# ARYNES IN SYNTHESIS; NEW REACTION AND PRECURSOR DEVELOPMENT 

A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences

By<br>Donald McAusland<br>School of Chemistry

## Contents

Abstract ..... 11
Declaration ..... 12
Copyright ..... 13
Acknowledgements ..... 14
1 Introduction ..... 15
1.1 Generation of benzyne ..... 17
1.2 Reactions of benzyne ..... 19
1.2.1 Pericyclic reactions ..... 19
1.2.2 Nucleophilic addition to arynes ..... 21
1.2.3 Transition-metal-catalysed reactions ..... 26
1.3 Selectivity with substituted arynes ..... 28
1.4 (Trimethylsilyl)phenyl triflates and related aryne precursors ..... 32
1.4.1 ortho-Lithiation ..... 33
1.4.2 [4+2] Cycloaddition ..... 34
1.4.3 Oxidative para-triflation of acetanilides ..... 34
1.4.4 Commercially available precursors ..... 35
1.4.5 Precursors for the synthesis of polyaromatic structures ..... 35
1.4.6 Other functionalised Kobayashi precursors ..... 37
1.4.7 Related aryne precursors ..... 39
1.5 Arynes in synthesis ..... 41
1.5.1 Indole syntheses ..... 42
2 The Benzyne Fischer Indole Reaction ..... 46
2.1 Introduction ..... 46
2.1.1 Buchwald modification ..... 47
2.1.2 The arylation of hydrazones with benzyne ..... 52
2.2 Application of aryne electrophiles to the Fischer indole synthesis ..... 52
2.2.1 Aryne reactions of other hydrazones ..... 55
2.2.2 Benzyne Fischer indole scope ..... 58
2.2.3 Substituted arynes ..... 60
2.2.4 Miscellaneous tosylhydrazones ..... 66
2.3 Conclusions ..... 67
3 Synthesis and Applications of New Aryne Precursors ..... 68
3.1 Introduction ..... 68
3.1.1 Palladium cross-coupling chemistry ..... 68
3.1.2 The Suzuki reaction ..... 69
3.1.3 Organoboron reagents ..... 71
3.1.4 Chemoselectivity in Suzuki couplings ..... 74
3.2 Aims ..... 78
3.3 Optimisation ..... 79
3.3.1 distal-Bromo aryne precursor ..... 80
3.3.2 ortho-Bromo aryne precursor ..... 82
3.3.3 Control reactions ..... 86
3.4 Scope of the selective Suzuki coupling ..... 88
3.4.1 Alternative coupling reagents ..... 90
3.5 Reactions of substituted aryne precursors ..... 92
3.5.1 ortho-Nucleophilic groups ..... 93
3.5.2 Reactivity at a nitrile group ..... 94
3.5.3 Metal catalysed $[2+2+2]$ reactions ..... 97
3.6 Further attempts and leads ..... 101
3.6.1 Benzyne-furan reactions ..... 101
3.6.2 Further reactions on the $2^{\prime}$-ring ..... 102
3.6.3 Sonogashira coupling ..... 102
3.6.4 Boryl-substituted aryne precursors ..... 104
3.6.5 More highly functionalised aryne precursors ..... 105
3.6.6 Conclusions ..... 105
4 Benzyne $\sigma$-Insertions ..... 106
4.1 Introduction ..... 106
4.2 Aryne ynamide insertions ..... 109
4.2.1 Insertions with oxazolidinone-acetylene ..... 109
4.2.2 Insertions with $N$-ethynyl sulfonamides ..... 111
4.3 Conclusions and further work ..... 114
5 Conclusions ..... 116
6 Experimental ..... 118
6.1 The benzyne Fischer indole reaction ..... 119
6.1.1 Hydrazone precursor syntheses ..... 119
6.1.2 Arylation of protected hydrazones ..... 123
6.1.3 $N$-Tosyl indole synthesis ..... 124
6.2 Biphenyl aryne precursors via palladium-mediated cross-coupling ..... 129
6.2.1 Starting material synthesis ..... 129
6.2.2 Biphenyl synthesis ..... 131
6.2.3 Reactions with substituted biphenyl aryne precursors ..... 139
6.3 Benzyne $\sigma$-insertion reactions ..... 141
6.3.1 Ynamide synthesis ..... 141
6.3.2 Insertion reaction products ..... 144
References ..... 146
Appendices ..... 157
List of abbreviations ..... 157
Crystallographic data ..... 159
Word Count: 57947

## List of Tables

2.1 Benzyne-mediated $N$-arylation and Fischer cyclisation. ..... 58
2.2 N -Arylation and Fischer cyclisation with substituted arynes. ..... 61
3.1 Control reactions for Suzuki coupling of 216 and phenyl boronic acid ..... 87
3.2 Suzuki coupling of boronic acids and 216. ..... 89
3.3 Suzuki coupling of boronic acid precursors with 216. ..... 91
4.1 Conditions for $\mathrm{C}-\mathrm{N}$ insertion with 311 ..... 113
A1 Crystal data and structure refinement for 283. ..... 159
A2 Atomic coordinates and equivalent isotropic displacement parameters for 283 ..... 160
A3 Bond lengths and angles for 306. ..... 167
A4 Anisotropic displacement parameters for 283. ..... 184
A5 Hydrogen coordinates and isotropic displacement parameters for 283. ..... 191
A6 Torsion angles for 283. ..... 197
A7 Crystal data and structure refinement for 306. ..... 205
A8 Atomic coordinates and equivalent isotropic displacement parameters for 306 ..... 206
A9 Bond lengths and angles for 306. ..... 207
A10 Anisotropic displacement parameters for 306. ..... 208
A11 Hydrogen coordinates and isotropic displacement parameters for 306. ..... 208
A12 Torsion angles for 306. ..... 209

## List of Figures

1.1 Representations of benzyne. ..... 15
1.2 Benzyne-transition metal complexation. ..... 26
1.3 Selectivity in nucleophilic addition to an aryne. ..... 29
1.4 Commercially availble ortho-(trimethylsilyl)aryl triflates ..... 36
1.5 Larger polycyclic ortho-(trimethylsilyl)aryl triflates. ..... 36
1.6 Alkoxy-substituted Kobayashi aryne precursors. ..... 39
1.7 Alternative fluoride activated aryne precursors. ..... 40
2.1 Indole-containing compounds. ..... 46
2.2 Buchwald-Hartwig catalytic cycle for a $2^{\circ}$ amine. ..... 48
2.3 Arylation of protected hydrazones. ..... 56
2.4 Three possible isomers of 168 and 169. ..... 62
2.5 Two of the three possible isomers of phenylindole $\mathbf{1 7 0}$. ..... 63
3.1 The catalytic cycle of the Suzuki reaction. ..... 70
3.2 Prominent organoboron cross-coupling reagents. ..... 73
3.3 Halo-aryne precursors. ..... 80
3.4 Initial screen of conditions for coupling 220 and $\mathrm{PhB}(\mathrm{OH})_{2}$ ..... 81
3.5 Screen of bases for coupling 216 and $\mathrm{PhB}(\mathrm{OH})_{2}$ ..... 83
3.6 Screen of solvent for coupling 216 and $\mathrm{PhB}(\mathrm{OH})_{2}$ ..... 84
3.7 Optimised Suzuki coupling conditions. ..... 85
3.8 Potassium trifluoroborate salts attempted. ..... 92
$3.9{ }^{1} \mathrm{H}$ NMR spectra for purification of $\mathbf{2 7 5}$ ..... 96
3.10 X-ray crystal structure of triphenylene 283 ..... 99
3.11 Triphenylenes synthesised by Pẽna et al. ..... 101
4.1 The molecular structure of $\mathbf{3 0 6}$ with displacement ellipsoids at the $50 \%$ probability level. ..... 111
4.2 Possible substrates for further aryne-ynamide insertion reactions. ..... 114

## List of Schemes

1.1 Early ${ }^{14} \mathrm{C}$ labelling experiment to demonstrate the existence of benzyne. ..... 15
1.2 Routes to generate benzyne from stable precursors. ..... 17
1.3 Reactions of aryne precursors. ..... 18
1.4 Diels-Alder reaction with furan. ..... 19
$1.5[3+2]$ cycloaddition with diazoalkanes. ..... 19
1.6 Enamine-benzyne reactions. ..... 20
1.7 Ene reaction of arynes with alkynes ..... 20
1.8 Nucleophilic addition to benzyne. ..... 21
1.9 Arylation reactions under mild conditions. ..... 22
1.10 Three-component couplings with electrophilic $\mathrm{CO}_{2}$. ..... 22
1.11 Self-quenching three-component couplings. ..... 23
$1.12 \mathrm{~N}-\mathrm{C}\left(\mathrm{sp}^{2}\right)$ aryne insertion. ..... 24
1.13 Organolithium-aryne C-CN insertion ..... 24
$1.14 \sigma$-Insertion reactions at nitrile. ..... 25
1.15 Addition of C(sp) nucleophiles to benzyne. ..... 25
1.16 Palladium-catalysed triphenylene synthesis. ..... 27
1.17 Benzyne-alkyne $[2+2+2]$ cycloaddition. ..... 27
1.18 Palladium-catalysed $\mathrm{Sn}-\mathrm{C}(\mathrm{sp})$ benzyne insertion. ..... 27
$1.19 \mathrm{C}(\mathrm{sp})-\mathrm{Br}$ bond fission in aryne reactions. ..... 28
1.20 ortho-Biphenyl aryne reactions. ..... 28
1.21 Reactions with ortho-phenyl Kobayashi aryne precursor. ..... 29
1.22 Fluoride induced selectivity in ortho-(trimethylsilyl)arynes. ..... 30
1.23 Boryl group controlled selectivity. ..... 31
1.24 ortho-Selective addition to (triethylsilyl)benzyne. ..... 32
1.25 Other effects that may influence regiomeric outcome of aryne reactions. ..... 32
1.26 (Trimethylsilyl)phenyl triflate synthesis from ortho-halophenols ..... 33
1.27 Aryne precursors via ortho-lithiation. ..... 34
1.28 Preparation on substituted aryne precursors by a [4+2] cycloaddition- decarboxylation approach ..... 35
1.29 Oxidative para-triflation of acetanilides. ..... 35
1.30 Introduction of ortho-difunctionality via cobalt-catalysed cycloaddition. ..... 37
1.31 Diaryne precursors for acene and helicene extension. ..... 37
1.32 Aryne precursor with pendant furan. ..... 38
1.33 Aryne precursors for intramolecular [4+2] reactions. ..... 38
1.34 Tethered acetylene precursors for benzofuran syntheses. ..... 39
1.35 Nonafluorobutanesulfonyl fluoride-induced aryne formation. ..... 40
1.36 Arynes by anion relay route. ..... 41
1.37 (-)-Curvularin synthesis from polysubstituted benzyne. ..... 41
1.38 Indolyne indolactam V synthesis. ..... 42
1.39 Intramolecular cyclisation indole aryne syntheses. ..... 42
1.40 Aziridine-aryne indole synthesis. ..... 43
1.41 Jamart-Grégoire and Kudzma indole syntheses. ..... 43
1.42 Benzyne-titanocene indole synthesis. ..... 44
1.43 4-Substituted indoles by cyclisation/trapping. ..... 44
1.44 2-azidoacrylate benzyne indole synthesis. ..... 44
1.45 Benzyne Bischler-Möhlau indole synthesis. ..... 45
1.46 Benzyne carbazole syntheses. ..... 45
2.1 The Fischer indole reaction from an $N$-phenylhydrazone. ..... 47
2.2 Traditional and $\mathrm{C}-\mathrm{N}$ routes to arylhydrazones. ..... 48
2.3 Buchwald's palladium catalysed synthesis of arylhydrazones and sub- sequent transformation into indoles. ..... 49
2.4 $\mathrm{C}-\mathrm{N}$ bond forming cross-couplings with hydrazines. ..... 50
2.5 Fischer indole syntheses with cross-coupling derived hydrazines. ..... 50
2.6 Triarylbismuthane synthesis of $N$-aryl hydrazones. ..... 50
2.7 Analagous $\mathrm{C}-\mathrm{O}$ bond approach to benzofurans. ..... 50
2.8 Transition-metal-free C-N hydrazone syntheses. ..... 51
2.9 Arylation of aldehyde tosylhydrazone. ..... 52
2.10 Initial results for benzyne indole synthesis. ..... 53
2.11 Optimised one-pot benzyne Fischer indole reaction. ..... 54
2.12 Double arylation of Boc-protected hydrazone. ..... 57
2.13 Formal $[3+2]$ reactions of hydrazones and arynes. ..... 57
2.14 Challenging synthesis of 3 -unsubstituted indole. ..... 59
2.15 Arylation of (1,2-diphenylethylidene)hydrazone with benzyne ..... 60
2.16 Fischer indole syntheses with meta-biphenylhydrazines. ..... 63
2.17 Arylation of tosylhydrazone 139 with disubstituted aryne precursor 181. ..... 64
2.18 Free ( $\mathrm{N}-\mathrm{H}$ )-indole $\mathbf{1 8 4}$ isolated as a mixture. ..... 65
2.19 Arylation of aldehyde derived tosylhydrazones. ..... 66
2.20 Arylation of a more highly substituted hydrazone ..... 66
3.1 Rates of transmetallation. ..... 70
3.2 Reactions of Boronic acids. ..... 72
3.3 Room temperature coupling of electron-poor boronic acids. ..... 73
3.4 Chemoselectivity between ortho- and para-halophenyl triflates. ..... 74
3.5 Inter- and intramolecular $\mathrm{Br} / \mathrm{OTf}$ selectivities. ..... 75
3.6 Selective reaction at halides catalysed by $\mathrm{Pd}_{2}(\mathrm{dba})_{3} / \mathrm{P}(t-\mathrm{Bu})_{3}$. ..... 75
3.7 Selectivity for bromide with potassium trifluoroborate salts. ..... 76
3.8 Selectivity for ortho-bromo(difluorophenyl) triflates. ..... 76
3.9 Chemoselectivity for $\mathrm{Br} / \mathrm{OTf}$ overrides site-dependence for naphthalenes. ..... 77
3.10 Solvent dependent chemoselectivity. ..... 77
3.11 Functionalised arynes. ..... 78
3.12 Preparation of aryne precursor 220 from the dibromophenol. ..... 80
3.13 Coupling of masked boronic acids. ..... 90
3.14 Carbazole synthesis from 260 ..... 93
3.15 Aryne generation with adjacent benzamide ..... 93
3.16 Potential reactivity of ortho-nitrile biphenyl precursor. ..... 94
3.17 1-Amino fluorenone synthesis ..... 95
3.18 Synthesis of fluoren-9-ones by aryne methods. ..... 97
3.19 Reduction of $\mathbf{2 4 8}$ using $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ ..... 97
$3.20[2+2+2]$ reaction of DMAD and 248. ..... 98
3.21 Palladium catalysed $[2+2+2]$ cyclotrimerisation ..... 100
3.22 Aryne formation from aryne precursor 250 in the absence of additional reactants. ..... 102
$3.23 \mathrm{~S}_{\mathrm{N}} \mathrm{Ar}$ attempts on electron deficient arenes. ..... 103
3.24 Sonogashira coupling of aryne precursor 216 conducted under standard conditions with $10 \mathrm{~mol} \% \mathrm{CuI}$. ..... 103
3.25 Boron-substituted aryne precursors. ..... 104
3.26 Potential elaboration of dibromo(trimethylsilyl)phenyl triflate. ..... 105
4.1 Insertion of benzyne into $\mathrm{C}(\mathrm{sp})-\mathrm{X}$ bonds ..... 107
4.2 Reactions of ynamines with benzyne. ..... 108
4.3 Preparation of terminal ynamide 305. ..... 109
4.4 Insertion of 3-methoxybenzyne into a terminal oxazolidinone ynamide ..... 109
4.5 Insitu desilylation-insertion product. ..... 110
4.6 Preparation of terminal ynamide 311. ..... 112
4.7 Hydrolysis of ynamide $\mathbf{3 1 1}$ ..... 113
4.8 Tosylynamide with 3-methoxybenzyne ..... 114
4.9 Further pathways for aryne-ynamide reactivity. ..... 115

A Thesis submitted to the University of Manchester for the degree of Doctor of Philosophy
Arynes in Synthesis; New Reaction and Precursor Development

## Abstract

The arylation of readily accessible $N$-tosyl hydrazones has been achieved using arynes generated in situ under mild conditions. The resulting $N$-tosyl $-N$-aryl hydrazones undergo a one-pot Fischer indole reaction on the addition of acid, giving a synthesis of protected indoles that avoids handling unstable intermediates and arylhydrazines.


A new route to functionalised 2-(trimethylsilyl)phenyl triflate aryne precursors via Suzuki cross-coupling has been developed. The method allows the incorporation of a wide range of aryl and heteroaryl groups and reactions of arynes generated from these novel precursors have been demonstrated, including a cyclotrimerisation and a fluorenone synthesis.


Work was also undertaken on aryne $\sigma$-insertion reactions. The addition of benzyne to ynamides was found to result in its net insertion between the nitrogen and acetylene species. The reaction proceeds from attack at the terminal carbon in an analogous manner to $\mathrm{C}(\mathrm{sp})-\mathrm{O}$ insertions.


## Declaration

No portion of the work referred to in this thesis has been submitted in support of an application for another degree or qualification of this or any other university or other institute of learning.

## Copyright

i. The author of this thesis (including any appendices and/or schedules to this thesis) owns certain copyright or related rights in it (the "Copyright") and s/he has given The University of Manchester certain rights to use such Copyright, including for administrative purposes.
ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy, may be made only in accordance with the Copyright, Designs and Patents Act 1988 (as amended) and regulations issued under it or, where appropriate, in accordance with licensing agreements which the University has from time to time. This page must form part of any such copies made.
iii. The ownership of certain Copyright, patents, designs, trade marks and other intellectual property (the "Intellectual Property") and any reproductions of copyright works in the thesis, for example graphs and tables ("Reproductions"), which may be described in this thesis, may not be owned by the author and may be owned by third parties. Such Intellectual Property and Reproductions cannot and must not be made available for use without the prior written permission of the owner(s) of the relevant Intellectual Property and/or Reproductions.
iv. Further information on the conditions under which disclosure, publication and commercialisation of this thesis, the Copyright and any Intellectual Property and/or Reproductions described in it may take place is available in the University IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx? DocID=487), in any relevant Thesis restriction declarations deposited in the University Library, The University Library's regulations (see http://www.manchester. ac.uk/library/aboutus/regulations) and in The University's policy on presentation of Theses

## Acknowledgements

My mother, Tom, Chris and other members of the group for help proofreading this thesis, Tom for assistance with X-ray crystallography, Didier and Kallol for help and advice when I first entered the lab and the rest of the Greaney group throughout my time here. Gill, Ryan and their colleagues at Alderly Park for a pleasant and useful stay. The members of the Procter group and in particular Matt and James for reminding me about the outside. Jurai for constant helpfulness with NMR in Edinburgh, Carol and Gareth for aiding analysis in Manchester and Mike for the opportunity to carry out this work and his assistance during it.

## Chapter 1

## Introduction

Arynes are didehydro aromatic species, the simplest and most well known of which is ortho-benzyne. The transient formation of these highly unstable reactive intermediates, though not always realised, has long been achieved in organic chemistry. Bachmann suggested in 1927 that the biradical "free phenylene" (1a) could account for the formation of triphenylene from the action of sodium on chlorobenzene, ${ }^{[1]}$ while Wittig proposed a zwitterionic species (1b) during his work with organolithium reagents. ${ }^{[2]}$ Later, Roberts used ${ }^{14} \mathrm{C}$ labelling and degradation experiments to demonstrate that cine and ipso substitution occurred equally when chlorobenzene was converted to aniline with potassium amide (Scheme 1.1). This result confirmed the existence of a symmetrical intermediate, referred to by Roberts as benzyne (1c). ${ }^{[3]}$


1a


1b


1c


1d


1e

Fig. 1.1 Representations of benzyne. Aromatic alkyne 1d is most commonly used although it implies full triple bond character; its mesomeric form $\mathbf{1 e}$ suggests interaction with the aromatic $\pi$-system, which is minimal.


Scheme 1.1 Early ${ }^{14} \mathrm{C}$ labelling experiment to demonstrate the existence of benzyne. ${ }^{[3]}$

Since these early studies, ortho-benzyne has been subjected to considerable theoretical and experimental investigation and its characterisation has confirmed a degree of bonding interaction between adjacent dehydro sites. The aryne IR stretch was unambiguously assigned as $1846 \mathrm{~cm}^{-1}$ with the aid of deuterium and ${ }^{13} \mathrm{C}$ labelling by Radziszewski et al., ${ }^{[4]}$ while Grant and co-workers measured the bond length and chemical shift in the solid state using ${ }^{13} \mathrm{C}$ dipolar NMR, finding a $\mathrm{C}-\mathrm{C}$ distance of $1.24 \AA .{ }^{[5]}$ These values lie between those of a typical acyclic alkyne $\mathrm{C}=\mathrm{C}$ bond and an alkene double bond. Additionally, benzyne has been stabilised and characterised by NMR in a hemicarcerand host-guest complex. ${ }^{[6]}$

The poor overlap and strained nature of the benzyne triple bond results in a low-lying LUMO, prone to nucleophilic attack and participation in pericyclic reactions, while the relief of ring strain and limited penalty for $\mathrm{C} \equiv \mathrm{C}$ cleavage ensures these are enthalpically favoured. Consequently arynes are short-lived intermediates but take part in a wide range of reactions and have been used extensively in organic synthesis.

Benzyne isomers with didehydro sites on non-adjacent carbons also exist as meta- or para-benzyne. ${ }^{[7]}$ The degree of orbital overlap in these species is significantly lower than in ortho-benzyne, giving far smaller singlet-triplet separation, and their energies of formation are somewhat higher. ${ }^{[8]}$ Whilst para-benzynes are of some interest in enediyne natural products and antibiotics, their use as intermediates in synthesis is limited. Further discussion of arynes is restricted to unsubstituted and functionalised orthodidehydro benzenes along with polycyclic and heterocycle based arynes (heteroarynes). Strained cycloalkynes bear some similarities to ortho-benzyne and are sometimes prepared by the same methods but are not included in this chapter.

The properties and use of arynes have been the subject of numerous reviews ${ }^{[9-25]}$ and the extensive scope of aryne chemistry can not be covered here. Instead, the generation, modes of reaction and selectivity of substituted arynes is introduced with relevant examples. The syntheses and availability of 2-(trimethylsilyl)phenyl triffate precursors is reviewed more thoroughly and further examples of aryne reactions are also given with a focus on indole syntheses.

### 1.1 Generation of benzyne

The instability and high reactivity of free arynes necessitates their in situ generation during a synthetic procedure. The formation of an ortho-didehydro arene requires the loss of two adjacent species from an aromatic species or, less commonly, cyclisation of a suitably unsaturated precursor and examples are given in Scheme 1.2.
ortho-Elimination is most often achieved from an initially formed aryl anion, with rapid (or concerted) loss of a labile group. Commonly employed methods include deprotonation with a strong base (Scheme 1.2, (a)), ${ }^{[26]}$ metal-halogen exchange (b), ${ }^{[27]}$ or fluoride-induced desilylation (c). ${ }^{[28]}$ In each case a choice of functionalities and conditions is available. Of particular historical significance are reactions driven by the expulsion of small molecules from an in situ formed zwitterion (e) ${ }^{[29]}$ or nitrene fragmentation (d), ${ }^{[30]}$ which allowed the development of aryne methodology under nonbasic conditions. In these processes the high enthalpy of benzyne formation ${ }^{[31]}$ is offset by bond-forming reactions in addition to the entropically favourable processes.

The intramolecular $[4+2]$ cyclisation of a diyne and an alkyne ${ }^{[32]}$ has also received recent interest ${ }^{[33]}$ although is only applicable to the generation of substituted polycyclic arynes rather than benzyne itself (Scheme 1.2, (f)).


Scheme 1.2 Routes to generate benzyne from stable precursors.

Of particular note is the introduction of 2-(trimethylsilyl) phenyl triflate (4) as a benzyne precursor by Kobayashi, which has been largely responsible for the increase in aryne-based methodologies in the last decade, and its appearance in the literature has
grown substantially. The reagent, which is stable under laboratory conditions, permits the generation of benzyne under mild conditions, utilising the high affinity of fluoride for silicon and the excellent triflate leaving group. It allows efficient benzyne generation over a range of conditions, with the rate of aryne release controlled both by temperature and fluoride source solubility, and avoids strong bases, oxidants or unstable precursors required in other methods. The preparation and use of this class of precursor is covered in more detail in Section 1.4.

A further consideration for precursor choice is the stability of the reagents and any precursor-derived intermediates to the aryne-generating conditions. For a basemediated elimination, other species might compete with the desired addition process (Scheme 1.3, (a)), making their relative nucleophilicities an important factor. ${ }^{[34]}$ Metalhalogen exchange can be achieved with less nucleophilic reagents but this leads to organometallic intermediates. If these are relatively stable towards aryne formation then they may themselves attack any benzyne already present, leading to biphenylene, triphenylene or benzene oligomers (Scheme 1.3, (b)). ${ }^{[35]}$ In some cases Kobayashi-type precursors also form stable anions; thia-Fries rearrangement with the adjacent sulfonyl group can then compete with triflate elimination leading to phenoxathiin-dioxides (Scheme 1.3, (c)). ${ }^{[36]}$ The two latter processes have been optimised as useful protocols by Heaney and Lees and by Greaney and co-workers respectively.
(a)

(b)
 $85 \%$
(c)


Scheme 1.3 Reactions of aryne precursors. ${ }^{[34-36]}$

### 1.2 Reactions of benzyne

Benzyne, with its accessible LUMO, reacts principally through nucleophilic addition or pericyclic reactions in the presence of a suitable second component. When generated in isolation, dimerisation and trimerisation processes may consume the species although reactions with solvent and precursor by-products are common in the solution phase. ${ }^{[37]}$ The ability of arynes to ligate transition metal complexes further expands the broad scope of chemistry available to these reactive intermediates.

### 1.2.1 Pericyclic reactions

The observation that arynes underwent analogous Diels-Alder reactions to electrondeficient acetylenes helped to verify their nature as strained aromatic alkynes. Benzyne generated from bromo-fluorobenzene was used by Wittig and Pohmer to prepare the cycloaddition product 5 (Scheme 1.4), ${ }^{[38]}$ and similar reactions have frequently been used to test for the presence of aryne intermediates. Further modification of 5 was achieved by hydrogenation and dehydration yielding 7 and 8.


Scheme 1.4 Diels-Alder reaction with furan. ${ }^{[38]}$

Arynes readily undergo other cycloaddition reactions and these have been used extensively in the preparation of polyaromatic structures. Yamamoto and Jin reported a $[3+2]$ cycloaddition between diazoalkanes and benzyne generated from ortho-(trimethylsilyl)phenyl triflates in a synthesis of $1 H$-indazoles (Scheme 1.5). ${ }^{[39]}$ The $N$-aryl indazoles could also be obtained by employing an excess of aryne.


Scheme $1.5 \quad[3+2]$ cycloaddition with diazoalkanes. ${ }^{[39]}$

Arynes are also well known for their participation in thermal [2+2] processes including dimerisation to biphenylene, and there are many reactions of benzyne with symmetric and asymmetric olefins. For example, Kuehne and co-workers obtained the benzocyclobutene product $\mathbf{9}$ on treatment of an enamine with benzyne (Scheme 1.6, (a)). ${ }^{[40]}$ The mechanism was thought to proceed via a zwitterionic intermediate, which could also be quenched with a proton to give $\mathbf{1 0}$ on hydrolysis.

(a)




10


Scheme 1.6 Enamine-benzyne reactions. ${ }^{[40]}$

Gingrich, Jones and co-workers later reinvestigated this reaction and argued that the $\alpha$ arylation product was the result of a $[4+2]$ ene reaction, since they could isolate 11 and 12 if hydrolysis was avoided (Scheme 1.6, (b)). ${ }^{[41]}$ Their conclusion was supported by exclusive ene product formation in a similar reaction with the isolobal ortho-carboryne species. Other benzyne ene reactions are known and even aliphatic acetylenes may participate as an ene component under mild conditions, as described by Cheng and co-workers (Scheme 1.7). ${ }^{[42]}$


Scheme 1.7 Ene reaction of arynes with alkynes. ${ }^{[42]}$

### 1.2.2 Nucleophilic addition to arynes

Benzyne is an excellent electrophile that will react with many anionic and neutral species. If attacked by a negatively charged nucleophile the resulting aryl anion can be quenched with a proton, which may originate from the solvent, to give a simple arylation product (Scheme 1.8, 14, $\mathrm{E}=\mathrm{H}^{+}$) or add to a second electrophile in a three-component coupling $\left(\mathrm{E} \neq \mathrm{H}^{+}\right)$.

When a neutral nucleophile attacks an aryne triple bond, a zwitterionic intermediate is formed initially. Deprotonation or some other cation-quenching process gives an aryl anion that may react as before (Scheme 1.8, path A). Alternatively, cyclisation to an electrophilic site on the newly incorporated group might occur. Subsequent bond fission leads to insertion products ( $\mathbf{1 5}$, path $\mathbf{B}$ ) whereas a stable cyclic structure ( $\mathbf{1 6 )}$ is formally equivalent to a cycloaddition reaction.


Scheme 1.8 Nucleophilic addition to benzyne.

The simple addition of metal amides and other nucleophilic species to benzyne has been utilised since the onset of aryne chemistry to prepare functionalised arenes, although these older methods often lacked functional group compatibility. Extensive studies on the arylation of neutral species, with 2-(trimethylsilyl)phenyl triflates as benzyne precursors using caesium fluoride in acetonitrile, have been conducted by Liu and Larock. They achieved arylation of many classes of nucleophile including amines and anilines, sulfonamides, carbamates, phenols, benzoic acids, a number of nitrogen heterocycles and thiophenols; generally in good or excellent yields (Scheme 1.9). ${ }^{[43]}$ Double arylation occurred with some species while aliphatic alcohols and benzenesulfonic acid were poor nucleophiles.
(a)
 1.5 eq.
(b)



18
(c)

(d)
 89 \%

Scheme 1.9 Arylation reactions under mild conditions by Liu and Larock. ${ }^{[43]}$

In 1954 Huisgen and Rist showed that the anion formed on addition of phenyl lithium to an aryne could be trapped with carbon dioxide. By using either 2- or 3-fluoroanisole, 3-methoxy-biphenyl-2-carboxylic acid (21) could be obtained as the major regioisomer (Scheme 1.10 , (a)). ${ }^{[44]}$ Despite this and related early reports, relatively few benzyne three-component couplings with anionic nucleophiles exist. A similar reaction has since been achieved with amine nucleophiles by Yoshida and co-workers (Scheme 1.10, (b)), which allowed the preparation of a range of anthranilic acid derivatives. ${ }^{[45]}$
(a)

(b)


Scheme 1.10 Three-component couplings with electrophilic $\mathrm{CO}_{2}$. ${ }^{[45]}$

Many recently disclosed benzyne three-component couplings that employ neutral nucleophiles undergo rapid electrophilic attack and the resulting zwitterion may
be quenched in other ways. Thus when Yoshida, Kunai and co-workers generated benzyne in the presence of an isocyanide and an aldehyde (Scheme 1.11, (a)), the initial zwitterion 23 reacted with the aldehyde leading to 24 , which underwent selfquenching cyclisation to give benzoannulated iminofurans. An interesting acetylene incorporating reaction was also reported by Yoshida et al. (Scheme 1.11, (b)), wherein a bromoacetylene provides the electrophilic $\mathrm{Br}^{+}$component whilst the released acetylide attacks the cationic region. Polyfluoro-bromobenzenes could be used in a similar way. ${ }^{[46]}$
(a)


16-77 \% (19 examples)
(b)


Scheme 1.11 Self-quenching three-component couplings. ${ }^{[47]}$
An alternative route to ortho-difunctionalised arenes is benzyne $\sigma$-insertion and many hetero-groups may be added across the triple bond in this way. ${ }^{[48]}$ The first example of $\sigma$-insertion into a heteroatom- $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ bond under mild conditions was reported by Shirakawa, Hiyama and co-workers. ${ }^{[49]}$ In this work the initially formed zwitterion was assumed to undergo intramolecular attack to form cyclic intermediate 27, which gave amide products upon ring opening (Scheme 1.12). Similar insertion reactions with anionic carbon nucleophiles have been known for some time but these reactions were typically low yielding and gave multiple products. ${ }^{[50]}$

Aryne $\sigma$-insertion reactions at electrophilic $\mathrm{C}(\mathrm{sp})$ sites are also known. Lithioalkyl nitriles were shown by Meyers and co-workers to add to benzyne generated from chlorphenyl oxazoline 29 and $n$-butyl lithium (Scheme 1.13). Intramolecular attack


Scheme 1.12 $\mathrm{N}-\mathrm{C}\left(\mathrm{sp}^{2}\right)$ aryne insertion. ${ }^{[49]}$
into the nitrile group was thought to give intermediate 32, which after ring opening and quenching with ethanol led to insertion product 34. Electrophiles other than $\mathrm{H}^{+}$ could also be incorporated in the final step. ${ }^{[51]}$





33
Scheme 1.13 Organolithium-aryne C-CN insertion. ${ }^{[51]}$
Prior lithiation of the nitrile could be avoided in a similar reaction by Yoshida et al. if an additional electron-withdrawing sulfonyl or nitrile group were present (Scheme 1.14, (a)). ${ }^{[52]}$ In this case the benzylic position underwent arylation with a second equivalent of aryne before the anion was quenched, although the monoarylated species was detected as a side product. Recently, a related N-CN $\sigma$-insertion was reported by Zeng and Rao. ${ }^{[53]}$ Here, the reaction is initiated by nucleophilic attack of cyanamide nitrogen, resulting in aminocyanation products 36 (Scheme 1.14, (b)).

Nucleophilic reactions involving $\mathrm{C} \equiv \mathrm{C}$ bonds are less common. The reaction of phenyl acetylide with benzyne was reported by Roberts and Scardiglia in 1958 (Scheme 1.15,

(b)


Scheme $1.14 \quad \sigma$-Insertion reactions at nitrile. ${ }^{[52,53]}$
(a)), ${ }^{[54]}$ while a terminal acetylene was later found to be a suitable nucleophile under far milder conditions by Cheng and co-workers (b). ${ }^{[42]}$ Zhang et al. noted that phenyl acetylene did not add to benzyne in acetonitrile with caesium fluoride. However, an in situ generated acetylide did undergo nucleophilic addition to benzyne (Scheme 1.15, (c)), which constituted the first example of copper catalysis in aryne chemistry. ${ }^{[55]}$ The resulting aryl cuprate could also be trapped with an allyl halide in a metal-catalysed three-component coupling.
(a)
 26 \%
(b)

(c)


Scheme 1.15 Addition of C(sp) nucleophiles to benzyne. ${ }^{[54,55,42]}$

### 1.2.3 Transition-metal-catalysed reactions

Like other strained cycloalkynes, benzyne forms transition metal complexes, examples of which have been isolated and characterised. ${ }^{[56]}$ The first $\eta^{2}$-ligated niobium- and tantalum-aryne complexes (37) were reported by Schrock and co-workers, ${ }^{[57]}$ although higher coordination modes also exist. When bound in this way, the triple bond behaves primarily as a 2 electron $\pi$-donor, the structure of which is equivalent to a threemembered cyclometalated didehydrobenzene (Fig. 1.2).


37


Fig. 1.2 Benzyne-transition metal complexation. ${ }^{[57]}$

Aryne-transition metal complexes, either preformed or generated in situ, may be useful in synthesis since their reactivity and subsequent transformations permit reactions not observed with free benzyne. ${ }^{[58]}$ The accessibility of arynes formed under mild conditions compatible with transition-metal processes, coupled with developments in cross-coupling catalysis has promoted developments in this field. ${ }^{[17,19]}$

Pérez, Guitián and co-workers reported the first palladium-catalysed reaction of arynes, finding that $\operatorname{Pd}(0)$ sources facilitated $[2+2+2]$ cyclotrimerisations of benzyne generated from Kobayashi precursors in high yields (Scheme 1.16). ${ }^{[59]}$ Numerous similar reactions have since been disclosed. ${ }^{[60]}$ The asymmetric triphenylene was the major product from an ortho substituted benzyne, a result that may be explained by preferential formation of the less hindered cyclometalated intermediate 38a. This can only react to give the more hindered product on incorporation of a third equivalent of aryne.

This methodology has since been extended to include co-cyclisation reactions, particularly with other electron-deficient species, as well as intramolecular $[2+2+2]$ reactions for the preparation of fused polycycles. For examples, benzofluorenones 40 may be obtained from the palladium-catalysed co-cyclisation of benzyne with diynes $\mathbf{3 9}$ (Scheme 1.17).

Palladium catalysis has also allowed the development of additional benzyne insertion reactions. The first example of this kind was reported by Shirakawa, Hiyama and co-


Scheme 1.16 Palladium-catalysed triphenylene synthesis. ${ }^{[59]}$


Scheme 1.17 Benzyne-alkyne $[2+2+2]$ cycloaddition. ${ }^{[61]}$
workers, ${ }^{[62]}$ who used a palladium-iminophosphine complex to catalyse the reaction between alkynyl stannanes and benzyne.

Two possible pathways were proposed. In the first (shown in Scheme 1.18) the co-ordinated benzyne complex forms initially prior to reaction with the stannane. Alternatively, oxidative insertion of the stannane might occur first to give a $\operatorname{Pd}(\mathrm{II})$ complex that then undergoes carbometalation with benzyne. Notably, the uncatalysed insertion reaction did proceed, albeit in under $10 \%$ yield.


Scheme $\mathbf{1 . 1 8}$ Palladium-catalysed $\mathrm{Sn}-\mathrm{C}(\mathrm{sp})$ benzyne insertion. ${ }^{[62]}$

Yoshida and co-workers have also reported the copper-catalysed insertion of benzyne into ethynyl bromides (Scheme 1.19). ${ }^{[63]}$ The reaction is believed to proceed via bromophenyl cuprate $\mathbf{4 3}$, which attacks either a second equivalent of benzyne or the acetylene at the 1-position.


Scheme 1.19 $\mathrm{C}(\mathrm{sp})-\mathrm{Br}$ bond fission in benzyne reactions. ${ }^{[63]}$

### 1.3 Selectivity with substituted arynes

It is well known that arynes bearing sterically demanding 3-substituents undergo preferential meta-attack, with the degree of selectivity being dependent on the nature of both the nucleophile and the substituent. Whereas limited discrimination is generally observed with a methyl substituent, good selectivity should be expected for the addition of nucleophiles to 3-phenyl benzyne. Indeed in an early study of substituted arynes, Huisgen et al. obtained a ratio of 97:3 meta:para products for the high-yielding arylation of piperidine with 2-bromobiphenyl (Scheme 1.20, (a)). ${ }^{[64]}$
(a)

(a)
 $93: 7$

Scheme 1.20 ortho-Biphenyl aryne reactions: a) Huisgen, ${ }^{[64]}$ b) Wickham and Scott. ${ }^{[65]}$

Despite this result, there have been relatively few additional examples where orthophenyl benzyne has been used in the synthesis of meta-functionalised biphenyls. 2Biphenyl triflate was used by Wickham, Scott and co-workers for the preparation of diisopropyl amines with a similar regioselectivity (Scheme 1.20, (b)). ${ }^{[65]}$
ortho-Phenyl substituted 2-(trimethylsilyl)phenyl triflate, 44, has been prepared and shown by Yoshida et al. to undergo $\sigma$-insertion with a cyclic urea and with (tributylstannyl)phenyl sulfide (Scheme 1.21 , (a) and (b)). ${ }^{[49,66]}$ Both reactions proceeded with excellent regioselectivity, the more nucleophilic substituent being placed meta to the phenyl group in each case. 44 has also been utilised in an aryne hydrostanylation by Kazmaier and co-workers, though with reduced selectivity. ${ }^{[67]}$


Scheme 1.21 Reactions with ortho-phenyl Kobayashi aryne precursor: a) and b) Yoshida, ${ }^{[49,66]}$ c) Lakshmi. ${ }^{[67]}$

Steric arguments have been applied to 1,2-naphthalyne, where the approach of a nucleophile towards C 1 is hindered by the peri hydrogen (Fig. 1.3, C). It seems likely, however, that electronic effects are also relevant for the often good selectivities observed with this aryne.



C


D

Fig. 1.3 Selectivity in nucleophilic addition to an aryne.

The inductive electronic nature of substituents is also important in determining the regioselective outcome of reactions with arynes. Since the triple bond, and hence any
build up of charge as a nucleophile approaches, is in an $\mathrm{sp}^{2}$ orbital that is orthogonal to the $\pi$-system, mesomeric effects are less relevant.

In addition to any steric preference for meta-attack, an electron-withdrawing 3substituent should best stabilise the transition state when a nucleophile attacks distally (Fig. 1.3, A), since the developing charge is placed adjacent to it. By the same argument, an inductively withdrawing 4 -substituent will favour para attack (Fig. 1.3, D), although the remoteness of the stabilising group implies poorer stabilisation and hence poorer discrimination between sites. For example, 3-methoxy benzyne has been used extensively for arylations and often gives predominantly or exclusive meta-methoxy products, whereas 4 -methoxybenzyne has only a slight preference for para-attack. ${ }^{[10]}$

In the opposite sense, electron releasing groups located adjacent to the triple bond destabilise the transition state for meta approach of a nucleophile, acting in opposition to steric effects. Lower selectivities might therefore be expected in general (Fig. 1.3, B).

Recent studies concerning ortho regioselectivities have been conducted by Akai and co-workers, who showed that a trimethylsilyl group is meta directing when the aryne is generated by lithium-halogen exchange (Scheme 1.22, (a)), ${ }^{[68]}$ in line with earlier findings. ${ }^{[69]}$ However, when the same aryne was generated from a Kobayashi-type precursor by the addition of fluoride, ortho selectivity of up to $12: 1$ was obtained (Scheme 1.22, (b)). Under the fluoride-induced conditions with analogous 3-isopropyl aryne, meta selectivity was restored (Scheme 1.22, (c)). A silicate complex 45 was proposed to account for the discrepancy between (a) and (b), its full negative charge allowing sufficient perturbation of the aryne bond to overcome the unfavourable steric repulsion during ortho attack.
(a)

(b)

(c)


Scheme 1.22 Fluoride induced selectivity in ortho-(trimethylsilyl)arynes. ${ }^{[68]}$

Interestingly, Akai has also achieved preferential ortho attack with 3-boryl benzynes by employing a boronamide substituent. Selectivities in excess of $20: 1$ ortho : meta could be achieved with some primary amine nucleophiles, although secondary amines and $t$ - $\mathrm{BuNH}_{2}$ gave lower ratios, and the effect was not thought to arise from a boronate complex. These additions contrast to earlier work in the same group where a boronic pinacol ester was used to exert regiocontrol in aryne cycloaddition reactions (for example, Scheme 1.23, (b)). ${ }^{[70]}$


Scheme 1.23 Boryl group controlled selectivity. ${ }^{[70,71]}$

Garg, Houk and co-workers have used an aryne distortion model to explain regioselective outcomes of additions to indolynes and other functionalised arynes. ${ }^{[72]}$ Since the transition state of an aryne is distorted to accommodate the developing negative charge (increasing s-character leads to decreased bond angle), attack is favoured at the site which minimises the change in distortion. The model has been applied to ortho(triethylsilyl)benzyne, which has a greater internal bond angle at C 2 and thus would be expected to react at this site. ${ }^{[73]}$ In line with the findings of Akai, experimental ortho selectivity could be achieved in some cases when benzyne was generated from 47 and caesium fluoride, although larger nucleophiles gave the opposite isomer. Regioselectivities in cycloaddition reactions were also substrate dependent.

Aside from these steric and electronic effects on the aryne bond, examples in which a coordinating ortho-substituent directs nucleophilic attack are also known. Thus Meyers and co-workers reported that the 3 -oxazoline benzyne 49 (Scheme 1.25, (a)) underwent preferential ortho-attack with organolithium reagents, although selectivity was reduced with more sterically demanding lithium nucleophiles. ${ }^{[74]}$ Furthermore, arynes formed via proton abstraction from an asymmetrically substituted arene with two $\alpha$-protons can give rise to both 3 - and 4 -substituted benzyne (Scheme 1.25, (b)). Product distributions


Scheme 1.24 ortho-Selective addition to (triethylsilyl)benzyne. ${ }^{[73]}$
will therefore reflect both the selectivity in attack and selectivity during formation of the benzyne; the latter may again result from steric, electronic or directing-group properties of the substituent.


Scheme 1.25 Other effects that may influence regiomeric outcome of aryne reactions. ${ }^{[74]}$

## 1.4 (Trimethylsilyl)phenyl triflates and related aryne precursors

As with the majority of protocols for benzyne generation, Kobayashi's precursor requires an ortho-difunctionalised arene. These are most commonly derived from 2-halophenols, which may in turn be obtained via electrophilic partial halogenation or similar routes. The accessibility of suitable phenols, in addition to conditions subsequently employed to install the triflate and silyl groups, therefore limits the availability of functionalised arynes by this route. Nevertheless a range of Kobayashi-type precursors have been
prepared by several methods and those not discussed elsewhere are reviewed in this section.

In the original synthesis, ortho-(trimethylsilyl)phenoxytrimethylsilane (52), obtained from 2-chlorophenol with (trimethylsilyl)chloride using molten sodium, was deprotected with $n-\mathrm{BuLi}$ and quenched with triflic anhydride to give 2-(trimethylsilyl) phenyl triflate (4, Scheme 1.26, (a)). ${ }^{[28]}$ Later, Peña et al. used ortho-bromophenol in a more general preparation of aryne precursors. A milder $n$ - BuLi -mediated retro-Brook reaction from phenoxysilane 54 installed the trimethylsilyl group on the ring, with the phenolate again being quenched in situ with triflic anhydride (Scheme 1.26, (b)). ${ }^{[75]}$ The method was also applied to substituted ortho-bromophenols, yielding aryne precursors with alkyl, alkoxy and halogen functionality (for example 55-58) and has been employed more widely by other researchers.


Scheme 1.26 (Trimethylsilyl)phenyl triflate synthesis from ortho-halophenols. ${ }^{[28,75]}$

### 1.4.1 ortho-Lithiation

Soon after Kobayashi's report on the synthesis of 2-(trimethylsilyl)phenyl triflate, Snieckus and Shankaran carried out an ortho-lithiation/retro-Brook rearrangement on meta-siloxy benzamide 60 (Scheme 1.27 , (a)). Triflation furnished the ortho-benzamide aryne precursor 60. ${ }^{[76]}$ A range of nucleophilic addition and [4+2] reactions were performed, the former displaying meta regioselectivity in line with other electron-withdrawing-substituted 3 -benzynes.


Scheme 1.27 Aryne precursors via ortho-lithiation. ${ }^{[76,77]}$

More recently, Bronner and Garg have used a removable directing group ortho-lithiation strategy that dispenses with the need for prior halogenation of the phenol (Scheme 1.27, (b)). ${ }^{[77]}$ The carbamate group, introduced with an isocyanate, could be readily cleaved ahead of triflation with $\mathrm{PhNTf}_{2}$ to give 4 and the methodology was also applied to the synthesis of the analogous 4,5-N-methylindolyne precursor in similar yield.

### 1.4.2 [4+2] Cycloaddition

An interesting alternative approach, reported by Harrity and co-workers, completely avoids substituted phenols, instead establishing the required ortho-difunctionality by the $[4+2]$ cycloaddition of a trimethylsilyl alkynylboronate with 2 -pyrone derivatives (Scheme 1.28). ${ }^{[78]}$ Decarboxylation, oxidation of the boronate and triflation gave the usual 2-(trimethylsilyl)phenyl triflate. Functionality could be introduced via the pyrone and although mixtures of regioisomers were obtained, both would result in the same aryne intermediates on treatment with fluoride, making their separation unnecessary. The methodology appears applicable to the synthesis of electron deficient aryne precursors and only halogen groups were installed adjacent to the triple bond.

### 1.4.3 Oxidative para-triflation of acetanilides

A recent report by Taillefer and co-workers described an iodine(III)-mediated umpolung reaction of acetanilides with nucleophilic triflate. ${ }^{[79]}$ Although only a single example of triflation ortho to a TMS group was given (Scheme 1.29), the authors did note the potential application of $\mathbf{6 4}$ in aryne generation.



Scheme 1.28 Preparation on substituted aryne precursors by a [4+2] cycloadditiondecarboxylation approach. ${ }^{[78]}$


Scheme 1.29 Oxidative para-triflation of Acetanilides. ${ }^{[79]}$

### 1.4.4 Commercially available precursors

A number of ortho-(trimethylsilyl)phenyl triflates have been commercially available for several years including simple methyl- or methoxy-substituted derivatives, 1and 2-naphthalyne precursors and polycyclic structures facilitating di- and triyne intermediates (Fig. 1.4). ${ }^{[80]}$ Other substituted benzyne and indeed heterocyclic pyridyne and indolyne precursors may also be purchased but their cost is likely to be prohibitive for many purposes.

### 1.4.5 Precursors for the synthesis of polyaromatic structures

A range of more complex ortho-(trimethylsilyl)polyaromatic triflates have been prepared as aryne precursors. Typically, this is achieved by the functionalisation of the existing aromatic scaffold to afford an ortho-bromophenol motif - which often requires a multi-step synthesis - followed by silylation and triflation using the procedure of Peña et al.

The most common use of these substrates is in metal-catalysed $[2+2+2]$ reactions for the synthesis of even larger polyaromatic materials, either by cyclotimerisation


4

$67 \mathrm{R}=\mathrm{Me}$
$58 \mathrm{R}=\mathrm{OMe}$


65


66


70


72

Fig. 1.4 Commercially availble ortho-(trimethylsilyl)aryl triflates
or co-cyclisation with one or two equivalents of another $2 \pi$-component such as DMAD. Much of this work has been carried out by Pérez, Guitián and co-workers, who first reported the synthesis of substituted triphenylenes from Kobayashi aryne precursors with catalytic palladium (see Section 1.2.3). ${ }^{[59]}$

They have since prepared anthracene-, biphenylene- and even triphenylene-based aryne precursors $\mathbf{7 3}, \mathbf{7 8}$ and $\mathbf{7 4}$, all of which have been successfully employed in the preparation of triphenylenes and other materials. ${ }^{[81-84]}$ Notably, $\mathbf{7 8}$ was obtained from cobalt-catalysed cycloaddition of diyne $\mathbf{7 6}$ with bis(trimethylsilyl)acetylene to install the TMS group, rather than the ortho-halogenation routes used more generally (Scheme 1.30). Maly and Lynett have also prepared dialkoxynaphthalyne precursors 75 (Fig. 1.5) via the bromonaphthol, which was obtained in over 6 steps from 2,3naphthalenediol, and used them in similar triphenylene syntheses. ${ }^{[85]}$

73

74

$$
\begin{aligned}
& \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{13} \\
& \text { or } \mathrm{C}_{8} \mathrm{H}_{17}
\end{aligned}
$$


75

Fig. 1.5 Larger polycyclic ortho-(trimethylsilyl)aryl triflates. ${ }^{[11,83,85]}$


Scheme 1.30 Introduction of ortho-difunctionality via Cobalt-catalysed cycloaddition. ${ }^{[82]}$
Dibenzyne and dinaphthalyne precursors $\mathbf{7 9}$ and $\mathbf{8 1}$ are also accessible and have both been employed in polyacene synthesis. Wudl and co-workers used a cyclopentadienone $[4+2]$ addition/decarbonylation protocol (Scheme 1.31, (a)), ${ }^{[86]}$ while Kitamura et al. have prepared a range of tetracenes via furan cycloaddition (Scheme 1.31, (b)). ${ }^{[87]} \mathrm{A}$ similar strategy was attempted by Katz and co-workers for the extension of an interesting [7]helicene based aryne precursor 83. ${ }^{[88]}$ However, the intermolecular reaction occurred at only one site, with an intramolecular [4+2] cyclisation being favoured at the second aryne bond, leading to the fused helical structure 84 (Scheme 1.31, (c)).
(a)

(b)


81

iii) $\mathrm{HCl}, \mathrm{Ac}_{2} \mathrm{O}$

(c)


Scheme 1.31 Diaryne precursors for acene and helicene extension. ${ }^{[86-88]}$

### 1.4.6 Other functionalised Kobayashi precursors

Aside from Snieckus's ortho-benzamide substrate, one of the earliest examples of a substituted 2-(trimethylsilyl)phenyl triflate was given by Quayle and co-workers (Scheme 1.32). ${ }^{[89]}$ Their 9 step synthesis from the readily accessible dibromophenol $\mathbf{8 5}$ gave aryne precursor $\mathbf{8 6}$, possessing a tethered furan group. The expected [4+2] intramolecular cycloaddition provided a route to the interesting epoxy-benzoindalone 87.


Scheme 1.32 Aryne precursor with pendant furan. ${ }^{[89]}$

Danheiser and co-workers have synthesised various ortho-substituted (trimethylsilyl)phenyl triflates suitable for intramolecular cycloaddition. In their strategy, 2-hydroxy-3-(trimethylsilyl)benzaldehyde (89) was first prepared in three steps from a protected phenol and subsequent reductive amination with propargylamine led to their common intermediate 90. This was diversified by Sonogashira coupling prior to triflation to give various areneyne- or eneyne-containing aryne precursors (Scheme 1.33). Dienes could also be introduced via cross-metathesis. Fluoride-induced aryne generation led to the desired $[4+2]$ reaction and a range of dihydro-benzoisoquinoline-based structures of type $\mathbf{9 2}$ could be prepared in this way.


Scheme 1.33 Aryne precursors for intramolecular [4+2] reactions. ${ }^{[90]}$

Several other aryne precursors bearing pendant acetylenes were also reported by Yuan and Ma. ${ }^{[91]}$ These could undergo a palladium-catalysed ene-cyclisation-arylation cascade to afford a range of benzofurans (Scheme 1.34).


Scheme 1.34 Tethered acetylene precursors for benzofuran syntheses. ${ }^{[91]}$
Stoltz and co-workers have prepared a number of alkoxy-substituted precursors using a combination of phenol bromination/retro-Brook reactions and Garg's ortho-lithiation approach, including the first examples of trisubstituted 2-(trimethylsilyl)phenyl triflates. ${ }^{[92]}$ The meta-directing influence of these substituents could be used in various aryne reactions, which proceeded in good regioselectivities, and these substrates have been exploited for the synthesis of several natural products (for example see Section 1.5). Silyl ${ }^{[73,93]}$ and boryl ${ }^{[71]}$ functionalised aryne precursors have also been prepared for the control and study of regioselectivity in aryne reactions, examples of which are given in Section 1.3.


95


96


97


98

Fig. 1.6 Alkoxy-substituted Kobayashi aryne precursors. ${ }^{[92]}$

### 1.4.7 Related aryne precursors

Although 2-(trimethylsilyl)phenyl triflate-based precursors are perhaps the most widely used reagents for aryne generation under mild conditions, a number of similar methods have also been reported. These tend to retain the fluoride-induced elimination of a silyl group from Kobayashi's method while altering the ortho-leaving group, although modifications to initial anion formation also exist.

Kitamura et al. dispensed with the triflate group in favour of the hypervalent iodine species 99 (Fig. 1.7), prepared from bis(trimethylsilyl)benzene and (diacetoxyiodo)benzene with triflic acid. Their precursor is an easily handled crystalline solid and may confer improved yields and reduced reaction times compared to 4 in some cases. ${ }^{[94]}$ More recently Novák and co-workers prepared a range of ortho-(trimethylsilyl)phenyl imidazolylsulfonates (100) from the respective phenols with sulfonyldiimidazole. These
demonstrated similar reactivity to the analogous triflates in fluoride-induced benzyne reactions. ${ }^{[95]}$


99


100

Fig. 1.7 Alternative fluoride activated aryne precursors. ${ }^{[94,95]}$

A related approach to aryne generation with a phenol-derived leaving group was introduced by Akai and co-workers (Scheme 1.35). They used nonafluorobutanesulfonyl fluoride (NfF) both to prepare the sulfonate group, in situ from an ortho-(trimethylsilyl)phenol, and as the source of fluoride. Thus 1,2-elimination from 102, which is not isolated, forms the reactive intermediate in a domino process. Arynes generated in this way could undergo $[4+2]$ or $[3+2]$ cycloadditions, amination and a three-component coupling reaction. ${ }^{[96]}$ ortho-(Trimethylsilyl)phenyl nonaflates may also be isolated prior to benzyne generation and Greaney and Michel have reported an efficient flow synthesis of such precursors. The more usual triflate-based substrates could be obtained in large scale in a similar way. ${ }^{[97]}$


Scheme 1.35 Nonafluorobutanesulfonyl fluoride-induced aryne formation. ${ }^{[96]}$

A less conventional anion relay mode of aryne generation from substituted 2-(trimethylsilyl)phenyl trilfate precursors has been used by Smith and Kim. ${ }^{[98]}$ By locating an aldehyde or ketone adjacent to the TMS group and adding an anionic nucleophile, Brook rearrangement was induced (Scheme 1.36, top). After loss of the triflate group the resulting arynes could undergo various cycloaddition reactions. The ortho-formyl precursor 103, which was prepared from 2-bromo-3-hydroxybenzaldehyde in three steps, could itself serve as a substrate for further elaboration. For example, a pendant azide group was incorporated into 105, which underwent an intramolecular [3+2] reaction after deprotonation with KHMDS to form the tricyclic structure 106 (Scheme 1.36, bottom). Although these preparations are generally long and employ forcing conditions, they do afford various exotic aryne precursors.


Scheme 1.36 Arynes by anion relay route. ${ }^{[98]}$

### 1.5 Arynes in synthesis

Benzyne methodology has been developed to target important heterocycle classes and reactions have emerged that make otherwise unusual or challenging motifs accessible. It has also found use in natural product syntheses, ${ }^{[22,23]}$ though these steps are often restricted to intramolecular reactions with arylhalides, which require highly basic conditions.

Kobayashi aryne precursors have also been employed but the difficulties involved in synthesising large fragments of this type have limited their use. Stoltz and co-workers prepared a number of natural products via $\mathrm{C}-\mathrm{C} \sigma$-insertion reactions with appropriately functionalised alkoxy 2-(trimethylsilyl)phenyl triflates, including (-)-curvularin (107, Scheme 1.37). ${ }^{[99]}$

6-Bromo indolyne precursor 108 has been used by Garg and co-workers to obtain 4-substituted indoles, reversing the usual preference for C 5 attack on indolyne. The technique could be applied to the total synthesis of indolactam V (110, Scheme 1.38). This proved more effective than intramolecular cyclisation, although indole 111, which was prepared during the course of their investigations, is an interesting Kobayashi-type precursor. ${ }^{[100]}$


Scheme 1.37 (-)-Curvularin synthesis from polysubstituted benzyne. ${ }^{[99]}$


Scheme 1.38 Indolyne indolactam V synthesis. ${ }^{[100]}$

### 1.5.1 Indole syntheses

A number of intramolecular cyclisation routes to indoles have been known for some time. Bunnett and Hrutfiord reported several aryne-mediated heterocycle syntheses using potassium amide in liquid ammonia, including indoles 113 and 114. ${ }^{[101]}$ Fleming and Woolias also reported a direct route to indoles from tethered amino-alcohols (Scheme 1.39), ${ }^{[102]}$ which avoided the separate oxidation step required when indolines were prepared from tethered amines in a similar way.
(a)


(b)

(c)


Scheme 1.39 Intramolecular cyclisation indole aryne syntheses. ${ }^{[101,102]}$

An early indole synthesis using intermolecular benzyne, generated from benzenedi-azonium-2-carboxylate, was reported by Nair and Kim. ${ }^{[103]}$ The reaction with di-
phenylazirine was thought to proceed via a $[2+2]$ intermediate and up to $50 \%$ 2,3diphenylindole (117) could be isolated from this reaction.


Scheme 1.40 Aziridine-aryne indole synthesis. ${ }^{[103]}$

Jamart-Grégoire and co-workers synthesised indoles via imines (or enamines) formed from meta-chloroanilines and a suitable enolisable ketone (Scheme 1.41). ${ }^{[104]}$ The strong base $\mathrm{NaNH}_{2} \cdot t$-BuONa was used to generate the aryne, which underwent intramolecular attack from the tethered nucleophile. Quenching with water or methylsulfate led to $\mathrm{N}-$ H or $\mathrm{N}-\mathrm{Me}$ indoles. A similar route was employed by Kudzma using fluoroanilines and LDA and an aryne pathway confirmed by deuterium labelling studies. ${ }^{[105]}$


Scheme 1.41 Jamart-Grégoire ${ }^{[104]}$ and Kudzma indole syntheses. ${ }^{[105]}$

Buchwald and co-workers reported benzyne-zirconocene and benzyne-titanocene indole syntheses. ${ }^{[106,107]}$ After formation of the aryne-metal complex 119, bromination of the resulting insertion product 120 led to the isolated intermediate $\mathbf{1 2 1}$. This could undergo Buchwald-Hartwig coupling/cyclisation and finally oxidation to give the desired indoles.

Barluenga et al. also used an intramolecular carbon nucleophile to close the 5-membered ring during a 3-methylindole synthesis. ${ }^{[108]}$ Aryne formation and lithium-halogen exchange were both accomplished with $t$ - BuLi and the resulting indole anion could be quenched with a range of electrophiles (Scheme 1.43).



Scheme 1.42 Benzyne-titanocene indole synthesis. ${ }^{[107]}$


Scheme 1.43 Indoles by intramolecular cyclisation/trapping. ${ }^{[108]}$

More recently, indoles have been synthesised from arynes and vinyl iminophosphoranes 124, which were formed in situ from 2-azidoacrylates with triphenylphosphine. The presumed cyclic intermediate $\mathbf{1 2 5}$ was then thought to proceed by hydrolysis and aerobic oxidation to the isolated products. However, the methodology is limited to 2carboxyester indoles. ${ }^{[109]}$ New aryne-mediated indole syntheses continue to be reported; Zhu and co-workers recently described a benzyne Bischler-Möhlau-like indole synthesis using $N$-aryl- $\alpha$-aminoketones in place of $\alpha$-bromo ketones (Scheme 1.45). ${ }^{[110]}$


Scheme 1.44 2-azidoacrylate benzyne indole synthesis.. ${ }^{[109]}$


Scheme 1.45 Benzyne Bischler-Möhlau indole synthesis. ${ }^{[110]}$

Various related heterocyclic scaffolds have also been synthesised using aryne chemistry. In an extension to their aniline $N$-arylation methodology, Larock and co-workers used a palladium-catalysed intramolecular C-H activation to obtain carbazoles in a one-pot synthesis (Scheme 1.46, (a)). ${ }^{[111]}$ Benzoxazoles and a dihydrophenanthridine could be prepared in the same way.

More recently, Tokuyama and co-workers prepared carbazoles using a biphenyl aryne generated from the arylbromide with $\mathrm{Mg}(\mathrm{TMP})_{2} \cdot 2 \mathrm{LiCl}\left(\right.$ Scheme 1.46 , (b))..$^{[112]}$ As well as quenching the intermediate aryl anion with a proton, a 7 -bromo substituent could be incorporated. This technique could also be used to obtain indolines, which have previously been formed from tethered amines in a similar manner.[113]

Another recent carbazole synthesis was reported by Studer and co-workers, who used arynes to prepare the heterocycles directly from nitrosoarenes (Scheme 1.46, (c)). ${ }^{[114]}$ The mechanism of nitrosoarene addition is thought to proceed via a [2+2]-ring-opening-ring-closing cascade to give ( $\mathrm{N}-\mathrm{H}$ ) free products in moderate to good yields. $N$-Aryl carbazoles could be obtained under modified conditions if an excess of aryne were employed in a reaction similar to one reported earlier by Henry and Steinhof. ${ }^{[115]}$
(a)

(b)

(c)


Scheme 1.46 Benzyne carbazole syntheses. ${ }^{[111,112,114]}$

## Chapter 2

## The Benzyne Fischer Indole Reaction

### 2.1 Introduction

The indole heterocycle is abundant in biology, occurs in many natural products ${ }^{[116]}$ and is a frequently used scaffold in pharmaceutical research. ${ }^{[117]}$ One of the oldest routes to functionalised indoles is the acid-catalysed cyclisation of an arylhydrazone, first performed by Fischer. ${ }^{[118]}$ This method has undergone considerable study and has been employed extensively for the preparation of indoles and related products. ${ }^{[119-122]}$


127


128


129

Fig. 2.1 Indole-containing compounds: tryptophan (127) a proteinogenic amino acid, harmaline (128) a $\beta$-carboline alkaloid, ondansetron (129) an important antiemetic drug that may be prepared via Fischer indole synthesis.

Given the importance of the structure, many alternative indole syntheses have since emerged. ${ }^{[123]}$ However, the Fischer indole reaction remains an important technique in heterocycle synthesis, allowing a simple metal-free preparation of indoles, particularly with 2- or 3 -substituents, from accessible ketones or aldehydes and continues to be an active area of research. ${ }^{[124]}$

The mechanism of the Fischer indole reaction proceeds from an arylhydrazone which is in equilibrium with its ene-hydrazine form under acidic conditions. A [3,3] sigmatropic shift from this tautomer results in $\mathrm{C}-\mathrm{C}$ bond formation, leading to the indole after rearomatisation and elimination of ammonia. The reaction as drawn in Scheme 2.1 may be conducted under Brønsted acid catalysis, although Lewis acids are also applicable and the role of the catalyst in the [3,3] rearrangement step may vary. In substrates with two distinct $\alpha$-proton sites, selectivity during cyclisation is dictated by their relative tendency to tautomerise or by steric factors, depending on the particular system in hand.



Scheme 2.1 The Fischer indole reaction from an $N$-phenylhydrazone.

### 2.1.1 Buchwald modification

While the formation of arylhydrazones is readily achieved in situ from an aldehyde or ketone and an arylhydrazine, the requirement for the latter has been a key limitation of the Fischer indole reaction (Scheme 2.2, top). Hydrazines are generally unstable with respect to both oxidation and reduction, are toxic and their synthesis often hazardous, thus restricting their availability. This in turn limits the functionality that may be incorporated onto the indole scaffold. An alternative approach is to couple preexisting hydrazones with functionalised arenes in a C-N bond forming step (Scheme 2.2, bottom).

The Buchwald-Hartwig coupling has become an important method to form Cheteroatom bonds and has been employed widely as an arylation process. ${ }^{[125,126]}$ In line with other cross-coupling reactions it proceeds from the oxidative insertion of, most frequently, a $\operatorname{Pd}(0)$ species to an aryl halide. After association of a heterogroup to the metal centre and deprotonation, elimination of the coupled product may occur (Fig. 2.2). This $\mathrm{C}-\mathrm{N}$ bond forming strategy was first developed as a preparation of N -arylhydrazones for indole synthesis by Buchwald and co-workers. ${ }^{[127]}$

Traditional route:

$\mathrm{C}-\mathrm{N}$ bond coupling:


Scheme 2.2 Traditional and C-N routes to arylhydrazones.


Fig. 2.2 Buchwald-Hartwig catalytic cycle for a $2^{\circ}$ amine.

Initially cross-coupling was performed on hydrazones with an enolisable $\alpha$-proton since the arylated products could directly undergo Fischer indole cyclisation (Scheme 2.3, (a)). However, both the starting materials and the resulting $N$-arylhydrazones were unstable and varying yields of indole were obtained in this way. Instead, benzophenone hydrazone was the preferred coupling reagent and subsequent ketone exchange in situ under acidic conditions allowed the Fischer indole reaction to proceed (Scheme 2.3, (b)). Refinement of the catalyst system gave enhanced yields at lower loadings and further developments included the twofold arylation of benzophenone hydrazone under slightly modified conditions. ${ }^{[128]}$ These $N, N$-diarylhydrazones also underwent cyclisation, showing the usual selective incorporation of the more electron-rich arene into the indole core (Scheme 2.3, (c)). ${ }^{[129]}$

Since this work, a number of other techniques have been developed that utilise an $N$ arylation strategy to obtain precursors for the Fischer indole reaction. Palladium ${ }^{[130]}$ or copper ${ }^{[131,132]}$ mediated arylations of Boc-hydrazine or other hydrazides have
(a)

(b)

(c)


Scheme 2.3 Buchwald's palladium catalysed synthesis of arylhydrazones and subsequent transformation into indoles. ${ }^{[127,128]}$
been reported, giving substrate dependent regioselectivity (Scheme 2.4). The copperbased methodology has subsequently been employed by Cheon-Gyu Cho and coworkers for the synthesis of indoles (Scheme 2.5). ${ }^{[133,134]} \mathrm{Cbz}$ protection of the aryl substituted nitrogen could survive the acidic cyclisation conditions whereas Bocprotected hydrazines gave free ( $\mathrm{N}-\mathrm{H}$ ) products.

Later, Lundgren and Stradiotto devised a method to couple unprotected hydrazine hydrate directly (Scheme 2.4, (c)). ${ }^{[135]}$ The products were trapped as benzaldehyde hydrazones and $1-H$-indazoles could be obtained with an ortho-aldehyde in this way. Trapping with an enolisable ketone or aldehyde was not reported by this group.

Copper catalysed arylation of protected hydrazines with triarylbismuthanes has been reported ${ }^{[136]}$ and was later extended to hydrazones. ${ }^{[137]}$ Although the authors noted the relevance of these substrates to indole and other heterocycle preparations, no attempt at a Fischer synthesis was made.

Buchwald has utilised palladium cross-coupling to arylate ethyl $N$-hydroxyacetimidate (130). Exchange with an enolisable ketone allowed benzofurans to be prepared in an analogous manner to his original Fischer indole methodology (Scheme 2.7). ${ }^{[138]}$ Deprotection in the absence of a ketone allowed $O$-arylhydroxylamines to be isolated.
(a)



14 examples
56-84\%
(b)

(c)
 NaOt -Bu, tol, $60-110^{\circ} \mathrm{C}$


Mor-DalPhos =



22 examples 27-97 \%

Scheme 2.4 C-N bond forming cross-couplings with hydrazines: (a) Skerlj, ${ }^{[130]}$ (b) Buchwald, ${ }^{[132]}$ (c) Stradiotto. ${ }^{[135]}$

(b)



Scheme 2.5 Fischer indole syntheses with cross-coupling derived hydrazines. [133,134]


Scheme 2.6 Triarylbismuthane synthesis of $N$-aryl hydrazones. ${ }^{[137]}$


Scheme 2.7 Analogous C-O bond approach to benzofurans. ${ }^{[138]}$

The same $\mathrm{C}-\mathrm{N}$ disconnection may be achieved in the absence of a transition metal if electrophilic nitrogen sources are used. The addition of aryllithium or Grignard reagents to diazo esters and subsequent Fischer cyclisation with thionyl chloride was reported by Takamura and co-wokers (Scheme 2.8, (a)). ${ }^{[139]}$ This method compares to the JappKlingemann Fischer indole synthesis, which uses aryldiazonium salts and a $\beta$-ketoester to prepare the arylhydrazone. In Takamura's protocol the site of nucleophilic carbon and electrophilic nitrogen species are reversed, but it shares with the Japp-Klingemann reaction complications of handling diazo compounds and has limited scope.

Recently, di-tert-butyl azodicarboxylate has been used with aryl Grignard reagents by Moody and co-workers as an alternative electrophilic species. The resulting hydrazines undergo acid catalysed deprotection in the presence of a ketone, leading to in situ hydrazone formation and Fischer indole reaction (Scheme 2.8, (b)). ${ }^{[140]}$ The Grignard nucleophile may be replaced with an ortho-lithiated species, if a suitable directing group is present. ${ }^{[141]}$
(a)

(b)

(c)


Scheme 2.8 Transition-metal-free C-N hydrazone syntheses: (a) Takamura, ${ }^{[139]}$ (b) Moody, ${ }^{[140]}$ (c) Zheng. ${ }^{[142]}$

Aryl halides were dispensed with altogether in a procedure reported by Zheng and co-workers. ${ }^{[142]}$ Here aliphatic hydrazines give 1,2-addition products with quinone monoketals (133) in the $\mathrm{C}-\mathrm{N}$ bond-forming step. Rearomatisation and isomerisation led to $N$-aryl hydrazones, which could undergo Fischer indole cyclisation in one pot if the hydrochloride salt (134) was used initially (Scheme 2.8, (c)).

Whilst transition-metal-catalysed $\mathrm{C}-\mathrm{N}$ bond formation is an elegant route to N arylhydrazones, it relies on relatively basic conditions, often expensive catalyst systems that may themselves confer functional group limitations, and the benzophenone protection of hydrazine reduces the atom efficiency of the process. Other arylhydrazone preparations employ harsh conditions or have limited scope. An alternative method for heteroatom arylation is the treatment of a suitable nucleophile with an aryne reactive intermediate. Using modern techniques for aryne generation such species could provide a mild, transition-metal-free route to the intermediate $N$-arylhydrazones. This project aimed to develop such a methodology and apply it to the synthesis of indoles.

### 2.1.2 The arylation of hydrazones with benzyne

Prior to the investigations in this chapter and the studies in our group that initiated them, no examples of aryne-mediated arylation of a hydrazone were known. At the same time as this research, Shi was also working with aldehyde-derived tosylhydrazones for use with arynes in the synthesis of 1 H -indazoles such as 137 (Scheme 2.9). ${ }^{[143]}$ Although this reaction was thought to proceed primarily by the $[3+2]$ cycloaddition of an in situ generated diazo compound rather than nucleophilic addition of the hydrazone itself, arylation of the tosylhydrazone was observed as a side product.


Scheme 2.9 Arylation of aldehyde tosylhydrazone also observed by Shi. ${ }^{[143]}$

### 2.2 Application of aryne electrophiles to the Fischer indole synthesis

Initial work in our laboratory by Sangwon Seo and Didier Pintori demonstrated the feasibility of hydrazone arylation with benzyne generated from 2-(trimethylsilyl) phenyl triflate (4) and various fluoride sources (Scheme 2.10, (a)). However, the reaction was
not general, required several equivalents of benzyne and was prone to side-reactions and hydrolysis.
(a)

(b)


(c)


Scheme 2.10 Initial results within our laboratory. ${ }^{[144]}$

The protection of hydrazones as their para-tolyl sulfonamides was discovered by Seo to facilitate more effective arylation and it was further shown that such an $N$-phenyl- $N$ tosylhydrazone could, upon treatment with para-toluene sulfonic acid, undergo Fischer cyclisation to give an $N$-tosyl indole. ${ }^{[144]}$ Pintori demonstrated that the cyclisation of $N$-aryl- $N$-tosylhydrazones was possible with substituted aryl groups using boron trifluoride diethyl etherate in acetonitrile (Scheme 2.10, (c)) and Seo found that the addition of either acid to the crude arylation product in one pot could effect the Fischer indole reaction, although in varying yields and purities.

My contributions to this project include refinement of the conditions required to synthesise indoles from $N$-tosylhydrazones, examination of the reactions of $N$-functionalised hydrazones with benzyne more generally, and a full exploration of the substrate scope. The work described in the rest of this chapter is my own.

Work began with the $N$-tosyl cyclohexanone hydrazone (139), which was known to be a competent nucleophile. Reliable arylation could be achieved with 1.5 eq. of 4 and 3 eq. of caesium fluoride in acetonitrile after 12 h (Scheme 2.11). These conditions gave 140 in high purity by LCMS (see Fig. 2.3, (c)) and lower loadings of the aryne precursor led to inconsistent results, with a small proportion of the hydrazone remaining unreacted in some cases. After evaporation of the solvent, $\mathbf{1 4 0}$ could be isolated in $61 \%$ yield by recrystallisation from hot methanol. LCMS analysis confirmed the stability of this substrate to the elution conditions and matched the retention time and mass observed in the crude reaction mixture.


Scheme 2.11 Optimised conditions for the one-pot benzyne Fischer indole reaction.

Initial studies typically used a slight excess of acid to enact Fischer indole cyclisation, but questions remained over the stoichiometry required when the reaction was conducted in one pot from the $N$-tosylhydrazone. Since both the arylation and cyclisation steps were viable in the same solvent and since isolation of the aryl hydrazones intermediates was neither required nor beneficial in light of their potential instability, this method was considered particularly desirable.

In the optimised arylation reaction 1.5 eq. excess of caesium fluoride should remain. If this is not sequestered in some other process ahead of the second step, then it will compete as a Lewis base for $\mathrm{BF}_{3}$. Assuming $\mathrm{CsBF}_{4}$ formation is fast then the Fischer indole reaction, for which acidic conditions are required, will not proceed unless the stoichiometry of acid exceeds that of the residual fluoride. Indeed, on addition of only 1.5 eq. of acid with respect to hydrazone, incomplete cyclisation was observed.

Control reactions showed that the cyclisation could occur with a substoichiometric quantity ( 0.5 eq. as a stock solution) of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ if removal of CsF by aqueous workup was first performed. Further studies found that 2 eq . of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ was in general sufficient to bring about complete reaction after 5 h of heating when added to the crude arylation product in one pot.

Monitoring of the reaction by LCMS indicated that cyclisation was essentially complete within 20 min at $85^{\circ} \mathrm{C}$ with arylated cyclohexanone $N$-tosylhydrazone ( $N$-phenyl-139), but further heating was not detrimental to the product and 5 h was retained for the general protocol. The small excess of aryne was responsible for a detectable level of byproduct formation but this did not consume the limiting reagent and could be removed during purification by column chromatography, which is required in any case after the Fischer indole step.

It is worth commenting that the accurate measurement of hygroscopic caesium fluoride, although possible with care, is typically unnecessary when used with 4 , due to its limited solubility in acetonitrile, straightforward removal on workup and since it is employed as an excess. In this case, however, accurate control of fluoride stoichiometry is necessary.

Alternatively, increasing the stoichiometry of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ to 3 eq. does not appear to be detrimental to yields and ensures acidic conditions are achieved. In general, however, the optimised conditions of 1.5 eq. aryne precursor with 3 eq. of caesium fluoride followed by 2 eq. of boron trifluoride diethyl etherate were preferred.

### 2.2.1 Aryne reactions of other hydrazones

The role of the protecting group was also investigated. The $N$-carboxybenzoyl- and $N$-tert-butoxycarbonyl-protected cyclohexanone hydrazones, 142 and 143 , could be synthesised in an analogous manner to the tosyl-protected substrate and gave surprising results.

The reaction of Cbz-hydrazone 142 (Fig. 2.3 (a)) gave a number of products visible in the HPLC trace including the expected monoarylation as a minor component $(m / z=323.2)$. The most prominent peak however $(m / z=399.3)$ showed a mass corresponding to a two-fold arylation of the starting material. A similar, though cleaner, result was obtained when using the Boc-hydrazone 143 (Fig. 2.3 (b), $m / z=365.3$ ) to give the apparent double arylation product, 144.

Initially these results were attributed to a benzyne insertion at the carbonyl protecting groups. Such reactions are well known for amides ${ }^{[145,146]}$ and other groups, though have not been previously reported with carbamates.* An $N$-arylation with a second equivalent of benzyne would lead to products of the observed molecular weights (Scheme 2.12, (a)). The anionic Fries-type rearrangement depicted in the first step is known to occur with Boc-protected anilines. ${ }^{[147]}$

Such an $N, N$-diaryl substrate might be of synthetic use, particularly given its straightforward preparation from the hydrazone and if the Fischer reaction could still occur. Since this is disfavoured on electron-poor arenes, selective cyclisation onto the less hindered ring might be envisaged. Attempts to enact cyclisation of the postulated crude $\mathbf{1 4 4}{ }^{\prime}$ with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ were, however, unsuccessful with no indolic products being detected.

Isolation of $\mathbf{1 4 4}$ permitted full characterisation of the double arylation product. Notably, a strong IR absorption at $1698 \mathrm{~cm}^{-1}$ was observed and this is not consistent with the presumed ester of $14 \mathbf{1 4}^{\prime}$. Furthermore a ${ }^{13} \mathrm{C}$ NMR peak at 70.0 ppm , which also gave an HMBC correlation to the aromatic region, suggests the hydrazone group has been transformed to leave a C-N single bond during benzyne-mediated attack.

[^0]

Fig. 2.3 LCMS traces from the arylation of $N$-protected cyclohexanone hydrazones. a) Cbz-hydrazone, b) Boc-hydrazone, c) Ts-hydrazone. Reaction conditions: protected hydrazone ( 1 eq.), 4 ( 1.5 eq.), CsF ( 3 eq.), 0.1 m in MeCN, rt 16 h . Separation was performed on a C-18 reverse phase column $20 \times 3.0 \mathrm{~mm}$, particle size $3 \mu \mathrm{~m}$. Eluents were water containing $0.2 \%$ formic acid (A), and methanol:IPA 9:1 containing $0.2 \%$ formic acid (B). The flow rate was set to $0.9 \mathrm{ml} \mathrm{min}^{-1}$. The gradient was increased linearly from $98: 2 \mathrm{~A}: \mathrm{B}$ to $2: 98 \mathrm{~A}: \mathrm{B}$ over $0-3.5$ min and then held at the final ratio for the remainder of the run. Detection by UV was performed at 254 nm .


Scheme 2.12 Double arylation of Boc-protected cyclohexanone hydrazone; a) by aryne insertion and b) by $[3+2]$ cycloaddition.

Whilst the identity of $\mathbf{1 4 4}$ could not be unambiguously determined, the alternative spirocyclic isomer $144^{\prime \prime}$ seems more likely. A plausible mechanism would proceed through a [3+2] cycloaddition shown in Scheme 2.12, (b), with arylation by a second equivalent of benzyne then forming the observed product. ${ }^{[150]}$

A similar reaction, occurring via nucleophilic attack of a tertiary hydrazone nitrogen and subsequent cyclisation (Scheme 2.13 bottom), has given Larock and Dubrovskiy, after rearrangement, ortho-(dimethylamino)phenyl imines. ${ }^{[151]}$ Shi and co-workers also considered the zwitterionic $1 H$-indazole species as a potential intermediate in their $N$-substituted pyrazole synthesis (Scheme 2.13 top). ${ }^{[152]}$ By contrast, oxidation or rearrangement (as in Scheme 2.13) would be inhibited by the additional substituent of a ketone derived hydrazone such as $\mathbf{1 4 3}$, allowing isolation of the stable dihydro- 1 H indazole structure ( $\mathbf{1 4 4} \mathbf{1 "}^{\prime \prime} .^{\dagger}$


Scheme 2.13 Formal [3+2] reactions of hydrazones and arynes. ${ }^{[151,152]}$

[^1]
### 2.2.2 Scope of the benzyne Fischer indole reaction

Table 2.1 Benzyne-mediated $N$-arylation and Fischer cyclisation of $N$-tosylhydrazones. ${ }^{\text {a }}$

${ }^{a}$ Conditions: hydrazone ( 1 eq.), aryne precursor (1.5 eq.), CsF (3eq.), MeCN ( 0.1 m ), rt, 12 h ; then $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (2 eq.), $80^{\circ} \mathrm{C}, 5 \mathrm{~h}$.

Having ascertained that carbonyl protecting groups led to double arylation products, our attention could be returned to the use of $N$-tosylhydrazones. As the initial tetrahydrocarbazole 141 could be obtained via a one-pot benzyne Fischer indole reaction in good $80 \%$ yield, the scope of this methodology with respect to the hydrazone was next investigated (Table 2.1).

Additional aromatic groups could be introduced to the hydrazone such as the $\alpha$ tetralone based substrate 147, which furnished the dihdrobenzocarbazole 148 in comparable yield. Ester functionality was well tolerated, allowing the preparation of 1,2 -unsymmetrically functionalised indole 146. Synthesis of the 5 -membered fused cycle 152 proceeded from 151 as for other examples, although in lower yield than the less strained or open-chain substrates.

Where a choice of two sites for enamine formation was present, as with tosylhydrazones $\mathbf{1 4 5}, 149,153$ and $\mathbf{1 5 5}$, cyclisation occurred at the most substituted position. Indeed the Fischer indole reaction became problematic when attempted with the acetophenone derived substrate 159 (Scheme 2.14), for which enolisation at an unsubstituted methyl group was required. Arylation with benzyne proceeded normally to give $\mathbf{1 6 0}$ but on introduction of the Lewis acid and heating, the expected product could not be detected.

Employing instead a large excess of polyphosphoric acid or increasing the stoichiometry of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ to 30 eq. did permit formation of the desired $N$-tosyl indole $\mathbf{1 6 1}$, although this was only obtained in poor yield with an inseparable minor impurity. Cyclisation at the most substituted position via the more stabilised ene-hydazine is consistent with fast, reversible enamine formation with a later step being rate-determining, and is commonly observed in the Fischer indole reaction.

Steric factors were also relevant for a successful Fischer indole reaction; whilst the phenylpropanone hydrazones 149 and 155 underwent arylation and subsequent cyclisation (Table 2.1, entries 4 and 7), the more hindered 2,3-diphenylindole $\mathbf{1 6 4}$ could not be synthesised in a similar manner (Scheme 2.15, (a)). Although arylation of 159 did take place (by LCMS), the addition of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ to the presumed crude


Scheme 2.14 Challenging synthesis of 3-unsubstituted indole.
arylhydrazone 163 led only to a complex mixture. Similar free ( $\mathrm{N}-\mathrm{H}$ ) indoles have been synthesised, typically in refluxing acetic acid, ${ }^{[153]}$ and either phenyl substituent is tolerated individually with our protocol. It therefore seems likely that the presence of the $N$-tosyl group at an already crowded substrate may disfavour cyclisation to $\mathbf{1 6 4}$, especially under the milder conditions attempted here.
a) Attempted benzyne Fischer indole synthesis

b) Larock benzyne Neber azirine synthesis


Scheme 2.15 Arylation of (1,2-diphenylethylidene)hydrazones with benzyne in acetonitrile with CsF (3 eq.): a) this work (1.5 eq. 4, rt); b) Dubrovskiy and Larock (1.1 eq. 4, $65{ }^{\circ} \mathrm{C}$ ). ${ }^{[151]}$

Shortly after this work was completed, it was reported that benzyne-mediated abstraction of the $\alpha$-proton from a quaternary (1,2-diphenylethylidene)hydrazone led to breakdown products including an unexpected azirine (Scheme 2.15, (b)). ${ }^{[151]}$ It is also of note that Neber-type rearrangement with a deoxyanisoin-derived hydrazone has been suggested as an alternative pathway under Fischer indole conditions, ${ }^{[154]}$ while azirines have themselves been used as substrates in a benzyne indole synthesis (see Section 1.5). ${ }^{[103]}$

### 2.2.3 Substituted arynes

ortho-Methoxy benzyne typically undergoes preferential meta-attack through inductive electron withdrawal and on steric grounds (Section 1.3). Similarly, $N$-( $m$-methoxyphenyl)hydrazones have been known for some time to exhibit a good degree of regiocontrol, cyclising para to the directing group to give 6 -substituted indoles. ${ }^{[155,156]}$ Although more recent findings by Grandberg indicated reduced selectivity with $\mathrm{BF}_{3}$ $\cdot \mathrm{Et}_{2} \mathrm{O}$ (in acetic acid) than with ethanolic $\mathrm{HCl},{ }^{[157]}$ we persisted with the standard conditions of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in acetonitrile. Good selectivity was apparent in both steps when arylation was conducted with methoxy benzyne, as demonstrated by the isolation in $61 \%$ yield of $\mathbf{1 6 7}$ (Table 2.2, entry 1) in favour of several alternative indole products.

Table 2.2 $N$-Arylation and Fischer cyclisation of $N$-tosylhydrazones with substituted arynes. ${ }^{\text {a }}$
entry
${ }^{\text {a }}$ Conditions: hydrazone (1 eq.), aryne precursor ( 1.5 eq.), CsF ( 3 eq.), MeCN ( 0.1 m ), rt, 12 h ; then $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(2 \mathrm{eq}),. 80^{\circ} \mathrm{C}, 5 \mathrm{~h} .{ }^{\mathrm{b}}$ Isolated yield of the major regioisomer. ${ }^{\mathrm{c}}$ As a mixture of three regioisomers. ${ }^{\mathrm{d}}$ As a mixture of two regioisomers. ${ }^{\mathrm{e}} 3$ eq. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$.

With 4-methyl aryne precursor 68, an inseparable mixture of all three possible indoles was given (Fig. 2.4). Analysis of the ${ }^{1} \mathrm{H}$ NMR spectra shows the ratio of regioisomers 168a:168b:168c to be approximately 1:1.4:2.2. A statistical mixture over both steps would give a $1: 1: 2$ ratio, since initial arylation para to the methyl group can result in only $\mathbf{1 6 8}$ c whereas $\mathbf{1 6 8 a}$ and $\mathbf{1 6 8 b}$ are both formed from initial meta attack. The observed ratio therefore implies very little selectivity in the $N$-arylation step and increased, though still limited, selectivity in the Fischer step; cyclisation between the methyl group and the hydrazone nitrogen being disfavoured.

Unsurprisingly the tetralone derived hydrazone, 147, gave similar results when it was arylated with 4-methylbenzyne in the same way. A ratio of approximately 1:1.8:2.6 for 169a: 169b: 169c indicates that cyclisation at the more hindered position was slightly more unfavourable than with the smaller cyclohexanone hydrazone. In both examples the ratio of isomers was calculated from the relative ${ }^{1} \mathrm{H}$ NMR integrations and the assignments were corroborated by two-dimensional NMR experiments.


Fig. 2.4 All three possible isomers of 168 and 169 were formed during the Fischer indole synthesis in $72 \%$ and $73 \%$ overall yield respectively. $\ddagger$

The presence of a bulky ortho substituent on an aryne should permit high selectivity for the arylation step and indeed almost complete regiocontrol was apparent with ortho-phenyl benzyne generated from precursor 44. Disappointingly, the selectivity for the boron trifluoride catalysed cyclisation was still limited. The 6 - and 4 -substituted indoles 170b and 170a, which both exhibit the expected meta relationship between the hydrazone-derived nitrogen and the phenyl substituent, were isolated in a ratio of $1.5: 1$. It should be noted that the true preference for distal cyclisation is slightly in excess of $1.5: 1$ as the 6 -phenyl indole was more abundant in additional mixed fractions, with complete separation of $\mathbf{1 7 0}$ from all additional impurities proving difficult. Signals resembling the 7 -isomer, resulting from ortho attack on the aryne, could be observed only as a trace component and were not unambiguously assigned.

[^2]

170b
1.5 :


170a
1

Fig. 2.5 Two of the three possible isomers of phenylindole $\mathbf{1 7 0}$ were isolated as a mixture in $57 \%$ yield.

## Jones



Alper


Scheme 2.16 Fischer indole syntheses with meta-biphenylhydrazines by Jones and Tringham, ${ }^{[158]}$ and by Alper et al. ${ }^{[159]}$

Reports of the Fischer indole reaction from meta-aryl substituted phenylhydrazines are somewhat rare in the literature, presumably due in part to the limited availability of such hydrazines. Jones and Tringham reported that biphenyl-3-ylhydrazine and cyclopentanone gave a mixture of indole regioisomers which could not be separated by chromatography although $\mathbf{1 7 7 b}$ breferentially crystallised. ${ }^{[158]}$ A number of metabiphenyl hydrazine reagents were used by Alper et al. while investigating indole-based thrombopoietin agonists. For example the dihydro- $5 H$-benzocarbozole 180 illustrated in Scheme 2.16 was obtained as a single regioisomer via a zinc chloride mediated cyclisation. ${ }^{\text {[159] }}$

In their protocol, the phenylhydrazone was prepared by Suzuki coupling, diazotization, and reduction with $\mathrm{SnCl}_{2}$. An aryne-mediated route would be particularly attractive given the greater ease of meta-biphenylhydrazone synthesis if a similar level of discrimination were achieved in the cyclisation step. The use of tetralone derivatives as the ketone may be of some relevance to the observed regioselectivity and interestingly, Alper et al. found no selectivity with 3-(bromophenyl)hydrazines.

Having observed exclusive meta-arylation with aryne precursor 44, application of the benzyne-Fischer indole reaction to a further sterically encumbered aryne precursor, 181, was also attempted (Scheme 2.17). Since initial nucleophilic attack should preferentially occur at the site meta to both substituents, only two major cyclisation pathways are likely as with the ortho-phenyl aryne discussed above. Furthermore, in the second step the isopropyl group should favour distal cyclisation on steric grounds while a metahalogen substituent has been shown to favour proximal cyclisation in some cases. ${ }^{[157,160]}$ A more favourable distribution of products biased towards one major product (183a) might therefore be attainable. In addition the substrate would allow access to a bromine substituted indole, which would be difficult to incorporate by palladium-catalysed methods and might permit scope for further elaboration.

Arylation of hydrazone 139 proceeded as expected with one intermediate hydrazone predominating. However, treatment with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ gave poor conversion and numerous unidentified by-products were also formed. By contrast excess polyphosphoric acid, again added in one pot, did result in indole formation. Unfortunately separation of the indole products proved challenging and the low isolated yield of $\mathbf{1 8 3} \mathbf{b}$ ( $6 \%$ ) does not reflect the observed conversion of the $N$-aryl- $N$-tosylhydrazone, which was complete. The substitution pattern in the isolated $N$-tosyl indole was determined by NOESY and corresponds to the anticipated minor cyclisation product. This substrate may benefit from a two step procedure with purification of the presumed intermediate 182 or additional screening of cyclisation conditions if further investigations are pursued.


Scheme 2.17 Arylation of tosylhydrazone 139 with disubstituted aryne precursor 181.

Finally the naphthyne precursor 171 was examined. 2-Napthylhydrazines are known to exhibit excellent regioselectivity in the Fischer indole reaction, generally cyclising to
the 1-position exclusively. Since nucleophilic additions to 1-naphthalynes are known to be favoured at the 2-position, a single indole isomer was to be expected. This proved to be the case with benzoindoles $\mathbf{1 7 2}$ and $\mathbf{1 7 3}$ isolated in $51 \%$ and $68 \%$ yields respectively. The cyclisation reaction did, however, appear slow and an additional equivalent of $\mathrm{BF}_{3}$ $\cdot \mathrm{Et}_{2} \mathrm{O}$ was necessary to drive the reaction to completion in the latter example.

Interestingly, the polyaromatic $N$-tosyl indole 174 from hydrazone 149 and naphthalyne was formed in combination with a significant closely eluting impurity by tlc. The ${ }^{1} \mathrm{H}$ NMR spectrum (taken as a mixture with 174 ) resembled the expected indole core but lacked any peaks from the $N$-tosyl group and the identity of this impurity was confirmed as the free ( $\mathrm{N}-\mathrm{H}$ ) indole by comparison to the known spectra of $18 \mathbf{4}^{[161]}$ (Scheme 2.18). The low yield of $\mathbf{1 7 4}$ itself ( $27 \%$ isolated, up to $60 \%$ including mixed fractions) thus results both from this undesired reaction and from difficulty in separating the two indole components.

Examination of the by-product fractions collected from the earlier naphthalyne reactions also showed small amounts of detosylated- $\mathbf{1 7 2}{ }^{[162]}$ and trace quantities of peaks attributable to detosylated-173. No evidence was found for deprotection when the $N$-tosylhydrazone 149 was used in conjunction with benzyne. It is not clear at what stage this in situ deprotection occurs but it seems reasonable to assume that the transition state for the $[3,3]$ sigmatropic reaction is particularly hindered with the larger naphthyl group, allowing alternative pathways to become competitive. However, the benzo [e]indole may be sufficiently stabilising to permit hydrolysis and detosylation on workup was not ruled out.


Scheme 2.18 Free ( $\mathrm{N}-\mathrm{H}$ )-indole $\mathbf{1 8 4}$ isolated in $8 \%$ as a mixture with the more abundant $N$-tosyl indole 174.

### 2.2.4 Miscellaneous tosylhydrazones

The tosylhydrazones of aldehydes were examined as substrates for the reaction. However, in line with the findings of Shi, ${ }^{[143]}$ which were reported after this work, complex mixtures were obtained when hydrazones 185 and 186 were used under the optimised conditions (Scheme 2.19). Re-examination of the mass spectrometry data for these mixtures in light of Shi's findings did indicate the presence of indazoles and N arylated indazoles among other unidentified products. Aromatic aldehydes, which were found to be more suitable substrates for indazole formation, were not explored in the course of this work since the Fischer cyclisation would not be possible in the absence of an $\alpha$-enolisable site. Aldehyde-derived tosylhydrazones were thus not further pursued for benzyne-mediated arylation.





186

Scheme 2.19 Arylation of aldehyde derived tosylhydrazones.

The 3-piperidinone based hydrazone 187 (Scheme 2.20) was also employed as a substrate for benzyne arylation since cyclisation at the less hindered site would lead to 189 , the core for several $\beta$-carboline natural products (see for example Fig. 2.1). Reaction with 58 under the typical conditions gave a mixture of products of which a monoarylation product was the apparent major component (by LCMS). Treatment of this crude reaction mixture with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, however, did not lead to 189 . The failure of Fischer cyclisation was presumably due to competing ene-hydrazine formation although the identity of the intermediate was not confirmed as 188 by other means.


Scheme 2.20 Arylation of a more highly substituted hydrazone.

### 2.3 Conclusions

$N$-tosyl hydrazones, which are stable, easily accessible substrates, may be arylated under mild conditions with arynes generated from ortho-(trimethylsilyl)phenyl triflates. The resulting $N$-aryl- $N$-tosylhydrazones will, in general, undergo Fischer indole cyclisation in a one-pot manner on addition of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ and a range of protected indoles have been synthesised in this way.

Particular advantages include the direct Fischer synthesis of the useful $N$-tosylindole scaffold, which avoids the handling and isolation of unstable $N$-aryl- $N$-tosylhydrazines, ${ }^{[163]}$ the stepwise preparation of $N$-aryl- $N$-tosylhydrazones of which only a few examples exist, ${ }^{[164,165]}$ or tosylation of the free indole in a separate operation. This method allows the synthesis of protected indoles from simple, readily available starting materials whilst requiring only a single chromatographic purification. It avoids the use and exposure of the chemist to toxic aryl hydrazines and accomplishes an otherwise challenging transition-metal-free coupling.

Given the increasing availability of Kobayashi precursors and the difficulties associated with substituted phenyl hydrazines for traditional Fischer indole reactions, it may be of interest to expand the scope of the aryne protocol in this regard. Symmetric 3,6disubstituted aryne precursors, which were not examined during the course of this work, would be expected to give single 4,7-disubstituted indole products if the $[3,3]$ reaction continues to be favourable. In addition, bulky ortho-monofunctionalised arynes could prove useful for the synthesis of 7 -substituted indoles. Whilst only moderate selectivity for the 6 -phenyl indole $\mathbf{1 7 0}$ was achieved in the cyclisation step under the typical one-pot protocol, no attempt has been made to optimise selectivity in this step. Increasing bulk or altered electronics of the substituent may be of assistance if such investigations were pursued. Finally, the proposed 2,3-dihydro-indazole 144, resulting from the action of benzyne on $N$-carbonyl hydrazones, may warrant further examination. Additional functionality could be introduced using substituted arynes or alternative $N$-Boc hydrazones.

## Chapter 3

## Synthesis and Applications of New Aryne Precursors

### 3.1 Introduction

### 3.1.1 Palladium cross-coupling chemistry

The palladium catalysed cross-coupling of an organometallic species with an electrophilic organohalide has become one of the most widespread and synthetically useful methods for $\mathrm{C}-\mathrm{C}$ bond formation. It is related to the more recent Buchwald-Hartwig coupling, which introduces a $\mathrm{C}-\mathrm{N}$ or $\mathrm{C}-\mathrm{O}$ bond and was mentioned briefly in the previous chapter.

A range of organometallic species have been employed as stoichiometric carbon nucleophiles, each affording a distinct name to the reaction in which they participate, but perhaps the most useful are organoboron reagents. These were first developed into a catalytic process by Miyaura and Suzuki ${ }^{[166]}$ and have low toxicity, are relatively air stable, undergo limited uncatalysed reaction with other functionality and may be prepared by a number of routes.

### 3.1.2 The Suzuki reaction

The importance and widespread use of the Suzuki reaction, especially industrially, ${ }^{[167]}$ has resulted in much study and its scope has been the subject of numerous reviews. ${ }^{[168-171]}$ Only a brief overview of the reaction is given here, including recent developments in the methodology and mechanistic understanding.

The Suzuki reaction is initiated by the oxidative addition of a low valent transition metal complex to an organohalide or pseudohalide, resulting in an organo-transition-metal species. It then follows a transmetallation-reductive elimination sequence to complete the catalytic cycle (Fig. 3.1). The metal catalyst, typically $\operatorname{Pd}(0)$, is thus regenerated and one equivalent each of organohalide and organoboron reagent consumed as the new $\mathrm{C}-\mathrm{C}$ bond is formed. There are many other processes and equilibria occurring alongside these required steps but most important is the generation of an active catalytic species via dissociation/association of one or more ligands and, where a $\operatorname{Pd}(\mathrm{II})$ precursor is used, in situ reduction.

Early mechanistic studies concluded that oxidative insertion with tetrakis(triphenylphosphine)palladium proceeded from the $\mathrm{PdL}_{2}$ species ${ }^{[172]}$ and that this step is ratelimiting with an arylbromide, but faster than transmetallation with aryliodides. ${ }^{[173]}$ The relative rate of oxidative insertion was found to follow the trend $\mathrm{I}>\mathrm{OTf}>\mathrm{Br}>\mathrm{Cl}$ with the same palladium source in DMF. [174]

Since then, 3 coordinate 14 electron LPdArX complexes, where $\mathrm{L}=2-\operatorname{AdP}(t-\mathrm{Bu})_{2}$ or $\mathrm{P}(t-\mathrm{Bu})_{3}$, have been isolated after oxidative insertion ${ }^{[175]}$ and recent work has shown that the monoligated palladium species is the active catalyst, if very bulky ligands are used. ${ }^{[176]}$ Highly sterically encumbered phosphines such as $\mathrm{P}(t-\mathrm{Bu})_{3}$ favour ligand dissociation ${ }^{[177]}$ and these electron-rich coordinatively unsaturated PdL complexes may give accelerated oxidative insertion.

When a boronic acid is used in a Suzuki coupling, prior activation as a 4-coordinate boronate species has often been considered important or necessary for the transmetallation step (Fig. 3.1, pathway A). ${ }^{[173]}$ Hydroxide is often implicated if water has been added with the inorganic base or used as a cosolvent, although boron might be attacked by various other Lewis bases if present in the reaction. Once formed, the boronate species would associate to a palladium(II) complex, during or after the loss of the halide, to facilitate transmetallation.

Recent studies, however, have favoured an alternative oxo-palladium pathway, in which the halide ligand is exchanged for a hydroxide after oxidative addition (Fig. 3.1,


Fig. 3.1 The catalytic cycle of the Suzuki reaction.
pathway B). Hartwig and Carrow found the rate of transmetallation, as measured by ${ }^{31} \mathrm{P}$ NMR, to be significantly greater for a preformed oxo-palladium complex and a phenylboronic acid than the pre-formed boronate species with a palladium halide complex (Scheme 3.1). ${ }^{[178]}$ Measurement of the two equilibrium constants showed that comparable concentrations of the phenylboronic acid/phenylboronate and palladium halide/oxo-palladium are present under typical Suzuki coupling conditions and so the reaction should only proceed by pathway $\mathbf{B}$.
(a)

(b)


Scheme 3.1 Rates of transmetallation: a) rapid with oxo-palladium complex and b) slow with boronate species. ${ }^{[178]}$

Amatore, Jutand and Le Duc used electrochemical techniques to monitor the rates of transmetallation to palladium(II) in DMF. ${ }^{[179]}$ On biasing the equilibrium of the
palladium species towards $\left[\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PhPdBr}\right]$ they found a slow rate despite high $\mathrm{ArB}(\mathrm{OH})_{3}^{-}$levels, suggesting low reactivity via pathway $\mathbf{A}$. The rate of transmetallation also displayed a bell-shaped curve on varying hydroxide concentration. The limited rate at low $\left[\mathrm{HO}^{-}\right]$was attributed to insufficient oxo-palladium complex formation (excess $\operatorname{ArB}(\mathrm{OH})_{2}$ sequesters $\mathrm{HO}^{-}$), whereas at high concentrations the boronic acid is not available for reaction.

These findings are of particular relevance for the optimisation of base and water content for Suzuki methodology when oxidative insertion is rapid. A similar effect was subsequently found for the fluoride anion despite the poorer $\mathrm{Pd}-\mathrm{F}-\mathrm{B}$ bonding interaction and interestingly, coordination of either base at palladium also appeared to accelerate reductive elimination. ${ }^{[180]}$ These and other developments in the study of boron transmetallation have been reviewed recently. ${ }^{[181,182]}$

Reductive elimination, at least during $\mathrm{C}-\mathrm{C}$ bond forming reactions, is generally fast and is of less importance in reaction design. It is favoured by electron poor ligands that destabilise the $\operatorname{Pd}(\mathrm{II})$ centre but a sufficiently hindered catalyst may facilitate the process regardless of substantial electron donation.

### 3.1.3 Organoboron reagents

Despite the relative stability of organoboron reagents they are nevertheless susceptible to breakdown via several pathways and the success of a particular Suzuki coupling will often be dependent upon the rate of these processes relative to the catalytic turnover. The most prevalent side reactions of boronic acids are oxidation, homocoupling and protodeboronation. Oligomerisation or cyclotrimerisation by dehydration are also common for boronic acids and, although reversible, may reduce the availability of the free acid for transmetallation.

Homocoupling requires two transmetallation events at the same high valent catalytic site, which must be formed by some other mechanism than the desired oxidative insertion. It can therefore be limited by the exclusion of additional oxidants and minimising or avoiding the use of $\mathrm{Pd}(\mathrm{II})$ precatalysts. A boronic acid may also be converted to the corresponding phenol with a strong oxidant or, in the presence of a transition metal catalyst, with atmospheric oxygen derived peroxide. ${ }^{[183]}$ Thus inert conditions are important to maximise the efficiency of cross-coupling if these processes are likely to occur at an appreciable rate in a particular procedure.

Protodeboronation is less readily controlled. Base catalysed deboronation is particularly rapid with electron-deficient boronic acids since boronate formation is favoured
(a)

(b)

(c)

(d)


Scheme 3.2 Reactions of Boronic acids: a) reversible trimerisation and irreversible processes: b) protodeboronation, c) oxidation, d) homocoupling.
at elevated $\mathrm{pH} .{ }^{[184]}$ Furthermore, electron-poor organoboron reagents - which are of reduced nucleophilicity-often undergo slow transmetallation, increasing the time period over which a protodeboronation pathway can operate. Species for which the rate of transmetallation is slowed on steric grounds may also be susceptible.

Clearly it is advantageous to minimise the exposure of any sensitive boron reagent to conditions liable to induce decomposition. Lowered temperature or pH might slow these pathways but would also reduce the rate of catalytic turnover. In some cases, elevated temperatures are required only for the formation of the active catalyst, with the catalytic cycle itself operating effectively under milder conditions. A preformed palladium-ligand complex that readily liberates the necessary $\operatorname{Pd}(0)$ species in situ can therefore be advantageous with unstable boronic acids. This approach was found to be useful for rapidly protodeboronating polyfluoro-phenylboronic acids by Buchwald and co-workers (Scheme 3.3). ${ }^{\text {[185] }}$

The most common coupling reagents in Suzuki reactions are boronic acids, especially for biaryl synthesis, but other boron species have also been used widely or developed as alternatives. Notable examples include boronic esters (Fig. 3.2, 191), MIDA boronates (192), ${ }^{[186]}$ and trifluoroborate salts (193). ${ }^{[187]}$ Alkyl boranes have also been employed, in particular 9-BBN derivatives (194) for alkyl group transfer. ${ }^{[188]}$

These reagents may be more readily isolated, purified, characterised and stored than the boronic acid itself for certain substrates but they are particularly useful when the parent acid is prone to decomposition under Suzuki reaction conditions. If the organoboron


Scheme 3.3 Room temperature coupling of electron-poor boronic acids. ${ }^{[185]}$
reagent is slowly hydrolysed to the boronic acid in situ then the concentration of free acid, which need not greatly exceed that of the active $\operatorname{Pd}(I I)$ catalyst, will be reduced and thus limit the rate of side reaction. Since the rate of catalytic turnover varies from reaction to reaction and the rate of hydrolysis, for a given set of conditions, depends both on the nature of the boron reagent and on the organic R-group, a boron species may be chosen to suit the particular reaction or substrate in hand.

This slow hydrolysis strategy was a key factor in the development of MIDA boronates by Burke et al., whilst trifluoroborate salts, popularised by Molander and others, fulfil a similar role. Although aryltrifluoroborates and their partial hydrolysis products may undergo transmetallation directly, this occurs less rapidly than for the parent acid and does not appear to contribute significantly to the overall reaction. ${ }^{[189]}$ The nature of the transmetallation species when boronic esters are employed is not always clear but it seems likely that an in situ hydrolysis pathway will be accessible in most cases.


191


192


193


194

Fig. 3.2 Prominent organoboron cross-coupling reagents: 191 boronic pinacol ester, 192 MIDA boronate, 193 potassium trifluoroborate, $\mathbf{1 9 4} 9-\mathrm{BBN}$ species .

### 3.1.4 Chemoselectivity in Suzuki couplings

Aryl iodides typically undergo rapid oxidative insertion but are often expensive and their availability limited. Chlorides react slowly and although useful couplings have been developed, arylbromides are generally preferred when accessible. Electron deficient alcohol derivatives may act as pseudohalides for oxidative insertion and the most reactive and widely employed of these is the trifluoromethanesulfonate group. Since the insertion of phenyltriflate at palladium triphenylphosphine occurs at a slightly higher rate than phenylbromide (in DMF $)^{[174]}$ some degree of selectivity for the former might be anticipated.*

Cross-coupling reactions in the presence of both bromides and triflates are relatively rare as alcohol derivatisation may be planned to avoid this. However, the chemoselectivity and reactivity of aryltriflates in general is of particular relevance to aryne chemistry where they are often employed as the leaving group. With these considerations in mind, a review of Suzuki cross-couplings on compounds that contain both functional groups is given below.

The first investigations of halide/triflate chemoselectivity with an organoboron species under palladium catalysis were performed by Snieckus and Fu (Scheme 3.4). ${ }^{[190]}$ They found that 2-bromophenyl triflate reacted preferentially at the bromide, giving the biphenyl triflate 195 and its hydrolysed phenol 196. No 2-bromobiphenyl was formed although the presence of triphenyl 197 demonstrated that significant insertion at triflate also occurred. With the para-isomer (Scheme 3.4, bottom) no triflate survived the reaction as cross-coupling and hydrolysis took place more rapidly at this less hindered site. Similar results were obtained with the analogous iodophenyl triflates.


Scheme 3.4 Chemoselectivity between ortho- and para-halophenyl triflates. ${ }^{[190]}$
By examination of the recovered starting materials, Suzuki and Miyaura found only a moderate, 2.2 -fold, preference for reaction at bromide in an intermolecular

[^3]competition experiment using B-octyl-9-BBN (Scheme 3.5, top). By contrast, almost complete selectivity was achieved with 4-bromophenyl triflate under the same conditions (Scheme 3.5, bottom) due to accelerated $\mathrm{C}-\mathrm{Br}$ oxidative insertion para to the electron withdrawing triflate group.


Scheme 3.5 Intra- and intermolecular $\mathrm{Br} /$ OTf selectivities. ${ }^{[191]}$

Later, Fu and Littke discovered that tri-tert-butylphosphine in combination with a palladium(0) source (a catalyst system previously found effective for challenging arylchlorides ${ }^{[192]}$ ) gave complete selectivity for the bromide in para-bromophenyl triflate in a high-yielding Suzuki coupling (Scheme 3.6). ${ }^{[193]}$ A similar reactivity could be achieved even for the para-chlorophenyl triflate. Their best results were obtained with only a slight excess of ligand with respect to palladium and $\operatorname{PdP}(t-\mathrm{Bu})_{3}$ was proposed as the active catalytic species.


Scheme 3.6 Selective reaction at halides catalysed by $\operatorname{Pd}_{2}(\mathrm{dba})_{3} / \mathrm{P}(t-\mathrm{Bu})_{3} .{ }^{[193]}$
While studying the reaction of potassium trifluoroborate salts with triflates, Molander and co-workers showed that the benzyl organoboron substrate 200 (Scheme 3.7) also coupled preferentially at the bromide of para-bromophenyl triflate. Aryliodides were poor substrates in this reaction and selectivity was reversed for the para-chlorophenyl triflate, favouring reaction at triflate over the halide. Similar results were achieved with potassium phenyltrifluroborate (203) although the yield for biphenyl 204 was somewhat diminished. ${ }^{[194]}$


Scheme 3.7 Selectivity for bromide with potassium trifluoroborate salts. ${ }^{[187,194]}$

Brown and co-workers observed selectivities for insertion at bromide ranging from $2: 1$ to complete, according to the conditions and substrates employed (Scheme 3.8). ${ }^{[195]}$ Citing a general preference for reaction at triflate groups in other cross-coupling reactions, they made two proposals to account for their results. First, that the boronic acid aids oxidative insertion at the halide through a $\mathrm{B}-\mathrm{Br}$ interaction. Alternatively, and in their opinion more plausibly, that the coordination of a boronate species to the palladium provides a more active insertion pathway. However, this fails to account for condition-dependent selectivity previously noted in Stille reactions, where insertion at bromide was preferred in dioxane and at triflate in DMF with added lithium chloride. ${ }^{[196]}$


Scheme 3.8 Selectivity for ortho-bromo(difluorophenyl) triflates by Brown and coworkers. ${ }^{[195]}$

Lager and co-workers have explored the chemoselectivity of Suzuki coupling on several naphthalenes ${ }^{[197-199]}$ and a polysubstituted quinoline. ${ }^{[200]}$ In general they obtained a preference for reaction at bromide regardless of any inherent site-selectivity (giving 207 and 209, Scheme 3.9). However, this may be altered by additional substitution, with 210 favouring reaction ortho to an electron withdrawing (and potentially palladium coordinating) ester group. They stress the importance of heating at only $90^{\circ} \mathrm{C}$ and using precisely 1 eq. of boronic acid for monoarylation to occur.

Computational investigation has also been undertaken concerning the chemoselectivity of halide and triflate groups during Suzuki reactions. Schoenebeck and Houk used an


206


207


74 \%
209




Scheme 3.9 Chemoselectivity for $\mathrm{Br} / \mathrm{OTf}$ overrides site-dependence for naphthalenes unless additional functionality is present. ${ }^{[197-199]}$
activation strain model on para-chlorophenyl triflate, finding a lower energy barrier for oxidative insertion with a $\mathrm{PdPMe}_{3}$ catalytic species at the chloride. ${ }^{[201]}$ Reaction at triflate, which requires distortion of the stronger $\mathrm{C}-\mathrm{O}$ bond, was less favourable. The energetic preference was reversed when the catalyst was modelled as $\operatorname{Pd}\left(\mathrm{PMe}_{3}\right)_{2}$, indicating an important role for the ligand in site selectivity.


Scheme 3.10 Solvent dependent chemoselectivity. ${ }^{[202]}$

More recently Schoenebeck and Proutiere demonstrated that chloride/triflate selectivity, again using para-chlorophenyl triflate, is reversed in a polar solvent such as acetonitrile (Scheme 3.10). ${ }^{[202]}$ Computational investigations concluded that solvent effects at a mono-ligated $\left[\mathrm{PdP}(t-\mathrm{Bu})_{3}\right]$ catalyst could not account for this discrepancy. Instead an anionic $\left[\mathrm{PdP}(t-\mathrm{Bu})_{3} \mathrm{X}\right]^{-}$complex, which would be more stable in a polar medium, was considered. The calculated energy barrier for $\mathrm{C}-\mathrm{OTf}$ insertion with this catalytic species was more favourable than for reaction at chloride.

### 3.2 Aims

Aryne chemistry has undergone considerable expansion in popularity and scope in recent years, due in large part to the development of 1,2-(trimethylsilyl)aryl triflate precursors by Kobayashi. Although benzyne precursor 4 and a few other simple derivatives are commonly employed, the availability of more complex reagents remains limited.

Kobayashi precursors are applied to the vast majority of metal-catalysed aryne methodologies and although larger polyaromatic examples have been prepared, each must be designed and synthesised individually. Similarly, benzyne precursors of this type bearing additional functionality and capable of useful transformations have been reported, but their preparations are typically laborious and narrow in scope (see Section 1.4).

Intermolecular aryne reactions have been used to construct more complex molecules, including the early stages of natural product syntheses. However, the large-scale application ortho-(trimethylsilyl)phenyl triflates might be disfavoured on grounds of atom efficiency or cost, especially if the aryne contributes only a small and unfunctionalised fragment (Scheme 3.11, (a)).
(a)

(b)

(c)



Scheme 3.11 Functionalised arynes: a) Complexity of aryne is limited, b) functional group compatibility on $\mathbf{B}$ restricted, c) wide range of functionality on $\mathbf{C}$.

Although highly reactive, arynes may often exhibit good chemoselectivity. However, haloarenes are used almost exclusively for larger aryne fragments due to their relative ease of preparation, despite necessitating harsh conditions and thus limiting the range of compatible functionality (Scheme 3.11 , (b)). The ability to introduce a pre-existing
aryne precursor motif by an alternative route could therefore substantially increase the complexity of structures available for this chemistry.

This project aims to find a new method to prepare 2-(trimethylsilyl) phenyl triflates from a common and easily obtained substrate. It was envisaged that a pre-formed aryne precursor, while retaining the key triflate and trimethylsilyl groups, would react selectively at a third site. If sufficiently general, a broadly applicable crosscoupling route could introduce diverse functionality at this site, giving access to a far greater range of Kobayashi-type precursors. In combination with mild, fluoride induced generation of the reactive intermediate, these substrates would permit new aryne reactions to be developed.

Such precursors could be incorporated later in a synthesis, where functionality sensitive to strongly basic conditions or organometallic reagents may also be present on a molecule and where mild, high-yielding steps are particularly desirable.

### 3.3 Optimisation

Selective ring functionalisation is problematic if (trimethylsilyl)aryl triflates are to be employed as substrates for a cross-coupling reaction. The triflate leaving group may also act as a pseudohalide, undergoing oxidative insertion with low valent transition metals, and has been used extensively in Suzuki and other cross-coupling protocols. Additionally, triflates are prone to hydrolysis in basic conditions, a trimethylsilyl group may also undergo transmetallation in some circumstances, while benzyne formation from 1,2-elimination of these two groups is of course well known. Replacement of the leaving group with a more stable species (such as an imidazolylsulfonate or tosylate) might overcome some of these issues but would inevitably alter the aryne forming properties to some extent.

It was assumed that the key difficulty would be achieving selective oxidative insertion at a desired site whilst leaving the triflate group untouched. Aryl iodides undergo rapid oxidative insertion and so an iodo-(trimethylsilyl)phenyl triflate would be an attractive choice to achieved chemoselective reaction. However, iodophenols are not readily accessible (neither 2,6- nor 2,4-diiodophenol are commercially available, for example), are less atom-economic and may have stricter storage and disposal requirements. By contrast dibromophenols, from which the desired halide-substituted Kobayashi-type aryne precursors can be synthesised, are far more easily accessed and were therefore adopted as the substrate of choice.

As discussed earlier in Section 3.1.4, a number of examples exist in which oxidative insertion at a bromide had been achieved in the presence of triflate groups. It was therefore anticipated that such a coupling could be performed on a bromo-2-(trimethylsilyl)phenyl triflate if optimal conditions were found.


216


3-X-benzyne (ortho-substituted aryne)


217


4-X-benzyne
(distal-substituted aryne)

Fig. 3.3 Halo-aryne precursors: known precursor 216, inaccessible 217.

### 3.3.1 distal-Bromo aryne precursor



Scheme 3.12 Preparation of aryne precursor 220 from the dibromophenol. Silylation of $\mathbf{2 1 8}$ occurred quantitatively with 1.1 eq. HMDS. Reaction conditions for preparation of 220: i) crude 219 ( 1 eq.) $n$ - $\mathrm{Bu}-\mathrm{Li}$ ( 1.1 eq., 1.6 m in hexane), in THF ( 0.14 m ); ii) $\mathrm{Tf}_{2} \mathrm{O}$ ( 1.2 eq. ), $-100^{\circ} \mathrm{C}$, 20 min .

Initial work focussed on the distal-bromo aryne precursor 220, which could be synthesised from the readily available 2,4-dibromophenol (218) using a route already established for other substituted ortho-bromophenols (Scheme 3.12). ${ }^{[75]}$ In addition, separating the site of intended oxidative insertion (the bromine) from a potential leaving group might reduce the likelihood of possible side reactions or triflate elimination and be more amenable to reaction than at a hindered ortho-substituted position.

Beginning with conditions based on those described by Fu ${ }^{[193]}$ (see Scheme 3.6, section 3.1.4) the 4 -bromo aryne precursor 220 was treated with phenylboronic acid (223) and potassium fluoride in tetrahydrofuran for 5 h at room temperature with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and tri-tert-butylphosphine (Fig. 3.4, (a)). Analysis of the crude reaction by LCMS indicated a degree of conversion had taken place. A second compound eluted soon
after the starting material and was ascribed to the coupling product 221. Increasing the water content of the reaction mixture, achieved by replacement of KF with its hydrate $\mathrm{KF} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, improved the reaction (Fig. 3.4, (b)).

The use of a fluoride base, although often employed in Suzuki reactions, was of some concern given the nature of the substrates and was considered a potential hurdle for further optimisation. Replacement of the fluoride base with caesium carbonate gave similar, if not qualitatively cleaner conversion by HPLC (Fig. 3.4, (c)), however potassium phosphate, even with added water, was less effective. (Fig. 3.4, (d)). 221 was isolated in $42 \%$ using $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and confirmed as the desired product.


Fig. 3.4 HPLC traces for initial screening with 220. Conditions: 1.1 eq. $\mathrm{PhB}(\mathrm{OH})_{2}(\mathbf{2 2 3})$, $\mathrm{Pd}_{2} \mathrm{dba}_{3}(5 \mathrm{~mol} \%) \mathrm{Pt}$ - $\mathrm{Bu}_{3}(10 \mathrm{~mol} \%)$, THF ( 0.1 m ) and 3 eq. base; a) KF , b) $\mathrm{KF} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, c) $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, d) THF:Water 20:1 $\mathrm{K}_{3} \mathrm{PO}_{4}$, rt, 5 h . Separation was performed on a C-18 reverse phase column $50 \times 2.1 \mathrm{~mm}$, particle size $5 \mu \mathrm{~m}$. Eluents were water (A), acetonitrile (B), and a $1: 1$ mixture of water : acetonitrile containing $0.1 \%$ ammonium hydroxide (C). The flow rate was set to $1.1 \mathrm{ml} \mathrm{min}^{-1}$. The gradient was increased linearly from $57.5: 37.5: 5.0 \mathrm{~A}: \mathrm{B}: \mathrm{C}$ to $2.5: 92.5: 5.0 \mathrm{~A}: \mathrm{B}: \mathrm{C}$ over $0-4 \mathrm{~min}$ after which it was set at $95: 5 \mathrm{~B}: \mathrm{C}$ from $4.01-4.50 \mathrm{~min}$. Detection by UV was performed at 254 nm .

### 3.3.2 ortho-Bromo aryne precursor

Having demonstrated the feasibility of Suzuki cross-coupling on a 2-(trimethylsilyl)phenyl triflate motif, albeit in moderate yield, attention was switched to the more interesting 3-bromo aryne substrate 216. While the distal-phenyl precursor 221 is known and has been used in aryne chemistry, ${ }^{[203]}$ it offers little selectivity in most reactions. The ortho-phenyl benzyne precursor 44 by contrast can react with excellent regioselectivity, and could also permit intramolecular interaction with the aryne bond if additional functionality were introduced on the $2^{\prime}$-ring position.

Disappointingly, applying identical conditions to those for $\mathbf{2 2 0}$ resulted in only trace quantities of biphenyl 44 when using 216 (Fig. 3.5, (d)). Altering the nature of the base, which had led to pronounced changes with the previous substrate, was next attempted. Potassium phosphate tribasic (Fig. 3.5, (a)) and potassium carbonate (Fig. 3.5, (e)) were also unsuccessful, both displaying essentially no conversion of the starting halide. The stronger potassium hydroxide base led to a new peak with $m / z=245.2$, consistent with hydrolysis of the triflate to the corresponding phenol.

However, in the presence of potassium phosphate hydrate, $\mathbf{2 1 6}$ did show an appreciable level of reactivity with a new peak, assigned as 44, emerging shortly after the starting material (Fig. 3.5, (b)). Similar results were obtained when water was introduced as a co-solvent and $\mathrm{K}_{3} \mathrm{PO}_{4}$ used as the base (Fig. 3.5, (f)), this latter method being preferable for ease of handling. Increasing the temperature to reflux gave only a modest qualitative improvement in conversion.

Having recovered a degree of reactivity for the Suzuki coupling with the ortho-bromo precursor 216, the optimisation of other parameters was required to achieve improved conversion.

To this end a screen of alternative solvents was then undertaken. The previously active potassium phosphate base was retained and the appropriate solvent used in a $5: 1$ ratio with water. Each reaction was run for 24 hours at room temperature prior to analysis and the results are displayed in Fig. 3.6. For ease of handling and improved purity of the phosphine ligand $\left[\mathrm{HP}(t-\mathrm{Bu})_{3}\right] \mathrm{BF}_{4}$ replaced $\mathrm{P}(t-\mathrm{Bu})_{3}$ but conditions were otherwise unchanged. ${ }^{\dagger}$

The ethereal solvents THF (Fig. 3.6, (a)) 1,4-dioxane (i), and dimethoxy ethane (j) all gave appreciable conversion but by-products also emerged. Very similar results were seen in the more polar solvent acetonitrile (e). In highly polar solvents dimethyl sulfoxide (c), N,N-dimethylformamide (d) and in particular methanol (f), consumption

[^4]

Fig. 3.5 HPLC traces for screening with 216. 1.1 eq. $\mathrm{PhB}(\mathrm{OH})_{2}, \mathrm{Pd}_{2} \mathrm{dba}_{3}(5 \mathrm{~mol} \%) \mathrm{P}(t-\mathrm{Bu})_{3}$ ( $10 \mathrm{~mol} \%$ ), THF ( 0.1 m ) and 3 eq. base; a) $\mathrm{K}_{3} \mathrm{PO}_{4}$, b) $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, c) KOH , d) $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, e) $\mathrm{K}_{2} \mathrm{CO}_{3}$, f) THF:water $5: 1 \mathrm{~K}_{3} \mathrm{PO}_{4}$, rt, 5 h . Separation was performed on a C-18 reverse phase column $50 \times 2.1 \mathrm{~mm}$, particle size $5 \mu \mathrm{~m}$. Eluents were water (A), acetonitrile (B), and a $1: 1$ mixture of water : acetonitrile containing $0.1 \%$ ammonium hydroxide (C). The flow rate was set to $1.1 \mathrm{ml} \mathrm{min}^{-1}$. The gradient was increased linearly from $57.5: 37.5: 5.0 \mathrm{~A}: \mathrm{B}: \mathrm{C}$ to 2.5:92.5:5.0 A: B:C over $0-4 \mathrm{~min}$ after which it was set at $95: 5 \mathrm{~B}: \mathrm{C}$ from $4.01-4.50 \mathrm{~min}$. Detection by UV was performed at 254 nm .


Fig. 3.6 HPLC traces for solvent screen with 216 and 1.1 eq. $\mathrm{PhB}(\mathrm{OH})_{2}$, at rt for 24 h using $\mathrm{Pd}_{2} \mathrm{dba}_{3}(5 \mathrm{~mol} \%)\left[\mathrm{HP}(t-\mathrm{Bu})_{3}\right] \mathrm{BF}_{4}(10 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4} 3$ eq. in solvent:water 5:1 (0.1 M). a) THF, b) NMP, c) DMSO, d) DMF, e) MeCN, f) MeOH, g) DMA, h) toluene, i) dioxane, j) DME, k) DCM. 44 is the desired product and 222 an inert internal standard ( $1,1^{\prime}$-di-tertbutylbiphenyl.) Separation was performed on a C-18 reverse phase column $50 \times 2.1 \mathrm{~mm}$, particle size $5 \mu \mathrm{~m}$. Eluents were water (A), acetonitrile (B), and a $1: 1$ mixture of water: acetonitrile containing $0.1 \%$ ammonium hydroxide (C). The flow rate was set to $1.1 \mathrm{ml} \mathrm{min}^{-1}$. The gradient was increased linearly from $57.5: 37.5: 5.0 \mathrm{~A}: \mathrm{B}: \mathrm{C}$ to $2.5: 92.5: 5.0 \mathrm{~A}: \mathrm{B}: \mathrm{C}$ over $0-4 \mathrm{~min}$ after which it was set at $95: 5 \mathrm{~B}: \mathrm{C}$ from 4.01-4.50 min. Detection by UV was performed at 254 nm .
of the starting material did occur. However, the major product was a peak at $m / z=245.2$, which appeared to be the phenol formed from hydrolysis of the triflate group. No trace of 44 was present after reaction in $N$-methylpyrrolidone (b).

The most promising result from this screening was the reactivity in DMA (Fig. 3.6, $(\mathrm{g})$ ), which indicated complete consumption of 216. Although this is a relatively uncommon solvent for Suzuki reactions, DMF is used extensively. The encouraging conversion seen under these conditions allowed isolation of the desired product 44 in $49 \%$ after purification by column chromatography. However, despite numerous attempts to optimise other reaction parameters using DMA/water as solvent, no improvement in the isolated yield could be found.

With only limited success in DMA, other solvent systems were re-examined. In the aprotic and poorly hydrogen bonding solvents DCM and toluene (Fig. 3.6, (h) and $(\mathrm{k})$ ), the HPLC traces also indicated clean reaction, though with substantially lower consumption of the starting material. By raising the reaction temperature to $90^{\circ} \mathrm{C}$ in toluene and ensuring an inert nitrogen atmosphere, complete conversion of 216 could be observed, permitting the isolation of ortho-phenyl aryne precursor 44 in excellent $95 \%$ yield (Fig. 3.7). Interestingly, applying these conditions to the distal-bromo aryne precursor 220 gave almost no conversion, illustrating a remarkable orthogonality of the 6 - and 4-positions in bromo-2-(trimethylsilyl)phenyl triflate.



Fig. 3.7 Optimised Suzuki coupling conditions.

### 3.3.3 Control reactions

A number of control reactions were also undertaken, which are shown in Table 3.1 (the optimised conditions are given entry 1). $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (Table 3.1, entry 2) was a less effective pre-catalyst (in line with earlier findings in DMA), giving a poorer (78\%) yield despite complete consumption of the starting material. A significant but unidentified by-product peak that eluted earlier than the starting material in this example may account for the discrepancy. Inert conditions were shown to be important, although not crucial, with $56 \%$ product by GC still formed when the reaction vessel was left open to the atmosphere (entry 3 ).

Phenyl boronic acid pinacol ester was a poor substrate for the reaction, giving just $14 \%$ of the product (entry 4). The MIDA boronate of para-tolylboronic acid was also tested and again showed incomplete conversion, the para-methyl substituted product 225 being isolated in just $28 \%$.

The starting material was stable to the reaction conditions in the absence of palladium (entry 5) and a base was necessary for appreciable conversion; only $10 \%$ of $\mathbf{4 4}$ formed in the absence of potassium phosphate (entry 6) but sodium bicarbonate was also effective (entry 11).

The loading of palladium catalyst could be reduced with no loss in yield (entry 8) if the reaction time was also extended to 24 h . Increasing the stoichiometry of phosphine ligand with respect to palladium lowered efficiency slightly (entry 9) and it is of note that $\operatorname{Pd}\left(\mathrm{P}(t-\mathrm{Bu})_{3}\right)_{2}$, when examined during initial reaction optimisation, was also somewhat less effective.

Analysis of the reaction prior to the more typical 5 h time period indicated that, at least for the simplest case of phenylboronic acid, completion was achieved within 1 h (entry 12). The longer time period was used generally for convenience, because longer time periods were beneficial in earlier screening at room temperature, and to ensure completion with more demanding substrates.

It is assumed that scope remains for further optimisation or modification of the procedure. The catalyst loading may be lowered if inert conditions are ensured, and the time and temperature parameters could be adjusted according to the priorities of the operative. While the presence of water is clearly important, no attempts were made to determine the optimal levels and its content could most likely be reduced if desired. Sodium bicarbonate might allow increased functional group compatibility if used in place of the phosphate base.

Table 3.1 Control reactions for Suzuki coupling of 216 and phenyl boronic acid. ${ }^{a}$

| entry | Pd | ligand | base | $216{ }^{\text {b }}$ | $44^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ | $\left[\mathrm{HP}(t-\mathrm{Bu})_{3}\right] \mathrm{BF}_{4}$ | $\mathrm{K}_{3} \mathrm{PO}_{4}$ | $2^{\text {c }}$ | $90^{\text {c }}$ |
| 2 | $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ | - | $\mathrm{K}_{3} \mathrm{PO}_{4}$ | 0 | 78 |
| $3^{\text {d }}$ | $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ | $\left[\mathrm{HP}(t-\mathrm{Bu})_{3}\right] \mathrm{BF}_{4}$ | $\mathrm{K}_{3} \mathrm{PO}_{4}$ | 47 | 56 |
| $4^{\text {e }}$ | $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ | $\left[\mathrm{HP}(t-\mathrm{Bu})_{3}\right] \mathrm{BF}_{4}$ | $\mathrm{K}_{3} \mathrm{PO}_{4}$ | 86 | 14 |
| 5 | - | $\left[\mathrm{HP}(t-\mathrm{Bu})_{3}\right] \mathrm{BF}_{4}$ | $\mathrm{K}_{3} \mathrm{PO}_{4}$ | 100 | 0 |
| 6 | $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ | $\left[\mathrm{HP}(t-\mathrm{Bu})_{3}\right] \mathrm{BF}_{4}$ | - | 89 | 10 |
| $7^{\text {f }}$ | $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ | $\left[\mathrm{HP}(t-\mathrm{Bu})_{3}\right] \mathrm{BF}_{4}$ | dry $\mathrm{K}_{3} \mathrm{PO}_{4}$ | 68 | 28 |
| $8^{8}$ | $1.25 \% \mathrm{Pd}_{2} \mathrm{dba}_{3}$ | $2.75 \%\left[\mathrm{HP}(t-\mathrm{Bu})_{3}\right] \mathrm{BF}_{4}$ | $\mathrm{K}_{3} \mathrm{PO}_{4}$ | 0 | 95 |
| 9 | $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ | $22 \%\left[\mathrm{HP}(t-\mathrm{Bu})_{3}\right] \mathrm{BF}_{4}$ | $\mathrm{K}_{3} \mathrm{PO}_{4}$ | 10 | 86 |
| $10^{\text {h }}$ | $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ | $\left[\mathrm{HP}(t-\mathrm{Bu})_{3}\right] \mathrm{BF}_{4}$ | $\mathrm{K}_{3} \mathrm{PO}_{4}$ | 6 | 88 |
| 11 | $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ | $\left[\mathrm{HP}(t-\mathrm{Bu})_{3}\right] \mathrm{BF}_{4}$ | $\mathrm{NaHCO}_{3}$ | 0 | 95 |
| $12^{\text {i }}$ | $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ | $\left[\mathrm{HP}(t-\mathrm{Bu})_{3}\right] \mathrm{BF}_{4}$ | $\mathrm{K}_{3} \mathrm{PO}_{4}$ | 0 | 94 |

${ }^{\text {a }}$ Typical conditions: $10 \mathrm{~mol} \% \mathrm{Pd}, 2$ eq. $\mathrm{PhB}(\mathrm{OH})_{2}, 3$ eq. base, vessels inerted via $3 \times$ evacuation $/ \mathrm{N}_{2}$ backfill, 1.5 ml stock solution ( $\mathbf{2 1 6}(0.106 \mathrm{~m})$, dodecane $(0.587 \mathrm{M})$ in toluene), 0.3 ml water, solvents degassed under $\mathrm{N}_{2}$ flow and added through septum, $90^{\circ} \mathrm{C}, 5 \mathrm{~h} .{ }^{\mathrm{b}} \%$ yield by GC compared to dodecane as an internal standard. ${ }^{\mathrm{c}}$ Average of three experiments. ${ }^{\mathrm{d}}$ Solvents not degassed, vessel left open to atmosphere. ${ }^{\mathrm{e}}$ Using phenylboronic acid pinacol ester in place of $\mathrm{PhB}(\mathrm{OH})_{2} .{ }^{\mathrm{f}}$ No added water. ${ }^{\mathrm{g}}$ Reaction time $24 \mathrm{~h} .{ }^{\mathrm{h}}$ Reaction temperature $50^{\circ} \mathrm{C}$. ${ }^{\mathrm{i}}$ Reaction time 1 h .

Throughout these investigations little evidence for double arylation of $\mathbf{2 1 6}$ was observed, although mixtures were not exhaustively analysed during optimisation. Even when a five-fold excess of para-methoxyphenylboronic acid (226) was employed, homocoupling and protodeboronation were responsible for excess boronic acid consumption. The presence of the ortho-trimethylsilyl group presumably helped to impede reaction at the triflate on steric grounds and inductive electron donation may have further disfavoured oxidative insertion at this site.

### 3.4 Scope of the selective Suzuki coupling

With the optimised conditions in hand, the scope of the reaction was next explored and the full extent of successful couplings between 216 and boronic acids is displayed in Table 3.2. Both electron rich para-methyl and para-methoxy phenylboronic acids (224 and 226) and the electron poor para-trifluoromethyl phenylboronic acid (228) were suitable substrates, furnishing their respective aryne precursors in high yields. The para-methyl ester substituted phenylboronic acid did not result in the desired product, presumably due to hydrolysis on the ester group.

Unsurprisingly, the presence of a bromide in the boronic acid was not well tolerated but its replacement with a chloride did not lead to significant side reaction and the $3^{\prime}-$ chlorobiphenyl aryne precursor 231 was obtained in $87 \%$ yield. This substrate would permit elaboration of the biphenyl scaffold through additional cross-coupling steps after aryne generation. Alternatively, selectivity for chloride over triflate is known ${ }^{[193]}$ and could allow opportunities for sequential aryne precursor construction. The para-vinyl functionalised product 235, which was isolated in $89 \%$ yield, also provides a site for elaboration via alkene cross-metathesis or other methods.

Phenylboronic acids with ortho-heterogroups proved more challenging. 2-(Methoxy)phenylboronic acid and 2-(methylthio)phenylboronic acid did couple although incomplete reaction in both cases and challenging purifications made isolation of the product difficult. Phenylboronic acids with ortho-carboxyl, hydroxyl, formyl and cyano groups all performed poorly under the standard conditions, giving less than $10 \%$ product.

Yields were slightly diminished when an ortho-fluorine substituent was present in the boronic acid (Table 3.2, entries 8 and 9) with incomplete conversion of the starting material 216, although separation of the aryne precursor products was straightforward. The reduced yield of the para-nonyl precursor 241 reflects, in part, the slightly more troublesome separation of this compound, which was prepared on a larger scale. In general, however, the reactions could be performed with no alteration over a range of scales $(0.1-0.7 \mathrm{mmol})$ with little effect on reproducibility.

Table 3.2 Suzuki coupling of boronic acids and 216. ${ }^{\text {a }}$







98

[^5]
### 3.4.1 Alternative coupling reagents

While the general protocol tolerated trifluoromethyl and halide substituents on a phenylboronic acid, the reaction with more electron deficient substrates did not prove successful. 2-Fluoro-5-nitro-, 2-chloro-5-nitro- and 2-fluoro-5-cyano-phenylboronic acids all failed to give appreciable conversion, for example. Given the poor reactivity of phenylboronic pinacol ester (246) and para-tolyl MIDA boronate (245), employing masked boronic acids more widely was not initially considered. However, having noted


Scheme 3.13 Coupling of masked boronic acids: MIDA boronate (isolated yield), and pinacol boronic ester (GC yield).
the findings of Urawa et al. who used phenylboronic esters containing an ortho-nitrile group for couplings where the free acid failed, ${ }^{\ddagger[204]}$ the reaction of 216 and pinacol ester 247 was attempted. Pleasingly, the $2^{\prime}$-cyanobiphenyl aryne precursor 248 was obtained in excellent yield (Table 3.3, entry 1) under the standard cross-coupling conditions.

Supposing that the electron-withdrawing properties of the ortho-nitrile group increased the rate of transmetallation under the optimised conditions (by accelerated boronic ester hydrolysis or otherwise) and that the same effect might be in operation with electron-deficient rings more generally, several other pinacol esters were synthesised. This appeared to be the case and the results of coupling these substrates to $\mathbf{2 1 6}$ are given in Table 3.3.

The heterocyclic furan ring could be introduced in excellent $93 \%$ (Table 3.3 , entry 2 ) while the chloropyridyl substrate 251 also reacted to give 252 (entry 3) albeit in reduced yield. The $5^{\prime}$-nitrile- and $5^{\prime}$-nitro-compounds 254 and $\mathbf{2 5 6}$ could also be obtained in

[^6]Table 3.3 Suzuki coupling of boronic acid precursors with 216. ${ }^{\text {a }}$
entry

[^7]the same manner. The yields, while still moderate in some cases, represent a significant improvement over the free boronic acids.

Having found the pinacol esters well suited to electron poor substrates, the pinacol ester of ortho-methoxyphenylboronic acid was also considered. The free boronic acid had been prone to protodeboronation but it remained problematic in the protected form. During the investigation of alternative boronic acid precursors, the potassium trifluoroborate salt 203 was also subjected to the standard coupling conditions and, in contrast to the pinacol ester-protected phenyl boronic acid, gave the desired biphenyl product 44 in
essentially quantitative yield. Initial concerns over the expected liberation of fluoride in the course of this reaction appeared unfounded; presumably the basic and/or biphasic nature of the conditions protected the labile trimethylsilyl group from any accumulation of fluoride anions.

Since the potassium trifluoroborate salt appeared to be a suitable surrogate for the boronic acid irrespective of electron withdrawing functionality, it might be a suitable masking group for hindered substrates. However, when an ortho-methoxy group was introduced (substrate 261) the conversion of 216 was once again incomplete and the product was obtained in only $28 \%$ (Table 3.3 , entry 8 ). The yield in this example is further lowered by its challenging isolation. Attempts using other available reagents of this type were also envisaged (263 and 264, Fig. 3.8) but none were capable of cross-coupling with 216 under the standard conditions.


Fig. 3.8 Potassium trifluoroborate salts attempted.

Further attempts at cross-coupling with ortho-substituted substrates were more successful. The benzamide-containing boronic ester 257 allowed the preparation of a biphenyl aryne precursor bearing ortho-amide functionality (Table 3.3, entry 6). A similar reaction with the aniline gave inferior results to 2 -aminophenyl boronic acid when used directly as its hydrochloride salt (259), which gave $\mathbf{2 6 0}$ in $49 \%$ yield (Table 3.3, entry 7).

### 3.5 Reactions of substituted aryne precursors

With reliable access to a range of aryne precursors having been established, the potential applications of these substrates was next investigated. A range of further reactions that have been attempted on 2-functionalised (trimethylsilyl)phenyl triflates are detailed in the following sections.

### 3.5.1 ortho-Nucleophilic groups

Anilines are known to be excellent nucleophiles for benzyne. Thus intramolecular cyclisation to the aryne generated from 260 should be trivial, giving carbazole (265) after protonation of the resulting aryl anion (Scheme 3.14). Indeed, after the addition of caesium fluoride to the precursor in acetonitrile on a small ( 25 mg ) scale, carbazole was obtained in $68 \%$ yield. This would most likely improve upon scale up or with minor adjustments to the protocol.


Scheme 3.14 Carbazole synthesis from 260

Amides are also sufficiently nucleophilic to attack arynes but the resulting zwitterionic species may, in the absence of an $\alpha$-proton, rearrange to give $\sigma$-insertion products. ${ }^{[146]}$ Since the benzamide aryne precursor $\mathbf{2 5 8}$ was directly accessible via cross-coupling, the feasibility of such an amide insertion reaction was examined. 258 was subjected to conditions applicable to the intermolecular insertion of benzyne to $N$-phenyl benzamide, which would lead to 267 (Scheme 3.15, pathway (a)) by an analogous intramolecular process.


Scheme 3.15 Aryne generation with adjacent benzamide
After purification, $N$-benzoyl carbazole, 268 (Scheme 3.15, pathway (b)) was detected as a minor component of the reaction mixture by ${ }^{1} \mathrm{H}$ NMR but no evidence for the amide-insertion product 267 was found. The carbazole zwitterion is presumably
more conformationally restrained than the analogous acyclic reactions, which may inhibit rearrangement, although a similar 1,3-benzoyl migration under photochemical conditions is known. ${ }^{[205]}$ Optimisation towards the carbazole would probably be straightforward and might be synthetically useful if additional sensitive functionality were present.

### 3.5.2 Reactivity at a nitrile group

The ortho-nitrile aryne precursor 248 could be particularly useful for further studies due to its high-yielding synthesis and the potential chemistry of the ortho-group through both aryne-mediated reactions and other transformations.

Perhaps unsurprisingly, given the compatibility of ortho-(trimethylsilyl)phenyl triflate derived aryne chemistry with nitrile solvents, Ritter-type reactivity was not apparent as a major pathway. When the aryne was generated from TBAF in tetrahydrofuran in the absence of additional reactants (Scheme 3.16, (a)) only trace quantities of possible cyclisation products were observed.


Scheme 3.16 a) Speculative Ritter-type reactivity, b) Cascade aryne-nitrile capture.

An alternative reaction mode in which the pendant nitrile acts as an electrophile was also considered. Nitriles are stable to attack from relatively weak nitrogen nucleophiles whereas arynes react readily with soft nucleophiles. Furthermore, hindered 2 -substituted arynes such as 248 may do so with a good degree of regioselectivity. The resulting aryl anion 271 should be expected to react rapidly in an intramolecular fashion with the adjacent nitrile, furnishing a cyclic product 272, from which hydrolysis would lead to a 1-substituted fluorenone (Scheme 3.16, (b)).

The reaction of $N$-methyl aniline with the aryne generated from 248 using 3 eq. of caesium fluoride was carried out at room temperature and on quenching with 1 m HCl , immediately gave a deep purple solution that was assumed to be the fluorenone $\mathbf{2 7 5}$. After workup and purification on silica, however, a minor product could not be fully removed (Fig. 3.9, (a)).

It became apparent on further purification that the action of silica was slowly converting the initial major product to the expected fluorenone. This is well illustrated by the emergence of signals later confirmed as 275 (Fig. 3.9, (b)) at the expense of those ascribed to fluorenimine 274.


Scheme 3.17 1-Amino fluorenone synthesis.
The overall reaction giving $60 \%$ of a 2 -amino-fluorenone is shown in Scheme 3.17. It is assumed that heating the crude product with acid and/or silica should simplify purification of $\mathbf{2 7 5}$ and improve the overall yield. The reliable isolation of $\mathbf{2 7 4}$ is unlikely to be viable given its instability towards silica but it could conceivably serve as a substrate for further elaboration if quenched with a nucleophile other than water.

A number of routes to fluoren-9-ones and similar motifs have been published that utilise arynes. Meyers and co-workers noted the dimerisation of an oxazoline-containing arylchloride via aryne and arylanion formation, giving $\mathbf{2 7 6}$ after hydrolysis (Scheme 3.18, (a)), ${ }^{[266]}$ although the example would not be generally applicable. More recently Zhang and Larock used benzyne from 2-(trimethylsilyl)phenyl triflates with ortho-iodobenzaldehydes to prepare various fluorenones in a palladium catalysed process (Scheme 3.18, (b)). ${ }^{[207]}$

Friedel-Crafts type intramolecular attack of nitriles has been known for some time, ${ }^{[208]}$ while C-H functionalisation routes to fluorenones have been recently reported, but such approaches generally require high temperatures and/or strongly acidic conditions. ${ }^{[209]}$

The intramolecular aryne route from 248 (Scheme 3.17) allows the incorporation of 1 amino groups, which are rarely present in other fluorenone syntheses, under especially mild conditions. The reaction is expected to be quite general with respect to aryne compatible nucleophiles and should permit the synthesis of a range of fluorenones with


Fig. 3.9 ${ }^{1} \mathrm{H}$ NMR spectra for purification of 275: a) Mixed fracton after initial column, mostly comprised of $\mathbf{2 7 4}$, re-columned to give: b) pure $\mathbf{2 7 5}$ and c) second mixed fraction with a smaller proportion of $\mathbf{2 7 4}$.
various functionality in the 1-position. The introduction of nucleophilic hetero-groups in a metal-free step is especially attractive as sulphur or nitrogen containing species can often interfere with palladium-mediated couplings. Analogues of 248 in which the nitrile is extended from the ring may also be of interest as a similar reaction would lead to phenanthrenone or larger ring structures.

(b)


Scheme 3.18 Synthesis of fluoren-9-ones by aryne methods: a) Meyers, ${ }^{[206]}$ b) Zhang and Larock. ${ }^{[207]}$

## Nitrile reduction

Borane-dimethylsulfide adduct, which is known to reduce nitriles in the presence of a triflate group, ${ }^{[210]}$ was selected as a potential reducing agent for the nitrile-containing substrate 248. Indeed, 1.1 eq. of $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ in refluxing THF was sufficient to bring about the desired transformation (Scheme 3.19) and $\mathbf{2 7 7}$ was isolated in $42 \%$ yield. It is assumed that dihydrophenanthridine could be trivially synthesised, as was the case for carbazole from the analogous aniline-containing aryne precursor, 260.


Scheme 3.19 Reduction of 248 using $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$.

### 3.5.3 Metal catalysed $[2+2+2]$ reactions

## With the $2^{\prime}$-cyanophenyl benzyne precursor

Nitrile groups may also participate as a $2 \pi$ component in transition-metal-catalysed reactions. If a cyclometalated species such as $\mathbf{2 7 8}$ (Scheme 3.20, pathway (a)) were to be formed with the aryne in the presence of a further intermolecular $2 \pi$ species then
interaction with the $\mathrm{C} \equiv \mathrm{N}$ bond might be possible. Subsequent insertion of the nitrile and reductive elimination would lead to $\mathbf{2 7 9}$.

However, when DMAD (1.2 eq.) and 248 were mixed with caesium fluoride and catalytic $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, the $[2+2+2]$ product 281 was instead formed (in $65 \%$ yield with respect to DMAD) as a mixture with a small quantity of DMAD-trimerisation product (hexamethyl-benzene hexacarboxylate). It is possible that steric repulsion of the benzonitrile ring resulted in the alternative palladacycle (Scheme 3.20, pathway (b)), precluding formation of $\mathbf{2 7 9}$.


Scheme $3.20 \quad[2+2+2]$ reaction of DMAD and 248.

Among the transition metals used to catalyse formal $[2+2+2]$ cycloadditions, cobalt is well known to be effective with a nitrile component. Thus pyridines may be synthesised from $\alpha, \gamma$-cyanoalkynes and an additional acetylene. ${ }^{[211]}$ However, cobalt-catalysed aryne reactions are rather rare. ${ }^{[212]}$ Similar reactions have been performed under nickel catalysis and aryne-nitrile $[2+2+2]$ reactions are also known. ${ }^{[213]}$ Preliminary experiments with 248 using a nickel or cobalt source $\left(\mathrm{NiI}_{2} /\right.$ dppe or Co (dppe) $\mathrm{Cl}_{2}$ with an excess of zinc) gave only intractable mixtures.

## Triphenylene synthesis

Triphenylenes are interesting polyaromatic benzenoid hydrocarbons, known to form discotic liquid crystals, which have potential applications as materials in organic electronics. ${ }^{[214]}$ The palladium-catalysed trimerisation of arynes is an important route to strained triphenylenes, particularly for otherwise sterically challenging arrangements of substituted rings. ${ }^{[215]}$ Its application to biphenylarynes, which has not been previously
reported, would be of considerable interest given the newly accessible range of precursors.

The para-methoxybiphenyl 227 was selected as a test substrate to ease characterisation and was stirred overnight with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and CsF in acetonitrile (Scheme 3.21). The crude reaction mixture was complex by ${ }^{1} \mathrm{H}$ NMR but isolation of a single component using silica column chromatography revealed a simple, symmetric compound that was confirmed as the triphenylene $\mathbf{2 8 3}$ by mass spectroscopy and X-ray crystallography (Fig. 3.10).

The unit cell for the crystal structure contains six distinct molecules of $\mathbf{2 8 3}$ in addition to co-crystallised solvent. In each case the triphenylene core is distorted from planarity and the methoxyphenyl groups are rotated to varying extents. The reaction is assumed to proceed via palladacycle 282c with the alternative intermediates 282a or 282b, which would lead to an asymmetric triphenylene, being disfavoured on steric grounds.


Fig. 3.10 X-ray crystal structure of triphenylene $\mathbf{2 8 3}$ with displacement ellipsoids at the $50 \%$ probability level. Only a single molecule is shown for clarity.


Scheme 3.21 Palladium catalysed $[2+2+2]$ cyclotrimerisation reaction to give triphenylene 283

Peña et al. have performed analogous aryne cyclisations with the polycyclic 3,4phenanthryne ${ }^{[216]}$ or 1,2 -triphenylyne, ${ }^{[84]}$ also generated from Kobayashi-type precursors. Interestingly, with these substrates they obtained only asymmetric triphenylenes ( 285 and $\mathbf{2 8 6}$, Fig. 3.11), seeing no evidence of the symmetric products.

These triphenylenes are thought to arise from the symmetric metallocycle intermediate 284, which necessitates an asymmetric final product. Presumably the additional rotational degrees of freedom available in 282c limits any 1,4 -strain between the highlighted proton and the adjacent ring.

It should be noted that no triphenylene could be isolated when the same procedure was applied to the para-nonyl-substituted aryne precursor, $\mathbf{2 4 1}{ }^{\text {. }}$ It was not possible to determine whether trimerisation had failed or if the symmetrical triphenylene was present in a mixture of highly lipophilic polyaromatic structures that could not be separated.

[^8]
284


285


286

Fig. 3.11 Triphenylenes synthesised by Pẽna et al. ${ }^{[216,84]}$

Nevertheless it is believed that a range of symmetric triphenylenes would be attainable more generally, when functionality on the terminal rings facilitates isolation. Oxidative cyclodehydrogenation of $\mathbf{2 8 3}$ with, for example, $\mathrm{FeCl}_{3}$ should result in a formally $\mathrm{C}_{3}$ symmetric tribenzocoronene, as has been demonstrated with triaryl triphenylenes previously, ${ }^{[217]}$ and might provide a useful extension.

### 3.6 Further attempts and leads

### 3.6.1 Benzyne-furan reactions

With the furan functionalised aryne precursor in hand, the well known [4+2] reaction of benzyne and furan was addressed in an intramolecular manner. Simply stirring 250 in acetonitrile $(0.1 \mathrm{~m})$ overnight with caesium fluoride led to a brown solid that was fully soluble in $\mathrm{CDCl}_{3}$ but gave only broad peaks by ${ }^{1} \mathrm{H}$ NMR. This is assumed to be a mixture of oligomeric products with a varying number of cycloadduct units, but mass spectrometry experiments did not aid characterisation and further investigations were not pursued. Since this aryne precursor is easily synthesised in high yield, however, additional study may be worthwhile. In particular, varying concentrations and aryne generation rates may give different results.


Scheme 3.22 Aryne formation from 250 in the absence of additional reactants.

### 3.6.2 Further reactions on the $2^{\prime}$-ring

The ability to incorporate leaving groups at the $2^{\prime}$-position of a biphenyl aryne raises the possibility of further functionalisation that would be well placed to interact with a subsequently generated aryne bond. Chloride and fluoride substituents, which can be easily introduced at this site, may undergo $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ displacement on electron-poor rings. If the displaced group were fluoride, autogeneration of the aryne might also be feasible without the requirement for an external fluoride source.

Initial attempts were undertaken with the trifluoromethyl-containing aryne precursors, $\mathbf{2 3 3}$ and 239, (Scheme 3.23, top; $\mathrm{EWG}=\mathrm{CF}_{3}, \mathrm{X}=\mathrm{Cl}$ or F ). 3eq. of sodium azide in acetonitrile or in acetone/water at $70^{\circ} \mathrm{C}$ failed to give any new products and the starting materials were recovered untouched. Smith has shown that 2-(trimethylsilyl)phenyl triflates may withstand Grignard reagents or metal azides under more forcing conditions (in DMF with 18 -crown-6) ${ }^{[98]}$ and these may be applicable here. Furthermore, a $2^{\prime}$-halo-$5^{\prime}$-nitro-biphenyl such as $\mathbf{2 5 6}$ should be more amenable to $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reactivity although no reaction was attempted on this substrate.

Alternatively, bond-forming reactions at an activated halide such as $\mathbf{2 5 2}$ might be more readily facilitated by a transition metal (Scheme 3.23 , bottom). If a difunctionalised nucleophile were introduced in this way then tricyclic scaffolds could be easily accessed by aryne insertion reactions or arylation, on the introduction of a fluoride source.

### 3.6.3 Sonogashira coupling

In the Sonogashira coupling a copper acetylide, generated in situ from a second catalytic cycle, takes the place of the organometallic species. ${ }^{[218]}$ An attempt was made to apply the general cross-coupling procedure to the functionalisation of $\mathbf{2 1 6}$ using para-methyl phenylacetylene (287) as the nucleophilic component. The only modification was the addition of $10 \mathrm{~mol} \%$ copper(I) iodide.



Scheme 3.23 $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ attempts on electron deficient arenes.

However, just $11 \%$ of the ortho-ethynyl functionalised product 288 could be recovered under the conditions previously optimised for Suzuki coupling, with some minor consumption of the acetylene starting material through homocoupling also evident (Scheme 3.26). No improvement could be found when the reaction was conducted under anhydrous conditions or with an amine base (triethylamine or $N, N$ diisopropylethylamine) as are often employed in Sonogashira couplings, ${ }^{[218 b]}$ and further attempts at optimisation were not pursued.


Scheme 3.24 Sonogashira coupling of aryne precursor 216 conducted under standard conditions with $10 \mathrm{~mol} \% \mathrm{CuI}$.

### 3.6.4 Boryl-substituted aryne precursors

Given the success of Suzuki coupling on bromo-aryne precursor 216, it would be interesting to subject a boryl-containing analogue such as 289 to the same optimised conditions but with an arylbromide coupling partner (Scheme 3.25, (a)). If successful this would permit biphenyl aryne precursor synthesis from a wider range of substrates, perhaps even with 216.

Conversion of the ortho-bromo substrate 216 to a boronic pinacol ester by palladium catalysed Masuda borylation ${ }^{[219]}$ would be an efficient route to ortho-borylfunctionalised Kobayashi-type aryne precursors. A brief investigation of conditions typical for the reaction of aryl halides with pinacolborane ( $\mathrm{Pd} / \mathrm{SPhos}$ or $\mathrm{Pd} / \mathrm{dppf}$ with triethylamine in dioxane) did not, however, result in the desired product (289), with only starting material being recovered (Scheme 3.25, (b)).

289 has since been prepared, albeit over several steps from the iodophenol. ${ }^{[71]}$ Given the arduous preparation of these borylaryne precursors and the recent progress in Miyaura borylation ${ }^{[220]}$ with hindered substrates, ${ }^{[221]}$ it may also be of interest to reinvestigate a more direct preparation with $\mathrm{B}_{2}(\mathrm{pin})_{2}$.

(a)


216


Scheme 3.25 Boron-substituted aryne precursors: a) Proposed alternative cross-coupling b) attempted Masuda borylation of $\mathbf{2 1 6}$.

### 3.6.5 More highly functionalised aryne precursors

Early in this project it was noted that no reaction occurred at the 2 -bromo site of the ortho-(trimethylsilyl)phenyl triflate 216 under conditions suitable for the 4 -bromo analogue 220. It may therefore be possible to exploit these apparently orthogonal reactivities in a sequential functionalisation of the known substrate 290 (Scheme 3.26). The 2-aryl-4-bromo aryne precursor 291 should be readily accessible assuming the 4 bromo site remains inert under the typical reaction conditions. Further optimisation would presumably be necessary to achieve the second arylation step in acceptable yield.


Scheme 3.26 Potential elaboration of dibromo(trimethylsilyl)phenyl triflate by sequential coupling reactions.

### 3.6.6 Conclusions

Palladium catalysed cross-coupling methodology has been developed to selectively arylate bromo(trimethylsilyl)phenyl triflates with boronic acids. Thus 3-aryl-2-(trimethylsilyl)phenyl triflates may be easily prepared in high yields via a simple 1step protocol from a single precursor. The reaction is quite general and electron deficient species may be introduced using boronic acid pinacol esters. ortho-Substituents are tolerated, although those with strongly coordinating groups remain problematic. Potassium trifluoroborate salts could also be used as substrates.

Fluoride induced elimination of the labile groups results in ortho-biphenyl arynes and these reactive intermediates have been utilised in a number of further reactions. The methodology facilitates new routes to several heterocycles and a novel type of 1,5,9-triaryl triphenylene has also been obtained.

With the expanding availability of boronic acids and other boron species, many new aryne precursors could be produced in this way. A wide range of functionalities may now easily be incorporated allowing previously challenging aryne reactions to be envisaged, and it is expected that this methodology will be useful for organic materials and heterocycle syntheses. Further work to investigate intramolecular aryne chemistry is ongoing in the Greaney group.

## Chapter 4

## Benzyne $\sigma$-Insertions

### 4.1 Introduction

In 1962 Stiles and co-workers observed that the reaction of ethoxyacetylene and benzyne, generated from benzenediazonium-2-carboxylate, led to the insertion product 293 (Scheme 4.1, (a)). ${ }^{[222]}$ More recently Lązkowski, Peña and co-workers expanded the scope of this reaction to several other substituted arynes using ortho-(trimethylsilyl)phenyl triflates as aryne precursors. ${ }^{[223]}$ In the course of this work they discovered that with ortho-methoxy benzyne the reaction gave the 2,3-dialkoxyphenyl acetylene product 294. This displayed a regioselectivity opposite to that predicted if ethoxyacetylene were nucleophilic at oxygen (as proposed by Hoffmann ${ }^{[10]}$ ). The 1,3relationship between the meta-directing methoxy group and the acetylene in 294, and not the ethoxy species, favoured a revised mechanism in which attack first occurs from the ethoxyacetylene carbon (Scheme 4.1, (b)). This was corroborated by computational studies.

Aryne $\sigma$-insertions are a useful route to ortho-difunctionalisation and there are many examples involving $\mathrm{C}\left(\mathrm{sp}^{2}\right)$-heteroatom or $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{C}$ bonds. The insertion of arynes at an sp-hybridised carbon, however, remains relatively under explored (see Section 1.2.2). This project aimed to investigate and expand the scope of such reactions. In particular, if a $\mathrm{C}(\mathrm{sp})-\mathrm{N}$ species were to react with 3 -methoxybenzyne in similar fashion to ethoxyacetylene then it would grant straightforward access to 2 -amino-3ethynyl anisoles (296), which would be difficult to obtain directly by other means.

The insertion of an aryne into a $\mathrm{C}-\mathrm{N}$ bond typically proceeds by nucleophilic attack from the heteroatom followed by cyclisation into an electrophilic, often carbonyl carbon.


(b)



Scheme 4.1 Insertion of benzyne into C-X bonds: a) Stiles et al., ${ }^{[222]}$ b) Łązkowski et al., ${ }^{[223]}$ c) anticipated C-N insertion.

However protected enamines, like vinyl ethers, add to benzyne at carbon and both may then cyclise to give benzocylobutenes. ${ }^{[27,224]}$ Other examples of $C$-arylation with enamines and anilines also exist. ${ }^{[225,226]}$

It seemed reasonable, therefore, that a tertiary amine with an acetylene in place of a vinyl group should attack arynes though the $\beta$-carbon in an analogous manner to ethoxyacetylene. After initial C-C bond formation, two modes of rearrangement are available (Scheme 4.1, (c)). 4-Exo cyclisation, which is known for enamines, must be less favourable for the strained, antiaromatic benzocyclobutadiene intermediate 297. Alternatively, 5 -endo cyclisation onto nitrogen leading to 295 also becomes possible (the analogous unstabilised enamine-derived zwitterion would be implausible). Neither route gives stable products; the former must undergo dimerisation or other further reactions while the latter may rearrange to give the desired product, 296.

Indeed at least two examples of ynamine benzyne reactions have been reported. In 1968 Ficini and Krief found that $N, N$-diethylynamines bearing a 2-methyl or 2-phenyl group
react with two equivalents of benzyne (generated from ortho-bromo-fluorobenzene and magnesium) to give multiple products. The reaction is assumed to proceed via the benzocyclobutadiene and a series of further rearrangements and is generally low yielding (Scheme 4.2, (a)). ${ }^{[227]}$ Later, Sato and co-workers discovered that a similar reaction of 2-(trimethylsilyl)ynamines and benzyne resulted in a net $\mathrm{C}-\mathrm{Si}$ insertion, attributed to a 1,3-silyl shift from the initially formed zwitterionic intermediate (Scheme 4.2, (b)). ${ }^{[228]}$ In neither of these examples was cyclisation onto the ynamine nitrogen reported.

(a)


### 4.2 Aryne ynamide insertions

### 4.2.1 Insertions with oxazolidinone-acetylene

Investigations began with $N$-ethynyloxazolidinone (305), which was prepared by the transfer of an ethynyl(trimethylsilyl) unit onto 2-oxazolidinone using the hypervalent iodine(III) species, phenyl((trimethylsilyl)ethynyl)iodonium triflate (303, Scheme 4.4). Subsequent deprotection with TBAF gave a terminal acetylene.


303


Scheme 4.3 Preparation of terminal ynamide 305.

Stirring ynamide 305 and the 3-methoxy benzyne precursor 58 in acetonitrile with caesium fluoride gave a complex mixture of products from which the anticipated product 306 could be isolated, albeit in only $9 \%$ yield (Scheme 4.4). The regioselectivity of the reaction mirrored that of the ethoxyacetylene insertion, being confirmed by twodimensional NMR experiments and X-ray crystallography (Fig. 4.1). No evidence for the alternative regioisomer was found. The starting material ( $26 \%$ ) was also recovered although other components of the reaction product mixture were not identified.


Scheme 4.4 Insertion of 3-methoxybenzyne into a terminal oxazolidinone ynamide. Conditions: 305 ( 0.175 mmol ), $\mathbf{5 8}$ ( 1 eq .) in MeCN ( 0.5 m ) with CsF ( 2.5 eq .), rt, 16 h .

Since the 2-(trimethylsilyl)ynamide $\mathbf{3 0 4}$ was also available from the preparation of $\mathbf{3 0 5}$, this protected form of the substrate could be used directly (Scheme 4.5). Subjecting it to identical conditions gave the same insertion product (306) in a slightly higher $16 \%$ yield. It is not clear whether desilylation occurs first to form 305 in situ or if the
(trimethylsilyl)ynamide itself attacks the aryne, with the silyl group being lost at a later stage. The similar reaction of Sato gives a precedent for the latter and indicates that a TMS group is no impediment to the nucleophilic action of an ynamine. However the side product 307, which might also be expected from this pathway, was not detected. The protected ynamide starting material may be less susceptible to hydration or other breakdown pathways than a terminal ynamide.

Although these initial results did confirm that the net insertion of benzyne into a nitrogen-acetylene bond was feasible and that it occurred with the desired regioselectivity, it was felt that the complexity of reaction mixture, the challenging isolation of 306 and the low overall yield were significant impediments to further optimisation with 304 or 305.


Scheme 4.5 Insitu desilylation-insertion product.


Fig. 4.1 The molecular structure of $\mathbf{3 0 6}$ with displacement ellipsoids at the $50 \%$ probability level.

### 4.2.2 Insertions with $N$-ethynyl sulfonamides

Given the potential for aryne reactions at amide derived functionality and the known insertion pathways for oxazolidinones, ${ }^{[148]}$ it was thought this heterocyclic based substrate might be in part responsible for the low yielding $\mathrm{C}(\mathrm{sp})$-insertion. Having had success with tosyl protecting groups in aryne syntheses (Chapter 2) these were considered as an alternative. Like amide-containing ynamides, $N$-ethynyl sulfonamides have improved stability over ynamines, and are often crystalline solids. They also have increased nucleophilicity at the $\beta$-carbon relative to more conjugated amides. ${ }^{[231]}$ With this in mind, $N$-tosyl ynamide $\mathbf{3 1 1}$ was prepared and the benzyl group chosen as a third $N$-substituent to provide orthogonal protection to the amine (Scheme 4.6).

Initial attempts to insert benzyne from 4 by subjecting $N$-tosyl ynamide 311 to conditions similar to those used with 305 were encouraging. The apparently much simpler reaction mixture had a significant component corresponding to the mass of a single arylation event, with other peaks being less evident by HPLC than for earlier substrates. After isolation a new acetylene terminal ${ }^{1} \mathrm{H}$ peak was seen, confirming


Scheme 4.6 Preparation of terminal ynamide 311.
that the major product was not the result of simple arylation at this position. Furthermore the spectra, when recorded in deuterated benzene, was indicative of an ortho-difunctionalised ring system consistent with $\mathbf{3 1 2}$.

The hydrolysis product $\mathbf{3 1 3}$ could also be obtained in $20 \%$ yield, raising concerns that $\mathbf{3 1 1}$ might be unstable under the reaction conditions. However, an acid catalysed pathway (Scheme 4.7, top) would be unlikely in the presence of caesium fluoride and other keteniminium derived products such as $\mathbf{3 1 6}$ were not detected. Hydrolysis could be induced by the addition of zinc chloride, which gave substantially elevated levels of $\mathbf{3 1 3}$ and inhibited the formation of $\mathbf{3 1 2}$ to a large extent. In the absence of the Lewis acid and under anhydrous conditions, little of this side product could be detected in the crude reaction mixture by NMR.

A brief screen of aryne generating conditions was next conducted and is shown in Table 4.1. Conversion of the starting material was poor at room temperature with only $6 \%$ (NMR yield) of product formed in acetonitrile. Changing the solvent to THF and using potassium fluoride/18-crown- 6 to generate benzyne gave an improved yield of $25 \%$ but side products became more apparent. Running the reaction at higher temperature under a variety of conditions gave consistently increased amounts of $\mathbf{3 1 2}$. The cleanest conversion was observed in $3: 1$ toluene/acetonitrile with caesium fluoride, which allowed isolation of the product in $40 \%$ yield.

While only moderate, the yields of $\mathbf{3 1 2}$ achieved here are comparable to those obtained by Stiles ( $37 \%$ ) and Łązkowski et al. ( $51 \%$ ) for the analogous C-O insertions. The reaction of 3 -methoxybenzyne with 311 would provide the $1,2,3$-trifunctionalised sulfonamide analogue of $\mathbf{3 0 6}$.

Table 4.1 Conditions for $\mathrm{C}-\mathrm{N}$ insertion with $311^{\text {a }}$

|  |  $+$ <br> 4 |  |  |  <br> 312 | $\begin{aligned} & =/ \\ & N^{-B n} \\ & \text { Ts } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Fluoride Source | Solvent | Temp ( ${ }^{\circ} \mathrm{C}$ ) | Time | Yield (\%) ${ }^{\text {b }}$ |
| 1 | CsF | MeCN | rt | 16 h | 6 |
| 2 | KF/18-C-6 | THF | rt | 5 h | 25 |
| 3 | CsF | $\mathrm{MeCN} / \mathrm{Tol}$ | 90 | 16 h | $40^{\text {c }}$ |
| 4 | TBAT | Tol | 120 | 10 min $^{\text {d }}$ | 42 |
| 5 | CsF | MeCN | 90 | 5 h | 43 |

${ }^{\text {a }}$ Conditions: 311 ( 0.100 mmol ) and 4 ( 1.5 eq .) in solvent ( 0.1 m ) with fluoride source (3 eq.). ${ }^{\mathrm{b}}$ NMR yield. ${ }^{\mathrm{c}}$ Isolated yield. ${ }^{\mathrm{d}}$ Microwave heating.


Scheme 4.7 Hydrolysis of ynamide 311

However, when using 58 in place of 4 under the optimised conditions the reaction progressed only to a limited extent, with starting materials being the major components of the crude reaction mixture after heating overnight ( $56 \%$ of limiting reagent $\mathbf{3 1 1}$ remained). Only $15 \%$ of the presumed insertion product 317 (Scheme 4.8) was observed (NMR yield) with which by-product formation became competitive. The methoxy group may limit $\mathrm{C}-\mathrm{N}$ bond formation at its ortho-position on steric grounds and is presumably a greater obstacle when using 311 than with the smaller oxazolidinone group.


Scheme 4.8 Tosylynamide with 3-methoxybenzyne

### 4.3 Conclusions and further work

Ynamide addition to arynes has been demonstrated for the first time. The reaction proceeds via nucleophilic attack from the terminal $\beta$-carbon followed by rearrangement to give a C $(\mathrm{sp})-\mathrm{N}$ insertion product. When an $N$-tosylynamide is employed the reaction proceeds in reasonable yield with benzyne. A 3-methoxy substituent on the aryne resulted in lower conversion. Although trifunctionalised arenes with a 1-oxy-2-amino--3-acetyl relationship could not be prepared effectively, further optimisation of this reaction should be possible. In particular, the careful choice of an ynamide that is both sufficiently nucleophilic and sufficiently stable to undergo arylation but that does not present steric or electronic impediments to rearrangement may allow a useful insertion reaction to be developed.

Replacement of the benzyl group in 311 with a methyl (318, Fig. 4.2) would be a straightforward means to reduced hindrance at the nitrogen while cyclic $N$-sulfonylynamide such as $\mathbf{3 1 9}$ might also be of interest. More speculatively, ynimines based on $\mathbf{3 2 0}$ (TMS-320 is known ${ }^{[232]}$ ) may be capable of a similar aryne insertion reaction and lack the second $N$-substituent of ynamides or ynamines.


318


319


320

Fig. 4.2 Possible substrates for further aryne-ynamide insertion reactions.

There has been a recent surge of interest in ynamide chemistry. These reagents undergo a wide range of transformations including cycloadditions and reactions with electrophiles at either site while being compatible with transition-metal-catalysed processes. In some ways their initial nucleophilicity is complementary to that of electrophilic arynes with both species capable of a second bond forming process from a zwitterionic intermediate.

Since ynamides are activated towards nucleophiles by strong electrophiles then arynes may serve this role (Scheme 4.9, (a)). Ynamides may also be able to participate as the nucleophile in aryne three component reactions (Scheme 4.9, (b)) or in transition-metalmediated $[2+2+2]$ chemistry (c). Such reactions might be useful alternatives to $\mathrm{C}-\mathrm{N}$ insertion, which is slow at low temperature, particularly with hindered substrates.
(a)

(b)

(c)


Scheme 4.9 Further pathways for aryne-ynamide reactivity.

## Chapter 5

## Conclusions

The previous chapters describe studies that advance the chemistry and availability of arynes derived from 2-(trimethylsilyl)phenyl triflates. Methodology for the arylation of tosylhydrazones has been developed and the resulting $N$-aryl- $N$-tosyl hydrazones serve as intermediates in a Fischer indole reaction. Thus $N$-tosyl indoles may be prepared in a one-pot protocol from accessible starting materials. In the course of this work, a novel reaction between benzyne and an N -tert-butoxycarbonyl-protected hydrazone was also discovered, which may be of interest in future heterocycle synthesis.

It has been found that both $N$-ethynyl oxazolidinone and an $N$-tosyl ynamide undergo a $\mathrm{C}(\mathrm{sp})-\mathrm{N}$ bond insertion reaction with arynes. Although the yields of such reactions are at present only moderate, scope exists for further optimisation with alternative ynamides and the route permits the aryne-mediated synthesis of ortho-ethynyl anilines.

These projects and many other recent developments in aryne methodology have been enabled by Kobayashi-type aryne precursors, which allow the generation of arynes under easily controlled and mild conditions. Work aimed at expanding the availability of these reagents has therefore also been undertaken.

It was shown that the Suzuki reaction may be performed chemoselectively at the bromine substituent of 2-bromo-6-(trimethylsilyl)phenyl triflate, leaving the key triflate and trimethylsilyl functionalities untouched. This method allows ortho-biphenyl aryne precursors incorporating a wide range of functionality to be prepared.

Several reactions that utilise biphenyl arynes derived from this procedure have been demonstrated and further development of these initial findings will allow the preparation of diverse products including ortho-substituted fluorenones or symmetric
triphenylenes. The increased accessibility of aryne precursors with otherwise unavailable substituents should allow further new aryne-based methodology to be developed in addition to expanding the scope of existing aryne chemistry.

## Chapter 6

## Experimental

${ }^{1} \mathrm{H}$ NMR spectra were recorded on a 300,400 or 500 MHz instrument and ${ }^{13} \mathrm{C}$ spectra recorded at 75,101 or 126 MHz and calibrated to residual solvent peaks as the internal standard; proton signals in $\mathrm{CDCl}_{3} 7.26 \mathrm{ppm}$, DMSO- $\mathrm{d}_{6} 2.50 \mathrm{ppm}$ and $\mathrm{C}_{6} \mathrm{D}_{6} 7.16 \mathrm{ppm}$ and carbon signals in $\mathrm{CDCl}_{3} 77.16 \mathrm{ppm}$, DMSO- $\mathrm{d}_{6} 39.52 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR spectra were recorded at 377 MHz or 471 MHz and ${ }^{11} \mathrm{~B}$ spectra at 160 MHz and are referenced to an external standard. The ${ }^{1} \mathrm{H}$ data are presented as follows: chemical shift (in ppm on the $\delta$ scale) or chemical shift range for a multiplet, multiplicity ( $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=\mathrm{quartet}, \mathrm{m}=$ multiplet and app. indicating apparent multiplicity), the coupling constant ( $J$, in Hz ) and integration. The assignment of components in a mixture of isomers is reported where possible, with integrations given as proportion of the sample. The ${ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ and ${ }^{11} \mathrm{~B}$ data are reported as the ppm on the $\delta$ scale with multiplicity from non-decoupled nuclei noted where appropriate for the ${ }^{13} \mathrm{C}$ spectra. High resolution mass spectrometry was performed by the EPSRC National Mass Spectrometry Service Centre, Swansea, or by the University of Manchester School of Chemistry Mass Spectrometry Service. The data are recorded as the ionisation method followed by the calculated and measured masses. TLC was performed on silica $60 \mathrm{~F}_{254}$ glass or aluminium backed plates and visualised by UV light and/or anisaldehyde, vanillin, ninhydrin or potassium permanganate stains. Flash column chromatography was performed using a wet silica slurry (particle size $35-70 \mu \mathrm{~m}$ or $40-63 \mu \mathrm{~m}$ ) or on pre-packed disposable silica columns (particle size $40-60 \mu \mathrm{~m}$ ) under a positive pressure. Melting points were obtained on a Griffin or Gallenkamp melting point apparatus. Acetonitrile was dried before use (alumina column) or purchased as such and stored under nitrogen. All reagents were purchased from chemical suppliers and used as received unless otherwise noted.

### 6.1 The benzyne Fischer indole reaction

### 6.1.1 Hydrazone precursor syntheses

## General procedure for hydrazone synthesis $A$

The $N$-protected hydrazine (1 eq.) and ketone (1.1 eq.) were dissolved in ethanol ( 0.3 m ) with a few drops of cat. acetic acid and the mixture heated at reflux for 1 h . After cooling, the crude material was collected by filtration, being washed with cold diethyl ether, recrystallised once from hot ethanol (unless otherwise stated) and dried in vacuo.

## General procedure for hydrazone synthesis B

The $N$-protected hydrazine ( 1 eq.) and ketone ( 1.1 eq.) were dissolved in ethanol ( 0.3 m ) and the mixture heated at reflux for 1 h . After cooling, the crude material was collected by filtration, being washed with cold diethyl ether, recrystallised from hot ethanol and dried in vacuo.

## $\mathbf{N}^{\prime}$-Cyclohexylidene-4-methylbenzenesulfonohydrazide, 139



Prepared according to general procedure A but with three rounds of recrystallisation. Isolated $3.9 \mathrm{~g}(12 \%)$ as a white crystalline solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}\right) \delta 10.08(\mathrm{~s}, 1 \mathrm{H}), 7.73-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.55(\mathrm{br} \mathrm{s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 162.2,143.0,136.5,129.4,127.5,34.7,27.4,26.7,25.5,24.9$, 21.0. ${ }^{[233]}$
(E)-Methyl-4-(2-tosylhydrazono)pentanoate, 145


Prepared according to general procedure A. Isolated $3.32 \mathrm{~g}(87 \%)$ as a white crystalline solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 9.98$ $(\mathrm{s}, 1 \mathrm{H}), 7.74-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 2.38$ $(\mathrm{s}, 3 \mathrm{H}), 2.43-2.34(\mathrm{~m}, 4 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.126 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 172.5,157.1$, $143.0,136.2,129.2,127.5,51.2,32.5,29.2,21.0,17.0$.

## (E)- $N^{\prime}$-(3,4-Dihydronaphthalen-1(2H)-ylidene)-4-methylbenzenesulfonohydrazide, 147



Prepared according to general procedure B. Isolated $2.60 \mathrm{~g}(79 \%)$ as a white crystalline solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO $\left.-\mathrm{d}_{6}\right) \delta 10.39(\mathrm{~s}, 1 \mathrm{H})$, $7.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{dd}, J=7.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.25 (app. td, $J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.08(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.61(\mathrm{~m}$, $2 \mathrm{H}), 2.54(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.68(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{CNMR}(126 \mathrm{MHz}$, DMSO-d ${ }_{6}$ ) $\delta 152.8,143.3,139.8,136.3,131.6,129.4,129.3,128.6,127.6,126.2,124.0$, 28.7, 25.9, 21.2, 21.0. ${ }^{[234]}$

## (E)-4-Methyl- $N^{\prime}$-(1-phenylpropylidene)benzenesulfonohydrazide, 149



Prepared according to general procedure A. Isolated $2.11 \mathrm{~g}(84 \%)$ as a white crystalline solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}^{-} \mathrm{d}_{6}\right) \delta 10.64(\mathrm{~s}, 1 \mathrm{H})$, $7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.38-7.27(\mathrm{~m}, 3 \mathrm{H}), 2.69(\mathrm{q}, ~ J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}\right.$ ) $\delta 156.2,142.3,135.3,135.2,128.5,128.3,127.4,126.5$, 125.1, 20.0, 18.9, 9.4. ${ }^{[234]}$

## N'-Cyclopentylidene-4-methylbenzenesulfonohydrazide, 151



Prepared according to general procedure A but without recrystallisation. Isolated $1.66 \mathrm{~g}(60 \%)$ as a white crystalline solid. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, DMSO-d ${ }_{6}$ ) $\delta 9.95(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}$, $3 \mathrm{H}), 2.23(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.70($ app. p, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $1.66-1.58(\mathrm{~m}, 2 \mathrm{H}) .{ }^{[235]}$

## (E)- $N^{\prime}$-(Butan-2-ylidene)-4-methylbenzenesulfonohydrazide, 153



Prepared according to general procedure B. Isolated $1.36 \mathrm{~g}(47 \%)$ as a white crystalline solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}\right) \delta 9.90(\mathrm{~s}, 1 \mathrm{H})$, $7.75(\mathrm{~s}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(126 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}\right.$ ) $\delta 159.9$, $143.0,136.3,129.2,127.6,31.1,21.0,16.3,10.3{ }^{[236]}$

## (E)-4-Methyl- $N^{\prime}$-(1-phenylpropan-2-ylidene)benzenesulfonohydrazide, 155



Prepared according to general procedure A. Isolated $0.481 \mathrm{~g}(55 \%)$ as a pale yellow crystalline solid. ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta$ $10.03(\mathrm{~s}, 1 \mathrm{H}), 7.75-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.00-6.95$ $(\mathrm{m}, 2 \mathrm{H}), 3.38(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.126 \mathrm{MHz}, \mathrm{DMSO}^{-} \mathrm{d}_{6}\right) \delta 157.5$, $143.1,136.9,136.3,129.3,128.8,128.3,127.6,126.5,44.2,21.0,16.0 .{ }^{[237]}$

## 4-Methyl- $N^{\prime}$-(pentan-3-ylidene)benzenesulfonohydrazide, 157



Prepared according to general procedure A. Isolated $1.80 \mathrm{~g}(25 \%)$ as a white crystalline solid ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 9.95(\mathrm{~s}, 1 \mathrm{H})$, $7.77-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.12(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}$ $\left(126 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}\right) \delta 163.6,143.0,136.3,129.2,127.5,28.3,22.6,21.0,10.3,9.4 .{ }^{[238]}$

## (E)-4-Methyl- $N^{\prime}$-(1-phenylethylidene)benzenesulfonohydrazide, 159



Prepared according to general procedure B. Isolated $1.11 \mathrm{~g}(37 \%)$ as a white crystalline solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 10.50(\mathrm{~s}, 1 \mathrm{H})$, $7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.39-7.34(\mathrm{~m}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.126 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 153.1$, $143.3,137.4,136.2,129.5,129.4,128.4,127.6,125.9,21.0,14.3 .{ }^{[239]}$

## (E)- $N^{\prime}$-(1,2-Diphenylethylidene)-4-methylbenzenesulfonohydrazide, 162



Prepared according to general procedure A. Isolated $2.53 \mathrm{~g}(61 \%)$ as a pale yellow crystalline solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 10.97$ (s, $1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, NHTs 2 H$), 7.34-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.22$ (app. $\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}(126 \mathrm{MHz}$, DMSO $-\mathrm{d}_{6}$ ) $\delta 153.1,143.5,136.6,136.2,135.9,129.6,129.3,128.5,128.4,128.1,127.5$, 126.4, 126.3, 32.2, 21.0. ${ }^{[240]}$

## (E)-4-Methyl- $N^{\prime}$-(2-phenylethylidene)benzenesulfonohydrazide, 185



Prepared according to general procedure B. Isolated $1.39 \mathrm{~g}(23 \%)$ as a white crystalline solid. ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 10.97$ (s, 1H), 7.72-7.62 (m, 2H), 7.41 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.18$ $(\mathrm{m}, 3 \mathrm{H}), 7.05-6.94(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(126 \mathrm{MHz}$, DMSO-d $\mathrm{d}_{6}$ ) $150.1,143.3,136.3,136.1,129.6,128.7,128.5,127.3,126.6,38.0$, 21.0. ${ }^{[241]}$

## (E)- $N^{\prime}$-(1-Benzyl-2-methylpiperidin-3-ylidene)-4-methylbenzenesulfonohydrazide, 187



Isolated $0.64 \mathrm{~g}(41 \%)$ as a brown crystalline solid. Synthesised according to general procedure A but with recrystallisation from $\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O}$. The parent ketone was prepared according to the protocol of Zhao et al. ${ }^{[242]}{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}\right.$, DMSO $\left.-\mathrm{d}_{6}\right) \delta 10.18(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.46,3.50\left(\mathrm{ABq}, J_{A B}=13.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.15(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.68(\mathrm{~m}, 1 \mathrm{H})$, $2.55-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{dt}, J=12.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.14(\mathrm{~m}, 1 \mathrm{H})$, $1.64-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 126 MHz, DMSO- $\mathrm{d}_{6}$ ) $\delta 160.9$, 143.0, 139.0, 136.3, 129.3, 128.4, 128.1, 127.5, 126.8, 59.1, 56.5, 45.5, 23.0, 22.8, 21.0, 12.9 .
tert-Butyl 2-cyclohexylidenehydrazine-1-carboxylate, 143


Prepared according to general procedure A. Isolated 3.18 g ( $71 \%$ ) as a white crystalline solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~s}$, $1 \mathrm{H}), 2.36-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.56(\mathrm{~m}, 6 \mathrm{H}), 1.49$ (s, 9 H$) .{ }^{13} \mathrm{CNMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.2,153.3,80.9,35.6,28.4,26.9,26.2,25.9$, 25.7. IR (thin film, $\mathrm{cm}^{-1}$ ): 3239 (w), 2937 (w), 1677 (s). ${ }^{[243]}$

### 6.1.2 Arylation of protected hydrazones

In general $N$-aryl hydrazone intermediates were not isolated as the crude reaction mixture could undergo Fischer cyclisation in one pot. $\mathbf{1 4 0}$ is given as an example:

## $N^{\prime}$-Cyclohexylidene-4-methyl- $N$-phenylbenzenesulfonohydrazide, 140



2-(Trimethylsilyl)phenyl triflate ( 1.5 eq.) and caesium fluoride (3eq.) were added to $N$-tosyl cyclohexanone hydrazone (139, 0.200 mmol , 1 eq.) in acetonitrile ( 0.1 m ) and stirred at rt overnight under nitrogen. The mixture was then quenched with water, extracted twice with diethyl ether, the combined organic layers dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified by recrystallisation from hot methanol to give a pale brown crystalline solid, $41 \mathrm{mg}(61 \%)$ m.p. $127-130{ }^{\circ} \mathrm{C}$ (lit. $130^{\circ} \mathrm{C}$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.36-7.20(\mathrm{~m}, 7 \mathrm{H}), 7.05-6.98(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.29(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.57(\mathrm{~m}$, $2 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.29(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.6,144.0$, $142.8,131.5,129.0,128.9,128.7,127.1,125.2,35.1,29.9,26.8,25.5,24.7,21.1$. HRMS $\left(\mathrm{ES}^{+}\right)$cald. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 343.1475$, found: 343.1477.[244]

Compound 144, proposed structure: tert-Butyl 2'-phenylspiro[cyclohexane-1,3'-ind-azole]- $\mathbf{1}^{\prime}\left(\mathbf{2}^{\prime} \mathrm{H}\right.$ )-carboxylate, $144^{\prime \prime}$
$t-\mathrm{BuO}_{2} \mathrm{C} \quad$ Prepared as with 140 but from Boc-protected hydrazone 143 using 2.4 eq. 2-(trimethylsilyl)phenyl triflate and 6 eq. caesium fluoride and columned with hexane: diethyl ether $(15: 1)$ to give a colourless oil, $41 \mathrm{mg}(50 \%) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63$ (br s, $\left.1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.29$ $(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.09(\mathrm{~m}, 6 \mathrm{H}), 7.08(\mathrm{td}, J=7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-$ 1.34 (br m, 19H). 7.63 peak assignment confirmed with the aid of HSQC spectroscopy. ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 152.5$ (C), 147.9 (C), 141.7 (C), 138.7 (C), 128.3, 128.0, $126.7,126.6,123.5,122.3,114.9,81.3(\mathrm{C}), 69.9(\mathrm{C}), 28.4\left(\mathrm{CH}_{3}\right), 25.5\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{2}\right)$. Assignments made with the aid of DEPT-135 spectroscopy. The 152.5 peak was at the limit of detection. IR (thin film, $\mathrm{cm}^{-1}$ ): 2930 (w), 1723 (w), 1698 (s), 1598 (w). HRMS $\left(\mathrm{ES}^{+}\right)$cald. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})^{+}: 387.2048$, found: 387.2050.

### 6.1.3 $\quad N$-Tosyl indole synthesis

## General procedure for the one-pot preparation of $\boldsymbol{N}$-tosyl indoles

To a mixture of the appropriate $N$-tosyl hydrazone ( $0.2-0.3 \mathrm{mmol}, 1 \mathrm{eq}$.) , (trimethylsilyl)aryl triflate ( 1.5 eq.) and caesium fluoride ( 3 eq.), was added dry acetonitrile ( 0.1 m ). The tube was then flushed briefly with nitrogen, sealed and stirred at rt for 12 h . On consumption of starting material, boron trifluoride etherate ( 2 eq . unless otherwise stated) was added and the mixture heated at $90^{\circ} \mathrm{C}$ (external temperature) for 5 h . After cooling, the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}$, extracted with ethyl acetate, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The crude material was purified by column chromatography (dry loading on silica, eluted with hexane/diethyl ether) and dried in vacuo to afford the desired product.

## 9-Tosyl-2,3,4,9-tetrahydro-1 H-carbazole, 141



Isolated $30.2 \mathrm{mg}(80 \%)$ as a pale yellow crystalline solid, m.p. 116$118{ }^{\circ} \mathrm{C}$ (lit. $\left.118.5-119.3^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23-8.11(\mathrm{~m}$, $1 \mathrm{H}), 7.70-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.14(\mathrm{~m}, 4 \mathrm{H}), 3.02(\mathrm{tt}, J$ $=6.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{tt}, J=6.0,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.83-$ $1.76(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.5,136.4,136.4,135.5,130.5,129.9$, $126.5,124.0,123.3,118.7,118.1,114.5,24.8,23.4,22.2,21.6,21.2 . \mathrm{HRMS}^{\left(\mathrm{ES}^{+}\right)}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 326.12093$, found: 326.120868. ${ }^{[245]}$

## Methyl 2-(2-methyl-1-tosyl-1H-indol-3-yl)acetate, 146



Isolated $58.2 \mathrm{mg}(66 \%)$ as a pale yellow crystalline solid, m.p. 96$99{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.64$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.20(\mathrm{~m}, 2 \mathrm{H})$, $7.18(\mathrm{~d}, ~ J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.32$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,144.8,136.4,136.3,134.8,130.0,130.0$, $126.4,124.3,123.6,118.5,114.6,113.3,52.2,30.2,21.6,13.0 . \mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}: 375.13730$, found: 375.1377

## 11-Tosyl-6,11-dihydro-5H-benzo[a]carbazole, 148



Ts

Isolated $38.0 \mathrm{mg}(76 \%)$ as a pale brown crystalline solid, m.p. 172$174^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.00$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.16(\mathrm{~m}, 8 \mathrm{H}), 6.93(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.80$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 144.3,140.4,137.7,136.1,132.3,131.5,129.0,128.8,128.5,127.9,127.4,127.2,127.2$, $126.4,125.5,125.1,118.8,118.5,29.5,21.6,20.8$. $\mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}$ $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}: 391.1475$, found: 391.1465

## 3-Methyl-2-phenyl-1-tosyl-1H-indole, 150



As with the general procedure but with 2 eq. aryne precursor. Isolated $47.6 \mathrm{mg}(67 \%)$ as a pale brown crystalline solid, m.p. $152-157^{\circ} \mathrm{C}$ (lit. $\left.163-164{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.34(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.49-7.27(\mathrm{~m}, 10 \mathrm{H}), 7.05(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 144.5,137.3,136.8,135.2,131.9,131.7,131.5,129.3$, 128.5, 127.5, 126.9, 125.1, 124.0, 119.9, 119.1, 116.4, 21.7, 9.6. HRMS (ES ${ }^{+}$) calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}: 379.1475$, found: 379.147413. ${ }^{[246]}$

## 4-Tosyl-1,2,3,4-tetrahydrocyclopenta[b]indole, 152



Isolated $46.3 \mathrm{mg}(54 \%)$ as a pale brown crystalline solid, m.p. $158-162^{\circ} \mathrm{C}$ (lit. $\left.155-157^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.72 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 4 \mathrm{H})$, $3.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.77-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.50$ (app. p, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13}{ }^{13}$ NMR ( $\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.6,143.7,140.3,135.9,129.9,127.3,126.6,126.6$, $123.3,123.2,119.0,114.4,28.1,27.5,24.1,21.6$. HRMS ( $\mathrm{ES}^{+}$) calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S}^{+}$ $(\mathrm{M}+\mathrm{H})^{+}: 312.10528$, found 312.1056. ${ }^{[247]}$

## 2,3-Dimethyl-1-tosyl-1 H-indole, 154



Isolated $56.5 \mathrm{mg}(69 \%)$ as a pale brown crystalline solid, m.p. 128$130^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 144.5,136.5,136.4,132.4,131.4,129.9,126.4,124.0,123.3,118.4,116.1,114.6$, 21.6, 12.8, 9.0. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$: 317.13183, found: 317.131946.

## 2-Methyl-3-phenyl-1-tosyl-1H-indole, 156



As with the general procedure but with 2 eq. aryne precursor. Isolated $91.6 \mathrm{mg}(66 \%)$ as a pale orange solid. ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.28 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 3 \mathrm{H})$, 7.39-7.33 (m, 3H), 7.31 (ddd, $J=8.4,7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.18(\mathrm{~m}$, $3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 144.8,136.4,136.4,133.2$, 133.1, 130.1, 130.0, 130.0, 128.6, 127.4, 126.5, 124.3, 123.6, 122.6, 119.3, 114.6, 21.6, 13.6. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})^{+}: 362.12093$, found: 362.1213. ${ }^{[246]}$

## 2-Ethyl-3-methyl-1-tosyl-1 H-indole, 158



Isolated $26.9 \mathrm{mg}(68 \%)$ as a pale orange solid. ${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.23-8.10(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=$ $7.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{q}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 144.4,138.9,136.6,136.3,131.6,129.7,126.2,124.0$, $123.3,118.4,116.1,115.1,21.5,19.8,15.0,8.8$. HRMS (ES ${ }^{+}$) calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}^{+}$ $(\mathrm{M}+\mathrm{H})^{+}: 314.12093$, found: 314.1212. ${ }^{[248]}$

7-Methoxy-9-tosyl-2,3,4,9-tetrahydro-1H-carbazole, 167


The major regioisomer was isolated to give 52.0 mg ( $61 \%$ ) as a pale yellow crystalline solid, m.p. $113-114^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-$ $7.15(\mathrm{~m}, 3 \mathrm{H}), 6.85(\mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{tt}, J=6.4,1.9 \mathrm{~Hz}$, $2 \mathrm{H}), 2.54(\mathrm{tt}, J=5.9,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.71(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13}{ }^{3}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 157.5,144.5,137.3,136.4,134.1,129.9,126.4,124.4$, 118.6, 118.4, 111.8, 99.6, 56.0, 24.8, 23.4, 22.2, 21.7, 21.2. HRMS (ES ${ }^{+}$) calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})^{+}: 356.1315$, found: 356.1318.

Methyl-9-tosyl-2,3,4,9-tetrahydro-1H-carbazole, 168


Isolated $61.0 \mathrm{mg}(72 \%)$ as a mixture of three possible regioisomers in a $0.22: 0.3: 0.48$ ratio, as a pale orange solid. Full assignment of the ${ }^{1} \mathrm{H}$ spectra was aided by NOE experiments. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) $\delta 8.05$ (app. d, $J=8.4 \mathrm{~Hz}, 0.7 \mathrm{H}, \mathbf{1 6 8 c}$ and 168b), 8.01 (s, $0.3 \mathrm{H}, \mathbf{1 6 8 a}$ ), $7.71-$ $7.62(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 2.3 \mathrm{H}), 7.17-7.04(\mathrm{~m}, 1.48 \mathrm{H}), 6.95(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 0.22 \mathrm{H}$, 168a), 3.13-2.95 (m, 2H), 2.90 (tt, $J=6.0,2.0 \mathrm{~Hz}, 0.44 \mathrm{H}, 168 \mathrm{a}, \mathrm{CH}_{2}$ ), 2.66-2.55 (m,
$2.22 \mathrm{H}), 2.51$ (s, 1.4 eq. $0.9 \mathrm{H}, \mathbf{1 6 8 b}, \mathrm{CH}_{3}$ ) , $2.44\left(\mathrm{~s}, 1.44 \mathrm{H}, \mathbf{1 6 8 c}, \mathrm{CH}_{3}\right), 2.35-2.36(3 \times \mathrm{s}$, $3 \mathrm{H}, \mathrm{Ts}-\mathrm{H}), 1.93-1.74\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.4,144.4,144.4$, $136.8,136.6,136.5,136.5,136.4,135.6,135.0,134.7,134.6,133.9,132.9,130.7,130.5$, 129.8 (three signals), $129.0,128.2,126.5,126.4,126.4,125.2,125.1,124.6,123.7,119.3$, $118.6,118.1,117.7,114.8,114.2,112.3,25.1,24.8,24.8,24.5,23.4$ (two signals), 22.9, $22.8,22.2$ (two signals), 22.1, 21.6 (three Me signals), 21.4, 21.2 (two signals), 20.1. The unlisted peak is believed to come at 126.4. HRMS (ES ${ }^{+}$) calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}^{+}$ $(\mathrm{M}+\mathrm{H})^{+}: 340.1366$, found: 340.1370.

## Methyl-7-tosyl-6,7-dihydro-5H-benzo[c]carbazole, 169



Isolated $72.3 \mathrm{mg}(73 \%)$ as a mixture of three possible isomers in a 0.18:0.33:0.48 ratio as a pale orange crystalline solid, m.p. 138$143{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 0.48 \mathrm{H})$, $8.11(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 0.18 \mathrm{H}), 8.07$ (br s, $0.33 \mathrm{H}, 169 \mathrm{~b}$ ), $8.03-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.36$ (app. t, $\mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.13(\mathrm{~m}, 5 \mathrm{H}), 7.09-6.92(\mathrm{~m}, 0.81 \mathrm{H}), 2.87-2.76(\mathrm{~m}, 2.34 \mathrm{H}), 2.58$ (app. t, J $=7.4 \mathrm{~Hz}, 1.62 \mathrm{H}), 2.52\left(\mathrm{~s}, 0.99 \mathrm{H}, \mathbf{1 6 9 b}, \mathrm{CH}_{3}\right), 2.46\left(\mathrm{~s}, 0.54 \mathrm{H}, \mathbf{1 6 9 a}, \mathrm{CH}_{3}\right)$, $2.39\left(\mathrm{~s}, 1.44 \mathrm{H}, \mathbf{1 6 9} \mathbf{c}, \mathrm{CH}_{3}\right), 2.25-2.24(3 \times \mathrm{s}, 3 \mathrm{H}, \mathrm{Ts}-\mathrm{Me}) .{ }^{13} \mathrm{CNMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 144.3,144.2,144.2,140.8,140.5,138.5,137.7,137.3,137.0,136.1,135.9,135.6,135.4$, $134.8,132.3,132.2$, $131.6,131.0,130.1,129.3,129.2,129.1,129.1,128.7,128.6,128.5$, $127.9,127.7,127.5,127.4,127.4,127.2,127.2,127.2,127.1,127.0,126.9,126.8,126.4$, $126.3,126.3,126.2,125.1,118.9,118.8,118.4,118.1,116.1,29.8,29.5,29.5,23.4,22.2$, 21.6, 21.4, 20.8, 20.7, 20.1. HRMS ( $\mathrm{ES}^{+}$) calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})^{+}$: 388.1366, found: 388.1364 .

## 6- and 7-Phenyl-2,3,4,9-tetrahydro-1H-carbazole, 170



170a


170b

Isolated $45.5 \mathrm{mg}(57 \%)$ as a mixture of the two major products in a 1.6:1 ratio as a pale brown crystalline solid, m.p. $57-61^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42$ $(\mathrm{d}, J=1.4 \mathrm{~Hz}, 0.6 \mathrm{H}), 8.21(\mathrm{dd}, J=8.4,0.9 \mathrm{~Hz}, 0.4 \mathrm{H})$, $7.72-7.64(\mathrm{~m}, 3.2 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 1.8 \mathrm{H}), 7.40-7.27(\mathrm{~m}$, $3.6 \mathrm{H}), 7.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 0.8 \mathrm{H}, \mathbf{1 7 0 a}$ TsAr-H$), 7.17(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1.2 \mathrm{H}, \mathbf{1 7 0 b}$ TsArH), $7.06(\mathrm{dd}, J=7.3,0.9 \mathrm{~Hz}, 0.4 \mathrm{H}), 3.06-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{tt}, J=6.0,2.0 \mathrm{~Hz}, 1.2 \mathrm{H}$, 170b $\mathrm{CH}_{2}$ ), $2.34\left(\mathrm{~s}, 1.2 \mathrm{H}, \mathbf{1 7 0 a} \mathrm{CH}_{3}\right), 2.31\left(\mathrm{~s}, 1.8 \mathrm{H}, \mathbf{1 7 0 b} \mathrm{CH}_{3}\right), 1.95$ (tt, $J=6.1$, $\left.2.0 \mathrm{~Hz}, 0.8 \mathrm{H}, \mathbf{1 7 0 a} \mathrm{CH}_{2}\right), 1.92-1.83(\mathrm{~m}, 1.2 \mathrm{H}), 1.83-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 0.8 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.6,141.9,141.0,137.4,137.0,136.6,136.5,136.1$, $135.9,135.3,129.9,129.8,129.7,129.5,128.9,128.0,127.6,127.6,127.2,127.1,126.6$,
$126.5,125.1,123.3,122.8,118.7,118.6,118.3,113.4,113.1,25.2,24.9,24.5,23.4,22.9$, 22.7, 22.2, 21.7, 21.6, 21.3. $\mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})^{+}: 402.1528$, found: 402.1531.

## 7-Tosyl-8,9,10,11-tetrahydro-7 H-benzo[c]carbazole, 172



Isolated $48.8 \mathrm{mg}(51 \%)$ as a pale yellow crystalline solid, m.p. 170$173^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.34$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.56-$ $7.49(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{br}$ $\mathrm{s}, 4 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 144.7,136.5,134.7$, $133.3,131.1,129.9,128.7,128.2,126.4,126.0,124.5,124.5,124.4,123.9,120.1,114.7$, 25.2, 25.2, 22.9, 22.8, 21.6. HRMS (ES ${ }^{+}$) calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})^{+}: 376.13658$, found: 376.1365 .

## Methyl 2-(2-methyl-3-tosyl-3H-benzo[e]indol-1-yl)acetate, 173



Prepared as with general procedure but an additional equivalent of boron trifluoride etherate was added and a further 1 h of heating required for complete consumption of hydrazone intermediate. The major regioisomer was isolated to give $41.0 \mathrm{mg}(68 \%)$ as a pale yellow solid. ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.55$ (ddd, $J=8.4,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.18$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $4.05(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $171.5,144.9,136.5,134.2,133.7,131.2,130.0,129.0,127.5,126.4,126.3,125.2,124.6$, 123.9 , 123.2, 114.7, 114.7, 52.4, 32.6, 21.6, 12.8. HRMS ( $\mathrm{ES}^{+}$) calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}^{+}$ $(\mathrm{M}+\mathrm{H})^{+}: 408.12641$; found 408.1266

1-Methyl-2-phenyl-3-tosyl-3H-benzo[e]indole, 174


The major product was isolated $28.8 \mathrm{mg}(27 \%)$ as a pale brown crystalline solid, m.p. $138-142^{\circ} \mathrm{C} .{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.56$ (d, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.80$ (d, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (ddd, $J=8.4,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.42$ (m, 4H), 7.42-7.35 (m, 2H), $7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{~s}$, $3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 144.6,136.4,135.6,134.6,132.1,131.7$, $131.5,129.4,128.9,128.6,128.6,127.6,126.8,126.3,125.8,125.5,124.7,123.8,121.0$,
115.9, 21.6, 13.9. $\mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})^{+}$: 412.1366, found: 412.1368.

## 7-Bromo-5-isopropyl-9-tosyl-2,3,4,9-tetrahydro-1 H-carbazole, 183b



Isolated $3 \mathrm{mg}(6 \%)$ as a brown crystalline solid, $57-61{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.62(\mathrm{~m}, 2 \mathrm{H})$, $7.26-7.19(\mathrm{~m}, 3 \mathrm{H}), 3.51$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.97$ (tt, $J=6.1$, $2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{tt}, J=5.7,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.71(\mathrm{~m}$, $4 \mathrm{H}), 1.24(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.8,143.7,137.3,136.3$, $135.8,130.1,126.7,126.6,123.2,118.0,117.8,115.0,29.1,25.1,24.5,24.2,22.8,22.7$, 21.7. $\mathrm{MS}\left(\mathrm{ES}^{+}\right)$calcd. for $\mathrm{C}_{22} \mathrm{H}_{24}{ }^{79} \mathrm{BrNO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: 446.1, and for $\mathrm{C}_{22} \mathrm{H}_{24}{ }^{81} \mathrm{BrNO}_{2} \mathrm{~S}$ $(\mathrm{M}+\mathrm{H})^{+}$: 448.1; found: 446.1, 448.1.

### 6.2 Biphenyl aryne precursors via palladium-mediated crosscoupling

### 6.2.1 Starting material synthesis

Aryne precursor 216 was synthesised according to the protocol of Peña et al. ${ }^{[75]}$ from 1,6 -dibromophenol and is known in the literature. ${ }^{[249]}$ Purification by distillation under high vacuum was used in addition to column chromatography.

4-Bromo-2-(trimethylsilyl)phenyl trifluoromethanesulfonate, 220


2,6-Dibromophenol $(\mathbf{2 1 8}, 8.10 \mathrm{~g}, 32.2 \mathrm{mmol})$ was dissolved in HMDS $(7.4 \mathrm{ml}, 35.4 \mathrm{mmol})$ and heated at reflux for 2 h . The volatile components were removed in vacuo to leave $10.4 \mathrm{~g}(100 \%)$ of the intermediate $(2,6-$ dibromophenyl)trimethylsilane (219). Crude 219 ( $6.42 \mathrm{~g}, 19.8 \mathrm{mmol}$ ) was dissolved in THF ( 130 ml ), the solution cooled to $-100^{\circ} \mathrm{C}$ (internal temperature, liquid $\mathrm{N}_{2} / \mathrm{Et}_{2} \mathrm{O}$ bath) and $n$-butyl lithium in hexane ( $13.6 \mathrm{ml}, 1.6 \mathrm{~m}, 1.1 \mathrm{eq}$. ) was added dropwise. The mixture was stirred for 20 min while the temperature warmed to approx. $-80^{\circ} \mathrm{C}$. The mixture was again cooled to $-100^{\circ} \mathrm{C}$, triflic anhydride ( $6.7 \mathrm{~g}, 23.8 \mathrm{mmol} 1.2 \mathrm{eq}$.) added dropwise and the mixture then warmed to $-70^{\circ} \mathrm{C}$ over 20 min . Cold sat. aq. sodium bicarbonate $(120 \mathrm{ml})$ was added, the phases separated and the aqueous layer was extracted twice with diethyl ether. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. Purification by column chromatography (heptane) gave a white solid $(3.4 \mathrm{~g}, 45 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, J=2.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.54(\mathrm{dd}, J=8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.38(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.9,139.0,135.9,134.2,121.8,121.5,118.6\left(\mathrm{q}, J_{C F}=320.1 \mathrm{~Hz}\right)$, $-0.9 .{ }^{[250]}$

## General procedure for the synthesis of pinacol boronic esters from the free boronic

 acidTo a solution of pinacol ( $\sim 3 \mathrm{mmol}$, 1 eq.) in dichloromethane ( 0.5 M ) was added the boronic acid (1eq.) and the reaction mixture stirred for 2 h at rt . The solvent was removed in vacuo to give the respective pinacol boronic esters in high yields.
$\mathbf{2 4 7},{ }^{[204]} \mathbf{2 5 1}{ }^{[251]}$ and $\mathbf{3 2 1}{ }^{[252]}$ were synthesised according to the general procedure and are known in the literature.


321


247


251

4-Fluoro-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile, 253


Synthesised according to the general procedure. Isolated $485 \mathrm{mg}(93 \%)$ as a white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{dd}, J=5.3,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.67(\mathrm{ddd}, J=8.5,5.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{app} . \mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.30(\mathrm{~s}, 12 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.6 .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.2$ $\left(\mathrm{d}, J_{C F}=261.2 \mathrm{~Hz}\right), 141.8\left(\mathrm{~d}, J_{C F}=9.9 \mathrm{~Hz}\right), 137.2\left(\mathrm{~d}, J_{C F}=10.4 \mathrm{~Hz}\right), 118.2(\mathrm{~s}), 116.9$ $\left(\mathrm{d}, J_{C F}=25.0 \mathrm{~Hz}\right), 108.4\left(\mathrm{~d}, J_{C F}=3.6 \mathrm{~Hz}\right), 84.8(\mathrm{~s}), 24.9(\mathrm{~s})$. The $C$-B peak was not observed. ${ }^{[253]}$

2-(2-Chloro-5-nitrophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, 255


Synthesised according to the general procedure. Isolated $863 \mathrm{mg}(96 \%)$ as a red solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $8.17(\mathrm{dd}, J=8.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 12 \mathrm{H})$. ${ }^{11}$ B NMR ( $128 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 22.5 .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 146.7,146.1,131.5$, 130.6, 126.6, 85.1, 24.9. The $C$-B peak was not observed.

## N-(2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)benzamide, 257



To a solution of $\mathbf{3 2 1}(630 \mathrm{mg}, 2.46 \mathrm{mmol})$ in dichloromethane ( 110 ml ) was added triethylamine $(1.0 \mathrm{ml}, 7.2 \mathrm{mmol})$ and benzoyl chloride $(0.36 \mathrm{ml}$, 3.1 mmol ) and the mixture stirred for 10 min at rt . Water ( 100 ml ) was then added and the aqueous layer extracted twice with dichloromethane. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The crude product was recrystallised from toluene, before being redissolved in dichloromethane and washed with water and dil. HCl . The organic layer was then dried $\left(\mathrm{MgSO}_{4}\right)$, the solvent removed, and the product again recrystallised from toluene to give a white solid, $450 \mathrm{mg}(57 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.30(\mathrm{~s}, 1 \mathrm{H}), 8.74$ $(\mathrm{dd}, J=8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{dd}, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.44$ $(\mathrm{m}, 4 \mathrm{H}), 7.11$ (app. td, $J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 165.3,145.1,136.4,135.5,133.2,131.8,128.6,127.4,123.2,119.3,84.6,25.1$. The $C$-B peak was not observed. ${ }^{[254]}$

### 6.2.2 Biphenyl synthesis

3-(trimethylsilyl)-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate, 221


Aryne precursor $\mathbf{2 2 0}$ ( $80 \mathrm{mg}, 0.21 \mathrm{mmol}$ ), phenylboronic acid (223, $28.4 \mathrm{mg}, 1.1 \mathrm{eq}$.$) and caesium carbonate ( 207 \mathrm{mg}, 3$ eq.) were added to a tube, which was flushed with nitrogen. $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(9.7 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and tri-tert-butylphosphine ( $30 \mu \mathrm{l}$ of a $\sim 0.83 \mathrm{M}$ solution in tetrahydrofuran, $12 \mathrm{~mol} \%$ ) were dissolved in tetrahydrofuran $(2 \mathrm{ml})$, which was added through a septum and the mixture stirred at rt for 5 h . The contents were then filtered through Celite, being rinsed with diethyl ether, and the solvents removed in vacuo. The crude product was purified by column chromatography, eluting with heptane. Isolated 33.4 mg ( $42 \%$ ) as an off-white, crystalline solid, m.p. $50-52{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71$ (d, $J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.45-$ $7.37(\mathrm{~m}, 2 \mathrm{H}), 0.42(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.6,140.7,139.9,135.1$, $133.1,130.1,129.1,128.0,127.4,119.9,118.7\left(\mathrm{q}, J_{C F}=320.2 \mathrm{~Hz}\right),-0.65 .{ }^{[255]}$

## General procedure for biphenyl aryne precursor synthesis A

Aryne precursor 216 (1 eq., $\sim 0.2 \mathrm{mmol}$ ), the appropriate boronic acid (1.1 eq.), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ $(5 \mathrm{~mol} \%),\left[\mathrm{HP}(t-\mathrm{Bu})_{3}\right] \mathrm{BF}_{4}(12 \mathrm{~mol} \%)$ and potassium phosphate tribasic (3 eq.) were weighed to a tube which was evacuated and refilled with nitrogen three times. Toluene and water ( $5: 1,1 \mathrm{ml}$ toluene for every 0.1 mmol of $\mathbf{4 4}$ ), which had been degassed under a flow of nitrogen for at least 5 min , were added sequentially through a septum and the mixture stirred at $90^{\circ} \mathrm{C}$ (external heating-block temperature) for 5 h . On cooling, the contents were filtered through Celite, being rinsed with diethyl ether, and the solvents removed in vacuo. The crude product was purified by column chromatography, elution was performed with neat heptane or with ethyl acetate/heptane (1-5 \%).

## General procedure for biphenyl aryne precursor synthesis B

Aryne precursor 216 (1 eq.), the appropriate boronic acid or pinacol boronic ester (2 eq. unless otherwise stated), a mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and $\left[\mathrm{HP}(t-\mathrm{Bu})_{3}\right] \mathrm{BF}_{4}$ (palladium : phosphine $1: 1.2,10 \% \mathrm{Pd}$ ), which had been previously mixed in a pestle and mortar, and potassium phosphate tribasic (3eq.) were weighed to a tube which was evacuated and refilled with nitrogen three times. Toluene and water ( $5: 1,1 \mathrm{ml}$ toluene for every 0.1 mmol of $\mathbf{4 4}$ ), which had been degassed under a flow of nitrogen for at least 5 min , were added sequentially through a septum and the mixture stirred at $90^{\circ} \mathrm{C}$ (external heating-block temperature) for 5 h . On cooling, the contents were filtered through Celite, being rinsed with diethyl ether, and the solvents removed in vacuo. The crude product was purified by column chromatography, elution was typically performed with diethyl ether/hexane or ethyl acetate/hexane ( $0-5 \%$ ). In some cases hexane/toluene gave superior separation.

## General procedure for biphenyl aryne precursor synthesis C

The appropriate boronic acid or pinacol boronic ester (2 eq.), a mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and $\left[\mathrm{HP}(t-\mathrm{Bu})_{3}\right] \mathrm{BF}_{4}$ (palladium : phosphine $1: 1.2,10 \% \mathrm{Pd}$ ), which had been previously mixed in a pestle and mortar, and potassium phosphate tribasic (3 eq.) were weighed to a tube which was evacuated and refilled with nitrogen three times. A stock solution of aryne precursor 216 ( 1 eq., 0.106 m ) and dodecane ( 0.058 m ) in degassed toluene was added through a septum followed by water (volume to give $5: 1$ ratio of stock solution: water), which had been degassed under a flow of nitrogen for at least 5 min , and the mixture stirred at $90^{\circ} \mathrm{C}$ (external heating-block temperature) for 5 h . On cooling, the contents were filtered through Celite, being rinsed with diethyl ether, and the solvents removed in vacuo. The crude product was purified by column
chromatography, elution was typically performed with diethyl ether/hexane or ethyl acetate/hexane ( $0-5 \%$ ). In some cases hexane/toluene gave superior separation.

## 3-(Trimethylsilyl)-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate, 44

$$
\begin{aligned}
& \text { TMS } \begin{array}{l}
\text { Prepared according to general procedure A from boronic acid 223. Isolated } \\
77 \mathrm{mg}(97 \%) \text { as a colourless oil. }{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60-7.52(\mathrm{~m}, \\
\mathrm{Ph} \\
1 \mathrm{H}), 7.47-7.33(\mathrm{~m}, 7 \mathrm{H}), 0.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.8, \\
137.0,136.4,136.0,135.9,133.7,129.8,128.5,128.2,128.1,118.1\left(\mathrm{q}, J_{C F}=320.7 \mathrm{~Hz}\right), \\
0.35 .{ }^{[67]}
\end{array}
\end{aligned}
$$

4'-Methyl-3-(trimethylsilyl)-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate, 225


Prepared according to general procedure A from boronic acid 224. Isolated $67.9 \mathrm{mg}(82 \%)$ as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.60-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 0.48(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.0,138.0,136.4,135.9,135.7,134.2,133.8$, $129.6,129.2,128.2,118.2\left(\mathrm{q}, J_{C F}=320.7 \mathrm{~Hz}\right), 21.4,0.39 . \mathrm{HRMS}\left(\mathrm{EI}^{+}\right)$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{SSi}(\mathrm{M})^{+}$: 388.0776 , found: 388.0765.

## 4'-Methoxy-3-(trimethylsilyl)-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate, 227



Prepared according to general procedure A from boronic acid 226. Isolated ( $89 \%$ ) as a white crystalline solid, m.p. $72-75{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 0.46(\mathrm{~s}$, 9H). ${ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.7,149.0,135.0,134.9,134.5,132.7,129.9$, $128.4,127.2,117.8\left(\mathrm{q}, J_{C F}=320.6 \mathrm{~Hz}\right), 112.9,54.4,-0.62 . \mathrm{HRMS}^{\left(\mathrm{EI}^{+}\right)}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{SSi}(\mathrm{M})^{+}: 404.0720$, found: 404.072838

## 4'-(Trifluoromethyl)-3-(trimethylsilyl)-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate, 229



Prepared according to general procedure A from boronic acid 228. Isolated $76.7 \mathrm{mg}(82 \%)$ as a white crystalline solid, m.p. $72-74{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{dd}, J$ $=7.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{app} . \mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42(\mathrm{dd}, J=7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.46(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.4$,
$139.7,135.8,135.5,134.1,132.4,129.6\left(\mathrm{q}, J_{C F}=32.4 \mathrm{~Hz}\right), 129.2,127.4,124.4\left(\mathrm{q}, J_{C F}=\right.$ $3.7 \mathrm{~Hz}), 123.2\left(\mathrm{q}, J_{C F}=272.1 \mathrm{~Hz}\right), 117.1\left(\mathrm{q}, J_{C F}=320.5 \mathrm{~Hz}\right)-0.69 .{ }^{19} \mathrm{~F} \operatorname{NMR}(376 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) $\delta$-62.6, -74.0. HRMS ( $\mathrm{EI}^{+}$) calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{6} \mathrm{O}_{3} \mathrm{SSi}(\mathrm{M})^{+}$: 442.0488, found: 442.0470 .

## 3'-Chloro-3-(trimethylsilyl)-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate, 231



Prepared according to general procedure B from boronic acid 230. Isolated $75.8 \mathrm{mg}(87 \%)$ as a colourless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.59(\mathrm{dd}, J=6.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.27(\mathrm{~m}, 6 \mathrm{H}), 0.45(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.4,137.8,135.5,135.4,134.0,133.4$, $132.5,128.8,128.8,127.4,127.3,127.0,117.2\left(\mathrm{q}, J_{C F}=320.8 \mathrm{~Hz}\right),-0.68 . \mathrm{HRMS}\left(\mathrm{EI}^{+}\right)$ calcd. for $\mathrm{C}_{16} \mathrm{H}_{16}{ }^{35} \mathrm{ClF}_{3} \mathrm{O}_{3} \mathrm{SSi}(\mathrm{M})^{+}$: 408.0225 , found: 408.0216

2'-Chloro-5'-(trifluoromethyl)-3-(trimethylsilyl)-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate, 233


Prepared according to general procedure C from boronic acid 232. Isolated $260 \mathrm{mg}(82 \%)$ as a colourless oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.67(\mathrm{dd}, J=7.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.58(\mathrm{br} \mathrm{m}, 3 \mathrm{H}), 7.48$ (app. t, $J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=7.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.2,137.8,137.5,136.5,136.1,133.8,132.3,130.3,129.4\left(\mathrm{q}, J_{C F}\right.$ $=33.4 \mathrm{~Hz}), 129.4\left(\mathrm{q}, J_{C F}=3.6 \mathrm{~Hz}\right), 128.2,126.4(\mathrm{~m}), 123.7\left(\mathrm{q}, J_{C F}=270.0 \mathrm{~Hz}\right), 118.1$ $\left(\mathrm{q}, J_{C F}=320.0 \mathrm{~Hz}\right), 0.11 .{ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.7,-74.4 . \mathrm{HRMS}\left(\mathrm{EI}^{+}\right)$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{15}{ }^{35} \mathrm{ClF}_{6} \mathrm{O}_{3} \mathrm{SSi}(\mathrm{M})^{+}$: 476.0104, found: 476.0089

3-(Trimethylsilyl)-4'-vinyl-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate, 235


Prepared according to general procedure B from boronic acid 234. Isolated $75.9 \mathrm{mg}(89 \%)$ as an off-white crystalline solid, m.p. $56-59^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{dd}, J=5.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 4 \mathrm{H}), 6.77(\mathrm{dd}, J=17.6,10.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.83(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.46(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 149.8,137.4,136.5,136.5,136.1,136.1,136.0,133.6,129.9,128.2,126.3,118.2$ $\left(\mathrm{q}, J_{C F}=320.6 \mathrm{~Hz}\right), 114.6,0.38 . \mathrm{HRMS}\left(\mathrm{EI}^{+}\right)$calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{SSi}(\mathrm{M})^{+}: 400.0771$, found: 400.0772 .

## 2'-Fluoro-3-(trimethylsilyl)-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate, 237



Prepared according to general procedure $B$ from boronic acid 236. Isolated $172 \mathrm{mg}(66 \%)$ as a yellow oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62$ $(\mathrm{dd}, J=6.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.23($ app. td, $J=7.5,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20-7.10(\mathrm{~m}, 1 \mathrm{H}), 0.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.8$ $\left(\mathrm{d}, J_{C F}=248.7 \mathrm{~Hz}\right), 150.0,136.8,135.7,134.0,132.2\left(\mathrm{~d}, J_{C F}=2.8 \mathrm{~Hz}\right), 130.5,130.3$ $\left(\mathrm{d}, J_{C F}=10.7 \mathrm{~Hz}\right), 128.2,124.6\left(\mathrm{~d}, J_{C F}=15.4 \mathrm{~Hz}\right), 124.3\left(\mathrm{~d}, J_{C F}=3.6 \mathrm{~Hz}\right), 118.1(\mathrm{q}$, $\left.J_{C F}=320.3 \mathrm{~Hz}\right), 115.8\left(\mathrm{~d}, J_{C F}=22.3 \mathrm{~Hz}\right), 0.23 .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-74.3$, -115.2. HRMS ( $\mathrm{EI}^{+}$) calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{4} \mathrm{O}_{3} \mathrm{SSi}(\mathrm{M} \mathrm{-Me})^{+}: 377.0285$, found: 377.0274.
$2^{\prime}$-Fluoro-5'-(trifluoromethyl)-3-(trimethylsilyl)-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate, 239


Prepared according to general procedure C from boronic acid 238. Isolated $227 \mathrm{mg}(74 \%)$ as a white crystalline solid, m.p. $53-58{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.49$ (app. t, $J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.44 (ddd, $J=7.4,1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.27 (app. t, $J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.6\left(\mathrm{~d}, J_{C F}=254.9 \mathrm{~Hz}\right)$, $149.4,137.5,136.3,133.8,129.9-129.4(\mathrm{~m}), 128.9,128.4,127.9-127.5(\mathrm{~m}), 127.1(\mathrm{dd}$, $\left.J_{C F}=33.5,3.8 \mathrm{~Hz}\right), 125.6\left(\mathrm{~d}, J_{C F}=16.7 \mathrm{~Hz}\right), 123.8\left(\mathrm{q}, J_{C F}=272.1 \mathrm{~Hz}\right), 118.1\left(\mathrm{q}, J_{C F}\right.$ $=320.1 \mathrm{~Hz}), 116.6\left(\mathrm{~d}, J_{C F}=23.7 \mathrm{~Hz}\right), 0.17 .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.1,-74.3$, -109.4.HRMS $\left(\mathrm{EI}^{+}\right)$calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{7} \mathrm{O}_{3} \mathrm{SSi}(\mathrm{M}-\mathrm{Me})^{+}$: 445.0159, found: 445.0155 .

4'-Nonyl-3-(trimethylsilyl)-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate, 241


Prepared according to general procedure C from boronic acid 240. Isolated $229 \mathrm{mg}(71 \%)$ as a colourless oil. ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.58-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.72-2.53(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{p}, J=6.9$, $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.42-1.18(\mathrm{~m}, 12 \mathrm{H}), 1.07-0.79(\mathrm{~m}, 3 \mathrm{H}), 0.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 150.1,143.1,136.4,135.9,135.7,134.2,133.7,129.6,128.6,128.2,35.8,32.1$, $31.6,29.7,29.7,29.5,29.3,22.8,14.3,0.38$. The triflate $q$ was not resolved. HRMS (EI ${ }^{+}$) calcd. for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{SSi}(\mathrm{M})^{+}$: 500.2023 , found: 500.2022 .

2'-Methyl-3-(trimethylsilyl)-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate, 242
 $\delta 7.58(\mathrm{dd}, J=7.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43($ app. t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ $(\mathrm{dd}, J=7.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.19(\mathrm{~m}, 4 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 0.45(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.1,136.6,136.3,136.0,135.9,135.3,134.2,130.9$, $130.2,128.4,128.0,125.7,118.06\left(\mathrm{q}, J_{C F}=320.5 \mathrm{~Hz}\right), 19.8,0.17 . \mathrm{HRMS}_{\left(\mathrm{EI}^{+}\right)}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{SSi}(\mathrm{M})^{+}$: 388.0776, found: 388.0769.

## 2-(Naphthalen-1-yl)-6-(trimethylsilyl)phenyl trifluoromethanesulfonate, 244



Prepared according to general procedure C from boronic acid 243. Isolated $66.3 \mathrm{mg}(98 \%)$ as a pale yellow oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.97-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.62(\mathrm{br} \mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57-7.43(\mathrm{~m}, 6 \mathrm{H}), 0.48(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.6$, $136.4,135.6,135.1,134.7,134.3,133.7,131.7,128.9,128.8,128.4,128.1$, 126.4, 126.0, 125.5, 125.2, $117.54\left(\mathrm{q}, J_{C F}=320.5 \mathrm{~Hz}\right), 0.21 . \mathrm{HRMS}\left(\mathrm{EI}^{+}\right)$calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{SSi}(\mathrm{M})^{+}: 424.0771$, found: 424.0753.

## 5'-Cyano-2'-fluoro-3-(trimethylsilyl)-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate,

 254

Prepared according to general procedure C from pinacol boronic ester 253. Isolated $160 \mathrm{mg}(60 \%)$ as a pale yellow crystalline solid, m.p. 84$87^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.43$ (app. t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 1 \mathrm{H})$, $0.36(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.2\left(\mathrm{~d}, J_{C F}=259.1 \mathrm{~Hz}\right), 149.2,137.9$, $136.5\left(\mathrm{~d}, J_{C F}=4.7 \mathrm{~Hz}\right), 136.4,134.5\left(\mathrm{~d}, J_{C F}=9.7 \mathrm{~Hz}\right), 133.6,128.5,128.1,126.7(\mathrm{~d}$, $\left.J_{C F}=17.2 \mathrm{~Hz}\right), 118.1\left(\mathrm{~d}, J_{C F}=319.9 \mathrm{~Hz}\right), 117.8,117.4\left(\mathrm{~d}, J_{C F}=24.0 \mathrm{~Hz}\right), 108.9(\mathrm{~d}$, $\left.J_{C F}=3.9 \mathrm{~Hz}\right), 0.14 .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-74.3,-104.7 . \mathrm{HRMS}\left(\mathrm{EI}^{+}\right)$calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{4} \mathrm{NO}_{3} \mathrm{SSi}(\mathrm{M}-\mathrm{Me})^{+}: 402.0238$, found: 402.0223 .

## 2'-Cyano-3-(trimethylsilyl)-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate, 248



Prepared according to general procedure B from pinacol boronic ester 247. Isolated $55.5 \mathrm{mg}(87 \%)$ as a colourless oil ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.76 (ddd, $J=7.9,1.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 3 \mathrm{H})$, $7.44(\mathrm{dd}, J=7.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $149.0,140.7,137.7,136.5,133.6,133.1,132.8,132.7,131.6,128.7,128.4,118.12$ (q, $J_{C F}$ $=320.3 \mathrm{~Hz}), 117.8,113.4,0.15 . \mathrm{HRMS}\left(\mathrm{EI}^{+}\right)$calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NNaO}_{3} \mathrm{SSi}^{+}(\mathrm{M}+\mathrm{Na})^{+}$: 422.0464, found: 422.0465 IR (thin film, $\mathrm{cm}^{-1}$ ): 2956 (w), 2228 (w), 1601 (w), 1393 (m).

## 2-(Furan-3-yl)-6-(trimethylsilyl)phenyl trifluoromethanesulfonate, 250



Prepared according to general procedure B from pinacol boronic ester 249. Isolated $71.9 \mathrm{mg}(93 \%)$ as a yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63$ (br s, 1H), 7.51 (dd, $J=7.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (app. t, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.44(\mathrm{dd}, J=7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ (app. t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.53(\mathrm{~m}$, $1 \mathrm{H}), 0.43$ (br s 9 H$) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.3,142.3,140.2,135.1,134.8$, $131.5,127.2,126.4,120.3,117.4\left(\mathrm{q}, J_{C F}=320.6 \mathrm{~Hz}\right), 110.2,-0.58$. HRMS (EI ${ }^{+}$) calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{SSi}(\mathrm{M})^{+}: 364.0407$, found: 364.0390 .

2-(2-Chloropyridin-3-yl)-6-(trimethylsilyl)phenyl trifluoromethanesulfonate, 252
 251. Isolated $48.5 \mathrm{mg}(56 \%)$ as a white crystalline solid, m.p. $118-121^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{dd}, J=4.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J$ $=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{app} . \mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36(\mathrm{dd}, J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=7.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.43(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.6,149.6,149.2,141.1,137.5,136.0,133.6,132.5,132.0,128.3$, $122.3,118.1\left(\mathrm{q}, J_{C F}=320.4 \mathrm{~Hz}\right.$ ), 0.06. HRMS ( $\mathrm{EI}^{+}$) calcd. for $\mathrm{C}_{15} \mathrm{H}_{16}{ }^{35} \mathrm{ClF}_{3} \mathrm{NO}_{3} \mathrm{SSi}^{+}$ $(\mathrm{M}+\mathrm{H})^{+}: 410.0255$, found: 410.0261 .

2'-Chloro-5'-nitro-3-(trimethylsilyl)-[1, 1'-biphenyl]-2-yl trifluoromethanesulfonate, 256


Prepared according to general procedure C from pinacol boronic ester 255. Isolated $101 \mathrm{mg}(42 \%)$ as a pale-blue crystalline solid, m.p. 74$77^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.28(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.21$ $(\mathrm{dd}, J=8.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=7.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.51 (app. t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=7.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.44$ $(\mathrm{s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.0,146.5,140.9,137.9,137.4,136.3,133.6$,
$131.7,130.7,128.4,127.5,124.4,118.1\left(q, J_{C F}=320.3 \mathrm{~Hz}\right), 0.07 . \mathrm{HRMS}^{\left(\mathrm{EI}^{+}\right)}$) calcd. for $\mathrm{C}_{15} \mathrm{H}_{12}{ }^{35} \mathrm{ClF}_{3} \mathrm{NO}_{5} \mathrm{SSi}(\mathrm{M}-\mathrm{Me})^{+}$: 437.9841, found: 437.9835 .

2'-Benzamido-3-(trimethylsilyl)-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate, 258


Prepared according to general procedure B from pinacol boronic ester 257. Isolated $31.9 \mathrm{mg}(41 \%)$ as a yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.68-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.36$ $(\mathrm{m}, 6 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 0.42(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $165.6,149.6,137.2,136.3,135.6,134.7,134.5,132.9,132.0,131.2,129.6$, $128.9,128.7,128.6,127.1,125.1,123.9,0.15$. The triflate $q$ was not resolved. HRMS $\left(\mathrm{EI}^{+}\right)$calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{SSi}^{+}$: 494.1064, found: 494.1052.

2'-Amino-3-(trimethylsilyl)-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate, 260


Prepared according to general procedure B with 2.5 eq . of the boronic acid amine hydrochloride salt 259. Isolated $25 \mathrm{mg}(49 \%)$ as a brown oil. ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{dd}, J=7.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ (dd, $J=7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.43 (app. t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.18 (app. td, $J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.73(\mathrm{~m}, 2 \mathrm{H})$, 3.19 (br s, 2H), 0.44 ( $\mathrm{s}, 9 \mathrm{H}$ ). ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 150.4,144.3,136.4,136.0$, $134.5,133.6,131.5,129.6,128.4,122.2,118.7,118.2\left(\mathrm{q}, J_{C F}=320.1 \mathrm{~Hz}\right), 116.3,0.20$. HRMS ( $\mathrm{ES}^{+}$) calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{SSi}^{+}(\mathrm{M}+\mathrm{H})^{+}$: 390.0802, found: 390.0801.

2'-Methoxy-3-(trimethylsilyl)-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate, 262


Prepared according to general procedure B from the potassium trifluoroborate salt 261. Isolated $17.2 \mathrm{mg}(27 \%)$ as a colourless oil. ${ }^{1} \mathrm{H} N \mathrm{NR}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.30$ (ddd, $J=8.3,7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.95$ (app. td, $J$ $=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{br} \mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 0.36(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.7,150.7,135.9,134.9,134.3,132.8,131.9,130.0,127.9,125.9$, $120.7,118.2\left(\mathrm{q}, J_{C F}=320.5 \mathrm{~Hz}\right), 111.0,55.5,0.22$.

2-(p-Tolylethynyl)-6-(trimethylsilyl)phenyl trifluoromethanesulfonate, 288


Aryne precursor 44 ( $60 \mathrm{mg}, 0.16 \mathrm{mmol}), p$-methyl-phenylacetylene $(29 \mathrm{mg}, 1.5 \mathrm{eq}),. \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and $\left[\mathrm{HP}(t-\mathrm{Bu})_{3}\right] \mathrm{BF}_{4}(12.8 \mathrm{mg}$ of the premixed catalyst, $5 \mathrm{~mol} \%$ and $12 \mathrm{~mol} \%$ ), copper iodide ( 3 mg , $10 \mathrm{~mol} \%$ ) and potassium phosphate tribasic (3eq.) were weighed to a tube which was evacuated and refilled with nitrogen three times. Toluene and water ( $5: 1,1.6 \mathrm{ml}$ and 0.3 ml ) were added sequentially through a septum and the mixture stirred at $90^{\circ} \mathrm{C}$ (external heating-block temperature) for 5 h . On cooling, the contents were filtered through Celite, being rinsed with diethyl ether, and the solvents removed in vacuo. The crude product was purified by column chromatography (hexane, $1 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane). Isolated $9.3 \mathrm{mg}(11 \%)$ as a thick yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=7.5$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.43 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.34 (app. t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.17 (d, $J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 0.41(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 152.2,139.3,136.4,135.8$, 135.4, 131.7, 129.3, 127.7, 119.6, 118.8 ( $\mathrm{q}, J_{C F}=320.6 \mathrm{~Hz}$ ), 118.7, 95.8, 83.1, 21.7, 0.13. HRMS ( $\mathrm{ES}^{+}$) calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{SSi}^{+}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}: 430.1115$, found: 430.1110 .

### 6.2.3 Reactions with substituted biphenyl aryne precursors

Carbazole, 265

$2^{\prime}$-amino aryne precursor $\mathbf{2 6 0}(24 \mathrm{mg}, 0.062 \mathrm{mmol})$ and caesium fluoride ( $28 \mathrm{mg}, 3$ eq.) were dissolved in acetonitrile $(0.8 \mathrm{ml})$ and the reaction stirred overnight. The mixture was then diluted with ethyl acetate, washed with water - which was extracted with another portion of ethyl acetate-and the combined organic layers dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed in vacuo and the crude product purified by column chromatography (hexane:ethyl acetate $9: 1$ ) to give carbazole, $7 \mathrm{mg}(68 \%)$ as a pale brown solid. ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.18(\mathrm{~m}, 2 \mathrm{H}) .{ }^{[256]}$

1-(Methyl(phenyl)amino)-9H-fluoren-9-one, 275


Aryne precursor 248 ( $47 \mathrm{mg}, 0.118 \mathrm{mmol}$ ), $N$-methylaniline ( $13 \mathrm{mg}, 0.123 \mathrm{mmol}$ ) and caesium fluoride ( $56 \mathrm{mg}, 0.37 \mathrm{mmol}$ ) were added to a vial, which was briefly flushed with nitrogen before acetonitrile ( 1.2 ml ) was added. The mixture was stirred overnight at rt after which the reaction was quenched with $\mathrm{HCl}(3 \mathrm{ml}, 1 \mathrm{~m})$, being stirred for 10 min . The solution was then made basic with sat. aq. $\mathrm{NaHCO}_{3}$, extracted three times
with diethyl ether, dried $\left(\mathrm{MgSO}_{4}\right)$, the solvent removed in vacuo and the crude product purified by column chromatography (hexane:ethyl acetate $7: 1$ ). The mixed fraction was recolumned (hexane:ethyl acetate $10: 1$ ) and the new mixed fraction from this second purification stirred in wet ethyl acetate with silica gel for 1 h . After subjecting this to a final round of chromatography the combined upper fractions gave the desired product as a red solid, $21.1 \mathrm{mg}(60 \%) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, 1 H ), 7.54 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.47 (app. td, $J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.35 (dd, $J=8.3$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.29 (app. td, $J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.20$ (m, 3 H ), 7.06 (d, $J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.03-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{tt}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 190.9,148.3,148.3,146.7,143.4,135.3,134.7,134.0,129.2,129.1,126.6,125.1$, 124.0, 120.8, 120.0, 118.4, 115.2, 41.1. HRMS (ES ${ }^{+}$) calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NONa}^{+}(\mathrm{M}+\mathrm{H})^{+}$: 308.1051, found: 308.1050 . IR (thin film, $\mathrm{cm}^{-1}$ ): 1698 (s).

## 2'-(Aminomethyl)-3-(trimethylsilyl)-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate, 277



Borane-dimethyl sulfide ( $62 \mu \mathrm{l}, 2.0 \mathrm{~m}$ in tetrahydrofuran, 1.1 eq. ) was added to a solution of aryne precursor $248(44.9 \mathrm{mg}, 0.112 \mathrm{mmol})$ in tetrahydrofuran ( 1.1 ml ) under nitrogen, the vessel sealed and heated to $60^{\circ} \mathrm{C}$ for $3 \mathrm{~h} . \mathrm{HCl}(3 \mathrm{ml}, 1.5 \mathrm{~m})$ was added and the mixture heated for a further 30 min at the same temperature after which it was made basic with sat. aq. $\mathrm{NaHCO}_{3}$ and extracted three times with ethyl acetate. The organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent removed in vacuo and the crude product purified by column chromatography ( $10: 1$ hexane: ethyl acetate followed by ethyl acetate and then acetonitrile) to isolate the reduced product, $19.1 \mathrm{mg}(42 \%)$ as a thick yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{dd}, J=7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{br} \mathrm{d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{br} \mathrm{d}, ~ J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30($ app. td, $J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23($ br d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75,3.67\left(\mathrm{ABq}, J_{A B}=14.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.93(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 0.44$ $(\mathrm{s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.9,141.2,136.4,135.7,135.2,135.1,134.3$, $131.2,129.0,128.1,127.9,126.8,118.1\left(\mathrm{q}, J_{C F}=320.5 \mathrm{~Hz}\right), 43.7,0.19 . \operatorname{HRMS}\left(\mathrm{ES}^{+}\right)$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{SSi}^{+}(\mathrm{M}+\mathrm{H})^{+}$: 404.0958, found: 404.0952 .

## 1,5,9-Tris(4-methoxyphenyl)triphenylene, 283



Aryne precursor 227 ( 0.667 mmol 271 mg ), tris(dibenzylideneacetone)dipalladium ( $30.1 \mathrm{mg}, 5 \mathrm{~mol} \%$ ) and caesium fluoride ( $305 \mathrm{mg}, 2.0 \mathrm{mmol}$ ) were added to a flask which was flushed with nitrogen. Acetonitrile ( 2 ml ), which had been degassed under a flow of nitrogen, was added and the mixture stirred overnight at rt. The reaction was then diluted with ethyl acetate, filtered through Celite, being flushed with ethyl acetate, and the solvents removed in vacuo. The crude product was purified by column chromatography (hexane/toluene) to give 40.3 mg $(33 \%)$ as a white crystalline solid, m.p. $209^{\circ} \mathrm{C}$. Recrystallisation from diethyl ether gave white needles that were suitable for X-ray diffraction studies. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.36-7.20(\mathrm{~m}, 9 \mathrm{H}), 7.04(\mathrm{dd}, J=8.3,7.3 \mathrm{~Hz}$, $3 \mathrm{H}), 7.00-6.90(\mathrm{~m}, 6 \mathrm{H}), 3.88(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.7,139.5,137.8$, $131.7,130.8,130.5,130.2,128.3,124.5,114.4,55.5 . \mathrm{HRMS}\left(\mathrm{EI}^{+}\right)$calcd. for $\mathrm{C}_{39} \mathrm{H}_{30} \mathrm{O}_{3}$ $(\mathrm{M})^{+}: 546.2195$, found: 546.2165

### 6.3 Benzyne $\sigma$-insertion reactions

### 6.3.1 Ynamide synthesis

Phenyl((trimethylsilyl)ethynyl)iodonium trifluoromethanesulfonate, 303
TMS (Diacetoxyiodo)benzene $(\mathbf{3 0 3}, 6.32 \mathrm{~g}, \quad 19.6 \mathrm{mmol})$ in dry DCM $(30 \mathrm{ml})$ was cooled to $0^{\circ} \mathrm{C}$ and trifluoromethanesulfonic acid $(5.60 \mathrm{~g}$, 37.3 mmol ) added slowly. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min after which bis(trimethylsilyl)acetylene $(3.16 \mathrm{~g}, 18.5 \mathrm{mmol})$ was added. The reaction was then warmed slowly to rt and stirred for a further 2 h before being concentrated in vacuo. The resulting oily residue was poured dropwise into stirred hexane ( 100 ml ) and the precipitate collected by filtration, being washed with diethyl ether, and dried in vacuo to give a white solid, $6.82 \mathrm{~g}(77 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12-8.04$ $(\mathrm{m}, 2 \mathrm{H}), 7.68(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 2 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H}) .{ }^{[257]}$

## 3-((Trimethylsilyl)ethynyl)oxazolidin-2-one, 304



Oxazolidin-2-one (1 eq., $571 \mathrm{mg}, 6.56 \mathrm{mmol}$ ) in dry toluene under nitrogen was cooled to $0^{\circ} \mathrm{C}$. KHMDS ( 1.2 eq., $15.7 \mathrm{ml}, 0.5 \mathrm{M}$ in toluene) was added dropwise and the mixture stirred for 2 h before being warmed to rt. Phenyl((trimethylsilyl)ethynyl)iodonium triflate, 303, ( $1.3 \mathrm{eq} ., 3.82 \mathrm{~g}$, 8.48 mmol ) was then added portionwise and the reaction stirred overnight at rt. After filtration through a plug of silica, which was washed twice with diethyl ether, the solvent was removed in vacuo and the crude product purified by column chromatography to give a white solid, $199 \mathrm{mg}(17 \%) .{ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.50-4.30(\mathrm{~m}, 2 \mathrm{H})$, 4.03-3.74 (m, 2H), $0.20(\mathrm{~s}, 9 \mathrm{H}) .{ }^{[258]}$

3-Ethynyloxazolidin-2-one, 305


To 3-((trimethylsilyl)ethynyl)oxazolidin-2-one (304, $116 \mathrm{mg}, 0.638 \mathrm{mmol})$ in THF ( 1.5 ml ) was added TBAF ( 1.2 eq., 1 m in THF, 0.75 ml ) at $0{ }^{\circ} \mathrm{C}$. The reaction was warmed to rt and stirred for a further 30 min before being quenched with water and extracted with ethyl acetate followed by DCM. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent removed in vacuo and the crude product purified by column chromatography (hexane: ethyl acetate $2: 1$ ) to give a pale yellow solid, $17 \mathrm{mg}(24 \%)$. The procedure was not optimised. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $4.59-4.32(\mathrm{~m}, 2 \mathrm{H}), 4.06-3.83(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 1 \mathrm{H}) .{ }^{[258]}$

## N-Benzyl-4-methylbenzenesulfonamide, 308

Ph Tosyl chloride $(7 \mathrm{~g}, 36.7 \mathrm{mmol})$ was added to a solution of benzyl amine $(3.58 \mathrm{~g}$, $33.4 \mathrm{mmol})$ in water $(240 \mathrm{ml})$ and the reaction stirred at rt for 3 h . The mixture was extracted with ethyl acetate, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed in vacuo. Purification by column chromatography (ethyl acetate/heptane) gave a pale yellow solid, $2.37 \mathrm{~g}(27 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J$ $=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}$, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{[259]}$
(Bromoethynyl)triisopropylsilane, 309
Br To a solution of triisopropylsilyl acetylene $(5.00 \mathrm{~g}, 27.4 \mathrm{mmol})$ under nitrogen in dry acetone $(275 \mathrm{~mL})$ was added $N$-bromosuccinimide $(5.37 \mathrm{~g}$, 30.2 mmol ) and silver nitrate ( $465 \mathrm{mg}, 2.74 \mathrm{mmol}$ ). The mixture was stirred for 3 h at rt after which the solution was concentrated in vacuo, water ( 200 ml ) added and the residue extracted with heptane $(3 \times 200 \mathrm{ml})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo to give a colourless oil, $6.87 \mathrm{~g}(96 \%)$. ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.07(\mathrm{~s}, 21 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 83.6,61.9$, $18.6,11.4 .{ }^{[260]}$
$N$-Benzyl-4-methyl- $N$-((triisopropylsilyl)ethynyl)benzenesulfonamide, 310
${ }^{\mathrm{Ph}} \quad \begin{aligned} & \text { A suspension of } N \text {-benzyl-4-methylbenzenesulfonamide }(\mathbf{3 0 8}, 2.29 \mathrm{~g} \text {, } \\ & 8.76 \mathrm{mmol}) \text {, (bromoethynyl)triisopropylsilane }(\mathbf{3 0 9}, 2.29 \mathrm{~g} .8 .76 \mathrm{mmol}) \text {, }\end{aligned}$ TIPS potassium phosphate tribasic ( $3.72 \mathrm{~g}, 17.5 \mathrm{mmol}$ ), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ ( $438 \mathrm{mg}, 1.75 \mathrm{mmol}$ ) and 1,10-phenanthroline ( $632 \mathrm{mg}, 3.51 \mathrm{mmol}$ ) in toluene ( 10 ml ) was stirred for 60 h at $80^{\circ} \mathrm{C}$. On cooling, the mixture was filtered through Celite, which was washed with hexane, and the solvents removed in vacuo. The residue was purified by column chromatography ( $20: 1$ hexane:ethyl acetate) to give a pale yellow solid $(3.10 \mathrm{~g}, 80 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 7 \mathrm{H}), 4.49$ $(\mathrm{s}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 21 \mathrm{H}) .{ }^{[261]}$

## $N$-Benzyl- $N$-ethynyl-4-methylbenzenesulfonamide, 311

 added. The reaction mixture was stirred for 45 min and then warmed to rt. After quenching with sat. aq. ammonium chloride ( 25 ml ) the reaction mixture was extracted three times with diethyl ether, the combined organic layers dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was recrystallised from hot diethyl ether, purified by column chromatography (hexane: diethyl ether $10: 1$ ) and recrystallised a second time from hot diethyl ether to give a white crystalline solid, $556 \mathrm{mg}(55 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 7 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 2.68(\mathrm{~s}$, $1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{[262]}$

### 6.3.2 Insertion reaction products

## 3-(2-Ethynyl-6-methoxyphenyl)oxazolidin-2-one, 306


$N$-((Trimethylsilyl)ethynyl)-oxazolidinone (305, $32 \mathrm{mg}, 0.175 \mathrm{mmol})$ and 2-(trimethylsilyl)-5-methoxy-phenyl triflate, 58 ( $60 \mathrm{mg}, \quad 0.175 \mathrm{mmol}$ ) in acetonitrile $(3.5 \mathrm{ml}, 0.05 \mathrm{~m})$ along with caesium fluoride $(67 \mathrm{mg}$, 0.438 mmol ) were stirred overnight at rt. The mixture was then diluted with diethyl ether, poured into sat. brine and extracted twice with diethyl ether. The organic layers were then dried $\left(\mathrm{MgSO}_{4}\right)$, the solvent removed in vacuo and the crude product was purified by column chromatography (hexane: ethyl acetate $2: 1$ ) to give $5.1 \mathrm{mg}(13 \%)$ as a brown solid. Recrystallisation from $\mathrm{CDCl}_{3}$ gave material suitable for X-ray diffraction studies. The same compound was obtained in $9 \%$ yield from the unprotected $N$-(ethynyl)oxazolidinone, 304. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27$ (app. t, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.46$ $(\mathrm{m}, 2 \mathrm{H}), 3.96-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $156.8,156.3,129.3,127.7,125.3,123.5,112.9,82.0,79.5,62.8,56.0,46.2$.
$N$-Benzyl- $N$-(2-ethynylphenyl)-4-methylbenzenesulfonamide, 312

$N$-Benzyl- $N$-ethynyl- $N$-tosylamide (311, $28.5 \mathrm{mg}, ~ 0.100 \mathrm{mmol}$, 1 eq.) 2(trimethylsilyl)phenyl triflate, 4 ( $45 \mathrm{mg}, 1.5 \mathrm{eq}$.) and caesium fluoride ( $46 \mathrm{mg}, 3$ eq.) in tolunene: acetonitrile ( $3: 1,1 \mathrm{ml}$ total volume, 0.1 m ) were stirred overnight at $90^{\circ} \mathrm{C}$. The mixture was then diluted with water, extracted twice with ethyl acetate, the organic layers dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified by column chromatography (hexane : ethyl acetate $20: 1$ ) to give $25.5 \mathrm{mg}(40 \%)$ as a brown solid. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.73-7.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ts}-\mathrm{H}), 7.39-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.16(\mathrm{~m}), 7.05-6.94(\mathrm{~m}, 3 \mathrm{H})$, $6.76-6.72(\mathrm{~m}, 2 \mathrm{H} \mathrm{Ts}-\mathrm{H}), 6.69(\mathrm{td}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.02(\mathrm{~s}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.5,140.4$, $137.1,136.2,134.3,132.4,129.6,129.4,129.1,128.4,128.1,128.1,127.8,123.0,82.1$, 80.4, 54.3, 21.7. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{SNa}^{+}(\mathrm{M}+\mathrm{Na})^{+}$: 384.1034, found: 384.1033 .

## N-(2-Acetylphenyl)-N-benzyl-4-methylbenzenesulfonamide, 313


$N$-Benzyl- $N$-ethynyl-4-methylbenzenesulfonamide $\quad(311, \quad 29.0 \mathrm{mg}, \quad 0.101$ mmol, 1 eq.), 2-(trimethylsilyl)phenyl triflate (1.5 eq.) caesium fluoride (3 eq.) were stirred overnight at rt in acetonitrile ( 0.1 m ). The mixture was then diluted with water, extracted twice with ethyl acetate, the organic layers dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified by column chromatography (hexane : ethyl acetate $20: 1$ to $10: 1$ ) and the minor component isolated, $7.6 \mathrm{mg}(20 \%)$, as an orange solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, ~ J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.22(\mathrm{~m}, 7 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.5,145.0,136.8,136.8,129.9,128.7,128.2,127.9,49.7,25.1$, 21.7. ${ }^{[263]}$

## References

[1] W. E. Bachmann, H. T. Clarke, J. Am. Chem. Soc. 1927, 49, 2089-2098.
[2] G. Wittig, Naturwissenschaften 1942, 30, 696-703.
[3] J. D. Roberts, H. E. Simmons, L. A. Carlsmith, C. W. Vaughan, J. Am. Chem. Soc. 1953, 75, 3290-3291.
[4] J. G. Radziszewski, B. A. Hess, R. Zahradnik, J. Am. Chem. Soc. 1992, 114, 52-57.
[5] A. M. Orendt, J. C. Facelli, J. G. Radziszewski, W. J. Horton, D. M. Grant, J. Michl, J. Am. Chem. Soc. 1996, 118, 846-852.
[6] R. Warmuth, Angew. Chem. Int. Ed. 1997, 36, 1347-1350.
[7] W. Sander, Acc. Chem. Res. 1999, 32, 669-676.
[8] P. G. Wenthold, R. R. Squires, W. C. Lineberger, J. Am. Chem. Soc. 1998, 120, 5279-5290.
[9] G. Wittig, Angew. Chem. 1957, 69, 245-251.
[10] R. W. Hoffmann, Dehydrobenzene and Cycloalkynes, (Ed.: A. T. Blomquist), Academic Press, 1967, New York; For selectivity with substituted arynes, see pp. 134-150. For discussion of $\mathrm{C}(\mathrm{sp})-\mathrm{O}$ insertion, see p. 178.
[11] E. R. Biehl, S. P. Khanapure, Acc. Chem. Res. 1989, 22, 275-281.
[12] S. V. Kessar, 'Nucleophilic Coupling with Arynes' in Comprehensive Organic Synthesis, Vol. 4, (Eds.: B. M. Trost, I. Flemming, M. F. Semmelhack), Pergamon Press, 1991, Chapter 2.3, pp. 483-515.
[13] J. Nakayama, K. Akimoto, Sulfur reports 1994, 16, 61-111.
[14] H. Pellissier, M. Santelli, Tetrahedron 2003, 59, 701-730.
[15] H. H. Wenk, M. Winkler, W. Sander, Angew. Chem. Int. Ed. 2003, 42, 502-528.
[16] M. Winkler, H. H. Wenk, W. Sander, 'Arynes' in Reactive Intermediate Chemistry, (Eds.: R. A. Moss, M. S. Platz, M. J. Jr.), John Wiley \& Sons Ltd., 2004, Chapter 16, pp. 741-794.
[17] A. M. Dyke, A. J. Hester, G. C. Lloyd-Jones, Synthesis 2006, 4093-4112.
[18] D. Peña, D. Pérez, E. Guitián, Angew. Chem. Int. Ed. 2006, 45, 3579-3581.
[19] R. Sanz, Org. Prep. Proced. Int. 2008, 40, 215-291.
[20] Y. Chen, R. C. Larock, 'Arylation Reactions Involving the Formation of Arynes' in Modern Arylation Methods, (Ed.: L. Ackerman), Wiley-VCH, New York, 2009, Chapter 12, pp. 401-473.
[21] T. Kitamura, Aust. J. Chem. 2010, 63, 987-1001.
[22] C. M. Gampe, E. M. Carreira, Angew. Chem. Int. Ed. 2012, 51, 3766-3778.
[23] P. M. Tadross, B. M. Stoltz, Chem. Rev. 2012, 112, 3550-3577.
[24] A. Bhunia, S. R. Yetra, A. T. Biju, Chem. Soc. Rev. 2012, 41, 3140-3152.
[25] A. V. Dubrovskiy, N. A. Markina, R. C. Larock, Org. Biomol. Chem. 2013, 11, 191-218.
[26] W. W. Leake, R. Levine, J. Am. Chem. Soc. 1959, 81, 1169-1172.
[27] M. E. Kuehne, J. Am. Chem. Soc. 1962, 84, 837-847.
[28] Y. Himeshima, T. Sonoda, H. Kobayashi, Chem. Lett. 1983, 12, 1211-1214.
[29] L. Friedman, F. M. Logullo, J. Am. Chem. Soc. 1963, 85, 1549-1549.
[30] C. D. Campbell, C. W. Rees, J. Chem. Soc. C 1969, 742-747.
[31] Y. Guo, J. J. Grabowski, J. Am. Chem. Soc. 1991, 113, 5923-5931.
[32] A. Z. Bradley, R. P. Johnson, J. Am. Chem. Soc. 1997, 119, 9917-9918.
[33] T. R. Hoye, B. Baire, D. Niu, P. H. Willoughby, B. P. Woods, Nature 2012, 490, 208-212.
[34] J. Bunnett, T. Brotherton, J. Org. Chem. 1958, 23, 904-906.
[35] H. Heaney, P. Lees, Tetrahedron Lett. 1964, 5, 3049-3052.
[36] C. Hall, J. L. Henderson, G. Ernouf, M. F. Greaney, Chem. Commun. 2013, 49, 7602-7604.
[37] M. E. Schafer, R. S. Berry, J. Am. Chem. Soc. 1965, 87, 4497-4501.
[38] G. Wittig, L. Pohmer, Angew. Chem. 1955, 67, 348-348.
[39] T. Jin, Y. Yamamoto, Angew. Chem. Int. Ed. 2007, 46, 3323-3325.
[40] D. Keyton, G. Griffin, M. Kuehne, C. Bayha, Tetrahedron Lett. 1969, 10, 41634168.
[41] H. L. Gingrich, Q. Huang, A. L. Morales, M. Jones, J. Org. Chem. 1992, 57, 3803-3806.
[42] T. T. Jayanth, M. Jeganmohan, M.-J. Cheng, S.-Y. Chu, C.-H. Cheng, J. Am. Chem. Soc. 2006, 128, 2232-2233.
[43] Z. Liu, R. C. Larock, J. Org. Chem. 2006, 71, 3198-3209.
[44] R. Huisgen, H. Rist, Justus Liebigs Ann. Chem. 1955, 594, 137-158.
[45] H. Yoshida, T. Morishita, J. Ohshita, Org. Lett. 2008, 10, 3845-3847.
[46] H. Yoshida, Y. Ito, J. Ohshita, Chem. Commun. 2011, 47, 8512-8514.
[47] H. Yoshida, H. Fukushima, J. Ohshita, A. Kunai, Angew. Chem. Int. Ed. 2004, 43, 3935-3938.
[48] See Ref. [18] and references therein.
[49] H. Yoshida, E. Shirakawa, Y. Honda, T. Hiyama, Angew. Chem. Int. Ed. 2002, 41, 3247-3249.
[50] M. Guyot, D. Molho, Tetrahedron Lett. 1973, 14, 3433-3436.
[51] A. Meyers, P. D. Pansegrau, Tetrahedron Lett. 1984, 25, 2941-2944.
[52] H. Yoshida, M. Watanabe, T. Morishita, J. Ohshita, A. Kunai, Chem. Commun. 2007, 1505-1507.
[53] B. Rao, X. Zeng, Org. Lett. 2014, 16, 314-317.
[54] F. Scardiglia, J. D. Roberts, Tetrahedron 1958, 3, 197-208.
[55] C. Xie, L. Liu, Y. Zhang, P. Xu, Org. Lett. 2008, 10, 2393-2396.
[56] M. A. Bennett, H. P. Schwemlein, Angew. Chem. Int. Ed. 1989, 28, 1296-1320.
[57] S. J. McLain, R. R. Schrock, P. R. Sharp, M. R. Churchill, W. J. Youngs, J. Am. Chem. Soc. 1979, 101, 263-265.
[58] M. A. Bennett, E. Wenger, Chem. Ber. 1997, 130, 1029-1042.
[59] D. Peña, S. Escudero, D. Pérez, E. Guitián, L. Castedo, Angew. Chem. Int. Ed. 1998, з7, 2659-2661.
[60] D. Peña, D. Pérez, E. Guitián, Chem. Rec. 2007, 7, 326-333.
[61] D. Peña, D. Pérez, E. Guitián, L. Castedo, Eur. J. Org. Chem. 2003, 1238-1243.
[62] H. Yoshida, Y. Honda, E. Shirakawa, T. Hiyama, Chem. Commun. 2001, 18801881.
[63] T. Morishita, H. Yoshida, J. Ohshita, Chem. Commun. 2010, 46, 640-642.
[64] R. Huisgen, W. Mack, K. Herbig, N. Ott, E. Anneser, Chem. Ber. 1960, 93, 412-424.
[65] P. P. Wickham, K. H. Hazen, H. Guo, G. Jones, K. H. Reuter, W. J. Scott, J. Org. Chem. 1991, 56, 2045-2050.
[66] H. Yoshida, T. Terayama, J. Ohshita, A. Kunai, Chem. Commun. 2004, 19801981.
[67] V. Lakshmi, B., K. Wefelscheid, Ulrike, U. Kazmaier, Synlett 2011, 345-348.
[68] T. Ikawa, T. Nishiyama, T. Shigeta, S. Mohri, S. Morita, S.-i. Takayanagi, Y. Terauchi, Y. Morikawa, A. Takagi, Y. Ishikawa, S. Fujii, Y. Kita, S. Akai, Angew. Chem. Int. Ed. 2011, 50, 5674-5677.
[69] C. Heiss, F. Leroux, M. Schlosser, Eur. J. Org. Chem. 2005, 5242-5247.
[70] T. Ikawa, A. Takagi, Y. Kurita, K. Saito, K. Azechi, M. Egi, K. Kakiguchi, Y. Kita, S. Akai, Angew. Chem. Int. Ed. 2010, 49, 5563-5566.
[71] A. Takagi, T. Ikawa, K. Saito, S. Masuda, T. Ito, S. Akai, Org. Biomol. Chem. 2013, 11, 8145-8150.
[72] G.-Y. J. Im, S. M. Bronner, A. E. Goetz, R. S. Paton, P. H.-Y. Cheong, K. N. Houk, N. K. Garg, J. Am. Chem. Soc. 2010, 132, 17933-17944.
[73] S. M. Bronner, J. L. Mackey, K. N. Houk, N. K. Garg, J. Am. Chem. Soc. 2012, 134, 13966-13969.
[74] A. Meyers, P. D. Pansegrau, Tetrahedron Lett. 1983, 24, 4935-4938.
[75] D. Peña, A. Cobas, D. Perez, E. Guitian, Synthesis 2002, 1454-1458.
[76] K. Shankaran, V. Snieckus, Tetrahedron Lett. 1984, 25, 2827-2830.
[77] S. M. Bronner, N. K. Garg, J. Org. Chem. 2009, 74, 8842-8843.
[78] J. D. Kirkham, P. M. Delaney, G. J. Ellames, E. C. Row, J. P. A. Harrity, Chem. Commun. 2010, 46, 5154-5156.
[79] A. Pialat, B. Liégault, M. Taillefer, Org. Lett. 2013, 15, 1764-1767.
[80] TCIMAIL 2008, 135, 10-11.
[81] D. Peña, D. Pérez, E. Guitián, L. Castedo, J. Org. Chem. 2000, 65, 6944-6950.
[82] B. Iglesias, A. Cobas, D. Pérez, E. Guitián, K. P. C. Vollhardt, Org. Lett. 2004, 6, 3557-3560.
[83] C. Romero, D. Peña, D. Pérez, E. Guitián, Chem. Eur. J. 2006, 12, 5677-5684.
[84] C. Romero, D. Peña, D. Pérez, E. Guitián, J. Org. Chem. 2008, 73, 7996-8000.
[85] P. T. Lynett, K. E. Maly, Org. Lett. 2009, 11, 3726-3729.
[86] H. M. Duong, M. Bendikov, D. Steiger, Q. Zhang, G. Sonmez, J. Yamada, F. Wudl, Org. Lett. 2003, 5, 4433-4436.
[87] C. Kitamura, Y. Abe, T. Ohara, A. Yoneda, T. Kawase, T. Kobayashi, H. Naito, T. Komatsu, Chem. Asian J. 2010, 16, 890-898.
[88] D. Z. Wang, T. J. Katz, J. Golen, A. L. Rheingold, J. Org. Chem. 2004, 69, 7769-7771.
[89] I. R. Hardcastle, R. F. Hunter, P. Quayle, P. N. Edwards, Tetrahedron Lett. 1994, 35, 3805-3808.
[90] M. E. Hayes, H. Shinokubo, R. L. Danheiser, Org. Lett. 2005, 7, 3917-3920.
[91] W. Yuan, S. Ma, Org. Lett. 2014, 16, 193-195.
[92] P. M. Tadross, S. C. Virgil, B. M. Stoltz, Org. Lett. 2010, 12, 1612-1614.
[93] T. Ikawa, A. Takagi, M. Goto, Y. Aoyama, Y. Ishikawa, Y. Itoh, S. Fujii, H. Tokiwa, S. Akai, J. Org. Chem. 2013, 78, 2965-2983.
[94] T. Kitamura, M. Yamane, K. Inoue, M. Todaka, N. Fukatsu, Z. Meng, Y. Fujiwara, J. Am. Chem. Soc. 1999, 121, 11674-11679.
[95] S. Kovács, Á. I. Csincsi, T. Z. Nagy, S. Boros, G. Timári, Z. Novák, Org. Lett. 2012, 14, 2022-2025.
[96] T. Ikawa, T. Nishiyama, T. Nosaki, A. Takagi, S. Akai, Org. Lett. 2011, 13, 1730-1733.
[97] B. Michel, M. F. Greaney, Org. Lett. 2014, 16, 2684-2687.
[98] A. B. Smith, W.-S. Kim, Proc. Natl. Acad. Sci. 2011, 108, 6787-6792.
[99] P. M. Tadross, C. D. Gilmore, P. Bugga, S. C. Virgil, B. M. Stoltz, Org. Lett. 2010, 12, 1224-1227.
[100] S. M. Bronner, A. E. Goetz, N. K. Garg, J. Am. Chem. Soc. 2011, 133, 38323835.
[101] J. F. Bunnett, B. F. Hrutfiord, J. Am. Chem. Soc. 1961, 83, 1691-1697.
[102] I. Fleming, M. Woolias, J. Chem. Soc., Perkin Trans. 1 1979, 827-828.
[103] V. Nair, K. H. Kim, J. Org. Chem. 1975, 40, 3784-3786.
[104] C. Caubère, P. Caubère, P. Renard, J.-G. Bizot-Espiart, B. Jamart-Grégoire, Tetrahedron Lett. 1993, 34, 6889-6892.
[105] L. V. Kudzma, Synthesis 2003, 1661-1666.
[106] J. H. Tidwell, D. R. Senn, S. L. Buchwald, J. Am. Chem. Soc. 1991, 113, 46854686.
[107] K. Aoki, A. J. Peat, S. L. Buchwald, J. Am. Chem. Soc. 1998, 120, 3068-3073.
[108] J. Barluenga, F. J. Fañanás, R. Sanz, Y. Fernández, Tetrahedron Lett. 1999, 40, 1049-1052.
[109] D. Hong, Z. Chen, X. Lin, Y. Wang, Org. Lett. 2010, 12, 4608-4611.
[110] A. Bunescu, C. Piemontesi, Q. Wang, J. Zhu, Chem. Commun. 2013, 49, 1028410286.
[111] Z. Liu, R. C. Larock, Org. Lett. 2004, 6, 3739-3741.
[112] T. Noji, H. Fujiwara, K. Okano, H. Tokuyama, Org. Lett. 2013, 15, 1946-1949.
[113] R. Huisgen, H. König, Chem. Ber. 1959, 92, 203-213.
[114] S. Chakrabarty, I. Chatterjee, L. Tebben, A. Studer, Angew. Chem. Int. Ed. 2013, 52, 2968-2971.
[115] G. W. Steinhoff, M. C. Henry, J. Org. Chem. 1964, 29, 2808-2809.
[116] See for example: M. Ishikura, T. Abe, T. Choshi, S. Hibino, Nat. Prod. Rep. 2013, 30, 694-752 and the similarly titled series of reviews.
[117] M. Baumann, I. R. Baxendale, S. V. Ley, N. Nikbin, Beilstein J. Org. Chem. 2011, 7, 442-495.
[118] E. Fischer, F. Jourdan, Ber. Dtsch. Chem. Ges. 1883, 16, 2241-2245.
[119] B. Robinson, Chem. Rev. 1963, 63, 373-401.
[120] B. Robinson, Chem. Rev. 1969, 69, 227-250.
[121] B. Robinson, The Fischer Indole Synthesis, John Wiley \& Sons Ltd., 1982.
[122] D. L. Hughes, Org. Prep. Proced. Int. 1993, 25, 607-632.
[123] G. W. Gribble, J. Chem. Soc., Perkin Trans. 1 2000, 1045-1075.
[124] For recent reviews of indole syntheses including the Fischer indole reaction see: (a) G. R. Humphrey, J. T. Kuethe, Chem. Rev. 2006, 106, 2875-2911; (b) M. Inman, C. J. Moody, Chem. Sci. 2013, 4, 29-41.
[125] J. F. Hartwig, Angew. Chem. Int. Ed. 1998, 37, 2046-2067.
[126] B. Schlummer, U. Scholz, Adv. Synth. Catal. 2004, 346, 1599-1626.
[127] S. Wagaw, B. H. Yang, S. L. Buchwald, J. Am. Chem. Soc. 1998, 120, 66216622.
[128] S. Wagaw, B. H. Yang, S. L. Buchwald, J. Am. Chem. Soc. 1999, 121, 1025110263.
[129] H. Ishii, H. Takeda, T. Hagiwara, M. Sakamoto, K. Kogusuri, Y. Murakami, J. Chem. Soc., Perkin Trans. 1 1989, 2407-2414.
[130] Z. Wang, R. T. Skerlj, G. J. Bridger, Tetrahedron Lett. 1999, 40, 3543-3546.
[131] A. Klapars, J. C. Antilla, X. Huang, S. L. Buchwald, J. Am. Chem. Soc. 2001, 123, 7727-7729.
[132] M. Wolter, A. Klapars, S. L. Buchwald, Org. Lett. 2001, 3, 3803-3805.
[133] Y.-K. Lim, C.-G. Cho, Tetrahedron Lett. 2004, 45, 1857-1859.
[134] I.-K. Park, S.-E. Suh, B.-Y. Lim, C.-G. Cho, Org. Lett. 2009, 11, 5454-5456.
[135] R. J. Lundgren, M. Stradiotto, Angew. Chem. Int. Ed. 2010, 49, 8686-8690.
[136] O. Loog, U. Mäeorg, U. Ragnarsson, Synthesis 2000, 1591-1597.
[137] P. Starkov, I. Zemskov, R. Sillard, O. Tšubrik, U. Mäeorg, Tetrahedron Lett. 2007, 48, 1155-1157.
[138] T. J. Maimone, S. L. Buchwald, J. Am. Chem. Soc. 2010, 132, 9990-9991.
[139] E. Yasui, M. Wada, N. Takamura, Tetrahedron 2009, 65, 461-468.
[140] M. Inman, C. J. Moody, Chem. Commun. 2011, 47, 788-790.
[141] M. Inman, A. Carbone, C. J. Moody, J. Org. Chem. 2012, 77, 1217-1232.
[142] J. Zhang, Z. Yin, P. Leonard, J. Wu, K. Sioson, C. Liu, R. Lapo, S. Zheng, Angew. Chem. Int. Ed. 2013, 52, 1753-1757.
[143] P. Li, J. Zhao, C. Wu, R. C. Larock, F. Shi, Org. Lett. 2011, 13, 3340-3343.
[144] S. Seo, M.Chem. Dissertation, University of Edinburgh, 2010.
[145] Z. Liu, R. C. Larock, J. Am. Chem. Soc. 2005, 127, 13112-13113.
[146] D. G. Pintori, M. F. Greaney, Org. Lett. 2010, 12, 168-171.
[147] S. Herzig, S. Kritter, T. Lübbers, N. Marquardt, J.-U. Peters, S. Weber, Synlett 2005, 3107-3108.
[148] Y. Fang, D. C. Rogness, R. C. Larock, F. Shi, J. Org. Chem. 2012, 77, 62626270.
[149] N. Saito, K.-i. Nakamura, S. Shibano, S. Ide, M. Minami, Y. Sato, Org. Lett. 2013, 15, 386-389.
[150] 1,3-dipolar cycloadditions of hydrazones and electron deficient alkenes have been known for some time; R. Grigg, J. Kemp, N. Thompson, Tetrahedron Lett. 1978, 19, 2827-2830.
[151] A. V. Dubrovskiy, R. C. Larock, Org. Lett. 2011, 13, 4136-4139.
[152] P. Li, C. Wu, J. Zhao, D. C. Rogness, F. Shi, J. Org. Chem. 2012, 77, 31493158.
[153] D. W. Ockenden, K. Schofield, J. Chem. Soc. 1953, 612-618.
[154] J. Szmuszkovicz, E. M. Glenn, R. V. Heinzelman, J. B. Hester, G. A. Youngdale, J. Med. Chem. 1966, 9, 527-536.
[155] W. O. Kermack, W. H. Perkin, R. Robinson, J. Chem. Soc., Trans. 1921, 119, 1602-1642.
[156] J. R. Chalmers, H. T. Openshaw, G. F. Smith, J. Chem. Soc. 1957, 1115-1120.
[157] I. Grandberg, L. Belyaeva, L. Dmitriev, Chem. Heterocycl. Compd. 1971, 7, 1131-1134.
[158] G. Jones, G. T. Tringham, J. Chem. Soc., Perkin Trans. 1 1975, 1280-1283.
[159] P. Alper, T. Marsilje, A. Chatterjee, W. Lu, D. Mutnick, M. Roberts, Y. He, WO2007009120 (A2), 2007.
[160] D. W. Ockenden, K. Schofield, J. Chem. Soc. 1957, 3175-3180.
[161] M. P. Kumar, R.-S. Liu, J. Org. Chem. 2006, 71, 4951-4955.
[162] H. J. Roth, P. Lepke, Arch. Pharm. (Weinheim) 1972, 305, 159-171.
[163] M. Knollmüller, R. Fauß, Monatshefte für Chemie / Chemical Monthly 1985, 116, 1027-1040.
[164] L. Caglioti, P. Grasselli, G. Rosini, Tetrahedron Lett. 1965, 6, 4545-4548.
[165] J. G. Schantl, P. Hebeisen, P. Karpellus, Synth. Commun. 1989, 19, 39-48.
[166] N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Lett. 1979, 20, 3437-3440.
[167] J. Magano, J. R. Dunetz, Chem. Rev. 2011, 111, 2177-2250.
[168] N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457-2483.
[169] A. Suzuki, J. Organomet. Chem. 1999, 576, 147-168.
[170] S. Kotha, K. Lahiri, D. Kashinath, Tetrahedron 2002, 58, 9633-9695.
[171] F. Bellina, A. Carpita, R. Rossi, Synthesis 2004, 2419-2440.
[172] C. Amatore, F. Pfluger, Organometallics 1990, 9, 2276-2282.
[173] G. B. Smith, G. C. Dezeny, D. L. Hughes, A. O. King, T. R. Verhoeven, J. Org. Chem. 1994, 59, 8151-8156.
[174] A. Jutand, A. Mosleh, Organometallics 1995, 14, 1810-1817.
[175] J. P. Stambuli, M. Bühl, J. F. Hartwig, J. Am. Chem. Soc. 2002, 124, 93469347.
[176] F. Barrios-Landeros, B. P. Carrow, J. F. Hartwig, J. Am. Chem. Soc. 2009, 131, 8141-8154.
[177] U. Christmann, R. Vilar, Angew. Chem. Int. Ed. 2005, 44, 366-374.
[178] B. P. Carrow, J. F. Hartwig, J. Am. Chem. Soc. 2011, 133, 2116-2119.
[179] C. Amatore, A. Jutand, G. Le Duc, Chem. Eur. J. 2011, 17, 2492-2503.
[180] C. Amatore, A. Jutand, G. Le Duc, Angew. Chem. Int. Ed. 2012, 51, 1379-1382.
[181] C. Amatore, G. LeDuc, A. Jutand, Chem. Eur. J. 2013, 19, 10082-10093.
[182] A. J. J. Lennox, G. C. Lloyd-Jones, Angew. Chem. Int. Ed. 2013, 52, 7362-7370.
[183] C. Adamo, C. Amatore, I. Ciofini, A. Jutand, H. Lakmini, J. Am. Chem. Soc. 2006, 128, 6829-6836.
[184] H. G. Kuivila, J. F. Reuwer Jr., J. A. Mangravite, Can. J. Chem. 1963, 41, 3081-3090.
[185] T. Kinzel, Y. Zhang, S. L. Buchwald, J. Am. Chem. Soc. 2010, 132, 1407314075.
[186] D. M. Knapp, E. P. Gillis, M. D. Burke, J. Am. Chem. Soc. 2009, 131, 69616963.
[187] G. A. Molander, T. Ito, Org. Lett. 2001, 3, 393-396.
[188] T. Ishiyama, S. Abe, N. Miyaura, A. Suzuki, Chem. Lett. 1992, 21, 691-694.
[189] M. Butters, J. N. Harvey, J. Jover, A. J. J. Lennox, G. C. Lloyd-Jones, P. M. Murray, Angew. Chem. Int. Ed. 2010, 49, 5156-5160.
[190] J.-m. Fu, V. Snieckus, Tetrahedron Lett. 1990, 31, 1665-1668.
[191] T. Ohe, N. Miyaura, A. Suzuki, J. Org. Chem. 1993, 58, 2201-2208.
[192] A. F. Littke, G. C. Fu, Angew. Chem. Int. Ed. 1998, 37, 3387-3388.
[193] A. F. Littke, C. Dai, G. C. Fu, J. Am. Chem. Soc. 2000, 122, 4020-4028.
[194] G. A. Molander, D. E. Petrillo, N. R. Landzberg, J. C. Rohanna, B. Biolatto, Synlett 2005, 1763-1766.
[195] G. Espino, A. Kurbangalieva, J. M. Brown, Chem. Commun. 2007, 1742-1744.
[196] A. M. Echavarren, J. K. Stille, J. Am. Chem. Soc. 1987, 109, 5478-5486.
[197] Z. Hassan, M. Hussain, P. Langer, Synlett 2011, 1827-1830.
[198] Z. Hassan, M. Hussain, A. Villinger, P. Langer, Tetrahedron 2012, 68, 63056313.
[199] Z. Khaddour, N. Eleya, O. A. Akrawi, A. M. Hamdy, T. Patonay, A. Villinger, P. Langer, Tetrahedron Lett. 2013, 54, 5201-5203.
[200] N. Eleya, A. Mahal, M. Hein, A. Villinger, P. Langer, Adv. Synth. Catal. 2011, 353, 2761-2774.
[201] F. Schoenebeck, K. N. Houk, J. Am. Chem. Soc. 2010, 132, 2496-2497.
[202] F. Proutiere, F. Schoenebeck, Angew. Chem. Int. Ed. 2011, 50, 8192-8195.
[204] Y. Urawa, H. Naka, M. Miyazawa, S. Souda, K. Ogura, J. Organomet. Chem. 2002, 653, 269-278.
[205] S. Ghosh, D. B. Datta, I. Datta, T. K. Das, Tetrahedron 1989, 45, 3775-3786.
[206] P. D. Pansegrau, W. F. Rieker, A. I. Meyers, J. Am. Chem. Soc. 1988, 110, 7178-7184.
[207] X. Zhang, R. C. Larock, Org. Lett. 2005, 7, 3973-3976.
[208] H. Richtzenhain, Chem. Ber. 1948, 81, 92-97.
[209] See for example J.-C. Wan, J.-M. Huang, Y.-H. Jhan, J.-C. Hsieh, Org. Lett. 2013, 15, 2742-2745.
[210] J. Varghese, R. Hom, J. Sealy, J. Tucker, US2006014737 (A1), 2006.
[211] D. J. Brien, A. Naiman, K. P. C. Vollhardt, J. Chem. Soc., Chem. Commun. 1982, 133-134.
[212] Aryne carbonylation reactions with cobalt complexes and other metals are known; N. Chatani, A. Kamitani, M. Oshita, Y. Fukumoto, S. Murai, J. Am. Chem. Soc. 2001, 123, 12686-12687.
[213] J.-C. Hsieh, C.-H. Cheng, Chem. Commun. 2008, 2992-2994.
[214] S. K. Pal, S. Setia, B. Avinash, S. Kumar, Liq. Cryst. 2013, 40, 1769-1816.
[215] D. Perez, E. Guitian, Chem. Soc. Rev. 2004, 33, 274-283.
[216] D. Peña, A. Cobas, D. Pérez, E. Guitián, L. Castedo, Org. Lett. 2003, 5, 18631866.
[217] Z. Li, N. T. Lucas, Z. Wang, D. Zhu, J. Org. Chem. 2007, 72, 3917-3920.
[218] (a) R. Chinchilla, C. Nájera, Chem. Rev. 2007, 107, 874-922; (b) R. Chinchilla, C. Nájera, Chem. Soc. Rev. 2011, 40, 5084-5121.
[219] M. Murata, S. Watanabe, Y. Masuda, J. Org. Chem. 1997, 62, 6458-6459.
[220] T. Ishiyama, M. Murata, N. Miyaura, J. Org. Chem. 1995, 60, 7508-7510.
[221] W. Tang, S. Keshipeddy, Y. Zhang, X. Wei, J. Savoie, N. D. Patel, N. K. Yee, C. H. Senanayake, Org. Lett. 2011, 13, 1366-1369.
[222] M. Stiles, U. Burckhardt, A. Haag, J. Org. Chem. 1962, 27, 4715-4716.
[223] K. Z. Łączkowski, D. Garcia, D. Pena, A. Cobas, D. Perez, E. Guitian, Org. Lett. 2011, 13, 960-963.
[224] H. H. Wasserman, J. Solodar, J. Am. Chem. Soc. 1965, 87, 4002-4003.
[225] Y. K. Ramtohul, A. Chartrand, Org. Lett. 2007, 9, 1029-1032.
[226] T. Pirali, F. Zhang, A. H. Miller, J. L. Head, D. McAusland, M. F. Greaney, Angew. Chem. Int. Ed. 2012, 51, 1006-1009.
[227] J. Ficini, A. Krief, Tetrahedron Lett. 1968, 9, 4143-4146.
[228] Y. Sato, Y. Kobayashi, M. Sugiura, H. Shirai, J. Org. Chem. 1978, 43, 199-202.
[229] G. Evano, A. Coste, K. Jouvin, Angew. Chem. Int. Ed. 2010, 49, 2840-2859.
[230] K. A. DeKorver, H. Li, A. G. Lohse, R. Hayashi, Z. Lu, Y. Zhang, R. P. Hsung, Chem. Rev. 2010, 110, 5064-5106.
[231] H. Li, G. A. Grasa, T. J. Colacot, Org. Lett. 2010, 12, 3332-3335.
[232] A. Laouiti, M. M. Rammah, M. B. Rammah, J. Marrot, F. County, G. Evano, Org. Lett. 2012, 14, 6-9.
[233] E. Cuevas-Yañez, J. M. Serrano, G. Huerta, J. M. Muchowski, R. Cruz-Almanza, Tetrahedron 2004, 60, 9391-9396.
[234] S. Celebi, S. Leyva, D. A. Modarelli, M. S. Platz, J. Am. Chem. Soc. 1993, 115, 8613-8620.
[235] M. G. Banwell, M. Corbett, J. Gulbis, M. F. Mackay, M. E. Reum, J. Chem. Soc., Perkin Trans. 1 1993, 945-963.
[236] P.-L. Wu, S.-Y. Peng, J. Magrath, Synthesis 1996, 249-252.
[237] M. F. Lipton, R. H. Shapiro, J. Org. Chem. 1978, 43, 1409-1413.
[238] P. Nun, C. Martin, J. Martinez, F. Lamaty, Tetrahedron 2011, 67, 8187-8194.
[239] B. Levrand, W. Fieber, J.-M. Lehn, A. Herrmann, Helv. Chim. Acta 2007, 90, 2281-2314.
[240] G. Rosini, A. Medici, Synthesis 1976, 530-532.
[241] R. K. Bartlett, T. S. Stevens, J. Chem. Soc. C 1967, 1964-1968.
[242] S. Zhao, H.-B. Jeon, D. V. Nadkarni, L. M. Sayre, Tetrahedron 2006, 62, 63616369.
[243] M. Krishnamurthy, W. Li, B. M. M. II, Bioorg. Med. Chem. 2004, 12, 393-404.
[244] F. Angelucci, S. Cacchi, L. Caglioti, G. Rosini, Chim. Ind. 1970, 52, 262-264.
[245] M. C. Willis, G. N. Brace, I. P. Holmes, Angew. Chem. Int. Ed. 2005, 44, 403406.
[246] Y. Monguchi, S. Mori, S. Aoyagi, A. Tsutsui, T. Maegawa, H. Sajiki, Org. Biomol. Chem. 2010, 8, 3338-3342.
[247] M. Yagoubi, A. C. F. Cruz, P. L. Nichols, R. L. Elliott, M. C. Willis, Angew. Chem. Int. Ed. 2010, 49, 7958-7962.
[248] Indole 158 has been previously reported as a 1:1 mixture with the 2-methyl-3-ethyl-isomer; R. C. Larock, E. K. Yum, M. D. Refvik, J. Org. Chem. 1998, 63, 7652-7662.
[249] M. Dai, Z. Wang, S. J. Danishefsky, Tetrahedron Lett. 2008, 49, 6613-6616.
[250] Aryne precursor 220 has been previously reported as a mixture of isomers. ${ }^{[78]}$
[251] A. Bouillon, J.-C. Lancelot, V. Collot, P. R. Bovy, S. Rault, Tetrahedron 2002, 58, 3323-3328.
[252] B. K. Shoichet, F. Prati, E. Caselli, C. Romagnoli, O. Eidam, WO2013056163 (A1), 2013.
[253] Boronic ester 253 has been previously reported as a mixture; G. A. Chotana, M. A. Rak, M. R. Smith, J. Am. Chem. Soc. 2005, 127, 10539-10544.
[254] Boronic ester 257 has been previously reported but NMR spectra are not available; Y.-M. Wang, J. Wu, C. Hoong, V. Rauniyar, F. D. Toste, J. Am. Chem. Soc. 2012, 134, 12928-12931.
[255] Aryne precursor 221 has been previously reported but NMR spectra are not available; H. Yoshida, J. Ikadai, M. Shudo, J. Ohshita, A. Kunai, J. Am. Chem. Soc. 2003, 125, 6638-6639.
[256] Q. Shen, J. F. Hartwig, J. Am. Chem. Soc. 2006, 128, 10028-10029.
[257] K. Tanaka, K. Takeishi, Synthesis 2007, 2920-2923.
[258] S. Naud, J.-C. Cintrat, Synthesis 2003, 1391-1397.
[259] A. Kamal, J. S. Reddy, E. V. Bharathi, D. Dastagiri, Tetrahedron Lett. 2008, 49, 348-353.
[260] S. Nicolai, C. Piemontesi, J. Waser, Angew. Chem. Int. Ed. 2011, 50, 4680-4683.
[261] K. Dooleweerdt, H. Birkedal, T. Ruhland, T. Skrydstrup, J. Org. Chem. 2008, 73, 9447-9450.
[262] K. Dooleweerdt, T. Ruhland, T. Skrydstrup, Org. Lett. 2009, 11, 221-224.
[263] J. E. Taylor, M. D. Jones, J. M. J. Williams, S. D. Bull, J. Org. Chem. 2012, 77, 2808-2818.

## Appendix 1: list of abbreviations

| Ac | Acetyl |
| :---: | :---: |
| 18-C-6 | 18-crown-6; 1,4,7,10,13,16-hexaoxacyclooctadecane |
| 9-BBN | 9-Borabicyclo(3.3.1)nonane |
| Ad | adamantyl |
| aq. | aqueous |
| Ar | aryl |
| BHT | 3,5-di-tert-butyl-4-hydroxytoluene |
| Boc | $N$-tert-butoxycarbonyl |
| Bpin | pinacolboryl |
| BTMSA | bis(trimethylsilyl)acetylene |
| cat. | catalytic |
| Cbz | $N$-carboxybenzoyl |
| dan | naphthalene-1,8-diamine |
| dba | dibenzylideneacetone |
| DCE | 1,2-dichloroethane |
| DCM | dichloromethane |
| dil. | dilute |
| DMA | $N, N$-dimethylacetamide |
| DMAD | dimethyl acetylenedicarboxylate |
| DME | dimethoxyethane |
| DMF | $N, N$-dimethylformamide |
| DMSO | dimethylsulfoxide |
| dppe | 1,2-bis(diphenylphosphino)ethane |
| dppf | 1,1'-bis(diphenylphosphino)ferrocene |
| dppp | 1,3-bis(diphenylphosphino)propane |
| eq. | equivalents |
| EWG | electron withdrawing group |
| GC | gas chromatography |
| HMDS | 1,1,1,3,3,3-hexamethyldisilazane |
| HPLC | high performance liquid chromatography |
| IPA | isopropyl alcohol |
| KHMDS | potassium hexamethyldisilazane |
| LCMS | liquid chromatography mass spectrometry |


| lit. | literature |
| :---: | :---: |
| MeCN | acetonitrile |
| mp | melting point |
| Nf | nonafluorobutanesulfonyl |
| NMP | N -methylpyrrolidinone |
| NMR | nuclear magnetic resonance |
| NOESY | nuclear Overhauser effect spectroscopy |
| non | $n$-nonyl |
| Ph | phenyl |
| ppm | parts per million |
| pyr | pyridine |
| rt | room temperature |
| sat. | saturated |
| SPhos | 2-dicyclohexylphosphino-2', $6^{\prime}$-dimethoxybiphenyl |
| TBAF | tetra- $n$-butylammonium fluoride |
| TBAT | tetra-n-butylammonium difluorotriphenylsilicate |
| TEBAC | triethylbenzylammonium chloride |
| Tf | trifluoromethanesulfonyl |
| THF | tetrahydrofuran |
| TIPS | triisopropylsilyl |
| tlc | thin layer chromatography |
| TMEDA | $N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine |
| TMP | 2,2,6,6-tetramethylpiperidine |
| TMS | trimethylsilyl |
| tol | toluene |
| Triflate | trifluoromethanesulfonate |
| Ts; tosyl | 4-toluenesulfonyl |
| Xantphos | 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene |

## Appendix 2: crystallographic data

Table A1 Crystal data and structure refinement for 283.

| Empirical formula | $\mathrm{C}_{248} \mathrm{H}_{215} \mathrm{O}_{24.50}$ |
| :--- | :--- |
| Formula weight | 3587.20 |
| Temperature | $150.05(16) \mathrm{K}$ |
| Wavelength | $0.7107 \AA$ |
| Crystal system, space group | Triclinic |
| Space group | $\mathrm{P}-1$ |
| Unit cell parameters | $\mathrm{a}=10.9330(3) \AA \quad \alpha=81.206(4)^{\circ}$ |
|  | $\mathrm{b}=26.5055(12) \AA \quad \beta=80.853(3)^{\circ}$ |
|  | $\mathrm{c}=34.0449(14) \AA \quad \gamma=85.145(3)^{\circ}$ |
| Volume | $9607.3(6) \AA^{3}$ |
| Z | 2 |
| Density (calculated) | $1.240 \mathrm{~g} / \mathrm{cm}^{3}$ |
| Absorption coefficient $\mu$ | $0.079 \mathrm{~mm}{ }^{\circ}$ |
| $\mathrm{F}(000)$ | 3798 |
| Crystal size | $0.40 \times 0.20 \times 0.03 \mathrm{~mm}{ }^{3}$ |
| $\theta$ range for data collection | 3.05 to $29.04^{\circ}$ |
| Index ranges | $\mathrm{h}-13$ to $14, \mathrm{k}-35$ to $34, \mathrm{l} \mathrm{-} 42$ to 44 |
| Completeness to $\theta=25.00^{\circ}$ | $99.8 \%$ |
| Reflections collected | 83884 |
| Independent reflections | $43489\left(\mathrm{R}_{\text {int }}=0.0510\right)$ |
| Absorption correction | semi-empirical from equivalents |
| Max. and min. transmission | 1.00000 and 0.79201 |
| Refinement method | Full-matrix least-squares on $\mathrm{F}^{2}$ |
| Data / restraints $/$ parameters | $43489 / 2 / 2462$ |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.054 |
| Final R indices $\left[\mathrm{F}^{2}>2 \sigma\right]$ | $\mathrm{R} 1=0.1193, \mathrm{wR} 2=0.3035$ |
| R indices (all data) | $\mathrm{R} 1=0.1782, \mathrm{wR} 2=0.3443$ |
| Largest diff. peak and hole | 2.666 and $-0.790 \mathrm{e} \AA-3$ |

Table A2 Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2}\right.$ $\times 10^{3}$ ) for 283. $\mathrm{U}_{\text {eq }}$ is defined as one third of the trace of the orthogonalized $\mathrm{U}^{\mathrm{ij}}$ tensor.

|  | x | y | z | $\mathrm{U}_{\text {eq }}$ |
| :---: | :---: | :---: | :---: | :---: |
| C(1) | 2176(4) | 219(2) | 2975(1) | 21(1) |
| C(2) | 874(4) | 389(2) | 2937(1) | 19(1) |
| C(3) | 382(4) | 428(2) | 2570(1) | 21(1) |
| C(4) | -894(4) | 398(2) | 2587(1) | 25(1) |
| C(5) | -1671(4) | 348(2) | 2950(1) | 24(1) |
| C(6) | -1219(4) | 396(2) | 3298(1) | 22(1) |
| C(7) | 52(4) | 455(2) | 3291(1) | 20(1) |
| C(8) | 567(4) | 618(2) | 3625(1) | 17(1) |
| C(9) | 1859(4) | 526(2) | 3633(1) | 19(1) |
| C(10) | 2616(4) | 225(2) | 3342(1) | 19(1) |
| C(11) | 3763(4) | -42(2) | 3414(1) | 22(1) |
| C(12) | 4492(4) | -261(2) | 3107(1) | 26(1) |
| C(13) | 4086(4) | -253(2) | 2738(1) | 28(1) |
| C(14) | 2943(4) | -28(2) | 2676(1) | 25(1) |
| C(15) | 4184(4) | -150(2) | 3812(1) | 20(1) |
| C(16) | 3424(4) | -397(2) | 4144(1) | 25(1) |
| C(17) | 3852(4) | -542(2) | 4506(1) | 27(1) |
| C(18) | 5057(4) | -444(2) | 4547(1) | 25(1) |
| C(19) | 5814(4) | -202(2) | 4226(1) | 26(1) |
| C(20) | 5372(4) | -55(2) | 3863(1) | 24(1) |
| C(22) | 6618(5) | -528(2) | 4977(2) | 41(1) |
| C(23) | 2420(4) | 761(2) | 3899(1) | 24(1) |
| C(24) | 1734(5) | 1069(2) | 4149(1) | 27(1) |
| C(25) | 467(4) | 1144(2) | 4152(1) | 26(1) |
| C(26) | -140(4) | 930(2) | 3892(1) | 21(1) |
| C(27) | -1489(4) | 1084(2) | 3907(1) | 19(1) |
| C(28) | -1932(4) | 1441(2) | 3610(1) | 23(1) |
| C(29) | -3173(4) | 1610(2) | 3642(1) | 24(1) |
| C(30) | -4000(4) | 1419(2) | 3971(1) | 22(1) |
| C(31) | -3582(4) | 1066(2) | 4272(1) | 28(1) |
| C(32) | -2341(4) | 905(2) | 4241(1) | 26(1) |
| C(34) | -5664(5) | 2004(2) | 3788(2) | 37(1) |
| C(35) | 1159(4) | 549(2) | 2171(1) | 22(1) |
| C(36) | 1965(4) | 945(2) | 2107(1) | 25(1) |
| C(37) | 2692(5) | 1074(2) | 1737(2) | 31(1) |
| C(38) | 2633(5) | 799(2) | 1426(2) | 34(1) |
| C(39) | 1823(5) | 409(2) | 1481(2) | 32(1) |
| C(40) | 1099(4) | 284(2) | 1848(1) | 26(1) |
| C(42) | 4293(8) | 1240(3) | 1004(2) | 76(2) |

Continued on following page

Table A2 continued
$\left.\begin{array}{lllll}\hline \mathrm{C}(43) & 2970(4) & 4842(2) & 5204(1) & 20(1) \\ \mathrm{C}(44) & 3762(4) & 4380(2) & 5133(1) & 22(1) \\ \mathrm{C}(45) & 4946(4) & 4283(2) & 5255(1) & 25(1) \\ \mathrm{C}(46) & 5601(4) & 3823(2) & 5221(2) & 28(1) \\ \mathrm{C}(47) & 5033(4) & 3430(2) & 5110(2) & 29(1) \\ \mathrm{C}(48) & 3887(4) & 3509(2) & 4982(1) & 22(1) \\ \mathrm{C}(49) & 3318(4) & 4011(2) & 4936(1) & 21(1) \\ \mathrm{C}(50) & 2433(4) & 4202(2) & 4655(1) & 22(1) \\ \mathrm{C}(51) & 1973(4) & 4718(2) & 4619(1) & 21(1) \\ \mathrm{C}(52) & 2067(4) & 5010(2) & 4950(1) & 23(1) \\ \mathrm{C}(53) & 1233(4) & 5424(2) & 5030(1) & 25(1) \\ \mathrm{C}(54) & 1327(5) & 5690(2) & 5339(1) & 29(1) \\ \mathrm{C}(55) & 2227(5) & 5530(2) & 5589(2) & 30(1) \\ \mathrm{C}(56) & 3021(4) & 5106(2) & 5533(1) & 25(1) \\ \mathrm{C}(57) & 3823(4) & 4932(2) & 5853(1) & 27(1) \\ \mathrm{C}(58) & 3665(5) & 4476(2) & 6110(2) & 32(1) \\ \mathrm{C}(59) & 4381(5) & 4325(2) & 6417(2) & 32(1) \\ \mathrm{C}(60) & 5275(4) & 4645(2) & 6470(2) & 32(1) \\ \mathrm{C}(61) & 5424(5) & 5110(2) & 6218(2) & 32(1) \\ \mathrm{C}(62) & 4716(4) & 5246(2) & 5916(2) & 29(1) \\ \mathrm{C}(64) & 5938(6) & 4059(3) & 7014(2) & 53(2) \\ \mathrm{C}(65) & 2219(4) & 3902(2) & 4365(1) & 24(1) \\ \mathrm{C}(66) & 1580(4) & 4112(2) & 4052(1) & 26(1) \\ \mathrm{C}(67) & 1209(4) & 4629(2) & 4002(1) & 26(1) \\ \mathrm{C}(68) & 1409(4) & 4938(2) & 4276(1) & 23(1) \\ \mathrm{C}(69) & 1100(4) & 5499(2) & 4174(1) & 23(1) \\ \mathrm{C}(70) & 2017(4) & 5848(2) & 4115(1) & 29(1) \\ \mathrm{C}(71) & 1745(5) & 6369(2) & 4012(2) & 34(1) \\ \mathrm{C}(72) & 540(5) & 6550(2) & 3966(2) & 33(1) \\ \mathrm{C}(73) & -382(5) & 6209(2) & 4021(2) & 35(1) \\ \mathrm{C}(74) & -94(4) & 5684(2) & 4121(2) & 28(1) \\ \mathrm{C}(76) & -741(7) & 7286(3) & 3774(2) & 60(2) \\ \mathrm{C}(77) & 3246(4) & 3044(2) & 4950(1) & 23(1) \\ \mathrm{C}(78) & 3873(4) & 2627(2) & 4781(1) & 28(1) \\ \mathrm{C}(79) & 3307(5) & 2169(2) & 4800(2) & 32(1) \\ \mathrm{C}(80) & 2102(4) & 2123(2) & 4995(1) & 25(1) \\ \mathrm{C}(81) & 1454(4) & 2529(2) & 5168(1) & 26(1) \\ \mathrm{C}(82) & 2037(4) & 2984(2) & 5139(1) & 22(1) \\ \mathrm{C}(84) & 363(5) & 1607(2) & 5187(2) & 38(1) \\ \mathrm{C}(85) & 2803(4) & 3757(2) & 9893(1) & 20(1) \\ \mathrm{C}(86) & 1986(4) & 3964(2) & 10223(1) & 20(1) \\ \mathrm{C}(87) & 2501(4) & 4121(2) & 10536(1) & 22(1) \\ \mathrm{C}(88) & 1756(4) & 4336(2) & 10839(1) & 24(1) \\ & & & & \\ \hline & & & 10\end{array}\right)$

Continued on following page

Table A2 continued

| $\mathrm{C}(89)$ | $477(4)$ | $4392(2)$ | $10841(1)$ | $22(1)$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C}(90)$ | $-69(4)$ | $4260(2)$ | $10531(1)$ | $20(1)$ |
| $\mathrm{C}(91)$ | $695(4)$ | $4052(2)$ | $10209(1)$ | $19(1)$ |
| $\mathrm{C}(92)$ | $258(4)$ | $3991(2)$ | $9832(1)$ | $21(1)$ |
| $\mathrm{C}(93)$ | $1117(4)$ | $4014(2)$ | $9472(1)$ | $21(1)$ |
| $\mathrm{C}(94)$ | $2427(4)$ | $3850(2)$ | $9504(1)$ | $22(1)$ |
| $\mathrm{C}(95)$ | $3275(4)$ | $3705(2)$ | $9180(1)$ | $28(1)$ |
| $\mathrm{C}(96)$ | $4449(4)$ | $3495(2)$ | $9228(1)$ | $28(1)$ |
| $\mathrm{C}(97)$ | $4774(4)$ | $3381(2)$ | $9611(2)$ | $29(1)$ |
| $\mathrm{C}(98)$ | $3958(4)$ | $3488(2)$ | $9946(1)$ | $22(1)$ |
| $\mathrm{C}(99)$ | $4256(4)$ | $3250(2)$ | $10348(1)$ | $24(1)$ |
| $\mathrm{C}(100)$ | $3422(4)$ | $2936(2)$ | $10602(2)$ | $30(1)$ |
| $\mathrm{C}(101)$ | $3705(5)$ | $2675(2)$ | $10959(2)$ | $32(1)$ |
| $\mathrm{C}(102)$ | $4831(4)$ | $2730(2)$ | $11079(1)$ | $28(1)$ |
| $\mathrm{C}(103)$ | $5685(4)$ | $3045(2)$ | $10835(1)$ | $27(1)$ |
| $\mathrm{C}(104)$ | $5390(4)$ | $3299(2)$ | $10470(1)$ | $28(1)$ |
| $\mathrm{C}(106)$ | $6179(5)$ | $2508(3)$ | $11579(2)$ | $43(1)$ |
| $\mathrm{C}(107)$ | $640(4)$ | $4130(2)$ | $9099(1)$ | $22(1)$ |
| $\mathrm{C}(108)$ | $-636(4)$ | $4112(2)$ | $9098(1)$ | $26(1)$ |
| $\mathrm{C}(109)$ | $-1430(4)$ | $3988(2)$ | $9452(1)$ | $25(1)$ |
| $\mathrm{C}(110)$ | $-1009(4)$ | $3938(2)$ | $9815(1)$ | $24(1)$ |
| $\mathrm{C}(111)$ | $1414(4)$ | $4287(2)$ | $8706(1)$ | $22(1)$ |
| $\mathrm{C}(112)$ | $2217(4)$ | $4686(2)$ | $8653(1)$ | $25(1)$ |
| $\mathrm{C}(113)$ | $2920(4)$ | $4834(2)$ | $8282(1)$ | $26(1)$ |
| $\mathrm{C}(114)$ | $2835(4)$ | $4588(2)$ | $7960(1)$ | $27(1)$ |
| $\mathrm{C}(115)$ | $2027(4)$ | $4198(2)$ | $8005(2)$ | $29(1)$ |
| $\mathrm{C}(116)$ | $1323(4)$ | $4049(2)$ | $8375(1)$ | $26(1)$ |
| $\mathrm{C}(118)$ | $4380(6)$ | $5076(3)$ | $7523(2)$ | $50(2)$ |
| $\mathrm{C}(119)$ | $-1432(4)$ | $4384(2)$ | $10566(1)$ | $20(1)$ |
| $\mathrm{C}(120)$ | $-2239(4)$ | $4112(2)$ | $10868(1)$ | $24(1)$ |
| $\mathrm{C}(121)$ | $-3492(4)$ | $4247(2)$ | $10927(1)$ | $24(1)$ |
| $\mathrm{C}(122)$ | $-3979(4)$ | $4664(2)$ | $10686(1)$ | $22(1)$ |
| $\mathrm{C}(123)$ | $-3203(4)$ | $4941(2)$ | $10387(1)$ | $23(1)$ |
| $\mathrm{C}(124)$ | $-1936(4)$ | $4799(2)$ | $10326(1)$ | $23(1)$ |
| $\mathrm{C}(126)$ | $-5740(5)$ | $5234(2)$ | $10578(2)$ | $36(1)$ |
| $\mathrm{C}(127)$ | $9710(4)$ | $2708(2)$ | $3329(1)$ | $19(1)$ |
| $\mathrm{C}(128)$ | $9195(4)$ | $2552(2)$ | $2994(1)$ | $18(1)$ |
| $\mathrm{C}(129)$ | $9899(4)$ | $2246(2)$ | $2716(1)$ | $20(1)$ |
| $\mathrm{C}(130)$ | $9294(4)$ | $2035(2)$ | $2456(1)$ | $24(1)$ |
| $\mathrm{C}(131)$ | $8027(4)$ | $2115(2)$ | $2459(1)$ | $25(1)$ |
| $\mathrm{C}(132)$ | $7342(4)$ | $2412(2)$ | $2718(1)$ | $22(1)$ |
| $\mathrm{C}(133)$ | $7910(4)$ | $2644(2)$ | $2985(1)$ | $20(1)$ |
| $\mathrm{C}(134)$ | $7154(4)$ | $2939(2)$ | $3282(1)$ | $20(1)$ |
|  |  |  |  |  |

Continued on following page

Table A2 continued

| $\mathrm{C}(135)$ | $7599(4)$ | $2937(2)$ | $3653(1)$ | $22(1)$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C}(136)$ | $8894(4)$ | $2765(2)$ | $3688(1)$ | $20(1)$ |
| $\mathrm{C}(137)$ | $9408(4)$ | $2728(2)$ | $4049(1)$ | $22(1)$ |
| $\mathrm{C}(138)$ | $10678(4)$ | $2761(2)$ | $4031(1)$ | $25(1)$ |
| $\mathrm{C}(139)$ | $11443(4)$ | $2821(2)$ | $3664(2)$ | $27(1)$ |
| $\mathrm{C}(140)$ | $10991(4)$ | $2772(2)$ | $3316(1)$ | $23(1)$ |
| $\mathrm{C}(141)$ | $8651(4)$ | $2608(2)$ | $4452(1)$ | $22(1)$ |
| $\mathrm{C}(142)$ | $7849(4)$ | $2209(2)$ | $4526(1)$ | $22(1)$ |
| $\mathrm{C}(143)$ | $7163(4)$ | $2083(2)$ | $4903(1)$ | $26(1)$ |
| $\mathrm{C}(144)$ | $7277(4)$ | $2352(2)$ | $5215(1)$ | $28(1)$ |
| $\mathrm{C}(145)$ | $8104(4)$ | $2745(2)$ | $5145(1)$ | $28(1)$ |
| $\mathrm{C}(146)$ | $8768(4)$ | $2867(2)$ | $4769(1)$ | $25(1)$ |
| $\mathrm{C}(148)$ | $5779(6)$ | $1872(3)$ | $5678(2)$ | $56(2)$ |
| $\mathrm{C}(149)$ | $6010(4)$ | $3209(2)$ | $3214(1)$ | $21(1)$ |
| $\mathrm{C}(150)$ | $5274(4)$ | $3426(2)$ | $3527(1)$ | $26(1)$ |
| $\mathrm{C}(151)$ | $5670(4)$ | $3403(2)$ | $3894(1)$ | $26(1)$ |
| $\mathrm{C}(152)$ | $6830(4)$ | $3174(2)$ | $3954(1)$ | $24(1)$ |
| $\mathrm{C}(153)$ | $5584(4)$ | $3320(2)$ | $2815(1)$ | $20(1)$ |
| $\mathrm{C}(154)$ | $6355(4)$ | $3544(2)$ | $2478(2)$ | $27(1)$ |
| $\mathrm{C}(155)$ | $5947(5)$ | $3664(2)$ | $2111(2)$ | $30(1)$ |
| $\mathrm{C}(156)$ | $4739(4)$ | $3568(2)$ | $2070(1)$ | $27(1)$ |
| $\mathrm{C}(157)$ | $3959(4)$ | $3348(2)$ | $2400(1)$ | $27(1)$ |
| $\mathrm{C}(158)$ | $4388(4)$ | $3227(2)$ | $2766(1)$ | $26(1)$ |
| $\mathrm{C}(160)$ | $3226(5)$ | $3586(2)$ | $1633(2)$ | $38(1)$ |
| $\mathrm{C}(161)$ | $11247(4)$ | $2087(2)$ | $2702(1)$ | $22(1)$ |
| $\mathrm{C}(162)$ | $11694(4)$ | $1743(2)$ | $3006(1)$ | $22(1)$ |
| $\mathrm{C}(163)$ | $12943(4)$ | $1574(2)$ | $2974(1)$ | $23(1)$ |
| $\mathrm{C}(164)$ | $13762(4)$ | $1752(2)$ | $2638(1)$ | $24(1)$ |
| $\mathrm{C}(165)$ | $13322(4)$ | $2089(2)$ | $2329(1)$ | $26(1)$ |
| $\mathrm{C}(166)$ | $12077(4)$ | $2251(2)$ | $2366(1)$ | $26(1)$ |
| $\mathrm{C}(168)$ | $15427(5)$ | $1181(2)$ | $2844(2)$ | $40(1)$ |
| $\mathrm{C}(169)$ | $3499(4)$ | $887(2)$ | $8190(1)$ | $25(1)$ |
| $\mathrm{C}(170)$ | $2600(4)$ | $1070(2)$ | $7908(1)$ | $24(1)$ |
| $\mathrm{C}(171)$ | $2355(4)$ | $749(2)$ | $7638(1)$ | $28(1)$ |
| $\mathrm{C}(172)$ | $1719(5)$ | $944(2)$ | $7326(2)$ | $33(1)$ |
| $\mathrm{C}(173)$ | $1352(5)$ | $1466(2)$ | $7260(2)$ | $32(1)$ |
| $\mathrm{C}(174)$ | $1592(4)$ | $1793(2)$ | $7518(2)$ | $26(1)$ |
| $\mathrm{C}(175)$ | $2171(4)$ | $1590(2)$ | $7856(1)$ | $25(1)$ |
| $\mathrm{C}(176)$ | $2334(4)$ | $1896(2)$ | $8168(2)$ | $27(1)$ |
| $\mathrm{C}(177)$ | $3262(4)$ | $1737(2)$ | $8414(1)$ | $25(1)$ |
| $\mathrm{C}(178)$ | $4018(4)$ | $1266(2)$ | $8356(1)$ | $26(1)$ |
| $\mathrm{C}(180)$ | $4049(4)$ | $378(2)$ | $8251(1)$ | $24(1)$ |
|  |  |  |  |  |

Table A2 continued

| $\mathrm{C}(181)$ | $5836(5)$ | $697(2)$ | $8454(2)$ | $31(1)$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C}(182)$ | $5217(4)$ | $1173(2)$ | $8465(2)$ | $30(1)$ |
| $\mathrm{C}(183)$ | $3387(4)$ | $-89(2)$ | $8249(1)$ | $24(1)$ |
| $\mathrm{C}(184)$ | $3991(5)$ | $-513(2)$ | $8090(2)$ | $32(1)$ |
| $\mathrm{C}(185)$ | $3431(5)$ | $-975(2)$ | $8140(2)$ | $33(1)$ |
| $\mathrm{C}(186)$ | $2243(4)$ | $-1016(2)$ | $8352(2)$ | $26(1)$ |
| $\mathrm{C}(187)$ | $1621(4)$ | $-600(2)$ | $8510(1)$ | $24(1)$ |
| $\mathrm{C}(188)$ | $2194(4)$ | $-141(2)$ | $8456(1)$ | $24(1)$ |
| $\mathrm{C}(190)$ | $528(5)$ | $-1544(2)$ | $8570(2)$ | $39(1)$ |
| $\mathrm{C}(191)$ | $3371(5)$ | $2020(2)$ | $8729(2)$ | $33(1)$ |
| $\mathrm{C}(192)$ | $2610(6)$ | $2460(2)$ | $8773(2)$ | $41(1)$ |
| $\mathrm{C}(193)$ | $1693(5)$ | $2612(2)$ | $8535(2)$ | $39(1)$ |
| $\mathrm{C}(194)$ | $1525(5)$ | $2328(2)$ | $8246(2)$ | $32(1)$ |
| $\mathrm{C}(195)$ | $4170(5)$ | $1855(2)$ | $9051(2)$ | $37(1)$ |
| $\mathrm{C}(196)$ | $5016(5)$ | $2182(2)$ | $9124(2)$ | $40(1)$ |
| $\mathrm{C}(197)$ | $5655(5)$ | $2062(3)$ | $9451(2)$ | $48(2)$ |
| $\mathrm{C}(198)$ | $5471(6)$ | $1617(3)$ | $9705(2)$ | $49(2)$ |
| $\mathrm{C}(199)$ | $4654(6)$ | $1271(3)$ | $9634(2)$ | $48(2)$ |
| $\mathrm{C}(200)$ | $4021(6)$ | $1398(2)$ | $9306(2)$ | $44(1)$ |
| $\mathrm{C}(202)$ | $6804(12)$ | $1804(5)$ | $10152(3)$ | $145(6)$ |
| $\mathrm{C}(203)$ | $1283(4)$ | $2352(2)$ | $7399(2)$ | $28(1)$ |
| $\mathrm{C}(204)$ | $88(5)$ | $2536(2)$ | $7341(2)$ | $34(1)$ |
| $\mathrm{C}(205)$ | $-189(5)$ | $3060(2)$ | $7230(2)$ | $38(1)$ |
| $\mathrm{C}(206)$ | $734(5)$ | $3398(2)$ | $7166(2)$ | $36(1)$ |
| $\mathrm{C}(207)$ | $1939(5)$ | $3219(2)$ | $7213(2)$ | $33(1)$ |
| $\mathrm{C}(208)$ | $2207(5)$ | $2704(2)$ | $7329(2)$ | $29(1)$ |
| $\mathrm{C}(210)$ | $-556(7)$ | $4132(3)$ | $6966(2)$ | $62(2)$ |
| $\mathrm{C}(211)$ | $1105(7)$ | $7373(5)$ | $9402(3)$ | $101(3)$ |
| $\mathrm{C}(212)$ | $144(6)$ | $7220(3)$ | $9190(2)$ | $64(2)$ |
| $\mathrm{C}(214)$ | $-163(7)$ | $6950(3)$ | $8592(3)$ | $74(2)$ |
| $\mathrm{C}(215)$ | $544(8)$ | $6734(3)$ | $8226(3)$ | $76(2)$ |
| $\mathrm{C}(216)$ | $3173(4)$ | $7072(2)$ | $1775(1)$ | $25(1)$ |
| $\mathrm{C}(217)$ | $2275(4)$ | $7264(2)$ | $1497(1)$ | $25(1)$ |
| $\mathrm{C}(218)$ | $2016(5)$ | $6962(2)$ | $1216(2)$ | $31(1)$ |
| $\mathrm{C}(219)$ | $1377(5)$ | $7166(2)$ | $907(2)$ | $35(1)$ |
| $\mathrm{C}(220)$ | $1008(5)$ | $7683(2)$ | $860(2)$ | $35(1)$ |
| $\mathrm{C}(221)$ | $1245(4)$ | $7998(2)$ | $1126(2)$ | $28(1)$ |
| $\mathrm{C}(222)$ | $1829(4)$ | $7784(2)$ | $1461(2)$ | $28(1)$ |
| $\mathrm{C}(223)$ | $1986(4)$ | $8086(2)$ | $1778(2)$ | $27(1)$ |
| $\mathrm{C}(224)$ | $2891(4)$ | $7909(2)$ | $2036(2)$ | $26(1)$ |
| $\mathrm{C}(225)$ | $3640(4)$ | $7438(2)$ | $1968(1)$ | $26(1)$ |
| $\mathrm{C}(226)$ | $4834(4)$ | $7336(2)$ | $2085(1)$ | $28(1)$ |
| $\mathrm{C}(227)$ | $5467(4)$ | $6873(2)$ | $2057(2)$ | $32(1)$ |
|  |  |  |  |  |

Continued on following page

Table A2 continued

| $\mathrm{C}(228)$ | $4873(4)$ | $6478(2)$ | $1954(2)$ | $28(1)$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C}(229)$ | $3728(4)$ | $6562(2)$ | $1821(1)$ | $24(1)$ |
| $\mathrm{C}(230)$ | $3105(4)$ | $6096(2)$ | $1784(1)$ | $22(1)$ |
| $\mathrm{C}(231)$ | $1894(4)$ | $6026(2)$ | $1975(1)$ | $26(1)$ |
| $\mathrm{C}(232)$ | $1334(4)$ | $5570(2)$ | $1996(1)$ | $24(1)$ |
| $\mathrm{C}(233)$ | $1985(4)$ | $5170(2)$ | $1818(1)$ | $25(1)$ |
| $\mathrm{C}(234)$ | $3197(4)$ | $5232(2)$ | $1622(2)$ | $29(1)$ |
| $\mathrm{C}(235)$ | $3741(4)$ | $5688(2)$ | $1605(1)$ | $27(1)$ |
| $\mathrm{C}(237)$ | $249(5)$ | $4650(2)$ | $1988(2)$ | $34(1)$ |
| $\mathrm{C}(238)$ | $2980(5)$ | $8180(2)$ | $2359(2)$ | $30(1)$ |
| $\mathrm{C}(239)$ | $2240(5)$ | $8628(2)$ | $2400(2)$ | $35(1)$ |
| $\mathrm{C}(240)$ | $1353(5)$ | $8799(2)$ | $2148(2)$ | $35(1)$ |
| $\mathrm{C}(241)$ | $1215(5)$ | $8517(2)$ | $1852(2)$ | $30(1)$ |
| $\mathrm{C}(242)$ | $3755(5)$ | $8003(2)$ | $2678(2)$ | $30(1)$ |
| $\mathrm{C}(243)$ | $4660(5)$ | $8313(2)$ | $2746(2)$ | $33(1)$ |
| $\mathrm{C}(244)$ | $5351(5)$ | $8161(2)$ | $3059(2)$ | $36(1)$ |
| $\mathrm{C}(245)$ | $5179(5)$ | $7700(2)$ | $3303(2)$ | $35(1)$ |
| $\mathrm{C}(246)$ | $4294(5)$ | $7389(2)$ | $3243(2)$ | $38(1)$ |
| $\mathrm{C}(247)$ | $3585(5)$ | $7543(2)$ | $2933(2)$ | $37(1)$ |
| $\mathrm{C}(249)$ | $5809(7)$ | $7099(3)$ | $3849(2)$ | $62(2)$ |
| $\mathrm{C}(250)$ | $948(5)$ | $8556(2)$ | $1003(2)$ | $35(1)$ |
| $\mathrm{C}(251)$ | $-257(6)$ | $8740(2)$ | $943(2)$ | $42(1)$ |
| $\mathrm{C}(252)$ | $-522(8)$ | $9247(3)$ | $795(2)$ | $62(2)$ |
| $\mathrm{C}(253)$ | $437(10)$ | $9579(3)$ | $701(2)$ | $73(3)$ |
| $\mathrm{C}(254)$ | $1624(9)$ | $9405(3)$ | $753(2)$ | $65(2)$ |
| $\mathrm{C}(255)$ | $1869(6)$ | $8902(2)$ | $906(2)$ | $45(1)$ |
| $\mathrm{C}(256)$ | $-875(14)$ | $10273(6)$ | $443(5)$ | $170(6)$ |
| $\mathrm{C}(257)$ | $2513(6)$ | $4523(2)$ | $2852(2)$ | $44(1)$ |
| $\mathrm{C}(258)$ | $1450(5)$ | $4179(2)$ | $2929(2)$ | $39(1)$ |
| $\mathrm{C}(259)$ | $-720(6)$ | $4167(2)$ | $3145(2)$ | $48(2)$ |
| $\mathrm{C}(260)$ | $-1875(7)$ | $4498(3)$ | $3210(2)$ | $71(2)$ |
| $\mathrm{C}(262)$ | $2604(6)$ | $1416(3)$ | $6059(2)$ | $51(2)$ |
| $\mathrm{C}(263)$ | $1570(5)$ | $1057(2)$ | $6178(2)$ | $43(1)$ |
| $\mathrm{C}(264)$ | $-601(6)$ | $1046(3)$ | $6392(2)$ | $59(2)$ |
| $\mathrm{C}(265)$ | $-1766(7)$ | $1384(4)$ | $6421(3)$ | $78(2)$ |
| $\mathrm{O}(1)$ | $5377(3)$ | $-602(2)$ | $4921(1)$ | $37(1)$ |
| $\mathrm{O}(2)$ | $-5252(3)$ | $1552(1)$ | $4026(1)$ | $32(1)$ |
| $\mathrm{O}(3)$ | $3344(4)$ | $883(2)$ | $1058(1)$ | $53(1)$ |
| $\mathrm{O}(4)$ | $6042(3)$ | $4534(2)$ | $6756(1)$ | $43(1)$ |
| $\mathrm{O}(5)$ | $383(5)$ | $7073(2)$ | $3869(1)$ | $61(1)$ |
| $\mathrm{O}(6)$ | $1623(3)$ | $1660(1)$ | $5004(1)$ | $36(1)$ |
| $\mathrm{O}(7)$ | $5023(3)$ | $2464(2)$ | $11445(1)$ | $39(1)$ |
| $\mathrm{O}(8)$ | $3510(3)$ | $4688(2)$ | $7585(1)$ | $37(1)$ |
|  |  |  |  |  |

Continued on following page

Table A2 continued

| $\mathrm{O}(9)$ | $-5238(3)$ | $4768(1)$ | $10769(1)$ | $33(1)$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O}(10)$ | $6638(4)$ | $2268(2)$ | $5595(1)$ | $40(1)$ |
| $\mathrm{O}(11)$ | $4428(3)$ | $3696(2)$ | $1692(1)$ | $38(1)$ |
| $\mathrm{O}(12)$ | $15006(3)$ | $1616(1)$ | $2586(1)$ | $34(1)$ |
| $\mathrm{O}(13)$ | $1771(3)$ | $-1490(1)$ | $8383(1)$ | $36(1)$ |
| $\mathrm{O}(14)$ | $6039(4)$ | $1454(2)$ | $10041(1)$ | $72(2)$ |
| $\mathrm{O}(15)$ | $576(5)$ | $3922(2)$ | $7058(2)$ | $65(1)$ |
| $\mathrm{O}(16)$ | $290(8)$ | $10086(2)$ | $551(2)$ | $106(2)$ |
| $\mathrm{O}(17)$ | $1527(3)$ | $4705(1)$ | $1820(1)$ | $34(1)$ |
| $\mathrm{O}(18)$ | $5940(4)$ | $7579(2)$ | $3592(1)$ | $47(1)$ |
| $\mathrm{O}(19)$ | $725(4)$ | $7066(2)$ | $8812(2)$ | $62(1)$ |
| $\mathrm{O}(20)$ | $325(4)$ | $4471(2)$ | $3033(1)$ | $40(1)$ |
| $\mathrm{O}(21)$ | $434(4)$ | $1350(2)$ | $6263(1)$ | $46(1)$ |
| $\mathrm{O}(22)$ | $4816(9)$ | $9983(4)$ | $-15(3)$ | $41(2)$ |
| $\mathrm{C}(266)$ | $4773(13)$ | $10057(6)$ | $387(4)$ | $60(4)$ |
| $\mathrm{C}(267)$ | $5688(16)$ | $10067(8)$ | $573(5)$ | $68(5)$ |
| $\mathrm{C}(268)$ | $3852(13)$ | $9921(6)$ | $-183(4)$ | $66(4)$ |
| $\mathrm{C}(269)$ | $3864(17)$ | $9849(7)$ | $-565(5)$ | $66(5)$ |
| $\mathrm{O}(23)$ | $8593(4)$ | $7348(2)$ | $199(1)$ | $56(1)$ |
| $\mathrm{O}(24)$ | $8141(9)$ | $8292(4)$ | $9690(3)$ | $163(4)$ |
| $\mathrm{O}(25)$ | $10138(4)$ | $229(2)$ | $5457(1)$ | $12(1)$ |
| $\mathrm{O}(25 \mathrm{~S})$ | $9587(6)$ | $157(3)$ | $5252(2)$ | $15(2)$ |

Table A3 Bond lengths $[\AA]$ and angles $\left[^{\circ}\right]$ for 283.

| $\mathrm{C}(1)-\mathrm{C}(10)$ | 1.412(6) | $\mathrm{C}(1)-\mathrm{C}(14)$ | 1.417(6) |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | 1.476(6) | $\mathrm{C}(2)-\mathrm{C}(7)$ | 1.409 (6) |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | 1.423(6) | $\mathrm{C}(3)-\mathrm{C}(4)$ | $1.394(6)$ |
| $\mathrm{C}(3)-\mathrm{C}(35)$ | 1.489(6) | $\mathrm{C}(4)-\mathrm{C}(5)$ | 1.379 (7) |
| $\mathrm{C}(4)-\mathrm{H}(4)$ | 0.9300 | $\mathrm{C}(5)-\mathrm{C}(6)$ | 1.380 (6) |
| $\mathrm{C}(5)-\mathrm{H}(5)$ | 0.9300 | $\mathrm{C}(6)-\mathrm{C}(7)$ | 1.407 (6) |
| $\mathrm{C}(6)-\mathrm{H}(6)$ | 0.9300 | $\mathrm{C}(7)-\mathrm{C}(8)$ | 1.480 (6) |
| $\mathrm{C}(8)-\mathrm{C}(26)$ | 1.417(6) | $\mathrm{C}(8)-\mathrm{C}(9)$ | 1.418(6) |
| $\mathrm{C}(9)-\mathrm{C}(23)$ | 1.412(6) | $\mathrm{C}(9)-\mathrm{C}(10)$ | $1.473(6)$ |
| $\mathrm{C}(10)-\mathrm{C}(11)$ | 1.424(6) | $\mathrm{C}(11)-\mathrm{C}(12)$ | 1.379 (6) |
| $\mathrm{C}(11)-\mathrm{C}(15)$ | 1.479(6) | $\mathrm{C}(12)-\mathrm{C}(13)$ | 1.396 (6) |
| $\mathrm{C}(12)-\mathrm{H}(12)$ | 0.9300 | $\mathrm{C}(13)-\mathrm{C}(14)$ | 1.370 (6) |
| $\mathrm{C}(13)-\mathrm{H}(13)$ | 0.9300 | $\mathrm{C}(14)-\mathrm{H}(14)$ | 0.9300 |
| $\mathrm{C}(15)-\mathrm{C}(20)$ | 1.387(6) | $\mathrm{C}(15)-\mathrm{C}(16)$ | 1.400 (6) |
| $\mathrm{C}(16)-\mathrm{C}(17)$ | 1.379(6) | $\mathrm{C}(16)-\mathrm{H}(16)$ | 0.9300 |
| $\mathrm{C}(17)-\mathrm{C}(18)$ | 1.395(7) | $\mathrm{C}(17)-\mathrm{H}(17)$ | 0.9300 |
| $\mathrm{C}(18)-\mathrm{O}(1)$ | 1.366(5) | $\mathrm{C}(18)-\mathrm{C}(19)$ | $1.373(7)$ |
| C(19)-C(20) | 1.385(6) | $\mathrm{C}(19)-\mathrm{H}(19)$ | 0.9300 |
| $\mathrm{C}(20)-\mathrm{H}(20)$ | 0.9300 | $\mathrm{C}(22)-\mathrm{O}(1)$ | $1.434(6)$ |
| $\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$ | 0.9600 | $\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$ | 0.9600 |
| $\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$ | 0.9600 | $\mathrm{C}(23)-\mathrm{C}(24)$ | 1.364 (6) |
| $\mathrm{C}(23)-\mathrm{H}(23)$ | 0.9300 | $\mathrm{C}(24)-\mathrm{C}(25)$ | $1.382(6)$ |
| $\mathrm{C}(24)-\mathrm{H}(24)$ | 0.9300 | C(25)-C(26) | 1.396 (6) |
| $\mathrm{C}(25)-\mathrm{H}(25)$ | 0.9300 | C(26)-C(27) | $1.492(6)$ |
| $\mathrm{C}(27)-\mathrm{C}(28)$ | 1.393(6) | $\mathrm{C}(27)-\mathrm{C}(32)$ | $1.398(6)$ |
| C(28)-C(29) | 1.385(6) | $\mathrm{C}(28)-\mathrm{H}(28)$ | 0.9300 |
| C(29)-C(30) | 1.381(6) | $\mathrm{C}(29)-\mathrm{H}(29)$ | 0.9300 |
| $\mathrm{C}(30)-\mathrm{O}(2)$ | 1.374(5) | $\mathrm{C}(30)-\mathrm{C}(31)$ | 1.386 (6) |
| $\mathrm{C}(31)-\mathrm{C}(32)$ | 1.380(6) | $\mathrm{C}(31)-\mathrm{H}(31)$ | 0.9300 |
| $\mathrm{C}(32)-\mathrm{H}(32)$ | 0.9300 | $\mathrm{C}(34)-\mathrm{O}(2)$ | $1.422(6)$ |
| $\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~A})$ | 0.9600 | $\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~B})$ | 0.9600 |
| $\mathrm{C}(34)-\mathrm{H}(34 \mathrm{C})$ | 0.9600 | $\mathrm{C}(35)-\mathrm{C}(36)$ | 1.397 (6) |
| $\mathrm{C}(35)-\mathrm{C}(40)$ | 1.402(6) | $\mathrm{C}(36)-\mathrm{C}(37)$ | 1.390(7) |
| $\mathrm{C}(36)-\mathrm{H}(36)$ | 0.9300 | $\mathrm{C}(37)-\mathrm{C}(38)$ | $1.385(7)$ |
| $\mathrm{C}(37)-\mathrm{H}(37)$ | 0.9300 | $\mathrm{C}(38)-\mathrm{O}(3)$ | $1.363(6)$ |
| $\mathrm{C}(38)-\mathrm{C}(39)$ | 1.389(7) | $\mathrm{C}(39)-\mathrm{C}(40)$ | 1.380 (7) |
| $\mathrm{C}(39)-\mathrm{H}(39)$ | 0.9300 | $\mathrm{C}(40)-\mathrm{H}(40)$ | 0.9300 |
| $\mathrm{C}(42)-\mathrm{O}(3)$ | 1.434(8) | $\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~A})$ | 0.9600 |
| $\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~B})$ | 0.9600 | $\mathrm{C}(42)-\mathrm{H}(42 \mathrm{C})$ | 0.9600 |
| $\mathrm{C}(43)-\mathrm{C}(52)$ | 1.415(6) | $\mathrm{C}(43)-\mathrm{C}(56)$ | 1.419(6) |
| $\mathrm{C}(43)-\mathrm{C}(44)$ | 1.467(6) | $\mathrm{C}(44)-\mathrm{C}(45)$ | 1.414(6) |
| $\mathrm{C}(44)-\mathrm{C}(49)$ | 1.422(6) | $\mathrm{C}(45)-\mathrm{C}(46)$ | $1.373(7)$ |

Continued on following page

Table A3 continued

| $\mathrm{C}(45)-\mathrm{H}(45)$ | 0.9300 | $\mathrm{C}(46)-\mathrm{C}(47)$ | 1.384(7) |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(46)-\mathrm{H}(46)$ | 0.9300 | $\mathrm{C}(47)-\mathrm{C}(48)$ | 1.380 (6) |
| $\mathrm{C}(47)-\mathrm{H}(47)$ | 0.9300 | $\mathrm{C}(48)$-C(49) | 1.418(6) |
| $\mathrm{C}(48)-\mathrm{C}(77)$ | 1.495 (6) | $\mathrm{C}(49)-\mathrm{C}(50)$ | 1.473(6) |
| $\mathrm{C}(50)-\mathrm{C}(51)$ | 1.412(6) | $\mathrm{C}(50)-\mathrm{C}(65)$ | 1.415(6) |
| $\mathrm{C}(51)-\mathrm{C}(68)$ | 1.430 (6) | $\mathrm{C}(51)-\mathrm{C}(52)$ | 1.481(6) |
| $\mathrm{C}(52)-\mathrm{C}(53)$ | 1.399 (6) | $\mathrm{C}(53)-\mathrm{C}(54)$ | 1.371(7) |
| $\mathrm{C}(53)-\mathrm{H}(53)$ | 0.9300 | $\mathrm{C}(54)-\mathrm{C}(55)$ | 1.399(7) |
| $\mathrm{C}(54)-\mathrm{H}(54)$ | 0.9300 | $\mathrm{C}(55)-\mathrm{C}(56)$ | 1.378(7) |
| $\mathrm{C}(55)-\mathrm{H}(55)$ | 0.9300 | $\mathrm{C}(56)-\mathrm{C}(57)$ | 1.502(6) |
| $\mathrm{C}(57)-\mathrm{C}(58)$ | 1.385(7) | $\mathrm{C}(57)-\mathrm{C}(62)$ | 1.396(6) |
| $\mathrm{C}(58)-\mathrm{C}(59)$ | 1.394(7) | $\mathrm{C}(58)-\mathrm{H}(58)$ | 0.9300 |
| $\mathrm{C}(59)$-C(60) | 1.395 (7) | $\mathrm{C}(59)-\mathrm{H}(59)$ | 0.9300 |
| $\mathrm{C}(60)-\mathrm{O}(4)$ | 1.367 (6) | $\mathrm{C}(60)-\mathrm{C}(61)$ | 1.396(8) |
| $\mathrm{C}(61)-\mathrm{C}(62)$ | 1.370(7) | $\mathrm{C}(61)-\mathrm{H}(61)$ | 0.9300 |
| $\mathrm{C}(62)-\mathrm{H}(62)$ | 0.9300 | $\mathrm{C}(64)-\mathrm{O}(4)$ | 1.423(7) |
| $\mathrm{C}(64)-\mathrm{H}(64 \mathrm{~A})$ | 0.9600 | $\mathrm{C}(64)-\mathrm{H}(64 \mathrm{~B})$ | 0.9600 |
| $\mathrm{C}(64)-\mathrm{H}(64 \mathrm{C})$ | 0.9600 | $\mathrm{C}(65)-\mathrm{C}(66)$ | 1.388(6) |
| $\mathrm{C}(65)-\mathrm{H}(65)$ | 0.9300 | $\mathrm{C}(66)-\mathrm{C}(67)$ | 1.389 (7) |
| $\mathrm{C}(66)-\mathrm{H}(66)$ | 0.9300 | $\mathrm{C}(67)-\mathrm{C}(68)$ | 1.382(6) |
| $\mathrm{C}(67)-\mathrm{H}(67)$ | 0.9300 | $\mathrm{C}(68)$-C(69) | 1.498(6) |
| $\mathrm{C}(69)-\mathrm{C}(74)$ | 1.385 (6) | $\mathrm{C}(69)-\mathrm{C}(70)$ | 1.392(7) |
| $\mathrm{C}(70)-\mathrm{C}(71)$ | 1.391(7) | $\mathrm{C}(70)-\mathrm{H}(70)$ | 0.9300 |
| $\mathrm{C}(71)-\mathrm{C}(72)$ | 1.387(7) | $\mathrm{C}(71)-\mathrm{H}(71)$ | 0.9300 |
| $\mathrm{C}(72)-\mathrm{O}(5)$ | 1.379 (6) | $\mathrm{C}(72)-\mathrm{C}(73)$ | 1.383(8) |
| $\mathrm{C}(73)-\mathrm{C}(74)$ | 1.400 (7) | $\mathrm{C}(73)-\mathrm{H}(73)$ | 0.9300 |
| $\mathrm{C}(74)-\mathrm{H}(74)$ | 0.9300 | $\mathrm{C}(76)-\mathrm{O}(5)$ | 1.373(8) |
| $\mathrm{C}(76)-\mathrm{H}(76 \mathrm{~A})$ | 0.9600 | $\mathrm{C}(76)-\mathrm{H}(76 \mathrm{~B})$ | 0.9600 |
| $\mathrm{C}(76)-\mathrm{H}(76 \mathrm{C})$ | 0.9600 | $\mathrm{C}(77)-\mathrm{C}(82)$ | 1.386 (6) |
| $\mathrm{C}(77)-\mathrm{C}(78)$ | 1.401(6) | $\mathrm{C}(78)-\mathrm{C}(79)$ | 1.396(7) |
| $\mathrm{C}(78)-\mathrm{H}(78)$ | 0.9300 | $\mathrm{C}(79)$-C(80) | 1.384(7) |
| $\mathrm{C}(79)-\mathrm{H}(79)$ | 0.9300 | $\mathrm{C}(80)-\mathrm{O}(6)$ | 1.370 (6) |
| $\mathrm{C}(80)-\mathrm{C}(81)$ | 1.392(7) | $\mathrm{C}(81)-\mathrm{C}(82)$ | 1.394(6) |
| $\mathrm{C}(81)-\mathrm{H}(81)$ | 0.9300 | $\mathrm{C}(82)-\mathrm{H}(82)$ | 0.9300 |
| $\mathrm{C}(84)-\mathrm{O}(6)$ | 1.427 (6) | $\mathrm{C}(84)-\mathrm{H}(84 \mathrm{~A})$ | 0.9600 |
| $\mathrm{C}(84)-\mathrm{H}(84 \mathrm{~B})$ | 0.9600 | $\mathrm{C}(84)-\mathrm{H}(84 \mathrm{C})$ | 0.9600 |
| $\mathrm{C}(85)-\mathrm{C}(98)$ | 1.420 (6) | $\mathrm{C}(85)-\mathrm{C}(94)$ | 1.428(6) |
| $\mathrm{C}(85)-\mathrm{C}(86)$ | 1.465 (6) | $\mathrm{C}(86)-\mathrm{C}(87)$ | 1.411(6) |
| $\mathrm{C}(86)-\mathrm{C}(91)$ | 1.418(6) | C(87)-C(88) | 1.374(6) |
| $\mathrm{C}(87)-\mathrm{H}(87)$ | 0.9300 | $\mathrm{C}(88)-\mathrm{C}(89)$ | 1.392(6) |
| $\mathrm{C}(88)-\mathrm{H}(88)$ | 0.9300 | $\mathrm{C}(89)-\mathrm{C}(90)$ | 1.394(6) |
| $\mathrm{C}(89)-\mathrm{H}(89)$ | 0.9300 | $\mathrm{C}(90)$-C(91) | 1.420(6) |
| $\mathrm{C}(90)$-C(119) | 1.488 (6) | $\mathrm{C}(91)-\mathrm{C}(92)$ | 1.477 (6) |

Table A3 continued

| $\mathrm{C}(92)-\mathrm{C}(110)$ | 1.415(6) | $\mathrm{C}(92)-\mathrm{C}(93)$ | 1.415(6) |
| :---: | :---: | :---: | :---: |
| C(93)-C(107) | 1.432(6) | C(93)-C(94) | 1.477 (6) |
| $\mathrm{C}(94)-\mathrm{C}(95)$ | 1.403(6) | $\mathrm{C}(95)-\mathrm{C}(96)$ | 1.379(6) |
| $\mathrm{C}(95)-\mathrm{H}(95)$ | 0.9300 | $\mathrm{C}(96)-\mathrm{C}(97)$ | 1.386(7) |
| $\mathrm{C}(96)-\mathrm{H}(96)$ | 0.9300 | $\mathrm{C}(97)-\mathrm{C}(98)$ | 1.383(6) |
| $\mathrm{C}(97)-\mathrm{H}(97)$ | 0.9300 | $\mathrm{C}(98)-\mathrm{C}(99)$ | 1.490 (6) |
| $\mathrm{C}(99)$-C(100) | 1.388(7) | C(99)-C(104) | 1.391(6) |
| C(100)-C(101) | 1.371(7) | C(100)-H(100) | 0.9300 |
| $\mathrm{C}(101)-\mathrm{C}(102)$ | 1.383(7) | $\mathrm{C}(101)-\mathrm{H}(101)$ | 0.9300 |
| $\mathrm{C}(102)-\mathrm{O}(7)$ | 1.373(6) | C(102)-C(103) | 1.390(7) |
| $\mathrm{C}(103)-\mathrm{C}(104)$ | 1.394(6) | $\mathrm{C}(103)-\mathrm{H}(103)$ | 0.9300 |
| $\mathrm{C}(104)-\mathrm{H}(104)$ | 0.9300 | $\mathrm{C}(106)-\mathrm{O}(7)$ | 1.429 (6) |
| $\mathrm{C}(106)-\mathrm{H}(10 \mathrm{~A})$ | 0.9600 | $\mathrm{C}(106)-\mathrm{H}(10 \mathrm{~B})$ | 0.9600 |
| $\mathrm{C}(106)-\mathrm{H}(10 \mathrm{C})$ | 0.9600 | C(107)-C(108) | 1.399(6) |
| C(107)-C(111) | 1.486(6) | C(108)-C(109) | 1.380(7) |
| $\mathrm{C}(108)-\mathrm{H}(108)$ | 0.9300 | C(109)-C(110) | 1.371(6) |
| $\mathrm{C}(109)-\mathrm{H}(109)$ | 0.9300 | $\mathrm{C}(110)-\mathrm{H}(110)$ | 0.9300 |
| $\mathrm{C}(111)-\mathrm{C}(116)$ | 1.394(6) | $\mathrm{C}(111)-\mathrm{C}(112)$ | 1.403(6) |
| C(112)-C(113) | 1.389(7) | $\mathrm{C}(112)-\mathrm{H}(112)$ | 0.9300 |
| $\mathrm{C}(113)-\mathrm{C}(114)$ | 1.376(6) | $\mathrm{C}(113)-\mathrm{H}(113)$ | 0.9300 |
| $\mathrm{C}(114)-\mathrm{O}(8)$ | 1.369(6) | $\mathrm{C}(114)-\mathrm{C}(115)$ | 1.392(7) |
| $\mathrm{C}(115)-\mathrm{C}(116)$ | 1.388(7) | $\mathrm{C}(115)-\mathrm{H}(115)$ | 0.9300 |
| $\mathrm{C}(116)-\mathrm{H}(116)$ | 0.9300 | $\mathrm{C}(118)-\mathrm{O}(8)$ | 1.428(7) |
| $\mathrm{C}(118)-\mathrm{H}(11 \mathrm{~A})$ | 0.9600 | $\mathrm{C}(118)-\mathrm{H}(11 \mathrm{~B})$ | 0.9600 |
| $\mathrm{C}(118)-\mathrm{H}(11 \mathrm{C})$ | 0.9600 | $\mathrm{C}(119)$-C(124) | 1.394 (6) |
| C(119)-C(120) | 1.397(6) | $\mathrm{C}(120)$-C(121) | 1.378(6) |
| $\mathrm{C}(120)-\mathrm{H}(120)$ | 0.9300 | $\mathrm{C}(121)$-C(122) | 1.391(6) |
| $\mathrm{C}(121)-\mathrm{H}(121)$ | 0.9300 | $\mathrm{C}(122)-\mathrm{O}(9)$ | 1.373 (5) |
| C(122)-C(123) | 1.379(6) | $\mathrm{C}(123)-\mathrm{C}(124)$ | 1.396(6) |
| $\mathrm{C}(123)-\mathrm{H}(123)$ | 0.9300 | $\mathrm{C}(124)-\mathrm{H}(124)$ | 0.9300 |
| $\mathrm{C}(126)-\mathrm{O}(9)$ | 1.416(6) | $\mathrm{C}(126)-\mathrm{H}(12 \mathrm{~A})$ | 0.9600 |
| $\mathrm{C}(126)-\mathrm{H}(12 \mathrm{~B})$ | 0.9600 | $\mathrm{C}(126)-\mathrm{H}(12 \mathrm{C})$ | 0.9600 |
| C(127)-C(136) | 1.413(6) | C(127)-C(140) | 1.418(6) |
| C(127)-C(128) | 1.477(6) | C(128)-C(133) | 1.410(6) |
| C(128)-C(129) | 1.428(6) | C(129)-C(130) | 1.392(6) |
| C(129)-C(161) | 1.492(6) | $\mathrm{C}(130)$-C(131) | $1.382(6)$ |
| $\mathrm{C}(130)-\mathrm{H}(130)$ | 0.9300 | $\mathrm{C}(131)$-C(132) | 1.365 (6) |
| $\mathrm{C}(131)-\mathrm{H}(131)$ | 0.9300 | C(132)-C(133) | 1.414(6) |
| $\mathrm{C}(132)-\mathrm{H}(132)$ | 0.9300 | C(133)-C(134) | 1.477 (6) |
| C(134)-C(149) | 1.421(6) | C(134)-C(135) | 1.424(6) |
| C(135)-C(152) | 1.408(6) | $\mathrm{C}(135)-\mathrm{C}(136)$ | 1.467 (6) |
| C(136)-C(137) | 1.417(6) | C(137)-C(138) | 1.391(6) |
| $\mathrm{C}(137)-\mathrm{C}(141)$ | 1.490 (6) | C(138)-C(139) | 1.385 (7) |

Table A3 continued

| C(138)-H(138) | 0.9300 | C(139)-C(140) | 1.381(6) |
| :---: | :---: | :---: | :---: |
| C(139)-H(139) | 0.9300 | C(140)-H(140) | 0.9300 |
| $\mathrm{C}(141)$-C(146) | 1.393(6) | C(141)-C(142) | 1.397(6) |
| $\mathrm{C}(142)$-C(143) | 1.388(6) | $\mathrm{C}(142)-\mathrm{H}(142)$ | 0.9300 |
| $\mathrm{C}(143)-\mathrm{C}(144)$ | 1.390 (6) | $\mathrm{C}(143)-\mathrm{H}(143)$ | 0.9300 |
| $\mathrm{C}(144)-\mathrm{O}(10)$ | 1.365 (6) | $\mathrm{C}(144)-\mathrm{C}(145)$ | 1.405(7) |
| $\mathrm{C}(145)$-C(146) | 1.376(7) | $\mathrm{C}(145)-\mathrm{H}(145)$ | 0.9300 |
| $\mathrm{C}(146)-\mathrm{H}(146)$ | 0.9300 | $\mathrm{C}(148)-\mathrm{O}(10)$ | 1.433(7) |
| $\mathrm{C}(148)-\mathrm{H}(14 \mathrm{~A})$ | 0.9600 | $\mathrm{C}(148)-\mathrm{H}(14 \mathrm{~B})$ | 0.9600 |
| $\mathrm{C}(148)-\mathrm{H}(14 \mathrm{C})$ | 0.9600 | C(149)-C(150) | 1.398(6) |
| $\mathrm{C}(149)$-C(153) | 1.484(6) | $\mathrm{C}(150)$-C(151) | 1.378(6) |
| $\mathrm{C}(150)-\mathrm{H}(150)$ | 0.9300 | $\mathrm{C}(151)$-C(152) | 1.390(6) |
| $\mathrm{C}(151)-\mathrm{H}(151)$ | 0.9300 | $\mathrm{C}(152)-\mathrm{H}(152)$ | 0.9300 |
| $\mathrm{C}(153)-\mathrm{C}(158)$ | 1.392(6) | $\mathrm{C}(153)-\mathrm{C}(154)$ | 1.396(7) |
| $\mathrm{C}(154)$-C(155) | 1.375 (6) | $\mathrm{C}(154)-\mathrm{H}(154)$ | 0.9300 |
| $\mathrm{C}(155)-\mathrm{C}(156)$ | 1.398(7) | $\mathrm{C}(155)-\mathrm{H}(155)$ | 0.9300 |
| $\mathrm{C}(156)-\mathrm{O}(11)$ | 1.368(5) | $\mathrm{C}(156)-\mathrm{C}(157)$ | 1.383(7) |
| $\mathrm{C}(157)-\mathrm{C}(158)$ | 1.383(6) | $\mathrm{C}(157)-\mathrm{H}(157)$ | 0.9300 |
| $\mathrm{C}(158)-\mathrm{H}(158)$ | 0.9300 | $\mathrm{C}(160)-\mathrm{O}(11)$ | 1.421(6) |
| $\mathrm{C}(160)-\mathrm{H}(16 \mathrm{D})$ | 0.9600 | $\mathrm{C}(160)-\mathrm{H}(16 \mathrm{E})$ | 0.9600 |
| $\mathrm{C}(160)-\mathrm{H}(16 \mathrm{~F})$ | 0.9600 | C(161)-C(166) | 1.381(6) |
| $\mathrm{C}(161)$-C(162) | 1.391(6) | C(162)-C(163) | 1.392(6) |
| $\mathrm{C}(162)-\mathrm{H}(162)$ | 0.9300 | C(163)-C(164) | 1.385(6) |
| $\mathrm{C}(163)-\mathrm{H}(163)$ | 0.9300 | $\mathrm{C}(164)-\mathrm{O}(12)$ | 1.369 (5) |
| $\mathrm{C}(164)$-C(165) | 1.391(6) | $\mathrm{C}(165)$-C(166) | 1.385(6) |
| $\mathrm{C}(165)-\mathrm{H}(165)$ | 0.9300 | $\mathrm{C}(166)-\mathrm{H}(166)$ | 0.9300 |
| C(168)-O(12) | 1.428(6) | C(168)-H(16A) | 0.9600 |
| $\mathrm{C}(168)-\mathrm{H}(16 \mathrm{~B})$ | 0.9600 | $\mathrm{C}(168)$-H(16C) | 0.9600 |
| $\mathrm{C}(169)-\mathrm{C}(178)$ | 1.422 (6) | C(169)-C(179) | 1.430 (6) |
| $\mathrm{C}(169)$-C(170) | 1.484 (6) | $\mathrm{C}(170)$-C(175) | 1.412(6) |
| $\mathrm{C}(170)-\mathrm{C}(171)$ | 1.413(6) | $\mathrm{C}(171)-\mathrm{C}(172)$ | 1.372(7) |
| $\mathrm{C}(171)-\mathrm{H}(171)$ | 0.9300 | $\mathrm{C}(172)$-C(173) | 1.402(7) |
| $\mathrm{C}(172)-\mathrm{H}(172)$ | 0.9300 | $\mathrm{C}(173)-\mathrm{C}(174)$ | 1.391(7) |
| C(173)-H(173) | 0.9300 | C(174)-C(175) | 1.413(7) |
| $\mathrm{C}(174)-\mathrm{C}(203)$ | 1.499 (6) | $\mathrm{C}(175)-\mathrm{C}(176)$ | 1.474(7) |
| $\mathrm{C}(176)-\mathrm{C}(177)$ | 1.414(7) | $\mathrm{C}(176)-\mathrm{C}(194)$ | 1.416(7) |
| $\mathrm{C}(177)-\mathrm{C}(191)$ | 1.421(7) | $\mathrm{C}(177)$-C(178) | 1.460 (6) |
| $\mathrm{C}(178)$-C(182) | 1.410(7) | C(179)-C(180) | 1.385 (6) |
| C(179)-C(183) | 1.485(6) | C(180)-C(181) | 1.387(7) |
| C(180)-H(180) | 0.9300 | C(181)-C(182) | 1.383(7) |
| C(181)-H(181) | 0.9300 | C(182)-H(182) | 0.9300 |
| C(183)-C(188) | 1.388(6) | C(183)-C(184) | 1.392(7) |
| C(184)-C(185) | 1.392(7) | $\mathrm{C}(184)-\mathrm{H}(184)$ | 0.9300 |

Table A3 continued

| C(185)-C(186) | 1.385(7) | $\mathrm{C}(185)-\mathrm{H}(185)$ | 0.9300 |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(186)-\mathrm{O}(13)$ | 1.381(6) | C(186)-C(187) | 1.382(7) |
| C(187)-C(188) | 1.389(6) | $\mathrm{C}(187)-\mathrm{H}(187)$ | 0.9300 |
| $\mathrm{C}(188)-\mathrm{H}(188)$ | 0.9300 | $\mathrm{C}(190)-\mathrm{O}(13)$ | $1.415(6)$ |
| C(190)-H(19A) | 0.9600 | $\mathrm{C}(190)-\mathrm{H}(19 \mathrm{~B})$ | 0.9600 |
| $\mathrm{C}(190)-\mathrm{H}(19 \mathrm{C})$ | 0.9600 | C(191)-C(192) | 1.387 (7) |
| C(191)-C(195) | 1.501(8) | C(192)-C(193) | 1.383(8) |
| C(192)-H(192) | 0.9300 | C(193)-C(194) | $1.372(7)$ |
| C(193)-H(193) | 0.9300 | C(194)-H(194) | 0.9300 |
| C(195)-C(200) | 1.384(8) | C(195)-C(196) | $1.395(7)$ |
| C(196)-C(197) | 1.387(8) | $\mathrm{C}(196)-\mathrm{H}(196)$ | 0.9300 |
| C(197)-C(198) | 1.363 (9) | $\mathrm{C}(197)-\mathrm{H}(197)$ | 0.9300 |
| $\mathrm{C}(198)-\mathrm{O}(14)$ | 1.381(7) | C(198)-C(199) | 1.403(8) |
| C(199)-C(200) | 1.392(8) | C(199)-H(199) | 0.9300 |
| $\mathrm{C}(200)-\mathrm{H}(200)$ | 0.9300 | $\mathrm{C}(202)-\mathrm{O}(14)$ | 1.429(9) |
| C(202)-H(20A) | 0.9600 | $\mathrm{C}(202)-\mathrm{H}(20 \mathrm{~B})$ | 0.9600 |
| $\mathrm{C}(202)-\mathrm{H}(20 \mathrm{C})$ | 0.9600 | C(203)-C(204) | 1.389(7) |
| C(203)-C(208) | 1.400(7) | C(204)-C(205) | $1.403(7)$ |
| $\mathrm{C}(204)-\mathrm{H}(204)$ | 0.9300 | $\mathrm{C}(205)$-C(206) | 1.376(8) |
| $\mathrm{C}(205)-\mathrm{H}(205)$ | 0.9300 | $\mathrm{C}(206)-\mathrm{O}(15)$ | $1.384(7)$ |
| C(206)-C(207) | 1.387(8) | C(207)-C(208) | $1.382(7)$ |
| $\mathrm{C}(207)-\mathrm{H}(207)$ | 0.9300 | $\mathrm{C}(208)-\mathrm{H}(208)$ | 0.9300 |
| $\mathrm{C}(210)-\mathrm{O}(15)$ | 1.377(8) | $\mathrm{C}(210)-\mathrm{H}(21 \mathrm{~A})$ | 0.9600 |
| $\mathrm{C}(210)-\mathrm{H}(21 \mathrm{~B})$ | 0.9600 | $\mathrm{C}(210)-\mathrm{H}(21 \mathrm{C})$ | 0.9600 |
| C(211)-C(212) | 1.480(12) | $\mathrm{C}(211)-\mathrm{H}(21 \mathrm{I})$ | 0.9600 |
| C(211)-H(21J) | 0.9600 | $\mathrm{C}(211)-\mathrm{H}(21 \mathrm{~K})$ | 0.9600 |
| $\mathrm{C}(212)-\mathrm{O}(19)$ | 1.442(9) | $\mathrm{C}(212)-\mathrm{H}(21 \mathrm{G})$ | 0.9700 |
| $\mathrm{C}(212)-\mathrm{H}(21 \mathrm{H})$ | 0.9700 | $\mathrm{C}(214)-\mathrm{O}(19)$ | 1.398(9) |
| $\mathrm{C}(214)-\mathrm{C}(215)$ | 1.523(12) | $\mathrm{C}(214)-\mathrm{H}(21 \mathrm{~L})$ | 0.9700 |
| $\mathrm{C}(214)-\mathrm{H}(21 \mathrm{M})$ | 0.9700 | $\mathrm{C}(215)-\mathrm{H}(21 \mathrm{D})$ | 0.9600 |
| $\mathrm{C}(215)-\mathrm{H}(21 \mathrm{E})$ | 0.9600 | $\mathrm{C}(215)-\mathrm{H}(21 \mathrm{~F})$ | 0.9600 |
| $\mathrm{C}(216)-\mathrm{C}(225)$ | 1.421(6) | $\mathrm{C}(216)-\mathrm{C}(229)$ | 1.430 (6) |
| C(216)-C(217) | 1.479(6) | C(217)-C(218) | 1.410(7) |
| C(217)-C(222) | 1.416(7) | C(218)-C(219) | $1.373(7)$ |
| C(218)-H(218) | 0.9300 | C(219)-C(220) | 1.389(7) |
| $\mathrm{C}(219)-\mathrm{H}(219)$ | 0.9300 | C(220)-C(221) | $1.387(7)$ |
| $\mathrm{C}(220)-\mathrm{H}(220)$ | 0.9300 | C(221)-C(222) | $1.414(7)$ |
| C(221)-C(250) | 1.498(7) | C(222)-C(223) | 1.478 (7) |
| C(223)-C(241) | 1.392(7) | C(223)-C(224) | 1.428(7) |
| C(224)-C(238) | 1.424(6) | C(224)-C(225) | 1.460(7) |
| C(225)-C(226) | 1.418(6) | C(226)-C(227) | 1.366(7) |
| $\mathrm{C}(226)-\mathrm{H}(226)$ | 0.9300 | C(227)-C(228) | 1.393 (7) |
| $\mathrm{C}(227)-\mathrm{H}(227)$ | 0.9300 | $\mathrm{C}(228)$-C(229) | 1.388(6) |

Table A3 continued

| $\mathrm{C}(228)$ - $\mathrm{H}(228)$ | 0.9300 | C(229)-C(230) | 1.491(6) |
| :---: | :---: | :---: | :---: |
| C(230)-C(231) | $1.394(6)$ | C(230)-C(235) | 1.400(6) |
| C(231)-C(232) | 1.389(6) | $\mathrm{C}(231)-\mathrm{H}(231)$ | 0.9300 |
| C(232)-C(233) | 1.389(6) | $\mathrm{C}(232)-\mathrm{H}(232)$ | 0.9300 |
| C(233)-O(17) | $1.366(6)$ | C(233)-C(234) | 1.396(7) |
| $\mathrm{C}(234)-\mathrm{C}(235)$ | 1.381(7) | $\mathrm{C}(234)-\mathrm{H}(234)$ | 0.9300 |
| $\mathrm{C}(235)-\mathrm{H}(235)$ | 0.9300 | $\mathrm{C}(237)-\mathrm{O}(17)$ | 1.434(6) |
| $\mathrm{C}(237)-\mathrm{H}(23 \mathrm{~A})$ | 0.9600 | $\mathrm{C}(237)-\mathrm{H}(23 \mathrm{~B})$ | 0.9600 |
| $\mathrm{C}(237)-\mathrm{H}(23 \mathrm{C})$ | 0.9600 | C(238)-C(239) | 1.391(7) |
| C(238)-C(242) | 1.480(7) | C(239)-C(240) | 1.397(8) |
| $\mathrm{C}(239)-\mathrm{H}(239)$ | 0.9300 | $\mathrm{C}(240)$-C(241) | 1.379(7) |
| $\mathrm{C}(240)-\mathrm{H}(240)$ | 0.9300 | $\mathrm{C}(241)-\mathrm{H}(241)$ | 0.9300 |
| $\mathrm{C}(242)$ - $\mathrm{C}(247)$ | 1.391(7) | $\mathrm{C}(242)-\mathrm{C}(243)$ | 1.405(7) |
| C(243)-C(244) | 1.393(8) | $\mathrm{C}(243)-\mathrm{H}(243)$ | 0.9300 |
| $\mathrm{C}(244)$-C(245) | 1.376(8) | $\mathrm{C}(244)-\mathrm{H}(244)$ | 0.9300 |
| $\mathrm{C}(245)-\mathrm{O}(18)$ | 1.371(6) | $\mathrm{C}(245)-\mathrm{C}(246)$ | 1.380(7) |
| $\mathrm{C}(246)-\mathrm{C}(247)$ | 1.400(8) | $\mathrm{C}(246)-\mathrm{H}(246)$ | 0.9300 |
| $\mathrm{C}(247)-\mathrm{H}(247)$ | 0.9300 | C(249)-O(18) | 1.435(8) |
| $\mathrm{C}(249)-\mathrm{H}(24 \mathrm{~A})$ | 0.9600 | $\mathrm{C}(249)$ - $\mathrm{H}(24 \mathrm{~B})$ | 0.9600 |
| $\mathrm{C}(249)$ - $\mathrm{H}(24 \mathrm{C})$ | 0.9600 | $\mathrm{C}(250)$ - $\mathrm{C}(255)$ | 1.384(8) |
| C(250)-C(251) | 1.401(8) | C(251)-C(252) | 1.384(8) |
| $\mathrm{C}(251)-\mathrm{H}(251)$ | 0.9300 | $\mathrm{C}(252)-\mathrm{C}(253)$ | 1.391(12) |
| $\mathrm{C}(252)-\mathrm{H}(252)$ | 0.9300 | $\mathrm{C}(253)-\mathrm{O}(16)$ | 1.369(8) |
| C(253)-C(254) | 1.370(12) | $\mathrm{C}(254)-\mathrm{C}(255)$ | 1.376(9) |
| $\mathrm{C}(254)-\mathrm{H}(254)$ | 0.9300 | $\mathrm{C}(255)-\mathrm{H}(255)$ | 0.9300 |
| $\mathrm{C}(256)-\mathrm{O}(16)$ | 1.410(15) | $\mathrm{C}(256)-\mathrm{H}(25 \mathrm{~A})$ | 0.9600 |
| $\mathrm{C}(256)-\mathrm{H}(25 \mathrm{~B})$ | 0.9600 | $\mathrm{C}(256)-\mathrm{H}(25 \mathrm{C})$ | 0.9600 |
| C(257)-C(258) | 1.503(8) | $\mathrm{C}(257)-\mathrm{H}(25 \mathrm{D})$ | 0.9600 |
| $\mathrm{C}(257)-\mathrm{H}(25 \mathrm{E})$ | 0.9600 | $\mathrm{C}(257)-\mathrm{H}(25 \mathrm{~F})$ | 0.9600 |
| $\mathrm{C}(258)-\mathrm{O}(20)$ | 1.422(6) | $\mathrm{C}(258)$ - $\mathrm{H}(25 \mathrm{G})$ | 0.9700 |
| $\mathrm{C}(258)-\mathrm{H}(25 \mathrm{H})$ | 0.9700 | $\mathrm{C}(259)-\mathrm{O}(20)$ | 1.422(7) |
| C(259)-C(260) | 1.482(9) | $\mathrm{C}(259)-\mathrm{H}(25 \mathrm{I})$ | 0.9700 |
| C(259)-H(25J) | 0.9700 | $\mathrm{C}(260)-\mathrm{H}(26 \mathrm{~A})$ | 0.9600 |
| C(260)-H(26B) | 0.9600 | C(260)-H(26C) | 0.9600 |
| C(262)-C(263) | 1.507(8) | $\mathrm{C}(262)-\mathrm{H}(26 \mathrm{~F})$ | 0.9600 |
| $\mathrm{C}(262)$-H(26G) | 0.9600 | $\mathrm{C}(262)-\mathrm{H}(26 \mathrm{H})$ | 0.9600 |
| $\mathrm{C}(263)-\mathrm{O}(21)$ | 1.421(7) | $\mathrm{C}(263)-\mathrm{H}(26 \mathrm{I})$ | 0.9700 |
| $\mathrm{C}(263)-\mathrm{H}(26 \mathrm{~J})$ | 0.9700 | C(264)-O(21) | 1.417(8) |
| C(264)-C(265) | 1.493(10) | $\mathrm{C}(264)-\mathrm{H}(26 \mathrm{~K})$ | 0.9700 |
| $\mathrm{C}(264)-\mathrm{H}(26 \mathrm{~L})$ | 0.9700 | $\mathrm{C}(265)-\mathrm{H}(26 \mathrm{M})$ | 0.9600 |
| $\mathrm{C}(265)-\mathrm{H}(26 \mathrm{~N})$ | 0.9600 | $\mathrm{C}(265)-\mathrm{H}(26 \mathrm{O})$ | 0.9600 |
| $\mathrm{O}(22)-\mathrm{C}(268)$ | 1.308(14) | $\mathrm{O}(22)-\mathrm{C}(266)$ | 1.407(15) |
| C(266)-C(267) | 1.269(16) | $\mathrm{C}(266)-\mathrm{H}(26 \mathrm{P})$ | 0.9700 |

Table A3 continued

| $\mathrm{C}(266)-\mathrm{H}(26 \mathrm{Q})$ | 0.9700 | $\mathrm{C}(267)-\mathrm{H}(26 \mathrm{R})$ | 0.9600 |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(267)-\mathrm{H}(26 \mathrm{~S})$ | 0.9600 | $\mathrm{C}(267)-\mathrm{H}(26 \mathrm{~T})$ | 0.9600 |
| C(268)-C(269) | 1.342(16) | $\mathrm{C}(268)-\mathrm{H}(26 \mathrm{~V})$ | 0.9700 |
| C(268)-H(26U) | 0.9700 | $\mathrm{C}(269)-\mathrm{H}(26 \mathrm{Y})$ | 0.9600 |
| C(269)-H(26W) | 0.9600 | C(269)-H(26X) | 0.9600 |
| $\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(14)$ | 118.1(4) | $\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)$ | 119.6(4) |
| $\mathrm{C}(14)-\mathrm{C}(1)-\mathrm{C}(2)$ | 121.4(4) | $\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)$ | 118.5(4) |
| $\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(1)$ | 117.9(4) | $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$ | 123.1(4) |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$ | 118.5(4) | $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(35)$ | 119.0(4) |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(35)$ | 122.2(4) | $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$ | 121.1(4) |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$ | 119.5 | $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$ | 119.5 |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ | 119.9(4) | $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$ | 120.1 |
| $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$ | 120.1 | $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$ | 120.5(4) |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$ | 119.7 | $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$ | 119.7 |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$ | 118.5(4) | $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ | 123.7(4) |
| $\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8)$ | 117.7(4) | $\mathrm{C}(26)-\mathrm{C}(8)-\mathrm{C}(9)$ | 119.3(4) |
| $\mathrm{C}(26)-\mathrm{C}(8)-\mathrm{C}(7)$ | 122.1(4) | $\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$ | 117.9(4) |
| $\mathrm{C}(23)-\mathrm{C}(9)-\mathrm{C}(8)$ | 119.2(4) | $\mathrm{C}(23)-\mathrm{C}(9)-\mathrm{C}(10)$ | 120.8(4) |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ | 119.8(4) | $\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(11)$ | 119.9(4) |
| $\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$ | 117.2(4) | $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$ | 122.9(4) |
| $\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$ | 119.3(4) | $\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(15)$ | 116.2(4) |
| $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(15)$ | 124.1(4) | $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$ | 121.0(4) |
| $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$ | 119.5 | $\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$ | 119.5 |
| $\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$ | 119.9(4) | $\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$ | 120.0 |
| $\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$ | 120.0 | $\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(1)$ | 121.4(4) |
| $\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$ | 119.3 | $\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{H}(14)$ | 119.3 |
| $\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(16)$ | 117.6(4) | $\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(11)$ | 121.8(4) |
| $\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(11)$ | 120.4(4) | $\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$ | 120.9(4) |
| $\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$ | 119.6 | $\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$ | 119.6 |
| $\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$ | 120.2(4) | $\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$ | 119.9 |
| $\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$ | 119.9 | $\mathrm{O}(1)-\mathrm{C}(18)-\mathrm{C}(19)$ | 125.2(4) |
| $\mathrm{O}(1)-\mathrm{C}(18)-\mathrm{C}(17)$ | 115.0(4) | $\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$ | 119.8(4) |
| $\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$ | 119.5(4) | $\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19)$ | 120.2 |
| $\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19)$ | 120.2 | $\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(15)$ | 122.0(4) |
| $\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20)$ | 119.0 | $\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{H}(20)$ | 119.0 |
| $\mathrm{O}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$ | 109.5 | $\mathrm{O}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$ | 109.5 | $\mathrm{O}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$ | 109.5 | $\mathrm{H}(22 \mathrm{~B})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(9)$ | 121.0(4) | $\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23)$ | 119.5 |
| $\mathrm{C}(9)-\mathrm{C}(23)-\mathrm{H}(23)$ | 119.5 | $\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$ | 119.9(4) |
| $\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24)$ | 120.1 | $\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{H}(24)$ | 120.1 |
| $\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$ | 121.9(4) | $\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{H}(25)$ | 119.0 |

Table A3 continued

| $\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{H}(25)$ | 119.0 | $\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(8)$ | 118.7(4) |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$ | 115.4(4) | $\mathrm{C}(8)-\mathrm{C}(26)-\mathrm{C}(27)$ | 125.8(4) |
| $\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(32)$ | 117.6(4) | $\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(26)$ | 121.6(4) |
| $\mathrm{C}(32)-\mathrm{C}(27)-\mathrm{C}(26)$ | 120.5(4) | $\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(27)$ | 121.1(4) |
| $\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{H}(28)$ | 119.4 | $\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{H}(28)$ | 119.4 |
| $\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(28)$ | 120.1(4) | $\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{H}(29)$ | 119.9 |
| $\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{H}(29)$ | 119.9 | $\mathrm{O}(2)-\mathrm{C}(30)-\mathrm{C}(29)$ | 124.5(4) |
| $\mathrm{O}(2)-\mathrm{C}(30)-\mathrm{C}(31)$ | 115.6(4) | $\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$ | 119.9(4) |
| $\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(30)$ | 119.7(4) | $\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{H}(31)$ | 120.2 |
| $\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{H}(31)$ | 120.2 | $\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(27)$ | 121.6(4) |
| $\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{H}(32)$ | 119.2 | $\mathrm{C}(27)-\mathrm{C}(32)-\mathrm{H}(32)$ | 119.2 |
| $\mathrm{O}(2)-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~A})$ | 109.5 | $\mathrm{O}(2)-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(34 \mathrm{~A})-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~B})$ | 109.5 | $\mathrm{O}(2)-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(34 \mathrm{~A})-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{C})$ | 109.5 | $\mathrm{H}(34 \mathrm{~B})-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(40)$ | 117.9(4) | $\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(3)$ | 119.7(4) |
| $\mathrm{C}(40)-\mathrm{C}(35)-\mathrm{C}(3)$ | 122.4(4) | $\mathrm{C}(37)-\mathrm{C}(36)-\mathrm{C}(35)$ | 121.5(4) |
| $\mathrm{C}(37)-\mathrm{C}(36)-\mathrm{H}(36)$ | 119.3 | $\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{H}(36)$ | 119.3 |
| $\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{C}(36)$ | 119.3(5) | $\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{H}(37)$ | 120.4 |
| $\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{H}(37)$ | 120.4 | $\mathrm{O}(3)-\mathrm{C}(38)-\mathrm{C}(37)$ | 123.7(5) |
| $\mathrm{O}(3)-\mathrm{C}(38)-\mathrm{C}(39)$ | 116.0(5) | $\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{C}(39)$ | 120.2(5) |
| $\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{C}(38)$ | 120.1(4) | $\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{H}(39)$ | 119.9 |
| $\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{H}(39)$ | 119.9 | $\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{C}(35)$ | 120.9(5) |
| $\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{H}(40)$ | 119.5 | $\mathrm{C}(35)-\mathrm{C}(40)-\mathrm{H}(40)$ | 119.5 |
| $\mathrm{O}(3)-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~A})$ | 109.5 | $\mathrm{O}(3)-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(42 \mathrm{~A})-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~B})$ | 109.5 | $\mathrm{O}(3)-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(42 \mathrm{~A})-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{C})$ | 109.5 | $\mathrm{H}(42 \mathrm{~B})-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(52)-\mathrm{C}(43)-\mathrm{C}(56)$ | 118.8(4) | $\mathrm{C}(52)-\mathrm{C}(43)-\mathrm{C}(44)$ | 118.5(4) |
| $\mathrm{C}(56)-\mathrm{C}(43)-\mathrm{C}(44)$ | 122.5(4) | $\mathrm{C}(45)-\mathrm{C}(44)-\mathrm{C}(49)$ | 118.6(4) |
| $\mathrm{C}(45)-\mathrm{C}(44)-\mathrm{C}(43)$ | 122.6(4) | $\mathrm{C}(49)-\mathrm{C}(44)-\mathrm{C}(43)$ | 118.8(4) |
| $\mathrm{C}(46)-\mathrm{C}(45)-\mathrm{C}(44)$ | 120.7(4) | $\mathrm{C}(46)-\mathrm{C}(45)-\mathrm{H}(45)$ | 119.7 |
| $\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{H}(45)$ | 119.7 | $\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{C}(47)$ | 119.3(4) |
| $\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{H}(46)$ | 120.4 | $\mathrm{C}(47)-\mathrm{C}(46)-\mathrm{H}(46)$ | 120.4 |
| $\mathrm{C}(48)-\mathrm{C}(47)-\mathrm{C}(46)$ | 121.6(5) | $\mathrm{C}(48)-\mathrm{C}(47)-\mathrm{H}(47)$ | 119.2 |
| $\mathrm{C}(46)-\mathrm{C}(47)-\mathrm{H}(47)$ | 119.2 | $\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{C}(49)$ | 119.2(4) |
| $\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{C}(77)$ | 117.0(4) | $\mathrm{C}(49)-\mathrm{C}(48)-\mathrm{C}(77)$ | 123.4(4) |
| $\mathrm{C}(48)-\mathrm{C}(49)-\mathrm{C}(44)$ | 117.6(4) | $\mathrm{C}(48)-\mathrm{C}(49)-\mathrm{C}(50)$ | 125.0(4) |
| $\mathrm{C}(44)-\mathrm{C}(49)-\mathrm{C}(50)$ | 116.8(4) | $\mathrm{C}(51)-\mathrm{C}(50)-\mathrm{C}(65)$ | 118.4(4) |
| $\mathrm{C}(51)-\mathrm{C}(50)-\mathrm{C}(49)$ | 120.2(4) | $\mathrm{C}(65)-\mathrm{C}(50)-\mathrm{C}(49)$ | 120.3(4) |
| $\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(68)$ | 119.8(4) | $\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(52)$ | 117.9(4) |
| $\mathrm{C}(68)-\mathrm{C}(51)-\mathrm{C}(52)$ | 122.3(4) | $\mathrm{C}(53)-\mathrm{C}(52)-\mathrm{C}(43)$ | 119.8(4) |
| $\mathrm{C}(53)-\mathrm{C}(52)-\mathrm{C}(51)$ | 121.3(4) | $\mathrm{C}(43)-\mathrm{C}(52)-\mathrm{C}(51)$ | 118.8(4) |
| $\mathrm{C}(54)-\mathrm{C}(53)-\mathrm{C}(52)$ | 120.7(4) | $\mathrm{C}(54)-\mathrm{C}(53)-\mathrm{H}(53)$ | 119.6 |
| $\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{H}(53)$ | 119.6 | $\mathrm{C}(53)-\mathrm{C}(54)-\mathrm{C}(55)$ | 119.8(4) |

Table A3 continued

| $\mathrm{C}(53)-\mathrm{C}(54)-\mathrm{H}(54)$ | 120.1 | $\mathrm{C}(55)-\mathrm{C}(54)-\mathrm{H}(54)$ | 120.1 |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(56)-\mathrm{C}(55)-\mathrm{C}(54)$ | 121.2(4) | $\mathrm{C}(56)-\mathrm{C}(55)-\mathrm{H}(55)$ | 119.4 |
| $\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{H}(55)$ | 119.4 | $\mathrm{C}(55)-\mathrm{C}(56)-\mathrm{C}(43)$ | 119.6(4) |
| $\mathrm{C}(55)-\mathrm{C}(56)-\mathrm{C}(57)$ | 116.0(4) | $\mathrm{C}(43)-\mathrm{C}(56)-\mathrm{C}(57)$ | 124.3(4) |
| $\mathrm{C}(58)-\mathrm{C}(57)-\mathrm{C}(62)$ | 117.8(4) | $\mathrm{C}(58)-\mathrm{C}(57)-\mathrm{C}(56)$ | 122.1(4) |
| $\mathrm{C}(62)-\mathrm{C}(57)-\mathrm{C}(56)$ | 120.1(4) | $\mathrm{C}(57)-\mathrm{C}(58)-\mathrm{C}(59)$ | 121.8(5) |
| $\mathrm{C}(57)-\mathrm{C}(58)-\mathrm{H}(58)$ | 119.1 | $\mathrm{C}(59)-\mathrm{C}(58)-\mathrm{H}(58)$ | 119.1 |
| $\mathrm{C}(58)-\mathrm{C}(59)-\mathrm{C}(60)$ | 119.2(5) | $\mathrm{C}(58)-\mathrm{C}(59)-\mathrm{H}(59)$ | 120.4 |
| $\mathrm{C}(60)-\mathrm{C}(59)-\mathrm{H}(59)$ | 120.4 | $\mathrm{O}(4)-\mathrm{C}(60)-\mathrm{C}(59)$ | 124.4(5) |
| $\mathrm{O}(4)-\mathrm{C}(60)-\mathrm{C}(61)$ | 116.2(5) | $\mathrm{C}(59)-\mathrm{C}(60)-\mathrm{C}(61)$ | 119.4(4) |
| $\mathrm{C}(62)-\mathrm{C}(61)-\mathrm{C}(60)$ | 120.2(5) | $\mathrm{C}(62)-\mathrm{C}(61)-\mathrm{H}(61)$ | 119.9 |
| $\mathrm{C}(60)-\mathrm{C}(61)-\mathrm{H}(61)$ | 119.9 | $\mathrm{C}(61)-\mathrm{C}(62)-\mathrm{C}(57)$ | 121.6(5) |
| $\mathrm{C}(61)-\mathrm{C}(62)-\mathrm{H}(62)$ | 119.2 | $\mathrm{C}(57)-\mathrm{C}(62)-\mathrm{H}(62)$ | 119.2 |
| $\mathrm{O}(4)-\mathrm{C}(64)-\mathrm{H}(64 \mathrm{~A})$ | 109.5 | $\mathrm{O}(4)-\mathrm{C}(64)-\mathrm{H}(64 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(64 \mathrm{~A})-\mathrm{C}(64)-\mathrm{H}(64 \mathrm{~B})$ | 109.5 | $\mathrm{O}(4)-\mathrm{C}(64)-\mathrm{H}(64 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(64 \mathrm{~A})-\mathrm{C}(64)-\mathrm{H}(64 \mathrm{C})$ | 109.5 | $\mathrm{H}(64 \mathrm{~B})-\mathrm{C}(64)-\mathrm{H}(64 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(66)-\mathrm{C}(65)-\mathrm{C}(50)$ | 120.8(4) | $\mathrm{C}(66)-\mathrm{C}(65)-\mathrm{H}(65)$ | 119.6 |
| $\mathrm{C}(50)-\mathrm{C}(65)-\mathrm{H}(65)$ | 119.6 | $\mathrm{C}(65)-\mathrm{C}(66)-\mathrm{C}(67)$ | 120.3(4) |
| $\mathrm{C}(65)-\mathrm{C}(66)-\mathrm{H}(66)$ | 119.8 | $\mathrm{C}(67)-\mathrm{C}(66)-\mathrm{H}(66)$ | 119.8 |
| $\mathrm{C}(68)-\mathrm{C}(67)-\mathrm{C}(66)$ | 120.7(4) | $\mathrm{C}(68)-\mathrm{C}(67)-\mathrm{H}(67)$ | 119.6 |
| $\mathrm{C}(66)-\mathrm{C}(67)-\mathrm{H}(67)$ | 119.6 | $\mathrm{C}(67)-\mathrm{C}(68)-\mathrm{C}(51)$ | 119.5(4) |
| $\mathrm{C}(67)-\mathrm{C}(68)-\mathrm{C}(69)$ | 116.7(4) | $\mathrm{C}(51)-\mathrm{C}(68)-\mathrm{C}(69)$ | 123.6(4) |
| $\mathrm{C}(74)-\mathrm{C}(69)-\mathrm{C}(70)$ | 118.1(4) | $\mathrm{C}(74)-\mathrm{C}(69)-\mathrm{C}(68)$ | 121.1(4) |
| $\mathrm{C}(70)-\mathrm{C}(69)-\mathrm{C}(68)$ | 120.8(4) | $\mathrm{C}(71)-\mathrm{C}(70)-\mathrm{C}(69)$ | 121.3(5) |
| $\mathrm{C}(71)-\mathrm{C}(70)-\mathrm{H}(70)$ | 119.4 | $\mathrm{C}(69)-\mathrm{C}(70)-\mathrm{H}(70)$ | 119.4 |
| $\mathrm{C}(72)-\mathrm{C}(71)-\mathrm{C}(70)$ | 119.9(5) | $\mathrm{C}(72)-\mathrm{C}(71)-\mathrm{H}(71)$ | 120.0 |
| $\mathrm{C}(70)-\mathrm{C}(71)-\mathrm{H}(71)$ | 120.0 | $\mathrm{O}(5)-\mathrm{C}(72)-\mathrm{C}(73)$ | 125.8(5) |
| $\mathrm{O}(5)-\mathrm{C}(72)-\mathrm{C}(71)$ | 114.6(5) | $\mathrm{C}(73)-\mathrm{C}(72)-\mathrm{C}(71)$ | 119.6(5) |
| $\mathrm{C}(72)-\mathrm{C}(73)-\mathrm{C}(74)$ | 119.9(5) | $\mathrm{C}(72)-\mathrm{C}(73)-\mathrm{H}(73)$ | 120.0 |
| $\mathrm{C}(74)-\mathrm{C}(73)-\mathrm{H}(73)$ | 120.0 | $\mathrm{C}(69)-\mathrm{C}(74)-\mathrm{C}(73)$ | 121.2(5) |
| $\mathrm{C}(69)-\mathrm{C}(74)-\mathrm{H}(74)$ | 119.4 | $\mathrm{C}(73)-\mathrm{C}(74)-\mathrm{H}(74)$ | 119.4 |
| $\mathrm{O}(5)-\mathrm{C}(76)-\mathrm{H}(76 \mathrm{~A})$ | 109.5 | $\mathrm{O}(5)-\mathrm{C}(76)-\mathrm{H}(76 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(76 \mathrm{~A})-\mathrm{C}(76)-\mathrm{H}(76 \mathrm{~B})$ | 109.5 | $\mathrm{O}(5)-\mathrm{C}(76)-\mathrm{H}(76 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(76 \mathrm{~A})-\mathrm{C}(76)-\mathrm{H}(76 \mathrm{C})$ | 109.5 | $\mathrm{H}(76 \mathrm{~B})-\mathrm{C}(76)-\mathrm{H}(76 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(82)-\mathrm{C}(77)-\mathrm{C}(78)$ | 117.3(4) | $\mathrm{C}(82)-\mathrm{C}(77)-\mathrm{C}(48)$ | 119.9(4) |
| $\mathrm{C}(78)-\mathrm{C}(77)-\mathrm{C}(48)$ | 122.2(4) | $\mathrm{C}(79)-\mathrm{C}(78)-\mathrm{C}(77)$ | 121.6(4) |
| $\mathrm{C}(79)-\mathrm{C}(78)-\mathrm{H}(78)$ | 119.2 | $\mathrm{C}(77)-\mathrm{C}(78)-\mathrm{H}(78)$ | 119.2 |
| $\mathrm{C}(80)-\mathrm{C}(79)-\mathrm{C}(78)$ | 119.2(5) | $\mathrm{C}(80)-\mathrm{C}(79)-\mathrm{H}(79)$ | 120.4 |
| $\mathrm{C}(78)-\mathrm{C}(79)-\mathrm{H}(79)$ | 120.4 | $\mathrm{O}(6)-\mathrm{C}(80)-\mathrm{C}(79)$ | 115.4(4) |
| $\mathrm{O}(6)-\mathrm{C}(80)-\mathrm{C}(81)$ | 123.9(4) | $\mathrm{C}(79)-\mathrm{C}(80)-\mathrm{C}(81)$ | 120.6(4) |
| $\mathrm{C}(80)-\mathrm{C}(81)-\mathrm{C}(82)$ | 118.8(4) | $\mathrm{C}(80)-\mathrm{C}(81)-\mathrm{H}(81)$ | 120.6 |
| $\mathrm{C}(82)-\mathrm{C}(81)-\mathrm{H}(81)$ | 120.6 | $\mathrm{C}(77)-\mathrm{C}(82)-\mathrm{C}(81)$ | 122.4(4) |
| $\mathrm{C}(77)-\mathrm{C}(82)-\mathrm{H}(82)$ | 118.8 | $\mathrm{C}(81)-\mathrm{C}(82)-\mathrm{H}(82)$ | 118.8 |

Table A3 continued

| $\mathrm{O}(6)-\mathrm{C}(84)-\mathrm{H}(84 \mathrm{~A})$ | 109.5 | $\mathrm{O}(6)-\mathrm{C}(84)-\mathrm{H}(84 \mathrm{~B})$ | 109.5 |
| :---: | :---: | :---: | :---: |
| $\mathrm{H}(84 \mathrm{~A})-\mathrm{C}(84)-\mathrm{H}(84 \mathrm{~B})$ | 109.5 | $\mathrm{O}(6)-\mathrm{C}(84)-\mathrm{H}(84 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(84 \mathrm{~A})-\mathrm{C}(84)-\mathrm{H}(84 \mathrm{C})$ | 109.5 | $\mathrm{H}(84 \mathrm{~B})-\mathrm{C}(84)-\mathrm{H}(84 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(98)-\mathrm{C}(85)-\mathrm{C}(94)$ | 119.9(4) | $\mathrm{C}(98)-\mathrm{C}(85)-\mathrm{C}(86)$ | 122.3(4) |
| $\mathrm{C}(94)-\mathrm{C}(85)-\mathrm{C}(86)$ | 117.8(4) | $\mathrm{C}(87)-\mathrm{C}(86)-\mathrm{C}(91)$ | 119.8(4) |
| $\mathrm{C}(87)-\mathrm{C}(86)-\mathrm{C}(85)$ | 119.7(4) | $\mathrm{C}(91)-\mathrm{C}(86)-\mathrm{C}(85)$ | 120.2(4) |
| $\mathrm{C}(88)-\mathrm{C}(87)-\mathrm{C}(86)$ | 120.7(4) | $\mathrm{C}(88)-\mathrm{C}(87)-\mathrm{H}(87)$ | 119.7 |
| $\mathrm{C}(86)-\mathrm{C}(87)-\mathrm{H}(87)$ | 119.7 | $\mathrm{C}(87)-\mathrm{C}(88)-\mathrm{C}(89)$ | 119.7(4) |
| $\mathrm{C}(87)-\mathrm{C}(88)-\mathrm{H}(88)$ | 120.2 | $\mathrm{C}(89)-\mathrm{C}(88)-\mathrm{H}(88)$ | 120.2 |
| $\mathrm{C}(88)-\mathrm{C}(89)-\mathrm{C}(90)$ | 121.7(4) | $\mathrm{C}(88)-\mathrm{C}(89)-\mathrm{H}(89)$ | 119.2 |
| $\mathrm{C}(90)-\mathrm{C}(89)-\mathrm{H}(89)$ | 119.2 | $\mathrm{C}(89)-\mathrm{C}(90)-\mathrm{C}(91)$ | 119.1(4) |
| $\mathrm{C}(89)-\mathrm{C}(90)-\mathrm{C}(119)$ | 114.3(4) | $\mathrm{C}(91)-\mathrm{C}(90)-\mathrm{C}(119)$ | 126.4(4) |
| $\mathrm{C}(86)-\mathrm{C}(91)-\mathrm{C}(90)$ | 118.9(4) | $\mathrm{C}(86)-\mathrm{C}(91)-\mathrm{C}(92)$ | 117.1(4) |
| $\mathrm{C}(90)-\mathrm{C}(91)-\mathrm{C}(92)$ | 123.5(4) | $\mathrm{C}(110)-\mathrm{C}(92)-\mathrm{C}(93)$ | 119.0(4) |
| $\mathrm{C}(110)-\mathrm{C}(92)-\mathrm{C}(91)$ | 121.8(4) | $\mathrm{C}(93)-\mathrm{C}(92)-\mathrm{C}(91)$ | 119.1(4) |
| $\mathrm{C}(92)-\mathrm{C}(93)-\mathrm{C}(107)$ | 117.9(4) | $\mathrm{C}(92)-\mathrm{C}(93)-\mathrm{C}(94)$ | 118.0(4) |
| $\mathrm{C}(107)-\mathrm{C}(93)-\mathrm{C}(94)$ | 123.6(4) | $\mathrm{C}(95)-\mathrm{C}(94)-\mathrm{C}(85)$ | 117.7(4) |
| $\mathrm{C}(95)-\mathrm{C}(94)-\mathrm{C}(93)$ | 123.0(4) | $\mathrm{C}(85)-\mathrm{C}(94)-\mathrm{C}(93)$ | 118.6(4) |
| $\mathrm{C}(96)-\mathrm{C}(95)-\mathrm{C}(94)$ | 121.9(4) | $\mathrm{C}(96)-\mathrm{C}(95)-\mathrm{H}(95)$ | 119.1 |
| $\mathrm{C}(94)-\mathrm{C}(95)-\mathrm{H}(95)$ | 119.1 | $\mathrm{C}(95)-\mathrm{C}(96)-\mathrm{C}(97)$ | 119.6(4) |
| $\mathrm{C}(95)-\mathrm{C}(96)-\mathrm{H}(96)$ | 120.2 | $\mathrm{C}(97)-\mathrm{C}(96)-\mathrm{H}(96)$ | 120.2 |
| $\mathrm{C}(98)-\mathrm{C}(97)-\mathrm{C}(96)$ | 121.4(4) | $\mathrm{C}(98)-\mathrm{C}(97)-\mathrm{H}(97)$ | 119.3 |
| $\mathrm{C}(96)-\mathrm{C}(97)-\mathrm{H}(97)$ | 119.3 | $\mathrm{C}(97)-\mathrm{C}(98)-\mathrm{C}(85)$ | 119.0(4) |
| $\mathrm{C}(97)-\mathrm{C}(98)-\mathrm{C}(99)$ | 117.8(4) | $\mathrm{C}(85)-\mathrm{C}(98)-\mathrm{C}(99)$ | 122.6(4) |
| $\mathrm{C}(100)-\mathrm{C}(99)-\mathrm{C}(104)$ | 117.9(4) | $\mathrm{C}(100)-\mathrm{C}(99)-\mathrm{C}(98)$ | 119.7(4) |
| C(104)-C(99)-C(98) | 122.1(4) | C(101)-C(100)-C(99) | 121.5(4) |
| $\mathrm{C}(101)-\mathrm{C}(100)-\mathrm{H}(100)$ | 119.2 | $\mathrm{C}(99)-\mathrm{C}(100)-\mathrm{H}(100)$ | 119.2 |
| $\mathrm{C}(100)-\mathrm{C}(101)-\mathrm{C}(102)$ | 120.1(5) | $\mathrm{C}(100)-\mathrm{C}(101)-\mathrm{H}(101)$ | 119.9 |
| $\mathrm{C}(102)-\mathrm{C}(101)-\mathrm{H}(101)$ | 119.9 | $\mathrm{O}(7)-\mathrm{C}(102)-\mathrm{C}(101)$ | 116.1(4) |
| $\mathrm{O}(7)-\mathrm{C}(102)-\mathrm{C}(103)$ | 123.9(4) | $\mathrm{C}(101)-\mathrm{C}(102)-\mathrm{C}(103)$ | 120.0(4) |
| $\mathrm{C}(102)-\mathrm{C}(103)-\mathrm{C}(104)$ | 119.0(4) | $\mathrm{C}(102)-\mathrm{C}(103)-\mathrm{H}(103)$ | 120.5 |
| $\mathrm{C}(104)-\mathrm{C}(103)-\mathrm{H}(103)$ | 120.5 | $\mathrm{C}(99)-\mathrm{C}(104)-\mathrm{C}(103)$ | 121.4(4) |
| $\mathrm{C}(99)-\mathrm{C}(104)-\mathrm{H}(104)$ | 119.3 | $\mathrm{C}(103)-\mathrm{C}(104)-\mathrm{H}(104)$ | 119.3 |
| $\mathrm{O}(7)-\mathrm{C}(106)-\mathrm{H}(10 \mathrm{~A})$ | 109.5 | $\mathrm{O}(7)-\mathrm{C}(106)-\mathrm{H}(10 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(106)-\mathrm{H}(10 \mathrm{~B})$ | 109.5 | $\mathrm{O}(7)-\mathrm{C}(106)-\mathrm{H}(10 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(106)-\mathrm{H}(10 \mathrm{C})$ | 109.5 | $\mathrm{H}(10 \mathrm{~B})-\mathrm{C}(106)-\mathrm{H}(10 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(108)-\mathrm{C}(107)-\mathrm{C}(93)$ | 119.0(4) | $\mathrm{C}(108)-\mathrm{C}(107)-\mathrm{C}(111)$ | 117.0(4) |
| $\mathrm{C}(93)-\mathrm{C}(107)-\mathrm{C}(111)$ | 123.9(4) | $\mathrm{C}(109)-\mathrm{C}(108)-\mathrm{C}(107)$ | 120.9(4) |
| $\mathrm{C}(109)-\mathrm{C}(108)-\mathrm{H}(108)$ | 119.5 | $\mathrm{C}(107)-\mathrm{C}(108)-\mathrm{H}(108)$ | 119.5 |
| $\mathrm{C}(110)-\mathrm{C}(109)-\mathrm{C}(108)$ | 120.4(4) | $\mathrm{C}(110)-\mathrm{C}(109)-\mathrm{H}(109)$ | 119.8 |
| $\mathrm{C}(108)-\mathrm{C}(109)-\mathrm{H}(109)$ | 119.8 | $\mathrm{C}(109)-\mathrm{C}(110)-\mathrm{C}(92)$ | 120.4(4) |
| $\mathrm{C}(109)-\mathrm{C}(110)-\mathrm{H}(110)$ | 119.8 | $\mathrm{C}(92)-\mathrm{C}(110)-\mathrm{H}(110)$ | 119.8 |
| $\mathrm{C}(116)-\mathrm{C}(111)-\mathrm{C}(112)$ | 118.2(4) | $\mathrm{C}(116)-\mathrm{C}(111)-\mathrm{C}(107)$ | 120.1(4) |

Table A3 continued

| $\mathrm{C}(112)-\mathrm{C}(111)-\mathrm{C}(107)$ | 121.6(4) | $\mathrm{C}(113)-\mathrm{C}(112)-\mathrm{C}(111)$ | 120.9(4) |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(113)-\mathrm{C}(112)-\mathrm{H}(112)$ | 119.5 | $\mathrm{C}(111)-\mathrm{C}(112)-\mathrm{H}(112)$ | 119.5 |
| $\mathrm{C}(114)-\mathrm{C}(113)-\mathrm{C}(112)$ | 120.0(4) | $\mathrm{C}(114)-\mathrm{C}(113)-\mathrm{H}(113)$ | 120.0 |
| $\mathrm{C}(112)-\mathrm{C}(113)-\mathrm{H}(113)$ | 120.0 | $\mathrm{O}(8)-\mathrm{C}(114)-\mathrm{C}(113)$ | 125.2(5) |
| $\mathrm{O}(8)-\mathrm{C}(114)-\mathrm{C}(115)$ | 114.8(4) | $\mathrm{C}(113)-\mathrm{C}(114)-\mathrm{C}(115)$ | 119.9(5) |
| $\mathrm{C}(116)-\mathrm{C}(115)-\mathrm{C}(114)$ | 120.2(4) | $\mathrm{C}(116)-\mathrm{C}(115)-\mathrm{H}(115)$ | 119.9 |
| $\mathrm{C}(114)-\mathrm{C}(115)-\mathrm{H}(115)$ | 119.9 | $\mathrm{C}(115)-\mathrm{C}(116)-\mathrm{C}(111)$ | 120.6(4) |
| $\mathrm{C}(115)-\mathrm{C}(116)-\mathrm{H}(116)$ | 119.7 | $\mathrm{C}(111)-\mathrm{C}(116)-\mathrm{H}(116)$ | 119.7 |
| $\mathrm{O}(8)-\mathrm{C}(118)-\mathrm{H}(11 \mathrm{~A})$ | 109.5 | $\mathrm{O}(8)-\mathrm{C}(118)-\mathrm{H}(11 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(118)-\mathrm{H}(11 \mathrm{~B})$ | 109.5 | $\mathrm{O}(8)-\mathrm{C}(118)-\mathrm{H}(11 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(118)-\mathrm{H}(11 \mathrm{C})$ | 109.5 | $\mathrm{H}(11 \mathrm{~B})-\mathrm{C}(118)-\mathrm{H}(11 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(124)-\mathrm{C}(119)-\mathrm{C}(120)$ | 117.8(4) | $\mathrm{C}(124)-\mathrm{C}(119)-\mathrm{C}(90)$ | 121.8(4) |
| $\mathrm{C}(120)-\mathrm{C}(119)-\mathrm{C}(90)$ | 120.2(4) | $\mathrm{C}(121)-\mathrm{C}(120)-\mathrm{C}(119)$ | 121.1(4) |
| $\mathrm{C}(121)-\mathrm{C}(120)-\mathrm{H}(120)$ | 119.5 | $\mathrm{C}(119)-\mathrm{C}(120)-\mathrm{H}(120)$ | 119.5 |
| $\mathrm{C}(120)-\mathrm{C}(121)-\mathrm{C}(122)$ | 120.4(4) | $\mathrm{C}(120)-\mathrm{C}(121)-\mathrm{H}(121)$ | 119.8 |
| $\mathrm{C}(122)-\mathrm{C}(121)-\mathrm{H}(121)$ | 119.8 | $\mathrm{O}(9)-\mathrm{C}(122)-\mathrm{C}(123)$ | 124.3(4) |
| $\mathrm{O}(9)-\mathrm{C}(122)-\mathrm{C}(121)$ | 115.9(4) | $\mathrm{C}(123)-\mathrm{C}(122)-\mathrm{C}(121)$ | 119.8(4) |
| $\mathrm{C}(122)-\mathrm{C}(123)-\mathrm{C}(124)$ | 119.6(4) | $\mathrm{C}(122)-\mathrm{C}(123)-\mathrm{H}(123)$ | 120.2 |
| $\mathrm{C}(124)-\mathrm{C}(123)-\mathrm{H}(123)$ | 120.2 | $\mathrm{C}(119)-\mathrm{C}(124)-\mathrm{C}(123)$ | 121.3(4) |
| $\mathrm{C}(119)-\mathrm{C}(124)-\mathrm{H}(124)$ | 119.3 | $\mathrm{C}(123)-\mathrm{C}(124)-\mathrm{H}(124)$ | 119.3 |
| $\mathrm{O}(9)-\mathrm{C}(126)-\mathrm{H}(12 \mathrm{~A})$ | 109.5 | $\mathrm{O}(9)-\mathrm{C}(126)-\mathrm{H}(12 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(126)-\mathrm{H}(12 \mathrm{~B})$ | 109.5 | $\mathrm{O}(9)-\mathrm{C}(126)-\mathrm{H}(12 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(126)-\mathrm{H}(12 \mathrm{C})$ | 109.5 | $\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(126)-\mathrm{H}(12 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(136)-\mathrm{C}(127)-\mathrm{C}(140)$ | 118.8(4) | $\mathrm{C}(136)-\mathrm{C}(127)-\mathrm{C}(128)$ | 118.1(4) |
| $\mathrm{C}(140)-\mathrm{C}(127)-\mathrm{C}(128)$ | 123.0(4) | $\mathrm{C}(133)-\mathrm{C}(128)-\mathrm{C}(129)$ | 118.7(4) |
| $\mathrm{C}(133)-\mathrm{C}(128)-\mathrm{C}(127)$ | 118.0(4) | $\mathrm{C}(129)-\mathrm{C}(128)-\mathrm{C}(127)$ | 122.6(4) |
| $\mathrm{C}(130)-\mathrm{C}(129)-\mathrm{C}(128)$ | 119.2(4) | $\mathrm{C}(130)-\mathrm{C}(129)-\mathrm{C}(161)$ | 115.2(4) |
| C(128)-C(129)-C(161) | 125.3(4) | $\mathrm{C}(131)-\mathrm{C}(130)-\mathrm{C}(129)$ | 121.5(4) |
| $\mathrm{C}(131)-\mathrm{C}(130)-\mathrm{H}(130)$ | 119.2 | $\mathrm{C}(129)-\mathrm{C}(130)-\mathrm{H}(130)$ | 119.2 |
| $\mathrm{C}(132)-\mathrm{C}(131)-\mathrm{C}(130)$ | 120.0(4) | $\mathrm{C}(132)-\mathrm{C}(131)-\mathrm{H}(131)$ | 120.0 |
| $\mathrm{C}(130)-\mathrm{C}(131)-\mathrm{H}(131)$ | 120.0 | $\mathrm{C}(131)-\mathrm{C}(132)-\mathrm{C}(133)$ | 121.0(4) |
| $\mathrm{C}(131)-\mathrm{C}(132)-\mathrm{H}(132)$ | 119.5 | $\mathrm{C}(133)-\mathrm{C}(132)-\mathrm{H}(132)$ | 119.5 |
| $\mathrm{C}(128)-\mathrm{C}(133)-\mathrm{C}(132)$ | 119.5(4) | $\mathrm{C}(128)-\mathrm{C}(133)-\mathrm{C}(134)$ | 119.5(4) |
| $\mathrm{C}(132)-\mathrm{C}(133)-\mathrm{C}(134)$ | 120.7(4) | $\mathrm{C}(149)-\mathrm{C}(134)-\mathrm{C}(135)$ | 119.8(4) |
| C(149)-C(134)-C(133) | 122.8(4) | $\mathrm{C}(135)-\mathrm{C}(134)-\mathrm{C}(133)$ | 117.4(4) |
| $\mathrm{C}(152)-\mathrm{C}(135)-\mathrm{C}(134)$ | 117.9(4) | $\mathrm{C}(152)-\mathrm{C}(135)-\mathrm{C}(136)$ | 122.0(4) |
| $\mathrm{C}(134)-\mathrm{C}(135)-\mathrm{C}(136)$ | 119.4(4) | $\mathrm{C}(127)-\mathrm{C}(136)-\mathrm{C}(137)$ | 118.1(4) |
| $\mathrm{C}(127)-\mathrm{C}(136)-\mathrm{C}(135)$ | 117.6(4) | $\mathrm{C}(137)-\mathrm{C}(136)-\mathrm{C}(135)$ | 123.6(4) |
| $\mathrm{C}(138)-\mathrm{C}(137)-\mathrm{C}(136)$ | 119.6(4) | $\mathrm{C}(138)-\mathrm{C}(137)-\mathrm{C}(141)$ | 118.0(4) |
| $\mathrm{C}(136)-\mathrm{C}(137)-\mathrm{C}(141)$ | 122.2(4) | $\mathrm{C}(139)-\mathrm{C}(138)-\mathrm{C}(137)$ | 120.4(4) |
| $\mathrm{C}(139)-\mathrm{C}(138)-\mathrm{H}(138)$ | 119.8 | $\mathrm{C}(137)-\mathrm{C}(138)-\mathrm{H}(138)$ | 119.8 |
| C(140)-C(139)-C(138) | 120.4(4) | $\mathrm{C}(140)-\mathrm{C}(139)-\mathrm{H}(139)$ | 119.8 |
| $\mathrm{C}(138)-\mathrm{C}(139)-\mathrm{H}(139)$ | 119.8 | $\mathrm{C}(139)-\mathrm{C}(140)-\mathrm{C}(127)$ | 119.8(4) |

Table A3 continued

| $\mathrm{C}(139)-\mathrm{C}(140)-\mathrm{H}(140)$ | 120.1 | $\mathrm{C}(127)-\mathrm{C}(140)-\mathrm{H}(140)$ | 120.1 |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(146)-\mathrm{C}(141)-\mathrm{C}(142)$ | 118.3(4) | $\mathrm{C}(146)-\mathrm{C}(141)-\mathrm{C}(137)$ | 121.4(4) |
| $\mathrm{C}(142)-\mathrm{C}(141)-\mathrm{C}(137)$ | 120.2(4) | $\mathrm{C}(143)-\mathrm{C}(142)-\mathrm{C}(141)$ | 121.0(4) |
| $\mathrm{C}(143)-\mathrm{C}(142)-\mathrm{H}(142)$ | 119.5 | $\mathrm{C}(141)-\mathrm{C}(142)-\mathrm{H}(142)$ | 119.5 |
| $\mathrm{C}(142)-\mathrm{C}(143)-\mathrm{C}(144)$ | 120.0(4) | $\mathrm{C}(142)-\mathrm{C}(143)-\mathrm{H}(143)$ | 120.0 |
| $\mathrm{C}(144)-\mathrm{C}(143)-\mathrm{H}(143)$ | 120.0 | $\mathrm{O}(10)-\mathrm{C}(144)-\mathrm{C}(143)$ | 125.2(5) |
| $\mathrm{O}(10)-\mathrm{C}(144)-\mathrm{C}(145)$ | 115.4(4) | $\mathrm{C}(143)-\mathrm{C}(144)-\mathrm{C}(145)$ | 119.5(4) |
| $\mathrm{C}(146)-\mathrm{C}(145)-\mathrm{C}(144)$ | 119.7(4) | $\mathrm{C}(146)-\mathrm{C}(145)-\mathrm{H}(145)$ | 120.1 |
| $\mathrm{C}(144)-\mathrm{C}(145)-\mathrm{H}(145)$ | 120.1 | $\mathrm{C}(145)-\mathrm{C}(146)-\mathrm{C}(141)$ | 121.6(4) |
| $\mathrm{C}(145)-\mathrm{C}(146)-\mathrm{H}(146)$ | 119.2 | $\mathrm{C}(141)-\mathrm{C}(146)-\mathrm{H}(146)$ | 119.2 |
| $\mathrm{O}(10)-\mathrm{C}(148)-\mathrm{H}(14 \mathrm{~A})$ | 109.5 | $\mathrm{O}(10)-\mathrm{C}(148)-\mathrm{H}(14 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(148)-\mathrm{H}(14 \mathrm{~B})$ | 109.5 | $\mathrm{O}(10)-\mathrm{C}(148)-\mathrm{H}(14 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(148)-\mathrm{H}(14 \mathrm{C})$ | 109.5 | $\mathrm{H}(14 \mathrm{~B})-\mathrm{C}(148)-\mathrm{H}(14 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(150)-\mathrm{C}(149)-\mathrm{C}(134)$ | 119.4(4) | $\mathrm{C}(150)-\mathrm{C}(149)-\mathrm{C}(153)$ | 116.4(4) |
| C(134)-C(149)-C(153) | 123.9(4) | C(151)-C(150)-C(149) | 120.9(4) |
| $\mathrm{C}(151)-\mathrm{C}(150)-\mathrm{H}(150)$ | 119.6 | $\mathrm{C}(149)-\mathrm{C}(150)-\mathrm{H}(150)$ | 119.6 |
| $\mathrm{C}(150)-\mathrm{C}(151)-\mathrm{C}(152)$ | 120.1(4) | $\mathrm{C}(150)-\mathrm{C}(151)-\mathrm{H}(151)$ | 119.9 |
| $\mathrm{C}(152)-\mathrm{C}(151)-\mathrm{H}(151)$ | 119.9 | $\mathrm{C}(151)-\mathrm{C}(152)-\mathrm{C}(135)$ | 121.6(4) |
| $\mathrm{C}(151)-\mathrm{C}(152)-\mathrm{H}(152)$ | 119.2 | $\mathrm{C}(135)-\mathrm{C}(152)-\mathrm{H}(152)$ | 119.2 |
| $\mathrm{C}(158)-\mathrm{C}(153)-\mathrm{C}(154)$ | 117.5(4) | $\mathrm{C}(158)-\mathrm{C}(153)-\mathrm{C}(149)$ | 121.5(4) |
| $\mathrm{C}(154)-\mathrm{C}(153)-\mathrm{C}(149)$ | 121.0(4) | $\mathrm{C}(155)-\mathrm{C}(154)-\mathrm{C}(153)$ | 121.1(4) |
| $\mathrm{C}(155)-\mathrm{C}(154)-\mathrm{H}(154)$ | 119.4 | $\mathrm{C}(153)-\mathrm{C}(154)-\mathrm{H}(154)$ | 119.4 |
| $\mathrm{C}(154)-\mathrm{C}(155)-\mathrm{C}(156)$ | 120.3(4) | $\mathrm{C}(154)-\mathrm{C}(155)-\mathrm{H}(155)$ | 119.8 |
| $\mathrm{C}(156)-\mathrm{C}(155)-\mathrm{H}(155)$ | 119.8 | $\mathrm{O}(11)-\mathrm{C}(156)-\mathrm{C}(157)$ | 124.7(4) |
| $\mathrm{O}(11)-\mathrm{C}(156)-\mathrm{C}(155)$ | 115.8(4) | $\mathrm{C}(157)-\mathrm{C}(156)-\mathrm{C}(155)$ | 119.5(4) |
| $\mathrm{C}(156)-\mathrm{C}(157)-\mathrm{C}(158)$ | 119.3(4) | $\mathrm{C}(156)-\mathrm{C}(157)-\mathrm{H}(157)$ | 120.3 |
| $\mathrm{C}(158)-\mathrm{C}(157)-\mathrm{H}(157)$ | 120.3 | $\mathrm{C}(157)-\mathrm{C}(158)-\mathrm{C}(153)$ | 122.2(4) |
| $\mathrm{C}(157)-\mathrm{C}(158)-\mathrm{H}(158)$ | 118.9 | $\mathrm{C}(153)-\mathrm{C}(158)-\mathrm{H}(158)$ | 118.9 |
| $\mathrm{O}(11)-\mathrm{C}(160)-\mathrm{H}(16 \mathrm{D})$ | 109.5 | $\mathrm{O}(11)-\mathrm{C}(160)-\mathrm{H}(16 \mathrm{E})$ | 109.5 |
| $\mathrm{H}(16 \mathrm{D})-\mathrm{C}(160)-\mathrm{H}(16 \mathrm{E})$ | 109.5 | $\mathrm{O}(11)-\mathrm{C}(160)-\mathrm{H}(16 \mathrm{~F})$ | 109.5 |
| $\mathrm{H}(16 \mathrm{D})-\mathrm{C}(160)-\mathrm{H}(16 \mathrm{~F})$ | 109.5 | $\mathrm{H}(16 \mathrm{E})-\mathrm{C}(160)-\mathrm{H}(16 \mathrm{~F})$ | 109.5 |
| C(166)-C(161)-C(162) | 117.9(4) | C(166)-C(161)-C(129) | 119.9(4) |
| $\mathrm{C}(162)-\mathrm{C}(161)-\mathrm{C}(129)$ | 122.1(4) | $\mathrm{C}(161)-\mathrm{C}(162)-\mathrm{C}(163)$ | 121.1(4) |
| $\mathrm{C}(161)-\mathrm{C}(162)-\mathrm{H}(162)$ | 119.4 | $\mathrm{C}(163)-\mathrm{C}(162)-\mathrm{H}(162)$ | 119.4 |
| $\mathrm{C}(164)-\mathrm{C}(163)-\mathrm{C}(162)$ | 120.0(4) | $\mathrm{C}(164)-\mathrm{C}(163)-\mathrm{H}(163)$ | 120.0 |
| $\mathrm{C}(162)-\mathrm{C}(163)-\mathrm{H}(163)$ | 120.0 | $\mathrm{O}(12)-\mathrm{C}(164)-\mathrm{C}(163)$ | 123.8(4) |
| $\mathrm{O}(12)-\mathrm{C}(164)-\mathrm{C}(165)$ | 116.7(4) | $\mathrm{C}(163)-\mathrm{C}(164)-\mathrm{C}(165)$ | 119.5(4) |
| $\mathrm{C}(166)-\mathrm{C}(165)-\mathrm{C}(164)$ | 119.6(4) | $\mathrm{C}(166)-\mathrm{C}(165)-\mathrm{H}(165)$ | 120.2 |
| $\mathrm{C}(164)-\mathrm{C}(165)-\mathrm{H}(165)$ | 120.2 | $\mathrm{C}(161)-\mathrm{C}(166)-\mathrm{C}(165)$ | 121.9(4) |
| $\mathrm{C}(161)-\mathrm{C}(166)-\mathrm{H}(166)$ | 119.0 | $\mathrm{C}(165)-\mathrm{C}(166)-\mathrm{H}(166)$ | 119.0 |
| $\mathrm{O}(12)-\mathrm{C}(168)-\mathrm{H}(16 \mathrm{~A})$ | 109.5 | $\mathrm{O}(12)-\mathrm{C}(168)-\mathrm{H}(16 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(168)-\mathrm{H}(16 \mathrm{~B})$ | 109.5 | $\mathrm{O}(12)-\mathrm{C}(168)-\mathrm{H}(16 \mathrm{C})$ | 109.5 |
| H(16A)-C(168)-H(16C) | 109.5 | H(16B)-C(168)-H(16C) | 109.5 |

Table A3 continued

| $\mathrm{C}(178)-\mathrm{C}(169)-\mathrm{C}(179)$ | 117.0(4) | $\mathrm{C}(178)$-C(169)-C(170) | 117.0(4) |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(179)-\mathrm{C}(169)-\mathrm{C}(170)$ | 125.0(4) | $\mathrm{C}(175)-\mathrm{C}(170)-\mathrm{C}(171)$ | 119.3(4) |
| $\mathrm{C}(175)-\mathrm{C}(170)-\mathrm{C}(169)$ | 120.0(4) | $\mathrm{C}(171)-\mathrm{C}(170)-\mathrm{C}(169)$ | 119.6(4) |
| $\mathrm{C}(172)-\mathrm{C}(171)-\mathrm{C}(170)$ | 120.1(5) | $\mathrm{C}(172)-\mathrm{C}(171)-\mathrm{H}(171)$ | 119.9 |
| $\mathrm{C}(170)-\mathrm{C}(171)-\mathrm{H}(171)$ | 119.9 | $\mathrm{C}(171)-\mathrm{C}(172)-\mathrm{C}(173)$ | 120.7(5) |
| $\mathrm{C}(171)-\mathrm{C}(172)-\mathrm{H}(172)$ | 119.6 | $\mathrm{C}(173)-\mathrm{C}(172)-\mathrm{H}(172)$ | 119.6 |
| $\mathrm{C}(174)-\mathrm{C}(173)-\mathrm{C}(172)$ | 120.5(5) | $\mathrm{C}(174)-\mathrm{C}(173)-\mathrm{H}(173)$ | 119.7 |
| $\mathrm{C}(172)-\mathrm{C}(173)-\mathrm{H}(173)$ | 119.7 | $\mathrm{C}(173)-\mathrm{C}(174)-\mathrm{C}(175)$ | 119.2(4) |
| $\mathrm{C}(173)-\mathrm{C}(174)-\mathrm{C}(203)$ | 116.4(4) | $\mathrm{C}(175)-\mathrm{C}(174)-\mathrm{C}(203)$ | 124.3(4) |
| $\mathrm{C}(170)-\mathrm{C}(175)-\mathrm{C}(174)$ | 119.9(4) | $\mathrm{C}(170)-\mathrm{C}(175)-\mathrm{C}(176)$ | 117.3(4) |
| $\mathrm{C}(174)-\mathrm{C}(175)-\mathrm{C}(176)$ | 122.7(4) | $\mathrm{C}(177)-\mathrm{C}(176)-\mathrm{C}(194)$ | 119.1(4) |
| $\mathrm{C}(177)-\mathrm{C}(176)-\mathrm{C}(175)$ | 119.4(4) | $\mathrm{C}(194)-\mathrm{C}(176)-\mathrm{C}(175)$ | 121.3(4) |
| $\mathrm{C}(176)-\mathrm{C}(177)-\mathrm{C}(191)$ | 119.1(4) | $\mathrm{C}(176)-\mathrm{C}(177)-\mathrm{C}(178)$ | 118.7(4) |
| $\mathrm{C}(191)-\mathrm{C}(177)-\mathrm{C}(178)$ | 122.0(4) | $\mathrm{C}(182)-\mathrm{C}(178)-\mathrm{C}(169)$ | 119.7(4) |
| $\mathrm{C}(182)-\mathrm{C}(178)-\mathrm{C}(177)$ | 122.5(4) | $\mathrm{C}(169)-\mathrm{C}(178)-\mathrm{C}(177)$ | 117.9(4) |
| $\mathrm{C}(180)-\mathrm{C}(179)-\mathrm{C}(169)$ | 118.9(4) | $\mathrm{C}(180)-\mathrm{C}(179)-\mathrm{C}(183)$ | 116.3(4) |
| $\mathrm{C}(169)-\mathrm{C}(179)-\mathrm{C}(183)$ | 124.1(4) | C(179)-C(180)-C(181) | 122.4(5) |
| C(179)-C(180)-H(180) | 118.8 | C(181)-C(180)-H(180) | 118.8 |
| C(182)-C(181)-C(180) | 118.5(4) | $\mathrm{C}(182)-\mathrm{C}(181)-\mathrm{H}(181)$ | 120.7 |
| C(180)-C(181)-H(181) | 120.7 | C(181)-C(182)-C(178) | 120.6(4) |
| $\mathrm{C}(181)-\mathrm{C}(182)-\mathrm{H}(182)$ | 119.7 | $\mathrm{C}(178)-\mathrm{C}(182)-\mathrm{H}(182)$ | 119.7 |
| C(188)-C(183)-C(184) | 117.5(4) | C(188)-C(183)-C(179) | 120.4(4) |
| C(184)-C(183)-C(179) | 121.5(4) | C(183)-C(184)-C(185) | 121.5(5) |
| $\mathrm{C}(183)-\mathrm{C}(184)-\mathrm{H}(184)$ | 119.2 | $\mathrm{C}(185)-\mathrm{C}(184)-\mathrm{H}(184)$ | 119.2 |
| C(186)-C(185)-C(184) | 119.5(5) | $\mathrm{C}(186)-\mathrm{C}(185)-\mathrm{H}(185)$ | 120.3 |
| $\mathrm{C}(184)-\mathrm{C}(185)-\mathrm{H}(185)$ | 120.3 | $\mathrm{O}(13)-\mathrm{C}(186)-\mathrm{C}(187)$ | 124.9(4) |
| $\mathrm{O}(13)-\mathrm{C}(186)-\mathrm{C}(185)$ | 114.9(4) | C(187)-C(186)-C(185) | 120.2(4) |
| C(186)-C(187)-C(188) | 119.5(4) | $\mathrm{C}(186)-\mathrm{C}(187)-\mathrm{H}(187)$ | 120.3 |
| C(188)-C(187)-H(187) | 120.3 | C(183)-C(188)-C(187) | 121.8(4) |
| C(183)-C(188)-H(188) | 119.1 | C(187)-C(188)-H(188) | 119.1 |
| $\mathrm{O}(13)-\mathrm{C}(190)-\mathrm{H}(19 \mathrm{~A})$ | 109.5 | $\mathrm{O}(13)-\mathrm{C}(190)-\mathrm{H}(19 \mathrm{~B})$ | 109.5 |
| H(19A)-C(190)-H(19B) | 109.5 | $\mathrm{O}(13)-\mathrm{C}(190)-\mathrm{H}(19 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(190)-\mathrm{H}(19 \mathrm{C})$ | 109.5 | H(19B)-C(190)-H(19C) | 109.5 |
| C(192)-C(191)-C(177) | 119.3(5) | C(192)-C(191)-C(195) | 115.4(5) |
| $\mathrm{C}(177)-\mathrm{C}(191)-\mathrm{C}(195)$ | 125.0(5) | C(193)-C(192)-C(191) | 121.5(5) |
| $\mathrm{C}(193)-\mathrm{C}(192)-\mathrm{H}(192)$ | 119.2 | $\mathrm{C}(191)-\mathrm{C}(192)-\mathrm{H}(192)$ | 119.2 |
| C(194)-C(193)-C(192) | 120.1(5) | $\mathrm{C}(194)-\mathrm{C}(193)-\mathrm{H}(193)$ | 120.0 |
| C(192)-C(193)-H(193) | 120.0 | C(193)-C(194)-C(176) | 120.7(5) |
| $\mathrm{C}(193)-\mathrm{C}(194)-\mathrm{H}(194)$ | 119.7 | $\mathrm{C}(176)-\mathrm{C}(194)-\mathrm{H}(194)$ | 119.7 |
| $\mathrm{C}(200)-\mathrm{C}(195)-\mathrm{C}(196)$ | 117.9(5) | $\mathrm{C}(200)-\mathrm{C}(195)-\mathrm{C}(191)$ | 121.5(5) |
| $\mathrm{C}(196)-\mathrm{C}(195)-\mathrm{C}(191)$ | 120.4(5) | $\mathrm{C}(197)-\mathrm{C}(196)-\mathrm{C}(195)$ | 121.1(6) |
| C(197)-C(196)-H(196) | 119.4 | $\mathrm{C}(195)-\mathrm{C}(196)-\mathrm{H}(196)$ | 119.4 |
| C(198)-C(197)-C(196) | 120.2(5) | $\mathrm{C}(198)-\mathrm{C}(197)-\mathrm{H}(197)$ | 119.9 |

Table A3 continued

| C(196)-C(197)-H(197) | 119.9 | $\mathrm{C}(197)-\mathrm{C}(198)-\mathrm{O}(14)$ | 125.9(6) |
| :---: | :---: | :---: | :---: |
| C(197)-C(198)-C(199) | 120.3(6) | $\mathrm{O}(14)-\mathrm{C}(198)-\mathrm{C}(199)$ | 113.8(6) |
| C(200)-C(199)-C(198) | 118.7(6) | $\mathrm{C}(200)-\mathrm{C}(199)-\mathrm{H}(199)$ | 120.6 |
| $\mathrm{C}(198)-\mathrm{C}(199)-\mathrm{H}(199)$ | 120.6 | C(195)-C(200)-C(199) | 121.7(5) |
| $\mathrm{C}(195)-\mathrm{C}(200)-\mathrm{H}(200)$ | 119.1 | $\mathrm{C}(199)-\mathrm{C}(200)-\mathrm{H}(200)$ | 119.1 |
| $\mathrm{O}(14)-\mathrm{C}(202)-\mathrm{H}(20 \mathrm{~A})$ | 109.5 | $\mathrm{O}(14)-\mathrm{C}(202)-\mathrm{H}(20 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(202)-\mathrm{H}(20 \mathrm{~B})$ | 109.5 | $\mathrm{O}(14)-\mathrm{C}(202)-\mathrm{H}(20 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(202)-\mathrm{H}(20 \mathrm{C})$ | 109.5 | $\mathrm{H}(20 \mathrm{~B})-\mathrm{C}(202)-\mathrm{H}(20 \mathrm{C})$ | 109.5 |
| C(204)-C(203)-C(208) | 117.8(5) | C(204)-C(203)-C(174) | 121.4(4) |
| C(208)-C(203)-C(174) | 120.7(4) | $\mathrm{C}(203)-\mathrm{C}(204)-\mathrm{C}(205)$ | 120.9(5) |
| $\mathrm{C}(203)-\mathrm{C}(204)-\mathrm{H}(204)$ | 119.6 | $\mathrm{C}(205)-\mathrm{C}(204)-\mathrm{H}(204)$ | 119.6 |
| C(206)-C(205)-C(204) | 120.1(5) | $\mathrm{C}(206)-\mathrm{C}(205)-\mathrm{H}(205)$ | 120.0 |
| $\mathrm{C}(204)-\mathrm{C}(205)-\mathrm{H}(205)$ | 120.0 | $\mathrm{C}(205)-\mathrm{C}(206)-\mathrm{O}(15)$ | 125.5(5) |
| C(205)-C(206)-C(207) | 119.8(5) | $\mathrm{O}(15)-\mathrm{C}(206)-\mathrm{C}(207)$ | 114.7(5) |
| C(208)-C(207)-C(206) | 120.1(5) | $\mathrm{C}(208)-\mathrm{C}(207)-\mathrm{H}(207)$ | 119.9 |
| $\mathrm{C}(206)-\mathrm{C}(207)-\mathrm{H}(207)$ | 119.9 | C(207)-C(208)-C(203) | 121.3(5) |
| $\mathrm{C}(207)-\mathrm{C}(208)-\mathrm{H}(208)$ | 119.3 | $\mathrm{C}(203)-\mathrm{C}(208)-\mathrm{H}(208)$ | 119.3 |
| $\mathrm{O}(15)-\mathrm{C}(210)-\mathrm{H}(21 \mathrm{~A})$ | 109.5 | $\mathrm{O}(15)-\mathrm{C}(210)-\mathrm{H}(21 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(210)-\mathrm{H}(21 \mathrm{~B})$ | 109.5 | $\mathrm{O}(15)-\mathrm{C}(210)-\mathrm{H}(21 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(210)-\mathrm{H}(21 \mathrm{C})$ | 109.5 | $\mathrm{H}(21 \mathrm{~B})-\mathrm{C}(210)-\mathrm{H}(21 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(212)-\mathrm{C}(211)-\mathrm{H}(21 \mathrm{I})$ | 109.5 | $\mathrm{C}(212)-\mathrm{C}(211)-\mathrm{H}(21 \mathrm{~J})$ | 109.5 |
| $\mathrm{H}(21 \mathrm{I})-\mathrm{C}(211)-\mathrm{H}(21 \mathrm{~J})$ | 109.5 | $\mathrm{C}(212)-\mathrm{C}(211)-\mathrm{H}(21 \mathrm{~K})$ | 109.5 |
| $\mathrm{H}(21 \mathrm{I})-\mathrm{C}(211)-\mathrm{H}(21 \mathrm{~K})$ | 109.5 | $\mathrm{H}(21 \mathrm{~J})-\mathrm{C}(211)-\mathrm{H}(21 \mathrm{~K})$ | 109.5 |
| $\mathrm{O}(19)-\mathrm{C}(212)-\mathrm{C}(211)$ | 109.4(6) | $\mathrm{O}(19)-\mathrm{C}(212)-\mathrm{H}(21 \mathrm{G})$ | 109.8 |
| $\mathrm{C}(211)-\mathrm{C}(212)-\mathrm{H}(21 \mathrm{G})$ | 109.8 | $\mathrm{O}(19)-\mathrm{C}(212)-\mathrm{H}(21 \mathrm{H})$ | 109.8 |
| $\mathrm{C}(211)-\mathrm{C}(212)-\mathrm{H}(21 \mathrm{H})$ | 109.8 | $\mathrm{H}(21 \mathrm{G})-\mathrm{C}(212)-\mathrm{H}(21 \mathrm{H})$ | 108.2 |
| $\mathrm{O}(19)-\mathrm{C}(214)-\mathrm{C}(215)$ | 106.7(6) | $\mathrm{O}(19)-\mathrm{C}(214)-\mathrm{H}(21 \mathrm{~L})$ | 110.4 |
| $\mathrm{C}(215)-\mathrm{C}(214)-\mathrm{H}(21 \mathrm{~L})$ | 110.4 | $\mathrm{O}(19)-\mathrm{C}(214)-\mathrm{H}(21 \mathrm{M})$ | 110.4 |
| $\mathrm{C}(215)-\mathrm{C}(214)-\mathrm{H}(21 \mathrm{M})$ | 110.4 | $\mathrm{H}(21 \mathrm{~L})-\mathrm{C}(214)-\mathrm{H}(21 \mathrm{M})$ | 108.6 |
| $\mathrm{C}(214)-\mathrm{C}(215)-\mathrm{H}(21 \mathrm{D})$ | 109.5 | $\mathrm{C}(214)-\mathrm{C}(215)-\mathrm{H}(21 \mathrm{E})$ | 109.5 |
| $\mathrm{H}(21 \mathrm{D})-\mathrm{C}(215)-\mathrm{H}(21 \mathrm{E})$ | 109.5 | $\mathrm{C}(214)-\mathrm{C}(215)-\mathrm{H}(21 \mathrm{~F})$ | 109.5 |
| $\mathrm{H}(21 \mathrm{D})-\mathrm{C}(215)-\mathrm{H}(21 \mathrm{~F})$ | 109.5 | $\mathrm{H}(21 \mathrm{E})-\mathrm{C}(215)-\mathrm{H}(21 \mathrm{~F})$ | 109.5 |
| $\mathrm{C}(225)-\mathrm{C}(216)-\mathrm{C}(229)$ | 117.8(4) | C(225)-C(216)-C(217) | 117.1(4) |
| $\mathrm{C}(229)-\mathrm{C}(216)-\mathrm{C}(217)$ | 124.5(4) | $\mathrm{C}(218)-\mathrm{C}(217)-\mathrm{C}(222)$ | 118.5(4) |
| $\mathrm{C}(218)-\mathrm{C}(217)-\mathrm{C}(216)$ | 120.6(4) | $\mathrm{C}(222)-\mathrm{C}(217)-\mathrm{C}(216)$ | 119.9(4) |
| $\mathrm{C}(219)-\mathrm{C}(218)-\mathrm{C}(217)$ | 121.4(5) | $\mathrm{C}(219)-\mathrm{C}(218)-\mathrm{H}(218)$ | 119.3 |
| $\mathrm{C}(217)-\mathrm{C}(218)-\mathrm{H}(218)$ | 119.3 | $\mathrm{C}(218)-\mathrm{C}(219)-\mathrm{C}(220)$ | 119.6(5) |
| $\mathrm{C}(218)-\mathrm{C}(219)-\mathrm{H}(219)$ | 120.2 | $\mathrm{C}(220)-\mathrm{C}(219)-\mathrm{H}(219)$ | 120.2 |
| $\mathrm{C}(221)-\mathrm{C}(220)-\mathrm{C}(219)$ | 121.3(5) | $\mathrm{C}(221)-\mathrm{C}(220)-\mathrm{H}(220)$ | 119.3 |
| $\mathrm{C}(219)-\mathrm{C}(220)-\mathrm{H}(220)$ | 119.3 | $\mathrm{C}(220)-\mathrm{C}(221)-\mathrm{C}(222)$ | 119.4(5) |
| $\mathrm{C}(220)-\mathrm{C}(221)-\mathrm{C}(250)$ | 114.8(4) | $\mathrm{C}(222)-\mathrm{C}(221)-\mathrm{C}(250)$ | 125.6(4) |
| $\mathrm{C}(221)-\mathrm{C}(222)-\mathrm{C}(217)$ | 119.4(4) | C(221)-C(222)-C(223) | 122.1(4) |
| $\mathrm{C}(217)-\mathrm{C}(222)-\mathrm{C}(223)$ | 118.5(4) | $\mathrm{C}(241)-\mathrm{C}(223)-\mathrm{C}(224)$ | 119.0(4) |

Table A3 continued

| $\mathrm{C}(241)-\mathrm{C}(223)-\mathrm{C}(222)$ | 121.7(4) | $\mathrm{C}(224)$ - $\mathrm{C}(223)-\mathrm{C}(222)$ | 119.1(4) |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(238)-\mathrm{C}(224)-\mathrm{C}(223)$ | 119.0(4) | $\mathrm{C}(238)$ - $\mathrm{C}(224)-\mathrm{C}(225)$ | 122.8(4) |
| $\mathrm{C}(223)-\mathrm{C}(224)-\mathrm{C}(225)$ | 118.1(4) | $\mathrm{C}(226)-\mathrm{C}(225)-\mathrm{C}(216)$ | 118.5(4) |
| $\mathrm{C}(226)-\mathrm{C}(225)-\mathrm{C}(224)$ | 122.0(4) | $\mathrm{C}(216)-\mathrm{C}(225)-\mathrm{C}(224)$ | 119.6(4) |
| $\mathrm{C}(227)-\mathrm{C}(226)-\mathrm{C}(225)$ | 121.1(4) | $\mathrm{C}(227)-\mathrm{C}(226)-\mathrm{H}(226)$ | 119.5 |
| $\mathrm{C}(225)-\mathrm{C}(226)-\mathrm{H}(226)$ | 119.5 | $\mathrm{C}(226)-\mathrm{C}(227)-\mathrm{C}(228)$ | 119.1(4) |
| $\mathrm{C}(226)-\mathrm{C}(227)-\mathrm{H}(227)$ | 120.4 | $\mathrm{C}(228)-\mathrm{C}(227)-\mathrm{H}(227)$ | 120.4 |
| $\mathrm{C}(229)-\mathrm{C}(228)-\mathrm{C}(227)$ | 121.7(5) | $\mathrm{C}(229)-\mathrm{C}(228)-\mathrm{H}(228)$ | 119.1 |
| $\mathrm{C}(227)-\mathrm{C}(228)-\mathrm{H}(228)$ | 119.1 | $\mathrm{C}(228)$-C(229)-C(216) | 118.6(4) |
| C(228)-C(229)-C(230) | 116.0(4) | C(216)-C(229)-C(230) | 125.0(4) |
| $\mathrm{C}(231)-\mathrm{C}(230)-\mathrm{C}(235)$ | 117.4(4) | $\mathrm{C}(231)-\mathrm{C}(230)-\mathrm{C}(229)$ | 119.9(4) |
| $\mathrm{C}(235)-\mathrm{C}(230)-\mathrm{C}(229)$ | 122.3(4) | $\mathrm{C}(232)-\mathrm{C}(231)-\mathrm{C}(230)$ | 122.0(4) |
| $\mathrm{C}(232)-\mathrm{C}(231)-\mathrm{H}(231)$ | 119.0 | $\mathrm{C}(230)-\mathrm{C}(231)-\mathrm{H}(231)$ | 119.0 |
| $\mathrm{C}(231)-\mathrm{C}(232)-\mathrm{C}(233)$ | 119.6(4) | $\mathrm{C}(231)-\mathrm{C}(232)-\mathrm{H}(232)$ | 120.2 |
| $\mathrm{C}(233)-\mathrm{C}(232)-\mathrm{H}(232)$ | 120.2 | $\mathrm{O}(17)-\mathrm{C}(233)-\mathrm{C}(232)$ | 124.6(4) |
| $\mathrm{O}(17)-\mathrm{C}(233)-\mathrm{C}(234)$ | 116.0(4) | C(232)-C(233)-C(234) | 119.4(4) |
| $\mathrm{C}(235)-\mathrm{C}(234)-\mathrm{C}(233)$ | 120.2(4) | $\mathrm{C}(235)-\mathrm{C}(234)-\mathrm{H}(234)$ | 119.9 |
| $\mathrm{C}(233)-\mathrm{C}(234)-\mathrm{H}(234)$ | 119.9 | $\mathrm{C}(234)-\mathrm{C}(235)-\mathrm{C}(230)$ | 121.4(4) |
| $\mathrm{C}(234)-\mathrm{C}(235)-\mathrm{H}(235)$ | 119.3 | $\mathrm{C}(230)-\mathrm{C}(235)-\mathrm{H}(235)$ | 119.3 |
| $\mathrm{O}(17)-\mathrm{C}(237)-\mathrm{H}(23 \mathrm{~A})$ | 109.5 | $\mathrm{O}(17)-\mathrm{C}(237)-\mathrm{H}(23 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(237)-\mathrm{H}(23 \mathrm{~B})$ | 109.5 | $\mathrm{O}(17)-\mathrm{C}(237)-\mathrm{H}(23 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(237)-\mathrm{H}(23 \mathrm{C})$ | 109.5 | $\mathrm{H}(23 \mathrm{~B})-\mathrm{C}(237)-\mathrm{H}(23 \mathrm{C})$ | 109.5 |
| C(239)-C(238)-C(224) | 119.1(5) | C(239)-C(238)-C(242) | 116.2(4) |
| C(224)-C(238)-C(242) | 124.6(5) | C(238)-C(239)-C(240) | 121.7(5) |
| $\mathrm{C}(238)-\mathrm{C}(239)-\mathrm{H}(239)$ | 119.2 | $\mathrm{C}(240)-\mathrm{C}(239)-\mathrm{H}(239)$ | 119.2 |
| $\mathrm{C}(241)-\mathrm{C}(240)-\mathrm{C}(239)$ | 118.9(5) | $\mathrm{C}(241)-\mathrm{C}(240)-\mathrm{H}(240)$ | 120.5 |
| $\mathrm{C}(239)-\mathrm{C}(240)-\mathrm{H}(240)$ | 120.5 | $\mathrm{C}(240)$-C(241)-C(223) | 122.0(5) |
| $\mathrm{C}(240)-\mathrm{C}(241)-\mathrm{H}(241)$ | 119.0 | $\mathrm{C}(223)-\mathrm{C}(241)-\mathrm{H}(241)$ | 119.0 |
| $\mathrm{C}(247)-\mathrm{C}(242)-\mathrm{C}(243)$ | 117.5(5) | $\mathrm{C}(247)-\mathrm{C}(242)-\mathrm{C}(238)$ | 122.2(4) |
| C(243)-C(242)-C(238) | 120.2(5) | C(244)-C(243)-C(242) | 120.7(5) |
| $\mathrm{C}(244)-\mathrm{C}(243)-\mathrm{H}(243)$ | 119.7 | $\mathrm{C}(242)-\mathrm{C}(243)-\mathrm{H}(243)$ | 119.7 |
| $\mathrm{C}(245)-\mathrm{C}(244)-\mathrm{C}(243)$ | 120.7(5) | $\mathrm{C}(245)-\mathrm{C}(244)-\mathrm{H}(244)$ | 119.7 |
| $\mathrm{C}(243)-\mathrm{C}(244)-\mathrm{H}(244)$ | 119.7 | $\mathrm{O}(18)-\mathrm{C}(245)-\mathrm{C}(244)$ | 115.9(5) |
| $\mathrm{O}(18)-\mathrm{C}(245)-\mathrm{C}(246)$ | 124.2(5) | $\mathrm{C}(244)-\mathrm{C}(245)-\mathrm{C}(246)$ | 119.9(5) |
| $\mathrm{C}(245)-\mathrm{C}(246)-\mathrm{C}(247)$ | 119.6(5) | $\mathrm{C}(245)-\mathrm{C}(246)-\mathrm{H}(246)$ | 120.2 |
| $\mathrm{C}(247)-\mathrm{C}(246)-\mathrm{H}(246)$ | 120.2 | C(242)-C(247)-C(246) | 121.6(5) |
| $\mathrm{C}(242)-\mathrm{C}(247)-\mathrm{H}(247)$ | 119.2 | $\mathrm{C}(246)-\mathrm{C}(247)-\mathrm{H}(247)$ | 119.2 |
| $\mathrm{O}(18)-\mathrm{C}(249)-\mathrm{H}(24 \mathrm{~A})$ | 109.5 | $\mathrm{O}(18)-\mathrm{C}(249)-\mathrm{H}(24 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(249)-\mathrm{H}(24 \mathrm{~B})$ | 109.5 | $\mathrm{O}(18)-\mathrm{C}(249)-\mathrm{H}(24 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(249)-\mathrm{H}(24 \mathrm{C})$ | 109.5 | $\mathrm{H}(24 \mathrm{~B})-\mathrm{C}(249)-\mathrm{H}(24 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(255)-\mathrm{C}(250)-\mathrm{C}(251)$ | 117.3(5) | $\mathrm{C}(255)-\mathrm{C}(250)-\mathrm{C}(221)$ | 121.5(5) |
| $\mathrm{C}(251)-\mathrm{C}(250)-\mathrm{C}(221)$ | 120.9(5) | $\mathrm{C}(252)-\mathrm{C}(251)-\mathrm{C}(250)$ | 121.5(6) |
| $\mathrm{C}(252)-\mathrm{C}(251)-\mathrm{H}(251)$ | 119.2 | $\mathrm{C}(250)-\mathrm{C}(251)-\mathrm{H}(251)$ | 119.2 |

Table A3 continued

| $\mathrm{C}(251)-\mathrm{C}(252)-\mathrm{C}(253)$ | 118.9(7) | $\mathrm{C}(251)-\mathrm{C}(252)-\mathrm{H}(252)$ | 120.5 |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(253)-\mathrm{C}(252)-\mathrm{H}(252)$ | 120.5 | $\mathrm{O}(16)-\mathrm{C}(253)-\mathrm{C}(254)$ | 115.3(9) |
| $\mathrm{O}(16)-\mathrm{C}(253)-\mathrm{C}(252)$ | 124.3(9) | C(254)-C(253)-C(252) | 120.4(6) |
| $\mathrm{C}(253)-\mathrm{C}(254)-\mathrm{C}(255)$ | 119.9(7) | $\mathrm{C}(253)-\mathrm{C}(254)-\mathrm{H}(254)$ | 120.0 |
| $\mathrm{C}(255)-\mathrm{C}(254)-\mathrm{H}(254)$ | 120.0 | $\mathrm{C}(254)-\mathrm{C}(255)-\mathrm{C}(250)$ | 121.9(7) |
| $\mathrm{C}(254)-\mathrm{C}(255)-\mathrm{H}(255)$ | 119.1 | $\mathrm{C}(250)-\mathrm{C}(255)-\mathrm{H}(255)$ | 119.1 |
| $\mathrm{O}(16)-\mathrm{C}(256)-\mathrm{H}(25 \mathrm{~A})$ | 109.5 | $\mathrm{O}(16)-\mathrm{C}(256)-\mathrm{H}(25 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(25 \mathrm{~A})-\mathrm{C}(256)-\mathrm{H}(25 \mathrm{~B})$ | 109.5 | $\mathrm{O}(16)-\mathrm{C}(256)-\mathrm{H}(25 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(25 \mathrm{~A})-\mathrm{C}(256)-\mathrm{H}(25 \mathrm{C})$ | 109.5 | H(25B)-C(256)-H(25C) | 109.5 |
| $\mathrm{C}(258)-\mathrm{C}(257)-\mathrm{H}(25 \mathrm{D})$ | 109.5 | $\mathrm{C}(258)-\mathrm{C}(257)-\mathrm{H}(25 \mathrm{E})$ | 109.5 |
| $\mathrm{H}(25 \mathrm{D})-\mathrm{C}(257)-\mathrm{H}(25 \mathrm{E})$ | 109.5 | $\mathrm{C}(258)-\mathrm{C}(257)-\mathrm{H}(25 \mathrm{~F})$ | 109.5 |
| $\mathrm{H}(25 \mathrm{D})-\mathrm{C}(257)-\mathrm{H}(25 \mathrm{~F})$ | 109.5 | $\mathrm{H}(25 \mathrm{E})-\mathrm{C}(257)-\mathrm{H}(25 \mathrm{~F})$ | 109.5 |
| $\mathrm{O}(20)-\mathrm{C}(258)-\mathrm{C}(257)$ | 109.2(5) | $\mathrm{O}(20)-\mathrm{C}(258)-\mathrm{H}(25 \mathrm{G})$ | 109.8 |
| $\mathrm{C}(257)-\mathrm{C}(258)-\mathrm{H}(25 \mathrm{G})$ | 109.8 | $\mathrm{O}(20)-\mathrm{C}(258)-\mathrm{H}(25 \mathrm{H})$ | 109.8 |
| $\mathrm{C}(257)-\mathrm{C}(258)-\mathrm{H}(25 \mathrm{H})$ | 109.8 | $\mathrm{H}(25 \mathrm{G})-\mathrm{C}(258)-\mathrm{H}(25 \mathrm{H})$ | 108.3 |
| $\mathrm{O}(20)-\mathrm{C}(259)-\mathrm{C}(260)$ | 110.3(6) | $\mathrm{O}(20)-\mathrm{C}(259)-\mathrm{H}(25 \mathrm{I})$ | 109.6 |
| $\mathrm{C}(260)-\mathrm{C}(259)-\mathrm{H}(25 \mathrm{I})$ | 109.6 | $\mathrm{O}(20)-\mathrm{C}(259)-\mathrm{H}(25 \mathrm{~J})$ | 109.6 |
| $\mathrm{C}(260)-\mathrm{C}(259)-\mathrm{H}(25 \mathrm{~J})$ | 109.6 | $\mathrm{H}(25 \mathrm{I})-\mathrm{C}(259)-\mathrm{H}(25 \mathrm{~J})$ | 108.1 |
| $\mathrm{C}(259)-\mathrm{C}(260)-\mathrm{H}(26 \mathrm{~A})$ | 109.5 | $\mathrm{C}(259)-\mathrm{C}(260)-\mathrm{H}(26 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(26 \mathrm{~A})-\mathrm{C}(260)-\mathrm{H}(26 \mathrm{~B})$ | 109.5 | $\mathrm{C}(259)-\mathrm{C}(260)-\mathrm{H}(26 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(26 \mathrm{~A})-\mathrm{C}(260)-\mathrm{H}(26 \mathrm{C})$ | 109.5 | $\mathrm{H}(26 \mathrm{~B})-\mathrm{C}(260)-\mathrm{H}(26 \mathrm{C})$ | 109.5 |
| C(263)-C(262)-H(26F) | 109.5 | C(263)-C(262)-H(26G) | 109.5 |
| $\mathrm{H}(26 \mathrm{~F})-\mathrm{C}(262)-\mathrm{H}(26 \mathrm{G})$ | 109.5 | $\mathrm{C}(263)-\mathrm{C}(262)-\mathrm{H}(26 \mathrm{H})$ | 109.5 |
| $\mathrm{H}(26 \mathrm{~F})-\mathrm{C}(262)-\mathrm{H}(26 \mathrm{H})$ | 109.5 | H(26G)-C(262)-H(26H) | 109.5 |
| $\mathrm{O}(21)-\mathrm{C}(263)-\mathrm{C}(262)$ | 108.5(5) | $\mathrm{O}(21)-\mathrm{C}(263)-\mathrm{H}(26 \mathrm{I})$ | 110.0 |
| $\mathrm{C}(262)-\mathrm{C}(263)-\mathrm{H}(26 \mathrm{I})$ | 110.0 | $\mathrm{O}(21)-\mathrm{C}(263)-\mathrm{H}(26 \mathrm{~J})$ | 110.0 |
| $\mathrm{C}(262)-\mathrm{C}(263)-\mathrm{H}(26 \mathrm{~J})$ | 110.0 | $\mathrm{H}(26 \mathrm{I})-\mathrm{C}(263)-\mathrm{H}(26 \mathrm{~J})$ | 108.4 |
| $\mathrm{O}(21)-\mathrm{C}(264)-\mathrm{C}(265)$ | 109.5(6) | $\mathrm{O}(21)-\mathrm{C}(264)-\mathrm{H}(26 \mathrm{~K})$ | 109.8 |
| C(265)-C(264)-H(26K) | 109.8 | $\mathrm{O}(21)-\mathrm{C}(264)-\mathrm{H}(26 \mathrm{~L})$ | 109.8 |
| $\mathrm{C}(265)-\mathrm{C}(264)-\mathrm{H}(26 \mathrm{~L})$ | 109.8 | $\mathrm{H}(26 \mathrm{~K})-\mathrm{C}(264)-\mathrm{H}(26 \mathrm{~L})$ | 108.2 |
| $\mathrm{C}(264)-\mathrm{C}(265)-\mathrm{H}(26 \mathrm{M})$ | 109.5 | $\mathrm{C}(264)-\mathrm{C}(265)-\mathrm{H}(26 \mathrm{~N})$ | 109.5 |
| $\mathrm{H}(26 \mathrm{M})-\mathrm{C}(265)-\mathrm{H}(26 \mathrm{~N})$ | 109.5 | $\mathrm{C}(264)-\mathrm{C}(265)-\mathrm{H}(26 \mathrm{O})$ | 109.5 |
| $\mathrm{H}(26 \mathrm{M})-\mathrm{C}(265)-\mathrm{H}(26 \mathrm{O})$ | 109.5 | $\mathrm{H}(26 \mathrm{~N})-\mathrm{C}(265)-\mathrm{H}(26 \mathrm{O})$ | 109.5 |
| $\mathrm{C}(18)-\mathrm{O}(1)-\mathrm{C}(22)$ | 117.5(4) | $\mathrm{C}(30)-\mathrm{O}(2)-\mathrm{C}(34)$ | 117.1(4) |
| $\mathrm{C}(38)-\mathrm{O}(3)-\mathrm{C}(42)$ | 117.8(5) | $\mathrm{C}(60)-\mathrm{O}(4)-\mathrm{C}(64)$ | 118.1(5) |
| $\mathrm{C}(76)-\mathrm{O}(5)-\mathrm{C}(72)$ | 119.3(6) | $\mathrm{C}(80)-\mathrm{O}(6)-\mathrm{C}(84)$ | 116.9(4) |
| $\mathrm{C}(102)-\mathrm{O}(7)-\mathrm{C}(106)$ | 117.8(4) | $\mathrm{C}(114)-\mathrm{O}(8)-\mathrm{C}(118)$ | 117.5(4) |
| $\mathrm{C}(122)-\mathrm{O}(9)-\mathrm{C}(126)$ | 117.6(4) | $\mathrm{C}(144)-\mathrm{O}(10)-\mathrm{C}(148)$ | 117.3(4) |
| $\mathrm{C}(156)-\mathrm{O}(11)-\mathrm{C}(160)$ | 117.6(4) | $\mathrm{C}(164)-\mathrm{O}(12)-\mathrm{C}(168)$ | 117.4(4) |
| $\mathrm{C}(186)-\mathrm{O}(13)-\mathrm{C}(190)$ | 117.5(4) | $\mathrm{C}(198)-\mathrm{O}(14)-\mathrm{C}(202)$ | 117.1(7) |
| $\mathrm{C}(210)-\mathrm{O}(15)-\mathrm{C}(206)$ | 119.3(6) | $\mathrm{C}(253)-\mathrm{O}(16)-\mathrm{C}(256)$ | 118.0(10) |
| $\mathrm{C}(233)-\mathrm{O}(17)-\mathrm{C}(237)$ | 116.7(4) | $\mathrm{C}(245)-\mathrm{O}(18)-\mathrm{C}(249)$ | 118.0(5) |
| $\mathrm{C}(214)-\mathrm{O}(19)-\mathrm{C}(212)$ | 111.0(6) | $\mathrm{C}(258)-\mathrm{O}(20)-\mathrm{C}(259)$ | 113.0(4) |

Table A3 continued

| $\mathrm{C}(264)-\mathrm{O}(21)-\mathrm{C}(263)$ | $113.3(5)$ | $\mathrm{C}(268)-\mathrm{O}(22)-\mathrm{C}(266)$ | $125.1(12)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{C}(267)-\mathrm{C}(266)-\mathrm{O}(22)$ | $127.1(15)$ | $\mathrm{C}(267)-\mathrm{C}(266)-\mathrm{H}(26 \mathrm{P})$ | 105.5 |
| $\mathrm{O}(22)-\mathrm{C}(266)-\mathrm{H}(26 \mathrm{P})$ | 105.5 | $\mathrm{C}(267)-\mathrm{C}(266)-\mathrm{H}(26 \mathrm{Q})$ | 105.5 |
| $\mathrm{O}(22)-\mathrm{C}(266)-\mathrm{H}(26 \mathrm{Q})$ | 105.5 | $\mathrm{H}(26 \mathrm{P})-\mathrm{C}(266)-\mathrm{H}(26 \mathrm{Q})$ | 106.1 |
| $\mathrm{O}(22)-\mathrm{C}(268)-\mathrm{C}(269)$ | $126.5(16)$ | $\mathrm{O}(22)-\mathrm{C}(268)-\mathrm{H}(26 \mathrm{~V})$ | 105.7 |
| $\mathrm{C}(269)-\mathrm{C}(268)-\mathrm{H}(26 \mathrm{~V})$ | 105.7 | $\mathrm{O}(22)-\mathrm{C}(268)-\mathrm{H}(26 \mathrm{U})$ | 105.7 |
| $\mathrm{C}(269)-\mathrm{C}(268)-\mathrm{H}(26 \mathrm{U})$ | 105.7 | $\mathrm{H}(26 \mathrm{~V})-\mathrm{C}(268)-\mathrm{H}(26 \mathrm{U})$ | 106.1 |

Table A4 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 283. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} \mathrm{U}^{11}+\ldots+2 h k a^{*} b^{*} \mathrm{U}^{12}\right]$

|  |  | $\mathrm{U}^{11}$ | $\mathrm{U}^{22}$ | $\mathrm{U}^{33}$ | $\mathrm{U}^{23}$ | $\mathrm{U}^{13}$ |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: |
| $\mathrm{U}^{12}$ |  |  |  |  |  |  |
| $\mathrm{C}(1)$ | $21(2)$ | $24(2)$ | $17(2)$ | $-4(2)$ | $-2(2)$ | $-1(2)$ |
| $\mathrm{C}(2)$ | $24(2)$ | $15(2)$ | $18(2)$ | $-2(2)$ | $-6(2)$ | $-1(2)$ |
| $\mathrm{C}(3)$ | $29(2)$ | $18(2)$ | $18(2)$ | $-5(2)$ | $-6(2)$ | $0(2)$ |
| $\mathrm{C}(4)$ | $30(2)$ | $26(2)$ | $23(2)$ | $-7(2)$ | $-10(2)$ | $-3(2)$ |
| $\mathrm{C}(5)$ | $24(2)$ | $19(2)$ | $31(3)$ | $-3(2)$ | $-9(2)$ | $-4(2)$ |
| $\mathrm{C}(6)$ | $24(2)$ | $19(2)$ | $22(2)$ | $-3(2)$ | $-1(2)$ | $0(2)$ |
| $\mathrm{C}(7)$ | $26(2)$ | $17(2)$ | $18(2)$ | $-4(2)$ | $-7(2)$ | $2(2)$ |
| $\mathrm{C}(8)$ | $23(2)$ | $13(2)$ | $15(2)$ | $0(2)$ | $-4(2)$ | $2(2)$ |
| $\mathrm{C}(9)$ | $23(2)$ | $17(2)$ | $16(2)$ | $-1(2)$ | $-5(2)$ | $2(2)$ |
| $\mathrm{C}(10)$ | $19(2)$ | $19(2)$ | $17(2)$ | $1(2)$ | $0(2)$ | $-1(2)$ |
| $\mathrm{C}(11)$ | $20(2)$ | $30(2)$ | $17(2)$ | $-2(2)$ | $-6(2)$ | $-1(2)$ |
| $\mathrm{C}(12)$ | $24(2)$ | $31(3)$ | $23(2)$ | $-6(2)$ | $-5(2)$ | $5(2)$ |
| $\mathrm{C}(13)$ | $32(3)$ | $30(3)$ | $21(2)$ | $-9(2)$ | $-2(2)$ | $8(2)$ |
| $\mathrm{C}(14)$ | $31(2)$ | $28(2)$ | $17(2)$ | $-8(2)$ | $-7(2)$ | $5(2)$ |
| $\mathrm{C}(15)$ | $21(2)$ | $21(2)$ | $20(2)$ | $-2(2)$ | $-6(2)$ | $3(2)$ |
| $\mathrm{C}(16)$ | $26(2)$ | $21(2)$ | $26(2)$ | $-2(2)$ | $-5(2)$ | $0(2)$ |
| $\mathrm{C}(17)$ | $35(3)$ | $27(2)$ | $19(2)$ | $0(2)$ | $-4(2)$ | $-4(2)$ |
| $\mathrm{C}(18)$ | $31(3)$ | $25(2)$ | $17(2)$ | $-1(2)$ | $-7(2)$ | $6(2)$ |
| $\mathrm{C}(19)$ | $20(2)$ | $34(3)$ | $23(2)$ | $-1(2)$ | $-4(2)$ | $2(2)$ |
| $\mathrm{C}(20)$ | $24(2)$ | $27(2)$ | $19(2)$ | $0(2)$ | $0(2)$ | $0(2)$ |
| $\mathrm{C}(22)$ | $43(3)$ | $54(4)$ | $26(3)$ | $-4(2)$ | $-16(2)$ | $7(3)$ |
| $\mathrm{C}(23)$ | $26(2)$ | $29(2)$ | $20(2)$ | $-5(2)$ | $-10(2)$ | $2(2)$ |
| $\mathrm{C}(24)$ | $39(3)$ | $26(2)$ | $21(2)$ | $-10(2)$ | $-13(2)$ | $2(2)$ |
| $\mathrm{C}(25)$ | $31(3)$ | $31(3)$ | $20(2)$ | $-9(2)$ | $-7(2)$ | $5(2)$ |
| $\mathrm{C}(26)$ | $23(2)$ | $21(2)$ | $17(2)$ | $2(2)$ | $-4(2)$ | $1(2)$ |
| $\mathrm{C}(27)$ | $25(2)$ | $16(2)$ | $16(2)$ | $-5(2)$ | $0(2)$ | $0(2)$ |
| $\mathrm{C}(28)$ | $25(2)$ | $26(2)$ | $16(2)$ | $-2(2)$ | $0(2)$ | $-5(2)$ |
| $\mathrm{C}(29)$ | $29(2)$ | $19(2)$ | $23(2)$ | $1(2)$ | $-9(2)$ | $0(2)$ |
| $\mathrm{C}(30)$ | $23(2)$ | $17(2)$ | $26(2)$ | $-1(2)$ | $-4(2)$ | $-3(2)$ |
| $\mathrm{C}(31)$ | $27(2)$ | $30(3)$ | $23(2)$ | $3(2)$ | $4(2)$ | $-2(2)$ |
| $\mathrm{C}(32)$ | $28(2)$ | $30(3)$ | $15(2)$ | $4(2)$ | $0(2)$ | $2(2)$ |
| $\mathrm{C}(34)$ | $31(3)$ | $37(3)$ | $44(3)$ | $-4(2)$ | $-10(2)$ | $8(2)$ |
| $\mathrm{C}(35)$ | $28(2)$ | $22(2)$ | $18(2)$ | $-2(2)$ | $-9(2)$ | $6(2)$ |
| $\mathrm{C}(36)$ | $32(3)$ | $21(2)$ | $22(2)$ | $-4(2)$ | $-6(2)$ | $4(2)$ |
| $\mathrm{C}(37)$ | $33(3)$ | $26(3)$ | $29(3)$ | $-2(2)$ | $3(2)$ | $1(2)$ |
| $\mathrm{C}(38)$ | $44(3)$ | $33(3)$ | $20(2)$ | $-4(2)$ | $3(2)$ | $7(2)$ |
| $\mathrm{C}(39)$ | $39(3)$ | $34(3)$ | $25(3)$ | $-12(2)$ | $-7(2)$ | $9(2)$ |
| $\mathrm{C}(40)$ | $33(3)$ | $23(2)$ | $24(2)$ | $-5(2)$ | $-12(2)$ | $2(2)$ |
|  | $99(6)$ | $53(5)$ | $65(5)$ | $-10(4)$ | $35(4)$ | $-25(4)$ |
|  |  |  |  |  | 0 |  |

Continued on following page

Table A4 continued

| $\mathrm{C}(43)$ | $20(2)$ | $22(2)$ | $19(2)$ | $-3(2)$ | $0(2)$ | $-5(2)$ |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: |
| $\mathrm{C}(44)$ | $23(2)$ | $24(2)$ | $17(2)$ | $-1(2)$ | $0(2)$ | $-6(2)$ |
| $\mathrm{C}(45)$ | $26(2)$ | $29(3)$ | $20(2)$ | $-1(2)$ | $-2(2)$ | $-7(2)$ |
| $\mathrm{C}(46)$ | $20(2)$ | $35(3)$ | $30(3)$ | $-3(2)$ | $-7(2)$ | $0(2)$ |
| $\mathrm{C}(47)$ | $24(2)$ | $31(3)$ | $32(3)$ | $-5(2)$ | $-4(2)$ | $4(2)$ |
| $\mathrm{C}(48)$ | $21(2)$ | $26(2)$ | $17(2)$ | $-3(2)$ | $2(2)$ | $0(2)$ |
| $\mathrm{C}(49)$ | $20(2)$ | $21(2)$ | $20(2)$ | $-3(2)$ | $-2(2)$ | $-2(2)$ |
| $\mathrm{C}(50)$ | $20(2)$ | $26(2)$ | $19(2)$ | $-3(2)$ | $-1(2)$ | $-3(2)$ |
| $\mathrm{C}(51)$ | $21(2)$ | $23(2)$ | $18(2)$ | $-3(2)$ | $1(2)$ | $-4(2)$ |
| $\mathrm{C}(52)$ | $22(2)$ | $22(2)$ | $22(2)$ | $-6(2)$ | $4(2)$ | $-3(2)$ |
| $\mathrm{C}(53)$ | $26(2)$ | $23(2)$ | $22(2)$ | $-2(2)$ | $4(2)$ | $-1(2)$ |
| $\mathrm{C}(54)$ | $37(3)$ | $21(2)$ | $27(3)$ | $-5(2)$ | $2(2)$ | $3(2)$ |
| $\mathrm{C}(55)$ | $41(3)$ | $25(2)$ | $24(2)$ | $-9(2)$ | $2(2)$ | $-7(2)$ |
| $\mathrm{C}(56)$ | $26(2)$ | $25(2)$ | $23(2)$ | $-6(2)$ | $1(2)$ | $-4(2)$ |
| $\mathrm{C}(57)$ | $30(3)$ | $33(3)$ | $19(2)$ | $-10(2)$ | $0(2)$ | $-6(2)$ |
| $\mathrm{C}(58)$ | $37(3)$ | $34(3)$ | $27(3)$ | $-4(2)$ | $-6(2)$ | $-13(2)$ |
| $\mathrm{C}(59)$ | $41(3)$ | $31(3)$ | $25(3)$ | $-3(2)$ | $-6(2)$ | $-6(2)$ |
| $\mathrm{C}(60)$ | $27(3)$ | $47(3)$ | $23(2)$ | $-14(2)$ | $-4(2)$ | $1(2)$ |
| $\mathrm{C}(61)$ | $30(3)$ | $40(3)$ | $33(3)$ | $-20(2)$ | $-2(2)$ | $-8(2)$ |
| $\mathrm{C}(62)$ | $33(3)$ | $27(3)$ | $28(3)$ | $-10(2)$ | $2(2)$ | $-7(2)$ |
| $\mathrm{C}(64)$ | $68(4)$ | $49(4)$ | $44(4)$ | $-3(3)$ | $-25(3)$ | $6(3)$ |
| $\mathrm{C}(65)$ | $27(2)$ | $21(2)$ | $24(2)$ | $-4(2)$ | $-4(2)$ | $-2(2)$ |
| $\mathrm{C}(66)$ | $33(3)$ | $29(3)$ | $18(2)$ | $-7(2)$ | $-6(2)$ | $-3(2)$ |
| $\mathrm{C}(67)$ | $27(2)$ | $27(2)$ | $23(2)$ | $0(2)$ | $-6(2)$ | $-2(2)$ |
| $\mathrm{C}(68)$ | $21(2)$ | $24(2)$ | $22(2)$ | $0(2)$ | $-3(2)$ | $1(2)$ |
| $\mathrm{C}(69)$ | $27(2)$ | $25(2)$ | $15(2)$ | $-4(2)$ | $0(2)$ | $2(2)$ |
| $\mathrm{C}(70)$ | $27(2)$ | $32(3)$ | $26(2)$ | $-5(2)$ | $2(2)$ | $-2(2)$ |
| $\mathrm{C}(71)$ | $46(3)$ | $27(3)$ | $26(3)$ | $-8(2)$ | $8(2)$ | $-6(2)$ |
| $\mathrm{C}(72)$ | $55(3)$ | $22(3)$ | $22(3)$ | $-4(2)$ | $-6(2)$ | $3(2)$ |
| $\mathrm{C}(73)$ | $38(3)$ | $35(3)$ | $34(3)$ | $-9(2)$ | $-12(2)$ | $10(2)$ |
| $\mathrm{C}(74)$ | $27(2)$ | $31(3)$ | $29(3)$ | $-4(2)$ | $-8(2)$ | $-1(2)$ |
| $\mathrm{C}(76)$ | $86(5)$ | $48(4)$ | $45(4)$ | $-11(3)$ | $-11(3)$ | $15(4)$ |
| $\mathrm{C}(77)$ | $28(2)$ | $27(2)$ | $14(2)$ | $-4(2)$ | $-7(2)$ | $3(2)$ |
| $\mathrm{C}(78)$ | $29(3)$ | $28(3)$ | $24(2)$ | $-6(2)$ | $0(2)$ | $3(2)$ |
| $\mathrm{C}(79)$ | $39(3)$ | $28(3)$ | $30(3)$ | $-13(2)$ | $-4(2)$ | $7(2)$ |
| $\mathrm{C}(80)$ | $33(3)$ | $24(2)$ | $20(2)$ | $-4(2)$ | $-10(2)$ | $0(2)$ |
| $\mathrm{C}(81)$ | $27(2)$ | $29(3)$ | $21(2)$ | $-7(2)$ | $-4(2)$ | $1(2)$ |
| $\mathrm{C}(82)$ | $25(2)$ | $21(2)$ | $21(2)$ | $-6(2)$ | $-6(2)$ | $5(2)$ |
| $\mathrm{C}(84)$ | $37(3)$ | $34(3)$ | $46(3)$ | $-2(2)$ | $-14(2)$ | $-8(2)$ |
| $\mathrm{C}(85)$ | $22(2)$ | $21(2)$ | $18(2)$ | $-2(2)$ | $-3(2)$ | $0(2)$ |
| $\mathrm{C}(86)$ | $25(2)$ | $18(2)$ | $16(2)$ | $0(2)$ | $-3(2)$ | $2(2)$ |
| $\mathrm{C}(87)$ | $21(2)$ | $30(2)$ | $16(2)$ | $-2(2)$ | $-7(2)$ | $-1(2)$ |
| $\mathrm{C}(88)$ | $31(2)$ | $26(2)$ | $20(2)$ | $-7(2)$ | $-10(2)$ | $1(2)$ |
|  |  |  |  |  |  |  |
|  |  |  |  | $2)$ | 0 |  |

Table A4 continued

| $\mathrm{C}(89)$ | $30(2)$ | $22(2)$ | $15(2)$ | $-4(2)$ | $-2(2)$ | $3(2)$ |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: |
| $\mathrm{C}(90)$ | $28(2)$ | $20(2)$ | $13(2)$ | $3(2)$ | $-4(2)$ | $-2(2)$ |
| $\mathrm{C}(91)$ | $23(2)$ | $19(2)$ | $15(2)$ | $-3(2)$ | $-5(2)$ | $2(2)$ |
| $\mathrm{C}(92)$ | $24(2)$ | $15(2)$ | $24(2)$ | $-5(2)$ | $-6(2)$ | $3(2)$ |
| $\mathrm{C}(93)$ | $26(2)$ | $20(2)$ | $19(2)$ | $-6(2)$ | $-6(2)$ | $-3(2)$ |
| $\mathrm{C}(94)$ | $23(2)$ | $24(2)$ | $20(2)$ | $-3(2)$ | $-3(2)$ | $-1(2)$ |
| $\mathrm{C}(95)$ | $29(3)$ | $34(3)$ | $20(2)$ | $-3(2)$ | $-4(2)$ | $0(2)$ |
| $\mathrm{C}(96)$ | $29(3)$ | $30(3)$ | $23(2)$ | $-6(2)$ | $2(2)$ | $2(2)$ |
| $\mathrm{C}(97)$ | $21(2)$ | $32(3)$ | $33(3)$ | $-5(2)$ | $-3(2)$ | $3(2)$ |
| $\mathrm{C}(98)$ | $23(2)$ | $22(2)$ | $22(2)$ | $-2(2)$ | $-4(2)$ | $0(2)$ |
| $\mathrm{C}(99)$ | $24(2)$ | $23(2)$ | $26(2)$ | $-5(2)$ | $-4(2)$ | $3(2)$ |
| $\mathrm{C}(100)$ | $25(2)$ | $31(3)$ | $33(3)$ | $0(2)$ | $-9(2)$ | $-1(2)$ |
| $\mathrm{C}(101)$ | $28(3)$ | $30(3)$ | $35(3)$ | $5(2)$ | $-3(2)$ | $-4(2)$ |
| $\mathrm{C}(102)$ | $30(3)$ | $32(3)$ | $21(2)$ | $1(2)$ | $-7(2)$ | $4(2)$ |
| $\mathrm{C}(103)$ | $23(2)$ | $32(3)$ | $27(2)$ | $-1(2)$ | $-10(2)$ | $2(2)$ |
| $\mathrm{C}(104)$ | $26(2)$ | $33(3)$ | $25(2)$ | $2(2)$ | $-4(2)$ | $-3(2)$ |
| $\mathrm{C}(106)$ | $36(3)$ | $64(4)$ | $24(3)$ | $4(3)$ | $-9(2)$ | $14(3)$ |
| $\mathrm{C}(107)$ | $26(2)$ | $21(2)$ | $20(2)$ | $-8(2)$ | $-6(2)$ | $0(2)$ |
| $\mathrm{C}(108)$ | $34(3)$ | $25(2)$ | $22(2)$ | $-4(2)$ | $-12(2)$ | $0(2)$ |
| $\mathrm{C}(109)$ | $25(2)$ | $24(2)$ | $29(3)$ | $-10(2)$ | $-8(2)$ | $0(2)$ |
| $\mathrm{C}(110)$ | $24(2)$ | $22(2)$ | $28(2)$ | $-5(2)$ | $-6(2)$ | $1(2)$ |
| $\mathrm{C}(111)$ | $30(2)$ | $16(2)$ | $23(2)$ | $-4(2)$ | $-9(2)$ | $3(2)$ |
| $\mathrm{C}(112)$ | $33(3)$ | $24(2)$ | $20(2)$ | $-8(2)$ | $-8(2)$ | $3(2)$ |
| $\mathrm{C}(113)$ | $30(2)$ | $23(2)$ | $26(2)$ | $-6(2)$ | $-6(2)$ | $1(2)$ |
| $\mathrm{C}(114)$ | $31(3)$ | $28(3)$ | $22(2)$ | $-5(2)$ | $-6(2)$ | $9(2)$ |
| $\mathrm{C}(115)$ | $33(3)$ | $30(3)$ | $27(3)$ | $-16(2)$ | $-8(2)$ | $10(2)$ |
| $\mathrm{C}(116)$ | $32(3)$ | $23(2)$ | $26(2)$ | $-7(2)$ | $-11(2)$ | $1(2)$ |
| $\mathrm{C}(118)$ | $61(4)$ | $51(4)$ | $35(3)$ | $-9(3)$ | $10(3)$ | $-16(3)$ |
| $\mathrm{C}(119)$ | $28(2)$ | $15(2)$ | $17(2)$ | $-5(2)$ | $-3(2)$ | $-2(2)$ |
| $\mathrm{C}(120)$ | $29(2)$ | $21(2)$ | $20(2)$ | $1(2)$ | $-7(2)$ | $0(2)$ |
| $\mathrm{C}(121)$ | $26(2)$ | $25(2)$ | $22(2)$ | $0(2)$ | $-2(2)$ | $-5(2)$ |
| $\mathrm{C}(122)$ | $21(2)$ | $20(2)$ | $28(2)$ | $-8(2)$ | $-3(2)$ | $-2(2)$ |
| $\mathrm{C}(123)$ | $28(2)$ | $20(2)$ | $22(2)$ | $-2(2)$ | $-7(2)$ | $2(2)$ |
| $\mathrm{C}(124)$ | $26(2)$ | $24(2)$ | $19(2)$ | $0(2)$ | $-3(2)$ | $-4(2)$ |
| $\mathrm{C}(126)$ | $27(3)$ | $35(3)$ | $46(3)$ | $-10(2)$ | $-12(2)$ | $9(2)$ |
| $\mathrm{C}(127)$ | $24(2)$ | $15(2)$ | $18(2)$ | $-3(2)$ | $-2(2)$ | $0(2)$ |
| $\mathrm{C}(128)$ | $23(2)$ | $16(2)$ | $16(2)$ | $0(2)$ | $-3(2)$ | $-2(2)$ |
| $\mathrm{C}(129)$ | $21(2)$ | $21(2)$ | $17(2)$ | $0(2)$ | $-3(2)$ | $-3(2)$ |
| $\mathrm{C}(130)$ | $31(2)$ | $24(2)$ | $18(2)$ | $-9(2)$ | $-2(2)$ | $4(2)$ |
| $\mathrm{C}(131)$ | $27(2)$ | $29(2)$ | $23(2)$ | $-8(2)$ | $-10(2)$ | $-1(2)$ |
| $\mathrm{C}(132)$ | $21(2)$ | $24(2)$ | $21(2)$ | $-3(2)$ | $-5(2)$ | $0(2)$ |
| $\mathrm{C}(133)$ | $26(2)$ | $17(2)$ | $17(2)$ | $0(2)$ | $-5(2)$ | $3(2)$ |
| $\mathrm{C}(134)$ | $21(2)$ | $20(2)$ | $19(2)$ | $-3(2)$ | $-2(2)$ | $-3(2)$ |
|  |  |  |  |  |  |  |
|  |  |  |  | 20 |  |  |

Continued on following page

Table A4 continued

| $\mathrm{C}(135)$ | $29(2)$ | $19(2)$ | $17(2)$ | $-2(2)$ | $-5(2)$ | $1(2)$ |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: |
| $\mathrm{C}(136)$ | $24(2)$ | $17(2)$ | $19(2)$ | $-2(2)$ | $-6(2)$ | $-4(2)$ |
| $\mathrm{C}(137)$ | $30(2)$ | $18(2)$ | $19(2)$ | $-5(2)$ | $-7(2)$ | $-2(2)$ |
| $\mathrm{C}(138)$ | $30(3)$ | $23(2)$ | $25(2)$ | $-4(2)$ | $-13(2)$ | $0(2)$ |
| $\mathrm{C}(139)$ | $25(2)$ | $23(2)$ | $34(3)$ | $-7(2)$ | $-10(2)$ | $-1(2)$ |
| $\mathrm{C}(140)$ | $27(2)$ | $18(2)$ | $23(2)$ | $-1(2)$ | $-5(2)$ | $-1(2)$ |
| $\mathrm{C}(141)$ | $25(2)$ | $26(2)$ | $19(2)$ | $-7(2)$ | $-8(2)$ | $0(2)$ |
| $\mathrm{C}(142)$ | $27(2)$ | $24(2)$ | $18(2)$ | $-8(2)$ | $-7(2)$ | $1(2)$ |
| $\mathrm{C}(143)$ | $28(2)$ | $24(2)$ | $24(2)$ | $-4(2)$ | $-2(2)$ | $-1(2)$ |
| $\mathrm{C}(144)$ | $30(3)$ | $30(3)$ | $22(2)$ | $-5(2)$ | $-2(2)$ | $7(2)$ |
| $\mathrm{C}(145)$ | $36(3)$ | $28(3)$ | $23(2)$ | $-12(2)$ | $-11(2)$ | $7(2)$ |
| $\mathrm{C}(146)$ | $31(3)$ | $22(2)$ | $26(2)$ | $-9(2)$ | $-10(2)$ | $1(2)$ |
| $\mathrm{C}(148)$ | $70(4)$ | $51(4)$ | $41(4)$ | $-12(3)$ | $20(3)$ | $-15(3)$ |
| $\mathrm{C}(149)$ | $24(2)$ | $20(2)$ | $19(2)$ | $-2(2)$ | $-4(2)$ | $0(2)$ |
| $\mathrm{C}(150)$ | $23(2)$ | $28(3)$ | $27(2)$ | $-3(2)$ | $-2(2)$ | $5(2)$ |
| $\mathrm{C}(151)$ | $28(2)$ | $25(2)$ | $24(2)$ | $-7(2)$ | $-3(2)$ | $4(2)$ |
| $\mathrm{C}(152)$ | $26(2)$ | $27(2)$ | $19(2)$ | $-3(2)$ | $-4(2)$ | $2(2)$ |
| $\mathrm{C}(153)$ | $22(2)$ | $17(2)$ | $22(2)$ | $-4(2)$ | $-4(2)$ | $7(2)$ |
| $\mathrm{C}(154)$ | $25(2)$ | $26(2)$ | $31(3)$ | $0(2)$ | $-6(2)$ | $-2(2)$ |
| $\mathrm{C}(155)$ | $33(3)$ | $30(3)$ | $24(2)$ | $6(2)$ | $-4(2)$ | $-7(2)$ |
| $\mathrm{C}(156)$ | $32(3)$ | $30(3)$ | $17(2)$ | $0(2)$ | $-9(2)$ | $3(2)$ |
| $\mathrm{C}(157)$ | $22(2)$ | $33(3)$ | $24(2)$ | $-2(2)$ | $-4(2)$ | $0(2)$ |
| $\mathrm{C}(158)$ | $25(2)$ | $32(3)$ | $18(2)$ | $1(2)$ | $0(2)$ | $2(2)$ |
| $\mathrm{C}(160)$ | $37(3)$ | $51(3)$ | $30(3)$ | $-6(2)$ | $-17(2)$ | $8(2)$ |
| $\mathrm{C}(161)$ | $20(2)$ | $24(2)$ | $22(2)$ | $-4(2)$ | $-2(2)$ | $-2(2)$ |
| $\mathrm{C}(162)$ | $24(2)$ | $21(2)$ | $19(2)$ | $0(2)$ | $0(2)$ | $-3(2)$ |
| $\mathrm{C}(163)$ | $26(2)$ | $22(2)$ | $21(2)$ | $0(2)$ | $-6(2)$ | $0(2)$ |
| $\mathrm{C}(164)$ | $22(2)$ | $20(2)$ | $29(2)$ | $-7(2)$ | $-5(2)$ | $6(2)$ |
| $\mathrm{C}(165)$ | $25(2)$ | $25(2)$ | $25(2)$ | $-3(2)$ | $2(2)$ | $2(2)$ |
| $\mathrm{C}(166)$ | $30(3)$ | $23(2)$ | $21(2)$ | $3(2)$ | $-2(2)$ | $2(2)$ |
| $\mathrm{C}(168)$ | $33(3)$ | $39(3)$ | $45(3)$ | $-1(3)$ | $-13(2)$ | $13(2)$ |
| $\mathrm{C}(169)$ | $26(2)$ | $25(2)$ | $23(2)$ | $-5(2)$ | $1(2)$ | $-2(2)$ |
| $\mathrm{C}(170)$ | $23(2)$ | $21(2)$ | $26(2)$ | $-3(2)$ | $-1(2)$ | $-2(2)$ |
| $\mathrm{C}(171)$ | $33(3)$ | $22(2)$ | $29(3)$ | $-6(2)$ | $-6(2)$ | $-2(2)$ |
| $\mathrm{C}(172)$ | $31(3)$ | $33(3)$ | $36(3)$ | $-6(2)$ | $-10(2)$ | $-2(2)$ |
| $\mathrm{C}(173)$ | $29(3)$ | $31(3)$ | $35(3)$ | $-2(2)$ | $-8(2)$ | $-1(2)$ |
| $\mathrm{C}(174)$ | $21(2)$ | $22(2)$ | $31(3)$ | $0(2)$ | $0(2)$ | $0(2)$ |
| $\mathrm{C}(175)$ | $22(2)$ | $20(2)$ | $29(2)$ | $-3(2)$ | $4(2)$ | $-5(2)$ |
| $\mathrm{C}(176)$ | $31(3)$ | $18(2)$ | $29(3)$ | $-2(2)$ | $2(2)$ | $-4(2)$ |
| $\mathrm{C}(177)$ | $29(2)$ | $19(2)$ | $26(2)$ | $-4(2)$ | $3(2)$ | $-5(2)$ |
| $\mathrm{C}(178)$ | $28(2)$ | $25(2)$ | $26(2)$ | $-3(2)$ | $0(2)$ | $-3(2)$ |
| $\mathrm{C}(179)$ | $25(2)$ | $22(2)$ | $24(2)$ | $-6(2)$ | $-2(2)$ | $0(2)$ |
| $\mathrm{C}(180)$ | $26(2)$ | $27(3)$ | $32(3)$ | $-6(2)$ | $-1(2)$ | $1(2)$ |
|  |  |  |  |  |  |  |
|  |  |  |  | 0 | 0 |  |

Continued on following page

Table A4 continued

| $\mathrm{C}(181)$ | $26(2)$ | $33(3)$ | $34(3)$ | $-5(2)$ | $-6(2)$ | $-2(2)$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathrm{C}(182)$ | $29(3)$ | $29(3)$ | $34(3)$ | $-6(2)$ | $-5(2)$ | $-8(2)$ |
| $\mathrm{C}(183)$ | $24(2)$ | $22(2)$ | $25(2)$ | $-5(2)$ | $-3(2)$ | $0(2)$ |
| $\mathrm{C}(184)$ | $29(3)$ | $28(3)$ | $37(3)$ | $-10(2)$ | $2(2)$ | $0(2)$ |
| $\mathrm{C}(185)$ | $37(3)$ | $24(3)$ | $36(3)$ | $-14(2)$ | $1(2)$ | $6(2)$ |
| $\mathrm{C}(186)$ | $28(2)$ | $21(2)$ | $31(3)$ | $-3(2)$ | $-10(2)$ | $0(2)$ |
| $\mathrm{C}(187)$ | $24(2)$ | $24(2)$ | $25(2)$ | $-2(2)$ | $-4(2)$ | $2(2)$ |
| $\mathrm{C}(188)$ | $24(2)$ | $22(2)$ | $26(2)$ | $-8(2)$ | $-2(2)$ | $5(2)$ |
| $\mathrm{C}(190)$ | $40(3)$ | $26(3)$ | $50(3)$ | $-3(2)$ | $-6(2)$ | $-9(2)$ |
| $\mathrm{C}(191)$ | $43(3)$ | $24(3)$ | $33(3)$ | $-3(2)$ | $-2(2)$ | $-11(2)$ |
| $\mathrm{C}(192)$ | $57(4)$ | $25(3)$ | $41(3)$ | $-13(2)$ | $-1(3)$ | $-2(2)$ |
| $\mathrm{C}(193)$ | $55(4)$ | $23(3)$ | $33(3)$ | $-6(2)$ | $8(2)$ | $3(2)$ |
| $\mathrm{C}(194)$ | $36(3)$ | $24(3)$ | $32(3)$ | $-3(2)$ | $3(2)$ | $3(2)$ |
| $\mathrm{C}(195)$ | $46(3)$ | $30(3)$ | $38(3)$ | $-17(2)$ | $-5(2)$ | $-4(2)$ |
| $\mathrm{C}(196)$ | $47(3)$ | $39(3)$ | $35(3)$ | $-22(2)$ | $6(2)$ | $-11(2)$ |
| $\mathrm{C}(197)$ | $44(3)$ | $70(4)$ | $35(3)$ | $-26(3)$ | $4(2)$ | $-22(3)$ |
| $\mathrm{C}(198)$ | $44(3)$ | $78(5)$ | $28(3)$ | $-17(3)$ | $0(2)$ | $-13(3)$ |
| $\mathrm{C}(199)$ | $58(4)$ | $48(4)$ | $41(3)$ | $-8(3)$ | $-15(3)$ | $-8(3)$ |
| $\mathrm{C}(200)$ | $52(4)$ | $36(3)$ | $48(4)$ | $-9(3)$ | $-15(3)$ | $-12(3)$ |
| $\mathrm{C}(202)$ | $173(11)$ | $217(14)$ | $70(7)$ | $17(7)$ | $-63(7)$ | $-136(11)$ |
| $\mathrm{C}(203)$ | $31(3)$ | $22(2)$ | $27(3)$ | $-2(2)$ | $2(2)$ | $-2(2)$ |
| $\mathrm{C}(204)$ | $35(3)$ | $33(3)$ | $35(3)$ | $-2(2)$ | $-6(2)$ | $-3(2)$ |
| $\mathrm{C}(205)$ | $37(3)$ | $38(3)$ | $37(3)$ | $-6(2)$ | $-7(2)$ | $9(2)$ |
| $\mathrm{C}(206)$ | $56(4)$ | $29(3)$ | $23(3)$ | $-8(2)$ | $-5(2)$ | $2(2)$ |
| $\mathrm{C}(207)$ | $46(3)$ | $22(2)$ | $29(3)$ | $-7(2)$ | $3(2)$ | $-6(2)$ |
| $\mathrm{C}(208)$ | $30(3)$ | $25(2)$ | $30(3)$ | $-6(2)$ | $1(2)$ | $0(2)$ |
| $\mathrm{C}(210)$ | $92(6)$ | $47(4)$ | $47(4)$ | $-9(3)$ | $-13(4)$ | $15(4)$ |
| $\mathrm{C}(211)$ | $50(5)$ | $157(10)$ | $86(7)$ | $-19(7)$ | $1(4)$ | $29(6)$ |
| $\mathrm{C}(212)$ | $41(4)$ | $50(4)$ | $84(5)$ | $22(4)$ | $14(3)$ | $5(3)$ |
| $\mathrm{C}(214)$ | $50(4)$ | $43(4)$ | $121(8)$ | $18(4)$ | $-21(5)$ | $-3(3)$ |
| $\mathrm{C}(215)$ | $83(6)$ | $49(4)$ | $96(7)$ | $10(4)$ | $-32(5)$ | $-8(4)$ |
| $\mathrm{C}(216)$ | $18(2)$ | $28(2)$ | $30(3)$ | $-8(2)$ | $2(2)$ | $-2(2)$ |
| $\mathrm{C}(217)$ | $24(2)$ | $24(2)$ | $29(3)$ | $-6(2)$ | $-2(2)$ | $-4(2)$ |
| $\mathrm{C}(218)$ | $32(3)$ | $27(3)$ | $33(3)$ | $-4(2)$ | $-8(2)$ | $0(2)$ |
| $\mathrm{C}(219)$ | $43(3)$ | $29(3)$ | $37(3)$ | $-6(2)$ | $-13(2)$ | $-4(2)$ |
| $\mathrm{C}(220)$ | $34(3)$ | $37(3)$ | $38(3)$ | $-7(2)$ | $-11(2)$ | $-5(2)$ |
| $\mathrm{C}(221)$ | $28(2)$ | $23(2)$ | $33(3)$ | $-3(2)$ | $-3(2)$ | $-3(2)$ |
| $\mathrm{C}(222)$ | $25(2)$ | $28(3)$ | $31(3)$ | $-5(2)$ | $2(2)$ | $-6(2)$ |
| $\mathrm{C}(223)$ | $28(2)$ | $22(2)$ | $29(3)$ | $-6(2)$ | $4(2)$ | $-5(2)$ |
| $\mathrm{C}(224)$ | $27(2)$ | $22(2)$ | $30(3)$ | $-7(2)$ | $3(2)$ | $-6(2)$ |
| $\mathrm{C}(225)$ | $25(2)$ | $28(2)$ | $25(2)$ | $-5(2)$ | $-1(2)$ | $-3(2)$ |
| $\mathrm{C}(226)$ | $23(2)$ | $33(3)$ | $29(3)$ | $-10(2)$ | $-1(2)$ | $-8(2)$ |
| $\mathrm{C}(227)$ | $21(2)$ | $39(3)$ | $37(3)$ | $-12(2)$ | $-5(2)$ | $-3(2)$ |
|  |  |  |  |  |  |  |

Continued on following page

Table A4 continued

| $\mathrm{C}(228)$ | $25(2)$ | $32(3)$ | $30(3)$ | $-8(2)$ | $-4(2)$ | $1(2)$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathrm{C}(229)$ | $18(2)$ | $27(2)$ | $23(2)$ | $-8(2)$ | $4(2)$ | $0(2)$ |
| $\mathrm{C}(230)$ | $22(2)$ | $24(2)$ | $21(2)$ | $-6(2)$ | $-2(2)$ | $4(2)$ |
| $\mathrm{C}(231)$ | $27(2)$ | $23(2)$ | $27(2)$ | $-8(2)$ | $-1(2)$ | $2(2)$ |
| $\mathrm{C}(232)$ | $26(2)$ | $26(2)$ | $21(2)$ | $-3(2)$ | $-4(2)$ | $0(2)$ |
| $\mathrm{C}(233)$ | $36(3)$ | $20(2)$ | $20(2)$ | $-3(2)$ | $-9(2)$ | $1(2)$ |
| $\mathrm{C}(234)$ | $32(3)$ | $27(3)$ | $28(3)$ | $-13(2)$ | $-1(2)$ | $3(2)$ |
| $\mathrm{C}(235)$ | $26(2)$ | $29(3)$ | $26(2)$ | $-8(2)$ | $-1(2)$ | $5(2)$ |
| $\mathrm{C}(237)$ | $38(3)$ | $27(3)$ | $39(3)$ | $-6(2)$ | $-8(2)$ | $-7(2)$ |
| $\mathrm{C}(238)$ | $33(3)$ | $26(3)$ | $30(3)$ | $-7(2)$ | $1(2)$ | $-10(2)$ |
| $\mathrm{C}(239)$ | $48(3)$ | $30(3)$ | $28(3)$ | $-8(2)$ | $1(2)$ | $-8(2)$ |
| $\mathrm{C}(240)$ | $43(3)$ | $25(3)$ | $34(3)$ | $-8(2)$ | $5(2)$ | $-1(2)$ |
| $\mathrm{C}(241)$ | $33(3)$ | $27(3)$ | $29(3)$ | $-5(2)$ | $4(2)$ | $-4(2)$ |
| $\mathrm{C}(242)$ | $31(3)$ | $33(3)$ | $27(3)$ | $-13(2)$ | $3(2)$ | $-7(2)$ |
| $\mathrm{C}(243)$ | $39(3)$ | $29(3)$ | $33(3)$ | $-12(2)$ | $3(2)$ | $-5(2)$ |
| $\mathrm{C}(244)$ | $34(3)$ | $38(3)$ | $41(3)$ | $-20(2)$ | $1(2)$ | $-6(2)$ |
| $\mathrm{C}(245)$ | $33(3)$ | $44(3)$ | $30(3)$ | $-16(2)$ | $-1(2)$ | $0(2)$ |
| $\mathrm{C}(246)$ | $46(3)$ | $37(3)$ | $31(3)$ | $-9(2)$ | $0(2)$ | $-9(2)$ |
| $\mathrm{C}(247)$ | $42(3)$ | $41(3)$ | $30(3)$ | $-11(2)$ | $0(2)$ | $-17(2)$ |
| $\mathrm{C}(249)$ | $78(5)$ | $65(5)$ | $45(4)$ | $-8(3)$ | $-23(3)$ | $8(4)$ |
| $\mathrm{C}(250)$ | $51(3)$ | $28(3)$ | $25(3)$ | $-2(2)$ | $-5(2)$ | $0(2)$ |
| $\mathrm{C}(251)$ | $53(4)$ | $37(3)$ | $34(3)$ | $-4(2)$ | $-4(2)$ | $13(3)$ |
| $\mathrm{C}(252)$ | $97(6)$ | $43(4)$ | $44(4)$ | $-10(3)$ | $-17(4)$ | $23(4)$ |
| $\mathrm{C}(253)$ | $159(9)$ | $26(3)$ | $34(4)$ | $-2(3)$ | $-18(4)$ | $4(4)$ |
| $\mathrm{C}(254)$ | $124(7)$ | $38(4)$ | $32(3)$ | $-3(3)$ | $1(4)$ | $-30(4)$ |
| $\mathrm{C}(255)$ | $64(4)$ | $37(3)$ | $33(3)$ | $-10(2)$ | $7(3)$ | $-18(3)$ |
| $\mathrm{C}(257)$ | $50(4)$ | $43(3)$ | $40(3)$ | $-4(3)$ | $-10(3)$ | $-4(3)$ |
| $\mathrm{C}(258)$ | $53(3)$ | $29(3)$ | $36(3)$ | $-6(2)$ | $-9(2)$ | $4(2)$ |
| $\mathrm{C}(259)$ | $52(4)$ | $46(4)$ | $45(4)$ | $-2(3)$ | $-5(3)$ | $-7(3)$ |
| $\mathrm{C}(260)$ | $54(4)$ | $82(6)$ | $68(5)$ | $0(4)$ | $1(3)$ | $4(4)$ |
| $\mathrm{C}(262)$ | $50(4)$ | $48(4)$ | $58(4)$ | $-13(3)$ | $-13(3)$ | $1(3)$ |
| $\mathrm{C}(263)$ | $46(3)$ | $42(3)$ | $43(3)$ | $-9(3)$ | $-10(3)$ | $4(3)$ |
| $\mathrm{C}(264)$ | $54(4)$ | $66(5)$ | $57(4)$ | $-14(4)$ | $1(3)$ | $-16(3)$ |
| $\mathrm{C}(265)$ | $49(4)$ | $110(7)$ | $69(5)$ | $-16(5)$ | $3(4)$ | $8(4)$ |
| $\mathrm{O}(1)$ | $38(2)$ | $48(2)$ | $21(2)$ | $7(2)$ | $-11(1)$ | $1(2)$ |
| $\mathrm{O}(2)$ | $21(2)$ | $30(2)$ | $43(2)$ | $1(2)$ | $-1(1)$ | $0(1)$ |
| $\mathrm{O}(3)$ | $65(3)$ | $61(3)$ | $29(2)$ | $-11(2)$ | $15(2)$ | $-4(2)$ |
| $\mathrm{O}(4)$ | $40(2)$ | $61(3)$ | $33(2)$ | $-16(2)$ | $-12(2)$ | $-2(2)$ |
| $\mathrm{O}(5)$ | $99(4)$ | $31(2)$ | $54(3)$ | $-5(2)$ | $-24(3)$ | $19(2)$ |
| $\mathrm{O}(6)$ | $41(2)$ | $25(2)$ | $45(2)$ | $-12(2)$ | $-11(2)$ | $-2(2)$ |
| $\mathrm{O}(7)$ | $36(2)$ | $48(2)$ | $30(2)$ | $9(2)$ | $-11(2)$ | $1(2)$ |
| $\mathrm{O}(8)$ | $41(2)$ | $45(2)$ | $24(2)$ | $-11(2)$ | $4(2)$ | $-3(2)$ |
| $\mathrm{O}(9)$ | $21(2)$ | $33(2)$ | $42(2)$ | $0(2)$ | $-4(1)$ | $0(1)$ |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

Table A4 continued

| $\mathrm{O}(10)$ | $50(2)$ | $45(2)$ | $22(2)$ | $-9(2)$ | $5(2)$ | $-1(2)$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathrm{O}(11)$ | $37(2)$ | $52(2)$ | $23(2)$ | $5(2)$ | $-12(2)$ | $-2(2)$ |
| $\mathrm{O}(12)$ | $19(2)$ | $34(2)$ | $46(2)$ | $-3(2)$ | $-2(1)$ | $7(1)$ |
| $\mathrm{O}(13)$ | $37(2)$ | $19(2)$ | $51(2)$ | $-7(2)$ | $-7(2)$ | $-3(1)$ |
| $\mathrm{O}(14)$ | $63(3)$ | $128(5)$ | $34(3)$ | $-14(3)$ | $-17(2)$ | $-26(3)$ |
| $\mathrm{O}(15)$ | $105(4)$ | $28(2)$ | $63(3)$ | $-6(2)$ | $-27(3)$ | $19(2)$ |
| $\mathrm{O}(16)$ | $203(8)$ | $42(3)$ | $75(4)$ | $-3(3)$ | $-48(5)$ | $18(4)$ |
| $\mathrm{O}(17)$ | $37(2)$ | $27(2)$ | $39(2)$ | $-8(2)$ | $-3(2)$ | $-4(2)$ |
| $\mathrm{O}(18)$ | $46(2)$ | $59(3)$ | $40(2)$ | $-17(2)$ | $-13(2)$ | $1(2)$ |
| $\mathrm{O}(19)$ | $37(2)$ | $56(3)$ | $82(4)$ | $17(3)$ | $-2(2)$ | $0(2)$ |
| $\mathrm{O}(20)$ | $47(2)$ | $34(2)$ | $36(2)$ | $-5(2)$ | $-1(2)$ | $1(2)$ |
| $\mathrm{O}(21)$ | $46(2)$ | $47(2)$ | $47(2)$ | $-13(2)$ | $-5(2)$ | $4(2)$ |

Table A5 Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 283.

|  | x | y | z | U |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{H}(4)$ | -1225 | 413 | 2350 | 30 |
| $\mathrm{H}(5)$ | -2498 | 281 | 2961 | 29 |
| $\mathrm{H}(6)$ | -1759 | 389 | 3539 | 26 |
| $\mathrm{H}(12)$ | 5265 | -417 | 3148 | 31 |
| $\mathrm{H}(13)$ | 4591 | -399 | 2533 | 33 |
| $\mathrm{H}(14)$ | 2664 | -39 | 2434 | 30 |
| $\mathrm{H}(16)$ | 2621 | -464 | 4119 | 29 |
| $\mathrm{H}(17)$ | 3338 | -705 | 4724 | 32 |
| $\mathrm{H}(19)$ | 6618 | -136 | 4251 | 32 |
| $\mathrm{H}(20)$ | 5888 | 112 | 3648 | 29 |
| $\mathrm{H}(22 \mathrm{~A})$ | 7197 | -717 | 4802 | 61 |
| $\mathrm{H}(22 \mathrm{~B})$ | 6722 | -648 | 5251 | 61 |
| $\mathrm{H}(22 \mathrm{C})$ | 6768 | -171 | 4915 | 61 |
| $\mathrm{H}(23)$ | 3269 | 705 | 3903 | 29 |
| $\mathrm{H}(24)$ | 2120 | 1229 | 4317 | 33 |
| $\mathrm{H}(25)$ | 5 | 1342 | 4333 | 32 |
| $\mathrm{H}(28)$ | -1384 | 1569 | 3386 | 27 |
| $\mathrm{H}(29)$ | -3450 | 1852 | 3443 | 29 |
| $\mathrm{H}(31)$ | -4136 | 937 | 4494 | 34 |
| $\mathrm{H}(32)$ | -2064 | 673 | 4446 | 31 |
| $\mathrm{H}(34 \mathrm{~A})$ | -5522 | 1956 | 3510 | 56 |
| $\mathrm{H}(34 \mathrm{~B})$ | -5214 | 2286 | 3822 | 56 |
| $\mathrm{H}(34 \mathrm{C})$ | -6535 | 2075 | 3870 | 56 |
| $\mathrm{H}(36)$ | 2015 | 1126 | 2316 | 30 |
| $\mathrm{H}(37)$ | 3213 | 1343 | 1698 | 37 |
| $\mathrm{H}(39)$ | 1768 | 232 | 1269 | 39 |
| $\mathrm{H}(40)$ | 563 | 22 | 1883 | 31 |
| $\mathrm{H}(42 \mathrm{~A})$ | 4748 | 1252 | 738 | 114 |
| $\mathrm{H}(42 B)$ | 4847 | 1134 | 1198 | 114 |
| $\mathrm{H}(42 \mathrm{C})$ | 3918 | 1574 | 1041 | 114 |
| $\mathrm{H}(45)$ | 5285 | 4534 | 5360 | 30 |
| $\mathrm{H}(46)$ | 6417 | 3775 | 5271 | 34 |
| $\mathrm{H}(47)$ | 5433 | 3105 | 5122 | 35 |
| $\mathrm{H}(53)$ | 607 | 5521 | 4873 | 30 |
| $\mathrm{H}(54)$ | 795 | 5976 | 5381 | 35 |
| $\mathrm{H}(55)$ | 2290 | 5712 | 5796 | 36 |
| $\mathrm{H}(58)$ | 3065 | 4264 | 6076 | 38 |
| $\mathrm{H}(59)$ | 4265 | 4016 | 6584 | 39 |
| $\mathrm{H}(61)$ | 6006 | 5328 | 6255 | 39 |
| $\mathrm{H}(62)$ | 4833 | 5555 | 5749 | 35 |
|  | Continued on | following | page |  |
|  |  |  |  |  |

Table A5 continued

| $\mathrm{H}(64 \mathrm{~A})$ | 6164 | 3784 | 6858 | 79 |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{H}(64 \mathrm{~B})$ | 5098 | 4032 | 7146 | 79 |
| $\mathrm{H}(64 \mathrm{C})$ | 6483 | 4042 | 7211 | 79 |
| $\mathrm{H}(65)$ | 2510 | 3561 | 4385 | 29 |
| $\mathrm{H}(66)$ | 1400 | 3905 | 3874 | 31 |
| $\mathrm{H}(67)$ | 821 | 4769 | 3783 | 31 |
| $\mathrm{H}(70)$ | 2828 | 5730 | 4145 | 34 |
| $\mathrm{H}(71)$ | 2370 | 6597 | 3974 | 40 |
| $\mathrm{H}(73)$ | -1192 | 6327 | 3991 | 42 |
| $\mathrm{H}(74)$ | -717 | 5457 | 4153 | 34 |
| $\mathrm{H}(76 \mathrm{~A})$ | -958 | 7131 | 3559 | 90 |
| $\mathrm{H}(76 \mathrm{~B})$ | -683 | 7647 | 3690 | 90 |
| $\mathrm{H}(76 \mathrm{C})$ | -1366 | 7230 | 4005 | 90 |
| $\mathrm{H}(78)$ | 4686 | 2656 | 4652 | 33 |
| $\mathrm{H}(79)$ | 3735 | 1898 | 4683 | 38 |
| $\mathrm{H}(81)$ | 646 | 2497 | 5301 | 31 |
| $\mathrm{H}(82)$ | 1599 | 3257 | 5250 | 27 |
| $\mathrm{H}(84 \mathrm{~A})$ | -162 | 1862 | 5051 | 57 |
| $\mathrm{H}(84 \mathrm{~B})$ | 281 | 1652 | 5465 | 57 |
| $\mathrm{H}(84 \mathrm{C})$ | 123 | 1273 | 5168 | 57 |
| $\mathrm{H}(87)$ | 3354 | 4078 | 10537 | 27 |
| $\mathrm{H}(88)$ | 2104 | 4444 | 11041 | 29 |
| $\mathrm{H}(89)$ | -25 | 4520 | 11055 | 27 |
| $\mathrm{H}(95)$ | 3039 | 3752 | 8926 | 34 |
| $\mathrm{H}(96)$ | 5019 | 3429 | 9006 | 34 |
| $\mathrm{H}(97)$ | 5558 | 3229 | 9643 | 35 |
| $\mathrm{H}(100)$ | 2654 | 2901 | 10527 | 36 |
| $\mathrm{H}(101)$ | 3138 | 2461 | 11121 | 39 |
| $\mathrm{H}(103)$ | 6441 | 3086 | 10915 | 32 |
| $\mathrm{H}(104)$ | 5963 | 3507 | 10304 | 34 |
| $\mathrm{H}(10 \mathrm{~A})$ | 6840 | 2356 | 11406 | 64 |
| $\mathrm{H}(10 \mathrm{~B})$ | 6160 | 2335 | 11849 | 64 |
| $\mathrm{H}(10 \mathrm{C})$ | 6313 | 2863 | 11572 | 64 |
| $\mathrm{H}(108)$ | -952 | 4185 | 8857 | 31 |
| $\mathrm{H}(109)$ | -2257 | 3938 | 9443 | 30 |
| $\mathrm{H}(110)$ | -1560 | 3869 | 10051 | 29 |
| $\mathrm{H}(112)$ | 2280 | 4854 | 8869 | 30 |
| $\mathrm{H}(113)$ | 3447 | 5099 | 8251 | 31 |
| $\mathrm{H}(115)$ | 1958 | 4036 | 7786 | 35 |
| $\mathrm{H}(116)$ | 785 | 3788 | 8402 | 31 |
| $\mathrm{H}(11 \mathrm{~A})$ | 4788 | 5110 | 7250 | 75 |
| $\mathrm{H}(11 \mathrm{~B})$ | 4985 | 4982 | 7701 | 75 |
| $\mathrm{H}(11 \mathrm{C})$ | 3951 | 5395 | 7576 | 75 |
|  | Continued on | following | page |  |
|  |  |  |  |  |

Table A5 continued

| $\mathrm{H}(120)$ | -1925 | 3834 | 11032 | 29 |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{H}(121)$ | -4014 | 4060 | 11129 | 29 |
| $\mathrm{H}(123)$ | -3522 | 5221 | 10226 | 28 |
| $\mathrm{H}(124)$ | -1417 | 4985 | 10122 | 28 |
| $\mathrm{H}(12 \mathrm{~A})$ | -5613 | 5234 | 10293 | 53 |
| $\mathrm{H}(12 B)$ | -5335 | 5514 | 10639 | 53 |
| $\mathrm{H}(12 \mathrm{C})$ | -6613 | 5272 | 10674 | 53 |
| $\mathrm{H}(130)$ | 9753 | 1835 | 2276 | 29 |
| $\mathrm{H}(131)$ | 7642 | 1967 | 2285 | 30 |
| $\mathrm{H}(132)$ | 6489 | 2464 | 2720 | 26 |
| $\mathrm{H}(138)$ | 11016 | 2744 | 4267 | 30 |
| $\mathrm{H}(139)$ | 12267 | 2894 | 3651 | 32 |
| $\mathrm{H}(140)$ | 11525 | 2780 | 3073 | 27 |
| $\mathrm{H}(142)$ | 7774 | 2026 | 4320 | 27 |
| $\mathrm{H}(143)$ | 6627 | 1819 | 4948 | 31 |
| $\mathrm{H}(145)$ | 8201 | 2921 | 5353 | 33 |
| $\mathrm{H}(146)$ | 9309 | 3129 | 4725 | 30 |
| $\mathrm{H}(14 \mathrm{~A})$ | 5126 | 1961 | 5517 | 84 |
| $\mathrm{H}(14 \mathrm{~B})$ | 5432 | 1833 | 5957 | 84 |
| $\mathrm{H}(14 \mathrm{C})$ | 6204 | 1556 | 5615 | 84 |
| $\mathrm{H}(150)$ | 4506 | 3588 | 3487 | 32 |
| $\mathrm{H}(151)$ | 5159 | 3540 | 4102 | 31 |
| $\mathrm{H}(152)$ | 7105 | 3178 | 4198 | 29 |
| $\mathrm{H}(154)$ | 7158 | 3612 | 2501 | 33 |
| $\mathrm{H}(155)$ | 6476 | 3811 | 1889 | 36 |
| $\mathrm{H}(157)$ | 3153 | 3282 | 2376 | 32 |
| $\mathrm{H}(158)$ | 3858 | 3078 | 2987 | 31 |
| $\mathrm{H}(16 \mathrm{D})$ | 3168 | 3644 | 1351 | 58 |
| $\mathrm{H}(16 \mathrm{E})$ | 2613 | 3804 | 1771 | 58 |
| $\mathrm{H}(16 \mathrm{~F})$ | 3085 | 3235 | 1738 | 58 |
| $\mathrm{H}(162)$ | 11150 | 1624 | 3234 | 26 |
| $\mathrm{H}(163)$ | 13226 | 1343 | 3179 | 27 |
| $\mathrm{H}(165)$ | 13861 | 2205 | 2099 | 31 |
| $\mathrm{H}(166)$ | 11791 | 2477 | 2159 | 31 |
| $\mathrm{H}(16 \mathrm{~A})$ | 16309 | 1123 | 2777 | 59 |
| $\mathrm{H}(16 \mathrm{~B})$ | 15024 | 886 | 2811 | 59 |
| $\mathrm{H}(16 \mathrm{C})$ | 15230 | 1243 | 3119 | 59 |
| $\mathrm{H}(171)$ | 2626 | 405 | 7671 | 33 |
| $\mathrm{H}(172)$ | 1528 | 727 | 7156 | 39 |
| $\mathrm{H}(173)$ | 946 | 1595 | 7042 | 38 |
| $\mathrm{H}(180)$ | 5570 | -30 | 8408 | 34 |
| $\mathrm{H}(181)$ | 6658 | 645 | 8498 | 37 |
| $\mathrm{H}(182)$ | 5595 | 1434 | 8545 | 36 |
|  | Continued on | following | $p a g e$ |  |
|  |  |  |  |  |

Table A5 continued

| $\mathrm{H}(184)$ | 4787 | -486 | 7947 | 38 |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{H}(185)$ | 3850 | -1254 | 8032 | 39 |
| $\mathrm{H}(187)$ | 823 | -627 | 8653 | 29 |
| $\mathrm{H}(188)$ | 1768 | 138 | 8561 | 29 |
| $\mathrm{H}(19 \mathrm{~A})$ | -14 | -1308 | 8425 | 58 |
| $\mathrm{H}(19 \mathrm{~B})$ | 446 | -1474 | 8842 | 58 |
| $\mathrm{H}(19 \mathrm{C})$ | 308 | -1887 | 8571 | 58 |
| $\mathrm{H}(192)$ | 2720 | 2657 | 8967 | 49 |
| $\mathrm{H}(193)$ | 1190 | 2907 | 8572 | 47 |
| $\mathrm{H}(194)$ | 873 | 2419 | 8098 | 38 |
| $\mathrm{H}(196)$ | 5154 | 2486 | 8952 | 47 |
| $\mathrm{H}(197)$ | 6211 | 2286 | 9496 | 57 |
| $\mathrm{H}(199)$ | 4538 | 963 | 9804 | 57 |
| $\mathrm{H}(200)$ | 3483 | 1169 | 9256 | 53 |
| $\mathrm{H}(20 \mathrm{~A})$ | 7460 | 1891 | 9935 | 218 |
| $\mathrm{H}(20 \mathrm{~B})$ | 7153 | 1648 | 10386 | 218 |
| $\mathrm{H}(20 \mathrm{C})$ | 6311 | 2109 | 10211 | 218 |
| $\mathrm{H}(204)$ | -537 | 2309 | 7376 | 41 |
| $\mathrm{H}(205)$ | -998 | 3178 | 7199 | 45 |
| $\mathrm{H}(207)$ | 2567 | 3445 | 7165 | 39 |
| $\mathrm{H}(208)$ | 3016 | 2589 | 7363 | 35 |
| $\mathrm{H}(21 \mathrm{~A})$ | -741 | 3998 | 6737 | 94 |
| $\mathrm{H}(21 \mathrm{~B})$ | -527 | 4497 | 6905 | 94 |
| $\mathrm{H}(21 \mathrm{C})$ | -1189 | 4047 | 7191 | 94 |
| $\mathrm{H}(21 \mathrm{I})$ | 1612 | 7615 | 9224 | 151 |
| $\mathrm{H}(21 \mathrm{~J})$ | 1613 | 7076 | 9489 | 151 |
| $\mathrm{H}(21 \mathrm{~K})$ | 712 | 7527 | 9632 | 151 |
| $\mathrm{H}(21 \mathrm{G})$ | -289 | 6939 | 9354 | 77 |
| $\mathrm{H}(21 \mathrm{H})$ | -457 | 7505 | 9143 | 77 |
| $\mathrm{H}(21 \mathrm{~L})$ | -665 | 7256 | 8509 | 89 |
| $\mathrm{H}(21 \mathrm{M})$ | -705 | 6701 | 8753 | 89 |
| $\mathrm{H}(21 \mathrm{D})$ | -29 | 6677 | 8053 | 114 |
| $\mathrm{H}(21 \mathrm{E})$ | 980 | 6416 | 8311 | 114 |
| $\mathrm{H}(21 \mathrm{~F})$ | 1128 | 6973 | 8082 | 114 |
| $\mathrm{H}(218)$ | 2284 | 6618 | 1242 | 37 |
| $\mathrm{H}(219)$ | 1193 | 6958 | 730 | 42 |
| $\mathrm{H}(220)$ | 594 | 7821 | 646 | 42 |
| $\mathrm{H}(226)$ | 5191 | 7588 | 2183 | 33 |
| $\mathrm{H}(227)$ | 6285 | 6822 | 2106 | 38 |
| $\mathrm{H}(228)$ | 5254 | 6150 | 1975 | 34 |
| $\mathrm{H}(231)$ | 1446 | 6293 | 2092 | 31 |
| $\mathrm{H}(232)$ | 528 | 5532 | 2129 | 29 |
| $\mathrm{H}(234)$ | 3640 | 4966 | 1504 | 35 |
|  | Continued on | following | page |  |
|  |  |  |  |  |

Table A5 continued

| $\mathrm{H}(235)$ | 4546 | 5726 | 1472 | 33 |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{H}(23 \mathrm{~A})$ | -266 | 4884 | 1831 | 51 |
| $\mathrm{H}(23 \mathrm{~B})$ | 116 | 4723 | 2259 | 51 |
| $\mathrm{H}(23 \mathrm{C})$ | 41 | 4306 | 1985 | 51 |
| $\mathrm{H}(239)$ | 2338 | 8818 | 2600 | 42 |
| $\mathrm{H}(240)$ | 864 | 9099 | 2181 | 42 |
| $\mathrm{H}(241)$ | 587 | 8618 | 1696 | 36 |
| $\mathrm{H}(243)$ | 4799 | 8622 | 2581 | 40 |
| $\mathrm{H}(244)$ | 5935 | 8373 | 3104 | 44 |
| $\mathrm{H}(246)$ | 4170 | 7078 | 3408 | 45 |
| $\mathrm{H}(247)$ | 2984 | 7334 | 2896 | 44 |
| $\mathrm{H}(24 \mathrm{~A})$ | 5941 | 6826 | 3689 | 92 |
| $\mathrm{H}(24 B)$ | 4989 | 7092 | 4000 | 92 |
| $\mathrm{H}(24 \mathrm{C})$ | 6410 | 7058 | 4031 | 92 |
| $\mathrm{H}(251)$ | -893 | 8517 | 1005 | 51 |
| $\mathrm{H}(252)$ | -1328 | 9364 | 758 | 74 |
| $\mathrm{H}(254)$ | 2264 | 9626 | 685 | 78 |
| $\mathrm{H}(255)$ | 2676 | 8790 | 946 | 54 |
| $\mathrm{H}(25 \mathrm{~A})$ | -1100 | 10071 | 258 | 255 |
| $\mathrm{H}(25 \mathrm{~B})$ | -829 | 10623 | 320 | 255 |
| $\mathrm{H}(25 \mathrm{C})$ | -1488 | 10252 | 680 | 255 |
| $\mathrm{H}(25 \mathrm{D})$ | 2409 | 4781 | 2628 | 66 |
| $\mathrm{H}(25 \mathrm{E})$ | 3279 | 4325 | 2794 | 66 |
| $\mathrm{H}(25 \mathrm{~F})$ | 2531 | 4682 | 3086 | 66 |
| $\mathrm{H}(25 \mathrm{G})$ | 1409 | 4026 | 2691 | 47 |
| $\mathrm{H}(25 \mathrm{H})$ | 1573 | 3906 | 3147 | 47 |
| $\mathrm{H}(25 \mathrm{I})$ | -627 | 3936 | 3390 | 58 |
| $\mathrm{H}(25 \mathrm{~J})$ | -770 | 3963 | 2935 | 58 |
| $\mathrm{H}(26 \mathrm{~A})$ | -1984 | 4717 | 2965 | 106 |
| $\mathrm{H}(26 B)$ | -1819 | 4703 | 3415 | 106 |
| $\mathrm{H}(26 \mathrm{C})$ | -2571 | 4288 | 3293 | 106 |
| $\mathrm{H}(26 \mathrm{~F})$ | 2434 | 1659 | 5831 | 77 |
| $\mathrm{H}(26 \mathrm{G})$ | 3373 | 1225 | 5990 | 77 |
| $\mathrm{H}(26 \mathrm{H})$ | 2663 | 1595 | 6280 | 77 |
| $\mathrm{H}(26 \mathrm{I})$ | 1528 | 864 | 5960 | 52 |
| $\mathrm{H}(26 J)$ | 1720 | 818 | 6413 | 52 |
| $\mathrm{H}(26 \mathrm{~K})$ | -525 | 849 | 6652 | 71 |
| $\mathrm{H}(26 \mathrm{~L})$ | -627 | 810 | 6203 | 71 |
| $\mathrm{H}(26 \mathrm{M})$ | -1808 | 1597 | 6168 | 117 |
| $\mathrm{H}(26 \mathrm{~N})$ | -1771 | 1596 | 6626 | 117 |
| $\mathrm{H}(26 \mathrm{O})$ | -2470 | 1177 | 6487 | 117 |
| $\mathrm{H}(26 \mathrm{P})$ | 4297 | 10380 | 412 | 72 |
| $\mathrm{H}(26 \mathrm{Q})$ | 4264 | 9794 | 545 | 72 |
|  |  |  |  |  |
|  |  | 0 | 70 |  |

Continued on following page

Table A5 continued

| $\mathrm{H}(26 \mathrm{R})$ | 5704 | 9773 | 775 | 102 |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{H}(26 \mathrm{~S})$ | 5608 | 10372 | 697 | 102 |
| $\mathrm{H}(26 \mathrm{~T})$ | 6445 | 10063 | 386 | 102 |
| $\mathrm{H}(26 \mathrm{~V})$ | 3291 | 10219 | -145 | 80 |
| $\mathrm{H}(26 \mathrm{U})$ | 3449 | 9633 | -18 | 80 |
| $\mathrm{H}(26 \mathrm{Y})$ | 3265 | 10085 | -684 | 99 |
| $\mathrm{H}(26 \mathrm{~W})$ | 3659 | 9505 | -571 | 99 |
| $\mathrm{H}(26 \mathrm{X})$ | 4675 | 9904 | -714 | 99 |

Table A6 Torsion angles [ ${ }^{\circ}$ ] for 283.

| $\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$ | -12.3(6) | $\mathrm{C}(14)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$ | 157.1(4) |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | 175.6(4) | $\mathrm{C}(14)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | -14.9(7) |
| $\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | -16.2(6) | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | 155.8(4) |
| $\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(35)$ | 157.8(4) | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(35)$ | -30.2(6) |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | 1.9(7) | $\mathrm{C}(35)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | -172.3(4) |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ | 8.8(7) | $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$ | -5.1(7) |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$ | -9.2(6) | $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ | 166.5(4) |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$ | 19.7(6) | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$ | -152.7(4) |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8)$ | -156.2(4) | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8)$ | 31.3(6) |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(26)$ | -27.9(6) | $\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(26)$ | 147.8(4) |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | 162.4(4) | $\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | -21.9(6) |
| $\mathrm{C}(26)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(23)$ | -2.1(6) | $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(23)$ | 167.8(4) |
| $\mathrm{C}(26)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ | -176.7(4) | $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ | -6.7(6) |
| $\mathrm{C}(14)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(11)$ | -4.0(6) | $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(11)$ | 165.7(4) |
| $\mathrm{C}(14)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$ | 174.3(4) | $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$ | -15.9(6) |
| $\mathrm{C}(23)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(1)$ | -149.0(4) | $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(1)$ | 25.5(6) |
| $\mathrm{C}(23)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$ | 29.3(6) | $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$ | -156.2(4) |
| $\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$ | 6.4(7) | $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$ | -171.9(4) |
| $\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(15)$ | -167.0(4) | $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(15)$ | 14.7(7) |
| $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$ | -4.1(7) | $\mathrm{C}(15)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$ | 169.9(4) |
| $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$ | -0.6(8) | $\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(1)$ | 3.0(8) |
| $\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{C}(13)$ | -0.7(7) | $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{C}(13)$ | -170.3(4) |
| $\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(15)-\mathrm{C}(20)$ | 54.1(6) | $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(15)-\mathrm{C}(20)$ | -132.3(5) |
| $\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(15)-\mathrm{C}(16)$ | -120.0(5) | $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(15)-\mathrm{C}(16)$ | 53.6(7) |
| $\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$ | -0.4(7) | $\mathrm{C}(11)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$ | 173.9(4) |
| $\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$ | -0.1(7) | $\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{O}(1)$ | 179.6(4) |
| $\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$ | 0.2(7) | $\mathrm{O}(1)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$ | -179.2(4) |
| $\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$ | 0.1(7) | $\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(15)$ | -0.6(7) |
| $\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(19)$ | 0.8(7) | $\mathrm{C}(11)-\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(19)$ | -173.4(4) |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(23)-\mathrm{C}(24)$ | 0.8(7) | $\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(23)-\mathrm{C}(24)$ | 175.3(4) |
| $\mathrm{C}(9)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$ | 1.7(7) | $\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$ | -2.9(7) |
| $\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(8)$ | 1.6(7) | $\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$ | -174.8(4) |
| $\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(26)-\mathrm{C}(25)$ | 1.0(6) | $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(26)-\mathrm{C}(25)$ | -168.6(4) |
| $\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(26)-\mathrm{C}(27)$ | 176.9(4) | $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(26)-\mathrm{C}(27)$ | 7.3(7) |
| $\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$ | 103.5(5) | $\mathrm{C}(8)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$ | -72.6(6) |
| C(25)-C(26)-C(27)-C(32) | -70.9(6) | $\mathrm{C}(8)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(32)$ | 113.0(5) |
| $\mathrm{C}(32)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$ | -0.5(7) | $\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$ | -175.1(4) |
| $\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$ | -0.8(7) | $\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{O}(2)$ | -178.3(4) |
| $\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$ | 1.2(7) | $\mathrm{O}(2)-\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$ | 179.3(4) |
| $\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$ | -0.2(7) | $\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(27)$ | -1.2(7) |
| $\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(32)-\mathrm{C}(31)$ | 1.5(7) | $\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(32)-\mathrm{C}(31)$ | 176.1(4) |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(35)-\mathrm{C}(36)$ | 128.3(5) | $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(35)-\mathrm{C}(36)$ | -45.7(6) |

Table A6 continued

| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(35)-\mathrm{C}(40)$ | -50.4(6) | $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(35)-\mathrm{C}(40)$ | 135.7(5) |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(40)-\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)$ | -0.4(7) | $\mathrm{C}(3)-\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)$ | -179.0(4) |
| $\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(38)$ | -1.1(7) | $\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{O}(3)$ | -177.4(5) |
| $\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{C}(39)$ | 2.2(8) | $\mathrm{O}(3)-\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40)$ | 177.7(5) |
| $\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40)$ | -1.9(8) | $\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{C}(35)$ | 0.5(7) |
| $\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(40)-\mathrm{C}(39)$ | 0.7(7) | $\mathrm{C}(3)-\mathrm{C}(35)-\mathrm{C}(40)-\mathrm{C}(39)$ | 179.3(4) |
| $\mathrm{C}(52)-\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$ | 155.7(4) | $\mathrm{C}(56)-\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$ | -28.5(7) |
| $\mathrm{C}(52)-\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(49)$ | -24.9(6) | $\mathrm{C}(56)-\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(49)$ | 150.9(4) |
| $\mathrm{C}(49)-\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{C}(46)$ | -6.2(7) | $\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{C}(46)$ | 173.1(4) |
| $\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{C}(47)$ | -7.7(7) | $\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{C}(47)-\mathrm{C}(48)$ | 8.7(8) |
| $\mathrm{C}(46)-\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{C}(49)$ | 4.4(7) | $\mathrm{C}(46)-\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{C}(77)$ | -167.9(4) |
| $\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{C}(49)-\mathrm{C}(44)$ | -18.1(6) | $\mathrm{C}(77)-\mathrm{C}(48)-\mathrm{C}(49)-\mathrm{C}(44)$ | 153.7(4) |
| $\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{C}(49)-\mathrm{C}(50)$ | 152.4(4) | $\mathrm{C}(77)-\mathrm{C}(48)-\mathrm{C}(49)-\mathrm{C}(50)$ | -35.8(7) |
| $\mathrm{C}(45)-\mathrm{C}(44)-\mathrm{C}(49)-\mathrm{C}(48)$ | 18.9(6) | $\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(49)-\mathrm{C}(48)$ | -160.5(4) |
| $\mathrm{C}(45)-\mathrm{C}(44)-\mathrm{C}(49)-\mathrm{C}(50)$ | -152.4(4) | $\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(49)-\mathrm{C}(50)$ | 28.2(6) |
| $\mathrm{C}(48)-\mathrm{C}(49)-\mathrm{C}(50)-\mathrm{C}(51)$ | -176.5(4) | $\mathrm{C}(44)-\mathrm{C}(49)-\mathrm{C}(50)-\mathrm{C}(51)$ | -6.0(6) |
| $\mathrm{C}(48)-\mathrm{C}(49)-\mathrm{C}(50)-\mathrm{C}(65)$ | -8.7(7) | $\mathrm{C}(44)-\mathrm{C}(49)-\mathrm{C}(50)-\mathrm{C}(65)$ | 161.9(4) |
| $\mathrm{C}(65)-\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(68)$ | -5.7(6) | $\mathrm{C}(49)-\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(68)$ | 162.4(4) |
| $\mathrm{C}(65)-\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(52)$ | 172.7(4) | $\mathrm{C}(49)-\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(52)$ | -19.2(6) |
| $\mathrm{C}(56)-\mathrm{C}(43)-\mathrm{C}(52)-\mathrm{C}(53)$ | -1.1(6) | $\mathrm{C}(44)-\mathrm{C}(43)-\mathrm{C}(52)-\mathrm{C}(53)$ | 174.8(4) |
| $\mathrm{C}(56)-\mathrm{C}(43)-\mathrm{C}(52)-\mathrm{C}(51)$ | -176.9(4) | $\mathrm{C}(44)-\mathrm{C}(43)-\mathrm{C}(52)-\mathrm{C}(51)$ | -1.0(6) |
| $\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(53)$ | -153.0(4) | $\mathrm{C}(68)-\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(53)$ | 25.3(6) |
| $\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(43)$ | 22.8(6) | $\mathrm{C}(68)-\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(43)$ | -158.9(4) |
| $\mathrm{C}(43)-\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(54)$ | 4.0(7) | $\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(54)$ | 179.7(4) |
| $\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(54)-\mathrm{C}(55)$ | -3.3(7) | $\mathrm{C}(53)-\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(56)$ | -0.4(7) |
| $\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(56)-\mathrm{C}(43)$ | 3.2(7) | $\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(56)-\mathrm{C}(57)$ | -171.9(4) |
| $\mathrm{C}(52)-\mathrm{C}(43)-\mathrm{C}(56)-\mathrm{C}(55)$ | -2.5(7) | $\mathrm{C}(44)-\mathrm{C}(43)-\mathrm{C}(56)-\mathrm{C}(55)$ | -178.2(4) |
| $\mathrm{C}(52)-\mathrm{C}(43)-\mathrm{C}(56)-\mathrm{C}(57)$ | 172.3(4) | $\mathrm{C}(44)-\mathrm{C}(43)-\mathrm{C}(56)-\mathrm{C}(57)$ | -3.4(7) |
| $\mathrm{C}(55)-\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{C}(58)$ | 111.6(5) | $\mathrm{C}(43)-\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{C}(58)$ | -63.3(7) |
| $\mathrm{C}(55)-\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{C}(62)$ | -64.6(6) | $\mathrm{C}(43)-\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{C}(62)$ | 120.5(5) |
| $\mathrm{C}(62)-\mathrm{C}(57)-\mathrm{C}(58)-\mathrm{C}(59)$ | -1.2(8) | $\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{C}(58)-\mathrm{C}(59)$ | -177.5(5) |
| $\mathrm{C}(57)-\mathrm{C}(58)-\mathrm{C}(59)-\mathrm{C}(60)$ | 0.6(8) | $\mathrm{C}(58)-\mathrm{C}(59)-\mathrm{C}(60)-\mathrm{O}(4)$ | -179.0(5) |
| $\mathrm{C}(58)-\mathrm{C}(59)-\mathrm{C}(60)-\mathrm{C}(61)$ | 0.7(8) | $\mathrm{O}(4)-\mathrm{C}(60)-\mathrm{C}(61)-\mathrm{C}(62)$ | 178.4(4) |
| $\mathrm{C}(59)-\mathrm{C}(60)-\mathrm{C}(61)-\mathrm{C}(62)$ | -1.3(7) | $\mathrm{C}(60)-\mathrm{C}(61)-\mathrm{C}(62)-\mathrm{C}(57)$ | 0.7(8) |
| $\mathrm{C}(58)-\mathrm{C}(57)-\mathrm{C}(62)-\mathrm{C}(61)$ | 0.5(7) | $\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{C}(62)-\mathrm{C}(61)$ | 176.9(4) |
| $\mathrm{C}(51)-\mathrm{C}(50)-\mathrm{C}(65)-\mathrm{C}(66)$ | 0.5(7) | $\mathrm{C}(49)-\mathrm{C}(50)-\mathrm{C}(65)-\mathrm{C}(66)$ | -167.6(4) |
| $\mathrm{C}(50)-\mathrm{C}(65)-\mathrm{C}(66)-\mathrm{C}(67)$ | 4.1(7) | $\mathrm{C}(65)-\mathrm{C}(66)-\mathrm{C}(67)-\mathrm{C}(68)$ | -3.4(7) |
| $\mathrm{C}(66)-\mathrm{C}(67)-\mathrm{C}(68)-\mathrm{C}(51)$ | -1.8(7) | $\mathrm{C}(66)-\mathrm{C}(67)-\mathrm{C}(68)-\mathrm{C}(69)$ | 173.7(4) |
| $\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(68)-\mathrm{C}(67)$ | 6.4(6) | $\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{C}(68)-\mathrm{C}(67)$ | -171.9(4) |
| $\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(68)-\mathrm{C}(69)$ | -168.8(4) | $\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{C}(68)-\mathrm{C}(69)$ | 12.9(7) |
| $\mathrm{C}(67)-\mathrm{C}(68)-\mathrm{C}(69)-\mathrm{C}(74)$ | $60.2(6)$ | $\mathrm{C}(51)-\mathrm{C}(68)-\mathrm{C}(69)-\mathrm{C}(74)$ | -124.5(5) |
| $\mathrm{C}(67)-\mathrm{C}(68)-\mathrm{C}(69)-\mathrm{C}(70)$ | -117.5(5) | $\mathrm{C}(51)-\mathrm{C}(68)-\mathrm{C}(69)-\mathrm{C}(70)$ | 57.8(6) |
| $\mathrm{C}(74)-\mathrm{C}(69)-\mathrm{C}(70)-\mathrm{C}(71)$ | 0.9(7) | $\mathrm{C}(68)-\mathrm{C}(69)-\mathrm{C}(70)-\mathrm{C}(71)$ | 178.7(4) |

Table A6 continued

| $\mathrm{C}(69)-\mathrm{C}(70)-\mathrm{C}(71)-\mathrm{C}(72)$ | 0.0(7) | $\mathrm{C}(70)-\mathrm{C}(71)-\mathrm{C}(72)-\mathrm{O}(5)$ | 179.2(5) |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(70)-\mathrm{C}(71)-\mathrm{C}(72)-\mathrm{C}(73)$ | -0.4(7) | $\mathrm{O}(5)-\mathrm{C}(72)-\mathrm{C}(73)-\mathrm{C}(74)$ | -179.7(5) |
| $\mathrm{C}(71)-\mathrm{C}(72)-\mathrm{C}(73)-\mathrm{C}(74)$ | -0.1(8) | $\mathrm{C}(70)-\mathrm{C}(69)-\mathrm{C}(74)-\mathrm{C}(73)$ | -1.4(7) |
| $\mathrm{C}(68)-\mathrm{C}(69)-\mathrm{C}(74)-\mathrm{C}(73)$ | -179.2(4) | $\mathrm{C}(72)-\mathrm{C}(73)-\mathrm{C}(74)-\mathrm{C}(69)$ | 1.1(8) |
| $\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{C}(77)-\mathrm{C}(82)$ | 127.4(5) | $\mathrm{C}(49)-\mathrm{C}(48)-\mathrm{C}(77)-\mathrm{C}(82)$ | -44.6(6) |
| $\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{C}(77)-\mathrm{C}(78)$ | -43.6(6) | $\mathrm{C}(49)-\mathrm{C}(48)-\mathrm{C}(77)-\mathrm{C}(78)$ | 144.4(5) |
| $\mathrm{C}(82)-\mathrm{C}(77)-\mathrm{C}(78)-\mathrm{C}(79)$ | 0.2(7) | $\mathrm{C}(48)-\mathrm{C}(77)-\mathrm{C}(78)-\mathrm{C}(79)$ | 171.4(4) |
| $\mathrm{C}(77)-\mathrm{C}(78)-\mathrm{C}(79)-\mathrm{C}(80)$ | -0.8(7) | $\mathrm{C}(78)-\mathrm{C}(79)-\mathrm{C}(80)-\mathrm{O}(6)$ | -179.2(4) |
| $\mathrm{C}(78)-\mathrm{C}(79)-\mathrm{C}(80)-\mathrm{C}(81)$ | 0.4(7) | $\mathrm{O}(6)-\mathrm{C}(80)-\mathrm{C}(81)-\mathrm{C}(82)$ | -179.9(4) |
| $\mathrm{C}(79)-\mathrm{C}(80)-\mathrm{C}(81)-\mathrm{C}(82)$ | 0.5(7) | $\mathrm{C}(78)-\mathrm{C}(77)-\mathrm{C}(82)-\mathrm{C}(81)$ | 0.8(6) |
| $\mathrm{C}(48)-\mathrm{C}(77)-\mathrm{C}(82)-\mathrm{C}(81)$ | -170.7(4) | $\mathrm{C}(80)-\mathrm{C}(81)-\mathrm{C}(82)-\mathrm{C}(77)$ | -1.1(7) |
| $\mathrm{C}(98)-\mathrm{C}(85)-\mathrm{C}(86)-\mathrm{C}(87)$ | 30.0(6) | $\mathrm{C}(94)-\mathrm{C}(85)-\mathrm{C}(86)-\mathrm{C}(87)$ | -147.7(4) |
| $\mathrm{C}(98)-\mathrm{C}(85)-\mathrm{C}(86)-\mathrm{C}(91)$ | -156.1(4) | $\mathrm{C}(94)-\mathrm{C}(85)-\mathrm{C}(86)-\mathrm{C}(91)$ | 26.3(6) |
| $\mathrm{C}(91)-\mathrm{C}(86)-\mathrm{C}(87)-\mathrm{C}(88)$ | $3.2(7)$ | $\mathrm{C}(85)-\mathrm{C}(86)-\mathrm{C}(87)-\mathrm{C}(88)$ | 177.2(4) |
| $\mathrm{C}(86)-\mathrm{C}(87)-\mathrm{C}(88)-\mathrm{C}(89)$ | 1.1(7) | $\mathrm{C}(87)-\mathrm{C}(88)-\mathrm{C}(89)-\mathrm{C}(90)$ | -3.6(7) |
| $\mathrm{C}(88)-\mathrm{C}(89)-\mathrm{C}(90)-\mathrm{C}(91)$ | 1.7(7) | $\mathrm{C}(88)-\mathrm{C}(89)-\mathrm{C}(90)-\mathrm{C}(119)$ | -175.2(4) |
| $\mathrm{C}(87)-\mathrm{C}(86)-\mathrm{C}(91)-\mathrm{C}(90)$ | -5.1(6) | $\mathrm{C}(85)-\mathrm{C}(86)-\mathrm{C}(91)-\mathrm{C}(90)$ | -179.0(4) |
| $\mathrm{C}(87)-\mathrm{C}(86)-\mathrm{C}(91)-\mathrm{C}(92)$ | 166.2(4) | $\mathrm{C}(85)-\mathrm{C}(86)-\mathrm{C}(91)-\mathrm{C}(92)$ | -7.7.6) |
| $\mathrm{C}(89)-\mathrm{C}(90)-\mathrm{C}(91)-\mathrm{C}(86)$ | 2.7(6) | $\mathrm{C}(119)-\mathrm{C}(90)-\mathrm{C}(91)-\mathrm{C}(86)$ | 179.2(4) |
| $\mathrm{C}(89)-\mathrm{C}(90)-\mathrm{C}(91)-\mathrm{C}(92)$ | -168.0(4) | $\mathrm{C}(119)-\mathrm{C}(90)-\mathrm{C}(91)-\mathrm{C}(92)$ | 8.5(7) |
| $\mathrm{C}(86)-\mathrm{C}(91)-\mathrm{C}(92)-\mathrm{C}(110)$ | 163.4(4) | $\mathrm{C}(90)-\mathrm{C}(91)-\mathrm{C}(92)-\mathrm{C}(110)$ | -25.7(7) |
| $\mathrm{C}(86)-\mathrm{C}(91)-\mathrm{C}(92)-\mathrm{C}(93)$ | -20.2(6) | $\mathrm{C}(90)-\mathrm{C}(91)-\mathrm{C}(92)-\mathrm{C}(93)$ | 150.7(4) |
| $\mathrm{C}(110)-\mathrm{C}(92)-\mathrm{C}(93)-\mathrm{C}(107)$ | 17.5(6) | $\mathrm{C}(91)-\mathrm{C}(92)-\mathrm{C}(93)-\mathrm{C}(107)$ | -159.0(4) |
| $\mathrm{C}(110)-\mathrm{C}(92)-\mathrm{C}(93)-\mathrm{C}(94)$ | -154.4(4) | $\mathrm{C}(91)-\mathrm{C}(92)-\mathrm{C}(93)-\mathrm{C}(94)$ | 29.1(6) |
| $\mathrm{C}(98)-\mathrm{C}(85)-\mathrm{C}(94)-\mathrm{C}(95)$ | -5.0(6) | $\mathrm{C}(86)-\mathrm{C}(85)-\mathrm{C}(94)-\mathrm{C}(95)$ | 172.7(4) |
| $\mathrm{C}(98)-\mathrm{C}(85)-\mathrm{C}(94)-\mathrm{C}(93)$ | 165.3(4) | $\mathrm{C}(86)-\mathrm{C}(85)-\mathrm{C}(94)-\mathrm{C}(93)$ | -17.0(6) |
| $\mathrm{C}(92)-\mathrm{C}(93)-\mathrm{C}(94)-\mathrm{C}(95)$ | 159.6(4) | $\mathrm{C}(107)-\mathrm{C}(93)-\mathrm{C}(94)-\mathrm{C}(95)$ | -11.8(7) |
| $\mathrm{C}(92)-\mathrm{C}(93)-\mathrm{C}(94)-\mathrm{C}(85)$ | -10.1(6) | $\mathrm{C}(107)-\mathrm{C}(93)-\mathrm{C}(94)-\mathrm{C}(85)$ | 178.5(4) |
| $\mathrm{C}(85)-\mathrm{C}(94)-\mathrm{C}(95)-\mathrm{C}(96)$ | -2.1(7) | $\mathrm{C}(93)-\mathrm{C}(94)-\mathrm{C}(95)-\mathrm{C}(96)$ | -172.0(5) |
| $\mathrm{C}(94)-\mathrm{C}(95)-\mathrm{C}(96)-\mathrm{C}(97)$ | 5.7(8) | $\mathrm{C}(95)-\mathrm{C}(96)-\mathrm{C}(97)-\mathrm{C}(98)$ | -2.0(8) |
| $\mathrm{C}(96)-\mathrm{C}(97)-\mathrm{C}(98)-\mathrm{C}(85)$ | -5.0(7) | $\mathrm{C}(96)-\mathrm{C}(97)-\mathrm{C}(98)-\mathrm{C}(99)$ | 166.1(4) |
| $\mathrm{C}(94)-\mathrm{C}(85)-\mathrm{C}(98)-\mathrm{C}(97)$ | 8.5(7) | $\mathrm{C}(86)-\mathrm{C}(85)-\mathrm{C}(98)-\mathrm{C}(97)$ | -169.0(4) |
| $\mathrm{C}(94)-\mathrm{C}(85)-\mathrm{C}(98)-\mathrm{C}(99)$ | -162.2(4) | $\mathrm{C}(86)-\mathrm{C}(85)-\mathrm{C}(98)-\mathrm{C}(99)$ | 20.2(7) |
| $\mathrm{C}(97)-\mathrm{C}(98)-\mathrm{C}(99)-\mathrm{C}(100)$ | -121.1(5) | $\mathrm{C}(85)-\mathrm{C}(98)-\mathrm{C}(99)-\mathrm{C}(100)$ | 49.7(6) |
| $\mathrm{C}(97)-\mathrm{C}(98)-\mathrm{C}(99)-\mathrm{C}(104)$ | 54.1(6) | $\mathrm{C}(85)-\mathrm{C}(98)-\mathrm{C}(99)-\mathrm{C}(104)$ | -135.1(5) |
| $\mathrm{C}(104)-\mathrm{C}(99)-\mathrm{C}(100)-\mathrm{C}(101)$ | -0.9(8) | $\mathrm{C}(98)-\mathrm{C}(99)-\mathrm{C}(100)-\mathrm{C}(101)$ | 174.6(5) |
| $\mathrm{C}(99)-\mathrm{C}(100)-\mathrm{C}(101)-\mathrm{C}(102)$ | 1.4(8) | $\mathrm{C}(100)-\mathrm{C}(101)-\mathrm{C}(102)-\mathrm{O}(7)$ | 178.6(5) |
| $\mathrm{C}(100)-\mathrm{C}(101)-\mathrm{C}(102)-\mathrm{C}(103)$ | -0.7(8) | $\mathrm{O}(7)-\mathrm{C}(102)-\mathrm{C}(103)-\mathrm{C}(104)$ | -179.8(5) |
| $\mathrm{C}(101)-\mathrm{C}(102)-\mathrm{C}(103)-\mathrm{C}(104)$ | -0.4(8) | $\mathrm{C}(100)-\mathrm{C}(99)-\mathrm{C}(104)-\mathrm{C}(103)$ | -0.3(7) |
| $\mathrm{C}(98)-\mathrm{C}(99)-\mathrm{C}(104)-\mathrm{C}(103)$ | -175.6(5) | $\mathrm{C}(102)-\mathrm{C}(103)-\mathrm{C}(104)-\mathrm{C}(99)$ | 1.0(8) |
| $\mathrm{C}(92)-\mathrm{C}(93)-\mathrm{C}(107)-\mathrm{C}(108)$ | -12.9(6) | $\mathrm{C}(94)-\mathrm{C}(93)-\mathrm{C}(107)-\mathrm{C}(108)$ | 158.5(4) |
| $\mathrm{C}(92)-\mathrm{C}(93)-\mathrm{C}(107)-\mathrm{C}(111)$ | 165.1(4) | $\mathrm{C}(94)-\mathrm{C}(93)-\mathrm{C}(107)-\mathrm{C}(111)$ | -23.5(7) |
| $\mathrm{C}(93)-\mathrm{C}(107)-\mathrm{C}(108)-\mathrm{C}(109)$ | 0.4(7) | $\mathrm{C}(111)-\mathrm{C}(107)-\mathrm{C}(108)-\mathrm{C}(109)$ | -177.7(4) |

Table A6 continued

| $\mathrm{C}(107)-\mathrm{C}(108)-\mathrm{C}(109)-\mathrm{C}(110)$ | 7.7(7) | $\mathrm{C}(108)-\mathrm{C}(109)-\mathrm{C}(110)-\mathrm{C}(92)$ | -2.8(7) |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(93)-\mathrm{C}(92)-\mathrm{C}(110)-\mathrm{C}(109)$ | -10.0(6) | $\mathrm{C}(91)-\mathrm{C}(92)-\mathrm{C}(110)-\mathrm{C}(109)$ | 166.5(4) |
| $\mathrm{C}(108)-\mathrm{C}(107)-\mathrm{C}(111)-\mathrm{C}(116)$ | -50.9(6) | $\mathrm{C}(93)-\mathrm{C}(107)-\mathrm{C}(111)-\mathrm{C}(116)$ | 131.1(5) |
| $\mathrm{C}(108)-\mathrm{C}(107)-\mathrm{C}(111)-\mathrm{C}(112)$ | 126.9(5) | $\mathrm{C}(93)-\mathrm{C}(107)-\mathrm{C}(111)-\mathrm{C}(112)$ | -51.1(6) |
| $\mathrm{C}(116)-\mathrm{C}(111)-\mathrm{C}(112)-\mathrm{C}(113)$ | -1.1(7) | $\mathrm{C}(107)-\mathrm{C}(111)-\mathrm{C}(112)-\mathrm{C}(113)$ | -178.9(4) |
| $\mathrm{C}(111)-\mathrm{C}(112)-\mathrm{C}(113)-\mathrm{C}(114)$ | -0.1(7) | $\mathrm{C}(112)-\mathrm{C}(113)-\mathrm{C}(114)-\mathrm{O}(8)$ | -177.6(4) |
| $\mathrm{C}(112)-\mathrm{C}(113)-\mathrm{C}(114)-\mathrm{C}(115)$ | $1.3(7)$ | $\mathrm{O}(8)-\mathrm{C}(114)-\mathrm{C}(115)-\mathrm{C}(116)$ | 177.8(4) |
| $\mathrm{C}(113)-\mathrm{C}(114)-\mathrm{C}(115)-\mathrm{C}(116)$ | -1.3(7) | $\mathrm{C}(114)-\mathrm{C}(115)-\mathrm{C}(116)-\mathrm{C}(111)$ | 0.0(7) |
| $\mathrm{C}(112)-\mathrm{C}(111)-\mathrm{C}(116)-\mathrm{C}(115)$ | $1.1(7)$ | $\mathrm{C}(107)-\mathrm{C}(111)-\mathrm{C}(116)-\mathrm{C}(115)$ | 179.0(4) |
| $\mathrm{C}(89)-\mathrm{C}(90)-\mathrm{C}(119)-\mathrm{C}(124)$ | 104.7(5) | $\mathrm{C}(91)-\mathrm{C}(90)-\mathrm{C}(119)-\mathrm{C}(124)$ | -71.9(6) |
| $\mathrm{C}(89)-\mathrm{C}(90)-\mathrm{C}(119)-\mathrm{C}(120)$ | -69.6(5) | $\mathrm{C}(91)-\mathrm{C}(90)-\mathrm{C}(119)-\mathrm{C}(120)$ | 113.8(5) |
| $\mathrm{C}(124)-\mathrm{C}(119)-\mathrm{C}(120)-\mathrm{C}(121)$ | 0.1(7) | $\mathrm{C}(90)-\mathrm{C}(119)-\mathrm{C}(120)-\mathrm{C}(121)$ | 174.6(4) |
| $\mathrm{C}(119)-\mathrm{C}(120)-\mathrm{C}(121)-\mathrm{C}(122)$ | -0.3(7) | $\mathrm{C}(120)-\mathrm{C}(121)-\mathrm{C}(122)-\mathrm{O}(9)$ | 180.0(4) |
| $\mathrm{C}(120)-\mathrm{C}(121)-\mathrm{C}(122)-\mathrm{C}(123)$ | 0.1(7) | $\mathrm{O}(9)-\mathrm{C}(122)-\mathrm{C}(123)-\mathrm{C}(124)$ | -179.5(4) |
| $\mathrm{C}(121)-\mathrm{C}(122)-\mathrm{C}(123)-\mathrm{C}(124)$ | 0.4(7) | $\mathrm{C}(120)-\mathrm{C}(119)-\mathrm{C}(124)-\mathrm{C}(123)$ | 0.5(6) |
| $\mathrm{C}(90)-\mathrm{C}(119)-\mathrm{C}(124)-\mathrm{C}(123)$ | -173.9(4) | $\mathrm{C}(122)-\mathrm{C}(123)-\mathrm{C}(124)-\mathrm{C}(119)$ | -0.7(7) |
| $\mathrm{C}(136)-\mathrm{C}(127)-\mathrm{C}(128)-\mathrm{C}(133)$ | 22.4(6) | $\mathrm{C}(140)-\mathrm{C}(127)-\mathrm{C}(128)-\mathrm{C}(133)$ | -161.6(4) |
| $\mathrm{C}(136)-\mathrm{C}(127)-\mathrm{C}(128)-\mathrm{C}(129)$ | -147.8(4) | $\mathrm{C}(140)-\mathrm{C}(127)-\mathrm{C}(128)-\mathrm{C}(129)$ | 28.2(6) |
| $\mathrm{C}(133)-\mathrm{C}(128)-\mathrm{C}(129)-\mathrm{C}(130)$ | -2.0(6) | $\mathrm{C}(127)-\mathrm{C}(128)-\mathrm{C}(129)-\mathrm{C}(130)$ | 168.1(4) |
| $\mathrm{C}(133)-\mathrm{C}(128)-\mathrm{C}(129)-\mathrm{C}(161)$ | -176.2(4) | $\mathrm{C}(127)-\mathrm{C}(128)-\mathrm{C}(129)-\mathrm{C}(161)$ | -6.1(7) |
| C(128)-C(129)-C(130)-C(131) | $0.1(7)$ | $\mathrm{C}(161)-\mathrm{C}(129)-\mathrm{C}(130)-\mathrm{C}(131)$ | 174.8(4) |
| $\mathrm{C}(129)-\mathrm{C}(130)-\mathrm{C}(131)-\mathrm{C}(132)$ | $0.8(7)$ | $\mathrm{C}(130)-\mathrm{C}(131)-\mathrm{C}(132)-\mathrm{C}(133)$ | $0.3(7)$ |
| $\mathrm{C}(129)-\mathrm{C}(128)-\mathrm{C}(133)-\mathrm{C}(132)$ | 3.1 (6) | $\mathrm{C}(127)-\mathrm{C}(128)-\mathrm{C}(133)-\mathrm{C}(132)$ | -167.5(4) |
| $\mathrm{C}(129)-\mathrm{C}(128)-\mathrm{C}(133)-\mathrm{C}(134)$ | 177.1(4) | $\mathrm{C}(127)-\mathrm{C}(128)-\mathrm{C}(133)-\mathrm{C}(134)$ | 6.5 (6) |
| $\mathrm{C}(131)-\mathrm{C}(132)-\mathrm{C}(133)-\mathrm{C}(128)$ | -2.3(7) | $\mathrm{C}(131)-\mathrm{C}(132)-\mathrm{C}(133)-\mathrm{C}(134)$ | -176.2(4) |
| $\mathrm{C}(128)-\mathrm{C}(133)-\mathrm{C}(134)-\mathrm{C}(149)$ | 156.0(4) | $\mathrm{C}(132)-\mathrm{C}(133)-\mathrm{C}(134)-\mathrm{C}(149)$ | -30.1(6) |
| $\mathrm{C}(128)-\mathrm{C}(133)-\mathrm{C}(134)-\mathrm{C}(135)$ | -25.4(6) | $\mathrm{C}(132)-\mathrm{C}(133)-\mathrm{C}(134)-\mathrm{C}(135)$ | 148.5(4) |
| $\mathrm{C}(149)-\mathrm{C}(134)-\mathrm{C}(135)-\mathrm{C}(152)$ | 4.8(6) | $\mathrm{C}(133)-\mathrm{C}(134)-\mathrm{C}(135)-\mathrm{C}(152)$ | -173.9(4) |
| $\mathrm{C}(149)-\mathrm{C}(134)-\mathrm{C}(135)-\mathrm{C}(136)$ | -165.7(4) | $\mathrm{C}(133)-\mathrm{C}(134)-\mathrm{C}(135)-\mathrm{C}(136)$ | 15.6(6) |
| $\mathrm{C}(140)-\mathrm{C}(127)-\mathrm{C}(136)-\mathrm{C}(137)$ | -18.9(6) | $\mathrm{C}(128)-\mathrm{C}(127)-\mathrm{C}(136)-\mathrm{C}(137)$ | 157.3(4) |
| $\mathrm{C}(140)-\mathrm{C}(127)-\mathrm{C}(136)-\mathrm{C}(135)$ | 151.9(4) | $\mathrm{C}(128)-\mathrm{C}(127)-\mathrm{C}(136)-\mathrm{C}(135)$ | -32.0(6) |
| $\mathrm{C}(152)-\mathrm{C}(135)-\mathrm{C}(136)-\mathrm{C}(127)$ | -157.4(4) | $\mathrm{C}(134)-\mathrm{C}(135)-\mathrm{C}(136)-\mathrm{C}(127)$ | 12.7(6) |
| $\mathrm{C}(152)-\mathrm{C}(135)-\mathrm{C}(136)-\mathrm{C}(137)$ | 12.8(7) | $\mathrm{C}(134)-\mathrm{C}(135)-\mathrm{C}(136)-\mathrm{C}(137)$ | -177.1(4) |
| $\mathrm{C}(127)-\mathrm{C}(136)-\mathrm{C}(137)-\mathrm{C}(138)$ | 15.4(6) | $\mathrm{C}(135)-\mathrm{C}(136)-\mathrm{C}(137)-\mathrm{C}(138)$ | -154.7(4) |
| $\mathrm{C}(127)-\mathrm{C}(136)-\mathrm{C}(137)-\mathrm{C}(141)$ | -159.1(4) | $\mathrm{C}(135)-\mathrm{C}(136)-\mathrm{C}(137)-\mathrm{C}(141)$ | $30.8(7)$ |
| $\mathrm{C}(136)-\mathrm{C}(137)-\mathrm{C}(138)-\mathrm{C}(139)$ | -1.3(7) | $\mathrm{C}(141)-\mathrm{C}(137)-\mathrm{C}(138)-\mathrm{C}(139)$ | 173.5(4) |
| $\mathrm{C}(137)-\mathrm{C}(138)-\mathrm{C}(139)-\mathrm{C}(140)$ | -9.7(7) | $\mathrm{C}(138)-\mathrm{C}(139)-\mathrm{C}(140)-\mathrm{C}(127)$ | $6.0(7)$ |
| $\mathrm{C}(136)-\mathrm{C}(127)-\mathrm{C}(140)-\mathrm{C}(139)$ | 8.4(6) | $\mathrm{C}(128)-\mathrm{C}(127)-\mathrm{C}(140)-\mathrm{C}(139)$ | -167.6(4) |
| $\mathrm{C}(138)-\mathrm{C}(137)-\mathrm{C}(141)-\mathrm{C}(146)$ | 48.1(6) | $\mathrm{C}(136)-\mathrm{C}(137)-\mathrm{C}(141)-\mathrm{C}(146)$ | -137.3(5) |
| $\mathrm{C}(138)-\mathrm{C}(137)-\mathrm{C}(141)-\mathrm{C}(142)$ | -128.4(5) | $\mathrm{C}(136)-\mathrm{C}(137)-\mathrm{C}(141)-\mathrm{C}(142)$ | 46.2(6) |
| $\mathrm{C}(146)-\mathrm{C}(141)-\mathrm{C}(142)-\mathrm{C}(143)$ | $1.6(7)$ | $\mathrm{C}(137)-\mathrm{C}(141)-\mathrm{C}(142)-\mathrm{C}(143)$ | 178.2(4) |
| $\mathrm{C}(141)-\mathrm{C}(142)-\mathrm{C}(143)-\mathrm{C}(144)$ | -0.6(7) | $\mathrm{C}(142)-\mathrm{C}(143)-\mathrm{C}(144)-\mathrm{O}(10)$ | 178.9(4) |
| $\mathrm{C}(142)-\mathrm{C}(143)-\mathrm{C}(144)-\mathrm{C}(145)$ | -0.9(7) | $\mathrm{O}(10)-\mathrm{C}(144)-\mathrm{C}(145)-\mathrm{C}(146)$ | -178.4(4) |

Table A6 continued

| $\mathrm{C}(143)-\mathrm{C}(144)-\mathrm{C}(145)-\mathrm{C}(146)$ | 1.5(7) | $\mathrm{C}(144)-\mathrm{C}(145)-\mathrm{C}(146)-\mathrm{C}(141)$ | -0.5(7) |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(142)-\mathrm{C}(141)-\mathrm{C}(146)-\mathrm{C}(145)$ | -1.0(7) | $\mathrm{C}(137)-\mathrm{C}(141)-\mathrm{C}(146)-\mathrm{C}(145)$ | -177.6(4) |
| $\mathrm{C}(135)-\mathrm{C}(134)-\mathrm{C}(149)-\mathrm{C}(150)$ | -6.4(6) | $\mathrm{C}(133)-\mathrm{C}(134)-\mathrm{C}(149)-\mathrm{C}(150)$ | 172.2(4) |
| $\mathrm{C}(135)-\mathrm{C}(134)-\mathrm{C}(149)-\mathrm{C}(153)$ | 167.6(4) | C(133)-C(134)-C(149)-C(153) | -13.8(7) |
| $\mathrm{C}(134)-\mathrm{C}(149)-\mathrm{C}(150)-\mathrm{C}(151)$ | 3.1(7) | $\mathrm{C}(153)-\mathrm{C}(149)-\mathrm{C}(150)-\mathrm{C}(151)$ | -171.4(4) |
| $\mathrm{C}(149)-\mathrm{C}(150)-\mathrm{C}(151)-\mathrm{C}(152)$ | 1.9(7) | $\mathrm{C}(150)-\mathrm{C}(151)-\mathrm{C}(152)-\mathrm{C}(135)$ | -3.6(7) |
| $\mathrm{C}(134)-\mathrm{C}(135)-\mathrm{C}(152)-\mathrm{C}(151)$ | 0.2(7) | $\mathrm{C}(136)-\mathrm{C}(135)-\mathrm{C}(152)-\mathrm{C}(151)$ | 170.4(4) |
| $\mathrm{C}(150)-\mathrm{C}(149)-\mathrm{C}(153)-\mathrm{C}(158)$ | -53.5(6) | $\mathrm{C}(134)-\mathrm{C}(149)-\mathrm{C}(153)-\mathrm{C}(158)$ | 132.3(5) |
| $\mathrm{C}(150)-\mathrm{C}(149)-\mathrm{C}(153)-\mathrm{C}(154)$ | 123.5(5) | $\mathrm{C}(134)-\mathrm{C}(149)-\mathrm{C}(153)-\mathrm{C}(154)$ | -50.6(6) |
| $\mathrm{C}(158)-\mathrm{C}(153)-\mathrm{C}(154)-\mathrm{C}(155)$ | -0.4(7) | $\mathrm{C}(149)-\mathrm{C}(153)-\mathrm{C}(154)-\mathrm{C}(155)$ | -177.6(4) |
| $\mathrm{C}(153)-\mathrm{C}(154)-\mathrm{C}(155)-\mathrm{C}(156)$ | 0.5(8) | $\mathrm{C}(154)-\mathrm{C}(155)-\mathrm{C}(156)-\mathrm{O}(11)$ | -179.4(5) |
| $\mathrm{C}(154)-\mathrm{C}(155)-\mathrm{C}(156)-\mathrm{C}(157)$ | -0.3(8) | $\mathrm{O}(11)-\mathrm{C}(156)-\mathrm{C}(157)-\mathrm{C}(158)$ | 179.0(5) |
| $\mathrm{C}(155)-\mathrm{C}(156)-\mathrm{C}(157)-\mathrm{C}(158)$ | 0.0(7) | $\mathrm{C}(156)-\mathrm{C}(157)-\mathrm{C}(158)-\mathrm{C}(153)$ | 0.1(8) |
| $\mathrm{C}(154)-\mathrm{C}(153)-\mathrm{C}(158)-\mathrm{C}(157)$ | 0.1(7) | $\mathrm{C}(149)-\mathrm{C}(153)-\mathrm{C}(158)-\mathrm{C}(157)$ | 177.2(4) |
| $\mathrm{C}(130)-\mathrm{C}(129)-\mathrm{C}(161)-\mathrm{C}(166)$ | 68.9(6) | $\mathrm{C}(128)-\mathrm{C}(129)-\mathrm{C}(161)-\mathrm{C}(166)$ | -116.7(5) |
| $\mathrm{C}(130)-\mathrm{C}(129)-\mathrm{C}(161)-\mathrm{C}(162)$ | -105.9(5) | $\mathrm{C}(128)-\mathrm{C}(129)-\mathrm{C}(161)-\mathrm{C}(162)$ | 68.5 (6) |
| $\mathrm{C}(166)-\mathrm{C}(161)-\mathrm{C}(162)-\mathrm{C}(163)$ | 0.9(7) | $\mathrm{C}(129)-\mathrm{C}(161)-\mathrm{C}(162)-\mathrm{C}(163)$ | 175.7(4) |
| $\mathrm{C}(161)-\mathrm{C}(162)-\mathrm{C}(163)-\mathrm{C}(164)$ | 0.4(7) | $\mathrm{C}(162)-\mathrm{C}(163)-\mathrm{C}(164)-\mathrm{O}(12)$ | 178.5(4) |
| $\mathrm{C}(162)-\mathrm{C}(163)-\mathrm{C}(164)-\mathrm{C}(165)$ | -1.5(7) | $\mathrm{O}(12)-\mathrm{C}(164)-\mathrm{C}(165)-\mathrm{C}(166)$ | -178.6(4) |
| $\mathrm{C}(163)-\mathrm{C}(164)-\mathrm{C}(165)-\mathrm{C}(166)$ | 1.4(7) | $\mathrm{C}(162)-\mathrm{C}(161)-\mathrm{C}(166)-\mathrm{C}(165)$ | -1.0(7) |
| $\mathrm{C}(129)-\mathrm{C}(161)-\mathrm{C}(166)-\mathrm{C}(165)$ | -176.0(4) | $\mathrm{C}(164)-\mathrm{C}(165)-\mathrm{C}(166)-\mathrm{C}(161)$ | -0.1(7) |
| $\mathrm{C}(178)-\mathrm{C}(169)-\mathrm{C}(170)-\mathrm{C}(175)$ | -8.2(6) | $\mathrm{C}(179)-\mathrm{C}(169)-\mathrm{C}(170)-\mathrm{C}(175)$ | -176.4(4) |
| $\mathrm{C}(178)-\mathrm{C}(169)-\mathrm{C}(170)-\mathrm{C}(171)$ | 159.9(4) | $\mathrm{C}(179)-\mathrm{C}(169)-\mathrm{C}(170)-\mathrm{C}(171)$ | -8.3(7) |
| $\mathrm{C}(175)-\mathrm{C}(170)-\mathrm{C}(171)-\mathrm{C}(172)$ | 0.7(7) | $\mathrm{C}(169)-\mathrm{C}(170)-\mathrm{C}(171)-\mathrm{C}(172)$ | -167.5(5) |
| $\mathrm{C}(170)-\mathrm{C}(171)-\mathrm{C}(172)-\mathrm{C}(173)$ | 2.9(8) | $\mathrm{C}(171)-\mathrm{C}(172)-\mathrm{C}(173)-\mathrm{C}(174)$ | -2.1(8) |
| $\mathrm{C}(172)-\mathrm{C}(173)-\mathrm{C}(174)-\mathrm{C}(175)$ | -2.2(7) | $\mathrm{C}(172)-\mathrm{C}(173)-\mathrm{C}(174)-\mathrm{C}(203)$ | 173.9(4) |
| $\mathrm{C}(171)-\mathrm{C}(170)-\mathrm{C}(175)-\mathrm{C}(174)$ | -5.0(7) | $\mathrm{C}(169)-\mathrm{C}(170)-\mathrm{C}(175)-\mathrm{C}(174)$ | 163.1(4) |
| $\mathrm{C}(171)-\mathrm{C}(170)-\mathrm{C}(175)-\mathrm{C}(176)$ | 173.8(4) | $\mathrm{C}(169)-\mathrm{C}(170)-\mathrm{C}(175)-\mathrm{C}(176)$ | -18.0(6) |
| $\mathrm{C}(173)-\mathrm{C}(174)-\mathrm{C}(175)-\mathrm{C}(170)$ | 5.7(7) | $\mathrm{C}(203)-\mathrm{C}(174)-\mathrm{C}(175)-\mathrm{C}(170)$ | -170.0(4) |
| $\mathrm{C}(173)-\mathrm{C}(174)-\mathrm{C}(175)-\mathrm{C}(176)$ | -173.0(4) | $\mathrm{C}(203)-\mathrm{C}(174)-\mathrm{C}(175)-\mathrm{C}(176)$ | 11.2(7) |
| $\mathrm{C}(170)-\mathrm{C}(175)-\mathrm{C}(176)-\mathrm{C}(177)$ | 22.9(6) | $\mathrm{C}(174)-\mathrm{C}(175)-\mathrm{C}(176)-\mathrm{C}(177)$ | -158.3(4) |
| $\mathrm{C}(170)-\mathrm{C}(175)-\mathrm{C}(176)-\mathrm{C}(194)$ | -152.6(4) | $\mathrm{C}(174)-\mathrm{C}(175)-\mathrm{C}(176)-\mathrm{C}(194)$ | 26.2(7) |
| $\mathrm{C}(194)-\mathrm{C}(176)-\mathrm{C}(177)-\mathrm{C}(191)$ | -1.1(7) | $\mathrm{C}(175)-\mathrm{C}(176)-\mathrm{C}(177)-\mathrm{C}(191)$ | -176.7(4) |
| $\mathrm{C}(194)-\mathrm{C}(176)-\mathrm{C}(177)-\mathrm{C}(178)$ | 174.5(4) | $\mathrm{C}(175)-\mathrm{C}(176)-\mathrm{C}(177)-\mathrm{C}(178)$ | -1.1(7) |
| $\mathrm{C}(179)-\mathrm{C}(169)-\mathrm{C}(178)-\mathrm{C}(182)$ | 18.4(7) | $\mathrm{C}(170)-\mathrm{C}(169)-\mathrm{C}(178)-\mathrm{C}(182)$ | -150.8(4) |
| $\mathrm{C}(179)-\mathrm{C}(169)-\mathrm{C}(178)-\mathrm{C}(177)$ | -160.6(4) | $\mathrm{C}(170)-\mathrm{C}(169)-\mathrm{C}(178)-\mathrm{C}(177)$ | 30.3(6) |
| $\mathrm{C}(176)-\mathrm{C}(177)-\mathrm{C}(178)-\mathrm{C}(182)$ | 155.3(5) | $\mathrm{C}(191)-\mathrm{C}(177)-\mathrm{C}(178)-\mathrm{C}(182)$ | -29.3(7) |
| $\mathrm{C}(176)-\mathrm{C}(177)-\mathrm{C}(178)-\mathrm{C}(169)$ | -25.8(7) | $\mathrm{C}(191)-\mathrm{C}(177)-\mathrm{C}(178)-\mathrm{C}(169)$ | 149.7(5) |
| $\mathrm{C}(178)-\mathrm{C}(169)-\mathrm{C}(179)-\mathrm{C}(180)$ | -15.6(7) | $\mathrm{C}(170)-\mathrm{C}(169)-\mathrm{C}(179)-\mathrm{C}(180)$ | 152.6(5) |
| $\mathrm{C}(178)-\mathrm{C}(169)-\mathrm{C}(179)-\mathrm{C}(183)$ | 154.9(4) | $\mathrm{C}(170)-\mathrm{C}(169)-\mathrm{C}(179)-\mathrm{C}(183)$ | -36.9(7) |
| $\mathrm{C}(169)-\mathrm{C}(179)-\mathrm{C}(180)-\mathrm{C}(181)$ | 1.8(7) | $\mathrm{C}(183)-\mathrm{C}(179)-\mathrm{C}(180)-\mathrm{C}(181)$ | -169.5(5) |
| C(179)-C(180)-C(181)-C(182) | 9.7(8) | $\mathrm{C}(180)-\mathrm{C}(181)-\mathrm{C}(182)-\mathrm{C}(178)$ | -6.7(8) |
| $\mathrm{C}(169)-\mathrm{C}(178)-\mathrm{C}(182)-\mathrm{C}(181)$ | -7.4(7) | $\mathrm{C}(177)-\mathrm{C}(178)-\mathrm{C}(182)-\mathrm{C}(181)$ | 171.5(5) |

Table A6 continued

| $\mathrm{C}(180)-\mathrm{C}(179)-\mathrm{C}(183)-\mathrm{C}(188)$ | $125.3(5)$ | $\mathrm{C}(169)-\mathrm{C}(179)-\mathrm{C}(183)-\mathrm{C}(188)$ | -45.5(7) |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(180)-\mathrm{C}(179)-\mathrm{C}(183)-\mathrm{C}(184)$ | -45.6(6) | $\mathrm{C}(169)-\mathrm{C}(179)-\mathrm{C}(183)-\mathrm{C}(184)$ | $143.7(5)$ |
| $\mathrm{C}(188)-\mathrm{C}(183)-\mathrm{C}(184)-\mathrm{C}(185)$ | -0.8(7) | $\mathrm{C}(179)-\mathrm{C}(183)-\mathrm{C}(184)-\mathrm{C}(185)$ | $170.3(5)$ |
| $\mathrm{C}(183)-\mathrm{C}(184)-\mathrm{C}(185)-\mathrm{C}(186)$ | 0.2(8) | $\mathrm{C}(184)-\mathrm{C}(185)-\mathrm{C}(186)-\mathrm{O}(13)$ | 179.8(5) |
| $\mathrm{C}(184)-\mathrm{C}(185)-\mathrm{C}(186)-\mathrm{C}(187)$ | $0.2(7)$ | $\mathrm{O}(13)-\mathrm{C}(186)-\mathrm{C}(187)-\mathrm{C}(188)$ | -179.5(4) |
| C(185)-C(186)-C(187)-C(188) | 0.0(7) | $\mathrm{C}(184)-\mathrm{C}(183)-\mathrm{C}(188)-\mathrm{C}(187)$ | $1.0(7)$ |
| $\mathrm{C}(179)-\mathrm{C}(183)-\mathrm{C}(188)-\mathrm{C}(187)$ | -170.2(4) | $\mathrm{C}(186)-\mathrm{C}(187)-\mathrm{C}(188)-\mathrm{C}(183)$ | -0.6(7) |
| $\mathrm{C}(176)-\mathrm{C}(177)-\mathrm{C}(191)-\mathrm{C}(192)$ | -3.4(7) | $\mathrm{C}(178)-\mathrm{C}(177)-\mathrm{C}(191)-\mathrm{C}(192)$ | -178.8(5) |
| $\mathrm{C}(176)-\mathrm{C}(177)-\mathrm{C}(191)-\mathrm{C}(195)$ | 170.3(5) | $\mathrm{C}(178)-\mathrm{C}(177)-\mathrm{C}(191)-\mathrm{C}(195)$ | -5.2(8) |
| $\mathrm{C}(177)-\mathrm{C}(191)-\mathrm{C}(192)-\mathrm{C}(193)$ | 4.3(8) | $\mathrm{C}(195)-\mathrm{C}(191)-\mathrm{C}(192)-\mathrm{C}(193)$ | -169.9(5) |
| $\mathrm{C}(191)-\mathrm{C}(192)-\mathrm{C}(193)-\mathrm{C}(194)$ | -0.5(9) | $\mathrm{C}(192)-\mathrm{C}(193)-\mathrm{C}(194)-\mathrm{C}(176)$ | -4.2(8) |
| $\mathrm{C}(177)-\mathrm{C}(176)-\mathrm{C}(194)-\mathrm{C}(193)$ | $4.9(7)$ | $\mathrm{C}(175)-\mathrm{C}(176)-\mathrm{C}(194)-\mathrm{C}(193)$ | -179.5(5) |
| $\mathrm{C}(192)-\mathrm{C}(191)-\mathrm{C}(195)-\mathrm{C}(200)$ | 115.6(6) | $\mathrm{C}(177)-\mathrm{C}(191)-\mathrm{C}(195)-\mathrm{C}(200)$ | -58.2(8) |
| $\mathrm{C}(192)-\mathrm{C}(191)-\mathrm{C}(195)-\mathrm{C}(196)$ | $-58.7(7)$ | $\mathrm{C}(177)-\mathrm{C}(191)-\mathrm{C}(195)-\mathrm{C}(196)$ | 127.5(6) |
| $\mathrm{C}(200)-\mathrm{C}(195)-\mathrm{C}(196)-\mathrm{C}(197)$ | -2.2(8) | $\mathrm{C}(191)-\mathrm{C}(195)-\mathrm{C}(196)-\mathrm{C}(197)$ | $172.3(5)$ |
| $\mathrm{C}(195)-\mathrm{C}(196)-\mathrm{C}(197)-\mathrm{C}(198)$ | 0.4(9) | $\mathrm{C}(196)-\mathrm{C}(197)-\mathrm{C}(198)-\mathrm{O}(14)$ | -179.5(6) |
| $\mathrm{C}(196)-\mathrm{C}(197)-\mathrm{C}(198)-\mathrm{C}(199)$ | $1.4(9)$ | $\mathrm{C}(197)-\mathrm{C}(198)-\mathrm{C}(199)-\mathrm{C}(200)$ | -1.4(10) |
| $\mathrm{O}(14)-\mathrm{C}(198)-\mathrm{C}(199)-\mathrm{C}(200)$ | 179.4(6) | $\mathrm{C}(196)-\mathrm{C}(195)-\mathrm{C}(200)-\mathrm{C}(199)$ | $2.2(9)$ |
| $\mathrm{C}(191)-\mathrm{C}(195)-\mathrm{C}(200)-\mathrm{C}(199)$ | -172.2(6) | $\mathrm{C}(198)-\mathrm{C}(199)-\mathrm{C}(200)-\mathrm{C}(195)$ | -0.5(10) |
| $\mathrm{C}(173)-\mathrm{C}(174)-\mathrm{C}(203)-\mathrm{C}(204)$ | $58.2(6)$ | $\mathrm{C}(175)-\mathrm{C}(174)-\mathrm{C}(203)-\mathrm{C}(204)$ | -125.9(5) |
| $\mathrm{C}(173)-\mathrm{C}(174)-\mathrm{C}(203)-\mathrm{C}(208)$ | -119.7(5) | $\mathrm{C}(175)-\mathrm{C}(174)-\mathrm{C}(203)-\mathrm{C}(208)$ | 56.2(7) |
| $\mathrm{C}(208)-\mathrm{C}(203)-\mathrm{C}(204)-\mathrm{C}(205)$ | -2.1(8) | $\mathrm{C}(174)-\mathrm{C}(203)-\mathrm{C}(204)-\mathrm{C}(205)$ | 179.9(5) |
| $\mathrm{C}(203)-\mathrm{C}(204)-\mathrm{C}(205)-\mathrm{C}(206)$ | $1.7(8)$ | $\mathrm{C}(204)-\mathrm{C}(205)-\mathrm{C}(206)-\mathrm{O}(15)$ | -179.7(5) |
| $\mathrm{C}(204)-\mathrm{C}(205)-\mathrm{C}(206)-\mathrm{C}(207)$ | 0.0(8) | $\mathrm{C}(205)-\mathrm{C}(206)-\mathrm{C}(207)-\mathrm{C}(208)$ | -1.2(8) |
| $\mathrm{O}(15)-\mathrm{C}(206)-\mathrm{C}(207)-\mathrm{C}(208)$ | $178.5(5)$ | $\mathrm{C}(206)-\mathrm{C}(207)-\mathrm{C}(208)-\mathrm{C}(203)$ | 0.8(8) |
| $\mathrm{C}(204)-\mathrm{C}(203)-\mathrm{C}(208)-\mathrm{C}(207)$ | 0.9(7) | $\mathrm{C}(174)-\mathrm{C}(203)-\mathrm{C}(208)-\mathrm{C}(207)$ | $178.9(5)$ |
| $\mathrm{C}(225)-\mathrm{C}(216)-\mathrm{C}(217)-\mathrm{C}(218)$ | 163.2(4) | $\mathrm{C}(229)-\mathrm{C}(216)-\mathrm{C}(217)-\mathrm{C}(218)$ | -7.7(7) |
| $\mathrm{C}(225)-\mathrm{C}(216)-\mathrm{C}(217)-\mathrm{C}(222)$ | -5.9(7) | $\mathrm{C}(229)-\mathrm{C}(216)-\mathrm{C}(217)-\mathrm{C}(222)$ | -176.8(4) |
| $\mathrm{C}(222)-\mathrm{C}(217)-\mathrm{C}(218)-\mathrm{C}(219)$ | $1.8(7)$ | $\mathrm{C}(216)-\mathrm{C}(217)-\mathrm{C}(218)-\mathrm{C}(219)$ | -167.4(5) |
| $\mathrm{C}(217)-\mathrm{C}(218)-\mathrm{C}(219)-\mathrm{C}(220)$ | 2.0 (8) | $\mathrm{C}(218)-\mathrm{C}(219)-\mathrm{C}(220)-\mathrm{C}(221)$ | -1.6(8) |
| $\mathrm{C}(219)-\mathrm{C}(220)-\mathrm{C}(221)-\mathrm{C}(222)$ | -2.6(8) | $\mathrm{C}(219)-\mathrm{C}(220)-\mathrm{C}(221)-\mathrm{C}(250)$ | $171.9(5)$ |
| $\mathrm{C}(220)-\mathrm{C}(221)-\mathrm{C}(222)-\mathrm{C}(217)$ | $6.4(7)$ | $\mathrm{C}(250)-\mathrm{C}(221)-\mathrm{C}(222)-\mathrm{C}(217)$ | -167.5(5) |
| $\mathrm{C}(220)-\mathrm{C}(221)-\mathrm{C}(222)-\mathrm{C}(223)$ | -173.3(5) | $\mathrm{C}(250)-\mathrm{C}(221)-\mathrm{C}(222)-\mathrm{C}(223)$ | 12.8(7) |
| $\mathrm{C}(218)-\mathrm{C}(217)-\mathrm{C}(222)-\mathrm{C}(221)$ | -6.0(7) | $\mathrm{C}(216)-\mathrm{C}(217)-\mathrm{C}(222)-\mathrm{C}(221)$ | 163.4(4) |
| $\mathrm{C}(218)-\mathrm{C}(217)-\mathrm{C}(222)-\mathrm{C}(223)$ | 173.7(4) | $\mathrm{C}(216)-\mathrm{C}(217)-\mathrm{C}(222)-\mathrm{C}(223)$ | -16.9(6) |
| $\mathrm{C}(221)-\mathrm{C}(222)-\mathrm{C}(223)-\mathrm{C}(241)$ | 23.9 (7) | $\mathrm{C}(217)-\mathrm{C}(222)-\mathrm{C}(223)-\mathrm{C}(241)$ | -155.8(5) |
| $\mathrm{C}(221)-\mathrm{C}(222)-\mathrm{C}(223)-\mathrm{C}(224)$ | -160.9(4) | $\mathrm{C}(217)-\mathrm{C}(222)-\mathrm{C}(223)-\mathrm{C}(224)$ | 19.4(6) |
| $\mathrm{C}(241)-\mathrm{C}(223)-\mathrm{C}(224)-\mathrm{C}(238)$ | -0.3(7) | $\mathrm{C}(222)-\mathrm{C}(223)-\mathrm{C}(224)-\mathrm{C}(238)$ | -175.6(4) |
| $\mathrm{C}(241)-\mathrm{C}(223)-\mathrm{C}(224)-\mathrm{C}(225)$ | 176.3(4) | $\mathrm{C}(222)-\mathrm{C}(223)-\mathrm{C}(224)-\mathrm{C}(225)$ | 1.1(7) |
| $\mathrm{C}(229)-\mathrm{C}(216)-\mathrm{C}(225)-\mathrm{C}(226)$ | 19.2(7) | $\mathrm{C}(217)-\mathrm{C}(216)-\mathrm{C}(225)-\mathrm{C}(226)$ | -152.3(4) |
| $\mathrm{C}(229)-\mathrm{C}(216)-\mathrm{C}(225)-\mathrm{C}(224)$ | -161.5(4) | $\mathrm{C}(217)-\mathrm{C}(216)-\mathrm{C}(225)-\mathrm{C}(224)$ | 27.0(7) |
| $\mathrm{C}(238)-\mathrm{C}(224)-\mathrm{C}(225)-\mathrm{C}(226)$ | -28.9(7) | $\mathrm{C}(223)-\mathrm{C}(224)-\mathrm{C}(225)-\mathrm{C}(226)$ | 154.6(5) |
| $\mathrm{C}(238)-\mathrm{C}(224)-\mathrm{C}(225)-\mathrm{C}(216)$ | $151.8(5)$ | $\mathrm{C}(223)-\mathrm{C}(224)-\mathrm{C}(225)-\mathrm{C}(216)$ | $-24.7(7)$ |

Table A6 continued

| $\mathrm{C}(216)-\mathrm{C}(225)-\mathrm{C}(226)-\mathrm{C}(227)$ | -7.4(7) | $\mathrm{C}(224)-\mathrm{C}(225)-\mathrm{C}(226)-\mathrm{C}(227)$ | 173.3(5) |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(225)-\mathrm{C}(226)-\mathrm{C}(227)-\mathrm{C}(228)$ | -7.2(8) | $\mathrm{C}(226)-\mathrm{C}(227)-\mathrm{C}(228)-\mathrm{C}(229)$ | 9.9(8) |
| $\mathrm{C}(227)-\mathrm{C}(228)-\mathrm{C}(229)-\mathrm{C}(216)$ | 2.3(7) | $\mathrm{C}(227)-\mathrm{C}(228)-\mathrm{C}(229)-\mathrm{C}(230)$ | -170.4(4) |
| $\mathrm{C}(225)-\mathrm{C}(216)-\mathrm{C}(229)-\mathrm{C}(228)$ | -16.8(7) | $\mathrm{C}(217)-\mathrm{C}(216)-\mathrm{C}(229)-\mathrm{C}(228)$ | 154.1(5) |
| $\mathrm{C}(225)-\mathrm{C}(216)-\mathrm{C}(229)-\mathrm{C}(230)$ | 155.3(4) | $\mathrm{C}(217)-\mathrm{C}(216)-\mathrm{C}(229)-\mathrm{C}(230)$ | -33.8(7) |
| $\mathrm{C}(228)$-C(229)-C(230)-C(231) | 126.6(5) | $\mathrm{C}(216)-\mathrm{C}(229)-\mathrm{C}(230)-\mathrm{C}(231)$ | -45.7(7) |
| $\mathrm{C}(228)-\mathrm{C}(229)-\mathrm{C}(230)-\mathrm{C}(235)$ | -45.5(6) | $\mathrm{C}(216)-\mathrm{C}(229)-\mathrm{C}(230)-\mathrm{C}(235)$ | 142.2(5) |
| $\mathrm{C}(235)-\mathrm{C}(230)-\mathrm{C}(231)-\mathrm{C}(232)$ | 1.2(7) | $\mathrm{C}(229)-\mathrm{C}(230)-\mathrm{C}(231)-\mathrm{C}(232)$ | -171.2(4) |
| $\mathrm{C}(230)-\mathrm{C}(231)-\mathrm{C}(232)-\mathrm{C}(233)$ | -0.9(7) | $\mathrm{C}(231)-\mathrm{C}(232)-\mathrm{C}(233)-\mathrm{O}(17)$ | 179.9(4) |
| $\mathrm{C}(231)-\mathrm{C}(232)-\mathrm{C}(233)-\mathrm{C}(234)$ | 0.5(7) | $\mathrm{O}(17)-\mathrm{C}(233)-\mathrm{C}(234)-\mathrm{C}(235)$ | -179.8(4) |
| C(232)-C(233)-C(234)-C(235) | -0.3(7) | C(233)-C(234)-C(235)-C(230) | 0.7(7) |
| $\mathrm{C}(231)-\mathrm{C}(230)-\mathrm{C}(235)-\mathrm{C}(234)$ | -1.1(7) | $\mathrm{C}(229)-\mathrm{C}(230)-\mathrm{C}(235)-\mathrm{C}(234)$ | 171.1(4) |
| $\mathrm{C}(223)-\mathrm{C}(224)-\mathrm{C}(238)-\mathrm{C}(239)$ | -4.1(7) | $\mathrm{C}(225)-\mathrm{C}(224)-\mathrm{C}(238)-\mathrm{C}(239)$ | 179.5(4) |
| $\mathrm{C}(223)-\mathrm{C}(224)-\mathrm{C}(238)-\mathrm{C}(242)$ | 171.7(4) | $\mathrm{C}(225)-\mathrm{C}(224)-\mathrm{C}(238)-\mathrm{C}(242)$ | -4.8(7) |
| $\mathrm{C}(224)-\mathrm{C}(238)-\mathrm{C}(239)-\mathrm{C}(240)$ | 4.4(8) | $\mathrm{C}(242)-\mathrm{C}(238)-\mathrm{C}(239)-\mathrm{C}(240)$ | -171.7(5) |
| $\mathrm{C}(238)-\mathrm{C}(239)-\mathrm{C}(240)-\mathrm{C}(241)$ | -0.2(8) | $\mathrm{C}(239)-\mathrm{C}(240)-\mathrm{C}(241)-\mathrm{C}(223)$ | -4.4(8) |
| $\mathrm{C}(224)-\mathrm{C}(223)-\mathrm{C}(241)-\mathrm{C}(240)$ | 4.6(7) | $\mathrm{C}(222)-\mathrm{C}(223)-\mathrm{C}(241)-\mathrm{C}(240)$ | 179.7(5) |
| C(239)-C(238)-C(242)-C(247) | 115.8(6) | $\mathrm{C}(224)-\mathrm{C}(238)-\mathrm{C}(242)-\mathrm{C}(247)$ | -60.1(7) |
| $\mathrm{C}(239)-\mathrm{C}(238)-\mathrm{C}(242)-\mathrm{C}(243)$ | -61.0(6) | $\mathrm{C}(224)-\mathrm{C}(238)-\mathrm{C}(242)-\mathrm{C}(243)$ | 123.1(5) |
| $\mathrm{C}(247)-\mathrm{C}(242)-\mathrm{C}(243)-\mathrm{C}(244)$ | -0.2(7) | $\mathrm{C}(238)-\mathrm{C}(242)-\mathrm{C}(243)-\mathrm{C}(244)$ | 176.8(5) |
| $\mathrm{C}(242)-\mathrm{C}(243)-\mathrm{C}(244)-\mathrm{C}(245)$ | 1.3(8) | $\mathrm{C}(243)-\mathrm{C}(244)-\mathrm{C}(245)-\mathrm{O}(18)$ | 177.7(5) |
| $\mathrm{C}(243)-\mathrm{C}(244)-\mathrm{C}(245)-\mathrm{C}(246)$ | -1.5(8) | $\mathrm{O}(18)-\mathrm{C}(245)-\mathrm{C}(246)-\mathrm{C}(247)$ | -178.6(5) |
| $\mathrm{C}(244)-\mathrm{C}(245)-\mathrm{C}(246)-\mathrm{C}(247)$ | 0.5(8) | $\mathrm{C}(243)-\mathrm{C}(242)-\mathrm{C}(247)-\mathrm{C}(246)$ | -0.8(8) |
| C(238)-C(242)-C(247)-C(246) | -177.7(5) | $\mathrm{C}(245)-\mathrm{C}(246)-\mathrm{C}(247)-\mathrm{C}(242)$ | 0.6(8) |
| $\mathrm{C}(220)-\mathrm{C}(221)-\mathrm{C}(250)-\mathrm{C}(255)$ | -114.3(6) | $\mathrm{C}(222)-\mathrm{C}(221)-\mathrm{C}(250)-\mathrm{C}(255)$ | 59.8(7) |
| $\mathrm{C}(220)-\mathrm{C}(221)-\mathrm{C}(250)-\mathrm{C}(251)$ | $59.2(7)$ | $\mathrm{C}(222)-\mathrm{C}(221)-\mathrm{C}(250)-\mathrm{C}(251)$ | -126.7(6) |
| C(255)-C(250)-C(251)-C(252) | -0.2(8) | $\mathrm{C}(221)-\mathrm{C}(250)-\mathrm{C}(251)-\mathrm{C}(252)$ | -174.0(5) |
| $\mathrm{C}(250)-\mathrm{C}(251)-\mathrm{C}(252)-\mathrm{C}(253)$ | 0.4(9) | $\mathrm{C}(251)-\mathrm{C}(252)-\mathrm{C}(253)-\mathrm{O}(16)$ | 179.7(6) |
| $\mathrm{C}(251)-\mathrm{C}(252)-\mathrm{C}(253)-\mathrm{C}(254)$ | 0.3(10) | $\mathrm{O}(16)-\mathrm{C}(253)-\mathrm{C}(254)-\mathrm{C}(255)$ | 179.3(6) |
| $\mathrm{C}(252)-\mathrm{C}(253)-\mathrm{C}(254)-\mathrm{C}(255)$ | -1.2(10) | $\mathrm{C}(253)-\mathrm{C}(254)-\mathrm{C}(255)-\mathrm{C}(250)$ | 1.4(10) |
| C(251)-C(250)-C(255)-C(254) | -0.7(8) | $\mathrm{C}(221)-\mathrm{C}(250)-\mathrm{C}(255)-\mathrm{C}(254)$ | 173.0(5) |
| $\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{O}(1)-\mathrm{C}(22)$ | -2.8(7) | $\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{O}(1)-\mathrm{C}(22)$ | 177.8(4) |
| $\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{O}(2)-\mathrm{C}(34)$ | -16.9(7) | $\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{O}(2)-\mathrm{C}(34)$ | 163.6(4) |
| $\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{O}(3)-\mathrm{C}(42)$ | 6.7(8) | $\mathrm{C}(39)-\mathrm{C}(38)-\mathrm{O}(3)-\mathrm{C}(42)$ | -172.9(6) |
| $\mathrm{C}(59)-\mathrm{C}(60)-\mathrm{O}(4)-\mathrm{C}(64)$ | 0.9(8) | $\mathrm{C}(61)-\mathrm{C}(60)-\mathrm{O}(4)-\mathrm{C}(64)$ | -178.8(5) |
| $\mathrm{C}(73)-\mathrm{C}(72)-\mathrm{O}(5)-\mathrm{C}(76)$ | -7.5(8) | $\mathrm{C}(71)-\mathrm{C}(72)-\mathrm{O}(5)-\mathrm{C}(76)$ | 172.9(5) |
| $\mathrm{C}(79)-\mathrm{C}(80)-\mathrm{O}(6)-\mathrm{C}(84)$ | -177.2(4) | $\mathrm{C}(81)-\mathrm{C}(80)-\mathrm{O}(6)-\mathrm{C}(84)$ | $3.2(7)$ |
| $\mathrm{C}(101)-\mathrm{C}(102)-\mathrm{O}(7)-\mathrm{C}(106)$ | 179.6(5) | $\mathrm{C}(103)-\mathrm{C}(102)-\mathrm{O}(7)-\mathrm{C}(106)$ | -1.1(7) |
| $\mathrm{C}(113)-\mathrm{C}(114)-\mathrm{O}(8)-\mathrm{C}(118)$ | 0.5(7) | $\mathrm{C}(115)-\mathrm{C}(114)-\mathrm{O}(8)-\mathrm{C}(118)$ | -178.4(5) |
| $\mathrm{C}(123)-\mathrm{C}(122)-\mathrm{O}(9)-\mathrm{C}(126)$ | -10.4(7) | $\mathrm{C}(121)-\mathrm{C}(122)-\mathrm{O}(9)-\mathrm{C}(126)$ | 169.7(4) |
| $\mathrm{C}(143)-\mathrm{C}(144)-\mathrm{O}(10)-\mathrm{C}(148)$ | -0.2(7) | $\mathrm{C}(145)-\mathrm{C}(144)-\mathrm{O}(10)-\mathrm{C}(148)$ | 179.7(5) |
| $\mathrm{C}(157)-\mathrm{C}(156)-\mathrm{O}(11)-\mathrm{C}(160)$ | -1.5(7) | $\mathrm{C}(155)-\mathrm{C}(156)-\mathrm{O}(11)-\mathrm{C}(160)$ | 177.5(5) |
| $\mathrm{C}(163)-\mathrm{C}(164)-\mathrm{O}(12)-\mathrm{C}(168)$ | 15.2(7) | $\mathrm{C}(165)-\mathrm{C}(164)-\mathrm{O}(12)-\mathrm{C}(168)$ | -164.8(4) |

Table A6 continued

| $\mathrm{C}(187)-\mathrm{C}(186)-\mathrm{O}(13)-\mathrm{C}(190)$ | $4.1(7)$ | $\mathrm{C}(185)-\mathrm{C}(186)-\mathrm{O}(13)-\mathrm{C}(190)$ | $-175.5(4)$ |
| :--- | :---: | :--- | :---: |
| $\mathrm{C}(197)-\mathrm{C}(198)-\mathrm{O}(14)-\mathrm{C}(202)$ | $6.0(11)$ | $\mathrm{C}(199)-\mathrm{C}(198)-\mathrm{O}(14)-\mathrm{C}(202)$ | $-174.8(8)$ |
| $\mathrm{C}(205)-\mathrm{C}(206)-\mathrm{O}(15)-\mathrm{C}(210)$ | $-6.7(9)$ | $\mathrm{C}(207)-\mathrm{C}(206)-\mathrm{O}(15)-\mathrm{C}(210)$ | $173.6(5)$ |
| $\mathrm{C}(254)-\mathrm{C}(253)-\mathrm{O}(16)-\mathrm{C}(256)$ | $172.3(9)$ | $\mathrm{C}(252)-\mathrm{C}(253)-\mathrm{O}(16)-\mathrm{C}(256)$ | $-7.1(13)$ |
| $\mathrm{C}(232)-\mathrm{C}(233)-\mathrm{O}(17)-\mathrm{C}(237)$ | $5.9(6)$ | $\mathrm{C}(234)-\mathrm{C}(233)-\mathrm{O}(17)-\mathrm{C}(237)$ | $-174.6(4)$ |
| $\mathrm{C}(244)-\mathrm{C}(245)-\mathrm{O}(18)-\mathrm{C}(249)$ | $-179.1(5)$ | $\mathrm{C}(246)-\mathrm{C}(245)-\mathrm{O}(18)-\mathrm{C}(249)$ | $0.0(8)$ |
| $\mathrm{C}(215)-\mathrm{C}(214)-\mathrm{O}(19)-\mathrm{C}(212)$ | $-173.5(5)$ | $\mathrm{C}(211)-\mathrm{C}(212)-\mathrm{O}(19)-\mathrm{C}(214)$ | $-176.2(7)$ |
| $\mathrm{C}(257)-\mathrm{C}(258)-\mathrm{O}(20)-\mathrm{C}(259)$ | $-174.9(5)$ | $\mathrm{C}(260)-\mathrm{C}(259)-\mathrm{O}(20)-\mathrm{C}(258)$ | $-174.4(5)$ |
| $\mathrm{C}(265)-\mathrm{C}(264)-\mathrm{O}(21)-\mathrm{C}(263)$ | $-172.4(6)$ | $\mathrm{C}(262)-\mathrm{C}(263)-\mathrm{O}(21)-\mathrm{C}(264)$ | $-177.8(5)$ |
| $\mathrm{C}(268)-\mathrm{O}(22)-\mathrm{C}(266)-\mathrm{C}(267)$ | $172.3(19)$ | $\mathrm{C}(266)-\mathrm{O}(22)-\mathrm{C}(268)-\mathrm{C}(269)$ | $-179.8(16)$ |

Table A7 Crystal data and structure refinement for 306.

| Chemical formula (moiety) | $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{3}$ |
| :---: | :---: |
| Chemical formula (total) | $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{3}$ |
| Formula weight | 217.22 |
| Temperature | 150(2) K |
| Radiation, wavelength | CuK $\alpha, 1.54178 \AA$ |
| Crystal system, space group | orthorhombic, Pbca |
| Unit cell parameters | $\mathrm{a}=11.6473(6) \AA \quad \alpha=90^{\circ}$ |
|  | $\mathrm{b}=12.0060(7) \AA \quad \beta=90^{\circ}$ |
|  | $\mathrm{c}=15.0698(10) \AA \quad \gamma=90^{\circ}$ |
| Cell volume | 2107.3(2) $\AA^{3}$ |
| Z | 8 |
| Calculated density | $1.369 \mathrm{~g} / \mathrm{cm}^{3}$ |
| Absorption coefficient $\mu$ | $0.824 \mathrm{~mm}^{-1}$ |
| F(000) | 912 |
| Crystal colour and size | pale yellow, $0.16 \times 0.10 \times 0.08 \mathrm{~mm}^{3}$ |
| Reflections for cell refinement | 5244 ( $\theta$ range 2.9 to $73.9^{\circ}$ ) |
| Data collection method | Agilent Technologies SuperNova |
|  | $\omega$ scans |
| $\theta$ range for data collection | 5.9 to $74.0^{\circ}$ |
| Index ranges | $\mathrm{h}-14$ to $12, \mathrm{k}-14$ to $13, \mathrm{l}-18$ to 18 |
| Completeness to $\theta=74.0^{\circ}$ | 98.9\% |
| Reflections collected | 14539 |
| Independent reflections | 2115 ( $\left.\mathrm{R}_{\text {int }}=0.0567\right)$ |
| Reflections with $\mathrm{F}^{2}>2 \sigma$ | 1758 |
| Absorption correction | semi-empirical from equivalents |
| Min. and max. transmission | 0.8794 and 0.9377 |
| Structure solution | direct methods |
| Refinement method | full-matrix least-squares on $\mathrm{F}^{2}$ |
| Weighting parameters a, b | 0.0574, 0.2269 |
| Data / restraints / parameters | 2115 / 0 / 189 |
| Final R indices $\left[\mathrm{F}^{2}>2 \sigma\right]$ | $\mathrm{R} 1=0.0394, \mathrm{wR} 2=0.0963$ |
| R indices (all data) | $\mathrm{R} 1=0.0496, \mathrm{wR} 2=0.1038$ |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.035 |
| Largest and mean shift/su | 0.000 and 0.000 |
| Largest diff. peak and hole | 0.21 and -0.26 e $\AA^{-3}$ |

Table A8 Atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for 306. $\mathrm{U}_{\mathrm{eq}}$ is defined as one third of the trace of the orthogonalized $\mathrm{U}^{\mathrm{ij}}$ tensor.

|  | x | y | z | $\mathrm{U}_{\mathrm{eq}}$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C}(1)$ | $0.92600(12)$ | $0.34204(11)$ | $0.50626(9)$ | $0.0263(3)$ |
| $\mathrm{C}(2)$ | $0.98601(13)$ | $0.27078(12)$ | $0.44914(10)$ | $0.0295(3)$ |
| $\mathrm{C}(3)$ | $0.93819(13)$ | $0.24025(13)$ | $0.36894(10)$ | $0.0316(3)$ |
| $\mathrm{C}(4)$ | $0.83112(13)$ | $0.27954(13)$ | $0.34286(10)$ | $0.0308(3)$ |
| $\mathrm{C}(5)$ | $0.77014(12)$ | $0.34917(12)$ | $0.39961(9)$ | $0.0271(3)$ |
| $\mathrm{C}(6)$ | $0.73073(14)$ | $0.56678(12)$ | $0.52413(11)$ | $0.0336(3)$ |
| $\mathrm{N}(7)$ | $0.75145(10)$ | $0.44853(10)$ | $0.53927(8)$ | $0.0259(3)$ |
| $\mathrm{C}(8)$ | $0.71161(11)$ | $0.41474(11)$ | $0.61912(9)$ | $0.0239(3)$ |
| $\mathrm{O}(9)$ | $0.65367(9)$ | $0.49974(8)$ | $0.65806(7)$ | $0.0302(3)$ |
| $\mathrm{C}(10)$ | $0.64008(15)$ | $0.58960(13)$ | $0.59404(11)$ | $0.0337(3)$ |
| $\mathrm{O}(11)$ | $0.72120(9)$ | $0.32475(8)$ | $0.65409(7)$ | $0.0310(3)$ |
| $\mathrm{C}(12)$ | $0.81659(12)$ | $0.37914(11)$ | $0.48212(9)$ | $0.0248(3)$ |
| $\mathrm{O}(13)$ | $0.66485(9)$ | $0.39274(9)$ | $0.38133(7)$ | $0.0341(3)$ |
| $\mathrm{C}(14)$ | $0.62284(15)$ | $0.37856(17)$ | $0.29279(11)$ | $0.0405(4)$ |
| $\mathrm{C}(15)$ | $0.97948(12)$ | $0.37975(12)$ | $0.58678(10)$ | $0.0292(3)$ |
| $\mathrm{C}(16)$ | $1.03102(15)$ | $0.41134(14)$ | $0.64972(11)$ | $0.0374(4)$ |

Table A9 Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 306.

| $\mathrm{C}(1)-\mathrm{C}(2)$ | 1.400(2) | $\mathrm{C}(1)-\mathrm{C}(12)$ | 1.398(2) |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(1)-\mathrm{C}(15)$ | $1.437(2)$ | $\mathrm{C}(2)-\mathrm{H}(2)$ | 0.97(2) |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | $1.380(2)$ | $\mathrm{C}(3)-\mathrm{H}(3)$ | 0.96(2) |
| $\mathrm{C}(3)-\mathrm{C}(4)$ | 1.390 (2) | $\mathrm{C}(4)-\mathrm{H}(4)$ | 0.95(2) |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | 1.391(2) | $\mathrm{C}(5)-\mathrm{C}(12)$ | $1.403(2)$ |
| $\mathrm{C}(5)-\mathrm{O}(13)$ | $1.3614(18)$ | $\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$ | 0.97(2) |
| $\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$ | 1.01(2) | $\mathrm{C}(6)-\mathrm{N}(7)$ | 1.4581(18) |
| $\mathrm{C}(6)-\mathrm{C}(10)$ | 1.516(2) | $\mathrm{N}(7)-\mathrm{C}(8)$ | $1.3519(18)$ |
| $\mathrm{N}(7)-\mathrm{C}(12)$ | 1.4182(18) | $\mathrm{C}(8)-\mathrm{O}(9)$ | $1.3570(16)$ |
| $\mathrm{C}(8)-\mathrm{O}(11)$ | $1.2073(17)$ | $\mathrm{O}(9)-\mathrm{C}(10)$ | $1.4559(18)$ |
| $\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$ | 0.97(2) | $\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$ | 1.03(2) |
| $\mathrm{O}(13)-\mathrm{C}(14)$ | 1.431(2) | $\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$ | 0.96(2) |
| $\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$ | 0.98(2) | $\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$ | 0.97(2) |
| $\mathrm{C}(15)-\mathrm{C}(16)$ | $1.185(2)$ | $\mathrm{C}(16)-\mathrm{H}(16)$ | 0.93(2) |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(12)$ | 119.31(13) | $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(15)$ | 119.67(13) |
| $\mathrm{C}(12)-\mathrm{C}(1)-\mathrm{C}(15)$ | 120.96(13) | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$ | 117.1(11) |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | 119.94(14) | $\mathrm{H}(2)-\mathrm{C}(2)-\mathrm{C}(3)$ | 123.0(11) |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$ | 119.7(11) | $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | 121.29(14) |
| $\mathrm{H}(3)-\mathrm{C}(3)-\mathrm{C}(4)$ | 119.1(11) | $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$ | 120.8(13) |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | 119.23(14) | $\mathrm{H}(4)-\mathrm{C}(4)-\mathrm{C}(5)$ | 119.9(13) |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(12)$ | 120.14(13) | $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(13)$ | 124.50(13) |
| $\mathrm{C}(12)-\mathrm{C}(5)-\mathrm{O}(13)$ | 115.36(13) | $\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$ | 108.3(17) |
| $\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{N}(7)$ | 113.5(12) | $\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{C}(10)$ | 113.0(12) |
| $\mathrm{H}(6 \mathrm{~B})-\mathrm{C}(6)-\mathrm{N}(7)$ | 109.5(12) | $\mathrm{H}(6 \mathrm{~B})-\mathrm{C}(6)-\mathrm{C}(10)$ | 111.9(13) |
| $\mathrm{N}(7)-\mathrm{C}(6)-\mathrm{C}(10)$ | 100.51(11) | $\mathrm{C}(6)-\mathrm{N}(7)-\mathrm{C}(8)$ | 112.00(12) |
| $\mathrm{C}(6)-\mathrm{N}(7)-\mathrm{C}(12)$ | 124.43(11) | $\mathrm{C}(8)-\mathrm{N}(7)-\mathrm{C}(12)$ | 123.22(11) |
| $\mathrm{N}(7)-\mathrm{C}(8)-\mathrm{O}(9)$ | 109.26(11) | $\mathrm{N}(7)-\mathrm{C}(8)-\mathrm{O}(11)$ | 128.70(13) |
| $\mathrm{O}(9)-\mathrm{C}(8)-\mathrm{O}(11)$ | 122.03(13) | $\mathrm{C}(8)-\mathrm{O}(9)-\mathrm{C}(10)$ | 108.95(11) |
| $\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{O}(9)$ | 104.52(11) | $\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$ | 113.5(13) |
| $\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$ | 110.5(12) | $\mathrm{O}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$ | 108.4(12) |
| $\mathrm{O}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$ | 108.5(11) | $\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$ | 111.1(16) |
| $\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{C}(5)$ | 120.02(13) | $\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{N}(7)$ | 121.11(13) |
| $\mathrm{C}(5)-\mathrm{C}(12)-\mathrm{N}(7)$ | 118.85(13) | $\mathrm{C}(5)-\mathrm{O}(13)-\mathrm{C}(14)$ | 116.80(12) |
| $\mathrm{O}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$ | 109.0(14) | $\mathrm{O}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$ | 110.8(13) |
| $\mathrm{O}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$ | 104.9(12) | $\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$ | 111.1(17) |
| $\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$ | 105.9(17) | $\mathrm{H}(14 \mathrm{~B})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$ | 114.7(18) |
| $\mathrm{C}(1)-\mathrm{C}(15)-\mathrm{C}(16)$ | 175.11(16) | $\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$ | 178.9(15) |

Table A10 Anisotropic displacement parameters $\left(\AA^{2}\right)$ for 306. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} \mathrm{U}^{11}+\ldots+2 h k a^{*} b^{*} \mathrm{U}^{12}\right]$

|  | $\mathrm{U}^{11}$ | $\mathrm{U}^{22}$ | $\mathrm{U}^{33}$ | $\mathrm{U}^{23}$ | $\mathrm{U}^{13}$ | $\mathrm{U}^{12}$ |
| :--- | :---: | ---: | :---: | ---: | ---: | ---: |
| $\mathrm{C}(1)$ | $0.0277(7)$ | $0.0273(7)$ | $0.0240(7)$ | $0.0028(5)$ | $0.0021(5)$ | $-0.0019(5)$ |
| $\mathrm{C}(2)$ | $0.0277(7)$ | $0.0302(7)$ | $0.0306(8)$ | $0.0014(5)$ | $0.0024(6)$ | $0.0022(6)$ |
| $\mathrm{C}(3)$ | $0.0340(8)$ | $0.0326(8)$ | $0.0282(7)$ | $-0.0029(6)$ | $0.0069(6)$ | $0.0005(6)$ |
| $\mathrm{C}(4)$ | $0.0344(8)$ | $0.0348(8)$ | $0.0233(7)$ | $-0.0014(5)$ | $0.0019(6)$ | $-0.0020(6)$ |
| $\mathrm{C}(5)$ | $0.0267(7)$ | $0.0300(7)$ | $0.0245(7)$ | $0.0035(5)$ | $0.0007(5)$ | $-0.0011(5)$ |
| $\mathrm{C}(6)$ | $0.0383(8)$ | $0.0242(7)$ | $0.0383(9)$ | $0.0053(6)$ | $0.0083(7)$ | $0.0024(6)$ |
| $\mathrm{N}(7)$ | $0.0311(6)$ | $0.0236(6)$ | $0.0229(6)$ | $0.0025(4)$ | $0.0046(4)$ | $0.0025(4)$ |
| $\mathrm{C}(8)$ | $0.0223(6)$ | $0.0263(7)$ | $0.0230(6)$ | $-0.0008(5)$ | $-0.0014(5)$ | $-0.0010(5)$ |
| $\mathrm{O}(9)$ | $0.0343(6)$ | $0.0292(5)$ | $0.0271(5)$ | $-0.0009(4)$ | $0.0061(4)$ | $0.0033(4)$ |
| $\mathrm{C}(10)$ | $0.0409(9)$ | $0.0259(7)$ | $0.0342(8)$ | $0.0009(6)$ | $0.0053(7)$ | $0.0049(6)$ |
| $\mathrm{O}(11)$ | $0.0352(6)$ | $0.0298(5)$ | $0.0280(5)$ | $0.0064(4)$ | $0.0019(4)$ | $0.0007(4)$ |
| $\mathrm{C}(12)$ | $0.0278(7)$ | $0.0239(6)$ | $0.0226(7)$ | $0.0016(5)$ | $0.0041(5)$ | $-0.0002(5)$ |
| $\mathrm{O}(13)$ | $0.0287(5)$ | $0.0467(7)$ | $0.0269(6)$ | $-0.0010(4)$ | $-0.0029(4)$ | $0.0056(4)$ |
| $\mathrm{C}(14)$ | $0.0348(8)$ | $0.0602(11)$ | $0.0265(8)$ | $0.0044(7)$ | $-0.0047(6)$ | $0.0041(8)$ |
| $\mathrm{C}(15)$ | $0.0293(7)$ | $0.0297(7)$ | $0.0287(7)$ | $0.0013(6)$ | $0.0025(6)$ | $-0.0006(6)$ |
| $\mathrm{C}(16)$ | $0.0366(8)$ | $0.0437(9)$ | $0.0318(8)$ | $-0.0024(7)$ | $-0.0026(7)$ | $-0.0048(7)$ |

Table A11 Hydrogen coordinates and isotropic displacement parameters $\left(\AA^{2}\right)$ for 306.

|  | x | y | z | U |
| :--- | :--- | :--- | :---: | :---: |
| $\mathrm{H}(2)$ | $1.0606(18)$ | $0.2443(15)$ | $0.4691(13)$ | $0.039(5)$ |
| $\mathrm{H}(3)$ | $0.9795(17)$ | $0.1906(16)$ | $0.3301(13)$ | $0.037(5)$ |
| $\mathrm{H}(4)$ | $0.7981(19)$ | $0.2569(16)$ | $0.2884(15)$ | $0.049(6)$ |
| $\mathrm{H}(6 \mathrm{~A})$ | $0.7050(18)$ | $0.5835(16)$ | $0.4646(14)$ | $0.043(5)$ |
| $\mathrm{H}(6 B)$ | $0.804(2)$ | $0.6100(17)$ | $0.5357(14)$ | $0.049(6)$ |
| $\mathrm{H}(10 \mathrm{~A})$ | $0.6507(18)$ | $0.6597(17)$ | $0.6245(14)$ | $0.045(5)$ |
| $\mathrm{H}(10 B)$ | $0.5594(19)$ | $0.5843(15)$ | $0.5669(14)$ | $0.041(5)$ |
| $\mathrm{H}(14 \mathrm{~A})$ | $0.677(2)$ | $0.4110(17)$ | $0.2519(15)$ | $0.052(6)$ |
| $\mathrm{H}(14 \mathrm{~B})$ | $0.6101(19)$ | $0.2998(19)$ | $0.2796(14)$ | $0.052(6)$ |
| $\mathrm{H}(14 \mathrm{C})$ | $0.555(2)$ | $0.4245(17)$ | $0.2897(14)$ | $0.047(5)$ |
| $\mathrm{H}(16)$ | $1.071(2)$ | $0.4350(19)$ | $0.6997(16)$ | $0.060(7)$ |

Table A12 Torsion angles [ ${ }^{\circ}$ ] for 306.

| $\mathrm{C}(12)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $1.7(2)$ | $\mathrm{C}(15)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $-175.66(13)$ |
| :--- | :---: | :--- | :---: |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | $0.5(2)$ | $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $-1.3(2)$ |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(12)$ | $0.0(2)$ | $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(13)$ | $179.96(13)$ |
| $\mathrm{C}(10)-\mathrm{C}(6)-\mathrm{N}(7)-\mathrm{C}(8)$ | $-17.07(16)$ | $\mathrm{C}(10)-\mathrm{C}(6)-\mathrm{N}(7)-\mathrm{C}(12)$ | $169.48(13)$ |
| $\mathrm{C}(6)-\mathrm{N}(7)-\mathrm{C}(8)-\mathrm{O}(9)$ | $5.93(16)$ | $\mathrm{C}(6)-\mathrm{N}(7)-\mathrm{C}(8)-\mathrm{O}(11)$ | $-174.97(14)$ |
| $\mathrm{C}(12)-\mathrm{N}(7)-\mathrm{C}(8)-\mathrm{O}(9)$ | $179.47(12)$ | $\mathrm{C}(12)-\mathrm{N}(7)-\mathrm{C}(8)-\mathrm{O}(11)$ | $-1.4(2)$ |
| $\mathrm{N}(7)-\mathrm{C}(8)-\mathrm{O}(9)-\mathrm{C}(10)$ | $8.94(15)$ | $\mathrm{O}(11)-\mathrm{C}(8)-\mathrm{O}(9)-\mathrm{C}(10)$ | $-170.23(14)$ |
| $\mathrm{C}(8)-\mathrm{O}(9)-\mathrm{C}(10)-\mathrm{C}(6)$ | $-19.31(16)$ | $\mathrm{N}(7)-\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{O}(9)$ | $20.93(16)$ |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{C}(5)$ | $-2.9(2)$ | $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{N}(7)$ | $178.01(12)$ |
| $\mathrm{C}(15)-\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{C}(5)$ | $174.35(13)$ | $\mathrm{C}(15)-\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{N}(7)$ | $-4.7(2)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(12)-\mathrm{C}(1)$ | $2.1(2)$ | $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(12)-\mathrm{N}(7)$ | $-178.81(13)$ |
| $\mathrm{O}(13)-\mathrm{C}(5)-\mathrm{C}(12)-\mathrm{C}(1)$ | $-177.83(12)$ | $\mathrm{O}(13)-\mathrm{C}(5)-\mathrm{C}(12)-\mathrm{N}(7)$ | $1.24(19)$ |
| $\mathrm{C}(6)-\mathrm{N}(7)-\mathrm{C}(12)-\mathrm{C}(1)$ | $107.27(16)$ | $\mathrm{C}(6)-\mathrm{N}(7)-\mathrm{C}(12)-\mathrm{C}(5)$ | $-71.80(19)$ |
| $\mathrm{C}(8)-\mathrm{N}(7)-\mathrm{C}(12)-\mathrm{C}(1)$ | $-65.47(18)$ | $\mathrm{C}(8)-\mathrm{N}(7)-\mathrm{C}(12)-\mathrm{C}(5)$ | $115.47(15)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(13)-\mathrm{C}(14)$ | $-9.5(2)$ | $\mathrm{C}(12)-\mathrm{C}(5)-\mathrm{O}(13)-\mathrm{C}(14)$ | $170.46(13)$ |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(15)-\mathrm{C}(16)$ | $38(2)$ | $\mathrm{C}(12)-\mathrm{C}(1)-\mathrm{C}(15)-\mathrm{C}(16)$ | $-139.4(19)$ |


[^0]:    * A few examples of arylation of $N$-aryl carbamates without further rearrangement were known. ${ }^{[43]}$ Insertion of arynes into $N$-methyl-2-oxazolidinone has been reported more recently ${ }^{[148,149]}$

[^1]:    ${ }^{\dagger}$ Shi was unable to trap the proposed intermediate with an external electrophile, even when ketone-derived hydrazones were used. Trapping with benzyne appears favourable with ketone hydrazones under our conditions.

[^2]:    $\ddagger$ Numbered according to indole scaffold for consistency

[^3]:    * In toluene, oxidative insertion of an aryltriflate under the same conditions resulted in a tightly-bound ion pair.

[^4]:    $\dagger$ A small quantity of $1,1^{\prime}$-di-tert-butylbiphenyl was also added to each example.

[^5]:    ${ }^{\text {a }}$ Conditions: $5 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}, 0.12$ eq. $\left[\mathrm{HP}(t-\mathrm{Bu})_{3}\right] \mathrm{BF}_{4}, 2$ eq. $\mathrm{ArB}(\mathrm{OH})_{2}, 3$ eq. $\mathrm{K}_{3} \mathrm{PO}_{4}, 5 \mathrm{~h}, 90^{\circ} \mathrm{C}$.
    ${ }^{\mathrm{b}}$ With 1.1 eq. of boronic acid.

[^6]:    $\ddagger$ Urawa et al. attributed their success to the inhibition of boronic acid-assisted nitrile hydrolysis.

[^7]:    ${ }^{\text {a }}$ Conditions: $5 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}, 0.12$ eq. $\left[\mathrm{HP}(t-\mathrm{Bu})_{3}\right] \mathrm{BF}_{4}, 2$ eq. $\mathrm{ArB}(\mathrm{OH})_{2}, 3$ eq. $\mathrm{K}_{3} \mathrm{PO}_{4}, 5 \mathrm{~h}, 90^{\circ} \mathrm{C}$.

[^8]:    § Long alkyl chains are often incorporated into discotic liquid crystal monomers to alter their supramolecular (and sometimes handling) characteristics.

