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Abstract

The purpose of the brain is to allow animals to make rapid, complex
responses to external circumstances, which requires sensitive and effi-
cient sensory systems. The use that can be made of a sensory modality
depends entirely on how the sensory information is encoded by the
primary afferents; hence, understanding the early stages of a sensory
pathway can help to understand how that sensory information can be
used by the brain.

In this thesis we show that a simple Generalized Linear Model
(GLM) describes stimulus response properties of the primary afferents
of the rat whisker system to submillisecond precision, and analyse the
parameters to reveal that the encoding mechanism of the system as a
whole can be seen as a sparse, overcomplete basis of a low-dimensional
projection of the stimulus space.

We also show that although the neurons of the Ventro-Posterior Me-
dial (VPM) nucleus of the thalamus can be described well by a GLM,
more powerful models, with nonlinear multi-feature stimulus depen-
dencies, are able to predict their responses to a much greater degree
of accuracy, and that therefore the form of the information entering
the somatosensory cortex and the brain beyond has already undergone
some degree of information processing.

Submitted by Kyle Davies for the degree of Doctor of Philosophy.

Entitled Encoding models of the subcortical whisker pathway.

Date of submission 3 June 2014.
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Chapter 1

Introduction

The investigation of neural sensory coding can be traced through the entire

history of neuroscience. Some early thought on the mechanisms of sensory

representation can be found in the writings of Helmholtz and Müller, among

others (Rieke et al., 1999). However, the experimental methods required to

rigorously investigate the problem were not developed until later. The first

work on individual sensory neurons, which laid the basis for the study of cod-

ing as it exists today, was that of Adrian (1926). In a series of experiments

measuring electric potentials near nerve fibers, Adrian established that an

individual sensory neuron either propagate signals along the length of its

axon using stereotyped action potentials (or “spikes”), or it does not. This

is the “all-or-nothing” principle that states that in vertebrates the commu-

nication of information to the central nervous system from a sensory neuron

only occurs via the arrival of spikes. Since then the action of neurons, both

peripheral and central, has been largely studied in terms of spikes, which

can be measured extracellularly (Quian Quiroga and Panzeri, 2009).

Adrian used his data to propose the first hypothetical neural code: a

“rate code”, where stimulus strength is encoded by the number of action

potentials recorded in a time window of approximately 300 ms after stimulus

onset. However, there is no reason to believe this must be the only sensory

code, and the possibility of codes using precise spike times has long been

recognized (McCulloch and Pitts, 1943; MacKay, 1952). Between these two

types of code is a necessary trade-off between robustness and information

capacity: a rate code averages over a long time period, reducing the effect

of noise in the number and timing of spikes, but each spike carries less
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information than in a code using more precise timing information. It is still

an open question to what extent the brain uses precise spike timing.

Advancements in technology and analysis techniques over the last few

decades allow the study of neural coding characteristics in much greater

detail. One useful model system that can be examined using these techniques

is the rodent whisker system, which is the focus of this thesis.

1.1 Rat whisker system

The rodent whisker system is a useful model for the study of sensory cod-

ing and neural information processing, largely due to the readily apparent

structural-functional organization at various levels of the neural pathway.

This system is highly conserved across different rodent species, but here we

will focus on the rat system in particular.

1.1.1 Whisker usage and texture discrimination

Rats, as nocturnal animals which frequently spend time in subterranean en-

vironments, often need to explore and investigate their surroundings without

the benefit of light. One of the main ways they do this is with their whiskers,

or vibrissae, which are arranged in a grid-like pattern on either side of their

snout. Whiskers are identified by row and arc coordinates: rows are desig-

nated by the letters A to E and arcs by numbers, as shown in Figure 1.1A.

In addition, there are a few whiskers not considered to be in any arc, des-

ignated α, β, γ, δ, also shown. In total, there are around thirty whiskers on

each side of a rat’s snout.

Rats use their whiskers by sweeping them back and forth across an ob-

ject or surface of interest at around 10 Hz in an action known as “whisking”.

Sensing with whiskers is therefore generally an active process, though pas-

sive sensation of externally generated signals is also important (Kleinfeld

et al., 2006; Diamond and Arabzadeh, 2013). Rats can use their whiskers

to make remarkably fine discriminations, such as between a smooth surface

and one machined with 50 µm deep grooves spaced 90 µm apart (Carvell

and Simons, 1990, 1995), at a level of performance comparable with that of

primates using their fingertips (Guić-Robles et al., 1989). Rats can also use

their whiskers without whisking, for example when determining distances to

objects (Diamond et al., 2008; Krupa et al., 2001).
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Figure 1.1: Topographic correspondence between whisker location on the
snout and cortical barrels in rat. A, The location of whiskers on the snout,
indicating rows A-E and arcs 1-5. B, The layout of cortical barrels as would
be seen in a horizontal section through layer IV of the somatosensory cor-
tex. There is a one-to-one correspondence between individual whiskers (also
labelled are the barrels corresponding to whiskers α–δ, not considered to be
in the arcs) and barrels, as seen in the layout, giving a strong indication
that the neurons of the barrels process information from specific whiskers.
From Petersen et al. (2009).

The precise mechanism of whisker texture discrimination is debated, with

two main competing hypotheses. The first hypothesis follows from the obser-

vation that whiskers form resonant beams of different characteristic frequen-

cies (Neimark et al., 2003). Textures have a signature of spatial frequencies in

their deviations from an ideal plane. For example, a surface evenly spaced si-

nusoidal grooves could have a high spacial frequency (grooves close together),

or a low one (grooves far apart). More complex textures can be thought of

as quasi-periodic signals that have components of many spacial frequencies.

These spacial frequency components can be translated by whiskers moving

over the texture into a set of temporal frequencies, as whiskers of different

lengths are optimally stimulated at their own resonant frequency. The set

of whiskers that responds strongly to a certain texture contains an encoding

of the various spatial frequencies of the texture (Neimark et al., 2003; Hart-

mann et al., 2003). The other main hypothesis is that textures are instead

coded by temporal patterns of movement, called “kinetic signatures”, that

are induced in single whiskers (Arabzadeh et al., 2003, 2005; Hipp et al.,

2006). Several different forms of the kinetic signature have been proposed,

including various powers of mean whisker speed (Arabzadeh et al., 2003;
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Gerdjikov and Bergner, 2010), the power spectrum of the whisker vibra-

tions (Andermann et al., 2004), and other aspects of the form of whisker

motion, particularly “slip-stick” events (Ritt and Andermann, 2008; Wolfe

et al., 2008).

Rats are able to make reliable texture discriminations even when most of

their whiskers have been clipped (von Heimendahl et al., 2007), though the

integration of signals from multiple whiskers does improve discriminatory

power (Lottem and Azouz, 2008; Krupa et al., 2001). This suggests that

the spatial arrangement of stimulated whiskers is not necessarily important

in texture coding (Diamond, 2010), counter to the resonance hypothesis,

but consistent with the predictions of the kinetic signatures hypothesis. For

texture discrimination at least, the encoding of kinetic features of single

whisker dynamics seems to be sufficient.

1.1.2 Whisker system neuroanatomy

Vibrissal dynamics play an important sensory role for rats, so the informa-

tion provided by whiskers must be translated into a useful representational

signal in the brain. The discovery of the barrel cortex by Woolsey and Van

der Loos (1970) was the first step to understanding the neural systems that

perform this processing, and enabled the use of rodent whisker system as

a model system for the study of sensory encoding (as well as broader neu-

roscientific research, such as plasticity and development, e.g. Feldman and

Brecht (2005)).

The barrel cortex is a structure found in layer IV of the primary so-

matosensory cortex (SI), with distinguishable “barrels”, separated by regions

called “septa”, that show a strong topographical correspondence to the lay-

out of whiskers on the snout, as seen in Figure 1.1B. Since the barrel cortex

was discovered, the anatomy of the neural pathways involved with whisker

sensation has been laid out with increasing detail. Three primary afferent

streams have been described, known as the “lemniscal”, “extralemniscal”,

and “paralemniscal” pathways (Diamond et al., 2008; Alloway, 2008).

As shown in Figure 1.2, all three whisker neural pathway begin with

the mechanoreceptors located in follicles at the base of whiskers (Rice and

Munger, 1986). These receptors have a variety of morphologies and locations

within the follicle (Rice and Munger, 1986), and their cell bodies are located

in the trigeminal ganglion. The topographic organization found in the bar-
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Figure 1.2: Schematic of the whisker sensory pathway. The cell bodies of the
primary afferent neurons of all pathways of the system are located in the
trigeminal ganglion. There is evidence that there is functional specialization
already at the thalamic stage, with the paralemniscal pathway localized in
the POm rather than the VPM. From Diamond et al. (2008)

rel cortex has not been shown for these neurons, though some studies have

indicated that neurons innervating whisker rows A to E are located dorsally

to ventrally, respectively (Leiser and Moxon, 2006). The possible relations

between morphology and response have not been well explored (Diamond,

2010). Their response properties were initially investigated using “ramp-and-

hold” stimulation protocols, in which whiskers are deflected to a constant

angle before being released. The stimulus can be changed by varying either

the magnitude of the whisker deflection or the speed with which it is dis-

placed. These studies resulted in the classification of these primary afferents

as rapidly adapting or slowly adapting (Zucker and Welker, 1969; Leiser and

Moxon, 2007). Both types show a high transient firing rate in response to

whisker deflection, but only slowly adapting cells show continued firing in

response to a sustained deflection. Later studies have shown that when pre-

sented with more complex whisker stimuli, such as low-pass filtered white

noise, they exhibit highly reproducible responses to repeated stimuli (Jones

et al., 2004a), indicating the possibility for a highly informative spike-timing

code.

Following the lemniscal pathway, the primary downstream neural struc-

tures are the “barrelettes” of the principal brainstem trigeminal nucleus
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(Belford and Killackey, 1979). Axons from these cells project to “barreloids”

in the dorso-medial region of the ventro-posterior medial nucleus of the tha-

lamus (VPM) (Van Der Loos, 1976). The axons from the barreloids mainly

terminate in the barrels of SI. Neurons in the barrelettes and barreloids are

organized into highly structured anatomical maps, with identifiable clusters

that have a one-to-one correspondence with individual whiskers, similarly to

the barrel cortex. Although the barrels, barreloids and barrelettes respond

most strongly to stimulation of a single “principal whisker”, there is in fact

considerable cross-whisker response, which has been measured using intra-

cellular recordings in SI (Moore and Nelson, 1998) and thalamus (Brecht

and Sakmann, 2002) and found to encompass most of the whisker pad at a

sub-threshold level.

In the extralemniscal pathway, the mechanoreceptors also project to bar-

relettes, in the caudal region of the interpolar trigeminal nucleus. In turn,

these project to the ventrolateral region of the VPM, corresponding to the

“tails” of the barreloids. The pathway terminates in the septal regions of

the barrel cortex, as well as in the secondary somatosensory cortex (Pier-

ret et al., 2000). The septal regions show equal responsiveness to multiple

whiskers, and seem to encode whisking dynamics (Alloway, 2008). As they

also have projections to the motor cortex whisker representation, it may be

the case that they are more strongly involved in regulation of whisker motor

activity than the barrels (Alloway et al., 2004).

In contrast to the lemniscal and extralemniscal pathways, the paralem-

niscal pathway begins with neurons in the rostral region of the interpolar

trigeminal nucleus that are not organized with spatial correspondence to the

whiskers. They project primarily to the medial section of the posterior nu-

cleus (POm) and the zona incerta (Pierret et al., 2000; Veinante et al., 2000).

It is possible that the paralemniscal pathway integrates multiple-whisker in-

formation (Diamond et al., 1992; Ahissar et al., 2000).

At each successive stage in the main whisker pathway, there is a no-

table expansion in the number of neurons per whisker. It is estimated that

each whisker follicle is innervated by around 150 mechanoreceptors (Lee and

Woolsey, 1975; Rice et al., 1986), compared with approximately 250 neurons

in each thalamic barreloid (Land and Simons, 1985) and around 10 000 per

cortical barrel column (Welker and Van der Loos, 1986). A similar pattern

has been noted in many other sensory pathways in different species, in-
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cluding for example the cat visual system (Peters and Payne, 1993). These

anatomical considerations show that the information processing context for

neurons changes considerably at each stage, but it is not well understood

why this expansion in the number of neurons exists. Coding studies have

shown that a good reconstruction of a stimulus can be made using signals

from, for example, the VPM or trigeminal ganglion (Jones et al., 2004a;

Arabzadeh et al., 2006), so it may be hypothesized that this expansion ex-

ists to allow more sophisticated processing in the cortex. For example, it

could allow useful adaptation to changing stimulus statistics, allow differ-

ential responses according to brain state, or enable integration of various

aspects of the stimulus encoding, such as information from other whiskers.

A good explanatory model of the neural code at each stage of the whisker

pathway may be necessary in order to understand these kinds of anatomical

features.

1.2 The neural coding problem

Understanding how sensory information from the external world is repre-

sented and transformed in the brain is an important aim of neuroscience.

The process of turning stimuli into spike trains can be considered as a cod-

ing problem: what is the code that neurons use to represent the external

world? However, neuronal responses are complex and variable, even when

presented with repeated identical stimuli, which makes investigation of this

code difficult. Unpredictable influences on neural activity include stochas-

ticity in the biophysical mechanism of firing, changes in a neuron’s activity

such as variations in ion channel expression, and changes in brain state. We

can study the earliest stages of sensory pathways, such as the neurons of

the trigeminal ganglion, to minimize these sources of variability, but they

are still present. Additionally we wish to understand the transformation of

sensory representation through downstream areas of the brain, where such

effects become more pronounced. Due to this variability, it is necessary to

investigate the coding problem in the context of probability theory.

We consider a neuron’s responses to be drawn from a distribution P (r|x),

where r is response and x the stimulus, that “translates” from stimulus

to spike train. This distribution is sometimes called a “probabilistic dic-

tionary” (Rieke et al., 1999), and represents all that we know about the
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encoding mechanism used by a neuron. More accurately, it represents the

coding activity of the measured neuron and all other stages between the

applied stimulus and measured response, such as the primary afferents of

the system. Determining an appropriate form for this dictionary is one of

the major objectives of neural coding research.

Biologically, obtaining an accurate probabilistic dictionary means that

we have a good idea of the computations that a neural pathway is perform-

ing. Focusing on sensory pathways allows us to study neural computations

under conditions where the primary function of the system is essentially

known and the input to the computations can be well controlled. Under-

standing the computations that take place at each level of the pathway may

allow us to find commonalities that may generalize to information processing

by neurons in general. Since the function of neurons is to process informa-

tion, understanding neural activity on this somewhat abstracted level is a

useful step towards understanding brain activity as a whole.

1.2.1 Quantifying the probabilistic dictionary

If infinite data were available, it would theoretically be possible to measure

directly the probabilistic neural response to all stimuli. However, this is not

practical and arguably not even useful for understanding the structure and

function of neural responses. We therefore instead postulate a functional

model and fit it to the data. This has the effect of reducing the very high

(or infinite) dimension problem of estimating individual stimulus-response

probabilities to a much lower dimension functional parameterization prob-

lem. Choosing an appropriate model is not a simple task, and requires bal-

ancing several objectives. First, the model should accurately reproduce at

least the broadest aspects of neural behaviour in a predictive sense. A more

detailed picture is better, but can conflict with the other objectives. Second,

the model also must be theoretically and computationally tractable; if the

model is too difficult to fit to data it cannot be used. Finally, the model

should help to explain the action of neurons in a reasonably intuitive way;

we wish to understand the neural code in terms of what information it is

carrying (e.g. what features of whisker motion) and how it carries it (e.g.

importance of precise spike timing). If this final objective is not met, it is

difficult to say how the modelling has extended our understanding of the

action of neural systems. Any deviations from the behaviour predicted by
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the model can then be used as a starting point to investigate the influence

of more complex interactions.

One widely used model is the Linear-Nonlinear Poisson (LNP) model

(Marmarelis and Marmarelis, 1978; Chichilnisky, 2001), which takes the

form1

λt = f (K~xt) ,

where λt is the rate parameter of a Poisson distribution determining the rate

of spikes firing at time t:

P (rt|xt) = e−λt
λrtt
rt!
.

The “kernel” K is an m-by-n matrix (often with m = 1) that maps the

n dimensional stimulus space to the m-dimensional “relevant subspace”,

where m may be far smaller than n. K can be interpreted as the neuron’s

receptive field, or stimulus features which modulate the neuron’s response.

In the whisker system, the stimulus ~xt would describe the recent history of

the whisker position. Each of the m rows of K would then be a linear feature

of this stimulus, which could include velocity or acceleration, for example.

The function f transforms the linear projection of ~xt onto the kernel into

a firing rate and serves to account for non-linearity in the neural response,

such as saturation, thresholding, and positivity of firing rate. The LNP is

useful as it is simple: the response depends only on a linear subspace of the

stimulus at a certain time. It also is relatively easy to fit the model, only

requiring estimation of K and f , as discussed in Section 1.2.2.

Although the LNP model has proved a useful context for investigating

the coding problem, it is a very simplistic caricature of a real neuron. How

well does it capture the important statistics of spike trains? Early neural

response experiments had suggested that neural spike counts have a variance

similar to their mean (Heggelund and Albus, 1978; Dean, 1981; Sestokas and

Lehmkuhle, 1988; Shadlen and Newsome, 1998), as predicted by a Poisson

model, but other studies, particularly of cells early in the sensory pathway,

have found very low variability, even approaching the theoretical minimum

for a count statistic (Miller and Mark, 1992; Berry and Meister, 1998; Kara

et al., 2000; de Ruyter van Steveninck et al., 1997). Another obvious feature

1All vectors ~v in this thesis are column vectors unless explicitly transposed with the
notation ~vᵀ. Matrices are represented by boldface capital letters: A.
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that is not accounted for by the LNP model is refractoriness: the model

predicts the occurrence of small inter-spike intervals, potentially arbitrarily

close to zero, while real inter-spike interval distributions display a lack of

spikes within a refractory period.

The LNP model with a single-dimensional kernel is in fact a specific in-

stance of a relatively broad model class known as Generalized Linear Models

(GLM) (Nelder and Wedderburn, 1972; Paninski, 2004). The basic form of

a GLM is given by the equation

E [rt] = g−1
(
~xt

ᵀ~k
)
.

Here, rt is the neural response for the given stimulus ~xt, i.e. the number of

spikes, ~k is the vector of model parameters, which are linear weights of the

input components, and g(.) is known as the “link function” describing the

relationship between the linear projection of the stimulus and the expecta-

tion of the response. The distribution of the response variable can be taken

to be any distribution in the exponential family, which includes for example

the Poisson distribution and the binomial distribution.

It can be seen that the LNP model is a GLM by noting that for a Poisson

distribution,

E [rt] = λt.

Then, g−1 corresponds to the tuning function f and ~k to a kernel K of

one dimension. Noticing this relationship, it becomes easy to make the LNP

more general, in order to overcome some of its weaknesses: we can simply

allow more terms in the input ~xt, such as nonlinear functions of the stimulus,

the spike history, and the spiking activity of other neurons.

1.2.2 Parameterizing neural models

Reverse correlation

The spike-triggered average (STA) and spike-triggered covariance (STC)

methods have been the most widely used methods for investigating features

that make a neuron fire, and are known together as reverse correlation meth-

ods.

The STA method is simple, intuitive, and widely-used (Ringach, 2004),
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in which the feature estimate (the spike-triggered average) is given by

k̂STA =
1

N

∑
t∈T

~xt,

where N is the number of spikes, T is the set of spike times, and ~xt is

the stimulus vector for the spike in time bin t, which for the whisker sys-

tem would typically be a segment of the applied whisker position a length

on the order of 100 ms. In other words the estimate for ~k is given by the

average stimulus preceding a spike, or the mean of a sample from the spike-

conditional stimulus probability distribution P (~xt|rt = 1). Spike-triggered

averaging has seen wide use in the field of neural coding, with some signifi-

cant results and progress (Emerson et al., 1992; Sakai et al., 1995; Chichilnisky,

2001). One weakness of the method is that the STA only represents a single

relevant dimension, so additional excitatory or inhibitory features to which

the neuron is sensitive cannot be recovered.

The STC method is related to STA, but using the second order statistics

(the covariance) of the stimulus leading up to a spike rather than only the

mean. The neuron’s receptive field is estimated using the covariance matrix

of the stimulus vectors for the evoked spikes. Along some dimensions, the

variance of the spike-triggering stimulus ensemble is similar to the variance

of the non-spike-triggering ensemble, which suggests that these dimensions

have no effect on the probability of the neuron firing. Along others, the

variance may be smaller, indicating that when the stimulus is far from zero

along that dimension there are few spikes; i.e. it is an inhibitory stimulus

feature. The converse is true for dimensions of higher variance in the spike-

triggering ensemble: they represent excitatory stimulus features.

An eigen-decomposition of the covariance matrix produces eigenvectors,

which can be interpreted as stimulus features to which the neuron responds

quadratically. The eigenvalues corresponding to the features indicate the

relative importance of the feature in terms of how strongly a neuron responds

to it: large eigenvalues indicate a dimension along which the variance is

greater than that of the underlying stimulus, i.e. an excitatory feature and

small eigenvalues indicate an inhibitory feature. The main improvements of

the STC estimate over the STA is that it provides a relevant subspace of

more than one dimension, and can reveal inhibitory as well as excitatory

features. The STC method has been used in several studies in the whisker
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coding literature, including Maravall et al. (2007) and Petersen et al. (2008).

However, it can be shown that in general STA and STC methods do not

converge to the true relevant stimulus subspace, even if the LNP model is an

accurate description of the neural response (Paninski, 2003). One obvious

case of this for STA is if the tuning function f is symmetrical; the spike-

triggered average will converge in the limit of infinite data to the zero vector

in that case. This implies that the STA estimate will be spurious for any

finite amount of data. Mathematically it can be shown that the STA is only

guaranteed to converge on the true relevant subspace if the subspace is one

dimensional, the stimulus distribution is radially symmetric, and the first

moment of f is not zero. Deriving similar consistency constraints for the

STC estimate shows that it will only converge if the stimulus is Gaussian

distributed and the variance of the spike-triggering stimulus distribution

projected onto the relevant subspace is sufficiently different from the total

variance of the distribution (Paninski, 2003). Perhaps the most important

of these constraints on the validity of reverse correlation methods is the

requirement for a radially symmetric stimulus distribution. This constraint

is immediately broken in the case of, for example, natural stimuli. Since the

work of Rieke et al. (1995) and de Ruyter van Steveninck et al. (1997), which

showed that sensory neurons in the bullfrog auditory system and fly visual

system respectively had much more reliable responses to naturalistic stimuli,

the use of natural stimuli has become increasingly prevalent in neural coding

studies (e.g. Smyth et al. (2003); Talebi and Baker (2012)).

Additionally the STA and STC were developed to parameterize the LNP

model, and do not have wider validity in different model classes. For exam-

ple, models with recurrent connections between neurons, or those taking into

account the effect of recent spiking history. If models to describe more com-

plicated neural behaviour are required, more principled approaches must be

taken to parameterizing them.

More sophisticated approaches

The STA and STC methods have been useful for investigating the recep-

tive fields of neurons, but they have weaknesses as described above. A more

general, widely studied, and highly successful framework is that of Bayesian

inference (a thorough treatment of the foundations of the Bayesian approach

can be found in many books; see, for example, Jaynes (2003) or MacKay
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(2003)). In a Bayesian approach, as before, we postulate that the neural

response can be characterized by a probability distribution described by a

model, but to fit the model we describe our knowledge of the parameters us-

ing a probability distribution p(~k|X, ~r) (the “posterior” distribution). If our

model provides an expression for the likelihood p(~r|X,~k), as most common

statistical models do, this leads automatically to expressions for the model

parameters via Bayes’ Theorem when combined with a prior p(~k):

p(~k|X, ~r) =
p(~r|X,~k)p(~k)

p(~r|X)

This approach brings several advantages, one of the most important of

which for our purposes it can be applied to any model class for which a

likelihood function is defined, including those for which reverse correlation

estimates are invalid (artificial neural network models, for example). Another

important aspect is the influence of the prior, which can be selected to encode

some of the expectations we have regarding the form of stimulus dependence

in the model, increasing the parameters’ interpretability and reducing the

amount of data required for accurate estimation (Park and Pillow, 2011).

Despite the theoretical simplicity of Bayesian inference, practical issues

remain, the most important of which being computational tractability. In

general there is not an analytic expression for the posterior distribution and

approximations must be made. The specific solutions to these issues and

other subtleties are discussed in the methods sections of chapters 2, 3, and

4.

1.3 Aims

Although many aspects of neural coding in the whisker system and in sen-

sory systems in general are reasonably well understood, there are still im-

portant unanswered questions. As discussed above, in order to investigate

these problems in a rigorous way, it is necessary to have a good quantitative

model of the response.

The overarching aim of the study is to understand the sensory code in

the early stages of the rat whisker pathway using a statistical modelling

approach, and identify effective modelling methods for the neural coding

problem. This is primarily achieved by testing how well the models predict
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neural responses and investigating any areas where the models do not work

well. This is particularly important in the context of the most biologically

relevant stimuli, in this case naturalistic textures.

1.3.1 Understanding the input into the whisker sensory path-

way

Studies have been done into the earliest stage of the whisker pathway, the

trigeminal ganglion, on a qualitative level (Zucker and Welker, 1969; Lichten-

stein et al., 1990) and on a more mechanistic—though still empirical—level

(Mitchinson et al., 2004; Leiser and Moxon, 2007), but we wish to under-

stand the information carried by the sensory pathway at the initial stages

from a coding perspective. If a good, predictive model of the responses of

trigeminal ganglion neurons can be found, then we can say with a reason-

able degree of certainty that we have some understanding of the information

entering the sensory system.

1.3.2 Investigating the transformation in the neural code in

the early stages of the pathway

Following the sensory pathway from whisker to cortex, at each stage the

anatomical conditions change. Is this associated with a change in coding

mechanisms? Studies such as Bale and Petersen (2009) suggest that it is,

but we wish to confirm and explore this more rigorously, applying statistical

modelling techniques to the responses found in the VPM thalamus.

1.3.3 Investigating the neural code with respect to natural-

istic stimuli

Most work on whisker somatosensory coding to date has used somewhat

unnatural stimuli such as ramp-and-hold or sinusoidal stimuli. However, in

order to understand a neural code it is important to investigate it under

rich stimulus conditions, ideally similar to those encountered in normal be-

haviour. This can be justified from an evolutionary perspective: the neural

code would have been honed over the evolutionary history of rodents to best

represent and discriminate the kinds of stimuli important to rodent survival.

We therefore make use of dynamic whisker stimuli, including naturalistic

stimuli.
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The use of natural stimuli in the whisker system is difficult as it typically

requires chronic recordings from awake animals, which means experimental

control of the stimuli is limited. To make recordings from strongly controlled

repeated trials it is useful to use “naturalistic” stimuli, stimulus patterns

measured from real whisker movements. Such naturalistic stimuli are begin-

ning to become available thanks to high-speed video cameras (Wolfe et al.,

2008), and are used in the experiments that provided the data for this study,

described in detail in Chapter 2.

An important aim of the analysis is therefore to investigate sensory cod-

ing in the context of naturalistic stimuli. An important check on the models

is how well they predict the measured responses to these stimuli.

1.4 Author contribution

The research presented in this thesis was highly multi-disciplinary and as

such represents the work of multiple individuals. In particular, the research

leader Rasmus Petersen oversaw much of the research direction, experimen-

tal design, and data analysis.

Most experimental work was carried out by Michael Bale, who also was

heavily involved in the experimental design. Greta Santagata and Oliver

Freeman assisted with experimental work, and Robin Ince set up some of

the initial data handling software.

The author’s contribution consisted of the computational and statistical

modelling aspects of the work. This involved data handling, model selection,

implementation, fitting, evaluation, and refinement. All computational work

was performed using software custom written using MATLAB R2011a (The

Mathworks, Inc., Natick, Massachusetts, United States).

1.4.1 Publications and presentations resulting from this work

Bale, M. R., Davies, K., Freeman, O. J., Ince, R. A. A., & Petersen, R.

S. (2013). Low-Dimensional Sensory Feature Representation by Trigeminal

Primary Afferents. Journal of Neuroscience, 33(29), 1200312012.

Davies, K., Bale, M. R., Petersen, R. S. Bayesian model-based investi-

gation of sensory coding in rat trigeminal ganglion. University of Manch-

ester Faculty of Life Sciences Research Symposium. The Armitage Centre,

Manchester UK. 21 September 2012.
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April 2013.

Davies, K. Sensory coding by collective neuronal action in the thala-

mus. Lecture. Systems Biology Inter-DTC Conference. Manchester Interdis-

ciplinary Biocentre, Manchester UK. 22 June 2011

Davies, K. Sensory coding in the trigeminal ganglion. Postgraduate prize

lecture. University of Manchester Faculty of Life Sciences Research Sympo-

sium. Sugden Centre, Manchester UK. 19 September 2014.
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Chapter 2

A generalized linear model of

trigeminal ganglion neurons

reveals population

representation of whisker

motion

2.1 Introduction

The primary afferent neurons of any sensory modality determine what infor-

mation is available to downstream neurons for further processing and use.

Understanding the transduction properties of a sensory system is therefore

key for understanding wider action of the system. The primary afferents in

the rodent whisker system are mechanoreceptors that innervate the whisker

follicle, whose cell bodies are located in the trigeminal ganglion (Rice et al.,

1986; Ebara et al., 2002). Forces on an animal’s whiskers induce strains in

the follicles, deforming the mechanoreceptors and causing them to fire action

potentials. The firing rate of these neurons has been shown to be modulated

reliably by a number of features of both passive and active whisker deflec-

tion, including position, velocity, and direction (Zucker and Welker, 1969;

Gibson and Welker, 1983; Lichtenstein et al., 1990; Jones et al., 2004a).

Previous studies have revealed that these neurons have highly reliable
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responses and extremely precise spike-timing when stimulated by complex

whisker motion such as white noise Jones et al. (2004b). Attempts have been

made to describe these properties using bio-mechanically motivated models

of the whisker follicle (Mitchinson et al., 2008; Lottem and Azouz, 2011).

However, these methods have required hand-tuning of the model parameters

and the resulting models do not have a simple interpretation in terms of the

information encoded by the spikes. Here we take a different approach, using

the GLM framework to investigate the response properties of the primary

afferents to dynamic whisker stimulation. This approach has several advan-

tages, one of the most important of which is that the log posterior probability

distribution of the parameters is convex (Paninski et al., 2007). This makes

it computationally tractable to automatically fit the model parameters using

a Bayesian approach, and summarize the posterior accurately. The parame-

ters can then be interpreted in an intuitive way, in terms of stimulus filtering

and the information encoded in the pattern of action potentials.

The majority of the work contained in this chapter was published in Bale

et al. (2013).

2.2 Methods

2.2.1 Electrophysiology

Recordings (performed by M. Bale) were taken from anaesthetized adult

Wistar rats (n = 8, mean weight 193 g, SD 24 g, urethane anaesthetic at

1.5 g/kgbody weight) that were placed in a stereotaxic apparatus. The body

temperature of the rats was maintained at 37.5 ◦C. A piezoelectric motor was

used to insert a tungsten microelectrode (8 MΩ to 10 MΩ) into the trigeminal

ganglion. Extracellular recordings were amplified, sampled at 24.4 kHz and

bandpass filtered (300 Hz to 3000 Hz) before being spike-sorted to obtain

spike trains from individual units (see Section 2.2.3).

2.2.2 Whisker manipulation

The spiking activity of individual neurons was measured in response to de-

flection of their innervated whiskers. All whiskers were trimmed to a length

of 5 mm and manually stimulated until a clearly responding unit was iden-

tified in the measured electrophysiological signal. Once a clearly responding

24



Figure 2.1: Samples of the whisker stimuli and responses. A, Autocorrela-
tion of the white noise stimulus. B, Snippet from the white noise stimulus,
showing whisker position against time. C, D, raster plots for two example
units for white noise. Each point is a spike plotted by its trial number and
when it occurred relative to the stimulus. E, Autocorrelation of the texture
stimulus. F, Snippet from the texture stimulus. G, H, raster plots for the
same units as C and D for texture.
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unit was found, its innervated whisker was inserted into a piezoelectric stim-

ulator capable of applying a rostro-caudal displacement of ±0.8 mm to the

whisker relative to its resting position, to deflect the whisker according to

the stimulus protocol.

The stimulus protocol consisted of two different types of stimulus, here-

after called the “white noise” and “naturalistic” stimuli. The white noise

stimulus was created by sampling pseudorandom white noise with a Gaus-

sian amplitude distribution at 12.2 kHz, before convolving with a Gaussian

kernel with a standard deviation of 1.6 ms. This was done in order to restrict

the stimulus power in frequencies at and above the resonant frequency of

the piezoelectric stimulator, improving the fidelity of the induced whisker

motion. The autocorrelation structure of the resulting stimulus is shown in

Figure 2.1A, and a 1 s sample of the stimulus is shown in Figure 2.1B.

The naturalistic stimulus was created from optical recordings of whisker

motion in the rostro-caudal direction captured by Wolfe et al. (2008). A

linear CCD array was used to record whisker position while awake ani-

mals were palpating a textured surface (grade P150 sandpaper). Segments

of the whisker position recorded during contact with the surface were joined

together to form a 10 s sequence. The autocorrelation structure and a 2 s

sample of this stimulus are shown in Figure 2.1C and D respectively.

The whisker manipulation protocol consisted of 50 epochs, each of which

contained three 10 s sequences: the naturalistic sequence, a repeated white

noise sequence, and a non-repeated white noise sequence that was unique to

each epoch. The response to the 500 s non-repeated the white noise stimulus

was used to fit the model parameters, while the quality of the model descrip-

tion was tested by comparing its predicted response to the repeated white

noise and naturalistic stimuli with the experimentally measured response.

2.2.3 Spike sorting

Spike trains from individual units were obtained from the extracellular

recordings using a standard spike-sorting approach: first, 2 ms windows of

the recorded potential were extracted whenever the potential crossed a

threshold. The dimensionality of these windows was reduced using prin-

cipal component analysis to 5, and clusters discovered by the expectation-

maximization fit of a Gaussian mixture model. For this dataset, only one

spike train was ever obtained from each recording made. Units that did not
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exhibit a clear refractory period were discarded. A total of 32 neurons were

recorded.

2.2.4 Jitter estimation

A measure of the trial-to-trial variability in spike timing, known as “jitter”,

was calculated for each neuron using the method described by Montemurro

et al. (2007). First, firing events were found by binning responses to a stim-

ulus at 1 ms precision and taking each bin in which the firing rate was at

least 50 % of the units maximal firing rate. The relative timing of spikes

within ±2 ms of these events were pooled and the jitter was calculated as

the standard deviation of these time differences.

2.2.5 Generalized linear model

To investigate the coding properties of trigeminal ganglion neurons, we fitted

GLMs to single unit responses to the non-repeated white noise (Nelder and

Wedderburn, 1972; Truccolo et al., 2005; Paninski, 2004; Paninski et al.,

2007). To perform this analysis, the observed spike trains were discretized

into bins (time bin widths in the range 0.125 ms to 10 ms, hereafter denoted

by the variable τ) and represented by the vector #»r : element rt was 1 if one

or more spikes occurred in time bin t, and 0 otherwise. The whisker stimulus

was represented as a matrix, X, with rows denoted #»xt
ᵀ. The elements of these

rows were samples of the applied whisker position in the interval −30 ms to

10 ms relative to the time bin t, sampled at 1 ms intervals (so the matrix

X had 41 columns). This resampling was performed in order to reduce the

number of model parameters while maintaining essentially all of the stimulus

information: the original sampling rate was 12.2 kHz, but the stimulus had

an autocorrelation time of 1.6 ms, negating the need for so many samples.

Note that this choice of stimulus representation is independent from the

time bin width.

GLMs provide a natural way to account for, and estimate, both the

receptive field of a neuron and spike-history effects such as refractoriness.

The input to the GLM consisted of both the stimulus time series and the

recent spiking history of the neuron. These inputs were linearly filtered,

and passed through a nonlinear function. A probabilistic (Bernoulli) spike

generator used the resulting output to produce a sequence of ones and zeros
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Figure 2.2: Generalized Linear Model schematic. The projection of the recent
whisker stimulus #»xt onto the stimulus filter

#»

k (i.e.
#»

k ᵀ #»xt is summed with the
contribution from the spike history (projection of #»nt onto the spike history
filter

#»

h ) and the constant term b. The result is passed through the nonlinear
function f (.) to obtain the probability of a spike in the time bin t.

representing the presence or absence of spikes. A schematic of the model is

shown in Figure 2.2. The functional form of the model that we used was as

follows:

p
(
rt = 1| #»k , #»

h , b, #»xt

)
= πt = f

(
#»

k ᵀ #»xt +
#»

h ᵀ #»nt + b
)
. (2.1)

The probability of firing in the model depended on three terms. The first

term was the scalar product between the whisker stimulus vector #»xt, and the

“stimulus filter”
#»

k , which determined the kinetic features of whisker motion

to which the model neuron was sensitive. The second term was the scalar

product between the recent spiking history (referred to as the “spike feed-

back” term), represented by #»nt, and the “spike history filter”
#»

h . #»nt consisted

of 10 elements nt;1, nt;2, . . . , nt;10 and was defined in terms of Gaussian basis

functions, where the basis functions had width σ = 1ms
τ (i.e. equal to 1 ms

in units of the time bin width) and centres µj = τ(t − (2j − 1)σ). If these

are collected into a basis change matrix B where Bij = exp−(µj − µi)2

2σ2
,

the expression for #»nt is then

#»nt = B #          »rt−m:t
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where m = ceil
(

20ms
τ

)
and was the number of previous time bins taken

into account. Therefore for any value of the time bin width, 20 ms of the

spiking history was represented by the 10 values of #»nt. As an example, for

time bins with a width of 2 ms, the Gaussian basis functions are centered ex-

actly on the previous time bins. Depending on the form of
#»

h , the probability

that the model fired a spike could be suppressed by recent spiking (refrac-

toriness) and/or facilitated (burstiness). The final term of Equation 2.2 was

the constant input b, which set the spontaneous firing rate of the model.

The nonlinear function f (.) was the logistic function f (x) = 1
1+exp (x)

The expression for the probability πt of finding a spike in a time bin t, as

given in Equation 2.1, was used with the Bernoulli distribution to calculate

the full log-likelihood:

log p( #»r | #»k , #»

h , b,X) =
∑
t

rtπt + (1− rt)(1− πt) (2.2)

We used an uncorrelated Gaussian prior for the parameters, with the

scale determined by hyperparameters α and β:

log p
(

#»

k ,
#»

h |α, β
)

=
α

2

∥∥∥ #»

k
∥∥∥2

2
+
β

2

∥∥∥ #»

h
∥∥∥2

2
. (2.3)

Here, ‖.‖22 represents the squared 2-norm, i.e. ‖ #»x‖22 =
∑

i x
2
i . The pa-

rameter b had a flat prior (i.e. it was fitted by maximum likelihood).

The GLM was fitted by finding the parameters b,
#»

k , and
#»

h , which maxi-

mized the probability of the model given the data (the spike train #»r and the

stimulus matrix X), known as the Maximum A Posteriori (MAP) fit. The

full log-posterior log p(
#»

k ,
#»

h , b| #»rX) is given by the addition of Equations 2.2

and 2.3 along with a constant that does not affect the MAP parameters.

GLMs possess the convenient property that the log-posterior probability

is a concave function of the parameters, and therefore has a single, global

maximum (Paninski et al., 2007). This means that the MAP parameters

can easily be located by the iteratively reweighted least squares method

(Nelder and Wedderburn, 1972), equivalently known as the Newton-Raphson

method.

A type-II maximum likelihood procedure was used to fit the hyperpa-

rameters that determined the scale of the filters
#»

k and
#»

h (MacKay, 1992;

Park and Pillow, 2011). This is an iterative procedure that alternates be-
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tween finding the MAP fit for the current hyperparameters and updating

the hyperparameters to maximize the marginal likelihood. The marginal

likelihood p ( #»r |X) was calculated using the Laplace approximation for the

posterior. In this approximation, the posterior distribution is represented

by a Gaussian with mean given by the MAP parameters and covariance

given by the inverse of the Hessian matrix of the log-posterior evaluated at

this point. The marginal likelihood was then maximized by updating the

hyperparameters according to the fixed-point formulae:

αnew =
dk − αTr(Ck)∥∥∥ #»

k
∥∥∥2

2

,

βnew =
dh − βTr(Ch)∥∥∥ #»

h
∥∥∥2

2

.

Here, dk and dh were the dimensionality (number of parameters) of
#»

k

and
#»

h respectively. Ck and Ch are the posterior covariance submatrices

corresponding to the parameters in
#»

k and
#»

h . This procedure was iterated

5 times.

2.2.6 Model evaluation

Once the best-fitting GLM parameters had been identified for a given unit

and time bin duration, the next step was to assess the predictive power

of the model. To do this, we used the neural responses evoked by the re-

peated stimulus sequences (50 each of white noise and texture) to measure

the “experimental” peristimulus time histogram (PSTH). Then, we used

the repeated stimulus sequence as input to the model and obtained its pre-

dicted response. By repeating this 50 times and averaging the responses, we

obtained the “predicted” PSTH. To compare the quality of the prediction,

the Pearson correlation coefficient between the experimental PSTH and pre-

dicted PSTH was calculated for each unit.

This correlation coefficient was corrected for sampling error as described

by Sahani and Linden (2003). Briefly, we attempt to eliminate the unpre-

dictable element from the response variance (over time) by using the esti-

mator

Var [ #»r ] =
1

N − 1
(NVar [〈 #»r 〉]− 〈Var [ #»r ]〉) (2.4)
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instead of the plain Var [〈 #»r 〉]. Here 〈.〉 denotes the average over trials and

N is the number of elements in #»r .

This correction accounts for the fact that there may be be an unpre-

dictable element in the measured spike trains. That is, in a trial indexed by

i, #»r (i) = #»µ + #»η (i) where #»µ is the stimulus-dependent component common

over trials and #»η (i) is a zero-mean noise component that varies over trials.

The expression given in 2.4 can be shown to cancel (in expectation) the

variance in the signal due to the noise in the calculation of the correlation

coefficient.

2.2.7 Response delay estimation

An estimate of lag between the stimulus feature the model was responsive

to and the spike time was calculated for each cell. This was calculated as a

weighted average:

T =

∑
i ki∆ti∑
i ki

,

which could be thought of as the “centre of mass” of the filter
#»

k . ∆ti is the

time of each component of ki relative to the spike time, i.e. −30 ms to 10 ms

in 1 ms intervals, as the stimulus was sampled at 1 ms.

2.2.8 Feature space analysis

We characterized feature selectivity by applying a Principal Component

Analysis (PCA) to the set of stimulus filter vectors. PCA can be thought

of as finding a new orthonormal set of basis vectors for a vector space that

is ranked by the variance of the data in the direction of each basis vector.

As an example, if all of the stimulus filters were exactly the same shape

(for example, a velocity filter) and differed only in scale, PCA would recover

that one feature and show that it accounted for all of the variance in the

data. For real data, not all the variance will be in one dimension, but it may

be that only a few dimensions account for most of the difference in shape

between the stimulus filters.

Formally, PCA is performed by applying the eigendecomposition to the

covariance matrix of the filters KᵀK, where the rows of K are the stimu-

lus filters for all of the models. This decomposition yields eigenvectors (the

principal components), and corresponding eigenvalues that are equal to the
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variance of the set of filters along the component. We defined the relevant

feature space as the hyperplane spanned by the principal components ac-

counting for 95 % of the variance in the set of stimulus filters.

2.3 Results

The aim of this study was to determine whether the response characteristics

of trigeminal ganglion neurons could be adequately determined by a simple,

easily-fitted model, and if so what could be determined about the sensory

code employed by these neurons. We begin by describing some of the general

response properties of the neurons to applied whisker motion.

2.3.1 Response of trigeminal ganglion neurons to whisker

motion

The general properties of the response of the primary afferents to applied

whisker motion were consistent with previous work on this stage of the

whisker pathway: the neurons responded reliably, with high temporal preci-

sion (Jones et al., 2004a; Arabzadeh et al., 2005; Lottem and Azouz, 2011).

The recorded units displayed very low spontaneous firing activity (me-

dian across units 0.04 spike s−1, IQR 0 spike s−1 and 0.14 spike s−1). Applied

whisker motion evoked robust spiking patterns, for both white noise and

texture stimuli. As shown in Figure 2.3C, D, G, H, the form of the response

was typically highly reproducible and temporally precise single-spike events.

This is illustrated by the vertical structure in these figure panels; they show

times where there was some feature in the stimulus that evoked an action

potential from the recorded neuron on nearly every trial. These are inter-

spersed with periods of virtually no spiking activity, with very little noise in

the form of spikes on individual trials. Significantly higher firing rates were

evoked by white noise stimuli (median 12.0 spike s−1 for white noise against

2.3 spike s−1 for texture p = 7× 10−7, Wilcoxon rank-sum test). Across the

recorded population there was a wide spread in the evoked firing rates (IQR

4.1 spike s−1 to 43.2 spike s−1 for white noise, 0.9 spike s−1 to 3.9 spike s−1 for

texture).

A measure of the temporal precision (“jitter”) of the neurons was ob-

tained by calculating the standard deviation of spike times in 4 ms windows

centered on well-defined firing events as described in Section 2.2.4. The cal-
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Figure 2.3: Basic properties of the responses of the trigeminal ganglion neu-
rons. A, each point shows the firing rate of a neuron under texture stimula-
tion against firing rate under white noise stimulation. B, the analogous plot
for the jitter of each neuron. Dashed lines in both panels denote equality.
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Figure 2.4: Experimentally measured PSTH evoked by white noise compared
with the GLM-predicted PSTH for two example cells at a time resolution
of 1 ms. The measured PSTH is plotted above the y-axis in red, with the
predicted one below in blue. The y value for each time bin is the proportion
of trials in which the bin contained a spike.

culated jitters can be seen in Figure 2.3B. The median jitter in response

to white noise was 0.15 ms (IQR 0.13 ms to 0.23 ms), while for texture it

was slightly higher at 0.22 ms (IQR 0.13 ms to 0.23 ms). Every unit had a

jitter below 0.5 ms. The fact that this is below the stimulus correlation time

(1.6 ms), indicates that a pure kinetic feature model of the response is inad-

equate, as it would not be capable of accounting for such temporally precise

response charaacteristics.

2.3.2 Predictive power of the GLM

First, we asked whether this model class is capable of predicting the response

of the primary afferents to stimuli different from those used in the fitting

procedure, and therefore whether it forms an appropriate description of the

encoding properties of these neurons. Figure 2.4 shows that the predicted

response to a white noise stimulus typically showed a very good correspon-

dence with the experimentally measured PSTH, matching both the timing

and amplitude of spiking events. In order to quantify the quality of this

correspondence, we calculated a modified Pearson correlation coefficient be-

tween the predicted and experimental PSTHs for each measured unit (see

Section 2.2.6). The neurons shown in Figure 2.4 were representative of the

population, with prediction coefficients of 0.95 and 0.93 respectively. The

median prediction coefficient across the population was 0.92 (IQR 0.90 to

0.94). This showed that the GLM was capable of capturing the response of

the neurons to white noise stimuli very well.

We wished to see whether the GLMs that had been fitted on white noise
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Figure 2.5: Experimentally measured PSTH evoked by naturalistic stimulus
compared with the GLM-predicted PSTH for two example cells at a time
resolution of 1 ms. The measured PSTH is plotted above the y-axis in red,
with the predicted one below in blue. The y value for each time bin is the
proportion of trials in which the bin contained a spike.

data could also predict the response of the neurons to more naturalistic

whisker stimulation. This is not a trivial issue, as good generalization from

white noise data is not guaranteed (Talebi and Baker, 2012). Although white

noise explores the stimulus space in a comprehensive and unbiased way,

it may be that a neuron exhibits complex response characteristics only in

the presence of rich features such as those found in natural stimuli. This

important region of stimulus space may be under-sampled when using white

noise, leading to poor generalization even with an appropriate model.

We therefore carried out the same analysis with the repeated naturalistic

stimulus. Shown in Figure 2.5 is a comparison between the measured PSTH

and predicted response for the same example cells as before. Again the model

output predicts both the timing and amplitude of the spiking events well:

the models for these two neurons had prediction coefficients of 0.78 and 0.85.

These were again typical of the population, which had a median prediction

coefficient of 0.86 (IQR 0.71 to 0.89).

The prediction quality results are fully summarized in Figure 2.6. The

histogram at the bottom of the figure shows that a majority of model pre-

dictions had a prediction quality coefficient in the range 0.9 to 1 for the

white noise stimulus, with only two units falling below the 0.8 mark. Panel

A shows shows that while the prediction quality coefficients for the texture

stimulus were universally lower than those for white noise they were typi-

cally close to the white noise value. The histogram on the left of panel A

shows that again a majority of coefficients were above 0.8, though more were

below that level than for white noise, and one was as low as 0.3.
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Figure 2.6: Summary of the prediction coefficients across the population
of recorded cells at 1 ms time resolution. A, Scatter plot of the prediction
quality coefficient for the white noise stimulus against that for texture. B,
Scatter plot of the prediction quality coefficient for the white noise stimulus
with the spike feedback term against that without the spike feedback. The
histograms show the quantity of units with prediction quality coefficients in
bins with edges [0.0, 0.1, . . . , 0.9, 1.0].

The PSTH representation of the response of a neuron to a stimulus cap-

tures important aspects of the response, but loses other information such

as inter-spike correlations. As a further check for the model, we checked its

predictions against another feature of the response: the relationship between

the variance and mean of the spike count across trials. The primary affer-

ents of the whisker system were so reliable in their response to the stimuli
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Figure 2.7: Theoretical spike count variance versus mean plots for the min-
imum possible variance (equal to f(1 − f) as described in the text), and a
Poisson distribution (equal to the mean).

under these experimental conditions that the variance in their spike counts

in longer time bins (20 ms) came close to its theoretical minimum as a func-

tion of the mean spike count (de Ruyter van Steveninck et al., 1997). The

minimum arises from the fact that an increased mean spike count can be

due either to extra spikes occurring within trials or across trials. For ex-

ample, with two trials, a mean spike count of 1 could be either from both

trials having a single spike or one trial with two spikes and the other with

zero. In the first case the variance is zero, while in the second it is 1. In

general, the minimum possible variance is given by σ2 = f(1 − f), where

f is the fractional spike count mean (i.e. count mean− floor(count mean)),

which occurs when all trials have spike counts of either n or n+ 1. Plotting

the variance against the mean reveals the characteristic “scalloped” shape

of this minimum, as shown in the theoretical case in Figure 2.7, and for two

example cells in Figure 2.8 A1 and A2. This is in contrast to a Poissonian

firing pattern, in which the variance of the spike count is equal to the mean.

A close match was seen between the experimental data and the equivalent

plot for the model’s predicted response for these cells (Figure 2.8 B1 and

B2), indicating that the model captures enough of the behaviour of the neu-

rons to recreate aspects of the response, such as spike train autocorrelation,

beyond the simple firing rate.

We summarized this behaviour across the population using the Fano
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Figure 2.8: Variance of spike count across trials in 20 ms bins plotted against
spike count mean across trials, for two example cells. A1 and A2, Results
calculated from experimental data. B1 and B2, The corresponding results
from GLM predictions.

factor, the mean over time bins of the spike count variance over the spike

count mean. This is shown for both the white noise and texture stimuli in

Figure 2.9. The figure shows that the Fano factors predicted by the GLM

model had good agreement with the measured Fano factors, though slightly

higher in general. A linear fit of the data revealed a slope of 1.2 for both white

noise and texture. Therefore we can conclude that the model captured most

of the fine structure within spike trains, though not entirely to the extremely

repeatable level of the recorded data.

2.3.3 Timing precision of the model

Trigeminal ganglion neurons exhibit extremely high precision, on the sub-

millisecond scale, in their spike timing under our experimental conditions as

described in Section 2.3.1

Therefore it is fruitful to explore to what extent the GLM can reproduce

this aspect of the response. As the model worked on discretized time bins,

this set the limit of the precise timing correspondence between the stimulus

and the resultant spike trains. We fitted models for the data at a range of

time bin durations (0.125 ms to 10 ms) and calculated the prediction coeffi-

cients as before, which are summarized in Figure 2.10.

The GLM performed best with time bins of 1 ms to 2 ms, with the per-

formance dropping off for both coarser and finer timing precisions. However,

the models had a prediction quality coefficient of over 0.8 on the white noise

stimulus across the range 0.5 ms to 4 ms. Under these experimental condi-

tions, the neurons exhibited jitters in spike events around 0.25 ms, so the
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Figure 2.9: Fano factors for the model predictions against those calculated
from measured spike trains. Left panel, white noise stimulus responses. Right
panel, texture stimulus responses.

model came close to, but did not quite match, the timing precision found in

this system.

The fact that performance drops at both fine and coarse timescales may

be expected. When using longer time bins, information about the exact time

of the spike is lost. If the neural code uses very precise timing, the model

will not be able to reproduce the behaviour and predict the response of neu-

rons to as high a degree as if this information was available. The fact that

the prediction quality fell off for longer time bins indicates that this was the

case: despite the seemingly easier task of predicting the response to a coarser

timescale, the neurons (and models) were responding to much more tempo-

rally precise stimulus features. Conversely smaller time bins mean that the

precise timing of spiking events must be predicted from the only informa-

tion the model was given: the recent whisker position and spiking history.

In the biological system, there are other factors, unavailable to the model.

In particular, variations in the membrane potential on a sub-threshold level

has persistent state that is not accounted for in the model. However, the

whisker position had an autocorrelation time of 1.6 ms; it is therefore in-

teresting that the model was capable of predicting the neural response at a

finer precision than this.

One possibility for how the model was capable of reproducing the re-

sponse down to such a fine timescale is given by the other input to the
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model, the spiking history. We therefore also calculated the prediction co-

efficients for a model variant without spike history inputs across the same

range of time bin widths. As Figure 2.10 shows, including spike history

feedback in the model does not strongly affect the prediction quality above

around 5 ms. This is likely because the timescale of refractoriness is on the

order of a few milliseconds and so is unimportant for time bin widths of this

size. At finer timescales the spike feedback was important for the accuracy

of the model. For example, at the 1 ms time bin scale, the model with and

without spike history feedback have median prediction coefficients of 0.92

and 0.78 respectively.

From these results, we may infer that what appears to be a restricting

factor in the neurons’ coding ability, refractoriness, actually has the effect of

increasing spike train reproducibility. The jitter in spike timing we found was

below that of the stimulus auto-correlation time, which would not be possible

without some form of history dependence. This allows the highly temporally

precise neural code as found in this system, with highly informative spikes.
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Figure 2.10: Timing precision of model predictions. Plotted are the median
prediction quality coefficients across units as a function of time bin size.
Results are shown for the full GLM and the GLM without spike history
input (GLMnh), for both the white noise and texture stimuli. Error bars
were calculated by bootstrap resampling (they are the standard deviation of
10000 new sets of coefficients generated by sampling with replacement from
the original set of coefficients).
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Figure 2.11: Example GLM fit for two cells (columns, as labelled 1 and 2).
A, Stimulus filter parameters

#»

k . B, Stimulus filter convolved with the white
noise autocorrelation (black line) compared with the unit’s STA (grey line).
C, The spike history filter

#»

h .

2.3.4 Response characteristics of trigeminal ganglion neu-

rons as accounted for by the model

The success of the model in predicting the response of the population of pri-

mary afferents to whisker stimuli suggested that we may gain useful insight

into the coding properties of these neurons by examining the fitted param-

eters more closely. The parameters of the model class used to describe the

response of the primary afferents can be split into three groups (see Sec-

tion 2.2.5 for full details): b, the bias term that sets the spontaneous firing

rate in the absence of any whisker stimulation,
#»

k , the whisker stimulus filter

that determines the stimulus feature to which the model is sensitive, and
#»

h , the spike feedback filter that accounts for effects such as refractoriness.

We can examine each of these in turn, for the individual neurons shown in

Figure 2.11, before looking at their properties for the population as a whole.
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The values of b for these two cells were −4.6 and −9.6 respectively, which

correspond to spontaneous firing rates of 5 spike s−1 and 0.03 spike s−1.

The stimulus filters
#»

k for are shown in Figure 2.11 B1 and B2. These

filters show that the neurons respond most strongly to precisely timed stim-

ulus features, occurring 4 ms to 8 ms before a spike. This feature timing was

quantified using the measure described in Section 2.2.7. The median feature

delay for the population of neurons was −5.4 ms (IQR −7.2 ms to −4.1 ms).

The spike history filters (Figure 2.11 D1, D2) for these units were large

and negative for recently occurring spikes. For spikes further in the past the

filter value approached zero, showing that no effect of the spike history on

the current response if the most recent spike was more than around 10 ms

ago. This has the effect of enforcing a refractory period on the response;

spikes are unlikely to occur only a few milliseconds apart.

Taken as a whole, we can see the picture that emerges from the GLM for

these neurons: they exhibit very low firing rates in the absence of stimulation,

responding strongly to temporally precise kinetic features of the stimulus

with a strong, short refractory period.

2.3.5 Model parameters for the population

Having examined the model parameters for two particular example fits, we

then went further to look at the population of recorded neurons as a whole.

By investigating the variation and similarities between the fits, we wished

to discover what our model tells us about the information encoded by the

population of primary afferents.

The distribution of the values of b across all 34 recorded cells is shown

in Figure 2.12. All of the values are negative, and most of them are large

in magnitude; a value of −6.2 corresponds to a firing rate of approximately

1 spike s−1 in the absence of a stimulus. Therefore the majority of model fits

had values of b that corresponded to very low spontaneous firing rates (me-

dian 0.17 spike s−1, IQR 0.01 spike s−1 to 1.13 spike s−1), matching well with

the recorded data (median 0.04 spike s−1, IQR 0.0 spike s−1 to 0.14 spike s−1),

though somewhat higher. Note that this did not necessarily have to be the

case: if the model were unable to explain the spikes evoked by the whisker

stimulus, the value of b would be larger in order to increase the probability

of these spikes occurring. The slightly higher spontaneous firing rates are

likely due to this effect.
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Figure 2.12: Histogram of the values of b for the population. The quartiles
of the distribution were −10.8, −8.0 and −6.1, which correspond to sponta-
neous firing rates of 0.01 spike s−1, 0.17 spike s−1 and 1.13 spike s−1

Across the population the form of the spike history filters was very sim-

ple. All units displayed a strong refractory effect shortly after a spike that

gradually diminished over a timescale of around 10 ms. None of the units

had positive feedback effects.

The most important aspect of the model from a sensory coding per-

spective is the stimulus filter. Given that the GLM framework explains the

response of ganglion neurons to our dynamic whisker stimuli very well, what

can we say about the information conveyed by the population? We investi-

gated the stimulus feature space encoded by the cells using principal com-

ponent analysis. Figure 2.13 shows the results of the analysis.

We found that the feature space could be largely described by only a

small number of principal components: the first three principal components

(shown in Figure 2.13 B1, B2, and B3) cumulatively accounted for 82 %,

94 % and 99 % of the variance. Therefore the stimulus selectivity of the

recorded population of primary afferents can be accurately described by a

low-dimensional “filter space”. This filter space is visualized in Figure 2.13

C and D. In each panel, the filters are plotted at the value of their projection

onto two of the principal components (the first and second in panel C, the

first and third in panel D). The filters were evenly distributed across the filter

space, “tiling” it. The implications of this are discussed in Section 2.4.3
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Figure 2.13: Stimulus feature space analysis. A, The cumulative variance
accounted for by the first four principal components. B1–3, The first three
principal components. C, The set of stimulus filters (black) projected onto
the space spanned by the first two principal components. The space is visual-
ized by showing in grey the features that would be formed by pure mixtures
of the two components at those points. D, The set of stimulus filters (black)
projected onto the space spanned by the first and third principal compo-
nents. Again the stimulus features the space describes are plotted in grey.
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2.4 Discussion

2.4.1 Predictive capability of the GLM

The GLM is one of the simplest model frameworks capable of describing

count data such as that obtained by a spike-sorting electrophysiological ap-

proach. This comes with many advantages, the greatest being tractable pa-

rameter fitting and ease of interpretation. However, the simplifying assump-

tions have the potential to limit the predictive power of the model too much

for many neural systems. For example, in barrel cortex neurons have been

found to be best described using multi-dimensional nonlinear response func-

tion, as well as demonstrating other complexities in their behaviour, such

as slow stimulus adaptation (Maravall et al., 2007; Lundstrom et al., 2010).

In the case of the primary afferents measured in this study, the GLM was

capable of predicting their response to a high degree of accuracy, both for

a white noise stimulus similar to that used to fit the models and a texture

stimulus, indicating a good level of generalization of the model and allowing

confidence in the accuracy of its description. In addition, the GLM with

spike history input maintained high prediction quality down to timescales

below the autocorrelation time of the stimulus, recreating a widely-reported

feature of the response of trigeminal ganglion neurons.

However, the prediction quality did degrade at the smallest timescales.

In addition, the applied model framework is only capable of accounting

for very simple adaptation effects. If we wished to account for such effects

and model responses to very fine timescales, a model with state, persistent

over time, would be necessary. Bio-mechanically inspired models have been

used to successfully describe trigeminal ganglion neurons before (Mitchinson

et al., 2004, 2008; Lottem and Azouz, 2011), but these models also have

their drawbacks. The largest weakness of these models is that they contain

a large number of free parameters, without an easy way to evaluate the

likelihood of a response for any set of values of the parameters. This means

parameter values must be tweaked by hand, a laborious and potentially bias-

inducing procedure. Many of the advantages of the GLM can be retained

with extensions to account for long timescale effects, some of which have

been successfully applied in other neural systems (Paninski et al., 2009;

Escola et al., 2011), but more work both theoretical and applied remains to

make the most of the more sophisticated models.
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2.4.2 Interpretation of the fitted models

Given that such a simple model had high predictive power under these exper-

imental conditions, we infer that it is capturing real and important aspects

of the neural code for this sensory system. As such, we can interpret the

fitted model parameters to describe the coding scheme.

The recorded units responded to very temporally precise features, firing

an action potential roughly 5 ms after the feature reached the firing thresh-

old. Firing events were very temporally precise, which was facilitated by the

fact that all units displayed a simple, strong refractory effect from previous

spikes. Although this is biologically necessary given the mechanism of action

potential firing, it is interesting that it also has the effect of increasing the

timing precision of the system.

2.4.3 Stimulus encoding by the population

We found that it was possible to find a simple description of the feature

space to which the population of primary afferents was responsive. A three-

dimensional set of features could be used to capture 99 % of the variance in

the neurons’ filters, and the individual filters approximately tile the space.

Combined with the varying firing thresholds in the different neurons, this

means that each spike fired by a neuron narrows down the part of the space

the stimulus is in significantly, i.e. conveys a lot of information.

In principle, the low-dimensional feature space means that just three

neurons with linear output could convey the entirety of the encoded infor-

mation. However, since neurons transmit information via action potentials

this would require integration over long time periods in order to transmit

the coordinate to a precise degree. This is at odds with the high temporal

precision of this sensory system, and demonstrates the utility of the “over-

complete” representation actually found in the population.

2.4.4 Possibilities for further work

Despite using a rich stimulus set compared with some previous work (e.g.

“ramp-and-hold” stimuli), there are some simplifications. Firstly, the stim-

ulus is only one-dimensional in space. It is known that trigeminal ganglion

neurons are directionally selective (Zucker and Welker, 1969; Storchi et al.,

2012), as well as highly sensitive to longitudinal whisker motion (Stüttgen
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et al., 2008) and there is the possibility the response function in a directional

stimulus space may have a more complex form.

Additionally, the recordings were taken from anaesthetized animals, elim-

inating the effect of active sensation. Although effects of attention should

not be important at this stage in the sensory pathway, it is possible that

motor control of the whiskers may influence the response characteristics of

the neurons. Studies measuring neural activity in the whisker system during

behaviour are now being performed and it should be possible to perform

such studies with the trigeminal ganglion. One difficulty with such work is

that it is impossible to deliver repeated stimuli, which means alternative

methods of evaluating the performance of the model must be used.

The GLM provided a generally good description of the sensory code

at this early stage of the pathway, which naturally invited the question

of how we can use this information and these methods to investigate the

transformation of the code at downstream areas of the brain. One of the

major stages in the whisker sensory pathway is the ventro-posterior medial

(VPM) area of the thalamus, and it is this area that is addressed in the next

chapter.
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Chapter 3

Changes in the neural code

in the early stages of the

whisker pathway are revealed

by modelling

3.1 Introduction

A key feature of sensory systems, and the brain in general, is a hierarchical

structure. In the previous chapter it was shown that it is possible to describe

to a high degree of accuracy the response characteristics of the primary

afferents of the whisker system, but in order to use the sensory information

for complex behavioural tasks such as object identification it must undergo

transformation. As described in Chapter 1, an important early stage in the

whisker sensory pathway is the ventro-posterior medial (VPM) thalamus,

which is the main afferent gateway into the somatosensory cortex.

Neurons in the VPM thalamus are organized into clusters, with a single

cluster, known as a “barreloid”, associated with each whisker. This is in

contrast with the trigeminal ganglion, where evidence for somatotopic orga-

nization of whisker-innervating neurons is much weaker (Leiser and Moxon,

2006). There may also be an expansion in the number of neurons between the

two stages of the sensory pathway: it is estimated that approximately 150

mechanoreceptors innervate each whisker in the rat whisker system, while

barreloids contain around 250 neurons each (Lee and Woolsey, 1975; Land
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et al., 1995). Additionally there are parallel pathways such as the “paralem-

niscal” pathway through the posterior nucleus of the thalamus that are less

spatially specific. Given the change in anatomical conditions it could be ex-

pected that the neural code representing the whisker stimulus is different

at this stage. The question naturally arises as to what processing occurs

between the response of trigeminal ganglion neurons and thalamic neurons,

and therefore in what form sensory information enters the somatosensory

cortex and other brain regions. We will address this question using the same

model-driven approach we used to explore the ganglion response in Chap-

ter 2.

Previous work has also attempted to model the response of VPM neurons

to explore the sensory code at this stage. Petersen et al. (2008) performed

a study applying a white noise stimulus to a single whisker to obtain sen-

sory features to which VPM neurons were responsive using STA and STC

analysis. They found that an LNP model described the recorded properties

well, describing the neurons as responsive to kinetic features of a timescale

of 1 ms to 2 ms, with substantial diversity in the form of these features. They

also found that significant minority of the neurons could not be adequately

described by sensitivity to a single feature, requiring two or more dimensions

in the stimulus representation to capture their response function. Using their

LNP model, they were able to obtain a mean prediction coefficient (calcu-

lated by correcting the correlation coefficient by a method similar, but not

identical, to the one used here) for the subset of units described as “single-

feature” in response to white noise of 0.58 (SD 0.11). However, their model

was only capable of predicting the PSTH as convolved with a Gaussian of

SD 1.6 ms, a timing precision below that of the sub-millisecond spike timing

that has been found in the system (Montemurro et al., 2007). We hope to

improve on both the timing precision and overall prediction quality using

our approach.

Also relevant to the modelling approach here is work by Montemurro

et al. (2007), which used an information theoretic analysis to show (in a

“model-free” manner) that most of the information in the VPM response to

passive whisker stimulation could be accounted for by a neural code based

on firing rate modulation on a sub-millisecond timescale, but that inter-spike

correlations do also contribute some amount to the information carried by

the code. Together with the results of Petersen (2007) showing that VPM
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neurons are reliably responsive to linear kinetic features, this indicates that a

GLM framework including spike history, may be able to describe the coding

properties of VPM neurons to a higher precision than previous studies.

3.2 Methods

3.2.1 Electrophysiology

Recordings (performed by M. Bale) were taken from anaesthetized adult

Wistar rats, (n = 14, urethane anaesthetic at 1.5 g/kgbody weight) that were

placed in a stereotaxic apparatus. The body temperature of the rats was

maintained at 37.5 ◦C. A piezoelectric motor was used to insert a poly-

electrode into the VPM thalamus. Extracellular recordings were amplified,

sampled at 24.4 kHz and bandpass filtered (300 Hz to 3000 Hz).

3.2.2 Whisker manipulation

The whisker stimulus protocol was identical to that described in Section 2.2.2.

Briefly, for each animal after electrode insertion the principal whisker was

identified by manual stimulation before being inserted into a piezoelectric

manipulator and stimulated in 50 epochs. Each epoch consisted of three

10 s sequences: a repeated texture stimulus, a repeated white noise stimu-

lus, and a non-repeated white noise stimulus. The non-repeated white noise

was used to fit model parameters, while the other two stimulus types were

used to evaluate the model performance.

3.2.3 Spike sorting

Spike trains from individual units were obtained from the extracellular

recordings using the same spike-sorting approach described in Section 2.2.3:

first, 2 ms windows of the recorded potential were extracted whenever the

potential crossed a threshold. The dimensionality of these windows was re-

duced using principal components analysis to 5, and clusters discovered by

the fitting of a Gaussian mixture model. Units that did not exhibit a clear

refractory period were discarded.
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3.2.4 Unit selection

We wished to use only the most strongly responsive units identified by the

spike sorting process, as many recorded units responded to the stimulus

only weakly or not at all. One measure of how strongly a neural response is

modulated by the stimulus is the mutual information between the stimulus

and the response. Mutual information can be thought of as how much the

uncertainty of one variable, e.g. the response, can be reduced by knowledge

of another, e.g. the stimulus. It gives a measure of how well a model can

perform in general. We used the method described by Strong et al. (1998) to

calculate the information rate of recorded units from the PSTHs evoked by

the repeated white noise stimulus. Only the most informative units (infor-

mation rate greater than 5 bit s−1 for the white noise stimulus) were selected

for further analysis, leaving a total of 36.

3.2.5 GLM fitting and evaluation

We used the same model framework, fitting methods, and prediction quality

evaluation as described in Sections 2.2.5 and 2.2.6 in order to explore the

sensory code of thalamus neurons.

3.3 Results

3.3.1 Properties of VPM response to whisker motion

In total, responses from 36 neurons from 14 animals were recorded and anal-

ysed. Consistent with results previously reported in the literature, the VPM

responses to the applied white noise and texture stimuli were reliable and

temporally precise, implying that the applied whisker stimulus contained

features that are important to the sensory code. As shown in Figure 3.1,

the white noise stimulus evoked a median firing rate of 4.9 spike s−1 (IQR

3.0 spike s−1 to 7.1 spike s−1), while the texture stimulus evoked a signifi-

cantly lower firing rate on average (p = 7.4 × 10−4, Wilcoxon rank-sum

test), with a median of 2.4 spike s−1 (IQR 1.2 spike s−1 to 3.9 spike s−1).

The jitter of the units was calculated using the same method as described

in Section 2.2.4, and can be seen in Figure 3.1. There was no significant

difference between the measured jitter in response to white noise and that

in response to texture (p = 0.20, Wilcoxon rank-sum test), although it was

51



0 10 20
0

2

4

6

8

10

12

14

White Noise
Firing Rate (Spikes/s)

T
ex

tu
re

F
ir

in
g

 R
at

e 
(S

p
ik

es
/s

)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

White Noise
Jitter (ms)

T
ex

tu
re

Ji
tt

er
 (

m
s)

Figure 3.1: Some basic response characteristics of the thalamic neurons. Top
panel: scatter plot of evoked firing rates for each unit for the texture stimulus
against the white noise stimulus. Evoked firing rates are lower for the texture
stimulus for a majority of units. Bottom panel: scatter plot of trial-to-trial
variability in spike timing (jitter) for each unit for the texture stimulus
against the white pnoise stimulus. Jitter is similar for the two stimuli.
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slightly lower for white noise (median 0.80 ms, IQR 0.64 ms to 0.88 ms versus

a median of 0.83 ms, IQR 0.70 ms to 0.98 ms for texture). These values are

higher than those that were found in the ganglion, although still below the

stimulus autocorrelation time.

In contrast with the PSTHs measured from ganglion neurons, the tha-

lamic neurons were less consistent across trials. The thalamic neurons did

not often reach the > 90 % proportion of spikes in a bin that was found

in the ganglion, more typically firing in around 60 % of trials at most.

This was quantified by calculating the information rate from the PSTH,

which can be thought of as a measure of its modulation as described in Sec-

tion 3.2.4. The information rate calculated at 2 ms time precision for gan-

glion cells had a median of 47.8 bit s−1 (IQR 20.0 bit s−1 to 106.1 bit s−1),

while the thalamic neurons, which already excluded units with an informa-

tion rate less than 5 bit s−1, had a median rate of 9.0 (IQR 7.7 bit s−1 to

16.0 bit s−1). A Wilcoxon rank-sum test revealed this to be significantly dif-

ferent (p = 5.3 × 10−6). This clear difference confirmed that the thalamic

responses are substantially less reliable under these experimental conditions

than those in the ganglion.

Another measure was also calculated and found to corroborate these

results: firing events were isolated by finding time bins in which a spike

was found in over 10 % of trials and calculated the median of the spike

frequencies in these firing events for each cell. For the ganglion the median

of this measure across cells was 0.43 (IQR 0.32 to 0.68), indicating that if

a neuron fired it tended to do so in a substantial proportion of trials. This

is as opposed to the thalamic neurons where this measure was 0.15 (IQR

0.13 to 0.20), indicating that there were many firing episodes in which spikes

occurred only in a much lower proportion of the trials. These results imply

that the response of the thalamic neurons was not as predictable as that

found in the trigeminal ganglion.

3.3.2 The GLM predicts thalamic responses

The GLM was fitted to each of the 36 recorded neurons using the non-

repeated white noise stimulus. As with the ganglion response, we first asked

how well the fitted models could predict the response of thalamic neurons to

the repeated stimuli. Figure 3.2 compares model-predicted PSTHs for the

two stimuli with the experimentally measured PSTHs, at a time resolution of
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Figure 3.2: Example GLM PSTH predictions for two cells. Left column:
responses from white noise stimulus. Right column: responses from texture
stimulus. Rows from top to bottom: First cell experimental data, first cell
GLM prediction, second cell experimental data, second cell GLM prediction.
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Figure 3.3: Scatter plot shows the prediction coefficients across the popula-
tion of recorded VPM cells at 2 ms time resolution for white noise for the
GLM against those for the GLM without spike history (GLMnh). The his-
tograms show the quantity of units with prediction quality coefficients in
bins with edges [0.0, 0.1, . . . , 0.9, 1.0].

2 ms. It can be seen that the model was capable of reproducing the majority

of the strong response events at this timescale. This was true for both the

white noise and texture stimuli, despite the sparser response to the latter.

We calculated the prediction quality coefficients as described in Sec-

tion 2.2.6 for the population to quantify the model performance. Figure 3.3

summarizes the prediction quality coefficients for the fitted models, both

with and without the influence of spike feedback. The median coefficient for

the white noise stimulus was 0.63 (IQR 0.42 to 0.77), while for the texture

stimulus it was 0.57 (IQR 0.41 to 0.67). The GLM therefore does capture a

substantial portion of the modulation in the responses as measured by the

PSTH.
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Influence of spike feedback

Figure 3.3 compares the prediction quality coefficients for the sets of GLMs

fitted with and without spike history effects. The median prediction quality

coefficients for the model without spike feedback for the white noise and

texture stimuli were 0.62 (IQR 0.38 to 0.74) and 0.55 (IQR 0.38 to 0.68)

respectively. Including spike feedback had no significant effect on the quality

of the models (for white noise stimulus, p = 0.88, for texture stimulus p =

0.89, Wilcoxon rank-sum test). This was in contrast to the results for the

ganglion, where it was shown that including spike history strongly improved

the model, especially at finer timescales.

3.3.3 Interpreting the GLM fits

Figure 3.4 shows the model fits for two example units. The units responded

to precisely timed features, which typically depended on stimulus features

around 10 ms before a spike. A measure of the position of the filter relative

to the response, as described in Section 2.2.7 had a median of −10.1 ms (IQR

−12.6 ms to −8.8 ms).

The spike history filters no longer had the simple refractory form found in

the ganglion. This may indicate different firing modes such as bursts or other

inter-spike correlations. For example, comparing the spike history terms in

Figure 3.4 the second fit showed essentially a simple refractory effect while

the first had a strongly excitatory effect for spikes occurring 2 ms to 6 ms in

the past. However, given that the inclusion of spike feedback did not improve

model performance (see Figure 3.3), it is difficult to read too much into this

difference from the ganglion.

We repeated the fitting and evaluation procedure for each neuron across

a range of time bin widths (0.125 ms to 10 ms) to test how well the model

captured the precise spike timing of the system. The results are shown in

Figure 3.5. The median of the coefficients was best for white noise at a

timescale of 2 ms but remained above 0.5 in the range 1 ms to 6 ms. For the

texture stimulus the median was lower for shorter timescales but higher at

the longer timescales.
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Figure 3.4: An example GLM fit for two cells (columns, as labelled 1 and 2).
B, Stimulus filter parameters

#»

k . B, Stimulus filter convolved with stimulus
autocorrelation (blue) and STA (red). D, Spike feedback filter
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Figure 3.5: The median prediction coefficients across cells for the GLM across
a range of time bin widths for both the white noise and texture stimuli.
Error bars are standard errors on the median as calculated by bootstrap
resampling.
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Figure 3.6: Box and whisker plot of thalamus GLM prediction quality vs
ganglion GLM prediction quality. Box borders are the first and third quar-
tiles (containing therefore 50% of the data), with the median shown by the
red horizontal line

3.3.4 Comparison with ganglion results

Although a significant fraction of the recorded thalamic neurons were quite

well predicted (19 of the 36 had prediction quality coefficients above 0.6 for

white noise, for example), Figure 3.6 shows that the prediction quality co-

efficients for the recorded population of thalamic units were lower than that

for the ganglion. In fact, the best predicted thalamic unit was worse than

the first quartile for the ganglion. Although as noted before the thalamic

neurons did not respond as consistently to the stimulus across trials, this

should be corrected for to an extent in the prediction coefficient calculation.

Therefore a more likely explanation for the disparity is that there are one or

more aspects of the thalamic response not captured by the GLM as applied

here.

3.4 Discussion

As the GLM framework was very successful in accounting for the response

properties of trigeminal ganglion neurons as shown in Chapter 2, we applied
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a similar methodology to data gathered from the VPM thalamus, another

early stage in the whisker sensory pathway.

As reported previously in the literature, VPM neurons responded reliably

and with fine temporal precision: the trial-to-trial variability in timing was

measured at less than 1 ms. This is remarkable considering that even the

white noise stimulus had an autocorrelation time of 1.6 ms

However, the response of thalamic neurons was less robust than that of

ganglion neurons in general. This has clear implications for the predictability

of the response, and may be worth investigating further in its own right.

From the perspective of the experimenter, the variability is seen as noise,

but additional information in the brain may give the context needed to make

use of the differing response to similar stimulus conditions.

3.4.1 Describing the VPM thalamus response

The stimulus filters of the GLM were temporally precise and spikes were

evoked around 10 ms after the appearance of a feature.

In contrast to the ganglion, the spike feedback filters displayed a vari-

ety of effects. Some filters had excitatory terms for recently occurring spikes,

which caused the model to display “bursting” behaviour, a firing mode com-

monly found in thalamic neurons (Sherman, 2001). This can be linked to

results by Montemurro et al. (2007), which attributed a small but consis-

tent amount of information in the VPM spike trains to the effect of bursts.

However, the inclusion of the spike feedback terms did not improve model

performance, which would seem to show that the simple linear feedback ef-

fect of past spikes in the GLM is not entirely adequate to explain the effects

of inter-spike correlations in the VPM.

We can compare the strength of the model description with the results

of Petersen (2007). In their study the predicted responses a STA-fitted LNP

models were compared with measured PSTH responses that were convolved

with a 1.6 ms Gaussian, with the resulting prediction quality coefficients hav-

ing a mean of 0.58. This can be compared with the results presented above,

of prediction quality coefficients with a median of 0.63 at the 2 ms timescale.

Due to differences in methodology, the results can not be directly compared,

but they do seem to indicate broadly similar levels of performance. This is

impressive given that the model they used was more flexible than the GLM

here, having a fitted non-monotonic tuning function.
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Petersen (2007) also found that a subset of VPM neurons they recorded

were not adequately described by a single-dimensional stimulus filter and

needed two or more features to explain their response characteristics. This

may help to explain why the GLM was not as successful in predicting re-

sponses in VPM units as it was in the primary afferents of the trigeminal

ganglion. As the greater trial-to-trial variability is corrected for to some

extent by the calculation method of the prediction quality coefficients, we

expect that at least some of this gap should be possible to bridge. In other

words, there were some aspects of the thalamic sensory code that were not

captured by the GLM, despite its partial successes. We therefore examined

some of the assumptions implicit in the GLM framework in order to make

improvements to better describe the sensory code at this stage.

3.4.2 Examining the assumptions of the model

Why was the GLM framework applied here less successful in explaining the

thalamic sensory code than the code of the trigeminal ganglion? A good way

to address this question is to explore the assumptions of the model, where

they might fail, and how they might be relaxed.

Probably the most important assumption is that the thalamic neurons

respond monotonically to single linear features of the stimulus in the stim-

ulus basis described by whisker position. Even though we have shown that

this assumption worked well for ganglion cells, the sensory information likely

undergoes transformation for further use in the brain. It is certainly possible

that the signal is transformed enough by the point of the thalamic case that

the linear representation of whisker motion is no longer adequate.

Fortunately, there are many well-explored methods for introducing non-

linear feature dependencies in both the GLM and related model frameworks.

For example, it is possible to remain within the GLM framework while “aug-

menting” the representation of the stimulus space with higher-order poly-

nomial terms, such as quadratics. It would also be possible to transform the

stimulus features in a different way - one well-justified possibility would be

to put the stimulus through GLMs fitted on ganglion data. Another possibil-

ity is a model framework with adaptive basis functions, the most prominent

of which is the Multi-Layer Perceptron (MLP), a neural network model. In

this model framework, it is possible to automatically “discover” basis trans-

formations that are effectively fed into a GLM, similar to what we used in
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this chapter, as new input.

3.4.3 Going beyond GLMs

A major advantage of the GLM is ease of interpretation. However, we have

seen that despite its successes in describing the thalamic response, it is not

as effective as it was for the ganglion data. It is possible that the spike

trains are simply less predictable, but given that we use a prediction quality

metric that corrects for this to some extent, it is more likely that the model

is deficient in certain respects. Important effects may have been missed,

so we moved to a more sophisticated model with nonlinear multi-feature

sensitivity with the aim of adequately capturing the sensory code in the

thalamus.
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Chapter 4

Going beyond GLMs

improves understanding of

the thalamic sensory code

4.1 Introduction

The results presented in the previous chapter showed that a generalized

linear model framework was capable of predicting and explaining important

aspects of the neural response in the VPM thalamus, matching or improving

on previous modelling attempts in the literature. However, the predictive

power of the model for the thalamic neural population can be contrasted

with the corresponding results presented in Chapter 2 for the trigeminal

ganglion, where prediction quality coefficients were much higher. Although

the responses recorded in the thalamus were less reproducible than those

measured in the trigeminal ganglion, this is corrected for to some extent in

the calculation of the prediction quality coefficient, leading to the conclusion

that there is significant room for improvement in the accuracy of modelling

the response.

Section 3.4.2 outlined some of the potential changes in modelling ap-

proach that could yield improvements in the prediction of the thalamic re-

sponse, and therefore hopefully in understanding the form of the sensory

code. A simple and justifiable modification to the modelling approach that

may yield improvements is a transformation of the stimulus representation.

That is, there is little reason to believe that the stimulus representation
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Figure 4.1: A schematic representation of an MLP model. The red set of
nodes are set to the input values for each data point. The blue set forms
the “hidden” layer that apply linear-nonlinear functions to the inputs. The
green node again performs a linear-nonlinear computation to produce the
output, which in our case indicates probability of the presence of a spike.

provided to the model (i.e. the recent history of whisker position) is a good

one to explain the encoding behaviour of the neurons. The position repre-

sentation did work well for the trigeminal ganglion, but if some non-trivial

processing occurs in the generation of VPM spikes, that will no longer be

the case. An appropriate change in the basis in which the stimulus is rep-

resented will improve the model by taking into account nonlinear stimulus

dependencies of the firing patterns.

A very important factor in successful statistical modelling is appropri-

ate feature selection; that is, representing the inputs to the model in a way

that allows simple computations to reproduce the output. As such, a ma-

jor strand the modelling literature concerns finding ways to automatically

uncover such representations. There are many approaches to this problem,

including augmenting the stimulus matrix X with nonlinear terms (Park,

2011) and non-parametric methods such as Gaussian processes (Rasmussen

and Williams, 2006). Each approach has its own advantages and disadvan-

tages in generality, computational tractability, interpretability, and other

desiderata.

An important modelling approach with many similarities to GLMs is

the Multi-Layer Perceptron (MLP), a form of feed-forward neural network.

They are an evolution of simpler biologically-inspired models such as the

perceptron (Rosenblatt, 1958), and can easily be cast into a probabilistic

form very similar to that used for GLMs. MLPs first came into prominence
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after the back-propagation algorithm for model fitting was discovered by

Rumelhart et al. (1986). Described more fully in Section 4.2.1, their structure

is similar to stacked layers of GLMs, where the output of each layer is used

as input for the next, as shown in Figure 4.1. During the fitting process

of the models, the hidden layers “learn” new feature representations of the

data which are passed on to subsequent layers, which allows the model to

represent arbitrary nonlinear functions (Cybenko, 1989).

Since the output of the trigeminal ganglion is well described by a pop-

ulation of GLMs, this model framework is a natural progression. Although

it can sometimes be difficult to interpret the action of MLPs, this class of

model is well studied and has been successfully applied in many domains, in-

cluding neuroscience. Feed-forward neural networks have been used to study

and describe neurons with nonlinear stimulus-response transformations such

as those in V1 (Lau et al., 2002; Prenger et al., 2004).

We therefore decided to use this model class to attempt to describe the

VPM thalamus neural code as it is more powerful than the GLM, with the

capability to model the nonlinear, multiple-feature stimulus dependencies

that seemed to be present in these neurons. A substantial improvement in

the predictive power of the model would then confirm that there is some

aspect of the coding schema not described by the GLM, and not present in

the trigeminal ganglion, that may be interpreted.

4.2 Methods

4.2.1 Mathematical framework of MLPs

We limited our analysis to neural networks with a single hidden layer. Each

unit in the hidden layer is similar to the GLM as described in Section 2.2.5,

different in that the output is not used as the spiking probability. Instead,

the output is fed into another unit whose output determines the probability

of a spike. The output of the hidden layer with m units is given by

zj = f
(

#»

kj
ᵀ #»x +

#»

hj
ᵀ #»n + bj

)
,

where j = 1, . . . ,m indexes the hidden units. zj is the output of unit j. All

other notation is the same as for the GLM. The time indices of the inputs

and output have been omitted for clarity. The final probability of a spike, π
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is the given by the output unit, described by the equations

a = #»wᵀ #»z + c,

p (r = 1|θ, #»x ) = π = f (a) ,

where k indexes output units and the parameters of the output unit are #»w

and c, and θ stands for all model parameters. c plays the same role as the

bias as for the GLM, essentially setting the spontaneous firing rate, and #»w

controls how strongly the output of the MLP depends on the output of each

hidden unit. The full likelihood is given by using the Bernoulli distribution:

log p( #»r |θ,X) =
∑
t

rtπt + (1− rt)(1− πt) (4.1)

where we have restored the time indices on the right hand side to make

explicit that πt is unique for each time bin.

Note that output of the hidden units is essentially a transformed (and

reduced dimension) representation of the initial input. In order to keep the

model simple while still allowing a useful nonlinear representation, we used

MLPs with a single hidden layer composed of three units.

In a similar way as for the GLM, we used a Gaussian prior for the

parameters. The only difference in this case is that the parameters were

separated into more different groups with different scale hyperparameters.

The groupings used were the hidden layer stimulus filter weights
#»

kj , the

hidden layer spike history filter weights
#»

hj , and the output layer weights #»w.

The final expression for the log-prior is therefore:

log p(θ|α, β, γ) =
1

2

[
α

M∑
i=1

‖ki‖22 + β
M∑
i=1

‖hi‖22 + γ ‖w‖22

]
(4.2)

The models were trained with the same Maximum a Posteriori method

used for the GLM. That is, the expression given by the addition of Equa-

tions 4.1 and 4.2 (the log-posterior) was maximized with respect to the

parameters. In the context of neural networks, this is often referred to as

the “backpropagation” algorithm, as errors from the output unit are prop-

agated backwards to the hidden units to calculate gradients and curvatures

of the likelihood. We again used the evidence procedure to find good hyper-

parameters for the MLP (MacKay, 1992).
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4.2.2 Feature space analysis

The method we used to analyse the feature space the MLP model found

was similar to that described in Section 2.2.8. That is, a principal compo-

nent analysis was applied to the set of model stimulus filter vectors, and

the relevant subspace defined as that defined by the principal components

accounting for 95 % of the variance in the filters. There was a slight differ-

ence in that each model had three stimulus filter vectors. These were simply

treated together, so that the matrix K had 3× num. neurons = 108 rows.

4.3 Results from the modeling changes

The MLP models were fitted using the same data as in Chapter 3: 3000 s of

white noise stimulation spike train data for each VPM neuron (n = 36).

It was important to evaluate the level of improvement that the model

brings to our understanding of the neural response. We have already seen

that a GLM was able to capture a substantial portion of the thalamic be-

haviour (see Chapter 3), so there needs to be significant improvement in

the prediction quality to make up for the drawbacks of a more complex

model. We therefore began by qualitatively and quantitatively evaluating

the performance of the MLP model in comparison with the GLM approach.

4.3.1 Moving to non-linear stimulus selectivity improves pre-

diction accuracy

We first looked at the prediction quality coefficients across the population

for the white noise stimulus, shown in Figure 4.2. We found that the model

performance improved for nearly all cells compared with the GLM. As re-

ported in Chapter 3, the GLM achieved a median performance of 0.63 (IQR

0.43 to 0.77), while the median prediction coefficient for the MLP was 0.80

(IQR 0.70 to 0.88). Improvements were also seen in the prediction of the

texture response, as shown in Figure 4.3. The points in the scatter plot are

nearly all above the line of equality, indicating better predictive performance

of the MLP, some substantially so. The median coefficient for the GLM was

0.57 (IQR 0.43 to 0.68), against 0.70 (IQR 0.59 to 0.76) for the MLP. The

difference between the predictive power of the different models was statis-

tically significant in both cases (p = 3.4 × 10−5 for white noise, 0.003 for
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Figure 4.2: Scatter plot of prediction quality coefficients obtained from the
white noise stimulus for the MLP against those for the GLM. Histograms
along the axes show the frequency of units falling in bins with edges [0.0,
0.1, . . . , 0.9, 1.0].

texture, Wilcoxon rank-sum test). The MLP models clearly more accurately

reproduced the spiking behaviour of VPM neurons, indicating that it is cap-

turing some aspect of their spiking behaviour not described by the fitted

GLMs.

4.3.2 Interpreting the model improvements

We wished to obtain an understanding of how the MLP models were able

to better predict the PSTHs, by examining some individual examples of im-

proved models. First, we looked at an example of generated spike trains to

the repeated stimuli, as shown in Figure 4.4. It can be seen that the thalamic

response exhibited robust, temporally precise spiking events as described in

Chapter 3, with little firing outside of these events. In contrast, the GLM

showed quite noisy behaviour with much greater trial-to-trial variability.

This can be seen particularly clearly in the response to the texture stim-

ulus. There, the measured spike train shows only around six firing events

in the figure. Outside of these events, there are only a few isolated spikes

over the one hundred trials. In contrast, although the GLM does reproduce
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Figure 4.3: Scatter plot of prediction quality coefficients obtained from the
texture stimulus for the MLP against those for the GLM. Histograms along
the axes show the frequency of units falling in bins with edges [0.0, 0.1, . . . ,
0.9, 1.0].

Figure 4.4: Comparison of recorded spike trains with those generated by the
GLM and MLP models for an example unit. The top row shows the applied
stimulus, which in the left column is a section of the repeated white noise
stimulus, and in the right column a section of the texture stimulus. The
second row shows the recorded spike trains, the third row the simulated
MLP spike trains and the bottom row the stimulated GLM spike trains.
There were 100 trials in each case.
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Figure 4.5: Comparison of recorded response to repeated stimuli for an ex-
ample unit (different from the one shown in Figure 4.4). The first row shows
the applied whisker stimulus: white noise for the left column, texture for the
right. The second row shows the recorded PSTH, the third the MLP model
simulation, and the bottom row the GLM simulation.

the firing events with good fidelity, outside of these events there are many

individual spikes. The MLP model improved on this, with less variability

between trials in the quiet periods. In response to the white noise a similar

pattern can be seen, with the MLP model exhibiting lower across-trial vari-

ability. Despite this, the MLP prediction does not seem to quite reach the

same reproducibility of the recorded response.

Another representation of the response to repeated stimuluation is the

PSTH, examples of which are shown in Figure 4.5. Similar differences in the

predictions as in Figure 4.4 can also be seen here. For example, in the GLM’s

predicted response to the texture stimulus, there are many small peaks that

are not found in either the real neuron’s response or the MLP model pre-

diction, again due mainly due to the greater trial-to-trial variability in the

quiet periods in the neural response. It can also be seen in the white noise

response in Figure 4.5 that although the GLM does often reproduce spiking

events, the MLP model captures the amplitude of these events to a better

degree of accuracy.
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Figure 4.6: Timing precision of MLP model predictions. The median predic-
tion quality coefficients across the population of recorded units are plotted
as a function of the spike bin size. Error bars are calculated as the standard
error on the median using bootstrap resampling.

4.3.3 Model performance across the scale of spike train tim-

ing precisions

Previous work modelling the spiking behaviour of VPM neurons was only

able to predict PSTHs which had been convolved with a Gaussian distri-

bution with a standard deviation of 1.6 ms (Petersen, 2007). The GLM

performed reasonably well, achieving similar predictive accuracy without

smoothing. However, as previously reported in the literature VPM neural

responses are precise to a sub-millisecond timescale and a significant amount

of information is encoded by spike timing (Montemurro et al., 2007). We

wished therefore to explore how well the MLP model could predict the re-

sponse of the population of recorded units across a range of spike timing

precisions. To this end, the models were fitted across a range of time bin

widths (0.125 ms to 10 ms) and the prediction quality coefficients calculated

for each case.

The results for the white noise stimulus are summarized in Figure 4.6,

which plots the median prediction quality coefficients against time bin widths.

The best quality predictions were found at the 2 ms timing precision, in com-

mon with the GLM of Chapter 3. However, as already noted, the coefficients

calculated from the MLP model predictions were significantly higher than

those from the GLM predictions. This was also the case for the smaller time

bin widths, and even for the smallest time bin (0.125 ms) the performance

70



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

M
L

P
 p

re
d

ic
ti

o
n

 q
u

al
it

y

MLPnh prediction quality
051015

Num. units

0

5

10

15N
u

m
. u

n
it

s

Figure 4.7: Scatter plot of prediction quality coefficients obtained from the
white noise stimulus for the MLP without spike feedback against those for
the MLP.

of the MLP was similar to that of the GLM at 1 ms (medians 0.55 and 0.53

respectively). The MLP model therefore was able to reproduce to a much

greater degree of fidelity the spiking behaviour of the thalamic neurons at

these fine timescales.

4.3.4 Effect of spike history feedback

The results in Section 3.4.1 showed that the spike history filters no longer

had the simple refractory form that was found in the ganglion, and also

did not improve the predictive capabilities of the models. The possibility

remained that a model capable of representing more complex relationships

between stimulus sensitivity and inter-spike correlations would find more

useful structure in this area. However, as shown in Figure 4.7 for the white

noise stimulus at 2 ms timing precision, this was not borne out by the results

and the MLP model performance was not improved by including spike his-

tory. This was true for both stimuli at all timing precisions. The implications

of this are discussed in Section 4.4.
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Figure 4.8: The results of the principal components analysis on the set of
hidden layer stimulus filter parameters. Left panel: cumulative proportion of
variance accounted for by the principal components. Right panels: the first
four principal components.

4.3.5 Stimulus feature selectivity of the population

The MLP model proved to be more accurate in predicting the responses of

VPM thalamus neurons than any previous study of this system. We therefore

wished to see what the model could tell us about the stimulus features

encoded by the thalamic population. This is more difficult than for the GLM

framework, as in that case the stimulus filters entirely describe the features

that excite firing in the model. In the MLP model, the stimulus filters are

combined nonlinearly and therefore describe a nonlinear manifold of stimulus

space. In other words, hidden layer units could represent inhibitory features

or be part of a compound excitatory feature. Nevertheless, we applied a

similar analysis of the feature space represented by the learned stimulus

filters of the hidden layer units in the same way as we did for the ganglion

GLM filters.

The method is described fully in Section 4.2.2, but briefly, a principal

component analysis was applied to the set of stimulus filters, the results of

which are shown in Figure 4.8. The left panel shows how much variance

was cumulatively accounted for by the principal components, which can be

compared with the results obtained for the similar analysis on the GLM

stimulus filters for the trigeminal ganglion. There, the first three principal
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components accounted for over 99 % of the variance in the stimulus filters.

To reach that level for the VPM filters required six components, and four

were required to account for over 95 % of the variance. Therefore the feature

space which VPM neurons were differentially responsive to was in some sense

larger than the space we found in the trigeminal ganglion data.

The first four principal components, which accounted for over 95 % of

the variance in the stimulus filters are shown in the four right-hand panels

of Figure 4.8. Qualitatively, they seem similar to those calculated from the

GLMs of trigeminal ganglion in Chapter 2; the first two closely resemble

ideal velocity and acceleration features, while the next two describe kinetic

features involving higher-order derivatives of whisker position.

4.4 Discussion

We found in Chapter 3 that although the GLM successfully described many

aspects of the VPM thalamus response to whisker stimulation, there was

clear room for improvement. We therefore decided to employ a more pow-

erful model, the multilayer perceptron, to capture the encoding properties

of these neurons. We found that the MLP modelling framework resulted

in substantially better performance at predicting the response of VPM neu-

rons to dynamic whisker stimuli than GLMs, across the whole range of spike

timing precisions.

The modelling accuracy results can be compared with previous work

done in the VPM thalamus. In particular, the LNP model used by Petersen

(2007) achieved a mean prediction coefficient over a set of 36 neurons of

0.58 (SD 0.11). The results presented here therefore represent a substantial

improvement, as this level of performance was achieved to a timescale of

0.25 ms, while the median prediction quality coefficient reached over 0.8 for

a time bin width of 2 ms. It is also important to note that the results of

Petersen (2007) were calculated after the measured spike trains had been

convolved with a Gaussian of width 1.6 ms, which makes for a considerably

easier problem than prediction with millisecond scale time bins.

4.4.1 Coding properties of VPM neuons

A qualitative evaluation of the predictions revealed a few noticeable differ-

ences between the predictions of the GLM and MLP models relative to the
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recorded results. First, the contrast between firing events and quiet periods

was clearer in the MLP predictions, which were closer to the experimental

results in that outside of intense firing events there was very little activity.

Second, the MLP more accurately reproduced the scale of the firing events

themselves. A thorough explanation of how the neural network model was

able to achieve this is difficult, but a possible interpretation is that the

sensory code at this stage has transformed such that the neurons’ excita-

tory stimulus features are no longer linear in the whisker position basis.

The GLM fits were able to find the linear direction in the stimulus space

in which neurons were responsive, and thus account for a substantial por-

tion of the spiking response, but unable to account for nonlinear variations

within this region, which could include locality, for example. These coding

results corroborate with those found by Petersen (2007), being similar in

several respects. First, the stimulus features were found to have high tem-

poral resolution. The results in this chapter go beyond those of Petersen et

al., as due to methodological constraints they were only able to resolve the

features to a timescale of around 2 ms, while the MLP model found features

capable of predicting the response on a sub-millisecond timescale. Second,

they found diversity in the form of feature selectivity, with the response not

being explained by velocity sensitivity alone, for example. This is confirmed

and expanded upon by the results presented in Figure 4.8, where we found

that six kinetic features were required to describe 99 % of the variance in

the stimulus filters of the model. Third, they found that a subset of neurons

could not be described by single feature sensitivity. The improvement in pre-

dictive performance of the MLP models over the GLMs confirms this, but

also suggests that the view of only a subset of neurons having this behaviour

is incorrect, as the improvement in performance was seen in nearly all of the

recorded neurons.

4.4.2 Non-stationarity in the neural response

One notable feature of the thalamic response that was not accounted for

in any of the models presented is non-stationarity, an example of which is

shown in Figure 4.9. This figure shows a raster plot of spikes, with clear

horizontal bands of high and low activity periods, which could be explained

by switches between stimulus-responsive and unresponsive states. That is, at

different times the unit appeared to respond to different features, or respond
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Figure 4.9: Raster plot of a thalamic unit’s response to 50 repititions of a
white noise stimulus. Clear banding in the response shows that this unit has
distinct firing states.

with different intensity, and this behaviour was common across most of the

recorded VPM neurons.

As shown above, the thalamic response displays changes in firing state

that cannot be accounted for by the models in their current state. This

not only means that the model predictions will correspond less well to the

experimental data, but that the model fit will also be affected negatively. For

example, if the neuron switches between stimulus-dependent and stimulus-

independent states, the model fit will be somewhere between these states,

being less strongly driven by the stimulus than the neuron in its stimulus-

dependent state, but more strongly than in the independent state. This

would mean the model does not properly capture the behaviour of the neuron

in either state.

Non-stationarity in the neural response also has some important method-

ological implications; if the response characteristics change over trials, the

PSTH no longer represents all of the information contained in the spiking

responses to repeated trials. To account for this kind of behaviour, it would

be necessary to move to a model with an internal state, able to describe and

reproduce long time-frame changes in neural response properties. Potential

methods for dealing with these issues are discussed in Chapter 5.
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4.4.3 Conclusion

The multilayer perceptron framework was able to describe the behaviour

of VPM thalamus neurons to a high degree of fidelity, surpassing the per-

formance of previous models presented in the literature. In terms of coding

properties, it seems the more powerful model was necessary to accurately

describe the VPM thalamus. This is evidence that there is transformation in

the neural code even at these early stages of the sensory pathway. Although

the coding mechanism is similar to that found in the trigeminal ganglion

in that it consists of spikes of high timing precision in response to kinetic

features of the stimulus, the kinetic features to which it responds were found

to be more complex. Additionally, there was evidence of different types of

spike correlation and varying network state.
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Chapter 5

Conclusion

In this thesis we have applied rigorous modelling techniques in order to

explore and explain the sensory code of two of the early stages of the rat

whisker sensory pathway. We have shown that it is possible to predict the re-

sponse of neurons in the trigeminal ganglion and VPM thalamus to dynamic

whisker stimulation using statistical modelling techniques and examine the

resulting models to gain insight into the coding properties of these neurons.

5.1 The generalized linear model revealed that the

primary afferents form a highly informative

overcomplete basis

Generalized linear models have a very simple structure that is conducive

to parameter fitting and interpretation. They proved to be a very good

framework for describing the responses of trigeminal ganglion neurons, which

respond very precisely and mostly monotonically to single kinetic stimulus

features. The good performance of the models enabled us to interpret the

parameters to find an intuitive coding interpretation of the population of

trigeminal ganglion neurons. Here, we discuss these findings in the context

of previous research into whisker-related trigeminal ganglion neurons.

An important aspect of the study was the use of complex time-varying

stimuli, specifically white noise and texture. Classical studies in the trigem-

inal ganglion system used simple stimuli, often ramp-and-hold whisker de-

flections, where the whisker is deflected to a certain angle and held there

for a relatively long period of time (tens of milliseconds or more). These
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studies discovered some important aspects of the responses of the whisker

primary afferents, including their remarkable sensitivity to small deflections

(Gibson and Welker, 1983) and their tuning properties with respect to de-

flection parameters such as direction, (Lichtenstein et al., 1990), velocity,

and position (Shoykhet et al., 2000). These early studies often categorized

the neurons as Slowly Adapting (SA) or Rapidly Adapting (RA) depend-

ing on whether they showed a tonic response to sustained deflection or not.

However, the simple stimulus ensembles meant that the exact features to

which the neurons responded could not be extracted. This was the moti-

vation for moving to complex stimulus ensembles, in particular white noise

stimuli, that explore much more of the possible stimulus space.

In common with our findings, Jones et al. (2004b) showed that com-

plex stimuli, specifically low-pass filtered white noise stimuli, elicited highly

reproducible responses from trigeminal ganglion neurons. They also found

that the categorization of the neurons as RA or SA had no predictive power

with respect to the similarity of spike trains across trials. In another paper

(Jones et al., 2004a) they used a linear encoding model to successfully infer

the whisker stimulus that evoked a given spike train; however, they did not

provide a model of spike generation to account for the characteristics of the

neurons’ responses.

Some work since then has taken a mechanically-inspired approach (Mitchin-

son et al., 2008; Lottem and Azouz, 2011), combining an integrate-and-fire

neuron model with a simple mechanical model representing the dynamics

of the follicle-sinus complex. These models were successful in predicting the

responses of neurons to an array of stimulus types, but had the serious

drawback that all of the parameters required hand-fitting. Not only is this

laborious, but it also increases the flexibility of the model, reducing the

generality of the conclusions that can be drawn from its fit.

There are always trade-offs in modelling decisions. The approach taken

here was of a simple and relatively inflexible model with automatically fitted

and regularized parameters. Despite this, we found a very good correspon-

dence between the fitted models’ predictions and the measured spike trains,

increasing our confidence that the model was capturing the important as-

pects of the neural code under these experimental conditions. We were then

also able to provide an explanation of the coding strategy of the trigeminal

ganglion in terms of features of whisker motion. We found the features en-
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coded by the neurons formed an over-complete basis of a low-dimensional

feature space, where each spike from an individual neuron is highly infor-

mative about where we are in the stimulus space.

5.2 The sensory code undergoes transformation in

the early stages of the pathway

The success of the GLM in predicting the response of primary afferents indi-

cates that the sensory code of these neurons can be accurately described by

linear filtering. When applying the model framework to the VPM responses,

however, the limitations of the linear model became apparent. We found

that a model capable of representing nonlinear stimulus dependencies, the

multi-layer perceptron, achieved much more accurate predictions, indicating

that the response of VPM neurons to the applied stimuli is more complex

and only partially captured by linear filtering.

We can compare the results found here with the work of Petersen et al.

(2008). Using a similar white noise whisker stimulation paradigm, they mea-

sured spike trains from individual VPM thalamus neurons and analysed the

results using an LNP model. They were able to achieve predictions of similar

to quality of those produced by the GLM here, and as such the two studies

can draw some similar conclusions: VPM neurons encode these stimuli with

precisely-timed spikes on the basis of diverse kinetic features of whisker mo-

tion. Importantly, they also found a subset of neurons not well described by

their single-feature LNP model, but whose spiking behaviour was modulated

within a higher-dimensional space.

Petersen et al. (2008) did not provide a model to characterize these

multi-feature neurons, but the nonlinear multiple feature selectivity they

found agrees with our findings that moving to a more powerful model, the

multilayer perceptron, yielded improved predictive capability. However, we

found that the MLP improved on the GLM predictions for a large major-

ity of the measured neurons, indicating that although the simpler models

did describe important aspects of the sensory code, it was inaccurate to de-

scribe only a subset of the neurons as multi-feature selective. The modelling

extensions needed to explain the response of VPM neurons showed that

these neurons respond to more complex features of whisker motion than the

trigeminal ganglion, and that even at this early stage in the sensory pathway

79



the neural code is already undergoing some degree of transformation.

We can put this in additional context with the work of Bale and Petersen

(2009): using a directional ramp-and-hold stimulus paradigm, they found

that responses became less reliable and less informative along the sensory

pathway from ganglion to VPM and somatosensory cortex, and concluded

that the neural code is transformed from a highly precise temporal code

in the trigeminal ganglion to a more rate-based code in the somatosensory

cortex. This conclusion may be disputed, however, due to the simple stimulus

applied: if the thalamus and cortex have a more complex stimulus-response

function, as we have found here, the ramp-and-hold stimuli may simply

not be among the neurons’ preferred stimuli, resulting in the less reliable

response. Despite this, their findings do agree with ours in that the neural

code has already changed between the trigeminal ganglion and the thalamus.

5.3 Relevance of precise spike timing

Our understanding of how the early stages of sensory pathways encode in-

formation has progressed greatly since the seminal work of Adrian (1926).

His experiments showed that the intensity of a sensory stimulus could be

encoded by the rate of action potentials emitted by a sensory neuron. How-

ever, in a behavioural context, animals need to make decisions based on

sensory information quickly and without the benefit of repeated trials. In

these circumstances the concept of “firing rate” is ill-defined and important

changes in the environment may occur on a timescale in which only a few

spikes could possibly be emitted. Additionally, the information theoretical

argument of MacKay (1952) showed that a spike train can transmit expo-

nentially more information with increasing timing precision. On this basis,

it has long been recognized that neural codes making use of precisely timed

spikes may exist. However, experiments in various sensory systems, such as

the visual cortex in response to a moving grating (Tolhurst et al., 1983)

and the auditory nerve in response to pure tones (Teich and Khanna, 1985)

found that the mean and variance of the spike count in response to a stim-

ulus were approximately equal, consistent with Poisson-like firing statistics.

This led to the view that neurons could only support a neural code based

on the aggregation of spikes over relatively long timescales.

Contrary to the view of neurons as relatively noisy coding elements, how-
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ever, results such as those of Segundo et al. (1963) and Mainen and Sejnowski

(1995) using injected current stimulation of cells in vitro showed that under

many conditions, spike generation is a largely deterministic process that can

correlate with stimuli on a millisecond timescale. The time of propagation

of action potentials was also shown to be precise on such timescales (Lass

and Abeles, 1975). These results indicated that codes using individual spike

timing are biophysically possible.

The seeming contrast between the noisy coding found in earlier experi-

ments and the precision of the biophysical mechanisms was reconciled when

it was recognized neurons code more reliably under more natural stimu-

lation. This has been demonstrated in many different systems (Miller and

Mark, 1992; de Ruyter van Steveninck et al., 1997) and confirmed again

by the results in this thesis. Each sensory modality has its own constraints

imposed by the mechanism of transduction, yet, it seems a general feature

of primary afferents that they operate very close to the physical limits on

the timing of spike generation (Rieke et al., 1999; Bialek, 2002).

5.4 Modelling approaches for understanding neu-

ral coding

As methods for gathering neural data have improved, the need for and value

of sophisticated analytical methods has increased. In this thesis we have

demonstrated the effectiveness of probabilistic modelling techniques for un-

derstanding the coding properties of the early somatosensory system of the

rat. Despite the success of the models, there remain many relatively unex-

plored directions for improving their explanatory power.

One immediately apparent aspect of the modelling that can be altered

according to need is the input to the model. For example, in this thesis we

used a spike feedback mechanism for single neurons, but it is possible to ex-

tend this to allow inter-neural connections in regions of the brain where this

is expected (Paninski et al., 2007), or to treat the spikes of one population of

neurons as input to another (Babadi et al., 2010). A related approach is to

include pre-synaptic neural activity explicitly in a model as an unobserved

variable to be inferred (Kulkarni and Paninski, 2007).

Another important choice is the selection of prior for the parameters.

It is possible to think of this as another hyperparameter of the model, one
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that we can optimize. In this thesis we used a relatively simple, widely used

prior, the spherical Gaussian distribution, though within the context of a

Type-II maximum likelihood procedure. This procedure finds a scale for the

model parameters that optimizes the marginal likelihood of the hyperpa-

rameters and thereby increases the predictive power and interpretability of

the fits. However, more sophisticated priors are possible, for example Park

and Pillow (2011) explored a Type-II maximum likelihood procedure they

called “Automatic Locality Determination” (ALD), which used a prior ca-

pable of capturing the tendency for sensory receptive fields to be localized,

in both time and frequency. They found that this form of prior increased the

accuracy of model fits in simulations involving a wide variety of simulated

stimulus filter types and also greatly reduced the amount of data required

to find a good fit for experimental data.

We can also consider how to treat the output of neurons. It was assumed

for all models in this thesis that the relevant unit of the neural code is the

single spike. There is evidence in the whisker system that at the thalamic

level codes that distinguish between different firing patterns, e.g. bursting

and tonic firing, carry more information than those only considering single

spikes (Montemurro et al., 2007). This may not be a problem if the model

is sophisticated enough to account for and generate similar complex spike

patterns, which may be the case for models with spike feedback and nonlin-

ear stimulus dependencies. Otherwise it could be necessary to differentiate

between firing patterns and treat them as different categories of output from

the system.

Section 4.4.2 showed that the response properties of VPM neurons were

not stationary, possibly switching states between different stimulus depen-

dencies. Therefore it would make sense to more explicitly model long-term

(on the order of seconds) dependencies. Two promising frameworks for this

kind of modelling are hidden Markov models and recurrent neural networks.

Hidden Markov models, also known as “state-space” models, have seen some

use in the neural coding problem in recent years (Brown et al., 1998; Paninski

et al., 2009), but recurrent neural networks have not seen much use despite

recent advances in overcoming fitting difficulties, such as those by Martens

and Sutskever (2012) and Monner and Reggia (2012).

There are clearly many directions in which the modelling of neural sen-

sory coding in the rodent whisker system and sensory systems in general
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could be expanded and refined. It can be noted, however, that two major

concerns in modelling, accuracy and interpretability, are often at odds; it

is often possible to construct a sophisticated model with great predictive

accuracy that is nevertheless difficult to use to aid scientific understanding.

The extent to which this is true and how much of a problem it is remains

debated, but on a practical level it reminds us to keep in mind what use

we intend to make of our models. When selecting a modelling approach we

should be always carefully consider what use we wish to make of them and

how they can aid our understanding.

5.5 Directions for future research in the rat whisker

system

As noted above, there remain many potentially fruitful avenues of research

in terms of applying powerful modelling techniques to neural systems in gen-

eral. Here we note some directions for research into the rat whisker system

in particular.

5.5.1 Making recordings in awake animals

All data in this thesis were obtained from anaesthetized animals using ex-

ternally applied whisker stimuli. This has clear experimental and analyti-

cal advantages such as exact control over whisker motion, allowing repeated

stimulus trials. This was the basis for most evaluation of model performance

in the analysis, and as we have shown this approach can give insight into

the sensory code. However, this level of control over conditions also takes

the experiments away from the more natural conditions for which the code

evolved. For all sensory modalities motor control of sensory apparatus is im-

portant, and perhaps particularly so for the sense of touch. Therefore it is

likely that recordings from behaving animals will become more common and

more important in the future. There may also be concerns over the poten-

tial effect of anaesthesia on the behaviour of neurons, which becomes more

important further along the pathway, particularly in cortex. Experiments

using awake animals would avoid this difficulty.

Work in this area is in progress; for example O’Connor et al. (2010)

studied some of the coding properties of barrel cortex neurons in head-
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fixed mice performing an object localization task, though without taking

a modelling approach. This new paradigm does bring its own difficulties

in applying such an approach: several techniques used in this paper, e.g.

the prediction quality coefficients, required the precise repeated application

of a stimulus. However, the modelling framework remains applicable, and

retains the advantages when using natural stimulation over classical reverse

correlation techniques.

5.5.2 Making use of data from deeper in the sensory pathway

In this thesis we gathered and analysed data from some of the earliest stages

of the rat whisker sensory pathway, and found an active role in sensory pro-

cessing being played by the thalamus. As the sensory information enters the

cortex, anatomical conditions change drastically. As discussed in Chapter 1,

there is a massive increase in the number of neurons associated with each

whisker, estimated at 10 000 per barrel column. It is likely that neurons in

the barrels are responding to compound features involving input from other

whiskers and the motor system. As even in the thalamus a more powerful

model than the GLM improved response predictions, careful consideration

of the modelling approach must be taken in the cortex. Experimentally, it is

important to find and apply stimuli that will reveal the coding properties of

cortical neurons and allow accurate predictive models to be fitted. These is-

sues poses challenges, but also opportunities for finding good descriptions of

sensory representations and move towards a more complete understanding

of neural coding in general.
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