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Abstract

Micromagnetics is a continuum mechanics theory of magnetic materials widely

used in industry and academia. In this thesis we describe a complete numerical

method, with a number of novel components, for the computational solution of

dynamic micromagnetic problems by solving the Landau-Lifshitz-Gilbert (LLG)

equation. In particular we focus on the use of the implicit midpoint rule (IMR), a

time integration scheme which conserves several important properties of the LLG

equation. We use the finite element method for spatial discretisation, and use

nodal quadrature schemes to retain the conservation properties of IMR despite

the weak-form approach.

We introduce a novel, generally-applicable adaptive time step selection algorithm

for the IMR. The resulting scheme selects error-appropriate time steps for a vari-

ety of problems, including the semi-discretised LLG equation. We also show that

it retains the conservation properties of the fixed step IMR for the LLG equation.

We demonstrate how hybrid FEM/BEM magnetostatic calculations can be coupled

to the LLG equation in a monolithic manner. This allows the coupled solver to

maintain all properties of the standard time integration scheme, in particular

stability properties and the energy conservation property of IMR. We also de-

velop a preconditioned Krylov solver for the coupled system which can efficiently

solve the monolithic system provided that an effective preconditioner for the LLG

sub-problem is available.

Finally we investigate the effect of the spatial discretisation on the comparative

effectiveness of implicit and explicit time integration schemes (i.e. the stiffness).

We find that explicit methods are more efficient for simple problems, but for the

fine spatial discretisations required in a number of more complex cases implicit

schemes become orders of magnitude more efficient.
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Chapter 1

Introduction

In this thesis we study numerical techniques for the modelling of ferromagnetic

materials. In ferromagnetic materials, referred to in this thesis as simply “mag-

netic materials”, exchange coupling between nearby spins causes the emergence

of spontaneous magnetisation. Some magnetic materials have preferred magnet-

isation directions (anisotropy), for example due to the crystal lattice structure.

In such materials systems with two stable states can be obtained. The system can

be switched between these states by the application of a magnetic field, which

can be easily generated using pulses of electrical current. These states can be

extremely stable, in some cases having average lifetimes of decades at room tem-

perature even for extremely small volumes of material. Such systems have many

technological applications, particularly in the area of data storage.

In current hard disk drives collections of nanometre-sized grains of anisotropic

magnetic material are magnetised using a write head (an electromagnet) in order

to store bits of data [63, Sec. 14.6]. The data is read back using magnetoresistive

sensors, which change their resistance based on the magnetic field. Such sensors

can be extremely sensitive and extremely small, allowing them be very close to

the bits and to obtain good signal-to-noise ratios despite the small size of the

bits.

Another application area where ferromagnetic materials show great promise is in

random access memory (RAM), used as short term data storage for computers.

The current standard RAM technology (dynamic RAM or DRAM) is based on the

charge stored in capacitors. These capacitors leak charge fairly rapidly, resulting

20



21

in data lifetimes on the order of milliseconds. Hence they must be continually re-

freshed and can require significant power usage to retain data. A widely proposed

alternative is MRAM (magnetoresistive RAM) which uses arrays of nano-sized

regions of magnetic material to store data and in-place magnetoresistive sensors

to allow random-access reads [63, Sec. 14.4]. The vastly longer data lifetimes al-

lowed by the use of magnetic materials results in greatly reduced standby power

usage by removing the requirement for continual refreshing. Moreover, computers

could be easily put into a completely powered-off hibernation state without writ-

ing data to disk. Historically there have been issues with random-access writes in

MRAM: moving write heads (as used in hard drives) cannot be used because the

time to move the head to the correct location is impractically long, and in-place

generation of the required magnetic fields requires large currents. However recent

developments in spin-torque-transfer, where spin-polarised currents are used to

directly apply a torque to the magnetisation of a ferromagnet, offer a solution to

these difficulties [5]. Spin torque transfer MRAM has recently been commercial-

ised by Everspin Technologies [49] and is beginning to make its way into products.

Due to the combination of non-volatility, high density, random-access, and low

read/write times it is a candidate for a so-called “universal memory”, where all

data is stored a RAM-like memory eliminating long access times.

It is extremely desirable to be able to accurately model the behaviour of mag-

netic materials for both research and device design purposes. However the use

of models based on quantum mechanics (such as density functional theory) to

predict the behaviour of magnetic systems is extremely computationally expens-

ive due to the length scales required. Instead a theory known as micromagnetics

is typically employed [1]. In micromagnetics a continuum approximation of the

ferromagnet’s magnetisation is used – it is assumed that the magnetisation can

be modelled as a continuous function of space and time (i.e. the contribution due

to individual atoms is averaged out). The continuum approximation is good if

the length scale over which the magnetisation varies is significantly larger than

the inter-atomic distance. This is usually the case in ferromagnetic materials

because of the smoothing effect of ferromagnetic exchange. Additionally a semi-

classical approach is used: the various important quantum mechanical effects are

approximated by classical representations. The result of these approximations is

a powerful framework for theoretical and computational predictions of the beha-

viour of magnetic materials.
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Micromagnetic models can be broadly split into two categories: energy based

models and dynamic models. Energy based models aim to find stable minimum

energy states for the system whereas dynamic models simulate the evolution of

the magnetisation over time. Dynamic models may be favourable even when there

are no time-dependent effects because standard energy based models are unable to

distinguish which of the various stable states will be the final state of the system.

Dynamic micromagnetic models require the solution of a differential equation,

known as the Landau-Lifshitz-Gilbert equation (LLG). Depending on the physical

system modelled the LLG may be an ordinary, partial or stochastic differential

equation. The very closely related Landau–Lifshitz–Slonczewski equation can

be used to model magnetisation dynamics when spin-torque-transfer effects are

included [92].

In this thesis we study numerical methods with the final goal of finding more

reliable and computationally efficient methods for dynamic micromagnetics sim-

ulations. In particular we focus on methods which improve the efficiency of

so-called “geometric integration” schemes. Geometric integration schemes are

numerical methods which are able to retain important qualitative properties of a

differential equation in an approximate solution, such as conservation of energy

in non-dissipative systems. In other areas of computational physics1 geometric

integration methods have been shown to greatly reduce the overall accumulation

of numerical errors [54, p. 77]. This allows more accurate results at the same

computational cost (or a reduction in the computational cost to obtain the same

accuracy). In particular we focus mainly on a widely known time integration

scheme with geometric integration properties when applied to dynamic micro-

magnetics calculations: the implicit midpoint rule.

1.1 Contents of thesis

The first two chapters, Chapters 2 and 3, comprise a basic introduction to micro-

magnetic models and the numerical methods commonly used in this context. In

particular Section 3.4 contains a detailed description of the properties of a selec-

tion of time integration schemes. Chapter 4 gives a more detailed introduction

1Some examples are: the field of celestial mechanics [43] and the solution of highly oscillatory
differential equations such as the Airy equation [54, p. 98].
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to the finite element method, including a description of how it can be applied

to dynamic micromagnetics simulations. The chapter ends with a discussion of

how the basic finite element method can be extended to retain the geometric

integration properties of the implicit midpoint rule. Chapter 5 introduces the

hybrid FEM/BEM method, a widely used technique for the accurate calculation

of magnetostatic fields.

The later chapters contain the main novel research contributions of this thesis.

Chapter 6 describes efficient iterative techniques for the solution of the coupled

linear and non-linear systems resulting from the use of FEM/BEM magnetostatics

calculations in an LLG-based dynamic model. In particular we introduce tech-

niques which reduce the development of an efficient solver for a monolithically

coupled problem to the development of an effective preconditioner for the LLG

sub-problem alone. Such a coupling strategy is required to retain the geometric

integration properties of the implicit midpoint rule, and may also be useful in the

time integration of the stochastic LLG.

In Chapter 7 we introduce a novel adaptive time step selection algorithm for the

implicit midpoint rule. This algorithm is not specific to the LLG, and to our

knowledge is the first such algorithm. The same chapter also contains numer-

ous numerical experiments demonstrating the selection of appropriate time steps

for a number of ordinary differential equations (ODEs), and demonstrating the

geometric integration properties when applied to an ODE form of the LLG.

In Chapter 8 we present a number of numerical experiments using combinations of

the methods developed in this thesis. The methods are validated against a number

of examples: a wave-like problem with an analytical solution, relaxation under

a non-uniform field, and the µmag standard problem #4 [73]. Additionally the

convergence and geometric integration properties of a variety of time integration

schemes are compared.

Finally, in Chapter 9 the comparative efficiency of two classes of time integration

schemes (implicit and explicit) are compared for an example problem across a

range of spatial discretisations.

Appendix A contains a description of two analytical solutions to the LLG equation

which have proven very useful in the verification of our implementation. The other

appendices contain technical details of some derivations.



Chapter 2

Continuous Micromagnetics

In this chapter we give an introduction to the theory of micromagnetics includ-

ing a statement of the equations to be solved. Micromagnetics is a semi-classical

(i.e. quantum mechanical effects are approximated using classical techniques),

continuum (i.e. the fields involved are assumed to be “smooth”) theory of ferro-

magnetism. It is widely used to describe the behaviour of ferromagnetic materials

on scales above those accessible using quantum mechanical approaches such as

density functional theory.

2.1 Definitions

We define M(x, t) to be a vector field representing the expectation value of the

magnetisation per unit volume averaged over a number of unit cells [1]. The

length of M(x, t) is fixed and given by the saturation magnetisationMs, a material

parameter. We define H(x, t) to be the magnetic field. These quantities are

related to the magnetic flux density B(x, t) (in units of Tesla) by

B(x, t) = µ0 (H(x, t) + M(x, t)) , (2.1)

where µ0 is the magnetic constant (or permeability of free space).

Our labelling of the domains is shown in Figure 2.1. We call the region of mag-

netic material Ω, it’s boundary Γ and the external domain Ωc. When working

with equations in dimensional form we always use S.I. units, although almost

24
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Ω

ΓΩc

Figure 2.1: The domain labels used: Ω is the magnetic material, Γ is the boundary
and Ωc is the (infinite) external region.

all equations are written in non-dimensional form after this form is derived in

Section 2.4. In general we will not make dependencies on x and t explicit.

For a scalar function f and a vector function g in three dimensions we use the

standard definitions of the gradient, divergence and Laplacian operators: ∇f =

(∂f
∂x
, ∂f
∂y
, ∂f
∂z

), ∇ · g = ∂gx
∂x

+ ∂gy
∂y

+ ∂gz
∂z

, and ∇2f = ∂2f
∂x2 + ∂2f

∂y2 + ∂2f
∂z2 respectively. We

also write the vector Laplacian as ∇2g = (∇2gx,∇2gy,∇2gz). In less than three

dimensions the obvious extensions are used.

We are often concerned with energies E that depend on the values of the function

M over all space, i.e. E[M(x)] is a functional of M. For such a functional we

define its first variation as

δE[M] = E[M + δM]− E[M], (2.2)

for some “small” arbitrary function δM. The functional (or variational) derivat-

ive, δE
δM

, is defined as the functional such that

δE =

∫
Ω

δE

δM
· δM dΩ. (2.3)

2.2 The energy of a magnetic body

A number of energy terms are included in standard micromagnetic models: the

magnetostatic self energy, the exchange energy, the magnetocrystalline anisotropy

energy and the energy due to external applied fields (created by magnetic bod-

ies or electrical currents outside the modelled region). We begin by providing a

description of each of these energies. Other effects which are sometimes import-

ant include temperature (thermal effects) and magnetostriction (the change in
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magnetic behaviour due to stretching or compressing the magnet).

The energy due to an external applied field, Hap, (sometimes called the Zeeman

energy) is

Eap = −µ0

∫
Ω

Hap ·M dΩ. (2.4)

The first variation of this energy with respect to M is

δEap = −µ0

[∫
Ω

Hap ·M + Hap · δM dΩ−
∫

Ω

Hap ·M dΩ

]
,

= −µ0

∫
Ω

Hap · δM dΩ,

(2.5)

and so by (2.3)

Hap =
−1

µ0

δEap

δM
. (2.6)

Motivated by (2.6) we define an “effective field” H for any energy term E:

H =
−1

µ0

δE

δM
. (2.7)

This effective field acts exactly like a real field in calculations of the magnetisation

dynamics and represents the effects of the corresponding energy term.

2.2.1 Exchange energy

In a ferromagnetic material neighbouring magnetic moments prefer to align par-

allel to each other due to quantum mechanical effects. This can be approximated

by a classical expression for exchange energy [1] as

Eex =
A

M2
s

∫
Ω

(∇Mx)
2 + (∇My)

2 + (∇Mz)
2 dΩ, (2.8)

where A is the material dependent exchange constant representing the strength

of the exchange coupling.
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It can be shown [1][18, p. 46]1 that

δEex =
2A

M2
s

∫
Ω

(∇Mx) · δ(∇Mx) + (∇My) · δ(∇My) + (∇Mz) · δ(∇Mz) dΩ,

=
−2A

M2
s

∫
Ω

(∇2M) · δM dΩ.

(2.9)

Hence the exchange effective field is given by

Hex =
2A

µ0Ms

∇2M. (2.10)

2.2.2 Magnetostatic energy

Magnetic materials generate a magnetic field, which in turn affects the magnetic

material emitting the field. This field is also known as the demagnetising field as

it tends to oppose the magnetisation of the body. When there are no changing

electric fields the magnetic field can be calculated using only two equations rather

than the full four Maxwell’s equations, this case is known as magnetostatics. The

first equation needed is Ampere’s law [23, p. 33]

∇×H = ĵc, (2.11)

where ĵc is the “free current”: the conduction current in electrical circuits (i.e.

not including the current due to electron spin). The second equation needed is

[23, p. 34]

∇ ·H = −∇ ·M. (2.12)

These two equations can be derived from Maxwell’s equations by setting ∂E
∂t

= 0.

We call the resulting field the magnetostatic field and label it Hms. The solutions

to these equations are typically calculated in one of two ways: by using an integral

method or by solving a simplified differential equation in terms of a potential.

The integral form of the magnetostatic field at a point x ∈ R3 due to the magnetic

body Ω with boundary Γ can be given in terms of magnetisation M by an integral

over all volume and surface “magnetic charges” (∇ ·M and M · n̂ respectively)

1Briefly: use the fact that δ∇M = ∇δM and apply (B.3) (assuming that the boundary condition
(2.24) holds) to shift the both derivatives onto the M term.
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as

Hms(x) =
1

4π

[
−
∫

Ω

∇′ ·M(x′)
(x− x′)

|x− x′|3
d3x′ +

∫
Γ

M(x′) · n̂(x′)
(x− x′)

|x− x′|3
d2x′

]
,

(2.13)

where ∇′ denotes the grad operator with respect to the x′ coordinate and n̂(x) is

the outer unit normal of Ω at x. For completeness we note that single magnetic

charges (magnetic monopoles) are a useful mathematical tool but have not been

observed in nature.

When the magnetostatic field is produced only by magnets, and not by electric

currents (i.e. ĵc = 0), then it is possible to express the field in terms of a scalar

potential, φ [23, p. 46]2

Hms = −∇φ,

∇2φ = ∇ ·M.
(2.14)

The boundary conditions on φ are

φint − φext = 0 x ∈ Γ,

∂φint

∂n̂
− ∂φext

∂n̂
= M · n̂ x ∈ Γ,

φ→ 0 as |x| → ∞,

(2.15)

where φint and φext are respectively the values of φ just inside and outside the

domain Ω. These conditions come from the requirement for continuity in the

potential, the boundary conditions on the magnetic field (Bint · n̂ = Bext · n̂)

and the requirement for finite total energy respectively. Note that (2.15) implies

continuity but not smoothness of the magnetic potential φ across Γ. This can be

thought of as the effect of (fictional) surface monopole charges.

The corresponding energy contribution is given by

Ems =
−µ0

2

∫
Ω

Hms ·M dΩ. (2.16)

The factor of 1
2

is to avoid double counting: the integral includes the contribution

of the field generated by an infinitesimal region A on a region B, but also the

effect of a field generated by B on A.

2This is because Ampere’s law reduces to ∇×H = 0, meaning that it is satisfied by H = ∇φ
for any scalar φ.
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2.2.3 Magnetocrystalline anisotropy energy

Many magnetic materials have a preferred direction (or directions) of magnetisa-

tion due to their crystal structure, this is known as magnetocrystalline anisotropy.

The energy contribution due to this anisotropy depends on the crystal structure

of the material, but is typically well approximated by one of a few simple algebraic

functions of M. Because of this the exact type of anisotropy is not especially im-

portant for the discussion of numerical methods. Here we focus on only the most

technologically relevant case: in magnetic data recording interest is focused on

materials with a single out of plane easy axis (perpendicular uniaxial anisotropy)

as this gives the best stability for the stored data.

The first order approximation for the energy contribution of a perpendicular

uniaxial anisotropy is given by

Eca = −K1

∫
Ω

(
M

Ms

· ê
)2

dΩ, (2.17)

where ê is the easy axis and K1 is the material dependent first order anisotropy

energy density coefficient.3 The first order approximation is valid for most mag-

netic materials of interest [23].

The effective field corresponding to this case is

Hca =
2K1

µ0Ms

(
M

Ms

· ê
)

ê. (2.18)

A detailed description of the various forms of the magnetocrystalline anisotropy

can be found in textbooks on magnetic materials [23, 1].

2.3 Dynamic Micromagnetics and the Landau-

Lifshitz-Gilbert equation

The general aim of a micromagnetic model is to predict the behaviour of a mag-

netic body under a variety of conditions. This can either be done by finding the

minimum energy of the body or by modelling the dynamics of the magnetisation.

3It is possible to define many different forms for this energy. Note that the choice of definition
changes the meaning of K1.
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In this thesis we are concerned only with dynamic models. Such dynamic models

calculate the time evolution of the magnetisation using a differential equation.

Dynamic models are often advantageous even when only the final state of the

system is required because a magnetic system typically has multiple local energy

minima and (standard) energy models cannot distinguish which of these minima

the system will reach.

Starting with the quantum mechanical angular momentum of an electron, and

converting from a single spin to a continuous magnetisation gives the differential

equation [23, p. 306]
∂M

∂t
= −|γL|M×Heff , (2.19)

where γ ≈ 1.761× 1011s−1T−1 is the electron gyromagnetic ratio and Heff is the

total effective field

Heff = Hap + Hca + Hex + Hms. (2.20)

Equation (2.19) represents the precession of the magnetisation about the effective

field, as shown in Figure 2.2. Other effective fields can be added to (2.20) to model

other physical effects such as finite temperature or magnetostriction.

Equation (2.19) describes an undamped precessional motion, i.e. no energy is lost

and the magnetisation continues to precess forever. This is obviously not the case

for many problems of interest so an empirical damping term is added [65]:

∂M

∂t
= −|γL|M×H− αL|γL|

Ms

(
M× (M×H)

)
, (2.21)

where α is an experimentally determined material parameter related to the strength

of the damping and we write H = Heff . Equation (2.21) is referred to as the

Landau-Lifshitz (LL) equation.

However, there are still problems with this equation. For large damping: as

the damping constant is increased the total speed of the motion increases (since

the magnitude of the damping term increases and the precession term remains

unchanged), which is physically incorrect [71]. There is a similar equation intro-

duced by Gilbert [42], called the Landau-Lifshitz-Gilbert (LLG) equation, which



2.3. DYNAMIC MICROMAGNETICS AND THE LLG 31

Precession term

Damping term

Figure 2.2: The effects of the precession and damping terms in the Landau-Lifshitz
and Landau-Lifshitz-Gilbert equations on the magnetisation direction, M, of a
single magnetic moment with a constant effective field.

does not suffer from this problem4

∂M

∂t
= −|γL|M×H +

α

Ms

(M× ∂M

∂t
), (2.22)

where α 6= αL. Equation (2.22) can be rearranged into the same form [1, p. 181]

as (2.21), giving

∂M

∂t
=
−|γL|
1 + α2

[
(M×H) +

α

Ms

(
M× (M×H)

)]
, (2.23)

which we refer to as the Landau-Lifshitz form of the Landau-Lifshitz-Gilbert

equation.

Equations (2.21)–(2.23) link the unknown magnetisation vector as a function of

time, M(t), with the effective field, H. To determine M at an arbitrary time

we need to integrate either of the above equations with respect to time starting

4A number of papers give different signs for the LLG equation, this may be due to confusion
over the use of γL to mean |γL| = −γL. Alternatively it may be due to the lack of specification
of the sign of the damping parameter in Gilbert’s derivation of the LLG [42] (originally from
his thesis), which uses the alternative notation α = −η |γL|Ms where η is the usual damping
parameter. The correct signs are the ones given here and in reference [70].
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from a known initial magnetisation M(0). This is usually done numerically by

employing a time integration scheme, as will be discussed in Section 3.4.

Note that there is no spatial dependence directly contained in (2.21)–(2.23), i.e.

they are ordinary differential equations (ODEs). However the exchange effect-

ive field and magnetostatic field usually contain spatial dependence, so the final

equation to be solved is usually a partial differential equation (PDE).

2.3.1 Boundary conditions

By far the most commonly used boundary conditions on the magnetisation M

are [1, pp. 178, 181] [79]:

M× ∂M

∂n̂
= 0. (2.24)

This condition can be arranged into a simpler form: we first note that for (2.24)

to hold we require either M = 0, ∂M
∂n̂

= 0, or M parallel ∂M
∂n̂

. Clearly M is not

the zero vector inside the ferromagnet. We also know that the magnetisation

length does not change,5 hence ∂M
∂a
·M = 0 for any direction a (since the change

in magnetisation projected onto the magnetisation direction is the change in

magnetisation length). Therefore M and ∂M
∂n̂

cannot be parallel. So the final

boundary condition is simply
∂M

∂n̂
= 0. (2.25)

Alternatively, if the solution is periodic and the domain is infinite then periodic

boundary conditions can be used [55]. In this case the value of the magnetisation

must be identical on opposite sides of the domain. The domain of the simulation

can then be thought of as infinite.

2.3.2 Temperature effects

All equations so far in this section are for the zero temperature case. Moder-

ate temperature effects (significantly below the Curie temperature) can modelled

by adding a stochastic term to the effective field [25]. High temperatures require

variation of the material parameters with temperature, as well as additional terms

5Physically this is part of the definition of the problem. In Section 2.5 we demonstrate that
this is embodied in the LLG equation.
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to model the dynamic changes of the magnetisation length when near the Curie

temperature. This is typically done by using the Landau-Lifshitz-Bloch equa-

tion instead of the Landau-Lifshitz-Gilbert equation, see for example [29]. Such

models are beyond the scope of this thesis.

2.4 Non-dimensionalisation

In general it is useful to remove all unnecessary parameters from a differential

equation before attempting to solve it. The main advantage of this is that we

simplify the problem and greatly reduce the number of numerical experiments

needed to cover all possible situations. Also for all problems the appropriate

discretisation parameters (time step size and mesh size) will be roughly the same.

2.4.1 Non-dimensionalisation of the Landau-Lifshitz-Gilbert

equation

We start from the Landau-Lifshitz-Gilbert equation with the magnetostatic, ap-

plied, exchange and magnetocrystalline (effective) fields. We use ∗ to denote the

dimensional variables, operators and constants that will be non-dimensionalised:

∂M∗

∂t∗
= −|γL|M∗ ×H∗ +

α

Ms

M∗ × ∂M∗

∂t∗
, (2.26)

H∗ = H∗ap −∇∗φ∗ +
2A∗

µ0Ms

∇∗2m +
2K∗1
µ0Ms

(
M∗

Ms

· ê)ê, (2.27)

∇∗2φ∗ = ∇∗ ·M∗, (2.28)

We assume for simplicity that Ms, A and K1 are all constant throughout the

magnetic materials used.
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Let
M∗ = Msm,

φ∗ = Φφ,

H∗ = Msh,

K∗1 = KK1,

t∗ =
1

|γL|Ms

t,

x∗i = lxi.

(2.29)

Note that M and H have the same units so we use the same normalisation factor.

For dimensional purposes derivatives are equivalent to division by the variable

differentiated with respect to, so ∇∗ = 1
l
∇, ∂a

∂t∗
= |γL|Ms

∂a
∂t

etc.

Combining (2.26) with the definitions (2.29) gives

∂m

∂t
|γL|M2

s = −|γL|M2
sm× h +

α

Ms

|γL|M3
sm×

∂m

∂t
, (2.30)

and cancelling the various constants results in the non-dimensional Landau-

Lifshitz-Gilbert equation

∂m

∂t
= −(m× h) + α(m× ∂m

∂t
). (2.31)

Similarly for (2.28) we have

1

l2
Φ∇2φ =

1

l
Ms∇ ·m,

Φ

Msl
∇2φ = ∇ ·m.

Letting Φ = Msl we obtain

∇2φ = ∇ ·m. (2.32)
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Repeating the substitutions for (2.27) gives

Msh = Mshap −
Φ

l
∇φ+

2A

µ0Ms

1

l2
∇2m +

2K1

µ0Ms

K(m · ê)ê,

h =
Ms

Ms

hap −
Ms

Ms

∇φ+
2A

µ0M2
s

1

l2
∇2m +

2K1

µ0M2
s

K(m · ê)ê,

h = hap −∇φ+
2A

µ0M2
s

1

l2
∇2m +

2K1

µ0M2
s

K(m · ê)ê,

This can be further simplified by choosing the exchange length6 as the character-

istic length scale

l =

√
2A

µ0M2
s

, (2.33)

and

K =
µ0M

2
S

2
. (2.34)

So the final system of equations is

∂m

∂t
= −m× h + αm× ∂m

∂t
,

h = hap −∇φ+∇2m +K1(m · ê)ê,

∇2φ = ∇ ·m.

(2.35)

From (2.24) the dimensional boundary conditions on are:

M∗ × ∂M∗

∂n̂∗
= 0. (2.36)

Using again the substitutions from above this becomes

M2
s

l

(
m× ∂m

∂n̂

)
= 0,

m× ∂m

∂n̂
= 0.

(2.37)

6There are actually two exchange lengths: one based on the strength of exchange as com-
pared with the magnetostatic field and another by comparison with the magnetocrystalline
anisotropy. We use the magnetostatic-field-based exchange length for normalisation to avoid
division by zero in the case of zero magnetocrystalline anisotropy.
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2.4.2 Non-dimensionalisation of the Landau-Lifshitz form

of the LLG

The dimensional Landau-Lifshitz form of the LLG is given in (2.23):

(1 + α2)
∂M∗

∂t∗
= −|γL|M∗ ×H∗ − |γL|α

Ms

M∗ × (M∗ ×H∗). (2.38)

The non-dimensionalisation process is essentially the same as for the Gilbert form,

by substituting in the normalisations in (2.29) we obtain

(1 + α2)
∂m

∂t
= −m× h− αm× (m× h). (2.39)

The field equations are identical to those in (2.35).

Alternatively the time variable could be normalised differently to remove the

factor of (1 + α2) by using

t∗ =
1 + α2

|γL|Ms

t. (2.40)

This results in
∂m

∂t
= −m× h− αm× (m× h). (2.41)

However this means that time scale changes (i.e. the t∗s are different) when

switching between the two forms (2.31) and (2.41), making comparisons more

difficult.

2.4.3 Non-dimensionalisation of the energy

We repeat the process used in Section 2.4.1 to get a set of non-dimensionalised

energy equations, starting from the equations given in Section 2.2:
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E∗ap = −µ0

∫
Ω

M∗ ·H∗ap dΩ∗, (2.42)

E∗ms =
−µ0

2

∫
Ω

M∗ ·H∗ms dΩ∗, (2.43)

E∗ex = A

∫
Ω

(∇∗m)2 dΩ∗, (2.44)

E∗ca = −K∗1
∫

Ω

(m · ê)2 dΩ∗. (2.45)

We substitute definitions (2.29), (2.33) and (2.34) and E∗ = Ene = µ0M
2
s l
d e

where d denotes the number of spatial dimensions to obtain

eap = −µ0M
2
s l
d 1

En

∫
Ω

m · hap dΩ = −
∫

Ω

m · hap dΩ, (2.46)

ems =
−µ0M

2
s l
d

2

1

En

∫
Ω

m · hms dΩ = −1

2

∫
Ω

m · hms dΩ, (2.47)

eex =
µ0M

2
s l

2

2

ld

l2
1

En

∫
Ω

(∇m)2 dΩ =
1

2

∫
Ω

(∇m)2 dΩ, (2.48)

eca = −µ0M
2
s

2
ldK1

1

En

∫
Ω

(
M∗

Ms

· ê)2 dΩ =
−K1

2

∫
Ω

(m · ê)2 dΩ. (2.49)

Note that we have used

dΩ∗ = d(x∗)d = ld dxd = ld dΩ. (2.50)

2.5 Geometric properties of the continuous Landau-

Lifshitz-Gilbert equation

The “geometric properties” of a differential equation are those properties which do

not vary in time [54, p. 73], i.e. conservation laws. In this section we demonstrate

some geometric properties of the Landau-Lifshitz-Gilbert equation.

For this purpose it is convenient to write the non-dimensional LLG equation in

the form
∂m

∂t
= −m× (h− α∂m

∂t
). (2.51)
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We will also need the identity

(a, a× b) = 0, (2.52)

which is true for all inner products (· , ·) because a× b is perpendicular to a by

the definition of the cross product. We refer to this identity as the triple product

identity. In particular, it is true for the dot product of two vectors7 (also known

as scalar multiplication) and for the L2 inner product of two vector functions a,

b:

(a, b)L2 =

∫
Ω

a · b dΩ. (2.53)

We first show that length of the magnetisation at any point is constant over time.

To see this we take the dot product of (2.51) with m and use (2.52) to obtain

m · ∂m

∂t
= 0. (2.54)

This equation implies that the change of m over time is always perpendicular to

m, so length is conserved.8

Next we look at the energy properties of the system described by the Landau-

Lifshitz-Gilbert equation. The change in energy over time can be derived simil-

arly to the change in magnetisation by taking the L2 inner product of each side

of (2.51) with h − α∂m
∂t

. We then use the triple product identity (2.52) and the

linearity of inner products to find that(
h,

∂m

∂t

)
L2

− α
(
∂m

∂t
,
∂m

∂t

)
L2

= 0. (2.55)

Using the fact that h = − δe
δm

and the chain rule for functional derivatives, we

7Although the dot product is an inner product we follow convention and write it as a ·b rather
than in the bracket notation used for other inner products.

8Actually this is obvious from the fact that ∂m
∂t is can be written as a cross product involving

m, but the technique used here is useful in the discussion of the properties of various discrete
forms of the Landau-Lifshitz-Gilbert equation.
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find that the time derivative of the energy is given by

∂e[m(x, t), t]

∂t
=

(
δe

δm
,
∂m

∂t

)
L2

−
(
∂hap

∂t
, m

)
L2

= −
(

h,
∂m

∂t

)
L2

−
(
∂hap

∂t
, m

)
L2

,

and so (
h,

∂m

∂t

)
L2

= −∂e
∂t
−
(
∂hap

∂t
, m

)
L2

. (2.56)

Finally, substituting (2.56) into (2.55) leaves

∂e

∂t
= −α

(
∂m

∂t
,
∂m

∂t

)
L2

−
(
∂hap

∂t
, m

)
L2

. (2.57)

Equation (2.57) shows that under constant applied field the energy of the system

is always decreasing at a rate proportional to α. For non-constant applied fields

the change in the Zeeman energy can increase or decrease the energy depending

on how the field is changed. In fact, the first term of (2.57) can be easily derived

from the Rayleigh dissipation functional used as the basis for the derivation of

the Gilbert form of the LLG [42]. However the approach used here is useful for

determining equivalent properties in discrete forms of the LLG.

Note that length conservation is a point-wise property, i.e. |m| = 1 at every point

in space. In contrast the energy decay/conservation is a global property, i.e. an

integral over all space is conserved. This is related to the use of the dot product

and the L2 inner product respectively in the derivations above.



Chapter 3

Numerical Methods for Dynamic

Micromagnetic Modelling

3.1 Introduction

In this chapter we give an overview of numerical methods that have previously

been used in dynamic micromagnetic calculations. These calculations involve

solving some form of the LLG equation (2.23) with effective fields determined by

energy derivatives as discussed in Chapter 2. These systems of partial differential

equations (PDEs) can only be solved analytically in a few simple cases [1], so

numerical solution methods are almost always necessary.

3.1.1 Components of a numerical method for solving PDEs

Many numerical methods for solving non-linear PDEs, such as the LLG (2.23),

can be thought of as a combination of various component methods, each of which

handles a different part of the conversion from a continuous PDE into an al-

gorithm which can be performed by a computer1.

The essential components of a numerical method for solving time-dependent PDE

problems are:

1Technically proofs of convergence etc. should be carried out for every different combination
of component methods [54, p. 382]; in practice surprises seem to be rare, at least within
micromagnetics.

40
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• Spatial discretisation: convert spatial derivatives into algebraic relation-

ships, typically between discrete points in space, e.g. finite elements, finite

differences, macrospin models.

• Time discretisation (a.k.a. time integration): convert time derivatives into

algebraic relationships, again typically between points in time, e.g. Runge-

Kutta methods, backwards difference formulae.

For some choices of time and space discretisations additional component methods

are needed:

• Linearisation procedure: Solve a system of non-linear algebraic equations,

often by an iterative procedure which requires the solution of a sequence

of systems of linear algebraic equations, e.g. Newton-Raphson method,

Picard/fixed-point iteration.

• Linear solver: solve a system of linear algebraic equations, e.g. LU decom-

position, Krylov solvers, multigrid methods.

Additionally in micromagnetic modelling the calculation of the magnetostatic

field is required. If the integral form of the magnetostatic field, given in (2.13), is

used then an additional integral evaluation method is needed to handle it. Altern-

atively, if the equivalent potential formulation, given in (2.14) and (2.15), is used

then the magnetostatic field calculation simply requires solving additional PDEs,

although there are some issues with the application of the boundary condition at

infinity which are discussed in Section 3.3.2.

3.1.2 Desirable properties of a numerical method

Ideally all numerical methods would run quickly on cheap hardware and with

sufficient accuracy. Unfortunately this is not the case in general and we are forced

to make trade-offs. In this section we roughly describe some ideal properties of a

numerical method (although obtaining all of these properties in a single method

is almost certainly impossible).

The accuracy of a simulation is generally proportional to the “fineness” of the

discretisations used (i.e. the number of points used in the approximation), but
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increasing the fineness also increases the computation time. However, careful

choice of algorithms can improve the accuracy at no additional cost or improve

the speed with no loss of accuracy. The following properties of methods are

important in this respect:

• The discretisation fineness in time should be dictated only by what is needed

to accurately resolve the physics and not by numerical properties of the

discretisation. In particular improved spatial fineness should not require

improved time fineness.

• The optimal fineness in both time and space should be determined auto-

matically, and should be allowed to vary as needed. This allows us to get

the best “value” for our computational effort when increasing the fineness

of the discretisation.

• The computation time should increase as little as possible as fineness in

space or time increases. The minimum increase is linear scaling (O(N),

where N is the number of discrete points involved) because we always have

to do something with each value. Attaining this property for spatial dis-

cretisation usually impacts the choice of linear solver and/or magnetostatic

calculation: many methods do not scale this well.

• The method should be able to handle non-trivial geometries without extor-

tionate computational cost.

Additionally we would like our algorithms to be robust, that is they should re-

liably be able to give a correct answer no matter what parameters are used (up

to any tolerances specified). In other words there should be few edge cases or

“interesting” surprises when applying the method to various physical problems.

Some important properties which improve robustness are:

• The method should obey any qualitative physical properties of the continu-

ous equation.

• Mathematical evidence that all parts of the method will “work” on any well

defined problem (e.g. proofs of convergence, etc.).

• The numerical method should automatically detect difficulties and apply

the required effort to obtain the correct answer.
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In addition to these properties there are a few practical considerations. The

method should be reasonably simple: people need to understand a method before

they can implement it, and even users need a surface level understanding. Finally

the method should be as general as possible to reduce implementation effort and

to simplify testing (by allowing a greater selection of example problems).

3.2 Spatial Discretisation

3.2.1 Macrospin models

In a granular magnetic material (a material consisting of magnetic grains separ-

ated by a non-magnetic material) the simplest way to handle spatial variation in

the problem is to assume that within each grain the exchange effective field is so

strong that the magnetisation is constant, i.e. that each grain behaves as a single

macrospin. We assign a single value of m to each macrospin and proceed to cal-

culate energy, effective field and/or magnetisation of each macrospin as required.

One caveat is that the effects of the magnetostatic field of a grain on the grain

itself is not automatically accounted for since there is no modelling of intra-grain

effects. Hence it must be calculated and included separately to the magnetostatic

interactions between grains. When included in this way the magnetostatic self

field is often called the shape anisotropy since it is dependent on the shape of the

grain and acts in a similar way to the magnetocrystalline anisotropy.

The obvious downside of a macrospin approach is that it only applies to fairly

specific geometries, although the case of a granular media has been of much

interest for magnetic data storage. Additionally, if there are nonuniformities in

magnetisation within the regions where it has been assumed constant the model

may be inaccurate.

However it is often simpler to construct a macrospin model than to use the

more general methods described in Sections 3.2.2 and 3.2.3. Also the assumption

that each grain has uniform magnetisation can reduce the number of calculations

needed.

Closely related to macrospin models are atomistic models [28]. In these models

the assumption of a continuous magnetisation m(x, t) is dropped in favour of an

assumption that each atom is the location of a single macrospin. As such they
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allow the modelling of some systems that are inaccessible using micromagnetics,

such as anti-ferromagnetic materials. However, the required spatial resolution for

an atomistic model comes with an increase of a few orders of magnitude in the

computational cost. Additionally such methods are only accurate for materials

where the magnetic moment is localised to an atom, which is not always the case.

3.2.2 Finite Difference Methods

A widely used method of spatial discretisation is the finite difference method: a

single magnetisation vector is assigned to each point on (or “cell” in) a square/cubic

grid which covers the entire domain. Spatial derivatives in the PDE are then ap-

proximated by using truncated Taylor series expansions.

The finite difference method works well for very simple geometries when the grid

can be lined up with all geometric features. For example when we are interested

in how the magnetisation evolves over time in a non-granular cuboid-shaped thin

film of magnetic material a finite difference method will be sufficient (e.g. in the

µmag standard problems [73]).

However when the geometry involves curves, diagonals, hexagonal grains, bit

patterned media or any other more complex geometric system alternative methods

may be better suited.

3.2.3 Finite Element Methods

A more complex method of spatial discretisation is the finite element method [91].

Here the magnetic body is divided up into a finite number of non-overlapping ele-

ments, which can vary in both shape and size. Within each of these elements the

spatial variation of the magnetisation is approximated by a polynomial function,

typically a linear polynomial. Spatial derivatives are easily calculated by dif-

ferentiating these polynomial functions, although higher derivatives can require

some tricks. In contrast to macrospin and finite difference methods the actual

equations solved by the finite element method are a weak form of the standard,

or strong, form of the PDE. More details of the weak form and the finite element

method are given in Section 4.1.

The main advantage of the finite element method is that it can cheaply and

accurately (compared to the finite difference method) approximate non-trivial
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geometrical features by an using an appropriate mesh of elements. An additional

advantage is that the size of elements, and thus the accuracy of the approximation,

can be varied arbitrarily as needed to give better accuracy in more complex or

important regions. The choice of element size can be done automatically using

adaptive mesh refinement : after each calculation an error estimate is calculated.

If the error is determined to be too high in a region the mesh is refined near that

region and the calculation is repeated (and similarly if the error is very in a region

low the mesh can be unrefined). Hence, given the desired error and a method to

estimate the error, a mesh giving an efficient and accurate approximation can be

automatically generated [85].2

The major downside of finite element models is that the underlying mathematics

is more complex than that required for other methods. Also the set up time and

memory usage can be greater because of the additional “bookkeeping” required

to keep track of the more complex meshes.

3.3 Magnetostatic Field Calculations

Methods for the calculation of magnetostatic fields belong to two categories: in-

tegral and potential methods. Integral methods are based on efficiently approx-

imating the very large number of integrals required by (2.13). Potential methods

are based on the solution of the PDE (2.14) with standard spatial discretisa-

tion methods combined with some special treatment is required for the boundary

condition at infinity.

In this section we use the term “discrete magnetisations” to mean the macros-

pins/cells/nodes as appropriate for the spatial discretisation. We use N to denote

the number of discrete magnetisations.

2Adaptive mesh refinement can also be done in finite difference methods, but as it results in a
non-uniform mesh this removes their main advantage of simplicity and uniformity.
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3.3.1 Integral Methods

Integral methods are based on the expression

Hms(x) =
1

4π

[
−
∫

Ω

∇′ ·M(x′)
(x− x′)

|x− x′|3
d3x′ +

∫
Γ

M(x′) · n̂(x′)
(x− x′)

|x− x′|3
d2x′

]
.

(3.1)

A naive way to evaluate the integrals in (3.1) would be to calculate the field at

each node due to each other node. So for each node a sum over all other nodes

must be calculated. Hence this results in a computation time that scales as

O(N2), which is usually unacceptably slow for reasonably large N . Instead, more

advanced techniques are used which treat the large number of integral evaluations

in a more efficient way.

Fast Fourier transform methods

The fast Fourier transform method (FFT) is a simple and efficient method for cal-

culating the magnetostatic field when the discrete magnetisations are positioned

on a regular lattice.

The calculation of Hms in (2.13) can be thought of as applying a convolution to the

list of discretised m values in the frequency domain. The matrix corresponding to

this convolution is only dependent on the geometry, hence it can be precomputed

and its Fourier transform precalculated. Then all that is needed to calculate the

magnetostatic field is to apply a Fourier transform to M, compute the convolution

and transform the result back into the time domain by applying the inverse

Fourier transform. Because of the regularity, applying the convolution in the

frequency domain is very fast and hence the complexity of the calculation is

limited by the complexity of a fast Fourier transform. This results in an overall

complexity of O(N log(N)) [58].

The downside of this method is that points to be calculated must be on a reg-

ular lattice, similar to the finite difference method. Hence, it is most useful in

combination with models using a finite difference spatial discretisation.

Alternatively the FFT may be used as part of a method applicable to less regular

meshes. In such “non-uniform FFT” methods distant discrete magnetisations are

approximated by magnetisations on a regular lattice so that an FFT method can

be applied while the effects of nearby magnetisations are evaluated directly [58].
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Fast multipole method

An alternative method of calculation of the magnetostatic field is the fast multi-

pole method (FMM) [11]. The fast multipole method takes advantage of the fact

that distant magnetic charge has a much smaller contribution to the total field at

a point than a nearby magnetic charge due to the 1
(x−x′)2 scaling in (3.1). Hence

much less accuracy is needed in the calculation of these distant contributions in

order to obtain the same overall accuracy.

For the field calculation at a specific point the full calculation is only performed

for nearby discrete magnetisations. Groups of more distant magnetisations are

approximated (lumped) as a single multipole placed at the centre of the group.

The trick for quickly calculating fields at a large number of points is to pre-

calculate multipole approximations for a range of accuracies over all space. Then

the calculation of a field at a single point only requires the full calculation of

effects from a few nearby points and from the appropriate multipoles.

The main advantage of this method over the fast Fourier transform is that it

allows for arbitrary geometries.

3.3.2 Scalar potential methods

Potential methods are based on the formulation

hms = −∇φ,

∇2φ = ∇ ·m,
(3.2)

with the boundary conditions

φint − φext = 0 x ∈ Γ,

∂φint

∂n̂
− ∂φext

∂n̂
= m · n̂ x ∈ Γ,

(3.3)

and

φ→ 0 as |x| → ∞, (3.4)

see Section 2.2.2 for details.

Inside the domain φ can be solved for simply by applying finite element or finite

difference discretisation methods. However (3.4), the boundary condition on φ
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at infinity, is problematic. We obviously can not apply this condition directly

using standard methods, since that would involve either an infinite number of

elements or infinitely large elements (actually these are possible but impose heavy

limitations on the allowed mesh geometries see e.g. [3] and [34] respectively).

Hence more advanced techniques must be used, such techniques are the subject

of the rest of this chapter.

The system of equations for the internal field calculations results in a well known

linear algebra problem which can be solved in O(N) time by well studied linear

solvers (more details are given in Section 3.6 and Chapter 6). However applying

or calculating boundary conditions can require additional processing time.

Asymptotic boundary conditions

One way to avoid an infinite domain is to truncate the external region at some

finite distance from the magnetic domain. A similar but more sophisticated and

accurate approach is to use asymptotic boundary conditions [102]. The idea here

is to use a truncated external region to calculate the boundary conditions on the

magnetic domain that correspond to (3.4) being applied at infinity. Additionally

the fact that any solution to the Poisson equation (3.2) can be represented as an

infinite series of harmonic functions is used to improve the accuracy.

Unfortunately the accuracy of this approach is still quite low, even for large

truncation distances [15].

The hybrid finite element method/boundary element method

The idea of the hybrid finite element method/boundary element method (FEM/BEM)

is to replace the external domain by a dipole layer placed on the surface of the

magnetic domain which gives the correct boundary condition at infinity [38].

This removes the need to truncate or discretise the infinite external domain. The

name comes from the close relationship between the use of a dipole layer and the

boundary element method, and the fact that the standard finite element method

is used to calculate the required potentials in the bulk. The full details of the

method applied to magnetostatic calculations is discussed in Chapter 5.

A comparison by Bottauscio [15] found that using the FEM/BEM method was
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more accurate than applying asymptotic boundary conditions (ABCs) for a calcu-

lation of the time evolution of the magnetisation of a sphere with zero exchange

coupling. Even with a truncation distance of four times the size of the mag-

netic sphere (i.e. the radius of the computational domain was 4 times larger then

that of the sphere) the accuracy when using asymptotic boundary conditions was

worse3 and did not improve between truncation distances of three and four times

the magnetic sphere radius. Even when exchange coupling was added (giving an

easier test) the ABC method was worse4 than the FEM/BEM method.

The main downside of the FEM/BEM method is that it involves dense matrix of

size Nb × Nb where where Nb is the number of boundary nodes (see Chapter 5

for details). This matrix must be stored in memory5, and multiplied by a vector

for the calculation of the boundary conditions. The speed of calculation of the

boundary values in the method is limited by the dense matrix multiplication

which, the cost of which is O(N2
b ). Similarly, the memory usage is O(N2

b ), which

can limit the size of problems. The use of hierarchical matrix techniques can

reduce both the speed and the memory usage to O(Nb log(Nb)) [61].

In 3D structures which are roughly spherical Nb = O
(
N2/3

)
and so the use of

a hierarchical matrix gives optimal computation speed6 but for extremely flat

structures such as thin films the number of boundary nodes can be as large as

Nb = N . Hence the speed of the FEM/BEM method depends on the geometry.

Another downside of FEM/BEM is the increase in the complexity of the model:

some components of the FEM/BEM method are fundamentally different to FEM.

As such substantial additional code and mathematical knowledge may be needed

for its implementation when standard FEM libraries are used as a basis.

3.4 Time Integration

Time integration schemes are used to convert the time derivatives of a PDE into

a form that can be handled computationally. When discussing time integration

3After one precession cycle the relative error in Mx obtained using ABC method was around
1, compared to around 0.1 for FEM/BEM.

4A relative error of around 0.2.
5In theory individual regions of the matrix could be recomputed on the fly when needed but
the computational cost would be inordinately high.

6With hierarchical matrix techniques the speed is O
(
N2/3 log(N2/3)

)
but log(x) � x1/2 for

large x, hence O
(
N2/3 log(N2/3)

)
� O(N), i.e. optimal complexity.
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schemes it is helpful to use a (vector) initial value ordinary differential equation

(ODE) as an example:
dy

dt
= f(t,y),

y(0) = y0,
(3.5)

where f(t,y) is a known function and y0 is the known initial condition. After the

application of one of the spatial discretisations described above a time-dependent

PDE is typically reduced to the form (3.5); this is known as a semi-discretised

PDE.

The time integration methods discussed here all bear a strong similarity to the

finite difference method discussed in Section 3.2.2, except that the independent

variable discretised is time instead of space. This is appropriate since time is

one-dimensional, hence no complex geometry is possible and so typically there is

no need for the more advanced finite element method.

Some key attributes of a time integration scheme are [7]:

• Accuracy (order) – An estimate of how rapidly the approximate solution

converges to the exact solution as the time step size is reduced.

• Stability – Roughly speaking a scheme is stable if the approximate solu-

tion does not “blow up” (i.e. become catastrophically inaccurate, infinite,

oscillate in non-physical ways, . . . ) for sufficiently large time steps, see

Section 3.4.4 for a more rigorous description.

• Conservation properties – Some differential equations have properties

which should ideally be conserved in the discretised system. For example the

magnetisation length and energy properties of the Landau-Lifshitz-Gilbert

equation discussed in Section 2.5. Schemes which conserve such properties

are often referred to as “geometric” integrators.

• Self-starting – A scheme is self starting if it only requires a single initial

value. This is desirable because methods of estimating additional initial

values make the final scheme more complex and may introduce additional

error.

These attributes are discussed more rigorously in the rest of this section.
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3.4.1 Explicit and implicit time integration schemes

Explicit time discretisation schemes calculate the value at the next time step in

terms of the value(s) at the present and/or previous time steps. The simplest

such scheme is the (forward) Euler method

yn+1 = yn + ∆nf(tn,yn), (3.6)

where ∆n = tn+1 − tn is the n-th time step size and yi is the approximation to

y(ti). Clearly, given f(t, y) and an initial value for y(t0), we can calculate y(tn)

for any n.

In contrast to explicit schemes, implicit schemes use the value at the next time

step in its own calculation. Hence at each step a (linear or non-linear) system

of equations must be solved. The simplest implicit scheme is the first order

backwards difference formula (BDF1, also known as backwards Euler)

yn+1 = yn + ∆nf
(
tn+1,yn+1

)
. (3.7)

At first glance it seems that the additional solution of a system of equations

required for one step of an implicit scheme mean would that explicit schemes are

more efficient, and it is true that one step of an implicit method requires more

computational effort than one step of an explicit method. However all explicit

time integration schemes suffer from issues of limited stability for some problems,

and so are forced to use time step sizes much smaller than would be required for

reasons of accuracy (see Section 3.4.4 for details). In these cases implicit schemes

can be much more efficient; problems where this is the case are often called “stiff”

problems. The semi-discretisation of a PDE often results in such a stiff problem.

In Chapter 9 we investigate stiffness in micromagnetics problems.

3.4.2 Some implicit time integration schemes

For the remainder of this thesis we will focus on three time integration schemes

with good stability and accuracy properties that are widely employed in prac-

tice. All three are implicit schemes for reasons of stability, as mentioned in

Section 3.4.1.
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Trapezoid rule (TR) is the average of the forward and backward Euler methods

from Section 3.4.1 and is defined as [44, p. 260]:

yn+1 = yn + ∆n(f
(
tn+1,yn+1

)
+ f(tn,yn))/2. (3.8)

The second order backwards difference formula (BDF2) is [44, p. 715]:

yn+1 − yn
∆n

=
∆n

2∆n + ∆n−1

yn − yn−1

∆n−1

+
∆n + ∆n−1

2∆n + ∆n−1

f(tn+1,yn+1). (3.9)

The method that this thesis focuses on most of all (for reasons that will become

clear through the remainder of this section) is the implicit midpoint rule (IMR).

It is given by [44, p. 263]:

yn+1 = yn + ∆nf

(
tn+1 + tn

2
,
yn + yn+1

2

)
. (3.10)

Note that for cases where f is linear in both t and y, IMR is equivalent to TR,

and in general the properties of the two methods are similar.

IMR can be easily implemented in terms of BDF1 by the following simple al-

gorithm: take a step of BDF1 (the simplest possible implicit method) using

∆BDF1
n = ∆IMR

n /2 to find ymid at tmid. Then calculate yn+1 using a rearrangement

of ymid =
yn+yn+1

2
[69]:

yn+1 = 2ymid − yn, (3.11)

and set tn+1 = tmid + ∆IMR
n /2.

TR and IMR are both self starting while BDF2 requires an additional start-up

value. This can be generated, for example, by taking a single step of IMR or TR

before beginning the use of BDF2.

3.4.3 Local truncation error and order

The local truncation error (LTE) of a time integration scheme is the error due to

a single integration step. It can be calculated by substituting yn = y(tn), yn−1 =

y(tn−1), etc. into the approximation for the next time-step, then subtracting the
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result from the exact solution at the next time-step, y(tn+1), i.e.

Tn = y(tn+1)− ŷn+1, (3.12)

where ŷn+1 is the approximation to y at time tn+1 given when the exact solution

is used for all history values (i.e. using yn = y(tn), yn−1 = y(tn−1), . . .). For

example the local truncation error of IMR is

T IMR
n = y(tn+1)− y(tn)−∆nf

(
tn+ 1

2
,
y(tn) + yIMR

n+1

2

)
. (3.13)

If the local truncation error of a time integration scheme is such that

Tn ≤ c∆p+1
n (3.14)

then we say that the scheme is of order p.

It is important to distinguish the local truncation error from the global error

En = y(tn+1)− yn+1. (3.15)

The difference is that the global error includes any error accumulated over previ-

ous time steps (i.e. the exact values y(tn) in (3.12) are replaced by their approx-

imations). Note that because of this accumulation the global error will typically

be larger than the LTE. The global error of IMR expressed in the same form as

(3.13) is

EIMR
n = y(tn+1)− yIMR

n −∆nf

(
tn+ 1

2
,
yIMR
n + yIMR

n+1

2

)
. (3.16)

The TR and BDF2 methods are both second order. Their local truncation errors

are [44, p. 261]

TTR
n = −∆3

ny
′′′
n

12
+ O

(
∆4
n

)
, (3.17)

and [44, p. 715]

TBDF2
n = − (∆n + ∆n−1)2

∆n(2∆n + ∆n−1)

∆3
ny
′′′
n

6
+ O

(
∆4
n

)
. (3.18)

The derivations of (3.17) and (3.18) are simple and can be found in most text

books on the subject.
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We now give a derivation of the local truncation error of IMR, which is somewhat

complex because of the approximation y ≈ yn+yn+1

2
. We first write the Taylor

expansion y(tn+1) and y(tn) about tn+ 1
2
. We use the midpoint rather than one

of the end points (a typical choice in such calculations) because it results in

simpler expressions. Assuming that y(t) is “sufficiently smooth” for the required

derivatives to exist, its Taylor series expansion at tn+1 about tn+ 1
2

is given by

y(tn+1) = y(tn+ 1
2
+

∆n

2
) = y(tn+ 1

2
)+

∆n

2
y′(tn+ 1

2
)+

∆2
n

8
y′′(tn+ 1

2
)+

∆3
n

48
y′′′(tn+ 1

2
)+O

(
∆4
n

)
.

(3.19)

Similarly, the expansion at tn about tn+ 1
2

is

y(tn) = y(tn+ 1
2
−∆n

2
) = y(tn+ 1

2
)−∆n

2
y′(tn+ 1

2
)+

∆2
n

8
y′′(tn+ 1

2
)−∆3

n

48
y′′′(tn+ 1

2
)+O

(
∆4
n

)
.

(3.20)

Substituting (3.19) and (3.20) into (3.13) gives7

T IMR
n =

∆3
n

24
y′′′(tn+ 1

2
)︸ ︷︷ ︸

I

+ ∆n

[
y′(tn+ 1

2
)− f

(
tn+ 1

2
,
y(tn) + yIMR

n+1

2

)]
︸ ︷︷ ︸

II

+O
(
∆4
n

)
.

(3.21)

There are two parts to (3.21): the first term (I) is fairly standard for second order

time integration schemes (c.f. the LTEs for TR and BDF2). The second term (II)

originates from the use of an approximation to y(tn+ 1
2
) in the evaluation of f (i.e.

the Runge-Kutta nature of IMR). The rest of the derivation requires applying

Taylor expansions to II and is carried out in Appendix C. The final result shows

that IMR is of second order:

T IMR
n =

∆3
n

24

[
y′′′(tn+ 1

2
)− 3Fn+ 1

2
· y′′(tn+ 1

2
)
]

+ O
(
∆4
n

)
, (3.22)

where Fn+ 1
2

is the Jacobian matrix of f with respect to y evaluated at t = tn+ 1
2
.

An additional condition required in the derivation is that the magnitude of the

eigenvalues of ∆n

2
Fn+ 1

2
are less than one. This condition is easily satisfied in the

asymptotic case for most f , the case where it does not hold is discussed in more

detail in Section 3.4.6.

For a true comparison with the other local truncation errors we would need to

7If we had chosen to Taylor expand about tn there would be an additional term in y′′n in (3.21).
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shift this approximation to tn. However a simple comparison can be given easily:

for f linear in y, t TR and IMR are the same, hence term I must be the same as

TR in this case,. A second error term is then added to T IMR
n corresponding to II

for non-linear f . Hence TR has the smallest LTE of the three methods discussed

for most real-world ODEs. The relative magnitude of the additional term in T IMR
n

is highly problem dependent, see Section 3.4.6 for details, so the comparison of

the LTEs of IMR and BDF2 is more complex.

Note however that for the accuracy of calculations the accumulated local trunca-

tion error is what matters, so these comparisons are not the whole story.

3.4.4 A-stability

To discuss the stability of time integrators the following initial value ODE is

widely used:

f(y) = λy,

y0 = 1.
(3.23)

Its analytical solution is

y(t) = exp(λt). (3.24)

A-stability8 is the property that a method is has no stability restrictions on the

time step size when used to integrate (3.23) for all λ with Re(λ) ≤ 0.

The IMR, TR, BDF1 and BDF2 methods are all A-stable [47, pgs. 43, 251].

Linear explicit methods are never A-stable [76] (“linear” methods in this ref-

erence include all common time integration methods: Runge-Kutta, multistep,

predictor-corrector, . . . ), which is the main reason for our focus on implicit meth-

ods. Additionally there are no A-stable linear multistep methods of order greater

than two [44, p. 261], which is why we have chosen the methods in Section 3.4.2

for discussion. It should be noted that A-stable implicit Runge-Kutta methods

of higher order do exist, see e.g. [47, p. 73], but they require the solution of

significantly larger systems of equations at each time step.

8The A does not stand for anything, it is just “A” [47, p. 40]. In particular it does not mean
“absolute stability”.
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3.4.5 Spurious numerical damping

Some time integration methods create additional, non-physical damping in ap-

proximate solutions, even when none exists in the true solution. This can be

problematic for the modelling of highly oscillatory ODEs, such as the LLG with

low damping parameter α.

In the solution of the ODE (3.23) with λ = iω (and ω ∈ R), |y| should not

decrease over time. If |yn| does decrease over time in the approximate solution

given by a time integration scheme, then we say that the scheme causes spurious

damping.

For example, for IMR:

yn+1 = yn + ∆niω(yn + yn+1)/2,

=
1 + i∆nω/2

1− i∆nω/2
yn,

(3.25)

therefore

|yn+1|2 =
|1 + i∆nω/2|2

|1− i∆nω/2|2
|yn|2 ,

|yn+1|2 =
(1 + i∆nω/2)(1− i∆nω/2)

(1− i∆nω/2)(1 + i∆nω/2)
|yn|2 ,

= |yn|2 ,

(3.26)

hence IMR does not cause spurious damping.

Since f is linear in y for this example TR and IMR are identical

yn+1 = yn + ∆n(iωyn + iωyn+1)/2,

= yn + ∆niω(yn + yn+1)/2,
(3.27)

and the same property applies for TR.

For BDF1, however, we have:

yn+1 = yn + ∆niωyn+1,

=
1

1− i∆nω
yn.

(3.28)
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Hence,

|yn+1| =

√
1

(1− i∆nω)(1 + i∆nω)
|yn| ,

=
1√

1 + ∆2
nω

2
|yn| ,

(3.29)

and the magnitude of y decreases over time, i.e. the solution is damped. The

analysis for the second order BDF2 case is more complex due to the fact that

it is a multistep method, but the result is the same: the solution suffers from

non-physical damping [44, p. 265].

3.4.6 B-convergence and order reduction

It is known that certain implicit Runge-Kutta methods are susceptible to reduced

accuracy when used to solve certain extremely stiff problems [6, p. 156] [47,

p. 225]. In the case of the implicit midpoint rule this corresponds to cases when

term II of the LTE (3.21) is large. This occurs when the error in f(t,y) due to a

small error in y is large.

The concept of “B-convergence” is used to analyse this effect. Roughly speaking,

a Runge-Kutta method is B-convergent of order r if the global error is O(∆r
n)

for “infinitely stiff” ODEs. The implicit midpoint rule is B-convergent of order

1 [47, p. 231],9 which is one order less than its global error on typical ODEs. We

call this effect “order reduction”. In contrast, the TR and BDF methods do not

suffer from order reduction [6, p. 159]. This is because all evaluations of f are

at integer time points (i.e. tn+1, tn, tn−1, . . . rather than tn+ 1
2
) and so there is no

term in the LTE containing ∂f
∂y

.

This order reduction effect is a potential downside for IMR, but only when ap-

plied to specific ODEs (and no such effect has been reported in micromagnetics

simulations we are aware). Additionally it should be accounted for by a good

adaptive time step selection algorithm (see Section 3.4.7 for details).

A simple test ODE demonstrates this phenomenon [7, p. 157]:

f(t, y) = −λ(y − g(t)) + g′(t),

y0 = g(0),
(3.30)

9In this reference IMR is referred to as “the second order Gauss method”, BDF1 is Radau IIA,
TR is Lobatto IIIA [47, pp. 72-76].
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for some function g(t) and parameter λ ≥ 0. The exact solution (which can be

seen to be correct by substitution) is

y(t) = g(t). (3.31)

Note that ∂f
∂y

= λ, so we can directly control the magnitude of term (II) of the

IMR truncation error (3.21).

We now derive the LTE for IMR in this example when |λ∆n| � 1. From (C.7)

we have that

(1 +
∆nλ

2
)T IMR

n =
∆3
n

24

[
g′′′(tn+ 1

2
)− 3λg′′(tn+ 1

2
)
]

+ O
(
∆4
n

)
. (3.32)

Then using |λ∆n| � 1:

∆nλ

2
T IMR
n =

∆3
n

24

[
g′′′(tn+ 1

2
)− 3λg′′(tn+ 1

2
)
]

+ O
(
∆4
n

)
,

T IMR
n =

∆2
n

12λ

[
g′′′(tn+ 1

2
)− 3λg′′(tn+ 1

2
)
]

+ O
(
∆4
n

)
.

(3.33)

If additionally |λ∆n| � |g′′′(t)|, which will typically be true for very large λ and

g 6= g(λ):

T IMR
n =

−∆2
n

4
g′′(tn+ 1

2
) + O

(
∆3
n

)
. (3.34)

So we can see that the order has been reduced by one power of ∆n compared

with the standard LTE (3.22) for cases when |λ∆n| < 1.

3.4.7 Adaptivity

Adaptive time integration methods automatically select time step sizes in re-

sponse to an estimate of the local truncation error. This can improve efficiency:

for example on problems where a high frequency part of the solution is gradually

damped out the time step can increase by orders of magnitude at later times

without loss of accuracy. Adaptive integration also greatly simplifies the use of

the numerical method: the user only has to choose the allowed LTE and the

algorithm will handle the rest.

Most local truncation error estimators for implicit integrators (e.g. TR, BDF2)

compute an explicit estimate of the solution yEn+1 ∼ y(tn+1) (sometimes known as
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a predictor step) to the same order of accuracy as the implicit method. The expli-

cit method is selected such that it uses only the same derivatives as are required

for the implicit method, so no additional f evaluations are needed. Algebraic

rearrangements of the LTE expressions for the explicit and the implicit methods

are then used to compute an approximation to the actual LTE [44, pp. 707-716].

This is known as Milne’s device.

No such estimation is possible for IMR because of the specific form of the local

truncation error (3.21). The details of this issue and the first (to our knowledge)

algorithm for adaptive time integration with IMR are described in Chapter 7.

It is also possible to construct adaptive time step algorithms based on error

estimates specific to the equation being solved. Such estimates have the obvious

limitation that they are only (directly) applicable to the equations for which they

were derived.

One example of such an algorithm for the LLG equation is to compare the ef-

fective damping with the expected damping and use the difference as an error

estimator, as proposed by Albuquerque et al. [2]. A major disadvantage of this

method is that the error estimator is unable to distinguish between spatial errors

and temporal errors. Another possible method is to use the time error estimates

for the LLG equation, with limited effective field terms and a specific finite ele-

ment discretisation, derived for both IMR and BDF2 by Banas [8]. However the

derivation is fairly complex, and may be difficult to extend to include exchange

field or FEM/BEM magnetostatics.

3.4.8 Magnetisation length conservation

We now move on to the discussion of some properties specific to the LLG equation.

As discussed in Section 2.5, the length of the magnetisation, |m|, at each point in

space is constant over time. However, in the approximations given by numerical

methods this property is often lost, in which case it must be enforced separately.

Note that this is not related to the spurious damping discussed in Section 3.4.5: in

that section the key property was the conservation of the amplitude of oscillations.

One simple method of dealing with the constraint is to re-normalise each value

of m after every time step. An extension of this method is to re-normalise the

magnetisation only when the error in |m| exceeds some tolerance [34], we refer
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to this method as tolerance-based renormalisation. Note that the computational

cost of computing the errors in |m| is roughly the same as performing the re-

normalisation10, hence tolerance-based re-normalisation does not provide any gain

in efficiency. Tolerance-based re-normalisation is used in magpar11 with a default

tolerance of 10−2, while re-normalisation after every step is used in OOMMF’s

4th order Runge-Kutta scheme [31]. However both of these re-normalisation

approaches fundamentally change the system of equations being solved in a non-

linear and unpredictable manner [66].

Another approach, which is closely related to re-normalisation, is the use of a

modified LLG equation with an additional term which dynamically corrects errors

in the magnetisation length [77] [35]. This method is used by Nmag [35] and is

discussed in more detail later in this section.

Another way to avoid this problem is to use a spherical polar coordinate system

(r, θ, φ) for the magnetisation. In these coordinates (2.23) can be expressed in

terms of only the angles (θ, φ) representing the direction of m and the length

constraint is automatically enforced since

∂ |m|
∂t

=
∂r

∂t
≡ 0. (3.35)

However problems occur with this approach when the polar angle, θ, approaches

zero because
∂mφ
∂t
∝ 1

sin(θ)
[39] and so the derivative becomes singular. Also the

calculation of the sum of the effective field vectors is much more complex in

spherical polar coordinates (involving trigonometric identities), resulting in more

complex non-linear/linear systems when using implicit time integration schemes.

A fourth approach is to use Lagrange multipliers to constrain the solution such

that |m| is constant [97]. The main problem with this method is that an addi-

tional degree of freedom is needed for every value of m in space.

Geometric time integration schemes aim to solve the issue of length conservation

by constructing a scheme that naturally preserves the value of |m|. Some ex-

amples of such schemes are based on IMR [24], or a semi-implicit modification of

the IMR using explicit extrapolations of some or all effective field terms [93, 87,

74, 15]. Alternatively, geometric integration methods based on Cayley transforms

10Both require computing |m| and performing some simple operation with it for every discrete
value of the magnetisation.

11See src/util/renormvec.c in the source code of magpar version 0.9.
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can be used [66, 16].

The self-correcting LLG

One interesting technique used to maintain the condition |m| = 1 is to solve a

modified “self-correcting” LLG equation [77] [35]:

∂m

∂t
= − 1

(1 + α2)
m× h− α

(1 + α2)
m× (m× h) + βm

(
1− |m|2

)
, (3.36)

where β is some parameter which must be chosen. Equation (3.36) differs from

the standard LL form of the LLG, (2.39), by the inclusion of the final term. The

motivation behind this modification is as follows: if |m| > 1 then during the

next step there will be an additional term in ∂m
∂t

of −βm
∣∣1− |m|2∣∣. As this

additional term is in the −m direction the magnetisation length will be reduced.

Similarly if |m| < 1 there is a small additional term in the +m direction and the

magnetisation length will be increased. For larger values of the parameter β this

effect is stronger and so we expect the condition |m| = 1 to be restored more

rapidly.

The potential advantage of this method over the standard re-normalisation is

that the re-normalisation is part of the differential equation rather than a sep-

arate step. This means that the time integration scheme “knows” about the

re-normalisation and so may be able to choose more appropriate time step sizes

(see Section 3.4.7).

A potential downside is that the resulting system is more non-linear than the

standard LL/LLG, particularly when β is large. This could mean that additional

steps are needed for the non-linear solver to converge, resulting in increased com-

putation time.

Another downside is that the method is more complex to implement than re-

normalisation after every step: it requires an additional term to be discretised,

and adds additional terms to the Jacobian matrix.

Also an appropriate value for the parameter β must be selected somehow. To our

knowledge there is no published research on the selection of appropriate values

for β, we briefly study the effect of varying β in Appendix D.

Finally we note that the modification is only applicable to the LL form of the
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LLG, and there is no obvious extension to the LLG form12. The LL form can be

more complex to work with for some calculations due to the triple cross-product.

The self-correcting LLG method is used by Nmag [31] [35].

Conservation of |m| by IMR in a macrospin model

In this section we show that the discrete form of the Landau-Lifshitz-Gilbert

equation that results from the use of the implicit midpoint rule maintains the

magnetisation length conservation property of the continuous form shown in Sec-

tion 2.5. These results are applicable to strong form equations, i.e. finite difference

and macrospin discretisations but not finite elements. For the purposes of this

section we assume that the discretised non-linear Landau-Lifshitz-Gilbert equa-

tion is satisfied exactly, i.e. the linear and/or non-linear solver used gives exactly

correct results.

As can be seen from (3.10) the IMR is defined by the following substitutions:

∂m

∂t
→ mn+1 −mn

∆n

,

m→ mn+1 + mn

2
,

t→ tn+1 + tn
2

.

(3.37)

So the IMR-discretised version of the LLG is

mn+1 −mn

∆n

= −mn+1 + mn

2
×
(

h

[
mn+1 + mn

2

]
− αmn+1 −mn

∆n

)
. (3.38)

The conservation properties of the IMR discretisation come from the cancella-

tion of cross terms in the inner product
(
L [m], ∂m

∂t

)
for any symmetrical linear

12The obvious way to proceed would be to establish a relationship between the modified LL
form and the LLG form using the standard derivation of the LL form from the LLG form [1].
However this derivation assumes that |m| = 1, meaning that the self-correcting term is zero
and rendering the result meaningless.
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operator L . More precisely:(
L

[
mn+1 + mn

2

]
,

mn+1 −mn

∆n

)
=

1

2∆n

[
(mn+1, L mn+1) + (mn+1, L mn)

− (mn, L mn+1)− (mn, L mn)
]

=
1

2∆n

[
(mn+1, L mn+1)− (mn, L mn)

]
.

(3.39)

This means that if L m is orthogonal to ∂m
∂t

in the continuous or semi-discretised

equations then it will also be orthogonal in the IMR-discretised version. In par-

ticular, setting L as the identity operator will allow us to show that m and ∂m
∂t

are orthogonal in this section and setting L = H will allow us to show some

nice properties of the energy in Section 3.4.9.

We now examine the change in magnetisation length using the same technique

as in Section 2.5: take the dot product of (3.38) with mn+1+mn

2
on both sides and

use the triple product identity (2.52) to get

mn+1 + mn

2
· mn+1 −mn

∆n

= 0. (3.40)

Now using (3.39) with L as the identity operator and the dot product as the

inner product gives us

(mn+1, mn+1)− (mn, mn)

2∆n

= 0. (3.41)

Therefore

|mn+1| = |mn| , (3.42)

i.e. the magnetisation length does not change between time steps.

Note that for other time integration schemes the property (3.39) typically does

not hold. For example, in the case of BDF1 we have(
L [mn+1],

mn+1 −mn

∆n

)
=

1

∆n

[(mn+1, L mn+1)− (mn+1, L mn)],

6= 1

∆n

[(mn+1, L mn+1)− (mn, L mn)],

(3.43)

i.e. orthogonality properties from the continuous form do not carry over to the

discrete form.
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Notice that the only requirement in the derivation of (3.40) is to use the midpoint

approximation of magnetisation in the LLG itself. The derivation does not make

any assumption about how the effective field is approximated. This explains

why various semi-implicit modifications to IMR [93, 87, 74] which use explicit

calculations of effective fields also conserve the magnetisation length.

3.4.9 Energy conservation/decay

Another geometrical property of the Landau-Lifshitz-Gilbert equation, also dis-

cussed in Section 2.5, is the conservation or monotonic decay of energy depending

on the value of the damping constant α (and the applied field hap).

IMR also conserves energy when α = 0 and it ensures that the energy is a

decreasing function of time when α > 0 and hap is constant [24], a proof of this

property is given in the next section. The other geometric integration schemes

mentioned in Section 3.4.8, and in particular the semi-implicit modifications of

IMR [93, 87, 74], do not have this property.

Proof of energy property for the IMR discretised macrospin model

In this section we show that the change in the energy of the magnetic system

over time when evolved using the IMR discretised LLG equation obeys certain

relationships which are similar to those of the continuous LLG equation.

Before starting the derivation we introduce some alternative notation for the

effective field when considered as an operator, H [m]:

h(x, t) = H [m(x)] + hap(x, t).

H [m(x)] = ∇2m(x) + hms[m(x)] + hca[m(x)],
(3.44)

We also expand the midpoint value of the applied field, hap

(
tn+tn+1

2

)
, into

hap

(
tn + tn+1

2

)
=

hap(tn+1) + hap(tn)

2
+

∆2
n

4

∂2hap

∂t2

∣∣∣∣ tn+1+tn
2

+ O
(
∆4
n

)
,

=
hap(tn+1) + hap(tn)

2
+ Eap,

(3.45)



3.4. TIME INTEGRATION 65

where

Eap =
∆2
n

4

∂2hap

∂t2

∣∣∣∣ tn+1+tn
2

+ O
(
∆4
n

)
, (3.46)

is the error in this midpoint-like approximation of hap.

Now we are ready to derive the energy property in the same manner as Sec-

tion 3.4.8. We begin by taking the L2 inner product of the IMR discretised LLG

equation, (3.38), with the sum of the IMR discretised effective field and damping

terms:

H

[
mn+1 + mn

2

]
+ hap

(
tn + tn+1

2

)
− αmn+1 −mn

∆n

,

= H

[
mn+1 + mn

2

]
+

hap(tn+1) + hap(tn)

2
+ Eap − α

mn+1 −mn

∆n

.

(3.47)

The result of this inner product is(
H

[
mn+1 + mn

2

]
+

hap(tn+1) + hap(tn)

2
+ Eap,

mn+1 −mn

∆n

)
L2

− α
(

mn+1 −mn

∆n

,
mn+1 −mn

∆n

)
L2

= 0,

(3.48)

where the RHS is zero due to the triple product identity.

It can be shown (see e.g. Appendix B.1) that H is a linear symmetric operator

on m. So from (3.39) with L = H we have the property(
H

[
mn+1 + mn

2

]
,

mn+1 −mn

∆n

)
L2

=
1

2∆n

[(mn+1, H mn+1)L2 − (mn, H mn)L2 ].

(3.49)

Additionally the energy at time step n due to the effective field operator H can

be written as13

eH ,n = −1

2
(mn, H [mn])L2 . (3.50)

So using (3.49) and (3.50) we can write the H term of (3.48) as(
H

[
mn+1 + mn

2

]
,

mn+1 −mn

∆n

)
L2

= −eH ,n+1 − eH ,n

∆n

. (3.51)

Next we examine the applied field term of (3.48). Omitting the L2 from the inner

13This essentially follows from the definitions of the non-dimensional energies and the effective
fields given in Section 2.4.1, details are given in Appendix B.2.
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products and temporarily writing hap(ti) as hi for brevity we have(
hn+1 + hn

2
,

mn+1 −mn

∆n

)
=

(
hn+1 + hn,

mn+1 −mn

∆n

)
−
(

hn+1 + hn
2

,
mn+1 −mn

∆n

)
,

= −eap,n+1 − eap,n

∆n

+ A,

(3.52)

where

A =
1

2∆n

[
2 (hn, mn+1)− 2 (hn+1, mn)

− (hn+1, mn+1) + (hn+1, mn)− (hn, mn+1) + (hn, mn)
]
,

=
1

2∆n

[
− (hn+1, mn+1)− (hn+1, mn) + (hn, mn+1) + (hn, mn)

]
,

= −
(

hn+1 − hn
∆n

,
mn+1 + mn

2

)
.

(3.53)

Finally, we insert the results of (3.51)–(3.53) into (3.48) to find that the change

in the total energy is

en+1 − en
∆n

=− α
∣∣∣∣∣∣∣∣mn+1 −mn

∆n

∣∣∣∣∣∣∣∣2
L2

−
(

hap(tn+1)− hap(tn)

∆n

,
mn+1 + mn

2

)
L2

+

(
Eap,

mn+1 −mn

∆n

)
L2

.

(3.54)

The first term of this expression is exactly the discrete representation of the

energy loss due to damping. The second term is the discrete representation of

the energy change due to changes in the applied field. The third term is the

error due to changes in the applied field which are not accurately captured by

the approximations used in IMR. In particular note that the energy is conserved

when α = 0 and the applied field is constant. This relationship is illustrated in

Figure 3.1.

When hap is piecewise linear, for example when an applied field is instantaneously

switched on, time steps can be selected such that each non-linear change happens

exactly at the start/end of a step. So again we have Eap = 0 and the same

properties as for linear applied fields.
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Continuous LLG IMR discretised LLG

Continuous energy IMR discretised energy

Discretise

Derive energy

Discretise

Derive energy

Figure 3.1: Commutation relationship between the IMR discretisation and the
LLG energy derivation. In contrast to other time integration methods the result
is independent of the order of operations.

It should be noted that none of the above is applicable to semi-implicit modifica-

tions of IMR since in that case H
[
mn+1+mn

2

]
is replaced by an expression of the

form aH [mn] + bH [mn−1].

3.4.10 Conclusions

In the previous sections we have described a number of important properties of

time integration schemes.

We also highlighted a number of interesting geometric integration properties of

the implicit midpoint rule. There are a number of reasons to believe that the geo-

metric integration properties will translate into an improvement in the accuracy

and robustness of the overall solver:

• Errors in the energy dissipation [2] and magnetisation length [21] have been

successfully used as error estimators for local truncation error. Hence the

removal of energy or magnetisation length errors should reduce the total

local truncation error.

• It is well known that geometric integration schemes can result in much

smaller long-timescale error build-up than schemes that do not preserve

such quantities [54, p. 77].

• The non-linear modification to the Landau-Lifshitz-Gilbert equation caused

by renormalisation of the magnetisation length (as commonly used to main-

tain correct magnetisation length in non-conservative time integrators) may
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cause significant step changes in the magnetostatic field [66]. This also mod-

ifies the balance between the various energy terms, which is similar to the

methods that lead to the “flying ice cube” problem [48] in molecular dy-

namics.14 Avoiding renormalisation eliminates the possibility of such errors

occurring.

Additionally, the same geometric properties enable a proof of convergence for IMR

when applied to a FEM semi-discretised LLG equation with a slight modification

that will be discussed in Section 4.5 [10].

Note that no assumption of fixed ∆n was made, and that there is no dependence

on previous values of ∆n. Hence the geometric properties are expected to still

hold when the step sizes are varied.

3.5 Linearisation

When implicit time integration methods are applied to a non-linear differential

equation (such as the LLG equation) a non-linear system of equations must be

solved. Explicit time integration methods sidestep the issue of non-linearity by

avoiding the need to solve any system.

In the context of implicit time integration of a semi-discretised PDE we write

ỹn =
{
yn,i
}i=N
i=0

, (3.55)

for the list of spatially discrete values of y at time step n. For example, for an LLG

problem consisting of a single macrospin ỹn = mn. For an LLG problem semi-

discretised by the finite element method ỹn is the list of all the discrete values

that define mn along with any values needed for the magnetostatic calculations.

3.5.1 Functional iteration

Functional iteration is the process of repeatedly applying a function until the

result converges to a fixed point. This process can be applied to find the solution

14In such problems the rescaling of particle velocities (to maintain constant temperature despite
numerical error accumulation) can result in large amounts of kinetic energy being transferred
from the motion of internal degrees of freedom to motion of the centre of mass.
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of a non-linear system by constructing a function such that its fixed point solves

the system.

As an example we can use functional iteration to solve the non-linear system

resulting from the discretisation of a non-linear ODE, written as ∂y
∂t

= f(t, y), by

the implicit midpoint rule. We first solve for an auxiliary variable w̃ using the

iteration
w̃(0) = ỹn,

w̃(i+1) =
∆n

2
f(tn +

∆n

2
, w̃(i)) + ỹn.

(3.56)

This variable can be thought of as the approximation for y used in the evalu-

ation of f , i.e. w = (ỹn+1 + ỹn)/2. Once the iteration (3.56) has converged (as

determined, for example, by
∣∣w(i+1) −w(i)

∣∣ < ε), the value of ỹn+1 is calculated

using

ỹn+1 = ỹn + ∆nf(tn +
∆n

2
, w̃). (3.57)

The main advantage of functional iteration is that convergence proofs can be

easily constructed via the Banach fixed point theorem (albeit under some fairly

restrictive assumptions on time step size) [54, p. 125].

Additionally, the cost of each iteration can be very cheap if the function f(t,y)

can be written explicitly (i.e. the ODE is not implicit in ∂y
∂t

), since it only requires

the application of a function rather than a linear solve required by the Newton-

Raphson method. This is not the case for the LLG, but the linear systems

resulting from functional iteration are simpler than those resulting from other

methods, which can simplify the construction of an efficient linear solver [10].

However, the functional iteration only converges for time steps of a limited size.

This limit is related to the spatial discretisation, resulting in similar problems to

explicit methods. This makes the method useful for applying implicit methods

to non-stiff problems, but less useful for stiff ones [54].

3.5.2 Newton-Raphson method

A non-linear problem can be written in residual form as

Find ỹn+1 such that r(tn+1, ỹn+1) = 0. (3.58)
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The motivation for the Newton-Raphson method comes from a simple Taylor

expansion of the residual, r. If the exact root of the residual is ỹEn+1 and we have

an initial guess for this root ỹ
(0)
n+1 then we can obtain a correction to this initial

guess from:

0 = r(tn+1, ỹ
E
n+1),

= r(tn+1, ỹ
(0)
n+1 + δ),

= r(tn+1, ỹ
(0)
n+1) + J(tn+1, ỹ

(0)
n+1) · δ + O

(
δ2
)
,

(3.59)

where J(tn+1, ỹ
(0)
n+1) is the Jacobian matrix of the residual with respect to ỹn+1

evaluated at ỹ
(0)
n+1. From (3.59) we have

ỹEn+1 = ỹ
(0)
n+1 + δ,

= ỹ
(0)
n+1 + J−1(tn+1, ỹ

(0)
n+1) · r(ỹ

(0)
n+1) + O

(
δ2
)
.

(3.60)

This suggests the iteration

ỹ
(i+1)
n+1 = ỹ

(i)
n+1 − J−1(tn+1, ỹ

(i)
n+1) · r(ỹ

(i)
n+1), (3.61)

in which, if the residual is sufficiently smooth and the required correction is

“small”, the error is squared after each iteration (i.e. convergence is quadratic).

The assumption that we can discard terms in O
(
δ2
)

is fairly strong: it means that

we need a good initial guess so that the initial correction, δ, is small. Fortunately

in time integration problems the value at the previous time step provides a good

initial guess: ỹ
(0)
n+1 = ỹn. It is also possible to construct an even better initial

guess by taking a single cheap explicit “predictor” step, as used in Milne’s device

for adaptive time integration (and if such an adaptive scheme is in use then this

improved initial guess is “free”).

The iteration is terminated when

∣∣∣∣r(ỹ(i+1))
∣∣∣∣
∞ < εN, (3.62)

for some user defined tolerance εN. Alternatively the absolute tolerance condition

(3.62) can be replaced by, or combined with, a relative tolerance condition

∣∣∣∣r(ỹ(i+1))
∣∣∣∣
∞ <

∣∣∣∣r(ỹ(0))
∣∣∣∣
∞ εNr. (3.63)

If the residual is normalised, i.e. has initial magnitude of O(1), then (3.62)
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and (3.63) are roughly equivalent.

As discussed in Section 3.5.1 the main downside of the Newton-Raphson method

is that it always requires the solution of a system of linear equations to obtain

each correction δ, and that these systems are more complex than those produced

by function iteration. The efficient solution of these systems is the subject of

Section 3.6.

Another potential downside is that the Newton-Raphson method is only guar-

anteed to converge if the initial guess “good enough”. However for non-linear

systems resulting from time integration we always have a very good initial guess,

so this is not often a problem.

3.6 Solution of sparse linear systems

If we are using an implicit time integration scheme with the Newton-Raphson

method for linearisation, then we are left with the problem of solving a sequence of

sparse linear systems. Each of these linear systems can be stated as the problem:

Given a sparse Nr ×Nr matrix B and a vector b, find x such that

Bx = b. (3.64)

This is a very widely studied problem, see for example [82], but efficient techniques

for very large Nr (which corresponds to a large spatial problem and/or good

spatial resolution) are complex and problem dependent. There are two general

classes of linear solvers: direct solvers and iterative solvers. Direct solvers are

very general, but are typically computationally expensive in both memory and

time. Effective iterative solvers are usually problem specific but can be much more

efficient and can even achieve optimal scaling (i.e. of computational complexity

O(Nr) in time and memory).

3.6.1 Direct methods

Direct methods for the solution of linear systems seek exact solutions using meth-

ods based on Gaussian elimination. The direct method most commonly used in

the solution of systems resulting from discretised PDEs is LU decomposition.
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The main advantage of direct methods is their robustness: for reasonably non-

singular systems and given enough time/memory a direct solver will be able to

solve the system. However as matrix sizes become large direct solvers become in-

creasingly demanding in both time and memory. The problem is that the factors

of a typical sparse matrix can be significantly more dense than the original matrix,

i.e. there is some amount of fill-in. This means that the time and memory re-

quirements for the solution rarely scale as O(Nr) except for very specific matrices.

However the exact level of fill-in depends on the sparsity pattern of the initial

matrix, and so a single simple complexity estimate cannot be given.

The computational complexity of LU decomposition for a banded matrix is O(s2Nr),

where s is the bandwidth (i.e. s such that the matrix entries akl = 0 if |k − l| > s)

[54, p. 236]. As an example we consider the complexity for the system resulting

from the discretisation of a Poisson problem in two dimensions on an a× a grid

(by the finite element or finite difference method). In this case s ∝ a because

there is an interaction between nodes in neighbouring rows and there are a nodes

per row. Since a ∝
√
Nr the overall complexity is O(N2

r ).

In three dimensional PDE problems there are typically more non-zero entries in

each row due to the increased connectivity of the nodes, increasing the complexity

of the method. For example, in the three dimensional equivalent of the example

above (an a×a×a grid) s ∝ a2 and a ∝ N
1/3
r , hence the complexity is O

(
N

7/3
r

)
.

3.6.2 Krylov solvers

The first class of iterative methods for the solution of linear systems that we

discuss are the Krylov solvers [82, p. 151]. These methods are based on finding

an approximation to the solution, x, in the sequence of Krylov subspaces of the

matrix B:

Km(B,y) = span
{
y,By,B2y, . . . ,Bmy

}
. (3.65)

Note that computing a basis for the next Krylov subspace Km+1 only requires a

matrix vector product with the matrix B applied to a basis vector of Km (although

in practice the simple basis in (3.65) is modified to improve the properties of the

method). Hence constructing the subspace is computationally cheap for a sparse

B. At each iteration of a Krylov method a new approximation to the solution in

the space Km+1 is found by minimising some easy to calculate form of the error
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in the direction given by the new Krylov basis vector.

The two Krylov solvers used in this thesis are the method of conjugate gradients

(CG) and the generalised minimum residual method (GMRES). The basic pro-

cedure for these methods is: 1) Find a new search direction in the m-th Krylov

subspace which is “orthogonal” to all previous directions. 2) Find the point in

that direction which in some sense gives the “optimally accurate” solution and

add this vector to the solution. The details of what is meant by “orthogonal”

and “optimal” depends on the method.

The key difference between the two methods is that CG is only applicable to

symmetric positive definite matrices, whereas GMRES is applicable to general

matrices. However, CG is the more efficient of the two: it takes only O(Nr)

computation time for each step of the solve, whereas GMRES takes O(Nrk) time

for the k-th step (and similarly for the memory requirements). This is because

CG uses the Lanczos algorithm (which can be represented as a 3-term recurrence

relationship) for the orthogonalisation of the search directions, while GMRES

uses Arnoldi’s method [82, p. 153]. This limitation of GMRES can be avoided by

restarting the method after some number of steps with the current approximation

as the new initial guess, or by using an alternative Krylov solver such as BiCGStab

[91, p. 172]. However, these methods lose some of the convergence guarantees of

GMRES and CG, hence we avoid using them in this thesis.

The size of the Krylov subspace needed for an effective approximation (i.e. the

number of iterations needed) is strongly dependent on the properties of the mat-

rix, in particular its eigenvalues and eigenvectors. The maximum number of

iterations to find a solution using CG or GMRES can be shown to be Nr, if

numerical error is ignored. However, for the solver to be efficient the number of

iterations should be far smaller than Nr, and preferably constant with respect to

Nr.

In order to achieve optimal performance we often instead solve a modified system

of the form

Dx = c, D = P−1B, c = P−1b, (3.66)

where P is a preconditioner which is chosen such that the the matrix P−1B has

the required eigenvalue and eigenvector properties for rapid convergence. Since

the preconditioner must be applied at every step of the Krylov solve it should
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be computationally cheap to compute P−1x. The construction of a precondi-

tioner which results in iteration counts independent of the matrix size while also

being computationally cheap to set up and apply is a difficult and problem de-

pendent task. In the next section we briefly discuss some approaches for such

preconditioners.

Note that the preconditioner, P , must be the same at each step in order for the

analysis of most Krylov methods to hold. This limitation can be avoided by the

use of the flexible GMRES method (FGMRES) [81], which has performance and

memory usage very similar to standard GMRES.

3.6.3 Preconditioning of Krylov solvers

As mentioned above, the preconditioning of Krylov solvers is a critical component

in obtaining good performance. However the construction of a good precondi-

tioner is typically problem specific.

There are a number of “general purpose” preconditioners which have some be-

neficial effect on the convergence of the Krylov solver for most linear systems.

However they typically do not result in low numbers of iterations independent of

the number of rows in the matrix. One widely used general purpose precondi-

tioner is the incomplete LU decomposition (ILU) [82, p. 287]. This method uses

an LU decomposition, but with the number of additional non-zero values (the

fill-in) limited in such a way that the matrix remains sparse and operations re-

main cheap. The simplest way to limit the fill-in is to allow only n “generations”

of fill-in, i.e. with n = 0 no fill-in is allowed, with n = 1 only the original matrix

elements are allowed to generate new elements, etc. We denote the ILU method

with n levels of fill-in by ILU(n).

Another useful class of preconditioners are based on (algebraic) multigrid methods

which are discussed in Section 3.6.4. Multigrid-based preconditioners are highly

effective for the preconditioning of linear systems arising from Poisson problems

(i.e. ∇2φ(x) = f(x)), and other similar problems [50].

An interesting preconditioning approach for linear systems arising from PDEs

containing multiple physical effects is block preconditioning. This involves the

division of the matrix B into blocks corresponding to the different physical de-

grees of freedom. A preconditioner can then be constructed by manipulating this
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matrix on the block level, typically based on the physics of the problem. For

example, by removing or eliminating off-diagonal blocks the preconditioner can

be solved by inverting the diagonal blocks and using block back/forward sub-

stitution. The inverse of the diagonal blocks can be approximated using known

effective preconditioners for the equivalent single-physics problem. In Chapter 6

we introduce such a preconditioning approach for the solution of the coupled

LLG-magnetostatics system.

3.6.4 Multigrid methods

There are a number of simple iterative methods, called relaxation methods, which

are fairly ineffective when applied directly to most linear systems but are very

cheap to apply. Examples of these methods are Jacobi, Gauss-Seidel and SOR

methods [82, p. 103].

Multigrid methods are a class of linear solvers which combine these relaxation

methods with a hierarchical algorithm. They can be highly efficient and scalable

solvers for the discrete systems arising from certain classes of PDEs [17]. Multi-

grid methods are based on two observations: firstly that relaxation methods are

very effective at reducing the high-frequency (in space) error of a solution, but

fail on the low frequency parts. The second observation is that many of the low

frequency errors can be converted to high frequency errors by projecting them

onto a coarser grid. So by solving the problem on a sequence of meshes all fre-

quencies of error except for the very lowest can be treated effectively using only

cheap relaxation methods. The lowest frequency errors can be well represented

on a very coarse grid (i.e. a very small linear system), and so can be cheaply

resolved using a direct solve.
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Typical multigrid solvers are based on something similar to the following al-

gorithm:

1 Start with initial guess for the solution on the finest mesh;

2 Apply a few iterations of a relaxation method;

3 Project the solution onto a coarser mesh;

4 Apply a few iterations of a relaxation method;

5 Project the solution onto a coarser mesh;

6
...

7 On the coarsest mesh solve the resulting problem directly;

8 Project the solution onto a finer mesh;

9 Apply a few iterations of a relaxation method;

10
...

11 End with the corrected solution on the finest mesh;

The algorithm above is called a V-cycle because a diagrammatic representation of

the mesh sizes used draws a “V” shape. There are a number of similar but more

complex cycles possible. The details of the cycle(s), along with the relaxation

method used, the projection between meshes, the selection of coarse meshes etc.

all depend on the particular variant of the multigrid method used.

It turns out that for certain problems multigrid solvers can achieve computation

times which scale as O(Nr logNr), i.e. their performance does not severely de-

grade as the number of nodes in the mesh is increased. The memory usage of

multigrid methods is around O(Nr), depending on the method used to obtain the

coarse meshes. In particular, as noted in the previous section, multigrid methods

are very effective on systems involving the matrix corresponding to a discrete

Laplace operator. This makes them useful for a number of problems because the

Laplace operator is an important part of many PDEs.

Standard multigrid methods make use of the geometric properties of the mesh

underlying the PDE, which makes them difficult to apply to most unstructured

meshes. However the same techniques can be applied without any knowledge of

the underlying geometry using algebraic multigrid (AMG) methods. These meth-

ods use information purely from the matrix itself to construct “coarse” versions

of the matrix based, for example, on the strength of the coupling between matrix

elements.
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3.7 Compatibility of methods

While in theory any of the methods discussed above can be combined with any

other, there are certain combinations which are more effective than others. In this

section we discuss which combinations of methods are particularly compatible or

incompatible.

The use of integral methods for magnetostatic field calculations with implicit

time integration is problematic: the integral formulation couples magnetisation

at every point to every other point, meaning that the Jacobian representing the

derivatives of each magnetisation with respect to each other magnetisation is a full

matrix (and hence solution times are extremely slow). Explicit time integration

methods avoid this issue because no system solve is required.

For problems with very simple geometry (i.e. thin films, cuboid shapes) the finite

difference method with FFT for magnetostatic calculations is sufficient. Addi-

tionally: for simple geometry there is often no need for well refined meshes, so

the problem can be only mildly stiff and explicit time integration methods can be

efficient. The most well known example of such a model is OOMMF [26]. This

combination of methods is very simple to implement and so is often used for GPU

based code [99].

For problems with more complex geometry the finite element method must be

used for spatial discretisation to obtain good accuracy. Magnetostatic calculations

on the resulting non-uniform mesh are typically carried out using FEM/BEM (e.g.

in Nmag [36], magpar [84] and femme) although a non-uniform FFT approach

has been used in at least one model [20]. The use of refined meshes to fully resolve

the geometry can often result in stiff problems, requiring the use of implicit time

integration schemes for good efficiency (see Chapter 9 or [89]). In all “real world”

models that we know of using implicit time integration the Newton-Raphson

method is used for linearisation. Typically some form of preconditioned Krylov

solver is then used to solve the resulting linear systems.

3.7.1 Solvers and geometric integration

It should be noted that the geometric properties of IMR derived in Sections 3.4.8

and 3.4.9 are only true up to the accuracy with which we solve the discrete LLG.
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This is the tolerance of the linearisation method used if the problem is non-linear

or the tolerance of the iterative solver if it is linear.

Additionally the derivations in Sections 3.4.8 and 3.4.9 assume that all fields are

calculated at the midpoint without any additional approximations, i.e. that we

are using a fully implicit (monolithic) method. In contrast to this, some models

use an explicit approximation to the magnetostatic field in order to avoid a dense

contribution due to the long-range magnetostatic interactions15 in the non-linear

solve. Unfortunately, in this case the energy properties will be lost due to the re-

placement of H
[
mn+1+mn

2

]
by an alternative approximation (in a similar way to

the semi-implicit modifications of IMR). However, the magnetisation length prop-

erty will be retained because it only relies on m itself being calculated implicitly,

and not the effective field.

One way to allow a completely implicit treatment of the magnetostatic field

without a dense contribution was explored by d’Aquino et al. [24], and is used by

Nmag [30]. They used a quasi-Newton method where the dense contribution was

simply left out of the Jacobian matrix. This greatly slows down the convergence

of the non-linear solve: in the example given in the paper 10-14 iterations were

needed (compared to ∼ 2 with a full Newton-Raphson method). However, in the

general case it is not clear that this quasi-Newton method will converge at all!

In Chapter 6 we describe these issues in more detail and demonstrate a novel

efficient and robust solver allowing fully implicit magnetostatic calculations.

3.8 Conclusions

In this chapter we have described a number of numerical methods for each com-

ponent of a dynamic micromagnetic solver. For the rest of this thesis we focus

on the methods appropriate for modelling general geometries: the FEM for spa-

tial discretisation, with implicit time integration methods to avoid issues with

stiffness, and FEM/BEM magnetostatic calculations. We use a Newton-Raphson

linearisation method because of the faster convergence and the lack of time step

limitations. We aim to solve the resulting linear systems with preconditioned

Krylov solvers for high computational efficiency.

15At least a dense sub-block arises from all accurate and commonly used magnetostatic calcu-
lation methods, in particular: FEM/BEM, FFT and FMM. See Section 3.3 for more details.



Chapter 4

A finite element method for the

Landau-Lifshitz-Gilbert equation

In Section 4.1 we give a general introduction to the finite element method us-

ing the magnetostatic potential equation (2.14) in one spatial dimension as an

example. Then in Sections 4.2 and 4.3 we extend this discussion to the full

(non-linear) Landau-Lifshitz-Gilbert equation with magnetostatics in three spa-

tial dimensions. The linearisation of the LLG equation is handled using the

Newton-Raphson method (see Section 3.5.2). We also derive an analytical ex-

pression for the Jacobian matrix in Section 4.4.

Finally in Section 4.5 we show how the geometric integration properties of IMR

(as discussed in Section 3.4) can be extended from the strong form case to the

weak form case as used in the finite element method.

For the purposes of this chapter we will assume that suitable boundary conditions

on the magnetostatic potential have been already been determined; the details of

this process are discussed in Chapter 5.

4.1 Introduction to the finite element method

Before we can start we need some definitions: The function space Cn(Ω) is the

set of all functions f such that f and its first n derivatives are continuous on Ω.

The function space L2(Ω) consists of all functions g such that the norm ||g||L2 =

79
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√∫
Ω
|g(x)|2 dΩ is finite, this can be thought of as the set of functions such that

their squares are integrable.

The n-th Sobolev space, Hn(Ω), is the space of all functions g such that g and all

its first n derivatives are in L2(Ω), e.g. for real valued functions on the interval

[0, 1] the second Sobolev space is

H2([0, 1]) =

{
g : [0, 1]→ R

∣∣∣∣ g, ∂g∂x, ∂2g

∂x2
∈ L2([0, 1])

}
. (4.1)

Note that in higher dimensions all combinations of derivatives in all directions

(e.g. ∂2φ
∂x∂y

) must be integrable. Another notation sometimes used for Sobolev

spaces is W n,p(Ω), which denotes the set of functions g such that g and its first

n derivatives are in Lp(Ω), i.e. the extension of Hn(Ω) to other Lp(Ω) norms.

In a slight abuse of notation we sometimes write the Jacobian of a vector function

a (with n values) with respect to the vector b (with m values) as

∂a(b, . . .)

∂b
=


∂a0

∂b0

∂a0

∂b1
· · · ∂a0

∂bm

∂a1

∂b0

. . .
...

...
. . .

...
∂an
∂b0

· · · · · · ∂an
∂bm

 . (4.2)

The following simple problem is used to illustrate the finite element method: Find

φ(x) ∈ C2(0, 1) such that

− φ′′(x) = f(x), x ∈ [0, 1], (4.3)

with boundary conditions

φ(0) = φa, φ(1) = φb, (4.4)

and where f(x) ∈ C0([0, 1]). Setting f = −∇ ·m = −∂mx
∂x

results in the mag-

netostatic potential problem (2.14) with Dirichlet boundary conditions.
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4.1.1 A weak formulation

The formulation of the problem in (4.3) (called a strong or classical formulation)

is too restrictive for our purposes. It disallows some useful approximating func-

tions and restricts the geometries that can be modelled [91, p. 14]. For “well

behaved” functions and domains a weak formulation is equivalent but without

these restrictions. The weak formulation of (4.3) is: find φ ∈ Vs such that

−
∫ 1

0

φ′′v dx =

∫ 1

0

fv dx ∀v ∈ VT , (4.5)

where VT is some appropriate space of test functions. We need VT ⊆ H0([0, 1])

and Vs ⊆ H2([0, 1]) in order to ensure that the integrals in (4.5) are well defined.

So as the solution space we choose

Vs =
{
φ ∈ H2([0, 1])

∣∣φ(0) = φa, φ(1) = φb
}
, (4.6)

i.e. the space of functions that are sufficiently smooth for the integrals to be

finite and that satisfy the boundary conditions. Since the boundary conditions

are automatically enforced by the choice of Vs we can choose test functions that

are zero on the boundary, so an appropriate test function space is:

VT =
{
v ∈ H0([0, 1])

∣∣ v(0) = 0, v(1) = 0
}
. (4.7)

To see (in an intuitive sense) why (4.5) is equivalent to (4.3) consider the case

when f(x)+φ′′(x) > 0 for some interval X ⊂ (0, 1), i.e. when the strong form (4.3)

is not satisfied on X. Since (4.5) must hold for all (sufficiently smooth) functions

in VT we can choose a function which is non-zero only on X and (4.5) will fail.

The rigorous extension of this argument also covers the case when f(x) + φ′′(x)

is non-zero on a set of measure zero (e.g. at a finite set of points).

The smoothness restrictions on the solutions of our weak form approximation can

be further reduced by integrating the left hand side of (4.5) by parts to obtain

−
∫ 1

0

φ′′v dx = −[φ′v]
1
0 +

∫ 1

0

φ′v′ dx =

∫ 1

0

fv dx. (4.8)

Note that the square bracketed term in (4.8) is zero because the test functions,

v, are set to zero on the boundary. Hence we are left with the problem: Find



82 CHAPTER 4. FINITE ELEMENTS FOR THE LLG

φ ∈ V ′S such that ∫ 1

0

φ′v′ dx =

∫ 1

0

fv dx ∀v ∈ V ′T , (4.9)

where
V ′S =

{
φ ∈ H1([0, 1])

∣∣φ(0) = φa, φ(1) = φb
}
,

V ′T =
{
∈ H1([0, 1])

∣∣ v(0) = 0, v(1) = 0
}
.

(4.10)

Note that our test and solution spaces are now identical apart from the boundary

values.

An alternative class of boundary condition, called Neumann conditions, specify

the values of φ′ at the boundary. In this case we do not set the test functions

to be zero on the boundary since the boundary values must still be determined.

However, since we are given the value of φ′, we can calculate the term [φ′v]10 of

(4.8) directly.

4.1.2 Discretisation

Equation (4.9) is still continuous (i.e. the test and solution spaces are still infinite

dimensional) and so it cannot be implemented as a computational method. To

convert our continuous weak form to a discrete version we approximate the infinite

dimensional test function space by an N dimensional subset V h
T ⊂ V ′T such that

V h
T → V ′T as N →∞. Since V h

T is finite dimensional we can write

V h
T =

{
vh

∣∣∣∣∣ vh =
N∑
n=0

αnϕn, αn ∈ R

}
, (4.11)

for some finite set of linearly independent test basis functions ϕn (with the obvious

limitation on the Dirichlet boundary values). Note that Similarly, for V h
S ⊂ V ′S:

V h
S =

{
φh

∣∣∣∣∣φh =

Nl∑
l=0

φ̃lψl, φ̃l ∈ R

}
, (4.12)

with the equivalent requirement when N → ∞. We call ψl the solution basis

functions but they are often known as the shape functions. Different choices of

ϕn and ψl lead to different methods, the choice corresponding to the finite element

method will be discussed in Section 4.1.3. For now we continue with a description

of the conversion to a general discrete form.
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Replacing v from (4.9) by ϕn gives an equivalent set of conditions∫ 1

0

φ′hϕ
′
n dx =

∫ 1

0

fϕn dx n = 0, . . . , N, (4.13)

Since φh ∈ V h
S we can replace φh by a linear combination of the solution basis

functions, i.e.

φh =

Nl∑
l=0

φ̃lψl, (4.14)

where φ̃l ∈ R are the unknown coefficients which define the approximate solution

φh. Substituting (4.14) into (4.13) gives

Nl∑
l=0

φ̃l

∫ 1

0

ψ′lϕ
′
n dx =

∫ 1

0

fϕn dx n = 0, . . . , N. (4.15)

The functions f , ϕ and ψ are known and so the integrals in (4.15) can be eval-

uated. We introduce a matrix A and a vector b containing the results of these

integrals:

Aln =

∫ 1

0

ψ′lϕ
′
n dx,

bj =

∫ 1

0

fϕn dx,
(4.16)

and the problem is reduced to a system of linear equations. Writing φ̃ for the

vector of φ̃l the system is

Aφ̃ = b. (4.17)

Assuming that A is non-singular this system can be solved to find φ̃, which can

then be substituted into (4.14) to give an approximation for φ(x).

4.1.3 Finite Elements in One Dimension

To create a usable implementation of the methodology derived in so far in this

chapter we must need to define basis functions for the spaces V h
T and V h

S . We

choose the test and solution basis functions to be the same except at the bound-

aries. This choice defines a Galerkin method and results in a symmetric matrix

A [103, p. 215].
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The aim now is to approximate an arbitrary function by a linear combination of

a finite set of easy-to-work-with functions, ϕn. A good class of functions for this

purpose is the polynomials: they are trivial to add, subtract and differentiate;

and can be easily numerically integrated (see Section 4.1.4).

Additionally it is desirable that the final matrix A be sparse (to allow efficient

linear algebra). For this to happen we need
∫ 1

0
ψ′lϕ

′
n dx = 0 for most pairs of l, n.

An obvious way to achieve this is to have each basis function only overlap (in

space) with a few other basis functions, for example by having each basis function

non-zero only on a portion of the domain. Basis functions with this property are

said to have “finite support”.

These two ideas lead us to the use of a carefully constructed set of piecewise poly-

nomials as our basis functions. We first split the domain into Ne non-overlapping

regions called elements, each with a node at either end. We then define two “local”

basis functions within each element as

ϕ
(e)
0 =

x− x(e)
1

x
(e)
0 − x

(e)
1

, ϕ
(e)
1 =

x− x(e)
0

x
(e)
1 − x

(e)
0

, (4.18)

where x
(e)
0 and x

(e)
1 are the positions of the nodes of element e. This definition

results in following useful properties of ϕ
(e)
n (x):

ϕ(e)
n (xn) =

1 k = n,

0 k 6= n.
(4.19)

This means that the coefficient of each basis function in (4.14) corresponds dir-

ectly to the value of the solution at the node where that test function has its

maximum value. In other words the list of coefficients, φ̃, is just a list of the

nodal values of φ(x).

Next we define the nth (global) basis function as:

ϕn(x) =

ϕ
(e)
n (x) if x ∈ [x

(e)
0 , x

(e)
1 ] and node n is in element e,

0 otherwise.
(4.20)

So each global basis function is only non-zero on the elements neighbouring the

node where it has a maximum value. We call the set of such polynomial basis

functions S1(Ω). The relationship between the local and global test functions is
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Figure 4.1: The local and global piecewise polynomial basis functions and num-
bering schemes for a one-dimensional finite element method.

illustrated in Figure 4.1.

It is advantageous to work with such low order polynomials even for very complex

models because the evaluation of integrals and interpolated values is simple and

cheap to compute. Also note that an arbitrary level of accuracy can be achieved

when approximating a smooth function by piecewise polynomials by increasing

the number of polynomials used (i.e. by adding more nodes and elements to the

mesh in appropriate places).

The description here generalises to higher dimensions fairly easily [91, p. 20]. In

2D square or triangle elements are typically used and nodes are placed at every

corner of each element. In 3D “brick” or tetrahedral elements are used in the

same way. In both cases the polynomial basis functions are replaced by higher

dimensional ones with equivalent properties.

The method can also be generalised to higher order polynomials, although more
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nodes are required inside each element in order to provide enough values to fully

define the polynomials, the use of higher order polynomials increases the order of

accuracy. However there is a trade-off: the resulting linear systems become more

dense as the order of the polynomials is increased due to more basis functions

overlapping with each other.

To calculate the matrix A and the vector b from (4.16) we first calculate the local

contributions from each element: A(e) and b(e). We then assemble the global A

and b by summing the appropriate local contributions. For our one-dimensional

Poisson example the calculation of A(e) is quite simple: substituting the two local

basis functions (4.18) into (4.16) and writing h = x
(e)
1 − x

(e)
0 we are left with

A(e) =
1

h

(
1 −1

−1 1

)
, (4.21)

where h is the element size, h = x
(e)
1 −x

(e)
0 (note that h can vary between elements).

Similarly for b(e) we obtain

b(e) =
1

h

−
∫ x(e)

1

x
(e)
0

(x− x(e)
1 ) f(x) dx∫ x(e)

1

x
(e)
0

(x− x(e)
0 ) f(x) dx

 (4.22)

which we compute numerically since the entries depend on f(x).

4.1.4 Numerical evaluation of integrals

Finally we need a way to evaluate the required integrals computationally. The

most flexible way to do this to use a numerical quadrature scheme. A quadrature

scheme is an approximation to an integral of the form∫
Ω

f(x) dx ≈
∑
i

wif(xi), (4.23)

where xi are the knots (or evaluation points) and wi the weights. The choice of

xi and wi defines the quadrature scheme.

There exist many quadrature schemes suited for different applications. Since

we only need to evaluate integrals of polynomial functions a single simple and

accurate class of quadrature is sufficient: Gaussian quadrature [59, p. 492]. A



4.1. INTRODUCTION TO THE FINITE ELEMENT METHOD 87

Gaussian quadrature scheme using n knots is able to exactly evaluate integrals

of polynomials up to order 2n+ 1. This is the highest possible polynomial order

of exact evaluation for a quadrature scheme.

In higher dimensions the integration is not quite so simple. Typically a quadrature

scheme only applies for integration over a specific shape of element (or at least

the scheme must be non-trivially modified for alternative geometries). To get

around this issue we use a coordinate transformation to a reference element [91,

p. 29], e.g. in two dimensions any four sided element is mapped to the square

[−1, 1]× [−1, 1], meaning that standard quadrature schemes can be used.

We call the coordinates on the reference element the “local coordinates” and de-

note them as s, we call the original coordinates the “global coordinates”. We use

a transformation (from local to global coordinates) that can be written similarly

to (4.14):

x(s) =
∑
j

xjψj(s), (4.24)

this is known as an isoparametric transformation. The final difficulty is to calcu-

late the Jacobian of this transformation:

Je = det
∂s

∂x
=

1

det ∂x
∂s

, (4.25)

where we have used the notation defined in (4.2) for the Jacobian of derivatives

of a function. Note that the elements of the Jacobian matrix ∂x
∂s

can be calculated

by simply differentiating (4.24). When using linear polynomial basis functions

the Jacobian is constant for 1D line elements, 2D triangular elements and 3D

tetrahedral elements.

So the final integration scheme is∫
Ωe

f(x) dx =

∫
Ωe

f(x(s))Je(s) ds,

≈
N∑
i=0

wif(x(si))Je(si).

(4.26)

Gaussian quadratures for square and cube elements can be constructed from the

one dimensional quadrature using a tensor product formula. Similar quadratures

for triangular and tetrahedral elements exist e.g. [27, 80].
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4.2 The FEM applied to the LLG equation

We now apply the finite element method as discussed in Section 4.1, together

with the Newton-Raphson method discussed in Section 3.5.2, to the solution

of the Landau-Lifshitz-Gilbert equation. We use the Gilbert form of the LLG,

(2.22), with the effective fields described in Section 2.2 and use the potential

method described in Section 3.3.2 to calculate the magnetostatic field.

We choose the Gilbert form of the LLG even though it is less intuitive than

the Landau-Lifshitz form because it only contains single cross product terms,

reducing the complexity of derivations. A side effect of this choice is that explicit

time integration schemes cannot be used since the time derivative is only defined

implicitly.

4.2.1 The strong form

After non-dimensionalisation (see Section 2.4.1) the strong form of our system of

equations is given by

∂m

∂t
= −m× h + αm× ∂m

∂t
,

h = hap −∇φ+∇2m +K1(m · ê)ê,

∇2φ = ∇ ·m.

(4.27)

We prefer the vector notation used here over tensor (i.e. subscript) notation

throughout this thesis because of the common occurrence of cross-products and

the complexity of representing a cross-product as a dummy summation over the

Levi-Civita tensor.

Recall that we are using the Newton-Raphson method to find a solution to the

non-linear problem. Hence we need to rearrange (4.27) into the residual form

R(m, φ) =
∂m

∂t
+ m× h− αm× ∂m

∂t
, (4.28)

S(m, φ) = ∇2φ−∇ ·m, (4.29)

where h is as in (4.27). A pair of functions m ∈ (C2(Ω))3, φ ∈ C2(Ω) is a solution

to (4.28) and (4.29) if R(m, φ) = 0 and S(m, φ) = 0 for all x ∈ Ω.
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For now we consider the magnetostatic potential only within the magnetic domain

Ω with Neumann or Dirichlet boundary conditions on the boundary Γ. Details of

the extension to include the effects of the external region using the FEM/BEM

method are given in Chapter 5, for which both the Dirichlet and Neumann cases

will be required. We define ΓD and ΓN respectively to represent the part of the

boundary where a Dirichlet condition or Neumann is imposed on the potential,1

i.e.
φ(x) = gD(x) x ∈ ΓD,

∇φ(x) · n̂(x) = gN (x) x ∈ ΓN ,
(4.30)

where n̂(x) is the outward unit normal. If the boundary conditions are purely

Neumann then this problem is actually singular: the solution can vary by an

arbitrary constant. This constant has no effect on the magnetostatic field and so

the singularity can be dealt with, for example, by fixing the value of φ to zero at

some point in the domain.

From (2.37) we have that the boundary condition on the magnetisation is

m× ∂m

∂n̂
= 0 x ∈ Γ. (4.31)

4.2.2 The weak form

We now convert (4.28) and (4.29) into the residual weak form as described in

Section 4.1.1. In the following we will need the identity2

(∇2φ)v = ∇ · (v∇φ)−∇φ · ∇v. (4.32)

We will also make use of the divergence theorem∫
Ω

∇ · f dΩ =

∫
Γ

f · n̂ dΓ. (4.33)

Multiplying (4.29) by a test function and integrating over the magnetic domain

we obtain the weak form residual for the magnetostatic potential

s(φ, v) =

∫
Ω

(∇2φ)v dΩ−
∫

Ω

(∇ ·m)v dΩ, (4.34)

1These must be such that ΓN ∩ ΓD = ∅ and ΓN ∪ ΓD = Γ.
2This can be easily derived by applying the product rule to ∇ · (v∇φ).
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where φ ∈ VSφ = {φ ∈ H2(Ω) |φ(x) = gD(x)∀x ∈ ΓD} and m ∈ H1(Ω). Recall

that aim is to find some φ such that s(φ, v) = 0 for all test functions v ∈ VT =

{φ ∈ H0(Ω) |φ(x) = 0∀x ∈ ΓD}. Note that while the use of the Newton-Raphson

method is unnecessary for the magnetostatic potential alone (since (4.34) is linear

in φ) it will be necessary later for the coupled problem.

We now reduce the order of the derivatives on φ, as discussed in Section 4.1.1,

by “transferring” the derivatives onto the test functions. Integrating (4.32) over

the domain and applying the divergence theorem (4.33) we obtain∫
Ω

(∇2φ)v dΩ =

∫
Ω

∇ · (v∇φ) dΩ−
∫

Ω

∇φ · ∇v dΩ,

=

∫
Γ

v(∇φ · n̂) dΓ−
∫

Ω

∇φ · ∇v dΩ.

(4.35)

Substituting (4.35) into (4.34) gives

s(φ, v) =

∫
Γ

v(∇φ · n̂) dΓ−
∫

Ω

∇v · ∇φ dΩ−
∫

Ω

(∇ ·m)v dΩ, (4.36)

where the function spaces are now V ′Sφ = {φ ∈ H1(Ω) |φ(x) = gD(x)∀x ∈ ΓD}
and V ′T = {φ ∈ H1(Ω) |φ(x) = 0 ∀x ∈ ΓD}.

Note that the boundary integral is always zero on ΓD by the definition of the test

functions. Hence the boundary integral is only non-zero on ΓN where ∇φ · n̂ = gN

and we have

s(φ, v) =

∫
ΓN

vgN dΓ−
∫

Ω

∇v · ∇φ dΩ−
∫

Ω

(∇ ·m)v dΩ. (4.37)

Next we apply the same procedure to the Landau-Lifshitz-Gilbert residual (4.28).

For now we sidestep the details of time discretisation by assuming ∂m
∂t

to be just

another (sufficiently smooth) function of x. The weak form of the LLG residual

is

r(m, v) =

∫
Ω

(∂m

∂t
+ (m× hca) + (m× hap)

− (m×∇φ) + (m×∇2m)− α
(

m× ∂m

∂t

))
v dΩ.

(4.38)

The problem is solved by m ∈ H2(Ω) such that r(m, v) = 0 ∀v ∈ H0(Ω).
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Note that in (4.38) the residual is a vector. However, we can also express the

requirement for each component of (4.38) to be zero as

r(m,v) =

∫
Ω

(
. . .
)
· v dΩ = 0, (4.39)

where v ∈ (H0(Ω))3 and the bracketed term is exactly the same as in (4.38). To

see that r(m,v) = 0 ∀v ∈ (H0(Ω))3 implies r(m, v) = 0 ∀v ∈ H0(Ω) consider the

vector test function (v, 0, 0). Clearly r(m, (v, 0, 0)) = [r(m, v)]x, and similarly for

the y and z cases. To see the inverse relationship note that if r(m, v) = 0 ∀v ∈
H0(Ω) then each term of every dot product in r(m,v) is zero, implying that the

total residual is zero ∀v ∈ (H0(Ω))3. The use of vector test functions makes

certain manipulations simpler so, for the remainder of this section, we will work

with vector test functions.

We again wish to reduce the order of the required derivatives, this time on m in

the exchange term. First we rearrange to find that

Iex =

∫
Ω

∇2m · (v ×m) dΩ,

=

∫
Ω

∇2m · b dΩ,

=
3∑
i=1

∫
Ω

bi(∇2mi) dΩ,

(4.40)

where b = (v ×m). Note that each term of the sum in (4.40) is very similar to

(4.34), and so we follow the same procedure to obtain

Iex =
3∑
i=1

[∫
Γ

bi(∇mi · n̂) dΓ−
∫

Ω

∇bi · ∇mi dΩ

]
. (4.41)

Rearranging the first term of (4.41) we find that

3∑
i=1

∫
Γ

bi(∇mi · n̂) dΓ =

∫
Γ

b · ∂m

∂n̂
dΓ,

=

∫
Γ

(v ×m) · ∂m

∂n̂
dΓ,

=

∫
Γ

(m× ∂m

∂n̂
) · v dΓ,

(4.42)
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which is zero by the Neumann-like boundary condition on m, (4.31).

Alternatively if we have periodic boundary conditions we can write this integral

as a sum over opposite boundaries Γj and Γ̂j. On opposite boundaries n̂ becomes

−n̂ but the geometry and m values must be identical, so we have

∫
Γ

(m× ∂m

∂n̂
) · v dΓ =

∑
j

[∫
Γj

m× ∂m

∂n̂
dΓj +

∫
Γ̂j

m× ∂m

∂(−n̂)
dΓ̂j

]
,

=
∑
j

0,

(4.43)

and the result is identical to the Neumann condition.

Next we need an expression for ∇bi. To avoid the requirement for tensor index

notation it is helpful to define, for a vector a

∇̃a =

∇a0

∇a1

∇a2

 . (4.44)

Then using the product rule, we have

∇̃b = ∇̃(v ×m),

= (∇̃v)×m + v × (∇̃m).
(4.45)

Using this notation we can write (4.41) as

Iex = −
∫

Ω

∇̃m :
(
∇̃v ×m

)
dΩ−

∫
Ω

∇̃m :
(
v × ∇̃m

)
dΩ, (4.46)

where “:” is the component-wise scalar product, i.e. ∇̃a : ∇̃c = ∇a0 · ∇b0 +

∇a1 · ∇b1 +∇a2 · ∇b2. Note that the “:” operator obeys the usual triple product

identity

a : (a× b) = 0. (4.47)

Hence the second term of (4.46) is zero and after reordering the first term we are

left with ∫
Ω

(m×∇2m) · v dΩ = −
∫

Ω

(
m× ∇̃m

)
: ∇̃v dΩ. (4.48)
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The final residual for the LLG equation, using a vector test function, is

r(m,v) =

∫
Ω

∂m

∂t
· v + (m× hca) · v + (m× hap) · v − (m×∇φ) · v

−
(
m× ∇̃m

)
: ∇̃v − α

(
m× ∂m

∂t

)
· v dΩ.

(4.49)

The final weak formulation is:

Find m ∈ (H1(Ω))3, φ ∈ V ′Sφ such that r(m,v) = 0 for all

v ∈ (H1(Ω))3 and s(φ, v) = 0 for all v ∈ V ′T .
(4.50)

4.2.3 Spatial Discretisation

The next step is to choose a finite dimensional approximation for the infin-

ite dimensional test and solution function spaces such that the residuals (4.37)

and (4.49) become discrete in space. Just as in Section 4.1.3 we choose to rep-

resent the finite dimensional spaces using a set of piecewise linear polynomials,

S1(Ω), as basis functions.

The approximations to the unknown functions m and φ are represented as a

sum over the solution basis functions ψk ∈ S1(Ω) (or, for φ, ψk ∈ S1
φ(Ω) =

{ψk ∈ S1(Ω) |ψk(x) = 0∀x ∈ ΓD}) as

m(x) ≈mh =
N∑
k=0

ψk m̃k,

φ(x) ≈ φh =
N∑
k=0

ψk φk.

(4.51)

Similarly the approximations to the test functions are represented as a sum over

the test basis functions, ϕn ∈ S1(Ω) (or S1
φ(Ω) as applicable), as

v ≈ vh =
N∑
n=0

ϕn an. (4.52)

Note that in our method ψk ≡ ϕk except for the basis functions of φ at the

Dirichlet boundary. Despite this we continue to write the test and solution basis

functions differently for generality.
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So substituting the basis representations, (4.51) and (4.52) into the continuous

residuals we obtain approximations for the residuals in terms of a finite number

of nodal values. Next we replace the requirement that the residuals be zero

for all test functions in the infinite dimensional set H1(Ω) with the equivalent

requirement for all the test basis functions in the finite set S1(Ω). This results in

a finite number of conditions (the residuals) on a finite number of variables (the

nodal values) and the spatial discretisation is complete.

4.3 Time Discretisation

In this section we discuss how to deal with the time derivative in the LLG residual

(4.49). As discussed in Chapter 3, we will apply standard integration methods

widely used for ODEs. This technique of applying independent spatial and time

discretisations is known as semi-discretisation (or the method of lines).

However, we cannot simply apply the time integration methods in the way they

are written in Section 3.4.2 (and in most text books) because our LLG residual

(4.49) is an implicit function of the time derivative and so cannot be written in

the form ∂y
∂t

= f(t,y). Instead we rearrange the time integration method to give

discrete substitutions for the time derivative, the unknown function y and t.

Let ∆n be the size of the nth time step and xn denote value of x at the n-th time-

step.3 The simplest case is the first order backwards difference method (BDF1),

which is defined by the substitution

∂y

∂t
→

yn+1 − yn
∆n

, y→ yn+1, t→ tn+1. (4.53)

This substitution can be obtained by simple algebraic rearrangements of (3.7).

Similarly, the second order backwards difference method (BDF2) can be found

(with some more complex algebra) to be:

∂y

∂t
→ yn+1

(
1

∆n

+
1

∆n + ∆n−1

)
− yn

∆n + ∆n−1

∆n∆n−1

+ yn−1

∆n

(∆n + ∆n−1)∆n−1

,

y→ yn+1, t→ tn+1.

(4.54)

3This notation has some potential to be confused with the nodal value notation of Section 4.2.3
but the meaning will be clear from the context.
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The implicit midpoint rule (IMR) is defined by the substitutions

∂y

∂t
→

yn+1 − yn
∆n

, y →
yn+1 + yn

2
, t→ tn+1 + tn

2
. (4.55)

Alternatively, as mentioned in Section 3.4.2, we can define the implicit midpoint

rule in terms of a step of BDF1 with ∆BDF1
n = ∆IMR

n /2 to obtain yn+ 1
2

followed

by the algebraic update

yn+1 = 2yn+ 1
2
− yn. (4.56)

The trapezoid rule (TR) is defined (recursively) by

∂y

∂t
→ ∂y

∂t

∣∣∣∣
n+1

=
2(yn+1 − yn)

∆n

− ∂y

∂t

∣∣∣∣
n

,

y→ yn+1, t→ tn+1.

(4.57)

By applying one of the substitutions (4.53)-(4.57) to the system of spatially dis-

cretised residuals we obtain a fully discrete problem. The properties of these time

discretisations are exactly as discussed in Section 3.4.

4.3.1 The fully discretised residuals

Here we write the residual using the scalar test function form because it is the

form most suitable for use in a computer implementation. We define the effect of

∇̃ on a scalar function ϕ to be ∇̃ϕ = (∇ϕ,∇ϕ,∇ϕ), this allows us to use scalar

and vector test functions in the same way in the following.

We write ∂mh

∂t
for the fully discrete time derivative approximations at step n+ 1;

and mh, φh for the fully discrete approximations to m, φ as required for the time

derivative.4 Then the fully discrete residuals are

rn =

∫
Ω

∂mh

∂t
ϕn + mh ×

(
hap + hca −∇φ− α

∂mh

∂t

)
ϕn

− (mh × ∇̃mh) : ∇̃ϕn) dΩ,

(4.58)

4These are given by (4.53)–(4.57) as appropriate, with the yi values replaced by the spatially
discrete approximations defined in (4.51).
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and

sn =

∫
ΓN

ϕngN dΓ−
∫

Ω

∇ϕn · ∇φh dΩ−
∫

Ω

(∇ ·mh)ϕn dΩ. (4.59)

for each test basis function ϕn.

4.4 The Newton-Raphson Jacobian

To solve our fully discrete system by the Newton-Raphson method (see Sec-

tion 3.5.2) we also need to know the Jacobian matrix of each residual differen-

tiated with respect to each variable at the (n + 1)th time step. This can be

handled by numerical differentiation (e.g. by approximating each derivative us-

ing a finite difference method), but analytical Jacobians are typically faster to

compute and give better convergence properties than such numerical approxim-

ations. Additionally, for the solution of the linear systems, it is often useful to

know analytically the block structure of the system being solved.

Note that the “real” implementation of the implicit midpoint rule (4.55) intro-

duces a factor of 1/2 in various places due to the substitution y→ yn+1+yn
2

. For

simplicity, and because we prefer the simpler BDF1-based implementation, we do

not include this factor in the derivations below.

Throughout this section we use the notation of ∂a(b,...)
∂b

for the Jacobian of deriv-

atives of a with respect to b as shown in (4.2).

We first note that the effect of differentiation by a nodal value on the approxim-

ation function φh is quite simple:

∂φh

∂φ̃l
=

∂

∂φ̃l

[∑
k

φ̃kψk

]
= ψl,

∂φh
∂m̃l

=
∂

∂m̃l

[∑
k

φ̃kψk

]
= 0T ,

(4.60)
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and similarly for the interpolated magnetisation, mh:

∂mh

∂m̃l

=
∂

∂m̃l

[∑
k

m̃kψk

]
= ψlI3,

∂mh

∂φ̃l
=

∂

∂φ̃l

[∑
k

m̃kψk

]
= 0,

(4.61)

where I3 is the 3× 3 identity matrix.

4.4.1 Poisson Jacobian

Starting from the Poisson residual, (4.37), and omitting terms that contain no

dependence on φi we get

An,l =
∂

∂φ̃l

∑
k

∫
Ω

−(∇ϕn · ∇ψk)φk dΩ,

= −
∫

Ω

∇ϕn · ∇ψl dΩ.

(4.62)

This block of the Jacobian is comparatively simple because the Poisson equation

is linear. It corresponds to the well known discrete Laplacian operator [91, p. 57].

4.4.2 LLG Jacobian

Unfortunately in most of the Jacobian calculations we have multiple terms de-

pending on mh joined together by a cross product. The process of differentiating

these terms can be made much easier by making use of the “skew operator” which

represents a cross product as a matrix-vector multiplication. For a = (a0, a1, a2)T

the skew operator is given by

Λ [a] = skew(a) =

 0 −a2 a1

a2 0 −a0

−a1 a0 0

 . (4.63)
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Note that

Λ [a] · b =

 0 −a2 a1

a2 0 −a0

−a1 a0 0

 ·
b0

b1

b2

 =

−a2b1 + a1b2

a2b0 − a0b2

−a1b0 + a0b1

 = a× b. (4.64)

Some useful properties of this skew operator are:

• The skew operator commutes with differentiation, i.e.

∂

∂x
Λ [a] = Λ

[
∂a

∂x

]
. (4.65)

• The skew operator is linear

Λ [a + cb] = Λ [a] + cΛ [b] . (4.66)

• The Jacobian of a cross-product can be easily represented using the skew

operator as

∂

∂a

(
Λ [a] · b

)
=

 0 b2 −b1

−b2 0 b0

b1 −b0 0

 = −Λ [b] . (4.67)

To see this we calculate the derivative with respect to a0:

∂

∂a0

(
Λ [a] · b

)
=

0 0 0

0 0 −1

0 1 0

b =

 0

−b2

b1

 , (4.68)

this is the first column of −Λ [b]. Repeating the calculation for the de-

rivatives with respect to a1 and a2 results in (4.67). This simplification is

the main advantage of the skew operator notation in the following Jacobian

calculations.

Due to the linearity of the skew operator we can write the Jacobian of a cross
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product including mh as

∂

∂m̃l

(
Λ [mh] b

)
=

∂

∂m̃l

Λ
[∑

k

ψkmk

]
b,

=
∑
k

ψk
∂

∂m̃l

(
Λ [m̃k] b

)
,

(4.69)

then using the fact that ∂m̃k

∂m̃l
= δlk we see that the summation can be dropped,

leaving
∂

∂m̃l

(
Λ [mh] b

)
= ψl

∂

∂m̃l

(
Λ [m̃l] · b

)
. (4.70)

Next, by using (4.67) we obtain

∂

∂m̃l

(
Λ [mh] b

)
= −ψlΛ [b] , (4.71)

and finally by combining (4.71) with the product rule we obtain the identity

∂

∂m̃l

(
Λ [mh] · g(mh)

)
= Λ [mh] ·

∂g(mh)

∂m̃l

− ψlΛ [g(mh)] . (4.72)

This provides us with a simple representation for almost all of the terms in the

LLG Jacobian.

Now we calculate the Jacobian itself. Written in terms of the skew operator the

fully discrete LLG residual, (4.58), becomes

rn = r(mh, ϕn) =

∫
Ω

∂mh

∂t
ϕn + Λ [mh] ·

(
hap + hca −∇φ− α

∂mh

∂t

)
ϕn

− (Λ [mh]∇mh) : ∇ϕn) dΩ.

(4.73)

To simplify the following calculations we write the Jacobian as the sum of the
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individual contributions:

Fn,l =
∂rn
∂m̃l

= An,l + Bn,l + Cn,l + Dn,l,

An,l =
∂

∂m̃l

∫
Ω

∂mh

∂t
ϕn dΩ,

Bn,l =
∂

∂m̃l

∫
Ω

−Λ [mh] · (∇mh :∇ϕn) dΩ,

Cn,l =
∂

∂m̃l

∫
Ω

Λ [mh] · hcaϕn dΩ,

Dn,l =
∂

∂m̃l

∫
Ω

Λ [mh] ·
(

hap −∇φ− α
∂mh

∂t

)
ϕn dΩ.

(4.74)

The first contribution is simple

An,l =
∂

∂m̃l

∫
Ω

∂mh

∂t
ϕn dΩ

=
cts

∆n

I3

∫
Ω

ψlϕn dΩ,

(4.75)

where cts
∆n

is the constant that multiplies yn+1 in the approximation of the time

derivative, for example when using the implicit midpoint rule cts = 1. So A is a

3 × 3 block diagonal matrix where each block is a mass matrix multiplied by a

constant depending on the time integration scheme.

Next we calculate the contribution from the damping, applied field and mag-

netostatic field. If we write the damping term in the form of (4.72) we have

g(mh) = ∂mh

∂t
, and

∂g(mh)

∂m̃l

=
∂

∂m̃l

(
∂mh

∂t

)
=

cts

∆n

ψlI3. (4.76)

Now using (4.72) with (4.76) we immediately obtain

Dn,l =
∂

∂m̃l

∫
Ω

Λ [mh] ·
(

hap −∇φ− α
∂mh

∂t

)
ϕn dΩ,

=

∫
Ω

ϕn
(
− ψlΛ [hap] + ψlΛ [∇φ] + αψlΛ

[
∂mh

∂t

]
− αψl

cts

∆n

Λ [mh] I3

)
dΩ,

=

∫
Ω

ϕnψl

(
Λ
[
−hap +∇φ+ α

∂mh

∂t
− α cts

∆n

mh

])
dΩ.

(4.77)

This is a 3 × 3 skew-symmetric matrix where each element is a mass matrix
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element multiplied by a collection of field/magnetisation components.

We turn now to the contribution due to magnetocrystalline anisotropy. Writing

the residual in the form of (4.72) we have

g(mh) = hca = K1(mh · ê)ê, (4.78)

and thus

∂g(mh)

∂m̃l

=
∂

∂m̃l

(K1(mh · ê)ê),

= K1

(
∂

∂mx,l

(mh · ê),
∂

∂my,l

(mh · ê),
∂

∂mz,l

(mh · ê)

)
⊗ ê,

= K1ψl ê⊗ ê.

(4.79)

Then combining (4.72) and (4.79) gives

Cn,l =
∂

∂m̃l

∫
Ω

Λ [mh] · hcaϕn dΩ,

=

∫
Ω

−ϕnψlΛ [hca] dΩ︸ ︷︷ ︸
C′n,l

+K1

∫
Ω

ϕnψlΛ [mh] (ê⊗ ê) dΩ︸ ︷︷ ︸
Jca,n,l

, (4.80)

where a ⊗ b is the tensor product of a and b. Note that C′ is of the same form

as D and Jca is a 3 × 3 block matrix with no empty blocks in the general case.

However, if ê is aligned with any of the Cartesian axes (as is typical) then only

one entry of the matrix (ê⊗ ê) is non-zero and only one block of Jca is non-empty.

Finally we calculate the exchange contribution. We first derive the identity

∂

∂m̃l

(
∇̃mh : ∇̃ϕ

)
=

∂

∂m̃l

(
∑

k m̃k∇ψk) · ∇ϕ
(
∑

k m̃k∇ψk) · ∇ϕ
(
∑

k m̃k∇ψk) · ∇ϕ

 ,

=
∑
k

∂m̃k

∂m̃l

∇ψk · ∇ϕ∇ψk · ∇ϕ
∇ψk · ∇ϕ

 ,

= I3(∇ψl · ∇ϕ).

(4.81)
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Then using (4.72) and (4.81) we get

Bn,l =
∂

∂m̃l

∫
Ω

−Λ [mh] · (∇̃mh : ∇̃ϕn) dΩ,

=

∫
Ω

ψlΛ
[
∇̃mh : ∇̃ϕn

]
−Λ [mh] (∇ψl · ∇ϕn) dΩ,

=

∫
Ω

Λ
[
ψl∇̃mh : ∇̃ϕn −mh (∇ψl · ∇ϕn)

]
dΩ,

(4.82)

which is a skew-symmetric 3 × 3 matrix with each element reminiscent of an

element of the discrete Laplacian (4.62).

When written in block form the total LLG Jacobian is

F =


cts
∆n

M −Kz Ky

Kz
cts
∆n

M −Kx

−Ky Kx
cts
∆n

M

+ Jca, (4.83)

where M is the mass matrix

Mi,j =

∫
Ω

ϕiψj dΩ; (4.84)

Ki are the skew-symmetric contributions B, C′ and D of (4.77), (4.80) and (4.82);

and Jca is from (4.80).

4.4.3 LLG-magnetostatics coupling Jacobians

The non-linear problem as written in (4.50) is the “monolithic” form, i.e. all

equations are solved simultaneously. The Jacobian for this complete non-linear

system is

J =

(
F P

Q A

)
, (4.85)

where A and F have been derived in Section 4.4.1 and Section 4.4.2 respectively;

P = ∂r
∂φ

and Q = ∂s
∂mh

. We now derive expressions for P and Q. Note that it is

also possible (and common) to solve the non-linear problem (4.50) as two separate

systems: one for mh then one for φ. More details and the advantages of each

approach are discussed in Chapter 6.

Now we derive Pn,l. It is a 3×1 block matrix because we are dealing with a vector
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of three residuals differentiated by one variable (φ̃l). Most of the terms in the LLG

residual are zero when differentiated with respect to any φ̃l so the calculation is

quite simple. From (4.58), using discrete approximations and dropping the zero

terms we have

Pn,l =
∂rn

∂φ̃l
=

∂

∂φ̃l

∫
Ω

−ϕnmh ×∇φh dΩ,

= −
∫

Ω

ϕnmh ×∇ψl dΩ,

(4.86)

Next we derive Qn,l, which is a 1×3 block matrix because we differentiate by the

three components of mh. From (4.59) we have

Qn,l =
∂sn
∂m̃l

=
∂

∂m̃l

∫
Ω

−ϕn∇ ·mh dΩ,

=
∑
j

∂

∂m̃l

∫
Ω

−ϕn
(
∂ψj
∂x

mh,x,j +
∂ψj
∂y

mh,y,j +
∂ψj
∂z

mh,z,j

)
dΩ,

= −
∫

Ω

ϕn

(
∂ψl
∂x

,
∂ψl
∂y

,
∂ψl
∂z

)
dΩ,

= −
∫

Ω

ϕn(∇ψl)T dΩ.

(4.87)

So in block form the complete Jacobian is

J =


cts
∆n

M −Kz Ky Px

Kz
cts
∆n

M −Kx Py

−Ky Kx
cts
∆n

M Pz

Qx Qy Qz A

+ Jca, (4.88)

where Jca is appropriately zero padded.

4.5 Geometric integration with the finite ele-

ment method

In weak form based methods it turns out that the magnetisation length conser-

vation property of the IMR does not automatically apply. The problem is that

(outside of the infinite node limit) the weak form equations enforce properties of

the integral of the solution, so with the FEM and IMR
∫

Ωe
|mh| − 1 dΩe = 0 is
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enforced rather than the equivalent nodal property. The solution is to evaluate

the integrals using a quadrature scheme which somehow directly links the nodal

values with the integral values. The downside of such a scheme is that the accur-

acy of the evaluation of integrals is reduced (since the standard quadratures are

chosen for their optimal accuracy).

In the micromagnetics literature this choice of quadrature is known as “reduced

integration” [22]. However in other finite element literature reduced integration

refers to the use of a Gaussian quadrature whose order is not sufficient to evaluate

the integrals exactly, typically it is used to reduce the computational cost of the

quadrature. Nodal integration is the standard term for quadrature schemes where

the nodal values are used directly in the quadrature (typically with mesh-free

methods e.g. [78]), but we prefer the term “nodal quadrature” to avoid confusion

with time integration.

In this section we first demonstrate that |mj| = 1 is conserved when a nodal

integration scheme is used. Then we demonstrate that the energy property of

IMR (as discussed in Section 3.4.9) applies in our FEM + IMR model. Finally we

show in detail why the conservation of magnetisation length is lost with standard

quadrature schemes.

4.5.1 A local nodal quadrature scheme

In order to regain conservation properties in a weak-form-based method we in-

troduce a nodal quadrature scheme as used by Bartels et. al. [10]:∫
Ωe

f(x) dx ≈
∑

l∈{nodes in Ωe}

βlf(xl), (4.89)

where βl is a weight. This is simply the weighted sum of the value of the integrand

at the finite element nodes. As an additional benefit this can greatly simplify the

calculations since no interpolation of the values to the knots (integration points)

is needed.

We now need to derive suitable values for the βl. To do so we represent the

quadrature scheme as an integral of an appropriate interpolating polynomial (in

fact the interpolating polynomial defines the quadrature scheme), then rearrange

the equation to find the weights (see, e.g. [59, p. 480]). In FEM codes quadrature
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is typically done in local coordinates, as discussed in Section 4.1.4, so we calculate

weights applicable in a local coordinate quadrature.

A set of quadrature-interpolation-polynomials which give the nodal quadrature

property (4.89) are the test basis functions. Using these we obtain:∫
Ωe

f(x) dx =

∫
Ωe

f(s)J(s) ds,

≈
∫

Ωe

(∑
l

f(sl)ϕl(s)

)
J(s) ds,

≈
∑
l

f(sl)

∫
Ωe

ϕl(s)J(s) ds,

(4.90)

where J =
∣∣ ∂s
∂x

∣∣ is the Jacobian of the transformation from local to global co-

ordinates. Comparing (4.89) with (4.90) we see that

βl =

∫
Ωe

ϕl(s)J(s) ds

(
=

∫
Ωe

ϕl dx

)
. (4.91)

If f(s) is a first order polynomial then our nodal quadrature scheme is exact.

This is worse than the Gaussian quadrature with the same number of quadrature

points, where polynomials of up to 3rd order are integrated exactly. As such

most terms of the LLG residual are not integrated exactly. However the exchange

residual contribution is only a first order polynomial, for example the x component

is

rexch,x = −
∫

Ω

my(∇ϕ · ∇mz) dΩ +

∫
Ω

mz(∇ϕn · ∇my) dΩ. (4.92)

The gradient terms are constants (mi and ϕn are linear polynomials so their first

derivatives are constant), hence the exchange contribution is integrated exactly.

Note that with this quadrature scheme we have that∫
Ω

ψkϕn dΩ = cδkn, (4.93)

meaning that the mass matrix, (4.84), is diagonal. This makes the nodal quadrat-

ure scheme a form of mass-lumping which is often used in the FEM in combination

with explicit time integration to remove the requirement for a linear solve.
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4.5.2 Conservation of |m|

After reducing the norm of the discrete LLG residual to tolerance εN we have for

each j (using vector test function notation):∣∣∣∣∣∣∣∣∫
Ω

[
∂mh

∂t
+ mh ×

(
h− α∂mh

∂t

)]
·ϕj + (mh ×∇mh) : ∇ϕj dΩ

∣∣∣∣∣∣∣∣ < εN,

(4.94)

where ||·|| is the norm used to assess the convergence of the linearisation method

(in our implementation this is ||·||∞) and ϕj is the vector test basis function

corresponding to node j. Hence, by writing any test function v as a linear com-

bination of the basis functions and then using the linearity of ϕ in (4.94) and the

triangle inequality, we have∣∣∣∣∣∣∣∣∫
Ω

[
∂mh

∂t
+ mh ×

(
h− α∂mh

∂t

)]
· v + (mh ×∇mh) : ∇v dΩ

∣∣∣∣∣∣∣∣ < εNC,

(4.95)

for all v ∈ (H1
h(Ω))3 where C = C(v) =

∑
j |cx,j|+ |cy,j|+ |cz,j| is the sum of all

coefficients in the basis representation of v.

In this section we write the midpoint value (in time) of the magnetisation at

the jth node as mj, 1
2

= (mj,n + mj,n+1)/2. Similarly for the magnetic field we

write hj, 1
2

= h((tn+ tn+1)/2,xj,mj) and the time derivative of the magnetisation
∂m
∂t j, 1

2

= (mj,n+1 −mj,n)/∆n.

For the purposes of this derivation we choose the test function to be v = mj, 1
2
ϕj,

i.e. the midpoint value of the magnetisation at node j multiplied by the cor-

responding test basis function. We know that mj, 1
2
ϕj ∈ (H1

h(Ω))3 because it is

simply a vector valued multiple of a basis function of H1
h(Ω).

Using the new notation and this test function we have that∣∣∣∣∣
∣∣∣∣∣∑

l

βl

[(
∂m

∂t l, 1
2

+ ml, 1
2
×
(

hl, 1
2
− α∂m

∂t l, 1
2

))
·mj, 1

2
ϕj(xl)

+
(
ml, 1

2
×∇ml, 1

2

)
: ∇(mj, 1

2
ϕj(xl))

]∣∣∣∣∣
∣∣∣∣∣ < εNC.

(4.96)
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Using ϕj(xl) = δjl we can eliminate the summation, leaving only∣∣∣∣∣∣∣∣βj[(∂m

∂t j, 1
2

+ mj, 1
2
×
(

hj, 1
2
− α∂m

∂t j, 1
2

))
·mj, 1

2
+
(
mj, 1

2
×∇mj, 1

2

)
: ∇(mj, 1

2
)

]∣∣∣∣∣∣∣∣ < εNC.

(4.97)

Now, by the properties of the triple product, the precession and damping terms

vanish leaving ∣∣∣∣∣∣∣∣βj ∂m

∂t j, 1
2

·mj, 1
2

∣∣∣∣∣∣∣∣ < εNC. (4.98)

Substituting in the formula for the IMR from (4.55) gives the desired conservation

result: ∣∣∣∣∣∣∣∣ βj2∆n

(mj,n+1 −mj,n) · (mj,n+1 + mj,n)

∣∣∣∣∣∣∣∣ < εNC,∣∣∣∣|mj,n+1|2 − |mj,n|2
∣∣∣∣ < 2∆n

βj
εNC.

(4.99)

This is applicable for all nodes j. Note that for this test function C ∼
∣∣∣mj, 1

2

∣∣∣2 =

O(1) assuming that the solver has not gone catastrophically wrong.5 Hence all

nodal magnetisation lengths are conserved up to an error which can be controlled

by decreasing the tolerance of the linearisation method.

4.5.3 Energy properties

We now show that the IMR/FEM discretisation discussed above also retains

the energy conservation property of the IMR applied to an ODE discussed in

Section 3.4.9.

For now we assume an additional property of the solution and test function spaces:

all functions must be in H2
h(Ω) (i.e. the second derivatives are integrable). This

constraint is required so that we can use a simpler form of the LLG residual and

can be relaxed by using nodal quadrature and more technical arguments which

are discussed following the derivation. We also require that hap can be written as

a linear combination of basis functions. Finally we make use of the fact that the

test and solution spaces coincide for the magnetisation (due to the lack of any

Dirichlet boundary conditions).

5Even if |m| = 1 does not hold (and for the purposes of this proof we cannot assume that it
does), the length of the magnetisation cannot be too far away from one.
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As in the previous section we start from the LLG residual:∣∣∣∣∣∣∣∣∫
Ω

[
∂mh

∂t
+ mh ×

(
h− α∂mh

∂t

)]
· v dΩ

∣∣∣∣∣∣∣∣ < εNC(v),

h = ∇2mh −∇φ+ hap(t,x) + hca(mh),

(4.100)

and choose as the test function

v = h− α∂mh

∂t
. (4.101)

The term α∂mh

∂t
belongs to the space of test functions since it is a linear combin-

ation of mh,n and mh,n+1, each of which is in the solution space. Since we are

using v ∈ H2
h(Ω) the function ∇2mh is clearly in the test function space. The

hca effective field is similarly contained in the space of test functions as it is a

linear function of mh. Finally, since the space of test functions for m is non-zero

on the boundary (i.e. there are no Dirichlet conditions on m) we can represent

∇φ using them, for any boundary conditions on φ.

We substitute (4.101) into (4.100) and apply the triple product identity to find

that ∣∣∣∣∣∣∣∣∫
Ω

∂mh

∂t
· h dΩ− α

∫
Ω

∂mh

∂t
· ∂mh

∂t
dΩ

∣∣∣∣∣∣∣∣ < εNC. (4.102)

After substituting in the IMR approximations and using a midpoint approxima-

tion for the applied field in (4.102) the expression inside the norm coincides with

(3.48) of the derivation of the energy loss property for the strong form of the

LLG. Hence we proceed similarly to Section 3.4.9: we substitute (3.51)–(3.53)

into (4.102) to obtain∣∣∣∣∣
∣∣∣∣∣en+1 − en

∆n

+ α

∣∣∣∣∣∣∣∣mh,n+1 −mh,n

∆n

∣∣∣∣∣∣∣∣2
L2

+

(
hap(tn+1) + hap(tn)

∆n

,
mh,n+1 + mh,n

2

)
L2

−
(
Eap,

mh,n+1 −mh,n

∆n

)
L2

∣∣∣∣∣
∣∣∣∣∣ < εNC.

(4.103)
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Finally, by using the triangle inequality6, we have∣∣∣∣∣
∣∣∣∣∣en+1 − en

∆n

+ α

∣∣∣∣∣∣∣∣mh,n+1 −mh,n

∆n

∣∣∣∣∣∣∣∣2
L2

+

(
hap(tn+1) + hap(tn)

∆n

,
mh,n+1 + mh,n

2

)
L2

∣∣∣∣∣
∣∣∣∣∣

<

∣∣∣∣∣∣∣∣(Eap,
mh,n+1 −mh,n

∆n

)
L2

∣∣∣∣∣∣∣∣+ εNC.

(4.104)

The inequality (4.104) has the same interpretations as in Section 3.4.9. In par-

ticular: if α = 0 and hap is constant in time we have energy conservation (up to

an error which can be controlled using the linearisation tolerance).

Note that the energy integrals and L2 norms in (4.104) are not necessarily exact

because we are using nodal quadrature. The exchange energy is exact for the

same reasons as discussed in Section 4.5.1, and the energy due to magnetostatics

is exact for the same reason. In contrast the magnetocrystalline anisotropy energy

and ∂m
∂t

norm integrals are not exact and the Zeeman energy depends on the

spatial variation of the applied field: if the field is constant in space then the

conserved energy will be exact.

Also note that for the test function given in (4.101) the value of C is fairly large

C = O
(
Nn

(
1 +K1 + max

x
hap(t,x)

))
,

= O(Nn),
(4.105)

and so the bound may be lose for very large numbers of nodes. However this a

pessimistic bound because it assumes that every coefficient of the basis expansion

has the same sign, i.e. all effective fields are in the same direction over all of Ω,

and ∂m
∂t

is in the opposite direction over all of Ω. The actual error is not likely to

be this large except in extremely symmetric cases.

The restriction of v ∈ H2
h(Ω) introduced at the start of this section can be

relaxed by considering an implicitly defined discrete Laplacian operator defined

for a ∈ H1(Ω), b ∈ H1
h(Ω) as

−
(

∆̃a(x), b(x)
)

nodal
= (∇a(x), ∇b(x))L2 , (4.106)

6The standard triangle inequality is ||x+ y|| ≤ ||x|| + ||y||, by choosing y = −a we see that
||x− a|| ≤ ||x||+ ||−a|| = ||x||+ ||a|| giving the form used here.
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where

(a, b)nodal =
∑

j∈nodes

βja(xj) · b(xj), (4.107)

i.e. the nodally-integrated version of the L2 inner product. It can be shown that

[9]: ∣∣∣∣∣∣∆̃a(x)
∣∣∣∣∣∣
∞

=
(

∆̃a(x), ∆̃a(x)
)
∞
<∞, (4.108)

so
∣∣∣∣∣∣∆̃a(x)

∣∣∣∣∣∣
L2
< ∞ and the required integrals are finite when calculated using

nodal quadrature. Note that
(

∆̃mh, mh

)
nodal

= (∇mh, ∇mh)L2 = eex. This

means that we can replace the Laplacian operator everywhere in the derivation

by the discrete Laplace operator to obtain the derivation without the restriction

v ∈ H2
h(Ω).

4.5.4 Non-conservation with Gaussian quadrature

We now show (by a counterexample) that the conservation result does not hold

with a standard quadrature scheme. To obtain our result we examine the case

where v = mh (recall that mh ∈ (H1
h(Ω))3 because we are using identical test

and solution function spaces and each component of mh is a linear combination

of solution basis functions).

For this section we assume that the non-linear solver has converged to a tolerance

of exactly zero for simplicity, i.e. εN = 0. By substituting v = mh and εN = 0

into (4.95) then using the triple product identities we obtain

0 =

∫
Ω

∂mh

∂t
·mh dΩ,

=
1

2∆n

∫
Ω

(mh,n+1 + mh,n) · (mh,n+1 −mh,n) dΩ,

=
1

2∆n

∫
Ω

|mh,n+1|2 − |mh,n|2 dΩ.

(4.109)

Equation (4.109) suggests that we have conservation of magnetisation length.

However it is an integral relationship, meaning that the values of the integrand

at the nodes are not necessarily zero.7

We can see this in more detail by writing out the Gaussian quadrature. Dropping

7Since
∫

Ω
f(x) dΩ = 0 ; f(x) ≡ 0 on Ω.
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the constant factor of 2∆n and assuming that |mh,n| = 1 everywhere this gives

1 =

∫
Ω

∣∣∣∣∣∑
k

mk,n+1ϕk(x)

∣∣∣∣∣
2

dΩ,

=
∑
l

wl

∣∣∣∣∣∑
k

mk,n+1ϕk(xl)

∣∣∣∣∣
2

.

(4.110)

Equation (4.110) can be satisfied without the requirement that |mk,n+1| = 1 ∀k.

For example if we set the number of nodes to two (i.e. a 1D problem with linear

basis functions) and assume magnetisation only along the z-axis (i.e. mh,n+1 =

(0, 0,m)) then condition (4.110) becomes (dropping the subscript n+ 1):

1 =
∑
l

wl

∣∣∣∣∣∑
k

mkϕk(xl)

∣∣∣∣∣
2

,

= w0(m0a+m1b)(m0a+m1b) + w1(m0c+m1d)(m0c+m1d),

= m2
0(w0a

2 + w1c
2) +m2

1(w0b
2 + w1c

2) +m0m1(2w0ab+ 2w1cd),

= m2
0α +m2

1β +m0m1γ,

(4.111)

where a, b, c, d are the values of basis functions at the knots and α, β, γ are con-

stants. So given any m0 we can solve the above expression to find an m1 that

satisfies the constraint. Since we have chosen m = (0, 0,m) this means we can

vary the magnetisation length at node 0 arbitrarily while still satisfying the con-

straint.

Finally, we note that if the magnetisation is constant in space at times tn and

tn+1 then the integral condition in (4.109) is sufficient to give conservation of the

magnetisation length at nodes.



Chapter 5

Hybrid finite/boundary element

method

The boundary element method (BEM) is a spatial discretisation method similar

to the FEM except that the problem on a domain is converted to an equivalent

formulation in terms of integrals over the boundary of the domain before the

discretisation is applied. The main downside of such a formulation is that it

results in a dense matrix after the discretisation is applied.

The hybrid finite/boundary element method (FEM/BEM) is a spatial discretisa-

tion method which applies FEM and BEM to different parts of the same problem.

In particular this method can be applied in the context of magnetostatic calcu-

lations to enforce the boundary condition at infinity in (2.15) without meshing

an infinite region of space or arbitrarily truncating it. This is done by applying

the BEM to a part of the problem on the infinite external domain in order to

convert it into a problem on the boundary of the magnetic domain. The use of

FEM for the remaining parts of the problem means that most of the obtained

linear systems remain sparse.

In this chapter we first give an overview of the FEM/BEM approach and then

show how splitting the magnetostatic problem into two parts and applying some

results from potential theory can lead to a formulation which involves only finite

domains. We then demonstrate how this formulation can be discretised, and dis-

cuss the evaluation of the required integrals. Methods of coupling the FEM/BEM

magnetostatic calculations to the FEM-discretised LLG problem (as described in

Chapter 4) are discussed in Chapter 6, along with strategies for the solution of

112
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the resulting linear/non-linear systems.

5.1 The continuous FEM/BEM formulation

We want to use the boundary element method in the calculation of the mag-

netostatic scalar potential, φ, (defined in (2.14) and (2.15)) to avoid performing

calculations that involve the infinite external domain. However, applying the

boundary element method alone would require the solution of dense matrix equa-

tions for the entire problem. We can circumvent this issue by applying a hybrid

method using both FEM and BEM. We use the linearity of the Poisson operator

to split the potential into two parts φ = u + v in such a way that u can be cal-

culated in the magnetic domain, Ω, using only the finite element method. This

results in conditions on v that must be satisfied to give the correct total potential,

including the problematic condition at infinity.

It turns out that φ can be split in such a way that the v is equivalent to the po-

tential resulting from a specific arrangement of fictional magnetic charges, which

is known to solve the required differential equation including the boundary con-

dition at infinity. The details of this “charge distribution”, which gives rise to a

double-layer potential, depend on the boundary values of u. The use of such a

charge distribution is equivalent to applying the BEM to v.

So given u and using the known solution for this charge distribution we can cal-

culate v anywhere. However the calculation of v at a point using this method

involves an expensive dense matrix operation, so we only use it to calculate Di-

richlet boundary conditions for v on the boundary of the magnetic domain, Γ.

These boundary conditions allow us to apply the finite element method to find v

inside the magnetic domain Ω using standard sparse matrix techniques.

The magnetostatic field hms = ∇φ constructed by the procedure outlined above

is the magnetostatic field by the uniqueness (up to a constant) of solution for

Poisson’s equation with Dirichlet or Neumann boundary conditions.1

In Section 5.1.1 we describe in more detail the splitting of the potential that allows

this process. Then in Section 5.1.2 we describe the properties of the fictional

1To see the uniqueness take the difference of two solutions of Poisson’s equation: φ = ψ1 − ψ2.
Then using identity (4.32), the linearity of Poisson’s equation and the divergence theorem
we obtain

∫
Γ
φ∇φ · n̂ dΓ =

∫
Ω

(∇φ)2 dΩ. Applying Dirichlet, Neumann or mixed boundary
conditions shows that the boundary integral is zero and hence ∇φ = 0.
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Figure 5.1: A 2D representation of the geometry showing the labels used in this
chapter. The point x′ is a singular point of the boundary Γ, the angle α(x′) is as
shown.

charge distribution. Finally in Section 5.1.3 we combine these parts to give a

formulation of the magnetostatic problem involving only finite sized domains.

5.1.1 The potential splitting

First we need to introduce some notation: we write f int(x) = limx→Γ f(x) from

inside the magnetic domain, f ext(x) = limx→Γ f(x) from outside the magnetic

domain. That is, f int denotes the value of f “close” to the boundary Γ and

“just inside” the magnetic domain and f ext for the value of f “just outside” the

magnetic domain (see Figure 5.1).

From Section 2.2.2 we have certain physical conditions on the magnetostatic

potential φ. Both inside and outside the magnetic domain, Ω, we have

∇2φ(x) = ∇ ·m(x), (5.1)

where we define m = 0 outside of magnetic materials. We also have the boundary

conditions
∂φint(x)

∂n̂
− ∂φext(x)

∂n̂
= m · n̂ x ∈ Γ, (5.2)
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and

φint(x)− φext(x) = 0 x ∈ Γ, (5.3)

on the boundary of the magnetic material, Γ. Finally we have the condition that

φ(x)→ 0 as |x| → ∞. (5.4)

The key observation for this part of the derivation is that (5.1)–(5.4) are linear,

i.e. if φ = u+v then ∇2φ = ∇2u+∇2v and similarly for the boundary conditions.

Based on this observation we define a new potential u which satisfies

φ(x) = u(x) + v(x), (5.5)

everywhere in Rd and

∇2u(x) = ∇ ·m(x) x ∈ Ω, (5.6)

∂uint(x)

∂n̂
= m · n̂ x ∈ Γ, (5.7)

u(x) = 0 x ∈ Ωc, (5.8)

where Ωc = Rd\Ω is the infinite region of free space outside the magnetic domain.

Note that (5.6) and (5.7) give a self contained Poisson Neumann problem for

u ∈ Ω ∪ Γ, and that (5.8) implies

∂uext(x)

∂n̂
= 0 x ∈ Γ. (5.9)

Equations (5.1)–(5.4) for φ combined with (5.5)–(5.8) for u give a number of

conditions that v must satisfy. From (5.1), (5.5) and (5.6) and the fact that the

problem is linear we have a differential equation for v:

∇2v(x) = 0, (5.10)

everywhere in Rd. Substituting (5.5) into (5.2) and using (5.7) and (5.9) gives

∂vint(x)

∂n̂
− ∂vext(x)

∂n̂
=
∂uext(x)

∂n̂
− ∂uint(x)

∂n̂
+ m · n̂ x ∈ Γ, (5.11)
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thus the first boundary condition on v is

∂vint(x)

∂n̂
=
∂vext(x)

∂n̂
x ∈ Γ. (5.12)

Finally from (5.3), (5.5) and (5.8) we have a second boundary condition on v:

(uint + vint)− (uext + vext) = 0,

vint − vext = −uint x ∈ Γ.
(5.13)

As mentioned previously, the solution of the Laplace equation (5.10) subject to

the boundary conditions (5.12) and (5.13) is satisfied by a certain arrangement

of virtual magnetic charges. This arrangement of charges is discussed in the next

section.

5.1.2 Double Layer Potentials

A double layer potential can be thought of as the potential due to a layer of dipoles

(i.e. two charges separated by an infinitesimal distance) of magnitude µ(x) in

direction n̂ over the surface Γ [94].2 In this section we give some (mathematical)

properties of a double layer potential.

The double layer potential at a point x ∈ Rd (including x ∈ Γ) is defined as

φ(x) =

∫
Γ

µ(y)
∂G(x,y)

∂n̂(y)
dy, (5.14)

where G is the Green’s function for the Laplacian operator and n̂(y) is the out-

ward unit normal at y ∈ Γ. For d = 2

G(x,y) =
−1

2π
ln(|x− y|), (5.15)

and for d = 3

G(x,y) =
−1

4π

1

|x− y|
. (5.16)

We have the following results from potential theory:

2Note that our potentials are a factor of −1
4π different from those in reference [94] and that our

φint and φext definitions correspond to their φ− and φ+.
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1. The double layer potential satisfies Laplace’s equation ∇2φ = 0 (in other

words the double layer potential is harmonic) [94].

2. The double layer potential undergoes a jump of µ(x) moving in the direction

n̂ across a smooth surface Γ [94, pp. 136-140], i.e.

φint(x)− φext(x) = µ(x). (5.17)

3. Defining the fractional angle at a point as

γ(x) =
α(x)

αmax

, (5.18)

where, in two dimensions, α(x) is the angle subtended by the domain at x

and αmax = 2π. Similarly in three dimensions α(x) is the solid angle and

αmax = 4π.

Then for x ∈ Γ the following relationship holds [94, pp. 137-139, 155]

φint(x) = (1− γ(x))µ(x) + φ(x). (5.19)

Note that the angle α at any smooth point on the surface (i.e. not at

an infinitely sharp corner) is π in 2D (or 2π in 3D). So in these cases

γ(x) = α(x)
αmax

= 1
2
.

4. If µ is continuous and has continuous first and second derivatives along the

boundary (i.e. µ(x) ∈ C2(Γ)) then the limits ∂φint(x)
∂n̂

and ∂φext(x)
∂n̂

exist and

are equal [94, pp. 145-153].

Note that some derivations of the results above rely on the surface being a “Lya-

punov surface” which imposes a number of smoothness conditions on the surface,

in particular excluding surfaces with corners. The proofs given in [94] allow a

finite number of sharp corners, i.e. a polygonal domain.
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5.1.3 Application to Magnetostatic Calculations

From Section 5.1.2 we can see that conditions (5.10), (5.12) and (5.13) on v are

satisfied by a double layer potential with magnitude3

µ(x) = −uint(x). (5.20)

By the uniqueness of solution for Poisson’s equation this gives us, up to an ad-

ditive constant, the only solution for v(x) in the external domain. This is good

enough for a potential since it is only used in hms(x) = −∇φ(x) and addition of

a constant has no effect.

Substituting (5.20) into (5.14) and (5.19) we have:

vint(x) = −
∫

Γ

uint(y)
∂G(x,y)

∂n̂(y)
dy +

(
γ(x)− 1

)
uint(x). (5.21)

After substituting our definition for the three dimensional Green’s function (5.16)

into (5.21) we obtain the same equation as given by Koehler et. al. [62].

Also note that φ = u+ v everywhere, so

φint(x) = −
∫

Γ

uint(y)
∂G(x,y)

∂n̂(y)
dy + γ(x)uint(x). (5.22)

Either (5.21) or (5.22) can be used to give boundary conditions for v ∈ Ω or

φ ∈ Ω respectively. We will proceed using (5.22) since it eliminates v from later

calculations and is slightly simpler. We also omit the distinction between interior

and exterior since all exterior values have now been eliminated.

The final continuous problem is

∇2φ(x) = ∇ ·m(x),

∇2u(x) = ∇ ·m(x),
(5.23)

3It is also possible to directly derive the double layer potential formula from (5.10), (5.12)
and (5.13), as described in [60, Appendix 2].
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in the magnetic domain Ω, with boundary conditions

φ(x) = G
[
u(x)

]
x ∈ Γ,

∂u(x)

∂n̂
= m · n̂ x ∈ Γ,

(5.24)

where the operator G is defined as

G[u(x)] = −
∫

Γ

u(y)
∂G(x,y)

∂n̂(y)
dy + γ(x)u(x). (5.25)

Note that u has purely Neumann boundary conditions, hence it is only defined

up to a constant. However, as mentioned before, the addition of a constant is not

important so we can fix u to zero at some point to resolve this issue.

So if m is some fixed function, we can apply the FEM to calculate u, then use

G (assuming we have some discrete version of it) to calculate Dirichlet boundary

conditions on φ and, finally, use the FEM again to calculate φ. However, in the

context of an implicit time integration scheme applied to the LLG equation the

value of m is not fixed, and entire problem should be solved simultaneously to

find a consistent set of m, u and φ. Efficient methods for the solution of such a

simultaneous system, or methods which avoid it, are the topic of Chapter 6. For

now we continue by showing how the problem can be discretised.

5.2 Discretisation

The bulk equations (5.23) and the Neumann boundary condition on u in (5.24)

are identical to those discussed in Section 4.2 and will be solved using the finite

element method. As such the weak residual form, discretisation and Jacobians

are identical and all that remains to be discretised is the operator G. We let

φ =
∑
i

φiϕi(x), u =
∑
j

ujϕj(x), (5.26)

where ϕi are the same polynomial basis functions as used in the finite element

method of Chapter 4.
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Substituting (5.26) into (5.22) we have

∑
i

φiϕi(x) = −
∫

Γ

∑
j

ujϕj(y)
∂G(x,y)

∂n̂(y)
dy + γ(x)

∑
j

ujϕj(x). (5.27)

Since the integrands are continuous functions on Γ, we can exchange the order of

the sum and the integration, leaving

∑
i

φiϕi(x) = −
∑
j

uj

[∫
Γ

ϕj(y)
∂G(x,y)

∂n̂(y)
dy

]
+ γ(x)

∑
j

ujϕj(x). (5.28)

At this point we could apply the Galerkin method (as described in Section 4.1):

by multiplying (5.28) by a test function and integrating. This would result in

a system of linear equations Mφ̃ = G′ũ (where G′ is the Galerkin discrete form

of G) which could be solved for φ̃. However this would require calculating a

double integral for each entry in G′. Instead we apply a standard collocation

method. Collocation methods enforce pointwise relationships in contrast to the

Galerkin method which enforces relationships in a weighted integral form. The

collocation method is the conventional choice of discretisation approach for the

BEM operator in micromagnetics.

To get the value of φ at node k using the collocation method we choose x = xk

in (5.28). Then using the property ϕi(xk) = δik and replacing k by i we have

φi = −
∑
j

uj

[∫
Γj

ϕj(y)
∂G(xi,y)

∂n̂(y)
dy

]
+ γ(xi)ui, (5.29)

where Γj is the region of Γ where ϕj 6= 0, i.e. the elements which contain node

j. Notice that the expression inside the square brackets is independent of all

potentials: it depends only on the geometry and so can be pre-calculated and

stored.

The equation (5.29) gives the value of φ at a boundary node in terms of a sum of

geometric factors multiplied by the values of u at each boundary node. In other

words, this is a multiplication by a dense matrix G giving φ at all the boundary

nodes in terms of u at all boundary nodes:

φ̃ = Gũ, (5.30)
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where

Gij = −
∫

Γj

ϕj(y)
∂G(xi,y)

∂n̂(y)
dy + γ(xi)δij. (5.31)

We now convert the normal derivative of the Green’s function into a more tangible

form. In 3D

∂G(x,y)

∂n̂
=
−1

4π

∂

∂n̂

1

|x − y|
=
−1

4π
n̂ · ∇

( 1

|x − y|

)
. (5.32)

Converting to spherical coordinates with the origin at x (r = |y − x|, r̂ = y−x
r

)

we have4

∂G(r)

∂n̂
=
−1

4π
n̂ · r̂ ∂

∂r

(1

r

)
=

+1

4π

n̂ · r̂
r2

, (5.33)

∂G(x,y)

∂n̂
=

n̂ · (y − x)

4π |y − x|3
. (5.34)

Similarly, in 2D we find

∂G(x,y)

∂n̂
=
−1

2π

∂

∂n̂
(ln |x − y|) =

n̂ · (y − x)

2π |y − x|2
. (5.35)

So the boundary element matrix in d = 2, 3 dimensions has the entries

Gij =
−1

2(d−1)π
Iij + γ(xi)δji, (5.36)

where

Iij =

∫
Γj

ϕj(y)
n̂(y) · (y − xi)

|y − xi|d
dy. (5.37)

5.3 Evaluation of the discrete boundary oper-

ator

In this section we discuss methods of calculating the entries of the discrete bound-

ary element matrix, Gij. Firstly we discuss the apparent singularity in the integ-

ral (5.37), then we give two methods for evaluating these integrals: an analytical

method and a numerical method.

4In spherical polar coordinates ∇ = r̂ ∂
∂r + φ̂ 1

r
∂
∂φ + θ̂ 1

r sin θ
∂
∂θ . Obviously 1

r has no angular
dependence so only the derivative with respect to r is non-zero.
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5.3.1 Apparent singularity of the main integral

One factor that should be considered before attempting to evaluate the integral

Iij from (5.37) is the apparent singularity when integrating over an element con-

taining the source point xi. However it is easy to show that there is no singularity

when the element is flat. In this case, if xj is within the element being integrated

over, then we have a factor of

n̂(y) · (y − xi) ≡ 0, (5.38)

in the integrand. For all points y in the element this term is zero by the definition

of n̂, so the integral is zero and the singularity is avoided.

For the case when xi is outside the element this is not necessarily true. In

particular: elements near sharp corners of a domain may be very close to a node

that is not in the plane of the element (i.e. such that n̂(y) · (y − xi) 6= 0),

resulting in a near -singular integral. This means that care must be taken in

order to evaluate the integrals accurately.

5.3.2 Analytical solutions

For linear test/solution basis functions and triangular elements an exact analytical

solution for the integral (5.37) was given by Lindholm [68, App. B].5 Combining

equations (2) and (3) from [68] with (5.34) and using our notation for nodal

positions, we see that Lindholm’s L operator is

L[U ] =
−1

4π

∫
Γ

U(y)
n̂(y) · (y − x)

|x− y|2
dy,

= −G[U ] + γ(x)U(x).

(5.39)

Thus L[ϕj] integrated over the patch of elements Γj with x = xi corresponds

exactly to 1
4π
Iij, as required in the calculation of Gi,j.

6

We now give the analytical solution from Lindholm in the notation used here.

Let AM be the area of the triangle, zi,M denote the position of the (i mod 3)-th

5Note: Lindholm’s definition of the 3D Green’s function is a factor of −1 different to (5.15)
and (5.16).

6The minus sign from the different definitions of the Green’s function has cancelled with the
minus sign from the fact that we are interested in calculating −1 times the operator.
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node of triangle M, and n̂M be the outer unit normal to the plane of the triangle

(“outer” with respect to the domain Ω). We write the vector from triangle node

k to x as

rk,M(x) = zk,M − x, (5.40)

the vector along an edge of the triangle and

sk,M = zk+1,M − zk,M, (5.41)

and ŝ for the equivalent unit vector. Then using the third (un-numbered) equation

in appendix B of [68], converting to our notation and substituting in values from

the rest of the paper where practical we have

1

4π
Iij =

∑
M∈Γj

|sk+1,M|
8πAM

[(
(n̂M × ŝk+1,M) · rk+1,M(xi)

)
ΩM(xi)

− n̂M · r1,M(xi)
3∑
l=1

(ŝk+1,M · ŝl,M)Pl,M(xi)

]
,

(5.42)

where, as before, Γj is the set of triangles that are in contact with the node j.

The quantity Pl,M(x) is given by

Pl,M(x) = ln

(
|rl,M(x)|+ |rl+1,M(x)|+ |sl,M|
|rl,M(x)|+ |rl+1,M(x)| − |sl,M|

)
. (5.43)

Finally we need ΩM, the solid angle subtended by the triangle at xi:

ΩM(x) = sign(n̂M·r1)2 arccos

[
|r1| |r2| |r3|+ |r1| r2 · r3 + |r2| r1 · r2√

2(|r2| |r3|+ r2 · r3)(|r3| |r1|+ r3 · r1)(|r1| |r2|+ r1 · r2)

]
,

(5.44)

where we have dropped the x argument and M index from ri,M(x) for brevity.

The use of r1(x) in (5.42) and (5.44) is not a typo: the results are independent

of which node in the triangle is used.

A useful open source implementation of this calculation in C is included in magpar

[83] and redistributed in Nmag [32].
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5.3.3 Adaptive numerical quadrature

The analytical formula given in the previous section is highly accurate but is

only applicable to 2D triangular boundary elements, i.e. 3D tetrahedral bulk

elements. However, it is very useful when testing code to be able to run 2D

simulations since the run time can be orders of magnitude smaller. It is also

sometimes useful to be able to use structured quadrilateral meshes for simple

geometries and for testing purposes. For such meshes an adaptive numerical

quadrature able to accurately integrate Iij is appropriate. It is likely that similar

analytical results could be derived for each of these cases, but it is simpler and

more general to use a numerical approach instead.

As discussed in Section 5.3.1 the integral Iij is non-singular, so no special tech-

niques are needed for its integration (other than what is needed to attain good

accuracy). As such an adaptive quadrature method can effectively calculate the

integrals. We use a simple adaptive quadrature algorithm as follows:

1 Calculate the integral Iij with a quadrature of order n1 to obtain I1;

2 Calculate the integral Iij with a quadrature of order n2 to obtain I2;

3 while
∣∣∣ I1−I2I2

∣∣∣ ≥ εq do

4 Set I1 = I2, n2 = 2n2;

5 Calculate the integral Iij with a quadrature of order n2 to obtain I2;

6 end

The choice to double the quadrature order after each non-convergence in line 3

means that little time is wasted attempting to evaluate near-singular integrals

with low order quadratures.

It is possible to optimise this process by using a quadrature scheme which reuses

the knots (i.e. evaluation points) from the lower order calculations in the more

accurate calculations, such as the Clenshaw-Curtis quadrature [98]. However, for

simplicity, we have not implemented the reuse of knot values.

The implementation of this algorithm in oomph-lib uses standard Gaussian quad-

rature (as mentioned in Section 4.1.4) with εq = 10−8, starting orders of n1 = 2,

n2 = 4, and a maximum order of 256. These parameters gave good accuracy7

and sufficiently fast computation time such that the time spent computing these

7Errors of below εq when compared with the analytical formula for triangular elements.
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integrals is not a major component of the overall computation time. As such we

did not experiment with varying these values.

5.4 Conclusions

In this chapter we have derived a hybrid FEM/BEM approach to calculating the

magnetostatic field generated by a magnetic body. This approach is beneficial in

that it enforces the boundary condition on the potential at infinity without re-

quiring calculations on an infinite domain. However, it involves a dense matrix of

size proportional to the number of boundary nodes, and the process of evaluating

the required integrals is more complex that those given by a FEM discretisation.

We have also described general methods for the evaluation of the resulting in-

tegrals using numerical quadrature and a less general method for a common case

using an analytical formula. There is a large scope for improving the efficiency of

the adaptive numerical quadrature described here. However, such optimisations

were not investigated because the evaluation of the boundary matrix is not a per-

formance critical component of the coupled LLG-magnetostatics problem since it

only needs to be evaluated once for a given mesh.

While we have followed the convention in computational micromagnetics of using

a collocation approach to discretise the BEM operator, a Galerkin approach may

be more appropriate. In particular, we note that the authors of HLib use a

Galerkin approach [14].



Chapter 6

Efficient solution of the linear

systems

When we apply implicit time integration schemes, a FEM spatial discretisation

and the Newton-Raphson method for linearisation (as discussed in Section 3.4

and Chapter 4) to the LLG equation we are left with the problem of solving a

sequence of large sparse linear systems to obtain the approximate solution. With

the addition of FEM/BEM for calculation of magnetostatic fields (as discussed

in Chapter 5), the linear systems to be solved become larger and more complex.

In this this chapter we discuss solution strategies for these systems.

In Section 6.1 we first discuss the solution of the systems required in the calcu-

lation of the magnetostatic field assuming the magnetisation is known. We then

discuss methods of solving the linear systems for the LLG equation assuming the

magnetostatic field is known. This is non-trivial because of the inclusion of the

dense BEM matrix.

In Section 6.2 we describe two efficient methods for the solution of the LLG

equation with magnetostatics: a “monolithic” (i.e. fully coupled) approach and

a semi-implicit approach. The semi-implicit approach breaks the problem into

a sequence of easily solved linear systems but at the cost of modifying the time

integration scheme. The monolithic approach uses efficient iterative methods to

solve the full linear system and preserves all properties of the time integration

scheme, such as stability and geometric integration properties. In particular the

energy conservation property of IMR requires the use of a monolithic approach

126
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(see Section 3.4.9). Except for the simplest preconditioner, (6.11), the precondi-

tioners for the monolithic approach are novel.

Finally, in Section 6.3, we present some numerical experiments demonstrating the

effectiveness of the proposed linear solvers for the systems resulting from both

the semi-implicit and monolithic approaches.

6.1 Solution of decoupled systems

In this section we consider the solution of the magnetostatic and LLG problems

in isolation (i.e. the LLG problem is solved assuming that the magnetostatic field

is a known function and vice-versa). Such methods are important building blocks

for the solution of the coupled system.

Firstly we consider the two linear systems solved in the magnetostatic field cal-

culations: these are both Poisson systems (see (5.23) and (4.62)), which are well

studied. One efficent and robust method for solving Poisson systems on un-

structured grids is to use the method of conjugate gradients (CG) with algebraic

multigrid (AMG) as a preconditioner [50].

Note that the matrices involved in the Poisson systems do not depend on φ,

u or m (i.e. the Poisson problems are linear). This means that when solving

these parts of the problem the Newton-Raphson iteration is not required (or

if used it will converge in a single iteration assuming that the linear solve is

sufficiently accurate). Also the Poisson matrices only depend on the geometry

and so can be computed once and stored for reuse throughout the duration of the

simulation (and similarly for the coarsening information required by the AMG

preconditioner).

Now we focus on the sequence of linear systems resulting from solving the LLG

equation with the Newton-Raphson method, (4.83). There do not appear to be

any solvers which are efficient, robust and scale optimally with matrix size in the

literature. We try two solvers in our implementation, unfortunately neither are

expected to be efficient for large matrix sizes and large time steps.

The first method used is a direct solve by LU decomposition. As discussed in

Section 3.6.1 this method is extremely robust but is very slow for large matrices,

particularly for problems in three spatial dimensions.
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The second method is to use a Krylov solver preconditioned by an incomplete LU

decomposition (ILU), inspired by [95]. This method is expected to be efficient

for medium sized problems and/or small time steps, especially in 2D or thin film

problems where the FEM nodes are less coupled. However the effectiveness is

strongly dependent on the diagonal dominance of the matrix. As the volume of

the elements decreases or the time step size increases the matrix becomes less

diagonally dominant and the effectiveness of the preconditioner will decrease.

Hence this method is not expected to scale optimally to fine meshes or to be very

robust with respect to varying parameters. This method is used by both Nmag

[30] and magpar.1

6.2 Solution of the coupled LLG-magnetostatics

system

We now consider the solution of the combined LLG and FEM/BEM magneto-

statics system. Unlike typical FEM computations, these linear systems are not

entirely sparse: the BEM matrix, G, (derived in Section 5.2, (5.31)) appears as

a dense block in the Jacobian. In this this section we describe two approaches to

efficiently solve the resulting non-linear system despite this issue.

In Section 6.2.2 we describe the first approach which involves replacing our impli-

cit time integration scheme with an ad-hoc semi-implicit version which handles

the magnetostatic calculation explicitly. This means that only decoupled solves

for u, φ and m are required at each time step, and the dense block, G, only

appears as a matrix-vector multiply. However it also means that we are no longer

using the time integration methods discussed in Section 3.4.2, instead we are

using some new scheme.

The second approach, described in Section 6.2.3, is to construct a linear solver

which can efficiently handle the dense block. We present a novel solver which

consists of a Krylov solver combined with a preconditioner and an efficient rep-

resentation of the BEM block. This approach has the benefit that all of the

properties of the original time integration schemes carry over to the coupled prob-

lem. In particular when using this approach the IMR retains the energy property

1See src/llg/precond.c line 271 in the magpar version 0.9 source code.
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described in Section 3.4.9, which is the most interesting of its geometrical integra-

tion properties.2 Additionally it may be useful for stochastic problems (i.e. when

thermal fields are involved, see Section 2.3.2), since in this case only a few time

integration schemes are known to converge to the correct solution. The implicit

midpoint rule is one of these schemes, but any semi-implicit modification is likely

to remove this property [25].

Before describing these approaches in more detail, we briefly discuss the im-

plementation of the monolithic coupling between the LLG and magnetostatic

problems, and the structure of the resulting Jacobian.

6.2.1 Residuals and Jacobian for the monolithically coupled

system

As mentioned in Section 5.2 the pair of potentials used in the FEM/BEM method

is similar to that of the simplified magnetostatic potential discussed in Chapter 4.

There are two differences: the first is that there is no coupling from the auxiliary

potential u to the LLG equation, and hence no corresponding block in the full

Jacobian.

The second difference is that there is an additional coupling between the boundary

values of u and the boundary values of φ. This coupling between the BEM part

(a collocation method) and the FEM part (a Galerkin method) is implemented

using the following residual vector:

sΓ(φ̃Γ, ũΓ) = GũΓ − φ̃Γ, (6.1)

where x̃Γ denotes the vector of values of x at the boundary nodes. This residual

is included as normal in the non-linear solve and simply enforces the condition

φ̃Γ = GũΓ from (5.30). Note that we cannot enforce the condition in the standard

way for Dirichlet boundary conditions (by pinning the values at the boundary

nodes to the appropriate values) because the condition is obtained as part of the

solve.

2A number of integration schemes can obtain length conservation: Cayley transform methods
[66], semi-analytical methods [100] and various types of semi-implicit midpoint rule methods
[93, 87, 74] (including the one described in Section 6.2.2).
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A natural consequence of (6.1) is that the BEM matrix is a block of the Jacobian:

∂sΓ

∂ũΓ

= G, (6.2)

where we have again used the notation that ∂a
∂b

is the Jacobian of the derivatives

of a with respect to b, as in (4.2). Also note that the diagonal Jacobian block

for the boundary values of φ is simply the negative of the identity matrix

∂sΓ

∂φ̃Γ

= −I. (6.3)

Combining the above with the Jacobian matrix as derived in Section 4.4.3, the

complete Jacobian is

J =


F P 0
Q

0

Aφ AφΓ

0 −I

0 0

0 G

Q 0 Au

, (6.4)

where AφΓ = ∂φh
∂φ̃Γ

is the Jacobian of the bulk φ values with respect to the boundary

values. The order of blocks is m, φ, u. The blocks corresponding to derivatives

of the φ residual are broken into sub-blocks for the bulk and boundary values due

to the BEM coupling. The overall Jacobian is a square matrix with number of

rows Nr = 5N , where N is the number of nodes. The LLG block, F, is of size

3N×3N , the Poisson block, Au, is of size N×N . The smaller Poisson block, Aφ,

is of size NΩ×NΩ, where NΩ is the number of bulk nodes. The identity and BEM

matrices are of size NΓ ×NΓ, where NΓ is the number of boundary nodes. If the

singularity in the pure-Neumann Poisson problem for u is handled by pinning a

single value of u (as mentioned in Section 4.2.1) then the corresponding matrices

are one row/column smaller.
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For brevity we write the Jacobian, (6.4), as

J =

F P 0

Q′ A′φ G′

Q 0 Au

 . (6.5)

It is worth noting that a slightly different Jacobian struture could be obtained by

modifying the derivation in Section 5.1.3. Instead of using φ = u+ v to eliminate

v, we could use hms = −∇(u + v) and eliminate φ. This would result in both of

the potentials having a P block, but only one of them having a Q block. It would

also reduce the diagonal dominance of G. We have not experimented with this

alternative formulation.

The linear system to be solved at each Newton step is (see Section 3.5.2)

Jδ = −r, (6.6)

where r is the vector of the current discrete Newton residuals for m, φ and u;

and we need to find the Newton update δ = [δm̃, δφ̃, δũ]T .

6.2.2 The semi-implicit (decoupled) approach

One approach, which avoids solving the complete non-linear system, is to break

the monolithic system into three coupled but simpler problems. This can be

achieved by using implicit calculations for the LLG parts as normal, but treating

the magnetostatic calculations explicitly. The resulting scheme then only requires

independent calculations of the magnetostatic field and the magnetisation as de-

scribed in Section 6.1. Since the magnetostatic fields are typically much weaker

than the exchange field we hope that the stability of the scheme will not be greatly

reduced.

An outline of the algorithm to compute the step from time tn to tn+1 is as follows:
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1 Extrapolate the magnetostatic potential (using φn, φn−1) to time tn+1, call

the result φ̂n+1;

2 Use φ̂n+1 to calculate mn+1 using an implicit time integration scheme (a

non-linear solve of the F block);

3 Calculate un+1 using mn+1 (a Poisson solve);

4 Use boundary values of un+1 to calculate the boundary values of φn+1 (a

matrix-vector multiply with the BEM matrix);

5 Calculate φn+1 everywhere using these Dirichlet boundary conditions and

mn+1 (a Poisson solve);

A similar method without the extrapolation step been used previously, see e.g.

[86].

Note that we use an extrapolation of the magnetostatic potential, φ, to tn+1

rather than computing it using a step of an explicit time integration scheme

because there is no time derivative in the equations for φ.

For step 1 of the algorithm we require a second order accurate extrapolation

in order to ensure that the local truncation error of the overall time integration

scheme remains second order. A simple second order extrapolation formula (based

on Lagrange interpolation [59, p. 312]) is

f(tn+1) =
tn+1 − tn
tn−1 − tn

f(tn−1) +
tn+1 − tn−1

tn − tn−1

f(tn), (6.7)

replacing differences in time with the appropriate time steps gives:

φ̂n+1 =
−∆n+1

∆n

φn−1 +
∆n+1 + ∆n

∆n

φn. (6.8)

Note that if we are using the implicit midpoint rule we need to extrapolate φ to

the midpoint rather than tn+1, hence in this case we replace ∆n+1 by ∆n+1/2 in

the above equation.

Unfortunately this method requires two initial values for the magnetostatic po-

tential values, and is not self starting. The additional value can be generated by

directly calculating the potential if the magnetisation values at two initial times

are known. Otherwise the first can be calculated from the initial condition and

the potential at a second time can be calculated by taking one step of a monolithic

method or a (much smaller) time step using a first order extrapolation formula.
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The linear and non-linear systems resulting from the application of this algorithm

are exactly those discussed in Section 6.1.

6.2.3 The monolithic approach

The alternative to the semi-implicit approach described above is to find an ef-

ficient way to solve the full system (6.4) and (6.6), this is referred to as a fully

coupled or monolithic approach. The major difficulty is that the system contains

a dense block, meaning that any operations (e.g. LU decomposition, multiplic-

ation) on J will be significantly slower than for a sparse Jacobian.3 We use a

combination of techniques to reduce this negative effect of the BEM block.

The first and most important technique is the use of a Krylov solver, this has two

benefits. Firstly, as mentioned in Section 3.6.2, a Krylov solver (with an effective

preconditioner) is typically significantly faster and more memory efficient than

a direct solver. Secondly, using a Krylov solver rather than a direct solve or a

multigrid-based solver means that all that is required of J is the computation of

matrix-vector products. This allows us to split J into separate matrices as

J =

F P 0

Q′ A′φ 0

Q 0 Au

+

0 0 0

0 0 G′

0 0 0

 ,

= JS + JD.

(6.9)

The matrix-vector product can be computed as

Jx = JSx + JDx, (6.10)

i.e. the dense and sparse parts can be stored and used completely independently.

This leads us to the second component of our method: the use of a hierarch-

ical matrix format for the BEM block [14, 37, 60]. This format uses ideas sim-

ilar to the fast multipole method to use computationally cheap (in both time

and memory) but less accurate approximations to the matrix where possible,

without compromising overall accuracy. It reduces the computational cost for a

3Dense matrix-vector multiplication takes O
(
N2
r

)
operations (since all N2

r matrix entries are

used), while LU decomposition takes O
(
N3
r

)
operations [54, p. 223].
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matrix-vector product with the dense block to O(NΓ logNΓ). Since the number

of boundary nodes NΓ is typically less than the total number of nodes in the

problem this can allow the cost of matrix-vector products of J to be optimal (i.e.

O(Nr)) depending on the geometry. It also reduces the memory requirements for

the block to O(NΓ logNΓ). This introduces a small additional error, but it has

been shown that the size of the error can be made significantly less than the FEM

approximation error by choosing appropriate parameters [60, p. 77]. The use of

such formats has recently become fairly common in the application of the hybrid

FEM/BEM method to micromagnetics problems.

The third and final component in our efficient solver is a cheap and effective

preconditioner for the linear system. Some approaches to constructing such a

preconditioner will be discussed in the following section.

Preconditioning strategies

In this section we give a number preconditioning approaches for the monolithic

system with the Jacobian (6.4). The aim is to construct a preconditioner which

gives an approximately constant number of Krylov solver iterations independently

of all problem and discretisation parameters but which is also quick to set up and

does not consume a large quantity of memory.

The first preconditioner is very simple: we use a direct solve (using LU decom-

position) of the sparse part of J, i.e.

P1 = JS =

F P

Q′ A′φ
Q Au

 . (6.11)

This preconditioner, while much more efficient than a direct solve including the

dense block, still suffers from all the usual problems associated with a direct solver

(i.e. expensive in both memory and computation time when N is large). However,

we are interested in its properties as a test of the effectiveness of dropping the G′

block from the preconditioner.

A number of other FEM/BEM based models use an approach similar to precon-

ditioner P1 [95], except that the preconditioner is applied using an inner Krylov

solver rather than an LU decomposition. This makes the computational cost
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feasible for realistic problems, but has two issues: The first is that technically an

inner Krylov solve cannot be used as a preconditioner because it does not apply

the same operation at each step of the outer solve (since they iterate to conver-

gence rather than using a fixed number of steps) [81]. This issue can be resolved

by using an outer Krylov solver known as Flexible GMRES which accounts for

this. The second issue is that a full inner Krylov solve is run at every iteration

of the outer Krylov solve, which is computationally expensive compared to more

standard preconditioning approaches (but still cheaper than a direct solve for

sufficiently large problems). However we are only interested in P1 as a test of

the effect of dropping the dense matrix on the iteration counts, hence we do not

pursue this further.

Our second and third preconditioners are more ambitious: motivated again by the

fact that the magnetostatic field is usually significantly weaker than the exchange

effective field we drop LLG-magnetostatics coupling blocks in order to make the

preconditioner block triangular. It can then be applied by inverting only the diag-

onal blocks (exactly or approximately) and using block back/forward substitution.

The two preconditioners, resulting from dropping different LLG-magnetostatics

blocks, are:

P2 =

F

Q′ A′φ
Q Au

 , P3 =

F P

A′φ
Q Au

 , (6.12)

where the blocks in P3 can be reordered to give a block triangular matrix but

we continue to write them in this order for consistency. However, inverting P2

or P3 directly would still require an expensive, in terms of both setup time and

memory, direct solve of the three diagonal blocks F, A′φ and Au. Ideally we want

to approximate these inverses by some cheap iterative process instead.

Based on the fact that AMG is known to be an optimal preconditioner for Krylov

solves of Poisson problems, we apply an AMG approximation for the A blocks.

Using this approximation we define two “semi-inexact” preconditioners (i.e. pre-

conditioners where some of the blocks are approximated using iterative methods)

P̄2 =

F

Q′ Ã′φ
Q Ãu

 , P̄3 =

F P

Ã′φ
Q Ãu

 , (6.13)
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where we use x̃ to denote that the block is approximated iteratively and

Ã′φ =

(
Ãφ AφΓ

0 −I

)
, (6.14)

i.e. only the Poisson block of A′φ is approximated by AMG, the rest can be applied

by block back/forward substitution.

As a final fully-inexact (i.e. using only cheap approximations with iterative meth-

ods) preconditioner we try approximating the F block using ILU. However we

should expect poor performance for large matrix sizes and time steps, similar to

the case of pure-LLG solves preconditioned with ILU as discussed in Section 6.1.

We define two fully-inexact preconditioners using this approximation in addition

to the AMG approximation for the Poisson blocks discussed above:

P̃2 =

 F̃

Q′ Ã′φ
Q Ãu

 , P̃3 =

F̃ P

Ã′φ
Q Ãu

 . (6.15)

6.3 Numerical experiments

We now test the performance and robustness of the linear solvers described in this

chapter. A test of the accuracy and stability of the monolithic and semi-implicit

approaches (using the solvers developed here) will be performed in Chapter 8.

6.3.1 Problem specification

In order to perform these experiments we need a representative example problem.

We do not use the µmag standard problem #4 because the hybrid FEM/BEM

method for magnetostatic calculations is particularly ill-suited for such thin film

problems (as discussed in Section 3.3.2). Hence the performance on the stand-

ard problem would be irrelevant for typical problems using this method and the

computational cost would be unnecessarily large.

Since the majority of practical FEM micromagnetics calculations are in three

dimensions our test case should also be 3D. It also must have sharp corners or

edges, in order to include any effect of near singular integrals in the FEM/BEM
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Figure 6.1: The test problem used for the linear solvers in the state at time
t = 0. The arrows represent the magnetisation direction at each node of the finite
element mesh. Colour represents the magnitude of mx. The semi-transparent
pale green grid shows the finite element mesh.

method. Based on these considerations we choose to test the solvers on an L ×
L× L cube with L = 1 exchange length.

When testing solvers it is convenient to chose the initial condition such that non-

trivial dynamics occur immediately and relevant results can be obtained with

only a single time step. As such the initial magnetisation is chosen to be

m0(x, y, z) =

sin(2πx/50) + sin(2πy/50)

cos(2πx/50) + cos(2πy/50)

1.0−my −mz

 . (6.16)

Note that a wavelength of 50 was chosen to ensure that even meshes with very

low refinement are able to resolve the initial state well. The problem geometry

and initial conditions are illustrated in Figure 6.1.

We use a range of damping and anisotropy parameters: α = 0, 0.01, 1, K1 = 0, 0.1.

We use zero applied field to avoid inducing accidental symmetries.
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6.3.2 Implementation details

Time steps of sizes ∆n = 0.01, 0.1, 0.5, 1.0 are chosen, and meshes with N =

71, 791, 5631, 42461 nodes (note that the number of rows/columns in the Jacobian

is roughly 5 times the number of nodes). We use both the nodal quadrature

discussed in Section 4.5.1 and a standard Gaussian quadrature. Since the only

effect of changing the time integration methods on the linear systems is a small

change to the constant in the time derivative terms we only run experiments using

IMR.

The solvers are run both with and without the use of a hierarchical matrix rep-

resentation for the dense G block. We use the HLib library [13] with patches from

Nmag [32] allowing a collocation BEM approach. For compatibility with this lib-

rary we use a tetrahedral mesh. We use the HCA II algorithm with parameters

based on those used by Knittel [60]: εACA = 10−5, minimum leaf matrix size

nmin = 30, admissibility criterion η = 0.25, polynomial interpolation order p = 4,

and numerical quadrature order q = 3. We also use adaptive recompression with

ε = 10−3.

The CG and GMRES solvers used are oomph-lib’s built-in implementations with

relative convergence tolerances of 10−8. GMRES with no restarts and left precon-

ditioning is used for to ensure reliable convergence and reliable residual norms.

LU decomposition is implemented using the SuperLU package [67]. The AMG

implementation used as a preconditioner for Poisson matrices/blocks is Hypre’s

BoomerAMG [53]. One V(1,1) cycle with Gauss-Seidel smoothing, CLJP coarsen-

ing and a connection strength threshold of 0.7 is used. The ILU preconditioner

used for LLG matrices/blocks is Hypre’s Euclid with one level of fill in and no

drop tolerance (ILU without fill-in was also tried but was extremely ineffective).

All experiments are run on a single core (i.e. no parallelism is used) of a desktop

computer with an Intel Core i7-3820 processor running at 3.6GHz and 16GB of

RAM.

6.3.3 Results

Before presenting the results we note that, unless otherwise specified, all figures in

this section show data points for all values of ∆n, N , α and K1; both the nodal and

Gaussian quadrature schemes; and both the dense and hierarchical BEM block
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Figure 6.2: Mean (over a single Newton solve) of the GMRES iterations to con-
verge against problem size for the decoupled LLG preconditioned by ILU(1). The
legend indicates the time step size. Data points for all values of α and K1; both
types of quadrature; and both formats of the BEM block are shown but are not
distinguished.

formats. However, where there appear to be no interesting differences caused by a

parameter we do not distinguish between data points with different values of that

parameter (i.e. we use the same symbol and colour). Also note that occasionally

data points overlap, giving the appearance of fewer points.

Figure 6.2 shows the mean (over the linear solves required within a single New-

ton solve) number of GMRES iterations required to solve the LLG-only system,

(4.83), using ILU(1) preconditioning (i.e. with magnetostatics handled by the

semi-implicit approach). As is expected for a general-purpose preconditioner it

is effective for small matrix sizes, but becomes less effective for large problems

and as the time step size increases. The parameters α and K1, along with the

BEM block format and quadrature type do not appear to have a major impact

on the effectiveness of the ILU(1) preconditioner in this example. The mean pre-

conditioner setup times this preconditioner are shown in Figure 6.3. As with the

iteration counts, the setup times become significantly larger as N grows.

Next we consider the monolithic system (6.4) solved using preconditioner P1,
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Figure 6.3: Mean (over a single Newton solve) of the time in seconds to set up
an ILU(1) preconditioner against problem size for the decoupled LLG block. The
legend indicates the time step size. Data points for all values of α and K1; both
types of quadrature; and both formats of the BEM block are shown but are not
distinguished.

recall that this uses a direct solve of the sparse part of the Jacobian. The iteration

counts are shown in Figure 6.4. Note that they are roughly independent of the

number of nodes and vary only slightly with time step and the various other

parameters. However the preconditioner setup times, shown in Figure 6.5, rapidly

increase with increasing matrix size as would be expected from a direct solve.

Also, due to the direct solve, the memory usage of this preconditioner is large.

Note that some data for the largest N are missing, this is because the memory

required was more than the 16GB available.

Now we consider the partially-inexact preconditioners P̄2 and P̄3, which were

designed to reduce the setup time and memory issues of P1 by inverting part of

the preconditioner approximately using iterative methods. The iteration counts

are shown in Figure 6.6, we see that for both preconditioners the number of

iterations increases only slightly as the number of nodes increases and that the

various other parameters have little impact on their effectiveness. Also note that

the iteration counts are not much larger than those of P1. The preconditioner
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Figure 6.4: Mean (over a single Newton solve) of the GMRES iterations to con-
verge against problem size for the monolithic system preconditioned by P1 (inver-
ted by LU decomposition). The legend indicates the time step size. Data points
for all values of α and K1; both types of quadrature; and both formats of the BEM
block are shown but are not distinguished. Some data points for the largest N are
missing due the LU factors requiring more than 16GB of memory.

setup times are shown in Figure 6.7. They are significantly smaller than those

in Figure 6.5 but still grow unacceptably large due to the direct solve of the F

block. Interestingly the use of nodal integration decreases the time required for

the setup of the preconditioner. This is likely due to the “mass-lumping” effect

discussed in Section 4.5.1. However it does not decrease the time sufficiently for

the preconditioner to be viable for practical usage on problems with number of

nodes N & 104. Also of note is that, unlike P1, the required LU decomposition

fits within the 16GB of available memory for all parameters.

Finally we show iteration counts for the fully-inexact preconditioners P̃2 and

P̃3 where the F block is approximated using ILU(1). We cannot expect N -

independent results here, since even the simpler case of the solution of the F

block alone with GMRES preconditioned by ILU(1) does not display such beha-

viour. The iteration counts shown in Figure 6.8, are as expected: low at first but

ineffective for large number of nodes N . In particular, for the largest number of



142 CHAPTER 6. SOLUTION OF LINEAR SYSTEMS

101 102 103 104 105

N

0

500

1000

1500

2000

2500

3000
m

ea
n 

of
 "p

re
co

nd
iti

on
er

 s
et

up
 ti

m
es

"
1.0
0.1
0.5
0.01

Figure 6.5: Mean (over a single Newton solve) of the time in seconds to set up P1

(inverted by LU decomposition) against problem size for the monolithic system.
The legend indicates the time step size. Data points for all values of α and K1;
both types of quadrature; and both formats of the BEM block are shown but are
not distinguished. Some data points for the largest N are missing due the LU
factors requiring more than 16GB of memory.

nodes GMRES did not converge within 400 iterations for any of the parameter

sets. Also of note is the much larger variation of the iteration counts with the

problem parameters even for the same problem size. However the preconditioner

setup times, as shown in Figure 6.9 are much better than when using the LU

decomposition of the F block.

6.4 Outlook

We now compare the expected performance of the monolithic and semi-implicit

approaches with the assumption that a “sufficiently good” preconditioner for the

F block can be found and discuss further improvements that could be made.

First we examine the relative cost of the assembly of the Jacobian matrices and

Newton residuals. As mentioned above the Jacobian matrices corresponding to

linear equations are only dependent on the geometry and so do not need to
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Figure 6.6: Mean (over a single Newton solve) of the GMRES iterations to con-
verge against problem size for the monolithic system using the partially-inexact
preconditioners P̄2, P̄3 with ∆n = 0.1. The legend indicates the preconditioner
and quadrature scheme used. Data points for all values of α, K1, and for both
formats of the BEM block are shown but are not distinguished.

be recomputed at each Newton step. So the Poisson Jacobians and the LLG-

Poisson coupling blocks (Q and P from (6.4)) do not need to be recomputed.

This means that for both methods only assembly of the F block is required, and

the computation time is identical.

As an aside: the mass matrix blocks on the diagonal of F (M of (4.83)) are also lin-

ear. Additionally the skew symmetric structure of (4.83) can be exploited so that

the calculation of Kx is reused for −Kx, and similarly for Ky and Kz. Applying

these additional optimisations reduces the Jacobian calculations to the assembly

of three N × N Jacobian blocks and the magnetocrystalline anisotropy block

(which will typically be either a single N ×N block or empty, see Section 4.4.2).

In practice the Newton residual assembly time is extremely small compared to

the solve and Jacobian assembly times (∼ 99% of the time in the non-linear solver

is spent in the Jacobian assembly and linear solves). So the computation time

difference due to assembling additional φ and u residual components in Newton

steps after the first can be ignored.
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Figure 6.7: Mean (over a single Newton solve) of the time in seconds to set up the
partially-inexact preconditioners P̄2, P̄3 against problem size for the monolithic
system with ∆n = 0.1. The legend indicates the preconditioner and quadrature
scheme used. Data points for all values of α, K1, and for both formats of the
BEM block are shown but are not distinguished.

We now examine the cost per Krylov iteration (or per set of Krylov iterations for

the decoupled case). The monolithic approach has more non-zeros in the Jacobian

(the P, Q, G blocks), giving approximately 4N extra matrix elements, compared

to a base of 11N , hence approximately one third as much time again is taken

for each Krylov step. Also our fully coupled method uses GMRES for all blocks

rather than GMRES for F and CG for the two Poisson blocks. Since GMRES

requires a more computationally expensive orthogonalisation process than CG

this will increase the cost of the monolithic approach as compared to the semi-

implicit approach. This increase could possibly be reduced by using BiCGStab

or a restarted GMRES method instead of GMRES. Finally it is likely that the

monolithic method will require more Krylov iterations to converge, but with a

good preconditioner for the F block this difference should be fairly small.

Based on all these factors we speculate that, with an effective preconditioner for

the LLG block, the computational time for a monolithic time step should be

within a factor of 2 of the time for a semi-implicit step.
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Figure 6.8: Mean (over a single Newton solve) of the GMRES iterations to con-
verge against problem size for the monolithic system using the inexact precon-
ditioners P̃2, P̃3 with ∆n = 0.1. The legend indicates the preconditioner and
quadrature scheme used. Data points for all values of α, K1, and for both formats
of the BEM block are shown but are not distinguished. Some data points are
missing for the largest N due to a lack of convergence.

6.5 Conclusions and future work

Monolithic (fully implicit) solvers are required for the energy property of IMR,

as well as for other properties of implicit time integration schemes including

stability and properties important in stochastic problems. We have demonstrated

that a monolithic LLG-magnetostatics solver using GMRES with an effective

preconditioner can result in a reasonable computational cost per linear solve.

The partially-inexact preconditioners P̄2 and P̄3 are able to reduce the iteration

count of GMRES extremely effectively and almost independently of the number

of nodes, but the set up cost is high for large matrices. However the fully-inexact

equivalents, P̃2 and P̃1, which use ILU(1) to approximate the LLG block are

ineffective for more than a few thousand nodes (i.e. matrices of size ∼ 10, 000).

Hence cheap, effective and mesh independent preconditioning methods for the

LLG block, F, are still needed for the monolithic block-preconditioned method

discussed here to be effective on general large problems.
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Figure 6.9: Mean (over a single Newton solve) of the time in seconds to set up

the inexact preconditioners P̃2, P̃3 against problem size for the monolithic system
with ∆n = 0.1. The legend indicates the preconditioner and quadrature scheme
used. Data points for all values of α, K1, and for both formats of the BEM block
are shown but are not distinguished. Some data points are missing for the largest
N due to a lack of convergence.

We have also demonstrated solvers for a decoupled LLG block solve, for medium

numbers of nodes it appears that ILU(1) is a good preconditioner for this case.

However, the time integration properties of the semi-implicit scheme using this

solve have yet to be seen.

For granular or bit patterned media a domain-decomposition preconditioner ex-

ploiting the low/zero exchange coupling between grains/islands could make for a

simple but effective domain decomposition preconditioner. For example, such a

preconditioner could be implemented by performing an independent direct solve

on the matrix block associated with each grain/island and using this diagonal

block solution as the preconditioner. Since the number of nodes in a single

grain/island is small and fixed this would remain effective even for very large

numbers of grains/islands.

Reordering of the degrees of freedom, scaling, drop tolerance, fill-in level in the

ILU preconditioner could be experimented with further to allow the solution of
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larger systems or alternative parameters [82, p. 287]. However, ILU precondition-

ing is unlikely to ever give N -independent or parameter-independent results, so

it may not be the best path towards more general efficient preconditioners.



Chapter 7

An adaptive implicit midpoint

rule scheme

The implicit midpoint rule (IMR) is a well known integration scheme for initial

value ordinary differential equations (ODEs) with favourable stability and accur-

acy properties (see Section 3.4 or [46, p. 204]). It also has beneficial “geomet-

ric integration” properties when applied to the time integration of the Landau-

Lifshitz-Gilbert equation (discussed in Sections 3.4.8 and 3.4.9). However it is a

non-trivial task to create an efficient adaptive time step selection algorithm for

the IMR using typical approaches.

In this chapter we describe a novel adaptive IMR algorithm based on efficient es-

timates of the local truncation error by an explicit step. We then demonstrate the

effectiveness of this algorithm on a number of ODE test problems in Section 7.3

and an ODE form of the LLG in Section 7.4. Experiments on a full PDE LLG

problem are performed in Chapter 8.

7.1 The implicit midpoint rule with fixed step

size

Let y(t) be a vector function and denote an approximation to y(t) at t = tn by

yn. Let ∆n = tn+1 − tn be the nth time step (or just “step”). Then, given a

148
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1
2

1
2

1

Table 7.1: The Butcher tableau for the implicit midpoint rule.

system of ordinary differential equations (ODEs) of the form

y′(t) = f(t,y(t)), (7.1)

the implicit midpoint rule (IMR) is

yn+1 = yn + ∆nf

(
tn+1 + tn

2
,
yn + yn+1

2

)
. (7.2)

We introduce shorthand notation for the midpoint values of t and y:

tn+ 1
2

=
tn+1 + tn

2

(
= tn +

∆n

2

)
,

yn+ 1
2

=
yn+1 + yn

2
.

(7.3)

In this notation the IMR is

yn+1 = yn + ∆nf
(
tn+ 1

2
,yn+ 1

2

)
. (7.4)

The IMR can also be written in the standard form for implicit Runge-Kutta

methods as

k1 = f

(
tn +

1

2
∆n,yn +

1

2
k1

)
,

yn+1 = yn + 1 ·∆nk1,

(7.5)

which is equivalent to the Butcher tableau [46, p. 135] shown in Table 7.1.

Note that, unlike for multistep methods, (7.4) is valid for both constant and

variable step sizes because there is no dependence on previous steps.

7.2 Adaptive implicit midpoint rule

Adaptive time step selection algorithms are typically based on approximating

the local truncation error (LTE), the error due to a single step of the integration
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scheme (see Section 3.4.3). These estimates can be used to select appropriate time

steps such that the LTE remains close to a specified value. In this section we first

discuss why the standard approaches used to estimate the LTE fail for the IMR,

and the approach that we will use. We next derive the formulae required and

discuss how a complete adaptive time step selection algorithm can be implemented

using the LTE estimates.

7.2.1 Construction of an LTE estimate

Due to the complexity of the LTE of the implicit midpoint rule (as compared

with those of TR or BDF2) there are difficulties with the Milne-device approach

described in Section 3.4.7. In particular, the LTE of IMR has a term involving

the error due to the approximation y(tn+ 1
2
) ∼ yn+ 1

2
(term II of (3.21)). In order

to perform the algebraic rearrangements to obtain the LTE using a Milne-device-

like approach we would need this term to appear in the LTE of the predictor.

However the term can only appear in the LTE expression for a time integrator

which uses the midpoint approximation for y. It turns out that the only such

second order time integrator is IMR itself. So other techniques would be needed

to approximate this error term in the context of a Milne-device-like method.

An alternative approach, commonly used in Runge-Kutta time integrators, is to

repeat the calculation using a higher order method and compare the two answers

to directly obtain an LTE estimate [47, p. 165]. However evaluations of the

derivative function (f in (7.1)) are expensive, and the calculation of a single

step of a high order Runge-Kutta method requires a number of such evaluations.

Hence such approaches usually rely on pairs of Runge-Kutta methods which share

most of their derivative evaluation points but have different orders of accuracy.

These are known as embedded Runge-Kutta methods, a widely used example is

the Dormand–Prince pair (order 4/5) used in MATLAB’s ode45 function [72].

Unfortunately there is no third order method which requires only f
(
tn+ 1

2
,yn+ 1

2

)
and a single other function evaluation.1 To get around this problem we instead

use an explicit multistep method: the explicit version of the third order backwards

difference method (eBDF3). This method requires three history values but only

1IMR’s single function evaluation is positioned such that the second order error terms cancel.
Adding one additional evaluation cannot retain the symmetry causing this cancellation and so
does not increase the order, at least two additional evaluations are needed.
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a single explicit function evaluation in order to compute a 3rd-order-accurate

approximation to y(tn+1). Since only one function evaluation is required the

computational cost is equivalent to an embedded Runge-Kutta method. With

this approach our estimate for the local truncation error is simply

Tn = yeBDF3
n+1 − yIMR

n+1 + O
(
∆4
n

)
. (7.6)

The eBDF3 method is not widely used because it does not have the basic property

essential for time integration [46, p. 365]:

lim
∆n→0

(
max
n
||yn − y(tn)||

)
= 0, (7.7)

for large n which is known variously as “stability” [46, p. 378] or “convergence”

[54, p. 6]. However, for our usage the IMR history values are used as input for

a single step of eBDF3, hence the stability is irrelevant.2 The variable time step

version of eBDF3 does not appear in the literature, so we derive the method

below in Section 7.2.2 .

Alternatively a 3rd order Adams-Bashforth scheme (AB3) could be used, but

this would require three previous derivative values instead of y values making the

initialisation of the scheme a little more complex and expensive. Additionally,

the calculation of coefficients for the variable step Adams-Bashforth schemes is

more complex [46, p. 400]. However, in contrast to eBDF3, AB3 has the basic

property (7.7) which could simplify the process of testing an implementation.

7.2.2 The variable step eBDF3 method

The explicit BDF methods are explicit time integration methods derived using the

same techniques as the widely used implicit BDF methods. The idea is to write

down a divided difference representation of an interpolating polynomial, p(t),

through yn+1 and the appropriate history values of y (the simpler backward

difference representation can be used for the derivation of fixed step methods,

hence the name). The derivative of the polynomial is then set equal to the

derivative function f(t,y) at one of the discrete time steps [46, p. 400]. Setting

p′(tn+1) = f
(
tn+1,yn+1

)
gives the widely used implicit BDF methods. If we

2This could also be thought of as an extrapolation to the value of y at tn+1 using the previous
IMR-generated values and a derivative.
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instead set p′(tn) = f(tn,yn) we obtain the explicit BDF methods [46, p. 364].

We now derive the first three eBDF methods.

For this purpose we define the Newton divided differences recursively by

y[tn+1] = yn+1,

y[tn+1, tn] =
y[tn+1]− y[tn]

tn+1 − tn
,

y[tn+1, tn, tn−1] =
y[tn+1, tn]− y[tn, tn−1]

tn+1 − tn−1

,

...

(7.8)

The k-th Lagrange interpolation polynomial [19, p. 124], [46, p. 400] can be

expressed using these as

pk(t) = yn+1 +
k∑
j=1

y[tn+1, . . . , tn+1−j]

j−1∏
i=0

(t− tn+1−i),

= yn+1 + y[tn+1, tn](t− tn+1) + y[tn+1, tn, tn−1](t− tn+1)(t− tn)

+ y[tn+1, tn, tn−1, tn−2](t− tn+1)(t− tn)(t− tn−1) + . . .

+ y[tn+1, . . . , tn+1−k](t− tn+1) · · · (t− tn−k).

(7.9)

Differentiating (7.9) with respect to t, recalling that divided differences are con-

stants and applying the chain rule to the derivative of the product term we obtain

p′k(t) = y[tn+1, tn] + y[tn+1, tn, tn−1]((t− tn) + (t− tn+1))

+ y[tn+1, tn, tn−1, tn−2]
(
(t− tn)(t− tn−1) + (t− tn+1)(t− tn−1)

+ (t− tn+1)(t− tn)
)

+ . . .

+ y[tn+1, . . . , tn+1−k]
(
(t− tn) · · · (t− tn−k)

+ . . .+ (t− tn+1) · · · (t− tn−k+1)
)
,

=
k∑
j=1

y[tn+1, . . . , tn+1−j]

j−1∑
l=0

j−1∏
i=0,i 6=l

(t− tn+1−i).

(7.10)
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Setting f(tn,yn) = p′k(tn) results in

f(tn,yn) =
k∑
j=1

y[tn+1, . . . , tn+1−j]

j−1∑
l=0

j−1∏
i=0,i 6=l

(tn − tn+1−i). (7.11)

This can be greatly simplified by noticing that the product
∏j−1

i=0,i 6=l(tn − tn+1−i)

is zero whenever it contains i = 1, i.e. whenever j ≥ 2 and l 6= 1. When j = 1

the only non-zero terms in the sum of products are for l = 0 and i = 0, so we

only need to consider the case of l = 1. This gives

f(tn,yn) =
k∑
j=1

y[tn+1, . . . , tn+1−j]

j−1∏
i=0,i 6=1

(tn − tn+1−i),

= y[tn+1, tn] +
k∑
j=2

y[tn+1, . . . , tn+1−j]

j−1∏
i=0,i 6=1

(tn − tn+1−i),

= y[tn+1, tn]−∆n

k∑
j=2

y[tn+1, . . . , tn+1−j]

j−1∏
i=2

(tn − tn+1−i).

(7.12)

For k = 1 equation (7.12) reduces to

f(tn,yn) = y[tn+1, tn] =
yn+1 − yn

∆n

,

yn+1 = yn + ∆nf(tn,yn),

(7.13)

which is the forward Euler method.

For k = 2 we have

f(tn,yn) = y[tn+1, tn]−∆ny[tn+1, tn, tn−1],

=
yn+1 − yn

∆n

− ∆n

∆n + ∆n−1

(
yn+1 − yn

∆n

−
yn − yn−1

∆n−1

)
.

(7.14)

After some algebra this gives

yn+1 = yn +

(
1 +

∆n

∆n−1

)
∆nf(tn,yn)− ∆2

n

∆2
n−1

(yn − yn−1), (7.15)

which is the variable step equivalent of the leapfrog method (explicit midpoint

rule) [44, p. 715].
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For larger values of k the complexity of the algebra grows enormously. Unfortu-

nately we are interested in the case k = 3 which is:

f(tn,yn) = y[tn+1, tn]−∆ny[tn+1, tn, tn−1]−∆ny[tn+1, tn, tn−1, tn−2],

=
yn+1 − yn

∆n

− ∆n

∆n + ∆n−1

(
yn+1 − yn

∆n

−
yn − yn−1

∆n−1

)
− ∆n

∆n + ∆n−1 + ∆n−2

[ yn+1−yn
∆n

− yn−yn−1

∆n−1

∆n + ∆n−1

−
yn−yn−1

∆n−1
− yn−1−yn−2

∆n−2

∆n−1 + ∆n−2

]
.

(7.16)

Solving (7.16) for yn+1 by hand would be complex and extremely error prone.

Instead (7.16) was solved using the SymPy symbolic manipulation library [96], the

script used is available online [88]. The resulting time integration scheme is:

yn+1 = bf(tn,yn) + cnyn + cn−1yn−1 + cn−2yn−2,

b =
∆n+1

∆n(∆n + ∆n−1)
(∆n+1 + ∆n)(∆n+1 + ∆n + ∆n−1),

cn = −(2∆n+1∆n + ∆n+1∆n−1 −∆2
n −∆n∆n−1)

∆2
n(∆n + ∆n−1)2

(∆n+1 + ∆n)(∆n+1 + ∆n + ∆n−1),

cn−1 =
∆2
n+1

∆2
n∆n−1

(∆n+1 + ∆n + ∆n−1),

cn−2 = −
∆2
n+1(∆n+1 + ∆n)

∆n−1(∆n + ∆n−1)2
.

(7.17)

For constant time steps the result reduces to: b = 3∆n, cn = −3/2, cn−1 = 3 and

cn−2 = −1/2 which matches the scheme given in [46, p. 364].

It should be noted that the calculation of the coefficients in (7.17) requires ∼ 100

operations (assuming no compiler optimisation of the multiplications). Hence it

could be disproportionately expensive if the number of y-values is small. How-

ever when used in finite-element or finite-difference calculations yn is a vector of

10,000+ values. So the cost of (7.17) is trivial by comparison with, for example,

a single calculation of f(tn,yn).
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7.2.3 Computing the next step size

We use a standard method [44, p. 268] for computing the next step size from the

ratio of the LTE estimate and a target local truncation error ε∆

∆n+1 =

(
ε∆
Tn

) 1
order+1

∆n. (7.18)

For the implicit midpoint rule this is

∆n+1 =

(
ε∆∣∣yeBDF3

n+1 − yIMR
n+1

∣∣
) 1

3

∆n. (7.19)

We also impose some additional constraints to handle extreme cases. If the ratio
∆n+1

∆n
is too small, i.e. if the step just taken was much too large to attain the

desired accuracy, then we reduce the step size by a factor of 2 and repeat the

n-th step. We limit ∆n+1

∆n
to 4 to help improve stability.

Note that some alternative strategies try to minimise the number of modifications

to the time step size [54, Chap. 6], in particular this strategy is used in the

CVODE library [51, Sec. 2.1]. The motivation for this is the use of a modified

Newton-Raphson method where the Jacobian is not recalculated at each Newton

step. In the case of ODE solvers this is extremely beneficial, because the Jacobian

is usually dense and direct methods are used to solve it – by keeping the Jacobian

constant the number of solves and Jacobian assemblies are greatly reduced. The

downside is a reduction in the convergence speed of the Newton method. Keeping

the step size constant for as long as possible is required here because modifications

to the time step cause modifications to the Jacobian. However for PDE solvers,

and in particular for PDE solvers using iterative methods to solve the linear

systems there is little-to-no benefit in using this technique: the reduction in

convergence speed is more detrimental than the gain of not assembling and solving

the additional sparse linear systems [54, p. 128].

7.2.4 The complete algorithm

Assuming that we have values for yn, yn−1, yn−2 (these can be obtained e.g. by

doing a few steps of fixed step IMR) then an outline of the final adaptive IMR
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algorithm is as follows:

1 Set initial conditions and time;

2 while t ≤ tmax do

3 Set t := t+ ∆n;

4 Calculate yeBDF3
n+1 from yn, yn−1, yn−2 using eBDF3, (7.17);

5 Calculate yn+1 from yn using IMR, (7.2), along with some

linear/non-linear solver as appropriate;

6 Calculate ∆n+1 from yeBDF3
n+1 , yn+1 and ∆n using (7.19);

7 end

Note that we have excluded the modifications for extremely high and low LTE

estimates from this description for clarity. Steps 4 and 5 of the algorithm are

interchangeable, but in some cases the value yeBDF3
n+1 may be useful as an initial

guess for the calculation of yn+1.

7.2.5 Application to Implicit ODEs

We sometimes wish to solve an ODE where y′(t) is only given implicitly as

f(t,y(t),y′(t)) = 0, (7.20)

for example in the Gilbert form of the Landau-Lifshitz-Gilbert equation.3

However the eBDF3 predictor used in the adaptive scheme requires a derivative

evaluation, which for derivatives which can only be defined implicitly requires

a non-linear solve. This is expensive, so for such cases the adaptive method

described here is not efficient. Note that the LLG can be defined explicitly as

well as implicitly, so this limitation does not apply to micromagnetics problems

(we simply use the Landau-Lifshitz form for the required derivative evaluations).

7.3 Numerical experiments with simple ODEs

In this section we show the results of some experiments with the proposed adapt-

ive IMR algorithm applied to some simple ODE examples. These experiments will

3This use of “implicit” is unrelated to the notion of implicitness in the time integration scheme.
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allow us to check that the adaptive algorithm selects the correct time steps, and

that the errors are commensurate with similar schemes. Numerical experiments

with the LLG equation are detailed in Section 7.4.

7.3.1 Implementation details

We compare the adaptive IMR developed above with two commonly used adaptive

implicit time integrators:

• The adaptive trapezoid rule (TR) with an error estimate constructed using

Milne’s device and the second order Adams-Bashforth method (AB2) [44,

p. 707].

• Adaptive BDF2, with the error estimate constructed using Milne’s device

and the variable-step leapfrog method (i.e. explicit BDF2) [44, p. 715].4

All three methods are implemented within the oomph-lib framework. To increase

relevance to the general non-linear PDE case (i.e. the LLG equation) we use

exactly the same methods for the solution of the ODEs as used for semi-discretised

PDEs. So we use the Newton-Raphson method with the Jacobian inverted by a

linear solver. One effect of this is that the baseline numerical error as seen by the

time integration scheme is the tolerance of the Newton-Raphson method rather

than the machine accuracy.

Unless otherwise specified all examples in this section use an absolute Newton

tolerance of εN = 10−8, an initial time step of ∆0 = 10−5, and an adaptive

integrator tolerance of ε∆ = 10−4. Any initial conditions required are calculated

from the exact solutions.

The BDF2 algorithm used here is extremely similar to the method used by the

CVODE library for stiff problems when the order is set to 2 [51]5. The key

difference is in the step selection: CVODE keeps the step size fixed where possible

as described in Section 7.2.3.

4This method is the default adaptive time integration scheme of oomph-lib and has been
thoroughly tested over the past ∼ 10 years.

5By default CVODE allows the order of the method to vary. However previous research has
shown that for micromagnetic problems it is beneficial to fix the order to 2 [95].
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7.3.2 A polynomial example

The first example is an ODE

f(t, y) = 2t,

y(0) = 0.5,
(7.21)

with the exact solution

y(t) = t2 + 0.5. (7.22)

This problem should be integrated exactly by all of the methods since the local

truncation error of all the methods is Tn ∝ y′′′(t) and for this problem y′′′(t) ≡ 0.

The adaptivity algorithm should detect this and increase the time step at the

maximum allowed rate.

The results of this experiment are shown in Figure 7.1. As expected, all three

methods keep the error extremely small (at a level commensurate with the Newton

tolerance, εN) even for extremely large time steps. The step size increases rapidly

for all methods, as expected. The computed solution does not look much like a

polynomial because the distance between output points is so large (due to the

large time steps).

7.3.3 A damped oscillatory example

The next test features a damped oscillatory solution, the ODE is

f(t, y) = −βe−βt sin(ωt) + ωe−βt cos(ωt),

y(0) = 0.
(7.23)

with the solution

y(t) = e−βt sin(ωt). (7.24)

The adaptive algorithm should produce time steps that oscillate in time with the

truncation error, while at the same time gradually increase as the term e−βt goes

to zero.

The ODE was solved with parameters ω = 2 and β = 0.5, the results are shown

in Figure 7.2. All three methods have similar errors and time step sizes. The

IMR method chooses slightly smaller steps than TR (which explains the slightly

lower error magnitudes). BDF2 has the worst errors as expected because the
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Figure 7.1: Absolute error, time step size and computed solutions for the example
ODE with exact solution y(t) = t2 + 0.5.

coefficient of the main LTE term is the largest (see Section 3.4.3).

Note that the plot shows the global error, whereas local truncation error estimates

are used for step size selection calculations. Hence the fact that the global error

increases above the tolerance, ε∆ , is not surprising.

Interestingly, there is a slight lag on the time step response of the IMR method

as time steps become larger. This could be due to the fact that IMR uses data

from three previous steps in its LTE estimate, whereas the others only use two

previous steps.

In Figure 7.3 we show plots of the decrease in global error norm as the tolerance

is decreased. The consistent decrease in the error norms indicates that all of the

adaptive methods are able to control the error in the expected manner.
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Figure 7.2: Absolute error, time step size and computed solutions for the oscil-
latory, damped example ODE with exact solution y(t) = e−βt sin(ωt).

Finally in Figure 7.4 oomph-lib’s implementation of the adaptive BDF2 al-

gorithm with VODE’s implementation6. As noted in Section 7.2.3 VODE prefers

to keep time steps constant where possible which results in irregular discontinuous

changes in the step size. Despite this difference it can be seen that the amplitude

and period of the oscillations in the selected time step sizes is identical, and the

overall trend to increasing step size is very similar. oomph-lib’s implementa-

tion gives slightly lower global errors, probably because of the selection of more

appropriate time step sizes.

6VODE is an older implementation of CVODE in Fortran rather than C. We use VODE rather
than CVODE because it is easily callable from scipy [57]. The newer CVODE has support
for iterative linear solvers and parallelism, but uses the same time integration algorithms [51,
p. 1].
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Figure 7.3: Behaviour of the global error norm with varying tolerance for the
oscillatory, damped example ODE with exact solution y(t) = e−βt sin(ωt).

7.3.4 A stiff example

We consider the stiff example ODE used in the definition of A-stability:

f(t,y) = −λy,

y(0) = 1,
(7.25)

with the exact solution

y(t) = e−λt. (7.26)

This example will test that the single step of the eBDF method provides reliable

LTE estimates even in cases where the problem is stiff. The time steps should

start small but rapidly increase as the exponential decays to zero.

The results of the applying the three methods to problem (7.25) with λ = 100

and y0 = 1 are shown in Figure 7.5. The behaviour of the IMR and BDF2 time

integrators is essentially the same, indicating that our adaptivity algorithm is

effective for stiff problems. The time steps selected by the TR algorithm do not

grow as fast as those selected for the other schemes at large t, this is probably

due to the build-up of round-off error as noted in e.g. [45].
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Figure 7.4: Comparison of the oomph-lib and VODE implementations of ad-
aptive BDF2 for the oscillatory, damped example ODE with exact solution
y(t) = e−βt sin(ωt). Absolute error, time step size and computed solutions against
time are shown.

7.3.5 Order reduction example

The order reduction effect, discussed in Section 3.4.6, should be automatically

detected and adjusted for by a good adaptive time step selection algorithm. So

as a final example we study (3.30), the test ODE for order reduction:

f(t, y) = −λ(y − g(t)) + g′(t),

y0 = g(0),
(7.27)

with exact solution

y(t) = g(t). (7.28)

For these experiments we chose an oscillatory function, g(t) = sin(t) and λ = 100.

Using (3.34), the dominant term of the LTE of IMR for the case when ∆n & 1/λ
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Figure 7.5: Absolute error, step size and computed solutions for the stiff example
ODE.
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Figure 7.6: Absolute error, step size and computed solutions for the stiff order
reduction example ODE given in (3.30).
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Figure 7.7: Behaviour of the global error norm with varying tolerance vs mean
step size for the order reduction example.

is

T IMR
n =

∆2
n

4
sin(tn+ 1

2
), (7.29)

for smaller ∆n the ∆3
n cos(t) term will gradually become more important. Note

that for TR and BDF2 Tn ∝ ∆3
n cos(t), while for BDF1 Tn ∝ ∆2

n sin(t). Hence we

expect to see the adaptive IMR perform similarly to BDF1, and to select much

smaller time steps than TR and BDF2 in order to control the larger errors. To

test this we also run the experiment with an adaptive BDF1 (backwards Euler)

method using Milne’s device (with forward Euler) for adaptivity [44, p. 270].

The results are shown in Figure 7.6. As expected the implicit midpoint rule selects

time step sizes very similar to the first order BDF1 method due to order reduction.

This allows it to retain similar accuracies to the TR and BDF2 methods at the

cost of requiring many more time steps.
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The convergence of the solution as the adaptive integrator tolerance, ε∆ , is re-

duced with fixed λ = 100 is shown in Figure 7.7. Note that IMR still displays

second order convergence (albeit with much larger errors than TR or BDF2).

This is because we are not increasing λ as we decrease ε∆ , so we are measuring

the normal convergence rather than B-convergence.

7.4 Numerical experiments with an ODE form

of the LLG

In this section we present numerical experiments in which we apply the adaptive

implicit midpoint rule algorithm to an ODE LLG problem. As in Section 7.3

we compare the performance of the adaptive IMR algorithm developed in this

chapter with the adaptive TR and BDF2 algorithms (both with and without re-

normalisation of the magnetisation after each step). Experiments with PDE LLG

problems are postponed until Chapter 8.

7.4.1 Problem definition

To avoid introducing a spatial discretisation we choose an example micromagnetic

problem that can be modelled by an ODE: the reversal of a “small” spherical

particle under spatially-uniform applied field. With this geometry and with uni-

form initial magnetisation the magnetostatic field can be analytically shown to

be hms = −m/3 throughout the domain [1, p. 112]. This means that the magnet-

isation remains uniform for spheres small enough that the increase in exchange

energy due to any non-uniformity is larger than the corresponding decrease in

magnetostatic energy.

In this case the Landau-Lifshitz form of the Landau-Lifshitz-Gilbert equation

(2.35) reduces to

(1 + α2)
∂m

∂t
= −m× h− αm× [m× h],

h = hap +K1(m · ê)ê.
(7.30)

To simplify the problem even further we choose K1 = 0 and hap(t) = [0, 0,−H].

In this case an exact solution is available for the time taken for m to reach a
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given angle to the z-axis, and for the amount of precession that will take place in

that time, more details are given in Appendix A.1 or [70].7 The exact solution is

best expressed in spherical polar notation:

θ = cos−1(mz/1),

φ = tan−1(my/mx),
(7.31)

where θ is the angle between m and the +z-direction. The time for a reversal, τ ,

from the initial value θ0 to θ is given by

τ(θ) =
α2 + 1

Hα
ln

(
tan(θ/2)

tan(θ0/2)

)
. (7.32)

This allows us to calculate a (global temporal) error in the switching time:

Eτn = |tn − τ(θn)| . (7.33)

Alternatively, (7.32) can be inverted to give θ as a function of time:

θ(t) = 2 tan−1

[
tan(θ0/2) exp

(
tHα

α2 + 1

)]
. (7.34)

The azimuthal angle at a given θ is [70]

ϕ(θ) = φ0 −
1

α
ln

(
tan(θ/2)

tan(θ0/2)

)
. (7.35)

After substituting (7.34) into (7.35) and cancelling terms we obtain

ϕ(t) = φ0 −
tH

α2 + 1
. (7.36)

Hence we can also calculate a (global temporal) error in the magnetisation at

time tn

Emn = |mn −m(tn)| , (7.37)

where m(tn) is the Cartesian representation of (7.34), (7.36).

7Actually the solution for the switching time can be easily extended to cases with K1 6= 0 with
ê = ẑ and/or to any z-aligned ellipsoid of rotation. However it is harder to invert the solution
to obtain θ(t) in these cases.
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The appropriate choice of error norm Eτ or Em depends on the aim of the calcu-

lation. We may simply want to find the switching time of the system, in this case

the time error norm, Eτ , is appropriate (and using time steps such that the pre-

cessional behaviour is fully resolved may be excessively expensive). In other cases

an accurate representation of the full behaviour of the system may be needed and

Em is appropriate.

The only energy term able to vary for this problem is the Zeeman energy (the

energy due to the applied field), so the total energy is simply given by

E = −m · hap = Hmz. (7.38)

For the main experiment we choose parameters H = 1.1 (sufficient to switch the

magnetisation) and α = 0.01 (a physically relevant value). We set the initial mag-

netisation to be just off the z-axis in order to avoid the singularity in reversal time

when θ0 = 0 (see (7.32)), more precisely we set m0 = (0.01, 0.0, 1.0)/
√

1.0001.

The dynamics are simulated for 1000 time units for all experiments, which is

sufficient time for the magnetisation to fully switch. This experiment allows us

to check the |m| conservation properties of the adaptive IMR, to compare the

accuracy of the solution between different time integrators, and to check again

the robustness of the time step selection algorithm.

We also run the same experiment with α = 0. This allows us to check the energy

conservation properties of adaptive IMR and to observe the what effect the re-

normalisation of the magnetisation has on the energy. Note that with α = 0

(7.30) becomes simply ∂m
∂t

= −m × hap, which is linear in m and t, hence TR

and IMR are identical for this example.

7.4.2 Implementation details

The implementation of the three time integration algorithms without the re-

normalisation of m is exactly as discussed in Section 7.3.1. We also test the

performance of the TR and BDF2 methods with an added re-normalisation step

to enforce constant |m|.

In Appendix D we compare re-normalisation after every step with two other re-

normalisation methods (the self-correcting LLG and re-normalisation only after
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the error in the magnetisation length reaches a specified tolerance). We find that

there is no reason to prefer these alternative methods. Hence for the rest of this

thesis we use the re-normalisation after every step method when re-normalisation

is required. It is carried out by simply replacing mn+1 by mn+1/ |mn+1| (note

that this is done after the selection of the next time step to avoid complicating

the step selection process). In the experiments we compare the performance with

and without re-normalisation where appropriate.

In the experiments below the Landau-Lifshitz form (2.39) of the LLG is used for

ease of implementation. Linearisation is carried out using the Newton-Raphson

method. Using the skew operator notation from Section 4.4.2 the Newton-

Raphson residual for the Landau-Lifshitz form of the LLG is is

r = (1 + α2)
∂m

∂t
+ Λ [m] · h + αΛ [m] Λ [m] · h. (7.39)

The corresponding Jacobian can be easily derived using the methods discussed

in Section 4.4.2 (note that here h 6= h(m)) and is given by

J =
∂r

∂m
= (1 + α2)JtsI3 −Λ [h]− αΛ [m× h]− αΛ [m] Λ [h] . (7.40)

The 3 × 3 Jacobian is calculated analytically and inverted using a direct solve.

Unless otherwise specified the Newton tolerance is εN = 10−12 (to obtain accurate

geometric integration properties) and the adaptive integrator tolerance is ε∆ =

10−4. The initial time step is ∆init = 10−3 which is sufficiently small to allow the

adaptive algorithm to naturally increase ∆n to an appropriate value.

7.4.3 Numerical results

The behaviour of the magnetisation and the time step selection using the adaptive

IMR algorithm developed in this chapter is shown in Figure 7.8. The solutions

given by adaptive BDF2 and TR (with |m| re-normalised after each time step)

are shown in Figures 7.9 and 7.10 respectively. The overall behaviour of the IMR

time step selection algorithm is seen to be working as expected: large steps are

chosen at the start when very little switching occurs, the step size decreases as

switching occurs and finally grows again as the switching finishes.

The small periodic peaks in the time step size are due to the precession: in
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Figure 7.8: Plot of m and ∆n over time for the relaxing nano-sphere problem
solved by adaptive IMR.

Cartesian form (but not in the spherical polar coordinate form (7.36)) the pre-

cessional part of the solution is written as a sin/cosine term. This causes periodic

oscillations in the LTE.

Note, from Figure 7.9, that the switching time obtained by BDF2 with the same

error tolerances is very different to that given by IMR or TR. This is due to

BDF2’s spurious numerical damping (see Section 3.4.5), which initially moves

the solution towards the unstable fixed point at m = [1, 0, 0]. The TR solution

is qualitatively good. The time steps selected by the three algorithms are sim-

ilar, TR selects slightly larger steps as would be expected due to its lower local

truncation error (see Section 3.4.3).

The behaviour of the magnetisation length over time is shown in Figure 7.11,

where we write

E|m|(tn) = ||mj,n| − 1| . (7.41)

The maximum error when IMR is used is E|m| ≈ 10−12, which is consistent with

the Newton tolerance. In contrast the error in the magnetisation length with the

TR and BDF2 schemes reaches ∼ 10−2.
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Figure 7.9: Plot of m and ∆n over time for the relaxing nano-sphere problem
solved by adaptive BDF2.
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Figure 7.10: Plot of m and ∆n over time for the relaxing nano-sphere problem
solved by adaptive TR.
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Figure 7.11: Plot of magnetisation length errors, E|m| = ||m| − 1|, over time for
the relaxing nano-sphere problem solved with each of the three adaptive integrators
(without re-normalisation of m).

As mentioned in Section 4.5.2 we would expect to see some effect on the conser-

vation properties when the accuracy of the linearisation method is varied. In our

implementation the Newton-Raphson method is used for linearisation, so the rel-

evant measure of accuracy is the Newton tolerance, εN. The obvious experiment

to carry out would be to vary the Newton tolerance and examine how the error

in |m| is affected. However the Newton-Raphson method converges extremely

quickly meaning that the final residual is often many orders of magnitude smaller

than the tolerance, this would hide any correlation between the tolerance and

the error. Instead we plot the error against the actual converged residual norm

(specifically: the mean over all time steps of ||r||∞ after the Newton method has

converged for that time step). In order to generate a variety of converged resid-

ual norms we run the experiment with a range of parameters: α = 1, 0.1, 0.01,

ε∆ = 5×10−3, 10−3, 5×10−4, 10−4, 5×10−5, 10−5 and εN = 10−12, 10−10, 10−8, 10−6.

A scatter plot showing the error in the length against the mean (over time) of the

converged Newton residual norm is shown in Figure 7.12. We see that the mag-

netisation length conservation behaviour of IMR is well controlled by the Newton

tolerance even with large variations in the adaptive time integrator tolerance and

the damping parameter.



172 CHAPTER 7. ADAPTIVE IMR

10-14 10-13 10-12 10-11 10-10 10-9 10-8 10-7 10-6

mean(||rfinal||∞ )

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1
m

ax
(E
|m
|)

TR
IMR
BDF2

Figure 7.12: Plot of maximum magnetisation length error over time,
maxn ||mn| − 1|, against the mean converged Newton residual norm for the re-
laxing nano-sphere problem with a wide range of α, εN and ε∆ parameters.

The behaviour of the maximum error in the energy when α = 0 as the ad-

aptive step tolerance is reduced is shown in Figure 7.13. The energy error

for BDF2 without normalisation is around the Newton tolerance, but when re-

normalisation is used the error in energy increases drastically. This is due to

the injection/removal of energy when the magnetisation length is modified. The

energy error when using the TR/IMR algorithm (recall that in this example TR

and IMR are identical and renormalisation is not needed for either method due

to the geometric integration properties) is below the minimum value that can be

calculated using floating point arithmetic. This is not surprising as we expect it

to be significantly smaller than the energy error of BDF2, which is ∼ 10−14 and

it is calculated as the difference of two values of O(1) (so it cannot be calculated

if it is smaller than ∼ 10−16).

Finally, we show convergence plots with respect to the two error norms. Fig-

ures 7.14 and 7.15 show the convergence with respect to the switching time error,

Eτ , and the global error, Em, respectively. Adaptive TR and BDF2 algorithms

both with and without re-normalisation of the magnetisation after each step are

shown, along with the adaptive IMR algorithm developed in this chapter.
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Figure 7.13: Convergence plot of the maximum error in the energy for the re-
laxing nano-sphere problem with α = 0 solved using BDF2 with and without
re-normalisation of m. The energy error when using IMR is too small to be
calculated. The digit 1 or 0 in the legend indicates re-normalisation or no re-
normalisation respectively.

In Figure 7.14 the convergence (in Eτ ) rates for TR and IMR are flat consistent

with the asymptotic predictions, in contrast BDF2 does not attain this asymptotic

convergence state until a comparatively small time step. The maximum errors

are around 1000 time units, a relative error of ∼ 100%. The errors of TR and

IMR are extremely similar for a given mean time step size. Once the asymptotic

convergence regime is reached BDF2 has roughly three times the error of the

other methods. Note that the re-normalisation of m in BDF2 and TR has only

a minimal effect on their global error. This indicates that length conservation

property of IMR is unlikely to be providing a major benefit to the global error in

this simple example.

In Figure 7.15 all convergence (in Em) rates show a kink around mean(∆n) = 0.1.

This is because |m| ≈ 1 is fixed so the error norm Em cannot be worse than the

anti-parallel case.8 Above the kink the azimuthal angle is inaccurate and the error

8A more effective error norm for such large error cases would be to use polar coordinates and
track the total azimuthal angle passed through. However this is non-trivial to implement in
general and some rescaling would be required to prevent the ϕ error from dominating.
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Figure 7.14: Convergence plot of the switching time error, (7.33), against av-
erage time step for each method. The digit 1 or 0 in the legend indicates re-
normalisation or no re-normalisation respectively.

norms are meaningless, below the kink the usual convergence behaviour can be

seen. Comparing the error norms different methods we see the same relationships

as in Figure 7.14: BDF2 has three times the error and re-normalisation has little

effect.

Note that TR consistently chooses larger time steps than IMR despite having

similar global errors. This may indicate that the LTE of IMR is indeed larger

than that of TR (as is expected), but that the geometric integration properties of

IMR reduce the build up of global error. Alternatively it may be due to differing

accuracies in the LTE estimate.

7.5 Conclusions

We have implemented an efficient algorithm for adaptive time step selection with

the implicit midpoint rule. The algorithm has been tested on a number of ODEs

and found to follow the correct theoretically predicted step selection behaviour,

and to behave similarly to other second-order adaptive time integrators. We have
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Figure 7.15: Convergence plots of the error in magnetisation, (7.37), against
average time step for each method. The digit 1 or 0 indicates re-normalisation
or no re-normalisation respectively.

also demonstrated robustness in stiff problems and correct behaviour even when

order reduction phenomena are encountered.

When applied to an ODE form of the LLG the adaptive IMR algorithm conserves

|m| as expected for a wide variety of parameters, but the example used here may

be too simple for the energy property to be studied properly9. It also appears to

give smaller global error norms than would be expected from its local truncation

error, this may be due to the geometric integration properties. Any effects of

these geometric integration properties would be expected to be greatly ampli-

fied when solving ODE problems with many interacting spins or PDE problems.

This scenario will be tested in Chapter 8 where the adaptive IMR algorithm is

combined with the PDE methods discussed in other chapters.

Finally, we have observed some interesting results on the suitability of certain time

integration methods to the simulation of the LLG equation. We have found that

the use of BDF2 results in significantly larger errors in the calculated switching

9Without damping the ODE form of the LLG is linear in m and t so TR and IMR are equivalent.
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time than when the TR or IMR methods are used, particularly when the pre-

cessional behaviour is not fully resolved. Assuming that a given level of error is

required for an application this means that IMR and TR can take larger time

steps (by a factor of
√
EBDF2/EIMR), resulting a proportional reduction in the

computation time. We have also found that the process of re-normalising the

magnetisation length after each time step in BDF2 methods greatly increases the

error in the energy.



Chapter 8

Validation, convergence and

conservation experiments

In this chapter we apply the various numerical methods constructed throughout

this thesis to some micromagnetics problems.

The first case examined is a 2D problem without magnetostatics where there is a

known wave-like analytical solution for certain initial conditions. This allows us

to test the convergence of the various discretisation approaches when applied to

the LLG with the exchange effective field (i.e. the PDE form). It also allows us to

test the geometric integration properties of the IMR for a simple PDE problem.

The second problem is another simple case, this time with no analytical solution:

a non-uniform applied field is used to induce non-uniform dynamics in a 2D

problem without magnetostatics. This allows us to test geometric integration

properties of the IMR in the absence of an analytical solution.

Finally we show results for the µmag standard problem #4 [73], which is widely

used to test dynamic micromagnetic codes. This allows us to verify the complete

model and to examine the geometric integration properties when FEM/BEM

magnetostatics calculations are included.

177
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8.1 Example with a wave-like solution

8.1.1 Problem definition

In this experiment we solve a micromagnetic problem which has a wave-like exact

solution in 2D. The details of this solution are given in Appendix A.2. We solve

the LLG without magnetostatics on a two dimensional square domain Ω = [0, 1]×
[0, 1] with periodic boundary conditions. We integrate time over T = [0, 5]. The

solution is obtained by setting the initial condition according to (A.4):

mx(0) = sin(c) cos (k · x),

my(0) = sin(c) sin (k · x),

mz(0) = cos(c),

(8.1)

and using hap = 0. The solution parameters used are k = [2π, 2π] (so that the

solution is periodic on domains of unit size), c = 0.1π, and α = 0.01. For the

energy conservation experiments α = 0 is used instead.

This example problem allows us to examine the convergence and geometric in-

tegration properties of IMR with the FEM using nodal quadrature. In particular

the existence of an exact solution allows us to easily measure the convergence

rate for the various methods.

8.1.2 Implementation details

We use the finite element method as discussed in Chapter 4 to spatially discretise

the LLG equation. Unless otherwise specified we use a mesh of square elements

with 5× 24 elements along each edge (1681 nodes in total). For the evaluation of

the resulting integrals both the nodal quadrature discussed in Section 4.5.1 and

standard Gaussian quadrature methods are used.

For time integration the adaptive IMR, TR and BDF2 methods are used with a

tolerance of ε∆ = 10−5 and an initial time step of ∆0 = 10−5 (significantly smaller

than the time step selected by an initial experimental run). Those methods

which do not naturally conserve |m| (the TR and BDF2 methods, and IMR

with Gaussian quadrature) are run both with and without re-normalisation of

the magnetisation. The re-normalisation process is implemented by setting each
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nodal value of the magnetisation to mi = mi/ |mi| after each time step (after the

selection of the next step size to avoid complicating the adaptivity process).

Linearisation is handled using the Newton-Raphson method with Newton toler-

ance set to εN = 10−12 (unless otherwise specified). The resulting linear systems

are solved using GMRES with an ILU(1) preconditioner as described in Sec-

tion 6.1 and Section 6.3.1.

The adaptive IMR integrator, as described in Chapter 7, requires the computation

of an explicit time step. For this step we use the Landau-Lifshitz form of the LLG

discretised in exactly the same way as described in Chapter 4. The resulting linear

system (involving only a mass matrix) is solved using the method of conjugate

gradients preconditioned by the lumped mass matrix (i.e. the diagonal matrix of

the row sums). Note that when nodal quadrature is used the mass matrix is a

diagonal matrix and no linear solve is needed (see Section 4.5).

8.1.3 General results

An example snapshot of the solution at time t = 0.1 is shown in Figure 8.1. Over

time the wave moves in the [−1,−1] direction and is simultaneously damped out

towards the m = [0, 0, 1] state.

The behaviour of the approximate solutions over time at x = 0 is shown in

Figure 8.2. Only results from the methods without re-normalisation are shown

because they are identical to the equivalent method with re-normalisation (where

applicable) at the scale of the plot.

The time steps selected by the various algorithms for this problem are also shown

in Figure 8.2. The appearance of a jump in the time step size at t = 0 is due to

the algorithms rapidly increasing the time step size from the small initial value

to a step size appropriate for the given tolerance. After an appropriate step size

is reached there is a smooth, gradual increase as the solution is damped out.

8.1.4 Convergence study

Since we have an exact solution for this example we can easily calculate an error

norm and plot the convergence as both the time step ∆n and the element edge

length h go to zero. Following the example of Jeong et al. [56] we link the
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Figure 8.1: Snapshot of the approximate solution for the 2D wave problem at
t = 0.1 time units obtained using adaptive IMR with nodal integration. Arrows
indicate the nodal values of m, colour indicates the value of mx, and the pale green
area is the finite element mesh used. The z-component of the magnetisation is
constant over the domain with mz = 0.958.
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Figure 8.2: The temporal behaviour of the wave solution at x = 0 and
the time step selected by the various adaptive integration schemes without re-
normalisation.
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time step size to the spatial discretisation size by ∆n = 0.32h. It is important

to note that, in contrast to explicit time integration schemes, this coupling of

the time and space discretisation parameters is not required for stability. It is

merely more convenient to experiment with a single parameter than with two

independent parameters. We choose element edge lengths of h = 1/(5 · 2n) with

n = 1, 2, 3, 4, 5, 6.

In these experiments we always use re-normalisation for schemes which are not

expected to naturally conserve |m| because in practical applications such schemes

would always use re-normalisation.

As a first convergence experiment we examine the norm of the error after a single

time step

Em,1 = ||m(xj, t1)−mj,1||2 . (8.2)

In this case we expect the convergence (in both space and time) to be second order

for all methods. The results of this experiment are shown in Figure 8.3, We see

that convergence is indeed second order for all methods and that the accuracy of

the BDF2 scheme is worse than the other schemes by a roughly constant factor.

We also see that the use of nodal quadrature results in an error increase by a

small constant factor. This indicates that the geometric integration properties

of IMR with nodal quadrature give little or no benefit for a single time step, as

would be expected.

We also wish to examine a norm of the error after a large number of time steps,

so for the rest of the experiments in this section we examine the integral of the

error norm over T = [0, 5]. However, reaching the levels of convergence required

for Em to be meaningful is difficult because the “worst case” for the norm is that

the approximated magnetisation is out of phase with the exact solution (i.e. the

error norm is bounded). A plot of the time integral of Em is shown in Figure 8.4.

No convergence is seen for IMR and TR until the spatial/temporal refinement

level reaches n = 5, and no convergence at all is seen for BDF2.

To obtain more meaningful results we should use an alternative error norm which

allows a better measure of the error even for approximate solutions which are out

of phase with the exact solution. One such error norm measures the deviation of

mz from the exact value

Emz = max
j
|mz,j,k −mz(tn)| . (8.3)
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Figure 8.3: Convergence in the error norm Em after a single step of time integ-
ration for the 2D wave-like problem.

Note that the exact value of mz is not a function of x and so it is sufficient to take

the maximum value. This error norm measures the level of over/under damping

caused by the approximation.

The convergence results for the time integral of the error norm Emz are shown in

Figure 8.5. We again see second order convergence behaviour for all methods. The

BDF2 method requires additional refinement to reach the asymptotic convergence

behaviour, and has around an order of magnitude larger error than the other

methods once convergence is reached. This difference in error means that the

IMR and TR methods are able to take time steps roughly
√

10 ∼ 3 times larger

while still attaining the same global error, resulting in a factor of three speed-up

(assuming that the error norm considered here is relevant to the application). Also

note that there is no significant difference between IMR with nodal quadrature

(which conserves |m|) and IMR with Gaussian quadrature (in which m is re-

normalised), indicating that geometric integration offers no significant benefits in

this case.
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Figure 8.4: Convergence of
∫
T
Em dt, where T = [0, 5], for the 2D wave-like

problem.

8.1.5 Geometric integration properties

We now examine the error in nodal magnetisation length:

E|m|(tn) = max
j
||mj,n| − 1| , (8.4)

in the approximations generated by each of the time integration schemes (without

re-normalisation). Figure 8.6 shows the evolution of E|m|. When using IMR with

nodal quadrature the magnetisation length error remains extremely small, but for

other methods the error rapidly grows to around O(10−4) and seems to saturate

at this level.

We next examine the energy conservation properties of the various schemes for the

wave solution with α = 0. The only energy involved is the exchange energy, which

can be calculated using (2.48). Note that these integrals can be evaluated exactly

by either quadrature scheme because ∇m is a constant inside each element. The

results are shown in Figure 8.7. Interestingly we see that IMR with Gaussian

quadrature and TR both conserve energy in a similar manner to IMR with nodal
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Figure 8.5: Convergence of
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T
Emz dt, where T = [0, 5], for the 2D wave-like

problem.
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Figure 8.6: Evolution of E|m| with various time integrators and quadratures for
the 2D wave-like problem.
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Figure 8.7: Evolution of the error in energy with various time integration schemes
and quadratures for the undamped 2D wave-like problem.

quadrature. This is likely due to some special property of the exact solution, and

does not appear to be the case in general (see Section 8.2).

8.1.6 Effect of Newton tolerance

In Section 4.5 relationships between the conservation properties and the accuracy

of the linearisation method were derived. In our implementation the Newton-

Raphson method is used for linearisation, so the relevant measure of accuracy

is the Newton tolerance, εN. As was described in Section 7.4.3 we study this

effect by plotting the error against the actual converged residual norm. In order

to generate a variety of converged residual norms we run the experiment with a

range of parameters: εN = 10−8, 10−9, 10−10, 10−11, 10−12; ε∆ = 10−3, 10−4, 10−5;

α = 1, 0.001, 0; and h = 0.05, 0.025, 0.0125. We only integrate in time over

the shorter interval T = [0, 1] due to the volume of computations required. The

results are shown in Figure 8.8, there is a clear correlation between the magnitudes

of the final residuals and the error in |m|. A similar result is seen in Figure 8.9

for the energy conservation property when α = 0.
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Figure 8.8: Correlation between maximum (over all nodes and all time steps)
error of nodal magnetisation lengths and the mean (over time) of the converged
Newton residual norm in the 2D wave-like problem solved using adaptive IMR
and nodal quadrature.
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Figure 8.9: Correlation between the maximum (over time) of the error in energy
and the mean (over time) of the converged Newton residual norm in the undamped
2D wave-like problem solved using adaptive IMR and nodal quadrature.
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8.1.7 Conclusions

We have shown that the methods we tested have the expected convergence and

time step selection properties. We also observed that the accuracy of the BDF2

method is lower than the TR or IMR methods by around one order of magnitude.

Due to this effect the TR and IMR methods can take larger time steps while

attaining the same error, resulting in shorter computation times.

We have also shown that the geometric integration properties of IMR are pre-

served in a weak form FEM model with a nodal quadrature scheme. As predicted

in Section 4.5 these properties are linked to the accuracy of the non-linear solver.

Additionally we observed unexpected geometric integration properties when IMR

with Gaussian quadrature or TR are used. It is expected that this is a con-

sequence of the specific test problem rather than the methods themselves, and

this conjecture will be tested in the next section.

Since all methods except for BDF2 showed some geometric integration properties

the effect of such properties on the overall error cannot be analysed using this

example.

8.2 An example with non-uniform applied field

In this section we construct a problem which is non-uniform in space without

the involvement of the magnetostatic field by applying a non-uniform applied

field. This will allow us to examine whether the anomalous geometric integration

properties observed in the previous section are related to the analytical solution.

This experiment also reveals some reduction in the effectiveness of the geometric

integration on meshes of triangular elements.

8.2.1 Problem definition

We solve the LLG without magnetostatics on a two dimensional square domain

Ω = [0, 5]× [0, 5] with Neumann boundary conditions. The problem is integrated

in time over T = [0, 5].
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We use a uniform initial condition m = [1, 1, 0]/
√

2 with a non-uniform applied

field hap = [0, 0, hz] where

hz =

1.1(1− x) x < 1,

0 otherwise.
(8.5)

As before we use α = 0.01 except for energy conservation experiments where we

use α = 0.

The dynamics occurring in this problem are quite simple: the magnetisation in

the region of the domain x < 1 moves towards m = [0, 0, 1] due to the applied

field. Exchange interactions force the rest of the domain to move towards the

same field, albeit much more slowly, until eventually the entire domain is in a

uniform state.

The implementation details of this example are exactly as described in Sec-

tion 8.1.2, except that we also use meshes of triangular elements. The structure

of the triangular element mesh is equivalent to the square element mesh except

that the square elements are divided diagonally into two triangles.

8.2.2 Geometric Integration properties

The evolution of the magnetisation length for this experiment is shown in Fig-

ure 8.10, we see that in this case only IMR with nodal quadrature conserves |m|
as expected. The same is true for the energy conservation with zero damping, as

shown in Figure 8.11.

8.2.3 Triangular meshes

Finally we show some results when a mesh of triangular elements is used. The

evolution of |m| is shown in Figure 8.12. We see that the error in |m| when using

IMR with nodal quadrature is significantly larger on triangular elements than on

square elements. Similarly the error in the energy (with α = 0) is significantly

larger, as shown in Figure 8.13. Other experiments show this issue for a variety

of other cases including 3D problems with tetrahedral elements, but not for the

wave-like example above.
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Figure 8.10: Evolution of E|m| with various time integration schemes and quad-
ratures for the 2D nonuniform field problem.
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Figure 8.11: Evolution of the error in energy with various time integration
schemes and quadratures for the undamped 2D nonuniform field problem.
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Figure 8.12: Evolution of E|m| with IMR, both quadratures, and both element
shapes for the 2D nonuniform field problem.

We do not have an explanation for this effect. However it should be noted that

the non-conservation effects are small enough that they would not be noticed if

the numerical experiments were run with a loose non-linear solver tolerance, such

as used in e.g. [10].

8.2.4 Conclusions

We have confirmed that the wave-like example is in some sense “too easy” and

does not provide a rigorous test of geometric integration properties: IMR with

Gaussian quadrature and TR do not conserve energy or |m| in general.

We have also shown an example problem where our implementation of IMR with

nodal quadrature unexpectedly gives significantly worse conservation of energy

and |m| when used with a mesh of triangular elements, as compared to square

elements.
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Figure 8.13: Evolution of the error in energy with IMR, both quadratures, and
both element shapes for the undamped 2D nonuniform field problem.

8.3 The µmag standard problem #4

The µmag standard problem #4 [73] is the benchmark problem most widely used

to test implementations of dynamic micromagnetic models. It involves modelling

the reversal of an extremely thin cuboid film of permalloy-like material under two

different applied fields. Unfortunately FEM/BEM magnetostatic calcultations

are ill-suited to thin film problems: the dense BEM matrix size is proportional to

the number of nodes on the boundary and in a thin film every single node is on

the boundary. Additionally the key benefit of FEM/BEM (accurate resolution of

complex geometries) is not required since the film is a simple cuboid. However,

since there are no other widely studied test problems and there are no prob-

lems with non-trivial magnetostatic and exchange effects for which an analytical

solution is known, we use the standard problem to verify our implementation.
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8.3.1 Problem specification

The magnetic domain is a sheet of magnetic material 500 × 125 × 3nm with

material parameters

A = 1.3× 10−11J/m,

Ms = 8.0× 105A/m,

K1 = 0.0,

|γL| = 2.211× 105m/As,

α = 0.02.

(8.6)

The simulation is run with two different applied fields:

µ0hap,1 = [−24.6, 4.3, 0.0] mT,

µ0hap,2 = [−35.5,−6.3, 0.0] mT,
(8.7)

where µ0 = 4π × 10−7. The initial condition is the S-state given by slowly

relaxing the magnetisation from the state created by a saturating field in the

[1, 1, 1] direction.

These magnetic parameters result in a magnetostatic exchange length (and unit

length in our simulations) of

lex =

√
2A

µ0M2
s

= 5.6858nm, (8.8)

hence the normalised dimensions are approximately 87.94 × 21.98 × 0.53. Our

unit time is

tunit =
1

|γL|Ms

= 5.653ps. (8.9)

8.3.2 Implementation details

We use the FEM to spatially discretise the LLG equation and the Newton-

Raphson method to solve the resulting non-linear systems as described in Chapter 4.

The hybrid FEM/BEM method, described in Chapter 5, is used for magneto-

static calculations. For the coupling of the LLG equation with the magnetostatic

calculations we use both the monolithic and semi-implicit methods discussed in

Chapter 6. The solution of the monolithic linear system is done using the fully
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iterative preconditioner P̃3, it turns out that for thin film problems the ILU(1) ap-

proximation to the LLG block is effective. The decoupled systems resulting from

the semi-implicit method are solved using the methods described in Section 6.1.

Both methods use the parameters described in Section 6.3.1.

The TR, BDF2 and IMR adaptive time integration schemes (see Section 7.2

and Section 7.3.1) are used with both the Gaussian and nodal quadrature schemes.

For those schemes which do not naturally conserve |m| both normalised and re-

normalised versions are tested.

As previously mentioned, the adaptive IMR requires an explicit time step for

the estimation of the error. This is implemented as described in Section 8.1.2.

No coupling with the FEM/BEM calculations is required for this explicit step

because only the value of the magnetostatic potential at the n-th time step is

required (which is already known from the IMR calculations).

A structured mesh consisting of cuboid elements is used due to the simple geo-

metry of the problem and the fact that we have observed issues with geometric

integration on tetrahedral elements (see Section 8.2.3). In the z direction (out of

the thin film plane) a single layer of elements is used at all refinements. This is

the standard approach [73], and is expected to give acceptable resolution because

the exchange length of the material (the length scale over which the magnetisa-

tion can vary strongly) is around twice the thickness of the film. The number of

elements along the x and y axes, denoted nx and ny, is varied but the ratio is

fixed at nx = (500/125)ny so that the element edge lengths in each direction are

identical. We use nx = 75, 100, 125, which gives edge lengths of 1.17, 0.89 and

0.70 exchange lengths respectively.

The Newton tolerance is set to εN = 10−11, the adaptive integrator tolerance is

ε∆ = 10−5 and the initial time step is ∆0 = 10−4. We cap the time step at

∆max = 4.5 to avoid issues with linear and solver convergence with extremely

large time steps.

To generate the initial S-state we run the simulation for 300 time units starting

from the state m = [1, 1, 1] with α = 1.0 and the applied field

hapi(t) =

10(1− t
100

) t < 100,

0 t ≥ 100.
(8.10)
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Figure 8.14: Initial S-state as generated by adaptive IMR with nodal quadrature
and nx = 75 nodes along the x direction. Colour indicates the z (out of plane)
component of magnetisation.

The time integrator history data is then set such that it has been in this state

forever and the time step sizes are set to the initial value. The relevant applied

field as specified in the problem is set and the simulation is continued. The initial

condition is always generated using the same numerical methods as are used in

the dynamic part of the simulation.

Note that with α = 1 the time scale for the magnetisation to relax is much shorter

than with α ∼ 0.01. Hence the simulated time allowed for relaxation to the initial

condition is sufficiently long to be considered “slow” despite the fact that it is

much shorter than the simulated time for the dynamics calculations.

We compare our results against those submitted to the µmag website by d’Aquino

et al. [73]. These results were generated by a fixed time step IMR scheme with

a finite difference spatial discretisation monolithically coupled to a fast Fourier

transform method for magnetostatic calculations [24].

8.3.3 General results

For this problem we find that without either re-normalisation or geometric integ-

ration the time steps selected by the adaptive algorithms become unacceptably

small (i.e. the error becomes large). Hence these cases were not run until com-

pletion and are not included in the results.

In Figure 8.14 we show the initial S-state, as generated by IMR with nodal

quadrature.
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Figure 8.15: Evolution of the mean magnetisation for the µmag problem #4 with
field 1 using monolithic IMR with nodal quadrature. For comparison we also show
the results submitted to the µmag website by d’Aquino et al. [73].

Next we show the mean magnetisation for the two fields from (8.7) in Figures 8.15

and 8.16 respectively. Our results with smaller numbers of nodes, other time

integration schemes, and smaller adaptive time integrator tolerance agree well

with the results shown in Figures 8.15 and 8.16.

The results agree reasonably well with the results obtained by d’Aquino except

around t = 100 when field 2 is used (Figure 8.16). We have also tested the

behaviour when using IMR with fixed time steps or alternative methods for gen-

erating the initial S-state but these have no effect on the discrepancy. However,

it is worth noting that all of the submitted solutions on the µmag website [73]

behave differently for this part of the problem! The issues may be due to corner

singularities in the magnetostatic field and, if so, could be resolved by the use

of higher order solution and test basis functions for the magnetostatic potential

[86].

The same plots show the time step selection behaviour. During relaxation (neg-

ative time in the figures) the time step has a large value initially, which decreases

as the field decreases and the relaxation takes place, then become very large once
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Figure 8.16: Evolution of the mean magnetisation for the µmag problem #4 with
field 2 using monolithic IMR with nodal quadrature. For comparison we also show
the results submitted to the µmag website by d’Aquino et al. [73].

the field reaches zero. During the dynamics (positive time in the figures): a reas-

onable large time step is selected initially. It then decreases around the time of

the peak in m and steadily increases as the oscillations are damped out. The

behaviour observed for the second field is essentially the same.

We show a comparison of the solution generated using IMR with nodal quadrature

and monolithic or decoupled approach in Figure 8.17. The dynamics are very

similar, but the monolithic method is able to take larger time steps and has less

noise in the size step during the initial relaxation.

In Figure 8.18 we show a comparison of the three time integration schemes (with

Gaussian quadrature, monolithic magnetostatics and nx = 100) for field 2. We

can see that all three of the schemes give very similar magnetisation values. How-

ever, IMR takes significantly smaller time steps during the initial relaxation phase

(t ∼ −250). This is likely due to the order reduction effect (see Section 3.4.6):

since the field is initially very large, the Jacobian will contain large terms res-

ulting in a reduction of accuracy for IMR. The adaptive time integration scheme

detects and accounts for this effect by reducing the time step size.
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Figure 8.17: Evolution of the mean magnetisation for the µmag problem #4 with
field 2 using IMR with nodal quadrature and monolithic (implicit) or semi-implicit
(decoupled) coupling to the magnetostatics problem.
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Figure 8.18: Evolution of the mean magnetisation for the µmag problem #4 with
field 2 using various time integration schemes, Gaussian quadrature, monolithic
coupling, and nx = 100.
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Figure 8.19: Evolution of E|m| with IMR, nodal quadrature and both coupling
strategies for the µmag problem #4 with field 2.

8.3.4 Geometric integration properties

The evolution of the maximum nodal error in the magnetisation length for the de-

coupled and implicit methods is shown in Figure 8.19. As expected both coupling

approaches conserve |m| to around the Newton tolerance.

The evolution of the energy of the system when α = 0 is shown in Figure 8.20.

It can be seen that neither the monolithic or decoupled methods give the de-

sired conservation behaviour. From various other experiments we have drawn the

conclusion that this occurs when the magnetostatic calculations are introduced.

We believe that the lack of energy conservation is due to the asymmetry of the

discrete BEM operator. This asymmetry be expected to cause issues with energy

conservation because the symmetry property (3.39) no longer holds, and the en-

ergy property (3.49) cannot be derived. Standard collocation based discretisation

approaches, as used in our discretisation of the BEM operator, do not preserve

the symmetry of the underlying operators. A symmetric discrete BEM operator

could be obtained by applying a symmetric Galerkin BEM discretisation [12]

[101, p. 75] to the formulation discussed in Chapter 5. Alternatively a standard
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Figure 8.20: Evolution of the error in energy with various time integration
schemes, quadratures, and coupling strategies for the undamped µmag problem
#4 with field 2. Results for other combinations of methods are very similar.

Galerkin BEM discretisation combined with the single-layer-potential formula-

tion described by Garćıa-Cervera and Roma [41] [60, p. 19] would result in a

symmetric discrete operator without the requirement to evaluate hyper-singular

integrals.

8.3.5 Effect of nodal quadrature scheme on spatial con-

vergence

In this section we compare the results when using nodal quadrature and Gaussian

quadrature. We focus on the case of field 2 and the use of monolithic coupling.

In Figure 8.21 we show the mean y component of the magnetisation for a range

of mesh refinements and integration schemes around the time when the results

begin to deviate from each other. Varying the tolerance of the adaptive integrator

(ε∆ = 10−3, 10−4, 10−5) or the time integration scheme has almost no effect on

these results. Hence we can assume that the results with Gaussian quadrature

and the highest refinement level are the most accurate. Based on this we can see

that the use of nodal quadrature results in lower accuracy for the same level of
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Figure 8.21: Mean y component of the magnetisation for the µmag problem 4
with field 2 solved using IMR, monolithic coupling, both quadrature schemes and
varying spatial resolution nx. The number in the legend indicates nx/5.

spatial refinement.

Therefore we conclude that nodal quadrature can have a negative effect on the

overall accuracy of the scheme. However, recall that our implementation of IMR

with magnetostatics does not conserve energy (see Section 8.3.4). So these res-

ults are not necessarily representative of the accuracy of an energy-conserving

implementation.

8.3.6 Effectiveness of the linear and non-linear solver

In this section we examine the effectiveness of the iterative linear and non-linear

solvers for the monolithic method introduced in Section 6.2.3 as applied to the

µmag standard problem #4.

Before showing the results we describe how the number of iterations required

by the linear and non-linear solvers affect the CPU time and memory usage of

the overall method. When using implicit time integration schemes almost all

of the computation time is spent within the non-linear (i.e. Newton-Raphson)
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solve in each time step, hence the speed and number of these solves is critical

to performance. Within a Newton-Raphson step the linear (Jacobian) solve time

typically dominates the time taken,1 the number of Jacobian solves that are

required is equal to the number of Newton-Raphson iterations. Writing these

relationships mathematically we have

Ttotal ∝ ·NTimeSteps · TNewton,

∝ NTimeSteps ·NNewtonIterations · TJacobianSolve.
(8.11)

When using GMRES the linear solve time is proportional to the square of the

number of linear solver iterations (see Section 3.6.2), as well as to the total number

of nodesN (because the number of non-zero entries in the Jacobian is proportional

to the number of nodes). Hence the total CPU time obeys a relationship of the

form

Ttotal ∝ NTimeSteps ·NNewtonIterations ·N2
LinearIterations ·N. (8.12)

In terms of memory usage the relationships are much simpler: neither the num-

ber of time steps or Newton iterations affects the memory used. If GMRES is

used then additional linear solver iterations increase the memory usage linearly

as described in Section 3.6.2. However, in FEM/BEM problems the boundary

element matrix typically dominates the memory usage to the extent that this is

irrelevant [95].

The mean number of iterations required for the convergence of the linear solver

against the number of nodes in the problem is shown in Figure 8.22. Note that

while the iteration count increases with the number of nodes, N , it remains

reasonable for the problem sizes required for good accuracy in this example. The

time taken to set up the preconditioner is displayed in Figure 8.23. Again it grows

with the number of nodes but remains reasonable for all cases shown here. Also

note that with nodal quadrature the preconditioner is cheaper to set up but less

effective. To counteract this effect a higher level of ILU fill-in could be used with

nodal quadrature.

Next we look at the number of iterations of the Newton-Raphson method required

1When highly effective solvers are available, i.e. small two dimensional problems, the Jacobian
assembly time can become important. However, our current Jacobian assembly code is not well
optimised e.g. an order of magnitude speed-up could be easily obtained by caching constant
(linear) blocks as described in Section 6.2.1.
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Figure 8.22: GMRES iterations to converge against problem size for the mono-
lithic system using the inexact preconditioner P̃3 with the various time integration
schemes, quadratures, and applied fields for the µmag problem #4 (including the
calculation of the relaxed initial condition).

to solve the monolithically coupled non-linear system. The mean number of

iterations required for convergence is consistently just over 2 (and always less than

3) despite the extremely tight tolerance and the very large time steps (during the

calculation of the initial condition and towards the end of the simulation). In

particular, we note that the number of iterations required is significantly lower

than the ∼ 14 quasi-Newton iterations required for the monolithic method used

in [24]. The various other example problems covered in this chapter required

similar numbers of Newton-Raphson iterations.

We do not explore the total solve times of the various methods for this example.

The solve times are dominated by the calculations involving the BEM matrix

due to the fact that we have not used a hierarchical matrix representation of the

dense block (because HLib is only compatible with triangular elements) and the

extremely large number of boundary nodes. Hence any timing results would be

meaningless for practical problems in which the FEM/BEM method is appropri-

ate.
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Figure 8.23: Time in seconds to set up the inexact preconditioner P̃3 against
problem size for the monolithic system using the inexact preconditioner P̃3 with
the various time integration schemes, quadratures, and applied fields for the µmag
problem #4 (including the calculation of the relaxed initial condition).

8.3.7 Conclusions

Our methods give results for the µmag problem #4 which converge well and

match up reasonably with the benchmark results of other models.

We observe the expected conservation of magnetisation length with IMR and

nodal quadrature. However, we do not observe the expected conservation of

energy. Asymmetry of the BEM part of the problem, and could be resolved by

the use of alternative formulations and/or discretisation approaches.

Finally we have shown that, aside from issues with the lack of a hierarchical matrix

implementation for rectangular boundary elements, we can efficiently solve the

monolithic non-linear problem resulting from coupling the LLG with FEM/BEM

magnetostatics calculations. Application of Newton-Raphson method results in

around 2.2 Newton iterations per non-linear solve on average. The use of GMRES

preconditioned by P̃3 from Section 6.2.3 results in around 15 Krylov iterations

per linear solve, with a reasonable preconditioner setup time.



204 CHAPTER 8. NUMERICAL EXPERIMENTS

103 104

N

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8
m

ea
n 

of
 "n

 n
ew

to
n 

ite
rs

"
nodal
Gaussian

Figure 8.24: Newton-Raphson iterations to converge against problem size for the
monolithic system with the various time integration schemes, quadratures, and
applied fields for the µmag problem #4 (including the calculation of the relaxed
initial condition).

8.4 Conclusions

In this chapter we have demonstrated the effectiveness of the methods described

and developed throughout this thesis on micromagnetic problems with spatial

variations.

We observed that our adaptive IMR algorithm selects appropriate time steps even

for complex problems involving exchange and magnetostatics. We have shown

that IMR with nodal quadrature retains its magnetisation length conservation

property on a number of problems, but also that it is less effective on certain

meshes of triangular elements. Similarly IMR (with nodal quadrature) provides

energy conservation for problems without FEM/BEM magnetostatics, but that

the energy conservation fails when collocation FEM/BEM magnetostatics calcu-

lations are included. This issue is likely due to the asymmetry of the discrete

BEM operator and could be avoided by using an alternative formulation and/or

discretisation of the BEM problem.

Our methods converge exactly as expected to an exact solution of the LLG with
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exchange effective field. Their accuracy on the µmag standard problem #4 with

the first applied field also appears to be very good. For the second field the results

agree well with a finite difference based method using a similar time integration

scheme only up to t = 100, but all of the solutions submitted to the µmag website

disagree around this time.



Chapter 9

Discretisation induced stiffness in

the Landau-Lifshitz-Gilbert

equation

For continuum mechanics models of the LLG equation stiffness (the restriction

of time step size by stability rather than by the desired accuracy) has long been

recognised as an issue, at least for some problems [75].

Stiffness in time-dependent PDEs has at least two possible sources: firstly a

problem may be physically stiff due to large differences in the characteristic time

scales of different (physical) components of the solution [54, Chap. 4]; secondly

the choice of spatial discretisation method may be the cause of stiffness. In

particular a fine spatial discretisation often results in a stiff system of ODEs.

An intuitive explanation for this is that a finer mesh resolves shorter wavelength

modes, even if they have almost no effect on the resulting solution. Shorter

wavelength implies higher frequency, i.e. shorter characteristic time scales. These

modes interact with the solution, and the large variation in time scales causes

stiffness in a similar way to physical effects. For a more rigorous discussion of

this effect in terms of the eigenvalues of the time integration operator see e.g. [7,

Sec 8.2].

As discussed in Section 3.4 time integration methods can be roughly divided into

two classes: those which are inefficient when applied to the solution of stiff prob-

lems and those which are not. These two classes correspond to explicit methods

that calculate the value at the next time exclusively in terms of previous values

206
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and implicit methods in which a system of equations must be solved. Typically

one step of an implicit method requires more computational effort than a step

of an explicit method because of this solve. However good implicit methods are

unconditionally stable, allowing them to take much larger time steps when ap-

plied to stiff problems [54, Chap. 4]. Hence there is a trade-off between time step

size and the computation time per step. Since the optimal choice of method de-

pends on the stiffness it is important to understand its origins in micromagnetic

simulations.

In this chapter we examine numerically the relationship between stiffness and

spatial discretisation size for a simple micromagnetic problem where stiffness due

to physical effects can be ruled out. We also explore how stiffness is affected by

the use of the FEM/BEM method for magnetostatic calculations. Finally, we

study the effects of discretisation on stiffness in methods which combine explicit

magnetostatic calculations with implicit exchange field and LLG calculations (i.e.

semi-implicit methods).

The results in this chapter have also been published in the IEEE Transactions on

Magnetics journal [89].

9.1 Problem definition

As our case study we choose a sphere with a radius of one exchange length. The

initial magnetisation is m = [0.2, 0, 1.0]/|m|, the applied field is hap = [0, 0,−1.1].

We considered three values for the Gilbert damping constant: α = 1, 0.1 and

0.01. With this geometry and uniform magnetisation the magnetostatic field can

be analytically shown to be hms = −m/3 throughout the domain (as mentioned

in Section 7.4) [1, p. 112], and so, due to energy considerations, the magnetisation

remains uniform for spheres of radius R < 2.082
√

3 ∼ 3.606 exchange lengths [52,

p. 211].

The dynamics are therefore very simple: the magnetisation processes around the

z-axis while gradually damping towards the applied field (along the negative z-

axis). This simplicity means that the problem can also be written as an ODE,

allowing for useful comparisons. Additionally exact solutions for the switching

time are known [70], allowing quantification of the error.
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As mentioned above, the simple geometry of this problem means that the physics

can be captured, without any loss of accuracy, by an ODE version of the LLG:

∂m

∂t
(1 + α2) = −m× h− αm× (m× h) ,

h = hap −m/3,
(9.1)

where m = m(t) and we have used the Landau-Lifshitz form for ease of imple-

mentation.

9.2 Implementation details

In these experiments we use the FEM discretisation of the non-dimensional LLG

as discussed in Chapter 4. Magnetostatics calculations (when in use) are handled

using either the FEM/BEM discretisation as discussed in Chapter 5 or the ana-

lytical formula hms = −m/3. We use three time integration schemes. The first

is the standard IMR as discussed in Section 3.4.2, with monolithic coupling to

the magnetostatic calculations as described in Section 6.2.3. The second scheme

is IMR with semi-implicit (decoupled) magnetostatic calculations as discussed in

Section 6.2.2.

The third scheme is an explicit method. For explicit time integration we use the

mathematically equivalent Landau-Lifshitz form of the LLG, (2.38) because the

time derivative can be written explicitly, avoiding a non-linear solve. We use a

two stage Runge-Kutta method (RK2), also known as Heun’s method [7, p. 58]:

m∗ = mn + ∆nf(tn,mn),

mn+1 = mn +
∆n

2
(f(tn,mn) + f(tn+1,m∗)) .

(9.2)

The time derivatives required in (9.2) are calculated by inverting the finite-

element mass matrix using a diagonally preconditioned conjugate gradient solver.

The magnetostatic potential φ is recalculated using the FEM/BEM method at

appropriate time and magnetisation values during each stage of (9.2). The Pois-

son solves required for the evaluation of the potentials u and φ use the methods

and parameters discussed in Chapter 6.

Good quality (radius-to-edge ratio > 2) quasi-uniform unstructured tetrahedral
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meshes of a sphere were generated using TetGen [90]. Meshes were refined by

decreasing the maximum element volume parameter.

All simulations were run for 4 time units (≈ 20ps) with a full reversal taking

between 8 and 400 time units depending on the damping. We ran the simulations

without magnetostatics, with FEM/BEM magnetostatics, and with the analytical

magnetostatic field for each value of the Gilbert damping constant.

To find bounds for the maximum stable step size, ∆max we use a simple heur-

istic algorithm: The computation is repeated with a sequence of decreasing step

sizes (halved each time) until a stable solution is observed, this stable step size

is denoted ∆a. A solution is considered to be unstable if the maximum angle

between the magnetisation of neighbouring nodes is greater than π/4. This

provides bounds on the maximum stable step of ∆max ∈ [∆a, 2∆a). To tighten

these bounds we then use two steps of a standard binary search algorithm: the

computation is run with ∆n = 3∆a/2, if it is successful then ∆max ∈ [3∆a

2
, 2∆a)

otherwise ∆max ∈ [∆a,
3∆a

2
).

The initial step size, ∆init, is selected such that the temporal error is sufficiently

small to obtain good accuracy (so any reduction in step size below this value is

wasteful.

To assess physical stiffness and to find a time step size which gives sufficiently

accurate results we solved the ODE form of the problem, (9.1), using the RK2

and IMR methods with ∆ = 0.1. Using IMR with α = 0.01 we found a relative

error in the final switching time of 0.3% (absolute error 1.2 time units ≈ 6ps),

for other values of α the percentage error is even smaller. The relative error

in switching time with α = 0.01 using RK2 was 2.25%. Since these results are

from an ODE calculation the error is only due to the time integration, with no

contributions from spatial discretisation. Based on these results we conclude

that ∆init = 0.1 gives a sufficiently small temporal error to be a reasonable time

step size. Additionally, since no stability issues were seen for any value of α, we

conclude that any lack of stability when integrating the equivalent PDE must

arise purely from the spatial discretisation rather than the underlying physics.
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Figure 9.1: Maximum stable time step as a function of discretisation size for
LLG without magnetostatics. Data points are ∆max, the largest stable time step
found. Error bars represent the range in which the largest stable time step is
contained. The horizontal dashed line shows the time step where RK2 and IMR
are equally efficient (IMR is more efficient when the maximum stable step of the
RK2 method moves below this line). The maximum time step is limited to 0.1 for
accuracy reasons.

9.3 Numerical results

The results of the experiments with hms = 0 are shown in Figure 9.1. Results

with full FEM/BEM magnetostatics and results with the analytical formula for

magnetostatics are shown in Figure 9.2 and 9.3 respectively.

In all cases we find that as the damping constant is reduced by an order of

magnitude, stable explicit time step sizes are reduced by approximately a factor

of two (i.e. an increase in the stiffness).

Comparing Figure 9.1 and 9.2 we see that using FEM/BEM magnetostatics sig-

nificantly increases the stiffness, requiring roughly an order of magnitude smaller

explicit time steps for stability. However, from Figure 9.3 we see that adding the

exact field does not induce stiffness, so we can conclude that this effect is due

to the numerical methods used and not the magnetostatic field itself. From our
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data we cannot predict whether other methods of calculating the magnetostatic

field, such as multipole methods, will result in similar increases in the number of

explicit time steps required. However we expect that the effect is due to the coup-

ling with the additional Poisson problems (which means that the semi-discretised

equation is a differential algebraic equation [47, p. 371] rather than an ODE),

thus any potential based method is likely to exhibit similar behaviour.

Figure 9.2 shows that using a semi-implicit method with explicit magnetostatic

calculations (SIMR) imposes no stability restrictions on the time step due to spa-

tial discretisation at the spatial resolutions relevant for micromagnetic problems

for this example.

To further analyse our results we need an estimate of the ratio of computational

effort for explicit vs implicit time steps. Without magnetostatics we find that

each step of IMR takes on average 5.86 times more computation time than a

step of RK2. With magnetostatics each step of SIMR only takes 3.40 times more

computation time than a step of RK2 (the difference is due to the cost of solving

multiple Poisson problems at each Runge-Kutta stage). Using these ratios we

can calculate the stable RK2 time step required to have equivalent computational

efficiency to IMR with step size 0.1. This stable step size is marked on Figure 9.1,

9.2 and 9.3 with a dashed line.

Based on these results we say that a problem is “stiff”, and that an implicit

method will perform significantly better than an explicit one, if the ratio of the

desired time step, ∆init to the maximum stable explicit time step, ∆max is greater

than 20. A caveat is that both types of model could be further optimised using,

for example parallelism, improved preconditioning, mass lumping, hierarchical

boundary matrix representations, etc.

Typical advice for the number of elements per exchange length is that an absolute

minimum is one, and in order to show that the results are mesh independent the

mesh should be refined a few times [33, Sec. 11]. This leads to a reasonable finest

mesh with around three elements per exchange length.

We see that with FEM/BEM magnetostatics, realistic damping (α = 0.01) and

at least three elements per exchange length our case study is stiff. Without

FEM/BEM magnetostatics stiffness only occurs if refinement to around five or

more elements per exchange length is needed for any part of the domain. Problems

that require this level of refinement include resolving the geometry in studies of
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granular or patterned media [95] and resolving vortex-core-like structures [4].

On the other hand LLG problems can be only moderately stiff if refinement is

only needed up to the level around one element per exchange length, as is often

required for simple geometries. This is consistent with the fact that the µmag

standard problem #4 is often solved using explicit time integration methods [73].

Similar experiments with the standard 4th order Runge-Kutta method [54, p. 41]

and α = 1.0 (plots not shown) give essentially the same results as for RK2. As

α is reduced the maximum stable step size ∆max is reduced, but not as rapidly

as for RK2. However due to the increased computational cost per time step (a

factor of two) the onset of stiffness for RK4 (for all α) occurs at roughly the same

spatial discretisation as for RK2 with α = 0.1.

Finally we point out that the discussion above assumes that the accuracy ob-

tained with ∆ = ∆init is sufficient. If a higher temporal accuracy than this is

required then smaller time steps are needed regardless of stability, so the limita-

tions imposed by stiffness are proportionally less significant.

9.4 Conclusions

Our results show that the LLG equation without magnetostatics or with ana-

lytical magnetostatic field calculations becomes stiff (i.e. implicit methods are

significantly more efficient) as the number of elements per exchange length de-

creases below around 5. If FEM/BEM magnetostatic calculations are used stiff-

ness occurs at much coarser discretisations, beginning at around 2−3 elements

per exchange length. In all cases decreasing the damping constant also increases

the stiffness.

The results for the ODE version of the problem indicate that the observed stiffness

is due to the spatial discretisation and not the physics of the problem. Since more

complex physics is unlikely to ever reduce the stiffness, we expect that these

results will extend to other, more complex, problems.

We also found that our semi-implicit FEM/BEM method does not suffer from

discretisation induced stiffness in this simple test case.



Chapter 10

Conclusions and future work

10.1 Conclusions

In this thesis we have introduced a complete numerical method for the solution

of dynamic micromagnetic problems using the finite element method with the

Newton-Raphson linearisation, a variety of implicit time integration schemes, hy-

brid FEM/BEM magnetostatics calculations, and efficient iterative linear solvers.

The methods have been validated against an analytical solution for a problem

without magnetostatics and against the µmag standard problem #4 with mag-

netostatics.

In Chapter 7 we have demonstrated a novel and widely applicable adaptive time

step selection algorithm for the implicit midpoint rule. We have also shown that

the time step selection works well for a wide variety of ODE test cases, as well as

for a number of PDE test cases using the LLG equation. Additionally we have

shown that the geometrical integration properties of the constant time step IMR

extend to the adaptive time step version.

In Sections 6.2, 6.3 and 8.3 we introduced and tested efficient, robust and scalable

solution methods for the monolithically coupled LLG-FEM/BEM magnetostat-

ics problem provided that a good preconditioner for the LLG sub-problem is

available. Such monolithic couplings are required to obtain the energy property

of the implicit midpoint rule and may offer advantages in stochastic integration

methods.

In Sections 7.4 and 8.1 we studied the performance of common implicit time
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integration schemes on some micromagnetic problems with exact solutions. We

found that the overall accuracy of the BDF2 scheme is always poor compared to

the TR and IMR schemes, this is probably due to a combination of the larger

local truncation error and the spurious numerical damping of BDF2.

Finally in Chapter 9 we studied the effect of spatial discretisation on the relative

performance of implicit and explicit time integration schemes (stiffness). We

found that stiffness in micromagnetics can arise from the spatial discretisation

alone, and that the stiffness increases as the element size is decreased, as expected

from standard PDE theory. We also found that the introduction of FEM/BEM

magnetostatics calculations increases the stiffness.

10.2 Future work

In the course of our numerical experiments we uncovered some issues with the

geometrical integration properties of our complete model. Firstly we found that

the conservation properties of IMR with FEM and nodal quadrature was much

less effective when applied to meshes of triangular elements, at least in our im-

plementation. This effect is fairly small and is not contradicted by any numerical

results in the literature that we are aware of due to the common use of comparat-

ively loose linearisation tolerances. An alternative implementation of IMR with

FEM and nodal quadrature should be used with a tight linearisation tolerance in

order to find out if this effect is an artefact of our implementation or a real issue.

Secondly, we found that when FEM/BEM magnetostatics calculations discretised

by a collocation based approach were included the energy conservation property

of IMR was lost. This is probably due to the asymmetry of the discrete BEM

operator, which could be corrected by the use of alternative formulations of the

method. In particular the use of the Garćıa-Cervera-Roma formulation [41] [60,

p. 19] with a Galerkin discretisation approach [101, p. 75] should resolve this

issue.

Once these issues have been corrected the relative performance of schemes with

geometric integration properties, in terms of the accumulation of the temporal

error, should be evaluated for realistic problems.

In the area of linear solvers a general, efficient, robust and scalable preconditioner

for the Newton-Raphson linearised LLG equation is still required. One approach
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to the construction of such a preconditioner could be to exploit the block structure

of the Jacobian matrix and to use multigrid-based methods to approximate the

Laplacian-like skew-symmetric off-diagonal blocks resulting from the exchange

effective field. A less general approach for the case of granular or patterned media

could be the use of a domain decomposition preconditioner. In such a method the

small matrix block associated with each grain/island would be inverted by a direct

solver and the combination used as a block diagonal preconditioner. Due to the

weak coupling between grains/islands this would provide a good approximation

for the inverse of the entire LLG block. With either of these enhanced LLG

preconditioners the effectiveness of the preconditioner discussed in Chapter 6 on

extremely large problems could be investigated.

In the time integration of the stochastic LLG only a few time integration schemes

are known to converge to the correct solution, one of which is the implicit mid-

point rule [25]. Since the use of a semi-implicit magnetostatics coupling modifies

the time integration scheme a monolithic coupling scheme is required to maintain

this property. The preconditioner developed in Chapter 6 should be tested in this

capacity once effective preconditioners for the LLG sub-problem are available.



Appendix A

Analytical solutions of the

Landau-Lifshitz-Gilbert equation

When testing numerical methods for differential equations it is very helpful to

be able to compare the results with known analytical solutions. This appendix

contains some solutions useful for this purpose.

A.1 Ellipsoidial nano-particle

In a 2000 paper [70] Mallinson gives an analytical equation for the time taken for

magnetisation to “switch” from one polar angle (angle to the z-axis) to another.

He also gives the azimuthal angle (the angle “around the z-axis”) rotated through

during this switching.

The conditions for the model to apply are:

1. A sufficiently small particle that the exchange field dominates and the mag-

netisation is uniform.

2. Constant applied field aligned with the z-axis.

3. Uniaxial magnetocrystalline anisotropy: Hca = 2K
µ0Ms

(M · ẑ)ẑ.

4. A prolate ellipsoidal particle aligned with the z-axis.
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Let θ1, θ2 be the initial and final angles between the z-axis and the magnetisation

(i.e. initial and final polar angles in the spherical polar coordinate system with

the field axis as the main axis). Let Hk be the combined anisotropy field strength:

Hk = 2K
Ms

+Ms(N⊥ −N‖) where N is the demagnetisation tensor of the ellipsoid

and all other symbols have their usual meanings. Then the time taken to switch

from θ1 to θ2 is given by

τ =
α2 + 1

|γL|α
1

H2 −H2
k

(
H ln

[
tan(θ2/2)

tan(θ1/2)

]
+Hk ln

[
H −Hk cos θ1

H −Hk cos θ2

]

+Hk ln

[
sin θ2

sin θ1

])
.

(A.1)

The azimuthal angle precessed through during this switching is

φ = − 1

α
ln

[
tan(θ2/2)

tan(θ1/2)

]
. (A.2)

Note that this is not really a true analytical solution to the Landau-Lifshitz-

Gilbert equation: it gives the switching time and azimuthal angle as a function of

polar angle rather than the magnetisation direction as a function of time. However

comparing switching time values with those generated by a model is still a useful

measure of the error. Additionally the magnetisation at some given time could

be calculated from (A.1) using e.g. the Newton-Raphson method. Alternatively,

using further simplifying assumptions, this solution can be reduced to a “true”

analytical solution in the sense that m can be written analytically as a function

of time. This is discussed in Section 7.4.1.

A.2 Wave-like solution in an infinite domain

These solutions are taken from [56], [40], the solution appears to have been origin-

ally published in [64] in a more abstract form. For most parameters the solution is

just a wave-like excitation in mx(x, t) and my(x, t) whose oscillations are damped

towards a uniform state mz = ±1. This is the only exact solution of the LLG

equation with the exchange effective field which has non-trivial x dependence, to

the best of our knowledge.
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For an infinite magnetic domain (i.e. using periodic boundary conditions) of spa-

tial dimension D choose constants c ∈ R and k ∈ RD. We denote

t̂(t) =
t

1 + α2
,

b(t) = |k|2 αt̂(t),

d(t) =
√

sin2(c) + cos2(c)e2b(t),

g(t) =
1

α
loge

[
d(t) + cos(c)eb(t)

1 + cos(c)

]
.

(A.3)

Then

mx(t) =
1

d(t)
sin(c) cos (k · x + g(t)),

my(t) =
1

d(t)
sin(c) sin (k · x + g(t)),

mz(t) =
1

d(t)
cos(c)eb(t),

(A.4)

is a solution of the Landau-Lifshitz-Gilbert equation with heff = ∇2m.

The rescaling of time given by t̂(t) is needed to convert from a solution of the

Landau-Lifshitz equation (2.41) to a solution of the Landau-Lifshitz form of the

Landau-Lifshitz-Gilbert equation (2.39), i.e. to account for the correction to the

form of the damping as introduced by Gilbert.

The function d(t) is a normalisation parameter to keep |m(x, t)| = 1 everywhere.

To see this: note that sin2(c) cos2 (f(x)) + sin2(c) sin2 (f(x)) = sin2(c), hence the

length contribution of the combined x and y terms is sin2(c). The vector k is the

wave vector, it determines the direction and speed of propagation of the wave.

The parameter c represents in some way the fraction of the initial magnetisation

which takes part in the oscillations. If c = 0 then mx,my = 0 and there is no

wave.

Figure A.1 shows the solution in one dimension over time at x = 0 with para-

meters k = 2π, α = 0.05 and varying c. As c increases the initial value of mz

decreases and the amplitude of the oscillations in mx and my increase.

As c approaches π
2

the behaviour becomes more complex, this is shown in Fig-

ure A.2. Essentially there is an additional initial exponential decay towards a

state with moderate mz after which the dynamics are similar to the case for

lower c. At c = π
2

we have m(x, t) = (cos(k̂ · x), sin(k̂ · x), 0) and there is no
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Figure A.1: Magnetisation values over time at x = 0 for the one dimensional
wave solution with k = 2π, α = 0.05 and various c (taken well away from π

2
).

dynamical behaviour. Above c = π
2

the initial mz becomes negative and the

behaviour is symmetrical with that below c = π
2

In the limit of α→ 0+ the solution becomes [40]:

mx = sin(c) cos
(
k · x + |k|2 cos(a)t

)
,

my = sin(c) sin
(
k · x + |k|2 cos(a)t

)
,

mz = cos(c).

(A.5)

This is just a simple periodic wave in space and time.

Note that the behaviour in higher dimensions is essentially the same as in 1D

except that the direction of propagation is in the direction described by the

vector k̂.
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.



Appendix B

Properties of the effective field

operator

In this appendix we show some properties of the effective field operator that are

used in Section 3.4.9. It seems possible that these properties could be proven for

a general effective field using only the definition (2.7), but we have not managed

to find such a proof.

B.1 Linear Symmetrical operator

An operator L is linear if

L [a + cb] = L [a] + cL [b]. (B.1)

The vector Laplace, magnetostatic field and magnetocrystalline anisotropy op-

erators are all easily demonstrated to be linear because they involve only linear

operations, such as derivatives, integrals and dot products.

An operator L is symmetrical if

(L a, b) = (a, L b) , (B.2)

for all functions a,b ∈ in some function space on the real numbers where (·, ·) is

defined.

222
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In this section we frequently make use of a consequence of the divergence theorem:∫
Ω

f(x) · ∇g(x) dΩ =

∫
Γ

g(x) (f(x) · n̂(x)) dΓ−
∫

Ω

g(x)∇ · f(x) dΩ, (B.3)

where f : Rd → Rd and g : Rd → R.

Note that by substituting f = ∇f into (B.3) we can derive∫
Ω

(∇2f)g dΩ =

∫
Γ

g(∇f · n̂) dΓ−
∫

Ω

∇f · ∇g dΩ,

=

∫
Γ

g
∂f

∂n̂
dΓ−

∫
Ω

∇f · ∇g dΩ.

(B.4)

B.1.1 Applied field

The applied field part of the effective field is in general not linear or symmetrical

because it is independent of m.

B.1.2 Vector Laplace operator

Theorem 1. If L is a symmetric operator on v ∈ L2 then so is its “vector

equivalent”, L̄ [v] =

L v1

L v2

L v3

.

Proof.

(
L̄ a, b

)
=

∫
Ω

L̄ a · b dΩ,

=

∫
Ω

L [a1]b1 dΩ +

∫
Ω

L [a2]b2 dΩ +

∫
Ω

L [a3]b3 dΩ,

= (L [a1], b1) + (L [a2], b2) + (L [a3], b3) .

(B.5)

So L̄ is symmetrical if and only if L is symmetrical.

Theorem 2 (Symmetry of Laplace operator). If mi ∈ L2 and ∂mi
∂n̂

= 0 on all of

Γ then ∇2 is a linear operator on mi.
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Proof. Apply equation (B.4) twice: first with f = a, g = b, then the other way

around. (
∇2a, b

)
=

∫
Ω

(
∇2a

)
b dΩ,

=

∫
Γ

b
∂a

∂n̂
dΓ−

∫
Ω

∇a · ∇b dΩ,

=

∫
Γ

b
∂a

∂n̂
dΓ +

∫
Ω

a(∇2b) dΩ−
∫

Γ

a
∂b

∂n̂
dΓ,

=

∫
Ω

a(∇2b) dΩ.

(B.6)

From these two theorems we see that the vector Laplacian operator ∇2 is sym-

metrical. Note that the above does not include the case with surface anisotropy

or when the length of m is not constant because in either of these cases we do

not necessarily have ∂m
∂n̂

= 0. The case with periodic boundary conditions is true

by the combination of (4.43) and (B.6).

B.1.3 Magnetostatic field operator

For simplicity we write

k =
1

4π |x− x′|
. (B.7)

Theorem 3 (Symmetry of magnetostatic field operator). If a,b ∈ L2 and

∇a,∇b ∈ L2 (i.e. a,b ∈ H1) then the operator

Hms[a](x) = −∇φ[a](x),

= −∇
[
−
∫

Ω′
k∇′ · a(x′) dΩ′ +

∫
Γ′
ka(x′) · n̂(x′) dΓ′

]
,

(B.8)

where primes denote another set of coordinates, is symmetrical.

Proof. Essentially we apply identity (B.3), rearrange the result using the sym-

metry of the kernel, k, and apply the identity again in reverse. We drop the x

argument from φ where it is obvious.
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Using (B.3) we get

(Hms[a], b) = −
∫

Ω

b · ∇φ[a] dΩ,

= −
∫

Γ

φ[a](b · n̂) dΓ +

∫
Ω

φ[a](∇ · b) dΩ,

=

∫
Γ

∫
Ω′
k(∇′ · a(x′))(b(x) · n̂(x)) dΩ′ dΓ

−
∫

Γ

∫
Γ′
k(a(x′) · n̂(x′))(b(x) · n̂(x)) dΓ′ dΓ

−
∫

Ω

∫
Ω′
k(∇′ · a(x′))(∇ · b(x)) dΩ′ dΩ

+

∫
Ω

∫
Γ′
k(a(x′) · n̂(x′))(∇ · b(x)) dΓ′ dΩ.

(B.9)

Changing the order of the integrals gives (since a, b and their derivatives are in

L2)

(Hms[a], b) =

∫
Ω′

∫
Γ

k(b(x) · n̂(x)) dΓ(∇′ · a(x′)) dΩ′

−
∫

Γ′

∫
Γ

k(b(x) · n̂(x)) dΓ(a(x′) · n̂(x′)) dΓ′

−
∫

Ω′

∫
Ω

k(∇ · b(x)) dΩ(∇′ · a(x′)) dΩ′

+

∫
Γ′

∫
Ω

k(∇ · b(x)) dΩ(a(x′) · n̂(x′)) dΓ′.

(B.10)

Finally we swap x with x′ (which we can do because k is symmetrical in its

arguments) and collect terms with the same (outer) integral domain

(Hms[a], b) =

∫
Ω

φ[b](∇ · a) dΩ−
∫

Γ

φ[b](a · n̂) dΓ,

= (Hms[b], a) .

(B.11)

B.1.4 Magnetocrystalline anisotropy

Here we only examine the case of uniaxial anisotropy as it is the most technolo-

gically relevant

hca[m] = K1(m · ê)ê. (B.12)
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We can easily see that the operator is symmetrical by writing out the definitions

(hca[a], b) =

∫
Ω

K1(a · ê)(ê · b) dΩ,

=

∫
Ω

(K1(b · ê)ê) · a dΩ,

= (hca[b], a) .

(B.13)

B.2 Effective field and energy

A useful relationship between the effective field and the energy is:

H [m] = ∇2m + hms + hca,

−1

2
(m, H [m]) = −1

2

∫
Ω

m ·H [m] dΩ = e,
(B.14)

note that this does not include the applied field energy.

For the magnetostatic field this relationship is obvious from the definition of ems,

(2.47). For a uniaxial magnetocrystalline anisotropy effective field the derivation

is very simple:

− 1

2

∫
Ω

(K1(m · ê)ê) ·m dΩ = −K1

2

∫
Ω

(m · ê)2 dΩ = eca. (B.15)

For the exchange effective field we use (B.6) to obtain

− 1

2

∫
Ω

m · ∇2m dΩ = −1

2

∫
Γ

m · ∂m

∂n̂
dΓ +

1

2

∫
Ω

∇m : ∇m dΩ. (B.16)

Then applying Neumann or periodic boundary conditions on m gives the result

− 1

2

∫
Ω

m · ∇2m dΩ =
1

2

∫
Ω

(∇m)2 dΩ = eex. (B.17)



Appendix C

Truncation error derivation for

the implicit midpoint rule

In this appendix we give details of the derivation of the local truncation error of

the implicit midpoint rule. We begin from (3.21) at the end of Section 3.4.3:

T IMR
n =

∆3
n

24
y′′′(tn+ 1

2
)︸ ︷︷ ︸

I

+ ∆n

[
y′(tn+ 1

2
)− f

(
tn+ 1

2
,
y(tn) + yn+1

2

)]
︸ ︷︷ ︸

II

+O
(
∆4
n

)
. (C.1)

In order to be able to cancel terms in (C.1) we now need to Taylor expand

f
(
tn+ 1

2
,
y(tn)+yn+1

2

)
in y about y(tn+ 1

2
), i.e. we need an expansion of the form

f(tn+ 1
2
,
y(tn) + yn+1

2
) = f(tn+ 1

2
,y(tn+ 1

2
) + δn),

= f(tn+ 1
2
,y(tn+ 1

2
)) + Fn+ 1

2
· δn + O

(
δ2
n

)
,

(C.2)

where Fn+ 1
2

= F (tn+ 1
2
,y(tn+ 1

2
)) is a matrix of partial derivatives1 of each element

of f with respect to each element of the vector y. Note that the f term is multiplied

by an additional factor of ∆n in (3.13). Hence in the derivation of δn we can drop

terms of order greater than O(∆2
n) while retaining the same asymptotic accuracy.

We now derive the required correction δn. From (C.2) we have

δn =
y(tn) + yn+1

2
− y(tn+ 1

2
). (C.3)

1Note that this is not equivalent to the Jacobian matrix associated with the Newton-Raphson
method which is the derivative of the residual function with respect to each element of y.
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However, we cannot expand yn+1 to get δn in terms of only values at the midpoint.

Instead we use the LTE of IMR to rewrite (C.3) as

δn =
y(tn) + y(tn+1)− T IMR

n

2
− y(tn+ 1

2
). (C.4)

Substituting in the Taylor expansions of y(tn) and y(tn+1) about tn+ 1
2

(from

(3.19) and (3.20)) gives

δn = y(tn+ 1
2
) +

∆2
n

8
y′′(tn+ 1

2
)− y(tn+ 1

2
)− 1

2
T IMR
n + O

(
∆4
n

)
,

=
∆2
n

8
y′′(tn+ 1

2
)− 1

2
T IMR
n + O

(
∆4
n

)
.

(C.5)

Now we substitute δn from (C.5) into the Taylor series expansion of f from (C.2)

to obtain

f(tn+ 1
2
,
y(tn) + yn+1

2
) = y′(tn+ 1

2
) +

∆2
n

8
Fn+ 1

2
· y′′(tn+ 1

2
)− 1

2
Fn+ 1

2
· T IMR

n + O
(
∆4
n

)
.

(C.6)

and using (C.6) in (3.21) gives the local truncation error

(I +
∆n

2
Fn+ 1

2
) · T IMR

n = ∆ny
′(tn+ 1

2
) +

∆3
n

24
y′′′(tn+ 1

2
)−∆ny

′(tn+ 1
2
)

− ∆3
n

8
Fn+ 1

2
· y′′(tn+ 1

2
) + O

(
∆4
n

)
,

=
∆3
n

24

[
y′′′(tn+ 1

2
)− 3Fn+ 1

2
· y′′(tn+ 1

2
)
]

+ O
(
∆4
n

)
.

(C.7)

Using a geometric series representation we can show that, if all eigenvalues of

−∆n

2
Fn+ 1

2
are such that |λ| < 1, then2

(I +
∆n

2
Fn+ 1

2
)−1 = I −

∆nFn+ 1
2

2
+ O

(
∆2
n

)
, (C.8)

and finally

T IMR
n =

∆3
n

24

[
y′′′(tn+ 1

2
)− 3Fn+ 1

2
· y′′(tn+ 1

2
)
]

+ O
(
∆4
n

)
. (C.9)

2If Fn+ 1
2

is not dependent on ∆n then this will always be true for some sufficiently small ∆n,
the case where Fn+ 1

2
is a function of ∆n is covered in Section 3.4.6.



Appendix D

Alternative magnetisation

re-normalisation methods

In this this appendix we experimentally compare three methods for re-normalising

the magnetisation:

1. Re-normalisation after every step, the simplest magnetisation re-normalisation

method.

2. The self-correcting LLG method used by Nmag.

3. Tolerance-based re-normalisation used by magpar.

These three methods are described in Section 3.4.8. As our example problem we

use the relaxing nano-sphere described in Section 7.4.

D.1 Implementation details

As in Section 7.4.2 we use the Landau-Lifshitz (LL) form of the LLG. The Newton-

Raphson method is used for linearisation with the Jacobian calculated analytically

and solved using a direct solver. The Newton-Raphson tolerance set to εN = 10−8.

We use BDF2 for these experiments because we need a time integrator with no

geometric integration properties in order to properly test the re-normalisation

methods (TR is equivalent to IMR for the undamped ODE LLG problem so it
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has the same geometric integration properties in this case, see Section 7.4.3). The

time step size is fixed at ∆n = 0.1.

Tolerance-based re-normalisation is implemented as follows: if the error in the

magnetisation length, E|m| = |1− |m||, is less than the tolerance, εml, then noth-

ing is done and the integration continues. On the other hand if E|m| > εml then

we set mi to mi/ |mi| for the values of the magnetisation at all times stored by

the time integrator (for BDF2 this corresponds to i = n+ 1, n, n− 1). Note that

re-normalising the history values of TR is more complex because one of them is

a derivative (at least in our implementation, see (4.57)), which would need to be

recalculated using the newly re-normalised magnetisation values for consistency.

We use tolerance values of εml = 0, 10−6, 10−2, 10200. Note that εml � 1 (e.g.

εml = 10200) corresponds to no re-normalisation, while εml = 0 corresponds to

re-normalisation after every time step. The default value used in magpar1 is

εml = 10−2.

The self correcting LLG is implemented by replacing the standard residual, rll

given in (7.39), with the modified residual

r = rll − βm
(
1− |m|2

)
, (D.1)

where β is a parameter that can be tuned. The Jacobian of the modified residual

is given by

J = Jll + 2β(m⊗m)− β
(
1− |m|2

)
I, (D.2)

where Jll is the Jacobian of rll and is given in (7.40).

We experiment with a range of parameter values: β = 0, 0.1, 1, 10, 100, 1000.

Larger values were not used because the Newton-Raphson method often failed to

converge within ten steps for β & 1000.

Note that, due to implementation details, values are output after any re-normalisation

for that step has been performed.
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Figure D.1: Error in magnetisation length, E|m|, over time for the relaxing nano-
sphere problem with α = 0. Magnetisation length is enforced by tolerance-based
renormalisation, the legend indicates the value of the tolerance εml.
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Figure D.2: Error in magnetisation length, E|m|, over time for the relaxing nano-
sphere problem with α = 0.01. Magnetisation length is enforced by tolerance-based
renormalisation, the legend indicates the value of the tolerance εml.
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Figure D.3: Error in energy over time for the relaxing nano-sphere problem with
α = 0. Magnetisation length is enforced by tolerance-based renormalisation, the
legend indicates the value of the tolerance εml.

D.2 Results: tolerance-based renormalisation

In Figures D.1 and D.2 we show the error in the magnetisation length over time

E|m| = ||m| − 1| (D.3)

for various values of εml and α = 0.01, 0 respectively. For the case with α = 0.01

and εml = 10−6 re-normalisation is performed with increasing frequency until t &

280, after which it is performed after almost every step. In both the damped and

undamped cases, the use of the intermediate tolerance value, εml = 10−6, results

in oscillations of the magnetisation length. For εml = 10−2 in the undamped

case the error in the magnetisation length never reaches the tolerance and the

behaviour is identical to the case of no re-normalisation. In the damped case the

tolerance εml = 10−2 is reached and the behaviour is similar to that of εml = 10−6,

except that the oscillations in the magnetisation length begin at a later time.

In Figure D.3 the errors in the energy (see Section 7.4.1) for the undamped case

1Based on the source code of version 0.9, the relevant function is CheckIterationLL Init.
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Figure D.4: Convergence of the maximum (over all steps) of the error in the
switching time against step size for the relaxing nano-sphere problem with α =
0.01. Magnetisation length is enforced by tolerance-based renormalisation, the
legend indicates the value of the tolerance εml.

are shown. As noted previously, εml = 10−2 behaves as the non-renormalised

case for this example. When εml = 10−6 we see an error similar to that for

the always re-normalised case, except with additional oscillations in the energy

corresponding to times where a re-normalisation is carried out.

Finally in Figure D.4 we show the convergence of the method (in terms of the

error in the switching time, (7.33)) as the step size is reduced for the damped

case. The use of εml = 10−2 or no re-normalisation (εml = 10200) gives slightly

worse errors than the tighter tolerances.

D.3 Results: the self-correcting LLG

In Figures D.5 and D.6 we show the errors in magnetisation length over time

with various values of the parameter β for the damped and undamped problems

respectively. As would be expected larger values of β reduce the error in both

cases. Note that in the damped case (Figure D.6) with β = 1000 the curve stops
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Figure D.5: Error in magnetisation length, E|m|, over time for the relaxing nano-
sphere problem with α = 0. Magnetisation length is enforced by use of the self-
correcting LLG. The legend indicates the values of β.
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Figure D.6: Error in magnetisation length, E|m|, over time for the relaxing nano-
sphere problem with α = 0.01. Magnetisation length is enforced by use of the
self-correcting LLG, the legend indicates the values of β.
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Figure D.7: Error in energy over time for the relaxing nano-sphere problem with
α = 0. Magnetisation length is enforced by use of the self-correcting LLG, the
legend indicates the values of β.

at t ∼ 480, this is due to non-convergence of the Newton-Raphson method within

the ten iteration limit.

In Figure D.7 we show the error in the energy for the undamped problem for

various values of the parameter β. We see that any β > 0 causes an error in the

energy similar to that caused by the various re-normalisation approaches shown

in Figure D.3.

In Figure D.8 we show the convergence of the maximum error in the switching

time against the time step size ∆n with two values of β. For comparison we also

show the results when re-normalisation after every step is used instead of the self

correcting term (i.e. εml = 0 and β = 0). We see that the resulting errors are

essentially identical for all three cases.

In Table D.1 we show the number of Newton-Raphson iterations required for

convergence for each value of β. For comparison we also show the result when

using IMR with Newton tolerance εN = 10−12 (recall that a sharp linearisation

tolerance is required for IMR to attain good geometric integration properties).

We see that as β is increased the mean number of Newton iterations to converge

also increases. In addition we see that the tighter tolerance required for geometric
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Figure D.8: Convergence of the maximum (over all steps) of the error in the
switching time against step size for the relaxing nano-sphere problem with α =
0.01. Magnetisation length is enforced by use of the self-correcting LLG or re-
normalisation after every step (i.e. tolerance based renormalisation with εml = 0).
The legend indicates, respectively, the values of β and the tolerance εml.

β Mean Newton iterations
0 2.0
0.1 2.0
1 2.46
10 2.68
100 3.13
1000 3.12*

(a) Solved with BDF2 and εN = 10−8. Mag-
netisation length is enforced by use of the
self-correcting LLG.

β Mean Newton iterations
0 2.0
0.1 -
1 -
10 -
100 -
1000 -

(b) Solved with IMR and εN = 10−12

Table D.1: Mean number of Newton iterations (over all time steps) for conver-
gence for the relaxing nano-sphere problem with α = 0.01. The time integration
methods used are indicated in the sub-captions. Values of β 6= 0 are not considered
when using IMR because no self-correcting term is needed to conserve |m|. *With
β = 1000 the Newton-Raphson method fails to converge at t ∼ 480.
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Figure D.9: Convergence of the maximum (over all steps) of the error in the
switching time against step size for the relaxing nano-sphere problem with α =
0.01 solved using adaptive BDF2. Magnetisation length is enforced by use of
the self-correcting LLG or re-normalisation after every step (i.e. tolerance based
renormalisation with εml = 0). The legend indicates, respectively, the values of β
and the tolerance εml.

integration with IMR has no effect on the number of iterations required.

Since β ≥ 100 is required to control E|m| to even the fairly loose tolerance of 10−6,

the use of the self correcting LLG requires, on average, at least one additional

Newton-Raphson iteration per time step. As the majority of the computation

time for a time step is spent within the Newton-Raphson method, this increases

the cost of each step by approximately 50%. Since the use of the self correcting

LLG does not provide any improvement in the overall accuracy or energy error

over re-normalising after every step (so the same ∆n is required to obtain the

same accuracy), this increases the overall cost of the method by the same factor.

Finally we study the effect of the use of the self-correcting LLG on adaptive time

integration. Since the self correcting term is part of the differential equation
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(as opposed to standard renormalisation, which is carried out separately) we

might expect adaptive time integration methods to be able to better predict

the error, and choose more appropriate step sizes. In Figure D.9 we show the

convergence behaviour when using adaptive BDF2 (as described in Section 7.3.1)

with tolerances of ε∆ = 10−4, 3 × 10−5, 10−5, 3 × 10−6, 10−6, 3 × 10−7, 10−7, 10−8

with various values of β. For comparison we also show the convergence behaviour

when the magnetisation is re-normalised after every step. If the use of the self-

correcting LLG is beneficial we would expect to see lower errors for the same

average step size, but the plots are indistinguishable.

D.4 Conclusions and future work

By design, the use of tolerance-based renormalisation allows larger errors to ap-

pear in |m| than re-normalisation after every step. It also introduces spurious

oscillations in |m| and in the error in the energy for the undamped case. It has

a slight negative effect on convergence when compared to re-normalisation after

every step, and no effect on the computational cost of the re-normalisation.

The self correcting LLG is worse at controlling errors in |m| than re-normalisation

after each step, and gives very similar errors in the energy. It gives essentially

identical convergence properties as re-normalisation after every step. Finally, it

requires additional step(s) of the Newton-Raphson method convergence (typically

one more step is needed, increasing the computation time for the simulation by

a factor of ∼ 50%).

Hence there appears to be no obvious reason to prefer either tolerance-based

renormalisation or the self correcting LLG over re-normalisation after every step

for ODE problems. Since the methods used here match those used for PDE

problems, except for the obvious lack of any spatial discretisation, this conclusion

is likely to extend to PDE problems.

Ideally we would also show wall-clock timing results for CVODE or VODE (two

widely used ODE integration packages) when using these re-normalisation meth-

ods, and compare these results with adaptive IMR. However the VODE imple-

mentation used previously in this thesis uses a derivative function, f , written

in python. This has a huge performance penalty: for the relaxing nano-sphere

problem VODE is 500x slower than oomph-lib, so any timing results would be
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meaningless. Hopefully in the future adaptive IMR will be implemented in the

CVODE/VODE framework and a fair comparison of the wall-clock timings can

be made.
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