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Abstract
Dynamic Opponent Modelling in Two-Player Games

Richard Andrew Mealing
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2015
This thesis investigates decision-making in two-player imperfect information

games against opponents whose actions can affect our rewards, and whose strate-
gies may be based on memories of interaction, or may be changing, or both.
The focus is on modelling these dynamic opponents, and using the models to
learn high-reward strategies. The main contributions of this work are: 1. An ap-
proach to learn high-reward strategies in small simultaneous-move games against
these opponents. This is done by using a model of the opponent learnt from se-
quence prediction, with (possibly discounted) rewards learnt from reinforcement
learning, to lookahead using explicit tree search. Empirical results show that
this gains higher average rewards per game than state-of-the-art reinforcement
learning agents in three simultaneous-move games. They also show that sev-
eral sequence prediction methods model these opponents effectively, supporting
the idea of using them from areas such as data compression and string match-
ing; 2. An online expectation-maximisation algorithm that infers an agent’s hid-
den information based on its behaviour in imperfect information games; 3. An
approach to learn high-reward strategies in medium-size sequential-move poker
games against these opponents. This is done by using a model of the opponent
learnt from sequence prediction, which needs its hidden information (inferred by
the online expectation-maximisation algorithm), to train a state-of-the-art no-
regret learning algorithm by simulating games between the algorithm and the
model. Empirical results show that this improves the no-regret learning algo-
rithm’s rewards when playing against popular and state-of-the-art algorithms
in two simplified poker games; 4. Demonstrating that several change detection
methods can effectively model changing categorical distributions with experimen-
tal results comparing their accuracies to empirical distributions. These results
also show that their models can be used to outperform state-of-the-art reinforce-
ment learning agents in two simultaneous-move games. This supports the idea of
modelling changing opponent strategies with change detection methods; 5. Ex-
perimental results for the self-play convergence to mixed strategy Nash equilibria
of the empirical distributions of plays of sequence prediction and change detec-
tion methods. The results show that they converge faster, and in more cases for
change detection, than fictitious play.
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Chapter 1

Introduction

Choosing how to act when faced with a decision is a problem everyone encounters

every day. Ideally, we want to act in a way that will benefit us the most. This

requires us to consider the consequences of not only our own actions, but also the

actions of others. For example, if you are deciding how to get to work as fast as

possible, then you may decide to drive along the shortest route, but if your co-

workers make the same decision, then it may become congested and slower than

alternatives. To complicate matters, the consequences of actions can manifest

over different time periods. For example, perhaps driving along the shortest

route is the fastest option, but it puts more strain on your vehicle causing it to

break down faster. Additionally, we often face an incomplete view of the world,

making us more uncertain about the state of the environment. For example,

there might be unforeseen obstructions like road maintenance, or accidents, or

spontaneous parades, etc. If we want to act optimally to achieve our goals, then

we must anticipate how our interaction with the environment and others will

proceed, taking into consideration the consequences of actions.

This chapter conveys the motivation behind this thesis, provides an outline

of the problem, lists the contributions of this thesis, and describes its structure.

The chapter begins in Section 1.1 by describing why we should study multi-agent

learning.

1.1 Why Study Multi-Agent Learning?

Decision-making problems in the real-world often consist of multiple decision-

makers. Studying multi-agent learning is therefore beneficial because it can be
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applied to these problems. Some examples include electronic trading (e.g. virtual

market places like NASDAQ or Globex) and robotic interaction (e.g. search and

rescue or exploration). We want agents that can learn to act rationally in the

presence of other decision-makers. This means that we want them to learn to act

optimally, where acting to benefit oneself given the information that you either

know or could discover is optimal. The main problem is that the actions of each

agent in a multi-agent system can affect the environment as well as the other

agents. This causes an agent’s optimal behaviour to often depend on how the

other agents are behaving. For example, in a search and rescue operation, finding

survivors is much more likely if each rescuer knows where the other rescuers are

searching. Fortunately, this problem is extensively studied in game theory.

Game theory, traditionally used in economics, is well-suited to analyse inter-

actions between rational decision-makers. There are two fundamental questions

it can help us answer: How should an agent act, and how should an agent adapt,

with other possibly influential decision-makers present? To help answer the first

question, game theory provides us with a variety of solution concepts, which

predict how a game will be played. Some solution concepts account for the con-

sequences of agents’ actions on the environment and other agents. Typically, an

agent will have a value function that estimates the values of states, or actions, or

both, and will use a strategy based on it. To help answer the second question,

game theory research has found that even seemingly natural adaptation rules can

lead to undesirable results, which is discussed in Section 3.2.3. This research

is usually concerned with how to use the value function and any other relevant

knowledge, such as opponent models, to change the agent’s behaviour to max-

imise its expected rewards. Studying multi-agent systems, specifically games,

can lead to improvements in the algorithms that operate within these domains,

perhaps making them more applicable to real-world problems. This is becom-

ing increasingly important given the shift in focus from single-agent learning to

multi-agent learning due to the rise of distributed computing (e.g. the Internet).

This thesis considers simple multi-agent systems, which are games, usually

with just two players. Each agent wants to maximise its own expected rewards.

Thus, each agent can be considered greedy, not caring how well the other agent

performs unless the other agent affects how well it performs. From the agent’s

perspective, its optimal behaviour is whatever will maximise its own expected
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rewards. A rational agent will try to achieve this optimal behaviour whilst fac-

toring in its knowledge and potential knowledge. For example, if it knows that

its opponent is perfect, then it would play the least exploitable strategy, or if it

knows that learning more about its opponent would increase its expected rewards,

then it would play more exploratively than exploitatively. Typically, there will

be a finite amount of reward that can be divided between the agents, and each

will act to receive the largest share. This will usually result in them acting as

adversaries, but does not rule out cooperation if they can both benefit.

In Section 1.2, it is argued why it is beneficial to use games as the framework

to develop agents, outlining the many advantages that they bring.

1.2 Why Study Games?

A game can be seen as a well-defined problem with specific rules and outcomes.

Having a well-defined problem lets us focus on learning how to solve that problem

rather than worrying about what the problem is. For this reason, games have

been used as a testbed for artificial intelligence even before the advent of mod-

ern computing. For example, according to [Chess Programming WIKI – Alan

Turing 2014], in 1952 Alan Turing developed a chess playing algorithm called

Turochamp, and implemented it without a computer as a “paper machine” i.e.

its computations were performed manually. Although in one of its only recorded

matches it lost to one of Turing’s colleagues, Alick Glennie, it was the beginning

of a successful line of research. There are several aspects of games that make

them useful for artificial intelligence research, including the following:

• Well-defined rules. Most games make it clear what players can and cannot

do. For example, in chess, the bishop can only move diagonally. This

simplifies implementing games and their players.

• Finite state and action spaces. Most games have a fixed number of states

that they can be in, and a fixed number of actions each player can take in

each state. For example, in checkers (draughts), the states are board con-

figurations and the actions are legal moves (i.e. diagonal moves). Limited

state and action spaces are conceptually simpler and easier to handle than

large or infinite state and action spaces.

• Clear goals. The outcome of a game can always be categorised as either a
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win, or a draw, or a loss. Other measures of success may also exist such as

how fast the game can be won, how much money a player can accumulate,

how many pieces a player can take or preserve, etc. All of these goals are

quantifiable. This makes it easy to evaluate how well a program works.

• Complex strategies. Finding the optimal strategy in a game can be chal-

lenging practically, or theoretically, or both. Thus, developing ways to find

optimal strategies can push the boundaries of artificial intelligence research.

• Comparison agents. A measure of success lets us compare agents, and in

turn, the effectiveness of different artificial intelligence techniques.

• Prior research. Games are a passion for many people and a popular research

area. Consequently, there is a lot of work on analysing and finding solutions

to many games, including many of the ones used in this thesis. This allows

more time to be spent developing agents rather than analysing the games.

• Theoretical foundations. Game theory is a well-established field that can

be used to help develop agents.

Developing algorithms to not only play games, but also to defeat humans in them,

is a classic interest in artificial intelligence. Table 1.1 shows algorithms for games

that have progressed around or beyond top human-level play.

Table 1.1: Artificial intelligence success in games.

Year Game Success

1979 Backgammon BKG 9.8 beat world champion Luigi Villa [Backgammon Programming ].

1994 Checkers Chinook beat world champion Marion Tinsley [Chinook vs. the Checkers Champ
- Top 10 Man-vs.-Machine Moments - TIME ].

1995 Scrabble Quackle beat former champion David Boys [Scrabble Showdown: Quackle vs.
David Boys - Top 10 Man-vs.-Machine Moments - TIME ].

1997 Chess Deep Blue beat world champion Garry Kasparov [IBM100 - Deep Blue].

1997 Othello (Reversi) Logistello beat world champion Takeshi Murakami [Othello match of the year ].

2006 Go Crazy Stone beat various pros [CrazyStone at Sensei’s Library ].

2008 Poker Polaris beat various pros in heads-up limit Texas hold’em [Man vs Machine II -
Polaris vs Online Poker’s Best ].

2011 Jeopardy! Watson beat former winners Brad Rutter and Ken Jennings [IBM computer Wat-
son wins Jeopardy clash — Technology — theguardian.com].

2015 Poker Cepheus first to play an essentially perfect game of heads-up limit Texas hold’em
[Bowling et al., 2015; Cepheus Poker Project ].

2015 Various Google DeepMind performs similar to professional human games tester at 49
arcade (Atari) games (e.g. Breakout, Space Invaders, etc) [Mnih et al., 2015]
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Most of these examples are perfect information games, where each player

knows all relevant information to make decisions except the other players’ strate-

gies. The exceptions are Scrabble, Poker, and Jeopardy!. However, although

Scrabble has hidden information (the opponents’ tiles), the champion program

Quackle ignores this and treats the game as if it has perfect information. Thus,

Table 1.1 represents a shift in focus from perfect information games to hidden

information games. Hidden information makes learning how to act more difficult

because the true state of the game may be hidden. This thesis looks at this more

difficult case, with all games herein having hidden information.

Section 1.3 discusses, in general, the problem of learning to act, and describes

the information requirements and goals of the approaches in this thesis.

1.3 Learning to Act

Ideally, we would like to maximise our total reward over the interaction time.

This is challenging if we are not given any prior information about the conse-

quences of our decisions, especially considering that the consequences may vary

if other decision-makers alter their behaviours. In this situation, this leads to

the question: How much time do we devote to learning the consequences? If

we devote no time, and always act to maximise our reward given what little we

know, then there is a high risk that our knowledge about the consequences will

be wrong, and thus we will be acting incorrectly most of the time. On the other

hand, if we devote all of our time, and always act to learn the consequences, then

we will be maximising our reward very infrequently. Therefore, we need a balance

between both.

An agent can use its rewards to directly guide its strategy by playing high-

reward actions, or by playing to reach high-reward states. Many single-agent and

multi-agent learning methods learn to act based solely on their rewards. Given

that their rewards are usually determined by their opponents, then their learnt

strategies often depend on their opponents’ behaviours. In this way, they implic-

itly model their opponents in how much they value their actions or states. Due

to this, it can be difficult to separate when an agent does well in its environment

versus when it does well against its opponents. In comparison to an agent’s re-

wards, it is less direct to use public actions to improve its strategy. The key is

that the state is likely determined by all decision-makers’ actions. By observing



CHAPTER 1. INTRODUCTION 23

their actions, we can build models for how they will act. Knowing this allows

us to anticipate future states and actions and to aim for those with the highest

expected total rewards.

Section 1.4 explains in more detail what this thesis is about. It also lists the

contributions of this thesis and gives its overall structure.

1.4 What is this thesis about?

This thesis is about modelling opponents whose actions can affect our rewards,

and whose strategies may be based on memories of interaction, or may be chang-

ing, or both, and using these models to learn high-reward strategies in two-player

(and one three-player) imperfect information games. These are games with hidden

information. Opponents with memory-based or changing strategies are labelled

as dynamic opponents, or opponents with dynamic strategies. To model these

dynamic opponents’ strategies, the focus is mainly on using sequence prediction

methods. However, change detection methods are also looked at as an alterna-

tive to, or as a compliment to, sequence prediction methods. Chapters 4 and 5

develop approaches, which use opponent models learnt with sequence prediction

methods, to learn high-reward strategies. The difference is that the games in

Chapter 5 have more states and more hidden information than those in Chap-

ter 4. In fact, in the games in Chapter 5, the opponent’s hidden information may

not even be revealed, but it is necessary in order to model the opponent, and so it

is inferred using an online expectation-maximisation algorithm. This algorithm

infers the opponent’s hidden information based on its behaviour using an oppo-

nent model. The reason a sequence prediction method is used, rather than this

opponent model on its own, is to model the dynamics of the opponent’s strat-

egy. Chapter 6 provides a preliminary investigation into using change detection

methods to model these opponents by comparing the accuracies of variations of

three state-of-the-art change detection methods at modelling changing categori-

cal distributions. Finally, Chapter 7 investigates the convergence in self-play of

the empirical distributions of plays of sequence prediction and change detection

methods to mixed strategy Nash equilibria.

In Chapter 4, the initial focus of this thesis is on small simultaneous-move

games, where the hidden information is the opponent’s action, which is always

revealed at the end of each game. Several sequence prediction methods are applied
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to model a variety of opponents, which include variable-order Markov models

and finite automata, which have memory-based strategies, and state-of-the-art

reinforcement learning algorithms, which have changing strategies. The idea in

this chapter is to use these models, with (possibly discounted) rewards learnt

with a standard reinforcement learning algorithm (Q-Learning), to lookahead

with explicit tree search. The lookahead is meant to use the models and rewards

to find action sequences with high expected rewards, which can then be followed.

This work is expanded in Chapter 5 to larger games, which have more states

and more hidden information. Specifically, medium-size sequential-move games,

where the hidden information is private information that the players’ receive dur-

ing the game (i.e. die-rolls, card deals), which may not be revealed at the end

of each game. Given that the opponent’s hidden information, which is necessary

to model the opponent’s strategy, is not always revealed, an online expectation-

maximisation algorithm is developed to infer it. This algorithm infers the oppo-

nent’s hidden information from its behaviour using an opponent model. However,

instead of using this opponent model on its own, a sequence prediction method is

also applied, with the inferred hidden information, to model the dynamics of the

opponent’s strategy. In experiments, a variety of opponents based on popular and

state-of-the-art reinforcement learning and no-regret learning algorithms, which

have changing strategies, are modelled. The idea in this chapter is to use the

opponent model to iteratively improve the strategy of a state-of-the-art no-regret

learning algorithm by simulating games between it and the model in order to

allow it to gain higher rewards.

In Chapter 6, this thesis provides a preliminary investigation into using change

detection methods to model these opponents as an alternative to, or as a compli-

ment to, the sequence prediction methods. The idea in this chapter is to take vari-

ations of three state-of-the-art change detection methods, and to compare them

against each other, and against an empirical distribution, at modelling changing

categorical distributions. In the first comparison, the categorical distributions

are independent and randomly change suddenly, or gradually, or a mixture of

both. In the second comparison, the categorical distributions are the strategies

of reinforcement learning agents and the models are used to play best-response

strategies in matching pennies and rock-paper-scissors.

Finally, in Chapter 7, this thesis investigates if convergence in self-play of

agents’ empirical distributions of plays can be enhanced if each agent assumes that
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the other agents are changing their strategies over time. It looks at simultaneous-

move, normal-form games with two or three actions, and two or three players.

These games include generalised matching pennies, Shapley’s game, and Jordan’s

game. Fictitious play, which assumes that the opponent uses a stationary strat-

egy, is compared against two new variants that remove this assumption, and

explicitly assume that the opponent uses a dynamic strategy. The opponent’s

strategy is predicted using a sequence prediction method in the first variant,

and a change detection method in the second variant. Two hybrid methods are

also proposed to improve the convergence of the sequence prediction and change

detection methods. The first combines sequence prediction with fictitious play,

whilst the second combines change detection with fictitious play.

1.4.1 Scope

The scope of this thesis is restricted to decision-making in simple multi-agent

systems in the form of two-player games (as well as one three-player game). All

the work within this thesis is about modelling opponents with memory-based or

changing strategies, and using these models to learn high-reward strategies in

the context of playing games. The overall approach adopted in this thesis is to

conduct investigations that are largely experimental. Thus, it was necessary to

design and develop algorithms to play within games to validate the ideas herein.

1.4.2 Contributions of this Thesis

The main contributions of this thesis are about modelling an opponent whose

actions can affect our rewards, and whose strategy may be based on a memory

of interaction, or may be changing, or both, and using this model to learn a

high-reward strategy. Recall that an opponent with a memory-based or changing

strategy is labelled as a dynamic opponent, or an opponent with a dynamic

strategy (which is the reason for the thesis title). The contributions are as follows:

1. An approach to learn high-reward strategies in small simultaneous-move

games against opponents with memory-based or changing strategies. This

approach works by using sequence prediction to model the opponent and

predict its actions, with reinforcement learning to learn the agent’s own

(possibly discounted) rewards, to explicitly lookahead via tree-search to

find high-reward action sequences. An instance of the sequence prediction
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method is created for each opponent information set within the game, and

observes opponent actions across games. By doing so its predictions try

to account for how the opponent’s strategy is memory-based or changing.

Empirical results show that this approach gains higher average rewards

per game than state-of-the-art reinforcement learning agents when playing

against variable-order Markov models in iterated rock-paper-scissors, finite

automata in iterated prisoner’s dilemma tournaments, and against each

other in Littman’s soccer game. These games are all small simultaneous-

move games, where the hidden information is the opponent’s action, which

is always revealed at the end of each game. These results also demonstrate

that several sequence prediction methods can effectively model opponents

with memory-based or changing strategies. They support the idea of mod-

elling these opponents with sequence prediction methods in general from

areas such as data compression and string matching. (Chapter 4)

2. An online expectation-maximisation algorithm that infers an agent’s hidden

information based on its behaviour in imperfect information games. To do

this, the algorithm uses a tuple of categorical distributions, one for each of

the agent’s information sets, to model its strategy. The expectation step

infers the probability of the agent’s actions that have been observed given its

hidden information using the parameters of these categorical distributions,

and then by Bayes’ rule, the probability of its hidden information given

its actions. The maximisation step updates the categorical distributions

parameters by maximising their likelihood given the inferred distribution

over the agent’s hidden information. In general, as more of the agent’s

actions are observed, the accuracy of the inferred distribution over its hidden

information will increase. Thus, this algorithm is used at the end of each

game to try to maximise this accuracy. However, increasing the amount

of hidden information in a game will make this distribution less accurate

because there will be more instances of hidden information associated with

the same behaviours, making them less distinguishable. (Chapter 5)

3. An approach to learn high-reward strategies in medium-size sequential-move

games against opponents with memory-based or changing strategies. The ap-

proach works by using a model of the opponent learnt from sequence pre-

diction, which requires the opponent’s hidden information (inferred from
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the online expectation-maximisation algorithm), to train a state-of-the-

art no-regret learning algorithm by simulating games between it and the

model. In these games the opponent’s strategy usually depends on its hid-

den information, and so in these cases modelling its strategy requires its

hidden information. Therefore, the online expectation-maximisation algo-

rithm (contribution 2) is used to infer its hidden information based on its

behaviour. An instance of the sequence prediction method is created for

each opponent information set within the game, and observes opponent ac-

tions across games. By doing so its predictions try to account for how the

opponent’s strategy is memory-based or changing. The simulations against

the anticipated opponent strategy allow the no-regret learning algorithm to

learn regrets against it, which are essentially its anticipated future regrets.

Empirical results show that this approach gains higher average rewards per

game than the no-regret learning algorithm on its own when playing against

popular and state-of-the-art algorithms in die-roll poker and Rhode Island

hold’em. These games are medium-size sequential-move poker games, where

the opponent’s strategy often depends on hidden information, which is not

always revealed at the end of each game. (Chapter 5)

4. Demonstrating that several change detection methods can effectively model

changing categorical distributions. It is shown that amongst variations

of three state-of-the-art change detection methods, some of them can ef-

fectively model changing categorical distributions. The results also show

that they can be used to outperform state-of-the-art reinforcement learning

agents in two simultaneous-move games. This supports the idea of mod-

elling changing opponent strategies with change detection methods, either

instead of, or with, sequence prediction methods. In the latter case, a

change detection method could be used to model changes in a sequence

prediction method’s conditional distributions more effectively than it could

on its own (if at all). Some change detection methods that are considered

are modifications to be able to handle categorical distributions. Empiri-

cal results compare the accuracies of these methods against each other and

against an empirical distribution at modelling changing categorical distri-

butions. In the first comparison, the categorical distributions change either
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suddenly, or gradually, or a mixture of both, and can be seen as being repre-

sentative of changing opponent strategies. The results show that for few cat-

egories (2-5) the most accurate methods are BayesCPD-B and BayesCPD-

C (sudden and mixed), ADWIN-D (gradual), and for many categories (10

or 20) the most accurate method is BayesCPD-C (sudden, gradual, and

mixed). In the second comparison, the categorical distributions are the

strategies of reinforcement learning agents, and the models are used to play

best-response strategies against them. The results show that BayesCPD-B

and BayesCPD-C generally produce the most accurate opponent models

and the most rewarding best-response strategies. (Chapter 6)

5. Experimental results for the self-play convergence to mixed strategy Nash

equilibria of the empirical distributions of plays of sequence prediction and

change detection methods. It is shown that candidate sequence prediction

and change detection methods converge faster than fictitious play. However,

unlike fictitious play and change detection, sequence prediction does not al-

ways converge to the Nash equilibria in two-player, two-action, normal-form

games derived from generalised matching pennies. Combining sequence

prediction with fictitious play improves its convergence by reducing its con-

vergence distance from the Nash equilibria for a number of these games.

Combining change detection with fictitious play causes it to converge to

the Nash equilibria in some of these games in fewer iterations, but over-

all decreases its convergence speed. Finally, it is also shown that, unlike

fictitious play, the sequence prediction and change detection methods con-

verge to the Nash equilibria in the difficult Shapley’s and Jordan’s games.

(Chapter 7)

1.4.3 Thesis Structure

Chapter 2 formally defines the overall problem that this thesis tackles. The chap-

ter begins in Section 2.1 by discussing one view of how an agent should act. This

helps define the desirable behaviour for an agent to learn. Section 2.2 describes

several beneficial multi-agent learning algorithm properties from the literature.

Many of the algorithms that this thesis builds on, and compares against, incor-

porate these properties, and so understanding them helps in understanding how

these algorithms work. Section 2.3 explains the assumptions that are made in
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the approaches in this thesis, as well as some assumptions that are not made, but

that are often made in the literature. This helps to put this work in context and

highlights the benefits and limitations of its approaches. Finally, Section 2.4 sum-

marises this chapter. This chapter aims to provide the reader with a thorough

understanding of the overall problem that the approaches in this thesis tackle

as well as an understanding of where this work is placed within the literature,

especially with regard to its assumptions.

Chapter 3 provides background and related work to help understand this work

and its context. The chapter begins in Section 3.1 by exploring the relevant game

theory. This includes formal definitions for games, their classes and categorisa-

tions, strategy categorisations, solution concepts (expanding on Chapter 2), and

what it means to solve a game. It also describes the games used in this thesis

as well as the bucketing abstraction used in Rhode Island hold’em. Section 3.2

discusses learning in games, describing repeated (iterated) games, which allows

agents to learn, and stochasticity. It also looks at the problem of convergence

that many multi-agent learning algorithms try to deal with whilst describing

modes of convergence in general and in game theory. In addition, it describes

machine learning in general and the relationship of this work to it, as well as

providing formal descriptions of reinforcement learning, no-regret learning, and

opponent modelling (focussing on sequence prediction) algorithms used within

the approaches throughout. Lookahead and its importance is also explained.

Finally, Section 3.3 summarises this chapter.

Chapter 4 addresses the first contribution of this thesis; can an opponent

model learnt from a sequence prediction method be used, specifically its ability to

make context based predictions, with rewards learnt from a reinforcement learn-

ing method, possibly with discounting, to lookahead using explicit tree search

and find high-reward strategies? The chapter begins in Section 4.1 by describing

sequence prediction and how it is used to model the opponent. This includes

describing the core components of sequence prediction methods in general, which

are their short-term and long-term memories, as well as giving brief descriptions

of each sequence prediction method. Section 4.2 briefly describes how lookahead

is involved in this approach, referencing back to Section 3.2 for a full explanation.

Sections 4.3 and 4.4 outline the games and the opponents used in the experiments

in this chapter respectively. At this point, in Section 4.5, the actual algorithm

representing this approach is given. With the algorithm for this approach, and
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the opponents’ algorithms in place, Section 4.6 empirically evaluates this ap-

proach. It reports and analyses the results from playing this approach in iterated

rock-paper-scissors against variable-order Markov models, in iterated prisoner’s

dilemma tournaments against finite automata, and in a simplified soccer game

against state-of-the-art reinforcement learning agents. In the first two games it

compares the results of this approach against those obtained by state-of-the-art

reinforcement learning agents, whereas in the third game there is a direct com-

parison. Finally, Section 4.7 summarises this chapter.

Chapter 5 addresses the second and third contributions of this thesis; can an

opponent model learnt from a sequence prediction method, which itself uses an

online expectation-maximisation algorithm to infer the opponent’s hidden infor-

mation that its strategy depends on, be used to train a state-of-the-art no-regret

learning algorithm by simulating games between the algorithm and the model?

This chapter builds on Chapter 4 by looking at larger games with more states

and more hidden information. In Chapter 4 the hidden information is always

revealed at the end of each game, whereas in this chapter the hidden information

is not necessarily revealed at the end of each game. This is problematic as an

opponent model requires this information, thus one of the contributions in this

chapter is to derive an online expectation-maximisation algorithm that can in-

fer the opponent’s hidden information from its behaviour. The chapter begins

in Section 5.1 by discussing opponent modelling in poker and relating it to the

approach in this chapter. Section 5.2 discusses expectation-maximisation in gen-

eral. Before empirically evaluating the approach in this chapter, the poker games

and the opponents used in the experiments are defined in sections 5.3 and 5.4

respectively. A description of the approach is given in detail in Section 5.5. The

stage is then set for Section 5.6, which gives the empirical results of comparing

this approach against the comparison agents. Finally, Section 5.7 summarises

this chapter.

Chapter 6 addresses the fourth contribution of this thesis; can change detec-

tion methods be used to model changing categorical distributions? The chapter

begins in Section 6.1 by discussing the problem of learning a changing categorical

distribution. It moves on in Section 6.2 to describe several variations of three

state-of-the-art change detection methods, some of which are first proposed in

this thesis, that can be used to model changing categorical distributions. In gen-

eral, they do this by trying to maintain a window of observations that are only
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drawn from the current distribution, and then using this window of samples to

form an empirical distribution. Once these various change detection methods

have been defined, an empirical comparison is performed to compare their accu-

racies in Section 6.3. This involves testing their accuracies at modelling changing

categorical distributions. Section 6.4 discusses how change detection methods

could be used with sequence prediction methods, and how this could potentially

improve them, which in turn could improve the approaches in chapters 4 and 5.

Finally, Section 6.5 summarises this chapter.

Chapter 7 addresses the fifth and final contribution of this thesis; can conver-

gence in self-play be enhanced if each agent assumes that the other agents are

changing their strategies over time. To help answer this, fictitious play, which

assumes that the opponent uses a stationary strategy, is compared against two

new variants proposed in this chapter that remove this assumption and explicitly

assume that the opponent uses a dynamic strategy. The opponent’s strategy is

predicted using a sequence prediction method in the first variant, and a change

detection method in the second variant. The chapter begins in Section 7.1 with

a motivational example outlining how fictitious play acts in self-play. Section 7.2

describes extensions to fictitious play to help put this work into context. This

leads to Section 7.3, which discuss how sequence prediction and change detection

methods could improve on this. This section also explains two hybrid meth-

ods, the first combining sequence prediction with fictitious play, and the second

combining change detection and fictitious play. Section 7.4 shows experimental

results. Finally, Section 7.5 summarises this chapter.

Chapter 8 presents the overall conclusions for what has been learnt about im-

proving multi-agent learning through the approaches of this thesis in Section 8.1,

and suggests possible directions for future research in Section 8.2. Most of the

future work suggestions are to do with removing the assumptions that have been

made throughout this work, whilst the rest are about reconciling this work with

other promising approaches in the literature.



Chapter 2

Problem Definition

This thesis looks at the simplest type of multi-agent system, which is one with only

two agents. Each of these agents is acting in its own self-interest to maximise its

own rewards. However, one difficulty is that each agent’s rewards can be affected

by the other agent’s actions. This makes it difficult for an agent to anticipate

what rewards it can expect to receive in the future for whatever sequence of

actions it chooses because this often requires it to know what will result from its

own as well as its opponent’s actions.

This chapter defines the problem in more detail. Section 2.1 begins by looking

at how an agent should act. Included in this is a description of a spectrum of

strategies, with a maximally exploitative best-response strategy at one end, and

a risk-averse Nash equilibrium strategy at the other end.

2.1 How Should an Agent Act?

There are many views on how an agent should act and for the most part the

answer depends on the task at hand. Ideally, we want an agent to achieve its

goals, but there may be many ways to do this. One popular set-up is to give an

agent a reward, which is a numerical feedback that is positive either for achieving

a goal or for getting closer to achieving a goal, zero for having no effects on

the goal, and negative otherwise. Another popular set-up is to give an agent

an error (or regret), which is a numerical feedback that is positive and closer to

zero the closer an agent is to achieving a goal. This leads us to two common

views of how an agent should act, which are firstly, that an agent should act

to maximise its rewards, and secondly that an agent should act to minimise its
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errors. A rational agent is defined as one that acts optimally in its own self-

interest given its knowledge and potential knowledge. A rational agent would

choose its actions according to its beliefs such that they maximise its expected

reward, where an expected reward is a reward multiplied by the probability of

receiving that reward. If an agent always does this, then it is playing an estimate

of a best-response strategy. The accuracy of the best-response strategy would

depend on the accuracy of the agent’s beliefs. This implies that a rational agent

would learn to play an estimate of a best-response strategy.

Unfortunately, a best-response strategy is usually unknown and difficult to

calculate because it depends on other agents’ strategies, which are usually un-

known, as well as random events in the environment. A best-response strategy

could be estimated, but Johanson, Zinkevich, and Bowling, 2008 showed that a

bad estimation could lead to a much lower expected reward than that of the best-

response strategy. This is because there is no guarantee that a strategy close to a

best-response strategy in the strategy space will yield similar expected rewards.

For example, imagine playing rock-paper-scissors repeatedly against an opponent.

In the first game you observe the opponent playing rock. If you assume that the

opponent’s strategy can be determined from its past play, then you might predict

that its strategy is to always play rock. Therefore, your best-response strategy is

to always play paper. However, in the second game when you play paper, your

opponent plays scissors and you lose. In this way, a best-response strategy that

looks highly profitable can become disastrous if the assumptions behind it are

wrong. The incorrect assumption in this example is that the opponent’s strategy

can be determined from a single past game. Another problem is that it is usually

difficult to calculate a best-response strategy in large games because you have to

consider every decision point. A best-response strategy can be seen as an offensive

strategy as it tries to get the most for the agent. In a two-player zero-sum game,

it would simultaneously maximise the agent’s expected reward, and minimise the

opponent’s expected reward, completely exploiting the opponent.

Alternatively an agent could play a Nash equilibrium strategy (i.e. its strategy

from a Nash equilibrium strategy profile), which is a sort of safe-strategy against

rational opponents, which are worst-case opponents in zero-sum games. A Nash

equilibrium is a tuple of strategies, one per agent, where no single agent can

change its strategy to increase its expected reward. In other words, each agent is

playing a best-response strategy to the other agents’ strategies. One advantage
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of an agent playing a Nash equilibrium strategy in a two-player game is that

it minimises its risk by guaranteeing at least its expected reward at the Nash

equilibrium, which is usually much higher than the minimum reward in the game.

Another advantage of it for a two-player game is that it is stable because whatever

strategy the opponent uses, this guarantee is still there. If the opponent is not

playing its half of the Nash equilibrium, then the agent can only receive either an

equivalent or greater expected reward. A disadvantage is that, if the opponent is

not playing its half of the Nash equilibrium, then there will usually be a strategy

(such as a best-response strategy) that will give a higher expected reward. Also,

if there are two or more opponents, then a group of them might be able to change

their strategies simultaneously and lower the agent’s expected reward. Another

difficulty is choosing a Nash equilibrium in a general-sum game where many may

exist. Finally, a Nash equilibrium is also difficult to compute, although it can

be computed offline. A Nash equilibrium strategy can be seen as a defensive

strategy against rational opponents, which in the case of zero-sum games are

opponents that play worst-case strategies. In a two-player zero-sum game, a

Nash equilibrium strategy is equivalent to a minimax strategy.

The approaches in this work attempt to learn best-response strategies to try

to maximise total expected reward. To account for the typical dependence of the

best-response strategy on the opponent’s strategy, the approaches in chapters 4

and 5 model the opponent’s strategy by observing its behaviour using sequence

prediction methods. In chapters 6 and 7 change detection methods are also looked

at for modelling opponent strategies. It is unlikely that these methods will be able

to learn the opponent’s strategy perfectly, especially if the opponent is changing

its strategy. Therefore, the approaches in chapters 4 and 5 do not completely rely

on their opponent models. The approach in chapter 4 does this by only using its

opponent model to lookahead up to a limited depth, and the approach in chapter

5 does this by only using its opponent model to simulate possible interactions, not

to predict exactly how the opponent will act. However, chapters 6 and 7 do use

best-response strategies because, Chapter 6 is specifically looking at the accuracy

of change detection methods, and Chapter 7 is looking at convergence in self-

play analogous to fictitious play, which uses best-response strategies. This work

mainly deals with relatively small games where opponent models can approximate

the opponent’s strategy within a reasonable time. However, for larger games, it

can take a long time. Chapter 5 has to deal with this problem, and does so by



CHAPTER 2. PROBLEM DEFINITION 35

abstracting the game along with the opponent’s strategy space, down to a smaller

more manageable size.

Section 2.2 reviews the various properties that have been suggested in the

literature as desirable for multi-agent learning algorithms. The approaches in

this thesis do not explicitly focus on these properties. However, many of the

comparison agents are designed around incorporating these properties, and by

understanding them, it aids in understanding how they work.

2.2 Learning Objectives

An agent attempting to learn in a multi-agent environment faces several chal-

lenges. The main problem is the co-adaptive nature of the system. If an agent

changes its strategy, then other agents may react and change their strategies. This

violates the assumption, commonly used in single-agent learning problems, that

a fixed optimal strategy exists. Instead, as agents change their strategies, each

agent’s optimal strategy usually changes. Due to this, many learning algorithms

with stable dynamics in single-agent learning environments become unstable in

multi-agent environments. Another problem is that explicitly calculating optimal

or best-response strategies requires knowledge of other agents’ strategies, which

are usually private. Finally, out of the learning algorithms that consider other

agents, many assume that their strategies are stationary, in that their action

choices only depend on the environment’s state. However, agents may change

their strategies suddenly, or gradually, or periodically, or in a combination of

ways. Their strategies may also be conditioned on some information such as a

history of states, or actions. If the other agents are learning, then it is very likely

that they will change their strategies and so ideally this should be taken into

account.

Bowling and Veloso, 2001, 2002 attempted to formalise the idea that a learning

agent should learn a best-response strategy when possible by proposing rationality

and convergence as desirable properties of multi-agent learning algorithms.

Rationality: An agent is rational if it learns a best-response strategy when the

other agents learn stationary strategies.

A rational agent was defined in Section 2.1 as one that acts optimally in its

own self-interest given its knowledge and potential knowledge, such that it plays
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actions with the maximum expected reward according to its beliefs. To satisfy

that definition, this rationality property would be a necessary but not sufficient

condition. This is because if all other agents’ strategies are fixed, then playing a

best-response strategy against them would maximise an agent’s expected rewards.

However, if the other agents’ strategies are not fixed, then to satisfy the definition

from Section 2.1 an agent may have to learn different best-response strategies.

Convergence: A set of rational agents playing against each other should con-

verge to a stationary strategy profile.

If all agents are rational according to the definition from Section 2.1, then each

one should learn to use a best-response strategy. If all agents simultaneously use

best-response strategies, then by definition they will be at a Nash equilibrium.

Therefore, as all agents learn their best-response strategies, they should converge

to a Nash equilibrium, at which point no single agent can change its strategy to

increase its expected rewards, making it a stationary strategy profile. A necessary

but not sufficient condition for an algorithm to have this property is that it will

converge against itself. This criterion can also be seen as a form of co-evolution

or co-adaptation.

Additions to this pair of desirable properties for multi-agent learning algo-

rithms have been proposed by Powers and Shoham, 2005 as well as by Butter-

worth, 2010. Powers and Shoham, 2005 proposed that for any choice of ε > 0 and

δ > 0 there should exist a number of rounds (iterations of the game) T0, which

is polynomial in 1/ε, 1/δ, the number of outcomes k, and the maximum possible

difference in rewards across the outcomes b, such that for a number of rounds,

t > T0, the algorithm achieves an average reward of at least:

1. VBR − ε against any member of a target set of opponents with probability

1− δ, where VBR is the expected reward of a best-response strategy against

that opponent.

2. VselfPlay− ε in self-play with probability 1−δ, where VselfPlay is the minimum

reward achieved by any Nash equilibrium that is not Pareto dominated by

another Nash equilibrium.

3. Vsecurity − ε against any opponent with probability 1 − δ, where Vsecurity is

the agent’s security (or maximin) reward for the stage game.
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The first property says that an agent should asymptotically learn a best-response

strategy against any opponent belonging to a target set. The second property says

that an agent should asymptotically converge to a Nash equilibrium that is not

Pareto dominated in self-play. Finally, the last property says that an agent should

asymptotically converge to a strategy that at least gives the security value of the

stage game (i.e. the game being repeated) against any opponent. Butterworth,

2010 proposed that:

4. An agent should maximise the amount of time spent playing a best-response

strategy in order to maximise the expected rewards it receives.

A weaker condition than the last is that only when playing against a slow-learning

(or quasi-stationary) opponent should the agent track the opponent’s strategy

and attempt to spend as much time as possible playing a best-response strategy

against it. Either condition is only feasible if the agent has enough computa-

tional resources to track its opponent, and to learn a best-response strategy. It

is important to note that for any learning agent it may be possible to create

another learning agent that can learn sufficiently quickly to defeat it. For exam-

ple, continuing improvements in hardware and software will allow agents to learn

strategies in the same amount of time but using finer abstractions for games with

large state spaces such as poker, which will probably lead to improved play.

Section 2.3 lists the overall assumptions that are made throughout and within

the approaches in this thesis. These assumptions are about the types of games

played, as well as the information available in agent interactions.

2.3 Assumptions

In order to explain this work, the assumptions about the games used, as well as

the way agents interact, must be explained. For the most part, it is assumed that

agents play in finite, competitive, two-player, general-sum games with imperfect

information. In actuality, most of the games are zero-sum, and there is also one

three-player game, which is highlighted when it is used. Generally, the games the

agents in this thesis play have the following features:

• Two-players, with the only exception being Jordan’s game (three-players).

• At each game state, each player receives a real-valued reward, although

these rewards are usually zero except at terminal game states.
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• General-sum, the sum of players’ rewards at the end of the game can be

any value, although in most games the sum is zero (zero-sum).

• There is at least one point in the game where at least one of the players

has information hidden from it, preventing it from differentiating between

multiple decision points.

• There is no explicit communication between players, they cannot directly

pass information to each other (the games do not allow this). The only

information a player can see about another player is its public actions.

• A player’s rewards depend on prior actions, which can include player deci-

sions, opponent decisions, and stochastic events (e.g. card deals or die-rolls).

With regards to how agents interact, the assumptions are as follows:

• It is assumed that players know the rules of the game, meaning that they

know the following:

1. The actions that they can take at each of their decision points.

2. The rewards that they will receive in each game state.

This first part of this assumption is necessary because a player cannot play the

game, or describe its strategy, unless it knows what its available actions are. The

second part of this assumption is also necessary because a player cannot learn

unless it has some measure of success. Note that knowing your reward for each

game state does not guarantee that when playing the game you will be able to

reach a particular game state or even be aware of what the game state is.

• It is assumed that the game is played repeatedly.

This assumption is also necessary for learning. If a game is only played once,

then a player is unlikely to learn much, especially if the game has stochastic

events. Technically, during a single game, a player could alter its strategy for later

decisions based on the results in earlier decisions, but this requires intermediate

rewards and only makes sense if these decision points are related in some way.

• It is assumed that each player has the option to have perfect recall.
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A player with perfect recall never forgets revealed information. Although a player

may not require perfect recall, it is not restricted from having it.

The prior three assumptions are the only ones placed on interaction. To help

differentiate this work within the literature, it is important to point out some

assumptions that are not placed on interaction, which are as follows:

• It is not assumed that players know other players’ strategies.

Knowledge of other players’ strategies is commonly provided in the literature on

imperfect information games. The rationalisation for this is that such knowledge

could be easily estimated through repeated interaction. However, Butterworth,

2010 showed that this assumption is not entirely valid, and that learning an

estimate can have consequences.

• It is not assumed that each player treats each game independently, or that

each player’s strategy cannot be based on a memory of interaction, or that

each player’s strategy cannot change.

It is often assumed in the literature that a player’s strategy consists of a stationary

distribution for each state where it acts, such that for a particular state where it

acts, it chooses an action by randomly sampling from its associated distribution.

However, a player may act based on experience i.e. a memory of interaction, such

that these distributions may be conditional on past information. For example, in

the iterated prisoner’s dilemma, tit-for-tat is a strategy that initially cooperates

and then copies the opponent’s previous action, thus for the single state in the

prisoner’s dilemma where tit-for-tat acts, its strategy consists of five conditional

probabilities Pr(C|·) = 1, Pr(C|C) = 1, Pr(C|D) = 0, Pr(D|C) = 0, Pr(D|D) =

1, where C is cooperate and D is defect. One way to handle this, which is

used by this thesis, is to model the conditional distributions. Another way is

to include the conditional information as part of the state space, which allows

unconditional distributions to be associated with each state. An agent may also

change its strategy, especially if it is learning. By not assuming that each player’s

strategy is memoryless and stationary, this thesis is dealing with a wider range of,

and more realistic players. For example, humans and animals base their decisions

on memories of interaction, and rational players often change their strategies.
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2.4 Chapter Summary

This chapter has explained the overall problem that the approaches in this thesis

face with respect to learning in an environment with multiple agents. It has de-

fined a spectrum of behaviours from best-response strategies to Nash equilibrium

strategies that rational agents might consider trying to learn. The approaches in

this thesis in chapters 4 and 5 are designed to learn towards best-response strate-

gies, whilst not completely relying on them to account for possible inaccuracies.

Whilst the players in chapters 6 and 7 intentionally use best-response strategies

to measure accuracy and to converge in self-play respectively. Additionally, this

chapter has provided an overview of a variety of desirable multi-agent learning

properties suggested in the literature, which many of the agents that this thesis

builds on and compares against try to incorporate. Finally, this chapter has dis-

cussed the overall assumptions that this work makes, and does not make, about

the types of games played, as well as the accessible information during interac-

tions. In short, this thesis studies learning high-reward strategies against other

agents whose strategies may be memory-based, or changing, or both, by modelling

them to help anticipate, and have better control over, future rewards.



Chapter 3

Background and Related Work

This chapter gives background material and related work to help understand and

put the work in this thesis into context. In particular, it explains how the com-

ponents in the approaches of this thesis work and what they are based on in

the literature. The chapter begins in Section 3.1 by exploring the relevant game

theory. This includes formally defining a game and its categorisations as well

as defining different strategy categorisations. Additionally, it takes a closer look

at solution concepts that were touched on in Chapter 2. Finally, it describes

the games used throughout and the bucketing abstraction used in Rhode Island

hold’em. Section 3.2 discusses the environments that agents in this thesis learn

in, which are repeated games. It also explains several definitions of convergence

and their relation to game theory as well as the problem of convergence, which is

a problem that many multi-agent learning algorithms tackle. Finally, it describes

and explains the reinforcement learning, no-regret learning, and opponent mod-

elling (with a focus on sequence prediction) algorithms that the approaches in

this thesis use, in addition to the importance and the use of lookahead.

3.1 Game Theory

Game theory is a branch of applied mathematics that studies strategic decision-

making. Specifically, it is the study of mathematical models of interaction (i.e.

conflict and cooperation). These interactions are usually studied between decision-

making agents who are both intelligent and rational. Game theory has applica-

tions in many fields such as economics, politics, war, psychology, logic, and biol-

ogy. Modern game theory examines the decisions of human, animal, and artificial
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players where the focus is often on the search for or the convergence to solution

concepts. The framework of game theory is extremely useful for multi-agent sys-

tems where an agent’s optimal strategy usually must account for the strategies

of other agents, which can influence that agent’s rewards.

3.1.1 What is a Game?

A game can be defined as a structured interaction of one or more players where

each player is trying to accomplish goals according to a set of rules. The out-

come of a game generally depends on the decisions of the player(s) as well as

any stochastic events described by the rules of the game (e.g. die rolls or card

deals). Each player is usually given indications of its performance through re-

ward signals, which are typically received at the end of a game (e.g. +1 for a

win, 0 for a draw, and −1 for a loss), but could be received at any point during

the game. The reinforcement learning, dynamic programming, and game theory

communities sometimes use different terminology to describe the same concepts

about games. Table 3.1 shows the synonyms between the terminologies in these

communities. Throughout this work some of these terminologies are used inter-

changeable, mainly the synonyms between the reinforcement learning and game

theory communities.
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Table 3.1: Comparison and definition of synonyms between terminologies in the
reinforcement learning, dynamic programming, and game theory communities.

Reinforcement
Learning

Dynamic Pro-
gramming

Game Theory Definition

Agent Controller Player The entity (e.g. per-
son, computer, ani-
mal, etc.) interacting
with the system.

Environment Process Game The system in which
the entities interact.

State State State The information that
represents the system.

Action Control Move Something an entity
does to influence the
system.

Policy Policy Strategy A mapping from
states to the choices
available in those
states.

Deterministic
policy

Deterministic
policy

Pure strategy A mapping from
states to single choices
that are always taken
in those states.

Stochastic
policy

Stochastic
policy

Mixed strat-
egy

A mapping from
states to probability
distributions over the
choices available in
those states.

Immediate re-
ward

Immediate
cost

Immediate
payoff

Numerical value
received upon tran-
sitioning to another
state.

Utility Cost Payoff Numerical value re-
ceived upon reaching a
terminal state.

Return Cost-to-go Return Numerical value based
on some aggregate of
the transition values.
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3.1.2 Game Classes

Cooperative Classes

The word “game” typically implies a competitive game (e.g. to game a person

is to exploit that person). In competitive (or non-cooperative) games, the goals

of at least one player are opposed to the goals of at least one other player. The

players are usually prohibited from communicating with each other in order to

prevent them from cooperating by forming coalitions. There has been a lot of

research into cooperative and coordination games. Much of this research has

focused on learning to form coalitions and allocating tasks between coalition

members. Interesting applications include the self-organisation of robots in search

and rescue missions [Scerri et al., 2010] and sampling extraterrestrial rocks [Chien

et al., 2000]. This work focusses on competitive games and does not consider

the possibility of players explicitly communicating or sharing rewards. It is still

possible for a player to implicitly communicate through its behaviour, but if this

leads to any form of cooperation it will likely be because the player believes it is

in its best interest.

Payoff Classes

Players’ payoffs provide one way to classify games. In a zero-sum game, players’

payoffs must sum to zero. In other words, one player’s gain must equal a loss

to the other players. It follows that if one player’s payoff is p, then the other

players must share (perhaps unequally) a payoff of −p. This makes zero-sum

games strictly competitive because each player’s goals are diametrically opposed

to the other players’ goals. All outcomes in a zero-sum or constant-sum game are

Pareto optimal since no player can increase its payoff without at least one other

player lowering its payoff. Games where all outcomes are Pareto optimal are also

referred to as conflict games. In constant-sum games, players’ payoffs always

sum to the same value and so zero-sum games are a type of constant-sum game.

Any constant-sum game can be converted into a zero-sum game by shifting all its

payoffs by an amount equal to the negative of the constant divided by the number

of players. Explicit examples of zero-sum games include rock-paper-scissors and

poker. Any n-player game where only one player can win and where payoffs are

not specified can be implicitly considered as a zero-sum game because you can

assume that the player who wins gets a payoff of 1 whilst the players who lose
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each get a payoff of −1/n. Implicit examples of zero-sum games include chess

and checkers. Even a game with multiple winners can be zero-sum if the losers

share the negative of the sum of the winners’ payoffs.

In a general-sum game, players’ payoffs at the end can sum to any amount.

This means that for any two outcomes of the game, the sums of the players’

payoffs at each outcome can be different values. It is even possible that each

player’s payoff is completely independent of the other players’ payoffs. General-

sum games encompass all possible payoff structures and can be seen as a super-

class of constant-sum games, which in turn can be seen as a superclass of zero-sum

games.

Information Classes

A game can be classified according to the information it makes available to its

players. There are two main information classes: perfect information games, and

imperfect information games. The difference between them is that in the latter,

one or more players have game-related information hidden from them. This is

important because the amount of information a player has can greatly affect the

complexity of the game from its perspective and the correctness of its decisions.

If either there is too much information in a game such that the player has to

omit some of it, or if a game already has information hidden from the player, and

the omitted or hidden information affects the agent’s rewards either directly or

indirectly, then this can introduce more uncertainty about the correctness of its

decisions. If a player omits or ignores information in a game, then this reduces

the complexity of the game from its perspective and is called an abstraction.

Technically an abstracted game is a different game from the original game. An

example could be to abstract a poker game that uses a standard fifty-two card

deck to ignore card suits. This simple abstraction would drastically reduce the

size of the game and the amount of information, but would make the player

unable to determine if it had a flush. The result would be that any rewards it

receives from having a flush would appear to be random. This is a major problem

with using abstractions, they usually make the player less able to correctly assign

credit (or blame) when a reward dependent on the hidden information is received.

Perfect Information A perfect information game is one in which every player

can observe the exact state of the game at any point in the game. The exact
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state of a game describes the game structure and all previous moves made by

all players. If the game is represented in extensive-form (as a tree), then this

means that every player can see the exact node the game is at in the tree at

any point. Chess is a classic example of a perfect information game because

it has no hidden information, each player can observe all moves as well as the

arrangement of the pieces on the board. In other words the players can, if they

choose to remember, know everything there is to know about the state of the

game at all points. Typically the only information a player is unaware of is the

other players’ strategies, but this is not part of the game itself. When playing a

perfect information game, the optimal set of actions is always deterministic. This

means that for whatever game state a player is in, there is set of equal actions

that are definitely better than every other action the player can take at that

point. Note that perfect information games can still involve stochasticity. For

example, backgammon is a perfect information game because, like chess, players

can observe all moves and can see the arrangement of the pieces on the board.

However, it has stochasticity due to the uncertainty of die rolls.

Imperfect Information An imperfect information game is one in which there

is at least one point where at least one of the players is unsure of the game

state. For a game represented in extensive-form (as a tree), if it has imperfect

information, then there would be at least one point where at least one of the

players does not know the exact node the game is in. This occurs because some

information is hidden from one of the players. For example, any normal-form

game is an imperfect information game because the players take their moves

simultaneously, meaning that at the moment a player takes its move, the other

players’ moves are hidden from it. Another example of an imperfect information

game would be a poker-like game where, for at least most of the game, the other

players’ hands are hidden. An imperfect information game has the property that

at least one information set contains at least two game states (information sets

are defined in Section 3.1.3). Different amounts of imperfect information provide

varying levels of complexity for learning algorithms. The approaches in this thesis

view all games using extensive-form representation, which requires the normal-

form games to be viewed as sequential games with imperfect information. This is

done by arbitrarily selecting the move order and hiding each player’s move until

all players have moved.
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3.1.3 Game Categorisations

Many algorithms used as comparisons and to develop the approaches within this

thesis are designed to learn to act optimally in a Markov Decision Process (MDP).

Thus, firstly a MDP is defined to help understand these algorithms. Secondly,

normal-form games are defined, which are used throughout, particularly in chap-

ters 4 and 7. Thirdly, stochastic games are defined, which generalise MDPs and

normal-form games. One stochastic game, namely Littman’s soccer game, is

used in Chapter 4. Fourthly, extensive-form games are defined, which are used

throughout, particularly in Chapter 5. Fifthly, repeated games are defined since

all games herein are repeated to allow agents to learn. Finally, sequence-form

games are defined because, although they are not used, they can provide a more

efficient strategic description than normal-form and extensive-form games and

may be useful for future research. To illustrate some of the different types of

game categorisations the same game is shown in normal-form, extensive-form,

and sequence-form in Figure 3.1.

Markov Decision Process (MDP)

A MDP is a tuple (S,A, P,R) where:

• S is a finite set of states.

• A is a finite set of actions.

• P : S×A×S → [0, 1] is a function that gives the probability that an action

will lead from one state to another.

• R : S ×A× S → R is a function that gives the immediate reward received

for playing an action that leads from one state to another.

A MDP can be seen as a one-player, multi-state game. At each state in the

game the player chooses an action and chance probabilistically determines the

next state based on the current state and chosen action. The difference between

a MDP and a one-player extensive-form game is the following. A MDP could be

defined such that any state leads to any other state. Whereas in an extensive-

form game, the states and the transitions between them must be arranged in a

tree such that each state only has one parent that leads to it, except for the root

or start state, which has no parent. A MDP tuple can also be defined to include
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a discount factor γ ∈ [0, 1], which determines how long-term reward is calculated

from immediate rewards. However here if a discount factor is used, then it is

assumed to be part of the agent’s specification.

Normal-Form Game

An n-player normal-form (matrix) game is a tuple (N,A,R) where:

• N = {1, 2, . . . , n} is a finite set of players.

• A = {A1, A2, . . . , An} is a finite set of finite sets of actions (or pure strate-

gies), where Ai is player i’s finite set of actions. For example, in rock-paper-

scissors, A1 = A2 = {R,P, S}.

• R = {R1, R2, . . . , Rn} is a finite set of payoff functions (payoff matrices),

where Ri is player i’s payoff function, which maps from the joint action

space to the space of real numbers Ri : A = (A1 × A2 × · · · × An)→ R.

To play, each player, i, selects an action, ai ∈ Ai, and receives a payoff equal to

the entry in its payoff matrix at the position of the joint action, a = (a1 ∈ A1, a2 ∈
A2, . . . , an ∈ An) ∈ A. A normal-form game can be seen as a multi-player, single-

state game. Each dimension of a normal-form game payoff matrix corresponds to

a player’s set of actions. This representation is easy to understand for small games

like rock-paper-scissors, or the prisoner’s dilemma, but becomes less intuitive for

larger games. Although any extensive-form game can be represented in normal-

form, determining the set of pure strategies for each player can be time consuming.

This is because, in general, the size of a normal-form game payoff matrix can

be exponential in the number of terminal nodes in the corresponding extensive-

form game tree. An advantage of normal-form representation is that it is easy

to handle mathematically, as long as the payoff matrices are not too large. Note

that “reduced” normal-form is the same as normal-form except without duplicate

strategies.

Stochastic Game

An n-player stochastic game is a tuple (N,S,A, P,R) where:

• N = {1, 2, . . . , n} is a finite set of players.

• S is a finite set of states.
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• A = {A1, A2, . . . , An} is a finite set of finite sets of actions or pure strategies

such that Ai is player i’s finite set of actions.

• P : S × A× S → [0, 1] where A = (A1 × A2 × · · · × An) is a function that

gives the probability that a joint action will lead from one state to another.

• R = {R1, R2, . . . , Rn} is a finite set of payoff functions such that Ri :

S×A×S → R is player i’s payoff function that gives its immediate reward

for a joint action that leads from one state to another.

The concept of a stochastic game was introduced by Lloyd Shapley in the early

1950s. A stochastic game can be seen as a multi-player, multi-state game. At

each state in the game all players act simultaneously and chance probabilistically

determines the next state based on the current state and chosen joint action.

This is very similar to a MDP, except in a MDP there is only one player.

Extensive-Form Game

An extensive-form game involves sequential decision-making. It can be visualised

as a game tree, with nodes as game states and edges as actions. At each non-

terminal node a player is “on turn”, which means that it chooses the action to

take at that node. The chosen action determines the edge that is followed to the

next node. Each node, h, has only one parent and so can be represented by a

unique history or sequence of actions taken to reach it, h = (a1, a2, . . . , am), where

each action, ai, 1 ≤ i ≤ m, is taken by one of the players. These actions include

“chance” actions such as die rolls or card deals, which are taken by the “chance”

player. Thus, h represents all the information seen by an omniscient observer.

An n-player extensive-form game is a tuple (N,H,Z, P,A, I, σ, u) where:

• N = {1, 2, . . . , n} ∪ {c} is a finite set of players including a chance player.

• H is a finite set of all possible nodes or histories, which are action sequences

that contain the empty sequence and every prefix of a sequence. For ex-

ample, in rock-paper-scissors, H = {(), (R), (P ), (S), (R,R), (R,P ), (R, S),

(P,R), (P, P ), (P, S), (S,R), (S, P ), (S, S)}, or in die-roll poker an element

could be, h = ( , , raise) ∈ H.

• Z ⊆ H is a finite set of terminal histories or leaf nodes. For example,

in rock-paper-scissors this set is Z = {(R,R), (R,P ), (R, S), (P,R), (P, P ),
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(P, S), (S,R), (S, P ), (S, S)}, or in die-roll poker an element could be, h =

( , , raise, fold) ∈ Z.

• P : H → N is a one-to-one function mapping from histories to players such

that P (h) = i ∈ N is the player who takes an action after history h ∈ H.

• A : H → A is a one-to-one function mapping from histories to sets of actions

such that A(h) = {a1, a2, . . . , a|A(h)|} ∈ A is the set of actions available to

player P (h) after history h ∈ H, and (h, ai) ∈ H for all 1 ≤ i ≤ |A(h)|. For

example, in rock-paper-scissors, A((R)) = A((P )) = A((S)) = {R,P, S},
or in die-roll poker, A(( , , raise)) = {raise, call, fold}.

• I = {I1, I2, . . . , In} is a finite set of information partitions, one per player.

Player i’s information partition is a finite set of its information sets, Ii =

{I1, I2, . . . , I|Ii|}. Player i’s information set, (I ⊆ H) ∈ Ii, is a finite set of

histories that are indistinguishable from player i’s perspective. The term

information partition is used because each node belongs to exactly one

information set and there are no empty information sets. If there is no hid-

den information, then each node belongs to its own information set. Note

that, in the games considered, for any information set I, P (I) = P (h)

and A(I) = A(h) for any h ∈ I. For example, in rock-paper-scissors,

I1 = I2 = {{(R,R), (R,P ), (R, S)}, {(P,R), (P, P ), (P, S)}, {(S,R), (S, P ),

(S, S)}}, or in die-roll poker one element in player 1’s information parti-

tion could be I ∈ I1 = {( , , fold), ( , , fold), ( , , fold), ( , , fold),

( , , fold), ( , , fold)} ∈ I1.

• σ = (σ1, σ2, . . . , σn) is a strategy profile, which is a finite tuple of strategies,

one per player. Player i’s strategy is a one-to-one function mapping from

its information sets where it acts to discrete probability distributions over

the actions available at those information sets, σi : {I : I ∈ Ii and P (I) =

i} → ∆(A(I)), where ∆(·) is the space of probability distributions over a

set. Player i’s strategy can also be seen as a set of discrete probability dis-

tributions, σi = {fA(I) : I ∈ Ii and P (I) = i}, where fA(I) is a probability

mass function over A(I).

• u = {u1, u2, . . . , un} is a finite set of utility functions, one per player. Player

i’s utility function is a one-to-one function mapping from histories (usually

terminal) to its rewards (real numbers), ui : H → R.
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To play at any non-terminal history, h ∈ (H \ Z), the player on turn, P (h),

samples and plays one of its available actions, a ∈ A(h), according to its strategy,

σP (h)(I), where h ∈ I and I ∈ IP (h). Once sampled, this action a is appended

to the history, h, forming a new history, (h, a) ∈ H. The game is played from

the root, h = (), to a terminal history, h = z ∈ Z. At each history, h ∈ H, each

player, i, receives a payoff according to its utility function of ui(h).

An extensive-form game can be seen as a multi-player, multi-state game. It

is arguably the most intuitive representation because it is easy to visualise the

progression within a game as a descending path through its tree. However, it

is less flexible than a stochastic game because it cannot easily represent loops

in a game. In fact, if there are loops in a game such that previous states can

be freely revisited, then the corresponding game tree would be infinite. Nodes

where the chance player is on turn generally have a fixed probability distribution

over the available actions. Although an extensive-form game tree represents deci-

sions (nodes) sequentially, information sets can be used to represent simultaneous

moves. For example, if a player acts at the same time as its opponent, then the

player would not know which path its opponent followed in the game tree. There-

fore, the player’s information set would contain nodes (histories) representing all

possible paths the opponent could have taken.

Repeated or Iterated Game

A repeated game (also known as a supergame or an iterated game) is a game built

by repeating some base game (also called a stage game). If a player’s rewards de-

pend on other players’ actions in the stage game, then the consequence of playing

a repeated game with that stage game is that the player must take into account

how its actions will affect the other players’ future actions. Repeated games can

be broadly classified as either infinitely or finitely repeated. A player may act

very differently depending on when it thinks the game will end. Specifically, if a

player has the opportunity to exploit an opponent, but could face retaliation if

it does so, then it might be tempted to wait until near the end of the game when

the opponent will no longer have the opportunity to retaliate. Note that a Nash

equilibrium in a stage game may not be a Nash equilibrium in a repeated game

using that stage game.
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Sequence-Form Game

Sequence-form is a more recently invented notion than normal-form or extensive-

form, and was introduced by Koller, Megiddo, and Stengel, 1994 as an efficient

way to construct linear programs and linear complementarity problems that can

solve extensive-form games with perfect recall. A player with perfect recall never

forgets revealed information. The inspiration for sequence-form originated from

the observation that although extensive-form is a more succinct, and arguably

more natural representation than normal-form, many techniques to solve games

are more applicable in normal-form. The root of the problem is that the number

of pure strategies in a game that is represented in extensive-form is usually ex-

ponential in the size of its game tree [Stengel, 1996]. For example, the number of

pure strategies in a game tree where every inner node (game state) has the same

number of actions (branching factor), b, is bd, where d is the depth of the tree.

Thus, converting a game represented in extensive-form into a game represented

in normal-form in order to solve it is computationally intractable for anything

but small games. Sequence-form tackles this problem by constructing a strat-

egy space linear in the size of the game tree. This allows solution techniques

for normal-form games to be performed directly on sequence-form games, which

circumvents the computationally intensive conversion into normal-form.

In sequence-form, a player takes each node of the game tree and considers

the choices needed to reach it. These sequences of choices take the place of pure

strategies the player would use in normal-form. However, a player cannot just

choose a single sequence like a pure strategy because it does not define how to

act in any situation. Instead, to define a strategy, the player assigns realisation

probabilities to each sequence. A binary assignment of realisation probabilities

then defines a pure strategy. The main benefit of this method is that a player’s

expected payoff is linear in the realisation probabilities for its sequences. This

allows the construction of linear equations representing an optimisation problem

that is directly solvable. There are already efficient solution algorithms to solve

these optimisation problems and therefore sequence-form allows exponentially

faster solutions to be obtained for games represented in extensive-form. This is

because the conversion to sequence-form is faster than the usually exponential

time necessary to convert to normal-form.

A sequence-form representation of an n-player extensive-form game with per-

fect recall is a tuple (N,S, x, u) where:



CHAPTER 3. BACKGROUND AND RELATED WORK 53

• N = {1, 2, . . . , n} is a finite set of players.

• S = {S1, S2, . . . , Sn} is a finite set of finite sets of sequences of actions, one

per player. Player i’s set of sequences of actions, Si, contains each sequence

of actions that it would take to reach each of its information sets in the

game tree (disregarding the actions of the other players). For example, in

rock-paper-scissors, S1 = S2 = {∅, R, P, S}.

• x = {x1, x2, . . . , xn} is a finite set of realisation plans. Player i’s realisation

plan, xi : Si → [0, 1], is a function mapping from its sequences of actions

to realisation probabilities (or realisation weights). For any player, i ∈ N ,

x(∅) = 1, and x(sI) =
∑

a∈A(I) x(sIa), where sI ∈ Si is player i’s sequence

of actions taken to reach its information set I ∈ Ii and sIa ∈ Si such that

it plays the actions in sI and then plays action a. Player i’s probability for

taking action a is
xi(sIa)

xi(sI)
. Player i’s realisation probability for a sequence

of actions, xi(sI), is the product of the probability of each of its actions

in that sequence, i.e. if sI = (a1, a2, . . . , am), where some actions may be

hidden from player i, then xi(sI) =
∏m

j=1 Pr(aj|(a1, a2, . . . , aj−1))bj , where

bj = 1 if aj is one of player i’s actions, otherwise bj = 0. Note that here an

information set is as defined the same as for an extensive-form game.

• u = {u1, u2, . . . , un} is a finite set of payoff functions (sparse payoff ma-

trices), one per player. Player i’s payoff function, ui, is a one-to-one

function mapping from its sequences of actions to rewards (real numbers),

ui : σi → R.
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(a) Extensive-form representation.

(b) Normal-form representation.

CE DE CF DF
AG R1 R2 R1 R2

AH R1 R2 R1 R2

BG R3 R3 R4 R4

BH R3 R3 R5 R5

(c) Sequence-form representation.
∅ C D E F

∅ (0,0) (0,0) (0,0) (0,0) (0,0)
A (0,0) R1 R2 (0,0) (0,0)
B (0,0) (0,0) (0,0) R3 (0,0)

BG (0,0) (0,0) (0,0) R3 R4

BH (0,0) (0,0) (0,0) R3 R5

Figure 3.1: An arbitrary game in extensive-form, normal-form, and sequence-
form. In extensive-form representation, each node is a game state with white
squares as player one’s decision points, black squares as player two’s decision
points, white triangles as terminal game states, and edges as actions. In normal-
form representation, each row is a pure strategy for player one, each column is
a pure strategy for player two, and each entry for a specific row and column
are the players’ rewards. Finally, in sequence-form representation, each row is a
sequence of actions for player one, each column is a sequence of actions for player
two, and each entry for a specific row and column are the players’ rewards. An
empty action sequence is denoted by ∅. Also, most entries have zero rewards
(sparse encoding) because the combination of each player’s action sequence at
these points either leads to a non-terminal node, or is unrealisable. Note that Ri

is a pair of rewards, Ri = (pi, qi) where pi is player one’s reward and qi is player
two’s reward.
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3.1.4 Strategy Categorisations

In this work agents’ strategies are represented as behaviour strategies. How-

ever, it is easier to understand how behaviour strategies work when compared

to other representations. Thus, the three main types of strategy representations

are described here, which are pure strategies, mixed strategies, and behaviour

strategies. An agent’s strategy describes how that agent will act. A strategy is

usually specified for a particular domain such as a game. In the case of a game,

a player’s strategy specifies how that player chooses an action at any state in the

game where that player acts. If a player decision point is encountered and that

player’s strategy is not specified for that decision point, then the player will not

know what to do and the game will halt.

Pure Strategy

A pure strategy is a deterministic strategy and so it has no probabilistic choices.

An agent with a pure strategy will always play the same action in the same state.

An example of a pure strategy for player one with regard to Figure 3.1 is AG,

where player one will always play action A in state S1 and will always play action

G in state S4. If player one played this pure strategy, then it would never actually

reach state S4. However, a pure strategy requires a player to specify what action

it would play in each state where it acts even if some of those states cannot be

reached.

Mixed Strategy

A mixed strategy is a probability distribution over pure strategies. A totally

mixed strategy is a mixed strategy where each pure strategy has a strictly pos-

itive probability of being selected. An agent with a mixed strategy will sample

and execute a pure strategy according to the probability distribution its mixed

strategy assigns over pure strategies. An example of a (totally) mixed strategy

for player one with regard to Figure 3.1 is to play each pure strategy with equal

probability i.e. Pr(AG) = Pr(AH) = Pr(BG) = Pr(BH) = 0.25. An agent using

a mixed strategy only makes one randomised choice before the game starts, which

is to select its pure strategy according to its mixed strategy probabilities.
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Behaviour Strategy

A behaviour strategy specifies a probability distribution over the actions available

to an agent at each of its decision points. An agent with a behaviour strategy will

sample and execute an action at each of its decision points that are visited accord-

ing to its probability distribution associated with that decision point. An example

of a behaviour strategy for player one with regard to Figure 3.1 is to play action A

with probability 0.8, action B with probability 0.2, action G with probability 0.4,

and action H with probability 0.6. It would be difficult to use a behaviour strat-

egy for a game represented in normal-form because this representation only shows

the players’ pure strategies (each row/column is a pure strategy) and does not

show decision points. Instead, a behaviour strategy is more suited to extensive-

form representation. An agent using a behaviour strategy makes a randomised

choice at each of its decision points in a game in order to select an action. A be-

haviour strategy is usually more efficient than a mixed-strategy. For example, in

Figure 3.1, a mixed-strategy for player one requires three probabilities (Pr(AG),

Pr(AH), and Pr(BG) since Pr(BH) = 1−Pr(AG)+Pr(AH)+Pr(BG)), whereas

a behaviour strategy for player one requires two probabilities (Pr(A) and Pr(G)

since Pr(B) = 1− Pr(A) and Pr(H) = 1− Pr(G)).

Kuhn’s Theorem - Relating Mixed and Behaviour Strategies

Kuhn’s theorem establishes a relationship between mixed strategies and behaviour

strategies. The theorem states that if a player has perfect recall, then for any

one of its behaviour strategies there is an equivalent mixed strategy in the sense

that their expected payoffs are the same [Kuhn, 1953]. A player with perfect re-

call never forgets revealed information. By discovering this relationship, Kuhn

showed that a behaviour strategy can be represented as a mixed strategy and vice

versa. Consequently, with perfect recall, the set of Nash equilibria is the same

when using mixed or behaviour strategies.

3.1.5 Solution Concepts

The ideal is to develop agents that will perform as well as possible accord-

ing to some performance metric in every situation they are placed in. Ulti-

mately, the performance metric that this thesis is most concerned with is the

agent’s cumulative reward over all the games that it plays. This can also be
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looked at as its average reward per game. This thesis looks at developing agents

that use predictions from models of opponents with memory-based or chang-

ing strategies to find, or at least approach, best-response strategies. For the

following definitions, there is a finite set of players, N = {1, 2, . . . , n}. Each

player, i ∈ N , has a finite set of pure strategies, Ai, and a utility function

that maps tuples of pure strategies, where each tuple contains one pure strat-

egy per player, to rewards (real numbers), ui :
∏n

j=1 Aj → R. Each player i

also has a strategy, σi ∈ Σi ≡ ∆(Ai), where ∆(·) is the space of probability

distributions over a set. The strategy profile, σ, is defined as the tuple con-

taining each player’s strategy, σ = (σ1, σ2, . . . , σn) ∈ Σ =
∏n

j=1 Σj, and σ−i as

the same as σ but excluding player i’s strategy, σ−i = (σ1, σ2, . . . , σi−1, σi+1, . . . ,

σn) ∈ Σ−i =
∏n

j=1,j 6=i Σj. Finally, player i’s expected reward for the strategy

profile σ is defined as ui(σ) ≡∑a∈
∏n
j=1 Aj

ui(a)
∏n

i=1 σi(a(i)), where a(i) is player

i’s pure strategy in a.

Best-Response

A best-response strategy for a player is a strategy that results in the most pre-

ferred outcome for that player against the other players’ current strategies. For-

mally, a best-response strategy for player i, σ∗i ∈ Σi, is a strategy which, given

the strategies of all other players σ−i ∈ Σ−i, results in player i’s most preferred

outcome such that

σ∗i ∈ arg max
σi∈Σi

ui(σi, σ−i) (3.1)

Here the most preferred outcome for a player is the outcome that maximises its

expected reward. If a mixed strategy is a best-response strategy, then each pure

strategy in the mix with positive probability must also be a best-response strategy.

The reasoning for this is as follows: If it were not true, then there would be at

least one pure strategy with positive probability that has a lower expected reward

than the mixed strategy. Furthermore, if the probability of this pure strategy

was decreased to zero and the probabilities of the other pure strategies that have

positive probabilities were increased, then this must raise the expected reward of

the mixed strategy. However, this means that the original mixed strategy would

not have been a best-response strategy because it would have a lower expected

reward than the new mixed strategy. This is a contradiction. The main problem

with using a best-response strategy is that if the environment changes, or if the
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opponents’ strategies change, then it may become a very bad strategy as shown

by Johanson, Zinkevich, and Bowling, 2008.

Maxmin and Minmax

A maxmin strategy is one that maximises a player’s worst-case expected reward.

Formally, a maxmin strategy for player i is defined as

arg max
σi

min
σ−i

ui(σi, σ−i). (3.2)

The worst-case expected reward to player i for the maxmin strategy is also known

as the maxmin value (security level) of the game and is defined as

max
σi

min
σ−i

ui(σi, σ−i) (3.3)

Player i’s maxmin strategy is the strategy that it would commit to in order to

maximise its expected reward if it was forced to announce its strategy first and

then all the other players chose their strategies to minimise player i’s expected

reward.

A minmax strategy is one that minimises an opponent’s best-case expected

reward. Formally, a minmax strategy for player i is defined as

arg min
σi

max
σ−i

u−i(σi, σ−i). (3.4)

The best-case expected reward to the opponents −i for the minmax strategy is

also known as the minmax value of the game and is defined as

min
σi

max
σ−i

u−i(σi, σ−i). (3.5)

The minimax theorem states that for every two-player zero-sum game with a

finite number of strategies for each player, there exists a value V (called the

value of the game) and a (possibly mixed) strategy for each player such that

player one’s expected reward is at least V , independent of player two, and player

two’s expected reward is at most V , independent of player one. If V = 0, then

the game is said to be fair, otherwise it is said to be unfair in that V > 0

favours player one and V < 0 favours player two. The minimax solution is a

Nash equilibrium for these games. A strategy profile that satisfies the equation
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minσi maxσ−i u−i(σi, σ−i) = maxσi minσ−i ui(σi, σ−i) is called a minimax solution.

In other words, the minmax solution is equal to the maxmin solution.

Nash Equilibrium

A Nash equilibrium is a tuple of strategies, one per player, where each player’s

strategy, σ∗i , is a best-response strategy to the other players’ strategies, σ∗−i, [Nash,

1950] such that

ui(σ
∗
i , σ

∗
−i) ≥ ui(σi, σ

∗
−i) for all σi ∈ Σi and for all i ∈ N (3.6)

At a Nash equilibrium, no player can increase its expected reward by changing

its strategy unilaterally. However, it may be possible for two or more players to

change their strategies simultaneously to increase their expected rewards. Nash,

1950 proved that if players can use mixed strategies, then at least one Nash

equilibrium exists for all finite n-player games, where finite means that there is a

finite number of pure strategies for each player.

In a zero-sum game, a player’s expected reward at each Nash equilibrium, or

mixture of Nash equilibria, is the same. This is called the value of the game,

and is the same as the value from the minimax theorem. This is not the case

in general-sum games where different Nash equilibria, or mixtures of different

Nash equilibria, can give a player different expected rewards. Therefore, players

in a general-sum game can suffer from the problem of having to choose between

different Nash equilibria. It is also possible that a mixture of Nash equilibria in

a general-sum game is not a Nash equilibrium strategy.

An ε-Nash equilibrium is an approximate Nash equilibrium. It is a tuple

of strategies, one per player, where each player’s strategy, σ∗i , is within ε of a

best-response to the other players’ strategies, σ∗−i, in terms of expected rewards,

i.e.

ui(σ
∗
i , σ

∗
−i) + ε ≥ ui(σi, σ

∗
−i) for all σi ∈ Σi and for all i ∈ N (3.7)

where ε ≥ 0 is some non-negative real-valued number. If ε = 0, then only a Nash

equilibrium satisfies this equation. If ε = ∞, then any strategy profile satisfies

this equation. Thus, although an ε-Nash equilibrium is called an approximate

Nash equilibrium, it is only approximate if ε is small with respect to the range of

the expected rewards.
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Regret Minimisation

Regret (also called opportunity loss or difference regret) is generally defined as

the difference between the rewards that a player could have received by playing

some strategy and the rewards that the player did receive by playing its actual

strategy. There are many concepts of regret. For a game represented in normal-

form, Zinkevich, 2004, 2005 defines external regret, swap regret, internal regret,

external response regret, and internal response regret.

Take a normal-form game, which is iterated T times, and let h be the history

of actions played in these games i.e. h = ((a1
1, . . . , a

1
n), . . . (aT1 , . . . , a

T
n )) where ati

is player i’s action at time t. Furthermore, let Ri be player i’s payoff function

such that given the actions of all players it returns player i’s payoff, Ai be the set

of available actions to player i and at−i be the actions of all players except player

i. Player i’s external regret, rext, is the difference between its total payoff and the

maximum total payoff it could have got by replacing all its actions with a single

fixed action whilst assuming that the other players’ actions are the same

rext = max
a∗i∈Ai

T∑
t=1

[
Ri(a

∗
i , a

t
−i)−Ri(a

t
i, a

t
−i)
]
. (3.8)

Player i’s swap regret, rswa, is the difference between its total payoff and the

maximum total payoff it could have got by replacing each of its actions using a

function f : Ai → Ai whilst assuming the other players’ actions are the same

rswa = max
f

T∑
t=1

[
Ri(f(ati), a

t
−i)−Ri(a

t
i, a

t
−i)
]
. (3.9)

Player i’s internal regret, rint, is the difference between its total payoff and the

maximum total payoff it could have got by replacing all plays of a particular

action a′i with another action a∗i whilst assuming the other players’ actions are

the same

rint = max
a′i,a
∗
i∈Ai

∑
t:ati=a

′
i

[
Ri(a

∗
i , a

t
−i)−Ri(a

t
i, a

t
−i)
]
. (3.10)

A problem with relying on these regrets to learn high-reward strategies is that

they do not consider the consequences of an agent’s actions. In particular, they

ignore how other agents may react. For example, always defecting in the prisoner’s

dilemma will have zero external, swap, and internal regrets against any agent,
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suggesting it is a good strategy. However, always defecting, rather than always

cooperating, will result in a much lower total payoff against strategies such as

grim trigger and tit-for-tat. Zinkevich, 2004, 2005 proposed external and internal

response regrets to account for the immediate and short-term consequences of an

agent’s actions.

For a game represented in extensive-form, Zinkevich et al., 2008 define overall

regret and counterfactual regret. Take an extensive-form game, which is iterated

T times. Let σti be player i’s strategy at time t, σt−i be the tuple of opponents’

strategies at time t. Player i’s overall regret, rove, is defined as the difference

between the total expected reward of its actual strategy at each time step, and

the maximum total expected reward it could have got with a single fixed strategy

rove = max
σ∗i ∈Σi

T∑
t=1

[
ui(σ

∗
i , σ

t
−i)− ui(σti , σt−i)

]
. (3.11)

Furthermore, let πσ
t

−i(I) be the probability of reaching information set I according

to the strategy profile at time t, but ignoring player i’s strategy, ui(σ
t|I) be the

same as ui(σ
t) except it is calculated from information set I, and σt|I→a be the

same as σt except player i always plays action a at information set I. Player i’s

counterfactual regret, rcou, at an information set, I, is defined as the difference

between the total expected reward of its actual strategy at each time step at that

information set, and the maximum total expected reward it could have got by

playing a fixed action for all time steps at that information set, weighted by the

probability of reaching that information set if it had tried to do so

rcou = max
a∈A(I)

T∑
t=1

πσ
t

−i(I)
[
ui(σ

t|I→a, I)− ui(σt, I)
]
. (3.12)

Counterfactual regret is explained in more detail in Section 3.2.9. According to

Zinkevich et al., 2008, the following theory connects the concept of overall regret

and a Nash equilibrium strategy: In a two-player zero-sum game at time T , if

each player’s average overall regret is less than ε, then their average strategies are

a 2ε Nash equilibrium. Thus, as each player’s average overall regret approaches

zero, their average strategies approach a Nash equilibrium.
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Iterated Elimination of Dominated Strategies

Given two strategies σ and σ′ belonging to a player, σ dominates σ′ if the player

gets higher payoffs with σ than with σ′ regardless of what the other players do.

A dominated strategy can be removed because a rational player would not play

it. By removing a dominated strategy, other strategies may be revealed that are

also dominated. If all dominated strategies are removed, and only one strategy

remains for each player, then they are a Nash equilibrium.

Pareto Optimality

Pareto optimality or efficiency is an allocation of resources amongst individuals

such that any reallocation cannot make an individual better off without making

another individual worse off. Thus, a strategy profile is Pareto optimal if no player

can increase its expected payoff without another player decreasing its expected

payoff. In any zero-sum or constant-sum game all strategy profiles are Pareto

optimal. Generally, if there are a finite number of outcomes, then at least one

Pareto optimal solution will exist. A Pareto optimal strategy profile can be seen

as a solution concept because there is no wasted payoff (i.e. no payoff that could

have been gained by one or more players at no cost to the other players). A

strategy profile that contains best-response, or maxmin, or minmax, or regret

minimising strategies, or that is a Nash equilibrium, is not necessarily Pareto

optimal. A strategy profile can also be described as Pareto optimal within a subset

of strategy profiles e.g. a Nash equilibrium can be Pareto optimal compared to

other Nash equilibria. Finally, an outcome is Pareto dominated if it is not Pareto

optimal and if a Pareto optimal outcome exists.

3.1.6 Solving Games

According to Allis, 1994, stating that a game is solved usually indicates that a

property with regard to the outcome of that game has been determined. For two-

player zero-sum games with perfect information he provides three definitions for

the degree to which a game has been solved: ultra-weakly solved, weakly solved,

and strongly solved.

Ultra-Weakly Solved An ultra-weakly solved game is one where, for any ini-

tial positions, the game-theoretic value of that state has been determined. This
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implies that, for any initial positions, it is known what the outcome (i.e. win,

draw, or loss) will be for all players if they were to play perfectly.

Weakly Solved A weakly solved game is one where, for any initial positions,

a strategy has been determined that will obtain at least the game-theoretic value

of that state, for each player, under reasonable resources. This implies that, for

any initial positions, it is known what the outcome will be for all players if they

were to play perfectly and there is an algorithm that can achieve this outcome.

Strongly Solved A strongly solved game is one where, for any legal positions,

a strategy has been determined that will obtain the game-theoretic value of that

state, for each player, under reasonable resources. This implies that, for any legal

positions, it is known what the outcome will be for all players if they were to play

perfectly and there is an algorithm that can achieve this outcome.

The definitions of a weakly solved game and of a strongly solved game mention

that their strategies should obtain the game-theoretic value, for each player, under

reasonable resources. The idea is that a game is only considered weakly solved

or strongly solved if the corresponding algorithm can be run by existing, perhaps

state-of-the-art, hardware in a reasonable time. If this were not the case, then

it could be argued that, for example, chess is weakly solved using the minimax

algorithm. Realistically it is known that, on existing hardware, this would be

far too computationally expensive in terms of time and memory. There is an

ordering amongst these three definitions. If a game is strongly solved, then it is

also weakly solved, and if a game is weakly solved, then it is also ultra-weakly

solved.

In a two-player zero-sum game, a Nash equilibrium corresponds to playing the

safest strategy because it minimises the opponent’s maximum payoff. Since the

game is zero-sum, where whatever the opponent gains the player loses and vice

versa, this also corresponds to maximising the player’s minimum payoff. This

assumes that the opponent always acts to minimise the player’s payoff and thus

maximise its own. In the above definitions, perfect play corresponds to playing a

Nash equilibrium strategy, which is the same as a minimax strategy. The game-

theoretic value is the expected payoff of a Nash equilibrium strategy, which will

be the same for all Nash equilibria. This means that finding a Nash equilibrium

strategy profile would be sufficient to strongly solve one of these games.
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In order to find a Nash equilibrium in a two-player zero-sum game the minimax

principle can be used alongside linear programming. By expressing the game

in normal-form or sequence-form equations can be formed corresponding to a

linear optimisation problem. Linear programming applied to these equations can

then optimise for the maximum value of the player’s minimum expected payoff.

The constraints would be that the resulting strategy describes valid probability

distributions over actions. The solution would describe mixed strategies for both

players that form a Nash equilibrium. There is also a method to find a Nash

equilibrium in a two-player general-sum game represented in normal-form (as

a bi-matrix). This method requires the problem to be formulated as a linear

complementarity problem, which is a special case of quadratic programming.

Analytically finding a Nash equilibrium is generally considered to be a hard

problem. Although linear programming can be used to find a Nash equilibrium in

polynomial time for a two-player zero-sum game, there are no efficient polynomial

time algorithms for finding a Nash equilibrium in a non-zero sum game that the

author is aware of. Due to this, one might be tempted to assume that this prob-

lem is non-polynomial (NP)-complete. However, there is a peculiarity that, unlike

other NP-complete problems, Nash’s theorem guarantees that there is always at

least one (possibly mixed strategy) Nash equilibrium in a game with a finite num-

ber of actions. In fact, Daskalakis, Goldberg, and Papadimitriou, 2006 as well

as Chen, Deng, and Teng, 2009 proved that finding a Nash equilibrium is Poly-

nomial Parity Arguments on Directed graphs (PPAD)-complete, where PPAD

is a subclass of NP. The advantage of this is that a PPAD-complete problem is

less likely to be intractable than an NP-complete problem. On the other hand,

Conitzer and Sandholm, 2008 showed that determining if a Nash equilibrium has

a specific property out of a certain large set of properties is NP-hard. These

properties include, for example, having a specific social welfare (sum of expected

payoffs), or as another example, determining if a specific pure strategy occurs in

the support (has positive probability). Not only this but they also showed that

maximising certain properties, such as social welfare, is inapproximable. Given

the computational complexity of analytically finding Nash equilibria, machine

learning is a tempting alternative for discovering approximate solutions.
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3.1.7 Games in the Experiments

This section describes the games used throughout this thesis. Many of these

games are represented in normal-form but a stochastic game and two poker games

represented in extensive-form are also used. All of these games are two-player ex-

cept one, which is Jordan’s game. A large part of the focus is on zero-sum games,

but some general-sum games are also used. In all the games it is assumed that

the players have perfect recall. These games are used to test the performance of

the approaches in this thesis with the exceptions of Shapley’s game and Jordan’s

game, which are used to test the self-play convergence to mixed strategy Nash

equilibria of players’ empirical distributions of plays.

Rock-Paper-Scissors

Rock-paper-scissors or roshambo is a two-player, three-action, zero-sum, normal-

form game. Each player can play: rock which counters (smashes) scissors, paper

which counters (smothers) rock and scissors which counters (cuts) paper. There

is a unique mixed strategy Nash equilibrium, which is for each player to play

each of its actions with equal probability of 1/3. Due to its popularity, there

have been a variety rock-paper-scissors tournaments for both humans [2009 World

RPS Championships — World RPS Society ] and algorithms [Rock Paper Scissors

Programming Competition]. The payoff matrix is shown in Table 3.2.

Table 3.2: Rock-paper-scissors payoff matrix, each entry shows (row player payoff,
column player payoff) for the given row and column actions.

R P S

R 0,0 -1,1 1,-1

P 1,-1 0,0 -1,1

S -1,1 1,-1 0,0

Shapley’s Game

Shapley’s game is a two-player, three-action, general-sum, normal-form game. It

is rock-paper-scissors but modified such that negative payoffs are replaced with

zero payoffs (see Table 3.2), which turns it into a general-sum game. It retains

the unique mixed strategy Nash equilibrium of rock-paper-scissors, which is for
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each player to play each of its actions with equal probability of 1/3. Finally, it

has been used as an example of where fictitious play fails to converge in self-play

[Shapley, 1963] and to test the self-play convergence of other algorithms to a

unique mixed strategy Nash equilibrium [Abdallah and Lesser, 2008; Zhang and

Lesser, 2010]. The payoff matrix is shown in Table 3.3.

Table 3.3: Shapley’s game payoff matrix, each entry shows (row player payoff,
column player payoff) for the given row and column actions.

R P S

R 0,0 0,1 1,0

P 1,0 0,0 0,1

S 0,1 1,0 0,0

Miscoordination game

Miscoordination game is a two-player, two-action, general-sum, normal-form game.

Each player can select one of two actions. If they both select different actions,

then they each get a payoff of one, otherwise they each get a payoff of zero. There

are two pure strategy Nash equilibria, which are both players playing different

actions. There is also a range of mixed strategy Nash equilibria, in each one a

player’s probability of playing an action is equal to the other player’s probability

of playing the other action. Fudenberg and Kreps, 1993 used a miscoordination

game to show that although fictitious play appears to converge to a Nash equilib-

rium in it, the expected Nash equilibrium payoff may not obtained. The payoff

matrix is shown in Table 3.4.

Table 3.4: Miscoordination game payoff matrix, each entry shows (row player
payoff, column player payoff) for the given row and column actions.

A B

A 0,0 1,1

B 1,1 0,0

Matching Pennies

Matching pennies is a two-player, two-action, zero-sum, normal-form game. Each

player can select either heads or tails. The goal of the first (row) player is to
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match the coin face of the second (column) player, whereas the goal of the second

(column) player is the opposite, to mismatch the coin face of the first player.

There is a unique mixed strategy Nash equilibrium, which is for each player to

play each of its actions with equal probability of 1/2. This is a well-known game

that can be seen as a simpler version of rock-paper-scissors with one less action

per player. The payoff matrix is shown in Table 3.5.

Table 3.5: Matching pennies payoff matrix, each entry shows (row player payoff,
column player payoff) for the given row and column actions.

H T

H 1,-1 -1,1

T -1,1 1,-1

Jordan’s Game

Jordan’s game [Jordan, 1993] is a three-player, two-action, general-sum, normal-

form game. It is an extension of matching pennies to include a third player. Each

player can select either heads or tails. The first player wants to match the coin

face of the second player, the second player wants to match the coin face of the

third player, and the third player wants to mismatch the coin face of the first

player. There is a unique mixed strategy Nash equilibrium, which is for each

player to play each of its actions with equal probability of 1/2. The game has

been used to test the self-play convergence to mixed strategy Nash equilibria of

various algorithms [Abdallah and Lesser, 2008; Bowling and Veloso, 2002; Zhang

and Lesser, 2010]. Its rewards are shown in Table 3.6.

Table 3.6: Jordan’s game (also known as three-player matching pennies) payoff
matrix, each entry shows (player one payoff, player two payoff, player three pay-
off). Player one selects the outer row, player two selects the column, and player
three selects the inner row.

H T

H
H 1,1,-1 -1,-1,-1

T 1,-1,1 -1,1,1

T
H -1,1,1 1,-1,1

T -1,-1,-1 1,1,-1
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Prisoner’s Dilemma

The prisoner’s dilemma is a two-player, two-action, general-sum, normal-form

game where both players are caught after committing a crime together. Each

player is moved to a separate interrogation room and has two actions. A player

can either defect against the other player, which means confessing to its crime, or

can cooperate with the other player, which means remaining silent. If both players

defect, then there is enough evidence to give them both the maximum sentence,

but these are reduced slightly for their admissions. If one player defects and the

other cooperates, then the player who defected is set free since the case hinged

on that testimony whereas the player who cooperated receives the maximum

sentence. Finally, if both players cooperate, then there is only enough evidence to

give them both short sentences. There is a unique pure strategy Nash equilibrium,

which is for each player to defect. This is a classic game in game theory and is an

example of the tragedy of the commons where individuals acting rationally in their

own self-interest prevent the group from obtaining its best interest. Specifically, if

both players cooperate, then this is the socially optimal solution as they maximise

the sum of their rewards, but defect is the dominant action for each player as it

gives the highest reward irrespective of the other player’s strategy. The payoff

matrix is shown in Table 3.7 where longer sentences give smaller payoffs.

Table 3.7: Prisoner’s dilemma payoff matrix, each entry shows (row player payoff,
column player payoff) for the given row and column actions.

D C

D 1,1 4,0

C 0,4 3,3

Littman’s Soccer

Littman’s soccer game [Littman, 1994] is a two-player, zero-sum, stochastic game.

It is played on a 4 × 5 grid with goals either side. Each player can move north,

south, east, west or can stand still and must dribble the ball into its opponent’s

goal. Each game starts with the ball being given to a random player. At each

step, players select actions simultaneously and these are executed in a random

order, which adds non-determinism to the game. Scoring (being scored against)

gets a reward of 1 (-1) and resets players to their initial positions. If a player tries



CHAPTER 3. BACKGROUND AND RELATED WORK 69

to move to an occupied position, then the move fails and gives the ball to the

opponent (if possible). Littman proposed this simplified soccer game to demon-

strate his minimax-Q learning algorithm. Figure 3.2 shows the initial layout of

the game, the large circles represent the players, the smaller circle represents the

ball, and each player starts closer to its own goal.

Figure 3.2: Littman’s soccer game initial state, large circles are players, the small
circle is the ball, and each player is closer to its own goal.

Die-Roll Poker

Die-roll poker is a two-player, zero-sum poker game where dice are used instead

of cards. It was introduced by Lanctot et al., 2012 and proceeds as follows:

1. Each player antes one chip into the pot.

2. Each player rolls its first private six-sided die.

3. First public betting round occurs, each raise (max two) is two chips.

4. If no one folded, each player rolls its second private six-sided die.

5. Second public betting round occurs, each raise (max two) is four chips.

6. If no one folded, a showdown occurs, the highest dice sum wins the pot.

The game has imperfect information due to each player’s die rolls initially being

hidden from its opponent. If the game ends in a fold, then each player keeps its die

rolls hidden from its opponent. If the game ends in a showdown, then each player

reveals the sum of its die rolls to its opponent, but each individual die roll that

constituted that sum is not revealed. For example, at a showdown a player might

reveal to its opponent that the sum of its die rolls is three, but the opponent
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cannot tell if the player rolled either or . The game was introduced

by Lanctot et al., 2012 to help test their theory about regret bounds for using

counterfactual regret minimisation in imperfect recall games. The structure of die

rolls and betting rounds in the die-roll poker game tree are shown in Figure 3.3.
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Figure 3.3: Die-roll poker game tree (die rolls and betting rounds). The top
shows each player rolling a private six-sided die. The bottom left shows a betting
round where “terminal or chance nodes” are terminal in the second betting round
and chance in the first betting round. There are 1.12× 105 nodes with 5.58× 102

decision information sets per player.

Rhode Island Hold’em

Rhode Island hold’em is a two-player, zero-sum poker game, which like most poker

games uses a standard fifty-two card deck. However, each player is only dealt one

private card and only two public cards are dealt. The game was introduced by

Shi and Littman, 2000 and proceeds as follows:
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1. Each player antes five chips into the pot.

2. Each player is dealt one private card from a standard fifty-two card deck.

3. First public betting round occurs, each raise (max three) is ten chips.

4. If no one folded, the first public card, called the “flop”, is dealt.

5. Second public betting round occurs, each raise (max three) is twenty chips.

6. If no one folded, the second public card, called the “turn”, is dealt.

7. Third public betting round occurs, each raise (max three) is twenty chips.

8. If no one folded, a showdown occurs, the best three-card hand wins the pot.

The game has imperfect information due to each player’s private card initially

being hidden from its opponent. If the game ends in a fold, then each player keeps

its private card hidden from its opponent. If the game ends in a showdown, then

each player reveals its private card to its opponent. The game was introduced by

Shi and Littman, 2000 to help test their abstraction methods. The structure of

card deals and betting rounds in the Rhode Island hold’em game tree are shown

in Figure 3.4. Three-card poker hand ranks are shown in Table 3.8.

Table 3.8: Three-card poker hand ranks. Ties are attempted to be broken in all
cases by comparing the card with the highest rank, then the card with the second
highest rank, then the card with the third highest rank.

Rank Hand Probability Description Example

1 Straight flush 0.0022 Three sequential cards sharing suit. Q♠K♠A♠
2 Three of a kind 0.0024 Three cards sharing rank. 7♣7♥7♦
3 Straight 0.0326 Three sequential cards. 3♥4♣5♠
4 Flush 0.0496 Three cards sharing suit. 2♦7♦K♦
5 Pair 0.1694 Two cards sharing rank. 9♣Q♥Q♦
6 High card 0.7439 None of the above. 4♠10♠J♣
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Figure 3.4: Rhode Island hold’em game tree (private card deals and betting
rounds). The top shows each player being dealt its private card out of a standard
fifty-two card deck. The bottom left shows a betting round where “terminal or
chance nodes” are terminal in the third betting round and chance in the first
and second betting rounds. Not shown are public chance node branches, with
50 branches from each “flop” chance node and 49 branches from each “turn”
chance node. There are 6.71× 109 nodes with 2.50× 107 and 2.46× 107 decision
information sets for player one and two respectively.
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3.1.8 Abstraction by Bucketing

Some games have large state spaces or numbers of states. For example, heads-up

(two-player) limit Texas hold’em has about 1×1018 (quintillion) states [Zinkevich

et al., 2008]. This can make them difficult to store in terms of memory and

difficult to learn strategies for in terms of computation time required to consider

all decisions. Practically only a limited number of states can be handled. One

way to reduce the number of states is to combine states that are similar according

to some metric. The experience in a combined state is then generalised over the

states it represents. Examples of state space abstraction include coarse coding,

tile coding, Kanerva coding, and the use of radial basis functions. A state space

abstraction technique is used in Rhode Island hold’em called bucketing.

Bucketing groups information sets that are deemed to have similar values by

some metric. The assumption is that if information sets are in the same bucket,

with similar values, then the optimal behaviour will be similar for all of them and

so instead of learning a behaviour for each of them, one behaviour is learnt for

all of them. The reduction in the number of information sets to learn behaviours

for makes the game smaller. Typically, the smaller a game is, the faster an agent

can learn an effective strategy within that game. Bucketing is usually applied to

poker-like games and this is the type of games this thesis uses it for. Most of the

information on bucketing is based on that found in Johanson, 2007.

Expected Hand Strength

Expected hand strength is a metric designed for poker-like games and is defined

according to Johanson, 2007 as the probability of a player’s private cards winning

at a showdown when the public cards that have not been dealt along with the op-

ponents’ private cards are “rolled out”, which means they are sampled uniformly

at random without replacement from the remaining possible cards. The proce-

dure for calculating expected hand strength depends on the stage of the game. If

the game is at a showdown, where you can see your opponents’ cards or hidden

information, then your expected hand strength is 1 if your hand wins, 0 if your

hand draws and -1 if your hand loses. If the game is at a point where all private

and public cards have been dealt, but the opponents’ cards are unknown, then

your expected hand strength is calculated by dealing all possible combinations

of opponent cards, counting how many times your hand wins, draws and loses
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against them and calculating

E[HS] =
wins + draws/2

wins + draws + losses
. (3.13)

Finally, if the hand is at a point where all private cards have been dealt, but only

some public cards have been dealt and the opponents’ cards are unknown, then

your expected hand strength is calculated by dealing all possible combinations of

public cards and averaging the expected hand strength of each combination. The

expected hand strength squared, denoted by E[HS]2, is simply the square of the

expected hand strength. The purpose of squaring the expected hand strength is

to give more weight to hands that, although initially weak, could become strong.

Percentile Bucketing

Percentile bucketing divides all n-card hands, where n is fixed, evenly between a

set of buckets Bn = {b1, b2, . . . , b|Bn|}. For example, in the case of Rhode Island

hold’em, a player’s hand has one card pre-flop n = 1, two cards on the flop n = 2

and three cards on the turn n = 3. At each of these stages, the player’s hand can

be categorised as belonging to a bucket of hands with the same number of cards

and a similar strength. Normally each bucket bm ∈ Bn divides hands into |Bn|
ranges along the chosen metric. For example, using expected hand strength, the

first bucket b1 ∈ Bn would group hands with a value 0 ≤ E[HS] < 1
|Bn| , the second

bucket b2 ∈ Bn would group hands with a value 1
|Bn| ≤ E[HS] < 2

|Bn| , . . . , the last

bucket b|Bn| ∈ Bn would group hands with a value |Bn|−1
|Bn| ≤ E[HS] ≤ 1. However,

a problem with this abstraction is that most hand strengths are mediocre with

only a few being very good or very bad. This means that most hands end up

in the middle buckets whilst the buckets near the start and the end are almost

empty. The reason this is bad is because a bucket containing many hands will

cause the agent to be unable to differentiate strategically between a lot of different

situations and a bucket containing few hands will be almost not worth having in

terms of reducing the size of the game. Percentile bucketing deals with this by

ensuring that all buckets contain an approximately equal number of hands. The

way it does this is by ordering the hands according to the chosen metric and then

dividing the ordered hands evenly into the |Bn| buckets.



CHAPTER 3. BACKGROUND AND RELATED WORK 75

Bucketed Rhode Island Hold’em

This is an abstraction of Rhode Island hold’em which reduces its information

sets where players act from 2.50 × 107 for player one and 2.46 × 107 for player

two to 2.52× 103 each. This allows the agents to learn effective strategies within

1 × 105 games, which is the number of games chosen to evaluate agents over in

the experiments in Chapter 5. Evidence for this is discussed in Section 5.6.1. The

abstraction uses percentile bucketing based on expected hand strength squared.

Expected hand strength is the probability of a player’s private cards combined

with the public cards winning against a uniform random draw of the opponent’s

private cards combined with the public cards. Expected hand strength squared

is simply the square of the expected hand strength. This gives more weight

to initially weak hands that could become strong such as straights or flushes.

Percentile bucketing divides all n-card hands evenly between a set of buckets Bn,

where in Rhode Island hold’em n ∈ {1, 2, 3}. For more information on percentile

bucketing and expected hand strength see Section 3.1.8 as well as Johanson’s

MSc thesis [Johanson, 2007].

3.2 Learning in Games

3.2.1 Repeating Games

Repeating a game is usually essential for a player to learn an effective strategy. If

a player has prior knowledge about the game, or the other players, or both, then it

may already know an effective strategy. In this case learning may be unnecessary,

for example, a player may know a single dominant pure strategy. However, in

most cases, with or without prior knowledge, a player can learn to improve its

strategy. The number of games required to learn an effective strategy generally

depends on factors such as stochasticity in the game, payoff variance, the player’s

strategy, and the other players’ strategies. Additionally learning time generally

increases with the size of the strategy space, which depends on the number of

states and actions per state. Ideally, a player wants to learn the optimal action in

each state where it acts. In game theory, a repeated or iterated game usually refers

to playing a stage game numerous times, where stage games are typically two-

player, two-action, normal-form games such as the prisoner’s dilemma. In these

games, where each player plays one action per game, repetition fundamentally
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changes the interaction as it allows a strategy to depend on past actions.

3.2.2 Stochasticity in Games

In a game a stochastic event causes a state transition according to a random

element. It can be due to a player’s probabilistic decision or a rule in the game

such as a die roll or card deal. A stochastic event that is not due to a normal player

is usually attributed to a special “chance” or “nature” player who has no payoffs.

This allows for a consistent view where any event, which is either deterministic

or stochastic, is due to a player’s decision. In extensive-form representation, it

means that every node (state) is “owned” by a player who makes decisions at

that point. In game theory, a stochastic game usually refers to the type of game

defined in Section 3.1.3.

3.2.3 The Problem of Convergence

Crawford’s puzzle is about the difficulty of converging to mixed strategy Nash

equilibria in games. This thesis looks at this problem in Chapter 7. Also many

of the agents used to develop, or used as comparisons to, the approaches in this

thesis, tackle this problem. Understanding this problem will help towards under-

standing those agents. Crawford first raised the issue of non-convergence through

a series of papers starting in 1974. He looked at an infinitely repeated two-player

game with a unique mixed strategy Nash equilibrium. He gave each player highly

natural adaptation rules. Specifically, each agent used gradient ascent to adjust

its strategy to give itself higher payoffs. He discovered that these agents were

unable to converge to the mixed strategy Nash equilibrium. He showed that

this was true for zero-sum matrix games [Crawford, 1974], general-sum matrix

games [Crawford, 1985] and evolutionary games [Crawford, 1989]. The result was

surprising because the setting seemed highly favourable for convergence. This is

because, amongst other things, agents were interacting repeatedly, the problem

was relatively straightforward, there was good feedback, and the mixed strategy

Nash equilibrium was unique. Crawford’s puzzle is a challenge to find plausible

adaptation rules for the players that will converge to a Nash equilibrium. Much

of the literature on multi-agent learning is devoted to developing learning agents

with adaptation rules that can solve Crawford’s puzzle. On the one hand, the

problem is usually relaxed such that an agent just has to converge to a Nash
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equilibrium in self-play. However, the progression in the literature seems to be

towards making fewer assumptions about an agent’s available information.

3.2.4 Modes of Convergence

Much of the literature in multi-agent learning and game-theory focusses on learn-

ing, or converging to, solution concepts such as Nash equilibria. Simultaneously

co-adapting agents in an uncooperative setting may converge, or may show com-

plex behaviour. A number of researchers have investigated this1. This section

explains several definitions of convergence, and what it means in this context.

This will also set up Chapter 7, which looks at self-play convergence.

Convergence can be defined as the property or manner of approaching a limit,

such as a point, line, function, or value. There are many types of convergence of

random variables. The convergence of a sequence of random variables to some

limit random variable is known as stochastic convergence, which is the idea that

the behaviour of a sequence of random events can sometimes be expected to sta-

bilise if items far enough into the sequence are studied. Two common behaviours

are firstly, that the sequence returns a constant value in the limit and secondly,

that the sequence acts as if sampled from a fixed distribution in the limit.

Let (X1, X2, . . . Xn) and X be real-valued random variables defined on the

same probability space (Ω,F , P ). In this probability space, Ω is the sample

space, which is the set of all possible outcomes, F = {Ω1,Ω2, . . . ,Ω|F|} is a set of

events, where each event is a subset of outcomes Ωi ⊆ Ω for 1 ≤ i ≤ |F|, and P

is a function mapping from events to probabilities P : F → [0, 1].

Pointwise convergence

Pointwise convergence is the strongest type of convergence, and implies conver-

gence with probability one, convergence in probability, and convergence in distri-

bution. If (X1, X2, . . . Xn) pointwise converges to X, then

lim
n→∞

Xn(ω)−X(ω) = 0 for all ω ∈ Ω. (3.14)

1Abdallah and Lesser, 2008; Awheda and Schwartz, 2013; Banerjee and Peng, 2003; Bowling,
2005; Bowling and Veloso, 2002; Butterworth and Shapiro, 2009; Crawford, 1974, 1985, 1989;
Galla and Farmer, 2013; Shapley, 1963; Singh, Kearns, and Mansour, 2000; Zhang and Lesser,
2010.
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Convergence with probability one

Convergence with probability one, or almost sure convergence, or convergence

everywhere, is the same as pointwise convergence, but excludes events with zero

probability. This is the type of convergence that is used by the strong law of large

numbers. Convergence with probability one implies convergence in probability,

and convergence in distribution. If (X1, X2, . . . Xn) converges with probability

one to X, then

lim
n→∞

Xn(ω)−X(ω) = 0 for all ω ∈ Ω′ such that Pr(Ω \ Ω′) = 0. (3.15)

Convergence in the k-th Mean

Convergence in the k-th mean implies convergence in probability (by Markov’s

inequality, Pr({ω ∈ Ω : X(ω) ≥ a}) ≤ E(X)/a, where a > 0) if k ≥ 1, as well as

convergence in any i-th mean if 1 ≤ i < k, and finally convergence in distribution.

If (X1, X2, . . . Xn) converges in the k-th mean to X, then

lim
n→∞

E(|Xn −X|k) = 0, (3.16)

where E is the expected value over Ω.

Convergence in Probability

Convergence in probability implies convergence in distribution. This is the type

of convergence that is used by the weak law of large numbers. If (X1, X2, . . . Xn)

converges in probability to X, then

lim
n→∞

Pr(|Xn(ω)−X(ω)| ≥ ε) = 0 for all ω ∈ Ω and ε > 0. (3.17)

Convergence in Distribution

Convergence in distribution, or convergence in law, is the weakest type of con-

vergence considered. If (X1, X2, . . . Xn) converges in distribution to X, then

lim
n→∞

FXn(x)− FX(x) = 0 for all x ∈ R where FX is continuous, (3.18)

FXn and FX are the cumulative distribution functions of the random variables

Xn and X respectively and FX(x) = Pr({ω ∈ Ω : X(ω) ≤ x}). This means
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that the probability of the value of Xn being within a certain range becomes

approximately equal to the probability that the value of X is within that range

as n tends to infinity.

3.2.5 Convergence in Game Theory

Convergence in game theory is usually concerned with the convergence of an

agent’s strategy, or payoffs, or both. In particular, the convergence of an agent’s

strategy and expected payoffs to a best-response strategy and its expected pay-

offs, or the convergence of all agents’ strategies and expected payoffs to a Nash

equilibrium and its expected payoffs. In general-sum games, there could be multi-

ple Nash equilibria, and some might be better than others by, for example, having

strictly higher expected payoffs for all agents. Ideally, if all agents converge to a

Nash equilibrium, then they should converge to the best (Pareto optimal) Nash

equilibrium. Following this is an explanation of what it means for an agent’s

strategy or payoffs to converge.

Convergence of an Agent’s Strategy

Convergence of an agent’s strategy to some other strategy means that, in the

limit, its strategy will behave exactly the same as the converged-to strategy. As

an agent plays a (possibly repeated) game, the result will be a sequence of random

variables for each of its information sets where it acts. If its strategy converges,

then for each information set where it acts, the corresponding sequence of random

variables will pointwise converge to the random variable in the converged-to strat-

egy for that information set as the number of random variables in the sequence

approaches infinity. Formally this means that

lim
t→∞

σtpla(I, a)− σ∗pla(I, a) = 0 for all I ∈ Ipla and a ∈ A(I) (3.19)

where σtpla(I) and σ∗pla(I) are random variables for the agent’s strategy at time t

and for the converged-to strategy respectively both at the agent’s information set

I ∈ Ipla and A(I) is the set of actions (sample space) at information set I ∈ Ipla.
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Convergence of an Agent’s Empirical Distribution of Plays

Convergence of an agent’s empirical distribution of plays to some strategy is the

same as convergence of an agent’s strategy to that strategy except its empirical

distribution of plays is used instead. An agent’s empirical distribution of plays

defines the probability distribution over the outcomes of each random variable at

each information set where the agent acts as the number of times each of those

outcomes occur divided by the total number of outcomes i.e.

πtpla(I, a) =
Mv((I, a))∑

a∈A(I)Mv((I, a))
=
Mv((I, a))

Mv(I)
for all I ∈ Ipla and a ∈ A(I),

(3.20)

where πtpla is the agent’s empirical distribution of plays at time t, Mv : Ipla → R
is a map from the agent’s information sets to real numbers such that given an

information set I ∈ Ipla then Mv(I) will return how many times that information

set has been visited. This means Mv((I, a)) is the number of times information

set (I, a) ∈ Ipla has been visited or equivalently, how many times action a ∈ A(I)

has been played in information set I ∈ Ipla. If an agent’s empirical distribution

of plays converges, then

lim
t→∞

πtpla(I, a)− σ∗pla(I, a) = 0 for all I ∈ Ipla and a ∈ A(I) (3.21)

where πtpla(I) and σ∗pla(I) are random variables for the agent’s empirical distribu-

tion of plays at time t and for the converged-to strategy respectively both at the

agent’s information set I ∈ Ipla and A(I) is the set of actions or the sample space

at information set I ∈ Ipla.

Convergence of an Agent’s Expected Reward

Convergence of the expected reward of an agent’s strategy to some real value

means that, in the limit, the expected reward of its strategy will always be that

reward. In general, this does not mean that the agent’s strategy converges. For

example, in rock-paper-scissors, the agent’s expected reward could converge to

1 against an opponent who plays (Rock, Paper, Scissors) in a loop if it plays

(Paper, Scissors, Rock) in a loop. If the expected reward of an agent’s strategy

converges, then

lim
t→∞

upla(σt)− x = 0, (3.22)
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where upla(σt)) is the expected reward or utility that the agent receives given the

strategy profile at time t, and x ∈ R is the converged to expected reward.

Convergence of an Agent’s Average Reward

Convergence of an agent’s average reward to some real value means that, in the

limit, the average of its rewards equals the converged-to value. If an agent’s

average reward converges, then

lim
t→∞

[
1

t

t∑
i=1

upla(ht)

]
− x = 0 (3.23)

where upla(ht) is the reward or utility that the agent receives from reaching the

history ht ∈ H at time t and x ∈ R is converged to average reward.

Strong and Weak Convergence

Convergence of an agent’s strategy is the strongest notion of convergence because

it implies the three other notions of convergence (i.e. convergence of an agent’s

empirical distributions of plays, convergence of the expected reward of its strat-

egy, and convergence of its average reward). For this reason, when an agent’s

strategy is said to “strongly” converge it usually means that its actual strategy

converges, and when an agent’s strategy is said to “weakly” converge it usually

means that its empirical distribution of plays converges. Strictly speaking, the

strategy convergence definition requires pointwise convergence at all the agent’s

information sets where it acts. However, this could be weakened such that it only

pointwise converges at information sets where it acts that are reachable. This

would mean that information sets that will not be encountered either due to the

agent’s strategy, or an opponent’s strategy, could be ignored.

3.2.6 Machine Learning

Machine learning is the concept of a system learning automatically from data to

perform well in a given task. Machine learning algorithms can be distinguished

by the way they learn from experience. A supervised learning algorithm is trained

through direct feedback, in that for each decision, it is told the correct answer.

In other words, it learns a function given input-output examples. In contrast,

an unsupervised learning algorithm has no direct feedback, and is not told the
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correct answer. Instead, it is just given the inputs and attempts to model them

by, for example, clustering. A semi-supervised learning algorithm is somewhere

in-between, it is given some, possibly indirect, input-output examples.

The approaches in this thesis use reinforcement learning and no-regret learning

algorithms, which are semi-supervised learning algorithms. In general, acting in

an environment changes its state and generates feedback. These algorithms learn

action values from this feedback. On the surface this looks like supervised learning

with decisions (actions) being associated directly with feedback (rewards). The

difference is that the feedback may be delayed, a feedback in one state may be

for a set actions taken many states earlier. For example, in chess (or any game

really), the feedback could be 1 for winning the game, 0 for a draw and -1 for a

loss with no indication as to what actions are responsible for the feedback.

One advantage of machine learning is that it may discover superior solutions

than can be found manually. For example, TD-Gammon, Tesauro’s backgam-

mon playing program, achieved a top-10 human-level performance by learning

in self-play using temporal difference (TD) learning without any prior knowl-

edge [Tesauro, 1992, 1994, 1995, 1998, 2002]. It even changed the way human

grandmasters played from certain positions [Tesauro, 1995, 2002]. A second ad-

vantage is that it may find approximate solutions when analytical solutions are

infeasible. A third advantage is that it can generally handle lots of data, which

may be difficult to process manually. This is usually the case in game-playing,

where although individual games may be small, they can be repeated many times

generating lots of states, actions, and rewards.

We want agents to learn effective strategies, which requires them to accurately

value their possible actions in each state, and to do this they must deal with two

main problems. The first problem is the exploration versus exploitation trade-off,

which requires an agent to choose to either play its best known actions (exploit),

or to play other actions that may give higher rewards (explore). The second

problem is the credit assignment problem, which requires an agent to choose how

eligible each prior action is for a feedback signal. If these problems are dealt

with, then reinforcement learning and no-regret learning may be viable options

over supervised learning where we may not have the resources (e.g. time or

knowledge) to provide agents with lots of exact training examples.
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3.2.7 Reinforcement Learning

The question an agent faces when put into an environment in a particular state

is: What is the right action? Its chosen action may have no effect on the environ-

ment, or it may change the state of the environment. Unlike supervised learning

agents, who are given the correct choices after choosing actions, reinforcement

learning agents are only given indications as to the quality of their actions. Thus,

reinforcement learning agents are not entirely unsupervised because they receive

some feedback in the form of rewards for reaching certain states. This puts

reinforcement learning between supervised and unsupervised learning in the tax-

onomy of machine learning algorithms, but much closer to the latter. It learns

how to act to maximise some notion of reward through observations of the world.

Reinforcement learning has become a standard approach for a learning agent

to discover optimal actions given perceptions of environment states. For a good

introduction to reinforcement learning, including examples of its applications see

Sutton and Barto, 1998. A reinforcement learning problem specifies rewards for

reaching goals, but not how to reach them. This makes it a useful framework

for problems where we know the goals, and their importance, but not the actions

required to reach them, or if we think a reinforcement learning algorithm can find

better actions to reach them. Another advantage of reinforcement learning is that

it is a naturally intuitive way to tackle a problem as it is similar to how humans

and animals learn to solve problems. If we have a task, then we are usually aware

of what we want to achieve but not, at least initially, how to achieve it. Better

decisions are made in both cases by selecting actions and observing their results.

Future decisions at the same or similar situations are then guided by experience.

The feedback for taking an action, which is essential for reinforcement learn-

ing, is usually a numerical reward signal received when entering an environment

state. Higher reward values indicate more preferred states. A rational reinforce-

ment learning agent aims to find the action, or set of actions, for each state that

yield the largest expected reward within a given time frame. This must be done

through some form of trial and error that addresses the exploration versus ex-

ploitation and credit assignment problems. Traditionally, reinforcement learning

focusses on single-agent learning and ignores other agents. The only concern

being how to choose the agent’s actions to maximise its rewards, even though

it is likely that in a multi-agent system other agents’ actions are affecting those

rewards. Specifically, each agent has its own desired environment states that it
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would be trying to reach through its actions. By ignoring other agents, it would

be harder to understand and control changes in the environment.

3.2.8 Reinforcement Learning Algorithms

The reinforcement learning algorithms in this section are designed to enable an

agent to learn an optimal strategy, which maximises its rewards. These algorithms

deal with both the exploration vs exploitation and credit assignment problems.

The former is where the algorithm must choose how often to explore taking actions

whose values are either unknown or estimated as low but may have changed, as

well as how often to exploit taking actions whose values are estimated to be high.

The latter is where the algorithm must choose how to distribute a reward across

all the actions taken before receiving it.

The first algorithm, Quality-Learning (Q-Learning) proposed by Watkins,

1989, is designed to learn the maximum discounted future reward of each action

in a finite and stationary MDP. These values can be used to create an optimal

greedy strategy, which simply takes the action with the highest value in each

state. Q-Learning can be used in a multi-player game in self-play and although

it loses its convergence guarantees, it generally works well. However, players’

strategies will never converge to a mixed strategy Nash equilibrium because the

optimal greedy strategy suggested by Q-Learning is deterministic.

Ideally we want players’ strategies to converge to a mixed strategy Nash equi-

librium if that represents a desired solution to the game. Each of the other

algorithms in this section is designed to tackle this problem such that it can

converge in self-play to a greedy mixed strategy such as a mixed strategy Nash

equilibrium. The differences between them are the range of games that they

converge to a Nash equilibrium in self-play within as well as their convergence

speeds. In general, Policy Gradient Ascent with Approximate Policy Prediction

(PGA-APP) converges in more games and at a faster rate than Weighted Policy

Learner (WPL), which in turn converges in more games and at a faster rate then

Win or Learn Fast Policy Hill Climbing (WoLF-PHC). One similarity is that they

all use Q-Learning to estimate action-values. They each differ in how they use

their action-values to derive estimates of optimal and possibly mixed strategies.

In short, WoLF-PHC converges by using a variable learning rate to update

its strategy, which is set high if it is losing and low if it is winning. WPL also

converges by using a variable learning rate to update its strategy, which is set to
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be proportional to the distance between its strategy and the simplex boundary

that its strategy is being updated towards. PGA-APP converges by updating its

strategy according to its opponent’s anticipated strategy.

Quality-Learning (Q-Learning)

Q-Learning [Watkins, 1989] estimates the optimal action-value function indepen-

dently of the strategy being used. The optimal action-value function estimates

the maximum discounted expected reward of taking action a in state s and follow-

ing the optimal strategy thereafter. Each (q-)value associated with a state-action

pair is updated via the following equation

Qt+1
(
st, at

)
←
(
1− αt(st, at)

)
Qt
(
st, at

)
+αt(st, at)

[
rt+1 + γmax

at+1
Qt
(
st+1, at+1

)]
(3.24)

where Qt is the estimated action-value function at time t, st is the state at time

t, at is the action at time t, 0 ≤ αt(st, at) ≤ 1 is the learning rate for state st and

action at at time t, rt+1 is the reward at time t+ 1 after taking action at in state

st at time t, 0 ≤ γ ≤ 1 is the discount factor, and Qt (st, at) returns the time t

estimated maximum discounted expected reward for action at in state st.

The learning rate α determines how quickly new information overrides old

information. If α = 0, then the algorithm will learn nothing and keep its initial

action-values. If α = 1, then the algorithm will remember nothing and always

estimate an action-value using only its immediate reward and the estimated max-

imum discounted expected reward. The discount factor γ determines how much

future rewards are valued and can be seen as the amount of implicit lookahead.

If γ = 0, then the algorithm will be short-sighted and only consider immediate

rewards. As γ approaches 1, the algorithm will value future action-values more

and more. If γ ≥ 1, then the action-values may diverge.

If the estimated action-values accurately represent maximum discounted ex-

pected rewards, then the optimal strategy is to select the action with the highest

value in each state. Q-Learning has a variety of benefits. Firstly, it does not need

a model of the environment in that it does not need to learn the state transition

or reward functions. Secondly, it is an off-policy learning technique, which means

that any strategy can be used and it is still guaranteed converge to the maximum

discounted expected rewards as long as some conditions are met.

According to Watkins, 1989 and Szepesvári, 1998 Q-Learning is guaranteed
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to converge to the maximum discounted expected rewards with probability one

under the following conditions. Firstly, the environment must be a finite and

stationary MDP. Secondly, each action in each state must always have some non-

zero probability of being taken. Thirdly, the learning rate must be decreased

with an appropriate schedule. Specifically, for each state-action pair, the sum

of the learning rates for that state-action pair must asymptomatically converge

to infinity
∑∞

t=1 α
t(s, a) = ∞, and the sum of the squares of the learning rates

for that state-action pair must asymptomatically converge to less than infinity∑∞
t=1 α

t(s, a)2 < ∞. Fourthly, the rewards must be bounded. Finally, action-

values must be stored perfectly (i.e. without function approximation).

Q-Learning on its own is not an agent, but a method of estimating the maxi-

mum discounted expected rewards of state-action pairs. A common approach to

create an agent based on it, which is adopted in this thesis, is to almost always

select the action in a state with the maximum estimate. Sometimes multiple

actions share the same maximum estimate and to handle this one of these can

be selected uniformly at random. For simplicity, this detail is avoided in the

following algorithms. This Q-Learning algorithm is shown in Algorithm 1.

Algorithm 1 Quality-Learning (Q-Learning)

Require: Set of all states S, set of all actions A, learning rate 0 ≤ α ≤ 1,
discount factor 0 ≤ γ ≤ 1.

1: Initialise each action-value Q0(s, a)← 0 and each action probability σ(s, a)←
1/ |A|, for all states s ∈ S and actions a ∈ A.

2: From state st ∈ S at time t select action at ∈ A at time t according to
probability σ(st, at) with some exploration.

3: Observe reward rt+1 and next state st+1.
4: Update Qt+1 (st, at)← (1− α)Qt (st, at) + α [r + γmaxat+1 Qt (st+1, at+1)].
5: Update the probability of each action a in state st

6: for all a ∈ A do

7: σ(st, a)←
{

1 if a = arg maxa′ Q
t+1(st, a′),

0 otherwise.

8: end for
9: Repeat from 2.
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Win or Learn Fast Policy Hill Climbing

Win or Learn Fast (WoLF) [Bowling and Veloso, 2001, 2002] is a principle for

varying an agent’s learning rate to improve its performance. The idea is to de-

crease its strategy learning rate when it is winning, which increases the time

spent playing a winning strategy and exploiting the opponent, and to increase its

strategy learning rate when it is losing, which decreases the time spent playing

a losing strategy and the opponent exploiting it. An agent is defined to be win-

ning if the maximum discounted expected reward of its current strategy exceeds

the maximum discounted expected reward of some safe strategy such as a Nash

equilibrium strategy.

WoLF-PHC is a multi-agent reinforcement learning algorithm that imple-

ments the WoLF principle. For WoLF-PHC its safe strategy is its average strat-

egy, which is defined as

σ̄(st, a)← σ̄(st, a) +
1

C(st)
(σ(st, a)− σ̄(st, a)) where σ̄(s0, a)← 0, (3.25)

σ̄(st, a) is the average probability of playing action a in state s at time t, C(st)

is the number of times state s has been visited by time t and σ(st, a) is the

probability of playing action a in state s at time t. WoLF-PHC estimates the

maximum discounted expected rewards of its actions in a state using Q-Learning.

Thus, it estimates the maximum discounted expected reward of its strategy in a

state as
∑

a σ(st, a)Qt(st, a). The strategy learning rate for a particular state δ

is then set to

δ =

δw if
∑

a σ(st, a)Qt(st, a) >
∑

a σ̄(st, a)Qt(st, a),

δl otherwise,
(3.26)

where δw and δl are the winning and losing strategy learning rates respectively.

The strategy is updated using the strategy learning rate such that the proba-

bility of the action with the estimated maximum discounted expected reward is

increased and the probabilities of the other actions are decreased as

σ(st, a)← σ(st, a) +

δ if a = arg maxa′ Q
t(st, a′),

−δ
|Ai|−1

otherwise.
. (3.27)

WoLF-PHC is an approximate version of Win or Learn Fast Iterated Gradient
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Ascent (WoLF-IGA). Bowling and Veloso, 2001, 2002 proved that the latter con-

verges to a best-response strategy against stationary opponents and to a mixed

strategy Nash equilibrium in self-play in two-player, two-action, general-sum re-

peated normal-form games. For the former, they showed that this convergence

is achieved in this class of games as well as in two stochastic games (gridworld

and Littman’s soccer) and Jordan’s game. The WoLF-PHC algorithm is shown

in Algorithm 2.

Algorithm 2 Win or Learn Fast Policy Hill Climbing (WoLF-PHC)

Require: Set of all states S, set of all actions A, learning rate 0 ≤ α ≤ 1,
discount factor 0 ≤ γ ≤ 1, winning learning rate δw and losing learning rate
δl where δl > δw.

1: Initialise each action-value Q0(s, a) ← 0, each action probability σ(s, a) ←
1/ |A|, each average action probability σ̄(s, a) ← 0 and the number of visits
to each state C(s)← 0, for all states s ∈ S and actions a ∈ A.

2: From state st ∈ S at time t select action at ∈ A at time t according to
probability σ(st, at) with some exploration.

3: Observe reward r and next state st+1.
4: Update Qt+1 (st, at)← (1− α)Qt (st, at) + α [r + γmaxat+1 Qt (st+1, at+1)] .
5: Increment the number of visits to the current state C(st)← C(st) + 1.
6: Update the average probability of each action a in state st

7: for all a ∈ A do
8: σ̄(st, a)← σ̄(st, a) + 1

C(st)
(σ(st, a)− σ̄(st, a)).

9: end for

10: Set the learning rate δ =

{
δw if

∑
a σ(st, a)Qt+1(st, a) >

∑
a σ̄(st, a)Qt+1(st, a),

δl otherwise.

11: Update the probability of each action a in state st

12: for all a ∈ A do

13: σ(st, a)← σ(st, a) +

{
δ if a = arg maxa′ Q

t+1(st, a′),
−δ
|Ai|−1

otherwise.

14: end for
15: σ(st)← project(σ(st)). . Ensure legal distribution (within simplex).
16: Repeat from 2.

Weighted Policy Learner

Weighted Policy Learner (WPL) [Abdallah and Lesser, 2008] is a multi-agent

reinforcement learning algorithm. The idea is to speed up learning for an action

when the gradient of the agent’s value function with respect to that action changes

direction and to slow down learning when the direction remains unchanged. WPL
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estimates the gradient of the agent’s value function with respect to an action as

∆(st, a)← Qt(st, a)−
∑

a∈A(st) Q
t(st, a)

|A(st)| (3.28)

where ∆(st, a) is the estimate of the gradient of the agent’s value function with

respect to action a in state s at time t, Qt(st, a) is the Q-Learning estimate of

the maximum expected reward of action a in state s at time t and A(st) is the

set of available actions in state s at time t.

If the estimated value of an action is increasing, then its estimated gradient

will be positive and its gradient is weighted by one minus the action probability.

Otherwise, the estimated value of the action is decreasing, so its estimated gra-

dient will be zero or negative and its gradient is weighted by the probability of

the action. This gives

∆(st, a)←

∆(st, a)(1− σ(st, a)) if ∆(st, a) > 0,

∆(st, a)σ(st, a) otherwise,
(3.29)

where σ(st, a) is the probability of playing action a in state s at time t. An action

probability is then updated using its weighted gradient as

σ(st, a)← σ(st, a) + η∆(st, a) (3.30)

where 0 ≤ η ≤ 1 is a step size. This means that an action probability is increased

the most when its gradient is positive and its probability is low, and an action

probability is decreased the most when its gradient is negative and its probability

is high. This makes sense because if an agent is not playing a winning action often,

then it wants to quickly learn to play it more often and conversely if an agent is

playing a losing action often, then it wants to quickly learn to play it less often.

One effect of these dynamics is that as an agent’s probability distribution over

its actions approaches the boundary of the simplex of legal probability distribu-

tions, it slows down. Therefore, probability distributions within the simplex will

be approached faster than those on the boundary. This helps to prevent cycles

and encourage convergence. WPL is (informally) proven to converge in self-play

in two-player, two-action, general-sum repeated matrix games. It was shown ex-

perimentally to give faster convergence than WoLF-PHC to mixed strategy Nash

equilibria in self-play in these games as well as in the challenging two-player,
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three-action Shapley game. The WPL algorithm is shown in Algorithm 3.

Algorithm 3 Weighted Policy Learner (WPL)

Require: Set of all states S, set of all actions A, learning rate 0 ≤ α ≤ 1,
discount factor 0 ≤ γ ≤ 1 and step-size 0 ≤ η ≤ 1.

1: Initialise each action-value Q0(s, a) ← 0, each action probability σ(s, a) ←
1
|Ai| and the value of each state V (s) ← 0, for all states s ∈ S and actions
a ∈ A.

2: From state st at time t select action at at time t according to probability
σ(st, at) with some exploration.

3: Observe reward r and next state st+1.
4: Update Qt+1 (st, at)← (1− α)Qt (st, at) + α [r + γmaxat+1 Qt (st+1, at+1)].

5: Update the value of state st, V (st)←
∑
a∈A(st) Q

t+1(st,a)

|A(st)| .

Update the probability of each action a in state st

6: for all a ∈ A(st) do
7: ∆(st, a)← Qt+1(st, a)− V (st), . Gradient estimate.
8: if ∆(st, a) > 0 then . +ve gradient and so decrease as approaching 1.
9: ∆(st, a)← ∆(st, a)(1− σ(st, a)),

10: else . -ve gradient and so decrease as approaching 0.
11: ∆(st, a)← ∆(st, a)σ(st, a),
12: end if
13: σ(st, a)← σ(st, a) + η∆(st, a).
14: end for
15: σ(st)← project(σ(st)). . Ensure legal distribution (within simplex).
16: Repeat from 2.

Policy Gradient Ascent with Approximate Policy Prediction

Policy Gradient Ascent with Approximate Policy Prediction (PGA-APP) [Zhang

and Lesser, 2010] is a multi-agent reinforcement learning algorithm. The idea is

that the agent adjusts its strategy based on the anticipated future strategies of

the other players, instead of their current ones. Similarly to WoLF-PHC, PGA-

APP estimates the maximum expected discounted rewards of its actions in a state

using Q-Learning and thus estimates the maximum expected discounted reward

of its strategy in a state as
∑

a∈A(st) σ(st, a)Qt(st, a). It uses this to estimate the

gradient of the agent’s value function with respect to an action as

δ̂(st, a)←

Qt(st, a)−∑a∈A(st) σ(st, a)Qt(st, a) if σ(st, a) = 1,
Qt(st,a)−

∑
a∈A(st) σ(st,a)Qt(st,a)

1−σ(st,a)
otherwise,

(3.31)
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where δ̂(st, a) is the estimate of the gradient of the agent’s value function with

respect to action a in state s at time t, Qt(st, a) is the Q-Learning estimate of

the maximum expected discounted reward of action a in state s at time t, A(st)

is the set of available actions in state s at time t and σ(st, a) is the probability

of playing action a in state s at time t. This is then modified to account for the

anticipated future strategies of the other players as

δ(st, a)← δ̂(st, a)− λ|δ̂(st, a)|σ(st, a), (3.32)

where λ is the derivative prediction length 0 ≤ λ ≤ 1. An action probability is

then updated using its modified gradient as

σ(st, a)← σ(st, a) + ηδ(st, a), (3.33)

where 0 ≤ η ≤ 1 is a step size. This means that as an action probability increases,

the magnitude of its gradient also increases. The gradient is modified by decreas-

ing it to take into account the opponent’s anticipated strategy. If the gradient

is positive, then this modification will decrease its magnitude making the agent

learn more slowly. If the gradient is negative, then this modification will increase

its magnitude making the agent learn more quickly. Although the dynamics dif-

fer, the principle of learning quickly when losing and slowly when winning is

the same in WoLF-PHC, WPL and PGA-APP. The underlying principle, which

PGA-APP approximates, is proven to converge to mixed strategy Nash equilib-

ria in self-play in two-player, two-action repeated matrix games. PGA-APP was

shown experimentally to give faster convergence than WoLF-PHC and WPL to

mixed strategy Nash equilibria in self-play in general-sum games. The PGA-APP

algorithm is shown in Algorithm 4.
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Algorithm 4 Policy Gradient Ascent with Approximate Policy Prediction (PGA-
APP)

Require: Set of all states S, set of all actions A, learning rate 0 ≤ α ≤ 1,
discount factor 0 ≤ γ ≤ 1, derivative prediction length 0 ≤ λ ≤ 1 and
step-size 0 ≤ η ≤ 1.

1: Initialise each action-value Q0(s, a)← 0, each action probability σ(s, a)← 1
|A|

and the value of each state V (s)← 0, for all states s ∈ S and actions a ∈ A.
2: From state st ∈ S at time t select action at ∈ A at time t according to

probability σ(st, at) with some exploration.
3: Observe reward r and next state st+1.
4: Update Qt+1 (st, at)← (1− α)Qt (st, at) + α [r + γmaxat+1 Qt (st+1, at+1)].
5: Update the value of state st, V (st)←∑

a∈A σ(st, a)Qt+1(st, a).
6: Update the probability of each action a in state st

7: for all a ∈ A do
8: if σ(st, a) = 1 then
9: δ̂(st, a)← Qt+1(st, a)− V (s),

10: else
11: δ̂(st, a)← Qt+1(st,a)−V (s)

(1−σ(st,a))
,

12: end if
13: δ(st, a)← δ̂(st, a)− λ

∣∣∣δ̂(st, a)
∣∣∣σ(st, a),

14: σ(st, a)← σ(st, a) + ηδ(st, a).
15: end for
16: σ(st)← project(σ(st)). . Ensure legal distribution (within simplex).
17: Repeat from 2.



CHAPTER 3. BACKGROUND AND RELATED WORK 93

3.2.9 Counterfactual Regret Minimisation

This section explains Counterfactual Regret Minimisation (CFR) because it is

used in this thesis to update agents’ strategies in Chapter 5 (including the strategy

of the proposed approach in that chapter). CFR is a state-of-the-art algorithm

that, in self-play, computes an approximate Nash equilibrium in two-player, zero-

sum, imperfect information games. It works by minimising counterfactual regret

in self-play, which Zinkevich et al., 2008 proved minimises overall regret, causing

the average strategy profile to approach a Nash equilibrium.

An agent’s counterfactual regret for not playing an action is the difference

between its expected reward for playing that action and its expected reward for

playing its strategy, weighted by the probability of reaching the information set

where it acts if the probability of each of its actions leading to that information

set were set to one. Thus, this probability is the product of the probabilities of

the prior opponents’ actions. This can be thought of as “counterfactual” because

it is the agent’s expected reward for reaching one of its information sets where it

acts if it had tried to do so. Before minimising an agent’s counterfactual regret,

it first calculates the agent’s counterfactual regret for not playing each of its

actions at each of its information sets where it acts. If an agent has a high

counterfactual regret for one of its actions, then in expectation, it would have

received a higher cumulative reward if it had played that action more often, and

so the algorithm increases its probability of playing it. Specifically, if an action’s

cumulative counterfactual regret is positive, then CFR sets its probability equal

to it, otherwise CFR sets its probability to zero, then it normalises the action

probabilities at each information set.

It is important to note that during operation CFR does not actually play

games. For each iteration, for an agent who uses it, it calculates all the agent’s

counterfactual regrets, updates all the agent’s cumulative counterfactual regrets,

and updates the agent’s strategy using regret matching. It can do this because it

knows the game tree and the agents’ strategies. When CFR is used in self-play,

it just means that each agent’s strategy is updated using it, but again they are

not actually playing games. Moreover, CFR is completely deterministic and does

not sample any values. Zinkevich et al., 2008 defined a sampling version of CFR

along with the original non-sampling version, but the sampling version was later

recognised by Lanctot et al., 2009 as a more specific form of his chance-sampled

MCCFR algorithm (MCCFR algorithms are described momentarily).



CHAPTER 3. BACKGROUND AND RELATED WORK 94

One problem with CFR is that calculating an agent’s expected reward for

playing an action requires the entire sub-tree under that action to be traversed,

which is computationally costly. A second problem is that for agent actions that

lead to opponent actions, CFR needs the opponents’ strategies to calculate the

agent’s expected rewards. It also needs the opponents’ strategies to calculate

the probabilities that the agent reached its decisions if it had tried to do so. To

solve the first problem Lanctot et al., 2009 proposed Monte Carlo Counterfactual

Regret Minimisation (MCCFR), a family of sample-based CFR algorithms. MC-

CFR works by replacing an exact calculation of expected reward with an unbiased

estimate. CFR calculates an agent’s expected reward for an action as the sum

over each reward it could receive after playing it multiplied by the probability

of reaching that reward. An MCCFR algorithm performs the same calculation

but only for an unbiased sample of the possible rewards. Thus, an agent’s ex-

pected reward for an action is estimated by traversing only part of the sub-tree

under that action, which reduces the computational cost. In expectation MCCFR

algorithms perform the same regret updates as the CFR algorithm but require

more iterations. However, the cost per iteration is much lower. Lanctot et al.,

2009 showed that this generally speeds up convergence and makes the algorithm

applicable to larger games. To solve the second problem Lanctot et al., 2009

proposed Outcome Sampling Monte Carlo Counterfactual Regret Minimisation

(OS-MCCFR), which is a particular sample-based algorithm that, under some

assumptions, does not need to know opponents’ strategies, allowing it to be used

to minimise regret online.

Counterfactual Regret Minimisation

Zinkevich et al., 2008 proved that, in self-play, the CFR algorithm minimises

the maximum counterfactual regret over all information sets and actions in two-

player, zero-sum, imperfect information games. To do this, on each iteration, it

updates the cumulative counterfactual regret of each action at each information

set and uses regret matching to update the strategy profile. The key to calcu-

lating counterfactual regrets is calculating counterfactual values. The following

definitions show how to calculate counterfactual values, counterfactual regrets

and how to perform regret matching.
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Counterfactual Value Player i’s counterfactual value of information set I ∈ Ii
given strategy profile σ, vi(I|σ), is the sum of player i’s expected reward for each

node ui(h) in that information set h ∈ I multiplied by the probability of reaching

that node from the root if each of player i’s prior action probabilities were set to

one, Pr(h|σ−i).

vi(I|σ) =
∑
h∈I

Pr(h|σ−i)ui(h), (3.34)

where ui(h) =
1

Pr(h|σ)

∑
z∈Z[h]

Pr(z|σ)ui(z). (3.35)

Here Pr(h|σ) is the probability of reaching node h from the root according to

strategy profile σ, Pr(z|σ) is the probability of reaching terminal node z from

the root according to strategy profile σ, Z[h] is the set of terminal nodes reach-

able from node h, and ui(z) is player i’s reward at terminal node z. Note that

Pr(z|σ)/Pr(h|σ) is the probability of reaching terminal node z from node h ac-

cording to strategy profile σ.

Counterfactual Regret Player i’s counterfactual regret for not playing ac-

tion a ∈ A(I) at information set I ∈ Ii, ri(I, a), is the difference between its

counterfactual values of I when playing a at I vs playing its strategy σi at I

ri(I, a) = vi(I|σI→a)− vi(I|σ), (3.36)

where σI→a is the same as σ except action a is played at information set I with

certainty. This means that vi(I|σI→a) = vi(I
′|σ) where I ′ = (I, a) ∈ Ii is the

information set reached after playing action a in information set I. Positive

regret means that the player would have preferred to play action a rather than

its strategy, zero regret means that the player is indifferent between action a

and its strategy, and negative regret means that the player preferred its strategy

rather than playing action a.
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Regret Matching Regret matching is used to update each action probability

at an information set by normalising the positive part of its accumulated coun-

terfactual regret as follows

σT+1
i (I, a) =


RT,+i (I,a)∑

a′∈A(I)R
T,+
i (I,a′)

if denominator > 0,

1
|A(I)| otherwise,

(3.37)

where RT,+
i (I, a) = max(RT

i (I, a), 0), (3.38)

RT
i (I, a) =

T∑
t=1

rti(I, a), (3.39)

σT+1
i (I, a) is player i’s new probability of playing action a at information set I at

iteration T + 1, rti(I, a) is player i’s counterfactual regret of not playing action a

at information set I at iteration t, RT
i (I, a) is player i’s cumulative counterfactual

regret of not playing action a at information set I between iterations t = 1 and

t = T and RT,+
i (I, a) is the maximum of RT

i (I, a) and 0. If player i uses the CFR

algorithm, then one iteration would calculate the counterfactual regrets for all its

actions at all its information sets, use these to update cumulative counterfactual

regrets, which in turn would be used with regret matching to update its action

probabilities.

Monte Carlo Counterfactual Regret Minimisation

There are two main problems with the CFR algorithm. Firstly, if an agent uses

the CFR algorithm, then on each iteration it must calculate the expected reward

of each of its actions at each node where it acts, which is computationally costly.

Secondly, the other agents’ strategies must be known to calculate the expected

rewards of the agent’s actions that are followed by the other agents’ actions, and

to calculate the probability of reaching its information sets if the other agents’

actions lead to them. The MCCFR family of algorithms are the same as the CFR

algorithm except they replace exact expected rewards with unbiased estimates.

The exact expected reward for an action is the sum of each reward that could be

received after it multiplied by the probability of receiving it. To get an unbiased

estimate of this exact expected reward, MCCFR performs the same calculation

but only using an unbiased sample of the rewards that could be received after

the action. On each iteration, MCCFR only samples parts of the game tree
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and applies the regret minimisation process to those sampled sub-trees using the

estimated counterfactual values instead of the true counterfactual values. Since

the estimates are unbiased, the updates involving them approximate the true

updates in expectation. The counterfactual regret and regret matching equations

remain the same, only the counterfactual value equation changes. Moreover, OS-

MCCFR is a particular MCCFR algorithm that also solves the second problem

as it does not require the other agent’s strategies.

An MCCFR algorithm requires two components to be defined. The first

component is a set of subsets of terminal nodes Q = {Q1, Q2, . . . , Q|Q|}, such that

their union spans the set of terminal nodes
⋃
Qj∈QQj = Z. The second component

is a probability distribution over the subsets in Q, let qj be the probability of

sampling subset Qj. Also, let q(z) be the probability of sampling terminal node

z, it can be calculated by summing the probabilities of the subsets that contain

z, q(z) =
∑

j:z∈Qj qj. On each iteration the agent samples one subset Qj with

probability qj and the information sets containing nodes that are ancestors of

the terminal nodes in Qj are updated. The following definitions show how, in

general, to calculate a sampled counterfactual value and how OS-MCCFR works.

Sampled Counterfactual Value Player i’s sampled counterfactual value of

information set I ∈ Ii given strategy profile σ is the same as its counterfactual

value but only calculated over a subset of terminal nodes Qj, ṽi(I|σ,Qj),

ṽi(I|σ,Qj) =
∑
h∈I

Pr(h|σ−i)ũi(h|Qj) (3.40)

where ũi(h|Qj) =
1

Pr(h|σ)

∑
z∈Qj∩Z[h]

1

q(z)
Pr(z|σ)ui(z), (3.41)

q(z) =
∑
j:z∈Qj

qj, (3.42)

ũi(h|Qj) is the sampled expected reward of node h ∈ I, which is sampled over

the terminal nodes that are both in Qj and Z[h]. Recall that Z[h] is the set of

terminal nodes that are reachable from information set I. Therefore, the sampled

expected value of information set I is only calculated over terminal nodes that

are in the subset Qj and that are reachable from I. If the agent samples a Qj

such that Qj ∩ Z[h] = ∅, then node h is not an ancestor of any terminal node

z ∈ Qj and ũi(h|Qj) = 0. If Qj ∩Z[h] = ∅ for all h ∈ I then none of the nodes in
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information set I are ancestors of the terminal nodes in Qj and ṽi(I|σ,Qj) = 0.

Outcome Sampling The OS-MCCFR algorithm defines the set of subsets of

terminal nodes Q such that each subset contains exactly one terminal node i.e.

|Qj| = 1 for all Qj ∈ Q. This means that, on each iteration, only one terminal

node is sampled and the information sets along the path from the root to it are

updated. The probability of sampling a terminal node q(z) is then equal to the

probability of sampling the subset that contains that terminal node q(z) = qj. A

probability distribution, or sampling scheme, is selected such that q(z) = qj =

Pr(z|σ′). The sampled counterfactual value is then calculated as

ṽi(I|σ,Qj) =
∑
h∈I

Pr(h|σ−i)ũi(h|Qj)

=
∑
h∈I

Pr(h|σ−i)

 1

Pr(h|σ)

∑
z∈Qj∩Z[h]

1

q(z)
Pr(z|σ)ui(z)


=

Pr(h|σ−i) Pr(z|σ)ui(z)

Pr(h|σ) Pr(z|σ′) (3.43)

=
Pr(h|σ−i) Pr(z|σi) Pr(z|σ−i)ui(z)

Pr(h|σi) Pr(h|σ−i) Pr(z|σ′i) Pr(z|σ′−i)

=
Pr(h|σi) Pr(z|σ−i)ui(z)

Pr(h|σi) Pr(z|σ′i) Pr(z|σ′−i)

≈ Pr(z|σi)ui(z)

Pr(h|σi) Pr(z|σ′i)
. (3.44)

Since Qj only contains one terminal node (i.e. |Qj| = 1) and the probability of

reaching this terminal node, Pr(z ∈ Qj|σ), is zero for all nodes in I except one

(given that I leads to I ′ ∈ Ii where z ∈ I ′), the sums can be dropped, giving

Equation 3.43. The probability of reaching a node given the strategy profile,

can be factored into the probability of reaching that node given player i’s strat-

egy multiplied by the probability of reaching that node given the other players’

strategies i.e. Pr(h|σ) = Pr(h|σi) Pr(h|σ−i) and Pr(z|σ) = Pr(z|σi) Pr(z|σ−i).
Finally, by assuming that the sampling strategy profile for the other players is

approximately equal to their actual strategy profile i.e. σ′−i ≈ σ−i we arrive at

Equation 3.44. This equation for the sampled counterfactual value only depends

on the player’s strategy, the player’s sampling strategy, and the player’s utility

function. After a game is played and a terminal node is reached, this sampled
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counterfactual value can be calculated for each of a player’s information sets along

the path to this terminal node. Each sampled counterfactual value can then be

used in place of the true counterfactual value to calculate a counterfactual regret.

This counterfactual regret can then be added to a cumulative counterfactual re-

gret, which can be used in regret matching to update the player’s strategy at the

corresponding information set. A major difference between CFR and OS-MCCFR

is that each iteration of OS-MCCFR corresponds to a game being played. An

agent using OS-MCCFR does not need to know the opponent’s strategy. Instead,

it can sample or play games against an opponent.

3.2.10 Opponent Modelling

Fictitious Play

Fictitious play is an algorithm that was originally proposed by Brown, 1951 to ex-

plain Nash equilibrium play. It assumes that its opponent is playing a stationary,

possibly mixed, strategy and builds an estimate of the opponent’s strategy using

a frequentist approach. It then plays a best-response to this strategy i.e. a best-

response to the opponent’s empirical frequencies of play. If its opponent plays

a stationary strategy, then as more games are played, its empirical frequencies

more accurately approximate that strategy, and in turn its best-response strat-

egy becomes more accurate. Since it builds a model of its opponent, it is also

one of the earliest opponent modelling algorithms. It is often used for iteratively

approximating solutions for games, where a solution is defined as a best-response

strategy, which could also be part of a Nash equilibrium. It estimates its oppo-

nent’s strategy by normalising the opponent’s action counts as follows

σ̃topp (aopp)←
(

1− 1

t

)
σ̃t−1

opp (aopp) +
1

t
Jaopp = atoppK (3.45)

where J·K is the Iverson bracket such that JφK = 1 if the predicate φ is true,

otherwise JφK = 0, σ̃topp is the estimated opponent strategy at time t, aopp is

one of the opponent’s possible actions, atopp is the opponent’s actual action at

time t, and σ̃topp (aopp) returns the estimated probability of the opponent’s action

aopp. In each iteration, fictitious play would predict that the opponent’s strat-

egy, σtopp, is the same as σ̃topp and would play a best-response strategy to it i.e.

σtFP = BR(σ̃topp) in the hope that this will be close to the best-response strategy
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to the true opponent strategy BR(σtopp). Against multiple opponents, each oppo-

nent’s estimated strategy is used to compute and play a best-response strategy.

For Equation 3.45 to be valid t ≥ 1 i.e. the first update occurs at t = 1. Fictitious

play’s initial action at t = 0 is arbitrary and is usually selected according to a

uniform distribution over all of its available actions i.e. σ̃0
opp (aopp) = 1/|Aopp|

where Aopp is the opponent’s set of actions. Subsequent actions are selected uni-

formly from the set of best-responses calculated using the opponents’ estimated

strategies. Fictitious play can have its beliefs initialised to specific values by as-

suming that a number of opponent actions have already been observed and this

can affect its convergence as shown for example by Fudenberg and Kreps, 1993

in their persistent miscoordination example (discussed later).

Fudenberg and Kreps, 1993 showed that for fictitious play in self-play, strict

Nash equilibria are absorbing states. This means that in an iterated game, if a

strict Nash equilibrium is played at some point, then it will also be played at all

subsequent points. For a strict Nash equilibrium, the inequalities in Equation 3.6

are strict, and so it is always a pure strategy Nash equilibrium. For a weak Nash

equilibrium, the inequalities in Equation 3.6 are equalities, and so it is either a

pure or a mixed strategy Nash equilibrium. Thus, if in self-play fictitious play

converges to a pure strategy profile, then it must be a Nash equilibrium, and

if its empirical distributions of plays converge to some (mixed) strategy profile,

then that strategy profile must also be a Nash equilibrium. Finally, the empirical

distributions of plays of two fictitious players have been shown to converge to

Nash equilibria in self-play in: two-player, zero-sum games [Robinson, 1951], two-

player, two-action games [Miyasawa, 1961], games with an interior evolutionary

stable strategy [Hofbauer, 1995], potential games [Monderer and Shapley, 1996],

and certain classes of supermodular games [Hahn, 1999; Krishna, 1992; Milgrom

and Roberts, 1990].

However, for fictitious players in self-play, their empirical distributions of plays

do not always converge to a Nash equilibrium. Shapley, 1963 showed that this is

true in a generalised general-sum version of rock-paper-scissors, called Shapley’s

game, even though it is not true in unmodified rock-paper-scissors. In Shapley’s

game, the unique mixed strategy Nash equilibrium is for each player to play each

of its actions with equal probability of 1/3. Shapley, 1963 showed that if the

players initially select (R, S) then play will follow the sequence ((R, S), (R, P),

(S, P), (S, R), (P, R), (P, S), (R, S), . . . ). When the strategy profile changes, the
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player with the losing strategy changes its strategy to a winning strategy. Due

to this, the diagonal strategy profiles (i.e. (R, R), (P, P) and (S, S)) are never

played giving each player an expected reward of 1/2 rather than the expected

reward at the Nash equilibrium of 1/3. Jordan, 1993 also showed that this is true

in a three-player version of matching pennies, called Jordan’s game, even though

it is not true in the original two-player version of matching pennies. Fudenberg

and Kreps, 1993 also showed with their persistent miscoordination example that

even if its empirical distribution of plays converges, its expected rewards may

differ from the expected rewards of the converged to strategy. Specifically, if

fictitious play plays against itself in the choosing sides game with certain initial

conditions, the empirical joint distribution on pairs of actions will not equal the

product of the two marginal distributions. The empirical joint distribution will

show correlated rather than independent play. So if the row and column players

have initial stored counts of (1,
√

2) and (
√

2, 1) and initially select (B, A) then

play follows the alternating sequence ((B, A), (A, B), (B, A), . . . ). The result is

that each player’s empirical distribution of plays gives each of its actions equal

probability of 1/2, but the players never successfully coordinate, each having

an expected reward of zero. This behaviour contradicts the assumption that

opponents are playing independent and identically distributed actions. Finally,

if there are multiple Nash equilibria and it converges to one of them, then it may

not converge to the “best” Nash equilibrium. In particular, it may converge to a

Nash equilibrium that is objectively worse than another Nash equilibrium, where

one or more players would have been strictly better off.

Sequence Prediction

Sequence prediction methods are used to model opponent strategies that may be

based on memories of interaction, or may be changing, or both. Their main ad-

vantage is that they can recognise correlations in the opponent’s play. A sequence

prediction method observes a sequence of symbols, also called a context, xt−n+1,

xt−n+2, ..., xt from some alphabet xi ∈ Σ where (t−n+1) ≤ i ≤ t, t is time and n

is the short-term memory size or lookback, and predicts the next observation xt+1.

Probabilistic predictions can also be returned based on previous observations i.e.

Pr (xt+1|xt, xt−1, ..., xt−n). Some of this work is an example of Markov process

analysis where probabilistic prediction algorithms are used to model Markov pro-

cesses. All of the sequence prediction methods used in this thesis are modified
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to be able to return probabilistic predictions given a hypothesised context i.e.

Pr
(
xt+k|xt+k−1, xt+k−2, ..., xt+k−n

)
where k ≥ 1 is the amount of lookahead and

xi is a hypothesised symbol if i > t. For each method this requires saving its

current parameters, observing the hypothesised sequence, returning probabilistic

predictions and finally restoring its saved parameters. This ensures unobserved

sequences do not update the probability distributions.

Sequence Prediction versus Empirical Probability An opponent’s strat-

egy can be modelled using empirical probabilities by estimating each opponent

action probability at each state as

Pr(a|s) =
f(a|s)∑

a′∈M(s) f(a′|s) (3.46)

where f(a|s) is the empirical frequency of action a in state s, and M(s) is the

set of opponent actions in state s. In general, an opponent action probability

can be conditioned on any or even no information. This information may not

be the same as what the state s is perceived to be. For example, in the iterated

prisoner’s dilemma, the state could be assumed to be the same in each game.

This is true for strategies like always defect and always cooperate. However, this

is false for more complex strategies like tit-for-tat and pavlov. This highlights

a problem with this model, which is that its accuracy will depend on what is

believed the opponent perceives as states. Another problem is that it assumes

the true probability distribution is fixed.

Alternatively an opponent’s strategy can be modelled using sequence predic-

tion, which assumes that an opponent action probability depends on a sequence

of previous observations. These observations could be, for example, states or

actions or both and the sequence can, in general, be any element from the pow-

erset of the multiset of previous observations. A sequence prediction method

still calculates empirical probabilities, but they will be conditioned on this se-

quence. This somewhat alleviates the first problem in that sequence prediction

methods may discover the opponent’s perception of state. Some sequence pre-

diction methods tackle the second problem of a changing opponent strategy by

discarding probability distributions that no longer adequately make predictions.
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Sequence Prediction Model One way to model an opponent’s strategy is to

use a Markov model. A Markov model is a stochastic model that assumes the

Markov property. This property holds if the probability of the future depends only

on the present and not on the past i.e. Pr(xt+1|xt, xt−1, . . . , x1) = Pr(xt+1|xt).
When applied to opponent modelling, the assumption is that the probability of

the opponent’s next action only depends on the current state of the environment.

This can be expressed as Pr(atopp|st, at−1, st−1, at−2, st−2, . . . , a1, s1) = Pr(atopp|st)
where atopp is the opponent’s action at time t, at is an action belonging to either

the player or the opponent at time t, and st is the environment state at time

t. Sequence prediction methods do not use a Markov model to model the op-

ponent’s strategy. Instead, they assume that the probability of an opponent’s

action can depend on histories of states, or actions, or both. What these histories

are depends on the sequence prediction method, but in general they can be any

subsequence of the full history of states and actions. This can be expressed as

Pr(atopp|H) where H ⊆ {st, at−1, st−1, at−2, st−2, . . . , a1, s1}.
Sequence prediction methods usually have two components, a short-term

memory and a long-term memory. The short-term memory S is a sequence (or-

dered list) of the previous k ∈ N+ observations i.e. S = (ot, ot−1, ot−2, . . . , ot−k),

where ot is an observation at time t. Each observation is a symbol, such as a

state or action, belonging to some alphabet Σ i.e. ot ∈ Σ for all t. The long-term

memory L is a map from sequences of symbols (lengths 0 to k) and symbols to

counts L : (o1, o2, . . . , oi)×Σ→ N0, where 0 ≤ i ≤ k and oi is the i-th symbol in

the sequence. The long-term memory can be used to generate a set of distribu-

tions, each one conditioned on a different history H i.e. {Pr(atopp|H) : H ⊆ {st,
at−1, st−1, at−2, st−2, . . . , a1, s1}}.

A sequence prediction method that observes ot does the following. Firstly, it

generates a set of histories, where each history is a sequence of symbols, using its

short-term memory. Secondly, for each history, it creates or updates a distribution

that is conditioned on it using the observation. Finally, it adds the observation

to the short-term memory. A sequence prediction method makes a prediction by

doing the following. Firstly, it generates a set of histories using its short-term

memory. Finally, it predicts using the set of distributions that are conditioned on

these histories. Specific details for each of these steps will depend on the method.

For example, consider Entropy Learned Pruned Hypothesis Space (ELPH)

[Jensen et al., 2005]. ELPH follows the outlined procedures almost exactly with a
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few additional steps and implementation details. The way it generates its histories

in both the observation and prediction routines is to find the powerset of its short-

term memory. The powerset of a set B = {b1, b2, . . . bn} is defined as the set of all

subsets of B including B itself i.e. P(B) = {{}, {b1}, . . . , {bn}, . . . , {b1, b2}, . . . ,
{b1, bn}, . . . , {b1, b2, . . . bn}}. It has an additional step in the observation routine

which, after creating/updating distributions, removes any distribution with a nor-

malised Shannon entropy greater than a user-specified threshold. Additionally,

it ensures that the short-term memory size does not exceed a user-specified limit

by removing the oldest observations if necessary. Finally, after generating its set

of histories, it makes a prediction using a distribution that is conditioned on one

of those histories and that has the lowest normalised reliable Shannon entropy.

The Shannon entropy of P is defined as

H(P ) = −
∑
i

P (i) lnP (i). (3.47)

The reliable Shannon entropy of P is calculated by altering the underlying counts

that P is assumed to be based on. Given P (i) =
c(i)∑
i c(i)

, where c(i) is the counts

of i, a single count is added for an unknown and new category. The reliable

Shannon entropy of P is then defined as

Hrel(P ) = −
[[∑

i

ci∑
j c(j) + 1

ln
ci∑

j c(j) + 1

]

+
1∑

i c(i) + 1
ln

1∑
i c(i) + 1

]
. (3.48)

The (reliable) Shannon entropy of P has a minimum value of 0 and a maximum

value of ln(m), where m is the number of categories in P . Thus, this value can

be normalised, giving the normalised (reliable) Shannon entropy, as follows

H[rel](P ) =
1

ln(m)
H[rel](P ). (3.49)

Sequence Prediction Example Imagine playing a game of iterated matching

pennies (see Section 3.1.7) against an opponent. You are the player who wants

to match sides, and you use a sequence prediction method at each step to predict

your opponent’s next action so that you can match it. For simplicity, lets assume

that the sequence prediction method is a hierarchical n-gram with a memory size
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of k = 2. The long-term memory of a sequence prediction method can map a

maximum of
∑k

i=0 |Σ|i sequences of symbols and |Σ| symbols to counts. In this

case, Σ = {H,T} and k = 2, which gives a maximum of 7 sequences, and with 2

symbols, 14 counts in the long-term memory. Initially, the short-term and long-

term memories will be empty. As more games are played, the short-term memory

will grow to, and remain at, a size of 2, whilst the long-term memory will grow

to have a maximum of 14 counts, with 1 count incremented each game.

Table 3.9: An example showing a hierarchical n-gram’s short-term and long-term
memory updates as well as its predictions in iterated matching pennies.

t atpla atopp S Pr(H) Pr(T )

0 - - () 1
2

1
2

1 h T (T) 0 1

2 t H (T,H) 1
2

1
2

3 h H (H,H) 1 0

4 h T (H,T) 1 0

5 t T (T,T) 1
2

1
2

6 h H (T,H) 1 0

t = 0

H T

() - -

(H) - -

(T) - -

(H,H) - -

(H,T) - -

(T,H) - -

(T,T) - -

t = 1

H T

- 1

- -

- -

- -

- -

- -

- -

t = 2

H T

1 1

- -

1 -

- -

- -

- -

- -

t = 3

H T

2 1

1 -

1 -

- -

- -

1 -

- -

t = 4

H T

2 2

1 1

1 -

- 1

- -

1 -

- -

t = 5

H T

2 3

1 1

1 1

- 1

- 1

1 -

- -

t = 6

H T

3 3

1 1

2 1

- 1

- 1

1 -

1 -

Table 3.9 shows what a hierarchical n-gram sequence predictor updates its

short-term and long-term memories to over 6 time steps. Initially, the short-term

and long-term memories are empty. The short-term memory adds each opponent

action observation to its end, but removes the first observation if it grows beyond

its size limit, which is 2 in this case. The long-term memory increments at

least one count at each time-step, and by the end there has been a total of 15

increments. Probabilities at each time step are calculated by finding the longest,
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most recent subsequence of the updated short-term memory that has a count for

one or more symbols, and forming a distribution over these counts. For example,

at time t = 4, S = (H,T ), and the longest, most recent subsequence with counts

is (T ) and so Pr(H) = L((T ),H)
L((T ),H)+L((T ),T )

= 1 and Pr(T ) = L((T ),T )
L((T ),H)+L((T ),T )

= 0.

Sequence Prediction Methods Most of the sequence prediction methods

used follow the same general procedure mentioned previously in Section 3.2.10.

This procedure is outlined in Algorithm 5. The exceptions that do not clearly

correspond with Algorithm 5 are Long Short-Term Memory (LSTM) and Knuth-

Morris-Pratt (KMP). In the case of the former, LSTM does not have a short-term

memory, its only memory is in the weights of its recurrent neural network. It

simply passes each observation to its recurrent neural network as a unit vector

input and outputs a distribution over the possible observations. In the case of

the latter, KMP is closer to this representation. However, its short-term memory

is ideally unbounded and never cleared and so it is not really “short-term”. Its

long-term memory stores symbols following the longest match to the end of its

short-term memory. This means that, at any time, its long-term memory is only

storing the conditional distribution for one context.

Instead of reproducing the full algorithm for each sequence prediction method

used, an overall description is provided and the reader is referred to the references

for them. The main differences between sequence prediction methods are in how

they represent, update, and use their memories. They can generally be split into

three categories based on how they represent their long-term memories, firstly,

those using tries for their long-term memories.

Lempel-Ziv-1978 (LZ78) [Lempel and Ziv, 1978] for each observation, o, it is

added to the short-term memory, S, S ← (S, o). If S is not in the trie,

then S is added to the trie, the frequency of each prefix of S (including S

itself) is incremented, and S is cleared, S ← (). By default, the short-term

memory length, k, is unbounded, k = ∞. Despite this, since S is cleared

after it is added to the trie, S tends to remain small. Finally, a prediction

is made using a distribution formed by normalising the frequencies of all

(S, o′), where o′ is any symbol that has been observed to occur after S.

Prediction by Partial Matching version C (PPMC) [Moffat, 1990] for each

observation, o, it is added to the short-term memory, S, S ← (S, o). If S is

not in the trie, then S is added to the trie. Following this, and regardless of
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Algorithm 5 A General Sequence Prediction Method

Require: Short-term memory size k, a set of possible symbols (an alphabet) Σ.
1: Initialise long-term memory L as a map from sequences of symbols (lengths

0 to k) and symbols to counts

L : (o1, o2, . . . , oi)× Σ→ N0, where 0 ≤ i ≤ k.

2: Initialise short-term memory S as a sequence of recent observations S ← ().
3: function Observe(a symbol ot at time t) . E.g. a state, an action, etc.
4: Generate a family of subsets over S called F . Depends on the method.
5: for all S ′ ∈ F do
6: if (S ′, ot) ∈ L then
7: L(S ′, ot)← L(S ′, ot) + 1,
8: else
9: L(S ′, ot)← 1.

10: end if
11: end for
12: Update S by adding ot to the end of it, S ← (S, ot).
13: if |S| > k then
14: Remove the first (oldest) symbol from S, S ← (S(2), . . . , S(k + 1)).
15: end if
16: end function
17: function Predict
18: Generate a family of subsets over S called F . . Depends on the method.
19: for all S ′ ∈ F do
20: Create a probability distribution over symbols

Pr(o ∈ Σ|S ′)← L(S ′, o)∑
o′∈Σ L(S ′, o′)

.

21: end for
22: return A prediction using these distributions. . Depends on the

method.
23: end function
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whether S was already in the trie, the frequency of each prefix of S (includ-

ing S itself) is incremented. The short-term memory length, k, is bounded,

such that S acts as a fixed-size FIFO stack. Finally, a prediction is made by

blending probabilities from distributions associated with all subsequences

of S.

Transition Directed Acyclic Graph (TDAG) [Laird and Saul, 1994] for each

observation, o, it is added to the short-term memory, S, S ← (S, o). Ad-

ditionally, for each leaf node in the trie, l, a new leaf node representing o

is added onto it if the following conditions are met. Firstly, the probability

of visiting l must be above a threshold, and secondly, the depth of l must

be less than the short-term memory length, k, which is bounded, such that

S acts as a fixed-size FIFO stack. When a leaf node is added to the trie,

the “out-count” of its parent and the “in-count” of it are incremented. The

probability of the symbol this leaf node represents (given the symbols that

lead up to it) is then its “in-count” divided by its parent’s “out-count”. Fi-

nally, a prediction is made using the distribution associated with the node

representing S, or the node representing the longest subsequence of S. The

size of this distribution is bounded.

ActiveLeZi [Gopalratnam and Cook, 2003] for each observation, o, it is added

to two short-term memories, S1, S2, S1 ← (S1, o), S2 ← (S2, o). If S1 is

not in the trie, then S1 is added to the trie, and S1 is cleared, S1 ← ().

The frequency of each prefix of S2 (including S2 itself) is incremented. The

short-term memory length of both short-term memories, k, is bounded such

that each acts as a fixed-size FIFO stack. Finally, a prediction is made by

blending probabilities from distributions associated with all subsequences

of S.

Secondly, those using maps for their long-term memories.

N-Gram [Millington, 2006] for each observation, o, it is added to the short-term

memory, S, S ← (S, o). If the short-term memory has N symbols in it,

|S| = N , then it creates or updates a distribution conditioned on the first

N − 1 symbols using the Nth symbol. Its short-term memory length, k,

is bounded and equal to N , such that it acts as a fixed-size FIFO stack.

Finally, a prediction is made using the distribution associated with the

updated short-term memory.
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Hierarchical N-Gram is a collection of 1 to N-Grams where a prediction is

made using the N-Gram with the largest short-term memory containing

the most recent observations that has an associated distribution.

Entropy Learned Pruned Hypothesis Space (ELPH) [Jensen et al., 2005]

for each observation, o, it is added to the short-term memory, S, S ← (S, o).

It updates the distributions for the “powerset” of S excluding the newly

added symbol. This means that for a given S, it creates or updates distri-

butions for the subsequences P(S)← {(), (S(1)), . . . , (S(|S|)), (S(1), S(2)),

. . . , (S(1), S(|S − 1|)), . . . , (S(1), S(2), . . . , S(|S − 1|))} using S(|S|). If the

normalised reliable Shannon entropy of the distribution of any subsequence

that has been created or updated is above a threshold, then it is discarded.

The short-term memory length, k, is bounded, such that it acts as a fixed-

size FIFO stack. Finally, a prediction is made by finding the “powerset”

of its short-term memory, and using the distribution with the lowest nor-

malised Shannon entropy that is associated with one of these subsequences.

Finally, methods using other long-term memory representations.

Long Short-Term Memory (LSTM) [Gers, Schraudolph, and Schmidhuber,

2002] each new observation, o, passes as a unit vector through a recurrent

neural network. The number of inputs and outputs equals the number

of possible symbols (e.g. the number of possible actions), which needs to

be known beforehand. Hidden units are LSTM blocks. It does not have a

memory length, k, or a separate short-term memory and long-term memory.

Instead, its only memory is in the weights of its recurrent neural network.

The output is a distribution over the alphabet.

Knuth-Morris-Pratt (KMP) [Knoll, 2009] for each observation, o, it is added

to the short-term memory, S, S ← (S, o). The KMP string matching algo-

rithm [Knuth, Morris, and Pratt, 1977] is used to find the longest matches

to the most recent input to S. This means that it finds matches to the

subsequence (S(i), S(i+1), . . . , S(|S|)) where i is as large as possible whilst

still producing at least one match. For each match, it stores the symbol fol-

lowing that match. Its short-term memory length, k, is ideally unbounded,

but may need to be bounded if there are many observations such that it

acts as a fixed-size FIFO stack. In this case the short-term memory is not
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really “short”, but has the same structure as a short-term memory. Finally,

a prediction is made using the distribution formed over all the symbols

following the matches.

3.2.11 Value Estimation by Lookahead

When playing a game, we would like to maximise our total reward. This requires

us to either be given, or to determine a utility function that will inform us of

any rewards we may encounter. A simple and unbiased way to assign rewards

for most situations is to give a reward of 1 for success, -1 for failure, and 0 for

anything else. The aim of an agent is to learn a strategy that leads to successful

situations. The credit assignment problem is that of deciding how to value states,

or actions, or both, when this reward is delayed. For example, in chess a player

could be given a reward of 1 for winning, 0 for a stalemate, and -1 for losing.

These rewards are unbiased because the player’s only goal is to win the game.

However, there could be around 50 actions before this reward is received. Value

estimation techniques offer ways to associate actions with future rewards.

Heuristics can be used to reduce the delay in a reward being received by

assigning rewards to intermediate non-terminal states. Using chess as an example

again, one heuristic could be the number of pieces the player owns minus the

number of pieces the opponent owns. This would reward the player as it took

more of the opponent’s pieces. However, it would also discourage the player from

making sacrifices that could put it in a better position. One main problem with

heuristics is that they do not represent the true value function and can prevent

the discovery of this function.

The following sections describe two methods to estimate future rewards. Firstly

tree search, which is referred to as explicit lookahead. Secondly temporal-difference

learning, which is referred to as implicit lookahead.

Tree Search - Explicit Lookahead

Tree search (or traversal) is the process of systematically visiting each node in a

tree data structure. Usually these methods are classified by the order in which

nodes are visited. Examples include breadth-first search, depth-first search, it-

erative deepening, best-first search, α − β search, etc. Minimax can be seen as

a specialised form of tree search where a player selects a child node such that it
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minimises the opponent’s maximum reward. Tree search is used in Chapter 4 up

to a limited depth and is referred to as explicit lookahead. This is because it is

used to directly find a sequence of states and actions that will give the maximum

total reward. Upon finding this sequence, the first action in the sequence can be

played. Repeating the search at the next step, rather than following the origi-

nal sequence in its entirety, mitigates mistakes in the original search but may be

unnecessary if the future is completely deterministic.

Temporal-Difference Learning - Implicit Lookahead

Temporal-difference (TD) learning combines Monte Carlo and dynamic program-

ming ideas. Similarly to Monte Carlo methods, TD methods do not require a

model of the environment’s dynamics as they learn directly from raw experience.

Specifically, they do not require the environment’s reward and next-state prob-

ability distributions. Similarly to dynamic programming, TD methods update

their estimates based on other learned estimates and do not wait for a final out-

come (bootstrapping). This allows TD methods to be implemented online in a

fully incremental fashion. One of the simplest TD methods, TD(0), updates the

value of a state as

V (st)← (1− α)V (st) + α(rt+1 + γV (st+1)) (3.50)

where V (st) is the estimated value of the state s at time t, 0 ≤ α ≤ 1 is a learning

rate, rt+1 is the immediate reward received for reaching the state s at time t+ 1,

and γ is the discount factor. This equation updates the estimated value of a state

by interpolating between its old value and a target value, where the target value

is the reward received in the next state and the discounted estimated value of the

next state.

TD learning is referred to as an implicit form of lookahead because of its

bootstrapping. Specifically, the discounting in TD(0) and Q-learning, equa-

tions 3.50 and 3.24, can be used as implicit lookahead. One way to do this for

a normal-form game (see Section 3.1.3) is to define states as opponent actions.

These methods would then learn the values of (opponent action, player action)

pairs. These values would be partly controlled by the discount factor. A discount

factor of γ = 0 would learn the player’s payoff matrix values, and selecting an

action with the maximum TD value or Q-Learning value would be the same as
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selecting an action using the payoff matrix values with an explicit lookahead of

1. A discount factor greater than zero but less than one, 0 < γ < 1, would looka-

head deeper, it would estimate the value of an (opponent action, player action)

pair as its payoff matrix value added to a number of future rewards with each

subsequent reward being weighted exponentially less. Finally, a discount factor

of exactly one, γ = 1, would estimate these values as their payoff matrix values

added to undiscounted future rewards. Lookahead increases as γ increases be-

cause a higher value for γ tells TD-Learning and Q-Learning to discount future

rewards less.

3.3 Chapter Summary

This chapter has explored background and related work that is necessary to

understand this thesis. In particular, it has looked at game theory concepts

that are required to understand the approaches in this thesis, their opponents,

and the environments that they operate within. It has also looked at learning in

games in more detail with a focus on the problems that many learning algorithms

face. It finished by formally describing the reinforcement learning, no-regret, and

opponent modelling algorithms that are used within the approaches, as well as

how lookahead is used.



Chapter 4

Opponent Modelling with

Sequence Prediction,

Reinforcement Learning, and

Lookahead

This chapter, which is based on [Mealing and Shapiro, 2013], focusses on mod-

elling opponents whose strategies are based on memories of interaction, or whose

strategies are changing, and using these models to learn high-reward strategies

in small simultaneous-move games. These strategies are learnt by using sequence

prediction methods to model the opponent’s strategy and to predict its actions

given a context of past information, with (possibly delayed) rewards learnt from

a reinforcement learning method, to lookahead using explicit tree search. There

are two types of opponents whose strategies depend on memories of interaction:

firstly, those which have a memory of their own actions, and secondly, those which

have a memory of both their own and the agent’s actions. These opponents ar-

guably better resemble human-like strategies because, rather than sampling from

a probability distribution (a task most humans would probably find difficult),

they act based on a short-term memory. The opponents with changing strategies

are a selection of popular and state-of-the-art reinforcement learning algorithms.

Reinforcement learning algorithms, such as Q-learning by Watkins, 1989, do

not explicitly model the opponent’s strategy separately from the environment.

This can result in an agent’s rewards appearing to be random or noisy, when

in fact they are deterministic, and can be completely determined by the agent’s

113
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strategy as well as the opponent’s strategy. Also, a limitation of some opponent

modelling algorithms, such as fictitious play, is that they do not consider the

possibility that the opponent’s strategy is based on a sequential memory. It

is empirically shown in this chapter that an agent can use its own memory of

interaction, i.e. learnt opponent model and learnt action values, with lookahead

to play optimally against these opponents. The approach has three parts:

1. A sequence prediction method to model an opponent whose strategy is

based on a memory of interaction, or whose strategy is changing. This

method predicts the opponent’s actions given a (possibly empty) sequence

of hypothesised actions.

2. A reinforcement learning algorithm (Q-learning [Watkins, 1989]), to learn

the (possibly delayed) values of the agent’s own actions for each game state.

3. Exhaustive explicit lookahead with the learnt opponent model and action

values to greedily select future action sequences from all possible paths (up

to a limited depth) that maximise total expected reward.

Although each individual part has been used before, this combination of parts

is unique to this approach. One main difference between this approach and the

standard alternative of reinforcement learning in isolation is that this approach

builds an explicit opponent model by observing actions rather than just an im-

plicit opponent model by observing rewards. The other main difference is that this

approach uses explicit lookahead by tree search rather than just implicit looka-

head by expected future reward discounting. This approach is compared against

a variety of popular and state-of-the-art reinforcement learning algorithms. Each

of these comparison algorithms observe game states such that each game state

is defined to include a memory of previous actions taken by either the player or

the opponent. Instead of using explicit lookahead, these algorithms use discount-

ing as an implicit form of lookahead (see Section 3.2.11). The empirical results

show that this approach generally gains higher average rewards at faster rates in

comparison to the reinforcement learning algorithms.

4.1 Sequence Prediction Opponent Modelling

This section summarises sequence prediction opponent modelling, which is de-

scribed in detail in Section 3.2.10. Sequence prediction opponent modelling uses
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sequence prediction methods to predict opponent actions. These methods pre-

dict the next symbol, or a probability distribution over the next symbol, given a

sequence of previous symbols. Each symbol can be set as, for example, a state,

or an action. These methods generally form probability distributions conditioned

on different subsequences of the given sequence and make predictions using them.

The maximum number of possible subsequences is the powerset of the sequence.

The size of the powerset scales exponentially with the length of the sequence.

Therefore, these methods usually restrict the number of subsequences that they

use as well as the size of the sequence.

4.1.1 Short-Term and Long-Term Memory

The short-term memory, S, of a sequence predictor is the sequence of symbols it

has observed in the past k time-steps S = (S(1), S(2), . . . , S(k)), where k is the

size of its short-term memory. The long-term memory, L, of a sequence predictor

is a map from sequences of symbols (between lengths 0 and k) and symbols to

counts L : (o1, o2, . . . , oi)×Σ→ N0, where 0 ≤ i ≤ k, oi is the i-th symbol in the

sequence, and Σ is an alphabet or set of possible symbols. These mappings can

be used to form conditional probability distributions such that the probability

of observing a symbol given a sequence is the count of that symbol given that

sequence divided by the sum of the counts of any symbol given that sequence i.e.

Pr(o|S ′) = L(S′,o)∑
o′∈Σ L(S′,o′)

.

4.1.2 Sequence Prediction Methods

Generally each method updates its long-term memory by getting distributions

associated with subsequences of its short-term memory and updating them with

an observation. Its short-term memory is then updated to include the observation,

and distributions associated with subsequences of the new short-term memory are

used to make predictions. The selected sequence prediction methods include:

• Lempel-Ziv-1978 (LZ78) [Lempel and Ziv, 1978] and Knuth-Morris-

Pratt (KMP) [Knoll, 2009], which have unbounded context lengths.

• Prediction by Partial Matching version C (PPMC) [Moffat, 1990]

and ActiveLeZi [Gopalratnam and Cook, 2003], which blend predictions

from different context lengths.
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• Transition Directed Acyclic Graph (TDAG) [Laird and Saul, 1994]

and Entropy Learned Pruned Hypothesis Space (ELPH) [Jensen

et al., 2005], which remove unlikely contexts.

• N-Gram [Millington, 2006] and Hierarchical N-Gram (H. N-Gram)

[Millington, 2006], where the latter is a group of 1 to N-Grams that predicts

using the longest context.

• Long Short-Term Memory (LSTM) [Gers, Schraudolph, and Schmid-

huber, 2002], which is a recurrent neural network and implicitly incorporates

an unbounded context length, prediction blending, and context pruning.

For a more detailed description of sequence prediction as well as these sequence

prediction methods see Section 3.2.10. More information on these sequence pre-

diction methods can also be found in the references for them.

4.2 Lookahead

The reinforcement learning agents that are used as comparisons to this approach

use implicit lookahead. This means that they estimate action values using a

form of TD learning and bootstrapping, specifically Q-Learning. The approach

in this chapter uses explicit lookahead with opponent action predictions from

sequence prediction methods and estimates of the agent’s own action values from

Q-Learning to directly find the future path(s) with the highest expected total

reward. Specifically, an exhaustive breadth-first search is used, which means that

the amount of lookahead must be limited because search time grows exponentially

with it. Although lookahead can be costly in terms of time and computation, it is

sometimes necessary. To show this, consider the iterated prisoner’s dilemma. If

we did not lookahead by more than one game, then we would always defect since

it gives us the highest reward irrespective of the opponent’s strategy. However, if

we lookahead two games, then we will see that defecting twice only gives us the

highest total reward if the opponent cooperates twice, despite the initial defection.

This is extremely unlikely to happen against a rational opponent. If we defect

against a rational opponent when it tried to cooperate, then it is unlikely to try to

cooperate with us a second time unless it is very forgiving. If instead we assume a

more realistic opponent strategy that copies the player’s previous move (i.e. the

tit-for-tat strategy), then we could increase our total payoff by cooperating on the
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first move and defecting on the second. In fact, using the payoffs in Table 3.7, a

lookahead of one would lead us to defect at each time-step giving t total reward,

whereas a lookahead of two would lead us to cooperate at each time-step giving

3t total reward.

4.3 Games in the Experiments

Three two-player, imperfect information, simultaneous-move games are used in

the experiments. The first two are normal-form games, namely rock-paper-

scissors and the prisoner’s dilemma, with the former being zero-sum and the

latter being general-sum. The third is Littman’s soccer game, which is a stochas-

tic game. These games are described in Section 3.1.7. It is assumed that each

player in these games has the option to use perfect recall, which means that it

would never forget revealed information.

4.4 Opponents in the Experiments

Firstly, the opponents used in the iterated rock-paper-scissors experiments play

deterministic action sequences repeatedly, and can be seen as variable-order

Markov models. For example, an opponent labelled {R,P, S} would play rock

followed by paper followed by scissors in a loop such that its sequence of actions

over games would be (R,P, S,R, P, S, . . . ). Secondly, the opponents used in the

iterated prisoner’s dilemma tournaments are described in Table 4.1. Each op-

ponent can be represented as a finite automaton. Finally, the opponents used

in the Littman’s soccer game experiments are the popular and state-of-the-art

reinforcement learning algorithms explained in Section 3.2.8 including ε-greedy

Q-Learning, WoLF-PHC, WPL and PGA-APP.
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Table 4.1: Iterated prisoner’s dilemma opponents.

Name States Strategy Description

always-
cooperate

1 Always plays cooperate.

always-defect 1 Always plays defect.

anti-tit-for-tat 2 Cooperates on the first move, then plays the opposite of the opponent’s previous
move.

brainless-
alteration

2 Repeats (cooperate, defect).

evil-brainless-
alteration

2 Repeats (defect, cooperate).

evil-tit-for-tat 2 Defects on the first move, then copies the opponent’s previous move.

general-
cooperator

2 Cooperates on the first move, and defects only if the opponent defects after it
previously cooperated.

grudger 2 Cooperates if the opponent cooperates, but defects forever if the opponent defects.

pavlov 2 Cooperates on the first move, and switches its action whenever the opponent
defects.

tit-for-tat 2 Cooperates on the first move, then copies the opponent’s previous move.

evil-two-to-
betray

3 Defects on the first move, and defects until the opponent cooperates, at which
point it cooperates until the opponent defects twice in a row.

evil-two-to-
trust

3 Defects on the first move, and defects until the opponent cooperates twice in a
row, at which point it will cooperate until the opponent defects.

two-to-betray 3 Cooperates on the first move, and cooperates until the opponent defects twice in
a row, at which point it will defect until the opponent cooperates.

two-to-trust 3 Cooperates on the first move, and cooperates until the opponent defects, at which
point it defects until the opponent cooperates twice in a row.

tit-for-two-tats 4 Cooperates on the first move, and cooperates unless the opponent defects twice,
at which point it defects unless the opponent cooperates twice.

trust-distrust 4 Keeps a counter starting at 4, which it decrements by 1 to a minimum of 1 for
each time the opponent defects, and increments by 1 to a maximum of 4 for each
time the opponent cooperates. If the counter is at 4 or 3 it cooperates, otherwise
if the counter is at 2 or 1 it defects.

soft-grudger 6 Cooperates if the opponent cooperates, but defects 4 times if the opponent defects
followed by 2 cooperates to try to make up.

three-then-
punish

6 Cooperates on the first move, and cooperates until the opponent defects 3 times
in a row, at which point it defects 3 times in a row.

evil-good-evil-
trust

6 Cooperates on the first move then defects and then cooperates. If the opponent
cooperates twice from the start, then it will cooperate forever after this sequence,
otherwise it will defect forever.

five-is-too-much 7 Cooperates on the first move, then copies the opponent’s previous move, except
if 5 cooperates occur in a row then it defects.
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4.5 The Approach

Algorithm 6 uses lookahead with learnt action values and opponent action pre-

dictions to maximise total reward. The scalability of this algorithm depends

on the complexities of Q-Learning, the prediction algorithm, and the lookahead

technique. In large domains these complexities can be mitigated by abstraction.

In the experiments exact exhaustive lookahead in the form of breadth-first tree

search dominates and is bounded by
∑T

t=0 |A|
t where |A| is the maximum number

of actions in a state and T is the lookahead depth. For deeper lookahead, other

approaches would probably be necessary. Although deeper lookahead may dis-

cover more optimal action sequences, it is also more computationally expensive.

Additionally, the deeper the lookahead the further into the future predictions are

made, which may result in a negative cumulative effect on prediction accuracy

if the opponent model is inaccurate. Generally, the space and time complexities

of a sequence prediction method scale exponentially with the size of its look-

back as it stores and predicts using a number of distributions exponential in its

lookback. The set of distributions for a specific lookback value will generally

be a subset of the set of distributions for a larger lookback value. Thus, larger

lookback values can be beneficial because they consider more distributions and

contexts and should be able to accurately model opponents with strategies based

on larger memories of interaction. With unlimited computational resources an in-

finite lookback would be best because it would be able to model an opponent with

a strategy based on any memory size, but with limited computational resources

the ideal lookback would be just large enough to accurately model the opponent,

any larger would be wasteful. In the experiments in sections 4.6.1 and 4.6.2, ob-

servations are joint actions xt = (atopp, a
t
i), and state transitions are deterministic

Pr(st) = 1. In the experiment in Section 4.6.3, observations are opponent actions

xt = atopp, and state transitions are probabilistic Pr(st) = 0.5 if players try to

move to the same place, otherwise they are deterministic Pr(st) = 1.

It is interesting to note that there are some alternate implementations of Al-

gorithm 6 with the same overall idea of using an explicit opponent model with

learnt action-values to inform an agent’s strategy via lookahead. One option is to

use the opponent model when updating an action-value by, for example, weight-

ing the value of the maximum valued action in the next state by the estimated

probability that the opponent would reach that state. This would only apply with

a discount factor of γ > 0 because if γ = 0 then there is no implicit lookahead.
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Algorithm 6 Player i using prediction and Q-learning with T step lookahead

Require: Q-function Q : S × Ai → R, previous state st−1 ∈ S, previous player
action at−1

i ∈ Ai, learning rate 0 ≤ α ≤ 1, reward r ∈ R, discount factor
0 ≤ γ ≤ 1, current state st ∈ S, current prediction algorithm P t

alg (short-
term memory size n), current observation xt, lookahead T , explore rate ε.

1: Update the action-value

Qt
(
st−1, at−1

i

)
← (1− α)Qt−1

(
st−1, at−1

i

)
+ α

[
r + γmax

ati

Qt−1
(
st, ati

)]
.

2: Observe xt with the prediction algorithm P t
alg.

3: Explore with probability ε such that at+1
i is set to a random action, otherwise,

with probability (1 − ε), find the action sequence with the maximum total
reward z∗ and return at+1

i from z∗ where

z∗ ← arg max
at+1:t+T
i

T∑
j←1

Qt
(
st+j, at+ji

) j∏
j′←1

Pr
(
st+j

′
)

Pr
(
at+j

′

opp |x(t+j′−1):(t+j′−n)
)

︸ ︷︷ ︸
predicted by P t

alg

,

and yi:j = (yi, yi+1, ..., yi+j) assuming i < j.

However, the current update already implicitly accounts for the opponent’s ac-

tion probabilities as they influence what rewards are backed up. Another option

is to use rewards directly in the lookahead instead of the action-values except

at the last step. This is because currently, given a discount factor of γ > 0,

each action-value represents the estimated expected future discounted reward of

taking that action and so is implicitly looking ahead until the end of the game.

Thus, summing these weighted action-values for sequential actions is essentially

counting estimated expected future discounted rewards multiple times. It is un-

known if either of these options would significantly affect performance, making

them possibilities for future research.

4.6 Comparison to Reinforcement Learning Agents

In each experiment the approach using Algorithm 6 is compared against several

reinforcement learning agents. In the approach, the methods that are used to

model the opponent include:

• Fictitious Play (FP) [Brown, 1951]



CHAPTER 4. OM WITH SP, RL, AND LOOKAHEAD 121

• Lempel-Ziv-1978 (LZ78) [Lempel and Ziv, 1978]

• Prediction by Partial Matching version C (PPMC) [Moffat, 1990]

• Transition Directed Acyclic Graph (TDAG) [Laird and Saul, 1994]

• ActiveLeZi [Gopalratnam and Cook, 2003]

• N-Gram [Millington, 2006]

• Hierarchical N-Gram (H. N-Gram) [Millington, 2006]

• Entropy Learned Pruned Hypothesis Space (ELPH) [Jensen et al., 2005]

• Long Short-Term Memory (LSTM) [Gers, Schraudolph, and Schmidhuber,

2002]

• Knuth-Morris-Pratt (KMP) [Knoll, 2009]

The reinforcement learning algorithms that are used as comparisons include:

• ε-greedy Q-Learning [Watkins, 1989],

• Win or Learn Fast Policy Hill Climbing (WoLF-PHC) [Bowling and Veloso,

2002],

• Weighted Policy Learner (WPL) [Abdallah and Lesser, 2008] and

• Policy Gradient Ascent with Approximate Policy Prediction (PGA-APP)

[Zhang and Lesser, 2010]

Only the first agent is labelled as ε-greedy to distinguish it from the Q-Learning

algorithm, which is not an agent in itself. In fact, each reinforcement learning

agent uses an ε-greedy strategy. This selects a random action with probability ε,

and an action according to the strategy with probability (1− ε).
Table 4.2 shows the parameters for all agents and experiments. Almost all

of the parameters that are shared by the approach and the reinforcement learn-

ing algorithms are set to be the same to ensure a fair comparison. The only

exception is the discount factor. The discount factor is set differently in the iter-

ated rock-paper-scissors games and the iterated prisoner’s dilemma tournaments.

The iterated rock-paper-scissors experiment investigates the necessity of a mem-

ory against opponents with memory-based strategies. Thus, agents only need to
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lookahead to the next game. This is why for the approach its discount factor is set

to 0, because it does not need to implicitly lookahead as it already has its explicit

lookahead set to 1. However, for the reinforcement learning algorithms they have

no explicit lookahead and so their discount factors are set to 0.99 to ensure at

least an implicit lookahead of 1. In the iterated prisoner’s dilemma tournaments

the approach and the reinforcement learning algorithms try discount factors set

to 0 and 0.99 to test the affects on performance of no implicit lookahead and

full implicit lookahead. Another reason 0.99 is used in these two experiments is

because higher discount factors were found to give higher rewards in these two

games. However, the discount factor for all agents in Littman’s soccer game is

set to 0.9 to match the value used in Littman, 1994.

Since the opponents in the iterated rock-paper-scissors and iterated pris-

oner’s dilemma experiments are stationary, the training exploration rates for these

games are initially set to 1 for a sufficient number of games to explore the mod-

els and then are slowly decayed to 0. Whereas since the agents in Littman’s

soccer game are changing their strategies, the training exploration rate is set to

the same constant value used by Littman, 1994. The testing exploration rates

are all set to 0 to reduce noise in the comparisons. Given the relative simplic-

ity of the opponents in the iterated rock-paper-scissors and iterated prisoner’s

dilemma experiments only a small number of training and testing steps are used.

Whereas the number of training steps in Littman’s soccer game is increased to

account for the increased complexity. The number of runs are chosen in all cases

to ensure statistical significance. The learning rates are set high to 0.99 in the

iterated rock-paper-scissors and iterated prisoner’s dilemma experiments as the

opponents are stationary. Whereas the learning rate is decayed in Littman’s soc-

cer game like in Littman, 1994 as the opponent’s are changing their strategies.

The approach uses a variety of memory sizes in the iterated rock-paper-scissors

and iterated prisoner’s dilemma experiments to test their effects on performance.

Whereas only a memory size of 1 is used in Littman’s soccer game to make it

more tractable. The approach uses an explicit lookahead of 1 in iterated rock-

paper-scissors as only its memory is being investigated. It also uses an explicit

lookahead of 1 in Littman’s soccer game to make it more tractable. However, it

tries explicit lookaheads of 1 and 2 in iterated prisoner’s dilemma tournaments to

test the effects on performance. The step-sizes are set relatively high to encour-

age fast learning, but not too high as to always jump outside the strategy space
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and are decayed in Littman’s soccer game in the same manner as the learning

rate in Littman, 1994 to encourage convergence. The losing step-size is always

set to double the winning step-size as in Bowling and Veloso, 2002. Finally, the

prediction length is always set to 1 as in Zhang and Lesser, 2010.

In experiments 4.6.1 and 4.6.2, memory size n means remembering the previ-

ous n opponent and n player actions i.e. (at−nopp , a
t−n
pla , a

t−n+1
opp , at−n+1

pla , . . . , at−1
opp, a

t−1
pla ).

In the experiment in Section 4.6.3, it means remembering the previous n oppo-

nent actions i.e. (at−nopp , a
t−n+1
opp , . . . , at−1

opp). Note that in all tables, lighter gradients

indicate better values, N/A refers to an unbounded memory length, and SEM

means standard error of the mean.

Table 4.2: Parameters for all agents and experiments. For Littman’s soccer
game the parameters are based on his [Littman, 1994]. Lookahead and short-term
memory size are reduced in the soccer game to make it more tractable. WoLF-
PHC step-sizes and PGA-APP prediction lengths are based on their defining
papers i.e. Bowling and Veloso, 2002 and Zhang and Lesser, 2010 respectively.

Iter. rock-paper-scissors Iter. prisoner’s dilemma Littman’s soccer

Prediction and reinforcement learning algorithms

Training exploration rate min
(
1, 1

3×10−2t

)
min

(
1, 1

3×10−2t

)
0.20

Testing exploration rate 0 0 0

Training steps 1× 104 1× 104 1× 105

Testing steps 1× 103 1× 103 1× 105

Runs 100 100 500

Learning rate 0.99 0.99
(

10
log 0.01
T

)t
Prediction algorithms

Memory size 1-3 1-4 1

Lookahead 1 1, 2, 2 1

Discount factor 0 0, 0, 0.99 0.9

Reinforcement learning algorithms

Discount factor 0.99 0, 0.99, 0.99 0.9

WoLF-PHC, WPL and PGA-APP

Step-size 0.05 0.05
(

10
log 0.01
T

)t
WoLF-PHC

Winning step-size 0.05 0.05
(

10
log 0.01
T

)t
Losing step-size 0.10 0.10 2

(
10

log 0.01
T

)t
PGA-APP

Prediction length 1 1 1
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4.6.1 Iterated Rock-Paper-Scissors

This experiment looks to answer the question: is a memory needed to learn a best-

response strategy against an opponent whose strategy depends on its previous

actions? It also looks to compare the performances of Algorithm 6 and the

reinforcement learning algorithms against these opponents. Algorithm 6 and

the reinforcement learning algorithms were played against opponents who played

deterministic action sequences repeatedly (e.g. R,P,S,R,P,S,. . . ) in iterated rock-

paper-scissors games. Additionally, Algorithm 6 was tested using each sequence

prediction method, as well as fictitious play, in turn as its prediction algorithm.

Table 4.3 shows that each agent cannot learn to play a best-response strategy

(converge to an average payoff per step of 1 i.e. win every game) if its memory is

less than the opponent’s model order (right of the dividing line). This is because

it cannot completely learn the opponent’s strategy if its memory is less than its

opponent’s model order. Thus, although it might be able to accurately predict

the opponent’s actions with a smaller model, in general this will not be possible.

Whereas, if its memory is at least as great as the opponent’s model order (left

of the dividing line), it can learn to play a best-response strategy. Table 4.3

also shows that for all memory sizes and model orders (except memory 1 order 2

and memory 2 order 3) Algorithm 6 with sequence prediction methods, gains the

highest payoffs at generally the fastest rates (i.e. has the lowest average times

to converge to payoffs). LSTM performs poorly, but has many parameters (e.g.

initial weights, activation functions, etc.), which if tuned carefully might improve

its performance.
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Table 4.3: Shows the performance of Algorithm 6, using each SP-OM algorithm
and fictitious play in turn as its prediction algorithm, and the reinforcement
learning algorithms against opponents playing deterministic action sequences re-
peatedly. Agent memory size is shown vertically increasing downward. The
opponent’s action sequence is shown horizontally with model order increasing
rightward. Avg Payoff is the average payoff (equal to the number of games won
in this case) per step over 1 × 103 testing steps (± SEM). Avg Time is the av-
erage number of training steps required to reach the Avg Payoff (± SEM). The
dark line divides players with (in)sufficient memory to model the opponent to
the (right) left. Maximum allowed time to reach an Avg Payoff was 210 training
steps so times around this value may be larger. Lighter gradients indicate better
values i.e. higher payoffs and lower times.

Name Avg Payoff Avg Time Name Avg Payoff Avg Time Name Avg Payoff Avg Time

ELPH 1 ± 0 14.7 ± 0.6 WoLF-PHC 0.645 ± 0.006 89 ± 5 N-Gram 0.667 ± 0 10 ± 0

H. N-Gram 1 ± 0 15.3 ± 0.7 PGA-APP 0.644 ± 0.008 59 ± 5 TDAG 0.667 ± 0 10 ± 0

PPMC 1 ± 0 15.6 ± 0.6 ɛ Q-Learner 0.635 ± 0.008 22 ± 3 H. N-Gram 0.667 ± 0 11 ± 0.3

TDAG 1 ± 0 15.9 ± 0.6 PPMC 0.627 ± 0.004 89 ± 8 PPMC 0.667 ± 0 17.7 ± 0.6

N-Gram 1 ± 0 16.8 ± 0.7 N-Gram 0.622 ± 0.003 46 ± 7 ActiveLeZi 0.667 ± 0 19.2 ± 0.6

ActiveLeZi 1 ± 0 18.9 ± 0.8 TDAG 0.621 ± 0.003 33 ± 5 ELPH 0.666 ± 0.0003 56 ± 4

WoLF-PHC 1 ± 0 27 ± 2 H. N-Gram 0.618 ± 0.003 46 ± 7 PGA-APP 0.652 ± 0.005 62 ± 4

PGA-APP 0.973 ± 0.009 24 ± 2 ELPH 0.617 ± 0.002 210 ± 0 WoLF-PHC 0.646 ± 0.004 71 ± 4

ɛ Q-Learner 0.97 ± 0.01 29 ± 2 ActiveLeZi 0.613 ± 0.003 53 ± 7 ɛ Q-Learner 0.582 ± 0.008 48 ± 6

WPL 0.87 ± 0.01 74 ± 6 WPL 0.374 ± 0.007 143 ± 7 WPL 0.393 ± 0.008 139 ± 7

LSTM 0.05 ± 0.04 83 ± 7 LSTM 0.001 ± 0.0004 202 ± 4 LSTM 0 ± 0.0001 194 ± 5

ELPH 1 ± 0 10 ± 0 N-Gram 1 ± 0 10 ± 0 WoLF-PHC 0.68 ± 0.01 173 ± 6

PPMC 1 ± 0 15.3 ± 0.6 TDAG 1 ± 0 10 ± 0 TDAG 0.675 ± 0.0009 10.5 ± 0.2

TDAG 1 ± 0 15.4 ± 0.6 ELPH 1 ± 0 10 ± 0 ActiveLeZi 0.674 ± 0.0009 22 ± 1

H. N-Gram 1 ± 0 16 ± 0.6 H. N-Gram 1 ± 0 41 ± 1 PPMC 0.673 ± 0.0009 15.2 ± 0.9

ActiveLeZi 1 ± 0 17.6 ± 0.7 PPMC 1 ± 0 61 ± 1 H. N-Gram 0.673 ± 0.0009 15.8 ± 0.9

N-Gram 1 ± 0 19 ± 1 ActiveLeZi 1 ± 0 64 ± 1 N-Gram 0.668 ± 0.002 72 ± 4

WoLF-PHC 0.98 ± 0.008 91 ± 3 ɛ Q-Learner 0.92 ± 0.01 45 ± 4 ɛ Q-Learner 0.64 ± 0.01 56 ± 5

ɛ Q-Learner 0.97 ± 0.01 28 ± 2 WoLF-PHC 0.91 ± 0.01 147 ± 8 PGA-APP 0.61 ± 0.01 120 ± 7

PGA-APP 0.92 ± 0.01 52 ± 3 PGA-APP 0.86 ± 0.01 109 ± 6 ELPH 0.6 ± 0.002 58 ± 4

WPL 0.65 ± 0.02 105 ± 7 WPL 0.54 ± 0.01 71 ± 6 WPL 0.375 ± 0.009 139 ± 7

LSTM -0.04 ± 0.03 115 ± 8 LSTM 0.016 ± 0.0003 210 ± 0 LSTM -0.003 ± 0.003 118 ± 7

ELPH 1 ± 0 10 ± 0 TDAG 1 ± 0 10.1 ± 0.1 TDAG 1 ± 0 10.1 ± 0.1

PPMC 1 ± 0 15.3 ± 0.6 ELPH 1 ± 0 17.2 ± 0.7 ELPH 1 ± 0 16.3 ± 0.7

TDAG 1 ± 0 15.7 ± 0.7 N-Gram 1 ± 0 19.1 ± 0.9 N-Gram 1 ± 0 47 ± 2

H. N-Gram 1 ± 0 15.7 ± 0.6 H. N-Gram 1 ± 0 42 ± 1 H. N-Gram 1 ± 0 68 ± 1

ActiveLeZi 1 ± 0 17.9 ± 0.7 PPMC 1 ± 0 61 ± 1 PPMC 1 ± 0 100 ± 2

N-Gram 1 ± 0 19 ± 1 ActiveLeZi 1 ± 0 65 ± 1 ActiveLeZi 1 ± 0 119 ± 2

WoLF-PHC 0.95 ± 0.01 181 ± 6 WoLF-PHC 0.89 ± 0.01 205 ± 3 WoLF-PHC 0.85 ± 0.01 210 ± 0

ɛ Q-Learner 0.94 ± 0.01 37 ± 4 ɛ Q-Learner 0.87 ± 0.01 71 ± 5 ɛ Q-Learner 0.84 ± 0.01 84 ± 6

PGA-APP 0.9 ± 0.02 144 ± 6 PGA-APP 0.87 ± 0.01 179 ± 6 PGA-APP 0.77 ± 0.01 198 ± 3

WPL 0.63 ± 0.01 98 ± 6 WPL 0.69 ± 0.01 208 ± 2 WPL 0.76 ± 0.01 210 ± 0

LSTM -0.106 ± 0.001 72 ± 6 LSTM 0.006 ± 0.0002 205 ± 2 LSTM 0.012 ± 0.001 188 ± 5

KMP 1 ± 0 13.5 ± 0.5 KMP 1 ± 0 10 ± 0 KMP 1 ± 0 10 ± 0

LZ78 0.986 ± 0.0004 84 ± 4 LZ78 0.98 ± 0.001 209.2 ± 0.7 LZ78 0.969 ± 0.002 210 ± 0

FP -0.335 ± 0.002 60 ± 7 FP -0.167 ± 0.001 85 ± 6 FP -0.11 ± 0.0008 92 ± 6

{R,P,S} Order 1 {R,R,P,P,S,S} Order 2 {R,R,R,P,P,P,S,S,S} Order 3
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4.6.2 Iterated Prisoner’s Dilemma

This experiment looks to answer the question: is lookahead necessary to obtain

high total payoffs against an opponent whose strategy depends on its own and

the agent’s previous actions? It also looks to compare the performances of Al-

gorithm 6 and the reinforcement learning algorithms against these opponents.

Algorithm 6 and the reinforcement learning algorithms were played against 20

finite automata (taken from Piccolo and Squillero, 2011 and described in Sec-

tion 4.4) in separate iterated prisoner’s dilemma tournaments. Additionally, Al-

gorithm 6 was tested using each sequence prediction method, as well as fictitious

play, in turn as its prediction algorithm. Each tournament’s players all faced each

other without self-play. Table 4.4a shows that reinforcement learning algorithms

with a discount factor (implicit lookahead) of 0, and Algorithm 6 with (explicit)

lookahead of 1, have average payoffs per step over all memories of 1.93 and 1.93.

Table 4.4b shows that increasing the discount factor to 0.99 and the lookahead to

2, increases these values to 2.32 and 2.62 respectively. This is because with more

lookahead agents can predict further ahead into the future, allowing them to, for

example, account for opponent reactions to their actions. Table 4.4c shows that

giving Algorithm 6 both a lookahead of 2 and a discount factor of 0.99, increases

its value further to 2.67, but with an increased average time over all memories

of 96 steps compared to 31 steps with just a lookahead of 2. The tables show

that using Algorithm 6 with lookahead 2 and sequence prediction methods with

sufficient memory gains the highest payoffs at generally the fastest rates. For

example, in Table 4.4b the highest payoff of 2.873 (1st place) after 60 steps is for

Lempel-Ziv-1978 (LZ78), whereas the highest payoff for a reinforcement learning

algorithm of 2.74 (1st place) after 180 steps is for ε-greedy Q-Learning.
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Table 4.4: Shows the performance of Algorithm 6, using each SP-OM algorithm
and fictitious play in turn as its prediction algorithm, as well as the reinforce-
ment learning algorithms when played in iterated prisoner’s dilemma tournaments
against 20 finite automata (taken from Piccolo and Squillero, 2011 and described
in Section 4.4). Agent memory size is shown at the top of each part of the table.
Avg Payoff is the average payoff per step over 1×103 testing steps (± SEM). Avg
Time is the average number of training steps required to reach the Avg Payoff (±
SEM). Position is where an agent finished in its tournament. Lighter gradients
indicate better values i.e. higher payoffs, lower times, and lower positions.

(a) Reinforcement learning algorithms with discount factor 0 and SP-OM algorithms
with lookahead 1.

Name Avg Payoff Avg Time Position Name Avg Payoff Avg Time Position

PGA-APP 2.03 ± 0.01 30 ± 3 13 PGA-APP 2.01 ± 0.01 30 ± 4 14

ɛ Q-Learner 1.94 ± 0.01 30 ± 4 16 WPL 1.949 ± 0.008 20 ± 1 17

H. N-Gram 1.94 ± 0.01 30 ± 3 16 H. N-Gram 1.933 ± 0.009 20 ± 2 16

LSTM 1.939 ± 0.009 30 ± 3 16 ActiveLeZi 1.926 ± 0.009 20 ± 1 16

PPMC 1.936 ± 0.009 20 ± 1 16 LSTM 1.925 ± 0.009 20 ± 2 16

WPL 1.932 ± 0.007 20 ± 1 17 ELPH 1.922 ± 0.009 20 ± 2 16

TDAG 1.93 ± 0.01 30 ± 2 16 PPMC 1.921 ± 0.009 30 ± 2 16

ELPH 1.93 ± 0.01 30 ± 4 16 N-Gram 1.92 ± 0.009 20 ± 2 16

ActiveLeZi 1.927 ± 0.009 20 ± 1 16 WoLF-PHC 1.92 ± 0.01 30 ± 4 17

N-Gram 1.926 ± 0.009 20 ± 2 16 TDAG 1.902 ± 0.008 20 ± 2 16

WoLF-PHC 1.89 ± 0.01 20 ± 2 18 ɛ Q-Learner 1.822 ± 0.007 20 ± 2 18

PGA-APP 2.02 ± 0.01 30 ± 3 14 PGA-APP 2.009 ± 0.008 20 ± 2 15

WPL 1.958 ± 0.008 20 ± 3 17 WoLF-PHC 1.978 ± 0.009 20 ± 3 16

WoLF-PHC 1.945 ± 0.009 20 ± 3 17 WPL 1.959 ± 0.007 20 ± 1 17

H. N-Gram 1.931 ± 0.009 20 ± 2 16 TDAG 1.94 ± 0.01 30 ± 3 16

N-Gram 1.931 ± 0.009 30 ± 3 16 PPMC 1.932 ± 0.009 30 ± 3 16

ELPH 1.924 ± 0.009 20 ± 2 16 ActiveLeZi 1.927 ± 0.009 20 ± 2 16

TDAG 1.92 ± 0.009 20 ± 2 16 ELPH 1.924 ± 0.009 20 ± 2 16

LSTM 1.92 ± 0.01 30 ± 3 16 N-Gram 1.92 ± 0.01 30 ± 3 16

PPMC 1.918 ± 0.009 20 ± 3 16 H. N-Gram 1.919 ± 0.009 20 ± 2 16

ActiveLeZi 1.917 ± 0.009 20 ± 2 16 LSTM 1.914 ± 0.008 30 ± 2 16

ɛ Q-Learner 1.773 ± 0.007 20 ± 1 18 ɛ Q-Learner 1.764 ± 0.007 20 ± 2 18

KMP 1.93 ± 0.01 20 ± 2 16

LZ78 1.927 ± 0.009 20 ± 2 16

FP 1.922 ± 0.009 30 ± 3 16

N/A

Memory Size 1 Memory Size 2

Memory Size 3 Memory Size 4
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Table 4.4

(b) Reinforcement learning algorithms with discount factor 0.99 and SP-OM algorithms
with lookahead 2.

Name Avg Payoff Avg Time Position Name Avg Payoff Avg Time Position

ɛ Q-Learner 2.68 ± 0.01 180 ± 5 1 ɛ Q-Learner 2.74 ± 0.01 180 ± 5 1

TDAG 2.607 ± 0.008 20 ± 1 1 N-Gram 2.73 ± 0.01 30 ± 2 1

N-Gram 2.601 ± 0.007 20 ± 1 1 TDAG 2.72 ± 0.01 20 ± 1 1

ELPH 2.597 ± 0.008 30 ± 2 2 H. N-Gram 2.72 ± 0.01 40 ± 3 1

H. N-Gram 2.561 ± 0.009 30 ± 1 1 ActiveLeZi 2.7 ± 0.01 40 ± 3 1

ActiveLeZi 2.56 ± 0.01 30 ± 1 1 PPMC 2.69 ± 0.01 50 ± 4 1

PPMC 2.52 ± 0.01 30 ± 2 2 ELPH 2.51 ± 0.01 30 ± 2 2

LSTM 2.5 ± 0.01 50 ± 4 6 LSTM 2.5 ± 0.01 40 ± 3 6

WPL 2.31 ± 0.01 30 ± 4 12 WPL 2.34 ± 0.01 40 ± 4 12

PGA-APP 2.17 ± 0.02 30 ± 3 13 PGA-APP 2.18 ± 0.02 40 ± 5 13

WoLF-PHC 2.1 ± 0.02 40 ± 5 13 WoLF-PHC 2.14 ± 0.01 30 ± 3 13

TDAG 2.74 ± 0.01 30 ± 3 1 TDAG 2.75 ± 0.01 20 ± 3 1

H. N-Gram 2.74 ± 0.01 40 ± 4 1 H. N-Gram 2.74 ± 0.01 50 ± 4 1

N-Gram 2.72 ± 0.01 40 ± 2 1 ActiveLeZi 2.72 ± 0.01 40 ± 3 1

PPMC 2.72 ± 0.01 50 ± 5 1 PPMC 2.72 ± 0.01 50 ± 4 1

ActiveLeZi 2.7 ± 0.01 40 ± 3 1 N-Gram 2.72 ± 0.01 60 ± 3 1

ɛ Q-Learner 2.65 ± 0.01 170 ± 5 1 ELPH 2.67 ± 0.01 140 ± 7 1

ELPH 2.54 ± 0.01 40 ± 4 2 ɛ Q-Learner 2.52 ± 0.01 170 ± 5 3

LSTM 2.47 ± 0.01 40 ± 2 7 LSTM 2.47 ± 0.01 40 ± 2 6

WPL 2.32 ± 0.01 30 ± 4 12 WPL 2.32 ± 0.01 30 ± 3 12

PGA-APP 2.18 ± 0.02 40 ± 4 12 PGA-APP 2.14 ± 0.01 30 ± 4 13

WoLF-PHC 2.14 ± 0.02 40 ± 4 13 WoLF-PHC 2.12 ± 0.01 30 ± 3 13

LZ78 2.873 ± 0.008 60 ± 4 1

KMP 2.75 ± 0.01 20 ± 2 1

FP 1.76 ± 0.006 20 ± 3 18

N/A

Memory Size 1 Memory Size 2

Memory Size 3 Memory Size 4
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Table 4.4

(c) Reinforcement learning algorithms with discount factor 0.99 and SP-OM algorithms
with lookahead 2 and discount factor 0.99.

Name Avg Payoff Avg Time Position Name Avg Payoff Avg Time Position

ɛ Q-Learner 2.68 ± 0.01 180 ± 5 1 TDAG 2.828 ± 0.009 120 ± 6 1

TDAG 2.63 ± 0.01 60 ± 4 1 N-Gram 2.817 ± 0.008 110 ± 5 1

H. N-Gram 2.62 ± 0.01 70 ± 5 1 H. N-Gram 2.817 ± 0.009 110 ± 5 1

N-Gram 2.61 ± 0.01 60 ± 4 2 ELPH 2.817 ± 0.009 120 ± 5 1

ELPH 2.6 ± 0.01 70 ± 5 3 PPMC 2.803 ± 0.008 120 ± 5 1

PPMC 2.6 ± 0.01 70 ± 4 3 ɛ Q-Learner 2.74 ± 0.01 180 ± 5 1

ActiveLeZi 2.54 ± 0.01 80 ± 7 4 ActiveLeZi 2.47 ± 0.01 50 ± 4 6

LSTM 2.34 ± 0.02 30 ± 3 12 LSTM 2.4 ± 0.01 30 ± 3 11

WPL 2.31 ± 0.01 30 ± 4 12 WPL 2.34 ± 0.01 40 ± 4 12

PGA-APP 2.17 ± 0.02 30 ± 3 13 PGA-APP 2.18 ± 0.02 40 ± 5 13

WoLF-PHC 2.1 ± 0.02 40 ± 5 13 WoLF-PHC 2.14 ± 0.01 30 ± 3 13

TDAG 2.847 ± 0.009 130 ± 5 1 PPMC 2.839 ± 0.009 140 ± 5 1

N-Gram 2.831 ± 0.008 140 ± 5 1 TDAG 2.832 ± 0.009 130 ± 5 1

H. N-Gram 2.83 ± 0.009 120 ± 5 1 H. N-Gram 2.828 ± 0.009 120 ± 5 1

PPMC 2.83 ± 0.01 140 ± 5 1 N-Gram 2.826 ± 0.009 160 ± 4 1

ELPH 2.827 ± 0.009 140 ± 6 1 ELPH 2.82 ± 0.01 180 ± 4 1

ɛ Q-Learner 2.65 ± 0.01 170 ± 5 1 ActiveLeZi 2.59 ± 0.01 90 ± 8 2

ActiveLeZi 2.51 ± 0.01 60 ± 6 3 ɛ Q-Learner 2.52 ± 0.01 170 ± 5 3

LSTM 2.35 ± 0.02 40 ± 4 12 LSTM 2.36 ± 0.01 30 ± 3 11

WPL 2.32 ± 0.01 30 ± 4 12 WPL 2.32 ± 0.01 30 ± 3 12

PGA-APP 2.18 ± 0.02 40 ± 4 12 PGA-APP 2.14 ± 0.01 30 ± 4 13

WoLF-PHC 2.14 ± 0.02 40 ± 4 13 WoLF-PHC 2.12 ± 0.01 30 ± 3 13

KMP 2.834 ± 0.008 130 ± 5 1

LZ78 2.59 ± 0.01 90 ± 7 3

FP 2.35 ± 0.01 30 ± 3 11

N/A

Memory Size 1 Memory Size 2

Memory Size 3 Memory Size 4
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4.6.3 Littman’s Soccer Game

This experiment aims to directly compare Algorithm 6 to the reinforcement learn-

ing algorithms in a larger, stochastic game. Algorithm 6 was played against the

reinforcement learning algorithms in Littman’s soccer game [Littman, 1994]. Ad-

ditionally, Algorithm 6 was tested using each sequence prediction method, as

well as fictitious play, in turn as its prediction algorithm. For a description

of Littman’s soccer game see Section 3.1.7. For Algorithm 6, an instance was

created for each game state (defined by player positions and ball possession). Ta-

ble 4.5 shows that Algorithm 6 wins above 50% of the games on average using any

prediction algorithm. Despite its simplicity, fictitious play does quite well, but

Prediction by Partial Matching version C (PPMC) has the highest performances.

In this experiment all agents learn and change their strategies over time. An-

other option would be to use agents with stationary strategies. A stationary strat-

egy could be learnt by, for example, playing a reinforcement learning algorithm in

self-play for a number of iterations and saving one of the resulting strategies. In

general, a learning agent is more likely to learn to win against an opponent with

a stationary strategy rather than an opponent with a changing strategy. This is

because against the former all opponent action observations/rewards are relevant

to build an explicit/implicit opponent model, whereas against the latter only

the most recent opponent action observations/rewards are likely to be relevant.

With more opponent action observations/rewards its explicit/implicit opponent

model and best-response strategy is likely to be more accurate. Thus, testing

Algorithm 6 against the reinforcement learning algorithms as they are learning

is arguably a more difficult test than if it were to be tested against agents with

stationary strategies. In either case it is essential for an agent’s strategy to be

non-deterministic otherwise, if the opponent learnt its strategy, then the opponent

would be able to always block/score.
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Table 4.5: Shows the average payoff (fraction of goals scored/games won) per
game (Avg Payoff) over 1 × 105 testing games (± SEM) by Algorithm 6, using
fictitious play and each SP-OM algorithm in turn as its prediction algorithm vs
each reinforcement learning algorithm in Littman’s soccer game. Lighter gradi-
ents indicate better values i.e. higher payoffs.

Name Avg Payoff Name Avg Payoff Name Avg Payoff Name Avg Payoff

PPMC 0.687 ± 0.006 PPMC 0.701 ± 0.006 PPMC 0.717 ± 0.004 PPMC 0.648 ± 0.006

LSTM 0.635 ± 0.004 LSTM 0.638 ± 0.005 H. N-Gram 0.674 ± 0.002 H. N-Gram 0.608 ± 0.003

TDAG 0.63 ± 0.004 FP 0.637 ± 0.004 N-Gram 0.665 ± 0.001 ActiveLeZi 0.599 ± 0.004

H. N-Gram 0.628 ± 0.003 N-Gram 0.614 ± 0.003 LSTM 0.659 ± 0.003 FP 0.593 ± 0.003

LZ78 0.621 ± 0.004 H. N-Gram 0.612 ± 0.003 TDAG 0.659 ± 0.002 TDAG 0.589 ± 0.004

N-Gram 0.62 ± 0.003 ActiveLeZi 0.606 ± 0.004 FP 0.655 ± 0.003 LSTM 0.585 ± 0.004

ActiveLeZi 0.618 ± 0.003 TDAG 0.606 ± 0.004 LZ78 0.653 ± 0.002 N-Gram 0.582 ± 0.003

ELPH 0.601 ± 0.004 LZ78 0.602 ± 0.004 ActiveLeZi 0.651 ± 0.002 LZ78 0.574 ± 0.003

FP 0.536 ± 0.003 ELPH 0.576 ± 0.003 ELPH 0.637 ± 0.002 ELPH 0.565 ± 0.003

KMP 0.524 ± 0.002 KMP 0.564 ± 0.003 KMP 0.62 ± 0.002 KMP 0.553 ± 0.003

PGA-APP ɛ Q-Learner WoLF-PHC WPL 

4.7 Chapter Summary

This chapter has proposed an approach for learning high-reward strategies against

opponents whose strategies are based on memories of interaction, or whose strate-

gies are changing in small-simultaneous move game. This approach has three

parts. Firstly, adapting and applying a sequence prediction method to model

this type of opponent, secondly, learning the agent’s own (possibly discounted) re-

wards using a reinforcement learning method, and finally, using the learnt model

and rewards to explicitly lookahead using tree-search. More lookahead allows

agents to consider further into the future. Making accurate predictions about

this future in this approach is dependent on having accurate opponent models

and accurate reward estimates. Empirical results show that given enough mem-

ory and lookahead, this approach generally gains higher rewards at faster rates

against opponents of variable memory sizes compared to popular and state-of-the-

art reinforcement learning algorithms. Additionally, this approach gains higher

rewards when played directly against the reinforcement learning algorithms in a

large zero-sum soccer game. However, the higher rewards do come at the cost

of higher time complexities compared to the reinforcement learning algorithms.

In particular, the time and space complexities of a sequence prediction method

can grow exponentially with its lookback and the time complexity of exhaus-

tive breadth-first search lookahead grows exponentially with its depth. Thus it

is necessary for the lookback and lookahead to be set sufficiently small for the
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approach to have a time complexity comparable to that of the reinforcement

learning algorithms.

The results do not show that any single sequence prediction method is ob-

jectively better or worse than the others across all experiments. However, they

do show that PPMC has the highest rewards against the reinforcement learning

algorithms in Littman’s soccer game whereas KMP has the lowest. In the iter-

ated rock-paper-scissors games, many sequence prediction methods are able to

completely model the opponents given sufficient memory and thus to play best-

response strategies with small variations in the times taken to do this. Overall

ELPH, KMP, and TDAG are amongst the best methods in these games whereas

FP and LSTM are amongst the worst. In the iterated prisoner’s dilemma tourna-

ments all methods perform similarly with a discount factor of 0 and a lookahead

of 1. When increasing the lookahead to 2 KMP, LZ78, and TDAG are amongst

the best methods whereas FP and LSTM are amongst the worst. When also

increasing the discount factor to 0.99 KMP, PPMC, and TDAG are amongst the

best methods whereas FP and LSTM are amongst the worst.



Chapter 5

Opponent Modelling with

Expectation-Maximisation,

Sequence Prediction, and

No-Regret Learning

This chapter, which is based on [Mealing and Shapiro, under review], builds on

the work in Chapter 4 by using sequence prediction to model changing opponent

strategies in larger domains with hidden information. Specifically, this chap-

ter looks at a pair of two-player, imperfect information, zero-sum, turn-based

(sequential-move) poker games of medium-size, namely die-roll poker and Rhode

Island hold’em. In previous games, including rock-paper-scissors, the iterated

prisoner’s dilemma, and Littman’s soccer game [Littman, 1994], the hidden in-

formation is the opponent’s actions as both players select their actions simulta-

neously. Since these poker games are turn-based, there is no uncertainty in the

opponent’s actions. Instead, the hidden information is in the context, or state,

that the opponent takes its actions. This hidden information originates from each

player being assigned private information, usually at the beginning but also some-

times during the game. It is assumed that the opponent’s hidden information is

at least partially revealed at the end of some games. Specifically, either its exact

hidden information, or a possible subset of it, is revealed at a showdown, where

neither player has folded (given up) during the game. It is also assumed that

each player can have perfect recall if it chooses to, meaning it does not forget any

information it chooses to observe.

133



CHAPTER 5. OM WITH EM, SP, AND NO-REGRET LEARNING 134

The purpose of an opponent model is to predict the opponent’s actions given

its information. Thus, learning an opponent model requires observations of the

opponent’s actions with its corresponding information. However, in this case, the

opponent has hidden information, which may only be partially revealed at the

end of each game. The actions of a typical opponent will give indications of its

hidden information i.e. often betting with strong hands and folding with weak

hands. The first proposal is then to infer its hidden information, when it is not

revealed, based on its actions using expectation-maximisation. This is an iterative

procedure to compute maximum likelihood estimates of model parameters given

partially observed data. In this case, the model is of the opponent’s strategy, the

observed data is the opponent’s actions given the agent’s information (public ac-

tions and the agent’s hidden information), and the hidden data is the opponent’s

hidden information. The opponent’s strategy is not assumed to be stationary.

The second proposal is then to use sequence prediction to predict a changing

opponent strategy such that for each of its decision points, identified using its

inferred hidden information, its actions are predicted using its actions at that

point from previous games. Sequence prediction would find effective predictive

contexts amongst different interaction memories. Finally, even with an opponent

model, you still need to decide how to use it to improve your strategy, which is

more difficult if it has inaccuracies. The third proposal is then to simulate games

against the opponent model. Assuming the agent can learn from games, then

this will improve its strategy against the opponent model, which if accurate, will

improve its strategy against the opponent. Simulating games is advantageous be-

cause it lets you choose the number of simulations to control the computational

cost as well as how much the opponent model is relied on. Additionally, the

agent’s strategy can be updated using any algorithm that uses the rewards from

games.

In short, three proposals are put forward in this chapter, which can be used

online; two for building an opponent model, specifically to handle hidden infor-

mation (1) as well as changes in the opponent’s strategy (2), and one for using

an opponent model, which may have inaccuracies (3). The three proposals are as

follows:

1. To use expectation-maximisation to infer the opponent’s hidden information

when it is not revealed.

2. To use sequence prediction to model the opponent’s strategy and predict
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its actions based on its inferred hidden information and its actions from

previous games.

3. To simulate games against the opponent model in-between games against

the opponent to improve learning.

The expectation-maximisation algorithm works as follows. It models the op-

ponent’s strategy as a set of categorical distributions, one for each of its decision

points over its actions at that decision point. At the end of a game, if the oppo-

nent’s hidden information is not fully observed, then the decision points that it

acted at are unknown. In this case, it treats each opponent action as a sample

from a mixture of the categorical distributions associated with the decision points

that it could have acted at. It then: 1. infers a distribution over the opponent’s

hidden information using the categorical distributions parameters (E-step), and

2. updates the categorical distributions parameters by maximising their likelihood

given the inferred opponent’s hidden information distribution (M-step). Finally,

the opponent’s hidden information is inferred by sampling from the distribution

over it that was inferred in the E-step. Although these categorical distributions

could be used to predict the opponent’s actions, this would not consider its strat-

egy changing. This is why instead, a sequence prediction method is used, which

can account for changes in its strategy.

A sequence prediction method is used as follows. An instance of it is created

for each opponent decision point. After each game, the opponent’s decision points

are worked out using its hidden information, which was either observed or inferred

by the expectation-maximisation algorithm. The sequence prediction method in-

stances associated with those decision points observe the opponent’s actions taken

at them. For each opponent decision point, the associated sequence prediction

method instance can predict a distribution over the opponent’s actions, aopp, at

it conditioned on its knowledge, I, as well as a sequence of previous opponent

actions at that decision point, (a1
opp, a

2
opp, . . . ), i.e. Pr(aopp|I, (a1

opp, a
2
opp, . . . )).

For every game played against the opponent, a number of games are simulated

against the opponent model to try to improve the agent’s strategy. In each

simulated game, opponent actions are chosen by sampling from opponent action

distributions predicted by the sequence prediction method instances, and a state-

of-the-art no-regret learning algorithm is used to update the agent’s strategy using

rewards from actual and simulated games. If the opponent model is completely

accurate, then playing a best-response strategy against it would maximise the
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agent’s expected rewards. So why does it not play a best-response strategy against

the opponent model each game? The reason is that the opponent model is unlikely

to be completely accurate, particularly near the beginning of interaction when it

only has data from a few games. This matters because Johanson, Zinkevich, and

Bowling, 2008 showed that even a slightly inaccurate best-response strategy can

have a very low expected reward. This proposal will exploit the opponent less if

the opponent model is completely accurate, but is likely to be less exploitable if

it is inaccurate. Many opponent models require knowledge outside the rules of

the game, or assume that the opponent’s strategy is stationary, or both. This

opponent model has several advantages: 1. it can be built and used online; 2. it

does not require knowledge outside the rules of the game; 3. it can infer the

opponent’s hidden information via expectation-maximisation; 4. it can predict

the actions of an opponent with a changing strategy via sequence prediction and

5. it can be used with any strategy update method that only requires results from

games.

The three proposals are tested in a pair of two-player simplified poker games

against various opponents. However, the proposals are applicable to situations

with more than two agents by modelling each agent separately, and training

against all of them. The primary idea is that the proposals will give higher

average payoffs per game than not using them. The secondary ideas are as fol-

lows. Firstly, that inferences of the opponent’s hidden information based on its

behaviour using expectation-maximisation will give higher average payoffs per

game in the approach than inferences ignoring its behaviour. Secondly, pre-

dictions of the opponent’s actions using a sequence prediction method will give

higher average payoffs per game in the approach than predictions using empirical

probabilities. Experiments in the pair of simplified poker games measuring the

changes in the agent’s average payoff per game confirm these ideas.

5.1 Opponent Modelling in Poker

A large part of opponent modelling research in games with hidden information,

otherwise known as imperfect information games, has focused on poker due to

its huge popularity. Some approaches use domain-specific heuristics and ex-

pert knowledge. For example, Billings et al., 1998 propose a multi-player Texas

hold’em agent named Loki, whose strategy is based on poker-specific heuristics,
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i.e. effective hand strength, which is calculated using hand strength, hand po-

tential, pot odds, and opponent models. Other approaches use large databases

of human play. For example, the opponent modelling by Billings et al., 1998

is improved by Davidson et al., 2000 through experiments with neural networks

trained on hands played in the Internet Relay Chat (IRC) poker server. A second

example is by Ponsen et al., 2008, where they use games played in an online multi-

player no-limit Texas hold’em room to learn a relational regression tree-function

to adapt prior opponent models to specific opponents. A third example is by

Broeck, Driessens, and Ramon, 2009, where they apply Monte Carlo Tree Search

(MCTS) to multi-player no-limit Texas hold’em, and learn opponent models us-

ing games played in an online casino. A final example is by Rubin and Watson,

2010, where they look at a two-player limit Texas hold’em agent named SARTRE

(Similarity Assessment Reasoning for Texas hold’em via Recall of Experience),

which acts by re-using solutions similar to its situation from a large database of

human poker hands.

Many approaches use Bayesian probabilistic models. For example, Korb,

Nicholson, and Jitnah, 1999 propose a Bayesian Poker Program for two-player

five-card stud poker, which learns through experience using a Bayesian network

to model each player’s hand, opponent behaviour conditioned on its hand, and

betting curves that govern play given a probability of winning. A second example

is by Southey et al., 2005, where they propose a Bayesian probabilistic opponent

model for two-player poker games, which infers a posterior opponent strategy

given a prior and observations of its play. A final example is by Baker and Cowl-

ing, 2007, where they use Bayesian opponent modelling in multi-player one-card

poker to classify opponents based on their behaviour as loose or tight, as well as

passive or aggressive, and to counter the most dangerous type.

Another set of approaches use best-response strategies, or approximate Nash

equilibrium strategies, or both. For example, Risk and Szafron, 2010 use ap-

proximate Nash equilibrium strategies in three-player limit Texas hold’em, which

they find using counterfactual regret minimisation. Two more examples are by

Johanson and Bowling, 2009; Johanson, Zinkevich, and Bowling, 2008, firstly us-

ing Restricted Nash Response (RNR) strategies, and secondly using Data Biased

Response (DBR) strategies, the latter being an enhancement of the former, which

they also find using counterfactual regret minimisation. RNR and DBR strategies
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tradeoff between exploiting an opponent and being exploitable by solving a mod-

ified game to potentially achieve strategies with lower exploitability for a given

degree of exploitation. Ponsen, Lanctot, and Jong, 2010 use Monte Carlo sam-

pling to speed up the convergence of RNR strategies. A fourth example is by Bard

et al., 2013, where they compute a set of RNR and DBR strategies against cer-

tain opponents offline and find the mixture that maximises their expected reward

online using a multi-armed bandit algorithm. A final example is by Ganzfried

and Sandholm, 2011, where they propose Deviation Based Best-Response, which

initialises prior opponent action distributions as if they have played a number

of fictitious hands according to an approximate Nash equilibrium strategy, and

then updates them through observations of their play. It uses these posterior

distributions to compute an opponent model that is close to the approximate

Nash equilibrium, making it less exploitable, and plays a best-response strategy

against it.

For more information the reader is referred to the review by Sandholm, 2010

on the state of solving incomplete-information games, and the review by Ru-

bin and Watson, 2011 on algorithms, approaches, and agents in computer poker.

The expectation-maximisation algorithm in this approach is related to approaches

that use Bayesian probabilistic models in that it makes use of Bayes’ rule. Ad-

ditionally, the state-of-the-art no-regret algorithm in this approach is based on

counterfactual regret minimisation, which is an algorithm that is also used by1

to calculate best-response strategies, approximate Nash equilibria, and combina-

tions between both. This work differs from2 in that it does not use knowledge

outside the rules of the game and the opponent model is updated online using

only information accessible to the agent. This work also differs from3 in that

it is not assumed that the opponent uses a stationary strategy. One advantage

of these differences is that it makes this work applicable to more opponents and

more imperfect information turn-based games (or situations that can be modelled

as such). Another advantage is that by simulating games against the opponent

model, instead of immediately playing a best-response strategy against it, which

1Bard et al., 2013; Johanson and Bowling, 2009; Johanson, Zinkevich, and Bowling, 2008;
Ponsen, Lanctot, and Jong, 2010; Risk and Szafron, 2010.

2Baker and Cowling, 2007; Billings et al., 1998; Broeck, Driessens, and Ramon, 2009; David-
son et al., 2000; Korb, Nicholson, and Jitnah, 1999; Ponsen et al., 2008; Rubin and Watson,
2010; Southey et al., 2005.

3Bard et al., 2013; Ganzfried and Sandholm, 2011; Johanson and Bowling, 2009; Johanson,
Zinkevich, and Bowling, 2008; Ponsen, Lanctot, and Jong, 2010; Risk and Szafron, 2010.
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Johanson, Zinkevich, and Bowling, 2008 showed can be brittle, the strategy will

be more robust to inaccuracies in the opponent model. Out of the prior ex-

ploitation approaches designed to model dynamic opponents in real-time, only

the MCTS approach by Broeck, Driessens, and Ramon, 2009 reports effective

results. If their approach did not require prior knowledge in the form of training

its opponent model using a large database of games, it could have served as a fair

comparison to this approach.

5.2 Expectation-Maximisation

The EM algorithm, first proposed by Dempster, Laird, and Rubin, 1977, can itera-

tively calculate maximum likelihood estimates of parameters in a statistical model

dependent on latent (unobserved) variables. It alternates between an expectation

(E) step and a maximisation (M) step. The E-step creates a function for the ex-

pectation of the log-likelihood evaluated using current parameter estimates. The

M-step updates parameters by maximising the expected log-likelihood computed

in the E-step. These new parameters are then used to determine the probability

distribution of the latent variables in the next E-step and the algorithm iterates.

The EM algorithm will always converge and will always produce a, possibly local,

maximum likelihood estimate. This estimate may be improved through multiple

runs with different initialisations. The E and M steps are iterated until a ter-

mination condition is met (e.g. convergence, a time limit, a computation limit,

etc.).

Designing an EM algorithm can be broken down into three steps. The first

step is to construct a model for the observed data by writing down an equation

for its log-likelihood. This usually includes the log of a sum over the possible

values of the hidden data. The sum prevents the log from acting directly on

the joint distribution of the observed and hidden data, resulting in complicated

maximum likelihood solutions. If the hidden data was known, then the log would

act directly on the joint distribution. The second step is to determine the E-

step, which replaces the hidden data with its expected value calculated using the

current model parameters, which are assumed to be correct. The final step is to

determine the M-step, which maximises the likelihood of the model parameters

by assuming that the hidden data calculated in the E-step is correct.
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An online EM algorithm estimates the hidden data and model parameters on-

the-go, without needing to store the observed data, and by continuously updating

the estimates with each new observation. The standard EM algorithm requires

the entire set of observations to be accessible on each iteration. This makes it

impractical when there is a lot of data, or when the data is being streamed, or

both. Thus, online EM algorithms bypass this limitation. Liang and Klein, 2009

provide a good overview of online EM algorithms, and this chapter uses what

they refer to as a stepwise EM algorithm. The stepwise EM algorithm was de-

veloped by Sato and Ishii, 2000 and generalised by Cappé and Moulines, 2008.

It stochastically approximates the E-step to add each new observation iteratively

and leaves the M-step unchanged. The stepwise EM algorithm of this thesis

is inspired by Cappé and Moulines, 2008 as well as by the application of their

algorithm by Butterworth, 2010 to poker. The stepwise EM algorithm is guar-

anteed to converge to a, possibly local, maximum likelihood estimate as long as

the step size follows the standard conditions from the stochastic approximation

literature. These conditions restrict the step size ηt such that
∑∞

t=0 ηt = ∞ and∑∞
t=0 η

2
t <∞, where t is the parameter update number (i.e. initialisation is t = 0

and first update is t = 1). For the online EM algorithm proposed in this chapter

the step size, ηt, is set to ηt = 1
t

and the sufficient statistics are used to predict

the opponent’s hidden information.

5.3 Games in the Experiments

A pair of two-player, imperfect information, zero-sum, turn-based poker games

are used in the experiments namely die-roll poker and Rhode Island hold’em.

It is assumed that the players in both games can have perfect recall if they

choose, meaning that they can remember the exact sequence of observable actions.

In both of these poker games each player has, at most, three actions when on

turn. Each player can either fold (F), giving up the pot, or call (C), matching

its opponent’s current bet, or raise (R), matching and exceeding its opponent’s

current bet by a fixed amount. If no one folds, then a showdown eventually occurs

and the player with the best hand (composed of dice or cards) wins the pot. When

playing Rhode Island hold’em, each player assumes that it is playing a version of

the game that has been abstracted using percentile bucketing based on expected

hand strength squared. The reason for this is that players one and two each
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have too many information sets on turn, 2.50 × 107 and 2.46 × 107 respectively,

to learn effective strategies within 1× 105 games, which is the number of games

chosen to evaluate agents over in the experiments. Evidence for this is shown in

Section 5.6.1. All of these games are fully described in Section 3.1.7.

5.4 Opponents in the Experiments

This chapter uses opponents based on popular and state-of-the-art no-regret and

reinforcement learning algorithms in the experiments. These opponents are as

follows:

• OS-MCCFR (without an opponent model) by Lanctot et al., 2009.

• PGA-APP (Policy Gradient Ascent with Approximate Policy Prediction),

a state-of-the-art, Q-Learning based, reinforcement learning method by

Zhang and Lesser, 2010.

• UCB (Upper Confidence Bounds), a popular adaptive bandit algorithm, see

Auer, Cesa-Bianchi, and Fischer, 2002.

• CFRX (CFR with X iterations) by Zinkevich et al., 2008, not an agent in

itself but used to generate approximate Nash equilibrium strategies (only

used in die-roll poker).

Since Upper Confidence Bounds (UCB) is designed for a single-state environment,

an instance of it is used for each of the opponent’s information sets where it acts.

The average reward for each UCB instance is set to the average of the rewards re-

ceived in the games involving its associated information set. OS-MCCFR is used

as an opponent because firstly it is a state-of-the-art no-regret learning algorithm,

and secondly because this chapter tests if using it with an opponent model can im-

prove its average payoff per game. PGA-APP is used as an opponent because it is

a state-of-the-art reinforcement learning algorithm. UCB is used as an opponent

because it is a popular and well-understood adaptive bandit algorithm. Finally,

CFRX is used as an opponent because by varying the number of iterations X,

a variety of opponents can be created with increasing strengths as X increases.

This is due to the theoretical guarantee that the average strategy of CFR will

converge to an ε-Nash equilibrium strategy in self-play with ε decreasing as the

number of iterations increases [Zinkevich et al., 2008]. This chapter tests if the
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opponent model improves the average payoff per game against these opponents.

The agent using this approach is labelled OS-MCCFR with an Opponent Model

or just OS-MCCFR OM.

5.5 The Approach

5.5.1 Expectation-Maximisation in the Opponent Model

The opponent’s strategy σopp, is a set of discrete probability distributions, one

for each of its information sets where it acts σopp = {fA(I) : I ∈ Iopp and P (I) =

opp}, where fA(I) is a probability mass function over A(I). To model it, a set

of sequence predictors P are created, one for each of the opponent’s information

sets where it acts P = {pI : I ∈ Iopp and P (I) = opp}. Each sequence predictor

pI observes the opponent’s actions in its associated information set I over games

and predicts a discrete probability distribution over the opponent’s future actions

in that information set. The problem is that in order to know which opponent

information sets the opponent acted in, its hidden information needs to be known,

which is only sometimes revealed at the end of a game. Thus, this approach waits

until the end of a game before updating the opponent model. If the opponent’s

hidden information is not fully revealed, then it is predicted. The observation or

prediction of the opponent’s hidden information allows its information sets that

it acted in to be identified and the associated sequence predictors to observe the

actions taken in them.

The first question is: how is the opponent’s hidden information predicted?

The opponent’s hidden information is predicted by sampling from a probabil-

ity distribution over its possible instances of hidden information. Recall from

Section 3.1.3 that a node or history can be represented as a unique sequence of

actions taken to reach it h = (a1, a2, . . . , am), where each action ai, 1 ≤ i ≤ m,

is taken by one of the players. An information set can also be represented as a

sequence of actions, except some of those actions are hidden. For example, in

die-roll poker a node could be h = ( , , r, c, , , c) where player one rolled

two, player two rolled four, player one raised, player two called, player one rolled

five, player two rolled three and player one called. At this point, neither player

has seen the other’s die-rolls. From player two’s perspective, its information set

would be (D1, , r, c,D3, , c) ∈ I2 where D1 and D3 are player one’s hidden
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six-sided die-rolls. From player one’s perspective, its information set would be

( , D2, r, c, , D4, c) ∈ I1 where D2 and D4 are player two’s hidden six-sided

dice-rolls.

Let player i’s information set I = {Hi, S} ∈ Ii, where Hi is its private or

hidden information and S is the sequence of actions visible to both players. Using

the last example, write (D1, , r, c,D3, , c) = {H2, S} = {( , ), (r, c, c)} ∈ I2

and ( , D2, r, c, , D4, c) = {H1, S} = {( , ), (r, c, c)} ∈ I1.

Using this notation, the agent observes its own information set {Hpla, S} ∈ Ipla

and wants to predict the opponent’s information set {Hopp, S} ∈ Iopp. Since the

public actions S are already known, only the opponent’s hidden information Hopp

needs to be predicted. Using Bayes’ rule the agent can predict the probability of

the opponent’s hidden information given its hidden information and the public

actions as

Pr(Hopp|Hpla, S) =
Pr(S|Hpla,Hopp) Pr(Hpla,Hopp)∑
H′opp

Pr(S|Hpla,H′opp) Pr(Hpla,H′opp)
. (5.1)

The second question is: how does it predict Pr(S|Hpla,Hopp)? The probabil-

ity of all the public actions given the hidden information is the product of the

probability of each public action given the hidden information i.e.

Pr(S|Hpla,Hopp) =

|S|∏
i=1

Pr(ai|(a1, a2, . . . , ai−1),Hpla,Hopp). (5.2)

Substituting Equation 5.2 into Equation 5.1 gives

Pr(Hopp|Hpla, S) =
Pr(S|Hpla,Hopp) Pr(Hpla,Hopp)∑
H′opp

Pr(S|Hpla,H′opp) Pr(Hpla,H′opp)
=∏|S|

i=1 Pr(ai|(a1, a2, . . . , ai−1),Hpla,Hopp) Pr(Hpla,Hopp)∑
H′opp

∏|S|
i=1 Pr(ai|(a1, a2, . . . , ai−1),Hpla,H′opp) Pr(Hpla,H′opp)

. (5.3)

Equation 5.3 can be simplified by cancelling out the agent’s action probabilities,

as these are the same for each possible instance of the opponent’s hidden infor-

mation. In turn, since the opponent’s action probabilities only depend on its

hidden information, then the agent’s hidden information can be removed from
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the conditions. This leads to

Pr(Hopp|Hpla, S) =∏|S|
i=1 Pr(ai|(a1, a2, . . . , ai−1),Hopp)bi Pr(Hpla,Hopp)∑

H′opp

∏|S|
i=1 Pr(ai|(a1, a2, . . . , ai−1),H′opp)bi Pr(Hpla,H′opp)

where bi =

{
1 if ai is an opponent action

0 otherwise
. (5.4)

The third question is: how does it calculate Pr(Hpla,Hopp)? The probability

of the player and the opponent having particular instances of hidden information

depends on the game. In die-roll poker, each six-sided die-roll is independent

and Pr(Hpla,Hopp) = Pr(Hpla) Pr(Hopp) = 1

6
|Hpla||Hopp| . In Rhode Island hold’em,

each card draw is not independent as card draws are from the same fifty-two

card deck and Pr(Hpla,Hopp) = 1
|D|(|D|−1)

where |D| is the size of the deck. For

die-roll poker and Rhode Island hold’em, the joint probability of the players’

hidden information is independent of what that hidden information is, mean-

ing that Pr(Hpla,H′opp) would factor out in the denominator and cancel with

Pr(Hpla,Hopp) in the numerator of Equation 5.4. However, in general this is

not the case. For example, in bucketed Rhode Island hold’em, if the public

cards have a high squared expected hand strength, then the probability of each

player’s hand being in a high bucket sequence is higher, and if a player’s hand

is in a particular bucket sequence, then it is slightly less likely that the oppo-

nent’s hand is in the same bucket sequence. For bucketed Rhode Island hold’em,

in Equation 5.4, first substitute Pr(Hpla,Hopp) = Pr(Hopp|Hpla) Pr(Hpla) and

Pr(Hpla,H′opp) = Pr(H′opp|Hpla) Pr(Hpla) and since the agent’s own hidden in-

formation is fixed then Pr(Hpla) can be factored out of the denominator and

cancelled with the same term in the numerator. Calculating Pr(Hopp|Hpla) ex-

actly can be done through enumeration. For bucketed Rhode Island hold’em, this

involves counting how many times its hand is in the bucket sequence Hopp, and

dividing by the number of times its hand is in any bucket sequence.

The fourth question is: how does it predict Pr(ai|(a1, a2, . . . , ai−1),Hopp) where

ai is an opponent action? If ai is an opponent action, then the opponent’s hidden

informationHopp and all previous public actions (a1, a2, . . . , ai−1) represent an op-

ponent information set where the opponent acts I = {Hopp, (a1, a2, . . . , ai−1)} ∈
Iopp where P (I) = opp. It could use the sequence predictor pI to predict Pr(ai|I).



CHAPTER 5. OM WITH EM, SP, AND NO-REGRET LEARNING 145

The problem with this is that it can create a sort of negative feedback loop. If the

sequence predictor is inaccurate, which it probably will be initially, then its pre-

diction of Pr(ai|I) will be inaccurate, making the prediction of Pr(Hopp|Hpla, S)

inaccurate, which will result in the wrong sequence predictors being updated,

possibly making the next prediction of Pr(Hopp|Hpla, S) even more inaccurate.

Instead of using sequence predictors, which cannot readily be partially updated

by making fractional observations to account for uncertainty, this approach uses

empirical probabilities, which can be partially updated to account for uncertainty.

Specifically, the EM component assumes that each discrete probability distri-

bution fA(I) in the opponent’s strategy σopp = {fA(I) : I ∈ Iopp and P (I) = opp}
is a fixed categorical distribution. The parameters of fA(I) are the opponent’s

action probabilities at I. The idea is to set each parameter of each fA(I) to its

maximum likelihood estimate given the observations. If samples from fA(I) could

be observed, then maximising its parameters would be relatively easy. However,

the number of times that the opponent has played action a in I, or the total

number of actions that it has played in I, may be unknown. This is because if

the opponent’s hidden information is not observed, then the information sets that

it played actions in are hidden. Thus, instead of observing samples from fA(I),

samples are observed from a mixture of these categorical distributions, which in-

clude fA(I). In general, the maximum likelihood estimate for the probability of

sampling category c from a categorical distribution d, given N samples from a

mixture of K categorical distributions (including d) each with D categories, is

the sum of the responsibilities of d to each c sample divided by the sum of the

responsibilities of d to any sample i.e.

µdc =

∑N
n=1 γ(znd)xnc∑D

i=1

∑N
n=1 γ(znd)xni

where γ(znd) =
πd Pr(~xn|~µd)∑K
j=1 πj Pr(~xn|~µj)

, (5.5)

µdc is the probability of sampling category c from categorical distribution d, znd is

the d-th component of the 1-of-K encoded vector ~zn, γ(znd) is the responsibility of

d to sample n, xnc is the c-th component of the 1-of-D encoded vector ~xn and πd is

the probability of sampling from d. This is derived in Appendix A.2. Equation 5.5

can be used to set the parameters of the EM component’s categorical distributions

to their maximum likelihood estimates. In this case, πd is the probability of having
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played into the opponent information set associated with d and Pr(~xn|~µd) is the

probability of the opponent’s action sampled from d. Thus, γ(znd) is equal to

Equation 5.4

γ(znd) = Pr(Hopp|Hpla, S) =∏|S|
i=1 Pr(ai|(a1, a2, . . . , ai−1),Hopp)bi Pr(Hpla,Hopp)∑

H′opp

∏|S|
i=1 Pr(ai|(a1, a2, . . . , ai−1),H′opp)bi Pr(Hpla,H′opp)

where bi =

{
1 if ai is an opponent action

0 otherwise
. (5.6)

Iterative updates can be applied to µdc by rewriting Equation 5.5 as

µdc =

(∑N−1
n=1 γ(znd)xnc

)
+ γ(zNd)xNc(∑D

i=1

∑N−1
n=1 γ(znd)xni

)
+
∑D

i=1 γ(zNd)xNi
. (5.7)

A map from opponent information sets to real numbersMv : Iopp → R can be used

to store the numerator of Equation 5.5. For example, given a particular opponent

information set I ∈ Iopp where the opponent acts P (I) = opp the probability of

sampling action c ∈ A(I) from its categorical distribution d = fA(I) is

µdc =

∑N
n=1 γ(znd)xnc∑D

i=1

∑N
n=1 γ(znd)xni

=
Mv((I, c))

Mv(I)
. (5.8)

The map Mv is the (expected) visit counts because the numerator of Equation 5.8

can be seen as the expected number of times action c is sampled from distribution

d at opponent information set I, which in this case is the same as the expected

number of times opponent information set (I, c) is visited. Likewise, the denom-

inator of Equation 5.8 can be seen as the expected number of times any action is

sampled from distribution d at opponent information set I, which in this case is

the expected number of times opponent information set I is visited.

At the end of a game, let the opponent’s reached terminal information set be

{Hopp, S} ∈ Iopp. For each opponent information set I ∈ Iopp that the opponent

could have acted at P (I) = opp, where I = {Hopp, (a1, a2, . . . , ai)} and i < |S|,
update the parameters of the categorical distribution d = fA(I) associated with I

using the action that the opponent could have sampled from it ai+1 as follows:

1. E-step: Calculate γ(znd) using Equation 5.6.
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2. M-step: Update the parameters of d using Equation 5.7.

The opponent’s hidden information hopp can now be sampled from the categorical

distribution Pr(Hopp|Hpla, S) computed in the E-step and used to update the

relevant sequence predictors.

Observe action ai+1 with the sequence predictor

Mpred({hopp, (a1, a2, . . . , ai)}) for all 0 ≤ i ≤ |S|
where P ({hopp, (a1, a2, . . . , ai)}) = opp. (5.9)

Here Mpred is a map from opponent information sets where the opponent acts to

sequence predictors Mpred : {I : I ∈ Iopp and P (I) = opp} → P . Algorithm 8

shows the details of the opponent model.

5.5.2 Sequence Prediction in the Opponent Model

Whereas in Chapter 4 many sequence prediction methods were considered, here

only ELPH by Jensen et al., 2005 is used to predict the opponent’s actions. This

is because rather than comparing sequence prediction methods, this chapter is

looking to use any sequence prediction method to improve the agent’s final perfor-

mance. The main advantage of ELPH is that it can rapidly learn a non-stationary

opponent strategy, which has allowed it to be used to defeat human and agent

players in simple games [Jensen et al., 2005] and will allow it to be helpful against

dynamic opponents. The opponent model creates a set of sequence predictors P ,

which are instances of ELPH, one for each of the opponent’s information sets

where it acts P = {pI : I ∈ Iopp and P (I) = opp}. At the end of each game, the

opponent’s hidden information is sampled from a probability distribution, which

is inferred using online expectation-maximisation. Using this information, the

opponent information sets that the opponent acted at during the game are pre-

dicted and the sequence predictors associated with them observe the opponent’s

actions taken in them. Each instance of ELPH observes opponent actions in its

associated opponent information set taken across different games. If a dynamic

opponent changes this action distribution, then the ELPH instance will rapidly

learn the new distribution from its set of observation-based hypothetical con-

ditional distributions favouring those with low entropy and high predictability.

The ELPH algorithm is shown in Algorithm 7 and includes the Observe and
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Predict functions called by the opponent model.

ELPH works by forming distributions conditioned on interaction histories of

different lengths, pruning those with high entropies, and predicting using one with

the minimum entropy. Given an observation, s ∈ Σ, it generates the set of all

subsequences of its short-term memory, P(S), and for each subsequence creates

or updates a distribution conditioned on it by incrementing the count for the

subsequence and the observation in its long-term memory, L(S ′, s)← L(S ′, s)+1

for all S ′ ∈ P(S). It then prunes each conditional distribution (by removing its

counts) if its normalised Shannon entropy, H, is above a passed in threshold,

Hl, for each S ′ ∈ P(S) L \ (S ′, s) for all s ∈ Σ if H(L(S ′)) > Hl. Finally it

adds the observation to the end of its short-term memory and removes the first

observation if S is above its size-k limit. To make a prediction, it again gets the

set of all subsequences of its short-term memory, P(S), and predicts using the

distribution conditioned on one of these subsequences with the minimum reliable

Shannon entropy, Hrel, arg minS′∈P(S) Hrel(L(S ′)).
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Algorithm 7 Entropy Learned Pruned Hypothesis Space (ELPH)

Require: Lookback (short-term memory size) k ∈ N+, entropy threshold (0 ≤
Hl ≤ 1) ∈ R and a set of symbols (possible observations) Σ.

1: Initialise short-term memory, which is a sequence of symbols S ← ().
2: Initialise long-term memory, which is a map from sequences of symbols and

symbols to counts L : (s1, s2, . . . , si)× Σ→ N0 where 0 ≤ i ≤ k and si ∈ Σ.
3: function Observe(a symbol s ∈ Σ)
4: Get the set of all subsequences of S, P(S) ← {(), (S(1)), . . . , (S(|S|)),

(S(1), S(2)), . . . , (S(1), S(|S|)), . . . , (S(1), S(2), . . . , S(|S|))}.
5: for all S ′ ∈ P(S) do
6: if (S ′, s) 6∈ L then
7: Initialise the count of s given S ′, L(S ′, s)← 0,
8: end if
9: Increment the count of s given S ′, L(S ′, s)← L(S ′, s) + 1.

10: end for
11: if − 1

log |Σ|
∑

s′∈Σ
L(S′,s′)∑

s′′∈Σ L(S′,s′′)
log L(S′,s′)∑

s′′∈Σ L(S′,s′′)
> Hl then . High entropy.

12: Remove all counts associated with S ′, L \ (S ′, s′) for all s′ ∈ Σ.
13: end if
14: Add observation to the end of S, S ← (S(1), S(2), . . . , S(|S|), s).
15: if |S| > k then
16: Remove first (oldest) symbol from S, S ← (S(2), S(3), . . . , S(|S|)).
17: end if
18: end function
19: function Predict
20: Get the set of all subsequences of S, P(S) ← {(), (S(1)), . . . , (S(|S|)),

(S(1), S(2)), . . . , (S(1), S(|S|)), . . . , (S(1), S(2), . . . , S(|S|))}.
21: S ′′ ← arg minS′∈P(S)− 1

log(|Σ|+1)

(
1

1+
∑
s∈Σ L(S′,s)

log 1
1+

∑
s∈Σ L(S′,s)

+
∑

s∈Σ
L(S′,s)

1+
∑
s′∈Σ L(S′,s′)

log L(S′,s)
1+

∑
s′∈Σ L(S′,s′)

)
. . S ′′ has min adjusted entropy.

22: return Pr(s|S ′′) = L(S′′,s)∑
s′∈Σ L(S′′,s′)

for all s ∈ Σ.

23: end function
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5.5.3 Operation and Algorithm

The flowchart in Figure 5.1 shows how the overall approach operates. All steps

are detailed in Algorithm 8 except for playing and simulating games as well as

updating the agent’s strategy. To play or simulate a game you simply start at the

root of the game tree, sample and play an action according to the distribution of

the player on turn, move to a new node according to that action and repeat the

process until a terminal node is reached where rewards are assigned. The agent’s

strategy is updated using OS-MCCFR, which is explained in Section 3.2.9.

The time complexity of one iteration of the algorithm is dominated by the

following (from most costly): 1. Simulating games. In each simulated game, at

each non-terminal node, an action is sampled from a distribution, where a se-

quence predictor predicts each opponent distribution, and the agent updates its

strategy using OS-MCCFR. This scales like O(g[2kdmax,{opp} + dmax,{pla,cha}]amax)

where g is simulated games, k is the lookback, dmax,N is maximum decisions in

a game for players in N , and amax is maximum actions at a node. 2. Sequence

prediction. In general, a sequence predictor predicts using a number of distribu-

tions exponential in its lookback, which is the worst case for an ELPH instance.

With a sequence predictor at each opponent information set where it acts pre-

dicting its distribution, this quickly becomes the bottleneck if the lookback grows

faster than logarithmically with the game size. As shown above, this scales like

O(g2kdmax,oppamax). 3. EM algorithm. After each game against the opponent

it predicts probabilities and updates counts for each possible path. This scales

like O(dmax, {opp,pla,cha}|Hopp|) where |Hopp| is the number of opponent hidden in-

formation possibilities. 4. OS-MCCFR. After each game it updates regrets and

probabilities at each of the agent’s information sets where it acted. This scales

like O(gdmax,{pla}amax).

The space complexity of the algorithm is as follows. It stores regrets and

probabilities for the actions for each of the agent’s information sets where it acts,

a sequence predictor for each opponent information set where the opponent acts,

which has a number of distributions exponential in its lookback, and a count for

each opponent information set. This scales like O([|I ′pla|+ 2k|I ′opp|]amax + |Iopp|)
where I ′i = {I : I ∈ Ii, P (I) = i}.

The algorithm’s efficiency mainly depends on game size. Larger games have

more nodes, actions, and probably information sets, requiring more space, and
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more observations for EM and sequence prediction to learn to given overall accu-

racies. Exactly how time to converge/reach given overall accuracies or required

lookback scales to larger games are open questions. Also, although overall regret

after a number of OS-MCCFR iterations is bounded by theory Lanctot et al.,

2009, how the algorithm affects this is an open question. To prevent bottlenecks,

a large game may need an abstraction to reduce its size, and simulated games

and lookback should be set sufficiently small.
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(1-2) Initialise a visit count
for each opponent information
set and a sequence predictor
for each opponent information
set where the opponent acts

Play a game against the opponent

Update the agent’s strat-
egy using OS-MCCFR

(11-19, 21) E-Step: For each
node in the agent’s terminal
information set, calculate the
probability that the opponent
reached their terminal infor-
mation set that contains that
node using the visit counts and
normalise these probabilities

i.e. calculate Pr(Hopp|Hpla, S)

(26) Sample an opponent
terminal information set ac-
cording to Pr(Hopp|Hpla, S)

(27-31) For each opponent infor-
mation set where the opponent
acts, which is an ancestor of the
sampled opponent terminal infor-
mation set, have the associated
sequence predictor observe the
opponent’s action taken in it

(20-25) M-Step: For each
node in the agent’s terminal
information set, increment the
visit count of the opponent’s
terminal information set that
contains that node as well
as the visit counts of that

information set’s ancestors by the
opponent’s normalised probability
of reaching that information set

Simulate a game between the
agent and its opponent model
such that, for every opponent
information set where the

opponent acts, the associated
sequence predictor is used to
predict the opponent’s action

Update the agent’s strat-
egy using OS-MCCFR

All
simulations
played?

All games
played?

Stop

Updated
Visit Counts

NoYesNo

Yes

Figure 5.1: A flowchart showing the steps of the approach. Bracketed numbers
refer to line numbers in Algorithm 8 where the step is occurring. Note that the
dashed line does not represent a flow of control, it highlights that the maximisa-
tion step influences the next expectation step by updating the visit counts.
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Algorithm 8 Opponent Model using Sequence Prediction and EM

Require: Player information sets Ipla, Opponent information sets Iopp and Lookback k.
1: Initialise Mv : Iopp → R such that

Mv(I)←
{

1 if I ⊆ Z,∑
a∈A(I) Mv((I, a)) otherwise.

2: Initialise Mpred : {I : I ∈ Iopp, P (I) = opp} → P . P is a set of sequence predictors.
3: for all I ∈ dom(Mpred) do . dom(f) is the domain of function f .
4: Initialise predictor pI with k lookback Mpred(I)← pI .
5: for i = 1 to k do
6: Sample action a with probability Mv((I,a))

Mv(I)
.

7: Observe action a with Mpred(I).
8: end for
9: end for

10: function Observe((I ′ ⊆ Z) ∈ Ipla)
11: Initialise Mt : {I : I ∈ Iopp, I ∩ I ′ 6= ∅} → R.
12: for all a1:m ∈ dom(Mt) do . E-step, ai:j = (ai, ai+1, . . . , aj).
13: Mt(a1:m = (Hopp, S))← Pr(Hopp|Hpla). . Pr(Hopp|Hpla) depends on the game.
14: for l← 0 to m do
15: if P (a1:l) = opp then

16: Mt(a1:m)←Mt(a1:m)
Mv(a1:(l+1))

Mv(a1:l)
.

17: end if
18: end for
19: end for
20: for all a1:m ∈ dom(Mt) do . M-step.

21: Mt(I)← Mt(I)∑
I′′∈dom(Mt)

Mt(I′′) .

22: for l← 0 to m do
23: Mv(a1:l)←Mv(a1:l) + Mt(a1:m).
24: end for
25: end for
26: Sample I = a1:m with probability Mt(I).
27: for l← 0 to m do
28: if P (a1:l) = opp then
29: Observe action al+1 with Mpred(a1:l).
30: end if
31: end for
32: end function
33: function Predict(h ∈ {h : h ∈ H \ Z,P (h) = opp})
34: Get I where h ∈ I and I ∈ Iopp.
35: return a prediction from Mpred(I).
36: end function
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5.6 Evaluating the Three Proposals

The experiments measure the change in the average payoff per game of OS-

MCCFR against several opponents in die-roll poker and Rhode Island hold’em if it

plays simulated games against the opponent model in-between games against the

actual opponent. Four variations of the opponent model are tested: 1. Without

expectation-maximisation or sequence prediction (UN); 2. With just expectation-

maximisation (EM); 3. With just sequence prediction (SP) and 4. With expectation-

maximisation and sequence prediction (EM + SP); If expectation-maximisation

is used, then it works as described in Section 5.5.1. Otherwise, the opponent’s

hidden information is sampled from Pr(Hopp|Hpla). If sequence prediction is used,

then ELPH predicts the opponent’s actions as described in Section 5.5.2. Oth-

erwise, the opponent’s actions are predicted using empirical probabilities. The

empirical probability of an action at an information set is the number of times it

was played at that information set divided by the total number of actions played

at that information set.

Table 5.1 shows all of the parameters used in the experiments. All players

except CFRX and UCB share a standard small fixed exploration rate of 0.05 to

ensure that they never stop exploring and that their exploration does not signif-

icantly affect their performances. Most other parameters are tuned to improve

performances. For PGA-APP the result is that it uses a large learning rate of 0.9

to learn quickly, but also not too large as the environment is stochastic. It also

uses a large discount factor of 0.99 to lookahead as far as possible. Its step-size is

set to 0.01, large enough to learn quickly, but not too large as to constantly jump

outside the strategy space. Its prediction length is set as in Zhang and Lesser,

2010. For UCB the result is that its constant is set to 3. Finally for OS-MCCFR

OM it uses ELPH as its sequence predictor as it has been shown to perform

well against human and agent players (see Chapter 4 and Jensen et al., 2005).

Its lookback and numbers of simulated games are set as large as possible whilst

still being tractable for these experiments and its entropy threshold is chosen to

improve its tractability.
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Table 5.1: Parameters used in the experiments.

Player Parameters

CFRX N/A

OS-MCCFR explore rate = 0.05

PGA-APP explore rate = 0.05, learning rate = 0.9, discount factor =
0.99, step-size = 0.01, prediction length = 1.0

UCB constant = 3

OS-MCCFR
OM

explore rate = 0.05, sequence predictor = ELPH (lookback =
5, entropy threshold = 0.1), games played against opponent
model in-between games against the opponent = 100 in die-
roll poker and 10 in Rhode Island hold’em

Other parameters

number of games = 1× 105, number of repeats = 80, both positions played per game

5.6.1 Benefit of bucketed Rhode Island Hold’em

In Rhode Island hold’em players one and two have 2.50 × 107 and 2.46 × 107

information sets where they act respectively. This is too many for the agents

used in this chapter to learn a high-reward strategy within 1× 105 games, which

is the number of games chosen to evaluate agents over in the experiments. This

is because even if an agent updates its strategy at the maximum of 6 information

sets per game (3 betting rounds × 2 decisions per betting round and player), then

it would take more than 4.2 × 106 games to update each information set once.

Thus making it impossible for an agent to learn a perfect strategy in Rhode

Island hold’em within 1 × 105 games. Even learning an imperfect, but effective

strategy, would probably require each information set to be visited many times.

Learning an effective strategy within this number of games requires learning to

be generalised across information sets using an abstraction.

To test the benefit of the abstraction the final average payoffs per game of

OS-MCCFR, PGA-APP, and UCB were compared against a simple strategy that

always raises in unabstracted and abstracted versions of Rhode Island hold’em.

The abstraction reduces the number of information sets where each agents acts

to 2.52×103 using percentile bucketing based on expected hand strength squared

with five buckets for the pre-flop, flop, and turn stages in the game i.e. b1 = 5,

b2 = 5 and b3 = 5 (see Section 3.1.7). Figure 5.2 shows that each agent’s final

average payoff per game is negative in the unabstracted version and positive in

the abstracted version. Thus, the abstraction allows each agent to learn to win
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against always raise. Linear least squares regression on the last 5 × 104 games

in the unabstracted version estimates that it would take these agents 4.73× 105,

1.22 × 106 and 1.69 × 106 games respectively to break even with a final average

payoff per game of zero. These results show the benefit of abstraction in Rhode

Island hold’em for agents to learn effective strategies within 1×105 games. From

this point for Rhode Island hold’em agents use the bucketed version and are

restricted to playing strategies within it. Better strategies likely exist in larger

(finer) abstractions, but would take longer to learn. An agent might perform

better with a smaller abstraction as it allows them to adapt faster.

OS−MCCFR PGA−APP UCB
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Figure 5.2: This bar chart shows the final average payoff per game of OS-MCCFR,
PGA-APP, and UCB against a simple strategy that always raises in unabstracted
and abstracted versions of Rhode Island hold’em. The abstracted version uses
percentile bucketing based on expected hand strength squared with five buckets
for the pre-flop, flop, and turn stages in the game.
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5.6.2 Performance in Die-Roll Poker and Rhode Island

Hold’em against the Opponents

Figure 5.3 shows the change in the final average payoff per game of OS-MCCFR

with the four variations of the opponent model. Firstly, it is always better

with (EM) rather than (UN) except in die-roll poker against CFR0 because

CFR0 plays actions uniformly at random and so its strategy does not depend

on its hidden information. This supports the first secondary idea showing that

inferences of the opponent’s hidden information based on its behaviour using

expectation-maximisation give higher final performances than inferences ignor-

ing its behaviour. Secondly, it is always better with (SP) rather than (EM). This

supports the second secondary idea showing that predictions of the opponent’s

actions using sequence prediction give higher final performances than predictions

using empirical probabilities. Finally, it is always increased with (EM + SP),

supporting the main idea that playing extra games between the agent and the

opponent model improves the agent’s final performance.

The results can be used to estimate how OS-MCCFR with each of the four

variations of the opponent model will perform in the long term. To estimate

long-term final performances exponential functions of the form f(x) = ae−bx + c

were fitted to model average payoffs per game. Here f(x) is the average payoff

per game, x is the game number divided by 1 × 105 (the number of games) and

a, b, and c are parameters. The c parameter is particularly interesting because

it represents the asymptotic final average payoff per game. This also makes the

time it takes to get close to c interesting. These estimated functions assume

monotonically increasing or decreasing average payoffs per game for negative or

positive values of the a parameter respectively. This may be true against an op-

ponent with a stationary strategy as the average payoff per game of the approach

is likely to monotonically increase as OS-MCCFR decreases overall regret in ex-

pectation per iteration against opponents with stationary strategies or in self-play

[Lanctot et al., 2009]. However, against opponents with changing strategies this

is not necessarily the case. For example, an opponent could constantly switch be-

tween a best-response strategy against the current strategy of the approach and

a Nash equilibrium strategy until both are the same. On the other hand, in these

experiments all opponents with changing strategies base them on accumulated

statistics and so their strategies will eventually converge and become stationary.
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Thus, whilst these estimated functions may not be completely accurate, partic-

ularly for opponents with changing strategies in early iterations, they may still

provide some useful insight into long-term final performances, particularly for

opponents with stationary strategies or for later iterations.

These functions were fitted using MATLAB’s Trust-Region-Reflective Least

Squares algorithm with Bisquare weights, which is a non-linear least squares

regression method found in its Curve Fitting Toolbox [Least-Squares Algorithms ].

Tables 5.2 and 5.3 show the estimated parameters, including the c parameter

and the estimated time it would take to reach 99% of c. Note that the time

estimates are in terms of the number of iterations or games. In terms of absolute

computation time, the approach generally takes longer per iteration than any of

the opponents. Compared to OS-MCCFR this is easy to see as the approach

uses the same algorithm, but also builds an opponent model and updates using

rewards from simulated games. More specifically, OS-MCCFR, PGA-APP, and

UCB only sample from and update their decision points encountered during a

game. Thus, the time complexity of each one only scales with its maximum

number of decision points per game, and its maximum number of actions per

game at any of those decision points. Whereas for the approach this complexity

is at least multiplied by the number of simulated games, but also has extra factors

mainly due to sequence prediction and expectation-maximisation as outlined in

Section 5.5.3. The c estimates reflect the results showing that (EM) is always

better than (UN) (except against CFR0), (SP) is always better than (EM), and

(EM + SP) always increases the average payoff per game. This indicates that

this approach will continue to improve average payoffs per game in the long-term.

The final average payoff per game of (EM + SP) is not statistically signifi-

cantly greater than that of (SP) in Rhode Island hold’em against PGA-APP and

UCB. This could be because it takes longer to learn in Rhode Island hold’em as,

firstly, even abstracted it has more information sets, and secondly, it has more

hidden information (53 = 125 bucket sequences vs 62 = 36 die rolls), which causes

noisier play. In general, the EM component accuracy depends on the accuracy of

its categorical distributions (one per opponent information set where it acts), so

with more opponent information sets where it acts (due to more actions or hidden

information) the more categorical distributions there will be, increasing learning

time. To test this, the difference in the final average payoff per game between

(EM + SP) and (SP) was tested against OS-MCCFR, PGA-APP, and UCB in
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die-roll poker with an increasing amount of hidden information (die faces). Ta-

ble 5.5 shows that as the number of die faces is increased, the difference decreases.

Additionally, expectation-maximisation is not helpful in Rhode Island hold’em if

it infers that the opponent has the same bucket as the agent because this gives

them both the same chance of winning.
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Figure 5.3: These bar charts show the change in the final average payoff per
game of OS-MCCFR when used with variations of the opponent model including
just expectation-maximisation (EM), just sequence prediction (SP), and both
expectation-maximisation and sequence prediction (EM + SP). The results are
shown for die-roll poker (Figure 5.3a) and Rhode Island hold’em (Figure 5.3b).
The values are averaged over both positions and 80 repeats with the standard
error of the mean shown at the top of each bar.
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Table 5.2: Die-roll poker modelled average payoffs per game f(x) = ae−bx + c
where x is the game number divided by 1× 105 and t0.99 is the time to reach 99%
of c.

(a) Die-roll poker: CFR0.

Opponent model a b c t0.99 Adjusted R-square

None -1.2 3.1 3.2 1.2 ×105 0.99

UN -0.54 4.4 3.6 6.2 ×104 0.99

EM -0.52 4.2 3.6 6.4 ×104 0.99

SP -0.24 3.5 3.7 5.3 ×104 0.99

EM + SP -0.36 6.0 3.7 3.8 ×104 0.99

(b) Die-roll poker: CFR10.

Opponent model a b c t0.99 Adjusted R-square

None -0.85 2.6 0.15 2.4 ×105 0.99

UN -0.64 2.7 -0.12 2.3 ×105 0.99

EM -1.1 2.9 0.23 2.1 ×105 0.99

SP -0.39 2.9 0.30 1.7 ×105 0.99

EM + SP -0.56 3.7 0.53 1.2 ×105 0.99

(c) Die-roll poker: CFR20.

Opponent model a b c t0.99 Adjusted R-square

None -0.60 2.2 -0.16 2.7 ×105 0.99

UN -0.74 3.1 -0.71 1.5 ×105 0.99

EM -1.2 3.7 -0.36 1.6 ×105 0.99

SP -0.48 3.4 -0.19 1.6 ×105 0.99

EM + SP -0.40 3.5 0.05 1.9 ×105 0.99
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Table 5.2

(d) Die-roll poker: OS-MCCFR.

Opponent model a b c t0.99 Adjusted R-square

None N/A N/A N/A N/A N/A

UN 0.47 6.1 -0.69 6.9 ×104 0.99

EM 1.5 28 -0.41 2.1 ×104 0.95

SP 0.45 2.5 -0.049 2.8 ×105 0.99

EM + SP 0.27 2.5 0.22 1.9 ×105 0.99

(e) Die-roll poker: PGA-APP.

Opponent model a b c t0.99 Adjusted R-square

None 1.2 8.8 -0.18 7.4 ×104 0.99

UN 2.3 7.6 -0.96 7.2 ×104 0.99

EM 3.7 18 -0.71 3.5 ×104 0.98

SP 1.3 6.4 -0.1 1.1 ×105 0.99

EM + SP 1.9 8.8 0.085 8.7 ×104 0.97

(f) Die-roll poker: UCB.

Opponent model a b c t0.99 Adjusted R-square

None 1.4 61 -0.24 1.0 ×104 0.84

UN 1.2 3 -1.8 1.4 ×105 0.99

EM 0.93 19 -0.22 3.3 ×104 0.99

SP 0.50 3.9 -0.15 1.5 ×105 0.97

EM + SP 0.35 4.1 0.10 1.4 ×105 0.99
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Table 5.3: Rhode Island hold’em modelled average payoffs per game f(x) =
ae−bx + c where x is the game number divided by 1× 105 and t0.99 is the time to
reach 99% of c.

(a) Rhode Island hold’em: OS-MCCFR.

Opponent model a b c t0.99 Adjusted R-square

None N/A N/A N/A N/A N/A

UN 6.7 7.2 -3.2 7.4 ×104 0.99

EM 6.1 11 -1.4 5.6 ×104 0.99

SP 2.1 2.1 2.9 2.0 ×105 0.99

EM + SP 2.5 2.1 3.3 2.1 ×105 0.97

(b) Rhode Island hold’em: PGA-APP.

Opponent model a b c t0.99 Adjusted R-square

None 5.0 2 1.8 2.8 ×105 0.95

UN 8 2.3 0.82 3.0 ×105 0.95

EM 7.2 2.4 1.9 2.5 ×105 0.94

SP 8.4 2.6 6.4 1.9 ×105 0.95

EM + SP 8.4 2.2 6.1 2.2 ×105 0.95

(c) Rhode Island hold’em: UCB.

Opponent model a b c t0.99 Adjusted R-square

None -4.4 1.9 9.8 2.0 ×105 0.98

UN -3.4 2 12 1.7 ×105 0.94

EM -5.5 1.6 14 2.3 ×105 0.95

SP -3.8 2.1 16 1.5 ×105 0.96

EM + SP -3.9 2.1 16 1.5 ×105 0.94
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5.6.3 Further Experiments in Rhode Island hold’em

As previously mentioned, one problem with the results in Rhode Island hold’em

is that, unlike those in die-roll poker, the final average payoff per game of (EM +

SP) is not statistically significantly greater than that of (SP) against PGA-APP

and UCB. This could be because it takes longer to learn in Rhode Island hold’em

as, firstly, even abstracted it has more information sets, and secondly, it has more

hidden information (53 = 125 bucket sequences vs 62 = 36 die rolls), which causes

noisier play. Various tests were performed to examine this.

The first test involved playing (EM + SP) and (SP) for more games in Rhode

Island hold’em, 5×105 instead of 1×105. The idea being that an increased number

of games would give agents more time to learn their strategies and the approach

more time to learn the opponent’s strategy. Figure 5.4 shows that after 5 × 105

games the final average payoff per game of (EM + SP) is statistically significantly

higher than that of (SP) when playing against OS-MCCFR and PGA-APP but

not against UCB. The differences against OS-MCCFR and PGA-APP appear to

converge, whereas against UCB the difference seems to be levelling off but may

not have converged. Finally, the differences against OS-MCCFR and PGA-APP

remain fairly consistent after 1 × 105 games but the difference against UCB is

still increasing. This only supports the idea that the agents need more time to

learn when UCB is the opponent.
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(a) OS-MCCFR.
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(b) PGA-APP.

Figure 5.4
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(c) UCB.

Figure 5.4: Each graph shows the average payoff per game of (EM + SP) - the
average payoff per game of (SP) over 1 × 105 games in bucketed Rhode Island
hold’em. The values are averaged over both positions and 80 repeats. The grey
shaded area around each line represents the standard error of the mean.
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The second test examined how similar each opponent behaves with different

hidden information when played against (EM + SP). To do this, a distribution

was formed consisting of an opponent’s contribution to the probability of a se-

quence of public actions S given each instance of its hidden information Hi
opp and

its strategy σopp, i.e. P = (Pr(S|H1
opp, σopp),Pr(S|H2

opp, σopp), . . . ). Following

this, P was normalised, and the difference between it and a uniform distribu-

tion of the same size D(P ||Q) was measured where Q = ( 1
|P | ,

1
|P | , . . . ,

1
|P |). Any

suitable distance metric could be used, and in this case the square root of the

Jensen-Shannon divergence was used. Finally, the average of this distance over

all sequences of public actions that lead to the end of the game was returned. Un-

fortunately, the calculation of this average distance is not ideal. Since the entire

game tree cannot be stored in memory, only visited terminal information sets are

considered. This probably overestimates the average distance as each unvisited

terminal information set would probably have ancestors where the opponent acts

that are also unvisited, and the opponent’s strategy at those points would be the

same as its initial strategy, which does not depend on its hidden information.

For two categorical distributions P and Q, the Kullback-Liebler divergence

between P and Q is defined as

DKL(P ||Q) =
∑
i

P (i) ln
P (i)

Q(i)
. (5.10)

The Kullback-Liebler divergence between P and Q is only defined if P and Q

are valid categorical distributions and if P (i) = 0 whenever Q(i) = 0. Also,

if P (i) = Q(i) = 0, then it is assumed that 0 ln 0 = 0. The Jensen-Shannon

divergence between P and Q is defined as

DJS(P ||Q) =
DKL(P ||M) +DKL(Q||M)

2
where M =

P +Q

2
. (5.11)

Here M is the “average” of P and Q, it is calculated by adding corresponding

probabilities of P and Q and dividing each one by 2. Finally, the metric value

DJSM(P ||Q) is obtained by taking the square root giving

DJSM(P ||Q) =
√
DJS(P ||Q). (5.12)

The Kullback-Liebler divergence between P and Q has a minimum value of 0 and

a maximum value of infinity. The Jensen-Shannon divergence between P and Q
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has a minimum value of 0 and a maximum value of ln(2) if logarithms are to base

e, or 1 if logarithms are to base 2. Thus, the Jensen-Shannon divergence metric

has a minimum value of 0 and a maximum value of
√

ln(2) if logarithms are to

base e, or 1 if logarithms are to base 2.

There are two main advantages to using the Jensen-Shannon divergence met-

ric. Firstly, being based on the Kullback-Liebler divergence gives it a theoretical

underpinning. Specifically, the Kullback-Liebler divergence is the average num-

ber of bits that are wasted by encoding events from the true distribution P with

a code based on the estimated distribution Q. Secondly, it is a true metric that

is always positive, symmetric, bounded, and well-defined, even with zero-values

present in either distribution.

Algorithm 9 shows how to calculate this estimate. When calculating the

Jensen-Shannon divergence metric, logarithms to the base 2 are used. Thus, the

value returned is between 0 and 1 inclusive, and an average of these distances is

also between 0 and 1 inclusive. If the estimate is 0, then it means that the op-

ponent’s strategy is completely independent of its hidden information. Whereas

if the estimate is 1, then its behaviour is mainly dependent on its hidden infor-

mation but it cannot be said to be completely dependent because its unvisited

information sets are not considered. Table 5.4 shows these estimates for die-roll

poker and Rhode Island hold’em after 1× 105 games.

Algorithm 9 Estimating Strategy Dependence on Hidden Information

Require: Player i’s information sets Ii, player i’s strategy σi, terminal nodes Z.
1: Initialise estimate of player i’s hidden information dependence d← 0.
2: Initialise a count for the number of updates to the estimate c← 0.
3: for all z ∈ Z do
4: P ← ().
5: Q← ().
6: Get the public actions S that lead to z.
7: for all Hi where (S,Hi) ∈ Z do
8: P ← (P,Pr(S|Hi, σi)).
9: Q← (Q, 1).

10: end for
11: Normalise P and Q.
12: d← d+D(P ||Q) . D(P ||Q) is distance between P and Q.
13: c← c+ 1
14: end for
15: return d

c
.
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Table 5.4: Estimated opponent strategy hidden information dependence after
1 × 105 games. A value of 0 means that its strategy is completely independent
of its hidden information whereas a value of 1 means that its strategy is highly
dependent on its hidden information. The values for Rhode Island hold’em are
likely overestimated as unvisited information sets in it are not considered.

Die-Roll Poker Rhode Island hold’em

OS-MCCFR 0.72 ± 0.03 0.44 ± 0.01

PGA-APP 0.64 ± 0.07 0.26 ± 0.01

UCB 0.42 ± 0.03 0.35 ± 0.01

Table 5.4 shows that the estimate of the dependence of each opponent’s strat-

egy on its hidden information is higher in die-roll poker than in Rhode Island

hold’em after 1 × 105 games. Also, the estimates in Rhode Island hold’em are

likely inflated due to the calculation ignoring unvisited information sets. These

results support the idea that the expectation-maximisation algorithm is less ef-

fective in Rhode Island hold’em than in die-roll poker because in Rhode Island

hold’em the opponents’ strategies are less dependent on their hidden information.

The third test looked at the difference in the final average payoff between

(EM + SP) and (SP) against the opponents in die-roll poker with an increasing

amount of hidden information (die faces). Table 5.5 shows that as the number

of die faces is increased, the difference decreases. The reason for this is that

as the amount of hidden information increases it becomes more likely that the

opponent’s behaviour will appear to be similar for multiple instances of hidden

information. This makes it more difficult for expectation-maximisation to iden-

tify the opponent’s hidden information based on its behaviour. These results

support the idea that the expectation-maximisation algorithm is less effective as

you increase the amount of hidden information, which also gives a reason for it

being less effective in Rhode Island hold’em.

Table 5.5: Final average payoff per game of (EM + SP) - (SP) in die-roll poker.

6 Die Faces 9 Die Faces 10 Die Faces

OS-MCCFR 0.26 ± 0.01 0.17 ± 0.01 0.12 ± 0.01

PGA-APP 0.19 ± 0.01 0.17 ± 0.01 0.09 ± 0.01

UCB 0.25 ± 0.02 0.24 ± 0.02 0.14 ± 0.02
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Finally, expectation-maximisation is not helpful in Rhode Island hold’em if

it infers that the opponent has the same bucket as the agent because this gives

them both the same chance of winning.

5.7 Chapter Summary

This chapter has built on the work in Chapter 4 by using sequence prediction to

model opponents in larger games that have more states and more hidden infor-

mation. Specifically, three proposals were put forward for building and using an

online opponent modelling algorithm that does not require knowledge outside the

rules of the game, and does not assume that the opponent’s strategy is station-

ary. Building the opponent model incorporates two proposals: an expectation-

maximisation algorithm to infer the opponent’s hidden information in an imper-

fect information game, and a sequence prediction method to specialise in pre-

dicting an opponent’s changing strategy. Using the opponent model incorporates

the third proposal: simulating games between the agent and the opponent model

in-between games against the actual opponent. Experiments in simplified poker

games show that this approach improves the average payoff per game of a state-

of-the-art no-regret learning agent based on counterfactual regret minimisation.

Future work will look at optimising the expectation-maximisation algorithm (e.g.

tuning parameters like its step size), increasing the number of training games

as the accuracy of the opponent model increases, and larger domains such as

Texas hold’em poker, which may require improvements in scalability and further

abstractions.



Chapter 6

Change Detection for Opponent

Strategies

This chapter revisits the problem of modelling an opponent’s strategy when it is

changing. If an opponent’s strategy is represented by a set of categorical distribu-

tions, then a change in its strategy means that at least one of these distributions

changes. In this case the underlying problem would be modelling changing cat-

egorical distributions. A change in a categorical distribution shifts probability

mass between two or more categories such that the resulting distribution is dif-

ferent and its probabilities still sum to one. In general, a change may occur for

any arbitrary reason, depending on how the opponent works. However, for a ra-

tional opponent, a change is likely to occur because it tries to improve its strategy

by learning from or reacting to its observations. A change may be sudden if, for

example, the opponent switches its strategy, or it may be gradual if, for example,

it modifies its action probabilities by a learning rate based on its rewards.

This chapter starts by outlining the main problems associated with mod-

elling a changing distribution. It then describes variations of three state-of-the-

art change detection methods, which include ADaptive WINdowing (ADWIN)

by Bifet and Gavaldà, 2007, Bayesian Change Point Detection (BayesCPD) by

Adams and MacKay, 2007 as well as Fearnhead and Liu, 2007, and Fisher’s Ex-

act Test Change Point Model (FET-CPM) by Ross, Tasoulis, and Adams, 2013.

These methods are applied to model changing categorical distributions, which

are representative of opponents with changing strategies. The overall idea is to

represent the distribution accurately by keeping a window of observations from

171
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it, using one of these methods to detect when it changes, and discarding obser-

vations prior to detected change points. Ideally, this will result in a window that

only contains observations that represent the current distribution.

The main contribution of this chapter is to experimentally compare the change

detection methods against each other and against an empirical distribution at

predicting changing categorical distributions. The results help determine the

suitability of each method, relative to the other methods, for modelling oppo-

nents with changing strategies. The first comparison compares the accuracies

of these methods at modelling categorical distributions that shift suddenly, or

gradually, or a mixture of both. Whilst the second comparison compares the

accuracies of these methods at modelling popular and state-of-the-art reinforce-

ment learning agents as well as the rewards from playing best-response strategies

against their models. The latter case has the added difficulty that the reinforce-

ment learning agents are more likely to change their strategies more quickly as

the models become more accurate. This is because more accurate models allow

for more accurate best-response strategies with higher expected rewards, which

in competitive games will lead to lower expected rewards for the agents being

modelled causing them to “lose” more often and in turn to learn more quickly.

For example, WoLF-PHC, WPL, and PGA-APP all have mechanisms to update

their strategies more quickly if they think that they are losing.

In general, the results show that the change detection methods are more ac-

curate than an empirical distribution at modelling changing categorical distribu-

tions and that they obtain higher rewards than the reinforcement learning agents.

More specifically, the results show that the most accurate for small numbers of

categories (3-5) is BayesCPD for sudden or mixed changes and ADWIN-D for

gradual changes, whereas for large numbers of categories (10 or 20) BayesCPD-C

is the most accurate for all types of changes. The results also show that increasing

numbers of categories generally decreases accuracy, which makes sense because

having more categories generally means each category has less probability mass

making it harder to detect if probability mass is shifted between categories. Fi-

nally, the results show that against the reinforcement learning agents BayesCPD

is generally the most accurate with the most rewarding best-response strategies.
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6.1 Learning a Changing Distribution

Given an opponent has a finite and small number of actions at each of its decision

points, then the goal of an opponent model can be seen as to learn, for each of

its decision points, a categorical distribution over the associated actions from

samples of them. This is challenging because there may not be many samples for

a decision point due to infrequent visits, and also because its distribution may be

changing over time. If its distribution is stationary, then the optimal estimate of

the probability of a category is the ratio of the number of observations of it to

the total number of observations. If its distribution is conditioned on a memory

of previous states, or actions, or both, then it can be estimated using sequence

prediction methods. Finally, if its distribution is changing, then some sequence

prediction methods can account for this, but their approach is often to passively

remove distributions that become unpredictive by some measure (e.g. ELPH

removes distributions with high entropy). This chapter looks at change detection

methods, which actively try to model changing distributions, as an alternative

to, or as a compliment to, sequence prediction methods.

If the opponent changes one of its distributions over time, then the past sam-

ples from it may become unrepresentative. Ideally, the opponent model would

detect when the distribution changes and discard unrepresentative past samples.

One way to do this is to keep a window of representative observations. The size

of the window is important. Ideally, the window should only keep samples that

represent the current distribution. If the distribution is changing rapidly, then

the window should be small, keeping only the most recent samples. Whereas

if the distribution is changing slowly, then the window should be large, keeping

many past samples. However, the smaller the window, the fewer samples there

will be to estimate the distribution, making the estimate less accurate.

6.2 Adapting the Window Size

Maintaining a fixed-size window of past samples is a passive approach to mod-

elling a changing distribution because the window size is set beforehand, but the

ideal window size depends on how fast the distribution changes over time. More-

over, the distribution may not change at a fixed rate. There could be periods

where it remains almost stationary, and other periods where it rapidly changes.
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Another approach is to give older samples less weight (importance) than newer

samples. This can be done by assigning new samples a maximum weight, which

decays over time according to some function. However, this still has the problem

of choosing a decay function to account for the unknown rate of change.

This section describes three state-of-the-art change detection methods, specif-

ically ADaptive WINdowing (ADWIN) by Bifet and Gavaldà, 2007, Bayesian

Change Point Detection (BayesCPD) by Fearnhead and Liu, 2007 as well as by

Adams and MacKay, 2007, and Fisher’s Exact Test Change Point Model (FET-

CPM) by Ross, Tasoulis, and Adams, 2013. These methods can be seen as an

active approach to modelling a changing distribution. Each one monitors ob-

servations received sequentially and attempt to detect when the underlying dis-

tribution generating them changes. If the most recent detected change point is

accurate, then contracting the window to only include samples after it will ensure

that the window only contains samples that represent the current distribution.

It is assumed that the detected change points are accurate and so can be used in

this way. These methods assume that the distribution undergoes abrupt changes,

and that samples after one change point (or from the start) and before another

change point are independently and identically distributed.

6.2.1 ADaptive WINdowing (ADWIN)

ADWIN by Bifet and Gavaldà, 2007 works by maintaining a sliding window of

samples W = (x1, x2, . . . , xt). Whenever two “large enough” subwindows of W

show “distinct enough” means, a change is declared and the older portion of

the window is discarded. A subwindow is defined as a contiguous part of the

original window, i.e. a subwindow contains samples from index i to index j

(inclusive) in the original window Wi:j = (xi, xi+1, . . . , xj) where 1 ≤ i ≤ j and

i ≤ j ≤ t. The window is not shortened as long as the null hypothesis, that the

mean of the window has remained constant, is true with a confidence interval of

(1− δ). “Large enough” and “distinct enough” are made precise by choosing an

appropriate statistical test. One advantage of ADWIN is that Bifet and Gavaldà,

2007 proved that it has rigorous performance guarantees by bounding the rates

of false positives and false negatives. A false positive is detecting a change in

the distribution when a change did not occur. A false negative is not detecting a

change in the distribution when a change did occur. At each time step ADWIN

does the following. Firstly, it adds the current sample, xt, to its window W ←
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(W,xt). Secondly, for i = 1 to t, it checks if |µW1:i
− µWi+1:|W | | ≥ εi, and if true

for any i, then it stops, removes the first (oldest) sample from the window, and

repeats this second step from i = 1. Here µWi:j
is the mean of the samples in the

subwindow Wi:j i.e. µWi:j
=

∑j
k=iW (k)

j−i+1
, and εi is a threshold that depends on the

split location i. The full algorithm for ADWIN is shown in Algorithm 10.

Algorithm 10 ADaptive WINdowing (ADWIN)

1: Initialise an empty window W ← ().
2: for t > 0 do
3: Observe the sample at time t, xt.
4: Add xt to the end of the window W , W ← (W,xt).
5: compareSubWindows ← true. . Should subwindows be compared?
6: while compareSubWindows = true do
7: distinctSubWindows ← false. . Are subwindows distinct?
8: for i← 1 to |W | do
9: distinctSubWindows ← |µW1:i

− µWi+1:|W | | ≥ εi.
10: if distinctSubWindows = true then
11: Remove the first (oldest) symbol from W , W ← W2:|W |.
12: break
13: end if
14: end for
15: if distinctSubWindows = false then
16: compareSubWindows ← false.
17: end if
18: end while
19: end for

The threshold εi is based on the Hoeffding bound, and is valid for all distri-

butions. It is defined as

εi =

√(
1

2i
+

1

2(|W | − i)

)
ln

4|W |
δ

. (6.1)

However, according to Bifet and Gavaldà, 2007 it tends to overestimate the prob-

ability of large deviations for distributions with small variance as it assumes the

worst-case variance of σ2 = 0.25. They show εi can be tightened to

εi =

√(
2

i
+

2

|W | − i

)
σ2
W ln

2|W |
δ

+

(
2

3i
+

2

3(|W | − i)

)
ln

2|W |
δ

. (6.2)
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Bifet and Gavaldà, 2007 assume that each sample xt is between 0 and 1 (in-

clusive) i.e. 0 ≤ xt ≤ 1. However, even if xt is between some arbitrary bounds a

and b i.e. a ≤ xt ≤ b, these bounds can be easily rescaled. Consequently, the im-

plementations of ADWIN provided by Bifet and Gavaldà, 2007 assume that the

samples from the distribution are either bits or real numbers, and that they have

a mean value. ADWIN cannot be directly applied to a discrete categorical distri-

bution because it does not have a mean value. There are many alternatives that

could be used to measure the difference between these distributions. This chapter

chooses to replace the mean comparison test in ADWIN with a measurement of

the Jensen-Shannon divergence metric, which gives Algorithm 11.

Algorithm 11 ADaptive WINdowing using Distance (ADWIN-D)

1: Initialise an empty window W ← ().
2: for t > 0 do
3: Observe the sample at time t, xt.
4: Add xt to the end of the window W , W ← (W,xt).
5: compareSubWindows ← true. . Should subwindows be compared?
6: while compareSubWindows = true do
7: distinctSubWindows ← false. . Are subwindows distinct?
8: for i← 1 to |W | do
9: distinctSubWindows ← DJSM(PW1:i

||QWi+1:|W |) ≥ γ.
10: if distinctSubWindows = true then
11: Remove the first (oldest) symbol from W , W ← W2:|W |.
12: break
13: end if
14: end for
15: if distinctSubWindows = false then
16: compareSubWindows ← false.
17: end if
18: end while
19: end for

In Algorithm 11, PWi:j
(or QWi:j

) represents an empirical categorical distri-

bution formed over the subwindow Wi:j. Unfortunately, the same threshold εi

cannot be used as in the original ADWIN Algorithm 10 because it was calcu-

lated for comparing means. Instead, a new threshold γ is used. This threshold

could be set arbitrarily based on the range of the difference measure, which for

the Jensen-Shannon divergence metric using logarithms to the base 2 is [0, 1].

However, it would be better if, like in the original algorithm, the threshold is

set based on some theoretical foundation. The threshold could be based on
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the null hypothesis that elements of both windows are drawn from the same

distribution. Dasu et al., 2006 proposed one way to do this. They predict

a distribution over the value of the difference measure, assuming the null hy-

pothesis is true. If the probability of the actual measured difference is signifi-

cantly low enough, then they reject the null hypothesis. They predict the dis-

tribution over the difference measure using bootstrapping as follows. Given an

empirical distribution over the first subwindow PW1:i
, sample k multisets from

it, each containing 2i elements S1, S2, . . . , Sk. For each multiset, split it at i

and measure the difference between the distributions over its first and second

parts and add it to a set Sd = {DJSM(PS11:i
||QS1i+1:|S1|), DJSM(PS21:i

||QS2i+1:|S2|),

. . . , DJSM(PSk1:i
||QSki+1:|Sk|)}. The distribution over the elements of Sd is then an

estimate of the distribution over the difference measure. Finally, for a given con-

fidence value α, if the actual measured difference is above the (1− α)-percentile

of the distribution over Sd, then the null hypothesis is rejected.

The problem with this approach is its computational complexity. For every

comparison between two subwindows, a number of bootstrap samples need to be

taken to estimate the distribution over the difference measure, and thus calculate

the significance of the actual measured difference. The exact number of bootstrap

samples required depends on the distribution being sampled. However, Dasu et

al., 2006 report that about 500 to 1000 samples work well. On top of this, most

difference measures, such as the Jensen-Shannon divergence metric, will have a

higher computational cost compared with calculating means. One reason for this

is that, unlike other measures, means can be easily calculated iteratively.

Another approach is to associate a Bernoulli distribution with each category

such that, observing that category would correspond to sampling a success from

its distribution, and a failure from every other distribution. A window of samples

from a categorical distribution with n categories could then be seen as n windows

of samples from Bernoulli distributions. A window of Bernoulli samples for a

category would contain a 1 (success) at every position it occurs in the window

of categorical samples, and a 0 (failure) at every other position. The mean for a

window of Bernoulli samples can be easily calculated as the number of successes

(1s) divided by the number of successes and failures (1s and 0s). ADWIN can be

applied to each category’s window of Bernoulli samples separately. If any window

is shortened, then all the other windows will be shortened. Technically, only the

Bernoulli distributions for n−1 categories need to be checked for changes because,
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if this is false, then the Bernoulli distribution for the remaining category cannot

have changed as there is no other category to shift probability mass from or

to. However, if the number of categories is unknown beforehand, then the safest

approach is to test all known categories. Although creating and monitoring a

window for each category can be computationally expensive with many categories,

in the games in this thesis the number of categories is always small. This is called

ADWIN-B and is shown in Algorithm 12.

Algorithm 12 ADaptive WINdowing using Bernoulli distributions (ADWIN-B)

1: Initialise an empty window W ← ().
2: Initialise an empty set S ← {}.
3: for t > 0 do
4: Observe the sample at time t, xt.
5: Add xt to W , W ← (W,xt).
6: if xt 6∈ S then . the sample type has not been observed before
7: Add xt to S, S ← S ∪ {xt}.
8: end if
9: for each observed sample type x ∈ S do

10: Initialise an empty window for x, Wx ← ().
11: for i← 1 to |W | do
12: if the sample in W at i is x, W (i) = x then
13: Set the symbol in Wx at i to 1, Wx(i) = 1,
14: else
15: Set the symbol in Wx at i to 0, Wx(i) = 0.
16: end if
17: end for
18: compareSubWindows ← true. . Should subwindows be compared?
19: while compareSubWindows = true do
20: distinctSubWindows ← false. . Are subwindows distinct?
21: for i← 1 to |W | do
22: distinctSubWindows ← |µWx(1:i)

− µWx(i+1:|Wx|)
| ≥ εi.

23: if distinctSubWindows = true then
24: Remove the first (oldest) sample from Wx, Wx ← Wx(2:|Wx|).
25: Remove the first (oldest) sample from W , W ← W2:|W |.
26: end if
27: end for
28: if distinctSubWindows = false then
29: compareSubWindows ← false.
30: end if
31: end while
32: end for
33: end for
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6.2.2 Bayesian Change Point Detection (BayesCPD)

Two different versions of this method are used. The first version, BayesCPD-B,

associates a Bernoulli distribution with each category in the same way as ADWIN-

B and FET-CPM-B, and so uses a beta distribution as its conjugate prior. The

second version, BayesCPD-C, simply models the distribution as a categorical

distribution, and so uses a Dirichlet distribution as its conjugate prior. This

method works by calculating a posterior distribution over the runlength, and then

using it to estimate the sample distribution [Adams and MacKay, 2007; Fearnhead

and Liu, 2007]. In particular, it assumes that the sample distribution, conditioned

on a particular run length, can be computed. This allows the marginal sample

distribution to be found by integrating over its posterior distribution conditioned

on the current run length

Pr(xt+1|x1:t) =
∑
rt

Pr(xt+1|rt, x(r)
t ) Pr(rt|x1:t).

Here rt is the runlength at time t, xt is the sample at time t, x
(r)
t = xt−rt+1:t is

the set of samples associated with runlength rt, and xi:j are the samples from

time i to time j inclusive. The runlength is defined as the number of steps since

the distribution last changed. To predict the last change point optimally, this

method considers all possible runlengths and weights them by their probabilities

given the samples. The authors show that exact inference on the runlength can

be achieved using a message passing algorithm. The inference procedure is as

follows

Pr(rt|x1:t) =
Pr(rt, x1:t)

Pr(x1:t)

=

∑
rt−1

Pr(rt, rt−1, x1:t)

Pr(x1:t)

=

∑
rt−1

Pr(rt, xt|rt−1, x1:t−1) Pr(rt−1, x1:t−1)

Pr(x1:t)

=

∑
rt−1

Pr(rt|rt−1) Pr(xt|rt−1, x
(r)
t ) Pr(rt−1, x1:t−1)

Pr(x1:t)
.

Note that the sample distribution Pr(xt|rt−1, x
(r)
t ) is determined by the most
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recent data x
(r)
t . The last line assumes that the runlength is independent of the

previous samples and only depends on the previous runlength Pr(rt|rt−1, x1:t−1) =

Pr(rt|rt−1). This is a message passing algorithm because rt can only take values

based on rt−1. Specifically, either rt = 0 if a change occurs, or rt = rt−1 + 1

if a change does not occur. The probability Pr(rt|rt−1) is given by a “hazard”

function, h(t), for both values. A simple approach is to assume that the hazard

function returns a constant probability for a change occurring Pr(rt = 0|rt−1) =

h(0) = γ. The probability for a change not occurring would then be one minus

the probability for a change occurring Pr(rt = rt−1 +1|rt−1) = h(rt−1 +1) = 1−γ.

The hazard function returns zero for all other values of t.

Although the assumption that there is a constant probability of a change point

occurring may be incorrect, this parameter does not need to be specified exactly.

If there is enough evidence that a change has occurred, then the algorithm is

designed to detect it [Adams and MacKay, 2007; Fearnhead and Liu, 2007]. This

parameter is essentially a trade-off between the detection delay and the amount

of false positives. If the probability of a change point occurring is set high, then

the detection delay will be shorter, but there will be more false positives. If the

probability of a change point occurring is set low, then the detection delay will

be longer, but there will be less false positives. Wilson, Nassar, and Gold, 2010

as well as Turner, Saatci, and Rasmussen, 2009 have proposed methods to learn

the hazard function from the data. The method of Wilson, Nassar, and Gold,

2010 can learn a hazard function that is piecewise constant using a hierarchical

generative model, whilst the method of Turner, Saatci, and Rasmussen, 2009 can

learn any parametric hazard rate via gradient descent.

The space complexity grows linearly with the number of samples because

there is a possible runlength for each sample. The time complexity also grows

linearly because each possible runlength requires an update. To place an upper

limit on the number of possible runlengths, and in turn these complexities, a

particle filter is used as suggested by Fearnhead and Liu, 2007, which maintains

a finite sample of the runlength distribution. A particle filter is a Monte Carlo

method that estimates a sequential Bayesian model. Each particle represents

a point in the distribution with its weight being its approximate probability.

If the number of particles grows too large, then resampling takes place where

some particles are thrown away and the weights of the remaining particles are

updated. The resampling scheme used is called Stratified Optimal Resampling
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(SOR). Under this scheme the reweighting ensures that the expected values of

the new weights are the original weights. SOR is optimal in that the expected

squared difference between the original weights and the new weights is minimised.

The SOR procedure is shown in Algorithm 13.

Algorithm 13 Stratified Optimal Resampling (SOR)

Require: A set of particle probabilities P ← {p1, p2, . . . , p|P |}, a desired number
of particles m ∈ N+.

1: Initialise a new set of particle probabilities Q← {q1, q2, . . . , q|P |}.
2: Find c such that it solves the equation m =

∑|P |
i=1 min(1, pi

c
).

3: Sample u from a uniform distribution between 0 and c, u ∼ U(0, c).
4: for all pi ∈ P do
5: if pi ≥ c then
6: qi ← pi,
7: else
8: u← u− pi.
9: if u ≤ 0 then

10: qi ← c,
11: u← u+ c,
12: else
13: qi ← 0.
14: end if
15: end if
16: end for
17: Discard particles in Q with zero probability Q← Q \ qi for all qi = 0.
18: return Q.

6.2.3 Fisher’s Exact Test Change Point Model (FET-CPM)

Fisher’s Exact Test Change Point Model (FET-CPM) by Ross, Tasoulis, and

Adams, 2013 is a frequentist change detection method that is designed to detect

changes in the mean of an equally-spaced, discreet-time sequence of Bernoulli

random variables. Like ADWIN and BayesCPM, it assumes that the mean is

constant, but unknown, after one change point (or from the start) and before

another change point. Its goal is to detect changes as soon after they occur as

possible, as well as to estimate their locations. Ross, Tasoulis, and Adams, 2013

show that it performs comparably to the optimal CUMulative SUM Control Chart

(CUSUM) scheme (a change detection method developed by Page, 1954) with

knowledge of the pre-change and post-change parameter values. The approach



CHAPTER 6. CHANGE DETECTION FOR OPPONENT STRATEGIES 182

uses a two-sample hypothesis test to infer if a change has occurred at a specific

point with the null hypothesis being that no change has occurred. The main

advantages of FET are that its null distribution can be computed exactly (without

relying on asymptotic distributions) and it does not depend on the true value of

the mean.

The method works as follows, given a sequence of t observations, x1, x2, . . . , xt,

it is split into two samples, x1, x2, . . . , xi and xi+1, xi+2, . . . , xt. The null hypoth-

esis says that there has been no change point, meaning that both samples have

been generated by the same Bernoulli distribution with the same mean. Table 6.1

shows the data. Fisher showed that the probability of obtaining any such set of

Table 6.1: Data from two Bernoulli samples.

Sample 1 (x1, x2, . . . , xi) Sample 2 (xi+1, xi+2, . . . , xt) Sum

Successes si st − si st

Failures i− si (t− i)− (st − si) t− st
Sum i t− i t

values, given the null hypothesis is true, follows a hypergeometric distribution.

In this case giving

Pr(si|st) =

(
st
si

)(
t−st
i−si

)(
t
i

) .

This probability is calculated for each value of i, and if the minimum of these

probabilities is less than some threshold, then a change is assumed to have oc-

curred at that point. The threshold for each time step is computed offline as

follows. Numerous streams are simulated, each containing a number of observa-

tions sampled from a Bernoulli distribution with a mean of 0.5. For each stream,

(x1, x2, . . . , xt), and for each index within the stream, 1 ≤ i ≤ t, the above prob-

ability is calculated for all observations between index 1 and i (inclusive). The

threshold for t = 1 is found by taking the probabilities for i = 1 from all of the

streams, and setting the threshold such that a fixed proportion, α, of these prob-

abilities exceed it. The streams with probabilities exceeding this first threshold

are then discarded and the second threshold is calculated by taking the proba-

bilities for i = 2 from all of the streams, and setting the threshold such that α

of these probabilities exceed it. This is repeated for all indexes. The process is

slightly more involved than this description since Ross et al. also smooth the
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probabilities (using exponential smoothing) to reduce the discreetness of the test

statistic. For exact details see Ross, Tasoulis, and Adams, 2013.

Similarly to ADWIN-B, a Bernoulli distribution is associated with each cate-

gory, and this method is used to detect changes in any of them. When a change

is detected in any window, all samples prior to that change point are discarded.

Algorithm 14 shows how to apply their method using this approach.

Algorithm 14 Fisher’s Exact Test Change Point Model using Bernoulli distri-
butions (FET-CPM-B)

1: Initialise an empty window W ← ().
2: Initialise an empty set S ← {}.
3: Initialise a map from samples to change point models M : S → FET-CPM.
4: for t > 0 do
5: Observe the sample at time t, xt.
6: Add xt to W , W ← (W,xt).
7: if xt 6∈ S then . The sample type has not been observed before.
8: Add xt to S, S ← S ∪ {xt}.
9: Map xt to a new FET-CPM M(xt)← FET-CPMx.

10: end if
11: for each observed sample type x ∈ S do
12: if x is equal to xt, x = xt then
13: Have M(x) observe 1 (success),
14: else
15: Have M(x) observe 0 (fail).
16: end if
17: end for
18: for each observed sample type x ∈ S do
19: if M(x) has detected a change then
20: Get the most likely change point i.
21: Discard all symbols in W before the change point i, W ← Wi:|W |.
22: break
23: end if
24: end for
25: end for

6.3 Comparing Change Detection Methods

In this section, experiments are performed to compare the change detection meth-

ods in Section 6.2 to each other, and to an empirical distribution. The aim is to

compare change detection methods at modelling changing distributions as well
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as changing opponent strategies. Section 6.3.1 compares the accuracies of these

modelling algorithms at modelling changing categorical distributions, which can

be seen as being representative of changing opponent strategies. Section 6.3.2

takes a more direct approach by using these modelling algorithms to play against

popular and state-of-the-art reinforcement learning agents. Here the accuracies

of these modelling algorithms are compared as well as the rewards received from

playing best-response strategies to their predictions. Within these experiments,

the empirical distribution is used as a baseline and simply estimates the proba-

bility of a symbol as the number of times that symbol has been observed divided

by the total number of observations. The three state-of-the-art change detec-

tion methods, which are the basis for the other change detection methods in

this chapter, have empirical results in their defining papers demonstrating their

effectiveness, but this appears to be the first time a comparison has been done

between them.

Bifet and Gavaldà, 2007 compare ADWIN to a sliding window, and to a

flushing window. A flushing window uses a fixed window and a sliding window.

The fixed window contains samples immediately after the most recent inferred

change point, and the sliding window contains the most recent samples. The

flushing window tests for changes between its two windows using the same test

as ADWIN, and if a change is detected, then the samples in the fixed window

are discarded, and the samples in the sliding window are moved into the fixed

window, emptying the sliding window. Bifet and Gavaldà, 2007 also compare

ADWIN to the change detection method of Gama et al., 2004. BayesCPD is used

by Adams and MacKay, 2007 as well as Fearnhead and Liu, 2007 on several real-

world datasets, but they do not compare it to other change detection methods.

Ross, Tasoulis, and Adams, 2013 compare FET-CPM to the optimal CUSUM

chart following the implementation of Marion R. Reynolds and Stoumbos, 1999.

According to Ross, Tasoulis, and Adams, 2013, the performance of a sequen-

tial change detector is often measured by two criteria, which are its expected time

between false positive detections, and its mean delay until a change is detected.

In this work, the only interest is in using these methods to help maintain accu-

rate estimated distributions, and so the performance of each method is measured

through its accuracy. In sections 6.3.1 and 6.3.2, accuracy is measured as the

Jensen-Shannon divergence metric between the estimated and actual distribu-

tions. The best method is the one that maintains the lowest average distance
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over time between its estimated distribution and the actual distribution. In sec-

tion 6.3.2, the number of correct predictions and the rewards are also provided,

the former giving an additional, more direct, accuracy measure, and the latter

showing the benefits of these accuracies.

For ADWIN and ADWIN-B, the confidence δ is used to calculate the thresh-

olds, εi, which depend on the split location i. For ADWIN-D, γ is a threshold for

the Jensen-Shannon divergence metric. A fixed γ is used, rather than determining

it through bootstrapping, to reduce the computational complexity. A minimum

window size can also be set to mitigate the inaccuracies of very small windows for

categorical distributions, and a maximum window size to further reduce the com-

putational complexity. For BayesCPD-B and BayesCPD-C, each use their own

hazard function, h(0), that returns a constant probability estimate for a change

occurring, which does not match the actual probability for a change occurring.

Additionally, each uses a number of particles to approximate the distribution

and reduce the computational complexity. For empirical probability, there are

no parameters. Finally, for FET-CPM-B, the average run length, ARL0, is an

estimate of the average number of observations before a false positive occurs,

assuming that the sequence does not change, the startup is the number of obser-

vations after which monitoring begins, and λ is a smoothing parameter, where

smaller values are better at detecting smaller shifts and vice versa.

There is a tradeoff when setting the parameters δ, (1− γ), h(0), and 1/ARL0

in that low values reduce the number of false positives, but high values detect

changes more quickly. In Section 6.3.1, these parameters are set based on initial

experiments and the change detection methods’ defining papers, but it is acknowl-

edged that fine tuning may improve accuracy. Whereas in Section 6.3.2, these

parameters are tuned to detect changes more quickly and to be more competitive

against learning agents.

6.3.1 Modelling Changing Categorical Distributions

In each of these experiments, a sample is drawn from a categorical distribution at

each time step. The change detection methods observe and use these samples to

model the distribution, which may change either suddenly or gradually. A sudden

change immediately replaces the distribution with a new categorical distribution.

A gradual change incrementally modifies the distribution. Two types of gradual

change are looked at. The first type of gradual change modifies the probability
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of each category by (q− p)/t at each time step, where q is the new probability, p

is the original probability, and t is the time for the gradual change to complete.

In this case, the new probabilities are from a new categorical distribution. The

second type of gradual change performs a random walk on the (k − 1)-simplex,

which represents the space of all categorical distributions with k categories.

For either a sudden change, or a gradual change of the first type, a new cate-

gorical distribution is sampled from a Dirichlet distribution with a vector of ones

for its concentration parameter, which makes every categorical distribution of the

same dimension as the concentration parameter equally likely to be sampled. For

a gradual change of the second type, it starts by storing k samples from a unit-

exponential distribution (x1, x2, . . . , xk) where xi ∼ e−x for 1 ≤ i ≤ k. The initial

categorical distribution is calculated by normalising these samples. The unnor-

malised samples are kept, and at each time step, each unnormalised sample xi is

updated (walked) using Algorithm 15, which was first outlined by Fernandes and

Atchley, 2008 and further explained in Fernandes, 2008. A new categorical distri-

bution is calculated at each time step by normalising the updated unnormalised

samples. Algorithm 15 uses the Metropolis-Hastings algorithm to perform the

random walk on each unit-exponential variable. For a derivation of Algorithm 15

see Appendix C.

Algorithm 15 Metropolis-Hastings Unit-Exponential Sample

Require: Current point xold, stepsize h.
1: Sample a new point xnew ← xolde

Z where Z ∼ N (0, h).
2: Calculate Metropolis ratio rm ← e−xnew

e−xold
.

3: Calculate Hastings ratio rh ← xnew

xold
.

4: Calculate acceptance probability pacc ← min(1, rmrh).
5: if pacc > u where u ∼ U(0, 1) then
6: return xnew,
7: else
8: return xold.
9: end if

The parameters for the methods are as follows. The confidence δ is set to

δ = 0.1, which is a typical value used in Bifet and Gavaldà, 2007. The threshold

γ is set to γ = 0.3, and each hazard function h(0) is set to h(0) = 1×10−4, which

are based on initial experiments. The average run length, ARL0, is chosen from a

set of allowed values, and is set to the lowest of these values to respond to changes

more quickly, startup is also set to its lowest value to respond to changes more
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quickly, and λ is set to its recommended value from one of two allowed values,

these values can be found in Ross, 2013; Ross, Tasoulis, and Adams, 2013. For

each experiment, the number of categories needs to be chosen. The probability

of a change occurring for sudden changes, and gradual changes of the first type,

is set to 2 × 10−3. For gradual changes of the second type, the stepsize is set to

h = 0.05. The length of a sudden change is set to 1, and the length of a gradual

change of the first type is set to the time between the predetermined change

points. Finally, for a mixed change, there is an equal probability of a sudden

change, or a gradual change of the first type, or a gradual change of the second

type occurring. All parameters are summarised in Table 6.2.

Table 6.2: Methods vs changing distributions parameters.

Method Parameters

ADWIN and ADWIN-B confidence δ = 0.1, thresholds calculated with Equation 6.2

ADWIN-D min window size = 10, max window size = 100, threshold γ = 0.3

BayesCPD-B and BayesCPD-C change probability h(0) = 1× 10−4, number of particles = 100

Empirical Probability N/A

FET-CPM-B average run length ARL0 = 370, startup = 20, smoothing λ = 0.1

Changing Categorical Distribution Parameters

Sudden changes probability = 2× 10−3, duration = 1

Gradual changes 1st type probability = 2× 10−3, duration = time between change points

Gradual changes 2nd type stepsize h = 0.05

Mixed change equal probability of sudden change, gradual change 1st type, and gradual change 2nd type

Experimental Parameters

Duration = 1× 104, repeats (when used) = 80

The first experiment tests sudden changes, the second experiment tests grad-

ual changes of the first type, the third experiment tests gradual changes of the

second type, and the fourth and final experiment tests a mixture of all these

changes. An example of the results for a single run of each experiment are shown

in Figure 6.1 and Table 6.3. The main results, where each experiment is re-

peated 80 times, are shown in Table 6.4. The main results show that for 5 or

fewer categories, ADWIN-D, BayesCPD-B, and BayesCPD-C all have the small-

est distances, with small variations between each method. Specifically, ADWIN-

D has slightly smaller distances for gradual changes, whereas BayesCPD-B and

BayesCPD-C have slightly smaller distances for sudden and mixed changes. For

10 or 20 categories, BayesCPD-C has the smallest distances for all types of

changes, and in most cases this is by a relatively large margin. As the number

of categories increases, it gets harder to detect changes in individual categories

because they are less likely to have a large probability mass shifted to or away
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from them. The result is that the distances of all the change detection methods

increase with the number of categories. One way to mitigate this would be to

make each change detection method more sensitive i.e. by increasing δ, (1− γ),

h(0), and 1/ARL0. An alternative approach would be to group similar categories

together and to model them as one category, although this abstraction may not

be possible if the categories are unrelated.
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(a) Sudden changes.

Figure 6.1
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Figure 6.1
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Figure 6.1
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(d) Mixed changes.

Figure 6.1: These stacked area graphs show single run results for change detection
experiments. The area of each method represents the distance between its esti-
mated categorical distribution and the actual categorical distribution over time.
Distances are measured using the Jensen-Shannon divergence metric. Switches
for sudden and gradual changes (first type) occur at vertical dashed lines.
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Table 6.3: Example single run change detection results for 3 categories. There is
a row for each method. There are columns for sudden changes, gradual changes
of the first and second types, and mixed changes. Each entry shows the Jensen-
Shannon divergence metric between the method’s estimated categorical distribu-
tion and the actual categorical distribution averaged over all time.

Method Sudden Changes Gradual Changes 1 Gradual Changes 2 Mixed Changes
ADWIN 0.161 0.143 0.135 0.148
ADWIN-B 0.089 0.124 0.130 0.129
ADWIN-D 0.072 0.073 0.096 0.077
BayesCPD-B 0.045 0.079 0.098 0.086
BayesCPD-C 0.044 0.079 0.102 0.086
Empirical Probability 0.279 0.199 0.242 0.231
FET-CPM-B 0.175 0.131 0.156 0.174

Table 6.4: Average change detection results for different numbers of categories.
There is a row for each method. There are columns for sudden changes, gradual
changes of the first and second types, and mixed changes. Each entry shows the
Jensen-Shannon divergence metric between the method’s estimated categorical
distribution and the actual categorical distribution averaged over all time and 80
repeats along with the Standard Error of the Mean (SEM).

(a) 2 categories.

Method Sudden Changes Gradual Changes 1 Gradual Changes 2 Mixed Changes
ADWIN 0.078 ± 0.009 0.100 ± 0.005 0.102 ± 0.006 0.092 ± 0.007
ADWIN-B 0.078 ± 0.009 0.100 ± 0.005 0.102 ± 0.006 0.092 ± 0.007
ADWIN-D 0.052 ± 0.006 0.047 ± 0.002 0.063 ± 0.003 0.054 ± 0.004
BayesCPD-B 0.035 ± 0.003 0.053 ± 0.002 0.065 ± 0.003 0.050 ± 0.003
BayesCPD-C 0.037 ± 0.004 0.059 ± 0.002 0.069 ± 0.003 0.054 ± 0.003
Empirical Probability 0.21 ± 0.02 0.18 ± 0.02 0.19 ± 0.02 0.19 ± 0.02
FET-CPM-B 0.13 ± 0.02 0.12 ± 0.01 0.12 ± 0.01 0.12 ± 0.02

(b) 3 categories.

Method Sudden Changes Gradual Changes 1 Gradual Changes 2 Mixed Changes
ADWIN 0.13 ± 0.02 0.146 ± 0.008 0.146 ± 0.007 0.136 ± 0.009
ADWIN-B 0.10 ± 0.01 0.128 ± 0.005 0.134 ± 0.005 0.116 ± 0.007
ADWIN-D 0.074 ± 0.007 0.069 ± 0.002 0.090 ± 0.003 0.076 ± 0.004
BayesCPD-B 0.048 ± 0.004 0.076 ± 0.003 0.094 ± 0.003 0.071 ± 0.003
BayesCPD-C 0.049 ± 0.005 0.080 ± 0.003 0.098 ± 0.003 0.074 ± 0.004
Empirical Probability 0.27 ± 0.02 0.22 ± 0.01 0.26 ± 0.02 0.25 ± 0.01
FET-CPM-B 0.16 ± 0.02 0.145 ± 0.010 0.162 ± 0.009 0.15 ± 0.01
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(c) 4 categories.

Method Sudden Changes Gradual Changes 1 Gradual Changes 2 Mixed Changes
ADWIN 0.16 ± 0.02 0.169 ± 0.007 0.174 ± 0.006 0.17 ± 0.01
ADWIN-B 0.11 ± 0.01 0.145 ± 0.005 0.157 ± 0.004 0.137 ± 0.008
ADWIN-D 0.092 ± 0.007 0.085 ± 0.002 0.108 ± 0.002 0.095 ± 0.004
BayesCPD-B 0.059 ± 0.005 0.090 ± 0.003 0.115 ± 0.003 0.088 ± 0.004
BayesCPD-C 0.059 ± 0.006 0.092 ± 0.003 0.117 ± 0.003 0.089 ± 0.004
Empirical Probability 0.29 ± 0.02 0.239 ± 0.010 0.28 ± 0.01 0.27 ± 0.01
FET-CPM-B 0.18 ± 0.02 0.154 ± 0.010 0.180 ± 0.007 0.17 ± 0.01

(d) 5 categories.

Method Sudden Changes Gradual Changes 1 Gradual Changes 2 Mixed Changes
ADWIN 0.18 ± 0.02 0.189 ± 0.008 0.194 ± 0.006 0.19 ± 0.01
ADWIN-B 0.13 ± 0.01 0.162 ± 0.005 0.172 ± 0.004 0.151 ± 0.008
ADWIN-D 0.112 ± 0.007 0.100 ± 0.003 0.124 ± 0.002 0.111 ± 0.004
BayesCPD-B 0.067 ± 0.006 0.105 ± 0.003 0.131 ± 0.003 0.099 ± 0.004
BayesCPD-C 0.067 ± 0.006 0.103 ± 0.002 0.130 ± 0.003 0.098 ± 0.004
Empirical Probability 0.31 ± 0.01 0.258 ± 0.008 0.300 ± 0.009 0.29 ± 0.01
FET-CPM-B 0.19 ± 0.02 0.168 ± 0.009 0.192 ± 0.006 0.18 ± 0.01

(e) 10 categories.

Method Sudden Changes Gradual Changes 1 Gradual Changes 2 Mixed Changes
ADWIN 0.24 ± 0.02 0.226 ± 0.007 0.241 ± 0.005 0.23 ± 0.01
ADWIN-B 0.18 ± 0.02 0.193 ± 0.005 0.216 ± 0.003 0.192 ± 0.010
ADWIN-D 0.296 ± 0.005 0.303 ± 0.004 0.296 ± 0.004 0.296 ± 0.005
BayesCPD-B 0.11 ± 0.01 0.156 ± 0.004 0.190 ± 0.003 0.145 ± 0.007
BayesCPD-C 0.094 ± 0.007 0.126 ± 0.002 0.167 ± 0.002 0.125 ± 0.005
Empirical Probability 0.34 ± 0.01 0.277 ± 0.006 0.321 ± 0.005 0.322 ± 0.008
FET-CPM-B 0.21 ± 0.02 0.173 ± 0.008 0.211 ± 0.003 0.20 ± 0.01

(f) 20 categories.

Method Sudden Changes Gradual Changes 1 Gradual Changes 2 Mixed Changes
ADWIN 0.28 ± 0.02 0.258 ± 0.006 0.284 ± 0.003 0.275 ± 0.010
ADWIN-B 0.23 ± 0.02 0.231 ± 0.005 0.254 ± 0.002 0.235 ± 0.010
ADWIN-D 0.420 ± 0.004 0.436 ± 0.003 0.421 ± 0.003 0.425 ± 0.003
BayesCPD-B 0.355 ± 0.008 0.295 ± 0.004 0.337 ± 0.003 0.333 ± 0.006
BayesCPD-C 0.125 ± 0.008 0.155 ± 0.002 0.201 ± 0.001 0.156 ± 0.005
Empirical Probability 0.355 ± 0.008 0.293 ± 0.004 0.336 ± 0.003 0.331 ± 0.006
FET-CPM-B 0.23 ± 0.02 0.194 ± 0.007 0.232 ± 0.002 0.215 ± 0.010
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6.3.2 Modelling Reinforcement Learning Agents

There are two experiments in this section. Both experiments use each change de-

tection method and an empirical distribution to play against a variety of popular

and state-of-the-art reinforcement learning agents. In each case, this is done by

playing a best-response strategy to the prediction of the opponent’s distribution

(i.e. the predicted reinforcement learning agent’s strategy). In the case where the

empirical distribution is used, this is simply fictitious play. These reinforcement

learning agents include ε-greedy Q-Learning, WoLF-PHC, WPL, and PGA-APP.

Initial experiments showed that given the same parameters as in Section 6.3.1,

the change detection methods struggle to track the changes in the reinforcement

learning agents’ strategies because they change more quickly than the categorical

distributions in Section 6.3.1. Therefore, these parameters were tuned in this

section to make the change detection based agents more competitive by allowing

them to detect changes more quickly. Specifically, the confidence, δ, is raised to

7 and the thresholds, εi, are calculated using the more conservative Equation 6.1

instead of Equation 6.2. Although the threshold, γ, is not changed (i.e. γ = 0.3),

the minimum window size is reduced to 1 from 10. Finally, the constant hazard

function, h(0), is raised to h(0) = 0.12 for BayesCPD-B, and h(0) = 0.35 for

BayesCPD-C. For the reinforcement learning algorithms, a standard small fixed

exploration rate of 0.05 is used to ensure that they never stop exploring and that

their exploration does not significantly affect their rewards. In most situations

higher exploration rates would likely decrease the rewards of the change detection

methods and the reinforcement learning algorithms. For change detection meth-

ods this is because they typically assume a single fixed switching rate for strategy

changes, but a high exploration rate effectively introduces a second switching

rate. For reinforcement learning algorithms this is because a high exploration

rate would make them act uniformly at random more often, which is typically a

bad strategy. However, for the games in this section (matching pennies and rock-

paper-scissors) a uniform random strategy is a Nash equilibrium strategy and

so is not a bad strategy. For the reinforcement learning algorithms their other

parameters are tuned to improve rewards. They use a high learning rate of 0.99

and discount factor of 0.99 to learn quickly and to lookahead as far as possible.

The step-size is set to 0.05 to learn quickly without constantly jumping outside

the strategy space. The losing step-size is set to double the winning step-size as

in Bowling and Veloso, 2002 and the prediction length is set to 1 as in Zhang
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and Lesser, 2010. Finally, the number of repeats is chosen to ensure statistical

significance. All of these parameters are summarised in Table 6.5.

Table 6.5: Methods vs reinforcement learning agents parameters.

Method Parameters

ADWIN and ADWIN-B confidence δ = 7, thresholds calculated with Equation 6.1

ADWIN-D min window size = 1, max window size = 100, threshold γ = 0.3

BayesCPD-B change probability h(0) = 0.12, number of particles = 100

BayesCPD-C change probability h(0) = 0.35, number of particles = 100

Empirical Probability N/A

FET-CPM-B average run length ARL0 = 370, startup = 20, smoothing λ = 0.1

Reinforcement Learning Agents Parameters

All reinforcement learning agents exploration rate = 0.05, learning rate = 0.99, discount factor = 0.99

WoLF-PHC, WPL, and PGA-APP step-size = 0.05

WoLF-PHC winning step-size = 0.05, losing step-size = 0.1

PGA-APP prediction length = 1

Experimental Parameters

Duration = 1× 104, repeats (when used) = 80

In the first experiment, the game is iterated matching pennies, and in the

second experiment, the game is iterated rock-paper-scissors. For simplicity, each

iterated game only has one state, which the agents observe repeatedly. This

state is not based on any information such as a memory of interaction. This

means that each agent’s strategy can be exactly represented by a single categorical

distribution, which makes it easier to compare accuracies. The results for iterated

matching pennies are shown in tables 6.6, 6.7, and 6.8, and the results for iterated

rock-paper-scissors are shown in tables 6.9, 6.10, and 6.11.

The average distances in tables 6.6 and 6.9 show that the ADWIN based

methods have the smallest average distances against ε-greedy Q-Learning, and

that the Bayesian methods have the smallest average distances against WoLF-

PHC, WPL and PGA-APP. This implies that the ADWIN based methods are

more accurate at modelling agents with deterministic strategies (ignoring explo-

ration), whilst the Bayesian methods are more accurate at modelling agents with

mixed strategies. However, the average correct predictions in tables 6.7 and 6.10

show that all modelling methods, except fictitious play and FET-CPM-B, have

around the same average correct predictions. This is because, although lower

average distances imply higher average accuracies, a model does not need to be

completely accurate to produce correct predictions. For example, if an opponent
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always plays rock in rock-paper-scissors, then a best-response strategy to the dis-

tribution that predicts rock with certainty will be the same as the best-response

strategy to any distribution where rock has the maximum probability.

All modelling methods, except fictitious play and FET-CPM-B, have high av-

erage correct predictions against ε-greedy Q-Learning. This is because ε-greedy

Q-Learning tends to play sequences of the same action, which makes it pre-

dictable. The reason it does this is that (ignoring exploration) it deterministically

plays the action that it estimates has the highest expected discounted reward,

and it takes time to update these estimates. The delay until action a2 overtakes

action a1 in having the highest expected discounted reward is approximately the

amount of time action a1 will be played continuously.

The average rewards in tables 6.8 and 6.11 show that all modelling agents, ex-

cept for fictitious play and FET-CPM-B, gain positive average rewards against all

reinforcement learning agents. In fact, the modelling agents based on fictitious

play and FET-CPM-B have negative average rewards in all cases. Addition-

ally, the average rewards of all modelling agents, except for fictitious play and

FET-CPM-B, are generally higher in iterated rock-paper-scissors than in iter-

ated matching pennies. Given that rock-paper-scissors is like a larger version of

matching pennies (i.e. it has an extra action), then this implies that the mod-

elling agents may scale better than the reinforcement learning agents to games

with more actions. Despite the differences in average distances, the average cor-

rect predictions and thus the average rewards remain competitive between the

modelling agents (except for fictitious play and FET-CPM-B).

Overall, these results show that by using the parameters in Table 6.5, the

ADWIN based change detectors and the Bayesian change detectors can be used

to effectively model changing opponent strategies. The reason for this is that

best-response strategies against their models are able to produce positive average

rewards per game, and outperform the reinforcement learning agents.
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Table 6.6: Matching pennies average distances.

ε-greedy Q-Learning WoLF-PHC WPL PGA-APP
ADWIN 0.224 0.529 0.544±0.0003 0.525
ADWIN-B 0.225 0.529 0.551 0.524
ADWIN-D 0.224 0.529 0.544±0.0003 0.525
BayesCPD-B 0.386 0.136 0.116 0.145
BayesCPD-C 0.396 0.13 0.117 0.138
Fictitious Play 0.496 0.234±0.001 0.149 0.342
FET-CPM-B 0.5 0.269±0.001 0.224±0.0002 0.382

Table 6.7: Matching pennies average correct predictions.

ε-greedy Q-Learning WoLF-PHC WPL PGA-APP
ADWIN 0.849 0.539 0.506 0.543
ADWIN-B 0.847 0.537 0.508 0.544
ADWIN-D 0.849 0.539 0.506 0.543
BayesCPD-B 0.847 0.536 0.508 0.55
BayesCPD-C 0.848 0.538 0.509 0.543
Fictitious Play 0.448 0.46 0.46 0.471
FET-CPM-B 0.431±0.0002 0.39±0.0002 0.386±0.0002 0.36±0.0002

Table 6.8: Matching pennies average rewards.

ε-greedy Q-Learning WoLF-PHC WPL PGA-APP
ADWIN 0.698±0.0001 0.079±0.0001 0.012±0.0002 0.086±0.0001
ADWIN-B 0.694 0.074±0.0001 0.016±0.0001 0.088±0.0001
ADWIN-D 0.698±0.0001 0.079±0.0001 0.012±0.0002 0.086±0.0001
BayesCPD-B 0.694±0.0001 0.072±0.0001 0.017±0.0001 0.1±0.0001
BayesCPD-C 0.697±0.0001 0.076±0.0001 0.019±0.0002 0.087±0.0001
Fictitious Play -0.104 -0.08 -0.079 -0.058
FET-CPM-B -0.138±0.0003 -0.219±0.0003 -0.228±0.0004 -0.279±0.0003
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Table 6.9: Rock-paper-scissors average distances.

ε-greedy Q-Learning WoLF-PHC WPL PGA-APP
ADWIN 0.325 0.593 0.656 0.584
ADWIN-B 0.325 0.592 0.656 0.585
ADWIN-D 0.325 0.593 0.656 0.584
BayesCPD-B 0.467 0.219 0.167 0.224
BayesCPD-C 0.494 0.215 0.15 0.224
Fictitious Play 0.588 0.405 0.296 0.424
FET-CPM-B 0.592 0.471 0.36±0.0001 0.466

Table 6.10: Rock-paper-scissors average correct predictions.

ε-greedy Q-Learning WoLF-PHC WPL PGA-APP
ADWIN 0.768 0.458 0.368 0.468
ADWIN-B 0.769 0.458 0.369 0.468
ADWIN-D 0.768 0.458 0.368 0.468
BayesCPD-B 0.78 0.446 0.365 0.466
BayesCPD-C 0.636±0.0001 0.439 0.364 0.456
Fictitious Play 0.306 0.313 0.308 0.31
FET-CPM-B 0.221±0.0001 0.19±0.0001 0.21±0.0001 0.2±0.0001

Table 6.11: Rock-paper-scissors average rewards.

ε-greedy Q-Learning WoLF-PHC WPL PGA-APP
ADWIN 0.658±0.0002 0.186±0.0001 0.051±0.0001 0.2±0.0001
ADWIN-B 0.657±0.0001 0.185±0.0001 0.053±0.0001 0.199±0.0001
ADWIN-D 0.658±0.0002 0.186±0.0001 0.051±0.0001 0.2±0.0001
BayesCPD-B 0.587±0.0002 0.207±0.0001 0.055±0.0001 0.232±0.0001
BayesCPD-C 0.584±0.0002 0.204±0.0001 0.057±0.0001 0.233±0.0001
Fictitious Play -0.074 -0.045 -0.041 -0.041
FET-CPM-B -0.259±0.0002 -0.33±0.0003 -0.245±0.0003 -0.291±0.0002

6.4 Combining Sequence Prediction and Change

Detection

In previous chapters, particularly Chapter 4, it has been shown how sequence pre-

diction can be used to predict a probability distribution over the future actions

of an opponent based on a sequence of observations from the past. These obser-

vations could be composed of, for example, previous states, or actions, or both.
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The predictions can be seen as conditional probability distributions over the op-

ponent’s actions, where the conditions are subsequences of observed sequences.

Each conditional distribution is assumed to be stationary, but this may be an

incorrect assumption. For example, it could be the case that in the prisoner’s

dilemma there is an opponent who starts off using the tit-for-tat strategy, but

eventually switches to the always defect or the always cooperate strategies de-

pending on how much it trusts its opponent. Some sequence prediction methods

have ways to handle changing distributions. For example, ELPH will prune a con-

ditional distribution if it has a high entropy because this implies that it is close to

a uniform random distribution and thus is not very useful for predicting. Change

detection methods offer an alternative and more proactive approach for handling

changing distributions by detecting their change points and discarding irrelevant

samples prior to those change points. Thus, sequence prediction methods could

use change detection methods to model changing conditional distributions.

6.5 Chapter Summary

This chapter takes another look at the problem of modelling an opponent’s strat-

egy (i.e. categorical distributions) when they are changing. These changes may

be due to, for example, the opponent learning. In order to accurately model a

categorical distribution, it is important to only use samples that actually origi-

nate from it. This means that if and when the categorical distribution changes,

then samples that do not represent it should be ignored or forgotten. It was dis-

cussed how this could be done by using an adaptive window of past observations

such that the window would be shortened as the distribution changed to remove

unrepresentative samples. In order to detect these changes, variations of three

state-of-the-art change detection methods were considered, which include ADap-

tive WINdowing (ADWIN) by Bifet and Gavaldà, 2007, Bayesian Change Point

Detection (BayesCPD) by Adams and MacKay, 2007 as well as Fearnhead and

Liu, 2007, and Fisher’s Exact Test Change Point Model (FET-CPM) by Ross,

Tasoulis, and Adams, 2013. Some of these variations were first proposed in this

chapter to handle categorical distributions. The main contribution of this chapter

is to experimentally compare these methods against each other and against an

empirical distribution at predicting changing categorical distributions.

In the first comparison, the categorical distributions were changing either
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suddenly, or gradually, or a mixture of both. The results show that for small

numbers of categories (2-5), the BayesCPD methods maintain the most accu-

rate models for sudden and mixed changes, whilst ADWIN-D maintains the most

accurate models for gradual changes. However, for large numbers of categories

(10 or 20), BayesCPD-C maintains the most accurate models for all types of

changes. Also, as the number of categories is increased, all methods perform

worse at different degrees of degradation due to each category generally having

less probability mass making probability mass shifts between categories harder to

detect. In the second comparison, the categorical distributions were actually the

strategies of popular and state-of-the-art reinforcement learning agents, which

were changing according to their update rules and feedback. In other words, the

change detection methods (and the empirical distribution) were used to predict

the strategies of the reinforcement learning agents, which in turn were used to

calculate and play best-response strategies in iterated matching pennies and it-

erated rock-paper-scissors. The results here show that the ADWIN methods and

the BayesCPD methods can effectively model changing opponent strategies such

that best-response strategies against their models gain positive average rewards

against the reinforcement learning agents. Although in general, the BayesCPD

methods are the most accurate against the reinforcement learning agents. Finally,

it was discussed how these methods could improve sequence prediction methods,

which could be a direction for future research.



Chapter 7

Dynamic Opponent Modelling

Self-Play Convergence

Ideally, we want each agent in a multi-agent system to consistently learn and

change its strategy to increase its expected rewards. If an agent could maintain

this behaviour, then eventually it would learn and converge to a best-response

strategy that maximises its expected rewards against the other agents’ strategies.

If all agents could maintain this behaviour, then eventually they would learn and

converge to a Nash equilibrium. However, it is difficult to devise learning rules

that will consistently change an agent’s strategy to increase its expected rewards,

especially since other agents’ strategies can affect those rewards. Crawford’s puz-

zle illustrates this (see Section 3.2.3), where seemingly natural learning rules did

not result in convergence to mixed strategy Nash equilibria despite good condi-

tions (i.e. simple problems, clear and relevant feedback, unique equilibria, etc.).

This is why a large part of the literature about learning in multi-agent systems

focuses on finding learning rules that, when at least used in self-play, will result

in agents’ strategies converging to a Nash equilibrium1. This is especially true for

mixed strategy Nash equilibria, which tend to be more difficult to converge to

than pure strategy Nash equilibria. The idea behind using opponent modelling

to help convergence to Nash equilibria is that if an agent knows its opponents’

strategies, and the rules of the game (including its own rewards), then it can

directly calculate a best-response strategy.

In this chapter, which is based on [Mealing and Shapiro, 2015], the goal is to

1Abdallah and Lesser, 2008; Awheda and Schwartz, 2013; Banerjee and Peng, 2003; Bowling,
2005; Bowling and Veloso, 2002; Butterworth and Shapiro, 2009; Zhang and Lesser, 2010.
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address the question, will convergence be enhanced if each agent assumes that the

other agents are changing their strategies over time. This will be studied using

simultaneous-move games with two or three actions, and two or three players. A

comparison is drawn between fictitious play, which assumes that the opponent

uses a stationary strategy, with two new variants that remove this assumption

and explicitly assume that the opponent uses a dynamic strategy. The opponent’s

strategy is predicted using a sequence prediction method in the first variant, and

a change detection method in the second variant. At each step each method ob-

serves the opponent’s action, predicts its strategy, and then plays a best-response

strategy to the predicted strategy.

Specifically the comparison looks at the convergence in self-play of these vari-

ants and fictitious play to mixed strategy Nash equilibria. Only the empirical

distributions of plays over games are considered because they almost always play

pure strategies. Experiments find that these variants converge faster than ficti-

tious play. However, unlike in fictitious play, these variants do not always exactly

converge to the Nash equilibria. For change detection, this is a very small num-

ber of cases, but for sequence prediction there are many. Combining each variant

with fictitious play improves its convergence, reducing these cases. Also, unlike

fictitious play, these variants converge to the mixed strategy Nash equilibria in

Shapley’s and Jordan’s games, which are considered difficult [Leslie, 2003].

7.1 Fictitious Play Example

Fictitious play and its convergence properties are described in Section 3.2.10,

from which there are three key points about fictitious players in self-play:

1. They cannot converge to a mixed strategy Nash equilibrium because each

one always plays a pure strategy.

2. Their empirical distributions of plays can converge to a mixed strategy Nash

equilibrium in certain games.

3. If their empirical distributions of plays converge to a Nash equilibrium and

they are each independent from one another, then their expected rewards

will also converge to those at that Nash equilibrium.

This last point captures the type of convergence that this chapter investigates.
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In this example, two fictitious players are played against each other in self-

play in an iterated game of matching pennies. The row player wins if it matches

the action of the column player; otherwise the column player wins. A win (loss)

is worth (−)1. This is shown in Table 3.5. Let heads be represented by 1, tails be

represented by −1, x be the mean of the row player’s actions, and y be the mean

of the column player’s actions. So, for example, x = 0 would mean that the row

player has played equal numbers of heads and tails. The row player updates y

after observing each of the column player’s actions, and will play its sign. Whilst

the column player updates x after observing each of the row player’s actions, and

will play minus its sign. The expected dynamics of x and y are

x(t) =

(
1− 1

t

)
x(t− 1) +

(
1

t

)
sign(y(t− 1)), (7.1)

y(t) =

(
1− 1

t

)
y(t− 1)−

(
1

t

)
sign(x(t− 1)), (7.2)

sign(z) =


1 if z > 0,

0 if z = 0,

−1 if z < 0.

If a player has played equal numbers of heads and tails, then under fictitious play

dynamics, its opponent would play a (usually uniform) random action. Thus,

the expectation of its opponent’s play in this situation is zero. This is why these

are the expected dynamics. The players’ actions will never converge, because the

signs of x and y will never stop changing. However, the means do converge, albeit

slowly. To illustrate these expected dynamics, 10000 iterations of recurrence

relations 7.1 and 7.2 were ran. The initial values of x and y were each randomly

set to either −1 or 1 with equal probability. The results are shown in figures

7.1a, 7.1b, 7.1c, and 7.1d. Note that many two-player, two-action, zero-sum,

normal-form games with mixed strategy Nash equilibria will be similar, with x

and y measuring the difference between the strategy profile and the equilibrium.

Viewing this as a dynamical system, the following can be said about equations

7.1 and 7.2:

1. The point (x = 0, y = 0) is a fixed point.

2. The system cycles towards the origin, by switching strategies, as seen in

figures 7.1a and 7.1b.
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(a) At the start, x(1) = 1, y(1) = 1,
and at the end, x(10000) = 0.000080,
y(10000) = 0.014. They are converging
to the Nash equilibrium at the centre,
but more slowly as time goes on as the
distance between points is decreasing.
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(b) One cycle between iterations 866
and 1040. At the start, x(866) ≈ 0
but positive, y(866) = 0.047, and at
the end, x(1040) ≈ 0 but positive,
y(1040) = 0.043. Note that at itera-
tions 866 and 1040, x has just switched
signs i.e. at iterations 865 and 1039
x ≈ 0 but negative.
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(c) The abs(x) is converging towards 0.
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(d) The average Jensen-Shannon diver-
gence metric is converging towards 0.
See Section 7.4.1 for a definition of
the average Jensen-Shannon divergence
metric.

Figure 7.1: Expected dynamics of fictitious play in self-play in matching pennies
over 1 × 104 iterations. The parameters of the best-fit lines were calculated
using MATLAB’s Trust-Region-Reflective Least Squares algorithm with Bisquare
weights Least-Squares Algorithms .
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3. The period of a cycle grows at least linearly with time.

4. The amount the system moves towards the origin per cycle decreases at

least inversely with time.

5. As a consequence of 3 and 4, the convergence rate is Θ(1/
√
t), where t is

time (iteration).

Point 1 is obvious, Appendix D shows points 2, 3, 4, and 5.

The fact that fictitious play undergoes empirical Nash convergence here, but

very slowly, as shown empirically in figures 7.1a, 7.1b, 7.1c, and 7.1d, as well as

theoretically in Appendix D, is part of the motivation of this chapter. Conver-

gence is very slow because each agent takes an increasingly long time to change its

strategy in response to the change in its opponent’s strategy. If an agent could

identify its opponent’s strategy switches more quickly, then it might converge

faster, perhaps optimally like 1/t, as well as in more situations. This is the idea

that is investigated in this chapter.

7.2 Extensions to Fictitious Play

In this chapter, only the traditional fictitious play algorithm as described in Sec-

tion 3.2.10 is considered. However, to help put the work in this chapter into

context, some extensions to it are briefly described. These extensions can allow

fictitious play to model changing opponent strategies, to use mixed strategies, and

can improve its convergence to solution concepts. Two popular extensions, intro-

duced by Fudenberg and Levine, 1998, are geometric fictitious play and stochastic

fictitious play. Geometric fictitious play can model changing opponent strategies.

It works by giving bigger weights to more recent opponent actions when updating

opponent action probabilities. In comparison to the traditional update shown in

Equation 3.45, the only change is that the factor 1/t, where t is the iteration, is

replaced by a constant z ∈ [0, 1]. The constant z is a “forgetting factor”, with

higher values placing less weight on past opponent actions. Stochastic fictitious

play can play mixed strategies and also introduces exploration. It does this by

smoothing the best-response function, which means that instead of selecting the

strategy with the maximum expected reward, strategies are selected with proba-

bilities that are proportional to their expected rewards. A common approach to
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this is for player i to play strategy σi with probability

Pr(σi) =
eui(σi,σ−i)λ

−1∑
σ′i
eui(σ

′
i,σ−i)λ

−1 , (7.3)

where λ is a randomisation parameter. As λ approaches zero, this smoothed

best-response becomes equivalent to a regular best-response. Various extensions

are examined by Ny, 2006, who looks at traditional (discrete-time) fictitious play,

stochastic (smooth) fictitious play, continuous-time fictitious play, and dynamic

fictitious play. Two more extensions are proposed by Smyrnakis and Leslie, 2010,

2011, which can model a changing opponent strategy based on recent observa-

tions. The first uses a particle filter algorithm, whilst the second uses a heuristic

rule to adaptively update the weights of opponent actions.

7.3 Sequence Prediction and Change Detection

Self-Play Convergence

The main question in this chapter is: will convergence in self-play be enhanced

if each agent assumes that the other agents are changing their strategies over

time? There are two aspects of convergence that can be enhanced, firstly its

speed, and secondly its applicability. Experiments in this chapter will look at

both aspects, firstly by modelling convergence speed, and secondly by looking at

two games where the empirical distributions of plays of fictitious players in self-

play do not converge to mixed strategy Nash equilibria, namely Shapley’s game

and Jordan’s game. The advantage shared by sequence prediction and change

detection methods over fictitious play is that they do not rely on the typically er-

roneous assumption that the opponent is using a stationary strategy. By avoiding

this assumption, these methods can potentially maintain more accurate opponent

models. A more accurate opponent model could allow for more accurate best-

response strategies to be calculated, enhancing an agent’s ability to act rationally

and possibly learn a Nash equilibrium in self-play. Thus, to test this, this chapter

compares fictitious play with two new variants. The opponent’s strategy is pre-

dicted by the first variant using a sequence prediction method, and by the second

variant using a change detection method.

Initial experiments found that the empirical distributions of plays of some
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sequence prediction methods and some change detection methods do not always

converge to Nash equilibria in self-play in two-player, two-action, normal-form

games derived from generalised matching pennies. The result is sometimes that

whilst one agent’s empirical distribution of plays would converge to its portion

of the Nash equilibrium, the other player’s empirical distribution of plays would

converge some distance away from its portion of the Nash equilibrium. One

possibility to improve the convergence of these methods is to combine each of

them with fictitious play in such a way as to keep the convergence properties of

fictitious play, whilst taking advantage of the ability of the sequence prediction

and change detection methods to model changing strategies. This chapter tests

this through two hybrid methods, the first combines sequence prediction with

fictitious play, and the second combines change detection with fictitious play.

Fictitious play assumes that an opponent’s action probability is the ratio of the

number of times that it has played that action to the total number of actions that

it has played. Thus, each opponent action observation has less power to change

fictitious play’s modelled opponent action probabilities than any prior opponent

action observations. For example, in iterated matching pennies, if fictitious play

observes the opponent play heads for the first n games, then the opponent will

have to play tails for at least n more games before fictitious play changes its

estimated best-response strategy. As more games are played, it becomes harder

and harder to change fictitious play’s modelled opponent action probabilities, and

usually its estimated best-response strategy because it weights all observations

equally. An exception to this is if an opponent plays actions approximately an

equal number of times. In this situation, future observations still have less of

an effect on action probabilities, but the estimated best-response strategy could

quickly change. For example, if in rock-paper-scissors the opponent plays rock,

then paper, then scissors in a loop, then fictitious play’s estimated opponent

action probabilities would converge to 1/3 and become harder and harder to

change. However, the estimated best-response strategy would go from rock or

paper or scissors, then to paper, then to paper or scissors also in a loop.

Sequence prediction and change detection methods can avoid being locked

into playing increasingly long sequences of the same best-response strategy. This

is because they can, in general, recognise when the same strategy is used for

many games. For example, in iterated matching pennies, imagine an opponent

who plays the sequence (H,T,H,H, T, T, T,H,H,H, . . . ). A sequence prediction
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method would model Pr(H|H) and Pr(T |T ), and these probabilities would ap-

proach one as the number of games increased. A change detection method may

initially model each action as having equal probability. However, eventually it

would assume a change has occurred and reset the model, after which it would

only observe a pure strategy for a number of games. When the opponent eventu-

ally switches to its other pure strategy and plays it for a number of games, this

would stand out clearly as a change point.

To illustrate fictitious play playing longer and longer sequences of the same

action in self-play, and the other methods avoiding this behaviour, each method

was played in self-play in matching pennies. Figure 7.2 shows the results i.e.

recurrence plots for each method in self-play in matching pennies where FP is

fictitious play, SP is sequence prediction, SPFP is sequence prediction and ficti-

tious play, CD is change detection, and CDFP is change detection and fictitious

play. The x and y axes represent games, and each point is either black if the

action between both games is the same, or white otherwise. In each plot, there is

a checkerboard structure, which is a result of the player oscillating between play-

ing heads and tails. For fictitious play, the size of the rectangles increases with

the number of games, which shows that each fictitious player is playing longer

and longer sequences of the same action. Whereas for the other methods, the

rectangles do not always increase in size with the number of games. For sequence

prediction, change detection, and change detection with fictitious play, the size of

the rectangles remain relatively small compared to fictitious play. For sequence

prediction with fictitious play, it looks as if the plots for fictitious play are repeat-

ing. This is because the method is mostly acting as fictitious play would, up until

the point where sequence prediction momentarily takes over the predictions. In

comparison to fictitious play, each other method reduces the temporal correlation

between a player’s actions, which has two advantages. Firstly, it makes the player

less predictable, and secondly, the player is more likely to get the expected reward

of its empirical distribution of plays.
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Figure 7.2
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Figure 7.2: Recurrence plots for each method in self-play in matching pennies
where FP is fictitious play, SP is sequence prediction, SPFP is sequence prediction
and fictitious play, CD is change detection, and CDFP is change detection and
fictitious play. The x and y axes represent games, and each point is either black
if the action between both games is the same, or white otherwise.
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7.3.1 Combining Sequence Prediction and Fictitious Play

This method plays a best-response strategy to the opponent’s empirical distribu-

tion of plays, just as fictitious play would, unless the sequence prediction method

predicts an opponent action will occur with a probability greater than a thresh-

old θ. In this case, it plays a best-response strategy to the opponent strategy

predicted by the sequence prediction method. This method is shown in Algo-

rithm 16.

Algorithm 16 Sequence Prediction and Fictitious Play

Require: Fictitious player f , sequence predictor s, threshold 0 ≤ θ ≤ 1.
1: use f to observe atopp (an opponent action at time t).
2: use s to observe atopp.
3: function Get Action
4: use s to predict opponent action categorical distribution Ds.
5: for each opponent action aopp in Ds do
6: if action probability in Ds is above threshold Ds(aopp) ≥ θ then
7: return best-response to Ds,
8: end if
9: end for

10: use f to predict opponent action categorical distribution Df .
11: return best-response to Df .
12: end function

7.3.2 Combining Change Detection and Fictitious Play

This method attempts to detect changes in and models the opponent’s strategy

using the Bayesian online change detection method proposed by Fearnhead and

Liu, 2007 as well as by Adams and MacKay, 2007. This method also uses the

particle filter suggested by Fearnhead and Liu, 2007 to place an upper limit on

the number of possible runlengths, and in turn, the memory and time require-

ments. In Chapter 6 this method was called BayesCPD and experiments were

performed with two different versions. The first version, BayesCPD-B, models

each category as a Bernoulli distribution, and runs a separate instance of the

change detection method on each distribution. The second version, BayesCPD-

C, uses a categorical model, and runs one instance of the change detection method

on the whole distribution. This method modifies the probabilities returned by a

model. It does this by interpolating between the model’s probabilities and the
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empirical probabilities such that as the runlength increases, the weight of the

model’s probabilities increases. This implementation is shown in Algorithm 17.

Algorithm 17 Bayes Model Modified Probability

Require: A list of runlengths r ← (r1, r2, . . . , rn), a list of runlength weights
w ← (w1, w2, . . . , wn), a list of the model’s probabilities for each runlength
µ ← (µ1, µ2, . . . , µn), the empirical probabilities µt, and a weighting factor
f ∈ R.

1: Initialise a list of modified probabilities for each runlength µ′ ← ().
2: for i← 1 to n do
3: Calculate the modified probabilities for runlength ri, µ

′
i ← riµi+fµt

ri+f
.

4: end for
5: Initialise overall probabilities M ← 0.
6: for i← 1 to n do
7: Calculate overall probabilities using the new runlength probabilities M ←
M + µ′iwi.

8: end for
9: return M

7.4 Empirical Results for Self-Play Convergence

The following experiments compare the convergence in self-play of fictitious play

to variants of it. Specifically, since each of the algorithms play pure strategies, the

comparison is between the convergence of their empirical distributions of plays.

For each game, the distances of their empirical distributions of plays from the

unique mixed strategy Nash equilibrium are measured. Distances are measured

using the Jensen-Shannon divergence metric as defined in Section 7.4.1. From

these distances, estimates of their convergence speeds are calculated. The notion

of empirical distributions of plays converging to a Nash equilibrium is a very weak

form of convergence, which will be called empirical Nash convergence. Formally,

an empirical distribution, and its convergence to another distribution, is defined

as follows. Given a finite set, A = {α1, α2, . . . , αk}, and an infinite sequence of

elements from A, S = (α1, α2, . . . ), αj ∈ A, the empirical distribution of S at
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time t is

P t
S(αi ∈ A) =

1

t

t∑
j=1

Jαi = αjK (7.4)

=

(
1− 1

t

)
P t−1
S (αi ∈ A) +

(
1

t

)
Jαi = αtK, (7.5)

where J·K is the Iverson bracket such that JφK = 1 if the predicate φ is true,

otherwise JφK = 0. Given a probability distribution over A, P (αi ∈ A),

Definition The empirical distribution of S converges to P if for any ε > 0, and

for any divergence measure D(·||·) between distributions, there exists a time tε

such that D(P t
S||P ) < ε for all times t > tε.

Thus, given a Nash equilibrium, empirical Nash convergence is defined as each

player’s empirical distribution of plays converging to their strategy in this Nash

equilibrium.

The first experiment takes another look at matching pennies. The second

experiment looks at various two-player, two-action, normal-form games derived

from generalised matching pennies. The third experiment looks at Shapley’s

game. Finally, the fourth experiment looks at Jordan’s game. In all of the exper-

iments, the sequence prediction method is Entropy Learned Pruned Hypothesis

Space (ELPH) by Jensen et al., 2005 with a short-term memory size of k = 1 and

an entropy threshold of Hl = 1, whilst the change detection method is Bayesian

Change Point Detection using Categorical distributions (BayesCPD-C) with a

switching rate of 1× 10−4 and 100 particles.

In each experiment, the hybrid algorithms, which try to improve the players’

empirical Nash convergence, are also tested. For sequence prediction and fictitious

play, the threshold, θ, is set to θ = 0.95. For change detection and fictitious play

the factor, f , is set to f = 750.

7.4.1 Measuring Nash Equilibrium Convergence

To measure the convergence to a Nash equilibrium, we need to be able to measure

the difference between each player’s strategy and its Nash equilibrium strategy.

In a normal-form game, each of these strategies can be represented as a discrete

probability distribution. Thus, we want to be able to measure the difference
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between two discrete probability distributions P and Q. To do this, the Jensen-

Shannon divergence metric is used, which is calculated using the Jensen-Shannon

divergence, and is based on the Kullback-Leibler divergence. In particular, for

each player, the Jensen-Shannon divergence metric between its empirical distri-

bution of plays and its Nash equilibrium strategy is calculated, and the average

of these values for each player are taken to give an average Jensen-Shannon di-

vergence metric i.e.

DJSM =
1

n

n∑
i=1

DJSM(σi||σ∗i ) (7.6)

=
1

n

n∑
i=1

√√√√1

2

[{∑
j

σi(j) log2

(
σi(j)

Mi(j)

)}
+

{∑
j

σ∗i (j) log2

(
σ∗i (j)

Mi(j)

)}]
,

(7.7)

where Mi(j) =
σi(j) + σ∗i (j)

2
,

where n is the number of players, σi is player i’s empirical distribution of plays,

and σ∗i is player i’s Nash equilibrium strategy. Here it is assumed that σi and σ∗i

can each be represented by a discrete probability distribution, which is the case

for a mixed strategy in a normal-form game.

7.4.2 Maximum Convergence Rate

This section puts forward a maximum convergence rate of the average Jensen-

Shannon divergence metric, which is used to measure Nash equilibrium conver-

gence, by relating it to the maximum convergence rate of an empirical probability.

Specifically, it is argued that the maximum convergence rate of an empirical prob-

ability is like O(1/i), where i is the iteration number, and that this must also be

the maximum convergence rate of the average Jensen-Shannon divergence metric.

Empirical Probability

Given a sequence of events,

S0 = (a1, a2, . . . , an) , (7.8)
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where ai ∈ A for 1 ≤ i ≤ n and A is the set of all possible events. The sequence

of empirical probabilities for an event α ∈ A is

S1 =

(∑1
i=1Jai = αK

1
,

∑2
i=1Jai = αK

2
, . . . ,

∑n
i=1Jai = αK

n

)
, (7.9)

where J·K is the Iverson bracket such that JφK = 1 if the predicate φ is true,

otherwise JφK = 0.

We want to know how quickly S1 can converge to probability, 0 ≤ p∗ ≤ 1, if

it does so as quickly as possible. To do this we can choose S0 to be any sequence

of events, where each event is in A. To make S1 converge to p∗ as quickly as

possible we set each term in S1 as close to p∗ as possible giving

S2 =

(
nint(1p∗)

1
,
nint(2p∗)

2
, . . . ,

nint(np∗)

n

)
, (7.10)

where nint is the nearest integer (or round) function such that

nint(x) =


floor(x) if x− floor(x) < ceil(x)− x,
ceil(x) if x− floor(x) > ceil(x)− x,
tbf(x) if x− floor(x) = ceil(x)− x.

(7.11)

Here tbf is a “tie-breaking function” and handles the case where x − floor(x) =

ceil(x)− x. To ensure no bias, tbf is defined to use stochastic rounding

tbf(x) =

floor(x) with probability 1
2
,

ceil(x) with probability 1
2
.

(7.12)

The difference between each term in S2 and p∗ is

S3 =

(
nint(1p∗)

1
− p∗, nint(2p∗)

2
− p∗, . . . , nint(np∗)

n
− p∗

)
(7.13)

=

(
nint(1p∗)− 1p∗

1
,
nint(2p∗)− 2p∗

2
, . . . ,

nint(np∗)− np∗
n

)
and, (7.14)

the absolute value of each term in S3 gives

S4 =

( |nint(1p∗)− 1p∗|
1

,
|nint(2p∗)− 2p∗|

2
, . . . ,

|nint(np∗)− np∗|
n

)
. (7.15)
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If S4 converges to 0, then S3 must converge to 0, and S2 must converge to p∗.

Additionally, the convergence rate of S4 to 0 will equal both the convergence rate

of S3 to 0, and the convergence rate of S2 to p∗.

If p∗ = 0, then

S2 = (0, 0, . . . , 0) ,

S3 = (0, 0, . . . , 0) ,

S4 = (0, 0, . . . , 0) ,

where S2, S3, and S4 converge immediately (or their convergence rates are infin-

ity).

If p∗ = 1, then

S2 = (1, 1, . . . , 1) ,

S3 = (0, 0, . . . , 0) ,

S4 = (0, 0, . . . , 0) ,

where S2, S3, and S4 converge immediately (or their convergence rates are infin-

ity).

If 0 < p∗ < 1, i ∈ N, and i ≥ 1, then for S3

min
i,p∗

(nint(ip∗)− ip∗) = −0.5, (7.16)

max
i,p∗

(nint(ip∗)− ip∗) = 0.5, (7.17)

nint(ip∗)− ip∗ ∈ [−0.5, 0.5]. (7.18)

It follows that

min
i,p∗

(
nint(ip∗)− ip∗

i

)
=
−0.5

i
, (7.19)

max
i,p∗

(
nint(ip∗)− ip∗

i

)
=

0.5

i
, (7.20)

nint(ip∗)− ip∗
i

∈
[−0.5

i
,
0.5

i

]
. (7.21)
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For S4,

min
i,p∗

(|nint(ip∗)− ip∗|) = 0.0, (7.22)

max
i,p∗

(|nint(ip∗)− ip∗|) = 0.5, (7.23)

|nint(ip∗)− ip∗| ∈ [0.0, 0.5]. (7.24)

It follows that

min
i,p∗

( |nint(ip∗)− ip∗|
i

)
=

0.0

i
, (7.25)

max
i,p∗

( |nint(ip∗)− ip∗|
i

)
=

0.5

i
, (7.26)

|nint(ip∗)− ip∗|
i

∈
[

0.0

i
,
0.5

i

]
. (7.27)

It is important to recall that the lower and upper bounds of the terms in S3

and S4 are for any value 0 < p∗ < 1, and for any value i ∈ N, i ≥ 1. If p∗ is set to

a particular value, then these bounds may be tighter. For example, if p∗ = 1/3,

then nint(ip∗)− ip∗ ∈ [−1/3, 1/3] and |nint(ip∗)− ip∗| ∈ [0, 1/3].

Consider the following facts about S4:

1. The numerators of the terms in S4 never converge, but are bounded.

2. The numerators of the terms in S4 oscillate between their lower and upper

bounds as the number of iterations increases. This means that given any

iteration i1, there exist iterations i2, i3 > i1, where at i2 the numerator of

the term is approximately equal to its lower bound, and at i3 the numerator

of the term is approximately equal to its upper bound.

3. The sequence of upper bounds for S4,(
0.5

1
,
0.5

2
, . . . ,

0.5

∞

)
, (7.28)

is a positive sequence that converges to zero. Furthermore, this sequence

converges sublinearly i.e.

lim
i→∞

|0.5/(i+ 1)− 0|
|0.5/i− 0| = lim

i→∞

i

i+ 1
= 1, (7.29)
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and, more specifically, it converges logarithmically i.e.

lim
i→∞

|0.5/(i+ 2)− 0.5/(i+ 1)|
|0.5/(i+ 1)− 0.5/i| = lim

i→∞

i

i+ 2
= 1, (7.30)

.

Given points 1 and 2, then the convergence rate of the terms in S4 to zero

must be equal to the convergence rate of its upper bound to zero (its lower bound

is already zero). Considering this with point 3, it then follows that S4 converges

to zero, S3 converges to zero, and S2 converges to p∗, each with a convergence

rate of at least c/i i.e.
|nint(ip∗)− ip∗|

i
≤ c

i
,∀i, (7.31)

where c is a positive constant with a maximum value of 0.5. Thus we can say

that the maximum convergence rate of an empirical probability is like O(1/i).

In short, the claim is that S1 cannot converge faster than 1/i.

Proof 1. For any α ∈ A, its empirical probability in S1,
∑i

j=1Jαj = αK/i,

cannot converge to any probability, 0 ≤ p ≤ 1, faster than in S2, nint(ip)/i

where nint is the nearest integer (or round) function.

2. If f(i) = D(S2(i)||p) where D is the divergence, then

(a) f(i) ≤ 0.5/i, and

(b) f(i) > c/i infinitely often where 0 < c < 0.5.

From point 2a it follows that f(i) = O(1/i), and from point 2b it follows that

@g(i) : g(i) = o(1/i), f(i) = O(g(i)).

Average Jensen-Shannon Divergence Metric

The maximum convergence rate of an empirical probability in an empirical dis-

tribution must also be the maximum convergence rate of the average Jensen-

Shannon divergence metric between the empirical distribution and the distri-

bution it is converging to (i.e. the distance cannot converge faster than any

individual empirical probability can converge). Assuming that the maximum

convergence rate for any empirical probability in an empirical distribution is like

O(1/i), where i is the iteration, then this must also be the maximum convergence

rate for the average Jensen-Shannon divergence metric.
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7.4.3 Matching Pennies

The results for matching pennies are shown in figures 7.1 and 7.3. They show

that, in comparison to fictitious play, the empirical Nash convergence of each

other method is faster. Specifically, comparing their average Jensen-Shannon di-

vergence metrics, each method is converging optimally like 1/t, whereas fictitious

play is converging like 1/
√
t. Similarly to fictitious play, their empirical distribu-

tions of plays cycle around the Nash equilibrium to some degree, with successive

cycles getting smaller. However, the cycles of these methods get smaller more

quickly. Change detection with or without fictitious play has cycles that get closer

to the Nash equilibrium at an almost consistent rate, which is similar to fictitious

play on its own. Sequence prediction with or without fictitious play has more

irregular cycles than change detection or fictitious play on its own. For sequence

prediction with fictitious play, there are jumps in how close its cycles are to the

origin, which correspond to the sequence prediction method temporarily being

used to make predictions.
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(a) Sequence prediction. At the start,
x = 1, y = 1, and at the end, x = 0,
y = 0. They are converging towards
the Nash equilibrium at the centre.
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(b) Sequence prediction and fictitious
play. At the start, x = 1, y = 1, and at
the end, x = −4× 10−4, y = 1× 10−3.
They are converging towards the Nash
equilibrium at the centre.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

 

 

Start

End

(c) Change detection. At the start, x =
−1, y = 1, and at the end, x = 2×10−4,
y = 0. They are converging towards the
Nash equilibrium at the centre.
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(d) Change detection and fictitious
play. At the start, x = −1, y = 1, and
at the end, x = 4×10−4, y = −4×10−4.
They are converging towards the Nash
equilibrium at the centre.
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(e) Sequence prediction. The aver-
age Jensen-Shannon divergence metric
is converging towards 0.
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(f) Sequence prediction and fictitious
play. The average Jensen-Shannon di-
vergence metric is converging towards
0.

Figure 7.3
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(g) Change detection. The average
Jensen-Shannon divergence metric is
converging towards 0.
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(h) Change detection and fictitious
play. The average Jensen-Shannon di-
vergence metric is converging towards
0.

Figure 7.3: Sequence prediction with or without fictitious play and change de-
tection with or without fictitious play each in self-play in matching pennies over
1×104 iterations. The parameters of the best-fit lines were calculated using MAT-
LAB’s Trust-Region-Reflective Least Squares algorithm with Bisquare weights
Least-Squares Algorithms . Note that these graphs are not fully representative of
the overall convergence speeds. For example, in generalised matching pennies,
combining sequence prediction with fictitious play generally slightly speeds up its
convergence rather than slowing it down as shown here.

7.4.4 Generalised Matching Pennies

The results for a variety of two-player, two-action, normal-form games derived

from generalised matching pennies are shown in Figure 7.4. The results are given

for after 1 × 104 iterations, and after 1 × 105 iterations. They show that ficti-

tious play has empirical Nash convergence in all of the games, which is expected

theoretically. This is not the case for sequence prediction, which does not have

empirical Nash convergence in most cases. In fact, the results for sequence pre-

diction in matching pennies seem to be more of an exception rather than the rule.

It seems to converge further away from a Nash equilibrium when at that Nash

equilibrium at least one player has a strategy with a large magnitude. Sequence

prediction and fictitious play improves on sequence prediction by having empir-

ical Nash convergence in more cases. The cases where it does not are where at

the Nash equilibrium at least one player has a strategy with a large magnitude.

Change detection, like fictitious play, converges in all cases, but there are a few

cases where it is still converging after 1 × 104 iterations. These cases are where



CHAPTER 7. DYNAMIC OM SELF-PLAY CONVERGENCE 223

one player’s Nash equilibrium strategy is to be almost indifferent between its ac-

tions, and the other player’s Nash equilibrium strategy is to be almost certain of

its actions. Combining change detection with fictitious play causes it to converge

in all cases after 1× 104 iterations.

The results also show estimates for the mean empirical convergence rate, b,

and the mean asymptotic convergence distance from the Nash equilibria, c, for

each method. These estimates are calculated by fitting the equation

DJSM =
a

tb
+ c (7.32)

to the results of each game after 1×104 iterations and after 1×105 iterations and

finding the mean b and c parameters. Fictitious play has empirical convergence

rates like 1/
√
t, whereas the other methods have nearly optimal empirical conver-

gence rates like 1/t. Also for fictitious play and change detection with or without

fictitious play, c = 0.00, so they empirically converge to the Nash equilibria on

average. Whereas for sequence prediction with or without fictitious play, c > 0,

so they sometimes empirically converge away from the Nash equilibria.
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(a) Fictitious play, 1 × 104 iterations,
b = 0.55, c = 0.00. Each average
Jensen-Shannon divergence metric is
converging towards 0.
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(b) Fictitious play, 1 × 105 iterations,
b = 0.54, c = 0.00. Each average
Jensen-Shannon divergence metric is
converging towards 0.

Figure 7.4
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(c) Sequence prediction, 1 × 104 itera-
tions, b = 0.93, c = 0.09. Each aver-
age Jensen-Shannon divergence metric
is converging towards c ≥ 0, where it
tends to be larger if at least one player
has a Nash equilibrium strategy with a
large magnitude.
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(d) Sequence prediction, 1 × 105 itera-
tions, b = 0.98, c = 0.09. Each aver-
age Jensen-Shannon divergence metric
is converging towards c ≥ 0, where it
tends to be larger if at least one player
has a Nash equilibrium strategy with a
large magnitude.
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(e) Sequence prediction and fictitious
play, 1 × 104 iterations, b = 0.95, c =
0.01. Most average Jensen-Shannon
divergence metrics are converging to-
wards 0. Some are converging towards
c > 0 where at least one player has a
Nash equilibrium strategy with a large
magnitude.
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(f) Sequence prediction and fictitious
play, 1 × 105 iterations, b = 0.98, c =
0.01. Most average Jensen-Shannon
divergence metrics are converging to-
wards 0. Some are converging towards
c > 0 where at least one player has a
Nash equilibrium strategy with a large
magnitude.

Figure 7.4



CHAPTER 7. DYNAMIC OM SELF-PLAY CONVERGENCE 225

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

(g) Change detection, 1×104 iterations,
b = 0.98, c = 0.00. Almost all aver-
age Jensen-Shannon divergence metrics
are converging towards 0. Only a few
are converging towards c > 0 where one
player has a Nash equilibrium strategy
near 0 and the other player does not.
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(h) Change detection, 1 × 105 itera-
tions, b = 0.99, c = 0.00. Each aver-
age Jensen-Shannon divergence metric
is converging towards 0.
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(i) Change detection and fictitious play,
1 × 104 iterations, b = 0.89, c =
0.00. Each average Jensen-Shannon di-
vergence metric is converging towards
0.
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(j) Change detection and fictitious play,
1 × 105 iterations, b = 0.80, c =
0.00. Each average Jensen-Shannon di-
vergence metric is converging towards
0.

Figure 7.4: Convergence of the empirical distributions of plays of various meth-
ods in self-play in two-player, two-action, normal-form games derived from
generalised matching pennies with Nash equilibria at positions {(x∗, y∗)|x∗ ∈
{−0.8,−0.7, . . . , 0.8}}, y∗ ∈ {−0.8,−0.7, . . . , 0.8}}. Each arrow points from a
Nash equilibrium position to the position of the method’s empirical distribution
of plays. Estimates for the mean convergence rate, b, and the mean asymptotic
convergence distance from the Nash equilibria, c, are shown for each method after
1 × 104 iterations and after 1 × 105 iterations. This is calculated by fitting the
equation DJSM = a/tb + c to the results of each game and taking the average of
the b values as well as the average of the c values. The parameters of the best-
fit lines were calculated using MATLAB’s Trust-Region-Reflective Least Squares
algorithm with Bisquare weights Least-Squares Algorithms .
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Table 7.1: Estimates for the mean convergence rate, b, and the mean asymptotic
convergence distance from the Nash equilibria, c, for each method after 1 × 104

iterations and after 1 × 105 iterations in two-player, two-action, normal-form
games derived from matching pennies. This is calculated by fitting the equation
DJSM = a/tb + c to the results of each game and taking the average of the
b values as well as the average of the c values. The parameters of the best-
fit lines were calculated using MATLAB’s Trust-Region-Reflective Least Squares
algorithm with Bisquare weights Least-Squares Algorithms .

Method
1× 104 iterations 1× 105 iterations

b c b c

Fictitious play 0.55 0.00 0.54 0.00

Sequence prediction 0.93 0.09 0.98 0.09

Sequence prediction and fictitious play 0.95 0.01 0.98 0.01

Change detection 0.98 0.00 0.99 0.00

Change detection and fictitious play 0.89 0.00 0.80 0.00

7.4.5 Shapley’s Game

The results for Shapley’s game are shown in Figure 7.5. They show that fictitious

play does not have empirical Nash convergence. Its average Jensen-Shannon di-

vergence metric decreases slightly but eventually oscillates around a value away

from zero with constant amplitude and an ever increasing period. Change detec-

tion follows a similar pattern, except its oscillations decrease in amplitude until

they eventually fade out, and its value is much closer to zero such that it es-

sentially has empirical Nash convergence. Sequence prediction with or without

fictitious play as well as change detection with fictitious play have empirical Nash

convergence at a nearly optimal rate like 1/t.
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(a) Fictitious play. The average Jensen-Shannon divergence metric is oscillating around
a value away from 0.

Figure 7.5
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(b) Sequence prediction. The aver-
age Jensen-Shannon divergence metric
is converging towards 0.
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(c) Sequence prediction and fictitious
play. The average Jensen-Shannon di-
vergence metric appears to be converg-
ing towards 0.
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(d) Change detection. The average
Jensen-Shannon divergence metric is
converging towards a value near 0.
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(e) Change detection and fictitious
play. The average Jensen-Shannon di-
vergence metric is converging towards
0.

Figure 7.5: Convergence of empirical distributions of plays of various methods in
self-play in Shapley’s game over 1 × 104 iterations. The parameters of the best-
fit lines were calculated using MATLAB’s Trust-Region-Reflective Least Squares
algorithm with Bisquare weights Least-Squares Algorithms .
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7.4.6 Jordan’s Game

The results for Jordan’s game are shown in Figure 7.6. They show that fictitious

play does not have empirical Nash convergence. Its average Jensen-Shannon di-

vergence metric oscillates around a value away from zero with constant amplitude

and an ever increasing period. In contrast, each of the other methods converge

at a rate like 1/t.
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(a) Fictitious play. The average Jensen-Shannon divergence metric is oscillating around
a value away from 0.

Figure 7.6
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(b) Sequence prediction. The aver-
age Jensen-Shannon divergence metric
is converging towards 0.
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(c) Sequence prediction and fictitious
play. The average Jensen-Shannon di-
vergence metric is converging towards
0.
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(d) Change detection. The average
Jensen-Shannon divergence metric is
converging towards 0.
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(e) Change detection and fictitious
play. The average Jensen-Shannon di-
vergence metric is converging towards
0.

Figure 7.6: Convergence of the empirical distributions of plays of various methods
in self-play in Jordan’s game over 1× 104 iterations. The parameters of the best-
fit lines were calculated using MATLAB’s Trust-Region-Reflective Least Squares
algorithm with Bisquare weights Least-Squares Algorithms .
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7.5 Chapter Summary

In this chapter, two new variants of fictitious play have been proposed, each

of which assume that the opponents have dynamic strategies. The first variant

uses sequence prediction to predict an opponent’s strategy based on different

contexts of its most recent actions and its empirical distributions of plays that

have occurred after these contexts. The second variant uses change detection

to infer a distribution over possible changepoints in an opponent’s strategy and

uses this distribution to predict its strategy. Each variant, like fictitious play,

plays a pure best-response strategy to its predicted opponent strategies. The

main advantage of sequence prediction and change detection methods in this

context, is that by assuming that the opponent uses a dynamic strategy, they can

potentially convergence more quickly to solution concepts. One way they can do

this is by helping to avoid correlated play, which otherwise could make empirical

distributions of plays cycle around Nash equilibria, as well as the expected rewards

of strategies equal to empirical distributions of plays not be obtained.

Experiments compared the convergence in self-play of the empirical distri-

butions of plays of fictitious play and the proposed variants to mixed strategy

Nash equilibria. The results show that the proposed variants converge faster

than fictitious play in all of the tested games. However, sequence prediction does

not always converge exactly to the Nash equilibria in games derived from gener-

alised matching pennies. Specifically, whilst fictitious play and change detection

always converge in the tested generalised matching pennies games, sequence pre-

diction does not converge in most cases. Combining sequence prediction with

fictitious play in these generalised matching pennies games decreases its conver-

gence distance from Nash equilibria and increases the estimate of its mean conver-

gence speed. Combining change detection with fictitious play in these generalised

matching pennies games decreases its convergence distance from Nash equilibria

in a handful of cases given 1 × 104 iterations, but decreases the estimate of its

mean convergence speed. The results also show that, unlike fictitious play, the

proposed variants and the hybrid algorithms converge to the Nash equilibria in

Shapley’s and Jordan’s games, which are known to be difficult. Overall, this

shows that whilst sequence prediction is somewhat unstable, change detection

has a better self-play performance than fictitious play within these games.

Future work could investigate the range of circumstances under which the

proposed variants converge. It could also investigate why the proposed variants
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do or do not converge. The answer may be based on the amount of history that

the agents are using, if this is too low, then the agents may have insufficient

resolution to accurately predict an opponent’s strategy. For example, using a

sliding window of size one, it would always appear as if the opponent will repeat

their last action. The ideas and results in this chapter should generalise to similar

normal-form games and situations where fictitious play has been successful like

in limit Texas hold’em [Dudziak, 2006; Fellows, 2010].



Chapter 8

Conclusions and Future Work

This thesis has investigated decision-making with imperfect information when

facing opponents whose actions can affect our rewards, and whose strategies may

be based on a memory of interaction, or may be changing, or both. Ideally, we

want to maximise an agent’s rewards in any situation. This thesis has looked

at situations with hidden information represented through games. Almost all

of these games have just two players. There are numerous advantages to using

games, the main advantage is that they allow you to focus on developing the

players rather than worrying about how the games work. Additionally, they

can model many real-world problems. The focus has been on modelling dynamic

opponents in hidden information games and learning high-reward strategies based

on these models.

This chapter summarises what has been learnt from the research presented

in this thesis. It also discusses the contributions of this research to the field of

machine learning, as well as possible directions for future research.

8.1 Conclusions

This section summarises the contributions of this research and presents what

has been learnt about modelling opponents with dynamic strategies and taking

advantage of these opponent models.

233
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8.1.1 First Approach: Sequence Prediction, Reinforce-

ment Learning, and Lookahead

The first approach in Chapter 4 looked at small simultaneous-move games, where

the hidden information is the opponent’s action, which is always revealed after

the player and the opponent act. The player’s, possibly delayed, rewards for

its actions were learnt with a popular reinforcement learning algorithm, namely

Q-Learning. By predicting the player’s rewards for its future actions using Q-

Learning, and the probabilities that the opponent would allow the player to reach

those actions using sequence prediction methods, this allowed explicit lookahead

(tree search) to be used to predict the sequence of actions that would maximise

the player’s expected cumulative rewards. This approach empirically maximised

the player’s rewards against several opponents with memory-based strategies,

and gained higher rewards than opponents using popular and state-of-the-art

reinforcement learning algorithms.

8.1.2 Second Approach: Expectation-Maximisation, Se-

quence Prediction, and No-Regret Learning

The second approach in Chapter 5 looked at medium-size sequential-move games

where the opponent’s strategy depends on its own hidden information that is

part of the game, which is not always revealed at the end of a game. Knowing

the opponent’s hidden information was necessary to model its strategy and so, if

necessary, it was predicted using an online expectation-maximisation algorithm.

By being able to predict the opponent’s actions, games could be simulated games

against the opponent model. The player’s strategy was updated using only its

rewards in games against the opponent and simulated games against the opponent

model with a state-of-the-art no-regret learning algorithm, namely OS-MCCFR.

Experiments in simplified poker games showed that this approach significantly

improved the average payoff per game of OS-MCCFR against popular and state-

of-the-art reinforcement learning methods.

The reason that the opponent’s hidden information is inferred to model its

strategy is because it may base its actions on its hidden information. For example,

in poker the opponent’s cards, which are not revealed unless a showdown occurs,

are what it would base its betting decisions on if it was a good player. Ignoring

its hidden information would effectively assume that its actions do not depend on
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it. This can be a very bad assumption. For example, a good opponent would act

differently with a royal flush than with a high card. Therefore, it is important to

try to predict the opponent’s hidden information to better model its strategy.

The overall approach works as follows. At the end of a game, the online

expectation-maximisation algorithm predicts the probability of each possible in-

stance of the opponent’s hidden information. This allows an instance of the op-

ponent’s hidden information to be sampled from this distribution, which is then

assumed to represent the opponent’s true hidden information. The opponent

model is then updated using the sequence prediction method with the prediction

of the opponent’s hidden information and observations of its actions.

The empirical results found that this approach improved the average payoff

per game of OS-MCCFR in die-roll poker and Rhode Island hold’em. However,

it was also found that the online expectation-maximisation algorithm gave less

of an improvement in the latter, which is probably due to it having more hidden

information. More hidden information means that there is an increased chance

that the opponent will behave similarly for different instances of hidden infor-

mation, making it more difficult for expectation-maximisation to distinguish the

opponent’s hidden information based on the opponent’s behaviour.

8.1.3 Sequence Prediction Methods

In chapters 4, 5, and 7 sequence prediction methods have been adapted and

applied to build explicit opponent models to be used to increase agents’ rewards.

Empirical results in various games have shown that using opponent models built

with sequence prediction methods lead to higher rewards than using opponent

models built using empirical probabilities against opponents with memory-based

or changing strategies. For example, in the iterated prisoner’s dilemma, the tit-

for-tat strategy can only be modelled by learning that it copies its opponent’s

most recent action. In other words, tit-for-tat’s strategy is conditioned on a

memory of its opponent’s most recent action, which sequence prediction methods

are well suited to learn.

Many sequence prediction methods have been looked at, each with its own

set of features. Although any single sequence prediction method has not been

found that is objectively better than the others, there are some features that

are arguably more important than others for the purpose of building explicit

opponent models. One feature that all sequence prediction methods share is
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the ability to model conditional strategies. Other than this feature, the most

important features are arguably as follows. Firstly, context pruning, which is the

ability to discard contextual information that is believed to be obsolete as this can

forget data that becomes irrelevant if an opponent’s strategy changes. Secondly,

context blending, which is the ability to blend predictions from contexts with

different lengths as this gives the possibility for all possible contexts to make

a contribution. Finally, context length, as a longer context lengths allows for

patterns to be recognised for longer sequences.

8.1.4 Change Detection Methods

Change detection methods have also been examined in chapters 6 and 7, which

like sequence prediction methods, can model changing opponent strategies. Vari-

ations of three state-of-the-art change detection methods were examined in chap-

ter 6, which included some modifications proposed in this thesis to allow them to

learn an opponent’s strategy. These change detection methods were empirically

compared in their abilities to model changing opponent strategies represented as

discrete probability distributions. It was found that the Bayesian Change Point

Detection (BayesCPD) methods generally maintain the most accurate distribu-

tions, which can be used to produce the most rewarding counter strategies. This

method was later used in chapter 7 to try to improve on the convergence in

self-play of fictitious play.

8.1.5 Self-Play Convergence of Empirical Distributions of

Plays

Finally in chapter 7 this thesis looked at the self-play convergence of the empiri-

cal distributions of plays of candidate sequence prediction and change detection

methods as well as two hybrid methods, which combined fictitious play with these

methods, to mixed Nash equilibrium strategies. Unlike fictitious play, sequence

prediction and change detection methods can recognise correlations between ac-

tions, which allows their empirical distributions of plays to converge to Nash

equilibrium strategies in self-play in situations where fictitious play does not con-

verge. It was shown that, for this type of convergence, all of these methods

converge faster than fictitious play in particular games. However, although the

change detection method always converged to the Nash equilibria, in many cases,
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the sequence prediction method did not. Combining the sequence prediction

method with fictitious play reduced this number of cases but did not get rid of all

of them. Combining the change detection method with fictitious play caused it

to converge in fewer iterations in some cases. Additionally, unlike fictitious play,

both the sequence prediction and change detection methods converged to the

Nash equilibria in Shapley’s and Jordan’s games, which are considered difficult.

8.2 Future Work

This section outlines some possible directions for future research based on what

has been investigated.

8.2.1 Safe Strategy

Building an explicit opponent model without any prior information typically takes

a lot of time as the opponent’s strategy scales with their number of information

sets (decision points). Even if the opponent modelling algorithm can quickly learn

the opponent’s strategy for particular decision points, there may be many decision

points. Unless it is lucky, the opponent model will probably initially be inaccurate

due to very little data being observed. Therefore, the agent’s best option may

be to play a safe strategy until enough data has been gathered to be confident

that the opponent model is reasonably accurate. This is not a new concept,

previous work has used approximate Nash equilibrium strategies whilst building

their opponent models1. However, a Nash equilibrium strategy is, in general,

difficult to compute. Instead, it may be better to use alternative safe strategies

that are easier to compute such as ε-Nash equilibrium strategies or dominant

strategies. Another aspect to consider is how to shift from the safe strategy to

a more exploitative strategy that takes advantage of the opponent model. The

shift should probably be proportional to the accuracy of the opponent model

but this can be difficult to measure. Additionally, the shift should probably be

reversible in case the opponent model becomes inaccurate, perhaps due to the

opponent changing its strategy. One potential problem with using safe strategies

is that if the opponent is adaptive, then by playing a safe strategy with little

exploitability you may end up training the opponent to also play a safe strategy

1Bard et al., 2013; Ganzfried and Sandholm, 2011; Johanson and Bowling, 2009; Johanson,
Zinkevich, and Bowling, 2008; Ponsen, Lanctot, and Jong, 2010.
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with little exploitability. For example, if you play a Nash equilibrium strategy,

then the opponent may learn to play its Nash equilibrium strategy from that Nash

equilibrium. The opponent model would also become less useful as the opponent

adapts to become less exploitable.

8.2.2 Opponent Strategy Space

Many situations offer an agent a huge strategy space, which is too large to explore

within a reasonable amount of time. To deal with this, an agent would often use

an abstraction. The abstraction serves to reduce its strategy space to a more

manageable size. In the experiments in this thesis, it was assumed that the agents

use the same levels of abstraction. This raises the question of what happens if

they use different levels of abstraction and specifically what effects would this have

on an opponent model. Ideally, the opponent model should have a strategy space

that is equal to the opponent’s strategy space. If the strategy space is larger, then

time will be wasted learning different parts of the opponent’s strategy that are

actually the same. If the strategy space is smaller, then the opponent model may

be more inaccurate as it is unable to distinguish between strategically different

situations. Moreover, it may not just be about the size of the strategy space but

also the interpretation. If the opponent model sees a different strategy space than

the opponent, then this could also cause the opponent model to be inaccurate.

8.2.3 Sequence Prediction Methods

Out of all the sequence prediction methods used, one has not been found that

is objectively better than all of the others at predicting opponent actions. How-

ever, there are sequence prediction methods that are arguably better than the

sequence prediction methods used in this thesis when being used for compres-

sion. In particular, the PAQ series of data compression algorithms currently have

the best compression ratios on a variety of benchmarks [Data Compression Pro-

grams ]. This suggests that their sequence prediction methods may be superior.

If their sequence prediction methods could be extracted and adapted efficiently,

then they might be able to be used to model the opponent more effectively.

Other sequence prediction methods that may improve the opponent model are

a stochastic memoizer [Wood et al., 2009] and optimised versions of prediction

by partial matching. Many machine learning tasks can be (re)stated as sequence
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prediction problems including pattern recognition, classification, and time-series

forecasting. Therefore, it is possible that advances in these related fields could

be adapted as, or used to improve, sequence prediction methods.

8.2.4 Continuous Values

This thesis has assumed that an opponent’s strategy is a collection of discrete

probability distributions, one for each of its decision points. This is because in

the games this thesis has considered, each of the opponent’s decision points have

always involved a discrete set of choices. However, many real-world scenarios in-

volve decisions with a large, or infinite, number of choices. For example, choosing

a speed for movement could take any value real value. For a continuous number

of choices a discrete sequence prediction method will generally be unable to accu-

rately predict the exact choice because there are so many possibilities. One way

to deal with this is to discretise the choices by grouping similar choices together

like how an abstraction groups similar states together. Instead of choosing from

all possible speeds for movement, a discrete number of choices could be given such

as fast, regular, or slow. Future work could look at applying opponent modelling

based on sequence prediction or change detection to games or situations with

continuous values.

8.2.5 N-player games

The focus of this thesis has been on two-player games. However, real-world

decision-making problems often involve many decision-makers. Therefore, one

way to further this research would be to try to apply its ideas to n-player games.

In this case, the main challenge of an n-player game is that it would require each

of the agents to keep track of n opponent models. It would take a lot more space

to store and a lot more time to process n opponent models as opposed to just one

opponent model especially if the game is large. However, one advantage of the

approaches in this thesis is that they do not need to be modified to be applied to

n-player games.

An interesting direction would be to investigate ways to take advantage of

multiple opponent models. Perhaps they could be used to manipulate the op-

ponents to play against each other. This could weaken the opponents and make

an agent relatively stronger. It is reasonable to assume that as the number of
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opponents increases, the value of modelling each individual opponent decreases

because each opponent would have less influence on the game (if the game is

fair). Also, as already mentioned, more opponent models would need more space

to store and more time to process. Therefore, in cases with many opponents it

may be more beneficial to model groups rather than individuals, or to ignore

certain opponents completely, or both.

8.2.6 Learning Objectives

The empirical results in this thesis show that the proposed approaches achieve

higher rewards than comparison agents. However, the properties of these ap-

proaches have not been fully analysed in terms of those discussed in Section 2.2.

Most multi-agent learning algorithms try to satisfy the two properties outlined

by Bowling and Veloso, 2002, which are rationality, converging to a best-response

strategy against a stationary opponent, and convergence, converging to a sta-

tionary strategy against a set of rational players. The empirical results have

shown that the first approach can converge to a best-response strategy against

an opponent using a memory-based strategy. Also, it is known that with the

second approach, assuming its opponent model is accurate, through using the

OS-MCCFR algorithm it will, in expectation, converge to a best-response strat-

egy against an opponent with a stationary strategy.

It is unknown if the approaches in this thesis will converge to stationary

strategies against all rational opponents. Although convergence against any set

of rational players cannot be proven, a usual minimum but not sufficient test is

to check convergence in self-play. It would be interesting to investigate under

what circumstances the approaches in this thesis, or variations of them, can

converge in self-play. In particular, one could look at what happens when both

agents are using sequence prediction methods, or change detection methods, or

both, to model each other. For example, it is well known that the empirical

distribution of plays of fictitious play will converge to a Nash equilibrium in self-

play in various games. This promotes the question of if the same can be said for

sequence prediction and change detection methods. The preliminary experiments

in Chapter 7 show that sequence prediction and change detection can convergence

in self-play in some games.
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8.2.7 Real-world Problems

Games are very useful for developing decision-making agents, mainly because

they allow you to focus on developing the learning agent rather than the game

itself. However, it would be interesting to test the approaches in this thesis on

real-world problems. One potential application could be peer-to-peer networking,

where peer negotiation strategies for uploading/downloading are similar to those

used in the prisoner’s dilemma, specifically Cohen, 2003 states that the BitTorrent

protocol uses tit-for-tat for Pareto efficiency. Thus, the approach in Chapter 4

could be adapted and applied in this setting to try to effectively respond in agent

interactions in the BitTorrent environment.

8.2.8 Prior Knowledge

This thesis has considered agents that develop strategies based only on observa-

tions of their own rewards and on observations of other agents’ actions. Whilst

learning without any prior knowledge is an interesting problem, prior knowledge

can significantly increase an agent’s rewards. Therefore, if the goal is to maximise

an agent’s rewards by any means necessary, then the agent should be given as

much prior knowledge as possible that may help it achieve this goal. For example,

if an agent was given prior knowledge that its opponent in an iterated prisoner’s

dilemma game was tit-for-tat, then it would know that it should always cooperate

to gain the highest reward. Another avenue for future work could then look at

the value of different types of prior knowledge with regard to agent performance.

8.2.9 Implicit Modelling

A focus in this work has been on creating and using explicit opponent models

that predict the actions of an opponent at its decision points. However, there

are two major problems with explicit opponent modelling. Firstly, the number of

observations required to learn the opponent’s strategy depends on the degrees of

freedom in the opponent model which, must grow with the size of the opponent’s

strategy space. As the number of opponent information sets increases, the number

of observations required to learn the opponent’s strategy will grow even faster.

Secondly, even if the opponent’s strategy is learnt, the agent still needs to compute

a best-response strategy which, can be brittle if there is any modelling error

[Johanson, Zinkevich, and Bowling, 2008].
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In this thesis, the first problem was handled using abstraction, reducing the

number of information sets until the opponent’s strategy could be learnt in a

reasonable time. For the second problem, the approaches in this thesis try to

use “good” responses, learnt through lookahead or simulations, instead of best-

responses. Despite this, time is still a factor in that hundreds, thousands, or

even tens-of-thousands of games are still required to learn high-reward strategies.

Implicit opponent modelling can avoid this by letting an agent quickly learn to

exploit an opponent, perhaps whilst an explicit opponent model is being built.

Implicit opponent modelling builds a portfolio of counter-strategies offline and

estimates how well each strategy in the portfolio performs against the opponent

online. Based on these performances, the agent can then choose the best strat-

egy, or combination of strategies, from their portfolio. The advantage of this

approach is that its number of parameters does not grow with the opponent’s

strategy space. Implicit modelling may give higher expected rewards than ex-

plicit modelling when there is little data, such as in the early games, or when

the available data might be unreliable, like after the opponent has switched its

strategy. Whereas explicit modelling may give higher expected rewards with lots

of reliable data, such as in the late games when agent strategies are more likely to

have converged. This is because with an explicit opponent model you are trying

to replicate the opponent’s strategy exactly, which could allow a perfect counter-

strategy to be built. With implicit modelling you are forced to rely on your

portfolio of counter-strategies which, may not contain a perfect counter-strategy.

8.2.10 Sequence Prediction and Change Detection

Chapter 6 empirically compared a variety of change detection methods and dis-

cussed how they could be used to improve sequence prediction methods. In

particular, sequence prediction methods assume that their conditional probabil-

ity distributions are stationary. Whilst some sequence prediction methods have

ways to handle changing distributions by, for example, pruning distributions that

become “unpredictive”, change detection methods offer an alternative approach

that is arguably more focused because they directly try to detect changes and

allow them to be handled. Future work could look at using change detection

methods to detect changes in and update the context-based distributions of se-

quence prediction methods.
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Appendix A

Expectation-Maximisation

A.1 Categorical Distribution

Consider a categorical distribution with parameters ~µ = (µ1, µ2, . . . , µD), where

µi is the probability of sampling category i,
∑D

i=1 µi = 1, 0 ≤ µi ≤ 1 for all

i ∈ {1, 2, . . . , D}. A categorical variable drawn from this distribution can be

represented as a 1-of-D encoded vector ~x = (x1, x2, . . . , xD), where one component

is equal to 1 and the rest are equal to 0. The probability of sampling ~x given ~µ is

Pr(~x|~µ) =
D∏
i=1

µxii . (A.1)

Suppose there is a data set X of N samples drawn from this categorical distri-

bution X = {~x1, ~x2, . . . , ~xN}. The likelihood of ~µ given X is

L(~µ;X) = Pr(X|~µ) =
N∏
n=1

Pr(~xn|~µ) =
N∏
n=1

D∏
i=1

µxnii . (A.2)

The log-likelihood of ~µ given X is

lnL(~µ;X) = ln Pr(X|~µ) = ln
N∏
n=1

D∏
i=1

µxnii =
N∑
n=1

D∑
i=1

xni lnµi. (A.3)
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Using a Lagrange multiplier λ to create a new function, which takes into account

the constraint
∑D

i=1 µi = 1, gives

G(~µ, λ;X) = Pr(X|~µ, λ) =

[
N∑
n=1

D∑
i=1

xni lnµi

]
− λ

[(
D∑
i=1

µi

)
− 1

]
. (A.4)

Taking the partial derivatives of this function firstly with respect to a particular

probability µc and secondly with respect to the Lagrange multiplier λ gives

∂ Pr(X|~µ, λ)

∂µc
=

∂

∂µc

([
N∑
n=1

D∑
i=1

xni lnµi

]
− λ

[(
D∑
i=1

µi

)
− 1

])

=

[
N∑
n=1

xnc
µc

]
− λ (A.5)

and

∂ Pr(X|~µ, λ)

∂λ
=

∂

∂λ

([
N∑
n=1

D∑
i=1

xni lnµi

]
− λ

[(
D∑
i=1

µi

)
− 1

])

= 1−
D∑
i=1

µi. (A.6)

To find the maximising parameters, set the derivatives equal to zero, which gives

λ =
1

µc

N∑
n=1

xnc (A.7)

and
D∑
i=1

µi = 1. (A.8)
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With some manipulations, an expression for µc can be found as follows

λµc =
N∑
n=1

xnc

D∑
i=1

λµi =
D∑
i=1

N∑
n=1

xni

λ

D∑
i=1

µi =
D∑
i=1

N∑
n=1

xni

λ =
D∑
i=1

N∑
n=1

xni

µc =
1

λ

N∑
n=1

xnc

µc =

∑N
n=1 xnc∑D

i=1

∑N
n=1 xni

. (A.9)

To maximise the likelihood, set the probability of sampling category c from the

categorical distribution as the number of times category c is sampled divided by

the number of times any category is sampled.

A.2 Mixture of Categorical Distributions

Consider a mixture of K categorical distributions with parameters ~µ = (~µ1, ~µ2,

. . . , ~µK), where each ~µk is defined in the same way as in Section A.1 and ~π =

(π1, π2, . . . , πK), where πk is the probability of sampling categorical distribution

k,
∑K

k=1 πk = 1, 0 ≤ πk ≤ 1 for all k ∈ {1, 2, . . . , K}. The probability of sampling

~x given ~µ and ~π is

Pr(~x|~µ, ~π) =
K∑
k=1

πk Pr(~x|~µk). (A.10)

Suppose that there is a data set X of N samples drawn from this mixture X =

{~x1, ~x2, . . . , ~xN}. The likelihood of ~µ and ~π given X is

L(~µ, ~π;X) = Pr(X|~µ, ~π) =
N∏
n=1

K∑
k=1

πk Pr(~xn|~µk). (A.11)
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The log-likelihood of ~µ and ~π given X is

lnL(~µ, ~π;X) = ln Pr(X|~µ, ~π) =
N∑
n=1

ln
K∑
k=1

πk Pr(~xn|~µk). (A.12)

Since a summation is inside the logarithm, the maximum likelihood does not have

a closed-form solution. The next step is to derive the expectation-maximisation

algorithm for maximising this likelihood function. For each instance of ~x intro-

duce an explicit latent variable, which is a 1-of-K encoded vector ~z = (z1, z2, . . . , zK),

where one component is equal to 1 and the rest are equal to 0, its value indicates

which categorical distribution generated ~x. The probability of ~x and ~z given ~µ

and ~π is

Pr(~x, ~z|~µ, ~π) =
K∏
k=1

πzkk Pr(~x|~µk)zk . (A.13)

The likelihood of ~µ and ~π given X and Z is

L(~µ, ~π;X,Z) = Pr(X,Z|~µ, ~π) =
N∏
n=1

K∏
k=1

πznkk Pr(~xn|~µk)znk

=
N∏
n=1

K∏
k=1

πznkk

(
D∏
i=1

µxniki

)znk

. (A.14)

The log-likelihood of ~µ and ~π given X and Z is

lnL(~µ, ~π;X,Z) = ln Pr(X,Z|~µ, ~π) = ln
N∏
n=1

K∏
k=1

πznkk

(
D∏
i=1

µxniki

)znk

=
N∑
n=1

K∑
k=1

znk

(
ln πk +

D∑
i=1

xni lnµki

)
.

(A.15)

Taking the expected value with respect to the posterior distribution of Z gives

EZ [ln Pr(X,Z|~µ, ~π)] =
N∑
n=1

K∑
k=1

γ(znk)

(
lnπk +

D∑
i=1

xni lnµki

)
(A.16)
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where γ(znk) = E[znk] is the posterior probability or responsibility of categorical

distribution k for sample ~xn. This is evaluated in the E-step as

γ(znk) = E[znk] =

∑
~zn
znk
∏

k′ [πk′ Pr(~xn|~µk′)]znk′∑
~zn

∏
j[πj Pr(~xn|~µj)]znj

=
πk Pr(~xn|~µk)∑K
j=1 πj Pr(~xn|~µj)

. (A.17)

Using a Lagrange multiplier ~λ = (λ1, λ2, . . . , λK) to create a new function, which

takes into account the constraint
∑D

i=1 µki = 1 for all k ∈ {1, 2, . . . , K}, gives

G(~µ, ~π,~λ;X,Z) = EZ [ln Pr(X,Z|~µ, ~π,~λ)]

=

[
N∑
n=1

K∑
k=1

γ(znk)

(
lnπk +

D∑
i=1

xni lnµki

)]

−
[

K∑
k=1

λk

[(
D∑
i=1

µki

)
− 1

]]
. (A.18)

Taking the partial derivatives of this function firstly with respect to a particular

probability µdc and secondly with respect to a particular Lagrange multiplier

component λd gives

∂EZ [ln Pr(X,Z|~µ, ~π,~λ)]

∂µdc
=

∂

∂µdc

([
N∑
n=1

K∑
k=1

γ(znk)

(
lnπk +

D∑
i=1

xni lnµki

)]

−
[

K∑
k=1

λk

[(
D∑
i=1

µki

)
− 1

]])
=

[
N∑
n=1

γ(znd)
xnc
µdc

]
− λd

(A.19)

and

∂EZ [ln Pr(X,Z|~µ, ~π,~λ)]

∂λd
=

∂

∂λd

([
N∑
n=1

K∑
k=1

γ(znk)

(
ln πk +

D∑
i=1

xni lnµki

)]

−
[

K∑
k=1

λk

[(
D∑
i=1

µki

)
− 1

]])
= 1−

D∑
i=1

µdi. (A.20)
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To find the maximising parameters, set the derivatives equal to zero, which gives

λd =
1

µdc

N∑
n=1

γ(znd)xnc (A.21)

and
D∑
i=1

µdi = 1. (A.22)

With some manipulations an expression for µdc can be found as follows

λdµdc =
N∑
n=1

γ(znd)xnc

D∑
i=1

λdµdi =
D∑
i=1

N∑
n=1

γ(znd)xni

λd

D∑
i=1

µdi =
D∑
i=1

N∑
n=1

γ(znd)xni

λd =
D∑
i=1

N∑
n=1

γ(znd)xni

µdc =
1

λd

N∑
n=1

γ(znd)xnc

µdc =

∑N
n=1 γ(znd)xnc∑D

i=1

∑N
n=1 γ(znd)xni

. (A.23)

To maximise the likelihood, set the probability of sampling category c from the

categorical distribution d as the sum over all the samples of the responsibility of

d to each sample multiplied by the value of that sample (1 if it was category c

and 0 otherwise), divided by the sum of this calculation for all categories.



Appendix B

Generating Payoffs for a Nash

Equilibrium in a Two-Player

Two-Action Game

The goal is to generate payoff matrices for each player that describe a two-player,

two-action, normal-form game such that the Nash equilibrium of the game is at

a given point (p*,q*). Let

p = probability row player 1 plays action r1,

(1− p) = probability row player 1 plays action r2,

q = probability column player 2 plays action c1,

(1− q) = probability column player 2 plays action c2,

p∗ = Nash equilibrium probability row player 1 plays action r1,

(1− p∗) = Nash equilibrium probability row player 1 plays action r2,

q∗ = Nash equilibrium probability column player 2 plays action c1, and

(1− q) = Nash equilibrium probability column player 2 plays action c2
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B.1 Payoffs for a Nash Equilibrium at a Centre

Point

Table B.1: Payoffs for a two-player, two-action, normal-form game with a Nash
equilibrium at (p*,q*). The gradients orbit the Nash equilibrium.

c1 c2

r1
2

q∗ - 3,-
2

p∗ + 3 -1,1

r2 -1,1 1,-1

The expected payoff to player 1 is

V1 = pq

(
2

q∗ − 3

)
+ p(1− q)(−1) + (1− p)q(−1) + (1− p)(1− q)(1)

= pq

(
2

q∗ − 3

)
− p(1− q)− (1− p)q + (1− p)(1− q)

= pq

(
2

q∗

)
− 2p− 2q + 1.

The gradient of V1 with respect to p is

∂V1

∂p
=q

(
2

q∗

)
− 2.

Thus, if q = q∗ then
∂V1

∂p
= 0.

The expected payoff to player 2 is

V2 = pq

(
− 2

p∗ + 3

)
+ p(1− q)(1) + (1− p)q(1) + (1− p)(1− q)(−1)

= pq

(
− 2

p∗ + 3

)
+ p(1− q) + (1− p)q − (1− p)(1− q)

= pq

(
− 2

p∗

)
+ 2p+ 2q − 1.
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The gradient of V2 with respect to q is

∂V2

∂q
=p

(
− 2

p∗

)
+ 2.

Thus, if p = p∗ then
∂V2

∂q
= 0.

Figure B.1: Gradients around a centre Nash equilibrium at (p* = 0.5, q* = 0.5).

B.2 Payoffs for a Nash Equilibrium at a Saddle

Point

Table B.2: Payoffs for a two-player, two-action normal-form game with a Nash
equilibrium at (p*,q*). The gradients form a saddle at the Nash equilibrium.

c1 c2

r1 1 - q*,1 - p* -q*,0

r2 0,-p* 0,0

The expected payoff to player 1 is
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V1 = pq (1− q∗) + p(1− q)(−q∗) + (1− p)q(0) + (1− p)(1− q)(0)

= pq (1− q∗) + p(1− q)(−q∗)
= pq − pq ∗ .

The gradient of V1 with respect to p is

∂V1

∂p
=q − q ∗ .

Thus, if q = q∗ then q − q∗ = 0.

The expected payoff to player 2 is

V2 = pq (1− p∗) + p(1− q)(0) + (1− p)q(−p∗) + (1− p)(1− q)(0)

= pq (1− p∗) + (1− p)q(−p∗)
= pq − p ∗ q.

The gradient of V2 with respect to q is

∂V2

∂q
=p− p ∗ .

Thus, if p = p∗ then
∂V2

∂q
= 0.
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Figure B.2: Gradients around a saddle Nash equilibrium at (p* = 0.5, q* = 0.5).



Appendix C

Simplex Sampling and Simplex

Random Walk

C.1 Sampling a Random Point on the K − 1-

Dimensional Simplex

The goal is to sample a random point from the K − 1-dimensional simplex. This

is equivalent to sampling from a Dirichlet distribution with a K-dimensional

concentration parameter of ones. The Dirichlet distribution is defined as

Dir(x1, x2, . . . , xK ;α1, α2, . . . , αK) =
Γ(
∑K

i=1 αi)∏K
i=1 Γ(αi)

K∏
i=1

xαi−1
i (C.1)

where (x1, x2, . . . , xK) is a categorical distribution such that 0 ≤ xi ≤ 1 for i ∈
{1, 2, . . . , K}, ∑K

i=1 xi = 1, and (α1, α2, . . . , αK) is the concentration parameter

such that αi > 0 for i ∈ {1, 2, . . . , K}. It has been proven by Devroye, 1986 with

a concentration parameter (α1, α2, . . . , αK), a scale parameter θ, and samples

of K random variables (X1, X2, . . . , XK) from gamma distributions using these

parameters such that Xi ∼ Γ(αi, θ) then

(Y1, Y2, . . . , YK) ∼ Dir(α1, α2, . . . , αK) where Yi =
Xi∑K
j=1 Xj

for 1 ≤ i ≤ K.

(C.2)
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Here the gamma distribution is defined as

Γ(x;α, θ) =
xα−1e−

x
θ

θαΓ(α)
(C.3)

where x > 0, α > 0 is the shape parameter, and θ > 0 is the scale parameter.

The scale parameter, θ, shared by the Gamma distributed random variables in

Equation C.2 can be arbitrarily set to any value. To see this, recall that multiply-

ing a Gamma distributed random variable by a strictly positive constant produces

another Gamma distributed random variable. Specifically, if X ∼ Γ(α, θ), then

cX ∼ Γ(α, cθ). Thus, if X ∼ Γ(α, θ) then θ−1X ∼ Γ(α, 1). This means that in

Equation C.2 each random variable Xi ∼ Γ(αi, θ) can be represented as θX ′i where

X ′i ∼ Γ(αi, 1). Therefore, Yi = Xi/
∑K

j=1Xj = θX ′i/
∑K

j=1 θX
′
j = X ′i/

∑K
j=1X

′
j,

which shows that the scale parameter is factored out in the normalisation.

To prove that, in Equation C.2, (Y1, Y2, . . . , YK) has a Dirichlet distribu-

tion, the proof of Devroye, 1986 is followed with help from Frigyik, Kapila,

and Gupta, 2010. The change-of-variables formula is used to show that the

density of (Y1, Y2, . . . , YK) is the same as the density of a Dirichlet distribu-

tion. The original random variables are (X1, X2, . . . , XK) where Xi ∼ Γ(αi, θ),

and the new random variables are (Y1, Y2, . . . , YK−1, Z), where Z =
∑K

i=1Xi,

Yi = Xi/
∑K

j=1 Xj = Xi/Z, and so Xi = ZYi. Since the scale parameter, θ, can

be set arbitrarily, it is set to one, θ = 1, to simplify the proof. These variables

are related using the invertible transformation T : RK → RK , a vector-valued

function, as follows

(X1, X2, . . . , XK) = T (Y1, Y2, . . . , YK−1, Z)

=

(
ZY1, ZY2, . . . , ZYK−1, Z

(
1−

K−1∑
i=1

Yi

))
. (C.4)
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The transformation T is given by K real-valued component functions

T1(Y1, Y2, . . . , YK−1, Z) = ZY1,

T2(Y1, Y2, . . . , YK−1, Z) = ZY2,
...

TK−1(Y1, Y2, . . . , YK−1, Z) = ZYK−1,

TK(Y1, Y2, . . . , YK−1, Z) = Z

(
1−

K−1∑
i=1

Yi

)
.

The Jacobian matrix (matrix of all first-order partial derivatives) of T , J(T ), is

J(T ) =



∂T1

∂Y1

∂T1

∂Y2
. . . ∂T1

∂YK−1

∂T1

∂Z
∂T2

∂Y1

∂T2

∂Y2
. . . ∂T2

∂YK−1

∂T2

∂Z
... . . . . . . . . .

...
∂TK−1

∂Y1

∂TK−1

∂Y2
. . . ∂TK−1

∂YK−1

∂TK−1

∂Z
∂TK
∂Y1

∂TK
∂Y2

. . . ∂TK
∂YK−1

∂TK
∂Z



=



Z 0 . . . 0 Y1

0 Z . . . 0 Y2

... . . . . . . . . .
...

0 0 . . . Z YK−1

−Z −Z . . . −Z 1−∑K−1
i=1 Yi


. (C.5)

To calculate the determinant, the fact that adding rows does not change the

determinant can be used. Adding the first K − 1 rows to the last row gives

Z 0 . . . 0 Y1

0 Z . . . 0 Y2

... . . . . . . . . .
...

0 0 . . . Z YK−1

0 0 . . . 0 1


,

which is an upper diagonal matrix (elements below the diagonal are zero). The

determinant of an upper diagonal matrix is the product of the diagonal elements.

Thus, the determinant of J(T ) is det(J(T )) = ZK−1. The change-of-variables

formula tells us that the density of (Y1, Y2, . . . , YK−1, Z) is f = g ◦ T × | det(T )|.
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Here g is the joint density of the original (independent) random variables

g(x1, x2, . . . , xK ;α1, α2, . . . , αK) =
K∏
i=1

xαi−1
i

e−xi

Γ(αi)
. (C.6)

Substituting in the components of the change-of-variables formula gives

f(y1, y2, . . . , yK−1, z)

=
K−1∏
i=1

(zyi)
αi−1 e

−(zyi)

Γ(αi)

(z(1−
K−1∑
i=1

yi

))αK−1

e−(z(1−
∑K−1
i=1 yi))

Γ(αK)

 zK−1

=

(∏K−1
i=1 yαi−1

i

)(
1−∑K−1

i=1 yi

)αK−1

∏K
i=1 Γ(αi)

z(
∑K
i=1 αi)−1e−z. (C.7)

Finally, integrating over z, the marginal distribution of (Y1, Y2, . . . , YK−1) is

f(y1, y2, . . . , yK−1)

=

∫ ∞
0

f(y1, y2, . . . , yK−1, z)dz

=

(∏K−1
i=1 yαi−1

i

)(
1−∑K−1

i=1 yi

)αK−1

∏K
i=1 Γ(αi)

∫ ∞
0

z(
∑K
i=1 αi)−1e−zdz

=
Γ(
∑K

i=1 αi)∏K
i=1 Γ(αi)

(
K−1∏
i=1

yαi−1
i

)(
1−

K−1∑
i=1

yi

)αK−1

(C.8)

which is by definition a Dirichlet distribution.

C.2 Performing a Random Walk on the K − 1-

Dimensional Simplex

The goal is to perform a random walk on the K − 1-dimensional simplex. To do

this, a Metropolis-Hastings algorithm is used to produce a sequence of samples,

which randomly walk over it, and whose stationary distribution is uniform over it.

This method is explained in Fernandes and Atchley, 2008 and Fernandes, 2008.
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C.2.1 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is a Markov chain Monte Carlo method for

generating a sequence of random samples from a probability distribution p(x).

It requires you to be able to evaluate some probability distribution f(x) that is

proportional to p(x), i.e. f(x) ∝ p(x). It also requires a proposal distribution

q(x) to move around the sample space. Each new sample, xnew, is generated

from the proposal distribution, which usually depends on the old sample, xold,

i.e. the proposal distribution is usually q(xnew|xold). The new sample is accepted

with a probability of min(1, f(xnew)q(xold|xnew)/f(xold)q(xnew|xold)). In this way,

the current sample randomly moves (walks) within the sample space over time,

sometimes moving to a new position depending on the old position, and sometimes

staying in place. As more samples are generated, their distribution more closely

approximates the desired distribution p(x).

C.2.2 Application of the Metropolis-Hastings Algorithm

To perform a random walk on the K − 1-dimensional simplex, first sample an

initial point, which is a categorical distribution with K-categories, using the

procedure outlined in Section C.1, i.e. sample (X1, X2, . . . , XK) where Xi ∼
Γ(1, 1) (unit exponential) for i ∈ {1, 2, . . . , K} and normalise them to produce

(Y1, Y2, . . . , YK) where Yi = Xi/
∑K

j=1Xj for i ∈ {1, 2, . . . , K}. Instead of per-

forming the random walk by changing the probabilities of the categorical dis-

tribution directly, instead change the unit-exponential random samples, which

were normalised to give those probabilities, i.e. change Xi instead of Yi. Follow-

ing this, update each unit-exponential random sample at each time step using

a Metropolis-Hastings algorithm. The sequence of updates to each value form

a random walk. To get the updated categorical distribution at any time step,

simply normalise the values of the unit-exponential random samples at that time

step. However, be sure to keep the unnormalised values as these are what are

being updating.

The algorithm updates a unit-exponential random sample, xold, by perform-

ing a single Metropolis-Hastings step on it. The resulting new unit-exponential

random sample, xnew, is based on the old value.

• The stationary (desired) distribution, p(x), is unit-exponential p(x) = e−x.

• The proportional distribution, f(x), is f(x) = p(x) = e−x.
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• The proposal distribution, q(x′|x), is

x′ ← xeZ where Z ∼ N (0, h)

← eln(x)eZ

← eln(x)+Z

← eZ
′

where Z ′ ∼ N (ln(x), h). (C.9)

Thus, the probability distribution for x′ is a log-normal distribution with

parameters µ = ln(x) and σ = h, which can be written as

q(x′|x) =
1

x′h
√

2π
e
−(ln(x′)−ln(x))2

2h2 . (C.10)

• The Hastings ratio, rh, is

rh =
q(xold|xnew)

q(xnew|xold)
=
e
−(ln(xold)−ln(xnew))2

2h2

xoldh
√

2π

xnewh
√

2π

e
−(ln(xnew)−ln(xold))2

2h2

=
xnew

xold

. (C.11)

• The Metropolis ratio, rm, is

rm =
f(xnew)

f(xold)
=
e−xnew

e−xold
. (C.12)

• The acceptance probability distribution, a(xnew|xold), is

a(xnew|xold) = min

(
1,
f(xnew)q(xold|xnew)

f(xold)q(xnew|xold)

)
= min(1, rhrm). (C.13)

Given these definitions, the algorithm is as follows:

1. Require a state xold.

2. Calculate a new state xnew ← xolde
Z where Z ∼ N (0, h).

3. Accept the update, xold ← xnew, with probability min
(

1, e
−xnewxnew

e−xoldxold

)
.

This algorithm is used to update each unit-exponential random variable at each

time step, and is equivalent to Algorithm 15.



Appendix D

Fictitious Play Example Details

The details presented here were derived in Mealing and Shapiro, 2015. The dy-

namics in expectation of fictitious play, represented by equations 7.1 and 7.2, are

solved for one cycle; a cycle is shown in Figure 7.1b. Each arm of the diamond

shaped cycle is a period of time when one agent is playing a winning strategy,

and the other is playing a losing strategy. At the end of the cycle the system is

closer to the origin. The calculation works as follows. One calculates the time

to traverse each of the four arms of the diamond shaped cycle, and the locations

of each of its vertices. The calculation is slightly complicated by the first step of

each arm, in which one of the strategies is updated by 0 instead of ±1. In the

next theorem, the calculation is shown.

Theorem D.0.1 Starting the dynamical system at time t0 with y(t0) = y0 and

x(t0) = 0, and assuming that y(t0) is the time average of a series of values, where

each value is −1 or 1 (so that when it changes sign, it will go through the value

0 exactly), the time taken to traverse the cycle is

T1 = 4t0y0 + 10, (D.1)

and the value of y at the end of the cycle is,

y(t0 + T1) =
t0y0 + 4

t0(1 + 4y0) + 10
. (D.2)

Proof A solution to equations 7.1 and 7.2 will take the form,

ai(t+ τ) =
tai(t)

t+ τ
±
{

τ−1
t+τ

if opponent a−i(t) = 0,
τ
t+τ

otherwise.
(D.3)

270
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Here ai is either x or y, a−i is the alternative, and the sign is positive if ai is

increasing or negative if ai is decreasing. The time period, τ , is between changes

of strategy. Traversing an arm of the cycle (or a quarter cycle), starts with ai = 0

and finishes when a−i = 0. The time taken, and values of ai and a−i after this

time will be

τ = tai + 1, (D.4)

a−i = ± tai + 1

t+ tai + 1
(D.5)

ai = 0. (D.6)

Here t is the time at the start of the traversal of this arm. To get the properties of

the cycle, we just have to iterate this four times starting at time t0, with x(t0) = 0

and y(t0) positive, and alternate the roles of x and y. First, subtracting from y

and adding to x until y = 0 (arm 1), then subtracting from y and x until x = 0

(arm 2), then adding to y and subtracting from x until y = 0 (arm 3), then adding

to y and x until x = 0 which completes the cycle. Iterating Equations D.4 and D.5

four times gives the result.

In order to verify the claims made in Section 7.1, the following two results

can be used.

Corollary D.0.2 The period of the ith cycle is proportional to i, and the time

after the ith cycle is O(i2).

Proof Define Ti as the period of the ith cycle, ti as the time after the ith cycle,

and yi as the value of y after the ith cycle. The recurrence relations implied by

Equations D.1 and D.2 are,

Ti = 4ti−1yi−1 + 10, (D.7)

y(ti−1 + Ti) = yi =
ti−1yi−1 + 4

ti−1(1 + 4yi−1) + 10
(D.8)

Using ti−1 = ti−2 + Ti−1 and the value for yi−1 from Equation D.8 yields the

recursion relation

Ti = 4(ti−2(1 + 4yi−2) + 10)
ti−2yi−2 + 4

ti−2(1 + 4yi−2 + 10
= Ti−1 + 16. (D.9)



APPENDIX D. FICTITIOUS PLAY EXAMPLE DETAILS 272

This is solved as Ti = Ti−1 + 16(i − 1). From an asymptotic perspective, this

proves the result. The time after i cycles is

ti = t0 +
i∑

j=1

Tj = t0 + iT1 + 16
i−1∑
j=1

j = t0 + iT1 + 16
i(i− 1)

2

= t0 + i(T1 − 8) + 8i2 which is O(i2). (D.10)

A starting point consistent with the assumptions is t0 = 1, y0 = 1, and x0 = 0.

Thus, T1 = 4t0y0 + 10 = 14, and

ti = t0 + i(T1 − 8) + 8i2 = 1 + 6i+ 8i2. (D.11)

So, the cycle period grows like i, and the time between cycles grows like i2.

Corollary D.0.3 The system converges to 0 in inverse proportion to the number

of cycles.

Proof The task is to show that y decreases like 1/i. We need to solve recursion

relation D.8. It is helpful to see that ti from Equation D.11 (where t0 = 1, y0 = 1,

and x0 = 0) can be factorised as (1 + 2i)(1 + 4i). We solve recursion relation D.8

by ansatz, guessing that yi = 1/(1 + 2i). Due to the factorisation, yiti = 1 + 4i,

which gives

yi+1 =
4i+ 5

(1 + 2i)(1 + 4i) + 4(1 + 4i) + 10
=

4i+ 5

8i2 + 22i+ 15

=
1

2i+ 3
=

1

1 + 2(i+ 1)
(D.12)

So the ansatz works, and y shrinks per cycle like Θ(1/i).

Corollary D.0.4 The system defined by recurrence relations 7.1 and 7.2 con-

verges like inverse square-root of time.

Proof According to Corollary D.0.3, the system gets closer to the fixed point

inversely with the number of cycles, and due to Corollary D.0.3, the time to

complete i cycles scales like i2. Thus, in time t2 the system gets closer to the

fixed point by 1/t, so in time t it gets closer to the fixed point by 1/
√
t.


	List of Abbreviations
	Abstract
	Declaration
	Copyright
	Publications
	Acknowledgements
	Introduction
	Why Study Multi-Agent Learning?
	Why Study Games?
	Learning to Act
	What is this thesis about?
	Scope
	Contributions of this Thesis
	Thesis Structure


	Problem Definition
	How Should an Agent Act?
	Learning Objectives
	Assumptions
	Chapter Summary

	Background and Related Work
	Game Theory
	What is a Game?
	Game Classes
	Game Categorisations
	Strategy Categorisations
	Solution Concepts
	Solving Games
	Games in the Experiments
	Abstraction by Bucketing

	Learning in Games
	Repeating Games
	Stochasticity in Games
	The Problem of Convergence
	Modes of Convergence
	Convergence in Game Theory
	Machine Learning
	Reinforcement Learning
	Reinforcement Learning Algorithms
	Counterfactual Regret Minimisation
	Opponent Modelling
	Value Estimation by Lookahead

	Chapter Summary

	OM with SP, RL, and Lookahead
	Sequence Prediction Opponent Modelling
	Short-Term and Long-Term Memory
	Sequence Prediction Methods

	Lookahead
	Games in the Experiments
	Opponents in the Experiments
	The Approach
	Comparison to Reinforcement Learning Agents
	Iterated Rock-Paper-Scissors
	Iterated Prisoner's Dilemma
	Littman's Soccer Game

	Chapter Summary

	OM with EM, SP, and No-Regret Learning
	Opponent Modelling in Poker
	Expectation-Maximisation
	Games in the Experiments
	Opponents in the Experiments
	The Approach
	Expectation-Maximisation in the Opponent Model
	Sequence Prediction in the Opponent Model
	Operation and Algorithm

	Evaluating the Three Proposals
	Benefit of bucketed Rhode Island Hold'em
	Performance in Die-Roll Poker and Rhode Island Hold'em against the Opponents
	Further Experiments in Rhode Island hold'em

	Chapter Summary

	Change Detection for Opponent Strategies
	Learning a Changing Distribution
	Adapting the Window Size
	ADWIN
	BayesCPD
	FET-CPM

	Comparing Change Detection Methods
	Modelling Changing Categorical Distributions
	Modelling Reinforcement Learning Agents

	Combining SP and CD
	Chapter Summary

	Dynamic OM Self-Play Convergence
	Fictitious Play Example
	Extensions to Fictitious Play
	SP and CD Self-Play Convergence
	Combining Sequence Prediction and Fictitious Play
	Combining Change Detection and Fictitious Play

	Empirical Results for Self-Play Convergence
	Measuring Nash Equilibrium Convergence
	Maximum Convergence Rate
	Matching Pennies
	Generalised Matching Pennies
	Shapley's Game
	Jordan's Game

	Chapter Summary

	Conclusions and Future Work
	Conclusions
	First Approach: Sequence Prediction, Reinforcement Learning, and Lookahead
	Second Approach: Expectation-Maximisation, Sequence Prediction, and No-Regret Learning
	Sequence Prediction Methods
	Change Detection Methods
	Self-Play Convergence of Empirical Distributions of Plays

	Future Work
	Safe Strategy
	Opponent Strategy Space
	Sequence Prediction Methods
	Continuous Values
	N-player games
	Learning Objectives
	Real-world Problems
	Prior Knowledge
	Implicit Modelling
	Sequence Prediction and Change Detection


	Bibliography
	Appendices
	Expectation-Maximisation
	Categorical Distribution
	Mixture of Categorical Distributions

	2-Player 2-Action Nash Equilibrium Payoffs
	Payoffs for a Nash Equilibrium at a Centre Point
	Payoffs for a Nash Equilibrium at a Saddle Point

	Simplex Sample and Simplex Random Walk
	K - 1-Dimensional Simplex Sample
	K - 1-Dimensional Simplex Random Walk
	Metropolis-Hastings Algorithm
	Application of the Metropolis-Hastings Algorithm


	Fictitious Play Example Details

