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Abstract

A scheduler, as a central components of a computing site, aggregates computing resources

and is responsible to distribute the incoming load (jobs) between the resources. Under

such an environment, the optimum performance of the system against the service level

agreement (SLA) based workloads, can be achieved by calculating the priority of SLA

bound jobs using integrated heuristic. The SLA defines the service obligations and expec-

tations to use the computational resources. The integrated heuristic is the combination of

different SLA terms. It combines the SLA terms with a specific weight for each term. The

weights are computed by applying parameter sweep technique in order to obtain the best

schedule for the optimum performance of the system under the workload. The sweeping

of parameters on the integrated heuristic observed to be computationally expensive. The

integrated heuristic becomes more expensive if no value of the computed weights result

in improvement in performance with the resulting schedule. Hence, instead of obtaining

optimum performance it incurs computation cost in such situations. Therefore, there is a

need of detection of situations where the integrated heuristic can be exploited beneficially.

For that reason, in this thesis we propose a metric based on the concept of utilization, to

evaluate the SLA based parallel workloads of independent jobs to detect any impact of

integrated heuristic on the workload.

9



Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

10



Copyright

i. The author of this thesis (including any appendices and/or schedules to this thesis)

owns certain copyright or related rights in it (the “Copyright”) and s/he has given

The University of Manchester certain rights to use such Copyright, including for

administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic

copy, may be made only in accordance with the Copyright, Designs and Patents

Act 1988 (as amended) and regulations issued under it or, where appropriate, in

accordance with licensing agreements which the University has from time to time.

This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intel-

lectual property (the “Intellectual Property”) and any reproductions of copyright

works in the thesis, for example graphs and tables (“Reproductions”), which may

be described in this thesis, may not be owned by the author and may be owned by

third parties. Such Intellectual Property and Reproductions cannot and must not

be made available for use without the prior written permission of the owner(s) of

the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and com-

mercialisation of this thesis, the Copyright and any Intellectual Property and/or

Reproductions described in it may take place is available in the University IP Policy

(see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487), in any

relevant Thesis restriction declarations deposited in the University Library, The Uni-

versity Library’s regulations (see http://www.manchester.ac.uk/library/aboutus/

regulations) and in The University’s policy on presentation of Theses

11



Acknowledgements

I have been supported by many people throughout my PhD but most notable and obvious

person is my supervisor Dr. Rizos Sakellariou. This thesis is a result of his magnanimous

support, continuous encouragement and insightful guidance without that the completion

of this thesis would not have been possible. I am really grateful for his thoughtful advices,

his support and encouragement (especially when I was struck by family and visa crisis)

and for everything that I learnt from him.

I am deeply indebted to my parents, Mr. Syed Anwer Ali (Late) and Mrs. Rehana

Begum, my wife Mrs. Sana Khalid and all of my extended family members for their

invaluable love, understanding and support all the time especially when I lost my most

precious gem of my life that is, my dad.

I like to thank to all members in School of Computer Science, especially Farhana,

Kashif, Sadia, Seemab, Sohel, Viktor, Wei and Ye for their help during my PhD Study.

I also like to mention the support of my house mates Ali, Naveed, Saqib, Bilal and

Waleed that lived with me during my stay in UK. Also, thankful to the mora support of

my friends Adnan and Sohaib.

I would like to thank National University of Sciences and Technology, Pakistan for

supporting me with the scholarship.

Above all, I am grateful to almighty ALLAH for associating me with such nice people

and giving me the strength through them to complete this thesis.

12



Chapter 1

Introduction

This chapter presents a high-level overview of the whole thesis. Section 1.1 illustrates
planning and scheduling in general terms. Section 1.2 first discusses the simple scheduling
concept in the context of computing environments and then, more specifically, under
constraints. Then, in Section 1.3 the details of the Service Level Agreement (SLA) based
heuristic of the work in [YS06], which, to a large extent, motivates the work in this thesis,
are briefly discussed. Further, in the context of a metacomputing environment, Section
1.4 states the overall problem and highlights the relevant issues associated with it. Section
1.5 discusses the performance metric for the evaluation of different scheduling heuristics.
Then, Section 1.6 presents the aims & contribution of the research . Finally, the chapter
is concluded with the structure of the remainder of this thesis in Section 1.7.

1.1 Planning and Scheduling

The Oxford Dictionary on-line [sch] defines the term “scheduling” as to arrange or plan
(an event) to take place at a particular time. Furthermore, it defines “plan” as an intention
or decision about what one is going to do. Therefore, we can derive that scheduling is a
decision making process which tells what one is going to do at a particular time.

Hence, scheduling involves decision making, assigning and the time to carry out the
assignment. Let us consider a simple example before moving to scheduling in the com-
puting environment context. Let us assume that we have two tasks A and B to perform
by the workers w1 and w2. Tasks A and B require resources rA and rB to be carried out,
respectively. Now, the decision making process will involve which task will be performed
by which worker. Once this is decided, then at the time of assignment of a task to a
worker, the required resource should also be provided to carry out the task. Let us fur-
ther assume that tasks A and B will need tA and tB time to finish, respectively. One of
the possible scheduling decisions can be to assign both tasks with the respective resources
to either worker w1 or worker w2. In this case, the two tasks will take a time tA + tB to
complete, as depicted in Figure 1.1(a). Alternatively, another possible decision can be,
to assign each task with the required resources to an individual worker i.e., assign task A
with resource rA to w1 and task B with resource rB to w2. This type of assignment allows
the workers to start the tasks at the same time, as depicted in Figure 1.1(b). Therefore,
both tasks can be completed in time max(tA, tB), that is, the time it takes to complete

13
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the longest of the two tasks. If, for example, tB > tA (as shown in Figure 1.1(b)) then
max(tA, tB) returns tB.

(a) Either of the Worker Performing Tasks (b) Performing Tasks Simultaneously

Figure 1.1: Two Possible Ways of Tasks Completion

From the above example, and the two possible scheduling decisions discussed, we can
make some interesting observations.

� The first point is that if the number of workers is less than the number of tasks then
the time needed to complete the tasks will increase as some tasks are performed
sequentially, i.e., one after the other. Conversely, if the number of tasks and the
number of workers are equal then leaving one worker idle and burdening the other
worker(s) with (more) tasks results in higher completion time; one can say that this
is a bad scheduling decision.

� The second point to observe is, the tasks can be performed by the workers inde-
pendently at the same time. Therefore, assigning the tasks equally and performing
them simultaneously keeps all the workers busy. Hence, a scheduling decision should
take into the account the assignment of tasks to workers to achieve some balance.
An unbalanced assignment may result in a longer time for the completion of tasks;
such a delay may suggest that a scheduling decision is not good.

� The third point to observe is the simultaneous execution of tasks, which suggests
that the tasks can be performed in parallel of each other. The independent nature
of tasks means none of the tasks is required to finish before starting the other.

A simple, real-world example of the above can be found when painting the side walls
of a room. If there are four workers, one assigned to each side wall with the required
resources available i.e., paint brush/roller and desired paint, then all of the workers can
paint the walls independently and in parallel and finish painting in less time if compared
to the painting of all walls by one worker.

1.2 Scheduling in Computing Environments

In the context of scheduling jobs onto computing resources the term scheduling alone
refers to the planning and scheduling of a number of (computational) jobs (or tasks)
onto some available resources. Similar to the ideas presented above, the key objective of
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scheduling is to balance the load distribution among the computing resources, keep all
resources busy, and, thus, minimize the time to complete all the assigned jobs. In order
to achieve this objective, assuming that the number of jobs is greater than the number
of resources and only one job can be executed at a time by each resource, jobs have to
be prioritized somehow; the resulting pattern or prioritization is considered as a plan for
scheduling the jobs. In general, a scheduler is responsible for planning and allocation
of resources to a number of jobs submitted to it. Usually, the scheduler is the central
component of any system required to execute multiple jobs. As a result, it needs some
knowledge of the state of the jobs as well as the state of the available resources in order
to prioritize the jobs to meet the requirements as set by the system administrators.

Although scheduling is an issue faced by every computing environment, most of the
interesting research (and the focus of the work in this dissertation) relates to parallel job
scheduling for parallel computers. Parallel jobs consist of a set of independent jobs (that
can be executed in parallel, hence they have no dependency with each other) and parallel
computers provide multiple CPUs or, simply, processors onto which jobs can be executed.
Parallel computers have been associated with high performance computing, which aims at
providing increased performance for applications with high computational (and not only)
requirements.

Traditionally, the scheduling mechanism in high performance computing has been
essentially a simple one: First-In-First-Out. Jobs are submitted to a queue from where
the jobs are executed when they reach the head of the queue [SY08]. As parallel jobs
may require a different number of processors, some jobs may also be selected from the
queue depending on how many processors they require, as a key objective, from the
system’s point of view, is to keep all processors busy. A queue-based simple scheduling
approach may be acceptable for an environment where all the computing resources are
governed by a central scheduler. But scheduling parallel jobs in an environment where
the resources may belong to and govern by different schedulers, as it is the case in a
Grid [BFH03] where resources (and their schedulers) may belong to (and managed by)
different administrative domains, needs some collaboration across the domains. With that
collaboration, the schedulers are coordinated with each other in order to schedule parallel
independent jobs efficiently. The coordination mechanism is called coordinated resource
sharing [Fos01]. In the absence of coordination mechanism, the benefits of parallelism
may not be fully exploited as noted in [SY08]. To address this issue, advance reservation
has been suggested to run the jobs at the same time [SFT00]. This allows the users
to specify an exact time when a job will start running on the resources, by making an
advance reservation.

However, as noted in [MSK+04], advance reservation is again an ‘extreme’ level of
service, which places several constraints on resources. For example, any running jobs
must be pre-empted at the time when the advance reservation starts, something that
may be too costly. In addition, it is almost impossible to guarantee that any jobs will
terminate and release the resources when the advance reservation starts. As a result, a
new approach that has been proposed and investigated by several researchers in the past
decade (e.g., [MSK+04]) is to offer users the possibility to specify some constraints on
acceptable start time and finish time of their jobs and leave the scheduler to schedule the
jobs in any way the scheduler likes, as long as it meets the user constraints.
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The specification of information such as the acceptable earliest start time and latest
finish time of a job can be a part of a contract, which is termed as Service Level Agreement
(SLA) [ACD+04]. Essentially, an SLA is a contract between two parties, the user and
the resource provider, or, more generally, a service consumer and a service provider,
respectively. It includes the terms that describe an agreed expected level of service by the
user; this is the level of service within which the service will be provided by the service
provider [SY08]. In other words, an SLA defines the service obligations and expectations
to use the resources. As an incentive to meet these obligations, an SLA may include some
monetary parameters, that stipulate a payment to the resource provider upon successful
completion of a job, or a penalty that has to be paid to the user if the provider fails to meet
the user’s expectations. SLAs have been used in a different context in distributed and
e-business environments [HQK+06] [PBM08] [BMG+09]. Recent work [WGB11] [Kub11]
[AJY10] [AD09] [YS06], shows the need and growing interest towards SLA based job
management in different forms of metacomputing. However, research on using SLAs in
high performance computing, when executing parallel jobs, is still ongoing [YS06] [AJY10].

In the context of high performance computing, job submission using SLAs requires
at least four different pieces of information. As the domain relates to parallel jobs, it is
not possible to agree on an SLA without knowing (in addition to earliest start time and
latest finish time), the time required to execute the job and the number of resources (or
simply processors (CPUs)) needed. Clearly, the difference between latest finish time and
earliest start time should be greater than or equal to the time required to execute the
job. In fact, the equality makes the whole process equivalent to advance reservation. It is
the flexibility provided by setting the difference finish time minus start time significantly
longer than the required execution time that can be particularly useful from the resource
provider’s point of view.

Therefore, in the context of using SLAs for parallel job scheduling, every parallel job
is bound by an SLA, agreed between the user (owner of the job) and the resource provider
(owner of the resources). This SLA can be represented as a quadruple, which defines the
required level of service, such as {Ts, tD, Tf , Ncpu} [YS06], where:

� Ts: the earliest acceptable start time for the job, or, simply, start time

� tD: the expected runtime or execution time of the job

� Tf : the latest acceptable finish time for the job (or simply the deadline)

� Ncpu: the number of CPUs required by the job.

Clearly, for every SLA, it must be that Tf − Ts ≥ tD. It is also assumed, without loss of
generality, that tD refers to the expected runtime using the number of processors required,
i.e., Ncpu.

Scheduling parallel jobs specified by an SLA can be considered a problem related
to scheduling tasks with deadlines or time critical constraints, as the option of latest
acceptable finish time is one of the components of the SLA. The problem of scheduling
parallel jobs with time critical service levels is considered to be an NP-hard problem
[Joh06]. It becomes more difficult to make optimal scheduling decisions when jobs have
conflicting requirements such as the number of resources (i.e., processors (CPUs)) needed,
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start time and deadline time, and everything under a resource-constrained environment.
In such a resource-constrained and deadline-based environment, a common solution is
based on prioritizing jobs and then scheduling jobs one after the other in the order of
priority. The whole problem becomes that of the choice of a prioritization scheme that
gives good results. This is the approach that has been used by the relevant literature on
real-time scheduling for several decades.

Two commonly used and cited approaches for prioritizing jobs in deadline-constrained
environments are the earliest deadline first (EDF) and the least laxity first (LLF). As the
name suggests, with EDF the job with approaching deadline gets highest priority, i.e.,
EDF prioritizes the jobs according to their deadline times starting with the jobs with the
soonest deadline. In another approach, where it is assumed that both execution time and
deadline of the jobs are known in advance, the jobs can be prioritized based on the laxity.
The laxity is defined as the difference between the deadline time and the latest possible
completion time. Then, jobs are prioritized according to laxity; job with the least laxity
gets the highest priority.

It can easily be realized that many approaches for job prioritization can be chosen.
For parallel jobs, in particular, there is another parameter that can be used to prioritize
the jobs, i.e., size of a job (or simply jobsize) which is computed by multiplying the
number of resources (CPUs) required by a job with it’s runtime/execution time. Jobs can
be prioritized with either least value or highest value of jobsize. Similarly, the counter
part of EDF and LLF can be drawn that is latest/highest deadline first (HDF) and
highest laxity first (HLF). In the context of SLA-based resource constrained environments,
different methods have been proposed to prioritize the jobs, such as [YS06] [SAL+02]
[SAL+04]. Most commonly used algorithms are based on heuristics; such algorithms
may not have good worst case behaviour but results are often quite good and easy to
implement [GP99]. There are different heuristics evaluated by Yarmolenko and Sakellariou
in [YS06] to schedule SLAs and shown an improvement in performance of the system using
a proposed integrated heuristic, discusses in Section 1.3.

Table 1.1: Example SLAs or Jobs
SLA Start Runtime No. of Deadline Jobsize Laxity

Time (tD) CPUs Time (A = (tL =
(Ts) (Ncpu) (Tf ) tD ∗Ncpu) Tf − Ts − tD)

A 1 1 8 6 8 4
B 1 2 5 5 10 2
C 1 8 2 10 16 1
D 1 2 3 6 6 3

Before moving on to the integrated heuristic, an understanding is needed to be es-
tablished for the scheduling of SLAs using the above mentioned simple heuristics i.e.,
earliest deadline first (EDF), latest/highest deadline first (HDF), least laxity first (LLF),
highest laxity first (HLF), least jobsize first (LAF) and highest jobsize first (HAF). Let
us consider the four different SLAs given in Table 1.1 to understand the effect of priority
based on the above mentioned heuristics. In addition to the four SLA parameters, Table
1.1 includes the jobsize (computed as the product of runtime and number of CPUs) and
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laxity (computed as the difference between deadline and sum of runtime & start time)
against each of the given SLA. It is assumed that a maximum of 8 resources are available
onto which the SLAs given in the example table, are needed to be scheduled. The pri-
oritization of the SLAs based on the heuristics is presented in Table 1.2 and the possible
mapping of SLAs onto resources is graphically shown in Figure 1.2.

Table 1.2 is divided into six sub-tables. In each sub-table the SLAs are ordered
according to the priority from highest to lowest. For example, Table 1.2(a) represents the
prioritization of SLAs from highest to lowest based on the least jobsize first heuristics; if
the SLAs are scheduled onto the system with maximum capacity of 8 CPUs then SLA
C will not be able to schedule in order to finish by the mentioned deadline time. The
mapping of SLAs onto resources under least jobsize heuristics is presented in Figure 1.2(a).
It can be seen that after scheduling the highest priority SLA i.e., D, not enough resources
would be available for the next high priority SLA i.e., A, therefore, SLA B is picked up to
schedule. The runtime of SLA B is same as SLA D therefore, SLA B is scheduled at the
same time as SLA D instead of leaving the resources idle. Then, SLA A is scheduled as
soon as all the resources become available i.e., at the end of the execution of SLA D and
B which is at t = 3 units. After scheduling SLA A, it is not possible to schedule SLA C as
it will run over its deadline time. Likewise, the prioritization based on the highest jobsize
first (HAF) is given in Table 1.2(b) and the mapping of SLAs based on this prioritization
is shown in Figure 1.2(b). The prioritization of SLAs is changed now and SLA A is unable
to get scheduled to finish by the deadline time. Similarly, the prioritization of SLAs based
on the heuristics least laxity first (LLF), highest laxity first (HLF), earliest deadline first
(EDF) and latest/highest deadline first (HDF) is shown in Table 1.2(c), 1.2(d), 1.2(e) &
1.2(f) and the mapping of the schedule based on these heuristics is given in Figure 1.2(c),
1.2(d), 1.2(e) & 1.2(f), respectively.

From the mapping given in Figure 1.2, it can be seen that the number of successfully
served SLAs/jobs may be same under all mentioned simple heuristics but the mapping
pattern solely based on the heuristics used which is why the performance of the system
differ anomalously under all heuristics if a large number of SLAs are required to schedule.

1.3 An Integrated SLA Scheduling Heuristic

Scheduling SLAs based on the terms of agreement is addressed using integrated heuristic
in [YS06] in an attempt to achieve the maximum performance. The proposed scheme
finds the best solution for a set of SLAs by scheduling them with a priority which is
calculated heuristically by applying parameter sweep. For the heuristics, it is suggested
that the multiple terms from the SLA can be added together by multiplying with some
weight factor w in order to calculate the priority of the SLAs. For a set of SLAs, a
simulation is executed again and again with different values of weight (w) parameters
using parameter sweep. Those values of weights that result in maximum performance
are recorded and used for the scheduling decision. It is concluded that by increasing the
number of SLA terms in the integrated heuristic results in increased performance. As
the value of weights (i.e., w parameters) is evaluated using parameter sweep simulation
therefore, this evaluation results in long computation time depending on the range of
values used for the weights, number of SLA terms used in integrated heuristic, number of
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(a) Least Jobsize First (LAF) (b) Highest Jobsize First (HAF)

(c) Least Laxity First (LLF) (d) Highest Laxity First (HLF)

(e) Earliest Deadline First (EDF) (f) Latest/Highest Deadline First (HDF)

Figure 1.2: Scheduling Map under Simple Heuristics
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Table 1.2: Example of Priority Based on Simple Scheduling Heuristics
(a) Least Jobsize First (LAF) (b) Highest Jobsize First (HAF)

SLA Ts tD Ncpu Tf A tL SLA Ts tD Ncpu Tf A tL
D 1 2 3 6 6 3 C 1 8 2 10 16 1
A 1 1 8 6 8 4 B 1 2 5 5 10 2
B 1 2 5 5 10 2 A 1 1 8 6 8 4
C 1 8 2 10 16 1 D 1 2 3 6 6 3

(c) Least Laxity First (LLF) (d) Highest Laxity First (HLF)
SLA Ts tD Ncpu Tf A tL SLA Ts tD Ncpu Tf A tL

C 1 8 2 10 16 1 A 1 1 8 6 8 4
B 1 2 5 5 10 2 D 1 2 3 6 6 3
D 1 2 3 6 6 3 B 1 2 5 5 10 2
A 1 1 8 6 8 4 C 1 8 2 10 16 1

(e) Earliest Deadline First (EDF) (f) Latest Deadline First (HDF)
SLA Ts tD Ncpu Tf A tL SLA Ts tD Ncpu Tf A tL

B 1 2 5 5 10 2 C 1 8 2 10 16 1
A 1 1 8 6 8 4 A 1 1 8 6 8 4
D 1 2 3 6 6 3 D 1 2 3 6 6 3
C 1 8 2 10 16 1 B 1 2 5 5 10 2

resources within the system and the number of SLAs within a workload (or SLAs waiting
to get scheduled).

Using the maximum number of served SLAs as a performance objective, the best
heuristic of the work [YS06] is given in Equation 1.1 which consists on the integration
of three parameters i.e., deadline (Tf ), jobsize (A) and laxity (tL). It is called integrated
heuristic throughout in this thesis. Integrated heuristic requires to sweep through a
number of values for w1 and w2 one at a time. For each value of w1, the scheme exhausts
all the values defined for w2. The H is the computed priority based on the minimum
value of the combination Tf +w1A+w2tL for each SLA against the initialized/set values
of w1 and w2. If, for example, the sweeping values for w1 and w2 are started from -5.0 and
incremented with 0.1 and ended at +5.0 then, a total of 10201 values (or combination)
are required to be evaluated (i.e., 101 steps from -5.0 to +5.0 with the increment of 0.1
and for both w1 and w2, the possible combination to evaluate will be 101 × 101 = 10201).
Against the performance objective of maximum number of served SLAs those values of
w1 and w2 are selected which results in maximum performance.

H = min(Tf + w1A + w2tL) (1.1)

where
Tf = deadline time
A = jobsize; which is the product of runtime (tD) and number of processors (Ncpu)
tL = Laxity; the difference between the deadline time and execution finish time.
and w1, w2 are sweeping parameters.
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To understand the behaviour of the integrated heuristic under parameter sweep scheme,
let us now schedule the SLAs given in Table 1.1. In this particular scenario, different
combinations of w1 and w2 values can attain maximum performance but for the sake of
simplicity, the values -2 and -5 for w1 and w2 are selected, respectively. Assume that
these values have been found after evaluating number of different values for w1 and w2

and among the satisfying values, this set of values is picked up. Now, the value of H is
based on the picked up w1 and w2 values; the SLAs are ordered by minimum value of H.
This order of SLAs is considered as prioritization order which is given in Table 1.3. A
scheduling map against this prioritization order is shown in Figure 1.3. It can be seen
that all four SLAs are scheduled to finish successfully by their mentioned deadline times
according to the priority calculated using integrated heuristic.

Table 1.3: Example of Priority under Parameter Sweep Heuristics
SLA Ts tD Ncpu Tf A tL w1 w2 H =

min(Tf + w1A + w2tL)
A 1 1 8 6 8 4 -2 -5 -30
C 1 8 2 10 16 1 -2 -5 -27
B 1 2 5 5 10 2 -2 -5 -25
D 1 2 3 6 6 3 -2 -5 -21

Figure 1.3: Scheduling Map under Integrated Heuristics (H)

Although, the scheme gives the best possible solution under the given objective of
maximizing the number of served SLAs, the cost of computation is high due to the eval-
uation of a complete set of workload (i.e., set of SLAs) iteratively for each combination
of w1 and w2 values. This time complexity is considerably increased with the number of
SLAs included in the workload and therefore, not suitable for a system where not enough
time or resources available to compute the best possible values of w1 and w2 exist. The
situation can become worse if no value of w1 and w2 results in the best schedule. This sug-
gests that there is a need to identify whether the use of different parameter values for the
integrated heuristic will really make a significant impact justifying the high computation
cost associated with it.
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1.4 Problem

The problem considered in this thesis concerns the allocation of jobs bound by the SLAs
onto a set of resources so that some performance objective is met. For example, such
an objective could be the maximization of the number of SLAs that can meet their con-
straints. This problem can be of interest in a metacomputing [SC92] environment such
as high performance Grid [BFH03], in which multiple computing sites are aggregated to
execute a job whose execution requires multiple resources. A component, called sched-
uler, is used to schedule the incoming jobs/SLAs onto the resources. Our focus in this
environment is on the scheduling aspect, that is, how to allocate the jobs onto resources
to get the maximum advantage.

Different approaches for scheduling such SLA-bound jobs are based on job prioritiza-
tion. As demonstrated with the examples in the previous section, different prioritization
schemes may lead to different system performances. In other words, there is not a single
heuristic from the heuristics discussed in Section 1.2, which is able to produce optimal
performance under all scenarios. The problem of scheduling becomes more complicated
if some expected level of service is desired to maintain. To cope with this problem, an
integrated heuristic proposed in [YS06]. But as this integrated heuristic requires param-
eter sweeping to find the best possible solution or priorities therefore, there is a need to
identify whether the sweeping values will really make a positive impact on the quality of
the schedule. As, without using parameter sweep simulation on integrated heuristic there
is no way to predict the weights to yield the best results [HSR09].

To motivate this, imagine that there are only two SLA-bound jobs to be scheduled onto
resources and there is an unlimited number of resources, which far exceed the requirements
of these two jobs. Then, it is easy to realize that even the simplest scheduling heuristic will
easily meet the requirements of the two jobs. There is no need to resort to computationally
expensive heuristics, such as the heuristic proposed in [YS06].

Thus, the question that this thesis sets to investigate is to what extent the power of
the integrated heuristic for SLA scheduling is really beneficial and to what extent equally
good solutions can be obtained using simple heuristics. An answer to this problem will
allow the development of an adaptive scheduling scheme, which resorts to the integrated
heuristic only when the need arises and some quantifiable benefits can be obtained.

1.5 Performance Metric

The performance of the system for the respective scheduling heuristics is measured in
terms of served number of SLAs. The comparison of obtained performance under simple
heuristics and the integrated heuristics (both discussed above) is done using performance
difference (PD). PD is the percentage difference between the maximum number of served
SLAs by any simple heuristic and by integrated heuristic and is calculated in terms of
percentage using the formulae given in Equation 1.2.

PD =
(PInt −Max PS)

Total Number of Submitted SLAs
∗ 100 (1.2)

Where
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PInt = Performance achieved by Integrated Heuristic
Max PS = Maximum Performance achieved by any Simple Heuristics

Although, the performance metric is the number of served SLAs in terms of PD, but
the utilization of the system is also calculated and presented. The utilization (U) of the
system is calculated against sum of served jobsize(A) and overall system capacity (SC)
using Equation 1.3. The overall system capacity (SC) is defined as the product of number
of system CPUs (SCPU) and the difference of finish time of last accepted SLA/job & start
time of first submitted SLA/job (i.e., Tflast −Tsfirst) and is calculated using Equation 1.4.

U =

∑
A

SC

∗ 100 (1.3)

Where ∑
A = Sum of served jobsize (A)

SC = Over all system capacity

SC = (Tflast − Tsfirst) ∗ SCPU (1.4)

Where
Tsfirst = Start time of first submitted job/SLA
Tflast = Finish time of last accepted job/SLA
SCPU = Total system CPUs

As mentioned, the utilization (U) of the system is not a measure of performance but
presented for the sake of clarity and to show that, in a system where characteristics of next
arriving jobs are not known apriori, the utilization of the system may not be increased
with any particular heuristic even obtaining the maximum served SLAs. For example, the
computed system utilization for the scenario presented in Section 1.2 and 1.3, is shown
in Figure 1.4. Even though, the heuristics least jobsize first (LAF ), highest laxity first
(HLF ) and earliest deadline first (EDF ) resulted in 100% system utilization but served
only three jobs/SLAs for shorter period of time. On the contrary, the heuristics highest
jobsize first (HAF ), least laxity first (LLF ) and latest/highest deadline first (HDF )
resulted in 50% of system utilization but again served only three jobs/SLAs for longer
period of time leaving gaps within the schedule (as shown in Figure 1.2). In contrast to all
mentioned simple heuristics, the integrated heuristics (H) resulted in 55.56% of system
utilization but served successfully all four jobs/SLAs, as shown in Figure 1.3. Although,
integrated heuristic served all four jobs/SLAs but if compared in terms of utilization with
all simple heuristics, it utilized the system 5.56% higher than the highest jobsize first
(HAF ), least laxity first (LLF ) & latest/highest deadline first (HDF ) and 44.44% lower
than the least jobsize first (LAF ), highest laxity first (HLF ) & earliest deadline first
(EDF ).
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Figure 1.4: System Utilization under all Heuristics

1.6 Aims & Contribution

The increased expressiveness in the form of SLAs allows the efficient reservation of re-
sources and could also lead to an optimized schedule using an integrated heuristic such
as in [YS06]. The aim is to analyse the problem of identifying the need of parameter
sweep on the integrated heuristic for the SLA based workload. For this purpose, we need
to evaluate all the discussed simple heuristics as well as the integrated heuristic sepa-
rately against different SLA based workloads to observe the performance of the system.
It is desired to quantify the workload against the proposed metric which uses the concept
of utilization for its calculation. It is then investigated further, whether the integrated
heuristic is always required for the maximum performance or not. Therefore, a scheme
is required to distinguish and characterize the SLA based workload for which a metric
is proposed. Briefly, this thesis contributes to the knowledge on scheduling parallel jobs
bound by SLAs in the following context:

� It proposes an approach to identify the impact of scheduling heuristics for SLA-
bound workloads.

� It suggests a novel approach to characterize an SLA-bound workload.

� A novel metric-based approach is proposed to identify the improvement in perfor-
mance with integrated heuristic.
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� Based on the above observations, an adaptive scheme to adapt the scheduling ap-
proach to use the integrated heuristic for maximum performance (in situations where
this is necessary) is proposed and evaluated.

1.7 Thesis Organization

This section gives a brief overview of the individual chapters of the thesis in itemized
form.

Chapter 2: Presents a discussion on Service Level Agreement (SLA) in the context of
its structure and life-cycle together with a review and taxonomy for the classification
of the reviewed scheduler and resource manager.

Chapter 3: Presents the methodology to carry out experiments. It discusses the
architecture of the designed simulator, scheduling heuristics and simulator execution
scheme. Further, it details about SLA-based workload generator, assumptions made
to perform the experiments, methods to compute and compare the results, and
limitations of the designed simulator.

Chapter 4: A metric based workload characterization scheme is proposed and eval-
uated, which checks the feasibility of the application of an integrated heuristic on
the SLA based workloads. A simulation based evaluation suggests that the high
percentage of workloads can be checked in real time for the suitability of scheduling
the workload with the exhaustive scheme, which uses the integrated heuristic, to
extract better performance than the simple scheme that uses simple heuristics.

Chapter 5: An adaptive scheme is proposed and evaluated to schedule the SLAs us-
ing the metric and its characterization scheme, explored in Chapter 4. The adaptive
scheme suggests whether to use the exhaustive scheme or the simple scheme for the
arriving SLAs. Again, the simulation based evaluation is conducted which shows
that how the computation cost can be reduced by avoiding the exhaustive scheme
without the major loss in performance.

Chapter 6: It is the final chapter and concludes the dissertation by reviewing the
contribution and discussing the direction for the future work.



Chapter 2

Review of State of the Art

In the context of distributed computing on networked virtual supercomputer, constructed
dynamically from geographically distributed resources linked by high-speed networks
[FK96], metacomputing concept was proposed in 1992 by Larry Smarr and Charles E.
Catlett [SC92]. The idea of metacomputing was transparent provision of collection of
heterogeneous computing resources connected by high-speed network to the user. The
resource could be of any type such as cluster of workstations, supercomputer, networked
virtual supercomputers or simply meta-computer. Metacomputing system is distinguished
from a simple collection of computers by a software layer, often called middleware, which
transforms a collection of independent resources into a single, coherent, virtual machine
[LGFH95]. It consists of a set of services that enables the system to execute jobs on
number of resources seamlessly.

In metacomputing environments for example Grid [BFH03] and Cloud [WvLKT08],
services are composed at run time to fulfil users’ requirements and the composition of a
service may be based on large distributed, loosely coupled applications such as in Web
services [BCT+05]. Under such an environment users may want to set an upper limit or
threshold for the composed service response time or set a deadline time by which a user
needs the results from the composed service which is termed as quality of service (QoS);
an important issue when service is built out of independent components [BCT+05]. To
establish the quality of service criterion between a user and a service provider, a Service
Level Agreement (SLA) is required. The SLA is then considered as a contract between
two parties i.e., service provider and service consumer. It includes the terms that describe
the expected level of service within which the service will be provided by service provider
[SY08].

In this chapter, a discussion on Service Level Agreement (SLA) in the context of its
structure and life-cycle is presented in Section 2.1. Then, taxonomy is presented for the
classification of the surveyed scheduler and resource manager in Section 2.2. Finally, the
survey is conducted and presented in Section 2.3, based on the taxonomy for the few
renowned scheduler and resource management system.

26
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2.1 Service Level Agreements

The Web Services (WS) are a set of technologies based on which a large distributed and
loosely coupled applications can be composed automatically [BCT+05]. The composition
of such type of applications is defined by two types of properties i.e., functional and
non-functional. Functional properties focus on how does a user automatically compose a
‘correct’ service whereas, non-functional properties focus on the ‘quality’ of a composed
service. The quality of service (QoS) of the composed services is also of paramount im-
portance which refers to the non-functional propoerties [BCT+05]. Therefore, in order
to maitain the quality of the composed services, the concept of service level agreement
(SLA) was proposed for the Web Services (WS) which has been adopted from the do-
main of telecommunications [Kub11]. To address the issues associated with QoS, number
of standards have been proposed such as, IBM Web Service Level Agreement (WSLA)
[KL03], HP’s Web Service Management Language (WSML) [SMS+02] and GRAAP (Grid
Resource Allocation and Agreement Protocol) Working Group WS-Agreement [ACD+04].

Different aspects of QoS have been considered in different researches, such as, a QoS
based negotiation addressed in G-QoSM framework [AaRW+02] in which QoS requirement
for a service can only be expressed in low-level and hence a user should be well versed in
order to write the SLA for the required services. Whereas, in the work [KL03], the need
of formal language to express SLAs and a runtime architecture to interpret the language,
from the web service provider perspective has been addressed. It measures different
services using number of different defined metrics and the metrics are defined by technical
experts. The requirement of technical expertise to define such metrics is addressed in
[TP11], a web service monitoring framework to specify the SLAs, which claims to reduce
the manual efforts to guarantee the SLAs without the need of the technical skills. An
Open Grid Services Architecture (OGSA) based scheme to manage the QoS attributes
specified within the SLA, is introduced in [LKA+08]. It discussed the OGSA compliant
Execution Management Service, to enable the management and enforcement of SLAs.
A genetic algorithm based approach for the SLA based service composition in Cloud
computing environment, proposed in [AFAS11]. It claimed that as Cloud providers offer
SLAs based on the history of their performance which is unreliable and may offer SLAs
with incorrect QoS measures because there are no means of SLAs validation. Thus, from
user perspective, the automatic discovery of the services based on the formal specification
of user needs, is required. This allows user to compare and evaluate different SLAs offered
by different Cloud providers.

We discuss here the GRAAP WS-Agreement [ACD+04] in brief detail in the next
section to understand the purpose and need of such standards.

2.1.1 WS-Agreement

The WS-Agreement [ACD+04] is a recent proposal for GRAAP working group to advertise
the services or capabilities of service providers, creating agreements and monitoring the
agreement compliance. It is an XML-based document containing descriptions of the
functional and non-functional properties. The agreement creation process typically starts
with a pre-defined agreement template specifying customizable aspects of the documents
and rules that must be followed in creating an agreement.
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The general structure of SLA is depicted in Figure 2.1 as specified in WS-Agreement
specification [ACD+04]. The agreement may optionally have a name wherease, the context
contains mandatory information about the initiator, the responder and the provider of
the agreement; expiration time of the agreement; and its template Id. Functional and
non-functional requirements are specified in the Terms section that is divided into Service
Description Terms (SDTs) and Guarantee Terms. SDTs define the functional attributes
of the agreement whereas the guarantee terms contain the non functional attributes.
Guarantee terms further describe the conditions, Service Level Objectives (SLO) and
Business Value List (BVL) related to the agreement. SLO terms use to express the
objective to meet e.g., earliest job start time, latest job finish time (or deadline time),
execution time (or reserved time for job execution) and number of CPUs. BVL may
express the importance of meeting an objective as well as information regarding penalty
or reward [UHHS11]. An agreement may contain any number of SDTs. An agreement
can refer to multiple components of functionalities within one service, and can refer to
several services. Guarantee terms define an assurance on service quality associated with
the service described by the SDTs. An agreement may contain zero or more guarantee
terms.

Figure 2.1: SLA Structure [ACD+04]

SLA Life-cycle

SLA concept in service oriented computing, is inspired from the telecommunication there-
fore, the life-cycle of an SLA can be divided into six distinct phases i.e., development,
negotiation, implementation, execution, assessment, and decommission [HQK+06]. But
it has been noted in [PBM08] that the life-cycle of an SLA is confused with the life-cycle
of a service and hence, a better model of an SLA life-cycle suggested which consisted of
eight phases i.e., template created, template advertised, SLA negotiation, agree, execute,
assess, settle, and archive. The two life-cycles are compared and depicted in Figure 2.2.
In the work [PBM08], the development phase replaced by two different phases that are,
template created and template advertised. First an SLA template is formed and then
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advertised by the provider. Then, an individual SLA is negotiated then agreed on the
basis of this template. The negotiation phase is separate to the agreement phase as it is
possible that a negotiation may not always lead to an agreement. In execution phase the
resources are actually commissioned and deployed to complete the agreed service. Once
the execution of a service based on an agreed SLA is started, in the assessment stage
where, the performance of the service is checked periodically against the agreed SLA.
Finally, when the service has completed, the final settlement phase takes place where it is
determined if the SLA was met and what the costs to the customer are and what penalties
may apply to the provider for breaching the terms of the SLA.

Figure 2.2: Comparison of Two Life-cycles [PBM08]

The objective of the WS-Agreement specification is to define a language and a protocol
with a goal of standardized methods for complete SLA life-cycle. It needed Web Service
Description Language (WSDL) [CMRW07], a XML based interface description language,
to express the message exchanges and the state of the resources. It describes a Web service,
specifies the location of the service and the operations offer by the service. The term
service typically refers to the piece of code implementing the XML interface to a resource
and resource could be of any type of application or data store within an organization
[Sko03]. XML schema defines ‘what’ XML messages may be used and WSDL group these
messages into operations and operations into interface. WSDL service definitions provide
documentation for distributed systems and serve as a recipe for automating the details
involved in applications communication [CCMW00]. At the time of writing, the latest
version of WSDL is 2.0 like its’ previous version it is also described into three layers i.e.,
abstract interface, protocol binding and service endpoints [Liu05] also depicted in Figure
2.3.

As detailed in [Liu05], an abstract interface defines what a service is i.e., the messages
to be exchanged with a service which correspond to expected input and output. A protocol
binding defines how to access a service with a concrete protocol. For example, when
SOAP messages are exchanged over HTTP, the binding defines the parts of messages for
the SOAP header and body. The service endpoint describes the exact address where a
service can be activated which in turn largely depends on the binding in use such as URL
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Figure 2.3: Three Layered Description of WSDL [Liu05]

in an HTTP scheme. Figure 2.3 also shows the timing at which the work of all three layer
is carried out as well as the level of service from abstract to concrete. Usually, at design
time, service is defined using abstract interface at abstract level. The endpoint refers to
the real implementation of the service which is available to run at run time, of course a
concrete object. Whereas, binding definition is typically defined at configuration time to
connect the abstract level to concrete level for the provision of required service.

Besides WSDL, the WS-Agreement protocol is dependent on WS-Addressing [BCC+04],
WS-ResourceProperties [GT04], WS-ResourceLifetime [SB06], and WS-BaseFaults [LM06]
[CMRW07].

2.1.2 Web Service Resource Framework (WSRF)

To fulfil the need to define conventions for managing the state of services so that appli-
cations discover, inspect, and interact with stateful resources in standard and interop-
erable ways, the WS-Resource Framework is then defined to address these conventions
[CFF+04a]. Web Service Resource Framework (WSRF) is an approved OASIS [oas] stan-
dard [glob]. It is inspired by the work of the Global Grid Forum’s Open Grid Services
Infrastructure (OGSI) Working Group [glob]. Two different technical committees were
formed to work on the specifications [glob]: the WSRF technical committee; to work on
WS-ResourceProperties, WS-ResourceLifetime, WS-ServiceGroup, and WS-BaseFaults
specifications and the WSN technical committee; to work on WS-BaseNotification, WS-
Topics, and WS-BrokeredNotification specifications. The WSN specifications are build
on WSRF but still they are not considered as part of WSRF proper [glob].

The WS-Resource Framework builds on the WS-Addressing [BCC+04] specification.
It adopts the endpoint reference construct defined in the WS-Addressing specification as
an XML syntax for identifying Web service endpoints and endpoint reference contains an
identifier of a specific stateful resource associated with the Web service [CFF+04a].

WS-Addressing [BCC+04]

WS-Addressing provides transport-neutral mechanisms to address Web services and mes-
sages. This specification enables messaging systems to support message transmission
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through networks that include processing nodes such as endpoint managers, firewalls,
and gateways in a transport-neutral manner. It defines two interoperable constructs that
are, endpoint reference and message information headers. Endpoint references convey the
information needed to identify/reference a Web service endpoint and message informa-
tion headers convey end-to-end message characteristics including addressing for source
and destination endpoints as well as message identity. Both of these constructs are de-
signed to be extensible and re-usable so that other specifications can build on and leverage
endpoint references and message information headers.

WS-ResourceProperties [GT04]

The composition of a stateful resource and a Web service that participates in the im-
plied resource pattern is termed as WS-Resource. A stateful resource have a specific set
of state data expressible as an XML document, a well-defined lifecycle and be known
to, and acted upon, by one or more Web services [FCF+05]. The implied resource pat-
tern refers to the mechanisms used to associate a stateful resource with the execution
of message exchanges implemented by a Web service [FCF+05]. WS-ResourceProperties
describes the WS-Resource definition, and describes how to make the properties of a WS-
Resource accessible through a Web service interface, and to manage and reason about a
WS-Resources lifetime [CFF+04a]. WS-ResourceProperties standardized the terminology,
concepts, operations, WSDL and XML needed to express the resource properties projec-
tion, its association with the Web service interface, and the messages defining the query
and update capability against the properties of a WS-Resource. It also standardized the
definition of the properties of a WS-Resource to be declared as part of a Web service
interface. The declaration of the WS-Resources properties represents a projection of or a
view on the WS-Resources state. This projection is defined in terms of a resource prop-
erties document. This resource properties document serves to define a basis for access to
the resource properties through Web service interfaces.

WS-ResourceLifetime [SB06]

WS-ResourceLifetime standardized the terminology, concepts, message exchanges, WSDL
and XML needed to monitor the lifetime of, and destroy, WS-Resources. The lifetime of
a WS-Resource is defined as the period between its instantiation and its destruction. The
WS-ResourceLifetime specification standardized the means of WS-Resource destruction.
It defined two means of destroying a WS-Resource: immediate destruction and time-
based or scheduled destruction. The immediate destruction of a WS-Resource may be
accomplished using the defined message exchanges. However, a resource may be destroyed
after a defined period of time. If that time period is elapsed, the WS-Resource may
self-destruct without the need for an explicit destroy request message from a client. WS-
ResourceLifetime also defines a standard message exchange by which a service requestor
can establish and renew a scheduled termination time for the WS-Resource, and the
circumstances under which a service requestor can determine that this termination time
has elapsed.

In particular, WS-ResourceProperties and WS-ResourceLifetime are used to represent
Agreements as Resources [CMRW07].
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WS-BaseFaults [LM06]

The WS-BaseFaults standardized the terminology, concepts, XML types, and WSDL
usage of a base fault type for Web service interfaces. Problem determination in a Web
services setting is simplified by standardizing a base set of information that may appear in
fault messages. WS-BaseFaults defines an XML Schema type for base faults, along with
rules for how this base fault type is used and extended by Web services. WS-BaseFaults
defines an XML Schema type for a base fault, along with rules for how a fault type is
used by Web services.

WS-ServiceGroup [MS04]

The WS-ServiceGroup defines a mean by which Web services and WS-Resources can be
aggregated or grouped together for a domain specific purpose. The term service group
refers to a standard mechanism for creating a heterogeneous by-reference collection of
Web services [CFF+04a]. WS-ResourceProperties are used to express the ServiceGroup
membership rules, membership constraints and classifications. Groups are defined as a
collection of members that meet the constraints of the group. The ServiceGroupRegis-
tration interface extends the basic ServiceGroup capabilities with message exchanges for
managing the membership of a ServiceGroup. Service groups can form a wide variety of
collections of services, including building registries of services and they are particularly
important when dealing with stateful entities such as WS-Resource [CFF+04a].

WS-Notification [GHM06]

In an environment where stateful resources may be created and destroyed, and may change
their state, dynamically, it becomes important to provide support for asynchronous no-
tification of changes in the state of individual resources [CFF+04a]. Such support is
provided using WS-Notification family that define a standard Web services approach to
notification using a topic-based publish/subscribe pattern. From the perspective of the
WS-Resource framework, the WS-Notification family of specifications extends the utility
of WS-Resource by allowing requestors to ask to be asynchronously notified of changes
to resource property values [CFF+04b]. WS-Notification includes: standard message ex-
changes to be implemented by service providers that wish to participate in Notifications,
standard message exchanges for a notification broker service provider (allowing publi-
cation of messages from entities that are not themselves service providers), operational
requirements expected of service providers and requestors that participate in notifications,
and an XML model that describes topics. WS-BaseNotification, WS-BrokeredNotification
and WS-Topics are part of WS-Notification family.

WS-BaseNotification [GHM06] [CFF+04b]: describes the basic roles, concepts, and
patterns required to allow a subscriber to register interest in receiving notification mes-
sages from a notification producer. An notification can concern anything, a change in
the value of a resource property, some other internal change in the state of the notifica-
tion producer, or some other ‘situation’ within the environment. A subscriber registers
interest in receiving notification messages on one or more topics by issuing a ‘subscribe’
message. In response, the subscriber receives a WS-Resource-qualified endpoint reference
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to a ‘subscription’ WS-Resource. The subscription WS-Resource models this relation-
ship between the subscriber and the producer, and it uses WS-ResourceProperties and
WS-ResourceLifetime to help manage this relationship.

WS-Topics [GNC+04] [CFF+04b]: presents an XML description of topics and asso-
ciated meta data. Topics are a mechanism for organizing notification messages so that
subscribers can conveniently understand what types of notification are available for sub-
scription. Topics can be organized hierarchically; one topic can be further decomposed
with child topics. Topics are also scoped by namespace, much as XML types and elements
are scoped by XML namespaces.

WS-BrokeredNotification [CL06] [CFF+04b]: defines the interface to a Notifica-
tionBroker that implements an intermediary service to manage subscriptions for other
entities in the system that produce notification messages.

2.1.3 JSDL and WS-Agreement

Job Submission Description Language (JSDL) [AEBCDF+] is an extensible XML spec-
ification from the Global Grid Forum for describing the requirements of computational
jobs for submission to resources, particularly in Grid environments but not restricted to
it. The motivations behind the JSDL specifications are ineteroperability between the
systems and ease of interactions between the grid systems. In order to utilize different
systems within an organization without preparing and maintaining a number of different
job submission documents (one for each system), a standardized language JSDL proposed
to alleviate this problem. Further, as grid systems involve in number of interactions be-
tween different types of job submission system it is therefore required, that interactions
can be undertaken automatically, facilitated by a standard language that can be easily
translated to each system’s own language. JSDL elements can generally be categorized
into following three categories:

� Job identification requirements,

� Resource requirements and

� Data requirements

These elements are restricted to the description of requirements of jobs at submission
time and no element can be defined or altered after it has been submitted. Job man-
agement system responsible for maintaining the unique job identifiers or job status that
may be available in separate documents. As JSDL describes submission requirements of
a job only and hence, it does not address the management of entire lifecycle of a job or
the relationship between individual jobs. It is therefore anticipated that, number of other
languages and protocols are also required to manage entire lifecycle of a job and/or to
enable communication between the jobs. For example, a workflow language is required to
use in order to make relationships for the consumption and production of data, between
individual jobs described using JSDL. WS-Agreement specification is required to integrate
into system together with JSDL so that appropriate negotiation and agreement protocol
is used to put a job in an optimal resource environment according to its requirements.
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2.2 Taxonomy of Scheduling and Resource Manage-

ment Systems

A taxonomy and a survey of the published scheduling and resource management is pre-
sented in this section. Generally, a market-based metacomputing environment such as
Grid, consisted of three entities i.e., user, broker/meta-scheduler, and service provider. A
user is considered as a consumer of the services (i.e., computing resources) provided by
the service providers. The service providers own and manage the computing resources
in order to satisfy the user demands. Therefore, service provider is also termed as Local
Resource Manager (LRM). It is responsible for the actual planning and scheduling of user
request on to the available resources. The broker/meta-scheduler acts as a middle man
to help user to find suitable resources (or service provider) for the user request. A broker
provides matchmaking service between end-user and resource provider based on the re-
quirement of end-user and features of resources available from resource provider. Clearly,
broker/meta-scheduler does not actually execute the user request on to resources instead,
it presents the suitable resources to the user using the information published by the ser-
vice providers to the broker/meta-scheduler and then LRM is responsible to execute the
user request.

The taxonomies presented in [KBM02] classify resource management system with re-
spect to organization of machines within Grid, resource model, resource namespace organi-
zation, quality of service (QoS) support, information store organization, resource discovery
and dissemination mechanism. Based on the marketing principles [AHR01], the survey can
be classified into two broad categories: Market-oriented or System(production)-oriented.
The similar principle for the classification of scheduling and resource management systems
adopted in [GB11] to present several other taxonomies. In this thesis, the classification of
the surveyed literature is done using the taxonomy followed by the work [GB11] [Zhe10]
[YB06b] [HML10]. Therefore, classification from six perspectives: Resource Access Mecha-
nism, Architectural Model, Application Model & Scheduling Domain, QoS and Scheduling
Perspective, is done for the surveyed literature.

Scheduling Domain & Application Model Perspective

Scheduling domain defines the allocation domain for a job. The scheduler which governs
multiple local schedulers that are responsible to administrate the specified domain is
termed as meta-scheduler. Whereas, the local scheduler is responsible to actually schedule
the jobs onto resources. A task or job are general corresponding names of the threads,
processes, and applications under different scheduling concepts. Conceptually, parallel
job is comprised of threads and these threads also represents the degree of parallelism.
The data requirement to process the parallel job tells about the type of dependency. If
a parallel job does not require any data from any other job to be processed then it is
considered as parallel independent job because there is no dependency on the execution
of the job to any another job. On the other hand, if a parallel job requires data from
another job to be processed then it is considered as parallel dependent job and such jobs
are presented as directed acyclic graph (DAG) [] [CJSZ08]. Therefore, schedulers can be
classified as meta-scheduler or local scheduler and scheduling application can broadly be
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classified as dependent or independent parallel job.

Architectural Model Perspective

In order to distinguish the characteristics of the computing resources modelled in different
scheduling studies, the taxonomy from the perspective of underlying system architecture
and operating environment is considered. The architectural model taxonomy consists of
four sub-taxonomies: management control, resource composition, execution support and
scheduling system.

� Management control depicts how resources are organized and modelled in a comput-
ing environment. All resources can be controlled by a central resource management
system (RMS) or scheduler, such type of system is considered as centralized sys-
tem. Whereas, in a system in which, resources are grouped into domains and each
domain of resources is controlled and managed by its local management system, is
considered as decentralized system.

� Resource composition tells the diversity of resources as homogeneous or hetroge-
neous. A system whose composition consists of same resource components and
configurations is termed as homogeneous, whereas heterogeneous system consists of
resources having different components and configurations.

� Execution support classifies resource model into two categories based on the process-
ing support provided by the underlying operating system. One of the categories is
termed as single-programming or space-shared in which at most only a single job can
be executed at any one time on a processor, and the other category is termed as mul-
tiprogramming or time-shared in which multiple jobs can be executed concurrently
at any one time on a processor.

� If the scheduling system schedule the new application or job without disrupting
the already made scheduling decision then it is termed as rigid whereas, in flexible
scheduling system all resources are assumed to be free of load and upon arrival of
new job, a new schedule is then calculated.

Resource Access Perspective

Resource access refers to the mechanism to gain access to the resources. If the resource
access mechanism involves any trading mechanism between the provider and user then it
is refered as market-oriented model. Under this model, the worth of the user submitted
job is analyzed from user and/or system perspective, depending upon the system imple-
mentation. An alternative to this is, the system-oriented model which only focuses on
the utilization or throughput or increased revenue aspect of the system indifferent of the
worth of the job from the user aspect. As the market model involves trading mecha-
nism therefore, number of economic models have been defined from computing aspect in
[BSGA01] [GB11] but the renowned ones are listed below:
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� In the commodity market model, service providers specify their service prices and
users pay the amount according to the consumption of service. Pricing Schemes in
a Commodity Market Model can be based on flat fee, usage quantity, subscription
and demand & supply.

� In an auction market, users submit their bids through an auctioneer to use the
resources or service. It uses market forces to negotiate a clearing price for the
service. The auctioneer acts as a coordinator and sets the rules of the auction. The
user who submits the highest bid wins the access to a service. The negotiation
continues until the highest bid is accepted.

� In proportional share model, a user application gets the percentage of resource share
in proportion of the submitted bid value to the other users’ bids or system may be
set up to divide the resource share between the jobs based on the execution time
and deadline time mentioned at the time of job submission.

� In the contract-net market, the process initiated by user by announcing his/her
requirements against which the bids are submitted by the potential service providers.
The service providers submit their bids after evaluating their capabilities and the
requirements advertised by the user. The user after receiving the bids then selects
the most suitable service provider to form a contract.

� In the bartering market, users form a community in which each user from the com-
munity can be either user or service provider. The community is a pool where users
share resources and services with each other to create a cooperative computing
environment.

Quality of Service (QoS) Perspective

In order to guarantee the quality of service (QoS) the specification of QoS related param-
eters and policies have been investigated from the scheduling and resource management
perspective, hence the design of scheduling can be classified into three cagtegories: QoS
Parameters, QoS Specification and QoS Guarantee.

The user of the service specifies the type of service that he/she expects from the system
to deliver using the QoS parameters. The common parameters are time, economic cost,
reliability, security etc. A typical example of a time QoS parameter is the deadline by
which the user submitted is expected to finish. The economic cost parameter includes
budget that user willing to pay for the successfully completion and penalty parameter
that tells the service provider that how much it has to pay back to the user if the service
is not provided successfully.

QoS specification encompasses requirements for expected performance in order to un-
derstand the users satisfaction. A QoS specification can be Constraint-based, Optimization-
based or some other type. Under constraint-based QoS specification the service provision
depends on whether the delivered QoS result falls within the defined range of values or
not for a particular QoS parameter. The optimization-based QoS specification expresses
the user’s desire to optimize a particular QoS parameter.
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The QoS Guarantee can be of two types: rigid and flexible. In rigid QoS guarantee,
the system has to check for the defined threshold of a QoS parameters and if it crosses
over the threshold values then the system stop scheduling the job due to the voilation of
agreed SLA. Whereas, flexible QoS guarantee ensures that the job will be completed at a
certain time with minimal penalty paid to the user by the service provider, which means
overrunning the deadline is allowed with flexible guarantee system.

Scheduling Perspective

The full-plan-ahead or simply full-ahead refers to the planning of an application scheduling
before the start of its execution and opposite of this scheme is called just-in-time or
simply in-time scheduling in which the scheduling decision is made for each individual
task only when the task is ready to start. There is a possibility of provision to reserve
the resources in advance to execute the user application. The scheduling system may
then be distinguished in terms whether it supports advance reservation [SFT00] or not.
The system can further be classified whether it supports the schedule updates i.e., the
assignment to a resource and the scheduled start time can be modified or not. If it can
be modified then the schedule updates is of dynamic type otherwise it is considered as
static.

2.3 Survey of Scheduling & Resource Management

Systems

As discussed earlier, metacomputing system is distinguished from a simple collection of
computers by a software layer, often called middleware, which transforms a collection of
independent resources into a single, coherent, virtual machine [LGFH95]. It consists of a
set of services that enables the system to execute jobs on number of resources seamlessly.
The high performance distributed systems (HPDSs) that are primarily concerned with
the development of high-performance applications, which can be executed simultaneously
on multiple connected (or networked) computers or supercomputers. Today, the high
performance distributed systems (HPDSs) can be categorized into three main categories
[Kol12] i.e., Cluster, Grid [BFH03] and Cloud [WvLKT08] systems. Despite the fact that
all HPDSs models are collectively based on the distributed computing paradigm but they
have different characteristics [Kol12].

The modern Cluster Systems are composed of computers usually restricted to a single
virtual local-area network (VLAN). These systems are designed as platforms for processing
the data intensive applications, multi-level system management, and the implementation
of the scalable methodologies and techniques as well as for replicated storage and backup
servers [Kol12]. The main goal of the Grid Systems is to connect geographically dis-
tributed resources through wide area high speed networks (Internet). In contrast with
the cluster and other conventional distributed systems, grids account for the different
administrative domains with their own access policies, users privileges and requirements
[Kol12]. The Cloud Systems class is the most recently developed HPDS category involv-
ing over-the-Internet provisions of both physical and virtualized scalable resources and it
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may be seen as a next step in the evolution of the grid environments [Kol12]. The cloud
providers deliver common business applications online, while the software and data are
stored on physical servers. The main features of the three mentioned categories of HPDS
are shown in Figure 2.4.

Figure 2.4: Main Features of Three Categories [Kol12]

We discuss different middleware, based on which number of solutions for the devel-
opment of metacomputing infrastructure have been proposed, together with the different
metacomputing infrastructures proposed in different literatures.

Globus

A metacomputing/Grid infrastructure toolkit called Globus [FK96] was proposed to har-
ness the power of computing resources. It is a community-based, open-architecture,
open-source set of services and software libraries that support Grid infrastructure and
its applications [FKNT04]. The project started in late 1990s [Fos06] and the latest ver-
sion available at the time of writing is 5 [gloa]. It is a collection of software components
that enable the development of applications for high-performance distributed computing
Grids. Globus provides basic mechanism of communication, resource discovery, resource
scheduling, authentication, network information and data access to construct alternative
infrastructures, services and applications. This paved a foundation for the provision of
effectively infinite cycles and storage in the form of Grid [BFH03]. Grid enables users to
access single computer or the aggregation of several resources as virtual computer through
an interface seamlessly. It allows to reserve the resources either in advance or for immedi-
ate use and is able to discover resources dynamically through GARA (Globus Architecture
for Reservation and Allocation) [FKL+99] for end-to-end provision of high quality of ser-
vice (QoS). The component Grid Resource Allocation and Management (GRAM) protocol
and its ‘gatekeeper’ service, which provides for secure, reliable, service creation and man-
agement; the Meta Directory Service (MDS-2), which provides for information discovery
through soft state registration, data modeling, and a local registry (‘GRAM reporter’);
and the Grid Security Infrastructure (GSI), which supports single sign on, delegation,
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and credential mapping [FKNT04]. Different administrative domains can be integrated
together without compromising on their autonomicity. Each domain is termed as virtual
organisations (VO) [Fos01]. A Virtual Organisation (VO) comprises a set of individuals
and/or institutions having direct access to computers, software, data, and other resources
for collaborative problem-solving [LHP+04]. The entity responsible to manage all VOs
is called virtual organisation management system (VOMS) [FGG+04]. Globus can be
combined with different other tools and applications to construct Grid-enabled systems
[BAG00].

UNICORE

The UNICORE (UNIform Interface to COmputing REsources), another metacomputing
middleware, is a European Grid Technology started in 1996 to establish a uniform access
to distributed computing resources and at the time of writing it has progressed to version
6 [SBBR+10]. It has already been used for different projects requirement successfully
[unia]. The architecture of the technology is three-layered with client, service and system
layers. The client layer refers to the interface to users which ranges from graphical user
interface to command line. The service layer is the middle one responsible for the job
management and execution therefore, it is comprised of all services and components of
the UNICORE service-oriented architecture. The system layer is considered as bottom
layer and is responsible for individual resource management/batch system and operating
system of Grid resources. There is no dedicated SLA management component, however,
it provides basis to implement the whole life cycle of SLA. UniGrids is a follow-on project
from GRIP (Grid Interoperability Project), aims to develop an SLA framework for re-
source management system and the interoperability of Globus and Unicore [unib]. The
management of VOs is done through UNICORE VO Service (UVOS) which is a client-
server system. UVOS can be used with different systems but it is primarily designed to
support UNICORE [SBBR+10][unic].

Legion

Legion [GWTLT97] [CKKG99] [leg] is an object-oriented resource management system
for a metacomputing environment. It is also based on the idea of connecting a range of
hosts from workstations to massively parallel supercomputer in the form of Grid. There-
fore, seamless access to remote resources on the Grid with security and autonomicity was
intended. The modular approach of Legion allows to implement user-level scheduling
policies and customize system behaviour. It also supports for the reservation of resources.
Legion provides simple schedulers that can be outperformed by specialized scheduling
algorithm [CKKG99]. The specific scheduling scheme can be devised to schedule an ap-
plication to meet the desired level of performance. An effort of implementation of adaptive
scheduling scheme based on an established methodology called AppLeS (Application Level
Scheduling) [BWF+96] for Magnetohydrodynamics Application is presented in [DOB+00]
for Legion system. Legion supports process migration and check-pointing in case of failure
to resume the application on different available resource.

Legion can be compared with Globus in a way of resulting Grid or metacomputing
infrastructure. The main difference between the two is the realization of the model.
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Globus presents sum-of-service architecture layered over pre-existing components whereas
Legion has object-oriented programming model designed and developed with a goal of
whole-cloth [CKKG99].

gLite

Enabling Grid for E-sciencE project (EGEE) is Europes flagship Research Infrastructures
Grid project for the domains like Astronomy, Biomedicine, Computational Chemistry,
Earth Sciences, Financial Simulations, and High Energy Physics [LHP+04] [LGF+06]
[gli]. An extended middleware is developed by combining the components developed in
various related projects, in particular Condor and Globus to provide user with high level
services for scheduling and running computational jobs, data manipulation and consis-
tent security infrastructure. The resultant middleware is called gLite that follows the
Service Oriented Architecture approach which allows for an easy interaction with other
Grid Services [LHP+04]. The architecture of gLite, thematically can be divided into five
service groups i.e., access services, security services, information and monitoring services,
job management services and data services [LGF+06]. Security services encompass the
authentication, authorization, and auditing services which enable the identification of
entities (users, systems, and services), allow or deny access to services and resources.
Information and monitoring services provide a mechanism to publish and consume infor-
mation and to use it for monitoring purposes. The job management/execution service
are mainly related to the computing element, the workload management, accounting, job
provenance, and package manager services (or simply dynamic deployment of application
software). The three main services that relate to data and file access are: Storage Element,
File & Replica Catalog Services and Data Management. In all of the data management
services,the granularity of the data is on the file level which are generic enough to be
extended to other levels of granularity. The gLite middleware provides a WS-Agreement
based agreement service for the possible interaction with resource reservation service.

XtremWeb

The XtremWeb [FGNC01] is an open Source platform designed to build Grid computing
environment. The project started with the concept of experimental global computing
platform to study the issues related to parallel architecture. The general architecture of
XtremWeb can be represented by three components i.e. Client, Coordinator and Workers.
The workers contact the server to get jobs. In response, the server send a set of parameter
and it may also send an application if the application is not already stored in the workers.
When the workers have finished to compute their job, they contact the Coordinator to
send the results [xtra]. It assumes that computing resources can be spread over the
Internet. Furthermore, XtremWeb can also be used to build centralized Peer-to-Peer
Systems. Conceptually, it relies on a pull model in which workers pull tasks from the
server whereas in general, other models rely on a push model in which the Matchmaker
selects the best machine to run the job and push the job on it [xtra].
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XtremWeb-CH

Originally, XtremWeb-CH (XWCH) [xtrb] [AB05] was an upgraded version of the XtremWeb.
But to obtain a reliable and efficient system the software’s architecture redesigned com-
pletely and new modules added to develop a middleware that can easily deploy and
execute parallel and distributed applications on a public-resource computing infrastruc-
ture. It aims at building an effective Peer-To-Peer system for CPU high performance
applications.

Condor

Condor [LLM88], a workstations based distributed computing environment tool was devel-
oped at University of Wisconsin in 1983. The idea behind condor is that most of the time
the connected workstations remain idle and there should be a way to identify such idle
workstations and schedule a job in background on those workstations and as soon as the
owner of any workstation resumes its activity the background job should be stopped and
migrated to somewhere else. This will not only increase the utilization of under utilized
resources but also make the system flexible to discover resources and keep the resource
autonomicity. The uniqueness of condor is the central coordinator which merely assigns
capacity to workstations which they use to schedule their own jobs and each workstation
keeps the state information of its own jobs and has the responsibility of scheduling them
with the relative priority. This enables the system to recover from any failed state if the
central coordinator fails. Only the allocation of new capacity to requesting user is affected
in case of failure of central coordinator as local schedulers of the workstations continue
to perform their work. The check pointing facility enables the system to save the state
of executing job and allows the system to migrate the job to another workstation if the
user of the workstation resumes its activity. Classified Advertisement language (ClassAd)
MatchMaking tool enables users to specify which resource to allocate.

Condor in its original form was not suitable for interactive jobs and parallel jobs of
heavy-weight type. The reason is, a thread of a job can discontinue its execution any time
when a user resumes its activity on the workstation therefore in case of an interactive job
the executing job will have to wait for re-scheduling. Also, for the parallel heavy-weight
job there is no mechanism which guarantees the execution of all threads of a parallel job
synchronously and on the resumption of any user activity all the related instances of the
parallel job needs to be check-pointed and then wait for the reschedule until the required
number of resources are available. The provision of deadline based scheduling is not there
in its original form.

Condor-G [FTL+02] is considered as the marriage of Condor and Globus projects
[TTL05]. It combines the inter-domain resource management protocols of the Globus
Toolkit and the intra-domain resource management methods of Condor which results in a
powerful tool for managing a variety of parallel computations in Grid environments. The
merger of the two technologies enables the system to discover and acquire appropriate
resources, mapping of jobs to resources, monitoring and managing execution of the jobs
and detecting and responding to the failure. Condor-G keeps the same motto of leaving
the owner of resource in control regardless the pay off and is the well defined batch
computing system for high-throughput computing and opportunistic computing [TTL05].
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LoadLeveler

LoadLeveler [SCZL96] [ibm] is a modified and commercial version of condor developed
by IBM. It is a distributed, network-based, job scheduling program for massively parallel
machines (MPPs) particularly for IBM SP [SCZL96]. Furthermore, it can schedule serial
and parallel jobs. It also supports failure and recovery mechanism to some extent. It
improved the system performance, turnaround time and equitable resource distribution
for all users.

Nimrod

Nimrod [ASGH95], inspired by condor [LLM88], is a tool for managing execution of
parameter sweep applications on distributed workstations. The parametric simulation
studies deal with a calculation on a range of different simulations of some program. Each
simulation consist of independent search point, so it is possible to run them concurrently
on separate machine as light-weight threads. It takes the cross product of the user sub-
mitted parameters to generate set of simulations for a job. After this, Nimrod manages
the distribution to machines and organises the aggregation of the results. It does not
assume a shared file system therefore it copies files between systems before and after the
execution of a program.

Nimrod in its original form presented in [ASGH95] has the following demerits. It
assumed the fixed infrastructure of the system and hence provided no automatic device
discovery mechanism. User cannot specify the deadline time by which the results should
be submitted back to the user. As it uses RPC to call the sub-processes, therefore it is not
possible to communicate master process while its sub-processes are in progress. However,
there is a possible way by which RPC can be replaced with mechanism like parallel virtual
machine (PVM) [PL95].

One of the most important issues of Nimrod to overcome is its inflexibility towards
resource discovery which is why Nimrod was not suitable for Grid as it cannot acquire
the unlimited computing power for the parametric modelling automatically. Such short-
comings addressed by Nimrod/G [BAG00] which was implemented by leveraging existing
Globus toolkit [FK96]. This enabled the Nimrod/G scheduling from local to global compu-
tational grid allowing it to discover resources, processing of jobs within deadline time and
monitoring of experiments from different machines and not just from the machine using
which the job was submitted. Nimrod/G supports deadline and budget based schedul-
ing. With the recent development, Nimrod now contains tools that perform a complete
parameter sweep across all possible combinations (Nimrod/G) [BAG00], or over a sub-
set selected by experimental design techniques (Nimrod/E) [PDA+08], or search using
non-linear optimization algorithms (Nimrod/O) [ALPF01] or over a workflow on a Grid
machine (Nimrod/K) [AEA08].

Maui

The Maui [FRJ+01] scheduler is known for its advance reservation, quality of service and
increased utilization support through backfilling. It assigns each job an individual priority.
The initial development of Maui scheduler did not have database and was introduced by
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Molokini to store the users, their accounts and the state of the whole system as a backup
solution in Maui Molokini Edition (MauiME) [mau]. The advanced version of Maui is
called MOAB/Maui [moa].

MOAB/Maui

MOAB/Maui is also a commercial product from Adaptive Computing Enterprises Inc. for
the management of cluster resources [moa]. It is a full-featured product like Oracle Grid
Engine and it also supports QoS parameter in the form of thresholds. QoS thresholds
allow an administrator to set usage metric thresholds that affect the overall performance.
If for interested parameter the threshold is reached, then particular event takes place
to maintain the quality of service of the jobs. The threshold actions from least to most
impact on a system are priority, reservation access, fire trigger failure variables, reservation
creation, pre-emption, and powering nodes on [moa].

PBS

Portable Batch System (PBS) [ope] is a POSIX compliant batch queuing and workload
management software system originally developed at NASAs Ames research. It can cater
the power of wide range of high power computer architectures from heterogeneous clus-
ters of loosely coupled workstations, to massively parallel supercomputers. PBS includes
several built-in schedulers but the default is the FIFO scheduler whose behaviour is to
maximize the CPU utilization i.e. it loops through the queued job list and starts any job
for which fits in the available resources. However, this effectively prevents large jobs from
ever starting. It employs starving job mechanism to allow large jobs to start. But still
there is a requirement for an alternative as starving job mechanism may not work all the
time [SAL+04]. Therefore, Maui scheduler needs to be combined with PBS [pbs]. The
aggressive scheduling policies of Maui optimize the resource utilization and minimize the
job response time.

Libra

Libra [SAL+02] [SAL+04] is developed as a plug-in scheduler for PBS which supports
allocation of resources based on users’ quality of service (QoS) requirements. The utility
of job is determined through the budget and deadline parameters associated with jobs.
Jobs are submitted with estimated runtime, deadline and budget using centralized cluster
management system (CMS). Once admitted into the system jobs are then executed on
the dedicated node. The job is time-sliced based on the runtime and deadline ratio. It is
market-based economic driven service for the management of batch jobs. It assumes that
the resources are homogeneous and jobs will not be of interactive type.

Load Sharing Facility (LSF)

Load Sharing Facility (LSF) software is a product of Platform Computing Corporation
[lsf98]. It is available in two different editions, LSF Enterprise Edition (LSF EE) and LSF
Standard Edition (LSF SE). LSF SE is a basic tool for batch job processing system for
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distributed and heterogeneous environments. It includes necessary components to ensure
optimal resource sharing and load balancing. The full featured version LSF EE includes
distributed production job scheduler that integrates heterogeneous servers into a virtual
mainframe or virtual supercomputer. Additionally, it maintains the resources ownership
and cluster autonomy in shared multiple cluster environment. It manages parallel job
execution in a production networked environment.

LSF MultiCluster [Xu01] is a product of Platform Computing Corporation [lsf98]. LSF
MultiCluster acts a meta-scheduler, enabling cooperation among the computing sites run-
ning under LSF clusters to share the workload globally. Therefore, it is responsible for the
inter-cluster information management and the job runtime control with workload sharing.
It supports several scheduling strategies such as priority based, deadline constraint based,
fair-share etc.

TORQUE

TORQUE [tor] is an enhanced version of openPBS [ope]. It is solely a resource manager
primarily used in batch jobs using the scheduler of openPBS. It supports parallel and
interactive jobs. The central master node is responsible for the management, polling and
allocation of resources to jobs. It does not support backfilling. By default it does not
support advance reservations but configuration can be made for quality of service (QoS)
and advance reservations. Though, TORQUE is an enhanced version of openPBS, but
because of enhancements it cannot read the job database of an OpenPBS server due to
which both are incompatible to each other.

Oracle Grid Engine

Oracle Grid Engine (OGE) [ora10] is commercial product for workload management in
cluster environment. It is the latest version of its predecessors Sun Grid Engine (SGE)
which was the enhancement of CODINE [Gen01]. It has a variety of services on top
of which a complete cluster can be built. It can handle the jobs of batch, parallel and
interactive nature. It offers failure and recovery of jobs along with the advance reservation,
backfilling and check-pointing features.

REXEC

REXEC is a decentralized remote execution facility for the cluster developed at University
of California, Berkley [CC00]. It decouples the centralized node discovery and selection
mechanism. It is achieved by deploying three types of entities. One running at cluster
node as host, second running at user node as client program and the third is a replicated
entity which provides node discovery and selection services running separately. It allows
to run sequential as well as parallel and distributed programs. REXEC is responsible to
make decision for data, computation and processes communication.
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Tycoon

Tycoon [LRA+04] is a market based distributed resource allocation system based on
proportional share. The price is calculated on the bases of budget, resource and duration
parameters of the user submitted jobs. Based on the price, the share of resources is
calculated for the user submitted jobs. This results in multiplexing of the resources and
is considered as virtualized resource environment. Hence, Tycoon trades the networked
resources of virtualized or sliced form.

AssessGrid/openCCS

AssessGrid [ass] [DGP+08] is a European Project whose first prototype was released in
fall 2007 and the final one in February, 2009. It was designed for the next generation of
Grid technologies that support SLAs. The prime feature of AssessGrid is its framework
for the risk assessment and management for end-user, broker and resource provider. From
provider’s perspective, the risk assessment feature relates the failure risk of a resource to
the penalty cost for the offered SLA. This also enables the end-user to know about the
risk of an SLA violation for further decision. The Negotiation Manager is embedded in a
Globus Toolkit which supports SLA negotiation parameters such as number of nodes, job
runtime, deadline time, security policy, migration policy, memory size and fault tolerance.

A distributed resource management system called Computer Center Software (CCS
or openCCS) [RRK94] is used in AssessGrid. It is an open source distributed software
package and is responsible for user authorization, accounting, serving interactive and
batch jobs, and scheduling. It also allows to make a reservation on the resources for
future use.

ASKALON

ASKALON [ask] is a Grid scientific application development environment as workflows.
The project is developed at University of Innsbruck using Globus toolkit. Its development
architecture is of service oriented type with the support of SLAs. Therefore, Grid resources
e.g., CPUs, can be reserved for a specified time interval as part of SLA.

Community Scheduler Framework (CSF)

The Community Scheduler Framework (CSF) [csf] is an open source framework for im-
plementing a grid meta-scheduler with the support of WS-Agreement specification. It’s
an add-on to the Globus Toolkit and was developed by Platform Computing and Jilin
University, China. A community scheduler serves each VO and is responsible of matching
the requirements of a grid application with the available resources without violating the
conditions of VO’s resource managers. Users submit their grid applications to the com-
munity scheduler, which in turn matches the resource requirements of the jobs with the
underlying physical resources through interaction with local resource managers. The local
resource manager becomes a service provider, and a community scheduler consumes ser-
vices based on SLAs [csf03]. It includes two basic scheduling algorithms i.e. Round-robin
and reservation based algorithm. Using advance reservation users can make reservation
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of resources for a specified time on specified resource. The latest version called CSF4
takes charge of global resource management and job scheduling. It acts as an interme-
diary between a user community and local resources by providing a single point of task
management and global policy enforcement [XZS+06].

VIOLA

The project VIOLA (Vertically Integrated Optical Testbed for Large Applications in
DFN) started in June 2004 and ended in April 2007. It is an integrated testbed for appli-
cations and advanced network services built with the goals of testing different signalling
mechanisms for the development of a user-driven dynamic bandwidth allocation. The
VIOLA MetaScheduling Service (MSS) [WWZ06] is utilised to co-allocate computational
and network resources as well in the Grid. It is responsible for negotiation for resources’
reservation and allocation with the local scheduling systems through adapters using WS-
Agreement. The negotiation involves potential start time, reservation of network and
reservation of computational resources.

GridWay

The GridWay Meta-scheduler enables large-scale, reliable and efficient sharing of com-
puting resources like clusters, supercomputers, stand-alone servers. It provides a single
point of access to all resources in an organization, from in-house systems to Grid infras-
tructures and Cloud providers [gri]. The automatic negotiation with external providers is
done by the plug-in which acts as a daemon to perform and manage SLAs. It periodically
monitors the internal state of GridWay and SLA situation. On the detection of scarce
resource situation it automatically begins the negotiation process. In addition, it is also
responsible for adding new resources to GridWay after an agreement [BMG+09]. Grid-
Way can dynamically access Cloud resources as well as can be used on main production
Grid infrastructure.

Multi-level Scheduler (MLS)

In [PBC+11], a two-level scheduler has been proposed. At the top of the hierarchy the
meta-scheduler classifies the incoming jobs to balance the load between the computing
sites whereas, at the second level i.e., at cluster level, the local scheduler is responsible
to schedule the jobs to exploit the backfilling mechanism. It schedules the jobs that do
not require a co-allocation mechanism. The heuristics are applied at both the level to
calculate the priority of the jobs. At meta-scheduler level the job classification is done to
balance the load between the different local scheduler which is done using three different
heuristics that are based on deadline, licenses and user. At local scheduler level the
priority of a job is calculated using four different heuristics proposed in [CBP+07] that
are based on aging, deadline, licenses and wait minimization.
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Mutual Agreement Protocol (MAP)

Balakrishnan et. all in [BTSRB08], proposed and evaluated SLA based resource nego-
tiation for the scheduling of resources in Grid environment. Using percentage deviation
coefficient, the deviation between the requested resource and available resources is calcu-
lated based on which SLAs are negotiated. It showed that using the proposed deviation
scheme the resource ordering reduced the number of negotiations that reduced the nego-
tiation time and success rate as well as increased the throughput of the system.

The summarized characteristics of all of the above discussed metacomputing solutions
are presented in Table 2.1, 2.2, 2.3, 2.4 and 2.5 based on the taxonomy discussed in Section
2.2.

Table 2.1: Scheduling Domain & Application Model Perspective
Meta-scheduler Independent Parallel Jobs

Globus
√

-
UNICORE

√
-

gLite
√

-
Legion

√
-

XtremWeb
√

-
XtremWeb-CH

√
-

Nimrod G/K/O/E
√

Nimrod K
Condor-G

√ √

Tycoon
√ √

LSF Multicluster
√ √

AssessGrid/OpenCCS
√ √

ASKALON/SLASKALON
√ √

CSF4
√ √

VIOLA
√ √

GridWay
√ √

LoadLeveler ×
√

PBS/PBS Pro ×
√

Libra/LibraSLA ×
√

LSF Multicluster
√ √

TORQUE ×
√

OGE ×
√

REXEC
√ √

MAUI/MAUI ME
√ √

MOAB/MAUI
√ √

SLA BSH ×
√

MLS
√

×
MAP

√ √
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Table 2.2: Architectural Model Perspective
Centralized Homogenous Time- Flexiblie

Management Resource Shared Scheduling
Control Composition System

Globus - × - -
UNICORE - × - -

gLite - × - -
Legion - × - -

XtremWeb × × - -
XtremWeb-CH × × - -

Nimrod G/K/O/E × × ×
√

Condor-G × ×
√ √

Tycoon × ×
√

×
LSF Multicluster × × ×

√

AssessGrid/OpenCCS × × ×
√

ASKALON/SLASKALON × × Space/Time
√

CSF4
√

×
√ √

VIOLA
√

× ×
√

GridWay
√

× -
√

LoadLeveler
√

×
√ √

PBS/PBS Pro
√

×
√ √

Libra/LibraSLA
√ √ √ √

LSF Multicluster × × - -
TORQUE

√
× - -

OGE
√

× ×
√

REXEC × × ×
√

MAUI/MAUI ME
√

× Time/Space Policy Dependent
MOAB/MAUI

√
× Time/Space Policy Dependent

SLA BSH × × ×
√

MLS × × ×
√

MAP
√

× × ×



CHAPTER 2. REVIEW OF STATE OF THE ART 49

Table 2.3: Resource Access Perspective
Market Model Benefit Focus

Globus - -
UNICORE - -

gLite - -
Legion - -

XtremWeb - -
XtremWeb-CH - System

Nimrod G/K/O/E Commodity/Contract-Net User
Condor-G - System

Tycoon Auction User
LSF Multicluster Proportional Share System

AssessGrid/OpenCCS Commodity User
ASKALON/SLASKALON - User

CSF4 - System
VIOLA - System

GridWay Commodity User
LoadLeveler - System

PBS/PBS Pro Proportional Share System
Libra/LibraSLA Proportional Share System

LSF Multicluster - System
TORQUE - System

OGE - System
REXEC Commodity/Proportional Share System

MAUI/MAUI ME - Policy Dependent
MOAB/MAUI - Policy Dependent

SLA BSH Commodity User
MLS Commodity System-User
MAP - System
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Table 2.4: Quality of Service (QoS) Perspective
Optimization

Attributes based Guarantee
Specification

Globus - - -
UNICORE - - -

gLite - - -
Legion - - -

XtremWeb - - -
XtremWeb-CH - - -

Nimrod G/K/O/E Time, Cost
√

Rigid
Condor-G × - -

Tycoon Time, Cost
√

Rigid
LSF Multicluster Time

√
Flexible

AssessGrid/OpenCCS Time, Cost
√

Flexible
ASKALON/SLASKALON Time, Cost

√
Rigid

CSF4 Time
√

Rigid
VIOLA Time

√
Rigid

GridWay × - -
LoadLeveler × - -

PBS/PBS Pro Time
√

Rigid
Libra/LibraSLA Time, Cost

√
Rigid/Flexible

LSF Multicluster Time
√

Flexible
TORQUE × - -

OGE × - -
REXEC × - -

MAUI/MAUI ME Time
√

Flexible
MOAB/MAUI Time

√
Flexible

SLA BSH Time, Cost
√

Flexible
MLS Time, Cost

√
Flexible

MAP CPU × -
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Table 2.5: Scheduling Perspective
Full-ahead Advance Dynamic
Planning Reservation Schedule

Updates
Globus -

√
-

UNICORE -
√

-
gLite -

√
-

Legion -
√

-
XtremWeb -

√
-

XtremWeb-CH -
√

-
Nimrod G/K/O/E × Nimrod K

√

Condor-G × ×
√

Tycoon
√ √

×
LSF Multicluster

√ √
×

AssessGrid/OpenCCS
√ √ √

ASKALON/SLASKALON
√ √ √

CSF4
√ √ √

VIOLA
√ √ √

GridWay
√ √ √

LoadLeveler
√

×
√

PBS/PBS Pro
√ √

×
Libra/LibraSLA

√ √
×

LSF Multicluster
√ √

×
TORQUE

√
× -

OGE
√ √ √

REXEC
√

×
√

MAUI/MAUI ME
√ √

Policy Dependent
MOAB/MAUI

√ √
Policy Dependent

SLA BSH
√ √ √

MLS
√

×
√

MAP
√ √

-
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2.4 Summary

The review of service level agreement (SLA) and its’ structure presented in this chapter.
It has been discussed that jobs are defined using job service description language (JSDL)
but in order to create communication between jobs, workflow language is required. Sim-
ilarly, WS-Agreement is required for appropriate negotiation and agreement protocol to
optimally schedule job onto resources.

Further, taxonomies defined, based on which number of discussed metacomputing so-
lutions classified. It has been noted that in all the discussed works, different approaches
used for the SLA based job management but have one feature in common that is, every
job has a separate SLA. The details of the presentation, SLA terms and level of implemen-
tation could be different and this may be the reason why different system performances
observed under different schemes.

It has also been mentioned that number of metacomputing solutions have been pro-
posed to solve particular problem with the strong assumptions for the support of man-
agement of SLAs to guarantee the quality of service (QoS). Further, from the discussed
metacomputing enabled middleware (such as for Grid), except for gLite, no middleware
has a direct support for the management of SLAs at this level. Majority of the work
related to either SLA based service provision or to SLA based scheduling, have been done
in the context of Web based services [YS06]. Recent works such as [PBC+11] [BTSRB08]
[YB06a], show the importance and need of the SLA based computing services. Most of
the research has been done towards the modelling, negotiation and monitoring of SLAs
and little work has been done towards SLA based job scheduling.



Chapter 3

Research Methodology

This chapter discusses the methodology used to carry out experiments presented through-
out in this thesis. Starting the discussion with the use case model together with the
computing architecture, then discusses the designed simulator together with the schedul-
ing heuristics and simulator execution scheme. Then, a brief description of SLA-based
workload generator, assumptions made to perform the experiments, methods to compute
and compare the results, and limitations of the designed simulator are presented in this
chapter.

3.1 Use Case Model

The use case model is the grid architecture which is discussed in [SY08] and presented in
Figure 3.1, representing the fundamental interactions that may arise with the use of SLAs
in the grid environment for a job submitted for execution to high-performance computing
resources. The presented architecture is comprised of three main entities i.e., the Client,
the Provider and the Agreement (SLA) between the client and the provider. The client
may be considered as the user or broker that negotiate the usage of resources with resource
provider. The resources provider or simply resource owner managing its resources with its
own local scheduler, containing the information about the level of service agreed between
the two parties. The SLAs may be mapped to one or more SLAs, before being negotiated.
To distinguish between the two types of SLAs, the term meta-SLA and sub-SLA has
been used. More than one Sub-SLAs may be derived from a meta-SLA which are then
negotiated and agreed with the local resources and their schedulers. For example, for a
workflow application, the user may want to set constraints for the workflow as a whole
(i.e., meta-SLA) and the broker may have to translate it to specific SLAs (i.e., sub-SLAs)
for individual tasks of a workflow [ZS07].

To simulate the behavior of a client the load generator which is briefly detailed in Sec-
tion 3.2 is used to generate the SLA based jobs. The basic architecture of the simulating
environment is depicted in Figure 3.2. The first part of the architecture belongs to the
generation of workloads. To carry out the experiments, the workloads are generated first
using the load generator discussed in [SY08] [YS06]. Every single generated workload
consist of 1000 SLAs and each SLA is of the form of quadruple i.e., {Earliest Start Time

53
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Figure 3.1: An architectural overview for SLA based job scheduling [SY08]

Figure 3.2: Basic Architecture
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(Ts), runtime (tD), Latest Finish Time (Tf), Number of CPUs required (Ncpu)}. The gen-
erated workloads are then submitted to the designed simulator which then schedule the
SLAs. The details of the simulator are given in Section 3.3. The results are observed on
the basis of successfully served SLAs i.e., the SLAs that are served within their deadline
time. The process of negotiation is not part of this study but the main goal is to address
the scheduling aspect under agreements (SLAs).

3.2 User Behaviour Model

To capture the user behaviour with respect to the construction of workload for the system
evaluation, two renowned approaches are used. One is based on the traces of real work-
load (e.g., workload archives [par]) and the other is based on the mathematical models
to generate a synthetic workload (e.g., [JPF+97]). Workload issues span all methods of
parallel job scheduling evaluation [FF05], therefore choice of workload generation/con-
struction and selection to emulate user behaviour is one of the major task. Especially,
with respect to more widely used paradigm [YS06] [YB06a], which uses Service Level
Agreement (SLA), as a contract to specify the terms and guarantees bound to a specific
job or user request, and there is no well developed method to construct SLA based work-
load. Therefore, to avoid workload related issues as well as to have workloads comprised
of Service Level Agreements (SLAs), the workload generator discussed in [SY08] [YS06] is
used throughout in this thesis to mimic the user behaviour. The load generator generates
number of requests in the form of SLAs based on the set up variables, the generated
requests (or SLAs) consist of quadruple {Earliest Start Time (Ts), runtime (tD), Lat-
est Finish Time (Tf), Number of CPUs required (Ncpu)} which defines the Service Level
Agreement(SLA) for a job. Number of different workloads can be generated using [SY08]
[YS06] by setting up the load generator values. To generate a workload, the interface
depicted in Figure 3.3 is used all the time and the variables (discuss below) are required
to set up to the desired values. The variables of interest with their default values are
mentioned below.

� Maximum job rate for Quiet Time: 0.0010 jobs/sec

� Maximum job rate for Active Time: 0.0064 jobs/sec

� Job Max Size: 128

� Max Job Length: 500 sec

� Maximum Repetitions: 1000

� Min Tightness: 0.5

� Max Tightness: 1
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Figure 3.3: Screen Shot of Load Generator Interface [SY08] [YS06]



CHAPTER 3. RESEARCH METHODOLOGY 57

Arrival Rate (AR)

In all of the experiments presented in this thesis both maximum job rate for quiet time
and maximum job rate for active time are treated as one simple variable called arrival
rate (AR). Setting arrival rate (AR) to desired values allows the generator to generate
workload of SLAs with specified maximum possible value of arrival rate for the SLAs.
The jobs/SLAs are generated per second.

Job Max Size

Job Max Size is maximum allowable number of CPUs that an SLA can have within a
workload. It is represented by Ncpu i.e., the number of resources (CPUs). The generator
accepts the value in a range from 8 to 128 i.e., maximum value that the generator can
accept is 128 and minimum is 8. If this variable is set to 8 then it generates number of
SLAs with different values ranges between 1 and 8 but not greater than 8 or less than 1.

Max Job Length

It is the maximum allowable runtime or execution time an SLA can have within a work-
load. The default value is 500 seconds whereas the maximum allowable value is 64,800
seconds. If this value is set to 500 seconds than it means that all the SLAs within the
generated workload will have a runtime value greater than 0 and less than equal to 500.

Maximum Repetitions

It specifies how many number of times the same required level of service i.e., SLA of
same characteristics can appear in the workload. The least possible value is 1 and the
default is 1000. Whereas, the value of 50 is used for the generation of workloads for the
experiments, which means at most one type of request may be generated not more than
50 times within a workload.

Min & Max Tightness

Tightness values deals with laxity of an SLA or the flexible time between the runtime
and deadline of a job (i.e., deadline time - runtime - start Time). The tightness ranges
between 0.1 and 1. If it is 1 for both minimum and maximum tightness variable, then it
means no flexibility will be available in the deadlines of the generated jobs. But if the
minimum tightness is set to 0.1 then the maximum flexibility or laxity for a job will be 10
times longer than the job’s runtime. Hence, a job can have maximum laxity of 10 times
of its runtime.

Three different workloads are generated and presented in Table 3.1, 3.2 and 3.3, as
an example set. Each workload is comprised of 50 jobs/SLAs. The last four columns
of the generated workload is of interest and belongs to SLA parameters. The workload
presented in Table 3.1, is generated using low arrival rate and high minimum tightness
values for maximum jobsize value (i.e., CPUs) equals to 8. Table 3.2 represents a work-
load, generated using slightly higher arrival rate and low minimum tightness values for
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maximum jobsize value (i.e., CPUs) equals to 8. Whereas, Table 3.3 represents a work-
load, generated using high arrival rate and high minimum tightness values for maximum
jobsize value (i.e., CPUs) equals to 8.

Once a workload is generated by setting up above discussed variables to the desired
values, it is then submitted to the developed simulator to observe the performance of the
system under the submitted workload against different scheduling heuristics, discuss in
the following sections.

Figure 3.4: Architecture

3.3 Simulator Architecture

A simulator which simulates the environment of number of homogeneous processing nodes
(Scpu) onto which the SLAs/jobs are scheduled, is developed to behave as a resource
provider. The simulator architecture with its pre-requisites to initialize the simulation is
presented in Figure 3.4. The architecture is divided by a dashed line into two parts. The
part above the dashed line is the required initialization phase. Once the initialization
successfully completed then the controller takes care of the complete simulation i.e., the
execution phase and play the core role to manage the simulation.

The controller is a central part of the system. The priority and feasibility to success-
fully schedule the SLAs within their deadline times is checked based on which the decision
to accept or reject the SLA is taken by the controller. The controller is also responsible
for the incrementing the simulator clock based on which the completion of the scheduled



CHAPTER 3. RESEARCH METHODOLOGY 59

Table 3.1: Example Workload 1
Time Job Rate Tightness CPUcount Job Duration Earliest Start Latest Finish

(Ncpu) (tD) (Ts) (Tf )
min job/sec sec/sec CPU min min min
0 7.75E-06 0.9320303 4 464.25 0 498.1
0 7.75E-06 0.9320303 5 2.55 2120.467 2123.2

2120 6.00E-05 0.8826659 2 294.817 2447.133 2781.133
2447 6.00E-05 0.8352322 2 80.817 2944.35 3041.117
2944 5.06E-05 0.76966196 2 80.817 3041.133 3137.9
3041 5.78E-05 0.92041695 2 80.817 3137.917 3234.683
3138 4.34E-05 0.8207264 6 39.483 3877.8 3929.1
3878 6.00E-05 0.9497668 6 39.483 3929.117 3980.417
3929 6.00E-05 0.93243194 6 39.483 3980.433 4031.733
3980 6.00E-05 0.772276 6 39.483 4031.75 4083.05
4032 6.00E-05 0.94153845 2 12.3 4590.6 4603.967
4591 4.12E-05 0.9180315 2 12.3 4603.983 4617.35
4604 3.90E-05 0.83265877 2 12.3 4617.367 4630.733
4617 3.68E-05 0.7843037 2 12.3 4630.75 4644.117
4631 3.46E-05 0.93029875 2 12.3 4644.133 4657.5
4644 3.27E-05 0.78561026 2 12.3 4657.517 4670.883
4658 3.09E-05 0.8534094 2 0.55 5344.1 5344.767
5344 6.00E-05 0.8901935 4 5.667 5813.6 5819.567
5814 4.65E-05 0.772078 5 0.1 5926.367 5926.467
5926 5.73E-05 0.8905563 5 0.1 5926.483 5926.583
5926 5.73E-05 0.8905563 5 0.1 5926.6 5926.7
5926 5.73E-05 0.8905563 2 274.4 6064.35 6419.667
6064 3.56E-05 0.81226707 1 1.267 6148.033 6149.383
6148 2.83E-05 0.9716657 1 1.267 6149.4 6150.75
6149 2.83E-05 0.7584099 1 1.267 6150.767 6152.117
6151 2.84E-05 0.77477026 2 1.383 8637.5 8639
8638 6.00E-05 0.8834114 2 1.383 8639.017 8640.517
8639 6.00E-05 0.9142524 2 1.383 8640.533 8642.033
8641 8.69E-06 0.89182884 2 0.417 8996.767 8997.267
8997 2.91E-05 0.7720572 2 0.417 8997.283 8997.783
8997 2.91E-05 0.7720572 2 0.417 8997.8 8998.3
8997 2.91E-05 0.7720572 2 0.417 8998.317 8998.817
8998 2.91E-05 0.90242213 2 0.417 8998.833 8999.333
8998 2.91E-05 0.90242213 2 0.417 8999.35 8999.85
8999 2.90E-05 0.8102572 8 18.9 9450.417 9474.517
9450 6.00E-05 0.87998533 8 18.9 9474.533 9498.633
9475 6.00E-05 0.80020756 8 18.9 9498.65 9522.75
9499 6.00E-05 0.8118692 8 18.9 9522.767 9546.867
9523 6.00E-05 0.9616384 2 11.367 9785.8 9798.567
9786 6.00E-05 0.9616924 2 11.367 9798.583 9811.35
9799 6.00E-05 0.9232251 2 11.367 9811.367 9824.133
9811 6.00E-05 0.769499 2 11.367 9824.15 9836.917
9824 6.00E-05 0.79458606 5 47.55 10308.783 10359.9
10309 4.83E-05 0.80483305 6 300.9 10995.05 11332.933
10995 6.00E-05 0.80431026 2 14.45 11134.65 11150.883
11135 6.00E-05 0.79478765 2 14.45 11150.9 11167.133
11151 6.00E-05 0.75111866 2 14.45 11167.15 11183.383
11167 6.00E-05 0.83872163 3 38.217 11663.217 11711.867
11663 5.93E-05 0.97400004 3 38.217 11711.883 11760.533
11712 5.40E-05 0.8561358 3 38.217 11760.55 11809.2
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Table 3.2: Example Workload 2
Time Job Rate Tightness CPUcount Job Duration Earliest Start Latest Finish

(Ncpu) (tD) (Ts) (Tf )
min job/sec sec/sec CPU min min min
0 0.001291539 0.113286056 8 97.366 0 859.483
54 0.001291539 0.113286056 8 25.866 54.4 251.817
65 0.00775122 0.10544711 5 60.883 65.433 320.733
76 0.008500839 0.14868043 2 180.2 76.416 500.083
88 0.009075466 0.4601233 3 48.65 88.116 278.7
91 0.009523761 0.16146648 1 1.65 91.716 95.3
92 0.009635987 0.23926172 1 1.65 95.316 98.9
95 0.009708942 0.18579593 1 1.65 98.916 102.5
99 0.009792028 0.48454624 1 2.9 100.266 118.233
100 0.009810365 0.18591025 2 0.683 103.833 106.683
104 0.009874411 0.19649343 2 0.683 106.7 109.55
107 0.009913084 0.21528882 1 0.933 108.083 113.1
108 0.009924268 0.19364291 2 0.683 109.566 112.417
110 0.00994416 0.5022176 2 2.266 111.6 116.283
112 0.00996084 0.9322605 1 0.933 113.116 118.133
113 0.009968011 0.24925773 1 0.933 118.15 123.167
118 0.009992701 0.63123083 1 2.9 118.25 136.217
118 0.009992701 0.63123083 8 2.266 118.25 133.8
120 0.009999837 0.67765534 7 17.716 120.95 143.6
129 0.009983838 0.17874056 3 0.716 128.616 147.267
134 0.009962195 0.87954444 7 2.266 133.816 146.017
134 0.009962195 0.87954444 2 2.566 134.266 146.183
134 0.009962195 0.87954444 1 2.9 136.233 144.2
136 0.009948269 0.5618368 3 0.716 137.283 140.933
137 0.009940567 0.22734493 2 15.766 138.666 220.083
139 0.009923736 0.37824985 2 549.566 144.583 1238.867
145 0.009862506 0.29214022 8 2.266 146.033 158.233
146 0.009850833 0.18678027 2 2.566 146.2 158.117
146 0.009850833 0.18678027 4 13.383 147.266 161.617
147 0.009838764 0.3461909 2 4.466 152.766 170.683
153 0.009758504 0.13486448 8 7.766 157.883 170.183
158 0.009682207 0.44426894 2 2.566 158.133 170.05
158 0.009682207 0.44426894 4 866.016 158.266 1530.217
158 0.009682207 0.44426894 4 129.75 161.833 353.3
162 0.00961566 0.13364859 8 7.766 170.2 182.5
170 0.009469609 0.796531 2 4.466 170.7 188.617
170 0.009469609 0.796531 8 679.883 171.016 3974.767
171 0.009450251 0.90712166 2 0.816 174.85 175.783
175 0.009370597 0.47077608 4 345.233 175.733 568.25
175 0.009370597 0.47077608 2 0.816 175.8 176.733
175 0.009370597 0.47077608 2 0.816 176.75 177.683
177 0.009329504 0.9006066 2 17.783 176.85 197.067
177 0.009329504 0.9006066 3 92.516 180.95 345.617
181 0.009244963 0.44085342 8 7.766 182.516 194.817
183 0.00920158 0.14073174 2 2.3 184.05 194.167
184 0.009179624 0.74949074 2 4.466 188.633 206.55
189 0.009067343 0.28939685 8 29.616 188.65 266.95
189 0.009067343 0.28939685 2 2.3 194.183 204.3
194 0.008951189 0.77347785 2 17.783 197.083 217.3
197 0.008879792 0.14661181 3 0.1 199.183 199.533
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Table 3.3: Example Workload 3
Time Job Rate Tightness CPUcount Job Duration Earliest Start Latest Finish

(Ncpu) (tD) (Ts) (Tf )
min job/sec sec/sec CPU min min min
0 0.11623851 0.8538849 5 0.767 0 0.9
0 0.11623851 0.8538849 3 0.283 0.133 0.467
0 0.11623851 0.8538849 3 0.117 0.35 0.483
0 0.11623851 0.8538849 3 0.283 0.483 0.817
0 0.11623851 0.8538849 4 22.083 0.7 26.567
0 0.11623851 0.8538849 3 0.283 0.833 1.167
0 0.11623851 0.8538849 1 0.933 0.9 2
0 0.11623851 0.8538849 2 13.717 1.133 17.2
1 0.13042246 0.8376796 8 14.167 1.533 18.117
1 0.13042246 0.8376796 3 1.15 1.617 2.967
1 0.13042246 0.8376796 4 0.267 1.983 2.3
1 0.13042246 0.8376796 4 0.267 2.317 2.633
2 0.14451288 0.955227 1 0.35 2.433 2.85
2 0.14451288 0.955227 4 3.55 2.55 6.783
2 0.14451288 0.955227 4 0.267 2.65 2.967
2 0.14451288 0.955227 3 1.15 2.983 4.333
2 0.14451288 0.955227 2 0.267 3.033 3.35
3 0.1585062 0.9736739 5 0.533 3.317 3.867
3 0.1585062 0.9736739 2 652.667 3.617 686.867
3 0.1585062 0.9736739 2 0.283 3.8 4.1
3 0.1585062 0.9736739 1 333.05 3.9 352.567
3 0.1585062 0.9736739 3 1.15 4.35 5.7
4 0.172399 0.8782608 4 770.217 4.4 795.45
4 0.172399 0.8782608 4 671.633 4.467 707.583
4 0.172399 0.8782608 2 1.3 4.7 6.033
4 0.172399 0.8782608 2 987 5 1018.683
5 0.18618803 0.86838925 2 203.967 5.183 214.667
5 0.18618803 0.86838925 4 49.8 5.767 56.917
5 0.18618803 0.86838925 4 4.017 6.083 10.65
6 0.19987014 0.82200396 2 0.1 6.15 6.267
6 0.19987014 0.82200396 4 792.567 6.25 908.683
6 0.19987014 0.82200396 2 0.1 6.283 6.4
6 0.19987014 0.82200396 2 0.1 6.417 6.533
6 0.19987014 0.82200396 3 2.433 6.5 9.267
6 0.19987014 0.82200396 2 69.6 6.7 86.85
6 0.19987014 0.82200396 8 484.733 6.883 565.083
6 0.19987014 0.82200396 1 7.767 7.717 16.667
8 0.22690178 0.8133747 8 193.517 7.9 243.317
8 0.22690178 0.8133747 2 0.333 7.983 8.383
8 0.22690178 0.8133747 4 0.483 8.217 8.8
8 0.22690178 0.8133747 5 0.633 8.283 9.05
8 0.22690178 0.8133747 2 0.333 8.4 8.8
8 0.22690178 0.8133747 3 0.917 8.433 9.55
8 0.22690178 0.8133747 4 10.733 8.65 21.7
8 0.22690178 0.8133747 2 0.333 8.817 9.217
8 0.22690178 0.8133747 4 54.25 9.1 75.1
9 0.24024574 0.9060782 2 0.333 9.233 9.633
9 0.24024574 0.9060782 3 2.433 9.283 12.05
9 0.24024574 0.9060782 4 0.4 9.383 9.867
9 0.24024574 0.9060782 2 0.333 9.65 10.05
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SLAs and arrival of a new SLA is checked. The scheduling schemes to evaluate the SLA
priorities as well as to schedule the SLAs, are also adopted from [YS06] which performs
iterations to schedule an SLA. The problem of scheduling parallel jobs with critical service
levels same as SLA is considered as NP-hard problem [Joh06] and in the work [YS06], the
optimized scheduling decision for the maximum performance of the system is achieved by
using the integrated heuristic. It is advised that the multiple parameters from the SLA
can be added together by multiplying some weight factor w for the priority calculation of
the SLAs. The best integrated heuristic of the work [YS06] is given in Equation 3.1, for
the performance criterion of serving the highest number of SLAs. The H is the computed
priority based on the minimum value of the heuristic given in Equation 3.1. For a set
of SLAs or simply workload, the prioritization is done for each combination of defined
w1 and w2 values iteratively, until all the defined w1 and w2 values are exhausted. Once
all the values are exhuasted, that pair of w1 and w2 values is picked up which results
in optimized performance. The performance criterion for this heuristic approach is the
number of served SLAs. The computation is required to sweep through (or to exhaust)
all the defined values of w1 and w2 one at a time. The construction and checking of
different schedules using each combination of w1 and w2 values incurs computation cost.
This type of evaluation of schedules is called parameter sweeping and as this evaluation
incurs computation but the time of computation is dependent on the defined range of w
parameters, number of SLA parameters (or w) involved, number of resources within the
system and the number of SLAs to consider.

H = min(Tf + w1A + w2tL) (3.1)

Where
Tf = deadline time
tL, Laxity = Tf − Ts − tD
and A = jobsize i.e., the product of runtime (tD) and number of processors (Ncpu)

To initialize the simulation, the controller checks for the values of number of resources,
w0, w1 and w2 and then construct a simulation environment comprised of the defined num-
ber of resources. The controller also sorts the workload according to the earliest start time
in ascending order and then sets the simulator clock to the lowest start time of the submit-
ted workload. Once all the variables are set for the simulating environment the scheduling
heuristic is then applied based on the set up variables. The initialized simulation results
in the simplified architecture of computing infrastructure which is depicted in Figure 3.5.
It is limited to one site (or one scheduler) containing all the processing elements, on to
which SLAs are scheduled by the local scheduler using the scheme initialized by the con-
troller (detailed in Section 3.3.1). The number of resources contained within a system
are also initialized by the controller at the initialization phase based on the desired input
value, as discussed earlier.

3.3.1 Scheduling Heuristics

The heuristic given in Equation 3.1 is slightly transformed and represented in Equation
3.2 to be use by the controller. The H is the computed priority based on the criterion
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Figure 3.5: Conceptual Representation of Simulator

(CRI); minimum or maximum value of the heuristic w0Tf + w1A + w2tL. The criterion
(CRI) is set at the initialization phase. Once set, it remains to the set criterion for
a complete simulation. The jobs/SLAs are prioritized to schedule onto resources for
each combination of w0, w1 and w2 values iteratively, for a workload until the optimized
performance is achieved, as discussed above. Again, as mentioned, the range of values for
w0, w1 and w2 are defined at the initialization phase of the simulator. Now, for example,
if CRI is set to minimum and w0 to 1 then Equation 3.2 is simply transformed into the
one presented in Equation 3.1 which is the integrated heuristic of the work [YS06].

H = CRI(w0Tf + w1A + w2tL) (3.2)

Where
CRI = minimization (Min) or maximization (Max) criterion
Tf = deadline time
Laxity, tL = Tf − Ts − tD
and A = jobsize i.e., the product of runtime (tD) and number of processors (Ncpu)

The performance of the system under different scheduling heuristics is measured in
terms of number of served SLAs. Seven different scheduling heuristics can be derived from
Equation 3.2 to calculate the priority of SLAs in order to schedule them onto resources.
One of them is the best heuristic of the work [YS06] which is given in Equation 3.1 and
is termed as integrated heuristic. The H is the computed priority based on the criterion
(CRI) of minimum value of the heuristic combination of w0Tf +w1A+w2tL, using which
the jobs are prioritized for the scheduling. The w0 is set to 1 whereas w1 & w2 values
are swept through the defined range, one at a time and that value of w1 & w2 is selected
which results in highest number of successfully accepted SLA. If more than one set of
values results in high number of acceptance of SLAs than the one with least expected
finish time is selected.

Further, the following six simple heuristics are used that are derived from Equation
3.2 by setting up CRI, w0, w1 & w2 as described below.
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� Min(Tf ): prioritise jobs according to their minimum values of deadline times or
simply earliest deadline first (EDF). To set up Min(Tf ), the CRI is set Min and
w0 is set to 1 whereas w1 & w2 are set to 0.

� Min(tL): prioritise jobs according to their minimum values of laxity or slack i.e.,
lowest laxity first. To set up Min(tL), the CRI is set Min and w2 is set to 1 whereas
w0 & w1 are set to 0.

� Min(A): prioritise jobs according to their minimum job size values i.e., lowest job
size first. To set up Min(A), the CRI is set Min and w1 is set to 1 whereas w0 &
w2 are set to 0.

Then there are counter parts of above heuristics.

� Max(Tf ):prioritise jobs according to their maximum values of deadline times or
simply earliest deadline last (EDL). To set up Max(Tf ), the CRI is set Max and
w0 is set to 1 whereas w1 & w2 are set to 0.

� Max(tL): prioritise jobs according to their maximum values of laxity or slack i.e.,
highest laxity first. To set up Max(tL), the CRI is set Max and w2 is set to 1
whereas w0 & w1 are set to 0.

� Max(A): prioritise jobs according to their maximum job size values i.e., highest job
size first. To set up Max(A), the CRI is set Max and w1 is set to 1 whereas w0 &
w2 are set to 0.

Based on the w0, w1, w2 and CRI definitions, the controller schedule the arrived SLAs
from a workload using the scheduling algorithm discuss next.

3.3.2 Execution Algorithm

The simulation runs in a unit time step and on each unit time, the controller checks for the
arrival of an SLA and also the completion of already scheduled/executing SLAs. As the
workload generator (discussed above), generates the time variables i.e., start time (Ts),
finish time (Tf ) and runtime (tD), of all SLAs in minutes as shown in example workloads
given in Table 3.1, 3.2 and 3.3. Therefore, there is need to scale the time variables of
all SLAs before the start of simulation. For that purpose, the controller first finds the
minimum runtime (tDmin

) value from the submitted workload. Based on the minimum
runtime value, it calculates the time scaling factor (sf) for the simulating scenario using
Algorithm 1. On line 1, controller finds the minimum runtime (tDmin

) value within the
submitted workload, corresponding to this minimum value all other time based variables
are then adjusted. The scaling factor (sf) is calculated first. Initially the sf is set to
60 which means all time variable are required to convert from minutes to seconds (line
2). Then, minimum runtime (tDmin

) is multiplied by sf and checks if the product is still
less than 1 (line 3). If it is then sf is multiplied by 10 (line 4) and again loop back to
line 2 to check if it is still less than 1. It performs this check and multiplies the sf by
10 until it is less than 1. Once it is greater than 1, the sf is used to convert all time
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Algorithm 1 Time Scaling

1. Find minimum tD (tDmin
) from the submitted workload

2. Set scaling Factor (sf) to 60
3. While(tDmin

* sf < 1)
4. sf = sf ∗ 10
5. For each SLA ’i’ in a workload
6. Multiply Ts, Tf , tD of SLAi with sf
7. Truncate value of Ts, Tf , tD of SLAi after decimal

variables of all SLAs within the workload and truncates the values after decimal (line 6
and 7, respectively).

Once the scaling is performed on the submitted workload, the controller first sorts
the workload according to the earliest start time in ascending order and then sets the
simulator clock to the lowest value of earliest start time. The earliest start time of SLAs
is considered as the arrival time of SLAs, which means as soon as simulator clock ticks
for the value equal to the value of earliest start time of next SLA, the controller accepts
the SLA and considered it as an arrived SLA and is eligible to schedule onto resources
provided that its deadline and deadline of already accepted SLAs is not over run. The
scheduling part of the controller is adopted from the work [YS06] and it follows the steps
given below to schedule an arrived SLA together with the already accepted SLAs.

1. Upon arrival of an SLA, initialize heuristic (given in Equation 3.2) based on the set
up values for CRI and the range defined for w0, w1 and w2.

2. Based on the set up values for heuristic, compute the priority and prioritize all
waiting and newly arrived SLAs using the computed priority.

3. Try to find Ncpu (computing nodes) that are available from Ts to (Ts + tD) virtual
hours.

4. If not found in Step 3, try finding Ncpu with Ts +4t to (Ts +4t+ tD) virtual hours.

5. Repeat Step 4 until either successful finding or (Ts +4t + tD) ≤ Tf

6. If Ncpu is not found for the mentioned time interval and not all sweeping range
values are exhausted then, increment sweeping parameters and go to Step 2.

7. If Ncpu is still not found reject the SLA and restore last calculated schedule as well
as last used values of the parameters w0, w1 and w2.

8. Execute the scheduled SLAs until the arrival time of next SLA, on arrival of an
SLA, go to Step 1.

A submitted workload is then evaluated against all of the discussed seven heuristics
(i.e., both simple and integrated scheduling heuristics), one by one to observe the effect
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of the heuristics on the achieved performance i.e., number of served SLAs. After the eval-
uation, it is then checked whether performance is improved using the integrated heuristic
or not in comparison to the performance obtained using simple heuristics. If the achieved
performance using integrated heuristic is better than any of the simple heuristics then
the workload is categorized as reactive (to integrated heuristic) otherwise it is considered
as non-reactive (i.e., no improvement in performance with the application of integrated
heuristic). The scheduling algorithm which sweeps parameters on the integrated heuristic
can be considered as exhaustive scheme as it exhausts all defined values for w1 and w2

to obtained optimized schedule. All experiments discuss in this thesis are executed on
windows XP running on Intel core2Duo (1.866 GHz) platform with 1GHz of RAM under
Java [javb] environment using NetBeans IDE 6.9.1.

3.4 Assumptions Made

The work presented in this thesis has been carried out based on the following assumptions:

� A job is expressed in the form of an SLA which is comprised of start Time, runtime,
deadline Time, and number of CPUs required.

� Jobs are of non-preemptive type i.e., once started their execution then they will run
till their completion exclusively on the assigned resources.

� Apart from the example workloads discussed in this chapter, all workloads in this
thesis are comprised of 1000 SLAs.

� It is assumed that the mentioned runtime of a job within an SLA is always exact.

� The start time (Ts) of an SLA/job is considered as its submission time which means
SLA/job is ready to get scheduled/run as soon as it enters into the system.

� The execution environment is comprised of homogeneous processing elements and
they will always be available without any disruption.

� If necessary, the meta-scheduler can carry out computations to identify the suitable
parameter values for the integrated heuristic without any restriction.

� The performance metric used throughout for the evaluation is number of served
SLAs.

� The performance of the SLA based scheduling may be measured in terms of revenue
as SLA may include the monetary terms such as price/budget or penalty. However,
this requires the specification of a pricing policy. Based on the pricing policy, the
performance in terms of revenue can be measured, but this is out of the scope
of this work. Furthermore, the metrics used in traditional batch system for the
measurement of performance (e.g., makespan), are irrelevant for the evaluation of
an SLA based system [YS06].
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� The investigation of the thesis is focused on the scheduling aspect of SLA-bound
jobs, submitted for execution to high-performance computing resources, therefore,
no particular architecture for the experiments is considered, apart from the simple
one in which all resources are governed by one scheduler (i.e., local scheduler).

3.5 System Evaluation Approach

This section gives the idea of evaluation approach used throughout in this thesis. To
understand it, the system is set up with 8 resources/CPUs onto which the workloads
discussed in Section 3.2 and presented in Table 3.1, 3.2 and 3.3 are used to evaluate
the performance of the system (discussed in Section 3.3) under simple heuristics and
integrated heuristic (discussed in Section 3.3.1). The performance metric throughout in
the thesis is number of served SLAs but again for the sake of presentation as mentioned
and discussed in Section 1.5 the utilization of the system under simple and integrated
heuristics for all workloads, is also observed.

For the workloads presented in Table 3.1, 3.2 and 3.3, the observed number of SLAs
served and utilization of the system, against each of the simple heuristics as well as the
integrated heuristic, is presented in Figure 3.6(a) and 3.6(b), respectively. Reference
to Figure 3.6(a), the number of served SLAs under workload 1 are same for all used
heuristics, i.e., 50 SLAs. Similarly, reference to Figure 3.6(b), the utilization observed
under workload 1 is same for all used heuristics, i.e., 8.26%. The reason is obvious, if
the workload 1 presented in Table 3.1 is observed closely then it is quite evident that the
jobs/SLAs are arriving into the system sequentially i.e., with the gaps in the deadline time
(latest finish time) of an arrived SLA and earliest start time of successive SLA. Hence, no
contention of resources at any point in time even if the request is made for 8 CPUs.

Under workload 2, the number of served SLAs are different for different heuristics.
For simple heuristics based on least or earliest value i.e., Min(*), the number of served
SLAs are 22 with the utilization value of 84.47%, as shown in Figure 3.6(a) and 3.6(b),
respectively. Similarly, for simple heuristics based on latest or highest value i.e., Max(*),
the number of served SLAs are 12 with the utilization value of 59.56%, as shown in
Figure 3.6(a) and 3.6(b), respectively. For integrated heuristics (Int), the number of
served SLAs are 26 with the utilization value of 83.11%, as shown in Figure 3.6(a) and
3.6(b), respectively. It can be noted, the maximum number of served SLAs by any simple
heuristics is 22 and by integrated heuristic it is 26 i.e., integrated heuristic served 4
more SLAs in comparison to maximum performance achieved by any simple heuristics.
Further, the utilization of the system is decreased slightly from 84.47% to 83.11% by using
integrated heuristic, which could be a possible trade off between number of served SLAs
and utilization, as detailed in [YS06] [HSR09]. The reason for such drop in utilization
under workload 2 is, the integrated heuristic favors jobs with low CPU requirement [YS06].
That is, at some point integrated heuristics might have accepted a long running job with
lower number of CPU requirement and allowed other similar kind of jobs to execute
on the system while denying the job(s) with higher number of CPU requirements. This
increases the number of served SLAs but on the other hand decreases the utilization while
leaving the system resources idle for a while. Therefore, under workload 2, integrated
heuristic exploited the backfilling feature of its implicit nature [HSR09] for some low
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Figure 3.6: Performance Observed Against Example Workloads
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CPU requirement job, when it found a possibility to delay any SLA to adjust a new one
without over running the deadline of all accepted SLAs and later on denying the resources
to a newly arrived job requiring high number of CPU requirement.

Again, under workload 3, the number of served SLAs are different for different heuris-
tics. For simple heuristics based on least or earliest value i.e., Min(*) and integrated
heuristic (Int), the number of served SLAs are 12 with the utilization value of 76.34%,
as shown in Figure 3.6(a) and 3.6(b). Similarly, for simple heuristics based on latest or
highest value i.e., Max(*), the number of served SLAs are 11 with the utilization value of
33.57%, as shown in Figure 3.6(a) and 3.6(b). Under this particular workload, integrated
heuristic unable to exploit the backfilling feature as requests/SLAs are arriving into the
system with the high rate and with very low flexibility in their deadline time with respect
to the runtime, therefore, there is no possibility at any time to delay any SLA to adjust
a new one without over running the deadline of all accepted SLAs.

3.5.1 Performance Metric

The performance metric is number of served SLAs throughout in this thesis. Therefore,
to represent the SLAs completed by all discussed heuristics for large set of workloads is
difficult to present in the form shown in Figure 3.6(a). Rather, the difference between
the maximum number of served SLAs by any simple heuristic and by integrated heuristic,
is useful to evaluate the system. Hence, to calculate the performance difference (PD)
between simple heuristics and integrated heuristic, in terms of percentage the formulae
given in Equation 3.3, is derived.

PD =
(PInt −Max PS)

Total Number of Submitted SLAs
∗ 100 (3.3)

Where
PInt = Performance achieved by Integrated Heuristic
Max PS = Maximum Performance achieved by any Simple Heuristics

Now, if the observation given in Figure 3.6(a) is re-structured and presented in the
form of performance difference (PD) then, the observation becomes clear and easy to
understand for even small set of workloads and as well as for large set of workloads.
The observation in terms of percentage of performance difference (PD) for the workloads
presented in Table 3.1, 3.2 & 3.3, can be shown in two different formats as given in Figure
3.7.

Figure 3.7(a), represents the percentage of performance difference for all three work-
loads in the form of bar. Whereas, 3.7(b), represents the percentage of performance
difference for all three workloads in scattered form. The cleaned version of the observa-
tion (given in Figure 3.7), clearly shows that for workload 1 and 3, there is no difference
in system performance no matter which heuristic system uses to schedule the workloads.
However, there is an improvement of 8% with the use of integrated heuristic for work-
load 2. Figure 3.7(a) and 3.7(b), both show the difference in understandable form but
the scattered form (i.e., given in Figure 3.7(b)) gives easy to catch vision for the large
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Figure 3.7: Percentage of Performance Difference
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set of workloads. Therefore, the scattered form is chosen to represent the percentage of
performance difference (PD) throughout in this thesis.

3.6 Limitations of Designed Simulator

As mentioned, the investigation of the thesis is focused on the scheduling of SLA-bounded
jobs without considering any particular computing architecture, hence following are the
limitations of designed simulator that are required to be addressed, if anyone is required
to move into any particular research direction using the designed simulator.

� Due to the nature of investigation, not any particular negotiation protocol has been
implemented to avoid rejection of any particular SLA or otherwise.

� The resources constructed within the simulation are processors of homogeneous
type.

� All constructed resources are tied to single scheduler i.e, only single scheduler is
supported by the current implementation of the simulator.

� It is assumed that any SLA-bounded job can run on any resource without needing
the setting up prior to the execution of the job i.e., if the data is required to run
the job then data would be readily available to the resources.

� The simulator is designed using Java [javb] programming language and the proposed
metric is calculated using an array of double type in Java therefore, the allowable
range for an array is dependent on heap size of HotSpot VM [javc]. If not carefully
checked the simulator will raise memory leak error [javc].

� The simulator is used for maximum of 128 resources and it should work for higher
number of resources as well. The maximum limit will again be based on heap size
of HotSpot VM.

3.7 Summary

The chapter discussed in detail the usage of SLA-based workload generator (discussed
in [SY08] [YS06]) as well as described the load generator’s input variables together with
the steps to generate a desired workload. The architectural and procedural details of
the designed simulator presented, that described the setting-up of different heuristics
for the experiments. Seven different heuristics implemented and discussed together with
the execution algorithm of the simulator. In the simulated environment resources are
governed by single/central scheduler or controller which controls the complete simulation
environment and responsible for ticking the simulation clock as well as for the checking
of next arrival of an SLA/job. The controller is the core of the simulator. If an SLA/job
arrived into the system, controller then checks the feasibility to schedule the arrived
SLA/job using the preset scheduling heuristic without over running the deadline of newly
arrived SLA/job as well as the deadline of already accepted SLAs/jobs. If there is no
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possibility to accept the newly arrived SLA/job using the preset heuristic then it is rejected
and put into the rejected queue of the simulated environment.

Finally, the simulator saves the result against the preset heuristic in terms of number
of served SLAs/jobs and system utilization. The comparison of the obtained perfor-
mance under different heuristics is done using performance difference (PD), which is the
difference between the maximum number of served SLAs by any simple heuristic and
by integrated heuristic in terms of percentage against the total number of submitted
SLAs/jobs.



Chapter 4

Workload Classification

As observed in [YS06] and discussed in Chapter 1 & 3, not all simple heuristics produce the
maximum performance but one among them is suitable for particular workload condition.
However, there is a possibility of a condition where for a certain type of workloads, no
matter what heuristic system uses but the resulting performance is remain the same, even
under integrated heuristic. At this condition the use of the integrated heuristic by the
system, is not worthwhile. Therefore, the identification scheme for the need of parameter
sweeping on the integrated heuristic is required, to avoid useless computation. It is
therefore, aimed to propose and evaluate a metric in this chapter to quantify SLA-based
workloads and based on the metric values, workloads are then characterize for serving
with integrated heuristic or simple heuristics i.e., whether the highest performance in
terms of served number of SLAs can be extracted using the integrated heuristic or not.

In order to identify whether the integrated heuristic (discussed in Section 1.3) is useful
choice to serve a workload or not, following methodology is used in this chapter.

� First, workloads each consist of 1000 SLAs, are generated with low arrival rate and
with small runtime values using a load generator (discussed in Section 3.2). The
aim of generation of workloads is to generate a set of workloads that have either no
or low difference in performance under simple and exhaustive scheduling schemes in
the first instance (both discussed in Section 3.3.1).

� The generated workloads are then evaluated under simple scheme (which uses all six
simple heuristics one by one for each workload) and exhaustive scheme (which uses
integrated heuristic). After evaluation of workloads against the scheduling schemes,
the obtained performance is recorded. The recorded performance is then used to
measure the difference in performance in terms of served number of SLAs between
the two schemes. The difference in performance is measured in terms of percentage
of performance difference (PD), as discussed in Section 3.5.

� A metric to quantify the SLA-based workloads is then proposed using which the
generated workloads are then quantified.

� The obtained performance differences between the simple and exhaustive schemes
for all the generated workloads and the calculated metric values against all the
workloads are then compared to each other, to observe a relation between the system
performance (under both scheduling schemes) and proposed metric.

73
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� In the exercise carried out in this chapter, workload which is a set of 1000 SLAs/jobs
is whole as a unit is intended to identify for the suitability of simple or integrated
heuristic not any subset of it.

All simulated scenarios discuss in this chapter are executed using the architectural
environment discussed in Section 3.3.

4.1 Generation & Evaluation of Workloads

The first two steps of the methodology are followed in this section i.e., generation of
workloads and their evaluation. The workloads are generated using low arrival rate val-
ues with the assumption that the system performance will be the same for most of the
generated workloads and then on the next set of workloads those values will be used for
the generation of workloads that have difference in performance. As mentioned earlier,
the performance is measured in terms of served number of SLAs and workloads are gener-
ated using load generator discussed in Section 3.2. Hence, as a starting point, the values
presented in Table 4.1 are used to generate initial set of workloads. Based on the combi-
nation of values mentioned in Table 4.1, total of 24 workloads are generated i.e., for each
arrival rate value given in Table 4.1, all combinations of maximum runtime and minimum
tightness values are used to generate a workload. Each of the generated workload consists
of 1000 SLAs and all the workloads are generated using maximum job size or maximum
allowable number of CPUs for an SLA equals to 8.

Table 4.1: Values Used for the Generation of Workloads
Arrival Rate Max. Runtime Min. Tightness

0.00001 100 0.1
0.0001 1000 0.25
0.001 0.5

0.75

Then, the generated 24 workloads are evaluated using simple and exhaustive schemes
under an environment containing 8 CPUs (called system CPUs (Scpu)), as discussed in
Section 3.5. For the exhaustive scheme which requires parameter sweeping on the inte-
grated heuristic, the simulation is run from -1.0 to +1.0 with the increment of 0.01 for
each parameter. As discussed in Section 3.5.1, the difference in performance of the sys-
tem for the two schemes against the generated 24 workloads, is observed. As assumed,
the observed performance difference for 17 workloads out of 24 is zero and 7 workloads
show an improvement in the performance of greater than 1% under exhaustive scheme.
All seven workloads are generated using the arrival rate of 0.0001 and 0.001. Hence,
for more observations further workloads are required to generate with the next starting
value of the arrival rate equals to 0.001. Therefore, the values mentioned in Table 4.2 are
used to generate further workloads i.e., for each arrival rate value given in Table 4.2, all
combinations of maximum runtime and minimum tightness values are used to generate a
workload. Total of 36 workloads are generated using the combination of values given in
Table 4.2 for higher arrival rate values with an extra higher runtime value but keeping the
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maximum allowable CPUs equal to 8. Again, these generated workloads are evaluated
using simple and exhaustive schemes under an environment containing 8 CPUs (Scpu = 8)
and the difference in performance of the system for the two schemes against the generated
36 workloads, is observed.

Table 4.2: Values Used for the Generation of Workloads: Effect of Arrival Rate
Arrival Rate Max. Runtime Min. Tightness

0.001 100 0.1
0.01 1000 0.25
0.1 10000 0.5

0.75

The observed performance difference for all 60 workloads that are generated using the
values given in Table 4.1 & 4.2 is depicted in Figure 4.1 against the generated sequence
of the workloads. It is observed that out of 60 workloads, 18 workloads have no difference
in performance and 42 workloads have difference in performance. Workloads with no
difference in performance are termed as non-reactive (NR) workloads i.e., no improvement
in performance can be made using exhaustive scheme and the workloads which show
difference in performance are termed as reactive (R) workloads. Hence, out of 60 generated
workloads, 18 are non-reactive and 42 are reactive. Further observation shows that out
of 42 reactive workloads, 35 have difference in performance of 1% or more i.e., exhaustive
scheme performed better than simple scheme for 35 workloads.

0 5 10 15 20 25 30 35 40 45 50 55 60

0

10

20

30

40

50

60

70

80

Figure 4.1: Performance Difference between Simple and Exhaustive Schemes
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After obtaining the performance difference against the generated workloads, now it is
desired to quantify the workloads against the metric proposed in the next section.

4.2 Quantification Metric

A metric is proposed to quantify the workloads. The proposed metric is presented in
Equation 4.1 and the scheme to calculate the metric is given in Algorithm 2. The proposed
metric is based on the idea of resource utilization (RU) and it computes an SLA demand
on the total number of system CPUs (Scpu). The calculation is based on the values of
runtime (tD), difference of deadline time & start time (Tf−Ts), CPUs requirement (Ncpu)
by an SLA and total system resources or CPUs (Scpu). As the metric is calculated for
each SLA of a workload therefore, it simply calculates the possible resource utilization
(RU) of the system if the SLA is admitted into the system. The RU is calculated for
each time unit for all SLAs of a workload as given in Algorithm 2. This tells the amount
of resource required for a unit of time by all of the SLAs of workload.

RU =
tD

Tf − Ts

∗ Ncpu

Scpu

(4.1)

In Algorithm 2, the utilization or posed resource utilization (RU) by an SLA is com-
puted on each unit time from the start time to the deadline time mentioned in the SLA.
If the arrival time or start time of an SLA is in decimal then it is lower down to the
nearest integer value (bTsc). For example, if an SLA has a start time (Ts) of 100.15 units
then its utilization is calculated from t = 100 to the mentioned deadline time of the SLA
with unit time increment. Against the calculated value of the RU [t] on each t time unit,
the maximum and average of RU [t] are computed. This simple algorithm calculates the
metric RU in order to quantify the submitted workload.

Algorithm 2 Metric Calculation Algorithm - I

FOR a workload, sort all SLAs with their start time (Ts) in ascending order
Find minimum start time (Min Ts) and maximum deadline time (Max Tf) from the
submitted workload
Set RU [t] = 0, for t = Min Ts to Max Tf

FOR each SLA {
for t = bTsc (start time) to Tf (deadline time) with unit time increment in t {

RU [t] = RU [t] + tD
Tf−Ts

∗ Ncpu

Scpu

}
}
Calculate Max. RU and Average RU.
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Figure 4.2: Performance Difference (PD) Against Metric Values For 60 Workloads
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4.3 Quantification & Observations

Based on the Algorithm 2, the maximum metric value (max(RU)) and average metric
value (avg(RU)) are calculated and recorded. Then, the performance differences (PDs)
of the generated 60 workloads (observed in Section 4.1) are mapped against maximum
metric value (max(RU)) and average metric value (avg(RU)) which is shown in Figure
4.2(a) and 4.2(b) , respectively. From Figure 4.2(a) , it can be observed that maximum
value of the metric is not resulting in better identification scheme as it contains number
of workloads with performance difference less than 1% for a wide range of values. In
contrast to it, the average metric values show better results as shown in Figure 4.2(b).
In Figure 4.2(b), for a small range of average RU (avg(RU)) values, few workloads with
performance difference (PD) greater than 1% workloads are observed together with no
performance difference. The range of avg(RU) values for which workloads with PD less
than or equal to 1% are observed, is considered as disputed range. To find the disputed
range for avg(RU) values the steps given below are followed:

1. Sort the workloads together with their percentage of performance difference, in
descending order based on the avg(RU) values.

2. Search for the first occurrence of no performance difference. When found record the
value of the metric.

3. Search for the last occurrence of performance difference greater than 0 and record
the value of the metric.

After following the above steps, the disputed range for the avg(RU) is observed to
be between 0.621 and 0.06 i.e., 0.06 ≤ avg(RU) < 0.621. The avg(RU) greater than or
equal to 0.621 means the workload is reactive (or PD is greater than 0) and less than 0.06
means the workload is non-reactive (or PD is equal to 0). But for the disputed range,
both reactive and non-reactive workloads are observed. 19 workloads have been observed
within the disputed range and, 7 out of 19 are non-reactive. Further, observations led to
two reasons, due to which the non-reactive workloads have high value of metric avg(RU):

4.3.1 Effect of Tightness

It is observed that the workloads with certain average tightness [YS06] values have specific
characteristics. Whereas, the tightness (tT ) is defined as a measure of flexibility in deadline
(Tf ) provided within an SLA against its runtime (tD) which is given in Equation 4.2. The
value of tightness is always greater than 0 and less than or equal to 1. The tightness value
close to 1 means less flexibility and 1 means no flexibility. The value of tightness shows the
percentage of a runtime (tD) span over the given time length (i.e., Tf−Ts). Under disputed
range, it has been observed that 5 out of 7 non-reactive workloads have avg(tT ) greater
than 0.86 and only two non-reactive workloads have avg(tT ) less than 0.86 (i.e., 0.69 and
0.41). The pattern of rejection for the workloads that have avg(tT ) greater than 0.86,
is somewhat same against all simple heuristics. This is due to the simultaneous arrival
of number of SLAs with the avg(tT ) greater than 0.86 i.e., with low flexibility. Hence,
resulting in high utilization demand or high metric value but in actual, not all SLAs are
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served successfully. To explain this phenomenon, a snapshot of the continuous rejection
of SLAs/jobs is presented in Table 4.3. It can be noted that there is a big difference
between the deadline time of a job with ID 597 and the start time of a job with ID 598.
That means, the system is idle when the job with ID 598 is arrived into the system. The
system has maximum of 8 number of CPUs therefore, no matter what heuristics system
uses, because of the arrangement of the jobs, job 598 will always get accepted, as resources
will be free on its arrival therefore, system will assign the resources to job 598 and starts
its execution at the same time as it arrives into the system i.e., at 416371.2 units. Hence,
the job will execute on one CPU and finish its execution at 416462.4 unit. Further, it
can be observed that jobs arriving into the system after the start of the job with ID 598,
requiring 8 CPUs each and have deadline time less than the expected finish time of the
job with ID 598, which has already acquired one CPU for it’s execution. Therefore, jobs
having ID from 599 to 606 will all get rejected by all the applied heuristics and resulting in
the same type of performance. But calculating the utilization demand for this particular
type of workload results in high RU values. It is understandable if the average tightness
is close to 1 than SLAs have not much flexibility in their deadline times in comparison to
their runtime therefore, all heuristics will tend to behave like first-come-first-serve (FCFS)
scheme and hence no difference or minor difference in the performance will be observed.

tT =
tD

Tf − Ts

(4.2)

Table 4.3: Snapshot of a Workload - For Average Tightness
Job ID Start Time Deadline Time Ncpu Runtime Avg. Tightness

(Ts) (Tf ) (tD) avg(tT )
597 413340.27 413342.82 2 2.483 0.974
598 416371.2 416464.63 1 91.2 0.976
599 416442.87 416444.05 8 1.15 0.972
600 416444.07 416445.25 8 1.15 0.972
601 416445.27 416446.45 8 1.15 0.972
602 416446.47 416447.65 8 1.15 0.972
603 416447.67 416448.85 8 1.15 0.972
604 416448.87 416450.05 8 1.15 0.972
605 416450.07 416451.25 8 1.15 0.972
606 416451.27 416452.45 8 1.15 0.972

Further, the observation against the 60 workloads obtained for avg(RU), avg(tT ) and
PD, is shown in Figure 4.3. Total of 7 non-reactive workloads have been observed within
the disputed range and out of 7, 5 workloads have avg(tT ) greater than or equal to 0.86
within the disputed range. Only two workloads are found within the disputed range
having avg(tT ) less than to 0.86. Within the disputed range, 12 workloads are observed
to be reactive. Out of these 12 workloads, 7 workloads have PD of greater than 1% and
all 7 workloads have avg(tT ) less than 0.86. The performance difference (PD) greater
than 1% is observed at the metric value greater than or equal to 0.38. The complete
observation for avg(RU), avg(tT ) and PD, is shown in Figure 4.3(a). The observation
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Figure 4.3: Observed Avg. of Squared RU , Avg. Tightness and Performance Difference
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for the values of disputed range is given in Figure 4.3(b) which is further refined to the
performance difference less than or equal to 1% in Figure 4.3(c). From Figure 4.3(c), out
of 7 non-reactive workloads, 5 can be seen for the average tightness greater than or equal
to 0.86 together with the high metric value greater than 0.38, one non-reactive workloads
can be seen for the metric value equal to 0.09 with average tightness of 0.41, and another
one with metric value of 0.53 with average tightness of 0.68.

Table 4.4: Generation of Workloads: Effect of Tightness
Arrival Rate Max. Runtime Min. Tightness

0.001 1000 0.85
0.01 0.9
0.1 0.95
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Figure 4.4: Observation For Increased Tightness

In order to further investigate a possible situation in which either PD is zero or less
than or equal to 1% under higher metric value with average tightness greater than or
equal to 0.85, further 12 workloads are generated using the combination of values given
in Table 4.4 i.e., again, for each arrival rate value given in Table 4.4, all combinations of
maximum runtime and minimum tightness values are used to generate a workload. Again,
each of the generated workload comprised of 1000 SLAs. The minimum tightness is kept
greater than or equal to 0.85. The workloads are then evaluated against the simple and
exhaustive schemes as done previously. Then, the metric avg(RU) is computed using
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Algorithm 2 and average tightness is calculated against each of the generated workload.
The observed metric values, average tightness and performance difference is shown in
Figure 4.4. It can be seen that, except for two workloads the performance difference is
less than 1% even though the metric values are higher than 1. This is due to the average
tightness value which is greater than or equal to 0.93. The observed two workloads with
the PD greater than 1% have metric values greater than 3.4. The high metric values
shows the number of SLAs arriving into the system therefore, together with the average
tightness it is the measure of higher number of SLAs arriving with either low or no
flexibility in their deadline time. Again, it is observed that if the average tightness is
close to 1 than SLAs have not much flexibility in their deadline times in comparison to
their runtime, therefore, all heuristics tend to behave like first-come-first-serve (FCFS)
scheme and hence no difference or minor difference in the performance is to be observed.
Therefore, the resolution of observed disputed range of avg(RU) is done using average
tightness values i.e., if the avg(RU) is less than 3.4 and greater than 1, then it is required
to check for the average tightness (avg(tT )) and in this case if avg(tT ) is greater than
equal to 0.93 then, the workload is either non-reactive or reactive with PD less than 1%.

Table 4.5: Snapshot of a Workload - For RU Value
Job ID Start Time Deadline Time Ncpu Runtime RU

(Ts) (Tf ) (tD)
64 6209.3 6209.367 2 0.0333 0.124874
65 6209.383 6209.45 2 0.0333 0.124874
66 6209.467 6209.533 2 0.0333 0.124876
67 6209.55 6209.617 2 0.0333 0.124874
68 6209.633 6209.7 2 0.0333 0.124874
69 6209.717 6209.783 2 0.0333 0.124876
70 6209.8 6209.867 2 0.0333 0.124874
71 6209.883 6209.95 2 0.0333 0.124874
72 6209.967 6210.033 2 0.0333 0.124876

RU [6209]= 1.123872

4.3.2 Effect of Smaller Runtime Values

As the RU [t] is calculated on integer intervals of time units with the increment of 1
therefore, it is observed that number of SLAs with runtime (tD) value less than 1 unit
time with the difference between the deadline and start time (i.e., Tf−Ts) less than 1 unit
time, are the reason of increasing values for the metric even the load is of non-reactive
type. For example, a snapshot of one of the workloads for low runtime values is presented
in Table 4.5. It can be observed that for all the mentioned SLAs the RU will be calculated
at time unit 6209 i.e., RU [6209]. Further, if observe closely the Ts and Tf of all SLAs,
then, it can be concluded easily that all SLAs can be served on only 2 CPUs as they are
consecutive and non overlapped. But having small tD and Tf − Ts values, the calculated
value of RU for each SLA is worth noting as given in last column of Table 4.5. After
adding up all values for the utilization value at 6209 i.e., RU [6209], becomes a significant
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value of 1.123875 given in last row of the same table. Although, the given SLAs are
non-overlapped, have average tightness less than 0.86 and do not require any sweeping of
parameters to schedule but the low values of tD and Tf − Ts resulting in high utilization
value because of the calculating nature of metric. However, it is also observed that for
some workloads, such small runtime values do not effect the metric values, because of the
their range of time units i.e., the start time to maximum deadline time of SLAs. As the
metric is calculated and averaged against the range of the time units therefore, the high
value range of time units at which the metric is calculated reduced the effect of the such
small runtime noise values. But to cope with this situation, it is proposed to ignore SLAs
having runtime value (tD) less than 0.5.

Based on the observed values for the metric (M) and average tightness (or flexibility),
a decision chart is constructed and is given in Figure 4.5. Three levels can be seen in the
chart. At first level, the value of metric is checked and based on the metric value, the
corresponding threshold value of average tightness is checked at the second level. If the
average tightness is less than the threshold value under the corresponding metric value
then the integrated heuristic is decided to use otherwise use of any simple heuristic is
decided, at the third level or decision level. The observed values for metric and flexibility
may vary for the different number of computing resources therefore, the classification
table is constructed from the observed values for 8 CPU system. In Table 4.6, the range
of average tightness values are classified as varying, less tight, tight and very tight. Any
value of average tightness below 0.86 is considered as varying, value greater than 0.86
and less than 0.93 is considered as less tight, value greater than 0.93 and less than 0.99 is
considered as tight and average tightness value greater than or equal to 0.99 is considered
as very tight, as mentioned in Table 4.6.

Table 4.6: Flexibility Classification
Flexibility Average Tightness
variation (avg(tT ))
Varying avg(tT ) < 0.86

Less Tight 0.86 ≤ avg(tT ) < 0.93
Tight 0.93 ≤ avg(tT ) < 0.99

Very Tight avg(tT ) ≥ 0.99

Similarly, the metric values for average RU are grouped and presented in Table 4.7.

Table 4.7: Demand Classification
Utilization Demand Metric Value
Class (M)
Very Low M < 0.38
Low 0.38 ≤ M < 0.62
Moderate 0.62 ≤ M < 3.4
High M > 3.4

Based on the defined classes for utilization demand and flexibility, a workload clas-
sification chart is constructed to identify the workload as reactive (R) and non-reactive
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(NR), which is presented in Table 4.8.

Table 4.8: Workload Classification
Utilization Demand Flexibility

(Metric Value) Varying Less Tight Tight Very Tight
Very Low NR NR NR NR

Low R NR NR NR
Moderate R R NR NR

High R R R NR
NR: Non-Reactive
R: Reactive

Now, based on the defined classes for the utilization demand and flexibility presented
in Table 4.7, 4.6 and 4.8, the metric calculation scheme is re-constructed and is presented
in Algorithm 3 to work as a workload characterization scheme. It calculates the RU
against the SLAs that have runtime (tD) greater than or equal to 0.5. Based on the
calculated demand utilization and flexibility, the scheme suggests whether the workload
is suitable for Exhaustive Scheme/Integrated heuristic or not.

Algorithm 3 Workload Characterization Scheme

1. Set Tightness = 0
2. FOR each SLA ’i’ in workload {
3. IF tDi

≥ 0.5 {
4. FOR t = bTsic (start time) to Tfi (deadline time) with unit time increment in t {
5. RU [t] = RU [t] +

tDi

Tfi
−Tsi
∗ Ncpui

Scpu

6. }
7. }
8. Tightness = Tightness +

tDi

Tfi
−Tsi

9. }
10. Calculate avg. demand utilization and flexibility.
11.
12. IF Metric value is High AND flexibility is not Very Tight
13. Suggest Workload as Reactive.
14. ELSE IF Metric value is Moderate AND flexibility is not Tight & Very Tight
15. Suggest Workload as Reactive.
16. ELSE IF Metric value is Low AND flexibility is Varying
17. Suggest Workload as Reactive.
18. ELSE
19. Suggest Workload as Non-Reactive.
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4.4 Workload Characterization Scheme

The workload characterization scheme given in Algorithm 3 is constructed from the ob-
servations discussed earlier. The Tightness variable is set to 0 on Line 1. Line 2 to 10 are
same as given in Algorithm 2 to calculate the metric value or demand utilization. Except
for Line 3 where it restricts the SLA from being considered if the runtime of an SLA is
less than 0.5 (as discussed in Section 4.3.2). On Line 8, the tightness value is calculated
against each SLA and is added into the previously obtained value to calculate the average
of the tightness values at Line 10. From Line 12 onwards, the characterization scheme
starts to check for the effectiveness of integrated heuristic on the submitted workload
using the classification scheme based on Table 4.7, 4.6 and 4.8. The reactive workload
suggestion means the performance can be improved by applying integrated heuristic on
the submitted workload and non-reactive workload means no major performance can be
obtianed using the integrated heuristic.

The scheme is first evaluated against the discussed 60 workloads, whose performance
differences have already been measured, in order to confirm the behaviour. It is observed
that out of 60, only 5 workloads have been characterized wrongly. The remaining 55
workloads characterized correctly as reactive or non-reactive. Out of 5 incorrectly char-
acterized workloads, 1 workload is suggested for exhaustive scheme whereas the workload
originally is of non-reactive type and 4 workloads are suggested as non-reactive whereas
they are of reactive type with performance difference (PD) less than or equal to 0.7%.
If the 4 workloads, that are suggested as non-reactive (but in fact are reactive with PD
less than 0.7%) are considered as good suggestion in terms of computing cost to obtaine
such low performance difference than, only 1 out of 60 workloads is completely incorrect
i.e., 1.67% of incorrect suggestion, considering the fact that the scheme avoided exhaus-
tive scheme for 20 workloads, which saves lot computation to evaluate the integrated
heuristics.

4.5 Evaluation

In this section, the proposed workload characterization scheme is evaluated against the
two different sets of workloads that are generated using two different methods. One of
the generation methods is systematic and the other is random. In both of the generation
methods, all workloads are generated for the maximum allowable CPU equal to 8. The
generated workloads are first evaluated against simple and exhaustive schemes to check
for the performance difference, as explained in Section 4.1. Then, the workloads are
submitted to the proposed workload characterization scheme to characterize as reactive
or non-reactive workloads. The reactive characterization of a workload suggests that
the workload should be served with the integrated heuristic (or exhaustive scheme) for
optimized performance. Whereas, non-reactive refers to the use of any simple heuristic to
serve that workload. In order to validate the characterizations or suggestions, the actual
obtained performance difference is used to classify the workloads as reactive and non-
reactive which is then compared with the characterization done by the proposed scheme
for the two generated sets of workloads. Under systematic method, total of 320 workloads
are generated using pre-defined set of values of load generator parameters. Briefly, the



CHAPTER 4. WORKLOAD CLASSIFICATION 87

systematic scheme generates workloads for each arrival rate value from 0.9 to 0.0001 and
it sets different minimum tightness value with different combination of the maximum
job length value (or maximum runtime). The maximum job size or maximum allowable
number of CPUs that an SLA can have within a workload, is set to 8 for all workloads.
The allowable values for minimum tightness are 0.1, 0.25, 0.5 and 0.75. The maximum
job length is started from default value of 500 seconds and increased upto 32000 seconds
by multiplying with 4 each time with the previously set value and if it is reached to
the value greater than 32000 it is then reset back to 500 seconds for the next round of
generation. It follows the generation scheme until the arrival rate value is greater than
equal to 0.0001. Hence, for each value of arrival rate with the combination of maximum
runtime and minimum tightness it generates 320 workloads each comprising of 1,000 SLAs.
The combinations of values used to generate the workloads are also given in Table 4.9.
In random generation method, arbitrary values for the combination of load generator
parameters (i.e., for arrival rate, maximum job length, minimum tightness, repetition)
picked up while keeping the maximum allowable CPU equal to 8. Total of 100 workloads
are generated for the random set. The statistical characteristics of each of the workloads
of systematic and random set can be found in Appendix A and B, respectively.

Table 4.9: Systematic Load Generation Scheme Values
Arrival Rate Max. Job Length Min. Tightness

or Max. Runtime
0.9

500 0.1
0.7
0.5
0.3
0.1

2000 0.25

0.09
0.07
0.05
0.03
0.01
0.009

8000 0.5
0.007
0.005
0.003
0.001
0.0009

32000 0.75
0.0007
0.0005
0.0003
0.0001

Total = 20 x 4 x 4 x = 320

After the generation of workloads for the two mentioned sets, the workloads are then
evaluated against the Simple and Exhaustive Schemes. The average time per workload
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taken by the exhaustive scheme to evaluate the workloads of systematic and random
sets, is found to be 1162.046 minutes and 1062.376 minutes, respectively. The observed
percentage of performance difference (PD) for each workload of systematic and random
sets is shown in Figure 4.6(a) and 4.6(b), respectively. The observed system utilization
under each workload of systematic set is splitted into four graphs and presented in Figure
4.8 and 4.9, whereas the utilization of the system under each workload of random set
is presented in Figure 4.10. The overall utilization statistics in the form of average and
standard deviation are also presented in Table 4.10, which shows a slight difference in
terms of utilization of the system under both of the scheduling schemes.

Table 4.10: Utilization Statistics

Utilization
Systematic Set Random Set

Avg. Std. Dev. Avg. Std. Dev.
Simple Scheme 70.29 ±26.14 69.4 ±26.97
Exhaustive Scheme 71.77 ±25.98 71.34 ±26.91

Table 4.11: PD Threshold Per Workload
Threshold Range
T1 PD = 0%
T2 0% < PD ≤ 10%
T3 10% < PD ≤ 20%
T4 20% < PD ≤ 30%
T5 30% < PD ≤ 40%
T6 40% < PD ≤ 55%

Table 4.12: Overall Average PD of Reactive Workloads
PD Stats Average
Systematic Set 11.28
Random Set 10.49

The observations given in Figure 4.6 is summarized according to the different PD
threshold values and presented in Figure 4.7. Figure 4.7(a) shows the summary of the
observed PD against the systematic workloads and Figure 4.7(b) shows the summary of
the observed PD against the random workloads that are extracted from the observations
shown in Figure 4.6(a) and 4.6(b), respectively. The performance threshold range T1,
T2, T3, T4, T5 and T6 are mentioned in Table 4.11. The threshold T1 is defined for
the workloads with PD equal to 0%. T2 is defined for the range of PD between 0 and
10% and similarly T3, T4 and T5 are defined for the consecutive 10% range of values for
PD. But T6 is defined for 40% to 55% of PD. Now, from Figure 4.7(a), it can be seen
that 15.93% of workloads have PD equals to 0% (i.e., T1 = 0%) in systematic workload
set. These are the non-reactive workloads that have no difference in performance with
any of the scheduling heuristics and are represented under threshold value T1. For T2,
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which is the representation of PD greater than 0% and less than or equal to 10%, 47.5%
of workloads within systematic are observed i.e., 47.5% of workloads within systematic
set have PD greater than 0% and less than or equal to 10%. Similarly, for T3, T4 and T5
20.93%, 8.125% and 5.625% of workloads observed for the defined range of PD threshold
values, respectively. T6 represents the range of PD greater than 40% and less than or
equal to 55%, for which 1.875% of workloads within systematic are observed, as shown
in Figure 4.7(a). Similarly, for the random workload set, the observation is presented in
Figure 4.7(b) i.e., 18%, 57%, 14%, 6%, 2% and 3% of random workloads observed for the
PD threshold range T1, T2, T3, T4, T5 and T6, respectively.

The average PD is calculated for reactive workloads of systematic and random set, to
show the overall observations of PD under simple and exhaustive schemes. It is observed
that on the average exhaustive scheme served 10% or more SLAs in comparison to any of
the simple heuristics, as detailed in Table 4.12.

Based on the observed performance difference, the percentage of reactive and non-
reactive workloads for each set is depicted in Figure 4.11(a). In the systematic set, there
are total of 84.06% (i.e., 269 out of 320 workloads) of reactive and 15.94% (i.e., 51 out of
320 workloads) of non-reactive workloads observed whereas, in the random set, 82% (i.e.,
82 out of 100 workloads) of reactive and 18% (i.e., 18 out of 100) of non-reactive workloads
are observed, as depicted in Figure 4.11(a). In Table 4.13, out of six simple heuristics, the
heuristic that served the highest number of SLAs for a percentage of reactive workloads
of both systematic and random sets, is detailed. The percentages are calculated against
the total number of reactive workloads i.e., 269 and 82 in systematic and random sets,
respectively. From Table 4.13, the heuristic earliest deadline first (Min(Tf )) extracted
highest performance for 42.75% and 43.9% of reactive workloads of systematic and random
sets, respectively. Least laxity first (Min(tL)) extracted highest performance for 24.54%
and 24.39% of reactive workloads of systematic and random sets, respectively. Similarly,
minimum jobsize first (Min(A)) extracted highest performance for 16.36% and 10.98% of
reactive workloads of systematic and random sets, respectively. The highest or maximum
criterion based simple heuristics jointly extracted highest performance for 16.36% and
20.73% of reactive workloads of systematic and random sets, respectively.

Table 4.13: Served Percentages of Reactive Workloads
Simple Heuristic Systematic Set Random Set
Min(Tf ) 42.75% 43.9%
Min(tL) 24.54% 24.39%
Min(A) 16.36% 10.98%
Max(∗) 16.36% 20.73%

The workloads of the two sets are then submitted to the proposed characterization
scheme to evaluate the suggestion against the actual observations. The observation of
suggestion by the characterization scheme for the two sets is given in Figure 4.11(b).
The percentage of correct identification for systematic and random set is found to be
96.56% and 97%, respectively. The percentage of incorrect identification for systematic
and random set is found to be 3.44% (i.e., 11 workloads) and 3% (i.e., 3 workloads),
respectively.
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Figure 4.7: Percentage of Workloads Against Different PD Thresholds
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Figure 4.11: Evaluation Against Two Sets of Workloads
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Further, it is noticed that out of 11 incorrect identification for systematic set, 4 work-
loads are identified as reactive whereas they are of non-reactive type. Remaining 7 work-
loads are identified as non-reactive whereas they are of reactive type. The PD of 7 incor-
rectly identified workloads are 0.3%, 0.6%, 0.6%, 0.7%, 0.9%, 1.7% and 2.1%. For random
workloads set, 3 workloads are identified as non-reactive whereas they are observed to be
reactive with PD of 0.3%, 0.7% and 3.2%. If the observations of incorrect identification
for both systematic and random sets of workloads are scaled on threshold values defined
in Table 4.11, then it can be seen that the erroneous observations made for the range T2
i.e., 0% < PD ≤ 10%.

Although, the wrong or erroneous identifications are observed but if compared with
the correct identification percentage which is around 97% for the two different sets of
workloads then, having the scheme in place can save greater amount of computation
time.

4.6 Summary

As discussed and evaluated in [YS06] that not a single heuristic from the simple ones
(discussed in Section 3.3.1), is able to produce optimal performance in different scenarios
which is why the maximum performance in scheduling of SLAs is achieved by integrated
heuristics that adds multiple parameters from SLA. Each of the parameter is then mul-
tiplied by some weight factor and based on the values of weight factors the priority to
schedule the SLA is calculated. The suitable value of weight factors is determined through
parameter sweeping and this computation requires number of values to sweep through and
therefore, this evaluation results in long computation time which is dependent on the range
of weight factors or parameters, number of SLA parameters involved, number of resources
within the system and number of SLAs to consider. The scheme becomes very expensive
if no value of the weight factors results in improvement in performance. Therefore, to
avoid the unnecessary computation for non-reactive workloads, a metric based identifica-
tion scheme called workload characterization scheme, proposed and evaluated to quantify
the SLA based workloads using proposed RU metric. Based on the quantified values for
the average of RU metric and average tightness, the identification is made. The metric
RU is calculated on each time unit to check the demand of utilization by the SLAs on
the system resources.

The effect of average tightness on the performance difference (PD) also observed.
The high metric values shows the number of SLAs arriving into the system but average
tightness measures the flexibility provided/available within deadline times of submitted
SLAs. It has been observed that if the average tightness is close to 1 than SLAs have
not much flexibility in their deadline times in comparison to their runtime, therefore, all
heuristics tend to behave like first-come-first-serve (FCFS) scheme and hence no difference
or minor difference in the performance, observed.

The proposed scheme evaluated against two different sets of workloads i.e., systematic
and random. The evaluation of the proposed workload quantification schemem showed
that the percentage of correct identification is around 97% for both the sets. Only few
reactive workloads with small performance difference, characterized as non-reactive for
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both the sets. Only for systematic set, the proposed scheme characterized three non-
reactive workloads as reactive and if this is compared with the percentage of correct
identification and saving of the computation time then, the erroneous identification can
be ignored. Also, the proposed scheme completely avoids the need of simulating the
computing scenario to find the usefulness of the integrated heuristic.



Chapter 5

Adaptive Scheduling Scheme

In Chapter 4, the possibility to characterize the complete workload to schedule on the
available resources using metric (avg(RU)) and average tightness, proposed and evalu-
ated. The exercise carried out in Chapter 4 helped to identify the suitability of simple
or integrated heuristics for a given workload. In that exercise the performance of the
system, under all workloads against all heuristics, obtained separately in order to know
which workload is reactive (R) and which one is non-reactive (NR). Then, the proposed
characterization scheme executed to classify the complete workload (i.e., workload con-
taining 1000 SLAs) to be reactive (R) or non-reactive (NR). The obtained results from
the characterization scheme compared with the actual obtained results. At this point
the characterization scheme works separately and considers all 1000 SLAs of a workload.
Whereas, in this chapter the characterization scheme is intended to be integrated into
scheduling scheme to adapt scheduling heuristic with respect to the number/character-
istics of SLAs within the system not within the submitted workload i.e., the size of the
workload within the system may vary depending on the characteristics of the submitted
workload set and the state of the simulation. The resulting scheduling scheme is called
adaptive scheduling scheme, which upon arrival of a new SLA decides whether to use
integrated heuristics or a simple heuristic for waiting and newly arrived SLAs to obtain
maximum performance i.e., maximum number of served SLAs.

The adaptive scheduling scheme conditionally uses exhaustive scheduling scheme (which
evaluates integrated heuristic) to calculate the schedule for the SLAs otherwise it will
use the simple scheduling scheme (i.e., which evaluates simple heuristic). The adaptive
scheduling scheme consists of two parts to decide upon the suitability of the exhaustive
scheme on the arrived SLAs. Briefly, the first part deals with the quantification of the
SLAs that are waiting to get schedule with the newly arrived SLA which is given in
Section 5.2 using RU metric. The second part of the adaptive scheme is the decision
making process based on the computed values of the average of RU (avg(RU)) and the
average tightness values (avg(tT )) which is discussed in Section 5.1. Finally, the algo-
rithm suggests whether to use exhaustive scheme or not. The adaptive scheduling scheme
follows the steps given below:

1. At initialization phase, set scheduling heuristic to earliest deadline first.

2. Upon arrival of an SLA, save the current parameters values (i.e., w1 & w2), if any.

98
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3. Quantify the waiting and arrived SLAs using Algorithm 5 to compute the average
of RU [t] (i.e., avg(RU)).

4. Compute the average tightness (avg(tT )) of waiting and arrived SLAs, based on the
current time.

5. Check for the threshold range of avg(RU) and avg(tT ) using Algorithm 4 (discusses
in Section 5.1), to decide which scheme to use to schedule the SLAs i.e., exhaustive
or simple scheme.

6. If suggested for exhaustive scheme then try to schedule the SLAs with exhaustive
scheme (as discussed in Section 3.3).

7. Else try to schedule the SLAs using simple scheme (as discussed in Section 3.3)
using either the last used integrated heuristic or earliest deadline first heuristic.

8. If not scheduled at all then reject the SLA.

9. Execute the scheduled SLAs until the finish time of scheduled SLAs or the arrival
time of the next SLA and, on arrival of an SLA go to Step 2. If no more SLA is
available through the submitted workload then execute all scheduled SLAs till their
completion.

Again, for the ease, the simplified single scheduler architecture discussed in Chapter 3
is used to evaluate the adaptive scheduling scheme. The adaptive scheme uses exhaustive
scheme and simple scheme as mentioned. In Chapter 4, conditions at which the integrated
heuristic shows difference in performance identified using the defined metric and average
tightness values. Also, the conditions at which the performance of all simple heuristics
and integrated heuristic is same, are identified. For conditions where all heuristics exhibits
the same performance, the system can use any of the simple heuristics without the loss
of performance. Based on this observation, the adaptive scheme utilizes simple scheme
with a little modification, which is, either it tries to schedule the SLAs using earliest
deadline first heuristic or with the integrated heuristic using the already computed weights
(i.e., the weights computed in earlier round of schedule using exhaustive scheme). The
reason of using earliest deadline first as a baseline heuristic is the statistics obtained in
Chapter 4 Table 4.13, which shows that earliest deadline first (Min(Tf )) extracted highest
performance for 42.75% and 43.9% of reactive workloads of systematic and random sets,
respectively. Hence, no other simple heuristics is used by the simple scheme in adaptive
mode.

5.1 Workload Classification Scheme

Based on the observations made in Section 4.2, the demand utilization metric (M =
avg(RU)) and flexibility (avg(tT )) values are checked for the candidate SLAs, to decide
the use of exhaustive scheme or simple scheme, as discussed in Section 4.4. This obser-
vation is reproduced and given in Algorithm 4 and the levels of checks to reach to the
decision, are presented in Figure 5.1 which is similar to the scheme presented in Figure 4.5.
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Again, the three levels are used. At first level, the value of metric is checked and based on
the metric value, the corresponding threshold value of average tightness is checked next.
If the average tightness is less than the threshold value under the corresponding metric
value then the exhaustive scheme is decided to use otherwise simple heuristic either with
least laxity heuristic or with previously calculated integrated heuristic, is decided to use
at the third level or decision level of the presented decision tree. The classification table
constructed from the observation (for 8 CPU system) made in Chapter 4 are also repro-
duced here. In Table 5.1, the range of average tightness values are presented that are
classified as varying, less tight, tight and very tight. Any value of average tightness below
0.86 is considered as varying, value greater than 0.86 and less than 0.93 is considered as
less tight, value greater than 0.93 and less than 0.99 is considered as tight and average
tightness value greater than or equal to 0.99 is considered as very tight, as mentioned in
Table 5.1. Similarly, the metric values (for average RU ) are reproduced in Table 5.2 and
the workload classification chart is presented in Table 5.3.

Algorithm 4 Suggestion based on Thresholds

1. IF Metric value is High AND flexibility is not Very Tight
2. Use Exhaustive Scheme.
3. ELSE IF Metric value is Moderate AND flexibility is not Tight & Very Tight
4. Use Exhaustive Scheme.
5. ELSE IF Metric value is Low AND flexibility is Varying
6. Use Exhaustive Scheme.
7. ELSE
8. Use Simple Scheme.

Table 5.1: Flexibility Classification
Flexibility Average Tightness
variation (avg(tT ))
Varying avg(tT ) < 0.86

Less Tight 0.86 ≤ avg(tT ) < 0.93
Tight 0.93 ≤ avg(tT ) < 0.99

Very Tight avg(tT ) ≥ 0.99

5.2 Quantification of SLAs

As mentioned above, in adaptive mode the quantification is performed on an arrival of an
SLA into the system against the number of system CPUs. Based on that quantification
the decision to use exhaustive scheme or simple scheme is made for the SLAs waiting
to get scheduled. The steps to perform quantification are given in Algorithm 5 which
is dervied from the Algorithm 3 discussed in Section 4.4. Algorithm 5 checks for the
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Table 5.2: Demand Classification
Utilization Demand Metric Value
Class (M)
Very Low M < 0.38
Low 0.38 ≤ M < 0.62
Moderate 0.62 ≤ M < 3.4
High M > 3.4

Table 5.3: Scheduling Scheme Selection
Utilization Demand Flexibility

(Metric Value) Varying Less Tight Tight Very Tight
High Exhaustive Exhaustive Exhaustive Simple

Moderate Exhaustive Exhaustive Simple Simple
Low Exhaustive Simple Simple Simple

Very Low Simple Simple Simple Simple

Algorithm 5 Quantification of the SLAs

1. Find maximum deadline time (Tfmax) of all waiting and newly arrived SLAs
2. Set start time (Ts) of all waiting SLAs to the current system time (Tc).
3. Allocate range to RU array i.e., RU[ dTfmax − Tce ]
4. Set RU [t] = 0, for t = 0 to (dTfmax − Tce)− 1.
5. FOR each waiting and newly arrived SLA ’i’ {
6. FOR t = bTsic to Tfi with unit time increment in t {
7. RU [t− Tc] = RU [t− Tc] +

tDi

Tfi
−Tsi
∗ Ncpui

Scpu

8. }
9. tT = tT +

tDi

Tfi
−Tsi

10. }
11. Calculate Average Demand Utilization (avg(RU)) and flexibility (avg(tT ))
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range of the time to consider which is based on the current system time (i.e., the time
at which the system performing the scheduling check) and the maximum deadline time
of the under consideration SLAs (Line 1). Set the start time of all candidate SLAs to
the current system time (Line 2). At line 3, it allocates the required amount of memory
to hold the range of RU values in an array form. The range of RU array is calculated
using the difference of maximum deadline time (Tfmax) of the candidate SLAs and the
current system time (Tc) at which the new SLA is arrived into the system. To avoid array
out of bound exception [java] which results when the array index goes beyond the range
value, ceiling function is applied on the difference of Tfmax and Tc to round up to the next
integer value i.e., dTfmax − Tce. Then, RU [t] is set to zero, for the values of t from index
zero to the maximum range value i.e.,(dTfmax − Tce) − 1 (Line 4). The quantification of
RU [t] and tightness is calculated against each SLA ’i ’ in Line 5 through 10, as discussed
in Section 4.3. After the quantification of the SLAs on each time unit for the demand
resource utilization (RU [t]), the average of RU [t] is calculated against the considered time
interval i.e., Tfmax − Tc together with average tightness values (i.e., flexibility) which is
calculated against the considered number of SLAs (Line 11).

5.3 Performance Measurement

To observe and evaluate the proposed adaptive scheme, the simulator discussed in Section
3, is extended for the adaptive scheme. It follows the steps discussed above to calculate
the metric and average tightness values upon arrival of an SLA and based on those values
a decision is made to select exhaustive or simple scheme to schedule the SLAs.

5.3.1 Workloads

The evaluation of the scheme is done using the two sets of workloads i.e., systematic
and random, discussed in Section 4.5 of Chapter 4. The two sets of workloads consist of
320 and 100 workloads, respectively and each workload comprised of 1000 SLAs. In the
previous chapter, each set of the workloads divided into two categories i.e., non-reactive
and reactive. No performance difference (PD) (or zero performance difference) observed
for the non-reactive workloads, no matter what heuristic system uses to schedule the
SLAs of non-reactive workloads. Whereas, reactive workloads have performance difference
(PD) greater than zero between simple heuristics and integrated heuristics. Similarly, in
this chapter the performance is evaluated for each set of workloads with respect to the
categories defined in the previous chapter i.e., non-reactive and reactive to check how
many times simple heuristic/scheme is suggested or used for reactive and non-reactive
workloads.

5.3.2 Performance Metrics

The performance of the adaptive schemes is measured and evaluated against the perfor-
mance obtained using the exhaustive scheme as performance difference (PD) (explained
in Section 3.5). The difference in performance (PD) between the adaptive and exhaustive
scheme is calculated by subtracting the performance obtained using the adaptive scheme



CHAPTER 5. ADAPTIVE SCHEDULING SCHEME 104

from the performance obtained using the exhaustive scheme. The performance difference
(PD) for a workload is calculated using Equation 5.1. As the two sets of workloads di-
vided earlier into non-reactive and reactive therefore, the adaptive scheme is evaluated
against exhaustive scheme for the two sets of workloads (i.e., systematic and random) with
respect to the already categorized workloads i.e., non-reactive and reactive, separately.

PD =
(PInt − PA)

Total Number of Submitted SLAs
∗ 100 (5.1)

Where
PInt = Served Number of SLAs by Exhaustive (or Integrated) Scheme
PA = Served Number of SLAs by Adaptive Scheme

Further, the number of times the exhaustive scheme is suggested by the adaptive
scheme, in comparison to the pure exhaustive scheme to schedule the SLAs, is also ob-
served against each workload of systematic and random sets. The percentage of times the
simple scheme is suggested by adaptive scheme for a workload is computed using Equation
5.2.

SS =
SEInt

− SEA

Total Number of Submitted SLAs
∗ 100 (5.2)

Where
Total number of submitted SLAs (i.e., 1000 in each workload)
SEInt

: Number of times integrated heuristic used by exhaustive scheme for each
workload (which is 1000 for each workload).

SEA
: Number of times exhaustive scheme (or integrated heuristic) suggested by
Adaptive scheme

SS: Reduction in suggestions of exhaustive scheme or simply the number of times
simple scheme is used by adaptive scheme for a given workload

5.3.3 Observation and Evaluation

The observations for non-reactive and reactive workloads for the two sets (i.e., systematic
and random) are presented in Figure 5.2 and 5.3, respectively. The performance differ-
ence (PD) for non-reactive workloads will be zero as the non-reactive workloads are not
effected by any heuristic which can be seen in Figure 5.2(a) and 5.2(b) for systematic and
random set, respectively. But the interesting observation is made for the percentage of
suggestions for the simple scheme by the adaptive scheme for the non-reactive workloads
of systematic and random set, which is given in Figure 5.2(c) and 5.2(d), respectively. In
Figure 5.2(c), the percentage of suggestions is plotted against the 51 non-reactive work-
loads of systematic set. It can be seen that except for one workload, all workloads have
been served at least 70.3% of times with simple scheme and if the percentage of sugges-
tions is further increased to 81.1% than out of 51, 44 workloads have been served 81.1% or
more times with simple scheme. The minimum percentage of suggestions for the simple
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scheme is observed to be 63.4% for the non-reactive workloads of systematic set. The
observation for random set is depicted in Figure 5.2(d), it can be seen that the minimum
percentage of suggestion is 72.3% for 18 non-reactive workloads of random set. Except for
4 workloads, the percentage of suggestion is greater than or equal to 81%. The average
percentage of suggestions per workload for the non-reactive workloads of systematic and
random sets is observed to be 87.87% and 86.26%, respectively.

0 4 8 12 16 20 24 28 32 36 40 44 48 52
-1

0

1

P
er

fo
rm

an
ce

 D
iff

er
en

ce
 (P

D
)

(a) PD under Systematic Set

0 2 4 6 8 10 12 14 16 18
-1

0

1

(b) PD under Random Set

0 4 8 12 16 20 24 28 32 36 40 44 48 52
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100

S
ug

ge
st

io
ns

 (S
S
)

Workload

(c) Suggestions under Systematic Set

0 2 4 6 8 10 12 14 16 18
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98

100

S
ug

ge
st

io
ns

 (S
S
)

Workload

(d) Suggestions under Random Set

Figure 5.2: Evaluation of Adaptive Scheme For Non-Reactive Workloads

Similarly, the observations are made for the reactive workloads of the systematic and
random sets. The performance difference and the percentage of suggestions for systematic
set is presented in Figure 5.3(a) and 5.3(c), respectively. It has been observed that the
maximum of 67.8% of suggestions are made for the simple scheme with performance
difference equal to zero and 74.6% of suggestions are made with the performance difference
of 7.2%. Further, for the random set, it has been observed that the maximum of 62% of
the suggestions are made for the simple scheme with performance difference equal to zero
and 67% of the suggestions are made with the performance difference of 6.4%. Overall,
the average percentage of suggestions for reactive workloads of systematic and random
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Figure 5.3: Evaluation of Adaptive Scheme For Reactive Workloads
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Figure 5.4: Avg. Percentage of Suggestions against PD Thresholds For Reactive Work-
loads
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set, is observed to be 34.48% and 31.82%, respectively.
The clear observation of average percentage of suggestions per workload, number of

workloads against which the average is taken under different PD thresholds for the sys-
tematic and random set, is presented in Figure 5.4(a) and 5.4(b), respectively. From
Figure 5.4(a), for the reactive workloads of systematic set, the average percentage of sug-
gestions per workload with PD equal to zero is 29.06%. The average is calculated against
198 workloads as shown. Similarly, for the PD greater than zero & less than 1%, PD
greater than equal to 1% & less than 2%, PD greater than equal to 2% & less than 3%,
PD greater than equal to 3% & less than 4%, PD greater than equal to 5% & less than
6%, PD greater than equal to 6% & less than 7% and PD greater than equal to 7% & less
than 8% are observed to be 45.37%, 55.15%, 64.06%, 64.5%, 67.6%, 69.11% and 74.61%,
respectively that are taken against number of workloads 52, 9, 3, 2, 3, 1 and 1, respec-
tively. No workload fall within the threshold range of PD greater than equal to 4% & less
than 5%. Similarly, the observation for the reactive workloads of random set for average
percentage of suggestions per workload and the number of workloads against which the
average is taken for different PD thresholds, is shown in Figure 5.4(b). The average num-
ber of suggestions for simple scheme per workload with PD equal to zero is 24.6%. The
average is calculated against 63 workloads as shown. Further, for the PD greater than
zero & less than 1%, PD greater than equal to 1% & less than 2%, PD greater than equal
to 4% & less than 5%, PD greater than equal to 5% & less than 6% and PD greater than
equal to 6% & less than 7%, are observed to be 48.73%, 58.2%, 65.91%, 65.52% and 67%,
respectively that are taken against number of workloads 9, 5, 2, 2 and 1, respectively. No
workload fall within the threshold range of PD greater than equal to 2% & less than 3%,
PD greater than equal to 3% & less than 4% and PD greater than equal to 7% & less
than 8%.

5.3.4 Reason of Erroneous Suggestions

As mentioned above, in adaptive mode the quantification is performed on an arrival of
an SLA into the system against the number of CPUs. Based on that quantification the
decision to use exhaustive scheme or simple scheme is made by the adaptive scheme for the
SLAs waiting to get scheduled. Non-reactive workloads should have minimal or ideally no
suggestion for exhaustive scheme as they are the types of workloads that can be served by
any heuristic without any performance difference. But as the quantification scheme does
not act as an admission control and it quantifies the small subset of SLAs that are arrived
into the system without considering executing SLAs therefore, it may be possible that the
newly arrived SLAs unable to get scheduled but resulting in exhaustive scheme suggestion
by the proposed adaptive scheme. For example, consider the jobs/SLAs given in Table 5.4
which is the modified example given in Table 1.1 discussed in Chapter 1. Assume that the
job/SLA E is arrived into the system at time t=0 and system consists of 8 CPUs which
at t=0 are all free. At this time system will accept the SLA E and schedule it to execute.
Then, at time unit equals to 1 four new SLAs i.e., A, B, C and D arrive into the system.
As quantification scheme does not have the knowledge of executing SLA E therefore,
adaptive scheme based on the quantification values will suggest exhaustive scheme for the
SLAs however, it can be seen that while SLA E is executing, none of the newly arrived
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SLAs is able to execute successfully within their specified deadline. Hence, the conclusion
may be derived from this observation is that consideration of executing SLAs within the
quantification may reduce the false suggestions of using exhaustive scheme.

Table 5.4: Example 1 for Wrong Suggestions
SLA Start Runtime No. of Deadline

Time (tD) CPUs Time
(Ts) (Ncpu) (Tf )

E 0 6 8 3
A 1 1 8 6
B 1 2 5 5
C 1 8 2 10
D 1 2 3 6

Similarly, for reactive workloads, the scheme suggested wrongly for condition where
already accepted SLAs require exhaustive scheme but as there is no room for the newly
arrived SLA may be because of the already executing SLAs (as discussed above) or may
be because of the already accepted SLAs. For example, consider the SLAs given in Table
5.5 which is again the modification of example Table 1.1 of Chapter 1. Again, assume
that the job/SLA E is arrived into the system at time t=0 and system consists of 8 CPUs
which at t=0 are all free. At this time system will accept the SLA E and schedule it
to execute. Then, at time equals to 1 unit four new SLAs i.e., A, B, C and D arrive
into the system. The adaptive scheme based on the quantification values will suggest
exhaustive scheme for the SLAs to schedule and execute them successfully within their
specified deadline as SLA E is finishing its execution at time unit 1.1. Further, at time 1.1
unit another SLA F is arrived into the system which is not going to schedule successfully
in the presence of already accepted SLAs i.e., A, B, C and D. But to retrieve the best
performance that is scheduling of four SLAs out of five adaptive scheme will again suggest
for the exhaustive scheme as no simple heuristics will be able to schedule successfully the
already accepted four SLAs which is right decision in absence of admission control related
to the heuristics considered.

Table 5.5: Example 2 for Wrong Suggestions
SLA Start Runtime No. of Deadline

Time (tD) CPUs Time
(Ts) (Ncpu) (Tf )

E 0 1.1 8 3
A 1 1 8 6
B 1 2 5 5
C 1 8 2 10
D 1 2 3 6
F 1.1 6 8 10



CHAPTER 5. ADAPTIVE SCHEDULING SCHEME 110

Algorithm 6 Modified Quantification Scheme

1. Find maximum deadline time (Tfmax) of all waiting and newly arrived SLAs
2. Set start time (Ts) of all waiting SLAs to the current system time (Tc).
3. Allocate range to RU array i.e., RU[ dTfmax − Tce ]
4. Set RU [t] = 0, for t = 0 to (dTfmax − Tce)− 1.
5. FOR each waiting and newly arrived SLA ’i’ {
6. Set BusyCPUmax = 0
7. FOR all executing SLAs ’e’ {
8. IF (deadlinei − runtimei ≤ finishedT imee)
9. BusyCPUmax = BusyCPUmax + NCPUe

10. }
11. IF (Scpu −BusyCPUmax ≥ Ncpui

) {
12. FOR t = bTsic to Tfi with unit time increment in t {
13. RU [t− Tc] = RU [t− Tc] +

tDi

Tfi
−Tsi
∗ Ncpui

Scpu

14. }
15. }
16. ELSE {
17. Reject Newly Arrived SLA
18. Use Last Calculated Schedule
19. Exit
20. }
21. tT = tT +

tDi

Tfi
−Tsi

22. }
23. Calculate Average Demand Utilization (avg(RU)) and flexibility (avg(tT ))
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5.3.5 Modified Quantification Scheme

Based on the observation for non-reactive workloads, the quantification scheme is modi-
fied to consider the executing SLAs in order to get appropriate suggestions by adaptive
scheme.The algorithm given in Algorithm 5 is modified and presented in Algorithm 6.
Line 1 through 5 are same as discussed in Section 5.2 but from Line 6 to 10, the al-
gorithm before performing the quantification, checks for the number of CPUs busy in
executing the SLAs till the maximum possible start time of the candidate SLA ’i ’ i.e.,
deadlinei−runtimei. If the finishing time of an executing SLA ’e’ is greater than or equal
to the maximum possible start time of SLA ’i ’ then, the number of CPUs the executing
SLA is using are added into the variable BusyCPUmax (Line 8 - 10). Once all executing
SLAs are checked against the candidate SLA ’i ’ for the number of busy CPUs then, the
quantification of RU [t] is performed against the SLA ’i ’, provided that the difference be-
tween the total system CPUs (Scpu) and total busy CPUs (BusyCPUmax) is greater than
or equal to number of required processors (Ncpui

) (Line 11 - 14). Otherwise, the newly
arrived SLA is rejected with restoration of last calculated schedule and it exits without
performing any further steps (Line 16 - 20). If not exited, then the tightness (or flexibility)
is calculated (on Line 21) for each SLA ’i ’ and average demand utilization together with
flexibility is calculated (on Line 23) based on which the adaptive scheme decides which
scheduling scheme to use.

5.3.6 Evaluation of Modified Scheme

The observations for non-reactive and reactive workloads for the two sets (i.e., systematic
and random) under modified scheme, are presented in Figure 5.5 and 5.6, respectively. The
performance difference (PD) for non-reactive workloads will be zero as the non-reactive
workloads are not effected by any heuristic which can be seen in Figure 5.2(a) and 5.2(b)
for systematic and random set, respectively. But the interesting observation is made for
the percentage of suggestions by adaptive scheme for simple scheme for the non-reactive
workloads of systematic and random set, which is given in Figure 5.5(a) and 5.5(b), re-
spectively. Figure 5.5(a), the percentage of suggestions for simple scheme for non-reactive
workloads of systematic set, shows high number of suggestions under modified scheme
if compared with Figure 5.2(c). From Figure 5.5(a), the highest observed percentage of
suggestion is 99.6% and the least is 93.2%. The overall average percentage of suggestions
per workload against the 51 non-reactive workloads of systematic set is observed to be
96.02%. Similarly for random set, the modified scheme suggested increased number of
times for simple scheme as shown in Figure 5.5(b) in comparison to the observation shown
in Figure 5.2(d). Figure 5.5(b) shows that the highest observed percentage of suggestion
is 99.4% and the least is 94%. The overall average percentage of suggestions per workload
against the 18 non-reactive workloads of random set is observed to be 96.88%.

Further, the observations are made for the reactive workloads of the systematic and
random sets. The performance difference obtained under modified scheme between adap-
tive and exhaustive schemes, remains the same as shown above in Figure 5.3(a) amd
5.3(b). But modified scheme shows an improvement in terms of slight increased in num-
ber of simple scheme suggestions for both systematic and random set as shown in Figure
5.6(a) and 5.6(b), respectively. The overall average percentage of suggestions for reactive
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Figure 5.5: Evaluation of Adaptive Scheme For Non-Reactive Workloads

workloads of systematic and random set increased from 34.48% and 31.82% to 40.06%
and 36.76%, respectively.
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Figure 5.6: Evaluation of Adaptive Scheme For Reactive Workloads

Again, for clear observation, the average percentage of suggestions per workload, num-
ber of workloads against which the average is taken under different PD thresholds for the
systematic and random set, is combined and presented in Figure 5.7(a) and 5.7(b), respec-
tively. If the observations given in Figure 5.4(a), for the reactive workloads of systematic
set without modified scheme is compared with the observation obtained under modified
scheme which is presented in Figure 5.7(a) then, the increase in number of suggestions
for each PD threshold is prominent. The average percentage of suggestions per workload
with PD equal to zero without modification is 29.06% and under modified scheme it is
observed to be 36.6%. The average is again calculated against 198 workloads as shown.
Similarly, for the PD greater than zero & less than 1%, PD greater than equal to 1%
& less than 2%, PD greater than equal to 2% & less than 3%, PD greater than equal
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to 3% & less than 4%, PD greater than equal to 5% & less than 6%, PD greater than
equal to 6% & less than 7% and PD greater than equal to 7% & less than 8% are in-
creased from 45.37%, 55.15%, 64.06%, 64.5%, 67.6%, 69.11% and 74.61%, respectively to
47.65%, 57.64%, 65.06%, 68.45%, 70.5%, 69.80% and 77.6%, respectively that are taken
against number of workloads 52, 9, 3, 2, 3, 1 and 1, respectively. As mentioned earlier, no
workload fall within the threshold range of PD greater than equal to 4% & less than 5%.
Similarly, the observation under modified scheme for the reactive workloads of random
set for average percentage of suggestions per workload and number of workloads against
which the average is taken for different PD thresholds, is shown in Figure 5.7(b). Again,
if this observation is compared with observation obtained without modified scheme given
in Figure 5.4(b) is compared with Figure 5.7(b) then, slight increased in number of sug-
gestions can be seen. The average number of suggestions for simple scheme per workload
without modification with PD equal to zero observed around 24.6% and with modified
scheme it is observed to be 30.5%. This average is calculated against 63 workloads as
shown. Further, the suggestions observed increased for the PD greater than zero & less
than 1%, PD greater than equal to 1% & less than 2%, PD greater than equal to 4% &
less than 5%, PD greater than equal to 5% & less than 6% and PD greater than equal
to 6% & less than 7%, from 48.73%, 58.2%, 65.91%, 65.52% and 67%, respectively to
50.84%, 59%, 68.70%, 67% and 69%, respectively under modified scheme. The averages
are taken against number of workloads 9, 5, 2, 2 and 1, respectively. No workload fall
within the threshold range of PD greater than equal to 2% & less than 3%, PD greater
than equal to 3% & less than 4% and PD greater than equal to 7% & less than 8%.

Table 5.6: PD Stats for Reactive Workloads
Reactive Workloads of Average PD Std. Dev. PD
Systematic Set 0.91% 0.302%
Random Set 1.26% 0.44%

Briefly, the average PD between exhaustive and adaptive schemes is observed to be
0.91% together with deviation of 0.30% for the reactive workloads of systematic set.
Similarly, the average PD between exhaustive and adaptive schemes is observed to be
1.26% together with deviation of 0.44% for the reactive workloads of random set, as
detailed in Table 5.6. Further, for non-reactive workloads, the adaptive scheme with
modification on the average suggested the use of simple scheme for at least 96% of times
per workload i.e., the reduction of 96% in computation cost by avoiding exhaustive scheme.
For reactive workloads, it suggested simple scheme on the average 40.6% and 36.76% for
systematic and random set, respectively. Overall, the maximum performance difference of
6.4% observed. Further, as observed and mentioned in Section 4.5 that the average time
per workload taken by the exhaustive scheme to evaluate the workloads of systematic and
random sets, is found to be 1162.046 minutes and 1062.376 minutes, respectively. The
observed average time taken by the adaptive scheme with the modification to serve the
systematic and random sets is, around 410.667 minutes and 388.617 minutes, respectively.
If these simulation timings are compared with the simulation timings of the exhaustive
scheme than it can be observed that adaptive scheme reduced the times approximately
by 64% for both the sets.
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Figure 5.7: Avg. Percentage of Suggestions against PD Thresholds For Reactive Work-
loads
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5.4 Summary

In this chapter, the adaptive quantification scheme to schedule the incoming SLAs, dis-
cussed and evaluated. It uses the SLA quantification scheme and workload classification
scheme investigated and observed in Chapter 4. The difference from the last chapter work
is, adaptive scheme does the quantification based on the current load and the state of the
system. On an event, the quantification of RU [t] is done against the number of resources
if a newly arrived SLA can be scheduled without overrunning its deadline in comparison
to executing SLAs. The quantification is performed when an SLA is arrived into the
system. Once the quantification is done then the metric is calculated together with the
average tightness (avg(tT )) of all the candidate SLAs. Then, the threshold range values
are checked against to finally suggest the suitability of the scheduling of the SLAs using
either simple or exhaustive scheme.

The adaptive scheme has been evaluated against the exhaustive scheme for the per-
formance difference (PD) together with the percentage of the times the adaptive scheme
suggested the use of simple scheme. The evaluation has been done for the two types of
workloads i.e., non-reactive and reactive of two sets (i.e., systematic and random), sepa-
rately, in order to check the reduction in computation cost for the two types of workloads
as well as performance difference, clearly. As the quantification scheme does not act as
an admission control system and do not treat the executing SLAs at the time of quan-
tification therefore, it resulted in some erroneous suggestions for exhaustive scheme. To
avoid such erroneous suggestions, a condition where none of the newly arrived SLAs are
able to execute successfully within their specified deadline due to the executing SLAs the
modification made to the adaptive scheme to reduce the false suggestions.

It has been observed that on an average the percentage of suggestion per workload for
simple scheme for non-reactive workloads of systematic and random sets, observed to be
96.02% and 96.88%, respectively. Further, for the reactive workloads, the overall average
percentage of suggestion for simple scheme for systematic and random sets, observed to
be 40.6% and 36.76%, respectively.

The simulation running times have also been observed for the adaptive scheme and
exhaustive scheme and it has been found that the adaptive scheme reduced the time of
the simulation on an average by 64%.



Chapter 6

Conclusion & Future Work

This chapter summarizes the thesis in Section 6.1, points out its limitations in Section
6.2 and finally lays out the directions for the future work in Section 6.3.

6.1 Summary of the Thesis

The ultimate aim of this thesis is to investigate and build a light weight solution to
characterize the SLA based workload of parallel-independent-jobs, using the calculated
values of proposed metric for the optimum performance of the system. The performance
criterion is the number of jobs/SLAs served for whole of the work of this thesis. It has
been discussed in the work [YS06] that the optimum performance of a system against a
workload can be achieved by calculating the priority of the jobs within a workload using
the combination of different service level agreement (SLA) parameters and associating
each parameter with a specific weight to form an integrated heuristic. Those weights
are then calculated by sweeping the parameter/weight values in order to obtain the best
performance of the system under the workload. This scheme is called an exhaustive
scheme. The exhaustive scheme observed to be computationally expensive and without
simulation there is no way to predict the weights to yield the best results directly [HSR09].
Therefore, there was a need of identification of the suitability of the exhaustive scheme
for the arrived SLAs. This need has been addressed through the proposed metric based
classification scheme which then integrated into a scheduling scheme to construct an
adaptive scheduling scheme. The idea is, embedding of such characterization scheme into
a meta-scheduler or to a local scheduler of the site which allows them to evaluate the
arriving SLAs and check whether the exhaustive scheme will be a fruitful choice or not,
without extensive computation. The computation time taken by the exhaustive scheme
and adaptive scheme has also been observed and found that adaptive Scheme reduced the
computation time by three folds. The major observations and results obtained in this
thesis include:

� In Chapter 2, a review of different scheduler and resource manager presented and
classified based on the discussed taxonomy. It also discussed the Service Level
Agreement (SLA) life-cycle and it’s structure to give an overview of SLA support,
requirements and complexities with respect to the different resource managers.
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� The number of served SLAs are observed under simple heuristics (or simply simple
scheme) and integrated heuristic (or simply exhaustive scheme). The observation is
then mapped against the average of RU (avg(RU)) and average tightness avg(tT )
to identify the effectiveness of exhaustive scheme in Chapter 4. It has been observed
that for the different range of avg(RU) values, the average tightness (avg(tT )) value
is also required to check separately for the SLAs within a workload. Hence, dif-
ferent range of values for avg(RU) and avg(tT ) are observed to figure when to use
exhaustive scheme to serve maximum number of SLAs. Therefore, for the range
of avg(RU) values for the SLAs within a workload, greater than equal to 3.4, the
avg(tT ) must be less than or equal to 0.99 in order to be evaluated with the ex-
haustive scheme. Similarly, for the range of avg(RU) values between 0.38 and 0.62,
the avg(tT ) must be less than or equal to 0.93 in order to be evaluated with the
exhaustive scheme. For the range of avg(RU) values for the arrived SLAs between
0.38 and 0.62, the avg(tT ) must be less than or equal to 0.86 in order to evaluate
the SLAs with the exhaustive scheme. Outside these ranges, the workload/SLAs
is suggested as non-reactive or to be evaluated with the simple scheme. Therefore,
two classes of workloads created based on the served number of SLAs under simple
and exhaustive schemes. If the number of served SLAs for a workload is same under
both the schemes then the workload considered as non-reactive workload otherwise
the workload considered as reactive. As the performance observed in terms of num-
ber of served SLAs hence, the difference in performance obtained under both the
schemes for a workload, has been considered as performance measurement metric
called performance difference (PD). Based on the classification, the proposed scheme
evaluated against different sets of workloads and it showed that the percentage of
correct identification is around 97% using the proposed scheme. Also, the proposed
scheme completely avoids the need of simulating the computing scenario to find the
usefulness of the integrated heuristic for a set of SLAs.

� Based on the observed results of Chapter 4, a novel approach called adaptive schedul-
ing of SLAs, is proposed and evaluated in Chapter 5. It quantifies the arrived SLA
together with the existing workload of SLAs in order to check whether to use ex-
haustive scheme or simple scheme. It has been observed that on an average the
percentage of suggestion per workload for simple scheme for non-reactive workloads
has been 96%. Further, for the reactive workloads, the overall average percentage
of suggestion for simple scheme is around 36%. The simulation running times have
also been observed for the adaptive scheme and exhaustive scheme and it has been
found that the adaptive scheme reduced the time of the simulation on an average
by 64% with the maximum performance difference between adaptive scheduling and
exhaustive scheme of 6.4%.

Overall, The proposed identification approach has avoided the requirement of simu-
lating the complete computing scenario in order to find whether the parameter sweeping
is fruitful or not.
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6.2 Limitations

Although, the efficiency and accuracy of the proposed scheme has been evaluated ex-
tensively under simulated environment but there are some limitations either due to the
assumptions made or because of the nature of the problem. It is believed that the schemes
can be further improved if some limitations in the following aspects can be addressed.

� The main focus of the work is on the scheduling aspect of the SLA based parallel jobs
and therefore considered and evaluated extensively under an environment consists
of 8 CPUs.

� The proposed scheme considered only the scheduling of SLAs onto a single site and
has not considered the effect of spanning of an SLA on more than one site.

� It is assumed that the mentioned runtime of a job within an SLA is always exact
therefore, the risk of breaking up of a calculated schedule for a workload because of
the inexact runtime, is not considered.

� The evaluation has been carried out in the simulation environment developed with
assumption that the system will have homogeneous processing elements. Also, it has
been assumed that the resources will always be available without any disruption.
Although, the quantification scheme may adjust itself on the available number of
resources but the evaluation with respect to the dynamic environment is an extensive
process.

� The only performance metric used during the complete research is number of served
SLAs. Therefore, the best heuristics H = min(Tf +w1A+w2tL) of the work [YS06]
for the parameter sweep scheme has been taken into an account and not considered
the other best heuristics such as for the revenue aspect.

6.3 Future Work

Based on the limitations recognized in Section 6.2, the work in this thesis can be extended
in the following directions:

� Although, only 8 CPU environment considered throughout in the research but it
could easily be extended for number of CPUs. As mentioned in Section 4.5 (of
Chapter 4), on an average the simulation time to evaluate a workload observed to
be around 1100 minutes which means extensive evaluation cost will be higher in
terms of simulation time.

� In order to observe the effect of spanning of an SLA on more than one site, the
integrated heuristic may need to be modified to reflect delay/communication cost
as well as the proposed metric.

� The risk of breaking up of a calculated schedule due to inexact runtime estimates
within an SLA is not considered and hence, it can be observed against all the schemes
which allows to extend the work further towards ”how to” incorporate that risk into
the calculation of proposed metric (RU).
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� The effect of non-homogeneous processing elements and unavailability of the re-
source(s) can be observed for the scheduling heuristics and as well as for the pro-
posed identification schemes. Again, the integrated heuristic and proposed metric
may need to be modified to reflect processing capability of resources.

� The proposed metric RU may further be explored to identify the suitable simple
scheduling heuristics (i.e., earliest deadline first, least laxity first & minimum jobsize
first and their counter parts latest deadline first, highest laxity first & highest jobsize
first heuristics) for incoming workload, in case of not using the integrated heuristic
at all.

� A knowledge base may be created to keep the parameter values (i.e., w1 and w2)
of integrated heuristic found against certain characteristics of SLA based workload
and characteristics may then be computed using the proposed metric (RU). This
will further reduce the parameter sweep computation by matching the stored char-
acteristics with the incoming workload characteristics and if match is found then
the stored values of parameters may then be used instead of evaluating integrated
heuristic from scratch. The investigation may be done in order to find how good
the metric is to compute the characteristics of a workload for parameter values.

� The criterion of performance measurement may be extended to the utilization of
the system and/or to the economical aspect such as revenue extraction from the
workload. Based on the performance criterion, further heuristics from the work
[YS06] may be evaluated.

� The proposed scheme may be used to transform a workload into number of non-
reactive sub-workloads using the metric (RU) values, so that any simple scheduling
heuristic can be applied on each sub-workloads. This could be used under multi-site
environment where workload is divided into different sub-workloads and then each
sub-workload may then be distributed between the associated computing sites.
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Appendix A

Characteristics of Systematic

Workloads Set

Work- Avg. Std Dev Avg. Std Dev Avg. Std Dev Avg. Std Dev Avg. Std Dev

load NCPU NCPU runtime runtime laxity laxity Jobsize Jobsize Arrival Arrival

(tD) (tD) (tL) (tL) (A) (A) Rate Rate

min. min. min. min. Per Sec Per Sec

1 3.561 2.039 34.747 78.289 5.8951 14.739 137.466 310.343 0.00634 0.00107

2 3.183 2.154 80.571 176.57 24.871 75.08 273.437 674.397 0.00662 6.39E-04

3 3.315 2.035 72.134 162.35 10.444 30.717 311.577 890.991 0.02201 0.20762

4 3.375 2.007 80.756 140.46 18.04 33.424 306.362 562.506 0.00683 0.00129

5 3.383 1.921 108.5 197.49 19.283 44.882 430.236 875.028 0.02443 0.43113

6 3.293 2.062 62.035 163.16 9.0575 26.483 239.526 724.723 0.00754 0.00158

7 3.388 2.122 59.857 158.94 196.2 706.62 237.991 782.009 0.00806 0.04359

8 3.369 2.214 68.053 154.68 72.294 212.33 296.134 791.014 0.01108 0.00718

9 3.579 2.251 105.07 231.29 40.189 117.14 436.798 1112.84 0.00536 0.00205

10 2.951 1.995 118.24 281.2 13.283 41.426 555.675 1654.57 0.03159 0.26147

11 3.233 1.937 115.31 256.63 63.279 159.34 436.111 1121.73 0.00577 7.62E-04

12 3.325 2.161 132.14 243.94 25.95 60.156 466.326 925.01 0.00691 8.33E-04

13 3.444 2.154 103.12 217.36 122.56 306.45 453.765 1078.28 0.00578 5.40E-04

14 3.427 2.163 125.72 264.23 60.852 155.99 541.088 1415.27 0.00518 8.94E-04

15 3.104 2.101 90.209 223.93 15.074 46.008 333.374 929.825 0.00513 7.16E-04

16 3.385 2.14 46.507 99.636 58.606 169.08 199.892 505.742 0.00447 0.02548

17 3.432 2.199 41.95 96.869 19.059 55.642 182.122 508.884 0.00282 0.00622

18 3.39 2.141 41.773 94.587 107.82 328.29 168.114 447.808 0.00458 0.02411

19 3.592 2.3 54.204 109.39 8.0037 19.008 221.75 531.062 0.00329 0.00726

20 3.379 2.175 89.336 195.91 108.08 302.72 377.719 996.511 0.00285 0.00467

21 3.609 2.259 91.441 198.62 41.331 109.28 404.082 1054.37 0.00442 0.03745

22 3.392 2.198 77.224 173.52 206.66 596.18 312.436 860.246 0.00358 0.00875

23 3.393 2.186 86.536 181.44 14.499 36.916 362.828 923.966 0.00287 0.00537

24 3.414 2.215 115.35 267.26 129.75 380.96 484.998 1326.29 0.00565 0.04954
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25 3.412 2.166 90.447 215.11 44.712 134.71 368.249 1044.17 0.00352 0.0101

26 3.429 2.178 107.28 243.7 315.24 945.16 433.705 1151.41 0.00457 0.01909

27 3.394 2.171 117.36 257.37 19.009 51.122 512.826 1394.55 0.00316 0.00686

28 3.414 2.045 116.02 270.59 117.43 358.87 435.485 1147.72 0.00349 0.0094

29 3.321 2.155 143.21 312.07 68.734 193 566.401 1477.4 0.00348 0.00988

30 3.412 2.183 122 284.4 345.9 1063.8 480.74 1305.82 0.00448 0.01308

31 3.59 2.288 133.57 308.18 21.92 63.353 551.194 1424.9 0.00465 0.02325

32 3.482 2.25 133.47 339.11 173.15 575.29 547.358 1560.29 0.00365 0.00825

33 3.434 2.162 150.7 366.4 63.734 181.46 620.37 1749.61 0.00383 0.00864

34 3.459 2.248 143.44 330.38 441.35 1486.6 627.856 1642.12 0.00587 0.05029

35 3.351 2.089 134.28 320.02 21.323 59.423 540.154 1542.41 0.0035 0.00819

36 3.471 2.265 44.61 99.306 45.996 134.47 185.452 504.413 0.04467 0.24238

37 3.48 2.248 47.837 101.17 19.673 50.43 203.326 513.231 0.02744 0.04243

38 3.384 2.165 43.297 96.153 119.63 372.85 171.951 452.723 0.04281 0.24728

39 3.372 2.114 45.432 98.797 6.8788 17.473 172.631 431.985 0.03468 0.18507

40 3.429 2.194 79.401 182.32 87.447 250.58 311.884 829.715 0.03294 0.10765

41 3.299 2.187 86.482 189.12 37.35 103.68 359.027 928.078 0.0368 0.31874

42 3.534 2.192 89.774 197.27 282.36 876.83 375.163 966.299 0.02833 0.07118

43 3.515 2.237 87.259 198.75 14.319 38.672 395.238 1080.55 0.02769 0.04855

44 3.358 2.111 104.9 241.19 16.871 45.78 385.888 987.113 0.04676 0.54635

45 3.488 2.147 133.96 306.37 21.568 57.188 532.481 1435.41 0.03507 0.09593

46 3.483 2.189 143.1 318.07 23.751 61.945 583.734 1617.77 0.0284 0.08181

47 3.017 2.178 60.618 196.97 9.1865 30.156 249.674 971.413 0.40964 0.22646

48 2.878 2.072 63.229 228.29 9.672 38.117 253.6 963.242 0.33446 0.08152

49 3.114 1.998 29.809 82.738 74.574 310.76 110.244 358.473 0.51944 0.13868

50 3.402 2.235 51.722 191.11 158.88 958.58 210.183 950.112 0.40916 0.06323

51 3.274 2.203 63.813 215.16 156.28 673.76 252.603 1122.46 0.39606 0.07388

52 3.45 2.224 76.809 238.26 158.34 676.53 335.506 1320.59 0.37819 0.08702

53 3.312 2.173 21.125 63.761 24.88 93.98 81.8285 294.686 0.53379 0.06238

54 3.222 2.102 69.151 219.62 64.192 283.04 249.157 905.101 0.41222 0.08509

55 3.527 2.32 64.761 224.13 68.894 287.46 267.076 1023.55 0.59935 0.52476

56 3.446 2.071 66.307 232.72 79.167 321.34 313.282 1297.46 0.46378 0.08942

57 3.214 2.19 25.305 72.156 11.386 39.939 105.182 326.257 0.52328 0.62074

58 3.267 1.965 55.893 188.36 22.957 84.282 242.066 929.725 0.55546 0.09182

59 3.006 1.817 51.161 195.03 24.678 123.15 220.332 1089.92 0.52094 0.2674

60 2.953 1.926 69.628 250.85 23.075 87.816 271.187 1112.89 0.67232 0.28757

61 3.634 2.396 35.418 87.345 5.7985 16.789 145.626 430.85 0.61456 0.05828

62 3.299 2.164 59.504 197.46 9.9215 35.241 243.701 1010.3 0.41215 0.13348

63 3.262 2.195 74.512 266.29 12.939 54.983 312.564 1205.82 0.54058 1.44674

64 3.488 2.286 68.185 239.63 11.021 52.652 287.962 1154.8 0.42044 0.10336

65 2.978 2.038 27.886 74.19 78.619 292.92 122.108 385.722 0.51338 0.07065

66 3.189 2.105 58.558 219.58 132 605.71 225.918 1123.1 0.5511 0.23935

67 3.233 2.102 56.879 203.05 139.38 757.93 208.922 819.404 0.46108 0.10608

68 3.431 2.174 74.742 277.67 218.85 1075.4 330.642 1477.73 0.42596 0.11961
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69 3.484 2.107 21.185 64.017 23.22 88.387 84.9554 300.156 0.58316 0.11746

70 3.313 2.042 63.172 196.92 83.677 328.42 234.567 839.669 0.52008 0.07218

71 2.786 1.833 67.506 259.76 72.524 336.67 267.571 1291.25 0.72706 0.16489

72 3.042 1.995 70.698 262.33 77.714 331.02 291.573 1260.26 0.5696 0.09394

73 3.184 2.112 30.766 79.07 12.806 39.594 123.318 369.229 0.52589 0.09194

74 3.13 2.089 66.64 207.67 28.466 106.64 268.609 899.262 0.47037 0.13215

75 3.028 2.158 69.335 260.48 31.268 142.1 310.836 1635.2 0.43486 0.1327

76 3.28 2.016 69.886 247.8 30.707 136.01 249.719 1000.53 0.70714 0.12309

77 3.447 2.196 29.583 80.77 4.5842 14.02 126.66 420.804 0.62602 0.12013

78 3.441 1.928 60.22 185.96 10.005 35.666 246.99 814.427 0.44774 0.09264

79 3.446 2.117 76.334 261.06 9.7545 38.927 311.039 1320.18 0.66358 0.07554

80 3.328 1.923 73.189 260.64 10.255 41.787 310.692 1305.68 0.50597 0.10681

81 3.268 2.116 45.374 97.6 116.26 336.17 157.229 404.543 0.01596 0.00456

82 2.995 2.037 74.488 224.27 207.41 839.32 247.036 893.046 0.01196 0.00254

83 3.171 1.926 135.96 321.2 439.99 1326.9 535.444 1732.89 0.00868 0.00116

84 3.373 2.069 157.67 394.01 452.36 1314.1 644.495 1934.98 0.01308 0.00791

85 2.823 1.66 22.665 67.043 53.536 230.48 88.2141 290.818 0.03258 0.00921

86 3.411 2.427 92.556 235.17 226.04 715.21 367.612 1193.58 0.02891 0.00603

87 3.293 2.082 125.09 336.26 331.58 1224.3 489.559 1472.62 0.02314 0.00303

88 3.486 1.935 113.83 313.53 269.49 1043.4 436.039 1298.5 0.03033 0.00578

89 3.517 2.102 40.479 92.778 126.7 367.03 163.341 439.221 0.05578 0.05033

90 3.277 2.183 115.88 287.49 324.23 1001.5 563.238 1732.18 0.04336 0.01364

91 3.09 1.818 81.449 260.49 152.6 554.09 261.8 883.154 0.08582 0.02077

92 3.058 2.033 104.29 276.56 312.5 1086.7 405.889 1233.25 0.04015 0.00636

93 3.307 2.01 34.939 74.112 103.82 326.38 139.76 371.307 0.06934 0.00977

94 3.579 2.41 101.4 242.43 251.69 975.04 379.563 1054.72 0.05061 0.01084

95 3.301 2.11 89.632 285.98 226.88 949.77 333.45 1123.69 0.05436 0.15126

96 3.317 2.039 116.97 318.09 216.49 783.24 475.608 1728.06 0.07111 0.01144

97 3.472 2.257 22.785 65.509 60.058 176.66 94.8775 284.515 0.10118 0.06097

98 2.962 1.022 17.379 107.58 38.619 297.54 65.6378 404.07 0.19415 0.07751

99 3.152 2.332 79.504 277.74 193.39 747.32 386.498 1621.02 0.07413 0.05932

100 3.27 2.081 99.256 273.95 317.95 1092 411.124 1280.98 0.07304 0.01

101 3.55 1.985 26.49 72.209 36.122 114.51 114.814 328.28 0.01672 0.09457

102 3.377 2.007 129.16 303.84 136.53 383.33 600.069 1827.86 0.00808 0.00142

103 3.052 1.985 139.51 408.47 163.36 642.95 592.215 1970.66 0.00836 0.00205

104 3.66 2.109 204.22 518.36 232.72 826.99 975.412 2982.46 0.03049 0.19643

105 3.014 1.946 41.205 84.813 45.299 122.58 134.096 336.741 0.04554 0.14649

106 3.083 2.029 81.829 227.84 93.397 331.88 331.807 1194.97 0.02951 0.00585

107 3.274 2.017 103.78 283.24 117.55 425.46 483.408 1696.93 0.03369 0.00613

108 3.517 2.045 150.3 415.23 144.7 404.4 532.473 1341.36 0.02884 0.00205

109 3.26 2.27 28.057 84.452 25.641 91.437 114.872 395.315 0.0977 0.01214

110 3.265 2.174 69.632 221.49 75.389 333.28 285.367 1047.36 0.05904 0.0101

111 3.404 2.141 118.16 307.37 141.09 443.9 532.081 1690.07 0.03683 0.00722

112 3.448 2.275 119.51 323.27 93.422 305.42 450.387 1358.09 0.04923 0.00886
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113 3.581 2.177 40.929 89.75 46.572 140.43 180.605 472.508 0.10227 0.04499

114 3.444 2.227 95.985 247.4 94.109 358.7 418.306 1236.84 0.05517 0.0123

115 3.19 2.037 140.48 394.18 146.88 430.7 575.252 2061.09 0.04954 0.00789

116 3.162 2.081 134.23 297.59 137.08 380.21 562.714 1503.88 0.05128 0.00904

117 3.242 2.059 21.91 55.876 19.569 58.222 77.9638 250.62 0.10598 0.03406

118 3.367 2.065 74.06 212.16 87.728 340.54 311.457 987.527 0.0865 0.08035

119 3.07 1.857 90.099 310.06 99.376 440.36 393.562 1714.57 0.06312 0.01777

120 3.527 2.24 112.85 327.8 92.497 328.56 485.034 1589.44 0.09867 0.01784

121 3.496 2.303 53.176 106.84 26.433 72.474 251.902 613.244 0.01127 0.0018

122 3.379 2.204 100.15 251.83 45.446 140.25 424.583 1267.18 0.01304 0.06894

123 3.074 1.976 134.97 334.65 67.537 209.42 478.609 1252.26 0.01466 0.1188

124 3.24 2.079 132.62 321.86 60.281 165.23 575.474 1467.41 0.02174 0.00912

125 3.524 2.316 46.205 92.411 20.472 52.801 212.168 554.237 0.03396 0.00583

126 1.997 1.784 33.833 146.89 12.463 76.906 113.664 529.978 0.06298 0.02241

127 2.542 1.85 56.844 218.98 17.701 70.797 218.938 1000.41 0.05028 0.03659

128 3.355 2.345 127.11 362.29 59.797 225.06 701.243 2291.87 0.0208 0.00619

129 3.521 2.198 22.819 58.189 9.3354 26.631 90.9463 275.967 0.07472 0.01332

130 3.259 2.103 131.48 284.21 53.749 138.96 486.182 1299.04 0.04688 0.00922

131 3.391 2.365 120.88 356 47.092 167.19 471.378 1783.34 0.04107 0.16203

132 3.124 1.998 143.95 369.66 67.857 201.1 632.355 2289.36 0.04471 0.134

133 3.288 1.829 38.506 90.859 13.715 38.65 142.209 387.125 0.08957 0.78704

134 3.227 2.103 97.794 250.06 37.474 108.91 394.86 1276.3 0.06269 0.00501

135 3.668 2.254 85.666 230.05 35.045 108.16 338.152 1013.91 0.0858 0.02526

136 2.956 2.089 115.49 331.43 58.764 216.86 349.311 1380.11 0.06273 0.01469

137 3.444 2.014 30.509 70.284 10.601 36.778 126.783 316.419 0.10301 0.02511

138 3.483 2.212 93.58 250.84 40.98 133.47 389.225 1217.27 0.06972 0.01748

139 3.312 2.145 111.24 304.17 41.822 124.08 464.471 1638.78 0.06347 0.01178

140 3.374 2.193 106.93 292.71 45.915 152.46 434.57 1459.13 0.09453 0.02084

141 3.406 2.104 36.493 88.099 6.5379 18.94 147.691 419.874 0.00768 8.86E-04

142 3.395 2.008 144.35 318.24 21.632 42.662 490.909 1064.16 0.00896 0.00184

143 3.446 2.23 139.33 370.19 24.598 76.935 676.418 2124.97 0.0104 0.01208

144 3.399 1.99 116.89 356.75 21.246 81.808 453.578 1302.73 0.01306 0.00244

145 3.565 1.991 22.042 60.944 3.6215 11.049 82.7202 281.228 0.10635 0.46902

146 3.467 2.212 101.6 281.4 14.871 42.359 445.355 1325.52 0.03012 0.00657

147 3.836 2.367 135.86 354.39 21.333 72.107 596.112 2026.36 0.02491 0.00438

148 3.198 1.945 129.68 321.38 22.033 66.968 475.444 1350.21 0.03456 0.00586

149 3.215 2.047 45.301 104.31 6.6735 19.883 181.376 508.496 0.0832 0.26522

150 3.048 2.142 97.887 243.17 10.274 30.122 411.063 1285.19 0.05997 0.28037

151 3.507 2.125 163.02 394.36 25.675 78.894 688.2 2142.5 0.03169 0.00777

152 3.159 2.223 116.08 316.55 15.04 52.801 480.309 1453.66 0.0574 0.00842

153 3.151 1.816 21.925 63.319 2.7692 8.9581 81.1215 272.195 0.06401 0.00823

154 3.243 2.247 67.685 205.47 10.82 39.945 278.13 952.137 0.15499 0.06569

155 3.02 1.974 96.424 271.6 16.063 52.926 431.455 1360.13 0.07601 0.0193

156 3.059 2.027 111.66 338.79 15.515 51.916 438.522 1750.75 0.06301 0.00631
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157 3.612 1.82 43.16 94.04 5.428 14.372 172.875 414.744 0.09999 0.02662

158 3.286 2.188 97.909 253.4 14.7 48.564 427.236 1225.28 0.07645 0.06138

159 3.299 2.164 119.92 336.06 21.255 69.906 528.945 2019.19 0.06154 0.0164

160 3.614 2.331 130.6 324.95 24.88 75.842 567.618 1740.96 0.06757 0.01245

161 3.304 2.104 22.83 66.386 58.621 261.26 99.8928 340.604 0.62814 0.08913

162 3.413 2.172 61.447 194.38 190.93 935.25 260.953 952.6 0.59415 0.12135

163 3.686 2.399 59.702 247.03 137.59 700.65 220.64 960.609 0.66916 0.12125

164 3.258 2.082 80.211 275.45 208.69 841.68 329.574 1489.52 0.512 1.25262

165 3.187 2.14 21.782 64.97 57.615 230.48 95.9565 346.973 1.3643 0.3588

166 3.154 1.987 66.496 219.29 214.64 980.99 290.996 1130.85 1.56593 0.39336

167 3.411 2.197 68.26 254.39 213.38 1098.1 264.625 1073.82 1.50506 0.31983

168 3.055 1.891 63.574 248.78 190.65 934.4 242.595 1031.52 1.50092 0.39901

169 3.316 2.105 23.874 71.196 68.784 283.09 95.1364 345.16 1.81967 0.50614

170 3.012 2.116 58.847 200.24 189.92 904.22 235.946 949.418 1.67603 0.49997

171 3.17 1.945 69.911 283.28 163.27 867.3 304.809 1530.29 2.25788 0.49405

172 3.165 2.018 77.927 311.16 173.16 912.49 315.046 1358.68 2.44844 0.69183

173 3.188 2.174 23.414 73.747 77.503 352.06 90.2456 326.411 2.92151 0.8317

174 3.239 2.036 60.695 221 185.77 870.12 218.846 884.13 2.801 0.70117

175 3.237 2.074 76.114 302.44 208.98 1002.6 344.282 1766.75 2.22982 0.70837

176 3.382 2.169 75.325 249.3 219.22 1024 280.559 1155.08 2.3861 0.65999

177 2.934 1.879 23.559 78.54 51.609 229.54 94.1625 375.649 3.39122 1.125

178 3.394 2.058 55.329 206.05 131.65 658.53 226.391 961.25 3.54338 1.09333

179 3.117 2.142 66.006 288.16 276.04 1558.7 299.66 1546.07 2.83637 0.97836

180 3.23 2.083 70.77 262.55 229.89 1110.9 319.148 1481.95 3.35516 0.99178

181 3.174 2.141 29.619 77.605 37.02 113.7 114.763 375.231 0.55464 0.08404

182 3.884 2.413 56.352 184.64 68.076 267.48 212.252 674.955 0.55697 0.11464

183 3.32 2.218 57.862 208.9 63.945 317.16 250.051 1088.94 0.6017 0.10382

184 3.779 2.402 43.059 199.98 51.757 332.74 139.547 649.979 0.81446 0.19365

185 3.455 2.18 24.031 70.448 26.184 95.806 101.867 343.897 1.57711 0.49979

186 3.099 2.104 70.781 247.31 77.583 332.82 297.378 1292.24 1.04098 0.26151

187 2.702 1.258 24.315 140.19 30.746 202.97 104.097 757.135 2.75891 1.06887

188 3.425 2.118 57.259 264.83 71.897 438.66 227.097 1102.21 1.85237 0.49941

189 3.088 1.992 17.757 61.735 21.142 91.728 68.4207 268.666 2.50311 0.78744

190 3.268 1.955 55.183 195.74 59.049 273.76 236.357 908.546 2.89508 0.83039

191 3.309 2.109 77.322 293.09 84.195 374.2 345.741 1604.91 2.03158 0.48741

192 3.433 2.171 67.271 244.79 76.549 340.19 284.953 1269.97 2.5658 1.26075

193 3.47 2.171 22.213 69.47 20.28 87.249 89.0172 333.724 3.33853 0.96857

194 3.142 1.945 62.944 233.97 85.054 386.14 224.8 877.382 3.22364 0.99752

195 3.415 2.032 52.734 210.44 64.017 297.77 227.959 1042.46 3.12512 0.84737

196 3.442 2.192 69.595 251.11 69.614 298.81 269.258 1043.54 3.51604 1.15847

197 3.269 2.116 20.158 67.916 25.087 111.8 86.5754 350.591 3.80422 1.16166

198 3.132 1.977 56.597 212.49 75.996 358.2 219.304 995.197 3.38235 1.15145

199 3.192 2.127 61.155 238.17 64.671 305.2 229.323 970.07 3.55919 1.0959

200 3.263 2.131 71.344 271.42 74.851 409.43 299.25 1275.19 3.49741 1.11075
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201 3.623 2.32 30.182 78.509 13.078 41.691 123.895 369.881 0.74202 0.23015

202 3.276 2.103 53.112 183.82 22.132 86.021 203.047 760.154 0.46637 0.17289

203 3.279 2.064 70.254 249.76 29.543 115.97 249.911 1016 0.60829 0.06291

204 3.015 1.998 57.273 236.5 26.953 134.83 249.343 1226.44 0.65869 0.11213

205 3.193 1.951 23.335 66.352 10.236 38.07 89.491 283.067 1.94183 0.52259

206 3.267 1.951 57.045 196.5 25.583 106.86 230.519 939.623 1.64555 0.31071

207 3.311 2.15 64.379 256.54 22.802 106.37 235.52 1035.39 2.08416 0.45842

208 3.214 2.106 53.183 206.41 25.353 122.05 205.314 990.552 1.67656 0.42848

209 3.155 2.162 20.638 65.519 9.0212 35.866 78.7072 281.376 2.94195 0.8151

210 3.313 2.027 55.636 191.54 25.494 97.062 255.025 1068.27 2.55139 0.56527

211 3.338 2.208 63.52 283.5 26.674 156.58 261.258 1390.4 2.73001 0.65177

212 3.078 2.008 58.602 214.19 24.688 112.34 252.734 1172.28 2.489 0.73728

213 3.124 2.142 17.403 63.68 7.2945 31.985 63.52 275.948 3.80534 1.19608

214 3.339 2.173 45.418 160.81 20.375 88.243 184.018 713.084 3.20892 1.13441

215 3.03 1.902 57.55 213.92 24.33 107.61 233.849 985.911 3.24237 1.0216

216 3.175 2.096 64.002 250.4 30.569 144.83 263.586 1079.51 3.09305 0.90039

217 3.15 2.001 20.751 66.209 10.209 36.211 70.9773 247.089 4.30024 0.76308

218 2.896 1.993 45.751 195.72 24.765 116.95 179.768 998.487 4.28901 1.34804

219 3.199 2.139 55.605 212.96 24.255 117.14 238.575 1131.6 3.49021 1.13938

220 3.19 2.028 69.618 291.77 21.088 122.39 297.598 1431.11 4.4838 1.29556

221 3.107 2.13 31.452 87.679 5.1579 17.671 135.593 447.822 0.60228 0.11067

222 3.687 2.324 60.487 201.26 9.3588 40.514 218.033 821.769 0.5603 0.13987

223 3.531 2.177 56.518 210.83 8.5421 38.887 210.707 791.666 0.68889 0.10298

224 3.35 2.159 80.436 240.28 13.856 53.848 327.258 1200.91 0.54071 0.07765

225 3.13 1.983 25.066 64.312 4.0922 12.794 96.2039 301.65 1.85011 0.47544

226 2.757 1.752 60.462 222.69 9.004 38.539 242.195 1010.9 2.58173 0.83239

227 3.243 2.064 60.295 213.23 7.6417 32.933 233.031 898.893 2.07034 0.51431

228 3.277 2.015 56.396 266.8 8.1779 50.544 233.537 1304.84 2.32291 0.55836

229 3.024 2.224 24.79 74.346 3.8269 13.251 102.719 363.135 2.73594 0.7291

230 2.817 1.843 47.9 178.07 8.152 36.553 175.571 795.857 2.5931 0.74544

231 3.427 2.213 65.573 260.43 9.38 43.528 272.154 1185.93 2.72896 0.59344

232 3.219 2.12 63.985 223.71 8.5683 33.409 258.656 1158.59 2.0336 0.64828

233 2.776 1.827 18.708 56.839 3.6171 12.84 69.5718 258.91 3.53071 0.80803

234 3.085 1.917 62.527 214.85 10.101 41.17 236.011 923.41 3.70109 0.80431

235 3.312 2.052 64.735 255.9 8.9496 34.685 251.51 1257.58 3.68871 1.28663

236 3.542 2.28 66.06 254.77 10.925 46.885 263.66 1115.85 3.30093 0.93864

237 3.278 2.184 23.007 69.544 3.0181 11.418 96.1374 343.66 3.95852 1.31808

238 3.188 1.969 71.978 237.32 12.614 48.723 300.099 1164.98 3.36127 1.03542

239 3.702 2.295 56.557 232.96 9.2455 44.937 252.735 1314.68 4.44045 1.00729

240 3.189 2.15 65.24 244.51 10.006 42.962 258.579 1091.81 3.77799 1.13909

241 3.089 2.115 20.647 70.129 63.279 288.9 79.0412 319.236 3.05962 1.12703

242 3.02 1.928 65.747 211.45 199.12 821.26 264.19 972.546 3.12406 1.00855

243 3.273 2.077 61.113 245.39 199.07 1216 227.405 1000.57 3.81766 1.0643

244 3.24 2.181 92.466 299.26 204.78 833.72 394.124 1446.31 3.44326 1.16801
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245 3.386 2.11 24.438 72.653 83.424 323.93 103.803 365.749 6.14185 2.13952

246 3.196 2.153 56.957 193.23 188.75 838.9 202.264 794.26 7.00114 1.95483

247 3.221 2.134 92.388 356.66 276.96 1413 384.777 1695.15 5.47007 1.99058

248 3.173 2.113 81.077 270.33 178.22 774 368.976 1496.52 8.38566 1.5959

249 3.11 2.112 24.427 75.739 91.367 375.01 96.7997 359.652 8.56165 3.07508

250 2.92 1.902 56.771 202.95 213.99 1085.5 212.258 902.612 11.215 2.63903

251 3.019 1.994 70.372 287.72 197.95 1070.5 279.34 1466.01 8.76421 3.09141

252 3.236 2.137 92.782 310.17 223.9 986.57 391.39 1639.66 6.74599 2.8701

253 3.503 2.273 26.489 74.951 69.227 267.04 113.841 382.674 9.48089 3.42046

254 3.107 2.002 58.731 216.46 140.08 646.56 245.963 1013.08 10.3832 3.51302

255 3.107 2 95.669 341.29 268.53 1245.9 397.522 1749.38 8.82765 3.24447

256 3.154 1.968 101.16 343.57 252.35 1203.7 437.55 1821.77 10.6272 2.89092

257 3.439 2.256 29.996 84.145 87.661 318.43 128.349 420.549 9.2627 3.72175

258 3.14 2.084 78.071 254.11 178.19 760.5 263.516 929.173 10.2834 3.46584

259 3.362 2.117 99.267 345.57 292.25 1448.6 398.347 1664.37 12.3352 3.67681

260 3.266 2.177 93.853 339.33 263.15 1248.4 371.361 1545.61 12.7684 4.58703

261 3.171 2.199 23.669 70.574 31.822 128.82 92.3617 325.735 3.61918 1.25136

262 3.045 2.085 48.916 181.95 51.232 245.96 200.166 930.225 4.43877 1.16016

263 3.564 2.156 85.055 308.02 96.979 426.85 391.679 1741.44 3.40985 1.15018

264 3.404 2.275 67.31 248.29 69.241 286.85 273.818 1126.89 3.17919 1.10117

265 3.066 2.125 18.55 65.145 16.95 73.476 75.4703 297.29 8.54864 2.59927

266 3.029 1.938 59.749 214.46 71.451 296.33 267.861 1159.71 7.67104 2.66958

267 3.038 1.909 77.462 282.54 73.475 330.13 270.173 1079.25 6.79849 2.17418

268 3.277 2.064 74.648 282.99 103.08 499.16 306.329 1276.19 5.08973 2.02332

269 3.299 2.109 23.08 72.167 27.169 93.121 99.6 368.659 9.91031 3.21907

270 3.055 1.969 60.762 210.06 60.372 246.19 219.494 856.524 9.31986 3.04798

271 3.154 1.993 76.115 271.93 80.918 357.21 329.981 1425.82 8.48453 3.03525

272 3.026 2.222 71.732 296.09 85.833 469.76 285.627 1373.47 10.8042 2.93746

273 3.347 2.218 20.691 64.304 25.966 100.08 83.9988 302.795 11.6088 3.24162

274 3.179 2.111 71.387 233.17 85.19 353.04 303.055 1154.73 12.2073 3.71968

275 3.231 1.98 69.912 248.36 77.057 363.29 267.3 1120.89 10.9809 3.52276

276 3.058 2.063 72.057 259.72 77.71 481.73 314.044 1298.37 10.9444 3.54502

277 3.62 1.909 16.565 62.52 16.259 84.627 69.269 295.603 15.6439 6.64812

278 3.229 2.1 70.229 239.06 75.621 313.4 284.082 1060.4 10.9474 3.88974

279 3.105 2.001 61.198 226.91 69.442 259.19 252.883 1069.83 14.3141 4.70594

280 3.089 1.982 103.77 360.15 132.39 538.72 405.247 1595.42 10.8857 3.87709

281 3.05 2.083 18.74 58.856 8.4895 32.243 75.7946 290.69 4.49638 2.10363

282 3.408 2.194 58.263 199.18 22.722 83.836 246.15 972.322 3.65188 1.03803

283 3.269 2.046 72.028 291.61 28.189 149.97 316.073 1426.22 3.68794 1.11693

284 3.315 2.186 55.528 239.8 25.612 113.98 223.895 1149.98 3.69223 1.084

285 3.226 2.016 18.323 62.656 8.2768 33.671 74.5339 293.243 8.4777 2.60171

286 3.2 2.229 59.451 207.6 29.71 119.52 254.466 1082.26 7.15932 2.39393

287 3.306 2.253 64.689 226.35 27.443 117.8 285.917 1278.4 7.307 2.26286

288 3.167 1.977 76.683 257.79 30.066 124.95 301.647 1118.9 7.10886 2.29114
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289 3.21 1.974 20.397 67.112 6.1774 25.026 78.6661 308.996 10.191 3.16133

290 3.257 2 70.245 250.15 33.082 135.17 313.078 1332.24 9.90565 3.21687

291 3.271 2.099 79.193 272.17 34.346 149.4 290.428 1059.18 10.2363 2.93831

292 3.228 2.109 62.438 222.65 24.704 109.61 293.83 1357.91 9.22485 3.0958

293 3.14 2.011 25.592 76.637 11.27 39.423 107.564 378.258 10.3001 4.05014

294 3.344 2.104 82.203 260.45 38.325 143.87 313.828 1123.02 10.5304 4.08722

295 3.422 2.132 76.122 262.42 39.993 160.77 296.831 1132.09 9.46022 3.70022

296 3.303 2.167 87.257 303.25 35.589 145.66 333.425 1200.37 10.941 3.44694

297 3.281 2.102 21.769 69.438 9.5508 36.903 83.4385 308.709 12.9552 4.8955

298 3.225 2.191 59.99 195.65 20.417 76.829 249.28 991.715 14.3774 4.58003

299 3.247 2.029 81.339 290.47 31.263 144.45 341.697 1468.07 13.898 3.85616

300 3.224 2.042 66.693 240.93 26.954 110.77 299.715 1300.31 14.8269 3.90866

301 3.316 2.027 18.779 63.021 3.0192 12.476 77.7203 314.355 4.76148 4.07894

302 3.099 2.007 62.49 225.53 8.6245 35.903 243.922 1055.43 3.27047 1.07145

303 3.111 2.008 71.237 307.98 10.774 60.594 305.397 1458.39 5.02762 1.50339

304 3.082 2.011 75.164 287.75 11.535 49.441 320.697 1570.22 4.38046 1.27144

305 3.328 2.103 22.583 72.027 3.2569 12.77 86.7076 328.603 7.67734 2.04496

306 3.14 2.028 68.857 232.45 8.3187 33.96 282.126 1129.9 8.33738 2.70829

307 3.294 2.035 53.674 257.83 6.9087 36.575 199.104 1082.92 7.1832 2.62073

308 3.195 2.08 69.416 237.52 10.608 44.667 308.235 1275.02 6.73988 2.28689

309 3.292 2.14 22.597 71.425 3.5483 12.942 94.4634 346.916 9.26026 3.35297

310 3.155 1.937 63.287 223.97 10.005 39.316 257.592 1118.55 9.18361 3.32405

311 3.237 2.126 75.027 263.14 10.643 39.416 288.863 1104.24 9.7372 3.50061

312 3.517 2.166 54.851 210.2 9.6452 42.759 233.712 1115.38 11.7918 3.93634

313 2.989 2.009 18.481 62.927 3.2621 12.903 85.9488 378.764 12.3778 3.55584

314 3.32 2.183 65.609 210.88 10.316 36.291 249.223 860.828 10.1662 3.93252

315 3.042 1.95 81.425 308.96 13.9 53.065 338.359 1508.11 12.3519 4.24635

316 3.036 1.94 76.274 276.91 14.035 56.571 275.32 1084.67 12.5178 3.91699

317 2.942 2.049 22.804 74.287 3.7338 14.41 82.3779 310.261 13.6835 5.90245

318 3.31 2.126 78.792 237.32 14.027 49.897 334.387 1196.86 12.3313 3.84699

319 2.989 1.996 56.521 194.23 9.7053 36.368 222.28 858.432 12.6125 4.77716

320 3.191 2.138 64.651 232.66 10.73 42.244 247.251 972.889 14.3119 4.6184

Table A.1: Systematic Workload Statistics



Appendix B

Characteristics of Random

Workloads Set

Work- Avg. Std Dev Avg. Std Dev Avg. Std Dev Avg. Std Dev Avg. Std Dev

load NCPU NCPU runtime runtime laxity laxity Jobsize Jobsize Arrival Arrival

(tD) (tD) (tL) (tL) (A) (A) Rate Rate

min. min. min. min. Per Sec Per Sec

1 3.59 2.249 45.991 97.4532 171.85 508.001 186.565 434.09 0.00503 0.001003

2 3.104 1.945 67.52 229.112 30.5962 124.479 249.364 893.689 3.8188 1.119648

3 2.963 2.018 74.326 245.129 12.7627 50.179 306.674 1243.83 0.56244 0.091026

4 3.145 2.188 71.887 274.93 8.40726 41.3072 302.439 1462.2 17.1296 4.655591

5 3.34 2.165 79.375 264.773 241.045 1063.07 307.564 1237.27 12.1497 3.652674

6 3.115 2.043 99.685 305.256 341.453 1282.08 411.998 1496.41 10.2489 3.491132

7 3.376 2.243 71.081 257.86 221.066 1151.3 328.507 1322.9 0.22891 0.05464

8 3.292 2.117 106.43 320.809 298.36 1470.42 479.73 1720.79 0.15899 0.026516

9 3.238 2.055 62.45 245.778 179.174 1007.69 235.062 987.428 0.45924 0.062085

10 3.336 2.058 57.351 185.157 9.28659 38.7031 228.966 884.708 0.80351 0.360315

11 3.659 2.217 40.443 86.5828 20.6774 61.4207 155.027 343.935 0.00752 0.004878

12 3.019 1.999 49.474 108.432 8.03594 22.4355 180.65 477.57 0.00707 0.002131

13 3.107 2.063 82.419 294.214 226.097 1009.45 403.993 1734.87 0.34373 0.050239

14 3.549 2.289 32.851 80.832 26.8374 94.7703 144.687 428.071 0.00597 0.008489

15 3.542 2.185 37.98 87.3084 16.2023 49.5785 164.404 423.696 0.00469 6.81E-04

16 3.072 2.005 57.866 110.627 9.66665 21.3179 209.635 466.045 0.00758 0.003696

17 3.487 2.133 37.142 92.8821 70.7838 292.263 151.045 450.304 0.00417 9.38E-04

18 3.291 1.992 31.675 81.915 43.9146 153.024 115.603 322.137 0.00624 5.64E-04

19 3.458 2.171 45.285 96.1585 18.4039 43.537 187.297 523.587 0.00421 0.001026

20 3.322 2.171 92.639 321.789 311.197 1326.19 375.218 1373.72 6.34223 2.06904

21 3.342 2.05 67.047 267.619 177.845 958.932 286.746 1298.24 1.83899 0.636601

22 3.303 2.179 80.555 312.835 37.49 166.666 314.468 1208.44 2.47565 0.621638

23 3.241 2.015 21.387 64.3356 3.28444 11.4714 87.8145 298.482 2.55884 1.146773

24 2.947 2.006 27.022 75.2776 3.87773 13.0707 105.762 373.036 0.58373 0.468722
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25 3.109 2.081 84.487 249.409 13.007 41.9937 352.334 1454.09 0.54941 0.06265

26 3.1 1.913 89.097 286.407 109.815 420.204 363.009 1295.99 0.0852 0.017304

27 3.15 1.993 75.806 244.469 167.356 728.692 294.151 1124.59 0.07149 0.022458

28 3.293 2.035 127.9 340.321 43.5458 122.947 550.255 1771.97 0.07581 0.022129

29 3.319 2.016 71.486 240.448 77.8566 355.74 290.941 1051.23 0.40021 0.101686

30 3.742 2.312 118.37 343.121 16.0835 51.5605 586.331 2198.19 0.01159 0.001308

31 3.457 2.019 197.97 480.802 88.2604 281.973 737.212 1804.19 0.01006 0.001165

32 3.242 2.084 201.3 361.977 27.8203 60.9059 681.988 1492.36 0.00932 0.0019

33 3.597 2.244 130.61 296.463 389.765 1136.79 630.399 1663.48 0.00926 0.011369

34 3.758 2.072 141.78 355.406 21.1042 53.0238 602.413 1689.46 0.01261 0.051055

35 3.237 2.022 75.563 264.406 10.6647 44.6513 322.254 1416.66 0.30217 0.067271

36 3.326 2.107 62.341 243.73 174.33 1079.12 262.023 1193.35 2.31808 0.505158

37 2.921 1.994 67.026 239.57 29.1526 115.364 240.116 987.433 2.36223 0.559588

38 3.224 2.182 103.65 379.913 260.63 1075.35 397.535 1683.23 9.32318 2.936176

39 3.152 1.984 78.872 290.717 218.558 1315.32 287.858 1090.65 0.33786 0.088738

40 3.383 2.091 71.338 283.161 12.114 52.9259 321.63 1556.63 3.05755 0.943335

41 3.153 1.953 21.859 70.9881 24.2399 97.2963 81.3179 300.167 3.89265 0.936234

42 3.052 2.012 17.243 53.7749 2.73968 10.6125 65.2958 225.718 3.48016 1.051419

43 3.227 2.346 39.89 99.3658 132.514 416.669 163.017 474.84 0.00653 0.008195

44 3.484 2.263 49.276 196.767 7.48337 33.8707 196.745 904.572 3.63025 1.023174

45 3.747 2.268 104.81 238.63 304.033 952.998 423.074 914.849 0.00578 9.39E-04

46 2.983 2.059 84.604 282.574 14.4858 59.5142 361.057 1526.53 12.5785 3.931187

47 3.276 2.177 93.614 325.45 251.209 1113.88 377.458 1556.65 10.8587 3.856099

48 3.303 2.098 72.081 266.235 32.1522 151.905 268.403 1126.23 12.8733 4.484932

49 3.499 2.164 145.14 393.913 21.3719 59.3946 544.259 1743.25 0.01209 0.135134

50 3.208 2.166 81.999 288.672 13.3206 57.3113 319.607 1337.84 12.8791 5.84499

51 3.211 2.04 60.428 182.133 136.695 560.485 262.044 974.695 11.7181 3.694076

52 3.206 2.111 52.57 167.793 24.9641 94.1981 224.285 863.365 13.9804 4.407415

53 3.259 2.18 41.982 141.602 6.12409 24.732 163.616 632.641 13.89 4.399634

54 2.948 1.916 48.824 147.172 8.53051 28.1482 175.948 590.31 16.8347 5.629126

55 3.017 1.904 77.646 199.265 11.6854 34.6795 286.085 807.236 0.09952 0.087681

56 3.202 2.061 120.22 331.214 16.0457 50.1878 486.627 1519.39 0.0695 0.059894

57 3.658 2.277 106.59 291.33 136.361 468.914 436.576 1337.89 0.07005 0.069837

58 3.384 2.088 118.49 320.47 122.105 462.821 511.721 1579.56 0.08171 0.011801

59 3.222 2.113 107.29 319.71 260.665 1031.93 413.184 1431.98 0.07616 0.008025

60 3.175 2.124 112.15 285.159 19.6328 66.2204 486.938 1350.98 0.08168 0.118266

61 2.947 1.92 75.419 301.677 10.5563 50.0139 311.295 1350.17 13.2699 5.481165

62 3.334 2.156 96.756 294.414 251.703 1131.27 354.108 1144.49 10.7857 3.465453

63 3.019 1.994 81.063 269.986 111.119 500.261 312.635 1194.51 10.0621 3.676101

64 3.588 2.324 70.58 273.091 10.3259 48.1261 288.186 1389.8 12.8791 4.252279

65 3.514 2.222 57.027 220.307 72.6302 382.63 263.797 1291.59 2.71843 0.78222

66 3.327 2.161 67 228.643 9.4458 43.0395 260.364 1071.09 3.13149 1.396323

67 3.363 2.022 83.363 282.465 214.213 1001.99 372.719 1543.82 0.36414 0.093705

68 3.127 1.961 68.495 209.723 10.4722 37.2411 273.678 1015.69 0.48761 0.097955
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69 3.133 2.188 63.114 222.751 65.9646 264.74 237.044 1007.93 3.2825 0.808553

70 3.33 2.162 95.492 310.505 216.168 895.272 389.254 1639.61 9.70954 3.137518

71 3.27 2.148 90.826 351.138 103.671 573.538 359.739 1540.06 7.13698 2.613133

72 3.07 1.907 77.43 302.218 11.7814 51.9388 298.523 1327.14 8.00975 2.678849

73 3.273 2.122 86.359 305.66 95.4304 433.445 346.543 1436.07 7.70054 2.080032

74 3.284 2.23 78.536 255.127 33.4747 135.462 337.162 1266.63 9.943 3.122662

75 3.249 2.106 72.115 275.123 19.081 78.0002 290.793 1417.84 5.98049 2.310591

76 3.291 2.006 145.38 358.093 14.4446 46.2215 486.814 1223.4 0.03386 0.00659

77 3.508 2.173 129.36 310.795 197.172 555.721 536.058 1423.82 0.02408 0.003475

78 2.883 1.934 88.302 291.883 151.619 753.451 393.131 1546.9 0.03605 0.007039

79 2.818 1.918 80.069 288.479 62.1797 231.491 284.199 1013.58 0.07618 0.080144

80 3.079 2.089 70.01 262.628 141.73 694.917 262.68 1168.17 2.55698 1.434012

81 3.047 2.012 88.503 319.394 232.366 978.1 338.836 1498.96 10.3377 5.030122

82 3.14 2.07 74.387 250.016 41.3082 142.748 322.938 1364.69 11.8348 4.00564

83 3.11 2.05 84.216 293.825 52.005 211.669 321.273 1216.22 13.0613 4.474759

84 3.329 2.168 55.716 233.694 133.722 640.356 198.927 853.196 2.97462 0.912973

85 3.219 2.197 76.436 293.736 42.1165 171.736 314.441 1320.54 12.4352 4.80175

86 3.001 2.042 73.194 243.24 108.197 452.001 295.896 1098.86 10.9183 4.26806

87 2.99 1.898 77.043 300.744 35.9663 151.733 350.331 1613.15 12.3139 4.261488

88 3.115 2.013 71.152 254.756 70.0994 358.026 300.969 1267.58 13.5588 5.365936

89 3.268 2.166 27.377 83.5353 15.0334 50.2428 109.669 399.375 12.594 4.23427

90 3.193 1.984 58.236 230.388 4.93652 21.3407 217.867 924.873 13.6516 3.739017

91 3.449 2.149 209.55 546.895 16.8745 43.5931 881.41 3559.6 2.10E-04 0.001855

92 3.601 2.204 128.85 332.911 53.2957 154.127 475.363 1287.51 1.43E-04 3.09E-04

93 3.337 2.321 119.02 313.102 240.208 899.505 494.983 1536.75 1.38E-04 3.44E-05

94 3.242 2.163 102.26 295.194 192.96 702.815 461.236 1744.15 0.10172 0.023514

95 3.025 2.195 127.91 402.193 11.7583 42.0271 523.957 1724.55 0.06797 0.015651

96 3.192 2.035 38.001 120.522 3.17662 13.0068 150.732 560.322 2.87543 0.888252

97 3.335 2.133 44.968 148.809 48.7575 214.772 170.913 639.228 2.69158 0.779042

98 3.161 2.228 37.507 140.007 16.0323 69.5828 152.2 696.301 3.77843 0.923093

99 3.247 1.921 22.364 71.6786 10.4236 38.1663 94.8338 362.614 2.5975 0.818791

100 3.102 1.88 69.616 271.69 74.7902 330.725 280.295 1561.28 0.58943 0.130462

Table B.1: Random Workload Statistics
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