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Abstract

The long term aim of this work is to investigate and develop efficient methods to analyse

systems involving biological flows with fluid structure interaction, particularly cerebral

aneurysms. Cerebral aneurysms are extremely complex biological structures and this

work develops some of the groundwork required to eventually build the capability to

efficiently simulate them computationally. This will enable the prediction of a patient

specific risk model to aid in surgical decisions on a day to day basis or in large scale

studies.

Fibrous immersed dynamic structures of cerebral aneurysms seem suited to immersed

boundary method simulations. Because of this numerous Immersed Boundary methods

are investigated to determine if they present a viable approach, and which of these is best

suited.

A number of different computational tools have been built and investigated using FFTW,

Eigen, OpenMP, and GNU OCTAVE to meet the requirements to allow numerous impli-

cit and explicit approaches to be investigated. These tools are validated and tested for

a number of cases. Preliminary work is also presented aimed at generating physically

representative numerical models from MRI scans.
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Motivation

The motivation of this work is to explore, simulate and develop tools for investigating

fluid and structural problems which are encountered in real life physiological systems. To

handle complex geometries much development is required to assemble a comprehensive

and robust approach, especially when strongly coupled interactions between fluids and

structures are present. Immersed/Embedded geometry methods are investigated with the

aim of assessing their capability for complex geometries and Fluid Structure Interaction

(FSI) problems. Fluid Structure Intraction is of significant importance across a range of

biological applications, such as in the modelling of blood flow, at a number of length

scales, from the deformation of blood cells, thrombosis formation, the deposition or build

up of atherosclerotic plaque and the flow/pressure induced deformation of vasculature.

Cerebral and Aortic aneurysms are an early focus of this study. Aneurysms are physiolo-

gically important cases where advances in numerical simulations could prove potentially

valuable, for example leading to improvements in treatment, pathogenesis or prevention.

7



Part I.

CFD simulation of Cerebral

Aneurysms
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1. Introduction and overview

A case where there is much need for a better platform for numerical simulation is that

of cerebral aneurysms. Cerebral aneurysms are local dilations in blood vessels towards

the base of the brain, i.e. a section of blood filled vessel, supported and surrounded by

intercranial fluid that has expanded due to pathogenic factors such as high blood pressure

or lesions. They are typically saccular or fusiform in shape and occur near bifurcations

within the Circle of Willis (Shojima et al. [7, 8]) which is a network of arteries which

deliver blood to the brain. A schematic of the Circle of Willis is shown in Figure 1.1.

The geometry of this network of arteries varies from patient to patient. Atypical topolo-

gies, such as those with blood vessel malformations, lead to a higher risk of aneurysm

formation.

Cerebral aneurysms are relatively common, occurring unruptured in approximately 6%

of the population [7]. Many of those diagnosed will not rupture, however those that do

have a dismal prognosis from the resulting sub-arachnoid haemorrhage. Complications

can also occur without rupture due to the physical size of the aneurysm or a dislodged

thrombus.

Once a cerebral aneurysm has been identified in a patient two major treatment options ex-

9



Introduction and overview

Middle Cerebral
Internal Carotid

Anterior Communicating

Posterior Cerebral

Posterior Communicating

Anterior Cerebral

Figure 1.1.: Schematic showing the interconnected blood vessels making up the circle of
Willis at the base of the brain.

ist, surgical clipping and endovascular coiling. Surgical clipping consists of performing

a craniotomy to expose the aneurysm, then closing the base of the aneurysm with a clip.

Coiling uses a catheter to deploy platinum coils within the aneurysm which cause throm-

bosis. Both these methods block off the blood flow preventing further growth. These

treatments come at relatively high risk. A series of comparative studies into the relative

risks of aneurysm treatment have been presented by Molyneux et al. [9] which evaluate

each treatment method. It was concluded that after one year the chance of survival

free of disability was greater for endovascular coiling (76% as opposed to 69%). A later

study of the same patients set five years later concluded that ruptured aneurysms treated

with coiling had a slightly higher risk of recurrent bleeding compared to those treated

with clipping, although in line with the earlier studies the overall the risk reduction was

greater for coiling.
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Introduction and overview

For unruptured aneurysms, it is often particularly challenging to balance the high risks

associated with surgical intervention against the risks of leaving a particular aneurym

untreated. This is particularly difficult for aneurysms between 2 and 4 millimetres in

diameter.
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2. Literature review

There are a number of different approaches in literature geared towards pathogenic factors

and quantifying risks.

Firstly, there are studies which ignore the details of the flow field, such as that of Hat-

iboglu et al. [10] , who developed a risk criteria using fuzzy logic approach based on

parameters such as patient age and blood volume. Cohort studies such as Molyneux et al.

[9] represent a similar approach.

Details of the flow field can be found via CFD analysis. CFD simulations in simplified

geometries are useful for determining general trends, correlating parameters such as wall

shear stress magnitude or oscillation index to risk factors or areas typical of aneurysm

formation. Examples of studies of this kind include the works of Alns et al. [11] and Paal

et al. [12] . Alns et al. [11] simulated the flow within an empirically patient specific three

dimensional Circle of Willis, investigating vessel radii and branch angles. High wall shear

stresses were found in areas typical of aneurysm development. Pal et al. [12] simulated

hemodynamic stress and flow fields in simplified (two and three dimensional) and real

side wall intracranial aneurysm models aiming to draw parallels between the simplified

and real geometries and noting geometries in which lower wall shear stresses are found.

12



Literature review

Beyond simplified approaches such as these, efforts have been made to correlate detailed

patient specific geometries and flow field information to cerebral aneurysm growth/formation

or rupture risk. Patient specific geometries allow simulations to be used both in treatment

selection, and to anchor correlations such as wall shear stress to growth and rupture (as

described in the previous paragraph) to cases in which the outcomes are known, or the

surgical decision has been made.

Medical imaging is currently unable to provide adequately resolved velocity fields [13]

therefore CFD simulations are a vital tool to bridge this gap and allow the measurement

of important features, such as impinging jets or wall shear stresses.

In CFD studies which neglect fluid structure interaction a number of different geometries

and flow conditions can feasibly be completed and compared allowing for broader studies

with detailed comparisons and correlations. Studies such as these include the work of

Shojima et al. [7, 8] , who note that, as simulated bloodstream impacting forces typically

accounted for pressure rises of the order of 1%, there is no strong correlation with rupture

or growth. In earlier work simulations of 20 patient specific MCA aneurysm simulations

found a relatively weak negative correlation between aspect ratio and wall shear stress.

Many of the lower aspect ratio aneurysms in the study were known to have later ruptured.

Jou et al. [14] , investigating hemodynamic forces in two giant cerebral aneurysms, noted

that the geometry of the feeding vessels has a very significant effect on the hemodynamic

forces which is a factor often left out of numerical studies.

The growth of cerebral aneurysms over large timescales has also been examined. The

method and approach of these studies varies, but typically small timescale FSI effects are

ignored. Paal et al.[12] investigated growth by calculating the blood flow using seven

patient specific geometries which were extracted from MRI scans taken at 12 month in-
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tervals. This work further strengthened the correlation between low wall shear stress and

local aneurysm growth.

Chatziprodromou et al. [15, 16] used a fully computational approach by incorporating a

model for wall remodelling and vascular tone change. An idealised geometry was used to

simulate the development of a side wall aneurysm with a simple model for remodelling.

A series of quasi-steady simulations were undertaken with an initial injury to the vessel

wall, then remodelling was introduced into the simulation by setting the aneurysm wall to

an unstressed state after each evolution step.

Figueroa et al. [17] present a detailed insight into how large timescale cardiovascular

simulations can be undertaken. Growth was modelled by performing relatively short

timescale simulations incorporating fluid structure interactions (using a coupled momen-

tum method). An approximate hemostatic state was found and the vasculature remodelled

over a large time scale. Growth was initiated by the removal of elastin in appropriate re-

gions of the domain. Valencia et al.[18] [19] ran numerous patient specific simulations,

finding a strong linear relationship between the aneurysm surface index, defined as the

ratio between the aneurysm area and the artery area at the model inlet, and the spatially

averaged WSS (calculated via CFD simulation) at peak systole.

Studies that incorporate the influence of FSI tend to be less broad in scope due to the com-

putational requirements. In investigating the effects of aneurysm shape and wall compli-

ance, Torii et al. [20] found a strong dependence on shape and influence of fluid structure

interaction. The solution was very resource intensive, with one cardiac cycle taking ap-

proximately three days to solve using 16 cpus. These findings are backed up by earlier

CFD FSI analysis by the same author ([21] (a linear elastic model was used for the ves-

sel wall) on two patient specific vascular models which also found large differences in
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WSS predictions with FSI. This is to be expected if the wall is in motion throughout the

simulation. Valencia et al. [19] studied hemodynamics, deformation and effective stress

within a healthy basilar artery and terminal basilar artery model incorporating FSI. The

vessel wall thickness and constitutive model was found to have a significant impact on the

results.

Further details of arterial aneurysm biomechanics can be found in Lasheras [22] , a re-

view concerning pathogenesis, growth and rupture of both aortic and cerebral aneurysms

and a summary of active areas of research : pathogenesis, enlargement factors, quanti-

fying rupture risk, and the development of patient specific treatments. The study em-

phasises two significant obstacles slowing the development and applicability of compu-

tational models, firstly, determining its mechanical properties and remodelling process of

the arterial wall, which is a complex structure, and the lack of resolution in geometry and

flow field reconstruction in current medical imaging techniques. Humphrey et al. [23]

also provides a review of literature on the structure, mechanical properties and mechan-

ics of intracranial aneurysms. Much of the work reviewed has since been superseded,

however the paper serves as an excellent introduction to the subject.

Some improvements, such determining the aneurysm and surrounding vessel’s topology

and flow conditions are feasible to the limit of medical images, others such as growth over

mixed time-scales, atherosclerotic plaque (Tateshima et al.)[24] and the complex patient

specific vessel wall structure add a large amount of complexity and require data that

is typically not available and/or varies on a case to case basis. Fluid Structure interaction

and auto-regulation within the skull will have a strong impact and a broader applicability.
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3. The Navier Stokes equations

In this work the solution of the Navier Stokes equations, consisting of the conservation of

momentum, mass and energy are considered. The fluid is considered to be incompressible

and as such the density will set to unity. The momentum equation is defined below in

Equation 3.1

∂u
∂ t

+∇ ·uu = ∇ ·T (3.1)

For a Newtonian fluid the stress tensor T in Equation 3.1 can be expressed using Equation 3.2

shown below

T =

(
p+

2
3

µ∇ ·u
)

I+2µD (3.2)

D = µ
(
∇u+∇uT) (3.3)

Equation 3.3 gives the rate of strain tensor D. For an incompressible fluid 2
3 µ∇·u = 0 due
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3.1 Rheology

to the continuity equation, so the second term in the brackets in Equation 3.2 disappears.

These expressions result in the the following expression for the conservation of mo-

mentum and mass for an incompressible Newtonian fluid.

∂u
∂ t

+∇ ·uu =−∇p+µ∇
2u+ f (3.4)

∇ ·u = 0 (3.5)

3.1. Rheology

In complex fluids such as blood, the viscosity cannot always be considered constant.

Blood consists of plasma and particles. Plasma is a Newtonian fluid mostly made up of

water, dissolved proteins and glucose. Approximately 99% of the particulate volume of

blood consists of red blood cells. The remaining particulate volume contains white blood

cells (leukocytes and platelets).

At small length scales and shear rates, red blood cells can have a significant influence on

the blood rheology, hence the hemocrit and the size, shape and deformability of the red

blood cells, along with factors such as blood temperature are important in determining

the viscosity of a blood sample ([25]). The presence of red blood cells makes blood shear

thinning ([25, 26]), i.e. the apparent viscosity decreases as the shear rate increases. This

is caused by the realignment of blood cells in high shear rate flow ([25]. )

Aggregation of red blood cells at low shear rate results in blood having a yield stress. In

larger vessels, which have relatively high shear rates, viscosity can be assumed constant
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3.1 Rheology

as the viscosity plateaus out. At the capillary level, or in channels not much wider than

the diameter of a red blood cell, red blood cells show axial accumulation, i.e. bolus flow

develops, and laminar/parabolic flow profiles are unrealistic ([27, 28].) The selection of a

suitable and efficient rheological/constitutive model depends on the flow conditions.

Depending on the local shear rates, blood can behave in a close to Newtonian fashion, with

a constant viscosity in the range of 3-4 mPas. For more complex geometries with high

shear gradients present the viscosity will vary significantly over the geometry, especially

near walls.

The non-Newtonian Carreau model, originating from Carreau et al., is commonly used for

blood in numerical simulations. Typical parameters for the Carreau model, Equation 3.6

reproduced from [29] are displayed in Table 3.1

η = η∞ +(η0−η∞)
[
1+(λγ)2

] n−1
2 (3.6)

η∞ 0.056 Pas
η0 0.00348 Pas
λ 3.31s
n 0.356

Table 3.1.: Typical parameters for blood using the Carreau model
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3.2 Flow regime

3.2. Flow regime

Classically blood flow is considered laminar. The Reynolds numbers in blood vessels

range from below 0.001 in small capillaries, to a peak value of approximately 5000 in the

aorta during exercise.

Tanaka et al.[30] recorded total blood volume flow rates of approximately 800ml/min with

30% of the flow travelling through the MCA. Vessels around the MCA (see Figure 1.1)

are in the range of 3mm in diameter, so the Reynolds numbers for cerebral aneurysm cases

is typically around 100, although due to the range of flowrates and Circle of Willis topo-

logies between patients it is feasible that Reynolds numbers could be higher. Flow will

transition from laminar to turbulent in straight pipes between Reynolds numbers of 2300

and 4000 (Fox et al. [31]). Much of the circulatory system does not consist of straight

tubes, particularly the areas in which aneurysms typically form. Stehbens et al.[32] found

that turbulence was encountered at bends, bifurcations or unions at significantly lower

Reynolds number than for straight channels. However, at typical Reynolds numbers,

assuming laminar flow in cerebral aneuysms will be a relatively safe assumption. Ad-

ditionally, Alnaes et al. [11] report that most blood vessel geometries in the body are

formed in such a way as to minimize work, so the Reynolds numbers at which turbulence

occurs predicted by Stehbens are likely underestimates for hemodynamic flows. In aortic

aneurysms turbulence is a significant feature.
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4. Simulation setup

4.1. Geometry extraction

Three dimensional simulations of a saccular cerebral aneurysms have been investigated as

part of an initial collaborative study with the Neurosurgery Department at Salford Royal

Hospital. The aneurysm chosen for this study is shown below. It is located before the

bifurcation on the middle carotid artery.

The images shown above are surfaces extracted from rotational digital subtraction an-

giograph image provided by Salford Royal Hospital. Figure 4.1 shows slices of these

images.

It is also interesting to note that in this Circle of Willis, the anterior communicating ar-

teries are not developed. Malformations such as these significantly increase the risk of

aneurysm formation.

Due to the relatively low resolution of the DICOM images used as a base, the extracted

surfaces contain a number of artifacts, and the position of the vessel walls is only defined

to a tolerance. It was decided to construct a smooth idealised geometry using ANSYS
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4.2 Preliminary study design

Figure 4.1.: Extracted surface showing the aneurysm location (a) and close up of an-
eurysm region (b)

DesignModeller. Measurements of the vessel and sac diameters and lengths before and

after the bifurcation and a number of centrelines were calculated from the STL surface

in order to reconstruct the geometry in a manner better suited to CFD simulation. The

reconstructed middle cerebral artery and connecting geometry could practically be more

accurate than the extracted STL surface due to the artifacts inherent in the feature extrac-

tion.

4.2. Preliminary study design

This section compares the flow fields and wall shear stresses for a healthy vessel, a small

aneurysm and a large fully developed aneurysm, a selection from a number of case studies.

Firstly a grid density required for mesh independence was determined for the cerebral

aneurysm geometry.
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4.3 Mesh and boundary conditions

Figure 4.2.: Medical scans used in cerebral aneurysm model construction

Figure 4.3.: Generated mesh and construction lines

4.3. Mesh and boundary conditions

Each geometry is displayed below in Fig.4.4

The MCA inlet is defined as circular with a diameter of 3mm, the bifurcating vessels

downstream in each case have a diameter of 1.5mm, matching those of the patient specific

study.

For steady state solutions fully developed pousielle flow is assumed in the vessel up-
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4.3 Mesh and boundary conditions

Figure 4.4.: Meshes for the healthy (a), developing aneurysm (b) and developed
aneurysm (c) cases

stream, a parabolic velocity profile of the form shown in 4.1 is defined.

v(r) = 2∗ vave

(
1− (r/R)2

)
(4.1)

For the unsteady case a Womersley (1955) profile is more reflective of the physiologi-

cal conditions, however, it was found that by extending the domain upstream and fitting

the same parabolic profile as in the steady case (but with a varying average velocity)

a Womersley type profile was recovered without the need for a relatively complex im-

plementation. The transient mean velocity physiological waveform used in this study is

taken from Valencia et al. [19]. This waveform is reproduced as the figure below for

convenience, Fig.4.5 As the waveform is defined in the Basilar artery a correction factor

is used, which is calculated using the volume flow ratios measured by Tanaka et al..[30]

Tanaka et al found that the volume flow ratio of the MCA is approximately 30%.

The steady state simulations use SIMPLE scheme for pressure velocity coupling and

second order upwinding for the convective terms. Transient simulations use a PIMPLE

scheme, which is a merged PISO-SIMPLE scheme allowing for large timesteps, although
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4.4 Flow fields and grid independence

the solution is advanced with the maximum Courant number limited to unity to ensure a

reasonable solution.

Figure 4.5.: Mean velocity physiological waveform

4.4. Flow fields and grid independence

The aneurysm geometry shown in Fig.4.4 was meshed using successively refined grids.

Both the error in peak wall shear stresses and pressure losses over the domain changed

by less than 1% for the two finer grids. The medium grid, with 200,000 cells produced

results to within 5% of the others.

The fine grid is a good balance between computational time and accuracy, further refine-

ment beyond this point makes little practical difference.

The pressure contours and velocity vectors for the healthy case, the highest pressure and

shear stress are at the joint of the bifurcation where flow is being redirected into the

bifucating channels.

Pressure contours and velocity vectors for a smaller aneurysm show a small area of recir-

culation and large area of increased pressure where the flow is stagnating against the ves-

sel wall. The peak wall shear stress in this case is 8.19 Pa, remaining low in the aneurysm
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4.4 Flow fields and grid independence

[19]

Figure 4.6.: Healthy geometry velocity vectors and pressure contours (note that the pres-
sure divided by the constant density)

body, the mean wall shear stress is 0.29 Pa in the aneurysm body. It is significanly lower

than the healthy vessel.

A giant aneurysm exhibits a larger zone of recirculating flow and stagnant flow. The peak

wall shear stresses occur where the bifurcating vessels meet the aneurysm body.

25



4.4 Flow fields and grid independence

Figure 4.7.: Healthy geometry velocity vecotors and pressure contours (note that the pres-
sure divided by the constant density)

Figure 4.8.: Healthy geometry velocity vectors and pressure contours (note that the pres-
sure divided by the constant density)
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5. Conclusions

The primary objective of this work is to find a suitable approach to simulate and predict

risk factors for cerebral aneurysms and outlined in the previous section. This section

contains an overview and justification of the assumptions that are made in the selection of

a candidate solution strategy.

5.1. Conclusions and approach

For the purposes of this study, flow will be considered laminar. Further investigation is

required to determine if a turbulence model will be beneficial in aortic aneurysm simu-

lations. The inclusion of a basic turbulence model is a straightforward task and can be

investigated after the more complex issue of fluid structure interaction.

Initially Newtonian fluids will be considered. Forces transmitted to the vascular material

will be much more strongly dependent on pressure forces and geometry changes, although

shear thinning will impact wall shear stresses and may well alter the flow fields resulting

in flow impinging on different sections of vascular structure.
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5.1 Conclusions and approach

Current approaches using commercial codes typically require the generation of body fitted

meshes, requiring a large amount of user input, and the definition of a specific numerical

and geometrical parameters to which only estimates are available, as the underlying geo-

metry and material parameters can only be defined to a tolerance. For this reason it has

been decided to investigate immersed boundary methods to determine their applicability

to this task.

There are many approaches to addressing fluid structure interaction. Overall they can

be categorised into two different groups, monolithic approaches, where the equations

for the fluid flow and structural displacements are solved simultaneously, and partitioned

approaches where the flow and structure are solved separately using different solvers.

The partitioned approach allows different discretisation and numerical algorithms to be

used for the fluid and structural domains. This is beneficial as it allows the a broad choice

of numerical tools to be selected, so that the best suited may be chosen for each domain.
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Part II.

Immersed boundary methods
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Immersed boundary methods are becoming a popular tool for fluid simulations in geo-

metries where mesh generation would be prohibitive, either due to complex geometries

or boundary movement. The immersed boundary method (as opposed to other methods

for the solution of flows containing immersed boundaries, of which it was also one of

the first of its kind) was originally developed by Peskin [33] in 1972 in order to simu-

late blood flow in heart valves and numerous other biological applications where there is

need to handle immersed elastic membranes. Problems of this kind are commonly found

in biophysical flows. Immersed boundary methods, as stated in a comprehensive review

by Mittal et al., [34] can fall into two categories based on at which point the boundary

forces are introduced to the Navier Stokes equations. Continuous forcing approaches

add terms to the Navier-Stokes equations before discretisation. This group includes the

method of Peskin, known as the ’Immersed Boundary Method’, and the virtual boundary

method. Discrete forcing approaches originated with the work of Mohd-Yusof. The gen-

eral idea of discrete forcing approaches is to define a forcing term such that the velocity

on the boundary is set to a prescribed value. There are a number of methods based on

this approach, including Ghost Cell methods. Other discrete forcing approaches include

Cut-Cell methods and the immersed interface method. A detailed description of each of

these methods and a overview of the current state of the art is presented in chapter 7.
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6. Problem definition

The immersed boundary methods to be investigated act on a domain containing fluid,

which we will consider to be incompressible. Immersed within this domain, which will be

referred to as Ω f , are one or more domains, interfaces Γn, or interfaces between domains

which require special treatment. The Navier Stokes equations (chapter 3) are typically

solved over the entire domain with local alterations to account for boundaries .

The special treatment consists of adding boundary conditions, constitutive models or oth-

erwise altering the governing equations.

Depending on the problem under consideration, the domains to which special treatment

will be applied will have equal or fewer dimensions than the fluid domain. In the case

of equal dimensions, sub or separate domains Ωsn with interfaces between the domains,

which will be referred to as Γn , may be considered. A lower dimensional object leaves

only interfaces Γn between parts of the fluid domain for treatment.

The exact nature of the alteration to the governing equations depends on the problem

under consideration, which may consist of modelling immersed elastic structures, assign-

ing values on an interface (such as Dirichlet, Neumann or Robin boundary conditions in
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Problem definition

Γ

Ω

Ωs

f

Figure 6.1.: The fluid (Ω f ) and solid (Ωs) domains and the interface (Γ) between them in
a general fluid structure interaction problem

Equation 6.1) or setting values over the entire domain.

A∇φ +Bφ = A∇ΓφΓ +BφΓ =C on Γ (6.1)

It is often the case that a value is prescribed to an interface immersed within the fluid

domain in which case Equation 6.1 reduces to the form shown below.

u = U on Γ
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Problem definition

Where U and u are the velocities defined on the boundary and in the fluid domain respect-

ively.

Traditional approaches require the mesh onto which the governing equations are discret-

ised to conform to the edges of the boundary so that the interface can be treated as a

physical boundary condition. Immersed boundary methods remove this restriction by im-

posing constraints or otherwise altering or adding to the model equations to represent the

influence of the boundary. This allows the numerical discretisation to be considered inde-

pendent of the geometry if required. Examples of conformal and non-conformal grids are

displayed in Figure 6.2.

Figure 6.2.: Meshes that conform (left) and do not conform (right) to interfaces

If the surface is moving, a conformal grid must be remeshed in the vicinity of the surface

and interpolation is required to transform between the old and new meshes. In the case

of non-conformal meshes there still may be remeshing to allow for local grid refinement,

although this will be less computationally expensive.

A frame of reference must also be specified for each domain. Conventionally fluids are

considered in the Eulerian frame of reference (typically using finite volume or finite dif-

ference methods) and structures are modelled in the Lagranian frame (often using finite
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Problem definition

element methods).

Non-Conformal methods

Adopting an Eulerian frame of reference for Ω, where the coordinate frame is fixed in

space, and a Lagrangian frame of reference for Γ, where coordinate system is convected

with the material under consideration, allows the treatment of geometries or interfaces

with complex shapes to be introduced and analysed in a straightforward manner in the

Lagrangian frame.

Without physical boundary conditions in the Eulerian frame the solution of the Navier

Stokes equations may be greatly simplified by, for example, utilising equally spaced

Cartesian grids.

In almost every practical application the Lagrangian points Γh and the fixed coordinates

of Ωh will not be coincident, so simplifications gained by considering two frames of

reference come at the expense of additional interpolations due to the transformation of

data between them.

The following section categorises and details approaches to solving and advancing prob-

lems of these kinds.

34



7. Literature review and method

description

7.1. Delta function definition

Delta functions are a topic intertwined with immersed boundary methods. A description

and derivation of commonly used models follows in this section.

A defining element of the immersed boundary method is the use of discrete delta func-

tions. Discrete delta functions have the effect of smoothing the singular source terms from

Equation 7.30 over a number of grid points, thus overcoming the fact that the grid points

rarely coincide with the boundary points.

Equation 7.30 and Equation 7.31 contain terms linking the Eulerian and Lagranian de-

scriptions which must be conserved between the frames of reference. This leads to

Equation 7.1 ([35]).
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7.1 Delta function definition

ˆ
δ (Γ,g,x) f (x)dx =

ˆ
g(s) f (X(s))ds (7.1)

Where δ is a continuous delta function and g a function spanning both frames of reference.

This integral needs to be regularised over the domain by replacing it with a discrete sum.

For convenience delta functions are typically assembled from one dimensional functions.

These functions are applied to problems of multiple dimensions by either computing their

product, (Equation 7.2) or using a distance function (Equation 7.3).

δh(Γ,g,x) =
ˆ

Γ

d

∏
k=1

δ

(
xk−Xk (S)

)
g(S)dS (7.2)

δh(Γ,g,x) = g(x)δε (d (Γ,x)) (7.3)

Here δh is the discretised/regularised delta function.

Concentrating on delta functions of the type Equation 7.2, a delta function can be con-

structed.

δh (x) =
1

∆hN

N

∏
i=0

φ

(xi

r

)

The function φ is constructed using a number of postulates. The first postulate is compact

support, which is introduced primarily to reduce the computational cost of the solution. A
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7.1 Delta function definition

large support will result in the convolution operations coupling a large number of Eulerian

grid values to each Lagrangian marker.

φ (x/h) = 0 f or (|r|= rs) (7.4)

Where h is the grid spacing.

Physically, mass, force and torque need to be consistent between coordinate systems. This

results in a moment condition which can be defined up to a given order. This expression

(for the case of r = 0) also ensures that the discretised values sum to unity thus conserving

values during spreading and interpolation operations.

h
∞

∑
j=−∞

δε

(
x j− x

)(
x j− x

)n
=


1,

0,

r = 0

1 6 n < q
(7.5)

Finally the delta function needs to be translation invariant, it is only possible to introduce

this postulate in a way such that it is independant of shifts diagonally i.e. where r1 = r2

leading to the following postulate

∞

∑
j=−∞

δ
(
x j− x

)
δ
(
x j− x

)
=C (7.6)
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7.1 Delta function definition

7.1.1. Narrow support delta function

On staggered finite difference or finite volume grids a relatively narrow stencil can be

used. With the support of the delta function assigned to 3 grid points and the order of the

moment condition q set to 1, Equation 7.4 and Equation 7.5 can be expressed at consec-

utive gridpoints within the function’s support. The following algebraic approximation for

φ is determined.

φ =



1
3

(
1+
√
−3r2 +1

)
1
6

(
5−3 |r|−

√
−3(1−|r|)2 +1

)
0

0≤ |r|< 1
2

1
2 ≤ |r|<

3
2

3
2 ≤ |r|

(7.7)

Derivation

Restricting r to between 0 and 1 allows us to construct the following equations using the

postulates defined aboves (Equation 7.4,Equation 7.5 and Equation 7.6).

φ (r−1)+φ (r)+φ (r+1)+1 (7.8)

(r−1)φ (r−2)+(r)φ (r−1)+(r+1)φ (r+1) = 0 (7.9)
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7.1 Delta function definition

(φ (r−1))2 +(φ (r))2 +(φ (r+1))2 =C (7.10)

Rearranging Equation 7.8 and substituting into Equation 7.9 -

φ (r−1) =
−φ (r)+ r+1

2
(7.11)

φ (r+1) =
−φ (r)− r+1

2
(7.12)

Substituting Equation 7.11 and Equation 7.12 into Equation 7.10 -

(
−φ (r)+ r+1

2

)2

+(φ (r))2 +

(
−φ (r)− r+1

2

)2

=C (7.13)

To find C, we rewrite Equation 7.13 in terms of φ (r−1)

φ (r−1)2 +(r+1−2φ (r−1))2 +(φ (r−1)− r)2 =C (7.14)

When r =−1
2 , φ

(
−1

2 −1
)
= 0 due to the support of the delta function being defined as 3.
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7.1 Delta function definition

(
1
2

)2

+

(
−1

2

)2

=
1
2
=C

Now, expanding and collecting like terms inEquation 7.14

(
3
2

)
φ (r)2 +(−1)φ (r)+

(
r2

2

)
(7.15)

The root of this equation is

φ (r) =
1
3

(
1+
√

1−3r2
)

using this expression in Equation 7.12

φ (r+1) =
−1

3

(
1+
√

1−3r2
)
− r+1

2
(7.16)

Simplifying

φ (r+1) =−1
6

(
3r−2+

√
1−3r2

)
(7.17)
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7.1 Delta function definition

Transforming the variables

φ (r) =−1
6

(
3(r−1)−2+

√
1−3(r−1)2

)
(7.18)

φ (r) =
1
6

(
−3r+5−

√
1−3(r−1)2

)
(7.19)

7.1.2. Wide support delta function

If central differences are used to assemble the Poisson equation on a non-staggered grid,

the situation can arise where the pressure field decouples as the poisson operator does

not define a relationship between adjacent points. This problem only affects the pressure

equation due to the lack of a diagonal component. If centred differencing is used to de-

termine the velocity correction based on this decoupled pressure, the gradients use subsets

of points from the decoupled field. When a reference pressure is set or assumed, these

subsets are, within themselves, determinate. This means that the gradients still correctly

remove the divergence from the velocity field and this potential instability does not spread

to the momentum equation. When forcing is introduced it is important to expand the delta

function’s support as the pressure is effectively defined over a grid of double spacing.

Also it is important to ensure that the forcing is spread over each of these decoupled grids
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7.1 Delta function definition

evenly which leads to the additional postulate

∑
jeven

δ
(
x j− x

)
= ∑

jodd
δ
(
x j− x

)
= 0.5 (7.20)

With this postulate introduced and the support broadened to 4 gridpoints the following

function for φ is found.

φ =



1
8

(
3−2 |r|+

√
1+4 |r|−4r2

)
1
8

(
5+2 |r|−

√
−7+12 |r|−4r2

)
0

0≤ |r|< 1

1≤ |r|< 2

2≤ |r|

(7.21)

Derivation

Restricting r to between 0 and 1 allows us to write out the postulates as follows

φ (r−2)+φ (r) = φ (r−1)+φ (r+1) =
1
2

2φ (r−2)+φ (r−1)−φ (r+1) = r
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7.1 Delta function definition

(φ (r−2))2 +(φ (r−1))2 +(φ (r))2 +(φ (r+1))2 =C (7.22)

Expressing the first three equations in terms of φ (r)

φ (r−2) =
1
2
−φ (r) (7.23)

φ (r−1) =
r
2
− 1

4
+φ (r)

φ (r+1) =− r
2
+

3
4
−φ (r)

for r = 0, φ (r−2) = 0,φ (0) = 1
2 and φ (±1) = 1

4 ,

substituting these values into Equation 7.22 determines C = 3
8 , from which we can derive

4(φ (r))2− (3−2r)φ (r)+
1
2
(1− r)2
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7.1 Delta function definition

Finally solving this quadratic equation gives

φ (r) =
3−2r+

√
1+4r−4r2

8
(7.24)

To find the value of φ (r) for −2≤ r ≤−1 we first substitute equation Equation 7.23 into

equation Equation 7.24.

φ (r−2) =
1
2
− 3−2r+

√
1+4r−4r2

8
(7.25)

The final expression is found by a change of variable

φ (r) =
1+2(r+2)−

√
1+4(r+2)−4(r+2)2

8
(7.26)

Simplifying this expression leads to

φ (r) =
5+2r−

√
7−12r−4r2

8
(7.27)

All that remains to complete this description is to discretise the solution in space and time

which is discussed in chapter 3.
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7.2 Continuous forcing approaches

7.2. Continuous forcing approaches

7.2.1. The immersed boundary method
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Anchor pointLagrangian grid point

Figure 7.1.: Various key concepts of the Immersed Boundary method

The immersed boundary method is a widely used tool in the modelling of biological

fluid dynamics where elastic fibres or membranes immersed within fluids are commonly

encountered. Immersed boundary (IB) methods typically model a system including one

or more interfaces (liquid-solid, liquid-liquid, or liquid-gas) using a grid that does not

conform to the interface geometry.

The main benefits of such numerical implementations are the removal of the need to

generate and, in the case of a moving interface, adapt body-fitted grids which, depending

on the problem, can be a time consuming and numerically complex task.

An overview of many more developments in this approach and the numerous alternative
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7.2 Continuous forcing approaches

approaches for treating immersed boundaries is presented in Mittal et al. [34].

The general method described in this section roughly follows the descriptions given in

most immersed boundary method papers (such as [36, 37, 38] etc).

The entire domain, both the boundary position and configuration and the fluid that it is

immersed in, is governed by the incompressible unsteady Navier-Stokes equations with

an additional momentum source term solved on a stationary Cartesian grid.

In the classical method, the immersed boundary is made up of sets of massless elastic

fibres that are convected using the fluid velocity. These elastic fibres are discretised by

Lagrangian marker points along their length, such that in the two dimensional case an

immersed interface is represented by a curve parameterised along its length S of the form

X(s, t). The extension to higher dimensions, as would be required for the treatment of

membranes or interfaces with thickness, is straightforward.

The boundary configuration may generate a force (Equation 7.28) at the Lagragian mark-

ers which is calculated using the interface’s constitutive equation. Often Hooke’s law is

used, although any linear or non-linear relationship defining the material’s constitutive

law can be applied.

F(s, t) = S(X(s, t)) (7.28)

Where F is the force defined on the interface, and X and s are the interface’s coordinates

and local coordinate system respectively.
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7.2 Continuous forcing approaches

The boundary force does not have to be defined by the configuration alone, it is often

practical to introduce damping terms.

Alternatively the Lagrangian marker points making up the immersed interface (or a subset

of these points) can be anchored to or driven to a fixed or moving position. This is often

the case in simulations where it is required to apply forcing at the boundary to mimic a

solid fixed interface - the interface is treated as an extremely stiff deformable structure.

In the simplest case this results in the anchoring of each Lagrangian point defining the

interface to its initial position using Hooke’s law.

F = k(X−X0) (7.29)

Where X0 is the interface’s initial configuration and k is the stiffness parameter.

This force is then applied back to the fluid.

Communication between the Lagrangian and Eulerian frames are handled by convolution

expressions making use of a discrete delta function δh, which is effectively a distance

weighted kernal derived to meet a number of unique requirements which are outlined in

the following section. In the continous sense the spreading of the force generated by the

interface is expressed by Equation 7.30.

f(x,s) =
ˆ

Γ

F(s, t)δ (x−X(s, t))ds (7.30)
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7.2 Continuous forcing approaches

Where f is the force density applied to the fluid.

The fluid is advanced with this force which has been spread through discretisation of the

above expression. Often the fluid equations are discretised and solved on a fixed Cartesian

grid, typically equally spaced although local grid refinement can be introduced.

It remains to advance the Lagrangian markers which make up the interface with the cal-

culated velocity field. The convection of the Lagrangian field with the Eulerian velocity

field is achieved in the continuous sense with the convolution expression Equation 7.31

below.

U(X,s) =
ˆ

Ω

u(x, t)δ (x−X(s, t))dx (7.31)

Where U and u are the velocities of the interface and of the fluid in the Eulerian frame

respectively.

Figure 7.1 graphically illustrates many of the concepts introduced above.

This approach has the capability of representing more complex immersed structures be-

cause two or three dimensional objects can be assembled through the superposition of

numerous immersed fibres.

Since the inception there has been much work extending the original immersed bound-

ary method ([38]). Notably there have been improvements in the temporal discretisation

made allowing for formal second order method (i.e. a significant reduction in numerical

diffusion allowing for second order convergence of the L2 norms) in Lai and Peskin [?].
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7.2 Continuous forcing approaches

The method has also been extended to incorporate local grid refinement in Roma et al.

[39], Löhner et al.[40], boundary mass inertial effects [41], and fully implicit bound-

ary advancement schemes (such as the Jacobian-free Newton–Krylov method) previously

used with immersed interface techniques (see [42, 43]).

Bhalla et al. [44, 45, 46] present a number of test cases solved using the immersed bound-

ary method with cartesian grid adaptive mesh refinement (AMR) allowing thin boundary

layers at fluid–solid interfaces.

Chern et al. [47] used a direct-forcing immersed boundary method in a finite volume

framework to investigate the evolution of oscillatory flow in arrays of cylinder structures

to be efficiently captured. Test cases include Stokes’ first problem, a moving plate in an

infinite flow, flow past a rigid cylinder, an oscillating rigid cylinder in an infinite flow, a

falling sphere, an impulsively started cylinder and cylinders and spheres in shear driven

flow. More complex two dimensional simulations of swimming fish are also presented.

Hu et al. [48] developed a simple immersed boundary method to simulate the dynamics

of three-dimensional axisymmetric inextensible vesicles, a technique ideally suited to red

blood cells. The vesicle’s near incompressibility is controlled using a spring like tension.

Wang et al. [49] present a parallel computing strategy for running immersed boundary

method simulations with excellent parallel performance using a discrete stream-function

formulation.

Borazjani et al. [50] use the Curvilinear immersed boundary method, incorporating

overset-curvilinear grids to handle multi-connected geometries undergoing arbitrarily large

deformations. Curvelinear grids allow for efficient refinement near boundaries. The work
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focuses on ensuring globally conservative interpolation at grid interfaces suitable for in-

compressible flow fractional step method. The method is verified and validated against

experimental data, and its capabilities are demonstrated by simulating the flow past mul-

tiple aquatic swimmers and the systolic flow in an anatomic left ventricle with a mechan-

ical heart valve implanted in the aortic position.

The Immersed Structural Potential Method was recently introduced by Gil et al. [51],

which shares many features with the immersed boundary method, modelling immersed

solids by calculating the forces as the gradient of a deviatoric strain energy functional.

An interesting feature of this work are the spline based kernels reducing/removing the

spurious oscillations often found in immersed boundary methods. Test cases included

contact of a flapping leaflet in pulsatile flow, the deformation of an elastic wall by flow

and a deformable cylinder in a lid-driven cavity.

The immersed boundary method is well suited to the simulation of elastic structures es-

pecially in cases with large deformations, and it is straightforward to implement. The

drawbacks of this method are that it requires a very small timestep to maintain stability,

and the extension to more complex objects is not straightforward.
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7.2.2. The Virtual Boundary method

Goldstein et al. [52] applied forcing to simulate solid boundaries using a feedback loop

approach as shown by

f(x, t) = α

tˆ

0

u(x, t ′)dt ′+βu(x,t) f or x = X (7.32)

Equation 7.32. Goldstein originally only considered boundaries where the bounday points

and underlying mesh nodes were coincident, but it is a straightforward task to add smooth-

ing, or interpolation and spreading operations to overcome this difficulty.

The immersed boundary method described above with the forcing calculated using Equation 7.29

is mathematically similar to the virtual boundary method with β = 0 and Penalisation

methods, where the entire domain is modelled as a porous medium using the Navier-

Stokes-Brinkmann equations which are similar to the case where α = 0.

Brown et al. [53] present several methods, including volume penalization methods in

which boundary conditions are applied by using Brinkman penalization, special case

of Equation 7.32 - representing solid obstacles as porous media. The paper extends

this approach to incorporate homogeneous and inhomogeneous Dirichlet, Neumann and

mixed/Robin boundary conditions and finds reasonable agreement for validation cases -

flow around an adiabatic and a heated cylinder.

Introini et al. use a second order penalized direct forcing method to simulate fluid–structure

interaction problems. Unlike Brown et al. [53], the boundaries were limited to Dirichlet
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conditions. The second order linear interpolation scheme introduced is investigated and

numerical rate of convergence of this method is quasi-quadratic. Taylor Couette solution,

Poiseuille flow in an inclined channel and laminar flows around a cylinder and induced

by a stirrer are presented.

Abgrall et al. [54] used a Penalization technique on unstructured meshes using mesh

adaptation to refine near the immersed boundaries. The solution strategy is implicit, but

limited to steady problems. The author notes a common drawback of this and other Pen-

alisation methods - the introduction of an nonphysical penalisation parameter that has a

sigificant impact on stability. Four test cases are considered, a simple Blasius test case,

supersonic flow around a triangular obstacle and laminar flow around a NACA 0012 air-

foil. The authors intend to extend the capabilities of the solver to incorporate moving

bodies.

The virtual boundary method, although allowing more control for static boundaries that

the immersed interface, has few applications where discrete forcing approaches would not

prove more robust and effective.

7.2.3. Discrete forcing approaches

Discrete forcing approaches make use of the discretised terms in the momentum equation.

A forcing term can also be extracted from the momentum equation following the approach

of Mohd-Yosuf [55] whereby the semi-discretised momentum equations are rearranged

to find a force term to set the velocity at a given grid point using Equation 7.33. This is

achieved by first advancing the Navier Stokes equations without incorporating the effects
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of the boundary, then using this prediction to calculate a force with which to assign the

boundary velocity.

If the boundary points conform with grid points the forcing terms can be applied dir-

ectly, otherwise smoothing can be introduced. This formulation allows for solid immersed

boundaries without the severe time-step limitations associated with high stiffness and is

more practical than elastic interface or feedback type approaches for higher Reynolds

number flows.

f(x, t) =−
(

∇p−µ∇
2u+∇ ·uu+

(U−u)
∆t

)
(x, t) f or x = X (7.33)

Where p µ are the pressure and the fluid’s viscosity and density and u and U are the

velocity and the velocity at the boundary to be prescribed.

Mohd Yusof [55] assigned immersed no-slip walls using a technique called mirroring,

whereby the velocity at a point interior to as surface is forced using Equation 7.33 such

that when the interior and exterior point velocities are interpolated to the boundary surface

the velocity is zero. This is shown in Figure 7.2.

Uhlman[56] later incorporated Peskin’s regularised delta function into the method using

a finite-difference fractional-step solver. This resulted in a robust approach free of the

strong timestep restrictions of continuous forcing approaches. Pinelli et al. [57] im-

proved on this method further by introducing a Reproducing Kernel Particle Method to

define spreading and interpolating kernels which conserved force and moment integrals

regardless of the underlying grid.
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Figure 7.2.: Mirroring method for applying no slip boundary conditions

Chern et al. [47] used a discrete-forcing immersed boundary method in a finite volume

framework to investigate the evolution of oscillatory flow in arrays of cylinders.

Anupindi et al. [58] use a mirroring/reconstruction approach to simulate turbulent flow in

an aortic aneurysm using large eddy simulation. Often with immersed boundary solvers

much of the domain is exterior to flow domain leading to computational overhead. To

address this a multiblock methodology was incorporated, meaning that rather than a single

cartesian mesh engulfing the immersed structure within which the solution is of interest,

a number of connected smaller blocks can fill the domain of interest more efficiently, and

so lead to less computationally wasteful simulations. Test cases included laminar flow

over a sphere and a backward facing step, and blood flow simulations of a patient specific

thoracic aortic aneurysm.

Discrete forcing approaches are effective for static geometries. They also have a signific-

ant advantage in terms of stability especially for higher Reynods number simulations.
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7.2.4. Ghost cells and Reconstruction techniques

The basis of ghost cell methods is described by Tseng et. al [59] and shares many simil-

arities with the forcing/mirroring approach described in the previous section.

Ghost cells are cells within submerged solid domains which have at least one neighbour

in the fluid domain. These ghost cells are used to enforce the boundary condition on

the immersed boundary. This is achieved by assigning each ghost cell an interpolation

scheme that implicitly incorporates the boundary condition.

This is an attractive technique if a solution is only required on one side of an interface.

The choice of a stencil for the ghost cells is not straightforward.

Recently Lee et al. [60] utilised a sharp interface ghost-cell immersed boundary method.

A mass source and sink algorithm is coupled to the solution to improve local conservation

and control non-physical force oscillations on the boundary surface. A fully implicit time

integration scheme is used to allow efficient simulations at CFL number. The capabilities

of this approach are demonstrated on test cases including decaying vortices, vortex shed-

ding behind a circular cylinder, and flow around a suddenly-moving circular cylinder, a

flapping wing, an oscillating circular cylinder and an oscillating sphere.

Xia et al. [61] recently improved the implementation of the Dirichlet and Neumann

boundary conditions to ensure consistency. A study was also undertaken using a high

order ghost cell based immersed boundary method investigating the influence of differ-

ent thermal boundary conditions on local Nusslet number over heated stationary sphere

particles at different Reynolds numbers. Forced convection around a cluster of sphere

particles was also simulated.
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.

The Ghost Cell method allows for an accurate resolution of the boundary layer, although

the choice of stencils integration schemes makes the implementation less straightforward

than the methods previously discussed in this chapter. Ideally it is suited to solid objects

or interfaces where a solution is not required on one side.

Cut cell methods

Alternatively the constraints can be more directly introduced to the discretisation itself

by cutting the cells (eg a finite volume cut-cell approach) - this requires a strategy for

merging cells and avoiding stability issues arising from small cells appearing due to the

boundary. Cut cell methods however conserve mass and momentum.

Meinke et al. [62] utilised a cut-cell approach, adapting with a smooth discrete formula-

tion to handle the abrupt changes where multiple cells are (often simultaneously) created

or destroyed as the boundary crosses the grid. A level set approach was used to locate the

boundary. Test cases included flow past a transversely oscillating (forced) cylinder and

flow within a simplified internal combustion engine with and without piston and valve

movement.

Schneider et al. [?] focused on eliminating the unphysical oscillations occuring when

cut-cell methods are extended to moving-boundary problems and extended the method to

three dimensional viscous flows. The volume fractions of cells intersected by the bound-

ary can be very small leading to problems in the time integration scheme. Fluid cells

become cut, solid cells or small cells as the boundary moves leading to abrupt changes in
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the discretization operator. The resulting unphysical osciilations were reduced by vary-

ing the discretization operators to take this into account. Validation cases included flow

past a transversely oscillating circular cylinder, inviscid transonic flow over an oscillating

NACA 0012 airfoil and flow driven by an oscillating sphere.

Gretarsson et al. [63] developed a conservative semi Lagrangian convective scheme cap-

able of compensating for the small cut cell volumes which result in a loss of stability as

discussed above. The robust nature of this hybrid scheme is investigated on a number

of compressible flow test cases, namely constrained deforming thin shell and asymmetric

shock reflection off a rigid cylinder.

Cut cell methods are challenging to implement as avoiding and treating small cells, mer-

ging cells and filling recently cleared cells requires a robust and complex algorithm. The

cut cell method is however strongly conservative and provides a sharp conformal bound-

ary onto which the boundary conditions can be directly assigned.

7.3. The immersed interface method

In the immersed interface method the discretisation of the operators ∇, ∇· and ∇2 in the

Navier Stokes equations are altered in cells local to the interface and explicit terms intro-

duced to capture the jump conditions across the interface without the need for smoothing.

This allows for a second order accuracy to be reached in the vicinity of the boundary. This

technique was originally developed by Leveque and Li [64], removing the smoothing of

the boundary forces, and so the associated errors.

Brehm et al. [65] improve on the Immersed Interface Method by the addition of a prior
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check of the numerical stability. Their method allowed for irregular finite-difference

stencils to be isolated from the rest of the computational domain, the introduction of

a local stability constraint (employed along side the local Taylor-series expansion) and

constraints to be determined on the design of these irregular finite-difference stencils.

Investigations were undertaken of pulsatile stenotic flows.

More detailed overviews of the immersed interface Borazjani et al. [50] use the Cur-

vilinear immersed boundary method, incorporating overset-curvilinear grids to handle

multi-connected geometries undergoing arbitrarily large deformations. Curvelinear grids

allow for efficient refinement near boundaries. The work focuses on ensuring globally

conservative interpolation at grid interfaces suitable for incompressible flow fractional

step method. The method is verified and validated against experimental data, and its

capabilities are demonstrated by simulating the flow past multiple aquatic swimmers and

the systolic flow in an anatomic left ventricle with a mechanical heart valve implanted

in the aortic position.ethod for a variety of partial differential equations, including the

Navier-Stokes equations, can be found in Li and Ito [66] and in the works of Le et al.

([?, 43, ?, 42])

Lagrangian multiplier type methods such as that of [?, 67] solve problems using im-

mersed boundary methods which remove both divergence and slip on the boundary in the

projection step. This approach is very useful for applying immersed boundary conditions

using fixed boundaries, although it becomes less effective when the boundary moves as

the Poisson equation structure changes with the interface position, meaning Fast Fourier

transform or Cholesky methods cannot be used to find a solution.
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Other approaches

Bigot et al. [68] considered stratified density flows involving fixed or moving objects

using an immersed-boundary method. The solid objects are solved using Newton’s equa-

tions and defined by a continuous solid volume fraction.

The flow field near boundaries was found to be correctly captured. The full set of gov-

erning equations is then used to investigate some fundamental aspects of solid–fluid inter-

action, including fixed and moving objects in constant and stratified-density flows. Test

cases include a NACA0012 airfoil, oscillating sphere in fluid at rest and oscillating sphere

in a rotating stratified fluid and flow past a sphere dragged vertically in a stratified fluid.

Uddin et al. [69] recently presented an immersed boundary methodology/embedded geo-

metry approach, to solve the compressible Navier-Stokes equations with a smooth re-

construction of pressure and viscous stresses (without jumps/discontinuities in the deriv-

atives) utilising a level set approach and high order adaptive discretisation (using both

fixed high order (for LES simulations) and adaptive order Finite Difference Cartiesian

compressible flow solvers)

7.3.1. Lattice Boltzman - Immersed Boundary method

Recently many studies have targeted utilising the Lattice Boltzman method coupled with

the immersed boundary method rather than using finite volume or finite difference ap-

proaches.

The coupling of Lattice Boltzman fluid simulations with the immersed boundary method

can be credited to Feng et al.[70]. At the time the conventional IB-LBM computed the
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force density explicitly and in advance. Wu et al. [71] incorporated an implicit correction,

allowing the no-slip boundary condition to be enforced at the boundary.

Suzuki et al. [72] used Lattice-Boltzmann method combined with a higher-order im-

mersed boundary method applied only near the boundary. Conventionally there is a dis-

continuity of the velocity gradient introduced by the treatment of the no-slip condition,

making the solution only first order in space. This is avoided using a higher-order im-

mersed boundary method for smoothly expanding the velocity field into the body domain

across the boundary. Validation cases included concentric cylinders, an oscillating circu-

lar cylinder and sedimentation of a sphere, finding an improvement on first-order spatial

accuracy.

Favier et al. [73] note that using the Lattice Boltzmann method to advance the solu-

tion eliminates the need for a pressure correction step, which is a resource intensive re-

quirement of finite-volume and finite difference solutions, as the velocity field is directly

produced. The immersed boundary method coupled to this solver uses the method of

Uhlmann [56] Pinelli et al. [57], which do not rely on empirical parameters.

In this study, the boundary’s hydrodynamic thickness is introduced precisely, rather than

being a consequence of the boundary discretisation. Test cases include impulsively started

plate, particle sedimentation and the flow induced beating of a single filament and a pair

of filaments.
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7.4. Conclusions

Studies such as those by Borazjani et al. [50], Anupindi et al.[58], Brehm et al. [65]

and Watton et al. [74] show that immersed boundary methods are well suited to be ap-

plied to arterial/aneurysmal flows with similar accuracy to that of moving mesh methods,

although the efficiency, benefit and applicability require further investigation. For this

reason continuous and discrete forcing immersed boundary methods have been selected

for further analysis.
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8. Solver design

During this work a number of solvers have been developed using a range of different

strategies methods and schemes. This section outlines the theory and and algorithms

used.
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9. Baseline numerical scheme.

A baseline immersed boundary method solver was developed following the formally

second-order approach of Lai and Peskin [3].

This fractional step approach advances the equations of motion in two stages. A prelim-

inary step is taken to calculate the interface postion and velocities at time tn+ 1
2 .

The step consists of the discretisation and solution of the following continous equations.

Firstly the boundary forces are calculated using the boundary’s constitutive equation.

Fn = S(Xn) (9.1)

This force distribution is defined on the Lagrangian grid - i.e. at the Lagrangian marker

points. In order to transfer to the Eulerian grid on which the Navier Stokes Equations are

progressed the force must be integrated over the boundary and projected onto the Eulerian

63



Baseline numerical scheme.

force field f n.

fn =

ˆ
Γ

Fn
δ (x−Xn)ds (= FnH) (9.2)

The bracketed term on the right shows the operation in terms of the discretised operator

H.

The momentum equations are now advanced to time tn+ 1
2 with forwards Euler differen-

cing for the convective terms (ρ∇ ·unun) and boundary forcefn, and backwards Euler

differencing
(

µ∇2un+ 1
2

)
for the viscous terms.

un+ 1
2 = un +

∆t
2

(
−∇pn− 1

2 − (∇ ·unun)+
(

µ∇
2un+ 1

2

)
+ fn

)
(9.3)

As discussed in sec.10.4 there is no independent equation for pressure. The pressure only

contributes to the pressure gradient terms in the momentum equations. To solve we must

use the continuity equation as a constraint.

∇ ·un+ 1
2 = 0

In Chorin’s original projection method, the solution of the momentum equations is split

up into two steps. Firstly an intermediate velocity is calculated advancing the momentum
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equation without the pressure gradient term.

u∗ = un +
∆t
2
(
−(∇ ·unun)+

(
µ∇

2u∗
)
+ fn)

Collecting the implicit terms on the left hand side

u∗− µ∆t
2

(µ∇u∗) = un +
∆t
2
(−(∇ ·unun)+ fn) = RHS (9.4)

Due to the implicit treatment of the viscous term in the calculation of this preliminary

velocity, a solution to this linear system of equations must be determined. The approaches

used in this work are outlined in chapter 10.

In general the intermediate velocity field will not be divergence free and so at this point

the continuity equation will not be satisfied.

In the second step 9.6 is solved, adding the pressure gradient term, which is defined at

time tn+ 1
2 for which we do not currently have a solution . This pressure gradient term is

defined such that the divergence in the velocity field is removed satisfying the continuity

equation 9.5. This process, in which the correction term −∆t∇pn+1 is added to the inter-

mediate velocity field u∗projects the field onto a divergence free space whilst conserving
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the vorticity. Methods following this rationale are known as Projection Methods.

∇ ·un+1 = 0 (9.5)

un+ 1
2 = u∗− ∆t

2

(
∇pn+ 1

2

)
(9.6)

A Poisson equation for pressure (Equation 9.7) is found by taking the divergence of the

semi discretised momentum equation Equation 9.6.

1
2

∆ t∇2 pn+ 1
2 = ∇ ·u∗ (9.7)

With the solution of Equation 9.6 and Equation 9.7 the pressure and velocities at time

tn+ 1
2 are known.

The preliminary step concludes with the calculation the boundary’s Lagrangian properties

- the forces, velocities and an updated position.

Following from [chapter diresltdelta] the velocity is calculated by a convolution operation,

integrating the Eulerian velocity field over the support of the boundary using Equation 9.8.
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The boundary velocities are used to advance the boundary position using Equation 9.9.

Un+ 1
2 =

ˆ
Ω

un+ 1
2 δ (x−Xn+ 1

2 )dx
(
= un+ 1

2 HT
)

(9.8)

Xn+ 1
2 = Xn +Un+ 1

2 (9.9)

Having the velocity available at time tn+ 1
2 allows the boundary position Equation 9.9 and

forces Equation 9.10 to be centred in time with second order accuracy when the solution is

integrated from tn to tn+1. In order to utilise this time centred approximation to the bound-

ary force in the Navier Stokes equations a Eulerian representation is needed. Expressing

Equation 9.1Equation 9.2 at this time results in Equation 9.10 and Equation 9.11.

Fn+ 1
2 = S(Xn+ 1

2 ) (9.10)

fn+ 1
2 =

ˆ
Γ

Fn+ 1
2 δ (x−Xn+ 1

2 )ds
(
= Fn+ 1

2 H
)

(9.11)

In the main step, we are using Crank Nicholson scheme [75] so all of the temporal dis-
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cretisation is centred in time.

un+1 = un+∆t
(
−∇pn+ 1

2 − (ρ∇ ·uu)n+ 1
2 +

1
2

(
µ∇

2un +µ∇
2un+1

)
+ fn+ 1

2

)
(9.12)

∇ ·un+1 = 0 (9.13)

The same approach is used to advance 9.12 and 9.13 as in the substep.

Interestingly, in this method the implicit term is unchanged, meaning that the same linear

solver can be used, it only remains to add the appropriate term to the explicit term (RHS).

u∗− ∆t
2

µ∇
2un+1 = un +∆t

(
−∇pn+ 1

2 − (ρ∇ ·uu)n+ 1
2 +

1
2

µ∇
2un + fn+ 1

2

)
= RHS

(9.14)

Once solved, the final velocities and positions of the boundary points are calculated in

preparation for the next time step.

Un+1 =

ˆ
Ω

un+1
δ (x−Xn+1)dx

(
= un+1HT)
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Xn+1 = Xn +Un+1
∆t

In order to incorporate immersed boundaries into our solution operators must be construc-

ted for the spreading and regularisation operators. These operations have been assembled

in a number of differerent ways, however for the purposes of algorithm development it is

often useful to construct the operators as sparse matrices for versatility.

The coefficients of the delta functions are calculated and stored in arrays of size [Nb,Ns].

These values to populate a sparse matrix H of size [Nb,nm].

The force spreading operation is represented by multiplying the boundary forces by the

matrix H scaled by the boundary spacing. The operation interpolating the Eulerian velo-

city fields to the Lagrangian points is multiplication of the velocity field with the transpose

of H.

A strategy for populating H is described below.

1. Find the cell indices of each Lagrangian marker in each dimension. i = f loor( X
∆x +

1
2)

2. Calculate the indices of the cells that satisfy the compact support conditions for

every point is = i+[−Ns : Ns]

3. Find the distances of each cell with index is from its Lagrangian marker r = X− is∆x

4. Calculate the value of φ using a delta function expression in each direction such as

Equation 7.7 or Equation 7.21.
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5. H is filled using indices calculated from is with the relevant strides and the outer

product of φ(rx)⊗φ(ry)

If staggered grids are used then two matrices Hx and Hy are created, with the Lagrangian

marker positions defined relative to each grid.

The temporal discretisation is similar to that described in chapter 8 with the additional

complications of the interface, this approach matches that used by Lai et al. [3].

9.1. Discretisation in space

Colocated and staggered (MAC) finite difference grids, and a colocated finite volume

discretisation have been implemented. The MAC grid is represented schematically in

Figure 9.1.

On both grids the discretisation of the operators in Equation 10.9 - Equation 10.11 is

handled using centred schemes. In the case of the MAC grid, expressions the gradients of

the pressure are available at pressure cell faces, which is conveniently where the velocities

are stored, and the gradients of the velocities are available at the cell centres where the

pressure is stored. This results in a strong coupling between pressure and velocity. Further

details of grid selection can be found in Ferziger et al. [76].

On equally spaced grids finite difference operations are straightforward to implement. In

each direction the centred operations on the colocated grid are defined by Equation 9.15

and Equation 9.16 below.
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Pi,j Ui,j+1Ui,j

Vi+1,j

Vi,j

Pi,j+1

Pi+1,j

Pi,j−1

Pi−1,j

Figure 9.1.: Positioning of the velocity and pressure components on the MAC grid

(
∂ 2φ

∂x2

)
i
≈ Lx =

φi+1−2φi +φi−1

(∆x)2 (9.15)(
∂φ

∂x

)
i
≈ Dx =

φi+1−φi−1

∆x
(9.16)

Using the standard centred approximation for the differencing terms we arrive at the fol-

lowing numerical discretisation for the one dimensional operator L with different bound-

ary conditions.

On colocated finite difference grids the skew symmetric differencing is often used ([38])

for the convective terms
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Neumann Dirichlet

Colocated


−2 1 0 0 0
1 −2 1 0 0

0 . . . . . . . . . 0
0 0 1 −2 1
0 0 0 1 −2




−2 2 0 0 0
1 −2 1 0 0

0 . . . . . . . . . 0
0 0 1 −2 1
0 0 0 2 −2



Staggered


−3 1 0 0 0
1 −2 1 0 0

0 . . . . . . . . . 0
0 0 1 −2 1
0 0 0 1 −3




−1 1 0 0 0
1 −2 1 0 0

0 . . . . . . . . . 0
0 0 1 −2 1
0 0 0 1 −1



Periodic


−2 1 0 0 1
1 −2 1 0 0

0 . . . . . . . . . 0
0 0 1 −2 1
0 0 0 1 −2


Table 9.1.: Matrix representation of the Laplacian for various boundary conditions

S (un)φ =
unDn (φ)+Dn (unφ)

2

It is straightforward to construct a sparse matrix in two dimensions with which to solve

Poisson or Helmholtz type equations using a Kronecker product Equation 9.17 of the

one dimensional differencing operations with the identity matrix. For these grids the

boundary conditions incorporated into the one dimensional approximation are sufficient
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for the multidimensional problem.

∆
2 = L = Dx⊗ I + I⊗Dy (9.17)

For staggered grids Equation 9.17 returns the five point Laplacian. Using a discretised

Laplacian constructed using Equation 9.17 leads to the discretisation operations used in

the momentum and pressure equation being consistent. This results in the projection

method used to remove the divergence in the velocity fields being exact.

On centred grids the five point Laplacian and centred schemes can still be used in the

discretisation of the momentum equations, however if it is used in the Poisson equation for

the pressure, the projection method will no longer be exact. This results in an approximate

projection method [77].

Alternatively the Laplacian operator in the Poisson equation can be constructed using

Equation 9.17 with centred differencing operators on the colocated grid. In this case

the Laplacian stencil samples points at double spacing this reduces the accuracy of the

pressure, but does not strongly influence the velocity fields for reasons explained earlier

in section 7.1.
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Immersed boundary approaches allow for significant simplifications to be made to the

fluid solver. The simplest approach is to solve the Navier-Stokes equations on uniformly

spaced Cartesian grids with periodic boundary conditions and constant discretisation coef-

ficients over the domain. With this simplification the pressure and momentum equations

can be solved using either Fast Fourier methods or fast Poisson/Helmholtz solvers. Al-

though external boundary conditions are useful in many potential cases, they can be re-

placed with immersed boundaries.

The limitation to constant coefficients over the domain allows for no implicit or semi

implicit treatment of the convective term in the momentum equations. Rhie-Chow in-

terpolation which is used for pressure-velocity coupling on colocated grids also requires

the coefficients of the Poisson equation to vary over the domain. This means that with the

above assumptions, we must either use a staggered (eg MAC) grid, or settle for a lower or-

der approximation for pressure, which is a vital parameter balancing the boundary forces.

A minimal strategy to advance the Navier-Stokes could consist of explicit integration of

the momentum equations in time, calculating the viscous and unsteady terms using values

from the previous time-step, but would still require the solution of a Poisson equation for
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10.1 Spectral approach

pressure. Therefore the minimum required from a linear solver is the solution of a Poisson

equation with periodic boundary conditions on a equally spaced Cartesian grid.

10.1. Spectral approach

When the problem is discretised on a uniform orthogonal Cartesian grid with periodic odd

or even boundary conditions and constant viscosity we can solve efficiently in Fourier

space in the order of Nlog(N) operations. The solution of the Poisson’s equation can be

found via Eigenfunction expansion [1]. The discrete Fourier transform and its inverse

transform are defined

φi j =
1

JL

J−1

∑
m=0

L−1

∑
n=0

φ̂mne−2πi jm/Je−2πiln/L

φ̂mn =
J−1

∑
j=0

L−1

∑
l=0

φ jle2πim j/Je−2πinl/L (10.1)

The spacial grid points of the Cartesian mesh to are defined by i and j and the spatial

frequency domain is defined by the indices m and n. Both of these indices vary between

0 and the number of mesh points in each direction (M or N) -1 for the periodic case. In

Fourier space it is straightforward to shift the spatial field values an integer number of

grid points in orthogonal directions and thus calculate the eigenvectors required to find a

solution in the manner outlined below.

To solve the Poisson equation the right hand side of the equation is first transformed into
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10.1 Spectral approach

the Fourier domain using Equation 10.1 and a solution is found using Equation 10.2.

(λ I−A)û = ŷ (10.2)

where ŷ is the transformed right hand side of the equation (the explicitly calculated terms).

An expression for the eigenvector can be found by summing the expressions at the relevant

grid points, i.e. at offsets i =−1,0,1 and j =−1,0,1 using shift theorem.

With the use of trigonometric identities this result simplifies to the following expression

in two dimensions for the periodic case.

λ = 2
(

cos
2πm

J
+ cos

2πn
L
−2
)

This expression is simply the sum of the one dimensional eigenvectors.

Alternative boundary conditions can be modelled using the discrete sine and cosine trans-

forms.

For homogenous Dirichlet boundary conditions the discrete sine transform can be used. In

this case, for gridpoints in which the stencil extends beyond the grid, i.e. where cells are

bordering an external boundary, the dataset is extrapolated such that a boundary value of

zero is assigned for a boundary either at single (DST-1) or half spacing (DST-2) outwards

from the first and final gridpoints.

The discrete cosine transform extends the dataset in a manner equivalent to assigning

homogenous Neumann boundary conditions - the gradient of the value is assigned to zero
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10.1 Spectral approach

at the first and last grid point in the case of the DCT-1 and at half spacing from the first

and last point in the case of the DCT-2.

The extrapolation can be seen in Figure 10.1.

The eigenvalues of the 5 point Laplacian operator for both the discrete sine and discrete

cosine transform cases is of the form defined as follows

λ = 2
(

cos
πm
J

+ cos
πn
L
−2
)

where the only differences are in the terms m
J and n

L i.e. it is only required to account

for the differencing in the indexing in the even and odd transforms with staggered and

colocated endpoints.

In one dimension these operations result in same matrix structures as displayed in Table 9.1

in the previous section.

In the case of even or periodic transforms the solution (where A=0) requires blocking out

the zero frequencies before each inverse transformation is applied.

On the MAC grid we also wish to assemble forward and backward differencing operators

in order to calculate the pressure and velocity gradients on each grid at half spacing. In

the periodic case the finite difference approximations to these forwards and backwards

differencing approximations in the Fourier domain will have the form shown below
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10.2 Iterative approach

ˆDx f φ = φ̂

(
e2πim/J−1

)
ˆDxbφ = φ̂

(
1− e−2πim/J

)

10.2. Iterative approach

Iterative solution methods have been developed in order to allow for approaches without

the limitation of constant coefficients. This has been done to allow, amongst other im-

provements, methods with alterations to the discretisation local to boundaries, and Rhie-

Chow interpolation approaches for colocated finite volume solutions. Firstly Gauss and

Jacobi methods are discussed then the extension to multigrid which is practical for larger

cases.

10.2.1. Gauss and Jacobi solver

Gauss-Seidel iteration consists of the following update to an equation of the form Equation 10.3.

Ax = b (10.3)

x(k+1) = L−1
(

b−Ux(k)
)

where L is the lower coefficient and U is the upper coefficient.
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10.2 Iterative approach

A Jacobi update is defined as

x(k+1) = D−1
(

b−Rx(k)
)

where D is the diagonal coefficient, and R is the remainder. Gauss and Jacobi iteration

schemes are very slowly converging, requiring in the order of N2 iterations, ie the num-

ber of iterations scales with the number of mesh points. However these approaches are

effective smoothers for multigrid solutions.

10.2.2. Multigrid Solver

Equation 10.3 can be solved with much fewer operations using a Multigrid technique. The

partial differential equations must first be discretised on a series of increasingly coarse

grids. With the use of equally spaced Cartesian grids this is a straightforward operation.

An overview of this approach for finite difference type equations is given in Jorge et al.

[78].

Spreading and restriction operators are required which for the case of a finite volume type

solution (where coefficients can be added over the faces between levels) are displayed

below.

For the finite difference discretisations bi-linear or half weighting operators for prolonga-

tion and interpolation of the form below can be used
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Rhal f =


0 1

8 0

1
8

1
2

1
8

0 1
8 0

 (10.4)

Rbiharmonic =


1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

 (10.5)

A V-cycle algorithm was implemented whereby the following operations are performed

1. The discretised equation (Ax = b) is relaxed on the finest grid using the Gauss

update from the previous section.

2. The residual (r = Ax− b) after relaxation on this grid is calculated and restricted

onto the next coarsest grid where an equation for the correction is assembled using

this error (Ax1 = b1 = Rr) where R represents the restriction operation.

3. This equation is relaxed using Gauss updates and these initial steps repeated recurs-

ively until the error is found on the finest grid.

4. An upward sweep begins, the error solved on the finest grid is prolongated to the

next coarsest grid, adding to the solution previously stored there (An−1(xn−1 +

Pxn) = bn−1).

5. A number of Gauss updates are applied to relax the solution.

6. The process is repeated up to the finest grid.
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7. The entire V-cycle is repeated until the desired convergence criterion is met.

The process outlined above is shown schematically in Figure 10.3.

10.3. Comparison

To select an appropriate approach the Laplace equation was solved on a square domain

with periodic boundary conditions, using solvers written with each method.

The Laplace equation governs numerous physical problems, such as heat diffusion, elec-

tromagnetic potential or velocity potential in irrotational flow.

Table 10.1 gives the time taken for the solution using the various approaches outlined

above to solve either directly or to specific residuals. To get the best performance out of

the multigrid and fast Fourier solvers the number of grid points in each direction were set

to powers of 2. The densest grid contains 6.7e7 cells in total and takes 2.245 seconds to

solve using the Eigenfunction expansion method.

Solver n=8 n=9 n=10 n=11 n=12 n=13
FFT 8.85e-4 5.11e-3 2.42e-2 0.1043 0.4514 2.245

Multigrid r=1E-6 1.383e-2 5.8e-2 0.245 0.956 1.43 -
Gauss r = 1E-6 10.995 48.559 215.05 - - -

Table 10.1.: Computational time requirement for various linear solution strategies for
2n×2n grid points

Ideally a multigrid solver should be comparable or be able to outperform fast Fourier

methods as they should scale with O(N) rather than O(Nlog(N)).

This was not found to be the case with the current implementation as can be seen in

Table 10.1. It is believed that this is due to FFTW, the numerical library used in the
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10.4 Fractional Step methods

based solution being exceptionally efficient in both its memory footprint parallelisation

and optimisation.

Comparatively there is an extra overhead in multigrid solutions, and the solver could be

improved in a number of ways, including the use of better smoothing methods such as

red-black Gauss-Seitel using which further optimisations could be achieved ([78]).

10.4. Fractional Step methods

For compressible flows, the Navier-Stokes equations can be solved by using the conti-

nuity equation to calculate the fluid’s density, the pressure can be determined using the

fluid’s equation of state and the velocity components can be solved using the momentum

equations. For incompressible flows the solution of the Navier Stokes equations is not

straightforward

This is for two main reasons (as outline in Ferziger et al. [76]). Firstly, there is no

independent equation for pressure. The pressure only contributes to the pressure gradient

terms in the momentum equations. Secondly, the continuity acts only as a kinematic

constraint (as the density is constant), meaning that to solve for one velocity component

the others must be known.

There are number of approaches to pressure-velocity coupling which are described and

compared in this section.

The Navier Stokes equation can be written in block matrix form as follows
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10.4 Fractional Step methods

 A G

D 0


 un+1

pn+1

=

 rn

0

+
 bc

bc


Where A is the sum of the implicit terms of the advection-diffusion part of the momentum

equations, G and D are gradient and divergence operators respectively, rn is the explicit

right had side of the momentum equations and bc are the boundary conditions. For the

reasons outlined above the system is indefinite.

Artificial compressibility methods

The most straightforwad approach towards making sec.10.4 solvable is to introduce artif-

ical compressiblity A G

D λ I


 un+1

pn+1

=

 rn

0

+
 bc

bc


This is an approximation with order of accuracy λ , which is a non-physical parameter the

size of which has a large impact on the stiffness of the solution.

Fractional Step methods

The fractional step method was first proposed by Harlow et al, and Chorin et al. [79]

At each time step an incomplete form of the momentum equations is integrated, then a

correction is applied removing the divergence of the velocity field.
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10.4 Fractional Step methods

and Chorin

In Chorin’s original projection method, the solution of the momentum equations is split

up into two steps. Firstly an intermediate velocity is calculated using the momentum

equation with Euler explicit advancement and without the pressure gradient term.

u∗−un

∆ t
=−(un ·∇)un +ν∇

2un (10.6)

Then the pressure gradient term is added in the second step

un+1−u∗

∆ t
=−∇pn+1 (10.7)

The right hand side of this equation requires the pressure at time tn+1. Noting that the

final velocity field must be divergence free, and taking the divergence of the pressure

correction equation yields equation Equation 10.8

∇ ·un+1 = 0

∇
2 pn+1 =

∇ ·u∗

∆ t
(10.8)
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10.4 Fractional Step methods

It can be noted that the correction term added to the velocity field −∆t∇pn+1 projects the

field u∗onto a divergence free field whilst conserving the vorticity, thus this known as a

Projection method.

The conservative properties of the scheme depend strongly on the choice of discretisation

method for the divergence, gradient and laplacian terms.

Kim and Moin[80] modified the original Chorin method for use on a staggered finite

volume grid.

A fully discrete approach is described by Perot et al.[77]

It was noted in Perot that the Fractional Step method of Chorin outlined above is the

continuous analogue of the block LU decomposition of the system A (∆tA)G

D 0


 un+1

pn+1

=

 rn

0

+
 bc

bc


The additional parameter ∆tA introduces a first order error in time

Performing block LU decompostion ([77]) yields the system A 0

D −∆ tDG


 u∗

pn+1

=
 rn

0

+
 bc

bc


 I ∆tG

0 I


 un+1

pn+1

=

 u∗

pn+1


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10.4 Fractional Step methods

The momentum equations are solved to determine the flow velocities, leaving the continu-

ity equation to determine the pressure field. As no pressure term appears in the continuity

equation, the momentum equations must be reformulated to solve for pressure using the

continuity equation as a constraint.

During this work a number of approaches to solving the Navier Stokes equations have

been investigated with an aim of finding the most suitable for application with immersed

boundary methods. Many different strategies were used to advance the pressure and velo-

city fields, including pressure free and pressure increment projection methods and PISO

schemes.

In each case the solutions were advanced with the convective and diffusive terms centred

in time, leading (in the fluid discretisation) to second order temporal accuracy in the

velocity fields.

To solve the Navier Stokes equation a fractional step approach similar to that of Perot [77]

and initially described by Chorin is utilised.

A preliminary solution for the velocity is calculated by either neglecting the pressure at

the current timestep or using an explicit value from the previous timestep. In the case

for which the pressure is staggered in time the following expression is reached where the

convective term can be extrapolated using two step Adams Bashforth approach and the
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10.4 Fractional Step methods

viscous term interpolated using second order Crank Nicholson.

 I ∆tG

0 I


 un+1

pn+1

=

 u∗

pn+1

u∗=un+∆t
(
−∇pn− 1

2 − (∇ ·uu)n+ 1
2 +
(
µ∇

2u
)n+ 1

2 + f n+ 1
2

)

(10.9)

Alternatively a fractional step can be taken with fully implicit treatment of the viscous

term, and these intermediate values used to populate the centred terms and advance the

solution. This approach is discussed in ??.

Dropping the pressure term for the preliminary velocity in Equation 10.9 results in a pres-

sure free approach.

The divergence of the expression produces a Poisson equation for pressure of the form.

∇
2 p =

∇ ·u∗

∆t
(10.10)

For a colocated finite-volume an approach such as Rhie-Chow interpolation must be used

to prevent decoupling of the solution. This effectively consists of multiplying the coef-

ficients on the faces in the divergence term by the central coefficents of the momentum

equations interpolated to the faces.

The velocity is now updated to incorporate the pressure gradient or an update to the pres-

sure gradient depending on the formulation. For the colocated finite volume approach
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10.4 Fractional Step methods

these will once again be weighted by the inverse of the central terms of the momentum

equation if Rhie-Chow interpolation is used.

un+1 = u∗∗−∆t∇p

If required, the pressure can now be updated using an expression similar to the one below

pn+ 1
2 = pn− 1

2 + p∗ (10.11)

Depending on the timestep and method iterations may be needed, especially if the non-

linearity in the momentum equations is to be better taken into account (if the convective

flux is discretised using implicit velocity and explicit momentum flux as is common in

the finite volume treatment).

The arrival at the Poisson equation in the fractional step method can be visualized using

three equivalent approaches, discretionary and splitting of the continuous equations in

time, the LU decomposition of the discretised Navier Stokes equations – this allows for

the correct treatment of boundary conditions and higher order time integration ([77]), and

by considering the pressure to act as a Lagrangian multiplier. The treatment of pressure as

a Lagrangian multiplier will conceptually allow the introduction of additional constraints

to the momentum equations.
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10.4 Fractional Step methods

10.4.1. Timestep limitations

The explicit treatment of the non-linear convective terms introduces the Courant–Friedrichs–Lewy

condition.

This is best understood by considering a one dimensional transport equation using upwind

differencing for the the convective term and forward Euler for the unsteady term. From

Ferziger et al. [76]

φ
n+1
i = φ

n
i +

[
−u

φ n
i −φ n

i−1

∆x
+

Γ

ρ

φ n
i+1−2∗φ n

i +φ n
i−1

∆x2

]
∆ t

This expression simplifies to

φ
n+1
i = (1−2d− c)φ

n
i +dφ

n
i+1 +(d + c)φ

n
i−1

where d = Γ ∆ t
ρ(∆x)2 and c = u∆ t

∆x

A negative coefficient (1−2d−c) will result in an instability, leading us to the following

definition

∆t <
1

2Γ

ρ∆x2 +
u
∆t
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10.4 Fractional Step methods

So in the cases of negligible convection the Courant number needs to be less than unity

C =
u∆t
dx

< 1

For immersed elastic fibres another limit is imposed on the timestep. A detailed analysis

is provided by Stockie et al. [37, 81], an approximate relationship is derived by Lai et al.

[3]

∆t ≈C

√
h
k

where h is the spacing of the Eulerian mesh and k is the spring stiffness.
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10.4 Fractional Step methods

Figure 10.1.: Discrete transform types used in the Eigenfunction expansion solution
method [1]
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Figure 10.2.: Various key concepts of the multigrid strategy including the restriction and
prolongation operations
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Grid level m−1

Grid level mPre−smoothing

Pre−smoothing Post−smoothing

Post−smoothing

Prolongation

Restriction

Restriction

Coarsest level

Prolongation

Figure 10.3.: The V-cycle Multigrid algorithm
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11. Fluid solver validation

The MAC collocated fluid solver using the Eigenvalue exapansion linear solver (other

linear solvers produced identical results to the assigned tolerances) has been validated

against the numerical results of Ghia et al. [2] with Dirichlet boundary conditions pre-

scribed for the fluid velocity. The geometry and boundary conditions used are given in

Figure 11.1.

Figure 11.1.: Boundary conditions for fluid solver validation case

The total number of cells in each direction in both cases was 256. The fields were ad-
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Fluid solver validation

vanced to the steady state solution using the time-step defined by the CFL number being

equal to unity and run until steady state solutions were reached.

Figure 11.2.: Centreline x-velocity plot for the fluid solver validation case - comparison
with Ghia et al. [2]

Figure 11.2 shows the velocities in the x-direction at y = 0.5 in comparison to those gen-

erated by Ghia et al. [2]. Excellent agreement is found at both Re = 100 and Re = 400

with second order central differencing.

Figure 11.3 and Figure 11.4 show the normalized velocity vectors superimposed on the

velocity magnitude contours. At Re = 400, the corner vortices can be clearly seen which

will expand further as the Reynolds number is increased.
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Figure 11.3.: Velocity vectors and streamlines for driven cavity flow with Re=100

Figure 11.4.: Velocity vectors and streamlines for driven cavity flow with Re=400
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12. Processing complex

boundaries

Routines have been written using the image processing library OpenCV in order to extract

2 dimensional geometries from images. The process consists of the following steps

1. An image is loaded (Figure 12.1)

2. The image is smoothed using a user defined number of smoothing steps

3. The image is converted into a binary matrix

4. Contours are extracted from the image using the Canny Edge detecting algorithm

5. Boundaries are extracted and stored in XML format

The edge extraction results in jagged edges due to the binary image sampling. This is

overcome by interpolating the boundary with cubic splines fitted using a least squares

approach which also allows for the sampling to be evenly spaced (see Figure 12.2 for an

example). These sampled points represent the control points of the cubic spline in the

solver. Sample results for a boundary velocity defined as (1,1) in a closed cavity are

displayed in Figure 12.3.
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Figure 12.1.: Sample raster image for processing
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Figure 12.2.: Point extraction and smoothing/resampling
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Figure 12.3.: Sample velocity vectors with overlaid pressure and streamfunction contours
for arbitrary geometry with boundary velocity = (1,1) in a cavity (Re=1)
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13. Validation and test cases

13.1. Driven rotational flow in a cavity

The method described in chapter 9 with the forcing from the virtual boundary approach

outlined in subsection 7.2.2 has been applied to a cavity of unit length in both directions

with homogeneous Dirichlet boundary conditions imposed on the velocity at the walls

containing a circular immersed interface of diameter 0.5.

Forcing is calculated to drive the interface velocity tangential to the interface to 1 using

Equation 7.32.

The resulting flow contained within the immersed boundary is purely rotational as can

be seen in the velocity vectors displayed in Figure 13.1 and the contours of streamfunc-

tion displayed in Figure 13.2, which closely fit the boundary interface reflecting that the

velocity is constant on the interface as prescribed indirectly using Equation 7.32.

The flow field internal to the immersed interface is no longer influenced by the external

boundary conditions as can be seen in the plots of x-velocity across the centreline of the

domain and diagonally across the domain.
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13.2 Taylor Couette flow

Figure 13.1.: Velocity vectors for rotational flow in a cavity driven by a circular immersed
interface

The centreline velocity plots show, as should be expected, that the velocity increases

linearly from −1 to 1 between opposing sides of the immersed boundary, and the x-

component of the velocity increases linearly from−
√

1
2 to

√
1
2 diagonally across the area

enclosed by the immersed boundary reflecting that the magnitude of the velocity on the

interface is unity.

13.2. Taylor Couette flow

The case of Taylor Couette flow, the fluid flow between two counter-rotating cylinders,

is investigated using an identical geometry to that used in section 13.1 with an additional

immersed interface with a diameter of 0.35 within the first.
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13.2 Taylor Couette flow

Figure 13.2.: Contours of streamfunction for rotational flow in a cavity driven by a circu-
lar immersed interface

In this case the forcing function on the internal interface is prescribed to set the velocity

on (and resultingly inside) the inner boundary to zero once again using Equation 7.32.

As can be seen in Figure 13.4 and Figure 13.5 the contours of streamfunction once again

mimic the interface, showing that the velocity at the interface is approximately constant.

The velocity vectors generated are purely rotational and increasing from zero to unity

between the internal and external immersed interface (Figure 13.6) as expected.

Outside of the domain inertial effects can be seen with areas of stagnation and recircula-

tion that are dependent on the Reynolds number of the simulation.
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13.3 Perturbed droplet in stationary flow
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Figure 13.3.: Centreline and diagonally sampled x-velocity across the domain and inter-
secting the immersed geometry for rotational flow in a cavity generated using immersed
boundaries

13.3. Perturbed droplet in stationary flow

In this section results are presented for the response of a perturbed droplet submerged

in a viscous fluid using both the standard immersed boundary method approach and

solving implicitly and semi implicitly using the BFGS method (with results dicussed in

section 14.1).

A boundary was initialized in the fluid domain in the shape of an ellipse, the geometry
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13.3 Perturbed droplet in stationary flow

Figure 13.4.: Velocity vectors for Taylor-Couette flow in a cavity driven using immersed
boundaries

and boundary conditions are displayed in Figure 13.7.

The boundary forces consist of surface tension which is modelled by the discretisation of

Equation 13.1 over the length of the immersed boundary

F = γ
∂ 2

∂ s2 X (13.1)

Where γ is the surface tension.

For this study, the fluid viscosity fluid density and and surface tension were set 0.001,

1 and 1 respectively. Solutions were found using 5 different grid spacings defined in

Table 13.1.
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13.3 Perturbed droplet in stationary flow

Figure 13.5.: Contours of streamfunction for Taylor-Couette flow in a cavity driven using
immersed boundaries

This ellipse configuration is unstable, and the boundary quickly oscillates around, and

after a short time to, the shape of a circle with a volume matching that of the original

ellipse. The response of the droplet can be seen in Figure 13.8 where the interface position

and velocity vectors are plotted at intervals of 0.15 seconds, half the period of oscillation

of the droplet.

MAC and colocated grid discretisations were used and their results compared. Colocated

checkerboard type solvers are often used in immersed boundary method simulations.

The major and minor axes of the droplet are displayed for the MAC grid case in Figure 13.10

and the colocated grid discretisation case in Figure 13.9. It can be seen that the major and

minor axes of the droplet in the colocated case are shrinking significantly throughout

the simulation to the point where on the coarsest grid the droplet area reduced by 20%.
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13.3 Perturbed droplet in stationary flow
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Figure 13.6.: Centreline and diagonally sampled x-velocity across the domain and inter-
secting the immersed geometry for Taylor-Couette flow in a cavity driven using im-
mersed boundaries

Volume losses were much smaller (although still significant) on the MAC grid.

The area of the droplet was calculated using the maximum and minimum extent of the

droplet during the simulation and assuming the interface to be elliptical. The result is

displayed in Figure 13.11. The initial oscillations occur as the droplet as the interface

is not truly elliptical during the oscillations although when the interface approaches the

stable circular configuration the expression an accurate representation of the area of the

droplet.
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13.4 Flow over a static circular cylinder

0.3

Immersed boundary
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1.0
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Figure 13.7.: Initial interface configuration and computational domain geometry and
boundary conditions for the unsteady perturbed droplet case

Grid spacing area loss (%) colocated area loss (%) staggered
1/16 17.42 0.8983
1/32 10.02 0.4072
1/64 5.660 0.1962
1/128 3.044 0.1089
1/256 1.608 0.0580

Table 13.1.: Percentage area loss of the droplet during the first 4 seconds of the simulation

13.4. Flow over a static circular cylinder

The domain chosen for this study matches that of Lai et al. [3] for validation purposes,

consisting of a cylinder with radius 0.15m centred at x = 1.85m, y = 4.0m within a 8m x

8m square domain. The geometry was chosen to be large enough such that the periodic

boundary conditions have little impact on the cylinder wake.

Below a critical Reynolds number (of approximately 40) the cylinder wake will be steady
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13.4 Flow over a static circular cylinder

and symmetric. Above this critical Reynolds number vortex shedding will occur resulting

in a Von-Kamen vortex sheet trailing behind the cylinder. Vortices are shed from the upper

and lower side of the cylinder alternately. The asymetrical velocity fields result in lift and

drag being generated with the drag oscillating at twice the frequency of the lift.

The non-dimensional parameter characterising the vortex shedding is the Strouhal number

(Equation 13.2)

S =
f L
V

(13.2)

Where f is the frequency of vortex shedding, L is the charateristic length of the cylinder

and V is the relative velocity of the cylinder with respect to the flow field.

The cylinder is represented by an immersed interface with each point within the in-

terface anchored to its initial position. The forces at each point are calculated using

Equation 13.3, where k is large (~50000). Additional damping (η) was required.

F = k(X−X0)−ηU (13.3)

The domain is periodic in both directions. Because of this the flow over the cylinder is

imposed in a more indirect method than if pressure and velocity values and gradients are

defined at the external boundaries.
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13.4 Flow over a static circular cylinder

In order to impose a uniform flow at the inlet (similarly to Lai et al. [3]), the u and v

velocities of a thin strip (two nodes in width) of nodes at the inlet are set to (1.0,0) m/s

before each time step. This effectively applies a force source term proportional to the

mismatch in speed and results in the inlet x-velocity remaining at unity in the x direction

during the simulation and stops the wake influencing the inlet y-velocity.

Simulations were run for Reynolds numbers of 40, 100, 150, 200, and 400. The density

of the fluid under consideration was set to unity and the fluid viscosity changed for each

simulation to set the desired Reynolds number. The unsteady solutions were run for up

to 600 seconds, although in most cases vortex shedding was occuring at a constant rate

earlier in the simulation.

A grid independence study was undertaken with transient results generated for a coarse

(512x512 nodes) and a medium grid (1024x1024 nodes) for each Reynolds number and an

additional high density grid (2048x2048) simulation was run for each Reynolds number

to check for convergence.

The calculated Strouhal numbers can be seen in Table 13.2 with a comparison to the

results of Lai et al. [3] and to experimental results from Roshko et al. [5].

The current study’s results at both medium and high grid density are in excellent agree-

ment with the experimental data, and with the results of Lai et al. [3] who used a similar

method.

Grid independence has been further investigated by studying the forces on the cylinder

early in the simulation. The calculated results are presented in table Table 13.2.

An experimentally derived relationship between Strouhal number and Reynolds number
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13.4 Flow over a static circular cylinder

Re Coarse Medium Fine Lai Fine Experimental
40 - - - - -

100 0.156 0.163 0.164 0.165 0.164
150 0.1773 0.181 0.181 0.184 0.182
200 0.183 0.189 0.189 0.190 0.190
400 0.214 0.217 0.218 - -

Table 13.2.: Strouhal numbers calculated from the current results, Lai et al. [3] and the
experimental results of Roshko et al. [5]

has been found in Williamson et al. [4] which is reproduced below

S = 0.285− 1.390√
Re

+
1.806

Re

Plotting these results displayed in Table 13.2 shows a good fit with the current data and

that of Lai et al [3].

Contours of vorticity and the velocity magnitudes are presented in Figure 13.13 Figure 13.14

respectively. As can be seen in the figures for every Reynolds number above 40, the cyl-

inder’s wake was found to be asymmetrical and unsteady. For Reynolds numbers above

40 vortex shedding occurred with the spacing decreasing with increasing Reynolds num-

ber. The results are presented for the lower resolution mesh, and the cylinder interface is

slightly deformable.
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13.4 Flow over a static circular cylinder

Figure 13.8.: Velocity vectors and droplet interfaces showing the dynamic response of
the droplet at 0, 0.15, 0.3, 0.45, 0.6, 0.75 and 0.9 seconds.
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13.4 Flow over a static circular cylinder
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Figure 13.9.: Response of the droplet major and minor axes on the 128x128 grid using
the colocated finite difference scheme, note the slight downward slope
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13.4 Flow over a static circular cylinder
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Figure 13.10.: Response of the droplet major and minor axes on the 128x128 grid using
the staggered (MAC) finite difference scheme
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13.4 Flow over a static circular cylinder
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Figure 13.11.: Droplet volume assuming the interface to be elliptical during the simula-
tion. The top plot is for the staggered discretisation and shows a significant increase in
volume conservation properties compared to the colocated grid (bottom)
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13.4 Flow over a static circular cylinder

Figure 13.12.: Reynolds number vs Strouhal number for the current results, Lai et al. [3]
and the experimentally derived fitting of Williamson et al. [4]
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13.4 Flow over a static circular cylinder

Figure 13.13.: Contours of vorticity around a static circular cylinder calculated using the
immersed boundary method for Reynolds numbers of 40 (top), 100 & 400 (bottom)
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13.4 Flow over a static circular cylinder
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Figure 13.14.: Velocity magnitude around a static circular cylinder calculated using the
immersed boundary method Reynolds numbers 40,100,150,200 and 400 increasing top
to bottom. The immersed cylinder geometry is lightened for clarity
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13.4 Flow over a static circular cylinder

Figure 13.15.: Lift and drag coeffiicient for Re = 150 case
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14. Limitations and alternative

approaches

The immersed boundary method has a number of significant limitations.

Firstly there is a timestep limitation which becomes more severe as more stiffness is intro-

duced to the interface’s constitutive equation. The method is only first order accurate local

to interface and volume is not conserved adequately either side of an immersed interface.

In the case of a colocated discretisation for many typical applications the volume conser-

vation was inadequate to the point where it was difficult to be sure that the method was

correctly implemented without cross referencing the results with those generated from

third party implementations.

The severe timestep limitations can be overcome in a number of ways.

Firstly the boundary forces can be calculated treating the boundary velocities implicitly as

in Taira et al. [67] by introducing the regularised delta functions to the pressure equation.

In this approach the interface velocities constrained using Lagrangian multiplier in the

Poisson equation resulting the pressure equation removing both the divergence in the

velocity fields and the error in the velocity fields at the interface.
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14.1 Implicit solution

Another interesting approach that is applicable to coupling both velocities and displace-

ments (i.e. using a direct forcing and continuous forcing approach incorporating struc-

tural constitutive models) is that of Ceniceros et al. [82, 83] who note that with lagged

spreading and interpolating operators, it is possible to construct the Jacobian matrix of

the boundary displacement (or velocity) with respect to the boundary force if the fluid

domain is periodic and the projection and momentum operators commute.

14.1. Implicit solution

The time-step limitation of the explicit scheme makes the solution of problems with stiff

interfaces computationally expensive. This can be overcome with the use of an implicit

boundary advancement scheme. To make the problem implicit, the boundary advance-

ment equations (Crank-Nicholson or backwards Euler) is rearranged to give

G(X) = Xn+1− 1
2

∆tUn+1−
(

Xn +
1
2

∆tUn
b

)
G(X) = Xn+1−∆tUn+1−Xn

Ideally, the implicit solution of this problem would start by calculating the Hessian matrix

(the second partial derivatives of residuals of the position of each point on the discretised

boundary) and use Newton’s method to approximate an improvement on the boundary po-

sition at the next time step. Due to the influence of every Lagrangian and Eulerian variable

at every point for each residual, this would be difficult if not impossible to compute dir-

ectly. A quasi-Newton method (Nocedal and Wright [78]) in which an approximation to
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14.1 Implicit solution

the Hessian matrix is estimated and updated with each iteration can be used to overcome

this.

In the current implementation the BFGS method (Nocedal and Wright [78]) is used, fur-

ther details can be found in [84]. This method performs the following steps –

1. Initialize the inverse Hessian (Bn
m) to the identity matrix.

2. Update the boundary configuration using a form of the Newton equation.

Xm+1 = Xm−Bn
mG(Xm) (14.1)

In Equation 14.1 X is a column vector containing the interface positions in both

spatial directions, because B includes the approximations of each and every second

partial derivative.

3. Update the approximation of B. where y and s are the change in residual and the

boundary position X respectively

B = B− BssT B
sT Bs

+
yyT

sT y
(14.2)

4. When the residual reduces to the required tolerance, the values of the fields and

output of Gm(Xm) and Xm are accepted as those of the new time-step, and steps 2-3

are repeated until the desired time.

The derivation of Equation 14.2 can be found in Nocedal and Wright [78].
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14.2 Solution strategy with the flow solve operator

Strategies for reducing the number of BFGS loops.

It was found that in cases where the boundaries can be considered smooth, the solution

is significantly more computationally efficient if the boundary is defined by a (relatively)

small number of control points, and the force applied using Lagrangian markers interpol-

ated to a denser mesh from the boundary marker points using cubic splines.

The numerical accuracy and computational workload required depend strongly on the

time step selected for use in each time marching scheme. Simulations have been run at a

range of different time-steps for both implicit methods.

As the interface position is captured accurately using a relatively small number of control

points, running the additional routines required for BFGS minimisation has little impact

on the computational cost. The additional cost is due almost entirely to solving the Navier-

Stokes equations and spreading, interpolating and re-sampling forces and velocities using

delta functions and cubic splines to calculate the residual at each sub-step. This means

that the number of sub-steps gives an accurate measure of the increasing computational

workload, and can leavebe used to directly compare the implicit and explicit methods.

14.2. Solution strategy with the flow solve operator

Ceniceros et al. [?, ?] note that the original semi implicit method of Peskin [3] treats the

fluid force as follows

f = aHS(Xn+1)
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14.2 Solution strategy with the flow solve operator

Where S is a matrix or a non linear operation relating the interface position to the Lag-

rangian force at the interface and H is the spreading operation defined in the previous

section. Expressing the fluid solver as Lh allows the semi implicit method to be expressed

as

un+1 = Lh (RHS+ f)

Xn+1 = Xn+1 +∆tbHT un+1 =
∆t2

ρ
MnS

(
Xn+1)+Xn +∆tbHT LhRHS

Where Mn is the Jacobian matrix relating forces on the interface points to velocities on

the interface points. The coefficients of Mn thus correspond to the velocity obtained by

interpolating the velocity values produced at boundary point i by a spread unit force in

the x or y direction at boundary point j. This operator is constructed by evaluating the ve-

locity fields generated by applying a unit force at the origin in the horizontal and vertical

direction, spreading these velocities to the Eulerian grid, and then (assuming translation

invariance) linearly interpolating the velocity field to the distance between the corres-

ponding points i and j from the origin.

Each force (with components in the x and y direction) at each node thus results in 4

induced velocities which are stored in Mn as shown below
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14.2 Solution strategy with the flow solve operator

M=




∂Ux1
∂Fx1

· · · ∂Ux1
∂Fxn

... . . .

∂Uxn
∂Fx1

. . .




∂Ux1
∂Fy1

· · · ∂Ux1
∂Fyn

... . . .

∂Uxn
∂Fy1

. . .


∂Uy1
∂Fx1

· · · ∂Uy1
∂Fxn

... . . .

∂Uxn
∂Fx1

. . .




∂Uy1
∂Fy1

· · · ∂Uy1
∂Fyn

... . . .

∂Uyn
∂Fy1

. . .





This operator can also be used directly to determine the interface forces required to set

the interface velocity, or solve for interface velocities given a force distribution.
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15. Further work

Creating geometries for immersed boundary method simulations usually consists of dis-

cretising analytical functions which usually describes a periodic interface or a fibre res-

ulting in a severely limited and consistent set of typical case studies and validation cases.

In order to attempt to make more interesting cases available algorithms were developed

and programs written to initialize boundaries from vector (svg) and raster images. In the

case of raster images this proved a complex task - generating a smooth equally spaced

representative sample of points from arbitrary (but smooth) geometries with minimal user

input. It is anticipated that completing this approach would allow the fast generation of

cases from medical images.

A number of attempts have been made to alter the discretisation to account for the im-

mersed boundary whilst retaining the convenience of the delta function. The first attempt

summed the delta function weighting at points with equal indices and directly altered the

equation in these cells. This was applied both as an update loop over the boundary during

the implicit solution and by directly altering the equations. This worked in that it assigned

the cells to a prescribed value such that when interpolated to the Lagrangian structure the

sums of the values at Lagrangian grid points were as prescribed but the values were not

smooth over the boundary.
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Further work

It was decided to use a similar technique solving for all the cells supported by the delta

function with the additional constraints that the forcing applied should be consistent with

that of forces applied at the Lagrangian points using delta functions. In has been dis-

covered that an underlying problem with approaches of this kind is that the system is

overdetermined and numerous approaches to overcoming this shortcoming are currently

being investigated.
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A. Aneurysm simulations using

commercial codes

During the course of this research, various cases have been run designed and discussed

in collaboration with surgeons in order to better understand the flow of blood though an-

eurysms. The studies have progressed from simple two dimensional axisymmetric cases,

to transient non-newtonian unsteady flow in complex geometries.

Aortic aneurysms are irreversible, balloon-like dilations in the aorta. This fusiform bulge

typically occurring between the renal and iliac arteries, and expand, typically over a period

of years, due to gradual wall weakening, and may eventually rupture. Approximately 6%

of men and 2% of women develop aortic aneurysms.

The two main treatments options for aortic aneurysms are open surgery, in which a syn-

thetic section is inserted into the aneurysm and sewn in at either end, and endovascular

aneurysm repair. Endovascular aneurysm repair consists of the insertion and expansion

of a bifurcating (trouser shaped) stent-graft in the aorta, cutting off blood flow to the

aneurysm sac and thus preventing rupture or further growth.
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Aneurysm simulations using commercial codes

Figure A.1.: Schematic showing the blood vessels connected to the aorta.

In order to stop stent migration, proximal and distal landing zones of 1.5cm are recom-

mended to transmit the stent’s radial force to the aorta. Many patients do not have a

sufficiently long neck section, and so are not suitable for this procedure.

Two dimensional simulations using the the commercial finite volume CFD code FLUENT

and the meshing utility GAMBIT have been run to estimate this force, and gain a rough

estimate of the flow patterns during deployment to aid the design of stent specialised for

these kinds of problems. A brief presentation of some of the results is provided here.

To investigate stent deployment, four different geometries were considered. The aortic

aneurysm pre stent insertion, with the undeployed stent, with the half deployed stent and

a three-quarter deployed stent in the centre.

The aortic aneurysm in this study is idealised to an axisymmetric smoothed 1−2−1 expan-

sion−contraction shown in Figure A.3

To calculate the Reynolds number, and so inlet velocity of the study, the flow of blood

through the aorta was considered.

128



Aneurysm simulations using commercial codes

Figure A.2.: Geometry and boundary conditions for early axisymmetric AAA
simulations

Figure A.3.: Axisymmetric AAA geometry used in early studies

The heart produces a flow rate of 8x105 m3 /s into the aorta [6]. The percentage of flow

through each artery is given below in Table 3, along with the calculated percentage of

flow rate reaching the inlet of this study, the zone downstream of the renal arteries.

Using the flow rate and the aorta diameter used in this study the time averaged Reynolds

number at the neck is 422, and the average velocity vav is 0.0554m/s. At systole, the

Reynolds number increases to approximately three times this time averaged value [6].

Literature gives a range of values for peak and average aortic Reynolds number (depend-

ing strongly on the subject and conditions − e.g. there is approximately a 25% increase
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Aneurysm simulations using commercial codes

Position Flow rate
Celiac Artery 21%

SMA 21%
Left Renal Artery 15%

Right Renal Artery 15%
Domain Inlet 34%

Table A.1.: Typical flow through the aorta and connecting arteries (from [6])

when lying face up as opposed to sitting down). Average values range from 362 to 1053,

and at peak conditions from 1950 to 5695 ( from [6, 85, 86, 87] ). For this preliminary

study it was decided to take the calculated averaged values to ensure the flow would not

be turbulent and to reduce mesh size. The blood viscosity and pressure used in this study

are 4.2e−3 and 13.33 kPa and respectively.

A parabolic velocity profile was fitted at the inlet, and downstream pressure outlet bound-

ary conditions were set. The artery/aneurysm wall and the stent (where present) surfaces

were set to no-slip walls. The axis about which the domains were axisymmetric was set

to an axis boundary condition. To ensure that the flow at outlet was fully developed the

downstream section length was set equal to the entrance length El , which for laminar

flow is defined as

El = 0.06∗Re∗d = 0.06∗422∗0.025 = 0.633m

The parameters of interest in this study are the wall shear stresses on the aneurysm wall,

the force on the stent, and the velocity and pressure fields.

Figure A.6 presents the grid independent mesh with the calculated pressure contours for
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Aneurysm simulations using commercial codes

Figure A.4.: Centreline velocity plot for 2 dimensional abdominal aortic aneurysm case

the aortic aneurysm geometry with no stent.

The peak pressure values are found on the aneurysm wall at the distal end of the aneurysm,

where the main flow reattaches/impinges on the wall. This finding has been observed in

literature.

The velocity vectors show a large area of slow recirculating flow within the aneurysm

body, this can also be seen in the centreline velocity plots Figure A.4 This recirculation

results in the area of low wall shear stress magnitude seen in Figure A.4 around the centre

of the aneurysm body (x = 0).

The reattachment of the faster flow causes the high wall shear stresses and wall shear stress

gradients at the distal end, where the pressure peak was observed. The combination of

high wall shear stresses and wall shear stress gradient values (which regulate the vascular

endothelial cell’s cellular function and so wall material properties) and the peak pressure
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Aneurysm simulations using commercial codes

Figure A.5.: Wall shear stresses for abdominal aortic aneurysm case

(which results in high structural loads) may result in degeneration of the vascular wall, or

further growth in this area.

The inclusion of the stent at a quarter channel width offset from the wall of the healthy

aorta section significantly changes the flow field.

The pressure in the aneurysm section is increased by the inclusion of the stent and the

sharp localised peak value at the distal end of the aneurysm disappeared. The zone of

recirculation is reduced and moved towards the proximal end. However the velocities in

this zone are too small for this recirculation to be of much significance.

The centreline velocities show that the velocity, although increased in the radial centre of

the aneurysm (as the flow is no longer recirculating) is slower near the aneurysm wall.

The peak pressure occurs on the forward face of the stent, but due to its small width, only

results in a small pressure force.
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A.1 3D Chimney stent

Figure A.6.: Pressure contours (kPa) for no stent and quarter deployed stent case

A.1. 3D Chimney stent

Three dimensional transient simulations have been run for a aortic aneurysm cases incor-

porating the renal and iliac arteries. Transient simulations have been run to investigate

the migration force in this three dimensional model and the flow and structural forces

compared.

Physically representative quarter geometry such as that shown in Figure A.7 were gener-

ated using ANSYS designmodeller for a number of cases.
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A.1 3D Chimney stent

Figure A.7.: 3D chimney stent and aorta geometry used in ANSYS simulations

A meshing strategy was chosen to ensure that the boundary layers were adequately mod-

elled and the solutions mesh independent. Figure A.8 shows the coarsest mesh for the

stent geometry.

Cycle independent transient results were found after three cardiac cycles. Velocity vec-

tors and pressure contours are plotted below at three interesting stages of the simulation,

at systole (Figure A.9), for average flowrate (Figure A.10) and at diastole(Figure A.11),

where there is flow reversal. To allow this feature outlet boundary conditions were ap-

plied with pressures defined at the iliac and renal outlets. A physiologically representative

transient inlet profile was assigned to the inlet using a high order Fourier approximation.
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A.1 3D Chimney stent

. A fully transient
simulation is then compared to steady results to determine the influence of the pulsing

flow, detemining if the transient nature results in strong oscillations or significantly
different flow physics, and finally an investigation into the relative importance of blood

rheology is undertaken.

Figure A.8.: Coarse mesh for the chimney stent investigation

Figure A.9.: Velocity vectors and pressure contours in a chimney stent and untreated aor-
tic aneurysm at highest flow rate
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A.1 3D Chimney stent

Figure A.10.: Velocity vectors and pressure contours in a chimney stent and untreated
aortic aneurysm at the average flow rate

Figure A.11.: Velocity vectors and pressure contours in a chimney stent and untreated
aortic aneurysm during flow reversal
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