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Abstract. The simplest way to modify gravity is to extend the gravitational sector
to include an additional scalar degree of freedom. The most general metric that can
be built in such a theory includes disformal terms, so that standard model fields move
on a metric which is the sum of the space time metric and a tensor constructed from
first derivatives of the scalar. In such a theory gravitational waves and photons can
propagate at different speeds, and these can in turn be different from the maximum
speed limit for matter particles. In this work we show that disformal couplings can
cause charged particles to emit Cherenkov radiation and bremsstrahlung apparently
in vacuum, depending on the background evolution of the scalar field. We discuss the
implications of this for observations of cosmic rays, and the constraints that arise for
models of dark energy with disformal couplings.
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1 Introduction

The theory of General Relativity (GR) and its surrounding paradigm are unmatched
for predictive success. Not even quantum field theory can boast agreement with exper-
iment over such a vast range of scales [1]. Perhaps a victim of its own success, theorists
have grown more and more focused on its shortfalls: the theory is non-renormalizable,
divergent in the ultra violet regime and, when applied to cosmology, makes the uncom-
fortable prediction that 95% of the matter in the universe is exotic, dark and intractable
[2]. Proposed modifications and upgrades abound. A popular set of such modifica-
tions are models of gravity in which two fields, not one, mitigate the force, and of this
popular set, a subset are the disformal theories in which the gravitational geometry,
ĝµν and the matter geometry, g̃µν are related via the disformal transformations

g̃µν = ĝµν +D(φ)φ,µ φ,ν (1.1)

for some additional gravitational scalar field φ [3]1.
In the history of disformal terms in gravity theories there exists a multiplicity

of purpose. They were geometry corrections to GR in compactifications of higher
dimensional brane-world gravity theories, but they were also utilized in the literature
to vary the relationship between the speed of light and the speed of gravitational waves,
which could solve the horizon and flatness problems of early universe cosmology without
recourse to a potential-driven inflationary phase [4][5][6][7][8]. (Such theories are now

1We have not written the most general transformation here. There could be a conformal part
in front of ĝµν as well, but we are dealing with electromagnetism in this paper so that that term is
irrelevant.
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very tightly constrained by observations [9].) This second aspect of disformal theories
– their tendency to distort the light cones of fundamental fields with respect to each
other – is what concerns us in this work, however here we focus on the late, rather
than inflationary, universe.

Coupling universally to all matter has been constrained quite severely via global
tests in cosmology [10], or local tests in the solar system [11] or the laboratory [12, 13],
which has led some to postulate that disformal couplings can, for example, only be
between the scalar and dark matter [14][15]. As the nature of dark matter is poorly
understood, the constraints of disformal couplings to it are rather weak. This idea of
species selectivity opens the door, though, to varying interaction strengths with respect
to varying types of matter (dark, baryonic, electromagnetic sector, etc.); if strengths
can vary from species to species, there is little theoretical motivation to assume that the
coupling to the standard model particles is negligibly small. Relaxing this assumption
will invariably lead to observable deviations from standard matter theory.

A handful of these deviations must be in the form of novel radiation processes. Due
to the variation in the relative speeds of photons and gravitons in disformal theories,
it remains an open question as to whether charged particles, disformally coupled, can
Cherenkov radiate in vacuum. In this work we unambiguously demonstrate that this
is indeed the case, and deduce the conditions that must be met in order for this to
occur. We will also discover that another radiative interaction channel will open under
those same model conditions, a channel that depends on the dynamics of the theory’s
speed of light. For reasons that will become clear, we dub this interaction vacuum
bremsstrahlung.

In [16] it was shown that in order to induce spectral distortions in the CMB via
gravity modifications, a necessary ingredient was that the geometry of space-time ex-
perienced by photons and that of the rest of the Standard Model must vary disformally
with respect to each other. Hence, we consider the following action

S = Sgrav[ĝµν , φ] + Smatter[g̃
(m)
µν ] + SEM[g̃(r)

µν , A
µ] + Sint , (1.2)

where the definition of the interaction terms will be clarified in the next section, and
the metrics relate in the following way

g̃(m)
µν = ĝµν +D(m)(φ)φ,µ φ,ν (1.3a)

g̃(r)
µν = ĝµν +D(r)(φ)φ,µ φ,ν . (1.3b)

We refer to g̃(m) as the matter metric, g̃(r) as the electromagnetic metric, and ĝ the
gravitational metric.

In the next section we refine this action and restrict our attention to a minimal
subsystem in which to cleanly explore novel radiative processes, but in the meantime
this schematic action, Eq. (1.2), highlights a key point: there are three metrics in
our theory, all related by disformal transformations, so there are three different frames
within which to make calculations, and three representations of each field. In standard
scalar-tensor theory, it is commonplace to perform computations in the Einstein frame,
where the gravitational action is of Einstein-Hilbert form (quantities are defined with
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respect to ĝ), and reserve physical interpretation for the Jordan frame (everything
expressed in terms of g̃(m)), however, for this work, we will find that while physical
interpretation is easiest in the Jordan frame, it is in fact the Electromagnetic frame
(expressing the full action in terms of g̃(r)) in which calculations are simplest. This
will hopefully become clear as we unveil the calculation.

As we have mentioned above, we find that two radiation channels are open to a
disformally coupled charged particle, provided certain radiation conditions are satisfied:
vacuum Cherenkov and bremsstrahlung radiation. Both of which we consider in what
follows. In section 2 we introduce the gravitational part of the action (1.2), and specify
a small charged particle-and-field subsystem – adequate to determine the conditions
under which vacuum Cherenkov radiation occurs in a disformal theory. In this section
we present Maxwell’s equations with disformal couplings present, then solutions and
finally constraints on model parameters from collider based experiments. In section 3
we present the case for bremsstrahlung, define the relevant parts of the action, derive
equations of motion, and discuss the conditions to be met for its presence. We do not
use vacuum bremsstrahlung to place theory constraints in this paper, but simply offer
an illustration as to the scale of the effect in a cosmology setting using cosmic rays.
Our conclusions can be found in section 4.

2 Vacuum Cherenkov radiation

2.1 Action

The salient feature of our model is the disformal coupling to radiation; we ask what
novel changes this detail will introduce into the theory of electromagnetism. The
electromagnetic sector is specified by the terms Sfield + Sinteraction which we write as

Sfield = − 1

4µ0

∫
d4x
√
−g(r)gµν(r)g

αβ
(r)FµαFνβ (2.1a)

and

Sinteraction =

∫
d4x
√
−g(m)jµAµ, (2.1b)

where jµ is a four–current, describing the motion of a charged particle. Note that gauge
invariance implies charge conservation, i.e. we have ∇µj

µ = 0, where the covariant

derivative is with respect to the metric g
(m)
µν . As it will be useful for the subsequent

calculations, we will write the action in terms of the matter metric g
(m)
µν . Note that

g(r)
µν = g(m)

µν +
(
D(r) −D(m)

)
φ,µφ,ν := gµν +Bφ,µφ,ν , (2.2)

where in the last equation we have dropped the tilde and written gµν := g
(m)
µν to

simplify notation. We emphasise that B measures the difference between the disformal
couplings D(r) and D(m). Then, in terms of this metric the electromagnetic sector
becomes

Sfield = − 1

4µ0

∫
d4x
√
−gZ

[
gµνgαβ − 2γ2gµνφ,αφ,β

]
FµαFνβ , (2.3)
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with

Z :=

√
g(r)

g
=
√

1 +Bgµν∂µφ∂νφ (2.4)

and

γ2 =
B

1 +Bgµν∂µφ∂νφ
. (2.5)

Note that the dynamics of φ are not specified at this point; it is a generic scalar field.
We also have not specified the gravitational sector at this point. The work below holds
for generic modified gravity theories. Only later we will be specific when we discuss
constraints on the theory.

2.2 Disformal Maxwell’s equations

The electromagnetic field equation can be readily obtained from this action:

∇ε (ZF ερ)−∇ε

(
Zγ2φ,β (gενφ,ρ − gρνφ,ε)Fνβ

)
= −µ0j

ρ . (2.6)

From now on, we will consider the case of flat space, i.e. gµν = ηµν (we remind
the reader that matter moves on geodesics with respect to this metric) and write
Aµ = (Φ/c,A) and jµ = (cρ, j). Then, working in the disformal Lorenz gauge ∇ ·A =
−Φ̇/(cZ)2, the dot denoting the derivative with respect to time t, Eq. (2.6) becomes(

∇2 − 1

c2Z2

∂2

∂t2

)
Φ = −Z

ε0
ρ (2.7a)(

∇2 − 1

c2Z2

∂2

∂t2

)
A +

1

c2

Ż

Z

(
∇Φ̇ + Ȧ

)
= −µ0

Z
j . (2.7b)

In deriving the last equation, we made use of the identity∇(∇·V) = ∇2V+∇×(∇×V)
and defined in the usual way ε0 = 1/µ0c

2. For the case that the scalar is time dependent
only, Maxwell’s equations read

∇ · E =
Z

ε0
ρ (2.8a)

∇×B =
µ0

Z
j +

µ0

Z

∂

∂t

(ε0
Z
E
)

(2.8b)

∇ ·B = 0 (2.8c)

∇× E +
∂B

∂t
= 0 , (2.8d)

where E and B are defined in the usual way:

E = −∇Φ− ∂A

∂t
and B = ∇×A . (2.9)

Momentarily considering a vacuum (i.e. ρ = 0, j = 0), and assuming that Z is constant,
from Maxwell’s equations we can derive the following wave equations for the fields E
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and B

− 1

c2Z2

∂2E

∂t2
+∇2E = 0 (2.10a)

− 1

c2Z2

∂2B

∂t2
+∇2B = 0 , (2.10b)

which shows that, in the absence of charges and with Z constant, electromagnetic
fields propagate with a modified speed2. Prompted by this observation, we define
more generally

cs(t) := cZ(t) =
(
c2 −Bφ̇2

)1/2

. (2.11)

The set of equations (2.8) quite clearly suggest that we can go further; an effec-
tive speed of light here arises as a consequence of the fact that the disformal couplings
modify spacetime geometry and hence distort the electromagnetic vacuum, producing
an effective medium for the electromagnetic field, whose permeability, µ0, and permit-
tivity, ε0, of free space are modified by the scalar interaction. We thus also make the
definitions

µ(t) :=
µ0

Z(t)
and ε(t) :=

ε0
Z(t)

(2.12)

to physically characterize this new effective vacuum, and, subsequently, the auxiliary
fields

H :=
1

µ(t)
B and D := ε(t)E. (2.13)

Given this effective medium formulation, we can now ask how the energy density
will change in the field due to time evolution of our scalar field. In terms of the auxiliary
fields the first two Maxwell equations simplify as follows:

∇ ·D = ρ (2.14a)

∇×H− Ḋ = j, (2.14b)

from which we obtain Poynting’s theorem in our theory:

d

dt
(UE + UH) =

Ż

Z
(UE + UH)− E · j−∇ · (E×H︸ ︷︷ ︸

S

) . (2.15)

Here we have defined the field energy densities

UE :=
1

2
ε(t)|E|2, UH :=

1

2
µ(t)|H|2 , (2.16)

and identified the standard Poynting vector S = E×H, which we will use to compute
the energy lost by a charged particle in superluminal flight in the next section.

To summarize, we have found that when the scalar is time dependent only, our
field theory with disformal couplings reduces to that of an electromagnetic field in

2It was shown in [17] that the fine-structure coupling ‘constant’ is not constant in this theory.
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an effective linear medium, whose resistance to the formation and evolution of field
disturbances (ε, µ) will depend on Z(t): the ratio of the two metric determinants.
This establishes an interesting conceptual link between the geometry of space and the
physical response of the fields defined on it. The link should strengthen the reader’s
intuition that many analogues of electricity in linear media should carry through to
this model.

2.3 Field solutions and the Cherenkov radiation condition

As a first application of the model, we will investigate under which circumstances
Cherenkov radiation can occur. We follow the calculation in [18]. The speed of light
cs, given by Eq. (2.11), is smaller than the bare speed of light c if the field evolves
in time, i.e. if φ̇ is non-vanishing. A charged particle can then move faster than cs
and this is the situation which we will now study. Let us therefore consider a moving
particle with charge q, for which

ρ(x, t) = qδ(x− xp(t)) (2.17a)

j(x, t) = ρv , (2.17b)

with xp(t) the time dependent position in 3-space of the moving particle, and v = ẋp
the velocity. Furthermore, we assume in this section that φ = φ(t) with cs = cZ =
constant.

Then, considering the Fourier space components one obtains from Eq.(2.7a)

Φk =
2πq

ε

δ(ω − k · v)

k2 − ω2

c2
s

, (2.18)

and Eq.(2.7b) can be solved to find

Ak = 2πqµ
δ(ω − k · v)

k2 − ω2

c2
s

v . (2.19)

As a consistency check, these solutions imply the Lorenz–gauge condition k · Ak =
ωΦk/c

2
s. The Fourier coefficients of B are related to Ak via Bk = ik × Ak and the

Fourier coefficients of E are given by Ek = −ikΦk + iωAk. We find

Bk(k, ω) = 2πiqµ
k× v

k2 − ω2

c2
s

δ(ω − k · v) (2.20)

and

Ek(k, ω) = −2πiq

ε

k− ω

c2
s

v

k2 − ω2

c2
s

δ(ω − k · v) . (2.21)
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To find the energy loss along the particle’s trajectory, we assume without the loss of
generality that the particle moves along the z-axis with velocity v = (0, 0, v), and that
the observer is located at a distance r from the z-axis. The energy loss per unit length
is then given by the integral

− dE
dz

= −2πr

∫
Ez(r, t)Bφ(r, t)dt = −r

∫
Ez(r, ω)H∗φ(r, ω)dω, (2.22)

where

Ez(r, ω) =
1

(2π)3

∫
d3kEz(k, ω)eik·r and

Hφ(r, ω) =
1

(2π)3

∫
d3kHφ(k, ω)eik·r. (2.23)

Evaluating the integrals for β = v/cs > 1, we find

Ez(r, ω) =
iqµω

2π

[
1− 1

β2

]
eiωz/βcsK0(αr), (2.24)

Hφ(r, ω) =
αq

2π
eizω/βcsK1 (αr) , (2.25)

where α = −(iω/cs)
√

1− β−2. Note that for large αr, K0(αr) ≈
√
π/(2αr) exp(−αr),

so these represent outgoing waves if β > 1. The expressions for Ez and Hφ are iden-
tical to those for electromagnetic waves propagating through a medium, leading to
Cherenkov radiation for v > cs. The integral (2.22) can be evaluated for |α|r � 1,
giving

− dE
dz

=
1

4πε0

e2

c2

∫
ω

(
1− 1

β2

)
dω . (2.26)

2.4 Constraints

We will now discuss constraints on the model. So far, the scalar field has been com-
pletely unspecified. The only assumption we have made is that it is disformally coupled
to the electromagnetic sector. To specify the dynamics of the field, we have to specify
the action for it, and in the following we assume that the gravitational sector is of
standard Einstein form, together with a canonical scalar field. The form of Sgrav in
equation (1.2) we then chose to be

Sgrav =

∫
d4x
√
−g
[
R(g)

2κ
− 1

2
gµνφ,µ φ,ν −V (φ)

]
, (2.27)

where we assume that φ is the scalar field responsible for the accelerated expansion
of the universe at late times and we assume ĝµν = gµν , which implies that we set
D(m) = 0.

There are direct constraints on isotropic deviations of the speed of light from
unity from laboratory experiments [19, 20] at the level of |1 − cs/c| < 10−10, however
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stronger constraints arise from searches for Cherenkov radiation from particles in vac-
uum. These can be done in terrestrial experiments, with bounds |1 − cs/c| < 10−11

coming from the absence of vacuum Cherenkov radiation from 104.5 GeV electrons
and positrons at LEP [21]. Indeed, the energetics of the LEP beam were so well under-
stood that measurements of the synchrotron emission rate indicate that any deviation
of the speed of photons is constrained by |1− cs/c| < 5× 10−15, [22]. Observations of
high energy cosmic rays provide significantly tighter constraints; the lack of vacuum
Cherenkov radiation from high energy electrons and neutrinos propagating over astro-
nomical distances constrains |1−cs/c| < 10−20 [23–25], however these constraints come
with some uncertainty about the high energy dynamics of the source of the cosmic ray.

To translate these constraints into constraints on disformal electrodynamics, we
assume now that the scalar field is slowly evolving and plays the role of dark energy.
Firstly, we assume the constraint |1− cs/c| < 5× 10−15. The speed of light cs should
not deviate drastically from one, so we can expand Z ≈ 1−Bφ̇2/2c2.

The Friedmann equation evaluated today reads

3H2
0 = κ

(
ρc4 +

1

2
φ̇2 + c2V

)
(2.28)

for the bare speed c. If we assume that the scalar φ plays the role of dark energy then
we have

ΩDE =
κ

6

(
φ̇

H0

)2

+
κc2V

3H2
0

' 0.7, (2.29)

where ΩDE is the dark energy density parameter. The equation of state of dark energy
is

wDE,0 =
φ̇2 − 2c2V

φ̇2 + 2c2V
(2.30)

which, combined with equation (2.29) gives

κφ̇2

2c2
=

3

2
ΩDEH

2
0 (1 + ωDE,0). (2.31)

Hence, the constraint can be written as Bφ̇2/2c2 < 5× 10−15 or, expressed as a dimen-
sionless ratio:

B0H
2
0

κ
<

10−14

3ΩDE(1 + ωDE,0)
. (2.32)

In Fig. 2.4 we show the constraint on the energy scale:

M :=

(
c~3

B0

)1/4

(2.33)

as a function of the dark energy equation of state ωDE,0, measured today, setting
ΩDE = 0.7. We remind the reader that constraints of this type will always place
limits on the difference between the disformal couplings to matter and radiation, since
B = D(r) −D(m) (see eq. (2.2)), though we have set D(m) = 0 here.
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Figure 1. Cherenkov radiation in vacuum constraints the energy scale M , defined in Eq.
(2.33), as a function of the current dark energy equation of state ωDE,0. The shaded region
is ruled out by bounds coming from the LEP constraint |1− cs/c| < 5× 10−15. As the dark
energy equation of state approaches −1, φ̇ approaches 0 and hence cs → c and the constraint
on M vanishes in this limit.

3 Vacuum Bremsstrahlung

We have seen that the particle will emit Cherenkov radiation in vacuum, if the effective
speed of light cs drops below the particle speed v. A natural question to ask, given the
close resemblance at the classical level our model has with that of a linear dielectric
medium, is whether or not other radiative channels are open in the presence of a
disformal coupling. In this section we derive the conditions for vacuum bremsstrahlung.

We are particularly interested in the possibility that charged cosmic rays might
emit bremsstrahlung due to the evolution of the scalar φ in the cosmological back-
ground. Therefore we generalize our calculations to an expanding background with cs
now time dependent in what follows.

3.1 Action

We consider again a subsystem of the action in (1.2) where a single charged particle in
flight couples to an electromagnetic field: Sfield +Sint, (see equation (2.1)), however, we
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now work on an expanding background, and so we chose comoving coordinates such
that

gµν = a2(τ)ηµν , (3.1)

where τ is the conformal time, related to the physical time by dt = adτ , hence

g(r)
µν = a2(τ)

(
ηµν +

B

a2
φ,µφ,ν

)
:= a2h(r)

µν . (3.2)

The gravitational action is still given by Eq. (2.27) and we assume that the scalar field
φ depends on time only. Then, as Sfield is conformally invariant, we have

Sfield = − 1

4µ0

∫
d4x Zhµν(r)h

αβ
(r)FµαFνβ, (3.3)

where, recalling the definition of Z (Eq. (2.4)), we have now

Z =
√
−h(r) =

√
1 +

B

a2
ηµνφ,µ φ,ν . (3.4)

For the interaction term, we define the comoving current

Jµ :=
√
−gjµ, (3.5)

so that

Sint =

∫
d4xJµAµ. (3.6)

As ∇µj
µ = 0 (see section 2.1), we have that the comoving current is conserved with

respect to the flat metric ηµν , i.e.

∂µJ
µ = ∂µ

(√
−gjµ

)
=
√
−g∇µj

µ = 0, (3.7)

where we have used that
√
−g∇µv

µ = ∂µ (
√
−gvµ) for any 4 vector vµ and metric g.

Lastly, we consider a point-like charged particle whose motion can be described by a
curve xp(τ), and, since ∂µJ

µ = 0, we can define Jµ = (cΩ,J) such that

Ω(x, τ) := Qδ(x− xp(τ)) (3.8a)

J(x, τ) := ΩV (3.8b)

for V := dxp/dτ and Q the charge of the particle. By construction this ansatz satisfies
the continuity equation. Comparing this to the physical current, expressed in terms
of the physical time, t, it is straightforward to show that jµ′ = (cΩ/a3,vΩ/a3), and
hence the charge density dilutes as a−3, as it must in isotropically expanding space. It
is also clear that, for a(τ) an arbitrary function, light still propagates with velocity

cs(τ) = Z(τ)c. (3.9)
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3.2 Disformal Maxwell’s equations in expanding space

The electromagnetic field equations can be readily obtained from the action specified
in section 3.1 as before; they are the expanding-space counterpart to Eq.s (2.8):

∇ · E =
Z

ε0
Ω , (3.10a)

∇×B =
µ0

Z
J +

µ0

Z

∂

∂τ

(ε0
Z
E
)
, (3.10b)

∇ ·B = 0 , (3.10c)

∇× E +
∂B

∂τ
= 0 . (3.10d)

In these equations, ∇ is the flat 3-space derivative operator. Even though space is
expanding, this is valid, as the dependance of the system on the scale factor a was
absorbed by the field redefinitions in the previous section.

From definition (2.11) we see that if the speed of light were to vary in time in
some coordinate system with time t, there would naturally exist some new system of
coordinates such that this speed remains constant. If the particle were to travel with
fixed velocity in the original system, it would appear to accelerate with respect to these
new coordinates in which cs is constant. The electric field thus ‘sees’ an accelerating
charge. We would expect such a field to radiate accordingly, and indeed this is what
we will find.

To make this intuition mathematically precise, we must consider a case more
general than the previous sections, whereby Z(t) becomes now an arbitrary function of
time. Some suitable field and coordinate redefinitions will help us find solutions in this
new case. Considering again the disformal Maxwell’s equations, (3.10), the following
redefinitions are useful:

∼
E :=

E

Z(τ)
, J̃ :=

J

Z(τ)
, dτ̃ := Z(τ)dτ. (3.11)

These fields obey the following equations:

∇ ·
∼
E =

Ω

ε0
, (3.12a)

∇×B = µ0J̃ + µ0ε0
∂

∂τ̃

(∼
E
)
, (3.12b)

∇ ·B = 0 , (3.12c)

∇×
∼
E +

∂B

∂τ̃
= 0 . (3.12d)

This set of equations allows us make the standard gauge field definitions: B = ∇×A
as before, and now

∼
E = −∇Φ̃−

◦
A (3.13)
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where ‘◦’ denotes the derivative with respect to τ̃ . Then, working again in the disformal

Lorenz gauge: ∇ ·A = −
◦

Φ̃/c2, we arrive at the field-potential equations of motion:(
∇2 − 1

c2

∂2

∂τ̃ 2

)
Φ̃ = −Ω

ε0
(3.14a)(

∇2 − 1

c2

∂2

∂τ̃ 2

)
A = −µ0J̃. (3.14b)

The system (3.14) is closed, and is now instantly recognizable from classical electrody-
namics, hence easily solvable. Important to note here is that these tilde variables and
coordinates just defined are exactly those we would have, had we originally expressed
the action 1.2 entirely in terms of the electromagnetic metric metric g(r) – we are now
working in the electromagnetic frame.

3.3 Field solutions and the bremsstrahlung condition

The system of equations, (3.14), is readily satisfied by the Lienard-Wiechert potentials
[26]. In terms of our electromagnetic frame quantities – recalling that our coordinates
are all comoving – these solutions read

Φ̃(x, τ̃) =
Q

4πε0

1

[1− n(τ̃ ′) · β(τ̃ ′)]

1

X(τ̃ ′)
(3.15a)

A(x, τ̃) = µ0ε0V(τ̃ ′)Φ̃ (3.15b)

where τ̃ ′ is the retarded electric frame time, defined by the implicit equation

(τ̃ ′ − τ̃)c+X(τ̃ ′) = 0, (3.16)

and we have made the following definitions

X(τ) := |x− xp(τ)|, n(τ) :=
x− xp(τ)

X(τ)
, β(τ) :=

Ṽ(τ)

c
=

V(τ)

cs(τ)
. (3.17)

Combining (3.13) with (3.15) and reversing the field redefinitions gives the following
electric field profile in the Jordan frame:

E(x, τ) =
Q

4πε(τ)

[
(1− β2)(n− β)

X2[1− n · β]3
+

n× [(n− β)× β̇]

csX[1− n · β]3

]
ret

, (3.18)

and, also in the Jordan frame:

B(x, τ) =

[
n× E

cs

]
ret

(3.19)

where we have reverted back to the τ time derivative, ‘˙’, and quantities enclosed in
the square brackets, [...]ret, are to be evaluated at the retarded time τ ′ given implicitly
by equation (3.16) together with the relationship between τ and τ̃

τ =

∫
dτ̃

Z(τ̃)
, (3.20)
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which is non-local, and not analytically solvable in general. In the Jordan frame, the
Poynting vector as obtained from Poynting’s theorem is:

S = E× B

µ(τ)
(3.21)

and so, for a charged particle on a straight trajectory (β× β̇ = 0) the comoving power
radiated, i.e. the power radiated per unit conformal time, is:

P =
1

4πε(τ)

2Q2

3cs(τ)

1

(1− β2)3
|β̇|2, (3.22)

obtained from (3.21).
The second (radiative) term in equation (3.18) will be non-zero if and only if

|β̇| 6= 0. We can clearly see that, from the definition of β in equation (3.17), this
can be true even when the particle is not accelerating. If the comoving velocity V
is constant, then β̇ = β ċs/cs and electromagnetic radiation will still carry energy
outward, away from the particle3. We sum this result up in the following radiation
condition: a charged particle on an expanding background in motion – uniform as
seen by a stationary observer on the same background – will in general radiate if the
electromagnetic field couples to a second, distinct geometry, disformally varying with
respect to the first: that is if ċs 6= 0.

We see in this setup that if the scalar field φ evolves in time (with Ż non-zero), the
particle appears to the electric field as one that is accelerating, even when in vacuum; to
this phenomenon we attach the name vacuum bremsstrahlung. All this effect requires,
really, is the condition that the speed of light vary with time. In fact, though we have
demonstrated the presence of vacuum bremsstrahlung in a disformally coupled field
setting, it will no doubt be more widely applicable. We expect any theory in which
the speed of light is dynamical in this sense to exhibit this phenomena, and hence to
be testable in this way. We shall see in the next section, however, that for our theory,
the effect is much smaller than Cherenkov radiation.

3.4 Energy lost from a coupled cosmic ray

We will consider an ultra-high energy cosmic ray (a ray with energy in excess of about
1015 eV) in what follows. This means we can safely assume the cosmic ray travels along
a straight line geodesic, that is β × β̇ = 0; intergalactic magnetic fields are extremely
weak, too much so to curve the path of an ray of this energy appreciably. The radiation
condition for expanding space is thus: vacuum bremsstrahlung will occur if ċs 6= 0,
even when the comoving velocity – and hence the physical velocity – is constant. In
this case, we have that β̇ = βŻ/Z and so both the square of the factor Ż/Z and the
sixth power of the Lorentz factor, (1− β2)−3, will determine the magnitude of energy
lost by the particle through this process.

3We note that the assumption of constant comoving velocity is non–trivial, due to the fact that
we consider motion in an expanding background. Since we just want to consider the effect due to the
disformal coupling, we ignore this issue here and refer the reader to [27–29].
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Figure 2. Cosmological evolution of the observed speed of light, cs, with redshift for values
within LEP constraints (see Sec. 2.4). M is the energy scale associated to the disformal cou-
pling – defined in Eq. (2.33) – between light and a quintessence scalar field with exponential
potential: V (φ) = V0exp[−φκ1/2].

If the scalar field φ is responsible for the late time accelerated expansion of the
universe, then the cosmic ray’s bremsstrahlung energy loss will be suppressed by the
Hubble scale as measured in the present epoch (within a few redshift). Further, our
model must obey the LEP constraints imposed on it in Sec. 2.4 which translates to
an energy scale M of roughly eV or above. Both factors drive the allowed values of
Ż/Z down to very small values indeed for any viable cosmology scenario. We show in
Fig. 2 several allowed evolution histories of the speed of light for a simple extension
to the standard cosmological model, whereby the dark energy field is driven by an
exponential potential with mild negative slope: V (φ) = V0exp[−φκ1/2].

We see from the left panel of Fig. 2 that ċs/cs must be very small – many orders of
magnitude less than the Hubble scale at H0 ' 10−42 GeV! Observations of ultra high
energy cosmic rays tell us we must consider charged particles with energy in excess
of, say, a PeV, and bounds on M from LEP mean that the expression for radiated
power, Eq. (3.22) is valid up to very high velocity, but not above that for a few PeV,
when vacuum Cherenkov radiation radically alters the nearby electric field behavior.
In these cases the Lorentz factor is huge, and Eq. (3.22) shows the amount of power
radiated by the ray is highly sensitive to the size of the Lorentz factor, yet, in Fig. 3
it is clear that this is not enough to beat the Hubble scale suppression.

For most of these cosmic rays a galactic source is highly unlikely. More probable:
they were accelerated by jets protruding from the active nuclei of quasars, some of
which have been recorded by the Sloan Digital Sky Survey at cosmic distances of
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Figure 3. Left: Energy radiated per unit cosmic time P = Pa at each redshift, where
P is defined in Eq. (3.22). Right: Integrated energy loss by the particle for its entire
trajectory, beginning at some initial redshift, arriving at earth today. In both plots, each
curve corresponds to a cosmic ray with relativistic energy shown in the legend; PeV= 1015

eV. The disformal energy scale, M , is fixed at 2 eV for the left and right panels.

redshift up to about z ' 6. However, the right panel of Fig. 3 shows that even the
integrated energy loss across a distance this large is suppressed by the Hubble scale
(as could perhaps be infered from dimensional analysis.) We conclude this section
by remarking that such an effect will never be practically measurable if the disformal
coupling is to dark energy. The Hubble scale today is so far from any of those in
particle physics that a second order effect in a dynamic speed of light theory like
vacuum bremsstrahlung will be negligible. For any such coupling or dynamic light
speed in inflation is, however, a different story. The scale of inflation may be large
enough that, during or just after reheating, these effects must be taken into account.

4 Conclusions

We have shown that disformal couplings allow charged particles to emit Cherenkov
radiation and bremsstrahlung in vacuum. The distortion of causal structure by the
scalar field, a characteristic consequence of these interactions, can cause the speed
of photons to be lower than that of a charged particle – and even to vary in time –
mimicking a dielectric medium.

To demonstrate this, we have developed a theory of electrodynamics in which
a scalar field couples disformally to photons and charged particles, on both flat and
expanding backgrounds. Unless the coupling strengths to each species are forced to be
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equal, two distinct frames appear in the theory, each with a specific role: working out
observational quantities, such as the observed speed of light, required use of the frame
in which matter is uncoupled from the scalar (i.e. the Jordan frame), but photons in
general are not. Calculations were found to be simplest however, especially for a time
dependent coupling, in the electromagnetic frame, where freely falling photons always
follow geodesics.

Working in flat space, we determined the constraints on dark energy models with
disformal couplings that arise from the non-observation of vacuum Cherenkov radiation
by the LEP collaboration. These parameter-space bounds are complementary to those
obtained from spectral distortions of the CMB [16]; they both cover different regions
and agree across their intersection. Finally, we have shown that the dark energy fine
tuning problem is a problem for vacuum bremsstrahlung detection also: suppression of
this particle physics interaction by the Hubble scale is unbeatable for any conceivable
measurement one could dream of making on the earth’s cosmic ray flux.

In this study, we have converted the bounds on maximum attainable velocities of
particles obtained by the LEP group to those on the scalar field coupling interaction
M via the Friedman equation. Explicitly, we: a) assumed our gravity sector was as
simple as possible (quintessence with exponential potential, uncoupled to matter) and:
b) produced constraints that are dependent on the measured dark energy equation of
state today. This work should thus be extended along these two lines. How sensitive
are these limits to changes in the gravitational sector of the theory? The bound on M ,
eq. (2.32), will change and this must be worked out. The interplay between particle
physics and cosmology has so far been exceedingly rich, and constraining cosmological
models, such as the present one, using results from ground-based particle experiments
in this fashion remains a surprisingly fruitful venture.
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