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ABSTRACT 

The accurate evaluation of interlaminar stresses is of great significance in the 

analysis and design of laminated and piezoelectric laminated structures because 

complex behaviours of these stresses near free edges initiate edge delamination that 

raises concerns about the structural integrity and reliability. This thesis presented 3D 

hybrid analyses on the interlaminar stresses to investigate the electromechanical 

coupling and free edge effects of piezoelectric laminated plates with an emphasis on 

the realistic distributions of the 3D stress and electric fields near free edges.  

In this research, the state space equations for simply-supported and free-edge 

piezoelectric laminates under transverse loads and infinite long free-edge 

piezoelectric laminates under uniaxial extension were obtained in the framework of 

3D piezoelasticity by considering all the independent elastic and piezoelectric 

constants. The equations satisfy the traction-free and open-circuit boundary 

conditions at free edges and the continuity conditions across all interfaces. On the 

basis of the transfer matrix and recursive solution approaches, 3D exact solutions 

were sought by a novel non-uniform layer refinement technique to evaluate the 

accuracy of the finite element method (FEM), and realistic gradients of interlaminar 

stresses and electric fields were captured. The FEM results were in good agreement 

with those from the present solutions except for the regions near free edges. For 

simply-supported and free-edge laminates, stress variations with material properties, 

geometries and stacking sequences were obtained. The interlaminar stress τxz was 

dominant at corners and τyz also tended to contribute to delamination. In the infinite 

long free-edge laminates, σz, τyz, Ey and Ez exhibited significant gradients near free 

edges. Furthermore, the considerable influence of the electromechanical coupling 

effect on interlaminar stresses revealed that piezoelectric laminates were more 

susceptible to edge delamination and the application of closed-circuited surface 

conditions might prevent such edge delamination. The present analytical solution 

demonstrated an improvement in precision over other 2D analytical and numerical 

solutions and could serve as a benchmark for the determination of interlaminar 

stresses and electric fields near the free edges of the piezoelectric laminates.  
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CHAPTER 1 INTRODUCTION 

 

1.1 Background 

The use of composite laminates is increasing in various structures that require high 

strength-to-weight and stiffness-to-weight ratios. One of early applications of 

composite laminates is related mostly to the high performance products used in the 

aeronautics field (Nguyen et al., 2013). Aircraft and spacecraft are typical weight-

sensitive structures in which composite materials are cost-effective, and in the latest 

Boeing 787 the usage percentage of fibre-reinforced composite materials reaches   

50% by weight. Also to meet the performance and fuel efficiency requirements, the 

consumption of composites in the automobile industry is growing. To enhance the 

electrical energy harvest efficiency the blades of wind turbines are normally made of 

composite laminates and these laminated structures are now playing a major role in 

the wind energy generation industry (Christou, 2007). Moreover, the applications of 

laminated structures have been extended to the civil engineering industry to replace 

conventional materials (such as aluminium and steel). For instance, fibre reinforced 

polymer (FRP) composites are widely used in construction as structural components 

due to their strengthening and rehabilitation effects for concrete structures (López et 

al., 2013).  

In recent years, the demand for high-strength and low-density materials, active 

vibration control and health monitoring of composite laminated structures has 

generated an increasing number of applications such as design of a multifunctional 

structure where the multiple properties of materials are exploited in such a way that 

besides its major designated functionality, the same structural component can 

accomplish at least one more task (Kapuria et al., 2010). Among various 

multifunctional structures, under the action of a combination of mechanical and 

electrical fields, piezoelectric structures have been widely used in many applications 

such as structural vibration control, precision positioning, medical and aerospace etc. 

The phenomena of piezoelectricity is a peculiarity of certain class of crystalline 
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materials and the piezoelectric effect is a linear electromechanical interaction 

between the mechanical and the electrical state in crystalline materials with no 

inversion symmetry (Gautschi, 2002). In the direct piezoelectric effect, the internal 

generation of electrical charge results from an applied mechanical force 

proportionally. In the inverse piezoelectric effect the application of an electrical field 

induces mechanical stresses or strains. These two effects represent the coupling 

between the mechanical and electrical fields (Nye, 1985). Piezoelectric structures 

can be used in the detection and generation of sonar waves and in ultrasonic 

transducers for medical imaging. There is also a growing interest evolved with the 

introduction of piezoelectric ceramics and piezoelectric polymers composites for the 

structural health monitoring and structural repair (Duan et al., 2010). Composite 

structures using piezoceramic composites like PZT (lead zirconate titanate) sensors 

are being developed for damage detection of various structures including beams, 

plates and pipes. As an emerging application, the piezoelectric structures can convert 

motion from the human body into electrical power as a piezoelectric energy 

harvester (White et al., 2001). Most recently, researchers have engineered the 

piezoelectric effect into graphene which has potential to bring dynamical control to 

nanoscale electromechanical devices (Ong and Reed, 2012). Generally these 

piezoelectric structures are available in the form of stacks which can be bonded to or 

embedded in composite and sandwich laminates to introduce self-sensing and 

actuation capabilities. 

There is no doubt that laminated composites and piezoelectric laminated composites 

are becoming the preferred structural system in a variety of industrial applications as 

mentioned above. However, even for the analysis and design of simple laminated 

composites, one of the most critical failure modes is delamination between adjacent 

plies and the interlaminar stresses play a crucial role, in particular at the free edges 

of the composite laminates (Leguillon, 1999). The material discontinuity gives rise 

to interlaminar stresses at the free edge and those significant stress gradients can 

result in delamination and failure of laminates at a much lower load level than that 

predicted by the in-plane failure criteria due to weak transverse normal and shear 

strengths. To deal with the complex interactions between different material layers at 
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the interface, Lorriot et al. (2003) performed the edge delamination tests on 

composite laminates and demonstrated that strong interlaminar stress intensification 

prevailed near the free edge and contributed to the delamination initiation. Mandell 

et al. (2003) also indicated that the prediction of delamination in wind turbine blade 

laminated structures required a complex 3D interlaminar stress state which was 

rarely analyzed in detail during design.  

For those of piezoelectric laminated composite structures, the intrinsic material 

properties of piezoelectric laminates can induce the electromechanical coupling 

effect. It is obvious that the so-called free-edge effect and electromechanical effect 

may exist simultaneously at the interface of different materials in the vicinity of the 

free edges, which brings more complex phenomena in piezoelectric laminates than 

those in laminates. Lin et al. (1996) indicated that abrupt voltage variations occurred 

at the free edge, even in the undamaged case, because the interlaminar stress 

singularities existed at the free edge, and piezoelectric film sensors were sensitive to 

various singularities as caused by damage. Shang et al. (2005) also described that 

these piezoelectric thin films were widely used in micro-electromechanical systems 

and these devices were often made from multi-layered piezoelectric thin films of 

dissimilar materials, and numerous interfaces and edges in such devices had a 

special significance because they might affect the structural performance of these 

devices. As delamination located along the interface may initiate due to the stress 

concentration originated from the mismatch of material properties and the brittle 

nature of piezoelectric materials may raise concerns about the structural integrity 

and reliability. Therefore, it is essential to predict the free-edge interlaminar stresses 

through the thickness of the laminated structure accurately. 

The presence of material discontinuities in the piezoelectric laminates results in 3D 

stress and electric fields near the intersections of the interfaces and the free edges. 

Due to the fact that there is a stress concentration with a possible singularity in the 

vicinity of the free edge, ad hoc assumptions made on the variations of the field 

variables (displacements 𝑢𝑖 , electric potential ∅ , stress components 𝜎𝑖𝑗 , electric 

displacements 𝐷𝑖) will have significant influences on the accuracy. The analytical 
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solution of 3D elasticity and piezoelectricity to provide the accurate determination of 

electromechanical coupling and free-edge effects on these mechanical and electrical 

variables especially the interlaminar stresses is inevitable in the analysis and design 

of free-edge piezoelectric laminates. There have been several studies reported on the 

electromechanical coupling and free-edge effects: 3D finite element analyses of 

symmetric piezoelectric laminates under uniaxial extension by Mannini and 

Gaudenzi (2004) and Artel and Becker (2005), and the analytical layerwise solution 

by Mirzababaee and Tahani (2009). However, owing to the ad hoc assumption on 

through-thickness variations of the displacements and the electric potential these 

solutions cannot provide realistic distributions of interlaminar stresses across the 

thickness accurately.  

The state space approach is one of the methods that are particularly suitable for the 

three-dimensional analysis of laminated structures (Sheng and Ye, 2002). The state 

space method converts a boundary value problem to an equivalent initial problem in 

terms of state variables related by a set of first-order differential equation. For 

instance, a full three-dimensional analysis of a plate and shell generally leads to a set 

of partial differential equations in three independent spatial variables, where there 

are boundary/initial conditions compatible with them. The differential equations are 

considered for each of the laminae in local co-ordinates for the laminated plate (Ye, 

2003). A single global partial differential equation system is obtained by assembling 

all laminae with the continuity of displacements and interlaminar stresses at all 

interfaces. The application of this method has been developed for static and dynamic 

analyses of anisotropic plates by many researcher and extensive investigations are 

presented in the next chapter. However, the main problem is that most of the state 

space solutions are restricted to the simply-supported or partially clamped boundary 

conditions and there are no state solutions for predicting the electromechanical and 

free-edge effects simultaneously.  

This research will adopt the state space method and the finite element method to 

investigate the general electromechanical behaviour of the free-edge piezoelectric 

laminated plates and aim to clarify the electromechanical coupling and free-edge 
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effects on the stress and electric fields near the intersection of the interface and the 

free edge.  

 

1.2 Objectives  

The main objectives of the research in this thesis are: 

1. To study and review various 2D and 3D plate theories, and experimental and 

theoretical investigations on the free-edge effect for laminated composite plates 

and piezoelectric laminated plates. This research is mainly focussed on the 

realistic distributions of the interlaminar normal and shear stresses through the 

thickness.  

2. To develop 3D analytical state space models for simply-supported and free-edge 

piezoelectric laminated plates under transverse loads and infinite long 

piezoelectric laminates under uniaxial extension and evaluate the general 

electromechanical and free-edge effects on 3D interlaminar stresses and electric 

fields at interfaces.  

3. To evaluate the influences of stacking sequences, material properties, ratios of 

thickness to in-plane geometric parameters and electric surface conditions on the 

distributions of 3D interlaminar stresses and electric fields. 

4. To develop an accurate and efficient layer refinement technique to delineate the 

complex electromechanical behaviour of a piezoelectric laminated plate due to 

the free-edge effect.  

5. To use the 3D analytical state space solution to validate and compare with the 

solutions from the classical laminate plate theory and 3D finite element method 

by ABAQUS and to assess the accuracy of different plate theories and finite 

element formulations. 
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1.3 Thesis outline 

This thesis consists of eight chapters which are summarized as follows: 

Chapter 1 begins with the research background, presents the aims and objectives and 

outlines the layout of the thesis. 

Chapter 2 reviews the development of 2D and 3D plate theories using analytical and 

numerical methods and the experimental studies for composite laminated plates and 

piezoelectric laminated plates. The determination of interlaminar normal and shear 

stresses at interface of dissimilar material layers is the main concern and the 

advantages and limitations of each model are discussed. Additionally, various 

analytical and numerical methods for the solution of the free-edge problem are 

introduced. 

Chapter 3 presents the state space equation of a simply-supported piezoelectric 

laminated plate with free edges under transverse loads. Based on the theories of 3D 

linear piezoelasticity, all the boundary conditions and continuity conditions are 

satisfied and all the elastic and piezoelectric constants are taken into account in the 

derivation of the equation. To give a more extensive understanding of state space 

method, transfer matrix and recursive solution approaches, together with the 

derivations of state equations, are given in details for clarification.  

Chapter 4 provides the state equation for an infinite long piezoelectric laminated 

plate subjected to a uniform axial strain. The state equation guarantees the continuity 

conditions of interlaminar stresses at the interfaces and fulfills the traction-free 

boundary conditions at the free edges.  

Chapter 5 demonstrates numerical studies on the electromechanical behaviour and 

free-edge effect of simply-supported free edge piezoelectric laminated plates under 

transverse loads by implementing a non-uniform layer refinement technique in the 

state space approach. Different stacking sequences, thickness to length ratios and 

electric surface conditions are considered and their influences on the distributions of 

3D interlaminar stresses and electric fields near the free edge are investigated. In 
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addition, the results from the present analytical solution are utilized to evaluate the 

accuracy of the classical laminate plate theory and FEM results.  

Chapter 6 presents the influence of different geometric parameters and electrical 

material properties on the electromechanical behaviour of the piezoelectric 

laminated plates and beams. As expected, in comparison with the variation of 

mechanical quantities, the electrical ones are more affected by the electrical material 

parameters. The significant influence of these geometric and material parameters on 

the behaviour of the transverse shear stress is captured near the intersection of the 

interface and the free edge. 

Chapter 7 shows how the state space approach can be used to investigate the 

behaviour of a general cross-ply infinite long piezoelectric laminated plate under 

uniaxial extension. To assess the influence of piezoelectric coupling effect near free 

edges, both electromechanical coupled and uncoupled analyses are carried out. 

Chapter 8 summarizes the work carried out in this research and draws the main 

conclusions of this research, and gives recommendations for future work.  
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CHAPTER 2 LITERATURE REVIEW 

 

2.1 Introduction  

In the wake of application of composite laminates in many different fields, 

numerous theoretical and experimental investigations have been conducted to deal 

with the heterogeneous anisotropic phenomena and it is becoming more complicated 

when the electromechanical coupling effect should be taken into account for the 

piezoelectric laminates. In general the distinctive behaviour of the composite 

laminated plate can be represented as high transverse deformability at the interface, 

zigzag effects in the thickness direction and continuity of interlaminar stresses 

(Fagiano, 2010).  

From moderately thick to thin laminates, 2D laminate theories for hybrid plates can 

be established by making assumptions concerning the kinematics of the deformation 

or the stress state through the thickness of the laminate. In general, numerous 2D 

laminate plate theories which have been proposed to describe the kinematics of 

laminated composite plates can be categorised as: single layer theory and layerwise 

theory. In single layer theory the number of unknown variables is considered to be 

independent of the number of constitutive layers, and according to the description of 

layerwise theory each layer is treated as an independent plate and compatibility of 

displacements components is imposed as a constraint at each interface. These 

theories are the most widely used 2D displacement-based plate theories for both 

elastic and piezoelectric composite plates. Moreover, to overcome the limitations of 

these theories unified equations have been proposed for mixed single layer and 

layerwise theories. These unified theories have been formulated in the most general 

way for users to be capable of choosing the approach and the order of the expansion 

of displacements and transverse stresses (Carrera and Ciuffreda, 2005). In 

conjunction with finite element methods, some refined theories have been developed 

to consider the transverse normal deformability in the presence of potential and 

thermal fields, satisfy the continuity of transverse stresses at interfaces and account 
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for the layerwise variation of in-plane displacement as well as the two-way 

electromechanical coupling (Kapuria et al., 2010). However due to some ad hoc 

assumptions of 2D laminate theories, several limitations arise. First the accuracy of 

the stress fields, in particular interlaminar stresses, deteriorates as the laminate 

becomes thicker. Second the state of stress is often inaccurate at the interfaces 

wherein material discontinuities occur or near free edges. Hence, a comprehensive 

treatment of the thick laminate as well as the local region wherein geometric and 

material discontinuities exist is required. The aforementioned 2D laminate plate 

theories are based on the displacement formulations, in which only the 

displacements are assumed as unknown variables of the structural system. 

In contrast, 3D approaches are definitely the ideal tool for the analysis of a possible 

high layerwise inhomogeneity in mechanical and electric properties in the thick 

hybrid laminates. In addition, due to the presence of material and geometric 

discontinuities, a 3D stress field arises at the interfaces and in the vicinity of the free 

edges. Moreover, the coupling effects of electric and pyroelectric fields in 

piezoelectric laminates have to be considered. An in-depth understanding and 

accurate analysis of the 3D free-edge stress state of both elastic and piezoelectric 

composite is thus of necessity in the composite and smart structure engineering. 

Hence, with no simplified hypothesis on the variation of the field variables such as 

the displacements, stresses, electric potential and electric displacements through the 

thickness coordinate, and accounting for the constitutive, kinematics and equilibrium 

equations for piezoelectric laminated plates, the state space approach, also called 

hybrid approach (Wu et al., 2010), can provide 3D analytical solutions by satisfying 

the equilibrium as well as continuity conditions at the interfaces and the boundary 

conditions. In this thesis the state space approach will be used, in which the 

displacements and transverse stresses are introduced as state variables of the 

structural system, and after employing the boundary conditions the displacements 

and stresses at an arbitrary interface of the laminate can be obtained analytically.  

In this chapter, fundamental concepts of 2D and 3D laminated plate theories are 

given and reviews of relevant articles on laminated plates and piezoelectric 
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laminated plates are followed. Furthermore, a detailed description of the 

experimental and theoretical studies on the free-edge effect in general composite 

laminated structures are presented. 

 

2.2 General plate/shell theories 

2.2.1 Single layer theories 

Single layer plate theories are derived from the 3D elasticity theory by making 

decent assumptions wherein displacement components are at least C
1
-continuous 

through the thickness of the laminate. Specifically, the C
1
-continuous means the 

function and its derivative are continuous through the thickness of the laminate. By 

definition single layer theories are those in which a heterogeneous laminated plate is 

treated as a statically equivalent single layer with a complex constitutive behaviour 

and a reduction of a 3D problem to a 2D problem (Reddy, 2004). When the global 

behaviours of the laminated component such as gross deflection, buckling loads, 

fundamental vibration frequencies and associated mode shapes are concerned, a 

global analysis is often carried out by using the classical plate theory (CPT) and 

first-order shear deformation theory (FSDT) which are two commonly adopted 

single layer theories. CPT, FSDT and higher-order shear deformation theory (HSDT) 

can be distinguished by the degree of polynomial functions in the expansion of the 

displacement components across the thickness coordinate (Figure 2.1). 

The assessment of localized regions of the three-dimensional composite laminated 

structure where the potential failure initiated is desired and an accurate 

determination of the three-dimensional state of stresses and electric quantities at the 

ply level is concerned. However, in single layer theories, the displacements are 

assumed as continuous functions of the thickness coordinate which results in 

continuous transverse strains. Hence, all stresses including interlaminar stresses in 

single layer laminate theories are discontinuous between adjacent layers at interfaces 

of dissimilar materials, contrary to the continuity of interlaminar stresses. This 
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deficiency is more evident in thick laminates and leads to an erroneous descriptions 

of results for all stresses and electric quantities. 

 

 

Figure 2.1: Deformation of a transverse normal according to the classical, first–order, 

and higher-order plate theories (Reddy, 2004) 

 

2.2.1.1 Classical laminated plate theory (CLPT) 

The classical laminated plate theory is the simplest laminated plate theory, which 

was initiated by Kirchhoff in the nineteenth century and developed by Timoshenko 

et al. (1951) later on. On the basis of the displacement fields the principal 

assumption in CLPT is that straight lines normal to the mid-plane before 

deformation remain straight and normal to the plane after deformation. As a result 
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the effects of both transverse normal and transverse shear strains are neglected, and 

deformation is due entirely to bending and in-plane stretching. For the orthotropic 

rectangular laminates with all four edges simply-supported, the transverse 

displacement and load can be represented in terms of double Fourier expansions that 

are restricted to those which satisfy the boundary conditions of simply-supported 

boundary conditions in the Navier method. The substitution of the displacement and 

load expansions into the governing equation should result in invertible set algebraic 

equations among the parameters of the displacement expansion. The transverse 

displacement and load also can be expanded in single Fourier series in the Levy 

method and the ordinary fourth-order differential equation for plates with two 

opposite edges simply-supported and the remaining two edges having any possible 

combination of boundary conditions can be solved by the Ritz, finite difference, and 

finite element methods (Reddy, 2004). The basic idea of the Levy method is to 

present a solution that satisfies the boundary conditions along the simply-supported 

edges exactly, and thereby reduce the two dimensional problem to a one-

dimensional problem with respect to the corresponding coordinate. It is worth to 

mention that this method is widely used and developed for the analysis of laminated 

plates and piezoelectric laminated plates and the boundary layer effects were also 

investigated near the various boundary conditions: free, simply-supported, or 

clamped-supported by Izadi and Tahani (2010) and Kapuria and Kumari (2012). 

Due to its simplification, the error induced by ignoring the effect of transverse shear 

stresses becomes significant when the thickness of the laminated plate increases, and 

the result deteriorates in the vicinity of free edges and close to the corners of 

laminated plates. The transverse shear strain may occur even in laminated thin plates 

and this method can predict deflections and overestimates natural frequencies as 

well as buckling loads approximately (Lü et al., 2008).  

In spite of its deficiency, CLPT can provide as a reference for other composite plate 

analysis methods and quick predictions for the behaviour of thin plate structures and 

estimate the global response such as gross deflections, buckling critical loads and 

natural frequencies. This method also works well for structures which are made out-
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of a symmetric and balanced laminate, experiencing pure bending or pure tension. 

The assumption leads to the simplification of constitutive equations and the 

reduction in the total number of variables, in consequence, numerous computational 

time and efforts are saved. In addition, the governing equations can be solved 

analytically, and CLPT is still widely used as a basic analysis method of composite 

plates.  

Reissner (1961) presented fundamental work to analyze the stiffness behaviour of 

both bending and stretching in anisotropic elastic plates by using CLPT, and then 

Whitney and Leissa (1969) obtained a solution to the governing equations of a 

simply-supported laminated anisotropic plate based on the Kirchhoff assumptions. 

The earlier studies considering the stiffness of the piezoelectric layers but neglecting 

the direct piezoelectric effect and shear deformation were carried out by several 

researchers. Lee (1990) formulated a theory which was capable of incorporating the 

piezoelectric property of materials into the classical laminate theory. Recently an 

analytical approach for modelling a circular plate with distributed piezoelectric 

actuators under static as well as dynamic mechanical or electrical loadings was 

presented by Sekouri et al. (2004) based on the Kirchhoff plate model. By utilizing 

the same model as well as shear correction function with a quadratic variation of the 

electric potential across the piezoelectric layer thickness, Fernandes and Pouget 

(2006) investigated the static and dynamic responses of an elastic simply-supported 

composite plate bonded with piezoelectric actuators under cylindrical bending. 

Although the transverse normal and shear stresses that play a significant role in the 

behaviour of composite plates as strain (or stress)-induced failure may occur are 

neglected in CLPT, the corresponding stresses can be post-computed through 3D 

elasticity equilibrium equations. However, these equilibrium derived transverse 

stresses are not accurate when the plates are relatively thick. Also due to the 

discontinuity of material properties at the interfaces, a highly concentrated inter-

laminar stress field can occur in the vicinity of the free edges which will lead to 

interlaminar failures such as delamination or matrix cracking. In order to achieve an 



32 

 

accurate description of the transverse stresses of composite plates, several other 

theories have been developed and are presented afterwards. 

 

2.2.1.2 First-order shear deformation theories (FSDTs) 

By accounting for transverse shear stresses and still neglecting the transverse normal 

stress, FSDTs are developed to extend the kinematics of the CLPT to analyze the 

effect of shear deformation on deflections, stresses, frequencies, and buckling loads. 

The interlaminar shear stresses derived from the equilibrium equations are quadratic 

variation through the lamina thickness, whereas those computed from constitutive 

equations are constant through the lamina thickness (Reddy, 2004). Pioneering work 

has been done by Reissner (1945) and Mindlin (1964), which is also commonly 

known as the Mindlin-Reissner theory. This theory was an extension of Kirchhoff-

Love plate theory incorporating first-order shear effects and implied a linear in-plane 

displacements variation and a constant transverse displacement through the 

thickness. The shear correction factors that depend on the lamination, geometric 

parameters, loading and boundary conditions were introduced to adjust the 

transverse shear stiffness of laminates in their models. Later on Srinivas and Rao 

(1970) developed a linear, small deformation theory of elasticity solution for the free 

vibration of simply-supported plates. With no restrictions on the thickness variation 

of stresses or displacements, the formulation yielded a triply infinite spectrum of 

frequencies, instead of only one doubly infinite spectrum by the thin plate theory and 

three doubly infinite spectra by Mindlin's thick plate theory. By using FSDT and a 

single-field displacement finite element model the evaluation of the transverse 

thermal stresses in laminated plates was conducted by Rolfes et al. (1998).  

Furthermore, FSDTs have been applied to piezoelectric laminated plates with direct 

piezoelectric effect and pyroelectric effect for thermal loading. The temperature 

distribution was assumed linear through the thickness when the laminate was 

sufficiently thin, and in accordance with the Reissner-Mindlin theory Noda (2000) 

established an analytical model of a cross-ply simply-supported laminate accounting 
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for the effects of transverse shear and coupling among mechanical, thermal, and 

electrostatic fields. Without a priori assumption of the distribution of the electric 

potential and temperature across the thickness of the piezothermoelectric rectangular 

simply-supported plate, FSDT was presented by Kapuria and Dumir (2000) to find 

the influence of the coupled effects for relatively thick piezoelectric layers. It was 

concluded that the pyroelectric term had more significant effect than the direct 

piezoelectric term in case of thermal load, whereas the direct piezoelectric effect was 

predominant in the potential load case. However, the coupled theories can predict 

the sensory potential very well for thin to moderately thick plates but none of those 

2D theories can give accurate results of all quantities for thick plates. 

Most models based on FSDTs are restricted to simply-supported plates and the 

results deteriorate as the composite plate becomes thicker. In addition, the accuracy 

of results depends significantly on the shear correction factor. In order to calculate 

transverse stresses accurately and be capable of predicting the behaviour of thick 

plates with various boundary conditions and loading conditions, the higher-order 

shear deformation theories need to be introduced.  

 

2.2.1.3 Higher-order shear deformation theories (HSDTs) 

Similar to FSDTs, HSDTs are developed on the basis of the same assumptions as the 

classical plate theory, except relaxing the straightness and normality of a transverse 

normal after deformation by using higher-order polynomial functions in the 

expansion of the displacement components through the thickness of the laminate 

such as quadratic, cubic, etc. Higher-order theories can give a better description of 

kinematics. In principle, it is possible to expand the displacement fields in terms of 

the thickness coordinate up to any desired degree. Nevertheless, due to the increase 

in algebraic complexity and computational effort induced by higher-orders of 

polynomial functions, theories higher than third order have not been attempted 

(Reddy, 2004). The third-order shear deformation theories (TSDTs) discard shear 

correction coefficients used in FSDTs because the cubic polynomial functions 
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introduced in the expansion of the displacements result in quadratic variations of the 

transverse shear strains and transverse shear stresses through the thickness.  

Due to the advantages of HSDTs a number of researches on composite plates have 

been carried out, among which the TSDTs attracted much more attention. Despite 

neglecting the transverse normal strain, Ambartsumian (1958) initiated the 

formulation of the transverse shear stresses that varied in the direction of the 

thickness of the anisotropic shell in accordance with the law of the quadratic 

parabola. Whitney and Sun (1973) developed a refined laminated plate theory by 

considering transverse normal stresses and assuming a first-order term to the 

transverse displacement and second-order terms to the in-plane displacements 

respectively, and concluded that higher order theory yielded improved results for 

extensional motion. However, the correction factors were used in their theory and 

the procedure for determining the value of correction factors which depended on the 

stacking sequence of the plies and the number of plies as well as the ply properties 

became tedious. By assuming a cubic variation of in-plane displacements and a 

quadratic variation of the transverse displacement, Kant and Pandya (1988) 

developed the TSDTs with finite element method, and the effect of the transverse 

normal stress in the thickness direction was considered and no shear correction 

coefficient was required in their study. With respect to the standard Reissner-

Mindlin model, the response in these HSDTs was improved by using a higher-order 

expansion along the thickness co-ordinate for the unknown displacements, but did 

not include the zigzag effects and guarantee the interlaminar continuity (Carrera, 

1996). According to the analysis of thin laminated composite plates carried out by 

Wu et al. (2005), transverse normal stresses were obtained by integrating three-

dimensional local equilibrium equations along the thickness of the laminate and 

transverse shear stresses were calculated by constitutive equation method directly. It 

should be noted that for the application of such a plate theory, the accuracy of 

transverse normal stresses can be improved by refining mesh.  

Several in-depth investigations on laminated composite plates using TSDTs have 

been conducted by Reddy (2004). Solutions for the free flexural vibration of Levy-
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type rectangular thick plates based on the Reddy's TSDT were presented by 

Shahrokh et al. (2011). Lo et al. (2012) proposed an enhanced Reddy's model for 

composite plates subjected to temperature loads. In this model the transverse normal 

strain was introduced in the transverse displacement field of Reddy's theory and a 

triangular plate element was used wherein the C
1
 continuity conditions were 

satisfied.  

Based on linear piezoelectricity, Mitchell and Reddy (1995) used a single-layer 

theory for the mechanical displacement field and modelled the potential function as 

a layerwise discretization in the thickness direction to include the coupling between 

mechanical deformations and the charge equations of electrostatics for the simply-

supported piezoelectric laminae. However, in their study the transverse normal stress 

was eliminated from the constitutive relationships and the transverse shear strains 

were zero at the upper and lower surfaces of the plate, and the traction-free 

conditions were not satisfied if the piezoelectric effects from components of the in-

plane electric field existed. To satisfy exactly the shear traction-free conditions at the 

top and the bottom of hybrid piezoelectric laminated plates with full simply-

supported boundary conditions, Kapuria and Achary (2005) considered the 

transverse as well as in-plane electric fields and assumed the electric potential as 

sub-layer wise piecewise linear. The number of sub-layers for discretization of the 

electric potential and thermal fields was determined by the required accuracy. 

However, in their coupled consistent TSDT, the transverse displacement was 

approximated to be uniform and the transverse normal stress was neglected.  

 

2.2.2 Layerwise theories 

To avoid the major deficiency of single layer plate theories, the layerwise theories 

were developed by assuming separate displacement field expansions within each 

material layer, thus providing a kinematically correct representation of the strain 

field in discrete layer laminates, and allowing accurate ply-level stresses to be 

determined. In contrast to single layer plate theories, the displacement components 
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are assumed C
0
 continuity through the laminate thickness and the displacement field 

exhibits continuous through the thickness but the derivatives of the displacements 

with respect to the thickness coordinate may be discontinuous at various points 

through the thickness, leading to possible continuity of interlaminar stresses. Also, in 

these theories the in-plane displacements are distributed in a layerwise manner 

through the thickness of thick laminates. Noor and Burton (1989) established a 

discrete-layer model to predict the displacements and stresses for multilayered 

composite plates, however, the number of variables was determined by the number 

of layers at the expense of computational time and their model became impractical 

for engineering application.  

Furthermore, the zigzag behaviour is described as a rapid change in the slope of 

displacement fields and/or abrupt change in transverse shear modulus in the 

thickness direction in correspondence with each layer interface (Figure 2.2). This so-

called zigzag behaviour can be examined from the exact 3D elasticity solutions 

obtained by Pagano (1969). From the schematic one-layer and three-layer composite 

laminates illustrated in Figure 2.2 the general distribution of in-plane stresses, 

displacements and transverse stresses through the thickness has been given by 

Carrera (1997). It is depicted that the in-plane stresses are discontinuous at the 

interfaces, whereas the displacements must be continuous for compatibility reasons 

and the transverse stresses retain continuous in the thickness z direction due to the 

action-reaction. The displacements should have discontinuous first derivatives 

corresponding to each interface and thus be expressed as C
0
-continuous functions in 

the thickness direction, thereby allowing for the possibility of continuous transverse 

stresses. Carrera (1997) has discussed theories in view of the C
0
 requirements and 

pointed out these requirements have been seen as the crucial point in modelling 

multilayered structures. The C
0
 requirements should satisfy the following behaviour: 

the zigzag effect is included and the interlaminar continuity for the transverse shear 

stresses is fulfilled a priori. 



37 

 

 

Figure 2.2: Possible scenarios of stress and displacements distributions along the 

thickness between one-layer and three-layers composite laminate (Carrera, 1997) 

 

When an accurate prediction of the stress state of localized regions between layers 

like a significant variation in displacement gradients is required, a possible manner 

of including the zigzag behaviour can be assessed in the framework of single layer 

and layerwise models. In order to take the number of unknowns independent of the 

number of layers, Di Sciuva (1986) proposed a linear zigzag model for the in-plane 

displacements by guaranteeing the continuity of transverse shear stresses at 

interfaces, whereas the traction free conditions on the upper and lower surfaces were 

not satisfied. This model was then extended to the cubic zig-zag variations of in-

plane displacements through the thickness by Savithri and Varadan (1990), to allow 

the fulfilment of the top and bottom zero-conditions for the transverse shear stresses. 

Reissner (1986) derived a mixed variational equation for three components of 

displacements and three components of stress in infinitesimal elasticity from a 

statement of the general variational equation of elasticity. The introduction of the 
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variational equation for displacements and some stresses allowed for the continuity 

of the transverse stresses and the discontinuity of the in-plane stresses in the 

direction of the plate thickness, as a consequence of material property discontinuities. 

A new HSDT was developed based on Reissner's mixed variational principle. Zigzag 

shape function and Legendre polynomials were combined to approximate in-plane 

displacement fields by Toledano and Murakami (1987). However, the Toledano and 

Murakami's model leads to poor descriptions of the transverse normal stress effects 

and related consequences (Carrera, 1997) and the transverse stresses cannot be 

computed directly from constitutive equations. By superposing a linear zig-zag 

displacement field, with a different slope in each layer, on an overall cubic varying 

field, another efficient HSDT was also developed in a model presented by Cho and 

Parmerter (1993). Although the transverse shear stress continuity conditions at the 

layer interfaces as well as shear free surface conditions were satisfied and the 

number of the unknowns was independent of the number of layers, the transverse 

normal strain was neglected in the formulation. By referring to a Reissner's mixed 

variational theorem, Carrera (1996) extended the standard Reissner-Mindlin plate 

theory by including the C
0
 continuity and adding two zigzag terms for the in-plane 

displacements. Later on by adopting linear up to fourth order displacement fields in 

a layerwise analysis, Carrera (2000) carried out a numerical investigation on bending 

of simply-supported orthotropic plates. It should be noted that he investigated the 

three manners to compute transverse stresses: a priori evaluation on transverse 

stresses by employing mixed models formulated on the basis of Reissner's mixed 

variational theorem, a posteriori evaluation on transverse stresses from Hooke's law 

and that by using integration of the three-dimensional indefinite equilibrium 

equations. According to Carrera (2000), the discrepancy among the three manners of 

evaluating transverse shear stresses was barely dependent on plate thickness ratios 

and transverse stresses evaluated by integration of the 3D indefinite equilibrium 

equations have led, in general, to a better description, whereas in some cases such a 

posteriori procedure could fail to guarantee stress boundary conditions at the top and 

bottom plate surfaces. 



39 

 

A higher order zigzag theory has been developed by Cho and Oh (2004) to give the 

accurate prediction of fully coupled mechanical, thermal, and electric responses of 

smart composite plates. In their assumptions, both in-plane displacements and 

temperature fields through the thickness were formulated by superimposing linear 

zigzag field to the smooth globally cubic varying field, and the transverse 

displacement was considered as smooth parabolic variation and the electric potential 

was distributed linearly through the thickness. The continuity conditions of 

transverse shear stresses at the layer interfaces and the shear traction-free conditions 

at the top as well as bottom surfaces were satisfied for zero in-plane electric field 

components (Kapuria et al., 2010). It was found that the effect of in-plane electric 

field components which might be induced by the piezoelectric effect or applied by 

actuation should not be neglected for the electromechanical coupling analysis of 

piezoelectric laminated plates, particularly for that of thick plates. By including the 

in-plane electric field components an efficient zigzag theory of elastic laminated 

plates (Cho and Parmerter, 1993) has been extended to the analysis of the fully 

coupled electromechanical response of hybrid piezoelectric plates by Kapuria (2004). 

In Kapuria's work, a combination of the third-order variation and a layerwise linear 

zigzag approximation across the thickness was used for the in-plane displacements 

and a piecewise linear function was assumed for the transverse displacement and 

electric potential. Although this theory yielded more accurate results than FSDT, the 

neglect of the transverse normal stress in the constitutive equation still leaded to 

greater errors in the deflection w in the potential load case than those in the pressure 

load case. 

The single layer and layerwise theories are widely used in the analysis of composite 

plates and both have their own advantages and disadvantages with respect to 

accuracy, efficiency and ease of implementation. In order to broaden the range of 

numerical applications of single layer and layerwise theories, the finite element 

implementations of these theories have been conducted and many relevant articles 

have been reviewed Reddy (2004). Models based on single layer theories are often 

capable of providing a sufficiently accurate prediction of the global response of thin 

to moderately thick elastic laminated plates as well as piezoelectric laminated plates. 
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However, these models have difficulties in describing the zigzag effects of the 

displacements and satisfying the interlaminar continuity of transverse stresses.  

In contrast to single layer theories, layerwise theories can represent the zigzag 

behaviour and fulfill the interlaminar continuity of transverse stresses. Moreover, 

models based on layerwise theories can lead to a satisfactory assessment of the local 

response of thin to moderately thick laminated plates, in particular the state of stress 

in the localized regions where damage initiation is likely. Although layerwise 

theories have been developed to account for the transverse shear stresses and some 

of them can calculate transverse shear stresses directly from the constitutive 

equations, these theories often neglected the transverse normal stress. In some 

refined higher-order layerwise theories, the improved transverse normal stress can 

be calculated by integrating the 3D equilibrium equations through the thickness 

rather than using the constitutive equations directly. As a consequence, 

unsatisfactory results in the evaluation of the state of stress at the layer level near 

geometric and material discontinuities will emerge and specifically the transverse 

normal stress result deteriorates as the plate thickness increases. For high values of 

the thickness, even though a symmetric layup is considered, the transverse normal 

stress enforces non-symmetric distributions of stress and displacements along the 

thickness direction. This asymmetry cannot be described by most of aforementioned 

models which neglect the transverse normal stress effect (Carrera, 1996). As a 

consequence, these models may locate the maximum value of transverse shear 

stresses along the thickness coordinate differently compared with 3D solutions. 

Furthermore, although all the theories discussed above can deliver some satisfactory 

results by extending the polynomial functions of the displacement components and 

electric potential or considering the transverse normal stress effect, ad hoc 

deficiencies in these theories can lead to more errors for thick plates when the 

intrinsic material coupling between the transverse normal and in-plane components 

of the stress field and the electromechanical coupling exist. Therefore, to obtain the 

accurate global and local response of hybrid laminated plates, an exact analytical 

solution based on the three-dimensional elasticity and piezoelectricity is essential 

and necessary. 
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2.2.3 Three-dimensional solutions for plates  

In the three-dimensional solutions the constitutive equations of linear three-

dimensional elasticity and piezoelectricity, the kinematic equations (strain-

displacement relations and the electric field-potential relations) and the stress 

equilibrium equations and Gauss’s law at all field points are taken into account and 

continuity at the interfaces and the boundary conditions are also satisfied. The three-

dimensional solutions for hybrid plates and shells have attracted researchers' 

attention for a long time (Kapuria et al., 2010). On one hand these solutions provide 

in-depth investigations into global and local responses of plates and shells and give 

accurate predictions on the mechanical or electro-mechanical behaviour, on the other 

hand they can be treated as benchmarks for evaluating the accuracy of other various 

two-dimensional theories of plates and shells, resulting in development of other 

efficient and advanced plate/shell theories.  

In general, a system of partial differential equations in three independent spatial 

variables, along with a set of boundary/initial conditions compatible with them, can 

be obtained from a full three-dimensional elastic analysis of plates and shells. For a 

laminated structure, the system of differential equations is established for each of the 

laminae in their local co-ordinates (Ye, 2003). By employing the continuity of 

displacements and transverse stresses at interfaces, the differential equations in each 

local system are assembled to a single global partial differential equation system. 

With proper approaches, the three-dimensional partial differential equation system 

can be solved. In the current review of the three-dimensional analysis of laminated 

plates and piezoelectric laminated plates, three approaches are mainly mentioned for 

the three-dimensional solutions, namely, the Pagano's approach, the asymptotic 

approach and state space approach.  

 

2.2.3.1 Pagano's approach  

In this approach, researchers put more effort in the variable separation methods to 

transfer the three-dimensional partial differential equations to a set of ordinary 
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differential equations with respect to the thickness coordinate. The ordinary 

differential equations (ODEs) system was then solved analytically. 

Pagano (1969) initiated a study on the plane strain problem of the isotropic and 

orthotropic laminates under the cylindrical bending. By introducing an Airy stress 

function satisfying the stress equilibrium equations in the formulation, the 

compatibility equation was expressed as a fourth-order ordinary differential equation 

in terms of the thickness coordinate only for each individual layer. The 3D solution 

of laminated plates under cylindrical bending was obtained with the satisfaction of 

the top and bottom surfaces conditions and continuity of traction and displacement at 

the interfaces between layers. This approach was extended to the 3D structural 

behaviours of rectangular bidirectional composites and sandwich plates by Pagano 

(1970). Moreover, an in-depth investigation has been carried out by Wu and 

Wardenier (1998) to obtain a three-dimensional solution for a single-layered 

orthotropic plate with simply supported edges. A sixth-order differential equation 

governing the transverse displacement wmn was obtained: 

𝑑6𝑤𝑚𝑛

𝑑𝑧6
+ 𝐴0

𝑑4𝑤𝑚𝑛

𝑑𝑧4
+ 𝐵0

𝑑2𝑤𝑚𝑛

𝑑𝑧2
+ 𝐶0𝑤𝑚𝑛 = 0 (2-1) 

The three constants, A0, B0, C0 can be determined by the mode shapes considered 

and the properties of material. There are 14 possible solutions for Equation (2-1) and 

the nature of the solution is controlled by the sign of the quantity H: 

𝐻 = 𝑝2/4 + 𝑞3/27 (2-2) 

where 

𝑝 = 𝐵0 − 𝐴0
2/3 

𝑞 = 𝐶0 +
𝐴0

3
(
2𝐴0

2

9
− 𝐵0) 

(2-3) 
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It should be noted that the sign of the quantity H was considered negative only by 

Pagano (1970), however, Wu and Wandenier (1998) concluded that H can be any 

real number (positive, negative or zero) determined by the combination of the 

material, geometry and loading properties in a practical problem and they also 

presented the explicit expressions of the solutions for all the three cases (H>0, H=0 

and H<0). 

To account for the transverse shear deformations and rotatory inertia, Srinivas and 

Rao (1970) adopted the displacement method of elasticity to analyze simply-

supported thick laminated orthotropic plates. It was observed that the modular ratio 

between plies has a significant effect on the errors in the thin plate theory for 

laminates and mostly errors increase with increasing moduli of outer plies. Moreover, 

the number of terms needed to maintain a given level of accuracy increased as plate 

thickness increased. It is worth to mention that since each ply was treated as an 

individual homogeneous plate, and the number of the simultaneous equations 

increased with the number of plies P. Usually 6P simultaneous equations should be 

established for each pair of m and n, which were the vibration wave numbers in the x 

and y direction respectively. 

Considering the electromechanical coupling effect, this approach was also 

implemented for the piezoelectric plates. Based on Pagano's approach, Ray et al. 

(1992) carried out an exact analysis of the coupled electromechanical behaviour of 

an infinitely long piezoelectric plate under cylindrical bending (i.e. plane strain 

state). For the material properties given in their paper, it was found that the quantity 

H > 0. Due to their conclusions, the deformations, stresses and electric potential 

varied non-linearly the across thickness of thick plates and the non-linearity 

increased with applied electric potential. Later, Ray et al. (1993) applied a similar 

formulation to a specific case of an intelligent composite, wherein piezoelectric 

coefficient e33 was set equal to zero and the formulation did not require continuity of 

the electrostatic potential and normal electric displacement at a layer interface. To 

remedy these deficiencies, a displacements and electric potential based formulation 

was established by Heyliger (1994) for bonded laminates of dissimilar piezoelectric 
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materials. In his study, at each interface between layers, continuity conditions of six 

elastic variables: 𝑢, 𝑣, w, 𝜎𝑧 , 𝜏𝑥𝑧 , 𝜏𝑦𝑧 , and two electrostatic variables: 𝐷𝑧 , ∅ were 

satisfied.  

Recently, Wu and Tsai (2012) developed a modified Pagano method for the static 

analyses of simply-supported functionally graded (FG) structures. In their 

modifications, a mixed formulation was adopted to replace the displacement-based 

one. Based on the successive approximation method proposed by Soldatos and 

Hadjigeorgiou (1990), the FG plate or shell was artificially divided into a certain 

number of individual layers with an equal and small thickness, compared with the 

in-plane dimensions of the plate or the mid-surface radius of the shell. By the 

refinement manipulation they used, the variable material coefficients of each layer 

were reasonably approximated to the constant material coefficients in an average 

thickness sense, reducing the system of thickness-varying differential equations for 

each individual layer to a system of thickness-invariant differential equations. The 

general solutions of the system equations were obtained layer-by-layer with a 

transfer matrix method.  

 

2.2.3.2 Asymptotic approach 

Based on the perturbation method, the three-dimensional displacements and stresses 

can be expressed asymptotically in terms of an appropriate aspect ratio (the 

thickness divided by a typical in-plane length) which is called dimensionless 

parameter. The three-dimensional elasticity equations are thereby reduced to a 

system of partial differential equations with two in-plane independent variables only 

(Rogers et al., 1995).  

In conjunction with other methods, the improved asymptotic approach has been 

extensively applied for the 3D static and dynamic analyses of piezoelectric 

laminated as well as FG piezoelectric and magneto-electro-elastic plate/shells. By 

employing the governing equations in the state space formulation and a combination 

of transfer matrix method and asymptotic expansion technique, Cheng and Batra 
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(2000) obtained the three-dimensional solutions for piezoelectric laminates with 

simply-supported and closed-circuit boundary conditions. Based on the method of 

perturbation, Wu and Syu (2007) and Wu and Tsai (2009) extended their analyses to 

the static and dynamic responses of multilayered, hybrid as well as FG piezoelectric 

shells. It should be noted that the through-thickness distributions of field variables in 

FG piezoelectric shells revealed different patterns from those in homogeneous 

piezoelectric shells, and the natural frequencies of shells with open-circuit surface 

conditions were slightly higher than those of shells with closed-circuit surface 

conditions.  

 

2.2.3.3 State space approach  

The term 'state space' derives from the linear control system where the principal 

concern is the relationship between inputs (or source) and outputs (or responses) (Ye, 

2003). For three-dimensional analyses of laminated plates and shells, the 

displacements and transverse stresses at the bottom surface of a laminated plate are 

termed as the initial state of the system. After introducing boundary conditions, the 

displacements and stresses at the top surface of the plate may be obtained, and the 

displacements and stresses at an arbitrary interface of the laminate can be traced as 

the past history of the system. Compared with other aforementioned displacement-

based plate theories like CLPT, FSDTs, HSDTs and layerwise theories, in the state 

space approach the governing equations are formulated on the basis of 

displacements and transverse stresses. For a homogeneous anisotropic piezoelectric 

plate or shell, the three-dimensional equations can be represented by a system of 

partial differential equations (Ye, 2003) as follows: 

𝜕

𝜕𝑧
{𝑅} =  𝐴  𝑅 + {𝐵} (2-4) 

where {𝑅} is an unknown state vector comprises eight variables: 𝑢, 𝑣, 𝑤, 𝜎𝑧 , 𝜏𝑥𝑧 , 𝜏𝑦𝑧 ,  

𝐷𝑧 , ∅; 𝑧 is the through thickness coordinate;  𝐴  is a square matrix whose elements 

are functions of material and geometric constants of the laminate and also partial 
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differential operators with respect to the other two in-plane coordinates; and {𝐵} is a 

vector associated with, for example, initial stresses, strains, temperatures, etc.  

Vlasov (1957) initiated his inspiring work on applying the state variable equation to 

the solution of the three-dimensional elasticity by using the method of initial 

functions. Similarly, Bufler (1971) used the transfer matrix method to obtain a 

suitable and systematic derivation of the governing equations and reduced the partial 

differential equations to ordinary ones by means of integral transforms, where 

isotropic plates were considered. Then Iyengar and Pandya (1983) expanded an 

equation containing differential operators in the form of a Maclaurin series of the 

coordinate 𝑧, thus all the physical quantities appeared to be polynomials of 𝑧 in the 

solving procedure, which meant that the original state equation cannot be satisfied 

exactly. 

Because all the physical quantities in the state equation are the compatible quantities 

of the interfaces, it is convenient to develop the state equation of the whole 

laminated plate. Abandoning any assumptions of stress and displacement models, 

Fan and Ye (1990a,b) started applying the state space method to the exact solutions 

for the statics and dynamics of orthotropic laminated thick plates with simply-

supported edges. In their study, the fundamental equations of three-dimensional 

elasticity can be exactly satisfied and all the elastic constants can also be taken into 

account, and the number of unknowns included in the final equations was 

independent of the number of plies. Furthermore, the state equation governing the 

anisotropic response of simply-supported thick orthotropic rectangular plates 

subjected to arbitrary loading was deduced by Wu and Wardenier (1998) and a six-

order differential equation governing transverse displacement 𝑤, compared with the 

fourth-order one in the classical plate theory, was given for the first time. It was 

worth to mention that various possible solutions determined by the value of quantity 

𝐻 (negative, zero, positive) were given in this paper and thus transversely isotropic 

and isotropic cases can be solved analytically.   

However, the earlier studies mentioned above are confined to the simply supported 

case. By imposing the impulse functions and the Dirac functions, Fan and Ding 
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(1993) presented an exact analytical solution for the statics of thin, moderately thick, 

and thick laminated cylindrical shells with two clamped edges. The successive 

approximations method (Soldatos and Hadjigeorgiou, 1990) was adopted to obtain 

satisfactory precision and controlled error. Comparison was also made between their 

study and FEM, and it was concluded that their solution satisfied the continuity 

conditions of stresses and displacements at the interfaces, which the FEM failed. Fan 

(1998) also solved the bending problem of laminated plates with free edges. In his 

solution of a plate with free edges, an assumed displacement field was imposed to 

one of a simply-supported plate. The assumed displacements were so chosen that all 

displacement components did not vanish at the free edges, while the traction free 

conditions were satisfied (Dong and Sheng, 2005). Similarly, Sheng and Ye (2005) 

presented an analytical method to solve the bending problem of angle-plied 

laminated cylinders subjected to axisymmetrically distributed transverse loads. Due 

to the recursive formulation used to derive the state equations of laminated cylinders, 

the dimension of the final state equations did not depend on the number of layers of 

the cylinder. 

In conjunction with other methods, state space approach received a rapturous 

reception from researchers. Semi-analytical finite elements connected with the state 

space approach for the static analysis of elastic laminated plates have been proposed 

by Sheng and Ye (2002). Conventional finite element analyses were based on a 

representation of the displacement field that guaranteed the continuity of all 

displacement components across the element boundaries. The stress field derived 

from the displacement representation by the use of stress-strain relations led to a 

stress field that was usually discontinuous across element boundaries (Fan, 1998). A 

combination of the finite element approximation and the analytical solution of the 

recursive formulation of state equation proposed by Sheng and Ye (2002) eliminated 

this intrinsic deficiency of conventional FEM and provided continuous distributions 

of both displacements and transverse stresses across all material interfaces. 

Similarly, by combining the classical finite strip method and the state space 

approach, Attallah et al. (2007) obtained the three-dimensional solutions of 



48 

 

laminated composite plates with simply-supported ends. The simple polynomials in 

one direction and continuously differentiable smooth series were used in each strip 

and the series should satisfy a priori the boundary conditions at the ends of the strips. 

And the state space approach was implemented to describe the variations of 

displacements and stresses through the thickness direction. Contrary to their result, 

the analytical solution from Fan (1998) showed that one of the in-plane stress 

components at the bottom surface of the top ply had an unexpected result. The stress 

from Fan (1998) underlined in Attallah's paper should be larger than the one at the 

top surface of the mid ply. This was because the top ply was stiffer than the middle 

ply and should carry more stresses.  

Moreover, to translate the partial differential state equation into the ordinary 

differential state equation, the variations of the field variables in the in-plane 

coordinates also can be discretized by the differential quadrature method (DQM) 

developed by Lü et al. (2008). Although the aforementioned approximations in the 

in-plane coordinates were combined with the state space approach to make ease of 

the treatment of various boundary conditions, these 3D semi-analytical methods may 

encounter challenges in predicting the accurate distributions of stresses and 

displacements in the vicinity of non-simply-supported edges, i.e. clamped and free 

edges. Due to the abrupt gradients and possible presence of singularity, more 

computational effort and possibly numerical instabilities were inevitable.   

To develop an efficient analytical methodology for the electromechanical analysis of 

laminated piezoelectric structures, state space approach has been developed to study 

electro-elastic responses of a piezoelectric lamina made of BaTiO3 by Lee and Jiang 

(1996). According to their study, the state space equation for piezoelasticity was 

structurally the same as the state equation for pure elasticity except for the two 

additional quantities due to the electric field contribution. The state space equation 

for pure elasticity was recovered when the piezoelectric constants vanished. From 

their analysis, an interesting result was obtained that the transverse stresses and 

electric displacement were not influenced by the electro-elastic coupling. They also 
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claimed that further studies were required to get the definitive conclusion on this 

issue.  

By adding two extra magnetic quantities (i.e., magnetic flux and magnetic potential) 

into the state vectors, the exact solutions for three-dimensional, anisotropic magneto-

electro-elastic, simply-supported, and multilayered rectangular plates were derived 

by Pan (2001). For sandwich plates made of the piezoelectric BaTiO3 and 

magnetostrictive CoFe2O4, it has been observed that the in-plane electric and 

magnetic displacements were discontinuous across the interfaces wherein the 

potentials were continuous, and the stacking sequences had a significant influence 

on most physical quantities, in particular, on the electric and magnetic quantities.  

With the same boundary conditions as the above work, i.e. simply-supported and 

grounded (closed-circuited) along four edges, Zhong and Shang (2003) assumed that 

the material properties varied exponentially with spatial position and employed this 

hypothesis to model the electro-elastic behaviour of a functionally gradient 

piezoelectric plate. Wen et al. (2011) also developed the governing equations for the 

functionally graded material by the state space approach in the Laplace transform 

domain.  

In the aforementioned studies the boundary conditions applied on the four edges 

were simply-supported and close-circuited. Sheng et al. (2007) imposed an assumed 

displacement field and potential to the two opposite edges which were simply-

supported and close-circuited. After the treatment of boundary conditions, two sets 

of unknown functions contained in the non-homogeneous vector were solved by 

imposing continuity conditions at interfaces, considering top and bottom surfaces 

conditions and four edges boundary conditions. The state equation for piezoelectric 

laminated plates was established. 3D analytical solutions that satisfied the simply-

supported and clamped, closed-circuited and open-circuited boundary conditions, 

were obtained. It should be noted that an FEM solution in which 20-nodes 3D 

isoparametric elements with 4 × 4 × 4 finite element mesh for a quarter of the plate 

was used, was also given in their paper for comparison. From the comparison, the 

FE results violated the continuity conditions at interfaces and there were significant 
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discrepancies for the transverse stresses at interfaces between two dissimilar material 

plies. Since a representation of displacements and electric potential in the FE 

analysis can only guarantee the continuity of all nodal displacements and electric 

potentials across the element boundaries, the stresses and other electric variables are 

usually discontinuous across element boundaries or material layers. For a thin or 

moderately thick plate, a coarse mesh can give satisfactory results on displacements, 

even stresses except from these near the interfaces of different materials and 

boundaries. The FEM solutions from Sheng et al. (2007) were obtained by 

modelling the piezoelectric laminated plate in a coarse mesh. But for a thick plate, a 

coarse meth led to a poor prediction. Therefore a refined mesh should be applied to 

the regions located in the vicinity of interfaces and boundaries, which may improve 

the precision and reconcile the discrepancies.  

 

2.3 Free-edge effects 

Due to the presence of a high inhomogeneity in mechanical properties at the 

interfaces between two dissimilar material layers, the full-scale three-dimensional 

steep stress gradients occur along the free edges, and this is often referred to as the 

so-called free-edge effect or boundary-layer effect (Mittelstedt and Becker, 2004) as 

shown in Figure 2.3. These edge perturbations decay rapidly away from the 

laminates edges and the localized singular problems of the free-edge stresses may 

result in premature failure of the laminate, like delamination which is detrimental to 

the structural reliability and durability of the laminate. Moreover, with the inclusion 

of the electromechanical coupling effect in piezoelectric laminated plates, the free-

edge effect becomes more complicated, in which the concentration of not only the 

interlaminar stress but also the electric quantities may occur near free edges.  
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Figure 2.3: General descriptions of the free-edge effects and delamination problem 

in composite laminates (Chuang, 2003) 

 

Pioneering work was carried out by Hayashi (1967) and the stresses computed from 

his model were seen to arise at the free edge but rapidly decay to zero at 

approximately the length of a ply thickness. Hayashi attributed this edge effect of the 

interlaminar shear stress as the reason for edge delamination. However, the 

interlaminar normal stress is neglected in his study. Puppo and Evensen (1970) also 

conducted a similar stress analysis and introduced a separate thin isotropic 'shearing' 

layer between adjacent plies in order to account for the shearing action between plies. 

The shearing layer, however, failed to take in-plane or interlaminar normal stresses 

into account in the analysis of laminates.  

 

1. Laminate modelling: 

Laminate under uni-axial 

loading 

2. Free edge stress analysis: 

High stress gradient zones 

3. Delamination prediction  
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Figure 2.4: The free-edge effect in a cross-ply laminate [0
ᵒ
/90

ᵒ
]s under uniaxial 

extension (Mittelstedt and Becker, 2004). 

 

The accurate descriptions of the 3D elasticity phenomenon of the free-edge effect 

were proposed by Pipes and Pagano (1970, 1971, 1973) for symmetric laminates 

subjected to tensile loads (depicted in Figure 2.4(b)). Based on the three-dimensional 

anisotropic elasticity, field equations for each ply were derived and then the 

resulting field equations were solved by using the finite difference method. Due to 

the presence of the interlaminar normal stress and the steep stress gradients in the 

boundary region, they thought that a possible stress singularity occurred at the 
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interface of dissimilar materials and the interlaminar shear and normal stresses near 

free edges might induce delamination.  

Pipes and Pagano's inspiring work has triggered an overwhelming amount of various 

experimental investigations on free-edge delamination and approximate theoretical 

methods for the determination of the free-edge field in composite laminates. In 

general, these approximate methods can be categorized as: close-form solutions 

based on the aforementioned approximate 2D laminate theories (single layer, 

layerwise), numerical approaches based on 2D/3D elasticity and approximate close-

form solutions based on 3D elasticity state space approach.   

Numerous relevant literatures on the free-edge effect in composite laminates have 

been investigated and reviewed exhaustively by Mittelstedt and Becker (2004). As 

the case depicted in Figure 2.4, the Pagano-Pipes's model is chosen for the 

assessment of free-edge effects, i.e., a symmetric four-layer laminate strip under a 

uniaxial extension 휀11 . To understand the nature of the interlaminar load transfer 

mechanism, it is informative to examine this cross-ply laminate. We consider the 

coordinate axes 𝑥1, 𝑥2, 𝑥3 be along the length, width and thickness of the laminate 

respectively. The interlaminar stresses are denoted by 𝜏13 , 𝜏23 , and 𝜎33 . The in-plane 

normal stresses 𝜎11 , 𝜎22  and shear stress 𝜏12  can be predicted from CLPT. The 

laminate strip has thickness of 𝑡 and the four layers are of equal thickness and is 

assumed sufficiently long in the 𝑥1 -direction so the strains, stresses and 

displacements 𝑢2 , 𝑢3  become independent from the 𝑥1 -axis. If the layers are not 

bonded together (Figure 2.4(a)), each layer is free to deform individually, and the 

transverse contraction of the outer 0°-layers contracts more than that of the inner 

90°-layers, leading to incompatibility of displacements 𝑢2  in the corresponding 

layers at the interfaces. However, perfect bonding is used between different layers, 

thus the displacement distributions at the interfaces must remain compatible. To 

maintain continuous displacement, one should apply tensile stresses 𝜎22  on 0°-layers 

whereas compressive stresses 𝜎22  on 90°-layers (Figure 2.4(b)). The resultant value 

through the thickness vanishes, i.e.   𝜎22𝑑𝑥3

𝑡

2

−
𝑡

2

= 0 must be fulfilled through the 
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laminate thickness. In this case, the absolute values of 𝜎22  in 0°-layers and 90°-

layers are identical. It should be noted that stresses 𝜎22  must attain zero values at the 

free edges due to traction-free conditions. For equilibrium of forces in the 𝑥2 

direction there must be interlaminar shear stresses 𝜏23  at the interface of the 0° and 

90°  layers (Figure 2.4, detail A). Thus, it may be written as   𝜏23𝑑𝑥 2
𝑥2

0
=

  𝜎22𝑑𝑥3

𝑡

2
𝑡

4

. It can be seen that these stress resultants do not share a common line of 

action, thus leading to the bending moment about 𝑥1 axis. Hence, for the equilibrium 

of this moment interlaminar stress 𝜎33  as depicted in Figure 2.4 (Detail B) arises at 

the interface between 0° and 90° layers. It may be written as   𝜎33𝑥 2𝑑𝑥 2
𝑥2

0
=

  𝜎22(𝑥3 −
𝑡

4
)𝑑𝑥3

𝑡

2
𝑡

4

. In order to maintain equilibrium of forces in the 𝑥3-direction, 

𝜎33  must reverse its sign along the 𝑥2 direction, since the condition   𝜎33𝑑𝑥 2 = 0
𝑥2

0
 

must hold. The interlaminar peeling stress 𝜎33  starts to attain a increasing tensile 

value in the vicinity of the laminate free edge and reaches to its maximum value at 

the free edge, which is commonly considered as the predominant reason for the 

onset and propagation of delaminations as depicted in Detail B (Mittelstedt and 

Becker, 2004) in Figure 2.4. This general description of the free-edge effect in cross-

ply laminates yields a three-dimensional state of stress with in-plane stresses as well 

as interlaminar stresses, in particular the interlaminar normal stress 𝜎33 , which is 

always neglected by most plate theories.  

 

2.3.1 Experimental investigations on free edge effects 

In order to evaluate the 3D stress field and the nature of stress concentration that 

occurs near free edges and the delamination behaviour of composite laminates, a 

number of experimental investigations have been carried out. The uni-axial loading 

laminate coupon is used for both experiment and analysis in most delamination 

studies. The typical tensile specimen configuration is given in Figure 2.5. As 

mentioned in the previous section, delamination is the mode of matrix dominated 
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failure that involves ply structural interactions in the laminate. It was found that 

causes of delamination had been attributed generally to the existence of interlaminar 

stresses usually occurred near the free edges of the laminate in the experimental 

study of Bjeletich et al. (1979). They reported test results for a family of six quasi-

isotropic graphite-epoxy laminates by altering the stacking sequence of 0
o
, ±45

o
 and 

90
o
 plies. It was observed that the tensile strengths varied widely with the stacking 

sequences and laminates with certain stacking sequences had a higher tendency to 

delaminate. For instance, the [90
o
/±45

o
/0

o
]s laminate of the highest strength was 

found to have a large compressive interlaminar normal stress σz while the [±45
o
/0

o
 

/90
o
]s laminate of the lowest strength had a large tensile σz. Hence, it was thought 

that the onset of free-edge delamination was induced due to the fact that the tensile 

σz lowered the laminate ultimate strength.  

Crossman and Wang (1982) conducted experiments on a series of T300/934 

[±25
o
/90

o
n*]s graphite/epoxy laminates under axial tension to investigate the 

thickness effect of one ply on edge delamination, and n* was the number of plies 

and varied from 1/2 to 8, while all other laminate parameters remained the same. 

These laminate series was chosen for their experiments due to its well documented 

propensity for delamination under tensile loading. A cross-sectional view of 

delamination crack of a [±25
o
/90

o
1/2]s laminate specimen is illustrated in Figure 2.6. 

It was clear that free-edge delamination initiated near the mid-plane and propagated 

through the 90 ply into the laminate interior. Several secondary cracks had also 

formed near the delamination crack tip. The tensile strain required to initiate 

delamination in the 90
o
 ply depended on the thickness of the 90

o
 ply and for n*≤3 

delamination occurred at the free edges of the specimens.  
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Figure 2.5: Typical tensile specimen configuration 

 

 

Figure 2.6: Cross-sectional view of delamination crack at the free-edge of a 

[±25
o
/90

o
1/2]s laminate under tension (Crossman and Wang, 1982) 

 

Recently edge delamination tests on various carbon/epoxy G947/M18 laminates 

under axial tensile loadings have been performed by Lagunegrand et al. (2006a). It 

was found that for the [±10
o
n*]s laminates with n*=1,2,3,4 plies the interlaminar 

stress τxz was dominant at the interface on the free edge of the laminate and 

drastically decreased when moving away from the free edge. The general behaviour 

of [±10
o
n*]s laminates was perfectly linear up to delamination and interlaminar crack 

growth was very unstable and failure occurred instantaneously after crack initiation 

at the free edge. The behaviour of [±20
o
n*]s laminates was similar to that of [±10

o
n*]s 

laminates whereas the behaviour of [±30
o
n*]s laminates was non-linear and 

delamination was less unstable. Moreover, for [15
o
2n*/90

o
n*/-15

o
2n*]s laminates 

(n*=1,2,3,4), both the interlaminar normal stress σz and shear stress τxz were 
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significant near the free edge and it was not sufficient to predict delamination 

initiation precisely by considering the interlaminar shear stress effect only.  

Furthermore, Lagunerand et al. (2006b) carried out an experimental study to 

investigate and identify the influence of the interlaminar normal stress on the free-

edge delamination initiation in composite laminates. A four point bending test on a 

sandwich beam (length=400mm, width=20mm) was designed in order to load the 

interface of composite laminated skins either with a tensile or a compressive uniform 

stress field. It was found that for [±10
o
n*]s laminated skin the stress level for free-

edge delamination initiation had appeared to be the same for both tensile and 

compressive loading, and for [15
o
2/90

o
/-15

o
2]s and [30

o
2/90

o
/-30

o
2]s laminates 

loading the specimen in tension led to tensile interlaminar normal stresses while a 

compressive loading on the laminated skin induced compressive ones. They 

indicated that the delamination onset stress level was different when loading the 

interface in tension or in compression and a negative interlaminar normal stress 

increased the resistance of the delamination initiation. 

By utilizing the novel sandwiched cantilever specimen Shang et al. (2005) 

performed the delamination tests to study the interface strength of PZT thin films on 

a silicon substrate. It was revealed from their experiment that delamination initiated 

at the free edge on the interface between the thin chromium layer and PZT layer, and 

fracture occurred abruptly after the initiation and there was no evidence of slow 

stable crack growth in all the tests. Meanwhile, the experimental results implied that 

strong stress intensification prevailed over the region near the vicinity of the 

interface and the free edge, and the tensile interlaminar normal stress concentration 

was observed. 

The mechanisms of delamination at the free edge are influenced by the fibre 

orientation, ply stacking sequence, thickness, loading and boundary conditions. An 

in-depth understanding of the nature of the interlaminar stresses in the 

neighbourhood of the interface and free edge is the key to a proper delamination 

analysis. From the experimental investigations it is found that such free-edge 

delamination induced by significant interlaminar stresses occurs not only in 
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composite laminates but also in piezoelectric laminates, which brings more 

difficulties in the theoretical analysis, as introduced in the following subsection. An 

accurate evaluation of these interlaminar stresses near the free edge is necessary and 

a rigorous solution needs to be sought.  

 

2.3.2 Analytical solutions to free-edge effects 

In the study of Krishna Murty and Hari Kumar (1989) a higher-order theory 

approach has been formulated and the laminate has been modelled as a single layer 

by assuming polynomials through the laminate thickness. To satisfy the zero shear 

condition at the surface of the plate, the corresponding shear strains were set to zero. 

The interlaminar stresses, however, were discontinuous at the interfaces of dissimilar 

plies, because the thickness variations of the displacements were assumed a priori. 

By introducing a warp deformation mode for the near-edge displacements, Becker 

(1993) also utilized a higher-order laminated plate theory to solve the free edge 

problem. Displacements were assumed with the addition of warping deformation 

modes in forms of the trigonometric functions through the thickness. The warping 

terms were especially adjusted to the respective free-edge effect situations 

(Mittelstedt and Becker, 2004). In analogy with the usual procedure in CLPT the 

equilibrium was fulfilled in an average sense for appropriate stress resultants after 

integration through the laminate thickness. The boundary conditions at the free 

edges were satisfied in an integral sense.  

The edge-effect problem of laminates subjected to extension is actually a quasi-

three-dimensional problem and its stress analysis can be restricted to a general two-

dimensional cross-section of the laminates (Tahani and Nosier, 2003). Tahani and 

Nosier (2003) adopted a displacement-based layerwise theory to study the behaviour 

of interlaminar stresses in general cross-ply laminates under uniaxial extension and 

thermal loading. Through the thickness, each layer was discretized in several 

mathematical layers and the field variables were interpolated with linear Lagrange 

polynomials. Later by using the similar approach of Reddy's layerwise theory, 
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Tahani and Nosier (2004) developed the analytical solutions for the edge-effect 

problem of general cross-ply laminates in various loading cases. It should be noted 

that there were repeated zero eigenvalues in the characteristic equations of the set of 

governing equations of equilibrium and some small artificial terms were employed 

to make these characteristic eigenvalues become distinct in Tahani and Nosier's 

solutions. Recently Nosier and Maleki (2008) presented an analytical solution for the 

assessment of interlaminar stresses in a long laminated plate under extension by 

using an improved FSDT along with Reddy's layerwise theory. However, in these 

aforementioned layerwise theories, the resultant stress fields fulfilled the boundary 

conditions at free edges in an integral sense and the interlaminar shear stress did not 

vanish at free edges, contrary to the traction-free conditions. Moreover, the 

computational effort was increasing with an increasing number of numerical layers.   

On the other hand, the stress-based layerwise solutions to the problems of the 

complete state of stress, in particular the interlaminar stresses at free edges in 

composite laminates were derived with the combination of the force balance method 

and the principle of minimum complementary energy by Kassapoglou and Lagace 

(1987). The stress shapes were assumed a priori in terms of exponential functions 

and then Kassapoglou (1990) developed this approach by assuming the stresses as 

unknown functions. The continuity of interlaminar stresses at the laminate interfaces 

was guaranteed and the traction-free boundary conditions were satisfied as well. 

Recently a new layerwise stress model, which is called LS1 model (layerwise stress 

model with first-order membrane stress approximation per layer), has been extended 

to deal with the general non-delaminated and delaminated multilayered plates under 

uniaxial extension by Saeedi et al. (2012a). In their model, each layer was treated as 

a Reissner-Mindlin plate and the layers were linked together by interfacial stresses 

considered as polynomial functions of z whose coefficients were expressed in terms 

of generalized stresses of the model. The comparison with 3D FEM showed that this 

model was capable and efficient to predict the behaviour of free-edge effect and 

provide the estimation of interlaminar stresses rather than the determination of stress 

fields at the interfaces except near singularities. To overcome this drawback, based 

on an irregular layerwise mesh, a refined LS1 model was proposed to evaluate the 
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initiation and propagation of delamination in multilayered plates under uniaxial 

extension by Saeedi et al. (2012b). 

To give an accurate description of the 3D elasticity problem of the interlaminar 

stresses, in particular the interlaminar normal stress at the free edge, several 

approximate analytical methods have been carried out. Wang et al. (2000) studied 

the stress decay problem in cross-ply laminates due to edge boundary effects by 

adopting state space approach. In contrast to the usual layerwise approach, this 

approach led to the solution of determinants independent of the number of laminae. 

However, the traction-free conditions at the free edges were not satisfied in this 

method. To fulfill all the traction-free conditions, Zhang et al. (2006, 2007) 

presented an approximate close form solution of the 3D elasticity equations for the 

free-edge and cracking effect in cross-ply and angle-ply composite laminates under 

extension and thermal loading. This semi-analytical method accounted for all 

independent material properties and continuity of interlaminar stress field. In the 

formulation, a Fourier series expansion was applied in the in-plane transverse 

direction, while an exact analytical solution for the variation in the thickness 

direction was obtained by using the state space approach and layer refinement. 

Moreover, the convergence was assessed by the Fourier terms and layer refinement.  

Recently Tahani and Andakhshideh (2012) has employed the 3D multi-term 

extended Kantorovich method (3DMTEKM) to investigate analytically the 

interlaminar stresses in moderately thick rectangular laminated plates with arbitrary 

laminations and boundary conditions under transverse loads. The 3DMTEKM was 

utilized to reduce the governing equations based on the principle of minimum 

potential energy to a three sets of ordinary differential equations and the derived sets 

of ordinary differential equations were solved analytically. With the same approach, 

Andakhshideh and Tahani (2013) presented analytical solutions to determine the 

interlaminar stresses in general rectangular laminates with finite dimensions 

subjected to various loading conditions, such as axial stress, shear stress, bending, 

torsion and thermal loads. Nevertheless, the traction-free conditions at free edges 

were only satisfied in an integral sense. 



61 

 

2.3.3 Numerical solutions to free-edge effects 

In 2D plate/shell theories, the variations of the displacement or stress variables 

through the thickness direction are assumed a priori and the boundary conditions at 

the free edges are generally satisfied only in an integral sense. Being a 3D stress 

concentration problem with possible singularity, any approximation and assumption 

on the variation of state variables will lead to prominent bearing on the accuracy 

(Kapuria et al., 2010). Thus, to determine the 3D stresses at the free edges of elastic 

composite under tension, bending and thermal loading, numerical methods have 

been developed and employed. 

As mentioned above, Pipes and Pagano (1970) initiated the finite difference method 

to obtain the 3D solution for a free-edge stress field in the laminated strip under 

uniaxial tension. A thorough investigation on the mechanism of interlaminar load 

transfer for the cross-ply composite laminate was conducted by Pipes (1980). His 

finite difference solution showed that the interlaminar shear stress grew abruptly to a 

finite value in the vicinity of the free edge and vanished at the free edge and in the 

inner region. In addition, the finite difference solution which predicted finite values 

of the interlaminar normal stress at the free edge and the large gradient in the 

function in this region suggested the possible occurrence of a singularity. These 

phenomena may attribute to the mismatch in the longitudinal Poisson's ratio of 0° 

and 90° layers.  

Wang and Crossman (1977) investigated the Pagano-Pipes problem with emphasis 

placed on assessing the stress field closest to the interfaces and free edges. 

Generalized plane strain and three-node triangular finite elements were adopted, and 

a denser mesh approach was also used in the vicinity of the free edge region for an 

accurate prediction of the 3D laminate stress field. Icardi and Bertetto (1995) used a 

20-noded, quadratic interpolation, isoparametric brick element and a 15-noded, 

quadratic interpolation, singular wedge element generated from a 20-noded brick 

element based on special shape functions by coalescing nodes. The tentative 

continuous interlaminar stresses were obtained and the stress-free conditions were 

nearly automatically satisfied by employing a predictor corrector procedure in their 
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solution. Ye et al. (2004) combined the traditional finite element method with the 

state space approach to solve the free-edge effect problem. Based on a mixed 

variational principle, the in-plane variations of displacements and stresses were 

approximated by the traditional finite element method while the through-thickness 

distributions were represented by using state space approach. 

Carreira et al. (2002) developed a layerwise model, called Multiparticle Models of 

Multilayered Materials, and their study dealt with the validation by means of finite 

element calculations. Since the finite element stresses were mean element values and 

not calculated at the desired interface, they introduced what they called finite 

element generalised forces, which were deduced from the 3D equilibrium equations. 

For the singular behaviour of the stresses in the vicinity of the free edges or the 

microcrack, they found the maximum value of stresses was rendered meaningless 

due to mesh dependence. In the convergence study they excluded a region where the 

finite element calculations were mesh-dependent and the calculated stresses had no 

meanings, and found that the generalised shear stresses converged regardless of the 

mesh used, as long as at a distance (1% of the width in the y direction away from the 

edge). Based on the layerwise model of Carreira et al. (2002), a new layerwise finite 

element was applied for the analysis of the free-edge stresses of composite laminates 

subjected to uniaxial extension and uniform temperature by Nguyen and Caron 

(2006). It is interesting to note that in their study increasing the subdivisions number 

was useful to reproduce shape distribution but their solution was incapable of 

capturing the stress singularity at the interface. By means of an finite element model 

with solid elements of the software ABAQUS, the submodelling technique was used 

to analyze the free edge effects of composite laminates by Romera et al. (2013). In 

the submodelling technique, the global model was analyzed with a coarse mesh. 

Then the submodel with a more fine mesh was extracted from the global model and 

analyzed by using the displacements which were the interpolated values of the nodal 

displacements obtained in the previous analysis of the global model. This mesh 

refinement technique has been selected to optimize the high computational effort. 
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2.3.4 Free-edge and electromechanical coupling effects on piezoelectric 

laminated plates 

The evaluation of the 3D field stress becomes of particular interest when the 

electromechanical coupling effect is concerned, leading to more complex 

phenomena in the vicinity of free edges. Izadi and Tahani (2010) derived the 

governing equations for the general cross-ply piezoelectric laminated Levy-type 

plates with two kinds of boundary conditions: fully simply-supported, two opposite 

edges simply-supported and the others free. In estimating the boundary-layer effect, 

the second-order shear deformation plate theory was used to represent the 

displacement field, and also the electric potential was assumed to vary linearly in the 

z direction through each layer. By this assumption only the transverse component 𝐸𝑧  

of the electric field exists and the absence of the other two electric field components 

𝐸𝑥  and 𝐸𝑦  leads to an inaccurate prediction of electromechanical behaviour of 

piezoelectric laminated plates, particularly in the vicinity of free edges where 

possible stresses and electric fields singularities occur.  

With a compromise between accuracy and computational efficiency, the coupled 

efficient layerwise theory, also known as the zigzag theory (ZIGT) (Kapuria, 2004) 

has been developed for static electromechanical analyses of piezoelectric composite 

cross-ply plates. In this theory the transverse normal stress was omitted in the 

constitutive equation. As a result, greater errors were induced in the potential load 

case than those in the pressure load case. Even in the pressure load the results tended 

to deteriorate when the span-to-thickness ratio decreased to 5. Recently, by using the 

improved zigzag theory (IZIGT) Kapuria and Kumari (2012) studied the boundary-

layer effects in the cross-ply rectangular piezoelectric composite plates with Levy-

type boundary conditions. According to Heyliger (1994), the electric potential 

follows a nearly quadratic variation across the thickness of a piezoelectric layer. So 

in Kapuria and Kumari's paper the electric potential was approximated as a 

piecewise quadratic, wherein the two-way electromechanical coupling due to the 

direct piezoelectric effect was considered. They concluded that the electric boundary 

conditions at the edge significantly altered the strength of edge effect and the 
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strongest effects occurred at the free edges rather than the simply-supported edges. 

However, the inherent deficiency in their formulation still existed, such as neglect of 

the interlaminar normal stress, traction-free condition at the free edges was satisfied 

in an integral sense.  

Mannini and Gaudenzi (2004) investigated the numerical performance of a 

cantilever beam composed of two actuating piezoelectric layers perfectly bonded to 

a passive substructure. The multi-layer higher-order finite element approach was 

used and the static interaction between a laminate and distributed piezoelectric 

actuators was considered in their finite element model. Due to the nature of the 

stress field, a dense mesh was used near the free end of the beam in order to perform 

a more accurate analysis where a high stress concentration was predicted. It was 

seen from the distributions of the interlaminar stresses along the length of the beam, 

the interlaminar shear stress was quite small from the fixed end to the inner region, 

and increased abruptly to a finite value close to the free end and vanished at the free 

end. The interlaminar normal stress converted its sign near the free edge and arose to 

a finite value at the free end. Also, a 3D finite element model was constructed for 

analyzing interlayer stresses of a laminated beam with two piezoelectric cover sheets 

and one elastic core by Yang et al. (2006). In their work, the influence of 

geometrical and material parameters was addressed. The interlayer stress level and 

concentration were reduced when the relatively thick ratio of piezoelectric sheet was 

used. On the contrary, thin piezoelectric sheets often induced relatively large 

interlayer stress level and concentration near the free edge of the beam. 

A finite difference method was adopted by Zhang et al. (2003) to obtain a coupled 

electromechanical analysis of a piezoelectric layer bonded to an elastic substrate 

near free edges. The numerical results of the electric fields indicated clearly that the 

electric field intensity exhibited a significant disturbance near the edges of the 

piezoelectric layer in the cases of actuator and sensor. It was suggested that a 

significant error could be caused by the assumption of a homogeneous electric field 

that neglected the spatial variation in the piezoelectric layer. A spatial gradient of the 

electric potential near the edges was also observed and a much higher magnitude of 
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the electric potential gradient induced by the edge effect was found in the sensor 

case. Moreover, there was a prominent interlaminar stress concentration near the 

edges, and the tensile interlaminar normal stress, which was much higher than the 

interlaminar shear stress, was found to contribute to the delamination initiation.  

Furthermore, based on the Pipe-Pagano's model, Artel and Becker (2005) considered 

the effect of electromechanical coupling on the interlaminar stresses and the electric 

field intensity components at free edges of laminated plates with piezoelectric 

material properties. In their finite element model, symmetric cross-ply and angle-ply 

laminates were investigated under uniaxial extension. It was shown that the coupling 

effect for cross-ply laminates resulted in significantly higher interlaminar stresses 

near the free edges, whereas the coupling effect for the angle-ply laminate was of 

minor significance. It is worth to mention that the coupling effect may trigger the 

presence of the singular electric field intensity in the vicinity of the free edges.  

Tahani and Mirzababaee adopted a coupled fourth-order single layer theory (Tahani 

and Mirzababaee, 2009) and a coupled layerwise theory (Mirzababaee and Tahani, 

2009) to obtain analytical solutions for Artel and Becker's piezoelectric laminated 

plate under uniaxial tension. In the study of Tahani and Mirzababaee (2009), except 

for the inner region where the interlaminar stresses vanished, the results in the 

vicinity of the free edges did not show good agreement with those of Artel and 

Becker (2005) and those of Mirzababaee and Tahani (2009). In addition, the 

through-thickness distributions of interlaminar stresses were not given and the 

traction-free conditions cannot be satisfied at the free edges. It should be noted that 

numerical values of the uncoupled interlaminar normal stress through thickness 

obtained by Artel and Becker (2005) did not agree with those obtained by Wang and 

Crossman (1977), Spilker and Chou (1980) and Mirzababaee and Tahani (2009). 

This problem draws the author's attention and there must be a decent description of 

electromechanical effects on the free edge interlaminar stresses and electric 

quantities. Further investigations are necessary and analytical solutions will be 

sought in this thesis. 
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2.4 Summary 

As an alternative to the 3D elasticity and piezoelectricity and a compromise between 

the accuracy and computation efficiency, 2D laminate theories has gained 

widespread popularity from researchers. 2D laminate theories can provide 

predictions to some global responses of thin laminated composites, such as 

displacements and vibration frequencies. However, these theories yield only average 

through thickness values for the in-plane stresses and gives no or unsatisfactory 

descriptions about the important inter-laminar tractions (Ye, 2002).  

In the review of previous and current theoretical and experimental studies, it is 

established that free-edge delamination induced by significant interlaminar stresses 

occurs not only in composite laminates but also in piezoelectric laminates, which 

brings more difficulties in structural analysis. Also the presence of material 

discontinuities and electromechanical coupling effect at the free edges in 

piezoelectric laminates leads to a more complicated 3D stress and electric field. 

Since the localized and complex phenomenon with a possible 3D stress and electric 

field singularity arises at the intersection of the interface and the free edge, any 

approximation and assumption on the variation of state variables will have a 

significant influence on the accuracy.  

In the following investigation of this thesis, the state space approach based on the 

theories of 3D elasticity and piezoelectricity will be adopted to obtain the 3D 

analytical solutions that satisfy both mechanical and electric boundary conditions 

and the continuity conditions between different laminates. The solutions to the 

problems of the free edge effect in the piezoelectric laminate subjected to bending 

and in-plane extension, as main concerns, are presented in Chapters 3 and 4, 

respectively. Numerical analyses and validations are given in Chapters 5, 6 and 7.   
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CHAPTER 3 STATE SPACE METHOD FOR SIMPLY-

SUPPORTED PIEZOELECTRIC LAMINATES WITH 

FREE EDGES UNDER TRANSVERSE LOADS 

 

3.1 Introduction 

In the extensive and in-depth review of the aforementioned literature, most of the 

three-dimensional solutions are restricted to piezoelectric laminates which are 

simply-supported and electrically grounded. However, this kind of boundary 

condition do not exhibit the well-known singular effects observed near traction-free 

edges and little research effort has been devoted so far for the development of the 

3D analytical models for evaluating the bending behaviour as well as edge-effect of 

the piezoelectric laminated thick plate with free edges. Due to electromechanical 

coupling and free-edge effects in the piezoelectric laminate, the accurate estimation 

of the global behaviour of the plate, especially the localized interlaminar stresses and 

electric field intensity components in the immediate vicinity of the intersection of 

the interface and the free edge is of crucial importance. Any assumptions such as 

neglecting shear strains, assuming constant shear strains through the thickness, 

assuming linear electric potential through the thickness or the traction-free boundary 

conditions satisfied only in an integral sense, will lead to a poor description of global 

response even yield inaccurate results in the possible singular region very near the 

free edge.  

In contrast to most 2D plate theories, state space approach preserves the interlaminar 

stresses as the state vectors in the formulation with respect to the theories of 3D 

elasticity and piezoelectricity. Moreover, all the independent elastic and 

piezoelectric constants for the orthotropic and piezoelectric materials are taken into 

account and the continuity conditions between different layers are also satisfied by 

using the transfer matrix and recursive solution approaches. In this chapter, with 

appropriate boundary functions (Dong and Sheng, 2005) the state space equations 
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are formulated to obtain the 3D analytical solutions for the bending problems of the 

thick rectangular piezoelectric laminated plates with two opposite free edges. Since 

the eight state variables employed in the state equations directly represent the 

boundary conditions on the top and bottom surfaces, exact solutions can be 

presented for different mechanical and electrical surface conditions. 

 

3.2 Formulation of fundamental state space method for a 

piezoelectric plate 

 

Figure 3.1 Geometry and coordinate system of a piezoelectric laminated plate 

 

Consider a homogeneous orthotropic piezoelectric plate of uniform thickness h, 

length a, width b (Figure 3.1). The principal elastic directions of plate coincide with 

the axes of the chosen rectangular coordinate system and the full coupled          

three-dimensional piezoelectric-elastic constitutive relations of an orthotropic 

piezoelectric lamina can be expressed as (Nye, 1976) 
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 𝜎 =  𝐶  휀 − [𝑒]𝑇 𝐸  (3-1) 

 𝐷 =  𝑒  휀 + [∈]{𝐸} (3-2) 

Explicit forms of Equation (3-1) and Equation (3-2) are given as follows: 
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where  𝜎 ,   휀 ,  𝐸  and  𝐷  are, respectively, stress, strain, electric field, and 

electric displacement vectors.  𝐶 ,  𝑒  and [∈] are elastic, piezoelectric and electric 

permittivity constants, respectively. For a piezoelectric material, the electrical and 

mechanical constitutive equations are coupled. A strain 휀 in the materials induces a 

polarization 𝑒휀  by the direct piezoelectric effect. Conversely, an applied electric 

field E tends to align the internal dipoles, inducing stress -eE in the material by the 

inverse piezoelectric effect. 

The linear strain-displacement relations and the electric field-electric potential 

relations can be written as: 

휀𝑥 =
𝜕𝑢

𝜕𝑥
 ,   휀𝑦 =

𝜕𝑣

𝜕𝑦
 ,   휀𝑧 =

𝜕𝑤

𝜕𝑧
 , 

𝛾𝑦𝑧 =
𝜕𝑤

𝜕𝑦
+
𝜕𝑣

𝜕𝑧
 ,   𝛾𝑥𝑧 =

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
 ,   𝛾𝑥𝑦 =

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
 , 

𝐸𝑥 = −
𝜕∅

𝜕𝑥
 ,   𝐸𝑦 = −

𝜕∅

𝜕𝑦
 ,   𝐸𝑧 = −

𝜕∅

𝜕𝑧
 . 

(3-5) 

where u, v and w represent displacements in the x, y and z directions, respectively. ∅ 

is electric potential.  
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The equilibrium equations of elasticity and the Gaussian law of electrostatics can be 

written, respectively, as follows: 

𝜕𝜎𝑥
𝜕𝑥

+
𝜕𝜏𝑥𝑦

𝜕𝑦
+
𝜕𝜏𝑥𝑧
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𝜕𝑥
+
𝜕𝜎𝑦

𝜕𝑦
+
𝜕𝜏𝑦𝑧

𝜕𝑧
+ 𝑓𝑦 = 0 , 

𝜕𝜏𝑥𝑧
𝜕𝑥

+
𝜕𝜏𝑦𝑧

𝜕𝑦
+
𝜕𝜎𝑧
𝜕𝑧

+ 𝑓𝑧 = 0 , 

(3-6) 

𝜕𝐷𝑥
𝜕𝑥

+
𝜕𝐷𝑦

𝜕𝑦
+
𝜕𝐷𝑧
𝜕𝑧

− 𝑓𝑒 = 0 . (3-7) 

Under electric body charge 𝑓𝑒  and body forces 𝑓𝑖   𝑖 = 𝑥,𝑦, 𝑧 . For laminated 

structure the interlaminar stresses are prominent and continuous at the interface of 

materials thus chosen as state vectors in the formulation. By eliminating the in-plane 

stresses 𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦 , and the in-plane electric displacements 𝐷𝑥 , 𝐷𝑦  in the x-y plane, 

the differentials of the displacements u, v, w, and the transverse stresses 𝜎𝑧 , 𝜏𝑥𝑧 , 𝜏𝑦𝑧 , 

and electric variables 𝐷𝑧 , ∅, with respect to the z coordinate can be derived.  

First let 𝛼 =
𝜕

𝜕𝑥
, 𝛽 =

𝜕

𝜕𝑦
, under the condition of zero electric body charge 𝑓𝑒  as well 

as body forces 𝑓𝑖 , the following relations (see Appendix A) can be obtained from 

Equation (3-5) and the third equations of the matrix in Equations (3-3) and (3-4). 

𝜕

𝜕𝑧
 
𝑤
∅ =  

𝑘1𝛼 𝑘2𝛽 𝑘3 𝑘4

𝑘5𝛼 𝑘6𝛽 𝑘7 𝑘8
  

𝑢
𝑣
𝐷𝑧
𝜎𝑧

  (3-8) 

The coefficients 𝑘𝑖  in the matrix are the constants that are solely determined by the 

material properties of the laminate. By substituting Equation (3-8) into Equations 

(3-3) and (3-4), the in-plane stresses and electric displacements are presented: 
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𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

 =  

𝑘9𝛼 𝑘10𝛽 𝑘11 𝑘12

𝑘13𝛼 𝑘14𝛽 𝑘15 𝑘16

𝑘17𝛽 𝑘17𝛼 0 0
  

𝑢
𝑣
𝐷𝑧
𝜎𝑧

  (3-9) 

 
𝐷𝑥
𝐷𝑦
 =  

𝑘18 0 𝑘19𝛼
0 𝑘20 𝑘21𝛽

  

𝜏𝑥𝑧
𝜏𝑦𝑧
∅
  (3-10) 

 

All the constants are given as follows: 

𝑘1 =
−𝑒31𝑒33 − 𝐶13 ∈33

𝑒33
2 + 𝐶33 ∈33

,    𝑘2 =
−𝑒32𝑒33 − 𝐶23 ∈33

𝑒33
2 + 𝐶33 ∈33

,    𝑘3 =
𝑒33

𝑒33
2 + 𝐶33 ∈33

 

𝑘4 =
∈33

𝑒33
2 + 𝐶33 ∈33

,    𝑘5 =
𝐶33𝑒31 − 𝐶13𝑒33

𝑒33
2 + 𝐶33 ∈33

,    𝑘6 =
𝐶33𝑒32 − 𝐶23𝑒33

𝑒33
2 + 𝐶33 ∈33

 

𝑘7 =
−𝐶33

𝑒33
2 + 𝐶33 ∈33

,    𝑘8 =
𝑒33

𝑒33
2 + 𝐶33 ∈33

,    𝑘9 = 𝐶11 + 𝑘1𝐶13 + 𝑘5𝑒31 

𝑘10 = 𝐶12 + 𝑘2𝐶13 + 𝑘6𝑒31 ,    𝑘11 = 𝑘3𝐶13 + 𝑘7𝑒31 ,    𝑘12 = 𝑘4𝐶13 + 𝑘8𝑒31 

𝑘13 = 𝐶12+𝑘1𝐶23 + 𝑘5𝑒32 ,    𝑘14 = 𝐶22+𝑘2𝐶23 + 𝑘6𝑒32 ,    𝑘15 = 𝑘3𝐶23 + 𝑘7𝑒32 

𝑘16 = 𝑘4𝐶23 + 𝑘8𝑒32 ,    𝑘17 = 𝐶66 ,    𝑘18 =
𝑒15

𝐶15
,    𝑘19 = −

𝑒15
2

𝐶55
−∈11 ,    𝑘20 =

𝑒24

𝐶44
 

𝑘21 = −
𝑒24

2

𝐶44
−∈22,    𝑘22 =

1

𝐶55
,    𝑘23 = −

𝑒15

𝐶55
,    𝑘24 =

1

𝐶44
,    𝑘25 = −

𝑒24

𝐶44
 

(3-11) 

 

Considering the equilibrium equations of elasticity and the Gaussian law of 

electrostatics (Equations (3-6) and (3-7)), and Equations (3-3), (3-8), (3-9) and 

(3-10), yields the following first-order partial differential equation: 

𝜕

𝜕𝑧
 𝑅 =  𝐴  𝑅  (3-12) 

 𝑅  represents the state vector of a piezoelectric plate and contains the mechanical 

and electric variables which need to fulfill the continuity conditions at the interface 

of the laminates. And the state vector  𝑅  can be expressed as: 
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 𝑅 =  𝑢 𝑣 𝐷𝑧 𝜎𝑧 𝜏𝑥𝑧 𝜏𝑦𝑧 ∅ 𝑤 𝑇 (3-13) 

The system matrix  𝐴  has the following form: 

 𝐴 =  
0 𝐴1

𝐴2 0
  (3-14) 

where 

 𝐴1 =

 
 
 
 
𝑘22 0 𝑘23𝛼 −𝛼
0 𝑘24 𝑘25𝛽 −𝛽

−𝑘18𝛼 −𝑘20𝛽 −𝑘19𝛼
2 − 𝑘21𝛽

2 0
−𝛼 −𝛽 0 0  

 
 
 
 (3-15) 

 𝐴2 =

 
 
 
 
−𝑘9𝛼

2 − 𝑘17𝛽
2 (−𝑘10−𝑘17)𝛼𝛽 −𝑘11𝛼 −𝑘12𝛼

(−𝑘17−𝑘13)𝛼𝛽 −𝑘17𝛼
2 − 𝑘14𝛽

2 −𝑘15𝛽 −𝑘16𝛽
𝑘5𝛼 𝑘6𝛽 𝑘7 𝑘8

𝑘1𝛼 𝑘2𝛽 𝑘3 𝑘4  
 
 
 

 (3-16) 

 

3.3 Boundary conditions and analytical solutions 

 

 

 

 

 

 

 

Figure 3.2 Boundary conditions of a piezoelectric laminated plate 
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Free 

x 

y 

SS SS 

(0,0) 
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For a piezoelectric laminated plate with simply-supported (SS) and electrical close-

circuited at x=0, a and free edges at y=0, b (Figure 3.2), the following boundary 

conditions must be satisfied: 

𝜎𝑥 = 𝑣 = 𝑤 = 𝜙 = 0,                 𝑎𝑡  𝑥 = 0, 𝑥 = 𝑎 (3-17) 

𝜎𝑦 = 𝜏𝑥𝑦 = 𝜏𝑦𝑧 = 𝐷𝑦 = 0,         𝑎𝑡  𝑦 = 0,𝑦 = 𝑏 (3-18) 

 

In general, the displacements of each layer can be expressed as: 

𝑢(𝑥,𝑦, 𝑧) = 𝑢  𝑥,𝑦, 𝑧 + 𝑓1(𝑦)𝑢 0  𝑥, 𝑧 +𝑓2(𝑦)𝑢 𝑎  𝑥, 𝑧  (3-19) 

𝑣(𝑥,𝑦, 𝑧) = 𝑣  𝑥,𝑦, 𝑧 + 𝑔1(𝑦)𝑣 0  𝑥, 𝑧 +𝑔2(𝑦)𝑣 𝑏  𝑥, 𝑧  (3-20) 

Since there are two opposite free boundary conditions at y=0 and y=b, and the other 

two simply-supported boundary conditions at x=0 and x=a, boundary functions can 

be assumed as follows: 

𝑢(𝑥,𝑦, 𝑧) = 𝑢  𝑥,𝑦, 𝑧 +
𝑏

2
 1 −

𝑦

𝑏
 

2

𝛼𝑣 0  𝑥, 𝑧 −
𝑏

2
 
𝑦

𝑏
 

2

𝛼𝑣 𝑏  𝑥, 𝑧  (3-21) 

𝑣(𝑥,𝑦, 𝑧) = 𝑣  𝑥,𝑦, 𝑧 +  1 −
𝑦

𝑏
 𝑣 0  𝑥, 𝑧 +

𝑦

𝑏
𝑣 𝑏  𝑥, 𝑧  (3-22) 

From above equations 𝑣 0  𝑥, 𝑧  and 𝑣 𝑏  𝑥, 𝑧  are the unknown boundary functions 

which can be determined by the given boundary conditions and they have the 

following forms: 

𝑣 0  𝑥, 𝑧 =  𝑣𝑚
 0  𝑧 sin 휁𝑥

𝑚

 

𝑣 𝑏  𝑥, 𝑧 =  𝑣𝑚
 𝑏 (𝑧) sin 휁𝑥

𝑚

 

(3-23) 
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The six elastic state variables can be expressed in terms of eigen-functions given by 

Dong and Sheng (2005) in the analysis of laminated plates and for the 

electromechanical analysis, the other two electric state variables also can be 

expressed in terms of eigen-functions: 

𝑢 =   𝑢 𝑚𝑛
𝑛𝑚

 𝑧 cos 휁𝑥 cos 휂𝑦 , 𝜏𝑥𝑧 =   𝑋𝑚𝑛
𝑛𝑚

 𝑧 cos 휁𝑥 cos 휂𝑦 

𝑣 =   𝑣 𝑚𝑛
𝑛𝑚

 𝑧 sin 휁𝑥 sin 휂𝑦 , 𝜏𝑦𝑧 =   𝑌𝑚𝑛
𝑛𝑚

 𝑧 sin 휁𝑥 sin 휂𝑦 

𝜎𝑧 =   𝑍𝑚𝑛
𝑛𝑚

 𝑧 sin 휁𝑥 cos 휂𝑦 , 𝑤 =   𝑤𝑚𝑛

𝑛𝑚

 𝑧 sin 휁𝑥 cos 휂𝑦 

𝐷𝑧 =   𝐷𝑚𝑛
𝑛𝑚

 𝑧 sin 휁𝑥 cos 휂𝑦 , ∅ =   ∅𝑚𝑛
𝑛𝑚

 𝑧 sin 휁𝑥 cos 휂𝑦 

(3-24) 

 

The functions included in the two unknown boundary components from 

Equations (3-21) and (3-22) can be expressed in terms of eigen-functions as follows: 

1 −
𝑦

𝑏
=  

2

𝑛𝜋

∞

𝑛=1

sin 휂𝑦 ,        (1 −
𝑦

𝑏
)2 =

1

3
+  

4

𝑛2𝜋2

∞

𝑛=1

cos 휂𝑦 

𝑦

𝑏
=  

−2 cos𝑛𝜋

𝑛𝜋

∞

𝑛=1

sin 휂𝑦 ,   (
𝑦

𝑏
)2 =

1

3
+  

4 cos𝑛𝜋

𝑛2𝜋2

∞

𝑛=1

cos 휂𝑦 

(3-25) 

where 휁 =
𝑚𝜋

𝑎
, 휂 =

𝑛𝜋

𝑏
, and m and n are the vibration wave numbers in the x and y 

direction respectively. 

An assumed displacement field is imposed to a simply supported plate to represent 

the displacements of a piezoelectric plate with free edges and the introduction of 

eigen-functions in the series is to satisfy the given boundary conditions. By 

introducing Equations (3-21)-(3-25) to the first-order partial differential Equation 

(3-12), the first-order non-homogeneous ordinary differential equation for each pair 

of m and n is obtained and the derivation of this equation is given in Appendix B: 
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𝑑

𝑑𝑧
 𝑅𝑚𝑛 (𝑧) =  𝐴   𝑅𝑚𝑛 (𝑧) +  𝐵𝑚𝑛 (𝑧)  (3-26) 

where 

 𝑅𝑚𝑛  𝑧  = 

 𝑢 𝑚𝑛 (𝑧) 𝑣 𝑚𝑛 (𝑧) 𝐷𝑚𝑛 (𝑧) 𝑍𝑚𝑛 (𝑧) 𝑋𝑚𝑛 (𝑧) 𝑌𝑚𝑛 (𝑧) ∅𝑚𝑛 (𝑧) 𝑤𝑚𝑛 (𝑧) 𝑇 
(3-27) 

 

 𝐴  =  
0 𝐴 1
𝐴 2 0

  (3-28) 

 

 𝐴 1 =  

𝑘22 0 𝑘23휁 −휁
0 𝑘24 −𝑘25휂 휂

𝑘18휁 −𝑘20휂 𝑘19휁
2 + 𝑘21휂

2 0
휁 −휂 0 0

  (3-29) 

 

 𝐴 2 =

 
 
 
 
𝑘9휁

2 + 𝑘17휂
2 (−𝑘10−𝑘17)휁휂 −𝑘11휁 −𝑘12휁

(−𝑘17−𝑘13)휁휂 𝑘17휁
2 + 𝑘14휂

2 𝑘15휂 𝑘16휂
−𝑘5휁 𝑘6휂 𝑘7 𝑘8

−𝑘1휁 𝑘2휂 𝑘3 𝑘4  
 
 
 

 (3-30) 

 

𝐵𝑚𝑛 =

 
 
 
 
 
 
 

 
 
 
 
 
 

𝑏 ∙ 휁

6
∙
𝑑𝐹𝑚0 𝑧 

𝑑𝑧
0
0
0

−[
𝑘9 ∙ 𝑏 ∙ 휁

3

6
+
𝑘10 ∙ 휁

𝑏
] ∙ 𝐹𝑚0 𝑧 

0

[
𝑘5 ∙ 𝑏 ∙ 휁

2

6
+
𝑘6

𝑏
] ∙ 𝐹𝑚0 𝑧 

[
𝑘1 ∙ 𝑏 ∙ 휁

2

6
+
𝑘2

𝑏
] ∙ 𝐹𝑚0 𝑧  

 
 
 
 
 
 

 
 
 
 
 
 

, (𝑛 = 0,𝑚 ≠ 0) (3-31) 
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𝐵𝑚𝑛 =

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

2 ∙ 𝑏 ∙ 휁

𝑛2𝜋2
∙
𝑑𝐹𝑚𝑛  𝑧 

𝑑𝑧
2

𝑛𝜋
∙
𝑑𝐹𝑚𝑛  𝑧 

𝑑𝑧
0
0

−
2 ∙ 𝑘9 ∙ 𝑏 ∙ 휁

3

𝑛2𝜋2
∙ 𝐹𝑚𝑛  𝑧 

2 ∙ 𝑘13 ∙ 휁
2

𝑛𝜋
∙ 𝐹𝑚𝑛  𝑧 

2 ∙ 𝑘5 ∙ 𝑏 ∙ 휁
2

𝑛2𝜋2
∙ 𝐹𝑚𝑛  𝑧 

2 ∙ 𝑘1 ∙ 𝑏 ∙ 휁
2

𝑛2𝜋2
∙ 𝐹𝑚𝑛  𝑧  

 
 
 
 
 
 
 

 
 
 
 
 
 
 

, (𝑛 ≠ 0,𝑚 ≠ 0) (3-32) 

where 

𝐹𝑚𝑛  𝑧 = (cos 𝑛𝜋)𝑣𝑚
 𝑏  𝑧 − 𝑣𝑚

(0) 𝑧  (3-33) 

 

 

The solution to non-homogeneous state equation with respect to the thickness 

coordinate z is presented as: 

 𝑅𝑚𝑛 (𝑧) =  𝐺𝑚𝑛  𝑧   𝑅𝑚𝑛  0  +  𝐻𝑚𝑛 (𝑧) ,   𝑧 ∈ [0,] (3-34) 

where 

 𝐺𝑚𝑛  𝑧  = 𝑒 𝐴  ∙𝑧 =  𝐼 +  𝐴  ∙ 𝑧 +
1

2!
 𝐴  2 ∙ 𝑧2 +

1

3!
 𝐴  3 ∙ 𝑧3 + ⋯ 

        = 𝛼0 𝑧  𝐼 + 𝛼1 𝑧  𝐴  + 𝛼2 𝑧  𝐴  
2 + ⋯+ 𝛼𝑘−1 𝑧  𝐴  

𝑘−1 

(3-35) 

 𝐻𝑚𝑛 (𝑧) =  𝑒 𝐴  ∙ 𝑧−𝜏 
𝑧

0

 𝐵𝑚𝑛 (𝜏) 𝑑𝜏 (3-36) 

 𝐺𝑚𝑛  𝑧   is called the transfer matrix of the homogeneous plate which represents the 

relationship between the initial state vector on the top surface and any other state 

vector at coordinate z and  𝐻𝑚𝑛 (𝑧)  is the non-homogeneous vector. The i(z) (i=0, 
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1, 2, …k-1, k is the order of the matrix  𝐴  ) are unknown scalar functions of z. They 

can be determined by replacing the matrix [𝐴 ]  with the eigenvalues i (the i
th

 

eigenvalue) of  𝐴   in Equation (3-35) on the basis of the Cayley-Hamilton theorem 

(Charef and Boucherma, 2011). The unknown boundary functions and their 

derivatives are included in the non-homogeneous vector  𝐵𝑚𝑛 (𝑧) . In order to solve 

the non-homogeneous equation, the determination of non-homogeneous vector 

 𝐵𝑚𝑛 (𝑧)  is inevitable. 

Consider the piezoelectric laminated plate consists of N different material layers. For 

an arbitrary layer i, the non-homogeneous ordinary differential equation by 

following the same procedure as described above can be presented as 

𝑑

𝑑𝑧
 𝑅𝑚𝑛 (𝑧) 𝑖 =  𝐴 𝑖  𝑅𝑚𝑛 (𝑧) 𝑖 +  𝐵𝑚𝑛 (𝑧) 𝑖 (3-37) 

 

The solution to the non-homogeneous ordinary differential Equation (3-37) can be 

obtained if the non-homogeneous vector  𝐵𝑚𝑛 (𝑧) 𝑖  is determined. As shown in 

Equations (3-31) and (3-32), the non-homogeneous vector  𝐵𝑚𝑛 (𝑧) 𝑖  contains 

unknown boundary functions and their derivatives.  

A subdivision approach is subsequently carried out to meet the accuracy requirement 

of the solution. In this approach, the i
th

 physical layer is divided into Ki thin 

mathematical sub-layers and the thickness of each sub-layer is di,j. If the fictitious 

sub-layer is sufficiently thin, it is reasonable to assume that the unknown boundary 

functions are linearly distributed within the thin layers in the local coordinate zi and 

they can be written as: 

𝑣𝑖 ,𝑗
(0,𝑏) 𝑧 = 𝑣𝑖 ,𝑗

 0,𝑏 ,𝑢 ∙  1 −
𝑧

𝑑𝑖 ,𝑗
 + 𝑣𝑖 ,𝑗

 0,𝑏 ,𝑙 ∙  
𝑧

𝑑𝑖 ,𝑗
  

𝑧 ∈  0,𝑑𝑖 ,𝑗  , 𝑖 = 1,2,∙∙∙ 𝑁, 𝑗 = 1,2,∙∙∙ 𝐾𝑖  

(3-38) 

where the subscript i,j denotes the j
th

 thin mathematical layer in the i
th

 physical layer 

of the piezoelectric laminated plate. 𝑣𝑖 ,𝑗
 0,𝑏 ,𝑢

, 𝑣𝑖 ,𝑗
 0,𝑏 ,𝑙

 are the end values of 𝑣𝑖 ,𝑗
(0,𝑏) 𝑧  at 
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the upper (u) and lower (l) surfaces of the j
th

 thin sub-layer, respectively. 𝐾𝑖  denotes 

the number of thin mathematical sub-layers within the i
th

 layer. For a relatively thick 

plate, the number of division depends on the desired accuracy according to Fan 

(1998). As a consequence the errors induced by assumptions in Equation (3-38) are 

controllable.  

For an arbitrary mathematical sub-layer j in the i
th

 layer, the state equation and its 

solution can be presented as: 

𝑑

𝑑𝑧
 𝑅𝑚𝑛 (𝑧) 𝑖,𝑗 =  𝐴 𝑖  𝑅𝑚𝑛 (𝑧) 𝑖 ,𝑗 +  𝐵𝑚𝑛 (𝑧) 𝑖,𝑗  (3-39) 

 𝑅𝑚𝑛 (𝑧) 𝑖,𝑗 =  𝐺𝑚𝑛  𝑧  𝑖,𝑗  𝑅𝑚𝑛  0  𝑖,𝑗 +  𝐹𝑚𝑛 (𝑧) 𝑖,𝑗 ,   𝑧 ∈ [0,𝑑𝑖 ,𝑗 ] (3-40) 

The non-homogeneous vector  𝐵𝑚𝑛 (𝑧) 𝑖,𝑗  in Equation (3-39) can be determined by 

substituting Equation (3-38) into Equations (3-31) and (3-32). 

 

Figure 3.3: Continuity condition of state vectors at the interface of adjacent layers 

 

z 

x 

y 

{Rmn(di)}i,j={Rmn(0)}i,j+1 

Layer-i,j 

 

{Rmn(0)}i,j 

Layer-i,j+1 

 

{Rmn(di)}i,j+1 
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The continuity condition at the interface of adjacent sub-layers is illustrated in 

Figure 3.3 and there is an analogous continuity condition at the interface of the 

adjacent physical layers. These continuity conditions are given: 

 𝑅𝑚𝑛 (𝑑𝑖 ,𝑗 ) 
𝑖 ,𝑗

=  𝑅𝑚𝑛  0  𝑖,𝑗+1 (3-41) 

 𝑅𝑚𝑛 (𝑖) 𝑖 =  𝑅𝑚𝑛  0  𝑖+1 (3-42) 

By using Equation (3-41) recursively the relationship between the state vectors of 

the bottom surface and those of the top surface for the i
th

 layer is presented as 

 𝑅𝑚𝑛 (𝑖) 𝑖 =  𝑀𝑖  𝑅𝑚𝑛  0  𝑖 +  𝑀 𝑖  (3-43) 

where  

 𝑀𝑖 =   𝐺𝑚𝑛 (𝑑𝑖,𝑗 ) 
𝑖 ,𝑗

1

𝑗=𝐾𝑖

, (3-44) 

 

 𝑀 𝑖 =    𝐺𝑚𝑛  𝑑𝑖,𝑗   𝑖,𝑗

2

𝑗=𝐾𝑖

  𝐹𝑚𝑛  𝑑𝑖,1  𝑖,1 +    𝐺𝑚𝑛  𝑑𝑖,𝑗   𝑖,𝑗

3

𝑗=𝐾𝑖

  𝐹𝑚𝑛  𝑑𝑖,2  𝑖,2 

              +⋯+  𝐹𝑚𝑛 (𝑑𝑖,𝐾𝑖) 𝑖,𝐾𝑖
. 

(3-45) 

By employing Equations (3-42) and (3-43) recursively the relationship between the 

state vectors of the bottom and top surfaces of the plate can be obtained 

 𝑅𝑚𝑛 (𝑁) =  𝑀  𝑅𝑚𝑛  0  +  𝑀   (3-46) 

 𝑅𝑚𝑛  0   and  𝑅𝑚𝑛 (𝑁)  are the state vectors of the top and bottom surfaces of the 

piezoelectric plate, respectively.  𝑀  is the state transfer matrix and the non-

homogeneous vector  𝑀   comprises the unknown boundary coefficients 𝑣𝑖 ,𝑗
 0,𝑏 ,𝑢

 and 

𝑣𝑖 ,𝑗
 0,𝑏 ,𝑙

. There are 2 × (𝐾1 + 𝐾2 +∙∙∙ +𝐾𝑁 + 1) unknown coefficients by employing 

the continuity conditions at the interfaces of all layers. The unknown coefficients 

need to be determined by the given mechanical and electric boundary conditions at 

the four edges and the surface conditions on the top and bottom surfaces of the 

piezoelectric plate.  
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3.4 Boundary conditions at top and bottom surfaces of the 

piezoelectric laminated plate 

The top and bottom surfaces of the piezoelectric laminated plate are subjected to 

both mechanical and electric surface conditions, in this study two types of surface 

conditions are employed. 

 

3.4.1 Open-circuit surface condition 

First, the top and bottom surfaces of the laminated piezoelectric plate are open-

circuited, and the top surface is under a uniformly distributed load q0. These surface 

conditions can be presented in terms of state variables as: 

 𝐷𝑚𝑛 (0) 𝑍𝑚𝑛 (0) 𝑋𝑚𝑛 (0) 𝑌𝑚𝑛 (0) T =  0 −𝑞𝑚𝑛 0 0 T  (3-47) 

 𝐷𝑚𝑛 (𝑁) 𝑍𝑚𝑛 (𝑁) 𝑋𝑚𝑛 (𝑁) 𝑌𝑚𝑛 (𝑁) T =  0 0 0 0 T  (3-48) 

where qmn=4q0/(mπ) when n=0, and qmn=0 when n=2, 4, 6···. 

According to Equations (3-46)-(3-48), the following linear algebraic equation can be 

obtained 

 

𝑀31 𝑀32 𝑀37 𝑀38

𝑀41 𝑀42 𝑀47 𝑀48

𝑀51 𝑀52 𝑀57 𝑀58

𝑀61 𝑀62 𝑀67 𝑀68

  

𝑢 𝑚𝑛 (0)
𝑣 𝑚𝑛 (0)
∅𝑚𝑛 (0)
𝑤𝑚𝑛 (0)

 = 𝑞𝑚𝑛  

𝑀34

𝑀44

𝑀54

𝑀64

 −

 
 
 

 
 𝑀
 

3

𝑀 4

𝑀 5

𝑀 6 
 
 

 
 

 (3-49) 

 

3.4.2 Closed-circuit surface condition 

In the second surface condition, the same mechanical load is applied but the top and 

bottom surfaces are grounded. The state variables on the corresponding surfaces can 

be expressed as 
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 𝑍𝑚𝑛 (0) 𝑋𝑚𝑛 (0) 𝑌𝑚𝑛 (0) ∅𝑚𝑛 (0) T =  −𝑞𝑚𝑛 0 0 0 T  (3-50) 

 𝑍𝑚𝑛 (𝑁) 𝑋𝑚𝑛 (𝑁) 𝑌𝑚𝑛 (𝑁) ∅𝑚𝑛 (𝑁) T =  0 0 0 0 T  (3-51) 

 

Considering Equations (3-46), (3-50) and (3-51), the following linear algebraic 

equation  is shown as 

 

𝑀41 𝑀42 𝑀43 𝑀48

𝑀51 𝑀52 𝑀53 𝑀58

𝑀61 𝑀62 𝑀63 𝑀68

𝑀71 𝑀72 𝑀73 𝑀78

  

𝑢 𝑚𝑛 (0)
𝑣 𝑚𝑛 (0)
𝐷𝑚𝑛 (0)
𝑤𝑚𝑛 (0)

 = 𝑞𝑚𝑛  

𝑀44

𝑀54

𝑀64

𝑀74

 −

 
 
 

 
 𝑀
 

4

𝑀 5

𝑀 6

𝑀 7 
 
 

 
 

 (3-52) 

 

Equations (3-49) and (3-52) are two sets of linear algebra equations in terms of 

different state vectors, respectively. The unknown boundary coefficients are 

contained in the term 𝑀  and need to be determined by introducing boundary 

conditions along the edges of the laminate as given in Equations (3-17) and (3-18). 

The expressions of 𝜎𝑥 ,𝜎𝑦 , 𝜏𝑥𝑦 , 𝜏𝑦𝑧 ,𝐷𝑦  are given as follows 

𝜎𝑥 =   [−𝑘9 ∙ 휁 ∙ 𝑢 𝑚𝑛 (𝑧)+𝑘10 ∙ 휂 ∙ 𝑣 𝑚𝑛 (𝑧)

𝑛𝑚

+𝑘11 ∙ 𝐷𝑚𝑛  𝑧  

                        + 𝑘12 ∙ 𝑍𝑚𝑛 (𝑧)] sin 휁𝑥 cos 휂𝑦 

          + {−
𝑘9

2
∙ 𝑏 ∙ [(1 −

𝑦

𝑏
)2 +  

𝑦

𝑏
 

2

] ∙ 휁2 −
2𝑘10

𝑏
}𝑣𝑚

(0) 𝑧 sin 휁𝑥

𝑚

 

(3-53) 

 

𝜎𝑦 =   [−𝑘13 ∙ 휁 ∙ 𝑢 𝑚𝑛 (𝑧)+𝑘14 ∙ 휂 ∙ 𝑣 𝑚𝑛 (𝑧)

𝑛𝑚

+𝑘15 ∙ 𝐷𝑚𝑛  𝑧  

                        + 𝑘16 ∙ 𝑍𝑚𝑛 (𝑧)] sin 휁𝑥 cos 휂𝑦 

          + {[−
𝑘13

2
∙ 𝑏 ∙ (1 −

𝑦

𝑏
)2 ∙ 휁2 −

𝑘14

𝑏
] ∙ 𝑣𝑚

(0) 𝑧 

𝑚

 

                      +[−
𝑘13

2
∙ 𝑏 ∙ (

𝑦

𝑏
)2 ∙ 휁2 +

𝑘14

𝑏
] ∙ 𝑣𝑚

(𝑏) 𝑧 ]} sin 휁𝑥 

(3-54) 
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𝜏𝑥𝑦 =   [−𝑘17 ∙ 휂 ∙ 𝑢 𝑚𝑛 (𝑧)+𝑘17 ∙ 휁 ∙ 𝑣 𝑚𝑛 (𝑧)

𝑛𝑚

] cos 휁𝑥 sin 휂𝑦 (3-55) 

 

𝐷𝑦 =   [𝑘20 ∙ 𝑌𝑚𝑛 (𝑧)−𝑘21 ∙ 휂 ∙ ∅𝑚𝑛 (𝑧)

𝑛𝑚

] sin 휁𝑥 sin 휂𝑦 (3-56) 

 

According to Equations (3-9), (3-10), (3-21), (3-22) and (3-24), the simply 

supported boundary conditions are fulfilled automatically. The boundary conditions 

at the free edges are also satisfied considering Equations (3-24), (3-55) and (3-56) 

except for σy . Detailed verifications of the boundary conditions are given in 

Appendix C and the remaining boundary condition to be determined is  

𝜎𝑦 = 0,         𝑎𝑡  𝑦 = 0,𝑦 = 𝑏 (3-57) 

When y=0 

𝜎𝑦 =  [−𝑘13 ∙ 휁 ∙ 𝑢 𝑚𝑛  𝑧 +𝑘14 ∙ 휂 ∙ 𝑣 𝑚𝑛  𝑧 +𝑘15 ∙ 𝐷𝑚𝑛  𝑧 

𝑛

+ 𝑘16 ∙ 𝑍𝑚𝑛 (𝑧)] 

           +(−
𝑘13 ∙ 𝑏 ∙ 휁

2

2
−
𝑘14

𝑏
) ∙ 𝑣𝑚

 0  𝑧 +
𝑘14

𝑏
∙ 𝑣𝑚

 𝑏  𝑧 = 0 

(3-58) 

When y=b 

𝜎𝑦 =  (−1)𝑛 [−𝑘13 ∙ 휁 ∙ 𝑢 𝑚𝑛  𝑧 +𝑘14 ∙ 휂 ∙ 𝑣 𝑚𝑛  𝑧 +𝑘15 ∙ 𝐷𝑚𝑛  𝑧 

𝑛

+ 𝑘16 ∙ 𝑍𝑚𝑛 (𝑧)] 

           +(
𝑘13 ∙ 𝑏 ∙ 휁

2

2
+
𝑘14

𝑏
) ∙ 𝑣𝑚

 𝑏  𝑧 −
𝑘14

𝑏
∙ 𝑣𝑚

 0  𝑧 = 0 

(3-59) 

Due to the symmetry, 𝑣𝑚
 0  𝑧 = −𝑣𝑚

 𝑏  𝑧 , thus only the boundary condition at y=0 

needs to be satisfied, thus the following condition is obtained: 
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𝜎𝑦 =  [−𝑘13 ∙ 휁 ∙ 𝑢 𝑚𝑛  𝑧 +𝑘14 ∙ 휂 ∙ 𝑣 𝑚𝑛  𝑧 +𝑘15 ∙ 𝐷𝑚𝑛  𝑧 

𝑛

+ 𝑘16 ∙ 𝑍𝑚𝑛 (𝑧)] 

            +(−
𝑘13 ∙ 𝑏 ∙ 휁

2

2
−

2𝑘14

𝑏
)𝑣𝑚

 0  𝑧 = 0 

(3-60) 

 

The state variables at the top surface for open-circuit and closed-circuit surface 

conditions are given as follows, respectively.  

 

𝑢 𝑚𝑛 (0)
𝑣 𝑚𝑛 (0)
𝐷𝑚𝑛 (0)
𝑍𝑚𝑛 (0)

 =  

𝑀11(𝑧) 𝑀12(𝑧) 𝑀17(𝑧) 𝑀18(𝑧)
𝑀21(𝑧) 𝑀22(𝑧) 𝑀27(𝑧) 𝑀28(𝑧)
𝑀31(𝑧) 𝑀32(𝑧) 𝑀37(𝑧) 𝑀38(𝑧)
𝑀41(𝑧) 𝑀42(𝑧) 𝑀47(𝑧) 𝑀48(𝑧)

  

𝑀31 𝑀32 𝑀37 𝑀38

𝑀41 𝑀42 𝑀47 𝑀48

𝑀51 𝑀52 𝑀57 𝑀58

𝑀61 𝑀62 𝑀67 𝑀68

 

−1

 

×

 

 
 
 

𝑀33 𝑀34 𝑀35 𝑀36

𝑀43 𝑀44 𝑀45 𝑀46

𝑀53 𝑀54 𝑀55 𝑀56

𝑀63 𝑀64 𝑀65 𝑀66

  

0
𝑞𝑚𝑛

0
0

 −

 
 
 

 
 𝑀
 

3

𝑀 4

𝑀 5

𝑀 6 
 
 

 
 

 

 
 

−

 

 
 
 

𝑀13(𝑧) 𝑀14(𝑧) 𝑀15(𝑧) 𝑀16(𝑧)
𝑀23(𝑧) 𝑀24(𝑧) 𝑀25(𝑧) 𝑀26(𝑧)
𝑀33(𝑧) 𝑀34(𝑧) 𝑀35(𝑧) 𝑀36(𝑧)
𝑀43(𝑧) 𝑀44(𝑧) 𝑀45(𝑧) 𝑀46(𝑧)

  

0
𝑞𝑚𝑛

0
0

 +

 
 
 

 
 𝑀
 

1(𝑧)

𝑀 2(𝑧)

𝑀 3(𝑧)

𝑀 4(𝑧) 
 
 

 
 

 

 
 

 

(3-61) 

 

 

𝑢 𝑚𝑛 (0)
𝑣 𝑚𝑛 (0)
𝐷𝑚𝑛 (0)
𝑍𝑚𝑛 (0)

 =  

𝑀11(𝑧) 𝑀12(𝑧) 𝑀13(𝑧) 𝑀18(𝑧)
𝑀21(𝑧) 𝑀22(𝑧) 𝑀23(𝑧) 𝑀28(𝑧)
𝑀31(𝑧) 𝑀32(𝑧) 𝑀33(𝑧) 𝑀38(𝑧)
𝑀41(𝑧) 𝑀42(𝑧) 𝑀43(𝑧) 𝑀48(𝑧)

  

𝑀41 𝑀42 𝑀43 𝑀48

𝑀51 𝑀52 𝑀53 𝑀58

𝑀61 𝑀62 𝑀63 𝑀68

𝑀71 𝑀72 𝑀73 𝑀78

 

−1

 

×

 

 
 
 

𝑀44 𝑀45 𝑀46 𝑀47

𝑀54 𝑀55 𝑀56 𝑀57

𝑀64 𝑀65 𝑀66 𝑀67

𝑀74 𝑀75 𝑀76 𝑀77

  

𝑞𝑚𝑛
0
0
0

 −

 
 
 

 
 𝑀
 

4

𝑀 5

𝑀 6

𝑀 7 
 
 

 
 

 

 
 

−

 

 
 
 

𝑀14(𝑧) 𝑀15(𝑧) 𝑀16(𝑧) 𝑀17(𝑧)
𝑀24(𝑧) 𝑀25(𝑧) 𝑀26(𝑧) 𝑀27(𝑧)
𝑀34(𝑧) 𝑀35(𝑧) 𝑀36(𝑧) 𝑀37(𝑧)
𝑀44(𝑧) 𝑀45(𝑧) 𝑀46(𝑧) 𝑀47(𝑧)

  

𝑞𝑚𝑛
0
0
0

 +

 
 
 

 
 𝑀
 

1(𝑧)

𝑀 2(𝑧)

𝑀 3(𝑧)

𝑀 4(𝑧) 
 
 

 
 

 

 
 

 

(3-62) 
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By considering Equations (3-12), (3-60), (3-61) and (3-62), the unknown boundary 

coefficients for each electric surface condition can be solved.  

 

3.5 Conclusions  

To fulfill the continuity conditions between different layers of laminates, three 

displacement components, electrical potential, three interlaminar stresses, and 

transverse electric displacements are chosen as state variables. On the basis of the 

theories of 3D elasticity and piezoelectricity, the non-homogeneous state equation 

including the unknown boundary coefficients is established. The relationship 

between the state variables on the top surface and those on an arbitrary interface is 

obtained by using the transfer matrix. By introducing the loading and boundary 

conditions on the plate, the unknown boundary coefficients in the non-homogeneous 

vectors can be solved simultaneously. It is worth to mention that it is innovative to 

introduce the two electric state variables (Dz and ϕ) in terms of eigen-functions in the 

state equation to solve the bending problem of simply-supported and free-edge 

piezoelectric laminates. Moreover, new associated electric boundary conditions are 

also given and the layer refinement approach is carried out to meet the accuracy 

requirement of the solution. 

Since the 3D state space solution can take into account all the independent elastic 

and piezoelectric constants and satisfy both mechanical and electric boundary 

conditions and guarantee the continuity conditions, the accurate determination of the 

electromechanical coupling in the piezoelectric laminates under the mechanical and 

electrical loading can be revealed.   
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CHAPTER 4 STATE SPACE METHOD FOR INFINITE 

LONG PIEZOELECTRIC LAMINATES WITH FREE 

EDGES UNDER UNIAXIAL EXTENSION 

 

4.1 Introduction 

In the previous chapter, the state space method has been extended to the simply-

supported piezoelectric laminated plate with two opposite free edges under 

transverse loads. The formulation admits the traction-free boundary conditions at the 

free edges and is applicable to thick and thin piezoelectric laminated plates. Inspired 

by the work performed by Zhang et al. (2006) on the cross-ply laminated composite 

under uniform extension and thermal loading, to consider the electromechanical 

coupling behaviour and electric boundary conditions the state equations for a 

piezoelectric laminated plate subjected to uniaxial extension are formulated in this 

chapter. 

 

4.2 Formulation of fundamental state space approach 

 

Figure 4.1: Geometry and coordinate system of a piezoelectric laminated plate 
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As depicted in Figure 4.1, a rectangular piezoelectric laminated plate is subjected to 

a uniform constant axial strain 휀0 and it is assumed to have constant thickness h, 

width b and length a. The principal elastic directions of the plate coincide with the 

axes of the chosen rectangular coordinate system and the fully coupled three-

dimensional constitutive relations of an orthotropic piezoelectric lamina are exactly 

the same as those of Equations (3-1)-(3-4).  

Due to the uniform extension 휀0  and infinite length in the x direction, the state 

variables are independent from the longitudinal coordinate x, as a consequence, the 

linear strain-displacement relations of elasticity and the electric field-electric 

potential relations can be written as: 

휀𝑥 =
𝜕𝑢

𝜕𝑥
= 휀0 ,   휀𝑦 =

𝜕𝑣

𝜕𝑦
 ,   휀𝑧 =

𝜕𝑤

𝜕𝑧
 , 

𝛾𝑦𝑧 =
𝜕𝑤

𝜕𝑦
+
𝜕𝑣

𝜕𝑧
 ,   𝛾𝑥𝑧 =

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
= 0,   𝛾𝑥𝑦 =

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
= 0 , 

𝐸𝑥 = −
𝜕∅

𝜕𝑥
= 0 ,   𝐸𝑦 = −

𝜕∅

𝜕𝑦
 ,   𝐸𝑧 = −

𝜕∅

𝜕𝑧
 . 

(4-1) 

where u, v and w represent displacements in the x, y and z directions, respectively. ∅ 

is electric potential.  

By considering the condition of zero electric body charge 𝑓𝑒  and body forces 𝑓𝑖 , the 

equilibrium equations of elasticity and the Gaussian law of electrostatics can be 

expressed, respectively, as follows: 

𝜎𝑥 ,𝑥 = 0 , 

𝜎𝑦 ,𝑦 + 𝜏𝑦𝑧 ,𝑧 = 0 , 

𝜏𝑦𝑧 ,𝑦 + 𝜎𝑧 ,𝑧 = 0 , 

(4-2) 

𝐷𝑦 ,𝑦 + 𝐷𝑧 ,𝑧 = 0 . (4-3) 
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From Equations (3-3), (3-4) and (4-1), it can be concluded that 𝜏𝑥𝑧 = 0, 𝜏𝑥𝑦 = 0, 

𝐷𝑥 = 0  and other 9 state variables 𝑣 , 𝑤 , 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧 , 𝜏𝑦𝑧 , 𝐷𝑦 , 𝐷𝑧 , ∅  are all 

independent of x. They can be expressed as 𝑣(𝑦, 𝑧) , 𝑤(𝑦, 𝑧) , 𝜎𝑥(𝑦, 𝑧) , 𝜎𝑦(𝑦, 𝑧), 

𝜎𝑧(𝑦, 𝑧), 𝜏𝑦𝑧 (𝑦, 𝑧), 𝐷𝑦(𝑦, 𝑧), 𝐷𝑧(𝑦, 𝑧), ∅(𝑦, 𝑧).  

The interlaminar stresses 𝜎𝑧(𝑦, 𝑧) and 𝜏𝑦𝑧 (𝑦, 𝑧) are significant and continuous at the 

interface of dissimilar materials thus chosen as state vectors in the formulation. By 

eliminating the in-plane stresses 𝜎𝑥  and 𝜎𝑦 , and the in-plane electric displacement 

𝐷𝑦  in the x-y plane, the differentials of the displacements v and w, and the transverse 

stresses 𝜎𝑧  and 𝜏𝑦𝑧 , and the electric variables 𝐷𝑧  and ∅ , with respect to the z 

coordinate can be derived.  

Let 𝛽 =
𝜕

𝜕𝑦
, from Equation  (4-1) and the third equations of the matrix in 

Equations (3-3) and (3-4), the following relations (Appendix C) can be obtained: 

𝜕

𝜕𝑧
 
𝑤
∅ =  

𝑘1
′ 𝛽 𝑘2

′ 𝑘3
′

𝑘5
′ 𝛽 𝑘6

′ 𝑘7
′   

𝑣
𝜎𝑧
𝐷𝑧
 +  

𝑘4
′

𝑘8
′  휀0 (4-4) 

By substituting Equation (4-4) into Equations (3-3) and (3-4), the in-plane stresses 

and electric displacement are presented: 

 
𝜎𝑥
𝜎𝑦
 =  

𝑘9
′ 𝛽 𝑘10

′ 𝑘11
′

𝑘13
′ 𝛽 𝑘14

′ 𝑘15
′   

𝑣
𝜎𝑧
𝐷𝑧
 +  

𝑘12
′

𝑘16
′  휀0 (4-5) 

𝐷𝑦 = 𝑘17
′ ∙ 𝜏𝑦𝑧 + 𝑘18

′ ∙ 𝛽∅ (4-6) 

 

The coefficients 𝑘𝑖
′  in the matrix are the constants that are only determined by the 

material property of the laminate. All the constants 𝑘𝑖
′  are given as follows: 
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𝑘1
′ =

−𝑒32𝑒33 − 𝐶23 ∈33

𝑒33
2 + 𝐶33 ∈33

,      𝑘2
′ =

∈33

𝑒33
2 + 𝐶33 ∈33

,      𝑘3
′ =

𝑒33

𝑒33
2 + 𝐶33 ∈33

 

𝑘4
′ =

−𝑒31𝑒33 − 𝐶13 ∈33

𝑒33
2 + 𝐶33 ∈33

,     𝑘5
′ =

𝐶33𝑒32 − 𝐶23𝑒33

𝑒33
2 + 𝐶33 ∈33

,   𝑘6
′ =

𝑒33

𝑒33
2 + 𝐶33 ∈33

 

𝑘7
′ =

−𝐶33

𝑒33
2 + 𝐶33 ∈33

,      𝑘8
′ =

𝐶33𝑒31 − 𝐶13𝑒33

𝑒33
2 + 𝐶33 ∈33

,      𝑘9
′ = 𝐶12 + 𝑘1

′ 𝐶13 + 𝑘5
′ 𝑒31 

𝑘10
′ = 𝑘2

′ 𝐶13 + 𝑘6
′ 𝑒31 ,    𝑘11

′ = 𝑘3
′ 𝐶13 + 𝑘7

′ 𝑒31 ,     𝑘12
′ = 𝐶11 + 𝑘4

′ 𝐶13 + 𝑘8
′ 𝑒31 

𝑘13
′ = 𝐶22 + 𝑘1

′ 𝐶23 + 𝑘5
′ 𝑒32 ,    𝑘14

′ = 𝑘2
′ 𝐶23 + 𝑘6

′ 𝑒32 ,     𝑘15
′ = 𝑘3

′ 𝐶23 + 𝑘7
′ 𝑒32  

𝑘16
′ = 𝐶12 + 𝑘4

′ 𝐶23 + 𝑘8
′ 𝑒32 ,     𝑘17

′ =
𝑒24

𝐶44
,    𝑘18

′ = −
𝑒24

2

𝐶44
−∈22 ,  

𝑘19
′ =

1

𝐶44
,      𝑘20

′ = −
𝑒24

𝐶44
,      𝑘21

′ = −1. 

(4-7) 

Considering the equilibrium equations of elasticity and the Gaussian law of 

electrostatics and Equations (3-3), (4-4), (4-5) and (4-6), yields the following first-

order non-homogeneous partial differential equation: 

𝜕

𝜕𝑧
 𝑅 =  𝐴  𝑅 +  𝐵  (4-8) 

 𝑅  represents the state vector of the piezoelectric plate and contains the mechanical 

and electric variables which need to fulfill the continuity conditions at the interface 

of the laminates. And the state vector  𝑅  can be expressed as: 

 𝑅 =  𝑣 𝐷𝑧 𝜎𝑧 𝜏𝑦𝑧 ∅ 𝑤 𝑇 (4-9) 

The system matrix  𝐴  has the following form: 

 𝐴 =  
0 𝐴1

𝐴2 0
  (4-10) 

where 

 𝐴1 =  

𝑘19
′ 𝑘20

′ 𝛽 𝑘21
′ 𝛽

−𝑘17
′ 𝛽 −𝑘18

′ 𝛽2 0
−𝛽 0 0

  (4-11) 
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 𝐴2 =  

−𝑘13
′ 𝛽2 −𝑘15

′ 𝛽 −𝑘14
′ 𝛽

𝑘5
′ 𝛽 𝑘7

′ 𝑘6
′

𝑘1
′ 𝛽 𝑘3

′ 𝑘2
′

  (4-12) 

 

And the non-homogeneous vector  𝐵  is written as 

 𝐵 =

 
 
 

 
 

0
0
0
0
𝑘8
′

𝑘4
′  
 
 

 
 

휀0 (4-13) 

 

4.3 Boundary conditions and analytical solution 

The piezoelectric laminate has the traction-free and electric open-circuit boundary 

conditions at y=0, b. The following boundary conditions must be satisfied: 

𝜎𝑦 = 𝜏𝑥𝑦 = 𝜏𝑦𝑧 = 𝐷𝑦 = 0,         𝑎𝑡  𝑦 = 0,𝑦 = 𝑏 (4-14) 

The displacement 𝑣(𝑦, 𝑧) of each layer can be expressed as: 

𝑣(𝑦, 𝑧) = 𝑣  𝑦, 𝑧 + (1 −
2𝑦

𝑏
) ∙ 𝑣 0  𝑧  (4-15) 

where 𝑣 0  𝑧  is the unknown boundary function which can be determined by 

imposing traction free conditions and open-circuit conditions on the free edges. The 

six state variables can be expressed in terms of eigen-functions as follows: 
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𝑣 (𝑦, 𝑧) =  𝑣 𝑛
𝑛

 𝑧 sin 휂𝑦 ,           𝜏𝑦𝑧 (𝑦, 𝑧) =  𝑌𝑛
𝑛

 𝑧 sin 휂𝑦 

𝐷𝑧(𝑦, 𝑧) =  𝐷𝑛
𝑛

 𝑧 cos 휂𝑦 ,        ∅(𝑦, 𝑧) =  ∅𝑛
𝑛

 𝑧 cos 휂𝑦 

𝜎𝑧(𝑦, 𝑧) =  𝑍𝑛
𝑛

 𝑧 𝑐𝑜𝑠 휂𝑦 ,         𝑤(𝑦, 𝑧) =  𝑤𝑛

𝑛

 𝑧 𝑐𝑜𝑠 휂𝑦 

(4-16) 

The assumed eigen-functions in the series are so chosen that the traction-free and 

open-circuit boundary conditions at free edges can be satisfied automatically. The 

function contained in the unknown boundary component from Equation (4-15) is a 

linear function which can guarantee sufficiently accurate results (Fan, 1998) and can 

be expressed in terms of eigen-functions as follows: 

𝑦 = − 
2𝑏 cos𝑛𝜋

𝑛𝜋

∞

𝑛=0

sin 휂𝑦 (4-17) 

where 휂 =
𝑛𝜋

𝑏
, since a uniformly distributed extension is applied, displacement v is 

zero at y=b/2. 

By introducing Equations (4-15)-(4-17), for an arbitrary n the first-order non-

homogeneous ordinary differential equation is obtained and the detailed derivation 

of this equation is given in Appendix D: 

𝑑

𝑑𝑧
 𝑅𝑛(𝑧) =  𝐴   𝑅𝑛(𝑧) +  𝐵 𝑛(𝑧)  (4-18) 

where 

 𝑅𝑛 𝑧  =  𝑣 𝑛(𝑧) 𝐷𝑛(𝑧) 𝑍𝑛(𝑧) 𝑌𝑛(𝑧) ∅𝑛(𝑧) 𝑤𝑛(𝑧) 𝑇 (4-19) 

 

 𝐴  =  
0 𝐴 1
𝐴 2 0

  (4-20) 
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 𝐴 1 =  

𝑘19
′ −𝑘20

′ 휂 −𝑘21
′ 휂

−𝑘17
′ 휂 𝑘18

′ 휂2 0
−휂 0 0

  (4-21) 

 𝐴 2 =  

𝑘13
′ 휂2 𝑘15

′ 휂 𝑘14
′ 휂

𝑘5
′ 휂 𝑘7

′ 𝑘6
′

𝑘1
′ 휂 𝑘3

′ 𝑘2
′

  (4-22) 

 

The non-homogeneous vectors are expressed as follows: 

𝐵 𝑛(𝑧) =

 
 
 
 

 
 
 

0
0
0
0

−
2

𝑏
∙ 𝑘5

′ ∙ 𝑣 0  𝑧 + 𝑘8
′ ∙ 휀0

−
2

𝑏
∙ 𝑘1

′ ∙ 𝑣 0  𝑧 + 𝑘4
′ ∙ 휀0 

 
 
 

 
 
 

, (𝑛 = 0) (4-23) 

 

𝐵 𝑛(𝑧) =

 
  
 

  
 
−2 (1 + cos𝑛𝜋)

𝑛𝜋
∙
𝑑𝑣 0  𝑧 

𝑑𝑧
0
0
0
0
0  

  
 

  
 

, (𝑛 ≠ 0) (4-24) 

The solution of the non-homogeneous state equation with respect to the thickness 

coordinate z is presented as: 

 𝑅𝑛(𝑧) =  𝐺𝑛 𝑧   𝑅𝑛 0  +  𝐹𝑛(𝑧)  (4-25) 

where 

 𝐺𝑛 𝑧  = 𝑒 𝐴  ∙𝑧 =  𝐼 +  𝐴  ∙ 𝑧 +
1

2!
 𝐴  2 ∙ 𝑧2 +

1

3!
 𝐴  3 ∙ 𝑧3 + ⋯ 

               = 𝛼0 𝑧  𝐼 + 𝛼1 𝑧  𝐴  + 𝛼2 𝑧  𝐴  
2 + ⋯+ 𝛼𝑘−1 𝑧  𝐴  

𝑘−1 

(4-26) 
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 𝐹𝑛(𝑧) =  𝑒 𝐴  ∙ 𝑧−𝜏 
𝑧

0

 𝐵 𝑛(𝜏) 𝑑𝜏 (4-27) 

The transfer matrix of the homogeneous plate  𝐺𝑛 𝑧   represents the relationship 

between the initial state vector on the top surface and any other state vector at the 

coordinate z and  𝐹𝑛(𝑧)  is the non-homogeneous vector. The coefficient i(z) (i=0, 

1, 2, …k-1, k is the order of the matrix  𝐴  ) are unknown scalar functions of z. They 

can be determined by replacing the matrix [𝐴 ]  with the eigenvalues i (the i
th

 

eigenvalue) of  𝐴   in Equation (4-26) on the basis of the Cayley-Hamilton theorem. 

The unknown boundary function and its derivatives are contained in the non-

homogeneous vector  𝐵 𝑛(𝑧) . In order to solve the non-homogeneous equation, the 

determination of non-homogeneous vector  𝐵 𝑛(𝑧)  is necessary. 

Suppose the piezoelectric laminated plate consists of N different layers. For an 

arbitrary layer i, the non-homogeneous ordinary differential equation by following 

the same procedure as described above can be presented as: 

𝑑

𝑑𝑧
 𝑅𝑛(𝑧) 𝑖 =  𝐴 𝑖  𝑅𝑛(𝑧) 𝑖 +  𝐵 𝑛(𝑧) 𝑖 (4-28) 

 

When the non-homogeneous vector  𝐵 𝑛(𝑧) 𝑖  is determined, the solution to the non-

homogeneous ordinary differential Equation (4-28) can be solved. The non-

homogeneous vector  𝐵 𝑛(𝑧) 𝑖  contains the unknown boundary function and its 

derivatives as shown in Equations (4-23) and (4-24). 

In order to meet the accuracy requirement of the solution in practice, a subdivision 

approach may be needed to solve the unknown boundary function. In this approach, 

the i
th

 physical layer is further divided into Ki thin mathematical sub-layers and the 

thickness of each sub-layer is 𝑑𝑖 ,𝑗 . With sufficiently thin fictitious sub-layers, the 

unknown boundary function can be assumed to be linearly distributed within the thin 

layers in the local coordinate zi and it can be expressed as: 
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𝑣𝑖 ,𝑗
(0,𝑏) 𝑧 = 𝑣𝑖 ,𝑗

 0,𝑏 ,𝑢 ∙  1 −
𝑧

𝑑𝑖 ,𝑗
 + 𝑣𝑖 ,𝑗

 0,𝑏 ,𝑙 ∙  
𝑧

𝑑𝑖 ,𝑗
 , 

𝑧 ∈  0,𝑑𝑖 ,𝑗  , 𝑖 = 1,2,∙∙∙ 𝑁, 𝑗 = 1,2,∙∙∙ 𝐾𝑖  

(4-29) 

where the subscript i,j denotes the j
th

 thin mathematical layer in the i
th

 physical layer 

of the piezoelectric laminated plate. 𝑣𝑖 ,𝑗
 0,𝑏 ,𝑢

, 𝑣𝑖 ,𝑗
 0,𝑏 ,𝑙

 are the end values of 𝑣𝑖 ,𝑗
(0,𝑏) 𝑧  at 

the upper (u) and lower (l) surfaces of the j
th

 thin sub-layer, respectively. 𝐾𝑖  denotes 

the number of thin mathematical sub-layers within the i
th

 layer. For a relatively thick 

plate, the number of division depends on the desired accuracy (Fan, 1998). It also 

should be mentioned that 𝑣 0  𝑧 = −𝑣 𝑏  𝑧  is applied due to the symmetric 

loading and boundary conditions and thus only one unknown boundary function 

𝑣 0  𝑧  needs to be determined.  

For an arbitrary mathematical sub-layer j in the i
th

 layer, the state equation and its 

solution can be presented as: 

𝑑

𝑑𝑧
 𝑅𝑛(𝑧) 𝑖 ,𝑗 =  𝐴 𝑖  𝑅𝑛(𝑧) 𝑖,𝑗 +  𝐵 𝑛(𝑧) 𝑖 ,𝑗  (4-30) 

 𝑅𝑛(𝑧) 𝑖,𝑗 =  𝐺𝑛 𝑧  𝑖 ,𝑗  𝑅𝑛 0  𝑖,𝑗 +  𝐹𝑛(𝑧) 𝑖,𝑗 ,   𝑧 ∈ [0,𝑑𝑖 ,𝑗 ] (4-31) 

The non-homogeneous vector  𝐵 𝑛(𝑧) 𝑖,𝑗  in Equation (4-30) can be determined by 

substituting Equation (4-29) into Equations (4-23) and (4-24). 

The continuity condition of state vectors at the interfaces of adjacent layers (depicted 

in Figure 3.3) and the continuity condition at the interfaces of adjacent sub-layers 

need to be satisfied, and these continuity conditions are written as: 

 𝑅𝑛(𝑖) 𝑖 =  𝑅𝑛 0  𝑖+1 (4-32) 

 𝑅𝑛(𝑑𝑖 ,𝑗 ) 
𝑖 ,𝑗

=  𝑅𝑛 0  𝑖 ,𝑗+1 (4-33) 
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By using Equation (4-33) recursively the relationship between the state vector of the 

bottom surface and that of the top surface for the i
th

 layer is presented as: 

 𝑅𝑛(𝑖) 𝑖 =  𝑀𝑖  𝑅𝑛 0  𝑖 +  𝑀 𝑖  (4-34) 

where  

 𝑀𝑖 =   𝐺𝑛(𝑑𝑖,𝑗 ) 
𝑖,𝑗

1

𝑗=𝐾𝑖

, (4-35) 

 𝑀 𝑖 =    𝐺𝑛 𝑑𝑖 ,𝑗  𝑖 ,𝑗

2

𝑗=𝐾𝑖

  𝐹𝑛 𝑑𝑖 ,1  𝑖 ,1 +    𝐺𝑛 𝑑𝑖 ,𝑗   𝑖 ,𝑗

3

𝑗=𝐾𝑖

  𝐹𝑛 𝑑𝑖 ,2  𝑖 ,2 

              +⋯+  𝐹𝑛(𝑑𝑖 ,𝐾𝑖) 𝑖 ,𝐾𝑖
. 

(4-36) 

Similarly, considering Equations (4-32) and (4-34) the relationship between the state 

vectors of the bottom and top surfaces of the plate can be established: 

 𝑅𝑛(𝑁) =  𝑀  𝑅𝑛 0  +  𝑀   (4-37) 

 𝑅𝑛 0   and  𝑅𝑛(𝑁)  are the state vectors of the top and bottom surfaces of the 

piezoelectric plate, respectively.  𝑀  is the state transfer matrix and the non-

homogeneous vector  𝑀   comprises the unknown boundary coefficients 𝑣𝑖 ,𝑗
 0,𝑏 ,𝑢

 and 

𝑣𝑖 ,𝑗
 0,𝑏 ,𝑙

. There are (𝐾1 + 𝐾2 +∙∙∙ +𝐾𝑁 + 1) unknown coefficients by employing the 

continuity conditions at all the interfaces of layers. As mentioned before, the 

unknown coefficients need to be determined by the traction-free and open-circuited 

boundary conditions at the free edge and the surface conditions on the top and 

bottom surfaces of the piezoelectric laminate.  

 

4.4 Boundary conditions at top and bottom surfaces of 

piezoelectric laminated plate 

The top and bottom surfaces of the piezoelectric laminate are subjected to both 

mechanical and electric surface conditions and two types of boundary conditions are 

considered in this study. 
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4.4.1 Open-circuit surface condition 

First, the top and bottom surfaces of the laminated piezoelectric laminate are 

considered as traction-free and open-circuited and they can be presented in terms of 

state variables as 

 𝐷𝑛(0) 𝑍𝑛(0) 𝑌𝑛(0) T =  0 0 0 T  (4-38) 

 𝐷𝑛(𝑁) 𝑍𝑛(𝑁) 𝑌𝑛(𝑁) T =  0 0 0 T  (4-39) 

Considering Equations (4-37)-(4-39), the following linear algebraic equation can be 

obtained 

 
𝑀21 𝑀25 𝑀26

𝑀31 𝑀35 𝑀36

𝑀41 𝑀45 𝑀46

  

𝑣 𝑛(0)
∅𝑛(0)
𝑤𝑛(0)

 = − 

𝑀 2

𝑀 3

𝑀 4

  (4-40) 

 

4.4.2 Closed-circuit surface condition 

For the second surface condition, the top surface and the bottom surface are both 

grounded, leading to the closed-circuit boundary conditions. Moreover, the traction-

free conditions are imposed on both surfaces. Such surface conditions can be written 

as: 

 𝑍𝑛(0) 𝑌𝑛(0) ∅𝑛(0) T =  0 0 0 T  (4-41) 

 𝑍𝑛(𝑁) 𝑌𝑛(𝑁) ∅𝑛(𝑁) T =  0 0 0 T  (4-42) 

According to Equations (4-37), (4-41) and (4-42), the following linear algebraic 

equation is shown as: 

 
𝑀31 𝑀32 𝑀26

𝑀41 𝑀42 𝑀46

𝑀51 𝑀52 𝑀56

  

𝑣 𝑛(0)
𝐷𝑛(0)
𝑤𝑛(0)

 = − 

𝑀 3

𝑀 4

𝑀 5

  (4-43) 

 

There are two sets of linear algebra equations in terms of different state vectors in 

Equations (4-40) and (4-43), respectively. The unknown boundary coefficients are 
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included in the term 𝑀  and need to be determined by introducing boundary 

conditions along the edges of the laminate. 

The expressions of 𝜎𝑦  and 𝐷𝑦  are given as follows: 

𝜎𝑦 =  [𝑘13
′ ∙ 휂 ∙ 𝑣 𝑛(𝑧)+𝑘14

′ ∙ 𝑍𝑛(𝑧)

𝑛

+𝑘15
′ ∙ 𝐷𝑛 𝑧 ] cos 휂𝑦 

           +𝑘16
′ ∙ 휀0 − 𝑘13

′ ∙
2

𝑏
∙ 𝑣 0  𝑧  

(4-44) 

 

𝐷𝑦 =  [𝑘17
′ ∙ 휂 ∙ 𝑌𝑛(𝑧)−𝑘18

′ ∙ 휂 ∙ ∅𝑛(𝑧)

𝑛

] sin 휂𝑦 (4-45) 

 

It is apparent that from Equations (4-6) and (4-16), 𝜏𝑥𝑦 = 𝜏𝑦𝑧 = 𝐷𝑦 = 0 are satisfied 

automatically along the free edges at y=0, b. The remaining boundary condition to 

be fulfilled at the free edges is: 

𝜎𝑦 = 0,        at y=0, y=b (4-46) 

 

Due to the symmetry, 𝑣 0  𝑧 = −𝑣 𝑏  𝑧 , thus only the boundary condition at y=0 

needs to be determined, and the following condition is obtained: 

𝜎𝑦 =  [𝑘13
′ ∙ 휂 ∙ 𝑣 𝑛 𝑧 + 𝑘14

′ ∙ 𝑍𝑛(𝑧)

𝑛

+ 𝑘15
′ ∙ 𝐷𝑛 𝑧 ] 

           +𝑘16
′ ∙ 휀0 − 𝑘13

′ ∙
2

𝑏
∙ 𝑣 0  𝑧 = 0 

(4-47) 

The state variables at the top surface for open-circuit and closed-circuit surface 

conditions are presented: 
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𝑣 𝑛(0)
𝐷𝑛(0)
𝑍𝑛(0)

 = − 

𝑀11(𝑧) 𝑀15(𝑧) 𝑀16(𝑧)
𝑀21(𝑧) 𝑀25(𝑧) 𝑀26(𝑧)
𝑀31(𝑧) 𝑀35(𝑧) 𝑀36(𝑧)

  

𝑀21 𝑀25 𝑀26

𝑀31 𝑀35 𝑀36

𝑀41 𝑀45 𝑀46

 

−1

 

𝑀 2

𝑀 3

𝑀 4

 +  

𝑀 1(𝑧)

𝑀 2(𝑧)

𝑀 3(𝑧)

  (4-48) 

 

 

𝑣 𝑛(0)
𝐷𝑛(0)
𝑍𝑛(0)

 = − 

𝑀11(𝑧) 𝑀12(𝑧) 𝑀16(𝑧)
𝑀21(𝑧) 𝑀22(𝑧) 𝑀26(𝑧)
𝑀31(𝑧) 𝑀32(𝑧) 𝑀36(𝑧)

  

𝑀31 𝑀32 𝑀36

𝑀41 𝑀42 𝑀46

𝑀51 𝑀52 𝑀56

 

−1

 

𝑀 3

𝑀 4

𝑀 5

 +  

𝑀 1(𝑧)

𝑀 2(𝑧)

𝑀 3(𝑧)

  (4-49) 

For each electric surface condition, the unknown boundary coefficients can be 

determined by considering Equations (4-25), (4-47), (4-48) and (4-49). 

 

4.5 Conclusions 

This chapter dealt with the application of the state space method to the piezoelectric 

laminated plate under uniaxial extension and presented a new analytical solution that 

accounts for all the independent elastic and piezoelectric constants and guarantees 

the continuity conditions of all interlaminar stresses across interfaces between 

different material layers and traction-free boundary conditions at the free edges. The 

two electric state variables in terms of eigen-functions are employed in the state 

equation to account for the electromechanical coupling and free edge effects for the 

first time.  
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CHAPTER 5 NUMERICAL ANALYSIS OF SIMPLY-

SUPPORTED PIEZOELECTRIC LAMINATES WITH 

FREE EDGES UNDER TRANSVERSE LOADS 

 

5.1 Introduction 

As mentioned in Chapter 3, many three-dimensional solutions are focussed on the 

piezoelectric laminates with fully simply-supported and electrically grounded 

boundary conditions where no singular effect is observed. Such solutions can be 

used for validating new or improved plate theories and finite element formulations 

(Vel and Batra, 2000). At the free edge of the piezoelectric laminate, both the 

traction-free mechanical boundary condition and the open-circuit electric boundary 

condition wherein the normal component of the electric displacement vanishes 

should be satisfied. Moreover, considering the electromechanical coupling effect and 

material discontinuity the three-dimensional analysis of the static behaviour of the 

piezoelectric laminated plate becomes more complicated by comparison with those 

of laminated plates. By using the exact analytical solution obtained in Chapter 3, the 

three-dimensional numerical analysis on the general behaviour and the 

electromechanical as well as edge effects of simply-supported piezoelectric 

laminated plates with free edges is carried out in this chapter.  

 

5.2 Simply-supported three-layered laminated piezoelectric plate 

with free edges  

In this section, particular attention is paid to the accurate description of the coupling 

electromechanical field in the thick plate. As shown in Figure 5.1, a three-layered 

laminated piezoelectric plate is considered: the length a is the same as the width b 

and the total thickness is h, and h1=h3=0.2h for the two identical face layers and 

h2=0.6h for the core layer. This plate is simply-supported (SS) and grounded at x=0 
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and x=a, and free at y=0 and y=b. In addition, a uniformly distributed pressure q is 

applied on the top surface of the plate. 

 

 

 

 

 

 

 

Figure 5.1: Geometry and coordinate system of a three-layered piezoelectric 

laminate 

 

The material BaTiO3 given by Lee and Jiang (1996) is chosen for the core layer 

(Table 5.1). According to Sheng et al. (2007) the two face layers are distinguished 

by the ratio of 𝛿 = 𝐶𝑖𝑗
(𝐹)

/𝐶𝑖𝑗
(𝐶)

, 𝜆 = 𝑒𝑖𝑗
(𝐹)

/𝑒𝑖𝑗
(𝐶)

 and 𝜅 = 𝜖𝑖𝑗
(𝐹)

/𝜖𝑖𝑗
(𝐶)

, where F and C 

denote face and core, respectively. In the section, 𝛿 = 4, 𝜆 = 2 and 𝜅 = 1 are taken 

in the analysis of this three-layered piezoelectric laminate.  

a 

b 

x 

z 
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h2 h 
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Table 5.1: Mechanical and electrical properties of BaTiO3 (Lee and Jiang, 1996) 

Elastic Stiffness 

(GPa) 

Piezoelectric Coefficients 

(C/m
2
) 

Dielectric Properties 

(CV/m) 

C11=C22=166 e31=e32=-4.4 є11=1.12×10
-8

 

C12=77 e33=18.6 є22=1.12×10
-8

 

C33=162 e24=e15=11.6 є33=1.26×10
-8

 

C13=C23=78     

 

  

C44=C55=43     

 

  

C66=43         

 

The present results are compared with those from the finite element analysis 

performed by ABAQUS. And the following non-dimensionalization is adopted in 

presenting the analytical and numerical results: 

 𝑢 , 𝑣 ,𝑤  =
𝐶11
𝐶

𝑞
 𝑢, 𝑣,𝑤 ,  

 𝜎 𝑥 ,𝜎 𝑦 ,𝜎 𝑧 , 𝜏 𝑥𝑧 , 𝜏 𝑦𝑧  =  𝜎𝑥 ,𝜎𝑦 ,𝜎𝑧 , 𝜏𝑥𝑧 , 𝜏𝑦𝑧  /𝑞,  

 ∅  =
𝑒33
𝐶

𝑞
∅, (5-1) 

 𝐸 𝑥 ,𝐸 𝑦 ,𝐸 𝑧 =
𝑒33
𝐶

𝑞
 𝐸𝑥 ,𝐸𝑦 ,𝐸𝑧 ,  

 𝐷 𝑥 ,𝐷 𝑦 ,𝐷 𝑧 =
𝐶11
𝐶

𝑞𝑒33
𝐶  𝐷𝑥 ,𝐷𝑦 ,𝐷𝑧 .  

 

To assess the influence of thickness to length ratio h/a on the coupling 

electromechanical response in the thick piezoelectric laminated plate, corresponding 

analytical models are established with respect to different h/a, which is taken as 0.2, 

0.4 and 0.6. Moreover, both open-circuit and closed-circuit surface conditions are 

considered to investigate the 3D variations of the mechanical and electrical 

quantities. 
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5.2.1 The finite element model  

In the immediate vicinity of material layer interfaces and free edges, the 3D 

electromechanical coupling effect and the free-edge effect in a piezoelectric laminate 

lead to a more complex phenomenon due to the existence of material and geometric 

discontinuities at the intersection of the interface and the free edge in composite 

laminates. In order to provide faithful results to validate the present 3D state space 

solution, the finite element method was developed and implemented by a 

commercial FEM package ABAQUS.  

 

5.2.1.1 Element types and boundary conditions 

 

 

 

 

 

 

 

Figure 5.2: Boundary conditions of a three-layered piezoelectric laminate in finite 

element modelling 

 

In the ABAQUS element library, there are many different types of elements 

including hexahedron (brick), shell, contact and beam elements. Among numerous 

successful applications of finite element simulations to study the behaviour of 

composite structures, Wu and Kamis (2012) carried out an extensive and 

comparative investigation on the numerical techniques in analyzing the 3D static 

behaviour of composite laminated plates with clamped edges by choosing various 

 

 

1 

2 

  

U2=0  

U3=0 

ϕ=0 

 

U1=0  

UR2=0  

 

U2=0 

UR1=0  

 

 

 

Quarter 



102 

 

types of elements. In their study, the thick shell element S8R (the 8-node quadratic 

shell element with reduced integration), the 3D solid elements C3D8 (3D 8-node 

linear brick element) and C3D20 (3D 20-node quadratic brick element) were utilized 

in the simulations for comparison. The comparison between the results from the 

exact solution and those from FEM indicates that C3D20 provides higher accuracy 

than C3D8 and captures stress concentrations more effectively particularly in the 

case of bending-dominated problems where the shear locking phenomenon is 

commonly associated with C3D8 (ABAQUS, 2010).  

Moreover, the ABAQUS/Standard has the capability to perform a fully coupled 

piezoelectric analysis and provides the piezoelectric elements which have both 

displacements and electric potentials as degrees of freedom. C3D20E element which 

is a 20-node quadratic piezoelectric brick element with displacement degrees of 

freedom and an additional electric potential degree of freedom was offered by 

ABAQUS/Standard and these degrees of freedom allow fully coupled 

electromechanical analyses. In addition, regular stress/displacement elements can be 

used in parts of the model where piezoelectric effects are not taken into account.  

In the present research, thick piezoelectric laminated plates with free edges are 

considered and significant stress gradients may take place due to the free-edge effect. 

Due to the fact that both electromechanical coupling and free-edge effects arise in 

the 3D analysis of the piezoelectric laminated plate, and through the comparative 

modelling with the aforementioned shell and brick elements, it is found that C3D20 

is suitable for representing the general behaviour of the composite laminated plate 

and also gives an accurate prediction of stress gradients at the clamped and free 

edges. Hence, the 20-node quadratic piezoelectric brick element is chosen. Similar to 

displacement and rotation degrees of freedom, the electric potential at a node 

(degree of freedom 9) should also be prescribed with an appropriate boundary 

condition as shown in Figure 5.2. Moreover, perfect bonding is assumed between the 

physical layers, and tie connection was chosen to simulate such interaction to merge 

the nodes at the interfaces.  
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5.2.1.2 Mesh convergence 

In the finite element modelling, a finer mesh theoretically results in a more accurate 

solution on the basis of algorithm itself. However, as mesh is made finer, the more 

computational effort is inevitable and computational cumulative error will increase. 

To balance the accuracy and computing resources satisfactorily, a sensitivity 

analysis was conducted to determine the appropriate element number of mesh. 

 

 

Figure 5.3: Biased mesh of one quarter of the three-layered piezoelectric laminated 

thick plate with h/a=0.6 

 

In the mesh sensitivity study, the three-layered piezoelectric laminated thick plate 

with h/a=0.6 is chosen. Due to symmetries in geometries, material properties and 

loading and boundary conditions, only one quarter of the piezoelectric laminate 

needs to be analyzed (Figure 5.2). The dimension of this plate is given as: a=10mm, 

b=10mm and h=0.6. In general, to get more reasonable results, it is necessary to 

refine the mesh in the regions close to the surfaces or interfaces. In ABAQUS, the 

biased mesh allows the user to define the size of the coarsest and finest elements or 
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the number of elements and the ratio of the two sizes. The mesh size can be chosen 

from the maximum to minimum. By using this biased mesh, it is convenient to refine 

the mesh in the concerned region and retain the coarse mesh away from this region. 

Figure 5.3 illustrates the double biased meshes that are applied in the three-layered 

piezoelectric laminated plate with a biased ratio of two. It is clear that the size of the 

finest elements at the surfaces of each layer is half of that of the coarsest elements in 

the middle of each layer in the z direction. The numerical result and computational 

time of the finite element simulation were obtained with an Intel Core i7 (3.40GHz) 

processer and 16GB RAM. 

 

Table 5.2: Mesh options for one quarter of the three-layered piezoelectric laminated 

plate with h/a=0.6 

Mesh Option Mesh Size Total Element No. CPU Time (sec) 

A 0.015×0.015×0.015 43560 600 

B 

Coarsest: 0.02×0.02×0.02 

Finest: 0.02×0.02×0.005 

34375 380 

C 

Coarsest: 0.02×0.02×0.02 

Finest: 0.02×0.02×0.01 

25625 300 

D 0.02×0.02×0.02 18750 180 
E 0.03×0.03×0.03 5780 55 

 

This stacked solid model consists of three layers through the thickness and each 

single-layer has the same mesh in the x and y directions but the non-uniform 

discretization in the z direction. The results from different mesh options are shown in 

Table 5.2 and Figure 5.4. In this case, for comparison the biased ratio (BR), i.e. the 

ratio between the maximum and the minimum size of elements in the z direction, is 

taken as 1 (Mesh option A, Mesh option D and Mesh option E), 2 (Mesh option C), 

4 (Mesh option B) respectively as shown in Table 5.2. 

For the displacement-based finite element method the convergence of the 

displacements is faster than that of stresses. Hence, the through-thickness 

distributions of the interlaminar shear stress 𝜏𝑥𝑧  at x=0 and y=0 for each mesh option 
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are evaluated and compared with the present analytical solution by using the state 

space analysis (SSA). From Figure 5.4, it is found that the consistency between the 

finite element result and the result from the analytical solution is good. Since the 

interlaminar stresses and electric field intensity components near the intersection of 

the interface and the free edge from FEM are only adopted to be compared with the 

present analytical results and the computational time also needs to be considered, the 

optimal mesh option C will be used in the following FEM simulations of this chapter.  

 

 

Figure 5.4: Mesh sensitivity for one quarter of the three-layered piezoelectric 

laminated thick plate with h/a=0.6 

 

5.2.2 Analytical results 

This case of the simply-supported three-layered piezoelectric laminated plate with 

free edges is used to test the reliability and accuracy of the present analytical 

solution from SSA by comparing its results with the corresponding numerical results 
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obtained from FEM. Since this research dealt with the electromechanical coupling 

and free edge effect on the interlaminar stresses, it is essential to capture the possible 

singular behaviours of these stresses as well as electric fields.  

 

Table 5.3: Influence of layer refinement on mechanical and electrical quantities 

Layer  
Refinement 

𝑤  
at x=a/2, 

y=b/2, 

z/h=0 

𝜎 𝑥   

at x=a/2, 

y=b/2, 

z/h=0  

𝐸 𝑥  
at x=a/4, 

y=b/2, 

z/h=0.2 

𝐷 𝑥   
at x=a/4, 

y=b/2, 

z/h=0 

∅  
at x=a/2, 

y=b/2, 

z/h=0 

𝜏 𝑥𝑧   
at x=0, 

y=b/2, 

z/h=0.2  

Difference 

𝜏 𝑥𝑧  

6+18+6= 
30 

1.68570 -3.60368 -0.15184 -0.94606 0.13068 0.91939 N/A 

5+15+5= 
25 

1.68563 -3.60374 -0.15182 -0.94614 0.13069 0.91908 0.03% 

4+12+4= 
20 

1.68550 -3.60385 -0.15179 -0.94619 0.13070 0.91862 0.08% 

 

As discussed in Chapter 3, each material layer is divided into fictitious sub-layers K 

in the analysis of the thick plate. Theoretically, the approximate solution obtained 

can be arbitrarily close to the exact three-dimensional solution if the number of sub-

layers and the sinusoidal displacement mode numbers m and n are all sufficiently 

large. Owing to the improvement in accuracy, this subdivision approach has been 

adopted by researchers like Fan and Sheng (1992) and Fan (1998), and details of the 

convergence of the solution can be found in their work. It is also worth to mention 

that in their studies a uniform layer refinement was adopted in each physical layer 

with the same thickness and this uniform layer refinement can provide desired 

accuracy for the analysis of thick orthotropic laminated plates. Moreover, in this 

study, the values of m=1,3,5,7,9......29 and n=0,2,4,6,8......200 are considered. 

To evaluate this subdivision approach, the configuration of layer refinements and 

comparison for h/a=0.6 are given in Table 5.3. For example, the first layer 

refinement means that the top and bottom layer are divided into 6 sub-layers 

separately and the core layer comprises 18 sub-layers and the total number of 

subdivision for this plate is 30. When the laminated plate is divided into 20 sub-

layers, all the given mechanical and electrical results converge to those obtained by 
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utilizing 30 sub-layers and the difference is found in the fourth decimal place. The 

convergence of the SSA solution is observed from the table and the present solution 

can produce very accurate results even using the coarse subdivision where the 

difference of 𝜏𝑥𝑧  is 0.08%. It is also shown that the convergence of 𝜏𝑥𝑧  at the 

boundary is slightly slower than those of other results in the inner region of the plate. 

For the three-layered laminated plate, all results are obtained by choosing P=25 

which can guarantee sufficient accuracy. 

The present study is mostly concerned with the accurate determination of the 

coupling electromechanical field along the thickness coordinate z, in particular at the 

interfaces between two dissimilar materials in the piezoelectric laminated plate. For 

this numerical example, there are six physical interfaces: the upper surface of the top 

layer, the lower surface of the top layer, the upper surface of the core layer, the 

lower surface of the core layer, the upper surface of the bottom layer and the lower 

surface of the bottom layer, which are denoted by T+, T-, C+, C-, B+ and B- 

respectively.  

From the relatively thin (h/a=0.2) to thick (h/a=0.6) plates, there is good agreement 

between the SSA results and those from FEM as shown in Table 5.4. In the state 

space method, the displacements are chosen as the state variables in the state 

equations and the continuity conditions can be satisfied. As the primary nodal 

degrees of freedom in the analysis of FEM, the displacements are directly 

determined at the nodes and continuous across the element interfaces.  

In the 3D analysis of a piezoelectric laminated plate, the transverse displacement is 

not constant and varies in the z direction. It is clear that even when h/a=0.2 the 

transverse displacement at the middle of the plate changes through the thickness. 

The discrepancies become more noticeable when the ratio of thickness to length 

increases and the transverse displacement at the top surface is 8% greater than that at 

the bottom surface for h/a=0.4, and 27% for h/a=0.6. Moreover, the variation of the 

transverse displacement at the free edge is analogous to that at the middle of the 

plate while the transverse displacement at the free edge is quantitatively larger.  
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Table 5.4: Displacements under open-circuit conditions against different h/a 

    h/a=0.2 h/a=0.4 h/a=0.6 

  
 

SSA FEM SSA FEM SSA FEM 

𝑢  T+ 8.65587 8.65859 1.08362 1.08327 0.36854 0.36834 

x=a/4 T- 4.22733 4.22744 0.26201 0.26183 -0.04640 -0.04617 

y=0 C+ 4.22733 4.22744 0.26201 0.26183 -0.04640 -0.04617 

  C- -4.50203 -4.50242 -0.40390 -0.40403 -0.07135 -0.07147 

  B+ -4.50203 -4.50242 -0.40390 -0.40403 -0.07135 -0.07147 

  B- -8.93861 -8.94106 -1.20725 -1.20698 -0.39713 -0.39675 

𝑣   T+ -5.12257 -5.13001 -0.859493 -0.85452 -0.34152 -0.33457 

x=a/2 T- -3.17423 -3.18645 -0.56248 -0.56440 -0.22991 -0.22858 

y=0 C+ -3.17423 -3.18645 -0.56248 -0.56440 -0.22991 -0.22858 

  C- 2.78755 2.79668 0.35894 0.35849 0.08410 0.08389 

  B+ 2.78755 2.79668 0.35894 0.35849 0.08410 0.08389 

  B- 4.79266 4.80099 0.71276 0.71103 0.23645 0.23524 

𝑤  T+ 44.49340 44.49492 4.67566 4.67522 1.68563 1.68570 

x=a/2 T- 44.77880 44.78071 4.69825 4.69819 1.66085 1.66136 

y= b/2 C+ 44.77880 44.78071 4.69825 4.69819 1.66085 1.66136 

  C- 44.48480 44.48689 4.38421 4.38381 1.28150 1.28045 

  B+ 44.48480 44.48689 4.38421 4.38381 1.28150 1.28045 

  B- 44.13410 44.13608 4.29551 4.29503 1.24070 1.23958 

w  T+ 53.97340 54.04047 5.43569 5.43376 1.87579 1.87173 

x=a/2 T- 54.18480 54.24935 5.43067 5.42541 1.83160 1.82385 

y=0 C+ 54.18480 54.24935 5.43067 5.42541 1.83160 1.82385 

  C- 53.92500 53.99593 5.15271 5.15455 1.48568 1.48507 

  B+ 53.92500 53.99593 5.15271 5.15455 1.48568 1.48507 

  B- 53.64370 53.71428 5.08706 5.08856 1.45683 1.45580 

 

In the finite element analysis, the stresses are computed at the Gauss point nearest to 

the locations at which the stresses can be evaluated by the present solution 

analytically. Although with mesh refinement the Gauss point locations get closer to 

the node point locations to which the element interface is related, these locations 
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never become the nodal locations. In addition, the strain continuity across the 

interfaces is not ensured. Hence along a boundary common to two elements, the 

stresses take different values on the two sides of the interfaces of two adjacent 

elements. From Table 5.5, the discontinuities of the in-plane stresses at the interfaces 

are remarked for both SSA and FEM results.  

 

Table 5.5: In-plane stresses under open-circuit conditions against different h/a 

    h/a=0.2 h/a=0.4 h/a=0.6 

  
 

SSA FEM SSA FEM SSA FEM 

𝜎 𝑥  T+ -22.9948 -22.97600 -6.51815 -6.49623 -3.60374 -3.58040 

x=a/2 T- -12.4607 -12.46830 -2.57983 -2.58079 -0.63538 -0.63317 

y=b/2 C+ -3.37548 -3.37703 -0.90962 -0.90980 -0.43873 -0.43845 

  C- 3.14322 3.14409 0.65186 0.65181 0.16689 0.16639 

  B+ 12.66530 12.66840 2.71796 2.71801 0.83348 0.83283 

  B- 23.16850 23.17290 6.75155 6.75328 3.45021 3.44963 

𝜎 𝑥  T+ -22.42550 -22.41070 -5.72897 -5.70857 -2.93949 -2.91991 

x=a/2 T- -11.25620 -11.21880 -1.84836 -1.80448 -0.22068 -0.16787 

y=0 C+ -3.09567 -3.04806 -0.78887 -0.73919 -0.41679 -0.36582 

  C- 2.87791 2.84833 0.51869 0.50541 0.12583 0.11045 

  B+ 11.65890 11.59520 2.13992 2.11234 0.58431 0.54984 

  B- 22.79820 22.80660 6.15620 6.15706 3.07817 3.07721 

𝜎 𝑦  T+ -4.60462 -4.58379 -0.89679 -0.88775 -0.43243 -0.43914 

x=a/2 T- -2.06947 -2.06560 0.07064 0.06622 0.36018 0.34561 

y=b/2 C+ -0.77768 -0.77634 -0.24701 -0.24805 -0.18984 -0.19375 

  C- 0.57643 0.57613 0.02947 0.03028 -0.05398 -0.05349 

  B+ 2.39812 2.39649 0.22839 0.23192 -0.05003 -0.04665 

  B- 4.92002 4.91640 1.28075 1.28868 0.68107 0.68842 
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Table 5.6: Interlaminar stresses under open-circuit conditions against different h/a 

    h/a=0.2 h/a=0.4 h/a=0.6 

  
 

SSA FEM SSA FEM SSA FEM 

𝜎 𝑧  T+ -1.02120 -1.00036 -1.02120 -1.00015 -1.02120 -1.00006 

x=a/2 T- -0.87703 -0.87765 -0.88917 -0.89008 -0.92713 -0.92912 

y=b/2 C+ -0.87703 -0.87640 -0.88917 -0.88930 -0.92713 -0.92828 

  C- -0.12393 -0.12313 -0.13664 -0.13661 -0.17110 -0.17201 

  B+ -0.12393 -0.12180 -0.13664 -0.13578 -0.17110 -0.17150 

  B- 0.00000 0.00260 0.00000 0.00190 0.00000 0.00225 

𝜏 𝑥𝑧  T+ 0.00000 0.01513 0.00000 0.05341 0.00000 0.08788 

x=0 T- 2.60019 2.64192 1.34333 1.35805 0.91908 0.93055 

y=b/2 C+ 2.60019 2.64192 1.34333 1.34666 0.91908 0.92190 

  C- 2.43860 2.44072 1.17589 1.17686 0.74651 0.74694 

  B+ 2.43860 2.44880 1.17589 1.17944 0.74651 0.74864 

  B- 0.00000 0.01033 0.00000 0.00324 0.00000 0.00211 

𝜏 𝑦𝑧  T+ 0.00000 0.00037 0.00000 0.00006 0.00000 0.00001 

x=a/2 T- 0.18963 0.19109 0.04253 0.04008 0.00388 -0.00060 

y=b/4 C+ 0.18963 0.19021 0.04253 0.03998 0.00388 -0.00062 

  C- 0.19135 0.19216 0.07992 0.08191 0.05047 0.05310 

  B+ 0.19135 0.19302 0.07992 0.08224 0.05047 0.05339 

  B- 0.00000 0.00114 0.00000 0.00043 0.00000 0.00039 

 

 

Due to the action-reaction, the continuity conditions must hold between the 

interlaminar stress fields of adjacent layers at the interface. In Table 5.6, the 

interlaminar stresses obtained by the SSA solution are continuous but those obtained 

by FEM show discontinuous at layer interfaces as expected. With much effort on 

mesh refinement, the discrepancy between the discontinuous interlaminar stresses at 

the interface can be reduced and the error introduced can be negligible as shown in 

this table. Nevertheless, this deficiency in interlaminar stresses may lead to poor 

results in the vicinity of the intersection of the interface and the free edge. It is also 
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observed that FEM cannot guarantee the traction-free conditions at the surfaces and 

with improved mesh refinement this difference can also be reduced but never be 

eliminated. Moreover, shear deformation tends to be of greater concern when the 

ratio between the thickness and length is increasing and shearing may become 

significant in locations of bending-stress concentrations. The SSA solution can 

capture the stress distribution more accurately than those solutions based on thin-

plate theories. 

The comparisons between the SSA and FEM results on the electric quantities are 

given in Appendix F. It is apparent that the electric potential obtained by the SSA 

solution is consistent with that from FEM in the middle of the plate and at the free 

edge. In the FEM modelling the 20-node quadratic piezoelectric solid element with 

displacement DOFs and an additional electric potential DOF 9 at each node was 

used and these DOFs allow fully coupled electromechanical analyses. Like 

displacements, the nodal electric potential is determined directly, thus continuous at 

the interface. There is no significant difference in the electric field intensity 

components between the SSA and FEM results. It is interesting to note that a small 

difference in 𝐸𝑦  at the interface is observed for h/a=0.6 when the free edge is 

approached, which suggests that the mismatch of material near the free edge may 

result in the singular behaviour of stresses or electric fields. Also the discrepancy 

between the SSA and FEM results will become more notable in the immediate 

vicinity of the interface and the free edge. Similar to the electric field intensity 

components discussed above, there is a small difference in 𝐷𝑦  at the interface for the 

thick plate. Moreover the horizontal electric displacements are discontinuous across 

the interfaces, whereas the vertical electric displacement is chosen as the state 

variable in the state space equation and retains continuous.  
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Figure 5.5: Distributions of interlaminar shear stress τxz under open-circuit (OC) and 

closed-circuit (CC) conditions in three-layered piezoelectric laminates 

 

Figure 5.6: Distributions of electric field intensity component Ex under open-circuit 

(OC) and closed-circuit (CC) conditions in three-layered piezoelectric laminates  
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The SSA result in the closed-circuit surface condition is also obtained and compared 

with that from FEM and they are in good agreement. From Figure 5.5, it is found 

that different electric surface conditions do not have strong influences on the 

interlaminar shear stress 𝜏𝑥𝑧 . As expected, the electrical quantities are strongly 

affected by the electric surface conditions in Figure 5.6. 

 

5.3 A non-uniform layer refinement technique 

In the previous section, the uniform layer refinement technique was adopted and 

each physical layer was divided uniformly. Similarly in the other state space 

approaches by Zhang et al. (2006) and Sheng et al. (2007) each physical layer of the 

laminate was also divided uniformly into appropriate sub-layers with identical 

thickness. As regards the finite element models, significant mesh refinements are 

required near the interfaces and free edges in ABAQUS simulation and they provide 

very close estimation and significant gradients of the interlaminar stresses. 

It is conceivably hypothesised that the accuracy of the model is improved with an 

enhanced layer refinement. By compromising the accuracy and efficiency, the 

enhanced layer refinement should be applied to the region close to the intersection of 

the interface and the free edge, where the free-edge effect is most concerned. As a 

consequence, a non-uniform layer refinement technique is proposed to give a better 

prediction of the electromechanical and free-edge effect in the piezoelectric laminate. 

To avoid more computational efforts, the number of sub-layers in each physical 

layer is the same as that in the uniform layer refinement technique illustrated in 

Figure 5.7(a), whereas the thicknesses of the mathematical sub-layers are reduced in 

the vicinity of the interfaces between dissimilar physical layers in the non-uniform 

layer refinement technique. In this new technique, the reduction of thicknesses of the 

mathematical sub-layers means that more mathematical sub-layers are assumed in a 

small region very near the interface where a high inhomogeneity in mechanical and 

electric properties exists while less mathematical sub-layers are proposed far from 

the interfaces. It is shown in Figure 5.7(b) that the non-uniform layer refinement 
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technique is used near the interface of two adjacent physical layers which have 

different material orientations and there is no need to use this technique for the 

interface of two adjacent layers with the same material orientation.  

 

 

Figure 5.7: Uniform and non-uniform layer refinement techniques through the 

thickness of a laminate 

 

In order to validate the non-uniform layer refinement technique, comparisons are 

made between the present new technique and the uniform layer refinement technique 

and ABAQUS. To evaluate the influence of layer refinements on the results, 

especially those near the free edge, the same numerical example: the thick three-

layered piezoelectric laminated plate with h/a=0.6 is considered with uniform and 

non-uniform layer refinements. The non-uniform layer refinement technique 

preserves the same number of mathematical sub-layers in each physical layer as that 

in the uniform layer refinement technique. However, the thickness of the adjacent 

(a) (b) 

Outer layer   

(c) 
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sub-layer near the interface in the non-uniform layer refinement is reduced to one-

tenth of that in the uniform one and the thickness of remaining sub-layers is identical 

in the outer physical layer (Figure 5.7(c)) and the inner physical layer (Figure 5.7(d)). 

The geometrical parameters and material properties in the previous section are also 

taken into account.  

 

Table 5.7: Comparison between uniform and non-uniform layer refinement 

techniques  

Layer 

Refinement 

𝑤  
at x=a/2, 

y=b/2, 

z/h=0 

𝜎 𝑥   

at x=a/2, 

y=b/2, 

z/h=0  

𝜏 𝑥𝑧   
at x=0, 

y=b/2, 

z/h=0.2  

𝜏 𝑦𝑧   

at x=a/2, 

y=b/4, 

z/h=0.2 

𝐸 𝑦  

at x=a/2, 

y=b/4, 

z/h=0.2 

𝐸 𝑥  
at x=a/4, 

y=b/2, 

z/h=0.2 

∅  
at x=a/2, 

y=b/2, 

z/h=0 

Uniform 1.68563 -3.60374 0.91908 0.00388 0.00179 -0.15182 0.13069 

Non-

uniform 
1.68570 -3.60329 0.91893 0.00317 0.00194 -0.15080 0.13066 

 

From Table 5.7, the results from the non-uniform layer refinement are consistent 

with those of the uniform layer refinement. It is clear that the electromechanical 

quantities from the inner region of the plate are less affected by the layer refinement 

than those near the free edge or simply-supported edge. It seems that the 

interlaminar shear stress 𝜏𝑦𝑧  and the electric field intensity component 𝐸𝑦  are 

sensitive to the layer subdivision close to the intersection of the interface and the 

free edge.  

As illustrated in Figures 5.8 and 5.9, the distributions along the interface and through 

the thickness indicate the noticeable stress and electric field gradients near the free 

edge with respect to different thickness to length ratios. In these two figures, the left 

column gives the distributions across the width b and at z/h=0.2 along the interface 

between the top and core layers. Specifically, the distribution of 𝜏𝑥𝑧  at the simply-

supported edge (x/a=0) and the distributions of  𝜏𝑦𝑧  and 𝐸𝑦  at x/a=0.5 are assessed. 

The right column shows the through-thickness distributions of 𝜏𝑥𝑧  at y/b=0 and 𝜏𝑦𝑧  

and 𝐸𝑦  at y/b=0.009, respectively.  
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Figure 5.8: Distributions of interlaminar shear stresses and electric field intensity 

component by using the non-uniform and uniform layer refinement techniques when 

h/a=0.6  
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Figure 5.9: Distributions of interlaminar shear stresses and electric field intensity 

component along the interface when h/a=0.2 (left) and h/a=0.4 (right) 
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It is clear that when the free edge is approached, 𝜏𝑦𝑧  and 𝐸𝑦  change dramatically. It 

is shown that they rise towards the free edge, but decrease rather suddenly to zero at 

y=0 in the present analysis, whereas the traction-free condition (𝜏𝑦𝑧 = 0 𝑎𝑡 𝑦 = 0) 

cannot be fulfilled in FEM because of significant stress gradients. The results from 

the non-uniform layer refinement can predict this steep gradient behaviour very near 

the free edge compared to those from the uniform layer refinement which has been 

verified by FEM. The interlaminar shear stress 𝜏𝑥𝑧  is dominant at the simply-

supported edges for all three thickness to span ratios and the magnitude of 𝜏𝑥𝑧  is 

much larger than that of shear stress 𝜏𝑦𝑧  and similarly the magnitude of 𝐸𝑥  

(Table 5.7) is also much larger than that of 𝐸𝑦 .  

Although there are significant gradients of 𝜏𝑦𝑧  and 𝐸𝑦  in the vicinity of the free edge 

compared to the absence of these two quantities in the middle of the plate, they are 

still quantitatively smaller than 𝜏𝑥𝑧  and 𝐸𝑥 . However, the analysis of the edge effect 

and electromechanical coupling effect on the behaviour of piezoelectric laminates is 

still of necessity. Due to different material properties, stacking sequences and kind 

of boundary conditions as well as loading conditions, the influence of these two 

quantities may become stronger. 

Furthermore, the finite element solution obtained by ABAQUS can demonstrate 

significant stress and electric field gradients with an enhanced mesh refinement in 

the vicinity of the free edge. To obtain such special description of the free-edge and 

electromechanical coupling effects, the non-uniform layer refinement technique was 

proposed. Although there are differences between the uniform and non-uniform 

layer refinement results near the free edge where a possible singularity occurs, they 

both predict the interlaminar stresses and electric field intensity components 

gradients at the intersection of the interface and the free edge. However, the non-

uniform layer refinement results show much stronger gradients than the uniform 

layer refinement results. With more mathematical sub-layers towards the interface of 

two different adjacent physical layers, the small region near the interface is 

relatively refined, leading to a more accurate prediction of the stresses and electric 

fields distributions. As a consequence, this new technique can be used to capture the 



119 

 

possible singular behaviour of stresses and electric fields in the piezoelectric 

laminated plate.  

 

5.4 Comparison with Levy solutions 

As a benchmark for classical plate theory (CLPT) and various 2D plate and shell 

theories, the present 3D state space piezoelasticity solution can assess the accuracy 

of FEM and also be used to evaluate errors caused by various assumptions in 

different plate theories. As a case study, the results from one of existing classical 

plate solutions-Levy solution, are compared with those from the present 3D state 

space solution and FEM in this section. 

Generally, a Levy solution can be developed for plates with two opposite edges 

simply supported and the remaining two edges having any possible combination of 

boundary conditions: free, simply support, or fixed support. Analytical solutions for 

rectangular laminated plates with Levy-type boundary conditions have been 

obtained by Reddy (2004) based on the CLPT. For simplicity, the same three-

layered laminated plate model in the previous section is analyzed but only the 

mechanical property is considered in this case. The influence of the thickness to 

length ratio h/a on the static response of the laminated plate is evaluated and the 

ratio is chosen as 0.05, 0.1 (due to the thin plate requirement for the CLPT-Levy 

solution) and 0.2. Moreover, the ratio of 𝛿 = 𝐶𝑖𝑗
(𝐹)

/𝐶𝑖𝑗
(𝐶)

 is taken as 4.  

In the CLPT, the plane-stress state is assumed and the transverse shear and 

transverse normal strains are neglected. As shown in Table 5.8 the accuracy of the 

in-plane stresses and transverse displacement predicted by the CLPT deteriorates as 

the laminate becomes thicker. Even in the thin plates, the discrepancies between the 

CLPT results and the present results are noticeable. It is observed that the FEM 

results are consistent with the present state space analytical results. The CLPT 

underestimates the maximum central deflection of the laminated plate. For the 

practical design of simply-supported thick laminated plates with free edges, 3D 

analytical solutions are required.  
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Table 5.8: In-plane stresses and transverse displacement against different h/a 

    h/a=0.05 h/a=0.1 h/a=0.2 

  
 

CLPT SSA FEM CLPT SSA FEM CLPT SSA FEM 

𝜎 𝑥  T+ -349.57 -351.04 -351.00 -87.40 -88.51 -88.49 -21.85 -22.97 -22.96 

x=a/2 T- -209.74 -209.15 -209.19 -52.44 -51.66 -51.69 -13.11 -12.36 -12.37 

y=b/2 C+ -52.44 -52.61 -52.61 -13.11 -13.23 -13.24 -3.28 -3.40 -3.41 

  C- 52.44 52.31 52.31 13.11 12.94 12.94 3.28 3.11 3.11 

  B+ 209.74 209.42 209.42 52.44 51.92 51.93 13.11 12.61 12.61 

  B- 349.57 351.24 351.24 87.40 88.72 88.73 21.85 23.20 23.19 

𝜎 𝑦  T+ -112.24 -75.17 -75.08 -28.06 -17.89 -17.84 -7.01 -3.94 -3.90 

x=a/2 T- -67.84 -44.47 -44.42 -16.84 -10.09 -10.07 -4.21 -1.72 -1.70 

y=b/2 C+ -16.84 -11.44 -11.42 -4.21 -2.84 -2.83 -1.05 -0.75 -0.74 

  C- 16.84 11.17 11.17 4.21 2.57 2.58 1.05 0.48 0.48 

  B+ 67.84 44.85 44.84 16.84 10.47 10.48 4.21 2.11 2.12 

  B- 112.24 75.53 75.50 28.06 18.25 18.27 7.01 4.31 4.32 

𝑤  T+ 7884.16 9879.81 9879.77 492.76 650.25 650.24 30.80 48.97 48.97 

x=a/2 T- 7884.16 9887.83 9887.80 492.76 652.17 652.17 30.80 49.38 49.38 

y=b/2 C+ 7884.16 9887.83 9887.80 492.76 652.17 652.17 30.80 49.38 49.38 

  C- 7884.16 9887.46 9887.40 492.76 651.81 650.93 30.80 49.02 49.02 

  B+ 7884.16 9887.46 9887.40 492.76 651.81 650.93 30.80 49.02 49.02 

  B- 7884.16 9879.35 9879.30 492.76 649.79 649.79 30.80 48.51 48.51 

 

As a 3D analytical solution, the present state space solution provides accurate 

descriptions of the static response for thin to thick laminates with free-edge 

boundary conditions. In addition, when considering the electromechanical coupling 

effect the more complicated state of stress and electric field would be expected.  
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5.5 Edge effects of simply-supported cross-ply piezoelectric 

laminated plate with free edges 

The three-layered piezoelectric laminated plate with two opposite edges simply-

supported and the other two edges free has been investigated in the previous section. 

The influence of edge effect on the electromechanical quantities has been illustrated 

with respect to different thickness to length ratios. The result indicates the existence 

of significant interlaminar shear stresses and electric field gradients near the free 

edges.  

In the analysis of the three-layered piezoelectric laminated plate, the interlaminar 

normal stress is compressive at the interface for all models with different thickness 

to length ratios. However, with different material properties and stacking sequences, 

tensile interlaminar normal stress could emerge at the interface. It is still interesting 

to evaluate the edge effect and the electromechanical coupling effect with different 

stacking sequences. There are four stacking sequences [0°/90°]𝑠 , [90°/0°]𝑠 , 

[ 0°/90°/0°/90°]  and [ 90°/90°/90°/0°] . These general cross-ply laminates are 

subjected to a uniformly transverse distributed load on the top surface, and the open-

circuit surface condition is applied to both top and bottom surfaces.  

As illustrated in Figure 5.10 the rectangular piezoelectric laminate has length a, 

width b and thickness h, with a/b=2.5 and h/b=0.25. Each lamina is assumed to be of 

the same thickness and the employed virtual material by Artel and Becker (2005) is 

a piezoelectric composite material with the mechanical properties of T300/Epoxy 

and the piezoelectric and electrical properties of PZT-5A. The material properties of 

this piezoelectric lamina are given in Table 5.9. Material with the presented 

properties may be realized by the use of piezoelectric fibres in a resin matrix.    
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Figure 5.10: Geometry and coordinate system of a general four-layered cross-ply 

piezoelectric laminate and four stacking sequences 

 

Table 5.9: Mechanical and electrical properties of a piezoelectric lamina  

Elastic Stiffness 

(GPa) 

Piezoelectric Coefficients 

(C/m
2
) 

Dielectric Properties 

(CV/m) 

C11=137 e31=e32=-5.4 є11=є22=1730є0 

C12=C13=3.75 e33=15.8 є33=1700є0 

C22=C33=10.9 e24=e15=12.3 є0=8.859×10
-12
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All the numerical results shown in this section are presented by means of the 

following non-dimensional parameters: 

 𝑢 , 𝑣 ,𝑤  =
𝐶11

𝑞
 𝑢, 𝑣,𝑤 ,  

 𝜎 𝑥 ,𝜎 𝑦 ,𝜎 𝑧 , 𝜏 𝑥𝑧 , 𝜏 𝑦𝑧  =  𝜎𝑥 ,𝜎𝑦 ,𝜎𝑧 , 𝜏𝑥𝑧 , 𝜏𝑦𝑧  /𝑞,  

 ∅  =
𝑒33

𝑞
∅, (5-2) 

 𝐸 𝑥 ,𝐸 𝑦 ,𝐸 𝑧 =
𝑒33

𝑞
 𝐸𝑥 ,𝐸𝑦 ,𝐸𝑧 ,  

 𝐷 𝑥 ,𝐷 𝑦 ,𝐷 𝑧 =
𝐶11

𝑞𝑒33
 𝐷𝑥 ,𝐷𝑦 ,𝐷𝑧 .  

 

As discussed in the previous section, interlaminar stresses must conform to the 

continuity at the interface between two dissimilar materials and there are some 

difficulties in employing the continuity of interlaminar stresses in C
0
 interpolated 

elements in FEM. And the nodal values of the stresses are generally retrievable at 

Gauss points using constitutive relations or variationally consistent procedures in 

conventional Lagrangian formulation. However, the interlaminar stress failure is 

likely to initiate at the interface between layers with material discontinuities in 

laminates, the accurate determination of interlaminar stresses is desired at the 

interface rather than Gauss points. Accurate extrapolation technique from Gauss 

points is usually required in conventional finite element procedures to achieve an 

appropriate level of accuracy of the interlaminar stress fields at the element nodes. 

Inaccuracy in the recovered interlaminar stress distributions may be obtained at the 

interfaces between the layers in the case of high out-of-plane stress gradients 

(Fagiano, 2010).  

Similarly, Whitcomb et al. (1982) concluded that the finite element solutions were 

accurate everywhere except very near a stress discontinuity or a singularity. And the 

region of inaccuracy was limited to about two elements and refined meshes were 

required in such small region to generate reliable distributions of interlaminar 
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stresses through the thickness in particular achieve the interlaminar continuity of the 

transverse stresses. Also, it was evident that by decreasing mesh size the finite 

element solution converged everywhere except very near the intersection of the 

interface and the free edge. Their study indicated that accurate and valid results 

might be obtained by finite element methods in the neighbourhood of singularities. 

Consequently, for the sake of comparison with FEM results, the point y=0.0025b 

which is in the immediate vicinity of the free edge is chosen for the distributions of 

𝜎𝑧 . In addition, for the purpose of abbreviation, L1, L2, L3 and L4 are chosen to 

denote the four stacking sequences: [0°/90°]𝑠 , [90°/0°]𝑠 , [ 0°/90°/0°/90°]  and 

[90°/90°/90°/0°], respectively as shown in Figure 5.10. 

Figure 5.11 illustrates the variations of the interlaminar normal stress 𝜎𝑧  along the 

interface (z=3h/4) and through the thickness at x=a/2 for the [0°/90°]𝑠, [90°/0°]𝑠, 

[0°/90°/0°/90°], [90°/90°/90°/0°]  laminates. There is good agreement between 

the SSA results and FEM results and they both predict the steep stress gradients very 

near the interfaces and free edges. It is also noted that the SSA results are consistent 

with those of FEM in the inner region and there is a slight difference near the 

interface where the SSA results are smaller than those of FEM. 

Tensile interlaminar normal stress 𝜎𝑧  is found in all laminates and it is apparent that 

for the [0°/90°]𝑠  and [90°/90°/90°/0°]  laminate, 𝜎𝑧  at the interface (z=3h/4) is 

compressive in the interior region of the laminate and reverses its sign and rises to a 

high positive value very near the free edge (y=0.0025b). Due to the interlaminar 

normal stress concentration, delamination damage can be initiated near the 

intersection of the interface and the free edge and leads to a significant loss of 

strength and stiffness. Among these four cross-ply piezoelectric laminates, the 

[90°/90°/90°/0°] one is more vulnerable to delamination damage.  
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(a) Along the interface 

 

(b) Through the thickness 

Figure 5.11: Variations of interlaminar normal stress σz in the general cross-ply 

laminates under uniformly distributed loading and open-circuit conditions 
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(a) Along the interface 

 

(b) Through the thickness 

Figure 5.12: Variations of interlaminar shear stress τxz in the general cross-ply 

laminates under uniformly distributed loading and open-circuit conditions 
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As expected, the interlaminar shear stress 𝜏𝑥𝑧  attains a higher value in the boundary 

region (simply-supported edge) in Figure 5.12. Under the same loading and 

boundary conditions, the maximum 𝜏𝑥𝑧  is observed at the middle plane (z=h/2) of 

the [90°/0°]𝑠 piezoelectric laminate. Moreover, from Figure 5.12 (a) it is shown that 

𝜏𝑥𝑧  is still increasing steadily when approaching the free edge and reaches the 

maximum value at the corner of the laminate.  

The distributions of the interlaminar shear stress 𝜏𝑦𝑧  along the interface (z=3h/4) and 

through the thickness at x=a/2 are depicted in Figure 5.13. Similarly, to investigate 

the immediate vicinity of the free edge, the point y=0.0125b is considered. It is 

shown that 𝜏𝑦𝑧  in the [90°/0°]𝑠 and [0°/90°/0°/90°] laminates grows more abruptly 

and reaches a higher value near the intersection of the interface and the free edge 

than that in the [0°/90°]𝑠  and [90°/90°/90°/0°] laminates. In the analysis of the 

three-layered piezoelectric laminates, 𝜏𝑥𝑧  is approximately ten times higher than 𝜏𝑦𝑧 , 

while in this case 𝜏𝑥𝑧  is only five times greater. It seems due to the possible singular 

behaviour the influence of 𝜏𝑦𝑧  near the interface and free edge is not negligible and 

this shear stress tends to contribute to the delamination of the piezoelectric laminate.  

Analogous to the variation of the interlaminar shear stress 𝜏𝑦𝑧 , the electric field 

intensity component 𝐸𝑦  also exhibits sharp variations at the interface (z=3h/4) and 

very near the free edge (y=0.0125b) in Figure 5.14. It is obvious that 𝐸𝑦  in the 

[90°/0°]𝑠 and [0°/90°/0°/90°] laminates shows a notably steeper gradient than that 

in the other two laminates near the free edge and decays in the inner region of the 

laminate. It is also worth to mention that there is good agreement between the SSA 

result and FEM result except for the region very near the free edge.  
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(a) Along the interface 

 

(b) Through the thickness 

Figure 5.13: Variations of interlaminar shear stress τyz in the general cross-ply 

laminates under uniformly distributed loading and open-circuit conditions 
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(a) Along the interface 

 

(b) Through the thickness 

Figure 5.14: Variations of electric field intensity component Ey in the general cross-

ply laminates under uniformly distributed loading and open-circuit condition 
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The results of this investigation show that all three interlaminar stresses exhibit 

apparent gradient behaviours near the intersection of the interface and the free edge. 

Among them the transverse shear stress 𝜏𝑥𝑧  demonstrates the largest magnitude of 

the interlaminar stresses along the free edges. The most obvious finding to emerge 

from this investigation is that the tensile interlaminar normal stress was verified in 

the general cross-ply piezoelectric laminates and the largest tensile interlaminar 

normal stress at the interface was found in the [90°/90°/90°/0°] laminate. Similar 

to 𝜏𝑦𝑧 , the rapid variation of the electric field intensity component 𝐸𝑦  is detected in a 

neighbourhood of concentration near the interface and the free edge. 

 

5.6 Conclusions  

This chapter has presented a series of numerical studies to analyze the 

electromechanical behaviour of simply-supported piezoelectric laminated plates with 

free edges under mechanical transverse loads.  

The present analytical solution from state space analysis can predict the coupled 

electromechanical response of the thick three-layered piezoelectric laminates with 

different thickness to length ratios. The validity and accuracy of the present 

analytical solution have been verified in comparison with the FEM results. To 

capture the steep variations of the interlaminar stresses and electric field intensity 

components near the intersection of the interface and the free edge, the non-uniform 

layer refinement has been introduced and implemented in the state space approach 

for the first time. This novel technique allowed more mathematical sub-layers in the 

small region near the interface to improve the accuracy of the local mechanical and 

electrical quantities without increasing the total number of sub-layers and was a 

possible compromise between the accuracy and computation efficiency for the 

analysis of the free-edge effect. Moreover, the existing analytical Levy solution by 

CLPT was compared with the present SSA solution and FEM for the simply-

supported laminated plates with free edges. It was found that CLPT gave poor 

predictions of the in-plane stresses and underestimated the maximum central 
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deflection. As a result, the present 3D analytical solution is required in the design 

and analysis of simply-supported and free-edge laminated and piezoelectric 

laminated structures.  

Furthermore, for the three-layered piezoelectric laminated plates the interlaminar 

stress 𝜏𝑥𝑧  was dominant at the simply-supported edge and reached the maximum 

value at the corners. Although 𝜏𝑦𝑧  exhibited a significant gradient near the free edge, 

it was quantitatively smaller than 𝜏𝑥𝑧 . However with different material properties, 

geometries and stacking sequences the contributions from interlaminar stresses 𝜎𝑧  

and 𝜏𝑦𝑧  cannot be neglected compared with 𝜏𝑥𝑧  in the four-layered cross-ply 

piezoelectric laminated plates. In the immediate vicinity of the intersection and the 

free edge, steep gradients of these stresses were observed and tensile 𝜎𝑧  was found. 

The significant variations of interlaminar stresses near the free edge tended to 

contribute to edge delamination. Among the four stacking sequences, the [90°/90°/

90°/0°] laminate was found to be more vulnerable to edge delamination due to its 

highest tensile interlaminar normal stress at the interface. In order to prevent such 

edge delamination, the edge reinforcement or edge modification should be utilized in 

practical design.  

The 3D piezoelectric brick element in the commercial FE package like ABAQUS 

can provide accurate distributions of the field variables in the piezoelectric laminate. 

Due to the weak transverse normal and shear strengths in composites/piezoelectric 

composites, the interlaminar stress fields at the element nodes need to be intensively 

investigated and the accuracy of those stresses is mostly desired. However, these 

interlaminar stresses in FEM are different on the two sides of the interfaces of 

adjacent elements so they are discontinuous at the interface between dissimilar 

material layers. Although this discrepancy between the two adjacent elements can be 

reduced by using a refined mesh, the Gauss point location can never become the 

nodal location at the interface. It was found that this discontinuity of interlaminar 

stresses at the interface was negligible in the inner region of the piezoelectric 

laminated plate, however, when approaching the immediate vicinity of the free edge 

where a possible stress concentration was expected, this discontinuous behaviour 
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might become more significant and the results from that small region deteriorated, in 

particular with a high inhomogeneity in mechanical and electric material properties 

in the piezoelectric laminates.  

Compared with FEM, the present analytical solution can guarantee the continuity of 

the interlaminar stresses at interfaces and all the mechanical and electrical variables 

are computed directly from the interface of sub-layers with an appropriate layer 

refinement. The present 3D analytical solution showed an improvement in precision 

over other 2D analytical and numerical solutions for determining interlaminar 

stresses as well as electric fields not only in the inner region but also near the 

intersection of the interface and the free edge of the piezoelectric laminates and 

could serve as a benchmark for estimating the accuracy of these analytical and 

numerical methods.   
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CHAPTER 6 EFFECTS OF GEOMETRIC 

PARAMETERS AND ELECTRICAL PROPERTIES 

 

6.1 Introduction 

In order to make an appropriate design for laminated piezoelectric plates, the effects 

of several geometric and piezoelectric parameters on the electromechanical response 

of laminated plates will be investigated in this chapter. For example, by reducing the 

width to thickness ratio, the 3D plate solution obtained in the previous chapter will 

be simplified to an exact solution for a laminated beam structure. This can be used to 

compare with some of 2D solutions. In addition, various electrical material 

properties are also selected to evaluate their influence on the mechanical and 

electrical components of the plates.  

 

6.2 Simply-supported single-layered piezoelectric beam 

 

Figure 6.1: Simply-supported piezoelectric beam under a uniformly distributed load 

 

A simply-supported piezoelectric plate with two opposite free edges can be regarded 

as a simply-supported beam when a is sufficiently large and its width b is smaller 

than its thickness h (Figure 6.1). As a 3D analytical solution for the piezoelectric 
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plate with free edges, the state space solution in the previous chapter provides an 

alternative to accurately assess the bending behaviour of the simply-supported 

piezoelectric beam without any assumptions and simplifications. More specifically, 

the 3D plate model is used directly to analyze the simply-supported piezoelectric 

beam problem by accounting for all the independent elastic and piezoelectric 

constants.  

Based on the theories of 2D elasticity and piezoelectricity, Lin et al. (2000) 

investigated the problem of a simply-supported piezoelectric beam under a 

uniformly distributed transverse load and obtained the analytical close-form solution. 

In their analytical beam model (Figure 6.1), since b is negligible in magnitude 

compared with the other dimensions, the plane stress state in x-z plane is assumed, 

where the normal stress 𝜎𝑦  and the shear stresses 𝜏𝑥𝑦  and 𝜏𝑧𝑦  directed perpendicular 

to the x-z plane are considered to be zero.  

To verify the accuracy and efficiency of the present solution with those of Lin et al. 

(2000), the following parameters are given for a numerical example of the 

piezoelectric single-layer beam presented by Lin et al. (2000): the length a is 0.3 m, 

the width b is 0.002 m and the thickness h is 0.02 m. The uniform distributed load is 

10 𝑁/𝑚2 and is applied on the top surface of the beam while the bottom surface is 

traction-free and grounded. The lamina is made of PZT-4 material which has the 

following mechanical and electrical properties in Table 6.1. 

Table 6.1: Mechanical and electrical properties of PZT-4 (Lin et al., 2000) 

Elastic Stiffness 

(GPa) 

Piezoelectric Coefficients  

(C/m
2
) 

Dielectric Properties 

(CV/m) 

C11=C22=139 e31=e32=-6.98 є11=6×10
-9

 

C12=77.8 e33=13.84 є22=6×10
-9

 

C33=113 e24=e15=13.44 є33=5.47×10
-9

 

C13=C23=74.3     

 

  

C44=C55=25.6     

 

  

C66=30.6         
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(a) z=0 

                    

(b) 𝑥 =
5

8
𝑎 

Figure 6.2: Distributions of in-plane displacement u (a) along the length (b) through 

the thickness 

 

As mentioned, in the piezoelectric beam model of Lin et al. (2000), the width b is 

smaller than the thickness h, a plane stress state assumption is hence made. And all 

variables are independent of y. However, despite the relatively small value of width 

b compared with the length a and thickness h, all variables that demonstrate 

negligible variations across the y direction are retained in the 3D state space plate 
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model. It is expected that there is a difference between the results from these two 

analytical models. Those analytical results from the state space analysis (SSA) for 

the bending problem of the piezoelectric beam with b/h=0.1 is abbreviated as SSA-

0.1 in Figures 6.2-6.9. Due to the consideration for different positions of the beam, a 

further labelling such as y=b/2 and y=0 is added in the relevant curves of these 

figures correspondingly. 

Figures 6.2 and 6.3 give the distributions of the in-plane displacement u and 

transverse displacement w along the length and through the thickness. It is shown 

that the findings of the present analytical study are consistent with those of Lin et al. 

(2000). Compared to the transverse displacement, the in-plane displacement is much 

smaller and distributed linearly through the thickness. The transverse deflection is 

approximately two-order larger in magnitude than the longitudinal displacement. 

Lin’s beam model with the plane-stress assumption did give a similar result as that 

of the 3D analysis, however, the deflection w is larger (Figure 6.3 (b)) in Lin’s beam 

model which again did not support the opinion that the effect of various plate 

assumptions is to increase the stiffness of the structure and, therefore, yields lower 

deflections. Wu and Wardenier (1998) have proved that the displacements obtained 

from approximate theories may be either over- or under-estimated. 
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(b) 𝑥 =
𝑎

2
 

Figure 6.3: Distributions of transverse displacement w (a) along the length (b) 

through the thickness 

 

Since the transverse normal strain 휀𝑧  and shear strain 𝛾𝑥𝑧  are considered in the 

solution of the present study and Lin et al. (2000) whereas such transverse normal 

and shear strains are often neglected in most 2D plate theories, the variation of 

transverse displacement w is not constant through the thickness even in the thin 

beam and it is also observed that there is a maximum transverse displacement w at 

the middle surface of the beam perpendicular to the z-axis rather than at the top or 

bottom surface. This variation of transverse displacement across the thickness of the 

orthotropic plate has been investigated by Fan (1998) and Wu and Wardenier (1998). 

According to their studies, the influence of the thickness of the plate subjected to a 

uniformly distributed pressure cannot be neglected in the analysis of moderately 

thick plate and the maximum transverse displacement across the thickness varies 

with respect to different h/a or Young's modulus ratio. This behaviour of a 

moderately thick piezoelectric plate has been investigated thoroughly in the previous 

section. Moreover, due to the sufficiently small ratio b/h, there is no significant 

difference between the results at y=b/2 and those at y=0. 
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(a) z=0 

 

                    

(b) 𝑥 =
𝑎

2
 

Figure 6.4: Distributions of in-plane stress σx (a) along the length (b) through the 

thickness 

 

As depicted in Figure 6.4, the maximum in-plane normal stress 𝜎𝑥  is found at the 

middle of the beam, where the top surface is under compression while the bottom 

surface is subjected to tension. It is also observed that there is a maximum transverse 
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shear stress 𝜏𝑥𝑧  in the vicinity of the simply-supported edges (Figure 6.5). The 

present results agree well with those of Lin et al. (2000) and no significant 

discrepancy between the results at y=b/2 and those at y=0 is observed in both figures.  

 

                    

(a) 𝑧 =
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(b) 𝑥 =
5

8
𝑎 

Figure 6.5: Distributions of transverse shear stress τxz (a) along the length (b) 

through the thickness 
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The 3D electromechanical coupling behaviour is also taken into account, and it is 

shown in Figure 6.6 that for both present results and those of Lin et al. (2000) the 

electric potential ∅  exhibits polynomial distributions across the length and the 

thickness of the piezoelectric beam. 

                    

(a) z=0 
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Figure 6.6: Distributions of electrical potential ϕ (a) along the length (b) through the 

thickness 
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Analogous to SSA-0.1, the present results are also given for the piezoelectric beams 

with b/h=0.5 and b/h=1, which are abbreviated as SSA-0.5 and SSA-1 respectively. 

As illustrated in Figure 6.7, when b/h=0.1 there is no noticeable difference between 

the present results at y=b/2 and those at y=0 for the distributions of transverse shear 

stress 𝜏𝑥𝑧 . However, the discrepancies between the results at y=b/2 and those at y=0 

become greater as the width b is increased in the SSA-0.5 and SSA-1 cases. The 

value of the transverse shear stress 𝜏𝑥𝑧  at the intersection of the free edge and 

simply-supported edge is approximately 33% larger than that at the middle of the 

simply-supported edge in SSA-1 case and the assumption of plane stress state is not 

appropriate and could make an inaccurate prediction of the state of the stresses and 

electrical quantities, especially the transverse shear stresses. Moreover, the accurate 

determination of 𝜏𝑥𝑧  is essential due to the fact that the strength of the material along 

the longitudinal direction of fibres are normally significantly higher than the 

transverse shear strength of the laminae and the possible shear failure may occur.  

The variables in the y-direction which are neglected due to the plane stress state 

assumption also can be obtained in the present solution. The distributions of the in-

plane displacement v and transverse shear stress 𝜏𝑦𝑧  through the thickness are 

illustrated in Figures 6.8 and 6.9. The width of beam b is still much smaller than the 

length a so these variables in the y-direction are in small orders of magnitude 

compared to those in the x-direction. It can be seen that the displacement v is two-

order smaller in magnitude than the displacement u but does not vanish. As b/h 

increases, v and 𝜏𝑦𝑧  exhibit significant growths and the contribution from the y 

direction is not negligible, and the behaviour of the structure tends to be like that of 

a plate. Since the present solution is obtained on the basis of the 3D state space plate 

theory, the 3D distributions of stresses and electrical quantities can be accounted for, 

even for beam models. As a consequence, the present solution provides alternative 

means for evaluating the full 3D state of stresses and electrical quantities in the 

analysis of piezoelectric beams. 
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(a) 𝑧 =
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(b) 𝑥 =
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8
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Figure 6.7: Distributions of transverse shear stress τxz (a) along the length (b) 

through the thickness with different b/h 
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Figure 6.8: Distributions of in-plane displacement v through the thickness with 

different b/h at x=a/2 and y=0 

 

Figure 6.9: Distributions of transverse shear stress τyz through the thickness with 

different b/h x=a/2 and y=b/4 
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6.3 Three-layered piezoelectric laminated plate with different 

electrical properties 

 

Based on three-layered piezoelectric laminated plates in Chapter 5, the influence of 

different electrical properties on the mechanical and electrical responses is presented 

here. This plate has the same geometry, loading and boundary conditions as those in 

Chapter 5 and the thickness to length ratio is 0.6. The two face layers are also 

distinguished by the ratio of 𝛿 = 𝐶𝑖𝑗
(𝐹)

/𝐶𝑖𝑗
(𝐶)

, 𝜆 = 𝑒𝑖𝑗
(𝐹)

/𝑒𝑖𝑗
(𝐶)

 and 𝜅 = 𝜖𝑖𝑗
(𝐹)

/𝜖𝑖𝑗
(𝐶)

, where 

F and C denote face and core, respectively. In this section, only the electrical 

property parameters for the two face layers are changed, where 𝛿 = 1, 𝜆 = 1, 2, 3, 4 

and 𝜅 = 1, 2, 3, 4. In addition, the same non-dimensionalization is used.  

For the sake of brevity, 𝑤 (a/2, b/2, 0), 𝜎𝑥  (a/2, b/2, 0), 𝜏𝑥𝑧  (0, 0, h/5), 𝜙 (a/2, b/2, 0), 

𝐷𝑧  (0, 0, h/5) and 𝐸𝑧  (0, 0, h) are chosen. It is shown in Figure 6.10 that all 

components are affected by different 𝜆  and 𝜅 . It is clear that the variations of 

electrical properties have a stronger influence on the electrical response than the 

mechanical one as expected.  

From Figure 6.11 (a) it is apparent that the transverse shear stress 𝜏𝑦𝑧  shows a 

stronger gradient when 𝜆 increases in the vicinity of the free edge for 𝜅 = 1. When 

𝜆 = 1 and 𝜅 = 1, this three-layered plate is treated as a single-layered plate because 

the two face layers and the core layer have the same material properties. As 𝜆 varies 

there are material discontinuities at the interface between the face and core layers 

and these material discontinuities may induce the shear stress concentration at the 

free edge. Moreover, as illustrated in Figure 6.11 (b) the maximum value of the 

transverse shear stress declines when 𝜅 increases for 𝜆 = 4. The distributions of the 

transverse shear stress 𝜏𝑦𝑧  through the thickness are also given in Figure 6.12. To 

delineate the significant gradient near the free edge, the distribution at y=0.009b is 

chosen. It is observed that a steep variation occurs at the interface.  
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Figure 6.10: Variations of physical quantities with various 𝜆 and 𝜅.  
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(a) 

(b) 

Figure 6.11: Distributions of transverse shear stress τyz along the interface at z=0.2h 

with various 𝜆 and 𝜅. 
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(a) 

(b) 

Figure 6.12: Distributions of transverse shear stress τyz through the thickness at 

y=0.009b with various 𝜆 and 𝜅. 
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6.4 Conclusions 

With various width to thickness ratios the present solution accounts for all geometric 

parameters and elastic and electric constants for the orthotropic and piezoelectric 

material and can be used to analyze the 3D electromechanical behaviour of 

piezoelectric beams exactly. By comparing the present 3D solution with a 2D 

analytical solution, it was found that the solution based on the 2D theory was not 

accurate when the width to thickness ratio b/h increased, and the variables in the y 

direction increased dramatically and the contribution from the y direction should be 

taken into account, especially for the transverse shear stress 𝜏𝑥𝑧 . The value of 𝜏𝑥𝑧  at 

the intersection of the free edge and simply-supported edge was approximately 33% 

larger than that at the middle of the simply-supported edge when b/h=1 and the 

assumption of plane stress state would lead to a poor prediction of behaviours of the 

transverse shear stresses. For the design and analysis of laminated and piezoelectric 

laminated beams the present 3D plate analysis should be considered in order to 

account for the edge effect which cannot be predicted by these 2D theories.  

It was also observed that the electrical quantities were more affected by the electrical 

material parameters compared to the mechanical ones. The significant influence of 

these parameters on the singular behaviour of the transverse shear stress 𝜏𝑦𝑧  was 

captured near the intersection of the interface and the free edge by using the 3D state 

space approach. By increasing the dielectric ratio 𝜅 the transverse shear stress 𝜏𝑥𝑧  

which was much larger than 𝜏𝑦𝑧  rose slightly, whereas the maximum value of 𝜏𝑦𝑧  at 

the interface declined.  
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CHAPTER 7 NUMERICAL ANALYSIS OF INFINITE 

LONG PIEZOELECTRIC LAMINATES WITH FREE 

EDGES UNDER UNIAXIAL EXTENSION 

 

7.1 Introduction 

It is well known that the free-edge effect and delamination in laminated composites 

have been investigated by many researchers and a number of analytical, semi-

analytical, and numerical methods have been established subsequently. Among these 

researches, a particular problem where general cross-ply laminates are subjected to 

uniform axial extension, has drawn more attention and a detailed description of this 

problem has been given and discussed exclusively in the literature review.  

Numerous published researches have attempted to investigate and explain a possible 

stress singularity at the free edges between the layers with different materials, for 

example, Pipes and Pagano (1970); Wang and Crossman (1977); Tahani and Nosier 

(2002); Zhang et al. (2006); Artel and Becker (2005); Mirzababaee and Tahani 

(2009). According to Tahani and Nosier (2002), no exact elasticity solution to the 

free-edge problem is yet known to exist and all conclusions drawn with respect to 

the singularity of stresses are merely based upon approximate analytical and 

numerical studies. Artel and Becker (2005) adopted 20-noded isoparametric 

displacement based volume elements with refined free edge modelling and 

investigated the electromechanical coupling effects on the interlaminar stresses and 

the electric field intensities near the free edges in laminates with piezoelectric 

material properties under a uniformly axial extension. In their finite element model, 

general symmetric laminate lay-ups were considered with and without 

electromechanical coupling. Based on the layerwise laminate theory as well as the 

principle of minimum total potential energy, the same problem has been studied and 

comparisons with the results of Artel and Becker (2005) also have been made by 

Mirzababaee and Tahani (2009). In their comparisons, except for the regions close to 
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the free edge, there are several decent agreements between the results of 

Mirzababaee and Tahani (2009) and those of Artel and Becker (2005). Nevertheless, 

for the cross-ply piezoelectric laminates there are some discrepancies for the 

variations of interlaminar stresses along the interfaces in particular the distributions 

of interlaminar normal stresses through the thickness. The coupling effect on the free 

edge interlaminar stresses at the interface of dissimilar piezoelectric materials is 

such a complex phenomenon that the aforementioned solutions can provide some 

satisfactory predictions of the interlaminar stresses and electric field intensities, 

however approaching the free edge may result in the deteriorating descriptions of 

these electromechanical variables.  

Furthermore, it is pointed out that the aforementioned methods employed are 

focussed on the symmetric cross-ply composite piezoelectric laminates and the 

solutions they obtained are neither general nor accurate enough. Although symmetry 

of a laminate about the mid-plane is often desirable to avoid coupling between 

bending and extension, some practical applications require unsymmetric laminates to 

achieve specific design requirements and further investigation on the unsymmetric 

laminates is necessary and important for the application requirement. By using the 

analytical solutions obtained in Chapter 4, a numerical analysis of general symmetric 

cross-ply lay-ups can be conducted in comparison with the results of Artel and 

Becker (2005) and those of Mirzababaee and Tahani (2009). Further analytical 

investigation on other stacking sequences of the cross-ply piezoelectric laminates, is 

also carried out and the corresponding numerical examples are subsequently given 

for the first time. In addition to considering the open-circuit surface condition which 

has been employed by previous studies, the closed-circuit surface condition will be 

taken into account in the present analysis. Moreover, the present approach has the 

capability to predict and illustrate the variations of electromechanical variables at the 

interfaces and along the thickness of the piezoelectric laminate and can be used to 

evaluate the accuracy of ABAQUS simulation.  
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7.2 Open-circuit surface condition 

For the 3D analysis of a free-edge piezoelectric laminated plate problem subjected to 

a uniform axial strain 휀0 along the x direction, there are four traction-free boundary 

conditions: two free edges at y=0 and y=b, and two top and bottom surfaces at z=0 

and z=h. For the top and bottom surfaces, two types of electric boundary conditions 

can be imposed: open-circuit condition and closed-circuit condition. The former 

electric surface condition is considered in this section and the latter one will be given 

in the next section.  

To evaluate the accuracy and efficiency of the present method, four numerical 

examples are presented for the general cross-ply piezoelectric laminated plates. 

Specifically, for a four-layered laminate which has an infinite length in the x-axis, 

the width b is chosen ten times larger than the thickness h, and the thickness of each 

layer in the laminate is identical (Figure 7.1). Moreover, 휀0 is taken as 0.1%. 

 

Figure 7.1: Nomenclature of a piezoelectric laminated plate  
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There are four stacking sequences [0°/90°]𝑠 , [90°/0°]𝑠 , [ 0°/90°/0°/90°]  and 

[90°/90°/90°/0°] with and without electromechanical coupling respectively. Due to 

the symmetry, stresses and electric field intensity components are symmetric or 

antisymmetric across the width of laminates with respect to y coordinate. In addition, 

the homogeneous orthotropic material is the combination of the mechanical 

properties of a T300/Epoxy and the piezoelectric and electrical properties of a PZT-

5A. This material property is given in Table 5.9. 

In the present state space analysis the unknown boundary function contained in the 

non-homogeneous vectors is a function of z. The actual physical layer in a laminate 

can be treated as if it is made of as many mathematical sub-layers as necessary. For 

a single sufficiently thin layer, excellent accuracy can be achieved by assuming that 

the function is linearly distributed with respect to z coordinate. By introducing this 

subdivision technique in each layer, the total number of fictitious sub-layers P is 

determined. As the number P is increased, the accuracy of the model is also 

improved. In general, the number of subdivisions used can be different from layer to 

layer.  

According to the previous convergence tests against different number of sub-layers 

P conducted by Zhang et al. (2006) and Sheng et al. (2007), a uniform layer 

refinement was adopted in each physical layer with the same thickness. Refined 

subdivisions can be employed near the interface where interlaminar stresses and 

electric field intensity components become prominent, as a consequence the 

proposed non-uniform layer refinement in Chapter 5 will be adopted to analyze the 

electromechanical coupling and free-edge effect on the piezoelectric laminates with 

a uniform axial strain. 

 

7.2.1 Numerical results of symmetric cross-ply laminates 

In order to validate the present method, two symmetric lay-ups [0°/90°]𝑠  and 

[90°/0°]𝑠  laminates subjected to a uniform axial strain with and without 

electromechanical coupling are thoroughly investigated and comparisons are made 
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between the present analytical solution and those from Artel and Becker (2005) and 

Mirzababaee and Tahani (2009). For the purpose of abbreviation, A & B (2005) and 

M & T (2009) are used to denote Artel and Becker (2005) and Mirzababaee and 

Tahani (2009) in the following figures, respectively. It is still worth to mention that 

in the coupled analysis the state space equation for piezoelasticity should be adopted 

due to the electromechanical coupling, and in the uncoupled analysis the state space 

equation for pure elasticity should be employed by setting the piezoelectric constants 

to zero.  

In addition, a 3D finite element modelling is performed by ABAQUS for 

comparison. Because of the symmetries in the problem, only one quarter of the 

laminate is modelled. A 20-node quadratic piezoelectric brick element C3D20E is 

employed and the mesh at the intersection of the interface and the free edge is highly 

refined to obtain a more accurate prediction of the free edge effect.  

These two cases are chosen for demonstrating one more application of the present 

approach and providing an in-depth understanding of the electromechanical coupling 

behaviour as well as the influence of such coupling effect on the interlaminar 

stresses and electric field intensity components in the vicinity of the free edges.  

According to the state space approach proposed in this study, the interlaminar 

stresses and electric field intensity components are determined by adopting both the 

constitutive equations and the equilibrium equations simultaneously in the frame of 

the linear piezoelasticity. Due to the nature of the symmetric cross-ply laminates and 

infinite length in the x direction, some mechanical and electrical variables: 𝜏𝑥𝑦 , 𝜏𝑥𝑧 , 

𝐷𝑥  and 𝐸𝑥  are expected to vanish, and the detailed explanation has been given in 

Chapter 4.  
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7.2.1.1 [0ᵒ
/90

ᵒ
]s laminate 

 

Figure 7.2: Distributions of interlaminar normal stress σz at the 0
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/90
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 interface in the 
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]s laminate 
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uncoupled cases the interlaminar normal stress 𝜎𝑧  is quite small in the interior region 

and then it reverses its sign to positive (tensile) and increases dramatically near the 

free edge. This notable behaviour of 𝜎𝑧  tends to contribute to the delamination of the 

laminated plate for not only the uncoupled case but also the coupled case. Moreover, 

as shown in this figure the interlaminar normal stress 𝜎𝑧  in the vicinity of the free 

edge in the coupled piezoelectric case is approximately two times larger than that in 

the uncoupled case. This significant gradient of 𝜎𝑧  indicates that the free-edge effect 

is more prominent in the piezoelectric laminate than the laminate without 

electromechanical coupling and this coupling effect has a significant influence on 

the 3D behaviour of interlaminar stresses near free edges.  

The aforementioned solutions can provide the sufficiently accurate distribution of 

the interlaminar normal stress from the inner region up to 𝑦/𝑏 = 0.98 except in the 

vicinity of the free edge at a distance of about 2% (between 𝑦/𝑏 = 0.98  and 

𝑦/𝑏 = 1) of the laminate. They also can capture a singular behaviour near the free 

edge or at the free edge, although the interlaminar normal stress values obtained at 

the singularity point are quite different from each other. Due to the singularity, the 

magnitude of 𝜎𝑧  at the 0°/90° interface-edge corners of laminates will continue to 

grow with the increasing value of P (Tahani and Nosier, 2003). In addition, the 

stress values around the singularity point are rendered meaningless because of the 

mesh dependence in 3D FE model (Carreira et al., 2002). Therefore, the maximum 

values of the interlaminar normal stress at the free edge obtained from different 

methods are impossible and inappropriate for comparison. Although the maximum 

value of the interlaminar normal stress at the singularity point is uncertain and can 

be any large finite value in the frame of different methods, the integral of the 

interlaminar stress 𝜎𝑧  over the y direction must be zero in order to maintain 

equilibrium of forces in the z direction. In the sense of mathematics, this behaviour 

is analogous to that of Dirac delta function. The delta function is sometimes thought 

of as an infinitely high and infinitely thin spike at the origin, with total area unit one 

under the spike. The behaviour of Dirac delta function gives a good explanation that 

in spite of any maximum value of the interlaminar normal stress 𝜎𝑧  at the singularity 
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point, the integral of zero over the y direction must be satisfied. Although the stress 

values at the singularity points are meaningless, the accurate description of the stress 

distributions in the vicinity of the free edge is essential and may provide the 

prediction of the possible failure for the coupled and uncoupled piezoelectric 

laminated plates. For instance, according to Lagunegrand et al. (2006) and Saeedi et 

al. (2012) there are the delamination stress criteria based on stress values at a 

specific distance from the singularity point or the average stress criteria considering 

the average of interlaminar stresses over a characteristic distance from the 

singularity point. 

Since a stress singularity exists at the intersection of the interface and the free edge, 

this singular point presents difficulties in numerical and approximate analytical 

methods and those different methods certainly behave differently near such singular 

points in a small region. The differences in magnitude of the peak stress are 

expected, but not the difference in the sign (Whitcomb et al., 1982).  

 

Figure 7.3: Variations of interlaminar normal stress σz through the thickness in the 

[0
ᵒ
/90

ᵒ
]s laminate along the free edge 
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The variations of the interlaminar normal stress 𝜎𝑧  through the thickness in a 

[0°/90°]𝑠  laminate along the free edge for the coupled and uncoupled cases are 

depicted in Figure 7.3. It is shown that the SSA uncoupled result is consistent with 

that of Mirzabaee and Tahani (2009) through the thickness while in decent 

agreement with the result of Artel and Becker (2005) and FEM through the thickness 

except for the region close to the interface at 𝑧/ = 0.25. From the result of Artel 

and Becker (2005) and FEM the interlaminar normal stress 𝜎𝑧  changes steeply in 

this small region and tends to approach the SSA result and that of Mirzabaee and 

Tahani (2009) away from the interface.  

For the coupled cases, in general, there are decent agreements between the SSA 

result and those of Artel and Becker (2005), Mirzabaee and Tahani (2009) and FEM 

within the upper layer except at the interface (0 ≤ 𝑧/ < 0.25). In the upper layer, 

the coupled result of Mirzabaee and Tahani (2009) is approximately two times larger 

than their uncoupled one while within the core layer (0.25 ≤ 𝑧/ ≤ 0.5), there is no 

difference between their coupled result and uncoupled one. However, it is clear from 

Figure 7.3 that unlike the description of Mirzabaee and Tahani (2009) even within 

the core layer (0.25 ≤ 𝑧/ ≤ 0.5) the coupled results of the SSA solution and Artel 

and Becker (2005) as well as FEM are at least approximately two times larger than 

the uncoupled ones, respectively. In addition, it is also worth to mention that the 

SSA coupled result is in decent agreement with that of FEM through the free edge. It 

is shown that not only does the piezoelectric effect have a remarkable influence on 

the free edge effect of the upper layer, but it also affects that of the core layer 

significantly.  

Furthermore there are similarities between the coupled and uncoupled results of 

FEM and those of Artel and Becker (2005) because these analyses are both 

performed by using finite element method but with different types of element and 

mesh refinement. Even for the region close to the interface at 𝑧/ = 0.25, they both 

provide similar descriptions. However in the frame of the finite element method, 

both results cannot guarantee the continuity conditions of the interlaminar stress. As 

a result, it is clear from Figure 7.3 that for both results of FEM and Artel and Becker 
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(2005) the interlaminar normal stress 𝜎𝑧  exhibits discontinuous at the intersection of 

the interface and the free edge. Despite a refined mesh approach applied in the 

vicinity of the free edge and the interface of different layers for both analyses, such 

discrepancies in the finite element method cannot be eliminated. Theoretically, 𝜎𝑧  

should be continuous due to the action-reaction at the interface of adjacent dissimilar 

layers. The FE method fails to give a continuous value of the stress because it is 

associated with the treatment to the nodal forces (average) in FE and a selection of 

integration points in the adjacent elements with free edges Nevertheless, the 3D 

finite element method is still a powerful alternative to the analytical solutions for the 

analysis of the interlaminar stress near the free edge and the interface in 

piezoelectric laminates, and the comparison between SSA results and those of FEM 

is valid and useful, in particular when there is no published results by other authors.  

 

Figure 7.4: Distributions of interlaminar shear stress τyz at the 0
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/90

ᵒ
 interface in the 
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Figure 7.4 above illustrates the distributions of the interlaminar shear stress 𝜏𝑦𝑧  at 

the 0°/90° interface along the y coordinate in a [0°/90°]𝑠 laminate. Except for the 

region where the free-edge effect dominates (0.99 ≤ 𝑦/𝑏 ≤ 1), the SSA results 

agree with those of Artel and Becker (2005), Mirzababaee and Tahani (2009) and 

FEM for the electromechanical coupled and uncoupled cases. Analogous to the 

uncoupled cases, it is shown that in coupled cases the interlaminar shear stress 𝜏𝑦𝑧  

rises towards the free edge but decreases dramatically at the free edge. It is also 

observed from the plots that the SSA results and those of Mirzababaee and Tahani 

(2009) are smaller than those of Artel and Becker (2005) and FEM near the free 

edge for both coupled and uncoupled cases. Moreover, all the plots for the 

interlaminar shear stress 𝜏𝑦𝑧  indicate that the result in the coupled analysis is 

qualitatively similar to that in the uncoupled analysis but approximately two times 

larger. 

It should be noted that due to the traction free boundary conditions imposed on the 

free edges the interlaminar shear stress 𝜏𝑦𝑧  must vanish at the free edges, which is 

observed from the SSA results. Contrary to expectations, this traction free boundary 

condition cannot be fulfilled in the results of Artel and Becker (2005), Mirzababaee 

and Tahani (2009) and FEM. The traction free boundary condition is satisfied except 

at the intersection of the interface and the free edge by the numerical models of Artel 

and Becker (2005) and FEM due to the significant stress gradients near the free edge. 

According to Whitcomb et al. (1982), the region of boundary condition violation is 

restricted to the two elements nearest to the singular point and this region can be 

made as small as desired through mesh refinement. Mirzababaee and Tahani (2009) 

mentioned that despite improvement in the number of sub-layers in each lamina, the 

numerical value of 𝜏𝑦𝑧  may never become zero at the free edge. This phenomenon 

may be attributed to two reasons: (1) the generalized stress resultant rather than the 

interlaminar shear stress 𝜏𝑦𝑧  is prescribed at the free edge in the formulations of FE 

method and Mirzababaee and Tahani (2009), thus the boundary condition is only 

satisfied in the sense of integral (resultant force); (2) the implementation of the shear 

deformation continuity at the free edge would lead to the stress discontinuity at the 
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interface of the dissimilar materials. The variations of the interlaminar shear stress 

𝜏𝑦𝑧  through the thickness in a [0°/90°]𝑠  laminate near the free edge are given in 

Figure 7.5. The singular points on the y-axis with respect to corresponding 

maximum numerical values of the interlaminar shear stress 𝜏𝑦𝑧  in Figure 7.4 are 

different for the SSA results, and those of Mirzababaee and Tahani (2009) and FEM 

but all these singular points are very close and in a small range very near the free 

edge (0.995𝑏 < 𝑦 < 𝑏). For the sake of comparison, 𝑦 = 0.999𝑏 is chosen for these 

results. The plots for 𝜏𝑦𝑧  show that the results from FEM seem to be consistent with 

those of the SSA solution except in the regions very close to the interface of 

dissimilar layers for both coupled and uncoupled cases and they both exhibit 

significant stress gradients. However, the difference between the result of the SSA 

solution and FEM and that of Mirzababaee and Tahani (2009) is noticeable in the 

coupled cases.  

 

Figure 7.5: Variations of interlaminar shear stress τyz through the thickness in the 
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ᵒ
]s laminate near the free edge at y =0.999b 
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From the plots for coupled cases in Figure 7.5, there is a significant difference 

between the result of Mirzababaee and Tahani (2009) and those of the SSA solution 

and FEM. For 𝜏𝑦𝑧  Mirzababaee and Tahani (2009) showed approximately five times 

larger in the coupled case than the uncoupled one. The results of the SSA solution 

and FEM only gave about two times larger in the corresponding analyses. It should 

be mentioned that the maximum value of the interlaminar shear stress 𝜏𝑦𝑧  along the 

interface from Mirzababaee and Tahani (2009) (Figure 7.4) is approximately half of 

their maximum value of 𝜏𝑦𝑧  through the thickness (Figure 7.5). It is apparent that 

their results of 𝜏𝑦𝑧  are not consistent in these two figures.  

 

 

Figure 7.6: Distributions of electric field intensity components Ey and Ez at the 0
ᵒ
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It is observed that the interlaminar normal stress and shear stress exhibit significant 

stress gradients in the vicinity of the free edges for both coupled and uncoupled 

cases. Electrical quantities also may have singular behaviours and show such strong 

gradients near the intersection of the interface and the free edge. For an infinite long 

piezoelectric laminate in this study, it has been proved in Chapter 4 that the electric 

field intensity component 𝐸𝑥  is zero. Therefore the remaining two electric field 

intensity components 𝐸𝑦  and 𝐸𝑧  are analyzed. Figure 7.6 illustrates the distributions 

of electric field intensity components 𝐸𝑦  and 𝐸𝑧  at the 0°/90° interface along the y 

coordinate in a [0°/90°]𝑠  laminate. The results from FEM are consistent with the 

SSA  results and they both indicate strong electric field changes near the free edges 

for 𝐸𝑦  and 𝐸𝑧 .  

Electric field intensity component 𝐸𝑦  is quite small in the inner region where 𝑦/𝑏 is 

not larger than 0.9. Then it is growing gradually and increasing abruptly in a small 

region (𝑦/𝑏 ≥ 0.99). After approaching a finite value, 𝐸𝑦  declines and seems to be 

vanishing at the free edge. The observed difference between the result from FEM 

and that of the SSA solution is not significant, however, it is still worth to mention 

that 𝐸𝑦  in FEM shows a little bit more significant gradient than that in the present 

analysis very near the free edge and has a tendency to decrease to zero but attains a 

smaller finite value at the free edge. In the present analysis the electric field intensity 

component 𝐸𝑦  vanishes at the free edge. It seems that there is a singularity in the 

immediate vicinity of the intersection of the interface and the free edge. 

The electric field intensity component 𝐸𝑧  in the SSA result and FEM result is 

discontinuous along the interfaces between 0° layer and 90° layer. In Figure 7.6, 𝐸𝑧1 

denotes electric field intensity component 𝐸𝑧  at the bottom surface of layer-1 (0° 

layer) and 𝐸𝑧2  denotes 𝐸𝑧  at the top surface of layer-2 ( 90° layer). Unlike the 

distribution of 𝐸𝑦 , 𝐸𝑧  retains a high value in the inner region of the laminate along 

the interface and increases sharply, and attains a very large value at the intersection 

of the interface and the free edge.  
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The distributions of the electric field intensity components 𝐸𝑦  and 𝐸𝑧  along the 

interface are similar to those of the interlaminar stresses 𝜏𝑦𝑧  and 𝜎𝑧 . They both show 

apparent gradients and singular behaviours at the intersection of the interface and the 

free edge. It should be noted that the SSA result disagreed with those of Artel and 

Becker (2005), and Mirzababaee and Tahani (2009) in magnitude. The SSA result 

and that of FEM are three orders of magnitude greater than those results from Artel 

and Becker (2005) and Mirzababaee and Tahani (2009) while the shapes of these 

plots are similar qualitatively.  

 

 

Figure 7.7: Variations of electric field intensity components Ey and Ez through the 

thickness in the [0
ᵒ
/90

ᵒ
]s laminate 
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Analogous to the variations of the interlaminar shear stress 𝜏𝑦𝑧  through the thickness, 

the electric field component 𝐸𝑦  at 𝑦 = 0.999𝑏  are chosen for the thickness 

distributions in the SSA result and that of FEM, respectively. It is shown that the 

electric field disturbance occurs at the interfaces (Figure 7.7). It is interesting to note 

that both the discontinuity and steep gradient of 𝐸𝑧  are observed at the intersections 

of the interface and the free edge.  

It should be noted that the discrepancy on the interlaminar normal stress 𝜎𝑧  emerges 

between the SSA solution and other aforementioned solutions when the free edge is 

approached. Similarly these discrepancies on the interlaminar shear stress 𝜏𝑦𝑧  and 

the electric field intensity components 𝐸𝑦  and 𝐸𝑧  still exist in the immediate vicinity 

of intersection of the interface and the free edge, respectively. Despite these 

discrepancies on the interlaminar stresses and electric field intensity components, 

these solutions do capture the qualitative nature of distributions of those variables in 

the vicinity of the free edge.  

 

7.2.1.2  [90
ᵒ
/0

ᵒ
]s laminate 

The distributions of interlaminar stresses and electric field intensity components in a 

[90°/0°]𝑠  laminate are also illustrated for the electromechanical coupled and 

uncoupled cases. It is revealed from the comparisons in Figure 7.8 that the SSA 

results in coupled and uncoupled cases are consistent with those of Artel and Becker 

(2005), Mirzababaee and Tahani (2009) and FEM.  
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Figure 7.8: Distributions of interlaminar normal stress σz at the 90
ᵒ
/0

ᵒ
 interface in the 

[90
ᵒ
/0

ᵒ
]s laminate 

 

Figure 7.9: Variations of interlaminar normal stress σz through the thickness in the 
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/0

ᵒ
]s laminate along the free edge 

-1.5

-0.5

0.5

1.5

2.5

3.5

0.75 0.8 0.85 0.9 0.95 1

σ
z/
ε 0

 (
G

P
a)

y/b

SSA-Coupled SSA-Uncoupled

A & B (2005)-Coupled A & B (2005)-Uncoupled

M & T (2009)-Coupled M & T (2009)-Uncoupled

FEM-Coupled FEM-Uncoupled

0

0.1

0.2

0.3

0.4

0.5

-6 -4 -2 0 2 4 6 8 10

z/
h

σz/ε0 (GPa)

SSA-Coupled

SSA-Uncoupled

A & B (2005)-Coupled

A & B (2005)-Uncoupled

M & T (2009)-Coupled

M & T (2009)-Uncoupled

FEM-Coupled

FEM-Uncoupled



166 

 

Similar to the distribution of the interlaminar normal stress 𝜎𝑧  in [0°/90°]𝑠 , 𝜎𝑧  in 

[90°/0°]𝑠  is small in the inner region of a laminate and also converts its sign to 

positive and ascends abruptly very near the free edge, and then reaches a finite value 

at the free edge for both coupled and uncoupled cases. It is shown that 𝜎𝑧  tends to 

increase in negative when 𝑦 > 0.95𝑏, and attains a higher negative value than that in 

[0°/90°]𝑠 . It is found that the interlaminar normal stress gradient in [90°/0°]𝑠  is 

more significant than that in [0°/90°]𝑠. Also the interlaminar normal stress in the 

vicinity of the free edge in the coupled case is approximately two times larger than 

that in the uncoupled one.  

For both coupled and uncoupled cases, the interlaminar normal stresses in the 

analyses of Artel and Becker (2005) and FEM exhibit stronger gradients than those 

in the analysis of the SSA solution and Mirzabaee and Tahani (2009) when the 

interface is approached (Figure 7.9). Except for the region close to the interface, 

decent agreements between the present results and other results are observed. 

As mentioned above, the free-edge effect is prominent in the vicinity of the 

intersection of the interface and the free edge. The distributions of the interlaminar 

shear stress 𝜏𝑦𝑧  at the 90°/0° interface along the y direction in Figure 7.10 illustrate 

that the stress disturbance occurs near the free edge. The coupled and uncoupled 

results in the present analysis are in general agreement with those in other analyses. 

Also the results in [90°/0°]𝑠  are quantitatively similar to those in [0°/90°]𝑠  while 

having opposite signs. Moreover, the interlaminar shear stresses with respect to 

different possible singular points along the y coordinate are different and for 

comparison the variations of these stresses through the thickness at y =0.999b are 

plotted in Figure 7.11. It is clear from these two figures that the interlaminar shear 

stresses in the coupled analysis are qualitatively similar to those in the uncoupled 

analysis but approximately twice larger.  
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Figure 7.10: Distributions of interlaminar shear stress τyz at the 90
ᵒ
/0

ᵒ
 interface in the 

[90
ᵒ
/0

ᵒ
]s laminate 

 

Figure 7.11: Variations of interlaminar shear stress τyz through the thickness in the 

[90
ᵒ
/0

ᵒ
]s laminate at y =0.999b 
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Figure 7.12: Distributions of electric field intensity components Ey and Ez at the 

90
ᵒ
/0

ᵒ
 interface in the [90

ᵒ
/0

ᵒ
]s laminate 

 

Figure 7.13: Variations of electric field intensity components Ey and Ez through the 

thickness in the [90
ᵒ
/0

ᵒ
]s laminate 
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There are good agreements between the electric field intensity components 𝐸𝑦  and 

𝐸𝑧  in the present analysis and those obtained by FEM. In addition possible 

singularities can be found near the intersections of the interface and the free edge as 

depicted in Figures 7.12 and 7.13. 

The comparisons between the SSA results using the non-uniform layer refinement 

and other published and FEM results for the[0°/90°]𝑠  and [90°/0°]𝑠  piezoelectric 

laminates demonstrate that the singularity arises from the vicinity of the interface 

and the free edge. It is apparent that the SSA results show good agreement with 

other results except for the region very near the free edge where some differences 

are observed from the variations of interlaminar stresses and electric field intensity 

components through the thickness. These differences become more notable in a 

small region (0.98 ≤ 𝑦/𝑏 ≤ 1) where the free edge effect plays a dominant role. 

Thus to get an in-depth understanding of the electromechanical and free edge effects 

on the stress and electric fields, the through thickness variations of interlaminar 

stresses and electric field intensity components with respect to different y near the 

free edge in the [0°/90°]𝑠 laminate are illustrated in Figures 7.14 and 7.15. 

The comparison between the SSA and FEM results indicates that the discrepancies 

become more significant for both interlaminar stresses and electric field intensity 

components when the free edge is approached. It is shown that when 𝑦 ≥ 0.999𝑏, 

these discrepancies appear noticeable. It is also interesting to note that the 

interlaminar normal stress 𝜎𝑧  in the analysis of FEM is discontinuous at the interface 

between dissimilar material layers. Although this discontinuity at the interface is 

negligible in the inner region of a laminate even in a small region 0.98 ≤ 𝑦/𝑏 <

0.999 , it is becoming prominent and cannot be neglected at the free edge 

(Figure 7.14 (a)). 
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(a) 

 

(b) 

Figure 7.14: Variations of interlaminar stresses through the thickness in the [0
ᵒ
/90

ᵒ
]s 

laminate 
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(a) 

 

(b) 

Figure 7.15: Variations of electric field intensity components through the thickness 

in the [0
ᵒ
/90

ᵒ
]s laminate 
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The free-edge and electromechanical coupling effects on the symmetric cross-ply 

piezoelectric laminates have drawn intense attention recently and the extensive 

investigation on these effects has been conducted in this thesis. Although the finite 

element models like Artel and Becker (2005) and FEM can demonstrate significant 

stress and electric field gradients with an enhanced mesh refinement in the vicinity 

of the free edge, they have difficulties in satisfying continuity conditions of 

interlaminar stresses at interfaces and fulfilling traction-free boundary conditions at 

free edges. Compared with published numerical and analytical models, the present 

models can capture the steep variations of interlaminar stresses and electric fields 

and also guarantee the continuity conditions and traction-free boundary conditions. 

Moreover, to obtain a more accurate description of the free-edge and 

electromechanical coupling effects, the non-uniform layer refinement technique 

proposed in Chapter 5 was adopted. With more mathematical sub-layers towards the 

interface of two different adjacent physical layers, the small region near the interface 

is relatively refined, leading to a more accurate prediction of the stresses and electric 

fields distributions.  

 

7.2.2 Influence of stacking sequences in cross-ply laminates 

To evaluate the influence of stacking sequence on the interlaminar stresses and 

electric field intensity components, the analyses of unsymmetric cross-ply [0°/90°/

0°/90°] and [90°/90°/90°/0°] piezoelectric laminates are carried out. Since there 

are no published analytical or numerical solutions available, the present analytical 

results from SSA are illustrated in comparison with the finite element solution 

obtained by FEM. Specifically, the 0°/90° interface between the first and second 

layers in a [0°/90°/0°/90°] laminate and the 90°/0° interface between the third and 

fourth layers in a [90°/90°/90°/0°]  laminate are investigated with and without 

electromechanical coupling.  
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 (a) [0°/90°/0°/90°] 

                    

(b) [90°/90°/90°/0°] 

Figure 7.16: Distributions of interlaminar normal stress σz at the interfaces in the 
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The plots shown in Figure 7.16 display behaviours of the interlaminar normal stress 

𝜎𝑧  at the interfaces in the [0°/90°/0°/90°] and [90°/90°/90°/0°]  laminates. As 

shown in this figure, 𝜎𝑧  in the electromechanical coupled analysis is larger than that 

in the uncoupled one. It is found that the interlaminar normal stress retains tensile 

and increases rapidly in the vicinity of the free edge at the interface for the [0°/90°/

0°/90°] and [90°/90°/90°/0°] laminates while the maximum interlaminar normal 

stress of the [0°/90°/0°/90°] laminate in the coupled case at the free edge is larger 

than those of other laminates. It appears that due to the existence of a higher 

interlaminar normal stress in tension the antisymmetric [0°/90°/0°/90°] laminate is 

a little bit more vulnerable to delamination than other laminate configurations.  

The effect of stacking sequences on the interlaminar normal stress can be observed 

from the through-thickness variations in Figure 7.17. It is found that the stress 

gradients occur near the intersections of the interface and the free edge and the value 

of the interlaminar normal stress tends to decline away from the free edge. As 

mentioned before, in contrast to the SSA result, the finite element solution cannot 

guarantee the continuity of the interlaminar normal stress at the interface between 

dissimilar material layers and more significant discontinuities are captured at the 

intersections of the interface and the free edge. In spite of this deficiency, the 

discontinuity of the interlaminar normal stress in the finite element solution is 

illustrated to be negligible away from the free edge from this figure. As a result, the 

discrepancies between the SSA results and those of FEM are reduced and good 

agreement is observed. 
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Figure 7.17: Variations of interlaminar normal stress σz through the thickness in the 
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Figure 7.18: Distributions of interlaminar shear stress τyz at the interfaces in the 
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As depicted in Figure 7.18, the interlaminar shear stress disturbance occurs near the 

free edge for both [0°/90°/0°/90°]  and [90°/90°/90°/0°]  laminates with and 

without electromechanical coupling. The SSA coupled results are approximately 

twice than the uncoupled ones. Although there are some differences in the 

interlaminar shear stress near the free edge between the SSA results and those of 

FEM, these differences tend to be reduced and consistent results can be obtained 

away from the singular points in this figure.  

This finding can also be verified from the variations of the interlaminar shear stress 

through the thickness with respect to y in Figure 7.19. It is apparent that there are 

noticeable discrepancies within small regions very close to the intersections of the 

interface and the free edge but these discrepancies are reduced when y/b is smaller. 

Similar to the interlaminar normal stress, the singular problems of the interlaminar 

shear stress near the interfaces as well as the free edges lead to the redistributions of 

this stress through the thickness.  

It is clear that the SSA solutions predict strong electric field gradients near the 

intersection of the interface and the free edge for 𝐸𝑦  and 𝐸𝑧 . Distinctive distributions 

of electric field intensity components across the thickness are illustrated in Figures 

7.20 and 7.21. For the [0°/90°/0°/90°] and [90°/90°/90°/0°] laminates, noticeable 

electric field gradients are observed at the physical interfaces of dissimilar material 

layers.  
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Figure 7.19: Variations of interlaminar shear stress τyz through the thickness in the 
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Figure 7.20: Distributions of electric field intensity components Ey and Ez at the 

interfaces in the [0
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7.3 Investigations on closed-circuit surface condition 

As primary variables, the state vectors preserved in the state equations directly 

represent the mechanical and electric surface conditions on the top and bottom 

surfaces. When the closed-circuit conditions are imposed on the top and bottom 

surfaces, the state vector on the top surface can be solved by using the transfer 

matrix, recursive solution approach and continuity conditions between layers of the 

laminate.  

Considering the relationship between the state vector of an arbitrary layer and that of 

the top surface, any state variable can be expressed in terms of the unknown 

boundary coefficients contained in the non-homogeneous vector. Once the 

mechanical and electric boundary conditions at the free edges are given, the 

unknown boundary coefficients can be determined by solving the corresponding 

algebraic equations.  

As discussed above, the closed-circuit electric surface conditions are applied on the 

top and bottom surfaces of the four-layered laminate and there are four traction-free 

boundary conditions for this laminate: two free edges at y=0 and y=b, and two top 

and bottom surfaces at z=0 and z=h. Moreover, for the four layered laminate the 

length is assumed to be sufficiently long in the x-axis, and width b is chosen ten 

times larger than the thickness h, and the thickness of each layer in the laminate is 

identical.  

Similarly, four stacking sequences: [0°/90°]𝑠 , [90°/0°]𝑠 , [ 0°/90°/0°/90°]  and 

[ 90°/90°/90°/0°]  with electromechanical coupling are considered and each 

laminate is subjected to a uniform axial strain 휀0 . The mechanical and electrical 

material properties are given in Table 5.9. Additionally, the same abbreviation in 

Chapter 5 is used, and L1, L2, L3 and L4 are chosen to denote the four stacking 

sequences: [0°/90°]𝑠 , [90°/0°]𝑠 , [ 0°/90°/0°/90°]  and [ 90°/90°/90°/0°] , 

respectively. 
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Figure 7.22: Variations of interlaminar normal stress σz along the interface (left) and 

through the thickness (right) in general cross-ply piezoelectric laminates under 

closed-circuit (CC) and open-circuit (OC) surface conditions 
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Figure 7.23: Variations of interlaminar shear stress τyz along the interface (left) and 

through the thickness (right) in general cross-ply piezoelectric laminates under 

closed-circuit (CC) and open-circuit (OC) surface conditions 
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Analogously, validation is also carried out by comparing present SSA results with 

those of FEM and there are no significant differences between these two solutions 

except for the region where a singularity occur.  

Different electric surface conditions may lead to redistributions of electromechanical 

variables such as interlaminar stresses and electric field intensities. Since the 

influence of piezoelectric coupling on these mentioned variables near the free edge 

under open-circuit surface condition has been studied, it is inevitable to investigate 

the influence under closed-circuit surface condition and the difference between these 

two electric surface conditions.  

To assess the distributions of interlaminar stresses 𝜎𝑧  and 𝜏𝑦𝑧 , and electric field 

intensity components 𝐸𝑦  and 𝐸𝑧  along the y direction, the 0°/90° interface at 

z/h=0.25, 90°/0° interface at z/h=0.25, 0°/90° interface at z/h=0.25 and 90°/0° 

interface at z/h=0.75 are chosen for the [0°/90°]𝑠, [90°/0°]𝑠, [0°/90°/0°/90°] and 

[90°/90°/90°/0°]  laminates, respectively. In addition, the through-thickness 

variations of these interlaminar stresses near the free edge are also presented.  

As depicted in Figures 7.22 and 7.23, the stresses in the closed-circuit surface 

condition are qualitatively similar to those in the open-circuit surface condition 

where a notable interlaminar stress gradient is captured near the intersection of the 

interface and the free edge. However, it is observed that the stresses in the closed-

circuit surface condition are approximately half of those in the open-circuit surface 

condition quantitatively. It also should be noted that the discrepancy between these 

two electric surface conditions becomes more noticeable when the free edge or the 

interface is approached.  
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Figure 7.24: Variations of electric field intensity component Ey along the interface 

(left) and through the thickness (right) in general cross-ply piezoelectric laminates 

under closed-circuit (CC) and open-circuit (OC) surface conditions 
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Figure 7.25: Variations of electric field intensity component Ez along the interface 

(left) and through the thickness (right) in general cross-ply piezoelectric laminates 

under closed-circuit (CC) and open-circuit (OC) surface conditions 
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The variations of electric field intensity components 𝐸𝑦  and 𝐸𝑧  along the interface 

and through the thickness under different electric surface conditions are shown in 

Figures 7.24 and 7.25. It is apparent that 𝐸𝑦  in the closed-circuit surface condition 

are also approximately half of those in the open-circuit surface condition 

quantitatively near the intersection of the interface and the free edge.  

Although the electric field intensity component 𝐸𝑧  in the closed-circuit surface 

condition is qualitatively similar to that in the open-circuit surface condition and 

they both exhibit steep variations near the interface and the free edge, a significant 

difference is found between the two electric surface conditions. Compared to the 

open-circuit surface, the magnitude of 𝐸𝑧  in the closed-circuit surface condition is 

much smaller not only near the free edge but also in the inner region of the 

piezoelectric laminate.  

 

7.4 Conclusions  

In this chapter, an extensive and in-depth investigation has been carried out to 

analyze the electromechanical and free edge effects on the interlaminar stresses and 

electric fields in the symmetric and unsymmetric cross-ply piezoelectric laminates 

under uniaxial extension. To evaluate the influence of the piezoelectric coupling 

effect in the vicinity of the free edges, both coupled and uncoupled analyses of the 

free-edge effect have been performed.  

For the symmetric cross-ply piezoelectric laminates the present analytical SSA 

solution has been compared with the results available in the literature and FEM. The 

accuracy and effectiveness of the SSA solution in predicting the localized three-

dimensional interlaminar stresses and electric fields were shown analytically. Since 

there are no published analytical or numerical solutions for the unsymmetric cross-

ply piezoelectric laminates, the SSA results can be used as a benchmark which has 

been verified by the FEM solution from ABAQUS. There was good agreement 

between the SSA results and those from FEM except for the region very near the 
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free edge where a singularity was expected. Due to this singularity, the interlaminar 

stresses and electric fields showed significant gradients near the intersection of the 

interface and the free edge for both coupled and uncoupled cases.  

It was also found that the interlaminar stresses in the coupled analysis exhibited 

higher magnitude than those in the uncoupled analysis, so the electromechanical 

coupling as well as the free edge effects had a notable influence on the interlaminar 

stresses and for determining the interlaminar stresses in the piezoelectric laminated 

plate, in particular near the free edges, the coupled analysis should be carried out. In 

addition, owing to much higher interlaminar stresses in the piezoelectric laminates 

than the laminates without electromechanical coupling the piezoelectric laminates 

are more vulnerable to edge delamination which may affect the structural integrity 

and reliability. 

Furthermore the results of this investigation illustrated that the interlaminar stresses 

𝜎𝑧  and 𝜏𝑦𝑧 , and electric field intensity component 𝐸𝑦  in the closed-circuit surface 

condition were half of those in the open-circuit surface while the electric field 

intensity component 𝐸𝑧  declined significantly when applying the closed-circuit 

surface condition. The application of different electric boundary conditions had a 

significant influence on the distributions of interlaminar stresses, particularly near 

the free edge. The results indicate that in order to prevent the initiation of edge 

delamination the closed-circuit surface conditions on the piezoelectric laminates 

under uniaxial extension would be preferable. 
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CHAPTER 8 CONCLUSIONS AND 

RECOMMENDATIONS FOR FUTURE STUDIES 

 

8.1 Introduction  

Based on the theories of 3D elasticity and piezoelectricity, the state space method 

has been developed to investigate the global and local behaviour of piezoelectric 

laminated plates with free edges, in particular the electromechanical coupling and 

free-edge effects on the distributions of interlaminar stresses. Two main laminated 

models: simply-supported and free-edge piezoelectric laminated plates under 

transverse loads and infinite long piezoelectric laminates under uniaxial extension, 

have been established. In addition, by using the finite element package ABAQUS, 

numerical models have been performed and their results also have been compared 

with those of present analytical models. This chapter summarizes the main 

conclusions and contributions of the analytical and numerical investigations in the 

research and recommends some potential studies in the future.  

 

8.2 Analytical and numerical investigations on simply-supported 

piezoelectric laminated thick plates with free edges 

The following conclusions from this investigation can be drawn 

 With the introduction of electric state variables (Dz and ∅) in terms of eigen-

functions in the state equations the state space method preserves the three 

displacement components u, v and w, three interlaminar stresses 𝜎𝑧 , 𝜏𝑥𝑧  and 𝜏𝑦𝑧 , 

electric potential ∅ and transverse electric displacement 𝐷𝑧  as the state vectors 

with respect to the theories of 3D piezoelasticity and all the independent elastic 

and piezoelectric constants for the orthotropic and piezoelectric materials are 

considered. The continuity conditions between different layers are also satisfied 
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and the traction-free and open-circuit boundary conditions at free edges are 

guaranteed. This state space method can provide exact 3D analytical solutions 

for the analyses of the electromechanical and free-edge effects on the 

piezoelectric laminates, and the present 3D analytical solutions delivered an 

improvement in precision over other 2D analytical and numerical solutions and 

could serve as a benchmark for these solutions. 

 By using the 3D piezoelectric brick element in the finite element package 

ABAQUS, the finite element method yielded reasonable solutions to predict the 

distributions of the field variables in the piezoelectric laminate everywhere 

except for a region involving the two elements closest to the stress singularity. 

Due to the fact that the locations of Gauss point get closer to the node point 

locations (but never become the nodal locations) the continuity of interlaminar 

stresses and the traction-free boundary conditions are not guaranteed. The 

discrepancy between the interlaminar stresses at the interfaces could be reduced 

or neglected in the inner region of the plate. However, with the high 

inhomogeneity in mechanical and electric material properties and singularity 

near the free edge, this discontinuous behaviour became noticeable. 

 By applying more mathematical sub-layers in the small region in the immediate 

vicinity of the interface without increasing the total number of the sub-layers, the 

non-uniform layer refinement was implemented in the state space approach for 

the first time. The accuracy of the local mechanical and electrical quantities was 

improved and more realistic gradients of these quantities were captured near the 

intersection of the interface and the free edge. This novel layer refinement was 

validated as a possible compromise between the accuracy and computation 

efficiency for the analysis of the free-edge effect.  

 The comparison with the Levy analytical solution based on CLPT indicated that 

CLPT underestimated the maximum central deflection of laminated plates even 

for thin plates and gave poor results on stresses. The results from the present 3D 

analytical solution were in good agreement with those from FEM. The present 

analytical solution is suitable for the design and accurate analysis of 

piezoelectric laminated thin and thick plates with free-edge boundary conditions. 
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 For the three-layered piezoelectric laminates the interlaminar shear stress 𝜏𝑥𝑧  

played a dominant role along the simply-supported edges and increased steadily 

to the maximum value at the corners. Compared with 𝜏𝑥𝑧 , 𝜏𝑦𝑧  was quantitatively 

smaller but exhibited a significant variation. Due to the influences of different 

material properties, geometries and stacking sequences on the singular behaviour 

of 𝜏𝑦𝑧 , this interlaminar shear stress near the free edge was not negligible and 

had a tendency to contribute to edge delamination in the piezoelectric laminate. 

Moreover, the highest tensile interlaminar normal stress 𝜎𝑧  was observed at the 

interface of the [90°/90°/90°/0°]  piezoelectric laminate that was more 

susceptible to delamination damage. As a recommendation, the edge 

reinforcement or edge modification should be adopted in practical design to 

prevent such edge delamination.  

 The present analytical plate model can be utilized to evaluate the 3D bending 

behaviour of the simply-supported piezoelectric beam with all dimensions and 

elastic and electric constants for the orthotropic and piezoelectric material being 

considered. As the width to thickness ratio b/h increases, the variation of 

transverse shear stress 𝜏𝑥𝑧  along the width became more noticeable. Due to the 

free-edge effect, the value of this transverse shear stress at the intersection of the 

free edge and simply-supported edge was approximately 33% larger than that at 

the middle of the simply-supported edge when b/h=1. The beam model based on 

the plane stress state assumption was not suitable for an accurate prediction of 

the transverse shear stresses. The present solution can provide alternative means 

for evaluating the full 3D state of stresses and electric fields in the design and 

analysis of piezoelectric beams and plates, and serve as a benchmark for other 

numerical methods. Moreover, the significant influence of the electrical material 

parameters on the singular behaviour of 𝜏𝑦𝑧  was captured and  𝜏𝑥𝑧  that was much 

larger than 𝜏𝑦𝑧  varied steadily. 
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8.3 Analytical and numerical investigations on infinite long 

piezoelectric laminated plates under uniaxial extension  

In this study, several conclusions can be made as follows: 

 There were significant gradients of interlaminar stresses 𝜎𝑧  and 𝜏𝑦𝑧 , and electric 

field intensity components 𝐸𝑦  and 𝐸𝑧  in the region near the intersection of the 

interface and the free edge. The tensile interlaminar stress 𝜎𝑧  was found in all 

general cross-ply piezoelectric laminates and this suggests that particular 

attention needs to be paid to this region.  

 The interlaminar stresses in the electromechanical coupled analysis exhibited 

higher magnitude than those in the uncoupled analysis. It was caused by the 

additional electric boundary conditions and the electromechanical coupling. This 

influence of the electromechanical coupling and the free-edge effect on the 

interlaminar stresses was notable and the piezoelectric laminate was more 

susceptible to delamination damage than the laminate without electromechanical 

coupling. Hence, in order to monitor the structural performance the coupled 

analysis should be carried out for the piezoelectric laminated plates to accurately 

determine the interlaminar stresses and more attention should be devoted to the 

regions near free edges in the design of piezoelectric laminated structures. Also, 

it was found that the application of the closed-circuited surface condition led to 

smaller interlaminar stresses and electric fields and might prevent the edge 

delamination initiation which would affect the structural integrity and reliability 

of piezoelectric laminates.  

 

8.4 Recommendations for future studies 

Since the interlaminar stresses are the predominant cause of failure (delamination) in 

piezoelectric laminated structures, the development of efficient 3D analytical 

solutions which can accurately determine the distributions of those stresses is 

necessary. The present solutions of piezoelectric laminated plates with free edges by 
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using the non-uniform layer refinement can be used as a benchmark for predicting 

interlaminar stresses and electric fields accurately not only in the inner region but 

also near the intersection of the interface and the free edge. It can be used to evaluate 

the accuracy of other various approximate analytical and numerical solutions. 

Further investigation should be performed for other boundary conditions such as 

fully clamped, clamped and free. In addition other loading conditions like traction 

loads and electric loads could be considered.  

The 3D free-edge effect phenomenon will become more complex under the action of 

a combination of multi physical fields such as mechanical, thermal, electrical field. 

The state space method has been demonstrated to be very effective and accurate in 

predicting the electromechanical and free-edge effects on the interlaminar stresses. 

This method can be extended, in principle, to the electro-thermo-mechanical and 

free-edge problems with additional corresponding state variables and boundary 

conditions.  

The present solution can be developed to analyze the free-edge effect of the 

functional graded plate with the material property parameters varying in the z 

direction. By using the layer refinement, the functional graded plate can be 

artificially divided into a certain number of mathematical layers with smaller 

thickness and the variable material coefficients of each layer can be reasonably 

approximated to be the constants in the sense of average layer thickness. With the 

transfer matrix method, the general solutions of the system equations can be 

obtained layer by layer.   
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APPENDIX A: THE DERIVATION OF EQUATION (3-8) 

 

From Equations (3-3), (3-4) and (3-5) , yields 

𝜎𝑥 = 𝐶11𝛼𝑢 + 𝐶12𝛽𝑣 + 𝐶13
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𝜕𝑧
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𝜎𝑧 = 𝐶13𝛼𝑢 + 𝐶23𝛽𝑣 + 𝐶33

𝜕𝑤

𝜕𝑧
+ 𝑒33
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𝜕𝑧
  

𝜏𝑦𝑧 = 𝐶44(𝛽𝑤 +
𝜕𝑣

𝜕𝑧
) + 𝑒24𝛽∅  

𝜏𝑥𝑧 = 𝐶55(𝛼𝑤 +
𝜕𝑢

𝜕𝑧
) + 𝑒15𝛼∅  
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 (A-1) 

Consider the third and ninth rows of Equation (A-1), 
𝜕𝑤

𝜕𝑧
 and 

𝜕∅

𝜕𝑧
 can be expressed as 
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APPENDIX B: THE DERIVATION OF THE FIRST-

ORDER NON-HOMOGENEOUS ORDINARY 

DIFFERENTIAL EQUATION (3-26) 

 

To solve the first-order non-homogeneous ordinary differential equation, the non-

homogeneous vector needs to be determined first. Substituting Equations (3-21) and 

(3-22) into (3-12), the left and right columns of the first-order non-homogeneous 

equation can be expressed as follows, respectively. 

𝜕

𝜕𝑧

 
 
 
 
 

 
 
 
 
𝑢(𝑥, 𝑦, 𝑧)

𝑣(𝑥, 𝑦, 𝑧)

𝐷𝑧(𝑥, 𝑦, 𝑧)
𝜎𝑧(𝑥, 𝑦, 𝑧)

𝜏𝑥𝑧 (𝑥, 𝑦, 𝑧)

𝜏𝑦𝑧 (𝑥, 𝑦, 𝑧)

∅(𝑥, 𝑦, 𝑧)

𝑤(𝑥, 𝑦, 𝑧)  
 
 
 
 

 
 
 
 

=
𝜕

𝜕𝑧

 
 
 
 
 

 
 
 
 
𝑢 (𝑥, 𝑦, 𝑧)

𝑣 (𝑥, 𝑦, 𝑧)

𝐷𝑧(𝑥, 𝑦, 𝑧)
𝜎𝑧(𝑥, 𝑦, 𝑧)

𝜏𝑥𝑧 (𝑥, 𝑦, 𝑧)

𝜏𝑦𝑧 (𝑥, 𝑦, 𝑧)

∅(𝑥, 𝑦, 𝑧)

𝑤(𝑥, 𝑦, 𝑧)  
 
 
 
 

 
 
 
 

+
𝜕

𝜕𝑧

 
 
 
 
 

 
 
 
 
𝑏

2
 1 −

𝑦

𝑏
 

2

𝛼𝑣 0  𝑥, 𝑧 −
𝑏

2
 
𝑦

𝑏
 

2

𝛼𝑣 𝑏  𝑥, 𝑧 

 1 −
𝑦

𝑏
 𝑣 0  𝑥, 𝑧 +

𝑦

𝑏
𝑣 𝑏  𝑥, 𝑧 

0
0
0
0
0
0  

 
 
 
 

 
 
 
 

 (B-1) 

 𝐴 

 
 
 
 
 

 
 
 
 
𝑢(𝑥, 𝑦, 𝑧)

𝑣(𝑥, 𝑦, 𝑧)

𝐷𝑧(𝑥, 𝑦, 𝑧)
𝜎𝑧(𝑥, 𝑦, 𝑧)

𝜏𝑥𝑧 (𝑥, 𝑦, 𝑧)

𝜏𝑦𝑧 (𝑥, 𝑦, 𝑧)

∅(𝑥, 𝑦, 𝑧)

𝑤(𝑥, 𝑦, 𝑧)  
 
 
 
 

 
 
 
 

=  𝐴 

 
 
 
 
 

 
 
 
 
𝑢 (𝑥, 𝑦, 𝑧)

𝑣 (𝑥, 𝑦, 𝑧)

𝐷𝑧(𝑥, 𝑦, 𝑧)
𝜎𝑧(𝑥, 𝑦, 𝑧)

𝜏𝑥𝑧 (𝑥, 𝑦, 𝑧)

𝜏𝑦𝑧 (𝑥, 𝑦, 𝑧)

∅(𝑥, 𝑦, 𝑧)

𝑤(𝑥, 𝑦, 𝑧)  
 
 
 
 

 
 
 
 

+  𝐴 

 
 
 
 
 

 
 
 
 
𝑏

2
 1 −

𝑦

𝑏
 

2

𝛼𝑣 0  𝑥, 𝑧 −
𝑏

2
 
𝑦

𝑏
 

2

𝛼𝑣 𝑏  𝑥, 𝑧 

 1 −
𝑦

𝑏
 𝑣 0  𝑥, 𝑧 +

𝑦

𝑏
𝑣 𝑏  𝑥, 𝑧 

0
0
0
0
0
0  

 
 
 
 

 
 
 
 

 (B-2) 
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Form Equations (B-1) and (B-2), yields  

𝜕

𝜕𝑧

 
 
 
 
 

 
 
 
 
𝑢 (𝑥, 𝑦, 𝑧)

𝑣 (𝑥, 𝑦, 𝑧)

𝐷𝑧(𝑥, 𝑦, 𝑧)
𝜎𝑧(𝑥, 𝑦, 𝑧)

𝜏𝑥𝑧 (𝑥, 𝑦, 𝑧)

𝜏𝑦𝑧 (𝑥, 𝑦, 𝑧)

∅(𝑥, 𝑦, 𝑧)

𝑤(𝑥, 𝑦, 𝑧)  
 
 
 
 

 
 
 
 

=  𝐴 

 
 
 
 
 

 
 
 
 
𝑢 (𝑥, 𝑦, 𝑧)

𝑣 (𝑥, 𝑦, 𝑧)

𝐷𝑧(𝑥, 𝑦, 𝑧)
𝜎𝑧(𝑥, 𝑦, 𝑧)

𝜏𝑥𝑧 (𝑥, 𝑦, 𝑧)

𝜏𝑦𝑧 (𝑥, 𝑦, 𝑧)

∅(𝑥, 𝑦, 𝑧)

𝑤(𝑥, 𝑦, 𝑧)  
 
 
 
 

 
 
 
 

+  𝐴 

 
 
 
 
 

 
 
 
 
𝑏

2
 1 −

𝑦

𝑏
 

2

𝛼𝑣 0  𝑥, 𝑧 −
𝑏

2
 
𝑦

𝑏
 

2

𝛼𝑣 𝑏  𝑥, 𝑧 

 1 −
𝑦

𝑏
 𝑣 0  𝑥, 𝑧 +

𝑦

𝑏
𝑣 𝑏  𝑥, 𝑧 

0
0
0
0
0
0  

 
 
 
 

 
 
 
 

 

−

 
 
 
 
 
 

 
 
 
 
 
𝑏

2
 1 −

𝑦

𝑏
 

2

𝛼
𝜕𝑣 0  𝑥, 𝑧 

𝜕𝑧
−
𝑏

2
 
𝑦

𝑏
 

2

𝛼
𝜕𝑣 𝑏  𝑥, 𝑧 

𝜕𝑧

 1 −
𝑦

𝑏
 
𝜕𝑣 0  𝑥, 𝑧 

𝜕𝑧
+
𝑦

𝑏

𝜕𝑣 𝑏  𝑥, 𝑧 

𝜕𝑧
0
0
0
0
0
0  

 
 
 
 
 

 
 
 
 
 

 

(B-3) 

 

The third and fourth columns in Equation (B-3) needs to be determined, and let 

 
 
 
 
 

 
 
 
 
𝐵1(𝑥, 𝑦, 𝑧)

𝐵2(𝑥, 𝑦, 𝑧)

𝐵3(𝑥, 𝑦, 𝑧)

𝐵4(𝑥, 𝑦, 𝑧)
𝐵5(𝑥, 𝑦, 𝑧)

𝐵6(𝑥, 𝑦, 𝑧)

𝐵7(𝑥, 𝑦, 𝑧)

𝐵8(𝑥, 𝑦, 𝑧) 
 
 
 
 

 
 
 
 

=  𝐴 

 
 
 
 
 

 
 
 
 
𝑏

2
 1 −

𝑦

𝑏
 

2

𝛼𝑣 0  𝑥, 𝑧 −
𝑏

2
 
𝑦

𝑏
 

2

𝛼𝑣 𝑏  𝑥, 𝑧 

 1 −
𝑦

𝑏
 𝑣 0  𝑥, 𝑧 +

𝑦

𝑏
𝑣 𝑏  𝑥, 𝑧 

0
0
0
0
0
0  

 
 
 
 

 
 
 
 

 

                                  −

 
 
 
 
 
 

 
 
 
 
 
𝑏

2
 1 −

𝑦

𝑏
 

2

𝛼
𝜕𝑣 0  𝑥, 𝑧 

𝜕𝑧
−
𝑏

2
 
𝑦

𝑏
 

2

𝛼
𝜕𝑣 𝑏  𝑥, 𝑧 

𝜕𝑧

 1 −
𝑦

𝑏
 
𝜕𝑣 0  𝑥, 𝑧 

𝜕𝑧
+
𝑦

𝑏

𝜕𝑣 𝑏  𝑥, 𝑧 

𝜕𝑧
0
0
0
0
0
0  

 
 
 
 
 

 
 
 
 
 

 

(B-4) 
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where 

𝐵1(𝑥, 𝑦, 𝑧) = −
𝑏

2
∙  1 −

𝑦

𝑏
 

2

∙ 𝛼
𝜕𝑣 0  𝑥, 𝑧 

𝜕𝑧
+
𝑏

2
∙  
𝑦

𝑏
 

2

∙ 𝛼
𝜕𝑣 𝑏  𝑥, 𝑧 

𝜕𝑧
  

𝐵2(𝑥, 𝑦, 𝑧) = − 1 −
𝑦

𝑏
 ∙

𝜕𝑣 0  𝑥, 𝑧 

𝜕𝑧
−
𝑦

𝑏
∙
𝜕𝑣 𝑏  𝑥, 𝑧 

𝜕𝑧
  

𝐵3(𝑥, 𝑦, 𝑧) = 0  

𝐵4(𝑥, 𝑦, 𝑧) = 0  

𝐵5 𝑥, 𝑦, 𝑧 = −𝑘9 ∙
𝑏

2
∙  1 −

𝑦

𝑏
 

2

∙ 𝛼3𝑣 0  𝑥, 𝑧 + 𝑘9 ∙
𝑏

2
∙  
𝑦

𝑏
 

2

∙ 𝛼3𝑣 𝑏  𝑥, 𝑧  

−
𝑘17

𝑏
∙ 𝛼𝑣 0  𝑥, 𝑧 +

𝑘17

𝑏
∙ 𝛼𝑣 𝑏  𝑥, 𝑧 +  

𝑘10 + 𝑘17

𝑏
 ∙ 𝛼𝑣 0  𝑥, 𝑧 − (

𝑘10 + 𝑘17

𝑏
) ∙ 𝛼𝑣 𝑏  𝑥, 𝑧  

 

𝐵6 𝑥, 𝑦, 𝑧 = − 𝑘17 + 𝑘13 ∙  
𝑦

𝑏
− 1 ∙ 𝛼2𝑣 0  𝑥, 𝑧 +  𝑘17 + 𝑘13 ∙  

𝑦

𝑏
 ∙ 𝛼2𝑣 𝑏  𝑥, 𝑧  

−𝑘17 ∙  1 −
𝑦

𝑏
 ∙ 𝛼2𝑣 0  𝑥, 𝑧 − 𝑘17 ∙  

𝑦

𝑏
 ∙ 𝛼2𝑣 𝑏  𝑥, 𝑧  

 

𝐵7 𝑥, 𝑦, 𝑧 = 𝑘5 ∙
𝑏

2
∙  1 −

𝑦

𝑏
 

2

∙ 𝛼2𝑣 0  𝑥, 𝑧 − 𝑘5 ∙
𝑏

2
∙  
𝑦

𝑏
 

2

∙ 𝛼2𝑣 𝑏  𝑥, 𝑧  

−
𝑘6

𝑏
∙ 𝑣 0  𝑥, 𝑧 +

𝑘6

𝑏
∙ 𝑣 𝑏  𝑥, 𝑧  

 

𝐵8 𝑥, 𝑦, 𝑧 = 𝑘1 ∙
𝑏

2
∙  1 −

𝑦

𝑏
 

2

∙ 𝛼2𝑣 0  𝑥, 𝑧 − 𝑘1 ∙
𝑏

2
∙  
𝑦

𝑏
 

2

∙ 𝛼2𝑣 𝑏  𝑥, 𝑧  

−
𝑘2

𝑏
∙ 𝑣 0  𝑥, 𝑧 +

𝑘2

𝑏
∙ 𝑣 𝑏  𝑥, 𝑧  

(B-5) 
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Equation (B-3) can be expressed as 

𝜕

𝜕𝑧

 
 
 
 
 

 
 
 
 
𝑢 (𝑥, 𝑦, 𝑧)
𝑣 (𝑥,𝑦, 𝑧)
𝐷𝑧(𝑥,𝑦, 𝑧)
𝜎𝑧(𝑥,𝑦, 𝑧)
𝜏𝑥𝑧 (𝑥,𝑦, 𝑧)
𝜏𝑦𝑧 (𝑥, 𝑦, 𝑧)

∅(𝑥,𝑦, 𝑧)
𝑤(𝑥,𝑦, 𝑧)  

 
 
 
 

 
 
 
 

=  𝐴 

 
 
 
 
 

 
 
 
 
𝑢 (𝑥,𝑦, 𝑧)
𝑣 (𝑥,𝑦, 𝑧)
𝐷𝑧(𝑥,𝑦, 𝑧)
𝜎𝑧(𝑥,𝑦, 𝑧)
𝜏𝑥𝑧(𝑥, 𝑦, 𝑧)
𝜏𝑦𝑧 (𝑥,𝑦, 𝑧)

∅(𝑥,𝑦, 𝑧)
𝑤(𝑥,𝑦, 𝑧)  

 
 
 
 

 
 
 
 

+

 
 
 
 
 

 
 
 
 
𝐵1(𝑥, 𝑦, 𝑧)
𝐵2(𝑥,𝑦, 𝑧)
𝐵3(𝑥,𝑦, 𝑧)
𝐵4(𝑥,𝑦, 𝑧)
𝐵5(𝑥,𝑦, 𝑧)
𝐵6(𝑥,𝑦, 𝑧)
𝐵7(𝑥,𝑦, 𝑧)
𝐵8(𝑥,𝑦, 𝑧) 

 
 
 
 

 
 
 
 

 (B-6) 

The eigen-functions in Equations (3-23)-(3-25) are given as follows 

𝑣 0  𝑥, 𝑧 =  𝑣𝑚
 0  𝑧 sin 휁𝑥

𝑚

 

𝑣 𝑏  𝑥, 𝑧 =  𝑣𝑚
 𝑏 (𝑧) sin 휁𝑥

𝑚

 

 

𝑢 =   𝑢 𝑚𝑛
𝑛𝑚

 𝑧 cos 휁𝑥 cos 휂𝑦 , 𝜏𝑥𝑧 =   𝑋𝑚𝑛
𝑛𝑚

 𝑧 cos 휁𝑥 cos 휂𝑦 

𝑣 =   𝑣 𝑚𝑛
𝑛𝑚

 𝑧 sin 휁𝑥 sin 휂𝑦 ,    𝜏𝑦𝑧 =   𝑌𝑚𝑛
𝑛𝑚

 𝑧 sin 휁𝑥 sin 휂𝑦 

𝜎𝑧 =   𝑍𝑚𝑛
𝑛𝑚

 𝑧 sin 휁𝑥 cos 휂𝑦 , 𝑤 =   𝑤𝑚𝑛

𝑛𝑚

 𝑧 sin 휁𝑥 cos 휂𝑦 

𝐷𝑧 =   𝐷𝑚𝑛
𝑛𝑚

 𝑧 sin 휁𝑥 cos 휂𝑦 , ∅ =   ∅𝑚𝑛
𝑛𝑚

 𝑧 sin 휁𝑥 cos 휂𝑦 

(B-7) 

1 −
𝑦

𝑏
=  

2

𝑛𝜋

∞

𝑛=1

sin 휂𝑦 ,        (1 −
𝑦

𝑏
)2 =

1

3
+  

4

𝑛2𝜋2

∞

𝑛=1

cos 휂𝑦 

𝑦

𝑏
=  

−2 cos 𝑛𝜋

𝑛𝜋

∞

𝑛=1

sin 휂𝑦 ,   (
𝑦

𝑏
)2 =

1

3
+  

4 cos𝑛𝜋

𝑛2𝜋2

∞

𝑛=1

cos 휂𝑦 

 

 

By introducing Equation (B-7) into Equation (B-6), Equation (3-26) can be obtained 

by matching the coefficients of eigen-functions at two sides of Equation (B-6) 

𝑑

𝑑𝑧
 𝑅𝑚𝑛 (𝑧) =  𝐴   𝑅𝑚𝑛 (𝑧) +  𝐵𝑚𝑛 (𝑧)  (3-26) 
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APPENDIX C: THE VERIFICATIONS OF THE 

BOUNDARY CONDITIONS FOR SIMPLY-SUPPORTED 

PIEZOELECTRIC LAMINATES WITH FREE EDGES 

Simply-supported and close-circuit boundary conditions at x=0 and a, and we have: 

𝜎𝑥 =   [−𝑘9 ∙ 휁 ∙ 𝑢 𝑚𝑛 (𝑧)+𝑘10 ∙ 휂 ∙ 𝑣 𝑚𝑛 (𝑧)

𝑛𝑚

+𝑘11 ∙ 𝐷𝑚𝑛  𝑧  

                        + 𝑘12 ∙ 𝑍𝑚𝑛 (𝑧)] sin 휁𝑥 cos 휂𝑦 

          + {−
𝑘9

2
∙ 𝑏 ∙ [(1 −

𝑦

𝑏
)2 +  

𝑦

𝑏
 

2

] ∙ 휁2 −
2𝑘10

𝑏
}𝑣𝑚

(0) 𝑧 sin 휁𝑥

𝑚

= 0 

 

𝑣 =   𝑣 𝑚𝑛
𝑛𝑚

 𝑧 sin 휁𝑥 sin 휂𝑦 

         +  1 −
𝑦

𝑏
  𝑣𝑚

 0  𝑧 sin 휁𝑥 +
𝑦

𝑏
𝑚

 𝑣𝑚
 𝑏 (𝑧) sin 휁𝑥

𝑚

= 0 

(C-1) 

𝑤 =   𝑤𝑚𝑛

𝑛𝑚

 𝑧 sin 휁𝑥 cos 휂𝑦 = 0  

∅ =   ∅𝑚𝑛
𝑛𝑚

 𝑧 sin 휁𝑥 cos 휂𝑦 = 0  

Free-edge and open-circuit boundary conditions at y=0 and b, and we have 

𝜏𝑦𝑧 =   𝑌𝑚𝑛
𝑛𝑚

 𝑧 sin 휁𝑥 sin 휂𝑦  

𝜏𝑥𝑦 = −𝑘17   휂𝑢 𝑚𝑛
𝑛𝑚

 𝑧 cos 휁𝑥 sin휂𝑦+𝑘17  
𝑦

𝑏
− 1  휁𝑣𝑚

 0  𝑧 cos 휁𝑥

𝑚

 

             −
𝑘17 ∙ 𝑦

𝑏
 휁 ∙ 𝑣𝑚

 𝑏  𝑧 cos 휁𝑥+𝑘17   휁𝑣 𝑚𝑛
𝑛𝑚

 𝑧 cos 휁𝑥 sin휂𝑦

𝑚

 

             +𝑘17  1 −
𝑦

𝑏
  휁𝑣𝑚

 0  𝑧 cos 휁𝑥

𝑚

+
𝑘17 ∙ 𝑦

𝑏
 휁 ∙ 𝑣𝑚

 𝑏  𝑧 cos 휁𝑥

𝑚

 

        = 𝑘17   [−휂𝑢 𝑚𝑛
𝑛𝑚

 𝑧 + 휁𝑣 𝑚𝑛 (𝑧)] cos 휁𝑥 sin휂𝑦 = 0 

(C-2) 

𝐷𝑦 = 𝑘20   𝑌𝑚𝑛
𝑛𝑚

 𝑧 sin 휁𝑥 sin 휂𝑦 −𝑘21   휂∅𝑚𝑛
𝑛𝑚

 𝑧 sin 휁𝑥 sin휂𝑦 = 0  
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APPENDIX D: THE DERIVATION OF EQUATION (4-4) 

 

From Equations (3-3), (3-4) and (4-1), yields 

𝜎𝑥 = 𝐶11휀0 + 𝐶12𝛽𝑣 + 𝐶13

𝜕𝑤

𝜕𝑧
+ 𝑒31

𝜕∅

𝜕𝑧
  

𝜎𝑦 = 𝐶12휀0 + 𝐶22𝛽𝑣 + 𝐶23

𝜕𝑤

𝜕𝑧
+ 𝑒32

𝜕∅

𝜕𝑧
  

𝜎𝑧 = 𝐶13휀0 + 𝐶23𝛽𝑣 + 𝐶33

𝜕𝑤

𝜕𝑧
+ 𝑒33

𝜕∅

𝜕𝑧
  

𝜏𝑦𝑧 = 𝐶44(𝛽𝑤 +
𝜕𝑣

𝜕𝑧
) + 𝑒24𝛽∅  

𝜏𝑥𝑧 = 0  

𝜏𝑥𝑦 = 0  

𝐷𝑥 = 0  

𝐷𝑦 = 𝑒24  𝛽𝑤 +
𝜕𝑣

𝜕𝑧
 −∈22 𝛽∅  

𝐷𝑧 = 𝑒31휀0 + 𝑒32𝛽𝑣 + 𝑒33

𝜕𝑤

𝜕𝑧
−∈33

𝜕∅

𝜕𝑧
 (D-1) 

Considering the third and ninth rows of Equation (D-1), 
𝜕𝑤

𝜕𝑧
 and 

𝜕∅

𝜕𝑧
 can be expressed 

as 

𝜕𝑤

𝜕𝑧
=  

−𝑒32𝑒33 − 𝐶23 ∈33

𝑒33
2 + 𝐶33 ∈33

 𝛽𝑣 +  
𝑒33

𝑒33
2 + 𝐶33 ∈33

 𝐷𝑧 +  
∈33

𝑒33
2 + 𝐶33 ∈33

 𝜎𝑧   

𝜕∅

𝜕𝑧
=  

𝐶33𝑒32 − 𝐶23𝑒33

𝑒33
2 + 𝐶33 ∈33

 𝛽𝑣 +  
−𝐶33

𝑒33
2 + 𝐶33 ∈33

 𝐷𝑧 +  
𝑒33

𝑒33
2 + 𝐶33 ∈33

 𝜎𝑧  (D-2) 
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APPENDIX E: THE DERIVATION OF THE FIRST-

ORDER NON-HOMOGENEOUS ORDINARY 

DIFFERENTIAL EQUATION (4-18) 

 

Substituting Equation (4-15) into (4-8), yields 

𝜕

𝜕𝑧

 
  
 

  
 
𝑣 (𝑦, 𝑧)

𝐷𝑧(𝑦, 𝑧)
𝜎𝑧(𝑦, 𝑧)
𝜏𝑦𝑧 (𝑦, 𝑧)

∅(𝑦, 𝑧)
𝑤(𝑦, 𝑧)  

  
 

  
 

+
𝜕

𝜕𝑧

 
  
 

  
 𝑣 0  𝑧 ∙ (1 −

2𝑦

𝑏
)

0
0
0
0
0  

  
 

  
 

 

=  𝐴 

 
  
 

  
 
𝑣 (𝑦, 𝑧)
𝐷𝑧(𝑦, 𝑧)
𝜎𝑧(𝑦, 𝑧)
𝜏𝑦𝑧 (𝑦, 𝑧)

∅(𝑦, 𝑧)
𝑤(𝑦, 𝑧)  

  
 

  
 

+  𝐴 

 
  
 

  
 𝑣 0  𝑧 ∙ (1 −

2𝑦

𝑏
)

0
0
0
0
0  

  
 

  
 

+

 
 
 

 
 

0
0
0
0
𝑘8

𝑘4 
 
 

 
 

휀0 

(E-1) 

 

Then Equation (E-1) can be simplified as   

𝜕

𝜕𝑧

 
  
 

  
 
𝑣 (𝑦, 𝑧)
𝐷𝑧(𝑦, 𝑧)
𝜎𝑧(𝑦, 𝑧)
𝜏𝑦𝑧 (𝑦, 𝑧)

∅(𝑦, 𝑧)
𝑤(𝑦, 𝑧)  

  
 

  
 

=  𝐴 

 
  
 

  
 
𝑣 (𝑦, 𝑧)
𝐷𝑧(𝑦, 𝑧)
𝜎𝑧(𝑦, 𝑧)
𝜏𝑦𝑧 (𝑦, 𝑧)

∅(𝑦, 𝑧)
𝑤(𝑦, 𝑧)  

  
 

  
 

+

 
 
 
 
 

 
 
 
 −

𝑑𝑣 0  𝑧 

𝑑𝑧
∙ (1 −

2𝑦

𝑏
)

0
0
0

−
2

𝑏
∙ 𝑘5 ∙ 𝑣

 0  𝑧 + 𝑘8 ∙ 휀0

−
2

𝑏
∙ 𝑘1 ∙ 𝑣

 0  𝑧 + 𝑘4 ∙ 휀0 
 
 
 
 

 
 
 
 

 (E-2) 
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The eigen-functions in Equations (4-16) and (4-17) are given as follows 

𝑣 (𝑦, 𝑧) =  𝑣 𝑛
𝑛

 𝑧 sin 휂𝑦 ,           𝜏𝑦𝑧 (𝑦, 𝑧) =  𝑌𝑛
𝑛

 𝑧 sin 휂𝑦 

𝐷𝑧(𝑦, 𝑧) =  𝐷𝑛
𝑛

 𝑧 cos 휂𝑦 ,        ∅(𝑦, 𝑧) =  ∅𝑛
𝑛

 𝑧 cos 휂𝑦 

𝜎𝑧(𝑦, 𝑧) =  𝑍𝑛
𝑛

 𝑧 cos 휂𝑦 ,         𝑤(𝑦, 𝑧) =  𝑤𝑛

𝑛

 𝑧 cos 휂𝑦 

 

𝑦 = − 
2 𝑏cos𝑛𝜋

𝑛𝜋

∞

𝑛=0

sin 휂𝑦 (E-3) 

 

By introducing Equation (E-3) into Equation (E-2), Equation (4-18) can be obtained 

by matching the coefficients of eigen-functions at two sides of Equation (E-2) 

𝑑

𝑑𝑧
 𝑅𝑛(𝑧) =  𝐴   𝑅𝑛(𝑧) +  𝐵 (𝑧)  (4-18) 
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APPENDIX F: COMPARISON BETWEEN SSA AND 

FEM RESULTS ON ELECTRIC QUANTITIES 

 

Table F.1: Electric potential under open-circuit conditions against different h/a 

    h/a=0.2 h/a=0.4 h/a=0.6 

  
 

SSA FEM SSA FEM SSA FEM 

∅  T+ 0.83019 0.83015 0.24217 0.24210 0.13069 0.13057 

x=a/2 T- 0.99747 0.99747 0.26830 0.26832 0.13299 0.13304 

y=b/2 C+ 0.99747 0.99747 0.26830 0.26832 0.13299 0.13304 

  C- 0.94557 0.94557 0.21695 0.21694 0.08232 0.08229 

  B+ 0.94557 0.94557 0.21695 0.21694 0.08232 0.08229 

  B- 0.75246 0.75250 0.16514 0.16510 0.05784 0.05777 

∅  T+ 0.86513 0.86522 0.25347 0.25351 0.13668 0.13659 

x=a/2 T- 0.99804 0.99855 0.27078 0.27158 0.13501 0.13590 

y=0 C+ 0.99804 0.99855 0.27078 0.27158 0.13501 0.13590 

  C- 0.93942 0.93904 0.21360 0.21327 0.08052 0.08023 

  B+ 0.93942 0.93904 0.21360 0.21327 0.08052 0.08023 

  B- 0.78193 0.78191 0.17215 0.17195 0.06068 0.06054 
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Table F.2: Electric field intensity components under open-circuit conditions against 

different h/a 

    h/a=0.2 h/a=0.4 h/a=0.6 

  
 

SSA FEM SSA FEM SSA FEM 

𝐸 𝑥  T+ -0.31439 -0.31750 -0.17241 -0.17546 -0.13761 -0.14058 

x=a/4 T- -0.38902 -0.38931 -0.20215 -0.20215 -0.15182 -0.15187 

y=b/2 C+ -0.38902 -0.38931 -0.20215 -0.20215 -0.15182 -0.15187 

  C- -0.38783 -0.38783 -0.18660 -0.18661 -0.10853 -0.10850 

  B+ -0.38783 -0.38783 -0.18660 -0.18661 -0.10853 -0.10850 

  B- -0.31338 -0.31341 -0.14397 -0.14395 -0.07671 -0.07665 

𝐸 𝑦  T+ 0.01445 0.01451 0.01060 0.01070 0.00897 0.00899 

x=a/2 T- -0.00028 -0.00023 0.00186 0.00213 0.00179 0.00213 

y=b/4 C+ -0.00028 -0.00023 0.00186 0.00213 0.00179 0.00213 

  C- -0.00172 -0.00175 -0.00318 -0.00340 -0.00287 -0.00309 

  B+ -0.00172 -0.00175 -0.00318 -0.00340 -0.00287 -0.00309 

  B- 0.01191 0.01192 0.00571 0.00558 0.00361 0.00349 

𝐸 𝑧  T+ -1.10321 -1.10364 -0.21754 -0.21839 -0.06928 -0.07078 

x=a/2 T- -0.57430 -0.57420 -0.04780 -0.04788 0.04335 0.04295 

y=b/2 C+ -0.20861 -0.20858 0.05468 0.05466 0.09815 0.09802 

  C- 0.38177 0.38163 0.11556 0.11561 0.06297 0.06307 

  B+ 0.70322 0.70302 0.17062 0.17068 0.06937 0.06945 

  B- 1.23249 1.23220 0.35245 0.35267 0.18128 0.18136 
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Table F.3: Electric displacements under open-circuit conditions against different h/a 

    h/a=0.2 h/a=0.4 h/a=0.6 

  
 

SSA FEM SSA FEM SSA FEM 

𝐷 𝑥  T+ -2.16157 -2.18186 -1.18541 -1.20639 -0.94614 -0.96669 

x=a/4 T- -1.18083 -1.17776 -0.67999 -0.67965 -0.57837 -0.57813 

y=b/2 C+ 0.31307 0.31524 0.02990 0.03063 -0.11290 -0.11098 

  C- 0.35124 0.35246 0.41869 0.42004 0.45615 0.45707 

  B+ -1.15765 -1.15402 -0.43212 -0.43022 -0.14502 -0.14325 

  B- -2.15466 -2.15080 -0.98984 -0.98799 -0.52743 -0.52542 

𝐷 𝑦  T+ 0.09934 0.10019 0.07286 0.07361 0.06169 0.06182 

x=a/2 T- 0.22632 0.22843 0.06398 0.06291 0.01700 0.01389 

y=b/4 C+ 0.45460 0.45633 0.11518 0.11092 0.02167 0.01312 

  C- 0.44889 0.45063 0.17057 0.17384 0.10180 0.10656 

  B+ 0.21854 0.22034 0.07435 0.07562 0.04104 0.04299 

  B- 0.08190 0.08331 0.03926 0.03887 0.02481 0.02445 

𝐷 𝑧  T+ 0.00000 0.00018 0.00000 0.00006 0.00000 0.00002 

x=a/2 T- -0.23735 -0.23572 -0.25548 -0.25500 -0.34356 -0.34406 

y=b/2 C+ -0.23735 -0.23589 -0.25548 -0.25501 -0.34356 -0.34404 

  C- 0.23602 0.23584 0.21769 0.21765 0.13699 0.13622 

  B+ 0.23602 0.23568 0.21769 0.21767 0.13699 0.13628 

  B- 0.00000 -0.00039 0.00000 0.00003 0.00000 0.00020 

 

 


