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Let (S,t, ∅) denote a small symmetric monoidal category whose objects are sets
(possibly with some extra structure) and the monoidal operation, t, is disjoint union.
Such categories encode cut-and-paste operations of sets. Quillen gave a functorial
construction of the abelian groups (Kn(S))n≥0, known as the K-theory of S, which
seek to classify its objects and morphisms. In particular, the group K0(S), known
as the Grothendieck group, is the group completion of the commutative monoid of
isomorphism classes of objects of S and it classifies the objects of the category up
to ‘scissors-congruence’. On the other hand, the group K1(S) classifies the automor-
phisms of objects (i.e., maps which cut an object into finitely many pieces which
reassemble to give the same object) in the direct limit as the objects become large
with respect to t.

In this thesis we consider two classes of symmetric monoidal categories, one from
model theory and the other from algebraic geometry. For any language L, the category
S(M) of subsets of finite cartesian powers of a first order L-structure M definable
with parameters from M together with definable bijections is symmetric monoidal
and thus can be used to define the K-theory of the structure M which is functorial
on elementary embeddings. On the other hand, for any field k, the category Vark of
algebraic varieties and rational maps is also symmetric monoidal. In both these cases,
the categories carry an additional binary operation induced by the product of objects;
this equips the Grothendieck group with a multiplicative structure turning it into a
commutative ring known as the Grothendieck ring.

The model-theoretic Grothendieck ring K0(M) := K0(S(M)) of a first order struc-
ture M was first defined by Krajiček and Scanlon. We compute the ring K0(MR)
for a right R-module M , where R is a unital ring, and show that it is a quotient of
the monoid ring Z[X ], where X is the multiplicative monoid of isomorphism classes
of fundamental definable subsets - the pp-definable subgroups - of the module, by the
ideal that codes indices of pairs of pp-definable subgroups. As a corollary we prove a
conjecture of Prest that K0(MR) is non-trivial, whenever M is non-zero. The main
proof uses various techniques from simplicial homology and lattice theory to construct
certain counting functions. The K-theory of a module is an invariant of its theory. In
the special case of vector spaces we also compute the model-theoretic group K1.

Let k be an algebraically closed field. Larsen and Lunts asked if two k-varieties
having the same class in the Grothendieck ring K0(Vark) are piecewise isomorphic.
Gromov asked if a birational self-map of a k-variety can be extended to a piecewise
automorphism. We show that these two questions are equivalent over any algebraically
closed field. Under the hypothesis of a positive answer to these two questions we prove
that the underlying abelian group of the Grothendieck ring is a free abelian group and
that the associated graded ring of the Grothendieck ring is the monoid ring Z[B]
where B is the multiplicative monoid of birational equivalence classes of irreducible
k-varieties.
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Chapter 1

Introduction

1.1 Historical background

Grothendieck laid the foundations of K-theory in the mid-1950s as the framework for

his far-reaching generalization of the Riemann-Roch theorem in algebraic geometry.

(The letter K stands for the German word Klasse.) However, special cases of K-

groups occur in almost all areas of mathematics, and particular examples of what we

now call K0 (the Grothendieck group) were amongst the earliest studied examples

of abelian groups. The Euler-Poincaré characteristic of a topological space - defined

as the alternating sum of the dimensions of certain vector spaces - motivated the

definition of the Euler characteristic of a chain complex in homological algebra and

the latter takes values in a suitably chosen Grothendieck group.

In many cases the group K0 has a commutative ring structure and is called the

Grothendieck ring; it serves the purpose of classifying objects of a (small) category

carrying some extra structure. The categories we consider in this thesis are symmetric

monoidal categories whose objects are sets and the monoidal operation is disjoint

union. The Grothendieck ring K0(S) of such a category S classifies its objects up

to scissors-congruence, i.e., two objects in the category S have the same class in the

Grothendieck ring if either they are isomorphic or one object can be cut into finitely

many pieces which can be assembled to give the other. Hilbert’s 3rd problem is closely

related; it asked whether two polyhedra of equal volume are scissors-congruent.

In 1995, Kontsevich invented the concept of motivic integration which, roughly

speaking, assigns to subsets of the arc space a volume in the Grothendieck ring

K0(Vark) of algebraic varieties over a field k. This branch of algebraic geometry was

developed extensively by Denef and Loeser. The Grothendieck ring of varieties first

appeared in a letter of Grothendieck in the Serre-Grothendieck correspondence (letter

of 16/8/1964) and plays the role of the value ring of the universal motivic measure,

13



14 CHAPTER 1. INTRODUCTION

where a motivic measure is to motivic integration as an ordinary real-valued measure

is to ordinary integration.

Motivated by the motivic integration theory, Krajiček and Scanlon [25] introduced

the concept of the model-theoretic Grothendieck ring of a first order structure M . A

weak Euler characteristic on the structure M is any function which assigns to each

definable set an element of a ring in a way that “preserves” disjoint unions and carte-

sian products, and thus the Grothendieck ring is the value ring of the universal weak

Euler characteristic. In the same paper, the authors proved that such a Grothendieck

ring is nontrivial if and only if the definable subsets of the structure satisfy a ver-

sion of the combinatorial pigeonhole principle, called the “onto pigeonhole principle”.

Grothendieck rings have been studied for various rings and fields considered as models

of a first order theory (see [25], [6], [7], [8] and [9]) and they are found to be trivial in

many cases (see [6],[7]).

Prest conjectured that in stark contrast to the case of rings, for any ring R, the

Grothendieck ring of a nonzero right R module MR, denoted K0(MR), is nontrivial.

Perera [31] investigated the problem in his doctoral thesis but found only a partial so-

lution. He showed that elementarily equivalent modules have isomorphic Grothendieck

rings, which is not the case for general structures, and he showed that the Grothendieck

rings for modules over semisimple rings are polynomial rings in finitely many variables

over the ring of integers.

1.2 Contents and connections

Grothendieck ring is arguably the single most important concept in this work. Chap-

ters 4, 5 and 6 deal with the structure and the properties of the model-theoretic

Grothendieck rings of modules. Chapter 7 is the only chapter that concerns some

questions associated with the Grothendieck ring of varieties. These two situations can

be studied under the common name of symmetric monoidal categories. Quillen and

Segal’s K-theory of such categories is discussed in an earlier chapter, Chapter 3, where

we also define the model-theoretic K-theory of a structure as an application. In the

same chapter, we compute the groups K0 and K1 for vector spaces. The heuristic

“K-theory of a free category is free” is a common thread connecting all these chapters

which is discussed in detail in the final chapter on conclusions. Each chapter begins

with an introductory paragraph briefly describing the contents of its various sections.

The remainder of the current chapter follows more or less the same pattern as the

arrangement of the chapters; the next three sections comment on various aspects of

the proof of the structure theorem for the Grothendieck rings of modules.
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The author has written two articles based on this work: ‘Grothendieck rings of

theories of modules’ [26] and ‘on the Grothendieck ring of varieties’ [27].

Figure 1.1 shows the interdependency of the sections.

6.4

3.5 6.3

3.4 5.6 6.2

7.1 3.2 3.3 5.5

3.1 5.4

7.2 2.1 5.3 6.1

7.3 2.2 5.2

7.4 2.3 5.1

7.5 4.1 4.2 4.3

4.4

Figure 1.1: Section dependency chart

This work uses ideas from many areas of mathematics. If a result is needed in our

proofs, then we state it along with the definitions of the necessary terminology and

include a reference. On the other hand, appropriate references are provided for the

results not used directly in the work.

Basic terminology in model theory and category theory is assumed throughout the

thesis. This background is covered in almost all books in these areas; specific references

are [33] and [22] respectively. More specific material on the model theory of modules

can be found in [33], [34] and [31]; a condensed version of the required material is
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presented in Section 4.1. Construction of the Grothendieck ring is functorial on certain

maps between modules, called pure maps, which fit with model theory. This is proved

in Section 6.3 with applications to the Grothendieck ring of the module category.

Symmetric monoidal categories and their K-theory are discussed in Section 3.2 and

appropriate references are provided in the text.

The construction of the Grothendieck ring of a semiring is described at a leisurely

pace in Section 2.1. The background in algebra and algebraic geometry can be obtained

from [19] and [15] respectively, whereas the construction of the group homology can be

found in [35, §4.1]. Semidirect products and wreath products of non-abelian groups are

required only in Section 3.4 and 3.5 where they are defined and treated in detail. The

work is self-contained for the use of lattice-theoretic language. Standard references for

algebraic topology are [16] and [38]. Application of the homology theory of simplicial

complexes is the content of Sections 2.2 and 2.3; this material can be found in [11].

1.3 Grothendieck rings of theories of modules

In Chapters 5 and 6, we compute the Grothendieck ring for an arbitrary module over

an arbitrary ring and show that it is a quotient of a monoid ring Z[X ], where X is

the multiplicative monoid of isomorphism classes of fundamental definable subsets of

the module - the pp-definable subgroups. This is the content of the main theorem,

Theorem 6.2.3, which also describes the ‘invariants ideal’ - the ideal of the monoid

ring that codes indices of pairs of pp-definable subgroups. It should be noted that the

proof gives an explicit description of the class [D] ∈ K0(M) of a definable set D. We

further show (Corollary 6.2.11) that there is a split embedding Z→ K0(M), whenever

the module M is nonzero, proving Prest’s conjecture.

The proof of the main theorem uses inputs from various mathematical areas such

as model theory, algebra, combinatorics and algebraic topology. Careful analysis of the

meet-semilattice of pp-sets using Euler characteristics of abstract simplicial complexes

yields a family of counting measures on definable sets; the Grothendieck ring bundles

up such measures.

A special case of the main theorem (Theorem 5.4.2) is proved at the end of Section

5.6, where we assume that the theory T of the module M satisfies the model theoretic

condition T = T ℵ0 . This condition is equivalent to the statement that the invariants

ideal is trivial. The reader should note that the proof of the general case of the main

theorem is not given in full detail since it develops along lines similar to the special case

and uses only a few modifications which are indicated to incorporate the invariants

ideal.
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1.4 Canonical forms for definable sets

Holly [17] described a canonical form for definable subsets of algebraically closed valued

fields by forming swiss cheeses - discs or balls with finitely many holes removed. She

used the canonical form to prove the elimination of imaginaries in one dimension.

Adler used the swiss cheeses to study definable sets in some classes of VC-minimal

theories in [2]. Flenner and Guingona [12] extracted the notion of a directed family of

sets from Adler’s work and used it to obtain uniqueness results on representations of

sets constructible in a directed family. A directed family of sets is a meet-semilattice in

which any two elements with non-trivial intersections are comparable. They introduced

the notion of packability as the dividing line between absolute uniqueness and optimal

uniqueness of representations.

The fundamental theorem of the model theory of modules (Theorem 4.1.5) states

that every definable set is a boolean combination of pp-definable sets, but such a

boolean combination is far from being unique. Under certain extra conditions on the

theory of the module, we achieve a ‘uniqueness’ result as a by-product of the theory we

develop. We call this result the ‘cell decomposition theorem’ (Theorem 4.3.4) which

states that definable sets can be represented uniquely using the meet-semilattice of

pp-definable sets provided the theory T of the module satisfies T = T ℵ0 . This model-

theoretic condition is analogous to the notion of unpackability in [12, §2] and Theorem

4.3.4 generalizes [12, Corollary 2.3].

Though the cell decomposition theorem is not used directly in any other proof, its

underlying idea is one of the most important ingredients of the main proof. Based on

this idea, we define various classes of definable sets of increasing complexity, namely pp-

sets, convex sets, blocks and cells. The terms ball and swiss cheese in [12] correspond

to the terms pp-set and block in our setting. Chapter 4 is devoted to the formulation

and proofs of these conditions. This chapter forms the lattice-theoretic basis for the

proof of the structure of the Grothendieck ring of modules. Our strategy to prove every

result about a general definable set is to prove it first for convex sets, then blocks and

then cells. We deal with the packable case in Section 6.1 and obtain an “optimal”

unique representation theorem for definable sets in terms of compatible families.

1.5 Geometric and topological ideas

An important theme of Chapters 4, 5 and 6 is the use of geometric and topological ideas

in the setting of definable sets. We use the idea of a ‘neighbourhood’ and ‘localization’

to understand the structure of definable sets. We develop a notion of ‘connectedness’
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of a definable set in 4.4 and prove Theorem 4.4.6 which clearly shows the analogy with

its topological counterpart.

The proof of the structure theorem for the Grothendieck rings of modules takes

place at two different levels, which we name ‘local’ and ‘global’ following geometric

intuition. We try to describe the “shape” of each definable set in terms of integer

valued functions called ‘local characteristics’. These numbers are computed using

Euler characteristics of various abstract simplicial complexes which code the “local

geometry” of the given set. The local data is combined to get a family of integer valued

functions, each of which is called a ‘global characteristic’. The global characteristics

enjoy the property of being preserved under definable bijections. The family of such

functions is indexed by the elements of the monoid X (introduced in a previous section)

and the functions collate to give the necessary monoid ring.

Klain and Rota defined valuations on an abstract simplicial complex in [23, §3.2]

and proved the existence of the Euler characteristic - the unique invariant valuation

on the distributive lattice of abstract simplicial complexes on a finite set. Theorem

5.1.6 and, more generally, Theorem 6.1.6 show that the local characteristics, indexed

by the semi-lattice of pp-sets, are in fact valuations. In our set-up, we work with finite

simplicial complexes on an infinite meet-semilattice.

1.6 The Grothendieck ring of varieties

Let k denote an algebraically closed field. The main object of study in Chapter 7 is the

Grothendieck ring of algebraic varieties over k which encodes cut-and-paste operations

of (Zariski) closed subvarieties. We consider two weaker equivalences of varieties than

variety isomorphisms, namely birational equivalence and cut-and-paste equivalence.

Larsen and Lunts asked if the cut-and-paste equivalence of two varieties is a nec-

essary condition for them to have the same class in the Grothendieck ring (Question

7.1.2). A positive answer to this question would settle a question of Gromov (Question

7.1.3) in the affirmative where the latter that asks if every birational map X 99K X

can be extended to a cut-and-paste equivalence X → X. In fact it is possible to set up

an induction to answer the former question in the affirmative whose base case is a pos-

itive answer to the latter; this proves the equivalence of the two questions (Theorem

7.3.3). The proof of this result is essentially combinatorial and involves simultaneous

modifications of two bijections between two finite sets of irreducible varieties.

We obtain two results on the structure of the Grothendieck ring of varieties un-

der the hypothesis of a positive answer to both these questions. We show that its



1.7. HIGHER K-THEORY WITH DEFINABLE SETS 19

underlying abelian group is a free abelian group (Theorem 7.4.1) and that its associ-

ated graded ring is the integral monoid ring Z[B] where B denotes the multiplicative

monoid of birational equivalence classes of irreducible k-varieties (Theorem 7.5.1).

Section 8.4 discusses the similarities and differences of this case with the modules

case.

1.7 Higher K-theory with definable sets

The Grothendieck group of a commutative monoid is usually termed its group comple-

tion. A symmetric monoidal category is the category-theoretic analogue of a commuta-

tive monoid; definable sets and algebraic varieties form symmetric monoidal categories

under disjoint union. Quillen described the construction of the “group completion” of

a symmetric monoidal category S. The K-theory groups of the category S are defined

to be the homotopy groups of its group completion. The definition of the group K0(S)

agrees with the Grothendieck group of the monoid of isomorphism classes of objects

of S. This construction is explained in detail in Section 3.2.

In Section 3.3, we define the model-theoretic K-theory of a structure M as the

K-theory of the symmetric monoidal category of sets definable (with parameters) in

M and compute the lower K-theory (i.e., groups K0 and K1) of finite structures.

For a structure M , the group K1(M) classifies definable bijections of definable

sets. We use iterated semidirect products of certain wreath products of matrix groups

and finitary permutation groups to compute the groups of definable self-bijections of

definable subsets of vector spaces. The direct limit of the abelianization of these groups

gives the group K1 of a vector space. These computations are shown in Sections 3.4

and 3.5.

1.8 Notations and Conventions

Below are some standard notations and conventions used throughout the thesis.

The notation N denotes the set of natural numbers and we assume that 0 ∈ N. For

each n ≥ 1, the notation [n] denotes the set {1, 2, . . . , n}.
The notations R and Z denote the field of reals and the ring of integers respectively.

For any n ≥ 1, the notation Zn denotes the quotient ring Z/nZ.

All rings in the thesis are unital and all ring homomorphisms preserve units. The

notation R will always denote a ring and the notation GLn(R) denotes the group of

invertible n× n matrices with entries in R.

The notation t denotes disjoint union.
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A triple (S,+, 0) is a commutative monoid whenever + is an associative and com-

mutative binary operation on S with identity 0. A monoid homomorphism is a map

respecting the binary operation.

If X, Y ⊆ S and X, Y 6= ∅, then we use the Minkowski sum notation X + Y to

denote the set {x + y : x ∈ X, y ∈ Y }. In case X = {x}, we use x + Y to denote

X + Y .

A meet-semilattice is a pair (L,∧) where ∧ is an associative, commutative and

idempotent binary operation. Sometimes the meet-semilattice L contains a zero ele-

ment, 0, which satisfies the additional condition that a ∧ 0 = 0 for all a ∈ L.

A lattice is a triple (A,∧,∨) where the binary operations ∧ and ∨ are associative,

commutative and idempotent and the following absorption laws are satisfied for all

a, b ∈ A:

a ∧ (a ∨ b) = a = a ∨ (a ∧ b).

A (semi)lattice morphism is a map compatible with the binary operations. In par-

ticular, a sub-(semi)lattice is a subset closed under the induced operations. Each

(semi)lattice A can naturally be treated as a poset where a ≤ b in A if and only if

a ∧ b = a.

A lattice A is said to be distributive if additionally the following distributive law

holds for all a, b, c ∈ L:

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

A morphism of distributive lattices is simply a lattice morphism.

The forgetful functor which takes a distributive lattice to the underlying meet-

semilattice has a left adjoint. This left adjoint assigns to a meet-semilattice L the free

distributive lattice A of finite antichains in L. The details of the construction can be

found in [18, Lemma C1.1.3]; we discuss it in a particular situation in Section 5.1.



Chapter 2

Background

Section 2.1 describes the construction of the Grothendieck ring of a semiring and

the remaining two sections contain essential background in the homology theory of

simplicial complexes that is necessary in Chapter 5.

The material in this chapter is contained in [26, §2.1,2.3,2.4].

2.1 Grothendieck rings of semirings

We recall the notion of a semiring and how to construct a ring in a canonical fashion

from a given semiring. A detailed exposition on this material can be found in [21].

Note that all definitions and constructions in this section apply to a commutative

monoid simply by forgetting the clauses involving multiplication and replacing the

words ‘semiring’ and ‘ring’ with ‘commutative monoid’ and ‘abelian group’ respec-

tively. In particular, we get the notion of a cancellative monoid and the construction

of the Grothendieck group K0(S) of a commutative monoid S.

Let Lring = 〈0, 1,+, · 〉 be the language of rings without a symbol for subtraction.

Definitions 2.1.1. Any Lring-structure S satisfying the following conditions is a com-

mutative semiring with unity.

• (S,+, 0) is a commutative monoid.

• (S, · , 1) is a commutative monoid.

• a· 0 = 0 for all a ∈ S.

• Multiplication (· ) distributes over addition (+).

A semiring homomorphism is an Lring-homomorphism.

A semiring S is said to be cancellative if a+c = b+c ⇒ a = b for all a, b, c ∈ S.

21
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All the semirings considered here are commutative semirings with unity, allowing

the possibility 0 = 1.

Definition 2.1.2. A binary relation ∼ on a semiring S is said to be a congruence

relation if the following properties hold.

• ∼ is an equivalence relation.

• For all a, b, c, d ∈ S, a ∼ b, c ∼ d⇒ (a+ c) ∼ (b+ d), a· c ∼ b· d.

There is a canonical way of constructing a cancellative semiring from any semiring

S as stated in the following theorem.

Theorem 2.1.3 (Quotient construction). Let S be a semiring and let ∼ be the

binary relation defined as follows.

For a, b ∈ S, a ∼ b ⇔ ∃c ∈ S, a+ c = b+ c (2.1)

Then ∼ is a congruence relation. If ã denotes the ∼ equivalence class of a ∈ S, then

S̃ := {ã : a ∈ S} is a cancellative semiring with respect to the induced addition and

multiplication operations. There is a surjective semiring homomorphism q : S → S̃

given by a 7→ ã. Furthermore, given any cancellative semiring T and a semiring

homomorphism f : S → T , there exists a unique semiring homomorphism f̃ : S̃ → T

such that the diagram S
q //

f

��

S̃

∃!f̃��
T

commutes.

One can embed a cancellative semiring in a ring in a canonical fashion. For this

reason, a cancellative semiring is called a halfring in [21]. The following theorem

imitates the construction of the ring of integers from the cancellative semiring N of

natural numbers.

Theorem 2.1.4 (Ring of differences for a cancellative semiring). Let R denote

a cancellative semiring and let E denote the binary relation on the set R×R of ordered

pairs of elements from R defined as follows.

For (a, b), (c, d) ∈ R×R, (a, b)E(c, d) ⇔ a+ d = b+ c (2.2)

Then R is an equivalence relation. If (a, b)E denotes the E-equivalence class of (a, b),

then the quotient structure (R × R)/E := {(a, b)E : (a, b) ∈ R × R} is a ring with

respect to the operations given by

(a, b)E + (c, d)E := (a+ c, b+ d)E (2.3)

(a, b)E· (c, d)E := (a· c+ b· d, a· d+ b· c)E (2.4)

−(a, b)E := (b, a)E (2.5)
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for (a, b)E, (c, d)E ∈ (R × R)/E. We denote the ring (R × R)/E by K0(R) following

the conventions of K-theory. The semiring R can be embedded into the ring K0(R)

by the semiring homomorphism i given by a 7→ (a, 0). Furthermore, given any ring T

and a semiring homomorphism g : R → T , there exists a unique ring homomorphism

g : K0(R)→ T such that the diagram R i //

g

��

K0(R)

∃!g
||

T

commutes.

For a semiring S, we say that the ring K0(S̃) is its Grothendieck ring where S̃ is

the cancellative semiring obtained from S as stated in the Theorem 2.1.3. We denote

the Grothendieck ring by K0(S) for simplicity and the canonical map S → K0(S) by

ηS. We finally note the following result which combines the previous two theorems.

Corollary 2.1.5. A semiring S can be embedded in a ring if and only if S is cancella-

tive. Given any ring T and a semiring homomorphism g : S → T , there exists a unique

ring homomorphism g : K0(S)→ T such that the diagram S
ηS //

g

��

K0(S)

∃!g
||

T

com-

mutes.

This result can be stated in category theoretic language as follows. Let CSemiRing

denote the category of commutative semirings with unity and semiring homomor-

phisms preserving unity. Let CRing denote its full subcategory consisting of com-

mutative rings with unity and let I : CRing → CSemiRing be the inclusion functor.

Then I admits a left adjoint, namely K0 : CSemiRing → CRing. If η is the unit of

the adjunction, the diagram in the above corollary represents the universal property

of the adjunction.

2.2 Euler characteristic of simplicial complexes

We introduce the concept of an abstract simplicial complex and a couple of ways

to calculate its Euler characteristic. We also state some important results in the

homology theory of simplicial complexes. The material on homology and relative

homology presented in this section is taken from [11, §II.4]. This theory provides the

basis for the analysis of ‘local characteristics’ in 5.1.

Definition 2.2.1. An abstract simplicial complex is a pair (X,K) where X is a

finite set and K is a collection of subsets of X satisfying the following properties:

• ∅ /∈ K;
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• {x} ∈ K for each x ∈ X;

• if F ∈ K and ∅ 6= F ′ ( F , then F ′ ∈ K.

We usually identify the simplicial complex (X,K) with K. The elements F ∈ K
are called the faces of the complex and the singleton faces are called the vertices of

the complex. We use V(K) to denote the set of vertices of K.

For each k ≥ 0, let ∆k := P([k + 1]) \ {∅} denote the standard k-simplex,

where P denotes the power set operator. We define the geometric realization of

the standard k-simplex, denoted |∆k|, to be the set of all points of Rk+1 which can be

expressed as a convex linear combination of the standard basis vectors of Rk+1. In fact

we can associate to every abstract simplicial complex a topological space |K|, called

its geometric realization. This topological space is constructed by ‘gluing together’

the geometric realizations of its simplices.

We assign dimension to every face F ∈ K by stating dimF := |F | − 1 and we say

that the dimension of the complex is the maximum of the dimensions of its faces.

Definition 2.2.2. We define the Euler characteristic of the complex K, denoted

χ(K), to be the integer ΣdimK
n=0 (−1)nvn where vn is the number of faces in K with

dimension n.

It is easy to check that χ(∆k) = 1 for each k ≥ 0. Since we also allow our complex

to be empty, we define χ(∅) := 0 though dim ∅ is undefined.

There is another way to obtain the Euler characteristics of simplicial complexes,

via homology. In the context of simplicial complexes, the word homology will always

mean simplicial homology with integer coefficients. Let C∗(K) := (Cn(K))n≥0 and

H∗(K) := (Hn(K))n≥0 be the chain complexes associated with the simplicial complex

K, where Cn(K) is the free abelian group generated by the set of n-simplices in K and

Hn(K) is the nth homology group of the chain complex C∗(K). If bn denotes the nth

Betti number of the simplicial complex K (i.e., the rank of the group Hn(K)), then we

have the identity χ(K) = Σ∞n=0(−1)nbn where the sum on the right hand side is finite.

The following result states that homology is a homotopy invariant. It will be useful

in proving a key result (Proposition 5.1.8).

Theorem 2.2.3. If K1 and K2 (meaning, their geometric realizations) are homotopy

equivalent, then H∗(K1) ∼= H∗(K2).

The definition of Euler characteristic in terms of Betti numbers gives the following

corollary.

Corollary 2.2.4. If K1 and K2 are homotopy equivalent, then χ(K1) = χ(K2).
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The homology groups Hn(K), for n ≥ 1, calculate the number of “n-dimensional

holes” in the geometric realization of the complex K. Sometimes it is important to

ignore the data present in a smaller part of the given structure. This can be done

in two ways, viz. using the cone construction for a subcomplex or by using relative

homology. Given a complex K and a subcomplex Q ⊆ K, we write K ∪ Cone(Q) for

the simplicial complex whose vertex set is V(K)∪ {x}, where x /∈ V(K), and the faces

are K ∪ {{x} ∪ F : F ∈ Q}. We say that x is the apex of the cone. In the same

situation, we use the notation Hn(K;Q) to denote the nth homology of K relative to

Q.

The following theorem connects the relative homologies with the homologies of the

original complexes.

Theorem 2.2.5 (see [16, Theorem 2.16]). Given a pair of simplicial complexes Q ⊂ K,

we have the following long exact sequence of homologies.

· · · → Hn(Q)→ Hn(K)→ Hn(K;Q)→ Hn−1(Q)→ · · · → H0(K;Q)→ 0

We shall also make use of the following result.

Theorem 2.2.6 (see [11, Theorem II.4.7]). Given a pair of simplicial complexes

Q ⊆ K, we have Hn(K;Q) ∼= Hn(K ∪ Cone(Q)) for n ≥ 1 and H0(K ∪ Cone(Q)) ∼=
H0(K;Q)⊕ Z.

Illustration 2.2.7. Let K = {{1}, {2}, {3}, {1, 2}, {2, 3}} and Q denote the subcomplex

{{1}, {3}}. Then

Hn(K) =

Z, if n = 0,

0, otherwise,

Hn(Q) =

Z⊕ Z, if n = 0,

0, otherwise,

Hn(K;Q) =

Z, if n = 1,

0, otherwise,

Hn(K ∪ Cone(Q)) =

Z, if n = 0, 1,

0, otherwise.

Combining the above two results with the definition of Euler characteristic, we get

Corollary 2.2.8. For a pair of simplicial complexes Q ⊆ K, χ(K∪Cone(Q))+χ(Q) =

χ(K) + 1.
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2.3 Products of simplicial complexes

We define various products of simplicial complexes and study their interrelations. The

inclusion-exclusion principle stated in Lemma 2.3.4 is equivalent to the statement that

‘local characteristics are multiplicative’ (Lemma 5.5.1).

Let K and Q be two simplicial complexes with vertex sets V(K) and V(Q) respec-

tively and let π1 : V(K) × V(Q) → V(K) and π2 : V(K) × V(Q) → V(Q) denote the

projection maps. We define two simplicial complexes with the vertex set V(K)×V(Q).

The following product is defined in [10, §3].

Definition 2.3.1. The simplicial product K M Q of two simplicial complexes K
and Q is a simplicial complex with vertex set V(K) × V(Q) where a nonempty set

F ⊆ V(K)× V(Q) is a face of K M Q if and only if π1(F ) ∈ K and π2(F ) ∈ Q.

Definition 2.3.2. The disjunctive product K � Q of two simplicial complexes K
and Q is a simplicial complex with vertex set V(K) × V(Q) where a nonempty set

F ⊆ V(K)× V(Q) is a face of K �Q if and only if π1(F ) ∈ K or π2(F ) ∈ Q.

Observe that the previous two definitions are identical except for the word ‘and’

in the former is replaced by the word ‘or’ in the latter. Thus the simplicial product

K M Q is always contained in the disjunctive product K �Q.

Illustration 2.3.3. Let K = {{1}, {2}} denote the complex consisting precisely of two

vertices. Then K M K contains only the vertices of the ‘square’ K � K given by

{{(1, 1)}, {(1, 2)}, {(2, 1)}, {(2, 2)}, {(1, 1), (1, 2)}, {(2, 1), (2, 2)}, {(1, 1), (2, 1)},
{(1, 2), (2, 2)}}. For each k ≥ 0 the complex K M ∆k is the union of two disjoint copies

of ∆k, whereas the complex K �∆k is a copy of ∆2k+1.

The main aim of this section is to prove the following lemma about the Euler

characteristic of the disjunctive product.

Lemma 2.3.4. The Euler characteristics of two simplicial complexes K and Q satisfy

χ(K �Q) = χ(K) + χ(Q)− χ(K)χ(Q). (2.6)

Illustration 2.3.5. Let K be as defined in 2.3.3. Then we observe that χ(K) = 2. Since

K�K contains 4 vertices and 4 edges, we get χ(K�K) = 0 = 2χ(K)−χ(K)2 verifying

Equation (2.6) in this case.

The proof of the lemma uses tensor products of chain complexes.

Definition 2.3.6. Let C∗ = {Cn, ∂n}n≥0 and D∗ = {Dn, δn}n≥0 denote two bounded

chain complexes of abelian groups. The tensor product complex C∗⊗D∗ = {(C∗⊗
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D∗)n, dn}n≥0 is defined by

(C∗ ⊗D∗)n =
⊕
i+j=n

Ci ⊗Dj,

dn(ai ⊗ bj) = ∂i(ai)⊗ bj + (−1)iai ⊗ δj(bj).

Illustration 2.3.7. We compute the tensor product C∗(∂∆2)⊗ C∗(∆1) as an example,

where ∂∆2 denotes the boundary of ∆2.

Cn(∂∆2) =

Z⊕ Z⊕ Z, if n = 0, 1,

0, otherwise

Cn(∆1) =


Z⊕ Z, if n = 0,

Z, if n = 1,

0, otherwise

(C∗(∂∆2)⊗ C∗(∆1))n =



⊕6
i=1Z, if n = 0,

⊕9
i=1Z, if n = 1,

⊕3
i=1Z, if n = 2,

0, otherwise

There is yet one more product of simplicial complexes, viz., the cartesian product,

defined in the literature (see [10]). We avoid its use by dealing with the product of

geometric realizations (with the product topology). The homology of such (finite)

product spaces is easily computed using triangulation. We first note that the Euler

characteristic is multiplicative.

Proposition 2.3.8 (see [38, p.205, Ex. B.4]). Let K and Q be any simplicial complexes.

Then

χ(|K| × |Q|) = χ(K)χ(Q).

A famous theorem of Eilenberg and Zilber (see [10]) connects the homologies of

two semi-simplicial complexes (a term used in 1950 that includes the class of simplicial

complexes) with that of their cartesian product. We state this result below using the

cartesian product of their geometric realizations. More details can be found in [16,

§2.1] and [11, §III.6].

Theorem 2.3.9 (see [11, §III.6.2]). Let K and Q be any two simplicial complexes.

Then we have H∗(|K| × |Q|) ∼= H∗(C∗(K)⊗ C∗(Q)).

Furthermore, Eilenberg and Zilber state the following corollary of the above theo-

rem in [10].
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Corollary 2.3.10. Let K and Q be any two simplicial complexes. Then

H∗(K M Q) ∼= H∗(C∗(K)⊗ C∗(Q)).

Illustration 2.3.11. We continue the example in 2.3.7. The computation of the bound-

ary operators yields

Hn(C∗(∂∆2)⊗ C∗(∆1)) =

Z, if n = 0, 1,

0, otherwise

The space |∂∆2| × |∆1| is a cylinder which is homotopy equivalent to S1. Hence

Hn(|∂∆2| × |∆1|) = Z for n = 0, 1 and is zero for other values of n. This completes

the illustration of Theorem 2.3.9.

Furthermore the complex ∂∆2 M ∆1 is the union of three copies of ∆3 each of

which shares exactly one edge (i.e., a copy of ∆1) with every other copy and these

three edges are pairwise disjoint. It can be easily see that this complex (i.e., its

geometric realization) is homotopy equivalent to the circle and hence the conclusions

of the Corollary 2.3.10 hold.

Proof. (Lemma 2.3.4) We first observe that there is an embedding of simplicial com-

plexes ι1 : K M (∆|V(Q)|−1)→ K�Q induced by some fixed enumeration of V(Q). Sim-

ilarly there is an embedding ι2 : (∆|V(K)|−1) M Q → K�Q induced by some fixed enu-

meration of V(K). Furthermore, the intersection ι1(K M (∆|V(Q)|−1))∩ ι2((∆|V(K)|−1) M

Q) is precisely the complex K M Q.

This gives us, using the counting definition of the Euler characteristics, that the

identity

χ(K �Q) = χ(K M (∆|V(Q)|−1)) + χ((∆|V(K)|−1) M Q)− χ(K M Q) (2.7)

holds.

Note that it is sufficient to prove that χ(K M Q) = χ(K)χ(Q) for all simplicial

complexes K and Q because, in that case, (2.6) follows from (2.7) and the identity

χ(∆k) = 1 for each k ≥ 0.

Now we have H∗(K M Q) ∼= H∗(C∗(K) ⊗ C∗(Q)) ∼= H∗(C∗(|K| × |Q|)), where the

first isomorphism is by 2.3.10 and the second by 2.3.9.

Hence we have χ(K M Q) = χ(|K| × |Q|) = χ(K)χ(Q) by 2.3.8 as required. This

completes the proof.
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K-Theory of Model-theoretic

Structures

Let L denote any language and M denote a first order L-structure. In this thesis, the

term definable will always mean definable with parameters from M . Following [25], we

introduce the notion of the model-theoretic Grothendieck ring of M , denoted K0(M),

in Section 3.1. Definable sets with definable bijections form a symmetric monoidal cat-

egory, S(M), under disjoint union. Discussion of the K-theory of symmetric monoidal

categories is the content of Section 3.2. The K-theory group K0(S(M)), defined in

Section 3.2, agrees with the underlying group of the Grothendieck ring K0(M). Based

on this observation, we define the K-theory of the structure M in Section 3.3 as the

K-theory of the category S(M). The final two sections are devoted to the computation

of the group K1 of a vector space.

The material in Section 3.1 is contained in [26, §2.2].

3.1 Model-theoretic Grothendieck rings

After setting some background in model theory, we state how to construct the semiring

of definable isomorphism classes of definable subsets of finite cartesian powers of the

structure M . Following the method described in Section 2.1 we then construct the

Grothendieck ring K0(M).

Definitions 3.1.1. For each n ≥ 1, we define Def(Mn) to be the collection of all

definable subsets of Mn. We also define Def(M) :=
⋃
n≥1 Def(Mn).

Definition 3.1.2. We say that two definable sets A,B ∈ Def(M) are definably

isomorphic if there exists a definable bijection between them, i.e., a bijection f :

A → B such that the graph Graph(f) ∈ Def(M). This is an equivalence relation on

29
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Def(M) and the equivalence class of a set A is denoted by [A]. We use D̃ef(M) to

denote the set of all equivalence classes with respect to this relation.

The assignment A 7→ [A] defines a surjective map [−] : Def(M) → D̃ef(M). We

can regard D̃ef(M) as an Lring-structure. In fact, it is a semiring with respect to the

operations defined as follows:

• 0 := [∅];

• 1 := [{∗}] for any singleton subset {∗} of M ;

• [A] + [B] := [A′ tB′] for A′ ∈ [A], B′ ∈ [B] such that A′ ∩B′ = ∅;

• [A]· [B] := [A×B].

Now we are ready to give an important definition.

Definition 3.1.3. We define the model-theoretic Grothendieck ring of the first

order structure M , denoted by K0(M), to be the ring K0(D̃ef(M)) obtained from

Corollary 2.1.5, where the semiring structure on D̃ef(M) is as defined above.

We are interested to know whether the ring K0(M) - that captures some aspects

of the definable combinatorics of the structure M - is trivial. The motivation behind

the study of this ring lies in the question which asks what of elementary combinatorics

holds true in a class of first order structures if sets, relations, and maps must be

definable?

Definition 3.1.4. We say that an infinite structure M satisfies the pigeonhole prin-

ciple if for each A ∈ Def(M), each definable injection f : A� A is an isomorphism.

This condition is very strong to be true for many structures. As an example,

consider the additive group of integers Z in the language of abelian groups. The

function Z (−)×2−−−→ Z is a definable injection but not an isomorphism. Hence it is useful

to consider some weaker forms. Though there are several of them (see [25]), we note

the one important for us.

Definition 3.1.5. We say that an infinite structure M satisfies the onto pigeonhole

principle if for each A ∈ Def(M) and each definable injection f : A� A, we have

f(A) 6= A \ {a} for any a ∈ A.

The following proposition gives the necessary and sufficient condition for K0(M) to

be nontrivial (i.e., 0 6= 1 in K0(M)). We include a proof for the sake of completeness.



3.2. K-THEORY OF SYMMETRIC MONOIDAL CATEGORIES 31

Proposition 3.1.6. Given any infinite structure M , K0(M) 6= {0} if and only if M

satisfies the onto pigeonhole principle.

Proof. Recall the construction of the cancellative semiring from (2.1). The condition

0 = 1 in K0(M) is thus equivalent to the statement that for some A ∈ Def(M), we

have 0 + [A] = 1 + [A]. This is precisely the statement that M satisfies the onto

pigeonhole principle.

Grothendieck rings behave very well with respect to elementary embeddings, but

elementary equivalence between structures gives only a weak type of equivalence be-

tween their Grothendieck rings.

Proposition 3.1.7 ([25, Theorem 7.3]). If M,N are L-structures and M � N then

K0(M) ≤ K0(N). If M ≡ N , then D̃ef(M) ≡∃1 D̃ef(N) in Lring. As the Grothendieck

ring K0(M) is existentially interpretable in D̃ef(M), we have K0(M) ≡∃1 K0(N).

A brief survey of known Grothendieck Rings: Only a few examples of

Grothendieck rings are known. If M is a finite structure, then K0(M) ∼= Z. Krajiček

and Scanlon showed in [25, Ex. 3.6] that K0(R) ∼= Z using dimension theory and cell

decomposition theorem for o-minimal structures, where R denotes a real closed field.

Cluckers and Haskell [6], [7] proved that the fields of p-adic numbers and Fq((t)), the

field of formal Laurent series, both have trivial Grothendieck rings, by constructing

definable bijections from a set to the same set minus a point. Denef and Loeser [8], [9]

found that the Grothendieck ring K0(C) of the field C of complex numbers regarded

as an Lring-structure admits the ring Z[X, Y ] as a quotient. Krajiček and Scanlon

obtained a strong result that K0(C) contains an algebraically independent set of size c

of the continuum, and hence the ring Z[Xi : i ∈ c] embeds into K0(C). Perera showed

in [31, Theorem 4.3.1] that K0(M) ∼= Z[X] whenever M is an infinite module over

an infinite division ring. Prest conjectured [31, Ch. 8, Conjecture A] that K0(M) is

nontrivial for all nonzero right R-modules M . We prove that K0(M) is actually a

quotient of a monoid ring and, furthermore, it is nontrivial. Chapters 5 and 6 are

devoted to the proof of this statement.

3.2 K-theory of symmetric monoidal categories

Algebraic K-theory seeks to classify finitely generated projective (right) modules (i.e.,

the modules which are direct summands of finitely generated free modules) over a

unital ring R. In fact, for each n ≥ 0, there is a functor Kn : Ring→ Ab. These groups

fit together nicely in a long exact sequence. In particular the group K0(R) classifies
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isomorphism classes of projective R-modules under direct sum, whereas the group

K1(R) classifies automorphisms of projective modules in the direct limit. The idea of

classification can be extended to more general settings than just projective modules;

one can obtain a (functorial) sequence of K-groups for categories with some extra

structure. Classes of such categories include exact categories, Waldhausen categories

and symmetric monoidal categories. This section contains a summary of important

definitions and theorems from the K-theory of symmetric monoidal categories. More

details about the algebraic K-theory of rings can be found in [35] whereas detailed

treatment of the K-theory of categories can be found in the excellent “K-book” [40]

by Weibel. Some background from category theory and algebraic topology is assumed;

a reader less familiar with this material can refer to standard texts like [22] and [16].

A symmetric monoidal category is a category-theoretic analogue of a commutative

monoid.

Definition 3.2.1. A triple (S, ∗, e) is a symmetric monoidal category if the cat-

egory S is equipped with a bifunctor ∗ : S × S → S, and a distinguished object e such

that, for all objects s, t, u ∈ S, there are natural coherent isomorphisms

e ∗ s ∼= s ∼= s ∗ e, s ∗ (t ∗ u) ∼= (s ∗ t) ∗ u, s ∗ t ∼= t ∗ s,

that satisfy certain obvious commutative diagrams.

A (strict) monoidal functor F : (S, ∗, e)→ (S ′, ∗′, e′) is a functor F : S → S ′

such that F (e) = e′ and, for all objects s, t ∈ S, F (s∗t) = F (s)∗′F (t) and F preserves

the coherence isomorphisms.

More details can be found in [22, §VII,XI]. The symmetric monoidal categories we

consider in this chapter are (skeletally) small, i.e., the set of isomorphism classes of

objects of S form a set.

Definition 3.2.2. Suppose S is symmetric monoidal, and suppose Siso denotes the

set of isomorphism classes of objects of S. Then Siso is a commutative monoid under

the product induced by ∗ and has e as the identity element. The Grothendieck group

of this commutative monoid is denoted by K∗0(S) (or just K0(S) if the product is clear

from the context).

Examples 3.2.3. The category (FinSets,t, ∅) is a symmetric monoidal category, where

FinSets is the category of finite sets and functions between them. The additive monoid

N of natural numbers is isomorphic to the monoid FinSetsiso and hence K0(FinSets) =

Z.
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Given a unital ring R, let Proj-R denote the category of finitely generated projec-

tive right R-modules with R-module homomorphisms. This is a symmetric monoidal

category under direct sum, ⊕, and is the key example in algebraic K-theory. The

Grothendieck group of the ring R is defined to be the group K0(Proj-R).

Let k be a field and Vark denote the category of k-varieties (i.e., reduced separated

k-schemes of finite type - note that we do not require varieties to be irreducible). Then

Vark is a (large, but skeletally small) symmetric monoidal category under disjoint union

of varieties (see [39, Ex. 9.1A]). The group K0(Vark) is the Grothendieck group of k-

varieties. Chapter 7 is devoted to the study of questions about the structure of this

group.

Remark 3.2.4. For a first order structure M , let S(M) denote the category of defin-

able bijections between definable sets in Def(M). Then (S(M),t, ∅) is a symmetric

monoidal category and K0(S(M)) is the underlying abelian group of the Grothendieck

ring K0(M).

Given a small category C, its geometric realization (or classifying space) BC is a

topological space (constructed as the geometric realization of its nerve) and gives a

way of attaching certain topological adjectives to C. Moreover, this construction is

functorial. More details about the geometric realization can be found in [40, §IV.3].

Category theoretic properties of C match well with the homotopy theoretic prop-

erties of BC.

Proposition 3.2.5 ([40, §IV.4.3.2]). Any natural transformation η : F1 → F2 between

functors F1, F2 : C → D induces a homotopy Bη : BC × [0, 1] → BD between the

maps BF1 and BF2. Hence any adjoint pair of functors F : C → D and G : D → C

induce a homotopy equivalence between BC and BD. In particular, any equivalence

of categories induces a homotopy equivalence between their geometric realizations, and

every category with a terminal (or initial) object is contractible.

The geometric realization of a symmetric monoidal category has an extra structure

induced from the monoidal operation.

Definition 3.2.6. An H-space is a topological space X with a continuous binary

operation µ : X × X → X such that there is a point e ∈ X for which the functions

x 7→ µ(x, e) and x 7→ µ(e, x) are homotopic to the identity on X, through homotopies

preserving the point e.

For a symmetric monoidal category S, the spaceBS is anH-space with a homotopy-

commutative and homotopy-associative product. In many cases, the unit object e of S

is an initial object and hence BS is contractible. Therefore, we focus our attention to
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the subcategory iso S of isomorphisms in S whose realization B(iso S) is an H-space

as well. Restricting to isomorphisms does not change the group K0 as it only depends

on the commutative monoid π0(iso S) of isomorphism classes of objects of S.

A groupoid is a category in which all morphisms are isomorphisms. Henceforth

the underlying categories of all our symmetric monoidal categories will be groupoids.

Any groupoid S is equivalent to
∐

s∈Siso AutS(s) and hence BS is homotopy equivalent

to the disjoint union of the classifying spaces BAutS(s) as s ranges over Siso, where

AutS(s) is the group of automorphisms (= endomorphisms, since S is a groupoid) of

the object s ∈ S.

Examples 3.2.7. The space B(isoFinSets) is homotopy equivalent to
∐

n≥0BΣn, where

Σn is the permutation group on the set of n elements.

The space B(isoProj-R) is homotopy equivalent to
∐
BAut(P ), where P runs over

isomorphism classes.

If F(R) is the category whose morphisms are
∐

n≥1 GLn(R) and objects are based

free R-modules, then the space BF(R) is equivalent to
∐

nBGLn(R).

We say that translations are faithful in S if, for all s, t ∈ S, the translation

AutS(s) → AutS(s ∗ t) defined by f 7→ f ∗ idt is an injective map. All examples of

(symmetric monoidal) categories we consider in this and the next sections have faithful

translations. If translations are faithful in S, then the following construction of the

category S−1S gives a “group completion” B(S−1S) of BS. The motivation comes

from the group completion of a commutative monoid and the term group completion

is a well-defined notion for homotopy-associative H-spaces.

Definition 3.2.8 (Quillen’s S−1S-construction). If S is any symmetric monoidal

groupoid, then we define a new category S−1S as follows. The objects are pairs

of objects of S and a morphism is an equivalence class of composites (m1,m2)
s∗−→

(s ∗m1, s ∗m2)
(f,g)−−→ (n1, n2), where this composite is equivalent to (f ′, g′) ◦ (t∗) when-

ever there is an isomorphism α : s → t satisfying (f ′, g′) ◦ (α ∗ mi) = (f, g). This

assignment is functorial for strict monoidal functors.

The category S−1S is a symmetric monoidal category and the natural map BS →
B(S−1S) taking s ∈ S to (s, e) ∈ S−1S is anH-space map. It induces a map of monoids

π0(S) → π0(S−1S), where the target is an abelian group owing to the existence of

morphisms η : (e, e)→ (m,n) ∗ (n,m) in S−1S.

Definition 3.2.9. If S is any symmetric monoidal category, then we define the K-

theory space K∗(S) of S as the geometric realization of S−1S. The K-groups of S

are defined as K∗n(S) := πnK
∗(S).
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Figure 3.1: K-theory of symmetric monoidal groupoids

This assignment is functorial and the definition of K∗0(S) agrees with the earlier

definition of K0(S) i.e., the group completion of π0(Siso). For each n ≥ 1, the algebraic

K-theory groups for rings are defined by Kn(R) := Kn(isoProj-R).

See Figure 3.1 for the complete description of the categories involved in the def-

initions of the K-theory, where Htpy is the homotopy category of topological spaces

with two endofunctors, the loop-space functor Loop and the suspension functor Susp.

Note that we do not expect that all diagrams commute.

The group K0(S) is, in some sense, “orthogonal” to the groups Kn(S) for n ≥
1. This is because K0(S) identifies isomorphic objects and, in turn, disregards the

automorphism groups AutS(s), whereas the higher K-groups - especially K1(S) - seek

to classify automorphisms.

The following is a very deep theorem connecting the K-theory of the apparently

simple combinatorial category of finite sets and bijections with the stable homotopy

theory of spheres. The statement uses the language of infinite loop spaces (= spectra

= topological spaces with a delooping, which again has a delooping and so on), but a

reader not familiar with these terms can think about ordinary topological spaces.

Theorem 3.2.10 (Barratt-Priddy-Quillen-Segal, [40, Theorem IV.4.9.3]). The follow-

ing three infinite loop spaces are the same:

(a) The group completion K(isoFinSets) of B(isoFinSets);
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(b) Z×BΣ∞ where Σ∞ is the finitary permutation group on a countable set;

(c) The infinite loop space Loop∞S∞ = limn→∞ LoopnSn, where Sn is the sphere of

dimension n.

Hence the groups Kn(FinSets) are the stable homotopy groups of spheres, πsn.

The groups K0(isoFinSets) = πs0 = Z and K1(isoFinSets) = πs1 = Z2 are of

particular interest. The free R-module functor FinSets → F(R) induces maps πsn →
Kn(R).

For many nice examples of symmetric monoidal categories, the group K0(S) carries

an extra multiplicative structure turning it into a ring. This is a special case of a more

general phenomenon. Let S1, S2, S be any symmetric monoidal categories. A pairing

of S1 and S2 is a monoidal functor ⊗ : S1 × S2 → S such that s⊗ e = e⊗ s = e, and

there is a coherent natural bi-distributivity law

(s1 ∗ t1)⊗ (s2 ∗ t2) ∼= (s1 ⊗ s2) ∗ (s1 ⊗ t2) ∗ (t1 ⊗ s2) ∗ (t1 ⊗ t2).

Examples include the cartesian product, times, on FinSets and the tensor product,

⊗, on F(R).

Theorem 3.2.11 (May, [40, Theorem IV.4.6]). A pairing S1 × S2 → S of symmetric

monoidal categories determines a natural pairing K(S1) ∧K(S2) → K(S) of infinite

loop spaces, which in turn induces bilinear products Kp(S1) ⊗Kq(S2) → Kp+q(S). In

particular, if there is a pairing S × S → S, then K0(S) is a ring.

Computation of the K-theory of a given category is in general a very hard problem.

We collect some tools below that will facilitate the task.

Sometimes a subcategory of a symmetric monoidal category contains enough in-

formation about the K-theory of the category.

Definition 3.2.12. Let S ′ be a full subcategory of the symmetric monoidal category

S. If S ′ contains the identity object e of S and is closed under finite products, then S ′

is symmetric monoidal. We say that S ′ is cofinal in S if for every object s in S there

is t in S such that s ∗ t is isomorphic to an object in S ′.

Theorem 3.2.13. Let S ′ be cofinal in the symmetric monoidal category S. Then:

1. K0(S ′) is a subgroup of K0(S);

2. Every element of K0(S) is of the form [s]− [t] for s ∈ S and t ∈ S ′;

3. If [s] = [t] in K0(S), then s ∗ u ∼= t ∗ u for some u in S ′;
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4. For each n ≥ 1, Kn(S) = Kn(S ′).

Example 3.2.14. The category of finite rank (based) free modules over a ring R, F (R),

is cofinal in the category of finitely generated projective modules, Proj-R and hence

Kn(R) := Kn(F (R)) for each n ≥ 1.

Bass defined and studied lower K-groups (for n = 0, 1, 2) of symmetric monoidal

categories before Quillen. It turns out that, under certain conditions, Quillen’s defini-

tions agree with Bass’ definitions.

Theorem 3.2.15 ([40, Cor. IV.4.8.1]). If S is a symmetric monoidal groupoid whose

translations are faithful, then

K1(S) = lim−→
s∈S

H1(AutS(s);Z),

K2(S) = lim−→
s∈S

H2([AutS(s),AutS(s)];Z),

where Hi(G;Z) denotes the ith integral homology group of the group G for i = 1, 2 and

[G,G] denotes the commutator subgroup of the group G.

The following remark will be useful for the computation of K1.

Remark 3.2.16. Suppose that (S, ∗, e) is a symmetric monoidal groupoid whose transla-

tions are faithful. Further suppose that S has a countable sequence of objects s1, s2, . . .

such that sn+1 = sn ∗ an for some an ∈ S, and satisfying the cofinality condition that

for every s ∈ S there is an s′ and an n such that s ∗ s′ ∼= sn. In this case we can form

the group Aut(S) = colimn→∞AutS(sn). Since the functor H1(−,Z) commutes with

colimits, we obtain K1(S) = H1(Aut(S);Z).

3.3 Defining Kn(M) for a structure M

We use the notation of Section 3.1 in this section. Let L denote a language and M

denote an L-structure. Recall that definability always means with parameters.

In Remark 3.2.4 we defined a symmetric monoidal category (S(M),t, ∅) and ob-

served thatK0(S(M)) is the underlying abelian group of the Grothendieck ringK0(M).

Translations are clearly faithful in S(M). The cartesian product of definable sets in

Def(M) is a pairing on S(M), which turns K0(S(M)) into a ring (Theorem 3.2.11)

which is isomorphic to the Grothendieck ring K0(M). This motivates the following

definition.

Definition 3.3.1. If M is a first order L-structure, then define Kn(M) := Kn(S(M))

for each n ≥ 0, where the groups Kn(S(M)) are as defined in Definition 3.2.9.
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If M is an elementary substructure of N and φ(x, a) is any formula with parameters

from M , then φ(N, a) defines a subset of N |x|. This defines a strict monoidal functor

S(M)→ S(N). Hence K-theory is functorial on elementary embeddings.

We will write the category S(M) as S whenever the structure M is clear from the

context.

Example 3.3.2. Let M be a finite structure. Then every subset of Mn is definable

with parameters. Thus the symmetric monoidal groupoid (S,t, ∅) is equivalent to the

groupoid (isoFinSets,t, ∅) of finite sets and bijections. Hence by the Barratt-Priddy-

Quillen-Segal theorem (Theorem 3.2.10), Kn(M) is the nth stable homotopy group of

spheres. In particular, K0(M) = Z and K1(M) = Z2.

We will mainly be interested in the groups K0 and K1 for modules as structures

in the language of right R-modules. Bass’s definition (Theorem 3.2.15) allows us to

compute K1(M) as colimn→∞H1(AutS(Mn);Z). Computation and the study of the

properties of the Grothendieck rings of modules forms the basis of the next three

chapters. We tackle the special case of vector spaces in the next two sections.

3.4 Definable bijections in vector spaces

Let F denote an infinite field. Every F -vector space VF is a first-order structure for

the language LF = 〈0,+,−,mr : r ∈ F 〉, where each mr is a unary function symbol

representing the scalar multiplication by the element r. When we are working in

a fixed vector space VF , we usually write the element mr(a) in formulas as ar for

each a ∈ V . Instead of working with formulas, we fix an infinite F -vector space

VF and work with the definable subsets of its finite cartesian powers, i.e., objects of

the category S = S(VF ). The theory of V eliminates quantifiers in this language

([34, Theorem 2.3.24]) and hence every object of S is a finite boolean combination of

the basic definable subsets, viz., {0}, V, V 2, . . . and their cosets in higher dimensional

spaces.

The following theorem describes the Grothendieck ring of the vector space VF .

It follows from the structure theorem for the Grothendieck rings of modules by not-

ing that the multiplicative monoid of (the isomorphism classes of) the fundamental

definable sets is isomorphic to the additive monoid N of natural numbers.

Theorem 3.4.1 (see Theorem 6.2.3). The semiring D̃ef(VF ) of (definable) isomor-

phism classes of objects of S(VF ) is isomorphic to the sub-semiring of the polyno-

mial ring Z[X] consisting of polynomials with non-negative leading coefficients. Hence

K0(VF ) = Z[X].
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The assignment dim(D) := deg([D]) is a well-defined dimension function on the

objects of S which also agrees with the Morley rank of D. The aim of the rest of this

section is to study the structure the groups AutS(D) for D ∈ S. The elements of this

group are definable bijections D → D, but we will refer to them as automorphisms

of the definable set D since they are automorphisms in the category S. The reader is

warned not be confused with this slightly unusual use of the term which otherwise in

model theory, in the case D = V , refers to structure-preserving maps V → V .

We begin with some definitions and constructions in group theory.

Definition 3.4.2. Let (G, · , e) be a group, N C G and H ≤ G. If G = NH and

N ∩H = {e}, then we say that G is an (inner) semidirect product of N and H

and write G = H nN .

Given any two groups N and H (not necessarily subgroups of a given group) and

a group homomorphism ϕ : H → Aut(N), the (outer) semidirect product of N

and H with respect to ϕ is defined as follows. As a set, H nϕ N is the cartesian

product H ×N . Multiplication of elements in H nϕ N is defined by (h1, n1)(h2, n2) =

(h1h2, n1ϕh1(n2)) for n1, n2 ∈ N and h1, h2 ∈ H. The homomorphism ϕ is usually

suppressed in the notation when it is clear from the context.

Let K,L be groups and T be a set with L acting on it. Let B :=
⊕

x∈T K. The

(restricted) wreath product KwrTL is defined to be the group L n B where the

action of L on the element (kx)x∈T ∈ B is defined by l((kx)x∈T ) := (kl−1x)x∈T . In this

case the group B is said to be the base of the wreath product.

For each 0 ≤ m < n, let Σn
m denote the finitary permutation group on a countable

set of cosets of an m-dimensional subspace of V n. If n, p > m, then it is easy to see

that Σn
m
∼= Σp

m. For a finitary permutation group Σ on a set T and a group G, the

notation G o Σ will always denote the restricted wreath product GwrTΣ.

Definition 3.4.3. Let D ∈ S and f ∈ AutS(D). The support of f is the (definable)

set Supp(f) := {a ∈ D : f(a) 6= a}.

Proposition 3.4.4. For D ∈ S, let Ωm(D) := {f ∈ AutS(D) : dim(Supp(f)) ≤ m}
be the subgroup of AutS(D) of elements fixing all automorphisms of D outside a subset

of dimension at most m. If D1, D2 ∈ S have dimension strictly greater than m, then

Ωm(D1) ∼= Ωm(D2).

Proof. Since dimD1, dimD2 > m, it is always possible to find a set D with an arrow

g : D2 → D in S such that dim(D1 ∩ D) > m. The definable bijection g induces an

isomorphism between Ωm(D2) and Ωm(D). Therefore it is sufficient to prove the result

when D1 ⊆ D2.
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For each i = 1, 2, consider the full subcategory Sm(Di) of S containing definable

subsets of Di of dimension at most m. The restriction of t to Sm(Di) equips it with

a symmetric monoidal structure. Then Ωm(Di) ∼= Aut(Sm(Di)), where the groups on

the right hand side of the equation can be constructed as follows.

Let S1 ⊂ S2 ⊂ · · · be a sequence of objects of Sm(D1), where S1 is a copy of V m

in D1 and Sk+1 is obtained by adding a disjoint copy of V m to Sk for each k ≥ 1. This

sequence is cofinal in Sm(D1) and thus, using (3.2.16) for this sequence, we construct

Aut(Sm(D1)) as colimk→∞AutS(Sk). When D1 ⊆ D2, the same colimit can be used

to construct the group Ωm(D2) ∼= Aut(Sm(D2)). Hence Ωm(D1) is isomorphic to

Ωm(D2).

For each 0 ≤ m < n, let Ωn
m := Ωm(V n). To construct these groups, we construct

a sequence Sm,1 ⊂ Sm,2 ⊂ . . . of objects of Sm(V n) where Sm,k is a disjoint union of

k copies of V m in V n as described in the above proposition. Note that Ωn
0 = Σn

0 . For

simplicity of notation, for each n ≥ 1, we also set Ωn
n := AutS(V n) to get a chain of

normal subgroups of Ωn
n:

Ωn
0 C Ωn

1 C · · ·C Ωn
n−1 C Ωn

n. (3.1)

For each n ≥ 1, let Υn denote the subgroup of AutS(V n) consisting only of definable

linear (i.e., pp-definable - a term that will be defined in Section 4.1) bijections. In other

words, Υn is the group GLn(F ) n V n, where the action of GLn(F ) on V n is given by

matrix multiplication.

The group Υn acts on Ωn
n−1 by conjugation and, in fact, Ωn

n = Υn n Ωn
n−1.

For 0 < m < n, we want to find a subgroup Υn
m of Ωn

m such that Ωn
m = Υn

mnΩn
m−1.

To do this, we look at the construction of the colimit in (3.2.16).

Note that

AutS(Sm,1) ∼= Ωm
m
∼= Υm n Ωm

m−1
∼= Υm n Ωn

m−1,

where the action of Υm on Ωn
m−1 is induced by the isomorphism Ωm

m−1
∼= Ωn

m−1 given

by Proposition 3.4.4. For similar reasons, we also have

AutS(Sm,k) ∼= (Υm o Σk) n Ωm
m−1
∼= (Υm o Σk) n Ωn

m−1,

where Σk is the permutation group on k elements, the group (Υm o Σk) acts on Ωm
m−1

by conjugation and permutes lower dimensional subsets of Sm,k ⊂ V n. Thus

Ωn
m
∼= colimk→∞AutS(Sm,k)

∼= colimk→∞
(
(Υm o Σk) n Ωn

m−1

)
∼= (colimk→∞(Υm o Σk)) n Ωn

m−1

∼= (Υm o Σn
m) n Ωn

m−1.
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Define Υn
m := Υm oΣn

m which acts on Ωn
m−1 by conjugation. Thus each Ωn

n is an iterated

semidirect product of certain wreath products.

Ωn
n = Υn n Ωn

n−1

= Υn n (Υn
n−1 n Ωn

n−2)

= Υn n (Υn
n−1 n (Υn

n−2 n Ωn
n−3))

= Υn n (Υn
n−1 n (Υn

n−2 n (· · · (Υn
1 n Ωn

0 ) · · · ))). (3.2)

3.5 K1 of vector spaces

We continue to use VF to denote an infinite vector space over an infinite field F . In

this section, we write all groups multiplicatively unless otherwise stated.

The aim of this section is to prove the following theorem.

Theorem 3.5.1. Suppose VF is an infinite vector space over an infinite field F and

F× is the group of units in F . Then

K1(VF ) =

(
∞⊕
i=1

(F× ⊕ Z2)

)
⊕ Z2. (3.3)

Remark 3.5.2. Note that, since F is infinite, the (lower) K-theory of the vector space

VF is the same as that of the 1-dimensional vector space FF . In other words, the

(lower) K-theory “does not see” V .

The groups K0(VF ) and K1(VF ) are both graded by dimensions owing to the fact

that the multiplicative monoid of (the isomorphism classes of) the fundamental defin-

able sets in S(VF ) is isomorphic to the additive monoid (N, 0,+) of dimensions. In view

of the Barratt-Priddy-Quillen-Segal Theorem (Theorem 3.2.10), the existence of the

group K0(isoFinSets) = Z in K0(VF ) and the group K1(isoFinSets) = Z2 in K1(VF )

in each dimension can be attributed to the embedding of the groupoid isoFinSets

in each dimension that was (indirectly) used to construct sequences in the proof of

Proposition 3.4.4.

Theorem 3.2.15 is our main tool to prove the above theorem which can be stated

as

K1(VF ) = colimn→∞(Ωn
n)ab, (3.4)

since the first integral homology of a group G is its abelianization Gab.

We compute (Ωn
n)ab in several steps. First we note a result on the abelianization

of finitary permutation groups.
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Proposition 3.5.3 ([4, §6.1]). If T is an infinite set, then the finitary alternating

group Alt(T ) is the commutator subgroup of the finitary permutation group FSym(T ).

In particular, FSym(T )ab = Z2.

The following proposition gives a way to compute the abelianization of a semidirect

product.

Proposition 3.5.4 (see [13, Proposition 3.3]). Let G be a group acting on H. Then

(GnH)ab = Gab×(Hab)G; here (Hab)G is the quotient of Hab by the subgroup generated

by elements of the form hgh−1, where hg denotes the action of g ∈ G on h ∈ Hab

induced by the action of G on H.

Sketch Proof. The commutator subgroup [G n H,G n H] is generated by [H,H] ∪
[G,H] ∪ [G,G]. Therefore (GnH)ab = (GnH)/〈[H,H] ∪ [G,H] ∪ [G,G]〉.

Applying the relators [H,H] gives GnHab, then applying the relators [G,H] gives

G× (Hab)G. Finally applying [G,G], we get the desired group Gab × (Hab)G.

The following lemma is crucial for computation.

Lemma 3.5.5. Let G be a group and Σ = FSym(T ) for an infinite set T . Then

(G o Σ)ab = Gab × Z2. (3.5)

Proof. Let G := (
⊕

x∈T Gx), where Gx is a copy of G for each x ∈ T . Then G o Σ =

G o Σ, where Σ acts on the indices of elements of G. Clearly Gab =
⊕

x∈T G
ab
x .

Define a map ε : Gab → Gab by (gx)x∈T 7→
∏

x∈T gx. It can be easily seen that ε is a

homomorphism.

The action of σ ∈ Σ on g := (gx)x∈T ∈ Gab, denoted gσ, is given by (gσ−1x)x∈T .

Let H denote the subgroup of Gab generated by {gσg−1 : g ∈ Gab, σ ∈ Σ}.
We claim that H = ker ε.

Note that εg = εgσ for each g := (gx)x∈T ∈ Gab, σ ∈ Σ. Hence H ⊆ ker ε.

On the other hand, consider g := (gx)x∈T ∈ ker ε. Since Σ consists of only fini-

tary permutations on T , there are only finitely many x ∈ T such that gx 6= 1, say

x1, x2, . . . , xn. We will use induction on n to show that g ∈ H.

The case when n = 0 is trivial. If n > 0, the identity
∏n

i=1 gxi = 1 gives n ≥ 2.

Assume for induction that the result holds for all values of n strictly less than

k > 0.

Suppose n = k. Let σ be the transposition (x1, x2) ∈ Σ and g′ := (g′x)x∈T be the

element of Gab whose only nontrivial component is g′x1 = g−1
x1

. Let g′′ := gg′((g′)σ)−1.

Then g′′x1 = 1 and εg′′ = 1. The number of non-identity components of g′′ is strictly less
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than k and thus, using induction hypothesis, g′′ ∈ H. Therefore g = g′′(g′)σ(g′)−1 ∈ H
proving the claim.

Now (Gab)Σ = Gab/H = Gab/ ker ε = Gab. We also have Σab = Z2 from Proposi-

tion 3.5.3. Thus Proposition 3.5.4 gives (G o Σ)ab = (Gab)Σ × Σab = Gab × Z2.

Corollary 3.5.6. For each n ≥ 1, we have

(Ωn
n)ab = F× ⊕

n−1⊕
i=1

(F× ⊕ Z2)⊕ Z2. (3.6)

Proof. Fix n ≥ 1 and 0 ≤ m < n. We use the presentation of Ωn
n given by (3.2).

We know that Υn = GLn(F )nV n. Since the additive group V n is abelian, Proposi-

tion 3.5.4 gives (Υn)ab = (GLn(F ))ab× (V n)GLn(F ). For any a(6= 1) ∈ F× (which exists

since the field F is infinite), we have aIn ∈ GLn(F ) where In is the identity matrix.

Now each v ∈ V n can be expressed as (aIn)v′ − v′ for v′ = (a − 1)−1v. Thus the

quotient (V n)GLn(F ) of V n is trivial which, in turn, gives (Υn)ab = (GLn(F ))ab = F×.

Recall from Proposition 3.5.3 that (Σn
m)ab = Z2. Lemma 3.5.5 applied to Υn

m =

Υm o Σn
m gives (Υn

m)ab = (Υm)ab × Z2 = F× ⊕ Z2.

The group Υn
m acts on Ωn

m−1 by conjugation. Recall that the action of Υn
m preserves

the determinant of a matrix in GLn(F ) and the parity of a permutation. Therefore

repeated use of Proposition 3.5.4 gives

(Ωn
n)ab ∼= (Υn n (Υn

n−1 n (· · · (Υn
1 n Ωn

0 ) · · · )))ab

∼= (Υn)ab ⊕ ((Υn
n−1 n (· · · (Υn

1 n Ωn
0 ) · · · ))ab)Υn

∼= (Υn)ab ⊕ ((Υn
n−1)ab ⊕ ((· · · (Υn

1 n Ωn
0 ) · · · )ab)Υn

n−1
)Υn

∼= (Υn)ab ⊕ ((Υn
n−1)ab ⊕ (· · · ((Υn

1 )ab ⊕ ((Ωn
0 )ab)Υn

1
)Υn

2
· · · )Υn

n−1
)Υn

∼= F× ⊕ ((F× ⊕ Z2)⊕ (· · · ((F× ⊕ Z2)⊕ (Z2)Υn
1
)Υn

2
· · · )Υn

n−1
)Υn

∼= F× ⊕ ((F× ⊕ Z2)⊕ (· · · ((F× ⊕ Z2)⊕ Z2) · · · ))

∼= F× ⊕
n−1⊕
i=1

(F× ⊕ Z2)⊕ Z2.

The presentation of the group (Ωn
n)ab in the above corollary clearly shows its de-

composition in different dimensions - a copy of Z2 in dimension 0, a copy of F× in the

highest dimension and a copy of (F× ⊕ Z2) in each other dimension.

In the construction of the sequence Sn,1 ⊂ Sn,2 ⊂ · · · to compute Aut(Sn(V n+1)),

we can choose the copy V n × {0} as Sn,1. This induces an embedding of Ωn
n into

Ωn+1
n C Ωn+1

n+1. This further induces the dimension preserving inclusion of (Ωn
n)ab into
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(Ωn+1
n+1)ab. Hence

K1(VF ) = colimn→∞(Ωn
n)ab

= colimn→∞

(
F× ⊕

n−1⊕
i=1

(F× ⊕ Z2)⊕ Z2

)

=
∞⊕
i=1

(F× ⊕ Z2)⊕ Z2.

This completes the proof of Theorem 3.5.1.

More discussion on the significance of different components of the groups K0(VF )

and K1(VF ), and a conjecture on the structure of K1(MR) for a right R-module MR

can be found in Chapter 8.



Chapter 4

Definable Subsets of Modules

After setting some notations and terminology in the model theory of modules in Sec-

tion 4.1, we describe four special classes of definable subsets of (finite powers of) a

module M namely pp-sets, pp-convex sets, blocks and cells. Under certain hypotheses

on the theory of the module M (stated in Section 4.2), definable sets admit unique

representations in terms of fundamental definable sets i.e., pp-sets. This chapter forms

the lattice-theoretic basis for the analysis in the following two chapters; Corollary

4.2.12 and Corollary 4.3.5 are the highlights. We also define the notion of a connected

definable set in Section 4.4 as a byproduct of the theory we develop.

The material in this chapter is contained in [26, §2.5,3.1,6.3,6.4].

4.1 Model theory of modules

We introduce the terminology and some basic results in the model theory of modules

in this section. A detailed exposition can be found in [33]. Instead of working with

formulas all the time, we fix a structure and work with the definable subsets of its

finite cartesian powers.

Let R be a fixed ring with unity. Then every right R-module M is a structure for

the first order language LR = 〈0,+,−,mr : r ∈ R〉, where each mr is a unary function

symbol representing the action of right multiplication by the element r. When we are

working in a fixed module M , we usually write the element mr(a) in formulas as ar

for each a ∈M .

First we note a result of Perera which states that the Grothendieck ring of a module

is an invariant of its theory. A proof of this proposition can be found at the end of

Section 6.2 as a corollary of Theorem 6.2.3.

Proposition 4.1.1 (see [31, Cor. 5.3.2]). Let M and N be two right R-modules such

that M ≡ N , then K0(M) ∼= K0(N).

45
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Let us fix a right R-module M . Then, for each n ≥ 1, every definable subset of Mn

can be expressed as a boolean combination of certain fundamental definable subsets

of Mn. In order to state this partial quantifier elimination result, we first define the

formulas which define these fundamental subsets.

Definition 4.1.2. A positive primitive formula (pp-formula for short) is a

formula in the language LR which is equivalent to one of the form

φ(x1, x2, . . . , xn) = ∃y1∃y2 . . . ∃ym
t∧
i=1

(
n∑
j=1

xjrij +
m∑
k=1

yksik + ci = 0

)
,

where rij, sik ∈ R and the ci are parameters from M .

A subset of Mn which is defined by a pp-formula (with parameters) will be called a

pp-set. If a subgroup of Mn is pp-definable, then its cosets are also pp-definable. The

following lemma is well known and a proof can be found in [33, Cor. 2.2].

Lemma 4.1.3. Every parameter-free pp-formula φ(x) defines a subgroup of Mn, where

n is the length of x. If φ(x) contains parameters from M , then it defines either the

empty set or a coset of a pp-definable subgroup of Mn. Furthermore, the conjunction

of two pp-formulas is (equivalent to) a pp-formula.

Let Ln denote the meet-semilattice of all pp-subsets of Mn ordered by the inclusion

relation ⊆. We will use the notation Ln(MR), specifying the module, when we work

with more than one module at a time.

Definition 4.1.4. Let M be a right R-module and let A,B ∈ Ln be subgroups. We

define the invariant Inv(M ;A,B) to be the index [A : A ∩ B] if this if finite or ∞
otherwise.

An invariants condition is a statement that a given invariant is greater than or

equal to or less than a certain number. These invariant conditions can be expressed

as sentences in LR. An invariants statement is a finite boolean combination of

invariants conditions.

We are now ready to state the promised fundamental theorem of the model theory

of modules.

Theorem 4.1.5 (see [3]). Let T be the theory of right R-modules and φ(x) be an LR

formula (possibly with parameters). Then we have

T � ∀x(φ(x)↔

(
m∨
i=1

(
ψi(x) ∧

li∧
j=1

¬χij(x)

)
∧ I

)
),

where I is an invariants statement and ψi(x), χij(x) are pp-formulas.



4.2. THE CONDITION T = Tℵ0 47

We may assume that χij(M) ⊆ ψi(M) for each value of i and j, otherwise we

redefine χij as χij ∧ψi. When we work in a complete theory, the invariants statements

will vanish and hence we get the following form.

Theorem 4.1.6. For each n ≥ 1, every definable subset of Mn can be expressed as a

finite boolean combination of pp-subsets of Mn.

Using this result together with the meet-semilattice structure of Ln, we can express

each definable subset of Mn in a “disjunctive normal form” of pp-sets. Expressing a

definable set as a disjoint union helps to break it down to certain low complexity

fragments, each of which has a specific shape given by the normal form. A proof of

this result can be found in [31, Lemma 3.2.1].

Lemma 4.1.7. Every definable subset of Mn can be written as
⊔t
i=1(Ai \ (

⋃si
j=1Bij))

for some Ai, Bij ∈ Ln.

The following lemma is one of the important tools in our analysis.

Lemma 4.1.8 (Neumann’s Lemma, see [33, Theorem 2.12]). If H and {Gi}i∈I are

subgroups of an abelian group K and a coset of H is covered by a finite union of cosets

of the Gi, then this coset of H is in fact covered by the union of just those cosets of

Gi where Gi is of finite index in H, i.e., where [H : Gi] := [H : H ∩Gi] is finite.

c+H ⊆
⋃
i∈I

ci +Gi ⇒ c+H ⊆
⋃
i∈I0

ci +Gi,

where I0 = {i ∈ I : [H : Gi] <∞}.

4.2 The condition T = Tℵ0

Let M be a fixed right R-module. For brevity we denote Th(M) by T . We work with

this fixed module throughout this section.

Proposition 4.2.1 (see [33, p.34, Exercise 2(i)]). The following conditions are equiv-

alent for a module M :

1. for each n ≥ 1 and for each A,B ∈ Ln such that 0 ∈ A ∩ B, Inv(M ;A,B) is

either equal to 1 or ∞;

2. M ≡M ⊕M ;

3. M ≡M (ℵ0).



48 CHAPTER 4. DEFINABLE SUBSETS OF MODULES

Definition 4.2.2. The theory T = Th(M) is said to satisfy the condition T = T ℵ0 if

either (and hence all) of the conditions of Proposition 4.2.1 hold.

We wish to add yet one more condition to the list. The rest of this section is

devoted to formulating the condition and deriving its consequences.

We need to introduce some new notation to do this. Let us denote the set of all

finite subsets of Ln \ {∅} by Pn and the set of all finite antichains in Ln \ {∅} by An.

Clearly An ⊆ Pn for each n ≥ 1. We use the lowercase Greek letters α, β, . . . to denote

the elements of An and Pn.

Definition 4.2.3. A definable subset A of Mn will be called pp-convex if there is

some α ∈ Pn such that A =
⋃
α.

Neumann’s lemma (Lemma 4.1.8) takes the following simple form if we add the

equivalent conditions of 4.2.1 to our hypotheses.

Corollary 4.2.4. Suppose that T = T ℵ0 holds. If A ∈ Ln and F ∈ Pn such that

A ⊆
⋃
F , then A ⊆ F for at least one F ∈ F .

Under the same hypotheses, we show that for every α ∈ Pn the pp-convex set
⋃
α

uniquely determines the antichain β ⊆ α of all maximal elements in α.

Proposition 4.2.5. Suppose that T = T ℵ0 holds. Let A ⊆Mn be a pp-convex set for

some n ≥ 1. Then there is a unique β ∈ An such that A =
⋃
β.

Proof. Let α1, α2 ∈ Pn be such that A =
⋃
α1 =

⋃
α2. Without loss of generality we

may assume α1, α2 ∈ An. Let α1 = {C1, C2, . . . , Cl} and α2 = {D1, D2, . . . , Dm}.
We have Dj ⊆

⋃l
i=1Ci for each 1 ≤ j ≤ m. Then by 4.2.4, we have Dj ⊆ Ci for at

least one i. By symmetry we also get that each Ci is contained in a Dj. Using that

both α1 and α2 are antichains with the same union, the proof is complete.

This proposition shows that under the hypothesis T = T ℵ0 the set of pp-convex

subsets of Mn is in bijection with An for each n ≥ 1. We shall often use this corre-

spondence without mention. For α ∈ An, we define the rank of the pp-convex set
⋃
α

to be the integer |α|.
The set An can be given the structure of a poset by introducing the relation ≺n

defined by β ≺n α if and only if for each B ∈ β, there is some A ∈ α such that B ( A.

Definition and Lemma 4.2.6. Assume that T = T ℵ0. We say that a definable subset

C of Mn is a cell if there are α, β ∈ An with β ≺n α such that C =
⋃
α \

⋃
β. We

denote the set of all cells contained in Mn by Cn. The antichains α and β, denoted by

P (C) and N(C) respectively, are uniquely determined by the cell C. In other words,
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there is a bijection between the set Cn and the set of pairs of antichains strictly related

by ≺n. In case |P (C)| = 1, we say that C is a block. We denote the set of all blocks

in Cn by Bn.

Proof. Given any α, β ∈ An such that β ≺n α and C =
⋃
α \

⋃
β, the pp-convex set⋃

(α∪β) is determined by C. But this set is uniquely determined by the set of maximal

elements in α ∪ β by 4.2.5. Since β ≺n α, the required set of maximal elements is

precisely α. Furthermore, the set
⋃
α \ C =

⋃
β is pp-convex and thus is uniquely

determined by β by 4.2.5 and this finishes the proof.

See Figure 4.1 for a sketch of a block and a cell.

Figure 4.1: A block and a cell (shaded regions)

We know from Lemma 4.1.7 that any non-empty definable subset of Mn can be

represented as a disjoint union of blocks. So it will be important for us to understand

the structure of blocks in detail. For each B ∈ Bn, we use the notation B to denote

the unique element of P (B).

Remark 4.2.7. A block is always nonempty since any finite union of proper pp-subsets

cannot cover the given pp-set by 4.2.5.

Definition 4.2.8. Let D be a finite subset of Ln \ {∅}. The smallest sub-meet-

semilattice of Ln containing D will be called the pp-nest (or simply nest) corresponding

to D and will be denoted by D̂. Note that D̂ is finite. In general, any finite sub-meet-

semilattice of Ln will also be referred to as a pp-nest.

Definition 4.2.9. For each finite subset F of Ln \ {∅} and F ∈ F , we define the

F-core of F to be the block CoreF(F ) := F \
⋃
{G ∈ F : G ∩ F ( F}.

Let D ⊆ Mn be definable. Then D =
⊔m
i=1 Bi for some Bi ∈ Bn by 4.1.7. We say

that D is the nest corresponding to this partition of D if it is the nest corresponding

to the finite family
⋃m
i=1(P (Bi) ∪ N(Bi)). Every definable set can be partitioned

canonically given a suitable nest, which is the content of the following lemma whose

straightforward proof is omitted.

Definition and Lemma 4.2.10. Suppose D ⊆ Mn is definable and D is the nest

corresponding to a given partition D =
⊔m
i=1 Bi. For every nonempty F ∈ D, the
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set CoreD(F ) ∩ D is nonempty if and only if CoreD(F ) ⊆ D. We define the char-

acteristic function of the nest D, δD : D → {0, 1}, by δD(F ) = 1 if and only

if F 6= ∅ and CoreD(F ) ⊆ D. We define D+ := δ−1
D (1) and D− := δ−1

D (0). Then

D =
⋃
F∈D+ CoreD(F ).

See Figure 4.2 for an illustration of the terms.

δD(F ) = 1
δD(F ) = 0

Figure 4.2: Nest, cores and the characteristic function

Now we explore the relation between a block B and the pp-set B.

Theorem 4.2.11. Let M be an R-module. Then Th(M) = Th(M)ℵ0 if and only if

for each B ∈ Bn, n ≥ 1, we have B + B − B = B. Under these conditions, we also

get B −B = B whenever B is a subgroup.

Proof. Assume that Th(M) = Th(M)ℵ0 holds. Let B ∈ Bn be defined by N(B) =

{D1, D2, . . . , Dl} ≺ P (B) = {A}. Let D =
⋃
N(B). We want to show that B + B −

B = A. But clearly B ⊆ B +B −B. So it suffices to show that D ⊆ B +B −B.

First assume that A is a subgroup of Mn. Let d ∈ D. Since A \ (D− d) is a block,

we can choose some x ∈ A \ (D− d) by 4.2.7. Then x+ d ∈ (A+ d) \D = A \D = B,

since A is a subgroup. Again choose some y ∈ A \ ((D − d) ∪ (D − d − x)). Then

y+ d ∈ A \ (D∪ (D−x)) for similar reasons. Thus y+ d, y+x+ d ∈ A \D = B. Now

d = (d+ x) + (d+ y)− (d+ x+ y) ∈ B +B −B and hence the conclusion follows.

In the case when A is a coset of a pp-definable subgroup G, say A = a + G, let

C = D−a. Then, by the first case, G = C+C−C. Now if d ∈ A, then d−a ∈ G. Hence

there are x, y, z ∈ C such that d−a = x+y−z. Thus d = (x+a)+(y+a)− (z+a) ∈
B +B −B and this completes the proof in one direction.

For the converse, suppose that Th(M) 6= Th(M)ℵ0 . Then there are two pp-

definable subgroups H ≤ G of Mn for some n ≥ 1 such that1 < [G : H] < ∞.

Let [G : H] = k and let H1, H2, · · · , Hk be the distinct cosets of H in G. Since H is a

pp-set, all the cosets Hi are pp-sets as well. Now let B = Hk = G \
⋃k−1
i=1 Hi. Then B

is a nonempty block since k > 1. But, since B is a coset, B +B −B = B 6= G which

proves the result in the other direction.

Now we prove the last statement under the hypothesis Th(M) = Th(M)ℵ0 . Let

B,A,D be as defined in the first paragraph of the proof and assume that A is a
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subgroup of Mn. Given any a ∈ A, we can choose x ∈ A \ (D ∪ (D − a)) by 4.2.7.

Then x, x + a ∈ B and hence a = (x + a) − x ∈ (B − B). This shows the inclusion

A ⊆ B−B. We clearly have (B−B) ⊆ (A−A) and A−A = A since A is a subgroup.

This completes the proof.

A map f : B → Mn is said to be linear if f(x + y − z) = f(x) + f(y) − f(z) for

all x, y, z ∈ B such that x + y − z ∈ B. It is said to be a pp-definable map if there

is a pp-formula (with parameters from M) ρ(x, y) which defines a function on B that

extends f . A pp-definable map is clearly linear.

We can use the above theorem to show that any injective linear map on B can be

extended uniquely to an injective linear map on B. The following corollary proves this

assertion only for injective pp-definable maps.

Corollary 4.2.12. Suppose that T = T ℵ0 holds. Then for each n ≥ 1, each B ∈ Bn
and each injective pp-definable map f : B � Mn, there exists a unique injective

pp-definable extension f : B�Mn.

Proof. Let φ(x)∧¬(∨ki=1ψi(x)) be a formula defining the block B where φ(x), ψi(x) are

pp-formulas with parameters. Suppose ρ(x, y) is a pp-formula (with parameters) such

that ∃yρ(x, y) ≡ φ(x). Further suppose that ρ(x, y) defines a function on B which

extends the injective function f : B�Mn.

Now the graph of f is the block defined by ρ(x, y)∧¬(∨ki=1ψi(x)). Theorem 4.2.11

says that the pp-formula ρ(x, y) is uniquely determined by the graph of f .

Now we need to show that the function f : B →Mn defined by the formula ρ(x, y)

is injective. Let D := B \ B. Without loss we can assume that B is a subgroup of

Mn, 0 ∈ B and, by translating the map f if necessary, that f(0) = 0.

Now suppose there is a ∈ B such that f(a) = 0. Then certainly a ∈ D otherwise

it contradicts the hypothesis that f is injective. Now the set B \ (D ∪ (D − a))

is nonempty. In other words, there is some c ∈ B such that c + a ∈ B. Then

f(c + a) = f(c + a) = f(c) + f(a) = f(c). This contradicts the hypothesis that f is

injective on B and completes the proof.

4.3 Representing definable sets uniquely

We fix some R-module M whose theory T satisfies the condition T = T ℵ0 and some

n ≥ 1. We drop all the subscripts n and write L \ {∅},A \ {∅}, . . . as L∗,A∗, . . .
respectively.

The aim of this section is to generalize the uniqueness of representation result of

[12, Cor. 2.3] to modules which satisfy unpackability condition (T = T ℵ0).
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The pp-elimination theorem for the model theory of modules (Theorem 4.1.5) states

that every definable set can be written as a finite disjoint union of blocks. But this

representation is far from being unique in any sense. On the other hand we have

unique representations for pp-convex sets (Proposition 4.2.5) and cells (Lemma 4.2.6).

We exploit these ideas to achieve a unique representation for every definable set - an

expression as a disjoint union of cells. This result will be called the ‘cell decomposition

theorem’.

Proposition 4.3.1. Let {Ai}mi=1 ∈ P and B ∈ B be such that B ⊆
⋃m
i=1Ai. Then

B ⊆
⋃m
i=1Ai.

Proof. We have B = B ∪
⋃
N(B). Hence B ⊆

⋃m
i=1Ai ∪

⋃
N(B). By 4.2.4, B ⊆ Ai

for some i, or B ⊆ D for some D ∈ N(B). The latter case is not possible since

N(B) ≺ P (B) = {B}. Hence the result.

Lemma 4.3.2. Let D ∈ Def(Mn). Then there is a unique pp-convex set D which

satisfies D ⊆
⋃
α ⇒ D ⊆

⋃
α for every α ∈ A.

Proof. Let D =
⊔m
i=1Bi =

⊔l
j=1B

′
j be any two representations of D as disjoint unions

of blocks.

Claim:
⋃m
i=1 Bi =

⋃l
j=1B

′
j

Proof of the claim: We have Bi ⊆
⊔m
i=1Bi =

⊔l
j=1 B

′
j ⊆

⋃l
j=1B

′
j for each i. Hence

Bi ⊆
⋃l
j=1 B

′
j by the above proposition. Therefore

⋃m
i=1Bi ⊆

⋃l
j=1B

′
j. The reverse

containment is by symmetry and hence the claim.

Now we define D =
⋃m
i=1Bi. By the claim, this pp-convex set is uniquely defined.

Let α ∈ A be such that D ⊆
⋃
α. But D =

⊔m
i=1Bi. Hence Bi ⊆

⋃
α for

each i. By arguments similar to the proof of the claim, we get
⋃m
i=1 Bi ⊆

⋃
α i.e.,

D ⊆
⋃
α.

The assignment D 7→ D, where D is the pp-convex set obtained from the lemma,

defines a closure operator Def(Mn)→ An. This closure operation is the key in proving

the cell decomposition theorem.

The relation ≺ on A induces a partial order on the class C of cells.

Definition 4.3.3. Given C1, C2 ∈ C, we say that C1 ≺ C2 if P (C1) ≺ N(C2) in A. A

tower of cells is a finite subset F of C that is linearly ordered by ≺. We denote the

set of all finite towers of cells by T .

Theorem 4.3.4 (Cell Decomposition Theorem). For each n ≥ 1, there is a

bijection between the set Def(Mn) of all definable subsets of Mn and the set Tn of

towers of cells.
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Proof. Let D ∈ Def(Mn). We construct a tower F of cells by defining a nested

sequence {Dj}j≥0 of definable subsets of D as follows.

We set D0 := D and, for each j > 0, we set Dj := Dj−1 \ Cj, where Cj :=

Dj−1 \ (Dj−1 \Dj−1) is a cell. We stop this process when we obtain Dj = ∅ for the

first time. This process must terminate because the elements of the antichains involved

in this process belong to some finite nest containing a fixed decomposition of D into

blocks.

In the converse direction, we assign
⋃
F ∈ Def(Mn) to F ∈ T .

It is easy to verify that the two assignments defined above are actually inverses of

each other.

A chain α2k ≺ α2k−1 ≺ . . . ≺ α1 in A naturally corresponds to a tower Ck ≺ . . . ≺
C1 where Ci :=

⋃
α2i−1 \

⋃
α2i for 1 ≤ i ≤ k. Furthermore, every ≺-chain in A∗ can

be uniquely thought of as a ≺-chain of even length (i.e., even number of elements) in

A by adding the empty antichain at the bottom of the chain if necessary. This sets

up a bijection between the set of non-empty ≺-chains in A∗ and non-empty towers of

cells.

Suppose α ∈ P and α1 is the set of maximal elements of α. For each j ≥ 1, we set

αj+1 to be the set of maximal elements of α \
⋃j
i=1 αi (if non-empty). This produces a

finite ≺-chain in A∗. In the other direction, the union of antichains in a finite ≺-chain

gives an element of P .

We summarize this discussion in the following corollary to Theorem 4.3.4 which

gives a combinatorial representation theorem for Def(Mn).

Corollary 4.3.5. For each n ≥ 1, the set Def(Mn) is in bijection with the set Pn of

finite subsets of Ln.

This bijection imparts a boolean algebra structure to Pn owing to the presence

of such structure on Def(Mn). The boolean algebra Pn can be rightly termed as the

‘free boolean algebra’ on the meet-semilattice Ln (equivalently, on the free distributive

lattice An).

4.4 Connected definable sets

We fix a right R-module M satisfying Th(M) = Th(M)ℵ0 and some n ≥ 1. We drop

all the subscripts n as usual.

In this section we describe what we mean by the statement that a definable subset

of a (finite power of a) module is connected. The property of being connected is

not preserved under definable isomorphisms. We prove a (topological) property of
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connected sets which states that a definable connected set A contained in another

definable set B is in fact contained in a connected component of B.

Let F ,F ′ ⊆ B be two finite families of disjoint blocks such that
⋃
F =

⋃
F ′. Then

we say that F ′ is a refinement of F if for each F ′ ∈ F ′, there is a unique F ∈ F such

that F ′ ⊆ F . Recall from 4.2.10 that if
⋃
F ∈ B and if D is the corresponding nest,

then {CoreD(D)}D∈D+ is a refinement of F , where D+ is the set δ−1
D {1}. We use this

property of nests to attach a digraph with each of them.

Definition 4.4.1. Let D be a nest corresponding to a fixed finite family of pairwise

disjoint blocks. We define a digraph structure H(D+) on the set D+. The pair

(F1, F2) of elements of D+ will be said to constitute an arrow in the digraph if F1 ( F2

and F1 ⊆ F ⊆ F2 for some F ∈ D+ if and only if F = F1 or F = F2.

If
⋃
F∈D+ CoreD(F ) ∈ B, then D+ is an upper set and in particular H(D+) is

weakly connected i.e., its underlying undirected graph is connected. It seems natural

to use this property to define the connectedness of a definable set.

Definition 4.4.2. Let D ∈ Def(Mn) be represented as D =
⋃
F , where F ⊆ B is a

finite family of pairwise disjoint blocks and let D denote the nest corresponding to F .

We say that D is connected if and only if the digraph H(D′+) is weakly connected

for some nest D′ containing D.

Note the existential clause in this definition. Let F ,F ′ be two finite families of

pairwise disjoint blocks with
⋃
F =

⋃
F ′ and let D,D′ denote the nests corresponding

to them. If F ′ refines F , then the number of weakly connected components of H(D′+)

is bounded between 0 and the number of weakly connected components of H(D+).

This observation allows us to define the following invariant.

Definition 4.4.3. We define the number of connected components of D, denoted

λ(D), for every nonempty definable set D to be the least number of weakly connected

components of H(D+), where D varies over nests refining a fixed partition of D into

disjoint blocks. We set λ(∅) = 0.

Note that a definable set D is connected if and only if λ(D) = 1. We denote the set

of all connected definable subsets of Mn by Conn. In the discussion on connectedness,

we have treated blocks as if they are the basic connected sets. We have Bn ⊆ Conn

as expected.

Illustration 4.4.4. Consider the vector space RR. The pp-definable subsets of the plane,

R2, are points, lines and the plane.
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Note that if a definable subset of R2 is topologically connected, then it is connected

according to Definition 4.4.2. The converse is not true in general. The set B = {(x, 0) :

x 6= 0} is not topologically connected, but B ∈ Con2 since B is a block.

If D denotes the union of two coordinate axes with the origin removed, then the

number of topologically connected components of D is 4, whereas λ(D) = 2.

Remark 4.4.5. If X is a ‘nice’ topological space (e.g., a simplicial complex), then the

rank b0 of the homology group H0(X) is the number of (path-)connected components

of X. In section 5.3 we will associate a simplicial complex KP (α) to each pair (P, α),

where P ∈ Ln and α ∈ A(P ). Now if α 6= ∅, then b0(KP (α)) = λ(
⋃
α\P ). Note that the

‘deleted neighbourhood’ of P in α, i.e., the set
⋃
α \ P , occurs in this correspondence

since the clause α ∈ A(P ) makes sure that the ‘non-deleted neighbourhood’
⋃
α is

connected.

Topologically connected sets satisfy the following property. If a connected set A is

contained in another set B, then A is actually contained in a connected component of

B. We have a similar result here.

Theorem 4.4.6. Let A,Bi ∈ Conn for 1 ≤ i ≤ m be such that λ(
⋃m
i=1Bi) = m. If

A ⊆
⋃m
i=1Bi, then A ⊆ Bi for a unique i.

Proof. Let D be a nest containing the nests corresponding to some fixed families of

blocks partitioning A and all the Bi. The restriction of the digraph H(D+) to A is

a subdigraph of H(D+). Since the former is weakly connected, it is a sub-digraph of

exactly one of the m weakly connected components of the latter.
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Chapter 5

Grothendieck Rings of Modules:

Case T = Tℵ0

As the title of the chapter suggests, we compute the Grothendieck ring of a fixed right

R-module M whose theory T satisfies the model-theoretic condition T = T ℵ0 and

show that it is a monoid ring (Theorem 5.4.2). In the first three sections we fix some

n ≥ 1 and drop the subscripts n from Ln,An, . . . and, for brevity, we denote the sets

L \ {∅},A \ {∅}, . . . by L∗,A∗, . . . respectively.

Local characteristics (Section 5.1) are a family of integer valued functions indexed

by pp-sets imparting shape to definable sets. Theorems 5.1.6 and 5.5.1 - which state

that the local characteristics are additive and multiplicative respectively - are the

two key ingredients of our recipe to prove the main theorem. Using pp-definable iso-

morphisms of pp-sets, which we call colours, we bundle the local characteristics into

coloured global characteristics in Section 5.3. The coloured global characteristics are

families of integer valued functions on definable isomorphism classes of definable sets

(Theorem 5.3.9). Given any definable set D, the data stored in the global character-

istics associated with (the definable isomorphism class of) D gives its class [D] in the

Grothendieck ring K0(M).

The material in this chapter is contained in [26, §3.2,3.3,3.4,3.5,4.1,4.2,4.3].

5.1 Local characteristics

The aim of this section is to define functions κa, for each a ∈Mn, on the distributive

lattice of finite abstract simplicial complexes on the meet-semilattice L and prove that

they are valuations in the sense of [23].

In Section 4.2, we defined the characteristic function associated with a nest. In

this section, we will use another family of characteristic functions defined below.

57
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Definition 5.1.1. Given any C ∈ C, we define the characteristic function of the

cell C, δ(C) : L∗ → {0, 1}, as δ(C)(P ) = 1 if δD(P ) = 1 for the nest D corresponding

to P ∪ P (C) ∪N(C), and δ(C)(P ) = 0 otherwise, for each P ∈ L∗. When P = {a},
we write the expression δ(C)(a) instead of δ(C)({a}).

The set A of antichains is ordered by the relation ≺ but can also be considered

as a poset with respect to the natural inclusion ordering on the set of all pp-convex

sets. For α, β ∈ A, we define α ∧ β to be the antichain corresponding (in the sense of

4.2.5) to (
⋃
α)∩ (

⋃
β) and α ∨ β to be the antichain corresponding to (

⋃
α)∪ (

⋃
β).

Since the intersection and union of two pp-convex sets are again pp-convex, the binary

operations ∧,∨ : A × A → A are well-defined. It can be easily seen that A is a

distributive lattice with respect to these operations.

We want to understand the structure of a definable set “locally” in a neighbourhood

of a point in Mn. The following lemma defines a class of sub-lattices of A which

provides the necessary framework to define the concept of localization. The proof is

an easy verification of an adjunction and is not given here.

Definition and Lemma 5.1.2. Fix some a ∈ Mn. Let La := {A ∈ L : a ∈ A} and

Aa denote the set of all antichains in the meet-semilattice La. Then Aa is a sub-lattice

of A. We denote the inclusion Aa → A by Ia. We also consider the map Na : A → Aa
defined by α 7→ α∩La. We call the antichain Na(α) the localization of α at a. Then

Na is a right adjoint to Ia if we consider the posets A and Aa as categories in the usual

way, and the composite Na ◦ Ia is the identity on Aa. This in particular means that

Aa is a reflective subcategory of A. Furthermore, the map Na not only preserves the

meets of antichains, being a right adjoint, but it also preserves the joins of antichains.

Fix some a ∈ Mn. Let us denote the set of all finite subsets of La by Pa and let

α ∈ Pa. We construct a simplicial complex Ka(α) which determines the “geometry”

of the intersection of elements of α around a. This construction is similar to the

construction of the nerve of an open cover, except for the meaning of the “triviality”

of the intersection. We know that a pp-set is finite if and only if it has at most 1

element. We also know that
⋂
α ⊇ {a}.

Definition 5.1.3. We associate an abstract simplicial complex Ka(α) to each α ∈ Pa
by taking the vertex set V(Ka(α)) := α \ {a}. We say that a nonempty set β ⊆ α

is a face of Ka(α) if and only if
⋂
β is infinite (i.e., strictly contains a). If the only

element of α is {a} or if α = ∅, then we set Ka(α) = ∅, the empty complex.

Illustration 5.1.4. Consider the real vector space RR. The theory of this vector space

satisfies the condition T = Tℵ0 . We consider subsets of R3. If α denotes the antichain
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corresponding to the union of 3 coordinate planes and a is the origin, then Ka(α) is

a copy of ∂∆2. The 2-dimensional face of ∆2 is absent since the intersection of the

coordinate planes does not contain the origin properly.

Since β1 ⊆ β2 ⇒
⋂
β2 ⊆

⋂
β1, Ka(α) is indeed a simplicial complex. We tend

to drop the superscript a when it is clear from the context. To extend this definition

to arbitrary elements of P , we extend the notion of localization operator (at a) to P
by setting Na(α) = α ∩ La for each α ∈ P . Now we are ready to define a family of

numerical invariants for convex subsets of Mn, which we call “local characteristics”.

Definition 5.1.5. We define the function κa : P → Z by setting

κa(α) := χ(K(Na(α)))− δ(α)(a),

where χ(K) denotes the Euler characteristic of the complex K as defined in 2.2.2 and

δ(α) is the characteristic function of the set
⋃
α as defined in 5.1.1. The value κa(α)

will be called the local characteristic of the antichain α at a.

If we view the local characteristic κa(α) as a function of a for a fixed antichain α,

the correction term δ(α)(a) makes sure that κa(α) = 0 for all but finitely many values

of a. This fact will be useful in the next section.

We want to show that each local characteristic is a valuation in the sense of [23]

i.e., it satisfies the inclusion-exclusion principle for antichains.

Theorem 5.1.6. For each a ∈Mn and α, β ∈ Aa the following identity holds:

κa(α ∨ β) + κa(α ∧ β) = κa(α) + κa(β).

The rest of this section is devoted to the proof of this theorem. First we observe

that it is sufficient to prove this theorem for α, β ∈ Aa. We also observe that it is

sufficient to prove this theorem in the case when κa is replaced by the function χ(K(−))

because κa(α) = χ(K(α))− 1 whenever a ∈
⋃
α and the cases when either a /∈

⋃
α or

a /∈
⋃
β are trivial. We write κa as κ for simplicity of notation.

Illustration 5.1.7. Consider the real vector space RR. The theory of this vector space

satisfies the condition T = Tℵ0 . We consider subsets of R3. Suppose α is the antichain

corresponding to the formula (X = 0) ∨ (Y = 0) and β is the antichain corresponding

to the formula Z = 0. Then α ∨ β is the antichain corresponding to the formula

(X = 0) ∨ (Y = 0) ∨ (Z = 0) and α∧β is the antichain corresponding to the formula

(X = Z = 0) ∨ (Y = Z = 0). Hence K(α),K(β),K(α∨ β) and K(α∧ β) are copies of

∆1,∆0, ∂∆2 and ∆0 t∆0 respectively. Their Euler characteristics can be readily seen

to satisfy the required inclusion-exclusion principle.
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The following proposition is the first step in this direction, which states that κ(α)

is actually determined by the pp-convex set
⋃
α.

Proposition 5.1.8. Let α ∈ Aa and β ∈ Pa. If
⋃
α =

⋃
β, then κ(α) = κ(β).

Proof. It is clear that β ⊇ α since β is finite. Hence K(α) is a full sub-complex of K(β)

(i.e., if β′ ∈ K(β) and β′ ⊆ α, then β′ ∈ K(α)). We can also assume that {a} /∈ β.

Note that every element β \α is properly contained in at least one element of α. Now

we use induction on the size of β \ α to prove this result.

If β \ α = ∅, then the conclusion is trivially true. For the inductive case, suppose

α ⊆ β′ ( β and the result has been proved for β′. Let B ∈ β \ β′. Since α is the set

of maximal elements of β, there is some A ∈ α such that A ) B.

Consider the complex K1 = {F ∈ K(β′) : (F ∪ {B}) ∈ K(β′ ∪ {B})} as a full

sub-complex of K(β′). Observe that whenever B ∈ F ∈ K(β′ ∪ {B}), we have (F ∪
{A}) \ {B} ∈ K(β′). As a consequence, K1 = Cone(K(β′ \ {A})) where the apex of

the cone is A. In particular, K1 is contractible.

Also note that K(β′ ∪ {B}) = K(β′) ∪Cone(K1), where the apex of the cone is B.

Now we compare the pair K1 ⊆ K(β′) with another pair Cone(K1) ⊆ K(β′ ∪ {B}) of

simplicial complexes. Observe the set equality K(β′) \ K1 = K(β′ ∪ {B}) \ Cone(K1).

Also both K1 and Cone(K1) are contractible. Thus we conclude that K(β′ ∪ {B})
and K(β′) are homotopy equivalent. Finally, an application of 2.2.4 completes the

proof.

Note that this result is very helpful for the computation of local characteristics as

we get the equalities κ(α ∨ β) = κ(α ∪ β) and κ(α ∧ β) = κ(α ◦ β) for all α, β ∈ Aa,
where α ◦ β = {A ∩ B : A ∈ α,B ∈ β}. The vertices of K(α ◦ β) will be denoted by

the elements from α× β.

We use induction twice, first on |β| and then on |α|, to prove the main theorem of

this section. The following lemma is the first step of this induction.

Lemma 5.1.9. For α, β ∈ Aa and |α| ≤ 1, we have κ(α∨β)+κ(α∧β) = κ(α)+κ(β).

Proof. The cases |α| = 0 and α = {{a}} are trivial. So we assume that α = {A} where

A is infinite. We can make similar non-triviality assumptions on β, namely there is at

least one element in β and all the elements of β are infinite.

There are only two possible cases when |β| = 1 and the conclusion holds true in both

these cases. For example when β = {B} and A∩B = {a}, we have K(α) ∼= K(β) ∼= ∆0,

K(α◦β) is empty and K(α∪β) is disjoint union of two copies of ∆0. Hence the identity

in the statement of the lemma takes the form 1 + (−1) = 0 + 0.
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Suppose for the inductive case that the result is true for β i.e., κ(α ∨ β) + κ(α ∧
β) = κ(α) + κ(β) holds. We want to show that the result holds for β ∪ {B} i.e.,

κ(α ∨ (β ∪ {B})) + κ(α ∧ (β ∪ {B})) = κ(α) + κ(β ∪ {B}).
We introduce some superscript and subscript notations to denote new simplicial

complexes obtained from the original. The following list describes them and also

explains the rules to handle two or more scripts at a time.

• Let K0 denote the complex K(α), i.e., the complex consisting of only one vertex

and K denote the complex K(β).

• Let KS denote the complex K(β ∪ S) for any finite S ⊆ La which contains only

infinite elements. Also, KA,B is a short hand for K{A,B}.

• Whenever C is a vertex of Q, the notation QC denotes the sub-complex {F ∈
Q : C /∈ F, F ∪ {C} ∈ Q} of Q.

• If Q = K(γ) for some antichain γ and A /∈ γ, then the notation AQ denotes the

complex K({A} ◦ γ).

• The notation CKSB means C((KS)B). This describes the order of the scripts.

• The Euler characteristic of CKSB will be denoted by CχSB.

Using this notation, the inductive hypothesis is

χA + Aχ = χ0 + χ (5.1)

and our claim is

χB,A + AχB = χ0 + χB. (5.2)

Case I: (A ∩ B) = {a}. In this case, the faces of KA,B not present in KA are

precisely the faces of KB not present in K. Thus H∗(KB;K) = H∗(KA,B;KA). An

application of 2.2.5 gives

χB,A − χA = χB − χ

Also note that the hypothesis (A ∩ B) = {a} yields H∗(
AK) = H∗(

AKB) since only

infinite elements matter for the computations. It follows that Equation (5.2) holds in

this case.

Case II: A∩B ) {a}. Note that whenever C is not a vertex of Q, we have QCC ⊆ Q
and Q∪Cone(QCC) = QC , where the apex of the cone is C. Hence Corollary 2.2.8 can

be restated in this notation as the following identity.

χ(Q) + 1 = χ(QC) + χ(QCC) (5.3)
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As particular cases of (5.3), we get the following equalities.

χ+ 1 = χB + χBB. (5.4)

χA + 1 = χA,B + χA,BB (5.5)

χBB + 1 = χA,BB + χA,BA,B (5.6)

It can be checked that KA,BA,B
∼= AKBB via the map F 7→ {{C,A} : C ∈ F}. This gives

us the following equation.

χA,BA,B = AχBB (5.7)

If we combine Equations (5.1), (5.4), (5.5), (5.6) and (5.7), it remains to prove the

following to get Equation (5.2) in the claim.

Aχ+ 1 = AχB + AχBB (5.8)

Observe that the natural inclusion maps i1 : K0 → KA and i2 : K → KA are inclusions

of sub-complexes and their images are disjoint. Furthermore, the set theoretic map

g : KA \ (Im(i1) t Im(i2)) → AK defined by F 7→ {σ ⊆ F : A ∈ σ, |σ| = 2}
is a bijection. Now consider the composition AKB ∼= KA,B \ (i1(K0) t i2(KB))

πB−→
KA \ (i1(K0)t i2(K)) ∼= AK, where πB(F ) = F \{B}. The union of images (under this

composition of maps) of those faces in AKB which contain A ∩ B is the sub-complex
AKBB of AK. Hence (AK ∪Cone(AKBB)) ∼= AKB, where the apex of the cone is {A,B}.
An application of 2.2.8 gives the required identity in Equation (5.8).

We use Definition 2.2.2 of Euler characteristic to prove the second step in the proof

of the main theorem since we do not have a proof using homological techniques. In

this step, we allow the size of β to be an arbitrary but fixed positive integer and we use

induction on the size of α. The lemma just proved is the base case for this induction.

Let A be a new element of La to be added to α and assume the result is true for α.

Again we may assume that A is infinite.

We construct the complexK(α∪β∪{A}) in steps starting with the complexK(α∪β)

and the conclusion of the theorem holds for the latter by the inductive hypothesis. We

do this in such a way that at each step K1 of the construction, the following identity

is satisfied.

χ(K(α ∪ {A} ∪ β) ∩ K1) + χ(K((α ∪ {A}) ◦ β) ∩ K1) = (5.9)

χ(K(α ∪ {A}) ∩ K1) + χ(K(β))

In this expression, K((α∪ {A}) ◦ β)∩K1 denotes the subcomplex of K((α∪ {A}) ◦ β)

whose faces are appropriate projections of the faces of K1.
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For the first step, we construct all the elements in K(α ∪ {A}) not in K(α). Let

K′1 denote the resulting complex. No new faces of the complex K((α ∪ {A}) ◦ β) are

constructed in this process. Hence, for each n ≥ 0, we have

vn(K′1)− vn(K(α ∪ β ∪ {A})) = vn(K′1 ∩ K(α ∪ {A}))− vn(K(α ∪ {A})),

where vn(Q) denotes the number n-dimensional faces of Q. Hence Equation (5.9) is

satisfied for K′1.

For the second step, we further construct all the faces corresponding to {A} ◦ β.

The conclusion in this case follows from the previous lemma.

Finally we inductively construct the faces containing A and intersecting both α ∪
{A} and β whenever all its proper sub-faces have already been constructed. We

construct a face F of size (m+ k) - where |F ∩ (α ∪ {A})| = m ≥ 1, |F ∩ β| = k ≥ 1.

Let K2 denote the sub-complex of K(α ∪ {A} ∪ β) just before the construction

of F and assume, for induction, that Equation (5.9) is true for K2. It is clear that

χ(K(α ∪ {A}) ∩ (K2 ∪ {F})) = χ(K(α ∪ {A}) ∩ K2). We also have the identity

χ(K2 ∪ {F})− χ(K2) = (−1)dimF = (−1)m+k−1.

Whenever Y is a finite set, we use the notation ∆Y to denote the simplex P(Y )\{∅}
which is a copy of ∆|Y |. Let F denote the set of all maximal proper subsets of F .

For F ′ ( F , define φ(F ′) := {σ ⊆ F ′ : |σ ∩ (α ∪ {A})| = 1, |σ ∩ β| = 1}. Let

K3 =
⋃
F ′∈F ∆φ(F ′). Note that V(K3) ⊆ (α ∪ {A})× β and K3 ⊆ K((α ∪ {A}) ◦ β).

Observe that χ(K((α ∪ {A}) ◦ β) ∩ (K2 ∪ {F})) − χ(K((α ∪ {A}) ◦ β) ∩ K2) =

χ(∆φ(F )) − χ(K3). The complex ∆φ(F ) is contractible and hence χ(φ(F )) = 1 by

2.2.4. Therefore, to obtain Equation (5.9) for K2 ∪ {F}, it remains to show that

χ(K3) = (−1)m+k+1 + 1.

Using the inclusion-exclusion principle for Euler characteristic, we obtain

χ(K3) =
∑
∅6=S⊆F

(−1)|S|−1 χ

( ⋂
F ′∈S

∆φ(F ′)

)
It can be readily checked that φ preserves intersections, and so does the operator

∆φ(−). Thus the right hand side of the above equation becomes∑
∅6=S⊆F

(−1)|S|−1 χ
(
∆φ(

⋂
S)
)
.

The Euler characteristic of ∆φ(
⋂
S) is either 1 or 0 depending on whether

⋂
S intersects

both α ∪ {A} and β or not. Therefore the above sum is equal to
∑

(−1)|S|−1 where S

ranges over all nonempty subset of F such that
⋂
S intersects both α ∪ {A} and β.

Note that the map P(F) \ {∅} → P(F ) \ {F} defined by S 7→
⋂
S is a bijection.

Hence the above sum is equal to
∑

(−1)|F |−|F
′|−1 where F ′ ranges over all proper

subsets of F which intersect both α ∪ {A} and β.
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Let wn denote the number of subsets of F of size n which intersect both α ∪ {A}
and β. Then clearly wn = Σn−1

j=1

(
m
j

)(
k
n−j

)
. This number can be easily shown to be

equal to
(
m+k
n

)
−
(
m
n

)
−
(
k
n

)
. Hence

χ(K3) =
m+k−1∑
n=2

(−1)m+k−1−nwn =
m+k−1∑
n=2

(−1)m+k−1−n
[(
m+ k

n

)
−
(
m

n

)
−
(
k

n

)]
But we know that Σm+k

n=0 (−1)m+k−1−n [(m+k
n

)
−
(
m
n

)
−
(
k
n

)]
= 0 since each of the

three alternating sums is zero. This equation rearranges to give the required identity

and completes the proof.

5.2 Global characteristic

In this section, we extend the definition of the valuations κa from the distributive

lattice of finite antichains in L to the boolean algebra of definable subsets of Mn.

We also describe a way to combine the information in the local characteristics of a

definable set to a single invariant called the global characteristic.

Let the function κ : A×Mn → Z be defined by κ(α, a) = κa(α). Suppose α = {A}.
If A is infinite, then κ(α,−) is the constant 0 function and if A = {a}, then κ(α, b) = 0

for all b 6= a and κ(α, a) = −1. For an arbitrary α ∈ A, if a /∈
⋃
α, then κ(α, a) = 0.

Definitions 5.2.1. For α ∈ A, we define the set of singular points of α to be

the set Sing(α) := {a ∈ Mn : κ(α, a) 6= 0}. Sing(α) is always finite since all the

singular points appear as singletons in the nest corresponding to α. We define the

global characteristic of α to be the sum Λ(α) := −Σa∈Mnκ(α, a), which in fact is

equal to the finite sum Λ(α) = −Σa∈Sing(α)κ(α, a).

Fix some a ∈ Mn. Let α, β ∈ A be such that β ≺ α. Then either Na(α) =

Na(β) = ∅ or Na(β) ≺ Na(α). If C :=
⋃
α \

⋃
β is a cell, we define the homology

H∗(C) to be the relative homology H∗(K(Na(α ∪ β));K(Na(β))). In particular, the

alternating sum of the Betti numbers of H∗(C), denoted by χa(C), is equal to the

difference χ(K(Na(α)))− χ(K(Na(β))) by 5.1.8 and 2.2.5. We also have the equation

δ(C) = δ(α) − δ(β). Hence if we define the local characteristic of C as κa(C) :=

χa(C) − δ(C)(a), we get the identity κa(C) = κa(P (C)) − κa(N(C)). We define the

extension of the function κ to C ×Mn by setting κ(C, a) := κa(C) for a ∈Mn, C ∈ C.

Definitions 5.2.2. We define the set of singular points Sing(C) for C ∈ C analogously

by setting Sing(C) := {a ∈ Mn : κa(C) 6= 0}. This set is finite since Sing(C) ⊆
Sing(P (C)) ∪ Sing(N(C)). We also extend the definition of global characteristic for

cells by setting Λ(C) := −Σa∈Mnκ(C, a).
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It is immediate that Λ(C) = Λ(P (C))− Λ(N(C)) for every C ∈ C.

Illustration 5.2.3. The definition of a singular point agrees with the geometrical intu-

ition. Consider the cell C ∈ C2(RR) defined by P (C) = (X = 0)∪(Y = 0)∪(X+Y = 1)

and N(C) = {(0, 0)}. Then κ(0,0)(C) = 2, κ(0,1)(C) = 1 and κ(1,0)(C) = 1. Hence

Sing(C) = {(0, 0), (0, 1), (1, 0)} and Λ(C) = −4.

The main aim of this section is to prove that the global characteristic is additive

in the following sense.

Theorem 5.2.4. If {Bi : 1 ≤ i ≤ l}, {B′j : 1 ≤ j ≤ m} are two finite families of

pairwise disjoint blocks such that
⊔l
i=1 Bi =

⊔m
j=1B

′
j, then Σl

i=1Λ(Bi) = Σm
j=1Λ(B′j).

The proof of this theorem follows at once from the following local version.

Lemma 5.2.5. If a ∈ Mn and {Bi : 1 ≤ i ≤ l}, {B′j : 1 ≤ j ≤ m} are two finite

families of pairwise disjoint blocks such that
⊔l
i=1Bi =

⊔m
j=1 B

′
j, then Σl

i=1κa(Bi) =

Σm
j=1κa(B

′
j).

Proof. It will be sufficient to show that both these numbers are equal to the sum

ΣB∈F κa(B) where F is any finite family of blocks finer than both the given fami-

lies. We can in particular choose a finite pp-nest D containing all the elements in⋃l
i=1(P (Bi) ∪ N(Bi)) ∪

⋃m
j=1(P (Bj) ∪ N(Bj)) and set F = {CoreD(D) : D ∈ D+}.

This involves partitioning every Bi and B′j into smaller blocks of the form CoreD(D)

for D ∈ D+.

Thus it will be sufficient to show that if F is a finite family of blocks corresponding

to cores of a pp-nest D such that B =
⋃
F ∈ B, then κa(B) = ΣF∈Fκa(F ). Consider

the sub-poset H of L containing all the elements of
⋃
F∈F(P (F ) ∪ N(F )). Then we

construct the antichains {αs}s≥0 in such a way that αs is the set of all minimal elements

of H \
⋃

0≤t<s αt. Then this process stops, say αv is P (B). Then we have a chain of

antichains α0 ≺ α1 ≺ · · · ≺ αv. Now κa(B) = κa(αv)−κa(α0) = Σv
t=1κa(αt)−κa(αt−1).

In other words, if Ct denotes the cell
⋃
αt \

⋃
αt−1 for 1 ≤ t ≤ v, then κa(B) =

Σv
t=1κa(Ct).

Now it remains to show that for each 1 ≤ t ≤ v, κa(Ct) = ΣF∈αtκa(CoreD(F )).

This follows from the following proposition by first choosing Aj to consist of elements

of αt and then choosing Aj to consist of elements of αt−1. Then by our construction

of the chain and the definition of κa(Ct), we get the required result.

Proposition 5.2.6. Suppose k ≥ 2. If, for each j ∈ [k], αj ∈ A and Aj =
⋃
αj, then

κa(
⋃
j∈[k] Aj) = ΣS⊆[k],S 6=∅κa(

⋂
s∈S As \

⋃
t/∈S At).
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Proof. We observe that all the arguments on the right hand side of the above expression

are cells or possibly empty sets and they form a partition of the cell in the argument of

the left hand side. Then we restate Theorem 5.1.6 as κa((
⋃
α) ∪ (

⋃
β)) = κa((

⋃
α) \

(
⋃
β))+κa((

⋃
β)\(

⋃
α))+κa((

⋃
α)∩(

⋃
β)). Since the set of pp-convex sets is closed

under taking unions and intersections, a simple induction proves the proposition with

5.1.6 being the base case.

Theorem 5.2.4 allows us to define the global characteristic for arbitrary definable

sets.

Definition 5.2.7. Let D ⊆ Mn be definable. We define the global characteristic

Λ(D) as the sum of global characteristics of any finite family of blocks partitioning D.

The global characteristic is preserved under definable isomorphisms.

Theorem 5.2.8. Suppose D ∈ Def(Mn) and f : D → Mn is a definable injection.

Then Λ(D) = Λ(f(D)).

Proof. We first prove the local version which states that, for any a ∈Mn and B ∈ B,

if g : B → M is a pp-definable injection, then κa(B) = κg(a)(g(B)). We observe

that δ(B)(a) = δ(g(B))(g(a)). Corollary 4.2.12 gives that the complex K(Na(α)) is

isomorphic to the complex K(Ng(a)(g[α])) where g[α] = {g(A) : A ∈ α} and α is

either P (B) or N(B). We conclude that g(Sing(B)) = Sing(g(B)). Hence Λ(B) =

Σa∈Sing(B)κa(B) = Σa∈Sing(B)κg(a)(g(B)) = Σa∈Sing(g(B))κa(g(B)) = Λ(g(B)).

To prove the theorem, we consider any partition of D into finitely many blocks

Bi, 1 ≤ i ≤ m such that f � Bi is pp-definable. This is possible by an application of

Lemma 4.1.7 to the set Graph(f) followed by projection of the finitely many blocks

onto the first n coordinates. Note that D =
⊔m
i=1 Bi ⇒ f(D) =

⊔m
i=1 f(Bi) since f is

injective. Hence Λ(f(D)) = Σm
i=1Λ(f(Bi)) = Σm

i=1Λ(Bi) = Λ(D), where the first and

the third equality follows from Theorem 5.2.4 and the second equality follows from

the previous paragraph.

Illustration 5.2.9. We continue to work with the cell C ∈ C2(RR) defined in Illustration

5.2.3. Now we define a function f : C → R2 as follows:

f(X, Y ) =


(X, 1) if (X + Y = 1) and (X, Y ) 6= (1, 0),

(X, 0) if (Y = 0) and X 6= 0, 1,

(Y,−1) if (X = 0) and Y 6= 0.

This function is clearly injective and definable. It is readily seen that Sing(f(C)) is

the set {(0, 1), (0, 0), (1, 0), (0,−1)} and κa(f(C)) = 1 for each a ∈ Sing(f(C)). Hence

Λ(C) = −4 = Λ(f(C)).
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Now we are ready to prove a special case of the result promised at the end of

Section 3.1.

Corollary 5.2.10. Let M be a non-zero right R-module whose theory T satisfies

T = Tℵ0. Suppose D ⊆Mn is definable and f : D� D is a definable injection whose

image is cofinite in the codomain, then f is an isomorphism. In particular K0(M) is

nontrivial.

Proof. We extend the function f to an injective function g : Mn � Mn by setting

g(a) = f(a) if a ∈ D and g(a) = a otherwise. Now F := Mn \ Im(g) is finite; say it

has p elements. Further Λ(Im(g)) = Λ(Mn \ F ) = Λ(Mn)− Λ(F ) = −p.
By Theorem 5.2.8, we get Λ(Mn) = Λ(Im(g)) since g is definable injective. Hence

p = 0 and thus g is an isomorphism. Since g is the identity function outside D, we

conclude that f is a definable isomorphism.

This shows that the classes of two finite sets in the Grothendieck ring are equal if

and only if the two sets are in bijection. Hence the underlying abelian group of K0(M)

contains Z as a subgroup.

5.3 Coloured global characteristics

Let P ∈ L∗ be fixed for this section. We develop the notion of localization at P and

local characteristic at P ; we have developed these ideas earlier when P is a singleton.

After stating what we mean by a colour, we define the notion of a “coloured global

characteristic” and outline the proof that these invariants are preserved under definable

isomorphisms.

Definition 5.3.1. We use LP to denote the meet-semilattice of all upper bounds of P

in L, i.e., LP := {A ∈ L : A ⊇ P}. As usual, we denote the set of all finite antichains

in this semilattice by AP .

Since every element of LP contains P , we may as well quotient out P from each

such element. Such a process is consistent with our earlier definition of localization

since taking quotient with respect to a singleton set gives an isomorphic copy of the

original set.

Definitions 5.3.2. We define the operator QP on the elements of LP by setting

QP (A) := p + A−p
P−p = {a + (P − p) : a ∈ A} for any p ∈ P . Note that this defi-

nition is independent of the choice of p ∈ P . We can clearly extend this operator to

finite subsets of LP . Now let L(P ) := QP [LP ]. We use A(P ) to denote the set of all

finite antichains in this semilattice.
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It is easy to see that A(P ) = QP [AP ].

The appropriate analogue of the localization operator Na : A → Aa is a function

NP : A → A(P ).

Definition and Lemma 5.3.3. For α ∈ A, we define NP (α) := QP (α∩LP ). As an

operator on pp-convex sets, NP preserves both unions and intersections.

The proof is easy and thus omitted.

Recall from Definition 5.1.3 of Ka(α) that the “trivial intersections” were precisely

those which were empty or a singleton. On the other hand, “nontrivial intersections”

were precisely those which contained the pp-set {a} properly. As NP takes values in

A(P ), we get the correct notion of non-trivial intersections followed by the quotient

operation so that the techniques developed for a singleton P still remain valid. Now

we are ready to state the analogue of Definition 5.1.3.

Definition 5.3.4. For α ∈ A, we define the simplicial complex of α in the neigh-

bourhood of P as the complex K(NP (α)) = {β ⊆ NP (α) : β 6= ∅, |
⋂
β| = ∞}. For

simplicity of notation, we denote this complex by KP (α).

We can easily extend the notion of local characteristic at P as follows.

Definition 5.3.5. We define the local characteristic of α at P by

κP (α) := χ(KP (α))− δ(α)(P ).

It can be observed that we recover the definition of the local characteristic at a

point a ∈M by choosing P = {a}. The proofs of Theorem 5.1.6 and Lemma 5.2.5 go

through if we replace κa by κP . Thus we can define κP (D) for arbitrary definable sets

D ⊆Mn.

We define the function κ : Def(Mn)× L∗ → Z by setting κ(D,P ) := κP (D).

Definition 5.3.6. The set of L-singular elements of a definable set D ⊆ Mn is

defined as the set SingL(D) := {P ∈ L : κ(D,P ) 6= 0}.

Fixing any partition of D into blocks, it can be checked that the set SingL(D) is

contained in the nest corresponding to that partition and hence is finite. This finiteness

will be used to define analogues of the global characteristic, which we call “coloured

global characteristics”.

Definition 5.3.7. For a given P ∈ L, we define the colour of P to be the set {A ∈ L :

there is a bijection f : A ∼= P such that Graph(f) is pp-definable }. We denote the

colour of P by [[P ]].
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Note the significance of this definition. Theorem 4.1.5 describes the pp-sets as

fundamental definable sets and we are trying to classify definable sets up to definable

isomorphism (Definition 3.1.2). In fact it is sufficient to classify pp-sets up to pp-

definable isomorphisms, which is the motivation behind the definition of a colour.

Let X denote the set of colours of elements from L. We use letters A,B,C etc. to

denote the colours. It can be observed that [[∅]] is a singleton. We use X ∗ to denote

X \ {[[∅]]}. We denote the colour of any singleton by U.

The global characteristic Λ(D) is equal to −ΣP∈UκP (D) for each definable set D.

This observation can be used to extend the notion of global characteristic.

Definition 5.3.8. For A ∈ X ∗, we define the coloured global characteristic with

respect to A for a definable set D to be the integer ΛA(D) := −ΣP∈AκP (D). This

integer is well defined as it is equal to the finite sum −ΣP∈(A∩SingL(D))κP (D).

The property of coloured global characteristics that we are looking for is stated in

the following analogue of Theorem 5.2.8. The proof is analogous to that of 5.2.8 and

thus is omitted.

Theorem 5.3.9. If f : D → D′ is a definable bijection between definable sets D,D′,

then ΛA(D) = ΛA(D′) for each A ∈ X ∗.

5.4 Monoid rings

We need the notion of an algebraic structure called a monoid ring.

Definition 5.4.1. Let (A, ?, 1) be a commutative monoid and S be a commutative ring

with unity. Then we define an Lring-structure (S[A], 0, 1,+, · ) called a monoid ring

as follows:

• S[A] := {φ : A→ S : the set Supp(φ) = {a : φ(a) 6= 0} is finite};

• (φ+ ψ)(a) := φ(a) + ψ(a) for a ∈ A;

• (φ·ψ)(a) := Σb?c=aφ(b)ψ(c) for a ∈ A.

An element φ of S[A] can be represented as a formal sum Σa∈Asaa where sa = φ(a).

As an example, let A = N, equivalently the monoid {Xn}n≥0 considered multi-

plicatively. Then the monoid ring S[A] = S[N] ∼= S[X], the polynomial ring in one

variable with coefficients from S.
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Let L,A,X , . . . denote the ascending unions
⋃∞
n=1 Ln,

⋃∞
n=1An,

⋃∞
n=1Xn, . . . re-

spectively. We shall be especially concerned with the sets L∗ := L \ {∅} and X ∗ :=

X \ {[[∅]]}.
There is a binary operation × : L∗ × L∗ → L∗ which maps a pair (A,B) to the

cartesian product A×B. This map commutes with the operation [[−]] of taking colour

i.e., whenever [[A1]] = [[A2]] and [[B1]] = [[B2]], we have [[A1 × B1]] = [[A2 × B2]].

This allows us to define a binary operation ? : X ∗ × X ∗ → X ∗ which takes a pair of

colours (A,B) to [[A× B]] for any A ∈ A, B ∈ B. The colour U of singletons acts as

the identity element for the operation ?. Hence (X ∗, ?,U) is a monoid.

Consider the maps ΛA : D̃ef(M) → Z for A ∈ X ∗ defined by [D] 7→ ΛA(D′) for

any D′ ∈ [D]. These maps are well defined thanks to Theorem 5.3.9. We can fix some

[D] ∈ D̃ef(M) and look at the set Supp([D]) := {A ∈ X ∗ : ΛA(D) 6= 0}. This set is

finite since it is contained in the finite set {[[P ]] : P ∈ SingL(D)}. This shows that

the evaluation map ev[D] : X ∗ → Z defined by A 7→ ΛA([D]) for each [D] ∈ D̃ef(M) is

an element of the monoid ring Z[X ∗].
Let us consider an example. We take R to be an infinite skew-field (i.e., a (possibly

non-commutative) ring in which every nonzero element has two-sided multiplicative

inverse) and M to be any nonzero R-vector space. This example has been studied in

detail in [31]. In this case, we have Th(M) = Th(M)ℵ0 . Using the notion of affine

dimension, it can be shown that X ∗ ∼= N. It has been shown that K0(M) ∼= Z[X] ∼=
Z[N]. The proof in [31] explicitly shows that the semiring D̃ef(M) is cancellative

and is isomorphic to the semiring of polynomials in Z[X] with non-negative leading

coefficients.

We will prove that a similar fact holds for an arbitrary module M , i.e., the structure

of the Grothendieck ring K0(M) is entirely determined by the monoid X ∗.

Theorem 5.4.2. Let M be a right R-module satisfying Th(M) = Th(M)ℵ0. Then

K0(M) ∼= Z[X ∗]. In particular, K0(M) is nontrivial for every nonzero module M .

The proof of this theorem will occupy the next two sections.

5.5 Multiplicative structure of D̃ef(M)

GivenD1 ∈ Def(Mn) andD2 ∈ Def(Mm), the cartesian productD1×D2 ∈ Def(Mn+m).

This shows that Def(M) is closed under cartesian products. We want to show that

the sets L, A, B and C are all closed under multiplication.

Let P ∈ Ln and Q ∈ Lm. Then there are pp formulas φ(x) and ψ(y) defining those

sets respectively. Without loss, we may assume that x ∩ y = ∅. Now the formula
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ρ(x, y) = φ(x)∧ψ(y) is again a pp-formula and it defines the set P ×Q ∈ Ln+m. This

shows that the set L is closed under multiplication.

Now we want to show that the product of two antichains α ∈ An and β ∈ Am
is again an antichain in An+m. We have natural projection maps π1 : Mn+m → Mn

and π2 : Mn+m → Mm which project onto the first n and the last m coordinates

respectively. First we observe that (
⋃
α) × (

⋃
β) =

⋃
A∈α

⋃
B∈β A × B. If either

A1, A2 ∈ α are distinct or B1, B2 ∈ β are distinct, then all the distinct elements from

{Ai × Bj}2
i,j=1 are incomparable with respect to the inclusion ordering since at least

one of their projections is so. Hence
⋃
α×

⋃
β is indeed an antichain of rank |α|× |β|.

We will denote this antichain by α× β.

Given C1, C2 ∈ C, we have C1 × C2 =
⋃

(α1 × α2) \ (
⋃

(α1 × β2) ∪
⋃

(β1 × α2))

where αi = P (Ci) and βi = N(Ci) for i = 1, 2. This shows that C1 × C2 ∈ C
since A is closed under both products and unions. Furthermore, we observe that

P (C1×C2) = P (C1)×P (C2). This in particular shows that the set B of blocks is also

closed under products.

Lemma 5.5.1. Let P,Q ∈ L and α, β ∈ A. Then κP×Q(α× β) = −κP (α)κQ(β).

Proof. First assume that δ(α)(P ) = δ(β)(Q) = 1. Then observe that

KP×Q(α× β) ∼= KP (α)�KQ(β). (5.10)

Hence we have

κP×Q(α× β) = χ(KP×Q(α× β))− 1

= χ(KP (α)) + χ(KQ(β))− χ(KP (α))χ(KQ(β))− 1

= (κP (α) + 1) + (κQ(β) + 1)− (κP (α) + 1)(κQ(β) + 1)− 1

= −κP (α)κQ(β)

The first and the third equality is by definition of the local characteristic and the

second is by Equation (2.6) of Lemma 2.3.4 applied to (5.10).

In the remaining case when either δ(α)(P ) or δ(β)(Q) is 0, we have δ(α× β)(P ×
Q) = 0. Hence κP×Q(α × β) = 0 and either κP (α) or κQ(β) is 0. This gives the

necessary identity and thus completes the proof in all cases.

The aim of this section is to prove the following theorem.

Theorem 5.5.2. The map ev : D̃ef(M)→ Z[X ∗] defined by [D] 7→ ev[D] is a semiring

homomorphism.
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Proof. We have already seen that ev is additive, since each ΛA is. So it remains to

show that it is multiplicative.

We have observed that the set [A] is a monoid with respect to cartesian product,

the isomorphism class of a singleton being the identity for the multiplication. So we

will first show that ev : [A]→ Z[X ∗] is a multiplicative monoid homomorphism.

Let α, β ∈ A be fixed. Note that

S := SingL(α× β) ⊆ {P ×Q : P ∈ SingL(α), Q ∈ SingL(β)}. (5.11)

We need to show that ev[α]· ev[β] = ev[α×β] as maps on X ∗. This is equivalent to

ev[α×β](C) =
∑

A?B=C ev[α](A)ev[β](B) for each C ∈ X ∗. Using the definition of the

evaluation map, it is enough to check that ΛC([α × β]) =
∑

A?B=C ΛA([α])ΛB([β]) for

each C ∈ X ∗.
The left hand side of the above equation is

ΛC([α× β]) = −
∑
R∈C

κR(α× β)

= −
∑

R∈(C∩S)

κR(α× β)

=
∑

R∈(C∩S)

κπ1(R)(α)κπ2(R)(β)

The last equality is given by the Lemma 5.5.1 since, by (5.11), every R ∈ C ∩ S can

be written as R = π1(R)× π2(R). The right hand side is

∑
A?B=C

ΛA([α])ΛB([β]) =
∑

A?B=C

(
−
∑
P∈A

κP (α)

)(
−
∑
Q∈B

κQ(β)

)
=

∑
A?B=C

∑
P∈A,Q∈B

κP (α)κQ(β)

Using the definition of SingL(−), we observe that the final expressions on both sides

are equal. This completes the proof that ev is a multiplicative monoid homomorphism

on [A].

Now we will show that ev is also multiplicative on the monoid [C]. Let C1, C2 be

cells with αi = P (Ci) and βi = N(Ci) for each i = 1, 2. Then C1 ×C2 =
⋃

(α1 × α2) \
(
⋃

(α1× β2)∪
⋃

(β1×α2)). We also know that ev[C] = evP (C)− evN(C) for each cell C.

We need to show that ΛC(C1 × C2) =
∑

A?B=C ΛA([C1])ΛB([C2]) for each C ∈ X ∗.
Now we have

ΛC(C1 × C2) = ΛC(α1 × α2)− ΛC((α1 × β2) ∨ (β1 × α2))
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and we also have∑
A?B=C

ΛA([C1])ΛB([C2]) =
∑

A?B=C

(ΛA([α1])− ΛA([β1]))(ΛB([α2])− ΛB([β2]))

= ΛC(α1 × α2) + ΛC(β1 × β2)− ΛC(β1 × α2)− ΛC(α1 × β2)

Therefore we need to show

ΛC((α1 × β2) ∨ (β1 × α2)) + ΛC(β1 × β2) = ΛC(α1 × β2) + ΛC(β1 × α2).

This is true by Theorem 5.1.6 since we have (α1 × β2) ∧ (β1 × α2) = (β1 × β2).

In the last step, we show that ev[D1×D2] = ev[D1]· ev[D2] for arbitrary definable

sets D1, D2. Let [D1] =
∑k

i=1[B1i] and [D2] =
∑l

j=1[B2j] be obtained from any

decompositions of D1 and D2 into blocks. Then [D1 ×D2] =
∑k

i=1

∑l
j=1[B1i × B2j]).

For each C ∈ X ∗, we have

ev[D1]· ev[D2](C) =
∑

A?B=C

ΛA([D1])ΛB([D2])

=
∑

A?B=C

(
k∑
i=1

ΛA([B1i])

)(
l∑

j=1

ΛB([B2j])

)

=
k∑
i=1

l∑
j=1

∑
A?B=C

ΛA([B1i])ΛB([B2j])

=
k∑
i=1

l∑
j=1

ΛC([B1i ×B2j])

= ΛC(
k∑
i=1

l∑
j=1

[B1i ×B2j])

= ev[D1×D2](C).

This completes the proof showing ev is a semiring homomorphism.

5.6 Computation of the Grothendieck ring

In the previous section, we showed that ev : D̃ef(M) → Z[X ∗] is a semiring homo-

morphism. Since the codomain of this map is a ring, it factorizes through the unique

homomorphism of cancellative semirings ẽv :
˜̃

Def(M) → Z[X ∗] where
˜̃

Def(M) is the

quotient semiring of D̃ef(M) obtained as in Theorem 2.1.3. Our next aim is to prove

the following lemma.

Lemma 5.6.1. The map ẽv :
˜̃

Def(M)→ Z[X ∗] is injective.
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Proof. We will prove this lemma in several steps. First we will identify a subset of

Def(M) where the restriction of the evaluation function is injective.

Let U = {α ∈ A : A1 ∩ A2 = ∅ for all distinct A1, A2 ∈ α}. Then it can be easily

checked that ΛA(α) = |α ∩ A| for each A ∈ X ∗ and α ∈ U . Hence if ev[α] = ev[β] for

any α, β ∈ U , then we have [α] = [β]. This proves that the map ev is itself injective

on U .

Given any [D1], [D2] ∈ D̃ef(M) such that ev[D1] = ev[D2], we will find some [X] ∈
D̃ef(M) such that [D1] + [X] = [α′] and [D2] + [X] = [β′] for some α′, β′ ∈ U . Then

we get ev[α′] = ev[D1] + ev[X] = ev[D2] + ev[X] = ev[β′] and hence we will be done by the

previous paragraph.

Claim: It is sufficient to assume [D1], [D2] ∈ [A].

Let [D1] =
∑k

i=1[B1i] and [D2] =
∑l

j=1[B2j] be obtained from any decompositions

of D1 and D2 into blocks. We have [P (B)] = [B] + [N(B)] for any B ∈ B. Therefore

if we choose [Y ] =
∑k

i=1[N(B1i)] +
∑l

j=1[N(B2j)], we get [D1] + [Y ] =
∑l

i=1[P (B1i)] +∑l
j=1[N(B2j)] and [D2] + [Y ] =

∑l
i=1[N(B1i)] +

∑l
j=1[P (B2j)]. Hence both [D1] +

[Y ], [D2] + [Y ] ∈ [A]. This finishes the proof of the claim.

Now let α, β ∈ A be such that ev[α] = ev[β]. We describe an algorithm which

terminates in finitely many steps and yields some [X] such that [α]+[X], [β]+[X] ∈ [U ].

Before stating the algorithm, we define a complexity function Γ : A → N. For each

antichain α, the complexity Γ(α) is defined to be the maximum of the lengths of chains

in the smallest nest corresponding to α, where the length of a chain is the number of

elements in it. Note that Γ(α) ≤ 1 if and only if α ∈ U .

Let α = {A1, A2, . . . , Ak} be any enumeration and let αi = {A1, A2, . . . , Ai} for

each 1 ≤ i ≤ k. Similarly choosing an enumeration β = {B1, B2, . . . , Bl}, we define

βj for each 1 ≤ j ≤ l. Then we observe that
⋃
α =

⊔k
i=1 Coreαi

(Ai) and
⋃
β =⊔l

j=1 Coreβj(Bj). Now each Coreαi
(Ai) is a block, which can be completed to a pp-set

if we take its (disjoint) union with N(Coreαi
(Ai)). This can be written as the equation

[Ai] = [Coreαi
(Ai)] + [N(Coreαi

(Ai))]. If
⋃
α ⊆ Mn, we consider Mnk and inject

Coreαi
(Ai) in the obvious way into the ith copy of Mn in Mnk for each i. This gives

us a definable set definably isomorphic to
⋃
α. The advantage of this decomposition

is that we can also add an isomorphic copy of N(Coreαi
(Ai)) at the appropriate place

for each i and obtain a new antichain representing
∑k

i=1[Ai].

Repeating the same procedure for β yields a representative of
∑l

j=1[Bj]. In or-

der to maintain the evaluation function on both sides, we add disjoint copies of

the antichains N(Coreαi
(Ai)), N(Coreβj(Bj)) to both sides. So we choose [W ] =∑k

i=1[N(Coreαi
(Ai))] +

∑l
j=1[N(Coreβj(Bj))], hence [α] + [W ], [β] + [W ] are both in
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[A] so that the particular antichains α′, β′ in these classes we constructed above sat-

isfy Γ((
⋃
α′) t (

⋃
β′)) < Γ((

⋃
α) t (

⋃
β)). The inequality holds since we isolate the

maximal elements of the nest corresponding to (
⋃
α) ∪ (

⋃
β) in the process.

We repeat this process, inducting on the complexity of the antichains, till the

disjoint union of the pair of antichains in the output lies in U . Since the complexity

decreases at each step, this algorithm terminates in finitely many steps. The required

[X] is the sum of the [W ]’s obtained at each step. This finishes the proof of the

injectivity of the map ẽv.

Finally we are ready to prove Theorem 5.4.2 regarding the structure of the ring

K0(M).

Proof. (Theorem 5.4.2) It is easy to observe that the image of U under the evalua-

tion map is the monoid semiring N[X ∗]. The Grothendieck ring K0(N[X ∗]) is clearly

isomorphic to the monoid ring Z[X ∗].
Since the map ẽv is injective by Lemma 5.6.1 and N[X ∗] ⊆ Im(ẽv) ⊆ Z[X ∗], we

have K0(M) = K0(Im(ẽv)) ∼= Z[X ∗] by the universal property of K0 in Theorem

2.1.4.
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Chapter 6

Grothendieck Rings of Modules:

Case T 6= Tℵ0

In the last chapter we considered the Grothendieck ring of a right R-module M whose

theory T := Th(M) satisfies T = T ℵ0 ; henceforth we will refer to this case as the

special case. In this chapter we remove this condition and work with a fixed arbitrary

right R-module M . We continue to use the notations Ln,Pn,An,Xn to denote the set

of all pp-subsets of Mn, the set of all finite subsets of Ln, the set of all finite antichains

in Ln and the set of all pp-isomorphism classes (colours) in Ln respectively.

Section 6.1 introduces new terminology and the modifications to the proofs of

Theorems 5.1.6 and 5.5.1 necessary to handle the general case i.e., T 6= T ℵ0 . Theorem

6.2.3 subsumes Theorem 5.4.2 and describes the Grothendieck ring of the module M

as the quotient of a monoid ring by the ‘invariants ideal’ that codes non-trivial indices

of pp-pairs of subgroups. The maps between modules which fit with model theory

are called pure embeddings. We study their relation with the Grothendieck rings in

6.3. We also show the existence of Grothendieck rings containing nontrivial torsion

elements in 6.4.

The material in this chapter is contained in [26, §5.1,5.2,6.1,6.2].

6.1 Finite indices of pp-pairs

Since T 6= Tℵ0 , Lemma 4.2.4 is unavailable to obtain the uniqueness result (Proposition

4.2.5) but we can still use the representation theorem (Theorem 4.1.7). As a result we

do not have a bijection between the set of all pp-convex sets, which we denote by On,

and the set An. The elements of the set Cn := {(
⋃
α) \ (

⋃
β)|α, β ∈ An,

⋃
β (

⋃
α}

will be called cells. The cells allowing a representation of the form P \
⋃
β for some

P ∈ Ln and β ∈ A such that P (
⋃
β will be called blocks and the set of all blocks

77
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in Cn is denoted by Bn.

Let (−)◦ : Ln → Ln denote the function which takes a coset P to the subgroup

P ◦ := P − p, where p ∈ P is any element. We use L◦n to denote the image of

this function, i.e., the set of all pp-definable subgroups. Let ∼n denote a relation

on L◦n defined by P ∼n Q if and only if [P : P ∩ Q] + [Q : P ∩ Q] < ∞. This is

the commensurability relation and it can be easily checked to be an equivalence

relation. We can extend this relation to all elements of Ln using the same definition

if we set the index [P : Q] := [P ◦ : P ◦ ∩Q◦] for all P,Q ∈ Ln. Let Yn denote the set

of all commensurability equivalence classes of Ln (bands for short). We use capital

bold letters P,Q, · · · etc. to denote bands. The equivalence class (band) of P will be

denoted by the corresponding bold letter P.

Now we fix some n ≥ 1 and drop all the subscripts as usual. Note that, in the special

case, a band is just the collection of all cosets of a pp-subgroup. In particular any two

distinct elements of a band are disjoint. This ‘discreteness’ has been exploited heavily

in all the proofs for the special case. We need to work hard to set up the technical

machinery for defining the local characteristics in the general case; the proofs will be

similar to those for the special case once we obtain the required discreteness condition.

Let P ∈ Y . It can be easily checked that if P,Q ∈ P and P ∩Q 6= ∅ then P ∩Q ∈ P

i.e., P is closed under intersections which are nonempty. It is also clear that if P ∈ P

and a ∈ Mn, then a + P ∈ P. Let A(P),P(P) and O(P) denote the sets of all finite

antichains in P, finite subsets of P and unions of finite subsets of P respectively.

We have the following analogue of Proposition 4.2.5 for pp-convex sets. The proof

is omitted as it is similar to the T = Tℵ0 case.

Proposition 6.1.1. Let X ∈ O. The set S(X) := {P ∈ Y : ∃P ∈ P, α ∈ A (P ∈ α,⋃
α = X)} is finite. Furthermore, for α, β ∈ A and P ∈ S(X), if

⋃
α =

⋃
β = X

then
⋃

(α ∩P) =
⋃

(β ∩P).

In other words, if α ∈ A such that
⋃
α = X and, for each P ∈ S(X), the set

XP denotes
⋃

(α ∩ P) ∈ O(P), then X determines the family {XP | P ∈ S(X)}
independent of the choice of α.

Given some X ∈ O(P) there could be two different α, β ∈ A(P) such that⋃
α =

⋃
β = X. The nests corresponding to such antichains could have entirely

different (semilattice) structures. The following proposition gives us a way to obtain

an antichain α representing X such that if A,B ∈ α and A 6= B, then A ∩B = ∅.

Proposition 6.1.2. Let X ∈ O(P). Then for any α ∈ A(P) such that
⋃
α = X,

there is some P(α) ∈ P◦ such that X is a finite union of distinct cosets of P(α).
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Proof. Choose P(α) =
⋂
{Q◦ : Q ∈ α} and observe that P(α) ∈ P since P is closed

under finite nonempty intersections.

The previous two propositions together imply that we can always find a ‘nice’

antichain representing the given pp-convex set. The following definition describes

what we mean by this.

Definition 6.1.3. A finite set α ∈ P is said to be in discrete form if for each

P ∈ Y, α ∩P consists of finitely many cosets of a fixed element of P◦, denoted P(α).

The set of all finite sets α ∈ P in discrete form will be denoted by Pd and the set of

all antichains in discrete form will be denoted by Ad.

We would like to define the local characteristics for the elements of Pd as before and

show that they satisfy the conclusion of Theorem 5.1.6. We will restrict our attention

only to those α ∈ Pd such that α = α̂ (i.e., the nest corresponding to α is α itself).

We denote the set of all such finite sets by P̂d. Since we will deal with finite index

subgroup pairs in L◦, we will need more conditions on compatibility of P and α as

stated in the following definition.

Definition 6.1.4. A finite family F of elements of P is called compatible if F ⊆ P̂d

and for all α, β ∈ F and P ∈ Y, we have P(α) = P(β) whenever P ∩ α,P ∩ β 6= ∅.
Furthermore, we say that P ∈ L is compatible with a finite family F of elements of

P if F is compatible and P ∈
⋃
F .

It is easy to observe that given any finite family {X1, X2, . . . , Xk} of pp-convex sets,

we can obtain a compatible family {α1, α2, . . . , αk} of antichains such that
⋃
αi = Xi

for each i. Finally we are ready to define the local characteristics in this set-up.

Definition 6.1.5. Let P ∈ L be compatible with a family F and let α ∈ F . We

associate an abstract simplicial complex KP (α) with the pair (α, P ) by setting KP (α) :=

{β ⊆ α : β 6= ∅,
⋂
β ) P}. We define the local characteristic κP by the formula

κP (α) := χ(KP (α))− δ(α)(P ).

Now we are ready to state the analogue of Theorem 5.1.6 and it has essentially the

same proof. The previous statement is justified because we have carefully developed

the idea of a compatible family to avoid finite index pairs of pp-subgroups. Since we

achieve discreteness simultaneously for any finite family of antichains, no changes in

the proof of Theorem 5.1.6 are necessary.

Theorem 6.1.6. Let X, Y ∈ O. Then X ∪ Y,X ∩ Y ∈ O. For any compatible family

F := {α1, α2, β1, β2} such that
⋃
α1 = X,

⋃
α2 = Y ,

⋃
β1 = X∪Y and

⋃
β2 = X∩Y

and any P ∈ L compatible with F , we have

κP (α1) + κP (α2) = κP (β1) + κP (β2).
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We observe that the set Ad is closed under cartesian products and thus we have

the following analogue of Lemma 5.5.1 with the same proof.

Lemma 6.1.7. Let P,Q ∈ L be compatible with {α, β} ⊆ Ad. Then

κP×Q(α× β) = −κP (α)κQ(β).

6.2 The invariants ideal

Once again, we use the notations L,X to denote the unions
⋃∞
n=1 Ln,

⋃∞
n=1Xn and set

L∗ = L \ {∅},X ∗ = X \ {[[∅]]} where [[−]] : L → X is the map taking a pp-set to its

colour. Now X ∗ is a multiplicative monoid and we consider the monoid ring Z[X ∗].
In the case when T 6= Tℵ0 , there are P,Q ∈ Ln such that 1 < Inv(M ;P,Q) < ∞

for each n ≥ 1. We can assume without loss that 0 ∈ Q ⊆ P . Now we define an ideal

of the monoid ring, called the invariants ideal, which encodes these invariants. The

following proposition is the motivation.

Proposition 6.2.1. Let P ∈ Yn and X ∈ O(P). For any α, β ∈ Adn with
⋃
α =⋃

β = X, we have

[P(α) : P(β)]|α ∩P| = [P(β) : P(α)]|β ∩P|

Proof. Partition those cosets of both P(α) and of P(β) which are contained in X into

cosets of P(α) ∩P(β) to get the required equality.

Definition 6.2.2. Let δA : X ∗ → Z denote the characteristic function of the colour A

for each A ∈ X ∗. We define the invariants ideal J of the monoid ring Z[X ∗] to be

the ideal generated by the set

{δ[[P ]] = [P : Q]δ[[Q]] : P,Q ∈ L, P ⊇ Q, Inv(M ;P,Q) <∞}.

The main aim of this section is to prove the following theorem.

Theorem 6.2.3. For every right R-module M , we have

K0(M) ∼= Z[X ∗]/J .

Recall that we have proved this theorem when T = Tℵ0 since the invariants ideal

is trivial in that case. As a corollary of the theorem we can give a proof that the

Grothendieck ring of a module is an invariant of its theory.

Proof. (Proposition 4.1.1) Elementarily equivalent modules have isomorphic lattices of

pp-sets and they also satisfy the same invariant conditions (see [33, Cor. 2.18]). Hence

Theorem 6.2.3 yields the result.
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Let Y =
⋃∞
n=1 Yn. Given A ∈ X ∗, we define Y(A) := {P ∈ Y : P ∩ A 6= ∅}.

In order to define the global characteristics in this case, we need to find the set over

which they vary. Let A,B ∈ X ∗. We say that A ≈ B if Y(A) ∩ Y(B) 6= ∅. This

relation is reflexive and symmetric. We use ≈ again to denote its transitive closure.

The ≈-equivalence class of A will be denoted by Ã.

Definition 6.2.4. Let A ∈ X ∗. Define the colour class group R(Ã) as the quotient

of the free abelian group Z〈δA : A ∈ Ã〉 by the subgroup J (Ã) generated by the relations

{δ[[P ]] = [P : Q]δ[[Q]] : P,Q ∈
⋃

Ã, P ⊇ Q}.

It can be observed that the underlying abelian group of the monoid ring Z[X ∗]
is formed by taking the quotient of the direct sum of the free abelian groups Z〈δA :

A ∈ Ã〉, one for each equivalence class of colours, by the multiplicative relations of the

monoid X ∗. Furthermore, the set
⋃
{J (Ã) : Ã ∈ X ∗} generates the ideal J in this

ring.

The discussion in the previous paragraph suggests to us to isolate the information

in the evaluation map into different global characteristics, one for each colour class.

These maps take values in the corresponding colour class group. We define the global

characteristic ΛÃ corresponding to Ã as the function P̂d → R(Ã) given by α 7→
−
∑

A∈Ã
(∑

P∈A κP (α)
)
δA.

The following result is an easy corollary of Proposition 6.2.1. It states that the

global characteristics depend only on the pp-convex sets and not on their representa-

tions as antichains.

Corollary 6.2.5. Let X ∈ O and α, β ∈ P̂d be such that
⋃
α =

⋃
β = X. Then

ΛÃ(α) = ΛÃ(β) for each A ∈ X ∗.

This finishes the technical setup for the general case when the theory T of the

module M does not necessarily satisfy T = T ℵ0 . The antichains in discrete form behave

as if the theory satisfies T = T ℵ0 , the bands allow us to go down (via intersections)

so that any finite family can be converted to a compatible family and the notion of

compatibility allows us to do appropriate local analysis. The local data can be pasted

together using the information coded in the colour class groups.

Now we give some important definitions and state results from the special case

T = Tℵ0 in a form compatible with the general case. The proofs of these results are

omitted since they are similar to their special counterparts; the basic ingredients are

provided by Lemma 4.2.4, Theorem 6.1.6, Lemma 6.1.7 and Corollary 6.2.5. The

necessary change is to deal only with antichains which are in discrete form.

Since cells are the difference sets of two pp-convex sets, we can obtain a compatible

family {α, β} for any C ∈ C such that C =
⋃
α \
⋃
β.



82 CHAPTER 6. GROTHENDIECK RINGS OF MODULES: CASE T 6= Tℵ0

Definition 6.2.6. Let C ∈ C and A be a colour. We define the global characteristic

ΛÃ(C) := ΛÃ(α)− ΛÃ(β) ∈ R(Ã) for any compatible family {α, β} representing C.

The following theorem is the analogue of Theorem 5.2.4 and uses the inductive

version of 6.1.6 in its proof.

Theorem 6.2.7. If {Bi : 1 ≤ i ≤ l}, {B′j : 1 ≤ j ≤ m} are two finite families of

pairwise disjoint blocks such that
⊔l
i=1Bi =

⊔m
j=1B

′
j, then Σl

i=1ΛÃ(Bi) = Σm
j=1ΛÃ(B′j)

for every A ∈ X ∗.

This theorem allows us to extend the definition of global characteristics to all sets in

Def(M). Moreover the following theorem, the proof of which is an easy adaptation of

that of Theorem 5.2.8, states that each of them is preserved under definable bijections.

Theorem 6.2.8. Suppose D ∈ Def(Mn) and f : D → Mn is a definable injection.

Then ΛÃ(D) = ΛÃ(f(D)) for each colour class Ã.

Let ev : Def(M)→ Z[X ∗]/J be the map defined by D 7→
∑
{ΛÃ(D) : Ã ∈ (X ∗/ ≈

)}. This map is well defined since the sum is finite for every D for reasons similar to

those for the special case. Furthermore evD1 = evD2 whenever D1 and D2 are definably

isomorphic since ΛÃ(D1) = ΛÃ(D2) for each colour class Ã. In fact ev is a semiring

homomorphism. The proof of the following theorem is analogous to that of Theorem

5.5.2.

Theorem 6.2.9. The map ev : D̃ef(M) → Z[X ∗]/J defined by [D] 7→ ev[D] is a

semiring homomorphism.

The final step in the proof of 6.2.3 is the following analogue of Lemma 5.6.1.

Lemma 6.2.10. The map ẽv :
˜̃

Def(M)→ Z[X ∗]/J is injective.

Proof. The proof of this lemma needs some modification of the first paragraph of the

proof of Lemma 5.6.1 in order to incorporate the invariants ideal. Let U := {α ∈ Ad :

A1 ∩ A2 = ∅ for all distinct A1, A2 ∈ α}.
If ev[α] = ev[β] for some α, β ∈ U , then we can obtain antichains α′ ∈ [α] ∩ U , β′ ∈

[β] ∩ U such that
⋃
α =

⋃
α′,
⋃
β =

⋃
β′ and {α′, β′} is compatible. Hence we have

ΛÃ(α) = ΛÃ(α′), ΛÃ(β) = ΛÃ(β′) for each colour class Ã. Observe that the equalities,

if considered in the codomain ring, are modulo the invariants ideal. Now ΛÃ(α′) =

|α′ ∩ (
⋃
Ã)|δ[[P(α′)]], where P is the only band (if exists) such that P∩α′ ∩ (

⋃
Ã) 6= ∅.

Since P(α′) = P(β′) for each such colour class by the definition of compatibility, we

get |α ∩ (
⋃

Ã)| = |β ∩ (
⋃

Ã)| for each colour class Ã.
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A definable isomorphism can be easily constructed between the pp-convex sets

represented by α′ and β′, which are the sets represented by α and β respectively. The

rest of the proof is similar to the proof of 5.6.1.

Proof. (Theorem 6.2.3) We have shown that the map ẽv is injective in the above

lemma. Then we observe that the sets of the form
⋃
α for some α ∈ U are capable of

producing every element of the quotient ring Z[X ∗]/J of the form
∑
nAδA +J , where

the nonzero coefficients are positive. This completes the proof by an argument similar

to the proof of Theorem 5.4.2.

Since the Grothendieck ring is a quotient ring, we do not necessarily know if it

is nontrivial. But the following corollary of Theorem 6.2.3 shows this result, proving

Prest’s conjecture in full generality.

Corollary 6.2.11. If M is a nonzero right R-module, then there is a split embedding

Z� K0(M).

Proof. Consider the colour class Ũ, where U is the identity element of the monoid

X ∗. A pp-set P is an element of
⋃

Ũ if and only if P is finite. Finite sets enjoy

the special property that two finite sets are isomorphic to each other if and only

their cardinalities are equal. Furthermore, every such isomorphism is definable. In

particular, R(Ũ) ∼= Z if M is a nonzero module. Next we observe that the set
⋃

Ũ is

closed under multiplication and hence the colour class group R(Ũ) can be given the

structure of a quotient of the monoid ring Z[
⋃
Ũ] with certain relations, where the

multiplicative relations of the monoid ring are finitary and hence already present in

the relations for R(Ũ). We have thus described the ring structure of R(Ũ) and this

ring is naturally a subring of K0(M).

To complete the proof, we show that the map π0 : K0(M) → R(Ũ) given by∑
Ã∈(X ∗/≈) nÃδÃ 7→ nŨδŨ is a surjective ring homomorphism.

The map π0 is clearly an additive group homomorphism. Note that the multiplica-

tive monoid
⋃

Ũ is a sub-monoid of X ∗. Also note that J (Ã) ∩ J (B̃) = ∅ if Ã 6= B̃.

Furthermore, A ? B ∈
⋃

Ũ if and only if A,B ∈
⋃
Ũ. Thus the coefficient of δŨ in

the product of two elements of K0(M) is determined by the coefficient of δŨ of the

individual elements. Hence π0 is also multiplicative. The surjectivity is clear. This

completes the proof.

6.3 Pure embeddings and Grothendieck rings

We will investigate some categorical properties of the Grothendieck rings of modules

in this section. The main aim is to prove the following theorem.
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Theorem 6.3.1. Let i : N → M be a pure embedding of right R-modules such that

the theory of M satisfies Th(M) = Th(M)ℵ0. Then i induces a surjective ring homo-

morphism I : K0(M)� K0(N).

This theorem will be proved using a series of results of functorial nature. We begin

with the definition of a pure embedding.

Definition 6.3.2. Let M be a right R-module. A submodule N ≤M is called a pure

submodule if, for each n, A ∩Nn ∈ L◦n(N) for every A ∈ L◦n(M).

A monomorphism i : N → M is said to be a pure monomorphism if iN is a pure

submodule of M .

The following lemma states that a pure embedding induces a map of semilattices

of pp-formulas.

Lemma 6.3.3 (see [34, Lemma 3.2.2]). If i : N → M is a pure embedding then, for

each n, the natural map i : L◦n(M) → L◦n(N) given by i(A) = A ∩ Nn is surjective

morphism of semilattices.

Now we state the following result about integral monoid rings.

Proposition 6.3.4 (see [19, II, Proposition 3.1]). Let Φ : A→ B be a homomorphism

of monoids. Then there exists a unique homomorphism h : Z[A] → Z[B] such that

h(x) = Φ(x) for all x ∈ A and h(1) = 1. Furthermore, h is surjective if Φ is so.

Corollary 6.3.5. A pure embedding i : N → M induces a surjective homomorphism

i : Z[X ∗(M)]� Z[X ∗(N)] of rings.

Proof. Observe that every colour A ∈ X ∗ has a representative in L◦ :=
⋃∞
n=1 L◦n. Thus

we get an induced surjective homomorphism X ∗(M)� X ∗(N) of the colour monoids

using Lemma 6.3.3. Then Proposition 6.3.4 yields the required surjective map of the

integral monoid rings.

Proof. (Theorem 6.3.1) Observe that since Th(M) = Th(M)ℵ0 holds, Theorem 5.4.2

gives K0(M) ∼= Z[X ∗(M)]. By Theorem 6.2.3, we have K0(N) ∼= Z[X ∗(N)]/J (N).

Let π : Z[X ∗(N)]� K0(N) denote the natural quotient map. Take I = π ◦ i, where i

is the map from the previous corollary, to finish the proof.

We will see an example at the end of the next section to see that Theorem 6.3.1

fails if Th(M) 6= Th(M)ℵ0 .

Recall that the notation M (ℵ0) denotes the direct sum of countably many copies of

a module M . It follows immediately from [33, Lemma 2.23(c)] that the lattices L1(M)

and L1(M (ℵ0)) are isomorphic and T := Th(M (ℵ0)) satisfies T = T ℵ0 . We summarize

these observations in the following corollary of Theorem 6.3.1.
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Corollary 6.3.6. Let in : M → M (ℵ0) denote the natural embedding of M onto the

nth component of M (ℵ0). Then in induces the natural quotient map K0(M (ℵ0)) =

Z[X ∗(M)]� Z[X ∗(M)]/J (M) = K0(M).

For a ring R, let Mod-R denote the category of right R-modules. The theory

Th(Mod-R) is not a complete theory. But we may take a canonical complete theory

extending it as follows. Recall that Grothendieck rings of elementarily equivalent

modules are isomorphic by Proposition 4.1.1. Equivalently, K0(M) is determined by

Th(M) which, in turn, is determined by its invariants conditions (Theorem 6.2.3).

Definition 6.3.7. Let P be a direct sum of one model of each complete theory of right

R-modules. Then T ∗ = Th(P ) is referred to as the largest complete theory of

right R-modules.

Thus every right R-module is elementarily equivalent to a direct summand of

some model of Th(P ). Now we note the following result without proof and define the

Grothendieck ring of the module category.

Definition and Lemma 6.3.8 (see [31, 6.1.1, 6.1.2]). Let T ∗ denote the largest com-

plete theory of right R-modules. Then T ∗ = (T ∗)ℵ0. Furthermore if P1 and P2

are both direct sums of one model of each complete theory of right R-modules, then

K0(P1) ∼= K0(P2). We define the Grothendieck ring of the module category,

denoted K0(Mod-R), to be the Grothendieck ring of the largest complete theory of right

R-modules.

As a consequence of Theorem 6.3.1, we state a result connecting Grothendieck

rings of individual modules with that of the module category.

Corollary 6.3.9. Let M ∈ Mod-R. Then K0(M) is a quotient of K0(Mod-R).

Proof. Let T ∗ be the largest complete theory of right R-modules. Then Lemma 6.3.8

gives that, for any P |= T ∗, Th(P ) = T ∗ satisfies T ∗ = (T ∗)ℵ0 and we also have

K0(P ) ∼= K0(Mod-R).

By the definition of T ∗, there is a module M ′ elementarily equivalent to M such

that M ′ is a direct summand of P . Since the embedding M ′ � P is pure, we get a

surjective homomorphism K0(P ) � K0(M ′). Thus the required quotient map is the

composite K0(Mod-R) ∼= K0(P )� K0(M ′) ∼= K0(M), where the last isomorphism is

obtained from Proposition 4.1.1.
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6.4 Torsion in Grothendieck rings

As an application of the structure theorem for Grothendieck rings, Theorem 6.2.3, we

provide an example of a module whose Grothendieck ring contains a nonzero torsion

element (i.e., a nonzero element a such that na = 0 for some n ≥ 1). We also calculate

the Grothendieck ring K0(ZZ).

Definition 6.4.1. The ring of p-adic integers, denoted Ẑp, is the inverse limit of

the system . . .� Zpn � . . .� Zp2 � Zp � 0.

The ring Ẑp is a commutative local PID with the ideal structure given by

Ẑp ) pẐp ) . . . ) pnẐp ) . . . ) 0.

In particular, Ẑp is a commutative noetherian ring and hence satisfies the hypoth-

esis of the following proposition.

Proposition 6.4.2 (see [33, p.19, Ex. 2(ii)]). If R is a commutative noetherian ring

then the pp-definable subgroups of the module RR are precisely the finitely generated

ideals of R.

It can be observed that the maps tn : Ẑp → pnẐp which are ‘multiplication by pn’

are pp-definable isomorphisms for each n ≥ 1. Thus a simple computation shows that

the monoid of colours, X ∗(Ẑp), is isomorphic to the monoid N.

If X denotes the class of Ẑp in K0(Ẑp), then the invariants ideal J (Ẑp) is generated

by the relations {X = pnX : n ≥ 1}. The relation (pn−1)X = 0 is an integral multiple

of the relation (p − 1)X = 0 for each n ≥ 1. Thus J (Ẑp) is principal and generated

by the single relation (p − 1)X = 0. We summarize this discussion as the following

corollary to Theorem 6.2.3.

Corollary 6.4.3. Let Ẑp denote the ring p-adic integers. Then

K0(Ẑp) ∼= Z[X]/〈(p− 1)X〉.

Consider the split (hence pure) embedding i : Ẑp
(2)
� Ẑp

(3)
of Ẑp-modules given

by (a, b) 7→ (a, b, 0), where M (k) denotes the direct sum of k copies of M . We want

to show that this embedding witnesses the failure of Theorem 6.3.1 since the theory

T := Th(Ẑp
(3)

) of the target module doesn’t satisfy the condition T = T ℵ0 . The

following proposition is helpful for the calculation of Grothendieck rings.

Proposition 6.4.4 (see [33, Lemma 2.23]). If φ(x) and ψ(x) denote pp-formulas, then

the following hold.
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1. φ(M ⊕N) = φ(M)⊕ φ(N).

2. Inv(M ⊕N ;φ, ψ) = Inv(M ;φ, ψ)Inv(N ;φ, ψ).

It is clear that the induced map i : Z[X ∗(Ẑp
(3)

)]→ Z[X ∗(Ẑp
(2)

)] is the identity map

on Z[X] since Z[X ∗(Ẑp
(k)

)] ∼= K0(Ẑp
(ℵ0)

) ∼= Z[X] for each k ≥ 1. Further the previous

proposition shows that J (Ẑp
(k)

) = 〈(pk − 1)X〉 for each k ≥ 1. Since J (Ẑp
(3)

) *
J (Ẑp

(2)
), there is no surjective map K0(Ẑp

(3)
)� K0(Ẑp

(2)
).

The abelian group of integers: Since the ring Z is a commutative PID, the

pp-definable subgroups of the module ZZ are precisely the ideals nZ for n ≥ 0. Thus

the monoid X ∗(Z) is isomorphic to N. Furthermore if X denotes the class of Z in

K0(Z), the invariants ideal is generated by the relations X = nX for each n ≥ 1. This

forces J (Z) = 〈X〉 and thus K0(ZZ) ∼= Z.
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Chapter 7

The Grothendieck Ring of Varieties

The category Vark of (not necessarily irreducible) algebraic varieties over a field k car-

ries a natural symmetric monoidal structure of disjoint union (coproduct) of varieties.

The Grothendieck ring of varieties is historically presented in terms of generators and

relations, but in case when k is algebraically closed, this presentation produces the

same ring as the Grothendieck ring construction of Section 2.1 applied to the semiring

of cut-and-paste (piecewise) isomorphism classes of Vark (Section 7.2).

The aim of this chapter is to show, in case of an algebraically closed field, the equiv-

alence of two statements (Theorem 7.3.3) regarding different equivalences of varieties

(Question 7.1.2 and Conjecture 7.1.4) stated in Section 7.1. Under the hypothesis

of Conjecture 7.1.4 we obtain particularly nice results about the Grothendieck ring,

namely that the Grothendieck group of varieties is a free abelian group (Section 7.4)

and that the associated graded ring of the Grothendieck ring of varieties with respect

to the dimension grading is a monoid ring (Section 7.5).

The material in this chapter is contained in [27].

7.1 Questions under consideration

Let k be a field. A variety over k is a reduced separated scheme of finite type. A

subvariety of a variety X is said to be locally closed if it can be written as the inter-

section of an open subvariety with a closed subvariety. Let Vark denote the category

of k-varieties and rational morphisms. Disjoint union and reduced product of varieties

are respectively the coproduct and product in this category. Thus (Vark,t, ∅,×) is a

(skeletally small) symmetric monoidal category with pairing. We present below the

classical definition of the Grothendieck ring of varieties and defer the proof of the fact

that, whenever k is algebraically closed, then this definition agrees with the definition

of K0(Vark) in Section 3.2 until next section.

89
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The Grothendieck group K+
0 (Vark) is the quotient of the free abelian group gener-

ated by the isomorphism classes of k-varieties by the following relations.

[X]− [Y ] = [X \ Y ] whenever Y ⊆ X is a closed subvariety. (7.1)

It can be given a ring structure by taking the reduced product (X ×Spec k Y )red of

varieties. Recall that if the field k is algebraically closed, then we can simply talk

about the product X ×Spec k Y . We denote the Grothendieck ring of varieties by

K0(Vark).

Recall that if R is a commutative ring, then an R-valued motivic measure is a ring

homomorphism K0(Vark)→ R. The Grothendieck ring plays an important role in the

theory of motivic integration being the value ring of the universal motivic measure

on k-varieties. But very little is known about this ring. Poonen [32, Theorem 1] and

Kollár [24, Ex. 6] show that this ring is not a domain when k has characteristic 0.

Characterizing equality in the Grothendieck ring is an important issue. In order

to state this problem precisely, we need the notion of ‘cut-and-paste equivalence’ of

varieties.

Definition 7.1.1. Two varieties X and Y are said to be piecewise isomorphic,

written X + Y , if there are partitions X =
⊔
i∈[n] Xi and Y =

⊔
j∈[n] Yj of X and

Y into locally closed subvarieties such that there is a permutation σ of [n] with Xi

isomorphic to Yσ(i) as a variety.

If X + Y , then clearly [X] = [Y ] in K0(Vark). Larsen and Lunts asked whether

the converse is true.

Question 7.1.2 ([29, Question 1.2]). Suppose X and Y are two k-varieties such that

[X] = [Y ] in K0(Vark). Is it true that X + Y ?

In the case when k is algebraically closed, we reformulate this question as the

cancellative property of the Grothendieck semiring Sk of piecewise isomorphic classes

of k-varieties in Question 7.2.2.

Liu and Sebag answered this question over an algebraically closed field of char-

acteristic 0 for varieties with dimension at most one [30, Propositions 5, 6] and for

some classes of dimension two varieties [30, Theorems 4, 5]. Sebag [37, Theorem 3.3]

extended this result further.

This question is quite natural and has many important applications to birational

geometry. Consider the following question asked by Gromov as an example.

Question 7.1.3 ([14, §3.G′′′]). Let X and Y be algebraic varieties which admit an

embedding into a third one, say X ↪→ Z and Y ↪→ Z, such that the complements Z\X
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and Z \ Y are biregularly isomorphic. How far are X and Y from being birationally

equivalent? Under what conditions are X and Y piecewise isomorphic?

Lamy and Sebag [28] studied the following conjectural reformulation of this ques-

tion in characteristic 0.

Conjecture 7.1.4 (see [28, Conjecture 1]). Let k be an algebraically closed field and

let X be a k-variety. Let φ : X 99K X be a birational map. Then it is possible to

extend the map φ to a piecewise automorphism of X.

It is known (see [28]) that a positive answer to Question 7.1.2 will settle this conjec-

ture in the affirmative. We prove the converse in Theorem 7.3.3 showing that the two

statements are in fact equivalent. Zakharevich [41, Theorem 6.5(1)] has also recently

proved this result using advanced techniques in K-theory and spectral sequences.

Larsen and Lunts [29] obtained an important motivic measure described in the

following theorem.

Theorem 7.1.5 ([29, Theorem 2.3]). Suppose k is an algebraically closed field of char-

acteristic 0. Let sb denote the multiplicative monoid of stable birational equivalence

classes of irreducible varieties. There exists a unique surjective ring homomorphism

Ψ : K0(Vark) → Z[sb] that assigns to the class in K0(Vark) of a smooth irreducible

proper variety its stable birational equivalence class in Z[sb].

Bittner [5] obtained the following presentations of the Grothendieck group. Larsen

and Lunts mention that Bittner’s presentation subsumes the theorem above [29, Re-

mark 2.4] and this assertion has been proved in detail by Sahasrabudhe in [36].

Theorem 7.1.6 ([5, Theorem 3.1]). Suppose k is a field of characteristic 0. The

Grothendieck group K+
0 (Vark) has the following presentations:

(sm) as the abelian group generated by the isomorphism classes of smooth varieties

over k subject to the relations [X] = [Y ] + [X \ Y ], where X is smooth and

Y ⊆ X is a smooth closed subvariety;

(bl) as the abelian group generated by the isomorphism classes of smooth projective

k-varieties subject to the relations [∅] = 0 and [BlY X]− [E] = [X]− [Y ], where

X is smooth and complete, Y ⊆ X is a smooth closed subvariety, BlY X is the

blow-up of X along Y and E is the exceptional divisor of this blow-up.

In Theorem 7.4.1, we show that if Question 7.1.2 admits a positive answer over an

algebraically closed field k then the Grothendieck group K+
0 (Vark) is a free abelian
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group. Further if k has characteristic 0, then this result subsumes Bittner’s presenta-

tion in view of Hironaka’s theorem on resolution of singularities.

Conventions: In the rest of this chapter, k denotes an algebraically closed field

unless otherwise mentioned. If X is a variety, we use dimX to denote its dimension

and d(X) to denote the number of its irreducible components of maximal dimension.

7.2 The Grothendieck semiring of varieties

Recall the construction of the Grothendieck ring, K0(S), of a semiring S from Section

2.1.

Suppose {A} denotes the piecewise isomorphism class of a variety A. The set Sk
of piecewise isomorphism classes of k-varieties carries a natural semiring structure:

0 := {∅};

{A}+ {B} := {A′ tB′} where A′ ∈ {A}, B′ ∈ {B}, A′ ∩B′ = ∅.

The product of the classes of varieties is defined by {A}· {B} := {(A ×Spec k B)red},
where {Spec k} is the multiplicative identity.

A general element of K0(Sk) can be written as {A}− {B} for some varieties A,B.

Furthermore, {A1} − {B1} = {A2} − {B2} if and only if there is some variety C such

that A′1 tB′2 tC + A′2 tB′1 tC for some A′j ∈ {Aj}, B′j ∈ {Bj} for j = 1, 2 such that

A′1, B
′
2, C and A′2, B

′
1, C are families of pairwise disjoint varieties.

On the other hand, a general element of K0(Vark) can be expressed as a finite linear

combination
∑

i ai[Ai]−
∑

j bj[Bj] with ai, bj ∈ Z+ and Ai, Bj ∈ Vark. We can choose

some A′i1, A
′
i2, . . . , A

′
iai
∈ [Ai] and B′j1, B

′
j2, . . . , B

′
jbj
∈ [Bj] for each i, j such that every

two distinct A′ik and B′jl are disjoint. Let A :=
⊔
i,k A

′
ik and B :=

⊔
j,lB

′
jl. Then the

identities [A] =
∑

i ai[Ai] and [B] =
∑

j bj[Bj] are clearly true in K0(Vark). Therefore

a general element of K0(Vark) can be expressed as [A]− [B] for some varieties A,B.

Proposition 7.2.1. Let k be an algebraically closed field. Then the natural map

ψ : K0(Vark) → K0(Sk) defined by ψ([A] − [B]) := {A} − {B} is an isomorphism of

rings.

Proof. Recall that piecewise isomorphic varieties have the same class in K0(Vark).

Note as a consequence of (7.1) that if Z1 and Z2 are two disjoint varieties, then

[Z1] = [Z2] if and only if there is some W disjoint from both Z1 and Z2 such that

Z1 tW + Z2 tW .

Let A1, B1, A2 and B2 be pairwise disjoint varieties.

Now [A1]− [B1] = [A2]− [B2] in K0(Vark)



7.3. QUESTION 7.1.2 ≡ CONJECTURE 7.1.4 93

⇐⇒ [A1] + [B2] = [A2] + [B1] in K0(Vark)

⇐⇒ there is a variety C disjoint from all Ai and Bj

such that A1 tB2 t C + A2 tB1 t C
⇐⇒ {A1}+ {B2} = {A2}+ {B1} in Sk
⇐⇒ {A1} − {B1} = {A2} − {B2} in K0(Sk).

Thus the map ψ is both well-defined and injective. It is clearly surjective and

preserves addition.

Finally we note that ψ also preserves multiplication. Observe that for any two

varieties X and Y , we have [X]· [Y ] = [X ×Spec k Y ] in K0(Vark) and {X}· {Y } =

{X ×Spec k Y } in K0(Sk). Hence ψ preserves multiplication of varieties. Using the

distributivity of multiplication over addition completes the proof.

The following question is natural.

Question 7.2.2. Let k be an algebraically closed field. Is the semiring Sk of piecewise

isomorphism classes of k-varieties cancellative?

A positive answer to this question is equivalent to injectivity of the natural map

q : Sk → K0(Sk). In view of Proposition 7.2.1, it is also equivalent to injectivity of the

map ψ−1 ◦ q : Sk → K0(Vark). Hence a positive answer to Question 7.2.2 is equivalent

to a positive answer to Question 7.1.2.

7.3 Question 7.1.2 ≡ Conjecture 7.1.4

We note a consequence of equality in the Grothendieck ring. The proof here has

been provided by Kollár. A special case has been proved in [30, Cor. 5] when k is an

algebraically closed field of characteristic 0. Scanlon has pointed out another proof of

the special case using counting function methods from [25].

Proposition 7.3.1. Let k be a field and let A and B be two varieties with [A] = [B]

in K0(Vark). Then dimA = dimB and d(A) = d(B).

Proof. Let A and B be two varieties with [A] = [B] in K0(Vark). Then, by Proposition

7.2.1, there is a variety C disjoint from both A and B such that A t C + B t C. Let

G be the graph of such an isomorphism. Then the diagram

A t C π1←− G
π2−→ B t C (7.2)

can be reduced to any finitely generated subring R of the field k. We can further pass

the diagram over the finite field R/m, where m is a maximal ideal of the ring R.
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If R is a subring of k containing all the elements of k necessary to define the

varieties in the Diagram (7.2), then counting in the residue fields R/m yields the

required equalities.

Given two varieties V and W such that [V ] = [W ] in K0(Vark), Proposition 7.2.1

states that there is some variety Z disjoint from V and W such that V tZ + W tZ.

Under the hypothesis of Conjecture 7.1.4, we develop a technique in Proposition 7.3.2

to remove a dense subset of Z from both V tZ and WtZ to leave piecewise isomorphic

complements. In fact the following proposition is a reformulation of Conjecture 7.1.4.

Proposition 7.3.2. Suppose Conjecture 7.1.4 holds for an algebraically closed field k.

Let V,W and Z be k-varieties such that Z is disjoint from both V and W , dimV ≤
dimW ≤ t = dimZ and d(Z) = e. Assume that d(V ) = d(W ) if dimV = dimW .

Further let d =

d(V ) if dimV = dimW = t,

0 otherwise.

Let S1, S2, . . . , Sd+e and T1, T2, . . . , Td+e be families of pairwise disjoint irreducible

subvarieties of V t Z and W t Z respectively such that dimSl = dimTl = t for each

l ∈ [d + e]. Assume that the varieties Sl and Tl are either disjoint from or contained

in Z for each l ∈ [d+ e]. Furthermore assume that τ is a permutation of [d+ e] such

that fl : Sl ∼= Tτ(l) is a variety isomorphism for each l ∈ [d+ e].

Then there are subsets P,Q ⊆ [d + e] of size e, a bijection λ : Q → P and dense

subvarieties S ′l ⊆ Sl, T
′
l ⊆ Tl for l ∈ [d+ e] such that the following hold:

• S ′λ(l) = T ′l ⊆ Z for each l ∈ Q;

•
⊔
m/∈P S

′
m +

⊔
l /∈Q T

′
l ;

•
⊔
l∈[d+e](Sl \ S ′l) +

⊔
l∈[d+e](Tl \ T ′l ).

Proof. We have Sl ⊆ Z and Tm ⊆ Z for exactly e values of both l and m. Let

Q,P ⊆ [d + e] be the sets of such m and l respectively. For each l ∈ P , there is a

unique m ∈ Q such that dim(Sl ∩ Tm) = t. Let λ : Q→ P define this correspondence.

Case I: Suppose that λ(l) = τ−1(l) for each l ∈ Q.

In this case we set S ′λ(l) = T ′l := Sλ(l) ∩ Tl for each l ∈ Q. The isomorphism

fλ(l) : Sλ(l) → Tl can be seen as a birational self-map of Sλ(l) ∪ Tl. Since Conjecture

7.1.4 holds, this birational map can be extended to obtain a piecewise automorphism

of Sλ(l) ∪ Tl. In particular, one gets a piecewise isomorphism Tl \ Sλ(l) + Sλ(l) \ Tl of

lower dimensional subvarieties.

Case II: Suppose that λ(i) 6= τ−1(i) for some i ∈ Q. Fix such i and let j := λ(i).

The idea of the proof is to find subvarieties S1
l ⊆ Sl and T 1

l ⊆ Tl for each l ∈ [d+e]

and a permutation τ1 of [d+ e] such that the following properties are satisfied:
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(i) {l ∈ Q : λ(l) = τ−1
1 (l)} ) {l ∈ Q : λ(l) = τ−1(l)};

(ii) fl : Sl \ S1
l
∼= Tτ(l) \ T 1

τ(l) is an isomorphism for each l ∈ [d+ e];

and then continue inductively.

Since j 6= τ−1(i), we make the following assignments.

S1
l :=


Ti ∩ Sj if l = j,

f−1
τ−1(i)(Ti ∩ Sj) if l = τ−1(i),

Sl otherwise.

T 1
l :=


fj(Ti ∩ Sj) if l = τ(j),

Ti ∩ Sj, if l = i

Tl otherwise.

The maps fτ−1(i) and fj clearly restrict to isomorphisms Sτ−1(i) \ S1
τ−1(i)

∼= Ti \ T 1
i

and Sj \S1
j
∼= Tτ(j)\T 1

τ(j) of lower dimensional subvarieties. This takes care of property

(ii).

Now we define τ1 : [d+ e]→ [d+ e] as follows.

τ1(l) :=


i if l = j,

τ(j) if l = τ−1(i)

τ(l) otherwise.

Note that λ(i) 6= τ−1(i), but λ(i) = τ−1
1 (i). This shows that (i) holds.

Furthermore, f 1
τ−1(i) := fj ◦ fτ−1(i) : S1

τ−1(i) → T 1
τ1(τ−1(i)) and f 1

j := id : S1
j → T 1

τ1(j)

are isomorphisms. For the remaining l ∈ [d+ e], we set f 1
l := fl.

Thus f 1
l : S1

l → T 1
τ1(l) is an isomorphism for each l ∈ [d+e]. If λ does not agree with

τ−1
1 on Q, we iterate the process with varieties S1

l , T
1
l , functions f 1

l and permutation

τ1 until some (τn)−1 agrees with λ on Q.

We set T ′l := T nl for each l /∈ Q and S ′l := Snl for each l /∈ P .

The varieties Snλ(l), T
n
l , for l ∈ Q, together with the function λ = τ−1

n �Q is the

set-up for the first case. A construction similar to that case gives the required varieties

S ′λ(l), T
′
l .

In both cases, it is clear that the construction guarantees the final two conditions

in the statement of the proposition.

Theorem 7.3.3 (cf. [41, Theroem 6.5(1)]). Let k be an algebraically closed field. If

Conjecture 7.1.4 holds for k, then Question 7.1.2 admits a positive answer over k.

Proof. Let V and W be two varieties with [V ] = [W ] in K0(Vark). Then Proposition

7.2.1 states that there is a variety Z of dimension t and d(Z) = e, say, disjoint from
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both V and W , which witnesses this equality, i.e., V t Z + W t Z. Proposition 7.3.1

then gives dimV = dimW =: s and d(V ) = d(W ).

If s = 0, then d(V ) = d(W ) implies V + W .

If s > 0, then we describe a procedure to reduce the sum s + t in two different

cases.

Case I: Suppose s ≤ t. Let d =

d(V ) if s = t,

0 otherwise.

The piecewise isomorphism V tZ + W tZ gives two families S1, S2, . . . , Sd+e and

T1, T2, . . . , Td+e of irreducible subvarieties of V tZ and W tZ respectively of maximal

dimension satisfying the hypotheses of Proposition 7.3.2. Furthermore, we also get

that (V t Z) \
(⊔

i∈[d+e] Si

)
+ (W t Z) \

(⊔
i∈[d+e] Ti

)
.

If Conjecture 7.1.4 holds, we can apply Proposition 7.3.2 to obtain a dense subva-

riety Z1 :=
⊔
i∈Q T

′
i ⊆ Z. The other conclusions of the proposition give the following

properties:

• the variety Z ′ := Z \ Z1 witnesses [V ] = [W ], i.e., V t Z ′ + W t Z ′;

• dimZ ′ < dimZ.

The use of Proposition 7.3.2 can be repeated if dimZ ′ ≥ s. Hence the equality

[V ] = [W ] in K0(Vark) is witnessed by some variety Z ′′ of dimension less than s.

Case II: Suppose s > t. In this case, the piecewise isomorphism V t Z + W t Z
gives V ′ ⊂ V , W ′ ⊂ W with dimV ′ = dimW ′ < s such that V \ V ′ + W \W ′ and

V ′ t Z + W ′ t Z.

The two cases complete the proof that V + W .

7.4 Freeness of K+
0 (Vark) under Conjecture 7.1.4

In this section, we assume that Conjecture 7.1.4 holds (equivalently, in view of Theorem

7.3.3, Question 7.1.2 admits a positive answer) for an algebraically closed field k.

For each n ∈ Z≥0 let Varnk denote the proper class of k-varieties of dimension at

most n. Then {Varnk}n≥0 is a filtration on the objects of Vark. Further let Sn denote

the monoid, under t, of piecewise isomorphism classes of varieties in Varnk and Hn

denote the Grothendieck group associated with Sn for each n ≥ 0. If Conjecture

7.1.4 holds, then Hn is the subgroup of K0(Vark) generated by Sn and thus, for each

n ∈ Z≥0, the natural map Hn → Hn+1 is injective.

Let M denote a set of representatives of birational equivalence classes of irreducible

varieties. Then M =
⊔
n∈Z≥0

Mn, where Mn is the set of all dimension n varieties in

M. We use A,B, . . . to denote the elements of M.
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We say that a variety A of dimension n is M-admissible (or just admissible)

if it can be embedded into some A ∈ Mn. The assignment A 7→ A is a well-defined

and dimension preserving map on the class of admissible varieties. Note that every

admissible variety has a unique irreducible component of maximal dimension. We

say that a partition D =
⊔
i∈[m] Di of a variety D into locally closed subvarieties

is admissible if each Di is admissible. Note that each variety admits an admissible

partition.

Theorem 7.4.1. Suppose Question 7.1.2 admits a positive answer over an alge-

braically closed field k. Let M denote a set of representatives of birational equiva-

lence classes of irreducible k-varieties. Then there is a unique group isomorphism

evM : K+
0 (Vark)→ Z[M] satisfying evM([A]) = A for each A ∈M.

Proof. We fix M and drop the subscript M from evM. We inductively define a compat-

ible family of maps {evn : Varnk → Z[M]}n≥0, where evn factors through an injective

group homomorphism Hn → Z[M]. By an abuse of notation, we also denote the group

homomorphism by evn.

If D ∈ Var0
k and d(D) = d, then the assignment D 7→ dU clearly factors through

an injective group homomorphism H0
∼= Z→ Z[M], where U is the unique variety in

M0.

Assume by induction that evn−1 is a well-defined map on Varn−1
k and that it factors

through an injective group homomorphism Hn−1 → Z[M].

If D ∈ Varn−1
k , then define evn(D) := evn−1(D) ensuring compatibility.

Let A be an admissible variety of dimension n. Then there is an embedding f :

A ↪→ A for a unique A ∈Mn. Define evn(A) := A− evn−1(A \ f(A)).

To see that this definition does not depend on the choice of an embedding, let

g : A ↪→ A be another embedding. It will suffice to show that evn−1(A \ f(A)) =

evn−1(A \ g(A)). Note that the following equations hold in Hn.

[f(A)] = [g(A)],

[f(A)] + [A \ f(A)] = [g(A)] + [A \ g(A)].

Hence [A \ f(A)] = [A \ g(A)] in Hn. Under the hypothesis of a positive answer to

Question 7.1.2, we conclude the same equation in Hn−1.

If φ : A′ → A is a variety isomorphism, then A′ is admissible since A is and

both of them embed into the same variety A ∈ Mn. Choosing an embedding f of

A into A gives an embedding f ◦ φ of A′ into A. Since f(A) = f ◦ φ(A′), we have

evn(A) = evn(A′).
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If A = A1 tA2 is a partition of an admissible variety A of dimension n into locally

closed subvarieties and dimA1 = n, then A1 is admissible. Further if f is an embedding

of A into A, then using that evn−1 is additive we have

evn(A1) + evn(A2) = A− evn−1(A \ f(A1)) + evn−1(A2)

= A− evn−1((A \ f(A)) t f(A2)) + evn−1(A2)

= A− evn−1(A \ f(A))− evn−1(f(A2)) + evn−1(A2)

= A− evn−1(A \ f(A))

= evn(A).

From the previous two paragraphs it follows that whenever A is admissible and

A + B, then evn(A) = evn(B).

Now let D =
⊔
i∈[m] Di be an admissible partition of a variety D of dimension

n. Define evn(D) :=
∑

i∈[m] ev
n(Di). Any two admissible partitions of D admit a

common admissible refinement and, as shown above, the value of evn(Di) does not

change under refinements. Thus evn(D) is independent of the choice of an admissible

partition and thus is well-defined.

If D + D′, then we choose partitions D =
⊔
i∈[m] Di and D′ =

⊔
i∈[m] D

′
i such that

Di is isomorphic to D′i for each i. By further refinements, we may as well assume that

these partitions are admissible. Then evn(D) =
∑

i∈[m] ev
n(Di) =

∑
i∈[m] ev

n(D′i) =

evn(D′).

This completes the proof that the map evn, uniquely determined by M, factors

through an additive map Hn → Z[M]. It remains to show that evn : Hn → Z[M] is

injective.

We must show that if D1, D2, D
′
1, D

′
2 ∈ Varnk satisfy evn([D1]− [D2]) = evn([D′1]−

[D′2]), then [D1]− [D2] = [D′1]− [D′2]. This claim can be restated as: evn([D1]+[D′2]) =

evn([D2] + [D′1]) implies [D1] + [D′2] = [D2] + [D′1]. Therefore it is sufficient to prove

that if D,D′ ∈ Varnk satisfy evn([D]) = evn([D′]), then [D] = [D′] in Hn.

Let D,D′ ∈ Varnk be such that evn([D]) = evn([D′]). Looking at the “n-dimensional

component” of this element of Z[M], we deduce that dimD = dimD′ and d(D) =

d(D′) =: d.

Suppose D =
⊔
i∈[t] Di is an admissible partition of D. Without loss, we may

assume that dimDi = n if and only if i ∈ [d]. For each i ∈ [d], let fi : Di → Ai be a

variety embedding, where Ai ∈Mn, and set Ci := Ai \ fi(Di). Then dimCi < n and

Di t Ci + Ai. Hence evn([Di]) + evn−1([Ci]) = Ai for each i ∈ [d].

Similarly starting with an admissible partition D′ =
⊔
i∈[s] D

′
i, where dimD′i = n if

and only if i ∈ [d], we obtain A′i ∈Mn and C ′i such that evn([D′i]) + evn−1([C ′i]) = A′i



7.4. FREENESS OF K+
0 (Vark) UNDER CONJECTURE 7.1.4 99

for each i ∈ [d]. Now∑
i∈[d]

Ai +
∑

i∈[t]\[d]

evn−1([Di]) +
∑
i∈[d]

evn−1([C ′i])

= evn([D]) +
∑
i∈[d]

evn−1([Ci]) +
∑
i∈[d]

evn−1([C ′i])

= evn([D′]) +
∑
i∈[d]

evn−1([C ′i]) +
∑
i∈[d]

evn−1([Ci])

=
∑
i∈[d]

A′i +
∑

i∈[s]\[d]

evn−1([D′i]) +
∑
i∈[d]

evn−1([Ci]).

Comparing the components of different dimensions, we get the following equations.∑
i∈[d]

Ai =
∑
i∈[d]

A′i,∑
i∈[t]\[d]

evn−1([Di]) +
∑
i∈[d]

evn−1([C ′i]) =
∑

i∈[s]\[d]

evn−1([D′i]) +
∑
i∈[d]

evn−1([Ci]).

It easily follows from the first equation that the list A1,A2, . . . ,Ad is the same as

the list A′1,A′2, . . . ,A′d. Since the map evn−1 is injective, the second equation gives∑
i∈[t]\[d][Di] +

∑
i∈[d][C

′
i] =

∑
i∈[s]\[d][D

′
i] +

∑
i∈[d][Ci] in Hn−1. Combining these, we

obtain [D] +
∑

i∈[d][Ci] +
∑

i∈[d][C
′
i] = [D′] +

∑
i∈[d][C

′
i] +

∑
i∈[d][Ci] in Hn. Since Hn is

a group, cancelling common terms from both sides gives [D] = [D′]. This completes

the proof of injectivity of evn.

Define the map ev : Vark → Z[M] by ev(D) := evn(D) whenever D ∈ Varnk .

Compatibility of the family {evn} gives that the map ev is well-defined and factors

through K+
0 (Vark) to give an injective map K+

0 (Vark)→ Z[M].

Since, given C,D ∈ Vark, there exists n such that C,D ∈ Varnk , the additivity

of evn : Hn → Z[M] for each n implies that ev : K+
0 (Vark) → Z[M] is a group

homomorphism. The image of ev generates the group Z[M] since the image of M ⊆
Vark generates the codomain. Hence K+

0 (Vark)
∼= Z[M].

Suppose that k is an algebraically closed field of characteristic 0. Hironaka’s the-

orem on resolution of singularities allows us to choose smooth projective generators

of the Grothendieck group. To deduce Theorem 7.1.6 from Theorem 7.4.1, consider

the abelian group H freely generated by the isomorphism classes of smooth complete

varieties. We only need to find the relations between birational smooth complete vari-

eties in the Grothendieck group. The weak factorization theorem ([1, Theorem 0.1.1])

of Abramovich, Karu, Matsuki and W lodarczyk states that any birational morphism

between two smooth complete k-varieties can be factorized as a sequence of blow-ups

and blow-downs. As a corollary we obtain that if the subgroup H ′ ≤ H is generated

by the relation [∅] = 0 together with the “blow-up” relations, then K+
0 (Vark)

∼= H/H ′.
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7.5 The associated graded ring of K0(Vark)

We continue to work under the hypothesis of a positive answer to Question 7.1.2 over

an algebraically closed field in this section. Under this hypothesis, the usual dimension

function factorizes through the Grothendieck group.

Two varieties X and Y of dimension n are birational if and only if there are open

subvarieties X ′ ⊆ X and Y ′ ⊆ Y such that X ′ ∼= Y ′ if and only if dim([X] − [Y ]) =

dim([X \X ′]− [Y \Y ′]) < n, where [X] denotes the class of the variety X in K0(Vark).

In general the product of two varieties in M is birational (but not necessarily equal)

to a variety in M. This suggests looking at the structure of the associated graded ring

of K0(Vark), where the grading on K0(Vark) is induced by dimension. Let {Fn}n≥0

be the filtration on K0(Vark) induced by dimensions and let G denote the associated

graded ring of K0(Vark) with respect to this filtration.

The construction of G is as follows. Set F−1 := {0} for technical purposes. Let

Gn := Fn/Fn−1 for each n ≥ 0 and let G denote the abelian group
⊕

n≥0Gn. There are

multiplication maps Gn×Gm → Gn+m defined by (x+Fn−1)(y+Fm−1) = xy+Fn+m−1

for each n,m ≥ 0. These maps combine to give a multiplicative structure on G.

Let Bn denote the set of birational equivalence classes of irreducible varieties of

dimension n and let B :=
⊔
n≥0 Bn. The set B carries a monoid structure induced by

the multiplication of varieties, where the class of a singleton acts as the identity. The

usual dimension function on varieties factors through B.

Theorem 7.5.1. Suppose Question 7.1.2 admits a positive answer over an alge-

braically closed field k. The associated graded ring G of K0(Vark) with respect to

the dimension grading is the monoid ring Z[B], where B is the multiplicative monoid

of birational equivalence classes of irreducible varieties.

Proof. Since Question 7.1.2 admits a positive answer over k, we can use the group

isomorphism of Theorem 7.4.1 induced by the evaluation map to define a multiplicative

structure on Z[M]. By an abuse of notation, we will say that {Fn}n≥0 is a filtration

on Z[M] and G is its associated graded ring.

Let A 7→ [[A]] denote the canonical bijection M → B, which takes an irreducible

variety to its birational equivalence class. This clearly extends to a group isomorphism

Φ : G→ Z[B]. We show that Φ also preserves multiplication.

Given A ∈ Mn and B ∈ Mm, the product A ×Spec k B is irreducible and thus is

birational to a unique C ∈Mn+m. In other words, (A+Fn−1)· (B+Fm−1) = C+Fn+m−1

in G. We also have [[C]] = [[A ×Spec k B]] = [[A]][[B]] in the monoid B. Hence

Φ((A+Fn−1)· (B+Fm−1)) = Φ(A+Fn−1)·Φ(B+Fm−1). This shows that Φ preserves
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multiplication on the image of M in G. It is routine to verify that Φ is multiplicative

on the whole of G.

7.6 Further Remarks

Recall that an element a of a ring R is said to be regular if it is not a zero divisor in

R. The following question is important for better understanding of the Grothendieck

ring and is open even in the case of algebraically closed fields.

Question 7.6.1. Let k be a field of characteristic 0. Suppose A1
k denotes the affine

line over k. Is L := [A1
k] a regular element of K0(Vark)?

Lemma 4.8 and Proposition 4.9 in [37] connect this question to Question 7.1.2 in

special cases, but no further development has been made.

In view of Theorem 7.5.1, one can ask the following question.

Question 7.6.2. Let k be an algebraically closed field. Is the Grothendieck ring

K0(Vark) a monoid ring?

The model-theoretic Grothendieck ring K0(k) of an algebraically closed field k, as

defined in [25], is a quotient of K0(Vark). It is natural to ask the following question.

Question 7.6.3. Suppose k is an algebraically close field. Is the model-theoretic

Grothendieck ring K0(k) isomorphic to K0(Vark)?
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Chapter 8

Conclusions

8.1 Overview

We fix a unital ring R and an algebraically closed field k in this chapter. The main

objects of study in this thesis are certain symmetric monoidal categories whose objects

are sets and the monoidal operation is disjoint union, i.e., we study cut-and-paste

operations. The objects of the category S(M) associated with a structure M (Chapter

3), or of the category Vark associated with a field k (Chapter 7), form a boolean algebra

without a top element.

Definition 8.1.1. A simplicial poset is a poset P with a least element 0 such that

every interval [0, p] = {q ∈ P : 0 ≤ q ≤ p} is a boolean algebra.

One can only talk about relative complements (i.e., the element p ∧ ¬q whenever

q ≤ p in P ) in a simplicial poset.

In this chapter we identify a common thread between different chapters, namely

freeness of the simplicial poset of objects of these categories or of the categories them-

selves. Section 8.2 is based on Chapter 5 and it isolates two key aspects of freeness.

One of these aspects is model-theoretic, namely the (partial) elimination of quantifiers

whereas the other is of lattice-theoretic nature. We describe how the freeness is trans-

ferred to the lower K-theory of such categories in Section 8.3. In the next section, we

weaken one of these two aspects at a time and link Chapters 6 and 7 via Chapter 5.

Section 8.5 describes miscellaneous questions not covered in the earlier sections.

8.2 Model theory and freeness of groupoids

We focus our attention on the category S(MR), where the theory T of the module

MR satisfies T = T ℵ0 . Model theory plays the key role in determining the structure

103
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of this category. In this case, the partial elimination of quantifiers (Theorem 4.1.5) is

equivalent to the statement that the simplicial poset Def(MR) of the objects of the

category S(MR) is free. To explain the meaning of this last statement we analyse

the manipulation of different lattice-like substructures of the simplicial poset, which

is another important theme in this thesis.

(∧) The pp-elimination of quantifiers for the theories of modules (Theorem 4.1.5)

makes, for each n ≥ 1, the meet-semilattice Ln of pp-definable sets the ‘basis’ of

the boolean algebra Def(Mn).

(∨) The lattice An of antichains is, by definition, the free distributive lattice on Ln.

The model-theoretic condition T = T ℵ0 says that the lattice On of pp-convex

subsets of Mn is isomorphic to the lattice An.

(¬) The cell decomposition theorem (Corollary 4.3.5) expresses Def(Mn) as (an iso-

morphic copy of) the boolean algebra of finite chains of finite antichains in the

meet-semilattice Ln. This can be described as the method of freely adjoining

relative complements to the free distributive lattice An.

Note that the above constructions can be expressed entirely in the language of lattice

theory.

Simplicial methods are natural for studying the ‘set-theoretic geometry’ associated

with antichains. The local processes in Def(Mn) are similar to, but independent from,

the local processes in Def(Mm) when n 6= m and these different ‘dimensions’ start to

interact with each other only when we are concerned with the multiplicative structure.

The fact that the pp-sets are closed under projections is not directly relevant to the

analysis of the local and global characteristics.

The morphisms of the groupoid S(MR) embed into its objects via the mapping that

takes a definable bijection f between two definable subsets to its graph Graph(f). For

each n ≥ 1, let Gn denote the subcategory of S(MR) whose objects are from the

meet-semilattice Ln and the morphisms are pp-definable bijections. Note that, by

construction, the morphisms of the groupoid Gn also embed into its objects. This

suggests that the groupoid G :=
⋃∞
n=1 Gn freely generates the groupoid S(MR) in

the same way as L generates Def(M). Note that the category G is not a symmetric

monoidal category. We understand the concept of free generation only in this very

special case, which raises the following question.

Question 8.2.1. Under what conditions can one express that a groupoid S is freely

generated by a sub-groupoid G?
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8.3 Transferring freeness

Recall that the theory T of an infinite vector space VF over an infinite field F satisfies

the model-theoretic condition T = T ℵ0 . Owing to the infinitude of the vector space

VF and the fact that definability is with parameters, logical disjunction (∨) allows one

to realize disjoint unions of arbitrarily large finite number of copies of V n in V n+1 for

each n ≥ 0 - a fact that has been heavily exploited in the proof of Theorem 3.5.1. This

allows one to embed the groupoid isoFinSets in S(VF ) in each dimension. Moreover,

the multiplicative monoid of colours (i.e., pp-isomorphism classes of pp-definable sets)

in S(VF ) is isomorphic to (N, 0,+).

The groupoid S(VF ) can be thought of as the “free boolean semidirect product”

of the groupoid isoFinSets along the groupoid G of the pp-definable bijections of

the pp-definable sets; the same holds true of the objects. Since the K-theories of

equivalent (symmetric monoidal) groupoids are isomorphic, we consider the skeletons

of the categories involved in the product. The groupoid G is equivalent to the disjoint

union of the groups Υn of pp-definable automorphisms of the fundamental definable

set V n; the objects of the skeleton of G form the monoid N.

The Grothendieck ring construction is generally thought of as the linearization of

a boolean algebra since one converts boolean combinations into linear combinations.

Under the new viewpoint of the structure of the category S(VF ), we can write the in-

tegral monoid ring K0(VF ) = Z[N] as the direct sum
⊕

n∈NK0(isoFinSets). Similarly,

K1(VF ) =
⊕∞

n=1(F× ⊕ Z2)⊕ Z2 =
⊕

n∈N(H1(Υn;Z)⊕K1(isoFinSets)).

The K-theory of the groupoid isoFinSets is clearly visible in each dimension, where

the monoid N of dimensions depends only on the groupoid G. This gives the complete

description of the ring K0 since it disregards the automorphisms. The explicit depen-

dence of the “automorphism-classifying group” K1 on the groupoid G can be clearly

seen through the homology component. Moreover, the independence of different di-

mensions can be attributed to the freeness of the groupoid S(VF ).

The Grothendieck ring, K0(MR), of a module MR whose theory T satisfies T = T ℵ0

is the integral monoid ring Z[X ] (Theorem 5.4.2) and it can be analyzed in a similar

way. This discussion motivates the following conjecture.

Conjecture 8.3.1. Suppose MR is an infinite rightR-module whose theory T satisfies

the condition T = T ℵ0 . Then K1(MR) =
⊕

A∈X (Υ(A)ab⊕Z2), where Υ(A) is the group

of pp-definable automorphisms of any (and hence every) pp-set in A.

The method used in the proof of Theorem 3.5.1 - that describes the group K1(VF )

- depends on the fact that on closing a finite set of colours under the intersections of

its elements one obtains only a finite set of colours. This allows one to compute the
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automorphism groups explicitly. Hence, for general modules, one cannot apply this

technique.

The monoidal operation, t, on S(M), for any structure M , induces a poset struc-

ture on the objects. One can use this poset structure to construct other types of

categories of definable sets and definable functions whose K-theory can be defined.

Zakharevich defined the K-theory of a categorical gadget called an assembler in [41];

definable sets with definable injective functions do form an assembler. The author

expects, but did not check, that the K-theories obtained using two different ways

coincide. Explicit computation of the K-groups, even K1, is not easy using either

method.

Definable bijections between definable sets in Def(M) also behave like partial fini-

tary definable symmetries of the infinite product Mℵ0 ; the latter is considered only as

a set and is not a model-theoretic structure. This suggests that the definable bijec-

tions form an inverse semigroup (see [20]). Some literature is available regarding the

K-theory of some special classes of inverse semigroups modelled on the algebraic K-

theory of rings, but the author did not find it relevant to the model-theoretic K-theory

considered in this thesis.

The following question/conjecture presents the author’s viewpoint on the compu-

tation of the K-theory in a special class of symmetric monoidal categories.

Question 8.3.2 (‘Transfer Principle’). Suppose S is a symmetric monoidal groupoid

freely generated by a sub-groupoid G and the objects of G have no non-trivial relations

with respect to the monoidal operation of S. Is the K-theory of S freely generated by

the data present in G?

The terms and phrases used in the above question are not well-formulated. The

next section will provide more examples to justify the author’s belief in this principle.

8.4 Two weaker forms of freeness

Consider the category S(MR) for a right R-module MR. Further let T denote the

theory of the module MR.

If the theory T satisfies T = T ℵ0 , then, for each n ≥ 1, the basis set Ln consisting of

the fundamental objects satisfies the following properties which essentially determine

the K-theory of such modules as discussed in Section 8.3.

• The set Ln is closed under meets (intersections).

• The model-theoretic condition T = T ℵ0 is equivalent to the lattice-theoretic

statement that every element of Ln considered as an element of the lattice An
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is ‘join-irreducible’, i.e., no P ∈ Ln can be expressed as a join (union) of finitely

many proper pp-subsets of P .

In this section we describe the two situations where exactly one of these two properties

hold.

Chapter 6 deals with the case when the theory T of the module MR does not

satisfy the condition T = T ℵ0 . In this case, for each n ≥ 1, the basis set Ln of the

boolean algebra Def(Mn) is still a meet-semilattice, but it contains some join-reducible

elements. We need to take the quotient of the free boolean algebra constructed in the

previous section by the non-trivial finite join-relations present in Ln to obtain the

boolean algebra Def(Mn).

The Grothendieck ringK0(MR) of such a module is shown to be the integral monoid

ring - which one obtains if the non-trivial join-relations were absent - modulo the ideal

which encodes these relations (Theorem 6.2.3). One achieves this by modifying the

techniques of Chapter 5. This shows that one could apply the ‘transfer principle’ to

the free boolean algebra before taking the quotient to obtain the Grothendieck ring of

the quotient of the free groupoid.

Section 3.3 defines the K-theory of a structure M which is functorial on elementary

embeddings. In the case of modules, elementary equivalence gives isomorphism of the

K-theory but pure maps (Section 6.3) provide an interesting class of maps on which

the K-theory is contravariant. It will be interesting to study the long exact sequence

of the K-theory in both cases.

Algebraic K-theory associates, for each n ≥ 0, an abelian group K⊕n (R) to a

unital ring R via the monoidal category (Proj-R, 0,⊕). We can also consider R as an

Lring-structure and construct the groups Ktn (R).

Question 8.4.1. Suppose R is a unital ring and MR is a right R-module. What is the

relation between the algebraic K-theory K⊕∗ (R), and the model-theoretic K-theory

Kt∗ (R) of the ringR? More specifically, what is the relation between the rings K⊕0 (R),

Kt0 (R) and the ring K0(Mod-R) (Lemma 6.3.8)? What is the relation between either

of these with the model-theoretic K-theory Kt∗ (MR) of the module MR?

The other situation is dealt with in Chapter 7. The theory of the algebraically

closed field k eliminates quantifiers. Every object of the category Vark is piecewise

isomorphic to an object of the category S(k), but given two objects A,B of S(k), the

set Vark(A,B) has fewer morphisms than the set S(k)(A,B). Nonetheless, both cat-

egories are symmetric monoidal categories under disjoint union. The model-theoretic

Grothendieck ring K0(k) is a quotient of K0(Vark). The following question is natural

and is expected to admit a positive answer.
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Question 8.4.2. Suppose k is an algebraically close field. Is the model-theoretic

Grothendieck ring K0(k) isomorphic to K0(Vark)?

Every object of the category S(k) is a finite boolean combination of irreducible

varieties, i.e., the varieties that cannot be expressed as a union of two proper subsets

that are closed in the Zariski topology. In fact there is a unique representation theorem

for objects of S(k) in terms of irreducible Zariski closed varieties (see [15]) analogous to

Corollary 4.3.5 for definable sets in modules (the proof uses the facts that the Zariski

topology is Noetherian and that the irreducible components of a variety are uniquely

defined). Thus, for each n ≥ 1, the set Ln of irreducible closed subvarieties of kn

can be thought of as the basis of Def(kn) and each element of Ln is join-irreducible

as an element of Def(kn); this makes the notion of irreducibility an equivalent of

the condition T = Tℵ0 . The set Ln is not closed under intersections, but such an

intersection is a finite union of its elements. This makes the set An of finite antichains

in Ln a distributive lattice. The map assigning the birational equivalence class to

an element in Ln is the appropriate analogue of the map assigning the colour to a

pp-definable set.

Let us look at how this is reflected in the structure of the Grothendieck ring

K0(k) (conjecturally isomorphic to the ring K0(Vark)): Theorem 7.4.1 states that the

Grothendieck group K+
0 (Vark) is freely generated by the birational equivalence classes

of varieties and Theorem 7.5.1 presents the associated graded ring of the Grothendieck

ring K0(Vark) as a monoid ring. These presentations are, of course, under the hypoth-

esis of a positive answer to Question 7.1.2 regarding the structure of the Grothendieck

semiring. The author’s belief in the transfer principle motivates the following.

Conjecture 8.4.3. Suppose k denotes an algebraically closed field. The conclusions

of Theorem 7.4.1 and Theorem 7.5.1 hold true irrespective of the answer to Question

7.1.2.

This conjecture is not known to be equivalent to a positive answer to Question

7.1.2. Note the effect of the subtle difference in the structure of the posets Ln in the

two cases. The Grothendieck ring of a module with condition T 6= Tℵ0 is a quotient of

the integral monoid ring, but we expect the associated graded ring of the Grothendieck

ring of varieties to be a monoid ring.

Now we point out some obstacles in the way if we try to follow the techniques of

the module case in the case of varieties. Since the intersection of two irreducible closed

subvarieties of kn is not irreducible, one will need to use a geometric/topological notion

of localization or intersection theory to define the local characteristics. Preserving the
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local characteristics under variety isomorphisms/definable isomorphisms is another

issue since varieties have curvature.

Suppose C denotes the complex field. It is known [25, Cor. 5.8] that K0(C) contains

the polynomial ring Z[{xi : i ∈ c}], where c is the cardinality of the continuum. A

polynomial ring is naturally a monoid ring over the free monoid of monomials. One

can ask the following question in view of Theorem 7.5.1.

Question 8.4.4. Let k be an algebraically closed field. Is the Grothendieck ring

K0(Vark) a monoid ring?

Based on the two cases discussed in this section, we can state the following well-

formulated instance of the ‘transfer principle’ for model-theoretic Grothendieck rings.

Question 8.4.5. Are there any other model-theoretic structures admitting some form

of elimination of quantifiers whose Grothendieck rings can be computed using the

techniques developed in this thesis?

8.5 Further questions

The atomic formulas in the language LR of right R-modules are linear equations

whereas the atomic formulas in the language of rings (together with a symbol for sub-

traction) are polynomial equations. Thus the complexity of definable sets in modules

is only a “1-dimensional fraction” of the complexity in algebraically closed fields.

For a field k, the Grothendieck ring of varieties K0(Vark) is the value ring for the

universal motivic measure on k-varieties and thus is closely related to the theory of

motivic integration. We have shown (Theorem 5.1.6) that the local characteristics are

valuations in the sense of [23], i.e., finitely additive measures. Local characteristics

“measure” the rigid structure of a definable set while global characteristics “measure”

the structure of its definable isomorphism class. This motivates the following question

which asks for a “1-dimensional fraction” (as discussed in Section 8.4) of the theory

of motivic integration for k-varieties.

Question 8.5.1. Is there a reasonable theory of motivic integration on definable

subsets of modules?

Flenner and Guingona studied directed families of sets and the unique represen-

tation theorem for sets constructible in these families [12]. This result has many

interesting model-theoretic consequences including the (1-dimensional) elimination of

imaginaries. We ask if Corollary 4.3.5 can be used to generalise these results when a

directed family is replaced by a meet-semilattice.
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Finally we collect some questions regarding the existence of certain special elements

in the Grothendieck rings.

Corollary 6.4.3 demonstrates the existence of modules whose Grothendieck ring

contains additive torsion elements. But the author believes that there are no examples

with non-trivial multiplicative torsion elements (i.e., elements a ∈ K0(M) such that

an = 1 for some n > 1).

Conjecture 8.5.2. There are precisely two units (namely ±1) in the Grothendieck

ring K0(MR) of a nonzero module MR.

Recall that an element a of a ring is said to be regular if it is not a zero divisor.

The following question is important for better understanding of the Grothendieck ring

of varieties and is open even in the case of algebraically closed fields.

Question 8.5.3. Let k be a field of characteristic 0. Suppose A1
k denotes the affine

line over k. Is L := [A1
k] a regular element of K0(Vark)?

Lemma 4.8 and Proposition 4.9 in [37] connect this question to Question 7.1.2 in

special cases, but no further development has been made.
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