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The reduction of noise generated by new and existing engineering products is of
increasing importance commercially, socially and environmentally. Commercially, the
noise emission of vehicles, such as cars and aircraft, may often be considered a selling
point and the effects of noise pollution on human health and the environment has
led to legislation restricting the noise emissions of many engineering products. Noise
prediction schemes are important tools to help us understand and develop a means
of controlling noise. Acoustic problems present numerous challenges to traditional
CFD-type numerical methods rendering all but the most trivial problems unsuitable.
Difficulties relate to the length scale discrepancies which arise due to the relatively tiny
pressure and density fluctuations of an acoustic wave propagating over large distances
to the point of interest; the result being large computational domains to capture wave
behaviour accurately between source and observer. Noise prediction may be performed
using a hybrid Computational Aero-Acoustics (CAA) scheme, an approach to noise
prediction which alleviates many issues associated with exclusively numerical or an-
alytical approaches. Hybrid schemes often rely on knowledge of a Green’s function,
representing the scattering of the geometry, to propagate source fluctuations to the
far-field. Presently, these functions only exist in analytical form for relatively simple
geometries. This research develops principles for the robust calculation of Green’s
functions for general situations. In order to achieve this, three techniques to compute
Green’s functions for the Helmholtz equation within an extended class of 2D geome-
tries are developed, evaluated and compared. Where appropriate, their extension to
3D is described. Guidance is provided on the selection of a suitable numerical method
in practice given knowledge of the geometry of interest. Through inclusion of the
numerical methods for the construction of Green’s functions presented here, the appli-
cability of existing hybrid schemes will be significantly extended. Thus, it is expected
that noise predictions may be performed on a more general range of geometries while
exploiting the computational efficiency of hybrid prediction schemes.
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Ĝ, G Green’s Function

h Sinc Spatial Step Size

H, G Influence Coefficient Matrices

H
(2)
0 Zeroth Hankel Function of the Second Kind

i sqrt−1, Index

j Index

k Acoustic Plane Wave Number, Index

K Mathematical Constant, Number of Type-3 Elements

l Principal Dimension of Body

L Length

m Number of Sinc Nodes

M Number of Terms in the DtN Expansion, Lower Limit of Sinc Expansion

n Number of Vertex Points, Number of Mesh Points, Number of Nodes

N Upper Limit of Sinc Expansion

p Index

q̂, q Source Function/Strength, Boundary Value, Index

S Boundary Surface, Translated Sinc Function

u General Acoustic Variable

U Flow Velocity

16



17

v, w Weighting Function

x Observer Position Vector

x̄ Image Source Position Vector

y Source Position Vector

Y Kirchhoff Vector

z Complex Coordinate in Physical Domain

α Interior Angle of Polygon

γn Wavenumber for Mode n

Γ Boundary Curve

ζ Complex Coordinate in Computational Domain

λ Acoustic Wavelength

φ̂, φ Velocity Potential, General Acoustic Variable, Conformal Map

φ∗ Free-Space Green’s Function

Φ Complex Potential

ψ Stream Function, Normal Derivative of General Acoustic Variable

ψ∗ Normal Derivative of the Free-Space Green’s Function

ω Angular Frequency



Chapter 1

Introduction

Awareness of the effects of new and existing engineering products on the environment

and on human health is of increasing importance. In the world’s cities in particular, the

noise due to transport, infrastructure and industry negatively impacts the health and

quality of life of the residents [63, 73, 145]. However, the reduction of noise emissions

from engineering products can also have important commercial benefits. For example,

quieter aircraft may be permitted to take-off and land during times for which these

operations are currently prohibited resulting in more flights, and potentially more rev-

enue, for airlines.

Noise is one form of pollution which has only been studied in earnest since the 1950s,

largely motivated by an increase in commercial jet aircraft at the time [194]. How-

ever, in order to design means of controlling the physical processes involved in noise

generation and propagation, it is essential to understand the underlying physical mech-

anisms. A critical tool which contributes to our understanding of noise emissions is a

noise prediction scheme. Such schemes comprise one or more mathematical techniques

which aim to achieve two goals:

1. Evolve the behaviour of a noise source at the point of generation over a given

time interval;

2. Propagate this computed disturbance through a medium to another location

where the noise is observed.

In Chapter 2 we discuss in detail the broad range of mathematical tools which

exist to perform these tasks. Results, therefore, can vary widely in their fidelity when

18



CHAPTER 1. INTRODUCTION 19

compared to experimental measurements and a robust noise prediction scheme still

remains far off. Part of the reason for this limited success is the conflicting demands

of real acoustic problems on available analytical and numerical methods alike. Noise

prediction schemes are required to find both the hydrodynamic and the acoustic com-

ponents of the flow. The latter is governed by behaviour of a length scale much smaller

than that of the former. Furthermore, the acoustic characteristics must be preserved

by the scheme over distances of many acoustic wavelengths. We elaborate on the chal-

lenges acoustic problems present to computational methods later (see Section 2.1).

Many means of addressing these known issues lead to calculations with prohibitively

expensive computational resource requirements and despite the rapid development in

computing technology, many realistic noise calculations remain impracticable.

The interaction of sound with complex geometrical features adds a significant degree

of complexity to the problem being solved. Noise prediction schemes are therefore

often designed to be applied within a simplified local geometry. This facilitates the

prediction of a wider range of noise problems with available computational resources.

The disadvantage is that scattering effects, including sound absorption, reflection, re-

fraction, are often inaccurately represented. An example would be considering the

noise generated by a jet engine attached to an aircraft wing by simply studying the

behaviour of a jet of fluid leaving a nozzle. This reductionist approach to the real

problem fails to incorporate the scattering effects of nearby fluid inhomogeneities such

as the wing wake or shock systems, or of solid surfaces such as the rest of the en-

gine nacelle, wing, pylon, fuselage and ground (if appropriate). There are many real

acoustic problems in which these effects dominate the observed sound field and their

omission introduces serious inaccuracies into the final solution. However, the results

of such simplified studies have contributed significantly to our understanding of par-

ticular noise sources which we discuss in more detail in Section 2.1.7.

A particular class of noise prediction schemes, known as hybrid schemes, are capable of

incorporating these neglected effects without appreciably increasing the computational

demand of the calculation. The scheme consist of two distinct parts, which together,

achieve the goals listed above. The part of the scheme responsible for propagating the

noise allows for the scattering behaviour of the geometry to be captured in the form

of a mathematical function known as a Green’s function. Closed-form representations
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of these functions are rare and, if mathematically tractable, require significant skill

to construct analytically. It is for this reason that hybrid noise prediction schemes

are designed such that either the geometry is simplified such that a closed-form de-

scription of the Green’s function can be obtained for the the problem, or the part of

the calculation designed to compute the source behaviour is applied to a wider region

of space such that the complex geometry can be represented in the calculation. The

former is selected most often as the latter would result in the calculation being pro-

hibitively expensive and introduce a host of potential inaccuracies (see Section 2.1.2).

An alternative (touted by Manoha et al. [215]) is to approximate the Green’s function

numerically by selecting appropriate numerical methods, and applying them within

the geometry as an additional pre-processing part of the computation.

In order to investigate the feasibility of such an approach, Chapters 5 to 7 present three

different methods for the numerical approximation of the Green’s function within dif-

ferent classes of geometries. In each case, the method is developed, implemented and

validated against a limited number of available analytical solutions. The rationale

behind the choice of these particular approaches is discussed in Chapter 4. We first

establish the context of this research project and identify its role in the wider activity

of noise prediction.



Chapter 2

Noise Prediction Schemes

Here we establish the state of the art of noise prediction and the context of this re-

search. We introduce, in Section 2.1, the methods available to perform noise prediction

on aero-acoustic flows, and discuss the influence of the prevalent issues, including the

specification and implementation of robust acoustic boundary conditions. We also con-

sider specific applications and the challenges they present. We then specifically focus

on the area of particular interest in this research – the calculation and use of Green’s

functions (Chapter 3) for scattering problems. Based on this discussion, the rationale

behind the choice of methods for this research is presented in Chapter 4. A discussion

of the literature associated with the chosen methods is given in the corresponding

chapters where appropriate.

2.1 Computational Aero-Acoustics

Noise emission occurs in a wide variety of contexts. It is usual to classify noise problems

based on either the propagation medium or the type of source. One particular class

of noise problem which is of great importance is that of aero-acoustics. Aero-acoustic

problems are typified by their sources, which arise due to unsteady air flow. Compu-

tational Aero-Acoustics (CAA) is an engineering discipline which aims to simulate the

generation and propagation of acoustic fluctuations in fluid flow. Such flows comprise

both hydrodynamic flow features as well as the acoustic fluctuations, the latter usually

several orders of magnitude smaller in amplitude and of much smaller length-scale. In

21
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many cases of interest, the observer is located in the far-field (a location many wave-

lengths away from the source itself). The distance over which fluctuations must be

propagated is, therefore, typically much larger than the dimensions of the region of

fluid responsible for the acoustic source. The aim of CAA is therefore to accurately

compute the entire problem from source to observer such that accurate hydrodynamic

and acoustic fields may be constructed. There are many schemes available to achieve

this goal each with their related strengths and weaknesses. Despite the variety, the

methods may be considered as belonging to one of three broad categories, numerical,

analytical or hybrid approaches. These are discussed in more detail in the following

sections.

2.1.1 Types of Computational Approaches

Many reviews on the subject of CAA have attempted to summarise and, to a certain

extent, categorise the variety of methods available to perform acoustic calculations.

One of the more recent and clearer attempts is the process flow chart of Colonius

& Lele [71] (see Figure 6 therein) which segregates the types of methods based on

modelling decisions. Even so, there are many emerging techniques which, due to their

present lack of use in the field of CAA, did not find their way into this schematic or

any presented in earlier literature. This is addressed here by presenting an alternative

illustration of the methods of current and historical practice in Fig. 2.1. Categorisation

is undertaken based on the nature of how the method is formulated and subsequently

implemented. This was deemed appropriate as many of the practical issues associ-

ated with particular approaches are aligned to formulation and implementation. This

graphic encompasses not only the numerical implementations of CAA – discretised

systems of approximate equations – but also some exclusively analytical approaches

which, although numerically implemented, are based on traditional integral formula-

tions. Historically these latter approaches were used to model simple source behaviour

and exactly predict wave propagation.

As illustrated in Fig. 2.1, the available methods can either be used in isolation or

in combination, with available approaches consisting of:

1. Exclusively numerical approaches, which numerically solve some form of a
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Figure 2.1: Illustration of many of the current variety of techniques available for the
solution of acoustic problems
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differential equation governing both the hydrodynamic and acoustic parts of the

flow,

2. Exclusively analytical approaches, which propagate the acoustic radiation

from an equivalent source representation or rely on a known form of solution to

solve integral formulations of the governing differential equation,

3. Hybrid methods, which use the strengths of both types of method by suitably

partitioning the domain and using a different method in each sub-domain.

Many studies choose a single approach for application to a particular problem but

some initiate comparisons between one or more methods for one particular problem

[18, 68, 69, 131, 170, 229, 294, 349] in order to highlight particular issues. In general,

the choice of the author to apply one particular method over another is either driven

by availability (or not) of computational resources or the lack of certain techniques

having been applied to that problem in the past.

For a relatively recent review, which discusses usage of the most popular schemes, see

Wang et al. [346]. The use of hybrid schemes in particular is reviewed by Bailly et al.

[19]. We discuss applications of CAA schemes in Section 2.1.7.

2.1.2 Exclusively Numerical Approaches

In exclusively numerical approaches to sound field computation, Computational Fluid

Dynamics (CFD) codes are applied to the Navier-Stokes (or a simplified set of) equa-

tions to compute the hydrodynamic sources as well as propagate the acoustic fluc-

tuations to the observer. However, acoustic problems present a number of unique

numerical challenges to which traditional CFD is poorly adapted. The pertinent is-

sues [71, 77, 313, 314, 317, 318] are summarised below. Of the previous citations, the

most recent include a summary of proposed means of addressing the issues (see also

Ekaterinaris [96]).

The issues arise due to the very nature of acoustic problems: the propagation of tiny

disturbances of potentially high frequency over large but finite distances. Specifically

the following difficulties are noted:
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1. Simulations must be unsteady throughout which increases the demand on com-

putational resources as data at each time step must be computed and stored.

2. Waves of high frequency must be resolved over the numerical grid without am-

biguity (aliasing).

3. The fluctuations being computed are very small – in most cases are of the same

order of magnitude as truncation errors of common numerical schemes – hence

very high-order schemes with low ‘numerical noise’ are necessary which often

have a large computational stencil. Large stencils can result in a loss of precision

at the domain boundary where the grid ends if the method reverts to a lower-

order scheme in these regions. The high-order derivatives used in the scheme also

require additional boundary conditions to be specified. It may not be possible

to define these boundary conditions from the physical problem.

4. Interaction between the acoustic and hydrodynamic parts of the flow can be sub-

tle but crucial to the observed sound field and must be captured by the numerical

scheme, increasing demands on grid resolution and quality of modelling.

5. The waves propagate over a large distance and traditional CFD discretisation

schemes introduce numerical dispersion and dissipation of the waves resulting

in both non-physical solutions as well as an artificial decay of the already small

fluctuation over the grid.

6. Since the domain over which the propagation takes place is finite, the trunca-

tion boundary (which is a non-physical boundary) must allow the passage of

outgoing waves and in some cases, hydrodynamic flow components, without re-

flection. This can be achieved through the (often complex) implementation of

non-reflecting boundary conditions. The boundary conditions are further com-

plicated for problems where incoming waves are also required (see the discussion

on boundary conditions in Section 2.1.6).

7. In order to successfully treat flow through or around complex geometries, un-

structured meshes and/or overset grid methods may be considered [35]. Although

this is not a feature specifically related to acoustic problems and can provide a
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cost benefit for many complex hydrodynamic flow problems, their use for acoustic

propagation increases the complexity and expense of noise prediction code.

Based on the above list, it is clear to see that the disparity in the length scales of an

acoustic problem is the principal source of the issues. The length scale of the source

flow features and region itself are vastly different to length scales of the propagat-

ing acoustic fluctuation and also the observer distance. Direct Numerical Simulation

(DNS) is an approach which requires full discretisation of the governing differential

equations of the fluid flow. This discretisation in both space and time must be capable

of fully resolving all the length scales of the problem – both the large-scale hydrody-

namic flow problem as well as any small-scale turbulent structures and of course the

acoustic fluctuations themselves. All of the issues summarised above have been the

subject of intense CAA research for some time. In particular, many of the issues have

been successfully treated by introducing compact, high-order, spatial and temporal fi-

nite difference schemes for DNS. These schemes are designed to preserve the dispersion

characteristics of the acoustic waves, use a reduced computational stencil than tradi-

tional schemes and exhibit minimal dissipation over the grid. The addition of artificial

damping inhibits the growth of spurious waves generated by discretisation, ensuring

an uncontaminated solution. The Dispersion-Relation-Preserving (DRP) code of Tam

& Webb [316] is a popular choice, and this, as well as others, have been applied with

highly accurate results [29, 37, 67–69, 72, 151, 213, 239, 273, 291]. The multi-size-

mesh multi-time-step DRP, developed more recently [322] as a flexible extension to

the original DRP code, is a means of addressing multiple length scale disparities of

flow features by unstructuring the overall mesh; in other words using a uniform mesh

in several partitioned sub-domains between which the mesh spacing and time step

increase by a factor of two. Further optimisation of the scheme is still being actively

pursued with Sengupta et al. [286] suggesting improvements to achieve near spectral

accuracy and Si et al. [293] extending the DRP scheme to curvilinear grids.

To summarise, DNS schemes contain the following features:

1. High-order, low dissipation, spatial and temporal discretisation.

2. A grid providing a minimum number of points per wavelength to resolve even

the highest frequency acoustic waves [278].
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3. A discretisation which preserves dispersion characteristics and maintains phase

information into the far-field.

4. Accurate non-reflecting boundary conditions at artificial boundaries, which must

allow passage of all supported outgoing waves while preventing spurious reflec-

tions.

Many of the schemes developed to meet these requirements are of high computa-

tional cost, with typical aero-acoustic problems taking days or weeks to solve and direct

simulations at high Reynolds number being well beyond current super-computing ca-

pabilities [338]. Furthermore, for high frequency (small wavelength) problems, very

small time steps are required. This is due to the Courant-Friedrichs-Lewy (CFL)

condition which, based on the selected spatial resolution of the scheme, defines the

maximum allowable time step to ensure numerical stability. The small spacing re-

quired to resolve the acoustic waves in a spatial sense also, therefore, guarantees a

small time step. This results in prohibitive storage requirements even for relatively

short time histories.

Of the DNS schemes cited above, both explicit and implicit time-marching variations

have been used. Explicit schemes use the information associated with the current time

step to find the information at the next time step, whereas implicit schemes set up

an equation involving information at the both current and next time steps, ultimately

solving for the information at the next time step. Implicit schemes are especially useful

for stiff systems where the time step would be impracticably small for stable solution,

although are often more expensive than their explicit counterparts [95].

Despite the disadvantages discussed above, DNS results have helped the visualisation

of many complex flows and in many cases improved our understanding of problems

which have historically been difficult to treat analytically [39]. Hence, they remain a

popular choice for noise prediction for many problems of interest.

As a means of reducing the computational cost associated with DNS schemes where

the source flow is turbulent (as is the case in jet noise computations or vortex shedding

applications), CFD numerical schemes make use of a turbulence model or description

of vortex shedding [17, 21, 25, 30, 89, 271, 319, 340, 343]. Turbulence models improve

the performance of the code in terms of execution time since all the length scales of
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the turbulence do not need to be resolved by the grid. However, in problems where

the turbulence is the principal source of noise, the acoustic field computed is highly

sensitive to the quality of the turbulence model. The model must be able to accurately

model the unpredictable and chaotic behaviour of the turbulence while capturing the

complex interactions between the turbulence fluctuations and the mean flow if present.

Also, turbulent eddies are usually convected over large distances and can decay slowly

hence the behaviour must be represented over large spatial and temporal extents.

Schemes featuring turbulence models, therefore, are often limited to simpler flows or

localised regions of a more complex flow as part of a hybrid scheme.

The use of sub-grid scale methods is a useful compromise between DNS and traditional

CFD by resolving only a proportion of the length scales of the problem. Large eddy

simulation (LES) is a good way of capturing the turbulent/vortical flow features such

as those witnessed in jet flows. More recent variations such as the Detached Eddy

Simulation (DES) and Very Large Eddy Simulation (VLES) (see reviews by Singer et

al. [295] and Ekaterinaris [96]), although more expensive than RANS-type modelling

of turbulent flows, are still generally seen as a vast improvement on DNS in terms of

execution time while maintaining an accuracy not achievable with cheaper approaches.

However, use of LES exclusively to compute far-field data is still prohibitively expen-

sive and, as with DNS, has become popular as a component of a hybrid scheme (see

Section 2.1.4). A recent review on the use of LES in jet noise prediction is available

by Bodony & Lele [36].

Other numerical techniques exist which split the acoustic radiation from the hydrody-

namic field and solve the Linearised Euler Equations (LEE) or similar for the former

[147, 148]. These kind of splitting approaches have decreased in popularity recently,

driven by the recognition of the importance of the interaction between the acoustic

field and the hydrodynamic flow field. For example, in the case of cavity resonances,

the coupling between downstream scattering and upstream vortex shedding (acoustic

feedback) is an integral part of the sound producing mechanism [199]. With respect

to the LEE, it is important to recognise, that these equations neglect the physical

viscous damping of the acoustic wave due to viscosity. The effects of this omission in

terms of wave amplitude will become appreciable for propagation over large distances
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and hence their use is generally restricted. Furthermore, the linearisation of the Eu-

ler equations used for the solution of the acoustic fluctuation can have a detrimental

effect on the stability, since many non-linear stabilising terms are neglected. In fact,

the Kelvin-Helmholtz instability, characteristic of shear layer problems, is supported

by these equations and can contaminate the downstream acoustic solution as illus-

trated by Agarwal et al. [2]. The equations themselves contain 5 unknown variables

– three velocity components, pressure and density. These variables can be grouped to

show that the LEE support vorticity waves (velocity fluctuations convected with the

mean flow) and entropy waves (density fluctuations convected with the mean flow)

[13]. These can perturb the acoustic solution [314], particularly in shear flows where

the modes couple with the acoustic modes. Artificial damping, mode decoupling or

operator modification has been used in the past to address the problem with Prax et

al. [256] suggesting source modification as an alternative.

There also exist a number of specially adapted numerical schemes for acoustic prob-

lems involving shockwaves, for example in supersonic jets. Numerical schemes need

to be able to deal with the inevitable discontinuities in the solution while simultane-

ously capturing any radiation due to interaction with the shock-cell structures of the

flow. These schemes both resolve the acoustic perturbations and maintain stability

and accuracy across shock structures using MUSCL or (Weighted) Essential Non-

Oscillatory ((W)ENO) or similar schemes in the neighbourhood of shock structures

[53, 103, 153, 203, 298]. Lo et al. [200] use a shock-detection scheme to ‘switch on’

specific schemes in the neighbourhood of a shock and revert to standard LES elsewhere

for a supersonic jet problem.

Finally, there are the more recent inclusions in the field, for example the Lattice

Boltzmann Method (LBM). LBM is a numerical scheme based on the Boltzmann

equation describing particle kinetics [58]. The LBM originated in the computation of

‘Gas Automata’ and the motivation behind applying it to fluid mechanics is that the

macroscopic behaviour, observable in terms of flow features, is always driven by the

microscopic behaviour of the material, which can be captured and related to macro-

scopic behaviour by the method. The actual numerical scheme used in practice is a

simplified version of the full particle tracking algorithm to both maintain efficiency and

eliminate statistical noise, and achieves an accuracy comparable to existing methods
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for many applications to date.

Lew et al. [190] list the advantages of using LBM over conventional methods as:

1. Convection operators are linear – simpler discretisation;

2. The strain rate tensor (rate of change of fluid deformation) may be directly found

– physically important quantity in understanding turbulent motion;

3. The methods are suitable for complex geometries due to the absence of Jacobians;

4. The algorithms are amenable to parallelisation.

However, they go on to say that for high Reynolds number flows, many of the mod-

els break down, although new formulations are becoming available to address these

short-comings.

The LBM was first used for the simulation of acoustic waves by Buick et al. [51]. They

describe the LBM as being able to deal with the length scale disparity of acoustic

problems better than most traditional methods. Furthermore, boundary geometrical

complexity has little effect on the efficiency of the method. A subsequent investiga-

tion by Crouse et al. [79] applied the method to a group of model acoustic problems.

Their results indicate that for short propagation distances, the numerical dissipation

is insignificant making LBM a good local means of solution. As the simulations were

terminated before waves contacted the boundary, the quality of the boundary condi-

tions were not investigated. The investigation into the LBM’s potential for solving

acoustic problems was then extended by Brès et al. [48]. This paper demonstrates

that the method still suffers from a non-physical rate of dissipation but that it can

be controlled to a degree by adhering to the resolution guidelines given. More recent

advances due to Xu and Saugaut [357] improve upon these earlier formulations and

hence LBM is fast becoming a popular means of treating noise-generating fluid flow

[1, 49, 217, 287, 342, 351] and is recommended by [79] for fluid-structure interaction

problems. The algorithm may also be coupled to turbulence models to allow applica-

tion to jet noise problems [190]. In the context of this work, LBM can be seen as an

alternative numerical scheme which, despite suffering many of the same drawbacks as

finite-difference-based approaches, can be massively parallelised giving it a significant

advantage in terms of execution time. However, the still method lacks accuracy and
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robustness after long-term time evolution [48].

Although the limitation in terms of computational resources is a significant restriction

on the use of exclusively numerical schemes, improved means of implementation have

been recently pursued to address this. Hermite methods [11] are a means of implemen-

tation which lend themselves to parallelism – critical in the current environment of

multi-core computing. They are methods which operate many times on local data and

are relatively easy to implement. The most attractive feature is the ability to provide

more arithmetic operations per memory access reducing the dependence on fast data

transfer. The ‘von Neumann bottleneck’ (limit of data transfer rate between processor

and memory) of ‘exascale computing’ is requiring a shift in ‘algorithm mentality’ and

is the principle motivation for the development of Hermite methods [11]. Furthermore,

Appelö et al. [10] state that Hermite methods can be combined with discontinuous

Galerkin methods (such as the Boundary Element Method) to handle boundary condi-

tions in a straight forward fashion. In the long term, it is suggested that LES and DNS

are likely to provide a viable means of predicting the noise from large-scale turbulent

structures in jets, since with the increasing computer power, DNS can be applied at

higher and higher Reynolds numbers. However, the use of alternative techniques are

always likely to be faster and hence universal use of exclusively numerical schemes is

not expected.

2.1.3 Exclusively Analytical Approaches

The analysis of acoustic problems analytically remains important in the field of aero-

acoustics as many analytical methods present an explicit description of the physical

mechanisms of sound production and interactions obscured by many numerical calcu-

lations. A number of classical analytical techniques may be used to describe acoustic

problems. One of the most useful and popular tools is the acoustic analogy. An acous-

tic analogy is an inhomogeneous differential equation written in a form which separates

the propagation of the acoustic disturbances from the sources of these disturbances.

With the acoustic disturbance being represented as a fluctuation about the relevant

mean flow variables, the governing equation may be rearranged to produce a wave-like

operator on one side of the equation and the remaining terms on the other side. The

former governs the propagation of the disturbance from source to observer while the
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latter are interpreted to be sources of the acoustic radiation. The first acoustic anal-

ogy was proposed in Lighthill’s landmark 1952 paper [194] where the Navier-Stokes

equations describing a fluctuating acoustic disturbance in a fluid flow were rearranged

to form a linear wave equation. The wave operator on one side described the prop-

agation, while the remaining terms were then viewed by Lighthill as the sources of

sound in the fluid flow. Manipulating the source terms further allowed Lighthill to

express them as the double divergence of a single quantity referred to as the ‘Lighthill

stress tensor’. The double divergence nature of the source term indicated that it was

of quadrupole form.

Lighthill’s analogy is built on the assumption of radiation into a quiescent medium

– in other words the propagation takes place in a region with zero mean flow – as

indicated by the linear wave operator. In addition, all the non-isentropic and viscous

effects are incorporated in the source terms within the stress tensor. However, many

applications of Lighthill’s analogy omit the viscous terms (high Reynolds number of

the fluctuation assumed) and assume isentropic behaviour leaving a single component

of the stress tensor remaining. Under these assumptions, the physical interpretation of

the analogy therefore reduces to that of a compact region of turbulence radiating linear

density waves into the surrounding inviscid, isentropic, homogeneous fluid. Since its

publication, there have been a number of numerical studies on this simplified problem

alone [276, 352] where Lighthill’s analogy has been used as a canonical result to assess

the accuracy of the numerical procedures used.

Although this formulation appeared initially ideal for the study of jet noise [195],

there are issues with analytical implementation due to the difficulty of expressing the

stress tensor contents analytically [349]. Proudman [257] describes low Mach num-

ber, isotropic turbulence using statistical approach using dimensional analysis. This

early attempt at describing the source analytically illustrates that qualitative results

are possible with such approximate representations but in the absence of suitable ex-

perimental or numerical data, analytical source models for real acoustic sources are

unlikely to produce results suitable for quantitative comparison.

Furthermore, more subtle flow effects are absent or at least disguised in the Lighthill

source term which precludes a more universal application of the analogy. For example
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the analysis by Ffowcs-Williams [117], omitting the presence of shockwaves, demon-

strates a breakdown of Lighthill’s ‘eighth power law’ [194] for the variation in jet noise

with jet velocity as well as the description of the source as quadrupole when the mean

flow is of high speed. This analysis concludes that the nature and efficiency of the

source are dependent on the implicit cancellation of components of Lighthill’s source

term which can be difficult to calculate and are sensitive to inaccuracies.

Subsequently, there have been extensions or reformulations of Lighthill’s analogy to

explicitly account for different acoustic scenarios. Most notably by

� Curle [81] – considers the amplification and scattering effects of stationary solid

bodies;

� Ffowcs-Williams & Hawking [119] – developed while studying the noise from

helicopter rotor blades and practically incorporates the effects of moving bodies;

� Howe [156] – a reformulation of the problem in terms of vortex sound sources

using the vortex sound theory approach of Powell [255];

� Phillips [253] – written in terms of a convected wave operator which separates

out the non-linear convection and refraction effects, which would otherwise have

to be described in the context of Lighthill’s stress tensor;

� Lilley [196] – includes entropy convection omitted by Phillips;

� Goldstein [133] – a generalisation of a number of the previous analogies.

Goldstein’s analogy [133] provides a more general approach to the construction of

an acoustic analogy by splitting the governing equations into base flow and fluctuating

flow components. The resulting equations are linearised Navier-Stokes equations with

modified variables. The analogy is made between the fluctuations in a real flow and

the linear inviscid fluctuations about an arbitrary base flow produced by appropriate

stress and heat flux. These latter two terms are the source terms of the analogy,

defined by the particular base flow selected. A number of base flows are considered

by Goldstein with the uniform base flow shown [132, 133] to reduce the generalised

analogy to the analogy attributed to Lilley [196].

The vortex sound formulation of Howe is a more suitable formulation for problems
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involving vortex shedding [221]. Vorticity may be approximated by application of the

Kutta condition and so a vorticity-based source is easier to predict than the turbulence-

based source of Lighthill’s analogy. Furthermore, the faster decay of vorticity over

turbulence reduces the extent of the noise source itself. The time taken to compute

the source may therefore be reduced as a rapidly decaying source restricts the size of

the source domain. Crow [80] considers the effect of the size of the turbulent eddies

on noise emission. He concludes that the analytical evaluation of the source integral

required by applying Lighthill’s actually becomes intractable if the source region be-

comes non-compact (in terms of the length of a turbulent eddy) due to the divergence

of the integral.

The practical advantages of writing an acoustic analogy in terms of the stagnation

enthalpy (as in vortex sound formulations) are considered by Doak [87] (and refer-

ences therein). Stagnation enthalpy is seen as being the best choice of ‘generalised

acoustic field’. In other words, according to Doak, representing an acoustic problem

in terms of the stagnation enthalpy allows the generation of an exact analogy with a

convected wave operator on one side of the equation and a number of sources on the

other. Crucially, these source terms are considered ‘optimal’ in that they represent

distinct, local physical processes as best as possible. The variation presented by Doak,

therefore, has many practical benefits over Lighthill’s original analogy for more general

flows where, in the latter, “physical processes such as refraction and/or diffraction of

the sound waves in the actual fluid domain...are represented by a highly redundant set

of ‘equivalent quadrupole sources’ in a fictitious ‘classical acoustic’ medium” [87].

There is also the issue of compliance with any underlying assumptions of the theory

used to construct the analogy (i.e. the assumptions and modelling concerning the

source and the medium through which the acoustic disturbance is propagating). As-

sumptions are usually made about the flow such that governing equations are reduced

in complexity to a form more amenable to analytical solution. Knio et al. [180] show

that the simplifying assumptions introduced by the acoustic analogy may actually

over-simplify the source model and introduce errors in the acoustic calculations. The

lack of availability of analytical expressions in many real cases, combined with a large

number of simplifications, preclude the use of analytical techniques in isolation on

many realistic problems. Specifically, those problems whose sources include turbulent
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features may find that an accurate representation of the source in terms of analytical

constructs is impossible. However, as was the case with Proudman [257], even sim-

plified analytical techniques can provide useful qualitative insight into a number of

complex phenomena. The discrete vortex model of Dai et al. [82] provides a qualita-

tive description of the non-linear effects associated with the sound-vortex interaction

of slits. The analytical results compare well with DNS results, only deviating in abso-

lute values. The viscous effects absent in the analytical potential model are assumed,

based on the agreement of the results, to not be a dominant absorption mechanism

for high-intensity sound.

The application of analytical procedures to model problems is still an important exer-

cise [77] in terms of providing a sound means of validating any new numerical methods.

When applied to model problems, many analytical methods can be used to find an

analytical expression for the radiated sound field. There are principally two ways of

achieving this goal:

1. By representing the source field as a series of unsteady structures for which an

analytical expression is available [118, 158, 180, 188]. Thus, an integral formula-

tion, based on, for example, an acoustic analogy, can be used to find the value of

the acoustic variable under consideration at an observer location (see Chapter 3);

2. Some form of known solutions to the equation subject to the given boundary

conditions (eigenfunctions or fundamental solutions) can be superimposed to

construct a solution to the overall field [3, 78, 366].

In the latter case, for more complex geometries, it is not uncommon for asymptotic

solutions to be considered based on frequency or proximity to the source region or

scattering geometry (near-field and far-field solutions). These asymptotic solutions

may then be matched at some intermediate position using the method of Matched

Asymptotic Expansions (MAE) [78, 188].

In the former case, when applying a suitable acoustic analogy, an integral method of

solution has the significant advantage of requiring just a single integration to arrive

at the value of the acoustic variable at a particular observer location [289]. However,

as will become clearer later (Chapter 3), the success of using integral methods to

solve acoustic analogies is limited by the availability of descriptions of the kernel of



CHAPTER 2. NOISE PREDICTION SCHEMES 36

the integral. Therefore, although the mathematical rigour and inherent accuracy of

analytical approaches are highly desirable, the difficulties described above preclude

their exclusive use for realistic acoustic problems.

2.1.4 Hybrid Approaches

The difficulties associated with numerical and analytical schemes are avoided with the

use of hybrid schemes. These schemes combine the strengths of numerical approaches

with elements of the analytical approaches to enable the accurate computation of com-

plex source fields, as well as radiated acoustic fields, without significant computational

cost. There are numerous configurations of hybrid schemes available, each of which

are characterised by the combination of techniques used as illustrated by Yang et al.

[359]. In general, the computational domain is partitioned at some near- to mid-field

location and the source region, encompassing all complex flow features, is solved using

a numerical procedure such as high-order CFD (specifically RANS or LES) or directly

using DNS. The data, known on the boundary between the two domains, are then used

as source data in an analytical method in order to rapidly and accurately propagate

the sound to a far-field observer. Historically, hybrid schemes define the transition

boundary between the source region and propagation region such that a linear wave

equation, governing a region bereft of scattering surfaces, applies beyond the source

region. The boundary conditions of the problem in this propagation region are simply

ones of free-space – a radiation condition only. If the propagation region contains scat-

tering features, we must consider a modification to traditional procedures to ensure

this scattering behaviour is represented. One means of achieving this is the focus of

this work.

2.1.4.1 Integral Propagation Techniques

Integral methods are one method which can be used to obtain the sound field given

source information. In the general sense, these methods consider the integral of

the governing equation (for example Lighthill’s analogy) over the bounded acoustic

medium. For the sake of this discussion, we assume the problem is three-dimensional

and the integral is a volume integral. The application of Green’s second theorem

yields an integral equation which expresses the acoustic variable (usually the pressure
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or density in the case of Lighthill) in terms of the sum of an integral over the volume

and an integral over the bounding surface. Here, the acoustic variable is evaluated at

a given observer location. Physically, the volume integral represents the sound due to

the sources within the volume whereas the surface integral represents observed sound

passing through the volume which has been generated outside the boundary.

The specification of the boundary conditions to be satisfied by the integral kernel

(elaborated on in Chapter 3) is instrumental in defining special cases of this general

integral equation. We consider in the following sections the two cases where the bound-

ary conditions are defined such that a) the volume integral vanishes and b) the surface

integral vanishes.

2.1.4.1.1 Surface Integral Techniques We may choose to define the boundary

between source and observer regions such that it encompasses all the sources. In this

case, the boundary conditions on the surface can be defined such that the surface acts

as a Kirchhoff [7, 121, 131, 189, 211, 214, 370] surface. In this integral approach, the

associated surface integral formulation is solved for the radiated sound field in the

domain beyond the boundary using known values of the acoustic field on the surface.

The advantage of the Kirchhoff approach is that it is straightforward to write down

and relatively efficient to compute. Lyrintzis [212] provides details on the use of the

Kirchhoff integral method for sound propagation. Furthermore, Kirchhoff surfaces can

be either stationary or moving [114, 115].

The Ffowcs-Williams-Hawkings (FW-H) equation is a similar approach [45, 49, 119,

167, 200, 338, 364]. The principal difference between this and the Kirchhoff approach

is that the FW-H formulation is derived from the governing equations directly, rather

than a general linear wave equation as in the case of Kirchhoff. In fact, it may be

considered a particular implementation of Lighthill’s acoustic analogy. In this sense,

FW-H may be considered to be an acoustic analogy itself although, in its most basic

form, requires only a surface integral rather than the volume integrals typical of other

acoustic analogies.

One particular advantage of the FW-H representation is its ability to propagate non-

linear flow effects while imposing fewer restrictions on the placement of the surface. It

is possible to define the bounding surface such that it does not completely encompass
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all the source terms. In this case, the integral formulation is known as the porous

(or permeable) formulation [36, 49, 131] and the volume integral reappears alongside

the surface integral in the integral equation. This approach is popular for jet noise

problems as the non-linear components of the turbulent jet are convected for some

distance downstream and the source region would become impracticably large if the

entire source region were to be surrounded by the integration surface. Furthermore,

the source fluctuations would need to be accurately propagated through the source

region to the surface itself. However, the porous formulation has an increased storage

requirement, due to the increased data required, compared with the standard formula-

tion. Alternatively, the surface may be left open with modifications to the formulation

[121].

If a downstream boundary is used for the FW-H surface, it is known, in the context

of jet noise problems, as the outflow disc, and is usually placed within the jet such

that turbulent structures exit the source region through the disc. For simplicity, the

volume integral, which would incorporate the effects of these exiting eddies on the

radiated sound is neglected. This practice can be detrimental to the results: Spalart

& Shur [303] and Mendez et al. [225] examine the effects of different configurations of

the FW-H procedure on the radiated field. The porous surface concept has also been

used to extend the Kirchhoff approach by Pilon & Lyrintzis [254].

The use of these surface integral techniques for propagation reduces the size of the

source region and hence the expense in performing a source calculation on an exten-

sive region. In particular, the FW-H method allows the surface to be placed within

non-linear regions of flow which allows the source region to be reduced further still.

However, in order for the volume integral to vanish, both methods require accurate

acoustic information to be available on the surface itself with accurate predictions

only possible if this information is complete and precise [161]. The tools available

to perform this source region propagation are usually the same numerical methods

used for the hydrodynamic calculation and hence are susceptible to numerical error

(see Section 2.1.2). Hence, the positioning of the surface as well as the quality of the

source computation impacts the accuracy of the boundary data and hence the accu-

racy of the surface integral propagation behaviour. Singer et al. [296] remark that the

further away the surface is placed the more time (and distance) the dispersion and
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dissipation errors of the source scheme have to degrade the source information, and

hence a tighter surface is better.

Finally, the difficulty of generating accurate information from the source region on the

artificial surface is more pronounced for the FW-H approach than with the Kirchhoff

method. Specifically, the FW-H integrals require a greater amount of accurate source

information than the Kirchhoff approach (more than 3 variables including one in time

compared with the 2 variables of the Kirchhoff method) [315]. A more generalised ap-

proach to using Kirchhoff or FW-H, which can obviate the need for a rotating surface,

is to use a frequency domain boundary integral propagation step as used by Yang et

al. [359].

2.1.4.1.2 Volume Integral Techniques Another possibility in the propagation

region is the use of an appropriate acoustic analogy. As alluded to in Section 2.1.4.1,

these may be solved using the integral approach. Many acoustic analogies rely on

setting the boundary conditions of the general integral equation such that the surface

integral vanishes. The integral equation governing the observed sound simplifies to

just a volume integral over the source region. Numerous examples of their use are

available [17, 18, 21, 30, 68, 69, 89, 132, 147, 172, 177, 187, 189, 199, 214, 215, 235,

263, 267, 270, 276, 281, 294, 311, 319, 340, 344, 345, 349, 352]. Although the increase

in dimensionality of the integration may be seen as a disadvantage when compared

with surface integral techniques, source calculations using the acoustic analogy may

not require the same degree of discretisation of the source region necessary for accurate

integral method surface data, making them cheaper.

As with all hybrid schemes, however, a degree of interpolation is necessary to pass data

between the source region and propagation region which can be a source of inaccuracy

[177]. Furthermore, all integral methods discussed here rely on a Green’s function

(the kernel of the integral) for their evaluation. The availability of this function is a

limitation of the approach and is responsible in many cases for the restriction of the

propagation region to one of free-space (see Chapter 3). We aim to directly address this

restriction with this research. Other issues with the use of acoustic analogy approaches

have been discussed already in Section 2.1.3.
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2.1.4.2 Other Hybrid Variations

A less common approach is to combine the source computation with another numer-

ical scheme [33, 112, 113, 181, 202, 214, 256, 325, 343]. Such a numerical-numerical

scheme is an exception to the numerical-analytical definition of hybrid methods used

here. The advantage of coupling two numerical schemes is the ability of such schemes

to be applied within complex geometries is retained. Furthermore, the flow in the two

separate regions may differ and hence different numerical methods may be appropri-

ate. However, for really complex geometries, an unstructured mesh is required whose

generation may be computationally expensive and a challenge to implement [33]. Here,

Birkefeld & Munz [33] use a DRP-based DNS code for the source region coupled to

a Discontinuous Galerkin Method based on the Linearised Euler Equations (LEE) for

the propagation. The coupling between the two meshes and associated methods is rel-

atively complex. Despite this, the overall accuracy of the coupled schemes is at least

as good as the schemes in isolation. Quantification of the increased computational

workload, however, is not reported.

More complex hybrid schemes have been known to make use of the LEE as the gov-

erning equations in a mid-field region in order to reduce the computational load of

LES or DNS in the source region. A traditional acoustic analogy is still used for

the far-field propagation [214]. Mincu & Manoha [228] use an implementation that is

more complex with multiple codes interfacing with one another across two sub-domain

boundaries. In their case, performing the scattering calculation as an additional step

adds further complexity and time to the overall calculation. Given these disadvantages

and subsequent advances in computing resources for DNS or LES calculations, time

will tell whether such tri-domain acoustic computations will be phased out. However,

in a review focussed on aerofoil noise prediction [325], such methods are still included

as a typical configuration.

One disadvantage of hybrid schemes highlighted by Sandberg and Jones [273] in their

justification for choosing an exclusively numerical approach, is that the use of a multi-

domain, multi-technique method can exclude acoustic feedback loops between the ra-

diated sound and the source. Therefore, the type of schemes used and the location of

the interface must take into account such behaviour. Bailly et al. [19] and previously

Singer et al. [295] provide more detail on the use of hybrid schemes.
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2.1.5 Other Methods

Other methods are available which offer improvements for specific noise-generating

flows. One of a number of approaches designed to improve modelling of turbulent

sources is Proper Orthogonal Decomposition (POD) [65, 120, 140, 272]. This ap-

proach allows partial modelling (reduced order modelling) of turbulent sources by

considering the most energetic modes radiated by coherent structures in the turbulent

field. These modes may then be simply extrapolated to an observer location. De-

composition of DNS source data, coupled with Galerkin projection of governing fluid

equations onto the modes extracted using the POD procedure, has grown in popularity

since 2000. These methods show promising signs in matching up to experiment over

short time evolution but not necessarily over a longer period [272] for noise generation

in a shear layer. In the results of Rowley et al. [272], the long-time inaccuracies are

attributed not to a lack of instability modes considered, but the failure to account for

the spreading of the shear layer due to the growth of the oscillations themselves. In

order to improve the coverage of the POD modes, Colonius and Freund [65, 120] have

performed further studies which attempt to determine an optimum set of modes to

consider in order to accurately represent the bulk of the noise radiated.

In addition, the use of Parabolised Stability Equations (PSE) to model a turbulent

noise source in terms of the radiation from large-scale instability wave structures has

been studied [140, 267]. The work of Rodriguez et al. [267], in particular, demon-

strates that when a PSE model is used as the source within an acoustic analogy, the

radiation computed is in good agreement with experimental measurements and DNS

reference solutions. However, the use of parabolic equations are limited by being able

to march forward in time only. This results in reflections not being considered which

for many problems can be a significant source of error [13]. More detail on the PSE

approach is given by Colonius et al. [70] and we discuss jet noise applications of PSE

in Section 2.1.7.

There are a number of situations for which simplification of the acoustic problem to

one satisfying an acoustic potential function allows a number of alternative methods to

be used. One such method also involves the use of a Green’s function and is known as

the Green’s function discretisation method. It is a low-cost method which constructs

derivatives of the acoustic potential from a superposition of particular wave-equation
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solutions known as free-space Green’s functions. These assembled functions are used

as shape functions to interpolate nodal values over a grid. The specific assumption

made for the duct problem studied by Casalino et al. [52], is that although the duct

is varying longitudinally, the local flow is considered uniform and acoustic fluctua-

tions may be expressed in terms of a velocity potential. Errors are several orders of

magnitude higher than many advanced numerical schemes but still of the order 10−2

and required only 3 points per wavelength to resolve the waves. In addition, excellent

dispersion characteristics are maintained – both benefits due to the use of the Green’s

function basis.

The Green’s function discretisation includes the fundamental solution of the problem

as part of an existing numerical method. It is a special case of the broad class of

‘physics-based methods’. Physics-based methods are advantageous in that they in-

clude some aspect of the underlying physics of the problem in the application of the

numerical method. For example, if the solution to a problem is expected to represent

a physical wave, the approximate solution may be expressed in terms of an expansion

of a wave-like solution such as a Bessel [208] or Fourier series rather than a series of

generic polynomials. Luostari et al. [208] use a Bessel series basis as part of a FEM

formulation. Despite being slightly more expensive, the inclusion of the Bessel series

basis significantly increases the robustness of the method by countering ill-conditioning

of the constituent matrices. The work of Singh et al. [297] illustrates how the inclusion

of a Green’s function may contribute to improving the robustness and accuracy of an

existing method.

Gabard et al. [122] discuss the potential of three physics-based methods available for

aero-acoustics. In particular they consider the Green’s function discretisation method,

the Partition of Unity FEM (PUFEM) and the wave-based discontinuous Galerkin

method (DGM). The PUFEM is an extended FEM commonly used in fracture me-

chanics, which includes enrichment functions to more accurately represent the local

physics in a domain and is a cheaper alternative to refining the mesh. The set of

physics-based DGMs (the Boundary Element Method may be considered an example

of a DGM – see Chapter 6), use wave-based interpolation functions within elements

(plane waves, Bessel functions, Hankel functions for instance), to provide more accu-

rate interpolation of the solution. As a result, fewer elements are required for a given
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accuracy. Due to the reduction in points per wavelength of physics-based methods,

the overall cost of noise calculations is reduced. However, the constituent matrices are

often poorly conditioned which requires a careful choice of solution procedure.

Recently, Hahn and Negrut [142] examined the potential of Smoothed Particle Hydro-

dynamics (SPH) for acoustic applications. Meshless methods easily deal with inhomo-

geneous media and moving complex boundaries, two things traditionally challenging

for mesh-based methods. Furthermore, non-linear behaviour such as resonances, can

be captured without modification unlike many linear acoustic methods based on, for

example, linear Acoustic Perturbation Equations or LEE. The results of the study

show that there is notable sensitivity to both smoothing length and boundary condi-

tion quality; the former causing non-physical dissipation. The latter are responsible

for inducing a non-physical noise into the results which worsens over the time period.

Despite these obvious drawbacks, their results indicate that qualitative studies of short

duration are viable.

Finally, there are methods concerned more with ‘auralisation’ of the sound field rather

than specific aero-acoustic details. The process of auralisation is a process which aims

to generate audio which mimics the experience of the observer listening to sound in

a particular acoustic space. Uses could include virtual reality applications such as

computer games. Since the sources are provided as input signals, such methods are

of limited use for investigation in physical mechanisms of sound generation. However,

they may be used as a rapid, albeit crude, means of propagation and scattering. The

most common method is that of Adaptive Rectangular Decomposition (ARD) [258]

which breaks the propagation space into a number of rectangles within which eigen-

function expansion solutions are known analytically. When executed numerically on

Graphics Processing Units (GPUs), using impedance boundary conditions on sponge-

covered walls (see Section 2.1.6), the method is described as “the fastest time-domain

solver for modelling the room acoustics of large, complex 3D scenes” [222]. This tech-

nique results in little dispersive error compared with Finite Difference approaches and

uses a reasonably coarse grid. ARD may be considered a suitable algorithm for the

rapid computation of low-fidelity solutions if desired.
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2.1.6 Boundary Conditions

One of the significant difficulties mentioned earlier in applying discrete numerical pro-

cedures to acoustic problems is the control of the solution behaviour at the boundaries.

For many acoustic problems, the computational domain often contains one or more

infinite boundaries. For many methods, it is, therefore, necessary to truncate the

domain at a suitable, finite location and define an artificial boundary along with an

artificial boundary condition. This boundary condition must behave such that it al-

lows outgoing waves to pass out of the domain without reflection (and, if appropriate,

incoming waves to enter). Such boundary conditions are termed non-reflecting bound-

ary conditions (NRBCs).

For problems of practical interest it often impossible to define and/or implement an

exact NRBC; even the most precise analytical representations require some degree of

approximation during implementation – usually the truncation of an infinite series

[178]. Hence, a number of different NRBCs have been developed since the field of

CAA began in the 1950s [130] with a view of balancing the accuracy of the boundary

condition with the cost of implementation. Successful implementation of NRBCs for

acoustic problems is subject to ongoing research and remains an unsolved problem.

In hybrid schemes, it is an issue particularly relevant to the calculation of source be-

haviour, a task often performed using numerical methods within a sub-domain bound

by an artificial boundary. Assuming the Green’s function is found using one of the

methods of Chapters 5 to 7, accurate source behaviour is still required to be able

to compute the observed sound field. Hence, it is necessary to discuss the available

NRBCs in more detail.

Of course, the specification of an artificial boundary could be avoided altogether; the

problem could be transformed entirely from an infinite domain to a finite domain using

some kind of mapping. However, Grosch & Orszag [136] show that this approach is

only useful for a class of problems where the solution either tends rapidly to zero or a

constant as infinity is approached. If the solution oscillates at infinity, as is the case

for many wave problems, the technique exhibits large errors.

In addition to NRBCs, other boundary conditions are also necessary for acoustic prob-

lems including impedance conditions and inflow/outflow conditions. We discuss all

types in this section.
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Broadly speaking NRBCs fall into the following categories with some categories only

appropriate for certain solution methods:

1. Characteristic & Expansion-based

2. Boundary Integral Formulations

3. Infinite Element Methods

4. Absorbing Layer Methods (also called sponge layers or buffer zones)

2.1.6.1 Characteristic & Expansion-based

In this section, prescriptive means of representing a non-reflecting boundary condition

are explored. First, there are the characteristic boundary conditions of Thompson

[326] as used by a number of authors [153, 188, 203, 272, 273]. These boundary condi-

tions are developed through the method of characteristics. Considering the waves as

characteristics allows incoming and outgoing waves to be treated separately. In order

to allow outgoing waves to leave the domain without reflection, the incoming wave

characteristic may be set equal to zero. Hence, Thompson uses the premise that the

amplitude of the incoming waves must be constant in time, and applies this condition

to the incoming characteristic. This is another way of saying that there are no incom-

ing waves as if there were, they would be time dependent. Of course, the restriction of

this boundary condition is that if a problem requires an incoming wave, as in scatter-

ing problems, this condition cannot incorporate it. Thompson develops the boundary

conditions in this way in both one and two dimensions and they are implemented by

rewriting the governing equations in characteristic form.

Expansion-based methods of developing NRBCs rely on knowledge of the form of the

exact solution on or beyond the artificial boundary. This presents a practical disadvan-

tage as this information is not always available a priori. These boundary conditions

may be developed by considering asymptotic forms of this solution, perturbations

about the solution, or by considering integral formulations on the boundary. Where

these boundary conditions differ from those we discuss in the next two sub-sections is

in their implementation. Here we consider boundary conditions which are represented

as one or more differential equations and directly incorporated into the global numer-

ical scheme, be it FDM or FEM or something else.
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How the boundary condition is to be implemented numerically often has a significant

bearing on their effectiveness. Two main types of numerical implementation exist:

local and non-local. Local boundary conditions couple each boundary node to a small

number of its neighbours. These conditions are significantly cheaper to implement

than the non-local conditions but rarely achieve comparable accuracy, although local

boundary conditions of high order have recently been developed [130, 337]. Non-local

boundary conditions are capable of remarkable accuracy although couple every node

on the truncation boundary. This non-locality applies in both space and time for

time-dependent problems and storage requirements may become prohibitively large.

Despite the apparent expense of non-local boundary conditions, there are a number of

applications where they are affordable as we discuss below. Local approximations are

often developed from non-local boundary conditions in order to circumvent the prac-

tical difficulties of their implementation. For example, Barucq et al. [20], make use of

the exponential decay of higher-order modes to develop accurate local approximations,

in prolate-spheroidal coordinates, to the non-local Dirichlet-to-Neumann operator (see

below).

One of earliest attempts of developing NRBCs was that of Engquist and Majda [107].

Specifically designed for finite difference applications, the authors first develop the

underlying non-local representations and then subsequently develop local approxima-

tions such that small errors in the initial boundary data do not give large errors in the

solution and the resulting difference scheme remains stable. These conditions are gen-

erated from a sequence of pseudo-differential operators with the first in the sequence,

being of lowest order, achieving the poorest performance with a large number of spu-

rious reflections of outgoing waves. As the order increases, the boundary conditions

become more computationally demanding but more accurate. One recurring problem

with the Engquist and Majda conditions is the restriction that the wave to be trans-

mitted must be normal to the boundary with grazing incidence waves generating large

reflections. They therefore require the transverse wave number to be much smaller

than the normal wave number, which is not always practical.

Subsequently, an improved sequence of boundary conditions for wave problems was

proposed Bayliss and Turkel [22, 23]. Similar, but improved conditions in polar co-

ordinates were also suggested by Grote and Keller [138]. These conditions also use a



CHAPTER 2. NOISE PREDICTION SCHEMES 47

sequence of boundary operators which are used to annihilate unwanted terms on the

boundary. The higher the order of the boundary condition used, the more terms are

annihilated and the better the exact boundary condition is approximated.

The boundary conditions used by Colonius et al. [66] based on the work of Giles [128]

are some of the more common boundary conditions used as well as those accompa-

nying the original DRP derivation [293]. In the former case, the original boundary

conditions are developed by considering Fourier decomposition of the solution on the

boundary. Appropriate coefficients are set to zero in order to exclude incoming waves

from the solution at the boundary. This representation is exact for the case of linear

waves. Due to the impracticalities of implementing this original form, Giles proceeds

to develop local approximations.

Exact boundary conditions for wave problems were also developed by Ting and Mik-

sis [328] who considered the Kirchhoff formula (an integral formula – see below) on

a spherical boundary surrounding a scatterer. Although an exact boundary condi-

tion initially, in order to minimise the time history required for its evaluation (typical

of hyperbolic problems), the condition was modified to be local in time. The exact

boundary conditions of Ting and Miksis were seen to exhibit a long-time instability

and were improved by Teng [324]. A similar approach is presented by Givoli [129] for

exterior scattering problems solved using FEM. This time, the non-local space compo-

nent of the boundary condition is generated using a Dirichlet-to-Neumann map [178].

This type of approach has been pursued for different problems by others [137] and has

been seen to be highly accurate where it has been implemented.

Non-local boundary conditions based on the Dirichlet-to-Neumann (DtN) operator

can be developed by considering a known solution in the region beyond the artificial

boundary. Often, this region is considered to be one of free-space containing no sources

such that only the homogeneous governing differential equation applies. The solution

is usually known analytically for these cases and may indeed be expressed as an infinite

series of eigenfunctions, depending on the differential equation. Differentiation of this

solution produces an expression for the solution in terms of its normal derivative at the

boundary. This expression defines the DtN operator. Since the solution in the compu-

tational domain reduces to the homogeneous solution beyond the artificial boundary,

the DtN operator can be used to match the two solutions at the artificial boundary,
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thus providing the additional boundary conditions required to close the system. There

are a number of classes of problem for which the region beyond the artificial boundary

is not free-space. For these problems, the geometry beyond the artificial boundary

may still be one within which the solution is known analytically [146] and hence an

analytical DtN operator may still be constructed. For the Helmholtz equation, the

DtN operator is available in a number of coordinate systems [138]. It is typically rep-

resented in terms of Fourier integrals although She and Lu [290] represent the DtN

boundary condition as a fictitious source distribution (similar to the method of images

described in Section 3.3.1 but with sources of arbitrary location and magnitude).

Although the DtN operator is exact, it is often an infinite series representation and

practically must be truncated when used as part of numerical methods. The trunca-

tion of the series can result in non-uniqueness [178] and also problems at the artificial

boundary with essentially eigenfunctions not included in the truncated series being

set equal to zero [246]. For wave problems, this is a particular issue as spurious re-

flections are generated for these eigenfunctions (modes). Harari et al. [146] provide

guidance on the minimum number of terms to be retained in the expansion to min-

imise these effects. Specifically, all propagating modes must be retained. They also

provide an alternative solution in the form of the modified DtN formulation [138]

which improves convergence of the series and automatically addresses the issues with

truncation. Where the number of terms retained is large, the boundary can be placed

very close to (or indeed in) complex regions, such as a scattered wave field, which

minimises the overall size of the computational domain.

Most DtN applications are associated with Finite Difference (FD) or Finite Element

(FE) procedures [173, 246], with the form of DtN being amenable to incorporation

into variational formulations. However, as observed in [178], the non-local nature of

the boundary condition removes the favourable sparse nature of the FEM stiffness

matrices, increasing the overall cost of the method. More advanced applications of

DtN consider multiple truncation boundaries with the DtN condition allowing both

the necessary incoming waves from the other sub-domain as well as the outgoing waves

from its own [139]. NRBCs may also be used in setting up matching conditions for sub-

domain algorithms [106] such as the Schwarz Alternating Method (SAM) used with
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both FEM-BEM coupling and multi-domain Sinc methods (see Chapter 7). A com-

parison between non-local and local boundary conditions is performed by Deakin and

Rasmussen [84], who demonstrate both the increase in accuracy and computational

demand for non-local conditions over local approximations.

2.1.6.2 Boundary Integral Formulations

For problems featuring a closed infinite domain boundary (an exterior problem) a

boundary integral method may be used to solve the problem in the domain by con-

sidering only the internal boundary and hence a NRBC is not needed. However, for

problems featuring one or more infinite boundary sections or when using a domain

method, NRBCs are required and may be represented as integral equations to be

solved along with the domain equations. These boundary conditions may be included

by considering the solution at the closed boundary at infinity. If an incoming wave is

present, this may be incorporated through the simple addition of the incident quantity

to the formulation [354]. Alternatively, a hybrid approach may be used which uses

a boundary integral formulation as a boundary condition but coupled to a domain

method. Examples of such problems use a combination of FEM and BEM in a hybrid

procedure [165, 207, 288, 369] to allow accurate specification of a truncation bound-

ary for the FEM. The hybrid approach utilises the strengths of both of the methods

but, due to the expensive of applying FEM to a large domain, would be an expensive

treatment of acoustic problems. A review of FEM-BEM and FEM-DtN coupling can

be found in [124].

For the application of boundary methods to semi-infinite problems, the DtN operator

may be incorporated as part of a BEM to close the domain and define an interior

problem [135]. The inclusion of the DtN operator in this way, shares similarities with

the natural boundary integral formulation [360, 361] which when used for exterior

problems, may be easily coupled to FEM for the interior problem. Furthermore, it can

be used to reduce the hyper-singularity of some boundary integral formulations [244].

The development of boundary methods for the calculation of Green’s functions, and

the use of DtN NRBCs to close a domain, is discussed in more detail in Chapter 6.
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2.1.6.3 Infinite Element Methods

Another approach used to treat semi-infinite problems is to use infinite boundary ele-

ments [27] for BEM or the FEM analogue of infinite domain elements [26, 368], which

may be interpreted as regular finite elements which include far-field enrichment func-

tions [122]. These elements are usually of linear order or higher where one of the

nodes is placed at infinity and special shape functions interpolate the variation of a

parameter over the semi-infinite element. These shape functions decay in the infinite

direction based on a user-specified function associated with a known or expected so-

lution. The principal weakness of these conditions is that the correct specification of

the decay function relies on knowledge of a solution a priori which may or may not

be known. For wave problems, this decay function is usually a wave function which

allows for incoming waves as well as the decay of outgoing waves [365].

2.1.6.4 Absorbing Layer Methods

Throughout the literature on direct computation of acoustic flows using FD schemes,

boundary conditions are consistently selected from either sponge layers or exit-zone

grid-stretching regions, or a combination of the two [2, 7, 49, 50, 66, 68, 69, 72, 172, 177,

181, 190, 200, 202, 203, 258, 259, 271, 273, 323, 329, 338]. Sponge-layers (also known

as buffer-zones) are designed to damp out physical or non-physical waves crossing the

truncation boundary by implementing artificial damping in that region. These are

often used in combination with grid-stretching which involves gradually coarsening

the grid through the sponge-layer to deliberately lose resolution of the waves such

that they vanish as the grid becomes unable to support them. The Perfectly Matched

Layer (PML) [28] is a particular type of absorbing boundary condition useful for where

the region beyond the boundary is free-space [177, 222, 258, 323]. Designed to replace

previous matched layer attempts, the PML has no dependency on the direction of

approaching waves. The region precisely matches the acoustic medium at the boundary

to prevent reflections at this location. It then varies its properties throughout the

layer such that the acoustic radiation which passes into the layer is damped out. The

disadvantage of many of the sponge-type boundary conditions is the complexity of

implementation. The benefits of sponge layers is highlighted in [171].
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2.1.6.5 Other Boundary Conditions

Other necessary boundary conditions include wall/impedance boundaries common in

room or underwater acoustics [216, 258, 308] and may also be the source of spurious

wave reflections and the introduction of a non-physical, numerical boundary layer [317].

For realistic acoustic problems, internal walls are unlikely to be perfectly acoustically

rigid or flexible but instead are characterised by an impedance. An example of a

common impedance condition is that of Myers [13, 52]. Redon et al. [264] provide an

application of both a DtN NRBC as well as the Myers impedance condition for realistic

duct acoustics. However, current impedance models are not universally valid, with

Roche et al. [266] demonstrating their breakdown when incident sound levels are of

large amplitude. This is principally due to the linearised nature of current impedance

models which fail to capture the non-linear acoustic-flow interactions which are of

increased importance for high-amplitude acoustic waves. A simple and novel means

or representing internal walls of finite impedance is the Impedance Mismatch Method

(IMM) of Chung & Morris [62]. Finally, of specific importance in jet noise calculations,

are inflow boundary conditions which can accommodate entrainment [7, 36] or the start

of the jet itself if the nozzle is not included in the internal geometry. For the latter

case, the boundary condition needs to be capable of representing jet-nozzle interaction

effects, something which, specifically where directivity effects are concerned, has been

highlighted as a short-coming of earlier attempts [7, 172]. A review of boundary

conditions for infinite domains may be found in [336].

2.1.7 Applications of CAA

Owing to an increase in available computing resources, applications of even the most

computationally demanding CAA codes are becoming more common. However, to

date, many demanding CAA calculations (such as those involving DNS) have only

been applied to solve so-called ‘model problems’ – in other words computation of the

sound field generated by isolated fluid structures in space [77]. Problems of higher com-

plexity not only require more powerful processors to ensure execution time remains

practical, but they also require increased data storage and memory as the number of

mesh nodes and the density of information increases. However, CAA applied to model
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problems provides us with not only the predicted noise of the studied flow feature but

also, through the computed flow field, an understanding of the behaviour of a variety

of often complex hydrodynamic flow features. This latter benefit not only allows vali-

dation of the numerical calculations against experimental or theoretical work but also

potentially provides an insight into the physics of combinations of model problems.

Typically model CAA studies involve vortical flows, for example the scattering due

to an isolated vortex or vortex-pair interaction [72, 188, 229] which is compared to

the original analytical work on vortex sound by both Möhring [226] and Powell [255].

These articles contribute to the understanding of more complex vortical flows such as

the turbulent jet, an application we discuss in more detail below. Another common

class of problem is the study of vortex shedding from a sharp edge [215, 345] or the

interaction of a shed vortex with a body [211]. The former cases cited compare their

results to the analytical conclusions of Ffowcs-Williams & Hall [118] on the structure

of the radiated sound and the role of amplification of the sharp edge. This class of

model problem is particularly well-suited to analysis using Green’s functions as Ffowcs-

Williams & Hall demonstrate. This model problem is relevant when considering the

more realistic application of aerofoil self-noise (see below). The generation of noise

due to the presence of a single shockwave within a flow [53, 203] presents additional

challenges to CAA codes but incorporates noise sources of particular importance for

fans and supersonic jets.

The study of model problems, for which analytical solutions do not exist, using highly

resolved numerical schemes may also provide a high-fidelity solution containing in-

formation difficult to obtain from experiment. DNS results have been recorded as

benchmark solutions which may not have an analytical expression, thus extending the

database of solutions with which new code may be validated. A typical example is that

of jet noise, see the introduction of Lo et al. [200] and references therein. Furthermore,

DNS has been used to identify the source of behaviours for scenarios where analytical

models are either difficult to accurately construct or the effects of the simplifications

are unknown: for example, the resonance of a ducted jet [329], and the behaviour of

micro-cavity absorption [50]. The latter case concludes that the features neglected by

the analytical model are of little importance, with the DNS results interpreted as a

means of validating the analytical approach. This highlights the potential danger of
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using analytical solutions as a means to validate code as many analytical solutions

were derived under a number of assumptions to simplify the mathematics. In cases

where the CAA code being applied aims to resolve the exact governing equations of

the fluid (as in DNS), these assumptions may not be met and the analytical solution

becomes unsuitable as a benchmark. Due to the diverse nature of different CAA codes,

and the lack of a solution of high-enough accuracy, many of the same problems have

been recycled, particularly in the case of jet noise where the precise mechanisms of

radiation have been under debate for some time (see below).

2.1.7.1 More Realistic Applications

Since 2000, there have been attempts to apply CAA codes (particularly those based

on DNS) to more complicated situations, potentially ones which can be considered

to represent more realistic scenarios such as noise in ducts, engine intakes and fans

[4, 228, 237, 266, 320, 321, 323, 340, 364, 370], and the coupling involved in resonant

cavities [131, 249, 271] and combustion [311]. Astley [13] provides a recent review

of available methods and their application to studies concerning the components of a

turbo-fan engine. Furthermore, largely driven by the introduction of the jet engine

and ‘super-jumbo’ aircraft, there continues to be a large number of CAA studies which

focus exclusively on jet noise of heated and unheated jets at both sub- and supersonic

Mach numbers [7, 17, 18, 30, 38, 172, 181, 187, 254, 259, 263, 319, 338, 343]. Boundary

layer [50, 237, 270, 345] and mixing layer noise [19, 66–69] are also well-studied due to

their role in airframe noise which is of particular concern during aircraft approach.

2.1.7.1.1 Aerofoil Noise Aerofoil noise is a dominant source for wind turbines

[248] and, in light of advances in the noise reduction of jet engines, is now considered

to be a significant contributor to the overall noise of aircraft on approach. The source

of this noise is attributed to the unsteady flow past complicated airframe components

such as high-lift devices and landing gear. In order to contribute to the understanding

of the former, the 1989 report by Brooks et al. [47] presents 5 identified mechanisms

of aerofoil self-noise – the noise due to interaction between an aerofoil and its own

boundary layer or wake [273]. These mechanisms are identified as:

� Boundary layer turbulence passing over the trailing edge
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� Stalled aerofoil flow (including separated boundary layer noise)

� Vortex shedding (due to laminar boundary layer instabilities)

� Vortex shedding due to trailing edge bluntness

� Turbulent vortex flow at the tips convected donwstream (tip vortices)

Of these 5 mechanisms, the first 4 involve interaction with the aerofoil trailing edge

and are hence termed trailing edge sources. From the work of Ffowcs-Williams & Hall

[118], it is accepted that the scattering effect of the trailing edge causes significant

amplification of the sound and hence there are a number of numerical and analytical

studies involved in testing noise reduction strategies including the use of brushes [150]

and serrations [273]. Analytical representations of the acoustic source associated with

the convection of turbulence over the trailing edge of an aerofoil is typically based

on the linear theory of Amiet [5, 6], improved by Christophe et al. [61] to include

near-field scattering effects. Amiet’s original theory [5] computes the unsteady body

force of the aerofoil based on the classical formulation of Curle [81] and idealises the

geometry to that of a flat plate. Amiet [6] then extends the theory to account for the

convected turbulence component of the noise and concludes that this contribution is

small for a typical trailing edge but is likely to be more significant for sharper edges or

trailing edge flaps. For this reason, for aerofoils of large to infinite span, the agreement

between this theory and experiment for a body of turbulence, unmodified as it passes

over the trailing edge, is reasonably good. Hence, it has remained a popular choice for

the prediction of trailing edge noise and related problems [282]. In addition to Amiet’s

approach, other approaches have been considered including an analysis based on the

compact Green’s function [161] (see Section 5.1) and an acoustic analogy by Howe

[156]. This analysis was performed both for a flat plate and a simple rounded trailing

edge. Despite attempts to analytically model trailing edge sources in particular, the

real problem includes a contribution from a number of sources which many analytical

models will struggle to incorporate entirely. Furthermore, sources of noise in addition

to the 5 outlined by Brooks et al. [47] have been identified in experiments and DNS

studies (see Sandberg & Jones [273] and references therein).

Hybrid schemes can offer an effective means of examining different configurations of
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such problems. A relatively recent hybrid study on a slat-wing configuration by Singer

et al. [296] uses a combination of RANS and the porous FW-H method to compute

the radiated sound. Such simulations are significantly cheaper than the experimental

equivalent, which is shown by Oerlemans et al. [248] to be a significant undertaking

for wind turbine applications in particular.

2.1.7.1.2 Sub-/Super-sonic Jet Noise By far the largest category of CAA stud-

ies is that of jet noise. Since the introduction of Lighthill’s analogy, there have been

a large number of investigations which have developed alternative analogies through

reformulation of Lighthill’s original expression as well as new theories to describe the

generation and propagation of jet noise: specifically to take into account the interaction

of acoustic radiation with the non-uniform hydrodynamic flow obscured in Lighthill’s

source term. The mechanisms of jet noise are still not understood precisely from first

principles and whilst in general it is accepted that sound is generated by both large-

scale and small-scale structures within the turbulent jet, the mechanisms of radiation

and which of the two sources dominates remains a subject of debate. The large-scale

pairing of vortices in isolation, originally studied as a model problem, was one of the

original models of jet noise challenged by Bridges & Hussain in 1992 [46]. Descriptions

currently available range from Lilley’s acoustic analogy for turbulent shear flows [196]

to Tam’s 2-source model [319], challenged by Morris and Farassat [235]. There are a

number of studies which model the source using wave-packets [54, 70, 262, 267] where

the growth and decay of instability waves within the jet align well with measured Mach

wave radiation in supersonic jets. This idea agrees with the earlier suggestions that this

radiation is caused by the supersonic convection of turbulent eddies [17, 21, 117, 253].

In addition, the temperature of the jet is also known to affect the decay of the radiation

with some numerical experiments specifically demonstrating this behaviour [7, 225].

Noise associated with shock systems in supersonic jets may be broadly considered to be

a combination of discrete tones (screech tones) and broadband shock associated noise.

Attempts to model the latter analytically were made by Harper-Bourne and Fisher

[149] with results in good agreement with experimental data for the particular jet

configuration of interest. Numerical CAA techniques have been applied including the

use of DRP [153], where, as expected, due to the abruptness of the shock, convergence
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of the method is slowed by the increasingly small time steps. Andrè et al. [8] present

experimental measurements on the effects of nozzle slots on the radiated shock noise

which highlights a Mach number dependence on their noise reduction effectiveness.

2.1.7.2 Far-Field Scattering

It may be noticed that, for all the applications mentioned above, the radiated (far-

field) sound is considered to be in free-space (i.e. in a region of space unobstructed by

surfaces capable of scattering the acoustic waves). This free-space simplification can-

not be universally applied in reality, particularly in confined geometries, or geometries

which remain complex into the far field. Current practices are unable, in any reason-

able amount of time, to compute the scattered sound field in these cases. This is due

to the fact that the scattering effects of any geometry, currently must be computed

by a CFD-type numerical scheme, such as those used in the the source region part of

a hybrid calculation. Therefore, in many cases, the domain of numerical schemes is

extended to include the features of the problem responsible for the scattering.

Alternatively, numerical-numerical hybrid schemes can be used where a more appro-

priate integral-based method can treat the complex geometry as well as the complex

flow. For example, currently the study of wing-slat combinations is important in the

context of airframe noise, see for example [32]. In this paper, the authors deal with the

complex geometry of the problem by using RANS on a small source region and then

incorporate a discontinuous Galerkin solver for the far-field which now includes the

scattering contribution of the wing and part of the slat. However, the execution is still

relatively expensive, with the meshing of the propagation domain still a requirement.

Boundary-integral or source-volume-integral techniques cannot currently be employed

to propagate the sound for this type of problem due to the lack of a suitable integral

kernel to incorporate the scattering effects. The means of achieving this would be to

construct a Green’s function which satisfies the boundary conditions of the propaga-

tion geometry, specifically those on arbitrary scattering surfaces or at flow features. In

this way, the Green’s function takes into account the scattering behaviour of a specific

geometry and may be used as a suitable integral kernel to compute the propagation

using a single integration. This project can directly address the current issues associ-

ated with obtaining these Green’s functions by providing an efficient and robust means
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of numerically computing them (in 2D initially). These numerical Green’s functions

may then be used as part of existing integral solution methods to allow application of

hybrid CAA codes to a greater variety of situations. The expensive CFD-type numer-

ical methods may then be restricted to a concentrated source region, with an integral

approach being used to propagate the sound to the observer. In the next chapter we

examine the role of Green’s functions in more detail.



Chapter 3

Green’s Functions in Acoustics

The scattering of acoustic waves in engineering problems is one of crucial impor-

tance for many applications from fluid mechanics to seismology. The presence of solid

boundaries in an acoustic flow is known to affect the waves through scattering and am-

plification effects. The theory of Curle [81] captures the fundamental reflections from

surfaces by means of representing the surface as a distribution of additional sources in

the flow. Furthermore, the analytical study by Ffowcs-Williams & Hall [118] demon-

strates a coupling between acoustic disturbances and the surface not included in the

representation of Curle. Finally, the use of MAE by Crighton & Leppington [78] for

a turbulent source, and then Crighton [75] for a moving vortex, demonstrates clearly

the amplification effects of sharp edges and scattering bodies. The former study in

particular revises Lighthill’s free-space eighth power law estimate [194] to one involv-

ing the sixth and third powers of velocity due to the change in nature of the source

from the quadrupole of Lighthill to the more efficient dipole form. In this chapter, we

discuss how scattering effects may be incorporated precisely while propagating sound

sources through use of Green’s functions.

All acoustic analogies, as inhomogeneous differential equations, can be solved using

an integral method. As described in Section 2.1.4, this approach initially yields an

integral equation expressing the acoustic field variable in terms of a volume integral

and a source integral. A particular configuration of this general case causes the sur-

face integral to vanish and the solution may be expressed as the volume convolution

between a specialised function (kernel) known as a Green’s function and the inho-

mogeneous term (source term). This Green’s function satisfies a special form of the

58
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differential equation of interest, usually referred to as the ‘Green’s function form’ or

‘singular form’, whose source term is a Dirac delta function. Physically, this singular

form of the differential equation governs the field produced by an idealised unit point

source. The Green’s function is actually a function belonging to the broader class of

‘fundamental solutions’ of the original differential equation. This Green’s function not

only satisfies the Green’s function form of the differential equation, but also a given

set of boundary conditions. Therefore, for a given acoustic analogy, any number of

Green’s functions exist depending on the boundary conditions chosen. These bound-

ary conditions do not necessarily need to be equivalent to the corresponding boundary

conditions of the original problem. When these boundary conditions are the same as

the original differential equation describing the physical acoustic problem, the result-

ing Green’s function is termed the exact Green’s function. However, this terminology

can cause confusion as although the Green’s function is exact in the sense that it is

exactly equal to the boundary conditions of the physical problem, in a calculation the

function itself may be represented approximately. For example, if the exact Green’s

function is represented by an infinite series, practically we truncate the series in the

numerical calculation. In this sense we use an approximate representation of the exact

Green’s function.

Physically, for the wave equation subject to the radiation condition, this Green’s func-

tion solution may be interpreted as the outgoing wave solution of the problem for an

impulsive point source located at a specific position. The integral representation may

be derived by applying integration to both the original differential equation as well as

the Green’s function form and then combining them using Green’s second theorem.

This method of solution gives the acoustic analogy and other integral representations

a significant advantage over exclusively numerical approaches: In terms of execution

time, the far-field sound data may be computed from a single integration of the source

data and the Green’s function (see the appendix of [76] for example). Furthermore, the

use of the Green’s function precludes the need to mesh the propagation domain and

avoids numerical approximation of the solution behaviour on and inside the domain

boundary. The use of this technique remains efficient, even for singular source be-

haviour, when combined with accelerated convolution methods (see Beylkin et al. [31]

and references therein). However, for general geometries, this advantage only exists if
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the Green’s function itself can be constructed – a task often requiring significant skill.

Methods of solving integral equations (and hence differential equations) using Green’s

functions may be considered to be a fundamental part of the mathematics of differen-

tial equations. The method has existed for many years and has been put to good use

in a wide variety of fields although may not have been referred to by name. However,

the versatility of the general theory is rarely exploited with popular methods using

readily available Green’s functions rather than developing new ones. The fundamental

solutions used in the Boundary Element Method for instance are in fact equivalent to

the free-space Green’s function, though this link is seldom made explicitly.

In terms of acoustic problems, the power of the Green’s function approach is its ability

to separate out the source and propagation effects. Therefore, the singular form of

the differential equation may be solved to obtain a description of the scattering of a

particular geometry regardless of the nature of the sources. Knowledge of the Green’s

function therefore can give preliminary details about a particular problem before ex-

pensive prediction methods are then employed for a given source configuration. In

general, the scattering of waves within arbitrary geometries may, subsequently, be eas-

ily incorporated into the acoustic field solution for a given source, something which

even the latest numerical methods struggle to achieve. Although Colonius’s 2010 pa-

per [70] criticises acoustic analogies for lacking a universal source representation, it

does recognise that even new numerical approaches in the near-field have difficulties

in including the role of complex geometries in source models, particularly the inclusion

of nozzle geometry for jet flows [172] – something the Green’s function is capable of

doing in a precise manner.

3.1 Green’s Function and Hybrid Schemes

Current hybrid CAA schemes may be extended beyond the scenarios for which the

propagation region is free of any boundaries responsible for scattering of acoustic radi-

ation. The presence of scattering boundaries would not be problematic for the Green’s

function solution method if the Green’s function for the problem can be found either

analytically or numerically. Furthermore, after computation of the Green’s function

for a particular geometry, the hybrid scheme may be executed numerous times for
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a variety of flows without the need to re-compute the Green’s function. This is a

significant advantage over the use of exclusively numerical approaches which may re-

quire costly re-meshing for each new simulation. This highlights the versatility of

the Green’s function insomuch as the Green’s function itself is not dependent on the

source of the differential equation but merely the operator and boundary conditions.

A number of Green’s functions exist in closed analytical form for acoustic radiation

problems where there are no boundaries to scatter the sound between the source and

the observer. Such Green’s functions are called free-space Green’s functions and are

used extensively in the propagation step of current hybrid schemes. However, there

are few exact Green’s functions available in analytical form for problems involving

scattering boundaries, noted by, amongst others, Kaltenbacher et al. [177]. This is

due to the unique properties of the Green’s function which lead to their construction

being a highly complex, and in many cases intractable, mathematical procedure. Fur-

thermore, the Green’s function approach to solution requires knowledge of the source

terms. Realistic sources are unlikely to be represented analytically but as discussed in

Section 2.1.4, numerical methods are readily available for the specification of source

data, hence the only requirement is the specification of the Green’s function. Despite

the work of Howe [163] and others on Green’s function derivation for specific problems

where the free-space Green’s function is unsuitable (see [311] and later references on

Green’s function construction), the catalogue of analytical Green’s functions remains

difficult to populate and currently no robust method exists for the numerical specifi-

cation of the Green’s function. This research establishes a portfolio of robust methods

to this end.

3.2 Acoustic Application of Green’s Functions

Since the use of Green’s functions belongs to the general theory of differential equa-

tions, it can be applied to a range of problems. There are many analytical studies

which use Green’s functions for the solution of different governing equations in a vari-

ety of geometries (including free-space) [76, 115, 157, 159, 169, 174, 205, 226, 247, 253,

308, 310, 332, 348]. These applications include the use of the BEM, which relies on
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relatively simple analytical expressions for the free-space Green’s function as a funda-

mental solution to the equation being solved. In terms of aero-acoustic problems we

usually require the Green’s function for the wave equation or the reduced wave equa-

tion (Helmholtz equation), with or without a mean flow. Many scattering problems for

which Green’s functions are given analytically usually involve only simple geometries

such as the scattering by a cylinder [157, 170, 234, 366]. As is clear from the work

of Morris [234], the need to find the exact Green’s function for the geometry can be

avoided if the incident and scattered fields are treated separately and then matched

at the boundary of the simple shape to form the appropriate boundary condition. In

such cases, only the free-space Green’s function is needed for the two separate fields.

However, there are limitations to the extent to which such analytical matching tech-

niques can be applied (see below). Green’s functions are not necessarily restricted

to Green’s function integral approaches but have been used as a basis (each Green’s

function centred at a mesh node) for the construction of shape functions for a low-cost

domain method known as the Green’s function discretisation technique [52] (see also

Page 41 in this document).

3.3 Methods of Construction

There is only a small amount of literature available concerned with the theory and ap-

plication of Green’s functions as remarked by a number of authors [110, 186]. Methods

of constructing Green’s functions, when consulting this limited literature, are found

to be largely problem-specific [93]. However, a set of standard mathematical tools

may contribute to the construction, such as Fourier transforms for wave problems

and Laplace transforms for time-dependent problems. However, a common obstacle

in such cases is computing the inverse transform [192]. For more details on possible

mathematical tools see [88] and references therein.

Given the lack of a universal method this research explores three methods which we

select in Chapter 4. As the Green’s function depends only on the geometry and its

boundary conditions, it may be computed during a pre-processing step and stored

once for a given acoustic geometry. As such, once it is known for a particular geo-

metrical configuration, the same Green’s function can be used time and time again
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with a variety of source flows [339, 347], reducing the time taken to conduct a set of

geometrically similar studies. Existing CFD-based methods of noise prediction used

in many design processes do not have this capability with a re-meshing of both source

and propagation domains generally required for a change in the flow field within or

around a component.

3.3.1 Analytical Green’s Functions

Although there are no universal methods of constructing Green’s functions there are

a number of situations, where exact Green’s functions, which apply in a domain with

boundaries, may be defined analytically. A number of these may be computed from

integral representations [110, 111]. Also, one advantage of knowing the free-space

form of the Green’s function analytically is that simple boundary configurations (such

as the infinite half plane) can be represented quite easily as a superposition of two

free-space forms where one of the Green’s functions represents an ‘image source’. The

image source method of Green’s function representation is very common for room or

rectangular cavity acoustics [3, 168, 251, 308] where the boundaries tend to be flat

surfaces, perpendicular to one-another. The Green’s function represented using the

image source method in cases with two or more parallel boundaries is generally an in-

finite series due to the repeated reflections required [242]. Practically, the series must

be truncated in order to evaluate the Green’s function numerically. However, the con-

vergence of this particular infinite series representation is often very poor, precluding

its use without modified evaluation procedures as discussed below.

Multi-pole expansions of analytical representations can have important computational

advantages, particularly when applied to boundary integral methods [60] (see Chap-

ter 6). The modification of boundary integral methods using such expansions of ana-

lytical Green’s functions allows boundary methods to remain competitive, even when

compared with existing fast solvers for wave problems such as those based on the

Fast-Fourier Transform (FFT).
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3.3.2 Series Representations

The lack of computer-friendly forms of a lot of series-based Green’s functions has

been the motivation behind much research since the late 1990s. Melnikov and Mel-

nikov [224], in particular, present a means of addressing the issues surrounding the

computability of the typical double-Fourier series representation for the Helmholtz

equation in a rectangle. Lattice sum representations of Green’s functions for periodic

domains are similar in form to an image source infinite series but, as shown by Dien-

stfrey et al. [86], can be evaluated more quickly and more accurately than their image

source counterparts. Accuracy close to floating point precision can be achieved. How-

ever, they are often hampered by conditional or slow convergence [168, 197, 198, 233].

There are a number of other techniques available to either mitigate or circumvent the

problems posed by the evaluation of infinite series. Practically, the series cannot be

evaluated numerically in its entirety; hence a degree of approximation is introduced

by truncation of the series. The number of terms required to achieve an acceptable

accuracy can still be prohibitively large. Fortunately there are means to accelerate

the convergence of such infinite series: Ewald’s method is a particularly common ap-

proach which is highly effective at improving the convergence of these expressions

[168, 175, 233, 251, 274, 275]. This technique splits the existing series representation

of the Green’s function into two parts using an arbitrary splitting parameter. Inte-

gration may then take place over the two parts both of which exhibit exponential

convergence. Huang and Jiang [168] show convincingly that when compared with a

modal expansion of the Green’s function, far fewer terms are needed by the split series

of Ewald’s transformation than by the single modal expansion. A discussion of suitable

parameter selection may be found in Arens et al. [12]. The likelihood of producing

a robust algorithm capable of constructing an exact image source representation of

the Green’s function for arbitrary geometries is remote, although the approach may

indeed be more suitable that most others for geometries with parallel sides.

3.3.3 Problem-Specific Construction Techniques

In order to facilitate many of the more ad hoc construction procedures, assumptions

can be introduced (or properties evoked) which reduce the complexity of the problem
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but still allow an exact Green’s function for the new problem to be found. Green’s

functions satisfy a number of properties [186]. In the spatial sense, the Green’s func-

tion is a function of both the position of a ‘source’ and an ‘observer’ (interpreted in

an acoustic context). One key property is that of symmetry, known physically as reci-

procity; the observer and source locations of the Green’s function are interchangeable.

Hence, the computation of the Green’s function can be simplified by considering the

positions exchanged. This concept, in some cases, greatly simplifies the construction

of the Green’s function [163]. Some problems involving differential operators which

are not self-adjoint (e.g. the convected wave operator) can be modified to allow use of

the concept of reciprocity. Recently both Alonso & Burdisso [4] and Tam et al. [315]

have made use of the adjoint problem and the associated Green’s function known as

the adjoint Green’s function. Of course, if the differential operator were self-adjoint,

the Green’s function and the adjoint Green’s function would be equivalent. Other

modifications include the ‘surface Green’s function’, which functions in the same way

as the usual Green’s function but with the source function being distributed over the

surface surrounding the source region rather than being distributed as points within

it [216].

It may be possible to make assumptions about the physical domain to simplify the

problem for which the Green’s function is desired, for instance by allowing some im-

position of quasi-periodicity [175, 184, 185, 198, 233]. One particular class of problem

pertinent to acoustics are those which consider the scattering by a compact body or

geometrical feature [157, 161]. We discuss this class of problem in more detail in Sec-

tion 5.1. Alternatively, the domain or equation may be transformed or modified under

assumptions to simplify calculation [152, 176, 236, 367].

Although it seems a viable procedure to simply transform the governing wave operator

into something more manageable such as the conformally invariant Laplacian opera-

tor, there are a number of issues associated with attempting to transform operators.

For example, the introduction of a further spatial dependence as remarked by the

review of Meinke [223]. Hong & Goodrich [152] successfully apply a transformation

under the condition that the boundary curves are altered only by a small amount such

that the kernel of boundary integrals remains small. The application of transmuta-

tion (the mapping of one equation onto another) by Gilbert et al. [127] is a similar
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approach. It removes some of the difficulties of using the Parametrix method [123],

used previously to construct approximations to Green’s functions by generating an

approximately equivalent pseudo-inverse differential operator. Exact representations

are rarely obtained using such methods and the number of situations for which the

resulting Green’s functions are accurate are limited by the restrictions imposed by the

validity of the transformations involved.

Embree & Trefethen [105] use the novel approach of numerical conformal mapping as

a means of facilitating Green’s function calculation, albeit it for the simpler case of

Laplace’s equation. They define an algorithm which can be used to find the Green’s

function for the 2D Laplace equation within a geometry characterised by a number of

bodies which sit symmetrically on a horizontal line through the domain. However, the

algorithm uses a bespoke sequence of conformal maps and is largely inextensible to a

broader range of geometries. The Green’s functions developed in this project are far

more general than this attempt.

3.3.4 Other Methods of Construction

There a number of less popular methods for Green’s function computation which have

generally been applied to Laplace’s equation in the context of potential problems.

By their very nature, Green’s functions are problem specific and hence the functions

can in fact be constructed without the need for a standardised method, as long as

the result satisfies the properties of the Green’s function and meets the needs of the

integral method to be used. For example, the use of the Liènard-Wiechert potential

coupled with a bespoke parametric method [57] or super-lattice construction [16].

There is also the possibility of reconstructing Green’s functions from measured field

data, sometimes referred to as ‘Green’s function extraction’ [302]. See also Colombi

et al. [64] and references therein. This approach is useful when the Green’s function

for a previously designed geometry is required. Since experimental measurements are

required, the use of the Green’s function is these cases would be more retrospective

than predictive.



CHAPTER 3. GREEN’S FUNCTIONS IN ACOUSTICS 67

3.4 Green’s Functions in other contexts

Due to obvious similarities, the wave equation in many areas of physics can be solved

using Green’s functions. Of particular interest are the methods used in other research

fields to arrive at a Green’s function for a given situation whether analytically or

numerically. Early field computation using integral techniques in the context of elec-

tromagnetic waves can be traced back to the work of Garabedian [123] and beyond

– the obvious difference between this realm and the that of acoustic waves being the

transverse nature of waves in the former and the potential for polarisation. Luo et al.

[206] have recently proposed a boundary integral technique for electromagnetic scat-

tering which utilises a suitable Green’s function for the problem. Furthermore, Torabi

et al. [330] use a novel means of constructing the Green’s function for a dielectric

medium. The technique decomposes the domain and builds the global Green’s func-

tion from local analytical representations which is shown to form part of a numerical

solution method both accurate and quick. In part this is due to requiring no numerical

integration.

Similarly, Green’s function-based scattered field calculations can be found in electrical

and electronic engineering [141, 155]. Due to the equivalence of (inverse) differen-

tial operators and matrices, the former citation makes use of a particular form of

Green’s function called the ‘dyadic Green’s function’. The dyadic Green’s function

takes into account the directivity the source points and is specifically necessary when

dealing with vector sources and vector fields. It is, therefore, regarded as a ‘higher-

dimensional’ Green’s function in the same way a tensor is ‘higher-dimensional’ vector.

This dyadic Green’s function is also used by a number of other authors is similar

contexts [251, 339]. Gysen et al. [141] use conformal mapping (see Section 5.2.1) to

transform the governing equation, which in this case is Poisson’s equation. The prob-

lem considered is one subject to periodic boundary conditions, a necessary restriction

for the success of the method.

A more unusual Green’s function application is that of Treeby & Cox [332] who derive

a Green’s function for a wave equation incorporating power-law absorption (represen-

tative of the absorbing behaviour of biological tissue). This is a similar application to

the development of the Green’s function for a linearly inhomogeneous medium by Li
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et al. [193].

Another common research field in which acoustic waves reside is not just fluid me-

chanics (including waves in both air and water) but also solid mechanics. Specifically,

field calculation using the Green’s function method and Green’s function calculation

itself is commonplace in many recent papers in the fields of seismology and geophysics

[42, 154, 183, 341, 347]. Of particular interest is how a Green’s function can account

for the changes in impedance of layered (‘stratified’) solid media. Integral methods

are a popular choice in these fields due to their efficiency when performing calcu-

lations on semi-infinite or infinite domains. The calculation of both analytical and

numerical Green’s functions are performed using more bespoke methods such as the

Discrete Wave-number Method (DWM) developed by Bouchon [41]. This method

constructs a Green’s function from consideration of analytical solutions of varying

wave-number, something typical of wave propagation through the Earth’s crust. This

could be adapted for inclusion in an aero-acoustic context, if stratified media are en-

countered.

Green’s functions may also be found in many shallow-water scenarios where they are

an ideal mechanism for taking into account the reflection and absorption of the seabed

[116, 125–127, 201, 274, 275]. The boundary conditions found in these problems tend

to share many similarities with aero-acoustic boundary conditions, particularly the de-

scription of impedance characteristics. Finally, the Green’s function is not limited by

any particular coordinate system and has been derived in prolate spheroid coordinates

for studies on acquifers by Antangana [14].



Chapter 4

Choice of Numerical Methods

In this chapter, we present the rationale behind the decision to select the three methods

which are the focus of this research. As discussed in the previous two chapters, there

are numerous characteristics of acoustic problems which preclude the use of traditional

methods of solution for differential equations. Specifically we recall:

1. The domain may be very large compared with the acoustic wavelength;

2. The domain boundaries may be of a complex geometry and feature a variety of

acoustic boundary conditions;

3. The wavelengths of interest can vary significantly up to a factor of 1000.

The aim of this work is to assess three methods for their potential to provide

a robust and accurate means of numerically computing the Green’s function for an

acoustic boundary value problem both in an arbitrarily complex geometry and for an

arbitrary flow field. Many acoustic problems are represented by the wave equation or a

variation of the wave equation. A large number of acoustic problems are time-harmonic

and hence the solution of the wave equation may be facilitated in the frequency domain.

Removing the time-dependence of the problem makes the problem more amenable to

solution while being only an inverse Fourier transform away from the original time-

dependent form. For the purposes of this research an adequate assessment of the

chosen methods is possible by considering the time-independent form; the solution

of the time-dependent wave equation is unnecessary. Hence, for simplicity, we solve

the Helmholtz equation governing the velocity potential φ̂ of a monochromatic wave
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of frequency ω produced by source q̂ within an arbitrary geometry, subject to some

condition on the boundary.

(
∇2 + k2

)
φ̂ (x, ω) = q̂ (x, ω) (4.1)

Equation (4.1) may be solved by transforming it into an integral equation. If the

source is considered to be distributed over a local region, with the position of the

individual point sources given by y, our integral equation is defined:

φ̂ (x, ω) =

∫
Ĝ (x,y, ω) q̂ (y, ω)d3y (4.2)

The function Ĝ (x,y, ω) is a fundamental solution of the singular form of the governing

differential equation (Eqn. (4.3)) which also satisfies all the same boundary conditions

and hence is an exact Green’s function. Physically the Green’s function may be inter-

preted as an outgoing wave produced by an impulsive unit point source at y, observed

at x.

(
∇2 + k2

)
Ĝ (x,y, ω) = δ (x− y) (4.3)

In the absence of physical boundaries we may consider this wave to propagate in

free-space with solution in 3D

Ĝ (x,y, ω) =
e−ik|x−y|

4π |x− y|
(4.4)

However, as we introduce walls and bodies into the domain, the Green’s function

should either satisfy the boundary conditions on these additional surfaces or else ad-

ditional terms are required to completely define the solution. We therefore wish to

solve Eqn. (4.3) subject to arbitrary boundary conditions while considering the unique

characteristics of acoustic problems identified at the beginning of this section. Addi-

tionally, we may justify a number of practical restrictions on our choice of methods:

� Any method requiring a domain mesh is likely to be too expensive as we expect

to apply the technique to large domains, hence semi-analytical or boundary

methods are expected to be more suitable.



CHAPTER 4. CHOICE OF NUMERICAL METHODS 71

– If we wish to incorporate our numerical Green’s function method as a pre-

processing technique before applying a hybrid CAA scheme, the time taken

to perform this step should be significantly less than if we had extended

the source region to incorporate the geometrical complexity. The exception

would be if the chosen domain method converged rapidly such that only a

very small number of mesh points were needed to accurately represent the

solution.

� We require a method which is capable of either satisfying the boundary condi-

tions exactly by utilising analytical solutions, or approximating the boundary

conditions accurately without contaminating the domain solution.

– Many of the numerical studies cited earlier, which principally use numer-

ical domain methods, rely on complicated boundary treatment to ensure

the solution is free from errors generated by poor quality boundary con-

ditions. By making use of integral representations or canonical solutions,

boundary conditions may be incorporated semi-analytically. As discussed

in Section 2.1.6, such boundary conditions significantly improve the ro-

bustness of the numerical methods used to find the solution in the domain

interior.

� The method must be robust for a wide range of geometries

– Either the method must be sufficiently general to be applicable to a range

of geometries, or it must be possible to cheaply and accurately superimpose

or couple instances of the method to construct the solution within the more

complex geometry.

Domain methods based on traditional finite difference approximations would not

be appropriate for this task due to needing to mesh the whole domain and use an

expensive discretisation scheme to resolve all the acoustic disturbances. Even par-

allel methods like LBM, although cheaper than finite-difference-based methods, are

unlikely to achieve the level of accuracy required throughout a potentially large prop-

agation domain. However, boundary methods are often physics-based which allows
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accurate representation of boundary conditions and domain behaviour while offering

a reduction in mesh extent and a versatility when it comes to complex boundary ge-

ometries. Due to this, and the additional benefits discussed in Chapter 6, we consider

the Boundary Element Method (BEM) as one of the options. Sometimes, the acoustic

problem of interest may satisfy certain physical conditions which can cause difficulties

for boundary methods as we later discuss. In such circumstances it is prudent to con-

sider alternative methods.

The subject of aero-acoustics is grounded in a significant amount of analytical theory.

We therefore consider the uses of a particular part of this theory in Chapter 5, where

we construct an approximation to the Green’s function for a class of geometries where

the scattering object is small with respect to the wavelength of interest (i.e. compact).

The boundary conditions on the surface of the scattering geometry are satisfied ex-

actly by the analytical part of the procedure and for the described class of acoustic

problems, the approximation is known to be highly accurate. Where the underlying

assumptions are met, the method is notably more efficient than the BEM.

Finally, we also consider the potential of emerging techniques. We consider in Chap-

ter 7 a flexible, physics-based Galerkin method. This method uses a Sinc function

basis set for the representation of the solution. Essentially, this Sinc basis is a set of

scaled and translated spherical Bessel functions – the first spherical Bessel function

j1(r) to be precise. This function decays with 1/r and would be a sensible choice for

modelling physical problems with similar decay behaviour. The approach is similar to

using a wavelet basis with the difference being the compactness of the basis functions.

The exponential convergence of the method as well as its avoidance of numerical inte-

gration offset the computational disadvantage of needing to seed nodes in the domain

itself.

Having validated and assessed the selected methods in Chapters 5 to 7, we reason in

Chapter 8 that the method deemed most suitable depends strongly on the class of

geometry to which it is to be applied. Indeed, maximum versatility is achieved when

all three methods are considered as a portfolio and using suitable guidance, the most

appropriate method is selected.



Chapter 5

Compact Green’s Function Method

In this chapter, we investigate the first of the three methods discussed in the pre-

vious chapter. Since analytical representations of exact Green’s functions are often

difficult to obtain [93], methods of constructing approximate Green’s functions are

often employed to increase the number of Green’s functions available for use. These

approximation procedures usually involved an asymptotic expansion of either a length

or frequency variable to simplify the mathematics [56]. We establish here a numerical

means of constructing a specific approximation to the Green’s function useful for a

range of acoustic problems. The approximation requires the computation of a correc-

tion to an appropriate analytical Green’s function.

First, we present a brief outline of the approach to approximate the Green’s function

under the conditions used by Howe [163]. We then develop a numerical implementation

for the calculation of this approximate Green’s function and apply it to two simple

geometries for which analytical solutions are known as a comparison. The effects of the

key parameters of the method on both accuracy and computation time are discussed

and improved variations on the method suggested. Finally, we discuss the extension

of the method to 3D problems and calculate the compact Green’s function for a baffle

of two different thicknesses within a channel. This latter example demonstrates the

ability of the method to be applied to more realistic geometries.
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5.1 The Compact Green’s Function

The compact Green’s function, developed by Howe [157], is a good approximation to

the exact Green’s function for rigid bodies under a number of assumptions. These

assumptions are interpreted generally as:

1. The observer must be located many wavelengths away from any scattering feature

in the domain (in the far-field),

2. The source must be close to a scattering feature of the geometry (within the

largest dimension of the feature),

3. The largest dimension of the scattering feature must be significantly smaller than

the wavelength of the sound under consideration (compact scatterer).

For many realistic cases, these assumptions are not particularly restrictive and

hence Howe and others have produced and applied several examples over the last 3

decades of such approximate Green’s functions [75, 157, 160, 162, 221, 226, 247]. In all

cases an analytical expression has been produced but at the cost of significant mathe-

matical effort. Many of the known compact Green’s functions may be found in [163].

It should also be noted that, although Howe coined the phrase ‘compact Green’s func-

tion’, far field forms of Green’s functions have been used before by Ffowcs-Williams &

Hall in their 1970 paper [118] based on an exact form of the Green’s function derived

as early as 1915 (see references therein). Compact Green’s functions and the analyti-

cal solution method of MAE are related by their inclusion of asymptotic assumptions.

The applicability of the two are compared in a review by Zheng et al. [366]. Zheng

concludes, by application to classical acoustic problems that, as expected, the two

methods agree in the far-field but not in the near-field which corroborates the known

inflexibility of observer position in the case of the compact Green’s function (the first

assumption in the list above).

For situations where the boundary conditions allow it, truncated expansions of eigen-

functions are a means of obtaining an approximation to the Green’s function [126, 275].

Although exact as an infinite series, for the purposes of numerical evaluation, trun-

cated series representations are required. Also known as modal solutions, the tradi-

tional eigenfunction expansion method is seen to converge very slowly when compared
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with image source methods which utilise Ewald’s transformation discussed earlier.

Finally, there is work of Garabedian [123] which uses the Parametrix Method to con-

struct a parametrix which can be seen as being an approximation to the fundamental

solution (Green’s function) of a particular differential equation. The structure of the

parametrix is a series approximation to the Green’s function (also interpreted as the

kernel of the inverse differential operator) consisting of differential operators of in-

creasing order multiplied by coefficients. Such series approaches are reminiscent of the

methods of the construction of local boundary operators for non-reflecting boundary

conditions (see Section 2.1.6).

In this project, the choice of methods for the computation of the Green’s function is

partially motivated by the need for rapidity. In order for the calculation of the Green’s

function to be a viable pre-processing step in a hybrid scheme, it must take less time to

complete than the simple extension of the source region to incorporate the scattering.

Furthermore, the resources required to perform the calculation in terms of available

memory must not exceed those required by the most demanding part of the existing

scheme. To this end, in this chapter, we examine a semi-analytical procedure which

requires only a minimal boundary mesh for computation. An expensive domain mesh,

which is invariably large in size if it is to enclose all scattering geometry up to the

observer, is not required.

5.2 Constructing the Compact Green’s Functions

In a typical acoustic problem it is necessary to consider the effect on far-field sound

observed at observer location x due to the positioning of a scattering body, with largest

dimension l, near to the sound source at source location y. The influence of a solid body

adjacent to a source has been shown by Curle [81] to be equivalent to a monopole and

dipole distribution over the body surface. The compact Green’s function [163] includes

a first order approximation for the net effect of these additional source distributions.

We outline briefly below the procedure for constructing the compact Green’s function.

For more details see Howe [163]. Initially the origin is taken to be inside the body and

we assume that the source is located within one characteristic dimension of the body

|y| ∼ l. The Green’s function for scattering problems where the scatterer is in a region
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of free-space is considered to consist of the free-space Green’s function (Eqn. (4.4))

plus a correction Ĝ′ accounting for the scattering of this body. Note at this point that

construction of the compact Green’s function for other ‘starting’ geometries would

require a different analytical form. Although analytical representations of acoustic

Green’s functions are not numerous, many real problems may still be treated with

those which are available. Using the principle of reciprocity, the free-space Green’s

function Ĝ0 and its correction Ĝ′ are stated as:

Ĝ(y,x, ω) = Ĝ0(y,x, ω) + Ĝ′(y,x, ω)

=
−eik|x−y|

4π |x− y|
+ Ĝ′(y,x, ω)

The observer (source in the reciprocal problem) is then removed to the far field

and the far-field assumptions |x− y| ≈ |x| − |y| cos θ and 1
|x−y| ≈

1
|x| , defined by

application of the Taylor expansion in |y| about the origin, are applied. In Howe

[163], all terms in the expansion involving distances to powers greater than 1 are not

printed explicitly, disguising the truncation error. We retain them here to illustrate

the role of the compact assumptions. Thus, introducing this Taylor expansion into the

free-space Green’s function we obtain:

Ĝ0(x,y, ω) =
eik|x−y|

|x− y|

=
−eik|x|

|x|

[
1− ik |y| cos θ − 1

2
|y|2 k2 cos2 θ

+
1

|x|

(
|y| cos θ − |y|2 ik cos2 θ +

1

2
|y|2 ik sin2 θ

)
+

1

|x|2

(
|y|2 cos2 θ − 1

2
|y|2 sin2 θ

)
+ . . .

]
Howe then introduces the correction for the presence of the body by a function φ(y)

which is given by Ĝ′ = −Ujφj +O(kl)2 where φj → 0 with |y| and Uj = eik|x|

4π|x|
ikxj
|x| , the

latter being a constant for a given source position in the reciprocal problem |x|. The

complete Green’s function is given by
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Ĝ = c+ Uj(yj − φj) +
eik|x|

4π |x|

[
1

2
|y|2 k2 cos2 θ

]
+ . . .

= c+ Uj(yj − φj) +
[
Vjy

2
j +Wy1y2

]
+ . . . (5.1)

where the constants are defined by

c =
−eik|x|

4π |x|

Uj =
eik|x|ikxj

4π |x|2

Vj =
eik|x|k2x2

j

4π |x|3

W =
eik|x|k2x1x2

4π |x|3

The correction to the free-space Green’s function in this instance may be made

accurate up to derivatives of first order – sometimes referred to as dipole order. This

allows confident use of the derivative of this Green’s function as would be required

when dealing with dipole sources (see Section 5.6). In order to achieve this, the terms

in square brackets in Eqn. (5.1) must vanish. The required restrictions define a class

of compact problems and are seen to consist of [163]:

i. The observer is considered to be located in the far-field |x| → ∞, or x
λ
� 1.

ii. The source is to be located a distance of no more than l from of the body |y| ∼

O (l);

iii. The largest dimension of the adjacent body is considered to be significantly smaller

than the wavelength of the sound (i.e. the body is acoustically compact) λ� l;

which is the mathematical analogue of the earlier physical list, in which case, the

Green’s function Eqn. (5.1) reduces to the compact Green’s function Eqn. (5.2), the

above assumptions constituting a scattering body which is compact with respect to

the wavelength of the sound under consideration.

Ĝ (x,y, ω) ≈ e−ik|x|

4π |x|

(
1− ikxjYj

|x|

)
(5.2)
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Yj is the j-th component of the Kirchhoff vector Y. Physically, this field is not a wave

field but is interpreted as the potential of a uniform, unit potential flow corrected for

the presence of the scattering geometry. In the far-field (near the reciprocal problem

source and away from the scattering body), the Kirchhoff vector components decay

such that the free-space form of the Green’s function is recovered.

5.2.1 Potential Flow Solutions

For a given wave number k, source and observer location, x and y respectively, the

compact Green’s function for a scatterer in free-space may easily be evaluated from

Eqn. (5.2) once the components of the Kirchhoff vector have been found. The def-

inition of the Kirchhoff vector requires us to seek potential flow solutions around or

within the problem geometry. Each component of the Kirchhoff vector typically will

depend on the coordinates of the source y. These potential flow solutions may be con-

structed by considering one or more 2D potential flow problems in the complex plane

z = y1+iy2 where the solution is represented by complex potential Φ = φ+iψ, where φ

represents the potential function and ψ the stream function. Physically, this complex

potential has encoded within it, the 2D velocity field of an irrotational, incompressible

flow in the geometry. The effect on an initially uniform flow in a particular direction

due to the geometry is represented by the velocity potential field. The Kirchhoff vector

component is therefore extracted from this field data as φ = <{Φ}.

The solution of Laplace’s equation in anything other than simple geometries is usu-

ally made possible by the application of conformal mapping. An arbitrary physical

domain may be transformed to a much more simple computational domain in which

the potential flow solution is known analytically. Due to the conformal invariance of

the Laplacian operator the inverse transformation then allows the potential flow in the

original domain to be evaluated. Although many conformal maps may be described

analytically [see 280, Appendix A-2], a more robust method is needed to transform

more general geometries. The Schwarz-Christoffel mapping technique may be used to

determine the mapping in more general cases: The boundary of the physical domain

is discretised into straight line segments connected at n vertices. For the chosen com-

putational domain the conformal map f maps any point ζ ∈ C to its image z ∈ C

and the computational pre-vertices ak to the physical vertices n. Of use to us here
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is the transformation from an arbitrary domain to a computational infinite half-plane

defined by Eqn. (5.3) [90], where K is a scaling constant and αk is the interior angle

of the k-th physical vertex.

dz

dζ
= K

n−1∑
k=1

(ζ − αk)αk−1 (5.3)

The conformal mapping function f may be found by using by numerical integration

to solve the integral of Eqn. (5.3)

f = A+K

∫ ζ

0

n−1∑
k=1

(ζ − ak)αk−1dζ (5.4)

where the complex constant A provides translation. Conformal mapping has been

used extensively thus for a wide range of problems [91, 141, 250, 252, 304]. Rather

than developing a numerical implementation to compute the mappings required in this

work, we make use of the readily available Schwarz-Christoffel Toolbox for MATLAB

[see 90, Appendix: Using the SC Toolbox]. The capabilities of this toolbox include the

solution of mappings from a range of computational domains including the infinite strip

which we later show can provide increased robustness for certain classes of geometries.

5.3 Application to 2D Problems

In this section we validate the proposed method by configuring and solving for the

required potential flow to construct the Kirchhoff vector for two types of model prob-

lems. These geometries are chosen as the potential flow problems have analytical

solutions with which we compare our results. We consider first the case of a uniform

cylinder in an infinite medium whose dimensions remain unchanged in one of the three

directions. Another useful problem for which the compact Green’s function may be

constructed, albeit derived from a different starting point than Eqn. (4.4), is that of

the scattering by a backward-facing step in a channel. The compact Green’s func-

tion for this problem is expected to be constructed from the correction of the Green’s

function for two pipes of different height, matched at the step [94]. For simplicity

at this stage, this problem is treated as being wholly 2D although the axi-symmetry

of a 3D pipe would result in the same problem being solved in any case. As well as
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these problems having analytical compact Green’s functions for comparison, they are

also selected due to their practical relevance: The first problem is an exterior problem

involving the scattering by rigid bodies in free-space. Using symmetry, we may solve

this as a semi-cylindrical protrusion from a virtual wall described by any line of sym-

metry through the cylinder centre. The second is an interior problem representing a

simple two-dimensional area change in a duct or pipe, a geometry known to produce

important scattering effects since sharp corners are known to be an important source

of noise amplification [75, 78, 118]. The diversity in the two test problems allows us to

ensure versatility of the method is retained during development. Since in both cases

we are only a substitution away from obtaining the compact Green’s function, it is

reasonable to compare the evaluation of the potential function as a means of assessing

the accuracy of the method.

The algorithm is as follows:

� Identify a suitable analytical Green’s function for correction and then the Kirch-

hoff vector components.

� For each Kirchhoff vector component,

– Configure the geometry.

– Select the mapping.

– Compute the mapping numerically.

– Specify the grid points in the computational domain.

– Evaluate the complex potential model in the computational domain.

– Transform the grid points and their associated complex potential the phys-

ical domain using the numerical mapping.

� Substitute the Kirchhoff vector components into the compact Green’s function

to evaluate.

Variations on this algorithm are possible. If the grid is specified in the physical do-

main; useful if the observer or source grid point placement requires more control; the

grid points are first mapped using the inverse transformation to the computational do-

main then the complex potential evaluated. Furthermore, whether the grid represents
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source or observer locations is also flexible depending on what results are required.

The 2D examples below identify some important influences on the accuracy and ro-

bustness of the method. In order to use the Schwarz-Christoffel procedure, a suitable

computational domain needs to be selected to which we may transform the physical

geometry. The level of discretisation required to achieve accurate potential flow be-

haviour over curved surfaces, such as we have with the cylinder example, is shown to

be an important consideration. The backward-facing step example is used to illustrate

the role this decision plays in the overall accuracy and robustness of the procedure; we

show that when mapping from the upper half-plane the computational potential model

is singular and the mapping very sensitive to error. These initial results are then im-

proved by changing the mapping to one from an infinite strip where the computational

model is a simple uniform flow.

5.3.1 Circular Cylinder of Infinite Length

The interaction of acoustic waves with a single or array of circular cylinders is a

canonical problem [152, 234] and one whose potential flow solution may be described

analytically. We therefore use this model problem as one of two problems which aim

to validate the results of this chapter.

We require the computation of two Kirchhoff vector components (although from the

symmetry of the geometry, these components are identical). We have, therefore, two

potential problems to solve. The use of the rotational symmetry of the problem to

study only half-cylinders has two benefits: First, by specifying an infinite vertex, we

turn an unbounded domain into a bounded domain which allows the use of a half-

plane mapping; secondly, we reduce the number of vertices used to compute the map,

reducing execution time. Specific to this problem is the application of the mapping

technique to a curved surface. Although the mathematics behind the analytical pro-

cedure of mapping circular arcs exists [34], the functionality is not yet available in

the toolbox. Rather than introducing the functionality ourselves, we opt to approx-

imate the cylinder surface by a number of straight-line segments. The physical and

computational geometries are defined as in Fig. 5.1. The complex potential in the

computational domain is represented analytically by uniform flow past the upper half-

plane U ′ζ1. This complex potential, evaluated over a uniform grid, is transformed back
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Figure 5.1: Circular cylinder problem in both the untransformed and transformed
domains.

to the physical domain to obtain the Kirchhoff vector component. The computation of

the second Kirchhoff vector component uses a procedure and geometry identical to the

first but considers the potential flow solution in the y2 direction. Note that although a

circular cylinder has identical Kirchhoff vector components Y1 and Y2, this would not

be the case for asymmetric geometries.

A significant difficulty in using the half-plane map in this instance is the correct

specification of the computational flow velocity U ′. By observing how a uniform grid

in the computational domain is rescaled under forward mapping and considering con-

tinuity of the flow we arrive at an appropriate value. Improvements in the choice of

this value are discussed in Section 5.4. The analytical solution to the potential flow

round a cylinder of radius a0, in polar coordinates, with origin at the centre of the

circle, is given by [327]

Φ(r, θ) = U

(
r +

a3
0

2r2

)
cos θ (5.5)

where in our case, by definition of the Kirchhoff vector, the free-stream speed U = 1.

Results for the absolute error in the potential function for the first Kirchhoff vector

component evaluated over the mapped grid points are shown in Fig. 5.2. The results
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Figure 5.2: Absolute Error of potential function for half a circular cylinder.

indicate that the solution is most accurately represented near y1 = 0 and deteriorates

away from this value suggesting a dependence on its magnitude. This behaviour is

studied further in Section 5.4.2.

5.3.2 Backward-Facing Step in a Channel of Infinite Width

For the backward-facing step problem, as the channel is rigid, sound is only observed

within the channel itself. Therefore, we have an additional constraint on our far-field

location in that it must be within the upper and lower walls of the channel 0 < x1 < h.

The far-field location is hence considered to be downstream x2 →∞ and it is concluded

that the Green’s function will only require correction in the stream-wise y1-direction.

The Kirchhoff vector component Y1 is to be found with the other component Y2 = y2.

We define the physical problem and its geometry transformed to the upper half-plane

as in Fig. 5.3. Note that the dummy vertex A is not necessary if Eqn. (5.4) excludes

one of the infinite vertices, but is included here for completeness. In the computational

domain we model the transformed potential flow analytically as a sink of strength q

at the prevertex location corresponding to the infinite downstream vertex E:



CHAPTER 5. COMPACT GREEN’S FUNCTION METHOD 84

Figure 5.3: Backward-facing step problem in both the untransformed and transformed
domains.

Φ (ζ) = φ+ iψ

= − q
π

log (ζ + 0.3333)

The transformation of this complex potential to the physical domain using inversion

of the mapping function:

f−1 (z) = ζ

gives us

Φ (z) = − q
π

log
(
f−1 (z) + 0.3333

)
The analytical solution of the potential flow for a backward-facing step is given

parametrically by Milne-Thomson [227].
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Table 5.1: Details of the numerical mapping for the backward-facing step from the
half-plane (4 sig. fig.)

Vertex Vertex Prevertex Angle
Label Location Location αk

wn ak

A i 1.000 1
B −∞ ∞ 0
C 0 -1.000 1.5
D −i -0.4999 0.5
E ∞ -0.3333 0

K = −0.3182 + (5.846× 10−17) i

Φ (ζ) = − q
π

log (ζ) (5.6a)

ζ =
4− t2

1− t2
(5.6b)

z =
2

π

[
log

(
1 + t

1− t

)
− 1

2
log

(
2 + t

2− t

)]
− i (5.6c)

This corresponds to a complex potential representing a source at the computational

origin, which is in keeping with the slightly different half-plane map used to derive the

analytical solution – the solution to our mapping is given in Table 5.1.

Figure 5.4 shows the variation in absolute error over the mapped computational

uniform grid minus a constant of integration which contaminates the result. Compared

to the cylinder problem the overall error is lower, which suggests the approximation

of the curved surface using straight-line segments could be important. We discuss this

suggestion in Section 5.4. The abrupt change in the error over the physical grid in

Fig. 5.4 is likely an accumulation of small numerical errors in the mapping with the

associated grid distortion difficult to control when specifying the grid initially in the

computational domain. One means of tempering this would be to specify the grid in

the physical domain first although this would require additional inverse mapping of

the points which is not only a less accurate procedure (see later discussion) but also

more time consuming.
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Figure 5.4: Absolute error variation in the potential for the backward-facing step.
Note: The numerical results are shown minus a constant of integration

5.4 Influence of Grid and Map Configuration

As can be seen from Fig. 5.2 and Fig. 5.4, the decision to map from the upper half-

plane reveals some interesting problems which limit the accuracy of the method. If

this method is to be useful in practical acoustic calculations we need to ensure that

the error in the potential field (and hence in the Green’s function) is lower than the

magnitude of the acoustic fluctuation itself (usually O(10−4)). We outline here the

sources of error and, where possible, determine a means of control or avoidance.

5.4.1 Backward-facing Step

In this problem, the error variation over the domain may be attributed to a number

of sources:

i. Error due to the constant of integration we show here to be characterised by the

translation of the origin under the transformation.

ii. Errors in evaluating the complex potential and mapping due to imprecision of the

numerical mapping of the vertices.

iii. Floating point errors and limitations in the accuracy of numerical integration used

in computing the mapping.
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iv. Errors due to the sensitivity of singular complex potential models to inaccuracies.

We can determine the significance of the first two sources of error analytically by

constructing the simple Schwarz-Christoffel transformation mapping points from the

upper half-plane to a 2D channel with uniform potential flow. A 2D straight-sided

channel with uniform flow is mapped numerically with details shown in Table 5.2.

Table 5.2: Details of the numerical mapping for a simple channel with unit flow from
the half-plane (4 sig. fig.)

Vertex Vertex Prevertex Angle
Label Location Location αk

wn ak

A −∞ ∞ 0
B −i -1.000 1
C ∞ aC = 2.552× 10−5 0
D i 1.000 1

K = −0.6366 + (7.796× 10−17) i

The channel has a non-singular complex potential in the physical domain:

Φ (z) = Uz (5.7)

If we model the complex potential as a sink located at prevertex aC of strength q = 2U

(from consideration of continuity) then we have a similar model to the backward-facing

step problem, specifically:

Φ (ζ) = − q
π

log (ζ − aC) (5.8)

In order to determine the sources of error, we derive the Schwarz-Christoffel transfor-

mation by hand using the same fixed degrees of freedom and complex potential model

Eqn. (5.8) as the numerical mapping. The resulting analytical expression may then be

used to compare map data to those provided by the numerical implementation. The

forward mapping function generated by the solution of Eqn. (5.4) is given by:

f(ζ) = A+K log(ζ − aC) (5.9)
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By substituting in the required mappings in order to mimic the details of Table 5.2

we get:

K =
−2i

log
(
aC+1
aC−1

) (5.10)

In order to find A we may substitute in one of the known mappings from the numerical

mapping data giving:

A = i+
2i

log
(
aC+1
aC−1

) log (1− aC) (5.11)

We can now write general expressions for the forward and inverse mapping functions

as

z = i+K log

(
ζ − aC
1− aC

)
(5.12)

ζ = (1− aC) eK
−1(z−i) + aC (5.13)

where K is defined in Eqn. (5.10). We also examine the derivative of the complex

potential – in other words the velocity distribution w(u, v), where u and v are the 2D

velocity components in the x1 and x2 respectively. Using the exact mapping Eqn. (5.12)

we have:

∂Φ

∂z
= w(u, v)

= u− iv (5.14)

=
∂Φ

∂ζ
· ∂ζ
∂z

= − 2

π

1

ζ − aC
· (ζ − aC)

K

= − 2

π

1

K

We see from the above analysis that the error in the mapping indeed consists

of two parts: one part due to the imprecision associated with mapping the vertices

and another (blanket) error which comes about due to the constant of integration

of the mapping function A. From Eqn. (5.11), this constant of integration is clearly
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dependent on the placement of the origin and hence its value must be corrected.

Furthermore, the error arising due to imprecision of vertex mapping gives rise to

a variation in error in the complex potential. Expressing the error in the complex

potential as ε the total error in the potential field in terms of the position of origin

prevertex aC is given by

ε = Φζ − Φz

= Uz − −2U

π
log
[
(1− aC)eK

−1(z−i)
]

= z

(
1 +

2

πK

)
+

2

π
log(1− aC)− 2i

πK

= g(z)− 2

πK
A

If aC = 0, then the mapping of the prevertex aC may be considered precise and then

only the second component of the error remains due to the constant of integration.

Specifically where ε = i = A|aC=0. This additional error component can be removed

through the conformal invariance of the Laplacian operator, which states [334]:

∆ζΦζ = |f ′ (ζ)|2∆zΦz (5.15)

where each complex potential model Φ is a valid solution to Laplace’s equation in its

own domain. These complex potentials are not necessarily unique since any constant

could be added, which provides translation of the field. Since this constant would

disappear with differentiation, the complex potentials would still satisfy Laplace’s

equation and Eqn. (5.15). We may therefore conclude that when using the half-plane

map in this way, the origin in the physical domain must be chosen such that the

constant of integration of the map A vanishes. In practice, we would not know the

physical complex potential to allow us to accurately calculate the constant or the ap-

propriate location of the origin; hence Green’s functions computed using mapping from

the half-plane is impracticable to general geometries with simple (monopole) acoustic

sources. However, for dipole (or quadrupole) sources of sound, the derivative of the

compact Green’s function could be utilised. The constant of integration would have

no influence in this case since differentiation will remove it and use of the half-plane

map again becomes viable.
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The third source of error, concerning the floating point errors in the numerical inte-

gration, is seen to be insignificant when compared with the fourth source of error –

error due to the sensitivity to singularities in the complex potential. Furthermore, it

is possible to circumvent the fourth source of error in such a way that the first source

of error concerning the constant of integration is also automatically eradicated. We

construct the mapping for the same 2D channel with uniform potential flow as before

but map from an infinite strip of unit height in (ζ = η + iξ), where the complex po-

tential is given by a uniform flow along the strip. With regards to the sensitivity of

the solution to the singularities in the complex potential, the significance here is that

the complex potential in the computational domain is not singular, as was the case for

the upper half-plane, so any imprecision in the mapping is less likely to be magnified

by the singularity.

In the physical domain we have complex potential

Φ (z) = Uz (5.16)

and in the computational domain

Φ (ζ) = U ′ζ (5.17)

If we allow the complex potential in the computational domain to take into account

both the new speed of the flow U ′ to maintain continuity and the relocation of the

origin we may equate the two potentials without knowing the constant of integration

a priori using Eqn. (5.18), where L is the translation of the origin represented in the

ζ-domain.

Φ (ζ) = U ′(ζ − L) (5.18)

We show this by comparing again to the hand-worked solution, this time computed

using the equation for the Schwarz-Christoffel transformation from an infinite, straight-

sided strip Eqn. (5.19) [90] where the n vertices considered exclude those infinite

vertices at the strip ends.

f(z) = A+K

∫ n∏
k=1

[
sinh

π

2
(ζ − ak)

]αk−1

dζ (5.19)
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In the physical z-domain the origin is in the centre of a 2D strip (channel) of height

2 units and in the computational ζ-domain the origin is located on the centre of the

lower boundary of a channel of height 1 unit. The resulting mapping function from

solution of Eqn. (5.19) is f(ζ) = A + Kζ. The values of A and K can be found by

considering the mapping of points on the upper and lower boundaries of the channel

(ζ = i when z = i and ζ = 0 when z = −i) which gives A = −i and K = 2. We can

then determine the origin relocation parameter L using the inverse mapping function

f−1(0) = 1
2
i. This relocation of the origin is simply a translation of the potential field

in this domain.

We note that we can equate the complex potentials exactly

ε = Φ (ζ)− Φ (z)

= Uz − 2U(ζ − L)

= Uz − 2U

[
1

2
(z + i)− 1

2
i

]
= 0

where L is the known translation of the origin in the computational domain. This

mapping function is quite clearly unaffected by the issues of origin relocation which

plagued the half-plane map. This time, the mapping function is corrected by the

translation of the flow field to account for the translation of the origin. The maximum

relative error using the infinite strip map is dramatically reduced to 5.75 × 10−10.

Note that this technique of adding a translation of the flow field to account for origin

relocation may not be applied to the complex potential for the upper half-plane due

to the non-linear nature of the computational complex potential. Specifically, by

modifying Eqn. (5.8) to read

Φ(ζ) = − 2

π
log(ζ − L− aC) (5.20)

where L is the translational constant defined as before by f−1(0) we can substitute for

ζ using Eqn. (5.13) to get:

Φ(ζ) =
−2

π
log
[
(1− aC)e−K

−1(z−i) + aC − aC − (1− aC)eK
−1(−i) − aC

]
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Since we are concerned only with the error associated with the constant of integration

we let aC → 0 so K−1 → −π
2

to simplify the mathematics giving

Φ(ζ) =
−2

π
log
[
e−

π
2

(z−i) − e
π
2
i
]

=
−2

π
log
[
e
π
2
i
(
e
π
2
z − 1

)]
= −i− 2

π
log
(
e−

π
2
z − 1

)
(5.21)

At z = 0 we expect Φ = 0 since in the physical domain Φ|z=0 = Uz|z=0 = 0. However

substituting z = 0 in Eqn. (5.21) we get Φ = −i +∞ 6= 0. This demonstrates that

a simple translation of the coordinates in the complex potential will not suffice in

this case due to the non-linear nature of the complex potential function. The use

of a computational domain where a linear complex potential function applies allows

us to incorporate origin translation simply with just the addition of the quantity L,

addressing the principal source of error in the earlier half-plane calculations.

By incorporating the understanding described above, we re-solve the backward-facing

step problem to demonstrate the magnitude of the improvements. The same analytical

expressions for the complex potential in the physical domain (z-plane) are used as

before (Eqn. (5.6)) but this time we map from the infinite strip representing the

complex potential in the computational domain as per Eqn. (5.18). For a 30 × 30

grid, execution time was approximately 0.53 seconds with a maximum relative error

over the grid of 9.1× 10−9. The variation in the relative error over the grid is shown

by the surface in Fig. 5.5. The upstream increase in error may be explained by the

stretching of the grid in this region. The grid is distorted thus due to the fact that it

is computed by a uniformly spaced grid in the computational domain used to generate

the analytical solution. In practice, where no analytical solution exists, the grid would

be designed with the physical plane in mind and hence would ideally use a custom

spacing.

5.4.2 Circular Cylinder

The complex potential computed for this problem, whose error is shown in Fig. 5.2,

varies roughly as expected but absolute values still lack precision. Two possible sources

of error, specific to this class of problem are identified:



CHAPTER 5. COMPACT GREEN’S FUNCTION METHOD 93

Figure 5.5: Absolute Error variation over a 30× 30 grid using a strip map

i. The incorrect specification of the velocity U ′ in the complex potential model in

the computational domain

ii. The inaccuracies associated with approximating the curved surface by a series of

straight lines.

Due to the unbounded nature of the half-plane domain, we cannot simple use

continuity considerations to establish a suitable computational flow velocity. This is

a disadvantage when choosing to use a half-plane mapping procedure for finding the

potential flow solution for exterior problems. Investigation shows that in order to

achieve suitable accuracy, this velocity must be correct to a large number of decimal

places. Even errors of the order 10−5 in U ′ may lead to an increase in the average

error over the grid by an order of magnitude. A dramatic improvement in error

over the whole grid may, therefore, be observed when an improved computational

velocity is used (Fig. 5.6). Note that the lack of symmetry of this absolute error

map is not due to the values but due to how the rendering takes place. It is clear

from inspection of the mesh data that the error is indeed symmetrical. In Fig. 5.6,

the highest error values are now found near the cylinder surface, likely driven by
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Figure 5.6: Absolute Error variation for improved potential flow solution for circular
half-cylinder. The same colour scale has been used as for Fig. 5.2 to illustrate the
decrease in error more effectively.

the approximation of the curved surface by straight-line segments. Furthermore, the

error remains higher by approximately half an order of magnitude where the geometry

changes more suddenly. Here the transformed grid is most distorted and hence will

be more sensitive to inaccuracies in the mapping procedure when used to evaluate the

potential. One way to circumvent this source of error would be to specify the grid in

the physical domain first such that it fits the geometry more closely.

Furthermore, the minimum error over the grid actually forms a “radial band” such

that the cylinder surface and the minimum error radial band are concentric. Any

error in the specification of U ′ not only increases the error over the whole grid but

also moves the radial band. In testing, this movement was seen to be very sensitive

to small changes in U ′. Just how sensitive is illustrated by Fig. 5.7 where we have

plotted the location of the band against selected values of U ′. Figure 5.7 demonstrates

a singular behaviour. This type of behaviour is highly undesirable to the practitioner

with errors in the specification of U ′ of O(10−5) capable of causing dramatic changes

in the average error and location of the minimum error over the domain surrounding

the scatterer. We consider the use of the strip map in Section 5.4.2.1 as a means of

addressing the issue.



CHAPTER 5. COMPACT GREEN’S FUNCTION METHOD 95

Figure 5.7: The vertical axis indicates at which radial value the minimisation is largest.
These results were obtained from a grid with largest radius equal to 20.

With regards to the second item in the above list, increasing the number of straight-

line segments used to represent the curved surface benefits the results in two ways.

First, the abrupt changes, or “spikes”, in the potential function near to the approx-

imated surface of the cylinder are minimised. The practical implications of this are

significant as scattering effects are more pronounced near to surfaces and can only

be captured accurately with the accurate evaluation of the compact Green’s function

in these regions. Second, the error further away from the surface is reduced as the

equi-potential and stream lines tend quicker to the appropriate curvature. An increase

in the number of straight-line segments used to approximate the arc is the simplest so-

lution to use although does impact the time taken to compute the map, as illustrated

later. Figure 5.8a and Fig. 5.8b show how the absolute error map changes as the

polygon vertex is increased. The computational velocity U ′ used in each case is only

correct to 5 decimal places. In Fig. 5.8a the error on the surface of the cylinder due

to insufficient vertex density dominates. Close to the surface the scattering behaviour

is often important and hence errors of this nature are undesirable. However, the error

reduces dramatically in these regions by an order of magnitude when we increase the
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vertex density by a factor of 10 (Fig. 5.8b).

(a) Computational Velocity U ′ = 1.98648, Polygon Vertices = 20, Grid Points =
100,000

(b) Computational Velocity U ′ = 1.99986, Polygon Vertices = 200, Grid Points =
100,000

Figure 5.8: Variation in absolute error with changes in vertex density.

Just how accurately we need to represent an arc using straight lines before we can be

assured of reasonable accuracy is directly related to how accurately the value of π can

be calculated for each of the polygons specified. For a computationally cheap 1,000

point grid we evaluate a forward map for a range of polygon vertex densities. The

variation in relative error is given in Fig. 5.9.

The variation in the error, shown in Fig. 5.9, is compared to how accurately the value

of π can be calculated for a given polygon used to approximate a circle. If we derive a

general expression for π calculated by considering a unit diameter, n-sided polygon as

an approximation for a circle, we can obtain a variation in the error by increasing the

number of sides of the polygon. Note: that there are two possible expressions – either

the polygon faces, or the polygon vertices, can lie on the circle being approximated.

These two values actually provide the error bounds of the approximation. For the
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Figure 5.9: Maximum (right-hand scale) and Average (left-hand scale) relative error
with polygon vertex density

comparison here we use the average of these two values. The variation in relative error

(Fig. 5.10) exactly mimics the variation in average error in Fig. 5.9. Therefore, this

may be used as a suitable rule of thumb for judging the number of polygon vertices to

use.

One source of error which can also be significant, especially under transforma-

tions, is that of the impact of floating point errors; expressions with singularities will

be particularly sensitive to errors in the vicinity of the singularity as mentioned in

the previous section. The effect of refining the grid or changing the boundary repre-

sentation for the cylinder may, therefore, have an effect on both the numerical and

the analytical solutions since by the analytical representation of the Kirchhoff vector

component Y1 for a circular cylinder (Eqn. (5.22)) we approach a singularity as we

approach the cylinder.

φ = y1

(
1 +

1

r2

)
(5.22)
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Figure 5.10: Relative error of estimation of π for polygons of increasing number of
vertices

5.4.2.1 Cylinder using a Strip Map

In Section 5.4.1 we presented a means of circumventing a number of issues which

arise when using a half-plane map as the computational domain. In the case of the

backward-facing step, the use of an infinite strip for the computational domain al-

lowed the use of non-singular complex potential model and allowed for correction of

the mapping for arbitrary origin placement by simply adding a linear function to the

complex potential.

Use of the half-plane map for the circular cylinder problem required the manual spec-

ification of the computational velocity in order to evaluate the complex potential.

Continuity could not be used due to the unbounded nature of the computational do-

main and hence specifying this quantity accurately was difficult. Furthermore, the

solution was highly sensitive to inaccuracies in this value. We demonstrate now that

it is possible, using the strip map, to improve the procedure for computing the poten-

tial flow solution around the cylinder. In order to implement the new transformation,

in the physical domain we require the addition of a non-physical wall parallel to the

line of symmetry. The main advantage gained by taking this approach is that in the
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imaginary direction (perpendicular to the flow direction) the fixed upper wall in both

the physical and computational domains allows us to understand any scaling of the

flow geometry through continuity and account for it using a constant scaling factor

rather than the highly sensitive, variable factor required for the half-plane map, dis-

cussed in detail in the previous section. However, as this wall is non-physical, it must

be placed sufficiently far away from the cylinder surface that its influence on the flow,

which would exist in the absence of the wall, is negligible.

It is useful to ascertain just how far away the non-physical wall must be placed given

the cylinder diameter. We consider the transformation in Fig. 5.11. As illustrated by

Figs. 5.8a and 5.8b, the number of vertices used to approximate the curved cylinder

surface is an important source of error. In order to reduce the source of error in the

calculation to those related to the non-physical wall placement only, the half-cylinder

surface is approximated by 50 vertices, giving a maximum relative error, according to

Fig. 5.9, of the order 1%. This ensures that any error in the field is given principally

by the placement of the non-physical wall. As was the case with the backward-facing

step problem, we have a dummy vertex located on the non-physical wall (labelled

Z in Fig. 5.11). The vertical placement of this vertex is dictated by specifying the

channel width h. We consider a range of values 2 ≤ h/r0 ≤ 20, where r0 is the

cylinder radius. This range is sufficient to show the trend. We fix the observer grid

arbitrarily −10 ≤ x1/r0 ≤ 10 where at the grid edges the disturbance of the flow due

to the presence of the cylinder is suitably small such that all of the most dramatic

behaviour is captured. In the vertical direction we fix the grid at the nearest location

the non-physical wall is placed h/r0 = 2.

Figure 5.12 confirms that the error in the calculation decreases as the non-physical

wall is moved further away from the cylinder surface with values of h/r0 = 20 giving

average absolute errors of 10−3 and relative errors less than 1%. When compared with

the improved half-plane procedure (Fig. 5.6) we may conclude that the use of the strip

map allows potential flow solutions to be computed with an accuracy comparable to,

or better than, the half-plane map but with the significant practical advantage of using

a computational velocity deduced from continuity rather than empirically. Finally, we

note that the execution time does not depend on the wall placement as the number of

boundary nodes used to describe the polygon in the physical domain does not change
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Figure 5.11: Circular cylinder problem in both the physical and computational strip
domain.

Figure 5.12: Average (solid) and maximum (dashed) Absolute Error (circle) and Rela-
tive Error (square) in the numerical velocity potential around the circular half-cylinder
computed using a strip map.
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with wall placement and the time taken to execute the algorithm is independent of

polygon side length. It is therefore conceivable to place the wall at a distance away

far in excess of what is necessary to ensure any error due to the wall placement is

eradicated in a practical sense.

5.4.3 Execution Time

One of the motivations of using hybrid schemes for acoustic calculations is the benefit

of a reduction in execution time of the code compared with exclusively numerical

schemes. The effects of polygon vertex and grid density on the time taken to complete

the two phases of the numerical method is therefore important. The time taken to

construct the mapping function, is expected to increase with the number of vertices

used to define the mapping. However, it will also be affected by the aspect ratio of the

geometry and issues of vertex crowding [164, 250]. We do not present any investigation

into the impact of these two issues here as a modification to the mapping formulation

may be implemented to mitigate the effect [335]. Instead, we choose a geometry free

of these features for the test. In the second phase of the computation, the computed

mapping is evaluated to transform the analytical solution back to the physical domain

at a number of grid points. The number of grid points is specified by the user. Due to

the semi-analytical nature of the method, the number of grid points does not affect the

accuracy of the result, but only serve as points at which the compact Green’s function

should be known. The precise number of points chosen depends on how the Green’s

function computed is to be subsequently used but could range from a single point to a

dense grid depending on the context. The simulations were performed on a PC using

the Intel Core i7 870 CPU and the results of Fig. 5.13 confirm a linear relationship

with map evaluation time but a non-linear relationship with map construction time.

Where the observer grid is large, the latter time becomes a negligible component of

the overall computation time for all but very complex geometries.

It is important to note that the method may specify the grid in either the compu-

tational domain or the physical domain. In the latter case, the grid points must be

mapped using the inverse transformation to the computational domain (grid inver-

sion). The evaluation of this inverse transformation is an iterative procedure [90] and
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Figure 5.13: The computation time (in seconds) required for construction of the map-
ping function (top) and evaluation of the mapping function over the grid points (bot-
tom)
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poor conditioning of physical grid points can result in a large number of iterations be-

ing required for convergence. The advantage of using grid inversion, however, is that

grid point distribution may be performed to effectively capture the features of the ge-

ometry. The time taken to invert the half-plane map was recorded for 50 different grid

sizes consisting of computational points ranging from 2,500 to 1,000,000 in number.

The inversion of the maps in these cases gives the approximately linear variation in

execution time we saw in Fig. 5.13 but with some spread. The apparent spread of

the results in Fig. 5.14 about the straight line is easily explained from knowledge of

the inversion process: In order to invert a Schwarz-Christoffel map, Newton-Raphson

iteration may be used, beginning with an initial guess obtained from the solution of a

Ordinary Differential Equation, in order to obtain a converged solution to the inverted

map. Currently, this is the most robust method available for map inversion. Hence,

the performance of this procedure is dependent on the conditioning of the forward

map at the computational points. As the grid sizes increase we can see a significant

impact of the convergence rate of this iterative procedure on the recorded execution

time, with the additional time required for convergence at problematic points increas-

ing the overall execution time by around 40% for a relatively insignificant increase in

the number of points. Likewise, increases in grid points by the same increment may

also see a decrease in execution time by a similar factor.
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Figure 5.14: Variation of computation time involving map inversion with number of
grid points. The upper and lower bounds relate to the convergence ability of the
iterative process used to invert the map. The linear plot is selected arbitrarily for
illustration of the trend.

5.5 Application to 3D Problems

Although we have thus far studied only 2D applications, the inherent two-dimensionality

of the method does not preclude treatment of three-dimensional problems. We demon-

strate 3D capability now by describing the computation of the compact Green’s func-

tion for a 3D projection from a rigid half-plane, specifically a hemispherical bump.

This problem is selected not for its realism but as a means of validating this approach

to 3D Green’s function evaluation. A realistic example would then simply be an ex-

tension of this problem where the hemisphere may assume a suitable shape and the

conformal mapping re-solved for the new geometry.

The observer is assumed in the far-field as usual and the source within one character-

istic dimension of the projection, within which the origin is contained (the restriction

on the origin location is not strictly necessary for validity). Considering the reciprocal

problem, the analytical solution may be constructed from the Green’s function for a

rigid half plane (the sum of two free-space Green’s functions Eqn. (4.4), one for the

real source at x and one for its image at x̄)
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Ĝ(x,y, ω) =
eik|x−y|

4π |x− y|
+

eik|x̄−y|

4π |x̄− y|
plus a first order correction for the presence of the bump. The Green’s function is

then

Ĝ(x,y, ω) ≈ eik|x−Y|

4π |x−Y|
+

eik|x̄−Y|

4π |x̄−Y|
(5.23)

where the Kirchhoff vector components Y2 = y2 and Y1 and Y3 are the potential flow

solutions Eqn. (5.22). Note that the Kirchhoff vector components Yi are functions of

the local radius of the hemisphere a(yj) where yj refers to one of the components of

the source location and i 6= j. This radius is the radius of the hemisphere obtained at

the intersection of the 3D geometry with a 2D plane intersecting with the source point

but normal to the unit vector in the yj direction as in Fig. 5.15. Given that, if |y| > a,

the scattered field would vanish. We therefore specify the principal dimension l in this

example to be equal to a. For a given source position y, we compute the Kirchhoff

vector components by solving the two individual potential flow problems equivalent

to Fig. 5.1. We specify the source position in spherical coordinates ȳ = (r, θ, φ) with

origin coincident with the centre of the hemisphere base as ȳ = [1.1a 0 π/4]T . If

we convert these into Cartesian coordinates we see that this problem is no different

from that of the circular cylinder studied in 2D earlier. All that is required is that we

solve two complex 2D problems with coordinates z = ya + iyb with the radius of the

hemisphere a function of coordinate yc with c 6= a 6= b but {a, b, c} ∈ {1, 2, 3}. Having

computed the potential flow solutions and hence the Kirchhoff vector components, the

compact Green’s function may be evaluated using Eqn. (5.23).

Note, that in order to compute the compact Green’s function for 3D geometries

in free-space using Eqn. (5.2), (including model geometries like a sphere, ellipsoid, or

prolate or oblate spheroid), all three Kirchhoff vector components would need to be

computed from the three corresponding potential flow problems. In this case, all that

is required is a third application of the method described in this chapter for the extra

potential flow problem.
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Figure 5.15: Identification of the two potential problems to be solved to obtain the
Kirchhoff vector components for the 3D problem of a hemispherical projection from a
rigid half-plane. The source is located at y and the observer and its ‘image’ are at x
and x̄ respectively. These latter two locations are illustrative purposes only and will
be allowed to vary whereas the source positions stays fixed. In practice, varying the
source for a fixed observer position is also a useful activity to provide data on how the
source position affects a particular observer location.

5.6 Compact Green’s Function for a Throttle

Another class of realistic problems, for which a 2D Green’s function is particularly

useful, are those 3D problems dominated by 2D effects. One of the earliest observa-

tions of the (then inexplicable) damping of acoustic waves through vortex shedding

was made by Borth in 1916 [40]. Similar mean-flow acoustic problems have been suc-

cessfully analysed using 2D Green’s functions [94] due to the relative insignificance of

3D effects. Sharp edges within the vicinity of a sound source are known to be also an

important means of noise amplification [118, 156]. This effect is confined to dipole (or

higher multipole) sources which depend on the derivatives of the Green’s function. We

consider here a 2D throttle mechanism in a duct where the baffle is set at a 45 degree

angle. Unlike previous applications in this chapter, we fix the observer position and

vary the source position. This allows us to investigate how the position of the source

affects a particular value of the Green’s function in the observer field. The exploita-

tion of the symmetry of the compact Green’s function in this way is particularly useful

when studying the scattering effects of particular geometrical features. We compute

approximations to the derivatives using a second-order finite difference scheme over

the point-evaluated Green’s functions. Two baffles of different thickness (tip radii)

are considered. The resulting variations in Green’s function illustrate the scattering

and amplification effects due to both source position and baffle tip radius. The two
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numerical experiments with their potential flow solutions are shown in Fig. 5.16.

Figure 5.16: Two baffle geometries analysed with the array of source positions shown
as circles. Note that the two horizontal-axis scales are slightly different for clarity but
the spacing of the source locations is identical in both cases.

The calculation uses the semi-analytical method described earlier in this chapter.

Both geometries are mapped from the straight-sided channel, as in the validation cases,

in which we define uniform potential flow. The baffle tip is defined by half an ellipse

whose line is approximated by 30 straight-line segments. This number is chosen to

allow accurate description of the curved tip of the baffle without crowding the region

with vertices. Crowding not only increases the time taken to solve the mapping but also

can lead to instability in the mapping procedure as the spacing of the x-coordinates

of the vertices at the tip of the baffle tends to floating point. The crowding of vertices

has been controlled in our implementation by specifying the distribution of the x-

coordinates of the ellipse with polynomial rather than linear spacing. The height of

the duct is chosen to be 100mm and hence we choose a frequency of 1kHz for our sound

source which is placed at locations adjacent to the baffle tip at a number of points

within the limit of validity of the underlying theory. The observer point is chosen 25

wavelengths away from the source on the duct centreline. All parameters have been

specified in order to comply with the three assumptions in Section 5.2. The derivative

of the Green’s function with respect to the source y2-coordinate is shown in Fig. 5.17

where the vertical position of the source locations correspond to the middle of the

three rows of sources shown in Fig. 5.16.
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Figure 5.17: Variation of the magnitude of the gradient of the Green’s function with
source position two baffle geometries. The circles correspond to the thinner baffle.

The variation in the derivative of the Green’s function is as expected with sources

in close proximity of the baffle being amplified more than those further away. The

variation also illustrates the tendency to singular behaviour for an infinitely sharp

corner. Finally, the sharper-tipped baffle is shown to amplify the derivative of the

Green’s function more than the round-tipped baffle, which agrees with the amplifica-

tion behaviour suggested by the work of Ffowcs-Williams & Hall [118].

5.7 Summary

In order to extend the use of hybrid acoustic prediction schemes to consider propa-

gation within geometries of arbitrary boundary we have developed a method capable

of computing a Green’s function which represents the scattering effects of arbitrary

2D rigid boundaries. We have shown that for a number of scenarios where we have

a near field source and a far-field observer adjacent to a compact body, the specific

approximation to the Green’s function (known as the compact Green’s function) for

the Helmholtz equation can be computed semi-analytically. This Green’s function may

then be passed to an acoustic analogy for solution of the far-field sound, or used with
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a range of source values to investigate the amplification and scattering of geometrical

features. The calculation of the compact Green’s function using the semi-analytical

method presented centres on the construction of one or more potential flow solutions

within the geometry of interest. The method uses an existing software package to

transform a more complex physical domain into a simplified computational domain

where potential flow solutions may be easily represented analytically and evaluated

over a grid of points. We have validated the results against two 2D benchmark prob-

lems, described its extension to 3D problems and demonstrated its use in studying the

behaviour of a more arbitrary geometrical feature (a baffle).

Geometries featuring curved boundaries have been treated by approximating the curved

boundary as a series of straight boundary segments. In order to achieve a high de-

gree of accuracy in these cases, a large number of approximating segments is required

with computation time scaling linearly. If the appropriate computational domain is

chosen for the transformation, we have shown that non-singular expressions for the

potential flow in the transformed domain may be used with only a simple modification

to account for translation of the origin if necessary. Furthermore, the parameters for

the potential flow solution in this domain may be deduced from simply considering

continuity. Any other sources of error have been identified and mitigated to ensure

the robustness of the procedure.

For the test problems considered, computation time using MATLAB is acceptable and

the method achieves relative errors of less than 1% or better. Additional functionality

may be implemented to increase the versatility of the numerical conformal mapping

procedure and allow application of the method presented in this chapter to an even

wider range of geometries.



Chapter 6

Boundary Element Method

The need for demanding computational resource for noise prediction arises due to

the discretisation of the usually extensive region between source and observer. If the

observer is located a large distance from the source, the cost of performing acoustic

propagation through this meshed region becomes prohibitive. As we wish to perform

Green’s function computation as a relatively inexpensive precursor to a hybrid calcu-

lation, it is sensible to consider the use of boundary integral techniques to evaluate the

Green’s function. This chapter examines the use of the Boundary Element Method

(BEM) for the numerical calculation of Green’s functions. Specifically we focus on

a particularly useful class of 2D problems – acoustic scattering in a channel with or

without geometrical obstructions [147, 163]. Such problems are typically dominated

by 2D effects and their role in sound attenuation has been observed for some time [40].

Although the treatment in this chapter is limited to 2D problems, the principles are

easily extended to 3 dimensions.

The typical version of the direct BEM formulation used in this chapter, requires a

closed boundary on which either the solution variable or its normal derivative is known

on every segment of the boundary. For the semi-infinite class of domains we examine

in this chapter, such a specification is not readily available. We could transform the

geometry such that it becomes finite but this procedure has proven to be of little use

when the solution is oscillatory in the far-field [136]. Instead, we truncate the channel

in both the upstream and downstream directions, then specify a non-reflecting bound-

ary condition (NRBC) on these boundaries which simultaneously closes the BEM

system mathematically. For the best performance, this boundary condition ought to

110
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be based on an exact representation [84, 137, 139, 146, 178, 324, 328]. However, many

exact representations are only available for relatively simple boundaries and are usually

non-local in nature since they couple degrees of freedom on the boundary. This latter

property can make numerical implementation expensive for large-scale problems [336]

and local approximations to these exact boundary conditions, devised using discretised

pseudo-differential operators [107] or the method of asymptotic expansions [22, 23],

have developed as an alternative. However, for certain problems this claim has been

refuted through efficient inclusion and evaluation of non-local boundary conditions

[178, 246]. One reason for the additional expense in computing non-local boundary

conditions is due to the computation of a large number of integrals. We show in this

chapter that the inclusion of a non-local boundary condition in the constant element,

direct BEM avoids the additional numerical integration entirely, and thus allows an

accurate truncation of the BEM domain at little cost.

6.1 Introduction to Boundary Methods

The concept of surface integral methods has been discussed already in terms of the

Kirchhoff and FW-H methods. These two methods are examples of how a boundary

value problem can be reduced to a boundary integral equation (BIE). This reduction

is achieved through application of integration to the original governing differential

equation followed by the substitution of the boundary conditions. This latter step

yields boundary integral terms as well as the volume integral terms of the equation.

Given a suitable fundamental solution, the volume integral can be made to vanish and

what remains is a BIE which is usually computationally easier to solve than the original

BVP. Specifically, the fundamental solution must satisfy the homogeneous equation

everywhere in the domain. Details on this common form of boundary reduction can be

found in many textbooks on boundary methods, for example by Brebbia & Dominguez

[44]. Fundamental solutions for many differential operators are known analytically

and therefore BIEs are a popular method of solving differential equations in extensive,

complicated geometries in a wide range of fields [74, 166, 362].
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6.1.1 Boundary Element Method

Where the solution procedure of the BIE formulations cannot be carried out analyti-

cally, we may turn to the Boundary Element Method (BEM). This method attempts to

solve a particular BIE through discretisation of the boundary into elements over which

nodal values of the set of boundary conditions in terms of the solution variable and

its normal derivative are known, and their variation over the element approximated.

BEM is a well established technique with many open source implementations available,

see for example the code of Kirkup [179]. The textbooks of Brebbia & Dominguez [44]

and Ang [9] provide further information on the theory and practice of the BEM.

6.1.2 Issues with Implementing BEM

Many problems treatable with BEM are also treatable with the Finite Element Method

(FEM). The difference between these two is principally that the latter requires dis-

cretisation of the problem domain. In the case of acoustic problems, this domain may

be extensive, particularly for an observer in the far-field. Use of traditional domain

techniques is not only expensive but also encounters many of the problems associated

with CFD schemes (see earlier). Some advantages of using BEM are discussed by

Zienkiewicz et al. [369] and are included in the following list:

1. Infinite regions are straightforward to analyse with the BEM.

2. Singularities can be incorporated in BEM formulations.

3. Surface integrals are required for simple sources instead of volume integrals (can

be computationally less demanding due to the reduction in dimensionality).

4. Large regions can be analysed without the computational cost associated with

domain discretisation.

Since the Green’s function contains a singularity at the source position, the second

advantage is of particular value to this research. The BEM has been used to compute

the Green’s function before by Rokhlin [268, 269]. However, BEM does provide a num-

ber of challenges in its implementation. First, BEM is not ideally suited to analysing

thin structures: near-singular behaviour is observed when the structure folds back



CHAPTER 6. BOUNDARY ELEMENT METHOD 113

on itself [59]. Cheng et al. [59] give the example of thin projections in a recessed

pipe. They suggest the use of multi-domain BEM as one way to alleviate this prob-

lem. This involves defining sub-domains and coupling separate BEM problems in each

sub-domain using matching conditions at the boundaries. Also, in cases where the

boundary geometry changes abruptly or boundary data exhibits singular behaviour,

the BEM can be slow to converge to the expected solution [218]. Marin et al. [218]

present a modified BEM formulation which greatly improves the accuracy without the

need for mesh refinement near a boundary singularity. Furthermore, Zienkiewicz et al.

[369] highlight the following drawbacks to using the BEM over the FEM:

1. The FEM can handle more complicated equations as an analytical fundamental

solution is not needed like in the BEM.

2. Discretisation is localised making the matrix system banded unlike the full ma-

trices of the BEM.

3. Nodal parameters are physical quantities where it is not necessarily the case for

the BEM – (this is only true for indirect BEM formulations).

The boundary conditions developed in this chapter also produce full matrices so the

second disadvantage is not as pronounced. Furthermore, the context and implementa-

tion selected render the other two irrelevant. The remaining issues of implementation

in BEM relate primarily, but not exclusively, to the integration involved in the solu-

tion process and efficient solution of the resulting system of equations. The work of

Rokhlin [268, 269] and also Bebendorf [24] suggest improved solution methods which

involve the construction of a degenerate kernel (finite sums of separable functions to

approximate the operation described by the coefficient matrix), or low-rank matrix

approximations of blocks of the original coefficient matrix. In both cases, the ap-

proximations can lead to redefined systems which are better conditioned or sparser

in nature than the original. Rokhlin in particular suggests fast solvers for the system

generated by the indirect BEM which reduces the scaling of computation time on the

system size. Grasedyck [134] also suggests an algorithm capable of reducing the stor-

age requirements.

With regards to the integrals, due to the use of the fundamental solution (a Green’s
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function) they inevitably involve integrands which contain singularities over the range

of the integration. Their computation is, therefore, one issue which has received par-

ticular attention, with recommendations available for many scenarios by Hall [144].

These solutions consist of:

1. Row-Sum Elimination (each row of matrices must sum to unity hence the diag-

onal element can be found from the off-diagonal elements [44]).

2. Exact Integration over simply boundaries (analytical representations [309]).

3. Specialised Gaussian quadrature schemes.

4. Singularity cancelling transformations (smoothing or cancellation of the singu-

larity).

5. Singularity subtracting methods.

In many cases, the integrals may be computed using standard numerical methods

such as Gaussian quadrature and there are numerous textbooks which set out the

variety of methods available (see for example Davis & Rabinowitz [83]) for different

classes of integrands. However, in the field of BEM the use of available methods is

not always standard since the nature of the integrand differs with governing equation

and order of the elements. In some cases of BEM even generally robust numerical

integration schemes have historically performed poorly with the need for additional

transformations which aim to weaken the singularity such as the transformation of

Sato et al. [277]. In the relevant case of the Helmholtz equation, analytical solu-

tions have been shown to exist for some of the typically encountered singular integrals

involving Hankel functions [309] which, being exact, eradicate the source of error com-

pletely. Where the derivative of the solution is required in the domain, the standard

BIE used with the BEM can be differentiated. This results in integrals with hyper-

singular kernels [244, 333, 339, 361]. The issues of numerical integration are, therefore,

more pronounced with these formulations. A recent numerical implementation of the

hyper-singular formulation [265] is shown to work well for the benchmark problems

presented. For specific situations of nearly singular integrals, methods such as that

proposed by Elliot & Johnston [104] may be used at the expense of complicating the
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implementation of the overall code.

Finally, an issue specific to the solution of the Helmholtz equation is the non-uniqueness

of the solution at particular frequencies when solving the exterior problem. Numerical

solution of the Kirchhoff-Helmholtz Integral equation fails to obtain a unique solution

at certain frequencies for exterior acoustic problems. The characteristic frequencies

of the exterior Neumann problem are found to be equal to the eigenfrequencies of

the interior Dirichlet problem. Since the solution of the interior Dirichlet problem

has eigenfrequencies which indicate a resonance, and these are shared by the exterior

Neumann problem which has no physical resonances, then non-physical resonances are

established in the exterior problem solution. The use of a special formulation known

as the Combined Helmholtz Integral Equation Formulation (CHIEF), proposed by

Schenck [279], is a method of addressing the issue. It combines the exterior and in-

terior Helmholtz integral formulations. For the exterior problem this adds a small

number of additional equations to the exterior problem system. The additional equa-

tion requires the interior problem to be satisfied as well as the exterior problem for

specific interior points known as CHIEF points. The selection of these CHIEF points

must be done carefully otherwise, if one is chosen on a nodal point of the field inside

the surface, then no constraint is applied and a non-zero field inside the surface may

still exist. Choosing appropriate points is more difficult at higher frequencies. One

way of overcoming this is to choose more CHIEF points than necessary in the hope

that most of them will be suitable points. The resulting over-determined system of

equations can be solved in a least squares sense although this procedure was criticised

for being a complicated and inefficient way of treating the problem by Buick et al.

[51]. A review by Zaman [362] provides details of the range of boundary formulations

most useful for acoustic scattering problems. A more general discussion of the issues

prevalent to BEM can be found by Treeby & Pan [333] along with a summary of

proposed resolutions.

6.1.3 Hybrid BEM/BIE Schemes

A novel method pioneered by Epstein & Bliss [108] is that of a hybrid BEM formulation

which uses both the numerical BEM procedure as well as analytical source represen-

tations where possible. The analytical near-field constructs consist of building-block
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aerodynamic features. These are constructed using a typical panel method (also called

‘singularity methods’) of early aerodynamics. A far-field numerical solution is then

computed with the matching between the two cancelling their effects in the other’s

region of the field. The approach is known as Analytical Numerical Matching (ANM)

and has shown success in the introductory papers on the subject [108, 109]. Due to

the use of a panel method to model the boundary behaviour, its use for arbitrary scat-

tering devices or complicated sources is restricted and Epstein & Bliss recognising the

large number of limitations of using singularity methods. In general, the smoothing

feature of the panel method must be chosen to maintain accuracy in the transition

zone between the two solutions which is shown to be non-trivial.

Other hybrid BEM methods include the shallow water code of Grilli et al. [135] where

BEM solutions can be matched to solutions expressed as eigenfunction expansions in

the far-field where the geometry is more regular. This latter method is useful at cap-

turing the important effects efficiently by applying the most expensive method only

where it is needed but it may be regarded as being reasonably limited to a class of

problems where the matching is viable. A recent review by Chandler-Wilde et al.

[55] examines the development and use of these so-called hybrid-BIE methods. More

recently there has been a move to use asymptotic expansions as opposed to eigenfunc-

tion expansions for hybrid methods which allows matching to take place in far-field

regions where the solution in terms of an eigenfunction expansion may be unknown.

Such uses of far-field solutions are more akin to their use as boundary conditions than

as hybrid methods.

6.2 Green’s Function for the Helmholtz Equation

Time-harmonic acoustic problems, in the absence of a mean flow, may be represented

by a Helmholtz Boundary Value Problem (BVP) of the form

(∇2 + k2)φ̂(x, ω) = −q̂(x, ω) in Ω (6.1a)

φ̂(x, ω) = a(ω) on Γ1 (6.1b)

∂φ̂

∂n
(x, ω) = b(ω) on Γ2 (6.1c)
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In the most general case we assume the source term to be a function of spatially

compact support

supp [q̂(x, ω)] = y ∈ S

where S represents the source region. One method of developing an analytical solution

to this BVP is to transform the differential equation into an integral equation in which

we can substitute the boundary conditions (Eqn. (6.2)). These boundary conditions

are incorporated in the Green’s function Ĝ(x,y, ω). This is the solution to the singular

form of the original differential equation Eqn. (6.3) and satisfies the original boundary

conditions. Physically, it may be interpreted as an outgoing wave produced by an

impulsive unit point source at y.

φ̂(x, ω) =

∞∫
−∞

Ĝ(x,y, ω)q̂(y, ω)d3y (6.2)

(∇2 + k2)Ĝ(x,y, ω) = δ(x− y) (6.3)

In the absence of boundary conditions we may consider this wave to propagate in

free-space and hence we often use the free-space Green’s function, readily available in

analytical form. However, the introduction of boundaries and hence associated bound-

ary conditions complicate matters as an analytical representation of Ĝ is difficult to

construct. In the remainder of this chapter we show that the BEM can be a robust

and accurate means of numerically computing Green’s functions within arbitrary ge-

ometries. We now develop a robust BEM formulation suitable for solving a class of

two-dimensional Helmholtz BVPs, which may be applied in finite, semi-infinite, or

infinite geometries.

6.3 Direct Collocation Boundary Element Formu-

lation

When analysing problems on infinite domains, the Boundary Element Method (BEM)

offers a number of advantages over the Finite Element Method (FEM) [362, 369] as

discussed earlier: First, the discretisation is limited to the boundary and not the entire
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domain which serves to reduce storage requirements in particular for large domains.

Second, for many problems the BEM requires only the calculation of surface integrals

as opposed to volume integrals. Third, the use of a fundamental solution (free-space

Green’s function) in the BEM formulation automatically satisfies the radiation con-

dition for acoustic problems without any additional constraints on the BVP. Finally,

BEM is also capable of solving exterior flow problems (infinite domain problems) with-

out the need for domain truncation since only the closed finite domain needs to be

discretised. Solution of the same problem using FEM would require a non-reflecting

boundary to be specified between the finite boundary and infinity to close the prob-

lem. However, the matrices which comprise BEM are full as opposed to the sparse

matrices of FEM. This is due to the slow decay of the free-space Green’s function

used as part of the formulation [269] which may reduce the efficiency of the matrix

algorithms. This may explain the continued interest in the development on NRBCs

for FEM. A number of different BEM formulations exists depending on the type of

boundary reduction procedure used. The direct formulation is arguably the simplest

to derive and implement with many introductory texts on the subject of BEM fo-

cussing on this formulation in particular [44]. For those problems where a single BEM

application is unsuitable, for example, when the domain folds back on itself [59] or

very thin structures where more boundary elements would be required than domain

elements [365], multiple applications (sub-structuring) or even the coupling of BEM

and FEM is seen to be a useful means of calculation [124, 165, 369].

We first present the direct BIE representation of the general BVP Eqn. (6.4) where,

for convenience, we have dropped the hat notation. The derivative of the solution φ

with respect to the outward normal is represented by the symbol ψ. This considers

a BVP where the boundary is closed and comprises three different types of boundary

characterised by the information known on the particular boundary segment: Γ1-type

(type 1) boundaries contain known values of φ, Γ2-type (type 2) boundaries contain

known values of ψ. We also consider an extension to this problem where we also have

Γ3-type (type 3) boundaries which are truncation boundaries and hence contain no

known information (Fig. 6.1).

The traditional formulation of the BEM, based on Eqn. (6.4), is soluble while some

information about the solution is known at each node on the boundary. We then
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Figure 6.1: General 2D BVP geometry with the boundary segmented into those of
type 1, type 2 and type 3.

extend the formulation to include boundary nodes where no information is known. In

the following section, we close this under-determined system through inclusion of an

approximation to a global NRBC.

Considering for the moment the case where all segments of the boundary may be

classified as either type 1 or type 2, application of the weighted residual method

produces the usual BIE (Eqn. (6.4)) where φ∗ and ψ∗ represent the free-space Green’s

function and its normal derivative for the homogeneous differential equation in free-

space [44]. The double overbar signifies a known quantity.

cφ+

∫
Γ2

φψ∗dΓ +

∫
Γ1

¯̄φψ∗dΓ =

∫
Γ2

¯̄ψφ∗dΓ +

∫
Γ1

ψφ∗dΓ (6.4)

This statement is discretised into elements. The variation of the solution and its

normal derivative over each element is considered to be constant and the nodes are

located at the centre of each element. Constant elements are the simplest type of

boundary element available and have been selected in this case to facilitate an easier

incorporation of the Dirichlet-to-Neumann boundary condition as will become clear

later on. The principle of collocation is to force the residual error at the nodal locations

to zero. This is achieved by centring the fundamental solution at each node on the

boundary in turn. The discretised equations will therefore apply for each fundamental

solution location and we generate a system of equations to be solved for the unknown

values φ and ψ on the boundary. For the i-th fundamental solution position we have

the following discretised BIE

ciφi +
N∑
j=1

(∫
Γj

ψ∗jdΓ

)
φj =

N∑
j=1

(∫
Γj

φ∗jdΓ

)
ψj (6.5)
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which we represent in matrix form as

H~φ = G~ψ (6.6)

This formulation is soluble since type 1 and type 2 boundaries specify either φ or ψ

at each node of the boundary, resulting in only a single unknown per element.

If we now introduce a segment of type 3 boundary as part of the problem consisting

of K elements, the system becomes under-determined. One means of addressing this

is to eliminate one set of unknowns through the introduction of additional equations

which relate the two unknowns for each element on the type 3 boundary. In this case

we end up with a system whose i-th component is

ciφi +
N∑
j=1

(∫
Γj

ψ∗jdΓ

)
φj =

N−K∑
j=1

(∫
Γj

φ∗jdΓ

)
ψj +

K∑
j=1

(∫
Γj

φ∗jdΓ

)
ψj (6.7)

Now for all values of j ∈ K we have two unknowns. What we require therefore, is to

eliminate the unknown values ψj by using an equation which maps values of ψj 7→ φj

for j ∈ K. We call this mapping a DtN map or DtN operator.

6.4 Dirichlet-to-Neumann Operator

In order to fully determine the system of equations in the previous BEM formulation

Eqn. (6.7), we require an additional set of equations which relate φ to ψ on the artificial

boundary. Global NRBCs based on the Dirichlet-to-Neumann (DtN) operator [178]

meet the requirements; using the DtN operator, the solution φ may be mapped to its

normal derivative ψ. If applied at every node on the artificial boundary, enough ad-

ditional equations are generated to close Eqn. (6.7). The DtN operator is constructed

by considering the solution to the homogeneous BVP in the region beyond the trunca-

tion boundary, be that upstream or downstream. Knowledge of an analytical general

solution in this region, evaluated on the truncation boundary is therefore equivalent

to the solution of the interior problem on the same boundary as away from the source

point (or source region if source is distributed) the two BVPs should be equivalent.

The construction of the DtN operator requires knowledge of a specific homogeneous

solution characterized by the type of geometry beyond the truncation boundary. It is,
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Figure 6.2: An arbitrary 2D waveguide which is assumed to be a parallel-sided 2D
waveguide beyond truncation boundaries denoted Γ3

therefore, necessary to restrict ourselves in this chapter to a subset of the general class

of problem in which the domains beyond the truncation boundaries are those of rect-

angular channels or ducts (Fig. 6.2) [146]. Examples of DtN construction on a range

of other exterior domains, in different coordinate systems, in domain decomposition

methods and for different equations are available [106, 129, 137, 264], although many

are still limited to regions of free-space.

The problem domain, in which the BVP defined by Eqn. (6.1) applies, is defined

by Ω and the infinite analytical domain in which the homogeneous version applies D.

Since we are dealing with a waveguide, it is appropriate to express the vector position

x in terms of its scalar components [x1, x2]. We drop the frequency dependence for

convenience from the propagating wave number γn ≡ γn(ω) in the following deriva-

tion. The solution to the problem in D subject to rigid-wall boundary conditions on

the upper and lower walls is, therefore, given by the function φ(x1, x2) which, using

separation of variables, may be represented by an eigenfunction expansion (Fourier se-

ries representation) in the cross-duct direction multiplied by a general outgoing wave

function centred on the truncation boundary at x̃1 as:

φ(x1, x2) = φ1(x1)φ2(x2)

=

[
a0 +

∞∑
n=1

an cos
(nπx2

L

)]
e±iγn|x1−x̃1| (6.8a)
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Where the coefficients are the usual Euler formulae for the cross-duct Fourier series

a0 =
1

L

L∫
0

φ2(x2)dx2 (6.8b)

an =
2

L

L∫
0

φ2(x2) cos
(nπx2

L

)
dx2 (6.8c)

We can differentiate this with respect to the outward normal to the truncation bound-

ary to get an expression for ψ as:

∂φ

∂x1

(x1, x2) ≡ ψ(x1, x2)

= ±iγ0a0e
iγ0|x1−x̃1| ± i

∞∑
n=1

γnan cos
(nπx2

L

)
e±iγn|x1−x̃1| (6.9)

This relationship may then be used as the definition of DtN operator M defined as

ψ(x1, x2) = M [φ(x1, x2)]

Our analysis is equivalent to the 2D rigid wall expressions of Harari et al. [146].

It is worth noting here that the inclusion of a DtN representation as part of a BEM

is not in itself novel. One particular form of boundary reduction, known as natural

boundary reduction represents the BVP as an integral equation of the form ∂φ/∂n =

K [φ] where K is termed a natural integral operator [360]. This operator is equivalent

to a DtN operator and allows the derivative of the solution to be computed from

known Dirichlet data on the boundary. Numerical implementation of this BIE is

popular, particularly through incorporation in the variational formulation of the FEM

[124, 207, 244, 361]. In the next section we take a similar approach but use the DtN

operator we have defined as a boundary condition to close a direct BEM system. It

is apparent during our derivation that the implementation is straight forward, only if

we use constant boundary elements.

6.5 BEM Implementation

The DtN boundary condition (Eqn. (6.9)) is exact. However, we should note that

practical implementation requires us to truncate the infinite series and hence this ex-

actness is lost. The waves absent from the truncated series essentially have a boundary
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condition ∂/∂n = 0 which not only generates reflections on the boundary for these

modes but also can cause issues of non-uniqueness [138]. One solution is to ensure

the number of terms in the DtN condition is large enough to include all modes re-

quired for the solution to the problem to be unique. However, as pointed out in [137],

particularly for higher-dimensional problems and problems involving high frequency

propagation, the series representation may contain a large number of terms, many of

which are included to ensure uniqueness rather than to improve the accuracy by any

appreciable amount. Their modified DtN formulation which imposes the radiation

condition on these missing modes instead, is a more practical alternative.

Wave-guide problems afford a certain degree of simplification of the issue of uniqueness

and reflection caused by truncation of the DtN series. In a wave-guide, the propagating

modes are restricted based on the relationship between frequency and duct geometry.

Since the boundary condition ∂/∂n = 0 is exact for the cut-off modes, Harari et al.

[146] and others [246] have shown that we only require at least the propagating modes

in the boundary condition expansion in order for a unique solution to be guaranteed.

Our truncation boundaries are placed far enough from the source to ensure all evanes-

cent modes have decayed to amplitudes lower than the error of the boundary element

scheme by the truncation boundary. We justify this quantitatively in Section 6.8.1.

Therefore, the standard DtN containing a relatively few number of terms is sufficient

for both uniqueness and accuracy.

To incorporate the DtN relationship into the boundary element formulation we intro-

duce the discrete representation of the solution on the truncation boundary into the

DtN operator. We label the values of φj over the outlet j ∈ K φk. The manipulation

of the coefficient integrals then uses the fact that since we have used constant (discon-

tinuous) boundary elements, the values of φk are constant over each element on the

truncation boundary. The values of φk may be brought outside the integrals with the

remaining integral simple to compute analytically.

a0 =
1

L

L∫
0

φ2(x2)dx2

=
1

L

∑
k

∫
k

φk
e±iγn|x1−x̃1|

dx2
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As the variation of φ over the element k is constant, the whole of the integrand may

be brought outside the integral and the remaining integral is simply lk

=
1

L

∑
k

φk
e±iγn|x1−x̃1|

lk

where lk is the length of the k-th element. Similarly the other integral becomes:

an =
2

L

L∫
0

φ2(x2) cos
(nπx2

L

)
dx2

=
2

L

∑
k

φk
e±iγn|x1−x̃1|

L

nπ
∆nk

where ∆nk =
[
sin
(
nπbk
L

)
− sin

(
nπak
L

)]
in which [ak, bk] are the coordinates of the end-

points of the k-th element in the x2-direction. We may now substitute for the φk values

on the truncation boundary and rearrange the system which results in a reduction in

the elements of G~ψ and a correction of the elements of H. The modifications are

summarised as

hij 7→ hij −
∑
k

gikδjk (6.10a)

δjk = αj +
∑
n

βnjΨnk (6.10b)

αj =
iklj
L

(6.10c)

βnj =
2iγn
π

∆nj

n
(6.10d)

Ψnk = cos

(
nπ (x2)k

L

)
(6.10e)

∆nj =

[
sin

(
nπbj
L

)
− sin

(nπaj
L

)]
(6.10f)

The substitution of Eqn. (6.10) into Eqn. (6.7) fully determines the system which can

now be solved for all the missing values on the type 1 and type 2 boundaries and the φ

values on the type 3 boundary. The corresponding values of ψ on the type 3 boundary

may then be found from the discretised equation

ψi = ±ik
L

∑
k

φklk ±
2i

π

∑
k

[(∑
k

φkδnk
n

)
γn cos

(nπγi
L

)]
(6.11)
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In the context of the discussion given in Section 2.1.6, we note that this boundary

condition is non-local in the sense that it couples all the unknowns on the truncation

boundary. Due to the already full nature of the BEM matrix as well as the lack of

numerical integration for constant boundary elements, this non-locality in space does

not degrade the performance of the overall method. The implementation procedure

may be repeated for an arbitrary number of separate truncation boundaries n and is

of the form

ciφi +
N∑
j=1

(∫
Γj

ψ∗jdΓ

)
φj =

N−(Kl+...+Kn)∑
j=1

(∫
Γj

φ∗jdΓ

)
ψj

+

Kl∑
j=1

(∫
Γj

φ∗jdΓ

)
ψj + . . .+

Kn∑
j=1

(∫
Γj

φ∗jdΓ

)
ψj (6.12)

where l ∈ {1, 2, . . . , n}.

6.6 Results

Having established an extended BEM to approximate solutions to BVPs in finite, semi-

infinite or infinite domains, in this section we determine how the number of terms in

the DtN map affects the accuracy and execution time and whether they are affected

by any notable interactions between the choice of number of terms, mesh density and

frequency. The mesh density may assist in filtering out unsupported reflected modes

from the boundary condition but may also fail to allow unsupported transmitted modes

through the boundary, which would contaminate the solution. We first present the

output from a number of tests which aim to demonstrate the nature of the BEM code

for a problem without non-reflecting boundaries. We consider the case of plane waves

in a 2D rigid channel. We then introduce the DtN non-reflecting boundary condition

formulated earlier into the method by considering the computation of Green’s functions

within domains bound by more than one non-reflecting boundary. The application of

the DtN condition on such boundaries allows the calculation of arbitrary 2D acoustic

Green’s functions, without previous limitations on boundary locations. We present and

analyse the effects of changing the mesh density, DtN expansion terms and frequency

on the accuracy and execution time for each case.
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6.7 1D Waves in a Rigid Channel

We first consider a problem without type-3 boundaries in order to establish the perfor-

mance of the BEM implementation without inclusion of the DtN modification. This

is a useful means of both validating the unmodified code and allowing us to later

distinguish error generated by the boundary conditions from typical errors in the rest

of the code. We consider the very low frequency model problem of Wrobel [353]. In

this example, the Helmholtz equation is assumed to govern the variation of solution

u(x, y) in a square domain of size L × L. The boundaries corresponding to x = 0, L

are type 1 boundaries with values of u = û and u = 0 assigned respectively. The other

two boundaries corresponding to y = 0, L are type 2 boundaries on which normal

derivative u′ = 0 (acoustically rigid). This problem physically models an acoustic flow

in a open, rigid-walled channel of length L driven in the positive x-direction.

For simplicity, at this stage, we consider only 1D solutions of the problem. The 1D

solution may be obtained by considering the 1D component of the higher-dimensional

case. The 2D solution consists of a modal summation with components of the form

um(x, y) = [Ame
−iγmx +Bme

iγmx] cos(mπy
L

). The wave number of the m-th mode in

the x-direction γm is governed by the dispersion relation

k2 −
(mπ
L

)2

= γ2
m (6.13)

From the boundary conditions, the modal coefficients Am and Bm are determined as

Am =
ûeiγmL

2i sin(γmL)
(6.14)

Bm = û

[
1− eiγmL

2i sin(γmL)

]
(6.15)

The plane wave solution is, therefore, obtained by setting m = 0. In order to ensure

this is physically correct, we only consider those frequencies for which no higher-order

modes are cut-on. This condition is determined from Eqn. (6.13) as being f < c
2L

.

The plane wave analytical solution is therefore simply

u0(x) =
[
A0e

−iγ0x +B0e
iγ0x
]

(6.16)
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Comparisons of particular interest are how the relative error and execution time

vary with both the frequency and the mesh density. The relative error is computed

by dividing the absolute error by the root mean square value of the plane wave. We

select a domain size of L = 6 to ensure mesh densities remain manageable, giving us a

cut-on frequency for the first higher-order mode at about 28 Hz. We therefore consider

a frequency range of 10 - 30 Hz to compare to the plane wave solution. Of course,

these frequencies are largely inaudible, but the intention of this section is to validate

the unmodified BEM code, not to provide a useful physical solution. In order to keep

the results well-spaced when plotting, we consider a wide range of mesh densities from

n = 5 to n = 60 where n is the number of elements per unit length of side.

First we present the results illustrating the variation in both the mean relative error

over the 2D grid and execution time (Figs. 6.3a and 6.3b) with frequency for 3 differ-

ent mesh densities. As might be expected the error increases with frequency as the

gradients of the solution in the domain increase and errors in the boundary integrals

become increasingly inflated. The observable jump in the error beyond a frequency of

28 Hz may be explained by recalling that this frequency signals the cutting-on of the

first higher-order mode, not represented by the analytical solution used as our bench-

mark for comparison. The BEM solution will contain the effects of this first-order

mode which makes the analytical plane wave solution unsuitable for comparison. In

Fig. 6.3b we see that execution time also increases with frequency. It is the evaluation

of the Bessel functions which dominates the overall execution time of the code and the

increased time is a consequence of passing a larger argument to the Bessel function

evaluation routine. This trend in execution time may be reversed by the use of multi-

threading. Indeed, the execution of the code on a later release of MATLAB, uses the

multi-threading capability to do just that.

To summarise the effects of mesh density, we plot the mesh density as the in-

dependent variable and execution time and relative error as the dependent variables

(Figs. 6.4a and 6.4b). Lower frequencies clearly have the advantage of both lower error

and lower execution time. Reasons for both these observations have been stated above.

We note that for a frequency of 5 Hz, a relative error of the order 10−4 is achieved

using a mesh density of n = 10. If the frequency is made 6 times larger, the mesh

density must increase by more than a factor of 6 to achieve the same accuracy. The
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(a) Relative Error

(b) Execution Time

Figure 6.3: Variation in Execution Time (bottom) and Relative Error (top) with
frequency for 3 different mesh densities. Solid blue line n = 5; dashed green line
n = 33, dotted red line n = 60.
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(a) Relative Error

(b) Execution Time

Figure 6.4: Variation in Execution Time (bottom) and Relative Error (top) with mesh
density for 3 different frequencies. Solid blue line f = 5 Hz; dashed green line f = 17.5
Hz, dotted red line f = 30 Hz.

asymptotes of the error variations also vary non-linearly with frequency suggesting

that errors associated with resolution of the waves do not manifest themselves in a

linear way.

6.8 2D Green’s Function for a Rigid Channel

We now introduce the DtN condition into the BEM formulation. This functionality

allows us to compute solutions for problems featuring transparent boundaries. In

this chapter we wish to compute 2D acoustic Green’s functions which satisfy the 2D

form of Eqn. (6.3) along with appropriate boundary conditions. Our first example
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is an extension of the previous problem: we consider the Green’s function for an

acoustically rigid channel of width d. As before, the geometry beyond the problem

domain is assumed to continue to be that of an acoustically rigid, straight-walled

channel. The analytical solution to this problem for a source position (ξ, η), observer

position (x, y) and origin located on the lower surface of the channel is given by [198]

G(X, y, η) = −1

2

∞∑
m=0

εm
e−γ2m|X|/d

γ2m

cos
mπy

d
cos

mπη

d

where

γm = −i
(
k2d2 − m2π2

4

)0.5

and

εm =

1 if m = 0

2 otherwise

and

X = x− ξ

This solution is evaluated using 5000 terms of the infinite series which gives an accuracy

of at least 5 significant figures [198]. Errors will, therefore, be of the same order of

magnitude as the threshold of hearing (2 × 10−5). Although we choose to vary the

mesh density n, the number of terms in the DtN expansion M and the frequency f

for a channel of arbitrary width d = 1, we could have chosen to vary the placement

of the downstream and upstream boundaries. This parameter influences both the

number of elements on the top and bottom of the channel (and hence mesh density

n) as well as the number of terms required in the DtN expansion M : The further

away from the source the boundary is place, the more elements are needed to mesh

the upper and lower surfaces and hence, for a given n, the execution time of the code

will increase. Likewise, as the source will generate higher-order modes, it is expected

that placement of the artificial boundary in the near-field will require a larger M

to maintain a given accuracy as even the cut-off higher-order modes may not have

decayed sufficiently for any reflections from the artificial boundary to be negligible.
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These additional terms will also increase execution time. We choose to fix the location

of the boundaries arbitrarily at x = ±3d. We examine later the implications of such

boundary placement on evanescent modes in the channel.

6.8.1 Range Selections

For our numerical experiments we select the audible frequency range from f = 20

to 20,000 Hz. We stipulate a required absolute accuracy corresponding the threshold

of hearing (of the order 10−5). In reality, for noise calculations, this need not be so

stringent as audible error noise even an order of magnitude greater would likely be

quiet enough to not attract attention. However, where there are instabilities, they

may be excited by any amplitude of acoustic wave as they set up feedback loops or

other forms of radiation [273, 312]. If our numerical Green’s functions were used

in such cases, the low amplitude numerical error may impact the solution behaviour

significantly. In order to determine a range of mesh density selections n which will

resolve the waves at frequency f and achieve the desired accuracy, we recall that by

using a constant element BEM formulation we approximate the exact behaviour of

waves on the boundary by a piecewise constant function. In order to relate the mesh

density to the absolute error in the function we first integrate both the exact and the

numerical functions and then use the exact integral to back-fit a wave whose amplitude

is such that the integral of this new wave is equal to the integral of the approximating

function. The absolute error between the exact amplitude and this new amplitude

will then be used as a measure of the quality of the approximation for the given mesh

density. The variation in this absolute error with the number of elements used to

approximate the half sine wave is shown in Fig. 6.5.

Ideally, as the purpose of computing acoustic Green’s functions is to use them in acous-

tic calculations, we require the maximum error be that of the threshold of hearing.

However, it is clear from Fig. 6.5 that the number of elements required to achieve this

would become impractical since, from Fig. 6.5, we would need the number of elements

per wavelength e = 2 × 200 = 400. In fact, for source wavelength λf , our mesh den-

sity n = 400/λf must range from 24 to 23,256 elements per metre to fully resolve all

source frequencies in the axial direction. Our standard BEM implementation, there-

fore, would require multiple double-precision matrices of size 232562 each. This would
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Figure 6.5: Absolute error in the amplitude against the number of elements per half
wavelength.

require memory of the order 102GB, computational resources not widely available. A

more modest target would be e = 8 which achieves an absolute error in the amplitude

of the order 10−2, a relative error of less than 10%. Furthermore, this selection adheres

to the 8 ‘point per wavelength’ rule suggested by Tam [313] for the approximation of

acoustic waves. Therefore, we choose to vary the mesh from n = 10 to n = 500 to

ensure a mixture of good and poor resolution across the range of source frequencies.

This upper limit has the added benefit of being able to resolve all the propagating

waves at the highest frequency f .

The choice of DtN terms in the expansion on the truncation boundary should allow us

to investigate results for both resolved and unresolved DtN waves. We choose to vary

the number of DtN terms in the expansion from M = 10 to 250, where the upper limit

is beyond the resolution capabilities of the mesh. As discussed earlier, the exclusion

of propagating modes in the DtN series at the artificial boundary results in essentially

setting a boundary condition equal to zero for those modes. Unwanted reflections are

thus inevitable if either the DtN expansion does not support the appropriate number

of propagating modes or the boundary is close enough to the source that the cut-off

higher-order modes have not sufficiently decayed. This latter situation is only expected

at lower frequencies for our chosen boundary position. We can justify this expectation

by considering the decay of the first cut-off mode (also the slowest mode to decay).

The wavenumber of the first cut-off mode at a given frequency is given by the disper-

sion relation Eqn. (6.13) with L replaced by d = 1. At the highest frequency of 20,000
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Hz we have

m >

⌊√
d2k2

π2

⌋
m⇒ 117

At the lowest frequency we see that only the plane wave propagates and all higher-

order modes are cut-off. We desire the pressure of the cut-off modes to have decayed

to less than the minimum audible pressure (2×10−5) by the boundaries. Therefore, we

determine the distance from a source at x = 0 that we must place the boundary xw by

stipulating that the pressure of the higher-order mode, normalised by the pressure at

the source x = 0, be of the order of 10−5. The sound pressure level (SPL) in decibels,

for the first cut-off mode at f = 20, 000 Hz, may be found by considering the ratio

between the SPL at x = 0 and x = xw giving

SPLx=xw = log10

(
eiγ117xw

)
= −5

This gives a wall placement of 0.28L. For the lowest frequency of f = 20 we get

xw = 3.69L.

For clarity we define several parameters whose values allow us to determine to what

degree the boundary mesh is capable of resolving the source and the waves correspond-

ing to the highest frequency wave in the DtN expansion dictated by the M -th mode.

The wavelength of the source is termed λf and the wavelength of the M -th mode in

the DtN expansion λM . For our mesh density value range of n = 10 − 500 points

per unit length, using the 8 point per wavelength minimum guide, we have a wave-

length resolution range of λn = 0.8− 0.016. We thus define the DtN mode resolution

parameter M̄(M,n) as

M̄(M,n) =
λM(M)

λn(n)
(6.17)

and the source frequency resolution parameter f̄

f̄(f, n) =
λf (f)

λn(n)
(6.18)
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Obviously, when these parameters are greater than unity, the mesh represents all the

waves in the DtN boundary condition and the source waves respectively using at least

8 points per wavelength. We define a similar parameter M̄c(M,n, f) which replaces λM

in the above with the wavelength of the last propagating mode λc(M, f) determined

by

m =

⌊
dk

π

⌋
λc(M, f) =

2d

m

where the dependence on M is implicit based on whether enough modes are available

in the expansion to allow all propagating modes to be represented. In all cases tested,

after computing the boundary values, the code proceeds to evaluate the solution over a

line of 120 points. All error values are mean values over this grid. This is considered a

fairer representation of the accuracy of the calculation than considering the maximum

error as errors near the singularity and near boundaries are expected to be larger than

elsewhere in the domain. Since these regions occupy only a small percentage of the

overall region of interest their error values in isolation are not a suitable measure.

6.8.2 Accuracy variation with Frequency

We start by examining the variation in RMS relative error with frequency for different

combinations of M and n. Errors can arise from several sources:

1. The poor resolution of the source waves at all boundaries;

2. The lack of terms in the DtN boundary condition;

3. The poor resolution of the DtN waves at the artificial boundary;

4. The poor performance of internal point valuation by the BEM when the point

is near the singularities in the fundamental solution at the boundary.

Figures 6.6a to 6.6c show the variation in error over the range of f and M for 3 val-

ues of n. As can be seen, a sudden jump in error is evident as an increase in frequency
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cuts-on higher-order modes not capable of being represented by the boundary condi-

tions of lower M . This behaviour is consistent with the results of Harari et al. [146]

and others who state that accuracy of the DtN condition is ensured by including all

the propagating modes in the expansion. This source of error is the most significant.

For the higher values of n, the error ramps up with source frequency f rather than

jumps. This suggests that the exclusion of propagating modes is more detrimental at

the lower resolutions. If the frequency is increased further, there comes a point beyond

which further exclusion of modes has no dramatic effect, with a relatively uniform in-

crease in error attributed to the increasingly poor resolution of higher frequency waves.

Likewise, the inclusion of increasing numbers of evanescent modes also has little effect

on the accuracy, even at low frequencies. This is due to the rapid decay of such modes

and the placement of our downstream boundary such that the magnitude of these

waves are negligible. In fact, the inclusion of large numbers of evanescent modes in

the boundary representation can result in singular behaviour [92].

In contrast, the inclusion of propagating modes into the DtN expansion at the lowest

mesh resolution has little effect on the error variation with frequency. The value of

f̄ � 1 for all but the first frequency and this poor resolution is the principal source

of error for coarse meshes with inclusion of propagating modes having little benefit if

they are poorly resolved. Therefore, we can conclude that if resolution is adequate, the

principal source of error with frequency relates to the inclusion of propagating modes

in the DtN expansion, with poor resolution of the waves in the field responsible for a

more general increase in error with frequency.

6.8.3 Execution Time variation with Frequency

From Fig. 6.7 we see that, as was the case with the 1D rigid channel example studied

earlier (Fig. 6.3b), the execution time using MATLAB R2013a on an Intel Core i7

870 CPU decreases with frequency due to the increased efficiency of Bessel function

evaluation for larger and larger arguments. There is little variation in the execution

time over the range of values of M selected. However, further studies (see later) have

shown that when M becomes very large, the execution time is significantly increased

due to the number of column swapping operations required to set up the system.
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(a) Mesh Density n = 10

(b) Mesh Density n = 255

(c) Mesh Density n = 500

Figure 6.6: Variation in RMS relative error with frequency f and terms in the DtN
boundary expansion M for selected mesh densities n.
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Figure 6.7: Variation in execution time with frequency f for n = 500.

6.8.4 Accuracy variation with Mesh Density

In general, the error decreases with mesh density. This behaviour is strongly influenced

by the inclusion of enough terms in the DtN expansion such that M is large enough

to allow all propagating cross-channel modes to be represented. However, there are

some instances, where for a given combination of f and M a ‘spike’ is observed in the

error at n = 90. Such behaviour is visible in Fig. 6.8b and Fig. 6.8c but not at lower

frequencies.

One possible reason for this could be the known phenomenon that the inclusion of

an increased number of evanescent modes in the solution forces systems to be near-

singular [92]. Such behaviour would be amplified through matrix inversion as part of

the solution of the linear system. As can be seen from Figs. 6.8b to 6.8c, these error

‘spikes’ may be avoided by selecting either a higher (or lower) value for M .

6.8.5 Execution Time variation with Mesh Density

As can be seen in Fig. 6.9, the value of M has little effect on the execution time. As

before, we can assert that this is only true for relatively small values of M (suitable

for our application). For larger values, it was found that the extra time needed to

compute the DtN boundary condition influences execution time at least as much as

the mesh density. The reduction in execution time with frequency is also observable.

The rapid increase in execution time with mesh density means that between the last
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(a) Frequency f = 20 Hz, f̄(n) = [0.022, 0.20, 0.37, 0.55, 0.72, 0.90, 1.1]× 103

(b) Frequency f = 9.1 kHz, f̄(n) = [0.047, 0.43, 0.82, 1.2, 1.6, 2.0, 2.4]

(c) Frequency f = 20 kHz, f̄(n) = [0.022, 0.20, 0.37, 0.55, 0.72, 0.90, 1.1]

Figure 6.8: Variation in RMS relative error with mesh density n and terms in the DtN
boundary expansion M for selected frequencies f .
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Figure 6.9: Variation in execution time with mesh density for f = 20 Hz and f = 20
kHz for range of M

two mesh densities considered, execution time increases by half as much again for a

gain in accuracy of just 0.5% at the highest frequency. At the lower frequencies the

increase in accuracy is even less as the solution has almost converged to a relative

RMS error of the order 10−4%.

6.8.6 Influence of Cross-Channel Mesh Density

Earlier, we suggested that the resolution of the waves in the boundary condition may

be an important consideration when using the DtN boundary condition for BEM

calculations. However, the influence of the resolution of the boundary condition is

impossible to study in isolation as the cross-channel mesh density also affects the

resolution of the solution itself: we cannot fix the mesh describing the solution and

vary the mesh describing the boundary condition as they are implemented on the same

set of nodes. Instead, we fix the axial mesh density at n = 500 and vary the cross-

channel mesh density over the same range as used for earlier tests. We examine the

error again over our line of 120 points down the centreline of the channel. Figures 6.10a

to 6.10b, show little deviation from the variation in error in Figs. 6.6a to 6.6b where

the mesh density on all the walls is changed. The resolution of the end walls must,

therefore, be instrumental in reducing the overall error of the grid; despite the fact

that the grid is perpendicular to these boundary segments.

If we consider the variation of error with the mesh density in the cross-channel direc-

tion and compare Figs. 6.11a to 6.11c to Figs. 6.8a to 6.8c we see that at the lowest
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(a) Mesh Density n = 10

(b) Mesh Density n = 255

Figure 6.10: Variation in RMS relative error with frequency f and terms in the DtN
boundary expansion M for selected cross-channel mesh densities n.



CHAPTER 6. BOUNDARY ELEMENT METHOD 141

frequency tested, the resolution in the cross-channel direction has little effect on the

error. Furthermore, a lower resolution actually gives a reduction in error. This ap-

parent contradiction may be explained by considering that at the lowest frequency

the only propagating wave is the plane wave whose amplitude is constant across the

channel. Hence a lower mesh resolution will poorly describe any deviation from this

constant behaviour and the representation will actually represent the physical solution

more closely. Of course, there comes a point where, when computing the solution at

internal points, the number of nodes on the boundary matters and the fewer the nodes,

the less accurately an internal point can be computed: This is why at very low mesh

densities the error dramatically increases. At the other two frequencies selected, we

are seeing an order of magnitude improvement across all mesh densities due to the use

of the maximum mesh density on the upper and lower surfaces. However, the variation

is now strongly dependent on the cross-channel mesh.

The results in this section support the analytical analysis of [146] in suggesting that

accuracy of the DtN condition is assured as long as all propagating modes are in-

cluded in the expansion. This assurance may be made more accurate by adding the

qualification that in such cases the artificial boundary must be positioned such that

all higher-order modes have decayed to negligible levels. Otherwise, it is expected

that a number of evanescent modes must be also included to maintain accuracy. This

expectation is not tested here as, for most cases of practical interest, the truncation

boundaries may be placed far enough away to ensure the decay of higher-order modes,

while incurring little additional cost of meshing the extended boundary. However, the

inclusion of an increasing number of evanescent modes is not a guarantee of increased

accuracy due to their potential for causing near-singular behaviour in system matrices,

as discussed earlier.
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(a) Frequency f = 20 Hz

(b) Frequency f = 9.1 kHz

(c) Frequency f = 20 kHz

Figure 6.11: Variation in RMS relative error with mesh density n and terms in the
DtN boundary expansion M for selected frequencies f .
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6.9 Throttle

So far we have considered model problems as a means of investigating the accuracy

of the BEM implementation. In one final application, we demonstrate its use applied

to a more realistic problem. Of interest in gas turbine noise is the study of scattering

in ducts and channels by protrusions. One specific example could be the scattering

of waves generated by vortex shedding from a single stator blade in a duct. Borth

[40] recognised the (then inexplicable) generation and scattering of acoustic waves by

a throttle. This problem is one of a broader class of 3D acoustic problem typically

dominated by 2D effects and was studied using the compact approach in Section 5.6.

The baffle is approximated by an ellipse which is simple to implement numerical.

Furthermore, the mesh generation routine automatically seeds more mesh points near

the end of the ellipse such that the mesh density increases quadratically towards the tip.

This latter property allows automatic refinement of the mesh near to the acoustically

important region at the baffle tip. For a source positioned less than a wavelength away

at (0.1, 0.08) (with the baffle tip at (
√

2/20,
√

2/20)), for a mesh density of n = 300,

expansion size of M = 250 and a frequency of 2500 Hz to provide easy visualisation

we get the Green’s function Fig. 6.12.

Figure 6.12: 2D Green’s Function for the upper half of a throttle with the blue dots
representing the element centres.

The darker regions of Fig. 6.12 indicate large amplitudes and the lighter regions

smaller amplitudes for a particular instance of time. We see that the baffle provides a

degree of shielding to the left of the domain with the strongest variation in amplitude

occurring to the right of the source. This behaviour is expected as the acute angle of

the baffle strongly reflects and amplifies sound in the same way a corner of a room

would. This example demonstrates the utility of Green’s functions as qualitative tools

too with crucial regions of scattering revealed by visualising the computed field. When

coupled to an acoustic propagation routine which uses integral methods, the numerical

Green’s function shown here contains all the information necessary to accurate account
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for the scattering of the baffle.

6.10 2D Green’s Functions with other boundaries

Although our DtN boundary condition has been formulated assuming a rigid, straight-

sided waveguide beyond the truncation boundaries, the modified BEM code can still be

useful when applied without further modification to other classes of problem. Consider

the case of the Green’s function for an infinite half-plane. The region beyond the

transparent boundary is not a rigid waveguide but a region of free space, or free-space

bound on one side by a rigid wall. A circular boundary is perhaps more suitable with

the DtN condition re-derived for this new boundary – a full Fourier series in cylindrical

coordinates would be a sensible choice. However, practically this would involve the

discretisation of a curved boundary into a number of straight segments, a practise

expected to introduce more error (see Section 5.4). The analytical solution is given

by a combination of two free-space Green’s functions, each one centred equi-distance

from the rigid wall. If the origin is coincident with the location of the real source and

the wall is distance d from the real source, the analytical solution in Cartesian system

(x, y) is given by

G(r1, r2, ω) =
i

4
H

(2)
0 (k(ω)r1) +

i

4
H

(2)
0 (k(ω)r2) (6.19)

where r1 =
√
x2 + y2 and r2 =

√
x2 + (y + 2d)2. Using a square boundary and

the same formulation as before we find that, despite the limitations of our boundary

condition, qualitatively, the results agree very well. Figure 6.13 shows the comparison

for n = 100, f = 1000,M = 10, 000 which achieves a mean error, relative to the

RMS value, of 5.7%. By simply inspecting the resulting Green’s function, regions of

significant scattering in the geometry may be identified. In addition, the results are

obtained rapidly, especially for the selection n = 100. We conclude, therefore, that the

formulation here may be applied without modification to a wider class of problems to

rapidly obtain useful qualitative results. It should be noted that we consider here the

case of scattering by a rigid plane (type 2 boundary) to allow comparison to a simple

analytical representation. However, the BEM code developed in this chapter may be

easily modified to account for flexible (type 1) or mixed (Robin – which we term type
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Figure 6.13: Qualitative comparison between BEM (left) and analytical (right) eval-
uations of the 2D Green’s function for the Helmholtz equation for a source located
above an infinite half-plane (bottom edge of image)

4) boundaries. Furthermore, we may also change the geometry of the plane to more

reflect a more realistic ground geometry if desired.

6.11 Summary

In this chapter we have shown that the BEM is a suitable means of accurately comput-

ing an acoustic Green’s function for 2D geometries, including a range of semi-infinite

geometries. This calculation is accomplished through the solution of the singular form

of the governing BVP including the boundary conditions associated with the original

problem. Where artificial (transparent or non-reflecting) boundary conditions are re-

quired to close the originally semi-infinite domain, we have circumvented the potential

under-determination of the system of boundary equations by utilising a Dirichlet-to-

Neumann operator to provide the necessary additional equations. The use of constant

elements for the BEM greatly simplifies the implementation by avoiding the need for

additional numerical integration of the DtN expansion. Multi-threading has also been

used to increase efficiency at higher frequencies. The validation exercises compare

the numerical results with analytical solutions. Excellent agreement is achieved with

relative errors of less than 1%. The new formulation has been successfully applied

to a broader class of problems to rapidly obtain qualitative results which provide an

indication of regions of significant scattering in a particular geometry by inspection.

The DtN boundary condition may be extended to other geometries by simply changing
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the form of the series solution used to construct the DtN operator, with the imple-

mentation largely unchanged.



Chapter 7

Sinc-Galerkin Method

In Chapters 5 and 6, we presented two methods for the numerical evaluation of the

Green’s function for the Helmholtz equation. The compact Green’s function provides a

good approximation for the class of acoustic problems where the scatterer is compact

with respect to the acoustic wavelength and either the observer or source is in the

acoustic far-field. The method is rapid and accurate. In Chapter 6 we explored the use

of the Boundary Element Method (BEM) for the evaluation of the Green’s function for

more general two-dimensional geometries, introducing a new NRBC implementation

to enhance versatility. Again accurate results were obtained. However, although the

BEM was seen to be more versatile in that it may be applied to a wider variety of

problems, it is also significantly more demanding computationally and takes longer to

execute. For this reason we develop another method which aims to achieve comparable

accuracy to the other two methods, be applicable to a wider range of problems than

the compact Green’s function but be cheaper to execute than the BEM. The method

selected in Chapter 4 is a Galerkin method based on the basis set of sinc functions. As

with previous methods, we develop the method such that it is suitable for our purpose

and validate it against available analytical solutions.

7.1 Sinc Methods

The set of sinc numerical methods represent the function of interest as an expansion of

translated sinc functions. For the Paley-Wiener class of functions (see Lund and Bow-

ers [204] for their properties), this infinite series representation is exact and called the

147
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Whittaker-Cardinal function. The representation was initially presented by Whittaker

[350] but more recently has been developed into a practical spatial/spectral method

for the solution of elliptic and parabolic linear and non-linear differential equations by

Stenger [305]. This is facilitated by using the sinc expansion to approximate functions

not of the Paley-Wiener class. This approximate representation then forms the basis

of associated numerical methods. Stenger demonstrates that for appropriately selected

discretisation parameters, the unique properties of the sinc basis ensure exponential

convergence of the sinc series representation.

In one dimension, the sinc basis functions exist along the whole real line (x ∈ R),

centred at uniformly distributed sinc nodes. This infinite interval, and the functions

within the space, may be transformed to any semi-infinite or finite interval through

the specification of appropriate 1D conformal maps. This allows functions on an ar-

bitrary 1D interval, as well as their integrals and derivatives, to be approximated

using a transformed expansion of sinc functions centred at the transformed nodal lo-

cations in the interval. For many practical problems, such as the ones presented in

this chapter, the solution in the domain is assumed unknown. The sinc expansion

may be then used in collocation [240, 241, 261, 355, 356], Galerkin [98, 220] or highest

derivative [299] procedures to find the unknown coefficients. The collocation method

is generally chosen over the Galerkin method for problems with variable coefficients

as the resulting implementation is a more efficient means of achieving a given accu-

racy [355, 356]. However, the Galerkin procedure is more flexible as it lends itself

to basis modification and extension without the stringent smoothness requirements of

the collocation method [230]. This is particualrly useful when considering a variety of

boundary condtiions and so is used in this chapter. A rigorous mathematical summary

of the sinc method formulae can be found in Lund and Bowers [204] and Stenger [306],

although key formulae will be stated as appropriate throughout the chapter.

7.1.0.1 Advantages of the Sinc-Galerkin Method

An important practical advantage of using spectral-like methods over other numerical

methods such as the boundary element method (BEM) is that once the coefficients

have been found, the evaluation of points within and on the domain boundaries re-

quires only the evaluation and assembly of the series components. We compare our
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sinc implementation to a typical BEM implementation in Section 8.2, where the issue

of re-evaluating coefficient matrices for every internal point is seen to significantly im-

pact execution time.

The principal advantage of the Sinc-Galerkin method over Galerkin methods with dif-

ferent basis functions is the ability to achieve exponential convergence of the series

solution. Exponential convergence offers a practical advantage, over other numeri-

cal approaches, of using a fewer number of functions and nodal points to accurately

represent the function of interest [241]. The single exponential convergence of early

sinc implementations may by improved upon by using a double exponential conformal

mapping [245, 307, 355, 356]. This exponentially convergent behaviour has been estab-

lished for a number of problems in the literature, even for those featuring a boundary

singularity [97, 98, 210, 220, 300]. However, the method has not been applied in

earnest to a BVP featuring a domain singularity. The conditions governing exponen-

tial convergence are violated when the solution is not smooth throughout the domain

interior and, as demonstrated in the brief example of Morlet et al. [232], convergence

in this case is degraded. We present here an application of the Sinc-Galerkin method

to construct a Green’s function – a problem characterised by a domain singularity at

the source point. We investigate the possibility that even degraded convergence of an

exponentially convergent method may still achieve practically useful results.

Additional advantages of the Sinc-Galerkin approach when compared with alternative

numerical methods include [43]:

1. Problems in semi-infinite and infinite domains may be solved without the need

for artificial boundaries and non-reflecting boundary conditions which are always

inexact and can be complicated to implement;

2. Sinc methods do not require numerical integration in order to compute the com-

ponent matrices, just point evaluations, which require significantly less compu-

tational effort;

3. The error of the approximation is not dependent on any derivatives hence it is

capable of approximating singular solutions without such amplification of errors;

4. The exponential convergence rate is maintained even for problems with boundary

singularities [220];
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5. Time-dependent problems may be expressed as a linear system rather than a

system of ODEs typical of many Galerkin procedures [220];

6. The weight function in the Galerkin procedure can be selected to ensure a sym-

metric matrix system which can increase solution efficiency [219].

However, unlike the Finite Element Method (FEM) and the Finite Difference Method

(FDM), the ensuing matrices are full which precludes the use of efficient sparse solvers.

This disadvantage only partially offsets the significant benefit of the exponential con-

vergence rate of the sinc series [219, 220] equivalent to O(e−k
√
N) where k > 1 and the

number of basis functions used to construct the approximate solution is 2N + 1. In

addition, the matrix systems, although not banded, consist of Toeplitz matrices and,

for linear problems, the form of the resulting matrix equation is that of the Sylvester

equation [301]. This particular equation may be solved using a number of established

techniques; two of the most common being described by Lund and Bowers [204] (de-

tailed in Section 7.5), with efficient solvers available, for handling the special structure

of the constituent matrices.

7.1.0.2 Applications of the Sinc-Galerkin Method

The merits of the Sinc-Galerkin method have led to its application to both 1D and

higher-dimensional problems subject to homogeneous Dirichlet [43, 85, 97–102, 182,

191, 209, 210, 219, 220, 230, 238, 240, 241, 245, 283, 284, 300, 301, 358, 363] and inho-

mogeneous Dirichlet boundary conditions [98, 182, 219, 238, 245, 260, 261, 292, 300,

301]. Included in the previous citations are examples of both linear and non-linear

problems for a variety of differential operators, including singular boundary value

problems, known to cause stability issues in many traditional numerical methods (in

particular see [101]). The solution of non-linear problems often uses Newton iteration

applied to the matrix system [102]. More recently, there has been applications of sinc

methods for the inverse problem – reconstruction of an unknown source [301].

The wave equation and the Helmholtz equation, previously treated by McArthur, Bow-

ers and Lund [220] (wave equation) and [43] (Helmholtz as a general elliptic equation),

are of particular interest in acoustics and will be the focus of this chapter. The use

of sinc methods with Dirichlet conditions is relatively straight-forward since the sinc
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function satisfies the homogeneous Dirichlet condition automatically at the edges of

the interval. A simple change of variable is all that is required for the conversion of the

problem with inhomogeneous conditions to the problem with homogeneous conditions

as discussed later. However, when the boundary conditions are Neumann conditions

(or mixed conditions involving both the solution and its derivative), the sinc basis

must be modified to ensure the derivative of the individual basis functions exist at

the endpoints of the interval, since ordinarily the derivative of the sinc function is

undefined here. These modified functions, however, although defined at the boundary,

still do not satisfy the boundary conditions. Therefore, the basis may be extended

by including additional basis functions to interpolate the boundary conditions [204].

Such functions are typically Hermite polynomials. Many examples of the modification

[143, 182, 241, 301] and the extension [85, 143, 182, 209, 210, 230, 241, 301] of the basis

to treat a variety of BVPs exist. However, Mueller and Shores [238] suggest a means

of treating the convection-diffusion equation subject to mixed boundary conditions

without the need to differentiate the coefficients. Their motivation for developing this

alternative approach is that basis extension using polynomial functions often ham-

pers implementation. Their approach considers the variational form of the Galerkin

weighted residual statement and the problem is transformed by including a decaying

function to ensure that the transformed problem may be represented by an unmodifed

and unextended sinc basis.

One apparent absentee from the literature is that of the Sinc-Galerkin formulation for

the Helmholtz equation on a rectangle subject to Neumann or mixed conditions on the

boundary. The physical significance of these problems in acoustics are those subject to

rigid wall or impedance boundary conditions. We present one possible formulation in

Section 7.7. Since this problem is a ‘pure Neumann problem’, it is expected that the

compatibility condition must also be satisfied to ensure that the solution to the prob-

lem remains unique; the boundary conditions not being sufficient to uniquely define

the solution: any constant may be added to one solution to produce another equally

as valid. Another variation on the traditional boundary treatment is proposed by Wu

et al. [355] in 1D and then also in 2D [356]. In principle, these approaches are the

same as using the Hermite polynomials to extend the basis, using a bicubically-blended

Coons patch in 2D to interpolate the boundary conditions. The differences are only
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in terms of the terminology and details of the implementation.

Sinc methods, like wavelet methods [15], are limited in their direct application to rect-

angular or rectangular parallelepiped infinite, semi-infinite or finite geometries. This

is ideal for treating problems with periodic boundary conditions. Attempts to extend

Sinc-Galerkin and similar procedures to more complex geometries or operators either

transform the problem as recommended by McArthur et al. [220] or use a sub-domain

(‘building-block’) approach [210]. The former relies on the conformal invariance of the

operator to allow the results to be transformed back to the original problem [358].

Unfortunately, not every operator of interest satisfies this criterion. The latter di-

vides the domain into ‘patches’ [210] on which individual sinc problems are solved.

Matching conditions at the patch boundaries are used to relate the individual sub-

problems to each other. Overlapping methods are similar to patching methods but

where the sub-domains overlap one another [209, 210]. The simultaneous solution of

the sub-domain problems, proposed by Lybeck & Bowers [210], may demand signifi-

cant memory requirements, depending on the number of sub-domains and the size of

the basis used within each sub-domain. To avoid memory overruns, alternating algo-

rithms may be used, such as the Schwarz-Alternating Method [231], which effectively

handle the coupling on the shared boundary by solving iteratively over the collected

sub-domains [209]. Due to the matching conditions for the patching method being

more cumbersome to implement [210], the overlapping method is generally preferred.

Furthermore, by increasing the overlapping region, the convergence rate of alternating

algorithms used to solve the coupled sub-domain matrix systems may be increased.

Care is required when using domain decomposition to ensure that the basis functions

in each domain are capable of being matched at the boundary. As discussed ear-

lier, the sinc approximation cannot be differentiated at the domain boundary which

not only introduces difficulties when considering boundary value problems featuring

Neumann boundary conditions but also can complicate the construction of matching

conditions for patching methods [210]. In lieu of modifying the basis to ensure the

derivative remains defined (see Section 7.7), Lybeck & Bowers [210] use finite difference

approximations to compute the matching conditions of the patching method under the

assurance of Morlet et al. [232] that the exponential convergence of the method re-

mains in tact. The inclusion of finite difference approximations at the boundary has
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also been used by Narasimhan et al. [241], as an alternative to modifying the basis, to

allow for Neumann boundary conditions. Contrary to the work of Morlet et al. [232],

Wu et al. [355] claim that the inclusion of finite difference solutions will limit the

accuracy of sinc methods and propose an alternative boundary treatment to increase

the rate of convergence. The proposed treatment closely resembles the basis extension

method discussed earlier.

7.2 Green’s Function for the Helmholtz Equation

As we have seen in the previous two chapters, time-harmonic acoustic problems, in the

absence of a mean flow, may be represented by a Helmholtz boundary value problem

(BVP). We initially consider the Dirichlet BVP of the form

(∇2 + k2)u(x, ω) = f(x, ω) in Ω (7.1a)

u(x, ω) = q(x, ω) on ∂S (7.1b)

where x represents the spatial coordinate and ω the frequency of the wave under

consideration. This BVP physically describes an acoustic source f radiating sound

at a given frequency ω into the domain where the resulting acoustic fluctuations are

governed by the linear wave equation and are equal to q on the domain boundary. We

assume the source term to be a function of spatially compact support

supp [f(x, ω)] = y ∈ ΩS

where ΩS ∈ Ω represents a sub-domain of the overall domain Ω we define as being the

‘source region’, within which the spatial coordinate is denoted by y. Physically, this

is the region within which the acoustic sources may be considered to be located. We

develop the analytical solution to this BVP by transforming the differential equation

into an integral equation in which we can substitute the boundary conditions. These

boundary conditions are incorporated in the integral kernel through the Green’s func-

tion Ĝ(x,y, ω), which is dependent on both the position of the observer x and the

source y. This function physically represents the outgoing wave produced by an im-

pulsive unit point source at y subject to the same boundary conditions as the original
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problem. It is the solution to the singular form of the original BVP, where our point

source is described by the Dirac delta function Eqn. (7.2).

(∇2 + k2)Ĝ(x,y, ω) = δ(x− y) in Ω (7.2a)

Ĝ(x,y, ω) = q(x,y, ω) on ∂S (7.2b)

Solution of this BVP yields the exact Green’s function for Eqn. (7.1). In the re-

mainder of this chapter we show that the Sinc-Galerkin method can be a robust and

accurate means of numerically computing Green’s functions for homogeneous Dirichlet

Helmholtz BVPs within a particular class of geometries.

We have chosen to solve the 2D Helmholtz equation rather than a higher-dimensional

version or indeed the time-dependent wave equation for simplicity although the Sinc-

Galerkin may be easily extended to higher dimensions with little effort. As alluded

to earlier, a typical use of the resulting Green’s function would be to integrate it

with an acoustic source term as part of an acoustic analogy. Accurate descriptions of

acoustic sources are usually based on the frequency content as producing an explicitly

time-dependent source description, necessary for the solution of the wave equation,

from either computational or experimental data or using a mathematical model can

be difficult, especially for real sources which may consist of random behaviour [349].

However, we note that if we wished to compute a Green’s function for the wave equa-

tion rather than the Helmholtz equation, the Sinc-Galerkin method has the advantage

of being able to treat the time variable in the same way as the space variables; a

conformal map is used to map the time functions to the interval [0,∞]. Hence, the

method may be applied just as easily to the wave equation as the Helmholtz equation

without the need for a complicated time-stepping algorithm or solution of a system of

ODEs in time [220]. This makes the solution of time-dependent problems both quick

and stable.

7.3 1D Sinc Approximations

We start by presenting the key formulae associated with sinc numerical methods before

extending them to cover our particular application. The one-dimensional sinc series
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for a function f(x) on the real line x ∈ R may be defined for node spacing h > 0 and

integer values of k as

C(f, h)(x) ≡
∞∑
−∞

f(kh)sinc

(
x− kh
h

)
(7.3)

where

sinc(z) ≡ sin(πz)

πz

This series converges for the Paley-Wiener class of complex functions [305] in which

case C is called the cardinal function of f . Since sinc
(
x−kh
h

)
= 1 when x = kh, the

cardinal function can be used to interpolate f at the collocation points {nh}∞n=−∞.

Although this cardinal function representation is exact for Paley-Wiener functions,

we may also use the series to accurately approximate functions outside this class.

Furthermore, we truncate Eqn. (7.3) in practice such that −M ≤ k ≤ N . In these

circumstances, the 1D sinc interpolation formula for f is stated as [204]

f(x) ≈
N∑

k=−M

f(kh)sinc

(
x− kh
h

)
(7.4)

Integration of the series representation Eqn. (7.3) over all space −∞ < x < ∞,

followed by a truncation of the resulting series, defines the 1D quadrature rule

∫ ∞
−∞

f(x)dx ≈ h
N∑

k=−M

f(kh) (7.5)

When using these approximate formulae, it is important to select the parameters

which relate M and N to h such that the approximation converges. It is possible to

select parameters such that the error decays exponentially. Accurate approximations

may then be achieved using a relatively small number of terms in the series. This is

a particular strength of sinc series representations over similar representations such

as Fourier series. The mathematical rules for parameter selection are established

for a number of problems in [204], although in all cases, knowledge of the solution

behaviour at the endpoint of the interval is required. In practice, such information is

rarely available and hence a set of ‘general’ selections are made when performing our

calculations which are detailed later.

For many boundary value problems, the domain boundaries are finite, and Eqn. (7.4)
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may be mapped from x ∈ R to x′ ∈ [a, b] the conformal mapping function φ : x 7→ x′

defined by

φ(x) = ln

(
x− a
b− x

)
(7.6)

If the inverse mapping function is defined by ψ(x′) = φ−1(x′) then we have the new

interpolation formula for the interval [a, b] as

f(x) ≈
N∑

k=−M

f ◦ ψ(kh) [S(k, h) ◦ φ(x)] (7.7)

as well as the new quadrature formulation

∫ b

a

f(x)dx ≈ h

N∑
k=−M

f

φ′
◦ ψ(kh) (7.8)

where we have introduced a shorthand notation for a translated sinc function defined

by

S(k, h)(z) ≡ sinc

(
z − kh
h

)
(7.9)

Fig. 7.1 shows the basis functions k = −1, 0, 1 on the interval [0, 2] as an example

of the translation and mapping of the basis set. For clarity we have not plotted the

curves immediately near the end points. Had we done so, their rapid decay to zero

would be evident.

Finally, as differential equations contain derivatives we also state the following [182]

δ
(n)
jk ≡ hn

dn

dφn
[S(j, h) ◦ φ(x)]

∣∣∣∣
x=xk

n = 0, 1, 2, . . . (7.10)

where xk = φ−1(kh) = ψ(kh). Specifically for the context of this work we note the

values of δ
(0)
jk , δ

(1)
jk and δ

(2)
jk by observing φ(xk)|x=xk

= φ (φ−1(kh)) ≡ x|x=kh and

dn

dφn
[S(j, h) ◦ φ(x)]

∣∣∣∣
x=xk

=
dn

dxn

[
sinc

(
x− jh
h

)]∣∣∣∣
x=kh

giving us
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Figure 7.1: 3 Sinc Basis Functions (shifted to their centring points (circles) and trans-
formed to interval (0,2). The blue curve is k = −1, the green k = 0 and the red
k = 1.)

δ
(0)
jk ≡ [S(j, h) ◦ φ(x)]|x=xk

=

1 j = k

0 j 6= k

(7.11a)

δ
(1)
jk ≡ h

d

dφ
[S(j, h) ◦ φ(x)]

∣∣∣∣
x=xk

=

0 j = k

(−1)k−j

k−j j 6= k

(7.11b)

δ
(2)
jk ≡ h2 d2

dφ2
[S(j, h) ◦ φ(x)]

∣∣∣∣
x=xk

=

−
π2

3
j = k

−2(−1)k−j

(k−j)2 j 6= k

(7.11c)

Next we introduce the Sinc-Galerkin procedure for a two-dimensional Helmholtz BVP

and show the simple extension of the formulae presented in this section to two dimen-

sions.

7.4 2D Sinc-Galerkin for the Helmholtz Equation

The 2D Sinc-Galerkin method for a homogeneous Dirichlet BVP may be derived by

considering the Helmholtz equation on a rectangle (a, b)×(c, d) subject to homogeneous

Dirichlet conditions on the edges Eqn. (7.12).
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(∇2 + k2)u(x, y) = −f(x, y) (x, y) ∈ Ω = (a, b)× (c, d) (7.12a)

u(x, y) = 0 (x, y) ∈ ∂S (7.12b)

Alternatively, as the problem is separable, we could write the original BVP as two

ordinary BVPs: the corresponding BVPs in x for a given yk and in y for a given

xj. The advantage of this latter approach is that the simple discretisation schemes

established for 1D operators [43, 191, 220] may be used to build the higher-dimensional

solution. If boundary conditions are inhomogeneous, a simple change of variable [204]

may be used to transform the BVP from one with inhomogeneous Dirichlet boundary

conditions to one with homogeneous conditions, as in [301], thus. Consider the general

problem

−v′′(x) + p(x)v′(x) + q(x)v(x) = f(x) x ∈ (a, b)

a0v(a) = a2

b0v(b) = b2

Using the linear function

l(x) = Ax+B

with coefficients defined by

A =
b0a2 − a0b2

D

B =
a0b2a− b0a2b

D

D = a0b0(a− b) 6= 0

Finally u(x) = v(x)− l(x) and f̄(x) = f(x)−L[l(x)] where L is the original differential

operator giving

−u′′(x) + p(x)u′(x) + q(x)u(x) = f̄(x) x ∈ (a, b)

a0u(a) = 0

b0u(b) = 0
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As we are considering only the homogeneous Dirichlet problem in this chapter

we may treat the problem directly. Extending Eqn. (7.8) to two dimensions we may

approximate the solution to Eqn. (7.12) as a sinc series

uA(x, y) =
Nx∑

j=−Mx

Ny∑
k=−My

ujkSjk(x, y) (7.13)

In this case, the coefficients at the nodal points of each sinc function in the basis set

are unknown since the solution itself is unknown. These unknown are represented by

the coefficients ujk. The basis functions {Sjk(x, y)} use the shorthand of Eqn. (7.9)

are defined

Sjk(x, y) = [S(j, hx) ◦ φx(x)] [S(k, hy) ◦ φy(y)] (7.14)

The required mapping function for the x-direction is given by

φx(x) = ln
x− a
b− x

which maps (a, b) to (−∞,∞) and for the y direction

φy(y) = ln
y − c
d− y

which maps (c, d) to (−∞,∞). We initiate the Galerkin method by considering the

orthogonalisation of the residual R = −(∇2 + k2)uA − f with respect to the original

basis set of functions Eqn. (7.14)

〈(
−(∇2 + k2)uA − f

)
, Spq

〉
= 0

The inner products are defined by

〈h, g〉 =

∫∫
Ω

h(x, y)g(x, y)w(x)v(y)dxdy

where w(x)v(y) is a weight function. Green’s second identity

∫∫
Ω

(
g∇2h− h∇2g

)
dxdy =

∫
∂S

(
g
∂h

∂n
− h∂g

∂n

)
dΓ
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can be used to swap the derivative operations from the solution to the basis functions

for which the derivatives are known (Eqn. (7.10)). We therefore get, for a constant

wave number, the equivalent integral equation

−
∫∫

Ω

uA∇2gdxdy +BT − k2

∫∫
Ω

uAgdxdy =

∫∫
Ω

fgdxdy

where BT is the boundary integral. As a means of keeping the notation compact we

have used g to represent the weights and basis functions such that

g ≡ g(x, y)

= gx(x)gy(y)

= [S(p, hx) ◦ φx(x)]w(x) [S(q, hy) ◦ φy(y)] v(y)

We continue by expanding the 2D Laplacian operator in the first term in the integral

equation and assume the weight vw is selected to cause BT to vanish. A suitable choice

of weight function to achieve this is w(x)v(x) = 1/
√
φ′x(x)φ′y(y). The purpose of the

weighting function can be to [85, 300]:

1. Simplify the discrete system;

2. Introduce special symmetric structure to reduce computational cost [243];

3. Reduce the truncation error of the infinite series;

4. Force boundary terms to zero (necessary assumption during the application of

quadrature);

5. Allow the approximation to match physical solutions more closely thus reducing

overall errors due to coefficient inaccuracies;

6. Allow the direct analysis of problems on semi-infinite and infinite domains [240];

For a more detailed discussion of appropriate weighting functions see [97]. Our weighted

residual statement is, therefore:

−
∫∫

Ω

uAgyg
′′
xdxdy −

∫∫
Ω

uAgxg
′′
ydxdy − k2

∫∫
Ω

uAgdxdy =

∫∫
Ω

fgdxdy (7.15)
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The weighted residual statement is then discretised by substituting the approximation

for uA and applying the 2D quadrature rule

∫∫
z(x, y)dxdy ≈ hxhy

Nx∑
j=−Mx

Ny∑
k=−My

z(xj, yk)

φ′x(xj)φ
′
y(yk)

which is equivalent to Eqn. (7.8) extended to two dimensions where z(x, y) is an

arbitrary 2D function and the nodal points are represented by combinations of (xj, yk).

A special case of the quadrature rule useful for our analysis, for given values of p and

q, is [182]

∫∫
G(x, y) [S(p, hx) ◦ φx(x)] [S(q, hy) ◦ φy(y)] dxdy ≈ hxhy

G(xp, yq)

φ′x(xp)φ
′
y(yq)

(7.16)

where implicitly the known results of δ
(0)
pj and δ

(0)
qk from Eqn. (7.11) have been used.

The product rule is used on the weighted residual statement (Eqn. (7.15)) to expand

the derivatives in the inner products. Specifically we note that

g′′x(x) = [[S(p, hx) ◦ φx(x)]w(x)]′′

= [S ′w + w′S]
′

= [S ′′w + S ′w′ + w′′S + w′S ′]

= [S ′′w + w′′S + 2S ′w′]

but S ′ = S̃ ′φ′x where S̃ ′ is viewed as a function of φx. Therefore applying the product

rule again S ′′ = S̃ ′φ′′x + S̃ ′′ (φ′x)
2 gives us

=
[
S̃ ′′ (φ′x)

2
w + S̃ ′ (wφ′′x + 2w′φ′x) + Sw′′

]
(7.17)

and likewise for g′′y(y). Application of the quadrature rule to the discretised weighted

residual statement gives us the following discretised equation for a given combination

of basis functions
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v

φ′y
(yq)

Nx∑
j=−Mx

[
− 1

h2
x

δ
(2)
pj φ

′
xw −

1

hx
δ

(1)
pj

(
φ′′x
φ′x
w + 2w′

)
− δ(0)

pj

w′′

φ′x

]
(xj)ujq

+
w

φ′x
(xp)

Ny∑
k=−My

[
− 1

h2
y

δ
(2)
qk φ

′
yv −

1

hy
δ

(1)
qk

(
φ′′y
φ′y
v + 2v′

)
− δ(0)

qk

v′′

φ′y

]
(yk)upk

− k2 vw

φ′xφ
′
y

(xp, yq)upq =
fvw

φ′xφ
′
y

(xp, yq) (7.18)

Allowing p and q to vary over their range of values we generate a system of equations

which after some slight rearrangement can be expressed as

D(φ′x)Ã(w)D(φ′x)V + V
[
D(φ′y)Ã(v)D(φ′y)

]T
− k2V = G

where D represents a diagonal matrix and

Ã(ω) = − 1

h2
I(2) − 1

h
I(1)D

(
φ′′

(φ′)2
+

2ω′

φ′ω

)
−D

(
ω′′

(φ′)2ω

)
V = D(w)UD(v)

G = D(w)FD(v)

(7.19)

where ω can be either v or w and the elements of the matrices I(n) are evaluated using

Eqn. (7.11). Using the definitions D(φ′x)Ã(w)D(φ′x) = Ax and D(φ′y)Ã(v)D(φ′y) = Ay

we represent this system as a generalised Sylvester equation

AxV + VAT
y − k2V = G

⇒ (Ax − k2Imx)V + VAT
y = G (7.20)

Imx is here an identity matrix of size mx × mx, where mx refers to the size of the

x-basis.

7.5 Solution Method

The two most common solution methods for this system are presented in [204] and

comprise:

1. Rewriting the system as a large sparse linear system by concatenating the vectors

and matrices of the current system.
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2. Assuming Ax−k2Imx and AT
y are diagonalisable (depends on the choice of weight

function and order of the problem), factorising to construct V and hence U.

Solution using the former method begins by concatenating the components of the

left hand side of Eqn. (7.20) such that a single linear system is produced. This proce-

dure is described by the following theorem [182].

Theorem 7.5.1 For unknown matrix U, let there be a series of linear systems

A1UB1 + . . .+ AnUBn = G

where the dimensions of the matrices Ai and Bi are mx×mx and my×my respectively

and therefore both U and G are mx ×my. This is equivalent to

Cco(U) = co(G)

where

C ≡ BT
1 ⊗A1 + . . .+ BT

n ⊗A

and the concatenation operator co( ) is defined formally in the appendix of [204].

We may thus rewrite the system Eqn. (7.20) in this form with

C = Imy ⊗
(
Ax − k2Imx

)
+ Ay ⊗ Imx

Also,

coV ≡ co (D(w)UD(v))

= [D(v)⊗D(w)] co(U)

= Dvwco(U)

and hence

co(G) = Dvwco(F)
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The Gauss-Jordan elimination method may be applied to increase computational effi-

ciency, exploiting the special structure of the resulting linear system [219, 220]. Fur-

thermore, as discussed earlier, certain choices of weighting function enable the con-

stituent matrices to be symmetric. In this case, it is possible to dramatically reduce

the number of operations required to solve the system from O(n3) to O(n log n), for

a 1D system of dimension n, and from O(n3
x + nxny) (or O(n3

y + nynx)) to O(nxny),

for a 2D system of dimensions nx × ny, by applying appropriate pre-conditioners as

illustrated by Ng [243].

The alternative procedure for solving Eqn. (7.20) is valid assuming we have chosen a

weight function which enables Ax − k2Imx and AT
y to be diagonalised. If this is true,

then, from classical results, there exists matrices P and Q which satisfy

P−1(Ax − k2Imx)P = Λx

Q−1AT
y Q = Λy

where Λx,y is a diagonal matrix of the eigenvalues of Ax − k2Imx ,A
T
y and matrices P

and Q have columns corresponding to the associated eigenvectors. This allows us to

rewrite the system

ΛxW + WΛy = H

where

W = P−1VQ

H = P−1GQ

If the spectrum of the matrices are denoted

σ(Ax − k2Imx) = {(λx)i}Nxi=−Mx

σ(Ay) = {(λy)j}Nyj=−My

then the components of the unknown matrix W are given by

wij =
hij

(λx)i + (λy)j
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where hij refers to the elements of H. Therefore the unknown values of the coefficients

stored in U may be recovered from

U = D

(
1

v

)
PWQ−1D

(
1

w

)
where we could also have written D

(
1
v

)
≡ D−1(v) and D

(
1
w

)
≡ D−1(w). In order to

implement the method, it is necessary to find P, Q, Λx and Λy.

Of the two methods, the former method requires no presumption of the properties

of the matrices and is a more tractable approach when the PDE has non-constant

coefficients or contains operators and terms of low order [220]. Furthermore, using

the former method of solution, the unknowns in V are treated as a vector which lends

itself to parallel computing systems. The former method is, therefore, selected over the

latter. One obvious disadvantage of the approach is the amount of memory required

to store the large matrices involved. This can put restrictions on the chosen basis size,

and hence approximation accuracy.

7.5.1 Parameter Selection

The optimum choice of Mx and Nx depends on the behaviour of the solution at the

boundaries of the interval. Suitable choices enhance the convergence rates of the

method as the theorems in Lund & Bowers [204] illustrate. However, for practical

problems, the solution is likely to be unknown and hence we use the advice of Mueller

and Shores [238] to make selections they describe as being ‘safe’ in most cases. Specif-

ically, Mueller and Shores recommend

N =

⌈∣∣∣∣αβM + 1

∣∣∣∣⌉
and also

h =

√
πd

αM

and also choose α = β = 1. In addition, we use the choice of d = π/4, considered as

‘conservative’ by Mueller and Shores.
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7.5.2 Removal of the Singularity

At this point it is worth recalling that the exponential convergence of the Sinc-Galerkin

method is only maintained if the problem has at worst regular singular points at the

boundary [305]. By introducing a singular source within the domain, we violate the

conditions for exponential convergence of the sinc series. However, one way to proceed

could be to remove the singularity from the solution and then apply the Sinc-Galerkin

procedure to the non-singular problem, rather than tackling the problem directly. This

would require knowledge of the nature of the singularity in advance, which may not

be available. If, however, we assume the singularity to be of a logarithmic nature we

may write the solution to Eqn. (7.1) as

u(x, y) = ln v(x, y) + ū(x, y)

where ū represents the non-singular part of the solution to be expressed as a sinc

expansion. The equation to solve is then

Lū = −(f + L ln v)

≡ f̄

where L is the Helmholtz operator in the case studied here. Alternatively, we could

use classical results to construct the singularity. For example, the known expansion

for a corner singularity is used in Marin et al. [218]. Such a procedure is not the

focus of this work as we wish to examine how we may directly apply the Sinc-Galerkin

procedure to problems whose solutions contain unknown domain singularities.

7.6 Numerical Validation

We now apply the 2D Sinc-Galerkin formulation established in the previous section

to compute Green’s functions within a rectangular patch subject to homogeneous

Dirichlet-type boundary conditions (g = 0 in Eqn. (7.1)). Although we choose to

compute Green’s functions for the Helmholtz equation, the formulation presented here

may also be used for Laplace’s equation by simply setting the wave number k = 0.

As discussed in Chapter 3, the use of the Green’s function to solve realistic boundary
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value problems is a fast and accurate alternative to common numerical schemes such

as FEM or finite differences provided the Green’s function can be found. Traditionally,

the solution of many acoustic BVPs would have been undertaken using an acoustic

analogy [81, 226, 247]. However, the lack of available Green’s functions for more general

geometries restricts its present use. Choosing the domain to be a patch we allow the

present formulation to be included in a more complicated patching or overlapping

algorithm [209, 210]. Such algorithms allow the method to be applied to a wider class

of geometries. Through the selection of appropriate conformal maps, it is also possible

to apply the Sinc-Galerkin method to semi-infinite and infinite rectangular geometries.

In these cases the Sinc-Galerkin method does not require artificial boundaries or non-

reflecting boundary conditions as would be necessary for use of the FEM for the same

problem, which can be particularly useful. We provide the analytical solutions for

both the examples below which we use as a means of assessing the accuracy of our

results. These examples demonstrate that the Sinc-Galerkin method may be used to

numerically evaluate Green’s functions with accuracy. The extension of the present

formulation to 3D is straightforward [204] but is not performed here to ensure the

results are clearly understood. As a means of examining convergence, we vary the

mesh density uniformly up to a maximum of 3 times the lowest mesh density in order

to show the trend. All computations are performed using MATLAB on an Intel Core

i7 870 CPU.

7.6.1 Source Specification

In order to configure the Sinc-Galerkin method for our problem, we must specify a

suitable source function f . As we are considering the BVP defined by Eqn. (7.2), along

with homogeneous boundary conditions, the source function is equal to the Dirac

delta function centred at (y1, y2). A suitable numerical approximation to the delta

function would be required for many numerical methods, usually by considering the

well-known limits of a Gaussian function [23, 234] or a Lorentzian function. Moreover,

Tornberg and Björn [331] present an analysis of a variety of regularisation techniques

for a delta function with compact support. However, as we use a Galerkin weighted

residual technique, the application of a numerical quadrature to evaluate the source

term inner product is not strictly necessary. The source term is a delta function which
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is an integrable singular function. Therefore we exploit the sifting property to express

the source inner product analytically avoiding any potential error introduced by an

approximation. Using the coordinate definition of the previous section and denoting

the source location in the rectangle by (x0, y0) we have

〈f, Spq〉 =

∫∫
Ω

δ(x− x0)δ(y − y0) [S(p, hx) ◦ φx(x)] [S(q, hy) ◦ φy(y)] dxdy

= Spqvw(x0, y0)

In order to incorporate this into Eqn. (7.18) we need to manipulate this further; in

moving from Eqn. (7.18) to Eqn. (7.20) we have divided both sides by hxhy, multiplied

through by φ′xφ
′
y(xp, yq) and then, due to the definition of G, multiplied through by

vw(xp, yq). Therefore, we incorporate the inverse of these operations in the definition

of f in Eqn. (7.18) giving us a source function defined by

fpq(x0, y0, xp, yq) ≡
1

hxhy
[Spqvw] (x0, y0)

[
vw

φ′xφ
′
y

]
(xp, yq) (7.21)

7.6.2 Green’s Function for the 2D Helmholtz equation

We consider the Green’s function for the Helmholtz equation in a rectangle subject

to homogeneous Dirichlet boundary conditions on the walls (Eqn. (7.2) with g = 0).

The analytical solution to the problem may be constructed using a double Fourier sine

transform method thus [285]: Starting with

(
∇2 + k2

)
u(x, y) = −f(x, y)

and letting

f(x, y) = f0F (x, y)

gives (
∇2 + k2

)
u(x, y) = −f0F (x, y)

Given the boundary conditions we may apply double Fourier sine transforms to both

sides by multiplying by sin
(
nπx
a

)
sin
(
mπy
b

)
and integrating over the rectangle
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a∫
0

b∫
0

[
∇2u(x, y) + k2u(x, y)

]
sin
(nπx

a

)
sin
(mπy

b

)
dydx

= −f0

a∫
0

b∫
0

F (x, y) sin
(nπx

a

)
sin
(mπy

b

)
dydx

Integrating the left hand side by parts term by term and applying the boundary

conditions gives

− n2π2

a2

a∫
0

b∫
0

u(x, y) sin
(nπx

a

)
sin
(mπy

b

)
dydx

− m2π2

b2

a∫
0

b∫
0

u(x, y) sin
(nπx

a

)
sin
(mπy

b

)
dydx

+ k2

a∫
0

b∫
0

u(x, y) sin
(nπx

a

)
sin
(mπy

b

)
dydx

Factorising and rearranging gives

a∫
0

b∫
0

u(x, y) sin
(nπx

a

)
sin
(mπy

b

)
dydx =

f0

a∫
0

b∫
0

F (x, y) sin
(
nπx
a

)
sin
(
mπy
b

)
dydx

π2
(
n2

a2
+ m2

b2

)
− k2

In order to obtain an expression for u on the left hand side, we next take the inverse

transform which gives for a general source F and (η, ξ) ∈ (0 ≤ x ≤ a, 0 ≤ y ≤ b)

u(x, y) =
4f0

ab

∞∑
n=1

∞∑
m=1

sin
(
nπx
a

)
sin
(
mπy
b

)
π2
(
n2

a2
+ m2

b2

)
− k2

a∫
0

b∫
0

F (η, ξ) sin
(nπη

a

)
sin

(
mπξ

b

)
dξdη


For the Green’s function we substitute F (η, ξ) = δ(η − η0)δ(ξ − ξ0) and evaluate the

integral to give the following analytical Green’s function

u(x, y) =
4f0

ab

∞∑
n=1

∞∑
m=1

[
sin
(
nπx
a

)
sin
(
mπy
b

)
sin
(
nπη0
a

)
sin
(
mπξ0
b

)
π2
(
n2

a2
+ m2

b2

)
− k2

]
(7.22)

Equation (7.22) describes the outgoing wave of wave-number k, produced by a point

source of strength f0, located at (η0, ξ0), observed at (x, y) subject to pressure release

boundary conditions (u = 0) on the boundaries of a rectangle of dimensions a× b.
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7.6.3 Centred Source

We now look at applying the 2D Sinc-Galerkin method developed earlier to solve the

BVP whose solution is given by Eqn. (7.22). We consider first the case where the

source is located at the centre of the rectangle. The number of terms used in the sinc

expansion (size of the basis) in both the x and y-directions are the same (as the ex-

pected solution is symmetric) and equal to 8 uniformly spaced values between M = 12

and M = 36. This range allows us to increase the mesh density by up to a factor of

3. We also vary the frequency (and hence the wave number k). We test 4 frequencies

in the range 20 Hz to 2000 Hz. The lower limit is the lowest audible frequency and

the upper limit chosen so that the plots do not contain too many high order modes

making them difficult to read. The analytical solution Eqn. (7.22) is evaluated at each

of the four frequencies truncating the series after 50 terms, by which time the series

has suitably converged. The Sinc-Galerkin results for an expansion of 2M+1 = 65 (32

sinc functions either side of the centre plus a single function at the centre) is compared

to the analytical solution at the tested frequencies in Fig. 7.2. All plots use the same

colour scale.

Figure 7.2 illustrates that the analytical solution behaves as expected: the homo-

geneous Dirichlet boundary conditions are met as the solutions tends to zero on all

boundary edges. In fact, every one of the sinc functions in the basis set decay to zero

at the edge of the domain which ensures this boundary condition is satisfied by the

composite solution. The characteristic singularity of the Green’s function at the centre

of the point source is also visible. As the frequency is increased the higher harmonics

of the allowable modes appear which is expected to put increased demands on the abil-

ity of the numerical schemes to resolve the solution. By comparing the Sinc-Galerkin

solution to the analytical solution, we see that the singularity is only captured up to a

point, with the precision of the sinc-based approximation in the immediate vicinity of

the source point being lost. This is the principle source of error when using the Sinc-

Galerkin to solve our class of BVP. This may be attributed to the uneven distribution

of sinc mesh points: our source is located in the centre of the region under consid-

eration. This coincides with the region most sparsely populated with mesh nodes.

Therefore, it is expected that steep gradients are difficult to represent in this region.

In addition, the peak of the sinc function has a value of unity and hence to capture a
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(a) f=20 (left column) and f=680 (right column)

singularity requires a relatively large coefficient which would impact the contribution

of this function over the whole of the domain. The resulting behaviour is, therefore,

a trade-off between overall accuracy and the ability to capture the singularity. If the

method were included as part of a domain decomposition approach to the problem, the

sub-domain boundaries could be defined such that the singularity is situated on the

boundary. In this case, the exponential convergence of the method could be restored.

We present the relative error and the execution time for all frequencies tested (Fig. 7.3a

(log scale) and Fig. 7.3b). For most of the mesh densities tested, the Sinc-Galerkin

method performs reasonably well with the mean relative error remaining less than 15%.

Initially, for the highest frequency, the method performs poorly. This is due to the

basis being of insufficient size to ensure the expansion converges to a suitable degree

as to accurately represent the field – a trait common to spectral/spatial methods with

a finite set of basis functions. As the number of terms in the expansion is increased,

the error begins to reduce. Although at the highest mesh density tested the relative

error is still large, it is driven by a combination of localised error in the vicinity of the



CHAPTER 7. SINC-GALERKIN METHOD 172

(b) f=1340 (left column) and f=2000 (right column)

Figure 7.2: Results for the analytical expression Eqn. (7.22) (top row) and Sinc-
Galerkin M=32 (bottom row) for a source centred in the unit square
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singularity, specifically at the ‘tip’, and small errors in regions where the analytical

representation is near zero resulting in large relative errors. Figure 7.2 supports this

assertion as qualitatively the results agree well.

Despite the presence of a domain singularity, in the main, the lines are roughly linear

which suggests an exponential variation (logarithmic scale). Figure 7.3a also indicates

the limit of exponential convergence based on the error at the lowest mesh density.

This limit is computed from setting the error equal to

A(f)e−
√
N (7.23)

equivalent to setting k = 1 in the expression given in Section 7.1.0.1. The constant

A(f) is frequency dependent and is chosen such that the curves coincide at the low-

est mesh density. The convergence is generally uneven with mesh density and varies

with frequency, with the lowest frequency converging less than exponentially with

mesh density. However, in the case of the higher frequencies, it converges at worst

with the exponential convergence limit and in some cases exceeds this. We conclude

that the exponential convergence of the method can still be achieved but the decay

is significantly slower than other studies whose solutions do not contain a singularity.

This is expected as spectral methods generally only guarantee rapid convergence when

the functions being represented are smooth without strong singularities or disconti-

nuities. Convergence rates may be improved by implementing the double exponential

transformation ([245, 307, 356]).

7.6.4 Near-Boundary Source

For sources near to the boundary, many boundary integral techniques fail due to the

proximity of the singularity to the collocation points. The steep gradients of the exact

solution exacerbates the role of small errors in integration. It is of interest, therefore,

to examine the case of a near-boundary source. With the Sinc-Galerkin method, we

effectively locate the singularity in a region of the domain with a denser sinc node

distribution. This distribution is a result of the non-linear conformal transformation

of the evenly-spaced sinc nodes along the real line. We expect to see an improvement

in the Sinc-Galerkin’s ability to capture the singularity. We repeat the same tests as

in the previous section but locate the source with an x-coordinate corresponding to
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(a) f=20 (solid blue), f=680 (dashed green), f=1340 (dotted red), f=2000 (dot-dash
cyan)

(b) f=20 (solid blue), f=680 (dashed green), f=1340 (dotted red), f=2000 (dot-dash
cyan)

Figure 7.3: Relative error (top) and execution time in seconds (bottom) for Sinc-
Galerkin for M = 12 to M = 36 (horizontal axis) for a centred source. The limit of
exponential behaviour according to Eqn. (7.23) is shown in black for each frequency.
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(a) f=20 (left column) and f=680 (right column)

x/W = 0.1 where W = 1 is the domain width. As before, we plot the surfaces for a

Sinc-Galerkin expansion of 2M +1 = 65 and compare to the analytical solution, again

evaluated using 50 terms of the expansion Eqn. (7.22). We also plot the relative error

and the execution time in all cases (Fig. 7.5a and Fig. 7.5b).

The analytical solution, plotted in Fig. 7.4, again illustrates the expected behaviour

including the singularity located nearer the boundary. The inclusion of higher-order

modes and spreading of the acoustic wave is visible at f > 680 Hz. Although the

Sinc-Galerkin results indicate that the decay of the solution is well-represented away

from the singularity, again the immediate vicinity of the singularity is not captured in

its entirety. Singularities in the Green’s function are often interpreted as representing

regions of significant sound pressure (potentially due to scattering) and the loss of

resolution could be viewed as a significant drawback of the method. However, as we

see from Fig. 7.4, the tendency of the solution to develop into a singularity remains

clear despite the point itself being lost. Therefore, the implications of the loss in

fidelity may not be as severe as first appears. However, this suggestion should be
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(b) f=1340 (left column) and f=2000 (right column)

Figure 7.4: Results the analytical expression Eqn. (7.22) (top row) and Sinc-Galerkin
M=32 (bottom row) for a source near the boundary of the unit square
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investigated further as part of future work by linking the Green’s function computed

using the Sinc-Galerkin method to an acoustic analogy to explore the implications of

errors in singular regions on the observed sound field.

When comparing Fig. 7.5a to Fig. 7.3a, the error now increases with frequency

across the whole range tested unlike for the centred source with an increase in the

overall error of the order 10−0.5. The Sinc-Galerkin generally converges exponentially

again (straight line on the logarithmic graph) and convergence remains relatively quick

regardless of frequency. The exception is the highest frequency tested where the con-

vergence is less predictable. The behaviour is, however, not entirely unexpected: more

terms are required for the expansion to represent the rapid changes in the solution at

the highest frequency. Clearly, there is a minimum number of terms required before

the cancellation between the high frequency modes begins to aid accuracy rather than

exacerbate inaccuracies. This may explain the ‘hump’ in convergence observable in

the figure. Overall, both Fig. 7.5b and Fig. 7.3b show little sensitivity to source loca-

tion. This indicates that the source location selected here is insufficiently close to the

boundary as to cause any notable computational difficulties. Moving the source closer

to the boundary, therefore, has little effect on both the overall error, execution time

and the convergence of the Sinc-Galerkin method.
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(a) f=20 (solid blue), f=680 (dashed green), f=1340 (dotted red), f=2000 (dot-dash
cyan)

(b) f=20 (solid blue), f=680 (dashed green), f=1340 (dotted red), f=2000 (dot-dash
cyan)

Figure 7.5: Relative error (top) and execution time in seconds (bottom) for Sinc-
Galerkin for M = 12 to M = 36 (horizontal axis) for a near-boundary source. The
limit of exponential behaviour according to Eqn. (7.23) is shown in black for each
frequency.
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7.7 2D Sinc-Galerkin for the Helmholtz Equation

with Neumann Boundary Conditions

Our analysis has focused up to this point on the Dirichlet formulation. For a number

of other useful acoustic problems, boundary conditions involve the spatial derivative

of the solution. This derivative condition is commonly referred to as the Neumann

boundary condition. In order to apply the Sinc-Galerkin method to problems featuring

such boundary conditions, we introduce here a suitable discretisation of the problem,

guided by the work of Lund and Bowers [204].

7.7.1 Formulation

Two modifications are required to our basis in order to allow their application to the

latter BVP. First, since by definition, 1D sinc functions satisfy homogeneous Dirichlet

conditions at the ends of the interval, they are incapable of representing a non-zero

boundary solution. The first modification is to extend the basis to include functions

which represent the solution in the vicinity of the boundary. For simplicity, the mod-

ification are initially applied to the 1D BVP

L [u(x)] = −u′′(x) + p(x)u′(x) + q(x)u(x) = f(x) x ∈ [a, b]

a0u(a)− a1u
′(a) = 0

b0u(b) + b1u
′(b) = 0

The values of a0, a1, b0, b1 are positive and if a1 = 0 then b1 6= 0 and vice versa

[204]. The basis may be extended by two additional functions wa(x) and wb(x) giving

approximate solution

uA(x) = u−M−1wa(x) +

(
N∑

k=−M

ukξk(x)

)
+ uN+1wb(x)

where ξk(x) are, for now, the usual shifted sinc function basis components Eqn. (7.14).

The boundary functions wa and wb are interpolating Hermite functions of order 3

which interpolate the boundary conditions given in the problem definition as
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wa(x) = a0
(x− a)(b− x)2

(b− a)2
+ a1

(2x+ b− 3a)(b− x)2

(b− a)3

wb(x) = b1
(−2x+ 3b− a)(x− a)2

(b− a)3
+ b0

(b− x)(x− a)2

(b− a)2

The second modification is to divide the sinc functions in the basis by φ′ to ensure

that the derivative of each basis function is defined at the boundary, which will in turn

ensure that the solution remains defined in these regions. Consider then the Helmholtz

BVP with homogeneous Neumann conditions on a square domain defined as

(∇2 + k2)u(x, y) = −f(x, y) (x, y) ∈ Ω = (a, b)× (c, d)

du

dn
= 0 (x, y) ∈ Γ

The approximate solution defined in terms of the modified and extended basis is given

by

uA(x, y) =

Ny+1∑
k=−My−1

Nx+1∑
j=−Mx−1

ujkξj(x)ζk(y)

where

ξj(x) =


w0(x) j = −Mx − 1

S(j,hx)◦φx(x)
φ′x(x)

≡ S̃j j = −Mx, . . . , Nx

w1(x) j = Nx + 1

and

ζk(y) =


w2(y) k = −My − 1

S(k,hy)◦φy(y)

φ′y(y)
≡ S̃k k = −My, . . . , Ny

w3(y) k = Ny + 1

The ensuing method now is based on the following modified inner product orthogonal-

isation which is not a true Galerkin procedure but a Petrov-Galerkin procedure since

the basis functions used for the orthogonalisation are a different set to the base used

to represent the approximate solution. In fact, we now orthogonalise the residual with

respect to the unmodified basis set
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Spq ≡ [S(p, hx) ◦ φx(x)] [S(q, hy) ◦ φy(y)]

for −Mx− 1 ≤ p ≤ Nx + 1 and −My− 1 ≤ q ≤ Ny + 1. We follow the convention [182]

and split up the approximate solution. Our problem produces 9 sub-sets defined thus

uA(x, y) = u(−Mx−1)(−My−1)w0(x)w2(y) +
Nx∑

j=−Mx

uj(−My−1)S̃j(x)w2(y)

+ u(Nx+1)(−My−1)w1(x)w2(y) +

Ny∑
k=−My

u(−Mx−1)kw0(x)S̃k(y)

+

Ny∑
k=−My

Nx∑
j=−Mx

ujkS̃j(x)S̃k(y) +

Ny∑
k=−My

u(Nx+1)kw1(x)S̃k(y)

+ u(−Mx−1)(Ny+1)w0(x)w3(y) +
Nx∑

j=−Mx

uj(Nt+1)S̃j(x)w3(y)

+ u(Nx+1)(Ny+1)w1(x)w3(y)

≡ uA1(x, y) + uA2(x, y) + uA3(x, y) + uA4(x, y) + uA5(x, y)

+ uA6(x, y) + uA7(x, y) + uA8(x, y) + uA9(x, y)

We see that uA5 is equivalent to the approximation using for the associated Dirichlet

problem (Eqn. (7.13)) with the additional terms arising due to the boundary condi-

tions. We now look at each inner product of the residual and the unmodified basis set

in turn and throughout make use of the quadrature rule (Eqn. (7.16)) and the delta

notation of Eqn. (7.11) and we also note that our operator L ≡
(
∂2

∂x2
+ ∂2

∂y2
+ k2

)
.

First we start with the inner product featuring uA1 where the weighting function is

given by w(x)v(y).

〈L[uA1], Sp(x)Sq(y)〉 = u(−Mx−1)(−My−1)

{∫∫
w′′0(x)w2(y)Sp(x)Sq(y)w(x)v(y)dxdy

+

∫∫
w0(x)w′′2(y)Sp(x)Sq(y)w(x)v(y)dxdy

+ k2

∫∫
w0(x)w2(y)Sp(x)Sq(y)w(x)v(y)dxdy

}



CHAPTER 7. SINC-GALERKIN METHOD 182

There is no need for any application of Green’s second identity or integration parts,

we can just apply the quadrature rule directly giving us

〈L[uA1], Sp(x)Sq(y)〉 ≈ hxhy

[
w′′0w

φ′x
(xp)

w2v

φ′y
(yq)u(−Mx−1)(−My−1)

+
w0w

φ′x
(xp)

w′′2v

φ′y
(yq)u(−Mx−1)(−My−1) + k2w0w

φ′x
(xp)

w2v

φ′y
(yq)u(−Mx−1)(−My−1)

]
Since uA3, uA7 and uA9 are very similar we can immediately write down their inner

product approximations

〈L[uA3], Sp(x)Sq(y)〉 ≈ hxhy

[
w′′1w

φ′x
(xp)

w2v

φ′y
(yq)u(Nx+1)(−My−1)

+
w1w

φ′x
(xp)

w′′2v

φ′y
(yq)u(Nx+1)(−My−1) + k2w1w

φ′x
(xp)

w2v

φ′y
(yq)u(Nx+1)(−My−1)

]

〈L[uA7], Sp(x)Sq(y)〉 ≈ hxhy

[
w′′0w

φ′x
(xp)

w3v

φ′y
(yq)u(−Mx−1)(Ny+1)

+
w0w

φ′x
(xp)

w′′3v

φ′y
(yq)u(−Mx−1)(Ny+1) + k2w0w

φ′x
(xp)

w3v

φ′y
(yq)u(−Mx−1)(Ny+1)

]

〈L[uA9], Sp(x)Sq(y)〉 ≈ hxhy

[
w′′1w

φ′x
(xp)

w3v

φ′y
(yq)u(Nx+1)(Ny+1)

+
w1w

φ′x
(xp)

w′′3v

φ′y
(yq)u(Nx+1)(Ny+1) + k2w1w

φ′x
(xp)

w3v

φ′y
(yq)u(Nx+1)(Ny+1)

]
Now we consider the inner product associated with uA2 which is

〈L[uA2], Sp(x)Sq(y)〉 =
Nx∑

j=−Mx

uj(−My−1)

{∫∫
S̃ ′′j (x)w2(y)Sp(x)Sq(y)w(x)v(y)dxdy

+

∫∫
S̃j(x)w′′2(y)Sp(x)Sq(y)w(x)v(y)dxdy

+ k2

∫∫
S̃j(x)w2(y)Sp(x)Sq(y)w(x)v(y)dxdy

}
This time, before we apply quadrature, we need to apply Green’s second identity to

the first inner product to transfer the derivative onto the sinc basis. Implicitly in the
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process we assume the weighting functions will be selected to ensure the boundary

terms vanish. The first integral becomes

∫∫
S̃ ′′j (x)w2(y)Sp(x)Sq(y)w(x)v(y)dxdy 7→

−
∫∫

S̃j(x)w2(y)Sq(y)v(y) [Sp(x)w(x)]′′ dxdy

We use the product definition of Eqn. (7.17) to arrive at the final approximation.

〈L[uA2], Sp(x)Sq(y)〉 ≈ hxhy

Nx∑
j=−Mx

uj(−My−1)

{
w

[φ′x]
2
(xj)δ

(0)
pj

w′′2v

φ′y
(yq)

+ k2 w

[φ′x]
2
(xj)δ

(0)
pj

w2v

φ′y
(yq)

− 1

[φ′x]
2

[
δ

(2)
pj

h2
x

[φ′x]
2w +

δ
(1)
pj

hx
(wφ′′x + 2w′φ′x) + δ

(0)
pj w

′′

]
(xj)

w2v

φ′y
(yq)

}
It should be noted that the definition of S̃j ≡ Sj/φ

′
x has been substituted to ensure

the delta definitions could be used. This accounts for one of the φ′x’s appearing in the

denominator of the first part of the approximation where the second, which makes the

denominator a square, is due to the quadrature definition. We may immediately write

down the expression for uA8

〈L[uA8], Sp(x)Sq(y)〉 ≈ hxhy

Nx∑
j=−Mx

uj(Ny+1)

{
w

[φ′x]
2
(xj)δ

(0)
pj

w′′3v

φ′y
(yq)

+ k2 w

[φ′x]
2
(xj)δ

(0)
pj

w3v

φ′y
(yq)

− 1

[φ′x]
2

[
δ

(2)
pj

h2
x

[φ′x]
2w +

δ
(1)
pj

hx
(wφ′′x + 2w′φ′x) + δ

(0)
pj w

′′

]
(xj)

w3v

φ′y
(yq)

}
For uA4 and uA6 we have a similar analysis

〈L[uA4], Sp(x)Sq(y)〉 =

Ny∑
k=−My

u(−My−1)k

{∫∫
w′′0(x)S̃k(y)Sp(x)Sq(y)w(x)v(y)dxdy

+

∫∫
w0(x)S̃ ′′k (y)Sp(x)Sq(y)w(x)v(y)dxdy

+ k2

∫∫
w0(x)S̃k(y)Sp(x)Sq(y)w(x)v(y)dxdy

}
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As before, we apply Green’s second identity to transfer the derivative operations to

the basis. However, this time, we apply it to the second inner product. The second

integral becomes

∫∫
w0(x)S̃ ′′k (y)Sp(x)Sq(y)w(x)v(y)dxdy 7→

−
∫∫

w0(x)S̃k(y)Sp(x)w(x) [Sq(y)v(y)]′′ dxdy

We use the product definition of Eqn. (7.17) again to arrive at the final approximation.

〈L[uA4], Sp(x)Sq(y)〉 ≈ hxhy

Ny∑
k=−My

u(−Mx−1)k

{
w′′0w

φ′x
(xp)

v

[φ′y]
2
(yk)δ

(0)
qk

− 1

[φ′y]
2

[
δ

(2)
qk

h2
y

[φ′y]
2v +

δ
(1)
qk

hy

(
vφ′′y + 2v′φ′y

)
+ δ

(0)
qk v

′′

]
(yk)

w0w

φ′x
(xp)

+ k2w0w

φ′x
(xp)

v

[φ′y]
2
(yk)δ

(0)
qk

}
Immediately we find uA6 to be

〈L[uA6], Sp(x)Sq(y)〉 ≈ hxhy

Ny∑
k=−My

u(Nx+1)k

{
w′′1w

φ′x
(xp)

v

[φ′y]
2
(yk)δ

(0)
qk

− 1

[φ′y]
2

[
δ

(2)
qk

h2
y

[φ′y]
2v +

δ
(1)
qk

hy

(
vφ′′y + 2v′φ′y

)
+ δ

(0)
qk v

′′

]
(yk)

w1w

φ′x
(xp)

+ k2w1w

φ′x
(xp)

v

[φ′y]
2
(yk)δ

(0)
qk

}
We then have the formulation for uA5 which is

〈L[uA5], Sp(x)Sq(y)〉 =

Ny∑
k=−My

Nx∑
j=−Mx

ujk

{∫∫
S̃j(x)S̃ ′′k (y)Sp(x)Sq(y)w(x)v(y)dxdy

+

∫∫
S̃ ′′j (x)S̃k(y)Sp(x)Sq(y)w(x)v(y)dxdy

+ k2

∫∫
S̃j(x)S̃k(y)Sp(x)Sq(y)w(x)v(y)dxdy

}
Using Green’s second identity on the first and second integrals this time we get
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S̃j(x)S̃ ′′k (y)Sp(x)Sq(y)w(x)v(y)dxdy 7→

−
∫∫

S̃j(x)S̃k(y)Sp(x)w(x) [Sq(y)v(y)]′′ dxdy

and

S̃ ′′j (x)S̃k(y)Sp(x)Sq(y)w(x)v(y)dxdy 7→

−
∫∫

S̃j(x)S̃k(y)Sq(y)v(y) [Sp(x)w(x)]′′ dxdy

Hence using the quadrature rule and the usual product rule substitution, we get

〈L[uA5], Sp(x)Sq(y)〉 ≈ hxhy

Ny∑
k=−My

Nx∑
j=−Mx

ujk

{
ṽ

φ′y
(yk)δ

(0)
qk ×[

− 1

h2
x

δ
(2)
pj φ

′
xw̃ −

1

hx
δ

(1)
pj

(
φ′′x
φ′x
w̃ + 2w̃′

)
− δ(0)

pj

w̃′′

φ′x

]
(xj)

+
w̃

φ′x
(xj)δ

(0)
pj

[
− 1

h2
y

δ
(2)
qk φ

′
yṽ −

1

hy
δ

(1)
qk

(
φ′′y
φ′y
ṽ + 2ṽ′

)
− δ(0)

qk

ṽ′′

φ′y

]
(yk)

−k2 ṽw̃

φ′xφ
′
y

(xj, yk)δ
(0)
pj δ

(0)
qk

}
Inclusion of the usual tilde notation (signifying division by the derivative of the map)

as well as the replacement of all the δ(0) with the appropriate value of coefficient u,

is performed to show the similarity to the Dirichlet formulation (Eqn. (7.18)). In

particular, note the definitions of the derivatives

ṽ′ =
v′

φ′
6=
(
v

φ′

)′
ṽ′′ =

v′′

φ′
6=
(
v

φ′

)′′
The fact that the Neumann formulation bears a resemblance to the Dirichlet formu-

lation makes implementation easier as existing Dirichlet code may be used as a basis.

Finally, the source function inner product is given by

〈f(x, y), Sp(x)Sq(y)〉 =

∫∫
f(x, y)Sp(x)Sq(y)w(x)v(y)dxdy

≈ hxhy
fwv

φ′xφ
′
y

(xp, yq)
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7.7.2 Modified Solution Method

The aim now is to assemble these individual discretised formulations into matrix sys-

tems of the form A1UB1 +. . .+AnUBn. These systems can then be combined to form

the generalised Sylvester equation AUB + CUD = F which we have seen before. If

the number of basis functions in the unmodified set with which we are orthogonalising

is given by mx × my then we can say p ∈ mx and q ∈ my. With the original mod-

ified and extended basis, we can identify the basis without the additional extending

boundary functions by nx = mx − 2 and ny = my − 2. Therefore j ∈ nx and k ∈ ny.

First, we consider the sub-systems assembled from the inner products involving the

components uA1, uA3, uA7 and uA9 which are all of the form

AUB + ΓU∆ + k2ΓUB

where U is a mx × my matrix of coefficients and the remaining matrices are block

matrices. The block matrices in this system are defined in Table 7.1.

The sub-systems assembled from the inner products involving uA2 and uA8 are all of

the form

H̃UB + ΓU∆ + k2ΓUB

The block matrices in this system are defined in Table 7.2.

The sub-systems assembled from the inner products involving uA4 and uA6 are of the

form

∆UΓ + BUH̃ + k2BUΓ

with the block matrices defined in Table 7.3.

Finally, the sub-system which forms from the uA5 inner product is of the form

H̃UB + ΓUZ̃ + k2ΓUB

where the block matrices are defined in Table 7.4. We may now use Theorem 7.5.1 to

find the coefficients contained within the matrix U.

The structure of the final matrix system is similar to that of the Dirichlet formu-

lation. The ‘core’ of the matrices are identical the matrices describing the Dirichlet
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Table 7.1: Block Matrices for Sub-System Type 1

uA1 uA3 uA7 uA9

A(mx ×mx)

[
α 0

] [
0 α

] [
α 0

] [
0 α

]
α =

w′′0w/φ
′
x(xp)

α =
w′′1w/φ

′
x(xp)

α =
w′′0w/φ

′
x(xp)

α =
w′′1w/φ

′
x(xp)

B(my ×my)

[
β
0

] [
β
0

] [
0
β

] [
0
β

]
β =

w2v/φ
′
y(yq)

β =
w2v/φ

′
y(yq)

β =
w3v/φ

′
y(yq)

β =
w3v/φ

′
y(yq)

Γ(mx ×mx)

[
γ 0

] [
γ 0

] [
0 γ

] [
0 γ

]
γ =

w0w/φ
′
x(xp)

γ =
w1w/φ

′
x(xp)

γ =
w0w/φ

′
x(xp)

γ =
w1w/φ

′
x(xp)

∆(my ×my)

[
δ
0

] [
0
δ

] [
δ
0

] [
0
δ

]
δ =

w′′2v/φ
′
y(yq)

δ =
w′′2v/φ

′
y(yq)

δ =
w′′3v/φ

′
y(yq)

δ =
w′′3v/φ

′
y(yq)
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Table 7.2: Block Matrices for Sub-System Type 2

uA2 uA8

H̃(mx ×mx)

[
0 η̃ 0

] [
0 η̃ 0

]
η̃ = HA η̃ = HA

H(mx × nx)
η η
η =(

δ
(2)
pj

h2x
[φ′x]

2w +
δ
(1)
pj

hx
(wφ′′x

η =(
δ
(2)
pj

h2x
[φ′x]

2w +
δ
(1)
pj

hx
(wφ′′x

+2w′φ′x) + δ
(0)
pj w

′′
)

(xj) +2w′φ′x) + δ
(0)
pj w

′′
)

(xj)

A(nx × nx)
diag[α] diag[α]

α = −1/[φ′x]
2(xj) α = −1/[φ′x]

2(xj)

B(my ×my)

[
β
0

] [
0
β

]
β = w2v/φ

′
y(yq) β = w3v/φ

′
y(yq)

Γ(mx ×mx)

 0
0

diag[γ]
0

0

  0
0

diag[γ]
0

0


γ = w/[φ′x]

2(xj) γ = w/[φ′x]
2(xj)

∆(my ×my)

[
δ
0

] [
0
δ

]
δ = w′′2v/φ

′
y(yq) δ = w′′3v/φ

′
y(yq)
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Table 7.3: Block Matrices for Sub-System Type 3

uA4 uA6

H̃(my ×my)

 0
η̃
0

  0
η̃
0


η̃ = (HA)T η̃ = (HA)T

H(my × ny)
η η

η =

(
δ
(2)
qk

h2y
[φ′y]

2v +
δ
(1)
qk

hy
(vφ′′y η =

(
δ
(2)
qk

h2y
[φ′y]

2v +
δ
(1)
qk

hy
(vφ′′y

+2v′φ′y) + δ
(0)
qk v

′′
)

(yk) +2v′φ′y) + δ
(0)
qk v

′′
)

(yk)

A(ny × ny)
diag[α] diag[α]

α = −1/[φ′y]
2(yk) α = −1/[φ′y]

2(yk)

B(mx ×mx)

[
β 0

] [
0 β

]
β = w0w/φ

′
x(xp) β = w1w/φ

′
x(xp)

Γ(my ×my)

 0
0

diag[γ]
0

0

  0
0

diag[γ]
0

0


γ = v/[φ′y]

2(yk) γ = v/[φ′y]
2(yk)

∆(mx ×mx)

[
δ 0

] [
0 δ

]
δ = w′′0w/φ

′
x(xp) δ = w′′1w/φ

′
x(xp)
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Table 7.4: Block Matrices for Sub-System Type 4

uA5

H̃(mx ×mx)
[

0 η̃ 0
]

η̃ = HA

H(mx × nx)
η

η =

(
δ
(2)
pj

h2x
[φ′x]

2w +
δ
(1)
pj

hx
(wφ′′x + 2w′φ′x) + δ

(0)
pj w

′′
)

(xj)

A(nx × nx) diag[α] α = −1/[φ′x]
2(xj)

B(my ×my)

 0
0

diag[β]
0

0


β = v/[φ′y]

2(yk)

Γ(mx ×mx)

 0
0

diag[γ]
0

0


γ = w/[φ′x]

2(xj)

Z̃(my ×my)

 0

ζ̃
0


ζ̃ = (Z∆)T

Z(my × ny)
ζ

ζ =

(
δ
(2)
qk

h2y
[φ′y]

2v +
δ
(1)
qk

hy
(vφ′′y + 2v′φ′y) + δ

(0)
qk v

′′
)

(yk)

∆(ny × ny) diag[δ] δ = −1/[φ′y]
2(yk)
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formulation but, in the Neumann formulation, are now bordered. These borders reflect

the additional set of equations generated by the 2D interpolating boundary functions.

The implementation of the Neumann formulation was not pursued as part of this

project due to time constraints.

7.8 Summary

We have applied the 2D Sinc-Galerkin method to numerically evaluate the Green’s

function for the Helmholtz equation in a rectangular patch subject to homogeneous

Dirichlet boundary conditions. The results for a range of frequencies and mesh den-

sities have been presented and in terms of relative error and execution time. The

results illustrate that increasing the basis size of the Sinc-Galerkin method by a factor

of 3 results in a slower convergence than the exponential convergence characteristic of

the method applied to other BVPs. However, the number of operations required to

solve the Sinc-Galerkin system may be dramatically reduced in the future by applying

specialist algorithms as illustrated by Ng [243]. Furthermore, the domain singularity

is not completely captured in the immediate vicinity of the point itself. However, a

suitable means of domain decomposition could move this singularity onto the bound-

ary and more rapid exponential convergence of the method could be restored. Overall

representation of the solution is relatively accurate, robust and quick to evaluate. As

the basis size increases, the time taken to execute and storage requirements increase

non-linearly however. The general efficiency of the method may be attributed to the

lack of a requirement for expensive numerical integration. Furthermore, despite the

domain singularity, which reduces the potency of the exponential convergence of the

Sinc-Galerkin method, for most combinations of mesh density and frequency tested,

the Sinc-Galerkin achieves acceptably low relative errors. Finally, the Sinc-Galerkin is

insensitive to a source located near to the boundary which highlights the robustness

of the method. The formulation presented may be easily extended to 3D spatial and

temporal variations and a formulation for Neumann (or mixed) boundary conditions

is presented.

This chapter has explored a third and final method for computing acoustic Green’s

functions numerically. We have shown that it is capable of complimenting the other
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two methods in terms of both applicability, accuracy and speed. In the next chapter

we draw the analysis of the previous three together by comparing and contrasting the

methods.



Chapter 8

Comparison & Assessment of the

Methods

Three methods have been used to compute approximations of the Green’s function for

the Helmholtz equation in a range of geometries. For the purposes of validation, all

these methods have been applied to model problems with available analytical solutions.

The characteristics of each method have been discussed in the respective sections of

this document. In this chapter, we compare and contrast the methods studied. In

addition, we devise guidelines to aid the selection of a suitable method given the

characteristics of the problem.

In the following sections we review the methods in terms of

1. Accuracy

2. Execution Time

3. Computational Resources

4. Flexibility

5. Ease of Use/Implementation

In the rest of this chapter, where appropriate, we select suitable model problems

to compare methods directly. Specifically, we compare the compact Green’s function

method applied to the backward-facing step, and the Sinc-Galerkin method applied

to a rectangular patch, to the BEM. We compare and contrast the results in terms of

193
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accuracy and execution time. We close with a summary which discusses the results of

the previous chapters in a general sense and provide guidelines to the use of the three

methods as a portfolio for treating a range of acoustic geometries.

8.1 Compact GF Method vs. BEM

In Chapter 5 we computed the potential flow solution through or around specific ge-

ometries. This computation obtained the Kirchhoff vector components necessary to

define the compact Green’s function approximation for a given acoustic problem. We

performed this part of the calculation using a semi-analytical procedure involving the

construction of a numerical conformal map to transform the geometry as required. Al-

ternative means of calculating the potential flow solution are numerous although are

expected to yield less accurate results and/or take longer to execute. We now demon-

strate both the speed and accuracy of the semi-analytical method when compared with

a typical BEM formulation using the same computational resources in each case. The

BEM is chosen for comparison due to its capability for producing accurate solutions to

differential equations as well as its relative ease to implement for low-order elements.

Furthermore, it is a common technique used in the solution of potential problems and

many open-source codes are available.

Use of the BEM allows application directly to the problem domain without trans-

formation. However, the method relies on the construction and solution of a matrix

system for each internal grid point, which is often more time consuming than the grid

evaluation in the compact method. Furthermore, the solution is constructed from

numerical approximations of boundary values as opposed to the analytical exactness

of the compact formulation, hence numerical errors are higher. The potential flow

solution (Kirchhoff vector) for the backward-facing step problem of Chapter 5 is com-

puted in MATLAB using the direct collocation BEM with 994 uniformly distributed

constant elements. This number of elements is a result of the seeding of 1000 points

over the 6 sides of the polygon. The number of elements is selected arbitrarily. The

inflow and outflow boundary values used are computed using conformal mapping to

ensure exact matching at either end for the purposes of a fair comparison. However, in

practice, these values are rarely available. The practitioner could consider 2 options:
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Figure 8.1: Error in the BEM solution for 994 uniformly distributed linear elements

either the upstream and downstream boundaries could be taken far away from the ge-

ometrical complexities to ensure the existence of a uniform, unit velocity profile on the

boundary; or a transparent boundary condition could be specified on the truncation

boundaries. Where the former is possible, the domain may become excessively large

and the solution impracticable. Execution of the code took 9.3 seconds using the Intel

Core i7 870 CPU – the same CPU used for the conformal mapping computations. The

relative error variation over the grid when compared with the exact analytical solution

is shown in Fig. 8.1.

From Fig. 8.1 the BEM sees errors near the sharp corner of the order 10−3, orders of

magnitude greater than elsewhere on the grid. This is a significant result as any sin-

gular behaviour may describe amplifying and scattering effects on sound sources. It is

therefore essential that the Green’s function be accurately computed in these regions.

The inaccuracy in the BEM here is unsurprising since we know from potential flow

theory that the solution around a 90 degree corner may be represented algebraically

by a power law expression whose derivative tends to infinity at the apex. This sin-

gularity results in large gradients in the vicinity which results in a high sensitivity

to error in discrete numerical solutions. We improved the performance of the BEM

code by using a quartic polynomial to redistribute the boundary nodes and increase

the concentration of elements near to the corner apex. Simulations using the modified
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code of around 3000 elements took approximately 80s to execute and were capable of

achieving a general accuracy over the grid of the order 10−7 which is still orders of

magnitude away from the solution of order 10−9 obtained using the compact method

which uses conformal mapping. More demanding simulations were not possible within

the limitations of our available computing resources.

This latter experiment demonstrates another drawback of applying the BEM instead

of the compact method to construct the Kirchhoff vector components; the design of

the mesh is reliant on prior knowledge of singularities or regions of steep gradients

within the potential flow solution. Although for the trivial case above, this informa-

tion can be determined by inspection, for some geometries, the potential flow solution

is likely to be more complicated. If this information is not known, the discretisation

of the boundary cannot be performed in the most effective manner. In addition, the

preparation of the mesh and the complexity of the code will almost certainly increase

for more complex geometries due to possible iterative grid refinement and potential

use of higher-order elements. Such factors will only increase the already comparatively

long time spent in running a BEM simulation for these problems on desktop comput-

ers. Further optimisation of the BEM code (including parallelisation) may improve

the accuracy and execution time of the BEM as discussed in Chapter 6.

The compact Green’s function method far exceeds expectations for the backward-

facing step problem with an accuracy of the order 10−9 and execution time of just 1.3s

compared with an accuracy of 10−7 in around 80s for the Boundary Element Method.

The same computational resources are used in both cases. Furthermore, BEM encoun-

ters difficulties in handling boundary singularities in the potential flow solution which

limits its ability to compete with the semi-analytical method, particularly when these

singular regions of the flow are not known a priori and hence cannot influence the

meshing process.



CHAPTER 8. COMPARISON & ASSESSMENT OF THE METHODS 197

8.2 Sinc-Galerkin vs. BEM

The second comparison repeats the solution of the Dirichlet square BVP used in Chap-

ter 7. We compare the Sinc-Galerkin results to those computed using the direct-

collocation BEM implementation, developed in Chapter 6, over a range of mesh den-

sities. As performed in Chapter 7, we vary the mesh density from a lower to upper

limit where the ratio between the largest and smallest mesh density is 3, this time for

both methods. We configure a typical direct BEM implementation to use a range of

4 to 12 constant elements per unit length to solve the same problem and compare the

results. We record the time taken to execute the code in both cases. All computations

are performed on an Intel Core i7 870 CPU. The source configuration used in the

Sinc-Galerkin method is that described by Eqn. (7.21) and the analytical solution is

Eqn. (7.22) and evaluated for 50 terms.

8.2.1 Centred Source

The Sinc-Galerkin results for an expansion of 2M + 1 = 65 and the BEM for 44 ele-

ments (12 elements per unit length) are both compared to the analytical solution at

the tested frequencies in Fig. 8.2. The same colour scale is used at each frequency as

before. Both numerical methods give the expected variations and accurately satisfy

the boundary conditions: the BEM allows the boundary conditions to be specified

precisely as an input to the method and the nature of the Sinc function itself means

it decays to zero at the edge of the domain.

Although the BEM results indicate that the BEM captures the singularity more pre-

cisely than the Sinc-Galerkin method, there is evidence of a loss of definition in

Fig. 8.2b at the peaks and troughs at the higher frequencies tested. Therefore, qualita-

tively, the Sinc-Galerkin captures the general behaviour of the solution with a higher

degree of fidelity than the BEM, the latter demonstrating a notable resolution-driven

sensitivity to frequency.

Comparing the relative error and the execution time in all cases (Fig. 8.3a (log

scale) and Fig. 8.3b), the BEM sees a reduction in error with mesh density more

steeply than the Sinc-Galerkin method with a 3 fold increase in the mesh density. The

error is reduced to below 1% for the lowest two frequencies. When using BEM the
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(a) f=20 (left column) and f=680 (right column)
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(b) f=1340 (left column) and f=2000 (right column)

Figure 8.2: Results for for the BEM n=12 (bottom row), analytical expression
Eqn. (7.22) (middle row) and Sinc-Galerkin M=32 (top row) for a source centred
in the unit square
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largest errors are typically found near the boundary. Although a large relative error

at these points is expected, as the analytical solution tends to zero in these regions,

the absolute error is also larger than the Sinc-Galerkin method in these regions. Due

to the nature of internal point evaluation for the BEM, singular collocation points on

the boundary are close by and sensitive to numerical inaccuracies. From Fig. 8.3a,

the convergence rates for both the BEM and the Sinc-Galerkin are different, with the

BEM converging quicker with a trebling of the mesh density compared with the Sinc-

Galerkin. As in Chapter 7, we have included the limit of exponential convergence,

based on the error at the lowest mesh density, computed using Eqn. (7.23).

At the highest frequency, the relative error in the Sinc-Galerkin initially diverges

with mesh density as the basis fails to support the waves. It does, however, converge

again but with a relative error an order of magnitude larger than the BEM. The

near 100% relative error here is driven by near zero analytical solution behaviour as

explained in Chapter 7. When the absolute errors are used as a means of comparison

(Fig. 8.4), we see that the unusual trend in the relative error is not mirrored. In Fig. 8.4,

the absolute errors are lower for the lowest frequency for the BEM but relative errors

are comparable at the same frequency. The errors in the singularity region where

the Sinc-Galerkin fails are responsible for damaging the overall performance of the

Sinc-Galerkin in this case. Also clear from Fig. 8.4 is the sensitivity of the accuracy

of the BEM to frequency with the highest two frequencies producing large absolute

errors compared with the Sinc-Galerkin. Given that the relative error is unreliable as

a measure when the solution nears zero, the absolute error may be more useful and

indicates here that the Sinc-Galerkin method is excellent at accurately representing a

wider range of frequencies for a given mesh density. This adds support to a similar

conclusion drawn in Chapter 7.

Despite the apparent drawbacks of the Sinc-Galerkin method when compared with

the BEM, it still out performs the BEM in most of the combinations tested while

still taking less time to execute (Fig. 8.3b). Specifically, at lower mesh resolutions,

it can be up to 2.5 times longer to use the BEM over the Sinc-Galerkin. This is

due to the simplicity of the sinc quadrature rule which avoids expensive numerical

integration. As the mesh density increases, however, the time taken scales non-linearly

for the Sinc-Galerkin and roughly linearly for the BEM although with an increased
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(a) f=20 (solid blue), f=680 (dashed green), f=1340 (dotted red), f=2000 (dot-dash
cyan)

(b) f=20 (solid blue), f=680 (dashed green), f=1340 (dotted red), f=2000 (dot-dash
cyan)

Figure 8.3: Relative error (top) and execution time in seconds (bottom) for Sinc-
Galerkin (squares) and BEM (circles) for the range of mesh densities tested (horizon-
tal axis) for a centred source. The corresponding black lines represent the limit of
exponential convergence as computed using Eqn. (7.23).
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Figure 8.4: Absolute Error for a centre source for Sinc-Galerkin (squares) and BEM
(circles) for f=20 (solid blue), f=680 (dashed green), f=1340 (dotted red), f=2000
(dot-dash cyan). The corresponding black lines represent the limit of exponential
convergence as computed using Eqn. (7.23). The horizontal axis ticks represent an
increase in the mesh density comparable in both methods.



CHAPTER 8. COMPARISON & ASSESSMENT OF THE METHODS 203

frequency dependence. For very large Sinc-Galerkin systems, not only does the time

taken to compute the Kronecker products increase but the storage also increases in an

approximately quadratic sense as the dimensions of the Kronecker matrix is (mxmy ×

mxmy). In such cases, the alternative solution procedure discussed in Section 7.5 may

be more efficient.

8.2.2 Near-Boundary Source

For completeness we also compare the near-boundary source case studies in Chapter 7.

By moving the source to the boundary, a deterioration in the BEM’s ability to accu-

rately evaluate the solution without special treatment [218] is expected as the internal

points approach the singular collocation nodes on the boundary elements. However, as

the following results indicate, the deterioration was not as severe as predicted. We use

the same setup as Chapter 7 with the source located with x-coordinate corresponding

to x/W = 0.1 where W = 1 is the domain width. We plot the surfaces for a Sinc-

Galerkin expansion of 2M + 1 = 65, the BEM for 44 elements, and compare to the

analytical solution evaluated using 50 terms of the expansion Eqn. (7.22). We also

plot the relative error and the execution time in all cases (Fig. 8.6a and Fig. 8.6b).

Qualitatively, the BEM again captures the singularity well but struggles at the

higher frequencies Fig. 8.5b. The solution is over-predicted at peaks and troughs.

This is more noticeable with the near-boundary source than with the centred source,

although this may be due to the overall solution being an order of magnitude greater in

these regions as indicated by the colour scale. Interestingly, at a frequency of f = 1340

Hz (Fig. 8.5b), we see that the phase of the BEM result is incorrect by 180 degrees.

Further testing over frequencies 1320 ≤ f ≤ 1350 Hz show particularly poor perfor-

mance by the BEM. Quantitatively, the results are highly inaccurate throughout the

domain. However, it is only at f = 1340 Hz that we get such a noticeable qualitative

error (the phase shift). At this frequency we see that the condition number of the

coefficient matrix in the BEM linear system is at a local maximum suggesting that the

solution of the system will be highly sensitive to small errors. If we further increase

the resolution, this phase shift effect disappears, the condition number moves away

from the maximum, and the solution given by the BEM becomes much more accurate.

When comparing Fig. 8.3a and Fig. 8.6a, the error now increases with frequency
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(a) f=20 (left column) and f=680 (right column)
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(b) f=1340 (left column) and f=2000 (right column)

Figure 8.5: Results for for the BEM n=12 (bottom row), analytical expression
Eqn. (7.22) (middle row) and Sinc-Galerkin M=32 (top row) for a source near the
boundary of the unit square
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(a) f=20 (solid blue), f=680 (dashed green), f=1340 (dotted red), f=2000 (dot-dash
cyan)

(b) f=20 (solid blue), f=680 (dashed green), f=1340 (dotted red), f=2000 (dot-dash cyan)

Figure 8.6: Relative error (top) and execution time in seconds (bottom) for Sinc-
Galerkin (squares) and BEM (circles) for the range of mesh densities tested (horizontal
axis) for a near-boundary source.
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across the whole range tested unlike for the centred source. There is a slight increase

in overall error in both methods but, as expected, the BEM suffers more significantly

with the error at the highest two frequencies, struggling to converge with mesh density.

In contrast, the Sinc-Galerkin converges better than e−
√
N regardless of frequency. It

is less predictable at high frequencies, which is expected as more terms overall will be

required for the expansion to represent the rapid changes in the solution. Even so, the

robustness of the Sinc-Galerkin method means that a lack of mesh density manifests

itself in a milder way compared with the BEM.

Figure 8.6b shows little sensitivity to source location when compared with Fig. 8.3b for

both methods. This indicates that neither of the two source locations selected here are

sufficiently close to the boundary as to cause any serious computational difficulties with

either method. However, moving the source closer to the boundary does have a more

pronounced effect on the BEM as expected which serves to highlight the robustness

of the Sinc-Galerkin procedure.

8.3 Comparison Summary

Throughout this research, we have assessed three different methods and in this chapter

have initiated appropriate comparisons to assess relative performance in terms of ac-

curacy and execution time. Rather than leaving this information scattered throughout

this document, we recap, for clarity, the main discussion points across all the methods

under the headings laid out at the beginning of the chapter.

8.3.1 Accuracy

The degree of accuracy of the methods which we can reasonably expect to achieve

using current computing resources is a particularly important property. Specifically,

it is important to understand the features of the methods which limit the accuracy.

In the previous three chapters, we have discussed the sources of error of the methods

in detail. Here we bring this information together.

The accuracy achieved using the method based on the compact Green’s function de-

pends on how we define the terms in the first place. If ‘accuracy’ refers to how close
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the numerical result matches the exact Green’s function for the problem then the in-

accuracies relate to the suitability of the conditions listed in Section 5.1 applied to a

particular problem. Specifically, for the first order correction we compute to be viewed

as appropriate, a decision needs to be made on whether the scatterer may be consid-

ered acoustically compact and whether the placement of the source and observer are

as required. Quantitatively the implications may be understood by considering the

higher-order terms in Eqn. (5.1). If, however, ‘accuracy’ refers to the ability of the

numerical procedure to compute the first order correction (the Kirchhoff vector) pre-

cisely, attention shifts to the configuration of the conformal mapping involved. For

this part of the procedure, we illustrated in Chapter 5 that the sources of error in-

clude the choice of computational domain and the degree of discretisation (referred to

as polygon vertex density). Depending on the combination of the class of geometry

and selected computational domain, the relative error in computing the potential flow

(Kirchhoff vector components) for the test problems ranges from values of the order

10−4 to 10−9.

The BEM, although to a certain extent, can be considered physics-based, does not

share the advantages of the semi-analytical method based on the compact Green’s

function. In Chapter 6 we applied the method to both a finite and a semi-infinite

geometry, the latter using a new formulation which allows any number of transparent

boundaries. For the finite domain, the errors associated with the method are typical

of the BEM. These errors included the error in application of quadrature to compute

the influence coefficients; the error associated with the evaluation of internal points

near the boundary; and the error associated with the level of discretisation. Of these,

the last was seen to be the most influential, illustrated by the plane wave problem of

Section 6.7 (Fig. 6.3a). This figure also illustrates a notable degree of dependency on

the frequency of the waves being represented. Results achieved relative errors of the

order 10−3 to 10−5. However, as illustrated by Fig. 6.5, the extrapolated frequency-

dependency indicates that a maintenance of this range, even for an absolute error, is

likely to make the calculation prohibitively expense as the frequency exceeds those

studied in Section 6.7, and accuracy is likely to be lower in practice, as indicated by

the results of Section 8.2.

The inclusion of the DtN boundary condition introduced new source of error into the
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BEM. The truncation of the non-local DtN series is of particular significance. Our re-

sults have corroborated the conclusions of Harari et al. [146], demonstrating that the

inclusion of all propagating modes in the boundary conditions is a minimum require-

ment for the prevention of spurious reflections introduced by an inaccurate boundary

condition. We further clarify that this is only true if all evanescent modes have decayed

to a level by the boundary such that reflections would not contaminate the domain

solution. Relative errors are of the order 10−3 for the semi-infinite problems studied

over a wide range of frequencies.

There is plenty of evidence in the literature (see the citations of Section 7.1.0.1) of

the Sinc-Galerkin procedure achieving absolute errors as low as O (10−9) or smaller.

However, this considers the method applied to a limited class of problems – standard

and singular differential equations which at worst feature regular singular points or

boundary singularities. We have explored the application of the Sinc-Galerkin method

to problems featuring domain singularities, which physically indicate regions of ampli-

fication due to scattering or otherwise. Such singularities are characteristic of Green’s

functions. Our studies have shown that the convergence of the method with mesh

density is degraded but is still capable of achieving relative errors of the order 10−2 to

10−1 depending on the computational resources available. The detail of the singularity

is poorly captured although qualitative results agree very well for the model problems

tested. This error range is somewhat misleading as in Chapter 7, we see that the

error is actually due to a combination of localised error at the ‘tip’ of the singularity

and small errors in regions where the solution is close to zero. For this reason, the

qualitative results still agree very well, better in fact than the BEM for the problem

studied in Section 8.2, despite the relative errors appearing as high.

8.3.2 Execution Time

As a pre-processing step for existing hybrid noise predictions, it is important that the

time taken to compute the Green’s function, using one or a combination of the three

methods developed here, not be unreasonably large. It has, therefore, been one of the

foci of this work to assess the execution time of the Green’s function computation.

When linking the computation with an existing hybrid scheme, the combined time of
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Green’s function, flow field and sound field calculation must be considered and man-

aged to ensure the efficiency gained from using a hybrid scheme over a exclusively

numerical scheme is maximised.

In Chapter 5, the computation time for the compact method is seen to comprise mainly

the time taken to compute the conformal and the time taken to map the grid points

for evaluation. The significance of the latter depends on the problem and desired

output and is seen in Fig. 5.13 to scale linearly with the grid density: for example,

if a compactly distributed source is to be evaluated at just a single field point, this

activity will take little time. However, if the value of the Green’s function is desired

over a large number of observer points, this step could dominate the time taken to

execute. This is also pertinent to the BEM as discussed below.

In contrast, the time taken to construct the conformal map scales non-linearly with

vertex density and can cause conditioning issues which slow the calculation further.

Although this can have a pronounced impact on the overall execution time of the

method, it is only an issue associated with very specific geometries. Geometries ca-

pable of being represented accurately by a minimum number of straight line segments

will not encounter this issue. In fact, the backward-facing step problem treated in

Section 8.1 maps the geometry in a fraction of a second. However, when the geome-

try is curved, we show in Section 5.4.2 that a large number of segments are need to

represent the geometry and hence the computation time is significantly lengthened.

However, this can be addressed by including the ability to map arcs using the theory

of Bjorstad & Grosse [34].

In Section 8.1 and Section 8.2 we see that to achieve results of comparable accuracy,

the BEM takes longer to execute than both the other two methods. Attached to this

evidence is the caveat that we are comparing unoptimised benchmarks in both cases.

The source of the time take to execute the BEM is attributed to the expensive evalu-

ation of the influence coefficients, first to solve for unknowns on the boundary and for

every internal point at which the solution is required. This is influenced by the number

of quadrature points used (although this is largely insignificant) and the mesh density

(the number of influence coefficients to be computed). However, as mentioned above,

the size of the grid of internal points for evaluation is controlled by the user and there

may be situations where a small grid of points will suffice. In such cases, the BEM
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would become much quicker to execute, possibly of similar order of magnitude as the

other two methods. For the problems studied earlier in this chapter, the grid of points

is relatively dense and hence execution times can increase by an order of magnitude

or more compared with the compact method and by a factor of 1.5 compared with the

Sinc-Galerkin.

The execution time is seen in Fig. 6.7 to decreased with frequency due to the multi-

threading of certain functions involved in the calculation of the influence coefficients.

This only offsets the additional cost associated with increasing the mesh density and is

more pronounced at higher frequencies. Fortunately, the inclusion of the DtN bound-

ary condition adds little computational cost, as it avoids numerical integration, and

in most practical cases, a relatively few number of terms in the DtN expansion are re-

quired for an accurate representation of boundary behaviour. Even so, for the largest

number of terms tested in Chapter 6, the variation in execution time was negligible

(Fig. 6.9).

In Chapter 7 we presented the execution time of a MATLAB implementation of the

Sinc-Galerkin method as run on the Intel Core i7 870 CPU. Reproduction of inves-

tigations in the literature have shown the method to be extremely rapid, although

details of the execution time of the original investigations are unavailable for com-

parison. The efficiency of the Sinc-Galerkin is due to a combination of the matrix

system being kept small by a minimal set of basis functions, and the preclusion of

numerical integration allowing for simple matrix system construction. Furthermore,

where the equation being solved is linear, application of the Sinc-Galerkin method

produces a linear system of equations. The results of Chapter 7 indicate that where

the solution contains singular points within the domain, this exponential convergence

rate is degraded and hence a larger basis set is required to maintain acceptable levels

of accuracy. Furthermore, the execution time scales non-linearly with mesh density in

the non-vectorised implementation used in this project.

As with the BEM, the evaluation of the solution over a grid of internal points can

be a significant activity for the Sinc-Galerkin method as the solution is constructed

by essentially superimposing the allowable 2D mode shapes multiplied by the com-

puted coefficients. This procedure is accelerated by vectorising the code such that

the evaluation is performed over all grid points simultaneously. This is not possible
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for the BEM as the influence coefficient are computed anew for each internal point.

Parallelisation of the process in the Sinc-Galerkin method is possible and is expected

to produce notable speed up of this step.

8.3.3 Computational Resources

We next give a brief description of the computational resource demands of the meth-

ods. Where possible, we estimate the scaling of memory requirements based on the

size of the systems assembled by each.

The compact method, like all the methods, requires storage of grid coordinates and

nodal data. The size of the grid scales with the density of the grid points. Little

additional storage is required other than the complex coordinates of the polygon and

data associated with the mapping. Memory overruns were not observed while using

this method, even when increasing the polygon vertex density beyond the limits of

numerical stability of the mapping solution method.

The BEM stores the influence coefficients in two matrices which scale with the bound-

ary mesh density. These variables dominate the storage requirements for the method

and are additional to the variables holding the grid coordinates and nodal data. The

size of these matrices equates to the size of the linear matrix system to be solved. While

using the method throughout this research project, memory overruns were witnessed

on desktop machines equipped with 8 GB of RAM. These occurrences were limited to

situations in Chapter 6 where a maximum accuracy was being sought. Specifically, in

order to achieve absolute errors as low as the threshold of hearing (O (10−5)), accord-

ing to Fig. 6.5, we require 400 elements (nodes) per wavelength. This would require

double-precision storage of values using memory in excess of 100 GB, not something

widely available just yet. It is worth noting that the addition of the DtN boundary

condition only added storage requirements characterised by a single double-precision

(64-bit) vector of values with length equal to the number of terms in the expansion.

As in most cases the number of terms may be kept to a value < 1000, the additional

memory required would be < 16 kB.

The Sinc-Galerkin method, similar to the BEM, stores matrices of coefficient in addi-

tion to the grid data. Although the exponential convergence of the method can serve
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to reduce system sizes, the tensor products expanding the system size significantly dur-

ing solution and the process of building the solution once the problem has been solved

can be expensive in terms of time (as discussed above) as well as memory. Vectorised

code can be used to reduce the time taken to construct the solution but increases the

storage requirements prohibitively. The reason for memory overruns in the vectorised

case are due to the need to replicate a copy of the grid coordinates to a 3D array of

depth (2M + 1)2. Each layer of the 3D array is evaluated for each combination of

basis functions (of which there are also (2M + 1)2). The memory required to store

this double-precision 3D array for M = 80 [143] is in excess of 2.6 GB. Add to this the

storage requirements of the other parts of the procedure and the memory of a typical

desktop is soon used up. There are questions as to the suitability of implementation

used. However, this implementation is highly amenable to parallelisation which could

introduce significant speed-up.

To summarise, the compact method may be viewed as significantly cheaper than the

other two. The sensitivity to frequency of the BEM means that for high frequency

problems, a dense mesh is required and hence storage requirements become large.

However, the scaling is linear unlike the Sinc-Galerkin method. Due to the domain

singularity, the Sinc-Galerkin must use a high number of basis functions to achieve

the required accuracy which results in large memory usage. However, effective paral-

lelisation could drastically reduce the resource demand.

8.3.4 Flexibility

The aim of this research is to examine the potential of three methods to compute

the Green’s function in arbitrary geometries. As geometrical configurations of acous-

tic problems can vary significantly, it is important that the means of computing the

Green’s function we suggest is capable of treating a wide range of geometries. We

summarise now the flexibility of the methods to different configurations.

For the method based on the compact Green’s function, the choice of computational

domain is not automatic with different possibilities available for different classes of

geometry. Our studies have shown that an infinite channel is more suitable than a

semi-infinite half-plane as a continuity principle may be used to scale the transformed

potential flow – demonstrated in Chapter 5 to be crucial to accuracy. However, not all
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classes can be mapped to this geometry in a meaningful way and hence some judgement

is required: for example, it was necessary in Section 5.4.2.1 to include a non-physical

wall to allow the infinite strip domain to be used. Furthermore, the suitability of a

particular compact approximation depends on the geometry and the availability of an

analytical representation of a suitable starting form for correction. Although many

model problems have available closed form Green’s functions, there will be some for

which the correction required is likely ‘too large’. In other words, the realistic geometry

is radically different from the closest geometry for which an analytical representation

is available. In such cases, the compact Green’s function is expected to be unsuitable.

One useful advantage of the compact method is to be able to either specify the grid

to represent sources or observers. This flexibility allows the practitioner to investigate

the variation in source position on the radiated sound at an observer location in a

single calculation. The compact method, in its present form, supports only rigid wall

boundary conditions although modified formulations may be possible. Finally, the

theory of Bjorstad & Grosse [34] may be used to treat curved geometries in a more

robust manner and the inclusion of this theory in the existing conformal mapping code

could be the subject of future work (see Section 9.1).

The BEM is the most versatile method in terms of both geometries and boundary

conditions. The exceptions are mentioned in Section 6.1.2. However, this flexibility

comes at a price, specifically in terms of execution time as discussed earlier. A decision

must also be made on the design of the mesh, which can be difficult a priori. As we

have shown in Section 8.1, a poor mesh design negatively impacts the accuracy of the

solution. The disadvantage of this is that solution behaviour must be known (or at

least estimated) a priori. Alternatively, a preliminary calculation may be necessary

to identify areas of the mesh requiring local refinement. This preliminary calculation

may be performed using one of the other two methods if appropriate. Where neither

of these are possible, the mesh is constructed blind and can lead to poor results or the

need for numerous recalculations.

The Sinc-Galerkin is inherently limited to rectangular geometries but can take into

account semi-infinite and infinite boundaries with conformal transforms rather than

the use of expensive and potentially inaccurate artificial boundary conditions. This,

coupled with the rapid assembly and solution of the matrix system makes it an ideal
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choice for such problems. Although not undertaken here as the task would form an

individual research project in its own right, it may also form part of a domain decom-

position algorithm to represent more complex geometries. We present in Section 7.7

a formulation which extends the method tested here to account for rigid wall bound-

ary conditions. Consequently, mixed boundary conditions may also be treated. The

ability for the Sinc-Galerkin to capture singularities in the domain is limited as the

investigations of Chapter 7 show, but we also proposed a suitable used of domain de-

composition which may counteract its influence involving the removal of the singularity

to the boundary.

8.3.5 Ease of Use/Implementation

All methods require little user interaction. In the main, once key geometrical param-

eters are specified, the code is capable of generating meshes, seeding nodes or vertices

and returning the solution data automatically. However, for the compact method, the

choice of computational domain and analytical form for correction must be made in

advance and the computational potential function specified. This may be challenging

depending on the geometry and there may be a number of possibilities available.

The design of the BEM mesh needs to be a careful process and so the practitioner

may decide to pass the process to specialised software or design the mesh manually.

This latter approach would slow down the use of the method significantly. Further-

more, input files need to be specified for this method containing the coordinates of

the boundary sections and the corresponding boundary conditions. These files will

depend on the mesh design.

The mappings for the Sinc-Galerkin must be specified based on the patch geometry,

although this function could be carried out automatically due to the limited choice

available. When not part of a patching procedure, this method is the most automated

of them all. The discretised equations generated by the Sinc-Galerkin procedure can

be quite complicated, particularly for Neumann or mixed boundary conditions, where

basis extension is required. Care must be taken during implementation to avoid mis-

takes which can be hard to find.

All of the methods are capable of producing the same output – the value of the Green’s

function for the problem over a grid of observer locations for a given source position.
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It is expected that these values will be used directly in the Green’s function method

to compute the sound field due to an arbitrary source. If the techniques presented

here are used for a range of source positions then the results may be used as part of a

quadrature procedure over the source grid to compute the convolution Eqn. (4.2). In

this case, the alignment between the source grid used for the Green’s function calcula-

tion and the grid used for the hydrodynamic source calculation must be of paramount

importance and should be investigated as part of future work.

8.4 Guidelines & Conclusions

Drawing the analysis of this chapter together, it is possible to formulate the following

guidelines for method selection which we present here in graphical form (Fig. 8.7).

These guidelines are formulated from the known assumptions and limitations of each

of the methods discussed in Chapters 5 to 7. The intention of these guidelines is to

provide practical assistance in the selection of one method over another for as broad

a range of geometries as possible.

These guidelines do not incorporate all possible decisions which influence the suit-

ability of one method over another but include the most influential. Furthermore,

there may be exceptional circumstances where following the guidelines is not appro-

priate. However, this flowchart is something which can be implemented as software to

automate the selection of a method for the practitioner as we discuss in Section 9.1.

It should be clear from Fig. 8.7 that there is no single method capable or suitable

to treat every class of geometry. Through this flowchart we recommend treating the

methods discussed here as a portfolio capable of accurately and efficiently computing

the Green’s function for the Helmholtz equation in many different geometries. Cru-

cially, this flowchart illustrates the basic implementation of the portfolio and allows

the Green’s function to be computing numerically for a wide range of geometries for

which analytical solutions would be difficult or impossible to construct.

The conditions for which the compact Green’s function forms a good approximation to

the exact Green’s function for given problem are integrated into the left-hand side of

the flow chart and must all be satisfied in order for the compact option to be selected.

As discussed in Chapter 5, there is a large class of acoustic problems which meet
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Figure 8.7: Graphical depiction of guidelines to aid selection of the most suitable
method for calculation of the Green’s function for the given problem. For clarity, the
formal decision notation of a diamond has been changed to a rectangle.



CHAPTER 8. COMPARISON & ASSESSMENT OF THE METHODS 218

these conditions. The Sinc-Galerkin method in its current form is restricted in direct

application to a class of finite or infinite rectangular geometries which is reflected in

the flow chart options. Furthermore, we have developed, but not implemented due

to time constraints, a formulation suitable for Neumann (or indeed mixed) boundary

conditions. Figure 8.7 allows for the use of Sinc-Galerkin for these problems too. The

BEM, although generally more expensive, is suitable for problems which cannot be

treated using the other two methods or variations thereon. Figure 8.7 also recognises

the limitations of the BEM and advises the use of a modified formulation [218] where

the source is close to the boundary. In the event that the particular acoustic problem

does not meet any of the requirements, additional methods may be sought.



Chapter 9

Closing Remarks

The goal of this research output is to allow hybrid noise prediction to take place in a

wider range of complex geometries by providing numerical representations of acous-

tic Green’s functions. Hybrid noise prediction schemes utilise efficient integral-based

propagation techniques such as the acoustic analogy. Previously, acoustic propagation

using integral-based approaches was only possible for simple geometries due to the

requirement for a closed-form representation of the Green’s function. Such analytical

Green’s functions are rare and, for more complex geometries, are often challenging, if

not impossible, to construct. For this reason we have investigated the use of numerical

methods to evaluate the Green’s function over a grid of points in the domain. This

grid may then be used in place of the analytical Green’s function in existing hybrid

noise prediction schemes. Hence, these schemes may propagate noise through domains

for which Green’s functions are traditional unavailable, whilst exploiting the efficiency

and accuracy of the integral-based approach.

This research has selected, developed and analysed three numerical methods for com-

puting an approximation to the Green’s function for the Helmholtz equation in several

different classes of geometry. These methods were selected based on a set of require-

ments formulated after a survey of available options, namely (see Chapter 4):

� The method shall not unreasonably increase the overall execution time of an

existing hybrid scheme.

� Where possible, the method shall satisfy a range of acoustic boundary conditions

accurately without contaminating the domain solution.

219



CHAPTER 9. CLOSING REMARKS 220

� The method shall be robust for a wide range of geometries.

The methods have been compared and contrasted and, through understanding of

the advantages and disadvantages, each contribute to a portfolio of numerical ap-

proaches suitable for computing numerical approximations to the Green’s function for

a wide range of acoustic problems. The pros and cons of each of the methods may be

broader summarised as being:

� Compact Green’s Function

3 Offers semi-analytical precision

3 Easily handles complicated geometries

7 Limited to compact class of problems

7 Curved surfaces can be computationally expensive

� Boundary Element Method

3 Can handle variety of geometries

3 Only discretisation of problem boundary required

7 Extra BCs required for semi-infinite domains

7 Matrix construction expensive and required for each individual internal

point

� Sinc-Galerkin Method

3 No expensive numerical integration required

3 Can be parallelised and used in domain decomposition algorithms

7 Direct application limited to rectangular domains

7 Convergence degraded by domain singularities

The numerical approximations computed by the three methods have been compared

to available analytical solutions for validation. Where appropriate, methods have been

enhanced to increase their versatility. For example,

1. We used numerical conformal mapping to allow application of the compact

Green’s function method to more complex geometries;
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2. We suggested a new implementation of non-reflecting boundary conditions for

the boundary element method to allow treatment of semi-infinite domains;

3. We proposed an extension to the Sinc-Galerkin method to allow treatment of

Helmholtz boundary value problems subject to Neumann boundary conditions.

The work has been concluded by providing guidelines as to the selection of one par-

ticular method over another based on knowledge of the acoustic problem. Details of

the attributes of the methods have been summarised in Chapter 8.

In addition to providing a numerical representation of the Green’s function for use

in hybrid schemes, the Green’s functions computed by the portfolio of methods offer

important qualitative benefits. For example, in Section 6.9 and Section 6.10, we vi-

sualise the results which, from simple inspection, can provide insightful preliminary

indications of key regions of scattering in a given geometry. This information could

contribute to the design of a more complete acoustic investigation or a means to con-

centrate resources on a particular geometrical feature.

9.1 Future Work

The work presented in this document offers many opportunities for future research.

First, the BEM and the Sinc-Galerkin methods have been developed here in 2D and

written in MATLAB. Their extension to 3D is straightforward and would be a logical

extension to the work presented here, especially if the code is to be used as part of

existing hybrid schemes which would already be configured for 3D problems. The

compact method is already available for use in 3D as it constructs the 3D solution

from the constituent 2D problems (see Section 5.5).

The investigation into the use of the Sinc-Galerkin method used a simple formulation

and considered problems on a single rectangular patch. Although a basic domain, it

was possible to perform a suitable degree of analysis on this configuration. Further

complexity would have been unnecessary and potentially would have obscured the

manifestation of error. As well as extending the method to 3D, there is work to be

done on developing domain decomposition and patching algorithms which will allow

the Sinc-Galerkin to be applied to a wider range of geometries. This would be quite a
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challenging but rewarding pursuit and essential for the continued used of the method.

The code used to execute the methods has all been written in a serial sense. In prac-

tice, the code ought to run as efficiently and quickly as possible. One way of achieving

this would be to recode into another language, which may use more efficient software

implementations of the arithmetic operations. Furthermore, there are numerous means

of parallelising all, or sections of, the original code. In particular, the construction of

the Sinc-Galerkin solution is amenable to this treatment and would benefit signifi-

cantly from it. Examination of the software with a view of parallelising the operations

where possible is a useful activity for the future.

As remarked in Section 8.4, the guidelines for selecting a suitable method for a given

geometry are suitable for software implementation. This research may be applied as

a practical tool if this implementation were to be carried out. This ‘master routine’

would take in the problem geometry as well as other details such as source/observer

locations, wavelength and boundary conditions. After applying the logic described by

Fig. 8.7, the routine would select an appropriate method, perform the calculation and

store the Green’s function for use in the integral-based propagation step of the hybrid

scheme. This activity could take place in parallel with the source region computation,

immediately after the source region mesh is confirmed. Thus little additional time

would be added to the calculation while ensuring the Green’s function is known as the

required grid points.

A related future task would be to incorporate the methods into an existing hybrid

scheme and assess their performance. This task should consider the alignment be-

tween the Green’s function grid and the grid of the hybrid calculation. Moreover,

the impact of the errors associated with the Green’s function calculation should be

ascertained. Specifically, how the errors manifest themselves in the radiated sound

field and how sensitive this behaviour is to changes in problem parameters. This task

is of considerable size and scope but can build on the detailed examination of error

sources performed in this research.
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