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Abstract 

One of the challenges in the structural biological community is processing the wealth of 

protein data being produced today; therefore, the use of computational tools has been 

incorporated to speed up and help understand the structures of proteins, hence the 

functions of proteins.  

 

In this thesis, protein structure investigations were made through the use of Multivariate 

Analysis (MVA), and Fourier Transformed Infrared (FTIR), a form of vibrational 

spectroscopy.  FTIR has been shown to identify the chemical bonds in a protein in 

solution and it is rapid and easy to use; the spectra produced from FTIR are then 

analysed qualitatively and quantitatively by using MVA methods, and this produces 

non-redundant but important information from the FTIR spectra. 

 

High resolution techniques such as X-ray crystallography and NMR are not always 

applicable and Fourier Transform Infrared (FTIR) spectroscopy, a widely applicable 

analytical technique, has great potential to assist structure analysis for a wide range of 

proteins.  FTIR spectral shape and band positions in the Amide I (which contains the 

most intense absorption region), Amide II, and Amide III regions, can be analysed 

computationally, using multivariate regression, to extract structural information.  In this 

thesis Partial least squares (PLS), a form of MVA, was used to correlate a matrix of 

FTIR spectra and their known secondary structure motifs, in order to determine their 

structures (in terms of "helix", "sheet", “310-helix”, “turns” and "other" contents) for a 

selection of 84 non-redundant proteins.  Analysis of the spectral wavelength range 

between 1480 and 1900 cm
-1

 (Amide I and Amide II regions) results in high accuracies 

of prediction, as high as R
2
 = 0.96 for α-helix, 0.95 for β-sheet, 0.92 for 310-helix, 0.94 

for turns and 0.90 for other; their Root Mean Square Error for Calibration (RMSEC) 

values are between 0.01 to 0.05, and their Root Mean Square Error for Prediction 

(RMSEP) values are between 0.02 to 0.12.  The Amide II region also gave results 

comparable to that of Amide I, especially for predictions of helix content.  We also used 

Principal Component Analysis (PCA) to classify FTIR protein spectra into their natural 

groupings as proteins of mainly α-helical structure, or protein of mainly β-sheet 

structure or proteins of some mixed variations of α-helix and β-sheet.  We have also 

been able to differentiate between parallel and anti-parallel β-sheet.  The developed 

methods were applied to characterize the secondary structure conformational changes of 

an unfolding protein as a function of pH and also to determine the limit of Quantitation 

(LoQ). 

 

Our structural analyses compare highly favourably to those in the literature using 

machine learning techniques.  Our work proves that FTIR spectra in combination with 

multivariate regression analysis like PCA and PLS, can accurately identify and quantify 

protein secondary structure.  The developed models in this research are especially 

important in the pharmaceutical industry where the therapeutic effect of drugs strongly 

depends on the stability of the physical or chemical structure of their proteins targets; 

therefore, understanding the structure of proteins is very important in the 

biopharmaceutical world for drugs production and formulation.  There is a new class of 

drugs that are proteins themselves used to treat infectious and autoimmune diseases.   

The use of spectroscopy and multivariate regression analysis in the medical industry to 

identify biomarkers in diseases has also brought new challenges to the bioinformatics 

field. These methods may be applicable in food science and academia in general, for the 

investigation and elucidation of protein structure. 
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1 Introduction 

The use of computational methods and biological tools for characterizing protein 

structures are a great interest in the scientific community, and especially to structural 

biologists.  One of the challenges in structural biology is processing the wealth of data 

being produced today on proteins; therefore, the use of computer aided tools has been 

incorporated to speed up and help understand the structures of proteins, and hence their 

functions.  Bioinformatics is a field that utilizes computer science, mathematics and 

statistics to build an information extraction tool for biological measurements. 

 

Determining the structures of proteins is of fundamental importance for understanding 

the functions and behaviour of proteins at the molecular level.  Each protein has a native 

structure that is specified by its amino acid composition and its secondary structure so 

that it attains unique characteristics and can correctly carry out a biological function.  

Defects to a protein’s native structure can lead to a number of diseases such as 

Alzheimer’s and sickle cell anaemia, rendering the protein incapable of its normal 

function. 

 

1.1 Protein Structure 

Proteins are polymers of amino acids linked by peptide bond also known as Amide 

bonds; for a polymer to be considered a protein, it must have the ability of folding into a 

well-defined three dimensional structure.(1)  There are twenty different amino acids 

distinguished by their side chains known as “R” groups. Proteins have four structural 

levels: primary, secondary, tertiary and quaternary.(2)  To determine protein structure 

from biological samples and for a thorough analysis to be performed on protein data, a 
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detailed understanding of basic building blocks (amino acids) and their properties is 

vital.  A brief explanation of these structural levels is given below. 

 

 Primary structure 1.1.1

The primary structure is the amino acid sequence.  Amino acids have a central Cα 

(alpha-carbon) which has four different groups attached to it: a hydrogen atom (H), a 

carboxyl group (-COOH), an amino group (-NH2) and a side chain (known as the R 

group), except for proline which does not have hydrogen on the α-carbon, and glycine 

which has two hydrogen atoms.(3)  There are twenty common R groups found in amino 

acids of proteins.  Each side chain gives its amino acid group unique properties; these 

amino acids can be either polar (hydrophilic) or non-polar (hydrophobic), they can also 

be neutral, positively, or negatively charged.  Each amino acid carboxyl group (C 

terminal) is covalently bonded to the amino group (N terminal) of another amino acid to 

create a peptide bond;(4)  The backbone of protein primary structure is made up of a 

repeating sequence of these peptide bonds, resulting in long chains called polypeptides 

typically made up of 50 to 2000 amino acid residues.(5, 6)   

 

The angles (torsion angles) between any two bonds of the atoms on the backbone are 

equal and the distances between the atoms on the backbone are 1.47Å for N-Cα, 1.53 Å 

for Cα-C and 1.32Å for C-N (in Angstrom).(7)  The protein backbone angles around 

these bonds can be described as phi (Φ) for N-Cα, psi (Ψ) for Cα-C bond, and omega 

(Ω) for C-N bond. The peptide bond has partial double bond character and this means 

that the carboxyl oxygen, the carboxyl carbon and the Amide nitrogen are coplanar and 

cannot be rotated freely.(8, 9)  The two bonds around the Ca (N-Cα and Cα-C) can 

rotate freely provided there is no steric hindrance (see Figure 1.1).    
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Figure 1.1. This is a diagrammatic representation of the peptide bond of amino acid 

residues and the backbone angles that are formed;  phi (Φ) for the angle between N-Cα, psi 

(Ψ) for the angle between Cα-C bond, and omega (Ω) for the angle between C-N bond. 

 

 

 Secondary Structure 1.1.2

The secondary structure consists of the folding of the primary sequence into local 

conformations of the backbone chain.  In proteins, the secondary structure is identified 

by the shape of regular hydrogen bonds between the Amide and carboxyl groups of a 

polypeptide.(2)  These bonds form structures such as α-helices, β-pleated sheets, β-

turns, 310-helices, and unfolded structures, of which  α-helices and β-sheets are the two 

commonly occurring  motifs.(1) 

 

1.1.2.1  α-Helices 

In the α-helix, the polypeptide chain is coiled into a screw-like shape, leaving the side 

chains extended outwardly.  The α-helix is stabilized by the bond between the N-H of 

the i
th

 residue and the C=O on the [ i + 4
th 

]  giving the helix 3.6 amino acid residues per 

turn; α-helixes present a mean length of 10 residues..(10)  A hydrogen bond to the        
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[i + 3
th

] residue called the 310-helix produces a tighter coil (see figure 1.2) and spans 

about three to four residues.  Although this helix type is rarely found as a long helix, the 

end turn of α-helix often adopts the conformation of a 310-helix.(11)  The name 

310 arises because of the 3 amino acid residues per turn and ten atoms enclosed in a ring 

formed by each hydrogen.  Barlow and Thornton(12) in their analysis of 57 protein 

structures showed that 32% of the total number of residues were involved in the 

formation of α helixes; while 3.4% of the total number of residues were 310 helices. 

They also stated that 310 helixes have an average of 3.2 residues per turn instead of three 

residues. An extremely rare hydrogen bond on the [ i + 5
th 

]  residue giving π-helix 

produces a loose coil(2) (See figure 1.2). 

 

 

Figure 1.2.  This figure shows α–Helix, 310-helix, and π-helix formation. Dotted red line 

shows the bonding pattern that can occur between the ‘i’ and the i+3, i+4, i+5 residues 

      

       
1.1.2.2  β-Sheets 

In a β-pleated sheet, the chains lie alongside each other in either a parallel or anti-

parallel (opposite) direction (see Figure 1.3).  The Amide group from one beta-strand 

(also β-strand) hydrogen bonds with the carboxyl group in another strand forming a β-
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sheet structure.  β-strands are typically 3 to 10 amino acids long and their backbones are 

almost fully extended.(7)  This bonding can be found in separate polypeptide chains 

folded back on itself or between regions of the same polypeptide chains.(1)  Proteins 

may have both α–helices and β–sheets in the same polypeptide; there are other 

structures like β–turns which connect other secondary structures and random coils 

which is basically all other structures that are not part of the secondary structure 

categories.(13) 

 

Parallel β-Sheets 

In parallel β-sheet, two peptide strands running in the same direction are held together 

by hydrogen bonding between the strands (see Figure 1.3).  One residue forms hydrogen 

bond to two residues on the other strand separated by a residue in the sequence.  That is, 

residue i in one strand bonds to residues [j,j+2] in another strand and residue j+2 bonds 

to residues [i, i+2].(7)  This arrangement may be less stable than anti-parallel because it 

produces non planarity in the inter-strand bonded pattern.(8)  Each hydrogen bonded 

ring in a parallel β-sheet has 12 atoms in it.  The peptide backbone dihedral angles (φ, 

ψ) are about (–120°, 115°).(10)  

 

Antiparallel β-Sheets 

In an antiparallel β-sheet arrangement, the successive β-strands alternate directions so 

that the N-terminus of one strand is adjacent to the C-terminus of the next.  One residue 

forms two hydrogen bond to a single residues on the other strand; therefore residue i on 

one strand bonds to residues [j] in another strand and residue i+2 bonds to residues [j-

2].(7)   Figure 1.3 illustrates these arrangements.  This is the arrangement that produces 

the strongest inter-strand stability because it allows the inter-strand hydrogen bonds 

http://www.wikipedia.org/wiki/Amino_acid
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between carbonyls and amines to be linear, which is their preferred orientation.(8)  The 

number of atoms in the antiparallel hydrogen bond ring is between 10 and 14.  The 

peptide backbone dihedral angles (φ, ψ) are about (–140°, 135°) in antiparallel 

sheets.(10)  A strand bonded with a parallel strand on one side and an antiparallel strand 

on the other is said to be a mixed strand.  Such arrangements are less common and as 

such could be less stable than the anti-parallel arrangement.(2) 

 

 

--> Parallel

<--- Anti-Parallel

 

 

               Figure 1.3.  Parallel and anti-parallel β-Sheet formation 

 

 

 Tertiary structure 1.1.3

Tertiary structure represents the folding of a polypeptide chain into a three dimensional 

form that contains its functional regions called domains(14) and these regions  are 

unique to a particular protein.(4)  The tertiary structure of a protein is stabilized by the 

different interactions between the side chains, the "R" groups.  In addition to the 
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hydrophobic interaction among nonpolar side chains, major stabilizing forces include 

ionic interactions, hydrogen bond interactions, van der Waals interactions and disulfide 

bridges; of these, the hydrophobic interactions among non-polar side chains contribute 

more to the stabilizing of the tertiary structures.(15)   In protein denaturation, the protein 

loses its shape as part of the process; as the pH or temperature of a protein is increased, 

the protein loses its tertiary structure, therefore its function too.  Protein folding is 

discussed in section 1.1.5  

 

The overall shape of a protein can be described by the organization of its secondary 

structure, therefore the comparison of the structure of a protein is done on the secondary 

structure level and this aids in the understanding of structure and function relationship. 

Creating a reliable tool that can identify and quantify the secondary structures of protein 

has been a concern in the biotechnology industry and that is the object of this research.  

The three online databases popular for structure classifications are FSSP-DaliDD(16) 

for fold classification based on structure structure comparison of proteins; CATH(17) 

for class, architecture, topology, homolog, and superfamily; and SCOP(18) for structure 

classification of proteins. 

 

 Quaternary Structure 1.1.4

The quaternary level of protein structure occurs due to the association of subunits of 

different tertiary structures into a final specific shape which provides the basis for their 

functions and activities.(19)  While not all proteins form  quaternary structures, some 

proteins like collagen, a fibrous protein which is found in hair, cartilage and skin, has a 

quaternary structure;(20) haemoglobin, a globular protein, exist in quaternary structure.  

Haemoglobin is made up of four polypeptide chains with two α-chains each consisting 
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of 141 amino acids, and two β-chains each consisting of 146 amino acids (α2β2).(21)  

The 3D shape of haemoglobin is necessary for its oxygen carrying function because 

each polypeptide has a haem group with an Fe
3+ 

ion that can bind with O2, which means 

it can carry 4x oxygen molecule in the blood. 

 

As mention in the tertiary structure section, the structure classification database SCOP 

and CATH are widely used for the analysis and understanding of protein structure.  

However they were based on the tertiary structure level or domain level; valuable 

information such as the number and type of subunits in a protein quaternary structure 

can help to classify proteins with similar domain patterns and functions and this can be 

done by using machine learning methods. 

 

 Protein Folding 1.1.5

The three dimensional fold of a protein is determined by the amino acid sequence 

encoded by the gene during protein synthesis which occurs in the protein building site 

of a cell called the ribosome.(22)  The genetic information contained in DNA is 

transferred to a messenger RNA (mRNA) for translation.  After mRNA translation of 

the amino acids, the linear polypeptide usually folds spontaneously, although this is 

sometimes helped by other proteins known as chaperones which guard against 

misfolding.(8)  Proteins fold to achieve their lowest possible energy that gives them 

their stable structure known as the native state.   A common folding intermediate state 

which has its secondary structure intact and a loose tertiary structure is known as the 

molten globule state.(23)  In protein denaturation, the protein loses its shape as part of 

the process; as the pH changes or temperature of a protein is increased, the protein loses 

its structure, therefore its function too.(24)   
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Most proteins undergo some form of modification following translation.  Post-

translational modifications can result in the attachment of carbohydrate to a protein 

which is believed to help prevent proteins from sticking together or to the cell walls; 

this addition of carbohydrate to a protein is known as glycosylation.(25)  In many cases, 

the removal of the carbohydrate leads to protein unfolding or aggregation.   

Phosphorylation is another form of post translational modification, phosphorylation 

controlling the behaviour of a protein, for instance acting as a toggle function for an 

enzyme activity (activation/deactivation of the enzyme).(26, 27)  In this way it can 

introduce a conformational change in the structure of a protein by interacting with its 

hydrophobic and hydrophilic residues;(28) this process can sometimes be reversible 

although abnormal phosphorylation can be the cause of many chronic inflammatory 

disease.(29)  

 

The study of proteins folding and their post-translational modifications is particularly 

important for the study of diseases caused by misfolded proteins such as cancer and 

diabetes.(30, 31)  

 

1.2 Experimental Determination of Protein Structures 

A 3D structure of water soluble protein can be determined by high resolution techniques such as 

X-ray crystallography and NMR but these are not always applicable.  Not all proteins, 

especially membrane proteins, can be crystalized and NMR has protein size limitation and 

cannot observe real time data, in addition, both of these methods can be time consuming.(32, 

33) Therefore, there is a need for a method that can probe proteins functional characteristics and 

structural changes and can observe proteins in real time.  Fourier Transform Infrared (FTIR) 

spectroscopy, a widely applicable analytical technique and has great potential to assist structure 

analysis for a wide range of proteins.  FTIR spectroscopy can provide fingerprints of biological 
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samples in a rapid and non-invasive way and can also provide information about the 

conformation of proteins.(13)  A background of vibrational spectroscopy will be given first 

before explaining FTIR. 

 

 Vibrational Spectroscopy 1.2.1

Vibrational spectroscopic techniques measure vibrational energy levels which are 

associated with the chemical bonds in a molecule.  The sample spectrum is a unique and 

so can serve as a fingerprint, so that vibrational spectroscopy can be used for 

identifying, characterizing, and elucidating the structures of proteins.(34)  Vibrational 

spectroscopy is used to describe techniques that can be used to obtain vibrational 

information from solid, liquid or gas state samples. Two analytical techniques fall into 

these category, infrared and Raman spectroscopies.  These two techniques are non–

invasive and, usually, non-destructive to the sample and can be used to probe proteins 

for their molecular structure.(34)  This section will focus on the uses of IR spectroscopy 

as it applies to protein structure.  

 

 Fourier Transformed Infrared (FTIR) 1.2.2

Infrared (IR) spectroscopy is a technique that has gained importance in use for the 

experimental determination of secondary structure.  There is a growing demand for 

FTIR spectroscopy, especially for the analysis of proteins, due to its technical 

advancements which lie in the fact that FTIR has the simplicity of sample preparation, 

the technique has the speed of analysis, it is sensitive and sample measurement can be 

done in aqueous solution.(35)  With the advent of modified Fourier Transform Infrared 

spectroscopy and computational analysis in the late 1980s and 1990s, FTIR 

spectroscopy has been successfully applied for the detection, discrimination, 

identification, and classification of biological samples belonging to different 
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species.(13)  There is a need for the understanding and characterization of protein 

structure in many different industries such as pharmaceuticals and biomaterials, and 

FTIR has emerged as one of the few techniques that can be applied for the structural 

characterization of proteins in many different environments.(36)   

 

1.2.2.1 The Infrared Regions 

The infrared region of the electromagnetic spectrum is divided into three regions: the 

near-, mid-, and far-IR (see Figure 1.4).  The mid-IR (4000-400 cm
-1

) is the most 

commonly used region, by chemists and spectroscopists, for analysis of organic 

compounds as all molecules possess characteristic absorbance frequencies and 

molecular vibrations in this range.  Amide bonds absorb electromagnetic energy within 

several regions of the mid-IR spectrum giving strong bands in some of these 

regions.(37)   

 

 

Figure 1.4.   Electromagnetic Spectrum.  frequency (ν) = speed / wavelength(λ).  The Mid- 

IR region of the spectrum is the wavelength region between 3x10
-4

 and 3x10
-3 

cm or about 

4000 – 400 cm
-1 

in wavenumbers  

 



INTRODUCTION 

 

   34 
 

Protein IR absorption in the mid-IR region results in nine characteristic modes, the 

Amide A, Amide B, Amide I – Amide VII regions are used for protein secondary 

structure identification.  Of these, the Amide I region, between 1700 – 1600 cm
-1

, is the 

most sensitive to protein secondary structure and corresponds to the C=O stretching 

vibration of the peptide bond.  The Amide II band, which covers the spectral region 

between 1550 – 1540 cm
-1

, represents corresponds to  in-plane N–H bending (60%) and 

C–N stretching (40%).  The Amide III spectral region (1350-1200 cm
-1

) is due to a 

combination of C-C and C-N stretching and C-H bending vibrations and is called the 

fingerprint region because series of absorptions produce different and complicated 

pattern of peaks in this spectral region.  It is relatively weak in signals, but does not 

have the water vibrational band interference which affects the Amide I region.(13, 38, 

39)  The Amide I and II regions are sensitive to the secondary structure of protein 

because the C=O and the N-H bonds are involved in the hydrogen bonding of the 

secondary structure of proteins.  FTIR spectra from the Amide I, Amide II, and Amide 

III regions, can be analysed computationally, using multivariate regression, to extract 

structural information.(36)    

 

1.2.2.2 FTIR and Protein Sample Measurement 

Vibrations of the peptide bond in the mid-IR region have been explained in section 

1.2.2.1  These bonds may absorb at more than one IR frequency; N-H bending 

absorption signals are usually weaker than C=O stretching absorption signals.(40)  For 

infrared radiation to be absorbed by a molecule, the vibrational frequency of the 

molecule has to be the same as that of the frequency of the IR photon.(36)  The infrared 

modes of water may absorb strongly in the Amide I region and overlap with the sample 

absorption.  This problem may be overcome by use of deuterium oxide (D2O) to 

investigate proteins; however, due to the advances made with FTIR spectrometers, 
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water spectrum can be subtracted, allowing protein samples to be measured in H2O 

solvent.(41, 42) 

 

A general schematic of an FT-IR spectrometer is presented in Figure 1.5. The IR source 

emits radiation that is passed through an interferometer, usually a Michelson 

interferometer with a beam splitter (a semi-reflecting film usually made of KBr), a fixed 

mirror, and a moving mirror.(43) The interferometer uses interference patterns to make 

accurate measurements of the wavelength of light. When IR radiation is passed through 

a sample, some radiation is absorbed and the rest is transmitted to the detector. The 

detector measures the total interferogram from all the different IR wavelengths.(43, 44) 

A Fourier transform function then converts the interferogram intensity versus time 

spectrum) to an IR spectrum (an intensity versus frequency spectrum).(44, 45)  The 

spectrum is traditionally plotted with Y-axis units as absorbance or transmittance and 

the X-axis as wavenumber units. For more information on vibrational bands in the 

Amide I, II, and II region of the IR spectra, see Table A1 in Appendix A. 

 

 

Figure 1.5.  A general schematic of an FT-IR spectrometer. 
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1.2.2.3 ATR Absorbance 

Attenuated total reflectance (ATR) spectroscopy is based on the concept of internal 

reflection, which means the infrared beam of radiation enters the sample in an ATR cell 

(crystal) of high refractive index at an angle of 45° (angle of incidence) and is reflected 

unto the crystal.  This radiation enters the crystal in contact with the sample with lower 

refractive index; if the angle of incidence penetrated into the crystal is greater than the 

critical angle, the beam undergoes total internal reflection.(35, 42)
 
 The material of the 

crystal is designed to allow internal reflection; it is the absorption of the evanescent 

wave of the penetrated beam into the sample that is measured. The ATR crystal can be 

diamond, zinc selenide (ZnSe), or germanium. The penetration depth (Dp) of the 

evanescent wave depends on the crystal refractive index (n2), the angle of incidence (θ) 

of the penetrating infrared beam to the sample surface, and the wavelength of light 

(λ).(44, 46)  At the depth of penetration, the evanescent wave intensity decreases to 

37% of its initial value.(35) The equation for an ATR penetration depth is given by 

equation (1.2). 

 

𝐷𝑝 = (𝜆/𝑛1 )/ { 2𝜋[sin 𝜃 − (𝑛1 𝑛2⁄ )2 ]1 2⁄  } 

 

Where θ is the angle of incidence, 𝑛1 is the sample refractive index, 𝑛2 is the crystal 

refractive index and λ is the wavelength.  The smaller the parameters, the higher the Dp 

(the deeper the penetration). (35, 47)   For the ATR experiment used in this research, 

𝑛1is 1.4, 𝑛2 (ZnSe) is 2.4 and the θ is 45°.  Figure 1.6 demonstrates a schematic of an 

ATR technique. 

 

Eq. (1.2) 

 

http://www.azom.com/ads/abmc.aspx?b=9520
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Figure 1.6.  This diagram illustrates the evanescent wave reaching into the sample at 45° 

angle.  This angle is called the angle of incidence. 

 

 

The path length of a transmission experiment is defined by the thickness of the sample 

and is therefore the same across the spectrum; whereas, in the ATR experiment, the 

depth to which the sample is penetrated by the infrared beam is a function of the 

wavelength;(48) therefore, the relative intensity of bands in an ATR spectrum increases 

with wavenumber and can cause anomalous dispersion which affects the peak shape.  

As a result, the infrared spectrum of a sample obtained by ATR exhibits some 

significant differences when compared to its transmission measurement.  It is advised to 

do ATR correction where quantitative analysis is necessary.(46)  ATR spectroscopy 

requires little or no sample preparation; it can handle either liquid, solid, film, or 

powder samples and is reproducible.  It is this ease of use and surface depth 

measurement that has prompted its popularity for protein/peptide structural studies.(49)   

 

1.2.2.4 FTIR and Other Methods 

With the help of X-ray crystallography, molecular biologists have been able to study the 

variability in protein structures, and their importance and functions.  However, not all 

proteins can form the well-ordered crystals required for diffraction of X-rays to high 
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resolution and the process of crystallizing protein molecules can be difficult and time 

consuming.(50)  Other methods like Nuclear Magnetic Resonance (NMR) are used to 

study proteins in solution but NMR spectroscopy is restricted by protein size of less 

than 200 residues.(34, 51)  Fourier Transformed Infrared (FTIR) gives high quality 

spectra without the problems with florescence background found with Raman 

spectroscopy or size limitation found with NMR.(52)  FTIR requires little sample 

preparation and is fast and simple to use for spectral acquisition. It is non-destructive to 

the protein sample during measurement; qualitative as well as quantitative analysis of 

protein content can be acquired. FTIR has become a powerful tool for examining the 

conformations of proteins in H2O as well as in deuterated forms (D2O).(13, 53-55)  

 

1.3 Computational Analysis Theory 

As of September 02, 2014, there are more than 103015 entries in the Protein Data Bank 

(PDB), which is a resource that is routinely used by most biomolecular scientists and 

engineers conducting studies on proteins.  PDB protein entries have been determined 

experimentally by X-ray crystallography and some by Nuclear Magnetic Resonance 

(NMR)(56) and are used as the de-facto gold standard for most regression models used 

for protein analysis.  Other experimental methods, like IR, Raman and CD 

spectroscopies, have emerged to ease or enhance the probing of protein structure in 

different environments; however, experimental work produces lot of data than can be 

analysed.  There have emerged computational methods for automating and improving 

protein analysis by separating information from the noise in protein spectra.  

Multivariate protein data produced by modern instruments can now be analysed, 

revalidated and revised.(57, 58)  

 



 

USING REGRESSION ANALYSES FOR THE DETERMINATION  

OF PROTEIN STRUCTURE FROM FTIR SPECTRA 39 

 

The principal difficulty in analysing the Amide I band profile for secondary structure 

analysis is due to the shift in the band being smaller than the intrinsic band width; this 

results in this region generally appearing as broad lumpy peak instead of a series of 

discrete resolved peaks.(40, 59)  Due to this complexity the separation of the component 

bands becomes difficult.  Numeric or statistical methods have been applied to resolve 

the component features of the Amide I band in order to analyse protein structure.  In 

addition, spectral data are multicollinear in nature because the data consist of 

continuous signals;(60) it therefore becomes necessary to apply multivariate analysis for 

their calibration and to extract useful information from the data.(61, 62) 

 

 Multivariate Analysis 1.3.1

Many scientific investigations, including clinical and pharmaceutical tests, essentially 

aim to determine the composition of a mixture of chemicals or the structure of 

biological samples and to analyse these samples in large quantity and rapidly.  

Multivariate data analysis is a statistical technique that has made a significant impact in 

the area of computational biology.  The main goal of using multivariate analysis for 

complex, particularly biological, data is to analyse large data by the use of mathematical 

models, to classify the data, to derive the relationships between samples through 

modelling and to view results graphically.(63)  One such computational method that has 

been applied for the elucidation of protein secondary structure is Multivariate 

Regression (MVR), and it has proven useful for studying variability in spectral data.(64)   

 

Multivariate analysis methods such as Principal Component Analysis (PCA) and Partial 

Least Squares (PLS) are very useful methods for identifying patterns in complex data, 

an overall view of the entire data and the significance of and differences between data 
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groups by using all relevant variables within the data.(65)  The use of PCA in the 

biotechnology world has helped in the visualizing and better understanding of the 

underlying structure of data or samples in an unsupervised way.(66)  PCA has been 

used to in the diagnostics of many diseases including the identification and 

characterization of biomarkers in cancer cell lines.(67) In food science, PCA has been 

used to identify many products including unknown fruits, wines and vegetable oils.(68)  

 

In FTIR spectra of proteins the absorbance of the sample as a function of wavenumber 

is affected by chemical and physical properties of the sample as well as being 

complicated by overlapping absorption of structural bands.(69)  Multivariate analysis 

removes the near multicollinearity found in spectral measurements; collinearity 

meaning that the different regions of the spectra may convey the same, and therefore 

redundant, information.  Both Principal Component Analysis (PCA) and Partial Least 

Squares (PLS) were developed to solve the near multicollinearity often found in spectral 

measurements and the overfitting issues found with predictor (X) variables being larger 

than the number of samples;(70)
  

such a model is said to have a lack of degree of 

freedom and thus is over-fitting.(71)  PCA (which is explained in the next section) is 

considered to be an unsupervised learning method because it does not need a reference 

data set for training the model, whereas PLS requires a reference set which spells out 

some prior knowledge of the data groupings.  The general equation notation of MVR is; 

  

 

where Y is the matrix of the predicted variable, X is the predictor or observations 

variable, β is the determined coefficients during calibration, and ε is the residual error.  

Figure 1.7 shows a schematic illustration representing the concepts presented by 

equation. 1.3. 

Eq. (1.3) 

 

Y = Xβ
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Figure 1.7.   Diagrammatic representation of the generalized multivariate equation 

represented in eq. 1.3.  ‘Y’ is predicted on the basis of ‘X ‘and in such a way that the 

residual, ‘ε’ is minimized. 

 

 

 

 

1.3.1.1 Unsupervised learning  

There are several unsupervised methods used in the bioinformatics and chemometrics 

fields today including PCA, Factor Analysis, and Singular Value Decomposition 

(SVD). PCA, which was used in this research, is similar to the mathematical SVD 

method except that PCA reduces high dimensional data to a lower dimension in order to 

reveal any hidden information in the data. The simplicity and usefulness of PCA has 

made it one of the most widely used methods for spectroscopic data analysis; (72-74)  

PCA also finds the relationship between observations by finding similar factors (their 

correlations) in the observations.(75, 76)  The variables of ‘X’ (which are the vectors of 

intensities at each wavenumber) are mean centred as explained in section 1.3.2.1;  then 

the correlations among variables (factors)  are computed in the form of a correlation or 
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covariance matrix.  The covariance of two variables is their tendency to vary 

together.(77)  For a sample dataset, this can be written in matrix representation as;   

 

 

 

where x  is the mean(X), y is the mean(Y), N is the number of entries (observations) in 

the dataset.  Certain characteristic values referred to as eigenvalues and eigenvectors of 

the covariance matrix are calculated as these tell us useful information about the data. 

The eigenvectors are variables (intensities at each wavenumber) that form axes in a 

multidimensional space; each axis length is determined by scaling the columns of the 

data. The eigenvalues are the projected point of each sample on the axis.  The 

eigenvector (loadings) with the highest eigenvalue (scores) is the most dominant 

principle component (PC) of the dataset and these PCs are arranged in order of 

importance, that is, PC1 is the component with the largest variation, PC2 is the  

components with the second largest variance, and so on. The number of components 

that describes close to 100% of the data are extracted based on their significance, 

leaving the residual as noise, in this way, PCA is used for dimension reduction.(75)  

Each principal component is characterized by the scores ‘T’ (the eigenvalues) and the 

loadings ‘P’ (the eigenvectors)(78)
 
 so that the product of T*P

T
 represents the original 

data.  This notation is given by: 

 

 

 

where X is the matrix of spectra of observations, T is the score values, P is the loading 

Values, and E contains the residuals also known as noise.  In summary, scores are 

X = T.P
T
 + E 

Eq. (1.4) 
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linear combinations of the original variables with weights defined by the loadings, 

that is, scores are scaled matrix X * P (eigenvector). PCA scores can be plotted to show 

the similarities among samples while the loading plot shows similarities in variables 

which are the measured intensities at each wavenumber. The class membership of these 

objects or samples may not necessarily be known in advance as this may be inferred 

during PCA data exploration.(75)  Outliers in the PCA do not belong to a known class; 

therefore, PCA can detect them during exploration. 

 

1.3.1.2 Supervised Learning  

A supervised learning method requires a prior knowledge of the data grouping via a 

reference data set.  Supervised learning methods include Discriminant Factor Analysis 

(DFA) and Multivariate Regression Analysis (MVR).(64)  DFA is a supervised 

clustering method which determines to what group an individual data belongs. MVR is 

used to model the linear relationship between independent variables (the experimentally 

observed) and dependent variables (a matrix of FTIR measurements).  Input parameters 

for most supervised methods are the independent variables (protein spectra) which are 

labelled x1...xn, and the dependent variable which is the vector of the fractions of each 

secondary structure motif for the proteins.(79)  A latent variable, the discriminant 

factor, is created from the spectra wavenumbers such as specified in equation 1.6.   

 

 

where ‘a’ is a constant, ‘b’ is the discriminant coefficients, and ‘x’ is the discrimination 

variables.  Among the different multivariate calibration methods, Principal Components 

Regression (PCR) methods which is based on PCA, and PLS, have received the most 

Eq. (1.6) 

 

nn xbxbxbal  ...22111
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attention for the quantitative analysis of spectral data  because it is easier to interpret 

their models and they work well with small sample size.(70)   

 

PLS (Partial Least Squares) 

PLS is a multivariate regression method based on the generalized equation 1.3 where β 

is the calculated correlation coefficient and ε is the matrix of experimental noise.(70, 

80)  In PLS, the value of β is obtained by;   

 

 

 

Here, ‘X’ represents the independent measured FTIR spectra and ‘y’ represents the 

known secondary structure compositions of the investigated proteins as determined by 

X-ray crystallography; ‘X’ is also called a ‘training’ or ‘calibration’ set.  PLS regression 

is used to predict or determine a new value of ‘y’ from ‘X’ (the FTIR spectral 

matrix).(81)  PLS modelling captures the variation (or variance) in the spectral matrix in 

a low dimensionality model. The total variance of the model is made up of the 

Explained Sum of Square (SSE) of the variation of the data, and the unexplained 

variance – the residual (SSR).(75)  Therefore, the sum of squares of the total variance of 

the data set (SST) can be written as:  SST = SSE + SSR      Eq. (1.8) 

The explained variance (also called the goodness of fit) of the data in a model is 

calculated as:(75)  Explained variance = ((SST – SSR )/ SST)*100    

 

PCR (Principal Component Regression) 

The PCR method is based on the basic concept of PCA. PCR performs data 

decomposition into the loading and score variables used in building a model. For PCR, 

the estimated scores matrix consists of the most dominating principal components of X 

Eq. (1.7) yXXX TT 1)( 
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and can then be used as input for a regression method. The equation then takes the form 

of; 

 

 + εY = XTk  

 

where Y is the predicted response variables, X is the matrix of independent Variables, T 

is the matrix of PCA scores and ε is the residual error.(70)  As in PCA, these 

components are linear combinations of X determined by their ability to account for the 

variability in X. The first principal component is computed as the linear combination of 

the original X-variables with the highest possible variance; however, unlike PLS, PCR 

uses only the X variables for the analysis without employing the ‘y’ variable (the 

reference set).  

 

Comparing the two regression methods, PLS regression is known to give good 

prediction results with fewer components than PCR because PLS looks for components 

that explain the correlation between X and y; the response variable ‘y’ is employed in 

the regression.  However, the two methods often give comparable prediction results.(61, 

70) 

 

 Data Pre-processing 1.3.2

Before performing multivariate analyses, data pre-treatment is generally required in 

order to reduce the effect of noise, improve the predictive ability of the model and 

simplify the model by making the data more normally distributed.  Data transformation 

is a form of pre-treatment by means of a mathematical formula to change the 

distribution of the data, examples of this being logarithmic and exponential 

Eq. (1.9) 
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transformation.(61)  If the average of each variable is calculated and then subtracted 

from the variables, the data are said to be mean-centred. Unit variance scaling means 

that the standard deviation (s) for each variable is calculated and by multiplying each 

value of that variable by 1/s, all variables are then given an equal weight.(82)  This is 

also sometimes called variance scaling.  These forms of pre-treatments will be 

described below. 

 

1.3.2.1 Mean Centring 

The reason for centring is to break up the high correlations between each of the main 

effect variables and the interaction term, this helps computational accuracy and numeric 

stability.
 
(83)  Centring converts all the observation points to fluctuations around zero 

and not around the mean of the original data. This adjusts for the differences in the 

offset between  the high and the low numbers.(83)  Each variable, Xij, is centred by 

subtracting the column mean, Xj, of the data.  See eq. 1.10a and eq. 1.10b.  

 

 

 

 

 

here i is the row index, j is the column index, and  x j
 = column mean. 

 

1.3.2.2 Scaling 

In spectroscopic analyses, the difference in the scaling of spectra may arise from the use 

of different instruments or scattering effects or path length and other effects.(84, 85)   A 

scaling approach is useful when the impact of the low wavenumbers needs to be 

considered, it is a way to relatively reduce the influence of larger peaks and increase the 

Eq. (1.10b) 
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impact of the smaller spectral features. Small features may be deemed less important in 

a multivariate analysis as they do not contribute much to the variance of the data. 

Caution should be taken as the inflation of small values, which includes any inflation of 

measurement error or instrument misalignment may create an increased danger of 

altering the biological meaning of the results.(86, 87)  The effectiveness of scaling is 

based on data analysis and cannot be predicted in advance.(83)  Scaling methods like 

normalization, standardization, and multiplicative scattered correction used for 

multivariate regression analysis, will be described in this section.   Figure 1.8 a-c 

illustrates the principles of centred and scaled data. 

 

 

          Figure 1.8a                            Figure 1.8b                             Figure 1.8c 

Figure 1.8a-c.    Figure 1.8a shows the original data points.  Figure 1.8b: shows the centred data 

which are the individual points minus the mean of the data; this puts the new mean at 0, making 

some of the data negative.  Figure 1.8c. Scaled data: data looks shortened and broadened in an 

attempt to decrease group distance.  This results in a zero mean and unit variance of any 

descriptor variable. 

 

 

1.3.2.3 Standardization 

Auto-scaling, also known as standardization, is scaling in which each variable is 

subtracted from the column mean and divided by its standard deviation; this method 

gives the data a standard normal distribution with a zero mean and a unit variance of 1 

(the Gaussian distribution).(83)  Standardization is performed through;  
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where xij
 is the variable in j

th
 Column,  x j

 is the mean of the column, and S j
 = 

standard deviation of column  

 

1.3.2.4 Normalization  

Normalization or range scaling is useful in the identification of biological samples and 

for the relationship of the variables in a spectrum as this aids the quantification of the 

sample.  Range scaling is done by subtracting the spectrum column minimum value 

from each column value and dividing by the range of the column (the column maximum 

value minus the minimum value), in other words, the length of the data.  In this row 

operation all sample data are made compatible with each other and spectrum data is 

scaled to values between 0 and 1.(88)  Range scaling is described in eq. 1.12. Data will 

be scaled to a smaller interval if an outlier is present, therefore outliers should be 

removed. 

 

 

 

 

where min(xi) is the minimum value for variable xi,  max(xi) is the maximum value for 

variable xi. 

 

 

Eq. (1 12) 
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1.3.2.5 Multiplicative Scatter Correction 

Multiplicative Scatter Correction (MSC) is another popular scaling method used for the 

correction of baselines and for scaling.(89).  Multiplicative scatter correction known as  

a method in spectroscopy used to correct signals for light scattering and noise or  

changes in path length for samples where each sample is estimated relative to that of an 

ideal sample.(89)  Spectra in a dataset are corrected so that all samples appear to have 

the similar scatter level.  The correction is done by regressing the measured sample 

spectrum against a reference spectrum and then the slope of the fit is used in correcting 

the measured protein spectrum.(90)  In MSC, as described in eq. 1.13a-b, a reference 

spectrum is the mean spectrum of the dataset (r) and the spectrum to be corrected is 

defined as (xi).  An offset correction like mean-centring is best performed on vector ‘r’ 

and ‘x’ before the regression.(91-93)  For each sample a least squares regression is done 

to get an estimate of an unknown factor ‘b’ as shown in eq. 1.13b; this is then used in 

the correction of each i
th

 spectrum in the dataset. 

 

 

 

 

 

 

 

where x̂  = MSC corrected spectrum, Xi = Spectrum in the dataset, b = estimated 

unknown factor from eq. 1.13b, and r = the mean spectrum of the dataset. 

 

1.3.2.6 Outliers 

There can be unexpected variability in observations, which are called outliers.  Outliers 

are extremely low or extremely high values in the data set(94) as depicted in Figure 1.9; 

Eq. (1.13a) 

 

Eq.( 1.13b) 

 

i

TT xrrrb 1)( 

b

x
xmsc iˆ)(



INTRODUCTION 

 

   50 
 

these outliers are different from the rest of the data due to several reasons; instrumental 

errors, or sample error which could be due to incorrect sample labelling or simply a 

sample from another data population, or even noise.(92, 93)  These factors can have 

considerable influence on the calibration.  This discrepancy can be eliminated by 

removing any outliers after thorough investigation. 
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Figure 1.9.   Outlier plot showing a red dot as an outlier, which clearly does not correlate 

with the rest of the data. 

 

1.3.2.7 Detection of Outliers 

Outliers can be detected by looking at a PCA score plot or looking for a sample residual 

with a high number which may mean that the measurement of that sample is erroneous 

or less well described by the PCA model.  Eq. 1.14a and 1.14b show a simple statistical 

formula for detecting an outlier.  Firstly, all data points for a given data set are ordered.  

The mean of the first half is dedicated as Q1 and the mean of the second half is 

dedicated as Q3.  The subtraction of Q1 from Q3 gives an Inter-Quantile Range.  Any 
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data point (xi) larger than Q3 is an outlier, likewise any xi smaller than Q1 is an 

outlier.(95)  

 

𝑋 > 𝑄1 + 1.5(𝐼𝑄𝑅) 

𝑋 < 𝑄3 + 1.5(𝐼𝑄𝑅)  

 

where:  Xi is the data point, Q is a quantile range,  IQR is the inter-quantile range.  In 

multivariate analysis, this is calculated by equation 1.15 which represents the 

Mahalanobis Distance which is the square of the distance from the point x to the mean μ 

in units of the standard deviation;(96) 

 

  

where’ x’ is the datapoint, ‘μ’ is the mean of the data and ‘δ’ is the standard deviation. 

 

1.3.2.8 Derivatives 

The first and second derivative transformations reduce replicate variability, correct 

baseline shift, resolve overlapping peaks, and amplify spectral variations. Broad 

overlapping bands of raw spectra become better resolved in a first derivative because it 

removes the additive baseline, but it also adds a straight line with a constant slope to the 

original spectra;(71) therefore, it is not suitable for obtaining quantitative assignments.  

If the first derivative is the slope at each point of the raw spectra, the second derivative 

is the slope of the first derivative.(89)  The second derivative removes the linear 

baseline and thus the ambiguity and complication of assigning the positions of the 

features is removed.(97)  For this reason, there is an increase in the number of 

discriminative features associated with protein spectra and this improve the clarity of 

Eq. (1.14b) 

 

 

Eq. (1.14a) 

(x − μ)’δ−1(x − μ)   
Eq. (1.15) 
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the spectra.  Second derivative spectra are commonly used for protein classification; 

however, data smoothing should be done first because first and second derivatives 

magnify the noise in the spectroscopic data(69).  The formulas for the first and second 

derivatives are represented in equation 1.16a and 1.16b respectively. 

 

 

 

where wy  is the measured spectrum at wavenumber w 

 

 Validation of the model 1.3.3

Models always have to be validated in order to verify and ensure that they really hold 

true in the experimental domain investigated.  The validation is needed in order to be 

able to decide whether or not the conclusions drawn from it are reliable,(98) i.e. to make 

sure that the results can be extrapolated to new data.  To estimate the prediction ability 

of a model, cross-validation of the data is done by keeping sample or a set of the data 

out of the regression analysis and using the model from the analysis to predict the left 

out set; this is done for each set of the data which is left out of the regression only once.   

The errors from the predictions called Root Mean Square Error for Cross-Validation 

(RMSECV) are averaged; (99)(100-102) more information on cross-validation is given 

in the Multivariate Calibration Chapter 5.  Cross-validation is done to eliminate the 

tendency to overfit with too many PLS or PCR components.  Number of components 

with the lowest RMSECV is always desired and is used to fit the data.  It is also good to 

know how well a model predicted the data in an independent test set, for this the Root 

Mean Squared Error for Prediction (RMSEP) is calculated. To calculate the RMSEP the 

individual errors are squared, added together, divided by the number of errors, and then 

Eq. (1.16a) 

 

Eq. (1.16b) 
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square rooted. This gives a single number which summarizes the overall error.(103) The 

formula for generalized Root Mean Square Error is given in eq. 1.17. 

  

 

 

 

 Determination of the unknown  1.3.4

Selection criteria are necessary for the determination of unknown samples as the 

training set should have sufficient representation of the group of samples. A large 

database is necessary to represent all future samples that may be analysed by the 

model.(104) 

 

1.4 Aim of this research 

The goal of my research is to develop computational tools that can give better 

accuracies for the quantitative analyses and classifications of IR protein spectra to 

determine their secondary structures and tertiary folds.   

 

The computational tools developed in this research can contribute to the assessment and 

the interpretations of the complexity of protein structures, both in native and denatured 

states. The protein structure investigative tools were made by combining machine 

learning, multivariate analysis (MVA) methods and Fourier Transformed Infrared 

(FTIR); these tools are applicable in real life. 
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 Research Objectives 1.4.1

Although the X-ray crystallography technique in determining protein structure is highly 

accurate, it is time consuming and not applicable to all proteins;  NMR is also limited 

by protein size and is not easy to analyse, therefore, complementary methods are 

required for proteins where the structure is not easily determined using these techniques. 

New methods may also be useful for other purposes, such as to rapidly identify the 

critical regions of a spectrum for any given secondary structure motif and to investigate 

important structural transitions and processes such as protein folding or aggregation.  A 

technique, rightly suited for these types of studies is FTIR spectroscopy, the 

experimental method chosen for the research presented in this thesis.   

 

Infrared spectroscopy can characterise protein secondary structure conformation; 

therefore,  it was used in this research to determine the secondary structure of different 

motifs in the 84 proteins in H2O solution chosen for this research.  FTIR protein 

measurements done in-house increased the dataset from its initial count of 28 provided 

proteins.  The secondary structures of reference proteins from X-ray crystallography 

were obtained using Defined Secondary Structure of Proteins (DSSP) script. 

 

To develop a good regression model, the performance of different regression 

techniques, PCR, PLS, iPLS, on 84 protein samples, were evaluated; the model with the 

optimal performance in terms of predictive results based on the lowest Root Mean 

Square Error (RMSE) and Coefficient of Determination (R
2
) was chosen.  To enhance 

the predictive ability of each developed model, different data pre-treatment methods, i.e. 

cantering, normalization, Standard Normal Variate (SNV), 2
nd

 derivative and Kennard 

Stone data partitioning algorithm, were tested on the ATR-FTIR protein spectra dataset. 

They were found to greatly affect the outcome of the data analysis.  These methods and 
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results with very good accuracies are discussed more in details in each Chapter of this 

thesis. 

 

One main objective of this study is to apply a predictive model to estimate the 

secondary structure content at each pH of α-lactalbumin.  The spectral features of the 

denatured protein were evaluated using Principal Component Analysis (PCA) as this 

analytical method can be used for data reduction and to explore the data correlation and 

understand the biological differences between protein spectra. The most importance 

spectral bands were identified using the PCA loadings plot; the identified spectral bands 

linked to the discriminating features for each spectrum.  Previous spectroscopic studies 

have not made an accurate estimation of the secondary structure content of a denatured 

α-lactalbumin at each pH level, as has been done in this study. 

 

 Secondly, to evaluate the predictive quality of the model, the limit of quantification for 

6 proteins (BSA, Ubiquitin, β-lactoglobulin, lysozyme, fibrinogen and IgG) was studied 

by analysing the structural content of each protein at the lowest possible concentration.  

This study showcases the strength of using FTIR spectra and multivariate analysis for 

the detection of low protein concentration in a solution. The results are comparable and 

in some cases better than the Circular Dichroism (CD) method which is known to work 

well with low protein concentrations. 
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2 Experimental Method: ATR-FTIR spectroscopy 

2.1 Introduction 

Functional groups present in a molecule tend to absorb IR radiation in the same 

wavenumber range regardless of other structures in the molecule, and spectral peaks are 

derived from the absorption of bond vibrational energy changes in the IR region.(43) 

Thus, there is a correlation between IR band frequencies and chemical structures in the 

molecule.  In addition to providing qualitative information about functional groups, IR 

spectra can provide quantitative information, such as the percentage of the secondary 

structure of proteins.  For this research, the ATR-FTIR sampling technique was used for 

the spectral measurements.  The most common sampling techniques used for protein 

characterization are transmittance, diffuse reflectance, and attenuated total reflectance 

(ATR).(39)   

 

For more explanation on ATR-FTIR techniques, see Chapter 1 – Spectral Analysis.  

Analysis of the structural content in the infrared bands, particularly from the Amide I 

(1700cm
-1

 – 1600 cm
-1

) and Amide II (1600 cm
-1 

- 1500 cm
-1

) regions will be the main 

focus as these have been the most commonly used in the literature for protein studies.  

Before any type of analysis was done to elucidate the structure of proteins, data pre-

processing was carried out to eliminate noise, outliers and missing spectral values, 

especially in the Amide III region.(105)  This section focuses on the collection and 

preparation of samples for mathematical evaluations. 
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2.2 Sample preparation 

Ninety proteins were measured in H2O; 28 of these were supplied by Dr. Parvez Haris 

from DeMontfort University (highlighted in light grey in Table A2, Appendix A), and 

the rest were collected here at the University of Manchester.  Proteins listed in Table A2 

in Appendix A were bought from Sigma-Aldrich, and were used without further 

purification. Protein samples were prepared at a concentration of 50 mg/ml dissolved in 

distilled H2O. Using concentrations at 25 mg/mL or higher provides good precision and 

reproducible, quantifiable results;(106) however the study of quantification at lower 

protein concentrations down to 0.2mg/ml is discussed in Chapter 5.  The pHs of these 

samples were recorded and all ATR-FTIR spectra were measured shortly after sample 

preparations. 

 

2.3 Spectral measurement and Processing 

The ATR accessory, made of a zinc selenide (ZnSe) crystal, was placed into the sample 

compartment of a Bruker-Tensor FTIR spectrometer, with an MCT detector being used, 

for the spectral measurements.  30 µL of each protein solution was placed on the ATR 

cell.  A background spectrum of H2O used in the protein preparation was measured for 

each protein; this was used as the background signal subtracted from the protein sample 

signal for each protein.  IR measurements were made with 4cm
-1

 spectral resolution, 32 

scans per sample, over a range from 4000 - 950 cm
-1

.  Small spectral peaks with 

resolution lower than 4 cm
-1 

tend to disappear and may not be quite suitable for 

qualitative examination of spectral components.  At higher resolution, the signal to 

noise ratio may be low; typically higher resolution (e.g. 1 cm
-1

) is used for gas phase 

spectra.(35)  Acquisition time for each spectrum was less than two minutes for both 

background and spectral measurements. 
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 Baseline Correction and Atmospheric Correction 2.3.1

The baseline of a measured spectrum should have flat baseline at zero intensity.  

Baseline offsets are normally removed by subtracting the value of the minimum 

absorbance from the spectrum.  This correction was performed for all spectra in the 

dataset to remove background absorbance and light scattering effects.  Water 

subtraction was automatically done by a customized routine in the OPUS 6.2 software 

for every spectrum and no smoothing function was applied.   

 

 ATR correction 2.3.2

The principles of attenuated total reflection (ATR) have been explained in Chapter 1, 

with ATR now being a commonly used sampling technique in FTIR spectroscopy, as 

this approach requires minimal sample preparation.  However, one of the challenges of 

ATR is that its infrared spectra are not identical to that measured in transmission.  ATR 

spectroscopy introduces some distortion in relative band intensity and absolute shifts to 

lower frequency(107).  The result of this is higher absorbance bands around the Amide 

II region than the Amide I region of a spectrum and this difference between ATR and 

transmission spectra may lead to incorrect interpretations.  Using the ‘Advance ATR 

Correction’ feature on Bruker’s OPUS software, these abnormalities were corrected on 

all in-house collected spectra.  This distortion can be seen for the fibrinogen spectrum 

shown as the blue trace in Figure 2.1a. The Advanced ATR Correction corrected 

differences in peak positions and relative intensity ratios of bands in the Amide I and 

Amide II regions as seen by the resulting green trace. The new ATR corrected spectrum 

should improve the reliability for spectral searches of fibrinogen in spectral libraries.  

However, the observation with most spectra in this dataset is that the ratio of Amide I to 

Amide II peaks normally maintained by IR transmission spectra was not obtained.  This 
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is evident in the plot for carbonic anhydrase in Figure 2.1b showing ATR-corrected with 

0.9 to 1 ratio for Amide I to Amide II peak intensity while the transmission spectra of 

the same protein has a 0.6 to 1 ratio for Amide I to II.   The observation is that ATR 

correction can be less satisfactory for samples with strong absorption peaks.(108) 

 

 

Figure 2.1a.  Blue spectrum of fibrinogen is ATR-corrected to attain the correct Amide 

I:Amide II band ratio of its transmission counterpart. 

 

 

Figure 2.1b.  Amide I – Amide II transmission band ratio is not totally attained by the ATR 

corrected carbonic anhydrase spectrum (in Blue). 
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2.4 Data Pre-processing for Multivariate Analysis 

The proteins’ secondary structural motif fractions were obtained using Defined 

Secondary Structure of Proteins (DSSP)(109) script.  The Protein data bank (PDB) does 

not give the percentage of secondary structure assignments beyond α-helix, β-sheet and 

other; however the PDB file for each protein contains the structural information which 

can be fed into the DSSP script.  The DSSP code assigns eight secondary structures of 

which six are popularly used in protein prediction namely, α-helix, β-sheet, π-helix, 310-

helix, turns, and coils (other); denoted by (H), (E), (I), (G), (T), (“ “).(110)  A perl script 

was developed in-house to extract these structural compositions from PDB files using 

the DSSP script and all spectra pre-processing steps were performed using Matlab 

versions R2010 and R2013.  Of the six secondary structure assignments, π-helix was not 

considered for this project because it is a rare protein secondary structure element; 

however, β-sheet structure was further split into parallel and antiparallel β-sheets.  See 

Appendix A, Table A2 for the 90 proteins and their secondary structure fractions as 

derived from DSSP script. Data pre-processing was done on all collected protein spectra 

to identify or remove outliers, checking for inconsistencies and missing values and 

normalizing the intensities of the data.  Figure 2.2 shows the raw spectra of the 90 

protein samples. 
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Figure 2.2a.   ATR-FTIR Spectra of the 90 proteins in H2O solution (spectra of the Amide I 

and Amide II region from different instruments) before scaling, removal of outliers and 

second derivative.  

 

 

Figure 2.2b. ATR-FTIR spectra of the 90 proteins in H2O solution (spectra of the 

Amide I and Amide II region from different instruments) after normalization but before 

outlier detection. 
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 Outlier Detection 2.4.1

For proteins in H2O, the Amide III region often had missing data, therefore only the 

Amide I and II regions of the spectra were used; these spectra with missing values were 

the 28 protein spectra not collected in house (mentioned in section 2.2). Samples with 

the Amide III region were used for some experiments that required the study of fewer 

proteins; e.g., the study of protein denaturation as seen in Chapter 5. Spectra that were 

too noisy to resolve were also removed from the dataset. The removal of unusable 

spectra reduced the database size from 90 to 84. These six spectra are: amyloglucanase, 

galactose oxidase, d-glucosamin, isocitric dehydrogenase, spectrin, and theamalysin. 

Statistical methods for multivariate outliers indicate those observations far from the 

centre of the data distribution as outliers.(93)  Mahalanobis distance was used for the 

calculation of outliers and this is described in section 1.3.2.4 (Detection of Outliers) of 

Chapter 1, but it is basically involves a measure of the square of the distance of each 

spectrum to the mean of the spectra.  Any distance outside the calculated radius,(93, 94) 

as given by equation 1.4, is an outlier. These steps are listed below: 

1. Spectral matrix: An n × d data set, S.  

2. Calculate the mean (μ) and variance-covariance (Σ) of the matrix. 

3. Let M be n × 1 vector consisting of square of the Mahalanobis distance to μ.  

Where n is the number of samples in the dataset and M is the Mahalanobis 

distance, equal to   (x − μ)’ Σ 
-1

(x − μ) 

4. Find points ‘p’ in M whose value is greater than the significance level 

[𝑖𝑛𝑣(√𝑥𝑑
2(.975))  ]  :  χ

2 
(chi square) distribution with ‘d’ degrees of freedom. 

5. Return ‘p’   (This is the outlier with value greater than the significant level) 
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The plot of the mean and standard deviation of each sample in Figure 2.3a shows that 

protein number 88 (d-glucosamine) and protein number 22 (spectrin) are above the 

significant level.  D-glucosamine differs from the rest of the proteins because it is a 

sugar and not a protein and belonged to a different dataset.  The spectrin sample could 

have been affected during measurement, if left in the dataset it shows as an outlier and 

affects the results of the spectral analysis and so was taken out of the 29 samples sent 

from Dr. Parvez Haris of DeMontfort University.  An evaluation of their mean 

prediction errors shows them to be higher than normal and they were therefore treated 

as being unreliable. These samples were removed as shown in Figure 2.3b.   

 

 

Figure 2.3a.  Outlier detection using mahalanobis distance.  Plot shows D-glucosamine 

(sugar) and Spectrin as outliers.  The mean of each spectrum and the standard deviation of 

each sample are plotted on the x-axis and y-axis, respectively 
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            Figure 2.3b.  Distribution of protein samples after outliers were taken out. 

 

 Centring and Scaling. 2.4.2

Intensities of the 84 protein spectra measured in H2O were scaled to prevent spectra 

with strong peaks from obscuring spectra of smaller bands with equally significant 

spectral features.(84)  The dataset is divided into Amide I, and II, each region was 

selectively scaled separately to ensure the significance of each contributing spectrum.  

Normalization or range scaling used for this dataset is useful in the identification of 

biological samples and for the relationship of the variables in a spectrum as this aids in 

the quantification of the sample.(88).  Range scaling is done by subtracting the spectrum 

column minimum value from each column value and dividing by the range of the 

column (the column maximum value minus the minimum value); see section 1.3.2 in 

chapter 1 for more information on scaling.  In this row operation all sample data are 

made compatible with each other and spectral data are scaled to values between 0 and 

1.(88)  Standardization, which is a column operation also used for scaling, was 

performed on the dataset for comparison purposes. Chapter 1, section 1.3 gives the 
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formulae for normalization and standardization.  Standardization is useful when the 

precise number of biological components varies but the relative proportions of the 

sample structure, as in the percentage of their secondary structure compositions, can be 

measured quantitatively(111).  In the methods below, both normalization, and Standard 

Normal Variate (SNV), were first performed separately and then together to evaluate 

their effect.  The scaled data are shown in Figure 2.4. 

                          

 

                Figure 2.4. 84 scaled protein spectra (Amide I region) measured in H2O 

 

 

 Multiplicative Scattered Correction (MSC) 2.4.3

Both the original and scaled data were further pre-treated with MSC as described in 

section 1.3 of Chapter 1. MSC is a relatively simple processing step that attempts to 

account for scaling effects and offset (baseline) effects(112).  This method should 

correct the multiplicative effect on all other samples to the level of the mean sample.  

Judging from the plots below (Figure 2.5a and 2.5b) it may be easy to conclude that 
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multiplicative scatter correction was effective because the spectra are tightly grouped 

with better separated peaks than that of the Figure 2.4, but this will only be confirmed if 

regression analyses on this data give lower prediction errors. 

 

 

Figure 2.5a.  MSC pre-processing performed on 84 raw data showing reduction in spectral 

intensities.   Spectra are pulled towards the raw spectrum with the mean value 

 

 

Figure 2.5b.  MSC pre-processing performed on normalized spectra. Spectra are pulled 

towards the normalized mean sample. 
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 Standard Normal Variate (SNV) 2.4.4

Figures 2.6a and 2.6b below show the result of SNV on the protein samples measured in 

H2O, by subtracting the mean of the data from each value and dividing by their standard 

deviation, which gives each sample a unit deviation of 1.  Judging from the intensity of 

the plots, it appears that SNV scaling gave a much tighter grouping of the data when 

they were normalized than without normalization; however, Table 2.1 shows the 

minimum and maximum intensities of the spectra after scaling with each of these 

methods.  SNV and MSC plots look very similar in their peak separation and clustering; 

their similarity will be compared in Chapter 4 for regression analysis.   

 

 

Figure 2.6a.  SNV pre-processing performed on 84 protein spectra of raw protein samples 

 

1600 1610 1620 1630 1640 1650 1660 1670 1680 1690 1700
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

in
te

n
s
it
y

Wavemumber (cm
-1

)

 

 



EXPERIMENTAL METHOD 

 

   68 
 

 

 

        Figure 2.6b.  SNV pre-processing done on normalized 84 protein spectra 

 

 2nd Derivative 2.4.5

Since spectra were recorded on different days and in different labs, which are factors 

known to affect spectral response, another way to correct instrumentation errors that 

was investigated was to calculate the second derivative of all spectra to compare results 

to the results of normalization and standardization.  With FTIR data it is not uncommon 

to differentiate spectra to the 1
st
 or 2

nd
 derivative as it improves the separation of non-

resolved peaks.(113)  Second derivative analyses were employed to reduce any scatter 

effects and to extract any latent spectroscopic information that may be hidden in the 

broadened background.  Matlab software provides a derivative function which was used 

to determine 2
nd

 derivatives. The plots in Figure 3.7 show the 2
nd

 derivatives of the 

normalized 84 proteins samples in H2O.   
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Figure 2.7.  Second derivative on the normalized data of the ATR-FTIR spectra of 84 

proteins collected in H2O 

 

.Table 2.1.  A table of pre-processing methods and their minimum and maximum values of 

spectral intensities. 

 

Pre-processing Method Min Value Max Value 

Normalization 0 1 

MSC on Raw Spectra -0.0743 0.2645 

MSC on Normalized Spectra -0.1956 1.4587 

SNV on Raw Spectra -2.3510 2.1815 

SNV on Normalized Spectra -1.7878 2.2367 

2
nd

 Derivative -0.0471 0.0494 
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2.5 Discussions 

Although it is common for pre-processing methods to be used before multivariate 

modelling, there is no set standard approach and the results of multivariate analysis are 

affected by the methods used. This also means that data pre-processing is often revisited 

to ascertain optimal solutions before performing any computational analysis.   

 

The ATR-FTIR technique is highly popular, but it introduces some spectral distortions 

that are problematic when comparing spectra of ATR and transmission(114, 115). The 

ATR correction does improve the similarity between the transmission and ATR spectra, 

but the correction is far from perfect.  Corrected ATR-FTIR spectra will be used for 

both quantitative and qualitative analysis in this project for compatibility purposes.  

 

One common method of pre-processing used on spectroscopic data is normalization 

which involves setting each observation (spectrum) to have unit total intensity by 

expressing each data point as a fraction of the total spectral integral. This is referred to 

as normalization to a constant sum.(88)  Normalization helps in reducing the variations 

in data from different scaling and makes apparent the peak intensities that are the 

discriminating features.  Standardization, which is also commonly used, is performed on 

the columns of spectral intensities across all samples, giving each column of the data a 

zero mean and a standard deviation of 1.  The weighting of standardization reflects the 

data correlation and is performed so that Multivariate Analysis, such as Principal 

Component Analysis (PCA) and Partial Least Squares (PLS), components have the 

centre of the data as their origin, which results in the use of a minimal number of 

components in a model.(116) 
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From the above plots, MSC operations on the original dataset tightened and reduced the 

intensities of the data while SNV centred the data (to give a covariance) and scaled at 

the same time to give a correlation of the samples in the dataset. Comparing the SNV 

plots in Figure 2.6 a/b to the plot of the normalized spectra in Figure 2. it is obvious that 

SNV gives tighter groupings of the measurements and a better attempt at peak 

separation. In fact, SNV has been shown to do better with infrared spectroscopic data of 

this sort;(65) however, the normalized plot keep the spectra as close to its original form.  

Again, comparison of the modelling results from these methods will decide on what pre-

processing method(s) to use.   

 

Pre-processing methods employed by an analyst would depend on the intended purpose, 

for example, the biological information to be extracted, or looking for the variations in 

the data.(116)   Whereas different analysts use one method or another, a combination of 

the two methods may be useful for data pre-processing to correct multiplicative scatter 

effects and aid in the extraction of important features through multivariate analysis.  

Normalization also allows for the identification of biological samples and for the 

analysis of the most contributing factors for the variations in the data.  This can be done 

by plotting and studying the loadings of PCA which is done in the next chapter.  Due to 

the use of PCA to study structural variations in protein, normalization may be used for 

in Chapter 3 unless SNV or MSC give better results.  The use of 2
nd

 derivative helps in 

resolving the underlying peaks of the spectra to aid in the quantification of the data, so 

this method will be used.  Not only does normalization help with biological 

identification of samples, the relationship of the variables in the spectra can also be 

extracted whereby helping with quantification of the data.  As can be seen by Figure 

2.4, normalization (range scaling) also keeps the data close to their original form as 
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opposed to SNV and MSC but SNV and MSC centred the data better than 

Normalization.  The data had already been baseline corrected which MSC and SNV are 

good for; however, these three methods will be tested in Chapter 4 which deals with 

quantitative analysis as performance of pre-processing method is not easy to analyse 

prior to modelling.(91) 
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3 PCA Protein Structure Classification   

3.1 Introduction 

Fourier Transform Infrared (FTIR) spectral data are multivariate (covering hundreds of 

wavenumbers), and collinear,(69, 86) meaning that every data point in a protein 

spectrum is highly influenced by the next data point due to overlapping absorption 

bands of biomolecules caused by spectral shift. (117, 118)  In addition to the spectra of 

protein samples being heavily influenced by the covariance between biological 

components, the differences between FTIR spectra are often subtle making it potentially 

difficult to distinguish proteins from each another, particularly when they have similar 

structures.  To be able to extract meaningful information from these spectra, 

multivariate analysis can be applied to correctly classify the spectra based on the 

differences in their structural content (119) and also to identify the spectral features that 

contribute the most to the spectral differentiation.(120, 121)  The usefulness of the 

identification of protein structural features and their FTIR marker bands is in the 

determination of the structure and the quality (aggregation, degradation, impurities, etc.) 

of the protein samples, and also for the identification of unknown samples. 

 

This main aim of this chapter is to explore the existing protein classes in terms of their 

secondary structure groups and tertiary folds using spectra measured with ATR-FTIR 

spectroscopy (spectral measurements and pre-processing are explain in Chapter 2) and 

to create a model with which to qualitatively analyse protein samples to determine their 

structures, and this is made possible by applying Principal Component Analysis (PCA).  
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 The two widely used protein classification systems are CATH(17) (Class, Architecture, 

Topology, Homologous superfamily) and SCOP(18) (Structural Classification of 

Proteins) and the protein classification assignment used by both systems is based mainly 

on X-ray crystallographic measurements.  CATH divides proteins into 4 classes (mainly 

α, mainly β, αβ, and few secondary structures), while SCOP divides them into 11 

protein classes of which 10 were covered by the protein selection in this dataset. These 

classes are: All α, All β, α/β, α+β, multi domain (αβ), membrane and cell surface, Small, 

Coiled-coil, Peptides, and Designed Proteins.  Low resolution is the 11
th

 class type but it 

is not covered in this study simply because there was not any protein of this class 

investigated in-house.  In this chapter, the PCA results for each protein in our dataset 

were compared to those of SCOP, the gold standard for structure comparison, to 

determine their class distributions based on their FTIR spectra.  SCOP also has the 

domain definitions used in this research for protein structure identification. 

 

The PCA method has been previously described in Section 1.3.1 as a multivariate 

statistical technique used to reduce data dimensions and to objectively explore the 

data.(67)  The fewer variables in the FTIR data after reduction of redundant information 

make it easier for the data to be explored graphically and statistically; PCA eliminates 

data that are not useful in differentiating the protein FTIR spectra, and classifies them as 

noise.(68, 122)  We have used pre-processing methods, particularly normalization, as 

described in Section 2 to remove some linear correlations in the data before PCA 

classification of the FTIR dataset. Without normalization of the spectra, the most 

intense spectral bands become dominant.(91, 123, 124) 

 

PCA was applied to the Amide I and Amide II regions of ATR-FTIR protein spectra 

measured in H2O to perform data reduction, and also to look for variations in the data 
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and to group the spectra according to their similarities or differences in structure which 

can be viewed by the observation and analysis of the plots of principal component 

scores and loadings;(125) therefore, protein structures were identified based on the 

similarity of the principal component scores of their IR spectra.   

 

3.2 Dataset used for this method 

The Amide I region used for this analysis has a total of 101 data points for each 

spectrum, in the range of 1700 cm
-1

 to 1600 cm
-1

 spaced 1 cm
-1

 apart.  The measured 

ATR-FTIR spectra were put into a matrix form; each row of the matrix corresponds to a 

spectrum. and each column is the absorbance at a different wavenumber.(126)  The 

Amide II region from 1600 cm
-1

 to 1480 cm
-1

 contains 121 data points; in all, there are 

84 protein spectra in this dataset which are listed in Table A2 in Appendix A.  The 

dataset is summarized below: 

 

Amide I region: 84x101 matrix of soluble Protein Spectra Data in H2O 

Amide II region: 84x121 matrix of soluble Protein Spectra Data in H2O 

 

3.3 PCA Model  

Sample preparation and ATR-FTIR spectral collection for this study are described in 

Sections 2.2 and 2.3.  Data points in the ATR-FTIR spectra, as described in Chapter 2, 

were first normalized and autoscaled using the Standard Normal Variate (SNV) 

approach.  This scaling technique takes care of centring each spectrum by subtracting 

the mean value of the spectrum from each spectrum value and this gives the spectrum a 

new mean of 0; SNV then scales each spectrum by its standard deviation which gives 
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the spectrum a variance of 1; this process is described under ‘Data Processing’ in 

Section 1.3.2.2 and Section 2.4.2.   

 

Bands in the Amide I region mostly originate from C=O stretching vibrations and those 

in the Amide II region originate mostly from NH bending vibrations.    PCA is a pattern 

recognition method which does not require a priori knowledge about the protein 

structure, and was applied to data for the Amide I and Amide II regions for the 84 

proteins in the dataset in order to decompose the FTIR data matrix (X) into scores (T), 

and loadings (P).  Columns of ‘P’ are values of the calculated covariance (X
T
X) of ‘X’ 

and are called the eigenvectors which are the new coordinate axes.(127)  The scores, 

‘T’, are the new values of the protein samples projected onto each eigenvector.  The 

principal components (PCs) are the arrangements of eigenvectors according to the 

number of variance (non-zero eigenvalues).  The sum of the vectors, TP
T
, represents the 

ATR-FTIR data matrix, X.  The PCs produced by PCA are ordered by importance to the 

data; that is, PC1 has the highest amount of variation, followed by PC2, etc.(126, 128, 

129)  Principal Component Analysis is covered in the introduction under ‘Multivariate 

Analysis’ (Section 1.3.1).  

 

The result of the data decomposition into scores and loadings by PCA is returned in a 

matrix of normalized eigenvectors stored in columns (as numbers of loadings ‘P’), and 

eigenvalues of each sample (scores ‘T’) stored in rows.  The loadings of the principal 

components highlight relevant information within the spectra for differentiation.  Again, 

loadings with no significance are excluded as noise.  The first PC, (t1, p1
T
), gives the 

maximum variation in the protein samples, the second principal component is 

orthogonal to the first, and describes the maximum of the variation not described by the 
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first PC, and so on.(127, 130, 131)   Each of these components can be expressed in 

terms of their original variables as:   

 

 pp xbxbxby  ...22111      

 

where: y represents the principal components, b  represents the calculated coefficients, 

x  represents columns of the original measured data and p represents the number of 

dimensions.(132)  The number of PCs that describe the variations in the protein dataset, 

with PC1 being the highest, were selected through a PC plot vs. percentage of the 

variance explained.  In this analysis, the PCs that gave the highest variance in the data 

were considered for the study of the secondary structure information of the 84 measured 

proteins.  These chosen numbers of PCs were also used in plotting the scores and 

loadings for the inspection of peaks influential in distinguishing the protein spectra.  

The scattered plots of the PC scores are correlated with the loading plot of the same 

dataset to view the influence of spectral wavenumbers on the dataset groupings. 

 

3.4 Model Validation 

An unsupervised learning method like PCA does not have a reference dataset, as is 

found in supervised learning (133).  To validate findings from PCA, the dataset can be 

split in two before PCA and their results compared for similar samples and groups.  If 

the scores and the loadings for the two halves are comparable, then the model is valid.  

However, in our case, there are also the SCOP structural assignments of these proteins 

which can be used to validate results. 

  

Eq. (3.1) 
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3.5 Results and Discussion 

Amide I 

Figure 3.1 shows the Principal Component plot of the SNV scaled spectra.  The plot for 

the Amide I region shows that the first PC has the most data variation of about 74%, the 

second PC has 10%, etc.,  giving a total of 95.39% of the variations in the data from the 

top 4 components. 

 

 

Figure 3.1.  PC plot of scaled data for the Amide I region of 84 spectra showing percentage 

variance of the first 4 principal components.  The blue line in the plot indicates the 

cumulative percentage variance for all 4 PCs. 

 

Table 3.1 summarizes the size of eigenvalues (as the sum of squares of scores) for each 

principal component and the percentage of variance as the sum of all nonzero elements 

of the whole matrix.  Eigenvalues denoted as ‘E’ are calculated as 

 

 

where: Ea = sum of squares of scores or eigenvalues per PC, t  = scores of each PC and j  = the 

number of samples. 
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Table 3.1.  PCA analysis for the Amide I region listing the eigenvalues Sum of Squares, 

their percentage variance and the cumulative variance.   

 

 

Amide I Region 

PC E %Vi Cumulative %V 

1 7.56 74.32 74.32 

2 1.07 10.50 84.82 

3 0.82 8.05 92.87 

4 0.26 2.52 95.39 

5 0.15 1.49 96.89 

6 0.11 1.07 97.96 

7 0.05 0.44 98.41 

8 0.03 0.34 98.74 

9 0.03 0.32 99.06 

10 0.02 0.23 99.29 

 

PC= number of Principal Component 

E = eigenvalues 

%Vi = eigenvalues presented as percentage 

Cumulative %V = accumulated percentage of V 

 

 

As mentioned above, a score is the amount of latent variable for a particular sample 

(protein).  Each sample has a score value for every principal component.  Proteins 

grouped together are similar in properties, so analysis of the loading plot helped to 

identify the discriminatory wavenumbers for the structural bands of the protein spectra. 

Figure 3.2 shows the Amide I data projection onto the first two principal components.  

PC1 separates the proteins’ spectral bands in the Amide I region into α-helices on the 

left and β-sheets on the right. 
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Figure 3.3.  Loading Plot of the Amide I (1600 cm
-1

 – 1700cm
-1

) region for spectra of 84 

proteins in H2O This Plot shows the clustering of scores.  Wavenumbers of spectral signals 

indicate the discriminating features associated with clustering of scores in Figure 3.2. 

 

 

Figure 3.4.  PC1, PC2, and PC3 loadings plot of Amide I (1600 cm-1 – 1700cm-1) region for 
spectra of 84 proteins in H2O (PC1xPC2). The wavenumbers listed indicate the discriminating 
features associated with clustering of scores in Figure 3.2.  Both Figure 3.3 and Figure 3.4 were 
combined in the analysis of the scores plot (Figure 3.2). 
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PC2 shows mostly protein spectra of mixed types (proteins that are not predominantly 

α-helical or mostly β–sheet) clustered in the middle.  The points to the far left or far 

right of the plot are more important in the clustering of the different groups; the points 

clustered near (0,0) are not as involved in the segregation of the data, for example, 

collagen which lies on the alpha side but closer to the 0.0 origin, is assigned by SCOP 

as a ‘designed protein’ and does not have any secondary structure assignment by PDB 

because it does not contain any α-helix or β-sheet.  Collagen’s location closer to the 

middle of the score plot in Figure 3.2 shows that it makes little contribution to the 

segregation of the structural types.  Proteins such as bacteriorhodopsin (PDBID: 2BRD) 

which contains 77% helix and 21% unordered structure (refer to Table A2 in 

‘Appendix A’ for a list of protein structural compositions as defined by DSSP) and 

myoglobin (PDBID: 1NZ2) with 74% helix and 14% unordered are positioned 

farther away from the origin while proteins with a smaller percentage of helix lie 

closer to the origin.  The β-sheet rich proteins on the right hand side of the plot (shown 

in red) are also positioned the same way; proteins with lower percentage of β-sheet lie 

closer to the middle of the plot.   

 

To establish what factors are responsible for the separation of these structural classes, 

the loading plot of PC2 is employed.  The loading plot and the loading spectral plot in 

Figures 3.3 and 3.4 show the most important features of the dataset; the most dominant 

wavenumbers for PC1 in the Amide I region (Figure 3.3) are shown on the far right for 

1630 cm
-1  

(positive side of PC1) and on the far left for 1657 cm
-1 

(negative side of 

PC1).  These findings are in agreement with the vibrational modes assigned in the 

literature to α-helix and β-sheets.(134, 135)  There is also a broad peak between 1689
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and 1697 cm
-1

; which may indicate anti-parallel β-sheet as this has been reported in the 

literature as registering between these frequencies.(136)  The factors are arranged so 

that when one factor is high for an observation, the other factor is low for the same 

observation (135), therefore scores with more α-helical structure would lie opposite to 

those scores with more β-sheet structure. The principal components distinguish between 

observations that have high and low frequency value contributions (numbers above and 

below zero).  The results reported here are in good agreement with literature 

assignments for the FTIR bands for both α-helix and β-sheets.(50)  

 

As mentioned earlier, the score plot (Figure 3.2) shows that PC2 highlights proteins 

with approximately equal amounts of α-helix and β-sheet closer to the origin and those 

with more α-helix or more β-sheet farther away.  A loading spectra plot is an alternative 

way of identifying the most significant peaks, which may not be readily visible from 

just the loading plot alone.  PC2 on the loading spectra plot shows a pronounced peak at 

1635 cm
-1 

(in agreement with the spectrum of PC1 in that region for β-sheets) and 

around 1672 - 1675 cm
-1

, which is mainly associated with β-turns.(50, 117)    PC2 also 

detected a band near 1653 cm
-1

 on the farthest negative side of the plot.  Scores of PC2 

were investigated further as shown in Figure 4.5. 
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Additional analysis was made, using Figure 3.5, and it was observed that PC2 does 

separate the proteins assigned as α+β class (mainly anti-parallel β-sheets shown with red 

stars), away from the α/β (mainly parallel β-sheets represented by black stars) class of 

proteins located below the origin (below zero).  The αβ multi-domain class proteins 

shown in green are clustered more tightly around the middle of the plot.  Although we 

can see significant spectral features in the loading plot of Figure 3.3 at 1635 cm
-1

 (upper 

right) and 1652 cm
-1 

 (lower left), it is the sharp peaks shown in the PC2 loading spectra 

plot of Figure 3.4 that re-emphasize the contribution of these wavenumbers in the 

discrimination of the different structural origins of bands within this region.  The 

contribution of the broadband at 1674 cm
-1 

to any particular protein structure was not 

completely clear; this band is
 
mainly associated with β-turns.(13) 

 

 

Figure 3.6.  Scaled ATR-FTIR spectra of the Amide I region for ribonuclease S in red 

(which contains mainly anti-parallel β-sheet), transketalose in blue (mainly parallel β-

sheet), and lactic dehydrogenase in green (contains both parallel and anti-parallel β-sheet)  
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Figure 3.7.   PC2 loading spectra plot of the ATR-FTIR Amide I region for 84 proteins in 

H2O. 

 

Ribonuclease S, represented in red in the above plot (Figure 3.6) is an anti-parallel β-

sheet protein that shows a marker band around 1635 cm
-1 

region and has 33% β-sheet 

of which almost all of it, 31%, is anti-parallel and 1% is mixed-β as assigned by DSSP.  

Amide I marker bands of anti-parallel β-sheet proteins at ~1612 cm
-1

, 1640 cm
-1

 and 

1690 cm
-1 

(weak) were reported by Pelton and McLean (117, 137) and the loadings 

peak frequencies shown in the PC2 plot (Figure 3.7) are similar to the frequencies 

reported by Pelton and McLean.  Transketalose, in blue, on the other hand has 2% anti-

parallel and 11% parallel β-sheet and shows a strong band between 1652 - 1655 cm
-1 

 

in agreement with the loading plot; parallel β-sheet frequencies have been reported to 

span from 1624 cm
-1 

to 1648 cm
-1

.(50)  To highlight the effectiveness of the loading 

plot, the FTIR spectrum for lactic-dehydrogenase is shown in green; this protein shows 

band intensity ~1651 - 1653 cm
-1 

in agreement with the assignment of bands at these 

frequencies to parallel β-sheet, and another band at about 1635 cm
-1 

 - 1640 cm
-1  

around the anti-parallel β-sheet marker;(23) lactic-dehydrogenase contains 8% parallel 
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and 11% anti-parallel β-sheet  as assigned by DSSP.  Literature reports on mixed 

proteins (including Navea et al.(127) and Dong et al.(136)) have stated that they do not 

exhibit a clear spectral feature; however, from our dataset a good distinction can be 

seen from the spectral plot in Figure 3.6 with the parallel and ant-parallel β-sheet 

structures being clearly separated by their maker bands of 1635 cm
-1 

 and 1652 cm
-1

,
 

respectively.   
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The biplot, a plot of PCA scores superimposed on the loadings, is another way of 

viewing both loading and scores on the same plot; it reveals clusters and allows the 

interpretation of PCA plots. In this biplot (Figure 3.8), the red dots represent the spectra 

scores of the protein samples and the blue arrows represent the corresponding loadings.  

In a biplot, the length of the blue arrows approximates the variances of the eigenvector.  

The longer lines have higher variance in their data,(92) these long lines are the features 

with the largest spread in the data.  The shorter lines closer to zero indicate that the 

values of the features are similar.  Bands from 1626 to 1634cm
-1

 seem to contribute 

more to the β-sheet rich proteins with the longest length at 1631 cm 
-1

; bands from 1650 

cm
-1

 to 1660 cm
-1

 (1657 cm 
-1 

shows more significance)
 
have contributing factors for α-

helical rich proteins.  As can be seen in the loading plot of Figure 3.3, frequencies 

between 1670 -1674 cm 
-1

, with 1674 cm
-1

 having more emphasis (longer length), 

contribute strongly to proteins not primarily containing significant quantities of α-helix 

or β-sheet structure.  The biplot does not allow the arguments for labelling both score 

and loadings together on the same plot; elastin is labelled as a guide to show how the 

plots are super-imposed (see Figure 3.2 for more score labels).   

 

Amide II 

The Amide II PC plot (Figure 3.9) quite expectedly shows the first PC as having 64% of 

the variation in the data.  Figure 3.10 shows -helix on the lower left, -sheet on the 

upper right of the figure and mixed proteins clustered in the middle of the plot. On a 

close inspection, it appears that it is PC2, and not PC1, in the loading plot (Figure 3.11) 

that shows a strong peak correlation for α-helix at 1546 cm
-1 

and for β-sheet at 1523 cm
-

1
.  PC1 shows a spectral region on the right that span from 1515

 
- 1526 cm

-1 
(positive 

side of PC1) and on the left from 1555 - 1576 cm
-1 

(negative side of PC1) of the loading 
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plot.  Although PC2 (from Table 3.2) shows a percentage variance of only 17%, the 

discriminating features of the Amide II PC2 loading are in agreement with literature 

reports on the FTIR marker bands for α-helix and β-sheet for the Amide II regions of 

FTIR spectra.(138)  This can be further viewed in the loading spectra plot (Figure 3.12) 

below. 

 

 

Figure 3.9.  PC plot of Scaled Amide II region of 84 spectra showing percentage variance 

of the first 4 principal components. The blue curve indicates the cumulative variation of all 

4 components 
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Table 3.2.  PCA Table shows the eigenvalues Sum of Squares, their percentage variance 

and the cumulative variance for the Amide II region. 

 

 

Amide II Region 

PC E %Vi Cumulative  %V 

1 5.26 64.32 64.32 

2 1.37 16.78 81.10 

3 0.94 11.46 92.56 

4 0.23 2.86 95.42 

5 0.16 1.93 97.35 

6 0.07 0.91 98.27 

7 0.03 0.43 98.69 

8 0.02 0.27 98.97 

9 0.02 0.23 99.20 

10 0.02 0.19 99.39 

 

                  PC= number of Principal Component 

                  E = sum of squares of scores or eigenvalues per PC; 

                 %Vi = eigenvalues presented as percentage,  

                 Cumulative %V = accumulated percentage of V. 
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Figure 3.11.  Loading Plot of the Amide II (1480 – 1600cm
-1

) region of spectra for 84 

proteins in H2O (PC1xPC2).  Plot shows the clustering of scores.  Wavenumbers in the 

plot, especially the extreme right and left numbers indicate the discriminating 

wavenumbers associated with clustering of scores in Figure 3.10. 

 

 
 

Figure 3.12.  PC1 and PC2 loadings spectra plot of Amide II (1480 cm
-1

 – 1600cm
-1

) region of 

spectra of 84 proteins in H2O. Wavenumbers in plot indicate the discriminating wavenumbers 

associated with clustering of scores in Table 3.10.  Both Figure 3.11 and Figure 3.12 were 

combined in the analysis of the score plot. 
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3.6 Conclusion 

ATR-FTIR spectroscopy is a useful tool for the analysis of proteins structure.  Protein 

amide vibrations are intrinsic to the backbone of the protein’s secondary structure.  The 

exact band position of the FTIR spectra is determined by the backbone conformation 

and the hydrogen bonding pattern involved.(139)  Another major contributing factor for 

the amide vibration sensitivity to secondary structure is the transition dipole coupling of 

the amide groups(the N-H bond) and their relative orientation and distance  from one 

another; this causes each secondary structure to absorb predominantly in a specific 

spectral region helping to distinguish α-helix from β-sheet, etc.(140)  The α-helix in the 

Amide I absorption band is known to show up between 1655-1648 cm
-1

 while β-sheet 

shows a strong band between 1648-1620 cm
-1

.(50)  However, the assignment of a band 

to a secondary structure type is not straightforward because the bands largely overlap 

and a broad band is observed as always seen in the amide I region;  these bands can be 

determined computationally by methods like curve fitting and multivariate analysis.  

 

The analysis of the distribution of spectral signatures requires complex multivariate tool 

like Principal Component Analysis (PCA).(119)  Although protein spectra often look 

similar, PCA clearly discriminates even structurally similar samples from each other as 

was shown in the score plots.  In our analysis we have investigated α+β and α/β SCOP 

classes usually not considered for protein classification, and the results obtained were 

significant. 

 

PCA, an unsupervised pattern recognition technique, is a well-known method of 

dimension reduction and data exploration. The basic principle of PCA is to reduce the 

dimensionality of a data set, while retaining the variations present in the original 

predictor variables (141).  Due to the reduction in data, it is possible to graphically 
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explore the data correlation and understand the biological differences between protein 

samples.  Understanding these structural differences in proteins is important for the 

proper classification of their biological differences.(142-144)  With the help of methods 

like PCA, analyses and visualization of the distribution of domains in a three 

dimensional structure can be performed, so as to retrieve the important factors related to 

protein function.(19, 143, 145) 

 

The structural information in the protein spectra was retrieved primarily from the Amide 

I bands, which arises chiefly from the C=O stretching vibrations between 1600 cm
-1

  

and 1700 cm
-1

, This region is used by spectroscopists for the study of proteins because 

it contains a strong band frequency that is correlated to the secondary structure of 

proteins.(134)  The Amide I region has been used extensively for the study of protein 

secondary structure because it presents the vibrational modes of different secondary 

structures (α-helix, β-sheets, β-turns, coils etc.).(127)  We have shown that ATR-FTIR 

spectroscopy and PCA analysis can be combined successfully in the classification of 

protein structure.  In order to determine the identity of proteins, the score and the 

loading plots of PCA analysis were employed as shown in Figure 3.2.  The plot of PC1 

versus PC2 plot revealed clusters of α-helix, β-sheets, α/β proteins, and α+β protein.  

The loadings plot and loading spectra plots indicate that the most useful peaks in 

distinguishing these structural regions, that is, the wavenumbers influence on each 

spectrum makes it possible to identify the different classes and patterns of secondary 

structures in the protein samples.   

 

It can be shown that PCA loadings of ATR-FTIR spectra provide a basis for the 

underlying differences between the identified protein structures (119, 146, 147), making 
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it possible to disclose areas of the FTIR spectra that contribute the most to the variance 

of the data in the Amide I and Amide II regions.  The score plots provided by this PCA 

analysis can be used as input to other classification methods; it can also be used to 

check the structural grouping of unknown proteins before applying an appropriate 

model to quantitatively determine their secondary structure compositions(127, 147-

149).  Although PCA explores the structural relationships between data, it cannot be 

used for the quantitative analysis of data, for this a different method called Partial Least 

Squares is introduced in Chapter 4. 

 

Table 3.3 summarizes the α-helix and β-sheet bands reported by other literature and 

how the results from this analysis compare.  Except for α/β, the other structure types are 

well within the wavenumber ranges reported by the literature.   

 

Table 3.3.  FTIR marker bands of protein classes in the Amide I region. 

 

 Arrondo, Goni(50)  Pelton, Mclean(137)  This Work 

Sec. Struct. Assign Infrared frequencies in cm 
-1 

α-helix 1655-1648  1655-1650 1657  

β-sheet 1648-1620  

1693 (weak) 

1640-1612 1685(weak) 1630  

α+β 1690; 1630 1640-1612 

1690-1670 

1635  

1674  

α/β 1648; 1630 1640-1626 1653  
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4 PLS Regression for Protein Secondary Structure Determination 

4.1 Introduction 

The high quality of Fourier-Transform Infrared (FTIR) spectra has been used by many 

spectroscopists for the analysis of protein secondary structure.(42, 150-154)  It has 

become a powerful tool in examining the conformation of proteins in H2O as well as in 

D2O.(38) FTIR can rapidly obtain the biochemical fingerprint of samples under study 

and give significant information on their biomolecule contents.(42, 155)  Section 1.2 

explained the importance of FTIR spectroscopy in more detail. This section will address 

the quantitative determination of the secondary structural information present in the 

infrared spectra of proteins.  To determine the protein secondary structures from their 

spectra, multivariate regression analysis methods such as Partial Least Squares (PLS) 

and Principal Component Regression (PCR) were applied to the dataset of 84 FTIR 

protein multivariate spectra with 16 proteins also measured in D2O, with the spectra 

being collected and pre-processed as described in the ‘Pre-processing Method’ in 

Chapter 2.  

  

The Amide I region of the FTIR spectra is normally used in the analysis protein 

secondary structure because the frequencies of the Amide I modes, which are due to 

C=O stretching vibration, are known to correlate closely to a protein’s secondary 

structure elements;(13, 156) however, the Amide I bands of proteins display extensive 

overlaps of the underlying component bands of α-helix, β-sheet, β-turns and coils, 

which are not instrumentally resolvable because they lie in too close proximity to each 

other.(36)  Therefore, mathematical methods, such as second derivatives, are often used 
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to enhance and resolve the individual band components corresponding to specific 

secondary structures.(13)  The application of 2
nd

 derivatives and pre-processing of the 

proteins was described in Chapter 2. 

 

The Amide I band components can be assigned by studying their frequency behaviour 

in which the protein secondary structure is known by other techniques such as X-ray 

crystallography.(157)  A calibration model is determined from a set of samples, and the 

X-ray known protein content and the resulting model is used to predict the content of 

new, unknown samples from their spectra.  In this chapter, PLS/PCR multivariate 

calibration (using many variables simultaneously) was used to quantify new variables 

‘y’ from the matrix of the FTIR measured protein spectra X, via a mathematical 

function of some kind.(89)  PLS and PCR solve the near multi-collinearity often found 

in spectral measurements.  This phenomenon has been explained in Chapter 1, it means 

when two or more independent (predictor) variables are correlated and so provide 

redundant information from the model.  FTIR spectra are multivariate and collinear in 

nature, therefore, the need for dimension reduction which is achieved by PLS 

regression.   The Capital letters ‘X’ is used to represent the entire matrix of protein 

spectra while capital ‘Y’ represents a matrix of the dependent set, that is, the entire 

secondary structure motif from X-ray crystallography.  Small letters ‘x’ and ‘y’ are used 

to represent a single vector from these matrices. 

 

The PCR method is based on the basic concept of principal component analysis (PCA).  

PCR performs data decomposition into loading and score variables used in building a 

model. For PCR, the estimated scores matrix consists of the most dominating principal 

components of X. These components are linear combinations of X measurements 
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determined by their ability to account for the variability in X.(158)  The first principal 

component is computed as the linear combination of the original X-variables with the 

highest possible variance; PCR uses only the X variables for the analysis without 

employing the y variable.  On the other hand, PLS regression, which is similar to PCR, 

can give good prediction results with fewer components than PCR because the response 

variable is employed in the regression as well.(159)  For detailed information on PLS 

methodology, see Chapter 1, Multivariate Regression section.  A consequence of this is 

that the number of components needed for interpreting the information in X (measured 

spectra) which is related to ‘y’ (reference secondary structure) is smaller for PLS than 

for PCR. This may, in some cases, lead to simpler interpretation. Using the optimal 

number of components in each case, however, the two methods often give comparable 

prediction results.(13)
 
 

 

D2O has lower absorption around 1643-1650 cm
-1

 in the Amide I region which is where 

proteins in H2O absorb water vapour;(117) however, H2O is preferred as a solvent for 

the study of proteins because unlike D2O it does not modify the structure of 

proteins.(53)  Cell fluid is made up of high water content and water is less expensive to 

work with.  The proteins in D2O were analysed for their secondary content to compare 

and evaluate the results produced from the regression method employed. 

 

4.2 Protein dataset used for this method 

The dataset of proteins used for this study has been described in the Chapter 3 which 

covered PCA; this was also covered in Chapter 2 which explained the pre-processing 

done for this project.. The dataset represents a wide range of helix and sheet fractional 

content values and other structural contents such as 310-helix, turns and unordered 
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structure as described and determined by the Dictionary of Protein Secondary Structure 

(DSSP) (109).  The selection of these protein samples was based on criteria such as 

crystal structure quality and the distribution of their secondary structures, 

conformational classes as described by the Structural Classification of Protein (SCOP) 

system,(18) and protein solubility and stability.  These 84 proteins measured in H2O and 

16 selected proteins measured in D2O are listed in Tables 1a-f and 2a-c in Appendix-B.  

All spectra were pre-treated by means of intensity normalization and SNV (Standard 

Normal Variate) as described in Chapter 1, section 1.3. 

 

 Data Selection Scheme 4.2.1

Models generated from the PLS/PCR methods were used for the prediction of the 

structural compositions of new samples; therefore, as many possible biochemical 

compositions of protein samples and types of protein structure that could be 

encountered later should be represented in the calibration set.(160)  From the ‘X’ and 

‘y’ matrices of the calibration set of proteins in H2O, 60 spectra were used to develop 

the partial least squares regression model. The remaining 24 were used as the 

independent test set, set aside for predictive accuracy.  Of the training set, 20 were 

included in the test set for validation accuracy, totalling 44 samples in the test set.   This 

selection was done by an algorithm called Kennard Stone (KS).(161)  KS is a well-

known method for the selection of a sample subset for calibration.  It chooses objects 

that are uniformly distributed in the X-matrix (the measured spectra) by assigning a 

sample to the calibration set, closest to the mean of the entire sample; the next sample is 

then chosen based on the square distance to the sample already assigned.(162)  The 

sample furthest from the already selected sample is added to the calibration set, etc.  In 

this way, variations of the dataset are chosen up front.   The algorithm was set to select 
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the first 60 samples representing the dataset, with the rest left for validation.  The 

calibration model was constructed and subsequently validated.   Figure 4.1 represents 

the KS selections split into calibration set and test set. 

 

 

 

Figure 4.1.   Schematic representation of samples used in the training set and the test set 

after application of the Kennard Stone selection algorithm.  Matrix X represents the FTIR 

spectra while vector ‘y’ represents the percentage fraction of structure determined by DSSP 

analysis from X-ray crystallographic data.  This figure represents the strategy for the 84 

protein samples measured in H2O. 

 

 

4.3 PLS Modelling  

The PLS model is a mathematical representation of a complicated system that holds 

within it the information of the contents of that system,(89, 155, 163, 164) in this case, 

protein secondary structure. Sample preparation and ATR-FTIR spectral collection for 

this experiment are described in sections 2.2 and 2.3.  Data points in the ATR-FTIR 
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spectra, as described in section 3.2, were first normalized before calculating the second 

derivative which is done in order to enhance the separation of the underlying bands. 

 

As in the PCA section, the Amide I region, whose bands mostly originates from C=O 

stretching vibrations, and Amide II region, mostly arising from NH bending vibrations, 

were used for this analysis. The Amide III region was not recorded in many of the 

protein spectra used for this study; therefore this region was not analysed here.  

   

The FTIR spectra were put into a matrix form containing 84 rows made of the measured 

protein spectral intensities and 101 columns made up of the spectral wavenumbers in 

the Amide I region and a separate matrix form of 124 columns for the Amide II region 

of the spectra for Amide II analysis.  The algorithm for PLS was written using Matlab 

R2010 and Matlab’s PLSregression.  PLS requires a priori knowledge about the protein 

structural groups; fractions of the proteins secondary structure (SS) motifs have been 

determined by X-ray crystallography and files of their atomic features obtained from the 

Protein Data Bank (PDB)(137, 157, 165) were fed into a DSSP script, output from 

DSSP contains the proteins’ secondary structure information which was put into a 

matrix form labelled as ‘y’  These SS fractions are listed in Table A2, Appendix A. 

 

PLS regression was applied to determine secondary structure contents using the Amide I 

regions (1700-1600 cm
-1

 region) and Amide II bands (1600–1480 cm 
1
) of the spectra 

separately and to the Amide I & II regions together to determine and compare their 

secondary structural compositions to that determined by X-ray crystallography.  PLS 

finds the optimal linear combination of the variables in the obtained FTIR spectra of 

protein samples (X variables) and these linear combination variables, called components 
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but also known as latent variables (LV)(105), were used to determine the regression 

equation (2.2).  The general equation notation is: 

 

 Y = Xb + ε, where                                                                            eq. (4.1) 

 

Y is the matrix of the predicted latent variables, X is the predictor latent variable,  

b is the determined coefficients during calibration, and ε is the residual error (the 

difference between the observed and predicted dependent variables). 

 

4.4 Results and Discussions 

A plot of the ‘percentage of y explained variance’ based on chosen components, as seen 

in Figure 4.2, was obtained. The diagnostics from this plot were used to choose a 

different model; that is, based on the plotted percentage y explained variance, a 

minimum number of components that gave rise to the maximum explained variance was 

chosen for each analysed region of the spectra.  PLS extracts components in order of 

their relevance to the structure type in question.(127, 152)  From Figure 4.2 and Figure 

4.3 for α-helix, we see that after 10 components the gap between points got smaller and 

the line curvature begins to flatten.  Any value between 6 and 10 could have been 

chosen for the model, validation of this model was done later to eliminate overfitting 

issues. 10 components for the analysis α-helix from the Amide I region was selected as 

the maximum explanation of variance and a low Root Mean Square Error for 

Calibration (RMSEC). 
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Figure 4.2.  Explained Y variance of α-helix for Amide I region; explained variance is 

about 96% for 10 components.  

 

 

 

Figure 4.3.   Plot shows Root Mean Square Error (RMSE) vs. number of components for α-

helix of the Amide I region. 10 components gave low root mean square error and was 

chosen to fit the data. 
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Figure 4.4 and Figure 4.5 also show that 10 components for analysis of β-sheet content 

from the Amide I gave the maximum explanation of variance at a low Root Mean 

Square Error for Calibration (RMSEC) of 0.020.  This is the maximum number of 

components before the decrease in the RMSEC is negligible.  It is assumed that this 

number will fit new samples, however, a cross-validation was later performed to 

eliminate the need to keep adding unnecessary PLS components to the model.  Looking 

at the RMSEC plot, anywhere between 7-10 components would be suitable for 

providing a good estimate. 

 

 

Figure 4.4.  Explained Y variance of β-sheet for the Amide I region is about 95 % for 10 

components. 
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Figure 4.5.   Root Mean Square Error for β-sheet analysis for the Amide I region. 
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of the unexplained variance of the cross-validation, is a much better fit than RMSEC 

because RMSEC does not indicate when the model is overfitted. 

 

Overfitting occurs when too many components are selected to fit the model as this can 

lead to much redundancy in the ‘x’ variables resulting in a higher estimation error due 

to data dependency. Cross-validation (CV) is used to choose the optimal number of 

components to use for the model and to check on overfitting by not reusing the same 

data for calibration and prediction error.(166)  With a “Leave One Out” cross-

validation, one data item at a time from the n samples is left out of fitting (n-1), and 

error estimation and calibration is performed on the rest of the data.  The deleted data 

are put back for calibration and another sample is taken out.(100)  These samples left 

out are used as test samples.  In this method a “CV” option was given to the MATLAB 

PLS function with 10-fold (segments) specified. "CV" divides the randomly selected 

data into 10 segments and each segment was left out one at a time.  Plots of the 

validation results are used to visualize the number of components that give the lowest 

Root Mean Square Error for Cross Validation (RMSECV).  Figure 4.6 shows that the 

optimum number of components, 4, was enough to fit the spectra of new samples. 

 

The RMSECV (see eq. 4.2) must be interpreted in a slightly different way to Root Mean 

Square Error of the Prediction (RMSEP). Note, in particular, that it is not an error 

estimate of an actual predictor with already computed regression coefficients. Cross-

validation provides, instead, an estimate of the average prediction error of calibration 

equations based on N-1 samples drawn from the actual population of samples.  

 

Eq.  (4.2) 
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RMSECV = √∑
(𝑦𝑝𝑟𝑒𝑑

𝑐𝑣,𝑖 −𝑦𝑜𝑏𝑠
𝑖 )

2

𝑛−1

𝑛
𝑖=1                        eq. (4.2) 

 

where n is the number of proteins in the dataset, ypred is the predicted Figure and yobs is 

the observed value from X-ray crystallography. 

 

 

 

Figure 4.6.  CV cross-validation: 4 PLS components only are required to fit the α-helix  

model for proteins in H2O for the Amide I region.  
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model is obtained.  Validation testing shows that the secondary structure content of 44 

proteins is predicted with only 3 components and a RMSEP of 0.034.  The Root Mean 

Square Error of Prediction (RMSEP) of the independent test set is obtained for the 

judgment of the performance of the calibration set.(99, 169-172)  The results of the 

RMSEP obtained from this PLS model are shown in Table 4.1 below. 

 

 Coefficient of Determination (R
2
) 4.4.4

The fitted response values are then computed by the PLS model and an R
2
 value is 

generated.  The R
2
 value is a measurement of how well the regression line fits the 

measured data points.(173)  An R
2
 of 1 denotes that the regression line fits the data 

perfectly and an R
2
 of 0 means there is no correlation between the explained variance in 

the predicted model and the total variance of the data.  This variability is measured as 

the residual sum of squares (SSR over the total sum of squares (SST).    Eq. 4.3 denotes 

the formula for R
2
. 

 

R2  =  1 − (
SSR

SST
) = ∑

(𝑦−𝑦𝑓𝑖𝑡)
2

   (𝑦−𝑦𝑚𝑒𝑎𝑛)2

𝑛

𝑖=1

  

 

Residual values can also be viewed with a residual plot of the estimated and true ‘y’ 

values.  Figure 4.7 shows the residual plot of α in the Amide I region.  The residuals 

appear to be randomly scattered around zero which shows that the model fits the data 

well.  From the residual plot it can be seen that there are no obvious outliers.  The 

majority of the residuals for the samples in the calibration set are between  ±0.05 except 

for very few which were still below 0.2.  The R
2
 and RMSEP values were used to 

evaluate the prediction of accuracy for these samples.(153) 

Eq.  (4.3) 
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Figure 4.7.  Residual plot of the 60 samples in the Amide I region.  Error levels between 

the fit and the individual data are shown for each sample.  Note: The residuals are not 

sorted by protein but by the order in which they were analysed. 
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explain the data in the calibration set without much regard to the reference set values 

(y), while PLS puts the reference set values into consideration while fitting, and, as a 

result, PCR requires more components to fit the data. As the number of components 

increases, the two methods often give similar prediction results or PCR may do better.  

As seen in Figure 4.8, it appears that the PLS cross-validation (PLS-CV) technique is 

more realistic to test the predictive ability.  This is not always the case for all secondary 

structure results in this analysis.  See Section 4.4.8 and Tables 4.1a/b. 

 

 

Figure 4.8.  Performance of CV cross-validation: 4 PLS components is optimal for PLS-

CV while 5 components is optimal for PCR-CV (Amide I region of FTIR spectra). 
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computed from the second derivatives of the FTIR spectra were used for secondary 

structure analysis with a PLS calibration. The R
2
 and RMSECV values for each 

calibration were used in choosing the best fit model in the spectral range of α-helix, β-

sheet, parallel β-sheet, anti-parallel β-sheet, β-turns and “other”.   These results can be 

seen in the highlighted rows of Table 4.1. 

 

The PLS analysis of the 2
nd

 derivative of Amide I data used 10 components for the 

prediction of α-helix content, giving an R
2
 of 96% with a low RMSEC of 0.040 which, 

after cross-validation, gave an RMSECV value of 0.185 with only 4 components. This 

is an ideal number of PLS components for the final model because cross-validation 

choses optimal components that ensure no overfitting of the model. This number of 

components was found by the low values of the estimated RMSECV and was used to 

predict α-helix in the test set, giving a RMSEP of 0.120 with an R
2
 of 71%.  The fit of 

the data in the test set for α-helix prediction from the Amide I region is plotted (see 

Figure 4.10) and the predicted result of each individual sample can be seen in Tables 

B1-B6 in Appendix B.  Figures 4.11 and 4.12 show the fitted vs observed plots for the 

β-sheet calibration and test sets of data from the Amide I region of the FTIR protein 

spectra using the same method. 
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Figure 4.9.  The plot of  the calibration set for the  analysis of  α-helix content from Amide 

I region :   This plot shows PLS fitted vs response (X-ray crystallography values)  using the 

FTIR spectra of  60 proteins in H2O  for calibration.  The  red line of fit going through the 

origin emphasises the positive correlation in the data. 

 

  

Figure 4.10.  Test set plot for analysis of α-helix from the Amide I data: PLS fitted vs 

response on 44 proteins in H2O used for testing the model.  The model shows the 

relationship between the crystal structure values and the calculated values of α-helix from 

FTIR spectra for these proteins. 
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Figure 4.11.  Plot shows PLS prediction for β-sheet  vs. X-ray crystallography vales used in 

the training of the Amide I region.  The training set had FTIR spectra of  60 proteins in 

H2O.  The red line of fit going through the origin emphasises the positive correlation in the 

data. 

 

 

Figure 4.12.   Test set plot of Amide I β-sheet: PLS fitted vs response on 44 proteins in 

H2O used for testing the model.   
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Eq. (4.4) 

Calibration of each of these secondary structural contents was done for both the entire 

Amide I and Amide II regions separately and for the combined Amide I and II regions 

together, as is shown in Table 4.1.  Cross-validation R
2
 results of 0.88 (α-helix), 0.94 

(β-sheet), 0.44 (parallel β-sheet), 0.93 (antiparallel β-sheet), 0.44 (mixed β-sheet), 0.53 

(310-helix), 0.60 (turns), and 0.62 (other) for the Amide I region indicates the percentage 

explained variance of each predicted structure. The RMSECV must be interpreted 

differently, as it is an estimate of the average internal prediction error whereas RMSEC 

is an error estimate of the calibration.  Note that the RMSECV values for α-helix 

(0.185) and β-sheet (0.111) are higher than the ones for parallel β-sheet (0.052), 310-

helix (0.037), and turns (0.051).  This is not because the predictive values of the later 

are better, but rather that, in our samples, the variations of parallel β sheet, 310-helix and 

turns are small with an average of 10% 310-helix content and 3% parallel β- sheet for the 

measured proteins.  To assess the predictive accuracy of this statistical analysis, a 

determinant ‘ζ’ has been calculated and presented alongside with the RMSECV. 

 

 Zeta scores    ζ 4.4.7

The RMSE of cross-validation and how it relates to the standard deviation of the 

reference (crystal) structure(s) is calculated as the ratio of RMSECV (δ) of the FTIR 

structure divided by the standard deviation (σ) of the crystal structure.(174)  that is, the 

standard deviation of the protein secondary structure motif in the reference set; 

therefore,   

 

    ζ = (δFTIR/ σy)       eq. (4.4)  
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This score compares the distributed width of the reference structure to that of the 

RMSECV and is used to compare the prediction accuracy as it accounts for the natural 

variation of the crystal structure data to that of the calculated structure obtained from the 

FTIR/PLS model. (175, 176)  A ζ value of one indicates that the secondary structure 

prediction is as accurate as what would be found from any random guess for the average 

value.(174, 175)
 
 A value less than one indicates that the FTIR prediction values of that 

structure are better than the value from X-ray crystallography for that structure and a 

value around one means both methods give answers that are comparable.  A value much 

higher than one indicates that the performance of the crystal structure data is 

better.(175, 177)  Sometimes the formula above (in eq. 4.4.) is inverted so that the 

standard deviation of the crystal structure is divided by the calculated RMSE of the 

FTIR structure. In either case, if the calculated value is less than 1 the numerator is the 

better predictor but if the value is  greater than 1, the denominator is assigned as the 

better predictor.  Using equation 4.4 the ζ scores for α-helix, β-sheet, and parallel β-

sheet from the Amide I data are comparable to that from their crystal structures.  The ζ 

values for data in the Amide I & II regions together also gave good predictions for the 

same secondary structures.  The two scores, RMSECV and ζ, should both be considered 

because a secondary structure with few samples in the data space could give a low 

RMSE and ζ would indicate this case.  

 

 PCR/PLS comparison 4.4.8

In Figure 4.8, it was seen that it took 5 PCR components to give a low RMSECV.  As 

the object of this comparison is to show the difference in fitting between PLS and PCR 

with similar components, this was done using normalized SNV data alone.  

Normalization of spectral intensity and use of Singular Value Decomposition (SNV) 

have been introduced and explained in the Multivariate Analysis section of Chapter 1. 
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The use of ‘Normalized +SNV’ for this comparison also showcases the difference in 

performance between this type of pre-processing and the ‘Normalized + 2
nd

 Derivative’ 

method (Table 4.1).  PCR produced a lower RMSECV for cross-validation (0.104) and 

a ζ score of 0.437 for α-helix compared to PLS (SNV) cross-validation values of 0.143 

and a ζ score of 0.603; PLS with 2
nd

 derivative gave RMSECV of 0.181 and ζ score of 

0.794 however the calibration and prediction with the independent testset gave better 

values than PCR and PLS (SNV), see Table 4.1a for α-helix.  The α-helix ζ score was 

derived from dividing RMSECV by the standard deviation of the α-helix motif of the 

crystal structure used in the reference set; this is done for all secondary structure.  ζ is 

explained in section 4.4.7.   
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 Results for Proteins in D2O 4.4.9

Protein spectra show strong bands in the Amide I and Amide II regions around 1645 

cm
-1

 and at 1550 cm
-1

, respectively.  H2O is often a preferable solvent to D2O because 

H2O retains the native properties of the protein while D2O changes the protein 

properties somewhat as compared to the native structure, also Amide hydrogens in the 

protein could readily exchange with deuterium.(13, 50, 53, 178)  However, protein 

absorption peaks in the Amide I region (1600 – 1700 cm
-1

) overlap the absorption of 

water band in the same region (around 1643 cm
-1

), making it difficult to extrapolate 

information from H2O solvent spectrum.  One solution is to use D2O as a solvent 

because it does not absorb in the same region as the Amide I water absorbance.(13, 50)  

However, use of D2O can cause problems; whereas the Amide I region is easily 

observed, the Amide II region can be  affected by the D2O solvent absorption which 

then poses issues for conformational studies.(50)
   

With the advent of better IR 

instruments and software, protein spectra of H2O solvent are now considered to be 

suitable for secondary structure analysis.   

 

For this project, selected proteins collections in both solvents were used to investigate 

and compare their proteins structure in the Amide I region.  The same techniques and 

validation steps applied to the proteins dissolved in H2O were also applied to 16 

selected proteins in D2O in order to analyse the effect of the solvent on the secondary 

structure determination of proteins using same method (FTIR and multivariate 

modelling). 

 

Overall, the predicted values of α-helix and β-sheet for the 16 proteins measured in both 

H2O and D2O are similar; however, D2O did remarkably better for myoglobin a-helix 
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structure prediction with a value of 0.70 which is close to the reference set value (0.74) 

while the same protein in H2O gave a value of 0.57.  The RMSEP for α-helix from 

proteins in H2O vs proteins in D2O are 0.066 and 0.069 respectively, while the RMSEP 

for their β-sheet structure are 0.044 and 0.045; this shows H2O in the lead.    Table 4.2 

shows good results for α-helix and β-sheet in the Amide I for both H2O and D2O; the 

accuracy of multivariate results of proteins in H2O makes it unnecessary to carry out 

spectroscopic studies in D2O.  Results for other structures are listed in Appendix B, 

Tables B1-B6.  

 

Table 4.2.  Comparison of PLS results of the secondary structure of proteins in H2O and 

D2O.  The percentage secondary structure for each protein derived from X-ray 

crystallography served as a reference. 

 

 

PLS and other quantitative analysis methods have been used to quantify protein 

secondary structure in H2O and D2O.(157)  α-helices and β-sheets bands of Amide I 

have been published by Kong and Yu (13) for secondary structure assignments for both 

α-Helix β-Sheet

PDBID Protein Names

Observed 

(X-ray)

 Predicted 

(proteins 

in  H2O)

 Predicted 

(proteins 

in D2O) 

Observed 

(X-ray)

 Predicted 

(proteins in  

H2O)

 Predicted 

(proteins in  

D2O)

3CWL alpha-1-antitypsin 0.28 0.20 0.31 0.31 0.33 0.32

3M1K carbonic anhydrase (human) 0.08 0.10 0.05 0.29 0.35 0.33

1YPH chymotrypsin(bovin) 0.00 0.05 0.05 0.35 0.35 0.36

1HRC cytochrome (Horse heart) 0.41 0.52 0.44 0.00 0.02 0.04

2QSP Hemoglobin bovine 0.67 0.67 0.58 0.00 0.00 0.02

2LYZ lysozyme (chicken egg) 0.32 0.41 0.43 0.06 0.07 0.04

1NZ2 myoglobin(horse muscle) 0.74 0.57 0.70 0.00 0.03 0.00

3DLW native-anti-chymotrypsin 0.29 0.29 0.17 0.36 0.24 0.32

1T1F native form of anti-thrombin  0.26 0.27 0.21 0.27 0.34 0.38

2OAY native form of c1 inhibitor  0.27 0.29 0.25 0.32 0.28 0.26

1YX9 pepsin(pepsin gastric mucosa) 0.10 0.12 0.16 0.42 0.41 0.33

1RBX ribonucleaus A (bovine pancreas) 0.20 0.18 0.10 0.30 0.29 0.31

3DJV ribonucleaus S (bovine pancreas) 0.19 0.20 0.30 0.33 0.32 0.33

1ATH split form of anti-thrombin 0.27 0.29 0.30 0.32 0.33 0.30

1LQ8 split form of c1 inhibitor  0.28 0.29 0.25 0.35 0.28 0.32

2TGA trypsinogen(bovine pancreas) 0.07 -0.01 0.13 0.32 0.35 0.34

R
2

0.88 0.87 0.90 0.90

rmsep 0.066 0.069 0.044 0.045
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H2O and D2O and Dousseau and Pezolet (41) gave a good paper on protein structural 

content in both solutions  The results from in their Partial Least Squares analysis of  13 

proteins in both H2O and D2O had some proteins in common to the ones used in this 

study  (chymotrypsin, cytrochrome c, lyzosyme, myoglobin, ribonuclease A, anti-

trypsin).  Their D2O results overall did poorer than H2O especially with the prediction 

of α-helix and myoglobin in particular, which is not the case with this study. The 

prediction of secondary structure of proteins in both solvents from this study was not 

actually very good; therefore proteins were collected in the solvent that retains their 

native like structure which is water. 

 

4.5 Other PLS Applications 

Interval Partial Least Squares (iPLS) is a variant of PLS used to perform regression 

analysis on sub-intervals of the protein spectra.  Local models are obtained from chosen 

interval(s) based on RMSECV performance.  Secondary structure methods developed 

from sub-intervals may give better predictions over methods based on the whole 

spectral space.  An advantage to iPLS is that the use of spectral regions that can 

introduce noise can be avoided;(157) also,  known prediction ability of sub-regions of 

FTIR spectra can possibly lead to the improvement of instruments that can reduce 

production cost by only employing a few significant spectral regions.(157)   

 

iPLS regions of importance are not always contained within one or two intervals so the 

spectral regions must be split in several different ways to find the optimal spectral 

model.  This time consuming effort contributed to the reasons why it was not further 

pursued, in addition, significant spectral regions were identified by the use of PCA.  
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Methods used and results from iPLS as it was applied to our dataset are presented 

below. 

 

 iPLS Method 4.5.1

FTIR spectral collection was performed for iPLS in the same manner as for the 

collection procedure described in Chapter 2. The Kennard Stone (KS) algorithm was 

used in splitting spectra into calibration and test sets as was done for the traditional PLS 

analysis in Section 4.2.1.   For iPLS, the spectra were normalized and split into smaller 

frequency regions of roughly the same size.  Norgaard’s iPLS_ToolBox for Matlab 

(179) was used in the implementation of this work.  The software allows the matrix of 

the entire spectra to be split into several wavenumber number intervals as shown in 

Table 4.3; iPLS is performed on the entire spectra (global) and on the intervals (local) 

simultaneously. The interval with the lowest error indicates the area of most significant 

importance in terms of structural information. 

 

For each type of secondary structure, 7 spectral intervals were initially assigned for 

building the model.  PLS models were calculated for each of the sub-intervals, using 5 

latent variables and a ‘leave 5% out’ for cross validation across all sub-intervals. A plot 

of the 5 latent variables (PLS components) and their Root Mean Square Error for Cross 

Validation (RMSECV) is shown in Figure 4.13. The component with a minimum 

RMSECV can be seen at number 2, therefore 2 components was again chosen to model 

all sub-intervals. 
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Figure 4.13.  Plot of RMSECV vs. PLS component for the global model.  Component 

number 2 has the lowest RMSECV. 

 

 

An RMSECV was re-calculated for each sub-interval and for the full-spectrum. This 

variable selection and the results are shown in Figure 4.14a-b for α-helix and β-sheet; 

the columns represent the individual spectral regions (the intervals), and the numbers in 

italics denote the optimal number of components for each interval.(180)  From the plot, 

interval number 5 (1645-1630 cm-
1
), out of all, has the lowest RMSECV.  This model 

can be compared against the global model which involves the entire Amide I spectral 

region, although, the performance of interval number 5 is worse than the performance of 

the global model (The doted horizontal line across the plot indicates the global 

RMSECV), it has an RMSECV that is lower than that of the other iPLS spectral 

intervals.  A calibration model based on the 3 components indicated on interval number 

5 which covers the frequency range of 1641 cm
-1

 to 1628 cm 
-1

 was developed  (please 

see Table 4.3 for the exact wavenumber per interval).  Figure 4.15a shows the spectral 

region used for iPLS calibration of α-helix content.    

 

For β-sheet, 3 components were used to calculate RMSECV for 7 spectral intervals and 

interval number 6 had an RMSECV that is lower than that of the other iPLS spectral 
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intervals and also lower than the RMSECV of the global model.  A calibration model 

based on the 3 components indicated on interval number 6 which covers wavenumber 

1627 cm
-1

 to 1614 cm
-1

 was developed.  This β-sheet spectral region deviates from β-

sheet spectral assignment reported by other literatures.  Figure 4.15b depicts the spectral 

region used for iPLS calibration of α-helix.    

 

 

 
 
 

Figure 4.14a   Each bar in the plot is a spectral interval.  The plot shows interval numbers 

1-7 ;  Interval  number 5 corresponds to frequency factors in the range 1641 cm
-1 

– 1628 

cm
-1

 for α-helix,  The dotted line represents the RMSECV for the global iPLS model.  

Numbers in italics in each interval bar signifies the number of iPLS components used in 

fitting each local model.  See Table 4.3 for intervals and wavenumber range.  The curve in 

the background is a spectrum of the Amide I region. 
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Figure 4.14b.  Plot shows interval number 6 (6
th
 bar) corresponding to frequency factors in 

the range 1614–1627 cm
-1

 for β-sheet.  See Table 4.3 for each interval actual beginning and 

ending wavenumbers).  Dotted line is the RMSECV for the global iPLS model.  The dotted 

line represents the RMSECV for the global iPLS model.  Numbers in italics in each 

interval bar signifies the number of  iPLS components used in fitting each local model.  

The curve in the background is a spectrum of the Amide I region. 

 

 

Table 4.3. Table of intervals and their corresponding frequencies; interval number 8 which 

covers the Amide I region was used for the iPLS global model. 

 

 
 

 

 

 

1 2 3 4 5 6 7
0

0.05

0.1

R
M

S
E

C
V

iPLS Interval number

1 4 2 5 3 3 3

Interval

Start 

variable

End 

variable

Start 

wavenumber

End 

wavenumber

Number of 

variables

1 1 15 1700 1686 15

2 16 30 1685 1671 15

3 31 45 1670 1656 15

4 46 59 1655 1642 14

5 60 73 1641 1628 14

6 74 87 1627 1614 14

7 88 101 1613 1600 14

8 1 101 1700 1600 101
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Figure 4.15a.  Plot of the Amide I normalized spectral region shows the spectral region (in 

grey bar) used for iPLS analysis of α-helix structure.  .  The grey bar contains the most 

variation for of α-helix structure.  This region (1641–1628 cm
-1

) corresponds to interval 

number 5 from Table 4.14a. 

 

  

Figure 4.15b.  Plot of the normalized spectral region of Amide I that contain the most 

significant region (in grey bar) for β-sheet structure.  The grey bar contains the most 

variation for β-sheet structure.  This region (1627 cm
-1 

–1614 cm
-1 

) was assigned to 

interval number 6 from Figure 4.14b. 
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4.6 Results and Discussion 

The α-helix and β-sheet secondary structural motifs of proteins have well defined 

hydrogen bonding properties which makes them relatively compact and, as a result, 

these structures are better defined than other looser spatial structural arrangements such 

as turns and coils.(157)  This is very evident in the iPLS results obtained from this 

work.  The selected intervals for all the structural motifs used in this method gave better 

prediction over all other intervals that were tried out.   

 

 α-helix 4.6.1

Figure 4.16a shows the global prediction fraction of α-helix from the Amide I region vs. 

the X-ray diffraction-derived reference fraction for the same structure.  The RMSECV 

of 0.144 is a little better than that of the traditional PLS model with RMSECV of 0.181 

but the iPLS R
2
 for cross-validation (0.80) is lower than the value for 0.85 found for the 

traditional PLS.  This difference is not so dramatic to be a deciding factor for which 

method to use.  The RMSECV figure could have been higher because the model was fit 

with 4 components while iPLS model was fit with 3 components. 

 

For each prediction of secondary structure content produced for these intervals, the 

factors used to assess the prediction accuracy, were based on the iPLS prediction vs. the 

reference X-ray derived PDB data for the secondary structure.  The plot in Figure 4.16b 

shows the ‘line of fit’ for α-helix from the interval number 5 model (1641 -1628 cm
-1) 

with 3 latent variables (components).  This model gave a RMSECV of 0.149 and an R
2
 

of 0.78 which is below the performance of the global model.  Finding a way to divide a 

matrix of spectra to give optimal iPLS results is a daunting tasks and required lots of 



 

USING REGRESSION ANALYSES FOR THE DETERMINATION  

OF PROTEIN STRUCTURE FROM FTIR SPECTRA 129 

 

trials; sometimes two intervals may need to be merged into one to get accurate results 

from the structural analysis. 

 

Figure 4.16a.  Prediction line of fit for α-helix from the iPLS global model in the in Amide 

I region (1700 – 1600 cm
-1

). 3 iPLS components were used for building the model. The 

numbers in the plot represent the different proteins in the dataset which are listed in Table 

4.4 

 

 

Figure 4.16b.  Prediction line of fit for α-helix from the iPLS local  model in the in Amide I 

region (1641 cm
-1

 – 1628 cm
-1

).  3 PLS components were used for building the model. The 

numbers in the plot are the different proteins in the dataset which are named in Table 4.4.  
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 β-sheet 4.6.2

Figure 4.17a shows the global iPLS model plot for the prediction fraction of β-sheet for 

the Amide I region vs. X-ray reference fraction from the PDB for the same structure.  

The RMSECV for this global model is 0.092 with an R
2
 of 0.81 while the RMSECV 

from the traditional PLS model for β-sheet was 0.050 with R
2
 of 0.94.  The global iPLS 

model for β-sheet did much more poorly than the traditional PLS model but this could 

be due to the number of components used for iPLS global for Amide I (3 vs. 9 

components for traditional PLS).  The plot in Figure 4.17b shows the ‘Line of Fit’ for  

β-sheet from the model of interval number 6 (1627 -1614 cm
-1) with 3 latent variables 

(components).  This model gave a RMSECV of 0.087 and an R
2
 of 0.83 which is much 

better than the performance of the iPLS global model.  Again, this could also be due to 

the number of components, 3, used for both local model with 14 variables and global 

model with 101 variables; see Table 4.3.   

 

 

Figure 4.17a.  Prediction line of fit for β-sheet from the iPLS global model in the Amide I 

region (1700 cm
-1

 – 1600 cm
-1

). 3 iPLS components were used for building the model. The 

numbers in the plot are the different proteins in the dataset which are named in Table 4.4.  
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Figure 4.17b.  Prediction line of fit for  β-sheet from the iPLS local model in the Amide  I 

region (1627 cm
-1

 – 1614 cm
-1

).  3 iPLS components were used for building the model 

from the 6
th
 spectral interval. The numbers in the plot are the different proteins in the 

dataset which are named in Table 4.4.  

 

4.7 Validation Set 

The Kennard Stone algorithm was used for the splitting of the protein samples into 

Training and Test sets. Although the number of proteins in the independent test set were 

the same for both PLS and iPLS, a few factors were different between them.  The 

proteins in the training set for both methods were not completely identical, several 

proteins in the calibration set of the PLS method were in the test set of the iPLS method 

This is because for iPLS, data selection for calibration set and test set were based on 

intervals, regions of the spectra, instead of the full spectra.  The number of components 

used for the prediction test set models was based on the error of the cross-validation 

performed for calibration models.  The results of the iPLS validation of 44 proteins in 

the test set were as good as the results of the traditional PLS validation result which is 

very promising for iPLS method.  This comparison is shown in Table 4.5. Figure 4.15a 

shows that the model for α-helix fits the data and the Root mean Square Error for 

Prediction (RMSEP) is 0.134 with an R
2
 of 0.78.  The β-sheet model also fits the data 
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well with an RMSEP value of 0.089 and an R
2
 of 0.79.  These results are comparable to 

the traditional PLS results.  To view the PLS calibration results, cross-validation results, 

and independent set validation results, see table 4.2a and 4.2b. 

 

Figure 4.18a.  Plot of local model line of fit for the prediction of α-helix in Amide I (1641 

cm
-1

 – 1628 cm
-1

).  3 PLS components for the 5
th
 spectral interval were used for the 

prediction of proteins in the test set.. The numbers in the plot are the different proteins in 

the dataset which are named in Table 4.4 

 

 

 

Figure 4.18b.  Plot of local model line of fit for the prediction of β-sheet in Amide I (1627 

cm
-1

 – 1614 cm
-1

).  3 PLS components for the 6
th
 spectral interval were used for the 

prediction of proteins in the test set. The numbers in the plot are the different proteins in 

the dataset which are named in Table 4.4. 
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Table 4.4.  The list of proteins used for the both calibration and test set in the iPLS.  These 

proteins are listed to match the numbers in the line of fit plot for both calibration and 

validation for iPLS models.  

 

 

Table A2 in Appendix A lists the full name and source (organism) of these proteins” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Num Proteins in Calibration Set Num Proteins in Test Set  

1 annexinV 31 esterase(r.oryzae) 1 pyruvate 23 lectin 

2 elastin 32 calmodulin 2 transketalose 24 lipase (wheat)

3 porin 33 fibrinogen 3 carbonic anhydrase 25 fetuin 

4 trypsin 34 typsin-chymotrypsin 4 pepsin 26 IgG (bovine)

5 alpha-1-antitrypsin 35 invertase 5 alcohol-dehydrog 27 trypsin(hog)

6 myoglobulin 36 IgG (human) 6 reaction centere R. Sphae. 28 apha-Crystallin

7 avidin 37 lipase(c.rugosa) 7 thaumactin 29 superoxide-dismutase 

8 phosvitin 38 albumin (bovine) 8 lysozyme (chicken egg) 30 esterase(b.substilis)

9 proteinase 39 d_amino acid dehydr 9 ovalbumin 31 nt-anti-chymotryp

10 tryptophan synthase 40 pyruvate 10 melittin 32 native-anti-thrombin  

11 alpha casein 41 transketalose 11 alpha_lactalbumin 33 lactic dehydrog

12 hexakinase 42 carbonic anhydrase 12 staphylokinase-B  34 split-c1 inhibitor  

13 l-lactic dehydrogenase 43 pepsin 13 choline oxidase 35 rhodopsin bleached 

14 alpha amylase_type2 44 alcohol-dehydrog 14 ribonuclease B 36 split-anti-chymotryp

15 insulin 45 reaction centere R. Sphae. 15 albumin (human) 37 conalbumin

16 chymotrypsin 46 thaumactin 16 trypsin (bovine) 38 anti-thrombin

17 sact1 DIFF 47 lysozyme (chicken egg) 17 ferritin 39 ribonuclease A

18 subtilisin 48 ovalbumin 18 peroxidase 40 trypsinogen

19 rhodopsin unbleached 49 melittin 19 galactose 41 albumin (sheep)

20 phtosystem II 50 alpha_lactalbumin 20 glucose oxidase 42 collagen

21 concanavalin 51 staphylokinase-B  21 hemoglobin 43 split-ovalbumin

22 l-glutathion 52 choline oxidase 22 cytochrome 44 native-c1 inhibitor  

23 aprotinin 53 ribonuclease B

24 purple membrane 54 albumin (human)

25 β-lactoglobulin 55 trypsin (bovine)

26 ubiquitin 56 ferritin

27 pig citrate synthase 57 peroxidase 

28 ribonuclease S 58 galactose

29 urease 59 glucose oxidase

30 papain 60 hemoglobin
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Table 4.5.  Table shows results for iPLS models for both global and local regression 

analyses. Results of the traditional PLS analysis of the Amide I region (1600-1700 cm
-1

) 

are listed for comparison. 

 

  

Calibration Set (60) Validation Set (44)

Structure MethodSpectral Region in cm
-1 Interval number CVcomp# R

2
 (CV) RMSECV R

2
 (pred) RMSEP

α-Helix PLS 1700-1600 Full Spectrum 4 0.85 0.181 0.71 0.120

iPLS 1700-1600 Global Model 3 0.80 0.144 -- --

1641-1628 5 3 0.78 0.149 0.79 0.135

β-Sheet PLS 1700-1600 full Spectrum 9 0.94 0.109 0.78 0.070

iPLS 1700-1600 Global Model 3 0.81 0.092 -- --

1627-1614 6 3 0.83 0.87 0.79 0.089

Parallel-β PLS 1700-1600 full Spectrum 3 0.44 0.050 -0.08 0.027

iPLS 1700-1600 Global Model 2 -0.05 0.038 -- --

1627-1614 6 2 0.03 0.036 0.08 0.035

AntiParallel-β PLS 1700-1600 full Spectrum 8 0.94 0.109 0.78 0.063

iPLS 1700-1600 Global Model 3 0.8 0.088 -- --

1627-1614 6 3 0.78 0.091 0.7 0.095

Mixed-β PLS 1700-1600 full Spectrum 9 0.79 0.024 0.38 0.013

iPLS 1700-1600 Global Model 2 0.32 0.016 -- --

1637-1624 5 2 0.37 0.015 0.41 0.016

310-Helix PLS 1700-1600 full Spectrum 3 0.53 0.037 0.26 0.029

iPLS 1700-1600 Global Model 3 -0.2 0.035 -- --

1649-1634,1657-1644 3,4 1 0.01 0.031 -0.03 0.03

β-Turns PLS 1700-1600 full Spectrum 4 0.60 0.051 0.23 0.043

iPLS 1700-1600 Global Model 1 0.02 0.046 -- --

1687-1674 2 1 0.14 0.043 0.11 0.041

Coils PLS 1700-1600 full Spectrum 4 0.62 0.157 0.65 0.082

iPLS 1700-1600 Global Model 3 0.1 0.111 -- --

1677-1664 3 5 0.54 0.099 0.42 0.136
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4.8 Conclusion 

FTIR spectra with PLS gives excellent quantitative results of protein structural analysis.  

Tables 4.1a and 4.1b show a good prediction of the proteins structural motifs as 

compared to the values given by X-Ray crystallography, for α helix, beta sheets and 

other.  On the average our regression analyses for the calibration set generated 

predictions to within 1-5% accuracy of all secondary structure content (α-helix, β-

sheets, 310-helix, turns and coils) in the Amide I region.  The independent test set result 

was very good as well. The results obtained for proteins in H2O and D2O were 

comparable to the reference data of X-ray crystallography; although in this analysis, the 

results (from Table 4.2) of proteins in H2O did slightly better than proteins in D2O.  

FTIR absorption spectra contain a great deal of information that can be utilised for 

classification and quantitative determination of protein and is a widely applicable 

technique; the use of Partial Least Squares (PLS) on FTIR spectra has been 

demonstrated as an effective method to provide reliable quantitative structural analysis 

of proteins.(157)  The Amide II region also gave results comparable to that of the 

Amide I region, especially for predictions of helix content; the Amide II region is 

known for being less sensitive to secondary structure of protein(181) and some literature 

report on the analysis of secondary structure in this region have reported less accurate 

results so a good prediction from this region was impressive.  Tables 4.1a/b show that 

Amide I and II combined gave a  much accurate result.  In addition to the elucidation of 

310-helix which has only being done with linear regression model by Goormaghtigh, 

Ruysschaert and Raussens without meaningful result as they clearly stated, (151) we 

have also been able to differentiate between parallel and anti-parallel β-sheet, and turns 

using our method.  This is not always done by spectra analysts because parallel β-sheet 

are less common and turns are not so structured and are difficult to determine.   
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Identifying those critical regions of a spectra for any given secondary structure motif 

can improve production cost and reduce analysis time and improve models(182).  iPLS 

models applied to the local models of  Amide I FTIR protein bands showed  better 

results  than the global models  for all structural types except in α-helix  where the  

RMSECV  (0.144) of the global model  is a little lower than that of the local model 

(0.149).   Given the number of components used and the lower RMSECV, the results of 

iPLS global model came out a little more accurate that of the full-spectrum of traditional 

PLS models; however, the RMSEP of full spectrum PLS was much better than the local 

model of iPLS for all structural types, meaning that the traditional PLS model did better 

as predicting new samples.  For quantitative analysis, iPLS is a valuable tool, especially 

for the identification of the spectral regions that are more significant for each structural 

motif but the trials and errors involved in identifying these intervals coupled with the 

fact that the full spectrum PLS analysis does better at quantifying proteins in 

independent test set discouraged the further used of the iPLS method for this project.  

With iPLS a priori knowledge of spectral regions for each secondary structure may 

guide in the spectral variable selection for iPLS; that being said, a look at other 

quantitative methods was valuable. 

Given the satisfactory performance of Multivariate Analysis tools such as PLS on FTIR 

protein spectra, and because of its effectiveness with collinearity,(104) it can be 

confirmed that the combination of the two is a powerful tool for the determination of 

protein secondary structure from spectra, including the not so common structural types 

like 310-helix. 

 



 

USING REGRESSION ANALYSES FOR THE DETERMINATION  

OF PROTEIN STRUCTURE FROM FTIR SPECTRA 137 

 

5 Multivariate analysis of pH effect on α-lactalbumin 

5.1 Introduction 

In this chapter the developed PLS model for determining the secondary structure of 

protein is applied to test the PLS model’s ability to quantitatively determine the 

structure of a denatured protein. Bovine -lactalbumin is the protein of choice because 

the denatured state of α-lactalbumin (α-LA) is the best characterized folding 

intermediate of globular proteins and has been studied by different spectroscopic 

techniques (183-185), but it does not have a comprehensive report of its percentage 

secondary structure at different pH values.  

 

The backbone hydrogen bonds and the side chain hydrophobic interactions are the most 

important bonds that make up the proteins’ secondary and tertiary structure;(186)  these 

structures can be broken by denaturing conditions and proteins typically need to be in 

their native conformations to operate properly, therefore the analysis of their secondary 

and tertiary structures is important for characterizing protein stability and function.(106)  

The structural changes undergone by proteins can affect their stability, e.g. in drug 

formulation where these changes could cause protein aggregation and affect drug 

efficacy,(187-189) therefore their higher order structure (secondary and tertiary 

structures) must be compared to some reference standard.(106, 190)  Structural changes 

could also be as a result of misfolding of the protein during biogenesis causing loss of 

their functions and also diseases such as Alzheimer's disease and systemic 

amyloidoses.(191, 192)  

 

It has been established that proteins in their native states carry out specific biological 

functions; understanding what distinguishes a protein’s partially folded states from the 
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fully folded proteins is critical for understanding protein folding and protein 

design.(193, 194)  These unfolding states can be induced by changing experimental 

conditions such as lowering the pH level of the protein.(195)  Protein folding 

intermediates typically show a well-preserved secondary structure and a reasonably 

compact globular structure that, however, lacks the side chain packing found in native 

structures.(196)  This state of protein folding which has a loose or absent tertiary 

structure and a native-like secondary structure is known as the molten globule.(197, 

198)  The molten globule states has been confirmed to occur in living cells and be 

implicated in diseases like Alzheimer's and Type II diabetes.(197, 199, 200)  

 

 As mentioned earlier, the molten globule state of α-lactalbumin (α-LA) is the best 

characterized folding intermediate of globular proteins.  α-LA, a calcium binding 

protein found in mammalian milk, has 124 residues, with a native structure divided into 

two domains;(193) see Figure 5.1.  One of α-LA’s domains (α-domain) is mostly helical 

in conformation while the β-domain has mostly β-sheet.(183)  Analysis of folding and 

unfolding protein pathways have been studied by CD and realtime NMR;(201) the 

studies have probed the structural changes of pH dependent transitions from the native 

state of pH 7.0 to the acidic state (A-state) of pH 2.0 (183, 202); however, the 

quantitative structural information on the different unfolding stages, has not been well 

covered.   

 

We have already established, in Chapter 4, that FTIR together with Multivariate 

Analysis (MVA) methods like PLS can quantitatively determine the secondary structure 

percentage of proteins in solution. To extract quantitative and qualitative information 

from denatured sample spectra, multivariate data analysis becomes a useful tool.(196)  
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In this chapter, MVA methods like Partial Least Squares (PLS) and Principal 

Component Analysis (PCA) are applied to bovine α-lactalbumin, to characterize the 

secondary structure conformational changes at each unfolding transition as a function of 

pH.  It has been reported by Troullier et al.(201) that FTIR can differentiate between 

native and non-native secondary structure present in folding states. We will investigate 

and compare the secondary structure results at both the native and non-native states of 

samples of -LA measured with FTIR spectroscopy. 

 

 

 

 

 

Figure 5.1. The diagram on the left of α-LA (PDB ID: 1HFZ) shows the native structure of 

α-LA, the intermediate unfolded state is shown in the middle and the unfolded state is 

represented on the right.  The PDB reported structure of the bovine α-LA (1HFZ is 43% 

helical structure, 9% -sheet, 48% other.  The Ca
2+

 ions are shown in black, the blue ribbon 

represents α-helix, the green ribbon represents 310-helix and the green arrows represent β-

sheet 

 

5.2 Sample preparation 

Bovine α-La was bought from Sigma-Aldrich, and was used without further 

purification. Solutions of 50 mg/mL of α-La were prepared in deionized H2O; as 

mentioned in D’Antonio, et al.(106)
  

protein concentrations higher than 25mg/mL 

provide great precision in IR spectra. Protein unfolding states can be generated by 

modification of the experimental conditions, by changing pH, temperature or 

pressure.(203, 204)  In this experiment, pH levels were adjusted with diluted HCl acid 

to induce conformational changes between pH 2.0 and 7.0.   Lowering the pH level by 
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~0.5 pH units for every new preparation of α-LA solution gave a total of eleven α-LA 

samples.  

 

5.3 ATR-FTIR Spectroscopy 

All sample spectra were acquired with ATR-FTIR at 32 scans and a resolution of 4 cm
-1

 

for both background and sample measurement; this is described in Chapter 2 for sample 

measurements. The overlapping bands in the Amide I region were subjected to second 

derivative analysis using a Savistzky-Golay algorithm with 5 degrees; this reveals the 

underlying absorption changes.(201)  Second derivatives were also calculated for the 

Amide II and Amide III regions to provide a consistent basis for analysis. 

 

5.4 PLS and PCA Modelling Technique 

The second derivative spectra of all 11 α-LA samples in the Amide I, Amide II and 

Amide III regions of the spectra were fed into the PLS application; the 11 α-LA samples 

were used as an independent test set; the calibration set of 75 spectra covering Amide I, 

II and III regions were extracted from the database used in Chapters 3 and 4.  For data 

processing, in-house Matlab (R2013a) routine of PLS and PCA codes were developed.  

An internal validation (cross-validation) was done on all spectra and the number of 

latent variables chosen from cross-validation was used for the prediction set.  The 

spectral plot of Figure 5.2 shows unfolded stages of α-LA (arising from changes in the 

pH levels) in the Amide I, Amide II and Amide III regions for each spectrum.  The 

unfolding of the protein structure can be monitored through changes in the frequencies 

and intensities of the well-resolved peaks in the FTIR spectra (205)   
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Figure 5.2.   Normalized FTIR spectra of α-LA from pH 7.0 to pH 2.0 covering spectral 

region 1900 - 1000 cm
-1

.   

 

PCA is designed to handle multivariate data, such as FTIR spectra, and does well in 

extracting contributing spectral wavenumbers related to structural conformation; this 

has already been established in Chapter 3 (PCA Protein Structure Classification) and the 

fundamentals of PCA were explained in Chapter 1.   

 

The measured pH adjusted α-LA spectra were normalized and put into a matrix form.  

The columns of the matrix represent the absorbance intensity at each wavenumber and 

each row of the matrix represents each spectrum at a certain pH.  PCA was then applied 

to the matrix of α-LA spectra to determine the structural changes as affected by pH.  

Since one of the roles of PCA is to reduce the dimensionality of the data thereby 

eliminating noise, we looked at the number of principal components (PC) used in 

describing the data because it tells us how much of the variance in the data is accounted 

for in each component; normally, as close to 95 - 100% of the variation is captured in 
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the first four components, of which the first two may hold 80 - 90%.(206)  This means 

that the information in the data can be studied by looking at the first and second 

principal components. We also visualized the plots of the PCA component scores (the 

transformed variable values) and the loadings spectra resulting from the Principal 

Component as these can help with observing how the samples are related to each other. 

 

5.5 Results and Discussion 

 Inspection of the Amide I Spectral Plots 5.5.1

A visual inspection of the normalized spectra (Figure 5.3) shows that the spectra of 

bovine α-LA at pH 7.0 to 3.5 had the usual Amide I peaks at about 1656 cm
-1

.  This 

peak intensity dropped significantly for pH 3.0 and increased around 1715 cm
-1

 with the 

right shoulder shifted to 1740 cm
-1

.  This suggests a decrease in the amount of 

secondary structure at pH 3.0.   For the spectrum of pH 4.0 spectra, there was a shift in 

the right shoulder from 1700 cm
-1

 to 1750 cm
-1

 and a slight peak was beginning to 

develop around 1720 cm
-1.   

 

 

Figure 5.3  The normalized Amide I region of -LA shows the changes and shifts in 

spectral peaks as pH decreases from 4.0 to 2.0 
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A shift of the Amide I peak was seen at pH 2.5 and pH 2.0 around 1715 cm
-1

. This 

visual inspection of the spectra explains the secondary structure quantitative results for 

the decrease in β-sheet for pH 3.0 spectra and a big gain in α-helix as at pH 2.5 and pH 

2.0. β-sheet picked up as α-helix declined (see section 5.5.2 for quantitative results).  

Figures 5.4a/b and 5.5b/c reveals the second derivatives of the spectra of pH 7.0 and pH 

2.0 and pH 2.5, and the shift in peaks from 1657 to 1715 cm
-1

.  The plots clearly 

demonstrate that as the pH levels drop, the structure of the protein goes through 

changes.  The second derivative band at pH 7.0 is much in line with the peak of the 

normalized spectrum which has a major contribution for α-helix at 1657 cm
-1

  and this is 

similar to the pronounced band around 1715 cm
-1 

at pH 2.0.  The peak at 1630 cm
-1

, a β-

sheet band, is almost non-existent at pH 3.5 and pH 3.0, but becomes more pronounced 

at pH 2.0; the PLS analysis results in Table 5.1 reflects this.   

 

 

 

Figure 5.4a.   Plot of the second derivatives of the FTIR spectrum for α-LA in the native 

state at pH 7.0. A peak at 1657-1658 cm
-1

 is clearly visible.  The second derivatives for pH 

6.5 and 6.0 (not shown) are very similar. 
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Figure 5.4b.  The plot of the normalized spectra of α-LA at pH 6-7 and the changes in the 

intensities and frequencies at about 1657 cm
-1

.  These spectra of pH 6.5 and pH 6.0 are 

similar to the spectrum of pH 7.0 which is in the native state. 

 
 

The spikes seen in the second derivatives plot in Figure 5.5a were not due to noise in the 

spectrum of α-LA at pH 3.0, therefore they must be due to the secondary structural 

changes going on at pH 3.0.  The pronounced Amide I peaks of 1656 cm
-1

 seen in 

Figure 5.5c are also visible in the second derivative spectra of pH 3.5 and 3.0 (Figure 

5.5a);  Again, this noisy-like effect seen in Figure 5.5a is due to the conformational 

changes that were occurring.  At pH 2.5 and pH 2.0, peaks have appeared near 1720 

cm
-1

 and these can be as seen in the plot of Figure 5.5c and their second derivative plot 

of Figure 5.5b.  
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Figure 5.5a.  This figure shows well resolved second derivative of α-LA in the pH 3.0 and 

pH 3.5; the second derivative spectrum shows a peak at about 1657 cm
-1

.  The green 

spectrum shows changes in intensity.   

 

 

Figure 5.5b.  This figure shows well resolved second derivative of α-LA at pH 2.0. The 

second derivative spectrum shows a peak at about 1720 cm
-1

. 
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Figure 5.5c.  Plot of the normalized spectra of α-LA at pH 2.0-3.5 and the shifts in the 

intensities and frequencies. 

 

 

 Amide I PLS Results 5.5.2

We first investigated changes in the Amide I band because this band contains 

information on the peptide backbone vibrational frequencies based on their hydrogen 

bonding, therefore, the major information on structural changes is contained in this 

band.(201)  First, the secondary structure of bovine α-LA was assessed by the 

comparison of the PLS result of pH 7.0 sample with the native reference values from 

DSSP.  This had to be done to validate the use of this method in the study of other non-

native states of α-LA.  From the values presented in Table 5.1, we can see that structural 

values of pH 7.0 (α-helix= 0.37, β-sheet = 0.08, 310-helix = 0.10, Turns = 0.17, 0ther = 

0.27).are similar to the reference values of pH 8.0 (α-helix= 0.31, β-sheet = 0.07, 310-

helix = 0.14, Turns = 0.18, 0ther = 0.31).  There is about -0.06 difference in α-helix and 
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-0.01 difference in values of β-sheet from the two different methods (FTIR and X-ray 

crystallography). The value differences of 310-helix, turns and ‘other’ between the two 

methods are within 0.01 and 0.04; which is remarkable.  DSSP script was used to 

calculate the secondary structure assignments of α-lactalbumin from the X-ray crystal 

3D structure entries in the PDB.  However, PDB combines α-helix and 310-helix into 

one as helical motif, and as such, PDB helical value for bovine α-LA is 43% helical and 

9% for β-sheet.  A combination of the α-helix and 310-helix values from the FTIR 

results (45%) presented in Table 5.1 is in close agreement with X-ray crystallography 

values.  This separation of secondary structure values by FTIR spectra cannot be 

accurate for other methods like CD because with CD, β-sheet, turns and disordered 

structure are hard to separate.(207)   

 

The PLS analysis for the Amide I also shows that the sample for pH 6.5 has a native 

structure form (α-helix = 0.34, β-sheet = 0.8, 310-helix = 0.12, Turns = 0.16, Other = 

0.32) which is close to the DSSP referenced α-LA structure.  In these pH structural 

values (pH 7.0 to pH 6.5), there was no visible formation of non-native structures, 

compared to the native reference protein. 

 

Given the above results, PLS is applied to the FTIR spectra of α-LA at other pHs.  The 

PLS results show that there were changes in the structure of α-lactalbumin, as the pH 

was lowered. There was an increase in α-helix content for pH 6 through pH 3 (as shown 

in Table 5.1), especially at pH 3.0 (α-helix = 0.44, β-sheet = 0.04, 310-helix = 0.15, 

Turns = 0.18, Other = 0.25).  β-sheet was significantly lower at pH 3.0 and then 

increased significantly at pH 2.5 and pH 2.0 while α-helix reduced; a decrease in 

disordered structure (Other) was also noticeable seen for pH 3.0; see Table 5.1.  It can 
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also be seen that there was an increase in α-helix and a decrease in β-sheet at pH 5.5 but 

not as significant as that at 3.0.  Overall, from the Amide I spectra measured in this 

study,  there were some changes in the α-helix content between pH 6.0 and 3.5 but β-

sheet increased slowly and was lower at pH 3.0 before increasing drastically; this agrees 

well with findings of Kim and Baum (184) who stated that the denaturation profile of α-

LA occurred in the pH range of 3.0 to 5.0.  The figures remained stable between pH 4.0 

and pH 5.0.  The proportions of the secondary structure of the analysed α-LA are 

presented in Table 5.1 and Figure 5.3.  These secondary structural changes at pH 2.5 

and pH 2.0 are also evident in Figure 5.5c and in their FTIR spectra of Figure 5.6.   

 

Table 5.1.  PLS prediction results for the secondary structure content of Amide I region of 

α-lactalbumin at different pH levels using normalized and 2
nd

 derivative pre-processed 

data.  Structural values are presented as proportions calculated from 1HFZ (pH 8.0) file 

using DSSP script. 

 

  

 

Parβ-Sheet denotes parallel -sheet; Anti par β-Sheet denotes anti-parallel -sheet 

 

Amide I

 pH α-Helix residueA β-Sheet residueB Par β-Sheet Anti-par β-Sheet Mixed β-Sheet 310-Helix Turns Other

2.0 0.30 0.01 0.15 -0.08 0.01 0.08 0.00 0.14 0.14 0.29

2.5 0.31 0.00 0.13 -0.06 0.01 0.06 0.00 0.14 0.15 0.30

3.0 0.44 -0.13 0.04 0.03 0.02 -0.04 0.00 0.15 0.18 0.25

3.5 0.41 -0.10 0.10 -0.03 0.02 0.09 0.00 0.08 0.15 0.29

4.0 0.38 -0.07 0.10 -0.03 0.02 0.08 0.00 0.09 0.17 0.30

4.5 0.39 -0.08 0.10 -0.03 0.01 0.10 0.00 0.10 0.16 0.28

5.0 0.38 -0.07 0.11 -0.04 0.01 0.10 0.00 0.10 0.16 0.28

5.5 0.42 -0.11 0.07 0.00 0.01 0.06 0.00 0.10 0.17 0.27

6.0 0.41 -0.10 0.08 -0.01 0.01 0.05 0.00 0.09 0.17 0.29

6.5 0.34 -0.03 0.08 -0.01 0.00 0.05 0.00 0.12 0.16 0.32

7.0 0.37 -0.06 0.08 -0.01 0.01 0.08 0.00 0.10 0.17 0.27

DSSP

8.0 0.31 0.07 0.00 0.07 0.00 0.14 0.18 0.31



 

USING REGRESSION ANALYSES FOR THE DETERMINATION  

OF PROTEIN STRUCTURE FROM FTIR SPECTRA 149 

 

 

 

 

 

 

Figure 5.6.   This plot highlights changes in the secondary structure of α-LA as a function 

of pH, based on PLS analysis. The horizontal axis values represents the pH values, the 

vertical axis represents the secondary structure proportions.  Below pH 3.0, a gain in β-

sheet and a loss in α-helix is seen. The error bars were calculated from the PLS result 

residual for each spectrum (which is the observed X-ray value – the calculated FTIR 

value). 

 

 

 Inspection of the Amide II Spectral Plots 5.5.3

In the Amide II region we found a main peak of the native form of α-LA at 1546 cm
-1

, 

as depicted in Figure 5.7, and a peak of the A-state (pH 2.0) at 1521 cm
-1

.  Although 

there appeared to be structural changes in the spectral plot, the change in intensities that 

was seen in the Amide I region was not noticed in the Amide II region; however, a shift 

in frequencies were noticeable, especially for pH 2.5 and pH 2.0.  The spectrum at pH 

2.5 developed a noticeable structural change but maintained a peak at 1546 cm
-1

. 
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Figure 5.7.   The plot of the normalized spectra of α-LA at pH 2.0 -7.0.  Plot shows peak 

shift and structural changes especially for pH 2.5 and pH 2.0  

 
 

 Amide II PLS Results 5.5.4

For Amide II results, again the comparison between the PLS result of pH 7.0 and the 

known structural values (PDB code 1HFZ) of X-ray crystallography calculated by 

DSSP was made to validate this method as fit enough to study other pH ranges in this 

region (1480-1575 cm
-1

);  The secondary structure figures for pH 7.0 (α-helix = 0.36, β-

sheet = 0.10, 310-helix = 0.11, Turns = 0.16, disorder = 0.30), are very similar to the 

DSSP values (α-helix = 0.31, β-sheet = 0.07, 310-helix = 0.14, Turns = 0.18, disorder = 

0.31) with residues of -0.04 and -0.03 for α-helix and β-sheet respectively.  Although 

there were structural fluctuations from one pH to another, a noticeable structural 

similarity was observed at  pH 4.5 (α-helix= 0.45, β-sheet=0.05, 310-helix = 0.11, Turns 

= 0.16, Other = 0.25) and at pH 5.0 (α-helix= 0.45, β-sheet = 0.05, 310-sheet = 0.11, 
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turns = 0.16, disorder = 0.25); a little decrease in disordered structure was also observed 

at these pH levels (pH 4.5 and pH 5.0).  Again, comparing these values against those for 

the known structure from DSSP (α-helix = 0.31, β-sheet = 0.07, 310-helix = 0.14, Turns 

= 0.18, disorder = 0.31), we see that α-helix structural values at these pH levels were 

0.14 more than the α-helix value of the reference protein.  β-sheet value was reduced at 

pH 5.0 and pH 4.5 but it increased drastically after pH 3.5, more than doubled in value 

at pH 2.0, while a reduction in α-helix was seen at these acidic states. These results are 

listed in Table 5.2. 

 

Table 5.2.  PLS Prediction results for the secondary structure of Amide II region of α-LA at 

different pH levels using normalized and 2
nd

 derivative pre-processed data. Structural 

values are presented in proportions. 

 

 

 

Parβ-Sheet denotes parallel beta sheet; Anti par β-Sheet denotes anti-parallel beta-sheet 

 

 Inspection of the Amide III Spectral Plots 5.5.5

Denatured protein produced some alteration in the Amide III band of α-Lactalbumin 

spectra as shown in Figure 5.8 and Figure 5.9.  It can be observed that the peaks of the 

Amide II

 pH α-Helix β-Sheet Par β-Sheet Anti-par β-Sheet Mixed β-Sheet 310-Helix Turns Other

2.0 0.25 0.06 0.19 -0.12 0.01 0.16 0.00 0.11 0.18 0.32

2.5 0.32 -0.01 0.13 -0.06 0.00 0.12 0.00 0.08 0.16 0.32

3.0 0.40 -0.09 0.10 -0.03 0.02 0.07 0.00 0.08 0.14 0.28

3.5 0.42 -0.11 0.07 0.00 0.02 0.05 0.00 0.09 0.16 0.29

4.0 0.37 -0.06 0.12 -0.05 0.00 0.10 0.01 0.10 0.15 0.27

4.5 0.45 -0.14 0.05 0.02 0.02 0.02 0.00 0.11 0.16 0.25

5.0 0.45 -0.14 0.05 0.02 0.01 0.03 0.00 0.11 0.16 0.25

5.5 0.43 -0.12 0.06 0.01 0.02 0.04 0.00 0.11 0.16 0.26

6.0 0.33 -0.02 0.12 -0.05 0.00 0.10 0.00 0.10 0.14 0.33

6.5 0.26 0.05 0.14 -0.07 0.02 0.13 0.01 0.12 0.13 0.32

7.0 0.36 -0.05 0.10 -0.03 0.01 0.08 0.01 0.11 0.16 0.30

DSSP

8.0 0.31 0.07 0.00 0.07 0.00 0.14 0.18 0.31
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spectra of pH 3.4 through pH 2.0 registered at 1278 cm
-1

 but pH 3.5 and pH 3.0 were 

beginning to show alterations at the shoulders. These settled changes were picked up by 

the PLS quantitative result in Table 5.3 for α-helix and β-sheet.  Amide III bands at 

1300, 1260, and 1235 cm
-1

 regions have been assigned to α-helix, disordered, and β-

sheet structures.(208).  The 1250 cm
-1

 band normally seen for Amide III peak appeared 

at 1278 cm
-1

; This means that the pH dependent structural changes are not local to the 

Amide I region alone but are also effective in the Amide III region   These peak values 

changes at about the same regions in the Amide III have also been reported by Anderle 

and Meldelsohn(209) in their work for denatured proteins. 

 

  

 

Figure 5.8. This is the plot of the effect of pH 3.5 (intermediate) – pH 2.0 on the 

normalized Amide I spectral region of α-LA protein.  Plot shows slight changes at these pH 

levels.  The different spectral colours represent different pH levels. 

 

 

Amide III bands for pH 4.0 – pH 5.5 had their main peak at 1250 cm
-1

.   In addition to 

the major peak at 1250 cm
-1

 which correlates to the β-sheet region of Amide III, pH 5.0  

and pH 5.5 had reduced intensities but significant peaks at 1290 cm
-1

 and 1300 cm
-1
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respectively (β-turns); these regions are in agreement with the α-helix regions for 

Amide III (α-helix: 1330–1295 cm
−1

, β-sheets: 1250–1220 cm
−1

, β-turns: 1295–1270 

cm
−1

, random coils: 1270–1250 cm
−1

) reported by Cai and Singh(39) in their study of 

infrared bands for secondary structure.  The spectra for these pHs were not as smooth as 

that of the spectra of the native state α-LA (pH 7.0); this is because of the many spectral 

features present in the Amide III region.   

  

Figure 5.9.   Plot of Amide III region depicts peaks shift for pH 5.5 - pH 4.0 at 1250 cm
-1 

and pH 4.0 at 1279 cm
-1 

respectively. 

 

At pH 7.0 and 6.5, the spectral peak was at 1256 cm
-1

 as shown by the plot of Figure 

5.10 and well in agreement with literature report for the Amide III region peak(210).  At 

pH 6.0 a peak had developed at 1240 cm
-1

 and this make the transition to the 1250 peak 

seen at pH 5.5.  Amide III PLS results obtained in this experiment are close to X-ray 

crystallography values for α-lactalbumin. 
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Figure 5.10.  Plot of Amide III region depicts peak for pH 7.0 (native protein) at 1256 cm
-1  

 

 Amide III PLS Results 5.5.6

Amide I and Amide II regions of FTIR spectra are the two regions popularly used in the 

determination of protein secondary structure.  The Amide III region (1200-1350 cm
-1

) is 

often neglected due to its relative weakness, yet this region offers some advantages for 

the IR study because the range of vibrational frequency for secondary structure in the 

Amide III region is somewhat greater than Amide I or Amide II.(209)  Moreover, the 

water vapour absorption overlap found in the Amide I region is not an issue in the 

Amide III region.  PLS results of native and unfolding spectra in this study are 

highlighted in Table 5.3.  At pH 7.0 , pH 6.5 and especially at pH 6.0, the value of  α-

helix increased as compared to its DSSP numbers (See Table 5.3)  -sheet increased 

tremendously at pH 5.0, 3.0, 2.5 and pH 2.0 while α-helix for these pH values reduced 

from the values seen at pH 6.0, pH 6.5 and pH 7.0.  sheet contributions decreased at 

pH 4.0 and pH 3.5; an increase in β-sheet formation was seen as the pH reached the A-

state (2.0). The spectra of pH 7.0 has the closest values to that of the reference protein, 
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showing that it is possible to determine the secondary structures of proteins from the 

Amide III region of the native protein spectrum (see Table 5.3).    

Table 5.3. PLS Prediction results for the secondary structure content of Amide III region of 

α -lactalbumin at different pH levels using normalized and 2
nd

 derivative pre-processed 

data.  Structural values are presented in proportions. 

  

Parβ-Sheet denotes parallel beta sheet; Anti par β-Sheet denotes anti-parallel beta-sheet 

 

 PCA of α-Lactalbumin Spectra 5.5.7

PCA did well in describing the changes in the secondary structure of the α-LA 

unfolding process; this PCA analysis was performed on Amide through Amide III. PC1 

captured close to 95% of the total Amide I absorbance and the PC2 component captures 

about 5%, while PC3 captured 3% of the remaining variances not described by the PC1 

and PC2.  This means that the variation in the data are well distributed and data noise 

distortion was not an issue. 

 

The Principal Component Score plot of Figure 5.11 shows the classification of -LA 

spectra based on its pH levels.  From this plot it can be seen that between pH 7.0 and pH 

4.5, α-LA is close to its native structure as depicted on the left of PC1, while the acidic 

lower pH structures lie on the right of the plot.  PC2 places the spectra with the most 

Amide III

 pH α-Helix β-Sheet Par β-Sheet Anti-par β-Sheet Mixed β-Sheet 310-Helix Turns Other

2.0 0.34 0.19 0.03 0.15 0.00 0.09 0.13 0.29

2.5 0.34 0.19 0.03 0.15 0.00 0.09 0.14 0.29

3.0 0.23 0.23 0.00 0.21 0.00 0.09 0.12 0.32

3.5 0.36 0.18 0.02 0.15 0.00 0.10 0.14 0.29

4.0 0.36 0.15 0.00 0.13 0.01 0.14 0.16 0.30

4.5 0.28 0.17 0.00 0.17 0.00 0.10 0.16 0.31

5.0 0.25 0.20 0.02 0.17 0.00 0.09 0.16 0.28

5.5 0.34 0.12 0.01 0.12 0.01 0.13 0.18 0.24

6.0 0.54 -0.11 -0.01 -0.02 -0.01 0.13 0.21 0.17

6.5 0.48 0.06 -0.02 0.07 -0.01 0.13 0.18 0.20

7.0 0.40 0.08 0.01 0.08 0.01 0.14 0.17 0.26

DSSP

8.0 0.31 0.07 0.00 0.07 0.00 0.14 0.18 0.31
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structural shifts at the top (pH 4.0 to pH 3.0).  The score plot shows a gradual structural 

shift from 5.5 to 4.5 and then a fast shift to pH 3.5, pH 3.0 and pH 2.5 before slowing 

down; this suggests a conformational change in the process of unfolding.(211)  This 

also supports the Amide I stable intermediate figure obtained from PLS for pH 5.0 

through pH 4.0 (see Table 5.1).  A clear 3 state transition can be seen in the PCA score 

plot of Figure 5.13, the native (N) state on the left of PC1, the unfolded stable (U) state 

on the right of PC1 and the intermediate (I) state at the top clearly separated by PC2. 

 

 

Figure 5.11.  Score plot of α-LA at different pH on the first and second principal 

components. Principal Component Score plot shows the classification of α-LA spectra 

based on the pH levels. PC1 has more native state spectra on left and acidic state spectra on 

the right. PC2 separates the intermediates at the top  

  

The loadings plot presented in Figure 5.12 and Figure 5.13 enabled us to classify the 

absorbance changes into ranges attributed to the three states. Using the PCA approach, 

it was possible to detect the changes that are directly correlated with the Amide I, 

Amide II and Amide III regions of the FTIR spectra.(212) These are indicated in the 

three positive PC1 peaks around 1656 cm
-1 

1545 cm
-1 

and 1280 cm
-1 

respectively.  The 

-15 -10 -5 0 5 10 15 20 25 30 35
-6

-4

-2

0

2

4

6

8

First Principal Component

S
e

c
o

n
d

 P
r
in

c
ip

a
l 
C

o
m

p
o

n
e

n
t

pH 2.0
pH 2.5

pH 3.0
pH 3.5

pH 4.0

pH 4.5

pH 5.5

pH 7.0

pH 5.0pH 6.5



 

USING REGRESSION ANALYSES FOR THE DETERMINATION  

OF PROTEIN STRUCTURE FROM FTIR SPECTRA 157 

 

values are in good agreement with literature reports, where assignments for the three 

bands for different proteins are presented.(210, 212, 213)   

 

 

Figure 5.12.  Loading plot shows the most significant wavenumbers that contribute to the 

spectral discrimination seen in the score plot in figure 5.13. 

 

   

 

Figure 5.13.  Loading spectra of PC1 and PC2 shows the most significant wavenumbers that 

contribute to the spectral discrimination seen in the score plot in Figure 5.11.  Both plots of 

Figure 5.12 and 5.13 were combined for the analysis, but can be used separately.  
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As can be seen in Figure 5.15, PC1 depicted 1651 cm
-1

 from the Amide 1 region and 

1546 cm
-1

 from the Amide II region as significant marker bands on the negative 

intensities; these marker bands contribute strongly to pH 7.0 down to 4.0; 1713 cm
-1

 on 

the positive side is significant to pH 3.0 through to pH 2.0; PC2 has also picked up these 

bands as 1656 cm
-1

 for Amide I, 1546 cm
-1

 for Amide II and 1709 cm
-1

 respectively.  

The peaks of 1693 and 1709 cm
-1

 are assigned to antiparallel sheets normally seen 

with aggregated protein. (214)  These can also be seen in the Amide II normalized 

spectral plots shown in Figure 5.7 and 5.8. 

 

Another report for secondary structure frequency windows for Amide III are: α-helix, 

1328-1289 cm
-1

; unordered, 1288-1256 cm
-1

; and β-sheets, 1255-1224 cm
-1

, as stated by 

Fen-Nifu et al.(210) in their study of Amide III FTIR spectra;  1280 cm
-1 

was picked up 

by PC1 of the loading plot while PC2 highlighted 1273 cm
-1

 as the most significant 

peak for the denatured spectra of pH 3.5 to pH 2.0.  These wavenumbers fall within the 

unordered frequency window listed above.  Peaks seen at 1335 cm
-1

 (PC1) and 1335 

cm
-1

 (PC2) in Figure 5.15 are attributed to α-helix structure based on literature figure 

comparison.(210) 

 

 Comparison with other methods 5.5.8

The comparison here is not with other quantitative analysis methods since this level of 

secondary structure detail of denatured lactalbumin has not been previously reported. 

The comparison will be made on the experimental methods.  Arai and Kuwajima (215), 

in their CD and NMR study of the formation of the molten globule in bovine α-LA, held 

the same view as Alexandrescu et al.,(216) that α-LA has similar amount of secondary 

structure in its intermediate as in the native molten globule state;  however, these 
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literature did not report on the exact amount of each secondary structure motif at each 

stage of the transition. The analytical tools developed in this project now allow such 

quantitative information to be obtained. 

 

Paci, et al.(24) described the molten globule state of α-LA, as being stable under acidic 

conditions (pH 2).  In their CD study of partially unfolded state of a-LA, they found that 

α-helix is the best preserved secondary structure, as did this study.  The Amide I result 

from this study found that α-helix and 310 helix retained values similar to their structural 

values of X-ray crystallography but -sheet increased tremendously in the acidic states.  

Rosner and Redfield also found, in their NMR study of a-LA at both pH 2.0 and pH 7.0 

, that helical structure was more resistant to at pH 2.0 than at pH 7.0.(217)  

  

Bramaud et al.(218) stated that α-LA calcium  binding is pH dependent, especially 

below pH 4.0; its isoelectric point is between pH 4.2 and pH 4.5 where the 

hydrophobicity increases (leading to lower solubility).(219)  Lefevre and Subirade(220) 

described this process as the breakage of intramolecular bonds of the native structure at 

the exposure of the initially hidden hydrophobic core which later cause intramolecular 

antiparallel β-sheet formation in an attempt by the protein molecules to hide their 

hydrophobic groups from water, this condition is often seen with the denaturation of 

proteins.  This could explain why in this study, there is a decrease in β-sheet at pH 3.0 

where the absence (apo-form) of calcium is exhibited.  α-LA has been shown to acquire 

an apo-like conformation at around pH 4, (202, 219)
 
it is also important to point out that 

the proportion of disordered structure for pH 3.0 was reduced compared to that at pH 

4.0.  There was, however, a stable structure from pH 5.0 - 4.0. 
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Nozaka, et al.(221)  reported a molten globule from denaturant-induced unfolding of α-

LA at near-neutral pH as well as acidic pH.  From the multivariate analysis results of 

the Amide I region shown in Table 5.1, the secondary structure values at pH 6.5 are the 

closest to the DSSP native reference values; the values at pH 2.5 and pH 2.0 cannot be 

considered because of the raised β-sheet values. 

  

5.6 Conclusion 

FTIR spectra of α-lactalbumin treated with HCl allowed us to study α-LA denatured 

states dependent on pH levels; this study was done by means of Multivariate Analysis 

(MVA). The results have shown that Multivariate Analysis (MVA) is a suitable tool for 

both qualitative and quantitative analysis of protein unfolding.   

 

Exploratory analysis and supervised classification, using Principal Components 

Analysis (PCA) and Partial Least Squares revealed that FTIR spectroscopy is able to 

correctly discriminate between native-like and non-native states of proteins.  PCA, a 

form of MVA, was able to extract the wavenumber contributions for different 

transitional states of α-LA unfolding and Partial Least Squares (PLS) captured, 

quantitatively, the values of the structural conformations of the protein during the 

unfolding process.  FTIR spectroscopy, together with MVA, is increasingly becoming 

an important method to determine secondary structure of proteins.(157)  Although CD 

spectroscopy has been used extensively in the study of denatured proteins, some motifs 

like -sheet, -turns and coils overlap and have relatively small signals. CD signal is 

dominated by the -helix component. This makes for a difficult interpretation and CD is 

therefore prone to error.(201, 222)  
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It can be seen from the spectral plots presented in Figures 5.4, 5.6 and 5.7 that there 

were peak and shoulder shifts and intensity shifts from one pH value to another;  These 

losses and gains of the secondary structure show that there was an intermediate during 

unfolding.(196) (223)  A three state transition (native N, Intermediate I, Unfolded U) 

can be seen in these plots and in the PLS results of Tables 5.1, 5.2 and 5.3.  Whereas α-

helix values fluctuated a little, perhaps sensitive to the denaturant solvent, β-sheet 

values lowered significantly at pH 3.0  (for Amide I); from all indications, there was an 

unfolding tertiary structure change at these pH levels.  

 

The predicted values of secondary structure elements of α-LA in native-like state, by 

PLS, showed strong agreement with its secondary structure values from X-ray 

crystallography. This chapter also describes, in Table 5.4, the identification of Amide I, 

Amide II and Amide III bands of native and denatured α-Lactalbumin protein obtained 

from our qualitative analysis.  

 

Among all spectral regions arising out of Amide bonds modes, Amide I and Amide III 

spectral bands have been reported to be the most sensitive to the variations found in 

secondary structure folding.(39)  Amide I results from PLS quantitative analysis in 

Table 5.1 were more meaningful because it distinguished the three state transition better 

than Amide II and Amide III. 

 

Overall, the results presented in this chapter provide strong evidence that the percentage 

of each of these secondary structures can be derived at each pH level, and that α-LA has 

undergoes structural changes as the pH is reduced towards the acidic states.  PCA does 

show the spectroscopic marker bands that differentiate between native and non-native 
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proteins.  The PCA of the FTIR spectra showed that the three-state transition of α-LA is 

the result of the pH dependent conformational changes.  PCA was able to detect the 

structural changes of the pH dependent transition.   

 

There are evidence that several amyloid diseases are cause by prefibril intermediates; 

FTIR spectroscopy is a very powerful tool which can be applied to diluted proteins as 

well as to aggregated protein to reveal their molecular details.(186)  FTIR 

measurements were sensitive to the changes associated with the formation of the A-state 

of a-LA(224) and FTIR spectral classification and elucidation of protein secondary 

structure by Multivariate Analysis (MVA) can be used to monitor protein 

folding/unfolding.  
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6 Limit of Quantitation of Protein Structure Using PLS 

6.1 Introduction 

Limit of Quantitation (LoQ) is a term used to describe the lowest concentration of a 

sample at which a reliable quantitative result can be measured or detected by an 

analytical procedure.(225)  This is not to be confused with Limit of Detection (LoD) in 

which the measurement focuses on the lowest quantity of a substance that can be 

distinguished from the absence of that substance or blank.  In the former (LoQ), the 

focus is on the quantification method which we have established in this project, to be 

Partial Least Squares (PLS); in the latter (LoD), the focus is on the instrumentation used 

for the measurement.    

 

Using Multivariate Regression (MVR) methods like Partial Least Squares (PLS) 

together with FTIR is becoming a more accepted way of analysing protein secondary 

structure in native and denatured states.  The goal of this study is to investigate the 

potential use of FTIR with MVR method for the elucidation of secondary structure from 

low protein concentrations.  Some pharmaceutical proteins are formulated at relatively 

high concentrations greater than 25 mg/mL when using H2O as a solvent, this provides 

good precision, reproducible and quantifiable results;(106) however, 1 – 5 mg/mL has 

been reported as the low limit for ATR-FTIR with D2O as a buffer.(226)  Many 

analytical techniques are not able to deal with very high protein concentrations (50 

mg/mL), whereas in FTIR the higher concentrations are actually beneficial to the 

analysis.(227)  However, for forensic studies where detection of substances in low 

concentrations is important(228) (e.g. drug test in urine sample), methods with a low 

Limit of Quantitation (LoQ) are needed; for example, illicit drugs use have made it 
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necessary to develop a fast and reliable method for identifying and quantifying 

substances in low concentrations.(229) 

 

Six different proteins in H2O solution were measured from a high concentration of 

200mg/ml down to a low concentration of 0.19 mg/ml and were analysed for their 

secondary structure components using the PLS tools described in Chapter 4.  These 

proteins were chosen for their availabilities and well characterized structural and 

spectral properties.  Three all α-proteins: BSA (PDBID: 3V03) used to maintain the 

osmotic pressure and pH of blood, (230-232) Fibrinogen (PDB ID: 3ghg) is essential for 

blood clot formation(233) Lysozyme (PDBID: 2LYZ) can break down bacterial cell 

walls and is used for food preservation(234, 235).  Three all β-proteins:  IgG  (PDBID: 

3AGV) used for biologic therapies,(236) β-lactoglobulin (PDB ID: 1BEB) a major 

protein component in mammalian milk and whey protein,(237) Ubiquitin (PDB ID: 

2ZCB) which plays a vital role in protein degradation.(238)  These proteins, especially, 

lysozyme and BSA are used for laboratory testing of different techniques and standards. 

 

ATR-FTIR measurements of the lowest concentrations for these protein samples were 

conducted to test the method used for quantification, therefore, measurements of each 

sample were collected until the spectrum of the sample was difficult to detect on the 

instrument screen.  The objective of this exercise was to test the ability of PLS for 

determining protein structure from sample spectra at low concentration and to determine 

at what lowest concentration these results were still reliable, hence, the test for LoQ.    
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6.2 Sample preparation 

Bovine serum albumin (BSA), β-lactoglobulin, fibrinogen, IgG (Human), lysozyme 

(hen egg white), and ubiquitin were obtained from Sigma-Aldrich, and were used 

without further purification. Each protein was dissolved in H2O to a concentration of 

200 mg/mL, and each stock solution was sequentially diluted by 50% until the spectral 

intensities of each of the samples was too weak to measure further.  Therefore, spectra 

were acquired at 200mg/mL, 100mg/mL, 50mg/mL, 25mg/mL, 12.50mg/mL, 

6.25mg/mL, 3.13mg/mL, 1.56mg/mL, 0.78mg/mL, 0.39mg/mL, 0.19mg/mL, giving a 

total of 11 concentration samples per protein. 

 

6.3 FTIR Spectroscopy 

All sample spectra were acquired with ATR-FTIR at the resolution of 4 cm
-1

 collected 

over the range of 900 cm
-1 

and 4000 cm
-1

; water subtraction and baseline correction 

were done as described in Chapter 2 for sample measurements.  Chapter 2 (section 2.3) 

also covers the exact instrument and spectral measurements used for all proteins in this 

thesis.  Several of the protein spectra at low concentrations below 0.19mg/mL were very 

weak, very noisy and sometimes bands could not be detected; therefore in the interests 

of consistency no spectra acquired for concentrations below 0.19mg/ml were used.  

There were 11 spectra per protein sample giving 66 samples for the six measured 

proteins shown in Figure 6.1.  Water absorption was subtracted as described in Chapter 

2 and the spectra were subject to second derivative using Savistzky-Golay algorithm 

with 5 degrees to resolve spectral bands in the Amide 1 region which were used for this 

analysis.  From quantitative analysis done in Chapter 4, second derivative can be used to 

effectively enhance the analysis of the secondary structure of proteins from their FTIR 

spectra.  
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Figure 6.1.  The raw spectra of six proteins (β-Lactoglobulin, BSA, fibrinogen, IgG, lysozyme, 

and ubiquitin) acquired at 200, 100, 50, 25, 12.5, 6.25, 3.13, 1.56, 0.78, 0.39, 0.19 mg/mL.   

 

 

6.4 PLS Model 

As mention in section 6.3, for the investigations of the secondary structure of proteins 

from these spectra at different concentrations, the Amide I spectral region was used. 

The Amide I regions of the measured ATR-FTIR spectra were normalized and subject 

to application of a second derivative before PLS analysis.  The 66 samples were used as 

an independent test in ‘matrix X’ set for this analysis. The fraction of each secondary 

structure motif for each of the reference proteins in ‘matrix Y’ were derived from X-ray 

data using the DSSP script.  The already established models from the previous analysis 

described in Chapter 4, which contain 84 protein spectra in the calibration set, were 
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used for structural determination for the different protein concentrations.  This model 

satisfies the condition described by eq. (1.3) in Chapter 1.  The PLS models were 

validated, as specified in Chapter 1, with 10-fold (segments) specified.  Again, this 

algorithm aims to maximize the association between the secondary structure of proteins 

in matrix X and their DSSP values in matrix Y while minimizing E (error).  The 

principles underlying the PLS technique were described in Chapter 1. 

 

6.5 Results and discussion 

High quality FTIR spectra of proteins are usually obtained using high protein 

concentrations. Dong, et al. (136) reported that higher than 12 mg/mL of protein 

concentration is required to obtain good quality infrared spectra, and D’Antonio, et 

al.(106) also reported that concentrations at 25mg/ml or higher provides good precision 

and reproducibility.  In Figure 6.1, it can be seen that the quality of the spectrum 

decreases with decrease in concentration, as expected, and this, as Dong, et al. argued in 

their study, has made FTIR spectroscopy not quite as useful in the study of protein at 

low concentration.  It also makes it difficult to compare spectra measured by FTIR and 

circular dichroism.  With the use of Multivariate Regression (MVR) analysis such as 

PLS, the contributions of weaker bands can be equally as significant as those of stronger 

bands by using normalization.  Spectral data points were scaled to values between 0 and 

1 for all spectra, making them compatible with each other and useful for multivariate 

analysis.(88)   

 

Proteins used for the analysis of secondary structure in the previous work performed in 

this research and presented in the previous chapters were collected at a uniform 

concentration of 50mg/mL; this was to ensure high quality spectra.  However, the pre-
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processing methods such as normalization (as seen in Figure 6.2 of the Amide I region) 

and second derivative ensures that, even at low concentration, PLS can extract the latent 

variables that explain the structural variations in the dataset.(239) 

 

 

 

Figure 6.2.  Spectra of 66 proteins in the Amide I region in concentrations between 200 mg/mL 

and 0.19 mg/mL and scaled for PLS analysis. 

 

Figure 6.3 shows the scaled spectra of Lysozyme acquired at the concentration of 200 

mg/mL, 50 mg/mL, and 0.19 mg/mL.  While all 3 spectra show peaks at about 1654 cm
-

1
,  there are noticeable difference in the spectra;  the spectrum at the lower concentration 

(0.19 mg/mL) shows peaks at 1610 cm
-1 

and 1680 cm
-1 

 and seems to have more 

structural variations than the spectra of the 50 mg/mL and 200 mg/mL.  The spectrum of 

200 mg/mL appears broader than the other two spectra in the plot.   
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Figure 6.3.  Comparison of normalized spectra of Lysozyme at concentration of 0.19 mg/mL, 

50mg/mL and 200 mg/mL in the Amide I region with major peak at 1654 cm
-1 

 

 

The results for the secondary structure analysis seen in Table 6.1 for Lysozyme reflects 

these observations; 0.19 mg/mL results of 0.33 for α-helix and 0.07 for β-sheet were 

closer to the reference value of 32% α-helix and 6% β-sheet, which is much better than 

better than 200 mg/mL with 0.37 for α-helix and 0.02 for β-sheet.   

 

To further demonstrate the quality of the spectra obtained at the low concentration of 
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normalized spectra.  The spectrum measured at 200 mg/mL, in either plot, shows a peak 

at 1630 cm
-1  

(β-sheet band) (136) while the spectra at 50mg/ml and 0.19 mg/mL show 

peaks at 1640 cm
-1

.  To determine if there is any difference in secondary structure 

contents of the proteins based on the different concentrations, PLS results of these 

proteins were reviewed and their results are listed in Tables 6.1 – 6.5.  The PLS 

prediction for IgG shows that the values at 200 mg/mL for α-helix and β-sheet are well 

in agreement with the reference value than at 50 mg/mL and 0.19 mg/mL.  Unlike β-

lactalbumin or lysozyme, IgG undoubtedly does better with the measurement of 

200mg/mL. 

 

 

Figure 6.4a.  The second derivative spectra of the Amide I region of IgG in aqueous solution at 

200 mg/mL, 50 mg/mL and 0.19 mg/mL collected with FTIR spectroscopy
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Figure 6.4b.  The normalized spectra of the Amide I region of IgG in aqueous solution at 200 

mg/mL, 50 mg/mL and 0.19 mg/mL collected with FTIR spectroscopy.  

 

The PLS result for the secondary structure contents of the six proteins used in this 

analysis are listed in Tables 6.1 - 6.5.  The bar graphs have been colour coded for ease 

of review.  The left hand black bar for each protein result is the reference value from 

DSSP analysis of X-ray crystallographic data for that protein and the white bar in black 

outline (50 mg/mL) is the concentration used for the prediction model.   
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secondary structure predictions).   The predicted value of α-helix for IgG at 0.19 mg/mL 

(α-helix: 0.03, β-sheet: 0.40) was low but the result at 0.39 mg/mL (α-helix: 0.07, β-

sheet: 0.39) obtained from this analysis were in agreement with Circular Dichroism 

(CD) results for α-helix (8%) and β-sheet (41.3%) provided by Tetin et al.;(240) 

although the concentration used for the CD measurement was not stated,  CD spectra 

are normally collected at 0.1 - 0.2 mg/mL.  β-lactoglobulin results were in reasonable 

agreement with X-ray crystallography values for all structural types for concentrations 

between 0.19 and 1.56 mg/mL (See Tables 6.1 -6.4 for values).  Ubiquitin, at higher 

concentrations (0.50 mg/mL, 100 mg/mL, 200 mg/mL) had poorer α-helix results (0.20, 

0.19, 0.24) respectively, as compared to the reference value of 0.16.  Lysozyme, with a 

major peak at 1654 cm
-1

 due to the presence of α-helix, gave results similar to the 

structure of X-ray crystallography (within ±0.05 accuracy) for all concentrations. 

Lysozyme results at 0.19 mg/mL (α-helix:0.33,  β-sheet: 0.07) compared with X-ray 

Crystallography values used for this study (α-helix = 0.32,  β-sheet: 0.06) were also 

comparable to (Chen, et al.) (241)  results given for α-helix and β-sheet content from 

CD (α=0.37, β= 0.11) with X-ray crystallography values of (α= 0.41, β=0.16).  

Fibrinogen maintained its accurate results for higher concentrations (3.13 mg/mL to 

200mg/mL) for the prediction of α-helix and β-sheet but also had very good results from 

the lower concentration.  These results can be viewed in Tables 6.1 – 6.5.  BSA also had 

very good result with lower protein concentrations from 0.19mg/mL up to 6.25 mg/mL. 

 

It appears that the all α-proteins gave consistent results for the secondary structure 

predictions across the board except for the prediction of β-sheet content.  Overall, 

results at lower concentrations for FTIR are consistent with that of their reference 

protein values from X-ray crystallography and also with CD results for the compared 
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proteins given above.(241, 242)   Overall, the results shown in Tables 6.1 – 6.5 are not 

concentration dependent, and this quite evident with 310-helix (Table 6.3) where 

sometimes proteins of lower and higher concentrations had more accurate results than 

the concentrations in the middle; therefore the randomness seen in the data values may 

be due to noise or systematic error due to interference during spectral measurement. 
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Table 6.6 lists the R
2
 and overall root-mean-square error for prediction (δ); estimated (δ) 

are less than 0.04 for 66 protein samples (11 different concentrations per protein).  This 
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is a good prediction error of the secondary structure analysis of the proteins in the test 

set.  Figure 6.5 and 6.6 show the line of fit from the analysis. 

 

Table 6.6.  R
2
 and RMSE (δ) of PLS analysis of secondary structure contents determined from 

FTIR spectra in the Amide I regions. 

 

 

α-helix β-Sheet 310 helix Turns Disordered 

R
2
 0.98 0.96 0.88 0.97 0.88 

δ 0.039 0.031 0.009 0.010 0.026 

 

 

 

  

Figure 6.5.  Plot of predicted α-helix content from FTIR spectra of concentrations between 0.19 

mg/mL and 200mg/mL in comparison to the content measured from X-ray crystallography.  The 

Amide I region (1600 – 1700 cm
-1

) was used for the PLS analysis. 
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Figure 6.6.  Shows β-sheet structure predicted from FTIR spectra of concentrations between 

0.19 mg/mL and 200mg/mL vs. X-ray crystallography.  Amide I region (1600 – 1700 cm
-1

) was 

used for the PLS analysis. 

 

6.6 Conclusion 

The results presented in this work show the potential usefulness of ATR-FTIR with PLS 

in determining protein secondary structure from low concentrations of samples.  It is 

important to analyse methods for their performance and limitations in order to ensure 

that they are fit for purpose (225, 228); in this case, using multivariate regression 

analysis on decreased sample concentrations to determine the method’s usefulness.  

 

It was difficult to acquire protein measurements below 0.2 mg/mL for some of the 

proteins used for this study because the signal to noise decreases as the protein 

concentration decreases, and at such low concentration, the spectra are unusable; 

therefore, results are focused on protein concentrations between 0.19 mg/mL and 200 

mg/mL.   To acquire good spectra by conventional FTIR method, protein concentrations 

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

-sheet test set


-
s
h
e
e
t 
p
r
e
d
ic

te
d

-lactalbumin

IgG

Ubiquitin

Lysozyme

Fibrinogen

BSA



 

USING REGRESSION ANALYSES FOR THE DETERMINATION  

OF PROTEIN STRUCTURE FROM FTIR SPECTRA 181 

 

above 10 mg/mL are normally used for proteins in H2O solutions due to the strong 

absorption of water molecule in the Amide I region;(13, 136)  However, technical 

advances in FTIR spectroscopy have made it possible to routinely acquire protein 

spectra from aqueous solutions at concentrations reportedly as low as 0.5mg/mL with 

good signal to noise ratio,(136) therefore making it possible to compare FTIR results to 

CD which is a well-established technique for determining the secondary structure of 

proteins in solution.  In addition, CD spectroscopy is limited by the strong overlap of β-

sheet, β-turns and unordered structure.(207)   

 

Results from this study gave a RMSE of less than 0.04 for α-helix and β-sheet 

prediction for samples collected at concentrations between 0.19 mg/mL and 200 

mg/mL.  These results are more accurate than the CD prediction results with RMSE of 

0.06 – 0.1 for both α-helix and β-sheet (sample concentrations collected at 0.1 – 2.0 

mg/mL).(136, 175, 177, 243, 244)     

 

Again, this study was not done to determine the limit of detection of protein spectra by 

ATR-FTIR, rather, it was done to determine how well multivariate regression analysis 

methods like PLS can determine secondary structures from spectra of low 

concentrations.  The results derived from this study show that the combination of 

second derivative and PLS analysis of FTIR spectra of proteins, has made it possible to 

resolve peak intensities and statistically derive their secondary structure conformations 

at even low concentrations. 
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7 Conclusion 

 

This thesis has demonstrated that spectroscopic techniques can be used in conjunction 

with multivariate analytical tools in order to achieve great results for the structural 

analysis of proteins in solutions.  Even though X-ray crystallography and NMR are used 

to solve the three dimensional structures of proteins, they have their limitations; protein 

crystallography is time consuming and many proteins do not readily crystalize, and protein 

size limitation is an issue for NMR, besides, NMR is time consuming.(33, 210, 245, 

246)  Fourier transform infrared (FT-IR) spectroscopy is a rapid spectroscopic 

technique that can give fingerprints of protein structures in solution, solid or gas phase.  

It can be used to reduce the sample analysis period significantly due to its rapid spectral 

measurement.(36, 121)  However, FTIR spectra suffer from interfering background 

signals that must be reduced or removed before any data analysis.(247, 248)  There are 

many methods used to remove background effects from the spectra, these include some 

of the methods used in this thesis: baseline correction, Multiplicative Scattered 

Correction (MSC), Standard Normal Variate (SNV), and Second Derivative.   There is 

also a need to analyse the underlying biological differences between the identified FTIR 

spectral regions and also to determine their secondary structures.(69, 249)  Methods that 

have been used to determine protein structure include band deconvolution and neural 

networks (ANN) but their models are difficult to interpret.(250)  MVA has proved to be 

an appropriate tool to carry out the quantification of protein secondary structure from 

their infrared spectra because of its simplicity and ability to reduce the data to a lower 

dimension and extract the relevant information.(251, 252)     
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Myra Kinalwa(177) used similar methods on Raman spectra and achieved very good 

results especially with the Amide I, II  and III regions combined; however, the size of 

the protein dataset was too small to validate the model with an independent test set.  

Raman spectroscopy, a technique based on inelastic scattering of monochromatic light, 

is making its mark as another vibrational spectroscopic method that has been 

successfully used in the determination of the secondary structure of protein.(137, 253)  

FTIR and Raman techniques provide complementary information; while Raman 

spectroscopy may not have the H2O absorption in the Amide I region found in FTIR, its 

signal to noise is inferior to FTIR absorption spectra and the quantitative results from 

FTIR method are better.(254, 255) 

 

In the first result chapter 3, FTIR spectra were obtained for proteins dissolved in H2O.  

The absorbance spectra of predominantly α-helical, β-sheet and mixture of α and β 

proteins were measured and analysed. This analysis made use of the strength of 

Principal Component Analysis (PCA), an MVA classification method, on ATR-FTIR 

spectra for classification of proteins into their natural groupings of All α, All β, α/β, 

α+β, as defined by SCOP.  SCOP (release 1.75) currently has 110800 Domains protein 

domains classified into 1195 folds; this means there are 92.72 domains per fold.  

Performing data classification on the SCOP folds will need lots of data; (256, 257) 

therefore the analysis was limited to the protein class structure. 

 

The variations in the samples used for this analysis were described by 4 PCs giving a 

95.39% of the total variations in the data.  The protein spectra classifications showed 

strong groupings of proteins of α and β classes and those of mixed types not in any of 

the two groups.   The obtained PCA results using FTIR spectra were comparable or 
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even better than CD methods currently used for protein classification.   ATR-FTIR 

absorption spectra contain a great deal of information that can be utilized for 

classification and identity determination of proteins and other biologic systems; for 

example, qualitative analysis tools like PCA can be used in the identification of 

biomarkers of several diseases like cancer, Alzheimer’s and other autoimmune disorders 

due to changes in the secondary structure of their biomolecules.(258, 259)   

 

In the second result Chapter 4, ATR-FTIR spectroscopy in combination with partial 

least squares (PLS), a multivariate regression methods, was used to calibrate and 

quantify different proteins in H2O; the calibration dataset covered Amide I, II and III 

(1700cm – 1200 cm-1) regions of the protein spectra. The ATR-FTIR spectra showed 

very good predictive value for the calibration (to within 0.01 to 0.05 RMSE) and the 

independent test set prediction (from 0.01 – 0.12 RMSEP).  Spectral features linked to 

α-helix and β-sheet had excellent structural determination; structural features like 310 

helix, turns and random coils were also elucidated with good results as listed in Chapter 

4 and Appendix B of this thesis.  

 

A version of PLS called interval PLS (iPLS) uses subintervals of the full spectrum. 

Local models are built with intervals of the spectral region; the performance of the local 

models is compared to that of the full spectrum model.  By using intervals of the 

spectrum, regions specific to each secondary structure motif can be identified.  This use 

of only the significant spectral regions can reducing spectral measurement time; 

however, selection of the number of intervals that can yield an optimum result for each 

motif can be time consuming.  The iPLS result in this analysis, although useful, was not 

as good as that of the traditional PLS model. 
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Many researchers focused their analysis on α-helix and β-sheet contents because these 

spectral features are better abundant than 310-helix other structural types.(150)   With 

the use of second derivative, underlying spectral peaks can be resolved to identify their 

positions whereby aiding in the multivariate regression analysis of different structural 

motifs.  One of the uses of statistical quantitative analysis in the biomedical field is in 

pharmaceuticals to confirm their structural conformation from manufacturing to 

distributions, including their shelf lives.(64, 69)  Multivariate regression analysis can be 

also combined with X-ray crystallography or NMR spectroscopy to derive information 

from their protein measurements due to the reliability and accuracy of the statistical 

method.(260)  Three key advantages of MVA is the small sample size needed to train 

the model, the method’s ability to handle multivariate data, and missing data in the 

spectra;(261) however, PLS has a known fault of being sensitive to the number of 

components used in the model; increasing the number of components or descriptors in 

the model improves it’s fit but decreases its ability to fit new data well.(262)  (Zeng and 

Li)(263) pointed out that PLS cannot handle continuous streams data as all of the data 

are loaded into memory.  This incremental PLS for continuous streams of should help in 

the analysis of large data sets and real-time data. 

 

Chapter 5 illustrated the strength of using FTIR to distinguish between native and 

unfolding proteins between pH 2.0 and pH 7.0 in increments of 0.5 pH levels.  The PLS 

calibration model established in Chapter 4 was used to elucidate the secondary structure 

of the denatured α-Lactalbumin (α-LA) proteins at each pH.  The second derivative 

spectra showed important spectral changes that occurred during denaturation.  Result 

from the analysis in this study showed the structure of α-LA at the native state, the 

absence of Ca
2+

 binding molecule (the apo-protein) where an intermediate form and the 

structure of β-sheet diminished, and finally the formation of intramolecular anti-parallel 
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β-sheet in the acidic (A-state) protein.  Proteins need to be in their native state to operate 

efficiently, therefore; studying the changes in their aggregation stages may help in 

understanding how proteins misfold.(183, 203)  A related study done with Raman 

spectroscopy using 2Dimensional Correlation (2DCOS) to study the spectral intensity 

variations of α-lactalbumin within the pH ranges of 2 and 7 was successfully carried out 

by Ashton and Blanch(254).  The 2DCOS method was used to identify secondary 

structure variations occurring in the different FTIR spectral bands of denatured α-LA. 

 

In Chapter 6, the calibration model was applied to proteins of various concentrations to 

determine their secondary structure.   The main aim of this Chapter is to test the model 

for its limit of quantification.  It is clear that some proteins absorb well at low 

concentrations; in general, multivariate regression analysis does a good job with 

proteins at concentrations as low as 0.20 mg/mL.  This method serves as a good 

detection tool for forensic and other biomedical needs of detecting substances at low 

concentrations. 

 

One other popular types of multivariate analysis method used in the elucidation of 

protein is Artificial Neural Network (ANN).(252)  ANN is also popular for determining 

the secondary structure of proteins from spectra; however, the methodology is not as 

fast as PLS and not as easy to learn, moreover, overfitting can be stronger in neural 

networks than in PLS because of the layers or neurons used for the analysis.(253) 

 

In summary, FTIR has advantages over other widely used structural spectroscopic 

methods like CD and NMR; FTIR is fast and easy to use and require very little sample.  

The four result chapters in this thesis show how multivariate statistical analytical tools 

like PLS and PCA can be used to obtain structural contents from ATR-FTIR spectra.  
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These results show that FT-IR spectroscopy can extend its applications in the 

biotechnology industry as a rapid method for detection and quantification of substances, 

especially for proteins in solution.   
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Appendix A 
 

List of proteins and their percentage motifs as determined by DSSP based on the 

atomic resonance contained in their PDF files.  This list also contains the SCOP 

classifications of the proteins.  For the detailed PCA analysis, see Chapter 3 of this 

Thesis. 
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Table A1.  FTIR Protein Band Assignments  

 

Amide I C=O stretching (80%), N-H 

bending (20%) 
Spectral Region  

(1700 – 1600 cm
-1

) 

α-helix    1658 – 1654 cm
-1

 

β-sheet 1642 – 1624 cm
-1

 

310-helix 1660 cm
-1

, 1645 cm
-1

   

Disordered 1648 
–  

1640 cm
-1

 

Turns 1672 cm
-1

, 1680 cm
-1

-
 
1688 cm

-1 

Amide II N-H bending (60%), C-N 

stretching (40%) 

                          (1600 -  1480 cm
-1

) 

α-helix 1545 cm
-1

 

Β-sheet 1530 - 1526 cm
-1

 

310-helix 1533 -
 
1531 cm

-1
 

Turns 1538 – 1536 cm
-1

 

Disordered 1432 –1441 cm
-1

 

Amide III C–N stretch (40%), N–H bend 

(30%), C-C stretching (20%) 

                         (1200 -  1350 cm
-1

) 

α-helix 1328 - 1289 cm
-1

 

Β-sheet 1255 - 1224 cm
-1

 

Turns 1295 - 1270 cm
-1

 

Disordered 1288 - 1256 cm
-1

 

 

Amide I and Amide II Characteristics infrared band by Kennedy et al.(264) 

Amide III Characteristics infrared band by Singh et al(265) 
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Table A2.   Secondary structure fractions of 90 proteins obtained from DSSP.(266) 

These proteins were used as reference set for the multivariate calibration of FTIR spectra of 

proteins in H2O buffer. 

 

Note:  the secondary structure proportions should add up to 1 (+-0.01); parallel β, anti-

parallel β, and mixed β sum up to β-sheet and should not be added in the calculation. 
 

PDBNum ProteinName Label  α β Parallel βAntiParallel β Mixed 310-helixTurns Other

3V03 albumin (bovine) alpha 0.70 0.00 0.00 0.00 0.00 0.04 0.09 0.16

1A06 albumin (human) alpha 0.69 0.00 0.00 0.00 0.00 0.02 0.09 0.19

1E7H albumin (sheep) alpha 0.71 0.00 0.00 0.00 0.00 0.02 0.09 0.17

6ADH alcohol dehydrogenase alpha/beta 0.16 0.19 0.07 0.11 0.01 0.02 0.18 0.45

1QHO alpha amylase_type2 (basillus species)beta 0.20 0.29 0.06 0.20 0.01 0.03 0.14 0.34

1RQW alpha casein (bovine milk) alpha/beta 0.36 0.15 0.00 0.13 0.00 0.08 0.10 0.31

1HFZ alpha_lactalbumin (human) alpha 0.31 0.07 0.00 0.07 0.00 0.14 0.18 0.31

3CWL alpha-1-antitrypsin alpha/beta 0.28 0.31 0.03 0.21 0.06 0.02 0.10 0.28

1LF6 amyloglucanase(Asp. Niger) alpha 0.32 0.21 0.00 0.20 0.00 0.03 0.12 0.33

1YJ0 annexinV/without calcium alpha 0.68 0.00 0.00 0.00 0.00 0.10 0.07 0.25

4GCR apha-Crystallin(Bovine eye lens) beta 0.03 0.46 0.00 0.38 0.00 0.06 0.08 0.37

3LDJ aprotinin (bovine lung) alpha/beta 0.14 0.25 0.00 0.25 0.00 0.07 0.07 0.46

1SLF avidin beta 0.03 0.55 0.00 0.53 0.00 0.05 0.05 0.32

2BRD bacteriorhodopsin in purple membrane alpha 0.77 0.00 0.00 0.00 0.00 0.00 0.02 0.21

3IF7 calmodulin alpha 0.59 0.06 0.00 0.06 0.00 0.00 0.07 0.28

1V94 carbonic anhydrase (bovin) alpha/beta 0.08 0.30 0.05 0.19 0.05 0.08 0.11 0.42

3M1K carbonic anhydrase (human) alpha/beta 0.08 0.29 0.04 0.19 0.05 0.08 0.11 0.44

3NNE choline oxidase alpha/beta 0.21 0.21 0.06 0.12 0.01 0.05 0.14 0.40

1YPH chymotrypsin(bovin) beta 0.00 0.35 0.00 0.32 0.00 0.02 0.18 0.45

1ATH cleaved form of anti-thrombin beta 0.27 0.32 0.03 0.25 0.03 0.02 0.11 0.28

1BKV collagen(calf skin) designed p 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

1OVT conalbumin.dpt(chicken egg white) alpha/beta 0.28 0.18 0.06 0.11 0.00 0.05 0.16 0.34

3CNA concanavalin(jack bean) beta 0.00 0.41 0.00 0.41 0.00 0.00 0.09 0.50

1HRC cytochrome (Horse heart) alpha 0.41 0.00 0.00 0.00 0.00 0.00 0.17 0.41

1MPX d_amino acid dehydrogenase beta 0.18 0.27 0.06 0.18 0.01 0.05 0.12 0.38

2GL9 d-glucosamin alpha 0.44 0.15 0.02 0.10 0.02 0.00 0.12 0.28

2OII elastin beta 0.00 0.31 0.00 0.29 0.00 0.00 0.08 0.61

1W17 esterase (bacillus sybstilis) alpha/beta 0.40 0.15 0.13 0.02 0.00 0.03 0.10 0.32

1T1C esterase (rhizopus oryzae) alpha/beta 0.25 0.28 0.00 0.27 0.00 0.02 0.14 0.31

3F32 ferritin (Horse spleen) alpha 0.75 0.00 0.00 0.00 0.00 0.00 0.07 0.19

1DLP fetuin (calf serum) beta 0.00 0.32 0.00 0.31 0.00 0.00 0.09 0.58

3GHG fibrinogen(bovine plasma) alpha 0.70 0.02 0.00 0.01 0.01 0.02 0.06 0.21

2EIB galactose oxidase beta 0.01 0.38 0.01 0.34 0.01 0.02 0.13 0.46

1GAL glucose oxidase (aspegillus niger) alpha/beta 0.27 0.20 0.05 0.12 0.01 0.07 0.12 0.33

2QSP Hemoglobin bovine alpha 0.67 0.00 0.00 0.00 0.00 0.09 0.11 0.14

1BG3 hexakinase alpha/beta 0.44 0.15 0.05 0.08 0.02 0.03 0.11 0.27

3AGV IgG (Human) beta 0.08 0.37 0.00 0.37 0.00 0.04 0.08 0.42

1IGT IgG {bovine) beta 0.06 0.42 0.00 0.42 0.00 0.02 0.08 0.42

2OLY insulin (human) alpha 0.69 0.12 0.00 0.12 0.00 0.12 0.00 0.08

1W2T invertase(from baker's yeast) beta 0.00 0.57 0.01 0.49 0.00 0.03 0.10 0.30

3BLX isocitric dehydrogenase alpha 0.36 0.22 0.07 0.11 0.02 0.05 0.11 0.26

3H3F l_lactic (rabbit muscle) alpha/beta 0.40 0.21 0.08 0.11 0.00 0.04 0.11 0.24

1EZ4 lactic dehydrogenase alpha/beta 0.45 0.20 0.08 0.11 0.00 0.07 0.06 0.22

1IOA lectin ( p.ulgaris) beta 0.02 0.43 0.00 0.43 0.00 0.04 0.14 0.37

1HNA lglutathion (reduced) alpha 0.51 0.09 0.04 0.04 0.01 0.03 0.12 0.26

1CRL lipase (candida rugosa) alpha/beta 0.33 0.14 0.06 0.05 0.01 0.05 0.13 0.36

10IL lipase (wheat) alpha/beta 0.36 0.18 0.09 0.07 0.00 0.02 0.16 0.28

2LYZ lysozyme (chicken egg) alpha 0.32 0.06 0.00 0.06 0.00 0.10 0.24 0.28

2MLT melittin pH 6 alpha 0.88 0.00 0.00 0.00 0.00 0.00 0.04 0.08



APPENDIX 

 

   212 
 

Continuation of Table A2.  Secondary structure fractions of 90 proteins obtained 

from DSSP 

 

 

Note:  the secondary structure proportions should add up to 1 (+-0.01); parallel β, anti-

parallel β, and mixed β sum up to β-sheet and should not be added in the calculation. 
 

 

 

 

  

1NZ2 myoglobin(horse muscle) alpha 0.74 0.00 0.00 0.00 0.00 0.00 0.12 0.14

3DLW native anti-chymotrypsin alpha/beta 0.29 0.36 0.02 0.31 0.02 0.02 0.07 0.27

1T1F native form of anti-thrombin  alpha/beta 0.26 0.27 0.03 0.21 0.03 0.04 0.10 0.33

2OAY native form of c1 inhibitor  alpha/beta 0.27 0.32 0.01 0.28 0.01 0.02 0.09 0.30

1OVA native ovalbumin alpha/beta 0.30 0.32 0.03 0.22 0.05 0.03 0.13 0.23

9PAP papain(papaya lanex) alpha/beta 0.23 0.17 0.01 0.15 0.01 0.03 0.11 0.46

1T5A paruvate kinase alpha 0.36 0.20 0.10 0.08 0.01 0.04 0.10 0.30

1YX9 pepsin(pepsin gastric mucosa) beta 0.10 0.42 0.04 0.32 0.03 0.04 0.13 0.31

1HCH peroxidase (horseradish) alpha 0.44 0.02 0.00 0.02 0.00 0.06 0.17 0.31

1LSH phosvitin(from egg white) alpha/beta 0.29 0.37 0.00 0.35 0.00 0.02 0.10 0.23

2AXT phtosystem II reaction centre  alpha 0.52 0.01 0.01 0.00 0.00 0.04 0.10 0.33

3ENJ pig citrate synthase alpha 0.59 0.03 0.00 0.03 0.00 0.03 0.10 0.24

2ZFG porin beta 0.04 0.59 0.00 0.56 0.00 0.00 0.14 0.24

3AJ8 proteinase (from bovine pancreas) alpha/beta 0.24 0.23 0.14 0.08 0.01 0.03 0.16 0.34

1QOV reaction centere R. Sphae. alpha 0.18 0.22 0.00 0.18 0.02 0.06 0.12 0.42

2I37 rhodopsin bleached alpha 0.55 0.04 0.00 0.04 0.00 0.04 0.12 0.25

1HZX rhodopsin unbleached alpha 0.59 0.04 0.00 0.04 0.00 0.03 0.10 0.25

1RBX ribonucleaus A (bovine pancreas) alpha/beta 0.20 0.30 0.00 0.28 0.01 0.02 0.06 0.41

1RBB ribonucleaus B(bovine pancreas) alpha/beta 0.18 0.33 0.00 0.31 0.01 0.03 0.15 0.31

3DJV ribonucleaus S ( bovine pancreas) alpha/beta 0.19 0.33 0.00 0.31 0.01 0.05 0.11 0.32

2ACH sact1 DIFF beta 0.31 0.34 0.02 0.29 0.02 0.02 0.09 0.23

1U06 spectrin beta 0.00 0.45 0.00 0.42 0.02 0.05 0.11 0.38

1AS4 split anti-chymotrypsin alpha/beta 0.32 0.37 0.02 0.32 0.02 0.02 0.09 0.20

1LQ8 split form of c1 inhibitor  beta 0.28 0.35 0.02 0.30 0.02 0.04 0.08 0.26

1H3E Split form ovalbumin alpha/beta 0.44 0.14 0.00 0.00 0.00 0.00 0.00 0.42

1SSN staphylokinase-B wild type alpha/beta 0.09 0.28 0.07 0.14 0.06 0.02 0.08 0.53

1GNS subtilisin alpha/beta 0.32 0.18 0.13 0.04 0.00 0.00 0.16 0.34

3CEI superoxide dismutase alpha 0.51 0.10 0.00 0.09 0.00 0.03 0.13 0.23

1RQW thaumatin (t.danielli) beta 0.11 0.36 0.00 0.27 0.05 0.01 0.12 0.40

3N21 thermolysin  (bacillus t rokko) alpha 0.37 0.16 0.03 0.11 0.03 0.04 0.10 0.32

1QGD transketalose (E.coli) alpha 0.42 0.14 0.11 0.02 0.00 0.05 0.13 0.26

3A7T trypsin beta 0.07 0.32 0.00 0.30 0.00 0.03 0.15 0.43

3A7T trypsin (bovine) beta 0.07 0.32 0.00 0.30 0.00 0.03 0.15 0.43

1UHB trypsin (hog pancreas) beta 0.00 0.34 0.00 0.33 0.00 0.02 0.12 0.51

2TGA trypsinogen(bovine pancreas) beta 0.07 0.32 0.00 0.30 0.00 0.03 0.14 0.44

2J9Z tryptophan  Synthase alpha/beta 0.32 0.06 0.00 0.06 0.00 0.10 0.24 0.28

1BBI typsin-chymotrypsin small protein 0.00 0.25 0.00 0.25 0.00 0.00 0.06 0.69

2ZCB ubiquitin (bovine) beta 0.16 0.31 0.03 0.23 0.05 0.08 0.16 0.28

4H9M urease (Canavalia ensiformis) alpha/beta 0.26 0.22 0.07 0.13 0.01 0.04 0.15 0.34

1BEB β-lactoglobulin beta 0.10 0.42 0.00 0.38 0.00 0.06 0.12 0.29
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Appendix B 
 

 

This section contains the results of the calibration and the cross-validation of PLS 

analysis of each protein motif.  Each protein was prepared in H2O and measured 

using Fourier Transformed Infrared Spectroscopy. Some proteins were also 

prepared in D2O and their figures are also listed in tables in this section.  For 

detailed analysis of the PLS regression method, see Chapter 4. 
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Table B1.   Secondary Structure FTIR/PLS predicted result of each individual sample in 

calibration set of 60 proteins in H2O solution.   

  

 

α-Helix β-Sheet

PDBID Protein Names Observed Predicted Residual Observed Predicted Residual
3V03 albumin (bovine) 0.70 0.73 -0.03 0.00 -0.01 0.01

1A06 albumin (human) 0.69 0.67 0.02 0.00 0.00 0.00

1E7H albumin (sheep) 0.71 0.55 0.16 0.00 0.03 -0.03

6ADH alcohol dehydrogenase 0.16 0.15 0.01 0.19 0.19 0.00

1QHO alpha amylase_type2 (basillus species) 0.20 0.21 -0.01 0.29 0.28 0.01

1DAY alpha casein (bovine milk) 0.36 0.37 -0.01 0.15 0.15 0.00

1HFZ alpha_lactalbumin 0.31 0.33 -0.01 0.07 0.10 -0.03

4GCR apha-crystallin(bovine eye lens) 0.03 0.03 0.00 0.46 0.44 0.02

3LDJ aprotinin (bovine lung) 0.14 0.23 -0.09 0.25 0.22 0.03

1SLF avidin 0.03 0.02 0.01 0.55 0.48 0.07

1BEB β-lactoglobulin 0.10 0.08 0.02 0.42 0.45 -0.03

1V9E carbonic anhydrase(bovine) 0.08 0.07 0.01 0.30 0.34 -0.05

3M1K carbonic anhydrase (human) 0.08 0.10 -0.02 0.29 0.35 -0.06

3NNE choline oxidase 0.21 0.18 0.03 0.21 0.25 -0.04

1YPH chymotrypsin(bovin) 0.00 0.03 -0.03 0.35 0.38 -0.03

1BKV collagen(calf skin) 0.00 0.06 -0.06 0.00 0.06 -0.06

1OVT conalbumin.dpt(chicken egg white) 0.28 0.28 0.00 0.18 0.16 0.02

3CNA concanavalin(jack bean) 0.00 -0.04 0.04 0.41 0.44 -0.03

1MPX d_amino acid dehydrogenase 0.18 0.12 0.06 0.27 0.20 0.07

2OII elastin 0.00 0.00 0.00 0.31 0.33 -0.02

1W17 esterase (bacillus sybstilis) 0.40 0.42 -0.02 0.15 0.14 0.01

1T1C esterase (rhizopus oryzae) 0.25 0.24 0.01 0.28 0.29 -0.01

3F32 ferritin (horse spleen) 0.75 0.70 0.05 0.00 0.02 -0.02

1DLP fetuin (calf serum) 0.00 0.01 -0.01 0.32 0.34 -0.02

3GHG fibrinogen(bovine plasma) 0.70 0.71 -0.01 0.02 0.00 0.02

2EIB galactose oxidase 0.01 0.01 0.00 0.38 0.38 0.00

1GAL glucose oxidase (aspegillus niger) 0.27 0.38 -0.11 0.20 0.13 0.07

2QSP hemoglobin (bovine) 0.67 0.67 0.00 0.00 0.03 -0.03

1BG3 hexakinase 0.44 0.45 -0.01 0.15 0.17 -0.02

1IGT IgG (bovine) 0.06 0.04 0.04 0.42 0.35 0.02

3AGV IgG (human) 0.08 0.05 0.03 0.37 0.39 -0.02

2OLY insulin (human) 0.69 0.67 0.02 0.12 0.08 0.04

1W2T invertase(from bakers yeast) 0.00 -0.01 0.01 0.57 0.56 0.01

3H3F l_lactic (rabbit muscle) 0.40 0.39 0.01 0.21 0.22 -0.01

1LDM lactic dehydrogenase 0.45 0.45 0.00 0.20 0.24 -0.04

1IOA lectin ( p.vulgaris) 0.02 0.00 0.02 0.43 0.37 0.06

1HNA l-glutathion (reduced) 0.51 0.47 0.04 0.09 0.10 -0.01

1CRL lipase (candida rugosa) 0.33 0.34 -0.01 0.14 0.13 0.01

2OAY native form of c1 inhibitor  0.27 0.34 -0.07 0.32 0.22 0.10

1OVA native ovalbumin 0.30 0.26 0.04 0.32 0.26 0.06

9PAP papain(papaya lanex) 0.23 0.21 0.02 0.17 0.14 0.03

1YX9 pepsin(pepsin gastric mucosa) 0.10 0.13 -0.03 0.42 0.42 0.00

1LSH phosvitin(from egg white) 0.29 0.27 0.02 0.37 0.37 0.00

2ZFG porin 0.04 0.09 -0.05 0.59 0.57 0.02

3AJ8 proteinase (from bovine pancreas) 0.24 0.28 -0.04 0.23 0.24 -0.01

1HZX rhodopsin unbleached 0.59 0.63 -0.04 0.04 0.05 -0.01

1RBX ribonucleaus A (bovine pancrease) 0.20 0.18 0.02 0.30 0.32 -0.02

3DJV ribonucleaus S (from bovine pancreas) 0.19 0.19 0.00 0.33 0.36 -0.03

1RBB ribonucleausB (bovine pancrease) 0.18 0.15 0.03 0.33 0.30 0.03

1SSN staphylokinase-B wild type 0.09 0.09 0.00 0.28 0.30 -0.02

1GNS subtilisin 0.32 0.37 -0.05 0.18 0.17 0.01

3CEI superoxide dismutase 0.51 0.45 0.06 0.10 0.16 -0.06

1RQW thaumactin (t.danielli) 0.11 0.02 0.09 0.36 0.37 -0.01

1QGD transketalose (E.coli) 0.42 0.42 0.00 0.14 0.12 0.02

3A7T trypsin (bovine) 0.07 0.05 0.02 0.32 0.32 0.00

2TGA trypsinogen(bovine pancreas) 0.07 0.11 -0.04 0.32 0.29 0.03

2J9Z tryptophan Synthase 0.32 0.36 -0.04 0.06 0.07 -0.01

1BBI typsin-chymotripsin 0.00 -0.02 0.02 0.25 0.30 -0.05

2ZCB ubiquitin (bovine) 0.16 0.25 -0.09 0.31 0.30 0.01

4H9M urease (Canavalia ensiformis) 0.26 0.28 -0.02 0.22 0.22 0.00
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Table B2.  Continuation of FTIR/PLS calibration results for ‘Parallel, Anti-Parallel and 

Mixed β-sheet 

 

 

Parallel β-Sheet Anti-Parallel β-Sheet Mixedl β-Sheet

PDBID Protein Names Observed Predicted Residual Observed Predicted Residual Observed Predicted Residual
3V03 albumin (bovine) 0.00 0.00 0.00 0.00 -0.01 0.01 0.00 0.00 0.00

1A06 albumin (human) 0.00 0.00 0.00 0.00 -0.03 0.03 0.00 0.01 -0.01

1E7H albumin (sheep) 0.00 0.01 -0.01 0.00 0.03 -0.03 0.00 -0.01 0.01

6ADH alcohol dehydrogenase 0.07 0.07 0.00 0.11 0.10 0.01 0.01 0.01 0.00

1QHO alpha amylase_type2 (basillus species) 0.06 0.06 0.00 0.20 0.20 0.00 0.01 0.01 0.00

1DAY alpha casein (bovine milk) 0.00 -0.01 0.01 0.13 0.12 0.01 0.00 0.00 0.00

1HFZ alpha_lactalbumin 0.00 0.00 0.00 0.07 0.11 -0.04 0.00 0.00 0.00

4GCR apha-crystallin(bovine eye lens) 0.00 -0.01 0.01 0.38 0.39 -0.01 0.00 0.00 0.00

3LDJ aprotinin (bovine lung) 0.00 -0.01 0.01 0.25 0.25 0.00 0.00 0.00 0.00

1SLF avidin 0.00 0.01 -0.01 0.53 0.45 0.08 0.00 0.00 0.00

1BEB β-lactoglobulin 0.00 0.00 0.00 0.38 0.40 -0.02 0.00 0.00 0.00

1V9E carbonic anhydrase(bovine) 0.05 0.04 0.00 0.19 0.27 -0.08 0.05 0.04 0.01

3M1K carbonic anhydrase (human) 0.04 0.03 0.01 0.19 0.29 -0.10 0.05 0.05 0.00

3NNE choline oxidase 0.06 0.08 -0.02 0.12 0.17 -0.05 0.01 0.01 0.00

1YPH chymotrypsin(bovin) 0.00 0.01 -0.01 0.32 0.30 0.02 0.00 0.00 0.00

1BKV collagen(calf skin) 0.00 0.00 0.00 0.00 0.05 -0.05 0.00 0.00 0.00

1OVT conalbumin.dpt(chicken egg white) 0.06 0.06 0.00 0.11 0.10 0.01 0.00 0.00 0.00

3CNA concanavalin(jack bean) 0.00 0.00 0.00 0.41 0.43 -0.02 0.00 0.00 0.00

1MPX d_amino acid dehydrogenase 0.06 0.06 0.00 0.18 0.13 0.05 0.01 0.01 0.00

2OII elastin 0.00 0.00 0.00 0.29 0.30 -0.01 0.00 0.00 0.00

1W17 esterase (bacillus sybstilis) 0.13 0.13 0.00 0.02 0.04 -0.02 0.00 0.00 0.00

1T1C esterase (rhizopus oryzae) 0.00 0.00 0.00 0.27 0.27 0.00 0.00 0.01 -0.01

3F32 ferritin  (horse spleen) 0.00 0.02 -0.02 0.00 0.00 0.00 0.00 0.00 0.00

1DLP fetuin (calf serum) 0.00 0.01 -0.01 0.31 0.33 -0.02 0.00 0.00 0.00

3GHG fibrinogen(bovine plasma) 0.00 -0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00

2EIB galactose oxidase 0.01 0.01 0.00 0.34 0.31 0.03 0.01 0.01 0.00

1GAL glucose oxidase (aspegillus niger) 0.05 0.05 0.00 0.12 0.09 0.03 0.01 0.01 0.00

2QSP hemoglobin (bovine) 0.00 0.01 -0.01 0.00 -0.01 0.01 0.00 0.01 -0.01

1BG3 hexakinase 0.05 0.05 0.00 0.08 0.11 -0.03 0.02 0.02 0.00

1IGT IgG (bovine) 0.00 0.00 0.00 0.42 0.34 0.08 0.00 0.00 0.00

3AGV IgG (human) 0.00 0.00 0.00 0.37 0.38 -0.01 0.00 0.00 0.00

2OLY insulin (human) 0.00 0.00 0.00 0.12 0.08 0.04 0.00 0.00 0.00

1W2T invertase(from bakers yeast) 0.01 0.01 0.00 0.49 0.50 -0.01 0.00 0.00 0.00

3H3F l_lactic (rabbit muscle) 0.08 0.08 0.00 0.11 0.17 -0.06 0.00 0.00 0.00

1LDM lactic dehydrogenase 0.08 0.08 0.00 0.11 0.14 -0.03 0.00 0.00 0.00

1IOA lectin ( p.vulgaris) 0.00 0.00 0.00 0.43 0.34 0.09 0.00 0.01 -0.01

1HNA lglutathion (reduced) 0.04 0.05 -0.01 0.04 0.04 0.00 0.01 0.02 -0.01

1CRL lipaseA (candida rugosa) 0.06 0.06 0.00 0.05 0.05 0.00 0.01 0.01 0.00

2OAY native form of c1 inhibitor  0.01 0.00 0.01 0.28 0.23 0.05 0.01 0.01 0.00

1OVA native ovalbumin 0.03 0.05 -0.02 0.22 0.14 0.08 0.05 0.05 0.00

9PAP papain(papaya lanex) 0.01 0.02 -0.01 0.15 0.12 0.03 0.01 0.01 0.00

1YX9 pepsin(pepsin gastric mucosa) 0.04 0.03 0.01 0.32 0.34 -0.02 0.03 0.03 0.00

1LSH phosvitin(from egg white) 0.00 0.00 0.00 0.35 0.34 0.01 0.00 0.00 0.00

2ZFG porin 0.00 0.00 0.00 0.56 0.55 0.01 0.00 0.00 0.00

3AJ8 proteinase (from bovine pancreas) 0.14 0.14 0.00 0.08 0.09 -0.01 0.01 0.01 0.00

1HZX rhodopsin unbleached 0.00 -0.01 0.01 0.04 0.05 -0.01 0.00 -0.01 0.01

1RBX ribonucleaus A(from bovine pancreas) 0.00 0.00 0.00 0.28 0.29 -0.01 0.01 0.01 0.00

3DJV ribnuS.dpt (from bovine pancreas) 0.00 0.00 0.00 0.31 0.33 -0.02 0.01 0.00 0.01

1RBB ribonucleausB(bovine pancrease) 0.00 0.01 -0.01 0.31 0.27 0.04 0.01 0.02 -0.01

1SSN staphylokinase-B wild type 0.07 0.06 0.01 0.14 0.14 0.00 0.06 0.06 0.00

1GNS subtilisin 0.13 0.11 0.02 0.04 0.05 -0.01 0.00 0.00 0.00

3CEI superoxide dismutase 0.00 0.00 0.00 0.09 0.11 -0.02 0.00 0.00 0.00

1RQW thaumactin (t.danielli) 0.00 -0.01 0.01 0.27 0.26 0.01 0.05 0.04 0.01

1QGD transketalose (E.coli) 0.11 0.11 0.00 0.02 0.00 0.02 0.00 0.00 0.00

3A7T trypsin (bovine) 0.00 0.00 0.00 0.30 0.30 0.00 0.00 0.00 0.00

2TGA trypsinogen(bovine pancreas) 0.00 0.00 0.00 0.30 0.30 0.00 0.00 0.00 0.00

2J9Z tryptophan Synthase 0.00 0.00 0.00 0.06 0.05 0.01 0.00 0.00 0.00

1BBI typsin-chymotripsin 0.00 0.00 0.00 0.25 0.30 -0.05 0.00 -0.01 0.01

2ZCB ubiquitin (bovine) 0.03 0.02 0.01 0.23 0.23 0.00 0.05 0.04 0.01

4H9M urease (Canavalia ensiformis) 0.07 0.06 0.01 0.13 0.13 0.00 0.01 0.01 0.00
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Table B3.  Continuation of FTIR/PLS calibration results for 310-helix, turns and other 

 

310 helix β-turns Other

PDBID Protein Names Observed Predicted Residual Observed Predicted Residual Observed Predicted Residual
3V03 albumin (bovine) 0.04 0.04 0.00 0.09 0.09 0.00 0.16 0.18 -0.02

1A06 albumin (human) 0.02 0.02 0.00 0.09 0.09 0.00 0.19 0.21 -0.02

1E7H albumin (sheep) 0.02 0.03 -0.01 0.09 0.08 0.01 0.17 0.30 -0.13

6ADH alcohol dehydrogenase 0.02 0.02 0.00 0.18 0.18 0.00 0.45 0.43 0.02

1QHO alpha amylase_type2 (basillus species) 0.03 0.04 -0.01 0.14 0.14 0.00 0.34 0.36 -0.02

1DAY alpha casein (bovine milk) 0.08 0.08 0.00 0.10 0.09 0.01 0.31 0.32 -0.01

1HFZ alpha_lactalbumin 0.14 0.13 0.01 0.18 0.18 0.00 0.31 0.30 0.01

4GCR apha-Crystallin(Bovine eye lens) 0.06 0.06 0.00 0.08 0.09 -0.01 0.37 0.38 -0.01

3LDJ aprotinin (bovine lung) 0.07 0.07 0.00 0.07 0.06 0.01 0.46 0.42 0.04

1SLF avidin 0.05 0.06 -0.01 0.05 0.05 0.00 0.32 0.36 -0.04

1BEB B-lactoglobulin 0.06 0.05 0.01 0.12 0.13 -0.01 0.29 0.27 0.02

1V9E carbonic anhydrase (bovin) 0.08 0.05 0.03 0.11 0.11 0.00 0.42 0.44 -0.02

3M1K carbonic anhydrase (human) 0.08 0.07 0.01 0.11 0.12 -0.01 0.44 0.36 0.08

3NNE choline oxidase 0.05 0.04 0.01 0.14 0.15 -0.01 0.40 0.32 0.08

1YPH chymotrypsin(bovin) 0.02 0.03 -0.01 0.18 0.16 0.02 0.45 0.40 0.05

1BKV collagen(calf skin) 0.00 -0.01 0.01 0.00 0.01 -0.01 1.00 0.86 0.14

1OVT conalbumin.dpt(chicken egg white) 0.05 0.04 0.01 0.16 0.16 0.00 0.34 0.37 -0.03

3CNA concanavalin(jack bean) 0.00 0.01 -0.01 0.09 0.09 0.00 0.50 0.51 -0.01

1MPX d_amino acid dehydrogenase 0.05 0.06 -0.01 0.12 0.11 0.01 0.38 0.52 -0.14

2OII elastin 0.00 -0.01 0.01 0.08 0.07 0.01 0.61 0.59 0.02

1W17 esterase (bacillus sybstilis) 0.03 0.03 0.00 0.10 0.10 0.00 0.32 0.30 0.02

1T1C esterase (rhizopus oryzae) 0.02 0.03 -0.01 0.14 0.14 0.00 0.31 0.31 0.00

3F32 ferritin  (horse spleen) 0.00 0.02 -0.02 0.07 0.09 -0.02 0.19 0.17 0.02

1DLP fetuin (calf serum) 0.00 0.00 0.00 0.09 0.09 0.00 0.58 0.59 -0.01

3GHG fibrinogen(bovine plasma) 0.02 0.02 0.00 0.06 0.05 0.01 0.21 0.22 -0.01

2EIB galactose oxidase 0.02 0.02 0.00 0.13 0.13 0.00 0.46 0.46 0.00

1GAL glucose oxidase (aspegillus niger) 0.07 0.08 -0.01 0.12 0.12 0.00 0.33 0.30 0.03

2QSP Hemoglobin bovine 0.09 0.09 0.00 0.11 0.11 0.00 0.14 0.11 0.03

1BG3 hexakinase 0.03 0.02 0.01 0.11 0.12 -0.01 0.27 0.25 0.02

1IGT IgG (bovine) 0.02 0.03 -0.01 0.08 0.07 0.01 0.42 0.45 -0.03

3AGV IgG (Human) 0.04 0.05 -0.01 0.08 0.08 0.00 0.42 0.44 -0.02

2OLY insulin (human) 0.12 0.10 0.02 0.00 0.03 -0.03 0.08 0.10 -0.02

1W2T invertase(from bakers yeast) 0.03 0.03 0.00 0.10 0.10 0.00 0.30 0.32 -0.02

3H3F l_lactic (rabbit muscle) 0.04 0.04 0.00 0.11 0.13 -0.02 0.24 0.23 0.01

1LDM lactic dehydrogenase 0.07 0.07 0.00 0.06 0.05 0.01 0.22 0.19 0.03

1IOA lectin ( p.vulgaris) 0.04 0.05 -0.01 0.14 0.14 0.00 0.37 0.46 -0.09

1HNA lglutathion (reduced) 0.03 0.04 -0.01 0.12 0.09 0.03 0.26 0.29 -0.03

1CRL lipaseA (candida rugosa) 0.05 0.05 0.00 0.13 0.13 0.00 0.36 0.37 -0.01

2OAY native form of c1 inhibitor  0.02 0.02 0.00 0.09 0.08 0.01 0.30 0.30 0.00

1OVA native ovalbumin 0.03 0.04 -0.01 0.13 0.13 0.00 0.23 0.31 -0.08

9PAP papain(papaya lanex) 0.03 0.04 -0.01 0.11 0.12 -0.01 0.46 0.50 -0.04

1YX9 pepsin(pepsin gastric mucosa) 0.04 0.04 0.00 0.13 0.13 0.00 0.31 0.29 0.02

1LSH phosvitin(from egg white) 0.02 0.02 0.00 0.10 0.09 0.01 0.23 0.24 -0.01

2ZFG porin 0.00 -0.01 0.01 0.14 0.13 0.01 0.24 0.22 0.02

3AJ8 proteinase (from bovine pancreas) 0.03 0.03 0.00 0.16 0.16 0.00 0.34 0.32 0.02

1HZX rhodopsin unbleached 0.03 0.03 0.00 0.10 0.09 0.01 0.25 0.17 0.08

1RBX ribonucleaus A (bovine pancrease) 0.02 0.01 0.01 0.06 0.08 -0.02 0.41 0.40 0.01

3DJV ribonucleaus S (from bovine pancreas) 0.05 0.05 0.00 0.11 0.11 0.00 0.32 0.27 0.05

1RBB ribonucleausB (bovine pancrease) 0.03 0.04 -0.01 0.15 0.15 0.00 0.31 0.37 -0.06

1SSN staphylokinase-B wild type 0.02 0.01 0.01 0.08 0.08 0.00 0.53 0.51 0.02

1GNS subtilisin 0.00 -0.01 0.01 0.16 0.15 0.01 0.34 0.32 0.02

3CEI superoxide dismutase 0.03 0.04 -0.01 0.13 0.14 -0.01 0.23 0.21 0.02

1RQW thaumactin (t.danielli) 0.01 0.02 -0.01 0.12 0.14 -0.02 0.40 0.46 -0.06

1QGD Transketalose (E.coli) 0.05 0.05 0.00 0.13 0.14 -0.01 0.26 0.27 -0.01

3A7T trypsin (bovine) 0.03 0.03 0.00 0.15 0.15 0.00 0.43 0.47 -0.04

2TGA trypsinogen(bovine pancreas) 0.03 0.03 0.00 0.14 0.14 0.00 0.44 0.44 0.00

2J9Z Tryptophan Synthase 0.10 0.10 0.00 0.24 0.23 0.01 0.28 0.25 0.03

1BBI typsin-chymotripsin 0.00 -0.02 0.02 0.06 0.05 0.01 0.69 0.66 0.03

2ZCB ubiquitin (bovine) 0.08 0.08 0.00 0.16 0.15 0.01 0.28 0.25 0.03

4H9M Urease (Canavalia ensiformis) 0.04 0.04 0.00 0.15 0.16 -0.01 0.34 0.32 0.02
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 Table B4.  FTIR/PLS Cross-Validation results for α-helix, and β-sheet 

PLS Cross-Validation

α-Helix β-Sheet

Protein Names Observed Predicted Residual Observed PredictedResidual

albumin (bovine) 0.70 0.75 -0.05 0.00 -0.01 0.01

albumin (human) 0.69 0.61 0.08 0.00 0.01 -0.01

albumin (sheep) 0.71 0.49 0.22 0.00 0.04 -0.04

alcohol dehydrogenase 0.16 0.18 -0.02 0.19 0.18 0.01

alpha amylase_type2 (basillus species) 0.20 0.13 0.07 0.29 0.29 0.00

alpha casein (bovine milk) 0.36 0.37 -0.01 0.15 0.14 0.01

alpha_lactalbumin 0.32 0.33 -0.01 0.07 0.11 -0.04

apha-Crystallin(Bovine eye lens) 0.03 0.14 -0.11 0.46 0.45 0.01

aprotinin (bovine lung) 0.14 0.16 -0.02 0.25 0.22 0.03

avidin 0.03 0.04 -0.01 0.55 0.49 0.06

B-lactoglobulin 0.10 0.12 -0.02 0.42 0.45 -0.03

carbonic anhydrase (bovin) 0.08 0.16 -0.08 0.29 0.33 -0.04

carbonic anhydrase (human) 0.08 0.16 -0.08 0.29 0.35 -0.06

choline oxidase 0.21 0.10 0.11 0.21 0.26 -0.05

chymotrypsin(bovin) 0.00 0.03 -0.03 0.35 0.38 -0.03

collagen(calf skin) 0.00 0.11 -0.11 0.00 0.07 -0.07

conalbumin.dpt(chicken egg white) 0.28 0.37 -0.09 0.18 0.15 0.03

concanavalin(jack bean) 0.00 0.08 -0.08 0.41 0.46 -0.05

d_amino acid dehydrogenase 0.18 0.10 0.08 0.27 0.20 0.07

elastin 0.00 0.12 -0.12 0.31 0.32 -0.01

esterase (bacillus sybstilis) 0.40 0.41 -0.01 0.15 0.12 0.03

esterase (rhizopus oryzae) 0.25 0.22 0.03 0.28 0.29 -0.01

ferritin  (horse spleen) 0.75 0.65 0.10 0.00 0.01 -0.01

fetuin (calf serum) 0.00 0.11 -0.11 0.32 0.30 0.02

fibrinogen(bovine plasma) 0.70 0.66 0.04 0.02 0.00 0.02

galactose oxidase 0.01 0.08 -0.07 0.38 0.38 0.00

glucose oxidase (aspegillus niger) 0.27 0.38 -0.11 0.20 0.13 0.07

Hemoglobin bovine 0.67 0.65 0.02 0.00 0.03 -0.03

hexakinase 0.44 0.50 -0.06 0.15 0.18 -0.03

IgG (bovine) 0.08 -0.01 0.09 0.37 0.34 0.03

IgG (Human) 0.08 -0.12 0.20 0.37 0.40 -0.03

insulin (human) 0.69 0.51 0.18 0.12 0.08 0.04

invertase(from bakers yeast) 0.00 -0.11 0.11 0.57 0.56 0.01

l_lactic (rabbit muscle) 0.40 0.39 0.01 0.21 0.22 -0.01

lactic dehydrogenase 0.45 0.37 0.08 0.20 0.25 -0.05

lectin ( p.vulgaris) 0.02 0.03 -0.01 0.43 0.36 0.07

lglutathion (reduced) 0.51 0.47 0.04 0.09 0.10 -0.01

lipaseA (candida rugosa) 0.33 0.37 -0.04 0.14 0.13 0.01

native form of c1 inhibitor  0.27 0.29 -0.02 0.32 0.23 0.09

native ovalbumin 0.30 0.35 -0.05 0.32 0.26 0.06

papain(papaya lanex) 0.23 0.29 -0.06 0.17 0.14 0.03

pepsin(pepsin gastric mucosa) 0.10 0.08 0.02 0.42 0.41 0.01

phosvitin(from egg white) 0.29 0.35 -0.06 0.37 0.38 -0.01

porin 0.04 -0.03 0.07 0.59 0.59 0.00

proteinase (from bovine pancreas) 0.24 0.27 -0.03 0.23 0.23 0.00

rhodopsin unbleached 0.59 0.59 0.00 0.04 0.06 -0.02

ribonucleaus A (bovine pancrease) 0.20 0.13 0.07 0.30 0.30 0.00

ribonucleaus S (from bovine pancreas) 0.19 0.11 0.08 0.33 0.35 -0.02

ribonucleausB (bovine pancrease) 0.18 0.16 0.02 0.33 0.27 0.06

staphylokinase-B wild type 0.09 0.26 -0.17 0.28 0.29 -0.01

subtilisin 0.32 0.43 -0.11 0.18 0.17 0.01

superoxide dismutase 0.51 0.37 0.14 0.10 0.18 -0.08

thaumactin (t.danielli) 0.11 0.04 0.07 0.36 0.36 0.00

Transketalose (E.coli) 0.42 0.47 -0.05 0.14 0.12 0.02

trypsin (bovine) 0.07 0.13 -0.06 0.32 0.31 0.01

trypsinogen(bovine pancreas) 0.07 0.08 -0.01 0.32 0.34 -0.02

Tryptophan Synthase 0.32 0.38 -0.06 0.06 0.08 -0.02

typsin-chymotripsin 0.00 0.06 -0.06 0.25 0.30 -0.05

ubiquitin (bovine) 0.16 0.20 -0.04 0.31 0.29 0.02

Urease (Canavalia ensiformis) 0.26 0.19 0.07 0.22 0.21 0.01
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Table B5.  FTIR/PLS Cross-Validation results for parallel β-sheet, antiparallel β-sheet and 

mixed β-sheet

 

PLS Cross-Validation

Parallel β-Sheet antiParallel β-Sheet mixed β-Sheet

PDBID Protein Names Observed Predicted Residual Observed Predicted Residual Observed Predicted Residual

3V03 albumin (bovine) 0.00 0.02 -0.02 0.00 0.00 0.00 0.00 0.00 0.00

1A06 albumin (human) 0.00 0.02 -0.02 0.00 -0.02 0.02 0.00 0.00 0.00

1E7H albumin (sheep) 0.00 0.02 -0.02 0.00 0.03 -0.03 0.00 -0.01 0.01

6ADH alcohol dehydrogenase 0.07 0.06 0.01 0.11 0.11 0.00 0.01 0.01 0.00

1QHO alpha amylase_type2 (basillus species) 0.06 0.08 -0.02 0.20 0.20 0.00 0.01 0.01 0.00

1DAY alpha casein (bovine milk) 0.00 0.01 -0.01 0.13 0.11 0.02 0.00 0.00 0.00

1HFZ alpha_lactalbumin 0.00 0.03 -0.03 0.07 0.11 -0.04 0.00 0.00 0.00

4GCR apha-Crystallin(Bovine eye lens) 0.00 0.00 0.00 0.38 0.40 -0.02 0.00 0.00 0.00

3LDJ aprotinin (bovine lung) 0.00 0.01 -0.01 0.25 0.23 0.02 0.00 -0.01 0.01

1SLF avidin 0.00 0.01 -0.01 0.53 0.45 0.08 0.00 0.01 -0.01

1BEB B-lactoglobulin 0.00 0.00 0.00 0.38 0.41 -0.03 0.00 -0.01 0.01

1V9E carbonic anhydrase (bovin) 0.04 0.01 0.03 0.19 0.27 -0.08 0.05 0.03 0.02

3M1K carbonic anhydrase (human) 0.04 0.01 0.03 0.19 0.29 -0.10 0.05 0.03 0.02

3NNE choline oxidase 0.06 0.04 0.02 0.12 0.18 -0.06 0.01 0.00 0.01

1YPH chymotrypsin(bovin) 0.00 0.02 -0.02 0.32 0.30 0.02 0.00 0.01 -0.01

1BKV collagen(calf skin) 0.00 0.03 -0.03 0.00 0.05 -0.05 0.00 0.00 0.00

1OVT conalbumin.dpt(chicken egg white) 0.06 0.03 0.03 0.11 0.10 0.01 0.00 0.00 0.00

3CNA concanavalin(jack bean) 0.00 0.04 -0.04 0.41 0.43 -0.02 0.00 0.00 0.00

1MPX d_amino acid dehydrogenase 0.06 0.03 0.03 0.18 0.13 0.05 0.01 0.01 0.00

2OII elastin 0.00 0.03 -0.03 0.29 0.30 -0.01 0.00 0.00 0.00

1W17 esterase (bacillus sybstilis) 0.13 0.03 0.10 0.02 0.04 -0.02 0.00 0.00 0.00

1T1C esterase (rhizopus oryzae) 0.00 0.04 -0.04 0.27 0.26 0.01 0.00 0.00 0.00

3F32 ferritin  (horse spleen) 0.00 0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00

1DLP fetuin (calf serum) 0.00 -0.01 0.01 0.31 0.29 0.02 0.00 0.00 0.00

3GHG fibrinogen(bovine plasma) 0.00 0.03 -0.03 0.01 0.00 0.01 0.01 0.00 0.01

2EIB galactose oxidase 0.01 -0.03 0.04 0.34 0.35 -0.01 0.01 0.01 0.00

1GAL glucose oxidase (aspegillus niger) 0.05 0.02 0.03 0.12 0.09 0.03 0.01 0.01 0.00

2QSP Hemoglobin bovine 0.00 0.03 -0.03 0.00 -0.01 0.01 0.00 0.01 -0.01

1BG3 hexakinase 0.05 0.04 0.01 0.08 0.11 -0.03 0.02 0.02 0.00

1IGT IgG (bovine) 0.00 0.01 -0.01 0.37 0.32 0.05 0.00 0.01 -0.01

3AGV IgG (Human) 0.00 0.00 0.00 0.37 0.39 -0.02 0.00 0.01 -0.01

2OLY insulin (human) 0.00 0.01 -0.01 0.12 0.08 0.04 0.00 0.00 0.00

1W2T invertase(from bakers yeast) 0.01 0.01 0.00 0.49 0.47 0.02 0.00 0.00 0.00

3H3F l_lactic (rabbit muscle) 0.08 0.02 0.06 0.11 0.17 -0.06 0.00 0.00 0.00

1LDM lactic dehydrogenase 0.08 0.05 0.03 0.11 0.15 -0.04 0.00 0.01 -0.01

1IOA lectin ( p.vulgaris) 0.00 0.01 -0.01 0.43 0.33 0.10 0.00 0.01 -0.01

1HNA lglutathion (reduced) 0.04 0.02 0.02 0.04 0.04 0.00 0.01 0.02 -0.01

1CRL lipaseA (candida rugosa) 0.06 0.04 0.02 0.05 0.04 0.01 0.01 0.01 0.00

2OAY native form of c1 inhibitor  0.01 0.01 0.00 0.28 0.24 0.04 0.01 0.00 0.01

1OVA native ovalbumin 0.03 0.04 -0.01 0.22 0.14 0.08 0.05 0.04 0.01

9PAP papain(papaya lanex) 0.01 0.05 -0.04 0.15 0.11 0.04 0.01 0.00 0.01

1YX9 pepsin(pepsin gastric mucosa) 0.04 0.02 0.02 0.32 0.33 -0.01 0.03 0.03 0.00

1LSH phosvitin(from egg white) 0.00 0.02 -0.02 0.35 0.34 0.01 0.00 0.01 -0.01

2ZFG porin 0.00 0.01 -0.01 0.56 0.57 -0.01 0.00 0.00 0.00

3AJ8 proteinase (from bovine pancreas) 0.14 0.11 0.03 0.08 0.09 -0.01 0.01 0.01 0.00

1HZX rhodopsin unbleached 0.00 0.03 -0.03 0.04 0.04 0.00 0.00 -0.01 0.01

1RBX ribonucleaus A (bovine pancrease) 0.00 0.01 -0.01 0.28 0.28 0.00 0.01 0.02 -0.01

3DJV ribonucleaus S (from bovine pancreas) 0.00 0.01 -0.01 0.31 0.32 -0.01 0.01 0.01 0.00

1RBB ribonucleausB (bovine pancrease) 0.00 0.01 -0.01 0.31 0.25 0.06 0.01 0.02 -0.01

1SSN staphylokinase-B wild type 0.07 0.03 0.04 0.14 0.15 -0.01 0.06 0.06 0.00

1GNS subtilisin 0.13 0.04 0.09 0.04 0.06 -0.02 0.00 0.01 -0.01

3CEI superoxide dismutase 0.00 0.02 -0.02 0.09 0.13 -0.04 0.00 0.01 -0.01

1RQW thaumactin (t.danielli) 0.00 0.01 -0.01 0.27 0.27 0.00 0.05 0.05 0.00

1QGD Transketalose (E.coli) 0.11 0.11 0.00 0.02 -0.01 0.03 0.00 0.00 0.00

3A7T trypsin (bovine) 0.00 0.03 -0.03 0.30 0.30 0.00 0.00 0.00 0.00

2TGA trypsinogen(bovine pancreas) 0.00 0.00 0.00 0.30 0.33 -0.03 0.00 0.00 0.00

2J9Z Tryptophan Synthase 0.00 0.01 -0.01 0.06 0.06 0.00 0.00 0.01 -0.01

1BBI typsin-chymotripsin 0.00 0.01 -0.01 0.25 0.29 -0.04 0.00 0.01 -0.01

2ZCB ubiquitin (bovine) 0.03 0.01 0.02 0.23 0.23 0.00 0.05 0.03 0.02

4H9M Urease (Canavalia ensiformis) 0.07 0.08 -0.01 0.13 0.11 0.02 0.01 0.01 0.00
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Table B6.  FTIR/PLS Cross-Validation results for 310-helix, turns and other 

 

PLS Cross-Validation

310 helix β-turns Other

PDBID Protein Names Observed Predicted Residual Observed Predicted Residual Observed Predicted Residual

3V03 albumin (bovine) 0.04 0.03 0.01 0.09 0.11 -0.02 0.16 0.13 0.03

1A06 albumin (human) 0.02 0.03 -0.01 0.09 0.09 0.00 0.19 0.25 -0.06

1E7H albumin (sheep) 0.02 0.04 -0.02 0.09 0.08 0.01 0.17 0.30 -0.13

6ADH alcohol dehydrogenase 0.02 0.00 0.02 0.18 0.17 0.01 0.45 0.43 0.02

1QHO alpha amylase_type2 (basillus species) 0.03 0.05 -0.02 0.14 0.14 0.00 0.34 0.32 0.02

1DAY alpha casein (bovine milk) 0.08 0.06 0.02 0.10 0.10 0.00 0.31 0.30 0.01

1HFZ alpha_lactalbumin 0.14 0.08 0.06 0.17 0.14 0.03 0.31 0.29 0.02

4GCR apha-Crystallin(Bovine eye lens) 0.06 0.05 0.01 0.08 0.08 0.00 0.37 0.31 0.06

3LDJ aprotinin (bovine lung) 0.07 0.04 0.03 0.07 0.07 0.00 0.46 0.40 0.06

1SLF avidin 0.05 0.05 0.00 0.05 0.09 -0.04 0.32 0.34 -0.02

1BEB B-lactoglobulin 0.06 0.05 0.01 0.12 0.12 0.00 0.29 0.28 0.01

1V9E carbonic anhydrase (bovin) 0.08 0.06 0.02 0.11 0.11 0.00 0.44 0.37 0.07

3M1K carbonic anhydrase (human) 0.08 0.05 0.03 0.11 0.12 -0.01 0.44 0.33 0.11

3NNE choline oxidase 0.05 0.06 -0.01 0.14 0.15 -0.01 0.40 0.38 0.02

1YPH chymotrypsin(bovin) 0.02 0.04 -0.02 0.18 0.14 0.04 0.45 0.40 0.05

1BKV collagen(calf skin) 0.00 0.02 -0.02 0.00 0.03 -0.03 1.00 0.71 0.29

1OVT conalbumin.dpt(chicken egg white) 0.05 0.04 0.01 0.16 0.11 0.05 0.34 0.34 0.00

3CNA concanavalin(jack bean) 0.00 0.02 -0.02 0.09 0.10 -0.01 0.50 0.42 0.08

1MPX d_amino acid dehydrogenase 0.05 0.04 0.01 0.12 0.09 0.03 0.38 0.61 -0.23

2OII elastin 0.00 0.01 -0.01 0.08 0.05 0.03 0.61 0.55 0.06

1W17 esterase (bacillus sybstilis) 0.03 0.05 -0.02 0.10 0.10 0.00 0.32 0.31 0.01

1T1C esterase (rhizopus oryzae) 0.02 0.01 0.01 0.14 0.14 0.00 0.31 0.30 0.01

3F32 ferritin  (horse spleen) 0.00 0.04 -0.04 0.07 0.08 -0.01 0.19 0.22 -0.03

1DLP fetuin (calf serum) 0.00 0.00 0.00 0.09 0.05 0.04 0.58 0.62 -0.04

3GHG fibrinogen(bovine plasma) 0.02 0.02 0.00 0.06 0.09 -0.03 0.21 0.26 -0.05

2EIB galactose oxidase 0.02 0.03 -0.01 0.13 0.14 -0.01 0.46 0.47 -0.01

1GAL glucose oxidase (aspegillus niger) 0.07 0.07 0.00 0.12 0.10 0.02 0.33 0.31 0.02

2QSP Hemoglobin bovine 0.09 0.08 0.01 0.11 0.12 -0.01 0.14 0.21 -0.07

1BG3 hexakinase 0.03 0.00 0.03 0.11 0.11 0.00 0.27 0.15 0.12

1IGT IgG (bovine) 0.04 0.07 -0.03 0.08 0.10 -0.02 0.42 0.44 -0.02

3AGV IgG (Human) 0.04 0.02 0.02 0.08 0.07 0.01 0.42 0.51 -0.09

2OLY insulin (human) 0.12 0.06 0.06 0.00 0.08 -0.08 0.08 0.27 -0.19

1W2T invertase(from bakers yeast) 0.03 0.02 0.01 0.10 0.10 0.00 0.30 0.43 -0.13

3H3F l_lactic (rabbit muscle) 0.04 0.05 -0.01 0.11 0.11 0.00 0.24 0.26 -0.02

1LDM lactic dehydrogenase 0.07 0.05 0.02 0.06 0.05 0.01 0.22 0.32 -0.10

1IOA lectin ( p.vulgaris) 0.04 0.05 -0.01 0.14 0.12 0.02 0.37 0.41 -0.04

1HNA lglutathion (reduced) 0.03 0.07 -0.04 0.12 0.10 0.02 0.26 0.27 -0.01

1CRL lipaseA (candida rugosa) 0.05 0.05 0.00 0.13 0.16 -0.03 0.36 0.45 -0.09

2OAY native form of c1 inhibitor  0.02 0.04 -0.02 0.09 0.10 -0.01 0.30 0.31 -0.01

1OVA native ovalbumin 0.03 0.05 -0.02 0.13 0.14 -0.01 0.23 0.28 -0.05

9PAP papain(papaya lanex) 0.03 0.03 0.00 0.11 0.12 -0.01 0.46 0.42 0.04

1YX9 pepsin(pepsin gastric mucosa) 0.04 0.06 -0.02 0.13 0.14 -0.01 0.31 0.30 0.01

1LSH phosvitin(from egg white) 0.02 0.02 0.00 0.10 0.09 0.01 0.23 0.13 0.10

2ZFG porin 0.00 -0.01 0.01 0.14 0.12 0.02 0.24 0.33 -0.09

3AJ8 proteinase (from bovine pancreas) 0.03 0.01 0.02 0.16 0.20 -0.04 0.34 0.44 -0.10

1HZX rhodopsin unbleached 0.03 0.04 -0.01 0.10 0.11 -0.01 0.25 0.23 0.02

1RBX ribonucleaus A (bovine pancrease) 0.02 0.03 -0.01 0.06 0.09 -0.03 0.41 0.43 -0.02

3DJV ribonucleaus S (from bovine pancreas) 0.05 0.05 0.00 0.11 0.13 -0.02 0.32 0.38 -0.06

1RBB ribonucleausB (bovine pancrease) 0.03 0.04 -0.01 0.15 0.13 0.02 0.31 0.37 -0.06

1SSN staphylokinase-B wild type 0.02 0.02 0.00 0.08 0.09 -0.01 0.53 0.37 0.16

1GNS subtilisin 0.00 0.01 -0.01 0.16 0.12 0.04 0.34 0.32 0.02

3CEI superoxide dismutase 0.03 0.04 -0.01 0.13 0.12 0.01 0.23 0.28 -0.05

1RQW thaumactin (t.danielli) 0.01 0.04 -0.03 0.12 0.12 0.00 0.40 0.41 -0.01

1QGD Transketalose (E.coli) 0.05 0.06 -0.01 0.13 0.15 -0.02 0.26 0.15 0.11

3A7T trypsin (bovine) 0.03 0.02 0.01 0.15 0.16 -0.01 0.43 0.41 0.02

2TGA trypsinogen(bovine pancreas) 0.03 0.02 0.01 0.14 0.16 -0.02 0.44 0.46 -0.02

2J9Z Tryptophan Synthase 0.10 0.08 0.02 0.24 0.16 0.08 0.28 0.26 0.02

1BBI typsin-chymotripsin 0.00 0.04 -0.04 0.06 0.13 -0.07 0.69 0.41 0.28

2ZCB ubiquitin (bovine) 0.08 0.06 0.02 0.16 0.11 0.05 0.28 0.33 -0.05

4H9M Urease (Canavalia ensiformis) 0.04 0.03 0.01 0.15 0.14 0.01 0.34 0.37 -0.03
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Table B7.  Result of 44 samples in the test set used for Partial Least Squares (PLS) 

analysis.  About 20 spectra from calibration set were included in the test set for validation 

purpose (α-helix and β-sheet only). 

 

 

  

α-Helix β-Sheet

PDBID Protein Names Observed Predicted Residual Observed Predicted Residual

1E7H albumin (sheep) 0.71 0.49 0.22 0.00 0.04 -0.04

1DAY alpha casein (bovine milk) 0.36 0.37 -0.01 0.15 0.14 0.01

1HFZ alpha_lactalbumin 0.31 0.33 -0.02 0.07 0.11 -0.04

3CWL alpha-1-antitypsin 0.28 0.18 0.10 0.31 0.33 -0.02

1YJ0 annexinV/without calcium 0.68 0.53 0.15 0.00 0.08 -0.08

1AS4 anti-chymotrypsin 0.32 0.25 0.07 0.37 0.30 0.07

3LDJ aprotinin (bovine lung) 0.14 0.16 -0.02 0.25 0.22 0.03

1SLF avidin 0.03 0.04 -0.01 0.55 0.49 0.06

2BRD bacteriorhodopsin in purple membrane 0.77 0.35 0.42 0.00 0.20 -0.20

3IF7 calmodulin 0.59 0.51 0.08 0.06 0.08 -0.02

3M1K carbonic anhydrase (human) 0.08 0.16 -0.08 0.29 0.33 -0.04

1YPH chymotrypsin(bovin) 0.00 0.03 -0.03 0.35 0.38 -0.03

1ATH cleaved form of anti-thrombin 0.27 0.28 -0.01 0.32 0.30 0.02

1BKV collagen(calf skin) 0.00 0.11 -0.11 0.00 0.07 -0.07

1HRC cytochrome (horse heart) 0.41 0.49 -0.08 0.00 0.02 -0.02

1GAL glucose oxidase (aspegillus niger) 0.27 0.38 -0.11 0.20 0.13 0.07

1IGT IgG (bovine) 0.06 -0.01 0.07 0.42 0.34 0.08

2OLY insulin (human) 0.69 0.51 0.18 0.12 0.08 0.04

3H3F l_lactic (rabbit muscle) 0.40 0.39 0.01 0.21 0.22 -0.01

1IOA lectin ( p.vulgaris) 0.02 0.03 -0.01 0.43 0.36 0.07

1HNA l-glutathion (reduced) 0.51 0.47 0.04 0.09 0.10 -0.01

1OIL lipase (wheat) 0.36 0.34 0.02 0.18 0.19 -0.01

2LYZ lysozyme (chicken egg) 0.32 0.40 -0.08 0.06 0.12 -0.06

2MLT melittin pH 6 0.88 0.47 0.41 0.00 0.12 -0.12

1NZ2 myoglobulin(horse muscle) 0.74 0.62 0.12 0.00 0.01 -0.01

3DLW native anti-chymotrypsin 0.29 0.29 0.00 0.36 0.25 0.11

1T1F native form of anti-thrombin  0.26 0.27 -0.01 0.27 0.32 -0.05

1OVA native ovalbumin 0.30 0.35 -0.05 0.32 0.26 0.06

1HCH peroxidase (horseradish) 0.44 0.35 0.09 0.02 0.17 -0.15

2AXT phtosystem II reaction centre  0.52 0.50 0.02 0.01 0.12 -0.11

3ENJ pig citrate synthase 0.59 0.49 0.10 0.03 0.10 -0.07

1T5A pyruvate kinase 0.36 0.51 -0.15 0.20 0.11 0.09

1QOV Reaction centere R. Sphae. 0.18 0.38 -0.20 0.22 0.21 0.01

2I37 rhodopsin bleached 0.55 0.61 -0.06 0.04 0.03 0.01

1HZX rhodopsin unbleached 0.59 0.59 0.00 0.04 0.06 -0.02

2ACH sact1 DIFF 0.31 0.25 0.06 0.34 0.30 0.04

1LQ8 split form of c1 inhibitor  0.28 0.29 -0.01 0.35 0.25 0.10

1H3E split form ovalbumin 0.41 0.35 0.06 0.13 0.27 -0.14

3CEI superoxide dismutase 0.51 0.37 0.14 0.10 0.18 -0.08

1RQW thaumactin (t.danielli) 0.11 0.04 0.07 0.36 0.36 0.00

3A7T trypsin 0.07 0.22 -0.15 0.32 0.27 0.05

1UHB trypsin (hog pancreas) 0.00 0.01 -0.01 0.34 0.40 -0.06

2J9Z tryptophan Synthase 0.32 0.38 -0.06 0.06 0.08 -0.02

2ZCB ubiquitin (bovine) 0.16 0.20 -0.04 0.31 0.29 0.02
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Table B8.  Result of 44 samples in the test set used for Partial Least Squares (PLS) 

analysis.  About 20 spectra from calibration set were included in the test set for validation 

purpose (parallel β-sheet, parallel β-sheet, and mixed β-sheet). 

 

 

 

PDBID Protein Names Observed Predicted Residual Observed Predicted Residual Observed Predicted Residual

1E7H albumin (sheep) 0.00 0.02 -0.02 0.00 0.02 -0.02 0.00 0.00 0.00

1DAY alpha casein (bovine milk) 0.00 0.01 -0.01 0.13 0.11 0.02 0.00 0.01 -0.01

1HFZ alpha_lactalbumin 0.00 0.03 -0.03 0.07 0.11 -0.04 0.00 0.00 0.00

3CWL alpha-1-antitypsin' 0.03 0.33 -0.30 0.21 0.21 0.27 0.06 0.02 0.04

1YJ0 annexinV/without calcium 0.00 0.03 -0.03 0.00 0.04 -0.04 0.00 0.01 -0.01

1AS4 anti-chymotrypsin 0.02 0.02 0.00 0.32 0.25 0.07 0.02 0.02 0.00

3LDJ aprotinin (bovine lung) 0.00 0.01 -0.01 0.25 0.22 0.03 0.00 -0.01 0.01

1SLF avidin 0.00 0.01 -0.01 0.53 0.45 0.08 0.00 0.01 -0.01

2BRD bacteriorhodopsin in purple membrane 0.00 0.02 -0.02 0.00 0.18 -0.18 0.00 0.01 -0.01

3IF7 calmodulin 0.00 0.03 -0.03 0.06 0.05 0.01 0.00 0.01 -0.01

3M1K carbonic anhydrase (human) 0.04 0.01 0.03 0.19 0.27 -0.08 0.05 0.02 0.03

1YPH chymotrypsin(bovin) 0.00 0.02 -0.02 0.32 0.30 0.02 0.00 0.01 -0.01

1ATH cleaved form of anti-thrombin 0.03 0.02 0.01 0.25 0.26 -0.01 0.03 0.01 0.02

1BKV collagen(calf skin) 0.00 0.03 -0.03 0.00 0.06 -0.06 0.00 -0.01 0.01

1HRC cytochrome (horse heart) 0.00 0.02 -0.02 0.00 0.01 -0.01 0.00 0.00 0.00

1GAL glucose oxidase (aspegillus niger) 0.05 0.02 0.03 0.12 0.09 0.03 0.01 0.01 0.00

1IGT IgG (bovine) 0.00 0.01 -0.01 0.42 0.32 0.10 0.00 0.02 -0.02

2OLY insulin (human) 0.00 0.01 -0.01 0.12 0.07 0.05 0.00 0.01 -0.01

3H3F l_lactic (rabbit muscle) 0.08 0.02 0.06 0.11 0.15 -0.04 0.00 0.01 -0.01

1IOA lectin ( p.vulgaris) 0.00 0.01 -0.01 0.43 0.32 0.11 0.00 0.01 -0.01

1HNA lglutathion (reduced) 0.04 0.02 0.02 0.04 0.05 -0.01 0.01 0.02 -0.01

1OIL lipase (wheat) 0.09 0.02 0.07 0.07 0.14 -0.07 0.00 0.01 -0.01

2LYZ lysozyme (chicken egg) 0.00 0.02 -0.02 0.06 0.09 -0.03 0.00 0.01 -0.01

2MLT melittin pH 6 0.00 0.03 -0.03 0.00 0.07 -0.07 0.00 0.01 -0.01

1NZ2 myoglobulin(horse muscle) 0.00 0.02 -0.02 0.00 -0.03 0.03 0.00 0.00 0.00

3DLW native anti-chymotrypsin 0.02 0.02 0.00 0.31 0.19 0.12 0.02 0.02 0.00

1T1F native form of anti-thrombin  0.03 0.03 0.00 0.21 0.24 -0.03 0.03 0.02 0.01

1OVA native ovalbumin 0.03 0.04 -0.01 0.22 0.13 0.09 0.05 0.03 0.02

1HCH peroxidase (horseradish) 0.00 0.02 -0.02 0.02 0.13 -0.11 0.00 0.01 -0.01

2AXT phtosystem II reaction centre  0.01 0.02 -0.01 0.00 0.11 -0.11 0.00 0.01 -0.01

3ENJ pig citrate synthase 0.00 0.03 -0.03 0.03 0.07 -0.04 0.00 0.01 -0.01

1T5A pyruvate kinase 0.10 0.02 0.08 0.08 0.09 -0.01 0.01 0.01 0.00

1QOV Reaction centere R. Sphae. 0.00 0.02 -0.02 0.18 0.17 0.01 0.02 0.01 0.01

2I37 rhodopsin bleached 0.00 0.03 -0.03 0.04 0.01 0.03 0.00 0.01 -0.01

1HZX rhodopsin unbleached 0.00 0.03 -0.03 0.04 0.04 0.00 0.00 0.00 0.00

2ACH sact1 DIFF 0.02 0.02 0.00 0.29 0.25 0.04 0.02 0.02 0.00

1LQ8 split form of c1 inhibitor  0.02 0.01 0.01 0.30 0.25 0.05 0.02 0.01 0.01

1H3E split form ovalbumin 0.07 0.04 0.03 0.05 0.12 -0.07 0.01 0.03 -0.02

3CEI superoxide dismutase 0.00 0.02 -0.02 0.09 0.14 -0.05 0.00 0.01 -0.01

1RQW thaumactin (t.danielli) 0.00 0.01 -0.01 0.27 0.27 0.00 0.05 0.02 0.03

3A7T trypsin 0.00 0.03 -0.03 0.30 0.20 0.10 0.00 0.02 -0.02

1UHB trypsin (hog pancreas) 0.00 0.02 -0.02 0.33 0.32 0.01 0.00 0.02 -0.02

2J9Z tryptophan Synthase 0.00 0.01 -0.01 0.06 0.07 -0.01 0.00 0.02 -0.02

2ZCB ubiquitin (bovine) 0.03 0.01 0.02 0.23 0.23 0.00 0.05 0.02 0.03
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Table B9.  Result of 44 samples in the test set used for Partial Least Squares (PLS) 

analysis.  About 20 spectra from calibration set were included in the test set for validation 

purpose (310-helix, β-turns and other). 

  

 

 

 

PDBID Protein Names Observed Predicted Residual Observed Predicted Residual Observed Predicted Residual

1E7H albumin (sheep) 0.02 0.04 -0.02 0.09 0.08 0.01 0.17 0.30 -0.13

1DAY alpha casein (bovine milk) 0.08 0.06 0.02 0.10 0.10 0.00 0.31 0.30 0.01

1HFZ alpha_lactalbumin 0.14 0.07 0.07 0.18 0.14 0.04 0.31 0.29 0.02

3CWL alpha-1-antitypsin' 0.02 0.04 -0.02 0.10 0.12 -0.02 0.28 0.35 -0.07

1YJ0 annexinV/without calcium 0.10 0.04 0.06 0.07 0.12 -0.05 0.25 0.25 0.00

1AS4 anti-chymotrypsin 0.02 0.04 -0.02 0.09 0.12 -0.03 0.20 0.31 -0.11

3LDJ aprotinin (bovine lung) 0.07 0.04 0.03 0.07 0.07 0.00 0.46 0.40 0.06

1SLF avidin 0.05 0.05 0.00 0.05 0.09 -0.04 0.32 0.34 -0.02

2BRD bacteriorhodopsin in purple membrane 0.00 0.04 -0.04 0.02 0.12 -0.10 0.21 0.29 -0.08

3IF7 calmodulin 0.00 0.04 -0.04 0.07 0.11 -0.04 0.28 0.25 0.03

3M1K carbonic anhydrase (human) 0.08 0.05 0.03 0.11 0.11 0.00 0.44 0.37 0.07

1YPH chymotrypsin(bovin) 0.02 0.04 -0.02 0.18 0.14 0.04 0.45 0.40 0.05

1ATH cleaved form of anti-thrombin 0.02 0.03 -0.01 0.11 0.11 0.00 0.28 0.29 -0.01

1BKV collagen(calf skin) 0.00 0.02 -0.02 0.00 0.03 -0.03 1.00 0.71 0.29

1HRC cytochrome (horse heart) 0.00 0.05 -0.05 0.17 0.10 0.07 0.41 0.29 0.12

1GAL glucose oxidase (aspegillus niger) 0.07 0.06 0.01 0.12 0.10 0.02 0.33 0.31 0.02

1IGT IgG (bovine) 0.02 0.04 -0.02 0.08 0.10 -0.02 0.42 0.44 -0.02

2OLY insulin (human) 0.12 0.06 0.06 0.00 0.08 -0.08 0.08 0.27 -0.19

3H3F l_lactic (rabbit muscle) 0.04 0.06 -0.02 0.11 0.11 0.00 0.24 0.26 -0.02

1IOA lectin ( p.vulgaris) 0.04 0.05 -0.01 0.14 0.12 0.02 0.37 0.41 -0.04

1HNA lglutathion (reduced) 0.03 0.07 -0.04 0.12 0.10 0.02 0.26 0.27 -0.01

1OIL lipase (wheat) 0.02 0.05 -0.03 0.16 0.11 0.05 0.28 0.31 -0.03

2LYZ lysozyme (chicken egg) 0.10 0.05 0.05 0.24 0.10 0.14 0.28 0.30 -0.02

2MLT melittin pH 6 0.00 0.04 -0.04 0.04 0.11 -0.07 0.08 0.26 -0.18

1NZ2 myoglobulin(horse muscle) 0.00 0.06 -0.06 0.12 0.09 0.03 0.14 0.23 -0.09

3DLW native anti-chymotrypsin 0.02 0.04 -0.02 0.07 0.12 -0.05 0.27 0.31 -0.04

1T1F native form of anti-thrombin  0.04 0.03 0.01 0.10 0.12 -0.02 0.33 0.30 0.03

1OVA native ovalbumin 0.03 0.04 -0.01 0.13 0.14 -0.01 0.23 0.28 -0.05

1HCH peroxidase (horseradish) 0.06 0.05 0.01 0.17 0.10 0.07 0.31 0.31 0.00

2AXT phtosystem II reaction centre  0.04 0.04 0.00 0.10 0.11 -0.01 0.33 0.24 0.09

3ENJ pig citrate synthase 0.03 0.04 -0.01 0.10 0.12 -0.02 0.24 0.25 -0.01

1T5A pyruvate kinase 0.04 0.04 0.00 0.10 0.10 0.00 0.30 0.24 0.06

1QOV Reaction centere R. Sphae. 0.06 0.04 0.02 0.12 0.12 0.00 0.42 0.27 0.15

2I37 rhodopsin bleached 0.04 0.03 0.01 0.12 0.11 0.01 0.25 0.23 0.02

1HZX rhodopsin unbleached 0.03 0.04 -0.01 0.10 0.11 -0.01 0.25 0.23 0.02

2ACH sact1 DIFF 0.02 0.04 -0.02 0.09 0.12 -0.03 0.23 0.31 -0.08

1LQ8 split form of c1 inhibitor  0.04 0.03 0.01 0.08 0.11 -0.03 0.26 0.31 -0.05

1H3E split form ovalbumin 0.04 0.04 0.00 0.14 0.14 0.00 0.28 0.29 -0.01

3CEI superoxide dismutase 0.03 0.04 -0.01 0.13 0.12 0.01 0.23 0.28 -0.05

1RQW thaumactin (t.danielli) 0.01 0.04 -0.03 0.12 0.12 0.00 0.40 0.41 -0.01

3A7T trypsin 0.03 0.04 -0.01 0.15 0.12 0.03 0.43 0.35 0.08

1UHB trypsin (hog pancreas) 0.02 0.04 -0.02 0.12 0.13 -0.01 0.51 0.42 0.09

2J9Z tryptophan Synthase 0.10 0.08 0.02 0.24 0.16 0.08 0.28 0.26 0.02

2ZCB ubiquitin (bovine) 0.08 0.06 0.02 0.16 0.11 0.05 0.28 0.33 -0.05
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Table B10.  Results for FTIR/PLS comparison of proteins in H2O and D2O. 

(For α-helix and β-sheet results, see chapter 4, section 4.6.4.) 

 

 

 

 

Table B11.  Continuation of Table B7 for comparison of proteins in H2O and D2O results. 

 

 

α-Helix β-Sheet

Num PDBID Protein Names

Observe

d (X-

ray)

 Predicted 

(proteins 

in  H2O)

 Predicted 

(proteins 

in D2O) 

Observed 

(X-ray)

 Predicted 

(proteins in  

H2O)

 Predicted 

(proteins in  

D2O)

1 3CWL alpha-1-antitypsin 0.28 0.30 0.28 0.31 0.33 0.33

2 3M1K carbonic anhydrase 0.08 0.10 0.14 0.29 0.35 0.29

3 1YPH chymotrypsin(bovin) 0.00 0.03 0.00 0.35 0.38 0.35

4 1ATH cleaved form of anti-thrombin 0.27 0.28 0.26 0.32 0.30 0.33

5 1HRC cytochrome (Horse heart) 0.41 0.49 0.47 0.00 0.02 0.01

6 2QSP Hemoglobin bovine 0.67 0.67 0.66 0.00 0.03 0.02

7 2LYZ lysozyme 0.32 0.28 0.31 0.06 0.70 0.06

8 1NZ2 myoglobulin(horse muscle) 0.74 0.62 0.70 0.00 0.01 0.04

9 1T1F native form of anti-thrombin  0.26 0.27 0.26 0.27 0.28 0.25

10 2OAY native form of c1 inhibitor  0.27 0.34 0.32 0.32 0.28 0.30

11 1YX9 pepsin(pepsin gastric mucosa) 0.10 0.13 0.11 0.42 0.42 0.42

12 1RBX ribnuA(from bovine pancreas) 0.20 0.18 0.18 0.30 0.32 -0.02

13 3DJV ribnuS.dpt (from bovine pancreas) 0.19 0.19 0.20 0.33 0.36 0.32

14 1LQ8 split form of c1 inhibitor  0.28 0.29 0.29 0.35 0.34 0.34

15 3CEI superoxide dismutase 0.51 0.45 0.47 0.10 0.11 0.12

16 2TGA trypsinogen(bovine pancreas) 0.07 0.11 0.06 0.32 0.29 0.32

Parallel β-Sheet Anti-Parallel β-Sheet Mixedl β-Sheet

Num PDBID Protein Names

Observed 

(X-ray)

 Predicted 

(proteins in  

H2O)

 Predicted 

(proteins in  

D2O)

Observe

d (X-

ray)

 Predicted 

(proteins in  

H2O)

 Predicted 

(proteins 

in  D2O)

Observe

d (X-

ray)

 Predicted 

(proteins in  

H2O)

 Predicted 

(proteins 

in  D2O)

1 3CWL alpha-1-antitypsin 0.03 0.03 0.00 0.21 0.21 0.20 0.06 0.02 0.03

2 3M1K carbonic anhydrase 0.04 0.03 0.02 0.19 0.19 0.19 0.05 0.05 0.04

3 1YPH chymotrypsin(bovin) 0.00 0.02 0.00 0.32 0.30 0.31 0.00 0.01 0.00

4 1ATH cleaved form of anti-thrombin 0.03 0.02 0.01 0.31 0.28 0.29 0.03 0.01 0.02

5 1HRC cytochrome (Horse heart) 0.00 0.02 0.00 0.00 0.01 0.01 0.00 0.00 0.00

6 2QSP Hemoglobin bovine 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00

7 2LYZ lysozyme 0.00 0.02 0.01 0.06 0.09 0.07 0.00 0.01 0.01

8 1NZ2 myoglobulin(horse muscle) 0.00 0.02 0.00 0.00 -0.03 0.00 0.00 0.00 0.00

9 1T1F native form of anti-thrombin  0.03 0.03 0.00 0.21 0.24 0.20 0.03 0.02 0.03

10 2OAY native form of c1 inhibitor  0.01 0.00 0.01 0.28 0.28 0.27 0.01 0.01 0.02

11 1YX9 pepsin(pepsin gastric mucosa) 0.04 0.03 0.01 0.32 0.32 0.33 0.03 0.03 0.03

12 1RBX ribnuA(from bovine pancreas) 0.00 0.00 0.00 0.28 0.28 0.27 0.01 0.01 0.01

13 3DJV ribnuS.dpt (from bovine pancreas) 0.00 0.00 0.00 0.31 0.31 0.31 0.01 0.00 0.01

14 1LQ8 split form of c1 inhibitor  0.02 0.01 0.01 0.30 0.25 0.27 0.02 0.01 0.02

15 3CEI superoxide dismutase 0.00 0.00 0.00 0.09 0.09 0.08 0.00 0.00 0.00

16 2TGA trypsinogen(bovine pancreas) 0.00 0.00 0.00 0.30 0.30 0.30 0.00 0.00 0.01
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Table B12.  Continuation of Table B8 for comparison of proteins in H2O and D2O results. 

 

 

 

 

  

310 helix β-turns Other

Num PDBID Protein Names

Observe

d (X-

ray)

 Predicted 

(proteins 

in  H2O)

 Predicted 

(proteins 

in  D2O)

Observe

d (X-

ray)

 Predicted 

(proteins 

in  H2O)

 Predicted 

(proteins 

in  D2O)

Observe

d (X-

ray)

 Predicted 

(proteins in  

H2O)

 Predicted 

(proteins 

in  D2O)

1 3CWL alpha-1-antitypsin 0.02 0.04 0.04 0.10 0.12 0.11 0.28 0.24 0.25

2 3M1K carbonic anhydrase 0.08 0.07 0.06 0.11 0.12 0.11 0.44 0.44 0.44

3 1YPH chymotrypsin(bovin) 0.02 0.04 0.03 0.18 0.14 0.17 0.45 0.40 0.40

4 1ATH cleaved form of anti-thrombin 0.02 0.03 0.03 0.11 0.11 0.11 0.28 0.29 0.29

5 1HRC cytochrome (Horse heart) 0.00 0.05 0.04 0.17 0.16 0.16 0.41 0.41 0.42

6 2QSP Hemoglobin bovine 0.09 0.09 0.07 0.11 0.11 0.13 0.14 0.14 0.14

7 2LYZ lysozyme 0.10 0.05 0.09 0.24 0.22 0.23 0.28 0.30 0.28

8 1NZ2 myoglobulin(horse muscle) 0.00 0.06 0.00 0.12 0.09 0.11 0.14 0.15 0.13

9 1T1F native form of anti-thrombin  0.04 0.03 0.03 0.10 0.12 0.12 0.33 0.30 0.32

10 2OAY native form of c1 inhibitor  0.02 0.02 0.02 0.09 0.08 0.08 0.30 0.30 0.30

11 1YX9 pepsin(pepsin gastric mucosa) 0.04 0.04 0.03 0.13 0.13 0.13 0.31 0.31 0.32

12 1RBX ribnuA(from bovine pancreas) 0.02 0.01 0.02 0.06 0.08 0.07 0.41 0.41 0.39

13 3DJV ribnuS.dpt (from bovine pancreas) 0.05 0.05 0.06 0.11 0.11 0.11 0.32 0.32 0.32

14 1LQ8 split form of c1 inhibitor  0.04 0.03 0.04 0.08 0.11 0.09 0.26 0.31 0.28

15 3CEI superoxide dismutase 0.03 0.04 0.04 0.13 0.14 0.14 0.23 0.23 0.23

16 2TGA trypsinogen(bovine pancreas) 0.03 0.03 0.03 0.14 0.14 0.14 0.44 0.44 0.44
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Appendix C 
 

Appendix C contains PCA plots for D2O and plots for Discriminant Function 

Analysis (DFA) for Amide I and Amide II not used in the main body of this thesis; 

the protein data set is the same and the results from these analyses were quite 

favourable.   

A usefulness of DFA is in maximising the differences among sample groups; 

however, the score plots in the PCA analysis in Chapter 3 reviled well clustered 

protein samples and served the purpose for our data exploration.  See Chapter 3. 
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Figure C1.  Principal Component plot of Amide I region of 16 proteins in D2O showing 

percentage variance of the first 4 PCs.  Blue line indicates that the accumulative percentage 

variance is about 98%. 

 

 

Figure C2.  PCA Score plot of the Amide I region for 16 proteins in D2O.  The plot show 

lysozyme associated with α-helix on the left.  It was wrongly marked as ‘other’ before the 

analysis.  β-sheet proteins are clustered above right while ‘other’ appears below right.  
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Figure C3.  PCA loading spectra plot of the Amide I region for 16 proteins in D2O buffer 

 

 

Figure C4.  This loading plot indicates the spectral regions responsible for the 

discriminations of the proteins.  This plot does correlate well with Figure c3 above; it 

highlights the intensity wavenumbers associated with the clustering of the proteins.  

1653cm
-1

 is the intensity peak for α-helix and 1630 cm
-1

  is the associated with β-sheet 

proteins on the right of Figure c1. 
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Figure C5.  This plot of the Amide I region of FTIR protein spectra was produced from 

Discriminant Function Analysis.  The first DF discriminates between alpha-helix on the 

right and beta-sheet proteins on the left; the second DF separates the ‘other’ proteins, 

mainly above zero but clustered in the middle, from the rest of the data. 

 

  

Figure C6.  This plot of the Amide II region of FTIR protein spectra was produced from 

Discriminant Function Analysis.  The first DF discriminates between α-helix on the left 

and β-sheet proteins on the right; the second DF separates the ‘other’ proteins, mainly 

above zero but clustered in the middle, from the rest of the data. 
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Table C1.  Accuracy of Discriminant Function Analysis 

 

Naive Bayes Results   

 Training set = 68x10; Testset = 16x10 

   

    Amide I scores from DFA 
   

  
confusion matrix 

 

α-helix β-sheet other 

α-helix 5 0 0 

β-sheet 0 4 1 

other 2 1 3 

    accuracy = 75.00% 

   

    

    

    

  

  

 Amide II scores from DFA 
   

  
confusion matrix 

 

α-helix β-sheet other 

α-helix 4 0 0 

β-sheet 1 2 2 

other 1 1 5 

    accuracy = 68.75% 

    

 

The row of each confusion matrix are the three classes of structure used for the 

Discriminant Function Analysis, the column are the classifier results for each class, 

i.e., the number of class members that were classified correctly are shown as in the 

class columns.  As a result, all correct classifications are shown in the diagonal.  

 

From the Amide II results, it can be seen that the model could not distinguish β-

sheet proteins properly, it has classified two beta sheet class members as α-helix 

proteins and two as ‘other’ and this is reflected in the accuracy figure of about 68%  

The accuracy value is determined by calculating all the true positives (along the 

diagonal) divided by the total number of class members in the test set.   For Amide 

II that would be (11/16) * 100 
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Appendix D 
 

Appendix D contains a high level flow chart of the steps taken mainly for the 

spectral pre-processing steps carried out in Chapter 2 and a generalized 

Multivariate Analysis (MVA) flow done in Chapters 3 and 4. 
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Figure D 1.  This top level flow chart represents the operations carried out in this thesis.  

Level 3.0 and 4.0 can be done in the same step as part of the multivariate regression 

analysis.  Each step of the chart is expanded on different flow diagrams.  See Figure D2 

and D3 of this thesis. 
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Figure D2.  Step 1.0 of the flow chart highlights the steps taken for the ATR-FTIR spectra 

measurements using the Bruker Tensor spectrometer with Opus 6.2 software.  The process 

in red is an external entity to the spectra measurement; the spectra can be saved and plotted 

in any chosen plotting software. 
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Figure D3.  Step 2.0 captures the pre-processing steps that were done on the ATR-FTIR 

measured spectra used for this research.  Each step of this flow chart was done in Matlab 

R2010 and Matlab R2013a.  The process in red is not necessary part of the pre-processing 

steps and is expanded in Figure D4. 
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Figure D4.   This is the generalized step for the multivariate analysis done in this research.  

The PCA and PLS steps are not broken down in this flow chart, detail methods can be read 

from Chapter 3 (PCA) and Chapter 4 (PLS), this includes the processes in navy blue colour 

that pertain to the internal workings of most multivariate analysis. 


