:00, on 25 June, 2014. The voltages are lower than 6.6kV at all times 

during the day. Figure 5.5(b) shows the boxplot of the probabilistic rated demand for 

real power and the actual real power demand at the same bus during the same period. 

From Figure 5.5(b), it can be seen that the majority of the rated demands for the real 

power are slightly higher than the actual real power demand. 

 

Figure 5.5. (a) The actual voltage verses voltage level, and (b) boxplot of probabilistic rated demand 

against actual demand at a 6.6kV ENW bus from 8:00 to 17:00. 
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According to the measured P and Q, the magnitude and the characteristics of 

power factors (i.e. lagging or leading) at different times during the day can be 

calculated. Based on the calculated power factors, the daily probabilistic rated demand 

for Q can be calculated, correspondingly. Figure 5.6 shows the boxplot of the 

probabilistic rated demand for Q and the actual Q demand at the same bus as for 

Figure 5.5 during the same period. From Figure 5.6, it can be seen that the majority of 

the rated demands for Q as well as the most probable values are slightly higher than 

the actual Q demand.  

 

Figure 5.6.  Boxplot of probabilistic RD for Q against actual Q demand at Bus “DKST” from 8:00 to 

17:00 on 25 June, 2014. 

5.1.4.3  Rated Demand Applied to Real and Reactive Power for 

Disaggregation 

It is worth noting that, for convenience in the disaggregation and validation 

process in later chapters, generally, only the most probable values for rated demand 

and predicted per-unit real and reactive power are used. If the methodology for rated 

demand and per-unit real and reactive power derivation is applied to the demand data 

on 25 June, 2014 of “Bus BRW”, the derived most probable rated demand for P and 

most probable per-unit P and Q are shown in Figure 5.7. 
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fluctuates around the rated voltage. Therefore, rated demands at different times of the 

day should be different; correspondingly, the calculated per-unit P and Q at different 

times of the day should also be different. Figure 5.7(b) shows the actual P demand 

verses the most probable rated demand of P in MW at different times of the day. 

Generally, rated demand is different from the actual demand, although the difference 

is moderate in this case. The most probable rated demand is used to calculate the most 

probable per-unit P and Q at different times of the day, shown as Figure 5.6(c) and 

Figure 5.6(d), respectively. It can be seen from Figure 5.7(c) and Figure 5.7(d) that 

during the day, the most probable per-unit values of the real power range from 

0.985p.u to 1.01p.u and those of Q range from 0.2p.u to 0.4p.u. 

 

Figure 5.7.  (a) Actual voltage measurements verses voltage level; (b) rated P demand verses actual P 

demand; (c) Per-unit P at different times of the day; (d) Per-unit Q at different times of the day 

5.1.5  Summary about Rated Demand 

Section 5.1 described a Monte-Carlo-based approach to obtain the rated demand 

as well as per-unit P and Q at different times during the day. The results are used for 

more accurate load disaggregation (and the prediction of load compositions) as 

illustrated in the following subsections. 
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5.2  Load Disaggregation Based on Load Categories and 

Controllability 

Significant attention was paid to load disaggregation in past work. Two 

approaches commonly used for load disaggregation are intrusive load monitoring and 

non-intrusive load monitoring, which have been introduced in Chapter 1. Considering 

the deficiency of the past approaches, this section develops a new load disaggregation 

approach to estimate the load composition at bulk supply busses based only on general 

substation measurements, i.e., RMS of real power (P), reactive power (Q) and voltage 

(V). It does not require the involvement of customers and facilitates the real time 

estimation of dynamic load characteristics at the bulk supply point without carrying 

out voltage disturbance tests. ANN is used to develop the approach.  

By classifying the customers into ten load categories mentioned in Section 5.1 

and making use of the appropriate voltage-dependent load models for different load 

categories mentioned in Chapter 2, the algorithm captures the relationships among the 

voltage, real and reactive power consumptions, and appropriate weighting factors of 

the load categories. Monte Carlo simulation is used to generate the weighting factors 

for load composition within the total load and bus voltages, and to establish P and Q 

of the total load based on individual contributions of different load categories. The 

inputs to the ANN in the training process are the voltage and the total load real and 

reactive power, and the targets are the weighting factors (WF) of different load 

compositions. The error between the calculated WFs and the WFs obtained from 

validation data is assessed and its probability density function (PDF) and the 

confidence level (CL) of different confidence intervals are calculated. The estimated 

WFs are then used as an input to the estimation of aggregate load characteristics and 

the results are compared with the generated validation data. 

5.2.1  Disaggregation Procedure 

The ANN based load disaggregation approach considers all possible 

combinations of load supply voltage and load compositions at the bulk supply point, 

and captures the relationship among the load compositions, the voltage, the real and 

reactive power at the bulk supply point under all circumstances via offline training. 
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The approach can be summarised into the following steps: i) derive voltage 

dependent P and Q exponential load model coefficients for different individual load 

categories; ii) generate random voltages and weighting factors for training; iii) derive 

all combinations of voltages and weighting factors; iv) use the result in i) and iii) to 

define the input and the target for the ANN; v) train ANN and save trained ANN; vi) 

repeat ii)-iv) to generate validation data; vii) validation, probability distribution 

derivation and confidence level analysis. A flowchart of the proposed methodology is 

shown in Figure 5.8. Among the procedures, the details of Step i) have already been 

completed in Section 2.3. For other steps, more details will be provided in the 

following text. 

i) vi)v) vii)

ii)

iii)

iv)

Generation of 

Training Data Generation of 

Validation 

Data 
Training

Derive Voltage 

Dependent 

Load Model 

Coefficients

 

Figure 5.8.  Flowchart of the proposed methodology 

5.2.2  Generation of the Training Data for ANN  

5.2.2.1  Generation of Voltages 

In most cases, the power system is operating in normal conditions, with the bus 

voltages ranging from 0.95 p.u to 1.05 p.u. Considering the potential margins in 

extreme cases and ensuring that the developed tool could be widely applied to 

networks and areas both within and outside the UK, the voltage range used in load 

disaggregation is [0.9, 1.1] p.u. With Monte Carlo simulation, voltages ranging from 

0.9 p.u to 1.1 p.u are generated randomly using uniform distribution, ensuring that the 

voltage is sampled with equal probability for training. The number of voltage samples 

is denoted as NV. 

5.2.2.2  Generation of the Weighting Factor  

The procedure of the generation of weighting factors (WFs) is exactly the same 
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as the circumstance of the derivation of the rated demand, discussed in Section 

5.1.3.2. The number of WFs generated for each of the 9 controllable-uncontrollable 

combination possibilities is denoted as NW.  

5.2.2.3  Combinations of Voltage and Weighting Factor 

After random voltages and WFs are generated, all possible combinations of 

voltages and weighting factors are obtained in order to generate the inputs for ANN. 

There are in total NV×9×NW V-WF combinations.  

5.2.2.4  ANN Input and Target  

For each combination of the voltage (V) and the weighting factor (WF), the total 

real and reactive power at the bulk supply point is calculated by Equation (1.2). They 

are regarded as the measurement (RMS value) collected from the bulk supply point 

here. The real and reactive power in Equation (1.2) for individual load categories 

under different voltages can be calculated with the exponent-voltage relationship 

given in Figure 2.6, by Equation (2.23) or (2.24), (2.2) and (1.2). The inputs for ANN 

are total load real power PAgg, total load reactive power QAgg, and supply voltage V at 

the bulk supply point. They are written in an input matrix PTRN represented by  
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,1 , 9

1 9

Agg Agg N N

Agg Agg N N

N N
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(5.7) 

Sometimes when V or Q measurements are not available, the inputs for ANN become 

“P and Q” or “P and V” only. In the former case, the third row of Equation (5.7) is 

removed; in the latter case, the second row of Equation (5.7) is removed. The targets 

of ANN are corresponding WFs used to calculate aggregate real and reactive power, 

written as a target matrix TTRN represented by 

1,1 1,  9

,

10,1 10,   9

      

N N
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(5.8) 

where wi,j is the WF of load category i for j
th

 V-WF combination, with 1≤i≤10, 1≤j≤ 

NV×9×NW. All data in input matrix and target matrix are in per unit values.  
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5.2.2.5  ANN Training 

After the input and the target are defined, an ANN is employed as the training 

tool. The flow chart of the training process as well as ANN settings are shown in 

Figure 5.9. The size of the ANN hidden layer is configured as the nearest integer to 

the estimated value of Equation (4.2). The transfer function for the hidden layer and 

the output layer are configured as logsig and tansig respectively to ensure that the 

output of the ANN (i.e. the weighting factors) is within [0,1]. (Note: As mentioned in 

Section 4.4.3.1, the output of a logsig function is insensitive to its input. If selected as 

the transfer function of the output layer, it could limit the final output of the ANN to a 

small range which cannot cover the range of the weighting factors. Therefore, the best 

way is using a tansig transfer function, with positive inputs to the output layer. To 

ensure the inputs of the output layer (also the output of the hidden layer) are positive, 

a logsig is selected as the transfer function for the hidden layer.).  

PTRN

TTRN

Training Process

 Proper hidden layer size

 Log-sigmoid as hidden layer TF and Tan-

sigmoid as output layer TF

 Bayesian Regulation Backpropagation 

(BRBP) Training Algorithm

Trained ANN

 

Figure 5.9.  Flow chart and ANN settings of the training process 

As the training process considers all combinations of voltages and weighting 

factors, once trained, the ANN can be applied to extract the load compositions at any 

time of any day in the future, as long as the measurement of bus voltages and the 

demand are available. Therefore, a robust and accurate training algorithm is required, 

although it does not have to be very fast. According to the description in Section 

4.2.2.4, Chapter 4, Bayesian Regulation backpropagation (BRBP) with high accuracy 

and high robustness is adopted as the training algorithm in this study. Other 

parameters are configured as MATLAB default value because their effects are not as 

significant as main parameters mentioned in Chapter 4. The ANN trained in this way 
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captures the relationship among the load supply voltage, total demand consumption 

and the compositions of different load categories. This relationship can be used for 

validation purpose and for further application. 

5.2.3  ANN Validation with Generated Data 

The developed ANN tool will first be validated with generated data. The 

validation process using measured steady-state and dynamic demand data is illustrated 

in Chapter 6. 

5.2.3.1  Generation of the Validation Data 

A similar process for training data generation as described in Section 5.2.2 is 

implemented for validation data generation. The input and the target in the validation 

process can be written as an input matrix PTST according to (5.7) and a target matrix 

TTST according to (5.8). The target for validation process is used as a standard to 

assess the performance of the trained ANN.  

Trained ANN 
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+
-

Controllable
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Figure 5.10.  Validation process block diagram 

5.2.3.2  Validation Process 

The block diagram of the validation process is shown in Figure 5.10. It consists 
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of three parts: i) validation of load composition weighting factor (Part 1), ii) validation 

of controllable load weighting factors (Part 2), iii) validation of load model (P and Q) 

calculated by ANN computed composition weighting factors and the individual P and 

Q consumption (Part 3). 

At the beginning, the input data PTST (P&Q&V or a subset of them) is 

processed by the trained ANN to create an output vector a0, which contains weighting 

factors for individual load categories computed by the trained ANN. Due to the error 

produced during the computation process, the sum of elements inside a0 deviates 

slightly from 1. To ensure the sum of the weighting factors is exactly equal to 1, a 

weighting adjuster is installed after the trained ANN to normalise a0. The 

normalisation process is represented as 

0i

i N

0i

i=1

a
a =

a
 

(5.9) 

where ai  is the adjusted weighting factor for load category i, a0i is the weighting factor 

for load category i before being adjusted, N is the number of elements in vector a and 

a0. Therefore, the weighting adjuster output, vector a, is regarded as the final 

computed weighting factor vector. 

A. Weighting Factor Validation 

In Part 1, the weighting adjuster output is compared with the target TTST, the 

initial weighting factors used to generate PTST. The weighting factor error (WFE) for 

different individual load categories, Vector ej in Figure 5.10, is obtained by taking the 

difference between a and TTST. An absolute value operator denoted by ABS is 

installed after ej in Figure 5.10 to take the absolute value. To obtain the overall error 

(|eoverall|) of the disaggregation approach, an aggregation approach is needed to 

combine the absolute errors of different load categories into an aggregate error. In 

[135], series of probability combination approaches are proposed, such as average or 
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weighted average, multiplicative average, and Bayesian approaches. It is concluded 

that simple average or weighted average can work better on probability combination 

problem than more complicated rules which always induce abundant computation 

tasks and over-performance. As a result, considering the effects of the weights of 

different load categories on the error aggregation process, weighted average approach 

is adopted to aggregate individual errors into an overall error, shown as 

1

N

overall i i

i

e a e


 
 

(5.10) 

where N is the total number of load categories, ai is the computed weighting factor for 

load category i, ei is the weighting factor estimation error for load category i in each 

“Vector ej”, |eoverall| is the aggregate load disaggregation error, also named absolute 

weighting factor error (AWFE).  

B. Validation of Controllable Load Contribution 

After weighting factors of individual load categories are calculated, for both a 

and TTST, the weighting factors that correspond to controllable loads are summed up 

to create the WFs of the controllable load, shown in Part 2 of Figure 5.10. A similar 

task applies to the derivation of the weighting factors of the uncontrollable load. Then, 

the weighting factors of the controllable load calculated from a and TTST are 

subtracted, and the difference is defined as the weighting factor error (WFE) of the 

controllable load (eC in Figure 5.10). Sometimes, absolute weighting factor error 

(AWFE, the absolute value of WFE) is also of interest. Therefore, similar to the 

process of weighting factor validation, an absolute value operator is installed after eC 

to obtain AWFE, |eC|. A similar approach is used to obtain WFE and AWFE of the 

uncontrollable load. 

C. Load Model Validation 

In Part 3 of Figure 5.10, the computed weighting factors are used to calculate 
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the total real and reactive power at the bulk supply point (Pc, Qc) via component-based 

load modelling approach using Equation (2.2) and (1.2). The calculated real and 

reactive power, Pc and Qc, respectively, are compared with the ANN input P and Q. 

The absolute difference between Pc and ANN input P, denoted as eP, is given by 
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(5.11) 

and the absolute difference between Qc and ANN input Q, denoted as eQ, is given by 
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(5.12) 

where N is the total number of load categories, wi is the weighting factor for load 

category i used to calculate P and Q in PTST, ai is the computed weighting factor for 

load category i, pf0i is the nominal power factor of load category i, αi and βi are 

voltage-dependent exponents of load category i for P and Q, respectively. Both eP and 

eQ are defined as absolute load model error (ALME), the former for P and the latter 

for Q. 

There are two reasons to compare the computed load characteristics with the 

input P and Q of ANN. One reason is that in reality, the load composition data of 

different categories of loads at any time of the day are generally not available, but the 

total demand data can be obtained easily from the bulk supply point. Therefore, 

comparing the computed load characteristics with the measured total demand is a 

more straightforward way to validate the load disaggregation than comparing the 

computed percentages with the “acquired percentage” of individual load categories (if 

there is any). Another reason is that to some extent, the computed load characteristics 

are indeed able to provide an assessment of the accuracy of the load disaggregation. 

As the individual load characteristics (provided in Chapter 2) are accurate, the 

conditional statement “if the computed load composition percentages are accurate, 



Chapter 5: Load Disaggregation at Bulk Supply Points 

175 

 

then the computed aggregate load characteristic is accurate” is true. Therefore, the 

contrapositive of the conditional statement “if the computed aggregate load 

characteristic is not accurate, then the computed load composition percentages is not 

accurate” is also true. In other words, a large absolute load model error (ALME) 

indicates a disaggregation with a lower accuracy or a lower confidence level under 

some given accuracy; a relatively small ALME, on the contrary, can indicate that the 

disaggregation result is to some extent accurate, or at least reasonable. 

5.2.3.3  Probabilistic Distribution, Confidence Interval and Confidence 

Level of the Errors  

As PTST contains large numbers of randomly generated validation data, the 

weighting factor error (WFE), the absolute weighting factor error (AWFE) and the 

absolute load model error (ALME) are probabilistically distributed. Thus, probability 

distribution function (PDF) is adopted to present the distribution of the errors. The 

confidence interval and the confidence level of the error indicate the reliability of the 

load disaggregation approach. A confidence interval (CI) is an observed interval that 

frequently includes the parameter of interest if the experiment is repeated, and 

confidence level (CL) is defined as the percentage of all possible samples that can be 

expected to include the true population parameter [125]. To assess the reliability, 

cumulative distribution function (CDF) is adopted to obtain the confidence levels in 

different confidence intervals of the errors. 

5.2.4  Illustrative Results of Load Disaggregation 

In this study, there are 22500 P&Q&V data sets for training and 5625 P&Q&V 

sets for validation. Implemented in MATLAB 2013a on an Intel(R) Core (TM) i5-

2400 CPU @ 3.10GHz computer installed with 64-bit Windows 7 system, the training 

process takes up to 30 minutes when all inputs (P&Q&V) are available (Case 1), and 

the validation process takes up to 1 sec. The estimation error of weighting factors (i.e. 
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both WFE and AWFE), controllable load contributions (i.e. both WFE and AWFE) and 

load models (i.e. ALME) when all inputs are available are presented and discussed in 

this section. The cases in which the input is missing are discussed in Section 5.2.5.  

5.2.4.1  Estimation Error of Weighting Factors 

A. WFE of Individual Load Categories 

Figure 5.11(a) shows PDFs of the weighting factor errors (WFEs) of different 

load categories when all inputs are available. The letter ‘C’ or ‘UC’ inside the bracket 

in the legend stands for ‘controllable’ or ‘uncontrollable’ load. It shows that the most 

probable values of WFEs (i.e. WFE with highest probability density) for all categories 

range from -1% to 6%. Figure 5.11(b) shows CDFs of WFE for all load categories. 

The confidence level (CL) of estimation with required WFE for each load category 

can be read from it, and it shows that for different load categories, there are from 60% 

(i.e. 0.8-0.2=0.6=60%) to 95% (i.e. 1-0.05=0.95=95%) of WFEs at the interval [-10%, 

10%]. After estimating the percentages, those CDFs can be used to generate 

probabilistic decomposed daily loading curves (mentioned and defined in Chapter 1 

and Chapter 3) which indicate probabilistically distributed participation of different 

load categories. For the same reason, the weighting factor error (WFE) instead of the 

absolute weighting factor error (AWFE) is sometimes used for error analysis of 

individual load categories.  

 

Figure 5.11.  (a) PDF, (b) CDF of WFE for individual load categories when all inputs are available 
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B. AWFE of Individual Load Categories 

Figure 5.12 shows PDFs and CDFs of absolute weighting factor errors (AWFEs) 

of different load categories when all inputs are available. It shows that the most 

probable values of AWFEs for all categories range from 0 to 5%, mostly around 2%. 

Figure 5.12(b) shows CDFs of AWFE for all load categories. It shows that for 

different load categories, there are from 30% to 80% of AWFEs within [0, 5%], from 

60% to 95% within [0, 10%], and from 80% to 99% within [0, 15%].  

 

Figure 5.12.  (a) PDF, (b) CDF of AWFE for individual load categories when all inputs are available 
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The probability density functions (PDFs) or the cumulative distribution 
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P&Q&V input set are probably correlated. Considering this possible circumstance, the 
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after AWFE of each individual load category is obtained (ei in Part 1, Figure 5.10), 

rather than after PDFs and CDFs for all individual load categories are produced.  

Figure 5.13 shows aggregate PDF and CDF of the absolute weighting factor 

-10 0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

AWFE (%)

PD
F

(a)

 

 

-10 0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AWFE (%)

C
D

F

(b)

 

 
1CT

3CT(C)

1QT

3QT

Resistive(C)

3CT(UC)

Resistive(UC)

Rectifier

SMPS

Lighting



Chapter 5: Load Disaggregation at Bulk Supply Points 

178 

 

error (AWFE) for the load disaggregation approach. From PDF, it is observed that the 

error is most likely to be about 6%. On the data cursor of CDF, it can be read that the 

confidence level of the disaggregation approach is about 23% at the confidence 

interval [0, 5%], 86% at the confidence interval [0, 10%], and 99% at the confidence 

interval [0, 15%]; the confidence interval with a confidence level of 90% is [0, 

10.5%]. In other words, for every P&Q&V measurement set, the error of the load 

disaggregation approach is no more than 15% in 99% of the cases, no more than 10% 

in 86% of the cases, and no more than 5% in 23% of the cases; 90% of all estimations 

are with AWFE less than 10.5%.  

 

Figure 5.13.  PDF and CDF of AWFEs for the disaggregation approach when all inputs are available 
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5.2.4.2  The Error of Estimation of the Contribution of the Controllable 

Load to the Total Load Mix 

Figure 5.14(a) shows PDFs and CDFs of the absolute weighting factor errors 

(AWFEs) of the controllable and uncontrollable load when all inputs are available. 

They are found to be coincident, which was expected, because for each calculation, 

the weighting factor error (WFE) of the controllable load is the additive inverse of that 

of the uncontrollable load, and vice versa. The most probable absolute weighting 

factor error (AWFE) for the controllable load (as well as the uncontrollable load) is 

around 4.3%. Figure 5.14(b) presents PDFs and CDFs of WFEs of the controllable 

and uncontrollable load. It shows that PDFs of WFEs of the controllable and 

uncontrollable load are symmetrical with respect to the y axis. This phenomenon 

vindicates the coincidence of two PDF curves or two CDF curves of AWFEs shown in 

Figure 5.14(a). It can be read from Figure 5.14(a) that the confidence level (CL) with 

an AWFE below 5%, 10%, 15%, 20% is about 32%, 60%, 78%, 90% respectively.  

 

Figure 5.14.  (a) PDF and CDF of AWFE of controllable or uncontrollable load, and (b) PDF and CDF 

of WFE of controllable and uncontrollable load, when all inputs are available 
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Figure 5.15.  (a) PDFs, and (b) CDFs of ALME of P and Q when all inputs are available 
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(5.14) 

respectively, where ∆wi is the WFE of load category i and it can be positive, zero or 

negative. 

On the one hand, for individual load categories, the absolute value of α is 

smaller than β under the same voltage, which contributes to the larger sensitivity of 

ALME of Q than that of P. On the other hand, when there is a large number of devices 

with a nominal power factor lower than 0.707 (i.e., rectifiers with passive power 
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factor correction circuits, some induction motors, etc.), the sensitivity of ALME of Q 

to WFE will increase faster, especially when the actual voltage is higher than 1p.u and 

when the WFE for these individual load categories are positive. However, when the 

WFE of some individual load categories is negative and their sensitivities are 

relatively large, the ALME of Q could be smaller than that of P. Figure 5.16 shows 

that most of the points (ePi, eQi) fall above the line eQ = eP. In other words, ALME of P 

is smaller than that of Q in most cases. 

 

Figure 5.16.  eP-eQ plot against Line eQ=eP 

Compared with Figure 5.13, Figure 5.15(b) also shows that within the same 

confidence interval, ALME has a higher confidence level than AWFE. This means that 

the moderate variation in load composition estimation does not significantly affect the 

estimation of aggregate load characteristics.  
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Figure 5.17 shows PDFs and CDFs of weighting factor errors (WFEs) of 

different load categories when V measurement is missing. It can be seen that the most 

probable values of WFEs now range from -1%-7%, which shows a slight increase in 

magnitude when compared with -1%-6% in Figure 5.11(a). Figure 5.17(b) indicates 

that for different load categories, there are from 58% to 93% of WFEs within [-10%, 

10%], which shows a slight decrease when compared with Figure 5.11(b).  

 

Figure 5.17.  (a) PDF, and (b) CDF of WFE of different load categories when V measurement is missing 

B. AWFE of Individual Load Categories 

Figure 5.18 shows PDFs and CDFs of AWFEs of different load categories when 

V measurement is missing.  

 

Figure 5.18.  (a) PDF, and (b) CDF of AWFEs of different load categories when V measurement is 

missing 
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Compared with Figure 5.12(a), it can be seen in Figure 5.18(a) that the most probable 

values of WFEs increase from 0-5% to 2%-7%, mostly around 4% or more. Figure 

5.18(b) shows CDFs of AWFE for all load categories. It shows that for different load 

categories, there are from 30% to 78% of AWFEs within [0, 5%], from 55% to 95% 

within [0, 10%], from 80% to 97% within [0, 15%], which shows a slight decrease 

when compared with Figure 5.12.  

C. Overall AWFE of the Disaggregation Approach 

Similar to Case 1, the aggregate PDF and CDF of the absolute weighting factor 

error (AWFE) for the load disaggregation approach in Case 2 are shown in Figure 

5.19.  

 

Figure 5.19.  PDF and CDF of AWFEs for the disaggregation approach when V measurements are 

unavailable 
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estimations are with AWFEs lower than 11.5%. Compared with Case 1, it can be seen 

that at the same given confidence interval, the confidence level in Case 2 is slightly 

lower than that in Case 1. 

D. The Error of Estimation of the Contribution of the Controllable Load to the 

Total Load Mix 

Figure 5.20(a) shows the PDF and CDF of the absolute weighting factor error 

(AWFE) of the controllable load (as well as the uncontrollable load) in Case 2. The 

most probable AWFE of the controllable and uncontrollable load contribution is 

around 5.2%. Figure 5.20(b) presents PDFs and CDFs of WFEs of the controllable 

and uncontrollable load. Again, similar to Case 1, it shows that PDFs of WFEs of the 

controllable and uncontrollable load are symmetrical with respect to the y axis, and the 

reasons are given in Section 5.2.4.2. It can be read from Figure 5.20(a) that the 

confidence level with an AWFE of the controllable and uncontrollable load 

contribution below 5%, 10%, 15%, 20% is about 29%, 54%, 75%, 89% respectively. 

When compared with Case 1, at the same given confidence interval, AWFE of the 

controllable and uncontrollable load also decreases, although the reduction is 

moderate. 

 

Figure 5.20.  (a) PDF and CDF of AWFE of controllable or uncontrollable load, and (b) PDF and CDF 

of WFE of controllable and uncontrollable load in Case 2 
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reduce the confidence level of the same estimation errors. The absolute load model 

error (ALME) is not analysed in Case 2 due to the absence of V measurements. 

5.2.5.2  Reactive Power Input Data are unavailable (Case 3) 

In some cases, RMS measurements of the reactive power (Q) are not available 

(Case 3). Therefore, the results for the weighting factor error (WFE), the absolute 

weighting factor error (AWFE) and the absolute load model error (ALME) of P in this 

case are obtained as well and compared with the case when the voltage, the real and 

reactive power are all available (Case 1). The rules of ANN parameter configuration, 

the ANN training algorithm, the training data and the testing data (apart from Q) are 

exactly the same as those for Case 1 and Case 2.  

A. WFE of Individual Load Categories 

Figure 5.21(a) and Figure 5.21(b) show PDFs and CDFs of the weighting factor 

errors (WFEs) of different load categories when the measurements of Q are missing. 

Compared with Figure 5.17(a), it can be seen that the most probable values of WFEs 

increase slightly, but the increase is moderate. Figure 5.17(b) indicates that for 

different load categories, there are from 57% to 93% of WFEs within [-10%, 10%], 

which shows a slight decrease of 1% when compared with Figure 5.17(b).  

 

Figure 5.21.  (a) PDFs, and (b) CDFs of WFEs of different load categories when the measurements of Q 

are missing. 
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B. AWFE of Individual Load Categories 

Figure 5.22(a) and Figure 5.22(b) show PDFs and CDFs of the absolute 

weighting factor errors (AWFEs) of different load categories when the measurements 

of Q are missing. It can be seen from Figure 5.22(a) that the most probable values of 

WFEs lie between 2%-8%. From Figure 5.22(b), it can be seen that for different load 

categories, there are from 30% to 76% of AWFEs within [0, 5%], from 59% to 95% 

within [0, 10%], and from 83% to 97% within [0, 15%]. The results are similar to 

those obtained in Case 2. 

 

Figure 5.22.  (a) PDFs, and (b) CDFs of AWFEs of different load categories when Q measurement is 

missing. 
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98% of the cases, is up to 10% in 82% of the cases and is up to 5% in 15% of the 

cases; 90% of all estimations are with AWFEs less than 12%. Compared with Case 2, 

it could be found that at the same given confidence interval, the confidence level in 

Case 3 is slightly lower than that in Case 2, although the decrease is moderate. 

 

Figure 5.23.  PDF and CDF of AWFEs for the disaggregation approach when Q measurements are 

unavailable 
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missing, the confidence level of AWFE under the same error interval will considerably 

decrease.  

 

Figure 5.24. (a) PDF and CDF of AWFE of controllable or uncontrollable load, and (b) PDF and CDF 

of WFE of controllable and uncontrollable load when Q is missing. 
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of ALME also show that the absence of measurements of Q measurements will 

significantly degrade the performance of the disaggregation approach.  

 

Figure 5.25.  (a) PDFs, and (b) CDFs of ALMEs for aggregate P when measurements of Q are missing. 
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Figure 5.26.  (a) PDF, and (b) CDF of AWFE in Case 1-3 when the share of the controllable load is 

unknown 

5.2.6.1  Comparison of the Absolute Weighting Factor Error (AWFE) from 

Cases 1 to 3 when the Share of the Controllable Load is Unknown 

A. Absolute Weighting Factor Error of Case 1 

The comparative results of the overall absolute weighting factor error (AWFE) 

of the disaggregation approach in Case 1 can be read from the corresponding PDFs 

and CDFs and are shown in Table 5.3.  
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Controllable Load 
MP AWFE 

CL of 
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CL of 

AWFE≤10% 

CL of 

AWFE≤15% 

[10%, 50%] 6% 23% 86% 99% 

Unknown 6% 17% 59% 87.5% 

When all inputs are available, the most overall AWFE for the disaggregation approach 

is about 6%, which is almost the same as the case when the information of the 

controllable load variation range is 10%-50%. The confidence level (CL) of the 

disaggregation approach is about 17% at the confidence interval [0, 5%], 60% at the 

confidence interval [0, 10%], and 87.5% at the confidence interval [0, 15%].However, 

when the information of the controllable load participation is known, the confidence 

levels at the three confidence intervals are 23%, 86% and 99%, respectively. The 

result indicates that the preceding acquisition of the information on controllable load 
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participation can increase the confidence level of disaggregation under a specific 

disaggregation error. It is probably because the number of controllable-uncontrollable 

load combinations is reduced from 21 to 9, and if a similar number of training sets and 

validation sets are taken, then the number of voltages and weighting factors generated 

by MCS in each combination increases. This results in ANN being trained effectively 

with more detailed information, and the trained ANN thus works better. 

B. Absolute Weighting Factor Error of Case 2 

The comparative results of the overall absolute weighting factor error (AWFE) 

of the disaggregation approach in Case 2 are shown in Table 5.4.  

Table 5.4.  Comparison of the Overall AWFE of the Disaggregation Approach in Case 2 when the Share 

of the Controllable Load is 10%-50% and when It is Unknown (MP: most probable; CL: confidence 

level) 

Share of the 

Controllable Load 
MP AWFE 

CL of 

AWFE≤5% 

CL of 

AWFE≤10% 

CL of 

AWFE≤15% 

[10%, 50%] 7.5% 15% 82% 98% 

Unknown 10% 10% 52.5% 86% 

If the measurements of voltages are unavailable, the most probable overall AWFE for 

the disaggregation approach is about 7.5%, which represents an increase of 1.5% 

when compared with the case where the information of the controllable load variation 

range is known as 10%-50%. The confidence levels of the disaggregation approach at 

confidence intervals [0, 5%], [0, 10%], and [0, 15%] are 10%, 52.5% and 86%, 

respectively. However, when the information on the controllable load participation is 

known, the confidence levels at the three confidence intervals are 15%, 82%, 98% 

respectively. The result strengthens the conclusion drawn from Part A of this 

subsection (i.e. Section 5.2.6.1) that the availability of the information on controllable 

load participation in the total demand can increase the confidence level of 

disaggregation under a specific disaggregation error. Moreover, the result also 

indicates that the availability of the information on controllable load participation can 

help reduce the most probable overall AWFE for the disaggregation approach. 
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C. Absolute Weighting Factor Error of Case 3 

The comparative results of the overall AWFE of the disaggregation approach in 

Case 3 are shown in Table 5.5. When Q measurements are unavailable, the most 

probable overall AWFE for the disaggregation approach is about 25%, which 

dramatically increases by 17.5% when compared with the case where the information 

of the controllable load variation range is known as 10%-50%. The confidence levels 

of the disaggregation approach at confidence intervals [0, 5%], [0, 10%], and [0, 15%] 

are 2%, 11% and 25.5%, respectively. However, when the information of controllable 

load participation is known, the confidence levels at the three confidence intervals are 

15%, 82%, 98%, respectively. The result strengthens the conclusions drawn from Part 

A and Part B of this subsection (i.e. Section 5.2.6.1).   

 Table 5.5.  Comparison of the Overall AWFE of the Disaggregation Approach in Case 3 when the 

Share of the Controllable Load is 10%-50% and when It is Unknown (MP: most probable; CL: 

confidence level) 

Share of the 

Controllable Load 
MP AWFE 

CL of 

AWFE≤5% 

CL of 

AWFE≤10% 

CL of 

AWFE≤15% 

[10%, 50%] 7.5% 15% 82% 98% 

Unknown 25% 2% 11% 25.5% 

5.2.6.2  Comparative Results of Cases 1 to 3 when the share of the 

controllable load is unknown 

5.2.6.2.1  Overall Absolute Weighting Factor Error (AWFE) 

The comparative results of the overall absolute weighting factor error (AWFE) 

of the disaggregation approach in Case 1-3 when the share of the controllable load is 

unknown are shown in Table 5.6.  

Table 5.6.  Comparison of the Overall AWFE of the Disaggregation Approach in Case 1-3 when the 

Share of the Controllable Load is Unknown (MP: most probable; CL: confidence level) 

Case No. MP AWFE CL of AWFE≤5% CL of AWFE≤10% CL of AWFE≤15% 

1 6% 17% 59% 87.5% 

2 10% 10% 52.5% 86% 

3 25% 2% 11% 25.5% 

The most probable overall AWFE for the disaggregation approach in Case 1, 2 and 3 
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are 6%, 10% and 25%, respectively.  The confidence levels in Case 1, 2 and 3 are 

17%, 10% and 2%, respectively at confidence interval [0, 5%], 59%, 52.5% and 11% 

respectively at confidence interval [0, 10%], 87.5%, 86% and 25.5% respectively at 

confidence interval [0, 15%].  

From the comparative result, it can be seen that under the same conditions, the 

overall AWFE of Case 1 and Case 2 are similar, although the result of Case 1 is 

slightly better than that of Case 2 probably because in Case 1, more information is 

available. This can also be observed from Figure 5.26, where the CDF of the overall 

AWFE in Case 1 and Case 2 are very close to each other. However, the result of Case 

3 is much less accurate than the result of Case 1 and Case 2. From Figure 5.26, it can 

be seen that the CDF of the overall AWFE in Case 3 is far from CDFs for Case 1 and 

2, and obviously, it has a much lower confidence level at the same given confidence 

interval when compared with Case 1 and 2. Additionally, it has a most probable 

AWFE of 25%. This also indicates that the reactive power measurement plays a 

significant role in accurate and reliable load disaggregation, especially when the 

information of the controllable load contribution is unknown. 

5.2.6.2.2  Absolute Load Model Error (ALME) for the real power 

Figure 5.27 shows PDFs and CDFs of the absolute load model errors (ALMEs) 

for the real power (P) in Case 1 and Case 3. ALME for the reactive power (Q) is not 

discussed because the measurements of it are not available in Case 3. Case 2 is not 

discussed here due to the absence of measurements of the voltage (V). The most 

probable ALME for P are much smaller in Case 1 than in Case 3. The confidence 

levels within the same confidence interval are much higher in Case 1 than in Case 3. 

The visible difference between the two cases again shows that the ANN will perform 

the disaggregation approach better with all P, Q, and V RMS measurements available 

than with only P and V available, especially when the participation information of 
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controllable loads are unknown. It can be inferred that for P&V input only, there is a 

large number of possible combinations of different load compositions that can 

describe the P-V relationship, while the addition of Q measurement narrows the range 

of the possibilities as it determines the power factor of the total load and the 

approximate participation of different load categories.  

 

Figure 5.27.  (a) PDF, and (b) CDF of ALME for P in Case 1 and Case 3 when the share of the 

controllable load is unknown 
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forecasting tool in order to predict the contribution of different load compositions in 

the future. The only task needed is to transform the predicted MW and MVAR into 

per-unit values, and the way of doing it has been discussed in Section 5.1.  

5.3.1  Joint Probability of Total Demand Forecasting Error and 
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integrated with the total demand forecasting tool to predict load composition, it is 

highly unlikely to guarantee that the accuracy of the input (i.e. predicted MW and 

MVAR) has a confidence level of 100%. As a result, a joint probability of total 

demand forecasting error and the absolute weighting factor error (AWFE) is 

introduced in the case where the uncertainty assessment is required. 

The probability density function (PDF) and the cumulative distribution function 

(CDF) of the absolute weighting factor errors (AWFEs) in the disaggregation 

approach are denoted as fD(eD) and FD(eD), where eD is the notation of the overall 

AWFE for the disaggregation approach. They can also be interpreted as PDF and CDF 

of load composition forecasting error when CAPE of total demand forecasting, eF, has 

a confidence level of 100%. The probability density function (PDF) and the 

cumulative distribution function (CDF) of CAPE of total demand forecasting are 

denoted as fF(eF) and FF(eF). 

In reality, the confidence level of specific total load forecasting error interval is 

not likely to reach 100% under most circumstances. Thus, the actual confidence level 

of load composition forecasting error, which is the joint confidence level of total load 

forecasting error and AWFE, is lower than the confidence level of AWFE. Because the 

forecasting process and the disaggregation process are independent, the joint 

confidence level is the product of the confidence level (i.e. read from CDF) of the 

total load forecasting error and AWFE, shown as  

     ,FD F D F F D DF e e F e F e
 

(5.15) 

A similar relationship applies to the joint PDF fFD(eF, eD), shown as 

     ,FD F D F F D Df e e f e f e
 

(5.16) 

5.3.2  Illustrative Results of Load Composition Forecasting 

The probability density function (PDF) and the cumulative distribution function 
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(CDF) of the cumulative absolute percentage error (CAPE, defined in Chapter 4) of 

total demand forecasting shown in Figure 4.10 and those of the absolute weighting 

factor error (AWFE) when the measurements of the voltage are not available shown in 

Figure 5.19 are used for illustration purpose, and the simulation result is shown in 

Figure 5.28. 

 

Figure 5.28.  (a) PDF, and (b) CDF of load composition forecasting error when total load forecasting 

error is less than 100% 

Figure 5.28(a) shows the joint PDF of load composition forecasting error when 

the confidence level of total load forecasting error is less than 100%. From Figure 

5.28(a), it can be seen that the most likely load composition forecasting error (eD) is 

about 10% if the total load forecasting error (eF) is about 9.2%, which matches the 

result shown in Figure 4.10 and Figure 5.19. Figure 5.28(b) provides the confidence 

level of load composition forecasting error when the confidence level of total load 

forecasting error is less than 100%. For example, for a load composition forecasting 

error (eD) lower than 15%, if the total load forecasting error (eF) has a confidence level 

of 100%, then according to Figure 5.19(b), the confidence level for the load 

composition forecasting in this case is approximately 90%. While, if the total load 

forecasting error is also required to be lower than 15%, which has a confidence level 

of approximately 88% according to Figure 4.10, then the confidence level of the load 
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composition forecasting becomes 90%×88%=79.2%. The point which represents this 

example in the order of (eD, eF, FFD) is the Point A(15, 15, 0.792) clearly marked on 

the surface plot given as Figure 5.28(b). 

5.4  Summary 

This chapter develops an effective ANN-based methodology for load 

disaggregation. For convenience, the methodology is developed in per-unit. As a 

result, another methodology is developed to convert the voltage, the real and reactive 

power given in kV, MW and MVAR, respectively, to per-unit value before load 

disaggregation so that they can be applied in the developed disaggregation 

methodology. The developed disaggregation methodology employs the artificial 

neural network (ANN) as the tool, and only requires RMS measurements of the 

voltage, the real and reactive power from substations to identify the contribution of 

different load categories to the total demand. In most cases, the developed 

disaggregation methodology can provide an overall absolute weighting factor error 

(AWFE) less than 10%. 

The effect of missing input data on the accuracy of the estimation is also 

discussed. From the discussion, it can be seen that missing of voltage measurement 

does not significantly affect the result, while missing of reactive power data can affect 

the result significantly. As expected, the disaggregation algorithm provides the highest 

accuracy and confidence level when all inputs are available. Additionally, the effect of 

prior knowledge on the share of the controllable load to the total demand mix is also 

investigated. It is found that prior knowledge on the contribution of the controllable 

load can help select a relatively precise range for the weighting factor used in the 

ANN training process, and this yields estimation of load compositions with higher 

accuracy (or higher confidence level for the same accuracy).  

Furthermore, the disaggregation approach can be integrated with total demand 
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forecasting approach to predict the load composition in the future. The developed 

methodology enables the prediction of the percentage of different load categories (i.e. 

induction motors, lighting etc.) in the total load mix in advance, with forecasting error 

typically less than 15%. 
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6 Validation of Developed Methodologies 

and Illustration of Shaping of Dynamic 

Responses of Demand 

 

 

 

 

 

 

Prediction and shaping of dynamic response of the demand (DRD) will enable 

advanced control algorithms for active demand management as well as improved 

stability assessment of the power system. Previous chapters develop methodologies 

for each stage of the overall flowchart as shown in Figure 1.6, Chapter 1. This chapter 

integrates the stages and uses measured data from real UK power networks to validate 

the overall approach. The required input data include standard RMS measurements at 

bulk supply points and actual and day-ahead forecasted weather data, and the overall 

approach does not rely on having access to detailed customer surveys or high-

resolution load signatures. Measured steady-state and dynamic responses of the 

demand from the substations of the local utility are used for validation. In addition, 

based on the prediction results, load shifting and shaping of dynamic responses of the 

demand are also illustrated. 
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6.1  Validation Results and Discussion 

Demand and voltage data used for load forecasting and validation of prediction 

of dynamic responses of the demand (DRD) are collected from the substation in UK 

real distribution networks. There are two sampling rates, 1 sample per second and 1 

sample per minute. The data collected with the former sampling rate are used for 

validation of estimation/prediction of load compositions and dynamic responses of the 

demand, and those with the latter sampling rate can be used for validation of 

estimation/prediction of load compositions and steady-state load characteristics. Both 

actual and forecasted weather data, including temperature (°C), humidity (p.u) and 

wind speed (km/h), are collected from the official website of Weather Underground 

[132], with a resolution of 30min. As a result, in total load forecasting, the demand is 

predicted every 30min.  

Data collected at “Bus BRW” with mixed load sectors [1] on 24 June, 2014 are 

used to predict the demand and DRD at the same bus on 25 June, 2014. Besides, 

disaggregation based on measurements on 25 June, 2014 is also implemented and 

validated for comparison purposes.  

The validation result of total load forecasting is shown in Figure 4.8, Chapter 4. 

The most probable values of per-unit real and reactive power derived based on 

measurements at “Bus BRW” on 24 June, 2014 are given in Figure 5.7(c) and Figure 

5.7(d), respectively. Based on these results, validation of estimation/prediction of load 

compositions and dynamic responses of the demand are given as follows. 

6.1.1  Load Disaggregation and Validation 

In Chapter 3, the framework for prediction/estimation of dynamic responses of 

the demand is built probabilistically. In the disaggregation approach developed in 

Chapter 5, the absolute weighting factor errors and the absolute load model errors are 
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also analysed probabilistically. However, it is worth noting that in the reality, the 

measured dynamic response of the demand is a curve rather than a range composed of 

many curves; the curve can be regarded as the most probable response of the 

aggregate demand. In Chapter 3, it is found that the most probable individual dynamic 

responses and percentages of different load categories can be used to calculate the 

most probable dynamic responses of the aggregate load. As a result, instead of directly 

using the probabilistic approach or framework in Chapter 5 or Chapter 3, the 

validation process in the reality can be simplified in the following way: 

1. Take the most probable values of the load composition percentages (i.e. 

directly derived using the disaggregation approach in Chapter 5) and the 

dynamic responses of the demand of individual load categories (i.e. 

derived in Chapter 3) to calculate the dynamic responses of the demand 

for validation; 

2. If the calculated response matches the measured one reasonably well, the 

process can be terminated; 

3. If the calculated response is far from the measured one, then probabilistic 

approach will be used to inspect whether the measured response falls 

within the range of calculated responses. 

6.1.1.1  Load Disaggregation on 25 June, 2014 

Using the developed disaggregation methodology, with the calculation shown in 

Figure 5.7(c) and Figure 5.7(d), the decomposed daily loading curve for 25 June, 2014 

at “Bus BRW” can be estimated, as shown in Figure 6.1. In the legend of Figure 6.1, 

1CT, 3CT, 1QT, 3QT represent different categories of induction motors, R represents 

resistive load, SMPS represents switch-mode power supply, C and UC represent 

controllable and uncontrollable load, respectively.  
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Figure 6.1.  Estimated DDLC of 25 June, 2014 based on measurement of the same day 

6.1.1.2  Validation of Load Disaggregation 

6.1.1.2.1  Validation Using Steady-state Load Characteristics 

Figure 6.2(a) shows the voltage verses voltage level (i.e. 6.6kV). Figure 6.2(b) 

and Figure 6.2(c) show the calculated steady-state load characteristics for real and 

reactive power respectively. It can be seen that the estimated real and reactive power 

(i.e. P and Q) characteristics (the red dashed line) match the measured ones (the blue 

solid line). Therefore, according to the description in Chapter 5, it can be concluded 

that the disaggregation result shown in Figure 6.1 is reasonable. 

6.1.1.2.2  Validation Using Measured DRD 

A 0.7% voltage drop (i.e. for UK distribution transformers, each tap causes 0.7% 

voltage change) occurs at t=0s (i.e. at about 3:30, with the lowest demand), shown as 

Figure 6.2(d). The estimated dynamic responses of the demand (DRD) for real and 

reactive power are shown as Figure 6.2(e) and Figure 6.2(f), respectively. From the 

shape of DRD, it can be seen that the estimated dynamic response of the demand 

matches reasonably well the measured one for both real and reactive power (i.e. the 

probabilistic framework is therefore not needed in this case). This means that the 

disaggregation result shown in Figure 6.1 is reasonable. Besides, from Figure 6.2(d)-
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(f), when the voltage changes, the real and reactive power remains fairly the same. 

Therefore, according to load model characteristics provided in [1] and Chapter 3, the 

overall demand could be modelled by a constant power load model, and the dominant 

loads could be electronic loads or three-phase induction motors. This also matches 

derived decomposed daily loading curves shown as Figure 6.1. The mean absolute 

percentage error (MAPE) of the estimated dynamic response of the demand is 0.30% 

for real power and 4.74% for reactive power.  

 

Figure 6.2.  (a) Voltage verses voltage level; (b) estimated static P verses measured P; (c) estimated 

static Q verses measured Q; (d) voltage drop at 3:30; (e) estimated dynamic response of the demand of 

P verses measured dynamic response of the demand of P at 3:30; (f) estimated dynamic response of the 

demand of Q verses measured DRD of Q at 3:30. 

6.1.2  Prediction of Load Composition on 25 June, 2014 

As the disaggregation process has been validated via both the measured steady-
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with the load forecasting process to predict day-ahead load compositions at different 

times of the day. The procedure of deriving most probable per-unit values of the 

predicted real and reactive power and the disaggregation process (i.e. shown as 

Section 6.1.1.1) are repeated, but this time, the predicted demand for 25 June, 2014 

replaces the actual measured demand. With the inputs shown in Figure 1.6, a day-

ahead predicted decomposed daily loading curve can be obtained and is shown in 

Figure 6.3. 

 

Figure 6.3.  Predicted DDLC of 25 June, 2014 based on measured data of 24 June, 2014 

From the figure, it can be seen that the lines of the predicted decomposed daily 

loading curve look smoother than those of the estimated one shown in Figure 6.1. In 

other words, Figure 6.1, as expected, presents the contribution of different load 

categories at different times of the day slightly more clearly as it was produced using 

the measured voltages, real and reactive powers, while Figure 6.3 was produced using 

the predicted real and reactive power only. Same as Figure 6.1, though, Figure 6.3 

indicates that the dominant loads are electronic loads and 3-phase induction motors.  

6.1.3  Day-ahead Prediction and Validation of DRD 

With the predicted decomposed daily loading curve shown in Figure 6.3 and the 

dynamic response of the demand (DRD) of individual load categories provided in 
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Chapter 3, predicted DRD of the total demand to the same 0.7% voltage drop is  

obtained and shown as Figure 6.4(b) and Figure 6.4(c) for P and  Q, respectively.  

 

Figure 6.4. (a) A 0.7% voltage drop; (b) predicted DRD of P verses measured DRD of P; (c) predicted 

DRD of Q verses measured DRD of Q. 

Similar to the estimated DRD, the new steady-state value of P DRD remains 

fairly the same after the voltage drop and can be modelled by constant power load 

model. Therefore, the dominant customer could be 3-phase induction motors or 

electronic loads, which matches the predicted decomposed daily loading curve in 

Figure 6.3 and the estimated decomposed daily loading curve in Figure 6.1. The 

prediction of DRD of Q however, is not as good as prediction of P, although the 

difference is moderate. Similar to validation of estimated DRD, probabilistic 

framework is not needed in this case. 

The mean absolute percentage error (MAPE) of DRD prediction is about 0.33% 
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for P and 10.49% for Q. MAPE of prediction of DRD of P is slightly higher than 

MAPE of estimated DRD of P.  For Q, MAPE of predicted DRD of Q is larger than 

the estimated one. There are three possible reasons for this “inaccuracy” in prediction 

of DRD of Q:  

1. The base value of Q is small (in the order of 10
-1

);  

2. The total demand prediction for Q is not as accurate as that for P;  

3. There are more accurate inputs for the DRD estimation case than for the 

prediction case. 

6.2  Load Shifting and Shaping of Dynamic Responses of the 

Demand 

The shape of dynamic responses of demand (DRD) depends on the load types 

participating in the total demand. In demand side management (DSM), when the load 

curve is shaped via series of DSM techniques [107] such as load shifting (i.e. shifting 

certain amount of demand from the peak time to the off-peak time to help balancing 

the generation and the demand in the network), the load compositions constituting the 

total demand during those periods will change at the same time. This ultimately 

changes the dynamic load characteristic (i.e. represented as the shape of DRD), the 

key factor that influences the voltage stability [117]. For transient voltage stability and 

for the final stage of a slower occurring voltage collapse, the dynamic characteristic of 

loads such as induction motors is important [4]. Therefore, shaping DRD should be 

considered as a compulsory task in DSM planning. It is achieved via altering the 

percentage of different load categories under the total demand at different times 

during the day so that the shaped DRD looks as close as a defined “favourable” DRD. 

It can enhance more effective DSM, provide greater savings in power system 

planning, and protect power system from potential voltage stability issues. 
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6.2.1  Theory of Load Shifting 

Based on day-ahead predicted total demand, day-ahead predicted load 

compositions and dynamic response of the demand (DRD), it is possible to make 

plans for load shifting in advance. In load shifting, the controllable load at peak times 

are shifted and properly allocated to off-peak times so that not only predicted load 

curve is flattened and total cost is reduced, but also DRDs after load shifting at both 

peak times and off-peak times remain fairly the same as DRDs before load shifting (or 

look as similar as a given DRD). The load shifting task in this study can be formulated 

as two optimisation problems as shown in (6.1) and (6.2) 

Minimising   
2

2 1

1 1

1N N

i i

i i

Obj P P
N 

 
  

 
    (6.1) 

Minimising   2

1

N

i i

i

Cost c P


   (6.2) 

where N is the total sampling number of the load curve (usually 48 for sampled or 

predicted load curves with 30min resolution and 24 for those with 60min resolution), 

P2i is the i
th

 sampling of the load curve after load shifting and P1i is the i
th

 sampling of 

the load curve before load shifting, Obj is the objective function, Cost is the total cost 

after load shifting, ci is the price of the electricity at the i
th

 measured moment during 

the day. The three main constraints are: 

 2 1

1

0
N

i i

i

P P


 
  

(6.3) 

i.e., the total consumption before and after load shifting remains unchanged.  For any i 

during peak times before load shifting   

1 2 1i i i iP P k P 
  

(6.4) 

i.e., the demand shifted from the peak time should not exceed the total amount of the 

controllable load (i.e. ki is the percentage of controllable load in the total demand), and 
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for the total price change 
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1
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N

i i i

i

c P P


 
  

(6.5) 

i.e., the total cost after load shifting is less than or equal to the total cost before load 

shifting. Other constraints, not considered here, include the willingness of customers 

to have their loads shifted, DNO’s ability to shift the loads, generation capacity limits, 

etc. 

After the controllable loads at peak times are shifted and allocated to off-peak 

times, the component-based load modelling approach is used to predict dynamic 

responses of the demand after load shifting at both peak times and off-peak times. At 

the beginning, desired predict dynamic responses of the demand during peak times are 

defined so that the amount and type of controllable load to be shifted can be 

determined. Then, these shifted loads are allocated to off-peak times to satisfy 

corresponding defined dynamic responses of the demand at off-peak times. The 

process is repeated until all defined dynamic responses of the demand during both 

peak and off-peak times are satisfied. 

6.2.2  Illustration of Load Shifting and Shaping of Dynamic 

Responses of the Demand 

Considering the objective functions and constraints described in Section 6.2.1, 

the load curve after load shifting are determined as the red dotted line shown in Figure 

6.5(a). The blue solid line is the predicted load curve before load shifting. The 

predicted peak demand (at 12:30) is reduced by 0.93MW. Figure 6.5(b) shows 

dynamic response of the demand (DRD) to a 0.7% voltage drop at 3:30 (lower 

demand) following the redistribution of the same amount (MW) but different types of  

devices available for shifting, i.e., resistive load only (R), induction motor only (IM), 
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half IM and  half resistive load (R+IM). As the total demand at given  hour before and 

after the shifting changes, for ease of comparison, Figure 6.5(b) uses the power 

change after the voltage drop to represent DRD. It demonstrates that different DRDs 

can be obtained based on the availability and redistribution of controllable devices and 

load shifting decisions should be made based on predicted DRD before and after load 

shifting as a potentially unfavourable DRD could endanger system stability. 

 

Figure 6.5.  (a) Load curves before and after load shifting; (b) predicted DRD of P at 03:30 with 

different categories allocated but the same total demand shifted 

6.3  Summary 

In this chapter, total load forecasting, load disaggregation and load aggregation 

(i.e. the component-based load modelling approach) are integrated to form the overall 

approach to enable prediction as well as shaping of dynamic responses of the demand 

(DRD) without field measurements, and the measured data from real UK distribution 

networks are used to validate the overall approach. Artificial neural network, Monte 

Carlo simulation and optimisation techniques are used to forecast the total demand, 

convert the demand in MW and MVAR to per-unit value, disaggregate the total 

demand into different load categories, predict the decomposed daily loading curve for 

the next day, and finally predict and shape the dynamic response of the demand for the 
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next day. The overall approach does not require measured load signatures with high 

sampling rates (except in validation process) or results of customer surveys on 

consumptions. From the figures plotting the predicted/estimated dynamic response of 

the demand verses the measured one, it can be seen that the overall approach works 

very well.  

Based on the predicted decomposed daily loading curves and dynamic responses 

of the demand (DRDs), shaping of DRDs can be achieved by load shifting, and it is 

found that different DRDs can be obtained if the contributions of different load 

categories to the total demand are different. 

  



Chapter 7: Conclusions and Future Work 

211 

 

7 Conclusions and Future Work 

 

 

 

 

 

7.1  Conclusions 

This thesis has developed an approach for the prediction and shaping of 

dynamic responses of the demand to voltage disturbances at any given time of the day. 

It consists of the following main stages: total load forecasting, load disaggregation (i.e. 

including the sub-stage that transforms measurements in real values into per-unit 

values), estimation and prediction of dynamic response of the demand, and load 

shifting plans. Artificial neural network together with Monte Carlo Simulation are 

used to develop the approach. Several original contributions have been made in the 

thesis.  

The thesis first presents a comprehensive overview of some past events and the 

effect of different dynamic load characteristics (i.e. load models) on power system 

stability studies. This overview concluded that the selection of load models can affect 

the result of the power system analysis. Afterwards, the most widely used load 

models, load modelling approaches (i.e. the measurement-based approach and the 

component-based approach) and their advantages and disadvantages are reviewed in 

detail.  
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In the majority of the short-term dispatch and control activities such as load 

shifting, the knowledge of the predicted dynamic load characteristic is important as it 

can help avoiding the potential system stability issues. However, no past research on 

the prediction of dynamic load characteristics has been found. As a result, a new 

approach should be developed to achieve this objective. As it is not possible to obtain 

recorded dynamic responses of the demand in the future from field tests, the dynamic 

load characteristics should be predicted without measurements and the computer 

simulation should be used. In order to facilitate the prediction of dynamic load 

characteristics, the percentage of different load categories (and their controllability if 

load shifting is required) should be estimated or predicted in advance.  

7.1.1  Development of the Probabilistic Framework for 

Estimation/Prediction of Dynamic Responses of Demand 

Based on the above considerations and the investigation of available 

consumption data of different load categories, a framework for estimation or 

prediction of dynamic responses of the demand without having to perform field tests 

is developed in this thesis (Chapter 3). Different from past work which usually uses 

deterministic decomposed daily loading curves and deterministic individual load 

models, in this thesis, both decomposed daily loading curves and individual load 

models are presented probabilistically. Therefore, dynamic responses of the demand 

are also presented probabilistically, with the range and the most probable responses 

indicated. It was confirmed that the share of different load categories can affect the 

dynamic load characteristics of the aggregate load. This strengthens the importance of 

the knowledge of dynamic response of the demand. It was also found that the most 

probable dynamic response of the aggregate load can be derived using the following 

two ways: (i) considering all possible responses using probabilistic analysis 

techniques, and (ii) considering the most probable responses of individual load 

categories and participation of individual categories. The results derived in the above 
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two ways are very close. Therefore, in the validation process of the overall approach 

using data from the real network (Chapter 6), the most probable load compositions 

and dynamic responses of the demand are predicted first; then the predicted most 

probable dynamic response of the demand is compared with the measured one. The 

proposed methodology contributes to the development of advanced control algorithms 

for active demand management as the decisions about demand control action can be 

based not only on the requirement to reduce consumption at different times of day (or 

to “match” demand and renewable generation output), but also on achieving desired 

dynamic responses of the demand (induced by appropriate price signals, for example) 

at given hours. This is the first original contribution of the thesis. 

7.1.2  Comparison of Load Forecasting Approaches and Applications 

to both Real and Reactive Power Forecasting 

Typically used approaches for load forecasting are reviewed in Chapter 1. The 

review concluded that advanced methodologies such as fuzzy logics and the artificial-

intelligence (AI) based approach predict the demand more accurately than traditional 

approaches such as regression and stochastic time series. However, comparisons 

between different AI-based approaches (such as artificial neural network and adaptive 

neuro-based fuzzy inference system) used for load forecasting in the same operating 

environment have rarely been made in the past. As a result, the thesis compared the 

performance of two most widely used approach, artificial neural network (ANN) and 

adaptive neuro-based fuzzy inference system (ANFIS), used for load forecasting in the 

same operating environment (Chapter 4). The results indicate that the two 

methodologies can have comparable performance if the parameters of ANN and 

ANFIS are set properly. Therefore, either of them can be used for load forecasting. 

The artificial neural network (ANN) based approach is selected for total load 

forecasting in this research due to its stronger adaptation and its applicability in the 

case with multiple outputs. The ANN-based approach developed by EPRI is upgraded 
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and applied to both real and reactive power forecasting. The mean absolute percentage 

error of total demand prediction is about 4.27% for real power and 15.29% for 

reactive power. In addition, probabilistic characteristics of absolute percentage error 

for load forecasting are analysed. The accurate prediction of real and reactive power 

could lead to greater saving in power system planning and enhance the accuracy of 

load composition prediction. The comprehensive comparison of the two artificial-

intelligence-based methodologies and the recommendation of the suitable parameter 

settings for either of them as well as the application of the modified ANN approach to 

both real and reactive power forecasting represent the second original contribution of 

the thesis. 

7.1.3  Development of ANN-based Load Disaggregation Approach 

A detailed review of past work on load disaggregation is presented in Chapter 1. 

The two most widely used methodologies in the past were identified as the intrusive 

load monitoring and the non-intrusive load monitoring, and they require either direct 

access to appliances (and large quantities of customer surveys) or load signatures of 

both aggregate loads and individual appliances with high sampling rates. These, 

however, are highly unlikely to be available in most cases. Therefore, in Chapter 5, an 

artificial neural network (ANN) based load disaggregation methodology is developed, 

where only the substation P, Q and V RMS measurements are needed to perform load 

disaggregation. The methodology identifies the percentages of different load 

categories in the total demand mix as well as their controllability with certain 

confidence levels considering different absolute weighting factor errors (AWFEs). The 

resulting load compositions can be used to estimate the real and reactive power 

characteristics using the component-based load modelling approach. The load 

disaggregation can be performed with high confidence levels for different 

requirements of absolute load model errors (ALMEs). Absolute load model errors 

(ALMEs) can be used as an index for accuracy (or reasonability) of the disaggregation 
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approach in reality as the actual data on load compositions are not always available. 

Generally, when all the inputs are available, the developed disaggregation 

methodology can provide estimations with an overall absolute weighting factor error 

(AWFE) less than 10% for the estimation of load compositions and less than 15% for 

controllable load estimation; and the absolute load model error (ALME) is less than 

2.5% for P and less than 5% for Q with a confidence level (CL) over 80%. The 

developed ANN-based disaggregation approach can additionally provide close to real 

time estimation of different customer energy consumption at the bulk supply point 

without direct or indirect contact with the customers and the real time estimation of 

dynamic load characteristics at the bulk supply point without voltage disturbance 

experiments. It can also contribute to demand side management, more effective 

integration of the renewable generation and contribute to close to real time control of 

the network.  

In addition to the development of the new load disaggregation approach, its 

robustness is also investigated and discussed. It is found that absence of voltage 

measurements does not significantly affect the result; this means that the 

disaggregation algorithm can be integrated with the total demand forecasting 

algorithm to predict the contribution of load compositions in the future. The absence 

of the reactive power data, however, significantly affects the result; thus, the reactive 

power measurement plays a significant role in the load disaggregation approach. 

There is no doubt that the disaggregation algorithm works the best when all inputs are 

available. The effect of the availability of prior information about controllable load on 

load disaggregation is also discussed. Knowing controllable load contribution in 

advance helps determine the range of the weighting factor used in the ANN training 

process and results in disaggregation performance with a higher level of accuracy or a 

higher confidence level under the same level of accuracy. The development of this 

ANN-based load disaggregation approach is the third original contribution of the 
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thesis. 

7.1.4  Integration of Load Forecasting and Load Disaggregation to 

Enable Prediction of Load Compositions 

The developed disaggregation approach can be integrated with the total demand 

forecasting approach to predict load composition in future. It is possible to predict the 

percentage of different load categories (i.e. induction motors, lighting etc.) in advance, 

with a load composition forecasting error typically less than 15% in the majority of 

the cases. It is also found that the confidence level of the total load forecasting 

accuracy can affect the confidence level of the accuracy of load composition 

forecasting. The integration of the total load forecasting approach and the developed 

load disaggregation approach to enable prediction of load compositions represents the 

fourth original contribution of the thesis.  

7.1.5  Calculation of Rated Demand 

Load disaggregation is typically developed in per-unit for convenience. If it is to 

be integrated with the total demand forecasting tool, whose outputs are predicted 

demand in MW and MVAR, it is necessary to convert the demand into per-unit values. 

This, however, may not be very straightforward as the demand continuously varies 

even though the voltage may remain constant (as it is regulated). A Monte-Carlo based 

approach is therefore developed in this thesis to obtain the rated demand at different 

times during the day and use the obtained rated demand to convert the demand given 

in MW and MVAR to per-unit values. The definition of the rated demand is given as 

follows: if the actual voltage at a bulk supply point is the same as its rated voltage, the 

demand of the bulk supply point at this moment is referred to as rated demand. The 

required data are measured voltage, real and reactive power at bulk supply point. 

When deriving the per-unit value of the one-day ahead predicted demand, the voltages 

at the corresponding times are assumed to be the same as on the day before. This 
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conversion provides an appropriate “base value” to transform the demand in MW and 

MVAR into a per-unit value so that the measured demand could be used for 

disaggregation. It further enables the validation of load disaggregation and dynamic 

load response prediction, as the demand collected at the bulk supply point is in MW 

and MVAR. Additionally, this helps significantly with load modelling in the case of 

loads with long-time recovery time constants and in the case of natural demand 

change as it helps distinguish between the load changes caused by voltage change and 

those induced by variations in customer behaviour. The methodology for calculating 

the rated demand is the fifth original contribution of the thesis. 

7.1.6  Methodology for Prediction and Shaping of Dynamic Responses 

of Demand 

Using the approaches developed for load disaggregation and the prediction of 

load compositions, together with the component-based approach, the dynamic 

response of the demand to a voltage disturbance can be predicted. Chapter 6 focusses 

on describing and validating the methodology for prediction of dynamic responses of 

the demand at a given point in time in the future using the data form real UK network. 

The validation process shows that the mean absolute percentage error (MAPE) of the 

prediction of dynamic responses of the demand is about 0.33% for real power, and 

10.49% for reactive power. The smaller value of reactive power leads to higher MAPE 

of prediction. Based on the predicted load compositions and the controllable part of 

the demand, load shifting can be planned in advance. Past research on load shifting 

focussed almost exclusively on total cost minimisation and peak demand reduction. 

There was no mention at all that the change of the load composition caused by load 

shifting can lead to changes in dynamic responses of demand during the 

corresponding periods, which could eventually influence power system voltage and 

angular stability. There was no work at all on prediction and shaping of the dynamic 

response of the demand, either. The methodology developed in this thesis enables not 
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only estimation of dynamic responses of demand, but also modifying of dynamic load 

characteristics to assume desired shapes. A load shifting example is given in the thesis 

considering the prediction of load compositions, load controllability and dynamic 

responses of the demand. The methodology for prediction and shaping of dynamic 

responses of the demand is the sixth original contribution of the thesis. 

7.1.7 Benefits of the Research 

The prediction and shaping of dynamic responses of the demand without field 

measurements could enhance the effectiveness of demand side management 

application and reduce the risk of potential power system stability issues. The 

proposed approach will contribute to the development of advanced control algorithms 

for active demand management, effective renewable generation integration and real 

time electricity price regulation. It should be pointed out that this approach enables the 

decisions of demand control to be made, not only on requirements to balance demand 

& generation and reduce the total cost, but also on requirements to ensure the stable 

and secure operation of the whole power system (or at least minimise the risk of 

potential unfavourable dynamic interactions).  

7.2  Future Work 

The work presented in the thesis has achieved the aim and all objectives 

specified in Chapter 1. There are still a few areas, however, where future 

improvements could be made, and directions that could be followed in future research 

in the field.  

A. Improvement of the Confidence Level of Load Disaggregation 

The first area for future work can be trying to improve the confidence level of 

load disaggregation and in particular, identification of controllable load. It can be 

achieved by, exploring the effectiveness of other techniques such as support vector 
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machine (SVM), or by defining and conducting more detailed but less time-

consuming customer surveys. One way of achieving this in the future would probably 

be by using the data provided by “smart meters”, whose application is going to 

expand.  

B. Application to Large Voltage Disturbance Cases (ΔV>20%) 

The second area for future work can be the application of the methodology to 

voltage disturbances larger than 20% both at bulk supply points and in different load 

sectors, which may involve load disconnection. Considering that the methodology in 

this thesis focuses on load responses at bulk supply points (typically mixed demand), 

the potential disconnection of individual component(s) following relatively large 

voltage disturbance may not significantly affect overall load response. The issue of 

load disconnection and subsequent change in demand composition and its dynamic 

response is more relevant to single class loads (e.g., industrial or commercial load), 

where disconnection (and subsequent restart) of variable speed drives or other large 

power electronics interfaced loads or energy efficient lighting may significantly affect 

dynamic responses of the demand. Due to its probabilistic nature, the methodology 

developed in this thesis can be extended to incorporate variation in both, demand 

composition and dynamic responses of individual load categories, resulting from 

disconnection of part of demand following large system disturbances. This, however, 

needs to be properly tested and validated. 

C.  Inclusion of Renewable Energy Technologies in Load Mix 

The third area for future work can be the incorporation of renewable devices in 

the methodology. Due to the requirements for energy saving and emission reduction, 

renewable devices which produce environmental-friendly energy are gaining more and 

more popularity and will become an important part in the future power system. 

Therefore, it will be beneficial to study the steady-state and dynamic load 
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characteristics of bulk supply points with significant participation of renewable 

generations. Although the approach used could be the same as that described in this 

thesis (at least initially), greater variability in demand and particularly faster responses 

could result in different requirements and challenges in predicting the dynamic 

response of the demand. 

D.  Development of Commercial Tools for Prediction of Load Compositions and 

Dynamic Responses of Demand 

Last but not least, the overall approach developed in this thesis can be upgraded 

to a commercial package with suitable user interfaces and additional functionalities to 

meet the requirements of both utilities and customers.  
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Appendix A  Moving Average Filtering 

Moving average is a widely used technique for filtering as the noise in the 

measured data is generally the Gaussian noise. In the moving average (MA) filtering 

technique, an individual sample is replaced with the average value of the neighbouring 

data points over a specific data span. Data span is the design parameter of the moving 

average filter. If the data span is small (i.e. only a few samples are considered), the 

filtered signal looks similar to the original measured data; if it is large and contains 

adequate samples, the filtered signal looks smoother than the original one.   

The moving average filtering technique can be represented mathematically as 

   
1

2 1

N

s

k N

y i y i k
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(A.1) 

where ys(i) is the value averaged for the i
th

 sample, y(i+k) is the k
th

 sample on either 

side of the i
th

 sample, N is the total number of the samples on either side of the i
th
 

sample, and 2N+1 is the data span over which the values are averaged. 
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Appendix B  Decomposed Daily Loading Curves 

for Different Load Sectors in Different Regions 

In Chapter 1, a decomposed daily loading curve (DDLC) in the UK residential 

load sector in winter obtained from the customer survey and one in the commercial 

load sector of California in summer obtained from measured demand data of different 

end-users are given as Figure 1.4 and Figure 1.5 for illustration. This appendix 

provides DDLCs for different load sectors at different locations in different seasons. 

B.1  Residential Load Sector 

In Section B.1, the decomposed daily loading curves (DDLC) of the residential 

load sector in different areas and different seasons are shown.  

 

 Figure B.1.  DDLC of the residential load sector during the winter (left, adopted from [1]) and the 

summer (right, adopted from [38]) in the UK 

 

 

 Figure B.2.  DDLC of the residential load sector during the winter (left, adopted from [39]) and the 

summer (right, adopted from [38]) in Germany 
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 Figure B.3.  DDLC of the residential load sector during the winter (left, adopted from [41]) and the 

summer (right, adopted from [38]) in Sweden 

 

 

 Figure B.4.  DDLC of the residential load sector during the winter (left, adopted from [42]) and 

summer (right, adopted from [38]) in Denmark 

 

 

 Figure B.5.  DDLC of the residential load sector during the winter in Greece (adopted from [42]) 
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 Figure B.6. DDLC of the residential load sector during the winter in Portugal (adopted from [42]) 

 

 

 Figure B.7.  DDLC of the residential load sector during the summer in California (adopted from [40]) 

B.2  Commercial Load Sector 

In Section B.2, the decomposed daily loading curves (DDLC) of the commercial 

load sector in different areas and different seasons are shown.  

 

 Figure B.8. DDLC of commercial load sector during the summer in California (adopted from [40]) 



Appendix B: Decomposed Daily Loading Curves in Different Load Sectors of 

Different Areas 

237 

 

B.3  Industrial Load Sector 

In Section B.3, the decomposed daily loading curves (DDLC) of the industrial 

load sector in different areas and different seasons are shown.  

 

 Figure B.9.  DDLC of commercial load sector during the summer in California (adopted from [40]) 

B.4  Aggregate Load 

In Section B.4, the decomposed daily loading curves (DDLC) of the aggregate 

load in different areas and different seasons are shown.  

 

 Figure B.10.  DDLC of the aggregate load during the winter (left) and the summer (right) in the UK 

(adopted from [37]) 
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 Figure B.11.  DDLC of the aggregate load during the summer in California (adopted from [40]) 
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Appendix C  Steady-state Load Characteristics 

of Induction Motors 

C.1  Swing Equation of the Rotor of Induction Motor 

According to [116, 117], the swing equation of the rotor of induction motor is 

given by 

e

d
J M M

dt


 

 

(C.1) 

where J is the inertia, ω is the angular speed of the rotor, Me and M are the 

electromagnetic torque and the mechanical load torque, respectively. All the quantities 

are in per-unit except J and t. Substituting (2.5) into (C.1), the swing equation in terms 

of slip can be written as 

 1
e

dds
J J M M

dt dt


  

 

(C.2) 

where all the quantities are in per-unit except J and t.  

C.2  Electromagnetic Torque and Mechanical Load Torque 

The electromagnetic torque is given as (C.3) [118, 119] 
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(C.3) 

and if written in p.u. with ωs=1, (C.3) becomes identical to (2.6). Since s is generally 

small, Rr/s>>Rs and the effect of Rs could be neglected. For simplicity, the 

electromagnetic torque can be therefore approximated as 
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The mechanical load torque can be represented by 

  1 1
e

M k s 

      
   

(C.5) 

where k is the loading rate (defined as the ratio of the actual load and the rated load), 

τα is the static resisting torque, eβ is an exponents relevant to ω. Generally, eβ=2 [1, 

116-118]. Similar to eβ, other quantities also have typical values for general 

calculation; they are summarised from [116-118] and shown in Table C.1, where all 

values are in p.u. 

Table C.1.  Typical Values of Variables Given in Figure 2.2 

Quantities Rs Xγs Rr Xγr Xm k τα eβ 

Value (p.u.) 0.0465 0.295 0.02 0.12 3.5 0.56 0.15 2 

C.3  Steady-state Operation 

Generally, the induction motor operates under steady state condition. When a 

voltage drop occurs, the slip will change following the disturbance and reach a new 

steady state after a transient process. As s is dependent on V, in order to derive the P-V 

relationship, s-V relationship should be studied first. 

If the transient process of the slip is neglected, in the steady state both before 

and after the voltage disturbance, the slip s should be constants, satisfying 0
ds

dt
 . 

Therefore, according to (C.2), the electromagnetic torque Me is equal to the 

mechanical load torque M in the steady states. Substituting Me and M by (C.4) and 

(C.5), the relationship between the slip and the voltage is derived as 
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(C.6) 

As it is complicated to represent s in terms of V and other parameters 

symbolically in this case, different values are assigned to V to analyse the relationship 

between s and V. If the typical values shown in Table C.1 are used, for any given 
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voltage V, the slip s could be easily derived. 

Figure C.1 shows s-V relationship derived by MATLAB when voltage varies 

within the interval [0.8 p.u., 1.2 p.u.], which covers the majority of the operation cases 

in the reality. It can be observed that the slip increases when the voltage drops, and 

vice versa. The slip approaches 0 when the voltage approaches infinite, but it never 

reaches 0. 

 

 Figure C.1.  s-V relationship of induction motors with typical parameters 

With the simulation result shown in Figure C.1, using Equation (2.6) and (2.7), 

P-V and Q-V relationship for typical induction motors are shown in Figure C.2. It can 

be observed that neither P nor Q change significantly despite the considerable change 

in voltages.  

 

 Figure C.2.  (a) P-V, and (b) Q-V relationship of induction motors with typical parameters 

With the simulation result shown in Figure C.2, and using exponential load 

model given by (2.2), voltage exponents for both the real and reactive power as a 

function of the voltage can be calculated and plotted, shown as Figure C.3.  
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 Figure C.3.  (a) Exponent α, and (b) Exponent β of induction motors with typical parameters 

It can be seen that the real power exponent α varies between 0.14-0.26, i.e., the 

real power of the induction motor is approximately proportional to V
0
 rather than V

2
. 

Therefore, the real power characteristics of an induction motor with typical parameters 

could be approximated by a constant power load model. The reactive power exponent 

β varies from 0.45 to 1.05, therefore the reactive power characteristics could be 

approximated by either a constant current load model or a mix of constant power and 

constant current load model. 
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Appendix D  Typical Values of the Parameters 

for Load Models 

 

 

D.1  Exponential Load Model 

Table D.1.  Typical Values of Voltage and Frequency Exponents of the Exponential Load Model 

(adopted from [1]) 

Load device/load class kpu kqu kpf kqf 

Air conditioner 

3-phase central 0.088 2.5 0.98 -1.3 

1-phase central 0.202 2.3 0.9 -2.7 

window type 0.468 2.5 0.56 -2.8 

Water heaters, oven, deep fryer 2 0 0 0 

Dish washer 1.8 3.6 0 -1.4 

Clothes washer 0.08 1.6 3.0 1.8 

Clothes dryer 2.0 3.2 0 -2.5 

Refrigerator 0.77 2.5 0.53 -1.5 

Television 2 5.1 0 -4.5 

Incandescent lights 1.55 0 0 0 

Fluorescent lights 0.96 7.4 1 -2.8 

Industrial motors 0.07 0.5 2.5 1.2 

Fan motors 0.08 1.6 2.9 1.7 

Agricultural pumps 1.4 1.4 5 4 

Arc furnace 2.3 1.6 -1 -1 

Residential load 
summer 1.2 2.9 0.8 -2.2 

winter 1.5 3.2 1 -1.5 

Commercial 
summer 0.99 3.5 1.2 -1.6 

winter 1.3 3.1 1.5 -1.1 

Industrial 0.18 6 2.6 1.6 

Power plant auxiliaries 0.1 1.6 2.9 1.8 
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D.2  Induction Motor Model 

Table D.2.  Parameters for Models of Single-phase and Three-phase Induction Motors 

(adopted from [1]) 

Index End-users Phase number Rs Xγs Xm Rr Xγr 

1 

Residential and 

Commercial Room air 

conditioner 

Single-phase 0.10 0.10 1.8 0.09 0.06 

2 
Refrigerator and 

freezer 
Single-phase 0.056 0.087 2.4 0.053 0.082 

3 Dish washer Single-phase 0.11 0.14 2.8 0.11 0.056 

4 Clothes washer Single-phase 0.11 0.12 2.0 0.11 0.13 

5 Clothes dryer Single-phase 0.12 0.15 1.9 0.13 0.14 

6 

Heat pump residential 

space heating/central 

air conditioner 

Three-phase 0.033 0.067 2.4 0.048 0.062 

7 
Heat pump commercial 

central air conditioner 
Three-phase 0.53 0.83 1.9 0.036 0.68 

8 
Pumps, fans, other 

motors 
Three-phase 0.079 0.12 3.2 0.052 0.12 

9 Small industrial motors Three-phase 0.031 0.1 3.2 0.018 0.18 

10 Large industrial motors Three-phase 0.013 0.067 3.8 0.009 0.17 

11 
Agricultural water 

pumps 
Three-phase 0.025 0.088 3.2 0.016 0.17 

12 Power plant auxiliaries Three-phase 0.013 0.14 2.4 0.009 0.12 
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