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The main contribution of the present thesis is a solution to finite horizon optimal
stopping problems associated with pricing several exotic options, namely the Ameri-
can lookback option with fixed strike, the British lookback option with fixed strike,
American swing put option and shout put option. We assume the geometric Brown-
ian motion model and under the Markovian setting we reduce the optimal stopping
problems to free-boundary problems. The latter we solve by probabilistic arguments
with help of local time-space calculus on curves ([52]) and we characterise optimal
exercise boundaries as the unique solution to certain integral equations. Then using
these optimal stopping boundaries the option price can be obtained.

The significance of Chapters 2 and 3 is a development of a method of scaling strike
which helps to reduce three-dimensional optimal stopping problems, for lookback
options with fixed strike, including a maximum process to two-dimensional one with
varying parameter. In Chapter 3 we show a remarkable example where, for some
values of the set parameters, the optimal exercise surface is discontinuous which
means that the three-dimensional problem could not be tackled straightforwardly
using local time-space calculus on surfaces ([55]). This emphasises another advantage
offered by the reduction method.

In Chapter 4 we study the multiple optimal stopping problems with a put payoff
associated to American swing option using local time-space calculus. To our knowl-
edge this is the first work where a) a sequence of integral equations has been obtained
for consecutive optimal exercise boundaries and b) the early exercise premium rep-
resentation has been derived for swing option price. Chapter 5 deals with the shout
put option which allows the holder to lock the profit at some time τ and then at
time T take the maximum between two payoffs at τ and T . The novelty of the work
is that it provides a rigorous analysis of the free-boundary problem by probabilistic
arguments and derives an integral equation for the optimal shouting boundary along
with the shouting premium representation for the option price in some cases. This
approach can also be applied to other shout and reset options.

In Chapter 6 we discuss a problem of the smooth-fit property for the American put
option in an exponential Lévy model. In [2] the necessary and sufficient condition
was obtained for the perpetual case. Recently Lamberton and Mikou [40] covered
almost all cases for an exponential Lévy model with dividends on finite horizon and
we study remaining cases. Firstly, we take the logarithm of the stock price as a Lévy
process of finite variation with zero drift and finitely many jumps, and prove that
one has the smooth-fit property without regularity unlike in the infinite horizon case.
Secondly, we provide some analysis and calculations for another case uncovered in
[40] where the drift is positive but for all maturities and removing the additional
condition they used.

The result of Chapter 1 is contained in the publication [33] and results of Chapters
2-5 are exposed in preprints [34], [17] and [35] that are submitted for publication.
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Chapter 1

Introduction

Optimal stopping theory is one of the most developed and exciting parts of modern

stochastic calculus. The origin of this theory goes back to Wald’s sequential anal-

ysis [72] in 1943. Later Snell [67] in 1952 formulated a general optimal stopping

problem for discrete-time case and characterised the value function as the smallest

supermartingale which dominates the gain process (so-called Snell’s envelope). Snell’s

work refers to martingale methods and the solutions to the optimal stopping prob-

lems were in the form of conditional expectations with respect to natural filtration

of the process and they are hard to compute explicitly unless the underlying pro-

cess is Markov in which case the conditional expectations are significantly simplified.

Dynkin [19] in 1963 discovered the key principle of the optimal stopping theory for

Markov processes called the superharmonic characterisation and which states that the

value function of optimal stopping problem is the smallest superharmonic function

(with respect to underlying Markov process) which dominates the gain function. This

principle has a clear geometric interpretation for the case of a Wiener process and

states that the value function of sup (inf) problem is the smallest concave (convex)

function dominating the obstacle. The latter is nothing but the Legendre transform

in convex theory and goes back to Mandelbrot and Fenchel (see [56] for a detailed

explanation of this connection) and this fact allows us to find a closed form for the

value function using the known expression for the Legendre transform of the gain

function.

14
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Another fascinating feature of the optimal stopping theory is that it is the place

where probabilists and PDE specialists meet together, since discovered by Mikhale-

vich [49] in 1958 and McKean in 1965 [47] an optimal stopping problems can be

reduced to free-boundary problems from mathematical analysis. The resulting sys-

tem contains a PDE (with differential operator associated to underlying diffusion

process) of the value function in some open set with an unknown (free) boundary

which is the optimal stopping boundary of the original problem. A systematic re-

search of optimal stopping problems by their reduction to free-boundary problems

was started by Grigelionis and Shiryaev [25] in 1966.

Most of these theoretical developments above were driven by solving particular

examples with real applications which can be formulated or reformulated as the op-

timal stopping problems. Some of the examples are the following: 1) statistics of

stochastic processes: quickest detection and sequential testing problems (see [65]); 2)

sharp inequalities in stochastic analysis, e.g. Wald inequalities, Doob inequalities and

Burkholder-Davis-Gundy inequalities etc; 3) mathematical finance problems, partic-

ularly, American options pricing; 4) financial engineering issues such as optimal asset

selling and optimal prediction problems. All these examples above were thoroughly

exposed and studied in [58].

This thesis deals with the application of optimal stopping theory to the arbitrage-

free pricing of American style options and a development of the methodology to

tackle arising problems. The classical example of an optimal stopping problem in

mathematical finance is the American put option

V = sup
0≤τ≤T

E e−rτ
(
K −Xτ

)+

(1.1)

where V is the arbitrage-free price, the process X is a geometric Brownian motion,

K > 0 is the strike price, 0 < T ≤ ∞ is the maturity time, r > 0 is the interest rate,

and the supremum is taken over all stopping times τ with respect to natural filtration

of X and the discount price (e−rsXs)s≥0 is a martingale under P. When T = ∞ the

problem (1.1) becomes one-dimensional and can be tackled by using a free-boundary

approach and the so-called smooth-fit property. The value function V then can be
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found explicitly along with the optimal stopping threshold b. On the other hand

when T is finite the optimal stopping problem becomes two-dimensional as now the

time left to expiry plays a significant role and b is not constant but a function of

time. Therefore the mathematical analysis of this problem is more challenging and

has been developed gradually. Firstly, McKean [47] in 1965 expressed V in terms

of boundary b and the latter itself was solution to a countable system of nonlinear

integral equations. This approach goes back to Kolodner [38] in 1956 who applied

this train of thought to the Stefan problem in mathematical physics. Van Moerbeke

[69] in 1976 then continued the work of McKean and obtained single integral equation

by connecting the American put option problem to the physical problem. In both

works [47] and [69] the integral equations did not have any financial interpretations

and had purely mathematical tractability.

Eventually Kim [32] in 1990, Carr, Jarrow, Myneni [12] in 1992 and Jacka [30]

in 1997 independently derived a nonlinear integral equation for b that had appeared

from the early exercise premium representation for V having a financial meaning.

However the question of the uniqueness of the solution to the integral equation was

left open. Finally, Peskir [53] in 2005 provided the early exercise representation for

V and integral equation for b using the local time-space formula [52]. Moreover and

most crucially, he proved the uniqueness of solution. This work [53] opened the door

for solving other finite horizon optimal stopping problems, e.g. Russian option [54],

Asian option etc.

In this thesis we mainly deal with some exotic American options by using local

time-space calculus and provide their theoretical and financial analysis. Chapter 2

has appeared as journal publication in Stochastics and Chapters 3 and 4 have been

submitted to Applied Mathematical Finance and Finance and Stochastics, respec-

tively, and currently are under review. Chapter 5 is a preprint [35] and Chapter 6 is

based on work which is under progression now. All chapters are self-contained and

have detailed introductions however below we will highlight the main contribution

and novelty of the research presented in this thesis.

Chapter 2 is based on [33] and considers the American lookback option with fixed
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strike

V = sup
0≤τ≤T

E e−rτ
(
max
0≤s≤τ

Ss −K
)+

(1.2)

where τ is a stopping time of the geometric Brownian motion S solving

dSt = rSt dt+ σSt dBt (S0 = s) (1.3)

and where B is a standard Brownian motion started at zero, T > 0 is the expiration

date (maturity), K > 0 is the strike, r > 0 is the interest rate, and σ is the volatility

coefficient.

Optimal stopping problems of type (1.2) have been solved for different cases in a

number of papers. The main difficulty arising in this problem is that the maximum

process is not Markov itself and we have to add the stock price process to achieve

this which increases the dimension of the underlying process. First, in the case

T = ∞ Shepp and Shiryaev [62] solved the problem when the strike K equals zero

(the Russian option) using a two–dimensional Markov setting (stock price and its

running maximum). Later in [63] they noticed that this optimal stopping problem

can be reduced to a one-dimensional Markov setting by a Girsanov change-of-measure

theorem. Pedersen [50] then solved the problem (1.2) when K > 0 in the case of

infinite horizon using the Peskir’s maximality principle [51]. As we mentioned above

the optimal stopping problems with finite horizon include time as an extra dimension

and thus are analytically more difficult than those with an infinite horizon. After

applying the change of measure [63] and reducing the problem (1.2) with finite horizon

and zero strike (the Russian option) to two dimensions (for a time-space Markov

process), the resulting optimal stopping problem was solved by Peskir [54] using

the change-of-variable formula with local time on curves [52]. Finally extending this

method to the problem (1.2) with finite horizon and non-zero strike (without applying

the change of measure), the resulting optimal stopping problem in three dimensions

was solved by Gapeev [21] using the change-of-variable formula with local time on

surfaces [55].

The main contribution and novelty of Chapter 2 is the illustration of another

approach for solving this three-dimensional problem when K > 0 and T < ∞ using
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the Girsanov theorem. We show that the arbitrage-free price and optimal stopping set

in (1.2) can be expressed by the value function and the optimal stopping boundary of

a two-dimensional problem with a scaling strike. We then provide some analysis and

prove of all technical conditions in two-dimensional setting. However it is important

to emphasize that we first fix strike K̃ and solve the two-dimensional problem, and

then to determine the option price and rational exercise boundary we vary the strike,

thus the problem inherently remains three-dimensional. This method was also used

to derive a solution for the British lookback option with fixed strike (cf. Chapter 3).

This approach simplifies the discussion and expressions for the arbitrage-free price

and the rational exercise boundary rather than solving (1.2) straightforwardly in

three-dimensional setting. The dimension of optimal stopping problems often plays

a crucial role in finding their solutions, therefore the idea of this approach could be

useful in reducing dimension of related optimal stopping problems as well.

Chapter 3 is based on preprint [34] and studies the British lookback option with

fixed strike. Recently, Peskir and Samee (see [59], [60]) introduced a new type of op-

tions called ‘British’. The main idea of this protection option is to give a holder the

early exercise feature of American options whereupon his payoff (deliverable imme-

diately) is the ‘best prediction’ of the European payoff under the hypothesis that the

true drift of the stock price equals a contract drift which agreed initially. Financial

analysis of the returns of the British put option showed that with the contract drift

properly selected this put option becomes a very attractive alternative to the classic

American put. Then following the rationale of the British put and call options, this

type of options was extended to the Russian option in [23]. Chapter 3 addresses the

British lookback option with fixed strike (non-zero) of call type as we believe that

this is the most interesting case from a mathematical point of view and actually this

problem motivated the development of the method of a scaling strike in Chapter 2.

Chapter 3 includes two parts: analytical solution and financial analysis. The

theoretical solution is based on the method of a scaling strike which allows us to reduce

the three-dimensional problem to two-dimensional one with a scaling strike. Using

a local time-space calculus on curves [52] we derive a closed form expression for the
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arbitrage-free price in terms of the optimal stopping boundary of the two-dimensional

optimal stopping problem and show that the rational exercise boundary of the option

can be characterised via the unique solution to a nonlinear integral equation. We also

show the remarkable numerical example where the rational exercise boundary exhibits

a discontinuity with respect to space variable (see Figure 3.4), therefore it was not

possible to apply a change-of-variable formula with local time on surfaces (as e.g. in

[21]) in order to solve the three-dimensional stopping problem directly. This is another

advantage of dimension reduction by the method of a scaling strike. The solution of

the zero-strike case K = 0 (the British Russian option) is fully embedded into the

present problem and can be considered as a particular case. Second part of Chapter

3 provides the financial analysis of the returns of British lookback option with fixed

strike in comparison with its the American and the European counterparts. In line

with [59], [60] and [23] this option has been shown to be a very attractive financial

instrument for investors.

Chapter 4 is a preprint [17] and applies the local time-space calculus for pricing

so-called swing options. These contracts are financial products designed primarily

to allow for flexibility on purchase, sale and delivery of commodities in the energy

market. They have features of American-type options with multiple early exercise

rights and in many relevant cases are mathematically described in terms of multi-

ple optimal stopping problems. Mathematical formulations of such problems in the

economic-financial literature date back to the early 1980’s and an exhaustive survey

of them may be found in [31, Sec. 1 and 2] and references therein. Theoretical and

numerical aspects of pricing and hedging swing contracts have received increasing

attention in the last decade with many contributions from a number of authors de-

veloping in parallel several methods of solution (see e.g. [45] for an extensive review

of recent results). Main examples are Monte-Carlo methods, variational approach

in Markov setting, BSDE techniques, martingale methods and Snell envelope. On

the other hand despite the general interest towards the theoretical aspects of swing

options it seems that the problem of characterising analytically the optimal exercise
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boundaries has not been thoroughly studied yet. For perpetual options such bound-

aries have been provided for a put payoff in the Black-Scholes framework in [11],

whereas more general dynamics and payoffs were studied in [10]. For the case of

finite horizon the problem is still widely open and the question of finding analytical

equations for the optimal stopping boundaries remains unanswered. In Chapter 4 we

address this issue in a setting described below.

We consider the case of a swing option with a put payoff, finite maturity T > 0,

strike priceK > 0 and n ∈ N exercise rights. The underlying price follows a geometric

Brownian motion and we consider an option whose structure was described in [29]

and [31]. In particular the holder can only exercise one right at a time and then

must wait at least for a so-called refracting period of length δ > 0 between two

consecutive exercises. If the holder has not used the first of the n rights by time

T −(n−1)δ then at that time she must exercise it and remains with a portfolio of

n−1 European put options with different maturities up to time T . This corresponds

to the case of a swing option with a constrained minimum number of exercise rights

equal to n. We first perform an analysis using probabilistic arguments of the option

with n = 2 and prove the existence of two continuous, monotone, bounded optimal

stopping boundaries. It turns out that the continuation set is between these two

boundaries. We provide an early exercise premium representation for the price of

the option in terms of the optimal stopping boundaries and adapting arguments of

[18] (see also [53]) we show that such boundaries uniquely solve a system of coupled

integral equations of Volterra type. Finally we extend the result to the general case

of n exercise rights by induction.

Chapter 5 is a preprint [35] and studies the shout put option. This option belongs

to the class of contracts with reset feature, i.e. the holder can change the structure of

the European option at some point. There are two groups of options of this type: 1)

shout (call or put) option which allows the holder to lock the profit at some favourable

time τ (if there is such) and then at time T take the maximum between two payoffs

at τ and T ; 2) reset (call or put) option gives to investor the right to reset the strike
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K to current price, i.e. to substitute the current out-of-the money option to the at-

the-money one. We study the first group and we note that they have both European

(since the payoff is known at T only) and American features (due to early ‘shouting’

opportunity). Therefore we formulate the pricing problem as an optimal stopping

problem, or more precisely an optimal prediction problem since the payoff is claimed

and known only at T and thus the gain function is non-adapted. We then reduce it to

a standard optimal stopping problem with adapted payoff and study the associated

free-boundary problem.

The main contribution of this Chapter 5 is that we exploit probabilistic arguments

including local time-space calculus ([52]) and as a result we characterise the optimal

shouting boundary as the unique solution to a nonlinear integral equation. Then we

derive a shouting premium presentation for the option’s price via optimal shouting

boundary. These results have been proven for some case, since in the opposite case

the proof of the monotonicity of the boundary is currently an open problem. However,

numerical analysis shows that the optimal shouting boundary seems to be increasing.

In the literature the numerical methods such as binomial tree, Monte-Carlo and an-

alytical approaches such as PDE, variational inequalities, series expansions, Laplace

transform have been applied. We note that the technique we used can be applied

to solve pricing problems for shout call and reset call and put options. Moreover,

the shout put option is equivalent to reset call option in the sense that their optimal

strategies coincide and the same fact is true for shout call and reset put options.

We conclude the paper by financial analysis of the shout put option and particularly

its financial returns compare to its American, European and British (see [59]) put

counterparts. In the numerical example it has been shown that the British option

generally outperform others and that there is a large region below K where the shout

option’s returns are greater than American put option’s returns. This fact is pleas-

ant for an investor who wishes to lock the profit in that region while enjoying the

possibility to increase his payoff from a favourable future movement at the maturity

T .

Finally in Chapter 6 we discuss a problem about the smooth-fit property for the
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American put option in an exponential Lévy model with dividends. This principle

has been proved in a classical Black-Scholes model for both infinite and finite horizons

(see e.g. Section 25 in [58]) and helps to solve the corresponding optimal stopping and

free-boundary problems. However for exponential Lévy model the picture changes

and the smooth-fit property may not hold, e.g. in [13] authors showed an example of

the CGMY model where the principle fails. Alili and Kyprianou [2] studied perpetual

case and delivered the necessary and sufficient condition (namely the regularity of the

logarithm of stock price with respect to negative half-line) in the exponential Lévy

model without dividends. Recently Lamberton and Mikou [40] proved several results

for ab exponential Lévy model with dividends on finite horizon. Firstly they showed

that the condition derived in [2] is also sufficient for the finite horizon case. Then

without this condition, i.e. when logarithm of the stock price is of finite variation

and has positive drift, Lamberton and Mikou showed absence of the smooth-fit at

least for large maturities. Finally, under a stronger condition they proved that the

smooth-fit fails irrespective of the size of maturity.

The contribution of Chapter 6 is to provide an example showing that the necessary

and sufficient condition for the infinite horizon case is not applicable for the finite

horizon case and it is caused by the fact that the optimal stopping boundary is strictly

increasing unlike in the perpetual case. Namely, we take the logarithm of the stock

price as a Lévy process of finite variation with zero drift and finitely many jumps, and

prove that one has the smooth-fit property without regularity. Secondly, we provide

some analysis and calculations for the another case uncovered in [40] where the drift

is positive but for all maturities and removing the additional condition they used.

We then propose open questions and finding answers to them could help to resolve

this problem.



Chapter 2

The American lookback option

with fixed strike

2.1. Introduction

According to theory of modern finance (see e.g. [66]) the arbitrage-free price of

the lookback option with fixed strike coincides with the value function of the optimal

stopping problem (2.1) below. In the case of infinite horizon T Shepp and Shiryaev

[62] solved the problem when the strike K equals zero (the Russian option) using

a two–dimensional Markov setting (stock price and its running maximum). Then

in [63] they noticed that this optimal stopping problem can be reduced to a one-

dimensional Markov setting by a Girsanov change-of-measure theorem. Pedersen

[50] solved the problem (2.1) when K > 0 in the case of infinite horizon using the

maximality principle [51] (for recent extensions to Lévy processes see [39]).

The optimal stopping problems for the maximum processes with finite horizon

are inherently three-dimensional (time-process-maximum) and thus analytically more

difficult than those with infinite horizon. After applying the change of measure [63]

and reducing the problem (2.1) with finite horizon and zero strike (the Russian option)

to two dimensions (for a time-space Markov process), the resulting optimal stopping

problem was solved by Peskir [54] using the change-of-variable formula with local

time on curves [52]. The optimal stopping boundary was determined as the unique

23
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solution of the nonlinear integral equation arising from the formula. Extending this

method to the problem (2.1) with finite horizon and non-zero strike (without applying

the change of measure), the resulting optimal stopping problem in three dimensions

was solved by Gapeev [21] using the change-of-variable formula with local time on

surfaces [55].

The main purpose of this paper is to illustrate another approach for solving this

three-dimensional problem using the Girsanov theorem. We show that the arbitrage-

free price and optimal stopping set in (2.1) can be expressed by the value function

and the optimal stopping boundary of a two-dimensional problem with a scaling

strike. Hence we prove all technical conditions in two-dimensional setting. However

it is important to emphasize that we first fix strike K and solve the two-dimensional

problem, and then to determine the option price and rational exercise boundary we

vary the strike, thus the problem inherently remains three-dimensional. This method

can also be used to derive solution for the British lookback option with fixed strike

(Chapter 3). Another feature of this method is that closed form expression for the

value function in (2.1) and nonlinear integral equations for optimal stopping boundary

are simpler than in [21]. Dimension of optimal stopping problems often plays a crucial

point in finding their solutions, therefore the idea of this approach could be useful in

reducing dimension of related optimal stopping problems as well.

In Section 2.2 we formulate the lookback option with fixed strike in the case

of finite horizon and present reduction of the initial problem to a two-dimensional

optimal stopping problem using a change of measure. In Section 2.3 we solve the two-

dimensional problem and in Section 2.4 we apply that solution to the initial problem.

In Section 2.5 we make a conclusion and propose a programme for future research

using this approach.

2.2. Formulation of the problem and its reduction

The arbitrage-free price of the lookback option with fixed strike is given by

V = sup
0≤τ≤T

E e−rτ
(
max
0≤s≤τ

Ss −K
)+

(2.1)
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where τ is a stopping time of the geometric Brownian motion S solving

dSt = rSt dt+ σSt dBt (S0 = s). (2.2)

We recall that B is a standard Brownian motion started at zero, T > 0 is the

expiration date (maturity), K > 0 is the strike, r > 0 is the interest rate, and σ is

the volatility coefficient.

Let us consider the Markovian extension using the structures of processes maxS

and S, which leads to the following value function

V (t,m, s) = sup
0≤τ≤T−t

E e−rτ
(
m ∨ max

0≤u≤τ
sSu −K

)+

(2.3)

with St = eσBt+(r−σ2

2
)t starting at 1. It is well known that process Mt = max0≤s≤t Ss

is not Markov, but the pair (S,M) forms a Markov process. Hence this problem

is three-dimensional with the Markov process (t,Mt, St)t≥0 due to presence of the

finite horizon. Since the dimension of the problem is very important, any possibility

of reducing the dimension becomes significant. When K = 0 in [63] and [54] the

following reduction was used

Ee−rτMτ = Ee−rτSτ
Mτ

Sτ

= Ẽ
Mτ

Sτ

(2.4)

where the expectation Ẽ is taken under a new measure P̃ and the process M/S is a

one-dimensional Markov process under this measure. In the case of non-zero strike

one cannot make reduction in the same way straightforwardly. Gapeev [21] solved

(2.3) in a three-dimensional setting using the local time-space calculus on surfaces

[55]. Current paper illustrates a different approach to the solution of (2.3).

Now we will discuss how to reduce problem (2.3) to a two-dimensional problem

with a scaling strike. By the change of measure we have

E e−rτ
(
m ∨ max

0≤u≤τ
sSu −K

)+

= s Ẽ
(m ∨max0≤u≤τ sSu

sSτ

− K

sSτ

)+

(2.5)

= s Ẽ
(m ∨K ∨max0≤u≤τ sSu

sSτ

− K

sSτ

)
where dP̃ = e−rTSTdP so that B̂t = Bt−σt is a standard Brownian motion under P̃

for 0 ≤ t ≤ T and in the second equality we used fact that (x− y)+ = x ∨ y − y for
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x, y ∈ IR. The strong solution of (2.2) is given by

St = s exp
(
σBt + (r−σ2/2)t

)
= s exp

(
σB̂t + (r+σ2/2)t

)
. (2.6)

Hence it is easily seen that Ẽ 1
Sτ

= Ẽe−rτ and it follows from (2.5) that we have

E e−rτ
(
m ∨ max

0≤u≤τ
sSu −K

)+

= s Ẽ
( m∨K

s
∨Mτ

Sτ

− K
s
e−rτ

)
(2.7)

= s Ẽ
( m∨K

s
∨Mτ

Sτ

− Kert

s
e−r(t+τ)

)
where Mt = max0≤u≤t Su. This motivates us to fix K̃ = Kert/s and consider the

following two-dimensional (time-space) optimal stopping problem:

W (t, x) = W (t, x; K̃) = sup
0≤τ≤T−t

Ẽ
(
Xx

τ − K̃e−r(t+τ)
)

(2.8)

where Xx
t = x∨Mt

St
is a Markov process. By Ito’s formula one finds that

dXt = −rXtdt+ σXtdB̃t + dRt (2.9)

under P̃ where B̃ = −B̂ is a standard Brownian motion, and we set

Rt =

∫ t

0

I(Xs = 1)
dMs

Ss

. (2.10)

It is clear from (2.7) that the initial value (2.3) can be expressed as

V (t,m, s) = sW
(
t, m∨K

s
; Kert

s

)
(2.11)

and the optimal stopping set in (2.3) is given by

D = { (t,m, s) : sW
(
t, m∨K

s
; Kert

s

)
= (m−K)+ }. (2.12)

In the next section we solve the two-dimensional problem (2.8).

2.3. The two-dimensional problem

Let us consider the optimal stopping problem

W (t, x) = sup
0≤τ≤T−t

ẼG(t+τ,Xx
τ ) (2.13)
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where the process X from (2.9) with Xx
0 = x under P̃, 0 ≤ t ≤ T, x ≥ 1 and the gain

function is given by G(t, x) = x− K̃e−rt. This section parallels the derivation of the

solution [54] when G(t, x) = x for x ≥ 1 and presents needed modifications since in

(2.13) the gain function depends on time in a nonlinear way.

Standard Markovian arguments (see e.g. [58]) indicate that W solves the following

free-boundary problem:

Wt + LXW = 0 in C (2.14)

W (t, x) = G(t, x) for x = b(t) (2.15)

Wx(t, x) = 1 for x = b(t) (2.16)

Wx(t, 1+) = 0 (normal reflection) (2.17)

W (t, x) > G(t, x) in C (2.18)

W (t, x) = G(t, x) in D (2.19)

where the continuation set C and the stopping set D are defined by

C = { (t, x) ∈ [0, T )×[1,∞) : x < b(t) } (2.20)

D = { (t, x) ∈ [0, T )×[1,∞) : x ≥ b(t) } (2.21)

and b : [0, T ] → R is the unknown optimal stopping boundary, i.e the stopping time

τb = inf { 0 ≤ s ≤ T − t : Xx
s ≥ b(t+s) } (2.22)

is optimal in the problem (2.13).

Our main aim is to follow the train of thought where W is first expressed in terms

of b, and b itself is shown to satisfy a nonlinear integral equation. We will moreover

see that the nonlinear equation derived for b cannot have other solutions. (We also

note that in the Section 2.4 we will consider the value function W (t, x) = W (t, x; K̃)

and the optimal stopping boundary b(t) = b(t; K̃) as the functions of strike K̃ as

well.) Below we will use the following functions:

F (t, x) = Ẽ (Xx
t ) (2.23)
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H(t, u, x, y) = Ẽt,x(G(u,Xu)I(Xu ≥ y)) =

∫ ∞

y

(z−K̃e−ru)f(u−t, x, z) dz (2.24)

for t ∈ [0, T ], x ≥ 1, u ∈ (t, T ], y ≥ 1, where z 7→ f(u−t, x, z) is the probability

density function of Xx
u−t under P̃ and P̃t,x (·) = P̃ ( · |Xt = x ).

The main result of present section may now be stated as follows.

Theorem 2.3.1. The optimal stopping boundary in the problem (2.13) can be char-

acterised as the unique continuous decreasing solution b : [0, T ] → IR of the nonlinear

integral equation

b(t) = K̃(e−rt−e−rT ) + F (T−t, b(t)) + r

∫ T

t

H(t, u, b(t), b(u)) du (2.25)

satisfying b(t) > (K̃e−rt ∨ 1) for 0 < t < T . The solution b satisfies b(T−) =

(K̃e−rT ∨ 1) and the stopping time τb from (2.22) is optimal in (2.13) (see Figure

2.1).

The value function (2.13) admits the following representation:

W (t, x) = −K̃e−rT + F (T−t, x) + r

∫ T

t

H(t, u, x, b(u)) du (2.26)

for all (t, x) ∈ [0, T ]× [1,∞).

Proof. The proof will be carried out in several steps. We start by stating some general

remarks.

We see that W admits the following representation:

W (t, x) = sup
0≤τ≤T−t

Ẽ
((x−Mτ )

+ +Mτ

Sτ

− K̃e−r(t+τ)
)

(2.27)

for (t, x) ∈ [0, T ]× [1,∞). It follows that

x 7→ W (t, x) is increasing and convex on [1,∞) (2.28)

for each t ≥ 0 fixed.

1. We show that W : [0, T ]× [1,∞) → IR is continuous. For this, using sup(f)−

sup(g) ≤ sup(f − g) and (y − z)+ − (x − z)+ ≤ (y − x)+ for x, y, z ∈ IR, it follows

that

W (t, y)−W (t, x) ≤ (y − x) sup
0≤τ≤T−t

Ẽ
( 1

Sτ

)
≤ y − x (2.29)
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Figure 2.1: A computer drawing of the optimal stopping boundary
b for the problem (2.13) in the case K̃ = 1.5, T = 1, r = 0.1, σ = 0.4

with the boundary condition b(T ) = K̃e−rT > 1.

for 1 ≤ x < y and all t ≥ 0. From (2.28) and (2.29) we see that x 7→ W (t, x)

is continuous uniformly over t ∈ [0, T ]. Thus to prove that W is continuous on

[0, T ]× [1,∞) it is enough to show that t 7→ W (t, x) is continuous on [0, T ] for each

x ≥ 1 given and fixed. For this, take any t1 < t2 in [0, T ] and ε > 0, and let τ ε1 be a

stopping time such that Ẽ (Xx
τε1
−K̃e−r(t1+τε1 )) ≥ W (t1, x)−ε. Setting τ ε2 = τ ε1 ∧ (T − t2)

we see that W (t2, x) ≥ Ẽ (Xx
τε2
−K̃e−r(t2+τε2 )). Hence, we get

0 ≤ |W (t1, x)−W (t2, x)| (2.30)

≤ |Ẽ (Xx
τε1
−K̃e−r(t1+τε1 ) −Xx

τε2
+K̃e−r(t2+τε2 ))|+ ε.

Letting first t2 − t1 → 0 using τ ε1 − τ ε2 → 0 and then ε → 0 we see that |W (t1, x) −

W (t2, x)| → 0 by dominated convergence. This shows that t 7→ W (t, x) is continuous

on [0, T ], and the proof of the initial claim is complete.

Introduce the continuation set C = { (t, x) ∈ [0, T ] × [1,∞) : V (t, x) > G(t, x) }

and the stopping set D = { (t, x) ∈ [0, T ]× [1,∞) : V (t, x) = G(t, x) }. Since V and

G are continuous, we see that C is open and D is closed in [0, T ]× [1,∞). Standard

arguments based on the strong Markov property (see [58]) show that the first hitting
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time τD = inf { 0 ≤ s ≤ T − t : (t+s,Xx
s ) ∈ D } is optimal in (2.13).

2. We show that the continuation set C just defined is given by (2.20) for some

function b : [0, T ) → (1,∞). It follows in particular that the stopping set coincides

with the set D in (2.21) as claimed. To verify the initial claim, note that by Ito’s

formula and (2.9) we have

Xx
s = x− r

∫ s

0

Xx
u du+

∫ s

0

dMu

Su

+Ns (2.31)

where Ns = σ
∫ s

0
Xx

u dB̃u is a martingale for 0 ≤ s ≤ T. We will first show that

(t, x) ∈ C implies that (t, y) ∈ C for x > y ≥ 1 be given and fixed. For this, let

τ∗ = τ∗(t, x) denote the optimal stopping time for W (t, x). Using (2.31) and the

optimal sampling theorem, we find

W (t, y)− y + K̃e−rt ≥ Ẽ [Xy
τ∗ − K̃e−r(t+τ∗)]− y + K̃e−rt

= −rẼ

∫ τ∗

0

Xy
u du+ Ẽ

∫ τ∗

0

dMu

Su

− K̃Ẽe−r(t+τ∗) + K̃e−rt

≥ −rẼ

∫ τ∗

0

Xx
u du+ Ẽ

∫ τ∗

0

dMu

Su

− K̃Ẽe−r(t+τ∗) + K̃e−rt

= Ẽ [Xx
τ∗ − K̃e−r(t+τ∗)]− x+ K̃e−rt

= W (t, x)− x+ K̃e−rt > 0

proving the claim. The fact just proved establishes the existence of a function b :

[0, T ] → [1,∞] such that the continuation set C is given by (2.20) above.

To gain a deeper insight into the solution, let us apply Ito’s formula for G using

(2.14),(2.17) and that Gt + LXG = −rG:

G(t+s,Xx
s ) = G(t, x)− r

∫ s

0

G(t+u,Xx
u) du+Ns +

∫ s

0

dRu. (2.32)

Thus the optional sampling theorem yield

ẼG(t+τ,Xx
τ ) = G(t, x)− r Ẽ

∫ τ

0

G(t+u,Xx
u) du+ Ẽ

∫ τ

0

dRu (2.33)

for all stopping times τ of X with values in [0, T − t] with t ∈ [0, T ) and x ≥ 1 given

and fixed.

It can be seen from (2.33) and the structure of G that no point (t, x) in [0, T )×

[1,∞) with x <
(
K̃e−rt∨1

)
is a stopping point (for this one can make use of the first
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exit time from a sufficiently small time-space ball centred at the point). Likewise,

it is also clear and can be verified that if x >
(
K̃e−rt ∨ 1

)
and t < T is sufficiently

close to T then it is optimal to stop immediately (since the gain obtained from being

below G cannot offset the cost of getting there due to the lack of time). This shows

that the optimal stopping boundary b satisfies b(T ) =
(
K̃e−rT ∨ 1

)
. It is also clear

and can be verified that if the initial point x ≥ 1 of the process X is sufficiently large

then it is optimal to stop immediately (since the gain obtained from being below G

cannot offset the cost of getting there due to the shortage of time). This shows that

the optimal stopping boundary b is finite valued.

In [54] it was shown that the optimal stopping boundary b(t; 0) > 1 for t ∈ [0, T )

when K̃ = 0. It is easily seen that b(t; K̃) ≥ b(t; 0) for t ∈ [0, T ) and K̃ > 0. Thus

we have that b(t) > 1 for every t ∈ [0, T ).

3. We show that the smooth-fit condition (2.16) holds. For this, let t ∈ [0, T ) be

given and fixed and set x = b(t). We know that x > 1 so that there exists ε > 0 such

that x− ε > 1 too. Since W (t, x) = G(t, x) and W (t, x−ε) > G(t, x−ε), we have:

W (t, x)−W (t, x−ε)

ε
≤ G(t, x)−G(t, x−ε)

ε
≤ 1 (2.34)

Then, let τε = τ ∗ε (t, x−ε) denote the optimal stopping time for W (t, x − ε). We

have

W (t, x)−W (t, x−ε)

ε
(2.35)

≥ 1

ε
Ẽ
((x−Mτε)

+ +Mτε

Sτε

− (x− ε−Mτε)
+ +Mτε

Sτε

)
=

1

ε
Ẽ
((x−Mτε)

+

Sτε

− (x− ε−Mτε)
+

Sτε

)
≥ 1

ε
Ẽ
( 1

Sτε

((x−Mτε)
+ − (x− ε−Mτε)

+)I(Mτε ≤ x−ε)
)

= Ẽ
( 1

Sτε

I(Mτε ≤ x−ε)
)
→ 1

as ε ↓ 0 by bounded convergence, since τε → 0 so that Mτε → 1 with 1 < x−ε and

likewise Sτε → 1. It thus follows from (2.28),(2.34) and (2.35) that W−
x (t, x) ≥ 1 and

W−
x (t, x) ≤ 1. Thus we have that W−

x (t, x) = 1. Since W (t, y) = G(t, y) for y>x, it

is clear that W+
x (t, x) = 1. We may thus conclude that y 7→ W (t, y) is C1 at b(t) and
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Wx(t, b(t)) = 1 as stated in (2.16).

4. We show that inequality is satisfied:

Wt(t, x) ≤ Gt(t, x) (2.36)

for all 0 < t < T and x ≥ 1.

To prove (2.36) fix 0 < t < t + h < T and x ≥ 1. Let τ be the optimal stopping

time for W (t+h, x). Since τ ∈ [0, T − t − h] ⊆ [0, T − t] we see that W (t, x) ≥

Ẽ(Xx
τ −K̃e−r(t+τ)) and we get:

W (t+ h, x)−W (t, x)− (G(t+ h, x)−G(t, x)) (2.37)

≤ Ẽ (−K̃e−r(t+h+τ) + K̃e−r(t+τ)) + K̃e−r(t+h) − K̃e−rt

= K̃e−rt Ẽ (−e−r(h+τ) + e−rτ + e−rh − 1)

= K̃e−rt Ẽ (e−rh(−e−rτ + 1) + e−rτ − 1)

= K̃e−rt Ẽ (e−rh − 1)(−e−rτ + 1) ≤ 0.

Dividing initial expression in (2.37) by h and letting h ↓ 0 we obtain (2.36) for all

(t, x).

5. We show that b is decreasing on [0, T ]. This is an immediate consequence of

(2.37). Indeed, if (t2, x) belongs to C and t1 from (0, T ) satisfies t1 < t2, then by

(2.37) we have that V (t1, x)−G(t1, x) ≥ V (t2, x)−G(t2, x) > 0 so that (t1, x) must

belong to C. It follows that b is decreasing thus proving the claim.

6. We show that b is continuous. Note that the same proof also shows that

b(T−) =
(
K̃e−rT ∨ 1

)
as already established above.

Since the stopping set equals D = { (t, x) ∈ [0, T ) × [1,∞) : V (t, x) = G(t, x) }

and b is decreasing, it is easily seen that b is right-continuous on [0, T ).

Then note that since the supremum in (2.13) is attained at the first exit time

τb from the open set C, standard arguments based on the strong Markov property

(cf. [58]) imply that W is C1,2 on C and satisfies (2.14). Suppose that there exists

t ∈ (0, T ) such that b(t−) > b(t) and fix any x ∈ [b(t), b(t−)). Note that by (2.16)

we have:

W (s, x)− x+ K̃e−rs =

∫ b(s)

x

∫ b(s)

y

Wxx(s, z) dz dy (2.38)
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for each s < t. If Wxx ≥ c on P = { (u, y) ∈ C | s ≤ u < t and x ≤ y < b(u) } for

some c > 0 (for all s < t close enough to t and some x < b(t−) close enough to b(t−))

then by letting s ↑ t in (2.38) we get:

W (t, x)− x+ K̃e−rt ≥ c
(b(t−)− x)2

2
> 0 (2.39)

contradicting the fact that (t, x) belongs to D and thus is an optimal stopping point.

Hence the proof reduces to showing that Wxx ≥ c on small enough P for some c > 0.

To derive the latter fact we may first note from (2.14) upon using (2.36) that

σ2

2
x2Wxx = −Wt + rxWx ≥ −rK̃e−rt + rxWx in C. Suppose now that for each

δ > 0 there is s < t close enough to t and there is x < b(t−) close enough to b(t−)

such that Wx(u, y) ≥ 1− δ for all (u, y) ∈ P (where we recall that 1 = Gx(u, y)

for all (u, y) ∈ P ). Then from the previous inequality we find that Wxx(u, y) ≥

(2/(σ2y2))(r(y − K̃e−ru)− ryδ) ≥ c > 0 for δ > 0 small enough since y > K̃e−ru and

for all (u, y) ∈ P. Hence the proof reduces to showing that Wx(u, y) ≥ 1 − δ for all

(u, y) ∈ P with P small enough when δ > 0 is given and fixed.

To derive latter inequality we can make use of the estimate (2.35) to conclude

that

W (u, y)−W (u, y−ε)

ε
≥ Ẽ

( 1

Sσε

I(Mσε ≤ x−ε)
)

(2.40)

where σε = inf { 0 ≤ v ≤ T−u : Xy−ε
v = b(u+v) } and Mt = max0≤s≤t Ss. Using the

fact that b is decreasing and letting ε → 0 in (2.40) we get

Wx(u, y) ≥ Ẽ
( 1

Sσ

I(Mσ ≤ x)
)

(2.41)

for all (u, y) ∈ P where σ = inf { 0 ≤ v ≤ T−s : Xx
v = b(s+v) }. Since by regularity

of X we find that σ ↓ 0 P̃−a.s. as s ↑ t and x ↓ b(t−), it follows from (2.41) that

Wx(u, y) ≥ 1− δ (2.42)

for all s < t close enough to t and some x > b(t−) close enough to b(t−). This

completes the proof of the claim.

7. We show that the normal reflection condition (2.17) holds. For this, note

first that since x 7→ W (t, x) is increasing (and convex) on [1,∞) it follows that
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Wx(t, 1+) ≥ 0 for all t ∈ [0, T ). Suppose that there exists t ∈ [0, T ) such that

Wx(t, 1+) > 0. Recalling that W is C1,2 on C so that t 7→ Wx(t, 1+) is continuous on

[0, T ), we see that there exists δ > 0 such that Wx(s, 1+) ≥ ε > 0 for all s ∈ [t, t+δ]

with t+δ < T . Setting τδ = τb ∧ δ it follows by Ito’s formula that

ẼW (t+τδ, X
1
τδ
) = W (t, 1) + Ẽ

∫ τδ

0

Wx(t+u,X1
u) dRu (2.43)

using (2.14) and the optional sampling theorem since Wx is bounded.

Since (W (t + (s ∧ τb), X
1
s∧τb))0≤s≤T−t is a martingale under P̃, we find that the

expression on the left-hand side in (2.43) equals the first term on the right-hand side,

and thus

Ẽ

∫ τδ

0

Wx(t+u,X1
u) dRu = 0. (2.44)

On the other hand, since Wx(t+u,X1
u) dRu = Wx(t+u, 1+) dRu by (2.10), and

Wx(t+u, 1+) ≥ ε > 0 for all u ∈ [0, τδ], we see that (2.44) implies that

Ẽ

∫ τδ

0

dRu = 0. (2.45)

By (2.9) and the optional sampling theorem we see that (2.45) is equivalent to

Ẽ (X1
τδ
)− 1 + r Ẽ

∫ τδ

0

X1
u du = 0. (2.46)

Since Xs ≥ 1 for all s ∈ [0, T ] we see that (2.46) implies that τδ = 0 P̃-a.s. As clearly

this is impossible, we see that Wx(t, 1+) = 0 for all t ∈ [0, T ) as claimed (2.17).

8. It is clear that W (t, x) is a function satisfying the following conditions:

W is C1,2 on C ∪D, (2.47)

Wt + LXW is locally bounded, (2.48)

x 7→ W (t, x) is convex, (2.49)

t 7→ Wx(t, b(t)±) is continuous. (2.50)

It follows that we can use the change-of-variable formula [52] for W (t+ s,Xx
s ):

W (t+s,Xx
s ) = W (t, x) +

∫ s

0

(Wt+LXW )(t+u,Xx
u)I(X

x
u ̸= b(t+u)) du (2.51)
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+Ms +

∫ s

0

Wx(t+u,Xx
u)I(X

x
u ̸= b(t+u)) dRu

+
1

2

∫ s

0

(Wx(t+u,Xx
u+)−Wx(t+u,Xx

u−))

×I(Xx
u = b(t+u)) dℓbu(X)

= W (t, x) +

∫ s

0

(Gt+LXG)(t+u,Xx
u)I(X

x
u ≥ b(t+u)) du+Ms

= W (t, x)− r

∫ s

0

G(t+u,Xx
u)I(X

x
u ≥ b(t+u)) du+Ms

where Ms =
∫ s

0
Wx(u,X

u
x )σX

x
u dB̃u is a martingale, ℓbu(X) is the local time of X at the

curve b and we used that Gt+LXG =−rG and (2.10)+(2.14)−(2.17). Let us also note

that the condition (2.49) can further be relaxed to the form where Wxx = W1 +W2

on C ∪D where W1 is non-negative and W2 is continuous on [0, T )× [1,∞). This will

be referred to below as the relaxed form of (2.47)-(2.50).

Inserting s = T−t in (2.51), using that W (T, x) = x−K̃e−rT , the sample stopping

theorem and taking P̃-expectation we get

W (t, x) = Ẽ(Xx
T−t)−K̃e−rT+r

∫ T−t

0

ẼG(t+u,Xx
u)I(X

x
u ≥ b(t+u)) du. (2.52)

Inserting x = b(t) in (2.52) and using (2.15) we have nonlinear integral equation

for b with boundary condition b(T ) = (K̃e−rT ∨ 1
)
:

b(t) = K̃(e−rt−e−rT ) + F (T−t, b(t)) + r

∫ T

t

H(t, u, b(t), b(u)) du. (2.53)

Thus we have proved (2.25) and (2.26) as claimed. It remains now to show that

equation (2.53) has the unique solution in the class of continuous decreasing functions

satisfying b(t) > (K̃e−rt ∨ 1) for 0 < t < T .

In order to prove the uniqueness we will follow the approach which originally was

devised by Peskir for the American put option [53] and then applied to the Russian

option [54].

9. We show that b is the unique solution of the equation (2.53) in the class of

continuous decreasing functions c : [0, T ] → IR satisfying c(t) > (K̃e−rt ∨ 1
)
for

0 ≤ t < T . Let us assume that a function c belonging to the class described above

solves (2.53), and let us show that this c must then coincide with the optimal stopping

boundary b.
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For this, in view of (2.52), let us introduce the function

U c(t, x) = Ẽ(Xx
T−t)− K̃e−rT + r

∫ T−t

0

ẼG(t+u,Xx
u)I(X

x
u ≥ c(t+u)) du (2.54)

for (t, x) ∈ [0, T ]× [1,∞). A direct inspection of the expression in (2.54) using (2.23)

and (2.24) shows that U c
x is continuous on [0, T ]× [1,∞).

10. Let us define a functionW c : [0, T ]×[1,∞) → IR by settingW c(t, x) = U c(t, x)

for x < c(t) and W c(t, x) = G(t, x) for x ≥ c(t) when 0 ≤ t < T . Note that since c

solves (2.53) we have thatW c is continuous on [0, T ]×[1,∞), i.eW c(t, x) = U c(t, x) =

G(t, x) for x = c(t) when 0 ≤ t < T . Let C and D be defined by means of c as in

(2.20) and (2.21) respectively.

Standard arguments based on the Markov property (or a direct verification) show

that W c i.e. U c is C1,2 on C and that

W c
t + LXW

c = 0 in C, (2.55)

W c
x(t, 1+) = 0 (2.56)

for all t ∈ [0, T ). Moreover, since U c
x is continuous on [0, T )× [1,∞) we see that W c

x

is continuous on C. Finally, it is obvious that W c i.e. G is C1,2 on D.

11. Summarizing the preceding conclusions one can easily verify that the function

W c satisfies (2.47)-(2.50) (in the relaxed form) so that the change-of-variable formula

[52] can be applied. Using (2.56) we get

W c(t+s,Xx
s ) = W c(t, x) +

∫ s

0

(W c
t +LXW

c)(t+u,Xx
u)I(X

x
u ̸= c(t+u)) du (2.57)

+M c
s +

1

2

∫ s

0

(W c
x(t+u,Xx

u+)−W c
x(t+u,Xx

u−))

×I(Xx
u = c(t+u)) dℓcu(X)

where M c is a martingale under P̃.

12. If we know that

U c(t, x) = G(t, x) for all x ≥ c(t) (2.58)

holds using the general fact

∂

∂x
(U c(t, x)−G(t, x))|x=c(t) = W c

x(t, c(t)−)−W c
x(t, c(t)+) (2.59)
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for all 0 ≤ t < T we see that

x 7→ W c(t, x) is C1 at c(t) for each 0 ≤ t < T (2.60)

holds too (since U c
x is continuous).

13. To derive (2.58) first note that standard arguments based on the Markov

property (or a direct verification) show that U c is C1,2 on D and that

U c
t + LXU

c = −rG in D. (2.61)

Since the function U c is continuous and satisfies (2.47)-(2.50) (in the relaxed form),

we see that (2.51) can be applied just like in (2.57) with U c instead of W c, and this

yields

U c(t+s,Xx
s ) = U c(t, x)− r

∫ s

0

G(t+u,Xx
u)I(X

x
u ≥ c(t+u)) du+ Lc

s (2.62)

upon using (2.55)-(2.56), (2.61) and fact that U c
x is continuous. Lc is a martingale

under P̃.

Next note that Ito’s formula implies

G(t+s,Xx
s ) = G(t, x)− r

∫ s

0

G(t+u,Xx
u) du+Ms +

∫ s

0

dRu (2.63)

upon using that Gt + LXG = −r G as well as that Gx = 1. M is a martingale under

P̃.

For x ≥ c(t) consider the stopping time

σc = inf { 0 ≤ s ≤ T−t : Xx
s ≤ c(t+s) }. (2.64)

Then using that U c(t, c(t)) = G(t, c(t)) for all 0 ≤ t < T since c solves (2.53),

and thatU c(T, x) = G(T, x) for all x ≥ 1 by (2.54), we see that U c(t+σc, X
x
σc
) =

G(t+σc, X
x
σc
). Hence from (2.62) and (2.63) using the optional sampling theorem

U c(t, x) = ẼU c(t+σc, X
x
σc
) + r

∫ σc

0

ẼG(t+u,Xx
u)I(X

x
u ≥ c(t+u)) du (2.65)

= ẼG(t+σc, X
x
σc
) + r

∫ σc

0

ẼG(t+u,Xx
u)I(X

x
u ≥ c(t+u)) du

= G(t, x)− r

∫ σc

0

ẼG(t+u,Xx
u) du
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+r

∫ σc

0

ẼG(t+u,Xx
u)I(X

x
u ≥ c(t+u)) du

= G(t, x)

since Xx
u ≥ c(t+u) > 1 for all 0 ≤ u ≤ σc. This establishes (2.58) and thus (2.60)

holds too.

14. Consider the stopping time

τc = inf { 0 ≤ s ≤ T−t : Xx
s ≥ c(t+s) }. (2.66)

Note that (2.57) using (2.55) and (2.60) reads

W c(t+s,Xx
s ) = W c(t, x)− r

∫ s

0

G(t+u,Xx
u)I(X

x
u ≥ c(t+u)) du+M c

s . (2.67)

Using that M c is a martingale under P̃ and inserting τc in place of s in (2.67), it

follows upon taking the P̃-expectation that

W c(t, x) = ẼG(t+τc, X
x
τc) (2.68)

for (t, x) ∈ [0, T ]× [1,∞) where we use that W c(t, x) = G(t, x) for x ≥ c(t) or t = T.

Comparing (2.68) and (2.13) we see that

W c(t, x) ≤ W (t, x) (2.69)

for all (t, x) ∈ [0, T ]× [1,∞).

15. Let us now show that b ≥ c on [0, T ]. For this, recall that by the same

arguments as for W c we also have

W (t+s,Xx
s ) = W (t, x)− r

∫ s

0

G(t+u,Xx
u)I(X

x
u ≥ b(t+u)) du+M b

s (2.70)

where M b is a martingale P̃. Fix (t, x) ∈ [0, T )× [1,∞) such that x > b(t)∨c(t) and

consider the stopping time

σb = inf { 0 ≤ s ≤ T − t : Xx
s ≤ b(t+s) }. (2.71)

Inserting σb in place of s in (2.67) and (2.70) and taking the P̃-expectation, we get

ẼW c(t+σb, X
x
σb
) = x−K̃e−rt−r Ẽ

(∫ σb

0

G(t+u,Xx
u)I(X

x
u ≥ c(t+u)) du

)
(2.72)
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ẼW (t+σb, X
x
σb
) = x−K̃e−rt−r Ẽ

(∫ σb

0

G(t+u,Xx
u) du

)
. (2.73)

Hence by (2.69) we see that

Ẽ
(∫ σb

0

G(t+u,Xx
u)I(X

x
u ≥ c(t+u)) du

)
≥ Ẽ

(∫ σb

0

G(t+u,Xx
u) du

)
(2.74)

from where it follows by the continuity of b and c, using G(t, x) > 0 for x > b(t), that

b(t) ≥ c(t) for all t ∈ [0, T ].

16. Finally, let us show that c must be equal to b. For this, assume that there

is t ∈ (0, T ) such that b(t) > c(t), and pick x ∈ (c(t), b(t)). Under P̃ consider the

stopping time τb from (2.22). Inserting τb in place of s in (2.67) and (2.70) and taking

the P̃-expectation, we get

ẼG(t+τb, X
x
τb
) = W c(t, x)− r Ẽ

(∫ τb

0

G(t+u,Xx
u)I(X

x
u ≥ c(t+u)) du

)
(2.75)

ẼG(t+τb, X
x
τb
) = W (t, x). (2.76)

Hence by (2.69) we see that

Ẽ
(∫ τb

0

G(t+u,Xx
u)I(X

x
u ≥ c(t+u)) du

)
≤ 0 (2.77)

from where it follows by the continuity of c and b using G(t, x) > 0 for x > c(t)that

such a point x cannot exist. Thus c must be equal to b, and the proof is complete.

2.4. The arbitrage-free price and stopping region

This section derives a representation of the arbitrage-free price for the option

and the integral equation for the rational exercise boundary. We make use of the

results from Sections 2.2 and 2.3, as well as the relationship (2.11) between the value

functions (2.3) and (2.26).

1. After determining W and the stopping boundary b in (2.13) we can now solve

the initial problem (2.3). Indeed, from (2.11) and (2.52) we have

V (t,m, s) = sW
(
t, m∨K

s
; Kert

s

)
(2.78)
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= Ẽ
(
sX

m∨K
s

T−t

)
−Ker(t−T )

+r

∫ T−t

0

Ẽ
(
sX

m∨K
s

u −Ke−ru
)
I
(
X

m∨K
s

u ≥ b(t+u;Kert/s)
)
du.

2. Using that V (t,m, s) > 0 for every t ∈ [0, T ) and 0 ≤ s ≤ m we have that

K < b(t;Kert) (2.79)

since otherwise V (t, 1, 1) = W (t,K;Kert) = K −Kerte−rt = 0.

Standard arguments based on the strong Markov property (see [58]) show that

the stopping set in (2.3) is given by

D = { (t,m, s) : V (t,m, s) = (m−K)+} (2.80)

= { (t,m, s) : sW
(
t, m∨K

s
; Kert

s

)
= (m−K)+ }

= { (t,m, s) : W
(
t, m∨K

s
; Kert

s

)
= m∨K

s
− Kert

s
e−rt }

= { (t,m, s) : m∨K
s

≥ b
(
t; Kert

s

)
}

= { (t,m, s) : m ≥ s b
(
t; Kert

s

)
}

for 0 ≤ t < T and 0 < s ≤ m where in final equality we used (2.79). Thus the

optimal stopping time in (2.3) is given by

τg = inf { 0 ≤ u < T − t : Mu ≥ g(t+u, Su) } (2.81)

where the function g is given by

g(t, s) = s b
(
t; Kert

s

)
. (2.82)

3. We now show some properties of the optimal stopping boundary g. From

(2.82) one can see that in order to compute s → g(t, s) for fixed t ∈ [0, T ) we need to

calculate the optimal stopping boundary b( · ; Kert

s
) with a scaling strike as a solution

to (2.53) for every s > 0. Using that the problem (2.3) time-homogeneous, in the

sense that the gain function does not depend on time, it follows that t 7→ g(t, s) is

decreasing on [0, T ) for each s > 0 fixed. It is also clear from (2.3) that s 7→ g(t, s)

is increasing on [0,∞) for t ∈ [0, T ) fixed. Since b(T−; K̃) = K̃e−rT ∨ 1 we have

g(T−, s) = s(K
s
∨ 1) = K ∨ s for any s > 0. From (2.53) we see that K 7→ b(t;K)
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Figure 2.2: A computer drawing of the optimal stopping boundary
s 7→ g(t, s) for 1) t = 0 (upper) and 2) t = 0.3 (lower) in the case
K = 1.2, T = 1, r = 0.1, σ = 0.4. The limit of g(t, · ) at zero is
greater than K for every t.

is continuous on (0,∞) for each t ∈ [0, T ) fixed. Hence we have that s 7→ g(t, s) is

continuous on (0,∞) for t ∈ [0, T ) fixed. From (2.82) it is easily to seen that g(t, s) ↑

s b0(t) as s → ∞ for fixed t ∈ [0, T ) where b0(t) = b(t; 0) is the optimal stopping

boundary for the Russian option [54]. The Figure 2.2 illustrates computer drawing

of the optimal stopping boundaries s 7→ g(u, s) and s 7→ g(v, s) for 0 < u < v < T .

The boundaries shift to the right as time goes to T and the optimal stopping time is

the first hitting time of M over g( ·, S).

2.5. Conclusion

In this section we make a conclusion of the results obtained in this paper and

propose the future research program.

The main idea of the paper is to show a reduction of the three-dimensional opti-

mal stopping problem (2.3) to the two-dimensional optimal stopping problem (2.13).

However, after solving the two-dimensional problem and coming back to the initial
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problem we vary parameter in (2.13), and thus the problem remains inherently three-

dimensional. We determined expressions for the arbitrage-free price (2.78) and the

rational exercise boundary (2.82).

As remarked in the introduction, the reduction of the three-dimensional problem

to a two-dimensional one with a scaling strike can be used to tackle the optimal

stopping problem for the British lookback option with fixed strike. Performing the

financial analysis of American and British versions of this option as in [60] leads to

an extensive programme of research which we present in Chapter 3 below.

The method of scaling strike also allows to examine the problem (2.3) in expo-

nential Lévy models and then after reducing dimensions and applying the local time-

space calculus for general semimartingales (see [55]) the nonlinear integral equations

for optimal stopping boundaries can be obtained.



Chapter 3

The British lookback option with

fixed strike

3.1. Introduction

The aim of this paper is to examine the British payoff mechanism in the context

of the lookback option with fixed strike and continue the research proposed in [23].

This mechanism provides its holder with a protection against unfavourable scenarios

for stock prices and is intrinsically built into the option contract using the concept

of optimal prediction (see e.g. [18]) and we refer to such contracts as ‘British’ for

the reasons outlined in [59] and [60], where the British put and call options were

introduced. The main idea of the ‘British’ feature is to substitute the true drift by a

contract drift in the Black-Scholes model and then its payoff is the ‘best prediction’

of the European lookback payoff. The most interesting feature of this protection

mechanism as not only is the option buyer offered a protection against unfavourable

stock movements but also when the price movements are favourable he will generally

receive high returns (see [59] and [60] for details).

Following the rationale of the British put and call options, this type of options

was extended to the path-dependant options in [22] and [23]. Particularly, the British

Russian option was introduced and studied in [23]. Herein we use terminology the

Russian option for the lookback option with zero strike which was identified in [62]

43
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(see last paragraph of introduction in [23] for detailed explanation of this terminology

and its history). According to the financial theory (see e.g. [66]) the arbitrage-free

price of the option is a solution to an optimal stopping problem with the gain function

as the payoff of the option. The corresponding optimal stopping problem for the

British Russian option [23] was originally a three-dimensional (time-process-running

maximum) and was reduced fully to two dimensions using Girsanov theorem as in [63]

and [54]. It was shown that exercising of the British version provides very attractive

returns compared with exercising of the American option and selling the European

option (the latter can be considered only in a liquid market). The final section in

[23] proposed to research different types of lookback options: (i) calls and puts; (ii)

those with fixed (non-zero) or floating strike; (iii) those based on the maximum or

minimum; (iv) the weighting in the maximum or minimum may be equal or flexible.

In this paper we study the British lookback option with fixed strike (non-zero) of

call type as we believe that this is the most interesting case from a mathematical point

of view. The paper includes two parts: analytical solution and financial analysis. The

theoretical solution is based on the method of a scaling strike. It was remarked above

that the optimal stopping problems for the lookback option are three-dimensional

and in the case of non-zero strike no full reduction to dimension two appears to be

possible. However we will illustrate the reduction to two-dimensional problem with a

scaling strike which originally was used in [33] for the American lookback option with

fixed strike. This approach simplifies the discussion and expressions for the arbitrage-

free price and it allows to decrease a dimension of the integral equation for a rational

exercise boundary. Using a local time-space calculus on curves [52] we derive a closed

form expression for the arbitrage-free price in terms of the optimal stopping boundary

of the two-dimensional optimal stopping problem and show that the rational exercise

boundary of the option can be characterised via the unique solution to a nonlinear

integral equation. We also show the remarkable numerical example where the rational

exercise boundary exhibits a discontinuity with respect to space variable, hence it was

not possible to apply a change-of-variable formula with local time on surfaces in order

to solve the three-dimensional stopping problem directly. This is another advantage
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of reduction by the method of a scaling strike. The solution of the zero-strike case

K = 0 (the British Russian option) is fully embedded into the present problem and

can be considered as a particular case.

We perform the analysis of returns of the British lookback option with fixed strike

in comparison with its the American and the European counterparts. After observing

the returns upon exercising or selling options we conclude the remarkable features of

the British lookback option: (i) the option provides an effective protection against

unfavourable stock movements unlike the American version which gives zero returns

in this case; (ii) the British option holder receives very high returns also when stock

movements are favourable (much better than the American option and comparable

with upon selling the European option); (iii) the holder enjoys two features above in

both liquid and illiquid markets. The latter fact is very fruitful, since lookback options

are usually traded in illiquid markets and their selling can be very problematic. We

believe that these properties of the British lookback option with fixed strike make it

a very attractive financial instrument.

The paper is organised as follows. In Section 3.2 we present a basic motivation for

the British lookback option with fixed strike. In Section 3.3 we formally define the

British lookback option with fixed strike and show some of its basic properties. Then

in Section 3.4 where we derive a closed form expression for the arbitrage-free price

in terms of the optimal stopping boundary of the two-dimensional problem and show

that the rational exercise boundary of the option can be characterised via unique the

unique solution to a nonlinear integral equation. Using these results in Section 3.5 we

present a financial analysis of the British lookback option with fixed strike (making

comparisons with the European/American lookback options).

3.2. Basic motivation for the British lookback option with

fixed strike

The basic economic motivation for the British lookback option with fixed strike

is parallel to that of the British put, call, Asian and Russian options (see [59], [60],
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[22] and [23]). In this section we briefly review key elements of this motivation. We

remark that the full financial scope of the British lookback option with fixed strike

goes beyond these initial considerations (see Section 3.5 below for further details).

1. Consider the financial market consisting of a risky stock S and a riskless bond

B whose prices respectively evolve as

dSt = µSt dt+ σSt dWt (S0 = s) (3.1)

dBt = rBt dt (B0 = 1) (3.2)

where µ ∈ IR is the stock drift, σ > 0 is the volatility coefficient, W = (Wt)t≥0 is a

standard Wiener process defined on a probability space (Ω,F ,P), and r > 0 is the

interest rate. Recall that the lookback option with fixed strike of European type is a

financial contract between a seller/hedger and a buyer/holder entitling the latter to

exercise the option at a specified maturity time T > 0 and receive the payoff(
MT −K

)+

=
(
max
0≤t≤T

St −K
)+

(3.3)

from the seller. Standard hedging arguments based on self-financing portfolios imply

that the arbitrage-free price of the option is given by

V = Ẽ [e−rT (MT −K)+] (3.4)

where the expectation Ẽ is taken with respect to the (unique) equivalent martingale

measure P̃ (see e.g. [66]). In this section (as in [59], [60] and [23]) we will analyse

the option from the standpoint of a true buyer. By ‘true buyer’ we mean a buyer

who has no ability or desire to sell the option nor to hedge his own position. Thus

every true buyer will exercise the option at time T in accordance with the rational

performance. For more details on the motivation and interest for considering a true

buyer in this context we refer to [59].

2. With this in mind we now return to the holder of the lookback option whose

payoff is given by (3.3) above. Recall that the unique strong solution to (3.1) is given

by

St = St(µ) = s exp
(
σWt + (µ− σ2

2
)t
)

(3.5)
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under P for t ∈ [0, T ] where µ ∈ IR is the actual drift. Inserting (3.5) into (3.3) we

find that the expected value of the buyer’s payoff equals

P = P (µ) = E [e−rT (MT (µ)−K)+]. (3.6)

Moreover, it is well known that Law(S(µ) | P̃) is the same as Law(S(r) |P) so that

the arbitrage-free price of the option equals

V = P (r) = E [e−rT (MT (r)−K)+]. (3.7)

A direct comparison of (3.6) and (3.7) shows that if µ = r then the return is ‘fair’ for

the buyer, in the sense that V = P , where V represents the value of his investment

and P represents the expected value of his payoff. On the other hand, if µ > r

then the return is ’favourable’ for the buyer, in the sense that V < P , and if µ < r

then the return is ‘unfavourable’ for the buyer, in the sense that V > P with the

same interpretations as above. Exactly the same analysis can be performed for the

lookback option of American type and as the conclusions are the same we omit the

details. We recall that the actual drift µ is unknown at time t = 0 and also difficult

to estimate at later times t ∈ (0, T ] unless T is unrealistically large.

3. The brief analysis above shows that whilst the actual drift µ of the underlying

stock price is irrelevant in determining the arbitrage-free price of the option, to a

(true) buyer it is crucial, and he will buy the option if he believes that µ > r. If this

appears to be a true then on average he will make a profit. Thus, after purchasing

the option, the holder will be happy if the observed stock price movements confirm

his belief that µ > r.

The British lookback option with fixed strike seeks to address the opposite sce-

nario: What if the option holder observes stock price movements which change his

belief regarding the actual drift and cause him to believe that µ < r instead? In

this contingency the British lookback holder is effectively able to substitute this un-

favourable drift with a contract drift and minimise his losses. In this way he is

endogenously protected from any stock price drift smaller than the contract drift.

The value of the contract drift is therefore selected to represent the buyer’s level of

tolerance for the deviation of the actual drift from his original belief.
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It will be shown below (similarly to [59], [60] and [23]) that the practical implica-

tions of this protection feature are most remarkable as not only is the option holder

afforded an unique protection against unfavourable stock price movements (covering

the ability to sell in a liquid option market completely endogenously) but also when

the stock price movements are favourable he will generally receive high returns. We

refer to the final paragraph of Section 2 in [60] for further comments regarding the

option holder’s ability to sell his contract (releasing the true buyer’s perspective)

and its connection with option market liquidity. This translates into the present set-

ting, since lookback options are not so popularly traded as plain vanilla call and put

options.

3.3. The British lookback option with fixed strike: Definition

and basic properties

We begin this section by presenting a formal definition of the British lookback

option with fixed strike. This is then followed by a brief analysis of the optimal stop-

ping problem and the free-boundary problem characterising the arbitrage-free price

and the rational exercise strategy. These considerations are continued in Sections 3.4

and 3.5 below.

1. Consider the financial market consisting of a risky stock S and a riskless bond

B whose prices evolve as (3.1) and (3.2) respectively, where µ ∈ IR is the appreciation

rate (drift), σ > 0 is the volatility coefficient, K > 0 is a fixed strike, W = (Wt)t≥0 is

a standard Wiener process defined on a probability space (Ω,F ,P), and r > 0 is the

interest rate. Let a maturity time T > 0 be given and fixed, and let MT denote the

maximum stock price given by (3.3) above.

Definition 3.3.1. The British lookback option with fixed strike is a financial contract

between a seller/hedger and a buyer/holder entitling the latter to exercise at any

(stopping) time τ prior to T whereupon his payoff (deliverable immediately) is the

‘best prediction’ of the European payoff (MT − K)+ given all the information up to
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time τ under the hypothesis that the true drift of the stock price equals µc.

The quantity µc is defined in the option contract and we refer to it as the ‘con-

tract drift’. We will show below that the contract drift should satisfy the following

inequality

Eµc
[
r K
S0
−µcMT

]
I(MT > K

S0
) > 0 (3.8)

where the expectation Eµc is taken under assumption that the drift in (3.1) equals

to µc. If (3.8) does not hold, we are not able to guarantee that it is not optimal to

exercise immediately, i.e. the buyer would not be overprotected (see Remark 3.3.2

below for details). Condition (3.8) gives for us relationship between µc, the interest

rate r, and the strike K when K > 0, since in the case of K = 0 (Russian option)

we have simply µc < 0 as in [23]. We denote by µ∗
c = µ∗

c(r,K) the unique solution

(clearly it exists and 0 < µ∗
c < r) to equation

Eµc
[
r K
S0
−µcMT

]
I(MT > K

S0
) = 0 (3.9)

and hence the condition (3.8) is equivalent to µc < µ∗
c . Recall from Section 3.2

above that the value of the contract drift is selected to represent the buyer’s level of

tolerance for the deviation of the true drift µ from his original belief.

2. Denoting by (Ft)0≤t≤T the natural filtration generated by S (possibly aug-

mented by null sets or in some other way of interest) the payoff of the British look-

back option with fixed strike at a given stopping time τ with values in [0, T ] can be

formally written as

Eµc [(MT −K)+|Fτ ] (3.10)

where the conditional expectation is taken with respect to a new probability measure

Pµc under which the stock price S evolves as

dSt = µc St dt+ σSt dWt (3.11)

with S0 = s in (0,∞). Comparing (3.1) and (3.11) we see that the effect of exercising

the British lookback option with fixed strike is to substitute the true (unknown) drift

of the stock price with the contract drift for the remaining term of the contract.
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3. Setting that Mt = max0≤s≤t Ss for t ∈ [0, T ] and using stationary and indepen-

dent increments of W governing S we find that

Eµc

[
(MT−K)+|Ft

]
= St E

µc

[(
Mt

St
∨ max

t≤s≤T

Ss

St
− K

St

)+|Ft

]
(3.12)

= St Z
µc(t,Mt, St)

where the function Zµc can be expressed as

Zµc(t,m, s) = Eµc
(
m
s
∨MT−t−K

s

)+
(3.13)

= Eµc
(
m∨K

s
∨MT−t−K

s

)
= Gµc

(
t, m∨K

s

)
−K

s

where Gµc(t, x) = Eµc(x∨MT−t) for t ∈ [0, T ], m ≥ s > 0, x ∈ [1,∞) and M0 = 1. A

lengthy calculation based on the known law of MT−t under P
µc (see e.g. [66, Lemma

1, p. 759]) shows that

Gµc(t, x) = xΦ
(

1
σ
√
T−t

[
log x−(µc− σ2

2
)(T−t)

])
(3.14)

− σ2

2µc
x2µc/σ2

Φ
(
− 1

σ
√
T−t

[
log x+(µc− σ2

2
)(T−t)

])
+
(
1+ σ2

2µc

)
eµc(T−t)Φ

(
− 1

σ
√
T−t

[
log x−(µc+

σ2

2
)(T−t)

])
for t ∈ [0, T ] and x ∈ [1,∞), where Φ is the standard normal distribution function

given by Φ(x) = (1/
√
2π)

∫ x

−∞ e−y2/2dy for x ∈ IR. The function Gµc appeared in [23]

and its properties were studied there. We will recall and make use of them below.

Standard hedging arguments based on self-financing portfolios (with consumption)

imply that the arbitrage-free price of the British lookback option with fixed strike is

given by

V = sup
0≤τ≤T

Ẽ
[
e−rτEµc

(
(MT −K)+|Fτ

) ]
(3.15)

where the supremum is taken over all stopping times τ of S with values in [0, T ] and

Ẽ is taken with respect to the (unique) equivalent martingale measure P̃. From (3.12)

we see that the underlying Markov process in the optimal stopping problem (3.15)

equals (t, St,Mt)0≤t≤T for t ∈ [0, T ] thus making it three-dimensional.
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4. Since Law(S(µ) | P̃) is the same as Law(S(r) |P), it follows from the well-known

ladder structure of M and multiplicative structure of S that (3.15) extends as follows

V (t,m, s) = sup
0≤τ≤T−t

E e−rτsSτ

[
Gµc

(
t+τ,

K∨m∨max0≤u≤τ sSu

sSτ

)
− K

sSτ

]
(3.16)

for t∈ [0, T ] and m≥s in (0,∞) where the supremum is taken as in (3.15) above and

the process S = S(r) under P solves

dSt = rSt dt+ σSt dWt (3.17)

with S0 = 1. By the Girsanov theorem it follows that

E e−rτsSτ

[
Gµc

(
t+τ,

K∨m∨max0≤u≤τ sSu

sSτ

)
− K

sSτ

]
(3.18)

=s Ê
[
Gµc

(
t+τ,

m∨K
s

∨Mτ

Sτ

)
− K

sSτ

]
=s Ê

[
Gµc

(
t+τ,Xx

τ

)
− K

s
e−rτ

]
=s Ê

[
Gµc

(
t+τ,Xx

τ

)
− Kert

s
e−r(t+τ)

]
for every stopping time τ of S and where we used fact that ÊS−1

τ = Êe−rτ and we set

Xx
t =

x ∨Mt

St

(3.19)

with x = (m ∨ K)/s and P̂ is defined by dP̂ = exp (σWT − (σ2/2)T ) dP so that

Ŵt = Wt − σt is a standard Wiener process under P̂ for t ∈ [0, T ]. By Ito’s formula

one finds that

dXt = −rXt dt+ σXt dŴt + dRt (3.20)

with X0 = x under P̂ and we set

Rt =

∫ t

0

I(Xs = 1) dMs

Ss
(3.21)

for t ∈ [0, T ] and x ∈ [1,∞). Note that the state space of the Markov process X

equals [1,∞) where 1 is an instantaneously reflecting boundary point. Thus (3.18)

motivates us to consider the following optimal stopping problem

Ṽ (t, x) = Ṽ (t, x; K̃) = sup
0≤τ≤T−t

E
[
Gµc(t+τ,Xx

τ )−K̃e−r(t+τ)
]

(3.22)
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for t ∈ [0, T ] and x ∈ [1,∞) where the supremum is taken over all stopping times τ

of X with values in [0, T−t] and E stands for Ê to simplify the notation. It follows

from (3.16) and (3.22) using (3.18) that

V (t,m, s) = s Ṽ (t, m∨K
s

; Kert

s
) (3.23)

for t ∈ [0, T ], m≥ s > 0 and using the established probabilistic techniques (see e.g.

[58]) one can verify that the optimal stopping set in (3.16) is given by

D =
{
(t,m, s) ∈ [0, T )×S : s Ṽ (t, m∨K

s
; Kert

s
) = sGµc(t, m∨K

s
)−K

}
(3.24)

where S := { (m, s) : m ≥ s > 0 }. As in Chapter 2 we have reduced the three-

dimensional problem (3.16) to the two-dimensional problem (3.22), but with a scaling

strike K̃, since we will vary K̃ to determine the solution of (3.16) using (3.23) and

(3.24). Also we note that the solution to the British Russian option problem is fully

embedded into the present solution when K = 0.

5. The analysis below is parallel to that of [23]. Let us now make use of Ito’s

formula (combined with the fact that Gµc
x (t, 1+) = 0 for all t ∈ [0, T )) and the

optional sampling theorem yield

E
[
Gµc(t+τ,Xx

τ )− K̃e−r(t+τ)
]

(3.25)

= Gµc(t, x) + E
[ ∫ τ

0

Hµc(t+s,Xx
s ) ds− K̃e−r(t+τ)

]
= Gµc(t, x)− K̃e−rt + E

[ ∫ τ

0

(
Hµc(t+s,Xx

s ) + rK̃e−r(t+s)
)
ds
]

for all stopping times τ of X with values in [0, T−t] with t ∈ [0, T ) and x ∈ [1,∞)

given and fixed, where the function Hµc = Hµc(t, x) is given by

Hµc = Gµc
t − rxGµc

x + σ2

2
x2Gµc

xx. (3.26)

To simplify this expression note that by the Girsanov theorem we find

Gµc(t, x) = Eµc(x∨MT−t) = Eµc

[
ST−t

(x∨MT−t

ST−t

)]
= eµc(T−t) Êµc

(
Xx

T−t

)
(3.27)

whereX under P̂µc solves (3.20) with µc in place of r. This shows that Gµc = Gµc(t, x)

solves the ’killed’ version of the Kolmogorov backward equation (see e.g. [58, Section
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7])

Gµc
t − µc xG

µc
x + σ2

2
x2Gµc

xx + µcG
µc = 0. (3.28)

Inserting (3.28) into (3.26) we find that

Hµc = −µc G
µc + (µc−r)xGµc

x . (3.29)

A direct use of (3.14) in (3.29) leads to a complicated expression and for this reason we

proceed by deriving a probabilistic interpretation of the right-hand side in (3.29). To

this end note that Gµc(t, x)=Eµc(x ∨MT−t)=xPµc(MT−t ≤ x)+Eµc [MT−tI(MT−t >

x)] as well as Gµc(t, x) =
∫∞
0

Pµc(x ∨MT−t >z) dz=x+
∫∞
x

Pµc(MT−t >z) dz so that

Gµc
x (t, x) = 1−Pµc(MT−t > x) = Pµc(MT−t ≤ x). Inserting these expressions into

(3.29) we find that

Hµc(t, x) = −µc E
µc [MT−tI(MT−t > x)]− rxPµc(MT−t ≤ x) (3.30)

for t ∈ [0, T ] and x ∈ [1,∞). A lengthy calculation based on the known law of MT−t

under Pµc (recall (3.14) above) then shows that

Hµc(t, x) = − rxΦ
(

1
σ
√
T−t

[
log x−(µc−σ2/2)(T−t)

])
(3.31)

+ (r−µc+
σ2

2
)x2µc/σ2

Φ
(
− 1

σ
√
T−t

[
log x+(µc− σ2

2
)(T−t)

])
− (µc+

σ2

2
)eµc(T−t)Φ

(
− 1

σ
√
T−t

[
log x−(µc+

σ2

2
)(T−t)

])
for t ∈ [0, T ] and x ∈ [1,∞). Now we denote by Ĥµc the integrand in (3.25)

Ĥµc(t, x) = Hµc(t, x) + rK̃e−rt (3.32)

for t ∈ [0, T ] and x ∈ [1,∞). Then the expression (3.25) reads

E
[
Gµc(t+τ,Xx

τ )− K̃e−r(t+τ)
]

(3.33)

= Gµc(t, x)− K̃e−rt + E
[ ∫ τ

0

Ĥµc(t+s,Xx
s ) ds

]
.

From now on the analysis differs from that of [23] due to presence of non-zero strike

K ̸= 0 and thus the integrand Ĥµc is not equal to the function Hµc . The expression

(3.33) is useful for getting some insight into the structure of stopping and continuation
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sets: if Ĥµc(t, x) > 0 then a point (t, x) belongs to continuation set, however if

Ĥµc(t, x) < 0 then it is not sufficient that at point (t, x) it is optimal to stop at

once. The important property of the British options is an admissible set of values

for contract drift, since if this is not properly selected, the buyer of option becomes

overprotected at the beginning when t = 0, i.e. he should exercise at once and the

option becomes meaningless. Using probabilistic representation (3.30) it was shown

in [23] that when K = 0 the buyer is not overprotected if and only if µc < 0. Indeed,

if µc ≥ 0 then H is always negative and thus it is optimal to stop at once, but if

µc < 0 then at an initial point (0, 1) the function Hµc(0, 1) > 0 is positive and thus

it is optimal to continue and the buyer is not overprotected. However in the case

K ̸= 0 the analysis becomes more delicate. Clearly when µc < 0 the buyer again is

not overprotected at t = 0, but there are also positive admissible values for contract

drift. For this we need to consider Ĥµc at financial initial point, i.e. originally to

solve option pricing problem (3.15) we insert t = 0, m=s=S0 in (3.16) and assume

that S0 < K (this is the usual assumption for lookback options and does not simplify

analysis), thus using (3.23) we have that (t, x; K̃) = (0, K
S0
; K
S0
) and the function Ĥµc

at the initial point is given by

Ĥµc(0, K
S0
) = Hµc(0, K

S0
) + r K

S0
(3.34)

= −µc E
µc [MT I(MT > K

S0
)] + r K

S0
Pµc(MT > K

S0
)

= Eµc
[
r K
S0
−µcMT

]
I(MT > K

S0
)

where we used (3.30). It follows from (3.34) that there exists a unique root µc = µ∗
c

of equation Ĥµc(0, K
S0
) = 0 such that 0 < µ∗

c < r and Ĥµc(0, K
S0
) > 0 if and only if

µc < µ∗
c . As we said above it is not certain that if Ĥµc < 0 at initial point then it

is optimal to stop at once and we cannot determine it analytically, hence the best

we can do is to reassure that the buyer is not overprotected and we will require the

condition µc < µ∗
c so that Ĥµc(0, K

S0
) < 0.

Remark 3.3.2. It is important to note that the condition µc < µ∗
c does not fully

describe all admissible values for contract drift and there are values for contract drift
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greater than µ∗
c such that the holder is still not overprotected, but due to reasons

outlined above, we are not to able to determine the exact threshold. Indeed from the

analysis in Section 3.2 above we have that the contract drift is smaller than r. It

will be proven below that if µc < r then there exists an optimal stopping boundary b

separating the continuation set from the stopping set and thus the overprotection of

the buyer is equivalent to the condition b(0) ≤ K
S0
. For µc = µ∗

c the optimal stopping

boundary at zero bµ
∗
c (0) > K

S0
and there are values µc > µ∗

c such that bµc(0) > K
S0
.

However since µc 7→ bµc(0) is decreasing then there exists a threshold µ∗∗
c < r such

that bµ
∗∗
c (0) = K

S0
and the holder is overprotected if and only if µc > µ∗∗

c . It means

that in order to determine the real threshold µ∗∗
c for the contract drift one should

find the value of boundary b(0) by solving numerically a nonlinear integral equation

(see Theorem 3.4.1 below). Thus the equation Ĥµc(0, K
S0
) = 0 gives more accessible

condition for the contract drift rather than the equation bµc(0) = K
S0

and we will use

the threshold µ∗
c further for the financial analysis. Moreover we will show in Section

3.5 that the British option with contract drift µc < µ∗
c provides attractive returns.

Fixing µc < µ∗
c it follows from (3.29) and (3.32) that

Ĥµc
x (t, x) = Hµc

x (t, x) = −rxGµc
x (t, x) + (µc−r)xGµc

xx(t, x) < 0 (3.35)

for any x ≥ 1 and fixed t ∈ [0, T ) where we used fact that Gµc
x > 0, Gµc

xx > 0 and

µc < µ∗
c < r. Hence it gives to us that

x 7→ Hµc(t, x) is decreasing on [1,∞) (3.36)

for any given and fixed t ∈ [0, T ) and any choice of K̃. It follows from (3.30), (3.32)

and (3.36) that there exists a continuous (smooth) function h : [0, T ] → IR such that

Ĥµc(t, h(t)) = 0 (3.37)

for t ∈ [0, T ] with Ĥµc(t, h(t)) > 0 for x ∈ [1, h(t)) and Ĥµc(t, h(t)) < 0 for x ∈

(h(t),∞) when t ∈ [0, T ] given and fixed. In view of (3.33) this implies that no

point (t, x) in [0, T ) × [1,∞) with x < h(t) is a stopping point (for this one can

make use of the first exit time from a sufficiently small time-space ball centred at the
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b(T)
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x

Figure 3.1: A computer drawing of the optimal stopping boundary
b for the problem (3.22) in the case K = 1.2, S0 = 1, K̃ = K

S0
=

1.2, T = 1, µc = 0.05 < µ∗
c ≈ 0.075, r = 0.1, σ = 0.4 with the

boundary condition b(T ) = K̃e−rT > 1 and the starting point x =
K
S0

< h(0).

point). Likewise, it is also clear and can be verified that if x > h(t) and t < T is

sufficiently close to T then it is optimal to stop immediately (since the gain obtained

from being below h cannot offset the cost of getting there due to the lack of time).

This shows that the optimal stopping boundary b : [0, T ] → [0,∞] separating the

continuation set from the stopping set satisfies b(T ) = h(T ) and this value equals(
K̃e−rT ∨ 1

)
. Moreover, the fact (3.36) combined with the identity (3.33) implies

that the continuation set is given by C = { (t, x) ∈ [0, T )×[1,∞) : x < b(t) } and the

stopping set is given by D = { (t, x) ∈ [0, T )×[1,∞) : x ≥ b(t) } so that the optimal

stopping time in the problem (3.22) is given by (see Figure 3.1)

τb = inf { 0 ≤ t ≤ T : Xt ≥ b(t) }. (3.38)

It is also clear and can be verified that if the initial point x ≥ 1 of the process X is

sufficiently large then it is optimal to stop immediately (since the gain obtained from

being below h cannot offset the cost of getting there due to the shortage of time).

This shows that the optimal stopping boundary b is finite valued.
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C

D

Figure 3.2: A computer drawing showing how the optimal stop-
ping boundary b for the problem (3.22) increases as one decreases
the contract drift. There are four different cases: 1)µc = 0.074;
2)µc = 0.07; 3)µc = 0.05; 4)µc = −∞ (the latter corresponds to
the American lookback option problem). The set of parameters:

K = 1.2, S0 = 1, K̃ = K
S0

= 1.2, T = 1, r = 0.1, σ = 0.4 with the

boundary condition b(T ) = K̃e−rT > 1, the starting point x = K
S0

and the root of (3.9) µ∗
c ≈ 0.075.

6. Standard Markovian arguments lead to the following free-boundary problem

(for the value function Ṽ = Ṽ (t, x) and the optimal stopping boundary b = b(t) to

be determined):

Ṽt − rxṼx +
σ2

2
x2Ṽxx = 0 for x ∈ (1, b(t)) and for t ∈ [0, T ) (3.39)

Ṽ (t, x) = Gµc(t, x)− K̃e−rt for x ≥ b(t) and for t ∈ [0, T ) (3.40)

Ṽx(t, b(t)) = Gµc
x (t, b(t)) for t ∈ [0, T ) (3.41)

Ṽx(t, 1+) = 0 for t ∈ [0, T ) (3.42)

where b(T ) = K̃e−rT ∨ 1 and Ṽ (T, x) = Gµc(T, x)−K̃e−rT = x−K̃e−rT for x ≥ 1.

It can be shown that this free-boundary problem has a unique solution Ṽ and b

which coincide with the value function (3.22) and the optimal stopping boundary

respectively (cf. [58]). Fuller details of the analysis go beyond our aims in this paper
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and for this reason will be omitted since the fact that unless µc < 0 the boundary b

is not necessarily a monotone function of time (see Figure 3.2) makes this analysis

more complicated (in comparison with the American lookback option in Chapter 2).

In the next section we will derive equations which characterise Ṽ and b uniquely and

can be used for their calculation.

Note that x 7→ Ṽ (t, x) is increasing and convex on [1,∞) for every t ∈ [0, T ]

(since Gµc is so). Note also that if we let µc to −∞ then the optimal stopping

boundary b goes to a continuous decreasing function b−∞ : [0, T ] → IR satisfying

b−∞(T ) = K̃e−rT ∨ 1 (see Figure 3.2). The limiting boundary b−∞ is optimal in

the problem (3.22) where G−∞(t, x) = x for (t, x) ∈ [0, T ] × [1,∞). This problem

corresponds to the American lookback option with fixed strike in the case of finite

horizon (see Chapter 2).

7. From (3.14) we see that the volatility parameter appears explicitly in the

payoff of the British option and thus should be agreed in the contract. However,

since the underlying process is assumed to be a geometric Brownian motion, one may

take any of the standard estimators for the volatility (e.g. using the Central Limit

Theorem) over an arbitrarily small time period prior to the initiation of the contract.

It is important to note that the estimation of the stock drift µ cannot be estimated

in practice, therefore it seems natural to provide a true buyer with protection an

drift rather than a volatility, at least in current model. For more details about this

question we address reader to final paragraph of Section 3 in [59].

3.4. The arbitrage-free price and the rational exercise bound-

ary

In this section we derive a closed form expression for the value function Ṽ for

the problem (3.22) in terms of the optimal stopping boundary b and show that the

optimal stopping boundary b itself can be characterised as the unique solution to

a nonlinear integral equation (Theorem 3.4.1). We will make use of the following
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functions in Theorem 3.4.1 below:

F (t, x) = Gµc(t, x)− e−r(T−t)Gr(t, x) (3.43)

L(t, x, v, z) = −
∫ ∞

z

Ĥµc(v, y)f(v−t, x, y)dy (3.44)

for t ∈ [0, T ), x ≥ 1, v ∈ (t, T ) and z ≥ 1, where the functions Gµc and Gr are given

by (3.14) above (upon identifying µc with r in the latter case), the function Ĥµc is

given by (3.32) above, and y 7→ f(v− t, x, y) is the probability density function of

Xx
v−t under P̂ given by

f(v−t, x, y) = 1
σy

√
v−t

[
φ
(

1
σy

√
v−t

[
log x

y
−(r+ σ2

2
)(v−t)

])
(3.45)

+ x1+2r/σ2

φ
(

1
σy

√
v−t

[
log xy+(r+ σ2

2
)(v−t)

])]
+ 1+2r/σ2

y2(1+r/σ2)
Φ
(
− 1

σy
√
v−t

[
log xy−(r+ σ2

2
)(v−t)

])
for y ≥ 1 (with v− t and x as above) where φ is the standard normal density function

given by φ(x) = (1/
√
2π)e−x2/2 for x ∈ IR (and Φ is the standard normal distribution

function defined following (3.14) above). It should be noted that L(t, x, v, b(v)) > 0

for all t ∈ [0, T ), x ≥ 1 and v ∈ (t, T ), since Ĥµc(v, y) < 0 for all y > b(v) as b lies

above h (recall (3.37) above).

1. The main result of this section may now be stated as follows.

Theorem 3.4.1. The value function Ṽ for the problem (3.22) admits the following

representation

Ṽ (t, x) = e−r(T−t)Gr(t, x)− K̃e−rT +

∫ T

t

L(t, x, v, b(v)) dv (3.46)

for all (t, x) ∈ [0, T )× [1,∞).

The optimal stopping boundary (see Figure 3.1 above) can be characterised as the

unique continuous solution b : [0, T ] → IR+ to the nonlinear integral equation

F (t, b(t)) = K̃(e−rt−e−rT ) +

∫ T

t

L(t, b(t), v, b(v)) dv (3.47)

satisfying b(t) ≥ h(t) for all t ∈ [0, T ] where h is defined by (3.37) above.
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Proof. We derive (3.46) and show that the rational exercise boundary solves (3.47).

We omit the proof of fact that (3.47) cannot have other (continuous) solutions, since

it is parallel to similar proofs in [23] and [33].

a) Recall that the value function Ṽ : [0, T ]× [1,∞) → IR and the rational exercise

boundary b : [0, T ] → IR+ solve the free-boundary problem (3.39)-(3.42) (where Ṽ

extends as Gµc above b), set Cb = { (t, x) ∈ [0, T )× [1,∞) : x < b(t) } and Db =

{ (t, x) ∈ [0, T )× [1,∞) : x ≥ b(t) } and let ILX Ṽ (t, x) = −rx Ṽx(t, x)+
σ2

2
x2 Ṽxx(t, x)

for (t, x) ∈ Cb ∪Db. Then Ṽ and b are continuous functions satisfying the following

conditions: (i) Ṽ is C1,2 on Cb∪Db; (ii) b is of bounded variation; (iii) P(Xx
t = c) = 0

for all c > 0 whenever t ∈ [0, T ] and x ≥ 1; (iv) Ṽt+ILX Ṽ is locally bounded on Cb∪Db

(recall that Ṽ satisfies (3.39) on Cb and coincides with Gµc on Db); (v) x 7→ Ṽ (t, x)

is convex on [1,∞) for every t ∈ [0, T ]; and (vi) t 7→ Ṽx(t, b(t)±) = Gµc
x (t, b(t))

is continuous on [0, T ] (recall that Ṽ satisfies the smooth-fit condition (3.41) at b).

From these conditions we see that the local time-space formula [52] is applicable to

(s, y) 7→ Ṽ (t+s, y) with t ∈ [0, T ) given and fixed. Fixing an arbitrary x ≥ 1 and

making use of (3.42) this yields

Ṽ (t+s,Xx
s ) = Ṽ (t, x) (3.48)

+

∫ s

0

(Ṽt+ILX Ṽ )(t+v,Xx
v )I(X

x
v ̸= b(t+v)) dv +M b

s

+
1

2

∫ s

0

(Ṽx(t+v,Xx
v+)−Ṽx(t+v,Xx

v−)) I(Xx
v = b(t+v)) dℓbv(X

x)

where M b
s = σ

∫ s

0
Xx

v Ṽx(t+v,X
x
v ) I(X

x
v ̸= b(t+v)) dWv is a martingale for s ∈ [0, T−t]

and ℓb(Xx) = (ℓbv(X
x))0≤v≤s is the local time of Xx = (Xx

v )0≤v≤s on the curve b for

s ∈ [0, T−t]. Moreover, since Ṽ satisfies (3.39) on Cb and equals Gµc−K̃e−rt on Db,

and the smooth-fit condition (3.41) holds at b, we see that (3.48) simplifies to

Ṽ (t+s,Xx
s ) = Ṽ (t, x) +

∫ s

0

Ĥµc(t+v,Xx
v ) I(X

x
v > b(t+v)) dv +M b

s (3.49)

for s ∈ [0, T−t] and (t, x) ∈ [0, T )× [1,∞).

b) Replacing s by T − t in (3.49), using that Ṽ (T, x) = Gµc(T, x)− K̃e−rT =

x− K̃e−rT for x ≥ 1, taking E on both sides and applying the optional sampling



CHAPTER 3. BRITISH LOOKBACK OPTION 61

theorem, we get

E(Xx
T−t)− K̃e−rT = Ṽ (t, x) +

∫ T−t

0

E
[
Ĥµc(t+v,Xx

v ) I(X
x
v > b(t+v))

]
dv (3.50)

= Ṽ (t, x)−
∫ T

t

L(t, x, v, b(v)) dv

for all (t, x) ∈ [0, T )× [1,∞) where L is defined in (3.44) above. We see that (3.50)

yields the representation (3.46). Moreover, since Ṽ (t, b(t)) = Gµc(t, b(t))−K̃e−rt for

all t ∈ [0, T ] we see from (3.46) with (3.43) that b solves (3.47). This establishes the

existence of the solution to (3.47).

2. Now we can determine the arbitrage-free price (3.16) of the British lookback

option with fixed strike K. Indeed, from (3.23) and (3.46) we have

V (t,m, s) = s e−r(T−t)Gr
(
t, x

)
−Ker(t−T ) (3.51)

+

∫ T

t

E
[(
Hµc(v,Xx

v−t)+
rK
s

)
I
(
Xx

v−t > b(v; Kert

s
)
)]
dv

for t ∈ [0, T ], m ≥ s > 0 where x = m∨K
s

and the optimal stopping boundary b is

computed under assumption K̃ = Kert

s
in (3.47).

Standard arguments based on the strong Markov property (see [58]) show that

the stopping region in (3.16) has the following form:

D =
{
(t,m, s) ∈ [0, T )× S : V (t,m, s) = sGµc

(
t, m∨K

s

)
−K

}
(3.52)

=
{
(t,m, s) ∈ [0, T )× S : s Ṽ

(
t, m∨K

s
; Kert

s

)
= sGµc

(
t, m∨K

s

)
−K

}
=

{
(t,m, s) ∈ [0, T )× S : Ṽ

(
t, m∨K

s
; Kert

s

)
= Gµc

(
t, m∨K

s

)
− Kert

s
e−rt

}
=

{
(t,m, s) ∈ [0, T )× S : m∨K

s
≥ b

(
t; Kert

s

) }
=

{
(t,m, s) ∈ [0, T )× S : m ∨K ≥ s b

(
t; Kert

s

) }
where S = {(m, s) : m ≥ s > 0} and we used (3.23) and (3.40). Thus the optimal

stopping time in (3.16) is given by

τg = inf { 0 ≤ u < T−t : Mu ≥ g(t+u, Su) } (3.53)

where the rational exercise boundary g reads

g(t, s) =

s b
(
t; Kert

s

)
, if K < s b

(
t; Kert

s

)
s, if K ≥ s b

(
t; Kert

s

) (3.54)
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Figure 3.3: A computer drawing of the rational exercise boundary
s 7→ g(t, s) for 1)t = 0 (top at s = 0); 2)t = 0.3; 3)t = 0.6 (bottom

at s = 0) in the case K = 1.2, S0 = 1, K̃ = K
S0

= 1.2, T = 1, µc =
0.05 < µ∗

c ≈ 0.075, r = 0.1, σ = 0.4. The limit of g(t, · ) at zero is
greater than K for every t.

for t ∈ [0, T ), s > 0. Hence if there exist t ∈ [0, T ), s∗ ∈ (0, K) and ε > 0 small

enough such that K = s∗ b
(
t; Kert

s∗

)
and K > s b

(
t; Kert

s

)
for s∈ (s∗, s∗ + ε) then the

boundary s 7→ g(t, s) exhibits a left-discontinuity at s = s∗, which is a quite rare case

in the optimal stopping theory. Below we show a numerical example where indeed

the boundary has a jump down.

3. We now provide the numerical analysis and computer drawing of the rational

exercise boundaries for (3.16). It follows from (3.54) that in order to determine

s 7→ g(t0, s) for given and fixed t0 ∈ [0, T ) we need to calculate the optimal stopping

boundary b( · ; K̃) as a solution to (3.47) with K̃ = Kert0
s

for every s > 0 and then

g(t0, s) = s b(t0; K̃). For computer drawing of the boundaries we assume that the

initial stock price equals 1, the strike price K = 1.2, the maturity time T = 1 year,

the contract drift µc = 0.05 < µ∗
c ≈ 0.075, the interest rate r = 0.1, the volatility

σ = 0.4, i.e. we consider the option out-of-the money. We discretise the interval

(0, 2) with step h = 0.05 and for every 0 ≤ s ≤ 2 of this grid we solve numerically the
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Figure 3.4: A computer drawing showing how the rational exer-
cise boundary g for the problem (3.16) increases as one decreases
the contract drift for fixed t = 0. There are four different cases:
1)µc = 0.074; 2)µc = 0.05; 3)µc = −0.05; 4)µc = −∞ (the lat-
ter corresponds to the American lookback option problem). All
boundaries have the same limit at s = 0. The set of parameters:
K = 1.2, S0 = 1, T = 1, µ∗

c ≈ 0.075, r = 0.1, σ = 0.4. The ratio-
nal exercise boundary in the case µc = 0.074 is discontinuous at
s∗ ≈ 1.14 < K.

integral equation (3.47) with K̃ = Kert0
s

and then put g(t0, s) = s b(t0; K̃). In Figure

3.3 we draw the rational exercise boundary s 7→ g(t, s) for different values of t in

order to gain insight how the boundary evolves over the time. The Figure 3.3 shows

that the rational exercise boundary of the British version is not a monotone function

of both variables unlike the American counterparty, since it was shown in Chapter 2

that for the American lookback option with fixed strike the rational exercise boundary

has the following pattern: t 7→ gA(t, s) is decreasing on [0, T ) for each s > 0 fixed

and s 7→ gA(t, s) is increasing on (0,∞) for t ∈ [0, T ) fixed. From (3.54) it is easily

to seen that g(t, s) ↑ s b0(t) as s → ∞ for fixed t ∈ [0, T ) where b0(t) = b(t; 0) is the

optimal stopping boundary for the British Russian option [23]. Since µc > 0 we have

that b0 ≡ 1 (see [23]) so that g(t, s) = s for s ≫ 0 large enough, i.e. the rational

exercise boundary becomes a diagonal (see Figure 3).

The Figure 3.4 shows how the rational exercise boundary changes as one varies
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the contract drift for fixed t = 0. It can be seen that stronger the protection (i.e.

the contract drift increases) the larger the stopping region (i.e. the rational exercise

boundary decreases). In the case µc = 0.074 we observe a remarkable feature: the

rational exercise boundary is discontinuous at point s∗ ≈ 1.14 < K. Hence it was not

possible to apply a change-of-variable formula with local time on surfaces [55] in order

to solve the three-dimensional stopping problem directly. This is another advantage

of reduction by the method of a scaling strike. Also using the remarks from previous

section we note that if we let µc to −∞ then the optimal stopping boundary g goes

increasingly to a continuous function g−∞ (see Figure 3.4). The limiting boundary

g−∞ is optimal in the problem (3.16) where G−∞(t, x)=x for (t, x) ∈ [0, T ]× [1,∞).

This problem corresponds to the American lookback option with fixed strike in the

case of finite horizon (see [33]).

3.5. The financial analysis

In this section we present the analysis of financial returns of the British look-

back option with fixed strike and highlight the practical features of the option. We

perform comparisons with both the American lookback option with fixed strike and

the European lookback option with fixed strike since the former option has been the

subject of much research activity in recent years (see e.g. [21], [33]) whilst the lat-

ter is commonly traded and well understood. The so-called ‘skeleton analysis’ was

applied to analyse financial returns of options in [59], [60], [22] and [23], where the

main question was addressed as to what the return would be if the underlying process

enters the given region at a given time (i.e. the probability of the latter event was

not discussed nor do we account for any risk associated with its occurrence). Such a

‘skeleton analysis’ is both natural and practical since it places the question of proba-

bilities and risk under the subjective assessment of the option holder (irrespective of

whether the stock price model is correct or not). In the present setting an analysis

of option performance based on returns seems especially insightful since lookback

options are most often used exclusively for speculation and thus for achieving high
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returns.

1. In the end of Section 3.4 above we saw that the rational exercise strategy

(3.54) of the British lookback option with fixed strike in the problem (3.16) above

changes as one varies the contract drift µc. This is illustrated in Figure 3.4 above.

We recall that the contract drift must satisfy µc < µ∗
c , since otherwise we are not able

to reassure that buyer is not overprotected. On the other hand, when µc ↓ −∞ then

g tends to the American lookback boundary g−∞ and the British lookback option

effectively reduces to the American lookback option. In the latter case a contract

drift represents an infinite tolerance of unfavourable drifts and the British lookback

holder will exercise the option rationally in the limit at the same time as the American

lookback holder.

2. In the numerical example below (see Tables 3.1 and 3.2) the parameter values

have been chosen to present the practical features of the British lookback option

with fixed strike in a fair and representative way. We assume that the initial stock

price equals 1, the strike price K = 1.2, the maturity time T = 1 year, the interest

rate r = 0.1, the volatility coefficient σ = 0.4, i.e. we consider the option out-of-the

money. We choose the contract drift µc = 0.05, which satisfies the condition

Eµc
[
r K
S0
−µcMT

]
I(MT > K

S0
) ≈ 0.026 > 0. (3.55)

For this set of parameters the arbitrage-free price of the British lookback option

with fixed strike is 0.254, the price of the American lookback option is 0.251, and

the price of the European lookback option is 0.245. Observe that the closer the

contract drift gets to µ∗
c , the stronger the protection feature provided (with generally

better returns), and the more expensive the British lookback option becomes. Recall

also that when µc ↓ −∞ then the British lookback option effectively reduces to the

American lookback option and the price of the former option converges to the price

of the latter. The fact that the price of the British lookback option is close to the

price of the European (and American) lookback option in situations of interest for

trading is of considerable practical value.
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Exercise time (months) 0 2 4 6 8 10 12

S = 0.6
Exercise at M ≤ 1.2 with µc = 0.05 6% 4% 2% 1% 0% 0% 0%
Exercise at M ≤ 1.2 (American) 0% 0% 0% 0% 0% 0% 0%

Exercise at M = 1.4 with µc = 0.05 81% 80% 79% 79% 79% 79% 79%
Exercise at M = 1.4 (American) 80% 80% 80% 80% 80% 80% 80%

S = 1.0
Exercise at M ≤ 1.2 with µc = 0.05 93% 78% 62% 46% 28% 10% 0%
Exercise at M ≤ 1.2 (American) 0% 0% 0% 0% 0% 0% 0%

Exercise at M = 1.4 with µc = 0.05 133% 121% 109% 97% 87% 80% 79%
Exercise at M = 1.4 (American) 80% 80% 80% 80% 80% 80% 80%

Exercise at M = 1.6 with µc = 0.05 189% 180% 171% 164% 160% 157% 157%
Exercise at M = 1.6 (American) 159% 159% 159% 159% 159% 159% 159%

S = 1.4
Exercise at M = 1.4 with µc = 0.05 297% 274% 250% 223% 193% 157% 79%
Exercise at M = 1.4 (American) 80% 80% 80% 80% 80% 80% 80%

Exercise at M = 1.6 with µc = 0.05 309% 287% 264% 239% 212% 182% 157%
Exercise at M = 1.6 (American) 159% 159% 159% 159% 159% 159% 159%

Exercise at M = 1.8 with µc = 0.05 340% 320% 300% 280% 260% 242% 236%
Exercise at M = 1.8 (American) 239% 239% 239% 239% 239% 239% 239%

S = 1.8
Exercise at M = 1.8 with µc = 0.05 517% 487% 456% 422% 383% 337% 237%
Exercise at M = 1.8 (American) 239% 239% 239% 239% 239% 239% 239%

Exercise at M = 2.0 with µc = 0.05 526% 497% 467% 434% 398% 357% 315%
Exercise at M = 2.0 (American) 318% 318% 318% 318% 318% 318% 318%

Table 3.1: Returns observed upon exercising the British lookback option with fixed
strike compared with returns observed upon exercising the American lookback op-
tion with fixed strike. The returns are expressed as a percentage of the original
option price paid by the buyer (rounded to the nearest integer), i.e.R(t,m, s)/100 =
(s Gµc(t, m∨K

s
)−K)/V (0, 1, 1) andRA(t,m, s)/100 = (m−K)+/VA(0, 1, 1). The pa-

rameter set isµc = 0.05, K = 1.2, T = 1, r = 0.1, σ = 0.4and the initial stock price
equals 1.

3. Tables 3.1 and 3.2 below provide the analysis of comparison between the

British lookback option with fixed strike and its American and European versions.

We consider the set of parameters above, the arbitrage-free price of the British option

in this setting can be computed using (3.51) so that V (0, 1, 1) = 0.254. We exploit

the same method to find the price of the American option VA(0, 1, 1) = 0.251 (see

[33]). The European option price VE(0, 1, 1) = 0.245 can be easily evaluated using

the following manipulations

VE(t,m, s) = e−r(T−t)Er
(
m ∨ max

u≤T−t
sSu −K

)+
(3.56)

= s e−r(T−t)Er
(
m∨K

s
∨ max

u≤T−t
Su − K

s

)
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Exercise time (months) 0 2 4 6 8 10 12

S = 0.6
Exercise at M ≤ 1.2 with µc = 0.05 6% 4% 2% 1% 0% 0% 0%
Selling at M ≤ 1.2 (European) 8% 5% 2% 1% 0% 0% 0%

Exercise at M = 1.4 with µc = 0.05 81% 80% 79% 79% 79% 79% 79%
Selling at M = 1.4 (European) 77% 77% 77% 78% 79% 80% 82%

S = 1.0
Exercise at M ≤ 1.2 with µc = 0.05 93% 78% 62% 46% 28% 10% 0%
Selling at M ≤ 1.2 (European) 100% 84% 68% 50% 31% 12% 0%

Exercise at M = 1.4 with µc = 0.05 133% 121% 109% 97% 87% 80% 79%
Selling at M = 1.4 (European) 134% 122% 110% 99% 88% 82% 82%

Exercise at M = 1.6 with µc = 0.05 189% 180% 171% 164% 160% 157% 157%
Selling at M = 1.6 (European) 184% 176% 169% 164% 160% 160% 163%

S = 1.4
Exercise at M = 1.4 with µc = 0.05 297% 274% 250% 223% 193% 157% 79%
Selling at M = 1.4 (European) 299% 278% 255% 229% 200% 163% 82%

Exercise at M = 1.6 with µc = 0.05 309% 287% 264% 239% 212% 182% 157%
Selling at M = 1.6 (European) 308% 288% 267% 243% 217% 188% 163%

Exercise at M = 1.8 with µc = 0.05 340% 320% 300% 280% 260% 242% 236%
Selling at M = 1.8 (European) 335% 318% 300% 282% 263% 248% 245%

S = 1.8
Exercise at M = 1.8 with µc = 0.05 517% 487% 456% 422% 383% 337% 237%
Selling at M = 1.8 (European) 511% 486% 458% 428% 392% 346% 245%

Exercise at M = 2.0 with µc = 0.05 526% 497% 467% 434% 398% 357% 315%
Selling at M = 2.0 (European) 518% 494% 468% 439% 406% 366% 326%

Table 3.2: Returns observed upon exercising the British lookback option with fixed
strike compared with returns observed upon selling the European lookback option
with fixed strike. The returns are expressed as a percentage of the original op-
tion price paid by the buyer (rounded to the nearest integer), i.e.R(t,m, s)/100 =
(s Gµc(t, m∨K

s
)−K)/V (0, 1, 1) and RE(t,m, s)/100 = VE(t,m, s)/VE(0, 1, 1). The

parameter set is µc = 0.05, K = 1.2, T = 1, r = 0.1, σ = 0.4 and the initial stock
price equals 1.

= e−r(T−t)
(
sGr

(
t, m∨K

s

)
−K

)
.

We compare the returns that the British lookback holder can obtain upon exercis-

ing his option with the returns observed upon (i) exercising the American lookback

option in the same contingency (Table 3.1) and (ii) selling the European lookback op-

tion in the same contingency (Table 3.2). The latter is motivated by the fact that in

practice the European option holder may choose to sell his option at any time during

the term of the contract, and in this case one may view his ‘payoff’ as the price he

receives upon selling. It is important to note that the payoff of the American option

depends only on the maximum process, but both the British payoff and the price of
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the European option depend on the three-dimensional process (maximum-stock price-

time), hence in Tables 3.1 and 3.2 we fix four different values of the current stock price

(0.6, 1.0, 1.4, 1.8) and then compare returns for the range of the maximum process

and the time. From (3.13) and (3.56) we see that the payoff of the British and the

European options does not depend on the maximum process M when M ≤K=1.2.

From Tables 3.1 and 3.2 we see that (i) exercising the British lookback option pro-

vides generally much better returns than exercising the American lookback option:

it is more appreciable for favourable stock movements rather than unfavourable; (ii)

exercising the British lookback option provides very comparable returns to selling

the European lookback option: the British returns are generally better away from

expiry and the European returns are better near maturity. However, as remarked

in [59], [60] and [23] in a real financial market the option holder’s ability to sell his

contract will depend upon a number of exogenous factors. These include his ability

to access the option market, the transaction costs and/or taxes involved in selling,

and in particular the liquidity of the option market itself. For lookback options the

latter factor is especially important, since they generally trade in over-the-counter

markets which have no organised exchange and as such these markets can be illiquid

and thus the selling of the European option can be problematic. Crucially, the pro-

tection feature of the British lookback option is intrinsic to it, that is, it is completely

endogenous. It is inherent in the payoff function itself (obtained as a consequence of

optimal prediction), and as such it is independent of any exogenous factors. From

this point of view the British lookback option is a particularly attractive financial

instrument.



Chapter 4

The American swing put option

4.1. Introduction

Swing contracts are financial products designed primarily to allow for flexibility

on purchase, sale and delivery of commodities in the energy market. They have

features of American-type options with multiple early exercise rights and in many

relevant cases may be mathematically described in terms of multiple optimal stopping

problems combined with control problems. The stopping part of the contract accounts

for the choice of the optimal times to exercise the flexibility and the control part

describes the kind of flexibility entailed by the contract. Mathematical formulations

of such problems in the economic-financial literature date back to the early 1980’s

and an exhaustive survey of them may be found in [31, Sec. 1 and 2] and references

therein. Theoretical and numerical aspects of pricing and hedging swing contracts

have received increasing attention in the last decade with many contributions from

a number of authors developing in parallel several methods of solution (see e.g. [45]

for an extensive survey of recent results).

Amongst the earliest contributions on the numerical study of swing options we

find for instance [31] where a pricing algorithm based mainly on trinomial trees was

developed, and [29] where Monte Carlo methods were used to compute the option

prices and optimal exercise boundaries. Contracts analysed in those papers included

constraints on the volumes of traded commodities and the number of trades at each

69
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exercise date. Lately a wide range of diverse numerical methods has been employed

to deal with general models for both the dynamics of the underlying commodity price

(including for example jump processes) and the structure of the options (including

regime switching opportunities). Some of those results may be found for instance in

[4], [5], [27], [71] amongst others. To the best of our knowledge a first theoretical

analysis of the optimal stopping theory underpinning swing contracts was given in

[11] and it was based on martingale methods and Snell envelope. Later on [36] pro-

vided a systematic study of martingale methods for multiple stopping time problems

for càdlàg positive processes. A characterisation of the value function of multiple

stopping time problems in terms of excessive functions was given in [10] in the case of

one-dimensional linear diffusions. Duality methods instead were studied from both

theoretical and numerical point of view in [48], [1] and [7], amongst others.

In the Markovian setting variational methods and BSDEs techniques have been

widely employed. In [8] for instance the HJB equation for a swing option with volume

constraint is analysed both theoretically and numerically. Variational inequalities for

multiple optimal stopping problems have been studied for instance in [46] in the

(slightly different) context of evaluation of stock options and in [44] in an extension

of results of [11] to one-dimensional diffusions with jumps. A study of BSDEs with

jumps related to swing options may be found instead in [9].

Numerical characterisations of the optimal exercise boundaries of swing options

are available in a variety of settings in both the perpetual case and the finite maturity

one (cf. for instance [8], [11], [29] and [46]). On the other hand despite the general

interest towards theoretical aspects of swing options it seems that the problem of char-

acterising analytically optimal exercise boundaries has not been thoroughly studied

yet. For perpetual options such boundaries have been provided for a put payoff in the

Black & Scholes framework by [11], whereas more general dynamics and payoffs were

studied in [10]. For the case of finite maturity instead the problem is still widely open

and the question of finding analytical equations for the optimal boundaries remains

unanswered. In this paper we address this issue in a setting described below.

We consider the case of a swing option with a put payoff, finite maturity T > 0,
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strike priceK > 0 and n ∈ N exercise rights. The underlying price follows a geometric

Brownian motion according to the Black & Scholes model and we consider an option

whose structure was described in [29] and [31]. In particular the holder can only

exercise one right per time and must wait a so-called refracting period of length

δ > 0 between two consecutive exercises. If the holder has not used the first of the n

rights by time T−(n−1)δ then at that time she must exercise it and remains with a

portfolio of n− 1 European put options with different maturities up to time T . This

corresponds to the case of a swing option with a constrained minimum number of

exercise rights equal to n.

We first perform using probabilistic arguments an analysis of the price function of

the option with n = 2 and prove an existence of two continuous, monotone, bounded

optimal stopping boundaries denoted b(2) and c(2) such that b(2)(t) < K < c(2)(t) for

t ∈ [0, T−δ). It turns out that it is optimal to exercise the first right of the swing

option as soon as the underlying price falls below b(2) or exceeds c(2). We provide an

early exercise premium (EEP) representation for the price of the option in terms of

the optimal stopping boundaries and adapting arguments of [18] (see also [53]) we

show that such boundaries uniquely solve a system of coupled integral equations of

Volterra type. Finally we extend the result to the general case of n exercise rights by

an induction.

The paper is organised as follows. In Section 4.2 we introduce the financial prob-

lem and provide its mathematical formulation. Section 4.3 is devoted to the detailed

analysis of the case of a swing option with two exercise rights. In Section 4.4 we

extend the results of Section 4.3 to the case of swing options with arbitrary many

rights. The paper is completed by a technical appendix.

4.2. Formulation of the swing put option problem

Here we formulate the valuation problem for a swing put option on an underlying

asset with price X as a sequence of optimal stopping problems defined recursively.

On a complete probability space (Ω,F ,P) we consider the Black and Scholes model
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for the asset price dynamics

dXt = rXt dt+ σXt dBt , X0 = x > 0 (4.1)

where B is a standard Brownian motion started at zero, r > 0 is the interest rate,

and σ > 0 is the volatility coefficient. We denote by (Ft)t≥0 the natural filtration

generated by (Bt)t≥0 completed with the P-null sets and by (Xx
t )t≥0 the unique strong

solution to (4.1). It is well known that for any t ≥ 0 and x > 0 it holds

Xx
t = x eσBt+(r− 1

2
σ2)t. (4.2)

Now for this model let us V (n) denote the price of a swing option with a put payoff

(K − x)+, strike K > 0, maturity T > 0, n exercise rights and refracting period

δ > 0. The latter is the minimum amount of time that the option holder must wait

between two consecutive exercises of the option, therefore we have that T ≥ (n−1)δ.

An important parameter of the option is the minimal number n0 of rights the

holder must exercise. Due to existence of the refracting period δ and finite horizon T

the holder may desire to miss some of his rights in order to benefit from a potential

better future exercises. Therefore the price of the option V (n) is decreasing with

respect to 1 ≤ n0 ≤ n. In our work we consider the case n0 = n and hence the

holder must exercise all rights up to T and the structure of the contract is specified

according to examples analysed for instance in [29, Sec. 3] and [31, Sec. 2.3.1] and it

is the following:

i) if at time t = T−(n−1)δ the first right has not been exercised yet the holder

gets the payoff of a put option and remains with a portfolio of n− 1 European

put options with maturity dates

{
T−(n−2)δ , T−(n−3)δ , . . . T−δ , T

}
ii) if the holder exercises the first right at any time t < T−(n−1)δ then he receives

a put payoff and uses remaining n−1 rights after a refracting period δ. That

means that after an inaction period of length δ the holder has again a swing

option with n−1 exercise rights.
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We would like to remark that this formulation differs from on for instance in [11]

where n0 = 1 and at time t = T−(n−1)δ the holder can decide to whether exercise

the first right or not. There if the right is given up the holder remains with a swing

put option with n−1 exercise rights available immediately. The value of the contract

in [11] is larger than the one of that considered here since the holder in [11] does not

lose the early exercise opportunity of future rights beyond time T −(n−1)δ if the

first right is not used. In our case instead (as in e.g. [29] and [31]) the holder has

a binding constraint of making a decision prior to time T −(n−1)δ in order to be

entitled to use future early exercise rights.

We now define the payoff of immediate exercise of the first right and the option’s

value recursively (see e.g. [11] and [36] for a full justification and will not repeat it

here). Trivially for n = 0 the value V (0) is the value of a European put option with

maturity T > 0 and strike price K > 0. Similarly for n = 1 the swing contract

reduces to a standard American put option, again with maturity T > 0 and strike

price K > 0. We recall for completeness that in our Markovian framework if at time

t ∈ [0, T ] the underlying asset price is x > 0 the value of the European and American

put options are respectively

V (0)(t, x) = E
[
e−r(T−t)(K−Xx

T−t)
+
]

(4.3)

and

V (1)(t, x) = sup
0≤τ≤T−t

E
[
e−rτ (K−Xx

τ )
+
]
. (4.4)

Remark 4.2.1. Notice that in order to take into account for different maturities

one should specify them in the definition of the value function, i.e. for instance de-

noting V (n)(t, x;T ), n = 0, 1, for the European/American put option with maturity

T . However this notation is unnecessarily complex since what effectively matters in

pricing put options is the time-to-maturity. In fact for fixed x ∈ (0,∞) and λ > 0

the value at time t ∈ [0, T ] of a European/American put option with maturity T is

the same as the value of the option with maturity T + λ but considered at time t+ λ,

i.e. V (n)(t, x;T ) = V (n)(t+ λ, x;T + λ), n = 0, 1. In this work we mainly deal with a

single maturity T and simplify our notation by setting V (n)(t, x) := V (n)(t, x;T ).
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According to i) above the early exercise feature of the contract can only be ex-

ploited by the holder until t < T − (n−1)δ. In particular using Remark 4.2.1 we

observe that the option price is given by

V (n)(T−(n−1)δ, x) =(K − x)+ +
n−2∑
j=0

V (0)(t, x;T−jδ) (4.5)

=(K − x)+ +
n−2∑
j=0

V (0)(t+jδ, x)

for every x > 0. We now denote by G(n) the payoff of immediate exercise of the first

right and it equals

G(n)(t, x) = (K − x)+ +R(n)(t, x) (4.6)

for any t ∈
[
0, T − (n− 1)δ

]
and x > 0 and where

R(n)(t, x) = E
[
e−rδV (n−1)(t+δ,Xx

δ )
]

(4.7)

is the expected discounted value of a swing option with n−1 exercise rights, available

to the option holder after the refracting time δ and it accounts for the opportunity

of future exercises. It is easy to verify that V (n)(T−(n−1)δ, x) = G(n)(T−(n−1)δ, x)

for all x > 0.

The option holder aims to maximise the payoff of the swing option by using its

multiple early exercise rights. The above discussion regarding i) and ii) shows that

the choice of the first early exercise is crucial to determine the successive structure of

the contract. Pricing the option and finding the optimal multiple-exercise strategy

then reduces to solving the optimal stopping problem

V (n)(t, x) = sup
0≤τ≤T−(n−1)δ

E
[
e−rτG(n)(t+τ,Xx

τ )
]

(4.8)

for t ∈ [0, T−(n−1)δ] and x > 0. Since G(n) is defined recursively through V (n−1), it

turns out that in order to price a swing option with n exercise rights one must first

price the options with 2, 3, . . . n− 1 rights. It is then natural to begin with analysing

the simplest case of n = 2 and this will be accomplished in the next section.
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In our study we will rely on known results about the American put option problem

(see e.g. [58, Sec. 25]) and we define following sets

C(1) := { (t, x) ∈ [0, T )×(0,∞) : V (1)(t, x) > (K−x)+ } (4.9)

D(1) := { (t, x) ∈ [0, T )×(0,∞) : V (1)(t, x) = (K−x)+ } (4.10)

and recall that the first entry time of X into D(1) is an optimal stopping time in

(4.3). Moreover, it is well known that there exists an unique continuous boundary

b(1) separating C(1) from D(1) and such that 0 < b(1)(t) < K for t ∈ [0, T ). The

stopping time

τb(1) = inf
{
0 ≤ s ≤ T−t : Xx

s ≤ b(1)(t+s)
}

(4.11)

is therefore optimal in (4.3). It is also well known that V (1) ∈ C1,2 in C(1) and it

solves there following PDE

V
(1)
t + ILXV

(1) − rV (1) = 0 (4.12)

where ILX = rxd/dx+ (σ2/2)x2d2/dx2 the infinitesimal generator of X.

The map x 7→ V
(1)
x (t, x) is continuous across the optimal stopping boundary b(1)

for all t ∈ [0, T ) (so-called smooth-fit condition) and
∣∣Vx

∣∣ ≤ 1 on [0, T ] × (0,∞). A

change-of-variable formula ([52]) then gives following representation

e−rsV (1)(t+s,Xx
s ) = V (1)(t, x)−rK

∫ s

0

e−ruI(Xx
u < b(1)(t+u))du+Ms (4.13)

for s ∈ [0, T − t] and x > 0 where (Ms)s∈[0,T−t] is a continuous martingale and where

we have used that in D(1)

V
(1)
t +ILXV

(1)−rV (1) = −rK. (4.14)

4.3. Free-boundary analysis of the swing option with n = 2

In this section we study the optimal stopping problem associated to a swing

option with two exercise rights and optimal stopping strategy for the first of them.

Our main aim is to provide an early-exercise premium (EEP) representation formula

for the value function V (2) and characterisation of its optimal stopping region.
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To simplify notation we denote Tδ = T −δ, G = G(2) and R = R(2), then for

t ∈ [0, Tδ] and x > 0 we have

G(t, x) = (K−x)+ +R(t, x) = (K−x)+ + e−rδEV (1)(t+δ,Xx
δ ) (4.15)

and

V (2)(t, x) = sup
0≤τ≤Tδ−t

Ee−rτG(t+τ,Xx
τ ). (4.16)

1. We now provide the expression for the function H defined as

H(t, x) := (Gt+ILXG−rG)(t, x) (4.17)

for t ∈ [0, Tδ] and x ∈ (0, K) ∪ (K,∞). By straightforward calculations and using

that R(t, x) = V (1)(t, x)− rK
∫ δ

0
e−rsP

(
Xx

s ≤ b(1)(t+s)
)
ds we have that

(
Rt + ILXR− rR

)
(t, x) = −rKf(t, x) (4.18)

for (t, x) ∈ (0, Tδ)× (0,∞) and

H(t, x) = −rK
(
I(x < K) + f(t, x)

)
(4.19)

for (t, x) ∈ (0, Tδ)×
[
(0, K) ∪ (K,∞)

]
and where

f(t, x) := e−rδP
(
Xx

δ ≤ b(1)(t+δ)
)

(4.20)

for (t, x) ∈ (0, Tδ)× (0,∞). A key feature of H that we will make of use in the rest

of our analysis is that

t 7→ H(t, x) is decreasing for all x > 0

since t 7→ b(1)(t) is increasing.

2. Now applying of Ito-Tanaka’s formula and optional sampling theorem we have

that

Ee−rτG(t+τ,Xx
τ ) =G(t, x) + E

∫ τ

0

e−ruH(t+u,Xx
u)du (4.21)

+
1

2
E

∫ τ

0

e−rudℓKu (X
x)



CHAPTER 4. AMERICAN SWING OPTION 77

for (t, x) ∈ [0, Tδ]× (0,∞) and any stopping time τ ∈ [0, Tδ − t] where
(
ℓKu (X

x)
)
u≥0

is the local time process of Xx at level K and we have used that H(t+u,Xx
u)I(X

x
u ̸=

K) = H(t+u,Xx
u) P-a.s. for all u ∈ [0, Tδ − t].

The continuation and stopping sets of problem (4.16) are given respectively by

C(2) := { (t, x) ∈ [0, Tδ)×(0,∞) : V (2)(t, x) > G(t, x) } (4.22)

D(2) := { (t, x) ∈ [0, Tδ)×(0,∞) : V (2)(t, x) = G(t, x) }. (4.23)

Since the gain function G is continuous on [0, Tδ] × (0,∞) the standard arguments

of optimal stopping stopping theory (see. e.g. [58, Corollary 2.9, Sec. 2]) guarantees

that the optimal stopping time in (4.16) is given by

τ ∗ = inf { 0 ≤ s ≤ Tδ−t : (t+s,Xx
s ) ∈ D(2) }. (4.24)

3. Below we prove the continuity of V (2).

Proposition 4.3.1. The value function V (2) is continuous on [0, Tδ]×(0,∞). In par-

ticular x 7→ V (2)(t, x) is convex and Lipschitz continuous with constant independent

of t ∈ [0, Tδ].

Proof. (i) It follows from convexity of x 7→ V (1)(t, x) and (4.15) that the map x 7→

G(t, x) is convex on (0,∞) for every t ∈ [0, Tδ] fixed. Hence the function x 7→

V (2)(t, x) is convex on (0,∞) as well and thus x 7→ V (2)(t, x) is continuous on (0,∞)

for every given and fixed t ∈ [0, Tδ]. Moreover x 7→ G(t, x) is also decreasing and

Lipschitz uniformly with respect to t ∈ [0, Tδ]. Indeed, since −1 ≤ V
(1)
x ≤ 0 and

x 7→ (K − x)+ is Lipschitz, we have

0 ≤ G(t, x1)−G(t, x2) ≤|x2 − x1|+ e−rδE
∣∣Xx2

δ −Xx1
δ

∣∣ (4.25)

=
(
x2 − x1

)(
1 + Ee−rδX1

δ

)
= 2

(
x2 − x1

)
for t ∈ [0, Tδ] and 0 < x1 < x2 < ∞. It then follows by (4.2), (4.25) and optional

sampling theorem that

0 ≤ V (2)(t, x1)− V (2)(t, x2) ≤ sup
0≤τ≤Tδ−t

Ee−rτ
[
G(t+τ,Xx1

τ )−G(t+τ,Xx2
τ )

]
(4.26)
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≤2(x2 − x1) sup
0≤τ≤Tδ−t

Ee−rτX1
τ = 2(x2 − x1)

for t ∈ [0, Tδ] and 0 < x1 < x2 < ∞ and hence x 7→ V (2)(t, x) is Lipschitz continuous

with constant 2.

(ii) It remains to prove that t 7→ V (2)(t, x) is continuous on [0, Tδ] for x ∈ (0,∞).

We first notice that t 7→ G(t, x) is decreasing for x > 0 fixed since t 7→ V (1)(t, x) is

such and therefore t 7→ V (2)(t, x) is decreasing as well by simple comparison. Now let

us take 0 ≤ t1 < t2 ≤ Tδ and x ∈ (0,∞), denote τ1 = τ ∗(t1, x) optimal for V (1)(t1, x)

and set τ2 := τ1∧ (Tδ−t2). Then using (4.18), the fact that τ1 ≥ τ2 and the inequality

(K−y)+ − (K−z)+ ≤ (z−y)+ for y, z ∈ IR, we find

0 ≤ V (2)(t1, x)− V (2)(t2, x) (4.27)

≤ Ee−rτ1G(t1+τ1, X
x
τ1
)− Ee−rτ2G(t2+τ2, X

x
τ2
)

≤ Ee−rτ1(Xx
τ2
−Xx

τ1
)+ + E

[
e−rτ1R(t1+τ1, X

x
τ1
)− e−rτ1R(t2+τ2, X

x
τ2
)
]

≤ Ee−rτ1(Xx
τ2
−Xx

τ1
)+ +R(t1, x)−R(t2, x)

− rKE

∫ τ2

0

e−rs
[
f(t1+s,Xx

s )− f(t2+s,Xx
s )
]
ds.

Taking now t2 − t1 → 0 one has that the first term of the last expression in (4.27)

goes to zero by standard arguments (see (25.2.12)–(25.2.14), p.381 of [58]), the second

one goes to zero by continuity of V (1) and b(1) and the third term goes to zero by

dominated convergence theorem and continuity of f .

The continuity of V (2) on [0, Tδ]× (0,∞) follows by combining (i) and (ii) above.

4. We now notice that since V (2) and G are continuous we have that C(2) is an

open set and D(2) is a closed set. In the next proposition we obtain an initial insight

on the structure of the set D(2) in terms of the set D(1) (see (4.10)).

Proposition 4.3.2. The restriction to [0, Tδ] of the stopping set D(1) is contained in

the stopping set D(2), i.e.

D(1) ∩
(
[0, Tδ]× (0,∞)

)
⊆ D(2). (4.28)
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Proof. Take any point (t, x) ∈ [0, Tδ]× (0,∞) and let τ = τ ∗(t, x) denote the optimal

stopping time for V (2)(t, x), then by using (4.15), (4.18) and recalling that f ≥ 0 we

have

V (2)(t, x)− V (1)(t, x) ≤ Ee−rτG(t+τ,Xx
τ )− Ee−rτ (K −Xx

τ )
+ (4.29)

= Ee−rτR(t+τ,Xx
τ )

= R(t, x)− rKE

∫ τ

0

e−rsf(t+s,Xx
s )ds ≤ G(t, x)− (K−x)+.

It then follows that for any (t, x) ∈ D(1) with t ∈ [0, Tδ], i.e. such that V (1)(t, x) =

(K−x)+, it must be V (2)(t, x) = G(t, x) and thus (t, x) ∈ D(2).

We now define the t-sections of the continuation and stopping sets of problem

(4.16) by

C
(2)
t := {x ∈ (0,∞) : V (2)(t, x) > G(t, x) } (4.30)

D
(2)
t := {x ∈ (0,∞) : V (2)(t, x) = G(t, x) } (4.31)

for t ∈ [0, Tδ].

Proposition 4.3.3. We have that C
(2)
t2 ⊆ C

(2)
t1 (equivalently D

(2)
t2 ⊇ D

(2)
t1 ) for any

0 ≤ t1 < t2 ≤ Tδ , i.e. the family {C(2)
t , t ∈ [0, Tδ]} is decreasing in t (equivalently

the family {D(2)
t , t ∈ [0, Tδ]} is increasing in t).

Proof. Fix 0 ≤ t1 < t2 < Tδ and x ∈ (0,∞), and set τ = τ ∗(t2, x) optimal for

V (2)(t2, x). Then we have

V (2)(t1, x)− V (2)(t2, x) (4.32)

≥ Ee−rτG(t1+τ,Xx
τ )− Ee−rτG(t2+τ,Xx

τ )

= Ee−rτ
(
R(t1+τ,Xx

τ )−R(t2+τ,Xx
τ )
)

= R(t1, x)−R(t2, x)− rKE

∫ τ

0

e−rs
[
f(t1+s,Xx

s )− f(t2+s,Xx
s )
]
ds

≥ R(t1, x)−R(t2, x) = G(t1, x)−G(t2, x)

where in the last inequality we used that t 7→ f(t, x) is increasing on [0, Tδ]. It

follows from (4.32) that (t2, x) ∈ C(2) implies (t1, x) ∈ C(2) and thus the proof is

complete.



CHAPTER 4. AMERICAN SWING OPTION 80

5. So far the analysis of the swing option has produced results which are somehow

similar to those found in the standard American put option problem. In what follows

instead we will establish that the structure of C(2) is radically different from the one

of C(1). The optimal exercise of the swing option then requires to take into account

for features that were not observed in the case of American put options. In the rest

of the paper we will require the next simple result that is obtained by an application

of Itô-Tanaka formula, optional sampling theorem and observing that the process X

has independent increments.

Lemma 4.3.4. For any σ ≤ τ stopping times in [0, Tδ] we have

E
[ ∫ τ

σ

e−rtdLK
t (X

x)
∣∣∣Fσ

]
(4.33)

= E
[
e−rτ

∣∣Xx
τ −K

∣∣∣∣∣Fσ

]
− e−rσ

∣∣Xx
σ −K

∣∣− rKE
[ ∫ τ

σ

e−rtsign(Xx
t −K)dt

∣∣∣Fσ

]
.

Now we characterise the structure of the continuation region C(2).

Theorem 4.3.5. There exist two functions b(2), c(2) : [0, Tδ] → (0,∞] such that

0 < b(2)(t) < K < c(2)(t) ≤ ∞ and C
(2)
t = (b(2)(t), c(2)(t)) for all t ∈ [0, Tδ] (See

Figure 4.1). Moreover b(2)(t) ≥ b(1)(t) for all t ∈ [0, Tδ] (See Figure 4.2), t 7→ b(2)(t)

is increasing and t 7→ c(2)(t) is decreasing on [0, Tδ] with

lim
t↑Tδ

b(2)(t) = lim
t↑Tδ

c(2)(t) = K. (4.34)

Proof. The proof of existence is provided in 3 steps.

(i) First we show that it is not optimal to stop at x = K. To accomplish that

we use arguments inspired by [70]. Let us fix ε > 0, set τε = inf{t ≥ 0 : XK
t ∈

(K−ε,K+ε)}, take t ∈ [0, Tδ] and denote s = Tδ−t then by (4.19) and (4.21) we

have that

V (2)(t,K)−G(t,K) (4.35)

≥ Ee−rτε∧sG(t+τε ∧ s,XK
τε∧s)−G(t,K)

=
1

2
E

∫ τε∧s

0

e−rudℓKu (X
K)−rKE

∫ τε∧s

0

e−ru
(
I(XK

u ≤ K)+f(t+u,XK
u )

)
du

≥ 1

2
E

∫ τε∧s

0

e−rudℓKu (X
K)− C1E(τε ∧ s)
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for some constant C1 > 0. The integral involving the local time can be estimated by

using Itô-Tanaka’s formula as follows

E

∫ τε∧s

0

e−rudℓKu (X
K) (4.36)

= Ee−rτε∧s|XK
τε∧s −K| − rK E

∫ τε∧s

0

e−rusign(XK
u −K)du

≥ Ee−rτε∧s|XK
τε∧s −K| − C2 E(τε ∧ s)

for some constant C2 = C2(ε) > 0 where we used that the process XK is bounded

prior to τε. Since e
−r(τε∧s)|XK

τε∧s −K| ≤ ε it is not hard to see that for any 0 < p < 1

we have

e−r(τε∧s)|XK
τε∧s −K| ≥ e−rp(τε∧s) |X

K
τε∧s −K|p

εp
e−r(τε∧s)|XK

τε∧s −K|

then by taking the expectation and using the integral version of (4.1) we get

Ee−rτε∧s|XK
τε∧s −K| ≥ 1

εp
E
∣∣e−rτε∧s(XK

τε∧s −K)
∣∣1+p

(4.37)

=
1

εp
E
∣∣∣rK ∫ τε∧s

0

e−rudu+ σ

∫ τε∧s

0

e−ruXK
u dBu

∣∣∣1+p

.

We now use the standard inequality |a + b|p+1 ≥ 1
2p+1 |a|p+1 − |b|p+1 for any a, b ∈ IR

(see e.g. Ex. 5 in [37, Ch. 8, Sec. 50, p. 83]) and Burkholder-Davis-Gundy (BDG)

inequality (see e.g. [58, p. 63]) to obtain

Ee−rτε∧s|XK
τε∧s −K| ≥ 1

εp2p+1
E
∣∣∣σ ∫ τε∧s

0

e−ruXK
u dBu

∣∣∣1+p

(4.38)

− 1

εp
E
∣∣∣rK ∫ τε∧s

0

e−rudu
∣∣∣1+p

≥ C4 E
∣∣∣σ2

∫ τε∧s

0

e−2ru(XK
u )2du

∣∣∣(1+p)/2

− C3E(τε ∧ s)1+p

≥ C4 C5 E(τε ∧ s)(1+p)/2 − C3E(τε ∧ s)1+p

for some constants C3 = C3(ε, p), C4 = C4(ε, p), C5 = C5(ε.p) > 0. Since we are

interested in the limit as Tδ − t → 0 we take s < 1, and combining (4.35), (4.36) and

(4.38) we get

V (2)(t,K)−G(t,K) ≥ C4 C5 E(τε ∧ s)(1+p)/2 − (C1+C2+C3)E(τε ∧ s) (4.39)
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for any t ∈ [0, Tδ) such that s = Tδ−t < 1. Since p+1 < 2 it follows from (4.39) by

letting s ↓ 0 that there exists t∗ < Tδ such that V (2)(t,K) > G(t,K) for all t ∈ (t∗, Tδ).

Therefore (t,K) ∈ C
(2)
t for all t ∈ (t∗, Tδ) and since t 7→ C

(2)
t is decreasing (see

Proposition 4.3.3) this implies (t,K) ∈ C
(2)
t for all t ∈ [0, Tδ), i.e. it is never optimal

to stop when the underlying price X equals the strike K.

(ii) Now we study the portion of D(2) above the strike K and show that it is not

empty unlike in well known American put option problem. For that we prove by

contradiction and we assume that there are no points in the stopping region above

K. Then we take ε > 0, t ∈ [0, Tδ) and x ≥ K + 2ε, denote τ = τ(t, x) the optimal

stopping time for V (2)(t, x), set s = Tδ − t and define σε := inf{u ≥ 0 : Xx
u ≤ K+ε}.

Then by (4.19) and (4.21) we get

V (2)(t, x)−G(t, x) (4.40)

=Ee−rτG(t+τ,Xx
τ )−G(t, x)

≤− rKE

∫ τ

0

e−ruf(t+u,Xx
u)du+

1

2
E

∫ τ

0

e−rudℓKu (X
x)

≤− rKE
[
I(τ < s)

∫ τ

0

e−ruf(t+u,Xx
u)du

]
− rKE

[
I(τ = s)

∫ s

0

e−ruf(t+u,Xx
u)du

]
+

1

2
E
[
I(σε < τ)

∫ τ

σε

e−rudℓKu (X
x)
]

=− rKE
[ ∫ s

0

e−ruf(t+u,Xx
u)du

]
+ rKE

[
I(τ < s)

∫ s

τ

e−ruf(t+u,Xx
u)du

]
+

1

2
E
[
I(σε < τ)

∫ τ

σε

e−rudℓKu (X
x)
]

where we have used the fact that for u ≤ σε the local time ℓKu (X
x) is zero. Since we

are assuming that it is never optimal to stop above K then it must be
{
τ < s

}
⊂{

σε < s
}
. Obviously we also have

{
σε < τ

}
⊂

{
σε < s

}
and hence

V (2)(t, x)−G(t, x) (4.41)

≤− rKE
[ ∫ s

0

e−ruf(t+u,Xx
u)du

]
+ E

[
I(σε < s)

(
rK

∫ s

τ

e−ruf(t+u,Xx
u)du+

1

2

∫ s

σε

e−rudℓKu (X
x)
)]

≤− rKE
[ ∫ s

0

e−ruf(t+u,Xx
u)du

]
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+ rKsP(σε < s) +
1

2
E

[
I(σε < s)E

(∫ σε∨s

σε

e−rudℓKu (X
x)
∣∣∣Fσε

)]
where we have used 0 ≤ f ≤ 1 and the fact that I(σε < s

)
is Fσε-measurable.

From Lemma 4.3.4 with σ = σε and τ = σε ∨ s and by the martingale property of

(e−rtXx
t )t≥0 we get

E
[ ∫ σε∨s

σε

e−rudℓKu (X
x)
∣∣∣Fσε

]
≤2K + E

[
e−r(σε∨s)Xx

σε∨s
∣∣Fσε

]
− e−rσεXx

σε
(4.42)

+ rKE
[
I(σε < s)

∫ s

σε

e−rtdt
]
du ≤ 3K.

Combining (4.41) and (4.42) we obtain

V (2)(t, x)−G(t, x) ≤− rKE
[ ∫ s

0

e−ruf(t+u,Xx
u)du

]
(4.43)

+K
(3
2
+ rs

)
P(σε < s).

To estimate P
(
σε < s

)
we set α := ln

(
x

K+ε

)
, Yt := σBt + (r − σ2/2)t and Zt :=

−σBt + c t with c := r + σ2/2. Notice that Yt ≥ −Zt for t ∈ [0, Tδ] and hence

P(σε < s) =P
(

inf
0≤u≤s

Xx
u ≤ K+ε

)
= P

(
inf

0≤u≤s
Yu ≤ −α

)
(4.44)

≤P
(

inf
0≤u≤s

−Zu ≤ −α
)
= P

(
sup

0≤u≤s
Zu ≥ α

)
≤ P

(
sup

0≤u≤s

∣∣Zu

∣∣ ≥ α
)

where we also recall that x ≥ K+2ε and hence α > 0. We now use Markov inequality,

Doob’s inequality and BDG inequality to estimate the last expression in (4.44) and

it follows that for any p > 1

P
(

sup
0≤u≤s

∣∣Zu

∣∣ ≥ α
)
≤ 1

αp
E sup

0≤u≤s

∣∣Zu

∣∣p (4.45)

≤2p−1

αp

(
csp + σpE sup

0≤u≤s

∣∣Bu

∣∣p) ≤ C1

(
sp + sp/2

)
with suitable C1 = C1(p, ε, x) > 0. Collecting (4.43) and (4.45) we get

V (2)(t, x)−G(t, x)≤ s
(
C2(s

p+sp/2)+C3

(
sp−1 + sp/2−1

)
(4.46)

− rKE
[1
s

∫ s

0

e−ruf(t+u,Xx
u)du

])
for some C2 = C2(p, ε, x) > and C3 = C3(p, ε, x) > 0. We take p > 2 and observe

that in the limit as s ↓ 0 we get

−rKE
[1
s

∫ s

0

e−ruf(t+u,Xx
u)du

]
+C2(s

p+sp/2) (4.47)
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+ C3

(
sp−1+sp/2−1

)
→ −rKf(Tδ, x)

and therefore the negative term in (4.46) dominates since f(Tδ, x) > 0 for all x ∈

(0,∞). From (4.46) and (4.47) we get a contradiction and by arbitrariness of ε we

conclude that for any x > K there must be t < Tδ large enough and such that

(t, x) ∈ D(2).

Now we show that (t, x) ∈ D(2) with x > K implies (t, y) ∈ D(2) for any y > x.

Let us take y > x > K and assume (t, y) ∈ C(2). Set τ = τ ∗(t, y) optimal for V (2)(t, y)

defined as in (4.24) and notice that the horizontal segment [t, Tδ] × {x} belongs to

D(2) by Proposition 4.3.3. Then due to the continuity of the process (t+s,Xy
s )s∈[0,Tδ−t]

cannot hit the horizontal segment [t, Tδ] × {K} without entering into the stopping

set. Hence by (4.19) and (4.21) we have

V (2)(t, y) =Ee−rτG(t+τ,Xy
τ ) (4.48)

=G(t, y)− rKE
[ ∫ τ

0

e−rsf(t+s,Xy
s )ds

]
≤ G(t, y)

which means that it is optimal to stop at once at (t, y) and therefore we get a

contradiction. We then conclude that for each t ∈ [0, Tδ) there exists the unique

point c(2)(t) > K such that D
(2)
t ∩ (K,∞) = [c(2)(t),∞) with the convention that

if c(2)(t) = +∞ the set is empty. We remark that for now we have only proven

that c(2)(t) < +∞ for t close enough to Tδ and finiteness of c(2) will be provided in

Proposition 4.3.6 below.

(iii) Now let us consider the set {(t, x) ∈ [0, Tδ) × (0, K]}. From Proposition

4.3.2 it follows that for each t ∈ [0, Tδ) the set D
(2)
t ∩ (0, K) is not empty. However

using (4.48) and arguments as in the last paragraph of (ii) above one can also prove

that if x ∈ D
(2)
t ∩ (0, K) and 0 < y ≤ x, then y ∈ D

(2)
t ∩ (0, K). The latter implies

that for each t ∈ [0, Tδ) there exists the unique point b(2)(t) ∈ (0, K) such that

D
(2)
t ∩ (0, K) = (0, b(2)(t)].

We can conclude that (i), (ii) and (iii) above imply that C
(2)
t =

(
b(2)(t), c(2)(t)

)
for all t ∈ [0, Tδ] and for some functions b(2) and c(2) : [0, Tδ] → (0,∞]. The fact that

b(2)(t) ≥ b(1)(t) is an obvious consequence of Proposition 4.3.2. On the other hand
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Proposition 4.3.3 implies that t 7→ b(2)(t) is increasing and t 7→ c(2)(t) is decreasing so

that their left-limits always exist. It is clear from (ii) above that limt→Tδ
c(2)(t) = K

and similar arguments can also be used to prove that limt→Tδ
b(2)(t) = K.

In Theorem 4.3.5 we have proven that c(2)(t) < ∞ for [t∗, Tδ] with some t∗ < Tδ.

In fact the following proposition holds.

Proposition 4.3.6. For all t ∈ [0, Tδ] the upper boundary c(2) is finite, i.e.

sup
t∈[0,Tδ]

c(2)(t) < +∞. (4.49)

Proof. The proof is provided in two steps.

(i) Let us assume that (4.49) is violated and denote t0 := sup{t ∈ [0, Tδ] : c
(2)(t) =

+∞}. Consider for now the case t0 > 0 and note that since t 7→ c(2)(t) is decreasing

by Theorem 4.3.5 then c(2)(t) = +∞ for all t ∈ [0, t0). The function c(2) is right-

continuous on [t0, Tδ], in fact for any t ∈ [t0, Tδ] we take tn ↓ t as n → ∞ and the

sequence (tn, c
(2)(tn)) ∈ D(2) converges to (t, c(2)(t+)) with c(2)(t+) := lims↓t c

(2)(s).

SinceD(2) is closed it must also be (t, c(2)(t)) ∈ D(2) and c(2)(t+) ≥ c(2)(t) by Theorem

4.3.5, hence c(2)(t+) = c(2)(t) by monotonicity.

We define the left-continuous inverse of c(2) by tc(x) := sup
{
t ∈ [0, Tδ] : c

(2)(t) >

x
}
and observe that tc(x) ≥ t0 for x ∈ (K,+∞). Fix ε > 0 such that ε < δ ∧ t0,

then there exists x = x(ε) > K such that tc(x) − t0 ≤ ε/2 for all x ≥ x and

we denote θ = θ(x) := inf
{
s ≥ 0 : Xx

s ≤ x
}
. In particular we note that if

c(2)(t0+) = c(2)(t0) < +∞ we have tc(x) = t0 for all x > c(2)(t0). We fix t = t0 − ε/2,

take x > x and set τ = τ ∗(t, x) the optimal stopping time for V (2)(t, x) (cf. (4.24)).

Since we assume that c(2)(t) = +∞ for t ∈ [t0−ε/2, t0) and the boundary is decreasing

then it must be {τ ≤ θ} ⊆ {τ ≥ ε/2}.

Using (4.21) gives

V (2)(t, x)−G(t, x) (4.50)

=Ee−rτG(t+τ,Xx
τ )−G(t, x)

≤E
[
− rK

∫ τ

0

e−rsf(t+s,Xx
s )ds+

1

2

∫ τ

0

e−rsdℓKs (X
x)
]
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≤− rKE
[
I(τ ≤ θ)

∫ τ

0

e−rsf(t+s,Xx
s )ds

]
+ E

[
I(τ > θ)

1

2

∫ τ

θ

e−rsdℓKs (X
x)
]

≤− rKE
[ ∫ ε/2

0

e−rsf(t+s,Xx
s )ds

]
+ E

[
I(τ > θ)

(1
2

∫ τ

θ

e−rsdℓKs (X
x)+rK

∫ ε/2

0

e−rsf(t+s,Xx
s )ds

)]
≤− rKE

[ ∫ ε/2

0

e−rsf(t+s,Xx
s )ds

]
+

1

2
E

[
I(τ > θ)E

[ ∫ τ∨θ

θ

e−rsdℓKs (X
x)
∣∣∣Fθ

] ]
+ rK

ε

2
P(τ > θ)

where we have used that ℓKs (X
x) = 0 for s ≤ θ and in the last inequality we have also

used that 0 ≤ f ≤ 1 on [0, Tδ]× (0,∞). We now estimate separately the two positive

terms in the last expression of (4.50). For the one involving the local time we argue

as in (4.42), i.e. we use Lemma 4.3.4 and the martingale property of the discounted

price to get

I(τ > θ)E
(∫ τ∨θ

θ

e−rsdℓKs (X
x)
∣∣∣Fθ

)
≤ 3KI(τ > θ). (4.51)

Then for a suitable constant C1 > 0 independent of x we get

E

[
I(τ > θ)E

(∫ τ∨θ

θ

e−rsdLK
s (X

x)
∣∣∣Fθ

)]
+ rK

ε

2
P(τ > θ) ≤ C1P(τ > θ). (4.52)

Observe now that on
{
τ > θ

}
the process X started at time t = t0 − ε/2 from x > x

must hit x prior to time t0 + ε/2, hence, for c = r + σ2/2, we obtain

P(τ > θ) ≤ P
(

inf
0≤t≤ε

Xx
t < x

)
≤ P

(
inf

0≤t≤ε
Bt <

1
σ

(
ln(x/x) + c ε

))
. (4.53)

We now introduce another Brownian motion by taking W := −B, then from (4.53)

and the reflection principle we find

P(τ > θ) ≤P

(
sup
0≤t≤ε

Wt > − 1
σ

(
ln(x/x) + c ε

))
(4.54)

=2P
(
Wε > − 1

σ

(
ln(x/x) + c ε

))
=2

[
1− Φ

(
1

σ
√
ε

(
ln(x/ x)− c ε

))]
= 2Φ

(
1

σ
√
ε

(
ln(x/x) + c ε

))
with Φ(y) = 1/

√
2π

∫ y

−∞ e−z2/2dz for y ∈ IR and where we have used Φ(y) = 1−Φ(−y)

for y ∈ IR.
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Going back to (4.50) we aim to estimate the first term in the last expression. For

that we use Markov property to obtain

Ef(t+s,Xx
s ) =e−rδE

[
P
(
Xx

s+δ ≤ b(1)(t+s+δ)
∣∣Fs

) ]
(4.55)

=e−rδP
[
Xx

s+δ ≤ b(1)(t+s+δ)
]

for s ∈ [0, ε/2]. Now we denote α := b(1)(t+δ) and have that for all s ∈ [0, ε/2]

and x > x the expectation in (4.55) is bounded from below by recalling that b(1) is

increasing, namely

Ef(t+s,Xx
s ) ≥e−rδP(Xx

s+δ ≤ α) (4.56)

≥e−rδP
(
Bs+δ ≤

1

σ

[
ln(α/x)− c(δ+ε/2)

])
=e−rδΦ

(
1

σ
√
δ+s

[
ln(α/ x)− c (δ+ε/2)

])
≥e−rδΦ

(
1

σ
√
δ

[
ln(α/ x)− c (δ+ε/2)

])
=: F̂ (x)

where in the last inequality we have used that ln(α/x) < 0 and Φ is increasing. From

(4.56) and using Fubini’s theorem we get

E
[ ∫ ε/2

0

e−rsf(t+s,Xx
s )ds

]
=

∫ ε/2

0

e−rsEf(t+s,Xx
s ) ds ≥

ε

2
e−rε/2F̂ (x) (4.57)

for x > x. By combining (4.50), (4.52), (4.54) and (4.57) we now obtain

V (2)(t, x)−G(t, x) (4.58)

≤2C1Φ
(

1
σ
√
ε

(
ln(x/x) + c ε

))
− C2Φ

(
1

σ
√
δ

[
ln
(
α/x

)
− c (δ+ε/2)

])
where C2 = C2(ε) > 0 and independent of x. Since t, x, ε are fixed with δ > ε, we

take the limit as x → ∞ and it is easy to verify by L’Hôpital’s rule that

lim
x→∞

Φ
(

1
σ
√
ε

(
ln(x/x) + c ε

))
Φ
(

1
σ
√
δ

[
ln
(
α/x

)
− c (δ+ε/2)

]) (4.59)

=C3 lim
x→∞

φ
(

1
σ
√
ε

(
ln(x/x) + c ε

))
φ
(

1
σ
√
δ

[
ln
(
α/x

)
− c (δ+ε/2)

])
=C4 lim

x→∞
xβ exp

(
1
σ2

(
1/δ − 1/ε

)(
ln x

)2)
= 0
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for some constants β > 0, C3 and C4 and with φ := Φ′ the standard normal density

function. Hence the negative term in (4.58) dominates for large values of x and we

reach a contradiction so that it must be c(2)(t) < +∞ for all t ∈ (0, Tδ] by arbitrariness

of t0.

(ii) It remains to show that c(2)(0) < +∞ as well. In order to do so we recall

Remark 4.2.1 and notice that since V (1)(t+λ, x;T+λ) = V (1)(t, x;T ) for all (t, x) ∈

[0, T ] × (0,∞) and λ > 0, then (with the same notation for the maturity in the

function G) we have

G(t+λ, x;T+λ) =(K−x)+ + e−rδEV (1)(t+λ+δ,Xx
δ ;T+λ) (4.60)

=(K−x)+ + e−rδEV (1)(t+δ,Xx
δ ;T ) = G(t, x;T )

for (t, x) ∈ [0, Tδ] × (0,∞). It easily follows that by denoting V (2)( · , · ;Tδ) the

value function of problem (4.16) with maturity at Tδ one has V
(2)(t, x;Tδ) = V (2)(t+

λ, x;Tδ+λ) for (t, x) ∈ [0, Tδ]×(0,∞) and λ > 0. Hence, assuming that c(2)(0) = +∞

would imply V (2)(0, x;Tδ) > G(0, x;T ) for all x > 0. However by taking λ > 0 that

would also imply V (2)(λ, x;Tδ+λ) > G(λ, x;T+λ) for all x > 0. The latter is impossible

by (i) above with t0 = λ since all the arguments used there can be repeated with Tδ

replaced by Tδ+λ.

6. We will show in the next proposition that the value function V (2) also fulfills

the so-called smooth-fit condition at the optimal stopping boundaries b(2) and c(2).

Proposition 4.3.7. For all t ∈ [0, Tδ) the map x 7→ V (2)(t, x) is C1 across the

optimal boundaries, i.e.

V (2)
x (t, b(2)(t)+) = Gx(t, b

(2)(t)) (4.61)

V (2)
x (t, c(2)(t)−) = Gx(t, c

(2)(t)). (4.62)

Proof. We provide a full proof only for (4.62) as the case of b(2) can be treated in a

similar way. Let us fix 0 ≤ t < Tδ and set x0 := c(2)(t). It is clear that for arbitrary

ε > 0 it holds

V (2)(t, x0)− V (2)(t, x0−ε)

ε
≤ G(t, x0)−G(t, x0−ε)

ε
(4.63)
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and hence

lim sup
ε→0

V (2)(t, x0)− V (2)(t, x0−ε)

ε
≤ Gx(t, x0). (4.64)

To prove the reverse inequality, we denote τε = τ ∗(t, x0−ε) which is the optimal

stopping time for V (2)(t, x0−ε). Then using the law of iterated logarithm at zero

for Brownian motion and the fact that t 7→ c(2)(t) is decreasing we obtain τε → 0 as

ε → 0 P-a.s. By using the mean value theorem we have

1

ε

(
V (2)(t, x0)− V (2)(t, x0−ε)

)
(4.65)

≥ 1

ε
E
[
e−rτε

(
G(t+τε, X

x0
τε )−G(t+τε, X

x0−ε
τε )

)]
≥ 1

ε
E
[
e−rτεGx(t+τε, ξ)

(
Xx0

τε −Xx0−ε
τε

)]
= E

[
e−rτεGx(t+τε, ξ)X

1
τε

]
with ξ(ω) ∈ [Xx0−ε

τε (ω), Xx0
τε (ω)] for all ω ∈ Ω. Thus recalling that Gx is bounded and

X1
τε → 1 P-a.s. as ε → 0, using dominated convergence theorem we obtain

lim inf
ε→0

V (2)(t, x0)− V (2)(t, x0−ε)

ε
≥ Gx(t, x0). (4.66)

Finally combining (4.64) and (4.66) we obtain (4.62).

7. Standard arguments based on the strong Markov property and continuity of

V (2)(cf. [58, Sec. 7]) together with the results that we have proved so far lead to the

following free-boundary problem for the value function V (2) and unknown boundaries

b(2) and c(2):

V
(2)
t +ILXV

(2)−rV (2) = 0 in C(2) (4.67)

V (2)(t, b(2)(t)) = G(t, b(2)(t)) for t ∈ [0, Tδ] (4.68)

V (2)(t, c(2)(t)) = G(t, c(2)(t)) for t ∈ [0, Tδ] (4.69)

V (2)
x (t, b(2)(t)+) = Gx(t, b

(2)(t)) for t ∈ [0, Tδ) (4.70)

V (2)
x (t, c(2)(t)−) = Gx(t, c

(2)(t)) for t ∈ [0, Tδ) (4.71)

V (2)(t, x) > G(t, x) in C(2) (4.72)

V (2)(t, x) = G(t, x) in D(2) (4.73)
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where V (2) ∈ C1,2 in C(2) and the continuation set C(2) and the stopping set D(2) are

given by

C(2) = { (t, x) ∈ [0, Tδ)×(0,∞) : b(2)(t) < x < c(2)(t) } (4.74)

D(2) = { (t, x) ∈ [0, Tδ)×(0,∞) : x ≤ b(2)(t) or x ≥ c(2)(t) }. (4.75)

We now proceed to prove that the boundaries b(2) and c(2) are indeed continuous

functions of time and we follow an approach proposed in [16].

Theorem 4.3.8. The optimal boundaries b(2) and c(2) are continuous on [0, Tδ].

Proof. The proof is provided in 3 steps.

(i) We first show that b(2) and c(2) are right-continuous. Let us consider b(2), fix

t ∈ [0, Tδ) and take a sequence tn ↓ t as n → ∞. Since b(2) is increasing, the right-

limit b(2)(t+) exists and (tn, b
(2)(tn)) belongs to D(2) for all n ≥ 1. Recall that D(2)

is closed so that (tn, b
(2)(tn)) → (t, b(2)(t+)) ∈ D(2) as n → ∞ and we may conclude

that b(2)(t+) ≤ b(2)(t). The fact that b(2) is increasing gives the reverse inequality

thus b(2) is right-continuous as claimed. We can argue in analogous way to obtain

that c(2) is right-continuous.

(ii) Now we prove that b(2) is also left-continuous. Assume that there exists

t0 ∈ (0, T ) such that b(2)(t0−) < b(2)(t0) where b(2)(t0−) denotes the left-limit of b(2)

at t0. Take x1 < x2 such that b(2)(t0−) < x1 < x2 < b(2)(t0) and h > 0 such that

t0 > h, then by defining u := V (2)−G and using (4.17), (4.19), (4.67), (4.73) we have

ut + ILXu− ru = −H on C(2) and below K (4.76)

u(t0, x) = 0 for x ∈ (x1, x2). (4.77)

Denote by C∞
c (a, b) the set of continuous functions which are differentiable infinitely

many times with continuous derivatives and compact support on (a, b). Take φ ∈

C∞
c (x1, x2) such that φ ≥ 0 and

∫ x2

x1
φ(x)dx = 1. Multiplying (5.41) by φ and

integrating by parts we obtain∫ x2

x1

φ(x)ut(t, x)dx =−
∫ x2

x1

u(t, x) (IL∗
Xφ(x)− rφ(x)) dx (4.78)
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−
∫ x2

x1

H(t, x)φ(x)dx

for t ∈ (t0−h, t0) and with IL∗
X denoting the formal adjoint of ILX . Since ut ≤ 0 in

C(2) below K by (4.32) in the proof of Proposition 4.3.3, the left-hand side of (4.78) is

negative. Then taking limits as t → t0 and by using dominated convergence theorem

we find

0 ≥−
∫ x2

x1

u(t0, x) (IL
∗
Xφ(x)− rφ(x)) dx−

∫ x2

x1

H(t0, x)φ(x)dx (4.79)

=−
∫ x2

x1

H(t0, x)φ(x)dx

where we have used that u(t0, x) = 0 for x ∈ (x1, x2) by (4.77). We now observe that

H(t0, x) < −c for x ∈ (x1, x2) and a suitable c > 0 by (4.19), therefore (4.79) leads

to a contradiction and it must be b(2)(t0−) = b(2)(t0).

(iii) To prove that c(2) is left-continuous we can use arguments that follow the

very same lines as those in (ii) above and therefore we omit them for brevity.

8. Finally we are able to find an early-exercise premium (EEP) representation

for V (2) of the problem (4.16) and a coupled system of integral equations for the

free-boundaries b(2) and c(2).

Theorem 4.3.9. The value function V (2) of (4.16) has the following representation

V (2)(t, x) = e−r(Tδ−t)EG(Tδ, X
x
Tδ−t) (4.80)

+ rK

∫ Tδ−t

0

e−rs
[
P
(
Xx

s ≤ b(2)(t+s)
)

+ e−rδP
(
Xx

s ≤ b(2)(t+s), Xx
s+δ ≤ b(1)(t+s+δ)

)
+ e−rδP

(
Xx

s ≥ c(2)(t+s), Xx
s+δ ≤ b(1)(t+s+δ)

)]
ds

for t ∈ [0, Tδ] and x ∈ (0,∞). The optimal stopping boundaries b(2) and c(2) of (4.74)

and (4.75) are the unique couple of functions solving the system of nonlinear integral

equations (see Figure 4.1)

G(t, b(2)(t)) = e−r(Tδ−t)EG(Tδ, X
b(2)(t)
Tδ−t ) (4.81)
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+ rK

∫ Tδ−t

0

e−rs
[
P
(
Xb(2)(t)

s ≤ b(2)(t+s)
)

+ e−rδP
(
Xb(2)(t)

s ≤ b(2)(t+s), X
b(2)(t)
s+δ ≤ b(1)(t+s+δ)

)
+ e−rδP

(
Xb(2)(t)

s ≥ c(2)(t+s), X
b(2)(t)
s+δ ≤ b(1)(t+s+δ)

)]
ds

G(t, c(2)(t)) = e−r(Tδ−t)EG(Tδ, X
c(2)(t)
Tδ−t ) (4.82)

+ rK

∫ Tδ−t

0

e−rs
[
P
(
Xc(2)(t)

s ≤ b(2)(t+s)
)

+ e−rδP
(
Xc(2)(t)

s ≤ b(2)(t+s), X
b(2)(t)
s+δ ≤ b(1)(t+s+δ)

)
+ e−rδP

(
Xc(2)(t)

s ≥ c(2)(t+s), X
b(2)(t)
s+δ ≤ b(1)(t+s+δ)

)]
ds

in the class of continuous increasing functions t 7→ b(2)(t) and continuous decreasing

functions t 7→ c(2)(t) on [0, Tδ] with b(2)(Tδ) = c(2)(Tδ) = K.

Proof. (A) We start by recalling that the following conditions hold: (i) V (2) is C1,2 on

C(2) and on D(2) and V
(2)
t +ILXV

(2)−rV (2) is locally bounded on C(2)∪D(2) (see (4.67)–

(4.73) and (4.19)); (ii) b(2) and c(2) are of bounded variation due to monotonicity; (iii)

x 7→ V (2)(t, x) is convex (recall proof of Proposition 4.3.1); (iv) t 7→ V
(2)
x (t, b(2)(t)±)

and t 7→ V
(2)
x (t, c(2)(t)±) are continuous for t ∈ [0, Tδ) by (4.70) and (4.71). Hence

for any (t, x) ∈ [0, Tδ] × (0,∞) and s ∈ [0, Tδ−t] we can apply the local time-space

formula on curves [52] to obtain

e−rsV (2)(t+s,Xx
s ) (4.83)

=V (2)(t, x) +Mu

+

∫ s

0

e−ru(V
(2)
t +ILXV

(2)−rV (2))(t+u,Xx
u)I

(
Xx

u ̸= {b(2)(t+u), c(2)(t+u)}
)
du

= V (2)(t, x) +Mu +

∫ s

0

e−ru(Gt+ILXG−rG)(t+u,Xx
u)I

(
Xx

u < b(2)(t+u)
)
du

+

∫ s

0

e−ru(Gt+ILXG−rG)(t+u,Xx
u)I

(
Xx

u > c(2)(t+u)
)
du

= V (2)(t, x) +Mu − rK

∫ s

0

e−ru
(
1 + f(t+u,Xx

u)
)
I
(
Xx

u < b(2)(t+u)
)
du

− rK

∫ s

0

e−ruf(t+u,Xx
u)I

(
Xx

u > c(2)(t+u)
)
du

where we used (4.17), (4.19), (4.67) and smooth-fit conditions (4.70)-(4.71) and where

M = (Mu)u≥0 is a martingale. Recall that the law of Xx
u is absolutely continuous with
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respect to the Lebesgue measure for all u > 0, then from strong Markov property

and (4.20) we deduce

f(t+u,Xx
u)I

(
Xx

u < b(2)(t+u)
)

(4.84)

= e−rδP
(
Xx

u+δ ≤ b(1)(t+u+δ)
∣∣Fu

)
I
(
Xx

u < b(2)(t+u)
)

= e−rδP
(
Xx

u+δ ≤ b(1)(t+u+δ), Xx
u ≤ b(2)(t+u)

∣∣Fu

)
and analogously we have that

f(t+u,Xx
u)I

(
Xx

u > c(2)(t+u)
)

(4.85)

= e−rδP
(
Xx

u+δ ≤ b(1)(t+u+δ), Xx
u ≥ c(2)(t+u)

∣∣Fu

)
.

In (4.83) we let s = Tδ − t, take the expectation E, use (4.84)-(4.85) and the optional

sampling theorem for M , then after rearranging terms and noting that V (2)(Tδ, x) =

G(Tδ, x) for all x > 0, we get (4.80). The coupled system of integral equations (4.81)-

(4.82) is obtained by simply putting x = b(2)(t) and x = c(2)(t) into (4.80) and using

(4.68)-(4.69).

(B) Now we show that b(2) and c(2) are the unique solution pair to the system

(4.81)-(4.82) in the class of continuous functions t 7→ b(t), t 7→ c(t) with terminal

value K and such that b is increasing and c is decreasing. Note that there is no need

to assume that b is increasing and c is decreasing as established above as long as

b(t) ̸= K and c(t) ̸= K for all t ∈ [0, Tδ). The proof is divided in few steps and it is

based on arguments similar to those employed in [18] and originally derived in [53].

(B.1) Let b : [0, Tδ] → (0,∞) and c : [0, Tδ] → (0,∞) be another solution pair

to the system (4.81)-(4.82) such that b and c are continuous and b(t) ≤ c(t) for all

t ∈ [0, Tδ]. We will show that these b and c must be equal to the optimal stopping

boundaries b(2) and c(2), respectively.

We define a function U b,c : [0, Tδ) → IR by

U b,c(t, x) := e−r(Tδ−t)EG(Tδ, X
x
Tδ−t) (4.86)

− E

∫ Tδ−t

0

e−ruH(t+u,Xx
u)I(X

x
u ≤ b(t+u) or Xx

u ≥ c(t+u))du
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Figure 4.1: A computer drawing of the optimal exercise boundaries
t 7→ b(2)(t) and t 7→ c(2)(t) for the problem (4.16) in the case K = 1,
r = 0.1 (annual), σ = 0.4 (annual), T = 11 months, δ = 1 month.
The decreasing boundary c(2) is finite on [0, Tδ] but it takes values
much larger than those of b(2) on [0, 8] and therefore in order to
present the structure of the continuation set in a clear way we only
plot the vertical axis up to x = 3.

for (t, x) ∈ [0, Tδ]× (0,∞). Observe that since b and c solve the system (4.81)-(4.82)

then U b,c(t, b(t)) = G(t, b(t)) and U b,c(t, c(t)) = G(t, c(t)) for all t ∈ [0, Tδ]. Notice

also that the Markov property of X gives

e−rsU b,c(t+s,Xx
s )−

∫ s

0

e−ruH(t+u,Xx
u)I(X

x
u ≤ b(t+u) or Xx

u ≥ c(t+u))du (4.87)

= U b,c(t, x) +Ns

for s ∈ [0, Tδ − t] and where (Ns)0≤s≤Tδ−t is a P-martingale.

(B.2) We now show that U b,c(t, x) = G(t, x) for x ∈ (0, b(t)] ∪ [c(t),∞) and

t ∈ [0, Tδ]. For x ∈ (0, b(t)] ∪ [c(t),∞) with t ∈ [0, Tδ] given and fixed, consider the

stopping time

σb,c = σb,c(t, x) = inf { 0 ≤ s ≤ Tδ−t : b(t+s) ≤ Xx
s ≤ c(t+s) }. (4.88)

Using that U b,c(t, b(t)) = G(t, b(t)) and U b,c(t, c(t)) = G(t, c(t)) for all t ∈ [0, Tδ) and
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Figure 4.2: A computer drawing of the lower optimal exercise
boundary t 7→ b(2)(t) of problem (4.16) and the optimal exercise
boundary t 7→ b(1)(t) of problem (4.4) (American put) in the case
K = 1, r = 0.1 (annual), σ = 0.4 (annual), T = 11 months, δ = 1
month.

U b,c(Tδ, x) = G(Tδ, x) for all x > 0, we get U b,c(t+σb,c, X
x
σb,c

) = G(t+σb,c, X
x
σb,c

) P-a.s.

Hence from (4.21) and (4.87) using the optional sampling theorem and noting that

LK
u (X

x) = 0 for u ≤ σb,c we find

U b,c(t, x) = Ee−rσb,cU b,c(t+σb,c, X
x
σb,c

) (4.89)

− E

∫ σb,c

0

e−ruH(t+u,Xx
u)I(X

x
u ≤ b(t+u) or Xx

u ≥ c(t+u))du

= Ee−rσb,cG(t+σb,c, X
x
σb,c

)− E

∫ σb,c

0

e−ruH(t+u,Xx
u)du = G(t, x)

since Xx
u ∈ (0, b(t+u)) ∪ (c(t+u),∞) for all u ∈ [0, σb,c).

(B.3) Next we prove that U b,c(t, x) ≤ V (2)(t, x) for all (t, x) ∈ [0, Tδ]× (0,∞). For

this consider the stopping time

τb,c = τb,c(t, x) = inf { 0 ≤ s ≤ Tδ−t : Xx
s ≤ b(t+s) or Xx

s ≥ c(t+s) } (4.90)

with (t, x) ∈ [0, Tδ]×(0,∞) given and fixed. Again arguments as those following (4.88)

above show that U b,c(t+τb,c, X
x
τb,c

) = G(t+τb,c, X
x
τb,c

) P-a.s. Then taking s = τb,c in
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(4.87) and using the optional sampling theorem, we get

U b,c(t, x) = Ee−rτb,cU b,c(t+τb,c, X
x
τb,c

) = Ee−rτb,cG(t+τb,c, X
x
τb,c

) (4.91)

≤ V (2)(t, x).

(B.4) In order to compare the couples (b, c) and (b(2), c(2)) we initially prove that

b(t) ≥ b(2)(t) and c(t) ≤ c(2)(t) for t ∈ [0, Tδ]. For this, suppose that there exists

t ∈ [0, Tδ) such that c(t) > c(2)(t), take a point x ∈ [c(t),∞) and consider the

stopping time

σ = σ(t, x) = inf { 0 ≤ s ≤ Tδ−t : b(2)(t+s) ≤ Xx
s ≤ c(2)(t+s) }. (4.92)

Setting s = σ in (4.83) and (4.87) and using the optional sampling theorem, we get

Ee−rσV (2)(t+σ,Xx
σ ) = V (2)(t, x) + E

∫ σ

0

e−ruH(t+u,Xx
u)du (4.93)

Ee−rσU b,c(t+σ,Xx
σ) = U b,c(t, x) (4.94)

+ E

∫ σ

0

e−ruH(t+u,Xx
u)I

(
Xx

u ≤ b(t+u) or Xx
u ≥ c(t+u)

)
du.

Since U b,c ≤ V (2) and V (2)(t, x) = U b,c(t, x) = G(t, x) for x ∈ [c(t),∞) with t ∈ [0, Tδ],

it follows by subtracting (4.94) from (4.93) that

E

∫ σ

0

e−ruH(t+u,Xx
u)I

(
b(t+u) ≤ Xx

u ≤ c(t+u)
)
du ≥ 0. (4.95)

The function H is always strictly negative and by the continuity of c(2) and c it must

be P(σ(t, x) > 0) = 1, hence (4.95) leads to a contradiction and we can conclude that

c(t) ≤ c(2)(t) for all t ∈ [0, Tδ]. Arguing in a similar way one can also derive that

b(t) ≥ b(2)(t) for all t ∈ [0, Tδ] as claimed.

(B.5) To conclude the proof we show that b = b(2) and c = c(2) on [0, Tδ]. For that,

let us assume that there exists t ∈ [0, Tδ) such that b(t) > b(2)(t) or c(t) < c(2)(t).

Choose an arbitrary point x ∈ (b(2)(t), b(t)) or alternatively x ∈ (c(t), c(2)(t)) and

consider the optimal stopping time τ ∗ of (4.24) with D(2) as in (4.75). Take s = τ ∗

in (4.83) and (4.87) and use the optional sampling theorem to get

Ee−rτ∗G(t+τ ∗, Xx
τ∗) = V (2)(t, x) (4.96)
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Ee−rτ∗G(t+τ ∗, Xx
τ∗) = U b,c(t, x) (4.97)

+ E

∫ τ∗

0

e−ruH(t+u,Xx
u)I

(
Xx

u ≤ b(t+u) or Xx
u ≥ c(t+u)

)
du

where we use that V (2)(t+τ ∗, Xx
τ∗) = G(t+τ ∗, Xx

τ∗) = U b,c(t+τ ∗, Xx
τ∗) P-a.s. upon

recalling that b ≥ b(2) and c ≤ c(2), and U b,c = G either below b and above c (see

(B.2) above) or at Tδ. Since U b,c ≤ V (2) then subtracting (4.96) from (4.97) we get

E

∫ τ∗

0

e−ruH(t+u,Xx
u)I

(
Xx

u ≤ b(t+u) or Xx
u ≥ c(t+u)

)
du ≥ 0. (4.98)

Again we recall that H is always strictly negative and by continuity of b(2), c(2), b

and c we have P(τ ∗(t, x) > 0) = 1 and the process (Xx
u)u∈[0,Tδ−t] spends a strictly

positive amount of time either below b(t+ · ) if it starts from x ∈
(
b(2)(t), b(t)

)
or

above c(t+ · ) if it starts from x ∈
(
c(t), c(2)(t)

)
with probability one. Therefore we

reach a contradiction and thus b = b(2) and c = c(2).

It is worth observing that the pricing formula (4.80) is consistent with the eco-

nomic intuition behind the structure of the swing contract and it includes a European

part plus three integral terms accounting for the early exercise premium (EEP). The

first of such terms is the analogous of the EEP in the American put price formula and

it accounts for the value produced by exercising the put option once and getting the

usual payoff (K −x)+. Along with that we find two other terms, related to the extra

value produced by the second exercise right, which are weighted with the discounted

probability of exercising the second option once the refracting period is elapsed. Since

we have shown that for the swing put option it is sometimes profitable to exercise

the first right even if the immediate put payoff is zero, the second and third terms

of the EEP account for both the cases when the first right has been exercised below

the strike K or above it, respectively. In fact when the underlying price is above a

critical value (namely the optimal boundary c(2)) it is convenient to “give up” the

first put payoff in order to gain the opportunity of holding the American put option

after the refracting period.
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4.4. Solution of the swing option with n rights

In this section we complete our study of the swing put option by dealing with

the general case of n exercise rights. The results follow by induction and we will

only sketch their proofs as they are obtained by repeating step by step arguments as

those presented in Section 4.3. Let us start by introducing some notation. For n ≥ 2

we denote C(n) and D(n) the continuation and stopping region, respectively, for the

problem (4.8) with value function V (n). Similarly we denote their t-sections by C
(n)
t

and D
(n)
t and to simplify notation we set T

(j)
δ = T−jδ. From now on we fix n ≥ 2

and since we prove by induction let us introduce

Assumption 4.4.1. For j ∈ {2, 3, . . . n} and t ∈ [0, T
(j−1)
δ ] one has D

(j)
t = (0, b(j)(t)]∪

[c(j)(t),∞) where

i) t 7→ b(j)(t) is continuous, bounded and increasing with b(j)
(
T

(j−1)
δ

)
= K,

ii) t 7→ c(j)(t) is continuous, bounded and decreasing with c(j)
(
T

(j−1)
δ

)
= K,

iii) b(j−1)(t) ≤ b(j)(t) < K < c(j)(t) ≤ c(j−1)(t) for t ∈ [0, T
(j−1)
δ ) with the conven-

tion c(1) ≡ +∞.

In Section 4.3 we have shown indeed that Assumption 4.4.1 holds for n = 2. Now

for 1 ≤ j ≤ n− 1 we also define

p
(n)
j (t, x, s) := P

(
Xx

s ∈ D
(n)
t+s, X

x
s+δ ∈ D

(n−1)
t+s+δ, . . . (4.99)

. . . , Xx
s+(j−1)δ ∈ D

(n−(j−1))
t+s+(j−1)δ, X

x
s+jδ < b(n−j)(t+s+jδ)

)
p
(n)
0 (t, x, s) := P

(
Xx

s < b(n)(t+s)
)
. (4.100)

Under Assumption 4.4.1 one has

p
(n)
j (t, x, s)− p

(n−1)
j (t, x, s) ≥ 0 (4.101)

for (t, x, s) ∈ [0, T
(n−1)
δ ] × (0,∞) × [0, T

(n−1)
δ −t] and j = 0, . . . , n − 2 since D(1) ⊆

D(2) ⊆ . . . ⊆ D(n). Let us recall definition (4.6) in order to introduce the next
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Assumption 4.4.2. One has G(n) ∈ C1,2 in (0, T
(n−1)
δ )× [(0, K) ∪ (K,∞)] with

(
G

(n)
t +ILXG

(n)−rG(n)
)
(t, x) = −rK

(
I(x < K)+

n−2∑
j=0

e−r(j+1)δp
(n−1)
j (t, x, δ)

)
(4.102)

for t ∈ (0, T
(n−1)
δ ) and x ∈ (0, K) ∪ (K,∞). Moreover V (n) is continuous on

[0, T
(n−1)
δ ]× (0,∞), V (n) ∈ C1,2 in C(n) and it solves there

V
(n)
t + ILXV

(n) − rV (n) = 0 (4.103)

and for s ∈ [0, T
(n−1)
δ ] and x ∈ (0,∞) it holds that

Ee−rsV (n)(t+s,Xx
s ) = V (n)(t, x)− rK

n−1∑
j=0

∫ s

0

e−r(u+jδ)p
(n)
j (t, x, u)du. (4.104)

Notice that for n = 2 Assumption 4.4.2 holds since (4.19) is equivalent to (4.102)

and by taking expectation in (4.83), using (4.84) and (4.85) one obtains (4.104).

Proposition 4.4.3. Under Assumptions 4.4.1 and 4.4.2 the equation (4.102) also

holds with n replaced by n+ 1.

Proof. Observe that by (4.104) one has

G(n+1)(t, x) =(K − x)+ + Ee−rδV (n)(t+δ,Xx
δ ) (4.105)

=(K − x)+ + V (n)(t, x)− rK
n−1∑
j=0

∫ δ

0

e−r(u+jδ)p
(n)
j (t, x, u)du

for t ∈ (0, T
(n)
δ ) and x ∈ (0, K) ∪ (K,∞). Then by (4.102) it holds (at least formally

for now)

(
G

(n+1)
t +ILXG

(n+1)−rG(n+1)
)
(t, x) (4.106)

=− rKI(x < K) +
(
G

(n)
t +ILXG

(n)−rG(n)
)
(t, x)I(x ∈ D

(n)
t )

− rK
n−1∑
j=0

(
∂t + ILX − r

)
g
(n)
j (t, x)

for t ∈ (0, T
(n)
δ ) and x ∈ (0, K) ∪ (K,∞), where we have set

g
(n)
j (t, x) :=

∫ δ

0

e−r(u+jδ)p
(n)
j (t, x, u)du.
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Using the strong Markov property and by straightforward calculations one can show

that, for j ∈ {0, 1, . . . , n− 1} and (t, x) ∈ (0, T
(n)
δ )× (0,∞), it holds

lim
u→0

Ee−rug
(n)
j (t+u,Xx

u)− g
(n)
j (t, x)

u
(4.107)

= −e−rjδp
(n)
j (t, x, 0) + e−r(j+1)δp

(n)
j (t, x, δ).

Hence if we calculate as in (4.19), we obtain g
(n)
j (t, · ) ∈ C1(0,∞) for t ∈ (0, T

(n)
δ )

and

(
∂t + ILX − r

)
g
(n)
j (t, x) = −e−rjδp

(n)
j (t, x, 0) + e−r(j+1)δp

(n)
j (t, x, δ) (4.108)

for a.e. (t, x) ∈ (0, T
(n)
δ )× (0,∞) and in particular (g

(n)
j )t and (g

(n)
j )xx are only unde-

fined across b(n) and c(n). Recalling (4.102) one gets from (4.106) and (4.108)

(
G

(n+1)
t +ILXG

(n+1) − rG(n+1)
)
(t, x) (4.109)

=− rKI(x < K)− rK
[
I(x < K)

+
n−2∑
j=0

e−r(j+1)δp
(n−1)
j (t, x, δ)

]
I(x ∈ D

(n)
t )

+ rK
n−1∑
j=0

(
e−rjδp

(n)
j (t, x, 0)− e−r(j+1)δp

(n)
j (t, x, δ)

)
for a.e. (t, x) ∈ (0, T

(n)
δ )× (0,∞) and using (4.99) and (4.100) we have that

I(x < K)I(x ∈ D
(n)
t ) = I(x < b(n)(t)) = p

(n)
0 (t, x, 0) (4.110)

I(x ∈ D
(n)
t )p

(n−1)
j (t, x, δ) = p

(n)
j+1(t, x, 0) (4.111)

which allow us to finally conclude that

(
G

(n+1)
t +ILXG

(n+1) − rG(n+1)
)
(t, x) = −rK

(
I(x < K) +

n−1∑
j=0

p
(n)
j (t, x, δ)

)
(4.112)

for t ∈ (0, T
(n)
δ ) and x ∈ (0, K) ∪ (K,∞) and the claim is proved. Notice that as

already observed in Remark 4.2.1, in (4.112) we appreciate the mollifying effect of

the log-normal distribution of X and R(n)(t, x) := Ee−rδV (n)(t+δ,Xx
δ ) turns out to

be C1,2 on (0, T
(n−1)
δ )× (0,∞).
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We now define

H(n)(t, x) :=
(
G

(n)
t +ILXG

(n) − rG(n)
)
(t, x) (4.113)

for t ∈ (0, T
(n)
δ ), x ∈ (0, K) ∪ (K,∞) and observe that under Assumption 4.4.1 the

map t 7→ H(n)(t, x) is decreasing for all x > 0. This was also the case for H = H(2)

in (4.19) and it was the key property needed to prove most of our results in Section

4.3. We are now ready to provide the EEP representation formula of V (n) for n > 2

and to characterise the corresponding stopping sets D(n).

Theorem 4.4.4. For all n ≥ 2 Assumptions 4.4.1 and 4.4.2 hold true and the value

function V (n) of (4.8) has the following representation

V (n)(t, x) = e−r(T
(n−1)
δ −t)EG(n)

(
T

(n−1)
δ , Xx

T
(n−1)
δ −t

)
(4.114)

+ rK

n−1∑
j=0

∫ T
(n−1)
δ −t

0

e−r(u+jδ)p
(n)
j (t, x, u)du

for t ∈ [0, T
(n−1)
δ ] and x ∈ (0,∞).

Proof. The result is true for n = 2, then we argue by induction and assume that it

holds for n. By Proposition 4.4.3 we obtain that (4.102) holds with n replaced by

n + 1 and H(n+1) is well defined (cf. (4.113)). Now we repeat step by step (with

obvious modifications) the arguments used in Section 4.3 to obtain generalisations

of Propositions 4.3.1, 4.3.2, 4.3.3, 4.3.6 and Theorems 4.3.5 and 4.3.8 to the case

n > 2. We observe that some proofs simplify as the generalisation of Proposition

4.3.2 (which uses (4.101)) immediately implies finiteness of c(n+1) due to finiteness

of c(2) and hence D
(n+1)
t ∩ (K,∞) ̸= ∅ for t ∈ [0, T

(n)
δ ]. Then for the swing option

problem with n+1 exercise rights there exist two optimal stopping boundaries b(n+1)

and c(n+1) which fulfil Assumption 4.4.1 with n+1 instead of n (notice that the proof

of Theorem 4.3.8 does not rely on the smooth-fit property).

It remains to prove Assumption 4.4.2 and the EEP representation formula for

V (n+1). Following the same arguments as in the proof of Proposition 4.3.7 it is possible

to show that V
(n+1)
x (t, · ) is continuous across b(n+1)(t) and c(n+1)(t) for all t ∈ (0, T

(n)
δ ).
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Figure 4.3: Structure of the optimal exercise boundaries t 7→ b(n)(t)
(lower boundary) and t 7→ c(n)(t) (upper boundary) of problem
(4.8) with n = 2, 3, 4 and t 7→ b(1)(t) of problem (4.4) (American
put) in the case K = 1, r = 0.1 (annual), σ = 0.4 (annual), T = 11
months, δ = 1 month.

Then V (n+1) solves a free-boundary problem analogous to (4.67)–(4.73) but with V (2),

G(2), b(2), c(2) and Tδ replaced by V (n+1), G(n+1), b(n+1), c(n+1) and T
(n)
δ respectively.

Now V (n+1), b(n+1) and c(n+1) satisfy all the conditions needed to apply the local

time-space formula of [52] (cf. also proof of Theorem 4.3.9 above), hence by using

(4.110) and (4.111) with n replaced by n+1 and the fact that Ep
(n+1)
j (t+u,Xx

u , 0) =

p
(n+1)
j (t, x, u), we obtain

Ee−rsV (n+1)(t+s,Xx
s ) (4.115)

=V (n+1)(t, x) + E

∫ s

0

e−ruH(n+1)(t+u,Xx
u)I(X

x
u ∈ D

(n+1)
t+u )du

=V (n+1)(t, x)−rK

n∑
j=0

∫ s

0

e−r(u+j δ)p
(n+1)
j (t, x, u)du.

Hence V (n+1) satisfies (4.104) and taking s = T
(n)
δ −t and rearranging terms we obtain

the EEP representation for the value of the swing option with n+ 1 exercise rights.

Since Assumptions 4.4.1 and 4.4.2 hold for V (n+1), G(n+1), b(n+1) and c(n+1) the

proof can be completed by iterating the arguments above.

It is now matter of routine to substitute b(n)(t) and c(n)(t) into (4.114) to find the
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integral equations that characterise the optimal boundaries. Arguments analogous

to those employed in part 3 of the proof of Theorem 4.3.9 allow us to show that b(n)

and c(n) uniquely solve such equations. For completeness we provide the theorem but

we omit its proof.

Theorem 4.4.5. For every n ≥ 2 the optimal stopping boundaries b(n) and c(n) of

Theorem 4.4.4 are the unique couple of functions solving the system of nonlinear

integral equations (see Figure 4.3)

G(t, b(n)(t)) = e−r(T
(n−1)
δ −t)EG(n)

(
T

(n−1)
δ , X

b(n)(t)

T
(n−1)
δ −t

)
(4.116)

+ rK

n−1∑
j=0

∫ T
(n−1)
δ −t

0

e−r(u+jδ)p
(n)
j (t, b(n)(t), u)du

G(t, c(n)(t)) = e−r(T
(n−1)
δ −t)EG(n)

(
T

(n−1)
δ , X

c(n)(t)

T
(n−1)
δ −t

)
(4.117)

+ rK
n−1∑
j=0

∫ T
(n−1)
δ −t

0

e−r(u+jδ)p
(n)
j (t, c(n)(t), u)du

in the class of continuous increasing functions t 7→ b(n)(t) and continuous decreasing

functions t 7→ c(n)(t) on [0, T
(n−1)
δ ] with b(n)(T

(n−1)
δ ) = c(n)(T

(n−1)
δ ) = K.



Chapter 5

Shout put option

5.1. Introduction

Let us imagine an investor who holds a standard European call (or put) option

with strike price K and maturity date T . Then there are at least two possible

scenarios when the holder feels regret: 1) there is period of time before T where

stock movements are favourable for him however he cannot early exercise his option

and then the stock price will turn and at time T he gets small or zero payoff; 2) near

maturity T the stock price is belowK for call (aboveK for put) option and most likely

he gets zero payoff at time T . In last two decades options with reset feature have been

introduced and studied and which address these unfavourable scenarios and they can

be divided into two groups of options: 1) shout (call or put) option which allows the

holder to lock the profit at some favourable time τ (if there is such) and then at time

T take the maximum between two payoffs at τ and T ; 2) reset (call or put) option

gives to investor the right to reset the strike K to current price, i.e. to substitute

the current out-of-the money option to the at-the-money one. The first group, i.e.

shout options, allows the investor to lock the profit while having the opportunity

to increase his payoff at T . The pricing problem for both type of options can be

formulated as optimal stopping problems where stopping times represent shouting or

reset strategies. They have both European (since the payoff is known at T only) and

American features (due to early ‘shouting’ or ‘reset’ opportunity).

104
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Below we provide literature review on the shout and reset options. The origin of

the shout option goes to the paper [68] and brief analysis can be found in textbooks

[73] and [28] where binomial tree method is offered for pricing the option. There are

numbers of papers where these options were thoroughly studied from both theoret-

ical and numerical points of view. In series of works [74]-[76] several sophisticated

numerical schemes have been developed to price shout options. Then in [15] the reset

put option was studied and integral equation for optimal shouting boundary was ob-

tained heuristically and without addressing the question of uniqueness of solution to

the integral equation. Theoretical analysis in paper [78] applies PDE and variational

approaches to show the existence and uniqueness of solution to the free-boundary

problem associated to the reset put option pricing, also monotonicity and regularity

of the optimal shouting boundary have been shown in some cases, however no explicit

expressions for the price and shouting boundaries were given. Then in [3] using a

Laplace transform, the Fredholm integro-differential equations for optimal shouting

boundaries of shout call and put options were obtained, monotonicity of the bound-

aries was claimed without the proof. Finally, in [24] the formal series expansions were

discovered for the price and optimal shouting boundaries of the reset put and shout

call options, but which have not been proven to either converge or diverge.

In this paper we study the shout put option and formulate the pricing problem as

an optimal stopping problem. However it has non-adapted gain function, since the

payoff is claimed and known only at T and therefore the problem falls into the class of

optimal prediction problems (see e.g. [18]). We reduce it to standard optimal stopping

problem with adapted payoff and then reformulate it as a free-boundary problem. The

latter we solve by probabilistic arguments including local time-space calculus ([52]).

We characterise the optimal shouting boundary as the unique solution to nonlinear

integral equation which can be easily solved numerically. Then we derive a shouting

premium presentation for the option’s price via optimal shouting boundary. These

results have been proven for some values of parameters, since in the remaining case

the proof of monotonicity of the boundary currently is an open problem. However,

numerical drawing of the boundaries shows that they seem to be increasing for all
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values of the parameters.

We conclude the paper by financial analysis of the shout put option and particu-

larly its financial returns compare to American, European and British (see [59]) put

counterparts. The shout put option is more expensive than the American option,

however in the numerical example it has been shown that there is a curve between

optimal shouting boundary and optimal American put boundary such that above this

curve and below K the shout option’s returns are greater, which is pleasant for an

investor who wishes to lock the profit in that region while enjoying the possibility

to earn also from a favourable future movement at the maturity T . On the other

hand we can see that the British option generally outperforms both counterparts.

The British and shout options both have ‘optimal prediction’ feature because it is

intrinsically built into the former option and the decision of shouting the latter option

depends on prediction of the price at T . We note that the technique used in this paper

can be applied to pricing shout call and reset call and put options. Moreover, shout

put option is equivalent to reset call one in the sense that their optimal strategies

coincide and the same fact is true for shout call and reset put options. This was also

observed in [24]. We believe also that the approach we used in this paper and ideas

from Chapter 4 can be applied for options with multiple shout or reset rights (see

e.g. [14] where numerical analysis has been provided using binomial tree method).

The paper is organised as follows. In Section 5.2 we formulate the shout put

option problem as an optimal prediction problem, which we reduce to a standard

optimal stopping problem. In Section 5.3 we study a free-boundary problem and

then in Section 5.4 we derive shouting premium representation for the price of the

option and characterise the optimal shouting boundary as the unique solution to a

nonlinear integral equation. Using these results in Section 5.5 we present a financial

analysis of the shout put option comparing it to American, British and European put

options.
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5.2. Formulation of the problem

We study the shout put option problem in geometric Brownian motion model

dXt = rXt dt+ σXt dBt (X0 = x) (5.1)

where B is a standard Brownian motion started at zero, r > 0 is the interest rate, and

σ is the volatility coefficient. The solution X to the stochastic differential equation

(5.1) is given by

Xx
t = x exp

(
σBt + (r−σ2/2)t

)
(5.2)

for t ≥ 0, x > 0.

By definition of shout put option the payoff at maturity time T is following: if the

buyer ‘shouts’ at time τ < T he gets max(K−Xτ , K−XT ) and if the buyer does not

‘shout’ until T his payoff equals (K −XT )
+, where K > 0 is the strike price. Hence

the shout option allows to fix minimal payoff K −Xτ by shouting at time τ . Clearly

one should shout only when Xτ < K. This option of an European type since the

payoff is delivered at T , however it has an American type feature of early exercising

(or shouting).

If the holder shouts at stopping time 0 ≤ τ ≤ T with respect to natural filtration

of X, then the expected payoff at maturity T under risk-neutral measure P is given

by

Emax(K−XT , K−Xτ , 0). (5.3)

Thus we can associate the arbitrage-free price of the shout put option at t = 0 as a

value function of the following optimal stopping problem

V = e−rT sup
0≤τ≤T

Emax(K−XT , K−Xτ , 0) (5.4)

where we include the discount factor e−rT since the payoff is delivered at t = T . It is

important to note that since the gain function in (5.4) is not adapted to the natural

filtration of X, the optimal stopping problem (5.4) falls into the class of optimal

prediction problems (see e.g. [18]). Hence we first need to reduce this problem to a
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standard optimal stopping problem with adapted gain function. For this we prove

the following lemma

Lemma 5.2.1. . We have following identity

E
[
max(K−XT , K−Xt, 0)|FX

t

]
= (K−Xt)

+ + G̃(t,Xt) (5.5)

where the function

G̃(t, x) = E(min(x,K)−Xx
T−t)

+ (5.6)

= min(x,K)Φ
(

1
σ
√
T−t

[
log(min(x,K)

x
)−(r− σ2

2
)(T−t)

])
− xer(T−t)Φ

(
1

σ
√
T−t

[
log(min(x,K)

x
)−(r+ σ2

2
)(T−t)

])
for 0 ≤ t ≤ T and x > 0 is the price of the European put option without discount

factor at time t with the stock price x, the strike price min(x,K) and maturity time

T .

Proof. By stationary independent increments of B and we have

E
[
max(K−XT , K−Xt, 0)|FX

t

]
=

(
Emax(K−xZT−t, K−x, 0)

)
|x=Xt (5.7)

for t fixed and where Z is the solution to (5.1) with Z0 = 1. Straightforward calcu-

lations give

Emax(K−xZT−t, K−x, 0) = Emax(K−xZT−t − (K−x)+), 0) + (K−x)+ (5.8)

= E(min(x,K)−xZT−t)
+ + (K−x)+

= G̃(t, x) + (K−x)+

for all x > 0. Combining (5.7) and (5.8) we obtain (5.5).

Standard arguments based on the fact that each stopping time can be writ-

ten as the limit of a decreasing sequence of discrete stopping times (see e.g. [20,

Ch. 2, Sec. 1]) imply that (5.5) can be extended to for all stopping times τ of X

taking values in [0, T ] and taking the supremum on both sides over all such stopping

times we can rewrite now the problem (5.4) in the following form

V = e−rT sup
0≤τ≤T

E
[
(K−Xτ )

+ + G̃(τ,Xτ )
]
. (5.9)
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We will study the problem (5.9) in the Markovian setting and thus we introduce

dependance on time t and initial points of X:

V (t, x) = sup
0≤τ≤T−t

EG(t+τ,Xx
τ ) (5.10)

for 0 ≤ t ≤ T and x > 0 where the gain function reads

G(t, x) := (K−x)++G̃(t, x). (5.11)

We note that the value function (5.10) represents the undiscounted option’s price at

time t so that we multiply V (t, x) by e−r(T−t) to get the discounted price.

5.3. Free-boundary problem

In this section we will reduce the problem (5.10) into a free-boundary problem

and the latter will be tackled in the next section using local time-space calculus

([52]). First using that the gain functionG(t, x) is continuous and standard arguments

(see e.g. Corollary 2.9 (Finite horizon) with Remark 2.10 in [58]) we have that

continuation and stopping sets read

C = { (t, x) ∈ [0, T )×[0,∞) : V (t, x) > G(t, x) } (5.12)

D = { (t, x) ∈ [0, T )×[0,∞) : V (t, x) = G(t, x) } (5.13)

and the optimal stopping time in (5.10) is given by

τb = inf { 0 ≤ s ≤ T−t : (t+s,Xx
s ) ∈ D }. (5.14)

Throughout this paper we need to make an assumptions on parameters which are

though financially reasonable:

1)r ≤ σ/
√
T & 2)r ≥ σ2/2. (5.15)

For instance if we consider annual values of parameters and we take an option with

T = 1 then the condition 1) becomes very natural: r ≤ σ. The condition 2) holds

usually for not very ‘volatile’ assets.
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1. We will show now that the functions G and V are convex with respect to x for

any fixed t ∈ [0, T ). The gain function G reads

G(t, x) = K+x
[
Φ
(
−( r

σ
− σ

2
)
√
T−t

)
− er(T−t)Φ

(
−( r

σ
+ σ

2
)
√
T−t

)
− 1

]
(5.16)

for 0 < x < K. On other hand G equals to

G(t, x) = KΦ
(

1
σ
√
T−t

[
log(K

x
)−(r− σ2

2
)(T−t)

])
(5.17)

− xer(T−t)Φ
(

1
σ
√
T−t

[
log(K

x
)−(r+ σ2

2
)(T−t)

])
for x ≥ K and this is exactly the price P (t, x) of the European put option multiplied

by er(T−t). We know that x 7→ P (t, x) is convex on (0,∞) for any 0 ≤ t < T

fixed so that x 7→ G(t, x) is convex on (K,∞) for every t fixed. Since G is linear

in x on (0, K) in order to prove that x 7→ G(t, x) is convex on (0,∞) for every

t fixed we need to show that Gx(t,K+) ≥ Gx(t,K−). Using (5.16), (5.17) and

well-known expression for ‘delta’ coefficient of the European put option ∆ = ∂P
∂x

=

−Φ
(

1
σ
√
T−t

[
log(K

x
)−(r+ σ2

2
)(T−t)

])
we have that

Gx(t,K+) = −er(T−t)Φ
(
−( r

σ
+ σ

2
)
√
T−t

)
(5.18)

Gx(t,K−) = Φ
(
−( r

σ
− σ

2
)
√
T−t

)
− er(T−t)Φ

(
−( r

σ
+ σ

2
)
√
T−t

)
− 1 (5.19)

and thus it is clear that Gx(t,K+) ≥ Gx(t,K−). Hence the function x 7→ G(t, x)

is convex on (0,∞) for every t fixed and thus using (5.10) x 7→ V (t, x) is convex on

(0,∞) as well.

2. Below we calculate the expression H̃ := G̃t+ILXG̃ for (t, x) ∈ [0, T ) × (0,∞)

where ILX = rxd/dx + (σ2/2)x2d2/dx2 the infinitesimal generator of X. Since we

have that G̃(t, x) = er(T−t)P (t, x) for (t, x) ∈ [0, T ) × [K,∞) and it is well-known

that Pt+ILXP−rP = 0 for all (t, x) ∈ [0, T )× (0,∞) then

H̃(t, x) = 0 on [0, T )× [K,∞). (5.20)

Now we consider set {(t, x) ∈ [0, T )× (0, K)} and there G̃ reads

G̃(t, x) = x
[
Φ
(
−( r

σ
− σ

2
)
√
T−t

)
− er(T−t)Φ

(
−( r

σ
+ σ

2
)
√
T−t

)]
(5.21)
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so that we have

G̃t(t, x) = x
[
rer(T−t)Φ

(
−( r

σ
+ σ

2
)
√
T−t

)
− σ

2
√
T−t

φ
(
−( r

σ
− σ

2
)
√
T−t

)]
(5.22)

ILXG̃(t, x) = rG̃(t, x) (5.23)

which gives

H̃(t, x) = x
[
rΦ

(
−( r

σ
− σ

2
)
√
T−t

)
− σ

2
√
T−t

φ
(
−( r

σ
− σ

2
)
√
T−t

)]
(5.24)

for (t, x) ∈ [0, T )× (0, K). For further analysis the following function is useful

H(t, x) :=(Gt+ILXG)(t, x) = −rx+ H̃(t, x) (5.25)

=x
[
rΦ

(
−( r

σ
− σ

2
)
√
T−t

)
− σ

2
√
T−t

φ
(
−( r

σ
− σ

2
)
√
T−t

)
− r

]
=xf(t)

for (t, x) ∈ [0, T )×(0, K) where we used definitions of G and H̃, the expression (5.24)

and we define the function f : [0, T ) → (−∞, 0)

f(t) = rΦ
(
−( r

σ
− σ

2
)
√
T−t

)
− σ

2
√
T−t

φ
(
−( r

σ
− σ

2
)
√
T−t

)
− r (5.26)

for t ∈ [0, T ).

Now we show that the function t 7→ H̃(t, x) is decreasing on [0, T ] for any given

and fixed x ∈ (0, K). Indeed taking the derivative with respect to t in (5.24) we have

H̃t(t, x) = xφ
(
−( r

σ
− σ

2
)
√
T−t

)[
( r
σ
− σ

2
) r
2
√
T−t

− ( r
σ
− σ

2
)2 σ

4
√
T−t

− σ
4(T−t)3/2

]
(5.27)

= 1
2σ

√
T−t

xφ
(
−( r

σ
− σ

2
)
√
T−t

)[
(r− σ2

2
)r − 1

2
(r− σ2

2
)2 − σ2

2(T−t)

]
= 1

2σ
√
T−t

xφ
(
−( r

σ
− σ

2
)
√
T−t

)[
(r− σ2

2
)(r − 1

2
(r− σ2

2
))− σ2

2(T−t)

]
= 1

4σ
√
T−t

xφ
(
−( r

σ
− σ

2
)
√
T−t

)[
(r2− σ4

4
)− σ2

T−t

]
≤ 1

4σ
√
T−t

xφ
(
−( r

σ
− σ

2
)
√
T−t

)[
r2 − σ2

T

]
≤ 0

for (t, x) ∈ [0, T )× (0, K). It follows from (5.27) that condition 1) in (5.15) we have

that H̃t < 0 and thus t 7→ H̃(t, x) is decreasing on [0, T ] for any x ∈ (0, K).

Using Ito-Tanaka’s formula and (5.25) with (5.18)-(5.19) we have

EG(t+τ,Xx
τ ) = G(t, x) + E

∫ τ

0

H(t+s,Xx
s )I(X

x
s ≤ K)ds (5.28)
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+
1

2
E

∫ τ

0

Φ
(
( r
σ
− σ

2
)
√
T−t2−s

)
dℓKs (X

x)

and

EG̃(t+τ,Xx
τ ) = G̃(t, x) + E

∫ τ

0

H̃(t+s,Xx
s )I(X

x
s ≤ K)ds (5.29)

+
1

2
E

∫ τ

0

(Φ
(
( r
σ
− σ

2
)
√
T−t2−s

)
− 1)dℓKs (X

x)

for (t, x) ∈ [0, T ) × (0,∞) where (ℓKs (X))s≥0 is the local time process of X at level

K and we used Φ(−x) = 1− Φ(x) for any x ∈ IR.

3. Below we will describe the structure of the stopping set D. Namely, from

the fact that it is not optimal to exercise the shout option about K, (5.12), (5.13),

convexity of V and linearity of G below K it follows that there exists an optimal

shouting boundary b : [0, T ] → IR such that

τb = inf { 0 ≤ s ≤ T−t : Xx
s ≤ b(t+s)} (5.30)

is optimal in (5.10) and b(t) < K for t ∈ [0, T ).

4. Now we show that the value function (t, x) 7→ V (t, x) is continuous on [0, T ]×

(0,∞). For this, it is enough to prove that

x 7→ V (t, x) is continuous at x0 (5.31)

t 7→ V (t, x) is continuous at t0 uniformly over x ∈ [x0−δ, x0−δ] (5.32)

for each (t0, x0) ∈ [0, T ] × (0,∞) with some δ > 0 small enough, which may depend

on x0.

Since (5.31) follows from the fact that x 7→ V (t, x) is convex on (0,∞), it remains

to establish (5.32). Let us fix any 0 ≤ t1 < t2 ≤ T and x ∈ (0,∞) and let τ1 be the

optimal stopping time for V (t1, x) and we set τ2 ≤ τ1 ∧ (T−t2) then we have

0 ≤ V (t1, x)− V (t2, x) (5.33)

≤ E(K −Xx
τ1
)+ − E(K −Xx

τ2
)+ + E

(
G̃(t1+τ1, X

x
τ1
)− G̃(t2+τ2, X

x
τ2
)
)

≤ E(Xx
τ2
−Xx

τ1
)+ + E

(
G̃(t1+τ1, X

x
τ1
)− G̃(t2+τ2, X

x
τ2
)
)
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where we used fact that (K − y)+ − (K − z)+ ≤ (z − y)+ for y, z ∈ IR. Now to show

the uniform convergence over x ∈ [x0 − δ, x0 + δ] of the first term in (5.33) we use an

estimation from [58, p. 381]

E(Xx
τ2
−Xx

τ1
)+ ≤ xerTu(t2 − t1) (5.34)

where function u has property u(t) → 0 as t → 0. For the second term, letting

t2− t1 → 0 and thus τ ε1 − τ ε2 → 0 we see that it goes to zero by dominant convergence

as the function G̃ ≤ K. This shows (5.32) and thus the proof of the continuity of V

is complete.

5. We show that b is increasing on [0, T ] under assumptions (5.15). Let us fix take

0 ≤ t1 < t2 < T and x ∈ (0, K), denote by τ the optimal stopping time for V (t2, x)

and we have that

V (t1, x)− V (t2, x) (5.35)

≥ EG̃(t1+τ,Xx
τ )− EG̃(t2+τ,Xx

τ )

= G̃(t1, x)− G̃(t2, x) + E

∫ τ

0

(
H̃(t1+s,Xx

s )−H̃(t2+s,Xx
s ))I(X

x
s ≤ K)ds

+
1

2
E

∫ τ

0

(
Φ
(
( r
σ
− σ

2
)
√
T−t1−s

)
−Φ

(
( r
σ
− σ

2
)
√
T−t2−s

)
dℓKs (X

x)

≥ G̃(t1, x)− G̃(t2, x) = G(t1, x)−G(t2, x)

where we used (5.29) and that the map t 7→ H̃(t, x) is decreasing and r ≥ σ2/2.

Hence if a point (t2, x) ∈ C then V (t1, x) − G(t1, x) ≥ V (t2, x) − G(t2, x) > 0 and

(t1, x) ∈ C as well which shows that the optimal shouting boundary b is increasing

on [0, T ] under assumptions (5.15).

Remark 5.3.1. If in the proof above we preserve the condition 1) of (5.15) and

consider the case r < σ2/2 then the the derivative of H̃ with respect to time becomes

more negative, however the integrand of integral with respect to local time in (5.35)

turns up to be increasing in time. Unfortunately we are not able to compare two

integrals with opposite signs in (5.35) and prove that b is monotone in this case,

however numerical analysis and computer drawing show that b is still increasing. The

similar conclusion has been observed by [78] for the reset put option. Therefore we
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have to assume the condition r > σ2/2 since below our proofs of smooth-fit condition,

and also of the continuity and bounded variation of b are based on its monotonicity.

The proof of these facts above without using monotonicity of the optimal stopping

boundaries is open and useful problem, which can help to tackle some optimal stopping

problems.

6. Now we prove that the smooth-fit condition holds

Vx(t, b(t)+) = Gx(t, b(t)) (5.36)

for all t ∈ [0, T ) under assumptions (5.15). For this, let us fix a point (t, x) ∈

[0, T )× (0,∞) lying on the boundary b so that x = b(t). Then we have

V (t, x+ε)− V (t, x)

ε
≥ G(t, x+ε)−G(t, x)

ε
(5.37)

and hence, taking the limit in (5.37) as ε ↓ 0, we get

Vx(t, x+) ≥ Gx(t, x) (5.38)

where the right-hand derivative exists by convexity of x 7→ V (t, x) on (0,∞) for any

fixed t ∈ [0, T ).

To prove the reverse inequality, we set τε = τε(t, x+ε) as optimal stopping time

for V (t, x+ε). Using fact that t 7→ b(t) is increasing under assumptions (5.15) and

the law of the iterated logarithm at zero for Brownian motion we have that τε → 0

as ε → 0, P-a.s. Then by the mean value theorem we have

1

ε

(
V (t, x+ε)− V (t, x)

)
≤1

ε
E
[
G(t+τε, X

x+ε
τε )−G(t+τε, X

x
τε)

]
(5.39)

≤ 1

ε
E
[
Gx(t+τε, ξ)

(
Xx+ε

τε −Xx
τε

)]
= E

[
Gx(t+τε, ξ)X

1
τε

]
with ξ ∈ [Xx

τε , X
x+ε
τε ] for all ω ∈ Ω. Thus using dominated convergence theorem with

the fact that |Gx(t, x)| ≤ 3 for any (t, x) ∈ [0, T )× (0,∞) by (5.16) and also τε → 0

we have that

Vx(t, x+) ≤ Gx(t, x) (5.40)
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Thus combining (5.38) and (5.40) we obtain (5.36).

7. Here we prove that the boundary b is continuous on [0, T ] and that b(T ) = K

under assumptions (5.15). The proof is provided in 3 steps.

(i) We first show that b is right-continuous. Let us consider b, fix t ∈ [0, T )

and take a sequence tn ↓ t as n → ∞. Since b is increasing, the right-limit b(t+)

exists and (tn, b(tn)) belongs to D for all n ≥ 1. Recall that D is closed so that

(tn, b(tn)) → (t, b(t+)) ∈ D as n → ∞ and we may conclude that b(t+) ≤ b(t).

The fact that b is increasing gives the reverse inequality thus b is right-continuous as

claimed.

(ii) Now we prove that b is also left-continuous. Assume that there exists t0 ∈

(0, T ) such that b(t0−) < b(t0) where b(t0−) denotes the left-limit of b at t0. Take

x1 < x2 such that b(t0−) < x1 < x2 < b(t0) and h > 0 such that t0 > h, then by

defining u := V −G and using (5.45), (5.25), (5.49) we have

ut + ILXu = −H on C and below K (5.41)

u(t0, x) = 0 for x ∈ (x1, x2). (5.42)

Denote by C∞
c (a, b) the set of continuous functions which are differentiable infinitely

many times with continuous derivatives and compact support on (a, b). Take φ ∈

C∞
c (x1, x2) such that φ ≥ 0 and

∫ x2

x1
φ(x)dx = 1. Multiplying (5.41) by φ and

integrating by parts we obtain∫ x2

x1

φ(x)ut(t, x)dx =−
∫ x2

x1

u(t, x)IL∗
Xφ(x)dx (5.43)

−
∫ x2

x1

H(t, x)φ(x)dx

for t ∈ (t0−h, t0) and with IL∗
X denoting the formal adjoint of ILX . Since ut ≤ 0 in

C below K by (5.35), the left-hand side of (5.43) is negative. Then taking limits as

t → t0 and by using dominated convergence theorem we find

0 ≥−
∫ x2

x1

u(t0, x)IL
∗
Xφ(x)dx−

∫ x2

x1

H(t0, x)φ(x)dx (5.44)

=−
∫ x2

x1

H(t0, x)φ(x)dx
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where we have used that u(t0, x) = 0 for x ∈ (x1, x2) by (5.41). We now observe that

H(t0, x) < −c for x ∈ (x1, x2) and suitable c > 0 by (5.25), therefore (5.44) leads to

a contradiction and it must be b(t0−) = b(t0).

(iii) To prove that b(T ) = K is left-continuous we can use the same arguments as

those in (ii) above with t0 = T and suppose that b(T ) < K.

8. The facts proved in paragraphs 1-7 above and standard arguments based on

the strong Markov property lead to the following free-boundary problem for the value

function V and unknown boundary b:

Vt+ILXV = 0 in C (5.45)

V (t, b(t)) = G(t, b(t)) for t ∈ [0, T ) (5.46)

Vx(t, b(t)+) = Gx(t, b(t)) for t ∈ [0, T ) (5.47)

V (t, x) > G(t, x) in C (5.48)

V (t, x) = G(t, x) in D (5.49)

where the continuation set C and the stopping set D are given by

C = { (t, x) ∈ [0, T )×(0,∞) : x > b(t) } (5.50)

D = { (t, x) ∈ [0, T )×(0,∞) : x ≤ b(t) }. (5.51)

The following properties of V and b were also verified above:

V is continuous on [0, T ]× (0,∞) (5.52)

V is C1,2 on C (5.53)

x 7→ V (t, x) is decreasing and convex (5.54)

t 7→ V (t, x) is decreasing (5.55)

t 7→ b(t) is increasing and continuous with b(T−) = K. (5.56)

5.4. The arbitrage-free price of the shout option

We now provide the shouting premium representation formula for the undis-

counted arbitrage-free price V which decomposes it into the sum of the undiscounted
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Figure 5.1: A computer drawing of the optimal shouting boundary
t 7→ b(t) (upper) for the shout put option (5.10) and the optimal
exercise boundary t 7→ bA(t) (lower) for the American put option
in the case K = 10, r = 0.1, σ = 0.4 , T = 1.

European put option price and ‘shouting’ premium. The optimal shouting boundary

b will be obtained as the unique solution to the integral equation. We recall that we

assume conditions (5.15).

We will make use of the following functions in Theorem 5.4.1 below:

L(t, u, x, z) = −f(t+u)EXx
uI(X

x
u ≤ z) = −f(t+u)

∫ z

0

y h(y;x, u)dy (5.57)

for t, u ≥ 0 and x, z > 0 and where h(y) = h(y; x, u) is the probability density

function of Xx
u under P.

1. The main result of this section may now be stated as follows.

Theorem 5.4.1. The value function V of (5.10) has the following representation

V (t, x) = E(K−Xx
T−t)

+ +

∫ T−t

0

L(t, u, x, b(t+u))du (5.58)

for t ∈ [0, T ] and x ∈ (0,∞). The optimal shouting boundary b in (5.10) can be

characterised as the unique solution to the nonlinear integral equation

G(t, b(t)) = E(K−X
b(t)
T−t)

+ +

∫ T−t

0

L(t, u, b(t), b(t+u))du (5.59)

for t ∈ [0, T ] in the class of continuous functions t 7→ b(t) with b(T ) = K.
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Proof. (A) First we clearly have that the following conditions hold: (i) V is C1,2 on

C ∪ D; (ii) b is of bounded variation due to monotonicity; (iii) Vt+ILXV is locally

bounded; (iv) x 7→ V (t, x) is convex (recall paragraph 1 above); (v) t 7→ Vx(t, b(t)±)

is continuous (recall (5.36)). Hence we can apply the local time-space formula on

curves [52] for V (t+s,Xx
s ):

V (t+s,Xx
s ) = V (t, x) +Ms (5.60)

+

∫ s

0

(Vt+ILXV )(t+u,Xx
u)I(X

x
u ≤ b(t+u))du

+
1

2

∫ s

0

(
Vx(t+u,Xx

u+)− Vx(t+u,Xx
u−)

)
I
(
Xx

u = b(t+u)
)
dℓbu(X

x)

= V (t, x) +Ms +

∫ s

0

(Gt+ILXG)(t+u,Xx
u)I(X

x
u ≤ b(t+u))du

= V (t, x) +Ms +

∫ s

0

f(t+u)Xx
uI(X

x
u ≤ b(t+u))du

where we used (5.45), (5.25) and smooth-fit conditions (5.47) and whereM = (Mu)u≥0

is the martingale part, (ℓbu(X
x))u≥0 is the local time process of Xx spending at bound-

ary b. Now upon letting s = Tδ−t, taking the expectation E, the optional sampling

theorem for M , rearranging terms and noting that V (T, x) = G(T, x) = (K−x)+ for

all x > 0, we get (5.58). The integral equation (5.59) one obtains by simply putting

x = b(t) into (5.58) and using (5.46).

(B) Now we show that b is the unique solution to the equation (5.59) in the class

of continuous functions t 7→ b(t) with b(T ) = K. Note that there is no need to assume

that b is increasing.

(B.1) Let c : [0, T ] → IR be a solution to the equation (5.59) such that c is con-

tinuous. We will show that these c must be equal to the optimal shouting boundary

b. Now let us consider the function U c : [0, T ) → IR defined as follows

U c(t, x) = EG(T,Xx
T−t) +

∫ T−t

0

L(t, u, x, c(t+u))du (5.61)

for (t, x) ∈ [0, T ]× (0,∞). Observe the fact that c solves the equation (5.59) means

exactly that U c(t, c(t)) = G(t, c(t)) for all t ∈ [0, T ]. We will moreover show that
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U c(t, x) = G(t, x) for x ∈ (0, c(t)] with t ∈ [0, T ]. This can be derived using martin-

gale property as follows; the Markov property of X implies that

U c(t+s,Xx
s )−

∫ s

0

f(t+u)Xx
uI(X

x
u ≤ c(t+u))du = U c(t, x) +Ns (5.62)

where (Ns)0≤s≤T−t is a martingale under P. On the other hand, we know from (5.28)

G(t+s,Xx
s ) = G(t, x) +

∫ s

0

f(t+u)Xx
uI(X

x
u ≤ K)du+Ms (5.63)

+
1

2

∫ s

0

Φ
(
( r
σ
− σ

2
)
√
T−t−u

)
dℓKu (X

x)

where (Ms)0≤s≤T−t is a continuous martingale under P.

For x ∈ (0, c(t)] with t ∈ [0, T ] given and fixed, consider the stopping time

σc = inf { 0 ≤ s ≤ T−t : c(t+s) ≤ Xx
s } (5.64)

under P. Using that U c(t, c(t)) = G(t, c(t)) for all t ∈ [0, T ] and U c(T, x) = G(T, x)

for all x > 0, we see that U c(t+σc, X
x
σc
) = G(t+σc, X

x
σc
). Hence from (5.63) and

(5.64) using the optional sampling theorem we find:

U c(t, x) = EU c(t+σc, X
x
σc
)− E

∫ σc

0

f(t+u)Xx
uI(X

x
u ≤ c(t+u))du (5.65)

= EG(t+σc, X
x
σc
)− E

∫ σc

0

f(t+u)Xx
udu = G(t, x)

since Xx
u ∈ (0, c(t+u)) and ℓKu (X

x) = 0 for all u ∈ [0, σc). This proves that U
c(t, x) =

G(t, x) for x ∈ (0, c(t)] with t ∈ [0, T ] as claimed.

(B.2) We show that U c(t, x) ≤ V (t, x) for all (t, x) ∈ [0, T ] × (0,∞). For this

consider the stopping time

τc = inf { 0 ≤ s ≤ T−t : Xx
s ≤ c(t+s) } (5.66)

under P with (t, x) ∈ [0, T ] × (0,∞) given and fixed. The same arguments as those

following (5.64) above show that U c(t+τc, X
x
τc) = G(t+τc, X

x
τc). Inserting τc instead

of s in (5.62) and using the optional sampling theorem, we get:

U c(t, x) = EU c(t+τc, X
x
τc) = EG(t+τc, X

x
τc) ≤ V (t, x) (5.67)
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proving the claim.

(B.3) We show that c ≥ b on [0, T ]. For this, suppose that there exists t ∈ [0, T )

such that b(t) > c(t) and choose a point x ∈ (0, c(t)] and consider the stopping time

σ = inf { 0 ≤ s ≤ T−t : b(t+s) ≤ Xx
s } (5.68)

under P. Inserting σ instead of s in (5.60) and (5.62) and using the optional sampling

theorem, we get:

EV (t+σ,Xx
σ) = V (t, x) + E

∫ σ

0

f(t+u)Xx
udu (5.69)

EU c(t+σ,Xx
σ) = U c(t, x) + E

∫ σ

0

f(t+u)Xx
uI

(
Xx

u ≤ c(t+u))
)
du. (5.70)

Since U c ≤ V and V (t, x) = U c(t, x) = G(t, x) for x ∈ (0, c(t)] with t ∈ [0, T ], it

follows from (5.69) and (5.71) that:

E

∫ σ

0

f(t+u)Xx
uI

(
c(t+u) ≤ Xx

u

)
du ≥ 0. (5.71)

Due to the fact that f is always strictly negative we see by the continuity of b and c

that (5.71) is not possible so that we arrive at a contradiction. Hence we can conclude

that b(t) ≤ c(t) for all t ∈ [0, T ].

(B.4) We show that c must be equal to b. For this, let us assume that there

exists t ∈ [0, T ) such that c(t) > b(t). Choose an arbitrary point x ∈ (b(t), c(t)) and

consider the optimal stopping time τ ∗ from (5.10) under P. Inserting τ ∗ instead of s

in (5.60) and (5.62), and using the optional sampling theorem, we get:

EG(t+τ ∗, Xx
τ∗) = V (t, x) (5.72)

EG(t+τ ∗, Xx
τ∗) = U c(t, x) + E

∫ τ∗

0

f(t+u)Xx
uI

(
Xx

u ≤ c(t+u)
)
du (5.73)

where we use that V (t+τ ∗, Xx
τ∗) = G(t+τ ∗, Xx

τ∗) = U c(t+τ ∗, Xx
τ∗) upon recalling that

c ≥ b and U c = G either below c or at T . Since U c ≤ V we have from (5.72) and

(5.73) that:

E

∫ τ∗

0

f(t+u)Xx
uI

(
Xx

u ≤ c(t+u)
)
du ≥ 0. (5.74)
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Due to the fact that f is always strictly negative we see from (5.74) by continuity of

b and c that such a point (t, x) cannot exist. Thus c must be equal to b and the proof

of the theorem is complete.

5.5. The financial analysis

In this section we present the analysis of financial returns of the shout put option

and highlight the practical features of the option. We perform comparisons with the

American put option, European put option and the British put option since the first

two are standard vanilla options whilst the latter has been introduced by Peskir and

Samee in [59] and it was shown there that this option provides a protection mechanism

against unfavourable stock movements and also gives high returns with compare to the

American option when movements are favourable. The so-called ‘skeleton analysis’

was applied to analyse financial returns of options in [59] where the main question was

addressed as to what the return would be if the underlying process enters the given

region at a given time (i.e. the probability of the latter event was not discussed nor do

we account for any risk associated with its occurrence). Such a ‘skeleton analysis’ is

both natural and practical since it places the question of probabilities and risk under

the subjective assessment of the option holder (irrespective of whether the stock price

model is correct or not) and we apply this analysis below.

1. In the numerical example below (see Tables 5.1 and 5.2) the parameter values

have been chosen to present the practical features of the shout put option in a fair

and representative way and also satisfy (5.15). We assume that the initial stock price

equals 10, the strike price K = 10, the maturity time T = 1 year, the interest rate

r = 0.1, the volatility coefficient σ = 0.4, i.e. we consider the option at-the money.

For this set of parameters the arbitrage-free price of the shout put option is 1.480,

the price of the American put option is 1.196, the price of the European put option

is 1.080, and the price of the British put option with the contract drift µc = 0.13
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Exercise time (months) 0 2 4 6 8 10 12

Shouting at 9 127% 125% 122% 117% 111% 101% 68%
Exercising at 9 (American) 84% 84% 84% 84% 84% 84% 84%
Exercising at 9 (British) 135% 131% 126% 119% 112% 101% 91%

Shouting at 8 181% 180% 178% 176% 171% 164% 135%
Exercising at 8 (American) 167% 167% 167% 167% 167% 167% 167%
Exercising at 8 (British) 182% 180% 178% 176% 174% 173% 182%

Shouting at b 181% 173% 163% 149% 129% 97% 0%
Exercising at b (American) 168% 158% 145% 129% 109% 79% 0%
Exercising at b (British) 183% 174% 163% 148% 128% 97% 0%

Shouting at 7 235% 235% 235% 234% 232% 226% 203%
Exercising at 7 (American) 251% 251% 251% 251% 251% 251% 251%
Exercising at 7 (British) 242% 243% 245% 248% 252% 260% 273%

Shouting at 6 288% 290% 292% 292% 292% 289% 271%
Exercising at 6 (American) 335% 335% 335% 335% 335% 335% 335%
Exercising at 6 (British) 316% 320% 326% 333% 341% 352% 364%

Shouting at 5 342% 346% 348% 351% 352% 351% 388%
Exercising at 5 (American) 418% 418% 418% 418% 418% 418% 418%
Exercising at 5 (British) 402% 409% 417% 426% 435% 445% 455%

Shouting at 4 396% 401% 405% 409% 412% 414% 406%
Exercising at 4 (American) 502% 502% 502% 502% 502% 502% 502%
Exercising at 4 (British) 498% 506% 514% 522% 530% 539% 547%

Table 5.1: Returns observed upon shouting (average discounted payoff at T ) the
shout put option R(t, x)/100 = e−r(T−t)G(t, x)/V (0, K), exercising the American
put option RA(t, x)/100 = (K−x)+/VA(0, K) and exercising the British put option
RB(t, x)/100 = GB(t, x))/VB(0, K). The parameter set isK = 10, T = 1, r = 0.1,
σ = 0.4,µc = 0.13.

is 1.098. Observe that the ‘shouting’ premium much more larger than ‘exercising’

premium of the American put option.

2. Tables 5.1 and 5.2 provide the analysis of comparison between the shout put

option and its American, European and British versions. We compare returns upon

(i) shouting put option and exercising the American and British options in the same

contingency (Table 5.1) and (ii) selling the shout, American British and European

options in the same contingency (Table 5.2). The latter is motivated by the fact that

in practice the holder may choose to sell his option at any time during the term of

the contract, and in this case one may view his ‘payoff’ as the price he receives upon

selling. We also need to note that the return upon shouting at time t means the ratio

of discounted average payoff which the holder gets at T over the initial price V (0, K),

since he receives claim only at time T and thus we can consider only average return
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Figure 5.2: A computer drawing showing the (dark grey) region S in
which the shout put option outperforms the American put option,
and the region A in which the American put option outperforms
the shout put option. The parameter set is the same as in Figure
5.1 above (K = 10, r = 0.1, σ = 0.4 , T = 1).

at time t and it depends on chosen model. Figures 5.2 and 5.3 show, respectively: (i)

region S in which the shout put option outperforms the American put option, and

the region A in which the American put option outperforms the shout put option

and (ii) region S in which the shout put option outperforms the British put option,

and the surrounding region B in which the British put option outperforms the shout

put option.

3. From Table 5.1 and Figures 5.2 and 5.3 we analyse average returns of the shout

put option upon shouting along with returns upon exercise of its counterparts. We

do not consider the case when stock movements are unfavourable (price is greater or

equal than strike) as we know that it is not rational to shout above K. We can point

out following observations: (i) there is a curve between optimal shouting boundary

and optimal American put boundary such that upon shouting in the region at and

above this curve the shout option is much better than the than the American (see

Figure 5.2), however below the curve the latter outperforms the former option; (ii)

there is a small region S above b when t ∈ [2, 8] (see Figure 5.3), where the shout
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Figure 5.3: A computer drawing showing the (dark grey) region S
in which the shout put option outperforms the British put option,
and the surrounding region B in which the British put option out-
performs the shout put option. The parameter set is the same as
in Figure 5.1 above (K = 10, r = 0.1, σ = 0.4 , T = 1).

option has returns greater than the British option’s returns and in surrounding large

region the British version outperforms the shout one. In order to see comparison

between the British and the American options we address to Figure 9 in [59] where it

was shown that (iii) the British version generally outperforms the American version

except within a bounded region corresponding to earlier exercise (before half term).

The point (i) shows, despite the fact shout option is much more expensive than the

American one, that for initially at-the-money shout option its holder enjoys greater

returns than American option if he shouts everywhere almost prior to the optimal

American put boundary bA (see Figure 5.2) where the rational investor uses his option.

The observations (ii) and (iii) confirms that the British option is very strong in terms

of returns and generally outperforms both counterparts, and it may be explained by

the mechanism of optimal prediction which is intrinsically built into the option (for

details see [59]).

4. Now we turn to the analysis of Table 5.2 and consider returns of investor

upon selling options, where we add also the European option. We can see that
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Exercise time (months) 0 2 4 6 8 10 12

Selling at 8 (Shout) 181% 180% 178% 176% 171% 164% 135%
Selling at 8 (American) 186% 183% 179% 175% 171% 167% 167%
Selling at 8 (British) 182% 180% 178% 176% 174% 173% 182%
Selling at 8 (European) 179% 179% 179% 178% 176% 176% 185%

Selling at 9 (Shout) 135% 132% 127% 121% 113% 102% 68%
Selling at 9 (American) 137% 132% 125% 118% 109% 97% 84%
Selling at 9 (British) 135% 131% 127% 121% 113% 102% 91%
Selling at 9 (European) 135% 132% 127% 122% 114% 104% 93%

Selling at 10 (Shout) 100% 95% 88% 80% 68% 52% 0%
Selling at 10 (American) 100% 94% 86% 77% 65% 49% 0%
Selling at 10 (British) 100% 95% 88% 80% 68% 52% 0%
Selling at 10 (European) 100% 95% 89% 81% 69% 52% 0%

Selling at 11 (Shout) 73% 67% 60% 51% 39% 23% 0%
Selling at 11 (American) 73% 66% 58% 49% 37% 21% 0%
Selling at 11 (British) 73% 67% 60% 51% 39% 23% 0%
Selling at 11 (European) 74% 68% 61% 52% 40% 23% 0%

Selling at 12 (Shout) 54% 48% 40% 32% 21% 9% 0%
Selling at 12 (American) 53% 46% 39% 30% 20% 8% 0%
Selling at 12 (British) 54% 47% 40% 32% 21% 9% 0%
Selling at 12 (European) 54% 48% 41% 32% 22% 9% 0%

Selling at 13 (Shout) 39% 33% 27% 19% 11% 3% 0%
Selling at 13 (American) 38% 32% 26% 18% 10% 3% 0%
Selling at 13 (British) 39% 33% 27% 19% 11% 3% 0%
Selling at 13 (European) 39% 34% 27% 20% 11% 3% 0%

Selling at 14 (Shout) 28% 23% 18% 12% 6% 1% 0%
Selling at 14 (American) 28% 22% 17% 11% 5% 1% 0%
Selling at 14 (British) 28% 23% 18% 12% 6% 1% 0%
Selling at 14 (European) 29% 24% 18% 12% 6% 1% 0%

Table 5.2: Returns observed upon selling the shout put option
R(t, x)/100 = e−r(T−t)V (t, x)/V (0, K), selling the American put op-
tion RA(t, x)/100 = VA(t, x)/VA(0, K), selling the European put op-
tion RE(t, x)/100 = VE(t, x)/VE(0, K) and selling the British put option
RB(t, x)/100 = VB(t, x)/VB(0, K). The parameter set isK = 10, T = 1, r = 0.1,
σ = 0.4,µc = 0.13.

when the stock price movements are unfavourable (greater than K) and investor

decides to liquidate the option, all four options provide comparable returns with only

insignificant differences. For prices between 6 and 8 we have that before half terms

the American outperforms others and after the European is slightly better than rest.

It is important to note that in a real financial market the option holder’s ability

to sell his contract may depend upon a number of factors such as the access the

option market, the transaction costs and the liquidity of the option market itself

(which in turn determines the market/liquidation price of the option) so that selling
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of the options can be problematic. Thus we can only consider liquid markets for

calculations in Table 5.2. As it was shown in [59] that exercising the British option in

the continuation set produces a remarkably comparable return to selling the contract

in a liquid option market, which is not however the case for the shout option.

5. Now we conclude the financial analysis of the shout put option and comparison

with its counterparts. In the numerical example the shout option is more expen-

sive than the American one by roughly 23%, however the skeleton analysis shows

that there is a curve between optimal shouting boundary b and optimal exercise put

boundary bA such that at and above this curve and below K the shout option’s re-

turns greater, which is pleasant for investor who wishes to lock the profit in that

region while having the opportunity to gain also from a future price at the maturity

T . On the other hand we can see that the British option generally outperforms both

counterparts. The British and shout options both have ‘optimal prediction’ feature

because it is intrinsically built into the former option and the decision of shouting the

latter option explicitly depends on prediction of the price at T . Another advantage

of the British option with compare to the shout option apart from greater returns is

that it has generally smaller difference between the option’s price and payoff, which is

useful in illiquid markets where the selling of the option can be problematic and the

British holder may just sell it with good return. The advantage of the shout option

that it has clearer definition and structure for the investor.



Chapter 6

Smooth-fit principle for

exponential Lévy model

6.1. Introduction

This chapter is devoted to a review of results in the problem of the so-called

smooth-fit property for the American put option in an exponential Lévy model with

dividends. There are many papers which consider the smooth-fit principle for regular

diffusions and its sufficient conditions in terms of differentiability of the gain function

and the scale function of the process (see for instance [57] and references therein).

This principle is well-known and has been proved in a classical Black-Scholes

model for the American put option for both infinite and finite horizons and helps

to solve the corresponding optimal stopping and free-boundary problems. However

moving from the geometric Brownian motion to an exponential Lévy model changes

the picture and the smooth-fit property may not hold, e.g. in [13] the authors exposed

an example of the CGMY model where the principle fails. Alili and Kyprianou [2]

studied perpetual case and delivered the necessary and sufficient condition (namely

the regularity of the logarithm of stock price with respect to negative half-line) in the

exponential Lévy model without dividends. In the finite horizon case this question

has been examined in [61], [6] and [79] for a jump-diffusion model.

Recently Lamberton and Mikou [40] proved several results for exponential Lévy

127
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model with dividends on finite horizon. Firstly they showed that the condition derived

in [2] is also sufficient for finite horizon case. Then without this condition, i.e. when

logarithm of the stock price is of finite variation and has positive drift, Lamberton

and Mikou showed absence of the smooth-fit at least for large maturities. Finally,

under a stronger condition they disproved the smooth-fit for all maturities.

The contribution of this chapter is to provide an example showing that the neces-

sary and sufficient condition for infinite horizon case is not longer applicable for finite

horizon and it is caused by the fact that the optimal stopping boundary is strictly

increasing unlike in the perpetual case. Namely, we take logarithm of the stock price

as a Lévy process of bounded variation with zero drift and finitely many jumps, and

prove that one has the smooth-fit property without regularity of Z. Secondly, we at-

tempt to disclose the remaining case in [40] where the drift is positive but removing

the additional conditions they used. We provide some analysis and calculations and

propose open questions which could help to resolve this problem.

This chapter is organised as follows. In Section 6.2 we set the arbitrage-free model

with dividends as exponential Lévy model. In Section 6.3 we recall known results for

the American put option problem. Then in Section 6.4 we review existing results in

the literature and finally in Section 6.5 we show a counter-example and provide some

calculations for the remaining case.

6.2. Model setting

In this Chapter we follow the same setting as in [40]. We consider the probability

space (Ω,F , (Ft)t≥0,P) and the general Lévy process X = (Xt)t≥0 starting at 0 with

natural filtration (Ft)t≥0 and characteristic triplet (γ, σ, µ), where γ and σ are real

numbers and ν is so-called Lévy measure satisfying∫
(x2 ∧ 1)ν(dx) < ∞. (6.1)

Then the characteristic function of X has the following Lévy-Khinchin representation

log(EeizXt) = t
(
− 1

2
σ2z2 + iγz +

∫
(eizx − 1− izxI(|x| ≤ 1))ν(dx)

)
(6.2)
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for t ≥ 0 and z ∈ C. Moreover the process X is a Markov with infinitesimal operator

given by

ILXf(x) =(σ2/2)f ′′(x) + γf ′(x) (6.3)

+

∫ (
f(x+ y)− f(x)− yf ′(x)I(|y| ≤ 1)

)
ν(dy)

for every f ∈ C2
b (IR) bounded twice continuously differentiable function with bounded

derivatives.

The classical result about Lévy processes states that X is of finite variation if and

only if

σ = 0 &

∫
|x|≤1

|x|ν(dx) < ∞ (6.4)

and in this case

Xt

t
→ γ −

∫ 1

−1

xµ(dx) as t → 0 P-a.s. (6.5)

Now we define our price model based on process X in the following way

Sx
t = xe(r−δ)t+Xt (6.6)

where r > 0 is the interest rate, δ ≥ 0 is the dividend rate. To obtain arbitrage-

free prices we require that under P the discounted dividend adjusted stock price

(e−(r−δ)tSt)t≥0 is a martingale, which implies two conditions∫
|x|>1

exµ(dx) < ∞ (6.7)

σ2

2
+ γ +

∫ (
ex − 1− xI(|x| ≤ 1)

)
µ(dx) = 0 (6.8)

and therefore the representation (??) can be rewritten as

ILXf(x) =(σ
2

2
(f ′′(x)− f ′(x)) (6.9)

+

∫ (
f(x+ y)− f(x)− (ey − 1)f ′(x)

)
ν(dy).

Moreover the stock price S is also a Markov process with infinitesimal operator

ILSf(x) =(σ2x2/2)f ′′(x) + x(r − δ)f ′(x) (6.10)

+

∫ (
f(xey)− f(x)− x(ey − 1)f ′(x)

)
ν(dy).
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6.3. American put option on finite horizon

Let us now consider an American put option problem for model described above

V (t, x) = sup
0≤τ≤T−t

Ee−rτ (K − Sx
τ )

+ (6.11)

for (t, x) ∈ [0, T )× (0,∞) where r > 0 is the discount rate, T < ∞ is the expiration

date, K > 0 is the strike price, S is given by (6.6), and the supremum is taken over

all stopping times τ w.r.t. to (Ft). As in [40] throughout this Chapter we assume

that at least one of the conditions below holds

σ ̸= 0, ν((−∞, 0)) > 0 or

∫
x>0

(x ∧ 1)ν(dx) = ∞. (6.12)

Under this assumption, we have (as observed in [40]) that V (t, x) > 0 for all (t, x) ∈

[0, T )× (0,∞).

We now recall well-known facts and properties in the literature of the value func-

tion V and optimal stopping time τ∗:

x 7→ V (t, x) is decreasing and convex on (0,∞) for t ∈ [0, T ] (6.13)

t 7→ V (t, x) is continuous and decreasing on [0, T ] for x ∈ (0,∞) (6.14)

Vt + ILSV − rV ≤ 0 on closed set D (6.15)

Vt + ILSV − rV = 0 on open set C (6.16)

and there exists a function b on [0, T ], which we call the optimal stopping boundary,

such that

τ∗ = inf{ 0 ≤ s ≤ T − t| Sx
s ≤ b(t+ s)} (6.17)

is optimal in (6.11) and where continuation set C reads

C = { (t, x) ∈ [0, T )× (0,∞)| V (t, x) > (K − x)+} (6.18)

= { (t, x) ∈ [0, T )× (0,∞)| x > b(t)}

and stopping set D

D = { (t, x) ∈ [0, T )× (0,∞)| V (t, x) = (K − x)+} (6.19)
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= { (t, x) ∈ [0, T )× (0,∞)| x ≤ b(t)}.

It has been proven by Lamberton and Mikou in [41] that b > 0 is continuous and

increasing and they showed following important result

Proposition 6.3.1. The limit of the boundary b at T is characterised by

1) if d+ ≥ 0 then b(T ) = K;

2) if d+ < 0 then b(T ) < K and solution to

rK − δb(T )−
∫ (

b(T )ex −K
)+

µ(dx) = 0 (6.20)

where d+ := r−δ−
∫ (

ex−1
)+

ν(dx).

6.4. Smooth-fit principle: review of existing results

The important issue of the American put option problem is so-called smooth-fit

property:

Vx(t, b(t)+) = −1 (6.21)

for all t ∈ [0, T ), where {b(t), 0 ≤ t ≤ T} is the optimal stopping boundary. This

condition holds in the case of geometric Brownian motion model. For exponential

Lévy model it was proven by Alili and Kyprianou [2] that in the case of infinite

horizon the smooth-fit property is equivalent to condition P(τ−0 = 0) = 1, where

τ−x = inf{0 ≤ t ≤ T : Zt < x} (6.22)

with Zt := (r − δ)t+Xt.

Following well-known result can be found in [2]:

Proposition 6.4.1. Let us define

d := r − δ −
∫ (

ex − 1
)
µ(dx) = lim

t→0

Zt

t
(6.23)

due to (6.5) and (6.8) and which is given only for Z with finite variation. Then the

process Z is regular to (−∞, 0), i.e P(τ−0 = 0) = 1, if and only if one of the following

conditions holds:
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(i) Z has finite variation with d < 0

(ii) Z has finite variation with d = 0 and
∫ 0

−1
|x|ν(dx)∫ |x|

0 ν(y,∞)dy
= ∞

(iii) Z has infinite variation.

Then Lamberton and Mikou [40] considered the finite horizon case and we review

their results below.

Proposition 6.4.2. Following facts hold:

(i) if Z is regular then the smooth-fit holds

(ii) if Z has finite variation with d > 0 and under additional assumption d+ =

r−δ−
∫ (

ex−1
)+

µ(dx) ≥ 0, then the smooth-fit breaks down for every t ∈ [0, T )

(iii) if Z has finite variation with d > 0 and T large enough then there exists

t ∈ [0, T ) such that smooth-fit does not hold.

Thus it remains to study cases when Z has finite variation and : a) d = 0 and

there is no regularity of Z and b) d+ < 0 < d and for all T > 0. We discuss these

cases in the next section where we will make of use the following result

Proposition 6.4.3. If Z has finite variation with d > 0 and for every 0 ≤ t < T we

exhibit the smooth-fit property, then

lim sup
h↓0

b(t+h)− b(t)

h
≥ b∗d (6.24)

where b∗ is the optimal stopping threshold for the perpetual case.

6.5. Case d = 0 and remarks for the case d+ < 0 < d

1. Now we will give some intuition behind the results from previous section. It

can be seen from the proofs in [40] that the crucial point for having the smooth-

fit property is whether the process S starting at the optimal stopping boundary b

enters immediately to the stopping set D or not. In the case of infinite horizon since

the boundary b is constant the smooth-fit is equivalent to immediate entry of Z to
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negative half-line P-a.s., i.e. P(τ−0 = 0) = 1. However in the case of finite horizon the

boundary b becomes strictly increasing so now main question is to determine whether

τh = inf{ 0 ≤ s ≤ T − t| Sb(t)+h
s ≤ b(t+s)} (6.25)

= inf{ 0 ≤ s ≤ T − t| Zs ≤ log[b(t+s)/(b(t)+h)]} → 0 as h → 0 P-a.s.

Since we can approximate log[b(t+s)/b(t)] ≈ (b(t+s)−b(t))/b(t) we need to estimate

a derivative (or slope) of b divided by the value of b itself and compare it with the

drift d of the process Z.

Let us consider now conclusions of Proposition 6.4.2 and explain them by argu-

ments from paragraph above. Firstly in (i), if Z is regular, then since b is increasing

and thus the slope of b is strictly positive, the process S obviously enter stopping

set immediately. Then for (ii), if Z has finite variation and d ≥ d+ ≥ 0 in [40] an

absence of smooth-fit was proved by analytical arguments, but also in more recent

paper [42] the asymptotic behaviour of b near maturity T was obtained

lim
t↑T

b(T )− b(t))

T − t
= −b(T )

∫
x<0

(
ex−1

)
ν(dx) (6.26)

and since limt↓0
Xt

t
− limt↑T

b(T )−b(t))
b(T )(T−t)

= d+
∫
x<0

(
ex−1

)
ν(dx) = d+ ≥ 0 we can confirm

that the process S does not enter into the stopping set D immediately. Finally, in

(iii) for large enough T the boundary at t = 0 has small enough slope so that having

d > 0 we again do not enter into D. Therefore it remains to consider the behaviour

of b at T when d > 0 but d+ < 0 and thus by Proposition 6.3.1 we have b(T ) < K.

We discuss this case below in paragraph 3.

2. However first we would like to consider the case d = 0 and when Z exhibits

finitely many jumps on any interval P-a.s., i.e. we take compound Poisson process.

Obviously, the regularity fails P(τ−0 > 0) = 1, however we can show that τh → 0 as

h → 0. Indeed, let us take arbitrary ε > 0 and then since Z has d = 0 and finitely

many jumps we can find P − a.s. 0 < s < ε such that Zs = 0. Now using that b

is strictly increasing (see proof in [77]) we can choose h > 0 small enough such that

Zs = 0 ≤ log b(t+s)/(b(t)+h) and therefore τ ≤ s < ε. Hence it follows that τh → 0

as h → 0 P− a.s. and repeating standard arguments (see e.g. proof of Theorem 4.1
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in [40]) we prove that the smooth-fit holds in this case.

This example shows that one can have the smooth-fit property without regularity

of Z, i.e. the condition for infinite horizon case is not applicable for finite horizon

case due to the strictly increasing boundary b.

3. Now we come back to the case where Z has finite variation and d+ < 0 < d.

There are two ways that can be proposed and which are currently under progression.

(i) Following arguments in first paragraph we can study the behaviour of b at

T . When d+ ≥ 0 the limit at T equals to K and as we mentioned above the linear

behaviour of b has been proven by using auxiliary European put boundary. In the

case d+ < 0 the limit b(T ) < K and one can use that locally the gain function

(K − x)+ is smooth near b(T ) and apply Ito’s formula as in [43] for Black-Scholes

model. However in [43] authors used α-stability of the Brownian motion and but our

model does not belong to class of stable processes due to (6.7).

Thus in order to determine whether the smooth-fit property holds or not we

propose to find asymptotic behaviour of b near T when d+ < 0, which itself is an

interesting problem.

(ii) Another approach goes to the proof in [40] for the case d+ ≥ 0. The idea is

to use that Vt + ILSV − rV = 0 on C and that ILSV contains first derivative with

respect to x and then let x ↓ b(t). Namely, we have as x ↓ b(t)

Vt(t, b(t)+) + b(t) d Vx(t, b(t)+) (6.27)

+

∫ (
V (t, b(t)ey)− V (t, b(t))

)
ν(dy)− rV (t, b(t))

=Vt(t, b(t)+) + b(t) d Vx(t, b(t)+) +

∫ 0

−∞
b(t)(1− ey)ν(dy)

+

∫ ∞

0

(
V (t, b(t)ey)− V (t, b(t))

)
ν(dy)− r(K − b(t)) = 0

for t ∈ [0, T ) where we used (6.10) and that σ = 0, V (t, b(t)ey) = K − b(t)ey for any

y ≤ 0.

Now after rearranging terms in (6.27) and using definitions of d, d+ and equation
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(6.20) we get

(
Vx(t, b(t)+)+1

)
d b(t) + Vt(t, b(t)+) (6.28)

=r
(
K − b(t)

)
+ d+b(t) +

∫ ∞

0

(
K − b(t)− V (t, b(t)ex)

)
µ(dx)

=rK − δb(t)− b(t)

∫ ∞

0

(
ex − 1

)
µ(dx) +

∫ ∞

0

(
K − b(t)− V (t, b(t)ex)

)
µ(dx)

=rK − δb(t) +

∫ ∞

0

(
K − b(t)ex − V (t, b(t)ex)

)
µ(dx)

=rK − δb(t)− rK + δb(T ) +

∫ (
b(T )ex −K

)+
µ(dx)

+

∫ ∞

0

(
K − b(t)ex − V (t, b(t)ex)

)
µ(dx)

=δ
(
b(T )− b(t)

)
+

∫ A

0

(
K − b(t)ex − V (t, b(t)ex)

)
µ(dx)

+

∫ ∞

A

(
(b(T )−b(t))ex − V (t, b(t)ex)

)
µ(dx)

=δ
(
b(T )− b(t)

)
+

∫ ∞

0

[
(K − b(T )ex)+ − V (t, b(T )ex)

]
µ(dx)

+

∫ ∞

0

{[
b(T )−b(t)

]
ex −

[
V (t, b(t)ex)−V (t, b(T )ex)

]}
µ(dx)

=δ
(
b(T )− b(t)

)
+

∫ ∞

0

[[
b(T )−b(t)

]
ex + (K − b(T )ex)+ − V (t, b(t)ex)

]
µ(dx)

where A := log(K/b(T )) > 0. Since Vt ≤ 0 the if we show that the right-hand side

in (6.28) is strictly positive for some t, then it would follow that in this case the

smooth-fit breaks down.

Now we show some attempts to disprove the smooth-fit, however we do not have

any strong intuition behind this conjecture and one can try to prove the opposite

fact. If we consider final expression in (6.28), then the first term is strictly positive

if δ > 0, however the integrand of last expression is negative from 0 to some B > A

and after B exponentially increases to +∞ (the integral converges due to (6.7)) and

thus we do not have clear evidence that this expression is positive.

Also one can examine the limit of penultimate expression in (6.28) as t ↑ T . Then

we argue by contradiction and assume that the smooth-fit holds and use (6.24) which

gives lower bound with positive linear drift for the first term if δ > 0, then second

integrand is obviously positive since Vx ≥ −1. However the first integrand is always



CHAPTER 6. SMOOTH-FIT PRINCIPLE 136

negative and one can divide it by T−t and letting t ↑ T we have

lim
t↑T

(K − b(T )ex)+ − V (t, b(T )ex)

T − t
= lim

t↑T

(K − b(T )ex)+ − V E(t, b(T )ex)

T − t
(6.29)

for x ≥ 0 where V E is the European put option price and we used that the difference

V − V E = e is early exercise premium for which we have e(t)/(T−t) = 0 as t ↑ T .

Thus the question now is to estimate

V E(t, b(T )ex)− (K − b(T )ex)+ (6.30)

for x ≥ 0 as accurately as possible, for instance one can exploit Ito-Tanaka’s formula

for the European option price.
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processes, the American put and pasting principles. Ann. Appl. Probab. 15

(2062–2080).

[3] Alobaidi, G., Mallier, R. and Mansi, S. (2011). Laplace transforms and

shout options. Acta Math. Univ. Comenianae 80 (79–102).

[4] Bardou, O., Bouthemy, S. and Pagès, G. (2009). Optimal quantization

for the pricing of swing options. Applied Mathematical Finance 16 (183–217).

[5] Barrera-Esteve, C., Bergeret, F., Dossal, C., Gobet, E., Meziou,

A., Munos, R. and Reboul-Salze, D. (2006). Numerical methods for

the pricing of swing options: a stochastic control approach. Methodol. Com-

put. Appl. Probab. 8 (517–540).

[6] Bayraktar, E. (1997). A proof of the smoothness of the finite time hori-

zon American put option for jump diffusions. SIAM Journal on Control and

Optimization 48 (551–572).

[7] Bender, C. (2011). Dual pricing of multi-exercise options under volume con-

straints. Finance Stoch. 15 (1–26).

137



BIBLIOGRAPHY 138

[8] Benth, F. E., Lempa, J. and Nilssen, T. K. (2011). On the optimal

exercise of swing options in electricity markets. The Journal of Energy Markets

4 (3–28).

[9] Bernhart, M., Pham, H., Tankov, P. and Warin, X. (2012). Swing op-

tions evaluation: a BSDE with constrained jumps approach. Numerical Methods

in Finance. R. Carmona et al. eds. Springer Proceedings in Mathematics 12,

Springer-Verlag (379–400).

[10] Carmona, R. and Dayanik, S. (2008). Optimal multiple stopping of linear

diffusions. Mathematics of Operations Research 33 (446–460).

[11] Carmona, R. and Touzi, N. (2008). Optimal multiple stopping and valua-

tion of Swing options. Math. Finance 18 (239–268).

[12] Carr, P. Jarrow, R. and Myneni, R. (1992). Alternative characterizations

of American put options. Math. Finance 2 (78–106).

[13] Carr, P., Geman, H., Madan, D. and Yor, M. (2002). The fine structure

of returns: an empirical investigation. Journal of Business 75 (305–332).

[14] Dai, M., Kwok, Y. K. and Wu, L. (2003). Options with multiple reset

rights. International Journal of Theoretical and Applied Finance 6 (637–653).

[15] Dai, M., Kwok, Y. K. and Wu, L. (2004). Optimal shouting policies of

options with strike reset right. Math. Finance 14 (383–401).

[16] De Angelis, T. (2013). A note on the continuity of free-boundaries in finite-

horizon optimal stopping problems for one-dimensional diffusions. Research Re-

port No. 2, Probab. Statist. Group Manchester (17 pp). Submitted.

[17] De Angelis, T. and Kitapbayev, Y. (2014). On the Optimal Exercise

Boundaries of Swing Put Options. Research Report No. 9, Probab. Statist.

Group Manchester (32 pp). Submitted.



BIBLIOGRAPHY 139

[18] Du Toit, J. and Peskir, G. (2007). The trap of complacency in predicting

the maximum. Ann. Probab. 35 (340–365).

[19] Dynkin, E. B. (1963). The optimum choice of the instant for stopping a

Markov process. Soviet Math. Dokl. 4 (627–629).

[20] Ethier, S. N. and Kurtz, T. G. (2005).Markov Processes: Characterization

and Convergence. John Wiley and Sons, New Jersey USA.

[21] Gapeev, P. (2006). Discounted optimal stopping for maxima in diffusion mod-

els with finite horizon. Electron. J. Probab. 11 (1031–1048).

[22] Glover, K., Peskir, G. and Samee, F. (2010). The British Asian option.

Sequential Anal. 29 (311–327).

[23] Glover, K., Peskir, G. and Samee, F. (2011). The British Russian option.

Stochastics 80 (315–332).

[24] Goard, J. (2012). Exact solutions for a strike reset put option and a shout

call option. Math and Computer Modelling 55 (1787–1797).

[25] Grigelionis, B. I and Shiryaev, A. N. (1966). On Stefans problem and

optimal stopping rules for Markov processes. Theory Probab. Appl. 11 (541–

558).

[26] Friedman, A. (2008). Partial differential equations of parabolic type. Dover

Publications.

[27] Hambly, B., Howison, S. and Kluge, T. (2009). Modelling spikes and

pricing swing options in electricity markets. Quantitative Finance 9 (937–949).

[28] Hull, J. C. (2009). Options, Futures and Other Derivatives. 7th ed, Pearson

Prentice Hall, New Jersey.
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