DYNAMIC OPPONENT MODELLING
IN TWO-PLAYER GAMES

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

2015

By
Richard Andrew Mealing

School of Computer Science

Contents

[ist of Abbreviations
[Abstract]
[Declaration|

Publications

[Acknowledgements|

1__Introductionl
(1.1 ~ Why Study Multi-Agent Learning?
(1.2 Why Study Games?[.
(1.3 Learning to Act|

1.4.1 Scopel

2.1 How Should an Agent Act?
[2.2 Learning Objectives|.,

2.3 Assumptions|.
[2.4 Chapter Summary|

(3 Background and Related Work|
[3.1 Game Theoryl

11

13

14

15

16

17

18
18
20
22
23
25
25
28

32
32
35
37
40

41

3.1.2 Game Classes| 44
[3.1.3 Game Categorisations| 47
[3.1.4 Strategy Categorisations| 59
[3.1.5 Solution Concepts|. 56
[3.1.6 Solving Games| 62
[3.1.7 Games in the Experiments] 65
[3.1.8 Abstraction by Bucketingl 73

[3.2 Learning in Games| 0oL 75
[3.2.1 Repeating Games| 75
[3.2.2 Stochasticity in Games| 76
[3.2.3 The Problem of Convergence|. 76
[3.2.4 Modes ot Convergence| 7
[3.2.5 Convergence in Game Theory| 79
[3.2.6 Machine Learningf 81
[3.2.7 Reinforcement Learningl 83
[3.2.8 Reinforcement Learning Algorithms| 84
[3.2.9 Countertactual Regret Minimisation|. 93
[3.2.10 Opponent Modelling| 99
[3.2.11 Value Estimation by Lookahead| 110

[3.3 Chapter Summary| 112
4 OM with SP, RL, and Lookahead 113
4.1 Sequence Prediction Opponent Modellingl 114
[4.1.1 Short-Term and Long-Term Memoryl 115
[4.1.2 Sequence Prediction Methods 115

42 lookaheadl. 116
[4.3 Games in the Experiments| 117
4.4 Opponents in the Experiments|. 117
[4.5 'The Approachl 119
[4.6 Comparison to Reinforcement Learning Agents|. 120
[4.6.1 Iterated Rock-Paper-Scissors|. 124
4.6.2 Iterated Prisoner’s Dilemmal 126
46,3 Littman’s Soccer Gamel. 130

4.7 Chapter Summary|, 131

[5

OM with EM, SP, and No-Regret Learning)

[>.1 Opponent Modelling in Poker{

[0.2 Expectation-Maximisation|

[>.3 Games in the Experiments|

[>.4 Opponents in the Experiments|.
(5.5 The Approachl
[5.5.1 Expectation-Maximisation in the Opponent Model|

[5.5.2 Sequence Prediction in the Opponent Model|
[5.5.3 Operation and Algorithm|
[>.6 Evaluating the Three Proposals|

against the Opponents|

[5.6.3 Further Experiments in Rhode Island hold’em|
[>.7 Chapter Summary|,

Change Detection for Opponent Strategies|

[6.1 Learning a Changing Distribution|
[6.2 Adapting the Window Size|
[6.2.1 ADaptive WINdowing (ADWIN)[.
[6.2.2 Bayesian Change Point Detection (BayesCPD)|.
[6.2.3 Fisher’s Exact Test Change Point Model (FET-CPM)|. . .
6.3 Comparing Change Detection Methods
[6.3.1 Modelling Changing Categorical Distributions|

[6.3.2 Modelling Reinforcement Learning Agents
6.4 Combining SP and CD|
[6.5 Chapter Summary|

(7

Dynamic OM Self-Play Convergence)

[7.1 Fictitious Play Example|

[7.2 Extensions to Fictitious Play|{.
[7.3 SP and CD Selt-Play Convergencef.
[7.3.1 Combining Sequence Prediction and Fictitious Play|
[7.3.2 Combining Change Detection and Fictitious Play|
[7.4 Empirical Results for Self-Play Convergencel

[7.4.1 Measuring Nash Equilibrium Convergence|

171
173
173
174
179
181
183
185
195
199
200

[7.4.2 Maximum Convergence Rate[. 215

[7.4.3 Matching Pennies| 220

[7.4.4 Generalised Matching Pennies| 222

[7.4.5 Shapley’s Game| 226

(46 Jordan's Gamel oL 229

[7.5 Chapter Summary| 231

8 Conclusions and Future Workl 233
8.1 Conclusions 233
[8.1.1 First Approach: Sequence Prediction, Reinforcement Learn- |

[ing, and Lookahead|. 234
[8.1.2 Second Approach: Expectation-Maximisation, Sequence Pre- [

| diction, and No-Regret Learning/. 234
[8.1.3 Sequence Prediction Methods| 235

[8.1.4 Change Detection Methods| 236

[8.1.5 Selt-Play Convergence ot Empirical Distributions ot Plays|. 236

8.2 Future Workl. o 237
[8.2.1 Safe Strategy| oL 237

[8.2.2 Opponent Strategy Space| 238

[8.2.3 Sequence Prediction Methods 238

824 Continuous Values 239

[8.2.5 N-player games| 0L 239

[8.2.6 Learning Objectives| 240

827 Real-world Problems 241

[8.2.8 Prior Knowledge| 241

[8.2.9 Implicit Modellingl 241

[8.2.10 Sequence Prediction and Change Detection|. 242
[Bibliography| 243
A ppend 252
(A Expectation-Maximisation| 253
[A.1 Categorical Distribution| 253
[A.2 Mixture of Categorical Distributions| 255

(B 2-Player 2-Action Nash Equilibrium Payoffs|
[B.1 Payoffs for a Nash Equilibrium at a Centre Point|

[B.2 Payofts for a Nash Equilibrium at a Saddle Point|

[C Simplex Sample and Simplex Random Walkl

[C.1 K — 1-Dimensional Simplex Sample|

(C.2 K — 1-Dimensional Simplex Random Walkl

(C.2.1 Metropolis-Hastings Algorithm|
[C.2.2 Application of the Metropolis-Hastings Algorithm)|

(D Fictitious Play Example Details|

Word Count: 61886

259
260
261

264
264
267
268
268

270

List of Tables

(1.1 Artificial intelligence success in games.| 21
[3.1 Terminology comparison.| 43
[3.2 Rock-paper-scissors payoft matrix.|. 65
[3.3 Shapley’s game payoft matrix.| 66
[3.4 Miscoordination game payoft matrix.| 66
[3.5 Matching pennies payoft matrix.|. 67
[3.6 Jordan’s game payoft matrix.| 67
[3.7 Prisoner’s dilemma payoft matrix.| 68
[3.8 T'hree-card poker hand ranks.| 71
[3.9 Hierarchical n-gram matching pennies example.| 105
[4.1 Iterated prisoner’s dilemma opponents.| 118
[4.2 Sequence prediction opponent modelling experiment parameters.| . 123
[4.3 Iterated rock-paper-scissors results.| 125
[4.4 Iterated prisoner’s dilemma results.| 127
[4.5 Littman’s soccer game results.| 131
[>.1 Parameters used in the experiments.| 155
[>.2 Die-roll poker modelled average payofts per game.| 161
[>.3 Rhode Island hold’em modelled average payotls per game.| 163
[>.4 Rhode Island hold’em opponent hidden information dependence.| . 169

55

Final average payoff per game of (Expectation-Maximisation (EM) |

+ SP) - (SP) in die-roll poker.| 169
[6.1 Data from two Bernoulli samples.| 182
[6.2 Methods vs changing distributions parameters.|. 187
[6.3 Example single run change detection results for 3 categories.| . . . 193
[6.4 Average change detection results.| 193

[6.5 Methods vs reinforcement learning agents parameters.|. 196

[6.6 Matching pennies average distances.. 198
[6.7 Matching pennies average correct predictions.| 198
[6.8 Matching pennies average rewards.| 198
[6.9 Rock-paper-scissors average distances.|. 199
[6.10 Rock-paper-scissors average correct predictions.| 199
[6.11 Rock-paper-scissors average rewards.| 199

[7.1 Generalised matching pennies mean convergence rate and distance

estimates.) 226
[B.1 2x2 centre Nash equilibrium payofts.| 260
[B.2 2x2 saddle Nash equilibrium payofts.| 261

List of Figures

[3.1 An arbitrary game in extensive-form, normal-form, and sequence- [

[form. 54
[3.2 Littman’s soccer game.|o 69
[3.3 Die-roll poker game tree.| 70
[3.4 Rhode Island hold’em poker game tree.| 72
[>.1 Expectation-maximisation sequence prediction flowchart.| 152

[>.2 Final average payofls per game in abstracted and unabstracted [

[Rhode Island hold’em. 156
[5.3 Final average payofts per game of O5-MCCFEFR with opponent mod- |
| elling,| 160
0.4 Rhode Island hold’em Additional Results| 166
[6.1 Change detection single run results. 192

[7.1 Matching pennies expected dynamics ot fictitious play in self-play.| 205

[7.2 Matching pennies recurrence plots.| 211

[7.3 Matching pennies sequence prediction and change detection in self-

.................................. 229

[7.4 Generalised matching pennies various methods in selt-play,| 225
[7.5 Shapley’s game various methods in selt-play,| 228
[7.6 Jordan’s game various methods in selt-play.|. 230

[B.1 Gradients around a centre Nash equilibrium at (p*™ = 0.5, ¢* = 0.5).261
[B.2 Gradients around a saddle Nash equilibrium at (p™ = 0.5, ¢* = 0.5).263

List of Algorithms

(I Q(uality)-Learning| 86
2 Win or Learn Fast Policy Hill Climbing (WoLF-PHC)|. 88
3 Weighted Policy Learner (WPL)|. 90
i Policy Gradient Ascent with Approximate Policy Prediction (PGA- |

APP). . . . 92
(5 A General Sequence Prediction Method|. 107
(] Sequence Prediction with Q-Learning and Lookahead| 120
(7 Entropy Learned Pruned Hypothesis Space (ELPH)| 149
(8 Opponent Model using Sequence Prediction and EM| 153
[9 Estimating Strategy Dependence on Hidden Information| 168
(10 ADaptive WINdowing (ADWIN)[. 175
(IT ADaptive WINdowing using Distance (ADWIN-D)[. 176
(12 ADaptive WINdowing using Bernoulli distributions (ADWIN-B)| . 178
(13 Stratified Optimal Resampling (SOR)|. 181
(14 Fisher’s Exact Test Change Point Model using Bernoulli distribu- [

tions (FET-CPM-B)| 183
(15 Metropolis-Hastings Unit-Exponential Samplef 186
(16 ~ Sequence Prediction and Fictitious Play| 212
(17 Bayes Model Modified Probability|. 213

10

List of Abbreviations

ADWIN ADaptive WINdowing.
ADWIN-B ADaptive WINdowing using Bernoulli distributions.

ADWIN-D ADaptive WINdowing using Distance.

BayesCPD Bayesian Change Point Detection.
BayesCPD-B Bayesian Change Point Detection using Bernoulli distributions.

BayesCPD-C Bayesian Change Point Detection using Categorical distributions.

CD Change Detection.

CDFP Change Detection and Fictitious Play.

CFR Counterfactual Regret Minimisation.

CFRX Counterfactual Regret Minimisation iterated X times.

CUSUM CUMulative SUM Control Chart.

ELPH Entropy Learned Pruned Hypothesis Space.

EM Expectation-Maximisation.

FET-CPM Fisher’s Exact Test Change Point Model.

FET-CPM-B Fisher’s Exact Test Change Point Model using Bernoulli distri-

butions.

FP Fictitious Play.

11

KMP Knuth-Morris-Pratt.

LSTM Long Short-Term Memory.

LZ78 Lempel-Ziv-1978.

MCCFR Monte Carlo Counterfactual Regret Minimisation.

MDP Markov Decision Process.

OS-MCCFR Outcome Sampling Monte Carlo Counterfactual Regret Minimi-

sation.

OS-MCCFR OM Outcome Sampling Monte Carlo Counterfactual Regret Min-

imisation with an Opponent Model.

PGA-APP Policy Gradient Ascent with Approximate Policy Prediction.

PPMC Prediction by Partial Matching version C.
Q-Learning Quality-Learning.

SEM Standard Error of the Mean.

SOR Stratified Optimal Resampling.

SP Sequence Prediction.

SP-OM Sequence Prediction Opponent Modelling.

SPFP Sequence Prediction and Fictitious Play.
TDAG Transition Directed Acyclic Graph.
UCB Upper Confidence Bounds.

WoLF Win or Learn Fast.
WoLF-IGA Win or Learn Fast Iterated Gradient Ascent.
WoLF-PHC Win or Learn Fast Policy Hill Climbing.

WPL Weighted Policy Learner.

12

Abstract

DyNAMIC OPPONENT MODELLING IN TwWO-PLAYER GAMES
Richard Andrew Mealing
A thesis submitted to the University of Manchester
for the degree of Doctor of Philosophy, 2015

This thesis investigates decision-making in two-player imperfect information
games against opponents whose actions can affect our rewards, and whose strate-
gies may be based on memories of interaction, or may be changing, or both.
The focus is on modelling these dynamic opponents, and using the models to
learn high-reward strategies. The main contributions of this work are: 1. An ap-
proach to learn high-reward strategies in small simultaneous-move games against
these opponents. This is done by using a model of the opponent learnt from se-
quence prediction, with (possibly discounted) rewards learnt from reinforcement
learning, to lookahead using explicit tree search. Empirical results show that
this gains higher average rewards per game than state-of-the-art reinforcement
learning agents in three simultaneous-move games. They also show that sev-
eral sequence prediction methods model these opponents effectively, supporting
the idea of using them from areas such as data compression and string match-
ing; 2. An online expectation-maximisation algorithm that infers an agent’s hid-
den information based on its behaviour in imperfect information games; 3. An
approach to learn high-reward strategies in medium-size sequential-move poker
games against these opponents. This is done by using a model of the opponent
learnt from sequence prediction, which needs its hidden information (inferred by
the online expectation-maximisation algorithm), to train a state-of-the-art no-
regret learning algorithm by simulating games between the algorithm and the
model. Empirical results show that this improves the no-regret learning algo-
rithm’s rewards when playing against popular and state-of-the-art algorithms
in two simplified poker games; 4. Demonstrating that several change detection
methods can effectively model changing categorical distributions with experimen-
tal results comparing their accuracies to empirical distributions. These results
also show that their models can be used to outperform state-of-the-art reinforce-
ment learning agents in two simultaneous-move games. This supports the idea of
modelling changing opponent strategies with change detection methods; 5. Ex-
perimental results for the self-play convergence to mixed strategy Nash equilibria
of the empirical distributions of plays of sequence prediction and change detec-
tion methods. The results show that they converge faster, and in more cases for
change detection, than fictitious play.

13

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree
or qualification of this or any other university or other

institute of learning.

14

Copyright

i.

11.

ii.

1v.

The author of this thesis (including any appendices and/or schedules to
this thesis) owns certain copyright or related rights in it (the “Copyright”)
and s/he has given The University of Manchester certain rights to use such

Copyright, including for administrative purposes.

Copies of this thesis, either in full or in extracts and whether in hard or
electronic copy, may be made only in accordance with the Copyright, De-
signs and Patents Act 1988 (as amended) and regulations issued under it
or, where appropriate, in accordance with licensing agreements which the
University has from time to time. This page must form part of any such

copies made.

The ownership of certain Copyright, patents, designs, trade marks and other
intellectual property (the “Intellectual Property”) and any reproductions of
copyright works in the thesis, for example graphs and tables (“Reproduc-
tions”), which may be described in this thesis, may not be owned by the
author and may be owned by third parties. Such Intellectual Property and
Reproductions cannot and must not be made available for use without the
prior written permission of the owner(s) of the relevant Intellectual Property

and/or Reproductions.

Further information on the conditions under which disclosure, publication
and commercialisation of this thesis, the Copyright and any Intellectual
Property and/or Reproductions described in it may take place is available
in the University IP Policy (see http://documents.manchester.ac.uk/
DocuInfo.aspx?DocID=487), in any relevant Thesis restriction declarations
deposited in the University Library, The University Library’s regulations
(seehttp://www.manchester.ac.uk/library/aboutus/regulations) and

in The University’s policy on presentation of Theses

15

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://www.manchester.ac.uk/library/aboutus/regulations

Publications

This thesis is partly composed from three papers. In particular, chapters [4] [7]

and |5 are based on the following conference and journal papers respectively.

Conference Proceedings

e Richard Mealing and Jonathan L. Shapiro [2013]. “Opponent Modelling by
Sequence Prediction and Lookahead in Two-Player Games”. In: 12th Inter-

national Conference on Artificial Intelligence and Soft Computing, pp. 385—
396.

e Richard Mealing and Jonathan L. Shapiro [2015]. “Convergence of Strate-
gies in Simple Co-Adapting Games”. In: Foundations of Genetic Algorithms
XIII.

Journal Papers

e Richard Mealing and Jonathan L. Shapiro [under review|. “Opponent Mod-
elling by Expectation-Maximisation and Sequence Prediction in Simplified
Poker”. In: IEEE Transactions on Computational Intelligence and Al in

Games (conditionally accepted).

16

Acknowledgements

I would like to thank everyone who has given me advice, encouragement, and
support in my pursuit of this degree. This includes many people, from those who
have helped me a great deal, to those who may have just had a conversation with
me about this work. I have always found the interest of others very motivating.
This work was made possible by the invaluable help of the following people:
My supervisor, Jonathan L. Shapiro, whose guidance, support, and knowledge
helped immensely in completing this work. My co-supervisor, Gavin Brown,
whose help, particularly in the first year, allowed me to improve my ability to
plan and communicate my research effectively. Joshua Knowles, for his interest in
my work, especially his questions about the prisoner’s dilemma and convergence
in self-play. All of my colleagues, who were fantastic to work with, especially
Hassan Bashir, David Fox, Darren Hau, Joe Mellor and Fanlin Meng for their
questions, criticism, and ideas. My family and friends, whose encouragement
and support helped see me through this project. Finally, I would also like to
thank the Engineering and Physical Sciences Research Council [grant number
EP/P505631/1] as well as the University of Manchester for their support.

17

Chapter 1
Introduction

Choosing how to act when faced with a decision is a problem everyone encounters
every day. Ideally, we want to act in a way that will benefit us the most. This
requires us to consider the consequences of not only our own actions, but also the
actions of others. For example, if you are deciding how to get to work as fast as
possible, then you may decide to drive along the shortest route, but if your co-
workers make the same decision, then it may become congested and slower than
alternatives. To complicate matters, the consequences of actions can manifest
over different time periods. For example, perhaps driving along the shortest
route is the fastest option, but it puts more strain on your vehicle causing it to
break down faster. Additionally, we often face an incomplete view of the world,
making us more uncertain about the state of the environment. For example,
there might be unforeseen obstructions like road maintenance, or accidents, or
spontaneous parades, etc. If we want to act optimally to achieve our goals, then
we must anticipate how our interaction with the environment and others will
proceed, taking into consideration the consequences of actions.

This chapter conveys the motivation behind this thesis, provides an outline
of the problem, lists the contributions of this thesis, and describes its structure.
The chapter begins in Section by describing why we should study multi-agent

learning.

1.1 Why Study Multi-Agent Learning?

Decision-making problems in the real-world often consist of multiple decision-

makers. Studying multi-agent learning is therefore beneficial because it can be

18

CHAPTER 1. INTRODUCTION 19

applied to these problems. Some examples include electronic trading (e.g. virtual
market places like NASDAQ or Globex) and robotic interaction (e.g. search and
rescue or exploration). We want agents that can learn to act rationally in the
presence of other decision-makers. This means that we want them to learn to act
optimally, where acting to benefit oneself given the information that you either
know or could discover is optimal. The main problem is that the actions of each
agent in a multi-agent system can affect the environment as well as the other
agents. This causes an agent’s optimal behaviour to often depend on how the
other agents are behaving. For example, in a search and rescue operation, finding
survivors is much more likely if each rescuer knows where the other rescuers are
searching. Fortunately, this problem is extensively studied in game theory.
Game theory, traditionally used in economics, is well-suited to analyse inter-
actions between rational decision-makers. There are two fundamental questions
it can help us answer: How should an agent act, and how should an agent adapt,
with other possibly influential decision-makers present? To help answer the first
question, game theory provides us with a variety of solution concepts, which
predict how a game will be played. Some solution concepts account for the con-
sequences of agents’ actions on the environment and other agents. Typically, an
agent will have a value function that estimates the values of states, or actions, or
both, and will use a strategy based on it. To help answer the second question,
game theory research has found that even seemingly natural adaptation rules can
lead to undesirable results, which is discussed in Section [3.2.3] This research
is usually concerned with how to use the value function and any other relevant
knowledge, such as opponent models, to change the agent’s behaviour to max-
imise its expected rewards. Studying multi-agent systems, specifically games,
can lead to improvements in the algorithms that operate within these domains,
perhaps making them more applicable to real-world problems. This is becom-
ing increasingly important given the shift in focus from single-agent learning to
multi-agent learning due to the rise of distributed computing (e.g. the Internet).
This thesis considers simple multi-agent systems, which are games, usually
with just two players. Each agent wants to maximise its own expected rewards.
Thus, each agent can be considered greedy, not caring how well the other agent
performs unless the other agent affects how well it performs. From the agent’s

perspective, its optimal behaviour is whatever will maximise its own expected

CHAPTER 1. INTRODUCTION 20

rewards. A rational agent will try to achieve this optimal behaviour whilst fac-
toring in its knowledge and potential knowledge. For example, if it knows that
its opponent is perfect, then it would play the least exploitable strategy, or if it
knows that learning more about its opponent would increase its expected rewards,
then it would play more exploratively than exploitatively. Typically, there will
be a finite amount of reward that can be divided between the agents, and each
will act to receive the largest share. This will usually result in them acting as
adversaries, but does not rule out cooperation if they can both benefit.

In Section it is argued why it is beneficial to use games as the framework
to develop agents, outlining the many advantages that they bring.

1.2 Why Study Games?

A game can be seen as a well-defined problem with specific rules and outcomes.
Having a well-defined problem lets us focus on learning how to solve that problem
rather than worrying about what the problem is. For this reason, games have
been used as a testbed for artificial intelligence even before the advent of mod-
ern computing. For example, according to [Chess Programming WIKI — Alan
Turing [2014], in 1952 Alan Turing developed a chess playing algorithm called
Turochamp, and implemented it without a computer as a “paper machine” i.e.
its computations were performed manually. Although in one of its only recorded
matches it lost to one of Turing’s colleagues, Alick Glennie, it was the beginning
of a successful line of research. There are several aspects of games that make

them useful for artificial intelligence research, including the following:

e Well-defined rules. Most games make it clear what players can and cannot
do. For example, in chess, the bishop can only move diagonally. This

simplifies implementing games and their players.

e Finite state and action spaces. Most games have a fixed number of states
that they can be in, and a fixed number of actions each player can take in
each state. For example, in checkers (draughts), the states are board con-
figurations and the actions are legal moves (i.e. diagonal moves). Limited
state and action spaces are conceptually simpler and easier to handle than

large or infinite state and action spaces.

e Clear goals. The outcome of a game can always be categorised as either a

CHAPTER 1. INTRODUCTION 21

win, or a draw, or a loss. Other measures of success may also exist such as
how fast the game can be won, how much money a player can accumulate,
how many pieces a player can take or preserve, etc. All of these goals are

quantifiable. This makes it easy to evaluate how well a program works.

Complex strategies. Finding the optimal strategy in a game can be chal-
lenging practically, or theoretically, or both. Thus, developing ways to find

optimal strategies can push the boundaries of artificial intelligence research.

Comparison agents. A measure of success lets us compare agents, and in

turn, the effectiveness of different artificial intelligence techniques.

Prior research. Games are a passion for many people and a popular research
area. Consequently, there is a lot of work on analysing and finding solutions
to many games, including many of the ones used in this thesis. This allows

more time to be spent developing agents rather than analysing the games.

Theoretical foundations. Game theory is a well-established field that can

be used to help develop agents.

Developing algorithms to not only play games, but also to defeat humans in them,

is a classic interest in artificial intelligence. Table shows algorithms for games

that have progressed around or beyond top human-level play.

Table 1.1: Artificial intelligence success in games.

Year | Game Success

1979 | Backgammon BKG 9.8 beat world champion Luigi Villa [lBackgammon ngmmmmg].

1994 | Checkers Chinook beat world champion Marion Tinsley |Chinook vs. the Checkers Champ|
|— Top 10 Man-vs.-Machine Moments - T]ME].

1995 | Scrabble Quackle beat former champion David Boys [Scrabble Showdown: Quackle vs.|
|Dcwz'd Boys - Top 10 Man-vs.-Machine Moments - TIME].

1997 | Chess Deep Blue beat world champion Garry Kasparov |IBM1 00 - Deep Blue].

1997 | Othello (Reversi) | Logistello beat world champion Takeshi Murakami “Oth@llo match of the g/car].

2006 | Go Crazy Stone beat various pros |C7'azySt0ne at Sensei’s Libmry].

2008 | Poker Polaris beat various pros in heads-up limit Texas hold’em [Man vs Machine II -
|P0laris vs Online Poker’s Best].

2011 | Jeopardy! Watson beat former winners Brad Rutter and Ken Jennings [IBM computer Wat-|
|5(m wins Jeopardy clash — Technology — theguardian.com]‘

2015 | Poker Cepheus first to play an essentially perfect game of heads-up limit Texas hold’em
[Bowling et al., |2015| |Cepheus Poker Project].

2015 | Various Google DeepMind performs similar to professional human games tester at 49

arcade (Atari) games (e.g. Breakout, Space Invaders, etc) [Mnih et al., [2015

CHAPTER 1. INTRODUCTION 22

Most of these examples are perfect information games, where each player
knows all relevant information to make decisions except the other players’ strate-
gies. The exceptions are Scrabble, Poker, and Jeopardy!. However, although
Scrabble has hidden information (the opponents’ tiles), the champion program
Quackle ignores this and treats the game as if it has perfect information. Thus,
Table represents a shift in focus from perfect information games to hidden
information games. Hidden information makes learning how to act more difficult
because the true state of the game may be hidden. This thesis looks at this more
difficult case, with all games herein having hidden information.

Section discusses, in general, the problem of learning to act, and describes

the information requirements and goals of the approaches in this thesis.

1.3 Learning to Act

Ideally, we would like to maximise our total reward over the interaction time.
This is challenging if we are not given any prior information about the conse-
quences of our decisions, especially considering that the consequences may vary
if other decision-makers alter their behaviours. In this situation, this leads to
the question: How much time do we devote to learning the consequences? If
we devote no time, and always act to maximise our reward given what little we
know, then there is a high risk that our knowledge about the consequences will
be wrong, and thus we will be acting incorrectly most of the time. On the other
hand, if we devote all of our time, and always act to learn the consequences, then
we will be maximising our reward very infrequently. Therefore, we need a balance
between both.

An agent can use its rewards to directly guide its strategy by playing high-
reward actions, or by playing to reach high-reward states. Many single-agent and
multi-agent learning methods learn to act based solely on their rewards. Given
that their rewards are usually determined by their opponents, then their learnt
strategies often depend on their opponents’ behaviours. In this way, they implic-
itly model their opponents in how much they value their actions or states. Due
to this, it can be difficult to separate when an agent does well in its environment
versus when it does well against its opponents. In comparison to an agent’s re-
wards, it is less direct to use public actions to improve its strategy. The key is

that the state is likely determined by all decision-makers’ actions. By observing

CHAPTER 1. INTRODUCTION 23

their actions, we can build models for how they will act. Knowing this allows
us to anticipate future states and actions and to aim for those with the highest
expected total rewards.

Section explains in more detail what this thesis is about. It also lists the

contributions of this thesis and gives its overall structure.

1.4 What is this thesis about?

This thesis is about modelling opponents whose actions can affect our rewards,
and whose strategies may be based on memories of interaction, or may be chang-
ing, or both, and using these models to learn high-reward strategies in two-player
(and one three-player) imperfect information games. These are games with hidden
information. Opponents with memory-based or changing strategies are labelled
as dynamic opponents, or opponents with dynamic strategies. To model these
dynamic opponents’ strategies, the focus is mainly on using sequence prediction
methods. However, change detection methods are also looked at as an alterna-
tive to, or as a compliment to, sequence prediction methods. Chapters [4] and
develop approaches, which use opponent models learnt with sequence prediction
methods, to learn high-reward strategies. The difference is that the games in
Chapter 5| have more states and more hidden information than those in Chap-
ter[d In fact, in the games in Chapter [5] the opponent’s hidden information may
not even be revealed, but it is necessary in order to model the opponent, and so it
is inferred using an online expectation-maximisation algorithm. This algorithm
infers the opponent’s hidden information based on its behaviour using an oppo-
nent model. The reason a sequence prediction method is used, rather than this
opponent model on its own, is to model the dynamics of the opponent’s strat-
egy. Chapter [6] provides a preliminary investigation into using change detection
methods to model these opponents by comparing the accuracies of variations of
three state-of-the-art change detection methods at modelling changing categori-
cal distributions. Finally, Chapter [7] investigates the convergence in self-play of
the empirical distributions of plays of sequence prediction and change detection
methods to mixed strategy Nash equilibria.

In Chapter [the initial focus of this thesis is on small simultaneous-move
games, where the hidden information is the opponent’s action, which is always

revealed at the end of each game. Several sequence prediction methods are applied

CHAPTER 1. INTRODUCTION 24

to model a variety of opponents, which include variable-order Markov models
and finite automata, which have memory-based strategies, and state-of-the-art
reinforcement learning algorithms, which have changing strategies. The idea in
this chapter is to use these models, with (possibly discounted) rewards learnt
with a standard reinforcement learning algorithm (Q-Learning), to lookahead
with explicit tree search. The lookahead is meant to use the models and rewards
to find action sequences with high expected rewards, which can then be followed.

This work is expanded in Chapter [5| to larger games, which have more states
and more hidden information. Specifically, medium-size sequential-move games,
where the hidden information is private information that the players’ receive dur-
ing the game (i.e. die-rolls, card deals), which may not be revealed at the end
of each game. Given that the opponent’s hidden information, which is necessary
to model the opponent’s strategy, is not always revealed, an online expectation-
maximisation algorithm is developed to infer it. This algorithm infers the oppo-
nent’s hidden information from its behaviour using an opponent model. However,
instead of using this opponent model on its own, a sequence prediction method is
also applied, with the inferred hidden information, to model the dynamics of the
opponent’s strategy. In experiments, a variety of opponents based on popular and
state-of-the-art reinforcement learning and no-regret learning algorithms, which
have changing strategies, are modelled. The idea in this chapter is to use the
opponent model to iteratively improve the strategy of a state-of-the-art no-regret
learning algorithm by simulating games between it and the model in order to
allow it to gain higher rewards.

In Chapter[6] this thesis provides a preliminary investigation into using change
detection methods to model these opponents as an alternative to, or as a compli-
ment to, the sequence prediction methods. The idea in this chapter is to take vari-
ations of three state-of-the-art change detection methods, and to compare them
against each other, and against an empirical distribution, at modelling changing
categorical distributions. In the first comparison, the categorical distributions
are independent and randomly change suddenly, or gradually, or a mixture of
both. In the second comparison, the categorical distributions are the strategies
of reinforcement learning agents and the models are used to play best-response
strategies in matching pennies and rock-paper-scissors.

Finally, in Chapter [7| this thesis investigates if convergence in self-play of

agents’ empirical distributions of plays can be enhanced if each agent assumes that

CHAPTER 1. INTRODUCTION 25

the other agents are changing their strategies over time. It looks at simultaneous-
move, normal-form games with two or three actions, and two or three players.
These games include generalised matching pennies, Shapley’s game, and Jordan’s
game. Fictitious play, which assumes that the opponent uses a stationary strat-
egy, is compared against two new variants that remove this assumption, and
explicitly assume that the opponent uses a dynamic strategy. The opponent’s
strategy is predicted using a sequence prediction method in the first variant,
and a change detection method in the second variant. Two hybrid methods are
also proposed to improve the convergence of the sequence prediction and change
detection methods. The first combines sequence prediction with fictitious play,

whilst the second combines change detection with fictitious play.

1.4.1 Scope

The scope of this thesis is restricted to decision-making in simple multi-agent
systems in the form of two-player games (as well as one three-player game). All
the work within this thesis is about modelling opponents with memory-based or
changing strategies, and using these models to learn high-reward strategies in
the context of playing games. The overall approach adopted in this thesis is to
conduct investigations that are largely experimental. Thus, it was necessary to

design and develop algorithms to play within games to validate the ideas herein.

1.4.2 Contributions of this Thesis

The main contributions of this thesis are about modelling an opponent whose
actions can affect our rewards, and whose strategy may be based on a memory
of interaction, or may be changing, or both, and using this model to learn a
high-reward strategy. Recall that an opponent with a memory-based or changing
strategy is labelled as a dynamic opponent, or an opponent with a dynamic

strategy (which is the reason for the thesis title). The contributions are as follows:

1. An approach to learn high-reward strategies in small simultaneous-mouve
games against opponents with memory-based or changing strategies. This
approach works by using sequence prediction to model the opponent and
predict its actions, with reinforcement learning to learn the agent’s own
(possibly discounted) rewards, to explicitly lookahead via tree-search to

find high-reward action sequences. An instance of the sequence prediction

CHAPTER 1. INTRODUCTION 26

method is created for each opponent information set within the game, and
observes opponent actions across games. By doing so its predictions try
to account for how the opponent’s strategy is memory-based or changing.
Empirical results show that this approach gains higher average rewards
per game than state-of-the-art reinforcement learning agents when playing
against variable-order Markov models in iterated rock-paper-scissors, finite
automata in iterated prisoner’s dilemma tournaments, and against each
other in Littman’s soccer game. These games are all small simultaneous-
move games, where the hidden information is the opponent’s action, which
is always revealed at the end of each game. These results also demonstrate
that several sequence prediction methods can effectively model opponents
with memory-based or changing strategies. They support the idea of mod-
elling these opponents with sequence prediction methods in general from

areas such as data compression and string matching. (Chapter |4))

2. An online expectation-maximisation algorithm that infers an agent’s hidden
information based on its behaviour in imperfect information games. To do
this, the algorithm uses a tuple of categorical distributions, one for each of
the agent’s information sets, to model its strategy. The expectation step
infers the probability of the agent’s actions that have been observed given its
hidden information using the parameters of these categorical distributions,
and then by Bayes’ rule, the probability of its hidden information given
its actions. The maximisation step updates the categorical distributions
parameters by maximising their likelihood given the inferred distribution
over the agent’s hidden information. In general, as more of the agent’s
actions are observed, the accuracy of the inferred distribution over its hidden
information will increase. Thus, this algorithm is used at the end of each
game to try to maximise this accuracy. However, increasing the amount
of hidden information in a game will make this distribution less accurate
because there will be more instances of hidden information associated with

the same behaviours, making them less distinguishable. (Chapter |5))

3. An approach to learn high-reward strategies in medium-size sequential-move
games against opponents with memory-based or changing strategies. The ap-
proach works by using a model of the opponent learnt from sequence pre-

diction, which requires the opponent’s hidden information (inferred from

CHAPTER 1. INTRODUCTION 27

the online expectation-maximisation algorithm), to train a state-of-the-
art no-regret learning algorithm by simulating games between it and the
model. In these games the opponent’s strategy usually depends on its hid-
den information, and so in these cases modelling its strategy requires its
hidden information. Therefore, the online expectation-maximisation algo-
rithm (contribution [2|) is used to infer its hidden information based on its
behaviour. An instance of the sequence prediction method is created for
each opponent information set within the game, and observes opponent ac-
tions across games. By doing so its predictions try to account for how the
opponent’s strategy is memory-based or changing. The simulations against
the anticipated opponent strategy allow the no-regret learning algorithm to
learn regrets against it, which are essentially its anticipated future regrets.
Empirical results show that this approach gains higher average rewards per
game than the no-regret learning algorithm on its own when playing against
popular and state-of-the-art algorithms in die-roll poker and Rhode Island
hold’em. These games are medium-size sequential-move poker games, where
the opponent’s strategy often depends on hidden information, which is not

always revealed at the end of each game. (Chapter |5

4. Demonstrating that several change detection methods can effectively model
changing categorical distributions. It is shown that amongst variations
of three state-of-the-art change detection methods, some of them can ef-
fectively model changing categorical distributions. The results also show
that they can be used to outperform state-of-the-art reinforcement learning
agents in two simultaneous-move games. This supports the idea of mod-
elling changing opponent strategies with change detection methods, either
instead of, or with, sequence prediction methods. In the latter case, a
change detection method could be used to model changes in a sequence
prediction method’s conditional distributions more effectively than it could
on its own (if at all). Some change detection methods that are considered
are modifications to be able to handle categorical distributions. Empiri-
cal results compare the accuracies of these methods against each other and
against an empirical distribution at modelling changing categorical distri-

butions. In the first comparison, the categorical distributions change either

CHAPTER 1. INTRODUCTION 28

suddenly, or gradually, or a mixture of both, and can be seen as being repre-
sentative of changing opponent strategies. The results show that for few cat-
egories (2-5) the most accurate methods are BayesCPD-B and BayesCPD-
C (sudden and mixed), ADWIN-D (gradual), and for many categories (10
or 20) the most accurate method is BayesCPD-C (sudden, gradual, and
mixed). In the second comparison, the categorical distributions are the
strategies of reinforcement learning agents, and the models are used to play
best-response strategies against them. The results show that BayesCPD-B
and BayesCPD-C generally produce the most accurate opponent models

and the most rewarding best-response strategies. (Chapter @

5. Experimental results for the self-play convergence to mixed strateqy Nash
equilibria of the empirical distributions of plays of sequence prediction and
change detection methods. It is shown that candidate sequence prediction
and change detection methods converge faster than fictitious play. However,
unlike fictitious play and change detection, sequence prediction does not al-
ways converge to the Nash equilibria in two-player, two-action, normal-form
games derived from generalised matching pennies. Combining sequence
prediction with fictitious play improves its convergence by reducing its con-
vergence distance from the Nash equilibria for a number of these games.
Combining change detection with fictitious play causes it to converge to
the Nash equilibria in some of these games in fewer iterations, but over-
all decreases its convergence speed. Finally, it is also shown that, unlike
fictitious play, the sequence prediction and change detection methods con-
verge to the Nash equilibria in the difficult Shapley’s and Jordan’s games.
(Chapter 7))

1.4.3 Thesis Structure

Chapter [2| formally defines the overall problem that this thesis tackles. The chap-
ter begins in Section by discussing one view of how an agent should act. This
helps define the desirable behaviour for an agent to learn. Section describes
several beneficial multi-agent learning algorithm properties from the literature.
Many of the algorithms that this thesis builds on, and compares against, incor-
porate these properties, and so understanding them helps in understanding how

these algorithms work. Section explains the assumptions that are made in

CHAPTER 1. INTRODUCTION 29

the approaches in this thesis, as well as some assumptions that are not made, but
that are often made in the literature. This helps to put this work in context and
highlights the benefits and limitations of its approaches. Finally, Section[2.4] sum-
marises this chapter. This chapter aims to provide the reader with a thorough
understanding of the overall problem that the approaches in this thesis tackle
as well as an understanding of where this work is placed within the literature,
especially with regard to its assumptions.

Chapter |3 provides background and related work to help understand this work
and its context. The chapter begins in Section |3.1| by exploring the relevant game
theory. This includes formal definitions for games, their classes and categorisa-
tions, strategy categorisations, solution concepts (expanding on Chapter [2), and
what it means to solve a game. It also describes the games used in this thesis
as well as the bucketing abstraction used in Rhode Island hold’em. Section |3.2
discusses learning in games, describing repeated (iterated) games, which allows
agents to learn, and stochasticity. It also looks at the problem of convergence
that many multi-agent learning algorithms try to deal with whilst describing
modes of convergence in general and in game theory. In addition, it describes
machine learning in general and the relationship of this work to it, as well as
providing formal descriptions of reinforcement learning, no-regret learning, and
opponent modelling (focussing on sequence prediction) algorithms used within
the approaches throughout. Lookahead and its importance is also explained.
Finally, Section summarises this chapter.

Chapter [4] addresses the first contribution of this thesis; can an opponent
model learnt from a sequence prediction method be used, specifically its ability to
make context based predictions, with rewards learnt from a reinforcement learn-
ing method, possibly with discounting, to lookahead using explicit tree search
and find high-reward strategies? The chapter begins in Section by describing
sequence prediction and how it is used to model the opponent. This includes
describing the core components of sequence prediction methods in general, which
are their short-term and long-term memories, as well as giving brief descriptions
of each sequence prediction method. Section briefly describes how lookahead
is involved in this approach, referencing back to Section for a full explanation.
Sections [4.3] and [4.4] outline the games and the opponents used in the experiments
in this chapter respectively. At this point, in Section the actual algorithm
representing this approach is given. With the algorithm for this approach, and

CHAPTER 1. INTRODUCTION 30

the opponents’ algorithms in place, Section empirically evaluates this ap-
proach. It reports and analyses the results from playing this approach in iterated
rock-paper-scissors against variable-order Markov models, in iterated prisoner’s
dilemma tournaments against finite automata, and in a simplified soccer game
against state-of-the-art reinforcement learning agents. In the first two games it
compares the results of this approach against those obtained by state-of-the-art
reinforcement learning agents, whereas in the third game there is a direct com-
parison. Finally, Section summarises this chapter.

Chapter |5 addresses the second and third contributions of this thesis; can an
opponent model learnt from a sequence prediction method, which itself uses an
online expectation-maximisation algorithm to infer the opponent’s hidden infor-
mation that its strategy depends on, be used to train a state-of-the-art no-regret
learning algorithm by simulating games between the algorithm and the model?
This chapter builds on Chapter [4 by looking at larger games with more states
and more hidden information. In Chapter {] the hidden information is always
revealed at the end of each game, whereas in this chapter the hidden information
is not necessarily revealed at the end of each game. This is problematic as an
opponent model requires this information, thus one of the contributions in this
chapter is to derive an online expectation-maximisation algorithm that can in-
fer the opponent’s hidden information from its behaviour. The chapter begins
in Section by discussing opponent modelling in poker and relating it to the
approach in this chapter. Section discusses expectation-maximisation in gen-
eral. Before empirically evaluating the approach in this chapter, the poker games
and the opponents used in the experiments are defined in sections |5.3| and
respectively. A description of the approach is given in detail in Section [5.5 The
stage is then set for Section [5.6] which gives the empirical results of comparing
this approach against the comparison agents. Finally, Section summarises
this chapter.

Chapter [6] addresses the fourth contribution of this thesis; can change detec-
tion methods be used to model changing categorical distributions? The chapter
begins in Section by discussing the problem of learning a changing categorical
distribution. It moves on in Section [6.2] to describe several variations of three
state-of-the-art change detection methods, some of which are first proposed in
this thesis, that can be used to model changing categorical distributions. In gen-

eral, they do this by trying to maintain a window of observations that are only

CHAPTER 1. INTRODUCTION 31

drawn from the current distribution, and then using this window of samples to
form an empirical distribution. Once these various change detection methods
have been defined, an empirical comparison is performed to compare their accu-
racies in Section [6.3, This involves testing their accuracies at modelling changing
categorical distributions. Section discusses how change detection methods
could be used with sequence prediction methods, and how this could potentially
improve them, which in turn could improve the approaches in chapters [] and [5
Finally, Section summarises this chapter.

Chapter [7] addresses the fifth and final contribution of this thesis; can conver-
gence in self-play be enhanced if each agent assumes that the other agents are
changing their strategies over time. To help answer this, fictitious play, which
assumes that the opponent uses a stationary strategy, is compared against two
new variants proposed in this chapter that remove this assumption and explicitly
assume that the opponent uses a dynamic strategy. The opponent’s strategy is
predicted using a sequence prediction method in the first variant, and a change
detection method in the second variant. The chapter begins in Section with
a motivational example outlining how fictitious play acts in self-play. Section
describes extensions to fictitious play to help put this work into context. This
leads to Section [7.3] which discuss how sequence prediction and change detection
methods could improve on this. This section also explains two hybrid meth-
ods, the first combining sequence prediction with fictitious play, and the second
combining change detection and fictitious play. Section [7.4] shows experimental
results. Finally, Section summarises this chapter.

Chapter [§ presents the overall conclusions for what has been learnt about im-
proving multi-agent learning through the approaches of this thesis in Section 8.1},
and suggests possible directions for future research in Section Most of the
future work suggestions are to do with removing the assumptions that have been
made throughout this work, whilst the rest are about reconciling this work with

other promising approaches in the literature.

Chapter 2

Problem Definition

This thesis looks at the simplest type of multi-agent system, which is one with only
two agents. Each of these agents is acting in its own self-interest to maximise its
own rewards. However, one difficulty is that each agent’s rewards can be affected
by the other agent’s actions. This makes it difficult for an agent to anticipate
what rewards it can expect to receive in the future for whatever sequence of
actions it chooses because this often requires it to know what will result from its
own as well as its opponent’s actions.

This chapter defines the problem in more detail. Section [2.1begins by looking
at how an agent should act. Included in this is a description of a spectrum of
strategies, with a maximally exploitative best-response strategy at one end, and

a risk-averse Nash equilibrium strategy at the other end.

2.1 How Should an Agent Act?

There are many views on how an agent should act and for the most part the
answer depends on the task at hand. Ideally, we want an agent to achieve its
goals, but there may be many ways to do this. One popular set-up is to give an
agent a reward, which is a numerical feedback that is positive either for achieving
a goal or for getting closer to achieving a goal, zero for having no effects on
the goal, and negative otherwise. Another popular set-up is to give an agent
an error (or regret), which is a numerical feedback that is positive and closer to
zero the closer an agent is to achieving a goal. This leads us to two common
views of how an agent should act, which are firstly, that an agent should act

to maximise its rewards, and secondly that an agent should act to minimise its

32

CHAPTER 2. PROBLEM DEFINITION 33

errors. A rational agent is defined as one that acts optimally in its own self-
interest given its knowledge and potential knowledge. A rational agent would
choose its actions according to its beliefs such that they maximise its expected
reward, where an expected reward is a reward multiplied by the probability of
receiving that reward. If an agent always does this, then it is playing an estimate
of a best-response strategy. The accuracy of the best-response strategy would
depend on the accuracy of the agent’s beliefs. This implies that a rational agent
would learn to play an estimate of a best-response strategy.

Unfortunately, a best-response strategy is usually unknown and difficult to
calculate because it depends on other agents’ strategies, which are usually un-
known, as well as random events in the environment. A best-response strategy
could be estimated, but Johanson, Zinkevich, and Bowling, 2008 showed that a
bad estimation could lead to a much lower expected reward than that of the best-
response strategy. This is because there is no guarantee that a strategy close to a
best-response strategy in the strategy space will yield similar expected rewards.
For example, imagine playing rock-paper-scissors repeatedly against an opponent.
In the first game you observe the opponent playing rock. If you assume that the
opponent’s strategy can be determined from its past play, then you might predict
that its strategy is to always play rock. Therefore, your best-response strategy is
to always play paper. However, in the second game when you play paper, your
opponent plays scissors and you lose. In this way, a best-response strategy that
looks highly profitable can become disastrous if the assumptions behind it are
wrong. The incorrect assumption in this example is that the opponent’s strategy
can be determined from a single past game. Another problem is that it is usually
difficult to calculate a best-response strategy in large games because you have to
consider every decision point. A best-response strategy can be seen as an offensive
strategy as it tries to get the most for the agent. In a two-player zero-sum game,
it would simultaneously maximise the agent’s expected reward, and minimise the
opponent’s expected reward, completely exploiting the opponent.

Alternatively an agent could play a Nash equilibrium strategy (i.e. its strategy
from a Nash equilibrium strategy profile), which is a sort of safe-strategy against
rational opponents, which are worst-case opponents in zero-sum games. A Nash
equilibrium is a tuple of strategies, one per agent, where no single agent can
change its strategy to increase its expected reward. In other words, each agent is

playing a best-response strategy to the other agents’ strategies. One advantage

CHAPTER 2. PROBLEM DEFINITION 34

of an agent playing a Nash equilibrium strategy in a two-player game is that
it minimises its risk by guaranteeing at least its expected reward at the Nash
equilibrium, which is usually much higher than the minimum reward in the game.
Another advantage of it for a two-player game is that it is stable because whatever
strategy the opponent uses, this guarantee is still there. If the opponent is not
playing its half of the Nash equilibrium, then the agent can only receive either an
equivalent or greater expected reward. A disadvantage is that, if the opponent is
not playing its half of the Nash equilibrium, then there will usually be a strategy
(such as a best-response strategy) that will give a higher expected reward. Also,
if there are two or more opponents, then a group of them might be able to change
their strategies simultaneously and lower the agent’s expected reward. Another
difficulty is choosing a Nash equilibrium in a general-sum game where many may
exist. Finally, a Nash equilibrium is also difficult to compute, although it can
be computed offline. A Nash equilibrium strategy can be seen as a defensive
strategy against rational opponents, which in the case of zero-sum games are
opponents that play worst-case strategies. In a two-player zero-sum game, a
Nash equilibrium strategy is equivalent to a minimax strategy.

The approaches in this work attempt to learn best-response strategies to try
to maximise total expected reward. To account for the typical dependence of the
best-response strategy on the opponent’s strategy, the approaches in chapters [
and [5| model the opponent’s strategy by observing its behaviour using sequence
prediction methods. In chapters[6]and [7]change detection methods are also looked
at for modelling opponent strategies. It is unlikely that these methods will be able
to learn the opponent’s strategy perfectly, especially if the opponent is changing
its strategy. Therefore, the approaches in chapters 4| and [5| do not completely rely
on their opponent models. The approach in chapter 4] does this by only using its
opponent model to lookahead up to a limited depth, and the approach in chapter
does this by only using its opponent model to simulate possible interactions, not
to predict exactly how the opponent will act. However, chapters [6] and [7] do use
best-response strategies because, Chapter [6]is specifically looking at the accuracy
of change detection methods, and Chapter [7] is looking at convergence in self-
play analogous to fictitious play, which uses best-response strategies. This work
mainly deals with relatively small games where opponent models can approximate
the opponent’s strategy within a reasonable time. However, for larger games, it

can take a long time. Chapter [5| has to deal with this problem, and does so by

CHAPTER 2. PROBLEM DEFINITION 35

abstracting the game along with the opponent’s strategy space, down to a smaller
more manageable size.

Section reviews the various properties that have been suggested in the
literature as desirable for multi-agent learning algorithms. The approaches in
this thesis do not explicitly focus on these properties. However, many of the
comparison agents are designed around incorporating these properties, and by

understanding them, it aids in understanding how they work.

2.2 Learning Objectives

An agent attempting to learn in a multi-agent environment faces several chal-
lenges. The main problem is the co-adaptive nature of the system. If an agent
changes its strategy, then other agents may react and change their strategies. This
violates the assumption, commonly used in single-agent learning problems, that
a fixed optimal strategy exists. Instead, as agents change their strategies, each
agent’s optimal strategy usually changes. Due to this, many learning algorithms
with stable dynamics in single-agent learning environments become unstable in
multi-agent environments. Another problem is that explicitly calculating optimal
or best-response strategies requires knowledge of other agents’ strategies, which
are usually private. Finally, out of the learning algorithms that consider other
agents, many assume that their strategies are stationary, in that their action
choices only depend on the environment’s state. However, agents may change
their strategies suddenly, or gradually, or periodically, or in a combination of
ways. Their strategies may also be conditioned on some information such as a
history of states, or actions. If the other agents are learning, then it is very likely
that they will change their strategies and so ideally this should be taken into
account.

Bowling and Veloso, 2001, 2002 attempted to formalise the idea that a learning
agent should learn a best-response strategy when possible by proposing rationality

and convergence as desirable properties of multi-agent learning algorithms.

Rationality: An agent is rational if it learns a best-response strategy when the

other agents learn stationary strategies.

A rational agent was defined in Section as one that acts optimally in its

own self-interest given its knowledge and potential knowledge, such that it plays

CHAPTER 2. PROBLEM DEFINITION 36

actions with the maximum expected reward according to its beliefs. To satisfy
that definition, this rationality property would be a necessary but not sufficient
condition. This is because if all other agents’ strategies are fixed, then playing a
best-response strategy against them would maximise an agent’s expected rewards.
However, if the other agents’ strategies are not fixed, then to satisfy the definition

from Section [2.1] an agent may have to learn different best-response strategies.

Convergence: A set of rational agents playing against each other should con-

verge to a stationary strategy profile.

If all agents are rational according to the definition from Section then each
one should learn to use a best-response strategy. If all agents simultaneously use
best-response strategies, then by definition they will be at a Nash equilibrium.
Therefore, as all agents learn their best-response strategies, they should converge
to a Nash equilibrium, at which point no single agent can change its strategy to
increase its expected rewards, making it a stationary strategy profile. A necessary
but not sufficient condition for an algorithm to have this property is that it will
converge against itself. This criterion can also be seen as a form of co-evolution
or co-adaptation.

Additions to this pair of desirable properties for multi-agent learning algo-
rithms have been proposed by Powers and Shoham, 2005 as well as by Butter-
worth, 2010l Powers and Shoham, |2005| proposed that for any choice of € > 0 and
d > 0 there should exist a number of rounds (iterations of the game) T, which
is polynomial in 1/¢, 1/§, the number of outcomes &, and the maximum possible
difference in rewards across the outcomes b, such that for a number of rounds,

t > Ty, the algorithm achieves an average reward of at least:

1. Vgr — € against any member of a target set of opponents with probability
1 — ¢, where Vgg is the expected reward of a best-response strategy against

that opponent.

2. Vietplay — € in self-play with probability 1 —¢, where Vieipiay is the minimum
reward achieved by any Nash equilibrium that is not Pareto dominated by

another Nash equilibrium.

3. Viecwity — € against any opponent with probability 1 — ¢, where Viecurity is

the agent’s security (or maximin) reward for the stage game.

CHAPTER 2. PROBLEM DEFINITION 37

The first property says that an agent should asymptotically learn a best-response
strategy against any opponent belonging to a target set. The second property says
that an agent should asymptotically converge to a Nash equilibrium that is not
Pareto dominated in self-play. Finally, the last property says that an agent should
asymptotically converge to a strategy that at least gives the security value of the
stage game (i.e. the game being repeated) against any opponent. Butterworth,
2010| proposed that:

4. An agent should maximise the amount of time spent playing a best-response

strategy in order to maximise the expected rewards it receives.

A weaker condition than the last is that only when playing against a slow-learning
(or quasi-stationary) opponent should the agent track the opponent’s strategy
and attempt to spend as much time as possible playing a best-response strategy
against it. Either condition is only feasible if the agent has enough computa-
tional resources to track its opponent, and to learn a best-response strategy. It
is important to note that for any learning agent it may be possible to create
another learning agent that can learn sufficiently quickly to defeat it. For exam-
ple, continuing improvements in hardware and software will allow agents to learn
strategies in the same amount of time but using finer abstractions for games with
large state spaces such as poker, which will probably lead to improved play.
Section [2.3|lists the overall assumptions that are made throughout and within
the approaches in this thesis. These assumptions are about the types of games

played, as well as the information available in agent interactions.

2.3 Assumptions

In order to explain this work, the assumptions about the games used, as well as
the way agents interact, must be explained. For the most part, it is assumed that
agents play in finite, competitive, two-player, general-sum games with imperfect
information. In actuality, most of the games are zero-sum, and there is also one
three-player game, which is highlighted when it is used. Generally, the games the

agents in this thesis play have the following features:

e Two-players, with the only exception being Jordan’s game (three-players).

e At each game state, each player receives a real-valued reward, although

these rewards are usually zero except at terminal game states.

CHAPTER 2. PROBLEM DEFINITION 38

General-sum, the sum of players’ rewards at the end of the game can be

any value, although in most games the sum is zero (zero-sum).

e There is at least one point in the game where at least one of the players
has information hidden from it, preventing it from differentiating between

multiple decision points.

e There is no explicit communication between players, they cannot directly
pass information to each other (the games do not allow this). The only

information a player can see about another player is its public actions.

e A player’s rewards depend on prior actions, which can include player deci-

sions, opponent decisions, and stochastic events (e.g. card deals or die-rolls).
With regards to how agents interact, the assumptions are as follows:

e [t is assumed that players know the rules of the game, meaning that they

know the following;:

1. The actions that they can take at each of their decision points.

2. The rewards that they will receive in each game state.

This first part of this assumption is necessary because a player cannot play the
game, or describe its strategy, unless it knows what its available actions are. The
second part of this assumption is also necessary because a player cannot learn
unless it has some measure of success. Note that knowing your reward for each
game state does not guarantee that when playing the game you will be able to

reach a particular game state or even be aware of what the game state is.
e [t is assumed that the game is played repeatedly.

This assumption is also necessary for learning. If a game is only played once,
then a player is unlikely to learn much, especially if the game has stochastic
events. Technically, during a single game, a player could alter its strategy for later
decisions based on the results in earlier decisions, but this requires intermediate

rewards and only makes sense if these decision points are related in some way.

e [t is assumed that each player has the option to have perfect recall.

CHAPTER 2. PROBLEM DEFINITION 39

A player with perfect recall never forgets revealed information. Although a player
may not require perfect recall, it is not restricted from having it.

The prior three assumptions are the only ones placed on interaction. To help
differentiate this work within the literature, it is important to point out some

assumptions that are not placed on interaction, which are as follows:
e [t is not assumed that players know other players’ strategies.

Knowledge of other players’ strategies is commonly provided in the literature on
imperfect information games. The rationalisation for this is that such knowledge
could be easily estimated through repeated interaction. However, Butterworth,
2010| showed that this assumption is not entirely valid, and that learning an

estimate can have consequences.

e It is not assumed that each player treats each game independently, or that
each player’s strategy cannot be based on a memory of interaction, or that

each player’s strategy cannot change.

It is often assumed in the literature that a player’s strategy consists of a stationary
distribution for each state where it acts, such that for a particular state where it
acts, it chooses an action by randomly sampling from its associated distribution.
However, a player may act based on experience i.e. a memory of interaction, such
that these distributions may be conditional on past information. For example, in
the iterated prisoner’s dilemma, tit-for-tat is a strategy that initially cooperates
and then copies the opponent’s previous action, thus for the single state in the
prisoner’s dilemma where tit-for-tat acts, its strategy consists of five conditional
probabilities Pr(C|-) = 1, Pr(C|C) = 1, Pr(C|D) = 0, Pr(D|C) = 0, Pr(D|D) =
1, where C' is cooperate and D is defect. Omne way to handle this, which is
used by this thesis, is to model the conditional distributions. Another way is
to include the conditional information as part of the state space, which allows
unconditional distributions to be associated with each state. An agent may also
change its strategy, especially if it is learning. By not assuming that each player’s
strategy is memoryless and stationary, this thesis is dealing with a wider range of,
and more realistic players. For example, humans and animals base their decisions

on memories of interaction, and rational players often change their strategies.

CHAPTER 2. PROBLEM DEFINITION 40

2.4 Chapter Summary

This chapter has explained the overall problem that the approaches in this thesis
face with respect to learning in an environment with multiple agents. It has de-
fined a spectrum of behaviours from best-response strategies to Nash equilibrium
strategies that rational agents might consider trying to learn. The approaches in
this thesis in chapters |4] and |5| are designed to learn towards best-response strate-
gies, whilst not completely relying on them to account for possible inaccuracies.
Whilst the players in chapters [6] and [7] intentionally use best-response strategies
to measure accuracy and to converge in self-play respectively. Additionally, this
chapter has provided an overview of a variety of desirable multi-agent learning
properties suggested in the literature, which many of the agents that this thesis
builds on and compares against try to incorporate. Finally, this chapter has dis-
cussed the overall assumptions that this work makes, and does not make, about
the types of games played, as well as the accessible information during interac-
tions. In short, this thesis studies learning high-reward strategies against other
agents whose strategies may be memory-based, or changing, or both, by modelling

them to help anticipate, and have better control over, future rewards.

Chapter 3

Background and Related Work

This chapter gives background material and related work to help understand and
put the work in this thesis into context. In particular, it explains how the com-
ponents in the approaches of this thesis work and what they are based on in
the literature. The chapter begins in Section by exploring the relevant game
theory. This includes formally defining a game and its categorisations as well
as defining different strategy categorisations. Additionally, it takes a closer look
at solution concepts that were touched on in Chapter 2| Finally, it describes
the games used throughout and the bucketing abstraction used in Rhode Island
hold’em. Section discusses the environments that agents in this thesis learn
in, which are repeated games. It also explains several definitions of convergence
and their relation to game theory as well as the problem of convergence, which is
a problem that many multi-agent learning algorithms tackle. Finally, it describes
and explains the reinforcement learning, no-regret learning, and opponent mod-
elling (with a focus on sequence prediction) algorithms that the approaches in

this thesis use, in addition to the importance and the use of lookahead.

3.1 Game Theory

Game theory is a branch of applied mathematics that studies strategic decision-
making. Specifically, it is the study of mathematical models of interaction (i.e.
conflict and cooperation). These interactions are usually studied between decision-
making agents who are both intelligent and rational. Game theory has applica-
tions in many fields such as economics, politics, war, psychology, logic, and biol-

ogy. Modern game theory examines the decisions of human, animal, and artificial

41

CHAPTER 3. BACKGROUND AND RELATED WORK 42

players where the focus is often on the search for or the convergence to solution
concepts. The framework of game theory is extremely useful for multi-agent sys-
tems where an agent’s optimal strategy usually must account for the strategies

of other agents, which can influence that agent’s rewards.

3.1.1 What is a Game?

A game can be defined as a structured interaction of one or more players where
each player is trying to accomplish goals according to a set of rules. The out-
come of a game generally depends on the decisions of the player(s) as well as
any stochastic events described by the rules of the game (e.g. die rolls or card
deals). Each player is usually given indications of its performance through re-
ward signals, which are typically received at the end of a game (e.g. +1 for a
win, 0 for a draw, and —1 for a loss), but could be received at any point during
the game. The reinforcement learning, dynamic programming, and game theory
communities sometimes use different terminology to describe the same concepts
about games. Table shows the synonyms between the terminologies in these
communities. Throughout this work some of these terminologies are used inter-
changeable, mainly the synonyms between the reinforcement learning and game

theory communities.

CHAPTER 3. BACKGROUND AND RELATED WORK 43

Table 3.1: Comparison and definition of synonyms between terminologies in the
reinforcement learning, dynamic programming, and game theory communities.

Reinforcement
Learning

Dynamic Pro-
gramming

Game Theory

Definition

Agent

Controller

Player

The entity (e.g. per-
son, computer,
mal, etc.) interacting
with the system.

ani-

Environment

Process

Game

The system in which
the entities interact.

State

State

State

The information that
represents the system.

Action

Control

Move

Something an entity
does to influence the
system.

Policy

Policy

Strategy

A mapping from
states to the choices
available in those
states.

Deterministic
policy

Deterministic
policy

Pure strategy

A mapping from
states to single choices
that are always taken
in those states.

Stochastic
policy

Stochastic
policy

Mixed
egy

strat-

A mapping from
states to probability
distributions over the
choices available in
those states.

Immediate re-
ward

Immediate
cost

Immediate
payoff

Numerical value
received upon tran-
sitioning to another
state.

Utility

Cost

Payoft

Numerical value re-
ceived upon reaching a
terminal state.

Return

Cost-to-go

Return

Numerical value based
on some aggregate of
the transition values.

CHAPTER 3. BACKGROUND AND RELATED WORK 44

3.1.2 Game Classes

Cooperative Classes

The word “game” typically implies a competitive game (e.g. to game a person
is to exploit that person). In competitive (or non-cooperative) games, the goals
of at least one player are opposed to the goals of at least one other player. The
players are usually prohibited from communicating with each other in order to
prevent them from cooperating by forming coalitions. There has been a lot of
research into cooperative and coordination games. Much of this research has
focused on learning to form coalitions and allocating tasks between coalition
members. Interesting applications include the self-organisation of robots in search
and rescue missions [Scerri et al., [2010] and sampling extraterrestrial rocks [Chien
et al., 2000]. This work focusses on competitive games and does not consider
the possibility of players explicitly communicating or sharing rewards. It is still
possible for a player to implicitly communicate through its behaviour, but if this
leads to any form of cooperation it will likely be because the player believes it is

in its best interest.

Payoff Classes

Players’ payoffs provide one way to classify games. In a zero-sum game, players’
payoffs must sum to zero. In other words, one player’s gain must equal a loss
to the other players. It follows that if one player’s payoff is p, then the other
players must share (perhaps unequally) a payoff of —p. This makes zero-sum
games strictly competitive because each player’s goals are diametrically opposed
to the other players’ goals. All outcomes in a zero-sum or constant-sum game are
Pareto optimal since no player can increase its payoft without at least one other
player lowering its payoff. Games where all outcomes are Pareto optimal are also
referred to as conflict games. In constant-sum games, players’ payoffs always
sum to the same value and so zero-sum games are a type of constant-sum game.
Any constant-sum game can be converted into a zero-sum game by shifting all its
payoffs by an amount equal to the negative of the constant divided by the number
of players. Explicit examples of zero-sum games include rock-paper-scissors and
poker. Any n-player game where only one player can win and where payoffs are
not specified can be implicitly considered as a zero-sum game because you can

assume that the player who wins gets a payoff of 1 whilst the players who lose

CHAPTER 3. BACKGROUND AND RELATED WORK 45

each get a payoff of —1/n. Implicit examples of zero-sum games include chess
and checkers. Even a game with multiple winners can be zero-sum if the losers
share the negative of the sum of the winners’ payoffs.

In a general-sum game, players’ payoffs at the end can sum to any amount.
This means that for any two outcomes of the game, the sums of the players’
payoffs at each outcome can be different values. It is even possible that each
player’s payoff is completely independent of the other players’ payoffs. General-
sum games encompass all possible payoff structures and can be seen as a super-
class of constant-sum games, which in turn can be seen as a superclass of zero-sum

games.

Information Classes

A game can be classified according to the information it makes available to its
players. There are two main information classes: perfect information games, and
imperfect information games. The difference between them is that in the latter,
one or more players have game-related information hidden from them. This is
important because the amount of information a player has can greatly affect the
complexity of the game from its perspective and the correctness of its decisions.
If either there is too much information in a game such that the player has to
omit some of it, or if a game already has information hidden from the player, and
the omitted or hidden information affects the agent’s rewards either directly or
indirectly, then this can introduce more uncertainty about the correctness of its
decisions. If a player omits or ignores information in a game, then this reduces
the complexity of the game from its perspective and is called an abstraction.
Technically an abstracted game is a different game from the original game. An
example could be to abstract a poker game that uses a standard fifty-two card
deck to ignore card suits. This simple abstraction would drastically reduce the
size of the game and the amount of information, but would make the player
unable to determine if it had a flush. The result would be that any rewards it
receives from having a flush would appear to be random. This is a major problem
with using abstractions, they usually make the player less able to correctly assign

credit (or blame) when a reward dependent on the hidden information is received.

Perfect Information A perfect information game is one in which every player

can observe the exact state of the game at any point in the game. The exact

CHAPTER 3. BACKGROUND AND RELATED WORK 46

state of a game describes the game structure and all previous moves made by
all players. If the game is represented in extensive-form (as a tree), then this
means that every player can see the exact node the game is at in the tree at
any point. Chess is a classic example of a perfect information game because
it has no hidden information, each player can observe all moves as well as the
arrangement of the pieces on the board. In other words the players can, if they
choose to remember, know everything there is to know about the state of the
game at all points. Typically the only information a player is unaware of is the
other players’ strategies, but this is not part of the game itself. When playing a
perfect information game, the optimal set of actions is always deterministic. This
means that for whatever game state a player is in, there is set of equal actions
that are definitely better than every other action the player can take at that
point. Note that perfect information games can still involve stochasticity. For
example, backgammon is a perfect information game because, like chess, players
can observe all moves and can see the arrangement of the pieces on the board.

However, it has stochasticity due to the uncertainty of die rolls.

Imperfect Information An imperfect information game is one in which there
is at least one point where at least one of the players is unsure of the game
state. For a game represented in extensive-form (as a tree), if it has imperfect
information, then there would be at least one point where at least one of the
players does not know the exact node the game is in. This occurs because some
information is hidden from one of the players. For example, any normal-form
game is an imperfect information game because the players take their moves
simultaneously, meaning that at the moment a player takes its move, the other
players’ moves are hidden from it. Another example of an imperfect information
game would be a poker-like game where, for at least most of the game, the other
players’ hands are hidden. An imperfect information game has the property that
at least one information set contains at least two game states (information sets
are defined in Section . Different amounts of imperfect information provide
varying levels of complexity for learning algorithms. The approaches in this thesis
view all games using extensive-form representation, which requires the normal-
form games to be viewed as sequential games with imperfect information. This is
done by arbitrarily selecting the move order and hiding each player’s move until

all players have moved.

CHAPTER 3. BACKGROUND AND RELATED WORK 47

3.1.3 Game Categorisations

Many algorithms used as comparisons and to develop the approaches within this
thesis are designed to learn to act optimally in a Markov Decision Process (MDP).
Thus, firstly a MDP is defined to help understand these algorithms. Secondly,
normal-form games are defined, which are used throughout, particularly in chap-
ters [4] and [7} Thirdly, stochastic games are defined, which generalise MDPs and
normal-form games. One stochastic game, namely Littman’s soccer game, is
used in Chapter [4 Fourthly, extensive-form games are defined, which are used
throughout, particularly in Chapter [5. Fifthly, repeated games are defined since
all games herein are repeated to allow agents to learn. Finally, sequence-form
games are defined because, although they are not used, they can provide a more
efficient strategic description than normal-form and extensive-form games and
may be useful for future research. To illustrate some of the different types of
game categorisations the same game is shown in normal-form, extensive-form,

and sequence-form in Figure (3.1}

Markov Decision Process (MDP)
A MDP is a tuple (S, A, P, R) where:
e S is a finite set of states.
e A is a finite set of actions.

e P:SxAxS —[0,1] is a function that gives the probability that an action

will lead from one state to another.

e R:5xAx S — Ris a function that gives the immediate reward received

for playing an action that leads from one state to another.

A MDP can be seen as a one-player, multi-state game. At each state in the
game the player chooses an action and chance probabilistically determines the
next state based on the current state and chosen action. The difference between
a MDP and a one-player extensive-form game is the following. A MDP could be
defined such that any state leads to any other state. Whereas in an extensive-
form game, the states and the transitions between them must be arranged in a
tree such that each state only has one parent that leads to it, except for the root

or start state, which has no parent. A MDP tuple can also be defined to include

CHAPTER 3. BACKGROUND AND RELATED WORK 48

a discount factor v € [0, 1], which determines how long-term reward is calculated
from immediate rewards. However here if a discount factor is used, then it is

assumed to be part of the agent’s specification.

Normal-Form Game
An n-player normal-form (matrix) game is a tuple (N, .4, R) where:
e N =1{1,2,...,n} is a finite set of players.

o A={A; Ay, ..., A,} is a finite set of finite sets of actions (or pure strate-
gies), where A; is player ¢’s finite set of actions. For example, in rock-paper-
scissors, A; = Ay = {R, P, S}.

e R = {Ry,Ry,...,R,} is a finite set of payoff functions (payoff matrices),
where R; is player i’s payoff function, which maps from the joint action

space to the space of real numbers R; : A = (A; X Ay x -+- x 4,) = R.

To play, each player, i, selects an action, a; € A;, and receives a payoff equal to
the entry in its payoff matrix at the position of the joint action, a = (a; € Ay, aq €
Ay, ... a, € Ay) € Al A normal-form game can be seen as a multi-player, single-
state game. Each dimension of a normal-form game payoff matrix corresponds to
a player’s set of actions. This representation is easy to understand for small games
like rock-paper-scissors, or the prisoner’s dilemma, but becomes less intuitive for
larger games. Although any extensive-form game can be represented in normal-
form, determining the set of pure strategies for each player can be time consuming.
This is because, in general, the size of a normal-form game payoff matrix can
be exponential in the number of terminal nodes in the corresponding extensive-
form game tree. An advantage of normal-form representation is that it is easy
to handle mathematically, as long as the payoff matrices are not too large. Note
that “reduced” normal-form is the same as normal-form except without duplicate

strategies.

Stochastic Game
An n-player stochastic game is a tuple (N, S, A, P, R) where:
e N =1{1,2,...,n} is a finite set of players.

e S is a finite set of states.

CHAPTER 3. BACKGROUND AND RELATED WORK 49

o A={A Ay, ..., A,} is a finite set of finite sets of actions or pure strategies

such that A; is player i’s finite set of actions.

e P:SxAxS —0,1] where A= (A; X Ay x -+ x A,) is a function that

gives the probability that a joint action will lead from one state to another.

e R = {Ry,Rs,...,R,} is a finite set of payoff functions such that R; :
Sx Ax S — Ris player ¢’s payoff function that gives its immediate reward

for a joint action that leads from one state to another.

The concept of a stochastic game was introduced by Lloyd Shapley in the early
1950s. A stochastic game can be seen as a multi-player, multi-state game. At
each state in the game all players act simultaneously and chance probabilistically
determines the next state based on the current state and chosen joint action.

This is very similar to a MDP, except in a MDP there is only one player.

Extensive-Form Game

An extensive-form game involves sequential decision-making. It can be visualised
as a game tree, with nodes as game states and edges as actions. At each non-
terminal node a player is “on turn”, which means that it chooses the action to
take at that node. The chosen action determines the edge that is followed to the
next node. Each node, h, has only one parent and so can be represented by a
unique history or sequence of actions taken to reach it, h = (aq, as, . .., a,,), where
each action, a;, 1 <17 < m, is taken by one of the players. These actions include
“chance” actions such as die rolls or card deals, which are taken by the “chance”
player. Thus, h represents all the information seen by an omniscient observer.

An n-player extensive-form game is a tuple (N, H, Z, P, A,Z, 0, u) where:
e N={1,2,...,n} U{c} is a finite set of players including a chance player.

e M is a finite set of all possible nodes or histories, which are action sequences
that contain the empty sequence and every prefix of a sequence. For ex-
ample, in rock-paper-scissors, H = {(), (R), (P), (9), (R, R), (R, P), (R, S),
(P,R),(P,P),(P,S),(S,R),(S,P),(S,S)}, or in die-roll poker an element
could be, h = (3,3, raise) € H.

e / C H is a finite set of terminal histories or leaf nodes. For example,

in rock-paper-scissors this set is Z = {(R, R), (R, P),(R, S), (P, R), (P, P),

CHAPTER 3. BACKGROUND AND RELATED WORK 50

(P,S),(S,R), (S, P),(S,S)}, or in die-roll poker an element could be, h =
(3,63, raise, fold) € Z.

e P: H — N is a one-to-one function mapping from histories to players such
that P(h) =i € N is the player who takes an action after history h € H.

e A: H — Aisaone-to-one function mapping from histories to sets of actions
such that A(h) = {a1,as,...,aam)} € A is the set of actions available to
player P(h) after history h € H, and (h,a;) € H for all 1 <i < |A(h)|. For
example, in rock-paper-scissors, A((R)) = A((P)) = A((S)) = {R, P, S},
or in die-roll poker, A((3,(3, raise)) = {raise, call, fold}.

e 7 ={71,1,,...,Z,} is a finite set of information partitions, one per player.
Player i’s information partition is a finite set of its information sets, Z; =
{Li, 15, ..., Iz,}. Player i’s information set, (I C H) € Z;, is a finite set of
histories that are indistinguishable from player i’s perspective. The term
information partition is used because each node belongs to exactly one
information set and there are no empty information sets. If there is no hid-
den information, then each node belongs to its own information set. Note
that, in the games considered, for any information set I, P(I) = P(h)
and A(I) = A(h) for any h € I. For example, in rock-paper-scissors,
Iy =1, = {{(R,R), (R, P), (R, 5)},{(P, R), (P, P), (P, 5)},{(S5, R), (S, P),
(S,5)}}, or in die-roll poker one element in player 1’s information parti-
tion could be I € Z; = {(J, 0, fold), (CJ, (3, fold), (CJ, I, fold), (LI, £, fold),
(3, &, fold), (CJ, &, fold) } € Z;.

e 0 = (01,09,...,0,) is a strategy profile, which is a finite tuple of strategies,
one per player. Player i’s strategy is a one-to-one function mapping from
its information sets where it acts to discrete probability distributions over
the actions available at those information sets, o; : {I : [€ Z; and P(I) =
i} — A(A(I)), where A(+) is the space of probability distributions over a
set. Player i’s strategy can also be seen as a set of discrete probability dis-
tributions, 0; = {fau) : I € Z; and P(I) = i}, where fa(p) is a probability

mass function over A([).

o u = {uy,uy,...,u,} is a finite set of utility functions, one per player. Player
i’s utility function is a one-to-one function mapping from histories (usually

terminal) to its rewards (real numbers), u; : H — R.

CHAPTER 3. BACKGROUND AND RELATED WORK o1

To play at any non-terminal history, h € (H \ Z), the player on turn, P(h),
samples and plays one of its available actions, a € A(h), according to its strategy,
opmy(I), where h € I and I € Zp@y. Once sampled, this action a is appended
to the history, h, forming a new history, (h,a) € H. The game is played from
the root, h = (), to a terminal history, h = z € Z. At each history, h € H, each
player, i, receives a payoff according to its utility function of u;(h).

An extensive-form game can be seen as a multi-player, multi-state game. It
is arguably the most intuitive representation because it is easy to visualise the
progression within a game as a descending path through its tree. However, it
is less flexible than a stochastic game because it cannot easily represent loops
in a game. In fact, if there are loops in a game such that previous states can
be freely revisited, then the corresponding game tree would be infinite. Nodes
where the chance player is on turn generally have a fixed probability distribution
over the available actions. Although an extensive-form game tree represents deci-
sions (nodes) sequentially, information sets can be used to represent simultaneous
moves. For example, if a player acts at the same time as its opponent, then the
player would not know which path its opponent followed in the game tree. There-
fore, the player’s information set would contain nodes (histories) representing all

possible paths the opponent could have taken.

Repeated or Iterated Game

A repeated game (also known as a supergame or an iterated game) is a game built
by repeating some base game (also called a stage game). If a player’s rewards de-
pend on other players’ actions in the stage game, then the consequence of playing
a repeated game with that stage game is that the player must take into account
how its actions will affect the other players’ future actions. Repeated games can
be broadly classified as either infinitely or finitely repeated. A player may act
very differently depending on when it thinks the game will end. Specifically, if a
player has the opportunity to exploit an opponent, but could face retaliation if
it does so, then it might be tempted to wait until near the end of the game when
the opponent will no longer have the opportunity to retaliate. Note that a Nash
equilibrium in a stage game may not be a Nash equilibrium in a repeated game

using that stage game.

CHAPTER 3. BACKGROUND AND RELATED WORK 52

Sequence-Form Game

Sequence-form is a more recently invented notion than normal-form or extensive-
form, and was introduced by Koller, Megiddo, and Stengel, [1994] as an efficient
way to construct linear programs and linear complementarity problems that can
solve extensive-form games with perfect recall. A player with perfect recall never
forgets revealed information. The inspiration for sequence-form originated from
the observation that although extensive-form is a more succinct, and arguably
more natural representation than normal-form, many techniques to solve games
are more applicable in normal-form. The root of the problem is that the number
of pure strategies in a game that is represented in extensive-form is usually ex-
ponential in the size of its game tree [Stengel, |1996]. For example, the number of
pure strategies in a game tree where every inner node (game state) has the same
number of actions (branching factor), b, is b%, where d is the depth of the tree.
Thus, converting a game represented in extensive-form into a game represented
in normal-form in order to solve it is computationally intractable for anything
but small games. Sequence-form tackles this problem by constructing a strat-
egy space linear in the size of the game tree. This allows solution techniques
for normal-form games to be performed directly on sequence-form games, which
circumvents the computationally intensive conversion into normal-form.

In sequence-form, a player takes each node of the game tree and considers
the choices needed to reach it. These sequences of choices take the place of pure
strategies the player would use in normal-form. However, a player cannot just
choose a single sequence like a pure strategy because it does not define how to
act in any situation. Instead, to define a strategy, the player assigns realisation
probabilities to each sequence. A binary assignment of realisation probabilities
then defines a pure strategy. The main benefit of this method is that a player’s
expected payoff is linear in the realisation probabilities for its sequences. This
allows the construction of linear equations representing an optimisation problem
that is directly solvable. There are already efficient solution algorithms to solve
these optimisation problems and therefore sequence-form allows exponentially
faster solutions to be obtained for games represented in extensive-form. This is
because the conversion to sequence-form is faster than the usually exponential
time necessary to convert to normal-form.

A sequence-form representation of an n-player extensive-form game with per-

fect recall is a tuple (N, S, z,u) where:

CHAPTER 3. BACKGROUND AND RELATED WORK 53

e N=1{1,2,...,n} is a finite set of players.

o S ={51,5,...,5,} is a finite set of finite sets of sequences of actions, one
per player. Player i’s set of sequences of actions, .5;, contains each sequence
of actions that it would take to reach each of its information sets in the
game tree (disregarding the actions of the other players). For example, in
rock-paper-scissors, S; = Sy = {0, R, P, S}.

o v ={x1,T9,...,7,} is a finite set of realisation plans. Player i’s realisation
plan, x; : S; — [0,1], is a function mapping from its sequences of actions
to realisation probabilities (or realisation weights). For any player, i € N,
z(0) = 1, and z(sr) = > ,c () ©(s1a), where s; € S; is player i’s sequence
of actions taken to reach its information set I € Z; and sya € S; such that

it plays the actions in s; and then plays action a. Player i’s probability for
x;i(sa)

x;(s1)
of actions, z;(sy), is the product of the probability of each of its actions

taking action a is . Player i’s realisation probability for a sequence

in that sequence, i.e. if s; = (a1, as,...,a,), where some actions may be
hidden from player 4, then x,(s;) = [/, Pr(a;|(a1, ag,. .., a; 1)), where
b; = 1if a; is one of player ¢’s actions, otherwise b; = 0. Note that here an

information set is as defined the same as for an extensive-form game.

o u = {uj,us,...,u,} is a finite set of payoff functions (sparse payoff ma-
trices), one per player. Player i’s payoff function, w;, is a one-to-one
function mapping from its sequences of actions to rewards (real numbers),

w; : o; — R.

CHAPTER 3. BACKGROUND AND RELATED WORK o4

S1

(b) Normal-form representation.

B CE | DE | CF | DF
AG| R, | Ry | R1 | Ry
AH Rl R2 R1 R2
BG| Rs | R3 | Ry | Ry
E \F BH | Rs | Rs | Rs | Rs
Rg 54

(c) Sequence-form representation.
[C D E F
(0,0) | (0,0) | (0,0) | (0,0) | (0,0)
(0,00 R | Ry |(0,0)](0,0)
(0,0) | (0,0) | (0,0) | Rs | (0,0)
(0,0)
(0,0)

| w
o QB S

0,0)[(0,0) | Rs | Ra
(0,001 (0,0) | Ry | Rs

(a) Extensive-form representation.

Figure 3.1: An arbitrary game in extensive-form, normal-form, and sequence-
form. In extensive-form representation, each node is a game state with white
squares as player one’s decision points, black squares as player two’s decision
points, white triangles as terminal game states, and edges as actions. In normal-
form representation, each row is a pure strategy for player one, each column is
a pure strategy for player two, and each entry for a specific row and column
are the players’ rewards. Finally, in sequence-form representation, each row is a
sequence of actions for player one, each column is a sequence of actions for player
two, and each entry for a specific row and column are the players’ rewards. An
empty action sequence is denoted by (). Also, most entries have zero rewards
(sparse encoding) because the combination of each player’s action sequence at
these points either leads to a non-terminal node, or is unrealisable. Note that R;
is a pair of rewards, R; = (p;, ¢;) where p; is player one’s reward and ¢; is player
two’s reward.

CHAPTER 3. BACKGROUND AND RELATED WORK 95

3.1.4 Strategy Categorisations

In this work agents’ strategies are represented as behaviour strategies. How-
ever, it is easier to understand how behaviour strategies work when compared
to other representations. Thus, the three main types of strategy representations
are described here, which are pure strategies, mixed strategies, and behaviour
strategies. An agent’s strategy describes how that agent will act. A strategy is
usually specified for a particular domain such as a game. In the case of a game,
a player’s strategy specifies how that player chooses an action at any state in the
game where that player acts. If a player decision point is encountered and that
player’s strategy is not specified for that decision point, then the player will not
know what to do and the game will halt.

Pure Strategy

A pure strategy is a deterministic strategy and so it has no probabilistic choices.
An agent with a pure strategy will always play the same action in the same state.
An example of a pure strategy for player one with regard to Figure is AG,
where player one will always play action A in state S7 and will always play action
G in state Sy. If player one played this pure strategy, then it would never actually
reach state S;. However, a pure strategy requires a player to specify what action
it would play in each state where it acts even if some of those states cannot be

reached.

Mixed Strategy

A mixed strategy is a probability distribution over pure strategies. A totally
mixed strategy is a mixed strategy where each pure strategy has a strictly pos-
itive probability of being selected. An agent with a mixed strategy will sample
and execute a pure strategy according to the probability distribution its mixed
strategy assigns over pure strategies. An example of a (totally) mixed strategy
for player one with regard to Figure is to play each pure strategy with equal
probability i.e. Pr(AG) = Pr(AH) = Pr(BG) = Pr(BH) = 0.25. An agent using
a mixed strategy only makes one randomised choice before the game starts, which

is to select its pure strategy according to its mixed strategy probabilities.

CHAPTER 3. BACKGROUND AND RELATED WORK 56

Behaviour Strategy

A behaviour strategy specifies a probability distribution over the actions available
to an agent at each of its decision points. An agent with a behaviour strategy will
sample and execute an action at each of its decision points that are visited accord-
ing to its probability distribution associated with that decision point. An example
of a behaviour strategy for player one with regard to Figure|3.1]is to play action A
with probability 0.8, action B with probability 0.2, action G with probability 0.4,
and action H with probability 0.6. It would be difficult to use a behaviour strat-
egy for a game represented in normal-form because this representation only shows
the players’ pure strategies (each row/column is a pure strategy) and does not
show decision points. Instead, a behaviour strategy is more suited to extensive-
form representation. An agent using a behaviour strategy makes a randomised
choice at each of its decision points in a game in order to select an action. A be-
haviour strategy is usually more efficient than a mixed-strategy. For example, in
Figure a mixed-strategy for player one requires three probabilities (Pr(AG),
Pr(AH), and Pr(BG) since Pr(BH) = 1—Pr(AG)+Pr(AH)+Pr(BG)), whereas
a behaviour strategy for player one requires two probabilities (Pr(A) and Pr(G)
since Pr(B) =1 — Pr(A) and Pr(H) =1 — Pr(Q)).

Kuhn’s Theorem - Relating Mixed and Behaviour Strategies

Kuhn’s theorem establishes a relationship between mixed strategies and behaviour
strategies. The theorem states that if a player has perfect recall, then for any
one of its behaviour strategies there is an equivalent mixed strategy in the sense
that their expected payoffs are the same [Kuhn, |1953]. A player with perfect re-
call never forgets revealed information. By discovering this relationship, Kuhn
showed that a behaviour strategy can be represented as a mixed strategy and vice
versa. Consequently, with perfect recall, the set of Nash equilibria is the same

when using mixed or behaviour strategies.

3.1.5 Solution Concepts

The ideal is to develop agents that will perform as well as possible accord-
ing to some performance metric in every situation they are placed in. Ulti-
mately, the performance metric that this thesis is most concerned with is the

agent’s cumulative reward over all the games that it plays. This can also be

CHAPTER 3. BACKGROUND AND RELATED WORK o7

looked at as its average reward per game. This thesis looks at developing agents
that use predictions from models of opponents with memory-based or chang-
ing strategies to find, or at least approach, best-response strategies. For the
following definitions, there is a finite set of players, N = {1,2,...,n}. Each
player, i € N, has a finite set of pure strategies, A;, and a utility function
that maps tuples of pure strategies, where each tuple contains one pure strat-
egy per player, to rewards (real numbers), u; : H;‘l:1 A; — R. Each player i
also has a strategy, o; € 3; = A(4;), where A(-) is the space of probability
distributions over a set. The strategy profile, o, is defined as the tuple con-
taining each player’s strategy, o = (01,09,...,0,) € ¥ = H;’L:1 ¥, and 0_; as
the same as o but excluding player i’s strategy, o_; = (01,02, ...,0-1,Cit1,- - -,
on) € ¥oi = [[j_1 ;4> Finally, player i’s expected reward for the strategy
profile o is defined as u;(0) = ZaGH?ﬂAJ‘ u;(a) [T, oi(a(i)), where a(i) is player

t’s pure strategy in a.

Best-Response

A best-response strategy for a player is a strategy that results in the most pre-
ferred outcome for that player against the other players’ current strategies. For-
mally, a best-response strategy for player i, of € ¥, is a strategy which, given
the strategies of all other players o_; € ¥_;, results in player ¢’s most preferred
outcome such that

o] € arg max u;(o;,0_;) (3.1)
;€Y

Here the most preferred outcome for a player is the outcome that maximises its
expected reward. If a mixed strategy is a best-response strategy, then each pure
strategy in the mix with positive probability must also be a best-response strategy.
The reasoning for this is as follows: If it were not true, then there would be at
least one pure strategy with positive probability that has a lower expected reward
than the mixed strategy. Furthermore, if the probability of this pure strategy
was decreased to zero and the probabilities of the other pure strategies that have
positive probabilities were increased, then this must raise the expected reward of
the mixed strategy. However, this means that the original mixed strategy would
not have been a best-response strategy because it would have a lower expected
reward than the new mixed strategy. This is a contradiction. The main problem

with using a best-response strategy is that if the environment changes, or if the

CHAPTER 3. BACKGROUND AND RELATED WORK o8

opponents’ strategies change, then it may become a very bad strategy as shown

by Johanson, Zinkevich, and Bowling, 2008.

Maxmin and Minmax

A maxmin strategy is one that maximises a player’s worst-case expected reward.

Formally, a maxmin strategy for player ¢ is defined as

arg max minu;(o;, o_;). (3.2)
o, O_;
The worst-case expected reward to player ¢ for the maxmin strategy is also known

as the maxmin value (security level) of the game and is defined as

max I?m (o, 0-;) (3.3)

Player s maxmin strategy is the strategy that it would commit to in order to

maximise its expected reward if it was forced to announce its strategy first and

then all the other players chose their strategies to minimise player ¢’s expected
reward.

A minmax strategy is one that minimises an opponent’s best-case expected

reward. Formally, a minmax strategy for player i is defined as

arg min max u_i(o;,0-4). (3.4)
The best-case expected reward to the opponents —i for the minmax strategy is

also known as the minmax value of the game and is defined as

H},i_n max U_i(os,0-4). (3.5)
The minimax theorem states that for every two-player zero-sum game with a
finite number of strategies for each player, there exists a value V (called the
value of the game) and a (possibly mixed) strategy for each player such that
player one’s expected reward is at least V', independent of player two, and player
two’s expected reward is at most V', independent of player one. If V = 0, then
the game is said to be fair, otherwise it is said to be unfair in that V' > 0
favours player one and V' < 0 favours player two. The minimax solution is a

Nash equilibrium for these games. A strategy profile that satisfies the equation

CHAPTER 3. BACKGROUND AND RELATED WORK 99

min,, max,_, u_;(0;,0_;) = max,, min,_, u;(0;,0_;) is called a minimax solution.

In other words, the minmax solution is equal to the maxmin solution.

Nash Equilibrium

A Nash equilibrium is a tuple of strategies, one per player, where each player’s
strategy, o7, is a best-response strategy to the other players’ strategies, o*;, [Nash,
1950] such that

u;(o7,0";) > u(o;,0%,) for all o; € ¥; and for all i € N (3.6)

At a Nash equilibrium, no player can increase its expected reward by changing
its strategy unilaterally. However, it may be possible for two or more players to
change their strategies simultaneously to increase their expected rewards. Nash,
1950| proved that if players can use mixed strategies, then at least one Nash
equilibrium exists for all finite n-player games, where finite means that there is a
finite number of pure strategies for each player.

In a zero-sum game, a player’s expected reward at each Nash equilibrium, or
mixture of Nash equilibria, is the same. This is called the value of the game,
and is the same as the value from the minimax theorem. This is not the case
in general-sum games where different Nash equilibria, or mixtures of different
Nash equilibria, can give a player different expected rewards. Therefore, players
in a general-sum game can suffer from the problem of having to choose between
different Nash equilibria. It is also possible that a mixture of Nash equilibria in
a general-sum game is not a Nash equilibrium strategy.

An e-Nash equilibrium is an approximate Nash equilibrium. It is a tuple

of strategies, one per player, where each player’s strategy, o/, is within € of a
best-response to the other players’ strategies, ¢*;, in terms of expected rewards,
ie.

ui(or,0,) +€>u;(o;,0";) for all o; € 3; and for all i € N (3.7)

where € > 0 is some non-negative real-valued number. If € = 0, then only a Nash
equilibrium satisfies this equation. If € = oo, then any strategy profile satisfies
this equation. Thus, although an e-Nash equilibrium is called an approximate
Nash equilibrium, it is only approximate if € is small with respect to the range of

the expected rewards.

CHAPTER 3. BACKGROUND AND RELATED WORK 60

Regret Minimisation

Regret (also called opportunity loss or difference regret) is generally defined as
the difference between the rewards that a player could have received by playing
some strategy and the rewards that the player did receive by playing its actual
strategy. There are many concepts of regret. For a game represented in normal-
form, Zinkevich, 2004}, 2005 defines external regret, swap regret, internal regret,
external response regret, and internal response regret.

Take a normal-form game, which is iterated T" times, and let h be the history

of actions played in these games i.e. h = ((al,...,al),...(aT,... al)) where a!

y Oy y Oy,
is player i’s action at time t. Furthermore, let R; be player i’s payoff function
such that given the actions of all players it returns player i’s payoff, A; be the set
of available actions to player ¢ and a’ ; be the actions of all players except player
i. Player i’s external regret, re., is the difference between its total payoff and the
maximum total payoff it could have got by replacing all its actions with a single

fixed action whilst assuming that the other players’ actions are the same

Text = MAX Z [Ri(a},ad";) — Ri(a},a",)] . (3.8)

i) —q 19 —1
a,j-‘EAi —1

Player ¢’s swap regret, rgwa, is the difference between its total payoff and the
maximum total payoff it could have got by replacing each of its actions using a

function f : A; — A; whilst assuming the other players’ actions are the same

Fewa = m}gxz [Ri(f(a}),a;) — Ri(al,a",)] . (3.9)

Player 4’s internal regret, ryy, is the difference between its total payoff and the
maximum total payoff it could have got by replacing all plays of a particular
action a, with another action af whilst assuming the other players’ actions are

the same
Ting = INax Z [Rl(a:’ a’t—z) - Ri(CLEa at—zﬂ : (31())

a;,ar€A;

t:at=

i=aj;

A problem with relying on these regrets to learn high-reward strategies is that
they do not consider the consequences of an agent’s actions. In particular, they
ignore how other agents may react. For example, always defecting in the prisoner’s

dilemma will have zero external, swap, and internal regrets against any agent,

CHAPTER 3. BACKGROUND AND RELATED WORK 61

suggesting it is a good strategy. However, always defecting, rather than always
cooperating, will result in a much lower total payoff against strategies such as
grim trigger and tit-for-tat. Zinkevich, 2004}, 2005 proposed external and internal
response regrets to account for the immediate and short-term consequences of an
agent’s actions.

For a game represented in extensive-form, Zinkevich et al., 2008| define overall
regret and counterfactual regret. Take an extensive-form game, which is iterated
T times. Let of be player i’s strategy at time ¢, o' ; be the tuple of opponents’
strategies at time t. Player i’s overall regret, 1., is defined as the difference
between the total expected reward of its actual strategy at each time step, and

the maximum total expected reward it could have got with a single fixed strategy
T
Tove = Max Z [m(af, o', —u;(ot, at_i)]) (3.11)

Furthermore, let 77(I) be the probability of reaching information set I according
to the strategy profile at time ¢, but ignoring player i’s strategy, u;(c*|) be the
same as u;(o") except it is calculated from information set I, and o'|;_., be the
same as o' except player ¢ always plays action a at information set I. Player i’s
counterfactual regret, r..,, at an information set, I, is defined as the difference
between the total expected reward of its actual strategy at each time step at that
information set, and the maximum total expected reward it could have got by
playing a fixed action for all time steps at that information set, weighted by the

probability of reaching that information set if it had tried to do so

T

Feow = max Y 77(1) [W(0" 15, I) — W(0", 1)] (3.12)

a€A(I) “=

Counterfactual regret is explained in more detail in Section [3.2.9, According to
Zinkevich et al., [2008, the following theory connects the concept of overall regret
and a Nash equilibrium strategy: In a two-player zero-sum game at time 7T, if
each player’s average overall regret is less than €, then their average strategies are
a 2¢ Nash equilibrium. Thus, as each player’s average overall regret approaches

zero, their average strategies approach a Nash equilibrium.

CHAPTER 3. BACKGROUND AND RELATED WORK 62

Iterated Elimination of Dominated Strategies

Given two strategies o and ¢’ belonging to a player, ¢ dominates ¢’ if the player
gets higher payoffs with o than with ¢’ regardless of what the other players do.
A dominated strategy can be removed because a rational player would not play
it. By removing a dominated strategy, other strategies may be revealed that are
also dominated. If all dominated strategies are removed, and only one strategy

remains for each player, then they are a Nash equilibrium.

Pareto Optimality

Pareto optimality or efficiency is an allocation of resources amongst individuals
such that any reallocation cannot make an individual better off without making
another individual worse off. Thus, a strategy profile is Pareto optimal if no player
can increase its expected payoff without another player decreasing its expected
payoff. In any zero-sum or constant-sum game all strategy profiles are Pareto
optimal. Generally, if there are a finite number of outcomes, then at least one
Pareto optimal solution will exist. A Pareto optimal strategy profile can be seen
as a solution concept because there is no wasted payoff (i.e. no payoff that could
have been gained by one or more players at no cost to the other players). A
strategy profile that contains best-response, or maxmin, or minmax, or regret
minimising strategies, or that is a Nash equilibrium, is not necessarily Pareto
optimal. A strategy profile can also be described as Pareto optimal within a subset
of strategy profiles e.g. a Nash equilibrium can be Pareto optimal compared to
other Nash equilibria. Finally, an outcome is Pareto dominated if it is not Pareto

optimal and if a Pareto optimal outcome exists.

3.1.6 Solving Games

According to Allis, [1994, stating that a game is solved usually indicates that a
property with regard to the outcome of that game has been determined. For two-
player zero-sum games with perfect information he provides three definitions for
the degree to which a game has been solved: ultra-weakly solved, weakly solved,

and strongly solved.

Ultra-Weakly Solved An ultra-weakly solved game is one where, for any ini-

tial positions, the game-theoretic value of that state has been determined. This

CHAPTER 3. BACKGROUND AND RELATED WORK 63

implies that, for any initial positions, it is known what the outcome (i.e. win,

draw, or loss) will be for all players if they were to play perfectly.

Weakly Solved A weakly solved game is one where, for any initial positions,
a strategy has been determined that will obtain at least the game-theoretic value
of that state, for each player, under reasonable resources. This implies that, for
any initial positions, it is known what the outcome will be for all players if they

were to play perfectly and there is an algorithm that can achieve this outcome.

Strongly Solved A strongly solved game is one where, for any legal positions,
a strategy has been determined that will obtain the game-theoretic value of that
state, for each player, under reasonable resources. This implies that, for any legal
positions, it is known what the outcome will be for all players if they were to play
perfectly and there is an algorithm that can achieve this outcome.

The definitions of a weakly solved game and of a strongly solved game mention
that their strategies should obtain the game-theoretic value, for each player, under
reasonable resources. The idea is that a game is only considered weakly solved
or strongly solved if the corresponding algorithm can be run by existing, perhaps
state-of-the-art, hardware in a reasonable time. If this were not the case, then
it could be argued that, for example, chess is weakly solved using the minimax
algorithm. Realistically it is known that, on existing hardware, this would be
far too computationally expensive in terms of time and memory. There is an
ordering amongst these three definitions. If a game is strongly solved, then it is
also weakly solved, and if a game is weakly solved, then it is also ultra-weakly
solved.

In a two-player zero-sum game, a Nash equilibrium corresponds to playing the
safest strategy because it minimises the opponent’s maximum payoff. Since the
game is zero-sum, where whatever the opponent gains the player loses and vice
versa, this also corresponds to maximising the player’s minimum payoff. This
assumes that the opponent always acts to minimise the player’s payoff and thus
maximise its own. In the above definitions, perfect play corresponds to playing a
Nash equilibrium strategy, which is the same as a minimax strategy. The game-
theoretic value is the expected payoff of a Nash equilibrium strategy, which will
be the same for all Nash equilibria. This means that finding a Nash equilibrium

strategy profile would be sufficient to strongly solve one of these games.

CHAPTER 3. BACKGROUND AND RELATED WORK 64

In order to find a Nash equilibrium in a two-player zero-sum game the minimax
principle can be used alongside linear programming. By expressing the game
in normal-form or sequence-form equations can be formed corresponding to a
linear optimisation problem. Linear programming applied to these equations can
then optimise for the maximum value of the player’s minimum expected payoff.
The constraints would be that the resulting strategy describes valid probability
distributions over actions. The solution would describe mixed strategies for both
players that form a Nash equilibrium. There is also a method to find a Nash
equilibrium in a two-player general-sum game represented in normal-form (as
a bi-matrix). This method requires the problem to be formulated as a linear
complementarity problem, which is a special case of quadratic programming.

Analytically finding a Nash equilibrium is generally considered to be a hard
problem. Although linear programming can be used to find a Nash equilibrium in
polynomial time for a two-player zero-sum game, there are no efficient polynomial
time algorithms for finding a Nash equilibrium in a non-zero sum game that the
author is aware of. Due to this, one might be tempted to assume that this prob-
lem is non-polynomial (NP)-complete. However, there is a peculiarity that, unlike
other NP-complete problems, Nash’s theorem guarantees that there is always at
least one (possibly mixed strategy) Nash equilibrium in a game with a finite num-
ber of actions. In fact, Daskalakis, Goldberg, and Papadimitriou, 2006 as well
as Chen, Deng, and Teng, 2009 proved that finding a Nash equilibrium is Poly-
nomial Parity Arguments on Directed graphs (PPAD)-complete, where PPAD
is a subclass of NP. The advantage of this is that a PPAD-complete problem is
less likely to be intractable than an NP-complete problem. On the other hand,
Conitzer and Sandholm, 2008 showed that determining if a Nash equilibrium has
a specific property out of a certain large set of properties is NP-hard. These
properties include, for example, having a specific social welfare (sum of expected
payoffs), or as another example, determining if a specific pure strategy occurs in
the support (has positive probability). Not only this but they also showed that
maximising certain properties, such as social welfare, is inapproximable. Given
the computational complexity of analytically finding Nash equilibria, machine

learning is a tempting alternative for discovering approximate solutions.

CHAPTER 3. BACKGROUND AND RELATED WORK 65

3.1.7 Games in the Experiments

This section describes the games used throughout this thesis. Many of these
games are represented in normal-form but a stochastic game and two poker games
represented in extensive-form are also used. All of these games are two-player ex-
cept one, which is Jordan’s game. A large part of the focus is on zero-sum games,
but some general-sum games are also used. In all the games it is assumed that
the players have perfect recall. These games are used to test the performance of
the approaches in this thesis with the exceptions of Shapley’s game and Jordan’s
game, which are used to test the self-play convergence to mixed strategy Nash

equilibria of players’ empirical distributions of plays.

Rock-Paper-Scissors

Rock-paper-scissors or roshambo is a two-player, three-action, zero-sum, normal-
form game. Each player can play: rock which counters (smashes) scissors, paper
which counters (smothers) rock and scissors which counters (cuts) paper. There
is a unique mixed strategy Nash equilibrium, which is for each player to play
each of its actions with equal probability of 1/3. Due to its popularity, there
have been a variety rock-paper-scissors tournaments for both humans [2009 World
RPS Championships — World RPS Society| and algorithms [Rock Paper Scissors
Programming Competition). The payoff matrix is shown in Table .

Table 3.2: Rock-paper-scissors payoff matrix, each entry shows (row player payoff,
column player payoff) for the given row and column actions.

R | P | S
R|00|-1,1]1-1
1-11 00 |-1,1
S|-1,1|1-1] 0,0

Shapley’s Game

Shapley’s game is a two-player, three-action, general-sum, normal-form game. It
is rock-paper-scissors but modified such that negative payoffs are replaced with
zero payoffs (see Table [3.2]), which turns it into a general-sum game. It retains

the unique mixed strategy Nash equilibrium of rock-paper-scissors, which is for

CHAPTER 3. BACKGROUND AND RELATED WORK 66

each player to play each of its actions with equal probability of 1/3. Finally, it
has been used as an example of where fictitious play fails to converge in self-play
[Shapley, 1963] and to test the self-play convergence of other algorithms to a
unique mixed strategy Nash equilibrium [Abdallah and Lesser, 2008; Zhang and
Lesser, [2010]. The payoff matrix is shown in Table .

Table 3.3: Shapley’s game payoff matrix, each entry shows (row player payoff,
column player payoff) for the given row and column actions.

R|P|S
R|00/01]1,0
P|10/00]01
S 10,111,000

Miscoordination game

Miscoordination game is a two-player, two-action, general-sum, normal-form game.
Each player can select one of two actions. If they both select different actions,
then they each get a payoff of one, otherwise they each get a payoff of zero. There
are two pure strategy Nash equilibria, which are both players playing different
actions. There is also a range of mixed strategy Nash equilibria, in each one a
player’s probability of playing an action is equal to the other player’s probability
of playing the other action. Fudenberg and Kreps, 1993| used a miscoordination
game to show that although fictitious play appears to converge to a Nash equilib-
rium in it, the expected Nash equilibrium payoff may not obtained. The payoff
matrix is shown in Table [3.4]

Table 3.4: Miscoordination game payoff matrix, each entry shows (row player
payoff, column player payoff) for the given row and column actions.

Al B
Al00]1,1
B|1,1]00

Matching Pennies

Matching pennies is a two-player, two-action, zero-sum, normal-form game. Each

player can select either heads or tails. The goal of the first (row) player is to

CHAPTER 3. BACKGROUND AND RELATED WORK 67

match the coin face of the second (column) player, whereas the goal of the second
(column) player is the opposite, to mismatch the coin face of the first player.
There is a unique mixed strategy Nash equilibrium, which is for each player to
play each of its actions with equal probability of 1/2. This is a well-known game
that can be seen as a simpler version of rock-paper-scissors with one less action

per player. The payoff matrix is shown in Table [3.5]

Table 3.5: Matching pennies payoff matrix, each entry shows (row player payoff,
column player payoff) for the given row and column actions.

H T
1-1|-1,1

Y

T -1,1

Y

T

Jordan’s Game

Jordan’s game [Jordan, 1993] is a three-player, two-action, general-sum, normal-
form game. It is an extension of matching pennies to include a third player. Each
player can select either heads or tails. The first player wants to match the coin
face of the second player, the second player wants to match the coin face of the
third player, and the third player wants to mismatch the coin face of the first
player. There is a unique mixed strategy Nash equilibrium, which is for each
player to play each of its actions with equal probability of 1/2. The game has
been used to test the self-play convergence to mixed strategy Nash equilibria of
various algorithms [Abdallah and Lesser, 2008; Bowling and Veloso, 2002; Zhang
and Lesser, 2010]. Its rewards are shown in Table

Table 3.6: Jordan’s game (also known as three-player matching pennies) payoff
matrix, each entry shows (player one payoff, player two payoff, player three pay-
off). Player one selects the outer row, player two selects the column, and player
three selects the inner row.

H T

H| 1,1-1 |-1-1-1
H

T 1-1,1 | -1,1,1

H| -1,1,1 | 1-1,1
T

T|-1-1-1| 1,1-1

CHAPTER 3. BACKGROUND AND RELATED WORK 68

Prisoner’s Dilemma

The prisoner’s dilemma is a two-player, two-action, general-sum, normal-form
game where both players are caught after committing a crime together. Each
player is moved to a separate interrogation room and has two actions. A player
can either defect against the other player, which means confessing to its crime, or
can cooperate with the other player, which means remaining silent. If both players
defect, then there is enough evidence to give them both the maximum sentence,
but these are reduced slightly for their admissions. If one player defects and the
other cooperates, then the player who defected is set free since the case hinged
on that testimony whereas the player who cooperated receives the maximum
sentence. Finally, if both players cooperate, then there is only enough evidence to
give them both short sentences. There is a unique pure strategy Nash equilibrium,
which is for each player to defect. This is a classic game in game theory and is an
example of the tragedy of the commons where individuals acting rationally in their
own self-interest prevent the group from obtaining its best interest. Specifically, if
both players cooperate, then this is the socially optimal solution as they maximise
the sum of their rewards, but defect is the dominant action for each player as it
gives the highest reward irrespective of the other player’s strategy. The payoff

matrix is shown in Table where longer sentences give smaller payoffs.

Table 3.7: Prisoner’s dilemma payoff matrix, each entry shows (row player payoff,
column player payoff) for the given row and column actions.

D|C
D|1,1]40
Clo4]33

Littman’s Soccer

Littman’s soccer game [Littman, |[1994] is a two-player, zero-sum, stochastic game.
It is played on a 4 x 5 grid with goals either side. Each player can move north,
south, east, west or can stand still and must dribble the ball into its opponent’s
goal. Each game starts with the ball being given to a random player. At each
step, players select actions simultaneously and these are executed in a random
order, which adds non-determinism to the game. Scoring (being scored against)

gets a reward of 1 (-1) and resets players to their initial positions. If a player tries

CHAPTER 3. BACKGROUND AND RELATED WORK 69

to move to an occupied position, then the move fails and gives the ball to the
opponent (if possible). Littman proposed this simplified soccer game to demon-
strate his minimax-Q learning algorithm. Figure [3.2| shows the initial layout of
the game, the large circles represent the players, the smaller circle represents the

ball, and each player starts closer to its own goal.

O

Figure 3.2: Littman’s soccer game initial state, large circles are players, the small
circle is the ball, and each player is closer to its own goal.

Die-Roll Poker

Die-roll poker is a two-player, zero-sum poker game where dice are used instead

of cards. It was introduced by Lanctot et al., 2012/ and proceeds as follows:
1. Each player antes one chip into the pot.
2. Each player rolls its first private six-sided die.
3. First public betting round occurs, each raise (max two) is two chips.
4. If no one folded, each player rolls its second private six-sided die.
5. Second public betting round occurs, each raise (max two) is four chips.
6. If no one folded, a showdown occurs, the highest dice sum wins the pot.

The game has imperfect information due to each player’s die rolls initially being
hidden from its opponent. If the game ends in a fold, then each player keeps its die
rolls hidden from its opponent. If the game ends in a showdown, then each player
reveals the sum of its die rolls to its opponent, but each individual die roll that
constituted that sum is not revealed. For example, at a showdown a player might

reveal to its opponent that the sum of its die rolls is three, but the opponent

CHAPTER 3. BACKGROUND AND RELATED WORK 70

cannot tell if the player rolled either (X7 or (). The game was introduced
by Lanctot et al., 2012| to help test their theory about regret bounds for using
counterfactual regret minimisation in imperfect recall games. The structure of die

rolls and betting rounds in the die-roll poker game tree are shown in Figure [3.3

D, U D £) B,), 5)).
2 D4D 2DF4DQ 204D 204D D400

() Player one chance node

‘ Player two chance node

[] Player one decision node

[l Player two decision node
A Terminal node

@ Terminal or chance node

Figure 3.3: Die-roll poker game tree (die rolls and betting rounds). The top
shows each player rolling a private six-sided die. The bottom left shows a betting
round where “terminal or chance nodes” are terminal in the second betting round
and chance in th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>