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1 Division of Electrical, Electronic and Information Engineering, Osaka University, Osaka
565-0871, Japan
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E-mail: nobuya.mori@eei.eng.osaka-u.ac.jp

Abstract. We perform ensemble Monte Carlo simulations of electron diffusion in high mobility
inhomogeneous InAs layers. Electrons move ballistically for short times while moving diffusively
for sufficiently long times. We find that electrons show anomalous diffusion in the intermediate
time domain. Our study suggests that electrons in inhomogeneous InAs could be used to
experimentally explore generalized random walk phenomena, which, some studies assert, also
occur naturally in the motion of animal foraging paths.

1. Introduction
Inhomogeneous semiconductors display distinctive electric and magnetic properties [1]. We
recently demonstrated how linear magnetoresistance arises from the stochastic behavior of the
electronic cycloidal trajectories around low-mobility islands in high-mobility inhomogeneous
InAs epilayers [2, 3]. In an engineered inhomogeneous optical medium, Barthelemy et al. [4]
demonstrated that light waves perform Lévy flight, a particular class of generalized random
walk. Generalized random walk phenomena have been observed in nature and studied widely,
ranging from electron [5,6], photon [4,7], and phonon [8,9] motion in solids and gases to animal
foraging paths [10–12]. Here we present Monte Carlo studies demonstrating the possibility
to experimentally explore generalized random walks in inhomogeneous InAs. We adopt the
Monte Carlo method because it can handle arbitrary inhomogeneous patterns more easily than
analytical models [13]. In addition, it can be easily extended to study the influence of high
magnetic field [2, 3].

2. Calculation Method
We consider an inhomogeneous high-mobility InAs layer containing regions with low-mobility
(low-µ regions) covering a fractional area f ; the remaining regions are called high-µ regions.
The random spatial profile of the low-µ regions is generated from the power spectrum of the
autocorrelation function ⟨∆(r)∆(r′)⟩ = ∆2 exp(−|r − r′|2/Λ2). Here r = (x, y) is the two-
dimensional in-plane vector and Λ is the correlation length. The low-µ regions Rlow are defined
according to the relation Rlow = {r|∆(r) < ∆th} where the threshold ∆th determines the low-µ
coverage f = Rlow/(Rlow + Rhigh). The scattering rate in the low-µ regions is assumed to be
equal to Wi + We and in the high-µ regions to Wi. Here Wi is the weak inelastic scattering
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rate and We the strong elastic scattering rate. We assume that electrons relax to thermal
equilibrium at T = 300K after inelastic scattering, while the momentum vector k is randomized
isotropically after elastic scattering. The non-parabolicity of the electron energy dispersion of
InAs is modeled as ε(k)[1 + αε(k)] = ~2k2/2me with me = 0.023m0 and α = 2.2 eV−1. Note
that we consider zero-field diffusion processes in a sample with low carrier density and the non-
parabolicity plays a minor role. We performed ensemble Monte Carlo simulations to obtain the
mean square displacement (MSD) at zero applied electric and magnetic fields:

MSD =
1

N

N∑
i=1

|ri(t)− ri(0)|2. (1)

Here N is the number of electrons. In the following simulations, the typical number of electrons
is N ∼ 100000.

3. Results and Discussion
Figure 1 shows examples of randomly generated patterns of low-µ regions with Λ = 0.5µm. For
f < 0.5, low-µ regions (colored regions) are isolated from each other and look like islands in the
surrounding high-µ regions, while for f > 0.5, high-µ regions (white regions) look like islands.
In spite of the fact that the low-µ coverage of the actual samples reported in Ref. [2] is f ∼ 0.05,
we mainly focus on high-f samples with f = 0.8, since we expect that relatively long range
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Figure 1. Examples of the generated distribution of low/high mobility islands for Λ = 0.5µm
with the low-µ coverages (a) f = 0.2, (b) f = 0.5, and (c) f = 0.8. Colored areas represent the
low-µ region.
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ballistic “jumps” occur when electrons enter the high-µ islands, which may lead to anomalous
diffusion. Figure 2 shows an example of an electron trajectory in a sample with f = 0.8 and
Λ = 0.5µm. The scattering rates are set to Wi = 1.5× 1012 s−1 and We = 2.5× 1014 s−1. Note
the similarity between the trajectory and the possible Lévy motion of birds and animals – see
for example Fig. 4 of Ref. [10].

Figure 3 shows the MSD for an inhomogeneous sample (solid line) compared with that for a
homogeneous sample (dashed line). For the homogeneous sample, we assume that the scattering
rate is given by an area-weighted average of the scattering rates in the low-µ and high-µ regions
Wi + fWe (= (Wi + We)f + Wi(1 − f)). It can be seen that electrons move ballistically
(MSD ∝ t2) for short times t . 10 fs while move diffusively (MSD ∝ t) for sufficiently long
times t & 1 ns. In the intermediate time domain, electrons in the inhomogeneous sample show
anomalous diffusion; MSD ∝ t1.65 (super-diffusive) for 10 fs . t . 1 ps and MSD ∝ t0.7 (sub-
diffusive) for 1 ps . t . 1 ns.
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Figure 3. Mean square displacement
as a function of t for an inhomoge-
neous sample (solid line) and a homo-
geneous sample (dashed line).

The transition from ballistic transport to anomalous diffusion should occur at the shortest
scattering time t0 = (We +Wi)

−1 ≈ W−1
e = 4 fs. On the other hand, one can expect that the

transition from anomalous to normal diffusion occurs at a time t∞ when the long-time diffusion
length becomes equal to the correlation length Λ. The crossover condition from anomalous to
normal diffusion, therefore, may be written as (Dt∞)1/2 = Λ or t∞ = Λ2/D. Here D is a
diffusion coefficient given by D = ℓ2/2τ with ℓ being a mean free path and τ the scattering
time. By assuming ℓ = vthτ , τ = W−1

e , and vth = (2kT/me)
1/2, we obtain

t∞ =
meWeΛ

2

kT
. (2)

To check this relation, we calculate the MSD for inhomogeneous samples with various correlation
lengths Λ (see Fig. 4). In addition, to show the anomalous behavior more clearly, figure 5 plots
the MSD divided by t, which corresponds to the long-time diffusion coefficient as t → ∞. The
down-arrows represent t∞ given by Eq. (2). It can be seen that the transition from the anomalous
to the normal diffusion can be well described by Eq. (2).

We finally consider the transition from the super-diffusive to the sub-diffusive regime. As
suggested in Ref. [4], the transition occurs at a time ttrans = dmax/v, where dmax is the greatest
step length and v is the velocity of the random walker. In the present case, ttrans may be written
as

ttrans =
Λ

vth
. (3)

The up-arrows in Fig. 5 represent ttrans given by Eq. (3). We find reasonable agreement between
the Monte Carlo results and Eq. (3).

EDISON’19 IOP Publishing
Journal of Physics: Conference Series 647 (2015) 012059 doi:10.1088/1742-6596/647/1/012059

3



10
−12

10
−9

10
−6

〈x
2
 +
 y
2
〉 
(m

m
2
)

10
−6

10
−3

1

Time (ns)

f = 0.8

Diffusive

∝ t
Ballistic

∝ t2

Homogeneous

0.5 µm

0.25 µm

1 µm

2 µmΛ =

Figure 4. Mean square displacement
(MSD) as a function of t for inhomogeneous
samples with Λ = 2 (red), 1 (green), 0.5
(black), and 0.25µm (blue). Dashed line
shows MSD for a homogeneous samples.
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In this study, we considered inhomogeneous InAs. Other types of semiconductors, including
alloys (e.g. InGaAs), may show similar behavior and are worth investigating. The anomalous
diffusion presented here could be explored by measuring sample-size dependence of the carrier
transmission (or conductance) to compare generalized random behavior which appears in a wide
range of natural phenomena.

4. Conclusion
We have performed ensemble Monte Carlo simulations of electrons in inhomogeneous InAs layers.
We find that electrons show anomalous diffusion in the intermediate time domain t0 . t . t∞.
Our study suggests that inhomogeneous InAs systems could be used to experimentally explore
generalized random walk phenomena, which, some studies assert, also occur naturally in the
motion of animal foraging paths.
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